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Abstract

HIV is among the highly infectious and pathogenic diseases with a high mortality rate.

The spread of HIV is influenced by several individual based epidemiological factors such

as age, gender, mobility, sexual partner profile and the presence of sexually transmitted

infections (STI). CD4+ count over time provided the first surrogate marker of HIV disease

progression and is currently used for clinical management of HIV-positive patients. The

CD4+ count as a key disease marker is repeatedly measured among those individuals who

test HIV positive to monitor the progression of the disease since it is known that HIV/AIDS

is a long wave event. This gives rise to what is commonly known as longitudinal data.

The aim of this project is to determine if the patients’ weight, baseline age, sex, viral load

and clinic site, influences the rate of change in CD4+ count over time. We will use data of

patients who commenced highly active antiretroviral therapy (HAART) from the Center

for the AIDS Programme of Research in South Africa (CAPRISA) in the AIDS Treatment

Project (CAT) between June 2004 and September 2006, including two years of follow-up

for each patient. Analysis was done using linear mixed models methods for longitudinal

data. The results showed that larger increase in CD4+ count over time was observed in

females and individuals who were younger. However, upon fitting baseline log viral load

in the model instead of the log viral at all visits was that, larger increase in CD4+ count

was observed in females, individuals who were younger, had higher baseline log viral load

and lower weight.
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Notes

One paper has been drafted from this thesis.

1. Factors associated with the rate of increase in CD4+ count over the first two years

in patients initiated on HAART in KwaZulu Natal, South Africa. Presented at the

Center for the AIDS Programme of Research in South Africa (CAPRISA) Academic

Day, Durban, South Africa, 28 August 2009. The presentation of the paper won the

first prize.
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Chapter 1

Introduction

Since the emerging of the Human Immunodeficiency Virus (HIV), South Africa has experienced an

unprecedented HIV prevalence. In South Africa, some 5.5 million [4.9 million-6.1 million] people,

including 240 000 [93 000-500 000] children younger than 15 years, were living with HIV in 2005

(Joint United Nations Programme on HIV/AIDS, 2006). Acquired Immunodeficiency Syndrome

(AIDS) was first reported in South Africa in 1983 and as in most of Africa, AIDS first became

apparent as an urban phenomenon in South Africa but it spread rapidly into rural areas (Abdool

Karim and Abdool Karim, 2005). HIV is among the highly infectious and pathogenic diseases with

a high mortality rate.

The spread of HIV is influenced by several individual based epidemiological factors such as age,

gender, mobility, sexual partner profile and the presence of sexually transmitted infections (STI).

There is a continuing, rising trend nationally in HIV infection levels among pregnant women at-

tending public antenatal clinics. National HIV prevalence figures based on antenatal care data

ranged from 22.4% in 1999 to 30.2% in 2005 (Department of Health, 2006). HIV prevalence esti-

mates give the number and proportion of people who are living with HIV at a given point in time.

However, HIV prevalence data cannot tell us what proportion of HIV positive people are in the

later stages of HIV infection and at risk of progressing to fully blown AIDS.

In order to analyze the prognosis of patients infected with HIV, we use the CD4+ count. CD4+

count is the measure of the number of helper T cells per cubic millimeter of blood. T helper cells

are a sub-group of lymphocytes (a type of white blood cell or leukocyte) that play an important

role in establishing and maximizing the capabilities of the immune system. CD4+ cells are a vital

component of the immune system and also a prime target of HIV infection and HIV infection is

characterised by continuous loss of CD4+ cells (O’Brien et al., 1996). CD4+ count provided the

first reliable marker of disease progression (Abdool Karim and Abdool Karim, 2005) as compared
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to other possible markers and it is one of the markers most closely correlated with the stage of

HIV infection (Prins et al., 1999). After few weeks post infection the viral load peaks and CD4+

count declines dramatically. However, after within few weeks the immune system responds to HIV

resulting in a decline in viral load and CD4+ count return to near normal values.

The CD4+ count as a key disease marker is repeatedly measured among those individuals who test

HIV positive to monitor the progression of the disease since it is known that HIV/AIDS is a long

wave event. This gives rise to what is commonly known as longitudinal data. It follows from this

that longitudinal studies are needed to establish the effects on individuals over time. The response

to the AIDS epidemic in South Africa developed slowly at first. In the 1990s it suffered huge crises

of credibility, faltering seriously in the late 1990s despite some momentum in the period just after

the dawn of democracy in 1994, but in the present decade it has been gathering momentum once

again with the announcement by the government in 2003 that it would make free antiretroviral

treatment available in the public health service (Abdool Karim and Abdool Karim, 2005).

CD4+ count is used to make a decision as to when to commence highly active antiretroviral ther-

apy (HAART). Against this background the government’s Department of Health has adopted the

provision of ART tables in its guidelines (Department of Health, 2006) to help in decision mak-

ing as to when to initiate HAART to an infected patient. The decision to provide HAART is

complex. The criteria to provide HAART seem to differ between the developed and developing

countries. According to South Africa’s ART programme, an individual who is HIV positive can

only be initiated on HAART once his/her CD4+ count is less than or equal to 200 cells/µL or

if a patient presents with certain clinical symptoms and also if that particular patient is ready

and understands the importance of adherence very well. On the other hand, in the United States

HAART is initiated when the CD4+ count is less than 350 cells/µL.

In the absence of any antiretroviral therapy, the median time to AIDS from the point of HIV

infection is 8 to 10 years, at least in the USA and Europe where there is generally good access

to health care (Abdool Karim and Abdool Karim, 2005). It is always a good idea not to start

HAART at early stages of infection because ARV drugs do not make any difference to a person’s

health. The longer a person’s immune system is exposed to HAART, the more likely the chance

that the HIV will develop resistance to treatment and become no longer beneficial to the patient.

Starting HAART too early also means that serious side effects associated with HAART are allowed

to set in unnecessarily.

Thus, for planning purposes, efficiency, high acceptance and adherence, it is important to under-

stand the rates at which CD4+ count decrease to reach the minimum required number to initiate
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HAART and also the rate at which CD4+ count increases after HAART initiation to reach an

acceptable level. An acceptable or normal CD4+ count for an adult person is between 500 and

1200 cells/µL. On the other hand Diggle et al. (1994, 2002) report that an uninfected individual

has around 1100 cells/µL of blood. The factors affecting the rate of change are critical. These

factors can be grouped broadly into socio-demographic and biomedical factors. The purpose of the

current study is to understand factors that influence increase or gain in CD4+ count for patients

on HAART. In other words, the patients in this study were all under HAART and we wish to

study the factors that influence the success of HAART on them.

Although, worldwide, there are as many women as there are men with HIV infection, this aver-

aged figure conceals marked geographical differences in gender distribution of the disease (Abdool

Karim and Abdool Karim, 2005). Strategies to prevent HIV/AIDS should include the education to

promote delayed onset of sexual activity since the HIV/AIDS is quite prevalent amongst women as

compared to men in the age group 15-24 years. For social, cultural and economic reasons men are

usually in a stronger position in their relationships with women and this gives them more control

in deciding when to have sex as well as whether or not to use the condom. This phenomenon

is particularly more apparent in developing countries. This issue of promoting delayed onset of

sexual activities is just but one of the protective measures about HIV/AIDS among other things.

Furthermore, adherence to HAART needs further understanding. Adherence is when a person

initiated on HAART take medications as prescribed by a healthcare provider, in the exact dose

(number of pills/tablets/capsules) and at the right times. If the patient is not taking medications

as prescribed, the medication may not provide the required benefit intended for. Poor adherence

to therapy may also allow HIV to develop resistance to anti-HIV medications. When this happens,

viral load goes up and CD4+ count drops, signalling treatment failure. Naturally therefore we

expect CD4+ count and viral load to be negatively correlated. For someone who is on HAART

or on other immune boosting medication we expect their CD4+ count to increase and their viral

load to decrease.

However, individual responses are quite variable and the correlation between CD4+ count response

and viral load in some individual is very weak (Abdool Karim and Abdool Karim, 2005). CD4+

count is a measure of strength of the immune system. Higher CD4+ count imply a strong immune

system while low CD4+ count implies a weak immune system. The CD4+ count does not always

reflect how someone with HIV feels and functions. This means that there could be other latent

factors which influence the dynamics of the disease. It should, however, be remembered that surro-

gate markers do not precisely reflect clinical outcomes (Abdool Karim and Abdool Karim, 2005).
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Surrogate endpoints are collected in a shorter time period and are proposed based on biological

considerations within a progression model of disease. One example is CD4+ count levels in AIDS;

the CD4+ count can potentially serve as a surrogate endpoint for death (Ghosh, 2008). Modelling

surrogate endpoints has been the focus of much recent statistical research (Burzykowski, Molen-

berghs and Buyse, 2005). Studies have shown that HAART reduces both mortality and morbidity

in people infected with HIV. As viral replication falls, the CD4+ count increases, but whether

the CD4+ count returns to the level seen in HIV negative people is still unknown (Mocroft et al.,

2007).

1.1 Data description

This research project will use data collected at two sites, eThekwini (Durban) and Vulindlela (near

Howick) in KwaZulu Natal province of South Africa. The data is collected as part of HIV and

AIDS research by Centre for the AIDS Programme of Research in South Africa (CAPRISA). The

eThekwini site is situated in an urban area while the latter is in a rural area. The data is collected

on HIV+ positive patients. The eThekwini site enrolled the first patient on HAART in October

2004 while Vulindlela site enrolled the first patient in June 2004.

The eThekwini site stopped enrolling patients into the programme in April 2005 and started en-

rolling again in November 2005. Patients at the eThekwini site are recruited from the Prince Cyril

Zulu Clinic of Communicable Disease which is the chest clinic adjacent to the CAPRISA clinic

and sometimes patients present themselves for HIV testing. Patients at the Vulindlela site are

recruited from the Mafakathini clinic which is situated near that site or present themselves for

medication. The data in the current study will be referred throughout the thesis as the CAPRISA

AIDS Treatment Project (CAT).

The reason for recruiting patients infected with tuberculosis (TB) is that, HIV greatly increases the

risk of active tuberculosis disease and about 80% of patients presenting with active tuberculosis in

the province of KwaZulu Natal, South Africa, are co-infected with HIV (Gandhi et al., 2006). The

rising incidence of TB has been attributed to HIV co-infection especially in developing countries.

Recruited people receive Voluntary Counselling and Testing (VCT) from trained counsellors. In

developed countries with epidemics in high risk core groups, high-quality VCT has been shown

to substantially reduce the incidence of sexually transmitted diseases (STD) especially if supple-

mented with increased condom use (Sherr et al., 2007).

In this study patients who are HIV positive get screened to check if they are eligible for the

CAPRISA AIDS Treatment Project. Considering the delay in South African Department of
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Health’s HAART roll out, the CAPRISA AIDS Treatment Project helps by rolling out HAART

to people who are HIV positive. The eligibility is to have CD4+ count of less than or equal to 200

cells/µL and be at least 14 years of age, but if the CD4+ count is greater than 200 cells/µL and a

patient is very sick he/she is still initiated on HAART for ethical reasons. The CD4+ count and

viral load are measured at baseline and at every six months interval thereafter.

Some patients come for their six monthly visits a month prior to the scheduled visit or sometime a

month after the scheduled visit which is still acceptable. An additional complexity with the data

is that of missing observations due to drop out for known reasons such as death, loss to follow up

and relocation to other areas. In this treatment project we have more females accessing ARVs than

males. This raises a lot of questions such as whether HIV prevalence or incidence of HIV is higher

for women than for men. Or are women sensitive to better care of their lives and therefore get HIV

tested whenever they are not feeling well hence accessing ARVs as soon as possible. Maybe it is

because the clinics are primarily antenatal centres and hence more women are expected to attend.

1.2 What drives young women into sex at young age?

We know that South Africa is one of the developing countries where poverty prevalence is the

most critical challenges that the government is facing. Women are increasingly becoming infected

with HIV and deaths due to HIV/AIDS have left a large number of children as orphans. In Sub-

Saharan Africa alone, the epidemic has orphaned nearly 12 million children less than 18 years

(Joint United Nations Programme on HIV/AIDS, 2008). This is definitely counter-productive to

the government’s efforts to eradicate poverty. Some young women are the victims of HIV/AIDS in

a sense that they are the ones looking after their younger siblings because their parents were killed

by HIV/AIDS. Some younger and older women are compelled to become prostitutes for income

reasons. In addition young females tend to have relationships with older and sometimes married

men in exchange for food, money, shelter and warm clothes. They are also promised jobs and

promotions at work in exchange for sex.

Younger women and children are most often victims of rape and that increases the risk of them

being infected with HIV. In addition women are at risk of being infected with HIV at a younger

age than younger men because they on average have partners five years older than themselves

and these partners are more likely to be already HIV infected. Young women think that rich

older men are an avenue to a better life. One should not forget that some young women become

prostitutes because of material wealth not because the circumstances force them to do that. Age

on the other hand puts young people at risk, in terms of inexperience and inability to negotiate the

terms of relationships specifically the use of condom. In general, while both men and women are
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vulnerable, adolescent women represent one of the most vulnerable population groups in relation

to HIV/AIDS.

1.3 Objectives of the study

The aim of this project is to use longitudinal data analysis techniques to study the evolution of

CD4+ count in patients on HAART in rural and urban KwaZulu Natal. We will assess whether

the evolution of CD4+ count for individuals on HAART is dependent on other factors associated

with the individual. The predictor or covariates that are going to be modelled are age, sex, site,

weight and log viral load. In observational studies, subjects may be very heterogeneous at baseline

such that longitudinal changes need to be studied after correction for potential confounders such

as age, sex, geographical location and others. It has been noted that in any population, there

is considerable heterogeneity in the individual rate and magnitude of CD4+ cell reconstitution

(Battegay et al., 2006). Thus the specific objectives of the study are:

• To determine if the patients’ weight, baseline age, sex, viral load and clinic site, influences

the rate of change in CD4+ count over time

• To construct a longitudinal data analysis model for CD4+ count in patients initiated on

HAART

• Account for within and between individual variability in the evolution of CD4+ count post

HAART initiation

• Estimate the predictive effects of measured covariates using empirical Bayes methods

• Discuss the problem of missing data and future studies

It should be noted that for modelling purposes viral load was log10 transformed since the viral load

is very right skewed. The analysis will be done using the statistical software called SAS (version

9.1.; SAS Institute Inc., Cary, NC, USA).
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Chapter 2

Exploratory data analysis

2.1 Introduction

In this chapter a detailed exploratory data analysis to the CD4+ count data for the CAT project

is carried out. The aim of this process is to understand the data structure and determine the

relevant modelling approaches suitable for it.

2.2 Baseline characteristics

First we start with understanding the baseline characteristics of individuals enrolled in the study.

There were 1176 patients aged 14-69 were enrolled, 409 (34.8%) from the eThekwini site and 767

(65.2%) from the Vulindlela site. Out of the 1176, 365 (31.0%) were males and 811 (69.0%) were

females. All patients had a mean weight of 60.4 kg at enrolment or baseline. Table 2.1 shows a

cross distribution of patients according to sex and age for each site. The mean age and weight

in each site and sex are tabulated in Table 2.2. Tests of no association or relationship between

site and the variables namely gender and age group was performed using the Chi-square test of

independence of factors. The tests were performed at 5% level of significance.
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Table 2.1: Baseline characteristics

Characteristic Vulindlela (n=767) eThekwini (n=409) p-value

Sex

Male 231 (30.1%) 134 (32.8%)

Female 536 (69.9%) 275 (67.2%) 0.3503

Age(years)

≤ 24 74 (9.7%) 40 (9.8%)

25-30 228 (29.7%) 108 (26.4%)

31-36 218 (28.4%) 130 (31.8%)

37-42 125 (16.3%) 64 (15.7%)

≥ 43 117 (15.3%) 62 (15.2%) 0.714

missing 5 (0.7%) 5(1.2%)

Table 2.1 shows that the percentage distribution of males and females across the two sites is almost

the same. Also the percentage distribution of age groups across the sites is almost the same. The p-

values in Table 2.1 are not statistically significant, and therefore we fail to reject the null hypothesis

that there is no association between site and the variables gender and age group. This observation

is evident from the percentage distribution of these variables across sites in Table 2.1.

Table 2.2: Distribution of patient’s baseline characteristics

Characteristic Vulindlela eThekwini

Age(years),mean (std)

Sex

Male 36 (9) 36 (9)

Female 33 (8) 33 (8)

Weight(kg),mean (std)

Sex

Male 58.7 (10.4) 61.1 (9.2)

Female 59.8 (13.6) 62.4 (14.0)

Table 2.2 shows that women on average are younger than men. The difference in age for males

and females from eThekwini and Vulindlela is statistically significant with an independent sample

t-test p-value of 0.0031 and 0.0023 respectively. The eThekwini site has higher mean weight at

baseline than Vulindlela for both males and females. However, the mean weight for males and
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females within each site was almost the same.

2.3 Distributional properties of CD4+ count

A histogram plot of CD4+ count data is presented in Figure 2.1. The figure shows that the

distribution is skewed to the right hence may not satisfy the normality assumption. To normalize

the data a square root transformation was carried out to the data and the histogram re-plotted as

shown in Figure 2.2. The skewness for the histogram in Figure 2.1 and Figure 2.2 was 1.15 and

0.04 respectively. It might be more plausible to use logarithmic transformation to CD4+ counts

but we will use the commonly used square root transformation just like in many studies. The

transformed square root distribution now looks much more bell shaped and hence the normality

assumption can hold on the square root scale.

Figure 2.1 Histogram for CD4+ count
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Figure 2.2 Histogram for square root CD4+ count

Both actual CD4+ count and the square root transformed values were used in the exploratory data

analysis. The data set was unbalanced in the sense that the number of repeated observations per

individual was not the same for all patients but the measurements for all subjects were taken at

fixed time points of six monthly visits. The maximum number of observations per subject is 5.

The mean CD4+ count at baseline for the eThekwini and Vulindlela site were 105 and 106 cells/µL

respectively. Further exploration of the data shows that women at both Vulindlela and eThekwini

sites started with mean CD4+ count of 108 cells/µL respectively. However, men from both sites

started with lower CD4+ count as compared to women. Men from Vulindlela and EThekwini

started with mean CD4+ count of 100 and 99 cells/µL respectively.
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Figure 2.3 Mean CD4+ count for combined data from eThekwini and Vulindlela

Figure 2.4 Mean square root CD4+ count for all patients from both sites
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From Figure 2.3 and 2.4 it is evident that the overall mean CD4+ count increases with time.

The CD4+ count tend to increase rapidly following the initiation of antiretroviral drug therapy

which is a reflection of the extent of suppression of viral replication, but it should be noted these

plots are mean plots which can possibly be different from individual plots because they may show

some patients responding better than others. This initial increase relies on a reduction in T-cell

activation and primarily consists of a release of memory CD4+ cells trapped in the lymphoid tissue

(Bucy et al., 1999). This observation is in line with what is expected biologically that CD4+ count

should increase rapidly following antiretroviral drug therapy (Abdool Karim and Abdool Karim,

2005).

Figure 2.5 Mean CD4+ count for eThekwini and Vulindlela
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Figure 2.6 Mean square root CD4+ count for both sites

Figure 2.5 and 2.6 are raw CD4+ count and square root CD4+ count for each site. One can see

that the mean CD4+ count for the two sites behave differently from baseline to month 24. At

baseline the means are almost the same. As we move from baseline to just before month 15, the

means for eThekwini site are greater than that of Vulindlela. However, just after month 15 the

means for eThekwini site drop. Some patients were terminated as early as month 6 and therefore

did not contribute any data thereafter. It is possible that issues related to drop out may be the

cause of this difference in behaviour in the site specific curves. This is a manifestation of the

complexity introduced by missing data in carrying out comparisons between groups.
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Figure 2.7 Mean CD4+ count for males and female using combined data

From Figure 2.7 one can see that the mean CD4+ count for women is greater than that of men

from baseline to month 24. Relative to their counterparts, both HIV negative and HIV positive

women tend to have higher CD4+ count (Tollerud et al., 1989). This difference can be due to

adherence problems or due to biomedical factors. However, Nattrass (2008) reported that male

South African HAART patients, whether in the public or private sectors, have on average lower

CD4+ count than women when starting HAART.
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Figure 2.8 Mean CD4+ count for sex across sites

Figure 2.8 gives site specific mean CD4+ count for males and female over time in one plot. One can

notice that from baseline to around month 12, the mean CD4+ count for males in the eThekwini

site is greater than that for males in Vulindlela site. For females we observe the same trend around

month 18.

In Figure 2.9 the mean CD4+ count for different age groups increases with time, but one can

see that the age group ≤ 24 years is doing better than the other age groups. Moreover, as age

increases CD4+ count decreases as one can see for the relative positions of age specific curves

in Figure 2.9. Older groups have lowest mean CD4+ count over time as compared to younger

groups. This might be attributed to the ability to re-produce CD4+ cells in younger than in older

individuals. Younger patients might have higher capacity to re-produce at higher rate than older

patients. The relationship between age and the immunological response supports the concept of

an age related decline in thymic function and probably other regenerative mechanisms such as the

peripheral expansion of CD4 T lymphocytes (Douek et al,. 1998).
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Figure 2.9 Mean CD4+ count over time for different age groups (years)

2.4 Profile plots for a random sample of patients from each

site

A random sample of 50 patients from each site was selected and a plot of CD4+ count over time

constructed for the 50 patients on the same graph. The aim of such a plot was to assess if there

is an indication of subject to subject variability in the evolution of CD4+ count as well as within

subject variability over time. A similar plot was constructed on a square root CD4+ count scale

for both sites. It is important to note the presence of incomplete profiles in the data. Males and

females of different age groups had an equal chance of being randomly selected.

Figure 2.10 shows evidence of individual to individual variability as well as within individual

variability in the evolution of CD4+ count. The presence of incomplete profiles for patients who

did not reach month 24 is also evident. Most individual plots suggest a steep increase between the

baseline and month 6 measurements. These are features that will be incorporated in the analysis
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Figure 2.10 CD4+ count and square root CD4+ count for a random sample from the

eThekwini site

in order to better understand the relationship of CD4+ count and the measured covariates. The

two plots on original and square root scale in Figure 2.10 portray the same qualitative feature.

Figure 2.11 CD4+ count and square root CD4+ count for a random sample from the

Vulindlela site

Figure 2.11 for Vulindlela site show similar features as those observed in the eThekwini site.

2.5 Scatter plots for CD4+ count against covariates

Several relationships between the response variable versus covariates were investigated. Covariates

such as weight and log viral load are plotted against CD4+ count on the square root and original

scale to establish if there is any relationship between these measured predictor variables. These

plots were done at different visits and also overall visits to see if they follow the same trend.
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Figure 2.12 Scatter plots for CD4+ count vs. weight at different visits for combined data

Figure 2.12 indicates or suggests a positive correlation between CD4+ count and weight at all

the five measurement occasions (0, 6, 12, 18 and 24 months) with possibly varying degrees of

correlation. But at this point we cannot conclude whether this is a statistically significant result

or not until a formal significance analysis is carried out in chapter 4.
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Figure 2.13 Scatter plots for CD4+ count vs. weight for combined data

Figure 2.13 shows a scatter plot of CD4+ count on the original scale (Figure 2.13(a)) and square

root scale (Figure 2.13(b)) using the entire data with a loess curve fitted across. Both Figure

2.13(a) and 2.13(b) suggest a positive correlation between CD4+ count and weight.
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Figure 2.14 Scatter plots for CD4+ count vs. log viral load at different visits for

combined data

Figure 2.14 shows a plot of CD4+ count at all visits versus log viral load at baseline. There is a

statistical evidence of a weak negative correlation between CD4+ count and baseline log viral load

except for month 12 measurement.
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Figure 2.15 Scatter plots for CD4+ count vs. log viral

Figure 2.15(a) and (b) is a scatter plot of CD4+ count and square root CD4+ count versus log viral

load using all the data are presented respectively. The plots suggest a strong negative correlation

between the two markers as expected.
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Figure 2.16 Scatter plots for CD4+ count vs. age at different visits for combined data

Figure 2.16 shows a plot of CD4+ count versus baseline age for all five different visits. There is a

negative correlation between CD4+ count and age at different visits except for baseline.
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Figure 2.17 Scatter plots for CD4+ count vs. age

Figure 2.17 shows a scatter plot of baseline CD4+ count versus baseline age. The plot shows a

weak positive correlation between the two variables.

2.5.1 Scatter plot and correlation matrix

The scatter plot and correlation matrix can be used for exploring the correlation between the

repeated measurements. For modelling purposes this information is necessary in order to be able

to capture the correct correlation structure between observations over time.

The scatter plot matrix in Figure 2.18 shows a positive correlation between any two repeated

measures. However there is a clear emerging pattern of correlations as expected. Two adjacent

measurements are more correlated than measurements which are distant apart and that is confirmed

by Figure 2.19. The highest correlation was observed between month 18 and month 24. One of

the aims of the current project will be to find a simple less parametric correlation structure that

best describes the data. This problem is addressed in detail under chapter 4.
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Figure 2.18 Scatter plot matrix
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Figure 2.19 Correlation matrix

2.6 Testing equality of mean CD4+ count for different vari-

ables

First, a non-parametric Wilcoxon Mann-Whitney test was used to compare mean CD4+ count

between two sites over the five measurement occasions. Furthermore, the test was used to compare

mean CD4+ count of males and females. The results of this test at α=0.05 are displayed in Table

2.3 to 2.8. Mean CD4+ count are significantly different between the two sites at month 6 and 24

with p-values 0.0259 and 0.0385 respectively.

Table 2.3: Mean CD4+ count by site

Visit eThekwini Vulindlela p-value

Baseline 105 106 0.9263

Month 6 231 216 0.0259

Month 12 272 258 0.1363

Month 18 317 326 0.4842

Month 24 351 377 0.0385

The p-values in the Table 2.4 show that mean CD4+ count for males and females are statistically

different at all visits with females having higher mean CD4+ over all the five visits. This analysis

was based on combined data over the two sites.
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Table 2.4: Both sites-Mean CD4+ count by sex

Visit Male Female p-value

Baseline 99 108 0.0273

Month 6 201 231 <0.0001

Month 12 239 275 <0.0001

Month 18 283 339 <0.0001

Month 24 314 389 <0.0001

Table 2.5: eThekwini site: Mean CD4+ count by sex

Visit Male Female p-value

Baseline 99 108 0.0916

Month 6 214 239 0.0112

Month 12 240 288 0.0001

Month 18 273 337 0.0002

Month 24 306 370 0.0008

Table 2.5 and 2.6 represents similar results as those in Table 2.4 except that they are now site

specific. Again the p-values in Table 2.5 shows that mean CD4+ count for males and females in

eThekwini are statistically significantly different from month 6 to month 24 with females having

the highest CD4+ count at all visits.

Table 2.6: Vulindlela site: Mean CD4+ count by sex

Visit Male Female p-value

Baseline 100 108 0.1390

Month 6 193 226 0.0001

Month 12 238 267 0.0039

Month 18 290 340 0.0001

Month 24 320 400 <0.0001

26



Table 2.7: Mean CD4+ count for males between sites

Visit Vulindlela eThekwini p-value

Baseline 100 99 0.6871

Month 6 193 214 0.1502

Month 12 238 240 0.7707

Month 18 290 273 0.4491

Month 24 320 306 0.6330

Table 2.7 shows that the mean CD4+ count for males between the two sites at all visits are not

significantly different (p-values >0.05).

Table 2.8: Mean CD4+ count for females between sites

Visit Vulindlela eThekwini p-value

Baseline 108 107 0.8044

Month 6 226 239 0.0747

Month 12 267 288 0.0368

Month 18 340 337 0.8333

Month 24 400 370 0.0381

Table 2.8 shows that mean CD4+ count for females between the two sites at different visit occasions

are not statistically different except for month 12 and month 24 (p-value <0.05). The results in

Tables 2.7 and 2.8 tells us that the improvement of CD4+ count is the same whether you are a

male from urban or rural area. However, for females there seems to be significant site difference

at months 12 and 24. One reason that may explain this is adherence to ARV drugs and drop

out effects, but this needs further investigation. It is possible that individual(s) who dropped out

between month 6 and 12 in Vulindlela were those with high CD4+ count hence biasing the mean

CD4+ count in month 12 downwards, and likewise for individual(s) dropping between months 18

and 24 in eThekwini. But Table 2.4, 2.5 and 2.6 shows that females have on average higher CD4+

count than males at all visits post baseline.

2.7 Sample variogram and autocorrelation

Sources of variability in any data set can be determined by analyzing ordinary least squares (OLS)

residuals with the semi-variogram. Alternatively one can describe the degree of association among

repeated measurements using the full variogram instead of the semi-variogram (Diggle et al., 1994,

2002). In longitudinal sample data the counterpart of the variogram is called the sample vari-
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ogram. There are three error sources that can be found in an individual’s data sequence namely:

subject-specific random effects (bi), serial correlation (ε2(i)) and measurement error (ε1(i)), where

here i denotes a typical individual in the sample.

Random effects (a measure of between-subject variability) reflect how much subject-specific pro-

files deviate from the average profile. When units are sampled at random from a population,

various aspects of their behaviour may show stochastic variation between units. Perhaps the sim-

plest example of this is when the general level of the response profile varies between units, that

is, some units are intrinsically high responders, others low responders (Diggle et al., 1994, 2002).

The response here is in terms of the response to HAART treatment. Serial correlation (a measure

of within-subject variability) usually is a decreasing function of the time separation between mea-

surements as demonstrated by the sample correlation matrix in Figure 2.19.

This type of stochastic variation results in a correlation between pairs of measurements on the

same unit which depends on time separation between the pair of measurements (Diggle et al.,

1994, 2002). This correlation becomes weaker as the time separation increases. Measurement error

means that there may be a certain level of variation in the measurement itself. Diggle et al. (1994,

2002) came up with the following example to illustrate measurement error: Two samples taken

simultaneously from a cow would have different measured protein contents, because the measure-

ment process involves an assay technique which itself introduces a component of random variation.

So, one need to establish which one amongst these three is the main source of variation namely:

random effects, serial correlation and measurement error. Let Yij denote a repeated measurement

observation taken at time tij where i = 1, 2, . . . , N and j = 1, 2, . . . , ni. Thus the set of repeated

observations from unit i are Yi=(Yi1, . . . , Yini
). For balanced data tij=tj and ni=n. Let the mean

as a function of time be E(Yij)=µ(tij). Based on mean function µ(tij) the residuals

rij = yij − µ(tij) (2.1)

can be obtained and are assumed to follow the model

ri = Zibi + ε1(i) + ε2(i) (2.2)

where the components in (2.2) respectively account for between subject variability, measurement

error and serial correlation. The semi-variogram assumes constant variance, which implies that

the only random effects in the model will at most be due to random intercept effects hence Zi =

(1, 1, . . . , 1)′. However, some of the limitations of the semi-variogram have been relaxed for example

in the work by Verbeke et al. (1998) and Serroyen et al. (2009). We will denote the variance of

the random intercepts by v2. The covariance matrix is then of the form
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Vi = V ar(Yi) = V ar(ri) = v2ZiZ
′
i + σ2Ini + τ2Hi (2.3)

where Hi is a matrix with elements g(|tij − tik|). Thus residuals rij have constant variance v2 +

σ2 +τ2. It follows that the correlation between any two residuals rij and rik from the same subject

i is given by

ρ(|tij − tik|) =
v2 + τ2g(|tij − tik|)

v2 + σ2 + τ2
. (2.4)

One can easily show that for i=1, . . . ,N and j 6= k,

1
2
E(rij − rik)2 = σ2 + τ2(1− g(|tij − tik|)) = v(uijk). (2.5)

The function v(u) is called the semi-variogram, and it only depends on the time points tij through

the time lags uijk = |tij − tik|. This means that decreasing serial correlation functions g(.) yields

increasing semi-variogram v(u), with v(0) = σ2, which converges to σ2 + τ2 as u grows to infinity.

The sample-variogram consists of a smooth curve fitted to a scatter plot. The points along the

x-axis correspond to the lags uijk = |tij − tik|, the time points for the cross-sectional unit i, and

the points on the y-axis are

vijk =
1
2

(rij − rik)2 (2.6)

for j<k, where rij is the OLS residual for cross-sectional unit i at time period tij . The total

variability or process variance is calculated as

σ̂2 =
∑
iljk

1
2

(rij − rlk)2

count
(2.7)

where i 6= l and count is the total number of terms in the sum. σ̂2 measures the cross-sectional

residual variability among all subjects over all time periods, but does not include the residual

variability within subjects over time. A smooth loess curve was fitted on a scatter plot of square

root CD4+ count versus time shown in Figure 2.20. The aim of this is to get a smooth function

that attempts to capture important patterns in the data while leaving out noise.
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Figure 2.20 Loess smoothing

The overall smooth plot in Figure 2.20 shows a sharp increase in square root CD4 count between

baseline and month 6 and then a steady increase thereafter.

In Figure 2.21 the horizontal line is the process variance. The variogram based estimate of the

process variance was found to be 13.88. Since the variogram line does not begin at zero there is

evidence that there is measurement error. Since the slope of the line is not zero this may imply

the presence of serial correlation.
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Figure 2.21 Sample-variogram

We also noted that the line does not approach the process variance, therefore suggesting the

presence of individual to individual variability or random effects. These findings are similar to one

reported in Diggle et al. (1994, 2002). Now that we have the variogram plot we can then get the

autocorrelation plot.

Figure 2.22 Autocorrelation plot

31



The autocorrelation plot is given by

ρ̂(u) =
1− γ̂(u)
σ̂2

(2.8)

where γ̂(u) is the average of the observed half-squared differences between residuals corresponding

to that particular value of u, i.e., the average of all terms 1
2 (rij − rik)2 where |tij − til| = u and σ̂2

is the within subject variation (Hallahan, 2003). The autocorrelation plot in Figure 2.22 shows a

decreasing correlation within subject from about 0.72 to 0.28 over the range of the data. Hallahan

(2003) stated that this means that a covariance structure that accounts for serial correlation is

necessary.
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Chapter 3

Linear Mixed Model

3.1 Introduction

In this chapter the theory of linear mixed models for longitudinal data will be developed and

discussed. In particular the 2 stage fitting of the linear mixed models for longitudinal data will

be the building block of the full model. One of the topics that will be discussed includes the

estimation and inferences for fixed effects. The need for random effects to model extra variability

will necessitate the estimation and inference for variance components. The problem of estimating

the random effects including how to make inference will also be studied. The approach by Verbeke

and Molenberghs (2000) is used extensively in the development of the theory.

3.2 Theory of the linear mixed model

In the entire thesis the response variable will be the square root CD4+ count. Mixed models

provide a flexible and powerful tool for the analysis of data with complex covariance structure,

such as longitudinal correlated data. A mixed model has two types of components, the systematic

or fixed, or the mean model component and the random component. The fixed component is a

sub-model representing the contribution by fixed effects and the random component represents the

contribution by random effects. A fixed effect is an effect where all levels of the variable are con-

tained in the data and the effect is universal to the entire target population. Linear mixed effects

models for repeated measures data formalize the idea that an individual’s pattern of responses is

likely to depend on many characteristics of that individual, including some that are unobserved

(Der and Everitt, 2006).

These unobserved effects are then included in the model as random variables, or equivalently called,

random effects (Der and Everitt, 2006). A random effects model means that the levels of the factor

33



variable in the data being modelled comprise a random sample of levels in the target population.

A fixed effect is considered to be a constant which we wish to estimate, but the random effect

is considered as just an effect coming from a population of effects (McCulloch et al., 2008). To

emphasize on this distinction we use the term prediction of random effects rather than estimation

(McCulloch et al., 2008). Deciding whether a factor is random or fixed is not always easy and can

be controversial (Littell et al., 2006). The collection of such class of linear models is referred to as

linear mixed models. In linear mixed models, fixed effects are used for modelling the mean of y

while random effects govern the variance-covariance structure of y (McCulloch et al., 2008).

A repeated measures model is a special case of the general linear mixed model. The distinguish-

ing feature of the repeated measures model lies in the specification of the covariance structure of

the repeated measures. The choice of fixed and random effects is not always determined by the

structure of the experiment, but may depend on the information required. The model for repeated

measurements from the same individual implies an underlying correlation structure between mea-

surements on the same subject which constitute a cluster of observations. Before stating the linear

mixed model, the general multivariate model is briefly discussed. The model is given by

Yi = Xiβ + εi (3.1)

where Yi=(Yi1 . . . Yin) is the vector of n repeated measurements from the ith subject and εi ∼

N(0,Σ). The distribution for Yi is Yi ∼ N(Xiβ,Σ). Assuming independence across individuals, β

and the parameters in Σi can be estimated by optimizing the likelihood given by

LML =
N∏
i=1

{
(2π)−n/2|Σi|−1/2exp

(
− 1

2
(Yi −Xiβ)′Σ−1

i (Yi −Xiβ)
)}

. (3.2)

The inference is based on classical maximum likelihood theory namely likelihood ratio (LR) tests

and asymptotic WALD tests.

3.3 Linear mixed model for longitudinal data

Many longitudinal studies are designed to investigate change over time in a characteristic which is

measured repeatedly for each patient (Laird and Ware, 1982). Analyses of multiple observations

measured on the same individual over time are different from observations measured on different

people. The advantage of a longitudinal study is its effectiveness for studying change. There are

natural changes like peoples’ change in height and there are also changes caused by interventions

or treatment which we are often interested in. Often, we cannot fully control for the circumstances

under which measurements are taken, and there may be considerable variation among individuals

in the number and timing of observations (Laird and Ware, 1982). Investigators gather repeated
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measures or longitudinal data in order to study change in a response variable over time as well

as to relate these changes in explanatory variables over time (McCulloch et al., 2008). Responses

measured repeatedly on the same unit or individual are correlated because they contain a common

contribution from that unit. To estimate treatment effect, it is important to adequately model

the covariance structure of the repeated measurements. Moreover, measurements on the same

individual close in time tend to be more correlated than measures far apart in time. Therefore

it is important to try and model the correct correlation structure and this will yield more precise

estimators of interest.

In addition, modelling the true correlation structure becomes significant in the presence of missing

values and when the number of observations per subject is not large. There are two types of

covariates in longitudinal studies in general. There are time invariant or baseline covariates (e.g.

gender) and time varying covariates (e.g. weight). The Linear Mixed Model (LMM) has become

the most commonly used tool for analyzing continuous repeated measures data from a sample of

individuals in agriculture, biomedical, economical, and social applications. Thus the term ‘indi-

vidual’ will have different interpretation or meaning for different areas of application. A special

case of a linear mixed model is when there are no fixed effects leading to what is called a random

effects model (McCulloch et al., 2008). Here are some of the examples to show how measurements

may be taken repeatedly on the same unit .

• The units may be trees in a forest. For each tree, measurements of the diameter of the tree

are made at several points along the trunk of the tree. Thus, the tree is measured repeatedly

over positions along the trunk.

• The units may be pregnant female rats. Each rat gives birth to a litter of pups, and birth

weight of each pup is recorded. Thus, the rat is measured repeatedly over each of her pups.

• The units may be patients in a longitudinal study where measurements of biological labora-

tory markers such as CD4+ count and viral load are taken at every six monthly visits. Thus

the patient is measured repeatedly giving rise to a cluster of observations from each patient

Repeated measurements over time are a special case of clustered data. In the first case the ob-

servations are clustered within a tree trunk and in the second case the observations are clustered

within a female rat. Thus the clusters are the tree trunk and female rat respectively. In the third

example observations are clustered within an individual. Longitudinal data can be collected either

prospectively following subjects forward in time, or retrospectively, by extracting multiple mea-

surements on each person form historical records (Diggle et al., 1994, 2002). However the latter

approach can lead to biased information if proper validation of records is not undertaken. Time

can be measured in variety of scales such as days, months, years, seasons and so on. The research
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design can be experimental or observational. Often, subject-specific longitudinal profiles can well

be approximated by linear regression functions. One can think of a two-stage development of such

functions. First one fits a linear regression model for each subject then next fit a model to regress

subject-specific regression co-efficients from stage one to known population based covariates.

In the current data we envisage that there is much variability between patients and little vari-

ability within patients since measurements taken on the same patient are correlated. There is a

considerable variability across individuals due to influence of unmeasured characteristics such as

genetic make-up, environmental exposures, personal habits, and so on (Diggle et al., 1994, 2002).

Also the within subject CD4+ count are subject to biologic variation and measurement error, both

of which can be considerable (Malone et al., 1990).

Thus it is imperative that between subject variability and within subject correlation are adequately

accounted for in order to get reliable inference about parameters of interest. In this project the

unmeasured characteristics can be that different patients have variable immune response hence

respond differently to HAART, varying adherence and so on. All these factors might affect their

CD4+ count improvement post HAART initiation. In many cases the correlation between two re-

peated measurements decreases as the time span between those measurements increases (Hedeker,

2004). Hence a correlation structure that accounts for the distance between pairs of observations

may be more admissible.

3.3.1 Two-staged fitting of the linear mixed model for longitudinal data

Modelling longitudinal or repeated data can be thought of as a two-stage process (Verbeke and

Molenberghs, 2000). The two-stage approach is presented for purposes of insight and didactics

otherwise with SAS procedure MIXED we can almost always fit the model in an integrated manner.

First a linear regression model is specified for every subject separately, modelling the outcome

variable as a function of time. Afterwards, in the second stage, multivariate linear models are

used to relate the subject-specific regression parameters from the first-stage model to subject

characteristics such as age, gender, weight, etc. The two-stage liner mixed model formulation is

derived as follows. We consider time as the only covariate of interest. Thus the stage 1 model can

be written as

Yij = β0i + β1itij + εij (3.3)

for i=1, . . . , N assuming there areN individuals and ni observations for the ith individual measured

at time tij , j=1, . . . ,ni. Here β0i and β1i are the subject-specific intercept and slope respectively

which can further be expanded in the stage 2 development as
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β0i = β0 + b0i

β1i = β1 + b1i (3.4)

where b0i and b1i are the individual specific random intercept and slope measuring the deviations

from the population mean intercept and slope β0 and β1 respectively. Combining equation (3.3)

and (3.4) we get

Yii = β0 + b0i + (β1 + b1i)tij + εij

= β0 + β1tij + b0i + b1itij + εij . (3.5)

The first two terms in equation (3.5) constitute the fixed effects component or sub-model and the

remaining portion gives the random effects components. Note that β0 + b0i measures the average

response level for the ith subject when time or visit is zero while β1 + b1i measures change in the

response over time specific to the ith subject. The inclusion of the measurement errors εij , allows

the response at any occasion to vary randomly above and below the subject-specific trajectories

(Fitzmaurice et al., 2004). So the individual intercept and slope are explained by an average part

and a random effect. The joint distribution of the random effects (intercept and slope) is assumed

to be bivariate normal such that (b0i, b1i)′ is distributed as

 b0i

b1i

 ∼ N[
 0

0

 ,

 g2
0 g01

g10 g2
1

].

Non-zero values of g01 indicate that subject specific rates of change are associated with subject

specific average response levels. In matrix notation the stage 1 model is written as

Yi = Ziβi + εi (3.6)

with

Zi =


1 ti1

1 ti2
...

...

1 tini

 .

The vector βi includes all subject specific effects and Zi is the corresponding design matrix at this

stage. The vector εi is the error term of dimensions N × 1. Here Zi is of the form N × q and βi

is of dimensions q × 1. The stage 2 model is designed to relate βi to subject specific covariates

through population based parameter β as

βi = Kiβ + bi. (3.7)
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• Ki is a (q × p) matrix of known covariates

• β is a p-dimensional vector of unknown regression parameters

This model indicates that individual i ’s initial level is determined by the population parameter β

describing average trends plus a unique contribution for that individual bi. bi describes how the

evolution of the ith subject deviates from the average evolution in the population (Molenberghs

and Verbeke, 2001). This tells us that there are unobserved factors represented by the b′is that are

common to all responses for a given patient but which vary across each patient, thus inducing an

inherent correlation between observations within the same individual.

Combining stages 1 and 2 using equation 3.6 and 3.7 gives us the following model:

Yi = Zi(Kiβ + bi) + εi = ZiKiβ + Zibi + εi (3.8)

where ZiKi=Xi and the final model becomes

Yi = Xiβ + Zibi + εi (3.9)

where

• Yi is the ni × 1 response vector for ith subject: Yi = (Yi1, Yi2, ..., Yini)
′

• Zi is a ni × q matrix of known covariates

• Xi is a ni × p design matrix for the fixed effects

• β is a p-dimensional vector of subject specific regression coefficients

• bi is q-dimensional vector of unknown random effects

• εi is ni × 1 error vector∼ N(0, Σi), often Σi = σ2Ini

• bi ∼ N(0, G)

Model 3.9 assumes that we have both fixed and random effects in the model. If Σi = σ2Ini
where

Ini denotes an identity matrix, then we call the model the ‘conditional-independence model’ since it

implies the ni responses on individual i are independent, conditional on bi and β (Laird and Ware,

1982). Furthermore, b1, ..., bN and εi, ..., εN are assumed to be independent. The elements for the

variance components are in the matrices G and Σi. In the so-called error component models, εi

can be decomposed into two components representing both subject-specific variation and variation

over time, that is serial correlation (Hallahan, 2003). Therefore εi = ε1(i) + ε2(i) where ε1(i) is the

measurement error associated with ith subject and ε2(i) is associated with serial correlation for ith

subject. ε1(i) ∼ N(0, σ2Ini) and ε2(i) ∼ N(0, τ2Hi).
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The correlation matrix H is assumed to have its (j, k)th element given by hijk = g(|tij − tik|) for

some decreasing function g(.) with g(0) = 1. This means that the correlation between ε2(ij) and

ε2(ik) only depends on the time interval between the measurements yij and yik, and decreases if

the length of this interval increases (Verbeke and Molenberghs, 2000). ε2(i) represents the belief

that part of an individual’s observed profile is a response to time varying stochastic processes

operating within that individual (Verbeke and Molenberghs, 2000). The model given by equation

3.9 is restated more explicitly in matrix notation as


Y1.

...

YN.

 =


X1.

...

XN.

β +


Z1 . . . 0
...

. . .
...

0 . . . ZN



b1.
...

bN.

+


ε1.
...

εN.

 . (3.10)

The marginal mean and variance of Yi is given by

E(Yi) = Xiβ (3.11)

and

V (Yi) = V (Zibi + εi) = ZiGZ
′
i + Σi = Vi. (3.12)

This gives us the between and within subject variation contained in the first and second components

of Vi. Both G and Σi can be estimated by either the method of Maximum Likelihood (ML) or

Restricted Maximum Likelihood(REML) estimation. But Diggle et al. (1994, 2002) report that ML

estimation produces biased estimators. Assuming we are sampling from a Gaussian distribution

then marginally

Yi ∼ N(Xiβ, ZiGZ
′
i + Σi). (3.13)

On the other hand Hallahan (2003) said that REML estimators are less sensitive to outliers than

ML estimators. If one is interested in the fixed effects (population averages) then one should focus

more on the marginal model. In this case random effects are considered nuisance parameters since

the method does not use the Z matrix to predict the response Y, rather the role of random effects

enter into the var(Y) under the components of variance in G.

The conditional mean and variance of Yi is given by

E(Yi | bi) = Xiβ + Zibi (3.14)

and

V (Yi | bi) = Σi. (3.15)
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The parameter β is the same for all patients and bi is specific to patient i. If the random effects

in b are zero implying that G is also zero then the marginal and conditional distributions are the

same and Σi is called the marginal variance. Thus the conditional model for longitudinal Gaussian

data can also be written as

Yi | bi ∼ N(Xiβ + Zibi,Σi). (3.16)

If for example, in a clinical trial one wants to measure individual specific drug efficacy then a

conditional model will do the job. However, if the interest is on drug efficacy in the population,

then the marginal model is the way to go.

3.4 Estimation of fixed effects

Recall that the general linear mixed model is given by Yi = Xiβ + Zibi + εi where bi ∼ N(0, G)

and εi ∼ N(0,Σi), bi and εi are independent and thus the marginal model is given by Yi ∼

N(Xiβ, ZiGZ
′
i + Σi). The inferences based on the marginal model do not explicitly assume the

presence of random effects representing the natural heterogeneity between subjects (Verbeke and

Molenberghs, 2000). The marginal likelihood function is given by

LML(θ) =
N∏
i=1

{
(2π)−ni/2|Vi(α)|−1/2exp

(
− 1

2
(Yi −Xiβ)′V −1

i (α)(Yi −Xiβ)
)}

(3.17)

where α is the vector of all variance components in G and Σi and θ=(β′, α′)′ is the vector of all

parameters in marginal model. The log likelihood function for subject i is

li = logLi = −ni
2
log2π − 1

2
log|Vi| −

1
2

(yi −Xiβ)′V −1
i (yi −Xiβ) (3.18)

and
∂li
∂β

= −XiV
−1
i Xiβ +X ′iV

−1
i (3.19)

If α were known, then the MLE of β on combining all the information from all the N subjects

equals

β̂(α) =
( N∑
i=1

X ′iV
−1Xi

)−1 N∑
i=1

X ′iV
−1yi. (3.20)

In most cases α is not known and needs to be estimated as say α̂, then V −1
i should subsequently

be replaced by Vi(α̂)−1. The two frequently used methods to estimate α are maximum likelihood

and restricted maximum likelihood. The method of restricted maximum likelihood was introduced

by Patterson and Thompson (1971). It was developed in order to avoid biased variance compo-

nent estimates that are produced by ordinary maximum likelihood estimation. This is because

maximum likelihood estimates of variance components takes no account of the degrees of free-

dom used in estimating fixed effects. This means that ML estimates of variance component have
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a downwards bias which increases with the number of fixed effects in the model. This in turn

leads to underestimates of standard errors for fixed effects, hence leading to unnecessarily more

conservative confidence intervals than expected.

3.4.1 Maximum likelihood estimation (ML)

In maximum likelihood estimation α̂ is obtained by maximizing the profile likelihood LML(α, β̂(α))

with respect to α. The resulting estimate of β̂(α̂ML) for β will be denoted by β̂ML. The estimates

α̂ML and β̂ML can also be obtained from maximizing LML(θ) with respect to θ that is , with

respect to both α and β simultaneously.

3.4.2 Restricted maximum likelihood estimation (REML)

To explain the concept of REML estimation more clearly consider a sample of N observations

Y1, ..., YN from N(µ, σ2). For known µ, the MLE of σ2 is given by

σ̂2
u =

∑
i

(Yi − µ)2/N (3.21)

and clearly σ̂2 is unbiased for σ2. When µ is not known, the MLE of σ2 is now given by

σ̂2
b =

∑
i

(Yi − Ȳ )2/N. (3.22)

One should note that for unknown µ, σ̂2
b is a biased estimator for σ2, that is

E(σ̂2
b ) =

N − 1
N

σ2. (3.23)

The biased expectation of σ̂2
b implies that an unbiased estimate of σ2 should be

S2
u =

∑
i

(Yi − Ȳ )2

N − 1
=

N

N − 1
σ̂2
b. (3.24)

The estimator S2
u is unbiased because E(S2

u) = N−1
N−1σ

2 = σ2. Apparently having to estimate

µ introduces bias in the MLE for σ2. To estimate σ2 without having to estimate µ consider

Y ∼N(µ, σ2IN ), where Y = (Y1, Y2, . . . , YN )′. Y can be transformed such that µ disappears from

the likelihood as follows.

Let U=



Y1 − Y2

Y2 − Y3

...

YN−2 − YN−1

YN−1 − YN


= A′Y ∼ (0, σ2A′A).
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The distribution of U does not depend on µ (Diggle et al., 1994, 2002). The MLE of σ2 based on

U is

S2
u =

∑
i

(Yi − Ȳ )2

N − 1
(3.25)

where A defines the set ofN−1 linearly independent error contrasts of the vector Y = (Y1, . . . , YN )′.

Therefore S2
u is called the REML estimate of σ2, which is independent of A. This estimation can

be extended to linear regression models. To do this consider a sample of N observations Y1, . . . , YN

from a linear regression model where Y ∼ N(Xβ, σ2I). The MLE of σ2 is

σ̂2
b = (Y −Xβ̂)′(Y −Xβ̂)/N (3.26)

which is biased for σ2 since

E(σ̂2
b ) =

N − p
N

σ2. (3.27)

From the biased expression one can derive an unbiased estimate Mean Square Error(MSE) given

by

σ2
u =

(Y −Xβ̂)′(Y −Xβ̂)
N − p

. (3.28)

The MSE can also be obtained from transforming the data orthogonal to X like in the simple

example above. The MSE is called the REML estimate of σ2. So far we have done the estimation

of variance for the normal population and also in the linear regression model. Now we consider a

similar estimate in the case of linear mixed model. Consider models where Yi ∼ N(Xβ, Vi) where

Vi was defined in equation (3.12) under the formulation of the linear mixed models. If we combine

the subject-specific sub-models into one model we get Y∼ N(Xβ, V (α)).

Where V (α)=


V1 . . . 0
...
. . .

...

0 . . . Vn



The REML estimator for the variance component α is obtained from maximizing the likelihood

function of a set of error contrasts U = A′Y where A is (n × (n − p)) matrix with columns

orthogonal to X matrix such that U = A′Y ∼ N(0, A′V (α)A), which is not dependent on β any

more. Verbeke and Molenberghs (2000) reported that the REML estimators for α and for β can

be found by maximizing the so-called REML likelihood function

LREML(θ) =
∣∣∣ N∑
i=1

X ′iV
−1
i (α)Xi

∣∣∣− 1
2
LML(θ) (3.29)

with respect to θ, that is, with respect to α and β simultaneously. LREML(θ) can also be seen as

a penalized likelihood where the penalty term is given by
∣∣∣ N∑
i=1

X ′iV
−1
i (α)Xi

∣∣∣− 1
2
.
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3.5 Inference for the marginal model

This section is devoted to the estimation of fixed effects, variance components and inference meth-

ods suitable for the ensuing estimates.

3.5.1 Inference for the fixed effects

One should remember that β̂(α) is multivariate normal with mean β and covariance var(β̂) where

E
[
β̂(α)

]
=

(
N∑
i=1

X ′iV
−1
i Xi

)−1 N∑
i=1

X ′iV
−1
i E(Yi)

=

(
N∑
i=1

X ′iV
−1
i Xi

)−1 N∑
i=1

X ′iV
−1
i Xiβ

= β

provided that E(Yi) = Xiβ and assuming α is known. In order for β̂ to be unbiased, it is sufficient

that the mean of the response variable is correctly specified.

var(β̂) =

(
N∑
i=1

X ′iV
−1
i Xi

)−1( N∑
i=1

X ′iV
−1
i (α)V ar(Yi)V −1

i (α)Xi

)(
N∑
i=1

X ′iV
−1
i (α)Xi

)−1

=

(
N∑
i=1

X ′iV
−1
i Xi

)−1

(3.30)

The standard errors based on the above expression are valid, only if E(Yi) and var(Yi) are correctly

modelled as Xiβ and Vi = ZiGZ
′
i + Σi respectively. This covariance specification method is there-

fore often called the naive estimate. In practice it is often difficult to assess correct specification

of the covariance structure, therefore one often prefers standard errors to be based on var(β̂), ob-

tained by replacing var(Yi) in (3.30) by rir′i where ri = yi−Xiβ̂ and therefore var(Yi) is estimated

by
[
Yi−Xiβ̂

][
Yi−Xiβ̂

]′
rather than Vi. This leads to robust or empirical standard errors which

are still consistent, as long as the mean is correctly specified. This suggests that as long as interest

is only in inferences for the mean structure, little effort should be spent in modelling the covariance

structure if the data set is sufficiently large. A common problem in statistical analysis is that of

testing hypothesis about group comparison or contrasts. For any known matrix L, consider testing

the hypothesis

Ho : Lβ = 0 (3.31)
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versus

HA : Lβ 6= 0. (3.32)

The Wald test statistic to test a such hypothesis is given by

Gs = β̂′L′

[
L

(
N∑
i=1

X ′iV
−1
i (α̂)Xi

)−1

L′

]−1

Lβ̂. (3.33)

An asymptotic null distribution of Gs is χ2 with degrees of freedom given by the rank of L.

However it should be noted that the variability introduced from replacing α by some estimate is

not taken into account in Wald tests. Therefore, Wald tests will only provide valid inferences in

sufficiently large samples. This is often resolved by replacing the χ2 distribution by an appropriate

F distribution for testing hypotheses about β. In other words, an F-statistics is an alternative

test statistic to the Wald test. For the null hypothesis H0 stated above the corresponding F-test

statistic is given by:

Fs =

β̂′L′

[
L

(
N∑
i=1

X ′iV
−1
i (α̂)Xi

)−1

L′

]−1

Lβ̂

rank(L)
(3.34)

and approximate null distribution of the statistic above is F with numerator degrees of freedom

equal to rank(L), and denominator degrees of freedom are estimated from the data. There are

a number of methods that one can use to estimate denominator degrees of freedom such as the

Containment method, Satterthwaite approximation, Kenward and Roger approximation just to

mention a few. As in most longitudinal data analysis applications, we assume different individuals

contribute independent information, which results in the numbers of denominator degrees of free-

dom which are typically large enough, such that whatever estimation method is used for estimation

of degrees of freedom we end up with similar p-values (Molenberghs and Verbeke, 2005).

Only for very small samples, or when linear models are used outside the context of longitudinal data

analysis, should different estimation methods for estimation of degrees of freedom lead to severe

differences in the resulting p-values. For univariate hypotheses rank(L)=1 and the F-test reduces

to a t-test. Having dealt with Wald, t- and F-tests one needs to consider the likelihood-ratio test

(LR) as it is an alternative test that can be used to test hypotheses about model parameters. A

likelihood-ratio test is a statistical test for goodness of fit between two nested models. A complex

model is compared to a relatively simpler model to see if it fits the data significantly better. It is

a statistical test for making a decision between two hypotheses based on the value of the ratio of

the likelihood under a restricted parameter space compared to an unrestricted one.
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The null hypothesis of interest is H0: β ∈ Θβ,0, for some subspace Θβ,0 of the parameter space

Θβ of the fixed effects β. Suppose β̂ is the value of β that maximizes the likelihood function L(β)

under Θβ and β̂0 is the value of β which maximizes the likelihood under Θβ,0 pertaining to some

of the elements of β. Then the likelihood-ratio test statistic is given by: λ = L(β̂0)

L(β̂)
. We reject H0

declaring it unsupported by data if H0 is too small indication that there are other hypotheses which

are much better supported by data. It is often easier to use the negative of twice its logarithm

−2logλ = −2logL(β̂0) + 2logL(β̂) (3.35)

which has an approximate null χ2 distribution with degrees of freedom equal to the difference in

dimension of Θβ and Θβ,0. This distributional approximation is exact in the normal case. In other

words, -2logλ has a null distribution with degrees of freedom equal to the difference in number

of parameters in complex model and simple model. By stating the likelihood as L(β) we have

deliberately suppressed the presence of other parameters which we here assume known. Otherwise

the estimation and the inference procedure will have to take into account of other parameters both

nuisance and those of importance in the model. For hypothesis testing regarding parameters of

a regression model we assume that the distributional assumptions also hold under the following

conditions:

• In the case of a nested model within the complex model we can resort to simple model from

the complex model simply by fixing some parameters of complex model to zero.

• The same response variable set is employed to fit both complex and simple models

In case it is not clear that the hypothesis in question do not involve nested models then other

decision making criteria such as the Akaike information criteria (AIC) can be used.

3.5.2 Inference for the variance components

The inference for the mean structure is usually of primary interest. However, inferences for the

covariance structure are of interest as well especially for the interpretation of the random variation

in the data. One should also take note that over parameterized covariance structures may lead

to inefficient inferences for the mean and likewise too restrictive covariance model may invalidate

inferences for the mean structure. The ML and REML estimates of α are asymptotically normally

distributed with a mean α and inverse Fisher information matrix I−1(α) as covariance. Thus the

Wald and the F tests can also be used to test hypotheses about the variance components too.

3.5.3 Information criteria

Likelihood ratio test is best applicable to compare nested models and not non-nested models. The

general idea behind LR test for comparing model A to a more extensive model B is to select model
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A if the increase in likelihood under model B is small compared to increase in complexity. A similar

argument can be used to compare non-nested models. Akaike’s information criterion (AIC) is a

measure of goodness of fit of an estimated statistical model. It is not a test on the model in the

sense of hypothesis testing, rather it is a tool for model selection.

Competing models may be ranked according to their AIC, with the one having the lowest AIC being

the best. It should be strongly emphasized that information criteria only provide rules of thumb

to discriminate between several statistical models and they should never be used or interpreted

as formal statistical tests of significance (Verbeke and Molenberghs, 2000). For the comparison of

models with different mean structures, information criteria should be based on ML rather than

REML, as otherwise the likelihood values would be based on different sets of error contrasts, and

therefore would no longer be comparable.

3.6 Inference for the random effects

Although, one is usually primarily interested in estimating parameters in the marginal model, it is

often useful under the conditional model assumptions to calculate estimates for the random effects

bi as well because they reflect how much the subject-specific profiles deviate from the overall average

profile Xiβ. Since E(Yi|bi) = Xiβ+Zibi such estimates can then be interpreted as residuals which

may be helpful for detecting outlying individuals who are behaving differently over time. Also,

estimates for the random effects are needed whenever interest is in the prediction of subject-specific

evolutions or trajectories (Molenberghs and Verbeke, 2005).

Obviously, it is then no longer sufficient to assume that the data can be described well by the

marginal model N(Xiβ, Vi) (Molenberghs and Verbeke, 2005). This is only meaningful under the

conditional model interpretation since Yi|bi ∼ N(Xiβ + Zibi,Σi). Because the subject-specific

parameters bi are assumed random, it is most natural to estimate them using similar approaches

as the Bayesian techniques (Molenberghs and Verbeke, 2005). To explore the inference for the

random effects we will start with the posterior density

f(bi|yi) ≡ f(bi|Yi = yi)

= f(yi|bi)f(bi)∫
f(yi|bi)f(bi)dbi

∝ f(yi|bi)f(bi)

∝ exp

{
−1
2

(
bi −GZ ′iV

−1
i (yi −Xiβ)

)′
Λ−1
i

(
bi −GZ ′iV

−1
i (yi −Xiβ)

)}
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for some positive definite Λi. Therefore the posterior distribution is

bi|yi ∼ N(GZ ′iV
−1
i (yi −Xiβ),Λi). (3.36)

The posterior mean as an estimate for bi is

b̂i(θ) = E[bi|Yi = yi]

=
∫
bif(bi|yi)dbi

= GZ ′iV
−1
i (α)(yi −Xiβ) (3.37)

b̂i(θ) is normally distributed with zero mean and covariance matrix

var(b̂i(θ)) = GZ ′i

{
V −1
i − V −1

i Xi

( N∑
i=1

X ′iV
−1
i Xi

)−1

X ′iV
−1
i

}
ZiG (3.38)

Nonetheless inferences for bi should account for the variability in bi. Therefore the inference for bi

is usually based on

var(b̂i(θ)− bi) = G− var(b̂i(θ)) (3.39)

and this takes into account the variation of bi. Parameters in θ can be replaced by ML or REML

estimates obtained from fitting the marginal model. b̂i ˆ(θ) is called Empirical Bayes estimate for

bi. Similar to fixed effects, inference is often based on approximate t-tests or F-tests rather than

on Wald test. It immediately follows that for any linear combination λbi of the random effects,

the following inequality holds

var(λ′b̂i) ≤ var(λ′bi) (3.40)

indicating that the Empirical Bayes estimates show less variability than actually present in the

random-effects population (Molenberghs and Verbeke, 2005). This is often called shrinkage estima-

tion. Often parameters of interest are linear combinations of fixed effects in β and random effects

in bi. For example, the subject-specific slope is the sum of the average slope for subjects with the

same covariate values, and the subject-specific random slope for that subject. Thus suppose

µ = λ
′

ββ + λ
′

bbi (3.41)

is of interest, then

µ̂ = λ
′

β β̂ + λ
′

bb̂i (3.42)

is the best linear unbiased predictor (BLUP) in a sense that it is linear in the observations Yi,

unbiased for µ and has minimum variance among all unbiased linear estimators.
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Now, consider the prediction of the evolution of the ith subject, then

Ŷi ≡ Xiβ̂ + Zib̂i

= Xiβ̂ + ZiGZ
′
iV
−1
i (yi −Xiβ̂)

= (Ini − ZiGZ ′iV −1
i )Xiβ̂ + ZiGZ

′
iV
−1
i yi

= ΣiV −1
i Xiβ̂ + (Ini

− ΣiV −1
i )yi. (3.43)

Yi is a weighted mean of the population-averaged profile Xiβ̂ and the observed data yi, with weights

Σ̂i ˆV −1
i and Ini

− Σ̂i ˆV −1
i respectively. The regression coefficients in a random effect model have a

subject-specific interpretation. The importance of (3.43) is that a bigger weight goes to the overall

population mean if the within subject variability is high, while if between subject variability is

large then more weight is given to yi.

To illustrate the shrinkage process, consider an example in McCulloch et al. (2008) page 170:

“Suppose the kth bull has a daughter with average milk yield ȳk. It is perfectly reasonable to

think that in the population of bulls there will be bulls other than the kth that nevertheless

have (or could have) the same daughter average, namely ȳk. Despite this, these bulls will not

necessarily all have the same genetic values, let alone all the same as that of bull k. Therefore,

since ȳk is our data, and if a is the random effect representing bull genetic values, the best we can

do for estimating bull k’s genetic value is the conditional mean E[a|ȳk]. Not surprisingly, since

the predictors calculated as E[ai|y] are ‘best’, they have smaller mean squared error than would

estimates based on assuming the random effects were fixed effects. They also have less variability

and are sometimes called shrinkage estimators. This is because

var(a) = var(E[a|y]) + E[var(a|y)]

= var(ã) + a positive value,

where ã = E[a|y] is the predictor. Thus var(ã) ≤ var(a) and so ã is said to be a shrinkage

estimator”. Relating McCullloch’s example to the CD4 count data for this analysis it is reasonable

to think that in the population of patients on HAART, there will be other patients on HAART other

than those included in the current analysis that have the same average CD4+ count. These patients

will however not have the same genetic values, let alone social and behavioural characteristics.
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Chapter 4

Application

4.1 Introduction

In this chapter a series of models will be fitted to the square root CD4+ count with the aim of

coming up with a model or models which best describe the longitudinal CD4+ count data. The

focus will be based on describing the mean model for square root CD4+ count while also trying

to capture the best correlation structure of the repeated measurements within a subject. The

next stage of the process will be an attempt to capture any unobserved heterogeneity by means of

allowing for possible subject-specific random effects and correlation structure between the random

effects if any. The models will be built in increasing order of complexity and will be shown in

subsequent sections and sub-sections.

4.2 Univariate models

4.2.1 Marginal models

We will start by fitting marginal models and then deal with subject specific models afterwards. In

univariate models the relationship between square root CD4+ count and each of the explanatory

variables will be explored. Our explanatory variables are site, sex, age, weight, log viral load and

time post HAART initiation. Site and sex are categorical variables both with two levels, while

age, weight and log viral load are continuous variables. The first model is where we fit time as the

predictor variable and square root CD4+ count as the response to see how the square root CD4+

count change over time. Thus the first model is given by

Yij = β0 + β1tij + εij (4.1)

where Yij is the response vector for ith subject measured at time tij for i=1, . . . , N and j=1,
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. . . ,ni. This model gives us the average intercept and slope respectively of all the subjects. In this

model individuals do not vary in their baseline level of response as well as in their change in the

mean response over time. The SAS program for this model is given below.

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid visits;

model sqrtcd4=visit/solution;

repeated visits/subject=pid;

run;

This is a brief explanation of what each statement or piece of the program does within this par-

ticular SAS software procedure. PROC MIXED statement calls SAS software procedure mixed.

One may ask why PROC MIXED is used and not PROC GLM. PROC MIXED uses all available

data not only the complete cases but also the incomplete cases. In the CD4+ count data that

is used for this project, PROC GLM would have only used the data for patients with all 5 mea-

surements available. ‘Method’ specifies the estimation method used for the analysis. The ‘covtest’

gives p-values for all variance and covariance estimates. The ‘empirical’ option gives us empirical

standard errors. This method yields a consistent estimator of precision, even if the covariance is

misspecified (Verbeke and Molenberghs, 2000).

The CLASS statement defines categorical variables in the model. The MODEL statement specifies

the fixed model, it also includes ‘intercept’ by default. This statement allows for time-varying,

time-invariant and cross level variables all together. REPEATED statement gives the ordering of

measurements within subjects. The effect(s) specified must be categorical. ‘Type’ gives the type

of residual covariance matrix Σi. If omitted, we get the default Σi=σ2Ini. The variable visit is

a continuous variable denoting the measurement times post HAART initiation and visits is the

categorical version of visit. The variable pid contains unique numbers associated with each patient.

It is also categorical in nature.

Table 4.1: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Residual 16.8623 0.3468 48.62 <0.0001

Table 4.1 shows that there is a significant within subject variation shown by the residuals. This

may also indicate some lack of fit because of some extra variability that ought to be accounted for.

The results in Table 4.2 give us an average intercept and slope over time. β0=10.7887 is the

average intercept across patients. In other words, the average square root CD4+ count at baseline

is 10.7887 and this is an estimate of the patients from the CAPRISA-CAT study only. β1=2.1792

is the average slope across patients. Hence the average person with a square root CD4+ count of
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Table 4.2: Solution for Fixed Effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 10.7887 0.1026 1175 105.19 <0.0001

Visit 2.1792 0.0423 3553 51.56 <0.0001

10.7887 gained square root CD4+ count of 2.1792 per visit regardless of age, sex or site. This is in

line with Figure 2.4 in chapter 2. The next model is where the relationship between CD4+ count

and sex will be explored. The model is given by:

Yij = β0 + β1Gi + β2tij + β3Gitij + εij (4.2)

where Gi=1 if ith patient is female, and Gi=0 otherwise. In this model, the mean rate of change

for males and females is given by β2 and (β2+β3) respectively. The SAS program for this model

is shown below:

proc mixed data=newdata method=reml covtest noclprint ;

class pid visits sex;

model sqrtcd4= sex visit visit*sex/solution ddfm=kr;

repeated visits/subject=pid;

run;

The results after fitting model (4.2) are shown in Table 4.3 and 4.4.

Table 4.3: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

Residual 16.5144 0.3397 48.61 <0.0001

Table 4.4: Solution for Fixed Effects

Effect Sex Estimate Standard error DF t Value Pr>|t|

Intercept 10.3480 0.1728 4726 59.87 <0.0001

Sex Female 0.6447 0.2077 4726 3.10 0.0019

Visit 1.9503 0.0760 4726 25.67 <0.0001

Visit*Sex Female 0.3182 0.0908 4726 3.51 0.0005

The covariance parameter estimates in Table 4.3 are similar to Table 4.1. But of note is that the

residual estimate has decreased slightly. Results in Table 4.4 show that female and male patients
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have mean square root CD4+ count of 10.9927 (10.3480+0.6447) and 10.3480 respectively. They

also, on average gain square root CD4+ count at the rate of 2.2685 (1.9503+0.3182) and 1.9503

respectively. The intercepts and slopes are statistically significantly different with females on

average having a higher mean rate of change in square root CD4+ count than males. The results

are in line with exploratory data analysis in chapter 2, Figure 2.7. The next sub-model fitted is to

assess whether the mean rate of change in square root CD4+ count is the same for patients in the

two sites. The model for the two sites is given by:

Yij = β0 + +β1Si + β2tij + β3Sitij + εij (4.3)

where Si=1 if ith patient is from the eThekwini site, and Si=0 otherwise. In this model, the mean

rate of increase for individuals from Vulindlela and eThekwini sites is given by β2 and (β2+β3)

respectively. Similar to the model on sex, the SAS program for this model is given by:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid visits site;

model sqrtcd4= site visit visit*site/solution ;

repeated visits/subject=pid;

run;

The results for this model are shown in Table 4.5 and 4.6.

Table 4.5: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

Residual 16.8532 0.3467 48.61 <0.0001

Table 4.6: Solution for Fixed Effects

Effect Sex Estimate Standard error DF t Value Pr>|t|

Intercept 10.6561 0.1247 1174 85.46 <0.0001

Site eThekwini 0.3719 0.2179 1174 1.71 0.0881

Visit 2.2462 0.0546 3552 41.11 <0.0001

Visit*Site eThekwini -0.1850 0.0857 3552 -2.16 0.0309

Results in Table 4.6 show that on average patients from eThekwini and Vulindlela started HAART

with a mean square root CD4+ count of 11.028 (10.6561+0.3719) and 10.6561 respectively. Of note

is that the two means are not statistically significantly different. On average the rate of increase

in square root CD4+ count is 2.0612 (2.2462-0.1850) and 2.2462 for patients from eThekwini and

Vulindlela respectively. One can see that even though the eThekwini patients start with high
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mean square CD4+ count compared to those from Vulindlela but the rate of change in square root

CD4+ count is less compared to those from Vulindlela. The next set of models to be explored are

those relating square root CD4+ count to three continuous variables namely age, log viral load

and weight separately. The model for age is given below:

Yij = β0 + β1Ai + β2tij + β3Aitij + εij (4.4)

where Ai= is the baseline age (in years) of the patient. The SAS program for this model is shown

below:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid visits;

model sqrtcd4=age visit visit*age/solution ;

repeated visits/subject=pid;

run;

Table 4.7: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

Residual 16.6740 0.3434 48.56 <0.0001

Table 4.8: Solution for Fixed Effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 10.1717 0.4407 1172 23.08 <0.0001

Age 0.0179 0.0123 3544 1.46 0.1453

Visit 3.1965 0.1875 3544 17.05 <0.0001

Visit*Age -0.0297 0.0052 3544 -5.67 <0.0001

The estimate for age is not statistically significantly different from zero. This implies that the

regression of square root CD4+ count on age is not statistically significant (p=0.1453) given time

(visit) and visit*age are in the model. This means that younger and older patients started HAART

with almost the same CD4+ count. However, the interaction visit*age is negative and significant.

The interpretation of the interaction term for two continuous variables is tricky, and that is why

continuous variables are frequently modified into categorical variables (van Walvaren and Hart,

2008). However, categorizing continuous variables can cause problems and the first one is infor-

mation loss (van Walvaren and Hart, 2008). Taylor and Yu (2002) found that categorizing one
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continuous variable can artificially make another variable appear associated with the outcome.

Hallahan (2003) reported that it is useful to graphically interpret these interactions. However, for

the output in Table 4.8 one can graphically interpret the interaction term by selecting percentiles

of interest for age and plot them against time and the predicted square root CD4+ count.

Hallahan (2003) followed Tukey’s suggestions and selected the 5%, 25%, 50%, 75% and 95% per-

centiles of age which according to the current data give the following age groups 23, 28, 32, 39 and

51. In order to plot this interaction we will use the estimates in Table 4.8 and replace Ai by each

age group. For example, the predicted value Ŷij=β̂0 + β̂1Ai+ β̂2tij + β̂3Aitij at baseline (i.e. when

time=0) and age=23 is given by 10.1717+0.0179(23)+3.1965(0)+(-0.0297(0)(23))=10.5834. This

can be done for all the ages at baseline and at all the other visits. The graphical presentation of

the interaction term is shown in Figure 4.1.

Figure 4.1 Interaction between age (years) and time
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Figure 4.1 shows that, as baseline age increases the rate of increase of square root CD4+ count over

time decreases. This basically tells us that the rate of increase in square CD4+ count over time

is higher for younger than older individuals. This also means that on average younger patients

are doing better than older patients. Even though every age group is gaining CD4+ count over

time the rate of change for younger patients is greater than that for older patients. This was also

evident in the exploratory analysis depicted in chapter 2, Figure 2.9. Next the effect of weight

on square root CD4+ count was modelled and the results of this analysis are shown in Tables 4.9

and 4.10. However, it is noted that weight is a time varying covariate, but we will plot selected

percentiles for baseline weight. The model is given by:

Yij = β0 + β1Wij + β2tij + β3Wijtij + εij (4.5)

where Wij= is the weight (in kg) of the patient.

Table 4.9: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

Residual 16.0132 0.3464 46.22 <0.0001

Table 4.10: Solution for Fixed Effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 5.7231 0.5430 1158 10.54 <0.0001

Weight 0.0814 0.0084 3115 9.69 <0.0001

Visit 2.9364 0.2315 3115 12.69 <0.0001

Visit*Weight -0.0137 0.0033 3115 -4.12 <0.0001

Even though the regression of mean square rot CD4+ count on age was not significant, results

in Table 4.10 indicate that the effect of weight on mean square root CD4+ count is significant.

Parameter estimate of the effect of weight on square root CD4+ count is 0.0814 and it is significant

(p<0.0001) indicating that mean square root CD4+ count is correlated to the weight of that

individual at that time. The graphical presentation of the interaction is shown in Figure 4.2.
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Figure 4.2 Interaction between weight and time

Figure 4.2 shows that as weight increases the rate of square root CD4+ count gain also increases,

but the slopes seem not to be parallel over time. A careful assessment of Figure 4.2 shows that

even though patients with low weight started with low CD4+ count, their rate of change in CD4+

ultimately converges to the slope for those who started HAART with higher weight. Now consider

a model relating square root CD4+ count to log viral load. The model is given by:

Yij = β0 + β1Lij + β2tij + β3Lijtij + εij (4.6)

where Lij= is the log viral load (in copies/ml) of the patient. The results are shown in Tables 4.11

and 4.12.
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Table 4.11: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

Residual 15.0518 0.3243 46.41 <0.0001

Table 4.12: Solution for fixed effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 16.0394 0.2217 1124 72.35 <0.0001

Visit 1.2663 0.1073 976 11.80 <0.0001

Logv -1.2078 0.0455 2208 -26.57 <0.0001

Visit*Logv 0.0410 0.0382 2208 1.07 0.2825

Table 4.12 shows that for every unit increase in log viral load square root CD4+ count decreases by

1.2078 subject to other effects held constant. Thus there is a negative correlation between CD4+

count and log viral load. The interaction term visit*logv is not statistically significant meaning

that the rate of change is the same for everyone regardless of the level of the initial log viral load.

4.2.2 Random effects models

The set of models similar to the marginal models covered above will be fitted except that now we

allow the intercept and slope to account for subject to subject heterogeneity through the subject

specific random effects. In random intercept and slope effects models, individuals vary not only in

their baseline level of response, that is, when time is zero, but vary also in terms of their change

in the mean response over time. The notation in random effects models is the same as what was

used in marginal models, except now b0i and b1i denote the random intercept and slope effects

respectively. The first random effect model is given by:

Yij = β0 + b0i + (β1 + b1i)tij + εij (4.7)

In SAS proc MIXED code the RANDOM statement defines the random effects in the model. It

also specifies the G matrix developed in section 3.3.1 in the full linear mixed model. The ‘subject’

option under the repeated and random statements simply specify which unit is repeatedly observed

or measured in the study. Independence across subjects is automatically assumed. ‘Type’ gives

the type of random effects variance-covariance matrix G. If omitted, we get the default variance

component structure σ2Ini . The results of the model specified in (4.7) under proc MIXED are

displayed in Tables (4.13) and (4.14).
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Table 4.13: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

UN(1,1) 8.3928 0.5260 15.96 <0.0001

UN(2,1) -0.3836 0.1575 -2.44 0.0149

UN(2,2) 0.8612 0.0741 11.61 <0.0001

Residual 5.8883 0.1637 35.97 <0.0001

Table 4.13 gives parameter estimates for the unknown symmetric G matrix. The variance compo-

nents for the G matrix are statistically significantly different from zero and therefore the random

intercepts and slopes vary from individual to individual. The covariance between the random in-

tercept and slope is negative and statistically significant. The remaining within subject variation

shown by the residuals is also significant. This may mean that there is some extra variability which

has not yet been accounted for by the model.

Table 4.14: Solution for Fixed Effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 10.7031 0.1025 1175 104.57 <0.0001

Visit 2.1241 0.0401 1006 53.02 <0.0001

The results in Table 4.14 give us an average intercept and slope over time where β0=10.7031 is

the average square root CD4+ count at baseline and this is an estimate of the population mean.

β1=2.1231 is also an estimate for the population rate of increase of square root CD4+ count. The

intercept and slope for each patient is give by (β0 +b0i) and (β1 +b1i) respectively. The next model

is where we consider the relationship between CD4+ count and sex will be explored. The model

is given by:

Yij = β0 + b0i + β1Gi + β2tij + β3Gitij + b1itij + εij . (4.8)

In this model, the mean rate of change for males and females is given by β2 and (β2+β3) respec-

tively. The SAS program for this model is shown below:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid visits sex;

model sqrtcd4=visit sex visit*sex/solution ;

repeated visits/subject=pid;

random intercept visit/subject=pid type=un;

run;
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The results after fitting model (4.8) are shown in Table 4.15 and 4.16.

Table 4.15: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

UN(1,1) 8.3150 0.5230 15.90 <0.0001

UN(2,1) -0.4286 0.1560 -2.75 0.0060

UN(2,2) 0.8332 0.0729 11.43 <0.0001

Residual 5.8885 0.1636 35.98 <0.0001

Table 4.16: Solution for Fixed Effects

Effect Sex Estimate Standard error DF t Value Pr>|t|

Intercept 10.2613 0.1900 1175 54.00 <0.0001

Sex Female 0.6422 0.2251 2546 2.85 0.0044

Visit 1.8732 0.0704 1005 26.60 <0.0001

Visit*Sex Female 0.3687 0.0852 2546 4.21 <0.0001

Results in Table 4.16 are similar to results in Table 4.4. However, the estimates for the random

effects model are smaller than those for the marginal model. Note in the Gaussian case it is

straight forward to switch between the marginal and subject specific model but not that obvious

in non-Gaussian models (Molenberghs and Verbeke, 2005). The next sub-model fitted is to assess

whether the mean rate of change is the same in the two populations represented by the two sites.

The model for the two sites is given by:

Yij = β0 + b0i + β1Si + β2tij + β3Sitij + b1itij + εij (4.9)

The mean rate of change for Vulindlela and eThekwini sites is given by β2 and (β2+β3) respec-

tively. The SAS program for this model is shown below:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid visits site;

model sqrtcd4=visit site visit*site/solution ;

repeated visits/subject=pid;

random intercept visit/subject=pid type=un;

run;

The results for this model are shown in Table 4.17 and 4.18.
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Table 4.17: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

UN(1,1) 8.3568 0.5244 15.94 <0.0001

UN(2,1) -0.3645 0.1568 -2.32 0.0201

UN(2,2) 0.8546 0.0738 11.58 <0.0001

Residual 5.8835 0.1635 35.99 <0.0001

Table 4.18: Solution for Fixed Effects

Effect Sex Estimate Standard error DF t Value Pr>|t|

Intercept 10.5453 0.1252 1174 84.21 <0.0001

Site eThekwini 0.4475 0.2168 2547 2.06 0.0391

Visit 2.2059 0.0520 1005 42.45 <0.0001

Visit*Site eThekwini -0.2224 0.0808 2547 -2.78 0.0055

The results in Table 4.18 are slightly different from the results in Table 4.6 where we fitted the

marginal model. The average intercepts for the two sites were not statistically significantly different

in Table 4.6. The inclusion of random intercept and slope in the model allows the sites to differ

significantly at 5% significance levels. Just like in section 4.2.1, the next set of models will explore

the relationship between square root CD4+ count and the three continuous variables namely age,

log viral load and weight separately. Thus the model for age is given by:

Yij = β0 + b0i + β1Ai + β2tij + β3Aitij + b1itij + εij (4.10)

The SAS program for this model is shown below:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid visits;

model sqrtcd4=visit age visit*age/solution ;

repeated visits/subject=pid;

random intercept visit/subject=pid type=un;

run;

The results of model formulation (4.10) are given in Tables (4.19) and (4.20).
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Table 4.19: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

UN(1,1) 8.4286 0.5296 15.92 <0.0001

UN(2,1) -0.3863 0.1564 -2.47 0.0135

UN(2,2) 0.8235 0.0727 11.33 <0.0001

Residual 5.8955 0.1642 35.91 <0.0001

Table 4.20: Solution for Fixed Effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 10.0891 0.4364 1172 23.12 <0.0001

Age 0.0179 0.0121 2539 1.48 0.1400

Visit 2.9466 0.1846 1005 15.96 <0.0001

Visit*Age -0.0240 0.0052 2539 -4.67 <0.0001

The results for the random effects model in Table 4.20 are similar to the results for the marginal

model given in Table 4.8 except that now the standard errors are slightly smaller. The model

dealing with weight is given by

Yij = β0 + b0i + β1Wij + β2tij + β3Wijtij + b1itij + εij (4.11)

where Wij= is the weight (in kg) of the patient. The corresponding results are given in Tables

(4.21) and (4.22).

Table 4.21: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

UN(1,1) 8.7776 0.5629 15.59 <0.0001

UN(2,1) -0.4826 0.1666 -2.90 0.0038

UN(2,2) 0.8292 0.0758 10.95 <0.0001

Residual 5.2800 0.1615 32.69 <0.0001
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Table 4.22: Solution for Fixed Effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 3.1223 0.5388 1158 5.79 <0.0001

Weight 0.1225 0.0085 2120 14.48 <0.0001

Visit 3.0920 0.2022 995 15.29 <0.0001

Visit*Weight -0.0177 0.0029 2120 -6.01 <0.0001

The results show that the standard errors for fixed effects are now slightly reduced. Also the size

of the fixed effects has increased under the random effects model except for the intercept, when

compared to the marginal effects model in Table 4.10. The final model is where we fit the square

root CD4+ count and log viral load. The model for log viral load is given by:

Yij = β0 + b0i + β1Lij + β2tij + β3Lijtij + b1itij + εij (4.12)

where Lij= is the log viral load (in copies/ml) of the patient. The results are shown in tables

(4.23) and (4.24).

Table 4.23: Covariance Parameter Estimates

Cov parm Estimate Standard error Z value Pr Z

UN(1,1) 7.8905 0.5329 16.68 <0.0001

UN(2,1) -0.6794 0.1540 -4.41 <0.0001

UN(2,2) 0.9120 0.0718 12.71 <0.0001

Residual 4.1072 0.1230 33.40 <0.0001

Table 4.24: Solution for fixed effects

Effect Estimate Standard error DF t Value Pr>|t|

Intercept 16.0589 0.2226 1124 72.15 <0.0001

Logv -1.2146 0.0456 2208 -26.61 <0.0001

Visit 1.2622 0.1073 976 11.76 <0.0001

Visit*Logv 0.0454 0.0382 2208 1.19 0.2236

Looking at the results from the corresponding marginal model in Table 4.12 and those in Table

4.24 there seems to be just mild differences in parameter estimates and standard errors. Otherwise

results are generally similar.
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4.3 Multi-covariate models

So far the models fitted were sub-models explaining the rate of change of square root CD4+ count

over time with a single covariate at a time. In this section the aim is to model the rate of change

of square root CD4+ count over time but now including all potential covariates. We will start by

fitting the marginal model and subsequently consider the corresponding random effects model.

4.3.1 Marginal model

When fitting the marginal model, a series of correlation structures of the repeated observation

within an individual will be modelled. To aid in the model selection the Akaike’s information cri-

terion (AIC) will be used. Both REML and ML estimation will be applied but once an appropriate

mean model is selected the final model will be fitted using the REML approach.

Covariance structures should be carefully selected to obtain valid inferences parameters for the

fixed effects. If one ignores important correlations by using a model that is too simple, one risks

increasing Type I error rate and underestimating standard errors (Littell et al., 2006). If the model

is too complex, the power and efficiency is sacrificed (Littell et al., 2006). The covariance structure

that fits the data best is used to estimate the fixed effects parameters. Table 4.25 gives examples

of some of the common covariance structures.

Table 4.25: Different covariance structures

Structure Example Structure Example

VC


σ2 0 0

0 σ2 0

0 0 σ2

 UN


σ2

1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3



CS


σ2

1 + σ2 σ2
1 σ2

1

σ2
1 σ2

1 + σ2 σ2
1

σ2
1 σ2

1 σ2
1 + σ2

 AR(1)


σ2 ρσ2 ρ2σ2

ρσ2 σ2 ρσ2

ρ2σ2 ρσ2 σ2



To fit a time-series-type or serial covariance structure in which correlation declines as a function

of time, one can use any one of the more flexible spatial structures available in PROC MIXED

(Littell et al., 2006). Spatial structures are also useful for unequally spaced longitudinal data.

Note that unequally spaced longitudinal data can be viewed as a spatial process in one dimension

(Littell et al., 2006). The spatial covariance structures do not make any assumptions about the
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distance between measurements because they calculate the actual distance themselves. The sample

variogram can be used as a diagnostic tool to select the covariance structure (Hallahan, 2003).

Table 4.26 gives some of the spatial covariance structures.

Table 4.26: Spatial covariance structures

Structure Example

Power σ2


1 ρd12 ρd13

ρd12 1 ρd23

ρd13 ρd23 1



Linear σ2


1 (1− ρd12) (1− ρd13)

(1− ρd12) 1 (1− ρd23)

(1− ρd13) (1− ρd23) 1



Exponential σ2


1 exp(−d12/ρ) exp(−d13/ρ)

exp(−d12/ρ) 1 exp(−d23/ρ)

exp(−d13/ρ) exp(−d23/ρ) 1



Gaussian σ2


1 exp(−d2

12/ρ
2) exp(−d2

13/ρ
2)

exp(−d2
12/ρ

2) 1 exp(−d2
23/ρ

2)

exp(−d2
13/ρ

2) exp(−d2
23/ρ

2) 1



Note that in the structures displayed above the parameters σ2 and ρ constitute the set of parameters

to be estimated. Candidate covariance structures including spatial correlation structures will be

fitted to see which structure best agrees with the data. We will start by writing down the full

model which is given by:

Yij = β0 + β1Si + β2Gi + β3Ai + β4Lij + β5Wij + β6tij+

(β7Si + β8Gi + β9Ai + β10Lij + β11Wij)tij + εij (4.13)

β6tij is the time effect. Si, Gi, Ai, Wij and Lij have been defined in models 4.2 to 4.6 earlier. The

SAS program for this model is shown below.

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid sex site visits;
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model sqrtcd4= site sex age logv weight visit visit*site visit*sex visit*age visit*logv visit*weight/solution;

repeated visits/type=&cov local subject=pid ;

Title‘Different covariance structures’;

run;

The variable ‘&cov’ should be replaced by each of the covariance structures and ‘local’ should only

be used when fitting spatial or serial covariance structures so that residual error is accommodated

in addition to the serial correlation. The graphical presentation in terms of AIC, AICC and BIC

for each of the covariance structures is shown in Figure 4.3. The variogram in Section 2.6 (Figure

2.21) indicated or suggested the presence of serial correlation, measurement error and random

effects. The spatial covariance structures also known as serial correlation structures are able to

model the serial correlation and measurement error. When selecting a covariance structure for a

model, only structures that make sense for the data should be considered (Hallahan, 2003).

Having looked at the current data, the best structure that makes sense is the AR(1), but such a

structure is among the inferior structures according to Figure 4.3. One reason for this is possibly

because of the unexpected incompleteness due to missing values rendering time intervals unequally

spaced which is a requirement for the AR(1) structure. If one looks at Figure 2.18 and 2.19, two

adjacent measurements are more correlated than those that are far apart and this tends to suggest

some form of an AR correlation structure. Following the argument against AR(1) structure above

the spatial covariance structure is a better substitute to the AR(1) in the presence of unequal

intervals. Amongst the spatial correlation structure, the one with the smallest AIC is the spatial

linear and thus we adopt such a covariance structure. The fit statistics for all the spatial covariance

structures is shown in Table 4.27.

Table 4.27: Fit statistics for spatial covariance structures

SP(GAU) SP(EXP) SP(LIN) SP(POW) SP(SPH)

-2 Log likelihood 19444.9 19452.2 19445.5 19452.2 19446.2

AIC 19455.9 19458.2 19451.5 19458.2 19452.2

AICC 19455.9 19458.2 19451.5 19458.2 19452.2

BIC 19471.0 19473.2 19466.5 19473.2 19467.3

In Figure 4.3 one should note that the following covariance structures namely: VC, AR(1), CS

and the toeplitz seems to be inferior. The remaining covariance structures namely the spatial and

the unstructured would be appropriate in this case. The disadvantage of the UN is that it has too

many parameters to estimate and that lead to computational difficulties especially when subject

specific effects are included in the model. In addition it does not account for any potential trends
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in the correlations.

Figure 4.3 Model fit for each covariance structure

The SAS program to fit the model using spatial covariance structure is:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid sex site visits;

model sqrtcd4= site sex age logv weight visit visit*site visit*sex visit*age visit*logv visit*weight/solution;

repeated visits/type=sp(lin)(visit) local subject=pid ;

Title‘Longitudinal model with spatial linear covariance structure’;

run;

‘Local’ gives us the measurement error while ‘sp(lin)(visit)’ gives us serial correlation. The covari-

ance parameter estimates for spatial linear structure are shown in Table 4.28. In the output the

variance estimates are labelled as follows: Variance=σ2
1 , sp(lin)=ρ and residual=σ2.
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Table 4.28: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Variance 11.9659 0.5022 23.83 <0.0001

SP(LIN) 0.1578 0.0101 15.63 <0.0001

Residual 2.1159 0.1807 11.71 <0.0001

The total variance (σ2
1 + σ2) for any given observation is given by 11.9659+2.1159=14.0818. It

is satisfying to see that the SP(LIN) components are significantly justified with p-value <0.0001.

Now that the covariance structure Σi has been selected to be the spatial linear, the next step is

to fit the full model under ML estimation and remove insignificant fixed effects starting with the

most insignificant one. The model that we are going to fit is called the marginal model. In this

model there are no random effects and therefore no Z matrix as developed in equations 3.6 to 3.9

thus no covariance matrix G for bi is modelled. In this model we assume that there is no individual

to individual variability. The model with random effects will be shown in section 4.3. The results

for the full model under ML estimation are shown in tables 4.29 and 4.30.

Table 4.29: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Variance 11.8952 0.4988 23.85 <0.0001

SP(LIN) 0.1576 0.0101 15.60 <0.0001

Residual 2.1234 0.1803 11.78 <0.0001

The AIC for this model is 19414.6. The covariance parameter estimates under ML are similar to

those in Table 4.28 where the REML estimation was used but note the slight underestimation of

the variance components. This is because of the fact that REML takes into account the degrees

of freedom whilst ML does not when estimating variance components.
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Table 4.30: Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t value Pr>|t|

Intercept 11.3582 0.7527 1108 15.09 <0.0001

Site eThekwini 0.0571 0.2177 1108 0.26 0.7932

Sex Female 0.6170 0.2346 1109 2.63 0.0087

Age 0.0039 0.0126 2771 0.31 0.7576

Logv -1.1274 0.0489 2771 -23.05 <0.0001

Weight 0.0594 0.0084 2771 7.10 <0.0001

Visit 2.1837 0.2776 2771 7.87 <0.0001

Visit*Site eThekwini -0.1343 0.0778 2771 -1.73 0.0844

Visit*Sex Female 0.2254 0.0877 2771 2.57 0.0102

Visit*Age -0.0208 0.0051 2771 -4.08 <0.0001

Visit*Weight -0.0033 0.0029 2771 -1.12 0.2627

Visit*Logv -0.0182 0.0386 2771 -0.47 0.6371

Table 4.31: Type 3 Tests of Fixed Effects
Effect Num DF Den DF F value Pr>F
Site 1 1109 0.07 0.7932
Sex 1 1109 6.91 0.0087
Age 1 2771 0.10 0.7576
Logv 1 2771 531.22 <0.0001
Weight 1 2771 50.46 <0.0001
Visit 1 2771 67.16 <0.0001
Visit*Site 1 2771 2.98 0.0844
Visit*Sex 1 2771 6.60 0.0102
Visit*Age 1 2771 16.66 <0.0001
Visit*Weight 1 2771 1.26 0.2627
Visit*Logv 1 2771 0.22 0.6371

Table 4.30 gives us the solution for fixed effects for the marginal model. Site, age and the interaction

terms visit*site, visit*logv and visit*weight are not statistically significant and should be removed

from the model starting with the most insignificant one of which is the interaction term visit*logv.

Age will not be removed because it is involved in a significant interaction. Site will not be removed

either because it is an important variable. Variables with subject matter importance should be

kept in the model (Hallahan, 2003). It is noted that age and visit*logv were also insignificant

in univariate models in section 4.2. But site and visit*site although insignificant now they were
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significant in univariate model. Similarly the interaction term visit*weight was significant and now

it is not significant. The model was then refitted after removing the interaction term visit*logv

and the AIC dropped from 19414.6 to 19413.0 indicating a better fit. The next step is to remove

the interaction term visit*weight with the p-value of 0.2953. The model was fitted again and the

AIC dropped from 19413 to 19412.2. There were no other variables to be removed from the model.

The final model is given by:

Yij = β0 + β1Si + β2Gi + β3Ai + β4Lij + β5Wij + β6tij+

(β7Si + β8Gi + β9Ai)tij + εij (4.14)

The final model was fitted under REML and the results are shown in Table 4.32, 4.33 and 4.34.

The AIC for this model was 19438.

Table 4.32: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Variance 11.9719 0.5012 23.89 <0.0001

SP(LIN) 0.1572 0.0100 15.67 <0.0001

Residual 2.1209 0.1792 11.83 <0.0001

The covariance parameter estimates for the reduced model in Table 4.32 are almost the same as

parameter estimates in Table 4.28 where we fitted the full model. Note that although the residual

variance is significant its parameters estimate has reduced drastically compared to in the case of

univariate models fitted in section 4.2. Here much of the systematic variability in the outcome of

interest has been accounted for via additional covariates and accommodating appropriate correla-

tion structures within units or individuals.

The final model has 3 interaction terms, visit*site, visit*sex and visit*age, and 6 main effects.

The likelihood ratio test comparing the full and reduced models gives a p-value of 0.4612 with 2

degrees of freedom. Therefore the reduced model is better than the full model. The results in

Table 4.33 shows that there is no difference between eThekwini and Vulindlela in terms of mean

CD4+ count post HAART. We noted that the intercept for the eThekwini site is greater than that

for Vulindlela, but Vulindlela has the higher rate of CD4+ count gain compared to eThekwini.

There is a significant difference between males and females at the 5% level of significance. The

significant gender or sex effect indicates that on average females started with the higher CD4+

count than males. In addition the interaction of sex and time is significant which implies that

females have a significant higher rate of increase than males. It is interesting to note that the

interaction of age and time (visit) is significant but the main effect of age is not significant. Thus
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Table 4.33: Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t value Pr>|t|

Intercept 11.7895 0.6886 1108 17.12 <0.0001

Site eThekwini 0.0769 0.2180 1108 0.35 0.7245

Sex Female 0.6275 0.2343 1109 2.68 0.0075

Age 0.0053 0.0125 2773 0.43 0.6688

Logv -1.1492 0.0446 2773 -25.76 <0.0001

Weight 0.0530 0.0068 2773 7.82 <0.0001

Visit 1.9396 0.2020 2773 9.60 <0.0001

Visit*Site eThekwini -0.1487 0.0774 2773 -1.92 0.0546

Visit*Sex Female 0.2152 0.0861 2773 2.50 0.0125

Visit*Age -0.0213 0.0050 2773 -4.22 <0.0001

Table 4.34: Type 3 Tests of Fixed Effects
Effect Num DF Den DF F value Pr>F
Site 1 1109 0.12 0.7245
Sex 1 1109 7.17 0.0075
Age 1 2773 0.18 0.6688
Logv 1 2773 663.83 <0.0001
Weight 1 2773 61.12 <0.0001
Visit 1 2773 115.57 <0.0001
Visit*Site 1 2773 3.70 0.0546
Visit*Sex 1 2773 6.24 0.0125
Visit*Age 1 2773 17.93 <0.0001

although at baseline age had no significant effect on CD4+ count, age seems to be significantly

related to the rate of increase in CD4+ count. The parameter estimate of the interaction for age

and time is -0.0213 which implies that the average rate of increase is inversely related to age. In

other words, younger patients have the higher rate of change in CD4+ count than older patients.

Whereas, the main effects of weight and log viral load are statistically different from zero, their

interactions with time are not significant. This means that the rate of change in CD4+ count over

time is not statistically significantly different whether one started HAART with lower or higher

log viral load.
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4.3.2 Random effects model

The random effects model or subject-specific model assumes that extra correlation arises among

repeated response because the regression coefficients vary across individuals (Diggle et al., 1994,

2002). In univariate models we saw that the variances for the random intercept and slope were

statistically significantly different from zero indicating that there is a between-subject variation.

That variation does not only exist at baseline but it exists over time as well. So the random

intercept and slope will be included in this model.

The sample variogram in Figure 2.21 showed that we have random effects, measurement error and

serial correlation, but the question of which one is the main source of variation between random

effects or serial correlation is an important topic in longitudinal data analysis. The within-subject

variability which is directly related to the spacing of measurements is modelled by the covariance

structure in Σi matrix via the REPEATED statement in SAS. We want to see if we can achieve

similar results as in section 4.2 if we take into account both the within and between subject

variation. That way each block ZiGZ ′i in equation (3.12) contributes the within subject correlation

which varies with time (Hallahan, 2003) because the main covariate in Zi is time. The full model

is given by:

Yij = β0 + β1Si + β2Gi + β3Ai + β4Lij + β5Wij + β6tij + b0i+

(β7Si + β8Gi + β9Ai + β10Lij + β11Wij + b1i)tij + εij (4.15)

Si, Gi, Ai, Lij and Wij are defined in section 4.2. b0i and b1i are the random intercept and slope

respectively. This model will be fitted under REML estimation first so that we can be able to

compare it’s AIC with the one that we used to select the spatial linear structure in section 4.3.1.

The SAS program to fit this model is:

proc mixed data=newdata method=reml covtest noclprint empirical;

class pid sex site visits;

model sqrtcd4= site sex age logv weight visit visit*site visit*sex

visit*age visit*logv visit*weight / solution ;

random intercept visit /type=un subject=pid;

repeated visits/type=sp(lin)(visit) local subject=pid ;

title’ Longitudinal model with random effects and serial correlation’;

run;

In model (4.15), Σi is modelled as spatial linear covariance structure and G is modelled as an

unstructured covariance structure. The covariance parameter estimates showed that there is no
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correlation between the random intercept and slope, so the G matrix was then modelled as variance

component and the covariance parameter estimates under REML are shown in Table 4.35.

Table 4.35: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Intercept 5.7685 0.4827 11.95 <0.0001

Visit 0.4502 0.0579 7.77 <0.0001

Variance 3.3889 0.4430 7.65 <0.0001

SP(LIN) 0.3690 0.0272 13.55 <0.0001

Residuals 2.5380 0.2243 11.32 <0.0001

The AIC for this model is 19415.3 which is smaller than 19451.5 that we used when selecting the

spatial linear covariance structure in section 4.3.1 under the marginal model. Table 4.35 shows that

despite having the within subject variation we also have the between subject variation. Parameter

estimates for the spatial linear structure are less than those in Table 4.28 because the variation

is now divided into two components, the within and between subject variation. In Table 4.28 we

only allowed for within subject variation and the variation between subjects was ignored. This

emphasizes that the two models in equations (4.13) and (4.15) are conceptually different. The

model was then fitted under ML so that insignificant fixed effects will be deleted one at a time

starting with the most insignificant one and the results are shown in Tables 4.36, 4.37,4.38.

Table 4.36: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Intercept 5.7460 0.4797 11.98 <0.0001

Visit 0.4458 0.0574 7.76 <0.0001

Variance 3.3671 0.4412 7.63 <0.0001

SP(LIN) 0.3692 0.0234 13.49 <0.0001

Residual 2.5401 0.2239 11.34 <0.0001
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Table 4.37: Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t value Pr>|t|

Intercept 11.5967 0.7365 1108 15.75 <0.0001

Site eThekwini 0.1615 0.2167 1819 0.75 0.4563

Sex Female 0.6000 0.2340 1819 2.56 0.0104

Age 0.0032 0.0127 1819 0.25 0.7994

Logv -1.1376 0.0482 1819 -23.58 <0.0001

Weight 0.0567 0.0081 1819 7.03 <0.0001

Visit 2.0524 0.2725 953 7.53 <0.0001

Visit*Site eThekwini -0.1337 0.0776 1819 -1.72 0.0853

Visit*Sex Female 0.2327 0.0883 1819 2.64 0.0085

Visit*Age -0.0206 0.0051 1819 -3.99 <0.0001

Visit*Weight -0.0021 0.0028 1819 -0.76 0.4501

Visit*Logv -0.0071 0.0393 1819 -0.18 0.8558

Table 4.38: Type 3 Tests of Fixed Effects
Effect Num DF Den DF F value Pr>F
Site 1 1819 0.56 0.4563
Sex 1 1819 6.57 0.0104
Age 1 1819 0.06 0.7994
Logv 1 1819 556.07 <0.0001
Weight 1 1819 49.43 <0.0001
Visit 1 953 62.50 <0.0001
Visit*Site 1 1819 2.96 0.0853
Visit*Sex 1 1819 6.95 0.0085
Age*Visit 1 1819 15.92 <0.0001
Weight*Visit 1 1819 0.57 0.4501
Logv*Visit 1 1819 0.03 0.8558

The variables site, age, and the interaction terms visit*site, visit*weight and visit*logv are sta-

tistically insignificant just like under the marginal model in section 4.3.1. The terms visit*weight

and visit*logv will be removed from the model starting with visit*logv because it is the most in-

significant effect. The model was fitted after removing the interaction term visit*log and the AIC

dropped from 19387.5 to 19376.6. The model was fitted again and the term visit*weight was still

insignificant with a p-value of 0.4650 thus finally removed from the model. After removing it, the

AIC dropped from 19376.6 to 19375.1. The final model was fitted using the REML algorithm and
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the results are shown in Tables 4.39, 4.40 and 4.41.

Table 4.39: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Intercept 5.7904 0.4820 12.01 <0.0001

Visit 0.4501 0.0576 7.82 <0.0001

Variance 3.3686 0.4420 7.62 <0.0001

SP(LIN) 0.3697 0.0274 13.51 <0.0001

Residual 2.5408 0.2239 11.35 <0.0001

The AIC for this model is 19400.9 which is a considerable reduction compared to 19438, the AIC for

the marginal model with the exact number of fixed effects in section 4.3.1. However this statement

is made with caution depending on the intended scientific question to answer given that the two

models are as stated before conceptually different. Significant variance estimates for the random

effects associated with the intercept and linear time effect suggests that the intercepts and slopes

vary across subjects.

Table 4.40: Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t value Pr>|t|

Intercept 11.8134 0.6836 1108 17.28 <0.0001

Site eThekwini 0.1731 0.2169 1821 0.80 0.4251

Sex Female 0.6068 0.2336 1821 2.60 0.0095

Age 0.0039 0.0126 1821 0.31 0.7459

Logv -1.1476 0.0444 1821 -25.88 <0.0001

Weight 0.0534 0.0067 1821 8.00 <0.0001

Visit 1.9063 0.2037 953 9.36 <0.0001

Visit*Site eThekwini -0.1434 0.0774 1821 -1.85 0.0641

Visit*Sex Female 0.2248 0.0866 1821 2.60 0.0095

Visit*Age -0.0208 0.0051 1821 -4.10 <0.0001

The inferences for the random effects model are similar to those of the marginal model in terms of

magnitude and direction. However, according to the AIC the random effects model is better than

the marginal model. The average intercepts for the eThekwini and Vulindlela populations are not

statistically different with eThekwini having a slightly higher intercept of 0.1731 units greater than

that of Vulindlela. Their site specific average slopes are also not significantly different.
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Table 4.41: Type 3 Tests of Fixed Effects
Effect Num DF Den DF F value Pr>F
Site 1 1821 0.64 0.4251
Sex 1 1821 6.75 0.0095
Age 1 1821 0.10 0.7559
Logv 1 1821 669.52 <0.0001
Weight 1 1821 64.06 <0.0001
Visit 1 953 110.47 <0.0001
Visit*Site 1 1821 3.43 0.0641
Visit*Sex 1 1821 6.74 0.0095
Visit*Age 1 1821 16.84 <0.0001

The intercept for females is 0.6068 greater than that for males and they are statistically significantly

different. Age is not significant at baseline, this means that there was no statistically significant

difference in CD4+ count at baseline for younger and older patients but the difference was observed

in the follow up visits. Log viral load has a significant negative relationship with CD4+ count and

that effect is visible in the exploratory analysis plot in Figure 2.15. The model here accounts for all

the three sources of variability and correlation therefore the standard errors based on the current

model are less conservative hence more reliable than when only serial and measurement error is

accounted for in the evolution of CD4+ count post HAART.

4.4 Modelling baseline log viral load

In Section 4.3.1 and 4.3.2 one of our explanatory variables was log viral load. As it has been

mentioned before, the viral load is collected on 6 monthly basis together with the CD4+ count.

Patients started HAART with different viral load values, however most viral load measurements

reached the undetectable level (threshold) as early as month 6 post-HAART initiation. The assay

that was used in the laboratory was not able to detect any viral load less than 400 copies/ml.

When the viral load is undetectable the laboratory result is stated as 400 copies/ml. So because

of this, most viral load values are the same at month 6, 12 ,18 and 24. Figure 4.4 is a plot of the

mean log viral over time for all the patients.

It is clear from Figure 4.4 that there is not much variation in measurements from month 6 to

month 24. In this supplementary analysis, only the baseline log viral load will be included as a

covariate in the model. We thought that it might be a good idea to fit a model where we control

for initial log viral load for each patient. We want to see if the baseline log viral load can improve

the prediction of CD4+ count post HAART.
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Figure 4.4 Mean log viral load over time

4.4.1 Marginal model

In order to fit the marginal model we will use the same procedure as we did in section 4.3.1. We

will evaluate the best covariance structure for the Σ matrix, then fit the model using the selected

covariance to determine the mean structure. We will also fit the random effects model. The model

is given by:

Yij = β0 + β1Si + β2Gi + β3Ai + β4Li + β5Wij + β6tij+

(β7Si + β8Gi + β9Ai + β10Li + β11Wij)tij + εij (4.16)

where Li is the baseline log viral load for the ith patient. The definition for other variables is the

same as in the previous sections. The fit statistics for each covariance structure is shown in Figure

4.5.
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Figure 4.5 Model fit for each covariance structure

From Figure 4.5 we see that the UN and all the spatial covariance structures are the superior

structures compared to CS, AR(1), Toeplitz and VC. The UN structure is too parametric (i.e.

many parameters) and also lacks structure such as the ability to accommodate serial correlation.

Among the spatial family the structure with the smallest AIC was the spatial power and also the

exponential spatial both with an AIC of 17023.4. The results are shown in Table 4.42, 4.43 and

4.44. The spatial power structure was adopted.

If one compares these results to what we have in section 4.3.1 and 4.3.2, we note that the intercept

for the Vulindlela site is now bigger than that for the eThekwini site. However, the two intercepts

are still not statistically different from each other. We also note that interaction term visit*weight

is now statistically significant. The interaction term visit*baselogv is also statistically significant

in contrast to visit*logv in section 4.3.1 and 4.3.2 which was not statistically significant. It is
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Table 4.42: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Variance 14.8191 0.7111 20.84 <0.0001

SP(POW) 0.7219 0.0233 31.03 <0.0001

Residuals 0.7834 0.4557 1.72 0.0428

Table 4.43: Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t value Pr>|t|

Intercept 4.5508 1.1889 871 3.83 0.0001

Site eThekwini -0.3684 0.2437 871 -1.51 0.1311

Sex Female 0.6107 0.2628 871 2.32 0.0204

Age 0.0006 0.0145 2421 -0.04 0.9682

Baselogv -0.4545 0.1497 871 -3.04 0.0025

Weight 0.1277 0.0100 2421 12.75 <0.0001

Visit 3.0581 0.4500 2421 6.80 <0.0001

Visit*Site eThekwini -0.1184 0.0917 2421 -1.29 0.1968

Visit*Sex Female 0.2262 0.1045 2421 2.16 0.0305

Visit*Age -0.0150 0.0059 2421 -2.53 0.0114

Visit*Weight -0.0213 0.0035 2421 -6.14 <0.0001

Visit*Baselogv 0.1362 0.0629 2421 2.16 0.0306

obvious that the interaction term visit*weight is affected by the presence of log viral load as a

time dependent covariate. In order to check if this was true we fitted model (4.13) in section

4.3.1 without the covariate logv and the interaction term visit*logv. Under this modification the

interaction term visit*weight was found to be significant. We also swapped roles by removing

weight and visit*weight terms to check if visit*logv is going to be significant and interestingly it

was not. So it is only weight that is affected by log viral load and not vice versa. There are no

fixed effects to be removed from this model.
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Table 4.44: Type 3 Tests of Fixed Effects
Effect Num DF Den DF F value Pr>F
Site 1 871 2.28 0.1311
Sex 1 871 5.40 0.0204
Age 1 2421 0.00 0.9682
Baselogv 1 871 9.22 0.0025
Weight 1 2421 162.60 <0.0001
Visit 1 2421 49.81 <0.0001
Visit*Site 1 2421 1.67 0.1968
Visit*Sex 1 2421 4.68 0.0305
Visit*Age 1 2421 6.42 0.0114
Visit*Weight 1 2421 37.69 <0.0001
Visit*Baselogv 1 2421 4.68 0.0306

4.4.2 Random effects model

We will now fit the random effects model where we take into account the random effects namely

the random intercept and random slope. The model is given by:

Yij = β0 + β1Si + β2Gi + β3Ai + β4Li + β5Wij + β6tij + b0i

(β7Si + β8Gi + β9Ai + β10Li + β11Wij + b1i)tij + εij (4.17)

We will use the spatial power correlation structure from Section 4.4.1 to model the within subject

serial correlation as well as the UN for the between subject variability. The results for the covariance

parameter estimates are shown in Tables 4.45.

Table 4.45: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

UN(1,1) 0 . . .

UN(2,1) 0.8758 0.1771 4.95 <0.0001

UN(2,2) 0.0249 0.0911 0.27 0.3924

Variance 12.3468 0.7700 16.04 <0.0001

SP(POW) 0.6083 0.0387 15.74 <0.0001

Residuals 0.0890 0.6146 0.14 0.4425

The AIC for this model 16984.5. The model was fitted and the covariance parameter estimate

for the random intercept UN(1,1) was found to be zero and so there is no variability in random

intercepts. One can also see that the variance for the random slopes is also insignificant. Since we

are interested in serial correlation we are going to try other spatial covariance structures. Verbeke

and Molenberghs (2000) argued that if one is interested in the serial correlation function, it is
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usually sufficient to fit and compare a series of serial correlation models. The other option was to

reduce the covariance parameters. The random intercept was removed to see whether the variance

for the slope becomes significant. The model was then fitted without the random intercept and

the results are shown in Table 4.46.

Table 4.46: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

Visit 0.3335 0.0752 4.44 <0.0001

Variance 12.4426 0.7974 15.60 <0.0001

SP(POW) 0.7116 0.0301 23.61 <0.0001

Residuals 1.1760 0.5123 2.30 0.0109

The AIC for this model is 17001.6 which is greater than 16984.5 from the model where we have

both the random intercept and slope. The next step was to test whether dropping the random

intercept makes the model better than having both the random intercept and slope. The likelihood

ratio test was performed which subsequently gave us a p-value <0.0001 with 1 degree of freedom.

Therefore we reject the hypothesis and conclude that the model with the slope only is not better

than the model with both the random intercept and slope. So we have decided to try each and

everyone of the spatial covariance structure and see if all of them give the same results because of

the strong belief that there is a between subject variability and it’s existence is from baseline and

throughout all the other visits.

The summary for each of the spatial covariance structures is provided as follows: The Gaussian,

exponential and spherical structures show that there is no variability in random intercepts and

slopes. The linear structure on the other hand shows that there is variability in random intercepts

and slopes. So the random effects model will be fitted using the spatial linear covariance structure

for the within subject variation and the UN for the between subject variation. The covariance

parameter estimates are shown in Table 4.47.
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Table 4.47: Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z value Pr Z

UN(1,1) 2.8993 0.8477 3.42 0.0003

UN(2,1) 0.6489 0.2232 2.91 0.0037

UN(2,2) 0.1842 0.1057 1.74 0.0406

Variance 7.2375 0.7510 9.64 <0.0001

SP(LIN) 0.3745 0.0156 23.94 <0.0001

Residuals 2.1852 0.2995 7.30 <0.0001

The AIC for this model is 16992.0 including variability in random intercepts and slopes. The rest

of the results are shown in Table 4.48 and 4.49.

Table 4.48: Solution for Fixed effects

Effect Sex Estimate Standard Error DF t value Pr>|t|

Intercept 5.5278 1.1402 872 4.85 <0.0001

Site eThekwini -0.2695 0.2412 1662 -1.12 0.2639

Sex Female 0.5975 0.2614 1662 2.29 0.0224

Age 0.0049 0.0143 1662 0.35 0.7296

Baselogv -0.4908 0.1456 1662 -3.37 0.0008

Weight 0.1122 0.0093 1662 12.10 <0.0001

Visit 2.6575 0.4428 758 6.00 <0.0001

Visit*Site eThekwini -0.1345 0.0916 1662 -1.47 0.1419

Visit*Sex Female 0.2382 0.1051 1662 2.27 0.0236

Visit*Age -0.0161 0.0059 1662 -2.71 0.0067

Visit*Weight -0.0162 0.0033 1662 -4.86 <0.0001

Visit*Baselogv 0.1652 0.0626 1662 2.64 0.0083
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Table 4.49: Type 3 Tests of Fixed Effects
Effect Num DF Den DF F value Pr>F
Site 1 1662 1.25 0.2639
Sex 1 1662 5.22 0.0224
Age 1 1662 0.12 0.7296
Baselogv 1 1662 11.37 0.0008
Weight 1 1662 146.31 <0.0001
Visit 1 758 39.13 <0.0001
Visit*Site 1 1662 2.16 0.1419
Visit*Sex 1 1662 5.13 0.0236
Visit*Age 1 1662 7.37 0.0067
Visit*Weight 1 1662 23.59 <0.0001
Visit*Baselogv 1 1662 6.97 0.0083

The results from the random effects model are also similar to the results from the marginal model

especially in terms of direction, even though they slightly differ in magnitude. But if one were to

compare the marginal and the random effects model in terms of the AIC, the random effects model

has the smallest AIC and thus is the best model. As stated before, since we are dealing with a

Gaussian response, relating the marginal and random effects model is a straight forward exercise

but caution is needed when dealing with a non-Gaussian response.

In this model we have 3 significant interaction terms between two continuous variables and it is a

good idea to interpret them graphically as it has been mentioned before in section 4.2.1. However,

it should be noted that a positive rate of change (or increase) in CD4+ count is associated with

sex specifically females, younger baseline age, lower weight and higher baseline log viral load. A

greater increase in CD4+ count with therapy has been associated with younger age and higher

baseline viral load (Kaufmann et al., 2003). We will only plot baseline log viral and weight because

age was plotted in section 4.2.1 and the estimates are still following the same direction. The graph

showing the interaction between time and the two continuous variables namely baseline log viral

load and weight are shown in Figure 4.6 and 4.7 respectively.
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Figure 4.6 Interaction between time and baseline log viral load (copies/ml)

The estimate for the interaction term visit*baselogv in Table 4.48 is 0.1652 and it tells us that the

rate of change in square root CD4+ count for patients who started HAART with high baseline log

viral load is greater than for those who started with low baseline log viral load. Figure 4.6 also

gives us the same results.
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Figure 4.7 Interaction between time and weight (kg)

Figure 4.7 shows that the rate of change in square root CD4+ count for patients who started

HAART with low weight is greater than for those who started with higher weight. This is in

conjunction with the estimate for visit*weight which is -0.0162.

4.5 Model diagnostics

Residuals are frequently used to evaluate the validity of the assumptions of statistical models and

may also be employed as tools for model selection (Nobre and da Motta Singer, 2007). There are 3

types of residuals that accommodate the extra source of variability present in linear mixed models

(Nobre and da Motta Singer, 2007). They are:

i. Marginal residuals given by, ε̂ = y −Xβ̂

ii. Conditional residuals given by, ε̂ = y −Xβ̂ − Zb̂

iii. The best linear unbiased predictor (BLUP), Zb̂
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Each type of the above residual is useful to evaluate the assumptions of the linear mixed model

(3.9). The residuals in (i) are used to assess the fixed effects specification of the model. The subject

specific residuals in (ii) are used to assess unusual or outlying subjects and whether the random

effects were selected properly. The subject specific residuals should be small with a correct choice

of random effects (Hallahan, 2003). Now that we have fitted the multi-covariate models in sections

4.3 and 4.4, it is important to assess if the normality assumptions for residuals and random effects

were not violated. In section 4.3 the random effects model was chosen over the marginal model

on the basis of the AIC. Here we will assess if the chosen models do not violate the normality

assumptions.

One should recall that residuals and random effects are assumed to be normally distributed. It

has been discussed in section 3.5.1 that fixed effects parameter estimates and standard errors are

robust with respect to mis-specification of the random effects distribution, which follows from the

theory of generalized estimating equations (Liang and Zeger, 1986). However, the violation of

the normality assumption does affect the parameter estimates and standard errors of the random

effects. First we plot the residuals as well as the residuals against predicted values for the marginal

and random effects models in section 4.3. We will also plot the random intercept and slope for the

random effects model. These plots are shown in Figure 4.8, 4.9 and 4.10.

Figure 4.8 Residuals analysis

Figure 4.8 (a) and (b) are histogram plots of the residuals for marginal and random effects models

respectively. Both graphs show that the residuals are normally distributed and thus one can infer

that the normality assumption is not violated under either model assumption and specification.
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Figure 4.9 Residuals vs. predicted values

Figure 4.9 (a) and (b) respectively shows the graph of residuals plotted against the predicted values

for the marginal and random effects models. Few large positive and negative residuals in Figure

4.9 (a) indicate possible outliers. The plot in Figure 4.9 (b) includes random effects and values

seem to be scattered around 0 in comparison with Figure 4.9 (a).

Figure 4.10 Distribution of random intercept and slope

Figure 10 (a) and (b) shows the distribution of random intercept and slope respectively. This

graph shows that the normality assumption for both the random intercept and slope is not violated

because histograms are indicative of a bell shaped distribution. The residual histogram plots for

the final marginal and random effects models in this thesis discussed in section 4.4 are shown in

Figure 4.11 to 4.13. One should note that the difference between the models in section 4.3 and

4.4 is that, in section 4.4 we used baseline log viral load as a covariate in the model. Whereas, in

section 4.3 we used the log viral load at all visits.
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Figure 4.11 Residuals analysis

It is once again noted that, the normality assumption for residuals is not violated in both the

marginal (Figure 4.11 (a)) and random effects model (Figure 4.11 (b)). There are no systematic

Figure 4.12 Residuals vs. predicted values

trends in the plot of residuals against predicted values for the marginal model in Figure 4.12 (a).

Nonetheless the graph shows that there are outliers. The degree of outliers is substantially reduced

when we consider the plots of residuals against predicted values for conditional model as seen in

Figure 4.12 (b).

The normality assumption of random intercept and slope still holds and thus the inference for

random effects is not affected. In section 4.3 and 4.4, the random effects models were chosen

over the marginal models and the model diagnostics show that the normality assumption was
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Figure 4.13 Distribution of random intercept and slope

not substantially violated in the chosen models. It should be pointed out that the final random

effects model included the serial correlation in addition to measurement error. It has been noted

by previous authors (Verbeke et al., 1998; Serroyen et al., 2009) that failure to include serial

correlation when it exists can severely compromise the normality assumption of the model. Thus

a key component in longitudinal data such as the one in the current study, it was necessary to

include serial correlation to improve the fit of the final model.
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Chapter 5

Missing data

5.1 Introduction

Most prospective studies including clinical trials use repeated measurements of laboratory markers

to track disease progression and to evaluate new therapies (Touloumi et al., 2002). However, one

major problem with such studies is that some patients end up having missing data due to reasons

such as death, loss to follow up, and withdrawal. Missing data are data that the investigator

intended to collect, but for one reason or another did not (Carpenter and Kenward, 2006) and it

should be avoided if possible. Software for analyzing unbalanced longitudinal data, such as SAS

Proc MIXED is now available to practitioners. These analysis tools are valuable in that they

incorporate all the available information in the data and can even eliminate bias resulting from

an analysis confined to the complete cases (Little, 1995). For data being studied in the current

project, the possible reasons for missing data were due to death, loss to follow up, relocation,

withdrawal and some patients are being transferred out to ARV clinics closer to their homes.

This means that for some patients we have the follow up data up to a certain point then they

dropout. There are patients who also missed at least one or two follow up visits and attended their

subsequent follow up visits and we refer to that kind of missing data as intermittent missing data

(Carpenter and Kenward, 2006). It is essential to assess the pattern of missing data and apply

the appropriate statistical analysis (Wisniewski et al., 2006) in order to adequately understand

the problem at hand. To incorporate incompleteness into the modelling process, we need to

understand the nature of the missing value mechanism and its implications for statistical inference

(Molenberghs and Kenward, 2007).
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5.2 Missing data processes

There are three possible missing data processes due originally to Rubin (1976) and later Little and

Rubin (2002). A process is called missing completely at random (MCAR) when the probability

of an observation being missing does not depend on observed or unobserved measurements. For

example, in relation to the current data set, some observations could be missing due to technical

and logistical issues in the laboratory. Or because some patients were unable to attend for some

reason not related to his or her illness due to ARV’s side effects (for example, family crisis).

However, many mechanisms that initially seem to be MCAR may turn out not to be. For example,

a patient in a clinical trial may be lost to follow up after falling under a bus; however if it is a

psychiatric trial, this may be an indication of poor response to treatment or due to worsening

psychiatric condition. Likewise, if a response to a postal questionnaire is missing because the

questionnaire was lost or stolen in the post, this may not be random but rather reflect the area in

which the sorting office is located. If the assumption of data is MCAR, analysing only those with

fully observed data gives sensible results but in practice trial data are rarely MCAR (Carpenter

and Kenward, 2006). Assuming the data is MCAR means that there are no variables in the dataset

which predict why the observation is missing.

After considering MCAR, we now look at data missing at random (MAR). Usually there is an

association between the chance of patient withdrawal and observations, baseline and (in longitu-

dinal follow-up) measurements prior to withdrawal. In this case, it is not sensible to include in

the analysis only those with complete data (Carpenter and Kenward, 2006). For example, suppose

that the patient’s worse health at baseline is associated both with increased risk of withdrawal and

poor response to HAART. In the current data the study did enroll very sick patients with very

low CD4+ count and they also had opportunistic infections and they had difficulties coming to the

clinic and subsequently died within 6 to 12 months of HAART initiation. Analysing data from the

patients who remain up to the end of the trial will thus give an over optimistic view of HAART

effect.

It is possible that patients responded well to treatment and were able to suppress the virus also

withdrew because they felt better and did not see the point of going back to the clinic. Thus,

if we can identify or account for those variables which are associated with an increased risk of

withdrawal, we can carry out a sensible analysis and MCAR in that case is not sensible (Carpenter

and Kenward, 2006). If we have a fully observed variables whose values affect the chance of seeing

missing data, those missing data are not MCAR but MAR.
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If data are neither MCAR nor MAR, then the data is missing not at random (MNAR) and this

missing mechanism is termed non-ignorable. This means that even accounting for all the avail-

able observed information, the reason for observations being missing still depends on the unseen

observations themselves. Carpenter and Kenward (2006) give the following example, assuming 12

week forced expiratory volume (FEV1) was MCAR conditional on baseline FEV1. Now suppose

that even conditional on baseline the chance of seeing FEV1 at 12 weeks depends on the value at

12 weeks, that is 12 week FEV1 is MNAR. Unfortunately it is not easy to tell from the data at

hand whether the missing observations are MCAR, MNAR or MAR although one can distinguish

between MCAR and MAR. In our case the best assumption that we make about the CAT data

that is used for this thesis is that it is missing at random (MAR). Dealing with the case of MNAR

will require some untestable assumptions and this type of missing data process methods such as

sensitivity analysis which is beyond the scope of the current work.

5.3 Missing data frameworks

Before discussing the missing data frameworks, we will look at the missing data terminology based

on the standard framework of Rubin (1976) and Little and Rubin (2002). This terminology allows

us to place formal conditions on the missing value mechanism which determine how the mechanism

may influence subsequent inferences (Molenberghs and Kenward, 2007). Assume that for each

independent unit i=1, . . . , N we have measurements Yij where j = 1, . . . , ni. The outcomes are

grouped into a vector Yi=(Yi1, . . . , Yini
)′. For each occasion j we define

Rij =

 1 if Yij is observed.

0 otherwise.

The missing data indicators Rij are organized into a vector Ri of parallel structure to Yi. Thus

a prior Yi can be partitioned into two subvectors such that Y 0
i is the vector containing those Yij

for which Rij = 1, and Y mi contains the remaining components. These subvectors are referred

to as the observed and missing components respectively (Molenberghs and Kenward, 2007). The

complete data refers to the vector Yi and this is the outcome vector that would have been recorded

if no data had been missing. Thus the full data (Yi, Ri) consist of the complete data, together with

the missing data indicators.

There are three missing data frameworks that we are going to discuss. They are called selection,

pattern-mixture and shared-parameter modelling frameworks. When the data are incomplete due

to the operation of a random (missing value) mechanism the appropriate starting point for a model

is the full data density

f(yi, ri|Xi,Wi, θ, ψ) (5.1)
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where Xi and Wi denote design matrices for the measurements and missingness mechanism re-

spectively. The corresponding parameter vectors are θ and ψ respectively. The selection model

factorization is given by

f(yi, ri|Xi,Wi, θ, ψ) = f(yi|Xi, θ)f(ri|yi,Wi, ψ), (5.2)

where the first factor is the marginal density of the measurement process and the second one is

the density of the missingness process, conditional on the outcomes. A pattern-mixture approach

starts from the reverse factorisation. This factorization is given by

f(yi, ri|Xi,Wi, θ, ψ) = f(yi|ri, Xi, θ)f(ri|Wi, ψ). (5.3)

The pattern-mixture model allows for a different response model for each pattern of missing values,

the observed data being a mixture of these weighted by the probability of each missing value or

dropout pattern (Molenberghs and Kenward, 2007). In a shared-parameter model, a set of random

effects bi is assumed to drive both the Yi and Ri processes. Thus the shared-parameter factorization

is given by

f(yi, ri|Xi,Wi, θ, ψ, bi) = f(yi|ri, Xi, θ, bi)f(ri|Wi, ψ, bi). (5.4)

A sensible assumption is that Yi and Ri are conditionally independent, given the random effects

bi. Molenberghs and Kenward (2007) reported that the natural parameters of selection models,

pattern-mixture models and shared-parameter models have different interpretations, and trans-

forming one statistical model from one of the frameworks to another is generally not straightfor-

ward.

5.4 Methods for handling missing data

There are several commonly used approaches that one can use to handle missing data. These

include complete cases (CC), last observation carried forward (LOCF) and marginal and conditional

mean imputation. A complete case analysis excludes patients with missing observations. If the

missingness mechanism is MCAR, a complete case analysis is sensible, although it may well not

use all the available information in the data. However, if the missingness mechanism is not MCAR,

complete case analysis is not sensible (Carpenter and Kenward ,2006).

The CC method suffers from several drawbacks such as the substantial loss of information leading

to inefficient estimators (Molenberghs and Kenward, 2007). In LOCF, if a patient withdraws

and their subsequent responses are missing then we set their missing responses equal to their last

observed response. However Carpenter and Kenward (2006) argue that LOCF is not sensible when

data is MCAR. Molenberghs and Kenward (2007) argue that in the LOCF very strong and often

unrealistic assumptions have to be made to ensure the strong validity of this method.
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One has to believe that a subject’s measurements stay at the same level from the moment of drop

out onwards. The marginal and conditional imputation, also known as marginal mean imputation

replaces the missing observation by the average of the observed values for that variable and this

is clearly problematic for categorical variables. However the marginal mean imputation ignores

all the other variables in the data set, using it reduces the associations in the data set. Also,

imputing all the missing observations to the same value is clearly wrong, and will underestimate

the variability in the unseen data (Carpenter and Kenward, 2006).

5.5 Application to CAT study: Predictors of withdrawal

A sensible MAR analysis must condition or adjust for variables predictive of withdrawal (Carpenter

and Kenward, 2006). Carpenter and Kenward (2006) also stated that some useful exploratory

techniques are using t-tests or cross tabulations to investigate the association between baseline

variables and withdrawal. It can also be useful to look, at each time point, whether there is

a difference in response between patients who do, and do not, return for further visits. More

formally, logistic regression and/or survival (withdrawal) analysis can be useful to establish key

independent predictors of withdrawal. We then checked how many patients had CD4+ count

measured at each visit and the results are shown in Table 5.1.

Table 5.1: No of patients remaining at each visit

Visit eThekwini Vulindlela Total

Baseline 409 767 1176

Month 6 363 631 994

Month 12 340 573 913

Month 18 317 537 854

Month 24 299 501 800

Table 5.1 does not provide us with the number of patients we are left with at month 24, but the

number of patients that had CD4+ count measured. There are patients who don’t have CD4+

count measured at month 18 or month 24 but have other variables like viral load and weight

measured and they obviously did not drop out. One can see that by month 24 there were only 800

(68.0%) patients with CD4+ count measured out of the 1176 we started with. The eThekwini site

contributes 25.4% while the Vulindlela site contributes 42.6%. However, if one looks at how many

patients each site has, the eThekwini site has 299 (73.1%) patients out of the 409 they started

with. On the other hand, Vulindela has 501 (65.3%) patients out of the 767 they started with.
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The next step was to check how many patients dropped out. Those are patients who did not attend

all their visits consecutively. We found that out of the 1176 patients we started with, 341 (29.0%)

dropped out. We will now establish the baseline independent predictors of withdrawal. We will

start by performing Chi-square test on categorical variables and t-test on continuous variables.

We will then structure a survival analysis model similar to the Cox proportional hazards model to

identify significant predictors of withdrawal.

Table 5.2: Sex and withdrawal

Withdrew Not withdrew p-value

Female 221 (27.3) 590 (72.8)

Male 120 (32.9) 245 (64.1) 0.049

The p-value in Table 5.2 implies that there is an association or relationship between withdrawal

and sex. The proportion of males who withdrew is greater than that for females.

Table 5.3: Site and withdrawal

Withdrew Not withdrew p-value

eThekwini 95 (23.2) 314 (76.8)

Vulindlela 246 (32.1) 521 (67.9) 0.002

There is also a relationship between site and withdrawal with Vulindlela having a higher with-

drawal rate than eThekwini. For CD4+ count and weight we used the last observation prior

to withdrawal for patients who withdrew and the month 24 CD4+ count for those who did not

withdrew. However, for log viral load we used the baseline observation as there is no variation

in log viral load after month 6 post HAART initiation. The mean CD4+ count for patients who

withdrew and those who did not was 142 and 364.1 cells/µL respectively. These are the means at

the measurement of occasion just prior to withdrawal. The p-value from the independent samples

t-test shows that the two means are statistically significantly different (p=<0.0001).

The mean weight was also statistically significant (p=<0.0001) with patients who withdrew having

the lowest mean of 59.6 kg as compared to those who did not withdraw with a mean weight of

68.8 kg. However, there was no significant difference between the mean age for the two groups

(p=0.275). The mean log viral load for the two groups was also significantly different (p=0.037).

So we will check if site, sex, CD4+ count, log viral load and weight are predictors of withdrawal

using the survival analysis. The outcome of interest is the time to withdrawal and the Cox pro-

portional hazard model gave the following results.
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Table 5.4: Survival analysis

Parameter Hazard ratio 95% C.I. p value

Sex (ref=Female) 1.248 0.942 - 1.654 0.1230

Site(ref=eThekwini) 1.305 0.984 - 1.730 0.0642

CD4+ count 0.619 0.577 - 0.663 <0.0001

Log viral load 1.066 0.866 - 1.312 0.5476

Weight 0.983 0.972 - 0.994 0.003

Age 0.943 0.868 - 1.025 0.169

Weight and CD4+ count are significantly associated with withdrawal. Sex, site, age and log viral

load are not significant. One should remember that the CD4+ count and viral load are highly

negatively correlated. In order to avoid multicollinearity, we will remove one variable from the

model and refit the model to see how this affects the model results. We started by removing log

viral load from the model and the results are shown in Table 5.5.

Table 5.5: Survival analysis

Parameter Hazard ratio 95% C.I. p value

Sex (ref=Female) 1.283 1.007 - 1.635 0.044

Site(ref=eThekwini) 1.367 1.066 - 1.753 0.014

CD4+ count 0.615 0.580 - 0.652 <0.0001

Weight 0.986 0.978 - 0.995 0.003

Age 0.952 0.887 - 1.022 0.174

After removing the log viral load from the model, sex and site became significant. If we remove

CD4+ count from the model the p-value for the log viral load becomes 0.043 which is different

than 0.547 when both were in the model. However, sex and site became insignificant. Therefore

the most plausible approach is to include either CD4+ count or log viral in the model but not

both. Results 5.5 are similar to what we saw when testing the relationship between withdrawal

and all other covariates univariately using cross-tabulation analysis. Since the CD4+ count is our

outcome of interest we will use the model with CD4+ count only. The results in Table 5.5 tells us

that for every 50 cells/µL increase in the last CD4+ count the probability of withdrawal decreases

by 38.5%. Age is still not a predictor of withdrawal, but for every 5 year increase in age the

probability of withdrawal decreases by 4.8%.
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Males are more likely to withdraw than females whereas patients from Vulindlela are more likely

to withdraw than those from the eThekwini site, that is holding other covariates fixed. So the

predictors of withdrawal are site, sex, weight and CD4+ count. In the analysis in Chapter 4 we

adjusted for all the variables predictive of withdrawal, so the assumption that we made about our

data being MAR seems to be correct or sensible. In fact the use of proc MIXED with the repeated

statement correctly, which is likelihood based, makes sure all the available data is subjected to

analysis both complete and incomplete cases thus accounting for missing data under the MAR

assumption (Mwambi et al., 2009).

96



Chapter 6

Discussion and conclusion

The exploratory data analysis shows that there is no difference in CD4+ count over time for

patients in rural and urban site. However, we noted a significant difference in CD4+ count over

time between males and females as well as between different age groups. Results from the linear

mixed models, both marginal and random effects models showed no statistical difference between

the eThekwini and Vulindlela site in terms of the CD4+ count improvement over time. There was

no statistical difference in their intercepts as well as their slopes. On the other hand, there was a

statistical significant difference between males and females with females having the higher rate of

increase in CD4+ count over time.

It is difficult to point out whether the difference between males and females is attributable to

adherence or biomedical factors. Patients of different age groups started with on average the

same CD4+ count, but their rate of change in CD4+ count was statistically significantly different

with the younger patients doing better than their older counterparts. The study conducted by

Kaufmann et al. (2002) showed younger patients showed greater increase in CD4 cell count than

older subjects. However, the rate of change in CD4+ count over time was the same whether

patients started HAART with lower or higher weight. Similar results were observed for the log

viral load as well. So the CD4+ count increase is associated with age and sex. Younger patients

had the greatest CD4+ gain than older patients and females also had the greatest CD4+ increase

than males. The interesting findings upon fitting the baseline log viral instead of the log viral at

all visits was that, the interaction terms between time and the two variables weight and baseline

log viral were now statistically significant. Using baseline log viral load in the model shows that

the rate of change in CD4+ count over time was different for patients with lower weight compared

to those with higher weight.
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Similarly, there was a significant different rate of change in CD4+ count over time for patients

who started with lower baseline log viral load compared to those with higher baseline log viral

load. The study conducted by Kaufmann et al. (2003) showed that higher baseline viral load was

significantly associated with larger increase in CD4+ count. So, fitting the baseline log viral in the

model shows that the rate of change in CD4+ count is associated with sex, age, weight, baseline log

viral and not site. A higher rate of change in CD4+ count is specifically associated with females,

younger age, lower weight and higher baseline log viral load.

Having assumed that the data that we used for analysis is MAR, we found that sex, site, CD4+

count and weight are predictors of a patient withdrawing from the project. For future work, one

might want to look at modelling CD4+ count over time without taking the square root. That

way the CD4+ count may be allowed to follow a Poisson distribution and therefore generalized

linear mixed models will be more appropriate instead of linear mixed models. Nonetheless square

root CD4+ count and log viral load have become universally acceptable transformation both in

the medical and statistical community such that the utility of count distributions such as the

Poisson may not add more value. This is because the CD4+ count and viral load counts per unit

of measurements are in large numbers requiring exact distributional analysis as would be in the

case of sparse counts.

Future work possible includes full integration of missing data analysis in the evolution of success of

HAART on HIV infected patients. One other exciting areas of advancement is to link the current

analysis to a dynamic HIV/AIDS model and inform the process using the current data in estimating

some key disease transition parameters. Incomplete data methodologies such as interval censored

outcome can be used to address the question of non-adherence to scheduled and intermittent visits.

It will also be a novel idea to compare different HAART studies in the context of meta analytic

modelling approach in order to derive precise measures of post HAART treatment success to HIV

infected patients.
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