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ABSTRACT

In this thesis a consistent multipole theory is used to describe light propagation in non­

absorbing magnetic cubic and uniaxial crystals to the order of electric octopoles and

magnetic quadrupoles.

The first chapter extends Maxwell's equations for a vacuum to their macroscopic form in

matter by including bound-source contributions as multipole expansions. From these the

corresponding forms for D and H are obtained, which ensure origin-independence of

Maxwell's equations. A multipole eigenyalue equation describing light propagation in a

source-free homogeneous medium is then derived, which is the basic equation applied

in this thesis.

In the second chapter it is shown how, from the multipolar form of the propagation

equation for transverse waves, expressions can be derived for the various birefringences

that may be exhibited in macroscopic platelets of the medium, as introduced by Jones

in the formulation of his M-matrix.

The following chapter presents the derivation, by means of first-order perturbation theory,

of the quantum mechanical expressions for the polarizability tensors which enter the

eigenvalue wave equation. The origin independence of the expressions for the various

observable quantities is then established.
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In the fourth chapter the independent components of the polarizability tensors are

calculated for two selected crystal point groups, namely 622 and ~32, by way of

illustration.

In chapter five the components calculated in the manner illustrated in the previous

chapter are presented in tabular form. The Jones method outlined in chapter two is then

applied to the crystal point group 6m2, again as an illustration of the method used to

determine the optical effects displayed by this point group. Chapter five concludes with

a table containing a listing of the predicted optical effects calculated in this way for all of

the magnetic uniaxial and cubic point groups.

The thesis concludes with chapter six, in which a summary of the results of the work

undertaken is given, together with a discussion of factors influencing measurements of

the predicted optical effects.
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CHAPTER 1

1.1 MAXWELL'S EQUATIONS

Gauss' law in vacuum relates, at an instant of time, the outward flux of an arbitrary time-

dependent electric field E through a closed surface to the total charge Q within the

surface. Thus

1J. E'da = - Q ,
s eo

(1.1)

where da is an element of area of the closed surface S. For a continuous distribution of

charge in vacuum the law takes the form

r E 'da = _1 r pdV ,
Js eo Jv (1.2)

where p is the charge density at the volume element dV of the volume V enclosed by S.

By means of the divergence theorem

Is A -da = IvV-A dV , (1.3)

where A is some vector, the differential form of Gauss' law in a vacuum may be

immediately obtained from equation (1.2), namely

(1.4)

In the presence of matter a similar form may be derived in which E is the macroscopic

or volume-average electric field at a macroscopic point and p is the total charge density
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at that point, namely

(1.5)

where Pc and p, are the macroscopic free and bound charge densities respectively. The

following equation is thus obtained:

"'l·E = (1.6)

This may be regarded as an alternative form to one of Maxwell's four equations of

electrodynamics.

In a number of texts (e.g. Lorrain and Corson 1990) it is shown that

(1.7)

where P is the polarization density or, more descriptively, the electric dipole moment per

unit macroscopic volume. By combining equations (1.6) and (1.7) one obtains

(1.8)

The divergence of the vector (eJE+p) depends only on the free charge density p; This

vector is called the electric displacement, designated D, so that

where

"'l·D = Pc '

2

(1.9)

(1.10)



Equation (1.9) is the traditional form of the Maxwell equation (1.6) .

The experimental fact that free magnetic charge has not been discovered in vacuum is

expressed by the analogous form of Gauss' law

(1.11)

where 8 is an arbitrary time-dependent magnetic field at a point in vacuum. Application

of equation (1.3) yields the vacuum equation

'\1·8 = 0 . (1.12)

As neither free nor bound magnetic charge has been found to exist in matter on the

macroscopic scale , the same form as that in equation (1.12) can be shown to apply to

matter, except that now 8 is the macroscopic magnetic field. This is another of Maxwell's

equations.

Faraday's law of electromagnetic induction in vacuum reads

d,( E ·dl = - - r8 'da ,re d t J8

where S is any surface spanning the closed path C, of which dl is an element.

By means of Stokes's theorem

f
e

A ·dl = 1
8
('\1 x A)'da ,

one obtains from equation (1.13)

3
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d aB
1. E ·dl = J: (V x E)'da = --J: B 'da = -J: - .da .'
le s . dt s s at (1.15)

in which, to ensure that the closed path and its bounding surface are constant in the

same reference frame, only a time variation of B at a given point is possible, as

expressed by the partial derivative. Since this equation is valid for an arbitrary surface,

the integrands of the surface integrals are equal at every point, and we obtain

V x E = _aB
at (1.16)

SinCe no free sources enter this vacuum equation, its form in matter is identical, except

that now the fields are macroscopic. This is the third of Maxwell's equations, and it

applies to stationary media.

For a distribution of steady current in vacuum Ampere's circuital law applies

(1.17)

where J is the surface current density at the element da of any surface S bounded by the

closed path C. By means of Stokes's theorem equation (1.17) can be transformed to yield

the differential form

For time-dependent fields in vacuum this can be shown to become

aEV x B = IJ (e - + J)
o 0 at

4
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The corresponding equation in the presence of matter has the form of equation (1.18)

where Band J are macroscopic quantities with

(1.20)

Here J?8o(aElat.) is the displacement current density involving the macroscopic electric

field, J, the free current density, and Jb the density of bound currents that may arise in

matter.

A number of authors (e.g. Homreich and Shtrikman 1968, Lorrain and Corson 1990)

show that

ap
J =VxM +-

b at I
(1.21)

where M is termed the magnetization, defined to bethe magnetic dipole moment per unit

macroscopic volume.

From equations (1.10), (1.20), and (1.21) it follows that equation (1.18) may be written

in the more traditional form for the last of Maxwell's equations, namely

aDVxH=-+Jat C

In this

H = 1J~1 B - M .

(1.22)

, (1.23)

Although these forms for the field vectors D in equation (1.10) and H in equation (1.23)
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are acceptable for static uniform fields, they cannot be applied to non-uniform static or

electromagnetic fields. This is a consequence of the omission in the expressions for the

bound source densities in equations (1.7) and (1.21) of terms involving higher multipole

moments, beginning with the electricquadrupole momentdensity Qal3r which, as will be

evident in the next section, contributes to the same order of magnitude as M.

Furthermore, the omission of the electric quadrupole term in equations (1.7) and (1.21)

leads to forms for D and H which, when used in Maxwell's equations, yield expressions

for certain observables that depend on origin. This will be illustrated in Chapter 3. A

successful description of optical transmission phenomena in terms of Maxwell's

equations requires the use of correct multipolar forms for these field vectors.

1.2 MULTIPOLAR EXPRESSIONS FOR D AND H

The interaction of matter with electromagnetic radiation, whose wavelength is much

greater than the linear dimensions of a macroscopic volume element has been

successfully described in terms of the multipole moments induced in a volume element

by the radiation. (Buckingham 1967, Graham and Raab 1990). In orderto describe such

an electromagnetic effect in matterusing Maxwell's equations it is necessary to include

multipole contributions of comparable magnitude in the expressions for D and H. The

relative magnitudes of these contributions to an optical effect are ordered as follows (de

Figueiredo and Raab 1981):
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electric {electriC quedrupote {electriC octopole
dipole» magnetic dipole » magnetic quadrupole

(1.24)

In this research allowance has been made for consistent inclusion of all contributions to

the order of electric octopoles and magnetic quadrupoles.

A finite distribution of time-varying currents in a volume V in vacuum gives rise to the

retarded scalar potential <1>(~,t) at a point with coordinate ~ relative to an arbitrary origin

o in the distribution. In the Lorentz gauge

<1>(~ ,t) = _1_ r p( r, t-I~ -rile) d V
4neo

Jv I~-rl

In a similar way the retarded vector potential A(~,t) is expressed as

A(~ ,t) = ~r J(r, t-I~-rl/c) dV ,
4nJv I~-rl

(1.25)

(1.26)

In equations (1.25) and (1.26) p is the charge density and J the current density at the

retarded time t-I~-rVe at a microscopic volume element dV which has coordinate r

relative to O.

In their derivation of a multipolar expression for the total bound current density at a

macroscopic volume element Graham et al. (1992) began by performing a binomial

expansion of 1~-rr1 in equation (1.26) and a Taylor expansion of t-I~-rVcabout t-m/c,

in order to relate the vector potential at a distant field point (~»" to a series of multipole

moments at O. In the limit A»~, where Ais the wavelength of the light wave, and with

7



a suitable averaging procedure to extend the derivation to bulk matter, the following

expression for the macroscopic vector potential A was obtained:

(1.27)

in which the multipole momentdensities are those at the coordinate R=-m at time

t'=t-Rlc.

Equation (1.27) is written in cartesian tensornotation, in which Greek subscripts denote

cartesian components. €a~v is the alternating tensor and has the following properties:

When a,p, and Vare in cyclic order of x, y, and z, €a~v=1.

When c.B, and Vare in anti-cyclicorder, €a~v=-1.

When one of o.B, or V is a repeat of either of the two remaining subscripts, €a~v=O.

Equations (1.26) and (1.27) can be shown to lead to the following expression for the total

bound current density at a macroscopic volume element:

(1.28)

Substituting this into equation (1.20) which is then used in equation (1.18) yields

8



L::- '{/11 -
1a = ~(e E + Pa - -21Vt>Oat> + -61VyVt>Oat>,,+ . .. )

v af3yy f3 "'0 y 0 a P P P PTat
(1.29)

This equation has the form

(1.30)

where

(1.31)

and

(1.32)

When the scalar potential <t> in equation (1.25) is expanded in the same way as A in

equation (1.26), a multipole expansion of the macroscopic bound charge density p, is

obtained which, when substituted into equation (1.6), yields the Maxwell equation (1.9)

with D having the identical multipole form as in equation (1.31).

1.3 MACROSCOPIC MULTIPOLE MOMENT DENSITIES

Due to its finite wavelength, the field of an electromagnetic wave is not constant over the

linear dimension d of a molecule or a crystal unit cell. If A»d the wave may be described

9



by its fields E and B and also by their various space derivatives

'V~Ea ' 'Vy'V~Ea ' ... ; 'V~Ba' 'Vy'V~Ba ' ...

at a point in a molecule or unit cell.

An electromagnetic wave also consists of time-derivative fields, such as

E, E, E, E, ....

(1.33)

(1.34)

However, due to the harmonic condition applying to a plane monochromatic wave

etc. (1.35)

where w is the angular frequency of the light wave, there are only two independent time

derivatives of each field in equation (1.33), which we take to be the field and its first time

derivative.

When a plane monochromatic wave propagates in a medium, multipole moments are

induced in the medium by the light wave fields and their space and time derivatives. The

expressions for the induced moment densities, to the order of electric octopole and

magnetic quadrupole, are (Graham and Raab 1991):

10



(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

In theseequations Pa, Qaao Qa l3v> M(JI and Ma13are, respectively, the electric dipole, electric

quadrupole, electric octopole, magnetic dipole, and magnetic quadrupolemoments per

unit macroscopic volume. Quantum mechanical expressions for the polarizability tensors

which appearin the right-hand-sides of the aboveequationsare derived in Chapter 3 of

this dissertation.

11



These expressions indicate that all contributions to the required multipole order have

been included in equations (1.36) to (1.40). The polarizability tensors are in general

complex to allow for absorption. According to the definition of a property tensor given in

Birss (1964), these polarizability tensors may be tenned property tensors since they form

a relationship between two particular measurable tensor quantities associated with the

crystal.

From the expressions for the property tensors given in Chapter 3, the following

relationships are evident:

, ,
aal3 = a 13a ' aal3 = -Opa '

, ,
Pol3Y = aYa 13 I Po13y = -aYa 13 '

t:a13y() = b6013y , ~aI3Y() = -~al3v I

~OI3 = G13a ' ~13 = -G~a '

:J-(al3v = HYa13 ' :J-hI3Y = -HyOI3 '

12
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(1.46)

The multipole moment densities in equations (1 .36) to (1.40) are the average per unit

macroscopic volume of the following moments of a charge distribution (Raab 1975):

Pa = L ql; I
. a
I

qal3 = L ql;/i
ll

I

I

~ ·qlma = L..J -li I

i 2m1 a

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

in which r, is the displacement from an arbitrary origin of charge qjwith mass mj and

orbital angular momentum Ij =1j X ~, where Pi is its linear momentum.
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1.4 AN EIGENVALUE WAVE EQUATION

It is convenient to express the electric field of a plane monochromatic wave in the form:

E = Eo e - iw(t-nr 'o/c) . (1.52)

In this equation 0 is the unit vector perpendicular to the plane wave front, and n is the

refractive index of the medium for light propagating in the direction 0, with a polarization

state described by the amplitude Eo which may be complex.

From Maxwell's equation (1.16) and equation (1.52), expressions can be derived in terms

of E for the fields and their space and time derivatives in equations (1.36) to (1.40). The

multipole moment densities in these equations are then substituted into equation (1.29) to

obtain the following equation:

(1.53)

This is the basic equation to the order of electric octopole and magnetic quadrupole for

describing the propagation of a plane monochromatic wave in a source-free magnetic

medium. In this equation the tensors denoted by a tilde have the form

T - TS 'Taa13 - a13 - I a13'

The explicit expressions for the these different tensors are given below.

14
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(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

The respective symmetry and antisymmetry of the tensors indicated with superscripts sand

a can be deduced from the tensor expressions derived in Chapter 3. By setting a in
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equation (1.53) equal to x, y, and z in turn, and summing over repeated subscripts, we

obtain three linear homogeneous equations in the components of Eo These can be cast in

the form of the following matrix eigenvalue equation:

n2(1 - o~)- Sxx -n 20 XOy- SXy -n 20 xo z- Sxz Eo Eo
x x

-n 20
Xoy- SyX n2(1 - O~)- Syy -n 20 yOZ- Syz Eo = Eo (1.61)

y y

-n 20 xo z- Szx -n 20 yOZ- SZy n 2(1 - 02z) - Szz Eo Eo
z z

in which the eigenvalues are constrained to be unity, and where

(1.62)

For any given propagation direction 0 the medium supports only those polarization forms

whose amplitudes are the eigenvectors of equation (1.61). Their associated refractive

indices can be found from the condition that the eigenvalues are unity. Alternatively, the

condition that not all of the components of Eo vanish is that the determinant of their

coefficients should be zero, that is

n 2(0 2 -1)+1 +S n20
Xoy+SXy n20xoz+Sxzx xx

2 - n2(02 -1 ) +1+S n 20yo z+Syz = 0 . (1.63)n 0XOy+Syx y yy

2 - n20yOz+SZy n2(02 -1) +1+Sn 0xoz+Szx z ZZ

This determinantal equation is used in Chapter 2 to obtain general expressions for the

various optical effects that arise due to light propagation in magnetic crystals.
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CHAPTER 2

2.1 THE JONES CALCULUS

The stateof polarization of a plane electromagnetic wavewith its electric field transverse

to the direction of propagation is fully described by its two orthogonal field components,

say Ex and Ey for a wave propagating along the positive z axis. In the formulation of the

calculus which bears his name Jones used a complexform of the field of such a wave

and represented it by a 2x1 column vector

(2.1)

Its elements are thus complex in general and through their real and imaginary parts E

contains four pieces of information concerning the lightbeam. These are the amplitudes

and phases of the two components which, as is known for a Lissajou figure, constitute

one way of specifying an ellipse as the most general form of polarization.

Consider such a wave incident on a medium, which may change the polarization of the

beam without depolarizing it. Let the incident beam in a given direction be described by

the vector E and the emergent beam, assumed to be in the same direction, by the vector

E'. Then for a linear response of the medium to the field of the incident light wave

17



E' = ME, (2.2)

where M represents the effect of the medium in transforming E into E'. As E and E' are

2x1 column vectors, M must be a 2x2 matrix with four elements which are complex in

general. Their real and imaginary parts thus represent in general eight distinct optical

properties of the medium.

In 1941 Jones initially introduced the matrix representation of a medium to describe the

effects on a polarized plane monochromatic light wave of a non-depolarizing crystal

which could be birefringent, optically active, and absorbing. Only later (1948) did he

extend his theory to a general dielectric medium in which all eight properties may be

present together. The basis of Jones' approach was to assign each of the eight optical

effects to a separate macroscopically very thin plate of medium, and then to integrate to

produce the total effect. For the light wave propagating through a medium of length z

with a field given by equation (1.52) Jones showed that the matrix M is given by

[
COSh(QZ) +~(N 1 -N2)Q - 1 Sinh(QZ) N4Q -1sinh(Qz) ]

M =exp(Tz) . (2.3)
N3Q -1sinh(Qz) cosh(Qz)-.2.(N1-N2)Q-1 sinh(Qz)

2

In this

(2.4)

18



and N1t N2, N3 and N4are the elements of a matrix N, which is determinate at each point

along the path of the light beam in the medium . For a homogeneous dielectric

(2.5)

The quantities denoted with a tilde in equation (2.5) are complex and are given by:

ii = ll +iK ,

W = 00+ ir5 ,

90 = go+ipo '

945 = g45 + iP45

(2.6)

The right-hand-sides of these equations consist of eight independent differential

parameters. These parameters are related to the following optical properties of a

medium:

refraction, which relates to the parameter denoted by 11, and absorption, which is

associated with K; circular birefringence, associated with the parameter indicated by 00,

and circular dichroism, related to r5; linear birefringence, which is related to go. and is

relative to a pair of orthogonal axes, and the associated dichroism, which relates to the

parameter Po; and-finally a linear birefringence, associated with the term g45' with respect

to the bisectors of the axes mentioned above, and the associated dichroism, related to

the parameter P45- In non-absorbing media these eight parameters reduce to four ,

namely: 11, 00, gal and g45'

19



Jones defined the differential parameters given in equation (2.6) in terms of the relevant

refractive indices and extinction coefficients for different polarization states of a light

beam in the following way:

- 2n ( Ok) 2n -r'l = - Il r ! = -n ,
A A

g- = n [n - n + i(k - k)] = n (fi - fi )
45 A - + - + A - +

(2.7)

(2.8)

(2.9)

(2.10)

Here n is the complex refractive index for randomly polarized light. It consists of the

refractive index n and extinction coefficient k, where, for the choice of sign of the

exponent in equation (1.52),

fi = n + ik (2.11)

The corresponding quantities for the polarization states are denoted by the following

subscripts:

20



r and I for right- and left-circularly polarized light,

x and y for light linearly polarized along the x and y axes ,

and + and - for light linearly polarized along the bisectors of

the x and y axes and of the x and -y axes .

The Jones M-matrix in equation (2.3) has been used to suggest experiments by which

the various optical properties in equations (2.7) to (2.10) may be measured, particularly

when several coexist (Raab 1982, Graham and Raab 1994).

A light wave whose electric field is perpendicular to its propagation direction 0 is termed

an N-ray (Graham and Raab 1990). A wave which has an electric field component along

its propagation path is called an S-ray (ibid.), and will not be considered in this research

as the Jones calculus is not applicable to such rays.

If the light path is taken to be along a crystallographic axis, then the form of the

determinant in equation (1 .63) allows immediate identification of whether an N-rayexists.

For example light propagating along the z-axis has 0=(0,0,1). An N-ray occLirs when in

equation (1.63)

s:X = SZy = 0 ,

from which, using equations (1.62) and (1.54) to (1.60), it follows that

21
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Equation (1.63) thus reduces to the following general form:

= 0 . (2.14)

It can be seen from equations (1.55) to (1.60) that, for non-absorbing media, the tensor

S has the Hermitian property:

(2.15)

This leads to the following general form, within the electric octopole-magnetic

quadrupole approximation, for equation (2.14):

-n 2+1 -a-bn-cn" d+en+fn 2+i(g+hn +jn2)
= 0 .

d+en+fn 2-i(g+hn+jn 2) -n 2+1 +k+ln+mn 2
(2.16)

It is evident from this and (1.53) to (1.60) that the terms indicated with small letters in

this have the following multipole orders:

a,d,g, k

b, e, h, I

c, f, j , m

electric dipole

electric quadrupole-magnetic dipole

electric octopole-magnetic quadrupole

22



In order to apply Jones' approach to determine the various optical effects experienced

by the wave propagating through the crystal , we rewrite equation (2.16) as:

C +D
= 0 ,

C - D -n 2 + 1 + A - a

where

A = ~(a+k) + ~n(b + l ) + ~n2(c+m) ,
2 2 2

B = ~(a -k) + ~n(b-I) + ~n2(c-m) I

2 2 2

C .= d + en + fn 2 ,

o = g + hn + jn 2 .

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

To obtain the four distinct optical effects identified by Jones in non-absorbing media,

we proceed by considering four optical plates independently. In the absence of

absorption A, a,C, and 0 are real quantities.

Plate 1: A * 0 , a=C =0 =O.

Equation (2.17) then becomes:

o -n? + 1 + A
= 0 .

23

(2.22)



This equation has two equal roots, given by

n2 = 1 + A

= 1 + ~(a+k) + ~n(b+l) + ~n2(c+m) ,
2 2 2

which reduce to the correct vacuum limit of n=1 when A=O.

Hence

1

n = ; [ y + (y2+4(1 -Z)(1 +X»)2 ] [ 1-Z r' I

where

x = ;(a+k) ,

y = ~(b+l) ,
2

z = ~(c+m)
2

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Since Z contains terms to the order of electric octopole and magnetic quadrupole, it

is clear that

Z « 1 .

We therefore use-the binomial expansion

(1 +x)O = 1+~x + a(a-1)x 2+ ... + a(a -1) ...(a-n+1)x n+ ... for -1<x<1 ,
1! 2! n!

which leads to

24
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(1-Z) -1 = 1 + Z _ Z2 + .. .

2

::;: 1 + Z ,
(2.30)

since the higher order terms are negligibly small. Equation (2.24) then becomes

1

n = ~ [ Y + (y2+4(1 -Z)(1 +X»)2][ 1 + Z] .

To first order in the multipole terms X, Y, and Z, this reduces to

. 1 1

n = 1.Y + (1+X)2 + 1.Z(1 +X)2
2 2

(2.31)

(2.32)

The two polarization eigenvectors corresponding to the two equal roots in equation

(2.23) are orthogonallinear polarizations along the crystallographic x- and y-axes.

Thus all polarization forms experience the same refraction along the chosen light

path. This is the first optical effect described by Jones.

Plate 2: B *" 0 , A =C =0 =O.

Equation (2.17) becomes:

-n 2 + 1 + B 0

o -n 2 + 1 - B
= 0 .
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The solutions of this are given by

= 1 + ~(a-k) + ~n (b-I) + ~n 2(c-m) ,2 2 x 2 x

and

n 2 = 1 - By

= 1 - ~(a-k) - ~n (b-I) - -2
1ny

2(c-m) .
2 2 Y

(2.34)

(2.35)

The two eigenvectors are again orthogonal linear polarizations along the x and y

crystallographic axes, but now with different refractive indices, so that a linear

birefringence is evident. To first order in the multipole terms this is calculated to be:

1 1 1 1

nx - ny = (1+X)2 - (1-X)2 + Y + ~Z[(1 +X)2 + (1-X)2] I

where

x = ~(a-k)
2 '

y =~(b-I)
2 '

Z = ~(c-m) .
2
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When a-k, for instance for propagation perpendicular to an optic axis in a uniaxial

crystal, then (a-k) is the leading multipole contribution and the higher order terms may

be neglected. This is the second of Jones' optical effects.

Plate 3: C * 0 , A =B =D =O.

Equation (2.17) reduces to:

C -n? + 1
= 0 . (2.40)

The two solutions of this equation are:

n2 = 1 ± C .

From this we obtain the following two values for the refractive indices:

1 1

n =(1 +d)2 + ..!.e + ..!.f(1 +d)2 ,
+ 2 2

and

1 1
- 1 1 -n; =(1-d)2 - -e - -f(1 -d)2

2 2

(2.41)

(2.42)

(2.43)

Substituting these roots into the two equations on which the two rows of equation

(2.40) are based yields
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Eo
-y = ±1
Eo

x

(2.44)

The two eigenvectors thus represent linear vibrations along the bisectors of the two

crystallographic axes that are perpendicular to the direction of propagation. To first

order in the multipole terms equations (2.42) and (2.43) lead to the following

birefringence

1 1 1 1

n_ - n, = (1-d)2 - (1 +d)2 - e - ~f[(1 +d)2 + (1 -d)2] (2.45)

This linear birefringencewas first identified by Jones, and has been named after him

(Graham and Raab 1983).

Plate 4: D * 0 , A =B =C =o.

The general equation (2.17) becomes:

= 0 . (2.46)

This has two possible solutions:

n? = 1 ± D
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Substitution of these roots into the two equations represented by the determinant in

equation (2.46) yields

(2.48)

These describe right- and left-circularly polarized light, corresponding to the upper

and lower signs respectively. Solving equation (2.47) to first order in the multipole

terms then leads to the circular birefringence

1 1 1 1

n - n = (1 +g)2 - (1 -g)2 + h + ..!. j [(1 +g)2 + (1-g)2]
r I 2

(2.49)

In this n, and n, are the refractive indices for right and left circularly polarized light

respectively. It is evident from (2.49) that circular birefringence may arise from the

electricdipoleterm g which is a term in o', as (1.53) to (1 .56) show. This contribution

occurs in ferromagnetic crystals (Graham and Raab 1991). The next highermultipole

term is that in h, which is of electric quadrupole-magnetic dipole order, followed by

that in j.

In this dissertation the above approach will be used to identify the different optical

properties of each'of the uniaxial and cubic magnetic point groups. Examples of the

application of this method will be illustrated in Chapter 5.
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CHAPTER 3

3.1 QUANTUM MECHANICAL EXPRESSIONS FOR POLARIZABILlTY TENSORS

Quantitative expressions for polarizability tensors allow one to deduce the intrinsic

symmetry of their tensor subscripts, as well as any relationships that may exist between

various of the tensors. In addition , one can deduce from such an expression the order

of magnitude of a tensor.

These quantitative expressions for the tensors used in this thesis are derived from

quantum mechanics by means of first-order perturbation theory, in which the

electromagnetic perturbation Hamiltonian is expressed in the Barron-Gray gauge (Barron

and Gray 1973, Raab 1975).

The forms of the multipole moment densities induced in a magnetic medium by a plane

monochromatic wave were obtained phenomenologically in Chapter 1, for instance that

for the electric dipole moment density: .

(3.1)

We now show how such expressions can be formally derived by means of quantum

mechanics.
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The quantum mechanical expectation value of the induced electric dipole moment

density, represented by the operator

(3.2)

in a time-dependent state [n(t)) is, to first order in the perturbation due to the

electromagnetic wave,

(n(t) IPaIn(t)) = (n (O)(t) + n (1)(t) + ··.1 Paln (O)(t) + n (1)(t) + ... )

= (Pa(O)) + (n(O)(t)IPaln(1)(t)) + (n(1)(t)I Paln(O)(t)) + ...

= (Pa(O)) + 2me(n(O)(t)I Paln(1)(t)) + ... ,

since P is Hermitian . .

(3.3)

In equation (3.3) the ket I n (O~t)) is the solution of SchrOdinger's time-dependent equation

for the nth state of the unperturbed system described by the Hamiltonian H(O), namely

(3.4)

Because the unperturbed system is time-independent, Schr6dinger's energy eigenvalue

equation also applies. Thus

(3.5)

where En(O) is the energy eigenvalue of the nth unperturbed state of the system.
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It follows from equations (3.4) and (3.5) that

In (O)(t)) = e - i EJO) t/r. In (0)(0») . (3.6)

The ket In(1)(t») in equation (3.3) is the first-order perturbation ket for the nth state. Any

state of a system may be expressed as a linear combination of the eigenstates of a

Hermitian operator on the vector space representing that system. Thus using the

unperturbed kets of H(O) in equation (3.6), we may write

In (1)(t)) = L ait) Ip O)(t))
j

It can be shown from time-dependent perturbation theory that

. t
a.(t) = -!.- Je -iwfit H.(1) dt , j * n ,

J 11 In

°

where

and

w . = (E (0) - EJO»/h
nJ n J •

Equation (3.3) then becomes:

(n(t)IPaln(t)) = (Pa(O») + 2meL ait)eiW"(n(O)(O)IPalpO)(O») + ...
»»
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The semi-classical Hamiltonian for describing a system of particles in a macroscopic

volume element 6.V in an electromagnetic field is

H = L _1_(p_qA)2 + V + L q<l> ,
2m

(3.12)

where V is the unperturbed potential energy operator and q the charge of a particle in 6.V

with mass m and momentum operator p.

Barron and Gray (1973) showed that the following potentials A and <I> at a point r at time

t in a source-free region of space

and

(3.14)

field the correct Taylor expansions of the electric and magnetic fields, as given by

E = -\7<1> _ aA ,
at

and

B = \7xA ,

where E and B are arbitrary time-dependent fields.
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In equations (3.13) and (3.14) [10 signifies that the expression must be evaluated at the

origin. The Hamiltonian in equation (3.12) can then be shown to have the form:

H == L 2~p2 + V + q[<!>lo - pa[Ealo - ~qal3[Y'I3Ealo - ~qal3v[Y'vyrI3Ealo - ...

- ma[Balo - ~mal3[Y'I3Balo - ... I (3.17)

where Pa , qa['>, qa['>y .m; , and fTh['> are the quantum mechanical multipole moment

operators for the macroscopic volume element. These correspond to the classical

multipole moments defined in equations (1.47) to (1.51).

Thus it follows from equation (3.17) that in the electric octopole - magnetic quadrupole

approximation the first-order perturbation Hamiltonian is given by the expression (Raab

1975):

H(1) == q[<!>lo - Pa[Ealo - ;qal3[Y'I3Ealo - ~qal3v[Y'vyrI3Ealo

- ma[Balo - .!.mal3[Y'I3Balo - ... .
. 2

(3.18)

It is the unique advantage of the Barron-Gray gauge that the first-order perturbation

Hamiltonian appears in an explicit multipole form.

. From equations (1.16) and (1.52) it is possible to express B in terms of E for a plane

monochromatic wave. Thus in tensor form

(3.19)
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It can be shown that

t tfe -iWrjt[Ea(r,t)lodt = Ea(0)fe -iWrjte -iwtdt

o 0

=..! e -iwrjt {w e -iwt _ we -iwt}E (0)
. 2 2 nJ a
I W -W .

nJ

(3.20)

This resulttogether with equations (3.18) and (3.19) and the explicit form for E given in

equation (1.52), when substituted into equation (3.8), yields:

. t

ait) = - ~ f e -iWrjt [ qjn[<!>lo - Pa)Ealo- ;qal3JJVI3Ealo - ~qaI3Vjl[VVVI3Ealo
o

(3.21)

In this qjn=Q because q is a constant and the distinct states ~) and In) are orthogonal.

From this equation and equation (3.11), and from the hermiticity of the multipole moment

operators, it follows that
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1 . • 1 .
+ "2%y

p
,(w nj[VyEI3]o - i[VyEI3 ]o) + "6QI3YOjn(w nJVoVyE13]o- i[VoVyE13]o)

+ m13jn(wnJB13]o-/1B
13]0) + ~mI3vJllnJVyBI3]o -/IVyB13]o) + ... ] } . (3.22)

Comparison of this quantum mechanical expansion with the classical expression given

in equation (3.1) yields a quantum mechanical expression for each of the polarizability

tensors for the macroscopic volume element l:::.V. For instance, the polarizability 0al3 is

given by:

Here oojn=-wnj was used, together with

Z - ( 2 2)-1jn - OOjn -00 ,

(3.23)

(3.24)

which is a dispersion line shape function. Absorption has been neglected in this work

in order to determine which birefringences would be manifest for different propagation

directions as a consequence of the symmetry of non-absorbing crystals.

Since

p=L
l:::.V

equation (3.23) may be written as
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(3.26)

in which the hermiticity of P was used. Similarly, from the hermitian property of other

multipole moment operators,

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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(3.33)

(3.34)

(3.35)

In a similar way the quantum mechanical expressions can be obtained for the

polarizability tensors in the definitions of Qa13' Qa13v' Ma . and Ma 13 in equations (1.37) to

(1.40). They can be shown to have the following forms:

(3.36)

(3.37)

(3.38)

(3.39)
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Xa~ = ~ ~V1 ~nWjnme(nIMalj)VIM~ln)

+ L (:~)(nlrar~-r2i5a~ln) = X~a '
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(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)



:H~J3V = -~ l\V~ Zjnw~m (nIMaJ3 IJ}(jIPv ln) = -H~aJ3 '
n J '

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

The full permutation symmetry which exists in the subscripts of the electric quadrupole

and octopole moment operators can be used to show the intrinsic symmetry of the

polarizability tensors containing matrix elements of these two moments. The expressions

given above also allow one to deduce any relationships which may exist between

tensors, and where relevant these are included in the expressions.

In summary, the following expressions indicate the symmetry which exists in the tensor

subscripts:
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, ,
aa13 = a 13a, aa13 =-a13a,

baPvo= ba13ov= baol3v= bav13o'

da 13vo= dvoa13 = dova13 = dvo13a '
, ,

Xa13= X13a, Xa13=-X13a'

, ,
8a13v= 8av13, 8 a13v =8 av13'

b~I3VO =b~130V =b~ol3v =b~Vl3o '

d ~13VO =-a~Oa13 =-a~va13 =-a~Ol3a '

Lal3v = L13av I L ~I3V =- L~av . (3.52)

3.2 ORIGIN INDEPENDENCE OF MULTIPOLE MOMENT OPERATORS

Van Vleck (1932) derived a quantum mechanical expression for the static magnetic

susceptibility of a molecule, which,in addition to matrix elements of the magnetic dipole

moment operator, contained matrix elements involving the displacement r of a charge

from an arbitrary origin in the molecule. He showed this expression to be independent

of the choice of origin. This origin independence is an essential property of an

expression for a physical observable which is itself independent of origin.

The change in each multipole moment operator can be calculated for a displacement R

of the origin to which these multipole moments are referred. These changes are readily

obtained from the operator versions ofthe classical multipole moments in (1.47) to (1.51).

For instance, if P is the electric dipole moment density referred to origin 0', displaced by

R from origin 0 to which P is referred, then the origin shift in P is
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(3.53)

Similarly

6Qa13Y = -RaQ13y - R13Qay - RyQa13 + RaR13Py + RaRyP13

+ R
13RyPa - RaRI3Ry(6vt1E q ,

6Ma13 = -2R13Ma + ';-~aI3RyMy - eayoRv<~vt1E (q/3m)(rrPo + roPl3)

+ eayoRI3RV<6v) -1E (2q/3m)po - iheal3vRy(6vt1E (q/3m) .

(3.54)

(3.55)

(3.56)

(3.57)

From theseorigin shifts, together with the expressions given in equations (3.26) to (3.51), the

change in each polarizability tensorcan be calculated for the displacement R of origin. From

the expression in equation (3.26) the origin shift in aal3 is calculated as follows:
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~aal3 = : ~~ ~nWjnmeJ<n IPa +~Pajj> <jIPI3 +~l3 ln> - <nIPalj> <j IP13 l n>}
n i-» . 1

= : ~~ ~nWjnme{<n IPa jj> <j IP13 ln> + <n l~Pajj> <j IP13 ln>
n J~ n

+<n IPa lj> <j1~Pl3 ln> - <n jPa lj> <j IP13 l n>}

= 0 ,

since from equation (3.53) the term

is of second order in R and can thus be neqlected. while

<njj> = <j ln> = 0

due to orthogonality.

(3.58)

(3.59)

(3.60)

In a similar way the origin shifts of the remaining tensors can be calculated. These are:
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llda f3yo = -Ra8f3yO- Rf38ayo - R y8oa f3 - R o8Ya f3

+ R aRyaf30 + R aROaf3y + Rf3Ryaao + Rf3ROa ay ,

lld~f3YO = -Ra8~yo - Rf38~yO + Ry8~af3 + Ro8~af3

+ RaRya~O + RaRoa~y + R~Rya~O + R~ROa~y
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(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)



By means of the relationships
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(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)



and

6A = Aal3" '~(L ayO... I (3.77)

whereAay6... represents any tensor, it can be shown from the above origin shifts that the

expressions for the termsof different multipole order in the propagation equation, namely

equations (1 .55) to (1.60), are independent of origin. Origin independence, as a form of

translational invariance, is a necessary requirement for a physical observable. Thus the

expressions for the refractive indices and birefringences derived from the wave equation

satisfy this requirement.
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CHAPTER 4

4.1 SYMMETRY CLASSIFICATION OF THE POLARIZABILlTY TENSORS

Neumann's principle states that every physical property of a system must possess at

least the full symmetry of the system, but may possess higher symmetry (Birss 1964).

In this chapter we illustrate how Birss' tables of tensor components for all crystal point

group symmetries can be used to determine which crystal symmetries may exhibit the

various birefringences which were identified in Chapter 2.

Under space inversion polar vectors undergo a change of sign. Axial vectors, however,

remain invariant under this operation . These are specific instances of the general

transformation rules for polar and axial tensors by which these tensors are defined. Thus

a polar tensor Ta f3v... transforms under both proper and improper rotation of axes

according to

(4.1)

where 8 j
a is the direction cosine of the angle between the i-axis of one set of cartesian

axes and the a-axis of another, both of these sets of axes possessing a common origin.

A space transformation which changes right-handed coordinate axes into left-handed

axes, and vice versa, is an improper transformation. A proper transformation leaves the

handedness of a set of axes unchanged. For an axial tensor:
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T~, = ± T..
k

a.a a .~ ak
Y .. _

OPT ' " lj . .. I J
(4.2)

Here the positive and negative signs apply to proper and improper transformations

respectively.

Jackson (1975) compiled a table in which were listed various polar and axial mechanical

and electromagnetic quantities. In this table the electric field vector E is shown to be

polar, and the magnetic field vector B axial.

The effect of time-reversal allows property tensors to be divided into two types: tensors

whose components remain invariant under time-reversal are called i-tensors, and those

whose components change sign are called c-tensors (Birss 1964).

By inspection of equations (1.36) to (1.40), the various property tensors may be classified

as follows:

TABLE 4.1: Classification of the polarizability tensors

Relative multipole i-tensors c-tensors

, order polar axial polar axial

electric dipole aaR a'aR

electric quadrupole aal3Y G 'al3 a'al3Y GaB

magnetic dipole

electric octopole ba ByO' HaBy,L'aBY b'a 13YO' Ha13y,La13Y

magnetic quadrupole dnRvl'" XnR d'nRvl'i,X'nR
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The polarizability tensors contributing to each of the quantities a, b, c, ... in equation

(2.16) can be identified with reference to equations (1 .62) and (1.63). The various

contributions to these quantities are indicated in the table below:

TABLE 4.2: Quantities in equation (2.16) and their associated property tensors

Quantity Associated Property Tensors

a, k,d . a rtR

g a'rtR

b, e, I a'rtRv' G a R

h artRv, G'a8

c, f, m bNRvfu daRvfll XNR, H aRv, L'aRv

j b'rtRvfll cfaRv~, X'rtR' HClRv , LClRv

4.2 CALCULATION OF TENSOR COMPONENTS FOR SELECTED POINT GROUPS

The quantum mechanical expressions for the polarizability tensors given in Chapter 3

allow one to deduce any intrinsic symmetry of each of these tensors. This intrinsic

symmetry can be used together with the tensor symmetry properties for the specific

point group under consideration, which are given in the tables of Birss (1963), to derive

the non-vanishing independent components of each tensor within this point group.

Examples of this procedure are detailed below for certain members of the hexagonal

and cubic classes.
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4.2.1 Hexagonal Point Group - 622

The non-vanishing tensorcomponents for this point group are shown below, together

with any relationships between them dueto their pointgroup symmetry, as determined

from Birss' tables, and/or any intrinsic symmetry, as derived in Chapter 3.

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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b xxxx = b yyyy = 3bxxyy J b zzzz J

b xxyy = b yyxx = b xyyx = b yxXY = b xyXY = b yXYX '

b xxzz = b yyzz = b xzzx = b yzZy = b xzxz = byzyz ,

b zzxx = b zzyy = b zxxz = b zyyz = b zxzx = b zyzy

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

b ' b' t I I

xzyz = -:- yzxz = b xyzz = -b yxzz = b xzzy =
b ' I I I

yxxx = -3b xyxx = -3b xxyx = -3b xxxy =

= -b 'Xyyy = 3b 'yxyy = 3b 'YYXY = 3b 'yYYX ;

-b 'yzzx '

(4.14)
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d xxxx = d yyyy = d XXYy + 2dXYXY I d zzzz '

d XXYy = d yyxx , d xyyx = d yXXY = d xyxy = d yxyx ,

d xxzz = d yyzz = d zzxx = d ZZyy ,

d xzzx = d yzZy = d xzxz = dyzyz = d zxxz = d Zyyz = d zxzx = d zyzy

, I , I I d'
d'ZXZY = - d'zyzx = d zxyz = -d zyxz = d xzyz= - d yzxz = d xzzy = - yzzx I

I _ I ....:.. I _ a' _
d xxxy - d xxyx - - d xyxx - - yxxx "

=d 'xyyy = d 'yxyy = - d 'yyxy = -d'yyyx ;

x, = Xyy .x,

, ,
Xxy = -X yx

(4.15)

(4.16)

(4.17)

(4.18)

By means ofthe above results it is possible to calculate the components of the tensors

that appear in equation (1.62) . Using equation (1.57) and the symmetry relationships

given in equations (4.6) and (4.8) above we find that
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U s - 0 - Us
xy - - yx'

s _ { 1 ( 0 O ) } _ UsU XZ - Ox -Gxy + 2W 8xxz +8zxx - zx I

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

From equation (1.58) and the relationships in equations (4.5) and (4.7) we obtain:

-u-yx '
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u~z = 0 .

(4.27)

(4.28)

(4.29)

(4.30)

Thesymmetry relationships given in equations (4.9), (4.11), (4.13), (4.15), and (4.17)

together with equation (1.59) yield the following:

v ~x = o/{ -W2bXXYy + ;W2(dxxyy+2 d xyxy) } +

o 2{_ 1,.\2b +1",2d -wH' +x } +
Y 3 VJ xxyy 4 VJ xxyy xzy zz

(4.31)

(4.32)
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V s - a 2{_1t.\2b + 1t .\2d -wH' +x } +
yy - X 3"1.\1 xxyy 4'1.\1 xxyy · xzy zz

a/{ -W2bxxyy +~w2(dxxyy +2dxyxy)} +

a/{ -';'W2b
xxzz + ~w2dxzxz + w(H:yz - L:Zy) +Xxx} , (4.34)

v~z = (a/+a/){ -,;,W2bzzxx+~W2dxzxz+W(H:ay+L~xy)+Xxx} +

a/{ -';'w2bzzzz + ~w2dzzzz} . (4.36)

Equation (1.60) and the relationships in equations (4.10), (4.12),(4.14), (4.16), and

(4.18) give rise to the following tensor components:

= V a = V a = 0 .
yy zz '
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2{ 1 2 ' 1 2 . (H L) ,}0z -3"(0 b xyzz +4(0 d xzyz + (0 xxz - xzx + Xxy = (4.38)

V a - 0 o {_1,.\2b' + 1",2d' -1 oo (H +H -H -L )-V' }=-V a
xz - y z 3"UJ xyzz 4\.U xzyz"2 zzz xxz zxx zzz "Xy zx '

a _ { _ 1 2 ' + 1 2 ' _ 1 (H +H - H - L ) - ' } - -vaV yz - - OXOz 3"(0 b xyzz 400 d xZYZ "2oo zzz xxz zxx zzz Xxy - zy .

4.2.2 Cubic Point Group - ~~

(4.39)

(4.40)

The following non-vanishing components exist for the different property tensor

components for this point group, with any relationships between them also shown:

I , I I , I

a xyz = axzy = a zxy = ayxz = ayz x = a zyx
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I If' HI HI
H xyz = Hzxy = Hyzx = -HxZY = - yxz = - zyx

b xxxx = b yyyy = b zzzz I

bXXYy = byyxx = bXYYX = byxxy = bXyxy = byxyx =

= b xxzz = b yyzz = b xzzx = b yzzy = b xzxz = byzyz =

= b zzxx = b zzyy = b zxxz = b zyyz = b zxzx = b zyzy ;

b 'XXyy = -b 'yYXX = b 'XYYX = -b 'YXXY = b 'XYXY = -b 'YXYX =

= -b 'xxzz = b 'yYZZ = -b 'xzzx = b 'yzZy = -b 'xzxz = b 'yzyz =

= b' b' b' b' b' b 'zzxx = - zzyy = zxxz = - zyyz = zxzx = - zyzy ;
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d xxxx = d yyyy = d zzzz "

d XXYY = d yyxx = d xxzz = d yyzz = d zzxx = d ZZyy ,

d XYYX = d yXXY = d xyxy = d yXYX = d xzzx = d yzZy =

= d xzxz = d yzyz = d zxxz = d Zyyz = d zxzx = d zyzy

«: = -d~yxx = -d~xzz = d~zxx = d~yzz = -d~ZYy

Xxx = Xyy = Xzz •

(4.49)

(4.50)

(4.51)

In a similar way to that used for the hexagonal point group 622 the components of the

tensors that appear in equation (1.62) can be calculated for this cubic point group.

These are:

(4.52)

(4.53)
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(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)



V S - a 2{ _1£,\2b + 1,.\2d } +
xx - x "3U1 xxxx 4"UJ xxxx

VS - a 2{ _1,.\2b + 1,,\2d } +
YY Y 3 UI xxxx 4 UJ xxxx
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(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)



V S - a 2{_ 1w2b + 1w2d } +zz - z 3" xxxx 4" xxxx

V~x = 0 I

V~y = 0 I

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)
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-vazy , (4.74)



v~z = 0 . (4.75)

Once it has been ascertained in each of these point groups whether N-rays exist, which

is the case if equations (2.12) and (2.13) are satisfied, then the above expressions for

the tensor components can be used to calculate the quantities in equation (2.16) and

hence the relevant birefringences that, in principle, should be observable in each

magnetic crystal point group of the cubic and uniaxial classes.
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CHAPTERS

5.1 RESULTS

The procedure outlined in Chapter 4 has been followed for each of the magnetic point

groups of the cubic and uniaxial classes. The non-vanishing components of the tensors

in equations (1.57) to (1.60) so obtained are listed in Tables 5.1 to 5.4. These

components are found from those appearing in Birss' tables for all non-magnetic and

magnetic crystal point groups, relative to crystallographic axes with origin at the centre

of symmetry. These axes serve as principal axes for the polarizability tensor c al3 for all

cubic and uniaxial crystals, for which for the cubic symmetries 0xx=Oyy=ozz. whereas for

the uniaxials 0xx=Oyy*ozz..

5.1.1 The Cubic Point Groups

All components of the magnetic tensors o'al3 and USii vanish for the cubic point groups.

The components of the remaining tensors are listed in Table 5.1 on the following pages.
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TABLE 5.1: The components of Uapand Vap relative to crystallographic axes for cubic

point groups.

Cubic Class Us Us Us
'X!f yz zx

23,m3,132,43m,m3m °zC4 OxC4 OyC4 ·

m3,432, 43m,m3m,m3m,m3m 0 0 0

Cubic Class Ua Ua Ua
'X!f yz zx

23,432,132 -ozK1 -OxK1 -oyK1

m3,m3,43m,43m,m3m, 0 0 0

m3m,m3m,m3m
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Cubic Class vaxy vayz vazx

23,m3 opyK2 oyOzK2 oxozK2

~32,43m,m3m opyK3 oyOZK3 opzK3

m3,432,43m,m3m,m3m,m3m 0 0 0

Cubic Class VSxx VSyy VSzz

23,m3,m3 0/C1+o/C2+o/C3 0/C3+o/C1+o/C2 0/C2+o/C3+o/C1

432,~32,43m,

43m,m3m,m3m, 0/C1+(0/+0/)Cs (o/+oz2)CS+0/C1 (0/+0/)CS+0/C1

m3m,m3m
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Cubic Class VS~ VSyz VSzx

23,m3,m3 OxOyCs opzCs oxozCs

432,~3~,43m,43m,m3m, OxOyC7 opzC7 OXOzC7

m3m,m3m,m3m

C3=-%w2byyxx+~w2d~+w(H'xyz-L'xyz)+Xxx C4=wa'xyz

CS=_1/3W2(bxxyy+byyxx)+~W2(dxxyy+d~)-%w(H'xyz-H'xzy)-Xxx

Cs=-%w2bxi<yy+~w2d~+wH'xyz+Xxx C7=~3W2bxxyy +~W2(dxxyy+d~)-wH'xyz-Xxx

K1=2G'xx K2=-%W2(b'xxyy-b'yyxx)+~W2d'xxyy-%w(Hxzy+Hxyz-2lxyz)

K3=-%w
2b'xxyy+~w2d'xxyy-w(Hxyz-lxyz)

5.1.2 The Hexagonal Point Groups

Only for certain classes of the hexagonal system does the time-odd tensor a' al3 = -a'l3a

exist, namely 6, f), 6/m, 622, 6mm, 6m2, and 6/mmm, and then only the components

a ' =-a'
~ yx'
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TABLE 5.2: The components of Uaa and \la relative to crystallographic axes for

hexagonal point groups.

Hexagonal Class Us Us Us
xx yy zz

6,6,6/m °zC1 °zC1 °zC12

§,6,§lm OxC15+0yC14 -OXC15-0yC14 0

6/m,§lm,6/mmm,§lmmm,

6/mmm,622,6mm, 6m2, 0 0 0

6/mmm

§22,§mm,"S"m2,6m2,§lmmm OXC15 -OxC15 0

622,6mm,6m,2,6/mmm °zC1 °zC1 OzC12
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Hexagonal Class Us Us Us
>rf yz zx

6,6,6/m 0 -axCS+ayC7 aXC7+ayCS

Q,6,Q/m aXC14-ayC15 0 0

6/m,Q/m,6/mmm,Q/mmm,6/mmm 0 0 0

622,6mm,6m2,6/mmm 0 -axCs ayCS

Q22,Qmm, 6m2,6m2,Q/mmm -ayC15 0 0

622 ,6mm,6m2,6/mmm 0 ayC7 axC7

Hexagonal Class Ua Ua Ua
>rf yz zx

6,Q aZK1 -axKs+ay~ -ax~-ayKs

622,Q22,622 azK1 -axKs -ayKs

6mm,Qmm,6mm 0 ay~ -ax~

6,6,6/m,Q/m,6/m,Q/m,6m2,6m2,6m2,

6m2,6/mmm,Q/mmm, 0 0 0

6/mmm,6/mmm,6/mmm,Q/mmm
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Hexagonal "Class V'xx V'yy V'zz

6,Q,6,6,6/m,Qlm,6/m,Q/m OX2C2+oxOyC3+ o/C4-OPyC3+ (o/+O/)C13+

o/C4+o/CS o/C2+o/CS O/C l l

622,Q22,622,6mm,Qmm,6mm,

6m2,6m2,6m2,6m2, OX2C2+0/C4+ o/C4+0/C2+ (o/+O/)C13+

6/mmm,Q/mmm,6/mmm,6/mmm, a/Cs a/Cs O/Cl l

6/mmm,Q/mmm

Hexagonal Class V'xy V'yz V'zx

6,Q,6,6,6/m,Q/m,6/m,Q/m %(O/-oX~C2+ -OxOzCl0+ opzCg+

oxOyCe opzCg oPZC10

622,Q22,622,6mm,Qmm,6mm,

6m2,6m2,6m2,6m2, oPyCe opzCg OxOzCg

6/mmm,Q/mmm,6/mmm,6/mmm,

6/mmm,Q/mmm
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Hexagonal Class va~ vayz vazx

6,6,6/m (0 2+0 2)K + -oP ZK7+oP zKe -oxozKe-oyOzK7x y 2

oz
2K

3

Q,6,Q/m 0 (O}-O/)Kg- (0/- o})KB-

20xoyKB 20pyKg

Q/m,6/m,6/mmm,6/mmm,Q/mmm 0 0 0

622,6mm,6m2,6/mmm 0 0pzKe -oPzKe

Q22,Qmm,6m2, 6m2,Q/mmm 0 (Ox2-0/)Kg -20pyKg

622,6mm,6m2,6/mmm (ox2+0/)K2+ -opzK7 -opzK7

oz
2K

3

C1=2G~+wa'xxz

C3=-%W2b~-w(H'xzx-L'xxJ

C5=-%w2bxxzz +~w2dxzxz+w(H'xyz-L'zxy)+Xxx

C4=-%w2bxxyy+~w2d~ -wH'xzy+Xzz

C6=..2f3w
2bxxyy+~W2(dxxyy+d~)+wH'xzy-)6

C7=-G",,+1/ZT"(a'xxz +a' \ C -G G +1I'T"a'»r nUl zxx) B- xx- zz /ZUI xyz

Cg=-%w2(bxxzz+bzzxJ+~W2(dxxzz+dxzxz)-%w(H'xyz+H'zxy)-Xxx

C10=-%w
2b -%w(H' -H' -H' +2L' -L' )
~ zzz xxz zxx zxx zzz

K1=-2G' -waxx xyz
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K2=..2f3w2b'~+~W2d'~-%w(Hxzx-~)

~=-G'~-%w(axxz -azxx)



Lt =G' +G' -Y2waI '5 xx zz '1!fZ

K7=-1f3w
2b'xyzz+'!4w2d'xzyz -Y2w(H= +Hxxz -Hzxx-L=)-X'xy

Ka=-1/6W2(b'xxxz-b'zxxJ+'!4w2d'xxxz-Y2w(HYYY-lm)

J<g=1/6W2(b'yyyz-b'zyyy) -'!4w2d'yyyz -Y2w(Hxxx-U

5.1.3 The Trigonal Point Groups

For the trigonal pointgroups 3,~, 32, 3m, and 3m, the only components of a' a13 that exist are

a 'xy=-a'yx. For the remaining groups all components of a'a13 are zero.

TABLE 5.3: The components of UaJ3 and \lJ3 relative to crystallographic axes for the

trigonal point groups.

Trigonal Class Us Us Us
xx yy zz

3,3 OxC1+0yC2+0ZC3 -OxG1-0yC2+0zC3 °zC18

3 ,3m,3m 0 0 0

32,3m,3m OxC1 -OxC1 0

32,3m,3m OyC2+OzC3 -OyC2+OzC3 °zC18
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Trigonal Class Us Us Us
xy yz zx

3,3 OxC2-0yC1 -OXC13+0yC12 OxC12+0yC13

3,3m,3m 0 0 0

32,3m,3m -oyC1 -OxC13 0yC13

32,3m,3m OxC2 0yC12 OXC12

Trigonal Class Ua ua uaxy yz zx

3 ozK1 -oxKa+oyKg ~oxKg-OyKa

3,3,3m,3m,3m,3m 0 0 0

32,32 ozK1 -oxKa -OyKa

3m,3m 0 OyKg -oxKg
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Trigonal Class V'xx V'yy V'zz.

3,"3",3 O/C4+0XOyCs+OxOzC6+ o/CrOXoyCs- (ox2+0/)C19+

o/C7+opzCa+o/Cg °xOzC6+0/C4- Oz
2C

20

opzCa+oz2Cg

32,32,3m,3m,3m, o/C4+0/C7+opzCa+ o/C7+0/C4- (o/+O/)C1gi

3m,3m,"3"m OZ
2Cg opzCa+oz2Cg o/C20

Trigonal Class VSxy VSyz VSzx

3,"3", 3 (o/-o/)C10+ Y2(o/-o/)C1S- (ox2_0/)C14+

OxOyC11+oxozCa- 20xOyC14-0PZC17+ OxOyC1s+OpzC16+

°PzC6 °PZC16 °PzC17

32,32,3m,3m,"3"m, OPYC 11+opzCa Y2(o/-o/)C1S+ OPyC1s+OPzC16
"3"m,3m,3m °PzC16
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Trigonal Class vaY:'( vayz vazx

3,""3" (ox2+0/)K2+ %(0/-0/)Ks-20xoyKt- (0/-0/) Kt-oxoyKs-

oz
2K

3 oPzK7+opzKs oxozKs-opzK7

3 ,3m,""3"m 0 0 0

32,3m,3m 0 %(o/-a/)Ks+opzKa -opyKs-opzKs

32,3m,3m (0/+0/)K2+ -20xoyKt-oxozK7 (o/-ox2) Kt-apzK7

0/K3

C4=-1I3w
2bxxxx+~w2dxxxx

C6=-2f3W
2b

xxxz+%w2d
xxxz-w(H'yyy-L'yyy)

Ca=%w
2b -%w2d -w(H' -L' )yyyz yyyz xxx xxx

Cl0=1f3w2bXXY:'f+%w(H'xzx-L'xxz)

C12=-GY:'(+%w(a'xxz +a'zxJ ·

C3=2GY:'(+wa'xxz

C5=-%w
2bXXY:'f-w(H'xzx-L'xxz)

C7=-1f3w
2bX'/:'fY+~w2dY:'fY:'f-wH'xzy+Xzz

Cg=-1f3w
2b

xxzz+~w2dxzxz+w(H'xyz-L'zxy)+Xxx

Cll=-%w2bX'/:'fY+Xw2(dX'/:'fY+dY:'fY:'f)+wH'xzy-Xzz

C14= - 1/6 w2 (bxxxz+bzxxx)+Xw2dxxxz+%w(H'yyy-L'yyy) C15=1f3W
2 (byyyz+bzyyy)-%w2dyyyz+w(H'xxx-L'xxx)

C16=-1f3w
2(b

xxzz+bzzxJ+'Xw2(dxxzz+dxzxz)-%W(H'xyz+H'zxy)-Xxx

C17=-1f3w
2bxyzz -%w(H'zzz -H'xxz -H'zxx +2L'zxx -L'zzz)

C19=-1f3w2bzzxx+'Xw2dxzxz+w(H'zxy+L'zxy)+Xxx

K1=-2G' -toaxx xyz K2=-2f3W
2b'XXY:'f+'Xw2d'XXY:'f-%w(Hxzx-Lxxz)

K4=-1/6W2(b'xxxz-b'zxxx)+Xw2d'xxxz-%w(Hyyy-Lyyy)

Ks=1f3w2(b'yyyz-b'zyyy) -%w2d'yyyz -w(Hxxx-Lxxx)

it' =-1f3w2(b' -b' )+~w2d' +%w(H -H -2L ), '6 xxzz zzxx xxzz xyz zxy zxy
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5.1.4 The Tetragonal Point Groups

Only the components a'xy=-a'yx of a'al3 do not vanish for the following tetragonal point groups:

4, 4, 4/m, 422, 4mm, 42m, and 4/mmm. For the other tetragonal classes all components of

a'al3 are zero.

TABLE 5.4: . The components of Ua 13 and Va 13 relative to crystallographic axes for the tetragonal

point groups.

Tetragonal Class Us Us Us
xx yy zz

4,4,4/m °zC1 °zC1 ozCa

~,4,~/m °zC1 -ozC1 0

4/m,~/m,4/mmm,~/mmm,4/mmm 0 0 0

422,4mm,42m,4/mmm 0 0 0

~22,~mm,42m,42m,~/mmm 0 0 0

422,4mm,42m,4/mmm °zC1 °zC1 ozCa
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Tetragonal Class Us Us Us
xy yz zx

4,4,4/m 0 -OXC10+0yCg OxCg+OyC10

1,4 ,1/m °zC15 OXC16-0 yC9 OXCg+OyC16

4/m,1/m,4/mmm,1/mmm,4/mmm 0 0 0

422,4mm,42m,4/mmm 0 -OxC10 OyC10

122,1mm,42m,42m,1/mmm °zC15 . OxC16 0yC16

422,4mm,42m,4/mmm 0 OyCg OxCg
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Tetragonal Class Ua Ua Ua
Xi yz zx

4,~ ozK1 -Ox~+OyK3 -OxK3-0y~

4,4 0 OxK10-oyK3 -OxK3-0yK10

4/m,~/m,4/m,~/m,4/mmm,Mmmm, 0 0 0

4/mmm,4/mmm,4/mmm,~/mmm

422,~22,422 ozK1 -ox~ -Oy~

4mm,~mm,4mm 0 oyK3 -OxK3

42m,42m,42m,42m 0 OxK10 -oyK10

Tetragonal Class VS'JX VSyy VSzz

4,~, 4,4,4/m,~/m,4/m,Mm O/C2+OXOYC 3+ o/C4-OPyC3+ (o/+O/)C13+

o/C4+o/CS o/C2+0/CS Oz
2C

14

422,~22,422,4mm,~mm,4mm,

42m,42m,42m,42m,4/mmm, o/C2+0/C4+ o/C4+0/C2+ (Ox2+0/)C13+
~/mmm,4/mmm,4/mmm , O/Cs oz

2C
S Oz

2C
14

4/mmm,~/mmm
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Tetragonal Class VSY:'{ VSyz VSzx

4,1,4, 4 ,4/m,1/m,4/m,1/m (o/-0/)C7+ -OxOzC12+ OPzC11+
oPyCe °PZC11 °PZC12

422,122,422,4mm,1mm,4mm,

42m,42m,42m,42m, oPyCe °PzC11 oPzC11

4/mmm,1/mmm,4/mmm,4/mmm,
4/mmm,1/mmm

Tetragonal Class VSY:'{ VSyz VSzx

4,4,4/m (o/+0/)K2+ -oxozKe+ -00 Ks-x z
oz

2K
7 °pzKs °pzKe

1,4,1/m (o/-0/)K2+ OPzK11- -00 Ke-x z
OxOyKg °pzKe OPZK11

4/m,lIm,4/mmm,4/mmm,1/mmm 0 0 0

122,1mm,42m,42m,1/mmm oPyKg -opzKe -oxozKe

422,4mm,42m,4/mmm (o/+0/)K2+ -oPzKe -opzKe
0/K7

422,4mm,42m,4/mmm 0 °pzKs -oPzKs
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C1=2Gxy+ooa'xxz

C3=-2f3w
2bxxxy+%oo2dxxxy-oo(H'xzx-L'xxJ

Cs=-1f3oo
2b

xxzz+'Xoo2dxzxz+oo(H'xyz-L'zxy)+Xxx

C7= - 1/6 oo
2 (bxxxy+byxxx)+'Xoo2dxxxy+%w(H'xzx-L'xxJ

Cg=-Gxy+%oo(a'xxz +a'zxJ ClO=GXX-GZZ+%ooa'xyz

C11=-1f3w
2(b

xxzz+bzzxx)+'Xoo2(dxxzz+dxzxz)-%oo(H'xyz+H'zxy)-Xxx

C12=-1f3oo
2b -%w(H' -H' -H' +2L' -L' )xyzz =. xxz zxx zxx zz:

K1=-2G' -waxx xyz

C16=Gxx+%w(a'xyz+a'zxy)

K2=-1/6oo2(b'xxxy-b'yxxx)+'Xw2d'xxxy-%w(Hxzx-Lxxz)

Ks=-1f3w2(b'xxzz-b'zzxx)+'Xw2d'xxzz+%00(Hxyz-Hzxy-2lzxy)

11' =-1f3oo2b' +'Xw2d' -%oo(H +H -H -L )-X'''6 xyzz '1ZYZ tzz xxz zxx =. xy

Ka=_1/3oo2(b'xxzz-b'zzxx)+'Xoo2d'xxzz+%oo(Hxyz+Hzxy-2lzxy)

Kg=-2f3oo2b'xxyy+'Xoo2d'xxyy-w(Hxzy-lxyz)

K10=G'xx-%00(axyz-azxy)

K11=-1f3w2(b'xyzz-b'zzxy)+'Xw2d'xyzz -%oo(Hxxz +Hzxx-2LzxJ
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5.2 DETERMINATION OF OPTICAL EFFECTS IN "6"m2

The different optical effects apparent in crystals belonging to the om2 point group will be

determined as an example of the application of the method outlined in Chapter 2.

5.2.1 Propagation along the z-axis.

With 0=(0,0.1) equation (1.63) together with the tensor components given in Table 5.2

leads to the following determinantal equation:

1 n2
-n 2 +1+-0 +--Csxx 2

8 C 8o 0

°

°

°
1 n 2

-n 2 +1+-0 +--Cs8 xx 2
o C 8 0

°

°
°

1 n2
1+-0 +--C

8 zz 2 13
o C 8 0

=0. (5.1)

. The first two equations from which this determinant is obtained indicate the propagation of N-

rays, since equations (2.12) and (2.13) are satisfied. The third equation, however, shows that

there is a wave which has an electric field in the direction of propagation. This is termed an

additional ray. This type of wave will not be considered further in this dissertation.

80



The determinant in equation (5.1) reduces to the following 2x2 determinant:

o

o

2 1 n 2
-n +1 +- 0 +- - Csxx 2e C eo 0

= 0 . (5.2)

In orderto obtain this equation in the form of (2.17), equations (2.18) to (2.21) are used to

derive the following expressions for the relevant coefficients:

B = 0 ,

C=o ,

0=0 .

Equation (5.2) then becomes

(5.3)

(5.4)

(5.5)

(5.6)

o
= 0 .
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This is identical in ·form to equation (2.22). It can hence be concluded that for propagation

down the optic axis no birefringence will be exhibited by a crystal that belongs to this point

group.

5.2.2 Propagation along the y-axis.

When light is propagated along 0=(0,1,0), equation (1.63) becomes:

1 n2
-n 2 +1+-0 +--C4e xx 2

o C eo

o

-.!!-C
ce 10

o

o

1 n2
1+-0 +--C2e xx 2

o C eo

1 n2
-n 2+1+- 0 +--C15e ZZ 2

o C eo

= O . (5.8)

These are clearly not N-rays, since the equations equivalent to equations (2.12) and (2.13)

for y-propagation are not satisfied. The Jones method for the determination of optical

effects can therefore not be applied for this propagation direction.
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5.2.3 Propagation along the x-axis.

For 0=(1,0,0) equation (1.63) becomes:

1 n 2
1+-a +--C2e xx 2

o C eo

°
°

°
1 n2

-n 2+1+-a +--C4xx 2e c eo 0

°
--!!.-C -~K

10 2 9
ceo c eo

2 1 n 2
-n +1+-a +--C15e zz 2

o C eo

=°. (5.9)

Apart from an additional wave, there are two other rays which propagate along the +x axis,

both N-rays as inspection of the determinant shows. For them equation (5.9) reduces to

1 n2
-n 2 +1+-a +--C4xx 2e c eo 0

= ° . (5.10)

The coefficients in equation (2.17) become
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n
C = --C10 '

CE:o

(5.12)

(5.13)

(5.14)

Since none of thesecoefficients vanish, the analysis in Chapter 2 indicates that this crystal will

display all threetypes of birefringence. The first of these is a linear birefringence relative to the

y and z crystallographic axes of the crystal, namely

1 1 1 1

ny - nz = (1 +X)2 - (1 -X)2 + Y + ; Z[(1 +X)2 + ( 1 -X)2] ,

where

Y = 0 ,
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and

1 [1 2b 1 2d H'= -- - - 00 xxyy +-W xyxy -00 xzy +XZZ2c2e 3 4
o

1 2 1 2 ' L' ) ]+ "3W b ZZXX -"4W d xzxz - w (H zxy+ zxy +Xxx . (5.18)

Although the term (C4C15) is much smaller than the (axx-a,J term, since the former is of

electric octopole-magnetic quadrupole order, it is included at this stage for completeness.

The second is a linear birefringence relative to the bisectors of these axes, namely that named

after Jones (Graham and Raab 1983):

n -n
- +

1= - Cce: 10
o

1 1 '= -(Gxx - Gzz + -W8 xyz)
ce: 2

o

(5.19)

The third is a circular birefringence, given by

_ 1 [ 1 2(b' , 1 2 ' 1 ]- - - 2 - sW yyyz - b zyyy) -"4w d yyyz - ;,00(Hxxx -Lxxx)
c eo
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The above procedure was followed for all the cubic and uniaxial point groups, leading to

predictions of the optical effects that result from contributions by the polarizability tensors of

different multipole order. These predictions are displayed in Table 5.5.

5.3 SUMMARY

In this chapter, with the theory taken to the order of electric octopole and magnetic quadrupole,

the multipole contributions to the wave equation were determined for all magnetic crystals of

the cubic and uniaxial systems. The details of the relevant expressions in terms of multipole .

polarizability tensors are presented in Section 5.1. With the wave equation cast in

.determinantal form, inspection of its elements allows immediate identification to be made, as

described in Chapter 2, of whether N-rays may propagate for the chosen light path, since the

Jones calculus applies only to such rays, and also of whether any of the three platelet

birefringences that enter Jones' M-matrix may occur. The simplest propagation directions to

treat in this way are those along the three orthogonal crystallographic axes. An illustration of

the procedure is given in Section 5.2, where the symmetry class 6m2 was analysed.

Indications of the existence of these three birefringences in the cubic and uniaxial point groups

are presented in Table 5.5. The symbols in an entry in the table, such as aL'H'bdx. are those

for the polarizability tensors that contribute to the birefringence.
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All tensor contributions to the order of electric octopole and magnetic quadrupole are included

in the results in this -dissertation for the sake of completeness. However, not all of these

contributions will be detectable experimentally, as the effects of tensors related to higher order

multipoles will in some cases be masked by the much larger relative effects of lower order

multipole contibutions. An instance of this is where the effect of the VSa~ tensor in linear

birefringence in uniaxial crystals is masked due to the presence of the a S
a 13 tensor, which

produces a much greater contribution to this effect.

Where in Table 5.5 an entry in the linear birefringence column is indicated in parentheses, this

means that the linear birefringence which has been calculated to be along the bisectors of the

crystallographic axes which lie perpendicular to the propagation direction is not accompanied

by a normal linear birefringence, and hence is not considered a Jones birefringence. This

birefringence is measurable as a normal linear birefringence with the crystallographic axes

rotated through an angle of 45°.
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Table 5.5 Symmetry Indications for the Existence of Birefringences for N Rays in the Magnetic Crystal Groups
within the Electric-Octopole Magnetic-Quadrupole Approximation

z-Propagation y-Propagation x-Propagation
ystem Group ~Rays7 (ny-nx ) (n.en, ) (nr-n/ ) ~Rays7 (nx-nz) (n, -n+ ) (nr-n/ ) ~Rays7 (nz-ny ) (n. -n, ) (nr-n/ )

:tragonal 4 Yes 0 0 a'G'ab'd'LHX' No - - - No

~ Yes Ga' Ga' G'a No - - - No
4 Yes Ga' Ga' a'LHb'd'X' No - - - No

~ Yes 0 0 0 No - - - No
4/m Yes 0 0 a'LHb'd'X' No - - - No
ilm Yes 0 0 0 No - - - No
4/m Yes 0 0 0 No - - - No

ilm Yes Ga' Ga' 0 No - - - No
422 Yes 0 0 G'a Yes aL'H'bdx Ga' G'a Yes aL'H'bdx Ga' G'a

i22 Yes (Ga1 0 G'a Yes aL'H'bdx Ga' G'a Yes aL'H'bdx Ga' G'a

4.2.Z. Yes 0 0 a'G'aLHb'd'x' No - - - No
4mm Yes 0 0 0 No - - - No
~mm Yes (Ga1 0 0 No - - - No

-nm Yes 0 0 a'LHb'd'x' No - - - No
42m Yes (Ga1 0 0 Yes aL'H'bdx Ga' G'a Yes aL'H'bdx Ga' G'a

.!2m Yes 0 0 0 Yes aL'H'bdx Ga' G'a Yes aL'H'bdx Ga' G'a

!Z.m Yes 0 0 0 No - - - No

4.2.m Yes (Ga1 0 a'LHb'd'x' No - - - No
4/mmm Yes 0 0 0 Yes aL'H'bdx 0 0 Yes aL'H'bdx 0 0

ilmmm Yes 0 0 0 Yes aL'H'bdx 0 0 Yes aL'H'bdx 0 0

4/mmm Yes 0 0 a'LHb'd'x' No - - - No
4/mmm Yes 0 0 0 Yes aL'H'bdx Ga' 0 Yes aL'H'bdx Ga' 0

4/mmm Yes 0 0 0 No - - - No

ilmmm Yes (Ga1 0 0 Yes aL'H'bdx Ga' 0 Yes aL'H'bdx Ga' 0

rigonal 3 Yes 0 0 a'G'aLHb'd'x' No - - - No
3 Yes 0 0 a'LHb'd'x' No - - - No

:3- Yes 0 0 0 No - - - No
32 Yes 0 0 G'a No - - - Yes aa'L'H'bdx Ga'L'H'bd G'aLHb'd'

3"- Yes 0 0 a'G'aLHb'd'X' No - - - No
3m Yes 0 0 0 No - - - No
3m Yes 0 0 a'LHb'd'x' No - - - No
3m Yes 0 0 0 No - - - Yes aL'H'bdx L'H'bd L/-Ib'd'

jm Yes 0 0 a'LHb'd'x' No - - - No

:!ID Yes 0 0 0 No - - - Yes aa'L'H'bdx Ga'L'H'bd 0

~m Yes 0 0 0 No - - - No



2'-Propagation y-Propagation x-Propagation
System Group N-Rays? (ny""nx ) (n, -n+ ) (n,-n, ) N-Rays? (nx-nz) (n, -n+ ) (n,-n, ) N-Rays? (nz-ny) (n, -n, ) (n,-n, )

Hexagonal 6 Yes 0 0 a'G'aLHb'd'x' No · - - No
,2 Yes 0 0 G'a No - - - No
0- Yes 0 0 a'LHb'd'x' No - - - No
Q Yes 0 0 0 No · - - No

6/m Yes 0 0 a'LHb'd'X' No - - - No

.2!m Yes 0 0 0 No · - - No
6/m Yes 0 0 0 No · - - No
.2!m Yes 0 0 0 No - - - No
622 Yes 0 0 G'a Yes aL'H'bdx Ga' G'a Yes aL'H'bdx Ga' G'a

,222 Yes 0 0 G'a No - - - Yes aa'L'H'bdx 0 G'aLHb'd'

6.2.2. Yes 0 0 a'G'aLHb'd'X' No - - - No
6mm Yes 0 0 0 No - . - No
,2mm Yes 0 0 0 No - - - No
enm Yes 0 0 a'LHb'd'X' No - - . No
6m2 Yes 0 0 0 No - - - Yes aa'L'H'bdx 0 0

2m2 Yes 0 0 0 No - - - Yes aL'H'bdx Ga' LHb'd'

Qln2 Yes 0 0 0 No - . - No
brnZ Yes 0 0 a'LHb'd'X' No · - - No

6/mmm Yes 0 0 0 Yes aL'H'bdx 0 0 Yes aL'H'bdx 0 0

.2!mmm Yes 0 0 0 No - - - Yes aL'H'bdx 0 LHb'd'

6/mmm Yes 0 0 a'LHb'd'X' No - - - No
6/mmm Yes 0 0 0 Yes aL'H'bdx Ga' 0 Yes aL'H'bdx Ga' 0

6/mmm Yes 0 0 0 No - - - No
.6Immm Yes 0 0 0 No - - - Yes aa'L'H'bdx 0 0

Cubic 23 Yes L'H'b a' G' Yes L'H'b a' G' Yes L'H'b a' G'

m3 Yes L'H'b 0 0 Yes L'H'b 0 0 Yes L'H'b 0 0

m3 Yes L'H'b a' 0 Yes L'H'b a' 0 Yes L'H'b a' 0

432 Yes 0 0 G' Yes 0 0 G' Yes 0 0 G'

~3.£ Yes (a') 0 G' Yes (a') 0 G' Yes (a') 0 G'

<Bm Yes (a') 0 0 Yes (a') 0 0 Yes (a') 0 0

!3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes (a') 0 0 Yes (a') 0 0 Yes (a') 0 0



CHAPTER 6

6.1 DISCUSSION OF RESULTS

Table 5.5, in conjunction with Tables 5.1 to 5.4 and equations (2.36), (2.45), and (2.49),

allows the actual expressions to be written down, in terms of multipole polarizability

tensors, for the birefringences that will exist for N-rays propagating along a given

crystallographic axis in any cubic or uniaxial magnetic crystal. Such a quantitative

expression indicates which macroscopic tensor component, or components, are

responsible for a particular birefringence, and enables one to assess the magnitude of

the effect, and hence the prospect of measuring it.

In considering the orders of magnitude of the various multipole tensors, we note from

equations (3.26) and (3.27) that both aa~and a'a~contain the matrix elements only of the

electric dipole moment density P, which is the leading term in the multipole expansion

of D in equation (1.31). Other such expansions of electrodynamic quantities, for instance

the vector potential or the current density (Graham, Pierrus and Raab 1992), show that

the electric dipole contribution stands alone as the leading term in the expansion,

followed in the next term by both the electric quadrupole and magnetic dipole

contributions, and then by those of the electric octopole and magnetic quadrupole.

These different multipole orders have been shown theoretically to explain the various

birefringences observed in non-magnetic and some magnetic crystals, in particular those

listed in Table 5.5.
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The well-known linear birefringence in uniaxial crystals like quartz and calcite, which

occurs when propagation is perpendicular to the optic axis, and also that in biaxials, such

as mica, has long been explained in terms of the difference between principal

components of the electric polarizability tensor 0al3" Some values of no-ne for different

crystals at room temperature and sodium yellow light are (Jenkins and White 1950)

Quartz : -0.00911

Calcite: 0.17195

For a wavelength of 632.8nm (Landolt and Bornstein 1979)

KDP: 0.0398

Because all birefringences, whatever their cause, measure the difference between two

refractive indices for orthogonal polarization states, a direct comparison of observed

orders of magnitude can be made for different types of birefringence. While the above

linear birefringences fall typically in the approximate range 10 -2 to 10 -1, circular

birefringence, as a traditional manifestation of optical activity, has values for ti-n,

exemplified as follows (American Institute of Physics Handbook) :

Quartz: 7 x 10-5 for a wavelength of 589.3nm

This is seen to be roughly two orders of magnitude smaller than the familiar linear

birefringences in uniaxial and biaxial crystals. Theory shows that the tensors responsible

for circular birefringence in non-magnetic uniaxial and biaxial crystals are aal3v and G'al3'

with both entering the tensor expression for nrnI (For cubic crystals and isotropic fluids

89



there is no contribution from aa(3y). Equations (3.28) and (3.33) show that aa(3Y contains

matrix elements of P; and the electric quadrupole moment density Qa(3' while G'a(3

involves both P« and Ma' the magnetic dipole moment density. Thus relative to 0a(3 the

tensors aa(3y and G'a(3 are of order electric quadrupole and magnetic dipole. Their

contribution to circular birefringence is typically two orders of magnitude smaller than

that of the electric dipole tensor 0a(3 to linear birefringence. Despite the much smaller

magnitude of nr-n" it is readily measured in practice . To show this we note that the

rotation of the plane of linearly polarized light through an angle <P is related to nr-n, by

<P = 2nQ (n - n )
A r' (6.1)

(Jenkins and White 1950) where pis the path length in the medium and Athe wavelength

of the light. For ~0.5cm, A=500nm, and nr-nF10-4, one obtains

<P = 2nrad = 360 0
• (6.2)

Thus although circular birefringence in non-magnetic crystals is due to the electric

quadrupole and magnetic dipole tensors a a(3y and G'a(3' respectively, and is typically two

orders of magnitude smaller than the normal linear birefringence that characterises

uniaxial and biaxial crystals, nevertheless it can be readily and accurately measured.

Indeed, for many substances the rotation <p exceeds 360°for the path lengths used, and

for its actual value to be certain, <p should be measured for a number of samples of

different thickness.
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When the theory is taken to the next multipole order, namely electric octopole-magnetic

quadrupole, one is led to ask whether the birefringence, due to tensors of this order, as

indicated in Table 5.5, are too small to be measurable. The experimental record shows

that Lorentz measured a linear birefringence of about 10-8in a crystal.of rock salt (1922),

following his prediction of this effect in certain cubic crystals (1878). Subsequent

measurements by others (Pastrnak and Vedam 1971, Pastrnak and Cross 1971) of a

linear birefringence in a variety of non-magnetic cubic crystals yielded a similar order of

magnitude. A theoretical explanation of this birefringence in terms of electric octopole

and magnetic quadrupole contributions was published in 1990 (Graham and Raab), and

this is confirmed for certain magnetic cubic crystals in the present work, as Table 5.5

shows.

The conclusion from the last paragraphs is that, where a birefringence is shown by

theory to be due to non-magnetic polarizability tensors of multipole orders up to and

including electric octopole-magnetic quadrupole, its accurate measurement is

experimentally possible, at least where it is the only birefringence occurring for a given

light path. Where two birefringences of different multipole origin occur simultaneously,

as for propagation perpendicular to the optic axis in quartz, for example, where both

linear and circular birefringences exist, special techniques may be used, for instance the

method of intensity differentials (Raab 1975), high-precision polarimetry (Kobayashi and

Uesu 1983, Kobayashi et aI1983), and the tilter method (Kaminsky and Glazer 1996).
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In order for the various optical properties of a crystal to be identifiable from Table 5.5, we

need to know which of the property tensors are associated with each optical effect. The

tensor 0a13 is the polarizabilltv tensor which accounts for first-order refraction effects in

matter.

G'a13 and 8 a13v describe optical activity, which has been described previously in this

chapter. Hobden's method (1968, 1969) experimentally confirmed optical activity in the

non-magnetic tetragonal classes 42m and 4. In this method, Hobden exploited the

intersection of the dispersion curves of the refractive indices of the ordinary and

extraordinary rays to enable him to measure optical activity without the presence of the

much larger effect of a linear birefringence.

The tensors ba13vo , da f3vo , H a13v' L'af3v' and Xa13 are related to second order refraction

phenomena, for instance linear birefringence in cubic crystals, which was first predicted

on grounds of symmetry by Lorentz in rock salt and then in m3 crystals by Condon and

Seitz (1932) and later explained by Graham and Raab (1990), and the Jones

birefringence in certain non-maqnetic crystals (Jones 1948, Graham and Raab 1983,

Graham and Raab 1994). A linear birefringence in cubic crystals has been observed

(Lorentz 1922, Pastrnak and Vedam 1971, Pastrnak and Cross 1971). Table 5.5

confirms this higher-order linear birefringence in the cubic classes 23, m3, and m3. The

Jones birefringence has been predicted for the non-magnetic classes 32 and "3"m

(Graham and Raab 1994), and in Table 5.5 is also predicted for the magnetic class 3m.
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Pastrnak and Vedam (1971) measured the magnitude of electric octopole-magnetic

quadrupole effects to be M:::o5x10-O. Because many magnetic crystals are strongly

coloured it may prove difficult to work in the region of an absorption band, but where this

is possible the magnitude of such a higher-order effect would be greatly enhanced.

Of the time-odd tensors, a'a(3 exists only for crystals which possess a spontaneous

magnetic moment, and it describes the intrinsic Faraday effect in ferromagnetic materials

(Suits, Argyle and Freiser 1966, Graham and Raab 1991a). Crystals for which the a' a(3

tensor vanishes identically are antiferromagnetic.

The second-rank axial c-tensor Ga (3 and the third-rank polar c-tensor a~l3v give rise to

non-reciprocal linear birefringence in magnetic crystals, either a linear birefringence

relative to the crystallographic axes, or a Jones birefringence relative to the bisectors of

these axes. Being non-reciprocal, these birefringences change sign when the light path

is reversed. This property should enable them to be seperated experimentally from

reciprocal effects due to i-tensors.

For N-rays the tensors b'a(3y(> , d a(3y(>, Ha(3y, La (3y , and X'al3of electric octopole-magnetic

quadrupole are responsible for a Faraday-type rotation. For z-propagation this is always

accompanied by the much larger contribution due to the electric dipole c-tensor a' al3 ' so

that the higher-order effect would be impossible to detect. However, for propagation

along the x-axis in certain trigonal and hexagonal crystals, these tensors contribute

93



independently of the a'a~ tensor, and should thus, in principle, be measurable. Table 5.5

indicates that all the crystals for which this effect has been predicted are

antiferromagnetic. This is surprising, as these crystals possess no net magnetic dipole

moment which would be associated with an internal magnetic field producing the

Faraday-type rotation. A similar effect has been predicted for propagation along the

body-diagonal in cubic antiferromagnets. (Graham and Raab 1991)

Some of the optical effects predicted in Table 5.5 merit particular discussion. In 1963

Brown, Shmkman and Treves reported their theoretical study of the optical properties of

magnetic materials using symmetry considerations and found that in addition to the

expected effects of linear birefringence and optical activity, both of which are reciprocal,

and a non-reciprocal (Faraday-type) rotation, certain magnetic crystals should exhibit

a new spontaneous optical effect, namely a non-reciprocal gyrotropic birefringence.

Subsequently Hornrelchand Shtrikman (1968) found this birefringence to manifest itself

as a rotation of the principal optical axes together with a change in the velocity of

propagation of the wave in the medium. Whereas ferromagnetic crystals with their net

magnetic dipole moment may exhibit a non-reciprocal rotation, gyrotropic birefringence

may exist in the absence of such a moment. In addition, these authors recognised that

this effect is due not only to the magnetoelectric tensor, as Birss and Shrubsall (1967)

had predicted, but that it depends also on electric quadrupole contributions. Graham and

Raab (1994) showed that the gyrotropic birefringence predicted in Cr203 by Homreich

and Shtrikman (1968) can be decomposed into three linear birefringences:the usual

reciprocal property relative to crystallographic axes, a non-reciprocal birefringence
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relative to these same axes, and a non-reciprocal Jones birefringence relative to the

bisectors of these axes.

From Table 5.5 it is clear that there is a number of crystal classes in which the non­

reciprocal Jones birefringence and a normal linear birefringence occur simultaneously

for propagation perpendicular to the optic axis. The crystals belonging to these classes

are thus considered to be gyrotropic. Most of these crystals are magnetoelectric, having

a non-zero G tensor which contributes to the Jones birefringence. The relevant point

groups are 422,122, 42m, 42m, 4/mmm, 1/mmm, 32, 3m, 622, 6m2, and 6/mmm.

It is of interest to note that there is one point group in which a reciprocal Jones

birefringence occurs simultaneously with a linear birefringence for propagation

perpendicular to the optic axis, namely the point group 3m. In this case the Jones

birefringence would be difficult to detect, as it arises from the electric octopole-magnetic

quadrupole tensors L ~ H~ b, and d. This is an instance in which the Jones birefringence

may exist in a medium which does not exhibit gyrotropic birefringence, if this term is

understood in its original sense of being non-reciprocal.

There are a few point groups where, for propagation along the optic axis, the non­

reciprocal Jones birefringence coexists with a non-reciprocal linear birefringence, both

due to the c-tensors G and a'. These groups are 1, 4, and 1/m. This result is consistent

with earlier predictions that gyrotropic birefringence linear in G should occur for z­

propagation in tetragonal crystals when Gxx=-Gyy (Bonfim and Gehring 1980), and when
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GXy=-Gyx (Ferre and Gehring 1984).

The Jones birefringence was predicted for the above 15 uniaxial magneticpoint groups

by Graham and Raab (1983).

Contrary to the findings of Birss and Shrubsall (1967), thereare somegyrotropic crystals

in which the magnetoelectric tensorvanishes. These are the cubic point groups 23 and

m3, which exhibit a non-reciprocal Jones birefringence linearin a'. The latter effect was

predicted by Graham and Raab (1992).

Where in Table5.5 a birefringence relative to the bisectors of the crystallographic axes

occurs in the absence of normal linear birefringence, as in the point groups ~22, ~mm,

42m, 42m, and ~/mmm for z-propagation, and ~32, 43m, and m3m for X-, y-, or z­

propagation, the former is not considered a true Jones birefringence, as it may be

expressed as the normal effectwith its fastand slowaxesrotated through an angle of 45 ~

6.2 IDENTIFICATION OF CRYSTALS

Table 6.1 contains a listing of the magneticuniaxial and cubic point groupswhich can

be uniquely distinguished from the other magnetic symmetry classes through

birefringence measurements. Sincethe different non-magnetic pointgroups to which the

various magnetic crystals belong can be distinguished from one another through X-ray

diffraction techniques, it suffices that magnetic crystals need only be uniquely identifiable
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within each non-magnetic point group. This table indicates that 58 of the 70 uniaxial and

cubic crystals can be uniquely identified in this way. The 12 crystal classes which are

not able to be uniquely identified are listed in Table 6.2.

The distinguishing birefringences of the point groups listed in Table 6.1 provide in

principle an alternative approach to neutron diffraction for the determination of the

magnetic point groups of the relevant crystals.
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Table 6.1 List of Uniquely Identifiable Crystal Groups

z-Propagation y-Propagation x-Propagation
stem Group ~Rays7 (ny-nx ) (n, -n, ) (n,-n/ ) ~Rays7 (nx-nz) (n, -n, ) (n,-n/ ) ~Rays7 (nz-ny ) (n. -n, ) (n, -n/ )

ragonal 4 Yes 0 0 a 'G'ab'd'LHx' No - - - No
,1 Yes Ga' Ga' G'a No - - - No
"4 Yes Ga' , Ga' a 'LHb 'd'x ' No - - - No
1: Yes 0 0 0 No - - - No

4/m Yes 0 0 a'LHb'd 'x' No - - - No
Ym Yes Ga' Ga' 0 No - - - No
422 Yes 0 0 G'a Yes aL'H'bdz Ga' G'a Yes aL'H'bdz Ga' G'a

,122 Yes (Ga') 0 G'a Yes aL'H'bdz Ga' G'a Yes aL 'H'bdz Ga' G'a

422. Yes 0 0 a 'G'aLHb'd'x' No - - - No
4mm Yes 0 0 0 No - - - No
,1mm Yes (Ga') 0 0 No - - - No
-mn Yes 0 0 a'LHb 'd'x' No - - - No
42m Yes (Ga') 0 0 Yes aL'H'bdz Ga' G'a Yes aL 'H'bdz Ga' G'a

! 2m Yes 0 0 0 Yes aL'H'bdz Ga' G'a Yes aL'H'bdz Ga' G'a

!Z.m Yes 0 0 0 No - - - No
4Zrn Yes (Ga') 0 a 'LHb 'd'x' No - - - No

4/mmm Yes 0 0 a 'LHb'd'x' No - - - No
4/mmm Yes 0 0 0 Yes aL'H'bdz Ga' 0 Yes aL'H'bdz Ga' 0

4/mmm Yes 0 0 0 No - - - No
Ymmm Yes (Ga') 0 0 Yes aL'H'bdz Ga' 0 Yes aL'H'bdz Ga' 0

gonal 3 Yes 0 0 a'G'aLHb'd'x' No - - - No
3 Yes 0 0 a'LHb'd'X' No - - - No
:a- Yes 0 0 0 No - - - No
32 Yes 0 0 G'a No - - - Yes aa'L'H'bdz Ga'L'H'bd G'aLHb'd'

32 Yes 0 0 a'G'aLHb'd'x ' No - - - No
3m Yes 0 0 0 No - - - No
3m Yes 0 0 a 'LHb'd'x' No - - - No
3m Yes 0 0 0 No - - - Yes aL'H'bdz L'H'bd LHb'd'

3m Yes 0 0 a 'LHb'd'x' No - - - No
~ Yes 0 0 0 No - - - Yes aa'L'H'bdz Ga'L'H'bd 0

~m Yes 0 0 0 No - - - No



z-Propagatlon y-Propagation x-Propagation
System Group ~Rays7 (nynX ) (n, -n, ) (nr-n/ ) ~Rays7 (nx-nz) (n, -n, ) (nr-n/ ) ~Rays7 (nz-ny) (n, -n+ ) (nr-n/ )

Hexagonal 6 Yes 0 0 a'G'aLHb'd'x' No · · - No

~ Yes 0 0 G'a No · - - No
s Yes 0 0 a'LHb'd'x' No - · - No

.6: Yes 0 0 0 No · · · No
6/m Yes 0 0 a'LHb'd'x' No · · - No
622 Yes 0 0 G'a Yes aL'H'bdx Ga' G'a Yes aL'H'bdx Ga' G'a

~2Z. Yes 0 0 G'a No - · - Yes aa'L'H'bdx 0 G'aLHb'd'

6.22. Yes 0 0 a'G'aLHb'd'X' No · · - No
6mm Yes 0 0 a'LHb'd'X' No - - · No
6m2 Yes 0 0 0 No · - - Yes aa'L'H'bdx 0 0

.2m2 Yes 0 0 0 No · - · Yes aL'H'bdx Ga' LHb'd'

nmZ Yes 0 0 0 No · · · No
6m2. Yes 0 0 a'LHb'd'X' No - - · No

6/mmm Yes 0 0 0 Yes aL'H'bdx ·0 0 Yes aL'H'bdX 0 0

!ilmmm Yes 0 0 0 No · - - Yes aL'H'bdx 0 LHb'd'

6/mmm Yes 0 0 a'LHb'd'X' No - - - No
6/mmm Yes 0 0 0 Yes aL'H'bdx Ga' 0 Yes aL'H'bdx Ga' 0

6/mmm Yes 0 0 0 No - - - No
!ilmmm Yes 0 0 0 No - - - Yes aa'L'H'bdx 0 0

Cubic 23 Yes L'H'b a' G' Yes L'H'b a' G' Yes L'H'b a' G'

m3 Yes L'H'b 0 0 Yes L'H'b 0 0 Yes L'H'b 0 0

m3 Yes L'H'b a' 0 Yes L'H'b a' 0 Yes L'H'b a' 0

432 Yes 0 0 G' Yes 0 0 G' Yes 0 0 G'

13£ Yes (a') 0 G' Yes (a') 0 G' Yes (a') 0 G'

43m Yes (a') 0 0 Yes (a') 0 0 Yes (a') 0 0

!3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes (a') 0 0 Yes (a') 0 0 Yes (a') 0 0



Table 6.2 List of Indistinguishable Crystal Groups

System Group N-Rays?
z-Propagation

(ny-nx ) (n.en, ) (nr-n, ) N-Rays?
y-Propagation

(nx-nz ) (n, -n, ) (nr-n, ) N-Rays?
x-Propagation

(nz-ny) (n.-n+ ) (nr-n, )

Tetragonal 1/m Yes 0 0 0 No . .. .. No

4 / m Yes 0 0 0 No .. .. .. No

4/mmm Yes 0 0 0 Yes aL'H'bdx 0 0 Yes aL'H'bdX 0 0

1/mmm Yes 0 0 0 Yes aL'H'bdx 0 0 Yes aL'H'bdX 0 0

Hexagonal 21m Yes 0 0 0 No .. .. .. No

G/m Yes 0 0 0 No .. .. .. No

iilm Yes 0 0 0 No .. .. .. No

Gmm Yes 0 0 0 No .. .. .. No
.timm Yes 0 0 0 No .. .. .. No

Cubics m3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0

m3m Yes 0 0 0 Yes 0 0 0 Yes 0 0 0
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