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ABSTRACT

This thesis reports on a study to explore the development of the concept of
integration among the first year engineering students at a South African university of
technology. The study focused on concept definitions that were evoked through
symbolic as well as visualisation of integrals. It further explored various concept
images evoked the techniques of integration. A framework combining the Action-
Process-Object-Schema (APOS) and the Three-Worlds of Mathematics (TWM)

theories was adopted as a tool to analyse students’ concept formation of an integral.

This was a qualitative case study that consisted of two phases. Firstly, a pilot phase
was introduced as Phase 1 of the study to uncover issues that could be probed more
deeply when the study was rolled out to a larger group of students. The activity
sheet was administered and interviews were conducted with seven students who
were willing to participate in the study. Secondly, as Phase 2 of the study, the
modified activity sheet was then administered to 22 first year students who also
volunteered to be in the study. The intention was to provide comprehensive
investigation of concept development of integral calculus. Students were also
organised into focus groups in order to explore emerging mental constructions during

the discussions among the students.

The findings of the research indicated that students operated mainly at an action
level of cognition for integral calculus. Their definition of an integral was restricted to
the notion finding an integral with no association to the area below the graph of a
function. Students mainly conceptualised an integral as an anti-derivative. With
regard to techniques of integration, students relied on rules and algorithms without
reflecting on objects and processes embedded within the rules. Cases of inadequate
perquisite schemas for integral calculus such as basic algebra, inverse trigonometric
functions and some aspects of differentiation were also noted. Although there were
notable strengths in skills such as completing a square and resolving fraction into
partial fractions, there was little understanding of the underlying concepts. This study
contributed by presenting a genetic decomposition for integration that is premised on
APOS and TWM theories. While the action level of APOS was dominant, the

proceptual-symbolic was the main prevalent world of mathematics learning.
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CHAPTER ONE

INTRODUCTION

1.7. Background information

Engineering mathematics is fundamental to all engineering programmes at
universities of technology. It facilitates the understanding of content for various
subjects within the discipline and, as a result, it is a pre-requisite for advancement to
senior levels of study. Poor performance in mathematics may present it as a
gateway subject for first year students. As a mathematics lecturer at a university of
technology, therefore, | felt that there was a need to explore students’ learning of
mathematics since “research into students’ learning of mathematics helps to predict
what they may learn about a specific mathematical concept and the conditions by
which that learning takes place” (Arnon et al., 2014, p. 27).

A dominant mathematical concept that students encounter within engineering
mathematics at a university of technology is calculus. In their investigation on what
calculus experts regard as essential learning points of the first year calculus,
Sofronas et al. (2011) observed general consensus over three broad areas. These
are: (i) mastery of fundamental concepts and-or skills, (ii) connections and relations
between and among concepts and-or skills and, (iii) the ability to use the ideas of the
calculus. There was also noteworthy agreement among the experts that derivatives,
integrals and limits constitute the fundamental concepts and-or skills for first year
calculus. In the understanding of an integral, in particular, experts cited the notion of
an integral as an area, integral as net change or accumulated total change and the

techniques of integration as necessary facets.

The school curriculum for mathematics in South Africa includes only two of these
fundamental concepts or learning points, namely, derivatives and limits (Department
of Education, 2003). The exclusion of the integration topic in school calculus results

in students entering universities being highly underprepared for it. Also, the quality



of mathematics teaching at a school level which seems inadequate contributes to
many difficulties exhibited by students when handling this aspect of the subject (Jojo,
Maharaj, & Brijlall, 2013).

Several studies have investigated the teaching and learning of integral calculus
(Berger, 2006; Brijlall & Bansilal, 2010; Habineza, 2010; Koepf & Ben-Israel, 1994);
while Orton (1983b) established that students had difficulties in understanding an
integral as the limit of a sum. In addition, some studies have advocated that
mathematics teaching for engineering students should include both mathematical
knowledge and mathematical thinking (Bennett, Moore, & Nguyen, 2011; Cardella &
Atman, 2004; Huang, 2011).

It is the mathematical thinking that enables students to apply mathematics in
different contexts beyond the mathematics classroom. Researchers refer to this
ability to apply knowledge learned in one context to a new context as transfer of
learning and is regarded as the central goal of education (Bennett, Moore, &
Nguyen, 2011; Byrnes, 2001; Cui, Rebello, Fletcher, & Bennett, 2006; McKeough,
Lupart, & Marini, 2013). The role of mathematics teaching to engineering students is,
therefore, to assist students develop the ability to use the language of mathematics
in solving engineering problems. Students should know the sets of tools that can be
used to solve problems and, in addition, be able to apply such tools in other contexts
(Bennett et al., 2011).

According to Berger (2006), acceptable application of mathematical tools depends
on how a student has mentally constructed such tools or concepts. Bennett et al.
(2011) mention the level of abstraction and problem solving as other factors
impacting on the transfer of mathematical knowledge. Students tend to be more
successful in transferring mathematical knowledge when dealing with algebraic
representations, which are more abstract and, in most instances, independent of
context. Transferring also gets hindered when students do not possess the problem
solving abilities required in the other contexts of application.

Students studying for a national diploma in electrical engineering, for example, apply
integration when analysing electric circuits; and in civil engineering, the application of

integration is prominent in the calculation of deflection in beams. Students are



supposed to model engineering problems mathematically and utilise their knowledge

and skills of mathematics to solve such problems.

Dewi and Kusumah (2014) distinguish between lower order and higher order
mathematical thinking. They view lower order as encompassing the memorising and
simple application of a given mathematical formula. At this level of thinking, the focus
is on simple operations, the application of direct procedures and the use of
algorithms. Higher order mathematical thinking includes a deeper understanding of
mathematical ideas, extraction of implicit ideas from given data and formulating
conjectures and analogies. It is also the thinking that displays logical reasoning,
problem solving, mathematical communication and linking of mathematical ideas to
other intellectual activities. The meaning that students make of integration and the
higher order mathematical thinking enable students to successfully apply integration

in other fields of study.

1.8. Problem statement

This study was conducted in my fourteenth year as a mathematics lecturer at a
university of technology. Prior to that, | had taught mathematics at high school level
for two years and, at teacher-training colleges for eight years. The engineering
programme consists of a two-year (four semesters) theoretical instruction and a one-
year experiential or work-based learning. Mathematics teaching for engineering
students spans over three of the four semesters of the theoretical component.
Mathematics applications are expected throughout the students’ theoretical

instructions but the demand is noticeable in the third and fourth semesters.

My observation was that students struggled to apply integration post their
mathematics learning. They often approached me with engineering problems which
required the use of integration in order to solve. This indicated that the mathematics
training that students received did not prepare them adequately to be able to apply
integration in the field of engineering. Analysis of results over the previous four
semesters showed that students’ performance in electric circuit and heat transfer
problems, which require application of integration, averaged 42%. This failure to



apply integration reflected poor mental constructions of the concept (Berger, 2006).
Nguyen (2011) made a similar observation with regard to the application of
integration in physics where students did not understand the meaning of integrands
and could not view integration as a summation. Students were struggling to use
integration as a tool in the engineering field, in spite of having successfully

completed the calculus modules.

Furthermore, students’ performance in assessments always revealed that students
had difficulty in understanding and applying integration. This challenge of poor
performance in integration was mainly noticed in the second semester of the first
year studies. The mathematics module that students take in this semester is called
‘Mathematics II’, the ‘I’ designating the semester of study. Integration constitutes
about 70% of this module, the other topics being hyperbolic functions, partial
differentiation and first order differential equations (Msomi, 2011). Students often
performed well in the other sections but struggled in integration. The poor
performance contributed to a high failure rate in the subject. As a result, many
students could not progress to advanced levels of study within engineering and, in
some cases; they eventually dropped out of the university. |, therefore, became
interested to know how students developed their knowledge and understanding of an

integral and how teaching can be structured in order to enhance students’ learning.

Within the mathematics education research community, discussions have ensued
about students’ conceptions of different mathematical concepts and about the
development of such conceptions. As a result, an emerging trend in addressing
difficulties in students’ understanding of mathematical concepts is the exploration of
how particular knowledge or concepts are constructed in the minds of students. This
trend marks a shift from the previous approaches where the focus was on the
revision of a curriculum, integration of technology in teaching or the identification of
better teaching methods (Dubinsky & Lewin, 1986).

In exploring how concepts are constructed in the mind, some researchers in
mathematics education have used Piaget's ideas on cognitive development to

develop various theories that explain the learning processes in mathematics (Asiala,



Brown, et al., 1997). Among the theories developed to attempt to explain the learning
processes in mathematics is the Action-Process-Object-Schema (APOS) theory
(Asiala, Brown, et al., 1997; Dubinsky & McDonald, 2001). As confirmed by DeVries
and Arnon (2004) and Berger (2006), APOS theory elaborates on the Piaget's
cognitive theory, expanding it to advanced mathematics. APOS theory embraces
social interactions among students as a principle of effective mathematics teaching.
Such an approach is in line with the education theories of Piaget which purport that
for deep conceptual understanding and positive relationships to develop in learning,

interaction is essential.

APOS theory provides the levels of understanding or the nature of mental
constructions that are necessary for students to learn mathematical concepts (Clark,
Cordero, Cottrill, Czarnocha, DeVries, John, et al., 1997). In addition to the APOS
theory is the work by Tall (2002), in which he defines three worlds of mathematics
cognition (TWM), namely, the conceptual-embodied, the proceptual-symbolic and
the axiomatic-formal worlds. Both APOS and the TWM theories require a teacher or
researcher to provide a possible genetic decomposition (GD) for a particular
mathematical concept. A GD of a concept consists of a description of possible
actions, behaviours and reactions expected of a student who has developed the
concept in question (DeVries & Arnon, 2004). It is a “structured set of constructs
which might describe how the concept can develop in the mind of an individual’
(Maharaj, 2010, p. 42). A detailed explanation of APOS and TWM theories will be

provided when reviewing the related literature of this study.

Several researchers in mathematics education have used APOS and TWM theories
to analyse how students construct knowledge in advanced mathematics. Brijlall and
Maharaj (2009) used APOS theory to analyse how second-year university students
specialising in the teaching of mathematics for an FET high school curriculum in
South Africa construct the concept of continuity of a single-valued function. Stewart
and Thomas (2007) applied APOS theory in the context of the TWM in analysing
students’ learning of linear algebra in their first year of study at the University of
Auckland. In particular, Brijlall and Bansilal (2010) employed APOS theory to

analyse how the mathematics teacher trainees developed their understanding of a



Riemann Sum. There was no evidence though, of corresponding APOS studies on
engineering students’ understanding of integral calculus, and particularly in the

South African context.

The aim of this study, therefore, was to explore how engineering students at a
university of technology construct knowledge as they learn integral calculus. A
framework combining the APOS theory and TWM was used to analyse students’

concept formation.

1.9. Research questions

This study was aimed at answering the primary question: How do students construct
mathematical meaning when learning integral calculus? The study had potential of
contributing to the theory of understanding of how students learn mathematics in
general, and integral calculus in particular. It could also to inform the development of
appropriate pedagogical instruction, based on the theory developed. In the study,
APOS approach was adopted to explore mental constructions displayed by students
when learning integral calculus. To pursue the objectives of the main question of the

study, the following sub-questions were addressed:

1. What concept definitions do students attach to an integral?

2. What concept images do students exhibit when employing techniques of

integration?

3. In what worlds of mathematical thinking do students operate when they
internalise integration? How do these worlds influence the learning of the

integral calculus?

4. What genetic decomposition can be proposed for the construction of meaning
in integration?

The first sub-question was about the concept definitions of an integral. Rasslan and
Tall (200) maintain that all mathematical concepts, except the ones that are primitive,



have definitions. Students, however, seldom draw from a definition in order to
conclude whether a particular idea is or is not an example of a concept. The
participants in this study had been exposed to an integral as an area under the graph
of a function. They had also been taught the Fundamental Theorem of Calculus
(FTC) which then led to viewing an integral as an anti-derivative. Various techniques
of integration had also been handled during lectures, including relevant applications

of an integral such as calculating a mean or the mean of the squares of a function.

The second sub-question was about concept images that students evoked when
handling problems in integration. Concept image, according to Tall and Vinner
(1981), refers to the summative cognitive structure associated with a concept that an
individual possesses. Included in the concept image are mental formulations,
associated processes and properties and in some cases, personal concept definition
by an individual. It was important to establish concept definitions and concept
images of integration since these aspects form basis for concept formation in
mathematics (Rosken & Rolka, 2007). APOS theory was used as a lens to analyse

these aspects of concept definition and concept image.

The third sub-question was about the application of the TWM theory on students’
internalisation of integral calculus. | was interested in investigating the perceptions
of and reflections on the properties of an integral possessed by the participants in
this study. The TWM theory provides for the conceptual-embodied, the proceptual-
symbolic and the axiomatic-formal world (Tall, 2008). Understandably, for the group
of students under study who were not taking calculus as a major, there was minimal
emphasis on formal definitions and proofs. Nonetheless, there was still expectation
that students should be able to display ability to think about mathematics

symbolically.

The fourth sub-question informed the revision of the GD initially proposed. An activity
sheet was designed to compare the mental constructions students seemed to be
making to those that had been predicted in the hypothesised genetic decomposition

for integration. The revised GD for integration, which combined the two theories used



in the study, was an important contribution to the analysis of concept development of

integration.

1.10. Outline of the research process

Here | outline the overall design of the research process to address the research
questions mentioned above. When | expressed an interest in exploring my students’
learning, my supervisor advised that | start with preliminary readings on constructivist
theories in the learning of mathematics (Cooley, Trigueros, & Baker, 2007; Dubinsky,
1991b; Dubinsky & Lewin, 1986; Dubinsky & McDonald, 2001; Tall, 2002, 2007,
2008). In addition, | did reading on the construction of different mathematical
concepts from the identified theories’ perspective (Brijlall & Maharaj, 2010; Clark,
Cordero, Cottrill, Czarnocha, DeVries, John, et al.,, 1997; Dubinsky, Weller,
Mcdonald, & Brown, 2005; Parraguez & Oktac, 2010).

To work on my research proposal, | was supported by being admitted into the
Stimulating Knowledge Innovation through Life-long Learning (SKILL) programme, a
two week course on writing a good PhD proposal. | also joined a cohort doctoral
support programme that is offered in my university of study (Samuel & Vithal, 2011).
Having read on research methodologies (Cohen, Manion, & Morrison, 2011,
Creswell, 2002; Leedy & Ormrod, 2005), | ultimately designed my research as a

case study project.

Data for the study was collected through three distinct activities. Firstly, | started with
hypothesising about mental constructs that students should exhibit when learning an
integral. This hypothesis helped to formulate items or tasks that constituted the
activity sheet that was the main research instrument. To validate the activity sheet, |
conducted a “pilot” exercise which | termed Phase 1 of this study. Students had to
respond to a carefully structured activity sheet. In addition, | interviewed them based
on their responses to the tasks in the sheet. The aim was to validate the main
research instrument and analysing data collected during this phase could result in
the revision of both the activity sheet and the initial hypothesised genetic

decomposition for integration.



The second research activity entailed Phase 2 of the study where the revised activity
sheet was administered, followed by structured interviews as well. The last activity,
still in Phase 2, was the structuring of focus groups that were video recorded.
Students responded to structured mathematical items in groups and they were
encouraged to discuss their solutions among each other and, in some instances, to
the whole class. Analysis of data included interpretations and coding of written
responses, transcription of both interviews and video recordings of students’

discussions.

The final stage of my research process was the writing of the thesis. In this
document | present findings and conclusions based on critical analysis and
structuring of generated data, while evaluating, comparing and judging it against the
existing theories. Finally, the thesis was subjected to a language and technical
expert for editing purposes as well as through the Turn-it-in to guard against
plagiarism. The editor's and Turn-it-in certificates are included on pages 199 and
200 of this thesis as Appendices A4 and A5 respectively. Due to unpredictable
circumstances, this editing process did not include chapters one and eight. The two

chapters were then rectified during the consultation process with my supervisor.

1.5 Delineations

This study reports only on data obtained from a single university of technology in
South Africa. In particular, the investigation was conducted within an Electrical
Engineering group of students that | was teaching in the years of the study.
Furthermore, the study focuses only on the aspects of integration as they relate to
the identified programme of study. As a result, the investigation was restricted to the
area definition of an integral, graphical representations and techniques of integration
for a single-variable function. Lastly, the focus of the study was on concept
development and did not include performance in the subject. Consequently, the

study does not report on interventions and possible impacts thereof.
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1.6 Overview of chapters of the thesis

This thesis consists of eight chapters, the list of references and appendices. Briefly,
the first four chapters outline the generalities of a research project. The next three
chapters present the data of the study and their analysis. The last chapter provides
some conclusions and recommendations on students’ construction of meaning when
learning integral calculus. | then suggest a genetic decomposition for integration,
which is based on the APOS and TWM theoretical frameworks.

More elaborately, this first chapter introduces the thesis by providing the
background, the research problem and the research questions for the study. In
addition, it presents the outline of the research process, delineations of the study and
the road map of the thesis. The second chapter contains a review of literature about
students’ construction of meaning when learning mathematics. It presents
discussions on the teaching and learning of calculus in general. This section
includes what experts in mathematics consider as essential for the learning of first
year calculus. Next, the chapter provides discussions on the construction of
meaning in various mathematics topics with a specific focus on the integral calculus.
Furthermore, it provides reviews of the procedural and conceptual learning types, as

well as the concept image and concept definition notions.

The third chapter discusses the theoretical frameworks used both in the generation
and analysis of data for the study. The concept of an integral, a framework for
research in mathematics education, APOS theory and the TWM theory are
discussed. Ultimately, a proposed genetic decomposition for integration will be
suggested. The fourth chapter outlines the research methods and research
methodology adopted for this study. The chapter starts by contrasting some
research paradigms, subsequently locating this study within an interpretivist
paradigm. It then motivates for the qualitative case study as an appropriate strategy
of inquiry for this study. In addition, the chapter includes a detailed discussion on the

research methods used to collect data, the instrument and the analysis of data.
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As stated, the next three chapters focus on the presentation and analysis of data for
the study. The fifth chapter reports on the first phase of the study which was aimed
at validating the research instrument for the study. Findings on what meaning
students attached to an integral, through symbolic representation, graphical
representations and techniques of integration are presented and analysed. This

chapter also concludes with some recommendations on the research instrument.

The second phase is reported on in chapters six and seven. Firstly, the sixth chapter
reports on data obtained through the research instrument and follow-up interviews.
It contains discussions on the evoked concept definition and evoked concept images
of an integral. Secondly, the seventh chapter presents data and findings from
classroom collaborations which were structured into focus groups. This chapter
presents types of embodied or symbolic conceptualisation which students displayed

when interacting about the set of given tasks in integration.

The eighth chapter presents a summary of the findings and conclusions derived from
the overall results of the study. It presents discussions which are structured
according to the sub-questions of the study as indicated in Section 1.3 above.
Findings and conclusions about the evoked concept definitions, evoked concept
images and the worlds of mathematical thinking that students exhibited are
discussed. A modified genetic decomposition for integration that combines APOS
and the TWM theoretical frameworks is then suggested. This chapter concludes by
stating limitations of the study and suggestions for further research in the teaching

and learning of integral calculus.
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CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

This study was aimed at exploring how engineering students at a university of
technology developed the concept of integral calculus. In reviewing the literature |
therefore, focused on research which had been conducted concerning mathematical
meaning and how students construct such meaning when learning various topics in
mathematics. To contextualise the study, | started by reviewing the literature on the
teaching and learning of calculus, in general. | then summarised readings that report
on construction of meaning in mathematics. After that | looked at various studies
that have been conducted on trying to understand how students construct meaning

of various topics in mathematics, both internationally and locally.

Finally, | discussed at studies that focused on the learning of integral calculus and
the approaches these studies have taken. Emphasis is made on both the
understanding of the construction of meaning and the learning of integral calculus
because these form the basis for my study. | embedded my discussions within the
historical development of integral calculus in order to support the expected

constructs from students.

The section after this introduction discusses research on the teaching and learning of
calculus. | then report on the construction of meaning in mathematics and the fourth
section discusses research on students’ construction of knowledge in some topics of
mathematics, internationally and locally. In the fifth section | discuss investigations
that have been conducted on students’ learning of integral calculus. The sixth
section provides a review of the procedural and conceptual learning concepts while

the seventh section discusses concept image and concept definition.
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2.2. Teaching and learning of calculus

Studies pertaining to the teaching and learning of specific key concepts in calculus
might be classified into at least four categories (Habineza, 2015). Firstly, it is the
studies that focus on the concept of a limit (Hardy, 2009; Scheja & Pettersson, 2010;
Szydlik, 2000). Secondly, it is the studies on the concept of a derivative of a function
(Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Habre & Abboud, 2006; Orton,
1983a; Siyepu, 2013a). Thirdly, it is the category of studies on the concept of an
integral (Haripersad et al., 2008; Orton, 1983b; Rasslan & Tall, 2002; Thompson &
Silverman, 2008). Fourthly, we have a category dealing with a broad range of key
aspects of calculus (Pettersson & Scheja, 2008; Tall, 1985, 1992, 1997; Uhlenbeck
& Stroup, 2002; Zollman, 2014).

2.2.1 The concept of a limit

The limit concept remains difficult for most students and they struggle to understand
this important mathematical aspect (Cotrill, et.al., 1996). The difficulties that students
encounter when dealing with concepts such as differentiation, integration and
continuity in calculus may be attributed to their difficulties with the understanding of
limits (Ortron, 1983a; Tall, 1992).

Hardy (2009) reported on a study carried to investigate what instructors and students
regarded as the knowledge to be learned about limits of functions in a college level
course of calculus. This study was carried out through interviewing 28 recruits from a
college Calculus Il course. The context of calculus teaching in this instance was
such that there was a disjoint between topics related to limits and limit concepts or its
definition. Hardy (2009) observed that sections where intuitive ideas about limits
were discussed were not linked to the teaching of the formal definition of a limit, in
particular, the € — § definition. In brief, “the teaching of the formal definition and its
uses is dissociated from the teaching of “finding” limits” (Hardy, 2009, p. 2). To
postulate what instructors regarded as knowledge to be taught, (Hardy, 2009) used
the analysis of past final examination papers and textbooks as a basis. For students,
task-based interviews were conducted and their responses together with their

expectations about tasks, was considered.
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The result showed that, on the one hand, the instructors’ models of knowledge to be
learned seemed to be emphasising traditional learning rather than scientific,
mathematical learning. The tendency was to adopt techniques because of their
traditional applications instead of the analysis of the problem at hand. On the other
hand, students displayed a strong reliance on their high school algebra when finding
limits of rational expressions. To justify their choices of techniques to tackle given
problems, students stated their beliefs and convictions that the chosen techniques
were the ones applicable. The approach was mainly algorithmic, based on recalling
a set of steps as provided by the textbook or the instructor. Hardy (2009) referred to
this algorithmic approach as ‘normal behaviour instead of a ‘mathematical
behaviour’ which requires mathematical reasoning for any approach chosen to solve
a problem. The conclusion was that students exhibited normative behaviours which

are built on routine tasks given by instructors.

The study by Scheja and Pettersson (2010) also expands on what it means to come
to understand a particular mathematical concept. This study was undertaken with 20
undergraduate students of engineering at a Swedish university. Students were
initially asked to explain the meanings of limit and integral concepts. They were then
interviewed in order to explore, in greater detail, their understanding of the said
concepts. Scheja and Pettersson (2010) upheld the notion that students’ learning
involved processes of approximation and feedback simultaneously. After trying out
interpretations of learning materials, it is the responses received from instructors that
will shape students’ ideas about what it means to learn a particular subject or
concept. This belief formation process is described as a process of contextualisation
“through which students develop individual understandings of learning materials by

putting it in a particular context or framework” (p. 225).

Scheja and Pettersson (2010) found that students’ initial contextualisation of limit
and integral concepts was mainly algorithmic. Students described the limit and
integral concepts as tool or stepwise procedures used in solving some calculus
problems. Such a procedural approach was perceived highly functional by students
for the reason that they had been successful in their studies. Students interpreted
their success as a measure of their understanding of limit and integral. It was
through the probing by the interviewer that students were persuaded to explain their
understanding of these concepts and how they connect to other mathematical
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aspects. Scheja and Pettersson (2010) maintain that perceived demands of a
situation may persuade a learner to begin to change the way of contextualising a
concept. Such a change may then allow for the development of alternative
conceptions which can influence the development of understanding.

The study by Szydlik (2000) also revealed that students “may view calculus as a
collection of facts and procedures to be memorized and applied and claim that
students neither understand nor value the theory underlying those facts and
procedures” (p. 273). Szydlik (2000) designed a study aimed at investigating and
eliciting both content beliefs and the nature of sources of convictions for students’
conceptions of real numbers, infinity and functions. Participants in that study were
577 second-semester calculus students who were enrolled in a traditional, standard

calculus course at a university. These students were not calculus majors; therefore,
their courses did not require them to do the &€ — & proofs in their courses.

Nonetheless, they were exposed to the formal definition of limit and had used limit

processes in the context of functions and sequences.

Three categories of responses emerged when students were asked to define a limit.
Firstly, it was those students that viewed a limit as either being intuitively static. The

provided definition in this case was: “The limit of a function is L if whenever x is
close to the limiting value s, the function is close to L” (p. 268). Secondly, students
tended to view a limit as motion, stating that: “The limit of a function is L if the

function is getting closer and closer to L as x approaches s (p. 268). Lastly, it was a

category that consisted of incoherent or inappropriate responses where the limit was

viewed as unreachable or perceived as a bound that cannot be crossed.

On the contrary, all students were fairly successful in applying techniques to solve
the limit problems. Differences surfaced when students were asked to justify why
their chosen methods worked. There were those who could justify their responses
through a logical argument or deduction. In addition to this group, were students who
were able to justify their answers using empirical evidence where the function at
points close to the limiting value was evaluated. These students seemed to view
calculus as both logical and consistent. As a result of their conviction, they had

“access to formal definitions, power to solve limit problems, and concept images free
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of major internal inconsistencies” (Szydlik, 2000, p. 273) the majority of students,
though, based their reasoning on some form of external authority which was either
the instructor or the textbook. Szydlik (2000) noted that students with such external
source of conviction will have impediments when trying to make sense of
mathematics. They will perpetually view mathematics as a collection of formulas to

be committed to memory and applied without reflection.

In summary, there is general consensus among the mathematics community that the
understanding of the limit is “a central concept and-or central skill that is critical to
student comprehension of the first year calculus” (Sofronas et al., 2011, p. 139). The
studies reviewed above indicate that the tendencies to adopt an algorithmic
approach may deprive students of broader understanding of concepts. The
expectations by instructors and the texts used in the teaching of the concepts
contribute to how students ultimately perceive as what they are expected to know.
Szydlik (2000) then suggest the adoption of pedagogical approaches that promote
the discovery of ideas by students, in order for mathematics to be made a sense-

making activity.
2.2.2 The concept of a derivative

In their investigation with expert mathematicians, Sofronas et al. (2011) established
the understanding of a derivative as one of the essential fundamental concept and-or
skill for the first-year calculus. In addition, their study indicated that understanding of
a derivative involves the understanding of a derivative as a rate of change, graphical
understanding of a derivative and mastery of derivative computations (Sofronas et
al., 2011).

2.2.2.1 A derivative as a rate of change

In his study of students’ understanding of differentiation, Orton (1983a) urged that
the foundations of ideas of rate of change should be laid throughout students’
schooling career. He maintained that important and fundamental concepts such as
limits and rate of change should not be left until they are required to make sense of
differentiation. Orton (1983a) conducted interviews with 110 students (55 males and

55 females) to test their understanding of rate of change, differentiation and its
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applications. Included in the exploration was also the understanding of certain

algebraic skills or processes.

Orton (1983a) identified the classification of the types of student errors as
fundamental in analysing the results of the study. Subsequently, the types of errors
emerging from students’ thinking patterns were classified into structural, executive
and arbitrary. Structural errors were those “which arose from some failure to
appreciate the relationship involved in the problem or to grasp some principle
essential to solution” (Orton, 1983b, p. 4). Arbitrary errors resulted when students
“‘behaved arbitrarily” subsequently overlooking the constrained stipulated within what
was given. Errors classified as executive were those where candidates displayed
signs of understanding the involved principle but failed in the carrying out of

manipulations.

Findings from the research by Orton (1983a) indicated that a large number of
A . :
students struggled to apply the elementary rule, ﬁ, when dealing with the rate of

change. In particular, there is a need for students to grasp the embedded differences
between rate of change in straight lines and rate of change in curves. While an
average rate of change in a curve can be calculated in the same way as for a
straight line, there is also a notion of rate of change at a point on the curve. While
the rate of change in a straight line is constant everywhere, every point on a curve
may yield a different value for the rate of change. Orton (1983a) then recommended
that real-life situations could be used to generate data for both linear and non-linear
graphs to assist students in building an understanding of rate of change. He also
emphasized the importance of paying attention to special points such as points of
increase or points of decrease, stationary points, turning points and points of

inflection when examining the rate of change at a point on a curve.

2.2.2.2 Graphical understanding of a derivative

Asiala et al. (1997) conducted a study to investigate graphical understanding of a
function and its derivative possessed by calculus students. They interviewed 41
engineering, science and mathematics students who had been taught, at least, two

semesters of single variable calculus at a large midwestern university. For the



18

general understanding of a function, their line of inquiry included aspects such as the
understanding of the y = f(x) notation, the ability to deal with an only graphically-

represented graph, general understanding of functional notation and the ability to
draw a graph of a function from specific information given about values of the
function and its derivative. With regard to the understanding of a derivative of a
function, they explored whether students appeared to understand that the value of
f'(x) is the slope of the tangent to the graph of the function at the point (x, f(x)).
They also investigated students’ ability to deal with a derivative of the function using
only the graphical information and without making use of a defining expression.
Included were also questions to assess students’ ability to work with derivatives
approaching infinity as well as to use the derivative o determine intervals of

monotonicity for the function.

The observation by Asiala et al. (1997) was that the relationship between a
derivative of a function at a point and the slope of the line tangent to the graph of the
function at that point was key in graphical understanding of a derivative. This fact is
fundamental for understanding the derivative as a function. It enables an
understanding that for each point in the domain of the derivative, there is a
corresponding value of the slope. According to Asiala et al. (1997), many students
struggled to work with graphical representations of functions. When given a graph of
a function, they could not determine derivatives at specified points but instead tried
to formulate algebraic expressions for functions in order to differentiate them. Asiala
et al. (1997) concluded that the noted difficulty was a result of a lack of a pre-

requisite process conception of a function by students.

Another study to examine students’ conceptual understanding of a function and its
derivative was conducted by Habre and Abboud (2006). They conducted an
experiment with 89 students enrolled for the Calculus | course at the Lebanese
American University in Beirut, Lebanon. Students were taken through a course that
required them to reflect on their own thinking when responding to questions. The
approach to the concept of a derivative did not follow the traditional trajectory of

teaching this concept. Traditionally, the instructor starts with the analytical definition

fla+h)—f(x)

of a derivative of a function f(x) at a point a which is f'(x) = lim,_, -

Next, they proceed to do examples and then discuss the geometric meaning of a
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derivative, the slope of a line tangent to f(x) at x =a. On the main, in the

traditional setting students are then expected to memorise formula and rules for
differentiation. Thus typical assessment questions in such a setting range from
finding the derivatives of various functions to working out an equation of tangent

lines to the graph of a function at a given point (Habre & Abboud, 2006).

In their experiment, Habre and Abboud (2006) adopted an approach of first
discussing the rate of change of a function at a given point as the limit of an average
rate of change. They then proceeded to relate the result to the slope of a tangent
line, which finally led to the analytical definition of the derivative. They integrated this
sequencing of aspects with new methods of teaching and assessment where
technologies such as graphic calculators and dynamic calculus computer software
were used. The focus of experiment classes was mainly on the geometric aspects of

derivative concepts.

Concluding their study, Habre and Abboud (2006) found that students generally had
a poor response to the non-traditional approach that emphasised the graphical
representation of the derivative. However, for better students, the approached
proved to be valuable in supporting a strong understanding of the derivative as a rate
of change. Habre and Abboud (2006) ascribed the observed lack of visual thinking
to the traditional instructional background that most students were still offered in their
schools. As a consequence, despite an instructional treatment that focused mainly
on the geometric components of the calculus, students still adhered to the algebraic

and analytical ways of thinking.

2.2.2.3 Computations in derivatives

Studies discussed above indicate that there is general agreement that the
understanding of a derivative as a rate of change and its graphical definition may
improve students’ conceptualisation of the derivative generally (Asiala et al., 1997;
Habre & Abboud, 2006; Orton, 1983a). Nonetheless, the ability to compute

derivatives of elementary functions is still regarded as of the essence in the
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understanding of a derivative (Orton, 1983a; Sofronas et al., 2011). As a result, Tall
(1992) emphasises the use of three representations in calculus, namely, graphic,
numeric and symbolic. He maintains that “graphics give qualitative global insight
where numerics give quantitative results and symbolics give powerful manipulative
ability (Tall, 1992, p. 9). Flexible movement between the three representations is
important than either focusing on all three, which may be less natural, or focusing on

the most useful, which restricts the conceptualisation (Tall, 1992).

In his study, Orton (1983a) observed that students struggled with the understanding
of symbols of differentiation. Symbols such as §x and &y were not well-understood

by students. Similarly, Tall (1992) asserted that the Leibniz notation, %, which

proves to be almost indispensible in calculus, continued to cause misconceptions in
calculus. Students could not ascertain whether it is a fraction or a single indivisible

. . . . d
symbol. There was also confusion regarding the relation between the dx in d—z and

the dx in ff(x)dx. Tall (1992) further refers to the confusion that usually arise as

. . d dy d _
to whether the du in the equation ﬁ = ﬁd—z can be cancelled or not. Challenges in

the understanding and use of symbols may have a negative impact on the

manipulative facility of student.

Siyepu (2013b), for example, noted that students were failing “to link mathematical
symbols and formulae with appropriate procedures to be applied” (p.191). Siyepu
(2013b) reported on a study carried to investigate errors displayed in the derivatives
of trigonometric functions. A qualitative case study approach was used to collect
data from 30 students enrolled for mechanical engineering in a university of
technology, South Africa. The data collected revealed that poor conceptualisation
led to students’ poor understanding of differentiation. Siyepu (2013b) advocated that
classroom interactions be structured such that there is focus on making sense of
mathematical symbols, mathematical rules and formulae. Such an approach might

support students in developing meaningful understanding of mathematics.

In brief, students’ understanding of a derivative remains “fundamental to deep
comprehension of the first-year calculus” (Sofronas et al., 2011, p. 135). The

concept of a derivative integrates the three representations, namely, the graphic, the
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numeric and the symbolic. While focusing on symbols and manipulation may result
in a lack of deep understanding of the concept, graphic representation which
enhances understanding but may be impeded by under preparedness of students
and insufficient time (Habre & Abboud, 2006).

2.2.3 The concept of an integral

Understanding the concept of an integral entails understanding an integral as net
change or accumulated total change, the integral as an area and the competence
with integration techniques (Sofronas et al., 2011). Such an approach is in contrast
with the format in which this aspect is normally handled in calculus lectures, which is
definition-theorem-proof-application (Habineza, 2015). The sequencing adopted in
schools mainly promotes instrumental understanding instead of conceptual one.
These dichotomous approaches to learning are sometimes referred to as surface
learning and deep learning (Cano & Berbén, 2009; Haripersad, 2010).

2.2.3.1 An integral as accumulated total change

According to Thompson and Silverman (2008), the concept of accumulation is pivotal
to the idea of integration and as such, it is core to the understanding and applications

of an integral in calculus. Thompson and Silverman (2008) agree that “the
mathematical idea of an accumulation function, represented as F(x) = f;f(t)dt,

involves so many moving parts that it is understandable that students have difficulty
understanding and employing it" (p. 1). They further maintain that students’
difficulties with the notion of accumulation functions are exacerbated by the way this
aspect is taught. The teaching of a definite integral is not sufficient for students to
understand the broad aspect of an accumulation function. In addition, the two
aspects fundamental to understanding accumulation function, namely, limits and the

use of notation, remain poorly understood by students.

Haripersad et al. (2008) conducted an experiment with 33 students to assess the
impact od blended learning, in particular, the Web based learning (WBL) on
students’ conceptual errors in calculus. WBL course allowed the researchers to use
text or multimedia such as graphics, audio and videos to present the course content.

It was possible, therefore, for students to visualise an area under the graph and
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employ a grid to calculate its approximation. The Riemann method of slicing an area

of an irregular region bounded by the graph of a function f and two vertical lines,

x = aandx = b, could also be visualised.

Results showed that students taught through the WBL learning committed fewer
structural errors compared to those students who had been throug traditional
calculus lectures. According to Haripersad et al. (2008), structural errors indicate
gaps in knowledge as a result of “students’ rote/mechanistis learning of elementary
calculus — lack of understanding of concepts since pre-knowledge frames were not
developed” (p. 315).

2.2.3.2 Anintegral as an area

Sealey (2006), for example, reported on how students used the area under the graph
of a function as a tool for computing definite integrals. A teaching experiment
methodology was implemented to students that were enrolled for a traditionally
calculus course but concurrently registered for a calculus workshop. The calculus
workshop was an additional instruction for those students who either regarded
themselves as weak in mathematics and needed extra help with calculus or those
who loved mathematics and wanted to enhance their knowledge of the subject.

Two goups of students were given a problem about the pressure exterted by water

on the walls of a dam and a problem requiring the use of Hooke’s Law to calculate
energy when a spring exerts a force, F, to move an object some distance, x, each.

In calculating these physical quantities, students were encouraged to use the
approximation framework instead of the definite integrals. The observation was that
the group working on the water problem displayed a good understanding of the
concepts involved. They broke the dam into horizontal slices, calculated the area of
each and the corresponding approximate pressure. The picture of the dam seemed
helpful in providing a conceivable context, thus enabling students to determine the

pressure on each strip.

Students working on the spring problem did not consider the context of their problem
but proceeded to draw a force vesus displacement graph. They then attempted to

set up an integral but were unsuccessful. They seemed not to know whether the
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function to integrate was given by the formula for the force, F = kx, or the formula

for energy, E = Fd . Failing to set up an integral, they then attempted to use the
area under the graph of the force and displacement. Students maintained that the
area under the curve was equal to energy but could not provide reasons for that
assertion. When asked to justify their approach, they could only refer to the

confirmaton they had received from one of the research assistants.

Sealey (2006) hypothesised that the students’ difficulties emanated from not

understanding the structure of the Riemann sum. Students knew that for a definite
. : . . b . =
integral there is summation, that is, fa fo)dx =lim,_, =7 f(x;)Ax but

misses the product component, ( f(x;)Ax), thereof. The study by Sealey (2006)
emphasises the importance of the the underlying structure for understanding an
integral as an area under a curve. As a result, Sealey (2006) concluded that the
area under a curve is necessary but not sufficient for students to understand the
definite integral.

The lack of underlying structures necessary for the understanding of integrals was

also observed by Orton (1983b). Concepts of limits, practical exercises of finding
areas of irregular shapes and pictorial approaches to results of Y. 7, Y. r? and X3

are negleted at schools. Such concepts constitute te “pre-knowledge frames”

required to conceptually understand integrals.
2.2.3.3. Tecniques of integration

Symbolic manipulation in integration remains of great interest because of the
Fundamenta Theorem of Calculus(FTC). The FTC reveals that msymbolic
manipulation in integration can be performed by anti-differentiation (Tall, 1993). Tall
(1993) then suggest that appropriate conception of an integral should be applied for
an appropriate purpose. For example, for conceptual insight, pictures and graphs
shuld be used, while on the other hand, numerical calculations or symbolic

manipulations will be applicable for productive calculations.

Tall (1993) argues that symbolic manipulation enables mathematicians to compress
their thinking. Symbols are used flexibly, since they can represent a process or they

can also be viewed as a single mental object. Tall (1993) maintains that students
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who are unsuccessful in mathematics are those who limit their representations only
to the approach that is procedurally driven. In such cases, students do not link the
said procedures with the underlying concepts as single entities represented by
manipulative symbols. Tall (199) motivates that the use of computers to carry out
symbolic manipulations may be used to complement students’ skills. Noenetheless,
students still require some insight into how mathematical symbols are used. In this
way, students’ cognition will not be strained and their chances of developing more

flexible thinking processes will be increased.

While the integration of computers is embrased, students in this study were still
taught in a pen-and-paper mode due to the economical circumstannces of the
university where the study was conducted. Consequently, aptness with techniques
of integration was still central in the calculus instruction. Techniques included in this
study included integration of polynomials, trigonometic, exponential and logarithmic
functions. Also included are techniques of using partial fractions in integration as

well as integration by parts.

In summary, conceptual development of an integral requires a link with appropriate
illustrations. The interdependence of these aspects of calculus is vital for students’
learning. Sofronas et al. (2011) mentioned “conections and relationships between
and among concepts as an overarching end goal” for students’ learning of calculus
(p. 144).

2.3 Construction of meaning in mathematics

According to Cooley et al. (2007), the foundation of mathematical learning is based
upon the development and integration of mentally structured mathematical concepts.
For successful construction of meaning, these structures or schema must both be
stable and accessible when needed for reasoning within a mathematical context
(Cooley et al., 2007). Dubinsky (1991b) asserts that a person’s knowledge of a
particular mathematical concept is his or her “tendency to invoke a schema in order
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to understand, deal with, organize, or make sense out of a perceived problem
situation” (p.102).

An almost similar conception of understanding is purported by Duffin and Simpson
(2000) who cited “building”, “having” and “enacting” as the three components for
understanding. “Building” is the construction of the connections between mental
structures in order to respond to arising problems. “Having” is defined as the state of
connections or their depth and breadth at any particular time. The last component,
‘enacting”, is the ability to use the connections at any moment in order to provide a
solution to a problem or to answer a question. Thus, knowing involves two aspects,
namely, acquisition or learning of a concept and the ability to access and use it when
needed. Duffin and Simpson (2000) purport that “it is only through interpreting the
physical manifestations of a learner's use of their understanding that the teacher can

make any kind of judgement about the learner's existing understanding” (p. 419).

In addition, Dubinsky (1991b) asserts that mathematical knowledge is difficult to
describe separately from the way it is constructed. He provides an insight into
reflective abstraction as a framework for describing any mathematical concept and
how such concept may be acquired by a student. Reflective abstraction is defined as
“the construction of mental objects and of mental actions on these objects”
(Dubinsky, 1991b, p. 102). It is the construction of logico-mathematical structures by
an individual during the course of cognitive development. An elaborate
conceptualisation of reflective abstraction will be included when discussing the

theoretical framework for this study.

According to Tall (1990), there are three areas that might impact the teaching of
mathematics and subsequently result in inconsistencies in how students learn
concepts. Firstly, it is the area of the mind. Lecturers and students have experiences
and beliefs that are not always in accord and might result in differences of
understanding of mathematical concepts. Secondly, it is the mathematics itself
consists of mathematical concepts that may be interpreted in different ways due to
their complexity. Thirdly, it is the message or the packaging and delivery of the
mathematical content (language and sequencing of aspects) may result in different

understandings invoked in the minds of students (Tall, 1990).
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The first two areas listed by Tall (1990) are the drivers for the development of
various theories on how students construct meaning in mathematics. Some
examples of these theories are the concept image and concept definition (Tall, 1991;
Tall & Vinner, 1981; Vinner, 1983, 1991), the three worlds of mathematical learning
(Gray & Tall, 2001; Tall, 2002) and the APOS theory by (Asiala, Brown, et al., 1997).
The third area is the driver of research on the impact of language in mathematics
teaching and curriculum design (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997;
Setati & Adler, 2000; Setati, Molefe, & Langa, 2008; Sfard, 2002).

For this study | only reviewed works which focused on how students construct
meaning in mathematics. Although the impact of language in the teaching and
learning of mathematics has a bearing on my investigation, it was not the focus of
my study, therefore, did not form part of this literature review. In the next two
sections | discuss the concepts “concept image” and “concept definition” and the
three worlds of mathematical learning, and also indicate how they correlate to the

theoretical framework to be used for this study, namely, the APOS theory.
2. 3.1 Concept image and concept definition

Tall and Vinner (1981) defined an individual’s concept image for a given concept as
“the total cognitive structure that is associated with the concept, which includes all
the mental pictures and associated properties and processes” (p. 152). This concept
image, according to Tall and Vinner, “is built up over years...” and changes “as the
individual meets new stimuli and matures” (p. 152). As such, a concept image is
embedded in a networking of different experiences and concepts with diverse
relations between them (Rosken & Rolka, 2007). Tall and Vinner (1981) introduced
the term “evoked concept image” to indicate that “portion of the concept image which
is activated at a particular time” (p. 152). Thus, the evoked concept image is subject
to the possessed concept image together with time and manner in which an
individual is prompted to demonstrate the concept image (Habineza, 2010; Vinner,
1991).

Concept definition, on the other hand, is regarded to be the words used to specify a
particular concept (Tall & Vinner, 1981). Tall and Vinner (1981) acknowledged that a
concept definition can be personal or formal, the latter being a definition that is



27

purported by the mathematical community. Moreover, they mentioned that a
concept definition by an individual is a part of the individual’s concept image. This
assertion was further confirmed by Vinner (1983) when he indicated that individuals
produce definitions that are a description of their concept images.

The concepts of concept image and concept definition have been explored in relation
to the integral concept (Habineza, 2010; Rasslan & Tall, 2002). Rasslan and Tall
(2002), for example, conducted a study to investigate the cognitive schemes for the
definite integral that are evoked by the high school students in the United Kingdom
(UK). In the UK the concept of definite integral is taught in the last two years of
schooling. Textbook used in schools at that time of investigation introduces
integration through activities requiring students to estimate the area between a graph
and the x-axis, using pictures and numerical methods. The definition of an integral is

then provided as follows:

b :
The symbol fa f(x)dx denotes the precise value of the area under the

graph of f between x = a and x = b. It is known as the integral of y with

respect to x over the interval from atob. The integral can be found

approximately by various numerical methods (Rasslan & Tall, 2002, p. 1).
Rasslan and Tall (2002) found that although students knew how to integrate, the
majority of them were not “able (or willing) to explain the definition of a definite

integral” (p. 7).

The notions of concept image and concept definition can be linked to the APOS
theory (Asiala, Cottrill, et al., 1997). The total cognitive structure associated with a
concept, for example, is developed through various experiences with the concept.
These experiences may include usage of the concept in appropriate contexts and
pictorial or symbolic representations which then lead to mental pictures developed
(Tall & Vinner, 1981). The notion of various experiences with a concept correlates
to transitions through the Action-Process and Process-Object stages of the APOS
theory. Sfard (1991) referred to this stage of the route as “interiorisation”, where
students are being familiarised with a process or concept and have developed
mental representations thereof. The total cognitive structure of a concept will

therefore correlate to the Schema of a concept. | maintain that it is the evoked
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concept image that will indicate whether a candidate has an Action, Process, Object

or Schema understating of a concept under study.

A related framework mentioned is what | call “Tall’'s Three Worlds” (TTW) theory,
wherein Tall (2004b) defines the three world of mathematical learning. The next

section will focus on this theory.

2.3.2 TTW theory

Tall (2004b) differentiates between the three stages or worlds through which
mathematical learning develops. These stages are the conceptual-embodied or
embodied, the proceptual-symbolic or symbolic and the axiomatic-formal or formal

world.

The embodied world refers to that stage of learning where operations are based on
human perceptions and actions in a real-world context, but it also includes imagining
the properties in the mind (Tall, 2004b). In this level of cognitive development the
learner’s conceptions are dependent on the properties of objects and reflections on
those properties (Tall, 2007). At this level a learner will still be expected to provide
solutions through imagining a situation occurring and thinking through the
consequences. Hence, this level includes enactive and iconic examples with an
increasing inclusion of visual and spatial imagery (Tall, 2002). The knowledge of a
physical drawing of a straight line, for example, will provide ability to conceptualise a

complex fact that a line has length but no breadth (Tall, 2002).

The second world, the proceptual-symbolic or symbolic world, grows out of the
embodied world and it involves the role of symbols and symbol-processing in
different aspects of mathematics (Tall, 2004b). In this world actions “are
encapsulated as concepts by using a symbol that allows us to switch effortlessly
from processes to do mathematics to concepts to think about” (Tall, 2004b, p. 5). Itis
the world “where actions, processes and their corresponding objects are realised
and symbolised” (Stewart & Thomas, 2007, p. 202). This level develops through
several distinct stages. Examples are: arithmetic calculations which lead to algebraic
manipulations then to limit concepts. Another example will be in operations, where

learners start with normal addition and subtraction, then multiplication and division
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and other related operations. This reaches its peak when differentiation and

integration are included.

The axiomatic-formal or formal world is where thinking is predicated on definitions
and proofs (Tall, 2007). It begins with formal set-theoretic definitions which are
constructed through deductions made from the embodied experience. These
definitions are then formulated to a complete systematic axiom theory. Formal proofs
are subsequently used to construct meaning from set-theoretic definitions, and other
properties deduced using formal proofs (Tall, 2002). In this case, the
(non)existence of a derivative, for example, is established through proof. At this

level mathematical conception is based on logical reasoning (Tall, 2008).

Tall (2008) outlines how the three world of mathematical learning relate to the APOS
theory when studying the development of mathematical thinking. The following

diagram depicts such interrelationship:

CONCEPTUAL ScHEMA
STRUCTURE
Embodied Procept OsuecT
+— »
Concept As both process
Representing the effect and thinkable
concept
Effect Process Process
+-—
OFf the embodied action Seen as a whole
Procedure PROCEDURAL Procedure Actmion
Iwough embodied ¥ Expressed symbolical.
action step-by-step
Embodiment Symbolism

Figure 2.1. Procedural knowledge as part of conceptual knowledge (fromTall, 2008)
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Tall (2008) purports that internalising an action into a process and encapsulating it
into an object, with connections to other knowledge within a schema, is a form of
compression. Compression is when the brain synthesises pieces of information “by
connecting ideas together into thinkable concepts” (Tall, 2008, p. 10). He, moreover,
argues that there is a correspondence between the symbolic and the embodiment
compression. Both types of knowledge development start with procedures and for
each subsequent stage in the symbolic compression, there is an embodied
counterpart. While a procept, for example, refers to a symbolic process with
thinkable concept, the embodied concept indicates the thinkable concept together
with the effects of embodied action. The procept and the embodied concept can
then be viewed as a process that has been encapsulated into an object, according to
the APOS theory (Tall, 2008). Finally, a schema, as defined in the APOS theory, will
indicate a fully developed conceptual structure which may be attainable through the
embodied and symbolic worlds only (Figure 2.1). Tall's TWM theory was considered
as a secondary theoretical framework in this study and its link to APOS theory will be

elaborated in the next chapter.

The APOS theory, as a main theoretical framework for this study, will be discussed
thoroughly in Chapter 3. In the following section though, | give the definitions of the
main aspects of this theory since the rest of my literature review reports on the use

thereof.
2.3.3 APOS Theory

The APOS theory suggests that individuals use certain mechanisms to construct
cognitive mental structures when learning mathematical concepts (DeVries & Arnon,
2004; Dubinsky & Lewin, 1986; Dubinsky et al., 2005). These mechanisms are
called interiorisation and encapsulation and the structures are actions, processes,
objects and schemas (DeVries & Arnon, 2004; Dubinsky & Lewin, 1986; Dubinsky &
McDonald, 2001). The structures are invoked accordingly in order to deal with
perceived mathematical problem situations (Dubinsky & McDonald, 2001). The

following are the definitions of these major stages of conception:

Action conception refers to that level of understanding where a person depends on

detailed external cues in order to carry out transformation (Asiala, Brown, et al.,
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1997; Dubinsky & McDonald, 2001; Maharaj, 2010). At this level a transformation
can only be carried out one step at a time and without any mental image of the

overall solution (DeVries & Arnon, 2004).

Process conception refers to a level of understanding where an individual would
have repeated and reflected on an action, resulting in the internalisation thereof
(Asiala, Brown, et al., 1997; Maharaj, 2010). At this level of conception a person can
perform transformations, predict outcomes and even reverse processes mentally,

without external cues (Asiala, Brown, et al., 1997; DeVries & Arnon, 2004).

Object conception is when a person views a process as a totality and is able to
apply transformations on that totality (Brijlall & Bansilal, 2010; Meel, 2003). At this
stage the person is said to have encapsulated a process into an object (Asiala,
Brown, et al., 1997, Brijlall, Maharaj, Bansilal, Mkhwanazi, & Dubinsky, 2011). When
necessary, the person is able to de-encapsulate objects in order to access the

underlying processes and actions (Parraguez & Oktac, 2010).

A schema is a coherent framework of actions, processes and objects for a particular
mathematical topic (Brijlall et al., 2011; Meel, 2003). “Schemas themselves can be
treated as objects and included in the organisation of “higher level” schemas”
(Asiala, Cottrill, et al., 1997, p. 8). This is called thematisation of schema (Asiala,
Cottrill, et al., 1997).

A concept that becomes relevant when using the APOS theory to analyse students’
understanding of a mathematical concept is a genetic decomposition (GD).
According to Asiala, Brown, et al. (1997), a GD for a mathematical concept is a
theoretical analysis that models the epistemology of the concept under review. This
theoretical analysis outlines “the mental constructs that the student might make
when learning a concept and accessing it when needed” (Jojo, 2011, p. 37). A
researcher's knowledge and experience informs the suggested action, process,

object and schema conception of the concept.

Some of the studies where APOS theory has been used to analyse students’
understanding of mathematical concepts are Asiala, Cottrill, et al. (1997), DeVries
and Arnon (2004), Parraguez and Okta¢c (2010), Kabael (2011), Dubinsky and
Wilson (2013) at an international level and Brijlall and Maharaj (2010), Maharaj
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(2010), Jojo (2011), Brijlall and Ndlovu (2013) and Siyepu (2013a & b), within South

Africa. In the next two sections | provide a review for some of these studies.

2.4 Application of the APOS in mathematics

2.4.1 Research on APOS theory in mathematics: Internationally

APOS Theory has diverse applications in mathematics education research. It has
been used in many studies as a strictly developmental tool, a strictly analytical
evaluative tool or as both (Arnon et al., 2014). The study by Asiala, Cottrill, et al.
(1997), for example, reported on the use of APOS framework to provide a deeper
analysis of the epistemology of students’ graphical conception of a function and its

derivative concept.

Asiala, Cottrill, et al. (1997) conducted interviews on derivatives with 41 engineering,
science and mathematics students who had completed at least two semesters of
calculus. These students were taken through an instructional treatment that used
the pedagogical strategy called the ACE Teaching Cycle. According to Asiala,
Brown, et al. (1997), the ACE cycle is an instructional strategy consisting of
Activities, Class Discussion and Exercises. The whole instruction design took into

cognisance the GD of the derivative that the researchers had proposed.

The observation from this study was that some students relied on formulae to

evaluate a function. Even when given a point (5 ; 4) on the graph, these students
expressed a need for an f(x) in which to “plug-in” the x — value and calculate the

corresponding y — value when asked the value of f(5). Reliance on a formula was
also displayed when responding to a question that required students to relate the
slope of a tangent to the derivative. Although the given tangent line had two points
on it, some students found firstly, the equation in the form y = mx + ¢, then
differentiated it in order to determine its gradient. Asiala, Cottrill, et al. (1997)

maintain, although with a lesser degree of certainty, that such students were “not

able to use any process conception to solve the problem” (p. 12. The suggestion was

to include the graphical representation of (x;y) when 7 is given by f(x) in the

genetic decomposition for this concept. Students should also be able to move
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between several interpretations of f'(a), bringing together ideas, for example, “of

limit of different quotient, average velocity, marginal cost” (Asiala, Cottrill, et al.,
1997, p. 22).

The conclusion by Asiala, Cottrill, et al. (1997) also provided recommendations with
regard to the pedagogical strategies used. The use of the ACE teaching cycle with
carefully designed computer activities was reasonably effective in assisting students
to “develop a relatively strong process conception of function and a graphical
understanding of derivative” (p. 24). Students who had been taken through this

treatment displayed strong process conception in the understanding of the f(x)

notation and in interpreting the relationship between the derivative, its graph and the
graph of the function. The above report is an example of using APOS theory both as

an analytical evaluative and a developmental tool.

Reporting on their study of students’ conceptualisation of a solution of system of
equations, DeVries and Arnon (2004) also exhibited this dual usage of the APOS
theory. They interviewed 12 students at a Teachers’ College shortly after finishing a
one-semester linear algebra course. The focus of the interviews was to explore
students’ conceptions or ideas about what a solution to a system of equations
means. Analysis of students’ responses would also serve the purpose of developing

a GD for this concept.

Although DeVries and Arnon (2004) concede that their instrument was not adequate
in probing for deeper insight into their research questions, certain observations
regarding students’ conceptualisation could still be made. For example, some
students relied on memorised rules (without understanding) rather than reason on

answering questions about a solution. When one student was asked whether u + 17

a solution is if u and v are solutions, he could not justify his affirmative answer
beyond the rule. Even when questioned further, he could only repeat the rule. A
number of students also responded to the question, “What does a solution look like?”
by directly solving the system of equations. According to DeVries and Arnon (2004)
such students’ conception of solution developed out of using algorithms like the

Gaussian method to solve the equation or system of equations. As a result, they are
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at an Action level of development, being able to perform action only one step at a

time.

The findings of this study also resulted in a formulation of an initial GD for a solution
to systems of linear equations. At an Action level, DeVries and Arnon (2004)
suggested that students should be enabled to identify the two functions, their
common domain and co-domain, and a solution as that element of the domain which
produces true equality when substituted. The Process level of development should

involve students being assisted in identifying functions, domains and co-domains

without actually substituting values into equations. Working on finite field like Z',E ,

substituting and checking all elements for equality will constitute the Object level of
development. Algorithms of solving systems of equations could only be applied
when progressing into infinite fields, where substitution is inapplicable (DeVries &
Arnon, 2004).

Parraguez and Okta¢ (2010) applied APOS theory in a study they conducted with 10
undergraduate mathematics students in an American university. Their focus was on
the possible concept construction of the vector space concept. Parraguez and
Oktac (2010) suggested that a set, a function and a binary operation schemas were
fundamental to the learning of vector spaces. Hence, a student at an Action level
would be able to apply binary operations schema to specific elements of a given set.
The Process level would entail application of binary operations schema to specific
elements, together with the development of an axiom schema. The Object level
results from both the encapsulation, as purported by Dubinsky (1991a), and
assimilation with the axiom schema. Still at the Object stage, Parraguez and Oktac
(2010) proposed the need to develop the concepts of a field, addition of vectors and
multiplication of a vector by a scalar. These concepts, they suggested, should be

augmented by coordination through distributive laws.

From the findings of Parraguez and Oktag¢ (2010), pedagogical suggestions on the
teaching of the vector space concept emanated. The first suggestion was that, for
students to develop the desired schema for vector spaces, flexibility in thinking about
algebraic structures should be promoted during instruction. Secondly, a need to
emphasise the relationship between the two vector space operations was highlighted

(Parraguez & Oktag, 2010). This possible improvement in instruction is attainable if
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the APOS theory is integrated in teaching and pedagogical approaches. Besides,
the analysis of students’ responses would probably feed into the original genetic
decomposition of the concept, which might result in further understanding of the
construction of knowledge by students.

Kabael (2011) reported on the use of APOS theory to analyse how students, in
Analysis 11 course in the mathematics education programme at a university in
Turkey, generalised the function notion from single variable to two-variable function
concepts. Interviews were conducted with six students whose conceptual levels were
perceived as Process for both single and two-variable functions. These students
were identified after being taught and tested on various representations of functions.
Such included the use of a function machine, different representations (algebraic,
geometric, set of triplets, table) and the drawing of special surfaces. A student at the
Process level of conception was expected to be able to convert between the various
representations of a function, namely, graphical representation, algebraic and table

representations (Dubinsky, 1991hb).

The findings indicated that students who had a schema conception of single-variable
functions demonstrated good understanding of the notion of a two-variable function.
On the other hand, those students whose understanding of a function concept was
either at an action or process level displayed weak process conceptual level of the
two-variable function. The conclusion reached by Kabael (2011) was that “there is a
direct relationship between students’ construction of the concept of a two-variable
function and their conceptual levels of a general function concept” (Kabael, 2011, p.
494). In addition to the function concept, students require a schema of three-
dimensional space in order to construct the concept of a two-variable function. A
GD of a two-variable function concept could also be derived from the analysis of
students’ responses hence a recommendation to consider this GD when structuring

the instruction.

Several other studies have heightened the importance of the APOS theoretical
framework and how a corresponding GD informs teaching and improves learning
(Clark, Cordero, Cottrill, Czarnocha, DeVries, St John, et al., 1997; Martin, Loch,
Cooley, Dexter, & Vidakovic, 2010). In their paper, Dubinsky, Dautermann, Leron,

and Zazkis (1994) caution that the emerging GD of students’ learning should not be
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viewed as prescriptive. The GD should be considered as a guide to the cognitive

development of a concept at that time.
2.4.2. Research on APOS theory in mathematics: South Africa

Research on students’ concept development, using APOS theory, is also emerging
within the South African context. In their study, Brijlall and Maharaj (2010) used a
two-tiered approach of collaborative learning and structured worksheets, followed by
interviews, to collect data from 12 second-year students studying for a qualification
to teach mathematics in high school. The aim of their study was to investigate
students’ understanding of the concept of continuity. They structured their
worksheets around inductive learning activities that promoted visualisation and
verbalisation. In addition, these activities were aligned to the developmental stages
contained in the APOS theory.

The findings of their study were that some students were able to use “symbols,
verbal and written language, visual models and mental images to construct internal
processes as a way of making sense of the concept of continuity of single-valued
functions” (Brijlall & Maharaj, 2010, p. 47). This study is an example of integrating
the learning theory into teaching and learning, thus using it as both an analytical and
developmental tool. Their conclusion was that, based on the specific teaching
methodology used, students were able to construct the concept of continuity
successfully.  Brijlall and Maharaj (2010) indicated a scope for additional research
and analysis of the mental constructs of students, bearing in mind the teaching

methodology used.

The question of a teaching approach was also investigated by Maharaj (2010), who
focused on the concept of a limit of a function. He reported findings from a study
where the APOS theory was used to investigate understanding of limits of functions
by 891 undergraduate science students at a university in KwaZulu-Natal in South
Africa. In this study the ACE teaching cycle was used, followed by a multiple choice
guestion test and responses were analyses through the APOS theory framework.
Students’ responses indicated that less than three per cent of the students were not
even at an action level of conceptualisation of limits of split-functions represented in

symbolic form. Twenty-one per cent of students showed a potential of being at a
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process level and 54, 2% a potential of a schema level. The conclusion was that
students find it difficult to understand the limit of a function concept, “possibly a result
of many students not having appropriate mental structures at the process, object,
and schema levels” Maharaj (2010, p. 50).

A similar approach is found in a pilot study by Brijlall et al. (2011) to investigate pre-
service students’ understanding of the relationship between 0,9 and 1. In this study

the ACE and collaborative instructional approaches were used to collect data
through questionnaires that were structured around the APOS theory. Interviews
were also conducted in order for students to elucidate their responses. Findings
were that, after the implementation of the worksheets, over 50% of students gave
correct answers. Although a need to further validate responses is indicated, the
researchers are of the view that APOS-designed worksheets might have impacted

positively on students’ understanding of the equality between 0,9 and 1.

As purported by Arnon et al. (2014), Siyepu (2013a) used APOS theory as a tool to
analyse students’ errors in their learning of derivatives of algebraic, exponential,
logarithmic and trigonometric functions. Siyepu (2013a) designed his study
according to the investigations cycle whose steps are:

1) Theoretical analysis of the content to be taught and learned;
2) Design and implementation of instruction; and
3) Collection and analysis of data.

He employed a case study method to investigate 20 students who were enrolled for
chemical engineering in the extended curriculum programme at a university of
technology in Western Cape, South Africa. The group consisted of students who
were classified as ‘at-risk’. At-risk students are students who exhibit signs of not
being successful in their schooling career, in spite of them having the necessary
potential. According to Siyepu (2013a), such students usually achieve low in their
academic work and are characterised by low confidence. Some of the factors that
contribute to students being at-risk academically relate to family background as well
as school experience (Choy, Horn, Nufiez, & Chen, 2000). Family background

includes aspects such as low socio-economic status, single-parent families and first-
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generation students. Factors relating to school experience are the changing of
schools two or more time besides the normal progression of moving from one level
to another, average performance of grades C or below from the sixth to the eight
grade and repeating one or more grades between the first and eighth grade (Choy et
al., 2000). Mathematics curriculum and in particular, the taking of algebra in the
eighth grade followed by the taking of advanced mathematics in high school greatly
reduces future academic risks for students (Choy et al.,, 2000). The extended
curriculum programme is, therefore, established to support such struggling students

in their university studies.

Participants in the study by Siyepu (2013a) were all English second-language
speakers. Three of them were from outside South Africa and those from within had
obtained a Standard Grade level pass in their school mathematics. Standard Grade
pass was designed for students with low abilities and such level allowed them
access to diploma and certificate studies. Siyepu (2013a) employed activities, class

discussions and exercises (ACE) teaching style to collect data.

Responses indicated that students exhibited the following types of errors: 1)
Conceptual errors where students could neither grasp the concept nor identify the
relationships involved in a problem; 2) Interpretation errors where students over
generalise mathematical rules resulting in them failing to interpret a given problem

correctly; 3) Linear extrapolation errors which are the generalisation of the

distributive property, for example, sin(x + y) = sinx + siny; 4) Procedural errors

where students err in computing of applying the algorithms even though they would
have identified the concept correctly and 5) Arbitrary errors where students either
transcribe sums incorrectly, do not present a complete solution or leave out certain

guestions unanswered.

Siyepu’s conclusion was that most of the students were at action level or straddling
between the action and process levels of APOS theory. He recommended that an
ACE teaching cycle should be implemented in order to assist students to develop the
required schema. Students should be encouraged to “self-reflect by trying to identify
their errors on their own during class discussions” (Siyepu, 2013a, p. 590). He also
suggested that the differentiation rules should be derived in order for students to

develop full conceptions thereof.
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The use of the APOS theory in integral calculus is reflected in a study by Brijlall and
Bansilal (2010) which reports on development of understanding of the Riemann
Sum. They worked with teacher trainees for high school mathematics at one
university in South Africa. Having proposed a genetic decomposition of a Riemann
Sum, Brijlall and Bansilal (2010) could only observe “partial understanding in the
early stages of developing the concept” from their analysis (p. 137). The students
could use the upper and lower sums to estimate the area of a region under a graph
but only at an action level. There was no evidence of conceptual thinking at higher

levels of cognition.

More work on the use of APOS in calculus is reported in other studies (Jojo, 2011,
Jojo, Maharaj, & Brijlall, 2012). Nonetheless, there is no record of the analysis of
students’ understanding of engineering mathematics. In particular, there is no
analysis of how the essential integration concept in conceptualised by engineering

students.
2.4.3 Summary

The studies cited above indicate that the APOS theory is a useful tool to use in
analysing students’ construction of mathematical concepts. Dubinsky and McDonald
(2001) support this thought when they state that, by using this theory, “the
researcher can compare the success or failure of students on a mathematical task
with the specific mental constructions they may or may not have” (p. 4). The
analysis is also useful since it informs how instruction is to be structured and this, in

turn, may result in improved performance (Asiala, Brown, et al., 1997).

In their work, Dubinsky and McDonald (2001) provide an annotated bibliography of
research that uses this theory in one way or the other. The list includes works by
Carlson (1998) on the development of the function concept, Carmona (1996) on the
concept of tangent and its relationship with the concept of derivative and a number of
studies in high school mathematics and studies in many other mathematical
concepts (Dubinsky & McDonald, 2001). What is notable is that there has been
limited application of the APOS theory in calculus, and even fewer record of analysis
in integral calculus. According to Dubinsky and McDonald (2001), for a doctoral

thesis, Tostado (1995) used APOS to analyse students’ conception of a derivative
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and a tangent in a graphical context, while Cottrill (1999) applied the APOS theory to
the conceptualisation of a chain rule. It is the study by Brijlall and Bansilal (2010) on
the genetic decomposition of the Riemann Sum, that relates to integral calculus but it
does not extend to techniques of integration.

Since integral calculus is one of the fundamental mathematical concepts in
engineering, this study aims at using the APOS theory to develop a genetic
decomposition of techniques used in integral calculus and to analyse how students

construct knowledge when they learn integral calculus.

2.5 Research in students’ learning of integral calculus

Studies that have investigated the teaching and learning of integral calculus include
works by Orton (1983b), Résken and Rolka (2007), Pettersson and Scheja (2008),
Mahir (2009), Huang (2010) and Habineza (2010). The following is the review of
these studies.

Orton (1983b) reports on an investigation of 110 students’ understanding of
elementary calculus. Students worked through 38 items, 18 of which related to
integration. Orton used Donaldson (in Orton, 1983b) to classify errors displayed by
students into structural, arbitrary or executive types. As mentioned before, structural
errors referred to failure by participants to establish relationships within the concept
or to grasp the critical principles involved. Arbitrary errors were defined as errors
resulting from sheer oversight of constraints given while executive errors were errors

resulting from failure to carry out manipulations (Orton, 1983b).

The analysis of students’ responses showed that students had serious difficulties
with understanding integration as a limit of a sum. Students also struggled to find a
relationship between a definite integral and areas under the curve. Orton (1983b)
asserted that teachers of mathematics have realised these difficulties faced by
students and have reacted in varying ways. These ways include a curriculum that
avoids calculus to non-specialists, introducing integration strictly as an anti-
differentiation (a rule) and building of a limit concept and related algebraic concepts
over a period of years. Orton (1983b) emphasised that “rules without reason cannot
be justified” (p. 11).
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Orton (1983b) concluded his report by making recommendations towards a
curriculum that promotes conceptual development of integration. He advocated for
the inclusion of aspects such as limits and infinity, sets of polygons with an
increasing number of edges and solids with an increasing number of faces and
infinite series of fractions. Studying areas of irregular shapes, by counting the
squares, could assist in discussing a limit from above and below, and finding the
area of a circle by reassembling sectors into approximation of a rectangle also
supports the notion of a limit.  Orton (1983b) indicated the possibility of using a
calculator in performing numerical integration. The need to derive results that

students are using was also cited.

The study by Mahir (2009), that was conducted to investigate the conceptual and
procedural performances of students on integration, found that students did not have
a satisfactory conceptual understanding of integration. In this instance the research
group consisted of students who had successfully completed calculus through
instruction in one university. Students’ conceptual understanding of integral-area
relation, integral as an algebraic sum and the fundamental theorem of calculus was
investigated. Mahir (2009) discouraged assessments of students that promote
memorisation and advocated for the use diverse contexts when teaching the concept

of integration.

On the other hand, the study by Huang (2010) study differs from the approach by
Mahir (2009) in the sense that Huang conducted a quasi-experiment study. A group
of students was split and procedure-based instruction was offered to one group and
concept-based instruction to the other. The findings indicated that the conceptual
group performed well in both classifications of knowledge while the procedure group
displayed unsatisfactory conceptual understanding of the concept of integration
(Huang, 2010).

According to Huang (2010), procedural knowledge includes

two main components; the first is the mathematical symbol representation
system, which is the comprehension of mathematical symbols and awareness
of symbol syntaxes. The second type consists of the algorithms or rules for

solving mathematical tasks....In application, true mathematical understanding



42

has to be constructed on the connection of these two types of knowledge
(p. 1).

The other study by Habineza (2010), which he conducted at the Kigali Institute of
Education in Rwanda, used a teaching approach that was based on the theories of
didactical situations in mathematics and zone of proximal development. Eleven
student teachers were taught through the said teaching approach in order to develop
the students’ understanding of the concepts of the definite and the indefinite integrals

and their link through the fundamental theorem of calculus.

The findings by Habineza (2010) were that student teachers’ understanding of the
definite and the indefinite integrals, through the teaching approach adopted, changed
significantly from pseudo-objects to concept images that included “all the underlying
concept layers” (p. iii) of the definite and indefinite integrals. However, there was little

improvement in the students’ understanding of the fundamental theorem of calculus.

In summary, the studies by Mahir (2009) and Huang (2010) looked at the level of
understanding that students exhibited when learning integral calculus and how that
level affected their performance. Habineza (2010) looked at a teaching model that
will enhance students’ understanding of some aspects of integral calculus. There is
stil no record of any study that worked towards the analysis of the actual
understanding of the concept of integral calculus, techniques of integration in
particular. This is regarded as a gap in the literature which this study attempts to fill.

2.6 Conclusion

The APOS theory is emerging as a critical tool to analyse students’ learning in
mathematics. It must be borne in mind that the analysis is not regarded as being
conclusive but it suggests a possible trajectory that the development of a concept
might follow (Dubinsky, 1991a).

This analysis becomes even more valuable since it embeds itself in the pedagogy of
the concept under investigation (Parraguez & Oktac, 2009; De Vries & Arnon, 2004;
Brijlall & Maharaj, 2009, 2010; Brijlall & Bansilal, 2010). It can be argued, therefore,
that one of the results of exploring students’ conceptualisation of a mathematical

topic is ultimately the improved performance in class.



43

The fact that the existing literature on the learning of integral calculus says very little
about the use of the APOS analysis in integral calculus indicates a gap in the
literature and, therefore, the importance of this study. The next chapter deals with
the theoretical framework informing this study.
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CHAPTER THREE

THEORETICAL FRAMEWORKS

3.1 Introduction

In the last chapter | presented a review of the literature | deemed relevant to this
study. In this chapter | will discuss theoretical frameworks that | used throughout the
study. These frameworks grounded the interaction with students during the study,

steered the generation of data and guided the analysis thereof.

In the section following this introduction, | discuss the concept of an integral within
the context of this study. | then present the framework for research in mathematics
education that | used to generate data. Within that presentation | elaborate on APOS
theory as a tool to both generate and analyse data. Furthermore, | expand on
reflective abstraction as constructions of mental objects. | then discuss Tall's three
worlds of mathematical learning which pertain to conceptual construction in the
learning of mathematics. In concluding the chapter | will indicate how these
frameworks assisted me in answering the three main research questions mentioned

for this study.

This chapter, therefore, is made up of five sections. Section two which comes after
this introductory section will focus on the concept of an integral as it is defined in a
mathematical context. | will indicate the various approaches to the presentation of
integral calculus and compare them to the context of my study. In section three | will
discuss a specific framework for research in mathematics education, define its
components and indicate how it informed the work done in this study. Within that
section | will also provide the description of an integral schema, together with the
proposed genetic composition thereof. In addition, | will expound on the construction
of meaning in mathematical learning through the framework of the APOS. Section
four will indicate how Tall’'s three worlds of mathematical learning can be linked to
the APOS theory and the proposed genetic decomposition. Lastly, in section five |
will summarise the frameworks and indicate how they have been used to answer the

research questions for this study.
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3.2 Integrals

In South Africa, the concept of an integral is not included in the school mathematics
curriculum (Department of Education, 2003). Students only encounter this concept
for the first time in post school studies. For the institution where this study was
conducted, the mathematics work programme is structured such that students are
first taught the concept of a limit in brief (Msomi, 2011). The limit concept is then
followed by a detailed teaching of differential calculus and applications thereof. It is
after differential calculus that the concept of integration is introduced to students.
Notions of an integral as an area and integral as summation are then introduced
next. Throughout the teaching of integration, emphasis is placed on the techniques
of integration, followed by applications in an engineering context. This background,
and the following text on integrals, informed the genetic decomposition that | initially

proposed and the analysis of evoked students’ conception of the concept of integral.
3.2.1 Indefinite integrals

Engineering students at a university of technology in South Africa do not take
mathematics as a major, hence aspects of proofs and in-depth analyses of concepts
are not normally included in their mathematics curriculum. The focus of instruction is
mainly on procedures and techniques of using integral calculus in solving problems
(Msomi, 2011). Definitions of integration espoused during the teaching of this group
of students are mainly operational definitions. The following are examples of such
definitions.

Stroud and Booth (2007, p. 335), a textbook that was used for the course, defines

integration as follows:

Integration is the inverse of differentiation. When we differentiate we start
with an expression and proceed to find its derivative. When we integrate we
start with the derivative and then find the expression from which it has been
derived. (p. 335).

Stroud and Booth(2001) then continue to motivate for the inclusion of a constant of

. ) . . i 4N i 4 =i 4 — 3
integration by showing that since — (x*) = — (x*+2) — (x*—5)=4x

then [ 4x3dx is either x* or x* + 2 or x* — 5. They then argue that, since the
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constant added to x* cannot be deduced when given 4x3 to integrate, it will be
acknowledged by adding a “C” to the result of the integration, that is,
f4x3dx = x* + C. They then refer to this integral as an indefinite integral “since

normally we do not know the value of C” (p. 335).

Other authors like Smith and Minton (2002), also, define indefinite integral as follows:

Let F' be any antiderivative of f. The indefinite integral of f(x) (with respect

to x), is defined by [ f(x)dx = F(x) + ¢ where c is any arbitrary constant
(the constant of integration). (p. 324).

These two definitions restrict the indefinite integral to an antiderivative of a function.
According to Orton (1983b) this approach leads to students who cannot justify the
rules they are using and he advises that “if we wish to introduce calculus to non-

specialists we need to think very hard about laying a satisfactory groundwork” (p.10).

A Dbroader conception of an indefinite integral is provided by Koepf and
Ben-Israel (1994) who indicated two definitions for an indefinite integral of a function

f in an interval [a, b]. The first definition they provided was that of an indefinite
integral as an antiderivative or a primitive of a function. As such, an indefinite
integral of f is a function F satisfying the equation F (x) = f(x) at all points x in
the interval [a, b]. This function F is defined up to a constant called the constant of

integration.

The second definition, on the other hand, considers an indefinite integral as a

definite integral over a variable interval F(x) = f;f(t)dt and the lower endpoint

a will determine the constant of integration (Habineza, 2010). A similar approach to
the indefinite integral is stated in Stroud and Booth (2007) where they state that,
“The total area under the curve and the x-axis up to a point P is given by the

indefinite integral” (p. 348).

Habineza (2010) further purports that considering an indefinite integral as a definite
integral over a variable offers a better way of understanding the function version of

the Fundamental Theorem of Calculus (FTC). The function version of the FTC
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states that “if A(x) = f;f(t)dt represents the area under the curve of f(x) then

the derivative of the area function gives the function that delimitates that area:

dA(x)
dx

£ [X f(£)dt = f(x)", (Habineza, 2010, p. 66).

Although all the above definitions were discussed during the teaching of the
students, the first definition by Koepf and Ben-lsrael (1994) and the definition by
Stroud and Booth (2001) were used interchangeably.

3.2.2 Definite integral

The common approach to the introduction of a definite integral is that of computing
the area under the graph of a function by dividing the area into strips (J. Stewart,
2009; Stroud & Booth, 2007). Stroud and Booth (2007) denote the width of these

strips as dx and, invoking the definition of an indefinite integral as a total area under

the curve, they deduce that “for an interval [a, b],a < b, the required area is given

by A= [ _, ydx — [ __ydx which is written as A = f: ydx "(p. 348). J. Stewart

(2009), on the other hand, defines a definite integral as follows:

If f is a continuous function defined for a < x < b, we divide the interval

. . . b-
[a,b] into n subintervals of equal width Ax=Ta. We let

xo(= a),x1,%x; ...,x,(= b) be the endpoints of these subintervals and we

let x1, x5, ..., X5, be any sample points in these subintervals, so x; lies in the

it

it" sub-interval [x;_1,x;]. Then the definite integral of f from a to bis

J2 f0)dx = limy e Sy £ (X))AX. (p. 300)

Stroud and Booth (2001) provide a similar approach to that of J. Stewart (2009),

where they present integration as a summation. They do not provide a mathematical

definition but argue that if an interval [a, b] is partitioned into subintervals of equal
length, 8x, the total area under the function y = f(x) is then written as

‘A = ﬁgy. 6x where the symbol ) represents ‘the sum of all terms of the

form...” ” (Stroud & Booth, 2007, p. 353). Making the strips narrow will then result in
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. - b ,
limyyo XXzly.0x = A= fa ydx. Stroud and Booth (2007) further omit the
justification for the existence and the uniqueness of the limit. They immediately

focus on procedures to determine the definite integral.

When teaching these students, | included the underlying aspects of a definite
integral, like the properties of an integral and also the Fundamental Theorem of
Calculus (FTC). The properties of a definite integral, which are stated as theorems
in other texts, were also discussed. The proofs for these properties were not
discussed with these students. The following is an example of properties which are

stated as theorems, as it appears in Smith and Minton (2002):

Theorem 1 (Smith & Minton, 2002, pp. 356-357)

If f and g are integrable functions on the interval [a, b] and c is any constant, then

the following properties are true:

L LIf(0) + g()ldx = [ f(x)dx + [ g(x)dx,

2. [ If () = g(ldx = [} f@)dx - [, g(x)dx,

3. [ cf(x)dx = c [ f(x)dx and

4. ] f(x)dx = [ f(x)dx + [ f(x)dx, for any c in the interval [a, b].

The formulas below follow from the definition of the integral:

1. For any integrable function f , if a < b , we have

f(ff(x)dx = — fbaf(x)dx and
2. If a is defined then we have f;f(x)dx = 0, (Smith & Minton, 2002, p. 357).

Regarding the FTC, | adopted what Habineza (2010) refers to as the “fundamental
theorem of calculus — version of the integral of the derivative (FTC-VID or FTC-
VEA)” (p. 52). Habineza (2010) adopts the formulation provided by Smith and

Minton (2002) stating that "If f is continuous on [a,b] and F(x) is any
antiderivative of f , then f;f(x)dx = F(b) — F(a)” (Smith & Minton, 2002, p.
364).
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These aspects discussed above are included in order to indicate the trajectory that
was used to develop students’ understanding of the definite integral. Properties of a
definite integral enable students to simplify what might be difficult problems in some
cases. The FTC is the main basis for evaluating a definite integral for engineering
students. It also becomes important for these students to link the concept of an
integral to an area since that is how it is mainly applied within the context of their

fields of study.
3.3 Framework for research in mathematics education

This study was carried out in accordance with a specific framework for research and
curriculum development in undergraduate mathematics education as proposed and
used in various studies (Asiala et al., 1996; Brijlall et al., 2011; Clark, Cordero,
Cottrill, Czarnocha, DeVries, St John, et al., 1997; Dubinsky & McDonald, 2001;
Maharaj, 2010). The framework consists of three components, namely, theoretical
analysis, design and implementation of instruction, and observation and assessment
of student learning. Figure 3.1 illustrates each of these components and the

relationship among them.

Theoretical Analysis

Observation and Design and
assessment of student | ¢ Implement
learning Instruction

Figure 3.1: The framework for research and curriculum development (Asiala et al.,
1996).

According to Asiala et al. (1996), a researcher commences with a theoretical
analysis, called a genetic decomposition, modelling the epistemology of the
mathematics concept in question. In this study the question was what it meant to
understand integration and how that understanding could be constructed by

students. The analysis for the concept of integration was based primarily on a
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particular theoretical perspective or learning theory, APOS theory, combined with the
researcher’s understanding of the concept in question through her experiences both
as a student and a teacher of the concept (Asiala et al., 1996; Dubinsky &
McDonald, 2001). The theoretical perspective informed the design and
implementation of the learning experiences during the instructional treatment. The
theoretical perspective also guided the analysis of data collected (Bergsten, 2008;
Maharaj, 2010).

The intention of instructional treatment was to “get students to make the proposed
mental constructions and use them to construct an understanding of the concept as
well as apply it in both mathematical and non-mathematical situations” (Dubinsky,
2001, p. 12). In the observation and assessment stage, researchers gather and
analyse data generated during the instruction stage (Clark, Cordero, Cottrill,
Czarnocha, DeVries, St John, et al., 1997). This analysis of data tells something
about the theoretical analysis in terms of mental constructions and also indicates any
mathematics that the students might have learnt (Dubinsky, 2001). In the following
three subsections | provide an in-depth elaboration on these components in relation
to the study.

3.3.1 Theoretical analysis: APOS

This component of the framework is aimed at addressing the question on the nature
of mental constructions constructed by students and the ways in which those
constructions are made (Asiala et al., 1996; Dubinsky & McDonald, 2001). As stated,
answering this question requires a general theory influenced by the researcher’s own

understanding and previous experience with the particular mathematical concept.

The theoretical perspective adopted for this study, APOS theory, hypothesises that
understanding a concept begins with constructing actions. Actions are external
transformations dependant on explicit stimuli and guidance to perform operations.
When actions are repeated and reflected upon, they are interiorised into processes
where actions can be performed and even reversed, mentally. When individuals can
view processes as a totality, applying transformations on them, processes are
deemed to have been encapsulated into objects. Finally, actions, processes and

objects, their interconnections and any other linking schema, constitute a schema for
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that certain mathematical concept (Asiala, Brown, et al., 1997; Dubinsky &
McDonald, 2001; Maharaj, 2010). Following is the proposed hypothesised genetic
decomposition (HGD) for integration.

At an Action level: The invoked concept image for integration is that of an
antiderivative. Students at this level of conceptual understanding would have a
simplistic notion of an integral as an area under the graph of a function. At this stage
students know how to evaluate integrals only by following explicit algorithms that
they have been taught. There is no vision of what succeeds any step they take and
they do not have a conceptual understanding thereof.

At this stage integration is solely about identifying, from a catalogue of procedures,
the one that will work in a given problem. When evaluating f(x3 + 3x)dx for
example, a student would invoke the rule on the integral of the sum, that is,
[lf(x)+gx)]dx = [ f(x)dx+ [ g(x)dx. The presented solution would be

elaborate and display all steps taken, that is,

[(x3 + 3x)dx
= [x3dx + [ 3xdx ... .......(step 1)

1 341 3 1+1
= —X +C,+—x +C
3+1 1 1+1 2...(step 2)

=ix4 +%x2 +C .......(step 3)

In this instance there is reliance on the algorithm for an integral. The student cannot
process the integral of a sum as a single unit, neither can the integrals of x3 and 3x

be written without explicit definitions. The explicit definitions serve as external cues

for the whole solution to be produced.

At a Process level:  Through reflection and internal operation for an integral,
integration is interiorised into process conception (Cooley et al., 2007). Students still
follow steps but display levels of understanding and adaptability in their approach to
solutions. At this stage they are able to recognise errors in their presentations,

although they may not succeed in explaining them. A student , for example, would be

V3
uncomfortable to give “zero” as an answer to the integral fo cos x dx but would
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not be able to trace the cause for such a paradox. As a result of interiorised actions,
they would be able to determine the integrals mentally and to reverse the process as

well.

At an Object level: As stated, the object level of conceptualisation is a stage where
a process is viewed as a totality and is encapsulated into mental objects. At this

stage students would be able to find area for curves crossing an X-axis. A student,

VA
for example, would know that the integral fo cos x dx should be split into

T

= s
foz cosx dx and [r cosx dx for correct evaluation. As asserted by Mahir
2

(2009), good understanding of differentiation rules is essential in solving integrals.
Students would then be able identify cases that are the reversal of the chain rule,

hence the “u-substitution” and cases requiring the application of formulas like

fudv = uv — f vdu(integration by parts).

Individuals would be said to possess a complete schema for integration when they
display a coherent set of knowledge for the concept. Investigation by Sofronas et al.
(2011) found that integral as an area, as an accumulated total change and “facility
with integral techniques” (p. 139), were necessary components of understanding
integration. Hiebert and Lefevre (1986), define the main concepts of integral
calculus as the limit of Riemann sums, the integral as the area and the fundamental
theorem of calculus. For purposes of this study, therefore, schema for integration
would include conceptualisation of integral as an oriented area, the fundamental

theorem of calculus and capability to use integral techniques.

Although the four stages, actions, processes, objects, and schema, are presented in
a hierarchical, ordered list; it may be possible that individuals do not form
constructions in such a linear manner (Dubinsky & McDonald, 2001). This statement
agrees with Tall (1999) who purported that APOS theory would fall short in
describing conceptual development in Geometry. Tall (1999) argued that geometry
begins as object based, with processes like drawing, measuring and construction
involved. According to Dubinsky and McDonald (2001), constructions of other
various mathematical concepts become more dialectic than linear. This awareness

was born in mind when interacting with data from the study.
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The proposed initial HGD suggests that for students to succeed in integration, they
must have developed the ability to explain, to recognise in other contexts and to
derive consequences, for the function and the derivative schemas (Duffin &
Simpson, 2000). Functions and derivatives are the building blocks in integral
calculus as indicated by Jojo (2011) who states that “definitions of derivatives,
integral functions, the relationships between average and instantaneous rates of
change....and many other topics in calculus all require students to have a clear
understanding of the concept of a function” (p. 45). This concept of building blocks
in calculus is also endorsed by Haripersad, et.al. (2008). At an action level,
therefore, | hypothesised that students should be able to respond to external stimuli
such as graphs, pictures and formulae when dealing with integrals. As a result, such
students’ conception of an integral may be limited to that of an integral as an anti-

derivative.

A student at a process level of conception was expected to have interiorised basic
actions of integration and thus able to perform and reverse actions mentally. As a

result, students at this stage of conception were predicted to possess the ability to
handle integrals of the form [ f[g(x)].g'(x)dx with less difficulty. The concept

image of an integral was also expected to have expanded to include perceptions of
an integral as an area, without difficulty.

The object level of conceptualisation was deemed to include the ability to view an
integral as an object. This level results from encapsulating processes and viewing
them as objects. It was, therefore, expected that at this level, students should be
able to manage problems requiring advanced techniques and comprehension for the
level. Aspects such as integration by parts, where an integral is embedded within an
integral, integration of the inverse trigonometric functions and using partial fractions

with accuracy were expected from a student at this level of conceptualisation.

Students would be deemed to possess a schema for integration when they displayed
a coherent set of knowledge for the integral concept. Figure 3.2 below, displays the

initially hypothesised genetic decomposition as a diagram.
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Figure 3.2. Initial hypothesised genetic decomposition for integration
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3.3.2 Instructional treatment : ACE

As indicated in Figure 3.1, the second component for the adopted research
framework involves the design and implementation of instruction, based on
theoretical analyses. The theoretical analysis guides classroom interactions where

learning and assessment materials are designed according to the proposed model.

For my study, students were taught in a group of 87, in regular lectures which
occurred three times a week for the duration of three weeks. During the lessons,
students  were provided with tasks that were designed to induce mental
constructions proposed in the initial genetic decomposition. Tasks were designed
such that they provided students with experience in constructing actions
corresponding to integration. Subsequently, this experience was augmented when
students were asked to extend familiar actions to general processes. Students were
then presented with higher order activities which required them to organise a variety
of previously constructed schemas, like the derivatives of compositions of functions,
the various rules for differentiation, derivatives of specific functions, into a schema
applicable to integration problems. The focus of all interactions was not on the
correctness of solutions but on the approach and procedure used to answer the

guestion.

Interactions were also aimed at getting students to reflect on their work throughout
the course. These interactions were designed according to a particular pedagogical
approach called the ACE teaching style which many researchers in mathematics
education have used (Asiala, Brown, et al., 1997; Brijlall & Maharaj, 2010; Jojo,
2011). ACE is an acronym for activities, class discussion and exercises which are

major components in this teaching style.

Students were given activities designed to help them make mental constructions
according to the proposed genetic decomposition. The primary goal for the given
activities was to provide students with experience in working with integrals rather
than finding correct answers. The emphasis was therefore on collaborative learning,
where students were explaining and justifying their approaches to other students

within groups.



56

Class discussions again involved students working in teams to perform tasks that
had been designed according to the proposed genetic decomposition of integration.
Inter-group discussions were structured such that students could reflect on their
work. As a lecturer | would randomly elaborate, probe, provide definitions and
overviews of what students were discussing. Such interjections and guidance that
can support students in understanding complex topics is referred to as scaffolding
(Azevedo, Cromley, & Seibert, 2004; Brush & Saye, 2002). These discussions were
video-taped and later analysed for emerging thought processes regarding concept

development of integration.

Students also answered some exercises that were given as traditional homework.
These exercises were completed outside classroom and without the lecturer’s
supervision. The main purpose of these tasks was to reinforce conceptions of
integrals that students had developed, to expand cases of application of integration

and to prepare for sections that would be studied later.
3.3.3 Collection and analysis of data

The third component of the adopted research framework is the collection and
analysis of data. In this study, data were gathered using specially designed
guestions and student responses, in-depth interviews with students about their
responses to the questions and focus group discussions, where written instruments
were combined with interviews. Information about students, their pre-tertiary
education and their performance in mathematics at school level was also
considered. Such information could shed light on students’ attitudes towards
mathematics and the level of their preparedness as well as previous exposure to the

concept of integration.

According to Asiala, Brown, et al. (1997), widening sources of information about
student knowledge is likely to yield trustworthy conclusions about the phenomenon
investigated. They purport that methods used in such a qualitative study do not
provide clear-cut information leading to inexorable conclusions (Asiala, Brown, et al.,
1997). Different kinds of data were therefore useful in answering the two questions
in this component of the framework: (1) how did mental constructions that students

appeared to be making compare with those proposed in the theoretical analysis?
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(2) how much of what mathematics were students appearing to be learning and

using?

Analysis of data was aimed at establishing whether making, or failing to make the
constructions proposed in the theoretical analysis of the integration concept, could
reasonably explain why some students seemed to succeed in learnig integration and
others did not. Asiala, Brown, et al. (1997) concede that student learning is difficult
to characterise in yes or no terms but that learning ranges in a spectrum from those
who seem not to master a concept completely to those who exhibit mature
understanding, consistent with the understanding of mathematicians. The goal of
data analysis was therefore, to establish a similar spectrum in respect of the
proposed theoretical analysis for integration. As such, what emanated from data
could support or result in a revision of the theoretical analysis that had been
proposed. Data analysis could also result in a revision of the general theoretical

perspective, that is, a revision of the perspectives in APOS theory.
3.4 Transition to formal thinking in mathematics: TWM

Tall (2008) proposes an analysis of cognitive development that is complementary to
APOS theory. He maintains that the cognitive development of an individual is
premised on the fundamental mental structures, set-befores, that people are born with.
These set-befores are: (1) recognition of patterns, similarities and differences;
(3) repetition of sequence of actions until they become automatic and (2) language to
describe and refine the way we think about things (Tall, 2008). He then describes
these modes of thinking as the “Three Worlds of Mathematics”(TWM), which are the
conceptual-embodied world, the proceptual-symbolic world and the axiomatic-formal

world. This framework was integrated in the analysis of data as explained below.
3.4.1 The conceptual-embodied world

Conceptual-embodiment referes to the embodiment that is conceptualised through
perceptions and reflections on the properties and representations of concepts (Tall,
2008, 2007). For integral calculus, cognitive development for the concept of integral as
an area was considered. In this embodied world, the numerical value of an area under
a continuous curve can be found by using small enough squares to cover it (Figure
3.3).
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Figure 3.3 Measuring the area under the graph with a grid (Tall, 2002).

The area from a to X under the graph is a function A(x) = fcff(t)dt, an embodied

notion of integral as an area which can lead to conceptualisation of more sophisticated
approaches like the Riemann integration (Tall, 2002).

3.4.2 The proceptual-symbolic world

Proceptual symbolism or symbolism is when symbols are used as thinkable concepts
(Tall, 2007, 2008). Brijlall and Maharaj (2013) point out that symbols may be viewed
from analogue or symbolic perspectives. They state that “analogue codes represent
the physical stimuli people observe in their environment” (p. 800). Alternatively, as
symbolic codes, symbols may be some form of knowledge representation selected to

characterise an aspect (Brijlall & Maharaj, 2013). In integral calculus, for example, an
individual may perceive a symbol such as ff(x)dx as representing both a process to

be carried out or the thinkable concept resulting from that process.

Such perceptions were noted when students were asked to state the difference in

meaning between [ f(x)dx and f:f(x)dx during interviews. While some

responded to Item 1 of the research questionnaire by stating the difference verbally,
others had an urge to evaluate the integrals. Tall (2008) refers to such a “combination
of symbol, process, and concept constructed from the process” as an elementary
procept (p. 8). A procept is then defined as a collection of elementary procepts with
the same output concept (Gray & Tall, 1994; Tall, 2007).
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According to Tall (2004b) procepts begin with actions that are encapsulated as
concepts and represented symbolically. This encapsulation occurs when the focus on
symbols gets transferred from the physical meaning to a symbolic activity in
mathematics (Tall, 2004a). Therefore, such symbols allow for students to switch

seamlessly from procedures to do mathematics to concepts to think about.
3.4.3 The axiomatic-formal world

The third category of cognitive growth is the axiomatic-formal world or formal world. In
formal mathematics, presentations start with formal definitions to concepts and proving
theorems by mathematical proofs (Tall, 2004b 2007). Concept development does not
start with practical objects of experience but with carefully formulated axioms which
define mathematical structures in terms of specific properties. In this world, a
statement is considered true either when it is assumed as an axiom or definition, or it
can be deduced from existing axioms and definitions (Tall, 2004a).  Since formal
proofs in calculus were not included in the learning programme for students in this

study, the analysis of data was not extended to this category.
3.4.4 Compression, connection and thinkable concepts

According to Tall (2007), the interiorisation of actions into processes and the
encapsulation of processes into objects as described in APOS theory, is an example
of compression of aspects into thinkable concepts. Such thinkable concepts are
connected to other knowledge within a schema, that may also be encapsulated as an
object. A procedure to find an integral, for example, which is a thinkable sequence of
steps to do(action), progressively develops to give efficiency of choosing the most
suitable procedure to employ for a given task. Subsequently, it gets condensed into a
process and compressed into a procept to think about and to manipulate mentally
(Tall, 2007).

Tall (2007) contends that the symbolic compression from procedure to process to
object can be paralleled to embodied compression. He maintains that embodied
compression shifts the focus from the steps in an action to the effect thereof and
imagining the effect as an embodied process. Linking symbolism and embodiment
can enable individuals to acquire conceptual embodiment as they mentally refer to the

encapsulated process. Such conceptual knowledge will faciliate application of
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thinkable concepts into real world. It will also assist individuasl in establishing links

within and between proceptual symbolism and conceptual embodiment (Figure 3.4).

Embodied Procept
C Oncept as both process ,

representing the effect and thinkable concept

| |

Effect <«——>  Process

of the embodied action seen as a whole

| |

Procedure <——> Procedure
through expressed symbolically,
embodied acrion step-by-step

Thinkable

\ Concept
Schema
containing all S
il'l]ﬂgL‘S. pmccssc.\'
symbols ete -
/mking wmwcn‘N
to other

thinkable concepts

Figure 3.4 Compressing a schema into a thinkable concept (D. O. Tall, 2007).

Based on the approach by Tall (2008) on conceptual development and having initially
proposed a genetic decomposition of integration using APOS theory, | then formulated
a possible analysis for concept development that will integrate these theories. A
broader perspective to conceptual development is necessary since individuals develop
in different ways. According to Gray and Tall (1994), some stick to step-by-step
procedures while others develop the ability to compress their knowledge into flexible
use of symbols as procepts. Figure 3.5 represents the proposed integrative analysis

for the concept of integration.
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The model in Figure 3.5 incorporates the developmental stages previously proposed in
Figure 3.2. I, therefore, used this model to design all the activities and questionnaires,

and to interpret and theorise conceptual development of integration in this study.

All activities in this study were aimed at determining whether students exhibited such
constructs as suggested in the HGD.

3.5 Conclusion

In this chapter, | presented theoretical frameworks that | used to generate and analyse
data during this study. Since the focus of investigation was on integral calculus, the
first theoretical framework was about mathematical objects related to integrals and the
fundamental theorem of calculus. Secondly, | discussed a theoretical framework for
research in mathematics education as purported by Asiala, Brown, et al. (1997). |
indicated how APOS theory was used as an analysis tool within this framework. This
led me to refer to conceptual development according to APOS theory, as indicated by
various authors and propose a genetic decomposition for integration(Asiala, Brown, et
al., 1997; Cooley et al., 2007; Dubinsky & McDonald, 2001; Maharaj, 2010; Mabhir,
2009). Further | expanded on the ACE teaching style as a style in which classroom
interactions were stuctured (Asiala, Brown, et al., 1997; Brijlall & Maharaj, 2010; Jojo,
2011). | then indicated how data was collected and analysed as maintained in Asiala,
Brown, et al. (1997). APOS theory as a theoretical framework, therefore, was

embedded the framework for reasearch as a third framework.

Lastly, | presented TTW as a model to analyse the construction of mathematical
knowledge. | reflected on how TTW links with APOS theory and concluded by
proposing an integrated genetic decomposition for integration. In the next chapter |
present the methodology and the research methods that | used during this

investigation.
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CHAPTER FOUR

RESEARCH METHODOLOGY

4.1 Introduction

If you are going to pose yourself a problem and then come to a conclusion
about it, you have to do something to come to that conclusion. That

‘something’ is your research method (Hofstee, 2006, p. 107).

This study was aimed at exploring how engineering students at a university of
technology construct knowledge as they learn integral calculus. The desire was to
see the meaning of integration from students’ perspectives, within their world, and
probably make discoveries that will contribute to the development of empirical
knowledge about conceptual development of integration, for such a group of

students.

In the previous chapter | presented theoretical frameworks or conceptual frameworks
which guided my inquiry. According to Marshall and Rossman (2010), conceptual
frameworks constitute the substantive focus of an inquiry with respect to the what
guestion. Frameworks provide a detailed description of the issue that is explored.
Critical for any research inquiry is the how question, that is, the methods for
conducting the investigation. In this chapter, therefore, | will present the overall

design of this study and specific research methods | used.

The next section will focus on research paradigms, including the design that |
adopted for this study. | will expand on the strategy and the paradigm, indicating
why | think it is an appropriate disposition. | will then discuss research methods
utilised during the study. Here, | will give details of the participants in the study,
methods for collecting data, the research instrument and how data were analysed. |
will then highlight the delineations and limitations of this study. | will also mention
ethical observations made. Lastly, | will provide a synopsis of the whole chapter on

methodology, indicating how | see the proposed methodology suitable for this study.
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4.2 Research design

Many authors distinguish between research methodology and research methods
Research methods are viewed as techniques or procedures used to collect and
analyse data in a research project, while research methodology relates to a process
of justifying the design of the research and the choice for particular methods to be
adopted (Cohen et al., 2011; King & Horrocks, 2010). Methodology, therefore,
outlines the philosophical assumptions embedded in the approach of undertaking a
particular research (King & Horrocks, 2010; Strasheim & Eiselen, 2011).

For purposes of this study, research design will encompass research methodology
and research methods. Under research methodology, | will first articulate basic
beliefs which guided the research process. Secondly, | will describe and justify the
type of research that was conducted for this study. Research methods will provide

details of data collection strategies.

4.2.1 Research Paradigms

According to Creswell (2013), a researcher’s assumptions about knowledge claims,
strategies of inquiry and methods of data collection, influence the choice of a
research design. Such assumptions might be called paradigms and they address the
following four questions that guide the approach to research: (1) what is the
fundamental nature of reality (ontology)? ; (2) what is the nature of knowledge, how
can it be acquired and communicated to other human beings? (epistemology)? ; (3)
what values and value judgements go into the knowledge (axiology)? and (4), what
process is followed in studying it or what are the most appropriate ways for
investigating what can be known (methodology) (Cohen et al., 2011; Guba & Lincoln,
1994; Neuman, 2006).

Neuman (2006) identifies three major paradigms or positions that are prevalent in
response to the four questions mentioned above. These paradigms are the
positivism, interpretivism or constructivism and critical theory. Guba and Lincoln
(1994) include the fourth paradigm to this major group, namely, the pot-positivism.

Neuman (2006) states that, although the feminist and postmodern approaches are
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also found in social research, most on-going studies are based on the first two which
are the positivism paradigm and the interpretivism paradigm. Rubin and Rubin
(2011) maintain that these two approaches reflect “major intellectual disagreements
about the kind of information that researchers should be looking for and how they
should go about obtaining it” (p. 19). For the purposes of this study | will restrict my
discussion to these two paradigms and the post-positivism, since it indicates an

intermediary phase between the two.

4.2.1.1 The positivism paradigm

There is a general agreement that positivism is an approach predominantly adopted
in natural sciences (Guba & Lincoln, 1994; Hunt, 1991; Neuman, 2006; Noor, 2008;
Shepard, Jensen, Schmoll, Hack, & Gwyer, 1993). In the positivism approach the
model of natural sciences is emphasised whereby a researcher objectively collects
data about a social phenomenon and then provides an explanation of that
phenomenon, by arranging the data in cause and effect linkages (Noor, 2008). The
expectation is that the researcher, the components of the phenomenon under
investigation and the activity of investigating are independent and separate (Shepard
et al.,, 1993). An explanation of human behaviour is described through observations

and scientific reasoning (Cohen et al., 2011).

At the ontological level, positivism postulates naive realism where a single reality that
is apprehendable, identifiable and measurable is assumed to exist. Knowledge of
the “way things are” is not time or context-bound but can be generalised to cause-
effect laws by immutable natural laws and mechanisms (Guba & Lincoln, 1994;
Habineza, 2010). At the epistemological level, the positivism paradigm assumes the
investigator and the investigated phenomenon to be independent entities (dualism)
and the investigator being capable of objectively studying the phenomenon without
influencing or being influenced by it. Replicable findings are considered true and
provide evidence for theory non-falsification (Guba & Lincoln, 1994). At the
axiological level, knowledge should be value free, “based on empirical evidence

alone and without interference from moral-political values” (Neuman, 2006, p. 86).
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Finally, at the methodological level, experimental and manipulative methods are

designed to verify stated questions and/or hypotheses (Guba & Lincoln, 1994).

In summary, a positivist approach requires a researcher to begin with a cause-effect
relationship within a social phenomenon. This relationship could be logically derived
from a possible causal law in general theory. A researcher then measures aspects
of the social phenomenon, examines evidence and replicates other researches,
while remaining detached, neutral and objective throughout the process. The
outcome could be the empirical test of and confirmation for the theoretical laws for

that phenomenon.

4.2.1.2 The post-positivism paradigm

King and Horrocks (2010) refer to post-positivism paradigm as a “modified version of
positivism” (p. 19). While maintaining some positivist elements such as being
concerned with quantification and causal factors, post-positivists embrace
approaches that contextualise theories and disciplines in larger social and historical
contexts (Allmendinger, 2002; King & Horrocks, 2010; Ryan, 2006). Proponents of
this paradigm emphasise the adoption of good principles which ensure that
procedures, techniques and methods, while important, are always subject to ethical
scrutiny (Ryan, 2006).

At the ontological level postpositivism, similar to positivism, postulates the existence
of one true reality. The view by proponents for this paradigm is that such reality is
imperfectly apprehendable or measurable because of basically flawed human
intellectual mechanisms and the fundamentally intractable nature of phenomena
(Guba & Lincoln, 1994). At the epistemological level, the perspective is that of
modified dualism and objectivity. This means that dualism gets abandoned as
considered not possible to maintain but objectivity remains a regulatory ideal.
Special emphasis is placed on external guardians for objectivity which include critical
traditions and critical community (such as editors, referees, and professional peers)
(Guba & Lincoln, 1994; Habineza, 2010). At the axiological level, the values of a
researcher are kept in check in order not to bias the study (Strasheim & Eiselen,
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2011). Lastly, modified experimental and manipulative methods are designed and
conducted to falsify, rather than to verify hypotheses (Guba & Lincoln, 1994). In this
paradigm, the methodology redresses some of the concerns raised against the
positivist paradigm by doing inquiry in more natural settings, collecting more
situational information and reintroducing discovery as an element in inquiry. In the
social sciences, emic instead of etic viewpoints, are solicited to assist in determining
the meanings and purposes that people ascribe to their actions (Guba & Lincoln,
1994). There is a notable increase of the utilisation of qualitative techniques in this

paradigm.

In summing up, research based on the post-positivism paradigm shares the same
aim of explaining through prediction and control, as positivism. While acknowledging
the researcher’s connection to the phenomenon this time, there is still emphasis on
objectivity to ensure validity and reliability during the research process. As all
measurement is fallible, this paradigm emphasises the need to use triangulation
across both quantitative and qualitative techniques in order to incorporate viewpoints
of participants when investigating their actions. The post-positivism approach

stresses the falsification of theory as opposed to theory verification in positivism.
4.2.1.3 The interpretevism paradigm

According to Strasheim and Eiselen (2011), in an interpretivist research there is
interaction between a researcher and participants with the aim of understanding the
phenomenon from the participants’ viewpoint. Such research is generally idiographic
where aspects of a social phenomenon are described by offering a detailed account
of specific social settings, processes or relationships (King & Horrocks, 2010). It is
also inductive where theory emerges from analysing the interpretations of the world

by the participants.

The interpretivist paradigm upholds a view of multiple, equally valid and socially
constructed realities. Realities are therefore relative, dependant for their form and
content on the individual persons or groups constructing them. Realities are thus
socially and experientially based, and local and specific in nature (Guba & Lincoln,
1994). The epistemology for this paradigm is that of transitional and subjectivist

nature. The researcher and the participants are assumed to be interactively linked so
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that the findings are literally created as the investigation proceeds. The interaction
unearths deeper meaning and insight into the lived experience of participants (Guba
& Lincoln, 1994). The axiological position is that the researcher’s values and biases
are inevitable and should be acknowledged and discussed at length (Strasheim &
Eiselen, 2011). Finally, methodologies utilised are hermeneutical and dialectical in
nature. The variable and personal nature of social constructions suggests that
individual constructions can be elicited and refined only through interaction between
and among, investigator and respondents. The varying constructions are interpreted
using conventional hermeneutical techniques and are compared and contrasted
through a dialectical interchange. The final objective is to distii a consensus
construction that is “more informed and sophisticated than any of the predecessor
constructions, including the etic construction of the investigator” (Guba & Lincoln,
1994, p. 111).

Briefly, interpretive research studies involve understanding a phenomenon
subjectively, within cultural and contextual situations. Researchers do not impose
their priori understanding of the phenomenon but derive categories and themes from
the research field, through in-depth examination of and exposure to the phenomenon
of interest. Researchers' prior assumptions, beliefs, values and interests always
intervene to shape their investigations. According to (Guba & Lincoln, 1994), a
researcher’s intent should be revealed, since hiding it may be counterproductive

towards the aim of uncovering and improving constructs.

In the next section, | present ontological, epistemological, axiological and
methodological assumptions that were adopted for this study.

4.2.1.4. The paradigm of this study

As purported by (Asiala, Cottrill, et al., 1997), it may not be possible to definitely
explain the process of learning as students develop conceptual understanding of a
mathematical concept. Findings of research can only represent the understanding
and interpretations of the researcher combined with understanding of those being
researched (Rubin & Rubin, 2011). Assertion by various researchers (Brijlall &
Bansilal, 2010; Dubinsky et al., 1994) that mathematical understanding is complex

and that APOS theory is but one approach towards analysing the cognitive
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development indicates that for this study there could be many truths. The findings
that this study produced might not be the only possible explanation of knowledge
construction process when students learn integral calculus. There might be other
explanations, depending on the guiding theory other researchers might use.

At the ontological level, therefore, reality of conceptual development was relative,
subject to the context of the participants at the time of investigation. Such reality
was socially shaped and reshaped over time by the participants in this study,
namely, the lecturer and the students. Students’ prior knowledge, teaching
approaches adopted for the module and the actual curriculum for the programme,

constituted the context in which the perceived concept development was occurring.

Epistemologically, the phenomenon to be researched contained, to some extent, the
researcher’s influence as a person. How students’ conceptual development of
integration evolved was, to a greater extent, influenced by both teaching design and
research instruments administered. At the axiological level, as the lecturer for this
group of students and based on the theoretical frameworks adopted, there were
preferred or expected responses from the participants. This predisposition to certain
types of knowledge confirms the inevitability of the researcher’s values and biases,
and hence the need to discuss them (Strasheim & Eiselen, 2011). Triangulation of
methods of data collection and reference to existing literature were incorporated to

address this bias.

Finally, at the methodological level, hermeneutics was the adopted way of knowing
about the phenomenon. Students’ written responses to items in the research
instrument were read and analysed with the aim of developing a deep understanding
of imbedded meanings. Discourses among participants were analysed in-depth.
Semi-structured interviews were also conducted in order to enrich the context of

meanings further and to triangulate the emerging trends.

In ending, in this section, | have stated claims about knowledge, strategies of inquiry
and methods of data collection. The stated claims locate this study within an
interpretevist paradigm. In the next section | present the general strategy used to

answer research problems in this study.
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4.2.2 Strategy of inquiry: Qualitative case research

Given that interpretivism was adopted as the research paradigm for the study, an
appropriate research strategy was the qualitative inquiry. Findings were arrived at
without the use of statistical procedures or calculations. Data was in the form of text
from students’ written work and words and phrases from the interviews. Next, |

indicate how qualitative design was applied in this study.

Many authors agree that in qualitative inquiry the researcher seeks to observe and
interpret meanings in context (Corbin & Strauss, 2008; Hoepfl, 1997; King &
Horrocks, 2010; Merriam, 1998; Ponterotto, 2005). Such an inquiry is characterised
by rich, complete and detailed descriptions with notable interaction between a
researcher and the participants (Ponterotto, 2005; Strasheim & Eiselen, 2011). In
particular, a qualitative study is an empirical study because it involves collection,

analysis and interpretations of primary data (Ponterotto, 2005).

There is a wide range of approaches to qualitative research. Strasheim and Eiselen
(2011) cite case studies, ethnographic studies, phenomenological studies, action
research and grounded theory as some of such approaches. For the purposes of
this study, | will restrict my discussion to case studies as an approach followed.
According to Creswell (2002), case studies may be intrinsic, instrumental or
collective. An intrinsic case study refers to a case selected due to it being unusual
and different from the norm. The goal of an intrinsic case study is to understand a
case as a totality including its inner workings. When a case is used to illustrate and
illuminate a particular issue, it is called instrumental. Unlike in intrinsic case studies,
not all contexts of a chosen are significant to the study but those impacting on the
issue that is investigated. Collective studies involve the description and comparison
of multiple cases with the aim of providing insight into an issue (Creswell, 2002;
Stake, 2013).

This was a single qualitative case study research to investigate concept
development of integral calculus for first-year engineering students at a South
African University of Technology. As Merriam (1998) defined it, a qualitative case

study is “an intensive, holistic description and analysis of a single entity,
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phenomenon or social unit” (p. 18). Creswell (2002) and Punch (2009) used four
characteristics to define the nature of case studies. Firstly, the case under
investigation, although not easily distinguishable from its context, should have clearly
defined scope and boundaries pertaining to time, place, or some other physical
boundaries. Secondly, in order to focus research and determine the unit of analysis,
a case should be a case of something. Thirdly, a holistic approach is adopted by
preserving “the wholeness, unity and integrity of the case” (Punch, 2009, p. 120).
The last characteristic talks to triangulation which may be achieved by using multiple
sources of data as well as multiple methods of collecting data. These characteristics

applied in this study are as presented in the next paragraph.

The focus of this study was to answer “how” and “why” questions, therefore, a case
study design was considered an appropriate strategy (Heck, 2006; Punch, 2009).
Such questions would be answered through exploring how students constructed
mathematical meaning in integral calculus and what influenced such constructions.
The case, therefore, was that of engineering students’ learning of integral calculus.
It is noted that contextual conditions for students, such as their schooling
background, structuring of the instruction and the design of the curriculum, were
relevant to students’ conceptual development. Nonetheless, the analysis of data
focused on inferences that could be made from written responses and semi-

structured interviews only.

Students’ responses to a structured worksheet provided initial data for understanding
concept development in this case. Methodological triangulation was pursued by
collecting additional data through semi-structured interviews and focus group
observations. In Chapter 3 a model of cognition, called hypothesised genetic
decomposition (HGD), was presented, indicating mental constructs that a student
might make when developing understanding in integration. This HGD guided the
analysis of data from written responses and interviews to address the how and the
why questions of this study. In addition, interviews and focus group observations
served to provide insight to the worlds of mathematical thinking of students as

inquired in the third research question for this study.

In summary, this was a qualitative case research focused on answering how and

why questions regarding students’ construction of mathematical meaning when
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learning integral calculus. Triangulation was ensured by checking whether interviews
confirmed analyses of written responses to the activity worksheets. Focus group
observations were also conducted in order to decipher emerging nuances during
group conversations. In the next section | describe the actual research methods

used in this study.
4.2.3 Research methods

In sections 4.2.1 and 4.2.2 | presented the research paradigm and the strategy for
inquiry for this study. This study was a qualitative case study located within an
interpretivist paradigm. As indicated earlier, research methods refer to procedures
and techniques utilised to generate and analyse data. In particular, | will discuss
participants which include students, | as a lecturer-researcher and the calculus
curriculum for this group under investigation. Next will be the presentation on
different strategies employed to collect data for the study. The structure of the
structured worksheet which served as a research instrument will then be discussed,

ending with the process followed when analysing data.
4.2.3.1 Sampling strategy

Creswell (2013) maintains that in qualitative research, a researcher intentionally or
purposefully selects participants and sites that would help explore the researched
phenomenon in more depth. The phenomenon for this study was mathematical
constructions displayed when students learn integral calculus; therefore, participants
were first year students undertaking this module at a university of technology in
South Africa.

The study composed of two phases. Phase 1 focused on validating the activity
sheet, therefore the only criteria for participation was willingness by students. Seven
students took part in this phase by responding to the questionnaire and being
interviewed by the researcher. According to Stake (1978), Phase 1 was an
instrumental case study with the primary interest being the validation of the main
research instrument. The context of participants was, therefore, not included in the

analysis of data.
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The second phase was aimed at providing in-depth exploration of concept
development of integral calculus. This phase consisted of group discussions,
answering a research instrument and interviews and was undertaken with a different
group of students yet given the same instruction as students in the first phase. A
sample of 22 students participated in this phase. In both phases, students were
selected from an electrical engineering class to respond to the activity sheet. These
students had passed one semester module of calculus. They were still in their first
year of study but studying a second semester module which consists mainly of
integral calculus. Based on their responses, some participants were selected for
interviews in order to expand on their answers. Sampling for participation in the
study was, therefore, both voluntary and opportunistic. Opportunistic sampling is
when new leads are followed as per emerging unexpected scenarios (Marshall &
Rossman, 2010). In this instance, candidates to be interviewed were identified as

per their responses to the structured activity sheet.

The biographical data of the 22 students who had volunteered to participate was
taken into consideration as well. Eight of them were male and fourteen were female.
Thirteen had matriculated in rural schools, seven in township and two in the former
model C school. Eighteen had obtained a 50% or more pass mark in their
matriculation mathematics, two had obtained marks ranging from 40% to 49% and
two had other forms of entry requirements into tertiary mathematics. Six students
had completed their matriculation at least six years before enrolling in this university.
The selection of students for interviews was based on their written responses to the

structured worksheet.

The role of a researcher in this study was that of a participant-observer since |
served as both the lecturer for the module and the researcher for the phenomenon.
As stated in Chapter Three, the whole lecturing-research activity was structured
along a framework that encompassed theoretical analysis, instructional treatment
and data analysis. My eleven years of experience in teaching this module, combined
with the perspectives induced from the preliminary genetic decomposition, informed

contents of both classroom activities and research instruments.
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4.2.3.2 Datacollection methods

Data was collected over two phases for this study. The first phase focused on: (1)
validating the activity sheet and (2) evaluating the level of accuracy of the proposed
genetic decomposition for integration. This phase was introduced as a “pilot
interview” aimed at uncovering issues that could be probed more deeply when the

study was rolled out to a larger group of students (Arnon et al., 2014).

In this first phase, the main research instrument, aimed at assessing different
cognitive levels in integration, was administered to seven students who had just
completed a course in calculus. Students’ responses to the activity sheet were
analysed, coded and scored according to the following five-point rubric adapted from
Jojo, Brijlall, and Maharaj (2011):

Score | Assessment Criteria Description of mental action

Made all

suggested in

constructions as
the

5 A complete response to all aspects of the mental

item and indicating complete

the

genetic

mathematical understanding  of decomposition.

concept assessed.

4 A partially complete response with minor | Understanding of the concept mostly

computational  errors, demonstrating | conceptual.

understanding of the main idea of the

problem.

Incomplete response to all aspects of the

concept and incomplete reasoning.

Displaying few mental constructions,
conceptual understanding at minimal

level.

No reasoning to justify written response

Displaying few mental constructions,

but at a procedural level.

1 No written response or completely | No mental construction of a concept

principle error

Table 4.1: Scoring codes

Follow-up interviews were then conducted with individual students with the aim of
describing how such students constructed the concept of integration. Interviews were

held in the Library’s Learning Commons and were all videotaped. The main aim of
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the interviews was to elicit students’ understanding of integration based on their
performance to tasks in the research instrument. Each student was, therefore,
reminded of the task from the activity sheet, the response given and was requested
to explain why such response was given. The collation of both analyses, namely,
analysis of responses to the activity sheet and analysis of interviews, informed
revisions to the activity sheet and the preliminary genetic decomposition. In the
following semester, the study was then rolled out to a larger group of students as a
second phase of this case study.

Typical of a case study, a variety of data collection techniques were combined in
order to allow for in-depth analysis of students’ concept development, and also to
accommodate limitations relating to individual techniques. Multiple data collection
methods are recommended in a case study to strengthen substantiation on and
understanding of the phenomenon under study (Heck, 2006; Huberman & Miles,
2002; Mabry, 2008; Punch, 2009).

Firstly, students were individually made to complete an activity sheet comprising of
tasks on integration. This activity was scheduled in a test format immediately after
completing the section on integration in class. It was a two hour test scheduled on a
Friday afternoon, a time found suitable for all the participants. Tasks were designed
to examine specific mental constructions by providing an insight into students’
knowledge and skills in relation to the preliminary genetic decomposition for
integration. The researcher maintained the normal principles for individual
interviewing by encouraging participants to respond to all tasks in the questionnaire,
without giving any hints to the solutions. Attempts were made to ensure that all
tasks were understood by providing oral explanations when needed.

Secondly, based on their responses to the research instrument, seven participants
were invited for semi-structured interviews. Rubin and Rubin (2011) describe
interviews as conversations in which an inquirer gently guides an interviewee to
provide more depth and detail about the phenomenon under investigation. They
further caution that in qualitative interviews questions need to match what each
interviewee knows and is willing to share. Conversational, qualitative interviews may

suffer from power imbalances, since the interviewer may be seen to be in a powerful
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position (King & Horrocks, 2010). The lecturer-student relationship added a

complication to the balance of power for this study.

To address the issue of power dynamics, students were made to select venues
where they preferred to be interviewed. | had to ensure that the selected venues
complied with the acceptable norms of interview environment, namely, they are
comfortable, private and relatively quiet (King & Horrocks, 2010). Four students
chose to be interviewed at the university residences where they were lodging.
These residences have study rooms that were deemed suitable in which to hold
interviews. The other two agreed to be interviewed in my boardroom at work, and
one student was interviewed in my study room. In all cases, time suitable to the
interviewees was agreed upon and all interviews were audio-recorded with consent

of the participants.

To start interviews, brief descriptive information about the participants in relation to
their mathematical background performance was asked. Included in this information
were their performances in school mathematics and their scores in the first semester
of university mathematics. The introductory phase was followed by semi-structured
interview questions that focused on the definition of an integral, integral as an area
and technigues of integration, in line with the worksheet. Participants were
interviewed for more clarity and further explanations on their written responses. The
level of abstraction, critical thinking and insightful conceptualisation were measured

during the conversations.

The third technique used to collect data was the focus group discussions where
students worked collaboratively to solve given problems. Focus groups are defined
as “in-depth interviews employing relatively homogeneous groups to provide
information around topics specified by the researchers” (Smithson, 2008, p. 358).
This technique involves interviewing a group of people at the same time, with focus
being on the interaction among the participants during such interview (Gibbs, 1997;
Kitzinger, 1995). As a result of their collaborative nature, participation in such a

research can be empowering to the participants (Gibbs, 1997).

For this study, focus groups meant participants responding to sets of questions on

integral calculus as a group. They were encouraged to explain and defend their
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approaches to each other. The lecturer served as a “soft scaffold”, as defined by
McCosker and Diezmann (2009), through asking probing questions and providing
explanation whenever necessary. The Learning Commons of the university’s library
was used as a venue because of the available recording facilites. Two hour
discussions were held on two Friday afternoons and were video-recorded.
Photographs of students and their work were also taken. In order for all participants
to be active, the size was kept to four members per group. According to Smithson
(2008), smaller groups yield relevant data and allow space for all participants to
express themselves. The analysis of discourses from these groups will be discussed

in chapter seven.
4.2.3.3 The main research instrument: The activity sheet

As indicated in Chapter 3, the framework for research in mathematics education
guided the whole process of data generation and data analysis. That framework
involves three stages which are: (1) Theoretical analysis of the concept, based on
the researcher’'s knowledge and experience and the adopted theoretical framework;
(2) Instructional treatment, where students are assisted and observed whether they
are developing the mental constructions as predicted in the analysis of the
investigated concept and (3), Collection and analysis of data with the aim of refining
the initially proposed genetic decomposition. The main research instrument, included
in this thesis as Appendix B1, pages 207-211, was used to collect data in the third

stage of the framework.

The main research instrument consisted of five items, some of which had sub-items.
Although items 1 and 2 contained simple functions, they dealt with the understanding
of the meaning of an integral. Items 3 and 4 required students to choose appropriate
techniques of integration based on the analysis of the integrand. Subsections of item
5 required an overall understanding of the concept. This research instrument was
designed to elicit data with regards to the meaning students attached to integration.
It was administered after students had been taught integral calculus in their normal

mathematics course. Item 1, for example, required students to state, in their own

understanding, the difference in meaning between [ f(x)dx and f:f(x)dx. | was
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of the view that the evoked concept image of an integral, through this item, would

contribute to indicate the level of conceptualisation of concept definition.

The instrument also aimed at requiring students to apply various techniques for
integration but with valid reasons. Item 3 of the questionnaire was:

X
A student asked to solve the integral ferdx decided to use integration by

X
parts and chose ez for a “u”.

3.1.  Was this choice of a “u” appropriate?
3.2. Please support your answer.
3.3.  Provide a solution for the same integral

Most respondents skipped 3.2 which required them to justify their choice and moved
directly to question 3.3. This could be interpreted as the inclination towards
procedural versus conceptual knowledge. The rest of the questionnaire targeted

proficiency with the techniques of integration.
4.2.3.4 Data analysis

According to Creswell (2002) the analysis and interpretation of data in a qualitative
research spans six stages. Researchers start by accumulating, organising and
transcribing data for analysis. A decision on whether data would be manually or
computer analysed is also made at this stage. The second stage involves exploring
and coding data according to text segments identified. Thirdly, coded segments are
then used to formulate themes that provide a broader description of the phenomenon
under investigation, as well as contribute to key findings of a study. Such findings
are then represented in narrative discussions such as a chronology, or in visual
displays which include figures and diagrams in the fourth stage. It is from the
findings, the researchers’ personal views and comparisons with literature that the
interpretation gets made as a fifth stage. The sixth stage involves validating the

accuracy of the findings mainly, through triangulation and auditing.

Analysis of data commenced with students’ written responses. For each item,
students’ answers were analysed for emerging trends or themes. The themes were

then categorised by using descriptors included in Rasslan and Tall (2002) as a
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guide. Interviews were then held with selected students in order to provide clarity on

the written responses.

The next level of analysis involved cross-referencing students’ oral inputs from semi-
structured interviews with the written text. The genetic decomposition was invoked
as a tool to categorise students’ conceptual development within the APOS theory.
Inferring from the constructions made students’ knowledge could be placed at the
action, process or object level of conceptual development. The researcher was
drawn to those cases that deviated from the pre-stated classification since they

constituted areas for further probing.

Focus groups provided data that was mainly from the students’ voice. Discussions
among students on items contained in a research instrument that is appended here
as Appendix B2, pages 214-217, were recorded and later transcribed into text. A
coding framework was devised based on recurrent issues in the text and

expectations from the theoretical framework. For example, when discussing the

. b . . .
meaning of fa f(x)dx , some students preferred to show the meaning by invoking

the Fundamental Theorem of Calculus (FTC), that is fff(x)dx = F(b) — F(a) where

F'(x) = f(x). Common trends were to verbalise the FTC, to write it generally, or to
define own functions and evaluate the definite integral. These types of responses
formed distinct categories which were then contrasted against conceptual levels

proposed in the hypothesised GD presented in Chapter 3.

4.3 Validity, credibility and trustworthiness of methods

The significance of a study depends on the validity claims that can be placed on the
study and the standing these claims obtain when compared to other validity claims in
the discourse to which the study is a contribution (Flyvbjerg, 2006). Validity in
qualitative designs translates to credibility, transferability, dependability and
confirmability (Creswell, 2013; Guba & Lincoln, 1994; Krefting, 1991). In a case
study research, validity is increased by combining methods or sources of data that
provide fuller picture of the phenomenon under investigation (Cohen et al., 2011;
Jojo, 2011; Leedy & Ormrod, 2005). This approach of using two or more methods in
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collecting data for a study is called triangulation (Cohen et al., 2011; Rubin & Rubin,
2011).

Triangulation can be pursued by varying data sources, where data is collected from
different persons or entities. The researcher checks the degree to which each
source confirms, expands or disproves information from the other source (Mabry,
2008). Methodological triangulation is when data collected through one method is
checked for consistency with data collected through another method. Triangulation
is also achieved by collecting data at different times, using more than one data
collector, or by referring to different theoretical frameworks (Creswell, 2013; Leedy &
Ormrod, 2005; Mabry, 2008).

In this study, although participants had been subjected to the same instruction, they
had varying capacities and different schooling backgrounds. In addition, different
techniques were used to collect data. Students’ written work was the first source of
data. In-depth interviews were then conducted where participants elaborated on their
written responses. Focus groups served to encourage students’ voices as they
engaged in discourses among themselves. These forms of triangulation, together
with the exploration of meaning through the APOS framework and Tall’'s Three
Worlds (2008), were included in order to address validity and credibility in the study.

Strategies and criteria to establish overall trustworthiness were crafted according to
the guidelines provided by Krefting (1991) and Jojo (2011). Triangulation through
employment of different methods to collect data addressed the aspect of credibility.
To allow for any possible transferability, dense description of data was carried out.
Extracts of students’ written responses, verbatim quotes from interviews and sample
dialogues from focus were included as form of data. This study adopted research
strategies such as semi-structured interviews, written questions and observations in
the form of focus (Arnon et al., 2014). According to Krefting (1991) dense description
of appropriate research methods indicate dependability of a study. Finally, as
suggested by Krefting (1991), confirmabilty was ascertained by providing transcripts

and sources for all claims made in the analysis.
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4.4 Ethical issues

Ethical clearance was first sought from the university in which the degree is pursued.
The university of registration granted ethical clearance: the protocol reference
number is HSS/0135/012D. | then applied for ethical clearance from the university
where the study was conducted, which was granted and communicated to me by the
Research Directorate office of the university. These documents are included in this

thesis as Appendix Al on page 195 and Appendix A2 on page 196 respectively.

Although | taught the group, students were informed that participating in the research
project was not linked to their study. Participation was completely voluntary and
students could withdraw any time when they so wished. This explanation was
captured in a letter of consent, Appendix A3 on pages 197-198, that was read to
them and which they all signed. The letter also contained a brief explanation and
context of the project. It notified the participants of the methods through which data

would be collected and assured them that their identities would be protected.

4.5 Conclusion

In this chapter, | presented the methodologies adopted for this study. | indicated that
the study was a qualitative case study located within an interpretivist paradigm.
Under the heading of research methods | gave descriptions of the participants in this
study and explained the data collection methods used and how data was analysed. |
then explained how triangulation was employed in order to ensure validity and
credibility. Lastly, | indicated how ethical considerations were observed for this
study. In the next chapter | present the results of Phase 1 of the study, which are

aimed at validating the main research instrument, the activity sheet.
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CHAPTER 5
VALIDITY OF THE ACTIVITY SHEET

5.1 Introduction

In Chapter Four | presented the research design, methodologies and research
techniques that | used for this study. | indicated that an interpretivist paradigm was
adopted to conduct a qualitative study that is premised on an APOS theoretical
framework. In addition, detailed descriptions of data collection tools, data sources
and data analysis process were provided. In this chapter | present discussions and
results from the first phase of the study. As stated in the previous chapter, this phase
was introduced as a “pilot interview” aimed at uncovering issues that could be
probed more deeply when the study was rolled out to a larger group of students
(Arnon et al., 2014).

The next section presents findings in relation to the different items of the activity
sheet. Firstly, | present analysis of evoked meaning that seven students attached to

an integral through symbolic (meaning attached to [ f(x)dx and f;f(x)dx) and

graphical representations (area bound by the graph of a function). Secondly, I
present an exploration of students’ construction of meaning as they work with
various techniques of integration. The last section reports on the overall

conceptualisation of schematization of the concept of integration by students.

5.2 Meaning attached to an integral

5.2.1 Symbolic representation

All students responded to the first item. The analysis of the responses revealed two
main trends. On the one hand there was a tendency to explain the symbol of the
integral and on the other, reference to the area was made. The third category

consisted of either a no response or a complete principle error. Table 5.1 shows the
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distribution of students’ responses on their understanding of ff(x)dx and

f(f f(x)dx:

Students’ answers | The integral of the | The area bounded | Other
function f(x) by the graph and
the x-axis
Number of 4 2 1
students: [ f(x)dx
Number of 2 4 1
students: f:f(x)dx

Table 5.1: Students’ answers to Item 1 on the “meaning of integration”

The four students who indicated the meaning of ff(x)dx as an integral of f(x)

focused on the symbol of an integral. Three of these stated that f f(x)dx meant

“finding the integral of f(x)” or “integrate the function f(x) with respect to x”. The
fourth one, Xolile, made reference to limits of integration by stating that:

o [ f(x)dx is an integration of f(x) without the limits which is a lower and an

upper limit.

In this case it would infer that these four students had an action conception of APOS
for an indefinite integral. They responded to the notational stimulus, explicating on
the symbol for integration. Xolile’s response indicated that she focused mainly on the
symbol and the presence or absence of limits of integration. These students

responded in a manner that was external to their cognition.

Simo and Menzi are the two students who defined ff(x)dx as an area below the

graph. The following are the written responses they provided:

o ff(x)dx is the indefinite integral of f(x). This integral represents the entire

area below the graph. (Simo)

e [ f(x)dx itis when you find the area without knowing the limits and we put C

after we integrated for a constant value which we don’t know.(Menzi)
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According to the preliminary genetic decomposition, Simo and Menzi could be
classified as displaying a process conception as their responses went beyond the
notational symbolism. They had a notion of an integral as a procedure to determine
an area, although not mentioning the orientation of such area. Nothing could be

implied for the last student, Bonga, since he did not respond to this part of item 1.

With regard to the meaning of ff f (x)dx, four students referred to the area concept

in their definition. In addition to Simo and Menzi were Ayanda who had referred to
f f(x)dx as “finding the integral of f(x)” and Bonga who had not responded in the
first instance. In all responses there was no mention of oriented area. Simo
seemed to be extending on the meaning he had provided for ff(x)dx above by

stating that:

o f;f(x)dx is a definite integral of f(x). This means that the area calculated

is between points x=a and x=Db.(Simo)
Similarly Menzi’s response was also linked to the meaning he attached to [ f (x)dx:

e Itis when you are calculating the area given the limits.(Menzi)

Xolile and Gugu retained their point of view by stating that f:f(x)dx is an integral

with limits. In line with the meaning attached to [ f(x)dx, Xolile stated that:

. f(f f(x)dx is an integration of f(x) with an upper and a lower limit.

b
The one student categorised as “other” defined fa f(x)dx as the mean or root of

the mean of squares (RMS) of f(x) (Faith).

The responses indicated that most students tended to link a definite integral with the
notion of an area, without the mention of the orientation. Using the preliminary
genetic decomposition provided, it also appeared that most students viewed an

integral as an anti-derivative with limited extension to the area concept. With regard

to f f(x)dx , the main interpretation attached was that of “finding an integral of
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f(x)”. This could be interpreted as finding the anti-derivative of the function f(x). It
could be inferred from these responses that students relied on expressed limits of
integration to construct meaning of an integral. In the absence of limits, the integral
symbol assisted them to formulate whatever mental constructions, and mainly,
finding the anti-derivative. Such conceptions placed them at the action — process

level of concept development.

In follow-up interviews with Xolile and Simo, for example, when asked for the

meaning of an integral in their understanding, they responded as follows:
Researcher: “In your understanding, what is an integral?”
Xolile: “If you are given a derivative, then going back to the original function.”

Simo: “(A) is the derivative of a function, then (B) is the derivative of a function but

we must also find the area” {Where (A) = [ f(x)dx and (B) = ff f (x)dx}.

Notably, when asked the same question, student Faith responded by stating that:
“Integral actually gives an area”, contrary to the answer given in the questionnaire of

a mean or RMS.

It was decided that Item 1 would be kept for the main study, since it evoked students’
associations with the symbolic, area, and anti-derivative notions of the integral. This
item addressed the reliability of the research instrument since it was deemed
appropriate to extract students’ depictions on the concept definition of integration
(Rosken & Rolka, 2007).

5.2.2 Graphical Representation

5.2.2.1 Item 2(2.1.1): The semicircle

Item 2 was designed to explore how students related a definite integral as the value
of the area, when a graph is provided. Students were not required to evaluate the
. o 5 "
given definite integral fo V25 — x2 dx but to sketch the graph of a positive

semicircle with radius equal to 5 with the function rule y = V25 — x2 and state how

the definite integral related to the graph without carrying out symbolic integration.
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All students struggled to draw the graph of a semicircle until the researcher provided
some hint. Errors in sketching the graph included the drawing of straight line graphs,
circle graphs, quadratic functions and quarter of circles. Although graph and graph
sketching is one of the schemas in the understanding of integration, this study did

not include it. The researcher, therefore, decided to show students what the
) . ) ) 5
expected graph is. With regard to relating the integral fo V25 — x?% dx to the graph

of the semicircle, only one student made reference to the area. Three students
restricted their explanation to the sketch for the graph, two attempted to evaluate the

integral and one student did not respond to this item.

The one student who made reference to the area omitted the implication of limits of

integration. Her written response was:
Ayanda: It determines the area covered by the function.

When interviewed, Ayanda displayed difficulties in interpreting the limitis of

integration. When asked the implications of 0 and 5 in the integral fos V25 — x2 dx

here response was:

Ayanda: “0 and 5 mean ehh...to find the area of the shaded region from 0 to 5.”

Researcher: “Can you please point that on your sketch.”

Ayanda: “From 0 to 5 on the x-axis (pointing along the x-axis) and...(pause)...
from O to 5 on the y-axis (pointing along the y-axis).”

Researcher: “l see. By the way, which axis do limits of integration refer to?”

Ayanda: “Hm.....the limits of integration...are referring to y-values.”

Ayanda’s oral responses indicate that she did not possess an effective function

schema necessary for the interpretation of the definite integral. This response also
. e 1 . L b
indicated difficulties with the conceptualisation of the symbol fa f(x)dx. There was

no clarity in her understanding of the actual meaning of a and b as they appear in
the symbol of a definite integral. She had an inclination that the definite integral
pertained to the area under the graph but her function schema was not strong
enough to enable for correct identification of the domain for the function. The whole

presentation placed her in an action-process stage since the notion of an integral as
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an area had been developed. The lack of a function schema impacted negatively on
the encapsulation of the definite integral to an object conception of the area notion.

The other tendencies were to restrict the explanation to the sketch for the graph or to
attempt to evaluate the given definite integrals. | will discuss two examples of
explanations that focused on the sketch. The first such response was from Xolile.

Xolile:  This one wil look like this because it has
limits of X, where x=0 and x=5
According to Xolile, limits of integration meant the graph commences at x = 0.

Based on her sketch of y = V25 — x2, shown in Figure 5.1, it can be inferred that

x = 5 was the other x-intercept.

Figure 5.1: Xolile’s response to the sketching of the graph

This view of fOS\/ZS — x2 dx as a graph was supported in the follow-up interview

with Xolile.  When asked what fOS\/ZS—xZ dx actually represented, Xolile

responded as follows:
Xolile: ‘I think it means the graph from 0 to 5....what is it?...half of... | mean, a
quarter of a circle.”
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Xolile still maintained that the definite integral means a graph. The interview seemed
to have made her delve deeper since her domain was correct in the interview but not

in her written graph as observed in Figure 5.1.

The second similar response was given by Simo, who drew a correct graph for the

semicircle but then referred to fos V25 — x2 dx as a graph by writing that:

Simo: The graph represents a half of the graph

The first word “graph” is interpreted to refer to the given integral while the second
one refers to the sketch of the semicircle. Simo’s explanation is limited to the sketch
without linking it to an integral. During the interview, Simo restricted his explanation
on the values of x ranging from ‘0’ to ‘5’ but made no mention of the corresponding

area. To him, the ‘0’ and ‘5’ meant the start and end of the graph and he completely

overlooked the integral symbol present in fos V25 — x? dx.

These two students’ conception was confined to the numerals, which were the limits
of integration. They could not relate an integral to the oriented area since the area
was not drawn, thus interpreted limits as only demarcating the domain for the graph.
The numerals, ‘0’ and ‘5’ and the graph of the quarter circle, served as external cues.
Accordingly, the expressed conceptualisation of a definite integral was limited to
defining the graph within the given domain. There seemed to be no notion of an
area in their understanding. Such responses placed them at an action stage of
APOS regarding conceptualisation of an integral as an area since they relied on

external stimuli to construct meaning.

Three students attempted to evaluate the integral, an indication that they were
responding to the given formula by trying to apply some algorithms. Having drawn
graphs of the semicircle, no attempt was made to answer the second part of Item 2
which asked for the relationship between the graph and the definite integral.
Instead, students attempted to evaluate the integrals. | provide two of these

attempted solutions. The first example is Figure 5.2, a presentation by Menzi:



89

Figure 5.2: Menzi’s response to Iltem 2.1.2

xn+

1
+C to line 4 of
n+1

| observed that Menzi applied the power rule, that is, fxx dx =

Figure 5.2. He treated (25 — xz) as a single variable and not a function. This

shows that he did not possess a process conception of integration when using the

power rule.

Faith possessed similar mental constructions as Menzi, as could be concluded from
comparing their written responses. However, Faith committed a “sign” mistake at the
final step resulting in her providing a different answer. Faith’s response is shown

below:

Figure 5.3: Faith’s response to Item 2.1.2

In both of these solutions students were attempting to wuse the rule

f[f(x)]"f’(x)dx=ﬁ[f(x)]n+1+C, not considering the fact that the

. . . . 5 1 .
essential f'(x) was missing in the given integral fo (25 — x?)zdx . Both solutions
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were therefore, firstly not necessary to answer the question and secondly,
procedurally incorrect. These students perceived and reflected on a repeated action
of integration and wanted to display mastery of the techniques. According to
Dubinsky (1991b), such transformation of physical or mental objects which is a
reaction to stimuli perceived by a subject as external, is considered to be an action.
The students operated in the action stage of APOS for application of the power rule
and were focused on solving an integral in a step-by step approach as prescribed by
the “algorithm” they had adopted. They had not interiorised this action though and

hence did not possess a process conception of the technique of integration.

In all the cases students showed inadequate conception of both an integral as an
area and the actual use of algorithms. As stated, all seven students could not draw
the graph of a semicircle without assistance. Although this was a cause for concern
since students were expected to have done this type of graphs, this item was
nevertheless, retained in the main research instrument with the analysis focusing on

integration and not on the sketching of graphs.

5.2.2.2 Item 2 (2.2): The straight line

The next item consisted of a graph of y = 2x + 3 which was given with area
shaded as shown in Figure 5.4 below. Students were asked to determine the area of

the shaded region using integration (Figure 5.4).



Figure 5.4:

/
//////////

Sketch graph for Item 2.2.

X)=2x+3
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One student did not respond to this question. The written responses displayed were

coded into four categories.

presented in Table 5.2.

Description of categories and students’ distribution is

Category I I [l A\
Indicator Employed correct | Correct integration, | Inappropriate Left Blank
integration techniques | but wrong limits technique or
and answered correctly principle error
Number of | 1 2 3 1
students
Table 5.2: Students’ answers to Iltem 2.2

| paid my attention to Menzi, who answered this item correctly thus indicating

mathematical understanding of the definite integral as an area. Menzi reflected on

the presentation and properties of the given area and realised that the definite

integral would have x = —1 and x = 2 as limits for integration. According to the

hypothesised genetic decomposition, we could claim that this student had

conceptually embodied integration. The interiorised action enabled the application of
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an integral in finding an area, resulting in the correct answer. His response is

presented in Figure 5.5 below.

Figure 5.5: Menzi’s response to ltem 2.2.

| observed that Menzi displayed an action conception of integration where he step-
by-step solved the problem. | could not argue that he had a process conception as
the question provided a hint for the use of integration to find the area. He missed out

the “dx” in lines 2 and 4. On the same line, Menzi also missed the inclusion of
2
brackets. He wrote f_l 2x + 3 instead of f_21(2x + 3)dx. Nonetheless, | assumed

that that was a slip as he included the “dx” elsewhere. He also applied the property

of an integral, [[f(x) + g(x)]dx = [ g(x)dx + [ g(x)dx in line 3..

In an interview with Menzi, it emerged that the explicit sketch had guided his choice

of approach. When questioned on his approach he said:

Researcher: Can you explain what is given in this sketch?
Menzi: We have a straight line cutting from -1.5 on the x-axis and y-axis, and its
area is shaded from -1.5to 2 ...(pause)... actually it is shaded from -1 to 2.

Researcher: So if | want to calculate this area, what should | do?

Menzi: Find the integral fromx = —1tox = 2.
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Menzi’s verbal answers and his indication on the sketch made me conclude that he
had some knowledge of using an integral to find the area under a graph. The
tendency to confuse x-intercepts with limits of integration displayed by Menzi was the
characteristic of responses classified as Category Il. Such students performed
integration correctly, but used wrong limits of integration. They relied on visible cues
without linking graphical representation with embodied concept of the area. They
were placed at the action level of APOS, with the development towards a process

stage.

It must be noted that the x-intercept, —1,5, could also be used in determine the area
of the shaded region. In that instance, the student would need to first consider the

area of the bigger triangle [(—1.5,0),(2,0) and (2,7)] and from it subtract the
area of the smaller triangle, [(—1.5,0),(—1,0) and (—1,1)]. Mathematically, a

student would evaluate f_215(2x+3)dx—f__115(2x+3)dx. None of the

respondents in Category Il displayed this approach.

A different situation was experienced with Xolile who displayed a principle error in
her written response. There was a tendency in her presentation to focus on the y-
value when describing the shaded area. Such approach influenced her written

solution as shown in Figure 5.6 below.
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Figure 5.6: Xolile’s response to Item 2.2.

Xolile presented two methods for calculating the area, namely, using a
geometric figure and applying integration. Geometrically, Xolile deciphered
the shaded area as a triangle instead of a trapezium thus applying the formula

Area = %(base X height) instead of Area = %(sum of // sides) X height.

In her alternate solution she erroneously applied integration, showing weak
conceptualisation of the use thereof. When asked how she would calculate the

given area, Xolile gave the following verbal response:

Xolile: | want to work out the area between -1 and positive 2 on the x-axis and then
on the y-axis up to positive 7. Actually, | think...hmm. ..if | read the statement, we
are supposed to find the shaded area, and the shaded area is between -1 and 2 on

X. So basically I think I must not worry about y.

There seemed to be doubts in Xolile’s thinking whether the y-value of ‘7’ should be
included in the solution or left out. This doubt confirms her use of ‘7’ when finding the
area of a triangle as shown in Figure 5.6. She seemed to have conceptualised
neither the properties nor the representations of the integral-area concept. She had
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not even displayed an action conception of integration. |, therefore, resorted to

explaining her response using the TWM theory.

According to Tall (2007) and (2008), the embodiment of a concept, conceived
through perceptions and reflections on the properties and presentations of the
concept, is referred to as conceptual-embodiment. Xolile’s presentation indicated
reliance on external stimuli with a weak conception of both the graphical
representation and the use of integration. She was placed at the lower action level
of APOS. Ultimately this item was regarded as suitable in extracting perceptions on

simple graphical application of integration and it was therefore not changed.

5.3 Techniques of integration

5.3.1 Integration by parts

The technique of integration by part plays a major role in engineering with
applications in problems ranging from electric circuits, electromagnetic, digital signal
processing, heat transfer and many more. This technique requires intuition and

practice for a student to make a correct choice of a ‘U’ when applying the formula
fudv =uv — [ vdu to solve an integral. Item 3 was designed to explore both

students’ insight on the use of the formula and ability in the application of the
technique. It was important to know how students had conceptualised the two

functions’ behaviour when integrated.

ltem 3

X
A student asked to solve the integral ferdx decided to use integration by parts

X
“, 9

and chose ez for “u’.

3.1.  Was this choice of a “u” appropriate? Please support your answer.

3.2.  Provide a solution for the same integral

Figure 5.7: Item 3 on integration by parts.

This item was scored according to the following rubric:
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Score 1 2 3 4 5
Indicator Yes to 3.1 and | No to 3.1 but | First yes, then | No to 3.1, | No to 3.1,
stuck to this | failed to solve | no to 3.1 and | correct correct
choice the integral | solved the | justification, justification
due to | integral but failed to | and solved the
principle error | correctly solve the | integral
OR no to 3.1, integral correctly
wrong reason because of
constants.
Number of | 3 1 2 1 0
students

Table 5.3: Scoring rubric for Item 3

A student scoring a four or a five would be placed at an object level of APOS for the
understanding of exponential and x™ functions. | argue this on the fact that students
require the process level of integration and differentiation as they would need to
mentally decide on what will ‘cancel’ when the [udv is determined. Also, they

would need to carry out integration and differentiation procedures on the concerned

functions, at an action level.

From written responses, only one student fitted this level of understanding, although
the same student committed a computational error and hence could not provide a
correct solution. Two students, Simo and Ayanda, only changed their choice of ‘U’
after encountering difficulties with what they had initially decided. They were both

scored a three according to the devised rubric.

Simo then went on to provide a correct solution while Ayanda omitted a constant in
her final answer. His reason for a choice of a ‘U’ was based on procedural workings

when he wrote that:

X

Simo: No, choosing x (initially he had put e2) leads to simpler working.

According to Simo, it was the ease to work with the functions that determined the

X

choice of a ‘u’. He showed this by proceeding with his initial choice of ez for a ‘u’

and only changing his position when the working became complex. Simo seemed
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not to possess the intuition of how the given functions would behave when
integrated. His decision could only be derived after he had actually attempted to
solve the problem given. Simo, therefore, could have interiorised the integration
action but might not have developed his conceptualisation beyond the process level
of APOS.

Ayanda, on the other hand, displayed an inclination of basing her argument on the
nature of functions appearing in the integrand. She wrote that:

Ayanda: No (having written yes), so that function x = dv increase the power of x

which is not necessary.

Her written response is indicated in Figure 5.8 below:

Figure 5.8: Ayanda’s response to Iltem 3.2

Ayanda presented a correct approach to solving the given integral. She correctly

X
determined that v = 2ez, but erred when substituting such in the formula

fudv=uv— [vdu by omiting the coefficient two. Besides this omission, the

rest of her presentation was correct. Ayanda seemed to have developed conceptual
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understanding of the behaviour of functions x™ when integrated. ~ Ayanda could,

therefore, be placed at the process to object level of APOS.

Responses to Item 3 indicated that students did not consider behaviours of functions
when making choices for ‘U’ in integration by parts. During follow-up interviews,
when asked how they would decide on a choice of ‘U’, the following were some of the
answers given:

Faith (Scored 1): The one that will be a ‘u’ is because you cannot integrate further,

and the one that will be a ‘dv’ is the one you can't differentiate further.

X
Bonga (Scored 2): | think ez is not X’ to the power something. According to the

priorities for ‘u’, x’ to power something is chosen first as a ‘u’.

Faith’s response indicated gaps in her reasoning when making a choice for a ‘u’.
The assertion that there are functions that cannot be integrated for the second time

may be referring to functions whose integrals are not standard, as stated in Stroud
and Booth (2007) that f Inx dx is not in our basic list of standard integrals” (p.

835). Such functions can be integrated though, albeit by using techniques of
integration. Similarly, differentiability of functions had not been used as a criterion for
assigning a function as a ‘dv’ when integrating by parts. Faith had grasped the
procedure for integration by parts but displayed a lack of underlying reasoning

behind the technique.

X

The lack of underlying reason resulted in Faith endorsing ez as a ‘u’ and sticking to

such choice, misled by the fact that functions used in this item satisfied her stated
criterion. The lack of mental constructions became apparent in her solution when

she did not realise that her choices were leading to an infinitely increasing power of

‘x'. Her solution is included as Figure 5.9 below:
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Figure 5.9: Faith’s response to Iltem 3.2

Faith ultimately introduced an ‘I’ to substitute the original integral, which was a

relevant approach since this integral had re-occurred on the right-hand side of her

X
equations. However, an error in determining [ ez dx misled her. As can be seen

: : 1 X z . .
from her solution, Faith wrote 5 €2 instead of 2ez . Faith seemed to be confusing
integration with differentiation here, an error that is located within calculus context.

. L 1
She appeared not to be sure of what to do with the derivative of g which is g She

ended up multiplying by it instead of dividing as required when performing
integration. Had she integrated her ‘dv’ correctly, she would have ended with 0=0
and realised that she had used a dead-end reasoning. Faith could perform certain
procedures in integration but had not adequately internalised processes to enable
her to predict the behaviour of the given functions. Hers was mainly a procedural

response thus placing her at the action level of APOS.
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The other student, Bonga, seemed to be basing his reasoning on an algorithm where
a priority order for ‘u’ is stated as “(@) Inx (b) x™®  (c) e** “ (Stroud & Booth,

2007, p. 837). Bonga seemed therefore, to be relying solely on external cues when
the choice of ‘u’ is concerned. His approach would assist him in solving the problem
but it was mainly procedural. Bonga was placed at the action-process level of APOS
since his argument was based on properties, nonetheless external, of functions

present in an integral.

Ultimately, Item 3 was retained for the main study as it provided indicators to the
mental constructions the students formulated which were in line with the preliminary
decomposition provided, and will provide evidence to verify our research questions.
The only revision to the question was the splitting of 3.1, where justification for the

choice of a ‘u’ was made a stand-alone sub-question.3.2.
5.3.2 Inverse of polynomials

This item focused on techniques on integration when the integrand is a multiplicative
inverse of a polynomial. Students were given two integrals that required different

approaches to work out.

Item 4
A student is given two integrals to evaluate:
dx 10
(A) fx2—8x+25 and (B) f(x—l)(x2+9) dx
4.1 Work out the solution for integral (A) and (B)
4.2 Justify the choice of methods you picked to solve (A) and (B)

. Figure 5.10: Item 4 on inverse of polynomials

It was important for students to work out correct solutions based on the nature of an
integrand. Emphasis was, therefore, placed on the justification of choices of
approaches which students provided. The following rubric was used in scoring

responses:
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Score 1 2 3 4 5
Indicator No justification for | No justification | No justification | Justification for | Justified the
the technique | for the | for the | the correct | choice for a
chosen and a | technique, technique, technique technique and
wrong technique | correct correct chosen, with | solved integrals
used. technique technique computational correctly.
used but with | used solved | errors in
principle correctly integration
errors
Number of 1 4 1 1
students

Table 5.4: Scoring rubric for Item 4

The majority of students chose the correct techniques to solve these integrals but did
not provide justification for their choices of an approach. Instead, the tendency was
to state the approach adopted for each of the given integrals. Menzi, for example,

provided correct solutions to both integrals (A) and (B) but his response to 4.2 was:

Menzi: “(A) | integrated by completing the square; (B) | integrated by partial

fractions”

He

He was

Menzi did not state reasons for choosing a particular approach in each case.
knew the approaches to be used though and correctly applied them.
allocated a score of three and placed in an action-process level of APOS based on

the solutions he provided.

The only student who provided some correct justification for the choice of a
technique used and a correct solution was Simo. He based his justification on the

nature of the integrand. The following is his written response:
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Figure 5.11: Simo’s response to Iltem 4.2

Simo mentioned that the denominator in (B) was “in a form that suggests that it could
be separated into two fractions”. He, therefore, correctly used integration by partial
fractions to solve (B) and provided a correct solution. With regard to integral (A),
Simo mentioned the use of completing the square but did not provide compelling
reason for identifying it as an appropriate approach. He, nonetheless, provided a
correct solution to the integral. Simo was awarded a score of four for his attempt to
base his justification for the choice on the nature of the integrand. He seemed to
have encapsulated the importance of analysing the form of an integrand when
deciding on an approach to use.

Iltem 4 was deemed useful in extracting traits towards answering the research
guestions and was, therefore, not changed for the main study.

5.3.3 The schema for integration

Iltems that required overall schema for integration were numbered 5.1 to 5.6 and
consisted of various techniques of integration. Students needed to be able to
identify compositions of function and hence the reversal of the chain rule for
differentiation.
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Items 5.1t05.6

Determine the following integrals:

51 [Egy 54  [tan™!(3x) dx
x—1 2
5.2 fﬁdx 5.5 [In(x? —x + 2) dx
53 [-2 4 56 [
' v ' 0 Vi—xz ¥
Figure 5.12: Item 5 on schema for integration

In scoring the sub-items, a distinction was made based on the nature of integrands.

Sub-items 5.1, 5.3 and 5.6, for example, were an inverse of the chain rule and,

therefore, a separate rubric was developed for them. Items 5.4 and 5.5 required the

use of integration by parts while item 5.2 involved some algebraic simplification

before the actual integration. Table 5.5 below indicates the scoring rubric used for

the first cluster of items.

Score 1 2 3 4 5
Indicator No attempt or a | Identified Interpreted the | Interpreted the | Provided a
complete the product | composition composition completely
principle error. but could | well, integrated | well, errors in | correct solution.
not interpret | the inside | integrating the

the

function in the

outside function

composition. | composition
Number of |1 1 2 2 1
students(5.1)
Number of 2 1 1 3
students(5.3)
Number of 2 1 2 1 1

students (5.6)

Table 5.5: Scoring rubric for Items 5.1, 5.3 and 5.6

In order to shorten the chapter, and since the purpose of this phase was to validate

the research instrument, | give detailed analysis of two responses to sub-item 5.1
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only. Results on the rest of the items are discussed at length in the second phase of

the study.

Only one student solved item 5.1 correctly. The majority identified the product and

the composition of functions within the integrand correctly but could not interpret it.

. . . . 1
Menzi, for example, realised that the integrand consisted of the product of N and

. _ d .1 .
sinvx. He also realised that o (\/E) results in N (multiplied by some constant).

Proceeding, he failed to interpret the composition sinvx , instead he integrated the

(sinvx)*
—

first power of sinvx to obtain Menzi displayed some mental

constructions as he correctly identified functions multiplied within an integrand. He
seemed to be lacking in the conceptual understanding of interpreting and
differentiating composite functions. He knew procedures for differentiating and

integrating power functions and was subsequently scored a two for this item.

Simo, on the other hand, provided an example of an item that was scored four for

Item 5.1. He identified the product and the composition correctly. He started by

-1 1
differentiating x 2, but then changed and worked out the derivative of x2 as can be

seen in Figure 5.11 below. During the follow-up interview, Simo indicated that it was

-1
an error for him to work out the derivative of pointing at the derivative of x 2 when

he said:

Researcher: | see here you wrote out two derivatives, why?

-1
Simo:  Oh..., here Mam...this is out Mam..(pointing at the derivative of x2). |

made a mistake, kodwa ngabona ukuthi irong le function, ama exponents
awafani(and | realised that this function is wrong, the exponents are not the
same). Bekufanele ngi differentiate le (I was supposed to differentiate this
-1
one). | should have cancelled this (still pointing at the derivative of x2).
After realising his mistake, Simo had then correctly differentiated the inside function

of the composition. He further integrated the outside function correctly, by noting

that [ sinx dx = —cos x + C. Simo’s error emanated when he failed to “balance
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N |-

constants” whereby he wrote a ‘ = * as a coefficient for the integral instead of a two.

!

He seemed to have missed out the fact that he had introduced the and,

N |-

therefore, needed to nullify it by multiplying by a 2.

Simo seemed to have engaged with this item at a process-object level. He could
correctly identify which function to integrate and which to differentiate in the type of
an integral in sub-item 5.1. Simo seemed to have encapsulated the chain rule, a
differentiation technique underlying this type of an integral. He realised that if an
integrand is a product of two functions, the inside function is differentiated while the
outside integrated. He worked out the respective derivative and integral correctly.
Simo seemed to be correctly reflecting on the procedure that gave rise to the
integrand and was able to deconstruct such transformations. He did not display all
mental constructions expected though, as he failed to address the constant that
arose when he differentiated the inside function. His mental constructions placed him

at the process-level of APOS.

Although most of the students in the pilot group could not provide correct solutions to
item in this section of the activity sheet, the items were kept for the main study
without change. These items required students to have developed a schema for the

techniques of integral.
5.4. Conclusion

In this chapter | presented results on the first round of survey conducted to validate
the research instrument for the study. | presented findings on the evoked conceptual
meaning through symbols and through graphic representations of integrals as
induced by Items 1 and 2 of the activity sheet. | further presented analysis of how
students conceptualised integration when applying techniques like integration by
parts, integration by partial fractions and integration using standard integrals. |
ended with an analysis of students’ schema of integration and the ability to apply
techniques of integration.

In most cases, written responses and interviews revealed that students operated at
procedural level and had difficulty in justifying the approaches they had used. When
persuaded to provide explanation, students used terms that were inaccurate, for
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example, partial integration instead of integration by parts. This first phase of the
study also revealed a need to delineate items that could be a distraction for the
concept under investigation, such as the sketching of a semi-circle graph. Most
items had responses which acknowledge the mental constructions desired in the
genetic decomposition for this exploration, therefore, there were no major changes

implied for the research instrument.

In the next chapter, | provide in-depth analysis of students’ responses to the activity
sheet, together with interviews of students who were selected on the basis of their

written responses.
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CHAPTER 6

FINDINGS AND ANALYSIS
6.1 Introduction

This chapter presents findings from data collected through activity sheets and follow-
up interviews in the main study. Arnon et al. (2014) list interviews, written questions,
classroom observations and textbook analysis as some of the data collection
strategies to employ when conducting APOS-based research. They maintain that
candidates to be interviewed may be selected based on “their responses to a written
guestionnaire or a previously administered exam, instructor feedback, or a
combination of these criteria” (p. 95). In this study, candidates were selected based
on their responses to the activity sheet resulting in those responses forming the

basis for interview questions.

Activity sheets contained items that were structured to evoke concept images and
concept definitions for an integral that students possessed. During interviews, |
asked students to expound on their written responses in order to indicate even better
their level of understanding. At all times the objective was to test the validity of the
proposed genetic decomposition for integration and to identify mental structures
exhibited by students. The report, therefore, will be presented thematically, providing
supporting data across all sources. Excerpts from both written responses and

interview transcripts will be provided to support interpretations made.

The next section after this introduction presents the evoked concept definition of an
integral that students displayed. | discuss the evoked concept definition, firstly,
through the symbols of integration and secondly, through graphical representations
or visualisation. | then discuss the evoked concept images through symbolic
representation. | firstly present concept images in relation to the nature of an
integrand and secondly, in relation to the techniques of integration. Lastly, | provide

the conclusion to this chapter.
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6.2 Evoked concept definition of an integral

According to Rasslan and Tall (2002) all mathematical concepts, besides the
primitive ones, have definitions. Nonetheless, students seldom refer to definitions
when working with such concepts. Instead, responses are based on formulated
mental pictures, properties and processes associated with the concepts. Students,
who cannot define integrals meaningfully, have exhibited difficulties in interpreting
problems that require the application of integration in wider contexts (Habineza,
2010; Orton, 1983b; Rasslan & Tall, 2002). Also for procedures to be learnt with
meaning, they should be linked to concept image and definition of the concept under
study (Jojo, 2011).

6.2.1 Evoked concept definition through the symbol of integral

The first two items of the questionnaire, Item 1 and Item 2, were designed to evoke
students’ concept definition of an integral. According to Pettersson and Scheja
(2008), “the notion of integral can be seen as harbouring two concepts: the concept
of definite integral (Haripersad et.al., 2008) and the concept of indefinite integral
(anti-derivative)” (p. 772). While this is correct, conception of an integral as a
continuous summation is fundamental for any mathematics student (Orton, 1983b).
The following section reports on the possible concept definitions for definite and

indefinite integrals that were displayed by the participants.

The task for Item 1 was as follows:

Item 1.
b
In your understanding, what is the difference between [ f(x)dx and fa f(x)dx?

1.1 [ f(x)dx means.....
1.2 f:f(x)dx means.....

Students’ responses to Item 1, which was aimed at evoking students’ conception of
an integral through symbolic notion, have been classified according to an approach

used by Rasslan and Tall (2002) as follows:
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6.2.1.1 Item 1.1: The meaning of [ f(x)dx

Students’ answers Frequency
Category I: [ f(x)dx means an integral of f(x) with respectto x . 4
Category Il 16

I, : [ f(x)dx means integrate the function f (x) with respectto x.

II,: A specific function in place of f(x) is provided.

Example: Let f(x) =y, = [y.dx; = y; +C 1

Category lll: Completely incorrect answer, (1/22) or No response

Example: I think here you just differentiate the f(x). | mean you put f(x) and 1

differentiate f (x).”

Table 6.1: Categorisation of students’ answers to Item 1(A)

All participants responded to Item 1.1. Category | contained all responses that

presented [ f(x)dx as an outcome or an entity. In this category [ f(x)dx was
viewed as a resulting solution from the process of integrating f(x). A typical
response in this category was, for example, “[ f(x)dx is the indefinite integral of
f(x)” or “the integral of f(x) with respect to x” Responses classified into
Category Il presented f f(x)dx as a command or an instruction to carry out an
operation. The majority of students responded by stating that “ f f(x)dx means

integrate the function f(x) with respect to x”. One participant, who was also
classified into to Category II, chose to provide a symbolical example as a means of

defining [ f(x)dx by puting  f(x) =y and then finding the anti-derivative.

In both these categories, the concept definition of an integral that was evoked was

that of an anti-derivative. One participant, for example, explicitly demonstrated the

notion of an anti-derivative when he wrote: “ f f (x)dx means the integral of function

f (x) with respect to x. In other words the function f(x) was differentiated now you
have to bring back before it was differentiated”.  This is in line with what other
researchers have observed (Habineza, 2010; Orton, 1983b; Rasslan & Tall, 2002).
In analysing the understanding and misconceptions exhibited when students learn
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integration, Orton (1983b) concluded that students struggle with conceptualising
integration as a limit of a sum or area and as a consequence, some teachers resort
to teaching integration as just an anti-derivative without any underlying reasons.
Similarly, when interviewing student teachers on their conceptualisation of a definite
and indefinite integrals, Habineza (2010) observed that the understanding displayed
by his participants did not include underlying concepts of integrals but demonstrated

orientation towards the anti-derivative.

This assertion was further confirmed during the follow-up interviews that were held
with some of the participants. When student Sabelo, whose response fell into
category Il (see Figure 6.1), was asked to elaborate on his written response, the

following dialogue ensued:

L1: NJN: What do you understand by integration?

L2: Sabelo: So uma usebenzisa igama elithi integration, | don’t think kwi basic
English like uma nikhuluma. Kughamuka imaths nje kahle kahle.
[Translation: Whenyou use the word integration | don’t think of basic
English, like when you speak. | only think of Mathematics]

L3: NJN: What do you think of in mathematics?

L4: Sabelo: Like ngiya understander ukuthi ama integration kahle kahle ahlukile,
so...[Translation: Like, | understand that techniques of integration basically
are different...]

L5:  So kahle kahle kughamuka isign ye integration, then i- function then i-

L6: instruction ukuthi  integrater ngayiphi like inhlobo ye integration, like
integration by parts.[Translation: So basically, | think of the sign of
integration, then the function, then the instruction regarding the technique to
apply, like integration by parts].

L7: What | know is that when you integrate you are doing the inverse of

differentiation.

Figure 6.1: Sabelo’s written response to Item 1(A)
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From the interview, | observed that Sabelo referred to “the sign of integration” (L5).
Here he was referring to the symbol f ', He further referred to an “instruction”

regarding the technique of integration to be used (L6). Sabelo seemed to make
sense of his mathematics via external cues. His conception of integration seemed to

be confined to performing precise procedures or techniques of integration. This
means that he had an action conception of the mathematical entity ff(x)dx, as the

symbol served as an external stimulus that triggered a reaction in Sabelo’s
conception.  As to the meaning of integration, in L 7 Sabelo said “What | know is
that when you integrate you are doing the inverse of differentiation”. This statement
tells that Sabelo regarded integration as a command to work out an anti-derivative
for the given integrand.

The following extract from an interview with student Sbonelo, whose response fell

into category | (see Figure 6.2), also emphasised the conception of an integral as an

anti-derivative:

L8: NJN: What do you understand by integration?

L9: Sbonelo: If you differentiate it’s like you are going forward and if you integrate
it’s like.

L10: you are reversing what you have differentiated. The integral is a vice versa of

differentiation.

Extract 6.1: Interview with Sbonelo

Shonelo’s notion of integration entails doing something and that is reversing
differentiation (L10). His written response to the meaning of ff(x)dx had been

as follows:

1.1 [ f(x)dx means... The /ufergva | 0 £Cx) Wit yespect o
Figure 6.2: Sbonelo’s response to item 1(B)

What was noticed in Figure 6.2 was that | had classified the written response as an
outcome but the interview showed that the student referred to the symbol as

denoting a procedure. This, therefore, implies that the majority of students did infer
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the entity f f(x)dx as an instruction to carry out an operation. The symbol

‘[ "served as an external cue for the operation to be carried out, which is to

determine the anti-derivative for the given integrand.

b
6.2.1.2 Item 1.2: the meaning of [ " f(x)dx

One student did not respond to this item and one gave a completely incorrect

answer. The remaining 20 students referred to the procedure of integration of f(x)

and their responses can be classified as follows:

Students’ answers Frequency
Category I: Integral of fix) from = to &
I.: Some reference to the Fundamental Theorem of calculus (FTC).
7
Example 1:
1.2 [ f(x)dx means... 1 nke prake b fundion [0 ith resped
l“" L q b}l f
‘ & C \ Ch A ’,\I]'J
> And Minug U,( H"&e’l
Figure 6.3: Example of response to Item 1.2
Example 2. Solution by a student who provided a specific function to show the
FTC read as follows.
T U i - [@3] _ pe?
{Letf(x:] }'Iﬂj'd'r_ [:]E+C _[:] [:]+C}
I; : No reference to the Fundamental Theorem of calculus 12
Example: “the integral of f{x)} and is bounded from & to &”
Category Il: Area bounded by fix} and the x-axis from @ to & 1
Category lll: Incorrect answer/no response 2

Table 6.2: Categorisation of students’ answers to Iltem 1(B)
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From the distribution above, only one student referred the definite integral to the area

under the graph. The majority cited “the integral” or “to integrate” in their definition
(Category 1). Responses classified as belonging category I, were those that made
reference to the FTC in some way as shown in Fig 6.3, while responses in
categories [, cited integration with no reference to the FTC. The distinction between
categories [, and [, was actually blurred since when interviewed, even students who

had not referred to the FTC showed thinking along that line.

In Example 2 of Category I;, of Table 6.2, the student decided to use an example to
b
explain the meaning of fa f(x)dx. She chose f(x)=y. The solution she

presented though depicted the use of 3 in a general form, f(x) = vy, as a specific
function of y. She presented an integral of a linear function of 3 oblivious of the

meaning of a dx in the symbol. This implied that she had a poor concept image of

function in terms of the association between the variables. She also inserted a

constant of integration while working with a definite integral. She, therefore, had not

b
conceptualised fa f(x)dx as an object yet.

When asked to expatiate on his response, Muzi, who had not explicitly mentioned

the FTC in his written response but had written: “Integrate that is being bounded by

c and b” stated the following:

b
L11: Researcher: What do limits mean in fa f(x]dx ?

L12: Muazi: The first place, just ignore the limits and putting them outside the
brackets, then do your calculations. Then in the last step use the limits by
opening the brackets

L13: and substitute the limit b to the first bracket then minus then substitute the
limit a.

L14: Researcher: What is that value that you get giving you?

L15: Muzi: It gives you... if | am not mistaken, it’'s a gradient.

Extract 6.2: Interview with Muzi



114

This extract showed that the notion of the FTC was evoked in Muzi. Embedded in his
outline in L13: “Substitute the limit b to the first bracket then minus then substitute
the limit @” is the procedure students follow when they apply the FTC. Muzi made no
link between the integral and the area bound by the function. This was further
confirmed by his assertion in L15 that the final value obtained would be giving a
gradient. The hesitation and the use of the words, “if | am not mistaken”, might be
interpreted as an indication of the lack of underlying conceptual understanding of
evaluating a definite integral. Muzi relied on an algorithm to evaluate the integral
and can therefore be classified as still operating at an action level.

Briefly, students’ conception of an integral was mainly procedural and the invoked
concept definition was that of an integral as an anti-derivative. The notion of an area
in a case of a definite integral, was mentioned by only one student and even then, it

was presented as an alternate conception to that of a “bounded integral”.

6.2.2 Evoked concept definition through visualisation

6.2.2.1 Item2.1

Item 2.1 provided situations that required students to link visual representation of
graphs with the meaning of integration. In Item 2.1.1 they were asked to draw a
graph of v = V25— x2 a semicircle with radius of five units and centred at the
origin, and thereafter, in Item 2.1.2 they were asked to relate [> V25— x2 dx to the
graph they would have drawn. Students were not asked to evaluate the definite

integral.

One student did not attempt this item. Fourteen students drew an incorrect graph
instead of a semicircle and only seven drew the required graph. The following table

summarises their responses to Item 2.1:
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Students’ answers Frequency

Category |: Reference to the area

r_:. Drew a correct graph 2

I,. Drew an incorrect graph

Category Il: No reference to the area

11,: . Drew a correct graph 5

11
11,. Drew an incorrect graph

Category lll: No response 1

Table 6.3: Categorisation of students’ answers to Iltem 2.1

It was concerning to realise that the majority of students at this level could not readily

draw the graph of a semicircle. From the distribution above, five students made

reference of the definite integral f;’ V25— x2 dx to the notion of an area. | will then

focus my analysis on their interpretation of f;’ V25— x2 dx in relation to the graph

drawn. The first respondent that | analysed is Max who gave the following as a

response to Iltem 2.1:

A relationship is that f;’ V25— x2 dx wants integral of an area froma to b

but vy =+25—x? is a semicircle. So the second one wants half of the

semicircle.

Max’s response belonged to category I, and he displayed complete conception of

the definite integral as an area, as well as the significance and meaning of the limits

of integration.

Mayx, firstly, referred to the definite integral denoted by the symbol f; dx. He further

referred to the procedure of integration which means that he had interiorised the
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action, from the external stimulus f; dx, to a process of being able to carry out a

procedure mentally. He had further encapsulated this process as an object when he
referred to the definite integral as an area. Max displayed a completely
mathematically correct response and we observed that his knowledge of functions
played a pivotal role in enhancing this correctness. | observed that having at least
an object conception of functions is a prerequisite for success when working with
techniques of integration.

The following, on the other hand, is an excerpt from an interview with Sbonelo,

whose response fell into category lrb :

L16: NJN: Then what is the relationship between the drawn graph and the given
integral?
L17: Sbonelo: I did not know this thing | wrote here. (Sbonelo had written this “in
this formula we take the area of a positive value of x”).

L18: NJN: What does this thing gives you? (meaning the definite integral
5 — 2
J, V25 —x? dx).
L19: Sbonelo: We can draw the graph of the semicircle and then in the equation
we substitute with the values of x they gave us.

L20: NJN: In the graph, what does this integral define?
L21: Sbonelo: [ don’t understand.

Sbonelo had drawn an incorrect graph but the explanation he had written, as
reflected in L17, meant that his response was classified as belonging to Category Iy

His verbal answers though, displayed a different conception. Firstly, he stated that
he did not know the thing he had written (L17). Secondly, in L19 he made reference
to substitution without indicating the process of integration first. It therefore could not
be assumed that he was referring to substituting the given values of x into an
integrated expression, a notion which students commonly use in relation to the FTC.
Lastly, he stated explicitly that he did not understand what a definite integral defined

in relation a graph drawn.
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Sbonelo had not interiorised both the concept of a function, in this case a semicircle
and the process of integration. He was aware of the action of substituting limits but
he appeared to be overlooking the process of first finding the integral. Sbonelo was
operating at an action conception level since his reasoning was based mainly on an

algorithm (L19) with an intention to evaluate the integral.

This inclination to evaluate the definite integral was also displayed by Mvelase who

responded to this item as follows:

6.4: Student Mvelase’s response to item 2.1.2

Mvelase’s response showed that his application of the FTC was correct. He
displayed a process conceptualisation of the FTC. However, he did not have a
process conception of the algebraic entities. In simplifying V25— x2 ne distributed
the square root over subtraction. Also noticeable is the fact that Mvelase did not
realise that 25 — x? is a different of two squares whose factors are (5 — x) and
(5 + x), hence (5 — x) does not repeat. This awareness could have enabled him

to realise that distributing a square root over subtraction was not a correct
mathematical procedure. This error was disastrous given that this was a post school
engineering mathematics student. The explanation he gave based the required
relationship on signs of numbers. Although Mvelase had interiorised the FTC, he did
not possess a similar prowess with regard to the practical meaning of integration.
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6.2.2.2 Item 2.2

Item 2.2 sought to further elicit students’ ability in the use of integration to find the
area. This item included both the concept definition of an integral as an oriented
area and the basic techniques for integration. The table below shows the

categorisation of students’ responses to this question:

Students’ answers Frequency

Category I: Evaluated a define integral for the interval [— 1; 2]

Category [ o Correct solution with notion of area reflected 8
Category fb: Correct integration but no notion of area 3
Category fc: Errors in integration but notion of area 2
Category fd: Errors in integration and no notion of area 1

Category ll: Evaluated a definite integral for the interval [— 1.5; 2]

Category {1 o - Correct integration with notion of area 2
Category ”b: Errors in integration and no notion of area 3
Category lll: Incorrect approach/Left blank 3

Table 6.4: Categorisation of students’ answer to Item 2.2

Of the 22 participants, 19 responded by evaluating the definite integral. The
variations within these 19 students’ responses were in the limits of integration used
and explicit reference to the notion of area. | will start by analysing those responses
that fell into Category Il. As can be seen from the distribution in the table, five

students put —1.5 as a lower limit when evaluating the integral. This value was the
x-intercept for the graph and not the lower bound of the shaded region. This means
that this group of students lacked a coherent conception of the area of the shaded

region. The external stimulus that they responded to was the intercepts, with no link

to limits of integration. David was one of the students from Category I[,. He had
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displayed the notion of an area and integrated correctly, but had used wrong limits of
integration. The following is an extract from an interview with him:

L22: NJN: In item 2.2, what are the boundaries of the shaded area?

L23: David: The boundaries are -1.5 and 2.

L24: NJN: Where does the shading start?

L25: David: Sorry, it’s -1 here.

Extract 6.3: Interview with David

The question asked by the researcher in L22 was meant to prompt David to realise
the mistake he had made in the choice of limits of integration. David had not
developed a complete schema of an integral as an area. His response in L23
indicated that, although he knew how to identify the limits of integration from a graph,
this knowledge had not been interiorised. It was ultimately the probing in L24 that

evoked this appropriate conception in David.

Next, | present students who were regarded as possessing a notion of an integral as
an area. These were students who explicitly indicated that they were calculating the

area and/or presented the final answer in square units. For example, a student in
Category [, integrated the given linear function correctly and used the correct limits

for the integral. Furthermore, their responses correctly equated the area to the
definite integral and the final answer was given with appropriate units. Figure 6.5

below shows two examples of such responses.
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Figure 6.5: Sample correct response to item 2.2
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The two solutions are similar but in the second case the student used the distributive
property of integration over addition whereas, in the first case, integration was done
over the sum. The two examples in Figure 6.5 indicate students who, according to
APQOS, possessed a complete schema of an integral as an area. Firstly, they knew
that they needed to integrate in order to find the area. Secondly, they correctly
identified the limits of integration and applied the FTC correctly. Finally, the

significance of units was encapsulated in their final answer.

The following set of data is from students who were classified as having no notion of
an integral as an area. They just calculated a definite integral, with no reference to
area either as a concept or in units. The following is an example of a solution, by

Sabelo, which fell within this category:

Figure 6.6: Sample insufficient Sabelo’s response to item 2.2

This written response depicted only the evaluation of a definite integral without any
reference to the area, either as a concept or in units of the answer. The two other
points notable from this presentation are, firstly, the insertion of a constant of
integration, C, while dealing with a definite integral. The insertion of a constant of
integration indicated a lack of encapsulation of the FTC in integration. Secondly,
when finally evaluating the integral (lines 4 an 5 of Figure 6.6), Sabelo did not
conventionally follow the notation as implied in the first three lines of the solution.
According to the FTC, the upper limit is substituted first into the anti-derivative, minus

substitution by the lower limit.

In short, Sabelo responded to a question of finding the area by evaluating a definite
integral but omitted essential notational elements to reflect that he was calculating
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the area. He seemed to know that to find an area between a curve and the x-axis
one needed to evaluate the definite integral between the given limits. Sabelo’s
response indicated gaps in his schema of an area as a physical quantity with units.
In addition, his text displayed that he did not possess full conceptualisation of the
procedure of integration as it relates to the FTC. He seemed not to attach meaning
to the order of symbols used in Line 3 of his solution (Figure 6.6). As such his

written response seemed not to fully represent his possessed knowledge.

This inconsistence between the written text and possessed knowledge became
evident in the follow-up interview with Sabelo. He confirmed his knowledge of the
fact that evaluation of the definite integral in this item was actually calculating the

area as reflected in Line 27 and Line 29 below.

L26: NJN: Ok. Then | gave you this one as Item 2.2. The question was: Use
integration to find the shaded area. This is what you did. Is it true that when
you do this you are finding the area?

L27: Sabelo: Ya, itis true.

L28: NJN: So if | go back to the previous question, what is then the relationship
between the given integral and the graph? (referring to Item 2.1 which was the

graph of a semicircle with radius 5 and students and the integral being
fﬂa V25 — x2 dx)

L29: Sabelo: We are finding the area that is being covered by the graph.

L30: NJN: Where?

L31: Sabelo: Above the x-axis

L32: NJN: What guides us on the location of the area? What tells us where the
area is?

L33: Sabelo: The minimum value ka x, which is 5 and 0, the minimum and
maximum.

L34: NJIN: Where is 5 and 0 on the graph itself?

L35: Sabelo: Here (Pointing at 0 and 5 on the y-axis)

L36: NJN: The 5 and 0, are they the X or Y values?

L37: Sabelo: They are the X-values

L38: NJN: So, which area will we be looking for then?

L39: Sabelo: This part, (pointing at the portion in the first quadrant).
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Sabelo seemed to know that a definite integral gives the area under the graph (Line
29) but still showed gaps in his conceptualisation of the limits of integration as shown
in Line 33 and Line 35. According to APOS theory, Sabelo had interiorised the
action of integrating into a process and could relate the definite integral to an area.
He displayed difficulties with interpreting graphical representations in both items thus
putting him below the action level of some essential prerequisites for evaluating a

definite integral as an area.

| further distinguished between incorrect answers and incorrect approaches. An
incorrect answer was when students displayed accurate conceptualisation but had
errors in evaluating an integral. This could be due to errors in integration, omitting
brackets when applying the FTC or use of incorrect limits for integration. Such a
student was said to possess a process conception of a definite integral but still failing
to apply action on the process. Sabelo, therefore, was placed at a process

conceptualisation for integration.

On the other hand, an incorrect approach was where students evaluated a
completely different aspect for the given function. Such students were constrained
by the absence of the formula for the area. Consequently, they retrieved whatever
formula they could recall and evaluated it as an area. Such a practice indicated
extreme reliance on external cues but with very limited conceptualisation
demonstrated. According to Dubinsky (1991b), physical or mental transformations of
physical or mental objects are considered to be at action stage of APOS theory when
they are reactions to stimuli which the subject perceives as external. The following is
an example of such a response which wase classified into Category Ill of Table 6.4

above:
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Figure 6.7: Mpho’s work: sample of an incorrect response to item 2.2

In the example reflected in Figure 6.7, Mpho evaluated either the mean value of the
squares of f(x). Notably integration procedure was carried out correctly, including
the correct use of the FTC. A similar completely inappropriate conception was

displayed by Zuzi who attempted to calculate the mean value of f(x) by evaluating

1
2-(-1)

f_zl(Zx + 3)dx. These aspects, the mean value of the squares and the

mean value of a function, are essential for engineering students and hence they are
dealt with at this level of study. The use of the two aspects in this instance shows

confusion, both with aspects themselves and with applications of integration.

In summary, students’ responses showed a conception that is strongly biased

towards algorithmic approach. In item 2.1, when asked the relationship between

IDE\J"ZS—J::Z dx and the graph ¥ = +25— x?, 16 students gave answers that
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reflected the inclination towards calculating an integral. Responses to Iltem 2.2
showed discrepancy between what students wrote and what they were actually
thinking. This realisation makes follow-up interviews even more significant. What
also emerged during in interrogating this item is that some students were able to

revert to Item 2.1 and correctly define f;v 25 — x? dx as an area bounded by the

graph of [v/25— x2 dx and the x-axis.

6.3 Evoked concept images through symbolic representation

Items 3 and 4 were designed to explore students’ concept images evoked when
actually doing integration. Consequently, there was a strong emphasis on
techniques of integration for these items. These items were not examining how
students define an integral but what informs the choices students make regarding

integration techniques to apply at any given time.
6.3.1 The nature of the integrand

In Item 3, students were asked to endorse the use of the technique of integration by
parts to solve a given integral, following which they were asked to solve the integral.
This is one of the most useful techniques of integration in integral calculus. It's
important applications include: integrating differentials which include products,
logarithms and inverse trigonometric functions (Fromhold, 2005). In applying the

formula for integration by parts, which is fu dv = uv — f v du, the choice for a ‘U’

is informed by understanding functions appearing in the integrand. In particular, ‘dv’

must be integrable. The task for Item 3 was, therefore, as follows:

Item 3
X
A student asked to solve the integral | xe=dx decided to use integration by parts and

x
chose ¢z fora ‘U’

3.1. Was this choice of a ‘v’ appropriate?
3.2  Please support your answer to 3.1.
3.3.  Now provide a solution for the same integral:

Figure 6.8: Item 3 of the Activity sheet
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This item required the encapsulation of integrals for both elements in the integrand,

X ax
namely, ac and €z in order to split the integrand correctly. Although both x and ez

are integrable, putting dv = x would mean subsequently determining v = fx dx

resulting in a higher power of xx. Students’ responses to Item 3 were classified as

follows:

Students’ answers Frequency

Category I: Correct solution provided

Category fa: Reference to the nature of functions when choosing a “u” 1

Category fb: Explanation for the choice of a “u” is purely algorithmic 3

Category Il: Incorrect solution provided/Blank

Category H'a: Correct choice for “u” but errors in integration 12
Category I}, : Incorrect choice of “u” 3
Category I : Blank 3

Table 6.5: Categorisation of students’ answers to Iltem 2.2

Sixteen of the respondents made correct choice for a ‘U’ but fifteen gave algorithmic
reasoning for such a choice. Their reasoning was mainly procedural and depended
on the types of functions as a stimulus. The following are examples of the reasons

provided:

e Because if you do integration by parts you have 3 priorities to choose

from, the firstis Inx , 2" x™ and 3“e* . Therefore you see that

this student does not follow this steps that why his/her answer will be

wrong.

e Because our priority is starting by In , x , & ...therefore x comes first

then €*. This means that x must be equated to ‘u’.
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The following is an extract from an interview with Bongani, whose written response

fell into Category 11, :

L40: NJN: Why is the choice for ‘U’ not correct in this item?

L41: Bongani: Because when you want to first prioritise by starting with In x, x and
exponential function. So here the choice is wrong, so we must choose x as
our ‘u’.

L42: NJN: Why are those priorities for u the way they are?

L43: Bongani: We do not know why In is the first choice, etc. We just know the
priorities.

Extract 6.4: Interview with Bongani

The admission by Bongani in Line 43 that “we do not know why In is the first choice”,
indicated a purely algorithmic approach without underlying reasons for methods
applied. In such a case learning is highly mechanical and it focuses on the procedure
only. At this stage, Bongani displayed action conception of integrating by parts since
his decision was solely based on functions appearing in the integrand, with no
mathematical basis to support the choice. Among those who solved the integral
correctly, only one gave a comprehensive reflection on the behaviour of the

concerned functions when they are either integrated or differentiated (Figure 6.9).

................................................................................................................

.................................................................................................

Figure 6.9: Tozi’s response: Sample response to item 3.1

In brief, the majority of students relied on algorithms when doing integration by parts.
They made no reference to the behaviour of functions in the integrand when either
differentiated or integrated. They knew the order of priorities for a ‘u’ but were
oblivious of a reason for such ordering. This level of comprehension placed them at
the action stage of APOS theory.

This concept of how students reflected on an integrand when doing integration was

further explored in Item 4. Students were given two integrals labelled (A) and (B)
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and were required to state the technique to be used in solving the integrals, with
justifications. Integral (A) was aimed at exploring integration by first completing the
square while integral (B) required the use of partial fractions. They were then asked
to provide solutions to the integrals. The following table presents categories that

emerged from students’ responses:

Category Definition Number Number
Integral A Integral B

1 Appropriate justification 8 1

la Correct technigue and solution to the integral 5 0

1b Correct technique but computational errors 3 1

2 Inappropriate or no justification 12 18

2a Correct technique and solution to the integral 8 4

2b Correct technique but computational errors 4 14

3 Incorrect technique/Blank 2 3

Table 6.6: Categorisation of students’ answer to Item 2.2

Responses allocated to category 1 referred to the nature of the function as a guide
for choosing a technique to use, while in category 2 there was either no reference to
the nature of the integrand or no justification given. An example in the latter
category was a student, in relation to integral (A), who stated that “use completing
the square in integral A because we will be able to find our A and Z to use the
derived formulae in our final answer”. This student referred to the derived formulae
or standard integrals but did not indicate reasons for making that choice. Ultimately,
her solution to the item was classified into 2b because she omitted the constant of

integration in the final answer.

The following figure (Figure 6.10) is an example of a response where Sbonelo was
justifying his choices for the strategies to use in solving the integrals:
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Figure 6.10 : Sbonelo’s justification of strategies

Sbonelo stated that the denominator in integral (A) had no factors. In the follow-up
interview with him he incorporated the aspect of the denominator being an
irreducible quadratic expression. Sbonelo’s solution to integral (A) was eventually
classified into 1b since he omitted the constant of integration in his final answer
(Figure 6.11 below).



129

Figure 6.11 : Sbonelo’s reponse to Iltem 4.5

This response showed that the choice of the technique that Sbonelo made was
informed by the nature of the fraction in the integrand. Sbonelo displayed a coherent
collection of processes required to solve this type of a problem. His schema for the
completion of a square enabled him to understand and ultimately integrate the
derivative of an inverse trigonometric function. The omission of the constant of
integration in the answer indicated shortcomings in his conception of an indefinite
integral. During the follow-up interview, Sbonelo reiterated his reasoning for deciding
on completing the square. He stated that the given denominator was not
factorisable. When probed further, he confirmed that the technique of completing the
square applies in irreducible quadratic expressions. He also realised the error made
by omitting the constant of integration. According to Pettersson and Scheja (2008)
and Mabhir (2009), students’ understanding of integrals is sometimes fragmented and
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focuses mainly on procedures to solve tasks. Sabelo was placed at an entry level of

the process stage in the proposed genetic decomposition.

On the contrary, the 12 students in Category 2 could not provide appropriate
justification for the techniqgue employed in solving integral (A). They all seemed to
know that they needed to first complete a square but reasons for that approach
included statements like “because the numerator is 1”, “because our denominator is
guadratic and our numerator is constant (number without any variable)”, “because
we want to use the standard integrals”. Nonetheless, this group succeeded to

identify and apply the correct procedure for this item. Thembi, for example, wrote “it

1

be give us tan™" and its numerator is a constant” as a justification for completing

the square. Her solution to the item was similar to Sbonelo’s though, also omitting

the constant of integration at the final answer.

A similar trend was displayed towards integral (B) that required the use partial
fractions in order to solve. Nineteen out of the 22 students identified the need to use
partial fraction, but could not state why they could use such a technique. Muzi,
whose response was classified into 1b, stated that he would solve integral (B) by
using partial fractions because “it have two factors ...the denominator is a product”.
His explanation indicated some reflection on the nature of the integrand. The
realisation that the denominator was a product was fundamental in adopting an
appropriate technique. Other students gave responses such as: “because we want
to have a derivative of a function”, “find the value of A and B to this integral”, “I would
say completing a square but it is a cubic function so | think using partial fractions,
this is confusing”. These responses did not reflect mental engagement with the
structure of the functions involved. They were deemed inappropriate and thus
classified into Category 2. Only two out of the 15 computational errors were on
finding the partial fractions. The ultimate solution that Muzi presented had

computational errors and is shown in Figure 6.12 below.
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Figure 6.12: Muzi’s attempt of Integral(B)

Muzi displayed a complete schema for partial fractions as he correctly resolved

. . . . . 1 —-x—
into its partial fractions which are — and *~1  He seemed not to be

10
(x—1)(x2+9) x—1 xT+9
observing the conventional rules of mathematical writing in his response. For
example, he constantly left out the ‘dx’ in his symbol of integration. Such an

oversight might indicate a lack of fundamental perception of the symbol fdx asitis

used in integral calculus. He also did not include square brackets in the right-hand

1 (—x—1)
(x—1) (x2+9)

side of line 3, that is, f [ dx. Nonetheless, he did apply the linearity

property of the integral (line 4). His computational error was algebraic and is in line 6

E[Z.:t::]'+1
of his solution. When splitting the integral — f 2 dx, Muzi did not distribute the

x2 49

negative sign as expected. The omissions he made reflected gaps in his
conceptualisation of the underlying concepts applicable in this item. In addition,
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Muzi’s response also displayed inadequate conceptualisation of the restrictions on

the domain of a logarithmic function. He repeatedly wrote [n (x — 1) instead of

In |x — 1|, as a result providing a less accurate response. He also omitted the

constant of integration in the final answer for this indefinite integral.

The errors displayed by Muzi, namely, the algebraic error with the signs, the non-use
of the absolute value to restrict the domain of [n x and the omission of the constant

of integration, were the ones common among students. In particular, students

—lx—ld . .. .
279) X, ultimately writing it as

struggled to split the emerging integralf{ =
X

1

o) dx. This mistake

x 1 . —
— [z X + [ gz dx instead of —f{x2+g] dx— [

emanated from the failure to distribute signs when splitting the integrals.

In summary, students tended to adopt an algorithmic approach when using
techniques of integration. The use of algorithms was not accompanied by the
analytical knowledge of functions to integrate. In most cases, this absence of
analytical approach did not hinder the presentation of a correct solution. According to
APOS theory, such tendencies display integration as an action. Students knew the
rules and how to apply them but there was no construction of meaning attached. For
example, students could indentify integrals that required either the completion of the
square or integration by partial fractions with ease. They struggled to state why they
were choosing a particular technique though. There were also omissions in the
notation of integration, restrictions on the domain of a logarithmic function and
constants of integration in an indefinite integral. Such omissions indicated gaps in
concepts underlying the encapsulation of integration. Students, therefore, were still
at the action stage but exhibited signs of process conceptualisation since they could

readily detect the procedure to employ.
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6.3.2 Techniques of integration

6.3.2.1 Reversal of the chain rule

The following section reports on facets of students’ concept images revealed when
using techniques of integration. Items 5.1, 5.3 and 5.6 were the reversal of the chain
rule for differentiation. In order to succeed in these types of questions students
needed to have a full conceptual development of a composition of functions. Item
5.2 examined how students manipulate algebraic powers when simplifying the
integrand. Items 5.4 and 5.5 were included to examine how students understand the
advanced application of integration by parts. The analysis will therefore be presented
according to the following grouping of sub-items: 1) | will first give an analysis of

responses to items 5.1, 5.3 and 5.6 then, 2) to items 5.4 and 5.5 and, 3) to item 5.2.

The following table is a presentation of categories that emerged from the responses

provided by participants and distributions for items 5.1, 5.3 and 5.6:

Categories Frequency for | Frequency  for | Frequency for
item 5.1 item 5.3 item 5.6

1. Interpreted the composition well

la. Provided a correct solution. 3 11 2

1b. Integrated the outside function in | §

the composition with algebraic errors.

2. Identified the product but could | 2 1 4

not interpret the composition.

3. No attempt or pseudo-conceptual | 12 10 16

answer.

Table 6.7: Categorisation of students’ answers to Items 5.1, 5.3 and 5.6

From this distribution, eight students displayed the understanding of the composite
function that appeared as an integrand in item 5.1. The following is an example of a

response in category l1a:
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Figure 6.13: Daisy’s solution to Iltem 5.1

Daisy seemed to comprehend the product appearing as an integrand. She also

knew that she had to work out the derivative of vx. In line 5, Daisy seemed to be
. . 1.
realising that she needed to divide by a S in order to balance the constant that has

emerged during differentiation. Daisy proceeded to write an answer that was correct

ultimately.

Even though Daisy’s final answer was correct, her work contained a number of
errors. She omitted a dx in lines 1, 5 and 6. This omission indicates a gap in the
conceptualisation of the notation and symbols of integrals. Such an error may be

explained by the observation made by Tall (1992) that students have challenges in

understanding and using symbols correctly in calculus.

A typical response falling into category 1b showed evidence of recognising a
product, composition and the actual functions in the composition. An error occurring
in the solution only related to the manipulation of constants. The following is

Sabelo’s response as an example of this category:
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5.1 —\%‘—\ dx

A—€osTX \
Ly } , iz ) L

A ) | / A

| gt PV, \ ’C f; -

_ ISV + C

\J P
i C-;w S\ X +’ C/

Figure 6.14: Sabelo’s response to Item 5.1
During the follow-up interview, Sabelo responded like this:

L44: NJN: What were you doing in this step? (meaning the first line that Sabelo
wrote).

L45: Sabelo: Oh ngihlukanisile, ngisuse u x ngawuletha ngaphezulu, then kwaba i
product. Uma usebenzisa....mh..uya.. then... ama standard integral, gase
ngasebensiza mastandard integral. Eka sine (Oh | separated. | took x and
brought it above then it became a product. If you use...then...standard
integrals, | used standard integrals. The one for sine).

L46: NJN : What did you do with those?

L47: Sabelo: Angithi Mam, i integral ithi... ifunction x iderivative (Isn’t it Mam, the
integral says ..the function multiplied by the derivative).

L48: NJN: The derivative of what?

L49: Sabelo: Of the angle.

L50: NJN: Ok, good. What is your angle here?

1 1
L51: SabeloS:|angle iwu....xz (The angleis ..... xz ).

L52: NJN: Good. And so what is the derivative of that angle?
—1 —1

L53: Sabelo: Iwu x 2 (Itis x z)

L54: NJN: By the way, how do we find the derivative?
L55: Sabelo: Si minasa ngo 1 i-exponent. (We subtract 1 from the exponent).
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During further discussions with him, Sabelo realised the mistake he was making
while determining a derivative. That mistake had resulted in him omitting the
constant 2 in his written solution. As a result of it, his response had been classified
with students who interpreted the composition of functions well, found a correct
derivative of the outside function in the composition but presented an incorrect

solution due to an omission of some constant.

For Item 5.3, students who gave the correct answer without showing any workings
were given the benefit of the doubt as having a conception of a composition. This
assumption was made after interviews with some of the participants who had
provided such a response. Music, for example, had given the following response to
Item 5.3:

| 5 6
.]{m (e*+1) +c¢

s

Figure 6.15: Muzi’s response to Iltem 5.3

The following is an extract from an interview with Muzi, where he was requested to

expand on his response:

L56: NJN: In 5.3, can you explain what you did?
L57: Muzi: If you differentiate the denominator, it gives the numerator, so you just
retain the function.

Extract 6.5: Muzi’s explanation on Item 5.3

The observation made from this statement was the apparent confidence with which
Muzi tackled this item. ‘So you just..” gave an impression of a statement which is
common knowledge yet his proposition of ‘just retain the function” was incorrect and
not what he had written as a response. Nonetheless, Muzi’'s written response

proved that he could identify and apply correct procedure for this item. He

differentiated the function e* 4+ 1 mentally and ascertained that the answer was the
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numerator in the integrand. Muazi, therefore, had an object conception of integration

for Item 5.3.

Item 5.6 contained an inverse of a trigonometric function and only two students were
able to provide a correct solution to this item. Thirteen students presented solutions
that displayed pseudo-conceptual understanding of the functions in the integrand.

These were solutions with no indication of understanding of the relationship between

1
—— . Students displayed no conception of the fact that the latter

sin"!x and
Y1l-x

function is a derivative of the former, even after expressing the integrand as a

product. A typical example of such pseudo-conception is:

5.6 / SR X gx

Figure 6.16: Tholi’s solution to Item 5.6 showing pseudo-conception

In this solution (Figure 6.16), Tholi explicitly wrote the integrand as a product of
-1

1 . = .
—= Wwitten as (1—x°)=, in line 1 of Figure 6.16. The

4

sin~'x and

subsequent steps indicated mental processes which were not characteristic of
conceptual understanding of the relationship between the two functions (Thomas,
2008). As a way out, she decided to apply integration by parts, which was also not
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handled correctly. According to APOS theory, such a solution places a student
below the action level of conception. The external cues present in the problem could

not stimulate the conceptualisation required to handle this item.

1
The other type of a common error was when students had a conception of Nepee

being the derivative of sin™t x but could not explicate the composite function in
sin~! x itself. The following is an example of a response by Nomsa, which fell under

this category:

) 2gin"'x
5.6 j ——dX
0 v1—Xx

- s

Figure 6.17: Nomsa’s response to Iltem 5.6

When asked to explain her solution, Nomsa indicated that she did realise that of

1 . L . . . . . 1
e sa derivative of sin~* x when she said: Since this (meaning i ) was

the derivative, | ignored it and continued to integrate this second function. Nomsa

then could not view sin™* x as a composite function, (sin~* x)?*, thus requiring the

integration of the exponent L = 1. Instead she attempted to integrate the ‘-1’ that

designated the inverse function or the “arc sine”. It was only during the interview that

1

she recalled the actual meaning of the notation sin™ x , thus realising her error.

Nomsa, therefore, seemed to lack the prerequisite constructs of notations for inverse
trigonometric functions. As a result, she struggled to handle this integral. In addition,

she displayed a weak schema for general algebra as seen in the third line of her
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solution (Figure 6.17). Nomsa responded to the symbols in the item but displayed
sub-minimal conceptions of both the foundational and underlying concepts involved.
She had not attained the action level of conceptual development as required by
APOS theory.

In brief, students’ understanding of the composition of functions and the chain rule
for differentiation is critical for success in working with techniques for integration.
Students depicted some understanding of the chain rule but difficulties in identifying
functions that have been composited (Item 5.6). Some students displayed gaps in
their schema for inverse trigonometric functions, including both the notation and
differentiation of these functions. Although their approach in Item 5.3 was
procedural, it seemed to provide them with necessary skill and routines necessary in

using techniques for integration.
6.3.2.2 Integration by parts

As stated above, Iltems 5.4 and 5.5 were aimed at further investigating the adeptness
of students with the technique of integrating by parts. Twelve students did not
respond to both of these items. Among those that responded, errors ranged from
the writing of derivatives of the integrands (Figure 6.18) to discrepancies in working
with coefficients (Figure 6.19). | start by analysing Figure 6.18 below which shows

Themba’s solutions to Items 5.4 and 5.4 respectively.

Figure 6.18: Themba’s solution to Iltems 5.4 and 5.5: Derivative of the integrand

In both items, Themba interpreted an integral as a derivative and hence attempted to
differentiate the integrands. This type of an error is structural (Orton, 1983b) since
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Themba seemed not to be grasping the principles involved in these items. In

addition, the derivative that he wrote in Item 5.4 is also erroneous. He missed to
differentiate the function 3x as required in the chain rule of differentiation. The HGD

identified in Chapter 3 mentioned functions and differentiation as building blocks for
the concept of integration. Themba’s solution to Item 5.4 indicated gaps even with

this essential underlying concept, which is differentiation.

Themba’s solution to Item 5.5 indicates confusion with the symbols fdx. Assuming

1 : : .
—2 .5 @ an integral of In (x? — x + 2) with respect to x, he still

that he viewed
proceeded to place such under the integral sign. The last line implied that further
integration was still required. Again, Themba seemed not to have grasped the
concept of integration involved in this item. In addition, he seemed to be struggling
with mathematical symbols and their meaning. Themba’'s case was a typical

example of confusion that students experienced with symbols.

Sabelo, whose solution to Item 5.4 in shown in Figure 6.19 below, displayed what

Orton, (1983b) referred to as executive errors.

bl:.éqm"‘éz)()- A = dx -
Ay = ,f_’jl V= .
(R - b

7.) i ]
v = V.

Figure 6.19: Sabelo’s solution to Items 5.4: Errors in constants

1
1+9x2

In line 2 of his solution, Sabelo wrote the derivative for tan™1(3x) as

instead of as is the case when applying the chain rule for differentiation. In

1+9x2
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spite of this omission, Sabelo proceeded to work accurately until the end. He

displayed good mastery of the use of symbols. In line 6, he remembered to balance
the constants by inserting “18” both in the numerator and outside an integral as 1—18.

Sabelo seemed to have acquired the object level of conceptualisation in this

instance.

In general, students struggled to retrieve knowledge skills required for Items 5.4 and
5.5 as individuals. The level of uncertainty prevailed even during the follow-up
interviews where students clearly stated that they had forgotten how such integrals
are handled. A different behaviour was exhibited when students were working as
focus groups, resulting in an improved degree of success. In summary, most

students had not interiorised the action on the technique of integration by parts.
6.4 Conclusion

In this chapter | reported on students’ responses to structured questions aimed at
soliciting possessed conceptual knowledge and understanding of integration, and
how such knowledge was retrieved when responding to tasks (Asiala, Brown, et al.,
1997). Students were presented with mathematical problem situations which
included symbols of integration, graphical representation of functions and techniques
of integration. Interviews conducted with selected students on some items assisted

students to construct and reconstruct their mental objects regarding tasks presented.

Students’ construct of the meaning of integration was mainly procedural and based
on integration as an inverse of differentiation. They could only link a definite integral
to area when presented with external stimuli. Such conceptualisation of integration
placed most of the participants at an action stage of APOS theory. The tendency to
rely on procedure or algorithms was also displayed when applying integration
techniques. As confirmed by Jojo (2011), applying the cycle of APOS theory
assisted students to reflect and reconstruct manoeuvres important in integration of

various functions.

The next chapter will report on findings and analysis of data collected using focus
groups.
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CHAPTER 7

FOCUS GROUPS ANALYSIS

7.1 Introduction

In this chapter | report on interactions among students during classroom activities.
Classroom collaborations were designed into focus groups where students were
requested to respond to a set of questions given as class exercises after they had
been taught integral calculus. The teaching of calculus in this university was mainly
based on paper and whiteboard. Lessons were structured in the form of discussions
where the introduction was led by the lecturer and students were given tasks to
investigate. Students were then given classroom activities to do as groups. These
were again discussed in class and were followed by exercises to take home and do
individually. The collection of this data was undertaken after the section on

integration had been taught to completion.

For this stage of data collection, students were issues with the activity sheet
attached here as Appendix 2B, page 216, to solve in focus groups. Students were
encouraged to talk among themselves, ask questions and defend their approaches
to members of their groups. Eventually, group representatives presented their
group’s work to the whole class. As purported by Brijlall et al. (2011), collaboration is
when students work with others to achieve shared learning goals. Thus, the focus
of this part of investigation was on conceptual understanding of integration that

emerged as students were discussing among themselves.

Kitzinger (1995) maintains that data in focus group methodology is generated from
communication among participants. Various mental constructions were displayed as
students solved classroom exercises. In almost all the instances, students tended to
use isiZulu to conduct their discussions. Occasionally, English words and
expressions would be used when referring to mathematical concepts. The use of
informal language when discussing mathematical concepts, such as hyperbolic

functions by engineering students, was detected in the study by Brijlall (2014) when
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working in groups. Adopting a Gurteen Knowledge Café model to encourage
collaborative learning, Brijlall (2014) observed that students preferred a “language
they found easy to understand” when explaining ideas to each other (p. 31). Such an
approach facilitates both the explanations by the leader and comprehension by the
rest of group members. For the ease of reading, | have translated most transcripts
into English, while in few cases the translation is indicated in brackets within the

extract.

It was noted that students did not always agree with each other. They sometimes
misunderstood one another and at other times, provided justification for their own
points of view. Due to time constraints, only sections A and B of the activity sheet
were first tackled individually, while section C was solved directly as groups. The
focus of my analysis is on the mathematics that prevailed in the arguments
forwarded. Activities reported on were done in order to answer the third question of
this study, which is: “In what worlds of mathematical thinking do students operate
when they internalise integration? How do these worlds influence the learning of the
integral calculus?”. In order to contribute meaningfully in the discussions, students
were first asked to work on the items individually. They would then converge into

groups to discuss their approaches to solving the items.

Calculus for engineers at a university of technology is mainly for application
purposes and, therefore, students rarely use formal mathematical analysis. They are
‘more likely to use a combination of embodiment to imagine a situation and
symbolism to model it to seek a solution” (Tall, 2007, p. 12). Nonetheless, Tall (2007)
still maintains that “the categorisation of thinking into embodied, symbolic and formal
is particularly appropriate in the calculus” (p. 9). The activities were, therefore,
designed to elicit mental structures students possessed and the types of embodied
or symbolic conceptualisation evoked when doing integration. Such mental
structures would assist in analysing construction of mathematical understanding in

integral calculus.

This chapter consists of five sections. After this introductory section | discuss how

students seemed to link their integration to the chain rule in section two. In section
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three | present conceptualisation of a negative area by students. | present

perceptions of integration by parts in section four before concluding in section five.

7.2 Conception of inverse of the chain rule

In integration, students are expected to disaggregate an integrand, explain the
components thereof and conceptualise any existing relationships between such
components. The solution of encountered problems may require capability in the
reversal of the chain rule or the use of techniques like integration by parts. The
extent to which a student has interiorised an integration technique and is able to
reverse processes mentally, determines the level of success when encountering

tasks that require such expertise. With regard to reversing the chain rule, students

were requested to work out (a) fiﬂdx and (b) fidx , in each case
X

justifying the approach chosen.

Students were not given any hint on how to solve items but they had tables of
standard integrals in their possession. Even though they were expected to work on
this item as groups, they still took some time as individuals before working
collaboratively. | discuss two discrete approaches which emerged with regard to
solving item (b).

7.2.1 The power rule

Both items (a) and (b) required students to firstly, identify functions multiplied in the

integrands and secondly, to comprehend the composite function within that product.

In (a), for example, the integrand consisted of the product of i and In x. Although

this task could be solved using the u-substitution technique, all groups opted to use
the table of standard integrals. Next, is an extract from a discussion of the solution

to (a) within one of the groups, call it Group 1.

L1: Maggie: This thing (pointing at the integrand) is, you see, i times In x.

L2: Roy: So we agree that we are doing this rule?
(At this stage Roy pointed at the first standard integral in the data sheet of
their Study Guide. This standard integral is

JIFEIf"Pdx = —[FGOI™** + C,n = —1.)
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L3: Roy: We are going to say, the answer is equal to 1 over...ehh what is
‘n”?...itis1,soitis 1 plus 1,

L4: times,...what is f(x)?...itis In x, 1 plus 1, plus C.

L5: So the final answer is 1 over 2 In x squared plus C.

Extract 7.1: Group 1’s conversation about Iltem 4(a)

Figure 7.1: Group 1 discussion group

Maggie was the first to comment on the way forward in solving this problem. She

correctly identified the two functions multiplied within the integrand as - and In x.
X

(line 3 of Extract 7.1). Roy then took the lead in discussing the solution further,
identifying the standard integral applicable. We note that neither Maggie nor Roy

explicitly categorised the functions i andlnxto f(x) and f'(x) in line with the

standard integral chosen. Roy solicited the group’s endorsement by inserting leading
questions such as: “what is ‘n’?” and “what is f(x)'?” within his presentation (lines 3
and 4 in Extract 7.1). The whole group joined him in answering these “sub-
questions”. As such, although his voice was dominant, answers were provided in

chorus form. This group ultimately presented a consensus solution as follows:
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Extract 7.2: Group 1’s response to item 4(a)

The presentation by this group indicated that they had conceptually embodied the
action of reversing the chain rule into a process. According to Tall (2007),
conceptual-embodiment is when an individual’s mental constructions are guided by
in-depth perceptions and reflections on the nature or structure of a concept and
various representations of such a concept. After tackling many tasks on integration
using a variety of techniques the students in this group immediately identified the

technique of integration required for this particular problem. The identification of the

technique emanated from the identification of f(x) and [ (x) in the integrand,

which was done mentally, as can be inferred from the verbal interactions in Extract

7.1 above.

In addition, they also demonstrated that they had encapsulated the chain rule into an
object and could apply an action, in the form of reversal, to that encapsulated
process. Writing the integrand as a product in line 2 of Extract 7.2 indicated that
students perceived the nature of the integrand to be a product of two functions, thus
expressing it in the exact form of a standard integral. The application of the
identified standard integral further required conceptualisation of a composition within

the product. In this case, it appeared that Roy figured out that Inx was the

composite function with an exponent equal to 1, as stated in line 4 of both oral and
written extracts (Extracts 7.1 and 7.2 above). It was also important to work out the
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derivative of f(x) = Inx, the inside function in the composition, checking whether

the format in the standard integral was satisfied. The omission of a constant of
integration in line 3 of Extract 7.2 was considered insignificant since they included it
at the end.

Of further significance was the representation of the final answer, where [NX was put

within brackets. Such representation indicated understanding of how a concept is to
be represented. A student without that level of understanding may fail to present a
correct solution to a problem of this nature. Suzan, for example, was one student in

the group, who successfully conceptualised the composition within the integrand but

2
provided EMT+C as her final answer. Although she understood that “the f(x) was X,

and ‘n’ was 17, and also knew the procedure for integrating [f(x)]", she had not
conceptualised the fundamental difference between In x? and In?x. According to
the standard integral the group was using, they were supposed to square [nx, that
is, (Inx)?. Written without brackets then (Inx)? = Inx X Inx = In®*x. On the

other hand, In x?is actually equal to In(x X x), which is not what the standard

integral dictates. Maggie indicated the error to Suzan who then changed her answer

and made it look like Roy’s.

Another group, call it Group 2, presented an incorrect answer to item 4(a). They did

not show steps but simply wrote Inx + ¢ as an answer. | noted this error when the

group had already progressed to item 4(b). After they had deliberated on their
solution to 4(b), | probed them on their solution to item 4(a). Pete articulated how

they had separated the functions that are multiplied within the integrand and realised

that i(!nx] =2, In addition though, this item required students to discern the
X

composition in Inx, which was (Inx ). They would then be able to view the
integral as the reverse of the chain rule. Group 2 seemed to have missed this critical
aspect, concluding instead that [nx should remain unchanged during the

integration. It was only when they were asked to provide the rule they were applying

that Thabo started rejecting their solution. The whole group realised their error and
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re-did the sum using the ‘u-substitution method’. Conceptualisation of the ‘u-

substitution method’ is discussed in the next sub-section.

7.2.2 The ‘u-substitution method’

The same functions, Inx and x, were used in item 4(b) but were combined
. 1 . . .
differently. Item 4(b) wasfﬁdl’ . Group 2 took time reflecting on this item,

exploring various approaches to use until Sello identified the ‘u substitution method’
as appropriate. The rest of the group seemed not familiar with this approach,
although it was one of the techniques that had been discussed during lessons in

class. This is evident from the following discussion:

Line 1: Thabo: What are we going to do? Maybe use integration by parts.

Line 2: Sello: Wait, Let us use substitution.

Line 3: Pete: Which one?

Line 4: Sello: Where you use .... (the rest of the group says: use ‘U’ and ‘vV’) ...no,
that is integration by parts. Substitution is where you convert

Line 5: Pete: You use that in differential equations

Line 6: Sello: No no no, this is integration by substitution, you don’t know it?

Line 7: Pete: Write it down

Line 8: Sello: It is not differential equations. Wait, wait, wait...

Line 9: Thabo: Show us the formula that you use.

Line 10: Sello: You substitute.....wait...it is almost like integration by parts, but it is
not it exactly. You put ‘u’ equal to something, but | cannot remember well. Let us

see,...
Extract 7.3: Group 2’s conversation about Item 4(b)

Sello displayed some degree of confidence in his chosen approach. He was clear in
his mind that the ‘u substitution method’ differed from integration by parts. He
vehemently rejected the group’s suggestion to use ‘v’ and ‘v’, as indicated in line 4 of

Extract 7.3. Sello eventually recalled how to proceed with the ‘u substitution method’
in this item. He started by splitting the integrand into a product, that is, Iiidx

He then let u = In x . Differentiating, he obtained g =2 . Hethen proceeded to
X

make dx the subject of the formula, obtaining @X = XdU. The next step was



149

substituting for [71 x and dx into the integral. Sello wrote _,fi xdu and simplifying,

the integral reduced to fidu. This was a simpler integral to work out, giving
k')
Inu+ C asthe answer. The last step was to substitute the 1t in this last integral,

yielding In(Inx) + C as the final answer.

The ‘u substitution method’ is used to transform an integral to another integral that is

easier to work out. It is theoretically based on the chain rule for differentiation which

states that i[f(g(x])]=f’(g(x)).g’(x]. Integrating this equation yields

[ (g().g' (x)dx= fi[f(g(x])]dx= f(g(x)). Leting u = g(x), thus

du r . I du _ _ .
= (x), transforms the integral to [ f'(w) dxdx = f(u). If we re-write
g = g'(x) as du = g'(x)dx, the integral becomes [ f'(u) du = f(u), which

is a simpler integral in the variable ‘u’.

Members of Sello’s group displayed an action level of conceptualisation when
approaching this item. Thabo, for example, asked for a formula that Sello was using
(line 9 of Extract 7.3). Pete requested Sello to write down the substitution to which
he was referring. These two students could only carry out the required integration by
reacting to explicit external cues outlining steps to follow. Sello, on the other hand,
seemed to have interiorized the action of integration into a process and was now
attempting to retrieve it. This | deduce since Sello (and of course the rest of the
class) confronted many tasks on integration and after working at an action level on
those many tasks, Sello was able to sift the correct technique one should adopt for

this particular task.

The ‘u substitution method’ requires a student to envision the g(x) and the
corresponding g'(x) and identify them within an integrand. Sello ultimately recalled

the procedure and executed it correctly. He was definitely at the process level of
comprehension for this item. As such, he was confident enough to explain his
approach to the whole class.
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Figure 7.2: Sello’s presentation to class

Sello gave an explanation for all the steps he was writing. Unlike on paper where he
had first split the product in the integrand, on the board he started by doing the
substitution directly. This move, however, did not create any confusion since most of
the students had already attempted this item. Sello’s presentations, both on paper
and on the board, indicated the presence of reflections and perceptions on the
properties of the integral concerned. He demonstrated greater power and precision
when manipulating symbols. Sello was in the proceptual-symbolic or symbolic world

of mathematical conception.

Firstly, Sello mentally identified the relationship between [nx and 2 and was thus
x

able to choose ‘U’ correctly. Secondly, he knew that in transforming the integral from

the variable ‘x’ to the variable ‘u’, dx had to be expressed in terms of 'u’ as well,
hence he correctly determined dx = xdu. The ultimate solution that he produced

confirmed his level in computations and symbolic representations. Sello, therefore,
was comfortable at both conceptual-embodied and symbolic stages of cognitive
development (Tall, 2007, 2008). He could successfully reflect on the properties of

the integrand and was able to perform the required manipulations of an integral.

What | observed for this task was that Sello took lead and drove the discussion to
present the solution. This is one of the drawbacks of group work (Brijlall, 2014).

However, the flip of the coin is that the others in the group could be peer taught into
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the correct path. Otherwise, it could have been a long time before they might have

arrived at any correct outcome.

Also, it must be made explicit, that Group 2, including Sello, did not attain an object
stance of the technique of u-substitution. This | say due to the fact that the group

could not apply actions on this process. For instance, they should have detected the

domain for the expression [n(Inx). They should have recognised that X > 1 for
the entity [n(Inx) to be defined or that they needed to take the absolute value of

Inx in the brackets.

7.2.3 The multiplicative inverse of a function

It was interesting to note another group, Group 3, using a different approach to
solving item 4(b). Zola, who was leading discussions for this item, was strongly
challenged by group members when he presented the solution. Zola started by

claiming that the standard integral applicable in this item was

Frix)
fx)

integrand, when he said:

dx = In|f(x)| + C . He proceeded to separate i and In x within the

Zola: Here is the rule, it says f(x) over f(x) is the answer. Isn’t when we split here
it's going to be 1 over x times 1 over Inx. ....When we differentiate what will the

derivative of Inx be?

The group then asked him to identify the f(x) in the problem. When he pointed at

. 1 . . . . :
the Inx in Py the other students disputed that claim. An interesting dialogue
nx

ensued, with Zola attempting to defend his position:

Line 1: Tebogo: It should be the whole thing as a function (referring to i ).

Line 2: Mike: It will be 1 over 1, and then ‘x’ will go above the line.
Line 3: Zola: We are using this rule which says f(x) over f(x). Then here, f(x)...they

say 1 over. So our f(x) will be taken as....our f(x) is In x.
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Line 4: Daniel: 1 over In x will not yield 1 over X, it will be x because it will be 1
over 1 over x. Then x will go above the line (Tebogo and Mike agreed with
him).

Line 5: Mike: There are two things here. Our f(x) should be 1 over In x.

Line 6: Tebogo: Here is the rule, bafowethu (brothers), this first one. (Here, Tebogo
pointed at f[f(x]]“f’{x:'dx = ﬁ [f(x)]™* + C,n# —1 in the tables of
standard integrals).

Line 7: Mike: Itis not the first rule. | know the answer. It is not on the first rule.

Extract 7.4: Group 3’s conversation about Iltem 4(b)

Two misconceptions were displayed in this Extract 7.4. Firstly, the three students

realised and agreed that 4 (Inx) = 2 put were struggling to conceptualise 2 as
dx x Inx
a composite function f[g(x)] where f(x) = j—t and g(x) = Inx. They viewed

2 asa single entity, Lines 1 and 5 of Extract 7.4, and as such they could not

{rnx

detect the reversal of a chain rule in this item. With that fixation, they proceeded to

differentiate ﬁ where the second misconception was displayed. Although the

derivative of the reciprocal T was not required for this item, it was noted that
nx

students showed gaps in their knowledge of differentiation. In Line 4 of Extract 7.4,

d
three students agreed that — (Ei) =

nx

= x, evidence of an error in differentiating

Bln| =

a multiplicative inverse of a function.

This showed that the prerequisite knowledge necessary for integration was lacking.
Firstly, they could have exploited the quotient rule to arrive at the legitimate outcome
or secondly, they could have used the chain rule. This indicated that within the
schema for differentiation most students in this group did not display even an action
level of understanding of the quotient and the chain rule. However, using the u-
substitution would have led to a great deal of serious mathematics and would have

highlighted an object conception of the technique of integration. As indicated in
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Sello’s presentation above, taking the u-substitution path, the following would have

been the solution:

Let u = Inx
du 1
dx_x
xdu = dx
fid = [ X xdu
= i;:J!u

=Inlul+ C

=Inllnx|+ C;x>1

Although correct, Zola’s position seemed to be overpowered by the rest of the group.
Some students seemed to have met this problem before and so they knew the
answer but their arguments showed that they had not comprehended how it was
arrived at. Zola continued to argue his point though, as captured in the following
extract 7.5:

Line 8: Zola: This thing is discrete (referring to ‘1’ and 'Inx’ in % ). You are
nx

taking it as a single entity. We are talking about the function. We know that

f(x) is...itis In x (he is interrupted by members)
Line 9: Mike: How is it equal to In x?
Line 10: Tebogo: Itis 1 over In, mfowethu (my brother)

Line 11: Daniel: If this is f(x), take the whole thing as it is and deal with it. Don'’t

separate it. | agree if we take the whole of 1 over In x.

Line 12: Zola: Here is the rule. Let us write it like this, so that it is the same as the

rule (here Zola wrote:

_}'G - Inx) dx = | G X i) dx = f(i X [Inx]™1)dx). These people

are refuting something very simple. Now that we have separated it, the rule
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says 1 over f(x), and the derivative of f(x) will be 1 over x. Here is it. (at this

stage Zola was pointing at the appropriate f(x) and its derivative).
Line 13: Daniel: It does not work if itis -1. This rule is out if ‘'n’is equal to -1

Line 14: Tebogo: Ohh...they don’t consider 1 in the numerator. They just
differentiate the function below. (Tebogo lingered on the page, showing

hesitation. He was beginning to figure Zola’'s point out).
Line 15: Mike: So how do you deduce the answer?
Line 16: Tebogo: You take the function, this one already has In so it is In(Inx) + C

Extract 7.5: Group 3’s further conversation about Iltem 4(b)

Figure 7.3: Discussion group 3

Initially Mike, Tebogo and Daniel were insisting that Zola should take i and not

Inx as f(x). In Line 9 of Extract 7.5, Mike questioned Zola’s assertion in Line 8
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that f(x) is Inx. Tebogo casually referred to ‘1 over In’ in Line 8, but he was

actually saying that f(x) should be chosen to be ‘1 over Inx’ Their view was

supported by Daniel in Line 11 who insisted that the ‘1" and ‘ Inx’ in % were not to
nx

be separated. As indicated above, these students could not consider i as a

composite function (Inx)~1. The appearance of i , Which they knew is the

derivative of Inx, did not trigger them to isolate Inx in the expression % In
nx

addition, they were insisting on wrong differentiation of % and using the wrong
nx

answer to support their argument. This was seen in Line 14 where Daniel said that

‘then the X’ will go over the line’, meaning f(x) will not be i which featured in the

integrand, but X’.  Daniel displayed further weak conception in Line 23 but soon
realised that the rule Zola was referring to actually applied when the power of f(x)

was -1.

Zola, on the other hand, was able to decode the integrand right from the beginning.
In Line 13 he stated that In x should be taken as f(x). During discussions, Zola

struggled to justify his reasoning, but eventually decided to explain symbolically as

shown in  Line 22. This symbolical representation of inserting a division sign
r
X

assisted members of the groups in assimilating the given integrand as J:r{i]] . The

. . . . . 1
group ultimately rewrote the integrand in a fraction format with — as the numerator
X

and f(x) as the denominator. Tebogo then volunteered to present this group’s

work to the whole class.
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Figure 7.4: Tebogo’s presentation to the class

Tebogo used the basic division symbol to assist him in rewriting the integral in the

form of the standard integral. This presentation assisted him to transit to expressing

I
fix)

consistently omitted the dx throughout his working, though. This omission could be

the integrand in the form as shown in his work (line 3 of Figure 7.4). He

viewed as the lack of conceptual understanding of the symbol of integration. His
focus was mainly on the procedure he had just learnt from his group, ensuring that
he is able to arrive at the answer. To verify whether Tebogo understood what he was

writing, |1 asked him how he moved from third line to the answer. His response was:

Tebogo: You see, when we derive this (meaning differentiate f(x)), we get this

(here he was pointing at ;lc ). So we just take the In.

NJN: Why do you that, why do you just take In f( x) ?

Tebogo: This is according to the rule, rule 2 in the tables.

At this stage the class implored Tebogo to write the said rule on the whiteboard,
which he did. Tebogo displayed that prerequisite knowledge was vital in solving the

tasks presently on hand. He displayed a process conception when reversing the
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procedure of multiplication into division. His appropriate basic operations
(multiplication and division) schema came to the rescue and he was able to then

apply a rule from the table of standard integrals.

The tendency of students to memorise and just write answers deprives them of
understanding mathematical procedures and constructions, underlying a particular
approach. Mike, for example, claimed that he knew the answer but was unable to
provide mathematical argument on how that answer could be obtained. As
Huang (2010) observed, mathematical procedural understanding requires students
to comprehend mathematical symbols and symbol syntaxes, master algorithms for

solving mathematical tasks, and be able to connect the two. The omission of a dx,
when Tebogo was writing the solution on the whiteboard, might also indicate a lack
of understanding of the syntax in _fdx Students seemed not to realise that omitting
a dx was similar to uttering an incomplete sentence since the variable for

integration was not indicated.
This tendency of not comprehending constructions underlying the use of

T
fi'[(:; dx = lnlf(x}| +C was also displayed by Simo in another group when they

e
were discussing the solution to the integral fmdx . One of the group members,

Thembi, presented the following as a solution:

Figure 7.5: Thembi’s solution to the group
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Thembi wrote this answer very swiftly, resulting in the other members of the team
showing discontent towards the provided answer. The following conversation then

ensued:

Line 17: Ruth: What do you do when you have the integral of derivative over a

function?

Line 18: Simo: You simply say In of the derivative,... In of the function
Line 19: Ruth: So, what do we have here?

Silence, then Thembi provides her explanation:

Line 20: Thembi: Here the denominator is a function of the derivative. The e* + 1
is the... function of the derivative. The derivative is e*. When you differentiate
e* + 1 it's gonna give you e*, it is the same as our numerator so in that, case it

was supposed to be In(e* +1)+C

Line 21: Simo: We should continue integrate it because we simplify ..if you can put C

la(here) , it seems like the function ends there. We should take this as a function

(referring to In (e* + 1)) and see.. differentiate it, and you can still integrate that

function as well.

Line 22: Thembi: My friend this our function, is e* 4+ 1 , our prime is gonna be e* ,

right. When you differentiate this, it’s gonna give you € | right? which is the same

as the derivative. Meaning when you have something like this (at this point Thembi
)
f(x)

in this case it's gonna be a In of (e* + 1 )+ €. OK?

writes f ).....what are doing? This is the same as the In of f(x), right. Which is,

Line 23: Simo: Ohh... only,... ya....Ok.

a*

dx

Extract 7.6: Conversation on F 1

Ruth seemed to comprehend what Thembi had done and decided to explain to Simo

through asking questions. In Line 18, Simo answered that if one is integrating a
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quotient of a derivative and the function, “you simply say....In of the function”. Simo

appeared to agree with what had been done. Thembi had ‘simply written’

In(e* + 1) + C as an answer. However, Simo’s assertion that [n (e* + 1) should

be further differentiated and then integrated (Line 21), indicated deeper flaws in his
comprehension of the procedure followed. Thembi then provided a breakdown of
the solution (Line 22), outlining it step-by-step. Simo ultimately understood that the
written answer was final, not requiring any further working out. It could be inferred
that Simo was not even at the action stage of conception in so far as the application
of this rule is concerned. This | gather since Thembi presented the solution step by
step for Simo to understand the mathematical processes involved here. The
reluctance contained in Line 23 was interpreted as indicating that Simo was still

struggling to fathom Thembi’s explanation.

On the other hand, Thembi seemed to have interiorised the rule that she was talking
about and wrote down the answer by omitting the intermediate steps of identifying
the function and the derivative. She had done all of those steps mentally. It was only
when questions were raised by Ruth and Simo that she indicated the other details
which she had not written. She, therefore, demonstrated a process conception of the
rule and its application. Thembi displayed entrenched symbolic conceptual
development for this item. Nonetheless, | noted that in Line 20, Thembi struggled to

verbally state whether e* 4+ 1 was a function or a derivative in the given integrand.

She stated that ‘the denominator is a function of the derivative’, instead of the
numerator being a derivative of the denominator. This gap could be assigned to
weak conceptual embodiment of the concerned functions. It could also be assigned

language incompetency, since her subsequent procedural explanation was correct.

7.3. Conception of integration by parts

To explore students’ conceptual understanding of the use of integration by parts,
they were given carefully selected tasks. Next | discuss students’ attempts of some

of them. One of the tasks required students to evaluate _,[lll(:'r:2 —x + 2)dx. They

were not told which technique to use.
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This problem provides a case where the integrand does not feature in the table of

standard integrals. At this level of study students had dealt with the derivative of Inx

: 1 . . ,
and knew that it was —. Other functions in the same category as this one are
X

. : : : . . d , . _ :
inverse trigonometric functions like sin~! x , where E(Slﬂ 1 x) is known to be

1 . : . .
i while the integral of sin™? x is not readily known. Such a problem requires

the use of integration by parts to solve. Xola, who was working as a pair with Lwazi,

readily identified the technique applicable to this problem. He could not explain much

about his choice and instead chose to lead his partner through the solution. The

following is the conversation they had:

Line 24: Xola: This is gonna be integration by parts. We say “u” will
be In(x%— x+2) and “dv” will be “dx”. Do it. Use In x"2,

Line 25: Xola: Ya, write this as “u” and “dv” will be “dx”. We will get at the end but

let’s give it a try.
Line 26: Lwazi: Hey, | am not sure about this!

(At this stage Lwazi proceeded to differentiate In( x* — x + 2))

Line 27: Xola: No no no, It will be 2x , du will be 2x-1...No no my friend, if you are
integrating this you write....,

Line 28: Lwazi : Differentiation, we are not integrating. If you differentiate this, what
is the answer?

Line 29: Xola: Yes differentiating | agree. Let me write it. It will be 2x-1 over

xZ—x+2
Line 30: Lwazi: If | am saying this,1 over x* — x + 2, times 2x-1, am | wrong if |

say so......?7

Line 31: Xola: Well, it is the same, now continue. Write, dv =dx and therefore v=x
because there is a 1 here and the integral of 1 is “x”. Then go to the formula:

Line 32: Lwazi: | am not sure about this bra..

Extract 7.7: Conversation between Lwazi and Xola
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Lwazi seemed to know that when using integration by parts, the “u” should be
differentiated in order to determine the “du”. As by his confession in line 26, Lwazi’'s
answer was a mere response to the procedure of integrating by parts that he knew.
He, nonetheless, displayed conceptual-embodiment of the chain rule for

differentiation. He defended his approach when Xola stopped him as he was writing

out the derivative of In(x? — x + 2).

Although Xola displayed efficiency in choosing the suitable procedure to use for this
task, an example of compression of aspects into thinkable concepts according to Tall
(2007), the above extract reveals some gaps in his foundational conceptions. Firstly,
he was using the terms integration and differentiation interchangeably, which is
mathematically inaccurate. Lwazi corrected that error in line 28 when he

emphasised that they were differentiating (the ‘u’) and not integrating. Secondly, he
wanted to insist on a single representation of the derivative of In( x* — x + 2). He

did not wait for Lwazi to finish writing but assumed that it would be incorrect and so

offered his “correct version” of the derivative. Lwazi then asked whether the
1

derivative could not be equally written as a product of and 2x — 1 (Line 30)?

2_x+2

X

Xola continued to guide Lwazi in the use of integration by parts but struggled to

manipulate the subsequent integral that arose (see Item 5.5 in Extract 7.7 below).

5.5 J In(x*~ X + Z)ax ’,w“ L
0]

(A )

Figure 7.6: Lwazi and Xola’s solution on integration by parts
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Xola and Lwazi applied the rule of integration by parts correctly. The first four lines
of their solution indicated a proceptual-symbolism, which according to Tall (2007) , is
the use of symbols as thinkable concepts. Tall (2007) refers to an elementary
procept as being the “combination of symbol, process, and concept constructed from
the process” (p. 2). In this instance, the students moved flexibly between
differentiating the ‘v’ and integrating ‘dv’ and structured their results correctly, in line
with the rule for integrating by parts. They, therefore, possessed this elementary

procept which enabled accuracy in working out the components of the integral.

In terms of APOS theory, this group displayed an action conception of integration by
parts. They went about solving the task in a step-by-step manner. However, the error

they displayed was in line 6 of Figure 7.6. They replaced the product of

x and 2x— 1 by the sum of x and 2x— 1. This, of course, led to an incorrect

solution to the task. In fact, the group showed an ineffective schema for basic
algebra. They factorised x* —x+ 2 to (x —1)*+ 1 in the denominators of the

third and fourth terms. They, obviously, could not recall completing the square

technique or the use of inspection to conclude the correct factors.

According to Gray and Tall (1994), individuals possess a precept if they have
mastered the collection of elementary procepts with the same output concept. In this

case, that would refer to mastery of all embedded integration techniques to solve a

2x®—

sum. Regarding Xola and Lizwi, they struggled to evaluate _,r xz dx that arose

x%—x+
when integrating by parts. They could not recognise equal degrees for the
numerator and denominator, thus a need to first simplify by dividing the two

expressions. As a result, their final solution was incorrect.
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Figure 7.7: Discussions between Xola and Lwazi

Xola and Lwazi had skipped item 5.4 which was ftan_l (3x)dx but after working
on item 5.5, they realised that the two problems required the same technique. What
was noted was that Lwazi was more forthcoming and he voluntarily did all the
writing. | only present their solution in Figure 7.8, since all their discussions were the

steps that they eventually wrote down.
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Ay - L%
ST

Figure 7.8: Whiteboard work emanating from discussions between Xola and Lwazi

| note that the rule of integration by parts was applied correctly, that is, a correct

separation of the integrand into u = tan~*3x and dv = dx. Nevertheless, both

students could not realise the mistake when determining itan‘l(.?x]. They

instead of

1+9x2 1+9x2 '

wrote line 2 of Figure 7.8. This oversight persisted even

when | tried to draw it to their attention, as can be derived in the conversation below:

NJN: There is a 3 here, what did you do with it?

1

, so here it is tan (3x) so it is
1+x2

Lwazi : We know that i (tan™(x)) =

1
1+(3x)2

NJN: What if it was tan™*(x?)?
Xola: It will be 1 over, in the place of x’ we put x* , so it will be x’ to the power 4.

NJN: Is that all?
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Xola : Ya...oh, there is an error here it is supposed to be times 2x . Oh, so we are

supposed to say times 3.

Xola and Lwazi responded interchangeably, an indication that both of them were
equally confident of the approach they were using. Their presentation indicated that
they had embodied the procedure of integration by parts. According to Jojo (2011),
students operating in the action stage view a mathematical procedure as a series of
individual steps. They mainly focus on producing a correct solution with less
justification on how they produce such a solution. In addition to focusing on the
steps, Xola and Lwazi displayed gaps in some underlying procedures required for

this technique. In the second line of Figure 7.8 above, for example, having correctly

set tan~1(3x) as a “u”, Lwazi could not recognise the need to apply the chain rule

for differentiation. Xola only realised the error when probed, and given tan™*(x?)

as scaffolding.

In summary, Xola and Lwazi demonstrated an action conception of the technique of
integration by parts. This we note in both Figure 7.6 and Figure 7.8. They worked,
step by step, to arrive at their answer. In Figure 7.6 we note that they lacked an
effective completion of a square schema in basic algebra. This impacted negatively

on their solution. In Figure 7.8 they omitted to apply the chain rule for differentiation

when evaluating i [tan~1(3x)]. This could be as a resulting of focusing on the

actual procedure of integrating by parts, thus paying less attention on the underlying
procedures required. This was stressed by Brijlall and Maharaj (2015) in their study
where they found similar omission by pre-service teachers when these teachers

were confronted by problems involving infinite sets.
7.4 Conclusion

In this chapter | presented data from the focus groups conducted and analysis of
mental structures that emerged during the discussions, using the TWM. | presented
analyses of techniques employed by students when encountering integrals on the
reversal of the chain rule. These techniques included the power rule, the ’u-

substitution method’ and the multiplicative inverse of a function. | ended with the
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analysis of students’ mental constructions when using the technique of integrating by

parts.

Most of the discussions and written work indicated that students seemed to be
operating in the conceptual-embodied world of cognitive development. Given
integrals, students could reflect and perceive the properties, thus could decide on the
correct technique to employ. The majority of presentations also revealed that most
students struggled to interpret compositions, particularly in a case of an inverse
function. Knowledge gaps in differentiation, symbolic notation and integration were

also identified as having an effect on students’ success to solve integrals.

In the next chapter, | provide an overall conclusion to my study. | will also include

my pedagogical recommendations as well as areas for further research.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

In this chapter, | summarise the findings from Chapters 6 and 7. | then present
conclusions from my study. The aim of the study was to analyse concept
development of integration by first year engineering students at a university of
technology, using APOS theory and Tall's Three Worlds of Mathematical (TWM).
The primary question for the study was “How do students construct mathematical
meaning when learning integral calculus?” Discussion of findings and conclusions
are, therefore, arranged according to the sub-questions of the study which were:

1. What conceptual definitions do students attach to an integral?

2. What conceptual images do students exhibit when employing techniques of
integration?

3. In what worlds of mathematical thinking do students operate when they
internalise integration? How do these worlds influence the learning of the
integral calculus?

4. What genetic decomposition can be proposed for the construction of meaning
in integration?

As a result, | start by presenting findings and conclusions about the evoked
conceptual definition of an integral. Next, | discuss findings and conclusions about
conceptual images exhibited when students employed techniques of integration. The
section after that includes findings and discussions on the worlds of mathematical
thinking for integral conceptualisation. This section is followed by a modified genetic
decomposition for integration. | then discuss limitations of this study and, finally, |
include suggestions for future research in the teaching and learning of integral

calculus.
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8.2 Summary of findings and conclusions

8.2.1 What conceptual definitions do students attach to an integral?

The definition of a concept refers to words that an individual uses to explicate a
particular concept (Habineza, 2010; Tall & Vinner, 1981). It denotes the
mathematical meaning an individual attaches to a concept. There is agreement
among the mathematics community that the definition of an integral includes notions
of: integral as an area, integral as a continuous summation and integral as an anti-
derivative (Habineza, 2010; Orton, 1983b; Pettersson & Scheja, 2008). In attempting
to answer this question on students’ conceptual definition of an integral I, therefore,
used APOS theory to analyse student’s conceptual meaning attached to both

symbolical and graphical representations of an integral.

b
The common interpretation attached to symbols ff(x)dx and fa f(x)dx was
that of “finding an integral of f(x)” to the former and the application of the
Fundamental Theorem of Calculus (FTC) to the latter. The meaning of the symbol

fdxwas that of an instruction to do something, hence most responses were
restricted to f dx means | must find the integral’ rather than the integral as an
entity. There was limited extension to the notion of an area and, when the area was
mentioned, it was mainly in the case of f: f(x)dx . In addition, students tended to

omit the orientation of an area. In some instances, the area was presented as an
alternate conception to that of a “bounded integral”. The mathematical meaning
students attached to an integral was that of ‘doing something”, that something being

the reversing of differentiation.

With regard to visual representation, students were presented with an equation of a
semi-circle and an area under a straight line graph, with the expectation to link the

areas to a practical meaning of an integral. Instead of stating the relationship

between the graph of v =+/25— x? and f;v 25 — x? dx as was asked, students

tended to evaluate the integral f:v 25 — x? dx . Although students had interiorised
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the Fundamental Theorem of Calculus (FTC), the presented solutions displayed that
students did not possess a process conception of the power rule for integration,
which they were applying to solve the integral. In some cases, students’ responses

showed gaps in their schema for basic algebraic entities. An example was when a

student simplified +25—x% to 5— x, thus proceeding with the FTC on

(5 —x)dx.

As for the straight line graph, 19 out of the 22 students responded by evaluating the
definite integral to determine the area under the graph. Noted misconceptions
among the students’ responses included the use of intercepts with the axis as limits
of integration, mistakes in actual integration and no notion of the area when
evaluating the definite integral. Examples of errors in the integration were flaws in
the application of the FTC, such as the omission of brackets and the reversal of the
order when substituting limits of integration. It was only during follow-up interviews
that students realised such errors and corrected them. Additional errors were also
detected in the assertions about the meaning of the quantity being evaluated.
Students used expressions for the mean value or the mean of the squares of f(x) to

determine the area under the graph.

On the contrary, eight students’ responses indicated a complete schema of an
integral as an area. In this case, students evaluated the definite integral, with correct
limits of integration, to determine the required area. They applied the FTC correctly
and encapsulated the significance of units in their final answer.

In conclusion, the conceptual definition of an integral was mainly that of an anti-
derivative. The findings indicated that students defined an integral based on
procedural conception, that is, computations to perform as “directed” by symbols.

They had a notion of an integral as a procedure to determine an area without the
b
mentioning of the orientation thereof. Limits of integration in the symbol fa f(x)dx

did evoke the notion of an area but without orientation. The observation made was
that most students possessed conception of an integral that was mainly algorithmic.
As a result, they could apply the FTC with proficiency, albeit within erroneous

conceptualisation of the context of application in some instances. Their construction
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of meaning depended on external stimuli such as symbols for integration and
graphical representation of functions. Through their ease in manipulating symbols,
students displayed sufficient exposure to actions of integration. They also displayed
a degree of interiorisation of these actions to a process conception thereof. They
had not progressed to the object stage of development in APOS since they were still

failing to apply actions on the possessed processes.

8.2.2 What conceptual images do students exhibit when

employing techniques of integration?

Student’s conceptual image represents the total cognitive structure associated with
the concept. It includes all mental pictures and associated properties and processes
and, it is entrenched in a networking of different experiences and concepts with
diverse relations between them (Résken & Rolka, 2007; Tall & Vinner, 1981). For
engineering calculus at a university of technology, the cognitive structure includes
such aspects as the definition of an integral, the applications of integration and the
efficacy with techniques of integration. According to the hypothesised genetic
decomposition for integration, the underlying network consists of both schema for
functions and schema for differentiation. APOS theory was then used to look at

students’ responses and answers to relevant techniques of integration.

8.2.2.1 Procedure regarding integration by parts

Successful application of the formula [udv=uv— [vdu, the technique of
integration by parts, depends on correct assigning of functions within integrands to a
‘U’ and a ‘dv’. Students seemed not to connect their choices for a ‘u’ to the analytical
knowledge of functions. There was a sole reliance on algorithms contained in

textbooks. For example, out of the 16 students who chose a correct ‘U’ in the
X
integral fxez dx , only one referred to the nature of functions when justifying the

choice. The rest of the students limited their arguments to the priority order as

stated by Stroud and Booth (2007), that it is: (1) Inx, (2) ™ and (3) €** (p. 837).

Students knew the priorities for a ‘u’, however, the underlying conception for such
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priorities was lacking. Presented interpretations were mainly procedural and were
induced by types of functions in relation to the known priorities for a ‘u’. There was

no reference to the behaviour of functions when integrated or differentiated.

The shortcoming of not analysing the nature of functions in the integrand
subsequently impacted on responses to Iltems 5.4 and 5.5, which also required the
technique of integration by parts. Since the integrals ftan‘lx dx and flnx dx
were not included in the table of standard integrals, students could not readily
discern integration by parts as an appropriate technique for these items. The
tendency was not to attempt them, while other students presented errors that
highlighted serious gaps in the conception of the overall integration procedure. Such

gaps included the writing of derivatives of the integrands as a solution, as well as the
omission of the chain rule when differentiating tan™'3x. Students’ difficulties with

handling the integrals | tan™*3xdx and [In(x? —x+ 2) dx emanated from
the lack of coordination of the nature of functions that are being integrated into the

technique of integration by parts.

A different observation was made in the focus groups when students worked on the
same problems. While they still could not provide reasons for assigning a given
function as a ‘u’, they readily identified the need to use integration by parts and
proceeded in an acceptable manner for both the tasks of Items 5.4 and 5.5.
Exhibited errors, where they occurred, pertained to incorrect use of the chain rule for
differentiation as well as flaws in basic algebraic procedures such as completing a
square. This observation indicated the significance of diversifying interactions in the
development of mathematical conceptions, as well as triangulating strategies in the
collection of data. Nonetheless, students’ conceptualisation seemed not to be

extending beyond the step-by-step procedure of integration by parts.

The conclusion made was that students displayed integration as solely an action.
There was no construction of meaning attached to the manipulation and application
of the rules. Students could not, for example, justify the order of priorities for a ‘u’
when applying the technique of integrating by parts. Choices for a ‘u’ were based on

the textbook stipulations and not embedded in mathematical conceptualisation of
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functions involved. Consequently, students responded mechanically to mathematical
challenges presented. Students had difficulty in handling tasks that could not be
readily assimilated to their rules and algorithms. According to APOS theory, they
were still at the action stage of conceptualisation for this aspect. Their
conceptualisation depended on symbols and procedures, without internal reflections

on embedded objects and processes.

8.2.2.2 Procedure regarding the reverse of a chain rule

Items 5.1, 5.3 and 5.6 of the activity sheet were focussed on the technique of

reversing the chain rule when integrating. While most students were able to interpret

5l

']’1*'."';
— dx and
X

the composition of functions in Items 5.1 and 5.3, which were f
N

e*
fmdx respectively, they depicted difficulties in handling Item 5.6 which was

1

—sin "x
fcf Nepres dx. The result was that only two students succeeding to solve Item 5.6.

Regarding Item 5.1, three students presented correct responses while 12 either did
not respond or presented completely incorrect responses. The common mistake in

this item was the failure to balance the constant 2’ which became necessary from

differentiating the angle, 4/x . The derivative of 4/x is e which necessitates
v

multiplying by a ‘2’ in order to retain the original integral. Another identified error was
-1
in the actual determination of the derivative of /x . Students wrote (x)= instead of

1 = . . . .
Er[x) = but were able to realise their mistakes when probed during follow-up

interviews.

On the other hand, Item 5.3 seemed to invoke an object conception. Eleven
students provided a correct response where all requisite manipulations were

performed mentally. Follow-up interviews confirmed that students had performed the

differentiation mentally and ascertained that the integrand satisfied the form f’; .%}dx

Students displayed the object conception of Item 5.3 since they: (1) had

interiorised the action of differentiating e* + 1 into a process thus performing in
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e
mentally; (2) had encapsulated the whole process of integrating ey and could

action on it as an object. Although their approach was procedural, it seemed to be
providing them with skill and routines necessary in using techniques for integration in
this type of a task. This finding agrees with Rittle-Johnson and Alibali (1999) who
maintained that procedural learning may improve conceptual adeptness when

students start to reflect on the application of a procedure.

Some students displayed gaps in their schema for inverse trigopnometric functions,

including both the notation and differentiation of these functions. Responses to Item

5.6, where students failed to interpret the symbol -1’ in the notation sin‘lx,
displayed a lack of ability to interpret mathematical symbols. This observation
agreed with the assertion by Huang (2010) that for the successful application of a
procedure, a student should possess the comprehension of mathematical symbols
as well as understand the symbol syntaxes. Students who misinterpreted the

i — . . i a—1t1
symbol -1’ in SIn"'X produced solutions such as [ sin~x,dx = —{ﬂ“ﬂl ,

indicating that they were interpreting ‘-1’ as denoting a power of the sine function
instead of an inverse. Consequently, the failure to understand the meaning of the
index -1’ resulted in wrong attempts of Item 5.6. The lack of underlying conceptions,
therefore, resulted in students failing to access the action level of cognition for this

item.
8.2.2.3 Procedure regarding integration by first completing a square

Out of the 20 students who identified the completion of a square as the technique to

use when handling the integral f -, 13 presented the correct solution to the
ps ]

x:—Bx+32
item. Among these 13 students, five could justify their choice for the technique while
the other eight simply provided a correct solution. On the overall, 12 students could

not provide the reason why they had to first complete the square in this item.

Responses indicated that students knew that they needed to complete the square.
They also knew that the resulting integral would be an inverse of a trigonometric

function, where the use of standard integrals applies. The response by one student
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that “use completing the square....find our A and Z to use the derived formulae”
confirmed the existence of such knowledge. The tendency by students was to state
the approach instead of providing reasons for deciding on it. Interviews with those
who had provided correct solutions confirmed assertions that students tend to focus
on procedures to solve tasks, thus presenting fragmented understanding (Mabhir,
2009; Pettersson & Scheja, 2008). A similar observation had been made from the

participants in the first phase of the study.

Correct identification and use of a procedure indicated a level of procedural
adeptness with the technique under investigation. Students could readily identify the
denominator as being unfactorisable thus requiring the method of completing a
square. In most cases, students could not provide reasoning behind the approach
chosen. Nonetheless, they could perform the actions required for this technique.
Students had also interiorised the standard integrals for the inverse trigonometric

functions. Except for the omission of the constant of integration in some instances,

x—d

: 1 _ 1 .
they readily gave Etcm 1 (T) + C as an answer to _,r 1 dx. For this item,

(x—4)

students seemed to be at the action-process stage of APOS theory.
8.2.2.4 Procedure regarding integration by partial fractions

Similar to integration by completing the square, a high number of students, nineteen,
realised that they needed to solve integral 4(B) by using partial fractions. However,
only one student referred to the form of the denominator when justifying the choice of
a technique. Among the 19 students who had identified partial fractions as a suitable
approach, two displayed challenges with resolving a fraction. The majority
possessed the requisite skill, especially when handling a case of an irreducible

guadratic expression.

Errors included the inclination to neglect imposing restrictions necessary for the
domain of ¥ = INX. Students also tended not to adhere to accurate integral

notations such as not ensuring that the symbol ‘ [' is always written with a ‘dx’, as

well as the omission of a constant of integration while dealing with an indefinite
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integral. There were also indications of weaknesses in the manipulation of algebraic

signs. Students tended to write - # dx as —j? dx + f%dx instead of

—f% dx—j?dx, resulting in an incorrect response. Students displayed an

acceptable level of integrating by partial fraction even though with errors as indicated

in this paragraph.

I, therefore, concluded that students were relying on procedures, without exhibiting
signs of understanding. In addition, students had interiorised the procedures
sufficiently and could promptly identify and apply the technique of integration by
parts. Students possessed a complete schema for resolving fractions into partial
fractions. With regards to using partial fractions in integration, | placed them at the
action level of conceptual development with signs of advancing to process

conceptualisation.

8.2.3 In what worlds of mathematical thinking do students operate

when they internalise integration?

According to TWM theory, cognitive development of mathematical concepts can be
classified into three worlds of knowing, namely, the conceptual-embodied, the
proceptual-symbolic or the axiomatic-formal worlds (Tall, 2008). As stated before,
in the conceptual-embodied world a student reflects on properties and presentations
of a concept when formulating interpretations. Proceptual-symbolic world involves
the shift of focus from physical meaning of symbols to mathematical concepts to
think about (Tall, 2004a). The axiomatic-formal world emphasises the use of formal
definitions to concepts which applies in advanced mathematics and was, therefore,

not considered for this study.

When presented with integrals that required the reversal of the chain rule, students

displayed mental constructions that were based on detailed discernments and

considerations of the functions involved. Students could mentally identify the f(x)

and [ (x) in the integralsfiﬁdx and f;dx, hence decided on an
x x Inx
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. . [ o .
appropriate technique to use. Results for fﬁdx indicated the recognition of the
X

1
exponent ‘1’ in f(x) = Inx , thus correctly providing . (Inx)* + C as an answer.

Misconceptions with symbol syntaxes resulted in some students presenting In x2
instead of In®x , an indication of weak precepts of algebraic symbols. When working

in focus groups, basic errors such as the omission of constants of integration were

not displayed.

The results indicated that students employed two approaches when dealing with the

1
integral fmdx. The first approach was the use of the ‘U’ substitution method,

while other students opted viewed the given integral as an integral of a multiplicative

inverse for f(x) =Inx. The ability to transform integrals from the ‘X’ to the ‘U’

variable indicated proficiency with symbol manipulation. The ‘U’ substitution requires
accurate analysis of a composition in the integrand and correct performance of
differentiation. While signals of gaps were noted in handling restrictions of the

domain of the function ¥ = Inx, most observed responses indicated that students

were reflecting on the properties of the integrands and could also handle symbolical
representations. Students were, therefore, deemed to be operating in both

conceptual-embodied and proceptual-symbolic worlds of mathematical meaning.

Alternatively, the results indicated challenges in some students who opted for the

1 )
approach of viewing fmdx as f%dx The failure to conceive the

.\ . 1 . . _ . . d 1
composition in — , which is (Inx) 1, as well as errors in determining —(—)
Inx dx \nx
indicated weak conceptual-embodiment. Firstly, students could not perceive the

1
embedded representation of a power in T As a result, they were persistent on
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1
differentiating T ! instead of [71X. Such an error signified poor perceptions of

properties of integration. Secondly, gaps were also displayed in the underlying

. . o d (1 1
concepts of differentiation as students were insisting that E{E):T:x’
X

indicating a lack in the prerequisite knowledge necessary to carry out integration.

Nonetheless, results showed that the levels of operation for students were varied.
The presentation and argument by Zola indicated advanced entrenching in both the
embodied and symbolic worlds of thinking. When Zola could not justify is approach

verbally, he opted for symbolic representation. His expression of the integral
; E - — E i — E -1 i i
fx[M dx as ft : Inx)dx = (x X EM) dx —_,r[x X [Inx]™")dx indicated

an in-depth understanding of the integral. In addition, he succeeded to use the
language of mathematical symbols to convey his thoughts. He was using symbols

as thinkable concepts. A similar observation was made with respect to Thembi when

: . E . : .
working with fmdx. Thembi could not state the relationship between the

numerator and denominator functions verbally, but relied on symbols to explain her

line of argument.

With regard to integration by parts, students displayed the ability to manipulate
symbols and embedded procedures. For example, the technique of integration by
parts gives rise to a ‘U’ and a ‘dv’ which require differing operations. Students
managed that section of the task successfully. The tendency was to focus on step-
by-step procedure to get a solution, subsequently omitting critical underlying aspects
such as proper notation and correct differentiation. Students could work with
symbols, the actual procedure and emerging concepts within the technique of
integration by parts. They were using symbols as thinkable concepts, thus operating
at a proceptual-symbolic world of mathematics learning (Tall, 2007). In short,

students possessed the elementary procept for the technique of integration by parts.
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Challenges observed included: (1) misconceptions with the syntax of symbols where

some students expressed Inx as Inx?, (2) failure to recognise embedded

compositions such as (Inx)* and (Inx)™! when re-writing the integrals as
1 1 1
f(i'nx .;jdx and I(E.;)dx respectively, (3) sloppiness in using the symbols of

integration and errors in the use of basic differentiation rules and (4), gaps in the

underlying knowledge and skills such as the use of the chain rule in differentiation.

8.2.4 What genetic decomposition can be proposed for the
construction of meaning in integration?

In Chapter 3, | provided a hypothesised genetic decomposition (HGD) for integration.
In it | proposed that, for integration, students need to have complete schemas for
functions and differentiation. For the action level of conceptualisation, | suggested
that students should be proficient with the use of algorithms, including the
understanding of symbols of integration. The interiorisation of steps in the
algorithms is realised when a student can readily identify the most suitable technique
applicable to a given task and apply it with precision. Such interiorisation results
broadly from the ability to reflect on the properties of integrands involved and

connect such reflections to symbols or techniques applicable.

Results confirmed that schemas for functions and differentiation were pre-requisites
for learning integration in engineering mathematics. In particular, students require a

complete schema for functional notation in order to be able to make a distinction

between entities such as f 2 (x) and ﬁ C [f(x)]" and f(x™). Students should
X

also have developed an object or process conception of a function which will enable
them to decipher and reflect on fundamental features such as domain and graphical
representations. Furthermore, students should possess a process conception of the
composition of functions in order to be able to identify and interpret composite

functions within integrands.
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For the derivative schema, students should have an object level of conception for
differentiation. Such conception should assist students to consider the behaviour of
functions when applying techniques for integration such as integration by parts. In
this case, the differentiated ‘dv’ denotes a process encapsulated into an object.
Integrating the ‘dv’ will, therefore, symbolise further action on the said object. These
observations led me to subsequently revise the HGD for integration as shown in

Figure 8.1.



180

Schema for functions
(contains aspects such as
functional notation, graphs and
domains, composition, syntax of
symbols)

Schema for differentiation
(object conception of
differentiation)

&

~

-

Action

1. Defines an integral as an anti-derivative
b
_ and restricts fa f(x)dx tothe FTC >
_|
o 2. Depends on symbols and step-by-step %
5 procedures to solve integrals o
< Py
n
a)
i N / 5
o 4
o S
E / Process \
1. Defines integral as an oriented area
2.Readily identifies and justifies the approach |:
:I used to solve tasks
’c&; 3. Competent with techniques of integration E
2 g
(]
g - / >
|_
o2 %)
I © C
w © -
[T >
Ll GE) -
< 4 Object N %
° .
=~ Actions performed mentally and can be
reversed; views integral as an area |:
_|
2 \ / 7
) <
N >
lE'x:J Schema/Thinkable concept ,El'
% Making connections to other thinkable 1>|
O objects O
O pzd

Figure 8.1 Model for the Genetic Decompaosition for integration
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8.3 Summary of contributions

8.3.1 Significance of findings

This study has presented mainly an APOS analysis of conceptual development when
students learn integral calculus. Existing studies had provided analysis for aspects
such as system of equations, vector spaces, function notation, concept of continuity
and the chain rule in differentiation (Brijlall & Maharaj, 2010; Brijlall & Ndlovu, 2013;
DeVries & Arnon, 2004; Jojo, 2011; Kabael, 2011; Parraguez & Oktag, 2010). In
addition, the study has identified the proceptual-symbolic of the TWM theory as a
dominant world of mathematical thinking for engineering students. Although there
was evidence of conceptual-embodiment, students were mainly using symbols to

formulate their thinking.

Also, the study indicated that students conceived an integral mainly as an anti-
derivative. Their conception was based on algorithms and was mainly procedural.
Students depended on external stimuli to construct meaning and invoke conceptual
images. Students were at an action stage in the APOS levels of cognitive
development. These contributions support the previous findings that students exhibit
procedural tendencies in integration (Huang, 2010; Mahir, 2009; Orton, 1983b).
Furthermore, the results showed that students could not define both definite and

indefinite integrals thus extending the findings by Rasslan and Tall (2002).

Lastly, the study highlighted basic algebra, functions and differentiation as some of
the mathematical concepts or structures fundamental for the learning of integration.
As a result, students presenting weak or inaccessible such structures exhibited
errors when conceptualising and tackling tasks in integration. This observation is
consistent with the assertion by Cooley et al. (2007) on the successful construction

of meaning in mathematics.
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8.3.2. Recommendations

8.3.2.1 Foundational aspects in first year engineering mathematics

First year engineering mathematics should start by the revision of algebraic concepts
such as exponential and logarithmic manipulations, completing a square and
resolving fractions into partial fractions. In addition, properties of functions such as
the notation, graphical representations and domain and range should be revised in
the preliminary lectures. Appropriate instructional design should be employed to
assist students attain an object level of understanding these concepts. Students
should be able to apply actions on encapsulated processes of factorising algebraic

expressions.

On the other hand, the object conception of all properties and graphical
representations of functions will result in students operating in the object stage of
integration. Students will be able to link an integral to the area concept, as well as

incorporate the underlying restrictions when dealing with functions such as

f(I) = Inx. As a result, the recommendation is that these aspects be included as

examinable content of the first year engineering mathematics.
8.3.2.2 Concept development in integration

To assist students in developing conceptual understanding beyond the action level, it
is recommended that, firstly, graphical representations of areas be embedded within
the introduction of the concept of integration. Students should be assisted to
develop an object conception of an integral as an oriented area. Graphical
representation will expose students to concepts of a negative area. Secondly,
reasons for techniques adopted should be incorporated when solutions are
presented. This will enhance proceptual-symbolism and build conceptual-
embodiment into the formulation of thinking by students. Lastly, it is recommended

that teaching strategies, such as collaborative learning, should be used when
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teaching integral calculus. Students performed better when working collaboratively

in focus groups than when working as individuals.

8.4 Limitations

This was a case study focusing on a sample of first year mathematics engineering
students at a university of technology. As maintained by many authors, results may
not be readily generalised to other groups of students or other universities (Baxter &
Jack, 2008; Cohen et al., 2011; Flyvbjerg, 2006). Results do, however, provide
insight to students’ conceptual development of integration, which may be considered

when designing instructional offerings for this aspect.

Also, the sample consisted of volunteering students and data analysed was obtained
from their written responses to the activity sheets, interviews held with some of them
and video recordings of focus groups. The sampling method could have omitted
informative cases that would have provided different perspectives to the
investigation. Similarly, activity sheets were designed according to the proposed
genetic decomposition for integration. Other sources of data such as responses in
official test and examinations could provide other trends not realised through this set

of activities.

Another limitation was the time factor. Although 23 students responded to the
guestionnaire, only seven could be interviewed. Some cases that had been
identified to be interviewed did not honour the appointments and, since the term was
approaching an end, they left for winter vacations.

Lastly, as stated by Asiala, Brown, et al. (1997), the genetic decomposition of a
concept is not unique. It depends on the context of the study which includes
students and their previous knowledge base and the researcher's expertise and
experience with the concept. The genetic decomposition proposed in this study is
based on a South African context of the education system. A different finding may
ensue where students’ prior knowledge significantly differs from the knowledge by

participants in this study.
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8.5 Suggestions for future research

As the case with many studies, this study identified further questions and areas for
follow-up research as presented below. These questions are meant to promote
reflective practices and inquiry among university mathematics lectures. The
intention is that, when lecturers begin to consider how the process of knowledge
construction evolves among students, they might provide instructional designs that
are responsive to the needs of their classes. Certain recommendations have been
made in this chapter. These recommendations are substantiated by findings from
this study. The suggestion is that further justification would further clarify the stand
that these recommendations advance. Some specific questions that can be explored

are:

Question 1. How do prerequisite algebraic skills affect the performance of

engineering students when solving integration problems?

This question connects the research with the first recommendation of the study. The
algebraic skills we refer to are algebraic concepts such as exponential and
logarithmic manipulations, completing a square and resolving fractions into partial
fractions. | suggest that a quasi-empirical research method be adopted using control

and experimental groups.

Question 2: How will the prior introduction of graphical functional representation

affect the conceptual understanding by engineering students of the integral concept?

In this case the research is connected with the second recommendation of the
study. The contention is that graphical representations of functions will result in
students operating in the object stage of integration. Students will be able to link an

integral to the area concept, as well as incorporate the underlying restrictions when

dealing with functions such as f(lf] = Inx. Again, the suggestion is that a quasi-

empirical research method be adopted using control and experimental groups.
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8.6 Conclusion

| began this study with an acknowledgement of the significance of integral calculus
for engineering students at a university of technology. | made the case that
exploring construction of knowledge was a new trend towards addressing difficulties
in students’ understanding of mathematical concepts. In reviewing literature, |
indicated an existing gap in research of studies, both nationally and internationally,
that have explored conceptual developments in mathematics. There is no evidence
of the application of APOS theory and TWM in integral calculus, and in particular,
within a South African context. This study was designed to contribute some work

towards filling this gap.

In the hypothesised genetic decomposition for integration, | had identified schemas
for functions and differentiation as pre-requisite for a schema of integration. Results
indicated syntax of symbols and algebraic algorithms as an additional schema. The
proposed genetic decomposition for integration has, therefore, been modified:
Students will be said to have schema for differentiation if they display process or

object conception of a derivative. Such conception includes derivatives of functions

such as [N X and inverse trigonometric functions and the use of the chain rule when
differentiating. Regarding schema for functions, students need to display object

conception of a composition of functions.
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Consent Letter for the study:
First year engineering students’ understanding of integral calculus.

You are being approached to take part in the above study. In this letter, |, the researcher, will
describe to you the aims of the study, explain what is required from you if you agree to
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The study aims at investigating what happens when a student develops understanding of
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APPENDIX B: Research instruments

B1: The activity worksheet

Understanding of Integral Calculus

Student Number

DD MM YY

Date Duration | 2 hours

Gender (Put an X in the correct box)

Type of school where matriculated(Put an X in the correct box)

Rural Ex-Model C Township Other(please
specify)

Year in which you matriculated

Symbol in matric mathematics

Notes for the participants

1. Please answer all questions as honestly as possible.

The duration of this questionnaire is 2 hours.

3. This questionnaire does not form part of your assessment, but it is for
research purposes only.

4. You may be invited for an interview based on your responses to this
guestionnaire.

N

Please Turn Over
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Item 1.

In your understanding, what is the difference between [ f(x)dx and

f: f(x)dx?

1.3 [ f(x)dx means.....

1.4 f:fl[xjdx means.....
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Item 2

2.1.1 Sketch the graph for y =+/25—x?2 :

A
v

2.1.2 How does f;v 25 — x? dx relate to the graph you have just
drawn?
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2.2. A sketch graph of y = 2x + 3 is shown below:

//////////

A\

Use integration to find the shaded area.
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Item 3

X
A student asked to solve the integral [ xezdx decided to use

X

integration by parts and chose ez for a “u”.

3.1. Was this choice of a “u” appropriate?
3.2 Please support your answer to 3.1.

3.3.  Now provide a solution for the same integral:

ltem 4
A student is given two integrals to evaluate:

dx 10
W and  (®) [

x2—-8x+25 (x—1)(x?+9)

4.1 Work out the solution for integral (A):

4.2 Work out the solution for integral (B):
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4.3 Justify the choice of methods you picked to solve (A) and (B)

Items 5.1to 5.6

Determine the following integrals:

51 [EEa 5.2 f;;dx
53 | " dx 54  [tan™*(3x) dx

et +1
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5.5 [In(x? —x +2)dx ﬁsm_lxdx

5.6 =

Thank you for your time!!!
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B2: Focus Groups discussion exercises

Understanding of Integral Calculus

The following questions are designed to explore your understanding of the concept

of integration.
Please answer all questions to the best of your ability.

» For anonymity purposes, do not write your name on any of the pages of this

worksheet.
» For each question show in detail how you obtained your answer.

» One student from each group may be chosen to present the negotiated

answers on the board.

SECTION A

ltem 1 (a & b)
Please explain to your classmates what, in your understanding, do the

following mean: (a) ff(x)dx and (b) f{ff(x)dx

ltem 2

Find the area bounded by the graph }/ = COSX and the x-axis between

T 31T
X = E and X = ? and then draw the graph of Y = COSX to

explain your answer.
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Area =

Graph:

A

v

SECTION B

Item 3 (a & b)

Evaluate the following integrals:
In each case please explain the meaning of the sign, if you can

(a) f[} dx (b) fz — dx

(x— 2) 1 x?

_ What can you say about the sign of the
What can you say about the sign of the answer? | gnswer?

SECTION C
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ltem 4 (a—d)

Evaluate the following integrals to the best of your ability, in each case
justifying why you chose a particular approach:

Inx
@ " dx .
i} () fxln.xdx
(c) f Inx dx (d) A student <’}Sked to solve the

integral f xezdx decided to use
X

integration by parts and chose €2

fora “u”.

) Was this choice of a “u”
appropriate? Please support your
answer.

(i) Provide a solution for the same
integral

Thank you for your time!!!
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APPENDIX C: Sample of interview transcripts
C1: Interview with Student 1

Student Sabelo completed his matric in a rural school in 2008 with an F pass in
mathematics (3- thirty someting). Stayed at home for a year and then enrolled at an
FET college up to an N4 level doing electrical engineering. At the university the
candidate did the bridging cause and got sixty percent . In maths 1 he got 50
percent.

(I: Interviewer; S: Sabelo)

I: You told me that you completed your matric in..

S: 2008

I: And what symbol did you get for mathematics there?

S:F

I: In 2008 which syllabus was it? Was it graded in F’s or in 1’s or 2's?
S:Ya,in1sor?2’s

I: So You got..

S: 3.

I: So you got a three, a thirty something?

S: Yes

I: Then you went to..

S; 2009 | was at home. 2010 | was studying at Berea Tech

I: Ok. What were you doing at Berea Tech

S: N4

I: N4. And which subjects were you doing for your N4?

S: Electrical, Electrotechnics, Electrical Eng Science, Maths and Electronics.
I:And then at MUT did you do Pretech?

S: Yes

I: Ok, And what did you get for your Maths in Pretech?

S: S sss.. | think,..... angisakhumbuli, it’s sixty or fifty something.

I: Ok, alright, alright. And then in your Maths |, ‘cause this must have been Maths 2.
In Maths 1 can you remember how you fared?

S: Ya, | think it was around 50.
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I: As well.
S:Ya
Referring to item1:
Item 1. In your understanding, what is the difference in meaning between ff(x]d.x

and [7 f(x)dx ?

I: OK fine. Ok. Now la we were talking about integration. | don’t know whether you
still remember this. The first question was: What is the difference between these
two? And | see your responses here. My main interest to people here is to find out
what is integration, when one sees integration what comes to their minds?

S: Mhm...(silence)....so....uma..
I: Ok you can speak in IsiZulu it’s fine

S: So Uma usebenzisa igama elithi integration, | don’t think kwi basic English like
uma nikhuluma. Kughamuka imaths nje kahla kahle.

I: Kughamuka iMaths, in your case. And what in Mathematics?

I: Kughamuka iMaths, kughamuka ini in Mathematics?

S: Like, you mean, ubuza....

I: Ukuthu uma kuthiwa integral, integration, yini, what is it, in your understanding.
S: Like ngiya understander ukuthi ama integration kahle kahle ahlukile, so...

I: Ok

S: So kahle kahle kughamuka isign ye integration, then i function then i instruction
ukuthi integrater ngayiphi like inhlobo ye integration, like integration by parts,

I: Ok Fine, Mhlambe what | want to know is that when you are asked to integrate,
what is it that you are actually asked to do? When you are asked to integrate, kusuke
kufunwa ini,.... ye function?

S: What | know is that when you integrate kahle kahle you are doing i inverse ye
differentiation.

I: Ok. Now here we were given this integral in (B). And then, of course there is a
difference between these two, and | see your response. What does a and b
represent, in your understanding?

(1t

S: Like when u integrater, then you subsitutor u “x”, then you minus then you

substitute by b, by a and b.

I: What do we call u a and b?
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S: What | know is that kukhona imaximum value ka x then a minimum value ka x.

I: And, that is interesting that we say there is a maximum and a minimum, because
that implies comparison somewhere. It's a maximum where?

S: Because it is written above.

I: Ok. Let us move to the next one (Referring to item 2, 2.1.1). First | asked you to
sketch this graph, but | think | did explained how this graph should have looked like
afterwards. And | asked this question: What is the relationship between this integral
and the graph that you have drawn? Firstly, what would have been the correct
graph? What type of a graph is this one?

S: Afull circle
I: Not very correct, because there is a sgr sign. It is a semicircle. Is it lying above or
below the x-axis?

S: Oh...above.

I: Oh above, that’s correct. So we were supposed to have something like this only.
The second question was: What does this mean as far as our graph is concerned?

S: This whole..?

I: Ya, the integral

S: Integrate i function(silence), then you find the minimum and maximum i value ka x
I: And then you subtract.

S:Ya

I: Ok. Then | gave you this one...(Item 2.2).The question was: Use integration to find
the shaded area. This is what you did. Is it true that when you do this you are
finding the area?

S: Ya, itis true.

I: I's true. So if | go back to the previous question, what is then the relationship
between the given integral and the graph?

S: We are finding the area that is being covered by the graph.

I: Where

S: Above the x-axis

I: What guides us on the location of the area? What tells us where the area is?
S: The minimum value ka x, which is 5 and 0, the minimum and maximum.

I: Where is 5 and O on the graph itself?

S: Here(Pointing on the y-axis)

I: The 5 and 0, are they the X or Y values?
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S: They are the X-values
I: So, which area will we be looking for then?
S: This part, (pointing at the portion in the first quadrant).

I: Ok, in the first quadrant. That’s correct. | am not going to ask you on the
correctness of integration as yet. The next question was interesting. (Reading Item
3). Your answer was no. Why, what was your reason?

S: | can choose any of the function to be used because both of them can be
integrated. But according to the rules of integration by parts, we can choose x to be
u.

I: Ok. What are those rules? Do you recall them?

S: I don’t think it is the rules, but they guide us to choose the simplest function to
differentiate.

I: So how do you choose the simplest function? You look at the function that is easy
to differentiate, easy to ..what do you look for?

S: Easy to differentiate
I: So, between these two functions, x and exponential function...?
S: x is easy to differentiate

I: Ok. So that should be the criteria. What about the exponential function, | thought it
would be easier.

S: Ya. Both of them are easy....it's just that...like..abant’abaningi bayadideka when it
comes to i function with e.

S: To differentiate it?
I: Ya
I: How do they show ukudideka?

S: Angazi kahle kahle. Kukhona esinye isibalo esakhishwa uDr Maal, sasinalo e.
Wayengakasikhumbuzi nje ama rules, wathi asisenze abantu bahluleka.

I: To differentiate it?

S:Ya

I: Ok. By the way, what is the derivative of?
S:e*? Its....it's e.

I e*. Itse”.

S: Differentia...um’ u differentia.....eyi ukuthi...oh ya

I: It remains the same. Actually u e is that special base
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S: e is constant
I: So here your criteria is x is easier to differentiate
Moves to item 4

I: Are there any similarities? You said yes. And your answer was... which constant
are you referring to?

S:The numerators

I: Differences? (The student point at the highest powers). You looked at the powers.
Ok fine. For techniques, why did you choose “completing the square” for A?

S: Ngoba awekho ama factors la.

I: Because you can'’t factorise. In B: What technique do we use?
S: We use partial fractions.

I: And why?

S: Mh...mina engikwaziyo ukuthi once kwa khona ma products.

I: Actually ama factors.

S:Ya

I: Then you solved it, you completed the square. And here you used used partial
fractions as you.

Moving to 5.1 — 5.6

I: What is important for me is how you find the answer. What were you doing in this
step?

S: Oh ngihlukanisile, ngisuse u x ngawuletha ngaphezulu, then kwaba i product.
Uma usebenzisa....mh..uya.. then... ama standard integral, gase ngasebensiza
mastandard integral. Eka sine

I: Athini

S: Eka sine

I: What did you do with those?

S: Angithi Mam, i integral ithi... ifunction x iderivative
I: | derivative of??

S: Of the angle

I: Ok, good. What is your angle here?

S: langle iwu.... x=



I: Good. And so what is the derivative of that angle?

S:lwuxz
I: Ok. Konje how do we find the derivative?
S: Si minasa ngo 1 i exponent.

I: Kuphela. Uma ku wu x® what is the derivative?
S: x” kufanele kube wu x*

I: Ok, What is the derivative of 37

Y

S: Ux”
l: Ok. Of Zx??
S: (Laughing), | am sorry Mam, of x® s 3x°

I: So xz, what is the derivative? You said you angle is?

S: Kufanele kube wu... x%.

B | =

I: Ok. So there is that% missing here.

S:Ya

I: We just missed it kwi differentiation.

S:Ya.

I: So here(item 5.2), what did you do here, tell me?
Silence

I: You used ling division.

S:Ya.

I: Changet that to

S: Ngithe xz ngase ngenza ilong division ngathola u Xz

220
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C2: Interview with Student 2

Student 2 completed his matric in a rural school in 2010, obtaining a D for
mathematics. He joined the university the second semester of the following year and
did the bridging course obtaining 60%. He got a 50% for mathematics 1 and has
since obtained a 56% for mathematics 2.

I: What do you understand by integration?

S: If you differentiate it's like you are going forward and if you integrate it’s like you
are reversing what you have differentiated. The integral is a vice versa of
differentiation.

I: What do limits mean?

S: The first place just ignore the limits and putting them outside the brackets, then
do your calculations. Then to the last step use the limits by opening the brackets
and substitute the limit b to the first bracket then minus then substitute the limit a to
the bracket of the original equation

I: What is that value that you get give you?
S: It gives you.. if | am not mistaken, it's a gradient.

In item 2, the student could not draw the graph of the semicircle, so the focus was
on the meaning of the definite integral.

S: The definite integral has limits, so it might shift the graph.

I: What do the limits give us?

S: They give us the values of x from point a to point b on the x-axis.
I: Initem 2.2, what are the boundaries of the shaded area?

S: The boundaries it's 1 sorry it's 2, or | can say it's -1.5 and 2.

I: Where does the shading start?

S: Sorry, it's -1 here.

I: Is the used integration the way of calculating the area?

S: Yes.

I: So, how does it say about 2.1.27?

S: Compared to this one, this one is like an expression, you have got two terms and
the root. Some formula must be applied when there is a root like this one to solve it.

I: But what would you be finding when you calculate all that?
S: You will be finding .....it'’s the area of the shaded part.

I: So what was supposed to be a response to 2.1.27?
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S: The relationship is that from here it's ranging from 0 to 5. The graph is matching
this equation. The x-axis is 5 and the first point of the x-axis is 0.

l:ltem3: Was it correct to use integration by parts?

S: When you have the two terms and maybe the other term has a function itself.
And given the function maybe the two terms and some other function has a function,
maybe the powers of a function.

I: Was it correct then here?
S: Yes
I: Is the choice of u correct? Please support you response

S: If you use integration by parts some pat should be u and dv so that you can
substitute u in the equation because u will make the x and dx will make the.. so in
this equation if you come to du du is 1 so if you come to u u is the In of x. Officially
this cannot be solved by integration by parts.

I: It can’t be solved?
S: yes it can’t be solved.
I: But in your response you wrote the first property... what did you mean?

S: Right...if u look at u, (reads the response again). Oh.. remember in class there is
something which guides you on which to apply u. The first is Inx, second a power of
x..In this case there is no In and no power of x, but there is a power of e which is the
first property for u that was given in class.

I: Which functions are multiplied in this item?
S: Itis x and e¥/2. Yes

I: The first one is x. In the priorities for u, wich one will the x correspond to?
S: The second one.

I: What do you do to your u to get du>

S: From u | integrate it. Ya | differentiate it

I: And how do you get back to v from dv?

S: | integrate it.

L |

I: You were integrating ez. How did you go about?

S: Yes, if you integrate the number, the number you take out of the integral sign,
integrate and times by that number. So | first integrated this number, 1 first

integrated = then the % comes outside and integrated and then multiplied by

I: What did you do to the e itself?
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S: To the e itself...

I: Maybe, what function are you integrating here?

k.

S:ltis e=

I: So what did you do with the e?

S: Thee...

I: From what you did you just integrated = and not e: Ok let us move to Item 4.
What are the differences between A and‘B?

S: If you are given this form, you do it until you reach the step where you have to
complete the square then find these other equations, the standard equations?

I: Which form are you referring to?

S: By looking at the denominator, if it is like this you have to solve it to reduce it so
that it has at least two terms. B is right because there are two terms. Then we apply
it in this form. These two require different formulas.

I: When do we complete the square and when do we write it as factors?

S: If you complete the square, you are trying to reduce the equation. There is a
formula that requests you to put A and B.

I: What makes you decide to complete a square?

S: This equation tells me that the things | must use here is either | find the values of
x or complete the square.

I: So why did you choose to complete a square here and not find the values of x?

S: Actually | just use it as a standard that if you come across an equation like this,
you just complete the square, because if you find the values of x, it’s like you are
changing the given equation.

I: In doing B, this integral: fﬁdx arose. What are you doing here, then?

S: Here, you try to make the denominator and numerator common. For the second
one, there is a formula that is used to solve it if it is in this form. We first distribute it
over the denominator and then apply formulas to make it simpler. There is a rule
that if you have something like this you can equate it to something and substitute
other values.

I: Which other values did you substitute here?

S: Like if your equation comes to this form, then there is a formula to be applied.Like
this one, this is the.. then if you come here, you just integrated then here there is
some formula, arc tan..Then here

I: So this comes from the formula?
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S: Yes this comes from the formula.
I: You said here you just integrated. How did you integrate?

S: If something is A/B, then you integrate by.. you are trying.. oK if you look at the
denominator and differentiate it, you get 2x which you have at the bottom part. If you
differentiate the denominator you get the numerator, so we ..if we integrate this part,
officially it will be like this one. So we’re taking the original formula, if when
differentiated gives us the numerator.

I: And the In, where does it come from?
S: It comes from that if something is A/B then it should be the In of a function.
I: Item 5: Briefly explain what you did here?

S: Here if you have this, the most easy part is to ..changed the root to the exponent
half

I: Thereafter?

S: Thereafter, the integral of sinx is —cosx. | integrated sinx and got the —cosx. But if
you apply implicitly, you have to integrate again. If you integrate x= , it will give you

something like, so officially tells us that this alone is a function and this is its
derivative, so you retain the function.

I: The x= is a derivative of which function?

S: Of this (pointing at sgrt x after the cos)

I: In5.2, can you explain what you did?

S: (First simplified the exponents and then integrated)
I: In5.3?

S: If you differentiate the denominator, it gives the numerator, so you just retain the
function.

I: In 5.47?
S: The integral of tan arc is sec arc, then you differentiate 3x.
I: Item 5.5?

S: Then if it was 1 over x, then if you trying to .. because if you integrate you are
putting it in its original place. Then it should be x(Referring to 1 over x). So for this
one if you are bringing it to its original it will be 1 over the denominator. Then you
complete the square.

I: Do we still have the integral sign though?
S: Yes we still have an integral sign.

I: So how did it change from In to 1 over?
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S: By In, what it means is that there are two things involved, like, ..officially In tells us
that there is a 1 over that function.

I: Then 5.67

S: If you look at some example that we looked at, we use the same method we used
there to split this into its simpler form. ...If the power is positive half, if you raise it up
it will be minus.

I: Then what did you do here?

S: | just opened the brackets for minus half.

I: Now in your Maths 3, are finding your Maths 2 helpful?
S: Yes itis helping me a lot.

I: What sections are you looking at presently?

S: The first order and second order differential equations.

I: Thank you very much

C3: Interview with Students 3 and 4

Shonelo matriculated in a rural school in 2010 obtaining a D in Mathematics. He
then did a bridging course at the university. For his maths 1 he got 53%.

Bongani matriculated in 2006 in a township school, and stayed home for two years.
After that he did Electrical Engineering (N3-N5) at a technical college. At the
university he was admitted directly to S1 where he obtained 60% for his
mathematics. This student had done integration at N4 and N5 levels at a technical
college.

I: What is it that we are looking for when we are integrating?

SS: | can say that we are reducing our equation.

I: From what to what?

SS: Eish

SB: When we talk about integration, we are looking for a smallest value possible.
I: Smallest value of what?

SB: Let’s say maybe like you are given a certain application, and then if you try to
solve the problem so then the integration is helping us to find that value.

I: In the two integrals in Item 1, what is the different in meaning?

SS: | think the difference is in A we are integrating with respect to x, while in B we
integrate w.r.t x wher a and b are our x values.
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I: And so what do we do with those a and bs

SB: It's where we substitute with those given values of x after integration.
I: And what is that giving us as far as the function is concerned?

SS: It gives the constant value.

I: Moving to item2, you were asked to draw this function.

SB: Itis a semicircle.

I: What tells you that it is a semicircle?

SS: | think this is a Pythagoras equation.

I. Then what is the relationship between the draw graph and the given integral.
SS: | did not know this thing | wrote here.

I: What does this thing gives you?

SS: We can draw the graph of the semicircle and then in the equation we substitute
with the values of x they gave us.

I: In the graph what does this integral define?

SS: | don’t understand.

I: In 2.2, can you use the integration to find the area?
SB: Yes.

I: How do you use it?

SB: You first start by integrating the given function after that then you substitute by
the given value between that particular part of the graph.

I: So back to item 2.1, what does the given the integral mean for the graph?
SB: We are requested to find the area under the graph.

I: Now item no 3, how do you know when to use integration by parts?

SB: When you have two functions

SS: We use IP when you two functions where you have u and your ....if you have two
constants, two values or two functions. But it depends on u and your v, just because
we use the formula to calculate hthis thing. You have to integrate another and
differentiate another. So you have to see in your functions that you can differentiate
it or integrate it. If it possible you can use the IP.

I: If it is not possible??

SS: You can use another method. You can use the product rule. Eish we are talking
about integration here.
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I: In this item, why is the choice for u not correct in this item?

SB: Because when you want you first prioritise by starting with In x, x and
exponential function. So here the choice is wrong, so we must choose x as our u.

I: Why are those priorities for u the way they are?
SS: We do not know why In is the first choice, etc. We just know the priorities.
I: Explain your solution Sbonelo.

SS: Here | put u as my x and then du, then | integrate this x, to get my du just
because the equation grouping is holds this thing. | take my x as u then my dv is
equal to this one. Then | integrate this one then | differentiate my u. Then |
substitute in my equation to get this eventually.

SB: 1did not attempt it because | had forgotten how to do after this step because by
the time we were doing this thing it was long time ago so | had forgotten.

I: What if you need it now for your maths 3?
Sh: I will go back and remind myself
I: Item 4: What are your observed differences?

SB: A is integration by completing the square and B is integration by adjusting the
numerator.

SS: B is partial fraction.
I: Why is A suitable for completing the square?

SB: Since we do not have the common factors of this equation, we can complete the
quare,

l: In B?
SS: We can use partial fractions because we have factors.
I: How do we complete the square?

SS: If you complete the square you have to use b of this equation, then minus it
times 1 over two minus this b times 1 over 2 squared plus 25.

I In4.6:

SS: we used partial fractions.

I: Bongani you did not attempt it at all?

SB | was lost. | forgot the technigues we use.

I: Do you find these techniques appearing in your Maths 3?
SS: No they do not appear.

SB: But for partial fractions, the equation of coefficients does appear.



228

I: What do partial fractions help us to do?
SS: To find the values of A, B and C.
I: What are partial fractions?

SS: It’'s an equation that we use to find our values and then go back to substitute. It
is the easy way to find our values.

I: Explains the concept of partial fractions

SS: Let me ask something, if | add these two fractions will | get the original one?
I: Assist the students to add the fraction.

I: Let us move to 5.1

SS: In 5.1, since there is this exponent | spit it using the quotient rule.

I: How did you use the quotient rule?

SS: | said this one time the integration of this one, minus this one times the
integration of this one, divided by this one squared.

I: When do we use the quotient rule?

SS: The quotient rule says....writes down the derivative of a quotient of f(x) and g(x).
I: What does ‘prime’ mean in this rule?

SB: Prime stands for the derivative.

I: What would you be looking for when we use this formula?

SS: | think it's when you differentiate.

I: Good and what are we doing here?

SS: We are integrating, but it is difficult to integrate something that is in this form
(meaning a quotient). We have to split this form first, using integration.

I: So, how did you split it?

SS: Here | used this formula of integration, [

;r(.ff} , ..... | then divided by n+1

I: What would you do here Bongani?

SB: | would use integration by parts. And then | will express u as x exp -1/2.
I: In 5.3, you just wrote the answer. How did you get it?

SS: | just guessed.

I: In 5.4, what did you do?

SB: This one we use trig functions as given from the data table.
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I: What is happening here?

SB: The person is differentiating. Are you allowed to use differentiation when you are
expected to integrate?

I: You are expected to integrate.
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APPENDIX D: Samples of students’ responses
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