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Abstract 

The success of the wavelet transfonn in the compression of still images has prompted an 
expanding effort to exercise this transfonn in the compression of video. Most existing video 
compression methods incorporate techniques from still image compression, such techniques 

being abundant, well defined and successful. This dissertation commences with a thorough 

review and comparison of wavelet still image compression techniques. Thereafter an 
examination of wavelet video compression techniques is presented. Currently, the most 
effective video compression system is the nCT based framework, thus a comparison between 

these and the wavelet techniques is also given. 

Based on this review, this dissertation then presents a new, low-complexity, wavelet video 
compression scheme. Noting from a complexity study that the generation of temporally 

decorrelated, residual frames represents a significant computational burden, this scheme uses 
the simplest such technique; difference frames. ill the case of local motion, these difference 
frames exhibit strong spatial clustering of significant coefficients. A simple spatial syntax is 
created by splitting the difference frame into tiles. Advantage of the spatial clustering may then 

be taken by adaptive bit allocation between the tiles. This is the central idea of the method. 

ill order to minimize the total distortion of the frame, the scheme uses the new p-domain rate­

distortion estimation scheme with global numerical optimization to predict the optimal 

distribution of bits between tiles. Thereafter each tile is independently wavelet triinsfonned and 
compressed using the SPIRT technique. 

Throughout the design process computational efficiency was the design imperative, thus leading 
to a real-time, software only, video compression scheme. The scheme is finally compared to 

both the current video compression standards and the leading wavelet schemes from the 
literature in terms of computational complexity visual quality. It is found that for local motion 
scenes the proposed algorithm executes approximately an order of magnitude faster than these 

methods, and presents · output of similar quality. This algorithm is found to be suitable for 

implementation in mobile and embedded devices due to its moderate memory and 
computational requirements. 
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Chapter 1 -Introduction 

The complexity of information communicated by electronic means is constantly increasing. The 

internet was originally a text only medium and has subsequently been used to transmit still 

images, then audio, followed by pre-recorded video, and recently real-time video. Mobile 

networks demonstrate a similar trend, with the latest generation of cellular handsets capable of 

capturing and transmitting still images. It is projected that in the near future these devices will 

communicate video data. 

The volume of data comprising a video stream is enormous. A simple 8 bit per pixel 

monochrome video sequence at the standard QCIF resolution of 176xl44 pixels demands 2 

Mb/s at 10 fps. This is beyond the capability of current fixed line or mobile networks to provide 

reliably. Thus, compression is a prerequisite for video communication. Currently, video 

compression technology is capable of producing a 'reasonable ' quality QCIF 10 fps stream, at 

20 kbps. 

2.5G and 3G mobile cellular networks continue to increase the available channel bandwidth 
with the aim of supporting the deployment of multimedia services. Standard 2G GSM networks 

allow data communication at up to 9.6 kbps. Video cannot be transmitted at reasonable 

resolution and frame rate over such a bandwidth-limited channel using existing compression 
schemes. GPRS services have increased the available bandwidth to 115 kbps, which is sufficient 

for transmission of compressed video, at a resolution suitable for display on mobile devices, 

such as QCIF. 3G networks will support wide area data rates of 384 kbps. In addition wireless 

LAN protocols such as Bluetooth and IEEE 802.11 b provide ample bandwidth to devices such 

as PDA's for the transmission of video using existing compression methods. 

However, despite the bandwidth sufficiency of modem cellular and wireless LAN channels, 

devices supporting video transmission are not extant. This is mainly due to the extreme 
computational burden of video compression. The standard video compression systems such as 

H.263, H.263+, MPEG-2 and MPEG-4 all rely on complex motion estimation schemes to 

achieve compression. The computing power required to execute these algorithms is evidenced 

by personal computers being able to compress video in real-time only in recent times. The 

computational resources available to typical mobile devices are significantly less abundant than 

to a Pc. Although custom video compression chip sets are available, these have not been 

incorporated in general technology due to cost, power and size constraints. This technical 
barrier has prevented the deployment of video-capable devices in cellular, · and other mobile 
networks. 

The work presented in this thesis aims to overcome this limitation by abandoning the present 
motion estimation and compensation paradigm, in order to produce a video compression 
algorithm capable of execution on a standard DSP. 



11.1 Video and Wavelets 

This section will briefly define video and discuss how wavelets have advanced from a 

mathematical curiosity to an engineering tool in the field of image and video compression. 

1.1.1 Images and Video 

A still image on a computer consists of a rectangular matrix of points, called pixels. Each pixel 

has associated with it a number that represents the colour of the corresponding point in space on 

the image. We will only consider greyscale images here, and in this case the pixel number 

represents the luminance, or intensity, of the image point. A video sequence is a series of 

frames, each of which is a still image. Each frame is the spatial representation of the scene at a 

particular point in time. If the frames are sufficiently close together, the human brain 

interpolates the still images into a moving scene. This arrangement is !mown as the raw video 

representation. This is the representation required to communicate video information between a 

machine and a human. 

Any relationships within a frame are called intra-frame relationships, and are usually concerned 

with spatial or space-frequency concepts. Relationships between frames are called inter-frame 

relationships and are usually related to temporal or time-frequency notions. The relationships of 

interest for this work are similarities, or stated differently, correlation structures. The art and 

science of compression is to describe an image or video succinctly, in terms of these correlation 

structures. This compressed representation is used to store and transmit images and video 

between machines. It is evidence of the ascendancy of the human mind that the bandwidth of 

raw video, through which we perceive, is truly massive by comparison to the compressed 

representation required to allow machines to communicate timeously. 

The ongoing effort in the image and video processing research community is to expose these 

correlation structures on one hand, and provide syntax for expressing them on the other. This 

vague brief has led to a plethora of techniques, standards and methods being developed. 

The first class of compression schemes is termed lossless coding, as the original image (or 

frame sequence) may be recovered exactly from the compressed representation. The simplest 

such scheme is run length coding. Here, a sequence of repeated pixels is simply replaced by the 
pixel value and the number of times is repeated. The next level of complexity is provided by 
entropy based methods. Here a codebook is used to match pixel values with binary codes. The 

codes have variable length, and the codebook is designed so that the shorter codes are used to 

represent frequently occurring pixel values. This is the concept behind Huffman codes, which 

minimise the final stream length, under this scheme. A similar idea is used by arithmetic codes, 
but this is not explored here for space reasons. 

Other compression schemes introduce distortion through the process of compression, and are 

!mown as lossy. Naturally such schemes are capable of providing greater compression ratios 

than lossless schemes. The simplest lossy compression is scalar quantisation; which simply 

amounts to reducing the precision of the coefficient representation. Additional considerations 

with scalar quantisation include variable quantisation levels and progressive quantisation. 

Where scalar quantisation schemes provide a code for a single pixel, vector quantisers consider 
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sequences of coefficients. In general, vector quantisers replace a sequence of pixels (a vector) 

with a similar vector chosen from a codebook. The codebook is designed to minimise the total 

squared difference (termed distance) between the original vectors and those in the codebook. 

This is an extremely complex, and usually an adaptive process. 

A multitude of other ideas may be found in the literature, such as [Effe98] and [Sola97] and 

many other books. 

Often the spatial domain does not expose all the correlations that may exist. Thus several 

transforms have been explored such as the Fourier transform, the closely related discrete cosine 

transform (DCT), the Karhunen-Louve transform (KLT), the discrete wavelet transform (DWT), 

the iterated function transform (IFT, commonly lmown as fractals), and many others. 

The total signal energy is the sum of the square of the magnitude of each pixel (or coefficient) in 

the image. In the transform domain, fewer coefficients may posses a greater proportion of this 

total. This is termed energy concentration. This aids compression through quantization as low 

energy coefficients may be coarsely quantised or discarded in the transform domain and upon 

the inverse transformation to the original spatial domain the fidelity decrease may be minimal. 

Roughly speaking, as the signal energy is concentrated, it is easier to describe. 

The image compression process that is currently entrenched is based on the DCT. Details on the 

DCT may be found in the literature, as before. However, the DCT may be thought of as 

operating similarly to the Fourier transform, in that it extracts frequency information. The 

standard JPEG image compression system segments an image into 8x8 pixel blocks. The DCT 

is then applied to each block individually. It is found that in images the signal energy is 

concentrated in the low frequencies (which represent the average colour of a block), thus lossy 

compression is achieved by quanti sing and removing coefficients, in decreasing order of 

frequency. There is much more to this process, but it may be seen that the DCT exposes the 

short term spatial correlation between pixels. Syntax for describing the correlation is created 

through the blocking, and subsequent actions of raster scanning and entropy coding, which are 
not explored here. 

MPEG is the standard video compression method, and is closely related to JPEG. The intra­

frame coding is handled very similarly to JPEG, but the inter-frame aspect is unique to video 

coding. The method used is called motion estimation and compensation (MEIMC). Subsequent 
frames are compared, in terms of the blocks (usually 16x16 in this case). A block matching 

search is undertaken for each block in the temporally prior (original) frame. For each block, the 

block in the temporally latter frame which most closely matches that from the prior frame is 

termed the destination block. The block displacement between the original and destination block 

is termed the motion vector. This process is termed motion estimation, as it indicates roughly 
how objects in the sequence have moved between frames. A frame is constructed where each 

block is the block froin the original frame, displaced by the calculated motion vector, this is 

called the motion compensated frame. The difference between this compensated frame, and the 

temporally latter frame from the sequence is calculated, and termed the residual frame. The 

signal energy in the residual frame is typically very small, thus aiding compression as there is 
less information. This process is explored more in Chapter 3. 
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1.1.2 Wavelets 

This status quo has recently been under assault by wavelet transform based methods. The 
wavelet transform is considered a recent development in wavelets, with research into the field 

having started in the early 1980s [Daub92]. An introduction to the wavelet transform is given in 

Appendix A, with appropriate references, a brief conceptual outline is considered below. 

Signals captured from the real world are usually parameterised in time or in space. For instance 

an audio signal is typically expressed as a function of time, an image as a function of space (x 

and y), and a video as a function of both space and time. Transforms change the 
parameterisation; the Fourier transform provides frequency information, but all spatial or 

temporal information is unavailable in this domain. Thus the original signal domain provides 

exact spatial or temporal information, but no spectral information and the Fourier transform 
provides the exact opposite case. The wavelet transform behaves differently by providing 

approximate space/time and spectral information. Thus knowledge of a signal ' s exact behaviour 

in only one domain is traded for approximate information of the signal in two domains. This has 

proven extremely powerful for many applications. Consider an image briefly; an edge in an 

image may be considered as a step function, which is easily represented in the spatial domain, 

but requires an infinite number of coefficients in the spectral domain. Equally, an object's 

interior is well represented by a several low frequency coefficients in the spectral domain, but 

requires many coefficients to describe in the spatial domain. The wavelet transform provides the 
opportunity to describe both these image behaviours in a succinct fashion. 

- The wavelet transform was initially considered as a continuous function, much like the Fourier 

transform is continuous. Interest for engineers was spurred in 1989 when Mallat developed a 

discrete wavelet transform using FIR filter banks, based on multiresolution analysis [Ma1l89]. 

This may be considered to be analogous to the discrete Fourier transform. Interest rapidly 

soared, and the application to image coding was quickly recognised [Ma1l89,2]. The seminal 

paper for this _period, [Anto92], describes an iterated FIR filter bank which produces a subband 

decomposition of an image. Thereafter each subband is coded using vector quantisation. For 

approximately the next decade image compression using wavelets followed this model of 

subband coding. The next breakthrough came in 1992 with Shapiro's publication of [Shap93]. 

This paper describes a hitherto unrecognised correlation structure in images called zerotrees, a 
statistical inter-subband behaviour of low value coefficients. The algorithm he describes, EZW, 
outperforms JPEG substantially. Following this paper, Said and Pearlman published [Said96]; 

the famous SPIHT algorithm. This algorithm provides a better syntax for describing Shapiro's 

zerotree structure. Work based on zerotree coding using rate-distortion theory, joint application 

with other quantisation strategies as well as many other ideas continues to this time. Many such 
techniques are described in Chapter 3. The power of wavelets for image compression has been 
recognised by the JPEG body, with the recent standardisation of JPEG2000 (Section 3.3.12), 
which is based on wavelets. 

Following the general trend, once wavelets had proven useful in image processing their utility 

for video compression was brought into consideration. The natural approach was to use the 

MEIMC approach from MPEG-like coding to convert wavelet image coders into video coders. 

However, several problems with this approach have been identified. Generally, wavelet image 
coders consider the entire image, rather than segment the image into blocks which is common to 
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DCT type coders. For still image coding this has meant that the infamous blocking associated 

with ]PEG has been avoided, leading to better still image compression. However, for video 

compression the blocks have provided a useful spatial syntax for MEIMC, as explored above. 

Some algorithms have reintroduced blocking in order to gain advantage through block MEIMC. 

Attempts to code the blocks individually using wavelet techniques have proven unsuccessful, as 

the dataset is too small to allow the zerotree structure to express fully. Coding entire block 

MEIMC compensated frames has also proven troublesome as the edge effects between blocks 

interfere with the quantisation assumptions of the coders. Nevertheless the use of edge reducing 
filters, as well as other techniques, has provided gains. Another approach is to include the 

temporal dimension into the wavelet transform, thus creating a 3D transform. This approach is 

discussed along with others in Chapter 4. Although wavelet video compression algorithms of 

similar or mildly superior performance to existing standards have been developed, the massive 

advantage held by wavelets in image compression has yet to translate to video coding. The 

' grand challenge ' is to find a means of describing motion in a wavelet-friendly manner. 

1.1.3 The Rate Distortion Theory 

An underlying theme in most source coding is the rate-distortion (RD) theory. This theory states 

that there exists a relationship between the number of bits used to describe a source (the rate) 

and the fidelity of the corresponding representation (the introduced distortion). The main goal of 

this research field is to predict the RD behaviour of a source in a fast and accurate fashion. In 
general the methods proposed to date have been able to fulfil one of these requirements at the 
expense of the other. 

1102 Roadmap of Thesis 

The first four chapters of this thesis present the literature review that was undertaken in 

preparation for designing the algorithm. The following four chapters build on specific 

observations drawn from this review to propose a new algorithm, describe it, and quantify its 
performance 

Chapter 2 presents a brief overview of the rate distortion theory. The goal of the chapter is to 

introduce a recently published algorithm that performs accurate and fast RD estimation; this 
algorithm is crucial to the algorithm proposed in subsequent chapters. The background theory 
and other algorithms are presented in order to provide context to this algorithm. In addition, this 
chapter presents RD optimisation; techniques of using the RD estimate of a source to compress 
it optimally. 

Chapter 3 presents a broad literature review of wavelet image compression techniques. 

Although this work produces a video compression technique, it was found that all the wavelet 

video compression techniques presented in the literature rely on still image counterparts for 

spatial decorrelation. Thus, in order to understand these video techniques, it was necessary to 
review still image compression techniques, and this review is presented here .. 

Chapter 4 presents video compression techniques. The current state of the art is presented 

through a brief review of the H.263 and MPEG standards. Thereafter a review of wavelet video 
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compression schemes proposed in the literature is presented, and compared to the standards. 

This chapter highlights the challenges faced by the wavelet transfonn in competing with the 
DCT techniques, owing to the difficulty of motion estimation using the wavelet transfonn. 

Appendix A presents a mathematical review of the wavelet transfonn. Many of the papers 

encountered during the literature review rely on concepts that are specific to the wavelet 

transform. Thus it was necessary to review this theory in order to understand its application. 

Appendix A does not fonn part of the thesis argument, but is presented for completeness and 

reference. 

These chapters form the theoretical background to the project. RD theory is a thread running 

through all source coding, and so it presented first, in Chapter 2. Image coding is a pre requisite 

to video coding and thus is presented thereafter in Chapter 3. Finally video coding, which is the 

realm of this project, is presented in Chapter 4. Although this project never deals explicitly with 

wavelets Appendix A is provided introducing the theory. This is often necessary for reference in 
Chapter 3, where the properties of the wavelet representation are exploited. Hence the first three 

chapters and Appendix A provide a cogent development of the literature. 

Having undertaken this exhaustive literature review, the new technique was designed. Chapter 5 

presents the premise for the algorithm. In this chapter the computational load of motion 

estimation and compensation is quantified. In addition, our proposed alternative of difference 

frame coding is explored. The properties of difference frames are investigated, _and means of 
their exploitation are given. 

Chapter 6 presents the proposed algorithm in its entirety. The initial focus of the chapter is the 

system level design of the algorithm to meet the specified criteria. The remainder of the chapter 

is dedicated to implementation details, specifically where departures from the literature are 
made. 

Chapter 7 presents the performance of the new algorithm. Both the computational load and 

quality of the output stream are compared to the H.263 and MPEG standards, as well as the 

other wavelet techniques presented in the literature. In addition the various assumptions made 
during the algorithmic design are tested. 

While chapters 2 through 4 provide a theoretical backdrop and context to the project, chapters 5 
through 7 develop and test the algorithm in question. Chapter 5 defines the video source to be 
coded, and develops an analytical model for it. Based on this model suggestions for efficient 

coding are made. Chapter 6 develops a complete and functioning video coding system, based on 
the theoretical observations of Chapter 5. Chapter 7 tests this video coding system through 
comparison to both the existing standards and most recent research proposals. 

Finally Chapter 8 concludes the thesis. Here the entire thesis is systematically summarised. The 

conclusions reached in each chapter are discussed together ' and the logical flow between 

chapters is highlighted. A discussion of the algorithm highlighting its strengths and weaknesses 

and hence potential applications is also given. Bas~d on the weaknesses discussed 

improvements and possible future work are proposed. Finally the degree of success of this 
project is detennined. 
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[ 1.3 Executive Summary 

The purpose of this project IS to produce a low complexity wavelet video compreSSIOn 

algorithm. 

This work finds that motion estimation and compensation accounts for at least 80% of the 

computational burden of recent video compression schemes. Difference residual frame coding is 

proposed as an alternative. It is found that difference frames exhibit strong spatial clustering of 

significant coefficients. An analysis reveals that source partitioning will allow this clustering to 

be exploited to gain compression advantage. 

An algorithm is proposed that operates by finding the difference between successive frames. By 

partitioning each difference frame into tiles, and using a fast RD estimator to drive an optimal 

bit allocation algorithm, an optimal spatial bit distribution is found, thus exploiting the 

coefficient clustering. Each tile is then wavelet transformed and compressed using the SPllIT 

algorithm, the embedded stream produced by SPIRT is a key feature allowing the RD optimal 

bit allocation to be achieved. Finally the output stream of each tile is concatenated, and entropy 

coded using an arithmetic coder. 

A rigorous performance analysis finds that this algorithm executes an order ~f magnitude faster 

than H.263+ and MPEG-4. In addition it produces a stream of similar or superior visual quality 

for local motion scenes. For scenes with global motion the system produces unacceptably low 

visual quality at low bit rates. 

[ 1.4 Context of Project 

This thesis represents part of an ongoing research exercise at the University of Natal. Mr Ian 
McIntosh produced an MScEng thesis in 2001 [McInO 1] presenting a SPIRT based still image 

compression system. The wavelet transform and arithmetic coding routines he produced are 

used in this project. In addition, . although a new SPIRT routine was written, Mr McIntosh's 
work was used to guide the process. 

This research project is sponsored by Thales Advanced Engineering and Armscor. It is to fulfil 
their need for a mobile video compression system that this project was initiated. 
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Chapter 2 - Rate Distortion Estimation and Optimisation 

This chapter will briefly present rate-distortion (henceforth RD) theory. This is a branch of 

information theory that relates the number of bits used in describing a source, such as an image 

or video, to the quality of that representation. For instance, in image compression there is the 

natural relationship that as the compression ratio increases (that is the number of bits decreases), 
the image quality decreases. The precise nature of this relationship is of intere::;t to us. A detailed 

knowledge of this relationship is valuable in video compression as it allows the algorithm to 

concentrate the bit rate in frames, or areas within frames, in a way that will decrease the overall 

distortion. This process of optimising the algorithm's behaviour based on RD estimation is 
called RD optimisation, and is also explored below. 

The solution is generally framed as a curve that relates the number of bits, or rather the bit-rate 
(in terms of bits-per-pixel for images), to the distortion introduced to the source. 

s:: o .;: 
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Figure 2- \ : General Rate-Distortion (R(D)) Curve 

This problem is notoriously hard to solve as the rate-distortion behaviour depends both on the 

image (the source in RD terminology) and the compression algorithm. Describing either, let 
alone both simultaneously has proven intractable due to complexity. 

The classical approach revolves around the variance of the source. Shannon, who founded this 

field of study, shows that for a very specific source there exists a closed form analytical 
relationship between the variance of the original source and the distortion introduced · by 
compressing it to various bit rates. These classical arguments do not consider the impact of the 

compression algorithm and as a result have proven to be overly conservative, with many 

existing algorithms exceeding the theoretical performance limits proposed by Shannon. 

Interestingly Shannon was not working with compression at all. His interest was coding a 
source (usually vocal) for transmission over a communication channel. His work was aimed at 

revealing the required channel capacity or bandwidth required to transmit a particular source. It 
is easy to see how his work has been modified for use in compression, as both revolve around 
the central idea of determining the ' information content' of a source. 

A major problem with the classical treatment is that closed form solutions only exist for specific 

sources, and assuming that actual images behave similarly to these sources has usually proven 
fruitless . Section 2.1.1 will give the basics of this theory. Although it is a rich and highly 
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complex area of research, this treatment will not be covered rigorously as it is not used directly 

in our work. 

A more pragmatic approach, termed operational RD estimation, was founded in which the RD 

curve is populated by points that are actually achievable. This curve is usually referred to as the 

R(D) curve, as the rate, R, is a function of the required distortion, D. The source in question is 

compressed to various rates with the algorithm of interest. An interpolation between these 

points is made and the resulting curve is called the operational R(D) curve. Although accurate, 

this method is often inappropriate as running the compression algorithm multiple times, for each 

image (or frame of a video sequence) is computationally exorbitant. Section 2.1.2 will briefly 

examine this field. 

The benefit of using RD estimation to optimise the compression process is well known. Yet in 

designing compression algorithms, engineers have had to face the choice of poor source 

representation in order to enable the classical framework, or the computational burden of 

operational RD estimation. The solutions reached by ISO (the International Standards 

Organisation) and the lTV (International Telecommunications Union) in their respective MPEG 

and H.263 standards will be examined in Section 2.1.3. 

Recently major progress has been made by Drs He and Mitra at the University of California at 

Santa Barbara, in solving the RD estimation problem. They have abandoned both the classical 

treatment and operational RD estimation in favour of a novel approach that they call p -domain 

estimation. This theory parameterises a source in terms of the number of zero or near-zero 

coefficients that it contains. The fundamental insight is that all compression algorithms treat low 

value coefficients differently to other coefficients. Thus describing a source in terms of the 

proportion of low value coefficients (termed p), and an algorithm in terms of its ability to handle 

these low value coefficients should yield insight. This work has proven phenomenally 

successful and their "initial paper on the subject was awarded the Paper of the Year prize by the 

IEEE Circuits and Systems society. Presenting this theory is the main purpose of this chapter, 

the previous work is presented mainly to define terms and provide context for this new work. 

Having estimated the RD behaviour of a source, it remains to use this estimation to guide the 

compression algorithm. Many algorithms to be presented in Chapter 3 rely .on RD estimation 
and optimisation. Section 2.2 wiil present the Lagrange theory of RP optimisation, which is 
extremely popular and successful. This technique will be incorporated into our algorithm of 
Chapter 6. 

12.1 RD Estimation 

This section will present the theoretical basics of RD estimation, from the classical approach of 

Shannon in Section 2.1.1 , to operational RD estimation in Section 2.1.2. Methods of RD 

estimation that are widely employed through their inclusion in compression standards are 

discussed in Section 2.1.3 . Finally, Section 2. 1.4 will discuss the powerful new p-domain RD 
estimation strategy in detail. 
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2.1.1 Definition and Classical Approach 

Shannon presented the first work in this field in 1948 [Shan48] when considering channel 

coding. In this paper he first defines the relationship between the coding rate for a continuous 

Gaussian source and the distortion introduced. Later, in 1959 [Shan59] Shannon first coins the 

phrase "rate distortion function," and develops the now famous Shannon Lower Bound. This 

paper is focused on discrete sources, whereas his 1948 paper considers continuous sources. This 

work is fundamental , dealing with abstract sources, although Shannon was mainly interested in 

channel coding. Video is merely a particular incarnation of an information source, and 

Shannon's work is directly applicable to this field. 

The rate-distortion function represents the minimum number of bits per symbol, the rate, 

required to represent a source to within a distortion bound D. This function, R(D) is obtained by 

modelling the source according to a statistical distribution. This section will briefly outline his 

treatment, following the discussion of [Berg98]. 

2.1.1.1 The Shannon Formulation 

Shannon originally proposed work in channel coding which determines the minimum channel 

capacity required to transmit a source with a given SNR. Later, he modified this to the problem 
of source coding. The general formula is [Berg98]: 

R = W log2 (s / D) . (2.1) 

For this equation to hold, the source must be white Gaussian distributed, bandlimited to If I < W , 

having a power S. The power spectral density (PSD) must be flat, thus S may be written 

as S = SoW, where So is the PSD and, as mentioned W is the maximum frequency component of 

the source. This equation shows that in order to encode such a source with a mean square error 

(MSE) not exceeding D, R bits per symbol, are required and this is referred to as the rate. 

For the case of a Gaussian distributed source, sampled at the Nyquist rate, this equation may be 
rewritten: 

(2.2) 

As usual (]"2 represents the variance of the source. Expressing the equation in terms of rate, the 
equation may be rewritten: 

D(R) = r 2R (7"2. (2.3) 

Where the source is not Gaussian distributed, the bound presented above is no longer tight. For 

the special case where the distribution of the source may be written as the sum of the Gaussian 

distribution, with variance Qo, and another distribution, the following bound may be written 
[Berg98]: 
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(2.4) 

0* represents the highest distortion for which the sum of distributions represent the original 

distribution. 

In general it may be shown [ProaOO] that for any memory less continuous source with zero 

mean, and variance (1"2 , equation (2.2) represents a lower limit on the rate. 

For other distributions there is not a closed form solution for R(D) [Orte98] and various 

approximations and numerical methods are employed. 

2.1.1 .2 Summary of Shannon 's RD Estimation Theory 

This section has introduced the Shannon approach to source coding, in very brief terms. It is 
unfortunate to provide such a short treatment to this fascinating field, but it is not directly 

relevant to our work. 

There are two main problems that arise from this theory. The first is modelling error; the models 

assumed are not necessarily representative of real data sources. In many cases assuming the 

source to be distributed according to the Gaussian function is a gross simplification. Using such 

a model as the basis of a source estimation will lead to overly conservative R(D) functions. 

The second problem is that this RD theory is not constructive. No indication is given by the 

theory of how to code a source such that the output stream approaches the R(D) bound as given 
by the theory. 

A considerable volume of research has been directed at solving these problems. However, the 

intricate mathematics in which this theory is steeped prevents it discussion here or its practical 
application in most cases. 

2.1.2 Operational Rate-Distortion 

Due to the problems with the analytic approach to RD estimation, an approach known as 

operational rate distortion theory has been developed [Orte98]. Under this school, achievable 
points in the R(D) curve are obtained by coding a representative source (or the actual source) 

with the algorithm in question, ar different rates, and noting the resultant distortion. A curve, 
such as the following may be generated from these test points. 

o 

~-------------'R 
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Figure 2-2: Operational R(D) Curve 

Knowing that the R(D) is strictly monotonically nonincreasing [Berg98], an interpolation 

between the lower points on the curve may be made, as in Figure 2-2. The dotted line in this 

figure represents the theoretical R(D) curve, which is unknown. Although the above curve uses 

a linear interpolation, more complex spline based approaches are common. 

Although this approach provides a numerical curve on which RD decisions may be made, the 

computational burden of populating the curve with R-D pairs is in many cases unacceptable. 

Thus the need still remains for an analytical solution to generate the expected RD behaviour of a 

coding system. 

2.1.3 Methods used in Standards 

Section 2.1.1 presented the classical RD approach based on Shannon's Theorems. It was found 

that both the simple statistical models employed, and the lack of a general solution yield poor 

estimation performance for complex data. Section 2.1.2 demonstrated that an R(D) curve may 

be obtained empirically, but that the computation involved is burdensome. 

This section will briefly outline the RD models currently employed in common video encoding 

standards. Unfortunately RD estimation is usually only used in RD control for video. Thus the 

published results are for rate control, and whether the behaviour is attributable to the RD 

estimation or subsequent rate control is hard to discern. 

Rate control is first explained for MPEG2, which is the most widely used standard at this time, 

being employed for DVD encoding as well as digital television. H.263+ rate control then 

explained. H.263+ is a widely adopted internet videoconferencing method. Finally the RD 

model used in the extremely recent MPEG4 codec is presented. 

2.1.3.1 MPEG2 (TM5) 

MPEG2[MPG93] employs an extremely simple RD model: 

R(q)·D(q)=k , (2.5) 

where q is the quantisation parameter (such as the quantiser stepsize in the case of uniform 

threshold quantisation), and k is a constant, estimated from the data. It is evident that this 
technique will perform poorly due to over simplification of the R(D) curve. 

2.1.3.2 H.263+ MPEG4 

Ribas-Corbera and Lei present a representative RD estimation and rate control algorithm in 
[Corb99]. Their algorithm has been incorporated into TMN8 (Test Model 8) of the H.263+ 

video compression codec, and VM8 (Verification Model 8) of MPEG-4. It may thus be taken as 
a representative of the state of the art technique. 
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As do most previous algorithms, TMN8 considers both the rate and distortion as functions of 

the quantisation parameter, q. Thus two functions are estimated, R(q) and D(q), where in this 

case q represents the step size of a uniform quantiser. As this algorithm is used for RD 
estimation of motion compensated frames, each frame is modelled as a Laplacian distribution, 
with a variance of (32. 

The entropy of each frame is modelled as: 

10(1 2 -q2 ' 
::>c 

CT
2 1 

- > -
q2 2e 

CT
2 1 

- < ­
q2 - 2e 

. (2.6) 

based on work in [Corb96]. The upper equation is the high rate approximation; when the 

quantization parameter, q, is small, the rate is large. This is obtained by equating the differential 

entropy of the source, with the differential entropy of a Laplacian distribution. The low rate 

approximation is simply a linearization, in terms of the variance, of the upper equation. 

By equating the rate to the entropy, which is an approximation, the low rate function may be 

written: 

(2.7) 

where V is the mean value of the variance, taken over several frames, and K is also estimated 

over several frames. K is not taken to be ljloge 2 , which would make the second approximation 

exact, for the Laplacian case. However, as the Laplacian assumption is inexact, the authors 
found an adaptive K yields superior performance. 

The distortion is also simply modelled as 

I N 2 
",q 

D MSI;" = N~ l~ ' 
.=1 

(2.8) 

for each macroblock of the frame, where N is the number of coefficients in the macro block and 
qi is the quantiser stepsize. The 12 in the denominator is a consequence of using uniform 
coefficient quantization [GoyaO 1] . 

Ther~ are several problems related to this method. Both the rate and distortion models are 

simplified. Furthermore due estimation of parameters K and V,. based on previous frames, scene 
changes cause large errors [HeO 1]. 
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2.1.3.3 MPEG4 (VMS) 

Lee et al in [LeeOO] show a frame level rate control algorithm that is also included in the 11PEG 
4, VM8 specification. Modelling the motion predicted frames as Laplacian distributed, as in 

TMN8 above gives: 

-J2lxl 1 -
P(x) = r;:; e U 

(J'''./2 

which allows the Shannon bound to be rewritten: 

where 0 < ( D = Ix - xl) < 51 . The limit on the distortion having been explained in 2.1.1.1 . 

Now expanding R(D) into a Taylor series yields the following fonnula: 

R(D) = (~_ 1 ) _.!.(~_1)2 + R3(D) 
fiD 2 fiD 

, 
3 2(J' D-1 (J'- D-2 R (D) =--+- - - + 3 
2 fi 4 

(2.9) 

(2.10) 

(2.11) 

As D a q [Hang97] ([Hang97] uses the symbol Q for q) when defining D as a difference-, rather 

than the usual squared-metric (that is a Manhatten rather than Euclidean error measure), the 

R(D) may be rewritten in tenns of the quantisation stepsize: 

(2.12) 

by retaining only the distortion terms in (2.11). 

The parameters a1 and a2 are obtained by linear regression. Operating under the assumption that 
the RD behaviour of subsequent frames will be similar, the preceding frame's values of a1 and 

a2 are used to estimate a1 and a2 of the current frame during coding. 

As with TMN8 estimating the parameters al and a2 , based on the previous frame, introduces 
errors at scene changes. 

2.1.3.4 Summary of Standards Methods 

As the previous sections show, the employed standards all share several similar features. The 

rate and distortion are described separately, and as functions of the quantisation parameter, q. 

Operational RD theory is not employed due to the high computational burden incurred. 

Although the employed models may be loosely based on statistical models in their theoretical 

development, in practice the Rand D behaviour is obtained by curve fitting techniques. It has 
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been found [HeOI] [Orte98] that due to the many assumptions, and lack of fundamental 

agreement with theory, these RD estimators suffer from large inaccuracies. 

The performance of these algorithms is displayed in Section 2.1 .8, where they are compared to a 

new technique. 

2.1.4 p-Domain RD Estimation 

From the previous discussion it is clear that current RD estimation methods are unsatisfactory. 

Statistical modelling presents poor source representation for complex sources such as video, and 

operational RD theory is computationally intensive. 

Recent work by He and Mitra in [He01] presents a novel departure in the field of RD 

estimation, the technique presented offers both superior estimation accuracy, and computational 

ease. The method is based on neither explicit statistical models, nor an operational RD 

approach; the estimate is based instead on numerical methods and regression. The remainder of 

this section is heavily based on [He01] and [He01,2]. 

2.1.4.1 Premise 

The RD estimation models presented to this point are written in terms of the quantisation 

parameter, q, which is usually the step size of the quantiser. He and Mitra present a new 

variable, p, which is defined as the fraction of the total coefficients that have been quantized to 

zero, in a particular compressed representation. 

The RD characteristics of the source and codec are considered independently, and modelled in 

terms of p . In addition, fast methods of developing these models are presented which allow this 
method to be implemented in a real time scenario. 

The original work, [HeO 1], presents a unified approach that may be utilized for any codec, 

however here we will discuss only the application to wavelet based codecs. This original work 

only considers still image wavelet coding, and DCI video coding. In Chapter 6 we will consider 
applying this work to wavelet video coding. 

2.1.5 The p- Domain 

Lossy compression is always achieved by some form of quantization. Specifically, in zerotree 
quantization schemes (Section 3.), large spatial regions of coefficients are quantized to zero if 
they fall below a certain threshold, ~ . For instance SPllIT (to be discussed in Section 3.3.4) 

outputs an embedded stream, where at each significance level, every coefficient may be 
considered to be quantized according to: 

0, 

I(x)= I x ~~ l 
l x:~ J 

15 

Ixl<~ 
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If this form of quantisation is used, the p may be written as a function ofthe significance level: 

(2.14) 

where M is the total number of coefficients, and D( x) is the distribution of these coefficients. 

Using this parameter, p, it is possible to conceive the curves R(p)and D(p). The 

consideration of these curves is termed p -domain analysis. 

2.1.6 p-Domain Analysis 

The RD characteristics of any given encoded stream are dependant on the input source and the 

compression algorithm used. Thus a characterization of both needs to be made independently. A 

function that relates the overall RD behaviour to each of these characterizations then needs to be 

formed. This section will examine how these tasks are accomplished. 

The first section to follow, 2.1.6.1 , will present the high level rate and distortion models used in 

the method. Section 2.1.6.2 will then explore the rate modelling of the source, in detail. Section 

2.1 .6.3 will consider the rate modelling of the compression algorithm. Both models are 

combined in Section 2.1.6.4, which considers how the rate model is implemented in real time. 

The distortion model is far simpler and the discussion limited to Section 2.1.6.1. 

2.1.6.1 High Level Rate and Distortion Modelling 

He and Mitra consider a linear rate equation: 

R(p) = A(p) · Qnz(p) +B(p) ·Qz(p)+c(p) (2.15) 

The two equations Qz (p) and Qnz (p) are used to model the source. Qz (p) is an estimate of the 

number of bits required for a raw representation of the zero quantized bits. Qnz(P) is an estimate 

of the raw bit rate of the non-zero quantized bits. Section 2.1.6.2 will describe these functions in 
more detail. 

The three parameters, A(p), B(p) and C(p) model the coding algorithm. A(p) and B(p) model 

the algorithm's ability to compress the non-zero and zero coefficients respectively, and 

C(p) models the rate overhead of the algorithm. These parameters will be explored in Section 
2.1.6.3 . 

The distortion modelling is particularly simple in the p -domain, as the information may be 

obtained directly from the source distribution. In [Jack03] the proposed method is: 

(2.16) 

where p and Ll are related by 
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(2.17) 

In practice Ll may found from p readily using equation (2.17) numerically, from which (2.16) 

may be used to calculate the MSE distortion. 

2.1 .6.2 Source Rate Model 

2.1.6.2.1 First Principles 

This section will present the functions QzCp ) and Qnz (P) ' Initially these functions are evaluated 
from the theory presented; ' first principles'. Thereafter fast methods for the evaluation of each 

will be presented. 

Q~z is the number of bits required to represent, in sign-magnitude notation, all the non-negative 

quantized coefficients. 

Qnz = 2::L1og2I (x)J+2 (2.18) 
V'x .. O 

Hence Qnz may be defined as the per coefficient value: 

1 . 
Q =-0 n= N _nz (2.19) 

where N is the number of non-zero coefficients. 

The zero coefficients are considered slightly differently. Rather than count the number of bits 

required to encode the number of zero quantised coefficients, which would simply be the 

number of such coefficients, the number of bits required to encode the runlength of each run of 

zeroes is calculated by 

Q= = ~ L Llog 2(runlength)J+2. (2.20) 
zeroruns 

As the number of zero and non-zero quantized coefficients is dependant on the quantization 

threshold used, the curves Qnz (Ll) and Q: (Ll) may be developed, and hence Qnz (p) and 
Q= (p) may be found using equation (2.1 7). These measurements characterize the source. 

2. 1.6.2.2 Results 

In order to examine the properties of Qn: (p) and Q: (p) in the p -domain, these functions were 
evaluated for the set of images shown in Figure 2-3. 

17 



""~, -".~~ I~ ~""",, ' ~ 

Q. 
""'4:C?lJ ~.~ l_ .... l . ~1 ~ 

figure 2-3: Test Image Set for Qzand QnzlHeOlJ 

The wavelet transform was performed on each image, followed by uniform threshold 

quantisation at various levels. The curves found for QII;: (p) and Q: (p) are shown in Figure 2-4. 

Image 1 Ima.ge2 lmage3 Image4 ImageS ImageS 

b:J[SJLSJLSJb:Jb:J 
Image7 ImageS Image9 Image 1 0 'mage11 l~e12 

El M .. ... ~ El SJ El .. · ~~~~~~ 
Image13 fmage14 Image15 Image1G tmage17 Image18 

b:JlSJ[SJb:J~lSJ 
Image19 Image20 Image21 Image22 tmage23 Image24 

:;~p t;1 [S] LSJ b:J ~ 
- Q,,-,.{q) ......... Qz(q) 

figure 2-4: Qnz and Qz for Test SetlHeO II 
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These curves are striking in their simplicity. Each curve is drawn to identical axes, where the x­

axis is the value of p and the y-axis the values taken on by Qnz (p) and Qz (p). Qnz (p) is the 

solid line, and Q. (p) the dotted line. In general terms the curves are sensible. Both curves pass 

through the (1 ,0) point. An image where ° occurs with probability 1 has entropy of 

N-I N- I 

H = LP; log(p;) = LI.O = 0 , (2.21) 
;=0 ;=0 

and accordingly requires no bits to describe. An explanation of the behaviour of each curve will 

be given shortly. 

For comparison He and Mitra produce curves of Qnz (q) and Qz (q) : 

Image 1 Image2 Image3 Image4 Image5 . ImageS 

DDDDDD 
Image7 Image8 Image9 I mage 1 0 Imagel1 Irnage12 

D:.. 0·. -D-·. f\I [J.. f\I 
" . . ... . .. ~ ~ 
Image13 Image14 Image1S Image1S: Image17 frnage18 

D[SJD(](][SJ 
o,:(019u,mSJ la lJ [~I [24] 

20 90 160 
- Qnz(q) ......... QzCq) 

Figure 2-5: Qnz and Qz parameterised by q IHeOl) 

The nonlinearity and diverse nature of the curves shows the power of the p parameter. 

Characterising an image in terms of p yields much simpler curves that should be more 

predictable, thus aiding greatly in the RD estimation process. 

This behaviour in the p -domain may be explained by the behaviour of zerotree coders (indeed 

most coders). These coders treat insignificant coefficients very differently to significant ones. 

The premise of EZW [Shap93] is that the specific behaviour of insignificant coefficients allows 

them to be predicted with some accuracy. The entire zerotree algorithm is based on this 
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observation. The p -domain method acknowledges this separate treatment in the compression 

algorithm through the use of Qm: (p) and Q: (p) . 

2.1.6.2.3 Fast Estimation oJQnz(p) 

As Figure 2-4 clearly shows, Qn: (p) approximates a straight line. He and Mitra justify this very 

distinctive behaviour as follows . Modelling the transformed coefficients as a generalised 

Gaussian distribution, as is common practice [Lopr97], the probability ofx is: 

(2.22) 

where the shape parameter is given by 

1:::; v:::; 2 . (2.23) 

Writing equation (2.17) using this distribution: 

(2.24) 

and evaluating it numerically yields the following results. 
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Figure 2-6: Qnz(p) plotted for a GGD [HeOll 

This numerical evidence provides justification for the linearity of Qnz (p) . 

Thus Qnz (p) is modelled as a straight line passing through the point (1,0). For this reason a fast 

estimation consists of merely evaluating Qnz (p) for any value of p:t: 1. Any subsequent points 

are found by interpolation. 

The gradient of this line is given the parameter K , which is used in the estimation of Qz (p) . 

2.1.6.2.4 Fast Estimation oJQz(p) 

The behaviour of Qz (p) is not as simple as Qnz (p) , however He and Mitra present a numerical 

method, based on regression that provides a fast estimation framework. 

Considering K to define the curve of Qnz (p) He and Mitra explore a possible correlation 

between the curves of Qnz (p) and Qz(p). Using the test image set in Figure 2-3, Qz(p) is 

evaluated for p = {0.70; 0.75; 0.80; 0.85; 0.90; 0.95} . The following curves are produced by 
plotting (K, Q= (p)) for each of the test images. Each graph is for a particular value of p . 
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Figure 2-7: Correlation between Qz(p) and Qnz(p) [HeOI) 

The strong correlation is evident. Thus the following linear model for Qz(p) is proposed: 

(2.25) 

where the parameters A; and B; are found using an offline statistical regression. This process, 
and further results, will be detailed in Chapter 5. 

2. 1.6.3 Compression Algorithm Rate Model 

The rate required to represent an image depends both on the image and the algorithm used to 

compress it. This is expressed in the rate equation (2.15): 

R(p) = A(p) ·Qnz(P)+ B(p) · Qz(p) + C(p) (2.15) 

As the previous section has shown, Q=(p ) and Qnz(P) are used to model the source. This section 
will show how A(p), B(p)and C(p) model the coding algorithm. 

The estimation technique is based on offline operational rate-distortion techniques. The coding 

algorithm to be characterised is run several times at different output rates, for each image in the 
set, to generate an operational rate distortion curve. 

Equation (2.15) is then fitted to this curve, again using linear regression, and the values of 

Q; (p) and Qnz (P) found previously. In this way the coefficients A(p), B(p)and C(p) are found. 
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If the test set is correctly chosen, then these coefficients will be fixed after this point. Thus the 

regression described is perfonned offline, and the coefficients simply stored in the algorithm. 

2. 1.6.4 Rate Regulation 

Based on empirical evidence, He and Mitra find that the function R(p) is approximately linear. 

However, due to error in obtaining any of the values or curves, or unusual circumstances, 

R(p) obtained by (2.15) may not be linear. By using a least mean square technique, He and 

Mitra find the best fit linear curve for the points estimated using (2.15). The slope of this curve, 

by linear regression over six estimated points is given by [HeO 1]: 

5 5 5 

LPiL R(Pi)-6LPi .R(Pi) 
() = ;=0 ;=0 ;=0 

6t,P; -[t,P; J 
(2.26) 

and hence a best fit linear curve may is described by [ReO 1]: 

(2.27) 

2.1.7 Results 

He and Mitra [ReO 1] present results for the RD estimation scheme. The rate is found using 

equation (2.27), and although the equation used to find the distortion is not given, it is assumed 

to be of the fonn of (2.16). The following validation image set, which is different from the set 

used to perform the regressions to find the coefficient, is used. 
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Tostim3go5 

Figure 2-8: Validation Set IMeOl1 

The wavelet transform of each image is found. and compressed using two techniques, Stack 

Run Coding, (SR) (Section 3.3.7), and Set Partitioning in Hierarchical Trees (SPIHT) (Section 

3.3.4). The actual RD behaviour that results is compared with that estimated using the RD 
estimation scheme. 
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Figure 2-9: SR RD Estimation Performance 

In these curves the x-axis represent the rate in bits per pixel (bpp), and the y-axis the quality 
(inverse of distortion, measured in dB, as explained in (Section 3.1)). The solid lines are the 
behaviour of the algorithm, and the dotted lines are the RD estimate. The accuracy of the 
estimate is extraordinary. 
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Similar results are found using SPIHT: 
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Figure 2-10: SPIHT RD Estimate Performance 

The results are equally striking. 

2.1.8 Rate Control 

As mentioned in 2.1.3 RD estimation is often used in video coding to perfonn rate control. 

Based on the RD estimation, a rate target is set for each frame, in order to meet some RD 

criterion. This target rate specifies the quantisation parameter with which the frame is encoded. 

After encoding the frame any error in the RD estimation will cause the achieved rate to differ 
from the target rate. 

The following curves show the relative error between the target ~d achieve.d rate for the TM, 

VM8 and p-domain methods. Although not a direct method, these graphs do give an indication 
of the RD perfonnance of each method. 
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Figure 2-11: TM5 Rate Control Error (HeOl) 

--- p-Domain 

. ......... VM8 

The rate control error is expressed as a percentage of the target rate. The upper graph is for the 

'Foreman' sequence and the lower graph is for the 'Coastguard' sequence. The relatively large 

rate control error of the MPEG-2 TM5 algorithm is sharply contrasted by the accuracy of the 

proposed p-domain method. 

The rate control performance of the MPEG-4 VM8 algorithm is shown in Figure 2-12 for the 
'News'sequence. 
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Figure 2-12: MPEG4 Rate Control (HeOll 

Once more the superior performance of the ,a-domain method' is apparent. 
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2.1.9 Summary 

The p -domain RD estimation algorithm has been fully developed. It is seen to rely on implicit 

statistical modelling of the source and compression algorithm through multiple regression 
stages. This is opposed to the general practice that uses explicit statistical modelling, or 

operation RD techniques. 

The performance of the scheme is superior to any other technique presented in the literature 

[HeO 1] . In addition to this the technique is very fast online, consisting of finding the distribution 

of the transform coefficients, followed by simple mathematical operations. All the statistical 

characterisation is performed offline. This is possible due to the predictable behaviour of both 

the source and algorithm in the p -domain. 

The importance of this technique was recognised by the IEEE Circuits and Systems Society 

which awarded the paper, [HeOl], the prize for Best Paper in 2003. 

The dramatic performance of this scheme has motivated for its use in the work presented in this 

thesis. Chapter 5 will present an implementation of the algorithm, further results, and 

modification for use in a wavelet video coder, as opposed to still image wavelet coders 

presented above. 

1202 RD Optimisation 

Section 2.1 has discussed various techniques of determining the RD behaviour of a source. This 

section will lead on from this discussion, to explore means of using this RD estimation to guide 

the compression process. Again, there are many more RD optimisation strategies in the 

literature than may be discussed in this limited space, thus only the most popular and widely 

used method, based on the theory of Lagrange multipliers will be discussed. Chapters 3 and 4 

lend credence to this decision through the number of existing image and video compression 

algorithms that rely on Lagrange's theory. Finally, the method developed in Chapter 6 is also 
based on Lagrange multipliers, thus this section is very detailed. 

Section 2.2.1 develops the theory from a purely mathematical perspective. The compression 
engineering interest in the theory is introduced in Section 2.2.2. Finally the joint optimisation of 

mUltiple units is considered in Section 2.2.3. This method of optimisation is used in the 
proposed method of Chapter 6. 

2.2.1 Theory of Lagrange Multipliers 

This theory is fundamental in differential calculus, and is used to optimise a function given 

another constraining function . The general form of this optimisation is given below, following 
the development in [Thom96]. 

Given two differentiable equations, 10 and gO, the local maximum or minimum of f subject 
to g = Ois given by 

Vf=XVg , (2.28) 
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where A. is a scalar quantity, mown as the Lagrange Multiplier, and "il is the gradient operator. 

Restricting the discussion to the two dimensional case (although the theory is general), the 

gradient of I(x,y) at the point(xo ,Yo) is defined as the vector 

. of . 
i+- J. 

0; (xo,Yo )-

(2.29) 

An important property of the gradient vector is that it is the vector normal to I ( xo,Yo ) . 

Consider a parameterisation of the constraint: 

g(x, y ) = X(/)! + Y(/)J . (2.30) 

This parameterisation is substituted into I, in order to evaluate the function only on the 

constraint. The derivative of I with respect to the parameter I is given by: 

Of = Of dx + Of dy 
at ax dt 8y dt 

[ al . al 'J [dx. dy'J = -1+-J e -1+-J , ax - 8y - dr dt-

= "il/ev 

(2.31) 

where, by standard notation ~ is the velocity vector of the function g. At any local maximum or 

minimum this derivative will be equal to zero: 

dl -="il/ev=O . 
dt -

(2.32) 

Equation (2.32) states that at the local maximum or minimum of I, on the curve g, the 

gradient vector of I, "ill, will be orthogonal to the velocity vector of g, v . 

By their respective definitions, a curve ' s velocity vector is tangential, and gradient vector is 

nonnal to that curve at any given point. Thus they are orthogonal and the gradient vector of I , 
"ill, will be parallel to the gradient vector of g , "ilg, at optimality. This is a statement of 

equation (2.28). 

Alternatively, equation (2.28) may be interpreted as the condition at which the two curves, 

I and g, share a common tangent. 

2.2.2 Application of Lagrange Multipliers to RD Optimisation 

Consider a typical R(D) curve, as shown in Figure 2-13 below. 
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Figure 2-13: Typical R(D) Curve 

In the Lagrange terminology, this function may be' viewed as the constraint, g, as it represents 

the performance that the coding system is capable of producing, The function to be optimised, 

f , is referred to as the cost function in the literature, and written as J = D + A.R , The situation 

may be cast as a Lagrange optimisation problem thus: 

g: D(R) 

f: J = D+A.R 
(2.33) 

The objective of this optimisation problem is to minimise the cost function, J. 

Consider the case of a fixed Lagrange Multiplier, A.. Although it is possible to fix any of the 

other parameters and perform the optimisation, the utility of fixing A. will become clear in the 

following section on optimisation over mUltiple units. 

The possible cost functions available by varying the cost, J, are shown alongside the R(D) curve 
below in Figure 2-14. 

o 

" 
" " ..p=-A.R+J 

" 

" ~----~--------~~R 

Figure 2-14: RD Cost Functions 

Now from the final paragraph of the Lagrange Theory section, the point on the RCD) curve 

which minimises the cost function is that point at which the two curves are tangential. The 

gradient of the cost function is -A. at all points, and by the RD theory given in Section 2.1.2, the 
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R(D) curve is strictly non-increasing. Thus for a given point on the R(D) curve there is one cost 

function curve that is tangential. 

The cost, J, of the cost function, is represented geometrically as the D-intercept of the curve. 

By observation, the minimum cost function is that one which is tangential to the R(D) curve. 

This section showed that minimising the cost function corresponds to finding the point on the 

R(D) curve with gradient - It. This It is equal to the gradient of the tangent to the R(D) curve, 

that is 

It = .!i...-D(R)I 
dR (xo.Yo) (2.34) 

Thus if D(R) is linearised about a point (xo, Yo) , It represents the rate of decrease of D with 

respect to an increase in R. 

2.2.3 Optimization of Multiple Units 

In most cases image compression systems consist of multiple phases. These different coding 

units should ideally all operate at RD optimality, that is, the system as a whole should introduce 

the smallest distortion possible for a given rate. 

In order to illustrate the process, a commonly encountered problem will be used as an example. 
Several image and video compression systems (examples exist in Chapters 2, 3, 5 and 6), 

segment each frame into a number of tiles, which are processed independently. It is desirable 

that each of these tiles operate such that the overall distortion is minimized, given a total rate per 

frame. 

A method of achieving this optimality is to estimate the RD behaviour of each tile under the 

given compression scheme. Based on these curves, it is possible to allocate the rate between the 

tiles in a globally optimal fashion, by ensuring that each tile is operating at the same value of It. 

Section 2.2.2 has shown that given a fixed value of It, a point on the R(D) curve may be found 

that minimises the cost function, this may be considered a local optimality. It would seem 

logical that should the same cost function be minimised over each tile, it would be minimised 
over the entire image. The following development tests this hypothesis. 

Proof of the global optimality of this situation is offered by the following development [Jack03]. 
Consider an image segmented into N tiles, then: 

N-J 

Dtotnom (R,ot) = L Dn (Ro.n) 
n=O 

N-J 

R tot = LRo.n = Rbudgel 
n=O 

and two blocks operating at nominal rates Ro.l and Ro.2 respectively, where, 
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IdD, / I IdD2 / I l DR > i DR . 
H, =J~" H2 = J~)2 

If one reassigns the bits such that 

R, =RO, +M 

R 2 = R02 -M' 

then, by a local linearization of the R(D) curves: 

= ~D,,(R(J .,,)+[ldDrc:RIII;J~ _ldD~RIII;J~,,}M 
< Dtot"om 

(2.36) 

(2.37) 

(2.38) 

This shows that by transferring bits from a block operating at a lower gradient, to one at a 

higher gradient, the global distortion is diminished, with the total rate unchanged. 

Furthennore: 

(2.39) 

Thus, for a certain value of L\R, there exists a point where 

(2.40) 

From the above it is evident that this condition corresponds to the lowest distortion for a given 

rate. 

This process may easily be extended to account for all N tiles, where the two .tiles in question at 

each point are those with the highest and lowest gradient. After sufficient iterations all N tiles 

will have the same gradient, which it is clear, corresponds to the operating condition of minimal 

distortion for a given rate constraint. 

This proves the hypothesis; minimising the Lagrange cost, for a given /.." over each tile, 

minimises the distortion of the entire frame, for a certain rate. The value of /.., can be changed 

until the total rate over the N blocks equals the desired rate for the frame. 
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2.2.4 Summary of Lagrange Multiplier Technique 

Section 2.2 has given a thorough treatment of the Lagrange multiplier technique, from theory to 

practice. This technique is very important in image and video coding as it provides a 

constructive framework within which RD optimisation may be performed. 

12.3 Summary and Conclusion 

This chapter has provided an introduction into rate distortion estimation and optimisation. 

Source Modelling 

The fundamental theory ofRD estimation based on Shannon's formulation was outlined briefly. 

The problems encountered when using this theory in practice, due to the difficulty of providing 

statistical models of complex sources such as video, and the non-constructive nature of the 

theory were presented. An alternative approach, operational RD theory was presented, but the 

fundamental problem of computational complexity was highlighted. 

Methods of RD estimation that are used in practice were then explored. The rate control 

methods of MPEG-2, MPEG-4 and H.263 were examined. Based only on the simplicity of the 

models used, it is expected that these algorithms will perform poorly. Thereafter the new 

method of p-domain analysis was presented in detail. The performance of this algorithm is 

compared to the MPEG algorithms and found to be greatly superior. Due to this method's 

strong characteristics, it will form part of the implemented algorithm, as descrIbed in Chapter 6. 

RD Optimisation 

The process of obtaining the minimum distortion, compressed, representation of a source, based 

on an RD estimation was presented. As this RD optimisation is usually carried out using the 

Lagrange multiplier, a full development of this theory was provided. Its application to both 
single, and multiple unit coding was developed. 

Overall 

The tantalising prospect of creating an RD optimal coder has for many years floundered on the 
inability of RD theory to provide an accurate and robust forward estimate of the RD 

performance of a generalised source and coder. Recent advances bring this goal closer by 
providing good RD estimation under general conditions. . 

The algorithm to be presented in Chapter 6 will utilise the p-domain RD estimation theory, and 

the Lagrange optimisation methods, due to their remarkable performance, as outlined in this 
chapter. 
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Chapter 3 - Wavelet Still Image Compression 

This chapter aims to produce a comprehensive literature survey on the state of the art of still 

image compression using wavelet techniques. Each of the leading ideas in the field will be . 
presented, and algorithms that have been built on these ideas will be compared based on 

published results. The goal of this chapter is to discover what factor has enabled wavelet based 

image coders to outperform the current algorithms. 

There are three stages in the image compression process; the wavelet transform, coefficient 
quantization and entropy coding: 

Compression Stage 

1--..r';Fntlrnnv EDcoding f------, 

____ . _____ . ___ =====--=== ____ L __ - _- . _ . _-.:::-~_.......J __ 

._---------------------------_ .. _ -
Decompression Stage 

Figure 3-1: Stages of a Compression Algorithm 

Compressed 
Image 

This chapter will explore the wavelet transform block, and the quantization and entropy coding 

blocks, to determine the effect on performance of each stage. This shall be done through 

extracting algorithms from the literature that operate in each one of these stages, and comparing 
their published results. 

The first, wavelet transform, stage transforms the image data from the spatial domain to the 

wavelet domain. The major choice in this stage is the nature of the basis function, or wavelet. 

This is a critical component of the system in determining compression perfonnance. A 
successful wavelet transform will capture the image features, providing a succinct 

representation; that is, a high coding gain. This stage removes linear dependencies within the 
data. 

The second stage concerns itself with quantising the coefficients produced by the wavelet 

transform. This stage performs the lossy compression, thus it will yield the greatest returns on 

computational effort invested. Here, techniques to select the most relevant coefficients based on 
known statistical and other models are utilised. 

The third stage of entropy encoding utilises the well known techniques of Huffman and 

arithmetic encoding, to losslessly encode the quantised coefficients of the previous stage. In 
some cases this stage is combined with the quantisation stage, such algorithms will also be 
explored below. 
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Section 3.1 details the quality metric by which the various compression methodologies will be 

compared. This secti'on is merely provided to allow the various algorithms presented afterwards 

to be compared. 

This is followed by Section 3.2 which explores the wavelet transform block. Various techniques 

, which modify the wavelet transform itself are drawn from the literature and their effect on the 

compression performance is analysed. 

Finally, Section 3.3 discusses the major quantization and entropy coding methods used in the 

wavelet domain to achieve compression. This discussion is structured according to the image 

model used, and in addition to reviewing the many compression algorithms available, provides 

discussion on the importance of accurate source modelling in compression. The early algorithms 

are covered for introductory purposes, and the discl:lssion proceeds to increasingly modern 

methods. This section forms the bulk of this chapter, as it is these coding strategies that take 

advantage of the correlation structures exposed by the wavelet transform to achieve 

compreSSIOn. 

13.1 Image Quality Measurement 

In order to make a meaningful comparison between compression techniques, a measure of the 

degradation suffered by an image through the compression process is required. This has become 

a notoriously nebulous problem, as the perceived quality of an image is dependant on its usage 

and viewer. Furthermore, the quality of an image has several components and the general 

problem of producing a cost function incorporating all of them is assumed intractable. 

Nevertheless, in order to make comparisons between compression schemes, several metrics 

have been proposed. In this work, Peak Signal to Noise Ratio, PSNR, which is measured in 
decibel, dB, will be used. 

3.1.1 Peak Signal to Noise Ratio (PSNR) 

PSNR indicates the total error present in a processed image. The mean square error, MSE, of an 
image is defined as 

XSIZE YSIZE ? 

L L (Px.y - Px.y r 
A1SE=_x_=_I~Y=_I ______ ~ __ 

XSIZE· YSIZE 
(3.1) 

Where XSIZE and YSIZE are the dimensions of the image in pixels, Px,y represents the pixel at 
location (x,y) in the original image, and Px.y the same pixel in the compressed image. Thus 
MSE provides an aggregated error measure for an entire image. 

PSNR is based on this metric, and defined as 

[
255

2 
) PSNR := IOJog10 MSE dB, (3.2) 
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assuming an 8-bit image, hence the normalization by 255. PSNR is a normalised quality metric, 

based on MSE, which is a distortion metric. 

The use of MSE and PSNR is justified from the literature. For instance the JPEG 2000 project 

found that MSE minimizing codecs performed well. perceptually, as well as numerically. Indeed 

it is standard practice to publish performance results in PSNR. Thus, using this measure allows 

this work to be contextualised within the existing literature. 

13.2 Basis Functions 

It has been argued [Saha99] that the success of the wavelet transform in image compression is 

due to the good representation afforded to image artefacts by the wavelet basis functions. 

[WuO 1] demonstrates that the wavelet transform exposes spatial similarity structures, as will be 

explained in Section 3.3.2. Furthermore, certain image artefacts are best described spatially 

(edges for example), and others in the frequency domain (uniform textures.) The dual space­

frequency (scale) representation offered by the wavelet transform thus allows efficient 

representation of each. This argument will be revisited in Section 3.3. 

The standard wavelet representation structure uses a single mother wavelet, and a dyadic 

decomposition tree (to be described). However, the number and nature of mother wavelets, and 

the decomposition structure are subject to design. This discussion will highlight the effects of 

these alterations. Owing to space limitations, this discussion is unfortunately brief and 

incomplete. Three techniques are however described as an overview of the topic. 

Section 3.2.1 describes how variability of the basis function and decomposition tree affects 

compression. Section 3.2.2 describes how an image may be projected onto a number of different 

wavelet bases simultaneously, and the utility of this representation. Finally, Section 3.2.3 

describes the projection onto a non-separable, two dimensional basis function. 

Appendix A provides a summary of the mathematics of the wavelet transform which is used for 
this discussion. 

3.2.1 Best Bases 

Within the widely used wavelet decomposition structure, either the mother wavelet or the 

decomposition tree may be altered. Both of these changes amount to changing the basis set. 

As Appendix A shows, a signal f{x) that undergoes wavelet decomposition is projected onto 
the basis set 

(3.3) 

It is obvious that modifying the mother wavelet functions ~(x) and ljI(x) , changes the basis set. 

Furthermore, the Maliat construction specifies that at each level, only the lo~er frequency band 

is decomposed further. Thus the ~,~aling function bases ~i.lI(x) will not exist at all values of j. 

By allowing each subband to spilt, ~i.1I (x) will exist for these values of j, thus expanding the 
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basis set. As will be shown below, there are other ways to modify the basis set by modifying the 

decomposition tree. 

This section explores briefly the effect of these modifications to the basis set. 

3.2.1.1 Modification to the Mother Wavelet and Scaling Function 

The first tactic discussed is modifying ¢(x) and lfI(X). The goal is to produce a basis set that 

decorrelates the image data best. Stated differently, the goal is to find a mother wavelet that 

provides the best joint energy concentration in the spatial and frequency domains. Several 

works have investigated this avenue. 

Notably [Saha99] presents strong empirical evidence that suggests that the choice of mother 

wavelet is actually not a critical factor. Several test images, identified in t~e columns of the 

table (Lena, Barbara etc) were compressed using a scheme similar to [Taub94]. In each case a 

different wavelet mother function (the row headings Haar to CDF-3/13) was used. The 

following table, drawn from their results, shows the PSNR of each image compressed at 16:1 

with each mother wavelet as well as a statistical summary across the images. 

Image Statistics Lena Barbara Baboon Peppers Bengali ron nervecell 

Mean 99 117 129 120 213 57 117 

Median 97 117 130 121 255 44 98 

Std. Dev. 53 55 42 54 78 54 84 

Variance 2796 2982 1789 2894 6116 2900 7001 

Wavelets 

Haar 31.51 27.23 24.19 33.04 27.3 29.42 30.66 

Daub2 (4 coef±) . 33 .03 28.32 24.77 34.37 24.92 31.59 32.4 

Daub4 (8 coef±) 33.48 29.1 25.04 34.74 24.25 32.31 32.73 

Daub8 (16 coef±) 33.65 29.64 25.1 34.38 22.77 32.l5 33.04 

Adelson (9 coef±) 33 .93 29.51 25 34.78 24.66 32.38 33.6 

CDF-9/7 34.28 29.54 25.05 35.19 24.71 32.77 33.96 

(CDF-7/9) 33.1 28.76 24.47 34.36 24.58 31.39 32.83 

CDF-9111 33.97 29.8 24.68 34.68 24.21 32.28 33.46 
Odegard-9/7 34.3 30.16 24.98 35.08 24.62 32.73 33.9 
Brislawn-1 0/ 1 0 33 .68 29.07 24.25 34.53 23.07 32.63 33.71 
Villasenor-lOll 8 34.15 30.09 25.33 35 .19 23.21 32.85 33.96 
(Villasenor-181l 0) 33.41 29.2 24.65 34.39 24.36 31.67 32.85 
Villasenor-Bill 34.28 30.18 24.86 34.99 24.47 32.67 33.66 
(Villasenor-11113) 33 .82 29.39 24.75 34.57 24.6 32.11 33.49 
Villasenor-611 0 34.04 29.57 24.57 35.16 23.85 32.73 33.72 
(Villasenor-1 0/6) 33 .14 28.75 24.5 34.15 24.84 31.26 32.61 
CDF-13/3 33.65 28.81 24.78 34.69 24.51 32.3 33.58 
(CDF-3/13) 32.98 28.54 23.82 33.85 23.75 31.04 32.24 
Compo Statistics 

Max 34.3 30.18 25.33 35.19 27.3 32.85 33.96 
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Min 31.51 27.23 23.82 33.04 22.77 29.42 30.66 

Max Difference 2.79 2.95 1.51 2.15 4.53 3.43 3.3 

CDF 9/7 Difference 0.02 0.64 0.28 0 2.59 0.08 0 

Table 3.1 : Perfomance Comparison between Wavelet Bases (Saha99) 

For a single image the maximum difference between wavelet choices is shown, and is seen to be 

quite variable, suggesting that adaptivity of the mother wavelet may yield returns. However, 

considering the difference between the best performing wavelet, and the standard Daubechies 

9/7 (CDF 9/7 in the table), which is insignificant in all but one image, this author believes that 

neither custom design of the basis functions, nor adaptive basis function will yield substantial 

returns. 

3.2.1 .2 Adaptivity of Subband Selection (Wavelet Packets) 

In this scenario, the action taken is to select the R-D optimal subband tree expansion. 

Classically, the wavelet transform is performed using the dyadic (Manat) construction. That is, 

the original spectrum is split in two; then the lower subband, is split into two further subbands. 

This process is iterated, in each case splitting only the lower subband. An alternative approach, 

termed packet decomposition, considers splitting both the high and low subbands at each 

iteration, as illustrated below. 

Figure 3-2 : Two Level Mallat- and Packet- Wavelet Decomposition 

Figure 3-3: Two Level Mallat- and Packet- Decomposition Spectra 
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3.2.1.3 Best Wavelet Packet Bases 

Ramchandran and Vetterli [Ram93], present a technique they call Best Wavelet Packet Bases. 

The algorithm is based on rate-distortion theory, an introduction to which is given in Chapter 2. 

The algorithm operates by expanding each node at each level of decomposition, generating a 

full packet decomposition to some level. Then the algorithm traverses the tree, removing a level 

of decomposition if it fails a rate-distortion test. This removal of a level of decomposition is 

termed pruning, and is shown in Figure 3-4. 

Figure 3-4: Example Pruned Wavelet Packet Representation 

This pruned packet decomposition structure represents a rate-distortion optimal basis set, for a 

given image and mother wavelet function. 

This paper reports results for the 'Barbara' Image, which is characterised by more high 

frequency energy than usual natural images. This is owing to texture in the image. Standard 

image coders consequently struggle to compress it well. The paper compares the performance 

between standard wavelet decomposition, followed by scalar quantization system, with the 

pruned packet tree decomposition, followed by a scalar quantization system. The latter performs 

3-4dB better than the former, at a given rate. 

In addition the authors found that by segmenting the original image into tiles, and treating each 

independently, up to IdB further gain may be made. This is to be expected owing to the 

spatially varying nature of image statistics. 

3.2.2 Multiwavelets 

In the schemes described previously only one wavelet and its scaling function are used at a 

time; these are termed scalar wavelets. Multiwavelets, however, use multiple wavelet and 
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scaling functions in the decomposition. This allows extra degrees of freedom in the design, 

which allow multiwavelets to be symmetric and orthogonal, simultaneously. Scalar wavelets 

cannot posses both these properties concurrently. 

This suggests that multiwavelets may be a more powerful image compression tool than scalar 

wavelets. However, at this time, multiwavelets have only produced results at best equivalent to 

scalar wavelets, and then at greater computational cost, [lyerO I], [MartO 1]. 

[lyerOI] finds that balanced multiwavelets uniformly perform 0.2 - 0.7dB worse than good 

scalar wavelets. [MartO 1] reports mixed results; with natural images the scalar wavelets 

performed better, while multiwavelets compressed computer generated images better. This may 

be on account of texturing. 

[MartO 1] also develops a new procedure combining multiwavelets with packet decomposition, 

as in the scalar wavelet case. It was found again that the multiwavelets performed better with 

synthetic images, and the scalar wavelets performed better with natural images. 

In generating these results, SPIHT is used to quantize both the scalar and multiwavelet 

representations. SPIHT is designed for scalar wavelet representations, and the authors note that 

should a new quantization scheme be designed for the multiwavelet case, results should 

Improve. 

3.2.3 20 Bases 

In processing images, it has been the traditional practice to consider the image dimensions 

separately. That is, to filter the image horizontally, line by line. Then, the coefficients obtained 

this way are filtered vertically, column by column. However, this technique is considered sub­

optimal for reasons explored in [VettO 1]. Given that images are two dimensional signals, 

projecting them onto a 2D basis function seems natural. An example of such a 2D wavelet is 
shown in Figure 3-5. 

Figure 3-5: Example of a True 2D Wavelet IVett011 
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Such 2D bases include ridgelets, curvelets and bandelets. However, as noted in [VettOl], this 

field is very new, thus quantization methods that take advantage of this representation do not yet 

exist. 

3.3 Still Image Quantization and Entropy Coding Methods 

Section 3.2 explored the role of the wavelet transform in achieving compression performance. 

Figure 3-1 shows that quantisation and entropy coding follow the wavelet transform, and this 

section will explore these topics. 

It is conceivable that the wavelet transform itself is mainly responsible for the performance of 

wavelet based image compression algorithms. The first task of this section is to refute this idea, 

by showing that the wavelet transform exposes many correlation structures, but that quantisation 

and entropy coding are responsible for exploiting these structures to achieve compression. 

Section 3.3.1 propounds this argument. 

Wavelet image coding entered the realm of research in thel980s. The first successful coders 

were developed in the early 1990s; the seminal paper for this period of research was written by 

Antonini, Barlaud, Matthieu and Daubechies, [Anto92]. Ingrid Daubechies is a well known 

mathematician responsible for the design of several wavelets, and wrote the standard text on the 

field, "Ten Lectures on Wavelets," [Daub92]. 

These early algorithms operated mainly in the frequency(correctly, scale) domain. They are 

based on the traditional subband coding model of images. This model assumes that an image 

decomposed into frequency bands will have coefficient distributions in each band that are 

independent and identically distributed, according to either Laplacian or Gaussian models. 

These codecs focused on producing scalar or vector quantisers optimized for each subband of 

the wavelet transform. Given the variance of each band, the quantization step-size or codebook 

is designed optimally for each subband. In this regard they are most similar to subband-coding 

schemes, except that the wavelet transform is used to produce the initial subbands, rather than 

the Fourier transform. In all of these methods, advantage is taken of the fact that most image 

energy is localized in the low frequencies 

Although these subband-like algorithms are efficient at encoding images based on their assumed 

models, the model itself is in fact inadequate. [Xiong99] proposes that there are two important 

properties that most natural images exhibit: 

1 Most of the signal energy is contained in the low frequencies. 

2 Images show local statistical stationarity; the area within an object is typically self-

similar and is surrounded by a discontinuity or edge. T~is is manifest in the wavelet 
domain by areas of low frequency, surrounded by spatially concentrated, high 
frequency, artefacts. 

Table 3.2: Wavelet Codec Image Model 
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Subband-like algorithms account for the first property but not the second. This property is a 

dual space-frequency(scale) characteristic, and thus the wavelet transfonn is ideally suited to its 

capture. 

Sections 3.3.2 to 3.3.11 will explore recent image coding techniques that explore both properties 

'of images. The mechanism that first rose to prominence is tenned zerotree quantization, which 

is introduced by Shapiro [Shap93] in his paper describing his image codec, EZW (Section 

3.3.2). The zerotree quantization method has been almost universally employed in recent 

wavelet codecs, owing to its high perfonnance. 

More recently the statistical model underlying EZW has been found limiting. Thus, higher order 

statistical models than that employed by EZW are being deployed; schemes in this genre are 

explored in Sections 3.3.8 to 3.3 .11. 

The sections that follow will examine the prominent codecs and their operational principles. 

Coding results will also be given, in PSNR, so that an objective comparison between the various 

methods may be made. 

Section 3.3 may be organised according to the following chart: 

FZW 

SPIHf 

SFQ 

Zerotree 

ECECOWi 

Markovian Gaussian 

Figure 3-6: Method Taxonomy 

TCSFQ 

ElCOT 

All the methods presented are quantisation modes, except for ECECOW and EQ that are both 

entropy coding methods. This discussion will start with the first wavelet coding method, EZW, 

and progress from left to right according to the chart above, which approximates increasing 
sophistication. 

The underlying theme is that all these methods rely on an identical wavelet transfonn but , 
through recognising and exploiting different correlation structures different compression 

perfonnance is achieved. This highlights the argument that proper source modelling a most 
crucial aspect of any compression system. 

42 



3.3.1 Utility of Source Modelling 

The argument has long been that wavelets outperform the DCT due to the superiority of the 

basis set[Saha99]. Indeed, Section 3.2 has this as an implicit argument. However, Xiong, 
Ramchandran, Orchard, and Zhang [Xiong99], present evidence that this is not necessarily the 

case. 

They argue that all comparisons to date have been made between wavelets and baseline JPEG. 

Thus both the transform and quantisation stages are different. Inferring results about only one 

stage is therefore logically unfounded. The authors present an experiment in which the 

quantisation stage of the JPEG codec is replaced with a wavelet like quantiser based on SPllIT 

(Section 3.3.3). Then the standard 'Lena' and 'Barbara' test images are compressed using 

baseline JPEG, the new DCT algorithm, and the representative wavelet algorithm, SPllIT. The 

following results were produced: 

PSNR(dB) 

JPEG NewDCT Wavelet 

Rate (bpp) Lena Barbara Lena Barbara Lena Barbara 

0.25 3l.6 25.2 32.3 26.7 34.11 27.58 

0.5 34.9 28.3 35.9 30.6 37.21 3l.39 

1 37.9 31 39.6 35.9 40.4 36.41 

Table 3.3: Transform Stage Performance ComparisonIXiong99) 

The results show the dramatic improvement in the DCT codecthrough the use of a recent 

quantiser. Indeed the performance gain brings the DCT almost on par with the wavelet scheme. 

The conclusion drawn, is that it is the quantization of the coefficients that provides the 
performance gains of recent codecs, not the choice of basis function. 

This assertion is borne out in by the codecs that follow. The wavelet domain exposes image 

characteristics that allow sophisticated statistical context modelling and quantization. Wu 

[WuOl] explains that while the transform stage may remove linear dependencies between 

samples, higher order modelling allows more complex dependencies to be exposed and 
exploited. 

3.3.2 Embedded Zerotree Wavelet Coding (EZW) 

This ground breaking algorithm, introduced by Shapiro in [Shap93], is the first of the recent 
wavelet codecs, and hence taken as our point of departure. It efficiently captures both the energy 
concentration in the low frequencies and high frequency energy clustering. This is achieved by 
the method of zerotree quantization. 

3.3.2.1 Premise 

Each subband in the 2D wavelet transform contains different frequency information, but the 

same spatial information, barring resolution differences. Thus, the same region in space is 
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represented in each subband. The inter-band structure representing one region in space looks 

like a tree, as illustrated below. 

Figure 3-7: Wavelet Domain, Spatial Similarity Tree 

Furthermore these trees exhibit strong statistical properties. Shapiro shows that although the 

wavelet transform removes the linear correlations between coefficients as expected, there is still 

a strong correlation between the square of the coefficients; this is termed spatial self-similarity. 

ill fact, he shows that under mild restrictions it is statistically probable that given that a parent 

node falls below a certain threshold, all of its descendants do as well. This is the basis for the 

EZW approach; given a threshold T, it is statistically feasible to predict the behaviour of 

coefficients that are less than T. Based on this, a new form of quantisation; zero-tree 

quantisation, is introduced. A zero-tree is a tree-structure, such as in Figure 3-7, in which all the 

coefficients are below a given threshold, hence considered zero. 

The wavelet subband decomposition separates the low frequencies for encoding, thus allowing 

the first property of the image model in Table 3.4 to be exploited. Edges produce high value 

coefficients in the high frequency (or low scale) subbands. The zerotree quantisation method 

aids their description by quantizing non-edge features to zero very succinctly, thus exposing 
these edges. This accounts for the second property Table 3.2. 

3.3.2.2 Algorithm 

As the wavelet transform is unitary[Said96], the largest coefficients in the wavelet domain are 

the most important; they represent bases with more signal energy. Thus, in compression it is 
desirable to transmit these coefficients first, as they will produce the greatest decrease in 

distortion of the reconstructed image. Thus a threshold is defined, initially equal to the largest 
coefficient in the image. 

The algorithm operates by scanning through each sub band, starting at the lowest and 
progressing to higher subbands in a raster scan order, as illustrated below: 
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Figure 3-8: EZW Raster Scan Order 

During the raster scan, at each coefficient, a symbol is output indicating whether the coefficient 

is greater than the threshold. In addition, each element of the tree descending from the 

coefficient is compared to the threshold, and should they all be insignificant, a zerotree symbol 

is output. The raster scan then continues through the image, excluding all coefficients 

previously found to be elements of a zerotree. This allows the output symbol stream to be 

shorter. 

After the scan has been completed, this set of symbols is either Huffman or arithmetic encoded, 

which efficiently encodes the spatial localization of high frequencies at edges. This is owing to 

long sequences of zerotree symbols in the non-edge areas, which may be coded efficiently with 

entropy coding. 

In addition a separate stream is generated, where for each significant coefficient, the difference 

between this coefficient and the threshold is transmitted. 

Once a full scan has been completed, the threshold is lowered, and the process repeated, 

excluding those coefficients already found to be significant. Through this iteration, eventually 
all the coefficients will be transmitted. 

A crucial element of the system is termed the bit plane transmission. Rather than transmitting 

the numerical difference between a significant pixel and the threshold, the bit from the same bit 

plane as the threshold (ie the bit indicating 256, 128,64 etc) is transmitted, for each coefficient 

found significant. This is termed order bitplane transmission and is most effective. 
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3.3.2.3 Results 

The results shown here, as in other tabulations are drawn from the UCLA Image 

Communication Laboratories Results Page [UCLA1] and the original work; all images used are 

512 x 512 greyscale images. 

Image Bit Depth (bpp) PSNR(dB) 

Lena 0.25 33.17 

Lena 0.5 36.28 

Lena 1 39.55 

Barbara 0.25 26.77 

Barbara 0.5 30.53 

Table 3.4 : UCLA PSNR Results for EZWrUCLAl J 

3.3.2.4 Discussion 

The algorithm presented is efficient at encoding both elements in the image model presented in 

Table 3.2. 

The dominance of low frequencies in images is accounted for by the raster scan order, which 

encodes low frequencies first, as they are most likely to be significant. 

The high frequencies representing edges are also accounted for. Edges will produce large 

coefficients in the high frequency subbands, but not necessarily in the low frequency bands. By 

searching the tree structure descending from each coefficient, these edge coefficients are found. 

The zerotree quantization method efficiently removes large tracts of insignificant coefficients, 

without removing significant edge coefficients. 

Although the results presented above are the worst of all recent wavelet codc;:rs, this is because 

this is the original work, upon which all improvements are based. This image co dec is of great 

importance as it introduced the zerotree quantization method that successfully extends the 
sub band coding functionality of capturing energy localization in low frequencies, to the capture 
of high frequencies which are spatially localized on edges. The utilization of zerotrees is 
improved in later algorithms. 

3.3.3 Set Partitioning in Hierarchical Trees (SPIHT) 

The most celebrated codec is Said and Pearlman 's SPllIT presented in [Said96]. It is based 

heavily on the EZW algorithm of Shapiro, [Shap93], but features more sophisticated stream 

generation. This algorithm has been the benchmark for comparison of all later codecs, and the 
basis of our own, thus details of its operation will be given. 

3.3.3. 1 PLemise . 

While SPllIT uses the same image model as EZW, the algorithm is more efficient in 

constructing the output bitstream and thus yields higher performance. Said and Pearlman note 
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that minimising the distortion in the transfonn domain will minimise th~ distortion in the 

original domain too. Thus, the major change in SPIRT over EZW is to alter the order in which 

the algorithm scans to ensure that the largest coefficients are transmitted first. While EZW 

follows a raster scan order, SPIRT includes various tree searching routines. 

3.3.3.2 Algorithm 

SPIRT operates on three sets: 

List of Significant Pixels All pixels whose value is above the threshold. 

(LSP) 

List of Insignificant Pixels All pixels that are part of a significant tree but are themselves 

(LIP) below the threshold. 

List of Insignificant Sets All pixels that are the root of zerotrees. 

(LIS) 

Table 3.5 : Sets in the SPIHT algorithm 

Implied in this is a fourth set, consisting of all those pixels that are below the threshold, and lie 
in a zerotree. However, these are never explicitly addressed. 

The algorithm begins by searching the image for the largest element, which is termed the 

threshold. Any coefficient less than the threshold is termed insignificant, and any greater than or 

equal to the threshold is termed significant. It then searches the lowest subband for all the 

significant coefficients; and adds them to the LSP and outputs their sign; the rest are added to 

the LIP. In addition, the tree stemming from each of these coefficients is searched for 

significance. Those pixels, whose entire descendant tree is insignificant, are added to the LIS. 

The algorithm then scans through the LIP, outputting the significance of each element. In 

successive scans, as elements become significant they are moved to the LSP, and their sign is 

output. The set of bits output to indicate sign infonnation is termed the sign bit set. 

Thereafter the algorithm scans the LIS, for each coefficient determining the significance of the 

elements of the descendant tree and outputting a bit to indicate the result. If there is any element 

that is significant, the next level of descendants is checked for significance and a bit output to 

indicate each result. The elements are also added to the end of the LSP, LIS and LIP as 

appropriate. The scan through the LIS will continue, and any elements that have been added to 
the list will be checked further. This traversal of the LIP and LIS i's tenned the sorting pass. 

After the LIS has been fully traversed, the algorithm steps through the LSP outputting the 
appropriate bitplane value for each coefficient, as explained in the EZW algorithm. These bits 

are termed the refinement bits. The threshold is then halved, and the process repeated from the 

search through the LIS. The traversal of the LSP and outputting of refinement bits is termed the 
refinement pass. 

By beginning the search in the lowest sub band, the energy localization in low frequencies is 

exploited. The spatial localization of high frequency coefficients of significance is also 

exploited through the tree structure, which will quantise all those pixels in interior spatial 
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regions, thus exposing the edges. Thus, the algorithm captures the low frequency coefficients 

where most energy is frequency localized, as well as the edges, where energy is spatially 

localized. This mechanism is identical to EZW. 

3.3.3.3 Results 

UCLA [UCLA1] compiled the following results from this algorithm. 

Image Bit Depth (bpp) PSNR(dB) 

Lena 0.25 34.11 

Lena 0.5 37.21 

Lena 1 40.46 

Barbara 0.25 27.79 

Barbara 0.5 31.72 

Table 3.6 : UCLA PSNR Results for SPlHT(UCLAl) 

3.3.3.4 Discussion 

Although this algorithm is identical to EZW in its zero tree quantization, it achieves higher 

compression due to its zerotree searching mechanism. EZW raster scans through-the subbands 

starting from the lowest, as each coefficient significance is determined and the tree expanded if 

it contains significant descendants. These coefficients are then only added to the outgoing 

bitstream when the raster scan reaches them. SPIHT scans through the lists, rather than in a 

raster order, and thus encodes significant descendants immediately, which yields rate savings. 

Furthermore the algorithm outputs its state at each significance test; these are termed the 

significance bits. This results in an output bitstream that is embedded; it can be truncated at any 

point and reconstructed correctly to that point. This is very useful in generating specific rate 

streams, as Chapter 6 will demonstrate. 

This algorithm in fact represents a more compact transmission strategy for the same information 
as EZW, which is the main reason for its improved performance. 

3.3.4 Rate Distortion Optimisation to SPIHT 

Pearlman's original technique guarantees lossless reconstruction at a bitplane level if all bits in 

that plane are transmitted. However, should the stream be terminated before ·the entire bitplane 

has been transmitted, the distortion is suboptimal. As mentioned in section 3.3.3.1, SPIHT aims 

to rnir;timise the distortion, however no regard is given to the effect this has on the rate 

behaviour. That is, for a given number of bits the distortion is not as low as it could be. Lin and 
Gray [Lin02], present a technique that minimizes the Lagrangian cost function, J = D +}.,R , 
when selecting bits from the wavelet tree to 'include in the transmitted stream. 

As indicated in Section 3.3 .3 on the SPllIT algorithm, there are three types of bits within the 

output stream; sign bits, refinement bits and significance bits. Sign bits are output when a 
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coefficient is added to the LSP to indicate the coefficient sign. Refinement bits are added to the 

output stream duri~g the refinement pass. Finally significance bits are the bits output to the 

stream indicating the result of each significance test. 

Lin and Gray note that while sign and refinement bits directly contribute to a distortion 

reduction in the reconstructed image, significance bits do not. Thus, during the sorting pass, it 

will be beneficial to expand elements of the LIS which have the greatest number of significant 

descendants, before expanding those with fewer significant descendants. Thus Lin and Gray's 

algorithm performs a Lagrangian test, rather than a significance test, to the descendant tree of 

each coefficient in the LIS, to determine whether to expand it or not, thus maximising the 

distortion decrease for a given bitrate increase. 

: . . . .... ~ . 

. :'J'<~ '-' ' . ~: 
;~ : 

.. /Y . ' . 
,~~'. : : 0·;::3 -: .......... .. , .... .... -

//"~ ' # . 

,or 
.. ,;:/ ... .. .. .. . .. . 

n=4 

0.4 o..s liS O.T (l.S 0.9 
& 1 lWe IlIr:o) 

Figure 3-9: Comparison Between RD-Optimised SPIHT and SPIHT[Lin02) 

Although the principle of this algorithm is promising, another similar work, SFQ, performs 

better and will be described in greater detail below. 

3.3.5 Space Frequency Quantization (SFQ) 

Continuing the theme of rate-distortion optimising approaches, Xiong, Ramchandran and 
Orchard in [Xiong96], present an algorithm that is based on a joint zerotree and scalar 
quantization optimization. Notably, due to the scalar quantization, the bit stream generated is not 
embedded, as in SPllIT. 

3.3.5. 1 Premise 

Noting, as In [Lin02], that SPllIT minimises the distortion, rather than optimises the R-D 

behaviour, the authors design their algorithm to provide optimal R-D behavio~. 
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Conceptually, should a tree structure contain only insignificant coefficients except for a single 

significant high frequency coefficient, the tree cannot be zerotree quantized, using the 

EZW/SPllIT scheme. However, the distortion benefit of not zerotree coding the coefficient may 

be outweighed by the rate overhead involved. 

Stated precisely, the SPllIT quantization algorithm does not operate at rate-distortion optimality 

at each quantization point. Xiong et aI, redefine zerotree quantization, such that a tree is zerotree 

quantized according to a rate-distortion criterion, rather than a significance criterion. They then 

jointly optimise the zerotree criterion with the scalar quantiser stepsize, to ensure that the 

algorithm maintains rate-distortion optimality at each operational point. 

3.3.5.2 Algorithm 

The joint RD optimization may be written as: 

min D(q,S) subject to R(q,S) 5, Rb 
:qeQ,S-<T: , 

(3.4) 

where, using Xiong's notation, Q represents the set of possible scalar quantiser choices; q, a 

particular quantisation step-size; T, the full tree expansion of the wavelet representation and S, a 

pruned subset of this tree. D(q,S) represents distortion (in a MSE sense), and R(q,S) is the rate, 

both at the operational point (q,S). Using the Lagrange Multiplier method, as in CHAPTER 2, 

this equation may be rewritten, for R( q,S) = Rb: 

min [J(q,S)=D(q,S)+,t .R(q,S)] . 
:"e(j,S-<Tl 

(3.5) 

As q and S are highly inter-dependant; q upon S, an iterative approach must be taken. First the 

optimal S for a given q must be found for each q. Then, the optimal q for each')... must be found. 

The optimal')... is then found using a bisection search until R( q,S) = Rt,. This is written: 

min min min [ D(q,S) +,t. (R(q,S) - Rb) J. 
A~O qeQ S-<T 

(3.6) 

This process may be seen as a joint optimization of the zerotree- and scalar- quantization modes 
using operational RD estimation followed by Lagrange optimisation. 

3.3.5.3 Results 

This algorithm performs favourably compared to those discussed to this point. The UCLA 
results are as follows: 

Image Bit Depth (bpp) PSNR(dB) 
Lena 0.25 34.33 
Lena 0.5 37.36 
Lena 1 40.52 

Barbara 0.25 28.29 
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Barbara 0.5 32.15 

Barbara 1 37.03 

GoldHill 0.25 30.71 

GoldHill 0.5 33.37 

GoldHill 1 36.7 

Table 3.7: PSNR Results for SFQ IUCLAII 

This algorithm is seen to outperform SPUIT, as expected. 

However, the cost in computation is very large. In their paper, Xiong et al report that a 

simplified SFQ encoder algorithm is 400% slower than SPIRT in encoding Lena, on their 

computing platform. This is due to the iterative searching scheme, which is required for the 

optimization. 

3.3.5.4 Discussion 

This algorithm draws its success mainly through improving the criterion for zerotree 

quantization. In addition, by jointly optimising this criterion with the scalar quantiser stepsize, 

further gains are made. 

It has been noted that the advantage recent wavelet coders gain over subband coders, is due to 

their superior representation of high frequency localization in space through the zerotree 

mechanism. This algorithm is thus a suitable direction of enquiry as it seeks to build on the 

main strength of the wavelet scheme, by identifying regions of clustered high frequency 
artefacts preferentially to isolated coefficients. 

This algorithm provides a conceptually simple, but computationally expensive approach that 
produces good results. 

3.3.6 Stack Run Coding (SRC) 

Initially proposed in 1996 by Tsai et aI, [Tsai96], Stack Run Coding is a low complexity 
wavelet transform coefficient compression scheme. Unlike previous methods it does not rely on 
the zerotree quantisation paradigm. 

3.3.6.1 Premise 

Tsai argues that in the case of high ratio compression, most of the coefficients will be quantized 

to zero, particularly in a bitplane traversing method. Thus the overhead of identifying zerotrees 

may be unjustified. Instead the SRC coding algorithm relies on runlength coding of zeroes. 

In addition, an early adaptive arithmetic coder is presented, which considers the magnitude and 
runlength datastreams separately. 
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3.3.6.2 Algorithm 

The algorithm is very simple. Each significant coefficient of an already quantized wavelet 

representation is replaced by a structure (a,b), where (a) represents the runlength of zeroes 

before the coefficient, and (b) represents the signed value of the significant coefficient. The set 

{a} and set {b} are then independently arithmetically encoded, to take advantage of the different 

statistical nature of each set. 

3.3.6.3 Results 

Results for this method are good, given the simplicity of the algorithm: 

Image Bit Depth (bpp) PSNR(dB) 

Lena 0.25 33 .63 

Lena 0.5 36.79 

Barbara 0.25 27.39 

Barbara 0.5 30.98 

Table 3.8 : PSNR Results for SRC[Tsai96) 

3.3.6.4 Discussion 

The method is outperformed by all others except EZW. However, that it outperforms the 

significantly more sophisticated JPEG algorithm lends credence to the move towards wavelet 
. . 
Image compreSSIOn. 

An unexpected twist is the computational overhead of the algorithm, whic~ was published as 

being 13% greater than the SPIRT algorithm. As this figure is based on running time of an 
implementation, one can site possible implementation issues as the cause. 

3.3.7 Trellis Coded Quantization (TCQ) 

Trellis Coded Quantization borrows from Trellis Coded Modulation, which is used extensively 
in channel coding. TCQ was proposed,[Marc90], before zerotree quantization, and is used in 

subband image coding to quantize the output bits from the wavelet transform stage. 

3.3.7.1 Premise 

3.3.7.1.1 Gauss Markov Processes 

A Markov process is ~efined, [Pap091] as one where a sample at any time is statistically 
dependant only on the previous sample: 

(3.7) 
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A Gauss-Markov process is defined as a Markov process where each sample is identically 

distributed according to a Gaussian distribution: 

1 __ l_(x _nlx )2 
, ., -II 

i - (x )=--e -(7" 
); _n &a (3.8) 

Thus, given the sample :!n-I ' one may fonn an expectation of the sample :!n ' Based on this 

expectation, a codebook of possible quantization levels may be designed. Rather than design a 

separate codebook for every possible value of :!n-l ' the set of possible values of :!n-l is divided 

into groups, and a codebook designed for each group. 

3.3.7.1.2 Set Partitioning 

Assume the compression demands on a set of sample coefficients:!, demand that the quantiser 

operate at n bits per sample, that is, the quantiser will have 2n quantization levels. Should the 

quantisation codebook be designed according to probability of the entire set, the quantisation 

levels may be rather coarse. If the input set is partitioned into 2k groups, as justified by the 

Gauss-Markov assumption, a quantiser operating at (n-k) bits per .sample may be designed. The 

system as a whole would still quantize at n bits per sample, where the output is composed of k 
bits to indicate the group and n-k bits to indicate the quantization level within that group. 

3.3.7.1.3 Trellises 

Trellis coded quantisation combines the ideas of set-partitioning with the Gauss-Markov 

condition to produce a very efficient quantisation scheme. 

The following is the diagrammatic representation of a trellis: 

State n Transition State n+! Codebook 

o 

2 

3 

Figure 3-10: Four State Trellis IMarc901 

From one state, the system may only transition to a choice of two other states. For instance if at 

sample :!n the trellis is in state 0, then at :!n+1 the trellis may only be in state 0 or state 1. The 
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choice of states is indicated by the transition bit. Each state corresponds to the codebook used to 

quantise the current coefficient; in the given example ~17 will be quantised with the 

Do codebook. 

The utility of the trellis draws from the Markovian assumption. Given sample ~17' the statistics 

of sample ~17+1 are known, thus a representative codebook, Do , should be used to quantise it. If 

however, the sample does not fit the expected statistics, on the next transition the trellis will 
transit to state 1, using a different codebook. In this way the system will traverse the trellis, 

using an expected representative codebook at each state. Algorithms such as the Viterbi 

algorithm, [Forn84], exist that traverse the trellis in an optimal fashion, these will not be 

explored here. 

3.3.7.2 Algorithms 

As TCQ was originally proposed in 1990 in [Marc90] there have subsequently been several 

systems based on this principle. One of the most successful was proposed by Joshi, Crump and 

Fischer in [Josh95]. The scheme consists of a subband decomposition (using the DCT), 

followed by trellis coded quantisation utilising uniform codebooks, and finally arithmetic 

coding. Interestingly, the scheme performs similarly to EZW [Shap93]. 

A more recent algorithm, also based on subband decomposition, [Kasn99], presents 

performance similar to SPIRT. 

Image Bit Depth (bpp) PSNR(dB) 

Lena 0.25 33.7 

Lena 0.5 37.12 

Lena 1 40.49 

Table 3.9: Performance of UTQ [Kasn991 

In Section 3.3.10, a recent algorithm, TCSFQ, that utilises TCQ in conjunction with zerotree 
quantisation, will be discussed. 

3.3.7.3 Discussion 

Trellis coded quantisation provides a useful quantisation strategy for Markovian sources. This 

technique allows the total number of quantisation levels used to compress a source to be greater 

than 217 where n is the bits per pixel, which is the limit for preVious quantisation techniques. 

This expanded codebook allows finer quantisation, and hence superior RD performance. 

However the coding gains achievable through using only this technique are not as large as with 

zerotree coding. However, as will be shown is 3.3.10, when TCQ is employed in conjunction 
with other methods, efficient coding results. 
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3.3.8 Embedded Conditional Entropy Coding of Wavelet Coefficients 

(ECECQW) 

Wu presents [Wu97],[WuOl] a new method of wavelet image compression using an adaptive 

binary arithmetic coder based on the well-known QM coder [Penn88] that is used in JPEGl 

[Wa1l92]. The adaptivity is driven by a high-order context modeller, which is the main 

contribution of the work. 

3.3.8.1 Premise 

Although the transform stage in an image compression system removes linear dependencies 

between the coefficients, higher order dependencies may still remain. The advantage of the 

wavelet transform is that its dual space-frequency representation exposes several dependencies 

through concentrating energy both in space and frequency. 

Zerotree quantisation methods exploit the clustering of insignificant coefficients in well defined 

inter-band structures. However, other dependencies also exists, which zerotree quantisation 

obscures. It is the goal of the ECECOW method to adaptively capture these spatially varying 

structures. 

Thus by building a good estimate of a coefficient based on these structures, or conditioning 

states: 

(3.9) 

an adaptive binary arithmetic coder may be driven. Using such a coder, the output code length 
will approach the estimated entropy: 

n 

-log2 TI p( Xi I xi-] ) . (3.10) 
i=1 
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3.3.8.2 Algorithm 

3.3.8.2. 1 Context Formation 

The ECECOW algorithm builds a modelling context for estimating a coefficient, based on 

, neighbours both spatially and in the frequency domain, as illustrated below. 

LL LH LH 

pn 
pw~. : 

. __ ______ __ _ ... __ ___ ~s __ ~::::.. .. .. .. nn 

HL : HH : '. 
: : w-"c e 
, , . , , , . , , , , , 
, , 

- -- - - - -- - - --~ - -----------~--- - ----------- -- -- - - -- - -
HL , , HH 

Figure 3-11 : ECECOW Context Formation 

The coefficient under consideration is c, and its spatial neighbours are designated by compass 

direction. The parent coefficient is p, with its spatial neighbours also designated by direction. 

ECECOW operates on an embedded bit stream as per [Shap93] and [Said96]. Using Wu's 

notation the bits of a coefficient, from the MSB down to bit b, is written as C,.b' 

Coefficient structures vary between subbands. For instance, in LH type subbands, vertical edges 

are prominent due to the wavelet filter in the horizontal direction being a high pass type. See 

Appendix A. Similarly HL type subbands display horizontal features. Thus the modelling 

context is varied per subband type. Wu finds empirically that the following contexts are 

effective: 

(3.11) 

SHL = {N,h' W,h, NW,h' NE"h' WW,h' E ,h' Ph' PW.,h' PE,h} (3.12) 

SHH = {N.h'W,h,NW,,,, NE .. h, S,h+I' EM 1, P,h' CHl_, C1B }, (3.13) 

The extension of the context in the directions of significance is evident. 

When generating the b
th 

level of the embedded bitstream, and considering a coefficient C, only 

the bits in the same or previous level are considered. This is done because, as the number of 

possible conditioning states increases, the computational overhead of capturing statistically 
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significant behaviour increases exponentially. This is known as the context dilution problem. 

Thus using only a single bit, rather than the full coefficient value, reduces the number of 

possible states. 

3.3.8.2.2 Context Quantisation 

To express the relationship between a coefficient C, and is modelling context, Wu proposes a 

linear estimation which he terms the local energy level: 

t:..e = L aeJ 'Zj, 

zj eS(J 

f} E {LH,HL,HH} 

(3.14) 

where Zi are the coefficients in the modelling context. The parameters ae.i are determined by an 

offline regression. 

The local energy level, t:..e provides a quantisable estimate of the coefficient C, based on the 

modelling context. Thus the entropy 

(3.15) 

may be minimised through careful design and optimisation of the quantiser, QO. This process is 

expounded in [WuOl]. 

In addition to the aggregated measure (3.14), the relative significance of various neighbours was 

found to be of importance, thus the following measure is added to the context: 

N .b > C.b+1?0 : 1; 

Wb > C.b+1 ?O: 1; 

Tb =[to,·· ·,t4 J = S .. b+1 > C:.b+I?O : 1; 

E .. b+1 > C.b+1 ?O : 1; 

{
P.b + PN.b + PS.b > 6C .. b+1 :0 : 1, 

p.b + PWb + PE.b > 6C.b+1 ?O: 1, 

f}=LH 

f}=HL 

Thus, the final probability estimate that is input to the arithmetic encoder is: 

(3.16) 

(3.17) 

A similar, yet separate context formation and coding strategy is applied to the sign information. 

3.3.8.3 Results 

The results published from [Wu97] and [WuOl] are among the very best in the literature. 

Image Bit Depth (bpp) PSNR(dB) 

[Wu97] I [WuOl] 
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Lena 0.25 34.81 34.89 

Lena 0.50 37.92 38.02 

Lena 1.00 40.85 41.01 

Barbara 0.25 28.85 29.21 

Barbara 0.50 32.69 33.06 

Barbara 1.00 37.65 38.05 

Table 3.10: ECECOW Results [Wu97),[WuOl) 

The major difference between [Wu97] and [Wu01] is the context quanti~tion optimisation 

procedure. 

In addition, various fast implementation techniques described in the papers allow the algorithm 

to operate with low computational overhead. The author reports a 20% speed improvement over 

SPIHT, while at the same time generating superior RD performance. 

3.3.8.4 Discussion 

This algorithm is extremely powerful. The main feature is adaptive context formation, by 

subband and coefficient. The algorithm exposes more complex relationships than the zerotree 

model, thus allowing more efficient coding through adaptive entropy coding. 

By using embedded bitplane traversal, the context dilution problem is tackled, as well as 

allowing the very successful QM adaptive binary arithmetic coder to be employed. In addition, 

the computational overhead of the algorithm is low compared with other methods. 

3.3.9 Estimation Quantisation (EQ) 

3.3.9.1 Premise 

A similar procedure is proposed by LoPresto, Ramchandran and Orchard in [Lopr97]. Based on 

the subband image processing literature, the authors model the wavelet coefficients as being 

distributed according to a spatially varying Generalised Gaussian Distribution. They estimate 
this distribution, and quantize and entropy encode the coefficients optimally, based on this 
estimated distribution. 

3.3.9.2 Algorithm 

3.3.9.2.1 Estimation 

The method models each subband in the wavelet decomposition as a collection of independent 
zero-mean generalised Gaussian distribution (GGD) fields. These fields are stationary, but of 
unlalOWll shape, and exhibit a spatially varying variance. The GGD is given by: 

x = [V17 (v , CT) ]e(-[17(v.a)IX1V J) 
p() 2r(lIv) (3.18) 
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where the shape parameter is given by: 

l
In 

-I r(3 /v) -~(v,,,) ~" [r(lIv) (3.19) 

The authors select a modelling context, S, that is a 3x3 or 5x5 spatial block (the size is specified 

by N), with the coefficient under consideration, in the centre. They state that this context may be 

extended to other subbands via the parent-child relationships, in a similar fashion to [Wu97]. 

In general, the wavelet coefficients, Wi output by the transform will be quantized, usually to 

bring them to integral values, Wi' Given a knowledge of this quantisation method, the 

unquantised coefficient is known to lie between the two bin values, Ii and If. Hence, the 

maximum likelihood estimate of the sample standard deviation may be found: 

N 

as = argmax I1 P{li ~ X ~ lj) 
a i=1 

_ 0 ~ or~. v17 (v,a)] (-['7(v.al JxJ
v

]) 

- ar~max .L.lo~ () e dx 
a i=1 I; 2r l / v 

(3.20) 

This is solved using an iterative numerical method, see [Lopr97] for details. 

3.3.9.2.2 Quantisation 

Based on the estimation of the standard deviation presented above, and the predetermined shape 

parameter for the subband of interest, the coefficient is quantised using an optimal quantiser. 

The solution presented is to generate a sufficiently large number of quantization tables, for unity 

variance GGDs of different shape parameter, offline. These tables are stored as lookup tables in 

the encoder and decoder. The tables are then scaled online by the estimated variance. 

3.3.9.3 Results 

Results obtained using this method are impressive. 

Image Rate(bpp) PSNR(dB) 

Lena 0.25 34.57 

Lena 0.50 37.69 

Lena 1.00 40.89 

Goldhill 0.25 30.76 

Goldhill 0.50 33.42 
Goldhill 1.00 36.96 

Table 3.11: EQ Performance Results (Lopr97( 
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Nu~erical computational performance results are not given, however the .authors claim the 

method to be 'significantly' faster than SFQ. That SFQ is a computationally complex algorithm 

detracts from this measure. 

3.3.9.4 Discussion 

This method operates within the subband image processing school. It draws advantage from 

adaptive context estimation with joint quantiser optimisation. By performing the quantiser 

optimisation offline, significant computational gains are made. 

3.3.10 Trellis Coded Space Frequency Quantisation (TCSFQ) 

Figure 3-1 shows the three stages in a typical wavelet compression algorithm. TCSFQ 

[Xiong99,2] combines the most successful method applied in each one of these stages to 

produce a complex, but high performance codec. 

3.3. 10. 1 Premise 

The three stages of compression have been considered separately in previous algorithms. In this 

method the final two are considered jointly. In addition, as many compression methods that 

operate in each stage utilise a different redundancy in the data, they may be applied in 

conjunction with one another to yield superior performance. [Xiong99,2] presents the 

contribution of each improvement to the final codec performance . 

. Each of the stages and respective methods will be considered below. In order to ease the 

discussion, each block will be independently covered. 

3.3.10.2 Wavelet Transform 

As no compression occurs in this stage, the authors investigate the effect of various mother 

wavelets, and decomposition structures on the overall system performance. Specifically, they 

compare the ubiquitous Daubechies 9/7, the Villasenor 10/18 and a 28/28 biorthogonal filter. In 
addition they compare the standard dyadic decomposition with the packet decomposition. 

Lena - PSNR (dB) Goldhill- PSNR (dB) 

Filter 7/9 10/18 28/28 719 10118 28/28 

0.25bpp 34.66 34.77 34.76 30.90 30.96 30.98 

0.5bpp 37.79 34.87 37.87 33.68 33 .73 33.75 
lbpp 41.10 41.12 41.21 37.l7 37.29 37.34 

Table 3.12: Effect of Wavelet Filter on TCSFQ rXiong99,2) 

Results show, as in Section 3.2.1.1 , that performance increases with filter length, which is at the 

cost of increased computational burden. Again this improvement is at best marginal, being on 
average 0.1dB PSNR. 

Also investigated is the effect of the packet decomposition on ·the notorious Barbara image, 

which is heavily textured. Technically the decomposition is the 3+3 decomposition that uses a 
full packet decomposition for the first 3 levels, and is dyadic for the remaining 3. 
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Barbara - PSNR (dB) 

Transfonn Dyadic Packet 

Filter 7/9 10118 28/28 7/9 10118 28/28 

0.25bpp 28.55 28.81 29.17 29.61 29.87 30.60 

0.5bpp 32.57 33.00 33.35 33.36 33.83 34.48 

Ibpp 37.71 38.25 38.46 38.15 38.48 39.12 

Table 3.13: Effect of Packet Decomposition on TCSFQ IXiong99,2) . 

The result agrees with those discussed in 3.2.1.3 . In that section, optimal packet pruning returns 

3-4dB gain (on 'Barbara' ), while using this unpruned packet decomposition yields 0.5-1.5dB. 

3.3. 10.3 Quantisation 

Xiong's own previous SFQ algorithm (Section 3.3.5) showed that optimal zerotree pruning 

based on RD criteria yielded the best results for zerotree quantization. Furthennore, the 

Markovian nature of wavelet coefficients is not exploited in this method. This motivates the use 

of trellis coding (3 .3.7) as a complementary quantization mode. Xiong thus replaces the original 

unifonn threshold scalar quantiser (UTQ) of SFQ with a trellis coded quantizer (TCQ), for 

coding those coefficients not pruned by the zerotree coding stage. 

The results of this substitution are shown in Table 3.14. 

PSNR(dB) 

Rate (bpp) SFQ+UTQ SFQ+TCQ 

0.25 34.12 34.76 

0.5 37.18 37.87 

1.00 40.74 41.21 

Table 3.14: Effect of Trellis Coding in SFQ IXiong99,2) 

It should be noted that these are the results for the SFQ coder, without any context modelling in 
the entropy coding stage. 

The improvement in results is due to the enlarged codebook the TCQ allows, as a result of 
exploiting the Markovian characteristics ofthe wavelet domain. 

3.3.10.4 Entropy Coding 

The final stage is the entropy coding stage, here recent advances such as in ECECOW, motivate 

the use of higher order context fonnation. By inserting the ECECOW entropy coder as the fmal 

stage into the original SFQ algorithm (SFQ+ECECOW), and the trellis coded amendment to 
SFQ (SFQ+TCQ+ECECOW) the following perfonnance is exhibited: 

PSNR(dB) 

Rate (bpp) SFQ SFQ+ECECOW SFQ+ TCQ+ECEOW 
0.25 34.22 34.77 34.76 
0.5 37.36 37.85 37.87 
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1.00 140.52 141. 13 1 41.21 

Table 3.15: Effect of Context Formation on SFQ 

Interestingly, the performance gain of ECECOW in addition to TCQ is minimal. The reason is 

that both attempt to exploit the same redundancy; the Markovian dependency between spatially 

neighbouring coefficients. As ECECOW uses a higher order model than TCQ, and is more 

adaptive to the underlying data; it produces better results than TCQ. 

3.3.10.5 Discussion 

[Xiong99,2] presents several important results. The first being, that the zerotree quantization 

method is independent of the Markovian behaviour of images. Thus, exploiting this statistical 

property presents an opportunity to increase performance. As ECECOW. utilises the most 

sophisticated Markov modelling, it exhibits the greatest benefit. 

An interesting result is that ECECOW[Xiong97] outperforms TCSFQ, even without the 

advanced context quantisation options added in 2001 [Xiong01]. This is not explored in the 

paper, which fails to compare TCSFQ with ECECOW. However, I believe that this is as a result 

of improper application of ECECOW in this work. It appears from the paper that the authors 

applied ECECOW directly to the already zerotree processed coefficient set. As the zerotree 

coding significantly alters the image statistics, such as by flattening the distribution-around zero, 

the original ECECOW context model may not hold. In order to fully exploit the capabilities of 

ECECOW, the exercise of reforming the context modeller would have to be undertaken on a 

suitable sample of zero tree processed coefficients. This must be done to reveal the statistical 

properties of this coefficient set, which will be different to the original wavelet coefficient set. 

The computational requirements of this method are unpublished, however given the nature of 

the algorithm, will be considerable. 

3.3.11 JPEG 2000 and ESCOT 

The previous decade of activity in image compression using wavelets .and the resultant 

performance gains motivated the standards bodies, the lTV and ISO, to update the DCT based 

JPEG algorithm to incorporate wavelet techniques. The resulting scheme is known as 

JPEG2000 [BoliOO], [ChriOO]. The system is complex, with many usability and error resiliance 

features. However, as these are ancillary to our discussion, the material here shall be limited to 

the core coding scheme, Embedded Block Coding with Optimized Truncation, EBCOT, 
[TaubOO]. 

3.3.11.1 Premise 

EBCOT presents the joint application of many of the techniques presented in isolation in 

previous sections. The central coding features are an adaptive binary arithmetic coding scheme 

driven by a bit-plane context formation scheme, coupled with an RD optimisation scheme based 

on bit rate allocation within image tiles. In addition, the output stream is carefully constructed to 
be SNR and resolution scalable. 
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3.3.11.2 Algorithm 

After the image has been wavelet transformed, EBCOT employs a two stage algorithm to code 

the coefficients. 

Figure 3-12: EBCOT Coding Stages[TaubOO) 

3.3.11.2.1 Stage 1: Block Coding' 

The first stage tiles each subband into blocks, usually dimension 16x16. Each of these blocks is 

then coded separately to produce an embedded stream. The coding follows a very similar 

- process to ECECOW (3 .3.8); an adaptive binary arithmetic coder, driven by bit-plane context 

formation, 

Each tile is traversed in a raster scan, bitplane order. 

Context Formation 

Each of the three coefficient properties, significance, sign and magnitude, has an independent 

context. This is done to reveal the statistical properties unique to each property. 

The significance-, termed Zero-, coding refers to the probability of a previously insignificant 

coefficient becoming sign.ificant at the current bitplane. This property was found to be 

Markovian, as in (ECECOW, 3.3.8); dependant only on the significance of its eight spatial 

neighbours. Interestingly Taubman only includes spatial neighbours, and not parent or child 

neighbours as in ECECOW. 

As there are 256 possible conditioning states, the context dilution problem is encountered. Thus, 

the number of states is reduced by considering the following states, based on the number of 

neighbours in a given horizontal (H), vertical (V), or diagonal (D) orientation: 

# coeff 

H V D State 

0 0 0 0 

0 0 1 1 

0 0 >1 2 

0 1 X 3 
0 2 X 4 

1 0 0 5 

1 0 >0 6 

1 >0 X 7 

2 X x 8 

Table 3.16: Significance Context Formation in EBCOT[TaubOO) 
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This table only indicates the contexts for the LL, HL and LH subbands; a separate table is used 

for the HH subband, as the subband correlation structures differ. As the table indicates, 
additional states are expended on encoding the horizontal dimension, as the correlation 

structures are strongest in this direction in the LH band. In EBCOT the HL band is transposed 

before this context formation to allow its vertical structures to be captured with the same 

contexts. This band dependant context formation is a similar approach to that taken by 

ECECOW. 

If a run of greater than 4 insignificant coefficients is found, it is encoded using run-length 

coding rather than the coding described above. 

The sign information is encoded in a similar manner. Taubman argues that in LH (and 

transposed HL bands) horizontal neighbours tend to share signs, while vertical neighbours have 

opposite signs. This is owing to the wavelet filter operating in the horizontal direction being of 

type low-pass thus outputting a continuous sign due to the input of typically low pass image 

data, and the vertical filter tending to do the opposite. This argument is supported by empirical 

evidence presented in [WuOI]. A context formation table is constructed to take advantage of this 

correlation. 

Finally the magnitude context is formed. The correlation structures for this property have yet to 

be identified. The conditioning states for this variable are only whether the coefficient has 

previously become significant, and whether any horizontal or vertical neighbours are 
significant. 

Encoding 

Having formed the context for each coefficient, a specific scanning order is followed to input 

the coefficient and its context into the arithmetic coder. This is done to encode the most 
significant coefficients first. 

In summary, first the coefficients with significant horizontal neighbours are coded (owing to the 
horizontal correlation mention previously), then the coefficients with at least one significant 

neighbour, then the coefficients found significant at a previous bit plane, and finally the 
remaining coefficients. 

The arithmetic coder entropy codes this data, producing an embedded output stream. 

3.3.11.2.2 Stage II: RD Optimisation 

As each tile has been coded in an embedded fashion, it is possible to assign the bitrate optimally 
between the tiles by truncating the output stream of each tile, hence the nomenclature, optimal 
truncation. 

During the block coding stage described above, the set of possible truncation points for the 

scheme is generated. At each point the rate, and slope of the R(D) curve is internally stored as 

auxiliary data. This stage produces the final output stream by using this information and a 

Lagrange multiplier method to allocate the rate between the tiles in an RD optimal manner. 
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The Lagrange multiplier method is unremarkable except for the distortion metric used. Rather 

than perform RD estimation in the original spatial domain, the following distortion metric is 

used in the wavelet domain: 

Dr = w;; I: (sf' [~] - S; [~]t 
/i.eH, (3.21) 

where s; [~] represents the 2D set of wavelet coefficients forming block Bi . Similarly, s; [~] 
represents the same coefficient set, truncated to point n. Finally, Wbi is the L2 norm of the basis 

function used in the wavelet decomposition. This metric approaches the Square Error distortion 

metric in the spatial domain, if the basis functions used are orthogonal. However, they are only 

quasi-orthogonal, thus this metric is by definition inaccurate. Taubman motivates its use for 

simplicity; not having to transform the coefficients back to the spatial domain in order to gain a 

distortion metric. 

Thus, for each tile a set of points is defined on the R(D) curve. An operational RD optimisation 

approach is then taken, as explained in Chapter 2, to allocate the rate optimally between the 

tiles. 

3.3.11.3 Results 

The following results are reported for the algorithm: 

Image Bit Depth (bpp) PSNR(dB) 

Lena 0.25 34.29 

Lena 0.5 37.41 

Lena 1.0 40.57 

Barbara 0.25 28.51 

Barbara 0.5 32.43 

Barbara 1.0 37.37 

Table 3.17: EBCOT Performance Results[TaubOOl 

Unfortunately JPEG2000 literature uses a different test image set to that used in prior literature, 

making a direct comparison between JPEG2000 and the other algorithms presented impossible. 

However, by comparing EBCOT and JPEG2000, and then using the above results, insight may 
be gleaned. 

Image Bit Depth (bpp) JPEG2000 PSNR (dB) EBCOT PSNR (dB) 
Cafe 0.25 23.06 23.26 
Cafe 0.5 26.42 26.97 
Cafe 1.0 31.9 32.24 

Table 3.18: Comparison between JPEG2000 and EBCOT [Taub001,[ChrisOOI 
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The above results show that EBCOT represents the limiting performance of the JPEG2000 

algorithm. This is because JPEG2000 implement EBCOTat its core, but adds many features 

such as ROI coding and an error resilient output stream among others. This adds rate overhead, 

reducing performance relative to EBCOT. . 

3.3. 11.4 Discussion 

EBCOT is the most modern method presented in this chapter. It combines many of the ideas of 

previous chapter to produce a complex scheme. Although the results presented are inferior to 

many of the simpler algorithms, this is owing to the framework within which EBCOT has been 

produced. 

Not mentioned in the above discussion is an output stream layering method, which combines the 

output of each block into a SNR and resolution scalable stream. Furthermore, many 

configuration options, such as block-size, number of output stream layers, quality metrics and 

others, must be indicated in the output stream. These features are necessary as part of the 

JPEG2000 framework, but are RD expensive. The inferior performance, relative to algorithms 

that do not carry this overhead, is thus expected. 

JPEG2000 is designed to be a generic image compression algorithm, supporting many features 

(in addition to those of EBCOT) and possessing error resilient properties. These are necessary 

as the scheme is intended for general and widespread use. These extra properties however, come 
at the cost of compression performance. 

3.4 Summary of Results and Discussion 

The results found in the preceding chapter will be collated and discussed, according to the stage 
of the compression system. 

3.4.1 Wavelet Transform Stage 

It was found that the degrees of freedom included the mother wavelet, the number of mother 
wavelets, the dimensionality of the mother wavelet, and the decomposition structure. 

Altering of the mother wavelet was found to yield at most 1 dB of PSNR improvement. 

However, gains beyond the performance of the standard Daubechies 9/7 were neglible. 

Projection onto a system of multiwavelets was usually found to produce inferior, or at best 

comparable, performance to the standard scalar case. Truly two dimensional basis functions are 

in the process of development, but are still too new an avenue for good quantisers to exist to 
code their output, thus no real results are available. 

Altering the decomposition structure using a packet decomposition, followed by an optimal tree 

pruning algorithm yields substantially enhanced performance, of up to 5dB PSNR. This 

performance is only demonstrated in the case of a complex, highly textured image, 'Barbara' 
and it is probable that similar gains will not be achieved for more usual images. 

Thus for the purposes of this project, there are no gains to be · made from departing from the 
standard dyadic decomposition structure using the Daubechies 9/7 wavelet. 
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3.4.2 Quantisation Stage 

The first group of wavelet image coders considered are those that perform the statistical 

modelling implicitly: 

PSNR (dB) 

Image Rate (bpp) JPEG EZW SPIRT SFQ SR 

Lena 0.25 31.6 33.17 34.11 34.33 33.87 

Lena 0.5 34.9 36.28 37.21 37.36 36.93 

Lena I 37.9 39.55 40.46 40.52 40.2~ 

Barbara 0.25 25.2 26.77 27.79 28.29 28.90 

Barbara 0.5 28,3 30.53 31.72 32.15 32.66 

Barbara 1 31 35.14 36.41 36.86 X 

Table 3.19: Comparison of Implicit Model Coders 

Except for SR they all employ the zerotree quantisation mode. The implicit assumption is that 

energy is localised in the low frequencies in the wavelet domain, and that high frequency energy 

is caused by edges and thus is spatially localised. The zero tree structure takes advantage of both 
of these assumptions, as explained in the text. 

. EZW is the original work in the field, the performance of SPIRT improves on this generating 

the output stream more efficiently. Specifically by descending a coefficient tree to output high 

value child coefficients, before moving to the next coefficient, SPIRT approaches the R(D) 

convex hull more closely than EZW. SFQ argues that the zerotree quantisation utilised in EZW 

and SPIRT is suboptimal in an RD sense. This is because the rate cost of not zerotree encoding 

a low energy tree is not considered, only the distortion cost. Argued differently SPIRT always 

behaves so as to minimise the distortion, without proper regard to rate implications. SFQ thus 

considers the RD contribution of each tree and zerotree quantises them in an optimal fashion. 

SR coding is designed for low bitrate transmission where the number of significant coefficients 

will be small. Thus, rather than employ zerotree coding, this method uses runlength coding to 
capture large strings of insignificant coefficients within the subbands. 

The second set of methods relies on explicit statistical modelling in the wavelet domain. 

PSNR(dB) 
Image Rate (bpp) TCQ EQ ECECOW97 ECECOWOl 
Lena 0.25 34.43 34.57 34.81 34.89 
Lena 0.5 37.69 37.38 37.92 38.02 
Lena I 41.47 40.88 40.85 41.01 

Barbara 0.25 28.85 29.21 
Barbara 0.5 32.69 33.06 
Barbara 1 37.65 38.05 

Table 3.20: Comparison of Explicit Model Performance 
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The performance gain of these methods relative to the implicit model codecs is evident. TCQ 

and ECECOW are based on modelling the wavelet coefficient set as Markovian. TCQ models 

each coefficient as dependant on only its raster scan predecessor. By using the trellis structure 

TCQ expands the number of quantisation levels available. This is achieved by making only a 

subset of the quantisation levels available to a given coefficient, based on its context (value of 

previous coefficient), and coding these levels with symbols, whose meaning varies according to 

the context. 

ECECOW presents a more sophisticated Markovian conditioning. Strictly speaking it is not 

actually a Markov model, but as the conditioning states consist of coefficients in very close 

proximity to the one of interest, it has become practice to refer to the method as Markovian. A 

linear best estimate for the value of a coefficient is produced, based on the surrounding pixels. 

This neighbourhood is selected to reflect subband specific properties that are known to exist. 

This expected value is quantised, and combined with the significance of the coefficient's 

neighbours to form a probability estimate of the pixel. This estimate is input to an arithmetic 

coder. The later version of ECECOW includes a sophisticated context quantisation 

methodology. 

EQ uses "mixture modelling." Each wavelet subband is modelled as the superimposition of 

Generalised Gaussian Distributions centred around each coefficient. The variance, and shape 

parameter of these distributions are estimated adaptively online. Based on these estimated 

distributions, each coefficient is quantized according to optimally matched quantization tables, 

which have been designed offline. 

It can be seen that the application of explicit statistical modelling yields returns in compression 

performance. This is because the assumptions of zerotree quantisation do not always hold, and 

the greater flexibility of these later schemes allows them to adapt to the image properties. 

Noting that several of the methods presented above operate by exploiting different properties of 

the wavelet domain, some new techniques are presented which combine various methods into 

one algorithm. 

The most successful of these methods is the TCSFQ algorithm. This combines the RD optimal 

zerotree quantization method, with trellis coding of the significant coefficients, followed by 

ECECOW based context based arithmetic coding. This algorithm presents good results: 

PSNR (dB) 

Rate (bpp) SFQ SFQ+ECECOW SFQ+ TCQ+ECEOW 
0.25 34.22 34.77 34.76 
0.5 37.36 37.85 37.87 
1.00 40.52 41.13 41.21 

Table 3.21: TCSFQ Results 

The contribution of the trellis coding (TCQ) is seen to be minimal, when considered jointly with 

ECECOW. This is because the Markovian redundancy exploited by TCQ is already accounted 

for in ECECOW. Furthermore the TCSFQ algorithm is outperformed by ECECOW; one of its 

constituents. This may be because the ECECOW contexts are designed based on natural image 
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data, whereas ECECOW is being applied to already zerotree quantised data in this case. Thus 

the ECECOW modelling will be suboptimal in this case. Redesigning the ECECOW context 

formation for the zerotree quantised source should yield performance returns. 

The final algorithm considered is the JPEG2000 coding engine, EBCOT .. The core of this 
algorithm is a simple context driven arithmetic coder. The context is formed from each 

coefficient's immediate spatial neighbours (unlike ECECOW that also considers parent-child 

relationships). Each wavelet subband is segmented into tiles, and each one independently coded 

with this arithmetic coder, which produces an embedded output stream for each tile. A Lagrange 

based RD optimisation is undertaken by truncating each tile output stream to minimise the 

overall distortion. 

The performance results of this algorithm are presented below: 

Image Bit Depth (bpp) PSNR(dB) 

Lena 0.25 34.29 

Lena 0.5 37.41 

Lena 1.0 40.57 

Barbara 0.25 28.51 

Barbara 0.5 32.43 

Barbara 1.0 37.37 

Table 3.22: EBCOT Performance Results 

Despite the sophisticated algorithm, these results are not the best. This is possibly owing to the 

simple context model used, as well as the sundry features of the output stream. EBCOT is used 

as the core of the JPEG algorithm, and this supports many configuration options and output 

stream variations. This configurability imposes a rate overhead that may explain the results. 

JPEG2000 is based on the EBCOT algorithm, and adds many more features such as error 

resilience and region-of-interest coding. These add further rate overhead, reducing the RD 

performance from EBCOT. However, given the widespread commercial application of 
JPEG2000 this cost is acceptable. 

13.5 Conclusion 

This chapter has presented the leading ideas for still image compression usmg wavelet 
techniques. 

In the wavelet transform stage it has been found that modifying the basis function itself is of 

very little utility. The only reported gains are for coding complex images, and using adaptive 
packet transforms. 

In the quantization and entropy coding stages, ongoing gains are being made. It was found that 

the underlying model used is the determining factor in performance. The original subband 
model was improved to that used by zero tree coders. Recently that model has been found 
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restrictive, and newer, flexible models have been proposed. The performance gains of these 

carefully designed, adaptive models are readily apparent. 

Recognition of the importance of source modelling motivated the work of Chapter 5, in which a 

video source modelling exercise is undertaken. 
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Chapter 4 - Wavelet Video Compression 

Having examined the compression of still images in Chapter 3, this chapter proceeds to the next 

level of complexity; video coding. Video may be considered as a source consisting of a 
sequence of still images, or frames. Each of these frames has spatial correlation structures 

similar to normal images. Consequently, many image coding ideas are borrowed and extended 

for coding these structures. 

Video sequences commonly run at between 10 and 30 frames per second ( fps). As a result, not 

much usually changes between one frame and the next. Hence, spatial regions in one frame are 

highly correlated with spatial regions in other frames that occur slightly before or after the 

frame in question. This property is referred to as temporal correlation, and a major effort of 

video coding is to discover and describe the correlation structures. 

The process of video compression consists of the joint exploitation of the spatial and temporal 
correlation structures. 

Changes in the frame may be a result of camera motion, such as zooming, panning, rotating or 

tilting. This mode of motion affects every pixel in the frame, hence is referred to as global 

motion. Several specific algorithms attempt to detect and compensate for these effects. Other 

changes may be a result of object motion, such as translation, rotation, occlusion, uncovering or 

morphing. These motions are restricted to the spatial region of the object undergoing motion, 

and are hence referred to as local motions. The underlying strategy for dealing with both local 

and global motion is motion estimation and compensation (MEIMC). For instance a general 

process would be to compare two frames and estimate the motion from the first frame to the 

second. This motion is then artificially introduced to the first frame by the algorithm; this is 

called motion compensation. The difference between this motion compensated frame and the 

second frame is called the error, or residual frame. The video encoder then only has to 

communicate the motion estimate, and residual frame, which has proven highly effective, as 
will be shown in coming section. 

Other ideas have been presented in competition to the MEIMC paradigm. Recently systems that 

exploit the temporal redundancy directly with signal processing devices similar to those 

employed in still image coding have been proposed. Most of these schemes are referred to as 3D 
systems as they employ the same decorrelation method in both spatial directions, and the 
temporal direction. These systems will also be explored below. 

Finally, any other changes are a result of lighting changes or noise, these are generally 
unpredictable effects. 

This chapter will open with Section 4.1 that presents the existing video coding standards of ISO 

and the ITU. These are all based on MEIMC and the discrete cosine transform. This discussion 
is presented to illustrate the state of the art, as a background to the later discussion of wavelet 
video compression. 

The new wavelet video coding methods are presented in Section 4.2. Many of these methods 

borrow concepts and techniques from the existing standards, another reason for the inclusion of 

Section 4.1. Other methods are based on entirely new concepts made possible by wavelets. The 
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discussion is structured according to the method of temporal decorrelation, and in each case one 

or two algorithms are presented, with comparative performance results. 

Finally a discussion and conclusion are presented in Section 4.3. 

14.1 Video Compression Standards 

In order to provide context to the new wavelet techniques for video compression, it is useful to 

briefly analyse the existing standards. There are two main standardising efforts; the Moving 

Pictures Experts Group (MPEG) which exists under the broader ISO committee, and the H.263 

effort that is run by the lTV. This section will briefly discuss the enabling concepts from these 

standards. Much of this discussion is drawn from [Effe98], [Bhas97] and [Sola97]. 

The following discussion is intended only to introduce the concepts used in the existing 

standards, and does not present a review of either algorithms or results. Results are presented in 

the wavelet video coding section by means of comparison. 

4.1.1 MPEG 1 

MPEG-l [MPEG91] is the original MPEG standard. It was developed primarily for the storage 

of video onto media such as DAT, and as such is optimised for a bitrate of approximately 
1.5Mbitls. 

Interestingly, the MPEG standards (1, 2 and 4) only specify the syntax of the coded stream and 

not the implementation details. This is to foster competition and allow developers to fmd and 

adopt new techniques, thus maintaining the relevance of the standard. However, the syntax does 
imply the underlying ~trategy. 

MPEG-l is based on block motion estimation and motion compensation (MEIMC), followed by 

discrete cosine transformation (DCT) of each block, scalar quantisation, and run length entropy 
coding. 

Figure 4-1: MPEG-l Frame Blocking 

Figure 4-1 above demonstrates the blocking of a frame. Each luminance frame is broken into 
16x16 pixel blocks, which are referred to as macroblocks. 
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The exploitation of temporal correlation is achieved through MEIMC. The assumption is that 

most of the changes between frames are due to motion of the bodies in the scene. The texture of 

these bodies does not change significantly between frames, only the spatial location. Thus, in 

forward predictive coding, blocks from the previous frame are matched with a block in the 

current frame. The displacement of a block is referred to as a motion vector (MV). More 

advanced block matching considers blocks in both previous(forward estimation) and 

subsequent(backwards estimation) frames, in a group of frames (GOF) of several frames, to 

form an interpolated vector. Thus the MY for each block (should it exist) is output to the stream, 

as well as the error between the predicted block and the actual block. This dramatically reduces 

the information content of the sequence, and is the main element of temporal compression in 

MPEG. 

The spatial decorrelation is performed next. The error between the predicted block and actual 

block is coded in 8x8 blocks using the DCT, as in JPEG [JPEG] , scalar quantized and then 

entropy coded using run-length coding. As these are not the subject of current enquiry they will 

not be explored, however Chapter 3 on still image coding explores some of these ideas. 

A block diagram of the MPEG-l encoder is shown in Figure 4-2. 
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Figure 4-2: MPEG-l Block Diagram, based on [Effe98] 

In the block diagram, motion estimation refers to the process of generating the motion vectors, 

and motion compensation, the construction of a predicted frame based on these motion vectors. 
The output of the summing block is the difference between the actual frame, and that produced 

by the motion estimation scheme, and is referred to variously as the error- or residual-frame. 

It is noted that the major contribution of the MPEG-l algorithm is block MEIMC, as it is really 
this process that defines· the MPEG algorithm differently from JPEG. 

4.1.2 MPEG 2 

MPEG-I was designed for the storage of video. MPEG-2 [MPEG93,2] is designed for the 
broadcast of video over terrestrial and satellite TV, and storage onto devices such as DVDs. For 

this reason MPEG-2 includes many stream management features to increase error resilience and 

delivery. While MPEG-I is optimised for a bandwidth of 1.5Mbitls, MPEG-2 is designed to 
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handle video up to about 100Mbitls for applications such as high definition television (HDTV). 

In addition various features , such a variable resolution, SNR and frame rate are incorporated 

into MPEG-2. As the application of MPEG2 is towards television, various ad~itions are made to 

handle interlacing. 

The actual video coding is very similar to MPEG-l (MPEG-2 is backwards compatible with 

MPEG-l). The coding is based on block ME/MC followed by scalar quantisation and Huffman 

entropy coding. Additions include: 

• MEIMC modes for interlaced video for TV applications 

• Partitioning of 16x16 macroblock sizes into two 16x8 blocks during MEIMC 

• A new motion compensation algorithm 

4.1.3 MPEG 4 

MPEG-4 [MPEG-4,2], [MPEG-4,3] is the current incarnation of the MPEG standard. It is 

intended for the compression of multimedia scenes. Such scenes include computer generated 

scenes, such as virtual reality, animations and synthetic video. It is also able to handle multiple 

camera scenes. Unlike previous coding standards it is an object rather than a signal based 

algorithm. The input to an MPEG-4 codec is a scene, a background with ~arious foreground 

objects such as sprites, avatars and text. In addition, music, speech and other components of a 

. multimedia presentation are considered objects. The motivation for this paradigm shift is to 

encourage interactive applications, noting that humans interact with objects and not signals. 

Restricting the discussion to the video aspect of the codec, there are two main aspects of coding; 

that of objects, and that of raw video. There is much research activity in the field of object 

segmentation; the extraction of a meaningful object, such as a person, from a raw video 

sequence. An interesting note is that part of the standard defines the coding of object textures 

using a wavelet transform, this is the first use of wavelets in MPEG. This aspect of object 
coding is beyond the scope of this thesis. 

The coding of unsegmented video is also considered in the standard, this is included to allow 
advantage to be taken of advances in video coding since MPEG-2. Although the video may be 

coded according the block MEIMC and DCT much like MPEG-2, there are several new options. 
These new features are mainly with regard to MEIMC. New global motion estimation schemes 

are presented, based on either affine transformation of the entire frame or just the background. 
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4.1.4 H.261 and H.263 

Operating almost in parallel with the MPEG effort from ISO, is H.261 and H.263 

standardisation process from the ITV [H263,2]. These standards focus on low-bitrate video 

coding for transport over integrated services digital network (ISDN) and dialup internet links 

respectively, for video telephony. 

H.261 codes data with an ouput rate ofn*64kbits/s, this is because the ISDN channel consists of 

multiple 64 kbps lines. H.261 is extremely similar to MPEG-l, and operates on the same 

principles, thus, here, only the significant differences will be given. 

The most significant difference is the handling of MEIMC in H.261. As with MPEG-l, 

macroblocks of 16x16 are considered for ME. However, only the previous frame is used to 

generate motion vectors, rather than a group of frames as in MPEG-l. In addition, the search 

area used to find a matching macroblock is limited to ± 15 pixels, while in MPEG-l the entire 

frame may be used. These limitations may be seen as disadvantageous; however they are 

required given the application. In MPEG-l the intended use is offline recording of video, thus 

computational delay is not critical. However, H.263 targets real time video conferencing and as 

such large computational delays are unacceptable, this motivated for these limitations. 

Other less important differences are that H.261 uses Huffman entropy coding, and uniform 

scalar quantization, while MPEG-l uses run length coding, and different scalar quantisation 

stepsizes for each frequency. 

H.263 is an extension of H.261 , intended for very low bandwidth video, such as 20kbits/sec. 

The major changes from H.261 relate to MEIMC. Halfpixel accurate motion vectors are a new 

feature, as is the removal of the range limitation on the motion vector search, and the reduction 

of the macroblock size to 8x8. Also included is backward motion estimation, as in MPEG. All 

these features are to be found in the MPEG 1 and 2 standards. Origi!lal features, later 

incorporated into MPEG-4, include overlapping block matching to handle occlusion and 

deformation of objects, motion vectors that may extend out of the picture to efficiently account 
for objects that have moved out of the frame, and arithmetic coding. 

4.1.5 Summary of Video Coding Standards 

This section has presented the major standards that currently exist for the coding of video. 

It is quite apparent that in every case the temporal decorrelation is performed by motion 
estimation and compensation. Following this process spatial coding is achieved using the DCT 
and quantization. Subsequent versions of the ISO and lTV standards really represent 

refinements of the process for different usages. MPEG-4, however, does represent a new 

departure with the focus on objects rather than signals. These standards provide a useful 

comparison for the wavelet techniques that follow, both in terms of their concepts and 
performance. 
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1402 Proposed Wavelet Methods 

Wavelet based schemes have long outperformed the classical DCT based schemes in still image 

compression. This is well evidenced by the latest JPEG standard, JPEG2000 [JPEG200, 1], 

which is based on the wavelet transform. Current research is aimed at repeating this success in 

the coding of video. This field of endeavour is still young and limited success has been 

achieved. 

It is not surprising that existing video compression schemes rely on the DCT, as existing image 

compression routines do as well. It is well known that the DCT requires the image to .be 

segmented into blocks. These blocks provide a natural means of temporal decorrelation, through 

block matching motion estimation and compensation. This technique has proven highly 

effective, as indicated by its usage in the standards presented previously. These DCT based 

codecs have for a long time outperformed the competing wavelet video codec offerings. 

However the latest research has produced wavelet schemes based on several different 

techniques that compete and surpass MPEG and H.263. Significantly, many. of them offer the , 
fine rate and frame control and other ' value-added' properties that are important in applications. 

Of particular interest is the rate control, which allows a realtime video coder (such as that used 

for video teleconferencing over the internet) to react to changing network conditions. This issue 

is becoming increasingly important as the uptake of this technology continues. 

There is no wavelet video compression standard yet. The sections that follow will present an 

overview of the research in the field of wavelet video compression. The discussion will draw 

from Chapters 1,2 and 3, as many of the ideas are shared. 

As this field is still rather young there are many different schools of thought. Section 4.2.1 will 

attempt categorize the methods according to their operating principle. This is done to provide 
some structure to the review of methods that follows . 

Sections 4.2.2 through 4.2.5 will review many important methods from the literature. It will 

proceed according to the structure laid out in Section 4.2.1. This section will not only present 

the most competitive methods, but will also include methods that represent different aspects of 
wavelet video coding. 

Finally Section 4.3 will compare and discuss the methods on their merits. 

4.2.1 Classification of Methods 

The current wavelet video codec offerings may be classified into four broad categories: 

• . Intraframe Coding 

• 3D Wavelet Coding 

• Spatial Domain MEIMC 

• Wavelet Domain ME/MC 
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The following discussion will first define each of these categories briefly. Thereafter, leading 

work in each category will be more thoroughly explored. Each method will be discussed with 

reference to the following diagram, which shows a generalised video coder block diagram. 
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Figure 4-3: Generalised Video Coder Block Diagram 

4.2.1. 1 Intra-frame Coders 

<. ompn:S$cd t-=r3I1ll'u 

This family of techniques applies known still image compression techniques independently on a 

frame-by-frame basis to a video sequence. These are not true video codecs as no consideration 

is taken of the temporal correlation between frames. These algorithms only make use of the 
forward path of the video coding diagram: 

Frame:;, Comprt'Ss<-d Frame" 

Figure 4-4: Difference Frame Block Diagram 

4.2.1.2 Difference Frame Coders 

The simplest form of temporal decorrelation is difference coding. Under this scheme, the 

difference between the current and previous frame is encoded. It may be thought of as a 
MEIMC scheme where all the motion vectors are assumed to be zero, thus only the error 
information is encoded. 

In terms of the block diagram, these algorithms make use of the feedback path, but without 
MEIMC. 
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Figure 4-5: Difference Coder Block Diagram 

4.2.1.3 Spatial Domain ME/Me 

~'Entropy 
: "Coder 

It has been mentioned that the currently employed schemes of MPEG and H.263 draw their 

performance from their efficient motion modelling. Briefly, this is the formulation of a video 

frame as a quasi-static background with multiple moving rigid bodies forming the foreground. 

These schemes aim to encode the background and object separately, and transmit only the 

motion of the objects. It is evident that significant compression will result, should this be 

achieved. These coders utilise the generalised block diagram of Figure 4-3, as shown. 

There are two current philosophies to attain this end; block- and object-based MEIMC. 

4.2.1.3.1 Block Based ME/MC 

Several wavelet video coding techniques employ nearly identical MEIMC algorithms as 

discussed in Section 4.1. However, as block MEIMC requires the image to be fragmented into 

blocks, it naturally suffers from the infamous 'blocking-effect' in a low bandwidth scenario. 

This visual defect was a major motivation for the still-image compression community moving 

towards the wavelet transform, and there is thus reticence to employ block based methods in 

future wavelet video standards. Furthermore, block MEIMC is a natural method given the 

blocking requirements of the DCT, however for wavelet techniques this blocking is an artificial 

imposition. 

4.2.1.3.2 Object Based ME/MC 

An extremely active field of research attempts to determine which pixels in a video frame 

correspond to physical objects, in order to encode them separately to the background. This idea 

was explored in Section 4.1.3. Indeed as mentioned there, the wavelet transform is proposed for 

the coding of object textures. If and when the object extraction problem has been satisfactorily 

solved this may well be the form that wavelet video compression will take. At this time however 
the problem is not solved, thus other methods are being explored. 
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4.2.1.4 Wavelet Domain ME/MC Methods 

All the above MEIMC techniques operate in the spatial domain. Each frame is encoded, and 

then inverse coded before MEIMC occurs (Figure 4-2). New techniques are being developed 

that operate within the wavelet domain and aim to encode motion efficiently. 

Pure wavelet domain MEIMC is complicated by the extreme aliasing found within the wavelet 

domain. In general the extent of signal processing in the wavelet domain has been the removal 

of low magnitude coefficients, either for the purpose of image de-noising or compression, due 

to this problem. Amelioration techniques have been found to limit the effect, and a group of 

techniques known as hierarchical motion estimation has been developed. Hierarchical motion 

estimation uses the coarse resolution wavelet subband to perform initial motion estimation. As 

this subband contains the least number of coefficients, this is efficient. Thereafter, this motion 

estimation is used to predict motion in each subsequent higher frequency band. 

The block diagram for these methods takes the form shown in Figure 4-6. 

Frame" 

Predicted Frame" 

Figure 4-6: Wavelet Domain MEIMC Block Diagram 

4.2.1.53D Wavelet Coding 

There are two classes of techniques within the broad category of schemes that are aware of the 

temporal dimension; those based on motion estimation, and those that are not. 3D Wavelet 
coding is of the latter grouping, and will be defined below. 

These schemes extend the 2D algorithms such as SPIHT and SFQ to include the temporal 
dimension. In general, a group of frames, GOF, is buffered in memory and the wavelet 

transform is performed independently in each of the three directions, x, y and 1. Then these 

coefficients are compressed using 3D equivalents of the 2D techniques used in still image 

compression. This philosophy captures temporal redundancy as well as spatial redundancy. 

In this discourse 3D-SPIHT and 3D-ESCOT will be examined, as well as a recent memory 
efficient development. 
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- The block diagram for a 3D transform system with MEIMC is presented below. 
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Figure 4-7: 3D Transform wlo MEIMC Block Diagram 

CompresseJ Framl'lI 

Including motion compensation, as some of the systems to be presented do, yields the following 

diagram: 

Figure 4-8: 3D Transform with MEIMC Block Diagram 

4.2.2 Intra-frame Coders 

The discussion of Section 4.2.1 has constructed a framework within which the literature 

methods may be considered. The following sections will present techniques and methods from 

the literature illustrating each one of the categories described above. 

The simplest concept employed for coding a video sequence is to consider each frame as an 
independent still image. These individual images are then encoded using a known wavelet still 

image compression algorithm, such as those discussed in Chapter 3. As no advantage is taken of 

the temporal correlation between images, these techniques are expected to perform poorly. 

4.2.2.1 Results 

The literature review di~ not reveal any techniques reliant on intra frame coding. However, the 

algorithm proposed in Chapters 5 through 7 is based on intraframe coding. The results are given 
there. 
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4.2.2.2 Discussion 

The inferior performance of this technique is clearly evident from the results. However, in 

certain applications, such as embedded processors where memory and computational resources 

are severely constrained, the intraframe coder may be the only viable solution. 

4.2.3 Spatial Domain ME/Me 

4.2.3.1 Introduction 

The current generation of commercial video codecs is based on the standards described · in 

Section 4.1. All these utilize spatial domain MEIMC and DCT coding. This is because the 

spatial domain method of block matching integrates well with the DCT framework already in 

place from earlier work in image compression, notably the JPEG algorithm. Several techniques 

have been proposed that incorporate wavelet techniques within this existing framework, thus 

leveraging current technology with new methods. 

When considering motion estimation, there are two sources of motion within a scene; camera 

motion which includes panning, tilting and zooming, and object motion that includes rotation, 

translation and occlusion. The first source of motion causes the entire frame to be altered, thus 

techniques intending to overcome this effect are referred to as global motion compensation 

techniques. The second source of motion affects only certain areas of the frame, thus is dealt 

with by either block matching or object extraction techniques. All of the above ideas are 
furthered below. 

4.2.3.1 .1 Global ME/MC 

Global motion compensation is a technique that compensates for effects such as camera 

panning, tilting or zooming. That is, the coordinates of the frame under scrutiny change, hence 

the term global. It is thus unsuited to describe motion within the frame, such as by rigid bodies. 

The best results that utilise global MEIMC also include 3D coding, and due to space constraints 
only these will be presented. Section 4.2.3.2 contains this discussion. 

4.2.3.1.2 Local ME/MC 

In existing techniques, such as MPEG and H.263, temporal decorrelation is achieved through 

motion estimation and compensation. Significantly, these motion functions are computed in the 

spatial domain. Several wavelet techniques have been proposed that take advantage of this; the 

wavelet transform achieves spatial decorrelation, while existing ideas of MCIME achieve 
temporal decorrelation. 

As Figure 4-3 above shows, the forward loop encodes a given frame using a wavelet transform. 

The feedback loop then performs an inverse transform, thus restoring the data to the spatial 
domain, in which the motion estin~ation and compensation are performed. The advantage of this 

is that proven techniques may be imported from existing DCT based algorithms, and 

implemented in conjunction with the wavelet transform. The disadvantage is that current 

techniques rely on block matching motion estimation, which ·is known to cause blocking 

artefacts; this will negatively affect the system performance. However, it is shown below that 
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having motion compensation, even with this flaw, outperfomis many schemes without 

compensation. 

Several techniques consider MEIMC in conjunction with 3D coding Section 4.2.6 should be 

consulted for a discussion of such methods. 

4.2.3.2 Block ME/Me - Shen and Delp 

A technique that includes spatial domain MEIMC for local motion, and wavelet coding of the 

resulting residual frames, is presented by Shen and Delp in [Shen99]. They call this algorithm 

SAMCoW. 

4.2.3.2.1 Premise 

The algorithm operates under the assumption that wavelet still images coders have 

outperformed DCT based image coders, thus, by replacing the DCT coding stage of an MPEG 

algorithm, greater coding performance may be gained. 

4.2.3.2.2 Algorithm 

The algorithm operates by performing MPEG-like spatial domain wavelet coding. A GOF is 

formed of 100 to 150 frames and coded using intraframe and forward predictive motion 

compensated frames. The motion compensation is performed on 16x16 macroblocks and a 

motion vector search range of ± 15 pixels is used. This arrangement is similar to MPEG-1 but 

without the backward motion estimation mode. Each residual frame is processed with an 

overlapping block matching window to reduce the blocking effect. The process is conceptually 

similar to that described in the PACC coder (Section 4.2.3.4). 

After the local MEIMC stage, each residual frame is encoded using a modified EZW coder, 

which exploits correlation between the colour planes, or chromatic redundancies. As this 

discussion has only concerned greyscale images to this point, this modification is not explored. 
For coding greyscale images, the coding is almost identical to the EZW still image coder. 

An interesting, if not directly relevant, detail of this algorithm is the manner in which the coder 
handles reference frames during MEIMC. The EZW (Section 3.3.3) residual frame coder 
produces an embedded bit stream that is exploited to produce a rate scalable output stream. This 
has many advantages that have been explored. The difficulty which arises as a result of rate 

scalability, is that the reference frame at the encoder and deco.der are different, at different 
bitrates. This can lead to the decoder producing erroneous output frames. For this reason, in this 
algorithm, the reference frames at the encoder and decoder are produced using the lowest bitrate 
available. 

As indicated, this algorithm may be considered to be an MPEG-l coder with the DCT residual 
frame coder replaced by the EZW coder. 

4.2.3.2.3 Results 

At high rates (1 - 6 Mbps) the following results were generated for the 'h~avy' local motion 
sequences 'football' and 'flowergarden.' 

82 



PSNR (dB) 

Football Flowergarden 

Rate SAMCoW MPEG-l SAMCoW MPEG-l 

1 Mbps 27.1 28.8 24.3 25.7 

2Mbps 28.8 31.2 26.7 28.8 

4Mbps 30.9 34.2 28.7 32.6 

6Mbps 34.9 36.8 33.8 35.8 

Table 4.1: SAM Cow High Rate Results [Shen99) 

Clearly the MPEG-l outperforms the SAMCo W algorithm. At lower bitrates, the algorithm is 

compared to H.263 (the 1MN number is not given in the paper) on the local motion sequence 

'Akiyo' and the global motion sequence 'Foreman.' 

PSNR(dB) 

Akiyo Foreman 

Rate (kbps) SAMCoW MPEG-l SAMCoW MPEG-l 

20 32.8 37.5 28.6 30.3 

32 34.6 39.1 30.l 31.1 

128 38.3 43.1 31.6 33.9 

256 47.5 49.l 35.2 38.4-

Table 4.2: SAMCoW Low Rate Results [Shen99) 

Again the SAMCo W algorithm is outperformed by the DCT based H.263 algorithm. 

4.2.3.2.4 Discussion 

Although the results are good in terms of previous wavelet video coders, the most useful 

conclusion that may be drawn from this algorithm is that the zerotree coding algorithm is not as 

effective as the DCT in coding difference frames. This is possibly due to the previously 

mentioned effect of isolated high frequency coefficients forming, in violation of the zerotree 

coding model. A second explanation is, that applying the EZW routine to small tiles such as the 
16x 16 macroblocks used in MPEG, prevents the formation of large zerotrees, thus dramatically 
impacting on the performance of the algorithm. 

4.2.3.3 Block ME/Me - Lin and Gray 

A conceptually simple technique is proposed by Lin and Gray in [LinOl]. The authors propose 
encoding the residual frame produced by a MEIMC scheme using the SPIRT algorithm. 

They note that the image model employed by zerotrees does not hold fully for residual frames. 

In particular in high motion scenes, each frame will contain significant high frequency 

coefficients, whose parent coefficients are not significant. This is in violation of the zerotree 

principle as outlined in Chapter 3. A large number of significance bits is required to describe the 

many insignificant parent coefficients of such an isolated significant coefficient. These bits do 
not contribute to a decrease in distortion, and are thus an overhead of the system. This is a 

83 



similar argument to the one proposed by the same authors in [Lin02], Section 3.3.5., for an RD 

optimal SPIRT based still image coder. 

They propose a solution based on the observation that significant coefficients tend to form in 

clusters in the wavelet domain. Thus the scheme calls for the image . to be broken into blocks 

(l6x16 in the implementation). Each of these blocks is then separately encoded using the SPIRT 

algorithm. The premise is that these clusters of significant high frequency coefficients cause the 

coding inefficiency; thus, by blocking the image, this inefficiency is limited only to a certain 

number of blocks, rather than the entire image. 

Describing the image in terms of blocks allows bit allocation between the blocks to be 

performed. Thus the inefficient blocks may be assigned relatively more bits than the efficient 

blocks, to minimize the overall distortion. Lin and Gray adopt a Lagrange approach, almost 

identical to that described in Chapter 2. They also propose and interframe optimization based on 

the observation that due to the MEIMC the frames are dependant on one another. This process is 
not explored here. 

The results from this system are very similar to H.263 as shown in Figure 4-9. 
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4.2.3.4 Block ME/MC - Marpe and Cycon 

Marpe and Cycon present an algorithm [Marp99] that uses block motion compensation followed 

by subband coding type wavelet transform scheme. The subband coding is based on context 

adaptive arithmetic coding. The block MEIMC and coding will be explored separately. 

4.2.3.4.1 BlockMEIMC 

The basic block matching algorithm is very similar to that employed in the H.263 and MPEG 

algorithms. In addition, they employ overlapping block MEIMC (OBMEIMC), as in H.263. 

This is important for their particular implementation. 

The blocking artifacts introduced by block MEIMC are well known. The P ACC algorithm first 

performs block MEIMC, and then wavelet transforms the entire frame. The edges caused by 

blocking will introduce many isolated high frequency coefficients in the wavelet domain, that 

the wavelet quantiser will be unable to code efficiently. These edges are an undesirable visual 

effect, and in addition reduce the efficiency of the wavelet quantization. The concept of 

overlapping blocks is to multiply groups of blocks by a window function, to reduce the visual 

impact of discontinuity across the block boundaries. Further details are to be found in the paper. 

This reduces the edge effect between blocks, and increases the efficiency of the frame based 

wavelet quantiser. 

4.2.3.4.2 Coding 

This paper introduces a new approach to wavelet coding that is most effective. It is referred to 

as partitioning, aggregation and conditional coding (P ACC). It is in concept very similar to the 

ECECOW still image compression scheme described in Section 3.3.9. 

After the MEIMC and wavelet transform, the wavelet domain is described by' three datasets, the 

significance map, which describes the location of significant coefficients, the sign map that 

describes the signs of these coefficients, and the magnitude map, which describes the magnitude 

of the significant coefficients. This is the same data portioning as used in SPllIT (Section 3.3.4), 

but in this case each map is separate, and not in an embedded bit stream. This partitioning is 

performed due to two theorems given in [Marp99] which show that the entropy of a source is 

reduced by partitioning the source into separate subsources. This holds as each sub source will 

have different statistics, thus the variance of each one taken separately, is less than the variance 

of all the subsources taken together as one source. This is shown explicitly in Chapter 5. Each of 

the maps described above is such a subsource. This is the partitioning stage. 

Aggregation refers to zerotree coding of each source, separately, in the usual manner. 

Conditional coding refers to the description of each coefficient through a context. This context 

is formed by the sign and magnitude of a coefficient's neighbours. This stage is very similar to 

that employed in EBCOT (Section 3.3.12) and ECECOW (Section 3.3.9). This context is then 
used to drive an arithmetic encoder. 
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4.2.3.4.3 Results 

The results of this coding technique are most impressive, outperforming MPEG-4 VMS.1. The 

following curves show the average PSNR plotted against the bit rate for the Akiyo and 

Hallmonitor Sequences. 

PSNR vs Bit Rate for AKIYO and HAlLMONITOR ar 10 ips 

33 

20 24 28 32 40 
Bit Rate (kbiVsec) 

Figure 4-10: PACC Coding Results IMarp99J 

Further results show the performance on a frame by frame basis. 
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Figure 4-1 t: Further Results for PACC IMarp99J 

4.2.4 Wavelet Domain ME/Me 

There is a school of thought that asserts that advantage is to be gained by providing the MEIMC 
directly in the wavelet domain. This school cites both the advantage gained by not having first 

to spatially encode and then decode the image, as in standard MEIMC techniques, as well as 
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hoping to discover that the wavelet domain exposes certain video characteristics that may be 

exploited. 

This field is large and beyond the scope of this document, thus the discussion will be limited to 

a single representative algorithm [YangOO] which proposes a complete and highly successful 

video coding algorithm with ME/MC in the wavelet domain. The major problems with wavelet 

domain ME/MC is discussed during the course of the development. The following development 

is taken from [YangOO). 

4.2.4.1 Aliasing in the Wavelet Domain 

The major problem in performing motion estimation in the wavelet domain arises from the 

aliasing present in this domain. The wavelet transform may be performed by the following filter 

bank arrangement, (see Appendix A for details): 

A(Z) 

Figure 4-12 : Single Level Wavelet Decomposition 

The input to the downsampling block is the convolution of X(Z) and Ho(Z), which in the Z­

domain is simply their product, F(Z) = X(Z)Ho(Z) . 

The downsampling operation is described in the Z-domain by the following: 

F( .JZ)+ F( -.JZ) 
A(Z) = , 

2 
(4.1) 

where the term in negative Z represents aliasing. This is clearly seen by transforming into the 
wdomain: 

(4.2) 

This aliasing interferes with almost all signal processing in the wavelet domain. For instance, in 

traditional motion compensation, the translation of groups of pixels is calculated. Translation in 
the spatial domain results in a linear phase shift in the frequency domain: 

1 00 . . 
(Ff(x - n»(w) = r:::- f e-IIIJ

(x-n ) I(x - n)dx = e lfvn (Ff)(w) . 
-V 2;rr -O".l 
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Thus, the Fourier transform is shift invariant to within a phase shift, however as (4.2) 

demonstrates, the wavelet domain is not. This problem has complicated attempts at motion 

compensation in the wavelet domain. 

4.2.4.2 Optimal Alias Reduction 

In their paper [YangOO], Yang and Ramchandran propose to alleviate the aliasing problem 

through the use of optimal filtering. With the goal of balancing the removal of aliasing energy 

with the preservation of signal energy they formulate a Lagrangian optimization, L = S + f..lT , 
where S is the MSE error of the filtered output, and T is the aliasing energy. Through this they 

arrive at an optimal filter design. 

In Figure 4-12, consider a signal x[n] then the filtered and downsampled signal A(cu) is given 

by (4.2). Now a linear translate, y[ n] = x[ n - v], of the original signal will have a frequency 

domain representation calculated through (4.3) as: 

Y (OJ) = + ( F ( ~ ) e -iTv + F ( ~ + 7r) e -J( T+1r)v ) . (4.4) 

The original filtered signal has a spectrum given by: 

(4.5) 

As is evident, both translation and downsampling introduce a phase distortion into the signal 

spectrum. The interaction between these two effects gives rise to the situation in (4.4) where the 

aliased (second) term has a different phase shift to the unaliased term. Thus the effect of aliasing 
cannot be removed simply by subtracting (4.4) from (4.5). 

Yang and Ramchandran suggest the following scheme, where both the original and translated 
signals are upsampled and filtered by a filter, L(w) , prior to motion estimation. 

-1 Ho(Z) ~t2 H L(Z) 

-1 Ho(Z) 

Motion 

Estimation 

Figure 4-13: Filtering for Motion Estimation the Wavelet Domain . 

In order to ameliorate the aliasing effect through filtering, the filter must remove as much of the 

aliasing spectral energy as possible, while maintaining the signal energy. The original signal, 
after the final filter may be written as: 

X 2 (w) = t ( F ( if) + F ( ~ + 7l ) ) L( (J)) . (4.6) 
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Preserving the signal energy requires that the first term in (4.6) equals X(w), thus the 

optimization critertia S may be written as: 

-tr - tr (4.7) 

where the error is stated in the mean square sense. 

The second criteria is that the aliasing signal energy must be minimized, which requires that the 

second term in (4.6) tends towards zero. 

,7 

T = fIHo(w+JZ")L(w+Jr)G(w)12 dw 
- tr (4.8) 

Thus forming a Lagrange minimization problem 

tr 

F(L;p) = S + pL = f11-1 Ho(w)L(w)!2 + p·IHo(w+ Jr)L(w+ Jr)12IX(w)!2 dw 
- tr (4.9) 

The Lagrange .multiplier may now be found using the methods described in Chapter 2. 

However, it still remains to solve the filter coefficients L. Considering the operation in the time 

domain, that is, writing the filtering operations as convolutions, taking the derivative with 

respect to L and equating to zero to find the minima, yields the following form: 

(4.10) 

where C is the convolution matrix of the filter Ho(w) , and Rx is the correlation matrix of 

x [ n ], finally the subscripted ¢ refers to the quantities with respect to the complimentary band 

filter, (-lYho[n] . 

Knowing the filter Ho(w) , for instance the popular Daubechies 9-7 filter, and making an 

appropriate statistical model of the input signal, and optimal alias filter coefficients set, 1, may 
be derived. 

Applying this filter to the signals prior to motion compensation will reduce the aliasing noise, 
thus allowing for a better motion estimation. 

4.2.4.3 Hierarchical Motion Estimation 

Hierarchical motion estimation refers to the family of techniques that perform motion 

estimation through a multiresolution analysis. Motion estimation at a coarse scale is used as the 

first approximation for motion at the next finer level of resolution. Naturally the wavelet 
transform is ideally suited to such an analysis. 
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[YangOO] presents the following method. The following notation is used to simplify the 

discussion, Lt;, where LL refers to the subband, either LL, HL, LH or HR, at resolution level 

n, and frame at time t. 

Two consecutive frames are decomposed with the wavelet transform, to N resolution levels: 

Starting at n=N the following process is performed. 

• 

• 

• 

• 

• 

Apply the alias reducing filter to the reconstructed LL;_I and LL; bands. 

Perform block matching ME on these image subbands. Both the encoder and decoder 

perform the ME, thus the motion vectors do not need to be transmitted. Thus a dense 

motion field, using 4x4 macroblocks is required. 

Reconstruct (L~I_I' LH:~I , HL7_" HH:~I ) to obtain LL;~i, the LL band at next fmer 
resolution. Apply,Jhe motion vectors from the previous step to this image to obtain the 

MC estimate LL;-', of Lt;-I. Apply an overlapping block mat~hing window, to 

reduce the blocking effect, as in PACC (Section 4.2.3.4). 

Decompose Lt;-' to obtain the MC estimate 

(LL; ,LHr
n, HZ::, HHrn) . 

Find the residual bands (L~:I-LH:,,;L;-HL7,H~fn-HHfn I, and code these bands 

using the EQ coder deschbed in Chapter 3, Section 3.3.tO. This coder is chosen 

because modelling the MC wavelet subbands as a mixture process of GGD with 

slowly changing variance is accurate for coding residual frames. In addition, the EQ 

coder provides the flexibility to code each subband independently with different 

statistics, as described in P ACC; such a source partitioning arrangement has 
performance advantages. 

• Synthesise ( L~:, L~fn, H~~, H~:llto form the estimated subband LL7+' , and repeat the 
process, un~l the entire wavelet ultiresolution pyramid has been processed. 

As can be seen the motion estimate at one resolution level is used as the initial estimate at the 
next level, hence the term hierarchical motion estimation. 

There are further coding considerations in this algorithm, such as an optional forward motion 
estimation scheme, but these are sundry to our discussion and are omitted. 

4.2.4.4 Results 

The performance of this algorithm at low bit rates was compared to H.263 on the 'Mother and 

Daughter' and 'Miss America' sequences, both are local mo~ion sequences. The following 
characterizes the performance. 

Sequence Bit rate (kbps) Frame Rate ( fps) H.263 (dB) G(dB) L(dB) 
M&D 48 15 34.8 35.1 35.6 
Miss America 14 15 36.3 36.6 36.9 

Table 4.3: Low Rate System Performance IYangOOI 
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In the table above, G refers to the described scheme without the use of the optimal alias 

reduction filtering, and L refers to the full scheme. It is clear that the alias reducing scheme has 

perfonnance merits. 

The high rate perfonnance is compared against MPEG-2 for the Football sequence, a high 

motion sequence. 

Bit Rate (Mbps) MPEG-2 - PSNR (dB) L-PSNR(dB) 

0.5 25.1 27.26 

2 30.0 31.6 

7 37.1 37.7 

10 40.6 41.0 

Table 4.4: High Rate System Performance IYangOOJ 

It is evident that at high rates the system still has favourable coding performance. 

The above results show that this proposed scheme has good low and high rate performance. 

4.2.4.5 Discussion 

The major advantage of this scheme is the backward motion estimation. It may be seen that the 

high rate performance is · better than MPEG by a larger margin, at the lower bit rates. This is 

because the rate contribution of the motion vectors in the MPEG-2 system becomes significant 

at these rates. Due to the backwards motion estimation employed by this scheme, motion 

vectors do not need to be transmitted, this is a major advantage. 

The disadvantage is that MEIMC needs to be performed at the decoder as well as encoder with 

this scheme, whereas MPEG-2 and H.263 only require MEIMC at the encoder. As MEIMC is a 

computationally expensive process, this adds significantly to the complexity of the decoder. 

In addition, the algorithm demonstrates the need for alias reduction when performing motion 
related processing in the wavelet domain . 

. 4.2.5 3D Subband Wavelet Coding 

3D Subband coding is a major competitor against motion estimation based techniques. It has the 

advantage that motion estimation schemes rely on exhaustive block matching searches, which 

are computationally expensive. This idea is explored further in Chapter 5. 3D Coding is far less 
computationa1lydemanding, however is demanding in terms of memory. 

The underlying idea is that the time axis may be handled in the same way ~s the spatial axes. 

Correlation structures should exist in the time direction and the wavelet transfonn should be 

able to provide a good representation for these redundancies. 

An important feature of theses 3D wavelet coders is that the bitstream may be constructed in an 

embedded fashion, like the 2D wavelet coders. This allows the spatial resolution frame rate , , 
and bit rate all to be finely controlled. This is becoming an important feature in deploying video 
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over computer networks that may be intolerant to bursty traffic. Usually motion estimation 

based video coders are not able to provide this functionality. 

Two leading schemes will be presented below, which do not employ motion estimation, and 

thereafter schemes that do incorporate motion estimation will be explored. 

4.2.5.130 SPIHT 

Based on the success of the SPillT algorithm in still image coding, Pearlman and his 

collaborators have proposed and continued developing a 3D version of the algorithm; 3D­

SPillT. The original concept was proposed in [Kim97] and has evolved several times to the 

version discussed here, presented in [KimOO] . 

4.2.5.1.1 Premise 

It is argued that as there is high interframe correlation, if a pixel is insignificant in one frame, it 

will be so in the subsequent frames too. Thus the 2D concept of a zerotree may be extended to 

include the temporal direction, to encode this correlation. 

4.2.5.1.2 Algorithm 

The 3D-SPillT coder splits the video sequences into groups of frames (GOFs) of typically 16 or 

32 frames, which are considered separately. Each frame within the GOF is independently 

wavelet transformed. Kim et al propose a 3D zerotree structure, as illustrated below. 

; 

r 

I. 

j/ 
./ 

Figure 4-14: 3D Zerotree Structure [KimOOJ 

The algorithm traverses the 3D subband structure in a scanning order similar to SPillT, 

outputting bits according to the same rules as SPillT, but aware of the third dimension. Details 

of the construction of the bitstream are not relevant to this discussion, and are omitted, except to 

note that they are similar to the 2D case. 
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4.2.5.2 3D ESCOT 

As with the SPlliT algorithm, the EBCOT (Section 3.3 .12) algorithm may be extended to 

account for temporal correlation. The algorithm is proposed in [Xu01], and extended in [Xu02]. 

As with EBCOT the core ofthe algorithm is a context based adaptive arithme~c coder. 

4.2.5.2.1 Premise 

The premise is the same as for EBCOT. Each subband has unique statistical properties that 

relate the probability of a coefficient being significant at a bitplane level, to the significance of 

the coefficient's neighbours. By forming a context for a coefficient based on its neighbours, an 

arithmetic encoder can efficient encode each subband. 

In addition, traversing each subband in bitplane order allows the algorithm to create an 

embedded stream for each subband. These streams may then be truncated to achieve a global 

RD optimization. 

4.2.5.2.2 Algorithm 

The video sequence is split into GOFs of 32 frames. Each GOF is considered separately, and 

each frame in the GOF is wavelet transformed with a usual 2D transform. The resulting 

coefficient frames are then wavelet transformed in the temporal direction. 

Each subband created by this process is then considered independently. This is slightly different 

to EBCOT, which breaks each subband into tiles for consideration. The subband is traversed in 

bitplane order and a context is formed for each coefficient based on the value of its neighbours, 

both in space and time. The process is much like EBCOT and is not expanded here. The 

resulting stream is encoded using an arithmetic coder. The output stream is embedded and may 

be truncated at any point. 

A global RD optimization is performed, by truncating each subband output stream so as to 

minimize the overall distortion. This again mirrors the EBCOT procedure. 

4.2.5.2.3 Results 

The results from this algorithm are most impressive, as shown in the table below. 

PSNR (dB) 

Akiyo Mother & Daughter Coast Guard 

Rate( kbps) 20 40 20 40 40 80 

3D ESCOT 31.32 35.55 31.91 34.90 26.61 28.39 

3D SPIHT 29.43 33.38 30.09 33.33 25.88 27.65 

Table 4.6: Comparison between 3D SPIHT and 3D ESCOT (XuOl) 

The same sequence is illustrated on a frame by frame basis for the Mother and Daughter 
sequence at 20 kbps: 
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Figure 4-16: 3D ESCOT Performance Comparison IXuOt) 

As with the 2D case, 3D-ESCOT outperforms 3D-SPIRT due to its context model which is 

superior to the zerotree model. 

4.2.5.2.4 Update 

A limitation of the 3D coders presented above is the manner in which the GOF structure is 

handled. The sequence of frames is split into GOFs that are handled independently. When 

considering frames toward the end of the GOF the wavelet transform has no future frames to 

consider, and will thus introduce a boundary effect. This is manifested as a severe drop in the 

PSNR at frame boundaries, as illustrated in Figure 4-16 above. 

Xu et al present a solution in [Xu02]. Previous schemes split the video sequence into GOFs 

initially. This algorithm considers the GOF centred around each frame continuously. A buffer is 

created that contains a GOF, ie 16 frames. Each frame is wavelet transformed spatially and then 

the group is transformed temporally, as before. However, once the 3D ESCOT algorithm has 

been run for the first frame, it is removed from the buffer, conceptually each frame is then 

shifted forward one, and another frame inserted in the rear of the buffer. The process is repeated 
for each frame. In this way a quasi-infinite buffer is created. 

Results from this scheme are very impressive, outperforming MPEG-4 (Microsoft Version 17.0, 
which is available to these authors due to their affiliation with Microsoft) significantly. For 
instance, the 30 fps Akiyo sequence, encoded at 42 kbps, produces the following results. 
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Figure 4-17: 3D-ESCOT Update Results [Xu02) 

The PSNR dipping in the "independent GOP" transfonn is clearly apparent, and the removal of 

this effect is equal clear with the new codec. 

4.2.6 3D Subband Coding with ME/MC 

Early research into 3D subband coding produced results that were inferior to MEIMC based 

techniques [Wang02]. The reason is that the MEIMC techniques are very successful in 

capturing motion, and thus produce an error frame for coding that has very low entropy and may 
be efficiently compressed. Stated alternatively, the model used by MEIMC coders accounts for 

motion, which standard 3D coders do not, thus as the model more accurately reflects the source, 
better compression results. 

Due to this shortfall there has been much work in combining motion estimation techniques with 
3D subband coding. The following two sections will give a brief overview of the approach and 
results obtained by two of these methods. 

4.2.6.1 Global ME/Me 

In cases where the camera moves or zooms, every pixel in the frame will be affected. 

Describing this effect through block based MEIMC is inefficient, and other techniques have 

been discovered. This section will give an overview of one such technique that has been applied 
in conjunction with 3D-SPIRT. 
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Wang et al describe a technique in [Wang02] that handles the global MEIMC as a preprocessing 

step before applying 3D-SPIRT. The global MEIMC is achieved through affine transform. 

A GOF is formed, and for each frame except the first, a block matching process is performed to 

calculate the alignment of the frame with respect to the first frame. Using a numerical process, 

such as a least mean squares allows this alignment to be expressed in terms of an affme 

transform. Such a transform has six parameters that represent geometrical warping; rotations, 

shifts and zooms. 

Each image is then transformed using the affine transform, effectively aligning it with the first 

frame; the parameters of these transforms are sent as side information. The group of warped 

frames is then compressed using 3D-SPIRT (Section 4.2.5.1). As each frame should be very 

similar to the previous, as a result of the affine transform, the temporal correlation should be 

high, and the compression effective. 

Results were calculated for the "Coast Guard" sequence at 30 fps, which is a sequence 

dominated by a global panning motion. The following table shows the average PSNR with 
various algorithms. 

PSNR(dB) 

50 kbps 100 kbps 

H.263 (TMN9) 26.71 29.64 

3D SPIRT 26.65 28.75 

3D SPIRT with global MEIMC 27.21 29.75 

Table 4.7: Global ME/Me 3D SPIHT PSNR Results IWang02) 

It is evident that there is a performance gain through the MEIMC process. However, it is noted 

that due to the large number of floating point operations during the affine transform process, the 

proposed algorithm is an order of magnitude slower than H.263. In addition the 3D SPIRT 

algorithm requires the entire GOF to be buffered in memory, which is often impossible. Thus 

this technique is effective, but outperformed in terms of rate-<iistortion, and complexity by 
H.263. 

4.3 Discussion of Wavelet Video Compression and Conclusion 

This chapter presents a thorough review of wavelet video compression. The current DCT and 

MEIMC based standards are listed, and their key features briefly explored. Thereafter, several 
proposed wavelet methods are presented, grouped by operating principle. 

It is extremely difficult to compare these algorithms, as their published results are minimal and 

based on different test sequences at different bit and frame . rates. However, it can be seen that 

the wavelet methods are competitive with the standard methods. However, the large 

performance gains that wavelet techniques have gained over DCT techniques in still image 

coding are not realised for video compression. This is on account of the difficulty in providing a 

temporal syntax in the wavelet domain. As discussed, blocking the image interferes with the 
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fonnation of zerotrees due to edge effects, thus the traditional MEIMC methods are not 

absolutely suitable. 

In addition, the relative novelty of wavelet video coding, and hence, the relatively smaller 

volume of research suggest that large gains may be made in the future. In 'contrast MPEG is 

, very well established, and MPEG-4 is a most sophisticated algorithm. 

Section 4.2.3 presents methods that impose a block structure onto the wavelet transform to 

achieve MEIMC in a similar fashion to MPEG coders. [Shen99] present a very simple algorithm 
that directly replaces the DCT algorithm in MPEG-l with an EZW based algorithm. This 

algorithm subsequently perfonns worse than MPEG-l. [LinO 1] presents results that are most 

similar to H.263, while [Marp99] exceeds the coding capabilities of MPEG-4, although the 

results are only given at high frame rates. 

Section 4.2.4 presents MEIMC in the wavelet domain. Here [YangOO] present results that are 

superior to H.263 at low rates, and slightly greater than MPEG-2 at high rates. 

Section 4.2.5 presents 3D subband coding, both with and without MEIMC. [KimOO] finds a 3D­

SPllIT algorithm, either with or without MEIMC, to be inferior to H.263, although 

computationally simpler (if probably more memory intensive) [XuOl] and [Xu02] present a 3D 

coding routine without MEIMC than outperfonns 3D SPllIT. Unfortunately no comparison to 

H.263 is given, although, based on our experiments in Chapter 7, the algorithm outperforms 

H.263. Furthennore the algorithm is found to be superior to MPEG-4 for a low and high motion 

scene. Finally [Wang02] presents a joint global motion estimation and 3D subband coding 

scheme that, at moderate bit rates, outperfonns 3D SPIRT and H.263 for a high global motion 
scene. 

Unfortunately no direct comparison between these algorithms is possible, as each paper has 

used a different configuration of test sequence, frame rate and bit rate. Several general 
statements are possible however. 

Local motion estimation through blocking presents possible RD perfonnance 

advantages, however careful design of the scheme must be undertaken so as not 

to cripple the wavelet spatial quantisation stage. The success achieved ill 

[LinO 1] and lack thereof in [Shen99] is on account of such considerations. 

Motion estimation in the wavelet domain js both theoretically and practically 

challenging. The new concept of hierarchical motion estimation does offer the 
promise of future gains due to its direct integration with the wavelet transform 
representation. 

3D subband coding presents varied success. In all cases this performance is at 

the expense of large memory requirements as well as high frame rates, which 

are often prohibiting factors. The success achieved in [Wang02] in aligning 

frames prior the 3D sub band decomposition indicates that if good MEIMC can 
be achieved for local motion, similar gains should be possible. 
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At this point there is no clearly 'better ' option. MEIMC in the spatial domain appears to be the 

computationally simplest means of temporal decorrelation, while presenting competitive results. 

However, wavelet domain MEIMC appears to have greater scope for advancement as it 

integrates more closely with the wavelet domain. 3D subband coding presents very good results 

currently, particularly for global MEIMC, but the .large memory requirements suggest that this 

may not be a particularly elegant solution. 

For the purposes of this project, computational simplicity is of primary importance. Thus 

[LinO 1] and [Marp99] were primary references in the design of the new algorithm in Chapter 6. 
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Chapter 5 - Source Model for Proposed Algorithm 

The previous chapters have undertaken a ~ide literature review to reveal many of the ideas and 

algorithms used in video compression. Chapter 2 introduces RD theory . which is used to 

optimise the behaviour in many video coders. Chapter 3 examines still image coding algorithms 

as these algorithms are often used in video coders for spatial coding. Chapter 4 examines 

existing video coders, as well as the proposed wavelet methods. This chapter will proceed from 

this general theoretical basis, to design a video coding algorithm for the intended application of 

this project. 

The goal of this project is to produce a video compression system for a mobile device. The 

intended platform is a digital signal processor (DSP), with limited external RAM. This platform 

imposes severe restrictions on the computational and memory complexity of the algorithm. In 

addition, the target device is connected to a low bandwidth radio channel. These factors must be 

considered in comparing the various techniques proposed in the preceding chapters. 

The greatest concern is system complexity, thus the first stage in the desi~ was to determine 

the complexity of the existing standards. Specifically the complexity of each coding stage was 

examined, to determine where the greatest complexity savings could be made. 

Section 5.2 details this study, and reveals that the block MEIMC that is foundational in MPEG, 

H.263 as well as the most successful wavelet video coders presented in Chapter 4 is the primary 

contributor to the complexity of these algorithms. The extent of the complexity of MEIMC 
suggested that any attempt to implement an algorithm based on block MEIMC on general 

hardware would be unsuccessful. This observation is borne out by the lack of such software in 

the market. Thus in order to meet the project imperative of producing working video 

compression software .for a DSP, block MEIMC was abandoned. 

The problem that remains is to achieve temporal decorrelation. This chapter will explain how 

the decision to use difference frames for temporal decorrelation was arrived at. Having made 

this decision a suitable coding strategy had to be derived. Chapter 3 shows the primary 

importance of finding a good source model. Thus a nature of difference frames is examined in 
Section 5.3 in order to develop a model. 

Thus this chapter is primarily concerned with the design of the temporal decorrelator for the 
proposed system. 

15.1 Overview of Process 

The first stage of the process was to determine the complexity of existing standard systems. To 

this end the reference software distributions for the H.263+ codec [H263], MPEG-2 codec 

[MPEG-2], and MPEG-4 [MPEG-4] were obtained. Several standard video sequences were 
processed using these codecs, and the Microsoft Profiler (an element of Microsoft Visual Studio 

6.0) was used to obtain timing information, from which a complexity estimate may be made. 

The striking outcome of this study, which is detailed in Section 5.2, is that motion estimation 
consumes between 80 and 90% of the computational tIme. Based on this result, the slightly 
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radical decision was taken to attempt to perform video compression without motion-estimation 

and compensation (MEIMC), in order to produce a low complexity video coder. 

The only other form of temporal decorrelation presented in the literature takes the form of 3D 

transforms. Unfortunately these schemes are also inappropriate for the system, owing to their 

memory requirements. For instance 3D ESCOT, (Section 4.3.5.2) requires a 16 frame buffer. 

The only alternative is a system based on difference frames, as described in Section 4.3 .1.2. 

This is the simplest form of temporal correlation, requiring only the subtraction of the previous 

frame from the current. The memory requirements are thus a double frame buffer, and the 

computational requirement is only 1 subtraction per pixel. A scheme based on difference frames 

will require significantly more modest memory and computational resources than any other 

scheme presented in the literature review. 

Attempting to achieve temporal decorrelation using difference frames is unpopular. Taking the 

difference between two frames takes no cognisance of the underlying physical phenomena that 

give rise to temporal correlation, whereas MEIMC schemes naturally do. 

However, this thesis proposes that previous arguments against using difference frames are 

flawed. Difference frames display strong spatial clustering of significant coefficients, which 

motivates for the use of a spatially adaptive bit allocation strategy for their encoding. The 

benefits of such a scheme are described. In this way the underlying model that produces 

difference frames is exploited. In addition these properties allow the idea of tiling and spatial bit 

allocation, presented for motion compensated frames in [LinO 1] to be modified and utilised. 

There is no argument that performing MEIMC will produce a residual frame with a lower 

variance than a similar frame produced by using difference coding alone. This will allow better 
RD performance upon compression, as shown in Chapter 2. However, in the case of low 

complexity coding, difference frames have computational advantages that may outweigh the RD 

performance cost. This chapter shows how the use of RD classification can improve the RD 

performance of difference frame based systems, thus enabling a very low computational and 
memory complexity video coder. 

Chapter 6 following, presents the complete compression scheme based on the machinery 

proposed in this chapter. This scheme is then compared to other methods. 

5.2 Complexity Study of Video Coding Standards 

In order to produce a low complexity algorithm, a study of the complexity of existing codecs 

was undertaken. As the ITU and ISO publish reference software for their standard H.263+ and 
MPEG algorithms respectively, these algorithms are explored. 

5.2.1 H.263 

As the target system is intended for use over low bandwidth channels, most effort was spent on 

H.263 (Section 4.2.4). Of the standardised algorithms investigated, H.263 is designed for the 
scenario closest to that for which the new algorithm is intended, thus it is a very useful 
benchmark. 
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Owing to the size, and source dependence of H.263, developing an analytical complexity model 

is both cumbersome and probably inaccurate. For this reason empirical complexity data was 

gathered. lTV reference software [H263] was obtained and compiled. A range of standard test 

sequences was compressed at various bit rates. Each sequence is in QCIF format (176xl44), 

subsampled at 4:2:0, with only the luminance information being non-zero. In each case the 

Microsoft Profiler (part of the Microsoft Visual Studio 6.0) was used to obtain timing 

information for each function. 

Full results of this study are presented in Chapter 7, however a selected subset is presented 

below in Table 5.1 

Sequence Akiyo Hallmonitor 

Rate ( 15 20 25 40 50 15 20 25 40 50 

kbps) 

Frame 7.3 9.8 10.6 11.3 11.5 7.6 9.8 10.1 11.2 11.3 

Rate ( 

fps) 

Total 26137 38667 38814 39128 39138 15596 38450 39543 39323 42120 

Time 

(ms) 

MEIMC 85.33 83.47 82.94 86.08 84.70 64.12 82.95 82.82 85.02 79.79 
(%) 

DCT(%) 0.56 0.59 0.63 0.63 0.55 0.62 0.61 0.56 0.56 0.57 

I Sequence News 

Rate (kbps) 20 

Frame Rate (fps) 10.7 

Total Time (ms) 39095 

MEIMC (%) 87.32 

DCT (%) 0.51 

Table 5.1 H.263 Complexity Results 

In each case the motion estimation and compensation accounts for approximately 80% of the 
computational burden. 

Although the results presented above are specific to the environment in which they were 

generated (which is detailed in Chapter 7), the contribution of the MEIMC will remain constant 
across all platforms. 

5.2.2 MPEG·2 

Although MPEG-2 is unable to achieve the low bitrate coding targeted by our algorithm, the 

complexity of the system is of interest. For this reason an identical experiment to that described 

for H.263 was performed using the MPEG-2 algorithm. The MPEG-2 codec [MPEG-2] used is 
the reference software release from the ISO body. 
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Results are shown in Table 5.2 for the Akiyo sequence. MPEG-i does not support variable 

frame rate, as it was designed for broadcast video. Thus it should be noted that all the sequences 

are encoded at 30 fps. Thus a direct comparison with the H.263 results may not be made from 

these results. 

Sequence Akiyo 

Rate (kbps) 40 60 100 

Frame Rate ( fps) 30 30 30 

Total Time (ms) 25112 25574 25239 

MEIMC(%) 40.33 40.11 40.33 

DCT(%) 26.5 26.0 26.4 

Table 5.2: MPEG-2 Akiyo Complexity Results 

The complexity contribution of the MEIMC is again significant, if less so than the H.263 case. 

As expected from the discussion of H.263 and MPEG-2 in the Chapter 4, MPEG-2 encodes 

more data in less time; thus may be seen as more computationally efficient. This is because it is 

a simpler algorithm; in particular the MEIMC is simpler in MPEG-2, as expressed in the Table 

5.2. This computational advantage has a resulting RD performance disadvantage, as will be 

shown in Chapter 7. 

5.2.3 MPEG-4 

In order to compare the system to MPEG-4, the official ISO reference software [MPEG-4] from 

ISO was obtained. There are two versions of the reference software. 

The first version investigated is produced by the Microsoft Corporation. Unfortunately the rate 

control aspects of this software do not function, as stated in the User Manual [MPEG-4], "Rate 

control is currently broken for both MPEG-4 and TM5 style." Thus, although one may obtain 

executable codecs with rate control, the source code version of this software is unobtainable. As 

this aspect is crucial in obtaining streams at different rates, this is a serious limitation. 

The second version, MoMuSys, is designed for use with unix-like utilities, and converting it for 
use with Microsoft Visual C++ in order to perform a complexity analysis was considered 
beyond the scope of this work. 

Thus only a reduced complexity analysis was performed. The staridard test videos were encoded 

with the Microsoft MPEG4 reference code, without rate control. It should be noted that only the 
block based coding capabilities of MPEG-4 were employed, not the shape based coding. The 
following results were obtained. 

Sequence Akiyo News HallMonitor 
Rate (kbps) 40 40 40 
Frame Rate ( 10 10 10 
fps) 

Total Time 33615 59256 39010 
(ms) 
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ME/MC (%) 89.30 88.69 82.27 

OCT(%) 2.91 4.05 5.37 

Table 5.3: MPEG-4 Complexity Results 

Again, the computational dominance of the ME/MC routines is clearly evident. 

5.2.4 Discussion 

The results certainly indicate the computational overhead of motion estimation and 

compensation. In each case the ME/MC consumed the majority of resources, and in H.263 and 

MPEG-4, the most recent algorithms, ME/MC accounts for approximately 80% of the 

computation time. 

Thus the greatest savings may be made by improving the MEIMC stage. Even greater 

computational savings are theoretically possible by not performing MEIMC at all. This was the 

approach taken, and the task of the following work was to find a suitable way to encode a video 

sequence without this very popular method. 

15.3 The Nature of Difference Frames 

Having taken the decision, based on both computational and memory constraints, to encode 

difference frames (also referred to as difference residual frames), a suitable technique is 

required. Fortunately, difference frames display strong characteristics in the spatial domain that 

invite exploitation. This section explores difference frames and the method chosen to encode 

them. 

5.3.1 Intra-Object Correlation 

An image is composed of the 20 projection of 3D objects onto the imaging plane. Within the 

spatial area representing a single object, the interpixel correlation is typically large. This is 

because objects are typically self-similar, with smooth colour characteristics. The following 

frames from the test sequences demonstrate this characteristic. 

Akiyo #42 News #109 Hall monitor # 114 

Table 5.4: Images Showing Local Correlation 

Within a physical object, such as Akiyo's jacket, the pixel values are highly correlated. 
However, the correlation between objects, such as her jacket and hair, is low. 
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Let the area of pixel correlation, due to the projection of a single object onto the image plane be 

denoted by: 

(5.1) 

Here objectj is the 2D projection of a single real world object, px.y are those pixels at 

coordinates (x ,Y) that form the image of the object, (Xi'yj ) is the mathematical centre of the 

object image. As the region of support (or domain) of the object image is arbitrary, (Xj,Yi) may 

be defined in any way necessary. Thus x(x;,Yj ) is the set of pixels representing a single object 

in the image, centred at (x;'yj ). In this discussion the pixel positions, not values, are under 

consideration. The value of a pixel is denoted 

(5.2) 

5.3.2 Object Motion 

The second observation is that the correlation within an object's image is not affected by 

motion. The shirt worn by the man in Ha11monitor does not change colour dramatically as a 

result of his walking down the passage. This is because the shirt itself is not fundamentally 

altered by the motion. Of course effects such as lighting and noise detract fro.m this correlation, 

but are secondary effects. Thus it is fair to say that the area of correlation formed by a body, 

moves with the body as it translates over the image, due to motion. 

A translated image in the plane (due to object motion) may be represented by 

(5.3) 

Note that equation (5 .3) represents the same object as equation (5.1), but in ·different spatial 

location. These two sets will only be equal in dimension, in the case of pure image translation. 

However, it is approximately true for other forms of motion such as rotation or tilting, by noting 

that the area of support of the function has changed, but the pixel values have not changed 
dramatically. 

Consider two subsequent frames ( #n and #(n+ 1) ) in a video sequence. For the case of no global 
motion, local motion, and no lighting changes or noise, all the changes in pixel values are on 

account of the local motion of objects. Considering a single object, the pixels that may change 

on account of this object's motion form a set of the object's initial and final areas of support: 

/). = {x( x;'Yj )U x{ x;+ox'Yj+OY )} . (5.4) 

This set may be alternately written as the union of two other sets: 

/).={A UB}, (5.5) 
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where 

A = {X (Xj,Yj ) n X(Xj+<>x,Yj+<>y )} 

which is the set of pixels where the original and translated images overlap in space, 

and 

(5.6) 

B = {[ X( Xj + Yj)U X(Xj+(~X + Yj+(~y ) ]-[ X( Xj + Yj )nX( Xj+<>x + Yj+OY)]} ' (5.7) 

which is the set of pixels where the two images do not overlap in space. 
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5.3.3 Effect of Object Motion in Difference Frames 

The following table shows an example of these sets for the Hallmonitor sequence, considering 

the moving man as the object in question, correctly the man is a complex object consisting of a 

head, shirt, pants, briefcase etc. 

frame #40 frame #4 1 frame #41 - frame #40 

Y( x( Xi+c5x,Yj+OY )) 

Table 5.5: Example of Object Motion 

The properties of the Y (~)set are distinct for difference frames. Considering the set Yd!tr (A)is 

defined: 

(5.8) 

where the subscript" of Y indicates the frame from which the pixel values are drawn. As 

expressed earlier, the pixels within an object are highly correlated, thus the pixels representing 

the same object, but in different frames are also highly correlated. The set A consists of these 

pixels, thus the set Yditr (A) generates small numbers. This is exhibited in Table 5.5 where the 

interior of the object in the difference frame is dark. 

The set Yd!tr (B) is defined similarly to Yd!t, (A) by replacing A with B in Equation (5.3). This set 
behaves differently, as it represents the difference between different objects {usually a moving 

object and the background). There is no systematic correlation between these objects, thus the 

difference pixels have high values. Table 5.5 shows this clearly, where all the high value 

coefficients are on the leading and trailing edge of the moving object, due to the object either 
covering or uncovering the background. 

Thus difference frames remove the stationary background and interior of moving objects from 

the frame. It shall be shown below that this results in a decrease in the variance ofthe frame and 

hence the number of bits required to encode it to within a fidelity criterion. 

5.3.4 Spatial Clustering of Significant Coefficients 

Another observation is that, owing to this spatial localisation, significant coefficients are 
spatially clustered in difference frames. 
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The following image series depicts difference frames around frame 100 of the Akiyo sequence. 

In each case the image represents IY#\Oo-Y#(loo+delta)I· IO. The multiplication by 10 is purely to 
brighten the image for demonstration . 

delta = 0 delta = 1 delta = 3 

delta = 10 delta = 100 

Table 5.6: Difference frames around Akiyo #100 

A similar set is shown in Table 5.7 for Hallmonitor, around frame 100. 

delta = 0 delta = I delta = 3 

delta = 10 delta = 100 

Table 5.7: Difference Frames around Hallmonitor #100 

The effect of interest is the clustering of significant coefficients. As discussed above, the set of 

pixels in a difference frame that may change as a result of an object's motion is the set 

.0. = {X( X, 'Yj )U X{ Xi+{~x'YI +{jy )} . (5.9) 
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which is thus localised in space. As a consequence, the set of pixels which are expected to be 

significant: 

B = {[ X( Xi + Yj)U X (Xi+()'X + Yj+()'y)] - [ X( Xi + Yj)n X( Xi+ox + Yj+OY)]} (5.10) 

is also spatially localised. 

This effect is referred to as coefficient clustering and has been shown to be a fundamental 

property of difference frames for local motion video sequences. This clustering is in effect a 

statistical stationarity, and experience from previous image and video compression schemes 

indicates that such stationarity may be exploited to obtain coding advantage. 

5.3.5 Rate Distortion Behaviour of Difference Frames 

In Chapter 2, Shannon' s rate distortion equation was shown to be 

(5.11) 

for Gaussian sources. Thus to minimise the rate, subject to a distortion constraint, the variance 

must be minimised. The following sections shall show that difference frames have a lower 

. variance than the original frames (Section 5.3.5.1), and how coefficient clustering may be 

exploited to gain further compression advantages (Section 5.3.5.2). 

5.3.5.1 Variance of Difference Frames 

The following table shows the effect of difference frames on the source variance: 

Source Label 

Source 

Frame #103 - Frame #100 

0.766 

7.43 

1.45 

Table 5.8: Variance of Original and Difference Frames 

Assume initially the image to be modelled is a Gaussian source, which is commonplace, and 

justified in [Don098] . Indeed, that the DCT approximates ' the KLT (Karhunen Loeve 

Transform), for Gauss-Markov processes is the often cited reason why JPEG and MPEG 
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techniques rely on the OCT [00n098] . This assumption is made for the purposes only of the 

following development, and is abandoned in favour of more accurate methods in the 

implemented algorithm (Chapter 6). 

According to the Shannon bound, (5.11 ), Source 1 requires more bits than Source 2, to achieve 

an equal distortion, 0 , specifically: 

R, (D)-R,(D) =HIOg,( <Y~ )-IOg, ( <Y~')) 

= H log, ( : :: ) ) 

= S.58bpp 

? 

This equation only hold for cases where ~ ~ 1 . 
D 

(5.12) 

Although somewhat contrived, this example shows how difference frames increase the 

theoretical compression ratio over the original image, as a result of their small variance. 

5.3.5.2 Source Partitioning to Exploit Coefficient Clustering 

The previous section has shown that reducing the variance of a source reduces the number of 

bits required to code it, and that difference frames function to achieve this. In addition to this, 

the clustering behaviour of difference frames may be used to achieve further gains. This 

spatially varying behaviour suggests a spatial source set partitioning an in [LinO 1]. 

Consider the partitioning of Source 2 into a various number of tiles: 

I I I 
I i 

~).f 
.~ \oO I i 

-112- • .e:-'-1 I I \ \,. ~/ ' .... "" ~ 

II .. ~ / I I 
i 

ili!I II U 
II i 

II 
4 Partition 16 Partition 64 Partition 

Table 5.9: Source Partitioning 

Intuitively, it seems that coding each independently may yield advantage. The following 
development investigates this possibility. 

5.3.5.2.1 Derivation 
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Source C 

--------------------~----------------------~ ~ "' 

Rate nR (l-n)R 

Figure 5-1: Source Partitioning Example 

Figure 5-1 depicts a generic image source, Source C, containing N pixels. Source C has been 

partitioned equally into two subsources, A and B, such that both N/2 pixels. It is assumed that 

A, Band C satisfy the requirements of having a Gaussian distribution, and flat spectral density, 

this enables Shannon's analytical machinery. The question to be addressed below is whether 

coding A and B independently will yield a lower distortion to coding C, if the same number of 

bits is used in each case. 

If Source A and B are coded with a total rate, R bpp, divided between them such that A receives 

nR and B receives (l-n)R bpp, then the total bits required is 

N . N R·N. 
nR ·-+(l-n)R ·-=-- bits 

2 2 2 
n e [0,1] . 

In order for Source C to be coded with the same number of bits, a rate of: 

must be used. 

R·N 1 R 
-·-=-bpp 

2 N 2 

(5.13) 

(5.14) 

In order for the source partitioning to yield an advantage, the total distortion of the partitioned 
scheme must be less than that of the original scheme, that is 

N N 
Dc ·N -DA ·--DB ·-<0 

2 2 
1 ' 

Dc --(DA+DH)<O 
2 

where by convention Dc represents the average distortion of source C. 

Maintaining the Gaussian assumption allows (5 .15) to be written in terms of the rate: 
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The maximum value of this function will occur when its derivative with respect to n, the only 

free variable at this point, is zero: 

dW =o-~a} .T 2/l1? . ln2.(-2R)-O'H2 ·2-2(I-n)R ·ln2 ·2R =0 
dn 2 

2 2-111R 1 2-1R 2111R O'A . = O'B ' . 

100 (0' 2) - 2nR .100, 2 = log, (O'B2 ) - 2R ·log2 2 + 2nR · log2 2 0 2 A 0__ 

log, (:;:] ~ 4nR-2R 

The value of n yielding this optimal arrangement is thus: 

The following ratios are defined: 

log2 (O'A:] 
1 0' B 

n=-+ 
2 4R 

2 
k=O'A , ' 

0' -B , 
1 = O'A-

0' 2 
C 

Substituting (5.19) into (5.16)and simplifying: 

AD 2 2-1? 2-1 ( 2 2-2nR + 0"/ 2-2R+2nll] 
L1 = 0"(." - O'A' -k-' 

_ 2 2-1? 2-1 2 2-2nll (1 1 2-211+4nR) 
- 0'(,' - O'A' +'k 

= 0'('2 . TR [\_/ . 21?-2nll-l (\ +; T2R+4nR )] 

= 0"/ ·T II [1_1 .211- 2nll-l +f·TlI+2n/I-J] 

(5.11) 

(5.18) 

(5.19) 

(5.20) 

Equation (5.20) gives a decrease in average distortion, for any value of n. The greatest 

achievable decrease in average distortion is found by substituting (5.18) into (5.20): 

(5.21) 

To simplify the working the terms involving ~ are considered separately: 
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_1(.1..+ IOg2(k))R 
T2~R = 2 - 2 4R 

(5.22) 

1 

= 2// .$ 

Equivalently: 

(5.23) 

Substituting (S.22) and (S.23) back into (S.21) yields: 

(5.24) 

This is an extremely pleasant result, which indicates that at a particular rate R, a source 

partitioning with optimal bit allocation will yield a distortion decrease which is a function of the 

vanances. 

If source C can be partitioned such that the variance of either or both of A and B is significantly 

less than the variance of C, an advantage may be gained. This behaviour may be expected of a 

source with strong local stationarities. As mentioned in Chapter 3 (Section 3.3) images display 

exactly this property. 

Comparing equation (S .24) with (S.16) it is apparent that an even source partition with optimal 
bit allocation will yield a distortion of: 

(5.25) 

where !i is the total bit rate. 
2 

This analysis shows that the critical factor allowing advantage from source partitioning is a 

spatial concentration of variance. This is a statistical stationarity, and clearly it has been 
exploited. 

5.3.5.2.2 Local Stationarity 

Consider two adjacent tiles from the 16 way partitioned image in Table S.9. 
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Source Source A Source B 
Image 

Mean 22.46 38.38 11.18 
Variance 2215 .82 2609.58 1243.32 

Table 5.10: Example Partitioning 

Adopting the symbols from above: 

1 
O'c - = 2215.82 

O'AO'H = 1801.26 

Hence, equation (5.24) predicts that partitioning will yield a gain of 

(5.26) 

This is not entirely accurate, as the actual images shown above do not necessarily conform to 

Shannon's Gaussian assumptions. However, these measurements do provide the expectation of 

a coding gain, should proper rate-distortion estimation be applied to the tiles of the partitioned 

image. 

5.3.5.2.3 Multiple Partitions 

Although the maximum gain shown above may seem marginal, partitioning the source multiple 

times compounds the effect, provided that each partition acts to concentrates the variance. 

Presenting Table 5.9 once again: 

4 Partition 16 Partition 64 Partition 

Table 5.11: Source Partitioning 

In the case shown above the source is partitioned by a factor of two in each dimension at each 

iteration. At each partition stage, a possible performance gain may be made; if partition serves 

to concentrate the source variance. These gains are additive, thus as the number of partitions 

increase, so does the gain, for an amenable source. 



probability of a significant coefficient is dependant on the significance of its spatial, temporal 

and spectral neighbours. 

Section 5.3.5.2 develops an argument based on Shannon' s theory, indicating how source 

partitioning and optimal bit allocation may be employed to exploit the local stationarity to 

increase the coding performance of difference frames. 

The conclusion reached is that difference frames may be successfully coded using a suitable 

partitioning and bit allocation methOd. The EBCOT and JPEG-2000 (Section 3.3.9) still image 

compression algorithms operate on a tile partitioned source, with optimal bit allocation. Still 

images exhibit significantly less clustering than difference frames and source partitioning has 

clearly been found to be of utility. Hence we expect this partitioning gain to be greater for 

difference frames. 

The performance advantage of such a system over traditional MEIMC and 3D coding schemes 

should be handsome. Indeed such a computational advantage, rather than compression 

performance, is a project imperative. For this reason a video compression system based on the 

above philosophy is developed in the following Chapter. 
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Chapter 6 - Proposed Algorithm 

This chapter proposes a new video compression algorithm. The major requirement of this 

algorithm is low complexity, to allow later embedded implementation. Chapter 5 has shown that 

significant complexity saving can be made through abandoning block MEIMC, but impact of 

this on the RD performance is expected to be dire. Chapter 5 has proposed difference frames as 

an alternative to block MEIMC , and presented a model of these frames. This chapter also 

showed that source partitioning will allow efficient compression of these frames. The goal of 

this chapter is to design a new video compression scheme, based on this source model, which 

presents low complexity as well as acceptable RD performance. 

Chapter 5 furthers the argument for difference frames by illustrating that source partitioning 

offers the opportunity to increase the RD performance when coding such frames. Unfortunately 

the argument presented there assumes that the difference frames exhibit a Gaussian distribution, 

which is clearly an oversimplification for real sources. Thus the source estimation and bit 

allocation routines presented in Chapter 5 must be replaced with accurate and robust methods 

that do not rely on this Gaussian assumption. This problem is addressed in this chapter, thus 

realising the temporal decorrelation scheme postulated in Chapter 5. 

Thereafter, both a spatial coding and an entropy coding stage must be designed. This design 

process is also described below. Thus, this chapter describes the design of the complete 

compression algorithm, based on the decision to use difference frames and source partitioning. 

Section 6.1 will detail the algorithm, around a block-diagram design. For each stage in the 

system, the choice of algorithm will be justified, based on the preceding literature review. This 

will provide a broad view of the implemented system. 

Thereafter Section 6.2 will describe the software level design of the system. This will 

investigate each stage in detail, presenting and justifying any departures from the literature. 

Interim results will be presented throughout this discussion, indicating how various design 
decisions were made. 

16.1 Algorithm System Design 

6.1.1 Overview and General Architecture 

This section will present a general block diagram of an appropriate video compression 

architecture. The requirements and algorithm choices for each block will then be made and 
justified. 

The various stages of the encoder side of the system may be represented by the following block 
diagram: 
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Spatial 
". '~CorrelatioD 

Figure 6-1: Video Encoder Block Diagram 
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Compressed 
Stream 

Initially, temporal decorrelation is performed. This is achieved by producing a difference frame 

by subtracting a reconstruction of the previously coded frame from the incoming frame. This 

difference frame is input to the wavelet transform stage. The wavelet transform stage segments 

the frame into tiles and applies the 2D wavelet transform to the each tile independently. The 

entire tiled and wavelet transformed difference residual frame is then input to the RD Estimation 

block. This block examines the residual frame and estimates the RD behaviour of each tile. 

Based on this, an optimal bit allocation between the tiles is calculated. This -optimal bit 

allocation is used to drive the Spatial Decorrelation block. This block codes each image tile, to 

produce an output stream of the specified bit length. The output stream of each tile is 

concatenated and input to the Entropy Coder. This performs adaptive arithmetic coding to 

reduce the bit rate in a lossless fashion. This stream is then output. 

The decoder is somewhat simpler. 

Compressed 
Stream 

Figure 6-2: Video Decoder Block Diagram 

VIdeo 
Frame 

The encoded frame is sequentially arithmetically decoded, inverse spatially compressed, added 

to the previous output frame, and inverse wavelet transformed, to produce a representation of 
the original frame. 

The following discussion will examine each stage of this process in more detail, and justify the 
choice of implementation algorithm chosen in each case. . 

6.1.2 Temporal Decorrelation Stage 

Temporal Decorrelation is achieved through frame differencing. As fully expressed in Chapter 

5, this method was chosen owing to its very large computational advantage over any other 
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method available. This choice is the fundamental departure of our algorithm from the norm and 

sets the challenge for the remaining stages to present acceptable RD performance. 

6.1.3 Transform Stage 

By definition, the project is based on the wavelet transform, thus limiting the design choices for 

this stage of the system. However, as Section 3.2 indicates, there are several degrees of freedom 

in the choice of both the mother wavelet function, and decomposition tree. 

Several mother functions have been proposed in the literature for image coding. However, as 

[Saha99] shows (Section 3.2.1.1) the performance of any of these functions over the standard 

Daubechies 9/7 wavelet is marginal. This suggests that either departing from this standard basis 

function, or introducing adaptivity, will not yield substantial gain. 

The wavelet packet decomposition explored in Section 3.2.1.3 presents good performance. 

However, results are only given for the 'Barbara' test image, and thus this good performance in 

general cannot be guaranteed, especially as the 'Barbara' image is characterised by unusually 

high high-frequency content. The algorithm itself is described as ' fast' but still represents a 

complexity increase over a standard dyadic tree, without a guaranteed performance increase. 

Therefore, this algorithm was not implemented. 

Other more recent innovations, such as multi-wavelets and non-separable 2D bases (Sections 

3.2.2 and 3.2.3 respectively) have not yet delivered a performance gain for natural images. Thus 

they are not suitable for our application. 

For the reasons given above the non-adaptive, Daubechies 9/7 wavelet was chosen as the basis 
function, with the standard dyadic decomposition tree. 

The number of decomposition levels used is left as an implementation variable. The number of 

levels possible depends both on the image size. Thus, as an image segmentation algorithm 
(Section 6.1.4) is employed, this variable has to be available. 

6.1.4 RD Estimation Stage 

Section 5.3.5.2 presents analytical evidence that source partitioning with optimal bit allocation 
provides strong coding advantage for difference frames. The analytical framework relies on the 

assumption that the source adheres to the Gaussian distribution. However, this assumption may 
prove false in practice and another means of source modelling and subsequent optimal bit 
allocation must be employed. 

Thus the extremely successful method of He and Mitra, [HeO 1 ] (described fully in Section 
2.1.4) is adopted for source modelling. This method is both computationally ~odest and highly 

accurate, which motivates for its use. This RD estimation algorithm is applied independently to 
each tile to obtain its R(D) curve. 

Based on this estimation set, a numerical bit allocation algorithm, described Section 6.1.5, is 
implemented. This algorithm is based on the theoretical development of Section 2.2. 

With these two methods the gains of source partitioning may be realised, without the hazard of 
the Gaussian assumption proving false. 
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He and Mitra apply the p-domain method to entire frames to obtain their RD behaviour. It was 

unlalOwn whether this method could be applied to much smaller image tiles and still obtain 

good performance. Furthermore He and Mitra do not consider either wavelet video coding, or 

difference frame coding, thus this work represents the first application of this method to such 

coding methods. Fortunately, as this method is ·based on multiple linear regressions, it is 

successfully adapted to this new data set. 

6.1.5 Optimal Bit A"ocation Stage 

Having obtained the set of R(D) curves for each tile, an optimal bit ailocation must be 

calculated. Here the method of Lagrange multipliers is employed, as described in Section 2.2. 
This method is both fast and, as shown previously, converges to optimality. Furthermore, 

Chapter 3 indicates that many of the published algorithms utilise Lagrange multipliers for a 

range of optimisation problems, which further motivates for its use. 

The Lagrange method will ensure that each tile operates at equal slope on the R(D) curve. This 

has been shown to be the optimal state, for a given rate. However, matching this required slope, 

or value of the Lagrange multiplier, to the rate is another problem. In [Ram93], Ramchandran 

demonstrates a numerical bisection method to solve a similar problem during tree pruning for 

optimal wavelet packet design (Section 3.2.1.3). This method has been adopted and modified to 
suit our problem. 

Thus, this stage matches the desired rate for a particular frame with the required R(D) curve 

slope, and this to the bit rate for each tile. Thus the output of this stage is the optimal bitrate for 
each tile in the frame. 

6.1.6 Spatial Coding Stage 

This stage applies a still image compression technique to each tile independently. Chapter 3 

provides a review of all the methods that were considered. A key requirement of the algorithm 

is the production of an embedded bitstream. The Optimal Bit Allocation stage specifies the 

optimal number of bits to code each tile, thus the ability to code to any desired bitrate is 
important. 

The first observation from the results presented in Section 3.4 is that the coding performance 
difference between any of the algorithms is, at best, marginal. At the low bit rates of interest, 

most algorithms perform to within 1 bB of another. The computational complexity of each 

algorithm varies greatly, however it is hard to ascertain precisely as numerical results are mostly 

unavailable. Thus, informed guesswork is required to estimate the complexity. The following 
brief argument discusses the suitability of each algorithm in the literature review. 

EZW (Section 3.3.3) was discounted as it is the worst performing algorithm, without significant 
computational advantages. 

SPIHT (Section 3.3.4) combines reasonable performance with computational modesty, thus is a 

contender. The RD optimisation of SPIHT (Section 3.3.5) presents no performance gain at low 
bitrates, thus was disregarded. 
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SFQ (Section 3.3.6) is one of the most computationally severe algorithms presented due to the 

multiple iterations required for the tree search, and joint optimisation of zerotree quantisation 
criterion and quantiser stepsize. As complexity is crucial this method was not considered. 

SRC (Section 3.3 .7) suffers both higher implementation cost, and poorer performance than 

SprnT, thus was abandoned. 

TCQ (Section 3.3.8) presents inferior performance to the benchmark SprnT algorithm, as well 

as undefined computational demand. Thus it could not be considered. 

ECECOW (Section 3.3.9) presents good performance and low computational demands, thus 

was considered. 

EQ (Section 3.3.10) does not have published computational complexity, although it is expected 

to be high. Thus although the algorithm exhibits 'good performance, the unknown complexity 

excludes it from consideration. 

TCSFQ (Section 3.3.1l) is the most computationally demanding algorithm evaluated, 

combining trellises, SFQ, and conditional entropy coding. This was far beyond the allowed 

computational load, and was deemed unsuitable. 

EBCOT (Section 3.3.12) is designed for general image processing, and contains many features 
that are irrelevant to our application. The rate cost imposed by these features detracts 

significantly from its performance. Thus the algorithm is both complex and underperforrning, 

and was not considered. 

Thus only two algorithms satisfy both the computational and performance requirements; spnrr 
and ECECOW, both of which satisfy the requirements of generating an embedded bit stream. 

The issue which remains is a consideration of each algorithm' s expected ability to represent 

difference residual frames. SprnT has been applied, with modification, to the coding of 

MEIMC residual frames (Section 4.3.3 .3), as well as to 3D coding in 3D-SPllIT (Section 

4.3.5 .1). The 3D-ESCOT algorithm (Section 4.3.5.2), is based on EBCOT, which has a similar 

operating principle to ECECOW. This algorithm performs very well, however, this author 

believes the performance advantage is imparted by the tile based, RD optimal bit allocation that 

3D-ESCOT employs, rather than the context adaptive arithmetic coding, which is the common 
principle with ECECOW. As our algorithm already employs a tile based bit allocation strategy 

this possible gain is already accounted for. These factors motivate for the use of SPllIT. 

The published ECECOW algorithm utilises a context formation strategy that is based on an 
empirical study of still images. Thus although the concept of context formation for adaptive 

arithmetic coding is still valid for residual images, their differing statistics necessitates 
redesigning the context formation stage. The zerotree premise of SprnT relies on energy 

concentration in the lower subbands, as well as clustering of insignificant coefficients, spatially 

to facilitate later arithmetic coding, and across bands to facilitate zerotree quantization. It is 
believed that conditions will hold for difference residual frames, indeed the spatial clustering 
has already been demonstrated in Chapter 5. 

Finally the author is already in possession of an understanding of sprnT as well as source code 
for the algorithm as a result of a commercialisation exercise involving SPllIT for still image 
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coding, based on the work of [McIn02]. Thus, modifying this code for use in this project 

represents a significant time saving, allowing further effort to be expended in other areas, such 

as the RD estimation and optimisation, which are the more novel aspects of this work. 

For all of these reasons it was decided to implement the spatial coding of the tiles using the 

SprnT algorithm. It was noted, however, that future work could be based on an ECECOW 

algorithm, with a redesigned context formation module, as would enable better source 

modelling to be achieved. 

6.1.7 Entropy Coding Stage 

The final stage is the entropy coder. The choice for this stage falls essentially between either a 

Huffman or an arithmetic coder. It was decided again to revert to the previous work of 

[McIn02]. In this work an adaptive arithmetic coder was successfully applied, for which the 

source code was available. As [McInD2] finds the scheme effective for SprnT still frame 

coding, and our system is also based on SPIRT, it is expected to remain effective. Furthermore 

as the focus of the project is on the temporal decorrelation stage, it was time effective to employ 

this coder. 

6.1.8 Summary of System Design 

The previous sections have given an overview of the system design process, and resulting 

algorithm. The core decisions were to use the wavelet transform and difference frames for 

temporal decorrelation. Difference frames were chosen for their computational advantages. 

Having taken this decision, a means of achieving competitive compression performance had to 

be found. Based on the study in Chapter 5, it was believed that source partitioning with optimal 

bit allocation would provide such a means. In order to assure optimal bit allocation, the p­

domain RD method of He and Mitra was incorporated as the foundational technique of the 

system. The RD estimate generated by this stage drives the optimal bit allocation control 

algorithm, which in turn controls the spatial coder. Clearly the accuracy of the RD method is 

crucial to the success of this algorithm. 

Through tiling based source partitioning and RD estimation, the local spatial stationarities of 

difference frames, as explored in Chapter 5, are exploited. This is the means of temporal 

decorrelation. Spatial decorrelation is achieved through individual tile coding using SprnT. 

This exploits the joint spatial and spectral clustering of insignificant coefficients, as well as the 

coefficient energy concentration in the low frequency band. This is the spatial decorrelation 

method. Finally the concatenated output stream of all the tile coders is arithmetically coded to 
reduce the source entropy. 

Thus the use of these various stages accounts for temporal correlation between frames, the 

spatial behaviour of images and source entropy reduction. These are arguably the main factors 
enabling any compression system. 

Thus our algorithm my be classified as RD optimised adaptive coder. The prolific researcher Z. 
Xiong notes in [Xiong99,2] , "The most competitive results seem to be generated by either RD 
optimised classification and quantization ... or efficient context based modelling." That our 
enquiry led to such a system is prumising. ' 
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In addition, it is clear that our algorithm is designed to be computationally modest. The wavelet 

transform is a fast process; temporal decorrelation through difference frames is the fastest such 

technique; SPlliT is one of the simplest wavelet quantisers in the literature; the p-domain RD 

estimation method is extremely fast, relying only on several multiplications; the optimal bit 

allocation consists mainly of a bisection search, which is a very fast method and finally the 

arithmetic coder is also known to be a computationally simple process. Thus, although there are 

several stages in the algorithm, each is computationally efficient and the algorithm may be 

realistically expected to have fast execution times. This expectation is confirmed in Chapter 7. 

6.1.9 System Block Diagram 

The entire system may now be presented in detail, in the form of the following block diagram. 
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Figure 6-3: System Block Diagram 

16.2 Algorithm Implementation 

Entropy Coding 

Concatenator 

The previous section reports on the philosophy and design of the overall system, as well as the 

choice of algorithm for each stage. This section will now provide further detail on each stage 

and indicate implementation level details. Departures from the literature were made and these 
will be highlighted as necessary. 
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6.2.1 Temporal Decorrelation Stage 

As mentioned, temporal decorrelation is achieved through de-compressing the output stream of 

the previous frame and subtracting it from the current frame. 

Using the decompressed previous frame is important. Although using the original, previous 

frame saves the computational overhead of decompression, it results in unacceptable coding 

performance. High-ratio compression is necessarily lossy, and in many cases this loss is greater 

than the difference between subsequent frames. If subsequent original frames are used for 

differencing, this error is never accounted for, and thus grows without bound. Using . the 

decompressed previous frame for differencing is a feedback mechanism that serves to minimise 

the total error of output frames. 

6.2.2 Transform Stage 

The wavelet transform is achieved using the lifting methodology developed by W. Sweldens. 

This technique allows both a fast implementation on hardware, as well as minimising the 

number of floating point operations necessary to maintain a lossless transform. 

The code used was developed by 1. MacIntosh in [McIn03], and is used without significant 

changes. 

6.2.3 RD Estimation Stage 

Adapting and implementing the RD estimation stage of the algorithm required some work. The 

original, and then only, work using the p-domain method was that of He and Mitra [HeOl] and 

[HeOI,2]. In this work they consider the RD estimation firstly of still frames, and then motion 

compensated frames in DCT based video systems. The latter is considered for the purposes of 

frame-by-frame rate control. Our data is different; sub-frame datasets from wavelet difference 

residual frames. This data is different; wavelet transformed difference frames are expected to 

behave differently to DCT encoded, motion compensated residual frames. Furthermore, the tiles 

are significantly smaller than the original frame and as the p-domain method is built on 
statistical regression, there was concern that the sample size would be too small to render 
meaningful statistical description. 

The software was developed in two stages. The first was a development and testing of the RD 

scheme on still images. This was undertaken to test the functionality of the software, as He and 
Mitra's results for this experiment are available for comparison. The second stage was to adapt 
the method for the difference frame tiles. 

6.2.3.1 Still/mage RD Estimation 

The following set of images was considered. This set was chosen for its diversity, including 

natural, and synthetic images of l1atural, technical, and artis,tic scenes. Sever~l standard images 
are included. . 
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Figure 6-4: RD Estimation Regression Set 

This set of images was used to perform the multiple regressions in order to configure the p­

domain method. 

6.2.3.1.1 Qz and Qnz Calculation 

Following Section 2.1.4, the first element of configuration is the calculation. of the pseudo­

coding bitrates. A vector oftest values of p was defined: 

P = [0.7, 0.75,0.8,0.85,0 .9,0.95]. 

For each value of Pi ' Qn= (Pi) was calculated according to ' first principles.' Although He and 

Mitra define (Chapter 2, equation 2.18): 

QIIZ(P)= ~ I llog2 i p(x)J+2, 
itx>'O 

(6.1) 

this does not reflect the progressive bitscan encoder employed by SPllIT. Qnz (Pi) is intended to 

represent the pseudo-bitrate of the non-zero coefficients, and thus calculates the number of bits 

required to represent each such coefficient. Although accurate for DCT based schemes such as 
JPEG and H.263 , SPllIT is different. The image is scanned in a progressive bitplane order, thus 

for a given value of p, only the bitplanes above the current have been output. Thus the output 

stream representation of those coet1icients significant at a certain threshold is 

I (x) - threshold. 
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Hence equation (6.1) is modified: 

Qn:(P)= ~ Lllo g2 Ip(x)-thresholdJ+2. 
'It-,,·O 

Q= (p) is calculated according to the original work: 

Q= = ~ I Llog 2(runlength)J+2 
=cnJ/1J/1.\' 

In order to generate each of the pseudo bit rates, the following C-code is executed. 

/* decrement the number of zeroes *1 

if (runJength != 0) 
/* log 0 will return infinity, so avoid this case *1 

Qz += floor( log(runJength)/log(2) ) + 2; 

runJength = 0; 

/* increment Qnz*/ 
if (abs(lmage[y][x]) == threshold) 

Qnz +=2; 

else 
/*calc Qnz as per equation (6.2) *1 

Qnz += floor(log(abs(lmage[y][x])-threshold)/log(2» + 2; 
} 

} 
} 

/* Change the counters to ratios */ 
p_q /= (y_dim* x_dim); 
Qz /= (y_dim * x_dim); 
Qnz /= (y_dim * x_dim); 

1* Decrease the threshold in preparation for another raster scan */ 
threshold /= 2; 
} /* end raster scan*/ 
} /* end desired_p interation 

Code Fragment I: Qz and Qnz from First Principles 

(6.2) 

(6.3) 

The purpose of this code is to find the state of the SPIHT coder at a particular value of p. By 
mimicking the decreasing threshold (bitplane scan order) scan of the SPIHT coder, the 

significant and insignificant coefficients at a particular threshold are found. From these, the 

introduced distortion and Qz and Qnz are calculated. Finally kappa is calculated. All these 

variables are then written to an output file , for offline consideration. 
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Although the bitplane traversal mimics SPIRT's behaviour, the raster scan is not accurate, as 

SPIRT descends significant trees to find further significant coefficients. It was decided that this 

behaviour was too specific and complex for our purposes, and was not included. 

The curves for Qz and Qnz using this first principles method is shown in Figure 6-5. 
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Figure 6-5: Qz and Qnz from First Principles 

Here each curve represents the data obtained from the image shown in the respective position in 

Figure 6-4. These curves clearly indicate the near linearity of Qnz and the flatter response of Qz, 

as exhibited in He and Mitra's work (Figure 3 in Chapter 2). It is striking how such different 
images produce such similar curves. 

6.2.3.1.2 K-QZ RegreSSion 

Having found the curves from first principles, it remains to configure the fast estimation 
procedures. 

The first parameter required is 1(, the gradient of Qnz. This was found simply by calculating 

Onz 
K=-=-

I-p 
(6.4) 

at p = 0.8; the middle of the line. This allows Qnz to be estimated as a straight line with this 

gradient. As this is a fast process, it is performed in the actual algorithm, on a per image basis. 

As Qz is more complex, it is estimated using an offline regression, relating the value of Qz at 
various value of p, to K, 
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(6.5) 

as fully expressed in Section 2.1.4. 

The following plots are arranged as in Chapter 2, Figure 6. Each shows a plo.t of Qz(p) vs K for 

the 16 test images. Each plot is for a different value of p. A least mean squares fitted straight 

line curve is also shown. 
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The straight line fit is very apparent. Interestingly, our result is different from the original, 

shown in Chapter 2. This is on account of the different handling of the threshold to that of He 

and Mitra. The result above shows that Qz(p) is more strongly dependant on p that K. 

The least squares fit is implemented using the linear regression algorithm presented in 
[Chap98]. If :! is the independent data vector, and ~ is the dependant data vector, each oflength 

n, and the dataset is to be fitted to a straight line of equation: 

(6.6) 

by means of a least squares regression, then following equations may be used: 

(6.7) 

and 

(6.8) 

This is implemented in Matlab as follows: 
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for i=1 :numlevels, 
n = numimages; 

x = data3d(:,3,5); 
y = data3d(:,i,2); 

%one regression for each value of p 
%n, number of datapoints = number of images 

%Qz 
% kappa 

sigma_x = sum ( x ); 
sigma.Y = sum ( y ); 
sigma_xy = sum (x.*y ); 
sigma_x2 = sum ( x."2 ); 

mean_x = sigma_xlnumimages; 
mean'y = sigma'y/numimages; 

a(i,1) = (n*sigma_xy - sigma_x*sigma'y ) I (n*sigma_x2 - sigma_x"2); 
a(i,2) = mean'y - a(i, 1 )*mean_x; 

end 

Code Fragment 2: Linear Regression for Qz-kappa. 

Hence the values of Ai and Bi required for the linear model (6.5), were found to be 

0.0094 

0.0184 

Ai= 0.0086 

0.0009 

-0.0093 

and 

0.0709 

0.1102 

Bi= 0.2231 

0.3069 

0.3961 

That Ai is at least an order of magnitude smaller than Bi , indicates the stronger dependency on p 
than K, shown in Figure 6-6. 

Using these values to generate an estimate of Qz using equation (6.5), allowed the following 

curves to be plotted. Each graph is a comparison between the 'first principles' Qz(p) and the fast 
estimate developed above. 
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Figure 6-7: Comparison between Estimated and Actual Qz curves 

This figures indicate how similar the Qz curves are, on average, as well as the closeness of the 

regressed curve to the actual curve, as expected from the theory, 

6.2.3.l.3 Rate Function Regression 

Having configured the fast estimators for Qz and Qnz, it remains to perform the regression 
necessary to calculate rate function: 

(6.9) 

This now reduces to a calculation of A (p), B(p) , and C(p). [Chap98] shows that the function 

(6.10) 

may be solved for E! with a multiple linear regression. The solution for E! is given by 

(6.11) 

This is implemented in Matlab, using the following code 
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for i=1 :numlevels, 
x1 = data3d (:,i,3); % Qz 
x2 = data 3d (:,i,2); % Qnz 
y = data3d (:,i,4); % Rate 

sigma_x1 = sum (x1 ); 
sigma_x2 = sum ( x2 ); 
sigma3 = sum (y); 

sigma_x12 = sum (X1 .A2); 
sigma_x22 = sum ( x2. A2 ); 
sigma3 2 = sum ( y. A2 ); 

sigma_x1x2 = sum (x1.*x2 ); 
sigma_x1y = sum (x1 .*y ); 
sigma_x2y = sum ( x2. *y ); 

A = [numimages sigma_x1 sigma_x2; sigma_x1 sigma_x12 sigma_x1x2; sigma_x2 
sigma_x1x2 sigma_x22]; 

y = [sigma3; sigma_x1y; sigma_x2y]; 
x(i,:) = (A\y)'; 

end 

Code Fragment 3: MuJiple Linear Regression 

The values for the regressed variables are thus found to be 

0.1631 -2.2986 0.43219 

0.5958 -5.4044 0.99439 

[aD al a? l = 
.....::.J 

0.0343 -0.1520 0.00859 

0.4257 -1.3856 0.00616 

3.4554 -8.7220 -0.32453 

.107 
• 

The multiplication by 107 is simply a result of the units used, the matrix converts between 

P E [0, I] and the rate, R E [0,6000] . A final multiple linear regression is performed, as per 
[He01], to linearise this curve to match: 

(6.12) 

where' e is given by the regression formula: 

5 5 5 

LPi' LR(Pi) -5L R(Pi)Pi 
() = /=1 /=1 /=1 

st,pi -( t,P; J (6.13) 

132 



This is expressed more fully in Chapter 2. 

Using these values the rate of each image is estimated using equation(6.12), and compared with 

the rate generated by the actual algorithm. The results are given below. 
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Figure 6-8: Rate Estimation 

These results are a clear indication of the power of the p-domain method. The rate, as a function 

of p, is a very well defined and predictable function . This affords the method, great advantage 

over all previous methods, which have defined the rate as a function of the quantization 

parameter. This consideration produces very diverse and unpredictable functions. 

The code to implement the complete rate estimation is too long for inclusion here, and may be 
found on the accompanying CD, 

62,3.1.4 Distortion Prediction 

The next stage is an estimation of the distortion, also as a function of p. This is performed 
directly from the distribution of cuefficients. 

The theory of estimating the distortion is given in Chapter 2. He and Mitra do not define their 

method, but state it that "D(q) may be directly computed from the distribution information." In 
[Jack03] a method is defined. A non-normalised, discrete distribution, d(a), of the image 

coefficients is calculated where each d(a) is the number of coefficients in the image whose 

absolute value equals a . This is possible due to the discrete nature of the data. 
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This function is perfonned in C with the following code. 

1* This function generates the distribution of coefficients in the wavelet coefficient 
image */ 
/* ImageOD is the 20 coefficient map, and y_dim and x_dim are the dimensions of the 
image */ 

void calc_distribution(int** Image, int y_dim, int x_dim, float* distribution) { 
int x, y,n; 

/* First clean the distribution */ 
for (x = 0; x < 256; x++) { 

distribution[x] = 0; 
} 

/*iterate through the image and calculate the distribution */ 
for (y=O; y<y_dim; y++) 

} 

} 

for (x=O; x<x_dim; x++) { 

} 

if ( abs(lmage[y][x]) >= 255 ) /* hard limit at 255 */ 
distribution[255]++; 

else 

(distribution[ abs(lmage[y][x]) ])++; 

Code Fragment 4: Distribution Calculation 

The behaviour of SPllIT may now be utilised to determine an estimate of the distribution of the 

output coefficients. At the end of a significance pass, all the coefficients within the image that 

have magnitude below the threshold, will effectively have been quantized to zero. This allows p 
to be easily calculated: 

1 t:. 
p(fl) ="N Jd(a)da . (6.14) 

o 

Here N is the total number of coefficients in the image and !l a SPIRT threshold value. 

In addition, the MSE of the compressed image may be calculated from d(a) and !l using: 

(6.15) 

The first tenn accounts for the distortion introduced as a result of zero-quanti sing insignificant 

coefficients, and the second term approximates the distortion introduced by truncating the 

insignificant bitplanes in the significant coefficients, as discussed in the calculation of Qz and 
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The code fragment shows an iterative approach to solve for D(p). Equation (6.14) is initially 

used to find the!::. corresponding to the desired p. Then this value of!::. is used in equation (6.15) 

to calculate the distortion at this value of p. , 

This predicted distortion is compared to the actual value of distortion produced by the 

algorithm, as shown in Figure 6-9. 
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Figure 6-9: Comparison of Estimated with Actual Distortion 

These curves show PSNR which is quality, as opposed to MSE distortion, but is simply given 

by equation 3.2 in Chapter 3. PSNR is used in preference to MSE as it produces more linear 
curves, which facilitates display. Internally however, the algorithm uses MSE. 

These results show that although the distortion behaviour is diverse across the image set, this 
fast estimate is accurate to within 5% in all cases. 

6.2.3.1.5 Combined RD Estimate 
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Finally as both the rate, RCp), and distortion, 0Cp), are parameterised by p, .the curve of D(R) 

may be easily found. The curves below compare the estimated OCR) at the five values of p, with 

the actual D(R) found by running the SPIRT algorithm multiple times (ie the Operational D(R) 

curve). 
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Figure 6-10: Estimated and Actual PSNR-Rate Curves 
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Again the curves shown are in tenns of PSNR, not MSE. These curves illustrate the great 

accuracy of the p-domain method, successfully capturing the different behaviour of the images, 
using a very fast implementation. 

6.2.3.1.6 Testing Set 

In order to test the ability of the algorithm to predict RD behaviour, a set of new, unseen, 

images was passed through the RD estimator, and the compressor. These images are shown in 
Figure 6-11. 
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Figure 6-11: Image Test Set 

This test set was chosen from the set of standard MPEG video test sequences, choosing a variety 

of natural scenes and different levels of zoom. A comparison of the RD results is given below: 
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Figure 6-12: Comparison between Actual and Estimated RD Behahaviour (Test Set) 

Clearly the algorithm is able to estimate the RD behaviour of this unseen dataset. This 

experiment confirms the operation of our implementation of He and Mitra's algorithm. 

6.2.3.2 RD Estimation of Difference Frame Tiles 

Having produced an algorithm capable of perfonning RD estimation on general still images, it 

was required to test the performance on difference frame tiles. This section will discuss this 

step. As the procedure is identical to the one described for still images, only the differences will 
be discussed here. 

6.2.3.2.1 Training Set 

In order to provide the configuration data for the regression, the compression algorithm was run 

on the 'Hallmonitor' sequence, and difference frame 100 extracted. This difference frame was 

segmented into 16 tiles, each of which was treated separately by the RD estimator. This 
difference frame is in Figure 6-13 . 
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Figure 6-13: Difference Frame 100 of Hallmonitor Sequence 

This frame was chosen for the diversity of the tiles, most of the tiles are very low energy, but 

the four central tiles display increasing energy. This diversity is important, in order for the 

regressions to provide general results. 

6.2.3.2.2 Target Rate 

Before performing the configuration it is necessary to choose the range of p over which the 

algorithm is to perform. As this target application is very low bitrate video the highest value of 

p = 0.99 was chosen. In addition the strong spatial clustering of significant coefficients 

motivates that some tiles receive many bits, thus a lower value of p = 0.8 was chosen. This 

choice allows the bit allocation stage to allocate bits liberally where the variance is high, and 

sparsely in low variance region, thus allowing good RD perfonnance. 

6.2.3.2.3 Rate Estimation 

The rate estimation configuration exercise was perfonned as before, generating a new set of 

coefficients. The following curves show a comparison between the estimated and actual rate. 
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Figure 6-14: Comparison between Estimated and Actual Rate 

Having observed the rapid decrease of the actual rate curve above p = 0.95 in Figure 6-14 it was 

decided to abandon the linear rate regulation, as the rate curve is no longer approximately linear. 

This outcome illustrates the statistical difference between normal and difference residual 

frames. Figure 6-8 shows the rate behaviour of normal images, while Figure 6-14 shows the rate 

behaviour for difference images. Due to the relatively large number of zero and near-zero 

coefficients in difference frames, the behaviour of the coding algorithm is expected to change at 

high values of p and this behaviour is clearly shown in Figure 6-14. 

6.2.3.2.4 Distortion Estimation 

The distortion estimator was configured as before, and the following presents its performance. 
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Figure 6-15: Comparison of Estimated and Actual Distortion 

These results show the range of distortion encountered over a single difference frame, further 

evidence of the utility of source partitioning. In addition the good perfonnance of the distortion 
estimator is shown. 

'6.2.3.2.5 RD Estimation 

Combining the rate and distortion estimation as before, the following curves are produced. 
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Figure 6-16: Difference Frame RD Estimation Performance 

These curves immediately show the varied behaviour between the tiles. As intuitively expected, 

the PSNR possible at a given rate is lower over the central 4 tiles, as the signal energy is 

concentrated there. 

6.2.3.2.6 Generalised Performance 

In order to test the perfonnance of the algorithm, several other frames were input. The result for 

difference frame 100 ofthe 'Foreman' sequence is shown in Figure 6-17. 
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Figure 6-17: RD Estimation of Foreman Frame #100 
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Although omitted on space considerations, the other standard sequences . were tested, and 

produced similarly good results. 

6.2.3.2.7 Conclusion ofRD Estimation Stage 

Although the performance of the RD estimation for difference frames is not as good as for 

natural images, it was deemed sufficient for the algorithm. Several changes from the original He 

and Mitra algorithm were made in order to increase the performance of the algorithm. 

6.2.4 Optimal Bit Allocation Stage 

Once reliable RD estimation has been performed it remains to use this information to distribute 
the available bits between the tiles in an optimal fashion. 

The problem is considered in two stages; 

• For a given A., divide the bits between the tiles using the Lagrange method outlined in 
Section 2.2.3. 

• Use a bisection search to match the value of A. used in the Lagrange stage with the 
desired bit-rate. Iterate through step 1, until the desired rate is met. 

This technique was adapted from [Ram93] where a similar strategy is used to drive an optimal 
tree pruning algorithm for a best wavelet packet bases algorithm. . 
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6.2.4.1 Lagrange Sub-stage 

For a particular difference residual frame, the set of R(D) curves for each tile may look like the 

following set, taken for ' Foreman' frame number 100. 
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Figure 6-18: RD Estimation of Foreman Difference Frame # I 00 
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Although these curves show the PSNR, the algorithm works internally with MSE, as the MSE 

metric is additive across the image (with appropriate scaling of the [mal result). 

As Section 2.2.2 proves in detail, finding the state where each curve operates at the same 

gradient, A, will provide the minimum possible distortion for a particular rate. Thus, this stage 

_ 'es as input a desired value of A. and searches the possible states such that each tile operates as 
c osely to this gradient as possible. As this is a rather trivial exercise it will not be detailed here. 

6.2.4.2 Bisection Sub-stage 

The bisection has not been described previously and will be detailed here in algorithmic form. 

This discussion is based heavily on [Ram93]. As the MSE curve is used the gradient of any 

point on the curve will be negative. however in the following discussion, only the magnitude of 
the gradient will be used. 

The rate curve is guaranteed to have a concave shape [Ram93]. The concavity allows a bisection 
search to find the value on. corresponding to the rate budget. 

1) Initialise: Choose an upper and lower value for A , Au and A" such that 
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(6.16) 

That is the optimal bit distribution between the tiles for Au' will produce a rate 

L Ri" (Au) that is less than the total rate budget for the frame, Rbudget ' which in turn is less . 

than the rate for the optimal distribution for the gradient AI·The values of Au and Al are 

initially chosen to be Al = 0 and Au = 1010 to ensure this state. 

2) Find Optimal Bit Distribution: Call the Langrange routine of Section 6.2.4.1 to 
calculate the optimal bit distribution for Au and AI· 

3) Bisect: Find the next value of A, A
TI

, by finding the gradient between the upper and 

lower points on the R(D) curve. 

L ,D;(AI)- I iD;(Au ) 

}·n = L/;" (,.1,/)- I ;R;" (Au) 

This operation is the bisection that gives the algorithm its name. 

4) Bounds Adjustment: One of the bounds is now replaced such that I R; (Au) and 

L R; (AI) are centred more tightly around Rbudget .This is easily achieved: 

if t~R; (An) = RbUdget! then the desired bitrate has been achieved, and is set to: A" = Au· 

if L R; (An) > Rbudget then the lower bound must be tightened: Al +- An , 
i 

else the upper bound must be tightened: Au +- An 

5) Reiteration: Repeat from step 2, unless the number of iterations has exceeded a 
threshold (included to limit the maximum time spent in the algorithm). 

This is a completely standard bisection root finding method, and is guaranteed to converge to 

the solution due to the concavity of the rate distortion function. 

6.2.4.3 Conclusion of Optimal Bit Allocation 

This stage finds the point on the R(D) curve of each tile that corresponds to the lowest overall 

distortion. This operating point is used to control the output stream length of each tile during the 

SPITIT coding stage. 

6.2.5 Spatial Coding Stage 

Each tile within the frame is encoded separately using the SPITIT coder, to produce the length 

specified by the optimal bit allocation routine. This code ·was implemented directly from 

[Said96] with few significant changes. Thus, although it represents the most significant portion 

of the programming exercise, it warrants no further comment here. 
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6.2.6 Entropy Coding Stage 

The entropy coding stage is also completely standard. The algorithm was not written by the 
author, but was taken almost verbatim from [McIn02]. In that work, it is also used to code the 

output of a SPllIT coder. Implementation details of this code are discussed in that work. 

i 6.3 Conclusion 

This chapter has proposed a new video compression algorithm. This algorithm is based mainly 

on the source modelling exercise of Chapter 5, as well as many of the ideas and algorithms of 

Chapters 3 and 4. 

The main imperative of this project is the production of a low complexity video coder, for 

eventual deployment in a mobile device. This intended application places severe restrictions on 

the sophistication of the coding algorithm due the meagre computational resources available on 

mobile devices. This has motivated each decision taken during the algorithmic design. 

The primary complexity saving is through abandoning block MEIMC, which accounts for over 

80% of the execution time of recent video coding standards. Unfortunately, the standards 

include block MEIMC for its excellent RD advantages and our exclusion of this algorithm is 

expected to incur severe RD costs. 

Chapter 5 shows that partitioned coding of difference frames offers-a possible low complexity 

temporal decorrelation strategy. The chapter couples this temporal strategy with appropriate 

spatial and entropy coding algorithms. The underlying assumption is that the RD performance 

losses required to produce a sufficiently simple algorithm may be recouped, at least in part, 
through clearly directed spatial and entropy coding. Furthermore these algorithms are 

dramatically faster in execution than block MEIMC, thus this strategy is an efficient one. 

This chapter initially discusses the block level design of the algorithm. Then increasing levels of 

detail are added to add substance to the discussion, this mirrors the actual design process. First 

the choice of algorithm for each block in the system is discussed and justified from the literature 

reviews of Chapters 3 and 4. Thereafter the main design element of this project; the 

configuration of the p-domain RD estimator of wavelet difference frames, is discussed in detail. 
This algorithm was -implemented from the [ReO 1] and tested on a still image set. Having 

confirmed the algorithm functionality, it was modified ~nd reconfigured for use in RD 

estimation of wavelet difference frames. As the discussion shows, significant effort was 
required to configure the various regression parameters of this algorithm. 

Other elements of the project, such as the optimal bit allocation, SPIHT and entropy coding 

routines are more mundane and their discussion is intentionally brief. The referenced literature 

provides an abundance of detail on these algorithms, which do not justify repetition here. 

Most of the programming detail has been omitted due to space constraints. However, the entire 

source code for the project is on the attached CD. This code is well commented, and self­
explanatory. 
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This chapter has shown how at each stage the computational load of the implemented algorithm 

has been of primary concern. Difference frame coding was chosen to gain complexity savings 

and sophisticated spatial and entropy coding have been employed to ameliorate the concomitant 

RD degradation. Chapter 7 to follow will test the success of this strategy. 
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Chapter 7 - Results and Discussion 

This chapter presents a comprehensive performance evaluation of the video compression 

scheme detailed in Chapter 6. There are two elements to the system performance; the 

complexity and the RD performance. The primacy of the criterion of low system complexity has 

been laboured in the preceding chapters and it is imperative to determine if the proposed system 

in fact succeeds in meeting this requirement. Thus, tests of the overall system complexity, as 

well as the complexity of each sub-system, are made below. The trade-off made for low 

complexity is RD performance and it is equally important to determine whether the system 

presents acceptable RD behaviour. Thus the purpose of this chapter is to analyse the complexity 

and RD behaviour of the proposed scheme, and determine the suitability of this system to our 

application. 

Fortunately the application is specific, which allows clear requirements to be stated. Mobile 

devices are limited in most respects, their computational limits already having been discussed. 

Here, the available bandwidth and display resolution are of interest in determining acceptable 

performance. Although the introduction in Chapter 1 has indicated that commercial networks 

are rapidly increasing their bandwidth, our particular application is to a 19.6 kbps channel, 

which is extremely limited. Thus our first goal is just to transmit video over this channel, 

regardless of resolution. The second matter of display resolution is also relevant. For instance an 

industry leading palm-top computer, the HP iPAQ 5555, has a screen resolution of 240 x 320 

and a 16-bit colour display. On a device such as this, large images are not really useful. 

Furthermore, very high image quality is not necessary, as most devices cannot display them. 

Thus our tests will focus on low bit rate coding of small images. 

Section 7.1 will present the experimental environment in which the tests were undertaken. The 

computing hardware and software environment is clearly specified, as is the test data set. This 

section is included to explain the results and allow reproducibility. 

Section 7.2 will compare the proposed algorithm to the standard video coders; H.263+ and 

MPEG-4. These algorithms are the benchmark of performance, representing the current state of 

the art. Any proposed algorithm must present performance at least equal to these algorithms to 

be considered competitive. Furthermore, as these are algorithms published by standards-setting 

bodies, reference software is available and rigorous testing may be done. This discussion will be 

structured by test sequence; where for each sequence the computational and RD performance of 

the algorithms will be presented together and compared. This section highlights the strengths 
and weaknesses of our algorithm when compared to the existing methods. 

Section 7.3 will compare the proposed algorithm to the various wavelet based video schemes 

proposed in the literature. As the source code for these algorithms is unavailable, rigorous 

testing is difficult. Thus we have attempted to reproduce, as nearly as possible, the experiments 

described and compare the results of our algorithm with the published results. This discussion 

will be structured by literature algorithm. This discussion places our algorithm within the 
context current research. 

Section 7.4 will analyse the various components of the proposed algorithm in more detail. The 

complexity and RD characteristics of each major stage in the proposed system are separately 
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examined. The purpose of this is mainly to test the assumptions made during the algorithmic 

design of Chapters 5 and 6. Aspects such as coding of difference frames, and spatial bit 

allocation will be tested to determine their RD and complexity implications. 

Finally Section 7.5 will pres~nt a unified discussion of these results. 

From the previous chapters it is expected that our algorithm will be computationally simpler 

than other schemes, due to abandoning MEIMC. In addition it is expected that due to the spatial 

bit allocation and use of the wavelet transfom1, good visual quality will be produced. 

17.1 Experimental Method 

This section will detail the experimental environment in which all the tests of the chapter are 

conducted. Choices such test data set and algorithmic configuration will be justified. 

7.1.1 Platform 

The computational platform used to perform all of these tests is an Intel Pentium 4, 1.6GHz PC? 

with 512MB of RAM, running Windows XP 2002 Professional SPI. 

All the software implementations have been compiled under Microsoft Visual C++ 6.0, and are 

executed from within this environment. 

The H.263+ algorithm [H263] was obtained from the University of British Columbia. This 

software is based on the Telenor codec, and is compliant with H.263 TMN8 [H263,2]. It is run 

with the following configuration, in all cases: 

Quantization Parameter 13 

Motion Vector Mode H.263+ 

Syntax Based Arithmetic Coding Enabled 

Advanced Prediction Mode Enabled 

Deblocking Filter Enabled 

Advanced Intra-coding Method Enabled 

Reference Picture Selection Mode Enabled 

Table 7.1: H.263+ Configuration Options 

This configuration does not use unlimited motion vector search range, in .order to limit the 

computational overhead of the algorithm, this is a common practice. Furthermore, PB frames 

are not enabled, for the same reason, as well as incompatibility with other options. This 

configuration may be considered to be low complexity, hence a good comparison for our 
algorithm. 

The MPEG-4 algorithm is run with the default options. 

The results for the standards based methods presented below differ from the results presented in 

Chapter 4, in most cases. Specifically the H.263+ results are consistently below published 
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results. This is on account of differences in the implementation, vendor specific optimisations 

and different configuration options. Furthermore, the decision not to use PB frames or 

unrestricted motion vectors in order to try limit the computational complexity, is at the cost of 

RD performance. It was decided to use the above configuration in all cases, rather than modify 

the options for each test sequence to match other published results. This enables a standard 

comparison to be made for all sequences and rates. 

7.1.2 Computational Complexity 

The computational complexity of a video compression algorithm is a difficult quantity to derive 

analytically due to the size and source dependency of these algorithms. Thus it is common 

practice to compare the complexity of algorithms by executing them on a common platform and 

measuring the execution time. Although this method is subject to several hazards such as 

machine dependant effects, code implementation variations and the impact of possible 

background processing, it does give an indication of the underlying complexity. 

Each algorithm was profiled using the Microsoft Profiler, which is a standard accessory in 

Microsoft Visual Studio. The Profiler returns the amount of time spent in each function of an 

algorithm. 

7.1.3 Test Data 

The intended application of this algorithm is mobile, handheld devices, thus low resolution, low 

. to medium frame rate video is appropriate test data. The data used is a set of standard MPEG 

test sequences. Each frame is raw video QCIF format; 176xl44 pixels, 8bit grey-scale, at 10 fps, 

in 4:2:0 (sometimes called 4:1 :1) format. The video characteristics of each sequence will be 

discussed with its results. The original video is 30 fps, but unless otherwise stated we have used 

10 fps video in testing, by only encoding every third frame. 

Although the results are presented at specific rates, such as 20 kbps, the codecs are not always 

able to produce this exact rate. Unless otherwise stated the rate is accurate to 1 kbps. This lack 

of reporting precision is to aid readability. The accurate test result data is available on the 

accompanying CD for reference. 

7.2 Comparison to Video Compression Standards 

This section will code various test sequences using H.263+, MPEG-4 and the proposed 

algorithm. In each case the complexity and RD behaviour is measured and compared. The visual 

quality is compared both numerically, and a sample frame (#100 is all cases) is displayed to 

indicate perceived visual quality. This structure allows the algorithms to be compared on equal 

ground, and the diversity of test sequences considered highlights the strengths and weaknesses 
of each algorithm. 

As mentioned in Chapter-S, standard implementations ofH.263+[H263] (variously referred here 

to as H.263 and H.263+, although H.263+ is the correct term) and MPEG-2[MPEG2] and 
MPEG-4 [MPEG4] have been obtained. 
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MPEG-2 will only be considered once, for completeness. MPEG-2 is designed for video 

broadcast systems, and can only output a minimum frame-rate of 24 fps, thus it is unable to 

reach the low bit-rates of interest in this project. Furthermore it is far less sophisticated than the 
other algorithms, and subsequently is unable to compete on visual quality. 
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7.2.1 Akiyo 

7.2. 1. 1 Characteristics 

The Akiyo test sequence is a head and shoulders sequence of a news reader. There is no global 

motion, limited local motion, and no background motion. An example image is shown in Figure 

7-l. 

Figure 7-1: Original Akiyo Frame #100 

7.2.1.2 Computational Complexity 

H.263+ MPEG-4 Proposed 

Rate( kbps) Time(ms) MEIMC(%) Time(ms) MEIMC(%) Time(rns) 

15 26137 85.33 X X 2792 -

20 38667 83.47 X X 

25 38814 82.94 X X 2889 

40 39128 86.08 33615 89.30 2968 

50 39138 84.70 X X 6209 

Table 7.2: Complexity Results: Akiyo 

The table compares the two leading standard techniques with the proposed algorithm. For each 

algorithm the first column displays the total time spent in coding the sequence, and the second 

column gives the percentage of that time spent in MEIMC algorithms. 

The publicly available reference software for MPEG-4 allows no user control over the bit rate, 
thus the compressed stream is only available at one possible rate, hence the missing data in the 

table above, and those to follow. This defect is noted in the manual that accompanies the 

reference software. The MPEG-4 codec which was run, did not include the object based coding 

that was discussed in Section 4.2.3, as this is not functional at this time. The video was coded 

with a block based MEIMC algorithm. We believe that due to great similarity between the 

MPEG-4 and H.263+ algorithms, the MPEG-4 algorithm will behave similarly to the H.263+ 
algorithm for the data rates not included on the table. 
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7.2.1.3 RD Performance 

The RD perfonnance is given below. 

H.263+ MPEG-4 Proposed 

Rate( kbps) Avg. PSNR (dB) fps Avg. PSNR (dB) fps Avg. PSNR (dB) fps 

20 31.38 9.8 X X 28.63 10 

25 32.16 10.6 X X 32.60 10 
40 34.41 11.6 34.43 10 36.18 10 

50 35.18 11.5 X X 38.00 10 

Table 7.3: RD Performance: Akiyo 

H.263 MPEG-4 Proposed 

Figure 7-2: Example Output Images: Akiyo, frame 100,40 kbps 
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Figure 7-3: Frame by Frame PSNR: Akiyo (40 kbps) 

The numerical and visual advantage of the proposed scheme is apparent. 
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7.2. 1.4 Discussion 

The first observation from this data is that the standard methods dedicate the bulk of their 
processing time to MEIMC. This is due to the exhaustive block matching searches that these 

algorithms engage in, in order to estimate motion .. This effect is noted in Chapter 5 and is the 

fundamental motivation for our algorithm. 

The second observation is that th~ proposed algorithm is an order of magnitude faster than the 

standard methods. This may be on account of implementation specifics, but the previous 

discussion of Chapters 5 and 6, motivates that this is not the case. 

Furthermore the visual quality is perceptually and measurably superior to the standard 

algorithms. Figure 7-3 shows a weakness of the proposed algorithm; the large inter-frame PSNR 

fluctuations. This will be discussed in the general discussion in Section 7.5. 
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7.2.2 Akiyo MPEG-2 

For completeness the MPEG-2 algorithm is tested in this section. 

MPEG-2 

Rate( kbps) Time(ms) MEIMC(%) 

40 25112 40.33 

60 25574 40.11 

100 25239 40.33 

Table 7.4: Complexity Results: Akiyo, MPEG-2 

Table 7.4 indicates the performance of MPEG-2 .. The reference software obtained is unable to 

produce data below 40 kbps. It is noted that this algorithm is less heavily reliant on MElMC 

than the other algorithms. 

The RD performance is given below. 

MPEG-2 

Rate( kbps) PSNR(ms) fps 

40 28.60 30 

60 37.57 30 

100 43.97 30 

Table 7.5: PSNR Results: Akiyo, MPEG-2 

Figure 7-4: Sample Image: Akiyo, MPEG-2, frame 100,40 kbps 

As noted previously the frame rate for MPEG-2 is 30 fps and can only be reduced to 24 fps. 

This restriction limits the RD performance, and hence renders the algorithm unsuitable for our 
application. 
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7.2.3 Hallmonitor 

7.2.3.1 Characteristics 

The Hallmonitor test sequence is a surveillance camera scene. There is no global motion, large 

local motion with appearing and disappearing objects, and no background motion. An example 

image is shown in Figure 7-5. 

Figure 7-5: Original Hallmonitor Frame #100 

7.2.3.2 Computational Complexity 

H.263+ MPEG-4 Proposed 

Rate( kbps) Time(ms) MEIMC(%) Time(ms) MElMC(%) Time(ms) 

15 15596 64.12 X X 2701 

20 38450 82.95 X X 2725 

25 39543 82.82 X X 2865 

40 39323 85.02 39010 82.27 3344 

50 42120 ! 79.79 · X X 6329 

Table 7.6: Complexity Results: Hallmonitor 
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7.2.3.3 RD Performance 

The RD performance is given below. 

H.263+ MPEG-4 Proposed 

Rate( kbps) Avg. PSNR (dB) fps Avg. PSNR (dB) fps A vg. PSNR (dB) 

20 29.68 9.8 X X 28.86 

25 29.95 10.1 X X 29.87 

40 31 .53 1l.2 33.23 10 33.84 

50 32.79 II.3 X X 34.90 

Table 7.7: RD Performance: Hallmonitor 

H.263 MPEG-4 Proposed 

Figure 7-6: Example Output Images: Hallmonitor, Frame 100,40 kbps 
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Figure 7-7: Frame by Frame PSNR: Hallmonitor (40 kbps) 
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7.2.3.4 Discussion 

Although the proposed algorithm performs well again, the lack of interframe rate control is 

apparent in the rapidly fluctuating PSNR. The movement of the men in this sequence is much 
less smooth than the movement of Akiyo. Thus for those difference frames with much 

information, the algorithm is unable to allocate more bits than for those with little information. 

As the movement is well localised and generally not extreme, the results generated by this test 

sequence are very similar to the Akiyo sequence. 
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7.2.4 Foreman 

7.2.4.1 Characteristics 

The Foreman test sequence is a camcorder type output. There is very large local and global 

motion with a complete scene change. An example image is shown in . Figure 7-8. This 

sequence is considered one of the most complex and challenging for compression. 

Figure 7-8: Original Foreman Frame #100 

7.2.4.2 Computational Complexity 

H.263+ MPEG-4 Proposed 
.~ 

Rate( kbps) Time(ms) MEIMC(%) Time (ms) MEIMC(%) Time(ms) 

20 4760 67 X X 2648 

25 3156 74 X X 2800 

40 10336 64 X X 2590 

50 15718 70 X X 4278 

284 X X 44520 85 X 

Table 7.8: Complexity Results: Foreman 

In this case MPEG-4 outputs a 284 kbps stream, the lack of user rate control has prevented this 

from being altered. This is probably due to distortion control in the MPEG-4 algorithm. 
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7.2.4.3 RD Performance 

The RD performance is given below, MPEG-4 is ommited due to its high rate. 

H.263+ Proposed 

Rate( kbps) Avg. PSNR (dB) fps Avg. PSNR (dB) fps 

20 27.72 1.1 19.45 10 

25 27.45 I.3 20.77 10 

40 27.08 2.5 23.42 10 

50 27.05 3.4 24.50 10 

Table 7.9: RD Performance: Foreman 

H.263 Proposed 

Figure 7-9: Example Output: Foreman, Frame 100,40 kbps 
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7.2.4.4 Discussion 

Clearly the proposed algorithm performs very poorly with this test sequence. This is due to one 

of the assumptions upon which it is built; limited local motion, not holding. There is global 

motion due to the camera motion and the panning movement during the scene change (starting 

at about frame #175) . This global motion introduces significant coefficients in all the difference 

image tiles, thus the optimal bit allocation yields no significant RD improvement. In addition 

the foreman 's head occupies much of the frame, and moves considerably, thus distributing 

significant coefficients across the frame, even though it is a local motion. 

MPEG-4 handles this scene by increasing the bit rate to 284 kbps. Again, the lack of user 

control of this reference software has frustrated efforts to compare it rigorously. 

H.263+ in contrast, drops the frame rate, thus gaining both computational and RD performance 

gain over the proposed algorithm. Although the proposed algorithm cannot automatically adjust 

the frame rate, it is a simple matter to achieve through user intervention. 

The frame rate was adjusted 2.5 fps to match H.263 at 40 kbps. Figure 7-10 demonstrates that 

this action regains the RD advantage of the proposed scheme. In addition the execution time of 

the algorithm under this configuration is 863rns, compared to 10336rns for H.263+ for this 

configuration. 

This test sequence demonstrates that in addition to interframe rate control, the proposed 
algorithm will benefit from frame rate control. 
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7.2.5 News 

7.2.5.1 Characteristics 

The News test sequence is a new broadcasting scene. The Akiyo sequence is a detail from this 

scene. There is no global motion and low local motion. However, the background features a 

ballet scene, with two dancers who appears and move very vigorously. The sequence was 

constructed by the MPEG-4 group to demonstrate separate video object encoding. The ballet is 

the complex visual feature , but is limited to a screen in the background, thus by including it on a 

separate video plane, coding advantages can be gained. There are four moving objects in this 

scene, distributed across the frame. An example image is shown in Figure 7-11. 

Figure 7-11: Original News Frame #100 

7.2.5.2 Computational Complexity 

H.263+ MPEG-4 Proposed 

Rate( kbps) Time(ms) MEIMC(%) Time(ms) MEIMC(%) Time(ms) 

20 39095 .87.32 X X 5626 

25 42608 82.77 X X 5881 

40 41066 85.64 59256 88.69 6363 

50 44429 79.50 X X 6927 

Table 7.10: Complexity Results: News 
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7.2.5.3 RD Performance 

The RD performance is given below. 

H.263+ MPEG-4 Proposed 

Rate( kbps) Avg. PSNR (dB) fps Avg. PSNR (dB) fps Avg. PSNR (dB) 

20 

25 

40 

50 

28.98 10.7 X X 23.88 

29.97 11.2 X X 25.36 

31.56 11.6 32.63 10.1 27.81 

32.45 11.7 X X 29.40 

Table 7.11: RD Performance: News 

H.263 MPEG-4 Proposed 

Figure 7-12: Example Output Images: News, Frame 100,40 kbps 
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7.2.5.4 Discussion 

The proposed algorithm fails to encode this sequence efficiently. This is due to the distributed 

nature of the motion in the scene. Both news readers and the ballerinas are moving 

simultaneously, and taken together, this results in most of the tiles in the image containing 

significant coefficients. Thus, although the assumption of coefficient clustering still holds, there 

are many coefficients clusters and the algorithm is unable to concentrate bits sufficiently to gain 

advantage over the standards. 

The underlying flaw is the spatial syntax. The 16 tile segmentation used here fails to localize the 

motion sufficiently for there to exist sufficient energy differences between spatial regions for bit 

allocation to be useful. This motivates further work to develop a new or adaptive syntax that 

will overcome this shortcoming. 
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7.2.6 Coastguard 

7.2.6.1 Characteristics 

The Coastguard test sequence is an outdoor moving scene. The sequence is dominated by a 

global translation motion . The camera is mounted on one boat, and the scene consists mainly of 

another boat moving at the same speed in parallel with the camera. Thus the central object does 

not change much, but the background pans past. 

Figure 7-14: Original News Frame #100 

7.2.6.2 Computational Complexity 

H.263+ MPEG-4 Proposed 

Rate( kbps) Time(ms) ME/MC(%) Time(ms) ME/MC(%) Time(ms) 

20 2919 41.49 X X 5762 

25 3817 46.36 X X 5296 

40 5351 47.34 X X 6600 

50 4372 47.67 X X 6969 

240 X X 54241 81.03 X 

Table 7.12: Complexity Results: News 
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7.2.6.3 RD Performance 

The RD performance is given below. 

Rate( kbps) 

20 
25 
40 

50 
240 

H.263 

35 

i:D 30 
'0 -a: 25 z 
en 
Q.. 20 

15 

H.263+ MPEG-4 Proposed 

Avg. PSNR (dB) fps Avg. PSNR (dB) fps Avg. PSNR(dB) 

25.84 1.2 X X 20.45 

25.68 1.2 X X 21.18 
25.45 2.6 X X 22.90 
25.42 3.7 X X 23.45 
X X 30.70 10 X 

Table 7.13: RD Performance: Coastguard 

Proposed (2.5 fps) Proposed 

Figure 7-15: Example Output: Coastguard. Frame 100.40 kbps 
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7.2.6.4 Discussion 

Once again the global motion conflicts with the assumption of coefficients clustering. As the 

camera is panning, each tile contains significant motion, and hence significant coefficients. 

Thus this sequence represents a large departure from the assumptions of the algorithm. 

The proposed algorithm presents very poor results . Once again, reducing the frame rate 

manually to allow a greater number of bits per frame improves the RD performance. The 

modified algorithm produces a 2.5 fps sequence in 1284ms, with an average PSNR of 26.00dB; 

outperforming H.263 on both metrics. 

Unfortunately, rigorous comparison to MPEG-4 cannot be made for this sequence. 

Figure 7-15 for the H.263+ does not present frame #100 as stated. Due to the low frame rate, 

frame # 1 00 is not actually coded, but the closest frame to # 1 00 is displayed. 

7.2.7 Discussion of Comparison to Standards 

This discussion is deferred to Section 7.5.l where an integrate discussion of all the tests is 

made. 

1703 Comparison to Wavelet Literature 

Much of the RD advantage of our scheme over the video compression standards, is due to use of 

the wavelet transform. Thus it is valuable to compare this method with the wavelet methods 

proposed in the literature. Unfortunately there are two severe problems in performing this 

experiment. The source · code for the literature methods is unavailable and computational 

complexity results are generally not published. Thus, comparing the computational complexity 

can only be done on a basis of informed assumption. 

Notwithstanding the above, we shall attempt to compare both the RD and computational 

performance of our scheme with those from the literature. We shall in each case perform, as 

closely as possible, the same tests as used to generate the published results~ and compare the 

results. The discussion will proceed, by paper, in the same order as the papers are presented in 
Chapter 4. 

7.3.1 Shen and Delp [Shen99] 

This algorithm is fully described in Section 4.3.3.4. 

Shen and Delp present results for colour sequences. We have not considered such coding, and 
thus a comparison cannot be fairly made. 

7.3.2 Lin and Gray [Lin01] 

7.3.2.1 Computational Complexity 

This algorithm is extremely similar to ours. Indeed the only significant differences are that Lin 

and Gray utilise the H.263 ME/MC engine, as well as both intra and inter frame RD estimation. 
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Due to the MEIMC, we believe this scheme will exhibit complexity of the order of the H.263 

algorithm, hence, significantly more complex than our algorithm. 

7.3.2.2 RD Performance 

Lin and Gray present coding results, for the first 50 frames of the Carp hone and Foreman 

sequences, both at 10 iPs. 

[Lin01] Proposed 

PSNR(dB) PSNR(dB) 

Rate( kbps) Carphone Foreman Carphone Foreman 

20 31 28 24.6 20.8 

40 33.5 31 29.2 24.3 

50 35 31.5 30.4 25.5 

Table 7.14: RD Performance: Lin and Gray 

7.3.2.3 Discussion 

Although it cannot be proven at this point, it is strongly expected that as [Lin01] utilised the 

H.263+ MEIMC algorithm, the proposed algorithm will present far more modest computational 

demands. 

As expected, the proposed algorithm holds no RD advantage over [Lin01]. The proposed 

algorithm is able to present superior RD characteristics to the video standards, due to its use of 

the wavelet transform, as opposed to the DCT. [Lin01] , however also includes the wavelet 

transfonn, as well as more advanced RD estimation. Thus it is wholly expected to present 
superior RD performance. 

7.3.3 Marpe and Cycon [Marp99] 

7.3.3. 1 Computational Complexity 

Again, no computational data is published for this algorithm. As with [LinO!] the algorithm 

performs MEIMC using a block matching scheme very similar to H.263+. Thus we reasonably 
expect to have computational superiority over this algorithm. 

7.3.3.2 RD Performance 

Results for this algorithm are published for the Akiyo, Hallmonitor, N~ws and Foreman 
sequences. Each one is in QCIF format, at various frame rates. 

[Marp99] Proposed 
Sequence Bit Rate( kbps) iPs PSNR(dB) PSNR(dB) 
Akiyo 25 10 37.4 32.6 
Hallmonitor 25 10 38.9 29.9 
News 50 7.5 34.7 30.1 
Foreman 50 7.5 32.0 25.4 
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Table 7.15: RD Performance: Marpe and Cycon 

7.3.3.3 Discussion 

Once again the proposed algorithm is outperformed by the literature method, and this IS 

probably due to the inclusion of MEIMC in the literature method. 

7.3.4 Yang and Ramchandran [YangOO] 

7.3.4.1 Computational Complexity 

Computational complexity is difficult to ascertain for this method, as it is based on hierarchical 

motion estimation. Although this entails mUltiple MEIMC steps, the authors claim that the 

computational complexity of their backward estimation is equal to that of a block matching 

search. In addition their forward estimation incurs an additional 20%-30% penalty. Based on 

this, we may estimate that the complexity of this algorithm is similar or, probably, greater than 

that of the H.263+ and MPEG type schemes. Therefore our algorithm should be substantially 

faster. 

7.3.4.2 RD Performance 

Results for this algorithm are published for the Mother and Daughter, Miss America and 

Football test sequence, however only the Mother and Daughter sequence could be obtained for 
companson. 

[YangOO] Proposed 

Sequence Bit Rate( kbps) fps PSNR(dB) PSNR(dB) 
M '&D 48 15 35.6 33.0 

Table 7.16: RD Performance: Yang and Ramchandran 

7.3.4.3 Discussion 

As in the previous cases this method outperforms the proposed algorithm in an RD sense, at the 
cost of computational overhead. This is despite the test sequence adhering to the strictly local 

motion assumptions of our algorithm. As both algorithms use wavelet coding, the utility of the 
MEIMC for temporal coding can be clearly seen. 

7.3.5 Kim, Xiong and Pearlman [KimOO] 

7,3.5. 1 Computational Complexity 

This paper discusses the computational complexity of the algorithm. When a pure 3D transform 

is applied without MEIMC the algorithm performs 2.53 times faster than H.263 (for the 

Carphone sequence at 10 fps, 30 kbps). This performance gain is less than with our algorithm, 
which usually operates between 6 and 10 times faster than H.263. 
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In addition the 3D SPIRT algorithm requires the buffering of a 16 frame group of frames. This 

memory overhead is usually unacceptable for embedded devices. Our algorithm requires only 

buffering of the current and previous frames. 

7.3.5.2 RD Performance 

There are several results published for this algorithm. 

[KimOO] [KimOO] (MElMC) Proposed 

Bit Rate( kbps) fps PSNR(dB) PSNR(db) PSNR(dB) 

Carphone 30 10 30.22 30.39 26.03 

Carphone 60 10 32.97 33.19 30.08 

M&D 30 10 31.71 32.78 31.86 

M&D 60 10 35.57 35.69 35.11 

Hallmonitor 30 10 32.95 32.30 30.89 

Hallmonitor 60 10 37.36 37.95 34.72 

Table 7.17: RD Performance: Kim et al 

[XuO 1] presents further results for this algorithm, considering only the first 96 frames of the 

following sequences. 

[KimOO] Proposed 

Bit Rate( kbps) fps PSNR (dB) PSNR(dB) 

Akiyo 20 30 29.43 X 

Akiyo 40 30 33.38 28.83 

Akiyo 40 10 X 36.18 

M&D 20 30 30.09 X 

M&D 40 30 33.33 27.75 

M&D 40 10 X 33.40 

Coastguard 40 30 25.88 19.42 
Coastguard 80 30 27.65 23.32 
Coastguard 40 10 X 22.90 

Table 7.18: RD Performance: Kim et aI, further results 

7.3.5.3 Discussion 

This algorithm displays the usual pattern of outperforming the proposed scheme on RD terms, 

but not on computational terms. In addition to the usual computational complexity, the 3D 
SPIRT algorithm presents severe memory demands. 

The proposed algorithm is unable to encode at 20 kbps and 30 fps, as the algorithm requires a 

minimum of p=0.99 per tile, which sets a minimum possible number of bits per frame. The set 
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of results presented in [XuO I] is rather unrealistic, as the requirement for low-bit, high-frame 

rate video is hard to justify. 

I believe that 3D transform based schemes probably require high inter-frame correlation in order 

to present competitive results, due to the application of the wavelet transform in the temporal 

direction. Thus results might be published for 30 fps sequences, as this is where the highest 

performance is found. 

7.3.6 Xu, Xiong, Li and Zhang [Xu02] 

7.3.6.1 Computational Complexity 

The expected computational complexity of this scheme is large, compared to our algorithm, due 

to the 3D wavelet transform, as is the case. for the previous algorithm, [KimOO]. 

The memory burden of a 16 frame frame-buffer is also excessive, for our application. 

7.3.6.2 RD Performance 

Once more the published results are for a 30 fps sequence. 

[KimOO] Proposed 

Bit Rate( kbps) fps PSNR (dB) PSNR(dB) 

Akiyo 42 30 35.02 27.22 

Akiyo 40 10 X 36.18 

Coastguard 45 30 27.10 X 

Coastguard 40 10 X 22.90 

Table 7.19: RD Performance: Kim et al 

7.3.6.3 Discussion 

Our algorithm fails to compete for the Coastguard sequence, as previously mentioned; the 

global motion of this sequence breaks the assumptions of our algorithm. 

For Akiyo the proposed algorithm is unable to compete at 30 fps, but demonstrates a recovery 

for 10 fps, as discussed for [KimOO]. Obtaining RD results for the 3D transform schemes at 10 
fps would be useful for comparison at lower interframe correlation. 

7.3.7 Wang, Xiong, Chou and Mehrotra [Wang02] 

This algorithm and the proposed algorithm cannot be reasonably compared. [Wang02] presents 

an algorithm designed expressly for scenes dominated by global motion, and presents results 

only for such scenes, whereas the proposed algorithm is designed for global motion free scenes. 
Thus no comparison is offered. 
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17.4 Component Analysis 

This section will review the components of the system and discuss the contribution each makes 

to the RD performance and computational demand of the proposed system. This is undertaken 

in order to discover areas of improvement for future work. The Microsoft Profiler is used to 

measure the amount of time spent in each algorithm in the scheme, the results of this 

measurement are given for each of the tested sequences. This is a slightly problematic approach 

to measurement as the Windows XP platform is multitasking, thus background processing may 

interfere with the measurements. 

Section 7.4.1 presents the component complexity results. Section 7.4.2 presents a discussion of 

the contribution of each of these components to the overall RD performance. The discussion is 

deferred to Section 7.5.3 . 

7.4.1 Component Timing Data 

The following tables indicate the amount of time spent in each algorithm of the scheme, during 

coding of various test sequences at several output bit rates. 

20 kbps 25 kbps 40 kbps 50 kbps 

Time (ms) % Time (ms) % Time (ms) % Time (ms) % 

Total 2889.662 100 2889.662 100 2967.622 100 6209.401 100 

RD Estimation 337.262 11.67133 337.262 11.67133 342.957 11.55663 345.534 5.564691 

Wavelet 278.297 9.63078 278.297 9.63078 278.752 9.39311 295.807 14.763857 

sprn:r 1223.199 ~2.33018 1223.199 42.33018 1268.274 42.73705 4201.994 67.67149 

Arith Coder 67.922 2.350517 67.922 2.350517 67.503 2.27465 329.684 5.309433 

Sundry 34.0172 34.0172 34.03857 16.69053 

Table 7.20: Component Timing: Akiyo 

20 kbps 25 kbps 40 kbps 50 kbps 

Time (ms) % Time (ms) % Time (ms) % Time (ms) % 
Total 2725.425 100 2865.381 100 3344.42 100 6329.125 100 
RD Estimation 333.055 12.2203 332.803 11.61462 344.029 10.28666 342.613 5.413276 
Wavelet 276.227 10.13519 289.462 10.10204 284.659 8.511461 286.694 4.529757 
SPIRT 1062.648 38.99018 1163.038 40.5893 1283.505 38.37751 4258.912 67.29069 
Arith Coder 37.787 1.386463 54.62 1.906204 64.215 1.920064 145.663 2.301471 
Sundry 37.26788 35.78784 40.90431 20.4648 

Table 7.21: Component Timing: Hallmonitor 

20 kbps 25 kbps 40 kbps 50 kbps 
Time (ms) % Time (ms) % Time (ms) % Time (ms) % 

Total 2648.391 100 2800.165 100 2590.423 100 ~278.459 100 
RD Estimation 332.489 12.55438 331.807 11 .84955 325.84 12.57864 327.778 7.661123 
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Wavelet 273.418 10.32393 277.745 9.91888 275.707 10.64332 285.245 6.667003 

SPIHT 982.709 37.10589 1068.831 38.17029 924.324 35.68236 2465.403 57.62362 

Arith Coder 28.926 1.09221 81.995 2.92822 53.178 2.052869 164.704 3.84961 

Sundry 38.9236 37.13306 39.04281 24.19864 

Table 7.22: Component Timing: Foreman 

20 kbps 25 kbps 40 kbps . 50 kbps 

Time (ms) % Time (ms) % Time (ms) % Time (ms) % 

Total 5626.883 100 5881.206 100 6363.696 100 6927.499 100 

RD Estimation 339.954 6.041604 336.748 5.725832 345.436 5.428229 340.782 4.919265 

Wavelet 283.181 5.032644 279.383 4.750437 285 .541 4.487031 287.326 ~.147615 

SPIHT 3639.914 64.68793 3807.643 64.74255 4196.695 65.94745 ~666.601 67.36343 

Arith Coder 143.915 2.557633 180.397 3.067347 248.554 3.905812 312.19 ~.506533 

Sundry 21.68019 21.71383 20.23148 19.06316 

Table 7.23: Component Timing: News 

20 kbps 25 kbps 40 kbps . 50 kbps 

Time (ms) % Time (ms) % Time (ms) % Time(ms) % 
Total 5762.062 100 5925.95 100 6599.903 100 6968.925 100 

RD Estimation 336.556 5.840895 331.147 5.588083 332.463 5.037392 337.065 /4.836686 
Wavelet 287.123 ~.98299 283.194 ~.778879 287.28 4.352791 285.639 /4.098753 
SPIHT 3736.256 64.84234 3872.501 65.34819 4439.628 67.26808 4770.421 68.45275 
Arith Coder 133.771 2.321582 176.106 2.971777 254.607 3.857739 290.691 f4.171246 
Sundry 22.01219 21.31307 19.484 18.44056 

Table 7.24: Component Timing: Coastguard 

7.4.1.1 Component Complexity Discussion 

7.4.1.1.1 Wavelet Transform 

The wavelet transform exhibits an almost constant execution time of 300ms. This is logical as 

the wavelet transform stage is identical for all bit rates and input data. Slight variations that 
occur are probably the result of the imperfect measurement method. 

7.4.1.1 .2 RD Estimator 

As with the wavelet transform, the execution time of the RD estimator is independent of the 

output bit rate. As this stage occurs before any quantization, or data reduction has occurred, this 
is natural. 
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7.4.1.1.3 SPIHT 

These tables show the overriding contribution of the SPIHT algorithm to the system complexity. 

The SPIHT and arithmetic coder execution times are seen to increase with bitrate, as more data 

is processed. 

SPIHT Coder 
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Figure 7-17: SPIHT Execution Time vs Output Bit Rate 

Figure 7-17 above is most enlightening. For the first three scenes, Foreman, Hallmonitor and 

Akiyo, the execution time is fairly constant, until 40 kbps, at which point the execution time 

increases dramatically. News and Coastguard present smoother increasing functions. This 

behaviour may be explained through the action of the Optimal Bit Allocation unit. 

As mentioned in Section 7.2, News and Coastguard produce significant coefficients in many of 
the tiles, due to multiple local motions, and global motion respectively. Thus the bit allocation 

unit spreads the bits fairly evenly between the tiles. For each coefficient encountered the SPIHT 

algorithm must perform a full tree search to decide whether to descend the tree. or zerotree 
quantize. 

Hallmonitor and Akiyo present very localized motion, thus ·the bit allocation unit causes very 

few tiles to consume most of the bit budget. For the bit starved tiles, very few coefficients will 

be encountered by the SPIHT algorithm before the bit budget is expended, thus very few tree 

searches will occur for these tiles. For those tiles allocated many bits, the SPIRT algorithm will 

have the opportunity to descend the wavelet trees. At each level of descent the full tree search 
becomes faster, as the remaining wavelet tree is smaller than the original. 

Thus for the Hallmonitor and Akiyo sequences, the low bit rate will cause the optimal bit 

allocation unit to allocate most bits to very few tiles, owing to the strong coefficient clustering 

in these sequences. Thus the SPIHT process will be characterized by few tree searches in total, 

and 'deep ' (as far as allowed by the bit rate) tree descents for those coefficients considered. As 

mentioned, this is an efficient manner for the SPIHT algorithm to operate, as the tree searching 

175 



represents the main time consumption of the algorithm. For global motion scenes, however, the 

bit budget is evenly spread over the tiles, and thus there will be many tree searches, which is 

inefficient. This behaviour indicates why Hallmonitor and Akiyo are significantly faster than 

News and Coastguard at low bit rates. 

For Hallmonitor and Akiyo, as the bit rate increases, it becomes RD optimal to include more 

tiles in the output stream. This causes an increase in the number of tree searches, and hence the 

complexity. This causes the behaviour seen at 40 kbps in Figure 7-17. 

The Foreman sequence seems anomalous. Foreman presents large local and global motions, it is 

postulated that the large motion of the man in the centre of the frame dominates the difference 

frame, and hence the effect discussed for local motion scenes is exhibited. However, the 

sequence is very complex and this explanation merely suggestive. 

7.4.1.1.4 Arithmetic Coder 

The arithmetic coder execution times increase similarly to the SPIRT times . 
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Figure 7-18: Arithmetic Coder Execution Time vs Output Bit Rate 

The arithmetic coder is clearly reacting to the output stream of the SPIRT encoder stage. Based 

on the previous discussion it is hypothesized that at higher rates, more tiles produce sufficiently 

long SPIRT output streams to be deemed complex; the arithmetic coder is thus responding to 
the complexity of this stream. However, as the arithmetic coder is not written by this author, an 
precise explanation is not offered. 

7.4.1.1 .5 Component Complexity Summary 

The previous sections show that the SPIRT algorithm is the most complex and unpredictable of 

the system components. For the test sequences above, SPIRT is responsible for 56% of the 

computation time, on average. This motivates for future work to decrease this complexity, or for 

abandonment of the SPIRT algorithm in favour of an ECECOW-like (Section 3.3.9) system. 
This will be explored in the final discussion. 
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7.4.2 Component RD Contribution 

This section will explore the RD effect of various design decisions taken. Specifically the use of 

difference frames will be explored in Section 7.4.2.1. Sections 7.4.2.2 and 7.4.2.3 will 

investigate the benefits of optimal bit allocation and arithmetic coding respectively. Finally 

Section 7.4.2.4 will discuss the effect of tiling. 

Two sequences will be used in this discussion; Hallmonitor, as surveillance is our intended 

application and the sequence fulfils all the assumptions made in the algorithmic design, and 

Coastguard as it fulfils none of the assumptions. The different behaviour of these two sequences 

can then be used to verify our assumptions. All tests were done at 10 fps. 

7.4.2.1 Difference Frames 

In order to test the utility of difference frames, the proposed algorithm is converted to an intra­

frame coding algorithm, by removing the frame differencing. Each frame in the sequence is 

simply coded with the SPIHT / arithmetic coder pair. In addition, no optimal bit allocation is 

performed. This algorithm thus represents the baseline of performance. 

For the Hallmonitor sequence the following results are produced : 

PSNR(dB) 

Rate (kbps) 20 25 50 100 200 

Proposed 28.88 29.90 35.11 X X 

Intra - 16 Tile X 8.52 16.82 22.22 27.48 

Intra - 1 Tile X 10.47 17.99 25.19 29.99 

Table 7.25: Intra-frame RD Results - Hallmonitor 

For visual reference, the intraframe output at 100 kbps, is shown in Figure 7-19. 

16 Tiles I Tile 

Figure 7-19: Intra-frame Visual Results - Hallmonitor (Frame #100,100 kbps) 

Similarly, for Coastguard: 

PSNR (dB) 

Rate (kbps) 20 25 50 100 200 
Proposed 20.45 21.18 23.45 X X 
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Intra - 16 Tile X 9.99 18.39 22.67 27.01 

Intra - 1 Tile X 14.87 21.12 24.83 28.88 

Table 7.26: Intra-frame RD Results - Coastguard 

For visual reference, the intraframe output at 100 kbps, is shown in Figure 7-20. 

16 Tiles 1 Tile 

Figure 7-20: Intra-frame Visual Results - Coastguard (Frame #100, 100 kbps) 

7.4.2.1.1 Difference Frame Discussion 

An immediate observation is that the gain from using difference frames is enonnous. For the 

Hallmonitor sequence, virtually the same distortion is achieved by the proposed algorithm at 25 

kbps as the intra-frame coder achieves at 200 kbps. 

Furthermore the increase in RD performance is significantly greater for the Hallmonitor 

sequence, than for the Coastguard sequence. At 50 kbps the Hallmonitor gains 17.22 dB PSNR 

(virtually doubling) with the proposed scheme, whereas the Coastguard sequence gains only 

2.33dB. This result confirms the hypothesis that local motion leads to strong coefficient 

clustering, which may be efficiently captured through tiling and optimal bit allocated coding, 

the fundamental assumption of the scheme. 

A final observation is that for the intra-frame coder, tiling has the effect of decreasing the 

PSNR. This is due to the basic notion that the smaller the data source, the less the ratio to which 

it may be compressed. Incidentally this is the fundamental limitation of the original JPEG 
algorithm, which uses 8x8 pixel tiles, and at high compression ratios simply runs out of 

coefficients to quantise in each block. This effect will be further explored in Section 7.4.2.4. 

7.4.2.2 Optimal Bit Allocation 

In order to test the concept of optimal bit allocation, this unit is removed from the system. The 

system thus becomes a·difference frame coder, followed by SPIHT and arithmetic coding. The 
RD performance is shown below. 

The performance for Hallmonitor is shown below: 

PSNR (dB) 

Rate (kbps) 20 25 50 100 200 
Proposed 28.86 29.89 35.11 X X 
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16Tile X 21.75 28.77 33.96 40.45 

I Tile X 24.12 32.18 40.44 45.94 

Table 7.27: Unoptimised RD Results - Hallmonitor 

For visual reference, the output at 25 kbps, is shown in Figure 7-21. 

Proposed 16 Tiles I Tile 

Figure 7-21: Unoptimised Visual Results - Hallmonitor (Frame #100,25 kbps) 

Similarly, for Coastguard: 

PSNR(dB) 

Rate (kbps) 20 25 50 100 200 

Proposed 20.45 21.18 23.45 X X 
16 Tile X 20.10 22.85 25.18 28.54 

1 Tile X 21.62 23.84 26.13 29.18 

Table 7.28: Unoptimised RD Results - Coastguard 

For visual reference, the output at 25 kbps, is shown in Figure 7-22. 

Proposed 16 Tiles I Tile 

Figure 7-22: Unoptimised Visual Results - Coastguard (Frame #100,25 kbps) 

7.4.2.2.1 Optimal Bit Allocation Discussion 

This test highlights the trade-off between tiling and optimal bit allocation. For the Coastguard 

sequence, the straight single tile difference frame coder outperforms the proposed system. This 

is owing to the effect of tiling reducing the information available to the SPIHT and arithmetic 
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coders, thus reducing the RD performance. This result may be explaIned by the fact that optimal 

bit allocation is ineffective for the Coastguard sequence owing to the global motion, as 

previously discussed. . 

The Hallmonitor sequence demonstrates the positive side of the tradeoff. Here the optimal bit 

allocation is expected to be successful, and the proposed system outperforms the difference 

frame coder. 

These results serve to confirm that difference frame coding, coupled with optimal bit allocation 

between tiles, is effective in describing local motion scenes. 

7.4.2.3 Arithmetic Coding 

The final stage is the arithmetic coder. The RD contribution of this algorithm, is tested by 

outputting the total bit rate, before and after the arithmetic coder. 

The following two tables, show for a particular value of distortion, the total bit rate, before and 

after arithmetic coding. 

Rate (kbps) 

PSNR(dB) 28.9 29.9 33.8 35.1 

Proposed 20.9 24.3 39.l4 50.3 

wlo Arith. Coder 40.8 46.4 66.3 80.2 

Table 7.29: Arithmetic Coder RD Contribution: Hallmonitor 

Rate (kbps) 

PSNR (dB) 20.45 2l.2 22.9 23.5 

Proposed 19.8 24.9 40.4 49.4 

wlo Arith. Coder 36.2 44.l 65.7 77.4 

Table 7.30: Arthimetic Coder RD Contribution: Coastguard 

7.4.2.3.1 Arithmetic Coder Discussion 

The two tables above show that the arithmetic coder reduces the output data stream by 40 to 
50%, without affecting the PSNR. 

7.4.2.4 Tiling 

It was shown in Section 7.4.2.2 that tiling reduces the RD performance of the system, but in the 

case of local motion provides the spatial syntax to allow optimal bit allocation. Thus there will 

exist a trade-off, for local motion scenes, between the fine spatial resolution provided by small 
tiles, and the limited compression such tiles impose. 

Although this effect was noted, modifying the algorithm to allow optimal bit allocation for 

different tile sizes requires significant effort in reconfiguring the RD estimator and modifying 
the control code. Thus this work was not undertaken. 
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Furthermore tile-size also effects the number of decomposition levels possible in the wavelet 

transform stage. As the tile size decreases, the number of coefficients in a single row or column 
of the lowest resolutions subband approach the length of the wavelet transform filter. This effect 

naturally reduces the efficacy of the process, and if the number of coefficients becomes less than 

the filter length, renders the filter useless. 

It is noted that future work centred around studying the effect of tile size on performance for 

different sequence types, and hence an adaptive tile configuration, may yield ~oding benefit. 

17.5 Discussion 

This section presents a unified discussion of the all the tests undertaken in this chapter. 

7.5.1 Comparison to Standards 

The proposed algorithm compares admirably to the video compression standards. In cases 

where there is no global motion, and limited local motion, such as Hallmonitor and Akiyo, the 

algorithm outperforms the standards. In the cases of the News sequence, there are multiple local 

motion sources, thus the significant coefficients are spread over the frame and the tiling spatial 

syntax is unable to localize the motion. Thus the algorithm fails to code this sequence 

efficiently. 

In the case of global motion, the proposed algorithm presents poor RD performance. However, 

by implementing a frame rate control (manually at this point) the algorithm may be made 

competitive with H.263. However, it is believed this is simply because H.263 handles global 

motion poorly. Systems such as [Wang02] with proper global MEIMC are expected outperform 
our scheme significantly. 

This algorithm implements no inter-frame rate control, which could allocate rate between 

frames in order to maintain a constant PSNR. The algorithm has been designed instead to output 

a constant bitrate, in order to maintain a constant frame rate over a fixed bandwidth radio 

channel. Rate control requires a deep buffer at the receiver in order to smooth the frame rate; 

this is in opposition to the specification of our project. However, as RD estimates of each frame 

exist, implementing inter-frame rate control should be a trivial matter should this specification 
change. 

In addition to bit rate control, the Foreman sequence demonstrates that the algorithm will 

benefit from frame rate control. Again, the availability of an accurate RD estimate trivializes the 
automation of this functionality. 

The overriding observation is that the proposed scheme has a sig~ificantly lower execution time 

than the standards, as expected from the system design. In addition, it outperforms the 

standards, on RD criteria for all but one test sequence. It is expected that this RD performance 

may be on account of the simple H.263+ configuration chosen. Other configurations may 

present better performance, however, as the literature review of Chapter 4 shows even the 

highest best reported RD performance is comparable to that of our algorithm. Furthermore, this 
increases RD performance will be at the expense of increased complexity. 
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These tests show that for a restricted, but useful, application this algorithm executes 

approximately ten times faster than the compression standards algorithm, and perfonns 

comparably. 

7.5.2 Comparison to Wavelet Literature 

The proposed algorithm presents poor RD performance compared to the other wavelet 

techniques reviewed. The algorithm draws RD advantage over DCT based schemes through the 

use of the wavelet transform. This advantage is naturally lost when competing with other 

wavelet based systems, which have the further benefit of ME/MC. 

However, although unconfirmed by testing, it is strongly expected that the proposed algorithm 

will present far lower computational demands than · the wavelet based schemes, owing to 

avoiding MEIMC required by most of these schemes and the large memory buffers required by 

the 3D transfonn based schemes. 

7.5.3 Component Analysis 

A component analysis was undertaken to test the assumptions made during the algorithmic 

design. 

Section 7.4.1 finds that SPllfT is the most significant contributor to the system complexity, 

being responsible for an average 56% of the execution time. The other significant blocks, such 

as the wavelet transfonn, RD estimator and arithmetic coder usually account for 25% or less of 

the execution time, depending on the total time. More meaningfully, the RD estimator and 

wavelet transfonn consume between 600 and 650 ms, regardless of the sequence or rate. The 

arithmetic coder execution time is dependant on the source and rate, but accounts for between 

only 1 and 5% of the execution time. 

The remaining time is spent in I/O and memory manipulations. A recent review of the source 

code has revealed that significant savings may be made in these areas. 

7.5.4 Performance I Complexity Tradeoff 

7.5.4.1.1 Contribution of RD Estimation and Optimal Bit Allocation 

This section will demonstrate the RD and PSNR effect of each block in the proposed system. 

The following figure shows the average PSNR for various block combinations for the 
Hallmonitor sequence, coded at 50 kbps. 
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Figure 7-23: Block PSNR Contribution: Hallmonitor 

The rightmost block in Figure 7-23 is an algorithm that can be built from standard components. 

The +6.34 dB PSNR gain to the bottom most configuration, is as a direct result of the work 

designed and implemented in Chapters 5 and 6. 

7.5.4.1.2 Comparison o/Temporal Decorrelation Methods 

This section will attempt to compare the utility of the MEIMC based temporal coding, the 

difference coding, and optimal bit allocation strategy. 

The following table compares the performance and complexity of an intra-frame coder, the best 

wavelet video compression system, H.263 and the proposed algorithm for the Hallmonitor 

sequence at 25 kbps, 10 fps. 

PSNR(dB) Complexity 

Intraframe Coder 10.47 (Sec. 7.4.2.1) X 
Best Literature Method [Marp99] 38.9 (Sec. 7.3.3) 5X 
H.263+ 30.0 (Sec. 7.2.3.3) 5X 
Proposed Method 29.9 (Sec. 7.3.3.3) 1.1 X 

Table 7.31: Perfonnance / Complexity Trade-off Comparison 

The complexity estimate is taken from the following argument. In H.263+, MEIMC accounts 

for 80% of the execution time, which is taken to be a measure of the complexity. [Marp99] also 

relies on MEIMC and although it includes several other features, the complexity is 

conservatively estimated to be equivalent to H.263+. The major difference between the intra­

frame coder of Section 7.4.2.1 and H.263+ is the MEIMC, thus it is taken as the major 

complexity increase. Thus, in [Mar99] and H.263+, it is estimated that MEIMC accounts for 

183 



80% of the computational load and the remaining 20% is spent in algorithms common with the 

intra-frame coder. Thus [Marp99] and H.263+ are 400% more complex than the intra-frame 

coder. By the same argument, that the RD estimation and optimal bit allocation are the only 

major additions to intra-frame coding for our scheme, and that these algorithms account for 10% 

of the total complexity, leads to the conclusion that our scheme is only 11 % more complex than 

the inter-frame coder. 

These results, in conjunction with Table 7.3 1, indicates that temporal decorrelation through 

MEIMC presents a 28.4dB gain, with a 400% complexity increase, while o~ proposed method 

affords a 19.dB gain, with only an 11% performance increase. 

This result is for the Hallmonitor sequence, at 25 kbps. However, a similar relationship is 

expected for all limited local motion dominated scenes, at any bit rate. 

Review of the various images printed in this chapter confirms the rule of thumb, that a 30dB 

image is 'acceptable ' quality. Images at 25dB and below, are almost un-viewable. Thus for 

limited local motion scenes, the image quality is acceptable at ' low bit rate ' (25 kbps and 

below). Thus for these scenes there is a real gain to using the proposed method, even against the 

best performing algorithms known to the author. 

For significantly distributed local motion, or global motion, although the proposed algorithm 

has a computational advantage, the image quality falls below 30dB, thus the output is of little 
value as it is overly distorted. 

Thus, for local motion sequences the sequence is approximately 10 times faster, while 
presenting RD performance that is acceptable for the application. 

7.5.5 General Discussion and Conclusion 

The proposed algorithm performs similarly to the compression standards on all but one of the 

sequences tested. Despite a lack of MEIMC, the advantage given by the wavelet transform 

based quantization and optimal bit allocation allows the RD losses incurred by abandoning 
MEIMC to be recouped. 

However the proposed algorithm presents poorer RD results than the other wavelet based video 
compression systems. This is because in these cases the lack of MEIMC is not compensated by 

the advantages of the wavelet transform, and the proposed system is simply insufficiently 
sophisticated to compete. 

However, despite the often mediocre RD performance, the proposed algorithm demands 
significantly less computational resources than any of the other algorithms proposed by the 
standards bodies, or presented in the literature. Furthermore this performance is acceptable for 
the specified application. 

There exist opportunities to increase the performance of the system by incorporating frame rate 

control, and inter frame bit rate control. In addition, as SPIRT represents the performance 

bottleneck of the system, improvements to this algorithm, or its replacement by another wavelet 
quantization scheme, may yield significant complexity savings. 
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The proposed algorithm presents acceptable (-30dB and greater) visual quality, at low bit rates 

(-25 kbps) for local motion scenes. Thus, for these scenes the significant complexity advantages 
of the proposed scheme may be realized in a practical setting such as surveillance systems, or 

mobile devices. 

This computational advantage is crucial, as all the other schemes examined cannot be 

implemented on embedded hardware, owing to either coi11putational or memory excess. There 

exists a strong demand for an algorithm simple enough for embedded implementation, and our 

algorithm fulfils this requirement. 

Thus the proposed algorithm has 1S competit1ve m the coding of local motion scenes for 

complexity limited systems. Possible real world applications are digital security cameras, or on 

mobile devices such as PDA's or cell phones. 
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Chapter 8 - Conclusion 

This final chapter will review the fIndings and conclusions of each previous ~hapter. Thereafter 

the proposed algorithm will be discussed and future work will be projected. Finally, a brief 

conclusion will be offered. 

IS.l Chapter Summaries 

8.1.1 Chapter 2 - RD Estimation and Optimisation 

The main contribution of this chapter is an introduction to the p-domain RD estimation method, 

and the Lagrange method of optimal bit allocation. 

This chapter builds a context for the p-domain method through presenting the classical RD 

treatment of Shannon, and the methods of RD estimation employed in current standards. The 

problems of poor source modelling and the large computational complexity of these methods 

are highlighted. The p-domain method is found to be both fast and accurate. 

The Lagrange optimization method is presented from fIrst principles and its optimality for the 

scheme to be presented in later chapters proven. The justification for using this method is based 

on its implementation ease, as evidenced by widespread use in the met~ods presented in 

literature. 

This chapter suggests that combining p-domain RD estimation with the Lagrange method may 

offer an opportunity for truly RD optimal coding, within acceptable computational limits. This 

combination forms the basis of the video compression scheme proposed Chapter 6. 

8.1.2 Chapter 3 - Wavelet Still Image Compression 

This chapter presents a broad literature review of the methods of image compression using the 
wavelet transform. 

This chapter finds that modifying either the wavelet basis set or decomposition structure is of 
little benefit for image compression. 

A large number of proposed wavelet quantization strategies are explored. In each case the 
principles and underlying models are highlighted and discussed. 

It found that all the gains made from subband-coding, to zero-tree coding, to higher order 
context modelling, rely on increasingly accurate image models. This observation is the key 
design principle employed in the design of the proposed algorithm. 

8.1.3 Chapter 4 - Wavelet Video Compression 

Chapter 4 reviews the state of wavelet video compression, with a thorough review of the 
principles and algorithms under research. 
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The operating principles of the cun-ent standards; H.263 , MPEG-2 and MPEG-4, are all briefly 

discussed to introduce major concepts as well as set the stage for the wavelet methods. Their 

performance analysis is ·deferred to Chapter 7. 

Several leading techniques of wavelet based video compression are then explored. The 

modification of wavelet methods to allow their use of block-based MEIMC, the new methods of 

hierarchical MEIMC and 3D subband coding are then discussed, with the performance of such 

algorithms presented. It is found that block based MEIMC systems currently produce the best 

results, notwithstanding the problems that blocking introduce. 

It is found in this chapter that the wavelet methods are competitive with the standards. However, 

the exercise of MEIMC in this domain is still rudimentary, although new techniques are 

promising greater performance 

8.1.4 Chapter 5 - Premise of Proposed Algorithm 

This chapter proposes a new algorithm for wavelet video compression. 

A complexity study of the standard methods is undertaken and it is found that block MEIMC 
accounts for at least 80% of the execution time of these algorithms. As system complexity is the 

primary concern of this project, this effect is significant. Based on this finding, it was decided to 

abandon block MEIMC in order to attempt to find a computationally simpler approach. This 

decision provided the basis for the work to follow. 

The only other alternative presented in the literature is 3D coding, which is extremely memory 

intensive, and was thus rejected on complexity grounds. The only remaining option is difference 

frame coding, and this method was thus adopted. 

The remainder of this chapter draws on the observation in Chapter 3 of the importance of source 

modelling to compression performance, to develop a model of difference fr~mes. The chapter 

develops the argument that in the case of natural video scenes, local motion will give rise to 

clustering of significant coefficients. It is then proven that source partitioning with optimal bit 

allocation will provide RD performance advantages. This proof is analytic and hence based on 
Gaussian assumptions. 

In summary, this chapter argues that difference frame coding with source partitioning and RD 
optimization will provide a computationally feasible alternative to MEIMC. However, the RD 
performance of this system is as yet unknown. 

8.1.5 Chapter 6 - Proposed Algorithm 

The chapter details the design of the algorithm based on the premise of Chapter 5, as well as 
various methods drawn from the literature. 

Chapter 5 indicates the potential of difference frames with optimal bit allocation for temporal 

decorrelation. However, the argument is based on assuming the source to be Gaussian, which is 

clearly an oversimplification. This chapter adopts the p-domain RD estimation algorithm, and 

Lagrange optimization techniques presented in Chapter 2, to provide a numerical solution to this 
source estimation and bit allocation problem. 
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In addition, the various still image compression routines reviewed in Chapter 4 are examined for 
suitability and the SPIRT algorithm chosen as the basis for the spatial decorrelation. 

Finally an arithmetic coder is chosen as the entropy coder, based on prior work in this project. 

The remainder of the chapter is dedicated to implementation details of this algorithm. The p~ 
domain method has not previously been applied to wavelet video compression, thus its 

suitability had to be tested and several changes made. 

This chapter explains how the theory of previous chapters was converted into a unified 

algorithm and implemented. 

8.1.6 Chapter 7 - Results 

This chapter presents the RD performance and computational complexity of the proposed 

algorithm. 

Initially the proposed algorithm is compared to the standards. It is found . that the proposed 

algorithm performs similarly to, or better than the standard methods. From this it is suggested 

that the RD performance loss of not using MEIMC, is counteracted by the use of wavelet spatial 

compression methods. In addition the algorithm is found to have a complexity an order of 

magnitude less than these methods. 

The proposed algorithm is then compared to the wavelet video compression methods presented 

in Chapter 4. It is found that these methods outperfoID1 the proposed algorithm. In these cases, 

there is little reason to expect the proposed algorithm to be competitive, as the omission of 

either MEIMC or 3D coding is not countered by an advantageous spatial compression method, 

as the wavelet transform is used in all cases. In addition the optimal bit allocation of difference 

frames is inferior to complete MEIMC. Although complexity results are not published, it is 

reasoned in this chapter that the wavelet coders from the literature will have complexity similar 

to, or greater than the video standards presented previously. Thus our algorithm holds 
significant computational advantage over these methods. 

This chapter then explores the RD performance / complexity trade-off of each block in the 

system. It is found that SPIRT accounts for over half the execution time. This suggests that 

either this algorithm may be improved or replaced in future work to gain maximum complexity 
reduction. 

Examining the contributions of each block, for the Hallmonitor sequence, it is found that the RD 
estimation and optimal bit allocation account for 10% of the system complexity and contribute 
almost 20% of the performance. 

The proposed temporal decorrelation method is then compared to the best method in the 

literature, using the Hallmonitor sequence at 25 kbps. It is fou~d that the proposed method of 

difference frame coding through partitioning and optimal bit allocation offers a 185% PSNR 

increase, with a 10% execution time increase. The best method from the literature offers a 271 % 
percent performance increase for a 400% execution time increase. The relative advantage of the 
proposed scheme is apparent. 

188 



Thus for limited local motion scenes, even at low bit rates ( < 25 kbps), the proposed system 

offers acceptable (> 30 dB PSNR) visual quality and enormous computational advantage. 

For scenes with distributed local motion(s), or global motion, although the proposed method 

offers computational advantage, it is unable to produce video of a sufficien~ly high fidelity at 

low bit rates for practical use. Thus the proposed algorithm is unsuited for such applications. 

1802 Discussion 

The philosophy of this algorithm is to shift the computational effort from the temporal 

decorrelation stage, to the spatial decorrelation stage. This is done under the assumption that for 

low complexity, low rate, video coding the marginal 'rate of return on computation will be 
greater for this arrangement. This assumption is based on a model developed for difference 

frames . 

.This assumption is supported by the finding that block based MEIMC consumes a great 

majority of the computational resources in the standard methods of H.263 and MPEG. Thus it 

may be expected to consume similar resources in wavelet based methods, whether the MEIMC 
is performed in the spatial or wavelet domain. The only other proposed method of temporal 

decorrelation is 3D subband coding, however the memory requirements of this technique are 

extremely burdensome. Thus the only option for low complexity temporal decorrelation is 

difference frame coding, 

Abandoning MEIMC will decrease the achievable RD performance. In order to balance this 

simplified temporal decorrelation, a sophisticated spatial decorrelation is adopted. Naturally this 

spatial decorrelator must exhibit good RD performance, in conjunction with low computational 

overhead. Fortunately the confluence of several factors permitted such an algorithm to be 

developed. 

The first factor is that difference frames exhibit strong local stationarity, due to the underlying 

nature of video. Difference frames produce significant coefficients only for motion (in our 

case), and this motion must be localized, as the bodies which cause it are localized. This model 

of strong localization of significant coefficients is the basis of the algorithm. By partitioning the 

difference frames and adopting an optimal bit allocation scheme, this localization may be 
exploited for RD performance gain. 

The second factor is a new RD estimation method. RD estimation, for optimal bit allocation, is 

generally a difficult problem. Chapter 2 demonstrates a remarkable RD estimation technique 

that is both fast and accurate. This method is the core enabling technique in our algorithm, as it 

is the basis of the optimal bit allocation. Previous RD estimation methods have been either slow 
or inaccurate, thus hindering optimal bit allocation. 

As expressed in Chapter 6 this RD estimation drives a fast bit allocation scheme, which in turn 

controls the wavelet transfom1 based SPIHT compression routine. All of these functions are 

performed by fast implementations, as testified by the execution time of the algorithm which is 

approximately an order of magnitude faster than the competing standards, and methods 
published in the literature. 
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8.3 Future Work 

Future work on this algorithm is possible on several fronts. 

Certain simple additions to the existing algorithm will yield good returns. Specifically, Chapter 

7 notes that both frame rate and inter frame bit rate conn'ol will be valuable. As both of these 

functions may be built around an RD estimation and as such an estimate is already included in 

the algorithm, these additions should be triviaL 

The spatial syntax provided by tiling is rudimentary. Chapter 7 indicates that although tiling is 

fundamental to the algorithm, tiling does decrease the compression achievable in the spatial 

coding stage. Thus, an adaptive tiling system, that automatically identifies areas of high 

coefficient clustering and is able to construct a tiling framework that optimizes the tile size and 

layout syntax as well as the overhead required to communicating the framework will probably 

be valuable. 

The use of SPIRT for spatial decorrelation may be in error. Although Chapter 6 justifies the use 

of this algorithm from a theoretical and practical basis, better options are possible. Specifically 

the use of a context adaptive arithmetic coder will probably yield both RD and perfonnance 

gains. Such an algorithm may be based on the ECECOW (Section 3.3.8) still image 

compression algorithm. The ECECOW algorithm successfully models the behaviour of still 

images in the wavelet domain and developing similar models of difference frames would allow 

the application of this algorithm in our system. This will probably yield RD performance 

advantages over SPIRT which is not constructed around a difference model. 

Finally, the inclusion of a global motion estimation compensation strategy would expand the 

area of application of this algorithm. However, such algorithms are generally computationally 
expensive, thus voiding the fundamental advantage of this system. The design of low 

complexity global motion estimation / compensation system would have very widespread 
application. 

18.4 Conclusion 

This algorithm addresses the problem of producing video capable, mobile devices, running on 
standard processors. 

Although the bandwidth of recent wireless channels is able to support low to medium bit rate 

video, the computational and memory insufficiency of most mobile devices has prevented 
advantage being taken of this Opp()rtunity. The price, size and additional power consumption of 
custom video compression chips has prevented their integration into embedded and mobile 

devices. Thus a need exists for a simple video compression system capable of execution on a 
standard DSP, and this work proposes such an algorithm. 

This algorithm has an execution time approximately an order of magnitude less than the video 

both the current compression standards and other methods proposed in the literature, as well as 

modest memory requirements. The algorithm is capable of producing an acceptable and 
competitive quality video stream for low bitrate coding in cases of local motion. 
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Although it may be argued that mobile devices such as camera enabled cell phones may produce 

scenes with global motion, this is avoidable by careful use. The initial intended application of 
this algorithm is in equipment for use by trained personnel, hence the assumptions made by the 

algorithm can be guaranteed. 

The main theoretical contribution of this work is the notion that correctly coded difference 

frames offer certain advantages for video coding. Specifically, the use and modification of the 

p-domain RD estimation method for wavelet video coding is unique to this work. However, this 

work is fundamentally practical, and integrates many existing ideas and methods into a single 

system with practical benefit. 

There exists scope for future work on the algorithm, particularly with regard to better modelling 

of difference frames and better spatial syntax. 

This project presents an engineering solution to an existing problem: current portable devices 

are unable to compress video due to the complexity of these algorithms, thus a low complexity 

algorithm is proposed. Although the performance of this algorithm is not a good as many other 

algorithms, this is irrelevant as the utility of having any video on a mobile is great. Furthermore 

most mobile devices are unable to display high quality video anyway. Thus this algorithm is 

designed specifically to address the core issue of video coder complexity and is highly 

successful in this regard. 
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Appendix A -Introduction to the Wavelet Transform 

The wavelet transform is the product of work in several diverse areas of mathematics, physics 

and engineering. 

The foundations for understanding the transform lie in the mathematical treatment of wavelets 

as bases for function spaces. In Section A. l and following we introduce wavelets from this 

perspective. 

The recent popularity of wavelets comes from the possibility of performing the wavelet 

transform using digital filtering techniques. Multiresolution Analysis provides the mechanism 

whereby the connection between the continuous wavelet transform and filtering may be made. 

This field is investigated from Section A.S. 
, 
, 

i 
i A.1 Functional Analysis 
I 

The following discussion utilizes the familiar territory of the Fourier Transform to motivate the 

wavelet transform. In doing so it is based heavily on the works of Chui [Chui92] and 

Daubechies [Daub92]. This appendix may be seen as a summary of these works, with some 
extra discussion. 

A.1.1 Bases and Projections 

In Section 1.1.1 we to provide the mathematical terminology to understand operations in 
function spaces, and explore norms, projections and classification of basis sets. 

A.1.2 Framework 

Consider the space of square integrable functions, f E e( ~ ) : 

(9.1) 

The inner product and norm in this space are described respectively by : 

'" 
(f, g ):= f f (x) g (x)dx 

(9.2) 

II.rll
2 

:= (.r, f) 0.5 

The problem of finding a suitable basis set for a function space amounts to finding a set of 
functions, {<Pi} , such that 

(9.3) 
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where the series is said to converge in L 2( ~ ) if 

N 

lim f -~ ern = 0 
N -->oo i..J 1't"1 

(9.4) 

In signal compression the goal is to find a set {<Pi} such that f may be approximated by 

(9.5) 

with the goal of making k as small as possible without causing the L2 norm of the error, 

(9.6) 

to grow beyond some 'acceptable ' limit. 

A.1.3 Orthogonality 

If the set {<Pi} satisfies 

(9.7) 

where the Kronecker symbol, 0 ij' is defined as: 

{
I m =n 

o/1/,n:= 0' , 
,m-:t:.n 

(9.8) 

then the basis set is said to be orthogonal. 

Furthermore, if for an orthogonal set {<Pi} , where for each i E Z , 

(9.9) 

that set is described as orthonormal. 

A.1.4 Projection 

The approximation / expansion operation is written as 

j(x) = '''ij¢;,f;(/J;, (9.10) 
i 

where the inner product term, \ ¢i' I; , is called the projection of f onto the basis set ¢i' 
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· 1 A.2 The Fourier Transform 

Having introduced the machinery of transforms, the Fourier transform is taken as an example to 

illustrate these concepts. Its limitations are explored, and this leads to the development of the 

Gabor and wavelet transforms. 

A familiar projection transform is the Fourier Transform, which is defined as follows: 

fA () 1 cof f( ) -i1ux dx 1 If i(J)X) (Ff)(OJ):= OJ:= r;;- X e = r;:;- \ ,e , 
'\I27r -<0 '\I27r . 

(9.11) 

where the inversion formula is given by 

I(x):= (Ff)V (x) := _1_ }[ (Ff)(ev) ]e/{"Xdev = } ( f ,e- ifux )eiWX dlU (9.12) 
.J 27r --<0 - O:J 

Interpreting equation (9.11) in terms of (9.10) indicates that k aoc } is the basis set {<Pi}. That is, 

the Fourier Transform is no more than the projection of a function f onto this basis set, and the 

Inverse Fourier Transform is the expansion of f in terms of the basis set. 

A.2.1 Examination of the Fourier Transform Basis Set 

The Euler Formula relates this basis set to trigonometric functions, which aids their 
classification: 

ei(UX = cos( lUX) + i . sine lUX) . (9.13) 

Clearly, 

( rpi , rpi ) = ( ei%X , e
i04X 

) 

( rpi' rp i) = } ei(wo - wl ) dx = {I, lUa = lUI 

. -o:J O, lUa ;to lUI 

(9.14) 

which confirms the orthogonality of the basis set. 

An important property of the Fourier Transform is the Parseval ' s Identity: 

1/11/: = Ilfll~ (9.15) 

which means that the energy of the signal is preserved in the transformation. This important 

property has motivated the use of this transform in much of signal processing. This preservation 
of the norm will be further explored in the wavelet transform. 

The support of a function refers to the extent of the region of its domain for which the function 

is nonzero. Clearly each function in the basis set, {e ilOX } , has 'infinite support as each is a 
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sinusoid of a particular frequency. This attribute makes this transform unsuitable for 

representing discontinuities succinctly. 

Another means of stating the above is that the Fourier Transform provides absolute resolution in 

the frequency domain, with no joint information of the original (spatial or temporal) domain. 

This may be seen from equation (9.11) as the function f is projected onto a basis that extends 

over infinity, as indicated by the infinite bounds of the integral. Thus the transform domain 

indicates the total projection of the function, with no information as to the locality where the 

projection is strong or not. This information is ' smeared out' by the integration. 

I A.3 The Gabor Transform 

The first attempt to rectify the problem of infinite support of the Fourier basis functions was the 

Gabor Transform (also know as the Short Time Fourier Transform, STFT). In this transform the 

basis functions are multiplied by a Gaussian function, 

(9.16) 

Thus the transform is written as 

1 ro 1 . 
(Grf)(w):= ~ jf(x)·(ga(x-b).e-'(VX )dx= ~(f, ga(x-b).e'(J)x) (9.17) 

v21r _ 0") v21r 

The purpose of this windowing is to produce basis functions that have compact support, as 

indicated by the example basis functions shown in Figure A-I. 

cos(cvt)g(] (t - (b = 0» sin(cvt)ga (t - (b = 0» 
Figure A-I: Gabor Transform Basis Functions 

This is done in order to allow the transform to produce both approximate frequency and 
time/space simultaneously. This represents a trade-off, as exact frequency information has been 
lost in order to obtain simultaneous, approximate time or space information. 

The Gabor Transform of (9.17) then provides frequency information for a given choice of basis 

function, a, and translation, b. A complete transform then consists of taking (9.17) at sufficient 
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values of b to cover the time duration of the signal f. That is, at a particular value of 

translation, b, the transform will give localized frequency information, OJ. In order to obtain 

this information over the extent of the original signal, the basis must be translated over it, with 

b. 

A.3.1 Examination of the Gabor Transform Basis Set 

A. 3. 1. 1 Completeness 

The infinite integral of the Gaussian function, ga(x) and its translates,ga(x-b) , is unity: 

(9.18) 

Thus 

'" f ( G: f) ( OJ) db = (FI)( OJ) , (9.19) 

that is, when taken over all real values of translation, the Gabor Transform provides the same 

frequency information as the Fourier Transform. 

A. 3. 1.2 Time Frequency Windows 

The manner in which the Gabor transform presents information is of importance. The joint 

frequency-time resolution may be represented on a grid, where the area of joint frequency-time 

resolution is called a window. 

frequency 

time 

Figure A-2 : Time-Frequency Windows of the Gabor Transform 

It must be noted that Heisenberg Uncertainty sets a minimum limit on the area (F*T) of the 

window. Thus in some sense the transform represents an optimisation. However, an 

improvement may be made my noting that the dimensions F and T are fixed in this transfonn. 
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This is undesirable as the time extent, T, may be insufficient to capture low frequencies, since a 

full period of such a signal would exceed T. A second difficulty lies in capturing short lived, 

high frequencies, such as is common in images (edges), as in this case T is too long to locate 

them accurately in T. 

I 

I A.4 The Wavelet Transform 
I 

The wavelet transform represents a solution to these limitations of the Gabor Transform. 

Whereas the latter only has two parameters; a which controls the window area and b which 

sets the translation of the basis function, the former provides another, the scaFngldilation of the 

basis function. Considering a fixed basis function f<;lr now, in order to clarify this point, the 

Gabor basis generating function may be written as 

G=G(t-b) , (9.20) 

where b represents the translation of the basis function . 

The wavelet basis function may be written 

(9.21) 

The parameter, a, determines to what extent the function W is spread over time, ie its dilation. 

Figure A-3: Dilation of a Wavelet 

The advantage of this is that the time frequency window is altered as illustrated in Figure A-4 
below. 
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Figure A-4: Time Frequency Windows ofthe Wavelet Transform 

Here it can be seen that at low frequencies T increases to allow the period of the function to be 

captured and at high frequencies T decreases to allow accurate location of these frequencies. 

Incorporation of this new variable into the transform framework yields the following as the 

wave let transform: 

(9.22) 

where Ij/ is the as yet undefined wavelet basis function. As a projection the transform may be 

written as: 

(9.23) 

A.4.1 Examination of the Wavelet Transform Basis Set 

In order to qualify as a wavelet the function , Ij/ must satisfy the Admissibility Criterion: 

(9.24) 

As can be seen, this requires the function to have a bandpass spectrum, hence be of compact 
support. This is the origin ofthe term 'wavelet. ' 

A.4.1.1 Dyadic Wavelets 

Many choices are possible for the wavelet function but the most useful formulation is 

I I? (t-b) ' f? ( . ) a -1jI -;;- =2.1 -1jI 2't-k :=IjI,.k (X) (9.25) 
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which allows the wavelet transform to be redefined 

( ~/ .f ) ( b , a) = (.f, If ),k (t ) ) . (9.26) 

This construction is known as the Dyadic Wavelet Transform and it has several properties that 

facilitate its use without excessive mathematical design. Most importantly, under certain 

achievable restrictions, it is possible to obtain the dual readily. 

A.4.1 .2 Duals 

The following discussion is based on [Chui92] , full proofs are to be found there. A transform is 

considered to be norm bounded, in an 12 sense, if for the sequence {cj .k } : 

(9.27) 

the projection 

., ., 
::; I I Ci.klf j .k (9.28) 

-co -00 2 

for 0 < A ::; B < ex) • Essentially this means that the norm does not vanish or expand to infinity 

in the transform domain. This is required in order to recover the sequence from this domain. 

If If) .k is orthonormal in terms of the projection of an f E L2 (JR) onto 'itj.k' converges in 

L2 (JR) and is norm bounded, then it is said to form a Riesz basis of L2 (JR) . Such a function is 

termed an m -function. 

The relevance of this is that, if If ).k is an 91 -function, then there is a unique basis {lfi ,k} which 

is also a Riesz basis of L2 (JR) and is ' dual ' to If· k : 
./. 

(9.29) 

which allows 

f = f (f,lj/j.k )lj/i .k 
(9.30) 

j.k=-«> 

This is important as it guarantees that the projection is reversible. It must be noted that if {If . } 
. JA 

is an orthonormal basis, then If · k == If ./ ·k. In fact the following section on multiresolution ./ . 

analysis is conducted under this assumption. 

I 
I A.5 Multiresolution Analysis 

------------------------------------
The theory of multiresolution provides the connection between the treatment of wavelets in the 

purely mathematical domain and their implementation by engineers as ' iterated filters banks. 
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This is the theory that provides credibility to the design and analysis of wavelets using digital 

filtering techniques and is thus crucial. 

A.S.1 The Multiresolution Subspace Construction 

The principle is to split the t (JR) space into a hierarchy of embedded closed subspaces, Vj , 

where 

... V, c V; c Vo C V_I C V_2 C . . . (9.31) 

and 

U Vj = L2 (rR.) (9.32) 
jE7l., 

and 

n ~ = {O} (9.33) 
JEZ 

In addition to the properties stated above, the subspaces are required to be closed under 

translation and be scaled versions of the Vo space : 

f E Vo => f(·-n) E Vo' "in E Z (9.34) 

and 

(9.35) 

The operation of orthogonal projection of a function, f E L2 (JR) , onto a subspace, Vj ,is 

denoted by Pi-J . In the case of the subspaces shown above projection onto subspaces of 

successively smaller index captures increasingly more detail. 

A.S.2 Multiresolution 

The multiresolution argument is that for every subspace, V., there exists an orthogonal 
./ 

subspace ~. , such that: 
./ 

V. I = V. EB> ~ . . 
./- ./ I 

Loosely the subspace ~i contains the 'details ' required to move from Vi to Vj-J' 

Furthermore the subspaces Ware mutually orthogonal, ie 
./ 
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TI1U~ , any subspace VI may be constructed from the orthogonal summation from a lower detail 

subspace V and the intervening WI as 
j . 

,/-1 

~I = Vi ffi EBWk 
k=j 

where the summation is taken to be orthogonal. This implies that: 

L2 OR) = EBWi , 

je2 

The subspace hierarchy can thus be depicted as : 

Figure A-5: Subspace Hierarchy 

(9.38) 

(9.39) 

The utility of this operation is that it allows a function to be analysed at various levels of detail. 

For instance, in compression it is desirable to remove the details from a function, which is what 

a projection prom one level Vi_I to another, Vi' achieves. For the purpose of analysis, these 

details are retained in Wi' which is often useful. 

A.S.3 The Scaling Function 

Consider now a function, ¢ , such that its integral translates, 

form an orthonormal basis of Yo. 

For our purposes consider further Lhat ¢ . k is of the form 
j. 

(9.40) 

(9.41) 

Examining this form it is evident that the translation term, k, allows the function to form a basis 

within any given subspace. Furthermore the scaling term, r j
, allows the function to exist in 

any given subspace, j , and thus form a basis for any subspace j. Finally the term r jl2 is an 

energy normalisation across these scales. The function ¢ is called the scaling function. 
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A.S.4 The Wavelet Function 

In a similar way a function IjI may be defined such that 

' / 2 ' 
IjI j,k =T' IjI(T' ·-k) (9.42) 

where in this case the function fonns an orthononnal basis for the Wj subspaces by the same 

argument as above. 

A.S.S Projections 

Consider a function f E V. . This function may be written as , 

f = "L (f,tPi ,k )tPi.k 
ke'Z 

(9.43) 

since it has no component outside the subspace Vj. With the use of the same terminology 

equation (9.36) may be rewritten to describe a function f E L2(lR). 

(9.44) 

Now consider the operation of projecting the basis function, <p onto the next fmer level of detail. 

We have 

tP E Va C V_I 

:·tP= "L(tP,tP-I ,I1)tP-I,n (9.45) 
k 

·"'=""'h·'" •• Y-' L...J n 'f'-1.11 

n 

and due to orthorrnality 

(9.46) 

Thus the scaling function may be written as a function of the scaling function at the next level 

of detail. This is entirely sensible, as a subband with greater detail can by definition represent a 
function contained in a coarser subband. . 

Similarly consider the wavelet function, \jJ : 

IjI E ~ C V_I 

:.1jI = "L(If,tP-I .I1)tP-1.11 , (9.47) 
k 

• IIF = "'" a . '" .. 'f' L...JOII 11'-1. 11 
k 

where again 
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I lgJ =l. 
nEil'. 

It is apparent that both the scaling and wavelet functions are functions of the scaling 
function at the next level of detaiL This precipitates the question of how h" and g" are 
related. Through a complicated proof utilising Fourier tactics, which is not reproduced 
here, Daubechies proved the following theorem [Daub92, pg 132-135] (with slight 
modifications for readability): 

(9.48) 

If a ladder of closed subs paces (Vi )/EZ in L2 (JR) satisfies equations (9.31) to (9.35), then there 

exists an associated orthonormal wavelet basis {'If/,k ; j, k E Z} for L2 (JR.) such that . 

p,-J = Pi + I (-, 'lf j,k ) 'If/,k (9.49) 
kEl 

where 

- "(_l)n-1 h rf.. 
'If - L..J -n-I'f'-I ,1I 

II 

(9.50) 

n 

This is the heart of the multiresolution analysis. Both scaling and wavelet functioQs are related 
directly to the scaling function of the next higher level of detaiL 

A.5.6 Digital Filtering 

It is clear that equations (9.45) and (9.47) may be seen to represent digital filters, but for 
completeness the formal development is given here. 

From equation (9.47) 

1//=" (T • rf.. 
't' L..JOn 'f'- 1. 1I (9.51) 

k 

with 

(9.52) 

it may be developed that 

= T /12 I gil i /2 ¢(T/+I X - 2k - '!) 
II 

(9.53) 

II 

II 

Thus 
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(f ,'f/',k ) = Ign-2k (f ,tPo,n) (9,54) 
II 

Thus 

(f, 'f/ j,k) = Ign-2k ( f , tP;-"n) (9.55) 

This may be viewed as the convolution of the sequence (I, tPj-l ,n) with the sequence g n-2k , 
which is equivalent to a digital filtering with coefficients, g n-2k ' followed by downsampling by 
two, This means that the projection of a function onto W at a coarser resolution may be found 

by filtering its projection on Vat the next finer leveL 

Similarly 

tP;.k (x) = rj/2 ¢(T j x - k) 

tP;,k (X) = Ihn-2k tP;-I,II(X) 
n 

from which we can obtain the functions projection on Vj 

n 

A.S.? Summary of Multiresolution 

(9.56) 

(9.57) 

In summary the L2 (JR) function space is segmented into a hierarchy of subspaces V; and W;, 
where an increase in index represents a lower resolution space. The difference in resolution 

between V; and V;_I is contained in Wi ' In tenns of mathematical notation, the projection 
relationship is written as 

(9.58) 

In order to investigate this projection the basis sets for each subspace need to be defined. The 
basis set for the V. subspaces is given by the scaling function set 

.I 

tP;.1I (x) = ri l 2 ¢(Ti x - ri ) , 

and the basis for the W. subspaces is given by the wavelet function set 
.I 

that is, any 1 E V. may be written as 
.I 

f = I (I, ¢ ;,k ) tP;,k 
kel 
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where the inner product is the operation of projection onto the subspace Vi' A similar procedure 

holds for fEW . . 
.I 

Multiresolution comes from the property that with basis sets defined as above, the following 

relationships hold: 

n n 

and 

Il 11 

The relevance of this is that the projection of f onto any of the subpaces in the hierarchy may 

be obtained by a digital filtering of its projection onto the next finer subspace. 

lA.6 The Wavelet Transform for Image Processing 

A.6.1 The Iterated Filter Bank Arrangement 

The previous sections of this appendix have briefly developed the wavelet transform from the 

perspective of functional analysis and then multiresolution analysis. This section will briefly 
explain how the wavelet transform of an image is taken. 

In brief summary the wavelet transform of a single dimensional function, f , may be written in 
continuous form as 

(9.64) 

Equivalently, the multiresolution perspective allows the discrete wavelet transform to be 

defined as a series of projections. At each level,j, the subspaces are called Vi and W
j

, and each 

level is simply a digitally filtered version of the projection onto Vi+l , by equations(9.62) and 
(9.63). 

This may be depicted: 
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Original Spectrum 
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1 Level Decomposition 

f 

................................ _-_ ... .. .. .. __ ................ __ ................................................................. ......................... ....... __ .... ....... . 

2 Level Decomposition 

f 

Figure A-6: Wavelet Filtering 

Here the original spectrum falls into the Fourier subspace Va' By applying the highpass 

decimating (by 2) digital filter G and lowpass digital filter H, this subband is split into two 

subbands, W; and ~. By then filtering the lowpass band, ~, using the same decimating filters 

as before, the subband,. ~, is further split into subbands W2 and V2 • This may be continued until 

the data is exhausted. 

This arrangement leads to the wavelet transform often being implemented as an iterated digital 

filter bank. 

A.6.2 Two Dimensional Filtering 

In order to process images that are 2D sources, the filter bank arrangement must be modified. 
The process is simply achieved by separating the horizontal and vertical filtering processes. The 

image is first filtering in one direction (horizontal or vertical) and then the coefficients output 

are filtered in the other direction (vertical or horizontal), the order of filtering has no effect. 
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Horizontal Filtering 

Vertical Filtering 

...... ~ .', 

Figure A-7: 2D Filtering 

Figure A-7 above illustrates the process. The original image is filtered by the H and G filters, in 

the horizontal direction, downsampling the output by two. The output is arranged as shown to 

right of Figure A-7. Then each of these coefficient sets is filtered by Hand G in the vertical 

direction, decimating by two again. The output is arranged in the 4 blocks as shown. The (L) 

block has been low pass filtered in the horizontal and vertical direction and thus contains the 

average information of the frame. The block, (H), has been low pass filtered horizontally and 

high pass filtered vertically, and thus contains the horizontal details such as edges. Similarly (V) 

contains the vertical details and (D) the diagonal detail. This arrangement is illustrated :below 

for the popular Lena image. 

Figure A-8: Lena Image with Single Level Wavelet Transform 

This arrangement constitutes a single level, two-dimensional wavelet transform. The filter 

iteration may be achieved as before by filtering the (L) through the same filter set. In this way a 
multiple level wavelet decomposition may be achieved. 
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