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ABSTRACT

The behaviour of both small amplitude and arbitrary amplitude nonlinear

electrostatic fluctuations are studied in electron-positron plasmas. The prop-

agation characteristics of associated linear modes are also examined for se-

lected plasma models. In the case of the four component, two-temperature,

electron-positron plasma, three particular features are investigated. The first

investigates existence conditions of the range of possible electrostatic linear

waves that can propagate in a two-temperature electron-positron plasma, the

study being particularly relevant to both astrophysical situations and laser-

induced fusion experiments. The second includes the development and inves-

tigation of the mKdV-ZK equation governing the three dimensional propa-

gation of solitary waves in a magnetized plasma. The third application is the

investigation of nonlinear electrostatic solitary waves structures, similar to

those found in the broadband electrostatic noise observed in various regions

of the earth’s magnetosphere. The study ends by considering relativistic

effects on solitary waves in an electron-positron plasma.
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Chapter 1

Introduction

Electron-positron plasmas play a significant role in the understanding of the

early universe (Misner et al., 1980; Weinberg, 1972; Rees, 1983; Gibbons

et al., 1983; Peebles, 1993), active galactic nuclei (Miller and Witta, 1987),

gamma ray bursts (GRBs) (Piran, 2005), pulsar magnetospheres (Goldreich

and Julian, 1969; Michel, 1982) and the solar atmosphere (Tandberg and

Emslie, 1988).

In the early stages of the Universe, at an extremely short time after the ‘Big

Bang’, all matter was in a plasma state. This plasma consisted of extremely

high-energy photons and charged elementary particles. When these photons

combined to produce an electron, another particle with a positive charge

(positron) had to be created for the electric charge to be conserved. During

these early stages, the Universe was so hot with very energetic photons, that

these pairs of particles and antiparticles were created easily via the radia-
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tion that was present. Most of the plasma was hence made up of electrons,

positrons, neutrinos and antineutrinos, with a lesser abundance of protons

and neutrons.

An electron-positron plasma, which is a typical example of a particle-antiparticle

system, is also important in understanding extremely dense stars such as

white dwarfs and pulsars, which are thought to be rotating neutron stars.

The existence of these plasmas in neutron stars and in the pulsar magne-

tosphere are well documented (Beskin et al., 1983). In the case of pulsars

with curvilinear magnetic fields, particles that are accelerated by the longi-

tudinal electric field, and which possess sufficient energy, emit high-energy

curvature photons. These photons are radiated along the pulsar magnetic

field and produces electron-positron pairs. The positrons travel away from

the star, while the electrons becomes accelerated by the electric field in the

opposite direction. The emitted curvature photons produced by the acceler-

ated electrons then produce electron-positron pairs near the star’s surface.

The newly formed positrons then begin to accelerate away from the star and

the pair production is repeated, resulting in a chain reaction of gamma-ray

quanta being produced and the generation of new electron-positron pairs be-

ing formed near the neutron star (Beskin et al., 1993).

Another source of electron-positron plasmas are gamma-ray bursts (GRBs),

which are short, random bursts of gamma-ray emissions (photons). They

have been detected ubiquitously across the sky since the 1960’s (Klebesadel
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et al., 1973; Fishman et al., 1986). These GRBs are the most energetic

and electromagnetically luminous forms of light that presently occur in our

universe. Typically, a GRB event occurs due to the collapse of the core of

a rapidly rotating massive star into a black hole, a theory called the col-

lapsar model (Woosley, 1993; MacFadyen and Woosley, 1999; Woosley and

Zhang, 2004). Matter from this star around the core first forms a high-

density accretion disk which causes the core to become unstable, forming a

black hole. Relativistic shock waves are created due to a pair of jets accel-

erating towards the surface of the star. These shock waves breaks out into

space, releasing energy in the form of gamma-rays. Another possibility is

that they are caused by the merger of two neutron stars or a neutron star

and a black hole (Lattimer and Schramm, 1976). Physically, over time the

two objects in the binary system spiral towards one another and eventually

merge into a single black hole, resulting in the release of large amounts of

energy. Due the process of ‘internal shocks’, energy from the newly formed

black hole together with some material from the collapsed star is ejected out-

ward in several shells. These shells collide, producing gamma-rays. Recent

satellite and ground-based observations have led astronomers to believe that

gamma-ray bursts can originate near the furthest edges of our observable

universe and at cosmological distances (Metzger et al., 1997; Hurley et al.,

1998). A GRB lasts typically from about a few seconds to about a few min-

utes. Its initial burst is followed by a longer lived ‘afterglow’ of progressively

less energetic photons and emission of X-rays, ultraviolet, optical, infrared

and radio waves. The characteristics and existence of electron-positron pairs
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in gamma-ray bursts can be explained through the relativistic expansion of

the electron-positron plasma using ‘The Fireball Model’ (Piran, 1999). The

relativistic fireball model is the release of large amounts of energy within a

small volume and in a short time frame from a compact source, resulting

in afterglow radiation. This generic ‘fireball’ model has also been confirmed

by afterglow observations (Paradijs, 1998). Due to inverse Compton scat-

tering, large amounts of high energy gamma-ray photons are produced via

synchrotron photons. These photons interact with lower energy photons to

produce electron-positron pairs due to the relativistic flow of the emitting

region. Goodman (1986) and Paczyński (1986) have shown that the sudden

release of these high-energy gamma-ray photons into a compact region can

lead to a relativistic fireball due to the production of the electron-positron

pairs. It must be noted that electron-positron pairs can also be produced via

the neutrino-antineutrino process ν + ν̄ → e+ + e−, (Eichler et al., 1989).

Electron-positron plasmas also exist in active galactic nuclei (AGN), like

quasars and blazars (which are brighter objects than quasars). These are the

compact regions that appear as point-like sources of radiation at the cen-

ter of galaxies. They are seen at cosmological distances and are believed to

be supermassive black holes accreting nearby matter. The production and

annihilation of electron-positron pairs play an important role in the gamma-

ray region of these active galactic nuclei. Henri et al. (1993), pointed out

that the gamma-ray emission from AGN can be interpreted as a signature of

electron-positron beams. Hartman et al. (2001), in their study of the spec-
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tral variability of the Blazar, 3C279, also concluded that electron-positron

jets are a possible origin of the observed radiation. A feature of AGN is the

production of a continuum spectrum of relativistic electrons via synchrotron

or inverse Compton radiation. This radiation is generated as high-energy

gamma-rays, thereby producing electron-positron pairs. Collisions from the

above radiation processes can also produce the electron-positron pairs.

The presence of electron-positron plasmas in the solar atmosphere during

solar flares has been confirmed by the observation of the 511 keV gamma-

ray electron-positron annihilation line (Share et al., 2004). Solar flares are

sudden and rapid releases of enormous amounts of energy when magnetic

energy that has built up in the solar atmosphere is suddenly released. They

take place in the solar corona and in active regions around sunspots, heating

plasmas and accelerating particles like electrons, protons and ions to near

the speed of light. From the annihilation of the electron-positron pair, two

gamma-ray quanta are emitted. This means that positrons (which need to

interact with the electrons) had to be produced in and near the flare region,

before the onset of the solar flares. The positrons are produced from the

positive pion decay in the solar atmosphere where a large number of these

pions are produced from collisions between accelerated particles and back-

ground atoms (Sakurai et al., 1988). Szgipel et al. (2007), in their study

of the energy spectrum in electron-positron plasmas in a Drell-Yan process,

indicated that these pairs are produced from proton-proton collisions in the

solar atmosphere.
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Many of the investigations into electron-positron plasma behaviour have fo-

cussed on the relativistic regime. However, it is plausible that non-relativistic

astrophysical electron-positron plasmas may exist, given the effect of cooling

by cyclotron emission (Bhattacharyya et al., 2003). Electron-positron lab-

oratory plasmas are useful for simulating astrophysical plasmas and study-

ing fundamental electron-positron behaviour. Due to the progress in pure

positron production and trapping techniques using Penning traps (Greaves

et al., 1994) and the magnetic mirror configuration (Boehmer, 1994), it is now

possible to perform experiments on a variety of electron-positron pair plasmas

(Greaves and Surko, 1995; Liang et al., 1998; Wilks et al., 2005). Penning

traps accumulate large numbers of positrons from radioactive sources which

are cooled down to room temperature by collisions with a buffer gas. The

magnetic mirror and Paul traps (Paul, 1990) are useful trapping techniques

since they are able to trap both signs of charge simultaneously for the for-

mation of electron-positron plasmas.

New generation laser-plasma systems, where lasers can reach much higher

intensities, also make it possible to model astrophysical plasma conditions in

a laboratory environment (Remington, 2005). These laser-plasma systems

have been suggested as sources of high intensity radiation, where particles

are accelerated to relativistic velocities. Such systems could therefore form

the basis for electron-positron pair creation (Alkofer et al., 2001; Ringwald,

2001; Roberts et al., 2002). Since such plasmas give rise to radio-wave emis-

sion, with large energy scales, pulsar atmospheres are likely to host other

31



quantum electrodynamical effects as well, such as vacuum non-linearities in

the form of photon-photon scattering (Marklund and Shukla, 2006).

Electron-positron plasmas belong to the family of pair-plasmas (Oohara et

al., 2005; Kourakis et al., 2006). Pair-plasmas are characterized as fully

ionized gases with particles of equal and opposite charge and having equal

mass. The equality in masses means that only one frequency scale exists

and hence due to the symmetry, the analysis is simplified. The equal charge

to mass ratio for the oppositely charged species allows for different physical

phenomena than in conventional electron-ion plasmas. Another example of

a pair-plasma is a fullerene plasma. Recently, laboratory experiments have

been carried out on fullerene pair-plasmas (Oohara et al., 2005). Fullerenes

are large molecules that are composed entirely of carbon, the most common

one being C60 (known as ‘buckyballs’). Fullerenes can be used as candidates

for the ion source to produce pair-ion plasmas since the interaction between

electrons and fullerenes can easily result in positively or negatively charged

ions. Hence fullerene-ion plasmas can be used to study various pair-plasma

phenomena as they can mimic electron-positron plasma behaviour. Fullerene

plasmas have the advantage of a longer lifetime in comparison to electron-

positron plasmas due to pair annihilation in the latter.

With regard to fluctuation phenomena, linear and nonlinear waves in electron-

positron plasmas have attracted considerable interest. The understanding of

these wave fluctuations which arise from plasma instabilities are important in
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space and astrophysical environments. Although space plasma systems are

assumed to be in stable equilibrium, evidence has shown that these systems

are often unstable (e.g solar flames and auroras). Instabilities that occur in

plasma systems are generally classified into two groups, viz, configurational

instability (macroinstability) and velocity space instability (microinstablity)

and involves the growth of electrostatic and electromagnetic waves. These

plasma instabilities are caused by perturbations and possess free energy. Due

to its instability, the plasma then discharges its free energy in order to reach

thermodynamic equilibrium, and in doing so gives rise to a growing wave

mode. Investigations conducted have focussed on modulational instabilities

and wave localization (Stenflo et al., 1985), envelope solitons (Mofiz et al.,

1985), multidimensional effects (Yu et al., 1986), soliton existence and elec-

trostatic nonlinear potential structures (Pillay and Bharuthram, 1992; Ver-

heest et al., 1996). Zank and Greaves (1995) examined linear and nonlinear

modes using the two-fluid model with a single temperature in an electron-

positron plasma. More recently Shukla N and Shukla P K (2007) showed that

the dispersion relation in a strongly magnetized nonuniform electron-positron

plasma admits a new purely growing instability for generating electrostatic

fluctuations.

Within the context detailed above, an outline of the studies undertaken in

this thesis is presented. Chapter 2 investigates the linear behaviour of electro-

static modes in a two-temperature, four component electron-positron plasma

in the presence of a magnetic field using the fluid model. We note that our

33



model is an extension of Zank and Greaves (1995) single temperature two

component electron-positron model. The effect of plasma parameters such

as the propagation angle, cool to hot temperature and density ratios and the

magnetic field strength on the waves are also examined. The fluid theory

results are compared with the solutions of the kinetic dispersion relation.

A theoretical study on solitary waves in a two-temperature electron-positron

plasma propagating at oblique angles to an ambient magnetic field is pre-

sented in chapter 3. In particular we explore the nonlinear behaviour of these

solitary waves as a function of plasma parameters such as propagation angle,

soliton velocity, cool to hot density ratios and cool to hot temperature ratios.

In chapter 4, an approach used by several authors (Reddy et al., 2002; Moolla

et al., 2007) is used to explore the generation of electrostatic solitary waves

characterized by their spiky bipolar structures in an electron-positron plasma.

In this regard the work of Reddy et al. (2002) and Moolla et al. (2007)

are important for the broadband electrostatic noise (BEN) observed in the

earth’s magnetosphere. Satellite measurements using high-time resolution

equipment aboard spacecrafts S3-3 (Mozer et al., 1977), Viking (Andre et

al., 1987), Geotail (Matsumoto et al., 1994), Polar (Franz et al., 1998), and

Fast (Ergun et al., 1998) have indicated the presence of BEN in the auro-

ral magnetosphere at altitudes between 3000 km to 8000 km and beyond.

Observations from these satellites show the detection of electrostatic solitary

waves (ESWs), which are characterized by their spiky bipolar pulses. In this
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study, the nonlinear propagation of these electrostatic waves in three different

magnetized four component electron-positron plasma models is examined. In

particular, the spiky nature of the electrostatic potential structures and the

effects of the propagation angle, cold and hot drift velocities, cool to hot den-

sity and temperature ratios and Mach number on the ESWs are examined.

Our findings could serve as a pointer for observing such ESWs in electron-

positron plasmas.

Whilst the primary focus in the previous chapters has been largely around the

behaviour of the four component electron-positron plasma in non-relativistic

plasmas, chapter 5 examines solitary wave structures in a two component

unmagnetized plasma having relativistic electrons and positrons. The exis-

tence conditions of soliton structures are studied using both small amplitude

and arbitrary amplitude theory. The nonlinear solitary wave structures are

examined as a function of the plasma parameters.

Finally, chapter 6 presents an overall summary of the results and conclusions

are drawn.
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Chapter 2

Linear Electrostatic Waves in

Electron-Positron Plasmas

2.1 Literature Review

Theoretical studies on linear waves in electron-positron plasmas have largely

focussed on the relativistic regime relevant to astrophysical contexts, for ex-

ample, (Yu et al., 1984; Lakhina and Verheest, 1997; Lontano et al., 2001;

Fonseca et al., 2003; Matsukiyo et al., 2003; Machabeli et al., 2005; Nishikawa

et al., 2006). This is largely due to the fact that the production of these

electron-positron pairs require high-energy processes which are more common

in astrophysical conditions such as those which exist in the environments of

pulsars, active galactic nuclei, gamma-ray bursts, solar flares and black holes.

The majority of the reported studies have been primarily limited to single

temperature electron-positron plasmas.
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More recent studies have now focussed on the nonrelativitic regime, given

the cooling by cyclotron emission of the electron-positron plasmas (Bhat-

tacharyya et al., 2003). Stewart and Laing (1992) researched the dispersion

properties of linear waves in equal-mass plasmas and found that due to the

special symmetry of such plasmas, well known phenomena such as Faraday

rotation and whistler wave modes disappear. Iwamoto (1993) studied the col-

lective modes in nonrelativistic electron-positron plasmas using the kinetic

approach. The author found that the dispersion relations for the longitudinal

modes in the electron-positron plasma for both unmagnetized and magne-

tized electron-positron plasmas were similar to the modes in one-component

electron or electron-ion plasmas. The transverse modes for the unmagne-

tized case were also found to be similar. However, the transverse modes in

the presence of a magnetic field were found to be different from those in

electron-ion plasmas. In an electron-ion plasma the extraordinary wave is

known to have two cutoff frequencies. However the mode is found to have

just one in an electron-positron plasma. Moreover, the hybrid resonances

present in the former are not found in an electron-positron plasma.

A study of wave propagation in electron-positron plasmas highlights the role

played by the equal mass of the electrons and positrons. For example, the

low frequency ion acoustic wave, a feature of electron-ion plasmas due to the

significantly different masses of the electrons and ions, has no counterpart in

an electron-positron plasma. The phenomena of Faraday rotation is absent

in such plasmas (Zank and Greaves, 1995). In one such study, using the two-
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fluid model with a single temperature, Zank and Greaves (1995) investigated

linear and nonlinear longitudinal and transverse electrostatic and electromag-

netic waves in a nonrelativistic electron-positron plasma in the absence and

presence of an external magnetic field. They found that several of the modes

present in electron-ion plasmas also existed in electron-positron plasmas, but

in a modified form, due to the symmetry derived from the common mass of

the electrons and positrons. On the other hand, it is noted that the whistler

and lower hybrid modes are nonexistent in electron-positron plasmas. A

study of the two-stream instability yielded similar results to the electron-ion

case, except that the growth rate was now substantially larger due to the

equality in masses of the electrons and positrons. In their nonlinear analysis,

solitary waves are found to exist in the subsonic regime, and the width of the

soliton was found to be proportional to the wave speed, while in electron-ion

plasmas, the amplitude is related to the wave speed. Esfandyari-Kalejahi et

al. (2006) studied oblique modulation of electrostatic modes and envelope

excitations in pair-ion and electron-positron plasmas. Their investigation

showed the existence of two distinct linear electrostatic modes, namely an

acoustic lower mode and a Langmuir-type, optic-type upper mode. They

also showed that the conditions for modulational depend on the angle be-

tween the propagation and modulation direction, the carrier wave number

and the positron to electron temperature ratio. Shukla N and Shukla P K

(2007) in their strongly magnetized nonuniform electron-positron plasma de-

rived a new dispersion relation for low-frequency electrostatic waves. They

showed that the dispersion relation admits a new purely growing instability
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in the presence of the equilibrium density and magnetic field inhomogeneties.

In this chapter, we extend the work of Zank and Greaves (1995) in a magne-

tized two-component electron-positron plasma to a magnetized four compo-

nent, two-temperature plasma, having hot electrons and positrons and cool

electrons and positrons. Both fluid and kinetic approaches are used to inves-

tigate the linear waves of the system.

2.2 Fluid Theory Approach

2.2.1 Basic Theory

The model considered is a homogeneous magnetized, four component electron-

positron plasma, consisting of cool electrons and cool positrons with equal

temperatures and equilibrium densities denoted by Tc and n0c, respectively,

and hot electrons and hot positrons with equal temperatures and equilib-

rium densities denoted by Th and n0h, respectively. Here, temperatures are

expressed in energy units and wave propagation is taken in the x-direction

at an angle θ to the ambient magnetic field B0, which is assumed to be in

the x-z plane.

The hot isothermal species are assumed to have a Boltzmann distribution.
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Their densities are, respectively

neh = n0h exp

(
eφ

Th

)
(2.1)

and

nph = n0h exp

(−eφ
Th

)
, (2.2)

where neh (nph) is the density of the hot electrons (positrons) and φ is the

electrostatic potential.

The dynamics of the cooler species are governed by the fluid equations,

namely,

the continuity equations,

∂njc
∂t

+ ∇.(njcvjc) = 0 , (2.3)

the equations of motion,

∂vjc
∂t

+ vjc.∇vjc = −εj e
m
∇φ+ εj

e

m
(vjc × B0) − γTc

njcm
∇njc , (2.4)

where the adiabatic equation of state is used, εj=+1(-1) for positrons (elec-

trons), j = e(p) for the electrons (positrons) and γ is the ratio of the specific

heats.
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The system is closed by the Poisson equation

ε0
∂2φ

∂x2
= −e(npc − nec + nph − neh) . (2.5)

In the above equations, nj and vj are the densities and fluid velocities re-

spectively, of the jth species.

It must be noted that the chosen plasma model is an extension of that used

by Zank and Greaves (1995). Here the two additional hot species having

Boltzmann density distributions have been included.

To determine the linear dispersion relation, equations (2.3) − (2.5) are lin-

earized. For perturbations varying as exp(i(kx− ωt)), ∂/∂t is replaced with

−iω and ∂/∂x with ik. Hence linearization of the continuity equation (2.3)

and dropping the ‘1’ for the first order perturbed quantities yields,

−iωnec + ikn0cvecx = 0 , (2.6)

for which

nec =
kn0cvecx

ω
. (2.7)

Linearizing the equations of motion, one obtains for the velocity components

for the electrons,

vecx =
3kv2

tc

ω

(
nec
n0c

)
− ekφ

mω
− i

Ω

ω
vecy sin θ , (2.8)
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vecy = −iΩ
ω

(
vecz cos θ − vecx sin θ

)
, (2.9)

vecz = i
Ω

ω
vecy cos θ , (2.10)

where, vtc = (Tc/m)1/2 is the thermal velocity of the cool species and Ωj =

εjeBo/m = εjΩ is the gyrofrequency of the electrons and positrons with

Ω = eBo/m.

Upon elimination of vecz from equations (2.9) and (2.10),

vecy = i
ωΩvecx sin θ

ω2 − Ω2 cos2 θ
. (2.11)

Substituting for vecy from equation (2.11) into equation (2.8) and using equa-

tion (2.7), vecx becomes,

vecx = −
ω2(ω2 − Ω2 cos2 θ)

(
ekφ

mω

)
ω4 − ω2(3k2v2

tc + Ω2) + 3k2v2
tcΩ

2 cos2 θ
. (2.12)

Substituting the above into equation (2.7), the perturbed density of the elec-

trons is determined to be,

nec = −
(
n0cek

2φ

m

)(
ω2 − Ω2 cos2 θ

ω4 − ω2(3k2v2
tc + Ω2) + 3k2v2

tcΩ
2 cos2 θ

)
. (2.13)
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Similarly, and by symmetry, the perturbed density of the positrons becomes,

npc =

(
n0cek

2φ

m

)(
ω2 − Ω2 cos2 θ

ω4 − ω2(3k2v2
tc + Ω2) + 3k2v2

tcΩ
2 cos2 θ

)
. (2.14)

From equations (2.1) and (2.2), the perturbed densities for the hot species

are given by,

neh = noh
eφ

Th
(2.15)

and

nph = −noh eφ
Th

. (2.16)

Substituting equations (2.13), (2.14), (2.15) and (2.16), into Poisson’s equa-

tion (2.5), the general dispersion relation for the two temperature electron-

positron plasma is found to be

ω4 − ω2(3k2v2
tc + Ω2) + 3k2v2

tcΩ
2 cos2 θ =

k2v2
ea(ω

2 − Ω2 cos2 θ)

1 + 1
2
k2λ2

Dh

, (2.17)

which may be rewritten as,

ω4 −ω2

(
Ω2 +3k2v2

tc+
k2v2

ea

1 + 1
2
k2λ2

Dh

)
+Ω2 cos2 θ

(
3k2v2

tc+
k2v2

ea

1 + 1
2
k2λ2

Dh

)
= 0 ,

(2.18)

where vea = (n0c/n0h)
1/2vth is the acoustic speed of the electron-positron

plasma, analogous in form to the electron acoustic speed in an electron-ion
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plasma (Gary and Tokar, 1985). Here, vth = (Th/m)1/2 is the thermal veloc-

ity of the hot species and λDh = (ε0Th/n0he
2)1/2 is the Debye length of the

hot species.

For a single species electron-positron plasma, with temperature Tc, equation

(2.18) reduces to,

ω4 − ω2(Ω2 + 3k2v2
tc) + 3k2v2

tcΩ
2 cos2 θ = 0 . (2.19)

This is identical in form to the dispersion relation (equation (13)) of Zank and

Greaves (1995) for electrostatic modes in their single temperature electron-

positron model.

Rearranging the general dispersion relation equation (2.18) we have

ω2(ω2−Ω2)−3k2v2
tc(ω

2−Ω2 cos2 θ)− k2 v2
ea

1 + 1
2
k2λ2

Dh

(ω2−Ω2 cos2 θ) = 0 (2.20)

For wavefrequencies much lower than the gyrofrequency, satisfying ω �
Ω cos θ, one obtains for the associated acoustic mode,

ω2 =
k2v2

ea cos2 θ

1 + 1
2
k2λ2

Dh

+ 3k2v2
tc cos2 θ . (2.21)

In the short wavelength limit (k2λ2
Dh � 1), the dispersion relation equation

(2.20) reduces to,

ω4 − ω2(Ω2 + 3k2v2
tc + 2ω2

pc) + 3k2v2
tcΩ

2 cos2 θ + 2ω2
pcΩ

2 cos2 θ = 0 (2.22)
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The above equation may be rewritten as

ω4 − ω2(3k2v2
tc + ω2

UH) + (3k2v2
tc + 2ω2

pc)Ω
2 cos2 θ = 0 , (2.23)

where

ω2
UH = Ω2 + 2ω2

pc (2.24)

is the upper hybrid frequency associated with the cooler species (Zank and

Greaves, 1995), with ωpc = (noce
2/ε0m)1/2 as the plasma frequency of the

cooler species.

Solving equation (2.23), which is a quadratic equation in ω2, in the limit

(3k2v2
tc + ω2

UH)2 � 4(3k2v2
tcΩ

2 cos2 θ + 2ω2
pcΩ

2 cos2 θ), one obtains for the

positive square root,

ω2
+ = (3k2v2

tc + ω2
UH) − (3k2v2

tc + 2ω2
pc)Ω

2 cos2 θ

3k2v2
tc + ω2

UH

, (2.25)

which is the dispersion relation for the upper hybrid mode.

Taking the negative square root of equation (2.23) yields

ω2
− =

(3k2v2
tc + 2ω2

pc)Ω
2 cos2 θ

3k2v2
tc + ω2

UH

, (2.26)

It is noted that for perpendicular propagation (cos θ = 0), ω2
+ = ω2

UH+3k2v2
tc

and ω2
− = 0, the results of which are discussed in the next section.
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In order to gain physical insight into the solution space of the dispersion

relation, the two extreme limits of equation (2.20) will now be considered,

viz. pure perpendicular and pure parallel propagations.

Case I: Pure Perpendicular Propagation

Considering the pure perpendicular (θ = 90o) limit, the general dispersion

relation (2.20), reduces to:

ω4 − ω2

(
Ω2 + 3k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

)
= 0 . (2.27)

Hence the normal mode frequencies are,

ω = 0 , (2.28)

which is a non-propagating mode and is consistent with that found by Zank

and Greaves (1995, Table 1), and

ω2 = Ω2 + 3k2v2
tc +

k2v2
ea

1 + 1
2
k2λ2

Dh

. (2.29)

Taking the short wavelength limit (k2λ2
Dh � 1) of the above relationship,

one obtains,

ω2 = Ω2 + 3k2v2
tc +

2v2
ea

λ2
Dh

. (2.30)
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Now:

v2
ea

λ2
Dh

=
n0c

n0h

Th
m

× n0he
2

ε0Th
(2.31)

=
n0ce

2

ε0m

= ω2
pc .

Thus for the perpendicular case, in the short wavelength limit, the dispersion

relation for the linear wave is,

ω2 = Ω2 + 3k2v2
tc + 2ω2

pc , (2.32)

which may be written in the form,

ω2 = ω2
UH + 3k2v2

tc . (2.33)

It is noted that this result can also be derived from (2.23) and is consistent

with the findings of Zank and Greaves (1995, Table 1) for their upper hybrid

mode. Further, it is noted that it is the cooler species that contribute to the

dispersion of the waves. The short wavelength (k2λ2
Dh � 1) approximation

in arriving at (2.33) eliminates the contribution of the hot species.

In the (opposite) long wavelength limit (k2λ2
Dh � 1) of the dispersion relation

for perpendicular propagation, equation (2.29) reduces to

ω2 = Ω2 + k23v2
tc + k2v2

ea . (2.34)

This is the cyclotron mode for the electron-positron plasma with contribu-

tions from both the thermal motion of the adiabatic cooler species and the
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acoustic motion due to the two species of different temperatures. It is noted

that equation (2.34) differs from the cyclotron mode found by Zank and

Greaves (1995, Table 1). Due to the introduction of the second species hav-

ing a different temperature in our model, there is now a contribution to wave

dispersion of the acoustic motion. To try and understand the physical impli-

cations, the above expression for the dispersion relation can be written as,

ω2 = Ω2 + k2v2
ea

(
1 + 3

Tc
Th

n0h

n0c

)
. (2.35)

For plasma parameters such that Tc/Th � n0c/n0h (⇒ 3 Tc

Th

n0h

n0c
� 1), ω2 =

Ω2 + k2v2
ea and the contribution to wave dispersion of the acoustic motion of

the two temperature electron-positron plasma dominates over the contribu-

tion of the thermal motion of the cooler species.

Case II: Pure Parallel Propagation

Considering the limit of parallel propagation (θ = 0o), the general dispersion

relation (2.20) reduces to,

ω4 − ω2

(
Ω2 + 3k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

)
+ Ω2

(
3k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

)
= 0 ,

(2.36)
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from which it can be shown without any approximations that

ω2 =
1

2

[
Ω2 + 3k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

±
(

Ω2 − 3k2v2
tc −

k2v2
ea

1 + 1
2
k2λ2

Dh

)]
.

(2.37)

There exists two possible solutions. Taking the positive sign of the relevant

term in equation (2.37) as the first option yields,

ω2
+ = Ω2, (2.38)

which is a constant frequency, non-propagating cyclotron oscillation also

found by Zank and Greaves (1995, Table 1).

Taking the negative sign of the term in equation (2.37) yields the normal

mode frequency

ω2
− = 3k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

, (2.39)

which may be written for k2λ2
Dh � 1 as

ω2
− = k2v2

ea

(
1 + 3

Tc
Th

n0h

n0c

)
, (2.40)

which is identified fundamentally, as the acoustic mode, with a correction

term to its phase velocity due to the thermal motion of the cooler species.

We note that equation (2.39) differs from the acoustic mode found by Zank
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and Greaves (1995, Table 1), where once again there is a contribution of the

acoustic motion due to the inclusion of a second species having a different

temperature in our model .

In the limit k2λ2
Dh � 1, one obtains

ω2
− = 3k2v2

tc + 2ω2
pc , (2.41)

which is the well known expression for the Langmuir wave in an electron-

positron plasma (Zank and Greaves, 1995, Figure 1 and Table 1).

Equating equations (2.38) and (2.41) in the limit k2λ2
Dh � 1, the critical k

value for which the two modes may couple is determined to be,

(kλD)crit =

(
Th
3Tc

)1/2(
Ω2

ω2
p

− 2
n0c

n0

)1/2

, (2.42)

which provides a feel for the parameter range within which we may explore

in more detail the coupling between the lower (ω−) and upper (ω+) modes.

Such a coupling can produce instabilities, for example, the parametric insta-

bility (Chen, 1984, p309).

We now proceed to solving the dispersion relation (2.18) fully.
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2.2.2 Numerical Results

Normalizing the fluid speeds by the thermal velocity vth = (Th/m)1/2, the

particle density by the total equilibrium plasma density n0 = n0c + n0h, the

temperatures by Th, the spatial length by λD = (ε0Th/n0e
2)1/2, and the time

by ω−1
p = (n0e

2/ε0m)−1/2 in equation (2.18), yields the normalized general

dispersion relation,

ω′4 − ω′2
(

1

R2
+ 3k′2

Tc
Th

+
k′2n′

0c

n′
0h + 1

2
k′2

)
+

cos2 θ

R2

(
3k′2

Tc
Th

+
k′2n′

0c

n′
0h + 1

2
k′2

)
= 0 ,

(2.43)

where ω′ = ω/ωp, k
′ = kλD, n′

0h = n0h/n0, n
′
0c = n0c/n0 and R = ωp/Ω is a

measure of the plasma densities and the strength of the magnetic field. Nu-

merical solutions of the normalized dispersion relation (2.43) are presented

in figures (2.1)-(2.9) for a fixed value of R = 0.333. The value of R = 0.333 is

chosen for easy comparison with Zank and Greaves (1995). For completeness,

we explore larger values of R in figures 2.10− 2.12. The analysis focusses on

the effects of the density and temperature ratios of the hot and cool electrons

and positrons, as this is novel in the sense that such a plasma has not been

considered before.

The investigation begins by focussing on waves that propagate perpendic-

ular to the magnetic field. Figures 2.1 and 2.2 shows the normalized real

frequency as a function of the normalized wavenumber for perpendicular

propagation for various density and temperature ratios, respectively. Since
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kλDh = kλD(n0/n0h)
1/2, for n0c/n0h = 1/9 we have n0/n0h = 10/9 and hence

kλDh ≈ kλD. Hence in the short wavelength limit, i.e. large kλD (and

therefore large kλDh) the modes in figure 2.1 correspond to the dispersion

relation (2.33), satisfying the linear relation ω =
√

3kvtc for k2v2
tc � ω2

UH .

In this regard, since the temperatures are normalized relative to Th, in the

normalized form one has ω/ωp =
√

3kλD(Tc/Th)
1/2, which for Tc/Th = 0.01

could explain why for large k′ = kλD, the linear portions of the curves in

figure 2.1 have a smaller slope than the corresponding curves for the sin-

gle temperature two component plasma in figure 2(a) of Zank and Greaves

(1995). In the opposite limit, k2λ2
Dh (and k2λ2

D) � 1 the relevant dispersion

relation is (2.34), from which when k = 0, ω = Ω, which in normalized form

corresponds to ω/ωp = Ω/ωp = 1/R. For the fixed parameter of R = 0.333

this implies that ω = 1/R = 3.0. This explains why the curves in figures

2.1 and 2.2 start off with ω/ωp = 3.0 at kλD = 0. For small values of kλD

and with a fixed value of Tc/Th = 0.01 there is a sharp rise in the frequency

curves in figure 2.1. This is a feature of our four component two temperature

electron-positron model since the term involving noc disappears for noc = 0.

Consequently this behaviour is not present in the results of Zank and Greaves

(1995) in their two component model (see their figure 2(a)). In figure 2.2 the

(solid) curve corresponding to Tc/Th = 0 is introduced. The fact that the

slope of this curve is different to those corresponding to Tc/Th �= 0 can be

understood from the dispersion relation (2.33) valid for k2λ2
D � 1. Setting

Tc = 0 yields ω = ωUH . This explains the frequency of the (solid) curve in

figure 2.2 reaching a constant value for large values of kλD at the normalized

52



value of ωUH =
√

9.2 = 3.03. The increase in the slope of the frequency

curves with increasing values of Tc/Th for larger values of kλD is in keeping

with the dispersion relation ω/ωp =
√

3kλD(Tc/Th)
1/2. It must be empha-

sized that the behaviour of the curves in figure 2.2 is a characteristic of a

four component two temperature electron-positron plasma and has not been

reported in the literature before.

Figures 2.3 and 2.4 shows the normalized real frequency as a function of

the normalized wavenumber for parallel propagation for various density and

temperature ratios respectively. The figures show the constant frequency

(ω = Ω) non-propagating oscillation and the acoustic mode (equation (2.39)),

for which both the density ratios and temperature ratios contribute to the

wave dynamics. For k2λ2
Dh (and k2λ2

D) � 1, the curves satisfy the dis-

persion relation (2.40), which in normalized form corresponds to ω/ωp =

kλD(3Tc/Th + noc/noh)
1/2. For a fixed Tc/Th value, it is noted that the slope

of the curves in figure 2.3 increases sharply when noc/noh is increased. This is

once again a feature of the four component two temperature electron-positron

plasma and is due to the contribution of the second species. In the opposite

limit, i.e k2λ2
Dh (and k2λ2

D) � 1, the curves satisfy the dispersion relation

(2.41). It is noted that the behaviour of the curves for both large and small

values of kλD as well as the variations of noc/noh and Tc/Th are similar to

those for perpendicular propagation. As before, the patterns can be under-

stood by an examination of the relevant dispersion relations.
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Having looked at perpendicular and parallel propagation, we now look at

oblique propagation. Figure 2.5 is a plot of the normalized real frequency

as a function of the normalized wavenumber, showing the acoustic and cy-

clotron branches, for a range of propagation angles. It is noted that the

slope of the curves are much smaller as compared to the single temperature

electron-positron model of Zank and Greaves (1995) for the reasons outlined

above. It is seen that the acoustic mode vanishes for θ = 90o. This can be

understood from equation (2.21) where ω = 0 for cos θ = 0.

Figure 2.6 (a)-(c) shows the normalized real frequency as a function of the

normalized wavenumber for increasing cool to hot density ratios. As pointed

out earlier, as the mode initially begins (small values of kλD), the steepness

of the slope of the curves increase when the density ratio is increased. It is

also observed that for a fixed Tc/Th value, the kλD value at which decoupling

of the acoustic and cyclotron modes takes place decreases when the density

noc of the cool species increases, which can be deduced from equation (2.42).

Curves (a)-(c) in figure 2.7 shows increasing cool to hot temperature ratios

for the normalized real frequency. The critical kλD value at which the de-

coupling takes place is calculated from equation (2.42). As an illustration,

for the parameters corresponding to figures 2.7 (a)-(c), equation (2.42) yields

(kλD)crit = 17.1, 5.4 and 2.3, respectively, which agrees very well with the

values in the curves, noting that (kλD)crit (and therefore kλDh) is not much

larger than 1 for figure 2.7 (c). It is noted that for a fixed noc/noh density

ratio value, the kλD value for which the two modes decouple decreases when
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Tc/Th is increased. This effect can be seen in equation (2.42). Also as Tc/Th

is increased, the acoustic mode reaches a constant frequency at a smaller kλD

value.

Curves (a)-(c) in figures 2.8 and 2.9 show the normalized real frequency for

various propagation angles for different density and temperature ratios re-

spectively. As you move to larger propagation angles, the separation between

the modes become more distinct, with the acoustic mode eventually disap-

pearing as you go to perpendicular propagation, as shown in figures 2.1 and

2.2, and which can be deduced from equation (2.21).

Up to now the value of R = ωp/Ω has been kept fixed at 0.333 for direct

comparison with the two species, single temperature model of Zank and

Greaves (1995). Next we examine the effect of varying R in figures 2.10−2.12.

It is seen that as the magnetic field strength becomes weaker (R = ωp/Ω

increasing), the frequency gap between the acoustic and cyclotron modes

decreases for small wavenumbers, with the frequency for the acoustic mode

becoming a constant at a smaller wavenumber.
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Figure 2.1: Normalized real frequency as a function of the normalized

wavenumber. The fixed parameters are R = 0.333, Tc/Th = 0.01 and θ

= 90o. The curves represent different values of the equilibrium density ratio

n0c/n0h = 0.11 (solid), 0.43 (dotted), 1.0 (broken), 2.33 (dashddot) and 9.0

(longbroken).
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Figure 2.2: Normalized real frequency as a function of the normalized

wavenumber. The fixed plasma parameters are R = 0.333, n0c/n0h = 0.11

and θ = 90o. The curves represent different values of the temperature ra-

tio Tc/Th = 0.0 (solid), 0.01 (dotted), 0.02 (broken), 0.05 (dashddot), 0.1

(longbroken) and 0.5 (dashdot).
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Figure 2.3: Normalized real frequency as a function of the normalized

wavenumber. The fixed parameters are R = 0.333, Tc/Th = 0.01 and θ

= 0o. The curves represent different values of the equilibrium density ratio

n0c/n0h = 0.11 (solid), 0.43 (dotted), 1.0 (broken), 2.33 (dashddot) and 9.0

(longbroken).
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Figure 2.4: Normalized real frequency as a function of the normalized

wavenumber. The fixed plasma parameters are R = 0.333, n0c/n0h = 0.11

and θ = 0o. The curves represent different values of the temperature ratio

Tc/Th = 0.01 (solid), 0.02 (dotted), 0.05 (broken), 0.1 (dashddot) and 0.5

(longbroken).
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Figure 2.5: Normalized real frequency as a function of the normalized

wavenumber showing the acoustic and cyclotron branches for various angles

of propagation θ = 0o (solid), 9o (dotted), 22.5o (broken), 45o (dashddot) and

90o (longbroken). The fixed plasma parameters are R = 0.333, Tc/Th = 0.01

and n0c/n0h = 0.11.
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Figure 2.6: Normalized real frequency as a function of the normalized

wavenumber for various density ratios n0c/n0h = (a) 0.11, (b) 1.0 and (c)

9.0. The fixed parameters are R = 0.333 and Tc/Th = 0.01. The curves rep-

resent different values of the propagation angles θ = 0o (solid), 9o (dotted),

22.5o (broken), 45o (dashddot) and 90o (longbroken).

61



Figure 2.7: Normalized real frequency as a function of the normalized

wavenumber for various temperature ratios Tc/Th = (a) 0.01, (b) 0.1 and

(c) 0.5. The fixed parameters are R = 0.333 and n0c/n0h = 0.11. The

curves represent different values of the propagation angles θ = 0o (solid), 9o

(dotted), 22.5o (broken), 45o (dashddot) and 90o (longbroken).
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Figure 2.8: Normalized real frequency as a function of the normalized

wavenumber for various propagation angles θ = (a) 15o, (b) 45o and (c)

80o. The fixed parameters are R = 0.333 and Tc/Th = 0.01. The curves rep-

resent different values of the equilibrium density ratio n0c/n0h = 0.11 (solid),

0.43 (dotted), 1.0 (broken), 2.33 (dashddot) and 9.0 (longbroken).
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Figure 2.9: Normalized real frequency as a function of the normalized

wavenumber for various propagation angles θ = (a) 15o, (b) 45o and (c)

80o. The fixed parameters are R = 0.333 and n0c/n0h = 0.11. The curves

represent different values of the temperature ratio Tc/Th = 0.01 (solid), 0.02

(dotted), 0.05 (broken), 0.1 (dashddot) and 0.5 (longbroken).
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Figure 2.10: Normalized real frequency as a function of the normalized

wavenumber. The fixed plasma parameters are Tc/Th = 0.01, n0c/n0h = 0.11

and θ = 45o. The curves represent values for R = 0.2 (solid), 0.33 (dotted),

0.5 (broken), 1.0 (dashddot) and 10.0 (longbroken).
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Figure 2.11: Normalized real frequency as a function of the normalized

wavenumber for various values of R = (a) 0.2, (b) 0.5 and (c) 2.0. The

fixed parameters are θ = 45o and Tc/Th = 0.01. The curves represent dif-

ferent values of the equilibrium density ratio n0c/n0h = 0.11 (solid), 0.43

(dotted), 1.0 (broken), 2.33 (dashddot) and 9.0 (longbroken).
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Figure 2.12: Normalized real frequency as a function of the normalized

wavenumber for various values of R = (a) 0.2, (b) 0.5 and (c) 2.0. The

fixed parameters are θ = 45o and n0c/n0h = 0.11. The curves represent dif-

ferent values of the temperature ratio Tc/Th = 0.01 (solid), 0.02 (dotted),

0.05 (broken), 0.1 (dashddot) and 0.5 (longbroken).
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2.3 The Kinetic Dispersion Relation

In this section kinetic theory is used to study the acoustic mode that was

investigated with fluid theory in the previous section. The focus is on this

mode since it is a micro-instability arising from resonances in velocity space.

This instability is kinetic in nature and the growth rate of the wave is a

function of the slope of the velocity distribution function. When the wave

phase velocity along B0 sees a negative slope of the velocity distribution

(∂f0/∂V‖ < 0), the particles on average will gain energy from the wave, con-

sequently the wave losses energy and becomes damped, an effect known as

Landau damping. The wave mode is hence subjected to Landau damping

and wave enhancement. Therefore the focus in this section is primarily on

the effect of the temperatures of the plasma species.

The same plasma model as in section 2.3 is considered, i.e a four component

magnetized electron-positron plasma, consisting of cool electrons and cool

positrons with equal temperatures and equilibrium densities denoted by Tc

and n0c respectively, and hot electrons and hot positrons with equal temper-

atures and equilibrium densities denoted by Th and n0h, respectively.

We begin by deriving the general dispersion relation (see details in Appendix

A) where each species j has an isotropic, drifting Maxwellian velocity distri-

bution with temperatures Tj drifting parallel to the magnetic field B0 = B0ẑ,

with drift velocities Voj (figure 2.3(a)).
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Hence, the equilibrium velocity distribution for the electron and positron

species is chosen to be,

fα0 =
nα0

(2πv2
tj)

3
2

exp

{−[V 2
x + V 2

y + (Vz − Voj)
2]

2v2
tj

}
, (2.44)

x

Bo Voj 

0 y

z

Figure 2.3(a)

The Vlasov equations are,

∂fα
∂t

+ V.∇fα +
qα
m

(E + V × B).
∂fα
∂V

= 0 , (2.45)

and the equations of motion for the electrons and positrons is given by,

m
dV

dt
= qα {E + V × B} , (2.46)

where j = c(h) for the cool (hot) species and α = ec, pc, eh and ph for the
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cool electrons, cool positrons, hot electrons and hot positrons respectively,

and vtj = (Tj/m)1/2 is the thermal velocity of the jth species.

Following standard techniques for electron-ion plasmas (see for example Bharuthram

and Pather, 1996), the general kinetic dispersion relation for the four compo-

nent, two temperature electron-positron plasma is given by (see Appendix A),

k2 +
2

λ2
Dc

[
1 +

ω − k.Voc√
2k‖vtc

∞∑
p=−∞

Z(zpc)Γpc

]

+
2

λ2
Dh

[
1 +

ω − k.Voh√
2k‖vth

∞∑
p=−∞

Z(zph)Γph

]
= 0 ,

(2.47)

where λDc,h = (ε0Th/n0c,he
2)1/2 is the Debye length for the cool (hot) species

and zpj is the argument of the plasma dispersion function or Z-function (Fried

and Conte, 1961) and is given by,

zpj =
ω − k.Voj − pΩj√

2k‖vtj
, (2.48)

where,

Γpj = e−αjIp(αj) , (2.49)

and

αj =
k2
⊥v

2
tj

Ω2
j

, (2.50)

where Ip is the modified Bessel function of order p. The components of k

parallel (perpendicular) to B0 are given by k‖ (k⊥) respectively, while Voc

and Voh are the drift velocities of the cool (hot) species, respectively.
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2.3.1 Approximate Solutions of the Kinetic Dispersion

Relation

The general dispersion relation (2.47) can be numerically solved without any

approximations. However, to get some insight into the solutions, here, ap-

proximate expansions of the plasma dispersion function are used to obtain

analytical expressions for the frequency and growth rate of the acoustic mode.

In proceeding, for the temperatures it is assumed that Th � Tc(∼ 0). In

addition low frequency modes satisfying |ω| � Ω are considered. The series

expansion of the Z-function(Fried and Conte, 1961) is given by

Z(z) = i
√
πe−z

2 − 2z

[
1 − 2z2

3
+

4z4

15
− ...

]
for |z| � 1 and (2.51)

Z(z) = i
√
πδe−z

2 − 1

z

[
1 +

1

2z2
+

3

4z4
+ ...

]
for |z| � 1 . (2.52)

where for | z | � 1, δ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, Im(z) > 0

1, Im(z) = 0

2, Im(z) < 0

Assuming the drift of the electrons and positrons to be weak (i.e small Voc

and Voh) (Rosenberg, 1993) and |ω| � Ω,

zpc =
ω − k.Voc − pΩ√

2k‖vtc
≈ −pΩ√

2k‖vtc
for p �= 0 (2.53)

and

zph =
ω − k.Voh − pΩ√

2k‖vth
≈ −pΩ√

2k‖vth
for p �= 0 . (2.54)
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Then for the cool species,

∞∑
p=−∞

Z(zpc)Γpc ≈ Z

(
ω − k.Voc√

2k‖vtc

)
Γoc+

∞∑
p=1

{
Z

(
pΩ√
2k‖vtc

)
+Z

( −pΩ√
2k‖vtc

)}
Γpc .

(2.55)

From the definition of the Z-function, Z(ξ) + Z(−ξ) = 0, hence

∞∑
p=−∞

Z(zpc)Γpc ≈ Z(zoc)Γoc . (2.56)

In proceeding, we take the cooler species to be stationary. Therefore Voc is

set to zero, allowing only for the drift of the hot species. Then,

zoc =
ω√

2k‖vtc
. (2.57)

For modes satisfying ω/k‖ � vtc, one may assume |zoc| � 1, i.e. the wave

phase speed along Bo is much larger than the cool electron thermal speed.

For an instability (i.e. a growing wave with Im(z) > 0), δ is set equal to

zero in equation (2.52). Hence using the series expansion equation (2.52),

equation (2.55) becomes

∞∑
p=−∞

Z(zpc)Γpc ≈
[
− 1

zoc
− 1

2z3
oc

− 3

4z5
oc

]
Γoc . (2.58)

For the hot species, we have
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∞∑
p=−∞

Z(zph)Γph ≈ Z

(
ω − k.Voh√

2k‖vth

)
Γoh+

∞∑
p=1

{
Z

(
pΩ√
2k‖vth

)
+Z

( −pΩ√
2k‖vth

)}
Γph .

(2.59)

Again using the definition of the Z-function, Z(ξ) + Z(−ξ) = 0

and

zoh =
ω − k.Voh√

2k‖vth
. (2.60)

Hence
∞∑

p=−∞
Z(zph)Γph ≈ Z(zoh)Γoh. (2.61)

For relatively high temperature Th, the thermal velocity of the hot species

is much larger than the wave phase velocity. Hence, for large Th, one may

assume that |zoh| � 1. Hence using the series expansion equation (2.51)

(where e−z
2
oh ≈ 1 for |zoh| � 1), equation (2.61) becomes

∞∑
p=−∞

Z(zph)Γph ≈ (i
√
π − 2zoh +

4z3
oh

3
)Γoh . (2.62)

Substituting (2.58) and (2.62) into the dispersion relation (2.47) and multi-

plying by λ2
D, where as before λD = (ε0Th/n0e

2)1/2, gives

k2λ2
D + 2

λ2
D

λ2
Dc

[
1+zoc

(
− 1

zoc
− 1

2z3
oc

− 3

4z5
oc

)
Γoc

]
+ 2

λ2
D

λ2
Dh

[
1+zoh(i

√
π−2zoh+

4z3
oh

3
)Γoh

]
= 0 .

(2.63)

Substituting for λD, λDc and λDh, the above equation becomes
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k2λ2
D + 2

n0c

n0

Tc

Th

[
1 + zoc

(
i
√
πe−z

2
oc − 1

zoc
− 1

2z3
oc

− 3

4z5
oc

)
Γoc

]
+ 2

n0h

n0

[
1 + zoh(i

√
π − 2zoh +

4z3
oh

3
)Γoh

]
= 0 .

(2.64)

For the cool species we assume |αc| = |k2
⊥v

2
tc/Ω

2| = k2ρ2
c � 1 (where ρc is

the gyroradius of the cool species), i.e long wavelength fluctuations in com-

parison to ρc. Since in general for |x| � 1 we can write Γp(x) = e−xIp(x) ≈
(x/2)p(1/p!)(1 − x), hence we have

Γoc ≈ 1 . (2.65)

In (2.64) the second and higher order terms in zoh are neglected since we

have assumed |zoh| � 1. The equation then reduces to

k2λ2
D + 2

n0c

n0

Tc

Th

[
i
√
πzoce

−z2oc − 1

2z2
oc

− 3

4z4
oc

]
+ 2

n0h

n0

[
1 + i

√
πzohΓoh

]
= 0 .

(2.66)

Setting ω = ωr + iγ and assuming γ/ωr � 1 we may write

1

ω2
=

1

ω2
r + 2iγωr − γ2

=
1

ω2
r

(
1 +

2iγ

ωr
− γ2

ω2
r

)
≈ 1

ω2
r

(
1 − 2iγ

ωr

)
.

(2.67)

Using the above manipulation, equation (2.66) becomes
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k2λ2
D + 2

n0c

n0

Tc

Th

[
i
√
π

(
ωr + iγ√

2k‖vtc

)
e−z

2
oc − k2

‖v
2
tc

ω2
r

(
1 − 2iγ

ωr

)
− 3k4

‖v
4
tc

ω4
r

(
1 − 2iγ

ωr

)2]
+ 2

n0h

n0

[
1 + i

√
π

(
ωr + iγ − k.Voh√

2k‖vth

)
Γoh

]
= 0 .

(2.68)

Taking the real part of equation (2.68) gives

k2λ2
D + 2

n0c

n0

Tc

Th

(−k2
‖v

2
tc

ω2
r

− 3k4
‖v

4
tc

ω4
r

)
+ 2

n0h

n0

= 0 . (2.69)

Rearranging the above yields,

ω4
r

(
k2λ2

D + 2
noh
no

)
− 2

n0c

n0

Tc

Th

k2
‖v

2
tcω

2
r − 6

n0c

n0

Tc

Th

k4
‖v

4
tc = 0 . (2.70)

With the charge neutrality condition

n0c

n0

+
n0h

n0

= 1, (2.71)

equation (2.70), which is quadratic in ω2 is solved as follows. Equation

(2.70) can be written as Aω2
r + Bωr + C = 0, where A = k2λ2

D + 2
noh
no

,

B = −2
n0c

n0

Tc

Th

k2
‖v

2
tc and C = −6

n0c

n0

Tc

Th

k4
‖v

4
tc.

with solutions

ω2
r =

−B ±√
B2 − 4AC

2A
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For B2 � 4AC this approximates to

ω2
r =

−B ±B(1 − 4AC
B2 )1/2

2A

≈ −B ±B(1 − 2AC
B2 )

2A

Taking the positive root the real frequency becomes

ω2
r =

2n0c

n0
k2
‖
Th

m

2(1 − n0c

n0
) + k2λ2

D

+ 3k2
‖
Tc
m

, (2.72)

which may be rewritten as

ω2
r =

k2v2
ea cos2 θ

1 + 1
2
k2λ2

Dh

+ 3k2v2
tc cos2 θ , (2.73)

where cos θ = k‖/k and vea = (n0c/n0h)
1/2vth is the acoustic speed of the

electron-positron plasma. It is noted that equation (2.73) is consistent with

the expression (2.21) obtained from fluid theory.

In order to derive the approximate solution of the growth rate, we consider

the imaginary part of equation (2.68), which yields

2
n0c

n0

Tc

Th

[(
π

2

)1/2(
m

Tc

)1/2
ωr
k‖
e−z

2
oc +

2k2
‖
Tc

m
γ

ω3
r

+
12k4

‖
T 2

c

m2γ

ω5
r

]
+ 2

n0h

n0

[(
π

2

)1/2(
m

Th

)1/2(
ωr − k.Voh

k‖

)
Γoh

]
= 0 .

(2.74)
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The above equation is simplified as

[
2k2

‖
Tc

m

ω3
r

+
12k4

‖
T 2

c

m2

ω5
r

]
γ = −

(
π

2

)1/2(
m

Tc

)1/2
ωr
k‖
e−z

2
oc

+
n0h

n0c

Tc
Th

(
π

2

)1/2(
m

Th

)1/2
ωr
k‖

(
k.Voh

ωr
− 1

)
Γoh .

(2.75)

Solving for γ, one finds

γ =

ω4
r

k3
‖

(
π

8

)1/2(
m

Th

)3/2[
−
(
Th
Tc

)3/2

e−z
2
oc +

(
n0h

n0c

)(
k.Voh

ωr
− 1

)
Γoh

]
[
1 +

6k2
‖
Tc

m

ω2
r

] .

(2.76)

We note that in equation (2.76), it is the cooler species that provides the

Landau damping, i.e. the velocity distribution function sees a negative slope

(∂f0/∂V‖ < 0). It is also seen from equation (2.76) that for an unstable

mode (γ > 0), it is necessary that V0h > ωr/k‖, i.e the drift velocity of the

hot species has to be larger than the parallel (to B0) phase velocity to over-

come the damping terms.

Normalizing the fluid speeds by the thermal velocity vth = (Th/m)1/2 of

the hot species, the particle density by the total equilibrium plasma density

n0 = n0c+n0h, the temperatures by Th, the spatial length by λD = ( ε0Th

n0e2
)1/2,

and the time by ω−1
p = (n0e2

ε0m
)−1/2, the general kinetic dispersion relation
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(2.47) becomes,

k′2 + 2
n′

0c
Tc

Th

[
1 +

ω′ − k′‖V
′
oc√

2k′‖
√

Tc

Th

∞∑
p=−∞

Z(z′pc)Γ
′
pc

]

+ 2n′
0h

[
1 +

ω′ − k′‖V
′
oh√

2k′‖

∞∑
p=−∞

Z(z′ph)Γ
′
ph

]
= 0 ,

(2.77)

with the normalized Z-functions given by,

z′pc =

ω′ − p
Ω

ωp√
2k′‖
√

Tc

Th

(2.78)

and

z′ph =

ω′ − k′‖V
′
oh − p

Ω

ωp√
2k′‖

. (2.79)

Also

α′
c =

k⊥
′2 Tc

Th

Ω2

ω2
p

(2.80)

and

α′
h =

k⊥
′2

Ω2

ω2
p

. (2.81)

where ω′ = ω/ωp, k
′ = kλD, k′‖ = k‖λD, k′⊥ = k⊥λD, n′

0c = n0c/n0 and

n′
0h = n0h/n0.
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From equation (2.72), the normalized real frequency is given by,

ω′2
r =

2n′
0ck

′2
‖

2n′
0h + k′2

+ 3k′2‖
Tc
Th

, (2.82)

and using equation (2.76), the normalized approximate expression for the

growth rate is given by,

γ′ =

ω′4
r

k′3‖

(
π

8

)1/2[
−
(
Th
Tc

)3/2

e−z
′2
oc +

(
n′

0h

n′
0c

)(
k.Voh

ω′
r

− 1

)
Γoh

]
[
1 +

6k′
2

‖
Tc

Th

ω′2
r

] (2.83)

where γ′ = γ/ωp and

z2
oc =

(
ω√

2k‖vtc

)2

=

ω2
r

(
1 + 2ıγ

ωr
− γ2

ω2
r

)
2k2

‖
Tc

m

. (2.84)

Substituting from equation (2.82) for ω′
r one obtains

z′
2

0c ≈

(
2n′

0ck
′2
‖

Th
Tc

2n′
0h+k′2

+ 3k′
2

‖

)
2k′2‖

=
n′

0c
Th

Tc

2n′
0h + k′2

+
3

2
.

(2.85)

Terms involving γ/ωr have been neglected as |γ/ωr| � 1 has been assumed.
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2.3.2 Numerical Results

The MATHEMATICA program was used to determine the real and imagi-

nary roots of the general dispersion relation (equation (2.77)), which has the

form D(k, ω) = 0. An initial guess value was first obtained from the approx-

imate expressions (2.82) and (2.83). Figure (2.13) shows the real frequency

for the acoustic mode, where fixed plasma parameters are chosen in order to

compare directly with fluid theory results. For completeness, also shown is

the solution for the upper hybrid mode which satisfies the dispersion relation

(2.20). It is seen from a comparison with fluid theory results, that the real

frequencies for the acoustic mode are in very good agreement with that from

kinetic theory results.

We now explore the behaviour of the growth rate of the (kinetic) acoustic

instability. Figure (2.14) (a) and (b) shows the behaviour of the normalized

real frequency ωr/ωp and the normalized growth rate γ/ωp, respectively, for

a normalized drift velocity of Voh = 0.5. The curves are shown to be in good

agreement with the approximate analytical expressions (2.82) and (2.83).

For large values of kλD the difference between the growth rates in the curves

increases. This could be due to the fact that Landau damping, which is

neglected in fluid theory, becomes stronger as kλD increases, as can be seen

from equations (2.83) and (2.85). In figure (2.15) the normalized growth rate

is plotted for different values of V0h. The fixed parameters are Tc/Th = 0.01

and noc = 0.1. As V0h increases there is an increase in the growth rate of
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the instability which is associated with the increase in free energy (of the

drifting hot species) to drive the instability. For the fixed set of parameters

corresponding to this curve, it is found that a minimum value of Voh = 0.5

is required to drive the instability. The kλD value for maximum growth rate

also increases with V0h. Figure (2.16) displays the normalized growth rate

as a function of the normalized wavenumber for varying cool to hot species

temperature ratios Tc/Th. It is noted that as the Tc/Th decreases, the growth

rate increases, implying that the instability is more easily excited with lower

temperature ratios. A possible reason for this is as follows. As Tc increases,

the velocity distribution function of the cooler species changes in a way that

the wave sees a larger (negative) slope of the distribution function, resulting

in an enhanced Landau damping (γ ∝ ∂f0/∂V‖) which reduces the net growth

rate. It is noted that a cutoff kλD value is reached beyond which the mode is

damped (Bharuthram and Pather, 1996), which could be the crossover point

at which Landau damping dominates over contribution of the free energy of

the drifting hot species. The normalized growth rate as a function of the

normalized wavenumber for various cool to hot density values is plotted in

figure (2.17). The fixed parameters are Tc/Th = 0.01 and Voh = 0.8. A simple

plot of the maximum γ/ωp of each of the curves shown in figure (2.17) against

the corresponding noc/n0 values is shown in figure (2.18). For the chosen set

of parameters, the curve peaks at noc/n0 = 0.2. The normalized growth rate

for oblique angles of propagation are shown in Figure (2.19). It is seen that

as θ increases the growth rate decreases. This behaviour may be explained

as follows. In the analytical expressions (2.73) and (2.76) it is seen that
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both ω4
r/k

3
‖ and k.V0h = k‖V0h decreases with k‖. As the propagation angle

θ relative to Bo increases, k‖ decreases, thereby resulting in a reduction in

growth rate. In figure (2.20) are shown shows the normalized growth rate for

different magnetic field strengths for a fixed plasma density. As the magnetic

field strength increases (R decreasing), the growth rate is found to increase.

A possible explanation has been offered by (Bharuthram and Pather, 1996).

As |B0| increases, the electrons and positrons become more strongly tied to

the field lines. Hence it becomes more difficult for them to move obliquely

to the field line to neutralize the electrostatic fluctuations, thereby resulting

in an enhancement of the growth rate.
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Figure 2.13: Normalized real frequency as a function of the normalized

wavenumber using the fluid theory approach (solid line) and kinetic theory

approach (broken line). The fixed parameters are R = 0.333, Tc/Th = 0.01,

Voh = 0.5, n0c = 0.1 and θ = 45o.
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Figure 2.14: Normalized real frequency (a) and normalized growth rate (b) as

a function of the normalized wavenumber for the general dispersion relation

(solid line) and from the approximate expression (broken line). The fixed

parameters are R = 0.333, Tc/Th = 0.001, Voh = 0.5, n0c = 0.1 and θ = 45o.
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Figure 2.15: Normalized real frequency as a function of the normalized

wavenumber. The fixed parameters are R = 0.333, Tc/Th = 0.01, n0c = 0.1

and θ = 45o. The curves represent different values of the hot drift velocity

Voh = 0.5 (solid), 0.6 (dotted), 0.7 (broken), 0.8 (dashddot) and 0.9 (long-

broken).

85



Figure 2.16: Normalized growth rate as a function of the normalized

wavenumber. The fixed parameters are R = 0.333, Voh = 0.5, n0c = 0.1

and θ = 45o. The curves represent different values of the cool to hot temper-

ature ratio Tc/Th = 0.005 (solid), 0.008 (dotted), and 0.01 (broken).

86



Figure 2.17: Normalized growth rate as a function of the normalized

wavenumber. The fixed parameters are R = 0.333, Tc/Th = 0.01, Voh = 0.8

and θ = 45o. The curves represent different values of the cool electron

and positron densities n0c = 0.05 (solid), 0.1 (dotted), 0.2 (broken) and 0.3

(dashddot).
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Figure 2.18: Maximum growth rate as a function of the cool densities n0c.

The fixed parameters are R = 0.333, Tc/Th = 0.01, Voh = 0.8 and θ = 45o.
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Figure 2.19: Normalized growth rate as a function of the normalized

wavenumber. The fixed parameters are Tc/Th = 0.01, Voh = 0.5 and

n0c = 0.1. The curves represent different values of the propagation angle

θ = 0o (solid), 30o (dotted) and 45o (broken).

89



Figure 2.20: Normalized growth rate as a function of the normalized

wavenumber for various magnetic field strengths. The fixed parameters are

Tc/Th = 0.01, Voh = 0.5, n0c = 0.1 and θ = 45o. The curves represent dif-

ferent values of R = ωp/Ω = 0.05 (solid), 0.333 (dotted), 1.0 (broken), 2.0

(dashddot), 5.0 (longbroken) and 10.0 (dashdot).
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2.4 Discussion

In this chapter, linear waves in a magnetized four component two-temperature

electron-positron plasma have been initially investigated, with the hot species

having a Boltzmann density distribution and the dynamics of the cooler

species governed by the fluid equations. Solutions of the corresponding dis-

persion relation yield two primary modes, the associated acoustic and cy-

clotron branches, which were explored as a function of several plasma pa-

rameters.

The behavior for perpendicular wave propagation shows only the existence of

the cyclotron mode, with the acoustic mode vanishing (ω = 0). Moreover, in

the short wavelength limit, only the cooler species contributes to the wave dy-

namics, whilst in the long wavelength limit, both the cooler adiabatic species

and the hot species contribute, with the hot species dominating for Tc � Th,

and hence influencing the dispersive properties of the wave. On the other

hand, for parallel propagation, the solutions display the dominant acoustic

mode and a constant frequency (ω = Ω) non-propagating oscillation. For the

two-temperature electron-positron model presented here, it is noted that the

linear portions of the dispersion curves (i.e large kλD values in figure 2.3)

have a smaller slope when compared to the corresponding curves of Zank and

Greaves (1995) for their single temperature electron-positron model. This is

due to the contribution of the second species, which has a different temper-

ature and hence resulting in enhanced wave dispersion. Moreover, in the
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large wavelength limit (small kλD values in figure 2.3) the dispersion curves

display a sharp rise, which is a feature of our four component two tempera-

ture electron-positron model and differs from the results of Zank and Greaves

(1995) for their single temperature electron-positron model. An increase in

the cool to hot temperature ratio results in a decrease of the critical kλD

value at which the acoustic and cyclotron branches separate. As the propa-

gation angle increases, the separation between the two modes widens.

A kinetic theory analysis is then used to study the acoustic mode, in particu-

lar the effect of Laudau damping, which for the parameter regime considered

is due to the cooler species. Consequently, it is found that as the temperature

ratio Tc/Th increases (for fixed Th) Landau damping increases and the overall

growth rate decreases. The results show that a large enough drift velocity

(Voh) is required to produce wave growth. It is also noted that when the

propagation angle relative to B0 is decreased, the growth rate is enhanced,

while an increase in the magnetic field strength results in an increase in the

growth rate.
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Chapter 3

Small Amplitude Solitons in a

Multispecies Electron-Positron

Plasma

3.1 Literature Review

As pointed out in the introductory chapter, electron-positron plasmas have

been suggested to appear in the magnetosphere of pulsars (Beskin et al., 1983;

Lominade et al., 1983; Gurevich and Istomin, 1985) and near the polar cap

of a rotating neutron star (Sturrock 1971, Ruderman and Sutherland, 1975).

Electron-positron plasmas are generated due to the acceleration of particles

to very high energies along the pulsar magnetic fields. The nonlinear wave

phenomena in such plasmas have been considered to play an important role

in understanding the physics of electrostatic soliton potential structures. The
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nonlinear behaviour of waves propagating in electron-positron plasmas has

been investigated in a number of studies. For instance, Gedalin et al. (1985)

investigated nonlinear wave conversions in electron-positron plasmas in a

very strong magnetic field. They showed that the nonlinear Landau damping

phenomena related to Čerenkov resonances as well as cyclotron resonances,

causes large-frequency shifts. Stenflo et al. (1985) studied the nonlinear

propagation of field-aligned circularly polarized electromagnetic waves in an

electron-positron plasma. They discussed the modulational instability and

wave localization and showed that a new class of cusped solitons are possible.

Due to multidimensional effects, Yu et al. (1986) showed that a new class

of nonlinear structures, namely the travelling Alfvén vortex, can also exist

in strongly magnetized electron-positron plasmas. Bharuthram (1992) inves-

tigated the existence of double layers in an unmagnetized electron-positron

plasma. This asymmetric model consisted of hot and cool electrons and hot

positrons, all of which were assumed to be Boltzmann-distributed, while the

cold positrons, treated as very cold, were described by the fluid equations.

Pillay and Bharuthram (1992) then investigated the possibility of large ampli-

tude solitons where both the cold electrons and positrons, which are strictly

cold, were described by the fluid equations. Verheest et al. (1996), considered

an unmagnetized symmetric two-temperature electron-positron plasma with

equal electron and positron densities of the cool species at temperature Tc,

and similarly equal densities of the two hot species at temperature Th. They

described the two hot species by the Boltzmann distribution and treated the

two cool species as fluid. The Sagdeev potential method was used to explore
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the existence and properties of non-linear, arbitrary amplitude electrostatic

potential structures. The Boltzmann assumption was shown to impose up-

per limits on the density and temperature of the cool species, and hence

only small amplitude soliton structures were found to be possible. Misra and

Chowdhury (2003), investigated the nonlinear interaction of electromagnetic

pulses in an electron-positron plasma and showed that the electromagnetic

wave envelope is governed by a coupled Schrodinger equation which also pos-

sesses solitary wave like solutions.

Nonlinear low frequency structures have also been studied in electron-ion

plasmas. For instance, in one of the earlier studies, Shukla and Yu (1978)

investigated a two component magnetized electron-ion plasma. They found

that finite amplitude ion acoustic solitary waves propagate obliquely to an

external magnetic field. More recently, these structures have been studied in

three component plasmas consisting of electrons, ions and positrons. Popel et

al. (1995) showed that the presence of positrons in an unmagnetized plasma,

in the supersonic region, decreased the amplitude of the usual ion acoustic

soliton in electron-ion plasmas. It is interesting to note that in a magne-

tized electron-positron-ion plasma, and in the subsonic region, the presence

of positrons increased the ion-acoustic soliton amplitude (Mahmood et al.,

2003).

In this chapter, the properties of nonlinear electron-positron solitons in a

magnetized, two-temperature, electron-positron plasma, allowing for propa-
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gation at oblique angles to the magnetic field are investigated. The symmetric

four component, two-temperature pair plasma formed by the mixing of two

simple pair plasmas with different temperatures, could exist on a timescale

shorter than the thermalization time. Using the reductive-perturbation tech-

nique, a modified Korteweg-de Vries-Zakharov-Kuznetsov (mKdV-ZK) equa-

tion for solitary structures is derived. The structures are then studied as a

function of the plasma parameters. The results presented in the following sec-

tions has already been published in the Journal of Plasma Physics (Lazarus

et al., 2008)(see Appendix E).

3.2 Theory

The model considered is a homogeneous magnetized, four component electron-

positron plasma, consisting of cool electrons and positrons with equal tem-

peratures and equilibrium densities denoted by Tc and Nc, respectively, and

hot electrons and positrons with equal temperatures and equilibrium densi-

ties denoted by Th and Nh, respectively. Note that the electron distribution

function may be made up of a number of distribution functions with differ-

ent characteristics, e.g. having different values of nα(x, t), vα(x, t), Tα(x, t),

etc. Thus, for instance, the electrons may be made up of two ‘subspecies’

of electrons, primary and secondary, generated by different mechanisms, and

with different temperatures. On a timescale short compared to the electron

thermalization time, the distribution function could then be bi-Maxwellian,

with two different temperatures. Wave propagation is at an angle θ to the
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ambient magnetic field Bo, which is taken in the x-direction.

Charge neutrality at equilibrium requires for each species that

Nc +Nh = N0 . (3.1)

In this model the hot isothermal species have a Boltzmann distribution given

by,

neh = Nh exp

(
eφ

Th

)
(3.2)

and

nph = Nh exp

(−eφ
Th

)
, (3.3)

where neh (nph) is the density of the hot electrons (positrons) and φ is the

electrostatic potential.

The dynamics of the cooler adiabatic species, denoted by the running sub-

script α are governed by the fluid equations, namely,

the continuity equations,

∂nα
∂t

+ ∇.(nαvα) = 0 , (3.4)

the equations of motion,

∂vα
∂t

+ vα.∇vα +
1

nαmα

∇pα = − qα
mα

∇φ+ Ωαvα × ex , (3.5)

and the adiabatic pressure equations,

∂pα
∂t

+ vα.∇pα + γαpα∇.vα = 0 . (3.6)
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The system is closed by the Poisson equation

ε0∇2φ+
∑
α

nαqα +
∑
β

Nβqβ exp

[−qβφ
Tβ

]
= 0 , (3.7)

where nα, vα and pα are the densities, fluid velocities and pressures, respec-

tively, of the cooler species. Here qα (qβ) = -e +(e) for electrons (positrons),

are the charges of the cool (hot) species and m = me = mp is the common

mass of the electrons and the positrons. The adiabatic compression indices

are denoted by γα and the gyrofrequencies by Ωα = qαBo/m.

The dispersion relation for linear waves for electron-positron plasmas is found

by linearizing equations (3.2) − (3.7), where the spatio-temporal variations

are assumed to be ∝ exp[i(k.x − ωt)]. From the continuity equation (3.4),

one finds

n1α =
Nα(

ω − k‖Vα
) [k‖v1αx + k⊥v1αy

]
, (3.8)

and from the pressure equation (3.6),

p1α =
γαPαn1α

Nα

, (3.9)

where Vα is defined as the equilibrium drift of the α-species along the external

magnetic field, Pα the equilibrium pressure, k‖ and k⊥ are the components

of the wavenumber parallel and perpendicular to the direction of the static

magnetic field respectively, v1αx and v1αy are the perturbed velocities in the

x and y directions respectively, n1α is the perturbed density, and p1α is the

perturbed pressure.

98



Linearization of the equations of motion (3.5) in the x, y and z directions,

yields,

v1αx =

qα
mα

k‖φ+ v2
tα

n1α

Nα

k‖(
ω − k‖Vα

) , (3.10)

v1αy =

qα
mα

k⊥φ+ v2
tα

n1α

Nα

k⊥(
ω − k‖Vα

)2 − Ω2
α(

ω − k‖Vα
) , (3.11)

and

v1αz =
Ωα

i
(
ω − k‖Vα

)v1αy . (3.12)

Hence, the perturbed density becomes,

n1α =

ε0

qα
ω2
pα

(
k2ω̂2

α − k2
‖Ω

2
α

)
ω̂4
α − ω̂2

α (k2v2
tα + Ω2

α) + k2
‖v

2
tαΩ

2
α

. (3.13)

Substituting the above into Poisson’s equation (3.7), yields the linear disper-

sion relation for an electron-positron plasma,

∑
α

ω2
pα

(
k2ω̂2

α − k2
‖Ω

2
α

)
ω̂4
α − ω̂2

α (k2v2
tα + Ω2

α) + k2
‖v

2
tαΩ

2
α

= k2 +
∑
β

1

λ2
Dβ

. (3.14)

It is noted that this is similar in form to the dispersion relation for linear

modes obtained by Verheest et al., (2002) for multi-fluid plasmas. Here, the

plasma frequencies ωpα, the Debye lengths λDβ and thermal velocities vtα
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for the species α are defined as ω2
pα = Nαq

2
α/ε0m, λ2

Dβ = ε0Tβ/Nβq
2
β and

v2
tα = γαPα/Nαm, respectively. The Doppler-shifted wave frequencies are

defined as ω̂α = ω − k‖Vα.

For the electron-positron plasma, equation (3.14) reduces to

ω2
pcλ

2
Dh (k2ω2 − k2Ω2 cos2 θ)

ω4 − ω2 (k2v2
tc + Ω2) + k2Ω2 cos2 θv2

tc

= 1 +
1

2
k2λ2

Dh, (3.15)

which may be written as

ω4 − ω2

(
Ω2 + k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

)
+ Ω2 cos2 θ

(
k2v2

tc +
k2v2

ea

1 + 1
2
k2λ2

Dh

)
= 0 ,

(3.16)

where vea = (n0c/n0h)
1/2vth is the acoustic speed. In arriving at equation

(3.16) we have for simplicity set Vα = 0. This expression for the dispersion

relation is the same as equation (2.18) obtained in chapter 2, where the γ=3

factor has been incorporated into the definition of vtc.

Now assuming strongly magnetized particles, and using ω2 � (k2
‖/k

2)Ω2 and

Ω � ω � kvtc, we obtain from the general equation (3.14), the appropriate

phase velocity for oblique propagation as

ω

k
=
k‖
k

[(
Nc

Nh

)(
κTh
m

)] 1
2

. (3.17)
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This expression is analogous in form to that of the electron-acoustic wave in

an unmagnetized electron-ion plasma (Gary and Tokar, 1985) with the (k‖/k)

factor reflecting the effect of the magnetic field. At parallel propagation the

dispersion relation (3.14) reduces to

∑
α

ω2
pα

ω̂2
α − k2v2

tα

= 1 +
∑
β

1

k2λ2
Dβ

= 1 +
2

k2λ2
Dh

, (3.18)

where λDh = (ε0Th/Nhe
2)1/2, is the Debye length for the hot species. Equa-

tion (3.18) may be written as

ω2 = k2v2
tc +

k2v2
ea

1 + 1
2
k2λ2

Dh

.

The above expression is the same as equation (2.39) obtained in chapter 2,

where the γ=3 factor has been incorporated into the definition of vtc.

3.3 Nonlinear modes

We follow the method outlined by Verheest et al. (2002) introducing the

usual KdV streched co-ordinates,

ρ = ε
1
2 (x− V t), η = ε

1
2y, ζ = ε

1
2 z, τ = ε

3
2 t, (3.19)
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and expand the fluid velocity, density, pressure and the potential by the

smallness parameter ε as follows

vαx = Vα0 + ε
1
2v1αx + εv2αx + ε

3
2v3αx + ...

vαy = εv1αy + ε
3
2v2αy + ε2v3αy + ...

vαz = εv1αz + ε
3
2v2αz + ε2v3αz + ...

nα = Nα0 + ε
1
2n1α + εn2α + ε

3
2n3α + ...

pα = Pα0 + ε
1
2p1α + εp2α + ε

3
2p3α + ...

φ = ε
1
2φ1 + εφ2 + ε

3
2φ3 + ... (3.20)

Using equations (3.19) and (3.20) and taking equation (3.7) to order ε
1
2 and

equations (3.4) − (3.6) to order ε and solving, yields

n1α =

(
N2
α0qα

mNα0(V − Vα0)
2 − γαPα0

)
φ1 (3.21)

and

p1α =
Nα0qαv

2
tα[

(V − Vα0)
2 − v2

tα

]φ1. (3.22)

Substituting for n1α into (3.7), yields

∑
α

ω2
pα

(V − Vα0)
2 − v2

tα

−
∑
β

1

λ2
Dβ

= 0. (3.23)

From the above equation, the phase velocity V can be determined.
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Taking equation (3.7) to order ε and equations (3.4) − (3.6) to order ε
3
2 one

gets

p2α =
qαNα0v

2
tα (1 + γα)

2m[(V − Vα0)
2 − v2

tα]
φ2

1 −
γαPα0

(V − Vα0)
v2αx, (3.24)

v2αx =
−qα(V − Vα0)

m[(V − Vα0)
2 − v2

tα]
φ2−

q2
α(V − Vα0)

[
[(V − Vα0)

2 − v2
tα] + v2

tα (1 + γα)

]
2m2[(V − Vα0)

2 − v2
tα]

3 φ2
1,

(3.25)

and

n2α =
qαNα0

m[(V − Vα0)
2 − v2

tα]
φ2+

q2
αNα0

[
3[(V − Vα0)

2 − v2
tα] + v2

tα (1 + γα)

]
2m2[(V − Vα0)

2 − v2
tα]

3 φ2
1.

(3.26)

Substituting for n2α into Poisson’s equation, results in

Dφ2 +Bφ2
1 = 0 (3.27)

where

D =
∑
α

ω2
pα

[(V − Vα0)
2 − v2

tα]
−
∑
β

1

λ2
Dβ

(3.28)

and

B =
∑
α

ω2
pαqα[3(V − Vα0)

2 + (γα − 2)v2
tα]

2m[(V − Vα0)
2 − v2

tα]
3

+
1

2

∑
β

qβ
λ2
DβTβ

. (3.29)

This expression for B differs slightly from that of Verheest et al. (2002).

In fact, having carried out the calculation ab initio, equation (3.29) is high-

lighted as a correction of the equivalent equation given by Verheest et al.
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(2002) (equation (18)). The factor ‘2’ in the denominator of the first term

and the ‘1
2
’ in the second term of equation (3.29) was omitted in their equa-

tion. Using (3.23) implies D = 0, hence the first term in (3.27) vanishes,

which means either B = 0 or φ1 = 0. For the electron-positron model, one

can easily show that B = 0 if the cool electrons and positrons have equal

drifts. Then φ1 �= 0, which will naturally lead to a modified KdV-ZK type

of equation for φ1.

Taking Poisson’s equation to order ε
3
2 and the continuity, momentum and

pressure equations to order ε2, and solving simultaneously, the following

mKdV-ZK equation is obtained (Verheest et al., 2002),

∂φ1

∂τ
+ a

∂3φ1

∂ρ3
+ c φ2

1

∂φ1

∂ρ
+ d

∂

∂ρ

(
∂2φ1

∂η2
+
∂2φ1

∂ζ2

)
= 0. (3.30)

where the coefficients a, c and d are given by

a = 1
A
, c = C

A
, d = D

A
,

with

A = 2
∑
α

ω2
pα(V − Vα0)

[(V − Vα0)
2 − v2

tα]
2 , (3.31)

C =
1

2

∑
α

ω2
pαq

2
α

[
15(V − Vα0)

4 + E1(V − Vα0)
2v2
tα + E2v

4
tα

]
m2
[
(V − Vα0)

2 − v2
tα

]5 − 1

2

∑
β

qβ
λ2
DβT

2
β

,

(3.32)
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and

D = 1 +
∑
α

ω2
pα(V − Vα0)

4

Ω2
α[(V − Vα0)

2 − v2
tα]

2 , (3.33)

where E1 = γα
2 + 13γα − 18 and E2 = 2γα

2 − 7γα + 6 .

We look for a one-soliton planar solution propagating at an angle θ to the

static magnetic field. The running phase argument for stationary non-linear

solutions is

σ = ρ cos θ + η sin θ cosψ + ζ sin θ sinψ −Mτ , (3.34)

where ψ is the second angle in spherical co-ordinates and M is the soliton

velocity.

Then the mKdV-ZK equation reduces to

(c cos θ φ2
1 −M)

∂φ1

∂σ
+ α

∂3φ1

∂σ3
= 0, (3.35)

where α = (a cos2 θ + d sin2 θ) cos θ.

Using the standard technique (Nicholson, 1983) to solve (3.35), yields,

φ1 =

√
6M

c cos θ
sech(μσ) , (3.36)

where

μ2 =
M

(a cos2 θ + d sin2 θ) cos θ
.
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We now adopt the following normalizations, the electrostatic potential φ by

Th/e, the fluid speeds vα by the thermal velocity vth = (Th/m)1/2, the par-

ticle density by the equilibrium plasma density N0, the spatial length by

λDh = ( ε0Th

Nhe2
)1/2 and the time by ω−1

ph = (Nhe
2

ε0m
)−1/2.

Usinĝto indicate normalized variables, it follows that the normalized elec-

trostatic potential, (3.36) becomes

φ̂ = φmsech(μ̂ σ̂) , (3.37)

where the normalized soliton amplitude is given explicitly by

φm =

⎡⎢⎢⎢⎣
6
(
Nc

Nh

) 7
2

[
1 +

(
Tc

Th

)(
Nc

Nh

)−1
] 1

2

M̂[
F + E2

(
Tc

Th

)2

−
(
Nc

Nh

)4
]

cos θ

⎤⎥⎥⎥⎦
1
2

, (3.38)

and

μ2 =

⎡⎢⎢⎢⎢⎣ M̂([(
Nc

Nh

)
+
(
Tc

Th

)(
Nc

Nh

)−2
]− 1

2

+
(

2
Λ2

) [
Nc

Nh
+ Tc

Th

] 3
2
sin2 θ

)
cos θ

⎤⎥⎥⎥⎥⎦ ,

(3.39)

where

F = 15

(
Nc

Nh

)2
[
1 +

(
Tc
Th

)(
Nc

Nh

)−1
]2

+E1

(
Tc
Th

)(
Nc

Nh

)[
1 +

(
Tc
Th

)(
Nc

Nh

)−1
]
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and

Λ2 =
Ω2

ω2
ph

.

3.4 Numerical Results and Limitations

3.4.1 Limitations of the Model

The calculations in the previous section are based on a reductive pertur-

bation expansion, and thus are valid only for small normalized soliton am-

plitude, where the ‘natural’ normalization energy is associated with Teff =

N0TcTh/(NcTh + NhTc). The hot species are assumed to have a Boltzmann

distribution, and the cool species behave adiabatically and are governed by

the fluid equations. This implies that there are two further limits imposed

on our model. For the cool species, we ensure that the thermal velocity is

much less than the phase velocity of the fluctuation, i.e. vtc � vph, and the

Boltzmann assumption requires that the thermal velocity of the hot species

is much larger than the phase velocity, i.e. vph � vth. Hence the model

can only be applied if vtc � vph � vth. Using expression (3.17) for vph this

becomes, √
Tc
Th

� k‖
k

√
Nc

Nh

� 1 . (3.40)

This means that upper limits are imposed on both the temperature ratio

(Tc/Th) and the particle density ratio (Nc/Nh).
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3.4.2 Numerical Results

In this section a parametric study of the soliton dependence on plasma vari-

ables is undertaken, as some of the features are not transparent from equa-

tions (3.37)− (3.39). Figure 3.1 shows the typical soliton potential profile as

a function of the propagation angle θ. For simplicity we set Vα0 = 0 for all

species. For each angle θ, the profile has a maximum at σ = 0 (as may be

seen also from equation (3.37). As θ is increased, the amplitude increases and

the half-width decreases, the effect being more significant for larger propaga-

tion angles. The former follows from the 1/
√

cos θ dependence of (3.38), the

latter from the 1/[(G+H sin2 θ) cos θ] behaviour of (3.39). Here G and H are

functions of the density ratio, the temperature ratio and the gyrofrequency.

Figure 3.2 is a plot of the soliton amplitude as a function of θ. The graph

shows that the soliton amplitude increases monotonically with θ, as may also

be deduced from the behaviour observed in figure 3.1. It is noted that the

approximation used in the derivation may restrict validity to k‖ < k⊥, which

implies that the results are more relevant for larger angles of propagation

(small k‖). Figure 3.3 shows the variation of the soliton amplitude with

the equilibrium density ratio Nc/Nh, for various temperature ratios Tc/Th.

Nc (Nh) are the equilibrium densities of the cool (hot) electron and positron

species. It is seen that as the ratio of the cool to hot equilibrium densities

is increased, the soliton amplitude increases. Although a large range of soli-

tons is shown to be possible, the limits imposed by this model demand that

k‖/k
√
Nc/Nh � 1, i.e. Nc/Nh < 0.25 for θ = 15o. This is similar to the
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results of Verheest et al. (1996), where solitons were found to be possible for

low values of the density ratio and are of small amplitude (φm < 0.2). For a

fixed Nc/Nh, the amplitude φm is larger for smaller values of the ratio of the

cool to hot temperatures. This is clearer in figure 3.4, where it is seen that

φm decreases as the temperature ratio increases for a chosen density ratio.

It is also noted that as the temperature ratio decreases, the plasma moves

further away from a state of thermodynamic equilibrium, thereby making it

easier to generate nonlinear soliton structures with a correspondingly larger

amplitude. Figure 3.5 shows the maximum soliton amplitude as a function of

the soliton velocity for a cut off value of Nc/Nh = 0.25. The fixed parameters

are θ = 15o and γα = 3. The soliton amplitude increases as the temperature

ratio Tc/Th tends to zero.
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Figure 3.1: The soliton profile φ for different angles of propagation θ. The

curves correspond to θ = 0o (solid), 15o (dotted), 30o (broken), 50o (dashddot)

and 80o (longbroken). The fixed plasma parameters are M = 1.2, Tc/Th =

0.01, Nc/Nh = 1/9 and γα = 3.
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Figure 3.2: The variation of the soliton amplitude φm as a function of

the propagation angle θ for different normalized soliton velocities M = 1.0

(solid), 1.2 (dotted) and 1.4 (broken). The fixed plasma parameters are

Nc/Nh = 1/9, Tc/Th = 0.01 and γα = 3.
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Figure 3.3: The variation of the soliton amplitude φm as a function of Nc/Nh.

The curves correspond to the temperature ratio Tc/Th = 0.01 (solid) , 0.05

(dotted) and 0.1 (broken). The fixed plasma parameters areM = 1.2, θ = 15o

and γα = 3.
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Figure 3.4: The variation of the soliton amplitude φm as a function of Tc/Th.

The curves correspond to Nc/Nh = 0.11 (solid), 0.25 (dotted), 0.43 (broken).

The fixed plasma parameters are M = 1.2, θ = 15o and γα = 3.

113



Figure 3.5: The maximum soliton amplitude φm as a function of M for

Nc/Nh = 0.25. The curves correspond to Tc/Th = 0.1 (solid) and 0.01

(dotted). The fixed parameters are θ = 15o and γα = 3.
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3.5 Discussion

In this chapter the existence of solitary waves in a magnetized four compo-

nent two-temperature electron-positron plasma propagating obliquely to the

ambient magnetic field Bo is investigated. This model is a symmetric one

with equal equilibrium densities Nh and Nc, and temperatures Th and Tc,

for the hot and cool electrons and positrons respectively. The hot species

are described by the Boltzmann density distribution and the cooler species

by the fluid equations with finite temperatures. The reductive perturbation

technique was used to derive the modified KdV-ZK (mKdV-ZK) equation for

nonlinear electrostatic modes. An exact analytical solution was determined

for the soliton potential structures. Due to the symmetry of the model, dou-

ble layers are not possible. Double layers can only be found if there is an

asymmetry in the system. Numerical results are presented showing that the

soliton amplitudes are functions of plasma parameters such as the propaga-

tion angle θ, Nc/Nh and Tc/Th. Due to the use of the reductive perturbation

approach and the limitations imposed by the model, i.e. vtc � ω/k � vth,

only small amplitude solitons can be considered. Propagation at larger angles

to Bo are found to enhance the soliton amplitude. As Nc/Nh, the ratio of the

cool to hot species was increased, the soliton amplitude increased. The soliton

amplitude also increases as the plasma moves away from a state of thermal

equilibrium, i.e. as Tc/Th is decreased. Given that a non-relativistic analy-

sis is presented, the results could be of relevance to astrophysical electron-

positron plasmas produced through cooling by cyclotron emission, and in
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laboratory experiments, arising from pair production by ultra-intense laser

pulses (Liang et al., 1998) or in beam generated electron-positron plasmas

(Greaves and Surko, 1995). Finally, cognisance should be taken of the dif-

ference between the work presented here and that of Verheest et al., (2002).

The latter paper sets up a general formalism, which is in principle applicable

to acoustic solitons in a wide variety of multi-species plasmas. They then

apply it to a number of examples of KdV-ZK cases, but do not consider an

electron-positron plasma, nor do they discuss examples of mKdV-ZK soli-

tons. The results of the work done in this chapter have been published in

the Journal of Plasma Physics (Lazarus et al., 2008)(see Appendix E) and

are consistent with those reported by several authors in their independent

studies (Choi et al., 2005; Tagare et al., 2004; Ghosh and Lakhina, 2004;

Farid et al., 2001).
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Chapter 4

Arbitrary Amplitude

Electrostatic Solitary Waves in

a Four Component

Electron-Positron Plasma

4.1 Literature Review

Various spacecraft observations have established the presence of a class of

broadband electrostatic noise (BEN) in several regions of the earth’s magne-

tosphere. The broadband electrostatic noise has been detected in the mag-

netopause region (Matsumoto et al., 1994; Cattell et al., 2002), the plasma

sheet boundary (Frantz et al., 1998; Matsumoto et al., 1999; Cattell et al.,

1999), foreshock region (Scarf et al., 1970; Greenstadt and Fedricks, 1979),
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bow shock (Matsumoto et al., 1997; Bale et al., 1998), auroral acceleration

region (Teremin et al., 1982; Mozer et al., 1997; Ergun et al., 1998; Bounds et

al., 1999), the polar cap boundary (Tsurutani et al., 1998), within the solar

wind (Magenay et al., 1999) and at high altitude cusp injections (Cattell et

al., 2001b).

Many theoretical models have been studied in order to explain the broad-

band electrostatic noise (BEN) observed in the earths magnetosphere. The

first theoretical study of BEN in the geomagnetic tail was presented by Huba

et al. (1978). Although the lower-hybrid drift instability in their study pro-

duced frequencies ranging up to the lower-hybrid frequency, they could not

account for BEN, especially the high frequency component. Ion-beam gener-

ated electrostatic instabilities in the plasma sheet boundary layer were stud-

ied by Grabbe and Eastman (1984), Grabbe (1985), Omidi et al. (1985) and

Ashour-Abdalla and Okuda (1986a). They found that a broad range of ESWs

could be excited with an upper limit near the electron plasma frequency.

Later Schriver and Ashour-Abdalla (1987) included the cold electron compo-

nent in their model and found that the electron-acoustic instability became

excited, hence addressing the high frequency component of BEN. Schriver

and Ashour-Abdalla (1989) then investigated cold electron-beam driven elec-

trostatic waves with hot background electrons. The low frequency component

of the wave was found to be driven by the ion-acoustic wave and the high

frequency component by the electron-acoustic wave. Singh et al. (2001),

examined a four-component unmagnetized plasma consisting of stationary
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cold and hot electrons, a drifting electron beam and ions. They solved the

electrostatic linear dispersion relation for electron-acoustic waves and used

their results to explain BEN observations below the total electron plasma fre-

quencies in the dayside auroral zone and other regions of the magnetosphere.

Earlier Bharuthram and Shukla (1988) examined the nonlinear properties

of low-frequency electron-acoustic waves in a three-component magnetized

plasma having hot electrons, hot ions and a cold electron component. They

found that the spectrum cascade process by three-wave interactions within

the electron-acoustic wave turbulence can extend the low-frequency range as

well as account for the high-frequency component of BEN.

Satellite observations have also shown the existence of ESWs as part of BEN

in different regions of the earth’s magnetosphere. These ESWs have been

observed by spacecrafts GEOTAIL (Matsumoto et al., 1994, 1997; Kojima

et al., 1999; Deng et al., 2006), POLAR (Frantz et al., 1998; Cattell et al.,

2003) and FAST (Ergun et al.,1998). These ESWs are characterized by their

solitary bipolar pulses and consist of small scale, large amplitude parallel

electric fields (component of electric field parallel to the background magnetic

field). They have been identified to have frequencies up to and higher that of

the electron plasma and cyclotron frequencies. These large amplitude spiky

structures have been interpreted in terms of either solitons (Temerin et al.,

1982) or isolated electron holes in the phase space corresponding to positive

electrostatic potential (Omura et al., 1994).
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     Parallel and perpendicular electric field structures observed by the FAST satellite (Ergun et al., 1998).  

Three types of BEN wave forms and their corresponding dynamic spectra. TYPE A is the most  
      frequently observed (Matsumoto et al., 1994).     

    Figure showing the pulse widths and repetition periods, in particular the w/T  ratio obtained  
    by (Kojima et al., 1994).

Figure 4a. Typical waveforms from FAST and GEOTAIL satellite observa-

tions (Taken from Ergun et al., 1998; Matsumoto et al., 1994; Kojima et al.,

1994).
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Figure 4a shows typical bipolar signatures from FAST and GEOTAIL satel-

lite observations (Ergun et al., 1998; Matsumoto et al., 1994; Kojima et al.,

1994).

In a recent study, Reddy et al. (2002) examined a possible source for the non-

linear, spiky electric field structures. They considered a magnetized electron-

ion plasma consisting of fluid ions and warm electrons described by the Boltz-

mann distribution. They closed their system by the quasi-neutrality condi-

tion, hence concentrating on the low frequency regime and derived a nonlinear

wave equation in the rest frame of the propagating wave. They showed that

the nonlinear coupling of the ion-acoustic mode and ion-cyclotron oscillations

led to the generation of parallel electric fields which were highly spiky with

periods ranging from ion-cyclotron to ion-acoustic. The shape of the wave-

form was found to have a strong dependence on the initial driving electric

field and the Mach number. Their results were in good agreement with ob-

servations of Ergun et al. (1998). Later Bharuthram et al. (2002) included

the finite ion temperature to study the effect on the parallel electric field

structures. They found that for the ion-cyclotron wave, an increase in the

ion temperature resulted in a decrease in the periodicity of the oscillations,

and the nonlinearity of the wave was suppressed due to the enhanced disper-

sive effects. For the ion-acoustic wave, the behaviour was opposite, where

the period increased with an ion temperature increase. Reddy et al. (2005,

2006) further extended their earlier work for the low frequency domain to a

three-component plasma by including an oxygen ion beam in the system and
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having hot Boltzmann electrons and protons. They found that the inclusion

of the oxygen ion beam significantly affected the evolution of the nonlinear

electric field structures. The ion-cyclotron oscillations were found to be only

possible for very high oxygen ion densities while the driven ion-acoustic mode

existed for only very small oxygen ion densities.

Moolla et al. (2003) extended the work of Reddy et al. (2002) to the high

frequency domain by including the Poisson equation and thereby neglect-

ing the quasi-neutrality condition, assuming only point quasi-neutrality (i.e

quasi-neutrality at s=0). Their model was a three component plasma con-

sisting of hot electrons, cold electrons and a cold ion species, where all species

were described by the fluid equations. They showed that the nonlinear cou-

pling between the high frequency electron-cyclotron and electron-acoustic

modes could explain the spiky structures in the high frequency region of the

broadband electrostatic noise. Later, Moolla et al. (2007) extended their

previous high frequency study, but now having all species with finite tem-

peratures. Included in their studied was an investigation of the pulse widths

and periods of the waves, as well as effects of the propagation angle on the

electric field structures. They found that the ratio of the pulse widths to

the periods of the ESWs is a constant. They also showed that with the in-

clusion of a finite cool electron temperature, the waves broadened and the

nonlinearity increased. As the propagation angle of the wave relative to the

ambient magnetic field increased, they observed that the nonlinear electric

field structures transformed from a uniform BEN TYPE A waveform to a
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more distorted double-humped BEN TYPE C waveform.

Given that electron-positron plasmas are increasingly observed in astrophys-

ical environments, as well as in laboratory experiments, the above mentioned

satellite observations lead us to explore if such nonlinear structures are also

possible in electron-positron plasmas. In this chapter three different sym-

metric four-component electron-positron plasma models are used to explore

the existence of nonlinear electric field structures in the form of solitary

waves. Model 1 consists of a cold electron and a cold positron species and

a hot electron and a hot positron species. The hot species are described by

the Boltzmann distribution and the dynamics of the cold species determined

by the fluid equations. By virtue of the chosen symmetry, the cold (hot)

electrons and positrons have equal density at equilibrium. Model 2 is an

extension of Model 1 whereby all species (cold and hot) are described by the

fluid equations. Then in Model 3, finite, non-zero temperatures are consid-

ered for all species, allowing for a cool component (temperature Tc �= 0) and

a hot component (temperature Th) for both electrons and positrons.
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4.2 MODEL 1: Plasma with cold fluid elec-

trons and positrons (Tc = 0) and hot Boltz-

mann electrons and positrons

4.2.1 Basic Equations

The model considered is a homogeneous magnetized, four component electron-

positron plasma, consisting of cold electrons and positrons with temperatures

(Tc = 0) and equilibrium densities denoted by nec0 and npc0 respectively, and

hot electrons and positrons with equal temperatures denoted by Th and equi-

librium densities denoted by neh0 and nph0 respectively. Wave propagation is

in the x-direction at an angle θ to the ambient magnetic field B0, which is

assumed to be in the x-z plane.

Bo

 
k

y

x 

z
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The hot isothermal species have a Boltzmann distribution given by,

neh = neh0 exp

(
eφ

Th

)
(4.1)

and

nph = nph0 exp

(−eφ
Th

)
, (4.2)

where neh (nph) is the density of the hot electrons (positrons) and φ is the

electrostatic potential.

The continuity and momentum equations for the cold isothermal species are

given by

∂nj
∂t

+
∂(njvjcx)

∂x
= 0 , (4.3)

∂vjcx
∂t

+ vjcx
∂vjcx
∂x

= −εje
m

∂φ

∂x
+ εjΩvjcy sin θ , (4.4)

∂vjcy
∂t

+ vjcx
∂vjcy
∂x

= εjΩvjcz cos θ − εjΩvjcx sin θ , (4.5)

∂vjcz
∂t

+ vjcx
∂vjcz
∂x

= −εjΩvjcy cos θ , (4.6)

where εj=+1(-1) for positrons (electrons), and j = e(p) for the electrons

(positrons) respectively.

The system is closed by the Poisson equation

ε0
∂2φ

∂x2
= −e(npc − nec + nph − neh) . (4.7)

In the above equations, nj and vj are the densities and fluid velocities respec-

tively, of the jth species. Ω = Ωe = Ωp = eB0/m is the cyclotron frequency.
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Here m = me = mp is the common mass of the electrons and the positrons.

To determine the linear dispersion relation, equations (4.3) − (4.7) are lin-

earized. Hence for perturbations varying as exp(i(kx−ωt)), ∂/∂t is replaced

with −iω and ∂/∂x with ik in equations (4.3)− (4.7). Neglecting the higher

order terms and eliminating vjcy and vjcz for each species, yields

vecx =
−ekφ
mω

1 +
Ω2 sin2 θ

Ω2 cos2 θ − ω2

(4.8)

and

vpcx =

ekφ

mω

1 +
Ω2 sin2 θ

Ω2 cos2 θ − ω2

. (4.9)

Substituting these velocities into the respective continuity equations and in

turn, substituting the densities into the Poisson’s equation, the following dis-

persion relation is derived,

ω4 − ω2

(
Ω2 +

k2v2
ea

1 + 1
2
k2λ2

Dh

)
+ Ω2 cos2 θ

(
k2v2

ea

1 + 1
2
k2λ2

Dh

)
= 0 , (4.10)

which is the dispersion relation (2.18) in chapter 2, but with no contribution

from the cold species since vtc = 0 for Tc = 0.

From equation (4.10),

ω2 =
1

2

(
Ω2 +

k2v2
ea

1 + 1
2
k2λ2

Dh

)[
1 ±

√√√√√1 −
4Ω2 cos2 θ( k2v2ea

1+ 1
2
k2λ2

Dh

)

(Ω2 + k2v2ea

1+ 1
2
k2λ2

Dh

)2

]
, (4.11)
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where vea = (n0c/n0h)
1/2vth is the acoustic speed and λDh = (ε0Th/n0he

2)1/2

is the Debye length of the hot species as defined in chapter 2.

Taking the positive square in (4.11) and following the technique used in

chapter 2 (in arriving at equation (2.72)), in the limit (4Ω2 cos2 θ k2v2ea

1+ 1
2
k2λ2

Dh

) �
(Ω2 + k2v2ea

1+ 1
2
k2λ2

Dh

)2, one obtains

ω2
+ =

(
Ω2 +

k2v2
ea

1 + 1
2
k2λ2

Dh

)
−

Ω2 cos2 θ k2v2ea

1+ 1
2
k2λ2

Dh

Ω2 + k2v2ea

1+ 1
2
k2λ2

Dh

. (4.12)

The approximation used above restricts the mode to propagation angles sat-

isfying cos θ �
Ω2 + k2v2ea

1+ 1
2
k2λ2

Dh

2Ω( k2v2ea

1+ 1
2
k2λ2

Dh

)
1
2

.

Following Mace and Hellberg (1993), for small wavenumbers, kλDh � 1 and

in the limit kvth � Ω, this yields the dispersion relation for the cyclotron

waves,

ω+ = Ω +
k2v2

ea sin2 θ

2Ω
, (4.13)

as obtained by Mace and Hellberg (1993) for their electron cyclotron wave.

For the negative square root in (4.11), one obtains

ω2
− =

Ω2 cos2 θ k2v2ea

1+ 1
2
k2λ2

Dh

Ω2 + k2v2ea

1+ 1
2
k2λ2

Dh

, (4.14)
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which in the limit kvth � Ω, yields

ω− = kvea cos θ , (4.15)

as obtained by Mace and Hellberg (1993) for their electron acoustic wave.

4.2.2 Nonlinear Analysis

Given that we are adapting the approach adopted in an electron-ion plasma

by Reddy et al. (2002) for low frequency phenomena and later by Moolla et

al. (2003, 2007) for high frequency studies, it is important to present some

discussion that contextualizes our work. In their work Reddy et al. (2002)

used the quasineutral approximation to derive a single nonlinear equation for

the wave potential. The equation provided periodic solutions for the wave

electric field ranging from linear sinusoidal to nonlinear sawtooth to spiky

bipolar in form, very similar to those generated by Temerin et al. (1979)

(their figure 3) for nonlinear electrostatic cyclotron waves. Such an approach

was also used by Lee and Kan et al. (1981) in studying nonlinear ion cy-

clotron and ion acoustic waves. It is noted that these simple solutions do not

take into account the effect of higher order harmonics and other nonlinear

effects. On the other hand in their study, Moolla et al. (2003, 2007) could

not adopt the quasineutral approximation as they investigated the high fre-

quency domain. As a result the system of nonlinear equations governing the

dynamics of their plasma model could not be reduced to a single nonlinear

equation, but had to be numerically solved as a coupled set. Their results
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produced periodic nonlinear electron cyclotron and nonlinear electron acous-

tic waves. For our electron-positron plasma, given the single time-scale, the

quasineutral approximation is also not valid. Hence one may anticipate the

need to solve the governing set of equations numerically.

In the nonlinear regime, a transformation into a stationary frame s = (x− V t)(Ω/V )

is performed, and the normalizations of v, t, x and φ are with respect to vth,

Ω−1, ρ = vth/Ω, and Th/e, respectively. V is the phase velocity of the

wave. In equations (4.3)− (4.7), ∂/∂t is replaced by −Ω(∂/∂s) and ∂/∂x by

(Ω/V )(∂/∂s).

Integrating equation (4.3) and using the initial conditions nec = nec0 and

vecx = v0c at s = 0, yields the velocity for the cold electrons and positrons in

the x-direction.

vecx = −
(
nec0
nec

)
(V − v0c) + V (4.16)

vpcx = −
(
npc0
npc

)
(V − v0c) + V (4.17)

The dimensionless quantities ψ = eφ/Th, M = V/vth are introduced, and

δc = v0c/vth where ψ is the normalized potential, M is the normalized Mach

number, δc is the normalized drift velocity of the cold species and the driving

electric field E = −(∂ψ/∂s). Substituting equations (4.16) and (4.17) into

equations (4.4) − (4.7), the following set of nonlinear first-order differential
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equations in the stationary frame are obtained.

∂ψ

∂s
= − E (4.18)

∂E

∂s
= R2M2(npcn − necn +

nph0
n0

e−ψ − neh0
n0

eψ) (4.19)

∂necn
∂s

=
n3
ecn

(M − δc)2

(
n0

nec0

)2[
E +M sin θvecyn

]
(4.20)

∂vecyn
∂s

=
Mnecn

(M − δc)

(
n0

nec0

)[
−
(
M − (M − δc)

necn

(
nec0
n0

))
sin θ + veczn cos θ

]
(4.21)

∂veczn
∂s

= −
(
n0

nec0

)
necnvecynM cos θ

(M − δc)
(4.22)

∂npcn
∂s

=
n3
pcn

(M − δc)2

(
n0

npc0

)2[
−E −M sin θvpcyn

]
(4.23)

∂vpcyn
∂s

=
Mnpcn

(M − δc)

(
n0

npc0

)[(
M − (M − δc)

npcn

(
npc0
n0

))
sin θ − vpczn cos θ

]
(4.24)

∂vpczn
∂s

=

(
n0

npc0

)
npcnvpcynM cos θ

(M − δc)
(4.25)

In equations (4.18) − (4.25) the equilibrium density of the cold (hot) elec-

trons is nec0 (neh0) and npc0 (nph0) is the equilibrium density of the cold

(hot) positrons, with nec0 + neh0 = npc0 + nph0 = n0. R = ωp/Ω, where

ωp = (n0e
2/ε0m)1/2 is the total plasma frequency and Ω = qBo/m is the

gyrofrequency. The additional subscript ‘n’ has been introduced to indicate

normalized quantities. The normalized particle densities, e.g. npcn, are with

respect to the total density n0. As in chapter 2, the parameter R repre-

sents the strength of the magnetic field for fixed total plasma density. For a
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strongly magnetized plasma, R � 1, while for a weakly magnetized plasma,

R � 1.

4.2.3 Numerical Results

The system of nonlinear first-order differential equations (4.18) − (4.25) are

solved numerically using the Runge-Kutta (RK4) technique (Press et al.,

1996). The initial values were determined self consistently. Initial values are

given to vecyn and veczn. Then vpcyn0 and vpczn0 are calculated self consistently

(see Appendix B). All figures illustrate the actual normalized electric fields

Enorm = −(1/M)(∂ψ/∂s).

We recall that in this chapter, an attempt is made to explore in an electron-

positron plasma the existence of electrostatic waves (ESWs) of the type found

initially by Reddy et al. (2002) for electron-ion plasmas in their effort to ex-

plain satellite observations of such structures in the earth’s magnetosphere.

Hence a wide rage of parameters were investigated. Our examination showed

that for this particular plasma model these ESWs were only possible for rel-

atively large R-values, i.e in high density weakly magnetized plasmas. Con-

sequently we set R = 160 as a typical value in our calculations. The exact

reason for this behaviour is not understood. It is important to note however,

that in an electron-positron plasma both the (equal mass) species are equally

magnetized (having the same magnitude for the gyrofrequency). This is not

the case for the electron-ion plasma models of Reddy et al. (2002) and other
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authors used for studies in the magnetosphere. It maybe that the dynam-

ics whereby both the electrons and the positrons are essentially tied to the

field lines in a strongly magnetized plasma (low R-values) impedes the devel-

opment to the spiky structures because then the assumption of Boltzmann

density distributions for the hot species is not valid. This is confirmed to

some extent in the following sections of this chapter in which the Boltzmann

assumption is not made. Then nonlinear spiky structures are obtained for

much lower R-values (e.g. R = 10 in section 4.2).

Noting that satellite observations of ESWs in the earth’s magnetosphere were

observed for angles of propagation in a narrow cone about the direction of the

earth’s magnetic field, Reddy et al. (2002), Moolla et al. (2003, 2007), and

other authors set the angle of propagation to θ = 2o. In this investigation

this value of θ is initially retained followed by a θ variation later on.

Effect of the driving amplitude E0 on the waves

Figures 4.1 − 4.3 shows the evolution of the system as the electric field am-

plitudes E0 is increased. The fixed normalized parameters are M = 1.6,

R = 160, θ = 2o, δc = 0.0 and nec0/n0 = npc0/n0 = 0.73. Since R = 160, we

have a very weakly magnetized plasma. Note that wave propagation is taken

almost parallel to the ambient magnetic field B0, consistent with theoretical

studies (Reddy et al., 2002) and experimental observations for the earth’s

magnetosphere. As E0 increases, the electric field structure evolves from a
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linear sinusoidal waveform to a nonlinear sawtooth structure. For a higher E0

value of 1.3, the structure is spiky bipolar in form. This is similar to a BEN

TYPE A structure (see figure 4a). The change in electric field structure with

increasing E0 is similar to that found by Reddy et al. (2002) and studies in

electron-ion plasmas that folloewd. As E0 increases, the period of the wave

increases and the frequency decreases. The period of oscillations is given by

ΔS = (Δx−VΔt)(Ω/V ). Typically for Δx = 0, ΔS = |ΩΔt|. The period of

the waves can be expressed in terms of the cyclotron period τc = 2π/Ω. This

enables one to distinguish between the cyclotron mode (Tw ≤ 1.0τc) and the

acoustic mode (Tw > 1.0τc). Hence for the linear wave in figure 4.1, with a

small driving amplitude of E0 = 0.05, the period of the wave is calculated

to be Tw = 1.02τc (frequency fw = 0.98fc), which is associated with the

cyclotron mode, where τc = 2π/Ω. Figure 4.2 shows a sawtooth waveform

for E0 = 0.3 with a period of Tw = 1.05τc (frequency fw = 0.95fc) and for

E0 = 1.3 a spiky bipolar waveform is shown (figure 4.3), where the period

of the wave Tw = 1.08τc (frequency fw = 0.93fc). Thus as E0 increases, the

mode transforms from the cyclotron to the acoustic wave (dispersion rela-

tions (4.14) and (4.15)). We recall that a similar behaviour was found by

Reddy et al. (2002) for an electron-ion plasma, with the mode transforming

from the ion cyclotron to the ion acoustic mode as E0 increases.
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Figure 4.1: Numerical solution of the normalized electric field (sinusoidal

waveform) for the parameters M = 1.6, θ = 2o, R = 160, δc = 0.0, nec0/n0 =

npc0/n0 = 0.73 and E0 = 0.05. The period of the wave is Tw = 1.02τc

(frequency fw = 0.98fc).
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Figure 4.2: Numerical solution of the normalized electric field (sawtooth

waveform) for the parameters M = 1.6, θ = 2o, R = 160, δc = 0.0, nec0/n0 =

npc0/n0 = 0.73 and E0 = 0.3. the period of the wave is Tw = 1.05τc (frequency

fw = 0.95fc).
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Figure 4.3: Numerical solution of the normalized electric field (bipolar

waveform) for the parameters M = 1.6, θ = 2o, R = 160, δc = 0.0,

nec0/n0 = npc0/n0 = 0.73 and E0 = 1.3. the period of the wave is Tw = 1.08τc

(frequency fw = 0.93fc).
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Effect of the drift velocity of the cold species

In figures 4.4 − 4.8, the effect of the drift velocity of the cold species from

being anti-parallel to parallel to the external magnetic field is studied. The

fixed parameters are E0 = 0.8, M = 1.6, R = 160, θ = 2o and nec0/n0 =

npc0/n0 = 0.73. Here, it is observed that the period of the spiky structures

decreases from 1.11τc for δc = −0.02 to 1.04τc for δc = +0.02), i.e, as the

cold beam flow changes from anti-parallel to parallel to the ambient magnetic

field. Therefore, one may conclude that the cold electron and positron flows

anti-parallel (parallel) to B0 increases (decreases) the period of the spiky

structure. These results are consistent with previous work done in electron-

ion plasmas (Reddy et al., 2002; Bharuthram et al., 2002; Moolla et al., 2003,

2007).
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Figure 4.4: Numerical solution of the normalized electric field for the param-

eters M = 1.6, E0 = 0.8, R = 160, θ = 2o, nec0/n0 = npc0/n0 = 0.73 and

δc = −0.02. The period of the wave is Tw = 1.11τc (frequency fw = 0.90fc).
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Figure 4.5: Numerical solution of the normalized electric field for the param-

eters M = 1.6, E0 = 0.8, R = 160, θ = 2o, nec0/n0 = npc0/n0 = 0.73 and

δc = −0.01. The period of the wave is Tw = 1.09τc (frequency fw = 0.92fc).
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Figure 4.6: Numerical solution of the normalized electric field for the param-

eters M = 1.6, E0 = 0.8, R = 160, θ = 2o, nec0/n0 = npc0/n0 = 0.73 and

δc = 0.0. The period of the wave is Tw = 1.07τc (frequency fw = 0.93fc).
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Figure 4.7: Numerical solution of the normalized electric field for the param-

eters M = 1.6, E0 = 0.8, R = 160, θ = 2o, nec0/n0 = npc0/n0 = 0.73 and

δc = 0.01. The period of the wave is Tw = 1.06τc (frequency fw = 0.94fc).
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Figure 4.8: Numerical solution of the normalized electric field for the param-

eters M = 1.6, E0 = 0.8, R = 160, θ = 2o, nec0/n0 = npc0/n0 = 0.73 and

δc = 0.02. The period of the wave is Tw = 1.04τc (frequency fw = 0.96fc).
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4.3 MODEL 2: Plasma with cold electrons

and positrons (Tc = 0) and hot electrons

and positrons (Th �= 0), including the full

dynamics for all species

4.3.1 Basic Equations

Here, the model 1 in the previous section is extended to include the full

dynamics of all species, thus the hot species no longer have Boltzmann den-

sity distributions. A homogeneous magnetized, four component, collisionless,

electron-positron plasma, consisting of cold electrons (ec) and cold positrons

(pc) with equilibrium densities (nec0 = npc0), and hot electrons (eh) and

hot positrons (ph) having equal temperatures Th and equilibrium densities

(neh0 = nph0) is considered. Wave propagation is in the x-direction at an

angle θ to the magnetic field B0, which is assumed to be in the x-z plane.

The continuity and momentum equations for the four species are given by

∂nj
∂t

+
∂(njvjx)

∂x
= 0 , (4.26)

∂vjx
∂t

+ vjx
∂vjx
∂x

+
αj
njm

∂pj
∂x

= −εje
m

∂φ

∂x
+ εjΩvjy sin θ , (4.27)

∂vjy
∂t

+ vjx
∂vjy
∂x

= εjΩvjz cos θ − εjΩvjx sin θ , (4.28)

∂vjz
∂t

+ vjx
∂vjz
∂x

= −εjΩvjy cos θ , (4.29)

where εj = +1(−1) for positrons (electrons), αj = 0(1) for cold (hot) species

and j = ec, pc, eh, ph for the cold electrons, cold positrons, hot electrons,

143



and the hot positrons, respectively. As in section 4.2, the density of the cold

electrons (positrons) is nec (npc), and that of the hot electrons (positrons) is

neh (nph).

The general equation of state for the hot species is given by

∂pj
∂t

+ vjx
∂pj
∂x

+ 3pj
∂vjx
∂x

= 0 . (4.30)

The system is closed by the Poisson equation

ε0
∂2φ

∂x2
= −e(npc − nec + nph − neh) . (4.31)

In the above equations, one recalls that nj, vj and pj are the densities, fluid

velocities and pressures, respectively, of the jth species. Ω = Ωe = Ωp =

eB0/m is the cyclotron frequency. Here m = me = mp is the common mass

of the electrons and the positrons. Adiabatic compression (γ = (2+N)/N=3

is assumed, where N=1 implies one degree of freedom).

The linear dispersion relation for the model equations (4.26) − (4.31) is ob-

tained by linearizing as in section 4.2 for perturbations varying as exp(i(kx−
ωt)). Neglecting the higher order terms and eliminating vjy and vjz for each

species, results in

vecx =
− ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2
, (4.32)

vpcx =
ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2
, (4.33)
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vehx =
− ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2th
ω2 (ω2 − Ω2 cos2 θ)

, (4.34)

and

vphx =
ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2th
ω2 (ω2 − Ω2 cos2 θ)

. (4.35)

Substituting these velocities into their respective continuity equations and in

turn, substituting the densities into Poisson’s equation, the following disper-

sion relation is obtained,

ω2 =
2ω2

pc(ω
2 − Ω2 cos2 θ)

ω2 − Ω2
+

2ω2
ph(ω

2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2th
ω2 (ω2 − Ω2 cos2 θ)

, (4.36)

where ωpc,ph = (n0je
2/ε0m)1/2 is the plasma frequencies of the cold and hot

species respectively. In the limit ω/k � vth, i.e. wave speeds much smaller

than the hot thermal velocity vth = (Th/m)1/2, equation (4.36) becomes

ω4 − ω2(Ω2 + 2ω2
s) + 2ω2

sΩ
2 cos2 θ = 0 . (4.37)

Following the technique in the previous section, equation (4.37) is solved for

the normal modes. The positive square root yields

ω2
+ = (Ω2 + 2ω2

s) −
2ω2

sΩ
2 cos2 θ

Ω2 + 2ω2
s

, (4.38)

where ωs = ωpc/(1 + 2/3k2λ2
Dh)

1/2 and λDh = (ε0Th/nohe
2)1/2.
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In the limit ωs � Ω and for small wavenumbers, kλDh � 1, this yields the

dispersion relation for the cyclotron waves

ω+ = Ω +
3k2v2

ea sin2 θ

2Ω
. (4.39)

Taking the negative square root of equation (4.37) yields

ω2
− =

2ω2
sΩ

2 cos2 θ

Ω2 + 2ω2
s

, (4.40)

In the limit ωs � Ω and for small wavenumbers, kλDh � 1 this yields the

dispersion relation for the acoustic waves

ω− =
√

3kvea cos θ , (4.41)

where vea = (n0c/n0h)
1/2vth is the acoustic speed. The above modes are sim-

ilar in form to those derived by Mace and Hellberg (1993) for an electron-ion

plasma. A comparison of equations 4.39 and 4.41 with equations equations

4.13 and 4.15 shows the effect of the adiabatic compression of the hot species

on the dispersion characteristics of the waves.

4.3.2 Nonlinear Analysis

In the nonlinear regime, as before a transformation to a stationary frame

s = (x− V t)(Ω/V ) is performed, and v, t, x and φ are normalized with re-

spect to vth, Ω−1, ρ = vth/Ω, and Th/e, respectively. V is the phase velocity
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of the wave. In equations (4.26)− (4.30), ∂/∂t is replaced by −Ω(∂/∂s) and

∂/∂x by (Ω/V )(∂/∂s), and the driving electric field amplitude is defined as

E = −(∂ψ/∂s), where ψ = eφ/Th. Interestingly, here we find that nonlinear

spiky electric field structures are possible for low values of R in comparison

to the results in section 4.2. Hence, we typically set R = 10, and hence

consider a plasma that is much more strongly magnetized in comparison to

section 4.2, where R = 160 was used.

Integrating equation (4.26) and using the initial conditions nec = nec0 and

vecx = v0c at s = 0, yields the velocity for the cold electrons in the x-direction,

vecx = −
(
nec0
nec

)
(V − v0c) + V . (4.42)

Similarly the cold positron, hot electron and hot positron velocities are de-

termined, where δc = v0c/vth and δh = v0h/vth.

Substituting these into equations (4.26) − (4.31) gives the following set of

nonlinear first-order differential equations in the stationary frame.

∂ψ

∂s
= − E (4.43)

∂E

∂s
= R2M2(npcn − necn + nphn − nehn) (4.44)

∂necn
∂s

=
n3
ecn

(M − δc)2

(
n0

nec0

)2[
E +M sin θvecyn

]
(4.45)

∂vecyn
∂s

=
Mnecn

(M − δc)

(
n0

nec0

)[
−
(
M − (M − δc)

necn

(
nec0
n0

))
sin θ + veczn cos θ

]
(4.46)
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∂veczn
∂s

= −
(
n0

nec0

)
necnvecynM cos θ

(M − δc)
(4.47)

∂npcn
∂s

=
n3
pcn

(M − δc)2

(
n0

npc0

)2[
−E −M sin θvpcyn

]
(4.48)

∂vpcyn
∂s

=
Mnpcn

(M − δc)

(
n0

npc0

)[(
M − (M − δc)

npcn

(
npc0
n0

))
sin θ − vpczn cos θ

]
(4.49)

∂vpczn
∂s

=

(
n0

npc0

)
npcnvpcynM cos θ

(M − δc)
(4.50)

∂pphn
∂s

=

3pphnn
2
phn

[
−E −M sin θvphyn

]
(
nph0
n0

)2

(M − δh)2 − 3pphnnphn

(4.51)

∂nphn
∂s

=

n3
phn

[
−E −M sin θvphyn

]
(
nph0
n0

)2

(M − δh)2 − 3pphnnphn

(4.52)

∂vphyn
∂s

=
Mnphn

(M − δh)

(
n0

nph0

)[(
M − (M − δh)

nphn

(
nph0
n0

))
sin θ − vphzn cos θ

]
(4.53)

∂vphzn
∂s

=

(
n0

nph0

)
nphnvphynM cos θ

(M − δh)
(4.54)

∂pehn
∂s

=

3pehnn
2
ehn

[
E +M sin θvehyn

]
(
neh0
n0

)2

(M − δh)2 − 3pehnnehn

(4.55)

∂nehn
∂s

=

n3
ehn

[
E +M sin θvehyn

]
(
neh0
n0

)2

(M − δh)2 − 3pehnnehn

(4.56)

∂vehyn
∂s

=
Mnehn

(M − δh)

(
n0

neh0

)[
−
(
M − (M − δh)

nehn

(
neh0
n0

))
sin θ+ vehzn cos θ

]
(4.57)
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∂vehzn
∂s

= −
(
n0

neh0

)
nehnvehynM cos θ

(M − δh)
(4.58)

In equations (4.43)−(4.58) , the velocities are normalized with respect to the

thermal velocity vth = (Th/m)1/2 of the hot species and the densities with

respect to the total density n0. We recall, the equilibrium density of the cold

(hot) electrons is nec0 (neh0), and that of the cold (hot) positrons is npc0 (nph0),

with nec0 + neh0 = npc0 + nph0 = n0. R = ωp/Ω, where ωp = (n0e
2/ε0m)1/2 is

the total plasma frequency, M = V/vth is the normalized Mach number and

δc,h = v0c,0h/vth is the normalized drift velocity of cold (hot) species at s=0.

The additional subscript ‘n’ indicates the normalized quantities.

4.3.3 Numerical Results

The system of nonlinear first-order differential equations (4.43) − (4.58) are

once again solved numerically using the Runge-Kutta (RK4) technique (Press

et al., 1996). The initial values were determined self consistently. Initial val-

ues are given to vecyn, veczn, vpcyn, vpczn, vphyn, and vphzn. Then vehyn0 and

vehzn0 are calculated self consistently (see Appendix C). From the quasi-

neutrality condition at equilibrium we have for the normalized densities,

nec0 +neh0 = npc0 +nph0 = 1. Hence for a given nec0 = npc0 value, neh0 = nph0

is calculated. All figures illustrate the actual normalized electric fields, where

149



Enorm = −(1/M)(∂ψ/∂s).

Effect of the driving amplitude E0 on the waves

Figures 4.9 − 4.11 shows the evolution of the system for the various driving

electric field amplitudes E0. The fixed normalized parameters are M = 3.5,

R = 10.0, θ = 2o, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0.

For the selected plasma parameters and a R value of 10, our investigations

showed that the sought nonlinear structures were possible only for much

higher values of M compared to the results in section 4.2. A typically value

of M = 3.5 is used for curves 4.9 − 4.11. Once again wave propagation is

taken almost parallel to the ambient magnetic field B0. As E0 increases,

the electric field structure evolves from a linear sinusoidal waveform to a

nonlinear sawtooth structure. For a higher E0 value of 3.5, the structure

displays a spiky bipolar pulse. Following the analysis in section 4.2.3, for the

linear wave in figure 4.9, with a small driving amplitude of E0 = 0.05, the

period of the wave is calculated to be Tw = 0.99τc (frequency fw = 1.0fc),

displaying the cyclotron oscillation, where τc = 2π/Ω. Figure 4.10 shows a

sawtooth waveform for E0 = 1.5, with the period of the wave being Tw =

1.42τc (frequency fw = 0.70fc). For E0 = 3.5 (figure 4.11), a spiky bipolar

waveform is shown, where the period of the wave is Tw = 3.42τc (frequency

fw = 0.29fc). From a comparison of figures (4.11) and (4.3), it is seen that

for the selected plasma parameters here a much stronger value of the driving

electric field E0 (=3.5) is required to generate the spiky bipolar structures.
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It is also noted that the period of the spiky structure is about three and a

half times the cyclotron period and hence deduce that the waveform is driven

by the acoustic mode.
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Figure 4.9: Numerical solution of the normalized electric field (sinusoidal

waveform) for the parameters M = 3.5, θ = 2o, R = 10.0, δc = δh = 0.0,

nec0/n0 = npc0/n0 = 0.5, Tc/Th = 0.0, and E0 = 0.05. The period of the

wave is Tw = 0.99τc (frequency fw = 1.0fc).
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Figure 4.10: Numerical solution of the normalized electric field (sawtooth

waveform) for the parameters M = 3.5, θ = 2o, R = 10.0, δc = δh = 0.0,

nec0/n0 = npc0/n0 = 0.5, Tc/Th = 0.0, and E0 = 1.5. The period of the wave

is Tw = 1.42τc (frequency fw = 0.70fc).
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Figure 4.11: Numerical solution of the normalized electric field (bipolar wave-

form) for the parameters M = 3.5, θ = 2o, R = 10.0, δc = δh = 0.0,

nec0/n0 = npc0/n0 = 0.5, Tc/Th = 0.0, and E0 = 3.5. The period of the wave

is Tw = 3.42τc (frequency fw = 0.29fc).
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Effect of the Mach number M on the waves

Figures 4.12− 4.14 shows the effect of the Mach number on the electrostatic

waves. Here M is varied from 3.0 to 5.0 with the fixed parameters, E0 = 2.0,

R = 10.0, θ = 2o, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0.

As the Mach number increases, the wave structure changes from a sharp spiky

in form to more sawtooth-like. This indicates that the level of nonlinearity

decreases with increasingM given the sequence observed when E0 is increased

in figures 4.9 − 4.11. Hence for larger values of M , a stronger E0 is required

to generate the spiky structures. This effect was also observed by Reddy et

al. (2002) and Moolla et al. (2003, 2007). Also noted is that the period

of the wave decreases with an increase in the Mach number. For M = 3.0,

which is the minimum value for which a waveform exists for the above fixed

parameters, the wave has a period of Tw = 2.62τc (frequency fw = 0.38fc),

implying an associated driven acoustic mode. As the Mach number increases

to 5.0, the period of the wave decreases to 1.15τc (frequency fw = 0.87fc),

exhibiting a sawtooth type structure.
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Figure 4.12: Numerical solution of the normalized electric field for the pa-

rameters E0 = 2.0, R = 10.0, θ = 2o, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, and M = 3.0. The period of the wave is Tw = 2.62τc (frequency

fw = 0.38fc).
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Figure 4.13: Numerical solution of the normalized electric field for the pa-

rameters E0 = 2.0, R = 10.0, θ = 2o, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, and M = 4.0. The period of the wave is Tw = 1.42τc (frequency

fw = 0.70fc).
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Figure 4.14: Numerical solution of the normalized electric field for the pa-

rameters E0 = 2.0, R = 10.0, θ = 2o, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, and M = 5.0. The period of the wave is Tw = 1.15τc (frequency

fw = 0.87fc).
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Effect of the hot electron and positron drift velocity on the waves

Figures 4.15 − 4.19 shows the variation of the the drift velocities for the

hot electron and positron components. The fixed parameters are E0 = 3.5,

M = 3.5, R = 10.0, θ = 2o, δc = 0.0, nec0/n0 = npc0/n0 = 0.5, and

Tc/Th = 0.0. The period of the spiky structures decreases from 3.83τc for

δh = −0.3 (figure 4.15) to 3.08τc for δh = +0.3 (figure 4.19). As found in

section 4.2 for the drift of the cold species, the hot electron and positron flow

anti-parallel (parallel) to B0 increases (decreases) the period of the spiky

structure. Previous studies by Reddy et al. (2002) and Moolla et al. (2003)

on ion-electron plasmas showed a similar behaviour for the hot electron drift

velocities.

For the ESWs observed in the earth’s magnetosphere, Kojima et al. (1994)

found that the period of the ESWs changed rapidly (see figure 4a). Given the

above found dependence of the periodicity on the hot electron drift speed,

Moolla et al. (2003) suggested that the observed rapid changes in the period

of the ESWs could be due to electrons being accelerated in bursts. Our

results show that a similar phenomenon could occur in an electron-positron

plasma where due to the symmetry of the system both species (electrons and

positrons) are drifting.
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Figure 4.15: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δc = 0 and δh = −0.3. The period of the wave is Tw = 3.83τc

(frequency fw = 0.26fc).
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Figure 4.16: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δc = 0 and δh = −0.1. The period of the wave is Tw = 3.56τc

(frequency fw = 0.28fc).
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Figure 4.17: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δc = 0 and δh = 0.0. The period of the wave is Tw = 3.41τc

(frequency fw = 0.29fc).
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Figure 4.18: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δc = 0 and δh = 0.1. The period of the wave is Tw = 3.31τc

(frequency fw = 0.30fc).
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Figure 4.19: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δc = 0 and δh = 0.3. The period of the wave is Tw = 3.08τc

(frequency fw = 0.32fc).
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Effect of the cold electron and positron drift velocity on the waves

The effect of the drift velocities for the cold electron and positron components

are shown in Figures 4.20−4.24. The fixed parameters are E0 = 3.5, M = 3.5,

R = 10.0, θ = 2o, δh = 0.0, nec0/n0 = npc0/n0 = 0.5, and Tc/Th = 0.0. Here

the period of the spiky structures are observed to increase from 2.89τc for

δc = −0.3 (figure 4.20), to 4.17τc for δc = +0.3 (figure 4.24), i.e, as the cold

beam flow becomes more parallel to the ambient magnetic field. Therefore,

the cold electron and positron flow anti-parallel (parallel) to B0 decreases

(increases) the period of the spiky structure. It is noted that the effect of

the cold electron and positron drift on the ESWs is opposite to that of the

hot electron and positron drift on the waves. Moolla et al. (2003), in their

study of electron-ion plasmas found that the drift velocity of the cold ions

had no effect on the period of the wave, but in their further study Moolla et

al. (2007) found that the effect of the cold electron drift velocity increased

the period of the waves as the flow moved from anti-parallel to parallel.

165



Figure 4.20: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δh = 0 and δc = −0.3. The period of the wave is Tw = 2.89τc

(frequency fw = 0.35fc).
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Figure 4.21: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δh = 0 and δc = −0.1. The period of the wave is Tw = 3.25τc

(frequency fw = 0.31fc).
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Figure 4.22: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δh = 0 and δc = 0.0. The period of the wave is Tw = 3.41τc

(frequency fw = 0.29fc).
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Figure 4.23: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δh = 0 and δc = 0.1. The period of the wave is Tw = 3.63τc

(frequency fw = 0.28fc).
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Figure 4.24: Numerical solution of the normalized electric field for the pa-

rameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, nec0/n0 = npc0/n0 = 0.5,

Tc/Th = 0.0, δh = 0 and δc = 0.3. The period of the wave is Tw = 4.17τc

(frequency fw = 0.24fc).
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Effect of the density ratio of the species on the waves

Figures 4.25− 4.27 shows the effect of the electron and positron densities on

the normalized electric field. The fixed parameters are, E0 = 1.5, M = 3.5,

R = 10.0, θ = 2o, δc = δh = 0.0 and Tc/Th = 0.0. As the densities nec0/n0 and

npc0/n0 increases, the oscillations becomes more nonlinear, with increasing

periodicity. With nec0/n0 = npc0/n0 = 0.1 (figure 4.25), a linear waveform of

period 1.0τc (frequency fw=1.0fc) is observed. As the densities are increased

(nec0/n0 = npc0/n0 = 0.4), the waveform tends to a sawtooth structure

(figure 4.26) of period 1.22τc (frequency fw=0.82fc). For even larger densities

(nec0/n0 = npc0/n0 = 0.7), the electric field evolves into a spiky structure

(figure 4.27) of period 2.66τc (frequency fw=0.38fc). From a comparison of

figure (4.27) with earlier results (e.g. figure 4.11), it is noted that a smaller

driving electric field is required to drive the nonlinearity of the wave for larger

density values. Since the periods of the waves are greater than 1.0τc, these

waves are associated with the driven acoustic mode. The results indicate

that the bipolar spiky structures are easier to excite in a two temperature

electron-positron plasma for large values of the fractional density of the cold

species.
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Figure 4.25: Numerical solution of normalized electric field for the parameters

M = 3.5, E0 = 1.5, R = 10.0, θ = 2o, δc = δh = 0.0, Tc/Th = 0.0 and

nec0/n0 = npc0/n0 = 0.1. The period of the wave is Tw = 1.0τc (frequency

fw = 1.0fc).
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Figure 4.26: Numerical solution of normalized electric field for the parameters

M = 3.5, E0 = 1.5, R = 10.0, θ = 2o, δc = δh = 0.0, Tc/Th = 0.0 and

nec0/n0 = npc0/n0 = 0.4. The period of the wave is Tw = 1.22τc (frequency

fw = 0.82fc).
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Figure 4.27: Numerical solution of normalized electric field for the parameters

M = 3.5, E0 = 1.5, R = 10.0, θ = 2o, δc = δh = 0.0, Tc/Th = 0.0 and

nec0/n0 = npc0/n0 = 0.7. The period of the wave is Tw = 2.66τc (frequency

fw = 0.38fc).
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Effect of the propagation angle on the waves

In figure 4.28, the propagation angle θ relative to the ambient magnetic

field B0 is varied. The fixed parameters are E0 = 3.0, M = 3.5, R = 10.0,

δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5, and Tc/Th = 0.0. The oscillations are

of a spiky nature and the periodicity of the wave remains unchanged with

a period of 2.75τc (frequency fw=0.36fc), representing an acoustic mode.

As the propagation angle increases the wave becomes increasingly more dis-

torted. The double-humped feature in figures 4.28(c) − 4.28(f) is similar to

a BEN TYPE C (see figure 4a) waveform as observed by Matsumoto et al.

(1994). The maximum propagation angle that produces a reasonably peri-

odic waveform of this type for the fixed plasma parameters was found to be

30o, beyond which the waveform was found to be incoherent in structure.
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Figure 4.28: Numerical solution of the normalized electric field for different

values of the propagation angle θ = 2o(a), 8o (b), 10o (c), 15o (d), 20o (e) and

30o (f). For all curves the fixed parameters are M = 3.5, E0 = 3.0, R = 10.0,

nec0/n0 = npc0/n0 = 0.5, δc = δh = 0.0 and Tc/Th = 0.0.
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4.3.4 Critical E0 values for spiky Electrostatic Wave

onset

Next we focus on the spiky bipolar structures. Figure 4.29 shows the critical

driving electric field amplitudes for the onset of spiky electrostatic waves as a

function of the Mach number for various density ratio values. The critical E0

value is defined as the minimum electric field amplitude for which the wave

structure changes from sawtooth to spiky in form. The fixed parameters are

R = 10.0, δc = δh = 0.0, Tc/Th = 0.0, and θ = 2o. It is noted for a particular

density value that as the Mach number increases, a larger driving electric field

amplitude is required for the onset of the spiky electrostatic waves. Also as

the density of the cold species increases for a fixed Mach number, the critical

driving electric field amplitude for the onset of spiky ESWs decreases, which

is consistent with the earlier results. On the other hand, for a fixed E0 value,

as the density of the cold species increases, the M -value for the onset of spiky

structures also increases.
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Figure 4.29: Plot of the critical E0 values for the onset of spiky ESWs as a

function of the Mach number for nec0/n0 = npc0/n0 = 0.3 (solid), nec0/n0 =

npc0/n0 = 0.5 (dotted) and nec0/n0 = npc0/n0 = 0.7 (dashed). The fixed

parameters are R = 10.0, δc = δh = 0.0, Tc/Th = 0.0, and θ = 2o.
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4.3.5 The Period (T) and Pulse width (w) on the Elec-

trostatic Wave

In figures 4.30 and 4.31 the period and pulse width of the spiky electro-

static wave as a function of the drift velocities for the cold electron and

positron components (δc) are displayed. For each drift value, the period and

the pulse width are determined as defined by Kojima et al. (1994, see Fig-

ure 4a). These values are plotted as a function of the drift speeds of the

cold species, δc. The fixed parameters are M = 3.5, E0 = 3.5, R = 10.0,

nec0/n0 = npc0/n0 = 0.5, δh = 0.0, Tc/Th = 0.0 and θ = 2o. As δc goes from

anti-parallel to parallel flow, the period and pulse width of the ESWs increase.

The effect is opposite for the drift velocities of the hot electron and positron

components, i.e as you go from anti-parallel to parallel for the hot drift

velocities δh, the period and pulse width decrease (figures 4.32 and 4.33).

In their measurements Kojima et al. (1994) found that the ratio w/T was a

constant for the ESWs, with w/T = 0.3. In our studies, we found that the

ratio w/T is also a constant, with w/T ≈ 0.96.
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Figure 4.30: Plot of the Period of the ESW as a function of δc. The fixed

parameters are M = 3.5, E0 = 3.5, R = 10.0, nec0/n0 = npc0/n0 = 0.5,

δh = 0.0, Tc/Th = 0.0 and θ = 2o.
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Figure 4.31: Plot of the Pulse width of the ESW as a function of δc. The

fixed parameters are M = 3.5, E0 = 3.5, R = 10.0, nec0/n0 = npc0/n0 = 0.5,

δh = 0.0, Tc/Th = 0.0 and θ = 2o.
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Figure 4.32: Plot of the Period of the ESW as a function of δh. The fixed

parameters are M = 3.5, E0 = 3.5, R = 10.0, nec0/n0 = npc0/n0 = 0.5,

δc = 0.0, Tc/Th = 0.0 and θ = 2o.
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Figure 4.33: Plot of the Pulse width of the ESW as a function of δh. The

fixed parameters are M = 3.5, E0 = 3.5, R = 10.0, nec0/n0 = npc0/n0 = 0.5,

δc = 0.0, Tc/Th = 0.0 and θ = 2o.
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4.4 MODEL 3: Plasma with cool electrons

and positrons (Tc �= 0) and hot electrons

and positrons (Th �= 0), including the full

dynamics for all species

In section 4.3, the model consisted of a cold electron and a cold positron

component (Tc = 0). Here these components are considered to have a finite

temperature (Tc �= 0). Hence the temperature effect within the momen-

tum equation (equation (4.27)) is included and also included is the general

equation of state (equation (4.30)) for these two species. The effect of the

finite temperature of the cooler species on the electrostatic waves are then

examined.

4.4.1 Basic Theory

The model considered here is a homogeneous magnetized, four component,

collisionless, electron-positron plasma, consisting of cool electrons (ec) and

cool positrons (pc) with equal temperatures Tc and initial densities (nec0 =

npc0), and hot electrons (eh) and hot positrons (ph) with equal temperatures

Th and densities (neh0 = nph0). Wave propagation is again taken in the x-

direction at an angle θ to the magnetic field B0, which is assumed to be in

the x-z plane.
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To determine the dispersion relation for the model, once again the perturba-

tions are considered to vary as exp(i(kx−ωt)). Replacing ∂/∂t with −iω and

∂/∂x with ik in equations (4.26) − (4.31), and neglecting the higher order

terms and eliminating vjy and vjz for each species, results in,

vecx =
− ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2tc
ω2 (ω2 − Ω2 cos2 θ)

, (4.59)

vpcx =
ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2tc
ω2 (ω2 − Ω2 cos2 θ)

, (4.60)

vehx =
− ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2th
ω2 (ω2 − Ω2 cos2 θ)

(4.61)

and

vphx =
ekφ
mω

(ω2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2th
ω2 (ω2 − Ω2 cos2 θ)

. (4.62)

In equations (4.59) and (4.60) the contributions from the finite temperature

for the cool species are included compared to equations (4.32) and (4.33) in

model 2 where Tc is set equal to zero. Substituting these velocities into their

respective continuity equations and in turn, substituting the densities into

Poisson’s equation, the following dispersion relation is derived,

ω2 =
2ω2

pc(ω
2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2tc
ω2 (ω2 − Ω2 cos2 θ)

+
2ω2

ph(ω
2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2th
ω2 (ω2 − Ω2 cos2 θ)

,

(4.63)
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where ωpc,ph = (n0je
2/ε0m)1/2 are the plasma frequencies of the cool and hot

species respectively. Equation (4.63) is similar in form to that of equation

(4) of Moolla et al. (2007). Their electron-ion plasma consisted of a cool

ion species, a cool electron species and a warm electron species as compared

to our model which has a cool electron-positron species and a hot electron-

positron species, hence the factor ‘2’ appearing in the numerator for each

term. In the limit Tc = 0, equation (4.63) reduces to the dispersion relation

equation (4.36) of model 2.

In the limit ω/k � vth and ω/k � vtc, where vth = (Th/m)1/2 and vtc =

(Tc/m)1/2 are the thermal velocities of the hot (cool) species, the dispersion

relation equation (4.63) becomes,

ω2 =
2ω2

pc(ω
2 − Ω2 cos2 θ)

ω2 − Ω2 − 3k2v2
tc

− 2ω2
phω

2

3k2v2
th

. (4.64)

Rearranging equation 4.64 one obtains

ω4 − ω2(Ω2 + 2ω2
s + 3k2v2

tc) + 2ω2
sΩ

2 cos2 θ = 0 . (4.65)

From equation (4.65)

ω2 =
1

2
(Ω2 + 2ω2

s + 3k2v2
tc)

[
1 ±

√
1 − (8ω2

sΩ
2 cos2 θ)

(Ω2 + 2ω2
s + 3k2v2

tc)
2

]
. (4.66)

Approximating equation (4.66) using the binomial expansion where (8ω2
sΩ

2 cos2 θ) �
(Ω2 +2ω2

s +3k2v2
tc)

2, yields two modes. The positive sign gives the cyclotron

mode,
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ω2
+ = (Ω2 + 2ω2

s + 3k2v2
tc) −

2ω2
sΩ

2 cos2 θ

Ω2 + 2ω2
s + 3k2v2

tc

(4.67)

and the negative sign gives the acoustic mode,

ω2
− =

2ω2
sΩ

2 cos2 θ

Ω2 + 2ω2
s + 3k2v2

tc

, (4.68)

where ωs = ωpc/(1+2/3k2λ2
Dh)

1/2 , ωpc = (noce
2/ε0m)1/2 and λDh = (ε0Th/nohe

2)1/2.

Following the method outlined in the previous sections, in moving to a sta-

tionary frame s = (x − V t)(Ω/V ), the following set of nonlinear first-order

differential equations describe the evolution of the system.

∂ψ

∂s
= −E (4.69)

∂E

∂s
= R2M2(npcn − necn + nphn − nehn) (4.70)

∂necn
∂s

=

n3
ecn

[
E +M sin θvecyn

]
(
nec0
n0

)2

(M − δc)2 − 3
Tc
Th
pecnnecn

(4.71)

∂vecyn
∂s

=
Mnecn

(M − δc)

(
n0

nec0

)[
−
(
M − (M − δc)

necn

(
nec0
n0

))
sin θ + veczn cos θ

]
(4.72)

∂veczn
∂s

= −
(
n0

nec0

)
necnvecynM cos θ

(M − δc)
(4.73)
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∂pecn
∂s

=

3pecnn
2
ecn

[
E +M sin θvecyn

]
(
nec0
n0

)2

(M − δc)2 − 3
Tc
Th
pecnnecn

(4.74)

∂npcn
∂s

=

n3
pcn

[
−E −M sin θvpcyn

]
(
npc0
n0

)2

(M − δc)2 − 3
Tc
Th
ppcnnpcn

(4.75)

∂vpcyn
∂s

=
Mnpcn

(M − δc)

(
n0

npc0

)[(
M − (M − δc)

npcn

(
npc0
n0

))
sin θ − vpczn cos θ

]
(4.76)

∂vpczn
∂s

=

(
n0

npc0

)
npcnvpcynM cos θ

(M − δc)
(4.77)

∂ppcn
∂s

=

3ppcnn
2
pcn

[
−E −M sin θvpcyn

]
(
npc0
n0

)2

(M − δc)2 − 3
Tc
Th
ppcnnpcn

(4.78)

∂pphn
∂s

=

3pphnn
2
phn

[
−E −M sin θvphyn

]
(
nph0
n0

)2

(M − δh)2 − 3pphnnphn

(4.79)

∂nphn
∂s

=

n3
phn

[
−E −M sin θvphyn

]
(
nph0
n0

)2

(M − δh)2 − 3pphnnphn

(4.80)

∂vphyn
∂s

=
Mnphn

(M − δh)

(
n0

nph0

)[(
M − (M − δh)

nphn

(
nph0
n0

))
sin θ − vphzn cos θ

]
(4.81)

∂vphzn
∂s

=

(
n0

nph0

)
nphnvphynM cos θ

(M − δh)
(4.82)
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∂pehn
∂s

=

3pehnn
2
ehn

[
E +M sin θvehyn

]
(
neh0
n0

)2

(M − δh)2 − 3pehnnehn

(4.83)

∂nehn
∂s

=

n3
ehn

[
E +M sin θvehyn

]
(
neh0
n0

)2

(M − δh)2 − 3pehnnehn

(4.84)

∂vehyn
∂s

=
Mnehn

(M − δh)

(
n0

neh0

)[
−
(
M − (M − δh)

nehn

(
neh0
n0

))
sin θ + vehzn cos θ

]
(4.85)

∂vehzn
∂s

= −
(
n0

neh0

)
nehnvehynM cos θ

(M − δh)
(4.86)

In equations (4.69) − (4.86), we recall that the velocities are normalized

with respect to the thermal velocity vth = (Th/m)1/2 and the densities with

respect to the total density n0. The equilibrium density of the cool (hot)

electrons is nec0 (neh0), and that of the cool (hot) positrons npc0 (nph0), with

nec0 + neh0 = npc0 + nph0 = n0. R = ωp/Ω, where ωp = (n0e
2/ε0m)1/2 is the

total plasma frequency, M = V/vth is the Mach number and δc,h = v0c,0h/vth

is the normalized drift velocity of cool (hot) species at s=0.
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4.4.2 Numerical Results

Effect of the cool electron and positron temperatures on the waves

Given the detailed analysis of the numerical results presented in the earlier

sections, here the focus is solely on the effect of the finite temperature of

the cooler species. In figure 4.34 the effect of the cool electron and positron

temperature ratio on the electrostatic solitary waves is shown. The fixed

parameters are, E0 = 3.5, M = 3.5, R = 10.0, θ = 2o, δc = δh = 0.0 and

nec0/n0 = npc0/n0 = 0.5. It is seen that the periodicity and nonlinearity of

the wave increases with an increase in the cool to hot species temperature

ratio. The period of the wave increases from 3.42τc (frequency fw=0.29fc)

for Tc/Th = 0.0 to 4.02τc (frequency fw=0.25fc) for Tc/Th = 0.75. This

behaviour can be correlated to the linear dispersion relation (4.68), where as

the temperature of the cooler species increases, ω decreases and hence the

period of the wave increases.
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Figure 4.34: Numerical solution of the normalized electric field for the

parameters M = 3.5, E0 = 3.5, R = 10.0, θ = 2o, δc = δh = 0.0,

nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0 (solid), 0.5 (dotted), and 0.75

(broken).
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4.5 Discussion

In this chapter nonlinear electrostatic waves in a four component electron-

positron plasma, following an approach by other authors (e.g. Reddy et al.,

2002) in an electron-ion plasma have been studied. Three different plasma

models were considered: Model 1 with Boltzmann density distribution for

the hot species and fluid equations for the cold species (Tc = 0); Model 2

with full dynamics for all four species with Tc = 0; and Model 3 which was

an extension of Model 2 to allow for finite Tc �= 0. In the models spatial

variation is restricted to the x-direction, while the external magnetic field

is in the (x, z) plane. In the nonlinear analysis, the associated cyclotron

wave and acoustic wave are coupled through the convective derivative terms

vjx
∂vjy

∂x
and vjx

∂vjz

∂x
in the momentum equations. These two modes are de-

coupled in the linear analysis. The spiky waveforms obtained for the electric

fields was seen to be similar to those obtained by Reddy et al. (2002) and

Moolla et al. (2007) for an electron-ion plasma. In the study, a transition

from linear sinusoidal to sawtooth to spiky waveforms is observed as the

amplitude of the driving electric field increases. The results found in this

chapter for an electron-positron plasma are very similar to those found by

other researchers for electron-ion plasmas. On the other hand, as the Mach

number is increased (figures 4.12 − 4.14) the nonlinearity is suppressed to

the point where the bipolar ESWs are no longer excited. For the onset of

spiky ESWs, it is noted that as the wave speed increases, a larger driving

electric field is required. The period of the waves are affected by the relative
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drift of the hot and cold electrons and positrons. Also the nonlinearity of

the wave is affected by the density ratio of the electrons and positrons. It is

also noted that as the density ratio increases, the critical value for the driv-

ing electric field amplitude for the onset of spiky ESWs also decreases and

the minimum value required for the wave speed for the onset of spiky ESWs

decreases. The ESWs are therefore more easily excited when the cold species

dominate. With regard to the structure of the ESWs, the results shows BEN

TYPE A ESWs exists for almost parallel propagation, but as the propa-

gation angle increases with respect to the ambient magnetic field B0, the

signature waveform becomes more distorted, representing a BEN TYPE C

with its double-humped highly distorted feature. For angles of propagation

beyond 30o the electric field structures lose coherence. The ratio of the pulse

widths and periods (w/T ) of the electrostatic waves was found to be a con-

stant, which is consistent with experimental observations by Kojima et al.

(1994). When finite temperature effects are included for the cold species, an

increase in the temperature ratio of the cool electrons and positrons causes

the broadening out of the waveforms, which vary due to an increase in the

wave frequency with Tc.

A comparison of the three models reveals that the assumption of Boltzmann

density distribution for the hot species is restrictive in the sense it admits

spiky bipolar solutions for comparatively larger values of R = ωp/Ω(> 100),

i.e. in weakly magnetized plasmas. On the other hand, models 2 and 3

with full dynamics for all species allows solutions for much lower R-values
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(typically R = 10).
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Chapter 5

Solitary Waves in a Relativistic

Electron-Positron Plasma

The studies conducted in the previous chapters were for non-relativistic

electron-positron plasmas. Here, nonlinear structures in relativistic electron-

positron plasmas are examined.

5.1 Literature Review

The study of relativistic effects in electron-positron plasmas is of importance

since it is known that these plasmas exists in pulsars (Beskin et al., 1983;

Gurevich and Istomin, 1985), active galactic nuclei (Henri et al., 1993; Hart-

man et al., 2001) and gamma-ray bursts (Goodman, 1986; Paczyński, 1986;

Eichler et al., 1989), where highly energetic charged particles are present.

Some of the studies in relativistic electron-positron plasmas will now be high-
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lighted. Yu et al. (1984) investigated the nonlinear propagation of intense

circularly polarized electromagnetic waves in a magnetized electron-positron

plasma, where the relativistic and ponderomotive force effects were included.

Their analytical investigation determined that sharply spiked potential pulses

existed in a strongly magnetized plasma while a smooth pulse was present in

a weakly magnetized warm plasma and a moderately spiked pulse in a weakly

magnetized cold plasma. Large amplitude solitary Alfvén modes propa-

gating at oblique angles in a magnetized cold relativistic electron-positron

plasma have been studied by Verheest and Lakhina (1996). The reductive-

perturbation technique was employed to derive the KdV equation and they

found that the nonlinearity vanishes for parallel propagation (to the ambi-

ent magnetic field), and is strongest at strictly perpendicular propagation.

In a further study, Lakhina and Verheest (1997) included the pressure and

ultrarelativistic effects. For parallel propagation, in the ultrarelativistive

limit, linearly polarized subsonic Alfvén solitons were found to be possible,

but supersonic Alfvén solitons did not exist. The Alfvén solitons for per-

pendicular propagation were found to have a different nature compared to

those in cold relativistic plasmas (Verheest and Lakhina, 1996). Lontano

et al. (2001) investigated the interaction between arbitrary amplitude elec-

tromagnetic fields and hot plasmas, and studied the existence of soliton-like

electromagnetic distributions in one-dimensional electron-positron plasmas.

They found that solitons are possible in overdense plasmas, with the soliton-

like structure existing for small temperatures. Ultrarelativistic solitons were

also found to exist in hot plasmas.
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Ion-acoustics waves in relativistic, three component electron-positron-ion

plasmas have recently been of interest. Gill et al. (2007) investigated ion-

acoustic solitary waves in a weakly relativistic electron-positron-ion plasma

using the reductive-perturbation technique to derive the KdV equation. They

studied the effect of plasma parameters such as temperature and density

ratio of the electrons and positrons and the relativistic factor, on the soli-

tons. These parameters significantly affected the amplitude and width of the

solitons. Moreover, a small amplitude study showed that only compressive

solitons were possible. An increase in the relativistic effect resulted in an

increase in the soliton amplitude. Abdelsalam et al. (2008) in their study of

ion-acoustic solitary waves in electron-positron-ion plasmas used the Sagdeev

pseudo-potential approach and the associated energy-integral equation. They

studied arbitrary amplitude soliton profiles as well as the small amplitude

profiles using the derived KdV equation. They found that both subsonic

and supersonic ion-acoustic solitary waves are possible for low values of the

density ratio of positrons to electrons, but only subsonic solitons existed for

high density ratios.

The study presented in this chapter is an extension of the work conducted by

Bharuthram and Yu (1993), who investigated the existence and properties of

finite amplitude electron plasma waves in an unmagnetized electron plasma

using the Sagdeev pseudo-potential method. They showed that electrostatic

fluctuations can propagate as nonlinear soliton-like structures. Here we in-

vestigate the formation of solitons in an unmagnetized, warm, relativistic
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plasma, consisting of electrons and positrons through an arbitrary amplitude

theory. In addition, small amplitude theory is used to provide an analytical

solution. Both species are considered to have a drift velocity and their dy-

namics are governed by the fluid equations. Soliton profiles are examined as

a function of plasma parameters such as the soliton speed, drift velocity and

relativistic factor.

5.2 Basic Theory

The model consists of an unmagnetized plasma consisting of relativistic elec-

trons and positrons, with equilibrium densities denoted by ne0 and np0, re-

spectively, and equal temperatures denoted by T .

The dynamics of the system are determined by,

the continuity equations

∂nj
∂t

+ ∇.(njvj) = 0 , (5.1)

and the momentum equations,

∂Pj

∂t
+ (vj.∇)Pj = − T

nj
∇nj − αje∇φ , (5.2)

where the relativistic momentum Pj for the jth species is given by

Pj =
movj

(1 − v2j
c2

)
1/2

, (5.3)

where j = e(p) for the electrons (positrons) and αj = −1(+1) for electrons

(positrons). Here nj, vj, and T are the densities, fluid velocities and tempera-
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tures, respectively. The common rest mass of the electrons and the positrons

is mo = meo = mpo, the speed of light is c and φ is the electrostatic potential.

The system is closed by the Poisson equation

ε0∇2φ = e(ne − np) . (5.4)

5.3 Arbitrary Amplitude Theory

For the study of arbitrary amplitude solitons, equations (5.1) − (5.4) are

transformed to a stationary frame moving with velocity V , the phase velocity

of the wave, i.e., ξ = x−V t, with wave propagation taken in the x direction.

Hence equation (5.1) can be integrated to yield

vj = V

(
1 − no

nj

)
+
novj0
nj

. (5.5)

The plasma is assumed to be undisturbed at ξ → ∞, and therefore the

boundary conditions njo = no, vj = vj0 and φ = 0 at ξ → ∞.

Substituting equation (5.3) into (5.2) and transforming into the wave equa-

tion with the stated boundary conditions at ξ → ∞ yields,

c2√
1 − v2e

c2

− c2√
1 − v2e0

c2

− veV√
1 − v2e

c2

+
ve0V√
1 − v2e0

c2

= −v2
teln

(
ne
no

)
+
eφ

mo

, (5.6)
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c2√
1 − v2p

c2

− c2√
1 − v2p0

c2

− vpV√
1 − v2p

c2

+
vp0V√
1 − v2p0

c2

= −v2
tpln

(
np
no

)
− eφ

mo

. (5.7)

Adding equations (5.6) and (5.7) and using equation (5.5) yields,

v2
telnNe +

c2[Ne − V 2

c2
(Ne − 1 + ve0

V
)]√

N2
e − V 2

c2
(Ne − 1 + ve0

V
)2

− (c2 − V ve0)√
1 − v2e0

c2

= −v2
tplnNp −

c2[Np − V 2

c2
(Np − 1 + vp0

V
)]√

N2
p − V 2

c2
(Np − 1 + vp0

V
)2

+
(c2 − V vp0)√

1 − v2p0

c2

,

(5.8)

where Ne = ne/no and Np = np/no are the normalized densities of the elec-

trons and positrons respectively.

The Poisson’s equation in the wave frame then becomes

(
e

mo

)
d2φ

dξ2
= ω2

p(Ne −Np) , (5.9)

where ωp = (noe
2/ε0mo)

1/2 is the plasma frequency.

Defining

φe =
eφ

mo

= v2
telnNe +

c2[Ne − V 2

c2
(Ne − 1 + ve0

V
)]√

N2
e − V 2

c2
(Ne − 1 + ve0

V
)2

− (c2 − V ve0)√
1 − v2e0

c2

(5.10)
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and

φp = − eφ

mo

= v2
tplnNp +

c2[Np − V 2

c2
(Np − 1 + vp0

V
)]√

N2
p − V 2

c2
(Np − 1 + vp0

V
)2

− (c2 − V vp0)√
1 − v2p0

c2

, (5.11)

the Poisson’s equation (5.9) becomes

d2φe
dξ2

= ω2
p(Ne −Np) . (5.12)

Integrating the above once w.r.t. ξ and solving, one obtains

1

2

(
dNe

dξ

)2

+ ψ(Ne) = 0 , (5.13)

where

ψ(Ne) =
G(Ne)(
dφe
dNe

)2 (5.14)

is the Sagdeev potential, with,

−G(Ne) = ω2
p

[∫ ∞

−∞
Ne
dφe
dξ

dξ +

∫ ∞

−∞
Np

dφp
dξ

dξ

]
. (5.15)
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The normalized Sagdeev potential is then found to be

ψ(Ne) =

2 −Ne −Np − c2M2

[
[1−Ne+

ve0
M

(Ne−2+
ve0
M

)]

[N2
e−M2(Ne−1+

ve0
M

)2]1/2 +
[1−Np+

vp0
M

(Np−2+
vp0
M

)]

[N2
p−M2(Np−1+

vp0
M

)2]1/2

]
[

1

Ne

− c2M2(1− ve0
M

)2

(N2
e−M2(Ne−1+

ve0
M

)2)
3/2

]2 ,

(5.16)

where vj0 is normalized with respect to c for the jth species and M = V/c is

the normalized soliton speed.

5.3.1 Numerical Results

It is noted that limitations are placed on the range of M values in equation

(5.16), i.e M2 < N2
e /(Ne − 1 + ve0

M
)2 and M2 < N2

p/(Np − 1 + vp0

M
)2. The

Sagdeev potential ψ is always zero at Ne = 1 = Np and ve0 = vp0 = 0 and

is evaluated numerically by first determining the positron density values for

varying electron density values using equation (5.8). Figure 5.1 shows the

typical form of the Sagdeev potential ψ(Ne) for various soliton speeds. For

solitons, the Sagdeev potential has to satisfy |ψ(Ne)| < 1 for N0 < Ne < 1 for

some value N0, with dψ(Ne)/d(Ne) = 0 at Ne = 1 and dψ(Ne)/d(Ne) �= 0 at

Ne = N0. Figure 5.2 shows the corresponding soliton profile after direct nu-

merical integration of equation (5.13) for different soliton speeds. The Runga

Kutta code was used for the numerical integration. As the soliton speed M

increases it is found that N0 increases, resulting in solitons with larger ampli-

tudes, as seen in (figure 5.2). Figure 5.3 shows the soliton profile for various

c/vth values. As c/vth increases, the soltion amplitude decreases. The soli-
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tons become narrower with a corresponding decrease in the half width. The

effect of the equal drift velocities of the two species is studied in figure 5.4.

An increase in the drift velocities, results in a decrease in the soliton ampli-

tude. In figure 5.5, the electrons and positrons are shown drifting in opposite

directions. It is noted that there is a similar trend when compared to the

electrons and positrons having equal drifts. Figure 5.6 is an existence dia-

gram showing the soliton amplitudes (NA) as a function of the normalized

soliton speed. The figure was constructed in the following manner. For each

value of c/vth, the range of M values for which solitons were possible were

established. The figure represents the amplitudes of the solitons as a function

of M . For a fixed value of c/vth, no solutions exist to the left (Mmin) and

the right (Mmax) of the endpoint M -values of the particular curve. It is seen

from the figure that as c/vth increases, the range of M for soliton structures

to exist decreases. In addition, Mmin increases with c/vth.
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Figure 5.1: The Sagdeev potential for normalized soliton speeds M = 0.01

(solid), 0.03 (dotted) and 0.05 (broken). The fixed parameters are ve0/c =

vp0/c = 0.1 and c/vth = 10.0.
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Figure 5.2: Soliton profile for M = 0.01 (solid), 0.03 (dotted), 0.05 (broken)

with ve0/c = vp0/c = 0.1 and c/vth = 10.0.
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Figure 5.3: Soliton profile for c/vth = 10.0 (solid), 13 (dotted), 15 (broken)

with normalized soliton speed M = 0.05 and ve0/c = vp0/c = 0.1.
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Figure 5.4: Soliton profile for drift velocities values ve0/c = vp0/c = 0.10

(solid), ve0/c = vp0/c = 0.105 (dotted), ve0/c = vp0/c = 0.11 (broken). The

fixed parameters are M = 0.02 and c/vth = 10.0.
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Figure 5.5: Soliton profile for drift velocities values ve0/c = 0.10, vp0/c =

−0.10 (solid), ve0/c = 0.105, vp0/c = −0.105 (dotted), ve0/c = 0.11, vp0/c =

−0.11 (broken). The fixed parameters are M = 0.02 and c/vth = 10.0.
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Figure 5.6: The maximum soliton amplitude as a function of the normalized

soliton speed for c/vth = 10.0 (solid), 13 (dotted) and 15 (broken) with

ve0/c = vp0/c = 0.1.
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5.4 Small Amplitude Theory

Finally, it is briefly shown how an analytical solution for the soliton structure

corresponding to the plasma model presented in section 5.3 may be obtained

using small amplitude theory. Since an arbitrary amplitude theory (section

5.3) covers all parameter ranges, no attempt is made to numerically compare

the results in this section with the previous section. The exercise is merely

to seek an analytical expression for the soliton structure.

To study the properties of stationary small amplitude solitary waves, once

again equations (5.1) − (5.4) are transformed to a stationary frame moving

with velocity V , the phase velocity of the wave, i.e., ξ = x − V t. Substi-

tuting the above transformation into equations (5.1) − (5.4), and using the

boundary conditions, vj = vj0, nj = 1, and φ = 0 at ξ = ∞, where vj0 are

the equilibrium drift speeds for the jth species, one obtains

nj =
V − vj0
V − vj

(5.17)

and

−αjφ = ln(nj) +
c2 − V vj√
1 − v2

j/c
2
− c2 − V vj0√

1 − v2
j0/c

2
. (5.18)

Proceeding with the small amplitude analysis, the densities nj = nj(φ) are
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expanded as follows

nj = nj0 +
∂nj
∂φ

φ+
∂2nj
∂φ2

φ2

2
+ ........ (5.19)

Using equations (5.17) and (5.18), one obtains the coefficients

∂nj
∂φ

=
−αj

1 − (V−vj0)2

(1−v2j0/c2)3/2

(5.20)

and

∂2nj
∂φ2

=
1 − 3(V−vj0)

2(1−V vj0

c2
)

(1−v2j0/c2)5/2[
1 − (V−vj0)2

(1−v2j0/c2)3/2

]3 , (5.21)

which have to be read in conjunction with equation (5.17).

Substituting equations (5.20) and (5.21) into equation (5.19), the Poisson’s

equation (5.4) becomes

∂2φ

∂ξ2
= (N1 + P1)φ+ (N2 − P2)φ

2 . (5.22)

Integration of equation (5.22), yields,

1

2
(
dφ

dξ
)2 = (N1 + P1)

φ2

2
+ (N2 − P2)

φ3

6
, (5.23)

which yields

φ = φ0sech
2

(
ξ

W

)
, (5.24)
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where the soliton amplitude

φ0 =
3(N1 + P1)

(P2 −N2)
(5.25)

with

N1 =
1

1 − (V−ve0)2

(1−v2e0/c2)3/2

, P1 =
1

1 − (V−vp0)2

(1−v2p0/c
2)3/2

(5.26)

and

N2 =
1 − 3(V−ve0)2(1−V ve0

c2
)

(1−v2e0/c2)5/2[
1 − (V−ve0)2

(1−v2e0/c2)3/2

]3 , P2 =
1 − 3(V−vp0)2(1−V vp0

c2
)

(1−v2p0/c
2)5/2[

1 − (V−vp0)2

(1−v2p0/c
2)3/2

]3 , (5.27)

where the width of the solitons W is given by W = 2√
N1+P1

.

Equation (5.24) shows the localized solution in the form of the well-known

square hyperbolic secant for small wave amplitudes (Shukla and Yu, 1978;

Lakshmi et al., 1997; Gill et al., 2007). It is noted from equation (5.27)

that for zero or equal drift for the two species, N2 = P2 and consequently

the second term in equation (5.23) vanishes, which implies expansions to

higher orders in finding an analytical solution. However, if the two species

are counter-streaming then the small amplitude solutions are admissible.
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5.5 Discussion

In this chapter the existence of both arbitrary and small amplitude soli-

tons in a relativistic electron-positron plasma have been investigated. This

model consists of equilibrium electron and positron densities ne0 and np0

respectively, and equal electron and positron temperatures denoted by T .

The Sagdeev pseudo-potential method is used to derive the energy-integrals

for arbitrary amplitude solitons and their profiles studied as functions of

plasma parameters. Numerical results are presented showing that the elec-

trostatic fluctuations can propagate as nonlinear soliton-like structures. For

our model, an increase in the soliton speed results in an increase in the soli-

ton amplitude. For warmer electron-positron plasmas ((c/vth) decreasing),

the results show that the soliton amplitude increases. Increasing c/vth also

results in a decrease in the soliton half widths. As the drift velocities in-

crease it is also noted that the soliton amplitude decreases. This trend is the

same when the electrons and positrons are drifting in opposite directions.

Existence curves for soliton structures show that when c/vth in increased

the range of soliton speeds M decreases, with the minimum value of M in-

creasing when c/vth increased. Using small amplitude theory, an analytical

expression for the soliton structure is derived. These small amplitude solitary

waves in relativistic electron-positron plasmas are shown to exist specifically

for counter-streaming species.
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Chapter 6

Summary

Several aspects of linear and nonlinear waves in electron-positron plasmas

have been studied in this thesis. In Chapter 2, fluid and kinetic theory

approaches are used to investigate linear waves in a four-component two

temperature electron-positron plasma. Wave propagation is taken oblique to

the ambient magnetic field. In the fluid theory model, the hot species are

described by the Boltzmann density distribution and the cooler species by

the fluid equations with finite temperatures. For purely perpendicular propa-

gation, the results in this study show that there exists only a cyclotron mode

with the acoustic mode vanishing (ω = 0). In the short wavelength limit

(k2λ2
D � 1), there exists an upper hybrid mode with only the cooler species

contributing to the wave dynamics while in the opposite long wavelength limit

(k2λ2
D � 1) a cyclotron mode exists with contributions from both the hot

and the cooler species. For purely parallel propagation, a constant frequency

non-propagating (ω = Ω) oscillation and an acoustic mode exist. In the long
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wavelength limit, for the latter mode both the temperature and density ratios

contribute to the dynamics of the wave. In the short wavelength limit, the

dispersion relation reduces to the well known Langmuir wave for an electron-

positron plasma, as obtained by Zank and Greaves (1995), with contributions

only from the cooler species. In the model presented in this thesis, it is found

that the linear portions of the dispersion curves have a smaller slope when

compared to the corresponding curves for the two species, single temperature

model of Zank and Geaves (1995). For small wavenumbers (kλD � 1), there

is also a sharp rise in the dispersion curves, which is due to the contribution

of the second species. It is noted that this is a particular feature of the four

component two temperature electron-positron plasma and is not present in

the results of Zank and Greaves (1995) in their two component model. Using

kinetic theory, the real frequency for the acoustic mode is obtained through

appropriate expansions and is found to be in very good agreement with that

derived from fluid theory. The modes were also found to be unstable, where

the instability is driven by the energy provided by the hot species having a

velocity Voh parallel to the ambient magnetic field Bo. However, given that

the acoustic mode is a micro-instability arising from resonances in velocity

space, Landau damping effects are found to be important for this wave in

the kinetic theory approach. As the temperature ratio Tc/Th increases, the

associated Landau damping increases, resulting in the overall growth rate

being reduced. An increase in the drift velocity of the hot species (Voh),

results in an increase in the growth rate since the free energy required to

drive the instability increases. The overall growth rate is enhanced when the
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magnetic field strength (Bo) is increased. A possible physical explanation

for this behaviour is that the charged particles are more strongly tied to the

field lines with increasing Bo and hence are hindered in moving oblique to

the field lines to suppress the instability. Increasing the propagation angle θ

relative to the ambient magnetic field results in a decrease in the growth rate.

In chapter 3 the study moved into the nonlinear regime and the existence

of solitary waves was investigated. The model considered is the same as

that described in chapter 2. Using the reductive perturbation technique, a

modified KdV-ZK (mKdV-ZK) equation for nonlinear electrostatic modes

was derived and an exact analytical solution was determined for the soliton

potential structures. The soliton structures was then studied for different

parameters. It was found that propagation at larger angles to the ambient

magnetic field enhanced the soliton amplitude. An increase in the cool to hot

density ratios (Nc/Nh) resulted in an increase in the soliton amplitude for a

fixed temperature. Also, for a fixed density, as the ratio of the cool to hot

temperatures (Tc/Th) decreased, the soliton amplitude increased. These find-

ings have already been published in the Journal of Plasma Physics (Lazarus

et al., 2008) and are consistent with similar independent studies published

in the literature.

In chapter 4, various four-component electron-positron plasma models were

used to explore the existence of nonlinear electric field structures in the form

of solitary waves. The objective of the study was to investigate if the elec-
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trostatic solitary waves (ESWs) observed (in electron-ion plasmas) in the

Broadband Electrostatic Noise (BEN) in different regions of the earth’s mag-

netosphere, could also be a feature of electron-positron plasmas. In Model

1, the hot species are described by the Boltzmann density distribution and

the cold species by the fluid equations. Model 2 includes the full dynam-

ics of all species described by the fluid equations, but with Tc = 0 for the

cold species. All species having finite nonzero temperatures were examined

in Model 3. The fixed plasma parameters used in this study are similar to

those used in electron-ion plasmas. In solving the set on nonlinear equa-

tions, it was found that when the amplitude of the driving electric field was

increased, the waveform progressed from a linear sinusoidal to a sawtooth

to a highly spiky bipolar structure, similar to earlier studies in electron-ion

plasmas. These nonlinear structures arise from the coupling of the acoustic

wave and cyclotron wave, which result from the convective derivative terms

vjx(∂vjy/∂x) and vjx(∂vjz/∂x) in the fluid momentum equations. It is seen

that an increase in the Mach number causes the nonlinearity of the wave to be

suppressed. Hence for larger values of M , a stronger electric field value (E0)

is required in order to generate the spiky bipolar structures. It is also noted

that the period of the wave decreases as the Mach number increases. When

the cool to hot density ratio is increased the waveform becomes more non-

linear, with increasing periodicity. For larger values of the density ratio with

a fixed Mach number, a smaller driving electric field is required to generate

the spiky structure. It is also noted that for a fixed E0 value, as the density

of the cold species increases, the M -value required for the onset of the spiky
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ESWs increases. The relative drift velocities of the electrons and positrons is

found to affect the periodicity of the nonlinear electrostatic waves. The cold

electron and positron drift velocities in moving from anti-parallel to parallel

to B0 results in an increase in the pulse width and the period of the spiky

structures. This effect is opposite for the hot electron and positron drift

velocities where anti-parallel to parallel flow decreases the pulse width and

the period of the spiky structure. However, the ratio of the pulse width and

the period of the waves (w/T ) was calculated to be a constant, consistent

with satellite observations by Kojima et al. (1994). Increasing the propaga-

tion angle with respect to the ambient magnetic field causes the waveform to

become distorted, with a transition from a single spike to a double-humped

feature. The inclusion of finite temperatures for the cold species is found to

broaden the waves, with the periodicity increasing with an increase in the

cool to hot temperature ratio. In comparing all three models, it is noted that

better enhanced spikes are obtained using model 2 and model 3, where the

hot species are described by the fluid equations compared to model 1, where

they are described by the Boltzmann density distribution. It is also noted

that due to the assumption of the Boltzmann density distribution for the

hot species, model 1 is restrictive and the generation of the ESWs are only

possible for large values of R = ωp/Ω (=160) compared to model 2 and model

3 where these structures are possible for a much lower value of R (=10), i.e.

a more strongly magnetized plasma in comparison to model 1.
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In Chapter 5 the focus moved to relativistic plasmas. The existence of both

arbitrary and small amplitude solitons in a two component, unmagnetized,

warm relativistic electron-positron plasma was investigated. For the arbi-

trary amplitude studies the Sagdeev pseudo-potential method was adopted.

Here, the soliton amplitude was found to increase with an increase in the

soliton speed. On the other hand, the soliton amplitude decreased when the

drift velocities of the two species were increased, as well as when c/vth was

increased, i.e. the thermal velocity vth decreased relative to the speed of

light c. It is also noted that as c/vth increased, the range of soliton speeds for

soliton structures to exist decreased, with the minimum value of M increas-

ing with c/vth. Next, in a brief study, through an expansion of the Sagdeev

potential for small amplitudes, an exact analytical expression was obtained

for the nonlinear wave potential, namely, φ = φ0sech
2
(
ξ
W

)
. Here, small am-

plitude solitons are shown to exist for counter-streaming species.

The above set of studies lends itself to exploring three component electron-

positron-ion plasmas. From the recent literature, it is noted that several

theoretical studies have been undertaken in electron-positron-ion plasmas

in an attempt to model such laboratory plasmas. Therefore it will be of

interest to extend the work presented here for pure electron-positron plasmas

to include the ion dynamics and study the effect on the waves. Moreover,

by including magnetic field perturbations, the entire spectrum of linear and

nonlinear electromagnetic waves may be studied.
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Appendix A

Derivation of the Kinetic Dispersion Relation

Here we derive the kinetic dispersion relation for the general case where

k = (kx, ky, kz). In doing so, the magnetic field B0 is taken in the z-direction,

i.e. B = B0ẑ.

An isotropic, drifting Maxwellian velocity distribution, with temperatures Tj

drifting parallel to the magnetic field, B0 = B0ẑ, with drift velocities Voj is

considered (figure A.1).

The equilibrium velocity distribution for the species are given by,

fα0 =
nα0

(2πv2
tj)

3
2

exp

{−[V 2
x + V 2

y + (Vz − Voj)
2]

2v2
tj

}
, (A.1)

where j = c(h) for the cool (hot) species and α = ec, pc, eh and ph for the

cool electrons, cool positrons, hot electrons and hot positrons respectively
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and where vtj = (Tj/m)
1
2 is the thermal velocity of the jth species.

x

Bo Voj 

0 y

z

Figure A.1

Introducing the following small perturbations about the equilibrium quanti-

ties,

fα = fα0 + fα1

E = E0 + E1

B = B0 + B1

nα = nα0 + nα1

and linearizing the Vlasov equation

∂fα
∂t

+ V.∇fα +
qα
m

(E + V × B).
∂fα
∂V

= 0, (A.2)

yields

∂fα1

∂t
+ V.∇fα1 +

qα
m

E1.
∂fα0

∂V
+
qα
m

(
E0 + V × B0

)
.
∂fα1

∂V
= 0, (A.3)
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where the equation of motion for the electrons and positrons are given by,

m
dV

dt
= qα {E + V × B} . (A.4)

For electrostatic modes, E1 = −∇φ1 since B1 = 0 and E0 = 0. Hence

equation (A.3) becomes,

dfα1

dt
=
qα
m
∇φ1.

∂fα0

∂V
, (A.5)

where the operator d
dt

= [ ∂
∂t

+ V.∇ + qα
m

(E0 + V × B0)
∂
∂V

] is defined as the

rate of change following an unperturbed orbit in phase space (Gary et al.,

1970).

Integrating along the unperturbed orbits equation (A.5) becomes,

fα1(r,V, t) =
qα
m

∫ t

−∞
∇φ1(r

′, t′).
∂fα0(V

′)
∂V′ dt′, (A.6)

where

V′ =
dr′

dt′
,

dV′

dt′
=
qα
m

[V′ × B0]

and

r′(0) = r, V′(0) = V.

For perturbations that are harmonic in space and time,

fα1(r,V, t) = fα1(V) exp {i(k.r − ωt)} (A.7)

and

φ1(r, t) = φ1kω exp {i(k.r − ωt)} . (A.8)
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Assuming that the plasma to be undisturbed at t = −∞, the differentiation

of equation (A.1) yields,

∂fα0

∂V′ = −Veqfα0(V
′), (A.9)

where

Veq =

[
V ′
x

v2
tj

,
V ′
y

v2
tj

,
V ′
z − Vojz
v2
tj

]
.

Substitution of equations (A.7)-(A.9) into equation (A.6), with ∇φ1(r
′, t′) =

ikφ1(r
′, t′), yields,

fα1(r,V, t) = −iqα
m
fα0(V

′)
∫ t

−∞
k.Veqφ(r′, t′)dt′. (A.10)

The solution of the equation of motion (A.4) yields,

V ′
x = V ′

⊥ cos(−Ωt′ + θ)

V ′
y = V ′

⊥ sin(−Ωt′ + θ)

V ′
z = constant

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A.11)

where V ′
⊥ =

{
(V ′

x)
2 + (V ′

y)
2
} 1

2 is the velocity perpendicular to the magnetic

field lines and Ωα = qαBo/m are the gyrofrequences of the electrons and

positrons. The configuration at t′ = 0 is illustrated in figure A.2.

Resolving the wave vector k into components parallel and perpendicular to
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B0 (figure A.3),

k = [kx, ky, kz] = [k⊥ cos Ψ, k⊥ sin Ψ, kz] . (A.12)

Hence

k.Veq =
k⊥V ′

⊥
v2
tj

cos(Ωt′ + Ψ − θ) +
kz(V

′
z − Vojz)

v2
tj

. (A.13)

x 

Bo

Vy 0

Vy V  

y

z

Figure A.2

x 

kz 

0

k  k
  

y

z

Figure A.3
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Using equations (A.7) and (A.13), equation (A.10) becomes,

fα1(r,V, t) = fα1(V) exp {i(k.r − ωt)} .

= −iqα
m
fα0(V

′)
[
k⊥V ′

⊥
v2
tj

∫ t

−∞
φ1 cos(Ωt′ + Ψ − θ)dt′ +

kz(V
′
z − Vojz)

v2
tj

∫ t

−∞
φ1dt

′
]
.

Evaluating the above equation at t = 0 yields

fα1(V) = −iqα
m
fα0(V)φ1kω

[
k⊥V⊥
v2
tj

∫ 0

−∞
cos(Ω′t′ + Ψ − θ) exp {i(k.(r′ − r) − ωt′)} dt′

+
kz(Vz − Vojz)

v2
tj

∫ 0

−∞
exp {i(k.(r′ − r) − ωt′)} dt′

]
.

(A.14)

Solving equations (A.11) with r′(0) = r = [x0, y0, z0], the approximate orbit

equations are

r′ − r =
V ′
⊥

Ω
[− sin(−Ωt′ + θ) + sin θ] x̂

+

[
V ′
⊥

Ω
{cos(−Ωt′ + θ) − cos θ}

]
ŷ + [V ′

z t
′] ẑ. (A.15)

Using equations (A.12) and (A.15), the second integral in equation (A.14)

becomes ∫ 0

−∞
exp [iμ sin(θ − Ψ)] exp [−iμ sin(θ − Ψ − Ωt′)]

× exp [i(k.Voj + kz(V
′
z − Vojz) − ω] t′dt′, (A.16)
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where μ =
k⊥V ′

⊥
Ω

.

Using the identity (Watson, 1944),

exp(iμ sin β) =
∞∑

p=−∞
exp(ipβ)Jp(μ), (A.17)

where Jp is the ordinary Bessel function of the first kind of order p, equation

(A.16) becomes,

∞∑
p=−∞

∞∑
q=−∞

{
exp [i(p− q)(θ − Ψ)] Jp(μ)Jq(μ)

i [qΩ + k.Voj + kz(Vz − Vojz) − ω]

}
. (A.18)

Using the identity

cos β =
eiβ + e−iβ

2
, (A.19)

the first integral in equation (A.14) can be separated into parts yielding∫ 0

−∞

{
1

2
exp [i(Ωt′ + Ψ − θ)] exp [i [k.(r′ − r) − ωt′]]

}
dt′. (A.20)

Using equations (A.16) and (A.17) the first part of equation (A.14) becomes,

1

2

∞∑
p=−∞

∞∑
q=−∞

exp [i(p− q − 1)(θ − Ψ)] Jp(μ)Jq(μ)

i [(q + 1)Ω + k.Voj + kz(Vz − Vojz) − ω]
(A.21)

Similarly the second part yields

1

2

∞∑
p=−∞

∞∑
q=−∞

exp [i(p− q + 1)(θ − Ψ)] Jp(μ)Jq(μ)

i [(q − 1)Ω + k.Voj + kz(Vz − Vojz) − ω]
(A.22)
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Substituting equations (A.18), (A.21) and (A.22) into equation (A.14) yields,

fα1(V) = −qα
m
fα0(V)φ1kω

[
k⊥V⊥
2v2

tj

∞∑
p=−∞

∞∑
q=−∞

Jp(μ)Jq(μ)×

{
exp {i(p− q − 1)(θ − Ψ)}

(q + 1)Ω + k.Voj + kz(Vz − Vojz) − ω
+

exp {i(p− q + 1)(θ − Ψ)}
(q − 1)Ω + k.Voj + kz(Vz − Vojz) − ω

}

+kz
(Vz − Vojz)

v2
tj

∞∑
p=−∞

∞∑
q=−∞

exp {i(p− q)(θ − Ψ)} Jp(μ)Jq(μ)

qΩ + k.Voj + kz(Vz − Vojz) − ω

]
.(A.23)

The perturbed beam density for the electrons and positrons are given by

nα1(r, t) = nα1kω exp {i(k.r − ωt)} =

∫
fα1(V)d3V (A.24)

The integral in equation (A.24) can be evaluated by first transforming to

cylindrical coordinates in velocity space with

d3V = V⊥dV⊥dVzdθ

The triple integral in equation (A.24) can be separated into three parts.

Using the expression (A.1) for the equilibrium velocity distribution fα0(V),

the first part yields,

−πqαφ1kωk⊥nα0

Tj(2πv2
tj)

3
2

∞∑
p=−∞

∫ ∞

0

⎡⎣∫ ∞

−∞

exp
{
− (Vz−Vojz)2

2v2j

}
pΩ + k.Voj + kz(Vz − Vojz) − ω

dVz

⎤⎦×

exp

{
− V 2

⊥
2v2

tj

}
Jp(μ)Jp−1(μ)V 2

⊥dV⊥,

(A.25)

where we have used v2
tj = Tj/mi, and the result
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∫ 2π

0

exp [i(p− q − 1)θ] dθ =

⎧⎨⎩ 0, p �= q + 1

2π, p = q + 1.
(A.26)

Introducing the plasma dispersion function , also known as the Z- function

(Fried and Conte 1961)

Z(λ) =
1√
π

∫ ∞

−∞

e−x
2

x− λ
dx

for Im(λ) > 0 or alternatively as

Z(λ) = 2ie−λ
2
∫ iλ

−∞
e−t

2

dt. (A.27)

Expressing the integral in equation (A.25) in terms of the Z-function yields

−πqαφ1kωk⊥nα0

Tj(2πv2
tj)

3
2

√
π

kz

∞∑
p=−∞

∫ ∞

0

Jp(μ)Jp−1(μ)Z

[
ω − k.Voj − pΩ√

2kzvtj

]
× exp

{
− V 2

⊥
2v2

tj

}
V 2
⊥dV⊥. (A.28)

Similarly the second part of the integral in equation (A.24) yields

−πqαφ1kωk⊥nα0

Tj(2πv2
tj)

3
2

√
π

kz

∞∑
p=−∞

∫ ∞

0

Jp(μ)Jp+1(μ)Z

[
ω − k.Voj − pΩ√

2kzvtj

]
× exp

{
− V 2

⊥
2v2

tj

}
V 2
⊥dV⊥. (A.29)
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The last part of the integral becomes

−qαnα0φ1kω
Tjv2

tj

∞∑
p=−∞

[1 + zpjZ(zpj)] exp

{
− V 2

⊥
2v2

tj

}
J2
p (μ)V⊥dV⊥, (A.30)

where

zpj =
ω − k.Voj − pΩ√

2kzvtj
.

Combining the results (A.28)-(A.30), yields

nα1kω = −qαnα0φ1kω
v2
tj

{
1

Tj
√

2kzvtj

∞∑
p=−∞

∫ ∞

0

pΩJ2
p (μ)

Z(zpj) exp

{
− V 2

⊥
2v2

tj

}
V⊥dV⊥ +

1

Tj

∞∑
p=−∞

∫ ∞

0

J2
p (μ) [1 + zpjZ(zpj)] exp

{
− V 2

⊥
2v2

tj

}
V⊥dV⊥

}
, (A.31)

where we have used the identity (Watson, 1944),

Jp−1(μ) + Jp+1(μ) =
2p

μ
Jp(μ),

with μ = k⊥V⊥
Ω

.

Using the identity (Watson, 1944),∫ ∞

0

J2
p (βx) exp(−μx2)xdx =

1

2μ
exp(−β

2

2μ
)Ip(

β2

2μ
),
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where Ip, is the Modified Bessel function of the first kind of order p, equation

(A.31) becomes,

nα1kω = −qαnα0φikω
Tj

{
1√

2kzvtj

∞∑
p=−∞

pΩZ(zpj) exp

{
−k

2
⊥v

2
tj

Ω2

}
Ip

{
k2
⊥v

2
tj

Ω2

}

+
∞∑

p=−∞
[1 + zpjZ(zpj)] exp

{
−k

2
⊥v

2
tj

Ω2

}
Ip

{
k2
⊥v

2
tj

Ω2

}}
.

(A.32)

Letting αj = k2
⊥v

2
tj/Ω

2 and Γpj = e−αjIp(αj), equation (A.32) may be written

as

nα1kω = −qαφ1kωnα0

Tj

{
1 +

ω − k.Voj√
2kzvtj

∞∑
p=−∞

Z(zpj)Γpj.

}
(A.33)

Hence for the cool electrons, equation (A.33) can be written as

nec1kω =
eφ1kωnec0

Tc

{
1 +

ω − k.Voc√
2kzvtc

∞∑
p=−∞

Z(zpc)Γpc

}
, (A.34)

and for the cool positrons,

npc1kω = −eφ1kωnpc0
Tc

{
1 +

ω − k.Voc√
2kzvtc

∞∑
p=−∞

Z(zpc)Γpc

}
. (A.35)

For the hot electrons,
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neh1kω =
eφ1kωneh0

Th

{
1 +

ω − k.Voh√
2kzvth

∞∑
p=−∞

Z(zph)Γph

}
, (A.36)

and for the hot positrons,

nph1kω = −eφ1kωneh0
Th

{
1 +

ω − k.Voh√
2kzvth

∞∑
p=−∞

Z(zph)Γph

}
. (A.37)

The Poisson’s equation,

−ε0∇2φ = e(nec − npc + neh − nph) (A.38)

in terms of the perturbed quantities may be written as

−ε0k
2φ1kω = e(nec1kω − npc1kω + neh1kω − nph1kω). (A.39)

By substituting the density perturbations from equations (A.34)-(A.37), the

kinetic dispersion relation becomes,

0 = k2 +
2

λ2
Dc

{
1 +

ω − k.Voc√
2kzvtc

∞∑
p=−∞

Z(zpc)Γpc

}
+

2

λ2
Dh

{
1 +

ω − k.Voh√
2kzvth

∞∑
p=−∞

Z(zph)Γph

}
.

where λdj = (ε0Tj/n0je
2)1/2 are the Debye lengths, with j = c(h) for the cool

(hot) species and

zpj =
ω − k.Voj − pΩ√

2kzvtj

is the argument for the Z− function.
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Appendix B

Calculation of Initial Conditions for Model 1

The initial values of vphyn and vphzn are calculated self-consistently.

At s = 0, we have point quasi-neutrality. Therefore

necn + nehn = npcn + nphn (B.1)

Differentiating the quasi-neutrality condition gives,

∂necn
∂s

+
∂nehn
∂s

=
∂npcn
∂s

+
∂nphn
∂s

(B.2)

Substituting for neh =
neh0
n0

exp (ψ) and nph =
nph0
n0

exp (−ψ) into the above

and noting that at s = 0, ψ = 0 and E = E0, yields,

∂npcn
∂s

=

(
nph0
n0

+
neh0
n0

)
E0 +

∂necn
∂s

(B.3)

Recalling equations (4.20) and (4.23)

∂necn
∂s

=
n3
ecn

(M − δc)2

(
n0

nec0

)2[
E +M sin θvecyn

]
(B.4)
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∂npcn
∂s

=
n3
pcn

(M − δc)2

(
n0

npc0

)2[
−E −M sin θvpcyn

]
(B.5)

Substituting equations (B.4)-(B.5) into (B.3) and solving for vpcyn0 yields

vpcyn0 =

E0 −
(
n0

npc0

)−2[
(M − δc)

2E0

n3
pcn

(
nph0
n0

+
neh0
n0

)
− n3

ecn

n3
pcn

(
n0

nec0

)2(
E0 +M sin θvecyn0

)]
M sin θ

(B.6)

To calculate vpczn0 equations (4.21) and 4.24) are recalled,

∂vecyn
∂s

=
Mnecn

(M − δc)

(
n0

nec0

)[
−
(
M − (M − δc)

necn

(
nec0
n0

))
sin θ + veczn cos θ

]
(B.7)

∂vpcyn
∂s

=
Mnpcn

(M − δc)

(
n0

npc0

)[(
M − (M − δc)

npcn

(
npc0
n0

))
sin θ − vpczn cos θ

]
(B.8)

Differentiating equation (B.3) yields

∂2npcn
∂s2

= −
(
nph0
n0

− neh0
n0

)
E2

0 +
∂2necn
∂s2

(B.9)

Now differentiating equations (B.4) and (B.5) and substituting into equation

(B.9) and using equations (B.7) and (B.8) yields
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vphzn0 =
3

M2 sin θ cos θ(M − δc)

(
n0

npc0

)−3[
n5
ecn

n4
pcn

(
n0

nec0

)4(
E0 +M sin θvecyn0

)2

− npcn

(
n0

npc0

)4(
−E0 −M sin θvecyn0

)2]
+

n4
ecn

n4
pcn

(
n0

npc0

)−3(
n0

nec0

)3[
−M sin θ

cos θ
+

(
nec0
n0

)
(M − δc) sin θ

necn cos θ
+ veczn0

]
− (M − δc)

3

M2 sin θ cos θn4
pcn

(
n0

npc0

)−3(
nph0
n0

− neh0
n0

)
E2

0

+ M
sin θ

cos θ
−
(
npc0
n0

)
(M − δc) sin θ

npcn cos θ
(B.10)
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Appendix C

Calculation of Initial Conditions for Model 2

The initial values of vehyn and vehzn are calculated self-consistently.

At s = 0, we have point quasi-neutrality. Therefore

necn + nehn = npcn + nphn (C.1)

Differentiating the quasi-neutrality condition gives,

∂necn
∂s

+
∂nehn
∂s

=
∂npcn
∂s

+
∂nphn
∂s

(C.2)

Recalling equations (4.45), (4.48), (4.52) and (4.56),

∂necn
∂s

=
n3
ecn

(M − δc)2

(
n0

nec0

)2[
E +M sin θvecyn

]
∂npcn
∂s

=
n3
pcn

(M − δc)2

(
n0

npc0

)2[
−E −M sin θvpcyn

]

∂nphn
∂s

=

n3
phn

[
−E −M sin θvphyn

]
(
nph0
n0

)2

(M − δh)2 − 3pphnnphn

(C.3)
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∂nehn
∂s

=

n3
ehn

[
E +M sin θvehyn

]
(
neh0
n0

)2

(M − δh)2 − 3pehnnehn

The following are defined to simplify the calculations,

F1 =n3
ecn

[
E +M sin θvecyn

]
F2 =

(
nec0
n0

)2

M − δc)
2

F3 =n3
ehn

F4 =

(
neh0
n0

)2

(M − δh)
2 − 3pehnnehn

F5 =n3
pcn

[
−E −M sin θvpcyn

]
F6 =

(
npc0
n0

)2

(M − δc)
2

F7 =n3
phn

[
−E −M sin θvphyn

]
F8 =

(
nph0
n0

)2

(M − δh)
2 − 3pphnnphn

(C.4)

This implies,

F1

F2

+
F3

F4

[
E +M sin θvehyn

]
=
F5

F6

+
F7

F8

(C.5)

From the above the initial value of vehyn is determined to be,

vehyn0 =

−E +

(
F5

F6

+
F7

F8

− F1

F2

)(
F4

F3

)
Msinθ

(C.6)
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To determine the initial value of vehzn the quasi-neutrality condition is dif-

ferentiated twice, i.e.

∂2necn
∂s2

+
∂2nehn
∂s2

=
∂2npcn
∂s2

+
∂2nphn
∂s2

(C.7)

Using the previous definitions, this gives

∂

∂s

(
F1

F2

)
+

∂

∂s

(
F3

F4

)[
E +M sin θvehyn

]
=

∂

∂s

(
F5

F6

)
+

∂

∂s

(
F7

F8

)
(C.8)

i.e

F3

F4

(
M sin θ

∂vehyn
∂s

)
=

∂

∂s

(
F5

F6

)
+
∂

∂s

(
F7

F8

)
− ∂

∂s

(
F1

F2

)
−
[
E+M sin θvehyn

]
∂

∂s

(
F3

F4

)
(C.9)

Recalling equations (4.46), (4.49), (4.53) and (4.57)

∂vecyn
∂s

=
Mnecn

(M − δc)

(
n0

nec0

)[
−
(
M − (M − δc)

necn

(
nec0
n0

))
sin θ + veczn cos θ

]
∂vpcyn
∂s

=
Mnpcn

(M − δc)

(
n0

npc0

)[(
M − (M − δc)

npcn

(
npc0
n0

))
sin θ − vpczn cos θ

]
∂vphyn
∂s

=
Mnphn

(M − δh)

(
n0

nph0

)[(
M − (M − δh)

nphn

(
nph0
n0

))
sin θ − vphzn cos θ

]
∂vehyn
∂s

=
Mnehn

(M − δh)

(
n0

neh0

)[
−
(
M − (M − δh)

nehn

(
neh0
n0

))
sin θ + vehzn cos θ

]
(C.10)

Substituting for
∂vecyn
∂s

,
∂vpcyn
∂s

,
∂vphyn
∂s

,
∂vehyn
∂s

and performing the differen-

tiation of equation (C.9), the initial value for vehzn is:
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vehzn0 =

[
M −

(
neh0
n0

)
(M − δh)

nehn

]
sinθ

cosθ
+

F4

F5

(
neh0
n0

)
(M − δh)

M2sinθcosθnehn

×
[
∂

∂s

(
F5

F6

)
+

∂

∂s

(
F7

F8

)
− ∂

∂s

(
F1

F2

)
−
(
E +M sin θvehyn0

)
∂

∂s

(
F3

F4

)]
(C.11)
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Appendix D

Calculation of Initial Conditions for Model 3

To calculate the initial values of vechn and veczn, self-consistently the same

procedure in Appendix C is followed, with the cool electron and position

temperatures included.

At s = 0, we have point quasi-neutrality. Therefore

necn + nehn = npcn + nphn (D.1)

Differentiating the quasi-neutrality condition gives,

∂necn
∂s

+
∂nehn
∂s

=
∂npcn
∂s

+
∂nphn
∂s

(D.2)

Recalling equations (4.72), (4.76), (4.81) and (4.85),

∂necn
∂s

=

n3
ecn

[
E +M sin θvecyn

]
(
nec0
n0

)2

(M − δc)2 − 3
Tc
Th
pecnnecn
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∂npcn
∂s

=

n3
pcn

[
−E −M sin θvpcyn

]
(
npc0
n0

)2

(M − δc)2 − 3
Tc
Th
ppcnnpcn

∂nphn
∂s

=

n3
phn

[
−E −M sin θvphyn

]
(
nph0
n0

)2

(M − δh)2 − 3pphnnphn

∂nehn
∂s

=

n3
ehn

[
E +M sin θvehyn

]
(
neh0
n0

)2

(M − δh)2 − 3pehnnehn

(D.3)

Using the following definitions,

G1 =n3
ecn

[
E +M sin θvecyn

]
G2 =

(
nec0
n0

)2

(M − δc)
2 − 3

Tc
Th
pecnnecn

G3 =n3
ehn

G4 =

(
neh0
n0

)2

(M − δh)
2 − 3pehnnehn

G5 =n3
pcn

[
−E −M sin θvpcyn

]
G6 =

(
npc0
n0

)2

(M − δc)
2 − 3

Tc
Th
ppcnnpcn

G7 =n3
phn

[
−E −M sin θvphyn

]
G8 =

(
nph0
n0

)2

(M − δh)
2 − 3pphnnphn

(D.4)

240



Hence vehyn can be determined.

Differentiating the quasi-neutrality twice yields,

∂2necn
∂s2

+
∂2nehn
∂s2

=
∂2npcn
∂s2

+
∂2nphn
∂s2

(D.5)

Recalling equations (4.73), (4.77), (4.82) and (4.86) we have,

∂vecyn
∂s

=
Mnecn

(M − δc)

(
n0

nec0

)[
−
(
M − (M − δc)

necn

(
nec0
n0

))
sin θ + veczn cos θ

]
∂vpcyn
∂s

=
Mnpcn

(M − δc)

(
n0

npc0

)[(
M − (M − δc)

npcn

(
npc0
n0

))
sin θ − vpczn cos θ

]
∂vphyn
∂s

=
Mnphn

(M − δh)

(
n0

nph0

)[(
M − (M − δh)

nphn

(
nph0
n0

))
sin θ − vphzn cos θ

]
∂vehyn
∂s

=
Mnehn

(M − δh)

(
n0

neh0

)[
−
(
M − (M − δh)

nehn

(
neh0
n0

))
sin θ + vehzn cos θ

]
(D.6)

Following the process in Appendix C, the initial value of vehzn is calculated.
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Abstract. Solitary waves are investigated in a magnetized electron–positron
plasma consisting of equal hot and cool components of each species. The hot com-
ponents have a Boltzmann distribution and the cool components are described by
the fluid equations. A modified Korteweg–de Vries–Zakharov–Kuznetsov equation
governing the oblique propagation of nonlinear electrostatic modes is derived using
the reductive-perturbation technique. Soliton amplitudes are studied as a function
of plasma parameters such as the particle number densities and the temperatures.
Such results may be of relevance to the magnetosphere of pulsars.

1. Introduction
Electron–positron plasmas play a significant role in the understanding of the early
universe (Rees 1983), active galactic nuclei (Miller and Witta 1987), gamma ray
bursts (GRBs; see Piran (2004)), pulsar magnetospheres (Goldreich and Julian
1969; Michel 1982) and in the Solar atmosphere (Tandberg and Emslie 1988). In
the case of pulsars, for instance, high-energy particles are accelerated along the
pulsar magnetic field and they emit curvature photons, which in turn generate new
electron–positron pairs (Beskin et al. 1983).
Many investigations into electron–positron plasma behaviour have focused on

the relativistic regime. However, it is plausible that non-relativistic astrophysical
electron–positron plasmas may exist, given the effect of cooling by cyclotron emis-
sion (Bhattacharyya et al. 2003). Electron–positron laboratory plasmas are useful
for simulating astrophysical plasmas and studying fundamental electron–positron
behaviour. Owing to the progress in pure positron production (Boehmer 1994;
Greaves et al. 1994), it is now possible to perform experiments on a variety of
electron–positron pair plasmas (Greaves and Surko 1995; Liang et al. 1998; Wilks
et al. 2005).
New generation laser–plasma systems, where lasers can reachmuch higher intens-

ities, also make it possible to model astrophysical plasma conditions in a laboratory
environment (Remington 2005). These laser–plasma systems have been suggested
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as sources of high-intensity radiation, where particles are accelerated to relativistic
velocities. Such systems could therefore form the basis of electron–positron pair
creation (Alkofer et al. 2001; Ringwald 2001; Roberts et al. 2002). As pair plasmas
give rise to radiowave emission, with large energy scales, pulsar atmospheres are
likely to host other quantum electrodynamical effects as well, such as vacuum non-
linearities in the form of photon–photon scattering (Marklund and Shukla 2006).
More recently, laboratory experiments have been carried out on an alternative form
of pair plasma, namely fullerene pair plasmas (Oohara et al. 2005).
Pair plasmas are characterized as fully ionized gases with particles of equal

and opposite charge and having equal mass. The equality in masses means that
only one frequency scale exists and hence, owing to the symmetry, the analysis
is simplified. The nonlinear behaviour of waves propagating in electron–positron
plasmas has been investigated in a number of studies. For instance, Gedalin et al.
(1985) investigated nonlinear wave conversions in electron–positron plasmas in
a very strong magnetic field. They showed that the nonlinear Landau damping
phenomena related to Čerenkov resonances as well as cyclotron resonances, causes
large frequency shifts. Stenflo et al. (1985) studied the nonlinear propagation of
field-aligned circularly polarized electromagnetic waves in an electron–positron
plasma. They discussed the modulational instabilities and wave localization and
showed that a new class of cusped solitons are possible. Owing to multidimensional
effects, Yu et al. (1986) showed that a new class of nonlinear structures, namely the
travelling Alfvén vortex, can also exist in strongly magnetized electron–positron
plasmas. Bharuthram (1992) investigated the existence of double layers in an un-
magnetized electron–positron plasma. This asymmetric model consisted of hot and
cool electrons and hot positrons, all of which were assumed to be Boltzmann-
distributed, while the cold positrons, treated as very cold, were described by the
fluid equations. Pillay and Bharuthram (1992) then investigated the possibility of
large-amplitude solitons where both the cold electrons and positrons, which are
strictly cold, were now described by the fluid equations. Verheest et al. (1996),
considered an unmagnetized symmetric two-temperature electron–positron plasma
with equal electron and positron densities of the cool species at temperature Tc, and
similarly equal densities of the two hot species at temperature Th. They described
the two hot species with the Boltzmann distribution and treated the two cool
species as fluids. The Sagdeev potential method was used to explore the existence
and properties of nonlinear, arbitrary amplitude electrostatic potential structures.
The Boltzmann assumption was shown to impose upper limits on the density and
temperature of the cool species, and hence only small amplitude soliton structures
were found to be possible. Misra and Chowdhury (2003) investigated the nonlinear
interaction of electromagnetic pulses in an electron–positron plasma and showed
that the electromagnetic wave envelope is governed by a coupled Schrödinger equa-
tion which also possesses solitary wave-like solutions.
We also note that nonlinear low-frequency structures have been studied in

electron–ion plasmas. For instance, in one of the earlier studies, Shukla and Yu
(1978) investigated a two-component magnetized electron–ion plasma. They found
that finite-amplitude ion-acoustic solitary waves propagate obliquely to an ex-
ternal magnetic field. More recently, these structures have been studied in three-
component plasmas consisting of electrons, ions and positrons. Popel et al. (1995)
showed that the presence of positrons in an unmagnetized plasma, in the supersonic
region, decreased the amplitude of the usual ion-acoustic soliton in electron–ion
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plasmas. It is interesting to note that in amagnetized electron–positron–ion plasma,
and in the subsonic region, the presence of positrons increased the ion-acoustic
soliton amplitude (Mahmood et al. 2003).
In this paper, we investigate the properties of nonlinear electron–positron solitons

in a magnetized, two-temperature, electron–positron plasma, allowing for propaga-
tion at oblique angles to the magnetic field. The symmetric four-component, two-
temperature pair plasma, formed by the mixing of two simple pair plasmas with
different temperatures, could exist on a timescale shorter than the thermalization
time. Using the reductive-perturbation technique, we derive a modified Korteweg–
de Vries–Zakharov–Kuznetsov (mKdV-ZK) equation for solitary structures, and
study the soliton structure as a function of the plasma parameters.
The paper is structured as follows. In Sec. 2, the basic equations for the electron–

positron plasma are presented. Section 3 provides an analytical derivation of the
mKdV-ZK equation. In Sec. 4, we present the numerical results and discuss the
limitations of the model. A summary of our findings is presented in Sec. 5.

2. Theory
We consider a homogeneousmagnetized, four-component electron–positron plasma,
consisting of cool electrons and positrons with equal temperatures and equilibrium
densities denoted by Tc and Nc, respectively, and hot electrons and positrons with
equal temperatures and equilibrium densities denoted by Th and Nh, respectively.
We note that the electron distribution function may be made up of a number of
distribution functions with different characteristics, e.g. having different values
of nα (x, t), uα (x, t), Tα (x, t), etc. Thus, for instance, the electrons may be made
up of two ‘subspecies’ of electrons, primary and secondary, generated by different
mechanisms and with different temperatures. On a timescale that is short compared
with the electron thermalization time, the distribution function could then be bi-
Maxwellian, with two different temperatures. Wave propagation is at an angle θ to
the ambient magnetic field B0 , which is taken in the x-direction.
Charge neutrality at equilibrium requires for each species that

Nc + Nh = N0 . (1)

In our model the hot isothermal species have a Boltzmann distribution given by

neh = Nh exp
(

eφ

κTh

)
(2)

nph = Nh exp
(−eφ

κTh

)
, (3)

where neh (nph) is the density of the hot electrons (positrons) and φ is the electro-
static potential.
The dynamics of the cooler adiabatic species, denoted by the running subscript

α are governed by the fluid equations, namely:
• the continuity equations

∂nα

∂t
+ ∇ · (nαuα ) = 0; (4)
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• the equations of motion
∂uα

∂t
+ uα · ∇uα +

1
nαmα

∇pα = − qα

mα
∇φ + Ωαuα × ex ; (5)

• the adiabatic pressure equations
∂pα

∂t
+ uα · ∇pα + γαpα∇ ·uα = 0. (6)

The system is closed by the Poisson equation

ε0∇2φ +
∑
α

nαqα +
∑

β

Nβ qβ exp
[−qβ φ

κTβ

]
= 0, (7)

where nα , uα and pα are the densities, fluid velocities and pressures, respectively,
of the cooler species. Here qα (qβ ) are the charges of the cool (hot) species and
m = me = mp is the common mass of the electrons and the positrons. The adiabatic
compression indices are denoted by γα and the gyrofrequencies by Ωα = qαB0/m.
Linearization of (2)–(7) yields the following dispersion relation for electron–

positron plasmas

∑
α

ω2
pα

(
k2 ω̂2

α − k2
‖Ω

2
α

)
ω̂4

α − ω̂2
α

(
k2v2

Tα + Ω2
α

)
+ k2

‖v
2
TαΩ2

α

= k2 +
∑

β

1
λ2
Dβ

. (8)

We note that this is similar in form to the dispersion relation for linear modes
obtained by Verheest et al. (2002) for multi-fluid plasmas.
Here, the plasma frequencies ωpα , the Debye lengths λDβ and thermal velocities

vTα for the species α are defined as ω2
pα = Nαq2

α/ε0m, λ2
Dβ = ε0κTβ /Nβ q2

β and
v2
Tα = γαPα/Nαm, respectively. The Doppler-shifted wave frequencies are defined
as ω̂α = ω − k‖Uα , where k‖ is the component of the wavenumber parallel to the
direction of the static magnetic field.
Assuming strongly magnetized particles, and using ω2 � (k2

‖/k2)Ω2 , ω/k � vTc
and Ω � ω � kvTc, we obtain from the general expression, (8) the appropriate phase
velocity for oblique propagation as

ω

k
=

k‖
k

[(
Nc

Nh

)(
κTh
m

)] 1
2

. (9)

This expression is analogous in form to that of the electron-acoustic wave in an
unmagnetized electron–ion plasma (Gary and Tokar 1985) with the (k‖/k) factor
reflecting the effect of the magnetic field. We note that at parallel propagation the
dispersion relation reduces to∑

α

ω2
pα

ω̂2
α − k2v2

Tα

= 1 +
∑

β

1
k2λ2

Dβ

= 1 +
2

k2λ2
D

, (10)

where λ2
D = ε0κTh/Nhe

2 , which for the unmagnetized form of our two-temperature
electron–positron model yields

ω2

k2 =
2ω2

pcλ
2
dh

2 + k2λ2
dh

+
3
2
v2
Tc. (11)
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3. Nonlinear modes
We introduce the stretched co-ordinates,

ρ = ε
1
2 (x− V t), η = ε

1
2 y, ζ = ε

1
2 z, τ = ε

3
2 t, (12)

and expand the fluid velocity, density, pressure and electrical potential by the small
parameter ε as

uαx = Uα0 + ε
1
2 u1αx + εu2αx + ε

3
2 u3αx + · · ·

uαy = εu1αy + ε
3
2 u2αy + ε2u3αy + · · ·

uαz = εu1αz + ε
3
2 u2αz + ε2u3αz + · · ·

(13)
nα = Nα0 + ε

1
2 n1α + εn2α + ε

3
2 n3α + · · ·

pα = Pα0 + ε
1
2 p1α + εp2α + ε

3
2 p3α + · · ·

φ = ε
1
2 φ1 + εφ2 + ε

3
2 φ3 + · · · .

Using (12) and (14) and taking (7) to order ε
1
2 and (4)–(6) to order ε and solving,

we obtain

n1α =
(

N 2
α0qα

mNα0(V − Uα0)
2 − γαPα0

)
φ1 . (14)

Substituting for n1α into (7), we obtain∑
α

ω2
pα

(V − Uα0)
2 − v2

Tα

−∑
β

1
λ2
Dβ

= 0. (15)

The phase velocity V can be determined from the above equation.
Taking (7) to order ε and (4)–(6) to order ε

3
2 and then substituting for n2α into

Poisson’s equation, we then have

Dφ2 + Bφ2
1 = 0 (16)

where

D =
∑
α

ω2
pα[

(V − Uα0)2 − v2
Tα

] −∑
β

1
λ2
Dβ

(17)

and

B =
∑
α

ω2
pαqα

[
3(V − Uα0)

2 + (γα − 2)v2
Tα

]
2m
[
(V − Uα0)

2 − v2
Tα

]3 +
1
2

∑
β

qβ

λ2
Dβ κTβ

. (18)

We note that this expression for B differs slightly from that of Verheest et al.
(2002). In fact, having carried out the calculation ab initio, we point out that (18)
is a correction of the equivalent equation given by Verheest et al. (2002). From
(15), D = 0, hence the first term in (16) vanishes, which implies either B = 0 or
φ1 = 0. For our electron–positron model, one can easily show that B = 0 if the
cool electrons and positrons have equal drifts. Then φ1 �= 0, which will naturally
lead to a mKdV-ZK type of equation for φ1 .
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Taking Poisson’s equation to order ε
3
2 and the continuity, momentum and pres-

sure equations to order ε2 , we obtain the mKdV-ZK equation (Verheest et al. 2002)

∂φ1

∂τ
+ a

∂3φ1

∂ρ3 + c φ2
1
∂φ1

∂ρ
+ d

∂

∂ρ

(
∂2φ1

∂η2 +
∂2φ1

∂ζ2

)
= 0. (19)

where the coefficients a, c and d are given by

a =
1
A

, c =
C

A
, d =

D

A
,

with

A = 2
∑
α

ω2
pα (V − Uα0)[

(V − Uα0)2 − v2
Tα

]2 , (20)

C =
1
2

∑
α

ω2
pαq2

α

[
15(V − Uα0)

4 + E1(V − Uα0)
2v2
Tα + E2v

4
Tα

]
m2
[
(V − Uα0)

2 − v2
Tα

]5 − 1
2

∑
β

qβ

λ2
Dβ κ2T 2

β

,

(21)

D = 1 +
∑
α

ω2
pα (V − Uα0)

4

Ω2
α

[
(V − Uα0)2 − v2

Tα

]2 , (22)

where

E1 = γ2
α + 13γα − 18 and E2 = 2γ2

α − 7γα + 6.

We seek a one-soliton planar solution propagating at an angle θ to the static mag-
netic field. For stationary nonlinear solutions we have the running phase argument

σ = ρ cos θ + η sin θ cos ψ + ζ sin θ sin ψ −Mτ, (23)

where ψ is the second angle in spherical co-ordinates.
Then the mKdV-ZK equation reduces to

(c cos θ φ2
1 −M)∂σφ1 + α∂3

σφ1 = 0, (24)

where α = (a cos2 θ + d sin2 θ) cos θ.
Using the standard technique (Nicholson 1983) to solve (24), we obtain

φ1 =

√
6M

c cos θ
sech(μσ), (25)

where

μ2 =
M

(a cos2 θ + d sin2 θ) cos θ
. (26)

We normalize the electrostatic potential φ, by Th/e, the fluid speeds uα by the
thermal velocity vth = (Th/m)1/2 , the particle density by the equilibrium plasma
density N0 , the spatial length by λD = (ε0Th/Nhe

2)1/2 and the time by ω−1
ph =

(Nhe
2/ε0m)−1/2 .

Using ̂ to indicate normalized variables, it follows that the normalized electro-
static potential (25) becomes

φ̂ = φm sech(μ̂σ̂), (27)
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where the normalized soliton amplitude is given explicitly by

φm =

[
6(Nc/Nh)

7
2 [1 + (Tc/Th)(Nc/Nh)−1 ]

1
2 M̂

[F + E2(Tc/Th)
2 − (Nc/Nh)4 ] cos θ

] 1
2

, (28)

and

μ2=

[
M̂

([(Nc/Nh) + (Tc/Th)(Nc/Nh)−2 ]−
1
2 + (2/Λ2)[Nc/Nh + Tc/Th]

3
2 sin2 θ) cos θ

]
,

(29)

where

F = 15
(

Nc

Nh

)2
[
1 +

(
Tc
Th

)(
Nc

Nh

)−1
]2

+ E1

(
Tc
Th

)(
Nc

Nh

)[
1 +

(
Tc
Th

)(
Nc

Nh

)−1
]

and Λ2 =
Ω2

ω2
ph

.

4. Numerical results and limitations
4.1. Limitations of the model

The calculation is based on a reductive perturbation expansion, and thus is valid
only for small normalized soliton amplitude, where the ‘natural’ normalization
energy is associated with Teff = N0TcTh/(NcTh + NhTc). The hot species are as-
sumed to have a Boltzmann distribution, and the cool species behave adiabatically
and are governed by the fluid equations. This implies that there are two further
limits imposed on our model. For the cool species, we ensure that the thermal
velocity is much less than the phase velocity of the fluctuation, i.e. vtc � vph, and
the Boltzmann assumption requires that the thermal velocity of the hot species is
much larger than the phase velocity, i.e. vph � vth. Hence, the model can only be
applied if vtc � vph � vth. Using expression (9) for vph, this becomes√

Tc
Th

�
k‖
k

√
Nc

Nh
� 1. (30)

This means that upper limits are imposed on both the temperature ratio (Tc/Th)
and the particle density ratio (Nc/Nh).

4.2. Numerical results

In this section we carry out a parameter study of the soliton dependence on plasma
variables as some of the features are not transparent from (27)–(29). Figure 1
shows the typical soliton potential profile as a function of the propagation angle θ.
For simplicity we set Uα0 = 0 for all species. For each angle θ, the profile has
a maximum at σ = 0 (as may be seen also from (27)). As θ is increased, the
amplitude increases and the half-width decreases, the effect being more significant
for larger propagation angles. The former follows from the 1/

√
cos θ dependence

of (28), the latter from the 1/[(G + H sin2 θ) cos θ] behaviour of (29). Here G and
H are functions of the density ratio, the temperature ratio and the gyrofrequency.
Figure 2 is a plot of the soliton amplitude as a function of θ. The graph shows
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Figure 1. The soliton profile φ for different angles of propagation θ. The curves correspond
to θ = 0◦ (——), 15◦ (· · · · · · ), 30◦ (− − −), 50◦ (–· ·–) and 80◦ (– – –). The fixed plasma
parameters are the normalized Mach number M = 1.2, Tc/Th = 0.01, Nc/Nh = 1/9 and
γα = 3.

that the soliton amplitude increases monotonically with θ, as may also be deduced
from the behaviour observed in Fig. 1. We note that the approximation used in
the derivation may restrict validity to k‖<k⊥, which implies that our results
are more relevant for larger angles of propagation (small k‖). Figure 3 shows the
variation of the soliton amplitude with the equilibrium density ratio Nc/Nh, for
various temperature ratios Tc/Th. Nc (Nh) are the equilibrium densities of the cool
(hot) electron and positron species. It is seen that as the ratio of the cool to hot
equilibrium densities is increased, the soliton amplitude increases. Although a large
range of solitons is shown to be possible, the limits imposed by our model demand
that (k‖/k)

√
Nc/Nh � 1, i.e. Nc/Nh < 0.25 for θ = 15◦.

This is similar to the results of Verheest et al. (1996), where solitons were found to
be possible for low values of the density ratio and are of small amplitude (φm < 0.2).
For a fixed Nc/Nh, the amplitude φm is larger for smaller values of the ratio of the
cool to hot temperatures. This is clearer in Fig. 4, where it is seen that φm decreases
as the temperature ratio increases for a chosen density ratio. We note that as
the temperature ratio decreases, the plasma moves further away from a state of
thermodynamic equilibrium, thereby making it easier to generate nonlinear soliton
structures with a corresponding larger amplitude.

5. Conclusion
In this paper we have investigated the existence of solitary waves in a magnetized
four-component two-temperature electron–positron plasma propagating obliquely
to the ambient magnetic field B0 . This model is symmetric with equal equilibrium
densities Nh and Nc, and temperatures Th and Tc, for the hot and cool electrons
and positrons respectively. The hot species are described by the Boltzmann density
distribution and the cooler species by the fluid equations with finite temperatures.
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Figure 2. The variation of the soliton amplitude φm as a function of the propagation angle
θ for different normalized Mach numbers M = 1.0 (——), 1.2 (· · · · · · ) and 1.4 (−−−). The
fixed plasma parameters are Nc/Nh = 1/9, Tc/Th = 0.01 and γα = 3.

Figure 3. The variation of the soliton amplitude φm as a function of Nc/Nh. The curves
correspond to the temperature ratio Tc/Th = 0.01 (—–), 0.05 (· · · · · · ) and 0.1 (−−−). The
fixed plasma parameters are M = 1.2, θ = 15◦ and γα = 3.

The reductive perturbation technique was used to derive the mKdV-ZK equation
for nonlinear electrostatic modes. An exact analytical solution was determined for
the soliton potential structures. Owing to the symmetry of the model, double layers
are not possible. Double layers can only be found if there is an asymmetry in
the system. Numerical results are presented showing that the soliton amplitudes
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Figure 4. The variation of the soliton amplitude φm as a function of Tc/Th. The curves
correspond to Nc/Nh = 0.11 (—–), 0.25 (· · · · · · ) and 0.43 (− − −). The fixed plasma
parameters are M = 1.2, θ = 15◦ and γα = 3.

are functions of plasma parameters such as the propagation angle θ, Nc/Nh and
Tc/Th. Owing to our use of the reductive perturbation approach and the limitations
imposed by the model, i.e. vtc � ω/k � vth, only small-amplitude solitons can be
considered. Propagation at larger angles to B0 are found to enhance the soliton
amplitude. As Nc/Nh, the ratio of the cool to hot species, was increased, the soliton
amplitude increased. The soliton amplitude also increases as the plasma moves
away from a state of thermal equilibrium, i.e. as Tc/Th is decreased. Given that
we have presented a non-relativistic analysis, our results could be of relevance to
astrophysical electron–positron plasmas produced through cooling by cyclotron
emission, and in laboratory experiments, arising from pair production by ultra-
intense laser pulses (Liang et al. 1998) or in beam-generated electron–positron
plasmas (Greaves and Surko 1995). Finally, we wish to emphasize the difference
between our work and that of Verheest et al. (2002). The latter paper sets up a
general formalism, which is in principle applicable to acoustic solitons in a wide
variety of multi-species plasmas. Verheest et al. then apply it to a number of
examples of Korteweg–de Vries–Zakharov–Kuznetsov cases, but do not consider
an electron–positron plasma or discuss examples of mKdV-ZK solitons.
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Appendix F

COMPUTER

PROGRAMS
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C      ROOTFINDER.FOR     FIND POSITIVE ROOTS OF FOURTH ORDER POLYNOMIAL 
C      FOR VARIOUS PARAMETERS - ANGLES,DENSITIES, TEMPERATURE RATIO THTC.
C      R=W/WP, KLAMDA=K*LAMDA, TCTH=TC/TH 
C      N0C=N0C/N0, N0H=N0H/N0 (N0=N0C+N0H UNNORMALIZED DENSITY) 
C      W NORMALIZED BY : LAMDA_D2 = Th/4PI N0 E2

       PROGRAM ROOTFINDER
       IMPLICIT NONE 
       INTEGER I 
       REAL*8 A,B,C,P1,P2,ROOT1,ROOT2,N0C,N0H,TCTH 
       REAL*8 R,R2,THETA,KLAMDA,KLAMDA2 
       REAL*8 N1,N2,N3,NUM,DEN,PI,S,ANG 
******************************************************************
C       INITIAL VALUES
******************************************************************
       PI=3.1415927D0
       N0C=0.5D0 
       N0H=1.0D0-N0C 
       TCTH=0.001D0 
       R=0.333D0 

       THETA=(60.0d0/180.0d0)*pi 

       R2=R**2 
       KLAMDA=0.0D0 

       OPEN(25,FILE='ROOT1.DAT')
       OPEN(26,FILE='ROOT2.DAT')
c*******************************************************************
        DO I=1,301
         KLAMDA2=KLAMDA*KLAMDA 
         NUM=KLAMDA2*N0C/N0H 
         DEN=1.0D0+(0.5D0*KLAMDA2)/N0H 
         A=1.0D0 
         B=-(1.0D0/R2+3.0D0*KLAMDA2*TCTH+NUM/DEN) 
         C=((COS(THETA)**2)/R2)*(3.0D0*KLAMDA2*TCTH+NUM/DEN) 
         P1=(-B+SQRT(B**2-4.0D0*A*C))/(2.0D0*A) 
         P2=(-B-SQRT(B**2-4.0D0*A*C))/(2.0D0*A)
         ROOT1=SQRT(P1) 
         ROOT2=SQRT(P2) 
         write(6,*) KLAMDA,ROOT2 
         write(25,*) KLAMDA,ROOT1 
         write(26,*) KLAMDA,ROOT2 
         KLAMDA=KLAMDA+0.1D0 

       ENDDO 

       END
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theta 0.0 Degree;
TCTH 0.01;
V0H 0.5;
V0C 0.0;
N0C 0.1;
R 0.333;
N0H 1 N0C;
KZ K Cos theta ;
KZ2 KZ KZ;
KZ3 KZ2 KZ;
K2 K K;
KPERP K Sin theta ;
KPERP2 KPERP KPERP;
ALPHAH KPERP2 R2;
ALPHAC KPERP2 TCTH R2;

ZPH KZ V0H P R 2 KZ ;

ZPC KZ V0C P R 2 KZ TCTH ;

Z0C2 N0C TCTH 2.0 N0H K2 1.5 ;

stream OpenWrite "e: ian Kinetic Disp kineticgraphs kparr approxRealKZ.dat",
FormatType OutputForm ;

stmp OpenWrite "e: ian Kinetic Disp kineticgraphs kparr approxGammaKZ.dat",
FormatType OutputForm ;

OutputStream "c: ian Kinectic Disp approxRealO2.dat", 119 ;
OutputStream "c: ian Kinectic Disp approxGammaO2.dat", 120 ;

Do
KZ K Cos theta ;

W Sqrt
2.0 N0C KZ2

2.0 N0H K2
3.0 KZ2 TCTH ;

G
W ^4 Sqrt 8

KZ3 1 6.0 KZ2 TCTH W ^2

1.0
1.0
TCTH

^ 3.0 2.0 Exp 1.0 Z0C2
N0H
N0C

KZ V0H
W

1.0

Sum BesselI 0, KPERP^2 R^2 Exp KPERP^2 R^2 , P, 0, 0 ;

Print K, " ", W, " ", G ;
Write stream, K, " ", W ;
Write stmp, K, " ", G ,

K, 0.01, 5.0, 0.01 ;
Close stream
Close stmp

datare Import "e: ian Kinetic Disp kineticgraphs kparr approxRealKZ.dat", "List" ;
datarep Partition datare, 2
datare1 Import "e: ian Kinetic Disp kineticgraphs kparr approxGammaKZ.dat", "List" ;
datarep1 Partition datare1, 2
ListPlot datarep, PlotJoined True
ListPlot datarep1, PlotJoined True

APPROXIMATE SOLUTION-KINETIC APPROACH.nb 1
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ZFUN _ : Exp ^2 1 Erf ;
TCTH 0.001;
V0C 0.0;
V0H 0.5;
R 0.333;
R2 R R;
theta 45.0 Degree;
N0C 0.1;
N0H 1.0 N0C;
KPERP k Sin theta ;
KPERP2 KPERP KPERP;
kz k Cos theta ;
ALPHAH KPERP2 R2;
ALPHAC KPERP2 TCTH R2;

ZPH kz V0H P R 2 kz ;

ZPC kz V0C P R 2 kz TCTH ;

rootguess 0.0033 0.00033 I;

stream OpenWrite "e: ian Kinetic Disp kineticgraphs kparr GdrRealnewkz45DEG.dat",
FormatType OutputForm

stmp OpenWrite "e: ian Kinetic Disp kineticgraphs kparr GdrGammanewkz45DEG.dat",
FormatType OutputForm

Do DD k_, _ : k^2 2.0 N0C TCTH

1.0 kz V0C 2.0 kz TCTH Sum BesselI P, KPERP^2 TCTH R ^2 Exp

KPERP^2 TCTH R^2 ZFUN kz V0C P R 2 kz TCTH , P, 5, 5

2.0 N0H 1.0 kz V0H 2.0 kz Sum BesselI P, KPERP^2 R ^2

Exp KPERP^2 R^2 ZFUN kz V0H P R 2 kz , P, 5, 5 ;

roott . FindRoot DD k, 0, , rootguess , MaxIterations 250,
AccuracyGoal 5, WorkingPrecision 10 ;

omegaa NumberForm Re roott , ExponentFunction If 90 # 90, Null, # & ;
gamman NumberForm Im roott , ExponentFunction If 90 # 90, Null, # & ;
rootguess roott;
Print k, " ", omegaa, " ", gamman ;
Write stream, k, " ", omegaa ;
Write stmp, k, " ", gamman ,

k, 0.01, 5.0, 0.01
Close stream
Close stmp
datare Import

"c: ian Kinetic Disp kineticgraphs dentcth GdrRealnoc0.05tcth 0.01.dat", "List" ;
dataim Import "c: ian Kinetic Disp kineticgraphs dentcth

GdrGammanoc0.05tcth 0.01.dat", "List" ;
datarep Partition datare, 2 ;
dataimp Partition dataim, 2 ;
ListPlot datarep, PlotJoined True
ListPlot dataimp, PlotJoined True

GENERAL DISPERSION RELATION-KINETIC APPROACH.nb 1
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      PROGRAM PHIvsSIGMA 
        IMPLICIT NONE 
        INTEGER i 
        REAL*8 A1,A2,B1,B2,M,NCNH,TCTH,OM,D1,D2,D3,D4 
        REAL*8 TH,PHI,DEN,NUM,AMP,MU,ANGLE,S,C,X 
C     **********PARAMETERS********** 
      B1=30.0d0 
      B2=3.0d0 
      M=1.2d0 
      OM=1.0d0 
      TCTH=0.01d0 
      NCNH=0.1d0/0.9d0 
      A1=SQRT(NCNH) 
      A2=SQRT(1.0d0+TCTH/NCNH) 
      TH=80.0d0 
c
c     ****************************** 
c
      open(25,file="C:\PHD\DATA\PvsSIG\80DEM1.2.dat",status="unknown") 
      do i=1,600 
        X=-3.0d0+i*0.01d0 
        D1=15.0d0*(A1**4)*(A2**4)+B1*TCTH*(A1**2)*(A2**2)+B2*(TCTH**2) 
        D2=A1**8 
        NUM=6.0d0*M*(A1**7)*A2 
        DEN=(D1-D2)*COS(TH*3.141592654/180) 
        AMP=sqrt(NUM/DEN) 
        D3=(A1/A2)+(2/(OM)**2)*(A1**3)*(A2**3)*(SIN(TH*3.14159/180)**2) 
        D4= COS(TH*3.141592654/180) 
        MU=(M/(D3*D4)) 
        PHI=AMP*(1/COSH(((MU)**0.5)*X)) 
      write(25,*) X,PHI 
      enddo 
        endfile(25) 
        close(25) 
        end 
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      PROGRAM PHIMvsNc 
C     PROGRAM FOR THE MAXIMUM SOLITON AMPLITUDE AS A FUNCTION OF THE 
C     DENSITY ROTIO NC/NH FOR VARIOUS TEMPERATURE RATIOS TC/TH 
        IMPLICIT NONE 
        INTEGER i 
        REAL*8 A1,A2,B1,B2,M,TCTH,OM,D1,D2 
        REAL*8 TH,DEN,NUM,AMP,NH,NC,NCNH 
C     **********PARAMETERS********** 
      B1=30.0d0 
      B2=3.0d0 
      M=1.2d0 
      OM=1.0d0 
      TCTH=0.1d0 
      TH=15.0d0 
c
c     ****************************** 
c
      open(25,file="C:\PHD\DATA\NCNH\t1T15M12.dat",status="unknown") 
      do i=1,700 
        NC=i*0.001d0 
        NH=1-NC 
        NCNH=NC/NH 
        A1=SQRT(NC/NH) 
        A2=SQRT(1.0d0+TCTH/(NC/NH)) 
        D1=15.0d0*(A1**4)*(A2**4)+B1*TCTH*(A1**2)*(A2**2)+B2*(TCTH**2) 
        D2=A1**8 
        NUM=6.0d0*M*(A1**7)*A2 
        DEN=(D1-D2)*COS(TH*3.141592654/180) 
        AMP=sqrt(NUM/DEN)

      write(25,*) NC,AMP 

      enddo 
        endfile(25) 
        close(25) 
        end 
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      PROGRAM PHIMvsTCTH 
C PROGRAM FOR THE MAXIMUM SOLITON AMPLITUDE AS A FUNCTION OF THE 
C TEMPERATURE RATIO FOR VARIOUS DENSITY RATIOS NC/NH 
        IMPLICIT NONE 
        INTEGER i 
        REAL*8 A1,A2,B1,B2,M,TCTH,OM,D1,D2 
        REAL*8 TH,DEN,NUM,AMP,NCNH 
C     **********PARAMETERS********** 
      B1=30.0d0 
      B2=3.0d0 
      M=1.4d0 
      OM=1.0d0 
      TCTH=0.0001d0 
      NCNH=0.3d0/0.7d0 
      TH=15.0d0 
c
c     ****************************** 
c
      open(25,file="C:\ian\DATA\TCTH\tcN37T15M12.dat",status="unknown") 
      do i=0,100 
        TCTH=i*0.01 
        A1=SQRT(NCNH) 
        A2=SQRT(1.0d0+TCTH/(NCNH)) 
        D1=15.0d0*(A1**4)*(A2**4)+B1*TCTH*(A1**2)*(A2**2)+B2*(TCTH**2) 
        D2=A1**8 
        NUM=6.0d0*M*(A1**7)*A2 
        DEN=(D1-D2)*COS(TH*3.141592654/180) 
        AMP=sqrt(NUM/DEN)

      write(25,*) TCTH,AMP 

      enddo 
        endfile(25) 
        close(25) 
        end 
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        PROGRAM MODEL1 
c       PROGRAM MAIN4.FOR: Boltzmann electrons and positrons and cool fluid 
c               electrons and positrons (-E).Using cosh,sinh
        IMPLICIT NONE 
        external derivs 
        external rk4 
        INTEGER i,n,NMAX 
        REAL*8 h,x,dydx(8),y(8),yout(8),M,theta,E0,M2 
        REAL*8 delta,MST,MCT,R,NONEC,NONPC,INVMMD2 
        REAL*8 pi,ST,CT,MMD,NONEC2,NONPC2,INVNONEC2,INVNONPC2 
        REAL*8 MMD2,INVMMD,INVNONEC,INVNONPC,necn,npcn 
        REAL*8 INVNONPC3,NONEC3,NONEC4,NONPC4,NOHNO 
        REAL*8 TERMA,TERMB,TERMC,TERMD,TERME,TERMF 
        REAL*8 TERMG,TERMH,TERMI,TERMJ,TERMK,TERML 
        REAL*8 TERMM,TERMN,A1,A2,TERMBB,nphno,nehno,necno,npcno 
        common /plasma/M,theta,R,delta,necno,npcno,nehno,nphno 
        pi=3.1415927d0 
        h=0.015d0 
        n=8 
        x=0.0d0
c     **********PARAMETERS********** 
        M=1.6d0
        delta=0.02d0 
        theta=(2.0d0/180.0d0)*pi 
        E0=0.8d0 
        R=160.0d0 
        necno=0.73d0 
        npcno=necno 
        nehno=1.0d0-necno 
        nphno=nehno
c     ****************************** 
c     psi=y(1) 
c     E=y(2) 
c     necn=y(3) 
c     vecyn=y(4) 
c     veczn=y(5) 
c     npcn=y(6) 
c     vpcyn=y(7) 
c     vpczn=y(8) 
c***************************************************
       MMD=(M-delta) 
       MMD2=MMD**2 
       INVMMD=1.0d0/MMD 
       INVMMD2=1.0d0/MMD2 
       nonec=1.0d0/necno 
       nonpc=1.0d0/npcno 
       NONEC2=NONEC**2 
       NONPC2=NONPC**2 
       NONEC3=NONEC*NONEC2 
       NONEC4=NONEC2*NONEC2 
       NONPC4=NONPC2*NONPC2 
       INVNONEC=(1.0d0/NONEC) 
       INVNONPC=(1.0d0/NONPC) 
       INVNONEC2=INVNONEC**2 
       INVNONPC2=INVNONPC**2 
       INVNONPC3=INVNONPC*INVNONPC2 

261



        ST=sin(theta) 
        CT=cos(theta) 
        MST=M*ST 
        MCT=M*CT 

        y(1)=0.0d0 

        y(2)=E0

        y(3)=necno

        y(4)=0.01d0 

        y(5)=0.01d0 

        y(6)=npcno

        TERMA=(INVNONPC2*NONEC2*(y(3))**3)/((y(6))**3) 
        TERMB=y(2)+MST*y(4) 
        TERMBB=((nehno+nphno)*INVNONPC2*MMD2*(y(2)))/((y(6))**3) 

        y(7)=(-y(2)+TERMBB-(TERMA*TERMB))/MST 

        TERMC=(3.0d0*INVNONPC3)/(M*M*ST*CT*MMD) 
        TERMD=(y(2)+MST*y(4))**2 
        TERME=(((NONEC4*((y(3))**5))/((y(6))**4)))*TERMD 
        TERMF=(-y(2)-MST*y(7))**2 
        TERMG=NONPC4*y(6)*TERMF 
        TERMH=TERMC*(TERME-TERMG) 
        TERMI=-1.0d0*(MST/CT)+(MMD*INVNONEC*ST)/(CT*y(3))+y(5) 
        TERMJ=(((INVNONPC3*NONEC3*((y(3))**4))/((y(6))**4)))*TERMI 
        TERMK=MST/CT-(MMD*INVNONPC*ST)/(CT*y(6)) 
        TERML=(INVNONPC3*MMD2*MMD)/(M2*ST*CT*(y(6)**4)) 
        TERMM=TERML*(NPHNO-NEHNO)*y(2)*y(2) 

        y(8)=TERMH+TERMJ+TERMK-TERMM 

c     Let's loop here 

        open(25,file="ian1.dat",status="unknown") 
        write(25,*) x,-y(2)/M 
        write(6,*) x,-y(2)/M 
          do i=1,6000 
          call derivs(x,y,dydx) 
          call rk4(y,dydx,n,x,h,yout,derivs) 
          y(1)=yout(1) 
          y(2)=yout(2) 
          y(3)=yout(3) 
          y(4)=yout(4) 
          y(5)=yout(5) 
          y(6)=yout(6) 
          y(7)=yout(7) 
          y(8)=yout(8) 
          x=x+h 
          write(25,*) x,-yout(2)/M 
          write(6,*) x,-y(2)/M 
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          enddo 
        endfile(25) 
        close(25) 
        end 

        SUBROUTINE derivs(x,y,dydx) 
c       Subroutine expressing the differential equations for Model 1 with -E 
        IMPLICIT NONE 
        REAL*8 x,dydx(8),y(8),theta,M,R 
        REAL*8 ST,CT,MST,MCT,NONEC,NONPC,A1,A2 
        REAL*8 R2,M2,MMD,MMD2,NONEC2,NONPC2,NOHNO 
        REAL*8 INVMMD,INVMMD2,INVNONEC,INVNONPC,TERM1,TERM2 
        REAL*8 delta,necn3,npcn3,nphno,nehno,necno,npcno 
        REAL*8 N1,N2,N3,N4,N5,N6,LIM 
        common /plasma/M,theta,R,delta,necno,npcno,nehno,nphno 
c        x=x
c     psi=y(1) 
c     E=y(2) 
c     necn=y(3) 
c     vecyn=y(4) 
c     veczn=y(5) 
c     npcn=y(6) 
c     vpcyn=y(7) 
c     vpczn=y(8) 

        A1=nphno*(cosh(y(1))-sinh(y(1))) 
        A2=nehno*(cosh(y(1))+sinh(y(1)))
        R2=R**2 
        M2=M**2 
        ST=sin(theta) 
        CT=cos(theta) 
        MST=M*ST 
        MCT=M*CT 
        MMD=M-delta 
        MMD2=MMD**2 
        nonec=1.0d0/necno 
        nonpc=1.0d0/npcno 
        NONEC2=NONEC**2 
        NONPC2=NONPC**2 
        INVNONEC=(1.0d0/NONEC) 
        INVNONPC=(1.0d0/NONPC) 
        INVMMD=(1.0d0/MMD) 
        INVMMD2=INVMMD**2 
        TERM1=(M-(MMD*INVNONEC)/(y(3))) 
        TERM2=(M-(MMD*INVNONPC)/(y(6))) 
        necn3=y(3)**3 
        npcn3=y(6)**3 
        N1=NONEC2*INVMMD2 
        N2=INVMMD*M*NONEC 
        N3=INVMMD*MCT*NONEC 
        N4=NONPC2*INVMMD2 
        N5=INVMMD*M*NONPC 
        N6=INVMMD*MCT*NONPC 

c     ******************** Runge-Kutte form *******************
        dydx(1)=-1.0d0*y(2) 
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       dydx(2)=R2*M2*(y(6)-y(3)+A1-A2) 

       dydx(3)=necn3*N1*(y(2)+MST*y(4)) 

       dydx(4)=y(3)*N2*(-1.0d0*ST*TERM1+CT*y(5)) 

       dydx(5)=-y(3)*N3*y(4) 

       dydx(6)=npcn3*N4*(-y(2)-MST*y(7))

       dydx(7)=y(6)*N5*(ST*TERM2-CT*y(8)) 

       dydx(8)=y(6)*N6*y(7) 

       END 

     SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs) 
       IMPLICIT NONE 
       INTEGER n,NMAX 
       REAL*8 h,x,dydx(n),y(n),yout(n) 
       EXTERNAL derivs 
       PARAMETER (NMAX=50) 
       INTEGER i 
       REAL*8 h6,hh,xh,dym(NMAX),yt(NMAX),dyt(NMAX) 
       hh=h*0.5d0 
       h6=h/6.0d0 
       xh=x+hh 
       do i=1,n 
         yt(i)=y(i)+hh*dydx(i) 
     enddo
       call derivs(xh,yt,dyt) 
       do i=1,n 
          yt(i)=y(i)+hh*dyt(i) 
     enddo
       call derivs(xh,yt,dym) 
       do i=1,n 
         yt(i)=y(i)+h*dym(i) 
         dym(i)=dyt(i)+dym(i) 
     enddo
       call derivs(x+h,yt,dyt) 
       do i=1,n 
           yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.0d0*dym(i)) 
     enddo
       return 
       END 
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        PROGRAM MODEL2andMODEL3
c       PROGRAM FullDynamics5.for. Cool electrons and positrons and Hot
c   electrons and positrons - All Fluid. d(psi)/d(s)=-E.      
        IMPLICIT NONE 
        external derivs 
        external rk4 
        INTEGER i,n,NMAX 
        REAL*8 h,x,dydx(18),y(18),yout(18),M,M2,theta,E0,TCTH 
        REAL*8 deltaC,deltaH,MST,MCT,R,NONEC,NONPC,NONEH,NONPH 
        REAL*8 pi,ST,CT,MMDC,MMDH,NONEC2,NONPC2,NONEH2,NONPH2 
        REAL*8 NECNO2,NPCNO2,NEHNO2,NPHNO2,MMDC2,MMDH2,NECN,NPCN 
        REAL*8 NONEC3,NONEC4,NONPC4,NOHNO,INVMMDC,INVMMDH 
        REAL*8 INVMMDC2,INVMMDH2,TERMZ1,TERMZ2,TERMZ21,TERMZ22 
        REAL*8 DF1F2,DF3F4,DF5F6,DF7F8,DF1,DF2,DF3,DF4,DF5,DF6 
        REAL*8 DF7,DF8,DF11,DF121,DF122, DF71,DF721,DF722,DF51 
        REAL*8 DF521,DF522,nphno,nehno,necno,npcno 
        REAL*8 F1,F2,F3,F4,F5,F6,F7,F8 
        common /pl/M,theta,R,deltaC,deltaH,necno,npcno,nehno,nphno,TCTH 
        pi=3.1415927d0 
        h=0.15D0 
        n=18 
        x=0.0d0
c     **********PARAMETERS********** 
        M=3.5d0
        deltaC=0.0d0 
        deltaH=0.0d0 
        TCTH=0.0d0 
        theta=(2.0d0/180.0d0)*pi 
        E0=3.0d0 
        R=10.0d0 
        necno=0.5d0 
        npcno=necno 
        nehno=1.00d0-necno 
        nphno=nehno
c     ****************************** 
c     psi=y(1) 
c     E=-y(2) 
C     COLD ELECTRONS 
c     necn=y(3) 
c     vecyn=y(4) 
c     veczn=y(5) 
c     pecn=y(6) 
c     COLD POSITRONS 
c     npcn=y(7) 
c     vpcyn=y(8) 
c     vpczn=y(9) 
c     ppcn=y(10) 
C     HOT POSITRONS 
c     pphn=y(11) 
c     nphn=y(12) 
c     vphyn=y(13) 
c     vphzn=y(14) 
c     HOT ELECTRONS 
c     pehn=y(15) 
c     nehn=y(16) 
c     vehyn=y(17) 
c     vehzn=y(18) 
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c***************************************************
       MMDC=(M-deltaC) 
       MMDH=(M-deltaH) 
       MMDC2=MMDC**2 
       MMDH2=MMDH**2 
       INVMMDC=1.0d0/MMDC 
       INVMMDH=1.0d0/MMDH 
       INVMMDC2=1.0d0/MMDC2 
       INVMMDH2=1.0d0/MMDH2 
       NONEC=1.0d0/NECNO 
       NONPC=1.0d0/NPCNO 
       NONEH=1.0d0/NEHNO 
       NONPH=1.0d0/NPHNO 
       NONEC2=NONEC**2 
       NONPC2=NONPC**2 
       NONEC3=NONEC*NONEC2 
       NONEC4=NONEC2*NONEC2 
       NONPC4=NONPC2*NONPC2 
       NECNO2=NECNO**2 
       NPCNO2=NPCNO**2 
       NEHNO2=NEHNO**2 
       NPHNO2=NPHNO**2
       M2=M*M 
       ST=dsin(theta) 
       CT=dcos(theta) 
       MST=M*ST 
       MCT=M*CT 
c
        y(1)=0.0d0 
        y(2)=E0
        y(3)=necno
        y(4)=0.01d0
        y(5)=0.01d0
        y(6)=necno*TCTH
        y(7)=npcno
        y(8)=0.01d0
        y(9)=0.01d0
        y(10)=npcno*TCTH
        y(11)=nphno
        y(12)=nphno
        y(13)=0.01d0
        y(14)=0.01d0
        y(15)=nehno
        y(16)=nehno 

        F1=(y(3)**3)*(y(2)+MST*y(4)) 
        F2=NECNO2*MMDC2-3.0d0*TCTH*y(6)*y(3) 
        F3=y(16)**3 
        F4=NEHNO2*MMDH2-3.0d0*y(15)*y(16) 
        F5=(y(7)**3)*(-y(2)-MST*y(8)) 
        F6=NPCNO2*MMDC2-3.0d0*TCTH*y(10)*y(7) 
        F7=(y(12)**3)*(-y(2)-MST*y(13)) 
        F8=NPHNO2*MMDH2-3.0D0*y(11)*y(12) 
 c
        y(17)=(-y(2)+(F5/F6+F7/F8-F1/F2)*(F4/F3))/MST 
 c
        DF11=3.0d0*(y(3)**5)*((y(2)+MST*y(4))**2)/F2 
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        DF121=(M2*ST*(y(3)**4)*NONEC)/MMDC 
        DF122=(-M+(MMDC*NECNO)/y(3))*ST+y(5)*CT
        DF1=DF11+DF121*DF122 
        DF2=-12.0d0*TCTH*y(6)*F1/F2 
        DF1F2=(F2*DF1-F1*DF2)/(F2**2)
        DF71=3.0d0*(y(12)**5)*((-y(2)-MST*y(13))**2)/F8 
        DF721=(M2*ST*(y(12)**4)*NONPH)/MMDH 
        DF722=(M-(MMDH*NPHNO)/y(12))*ST-y(14)*CT
        DF7=DF71-DF721*DF722 
        DF8=-12.0d0*y(11)*F7/F8 
        DF7F8=(F8*DF7-F7*DF8)/(F8**2)
        DF51=(3.0D0*y(7)**5)*((-y(2)-MST*y(8))**2)/F6 
        DF521=(M2*ST*(y(7)**4)*NONPC)/MMDC 
        DF522=(M-(MMDC*NPCNO)/y(7))*ST-y(9)*CT
        DF5=DF51-DF521*DF522 
        DF6=-12.0d0*TCTH*y(10)*F5/F6 
        DF5F6=(F6*DF5-F5*DF6)/(F6**2) 
        DF3=(3.0d0*y(16)**5)*(y(2)+MST*y(17))/F4 
        DF4=(-12.0d0*y(15)*F3*(y(2)+MST*y(17)))/F4 
        DF3F4=(F4*DF3-F3*DF4)/(F4**2) 
C
        TERMZ1=(M-(MMDH*NEHNO)/y(16))*(ST/CT) 
        TERMZ21=(F4*NEHNO*MMDH)/(F3*M2*ST*CT*y(16)) 
        TERMZ22=y(2)+MST*y(17) 
        TERMZ2=TERMZ21*(DF5F6+DF7F8-DF1F2-TERMZ22*DF3F4) 
c
        y(18)=TERMZ1+TERMZ2 
c
c     Let's loop here 
c
       open(25,file="c:\ian\GRAPHS\ANG\TANG=35.dat",status="unknown") 
        write(25,*) x,-y(2)/M 
        write(6,*) x,-y(2)/M 
          do i=1,1200 
          call derivs(x,y,dydx) 
          call rk4(y,dydx,n,x,h,yout,derivs) 
          y(1)=yout(1) 
          y(2)=yout(2) 
          y(3)=yout(3) 
          y(4)=yout(4) 
          y(5)=yout(5) 
          y(6)=yout(6) 
          y(7)=yout(7) 
          y(8)=yout(8) 
          y(9)=yout(9) 
          y(10)=yout(10) 
          y(11)=yout(11) 
          y(12)=yout(12) 
          y(13)=yout(13) 
          y(14)=yout(14) 
          y(15)=yout(15) 
          y(16)=yout(16) 
          y(17)=yout(17) 
          y(18)=yout(18) 
          x=x+h 
          write(25,*) x,-yout(2)/M 
          write(6,*) x,-y(2)/M 
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          enddo 
        endfile(25) 
        close(25) 
        end 
C*******************************************************************************
        SUBROUTINE derivs(x,y,dydx) 
c       Subroutine expressing the differential equations for Model 2 with +E 
        IMPLICIT NONE 
        REAL*8 x,dydx(18),y(18),theta,M,R,R2,M2 
        REAL*8 ST,CT,MST,MCT,NONEC,NONPC,NONEH,NONPH 
        REAL*8 NONEC2,NONPC2,NECNO2,NPCNO2,NEHNO2,NPHNO2 
        REAL*8 NONEH2,NONPH2,MMDC,MMDH,MMDC2,MMDH2 
        REAL*8 INVMMDC,INVMMDH,INVMMDC2,INVMMDH2 
        REAL*8 TERM1,TERM2,TERM3,TERM4 
        REAL*8 deltaC,deltaH,necn3,npcn3,nphno,nehno,necno,npcno 
        REAL*8 N1,N2,N3,N4,N5,N6,N7,N8,F1,F2,F3,F4,F5,F6,F7,F8,TCTH 
       common /pl/M,theta,R,deltaC,deltaH,necno,npcno,nehno,nphno,TCTH 
c        x=x
C*******************************************************************************
c     psi=y(1) 
c     E=y(2) 
c     necn=y(3) 
c     vecyn=y(4) 
c     veczn=y(5) 
c     pecn=y(6) 
c     npcn=y(7) 
c     vpcyn=y(8) 
c     vpczn=y(9) 
c     ppcn=y(10) 
C     HOT POSITRONS 
c     pphn=y(11) 
c     nphn=y(12) 
c     vphyn=y(13) 
c     vphzn=y(14) 
c     HOT ELECTRONS 
c     pehn=y(15) 
c     nehn=y(16) 
c     vehyn=y(17) 
C*******************************************************************************
        R2=R**2 
        M2=M**2 
        ST=dsin(theta) 
        CT=dcos(theta) 
        MST=M*ST 
        MCT=M*CT
        MMDC=M-deltaC 
        MMDH=M-deltaH 
        MMDC2=MMDC**2 
        MMDH2=MMDH**2
        NONEC=1.0d0/NECNO 
        NONPC=1.0d0/NPCNO 
        NONEH=1.0d0/NEHNO 
        NONPH=1.0d0/NPHNO
        NONEC2=NONEC**2 
        NONPC2=NONPC**2 
        NONEH2=NONEH**2 
        NONPH2=NONPH**2
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        NECNO2=NECNO**2 
        NPCNO2=NPCNO**2 
        NEHNO2=NEHNO**2 
        NPHNO2=NPHNO**2
        INVMMDC=(1.0d0/MMDC) 
        INVMMDC2=INVMMDC**2 
        INVMMDH=(1.0d0/MMDH) 
        INVMMDH2=INVMMDH**2 
C
        TERM1=M-((MMDC*NECNO)/(y(3))) 
        TERM2=M-((MMDH*NEHNO)/(y(16))) 
        TERM3=M-((MMDC*NPCNO)/(y(7))) 
        TERM4=M-((MMDH*NPHNO)/(y(12)))
C
        F1=(y(3)**3)*(y(2)+MST*y(4)) 
        F2=NECNO2*MMDC2-3.0d0*TCTH*y(6)*y(3) 
        F3=(y(16)**3) 
        F4=NEHNO2*MMDH2-3.0d0*y(15)*y(16) 
        F5=(y(7)**3)*(-y(2)-MST*y(8)) 
        F6=NPCNO2*MMDC2-3.0d0*TCTH*y(10)*y(7) 
        F7=(y(12)**3)*(-y(2)-MST*y(13)) 
        F8=NPHNO2*MMDH2-3.0d0*y(11)*y(12)
        N1=INVMMDC*M*NONEC 
        N2=INVMMDC*MCT*NONEC 
        N3=INVMMDH*M*NONEH 
        N4=INVMMDH*MCT*NONEH 
        N5=INVMMDC*M*NONPC 
        N6=INVMMDC*MCT*NONPC 
        N7=INVMMDH*M*NONPH 
        N8=INVMMDH*MCT*NONPH 
C
c     ******************** Runge-Kutte form *******************
        dydx(1)=-y(2) 

        dydx(2)=1.0d0*R2*M2*(y(7)-y(3)+y(12)-y(16)) 

C     Cold Electrons (necn,vecyn,veczn,pecn) 

        dydx(3)=(F1/F2) 

        dydx(4)=y(3)*N1*(-ST*TERM1+CT*y(5)) 

        dydx(5)=-y(3)*N2*y(4) 

        dydx(6)=3.0d0*y(6)*(y(3)**2)*(y(2)+MST*y(4))/F2

C     Cold Positrons (npcn,vpcyn,vpczn,ppcn) 

        dydx(7)=(F5/F6) 

        dydx(8)=y(7)*N5*(ST*TERM3-CT*y(9)) 

        dydx(9)=y(7)*N6*y(8)

        dydx(10)=3.0d0*y(10)*(y(7)**2)*(-y(2)-MST*y(8))/F6

C     Hot Positrons (pphn,nphn,vphyn,vphzn) 
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        dydx(11)=3.0d0*y(11)*(y(12)**2)*(-y(2)-MST*y(13))/F8 

        dydx(12)=F7/F8 

        dydx(13)=y(12)*N7*(ST*TERM4-CT*y(14)) 

        dydx(14)=y(12)*N8*y(13) 

C     Hot Electrons (pchn,nchn,vchyn,vchzn) 

        dydx(15)=3.0d0*y(15)*(y(16)**2)*(y(2)+MST*y(17))/F4

        dydx(16)=F3*(y(2)+MST*y(17))/F4 

        dydx(17)=y(16)*N3*(-ST*TERM2+CT*y(18)) 

        dydx(18)=-y(16)*N4*y(17)

      END 

C*******************************************************************************

      SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs) 
        IMPLICIT NONE 
        INTEGER n,NMAX 
        REAL*8 h,x,dydx(n),y(n),yout(n) 
        EXTERNAL derivs 
        PARAMETER (NMAX=50) 
        INTEGER i 
        REAL*8 h6,hh,xh,dym(NMAX),yt(NMAX),dyt(NMAX) 
        hh=h*0.5d0 
        h6=h/6.0d0 
        xh=x+hh 
        do i=1,n 
          yt(i)=y(i)+hh*dydx(i) 
      enddo
        call derivs(xh,yt,dyt) 
        do i=1,n 
           yt(i)=y(i)+hh*dyt(i) 
      enddo
        call derivs(xh,yt,dym) 
        do i=1,n 
          yt(i)=y(i)+h*dym(i) 
          dym(i)=dyt(i)+dym(i) 
      enddo
        call derivs(x+h,yt,dyt) 
        do i=1,n 
          yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.0d0*dym(i)) 
      enddo
        return 
        END 
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       PROGRAM SAGDEEV
c      SAGDEEV-NEW.FOR Calculates the Sagdeev Potential for a Relativistic
c      Electron-Positron Plasma
c      IMPLICIT NONE 
       EXTERNAL NEWTON 
       INTEGER i 
       REAL*8 SI,M,M2,C,C2,N1,N2,NPO,F,N11,N21,N3,N4 
       REAL*8 D1,D2,D3,DEN,NUM,NE,G,VEO,VPO,VEO2,VPO2
       COMMON/PLASMA/M,M2,C,C2,VEO,VPO,VEO2,VPO2 
C     **********PARAMETERS********** 
      M=0.05d0 
      C=10.0d0 
      VEO=0.1D0 
      VPO=0.1D0 
      M2=M*M 
      C2=C*C 
      VEO2=VEO*VEO 
      VPO2=VPO*VPO 
      NE=0.28d0 
C
C     ****************************** 
C
      open(25,file="out.dat") 
        do i=1,1280d0 
        CALL NEWTON(NE,NPO) 
        N11=(VEO/(M))*(NE-2.0d0+VEO/(M)) 
        N21=(VPO/(M))*(NPO-2.0d0+VPO/(M)) 
        N1=(1.0d0-NE+N11)/(SQRT(NE*NE-M2*(NE-1+VEO/(M))**2)) 
        N2=(1.0d0-NPO+N21)/(SQRT(NPO*NPO-M2*(NPO-1+VPO/(M))**2))
        N3=(M*C2*VEO-VEO2*C2)/(SQRT(1.0d0-(VEO2))) 
        N4=(M*C2*VPO-VPO2*C2)/(SQRT(1.0d0-(VPO2))) 
        D1=1.0d0/NE 
        D2=C2*M2*(1.0d0-VEO/(M))**2.0d0 
        D3=(NE*NE-M2*(NE-1+VEO/(M))**2)**(3.0D0/2.0D0) 
        NUM=2.0d0-NPO-NE-C2*M2*(N1+N2)-N3-N4 
        DEN=(D1-(D2/D3))**2.0d0 
        SI=NUM/DEN 
        write(25,*) NE,SI 
        write(6,*) NE,SI 
         write(26,*) NE,NPO,F 
         NE=0.001d0+NE
        enddo 
        endfile(25) 
        close(25) 
        end 

C     TO CALCULATE NPO FOR VARIOUS NE VALUES USING NEWTON_RAPHSON
       SUBROUTINE NEWTON(NE,NPO) 
       IMPLICIT NONE 
       INTEGER i 
       REAL*8 F,G,M,NE 
       REAL*8 C2,M2,E,NP1 
       REAL*8 F1,F2,F3,G1,G2,G3,A11,A12 
       REAL*8 A,A1,A2,A3,NPO,DELTA,C,VEO,VPO,VEO2,VPO2 
       COMMON/PLASMA/M,M2,C,C2,VEO,VPO,VEO2,VPO2 
C      **********PARAMETERS**********
       NPO=1.0d0 
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       E=dexp(1.0d0) 
C
C     ****************************** 
C
      do i=1,50 
        A11=(C2-M*C2*VPO)/SQRT(1.0D0-VPO2) 
        A12=(C2-M*C2*VEO)/SQRT(1.0D0-VEO2) 
        A1=A11+A12-(log(NE))/(log(E)) 
        A2=C2*(NE-M2*(NE-1.0d0+VEO/(M))) 
        A3=SQRT(NE*NE-M2*(NE-1+VEO/(M))**2.0d0) 
        A=A1-(A2/A3) 
        F1=(log(NPO))/(log(E)) 
        F2=C2*(NPO-M2*(NPO-1.0d0+VPO/(M))) 
        F3=SQRT(NPO*NPO-M2*(NPO-1.0d0+VPO/(M))**2.0d0) 
        F=F1+(F2/F3)-A
        G1=SQRT(NPO*NPO-M2*(NPO-1+VPO/(M))**2.0d0) 
        G2=(C2*(1.0d0-M2)) 
        G3=C2*(NPO-M2*(NPO-1.0d0+VPO/(M)))**2.0d0 
        G=(1.0d0/NPO)+(G1*G2-(G3/G1))/(G1*G1)
        NP1=NPO -(F/G)
        DELTA=ABS(NP1-NPO) 
        IF (DELTA<0.000000000001) goto 10 
        NPO=NP1
      Enddo
C     endfile(25) 
C     close(25) 
10    END
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c     PROGRAM TO DETERMINE THE SOLITON PROFILE FOR A RELATIVISTIC 
c ELECTRON-POSITRON PLASMA 
       PROGRAM TEST 
       IMPLICIT NONE 
       external derivs 
       EXTERNAL NEWTON 
       external rk4 
       INTEGER i,n 
       REAL*8 h,x,dydx(1),y(1),yout(1) 
       REAL*8 M,C,M2,C2,NE,G,F,NPO,N11,N21,N3,N4 
       REAL*8 SI,NUM,DEN,N1,N2,D1,D2,D3,VEO,VPO,VEO2,VPO2 
       COMMON/PLASMA/M,M2,C,C2,VEO,VPO,VEO2,VPO2,SI 
       h=0.001d0 
       n=1
       x=-0.001d0 
c     **********PARAMETERS***** 
        M=0.02d0 
        C=11.0d0 
        C2=C*C 
        M2=M*M 
        VEO=0.10D0 
        VPO=0.10D0 
        VEO2=VEO*VEO 
        VPO2=VPO*VPO
c     ************************* 

        y(1)=0.8319D0 

c     Let's loop here 

       open(25,file="sag1.dat") 
       open(26,file="sag2.dat") 
       write(25,*) x,y(1) 
       write(26,*) -1.0d0*x, y(1) 
       do i=1,5000D0 
       NE=Y(1) 
       CALL NEWTON(NE,NPO,F,G) 
       N11=(VEO/(M))*(NE-2+VEO/(M)) 
       N21=(VPO/(M))*(NPO-2+VPO/(M)) 
       N1=(1.0d0-NE+N11)/(SQRT(NE*NE-M2*(NE-1+VEO/(M))**2)) 
       N2=(1.0d0-NPO+N21)/(SQRT(NPO*NPO-M2*(NPO-1+VPO/(M))**2))
       N3=(M*C2*VEO-VEO2*C2)/(SQRT(1-(VEO2))) 
       N4=(M*C2*VPO-VPO2*C2)/(SQRT(1-(VPO2))) 
       D1=1.0d0/NE 
       D2=C2*M2*(1.0d0-(VEO/(M)))**2 
       D3=(NE*NE-M2*(NE-1+VEO/(M))**2)**(3.0d0/2.0d0) 
       NUM=2.0d0-NPO-NE-C2*M2*(N1+N2)-N3-N4 
       DEN=(D1-(D2/D3))**2 
       SI=NUM/DEN 
      call derivs(x,y,dydx) 
      call rk4(y,dydx,n,x,h,yout,derivs) 
      y(1)=yout(1) 
      x=x+h 
      write(6,*) x,yout(1) 
      write(25,*) x,yout(1) 
      write(26,*) -1.0d0*x, yout(1) 
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       enddo 
       endfile(25) 
       endfile(26) 
       close(25) 
       close(26) 
       end 
c*******************************************************************************
c
C      SUBROUTINE TO CALCULATE NPO FOR VARIOUS NE VALUES USING NEWTON_RAPHSON
       SUBROUTINE NEWTON(NE,NPO,F,G) 
       IMPLICIT NONE 
       INTEGER i 
       REAL*8 F,G,M,NE,NP,SI 
       REAL*8 C2,M2,E,NP1 
       REAL*8 F1,F2,F3,G1,G2,G3,g4,G5,A11,A12 
       REAL*8 A,A1,A2,A3,NPO,DELTA,C,VEO,VPO,VEO2,VPO2 
       COMMON/PLASMA/M,M2,C,C2,VEO,VPO,VEO2,VPO2,SI 
C      **********PARAMETERS**********
       NPO=1.0d0 
       E=dexp(1.0d0)
C
C     ****************************** 
C
c        open(25,file="g:\ian\RELWAVES\NEWTON.dat",status="unknown")
        do i=1,50
        A11=(C2-M*C2*VPO)/SQRT(1.0D0-VPO2) 
        A12=(C2-M*C2*VEO)/SQRT(1.0D0-VEO2) 
        A1=A11+A12-(log(NE))/(log(E)) 
        A2=C2*(NE-M2*(NE-1.0d0+VEO/(M))) 
        A3=SQRT(NE*NE-M2*(NE-1+VEO/(M))**2) 
        A=A1-A2/A3 
        F1=(log(NPO))/(log(E)) 
        F2=C2*(NPO-M2*(NPO-1.0d0+VPO/(M))) 
        F3=SQRT(NPO*NPO-M2*(NPO-1+VPO/(M))**2) 
        F=F1+(F2/F3)-A
        G1=SQRT(NPO*NPO-M2*(NPO-1+VPO/(M))**2) 
        G2=(C2*(1.0d0-M2)) 
        G3=C2*(NPO-M2*(NPO-1+VPO/(M)))**2 
        G=(1/NPO)+(G1*G2-(G3/G1))/(G1*G1)
        NP1=NPO-(F/G)
        DELTA=ABS(NP1-NPO) 
        IF (DELTA<0.000000000001) goto 10 
c       write(25,*)NPO,NP1,F,G 
        NPO=NP1
      Enddo
C     endfile(25) 
C     close(25) 
10    END
c*******************************************************************************
c
       SUBROUTINE derivs(x,y,dydx) 
        IMPLICIT NONE 
        REAL*8 x,dydx(1),y(1),SI,NPO 
        REAL*8 M,C,M2,C2,NUM,DEN,VEO,VPO,VEO2,VPO2 
        REAL*8 N1,N2,D1,D2,D3,SAG,NP,NE 
        COMMON/PLASMA/M,M2,C,C2,VEO,VPO,VEO2,VPO2,SI 
        x=x 
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        M2=M**2 
        C2=C**2 

c************************** Runge-Kutte form *******************
        SAG=-2.0d0*(SI) 
        dydx(1)=dsqrt(SAG) 
       END 
c*******************************************************************************
c
      SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs) 
        IMPLICIT NONE 
        INTEGER n,NMAX 
        REAL*8 h,x,dydx(n),y(n),yout(n) 
        EXTERNAL derivs 
        PARAMETER (NMAX=50) 
        INTEGER i 
        REAL*8 h6,hh,xh,dym(NMAX),yt(NMAX),dyt(NMAX) 
        hh=h*0.5d0 
        h6=h/6.0d0 
        xh=x+hh 
        do i=1,n 
          yt(i)=y(i)+hh*dydx(i) 
      enddo
        call derivs(xh,yt,dyt) 
        do i=1,n 
           yt(i)=y(i)+hh*dyt(i) 
      enddo
        call derivs(xh,yt,dym) 
        do i=1,n 
          yt(i)=y(i)+h*dym(i) 
          dym(i)=dyt(i)+dym(i) 
      enddo
        call derivs(x+h,yt,dyt) 
        do i=1,n 
            yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.0d0*dym(i)) 
      enddo
        return 
        END
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