A THEORETICAL INVESTIGATION OF
BIREFRINGENCES IN CUBIC AND
UNIAXIAL MAGNETIC CRYSTALS |

by

Sharon Joy Grussendorff

Submitted in partial fulfilment of the requirements
for the degree of Master of Science in the
Department of Physics,

University of Natal

Pietermaritzburg
December 1997



ABSTRACT

In this thesis a consistent multipole theory is used to describe light propagation in non-
absorbing magnetic cubic and uniaxial crystals to the order of electric octopoles and

magnetic quadrupoles.

The first chapter extends Maxwell's equations for a vacuum to their macroscopic form in
matter by including bound-source contributions as multipole expansions. From these the
corresponding forms for D and H are obtained, which ensure origin-independence of
Maxwell's equatioﬁs. A muitipole eigenvalue equation describing light propagation in a
source-free homogeneous medium is then derived, which is the basic equétion applied

in this thesis.

In the second chapter it is shown how, from the multipolar form of the propagation
equation for transverse waves, expressions can be derived for the various birefringences
that may be exhibited in macroscopic platelets of the medium, as introduced by Jones

in the formulation of his M-matrix.

The following chapter presents the derivation, by means of first-order perturbation theory,
of the quantum mechanical expressions for the polarizability tensors which enter the
eigenvalue wave equation. The origin independence of the expressions for the various

observabie quantities is then established.



In the fourth chapter the independent components of the polarizability tensors are
calculated for two selected crystal point groups, namely 622 and 432, by way of

illustration.

In chapter five the components calculated in the manner illustrated in the previous
chapter are presented in tabular form. The Jones method outlined in chapter two is then
applied to the crystal point group 6m2, again as an illustration of the method used to
determine the optical effects displayed by this point group. Chapter five concludes with
a table containing a listing of the predicted optical effects calculated in this way for all of

the magnetic uniaxial and cubic point groups.
The thesis concludes with chapter six, in which a summary of the resuits of the work

undertaken is given, together with a discussion of factors influencing measurements of

the predicted optical effects.
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CHAPTER 1

1.1 MAXWELL'S EQUATIONS

Gauss' law in vacuum relates, at an instant of time, the outward flux of an arbitrary time-
dependent electric field E through a closed surface to the total charge Q within the

surface. Thus

1
E-da=21Q,
fs da . Q (1.1)

where da is an element of area of the closed surface S. For a continuous distribution of

charge in vacuum the law takes the form

fs £rda - el [pav (1.2)

where p is the charge density at the volume element dV of the volume V enclosed by S.

By means of the divergence theorem
A-da = | V-AdV , ‘
/ /) | (1.3)

where A is some vector, the differential form of Gauss' law in a vacuum may be

immediately obtained from equation (1.2), namely
V-E - 1 .
T e P . (1.4)
[e]

In the presence of matter a similar form may be derived in which E is the macroscopic

or volume-average electric field at a macroscopic point and p is the total charge density
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at that point, namely

P =P, *P, (1.5)

where p. and p, are the macroscopic free and bound charge densities respectively. The

following equation is thus obtained:

pc+pb
€

[o]

V.E =

(1.6)

This may be regarded as an alternative form to one of Maxwell's four equations of

electrodynamics.

In a number of texts (e.g. Lorréin and Corson 1990) it is shown that

P, = - VP . (1.7)

where P is the polarization density or, more descriptively, the electric dipole moment per

unit macroscopic volume. By combining equations (1.6) and (1.7) one obtains

V(e ,E+P) = p, . (1.8)
The divergence of the vector (e E+P) depends only on the free charge density p. This
vector is called the electric displacement, designated D, so that

VD = p, , (1.9)

where

D=¢E+P . (1_10)



Equation (1.9) is the traditional form of the Maxwell equation (1.6).

The experimental fact that free magnetic charge has not been discovered in vacuum is

expressed by the analogous form of Gauss' law

[Bda=0 | | (1.11)

where B is an arbitrary time-dependent magnetic field at a point in vacuum. Application

of equation (1.3) yields the vacuum equation

VB=0 . (1.12)

As neither free nor bound magnetic charge has been found to exist in matter on the
macroscopic scale, the same form as that in equation (1.12) can be shown to apply to
matter, except that now B is the macroscopic magnetic field. This is another of Maxwell's

equations.

Faraday's law of electromagnetic induction in vacuum reads

§Edl = ~dit [Bda . (1.13)

where S is any surface spanning the closed path C, of which d/ is an element.

By means of Stokes's theorem
Adl = [(VxA)
f A= [aca (.19

one obtains from equation (1.13)



§El = [(7xEyda - —% [Bda = - fs%-da _, (1.15)

in which, to ensure that the closed path and its bounding surface are constant in the
same reference frame, only a time variation of B at a given point is possible, as
expressed by the partial derivative. Since this equation is valid for an arbitrary surface,

the integrands of the surface integrals are equal at every point, and we obtain

oB
VxE=-2 (1.16)

Since no free sources enter this vacuum equation, its form in matter is identical, except
that now the fields are macroscopic. This is the third of Maxwell's equations, and it

applies to stationary media.

For a distribution of steady current in vacuum Ampere's circuital law applies

fCB -dl = H, SJ-da , (1.17)

where Jis the surface current density at the element da of any surface S bounded by the
closed path C. By means of Stokes's theorem equation (1.17) can be transformed to yield

the differential form

VxB = y,J . (1.18)

For time-dependent fields in vacuum this can be shown to become

E
VX B - ue, Sl ) (1.19)



The corresponding equation in the presence of matter has the form of equation (1.18)

where B and J are macroscopic quantities with

J=dy+d +d, . (1.20)

Here J=¢(0E/ct) is the displacement current density involving the macroscopic electric
field, J, the free current density, and J, the density of bound currents that may arise in

matter.

A number of authors (e.g. Hornreich and Shtrikman 1968, Lorrain and Corson 1990)

show that

' oP
J, = VxM+ — | (1.21)

ot

where M is termed the magnetization, defined to be the magnetic dipole moment per unit

macroscopic volume.

From equations (1.10), (1.20), and (1.21) it follows that equation (1.18) may be written

in the more traditional form for the last of Maxwell's equations, namely

oD
VxH:E"'JC . (1.22)

In this

H=p'B-M . (1.23)

Although these forms for the field vectors D in equation (1.10) and H in equation (1.23)



are acceptable for static uniform fields, they cannot be applied to non-uniform static or
electromagnetic fields. This is a consequence of the omission in the expressions for the
bound source densities in equations (1.7) and (1.21) of terms involving higher multipole
moments, beginning with the electric quadrupole moment density Qs which, as will be
evident in the next section, contributes to the same order of magnitude as M.
Furthermore, the omission of the electric quadrupole term in equations (1.7) and (1.21)
leads to forms for D and H which, when used in Maxwell's equations, yield expressions
| for certain observables that depend on origin. This will be illustrated in Chapter 3. A
successful description of optical transmission phenomena in terms of Maxwell's

equations requires the use of correct multipolar forms for these field vectors.

1.2 MULTIPOLAR EXPRESSIONS FOR D AND H

The interaction of matter with electromagnetic radiation, whose wavelength is much
greater than the linear dimensions of a macroscopic volume element, has been
successfully described in terms of the mﬁltipole moments induced in a volume element
by the radiation. (Buckingham 1967, Graham and Raab 1990). | In order to describe such
an electromagnetic effect in matter using Maxwell's equations it is necessary to include
multipole contributions of comparable magnitude in the expressions for D and H. The
relative magnitudes of these contributions to an optical effect are ordered as follows (de

Figueiredo and Raab 1981):



olectric [ electric quadrupole {electn'c octopole (1.24)
dipole magnetic dipole magnetic quadrupole )

In this research allowance has been made for consistent inclusion of all contributions to

the order of electric octopoles and magnetic quadrupoles.

A finite distribution of time-varying currents in a volume V in vacuum gives rise to the
retarded scalar potential ¢(,{) at a point with coordinate ® relative to an arbitrary origin

O in the distribution. In the Lorentz gauge

_ 1 p(r,t-|R-r|lc) vV
(R .9 4neofv Ror] dv . (1.25)

In a similar way the retarded vector potential A(X,f) is expressed as

Mo » J(r, t-|R-r|ic)
AR ) = = dav , 1.26
(8.0 4nfv | R -r| (1.26)

In equations (1.25) and (1.26) p is the charge density and J the current density at the
retarded time ¢-IR-rlc at a microscopic volume element dV which has coordinate r

relative to O.

In their derivation of a multipolar expression for the total bound current density at a
macroscopic volume element Graham et al. (1992) began by performing a binomial
expansion of [®-rt!in equation (1.26) and a Taylor expansion of t- |R-rl/c about t-R/c,
in order to relate the vector potential at a distant field point (X>>r) to a series of multipole

moments at O. In the limit A>>®, where A is the wavelength of the light wave, and with



a suitable averaging procedure to extend the derivation to bulk matter, the following
expression for the macroscopic vector potential A was obtained:
A(RD = ( fP (R MV + f (2Qy 5~ oM )V,(R AV

. fv(%dﬂﬁv_%e WV VRV - ) , (1.21)

in which the multipole moment densities are those at the coordinate R=-R at time

t=t-R/c.

Equation (1.27) is written in cartesian tensor notation, in which Greek subscripts denote

cartesian components. €, is the alternating tensor and has the following properties:

When a,, and y are in cyclic order of x, y, and z, €45,=1.
When «,B, and y are in anti-cyclic order, €,5,=-1.

When one of a,B, ory is a repeat of either of the two remaining subscripts, € ,,=0.

Equations (1.26) and (1.27) can be shown to lead to the following expression for the total

bound current density at a macroscopic volume element:

L 1
o, ™ Pa = 3V * Capy oMy * 2%V Qupy ~ €apsVVsMoy ~ - - (1.28)

Substituting this into equation (1.20) which is then used in equation (1.18) yields



-1 d 1 1
CapyVako By = —{€oFa Pa = 3V6Qap + ViV Qupy 7 )

x

€ap Vp (M, - %VaMy5)+'-' +d, . (1.29)

a

This equation has the form

oD

eaBYVBHV - __c + Jc(l , (1.30)
ot
where
Da - eoEu * PC( - %VBQGB ' %VYVBQGBY T (1.31)
and
-1
Hv = uo Bv —_ MY + %—VG Mv6 T oaes . (1'32)

When the scalar potential ¢ in equation (1.25) is expanded in the same way as A in
equation (1.26), a multipole expansion of the macroscopic bound charge density p, is
obtained which, when substituted into equation (1.6), yields the Maxwell equation (1.9)

with D having the identical multipole form as in equation (1.31).

1.3 MACROSCOPIC MULTIPOLE MOMENT DENSITIES

Due to its finite wavelength, the field of an electromagnetic wave is not constant over the

linear dimension d of a molecule or a crystal unit cell. If A>>d the wave may be described



by its fields £ and B and also by their various space derivatives

ViEa s VViEq i VgBy . VB s (1.33)

at a point in a molecule or unit cell.

An electromagnetic wave also consists of time-derivative fields, such as

E E EE, . . (1.34)

However, due to the harmonic condition applying to a plane monochromatic wave

E- -wE , E-=-wE et . (1.35)

where w is the angular frequency of the light wave, there are only two independent time
derivatives of each field in equation (1.33), which we take to be the field and its first time

derivative.

When a plane monochromatic wave propagates in a medium, multipole moments are
induced in the medium by the light wave fields and their space and time derivatives. The
expressions for the induced moment densities, to the order of electric octopole and

magnetic quadrupole, are (Graham and Raab 1991):

10



1 1
Pa=cx E +—O( E +— achvVvEB+ chvVYEB

b V.V E + b anGVGVvEB +.

aByd "5y B

1/ 1 1
*GopBy + G wsBs* 3 2Hap VB 551 VB -

Qup =Py By * Py By *2agyoVoEy "o apys VoEy -

aBy—y

1 )
+LanBv +'(;LanBv+

Qupy = CopyoEs + ":','CanéEb Y

.
My = XugBp XaBBB

]
* E‘aB B+—SGBE * S'chBv y gEoer vep*

E +.. .

apy—y

Mg =H . E +1H

afy Ty

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

In these equations P,, Q.s Q. M and M, are, respectively, the electric dipole, electric

quadrupole, electric octopole, magnetic dipole, and magnetic quadrupole moments per

unit macroscopic volume. Quantum mechanical expressions for the polarizability tensors

which appear in the right-hand-sides of the above equations are derived in Chapter 3 of

this dissertation.

11



These expressions indicate that all contributions to the required multipole order have
been included in equations (1.36) to (1.40). The polarizability tensors are in general
complex to allow for absorption. According to the definition of a property tensor given in
Birss (1964), these polarizability tensors may be termed property tensors since they form
a relationship between two particular measurable tensor quantities associated with the

crystal.

From the expressions for the property tensors given in Chapter 3, the following

relationships are evident:

aaB = aBa ' dch = _aiia 1 (141)

Popy = 3yap + Popy = “8yap - (1.42)
Capvo = Dsapy CanG = "bz;aBy ; (1.43)

Eap = Gpa + Eop = “Gia (1.44)
Hoow = Hyap -+ Hipy = Hap (1.45)

12



Loy = Loya gc;ﬁv - —LE3YC( . (1.46)

The multipole moment densities in équations (1.36) to (1.40) are the average per unit

macroscopic volume of the following moments of a charge distribution (Raab 1975):

Py = E ar, (1.47)
Qop = 2,: qrn, (1.48)
gy = Z ar.nh, (1.49)
m =T L, . (1.50)
ey = Yot (1.51)

in which r; is the displacement from an arbitrary origin of charge g, with mass m, and

orbital angular momentum £ = r, x p, where , is its linear momentum.

13



1.4 AN EIGENVALUE WAVE EQUATION

It is convenient to express the electric field of a plane monochromatic wave in the form:

E = Eoe—im(t-nr-o/c) ) | ‘ (1_52)

In this equation o is the unit vector perpendicular to the plane wave front, and n is the
refractive index of the medium for light propagating in the direction o, with a polarization

state described by the amplitude E, which may be complex.

From Maxwell's equation (1.16) and equation (1.52), expressions can be derived in terms
of E for the fields and their space and time derivatives in equations (1.36) to (1.40). The
multipole moment densities in these equations are then substituted into equation (1.29) to

obtain the following equation:

1
{nzqucrB -(n?-1)8,, +e—a +

- n 2
gt Uop™ VaB}EoB =0. (1.53)

2
c’%,

n
o Ceo
This is the basic equation to the order of electric octopole and magnetic quadrupole for
describing the propagation of a plane monochromatic wave in a source-free magnetic

medium. In this equation the tensors denoted by a tilde have the form

Topg = Top —iT%;g - (1.54)

The explicit expressions for the these different tensors are given below.

14



% = Ol =gy (1.55)

A% =g = =0y | (1.56)
U:(B=ov{_€BYGGc16_eorvbGBG+%w(a;x(3y+a;3av)} U » (1.57)
U2,= Y{ eMG06 e Géb—%w(aam—am)}ruaﬁa , | (1.58)

— 1,42 2 '
VSB 00{ Ew (ban6+bBay6) mdava w(eave ﬁeb BveHaeb)

+%w(eayeLIBbe +ereL;x6e) +eayeeBG¢X€¢} =V s;30( ! (1 59)

_ 2 1,12 1 _
VZB_OYO{ —w (bané Bavé) :0) dorva ;w(eoweHBeé eByecheb)

t— w(eaye Boe Bve abe) ecxye BGQ)‘!?} va : (160)

The respective symmetry and antisymmetry of the tensors indicated with superscripts s and
a can be deduced from the tensor expressions derived in Chapter 3. By setting o in

15



equation (1.53) equal to X, y, and z in turn, and summing over repeated subscripts, we
obtain three linear homogeneous equations in the components of E, These can be cast in

the form of the following matrix eigenvalue equation:

n?(1-0)-S,, -n%0,0,- §Xy -n20,0,-S,, ||E,, o
-n%,0,-$, n¥(1-03)-§, -n%g0,-S, |E|=E,|, | (1.61)

-n%,0,-S, -n%,0,-S, n¥1-0%)-§, _Eo,_ _Eoz_

in which the eigenvalues are constrained to be unity, and where

n2 .
Vag - (1.62)

S - ﬁf‘aa* c’;OUGB+ e
For any given propagation direction o the medium supports only those polarization forms
whose amplitudes are the eigenvectors of equation (1.61). Their associated refractive
indices can be found from the condition that the eigenvalues are unity. Alternatively, the

condition that not all of the components of E, vanish is that the determinant of their

coefficients should be zero, that is

n%c%-1)+1+S, n%0,0,+S, n%c,0,+S,,
n%,0,+S, n%c%-1)+1+S, n%00,+S, |=0. (1.63)
n%.0,+S,, n%0,0,+S,,  n%0%-1)+1+S,

This determinantal equation is used in Chapter 2 to obtain general expressions for the
various optical effects that arise due to light propagation in magnetic crystals.

16



CHAPTER 2

21 THE JONES CALCULUS

The state of polarization of a plane electromagnetic wave with its electric field transverse
to the direction of propagation is fully described by its two orthogonal field components,
say E, and E, for a wave propagating along the positive z axis. In the formulation of the
calculus which bears his name Jones used a complex form of the field of such a wave

and represented it by a 2x1 column vector

EX
E=[ ] - (2.1)

Its elements are thus complex in general and through their real and imaginary parts E
contains four pieces of information conceming the light beam. These are the amplitudes
and phases of the two components which, as is knoWn for a Lissajou figure, constitute

one way of specifying an ellipse as the most general form of polarization.

Consider such a wave incident on a medium, which may change the polarization of the
beam without depolarizing it. Let the incident beam in a given direction be described by
the vector E and the emergent beam, assumed to be in the same direction, by the vector

E’. Then for a linear response of the medium to the field of the incident light wave

17



E = ME, | (2.2)

where M represents the effect of the medium in transforming E into E*. As E and E'are
2x1 column vectors, M must be a 2x2 matrix with four elements which are complex in
general. Their real and imaginary parts thus represent in general eight distinct optical

properties of the medium.

In 1941 Jones initially introduced the matrix representation of a medium to describe the
effects on a polarized plane monochromatic light wave of a non-depolarizing crystal
which could be birefringent, optically active, and absorbing. Only later (1948) did he
extend his theory to a general dielectric medium in which all eight properties may be
present together. The basis of Jones' approach was to assign each of the eight optical
effects to a separate macroscopically very thin plate of medium, and then to integrate to
produce the total effect. For the light wave propagating through a medium of length z

with a field given by equation (1.52) Jones showed that the matrix M is given by

cosh(Qz) +%(N1 -N,)Q "'sinh(Qz) N,Q 'sinh(Qz)
M=exp(Tz) - (2.3)
N,Q “'sinh(Qz) cosh(Qz)—%(N1—N2)Q‘1sinh(Qz)
In this
T=i, Q%= -(0§,2+4,) . (2.4)

18



and N,, N,, N; and N, are the elements of a matrix N, which is determinate at each point

along the path of the light beam in the medium. For a homogeneous dielectric

[N1 N4} i(A-G,) —a)-ig45]
- - . (2.5)
N3 N2

@ _ig45 i(f +go)

The quantities denoted with a tilde in equation (2.5) are complex and are given by:

f=n+ik ,

®»=w+id

) . (2.6)
9o = 9P,

G45 = 945 +1Pys

The right-hand-sides of these equations consist of eight independent differential
parameters. These parameters are related to the following optical properties of a

medium:

refraction, which relates to the parameter denoted by n, and absorption, which is
associated with K; circular birefringence, associated with the parameter indicated by w,
and circular dichroism, related to J; linear birefringence, which is related to g,, and is
relative to a pair of orthogonal axes, and the associated dichroism, which relates to the
parameter p,, and finally a linear birefringence, associated with the term g,s, with respect
to the bisectors of the axes mentioned above, and the associated dichroism, related to
the parameter p,s. In non-absorbing media these eight parameters reduce to four,

namely: n, ®, g,, and gys.

19



Jones defined the differential parameters given in equation (2.6) in terms of the relevant

refractive indices and extinction coefficients for different polarization states of a light

beam in the following way:

i = T”(nﬂk) 2—)\" . e
® = 2 In=n, il k) - NN (2.8)
5, = 4 In,n, h(k k) = A, | (2.9)
8us = 3 [0, ik —k)] = A -A) (2.10)

Here i is the complex refractive index for randomly polarized light. It consists of the
refractive index n and extinction coefficient k, where, for the choice of sign of the

exponent in equation (1.52),

A=n+ik . (2.11)

The corresponding quantities for the polarization states are denoted by the following

subscripts:

20



r and | for right- and left-circularly polarized light,
x and y for light linearly polarized along the x and y axes,
and + and - for light linearly polarized along the bisectors of

the x and y axes and of the x and -y axes.

The Jones M-matrix in equation (2.3) has been used to suggest experiments by which
the various optical properties in equations (2.7) to (2.10) may be measured, particularly

 when several coexist (Raab 1982, Graham and Raab 1994).

A light wave whose electric field is perpendicular to its propagation direction o is termed
an N-ray (Graham and Raab 1990). A wave which has an electric field component along
its propagation path is called an S-ray (ibid.), and will not be considered in this research

as the Jones calculus is not applicable to such rays.

If the light path is taken to be along a crystallographic axis, then the form of the
determinant in equatioh (1.63) allows immediate identification of whether an N-ray exists.
For example light propagating along the z-axis has 0=(0,0,1). An N-ray occurs when in

equation (1.63)

S, =S, =0, (2.12)

$:=5,-0 . (2.13)

21



Equation (1.63) thus reduces to the following general form:

-n2+1+8§ S
“ v =0 . (2.14)

. ) .
Syx -n4+1 +Syy

It can be seen from equations (1.55) to (1.60) that, for non-absorbing media, the tensor

S has the Hermitian property:

$, =8, . (2.15)

This leads to the following general form, within the electric octopole-magnetic

quadrupole approximation, for equation (2.14):

~n2+1+a+bn+cn?  d+en+fn2+i(g+hn+jn?) 0 (2.16)

d+en+fn?-i(g+hn+jn?  -n?+1+k+In+mn?

It is evident from this and (1.53) to (1.60) that the terms indicated with small letters in

this have the following multipole orders:

a,dgKk X electric dipole
b,e h,l : electric quadrupole-magnetic dipole
c,fjm : electric octopole-magnetic quadrupole

22



In order to apply Jones' approach to determine the various optical effects experienced

by the wave propagating through the crystal, we rewrite equation (2.16) as:

-n?2+1+A+B C+D

=0 , (2.17)
C-D -n?2+1+A-B
where
-1 1 1n2
A = ;(a+k) + 2n(b+|) +on (c+m) (2.18)
- la- Inb- 2n2c-
B = ;(a k) + 2n(b ) + 2n (c-m) (2.19)
C=d+en+f? (2.20)
D =g+ hn+jn? . (2.21)

To obtain the four distinct optical effects identified by Jones in non-absorbing media,
we proceed by considering four optical plates independently. In the absence of

absorption A, B, C, and D are real quantities.

Plate 1: A=0,B=C=D=0.

Equation (2.17) then becomes:

-n?+1+A 0

-0 . (2.22)
0 -n?2+1+A

23



This equation has two equal roots, given by

nz=1+A |
2.23
=1 + 1(a+k) + ln(b+|) + lnz(c+m) , ( )
2 2 2
which reduce to the correct vacuum limit of n=1 when A=0.
Hence
1
n = % [Y+ (y2+4(1 -Z2)(1 +x))2 1[1-Z2]" | (2.24)
where
X = ~(a+k) , (2.25)
Y = Z(b+l) , (2.26)
Z = %(c+m) ) (2.27)

Since Z contains terms to the order of electric octopole and magnetic quadrupole, it

is clear that

Z«1 . (2.28)

We therefore use-the binomial expansion

(1+x)* =1 +%X+ (X(G-1)X2+m . a(a—1)...(a—n+1)x,,+m

o pr for -1<x<1 , (2.29)

which leads to
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2
1+Z—£—+...
2

(1-27
| (2.30)

n

1+27

since the higher order terms are negligibly small. Equation (2.24) then becomes

n=11Y+(v2a(1-2(1 +x))%] [1+2]. (2.31)

1
2

To first order in the multipole terms X, Y, and Z, this reduces to

(2.32)

N

-1
n=2lyY + (1+X)2 + %Z(1+X)

2
2

The two polarization eigenvectors corresponding to the two equal roots in equation
(2.23) are orthogonal linear polarizations along the crystallographic x- and y-axes.
Thus all polarization forms experience the same refraction along the chosen light

path. This is the first optical effect described by Jones.

Plate2: B0,A=C=D=0.

Equation (2.17) becomes:

-n?+1+8B 0

-0 . (2.33)
0 -n?2+1-B
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The solutions of this are given by

1+B.

n? =
= 1 + l(a_k) + lnx(b_l) + _lnxz(c_m) , (2-34)
2 2 2
and
ny2 =1-8
_ (2.35)

1 - Xa-k) - In(b-l) - InXc-m)

The two eigenvectors are again orthogonal linear polarizations along the x and y
crystallographic axes, but now with different refractive indices, so that a linear

birefringence is evident. To first order in the multipole terms this is calculated to be:

ne-n, = (1+X)?2 - (1-X)2 + Y + %z[(1+x)E +(1-X2] (2.36)
where

X = ~a-k) (2.37)

Y= _(b-h . (2.38)

Z = Lc-m) . (2.39)
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When a=zk, for instance for propagation perpendicular to an optic axis in a uniaxial

crystal, then (a-k) is the leading multipole contribution and the higher order terms may

be neglected. This is the second of Jones' optical effects.

Plate3: C+#0,A=B=D=0.

Equation (2.17) reduces to:

-n?+1 C
C -n?+1

I
(o

The two solutions of this equation are:

n2=1%*C .

From this we obtain the following two values for the refractive indices:

1 1
n_ =(1+d)? + _;.e + %f(1+d)2 ,

and

1 1
“(1-d)? - le - 1f(1-d)?
n_=(1-d)? - e - 1f(1-d)

(2.40)

(2.41)

(2.42)

(2.43)

Substituting these roots into the two equations on which the two rows of equation

(2.40) are based yields
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EO

A

=+1 . (2.44)

The two eigenvectors thus represent linear vibrations along the bisectors of the two
crystallographic axes that are perpendicular to the direction of propagation. To first
order in the multipole terms equations (2.42) and (2.43) lead to the following

birefringence

N=

n_-n_=(1-d)

~ +

- (1+d)? - e - %f[(1 «d)? + (1 —d)3] . (2.45)

This linear birefringence was first identified by Jones, and has been named after him

(Graham and Raab 1983).

Plate4: D+ 0,A=B=C=0.

The general equation (2.17) becomes:

-n?+1 D
=0 . (2.46)
-D  -n?+1
This has two possible solutions:
n2=1p . (2.47)
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Substitution of these roots into the two equations represented by the determinant in

equation (2.46) yields

EO
E,

<

=70 (2.48)

These describe right- and left-circularly polarized light, corresponding to the upper
and lower signs respectively. Solving equation (2.47) to first order in the multipole

terms then leads to the circular birefringence

m - n = (1) - (-7 ¢ h o+ 2j[(1+g) + (1-9)7] (2.49)

In this n, and n, are the refractive indices for right and left circularly polarized light
respectively. lt is evident from (2.49) that circular birefringence may arise from the
electric dipole term g which is a term in o', as (1.53) to (1.56) show. This contribution
occurs in ferromagnetic crystals (Graham and Raab 1991). ‘The next higher multipole
term is that in h, which is of electric quadrupole-magnetic dipole order, followed by

that in j.
In this dissertation the above approach will be used to identify the different optical

properties of each of the uniaxial and cubic magnetic point groups. Examples of the

application of this method will be illustrated in Chapter 5.
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CHAPTER 3

3.1 QUANTUM MECHANICAL EXPRESSIONS FOR POLARIZABILITY TENSORS

Quantitative expressions for polarizability tensors allow one to deduce the intrinsic
symmetry of their tensor subscripts, as well as any relationships that may exist between
various of the tensors. In addition, one can deduce from such an expression the order

of magnitude of a tensor.

These quantitative expressions for the tensors used in this thesis are derived from
quantum mechanics by means of first-order perturbation theory, in which the
electromagnetic perturbation Hamiltonian is expressed in the Barron-Gray gauge (Barron

and Gray 1973, Raab 1975).

The forms of the multipolé moment densities induced in a magnetic medium by a plane
monochromatic wave were obtained phenomenologically in Chapter 1, for instance that

for the electric dipole moment density:

= P9 1o E, + 1 1a '
Py = Py? + ag By + maaBEB + zaanVvEB + 2wq]BYVYEB

+1b

1 '

aBYGVGVvEB + ...

1A~ B 1 1. ]
+ GaBBB + ;GaﬁBB + 'Z“HanVvBB + EHGBVVVBB o (3.1)

We now show how such expressions can be formally derived by means of quantum

mechanics.
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The quantum mechanical expectation value of the induced electric dipole moment

density, represented by the operator

P - Zmir , (3.2)

in a time-dependent state |n(t)) is, to first order in the perturbation due to the

electromagnetic wave,

(n(®1P,In(®) = (0O +n (O +...| Py n (@ +n (D +...)
= (PLO) + (IR, |nM(B) + {n (IR, InO(®) + .

= (PO + 2%e(nO()|P,In (D) + ... , . (3.3)

since P is Hermitian.

In equation (3.3) the ket \n®Yt)) is the solution of Schridinger's time-dependent equation

for the nth state of the unperturbed system described by the Hamiltonian H?, namely

HOINO®) = A |n() . (3.4)

Because the unperturbed system is time-independent, Schrédinger's energy eigenvalue

equation also applies. Thus

HOInOgy) = EO |nO@) | (3.5)

where E,” is the energy eigenvalue of the nth unperturbed state of the system.
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It follows from equations (3.4) and (3.5) that

|n(°)'(t)). = e E |nO0)) | (3.6)

The ket |n‘t)) in equation (3.3) is the first-order perturbation ket for the nth state. Any

state of a system may be expressed as a linear combination of the eigenstates of a
Hermitian operator on the vector space representing that system. Thus using the

unperturbed kets of H® in equation (3.6), we may write

|n(1)(t)) = Za,(f) U(o)(t)) . (3.7)

i

It can be shown from time-dependent perturbation theory that

.t
i iy it :
af) = -~ [ ™ HVdt  jen (3.8)
0
where
H = (/(0)|HM|n(0) ) (3.9)
and
W, = (E© - Ej(o))/h : - (3.10)

Equation (3.3) then becomes:

(n@®|P,In(0) = (PO) + 2%eY" a(e’**(nO(0)|P, i) + ... . (3.11)

J#n
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The semi-classical Hamiltonian for describing a system of particles in a macroscopic

volume element AV in an electromagnetic field is
1
H =§j%(p-qA)2 +V+Y qgd (3.12)
where V is the unperturbed potential energy operator and q the chafge of a particle in AV

with mass m and momentum operator p.

Barron and Gray (1973) showed that the following potentials A and ¢ at a point r at time

t in a source-free region of space

Arp = eo‘w{%[BB(r,t)]o r,+ %Won("t)]o rfy + _;'[VevéBB(r’t)]o Il + } , (3.13)
and
o(rh) = [o(r.0], - [ErD]l, 1y - %[VBEQ(’J)]JJB - (3.14)

field the correct Taylor expansions of the electric and magnetic fields, as given by

oA
E=-vp-22 |
) ” (3.15)
and
B=VxA |, (3.16)

where E and B are arbitrary time-dependent fields.
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In equations (3.13) and (3.14) [ ], signifies that the expression must be evaluated at the

origin. The Hamiltonian in equation (3.12) can then be shown to have the form:

1
H=X ——p* Vo qiol, - plEcly ~ JduplVeEuls ~ S un¥yVeEalo ~ -

- mMBel, = SMeplViBol, ~ - (3.17)

where p, , Gup  Gupy /My, and M, are the quantum mechanical multipole moment
operators for the macroscopic volume element. These correspond to the classical

multipole moments defined in equations (1.47) to (1.51).

Thus it follows from equation (3.17) that in the electric octopole - magnetic quadrupole
approximation the first-order perturbation Hamiltonian is given by the expression (Raab

1975):

HO = qId], - PolEole ~ 29aplVeEalo = Z9ap [V VsEalo

- ma[Ba]o - %maB[VBBa]o_“' : (3.18)

It is the unique advantage of the Barron-Gray gauge that the first-order perturbation

Hamiltonian appears in an explicit multipole form.

- From equations (1.16) and (1.52) it is possible to express B in terms of E for a plane

monochromatic wave. Thus in tensor form

n
B, = = € OsE, - (3.19)
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It can be shown that

t t
fe —iwnjt[Ea(r,t)]odt - Ea(O)fe —lm,,-te -iwtt
0 0

1 e —i(n,,-t

i (02 _wan

{wn]e -iot _ e —imt} Ea(O)

1 e -iw ot

i w2-m 2 {w"J{EG(r’t)]o - ’Iéu(’ vt)]o} :
W -w

nj

(3.20)

This result together with equations (3.18) and (3.19) and the explicit form for E given in

equation (1.52), when substituted into equation (3.8), yields:

.t
! —iwpit 1 1
aj(t) = —¥ f e " [an[q)]o_paj,,[Ea]o_;anhWBEG]O_quBYp[VYVBE ]O
0

- my [Bl,~1m., [V;B,], - .|t
1 e—im,,t

o Py OnfEL, ~TELL) + 2 (0 I5EL], - TVELL)
nj

* 2,0, OV VeE ], -V, VeE L) + M, (@,1B,], ~1B.],)
* im(x .(wn Bu]o—i[v Bu] Tl |
Mt OnfTE.l, 761 ] 52

In this g;,=0 because q is a constant and the distinct states |j) and In) are orthogonal.

From this equation and equation (3.11), and from the hermiticity of the multipole moment
operators, it follows that
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(0O1PIn(0) = (P,©) éR{P [ ok, - TEL)

/#n n 0)2
* ';'quh(wm{VYEB]o_i[VYEB]o) * %quéj,,(wnj GVYEB]O_IWGVYEB]O)

my (@, 1By, ~Bgl,) + %mﬁvm(wnj{VYBB]o_'WVBB]°) ’ ] } ' (3.22)

Comparison of this quantum mechanical expansion with the classical expression given
in equation (3.1) yields a quantum mechanical expression for each of the polarizability
tensors for the macroscopic volume element AV. For instance, the polarizability a g is

given by:

Eznwnéﬁe {n|P1/)jlpgln) . (3.23)
g

hjen

Here w,,=-w, was used, together with

Z, = (0,2-03)" (3.24)

which is a dispersion line shape function. Absorption has been neglected in this work
in order to determine which birefringences would be manifest for different propagation

directions as a consequence of the symmetry of non-absorbing crystals.

Since

p-L (3.25)

equation (3.23) may be written as
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AVZZI

nmjn

Reln|P,|p§|Py|n =g, | (3.26)

J=n

in which the hermiticity of P was used. Similarly, from the hermitian property of other

multipole moment operators,

o ~-§-AVZJ_: OIM0| PGP, = ~a (3.27)
G %sz Z,w, Ren|P, |4 Qn (3.28)
8Ly - -%szjj Z,03mn|P, G| QyIm (3.29)
bgs = %AVZ Z,w,Ren| P, 4] Qq sl (3.30)
Blpys - —%szjj Z,03mn| P, | Quln) (3.31)

=% V3. Z,0,%e®|P, )| Myln) (3.32)

J
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. 2 .
Gl = - sz,: zjﬁwgmmlPalﬁleBIm : (3.33)

2 .
Hygy = ¥Av§ Z,w, Re (n|PINGIM |0 (3.34)
. 2 :
Higy = _gszj:Zjnu).?‘sm(n|Pa|ﬁ§/|MBY|n) : (3.35)

In a similar way the quantum mechanical expressions can be obtained for the
polarizability tensors in the definitions of Qus, Qupy, My, and M, in equations (1.37) to

(1.40). They can be shown to have the following forms:

2
Popy = ¥ VZ in Jn‘%e(n'QaBm(]lP |n) = yap (3-36)

. 2 . .

gy = == szj: Z,w3mn|QelYIP,|n) = -a,4 , (3.37)
2

Capvs = VE " ,nme(leaBVIIWIP M = by, (3.38)

. 2 .

Capys = —gAVZj:Zjnwgm<n|QaBY|ﬁ§/| 51M = Dyegy (3.39)
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opo = AV 2,0, 80010110l = Gy . (3.40)
Aoy = —%AVXI.: Z,wSmn| Qi Quplm = ~dsag (3.41)
£ - %Av; Z,0, R0\ M 0GIFpI0) = Gy (3.42)
g, - _§Av;‘zjnwgm(mMa|ﬁ(j|PB-]n) = —GL;G - (3.43)
Xop = %szj: Z w, Reln|M, || M,|n) 610

2
+ E(_Z;)(n|rqrﬁ—r26aﬂ|n) *Xpa 0

. 2 . '
XO(B = ‘¥AVZI: Zjnwgm(n|Ma|j>§’|MB|n) _XBa ’ (345)

2 .
Hopy = ?AV; Z, 0, Ren| My [D4IP,In = Hyyg (3.46)
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. 2 1P In) -
M, = -¥Av; Z,03m 0| Myl PGP, I = H.g (3.47)

Lagy = %AV; Z,w, Ren|QulijIM,|m | (3.48)
Lig = -%Av; Z,08mn|QulNGIM, ) (3.49)
Lopy = %AVEJJ Z,0,,Re(n| MG Q[N = Loy (3.50)
Ly - % Avgjj Z,0Smn| M, )G Qp M = Ly, - (3.51)

The full permutation symmetry which exists in the subscripts of the electric quadrupole
and octopole moment operators can be used to show the intrinsic symmetry of the
polarizability tensors containing matrix eléments of these two momenté. The expressions
given above also allow one to deduce any relationships which may exist between

tensors, and where relevant these are included in the expressions.

In summary, the following expressions indicate the symmetry which exists in the tensor

subscripts:
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Aup™ Yoy Kap™ Opar 8apy™ aypr Fapy™@ayp:

baByG: bchGv = baGBY: bavBG' ban6 :bchGY :baéBy :babe ;

davs™ Fyoap= Toyap™ Fyopa - dopvo= "9 voup™ "9 oyap= "I yopa -

Xap= Xga + Xap= Xpa + Lapy™ Lpay + Lapy™ Loy - (3.52)

3.2 ORIGIN INDEPENDENCE OF MULTIPOLE MOMENT OPERATORS

Van Vleck (1932) derived a quantum mechanical expression for the static magnetic
susceptibility of a molecule, which,in addition to matrix elements of the magnetic dipole
moment operator, contained fnatrix elements involving the displacement r of a charge
from an arbitrary origin in the molecule. He showed this expression to be independent
of the choice of origin. This oriéin independence is an essential property of an

expression for a physical observable which is itself independent of origin.
The change in each multipole moment operator can be calculated for a displacement R
of the origin to which these multipole moments are referred. These changes are readily

obtained from the operator versions of the classical multipole moments in (1.47) to (1.51).

For instance, if P is the electric dipole moment density referred to origin O', displaced by

R from origin O to which P is referred, then the origin shift in P is
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AP, = P,-P, = (Y ar,-Y ar, )&y

[ Y atr,-R) - Y ar, | &)

ROV 'Y g (3.53)

Similarly

AQy = ~RyPy - RyPy + RRyAV 'Y q (3.54)

AQQBY = _RC‘QBY - RBQ‘]Y - RVQGB + RGRBPV + RGRVPB

(3.55)
+RyR P, - RiRR(AV 'Y q
AM, = €, Ry&V)'Y (@2m)p, (3.56)
AMyy = 2R M, + 28R M, - €4, sR (A 'Y (q3m)(rypy+ rypy)
+ €4 sFReR(AV) Y (29/3m)p; - i€ 4 R (BV) 'Y (q/3m) . (3.57)

From these origin shifts, together with the expressions given in equations (3.26) to (3.51), the
change in each polarizability tensor can be calculated for the displacement R of origin. From

the expression in equation (3.26) the origin shift in o, is calculated as follows:
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Aa,g

nn

%AVZZ.w.é)te{<n|Pa+APa|j> <j|Pg+APg|n> - <n|P,|> <j|PB|n>}

jén

i

2AVY. 2,0, Refen|P, 1> <71Pyln> « <nl P, > <Pyl

mnn
j=n

+<nlP, 1> 18P, > - <n| P> <Pyln>}

-0 | (3.58)
since from equation (3.53) the term
<n|AP,|j> <j|APg|n> (3.59)
is of second order in R and can thus be neglected, while
<nlj> = <jln> =0 (3.60)

due to orthogonality.

In a similar way the origin shifts of the remaining tensors can be calculated. These are:

Adg =0 | (3.61)

Aa R« R

apy ~ TWap T

%y (3.62)
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1}

Aa , = -Ra, - Ry, (3.63)

AG,, = —Swey R, (3.64)
AGs = Jweu Ry (3.65)
Ab g5 = “Rs8upy - Rvam-Bcs - Rgag s + RRs%qp + ReR\ &5 + ReRsy (3.66)
Ab g5 = ~Relup, ~ R8ups - RBa;M5 + R Rs0g + RgR s + ReR0,, | (3.67)

Adyps = ~Ro@ps ~ Rp8ays ~ R,85ap ~ Rs@

ayd yap
(3.68)
+ chRvaBb + RaRbaBy + RBRvacxé + F«’BRﬁaaY ,
Ad;m6 = —Raa;3Y25 - RBa;vﬁ +Ra ;m + F\’ﬁa'wB (3.69)
+ RaRyaécs + RaRﬁaiiy + F\’BRYO(a6 + RBRGOK;Y ,
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- ' 1
BXop = 39(€aysR\ B * €pvoRCoa) * 70 €ays€peyRe%oo (3.70)

A)(;](B = —%w(anGRYG - €g5Fy Ggo) + (.0 €aY6636¢RYR am , (3.71)
AHaBY - _ZRVGG_B * EGBYRGGGG weBGeRGaave * %weBbe Y Gaae ' (372)
AHyg, = 2R Gop + 28, RsGly + ~0€55 Rs8aye - wegsRRedge (3.73)

AL

apy —RGGBY - RBG * wevéeRb(Ra_q’}e * RBa;xe * a;:aa) ! (3.74)

ALyg, = -RyGpy = RyGoy ~ 20€ 5 Re(RyOg, + RO = acqp) - (3.75)

By means of the relationships

eaByeybe = 60{66[!(-: B 606636 (376)
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and

GQBAByb... = Ags.. (3.77)

where A, represents any tensor, it can be shown from the above origin shifts that the
expressions for the terms of different multipole order in the propagation equation, namely
equations (1.55) to (1.60), are independent of origin. Origin independence, as a form of
translational invariance, is a necessary requirement for a physical observable. Thus the
expressions for the refractive indices and birefringences derived from the wave equation

satisfy this requirement.
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CHAPTER 4

41 SYMMETRY CLASSIFICATION OF THE POLARIZABILITY TENSORS

Neumann's principle states that every physical property of a system must possess at
least the full symmetry of the system, but may possess higher symmetry (Birss 1964).
In this chapter we illustrate how Birss' tables of tensor components for all crystal point
group symmetries can be used to determine which crystal symmetries may exhibit the

various birefringences which were identified in Chapter 2.

Under space inversion polar vectors undergo a change of sign. Axial vectors, however,
remain invariant under this operation. These are specific instances of the general
transformation rules for polar and axial tensors by which these tensors are defined. Thus
a polar tensor T, transforms under both. proper and improper rotation of axes

according to

T

aBy... =T

. 8 ajB ay .. , 4.1)

where a/ is the direction cosine of the angle between the i-axis of one set of cartesian
axes and the a-axis of another, both of these sets of axes possessing. a common origin.
A space transformation which changes right-handed coordinate axes into left-handed
axes, and vice versa, is an improper transformation. A proper transformation leaves the

handedness of a set of axes unchanged. For an axial tensor:
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T

afy... =xT

Here the positive and negative signs apply to proper and improper transformations

respectively.

Jackson (1975) compiled a table in which were listed various polar and axial mechanical
and electromagnetic quantities. In this table the electric field vector E is shown to be

polar, and the magnetic field vector B axial.

The effect of time-reversal allows property tensors to be divided into two types: tensors

whose components remain invariant under time-reversal are called i-tensors, and those

iik...

x 4B 4Y
a’a’a) ..

whose components change sign are called c-tensors (Birss 1964).

By inspection of equations (1.36) to (1.40), the various property tensors may be classified

as follows:

TABLE 4.1: Classification of the polarizability tensors

(4.2)

Relative multipole i-tensors c-tensors
order polar axial polar axial
electric dipole (o 9 (o P
electric quadrupole Bupy G'ss @'apy Gys
magnetic dipole
eleCthIC octopole Dopys: H oy L apy S Hopyr Loy
magnetic quadrupole Oapvs Xop T oove X'op




The polarizability tensors contributing to each of the quantities a, b, ¢, ... in equation
(2.16) can be identified with reference to equatiohs (1.62) and (1.63). The various

contributions to these quantities are indicated in the table below:

TABLE 4.2: Quantities in equation (2.16) and their associated property tensors

Quantity I Associated Property Tensors "
a k,d ) |
g X'gp
b.el 8'gov: Gap
h L C P
c.fm : Bypve: Topyss Xar Hapy L'apy
B b'aps: Tapysr X'apr Hupy Lany

4.2 CALCULATION OF TENSOR COMPONENTS FOR SELECTED POINT GROUPS

The quantum mechanical expressions for the polarizability tensors given in Chapter 3
allow one to deduce any intrinsiq symmetry of each of these tensors. This intrinsic
symmetry can be used togéther with the tensor symmetry properties for the specific
point group under consideration, which are given in the tables of Birss (1963), to derive
the non-vanishing independent components of each tensor within this point group.
Examples of this procedure are detailed below for certain members of the hexagonal
and cubic classes.
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4.2.1 Hexagonal Point Group - 622

The non-vanishing tensor components for this point group are shown below, together
with any relationships between them due to their point group symmetry, as determined

from Birss' tables, and/or any intrinsic symmetry, as derived in Chapter 3.

U= Ay, Oy (4.3)
A, = O, ; (4.4)
8y = 8y = 8, = By (4.5)
Bl Ba= B = 8= Al 8= Al @)
G, =G, .G, ; (4.7)
Gy= -Gy (4.8)
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L=l =L =-L (4.9)

XXZ yyz ' Txzx yzy zxx ~ “zyy ; (410)

H =-H H_ =-H H, =-H, ; (4.11)

zzz Hxxz - Hyyz ! szx = Hyzy T Hzxx = szy : (4-12)
bxxxx = vy 3bxxyy ) bzzzz '

byyry= b= by =b 0 =b, =b

XXyy yyxx Xyyx yxxy Xyxy yxyx !

(4.13)
bxxzz = Pyzz = bxzzx = byzzy= xzxz ~ Yyzyz o
bzzxx = Pzzyy = bzxxz - bzyyz = bzxzx = bzyzy
xzyz -b yzxz b'xyzz = _b'yxzz =b xzzy _blyzzx '
b.yxxx = -3b 'xyxx = -3b 'xxyx = -3b 'xxxy = (4.14)
=Dy =30y, =3b =30,
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d _=d. . =d__+2d d._.

XXXX yyyy Xxyy xyxy ' “zzzz

Aoy = Ay » A= Ay, = Ay, = d

XXyy Yyxx Xyyx yxxy Xyxy yxyx (4 15)
— dyyzz = Yz T dzzyy '
dxzzx =0y = Yar ™ Yz = dzxxz = dzyyz = dzxzx = dzyzy :
dlzxzy = -d zyzx dlzxyz = -d zyxz dxzyz = -d yzxz dxzzy = -d yzzx
P ooy = Do = D g = "y = (4.16)
oy = Dy = Dy = e
Xox = Xyy 0 Xzz s 4.17)
Xey = Xy (4.18)

By means of the above resuilts it is possible to calculate the components of the tensors
that appear in equation (1.62). Using equation (1.57) and the symmetry relationships

given in equations (4.6) and (4.8) above we find that

Us, = 0,{26, + va,,} | (4.19)
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)s(y = O = U;X , (4'20)

Us, = 0,{ -Gy + 10(@g e | = USy . | @.21)
Us, = 0,{2G,, + wa,,} , (4.22)
Us, = 0,{ -G, + 1u(@,,+a,)} = U3, (4.23)
us, = o,{wa,} . . (429)

From equation (1.58) and the relationships in equations (4.5) and (4.7) we obtain:

a
UXX

=0 , (4.25)

s, =0,{-2G, - wa,,}| = -U3, . (4.26)
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ue =o {G’ + G; - %wam} =-U3, , (4.27)

Xz y

us =0, | (4.28)
Uz, = 0,{-G, - G, + lwa} = -U3, | (4.29)
us -0 . _ (4.30)

The symmetry relationships given in equations (4.9), (4.1 1),1 (4.13), (4.15), and (4.17)

together with equation (1.59) yield the following:

4 ix = ze{ —w2bxxyy * %wz(dxxyy+2dxyxy) } +

2] 1,42 1,42 _ !
c,y { '50‘) bxxyy+:m dxxyy wazy+Xzz} *

02 ~1wb,,,, +1w?d,,, + 0 (H,, L) X (4.31)

— 2 '
4 )s(y B Oxcy{ _ngbxxyy * %wz(dxxyy+dxyxy) * wazy - Xzz} =V syx ! (4-32)
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v)s<z - 0xoz{ —_wz(b )+ wz(dxxzz xzxz) - w(H 'zxy) —Xxx} =V . (4.33)

XXZZ ZZXX

s _ 2 1,42 1,.2 _ !
Vi, = Oy {—_gw bxxyy+:w dxxyy wazy+Xzz} M

vy
oyz{ 0yt mz( xxyy ZdXYXY)}
022{ _%mszxzz * %wzd"m o H;‘YZ - L;‘ZY) +XXX} ' (4.34)

v;z =0,0 { —_(‘oz(bxxzz b, * m2( exzz Oz %w(H;(yz * H‘zxy) - Xxx} =V s;.y (4.35)

ZZXX

= (0,240 107, + 102+ O(Hopy + L)+, )

022{ -1
3

vzt 203 | (4.36)

Equation (1.60) and the relationships in equations (4.10), (4.12),(4.14), (4.16), and

(4.18) give rise to the following tensor components:

Vi =Vy=Vi=0, (4.37)
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V)a(y = (0x2 +0y2){ —ngbl +l(.02d' —-;—Q) (szx —LXXZ)} ¥

xxxy" 4 XXXy
0z2 {—%wzb .xyzz +%(.l.)2d .xzyz + o Hxxz - szx) * Xxy} = -V f'x J (4.38)
iz = oyoz{ _%wzb Ixyzz +%0‘)2d 'xzyz —%(1) ( szz +Hxxz _Hzxx _Lzzz) - Xxy} =-V gx ' (4.39)

"4 ;z = —OXO'Z{—%(.Ozb 'xyzz’f%wzd'xzyz‘%w (szz+Hxxz_Hzxx—Lzzz) _X).(y} =-V gy ' (440)

4.2.2 Cubic Point Group - 432

The following non-vanishing components exist for the different property tensor

components for this point group, with any relationships between them also shown:

axx = (ny = azz : _ (4-41)
8,,= 8, =8, =48, =4a,=4a,, ; (4.42)
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XX yy 2z ! (443)
LXyZ = LXZy = LZXy = LyXZ = LyZX = LZyX ; (4'44)
H xyz Hzxy = H);zx = _H);zy = —nyz = —Hz.yx ; (4.45)
nyz = szy = Hzxy = nyz = Hyzx = szx J (4.46)

bxxxx = byyyy = Yzzzz o

Doy = By = Pryyx = By = Bray = By = (4.47)

= bxxzz = byyzz = PVazx T Myzzy T Yz T My T

= bzzxx " Yoy T Yoxz T bzyyz = Ppax = bzyzy '

b 'xxyy - *blyyxx = by = _b.yxxy = b 'xyxy =-b .yxyx -

= _b.xxzz = b'yyzz = —b'xzzx = blyzzy = -b .xzxz = blyzyz = ‘ (4.48)

=b zzxx -b zzyy b 2z -b ’zyyz - b'zxzx = -b lzyzy .
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=d, . =d

XXXX yyy zzz7 !

oy = Gy = Gz = Gyyar = Dpp = Ay (4.49)
Xyyx d)'xxy - dx.VXy - dyxyx = Uzzx T Yyzzy =
- dxzxz - dyzyz - dzxxz - dzyyz - dzxzx = dZyZY ;

d;(xyy = _d;'yxx _d;(xzz = dlzzxx = d;/yzz - _d'zzyy : (4.50)

Xax = Xyy = Xz (4.51)

In a similar way to that used for the hexagonal point group 622 the components of the

tensors that appear in equation (1.62) can be calculated for this cubic point group.

These are:
us, =0, (4.52)
s, = o,{oa, } = Us (4.53)
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US

XZ

Us
¥y

Us
yz

US

zz

Ua

XX

Ua

xy

Ua

Xz

VK]
Yy

o,{-2G,}

I

—oy{ -2G, }

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)



us, =of-26,} = -Us, . (4.62)

vue -0 , (4.63)
5= 02 0%, 0P, ¢ _.
(02 +02) {_ _;_ Wb, + wzdxyxy OH,+ Xxx} , (4.64)
5,200, 20, + 2020,y 40, ) ~0H X} = VS, (4.65)

V30,0, -20%,,, + 1020y, ) ~OH X} = Vi  (466)

Vi = oyz{ _%wszxxx (‘02dxxxx} s

2 2] _1,42 2 !
(02 + o ){ 1w, + 1ok voH X} .
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s _ _2.2
Vyz-ooz{ S© b

1 .
Y # 20Hd 1) ~OH X} = VG, (4.68)

XxXyy

s _ 2)_1.42 1,42
zz ~ oz{ ;0.) bxxxx+:w xxxx} *

s o 1. - _ (4.69)

(O° + 0, ){ _;w bxxyy+ :0.) dxyxy * wayz +Xxx} '
Vi =0, (4.70)
4 iy - 0xc’y{ _éwszlxyy * %wzdxlxyy - w(nyz - nyz)} - —Vix ' (4.71)
va = -00,{-2w?, _+ wd -woH -L )}=-Ve |

xz 7z 3 Vxyy g0 Vxxyy X xyz) x (4.72)
Vi =0 . (4.73)
Ve =00 {—ZmZb' 1w —w(H, -L )} =-ve

yz yozl 3 Txxyy g Cxxyy xyz  “xyz zy (4.74)
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ve =0 . (4.75)

Once it has been ascertained in each of these point groups whether N-rays exist, which
is the case if equations (2.12) and (2.13) are satisfied, then the above expressions for
the tensor components can be used to calculate the quantities in equation (2.16) and
hence the relevant birefringences that, in principle, should be observable in each

magnetic crystal point group of the cubic and uniaxial classes.
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CHAPTER 5

5.1 RESULTS

The procedure outlined in Chapter 4 has been followed for each of the magnetic point
groups of the cubic and uniaxial classes. The non-vanishing components of the tensors
in equations (1.57) to (1.60) so obtained are listed in Tables 5.1 to 5.4. These
components are found from those appearing in Birss' tables for all non-magnetic and
magnetic crystal point groups, relative to crystallographic axes with origin at the centre
of symmetry. These axes serve as principal axes for the polarizability tensor a,; for all
cubic and uniaxial crystals, for which for the cubic symmetries a,=a,,=a,, whereas for

the uniaxials o=, #Q,.

5.1.1 The Cubic Point Groups

All components of the magnetic tensors a',; and US; vanish for the cubic point groups.

The components of the remaining tensors are listed in Table 5.1 on the following pages.
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TABLE 5.1: The components of U,z and V,, relative to crystallographic axes for cubic

point groups.

Cubic Class U, e, U,
23,m3,432,43m,m3m o,C, o,C, 0,Cs
m3.432 43m. m3m, m3m,m3m 0 0 0
Cubic Class Ui, U, U2,
23 432,432 oK, -0,K, -0,K,
m3,m3,43m,43m,m3m, 0 0 0
m3m,m3m,m3m
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Cubic Class V2, Ve Ve

23,m3 0,0,K, 0,0.K; 0,0,K,
4_32,13&, m3_ 0,0 y K3 oyc’z K3 0,0, K3
m3,432,43m,m3m,m3m,m3m 0 0 0
Cubic Class Ve, v, Ve,
23,m3,m3 0,’C4+0,°C,+0,°C;  0,°C4+0,°C,+0,’C,  0,°C,+0,°C,+0,°C,

OXZC1 +(0y2+022)06 (ox2+ozz)C6+0y2C1 (0x2+0y2)06+022C1
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Cubic Class % Ve, Ve

23,m3,m3 0,0,Cs 0,0,Cs 0,0,Cs

432,432,43m,43m,m3m, 0,0,C; 0,0,C; 0,0,C,

m3m,m3m,m3m

C =YW+ Vaw?d o, | C=- 1w D,y + Y400%d, 0 ~0(H' L )+ X
C=-16007D,y + Vaw?dy FW(H' L' )+ X C,~wa'y,
Cs=-V8002(Bygy Dy + V03Ot - Vo0(H' i H' )Xo

Co=-"aWD,y, +¥40%d, , +OH' ,+X, CrA-35002D g + V40 + 0 )-OH Ko
K,=2G',, K= 180D gy -0y + Vo002 gy -720(Hgy HH, -2, )
Ks=-2607 gy + 0?0 -0 (Hy L)

5.1.2 The Hexagonal Point Groups

Only for certain classes of the hexagonal system does the time-odd tensor A'yp = -y

exist, namely 6, 6, 6/m, 622, 6mm, 6m2, and 6/mmm, and then only the components
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TABLE 5.2

:  The components of U, and \,, relative to crystallographic axes for

hexagonal point groups.

Hexagonal Class U Us, U,
6,6,6/m o,C, 0,C, 0,Cs,
6,6,6/m 0,C45+0,Cys -0,C45-0,Cy4 0
6/m,6/m,6/mmm,8/mmm,
6/mmm,622,6mm,6m?2, 0 0 0
6/mmm
622,6mm,6m2,6m2,6/mmm 0,C1s -0,C1s 0
622 ,6mm,Bm2,6/mmm o,C, G,C, 0,Ci,
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Hexagonal Class Us, U,
6,6,6/m -0,C¢+0,C; 0,C,+0,Cq
6,6,6/m 0,C14-0,Cys 0 0
6/m,6/m,6/mmm,8/mmm,6/mmm 0 0
622,6mm,6m2,6/mmm -0,Cq 0,Cs
622,6mm,6m2,6m2,6/mmm 0 0
622 ,6mm,6m2,6/mmm 0,C; 0.C,
Hexagonal Class us, ua,
6.6 'OXK5+0yK4 - de'OyKS
622,622,622 -0,Ks -0,Ks
6mm,.6mm,6mm oK, -0.K,
6,6,6/m,6/m,6/m,6/m,6m2,6m2,6m2,
6m2,6/mmm,6/mmm, 0 0

6/mmm,6/mmm,6/mmm,6/mmm
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Hexagonal Class Ve, Ve, Ve,
6,§,€|§:6/m .ﬁfm, 6/m.§/m c’szZ'*.oxo'ny" 0x204-0X0yC3+ (0x2+0y2)c13+
0,°C4+0,°Cs 0,°C,+0,°Cs 0,°C,,
622,622,622,6mm,6mm,6mm,
6m2,6m2,6m2,6m2, 0.C,+0,°Cs+  0,°C4+0/C+  (02+40,7)Cys+
6/mmm,6/mmm,6/mmm,6/mmm, 0,%C; 0,%C, 0,’C,,
6/mmm,6/mmm
Hexagonal Class \TA Ve, Vo,
6,§,§,§,6/m ,ﬁlm.slm_,_e_/m 1/2(0y2'o.x2)02"" 'oxozC10+ OxozCQ+
0,0,Cs 0,0,Cq 0,0,C1o
622,622,622,6mm,6mm,6mm,
_G—mz,g_mz,gmg,gm_z, OXOYCG oyozCQ OXOZCQ

6/mmm,6/mmm,6/mmm,6/mmm,
6/mmm,6/mmm

69




Hexagonal Class Vey Ve, Vi,
6,6,6/m (62+0,)K+ -0,0K+0,0,Ks -0,0,Ks-0,0,K,
0,°K,
Q:E’_/ m 0 (oxz'oyz) KQ' (oyz' oxz) KB'
20,0,Kg 20,0,K,
6/m,6/m,6/mmm,6/mmm,6/mmm 0 0 0
622,6mm,6m2,6/mmm 0 0,0,Ks -0,0,Ks
622,6mm,6m2,6m2,6/mmm 0 (0,-6,9K, -20,0,K,
622,6mm,6m2,6/mmm (0240,7)Ky+ -0,0,K, -0,0,K;
0,°K,
C,=2G+wa', ‘ . C,=-1w?b, + Yaw’d,
C3=-%w b,y 0(H' i L') Cy=-1607D,, + a00?d, o, ~0H' o+ X,
Cs=-10D o, +Y40’d +O(H' L' ) X Co=-2WD, + Va0 +0,) +OH' X,
C=-G,+20(a'y, +a's) Ce=G,-G+12wa’,,

A O 7P CREL B 2 (VT R S

C10='1/3(.l)2bxyzz '1/2(D(H'zzz 'H')ocz 'H'm( +2L'zxx 'L'zzz) C11='1/3("‘)2bzzzz"r"‘/‘(")zdzzzz

C=wal, C13=-1/sw2bm+‘/4w2dm+w(H'zxy*'L'zxy)"‘X;
C,=-wa',, Cis=wa'yy,

K,=-2G',-wa,, K;=-260%D 10 + Y402 1 - 200 (H L)
Ka=- 102D+ Y402t g 0(Hig-L ) +Xy Ky=-Glyy -/20(810c -85
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Ks=G'+ G- Ya0a,, K= Y5030 g0 + V402 g+ V20 (Hyg-Haey2L )
K=Y o+ Ya?d gy ~V50(Hyzz +Hrog “Hoo -Lize) X'y

K=~ 116030 coqD' ) + Va0 o= Va0(Hyp L)

Ko 16030 -D ) ~ Va0 -Y20(Higei-Ld)

5.1.3 The Trigonal Point Groups

For the trigonal point groups 3, 3, 32, 3m, and 3m, the only components of a' .z that exist are

'w=-a'y,. For the remaining groups all components of ', are zero.

TABLE 5.3: The components of U;B and \,; relative to crystallographic axes for the

trigonal point groups.

Trigonal Class U, Us, Us,

3.3 0,C,+0,C,+0,C, -0,C4-0,C,+0,C; 0,Cis
3,3m,3m 0 0 0
32,3m,3m oG -0,C; 0

32,3m,3m 0,C,+0,C; -0,C,+0,C; 0,C1s
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Trigonal Class

US

xy 122 U
3,3 GXCZ-CYC1 -GXC13+0yC12 OXC12+0yC13
3,3m,3m 0 0 0
32 y 3m,z__ -CyC ‘OXC 13 CyC 13
32,3m,3m o,C.; 0,Cy, 0,Cs2
Trigonal Class Uy ue, U,
3 0'zK1 'oxK8+oyK9 _'OXKQ'oyKG
3,3,3m,3m,3m,3m 0 0 0
32,32 0.K; -0Ks -0yKs
3m,3m 0 Ong -0,Kq
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Trigonal Class Ve, A% VE,
3 :§:§ 0x2C4+0x0yCS+oxozCS+ OXZC7'0x0yC5' (0x2+0y2)c1 o™
0,°C,+0,0,C4+0,°Cq 0,0,C6+0,°C- 0,%C,g
0,0,C4+0,°Cq
32,32,3m,3m,3m, 0,2C,+0,°C,+0,0,Cg+ 0,5C;+0,’C,- (02+0,5)C o H
3m,3m,3m 0,°Cq 0,0,C4+0,°Cy 0,°Cx
Trigonal Class Vi Vi, A%

32,32,3m,3m, 3m,
3m,3m,3m

2 2
(Ox 'Oy )C10+
0,0,C4,+0,0,Cg-
0,0,Cs

0,0,C4,+0,0,Cs

%-’(oxz'oyz)c 15~
20,0,C44-0,0,C,7+
0yc’zC1 6

1/2((:’x2"0'y2)c15+

0,0,Cy6

2
(o, 'oyz)C14+
0,0,C45+0,0,C ¢
0,0,C4;

0xc’yC 1 5+0xozC 186
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Trigonal Class Voy Ve, Ve,
3 ,§ (0x2+0y2) K2+ 1/2(0.x2'0y2) K5'20xoyK4' (oyz'oxz) K4‘ox0 yKS'
022 K3 0,0, K7"'-0.y0.zK6 c,xozKG'c’yc’z K7
3,3m,3m 0 0 0
32,3m,3m 0 ¥4(0,7-0,2)Ks+0,0,Kq -0,0,K5-0,0,Ks
32s er_r_n. (Ox2+0y2) K2+ '20)(0 yK4"0xoz K7 (oyz'oxz) K4'oyoz K7
0,°K,
C,=wa',, C,=-wa,, C;=2Gtwa',
C=-16w%b, o+ Va0d, C5=-2507D o0y (H' L ')
Ce=-250D e+ V207d e w(H',, L', ) C=-15W Dy + Vaw?d, e ~0OH' o +X,
Cs=25w?b,,,-¥20d 0 (H gL' o) Cy=-160D, 0, + Y40?d,, FW(H' L 1 )+ X
C10="sWD 0 +V20(H' Lo C11=-%WD g+ Y40(d yy +0,e ) FOH' 1y X
Ci=-Gy+72w(a'y +a'50) C15=G-G+2wa',

C 145118 07 (Do tbpe) + Ve d o + 2w (H' L' ) Cos=Y500° (Byyyet0)-Y200%d 4 0O(H' L' o)
=By T () 0 i PH ) X
C=-%0D,, -Ya0(H' sy Hig “Hip #2L o L's,)  Cre=wa'y,

C19='1/3(L)2bm+1/4m2dxzxz+m(H'ZW+ L o) X C0=-160’b,+Y4w?d
K,=-2G' 002, K= 250D oy + Y4002 - V2w (H L)
K3="%3w2b,xyzz+%w2d,xzyz+w(H)o<z'LDO()+X’Xy K4=-1/6(02(b'm-b'zm)+1/4(1)2d’m-1/2(.0(Hyw-LM)

=10A(D'yyby) -Yo0?d,,, <0(HoLi)

K= Ya0%(D D /a0 g Y500 (H - Hy 2L )
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K7=-1A3m2b’xyzz+1/4w2d,xzyz '1/2(1)(sz2 +H)o(z "Hz>o( 'Lzzz)"x'xy KB=G'XX+G'ZZ_1/2waXYZ

=Gy Y40(Brg -Ages)

5.1.4 The Tetragonal Point Groups

Only the components o',=-a',, of ', do not vanish for the following tetragonal point groups:
4, 4 4/m, 422, 4Amm, 42m, and 4/mmm. For the other tetragonal classes all components of

o',p @re zero.

TABLE 5.4: The components of U,z and V, relative to crystallographic axes for the tetragonal

point groups.

Tetragonal Class Us, Us, us,

4.4 4/m 0,C, o,C, 0,Cq
4,4,4/m 0,C, -0,C, 0
4/m,4/m,4/mmm,4/mmm,4/mmm 0 0 0
422 4mm,42m,4/mmm 0 0 0
422,4mm,ﬁ2m,?2m,4/mmm 0 0 0

422,.4mm,42m,4/mmm o,C, o,C, 0,Cq
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Tetragonal Class U, Us, U,
4.4.4/m 0 -0,C10+0,Cy 0,Cyt0,Cyg
4,4 4/m 0,Cis 0,C46-0,Cq 0,Cy+0,Cys
4/m,4/m,4/mmm,4/mmm,4/mmm 0 0 0
422,4mm,42m,4/mmm 0 -0,C1o 0,Cqo
422 4mm,42m,42m 4/mmm 0,Cis - 0,C6 0,Cis
422,4mm,42m,4/mmm 0 0,Cy 0,C,
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4/mmm,4/mmm

Tetragonal Class U,y Ue, U
44 oK, -0,K+0,K; -0,K,-0,K,
Z,Z O OXK1 o‘ong -OXK3-OYK1 0
4/m,4/m,4/m,4/m,4/mmm,4/mmm, 0 0 0
4/mmm,4/mmm,4/mmm,4/mmm
422,422 422 oK, -0.K, -0,K,
4mm,4mm,4mm 0 0,K, -0.K,
42m,42m,42m,42m 0 0,Kio -0,Kq0
Tetragonal Class Ve v, Ve,
41&:—4_)51 4/m ,é./m 1 4/_m_1&/m 0x202+0x0yc3+ 0x2C4'oxoyCS+ (0X2+0y2)c 1 3+
422,422,422,4mm,4mm,4mm,
42m,42m,42m, 42m,4/mmm, 0,°C,+0,°C,+ 0,°C4+0,°Cy+ (0,240,)C 5+
4/mmm,4/mmm,4/mmm, 0,%Cs a,°Cs 0,%C14
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Tetragonal Class

xy yz
4)&121114/myﬂ/m14/_m_14./_m (Oxz-dyz)c7+ -OXOZC12+ OXOZC11+
0,0,Csq 0,0,C; 0,0,C2
422,422,422, 4mm,4mm,4mm,
42m,42m,42m,42m, 0,0,Cs 0,0,C; 0,0,C;
4/mmm,4/mmm,4/mmm,4/mmm,
4/mmm. 4/mmm
Tetragonal Class V2, Ve, Vo
4,4 4/m (0240 )K+  -0,0,Ks+ -0,0,Ks-
0,K, 0,0.Ks 0,0,Ks
iyZ;A_/ m (0x2_o.y2) K2+ oxozK1 17 'oxozKS'
0,0,K, 0,0,Ks 0,0,Kq;
4/m,4/m,4/mmm,4/mmm,4/mmm 0 0 0
422 Amm,42m,42m,4/mmm 0,0,Kq -0,0,Kq -0,0,Kg
422 4mm,42m,4/mmm (0,2+0,2)Ky+ -0,0,Ks -0,0,Kq
o.12K7
422,4mm,42m,4/mmm 0 0,0,Ks -0,0,K;
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C=2G+wa'y, C,=-15W2b, o + V40d

C3=-250D, 0+ V2070 W(H' L) C4=-15wD 0, +V400%d, - WH' 1 + X
Cs=-160°D,, + V40?0 ot W (H' L 7))o Ce=wa',,

Cr=-116 02 (Do +Dy0)+ Va0 + V0(H'pLog)  Co=-26002D1, 4 V4w Gy Gy +0H' Xz
Co=-Gy +720(a'yg +a' 2 C10=GurGtY2wa'y,

C =YD,y D) + V40 (G Do)~ Y20 (' HH' 1) Yoo

C1=-Y6wb,yy, ~Ya0(H', H'og “Hipo #2L L)

C 137-Y500D o+ V40’0 g O(H gy +L ')+ Xia C1a = Y60 D+ Vo0l

C15=-2Grway, C16=GutV2w(a'+a',y)
K=-2G'y-wa,, K =-16WA (D D' o) + VoW ey~ V20 (H L)
Ks=-G'-"2w(8,¢ -8 K=G'(+G',-Y2wa,,

= 5003(D o ge~D' ) + V402 gt Va0 (Hip-Hi 2L )
Ke=-160b 5y V402 gy -V20(Hyzy +Higr e Lz X'y
K7=-160°D"  + Y d’ oy +0(HgL o) +X

= YWD oD )+ Va0 gt V0 (Hyy g Hipy 2L 1)
Ko=-20D’ ), + Va0 d oy~ 0(Hyy L)
K10=G - Y20 (Byyz-Be)

K1 =-V602(D D' )+ Vo020, -Y200(Hooe +H 2L 1)
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5.2 DETERMINATION OF OPTICAL EFFECTS IN 6 m2

The different optical effects apparent in crystals belonging to the 8m2 point group will be
determined as an example of the application of the method outlined in Chapter 2.
5.2.1 Propagation along the z-axis.

With =(0,0,1) equation (1.63) together with the tensor components given in Table 5.2

leads to the following determinantal equation:

2
n2r1+ o+, 0 0
€, c’,
1 n?
0 ‘ ~n2+1+_axx+ 5 CS 0 =0. (51)
€ c<e,
n2
0 0 1+— C
eo zz 026 13

The first two equations from which this determinant is obtained indicate the propagation of N-
rays, since equations (2.12) and (2.13) are satisfied. The third equation, however, shows that
there is a wave which has an electric field in the direction of propagation. This is termed an

additional ray. This type of wave will not be considered further in this dissertation.
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The determinant in equation (5.1) reduces to the following 2x2 determinant:

2
~n2+1+la + n
x T,
€ ce,

C, 0

=0 . (5.2)

2
0 —n2+1+-1—axx+ n Cs
e, = c%,

In order to obtain this equation in the form of (2.17), equations (2.18) to (2.21) are used to

derive the following expressions for the relevant coefficients:

1 n?
A=—a_ + C. ,
. o, 5 (5.3)
B=0, ' (5.4)
cC=0, (5.5)
D=0 . (5.6)
Equation (5.2) then becomes
-n?+1+A 0 0

= _ 5.7
0 -n?+1+A ©7)
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This is identical in form to equation (2.22). It can hence be concluded that for propagation
down the optic axis no birefringence will be exhibited by a crystal that belongs to this point
group.

5.2.2 Propagation along the y-axis.

When light is propagated along 0=(0,1,0), equation (1.63) becomes:

2
n
-n2e1+ g + 1" C, 0 Lc,
€ 2 ce
o c’e, o
2 .2
n in
0 1+e—axx+ ” C, - Ky =0 . (5.8)
R c’e, c?,
2 2
n in
—C,, - K, -n2+1 +laz ML Cis
ce c% e, “ c%
o o [e] o)

These are clearly not N-rays, since the equations equivalent to equations (2.12) and (2.13)
for y-propagation are not satisfied. ‘The Jones method for the determination of optical

effects can therefore not be applied for this propagation direction.
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5.2.3 Propagation along the x-axis.

For 0=(1,0,0) equation (1.63) becomes:

2
1+ a + 1" ¢ 0 0
e XX 2 2
o C%,
0 2,940 n? C N o in g
NER = — 0y — Y10, Ne [=0. (5.9)
e,  c%, ce,  c%,
in2 ' 2
0 L Cio* - Ky n2+1+i0(zz+ 4 Cis
ce c% e c%

Apart from an additional wave‘, there are two other rays which propagate along the +x axis,

both N-rays as inspection of the determinant shows. For them equation (5.9) reduces to

. .
—n2+1+iaxx+ 7 C, "Lcm‘ n Ky
€, ~ c%, ce,  c’,
N ) =0 (5.10)
“'_n"C10+ = Ky _n2+1+iazz+ 7 Cis
ce, ~ c’, €, ~ c%,
The coefficients in equation (2.17) become
A= Laea) - (C,+C) (5.11)
2e, 2c% )

]
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| -
B = 5 (00— (G Coa) (5.12)

c--"c,, |
ce, 10 (5.13)
n2

D= - K, .
c%  ° (5.14)

Since none of these coefficients vanish, the analysis in Chapter 2 indicates that this crystal will
display all three types of birefringence. The first of these is a linear birefringence relative to the

y and z crystallographic axes of the crystal, namely

N, -n, = (1X)7 - (1-X)7 + Y+ 2Z[(1X)7 + (1-X)7] (5.15)
where
X = —a,-a,) (5.16)
2e,
Y=0, (5.17)
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and

1
Z = (C,-C..)
= 4™ V15

1 [ 1.2 1.2 :
= -—w4b_, +—wd, .  -WH
2 3 XXYy 4
2ce,

Xyxy xzy *Xzz

1,.2 _1 2 _ ' '
* ;w bzzxx :(.0 dxzxz w(H zxy+szy) +Xxx] :

(5.18)

Although the term (C,-C,5) is much smaller than the (a,-a,) term, since the former is of

electric octopole-magnetic quadrupole order, it is included at this stage for completeness.

The second is a linear birefringence relative to the bisectors of these axes, namely that named

after Jones (Graham and Raab 1983):

. (5.19)
CeO

The third is a circular birefringence, given by

9
2
c°e,

N N KPR ' 1w2d’ !
i I _6—0) (b yyyfb zyyy) - :mzd yyz Ew(Hxxx L) ] ’
0

(5.20)
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The above procedure was followed for all the cubic and uniaxial point groups, leading to
predictions of the optical effects that result from contributions by the polarizability tensors of

different multipole order. These predictions are displayed in Table 5.5.

5.3 SUMMARY

In this chapter, with the theory taken to the order of electric octopole and magnetic quadrupole,
the multipole contributions to the wave equation were determined for all magnetic crystals of
the cubic and uniaxial systems. The de.tails of the relevant expressions in terms of multipole
polarizability tensors are presented in Section 5.1. With the wave equation cast in
determinantal form, inspection of its elements allows immediate identification to be made, as
described in Chapter 2, of whether N-rays may propagate for the chosen light path, since the
Jones calculus applies only to such rays, and also of whether any of the three platelet
birefringences that enter Jones' M-matrix may occur. The simplest propagation directions to
treat in this Way are those along the three orthogonal crystallographic axes. An illustration of
the procedure is given in Section 5.2, where the symmetry class 6m2 was analysed.
Indications of the existence of these three birefringences in the cubic and uniaxial point groups
are presented in Table 5.5. The symbols in an entry in the table, such as al.'H’bdy; are those

for the polarizability tensors that contribute to the birefringence.
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All tensor contributions to the order of electric octopole and magnetic quadrupole are included
in the results in this -dissertation for the sake of completeness. However, not all of these
contributions will be detectable experimentally, as the effects of tensors related to higher order
multipoles will in some cases be masked by the much larger relative effects of lower order
multipole contibutions. An instance of this is where the effect of the V°,, tensor in linear
birefringence in uniaxial crystals is masked due to the presence of the a®,; tensor, which

produces a much greater contribution to this effect.

‘Where in Table 5.5 an entry in the linear birefringence column is indicated in parentheses, this
means that the linear birefringence which has been calculated to be along the bisectors of the
crystallographic axes which lie perpendicular to the propagation direction is not accompanied
by a normal linear birefringence, and hence is not considered a Jones birefringence. This
birefringence is measurable as a normal linear birefringence with the crystallographic axes

rotated through an angle of 45°.
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ystem

tragonal

rigonal

Table 5.5 Symmetry Indications for the Existence of Birefringences for N Rays in the Magnetic Crystal Groups

Group

4
L
y:§

i
4/m
4/m
4/m
4/m
422
422
422
4mm
4mm
4mm
42m
42m
42m

N-Rays?

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

within the Electric-Octopole Magnetic-Quadrupole Approximation

zZ-Propagation

(ny~ny

4]
Ga’'

[~ el olNolNeNelNeNolNeNoll ol

) (n.-n, )

0
Ga

e

OOOOOOOOOOOOOOOO@OOOO

COO0OO0OO0OO0CO0OO0OOO0O

[

(nr -ny )

o’'G'ab'd'LHy'
G'a
a'LHb'd"y'
0
a'LHb'd'y’
0
0
0
G'a
G'a
o'G'aLHb'd'y’
0
0
a'LHb'd'y’
0
0
(o]
a'LHb'd'y’'
0
0
o'LHb'd’y'
0 .
(4]
0

a'G'aLHb'd"y'
o'LHb'd"y’
0
G'a
a'G'aLHb'd"y'
0
a'LHb'd'y’
0
a'LHb'd"y’
0
0

N-Rays?

No
No
No
No
No
No
No
No
Yes
Yes
No
No
No
No
Yes
Yes
No
No
Yes
Yes
No
Yes
No
Yes

No
No
No
No
No
No
No
No
No
No
No

y-Propagation
(n.-n,)

(nx-n;)

ol 'H'bay
al 'H'bdy
al 'H'bdy
ol 'H'bay
ol.'H'bay
ol "H'bdy
al 'H'bdy

al 'H'bay

(n,-n;)

N-Rays?

No
No
No
No
No
No
No
No
Yes
Yes
No
No
No
No
Yes
Yes
No
No
Yes
Yes
No
Yes
No
Yes

No
No
No
Yes
No
No
No
Yes
No
Yes
No
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al'H'bdy Ga'
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al'H'bdy Ga’'
al'H'bay Ga'
al'H'bdy 0
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al'H'bdy L'H'bd
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z-Propagation y-Propagation x-Propagation

System Group N-Rays? (nyny ) (n.-n,) (n-n;) N-Rays? (ny-nz ) (n_-n; ) (n,-n;)  N-Rays? (nz-ny) (n.-n,) (n,-n;)
Hexagonal 6 Yes 0 o] a'G'alLHb'd"y’' No - - - No - - -

[ Yes 0] 0 G'a No - - - No - - -

[ Yes 0 0 o'LHb'd"y’' No - - - ‘ No - - -

[ Yes 0 0 0 No - - - No - - -
6/m Yes 0 0 a'LHb'dy’' No - - - No C - - -
o/m Yes 0 0 0 No - - - No - - -
6/m Yes 0 0 0 No - - - No - - -
6/m Yes 0 0 0 No - - - No - - -
622 Yes 0 0 G'a Yes ol 'H'bdy Ga' G'a Yes ol 'H'bdy Ga' G'a
822 Yes 0 0 G'a No - - - Yes ca'l'H'bdy 0 G'aLHb'd'
622 Yes 0 0 a'G'aLHb'd’y’ No - - - No - - -
emm Yes 0 0 0 No - - - No - - -
emm Yes 0 0 0 No - - - No - - -
6mm Yes 0 0 a'LHb'dy' No - - - No - - -
em2 Yes 0 0 0 No - - - Yes ca'l'H'bdy 0 0
em2 Yes 0 0 0 No - - - Yes ol 'H'bdy Ga’ LHb'd’
em2 Yes 0 0 0 No - - - No - - -
om2 Yes 0 0 a'LHb'd"y’ No - - - No - - -

6/mmm Yes 0 0 0 Yes al'H'bdy 0 o Yes ol 'H'bdy o] 0

$/mmm Yes 0 0 o No - - - Yes ol 'H'bdy 0 LHb'd"

6/mmm Yes 0 0 o'LHb'd"Y’ No - - - No - - -
6/mmm Yes 0 0 0 Yes al 'H'bdy Ga' 0 Yes al'H'bdy Ga' 0

6/mmm Yes 0 0 0 No - - - No - - -
£/mmm Yes 0 ¢] 0 No - - - Yes aa'L'H'bdy 0 (0]
Cubic 23 Yes L'H'D a’ G’ Yes L'Hb a' G' Yes L'H'D a' G’
m3 Yes L'H'b 0 0 Yes L'Hb 0 0 Yes L'H'b 0 o
m3 Yes L'H'D a’ 0 Yes L'H'b a' 0 Yes L'H'b a' 0
432 Yes 0 0 G’ Yes 0 0 G' Yes (4] 0 G’
432 Yes (a") 0 G’ Yes (a) 0 G' Yes (a" Y G’
ime Yes (a") 0 0 Yes (a) 0 0 Yes (a") 0 0
43m Yes 0 0 0 Yes 0 0 0 Yes (o} 0 0
m3m Yes 0 0 0 Yes 0 0 0 Yes o 0 0
m3m Yes 0 (0} 0 Yes (] 0 0 Yes 0 0 0
m3m Yes 0 0 0 Yes (o} 0 0 Yes (0] 0 0
m3m Yes (a") 0 0 Yes (a’) 0 0 Yes (a") 0 0



CHAPTER 6

6.1 DISCUSSION OF RESULTS

Table 5.5, in conjunction with Tables 5.1 to 5.4 and equations (2.36), (2.45), and (2.49),
allows the actual expressions to be written down, in terms of multipole polarizability
tensors, for the birefringences that will exist for N-rays propagating along a given
crystallographic axis in any cubic or uniaxial magnetic crystal. Such a qdantitative
expression indicates which macroscopic tensor component, or components, are
responsible for a particular birefringence, and enables one to assess the magnitude of

the effect, and hence the prospect of measuring it.

In considering the orders of magnitude of the various multipole tensors, we note from
equations (3.26) and (3.27) that both &,z and a' 3 contain the matrix elements only of the
electric dipole moment density P, which is the leading term in the multipole expansion
of D in equation (1.31). Other such expansions of electrodynamic quantities, for instance
the vector potential or the current density (Graham, Pierrus and Raab 1992), show that
the electric dipole contribution stands alone as the leading term in the expansion,
followed in the next term by both the electric quadrupole and magnetic dipole
contributions, and then by those of the electric octopole and magnetic quadrupole.
These different multipole orders have been shown theoretically to explain the various
birefringences observed in non-magnetic and some magnetic crystals, in particular those

listed in Table 5.5.

88



The well-known linear birefringence in uniaxial crystals like quartz and calcite, which

occurs when propagation is perpendicular to the optic axis, and also that in biaxials, such

as rﬁica, has long been explained in terms of the difference between principal

components of the electric polarizability tensor a,;. Some values of n,-n, for different

crystals at room temperature and sodium yellow light are (Jenkins and White 1950)
Quartz : -0.00911

Calcite : 0.17195

For a wavelength of 632.8nm (l.andolt and Bornstein 1979)

KDP : 0.0398

Because all birefringences, whatever th‘eir cause, measure the difference between two
refractive indices for orthogonal polarization states, a direct comparison of observed
orders of magnitude can be made for different types of birefringence. While the above
linear birefringences fall typically in the approximate range 102 to 10, circular

birefringence, as a traditional manifestation of optical activity, has values for n-n,
exemplified as follows (American Institute of Physics Handbook):

Quartz : 7 x 10 for a wavelength of 589.3nm

This is seen to be roughly two orders of magnitude smaller than the familiar linear
birefringences in uniaxial and biaxial crystals. Theory shows that the tensors responsible
for circular birefringence in non-magnetic uniaxial and biaxial crystals are asp and G'yp

with both entering the tensor expression for n-n, (For cubic crystals and isotropic fluids
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there is no contribution from a,y,). Equations (3.28) and (3.33) show that a,,, contains
matrix elements of P, and the electric quadrupole moment density Q,s, while G'4s
involves both P, and M,, the magnetic dipole moment density. Thus relative to a,, the
tensors a,p, and G',; are of order electric quadrupole and magnetic dipole.  Their
contribution to circular birefringence is typically two orders of magnitude smaller than
that of the electric dipole tensor g to linear birefringence. Despite the much smaller
magnitude of n,-n, it is readily measured in practice. To show this we note that the

rotation of the plane of linearly polarized light through an angle ¢ is related to n-n, by

¢ = %(n,—n,) , (6.1)

(Jenkins and White 1950) where /is the path length in the medium and A the wavelength

of the light. For #0.5cm, A=500nm, and n-n~=10", one obtains

¢ = 2nrad = 360° . (6.2)

Thus although circular birefringence in non-magnetic crystals is due to the electric
quadrupole and magnetic dipole tensors a,g, and G',q, respectively, and is typically two
orders of magnitudé smaller than the normal linear birefringence that characterises
uniaxial and biaxial crystals, nevertheless it can be readily and accurately measured.
Indeed, for many substances the rotation ¢ exceeds 360°for the path lengths used, and
for its actual value to be certain, ¢ should be measured for a number of samples of

different thickness.
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When the theory is taken to the next multipole order, namely electric octopole-magnetic
quadrupole, one is led to ask whether the birefringence, due to tensors of this order, as
indicated in Table 5.5, are too small to be measurable. The experimental record shows
that Lorentz measured a linear birefringence of about 10®in a crystal of rock salt (1922),
following his prediction of this effect in certain Cubic crystals (1878). Subsequent
measurements by others (Pastrnak and Vedam 1971, Pastrnak and Cross 1971) of a
linear birefringence in a variety of non-magnetic cubic crystals yielded a similar order of
magnitude. A theoretical explanation of this birefringence in terms of electric octopole
and magnetic quadrupole contributions was published in 1990 (Graham and Raab), and
this is confirmed for certain rriagnetic cubic crystals in the present work, as Table 5.5

shows.

The conclusion from the last paragraphs is that, where a birefringence is shown by
theory to be due to non-magnetic polarizability tensors of muitipole orders up to and
including electric octopole-magnetic quadrupole, its accurate measurement is
experimentally possible, at least where it is the only birefringence occurring for a given
light path. Where two birefringences of different multipole origin occur simultaneously,
as for propagation perpendicular to the optic axis in quartz, for example, where both
linear and circular birefringences exist, special techniques may be used, for instance the
method of intensity differentials (Raab 1975), high-precision polarimetry (Kobayashi and

Uesu 1983, Kobayashi et al 1983), and the tilter method (Kaminsky and Glazer 1996).
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In order for the various optical properties of a crystal to be identifiable from Table 5.5, we
need to know which of the property tensors are associated with each optical effect. The
tensor a,; is the polarizability tensor which accounts for first-order refraction effects in

matter.

G'ss and a,p, describe optical activity, which has been described previously in this

chapter. Hobden's method (1968, 1969) experimentally confirmed optical activity in the
non-magnetic tetragonal classes 42m and 4. In this method, Hobden exploited the
intersection of the dispersion curves of the refractive indices of the ordinary and
extraordinary rays to enable him to measure optical activity without the presence of the

much larger effect of a linear birefringence.

The tensors bgps, dupys. Hapy: L'apy, @Nd Xop are related to second order refraction
phenomena, for instance linear birefringence in cubic crystals, which was first predicted
on grounds of symmetry by Lorentz in rock salt and then in m3 crystals by Condon and
Seitz (1932) and later explained by Graham and Raab (1990), and the Jones
birefringence in certain non-magnetic crystals (Jones 1948, Graham and Raab 1983,
Graham and Raab 1994). A linear birefringence in cubic crystals has been observed
(Lorentz 1922, Pastrnak and Vedam 1971, Pastrnak and Cross 1971). Table 5.5
confirms this higher-order linear birefringence in the cubic classes 23, m3, and m3. The
Jones birefringence has been predicted for the non-magnetic classes 32 and 3m

(Graham and Raab 1994), and in Table 5.5 is also predicted for the magnetic class 3m.
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Pastrnak and Vedam (1971) measured the magnitude of electric octopole-magnetic
quadrupole effects to be An=5x10°. Because many magnetic crystals are strongly
coloured it may prove difficult to work in the region of an absorption band, but where this

is possible the magnitude of such a higher-order effect would be greatly enhanced.

Of the time-odd tensors, o', exists only for crystals which possess a spontaneous
magnetic moment, and it describes the intrinsic Faraday effect in ferromagnetic materials
(Suits, Argyle and Freiser 1966, Graham and Raab 1991a). Crystals for which the o'

tensor vanishes identically are antiferromagnetic.

The second-rank axial c-tensor G,y and the third-rank polar c-tensor a,, give rise to
non-reciprocal linear birefringence in magnetic crystals, either a linear birefringence
relative to the crystallographic axes, or a Jones birefringence relative to the bisectors of
these axes. Being non-reciprocal, these birefringences change sign when thé light path
is reversed. This property should enable them to be seperated experimentally from

reciprocal effects due to i~tensors.

For N-rays the tensors b'op5, dops. Hopyr Lapy, @Nd X op Of electric octopole-magnetic
quadrupole are responsible fof a Faraday-type rotation. For z-propagation this is always
accompanied by the much larger contribution due to the electric dipole c-tensor o' 4, s0
that the higher-order effect would be impossible to detect. However, for propagation

along the x-axis in certain trigonal and hexagonal crystals, these tensors contribute
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independently of the o', tensor, and should thus, in principle, be measurable. Table 5.5
indicates that all the crystals .for which this effect has been predicted are
antiferromagnetic. This is surprising, as these crystals possess no net magnetic dipole
moment which would be associated with an internal magnetic field producing the
Faraday-type rotation. A similar effect has been predicted for propagation along the

body-diagonal in cubic antiferromagnets. (Graham and Raab 1991)

Some of the optical effects predicted in Table 5.5 merit particular discussion. in 1963
Brown, Shtrikman and Treves reported their theoretical study of the optical properties of
magnetic materials using symmetry considerations and found that in addition to the
expected effects of linear birefringence and optical activity, both of which are reciprocal,
and a non-reciprocal (Faraday-type) ro-tation, certain magnetic crystals should exhibit
a new spontaneous optical effect, namely a non-reciprocal gyrotropic birefringence.
Subsequently Hornreich and Shtrikman (1968) found this birefringence to manifest itself
as a rotation of the pfincipal optical axes together with a change in the velocity of
propagation of the wave in the medium. Whereas ferromagnetic crystals with their net
magnetic dipole moment may exhibit a non-reciprocal rotation, gyrotropic birefringence
may exist in the absence of sﬁch a moment. In addition, these authors recognised that
this effect is due not only to the magnetoelectric tensor, as Birss and Shrubsall (1967)
had predicted, but that it depends also on electric quadrupole contributions. Graham and
Raab (1994) showed that the gyrotropic birefringence predicted in Cr,0, by Hornreich
and Shtrikman (1968) can be decomposed into three linear birefringences: the usual

reciprocal property relative to crystallographic axes, a non-reciprocal birefringence
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relative to these same axes, and a non-reciprocal Jones birefringence relative to the

bisectors of these axes.

From Table 5.5 it is clear that there is a number of crystal classes in which the non-
reciprocal Jones birefringence and a normal linear birefringence occur simultaneously
for propagation perpendicular to the optic axis. The crystals belonging to these classes
are thus considered to be gyrotropic. Most of these crystals are magnetoelectric, having
a non-zero G tensor which contributes to the Jones birefringence. The relevant point
groups are 422, 422, 42m, 42m, 4/mmm, 4/mmm, 32, 3m, 622, 6m2, and 6/mmm.

It is of interest to note that there is one point group in which a reciprocal Jones
birefringence occurs simultaneously with a linear birefringence for propagation
perpendicular to the optic axis, namely the point group 3m. In this case the Jones
birefringence would be difficult to detect, as it arises from the electric octopole-magnetic
quadrupble tensors L', H', b, and d. This is an insfance in which the Jones birefringence
may exist in a medium which does not exhibit gyrotropic birefringence, if this term is

understood in its original sense of being non-reciprocal.

There are a few point groups where, for propagation along the optic axis, the non-
reciprocal Jones birefringence coexists with a non-reciprocal linear birefringence, both
due to the c-tensors G and a’ These groups are 4, 4, and 4/m. This result is consistent
with earlier predictions that gyrotropic birefringence linear in G should occur for z-

propagation in tetragonal crystals when G,,=-G,, (Bonfim and Gehring 1980), and when
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G,,~-G,, (Ferré and Gehring 1984).

The Jones birefringence was predicted for the above 15 uniaxial magnetic point groups

by Graham and Raab (1983).

Contrary to the findings of Birss and Shrubsall (1967), there are some gyrotropic crystals
in which the magnetoelectric tensor vanishes. These are the cubic point groups 23 and
m3, which exhibit a non-reciprocal Jones birefringence linear in a’. The latter effect was

predicted by Graham and Raab (1992).

Where in Table 5.5 a birefringence relative to the bisectors of the crystallographic axes
occurs in the absence of normal linear birefringence, as in the point groups 422, 4mm,

42m, 42m, and 4/mmm for z-propagation, and 432, 43m, and m3m for x-, y-, or z-

propagation, the former is not considered a true Jones birefringence, as it may be

expressed as the normal effect with its fast and slow axes rotated through an angle of 45°

6.2 |DENTIFICATION OF CRYSTALS

Table 6.1 contains a listing of the magnetic uniaxial and cubic point groups which can
be uniquely distinguished from the other maghetic symmetry classes through
birefringence measurements. Since the different non-magnetic point groups to which the
various magnetic crystals belong can be distinguished from one another through X-ray

diffraction techniques, it suffices that magnetic crystals need only be uniquely identifiable
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within each non-magnetic point group. This table indicates that 58 of the 70 uniaxial and
cubic crystals can be uniquely identified in this way. The 12 crystal classes which are

not able to be uniquely identified are listed in Table 6.2.

The distinguishing birefringences of the point groups listed in Table 6.1 provide in

principle an alternative approach to neutron diffraction for the determination of the

magnetic point groups of the relevant crystals.
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Table 6.1 List of Uniquely Identifiable Crystal Groups

z-Propagation y-Propagation x-Propagation
stem Group N-Rays? (n,ny ) (n.-n, ) (n,-n;) N-Rays? (ne-nz) (n.-n,) (n.-n;) N-Rays? (nz-n,) (n.-n, ) (n.ng)
ragonal 4 Yes 0 0 a'G'ab'd'LHy' No - - - No - - -
4 Yes Ga’ Ga' G'a No - - - No - - -
4 Yes Ga'’ Ga’ a'LHb'd'y' No - - - No - - -
ES Yes 0 0 o] No - - - No - - -
4/m Yes 0 0 a'LHb'd"y’ No - - - No - - -
4/m Yes Ga' Ga' ' 0 No - - - No - - -
422 Yes 0 0 G'a Yes al ‘H'bay Ga' G'a Yes al'H'bdy Ga' G'a
422 Yes (Ga") 0 G'a Yes al ‘H'bdy Ga' G'a Yes al'H'bdy Ga’' G'a
422 Yes 0 0 a'G'aLHb'd"y’ No - - - No - - -
4mm Yes 0] 0 0 No - - - No - - -
4mm Yes (Ga’) 0 0 No - - - No - - -
4mm Yes 0 0 a'LHb'd"y' No - - - No - - -
2m Yes (Ga’) 0 0 Yes ol 'H'bdy Ga’ G'a Yes al'H'bdy Ga’ G'a
2m Yes ] 0 0 Yes ol 'H'bdy Ga' G'a Yes al'H'bdy Ga' G'a
42m Yes 0 0 0 No - - - No - - -
42m Yes (Ga") 0 a'LHb'd"y’ No - - - No - - -
4/mmm Yes 0 0 a'LHb'dy' No - - - No - - -
4/mmm Yes 0 Qo 0 Yes ol 'H'bdy Ga' 0 Yes al 'H'bdy Ga' 0
4/mmm Yes 0 0 4] No - - - No - - -
4/mmm Yes (Ga") 0 (¢] Yes al 'H'bay Ga' 0 Yes al'H'bdy Ga' 0
gonal 3 Yes 0 0 a'G'aLHb'd'y’ No - - - No - - -
3 Yes 0 0 a'LHb'd’y’ No - - - No - - -
3 Yes 0 0] 0] No - - - No - - -
32 Yes 0 0 G'a No - - - Yes aa'l'H'bdy Ga'L'H'bd  G'alHb'd'
32 Yes 0 0 a'G'aLHb'd"y’ No - - - No - - -
3m Yes 0 0 0 No - - - No - - -
3m Yes 0 0 a'LHb'd"Y' No - - - No - - -
3m Yes 0 0 0 No - - - Yes al 'H'bdy L'H'bd LHD'd’
3m Yes 0 0 a'LHb'd"y’ No - - - No - - -
3m Yes 0 0 o] No - - - Yes aa'L'H'bdy Ga'l'H'bd 0
3m Yes 0] 0] 0] No - - - No - - -



System

Hexagonal

Cubic

Group

6

e

[}

[
6/m
622
£22
622
emm
tm2
em2
em2
m2

6/mmm
&/mmm
o/mmm
6/mmm
6/mmm
£&/mmm

23

m3
432
432
43m
43m
m3m

N-Rays?

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Z-Propagation

(nyny )

[sNeNeNeNeNeoNolNeNeoNoNaelNeNaoloNeNelNeNollel

L'H'Db
L'H'b
L'H'D

(a)
(a)

(a)

(n.-n, )

[=NeNeNelNeNeoleolNeNeNeolNeolNeNelNoNeNoNolNeNol

8

[+NeNoNoNoli Mol

(n,-n;)

a'G'aLHb'd'y’
G'a
a'LHb'd"y'
0
a'LHb'd'y'
G'a
G'a
a'G'aLHb'd"y’
o'LHb'd"y’
0
0
0
a'LHb'dy'
0
0
a'LHb'dy'
0
0
0

G'

G’
G’

N-Rays?

No
No
No
No
No
Yes
No
No
No
No
No
No
No
Yes
No
No
Yes
No
No

Yes
Yes
Yes
Yes
Yes
Yes

Yes

y-Propagation
(nx-nz) (n.-n, )
al 'H'bdy Ga'
al 'H'bdy .0
ol 'H'bdy Ga'
L'H'b a'
L'H'b 0
L'H'b a'
0 0
(@) 0
@) 0
0 0
(a") 0

(nr-ny)

G’

G'
G’

N-Rays?

No
No
No
No
No
Yes
Yes
No
No
Yes
Yes
No
No
Yes
Yes
No
Yes
No
Yes

x-Propagation

(nz-ny) (n--n, )
al'H'bdy Ga'
aa'l'H'bdy (0]
aa'L'H'bdy 0
al 'H'bdy Ga'
al'H'bdy 0
al 'H'bdy 0
al 'H'bdy Ga'
aa'l 'H'bdy 0
L'H'b a’
L'H'b 0
L'H'b a'
o] 0]
(a") 0
(@) 0
0 0
(a) 0

(n,-n;)

G'a
G'aLHb'd'



Table 6.2 List of Indistinguishable Crystal Groups

z-Propagation y-Propagation x-Propagation
System Group N-Rays? (nyne)  (no-ny) (n-n;) N-Rays? (nx-nz) (n.-ny)  (n.ny) N-Rays? (nz-ny) (n.-n,) (nr-ny)

Tetragonal 4/m Yes 0 0 0 No - - - No - - -
4/m Yes 0 0 0 No - - - No - - ' -

4/mmm Yes 0 0 0 Yes al 'H'bdy o 0 Yes al 'H'bdy 0 0

4/mmm Yes 0 0 0 Yes al 'H'bdy 0 0 Yes al 'H'bdy 0 0

Hexagonal o/m Yes 0 0] 0] No - - - No - - -
6/m Yes 0 0 0 No - - - No - - .

&/m Yes 0 0 0 No - - - No - - -

6mm Yes 0 0 0 No - - - No - - -

£mm Yes o 0 0 No - - - No - - -
Cubics m3m Yes 0 0 0 Yes 0 o 0 Yes o] 0 0
m3m Yes 0 0 o] Yes 0 0 o] Yes o] o] 0]
m3m Yes 0] 0 0 Yes 0 0 0 Yes o 0 0
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