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ABSTRACT

Paper 1. This paper establishes several algebraic embedding theorems, each
of which asserts that a certain kind of residuated structure can be embedded
into a richer one. In almost all cases, the original structure has a compatible
involution, which must be preserved by the embedding. The results, in conjunc-
tion with previous findings, yield separative axiomatizations of the deducibility
relations of various substructural formal systems having double negation and
contraposition axioms. The separation theorems go somewhat further than ear-
lier ones in the literature, which either treated fewer subsignatures or focussed
on the conservation of theorems only.

Paper 2. It is proved that the variety of relevant disjunction lattices has the
finite embeddability property (FEP). It follows that Avron’s relevance logic
RMImin has a strong form of the finite model property, so it has a solvable de-
ducibility problem. This strengthens Avron’s result that RMImin is decidable.

Paper 3. An idempotent residuated po-monoid is semiconic if it is a subdi-
rect product of algebras in which the monoid identity t is comparable with all
other elements. It is proved that the quasivariety SCIP of all semiconic idempo-
tent commutative residuated po-monoids is locally finite. The lattice-ordered
members of this class form a variety SCIL, which is not locally finite, but it is
proved that SCIL has the FEP. More generally, for every relative subvariety K
of SCIP, the lattice-ordered members of K have the FEP. This gives a unified
explanation of the strong finite model property for a range of logical systems.
It is also proved that SCIL has continuously many semisimple subvarieties, and
that the involutive algebras in SCIL are subdirect products of chains.

Paper 4. Anderson and Belnap’s implicational system RMO→ can be ex-
tended conservatively by the usual axioms for fusion and for the Ackermann
truth constant t. The resulting system RMO∗ is algebraized by the quasi-
variety IP of all idempotent commutative residuated po-monoids. Thus, the
axiomatic extensions of RMO∗ are in one-to-one correspondence with the rel-
ative subvarieties of IP. It is proved here that a relative subvariety of IP consists
of semiconic algebras if and only if it satisfies x ≈ (x → t) → x. Since the
semiconic algebras in IP are locally finite, it follows that when an axiomatic
extension of RMO∗ has ((p → t) → p) → p among its theorems, then it is
locally tabular. In particular, such an extension is strongly decidable, provided
that it is finitely axiomatized.









vi

LIST OF CONTENTS

Abstract ii

Introduction 1

Paper 1. Conserving involution in residuated structures 9

Paper 2. A finite model property for RMImin 49

Paper 3. Semiconic idempotent residuated structures 65

Paper 4. Some locally tabular logics with contraction and mingle 84



vii

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my dedicated supervisor Professor

James Raftery for his able guidance and invaluable support all the way from

the very beginning of my studies. Whenever I encountered difficulties and felt

like giving up, he always came forward with his great encouragement and sug-

gestions. He has inspired me with his knowledgeable ideas and rich research

experience. Also, I greatly appreciated him correcting my writing style and

English grammer and offering suggestions for improvement. I am very much

obliged for his patience and efforts, which enabled me to complete this work.

I am also thankful to my co-supervisor Dr. Clint van Alten for his useful com-

ments.

I am indebted to both the National Research Foundation and the University

of KwaZulu-Natal for their continued financial assistance.

I sincerely thank the School of Mathematical Sciences and the Faculty of Science

and Agriculture of the University of KwaZulu-Natal for making their facilities

available to me.

To my dearest family and friends, I am very grateful for their support and

encouragement throughout my studies.



INTRODUCTION

Residuated structures.

The general definition of a residuated structure can be phrased as follows.
Consider a binary operation · on a partially ordered set 〈A;≤〉, and assume
that · preserves the order, i.e., for all a, b, c, d ∈ A,

if a ≤ b and c ≤ d then a · c ≤ b · d.

We use a\b to denote the largest c ∈ A such that a · c ≤ b, if this exists.
Similarly, b/a denotes the largest c ∈ A for which c · a ≤ b, if this exists.

We say that · is residuated (with respect to ≤) if a\b and b/a both exist for
all a, b ∈ A. In this case, we also refer to 〈A; ·, \, /,≤〉 as a residuated structure.

Equivalently, 〈A; ·, \, /,≤〉 is a residuated structure iff 〈A;≤〉 is a poset and
·, \, / are binary operations on A such that the law of residuation

a · c ≤ b iff c ≤ a\b ; c · a ≤ b iff c ≤ b/a

holds for all a, b, c ∈ A. The compatibility of ≤ with · follows from this law.
When · is commutative, we have a\b = b/a, and it is customary to replace both
expressions by a→ b.

Some history.

The theory of residuated structures descends from three essentially indepen-
dent sources: the ideal theory of rings, the calculus of binary relations, and the
model theory of non-classical logics.

In a unital ring R, the operation of ideal multiplication

A ·B := {Σn

i=1
aibi : n ∈ N and ai ∈ A and bi ∈ B for each i}

induces two division-like residual operations on ideals, viz.

A\B := {r ∈ R : ar ∈ B for all a ∈ A} = max⊆ {I � R : A · I ⊆ B};

B/A := {r ∈ R : ra ∈ B for all a ∈ A} = max⊆ {I � R : I ·A ⊆ B}.

The ideals of R instantiate the law of residuation, i.e., we have

A ·C ⊆ B iff C ⊆ A\B ; C ·A ⊆ B iff C ⊆ B/A.

The role of residuation in ring and module theory is already evident in Dedekind’s
work. It turns out that much of the theory of commutative Noetherian rings
can be obtained in the abstract setting of residuated lattices. This abstraction
probably begins with Krull [24] (1924); it was continued by Ward and Dilworth
[37] (1939), who established the notation \, /. A much more recent example in
the same spirit is the commutator operation on the congruences of a universal
algebra, which gives rise to a diversity of natural residuated structures [13].
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Independently, residuation comes up in the work of the Boolean school of
logicians, especially De Morgan, Peirce and Schröder (see [3, 28, 29, 31]). The
intended interpretation of a first order predicate is a relation on a set, so
mathematical logic must deal with the ways in which relations interact when
they are subjected to natural operations. For example, the identities

(x ◦ y)˘ ≈ y˘ ◦ x˘ and (x ∩ y)− ≈ x− ∪ y−

hold when x and y range over the binary relations on a set, provided that
◦, ˘, −, ∩ and ∪ are interpreted as composition, conversion, complementation,
intersection and union, respectively. Implicit in De Morgan’s paper [11] of 1860
is another instance of the law of residuation, viz.

x ◦ z ⊆ y iff z ⊆ x\y ; z ◦ x ⊆ y iff z ⊆ y/x,

where x\y and y/x are (x˘ ◦ y−)− and (y− ◦ x˘)−, respectively. Abstracting
from this example, Tarski [32] invented relation algebras [22] and showed, in
joint work with Givant [33], that their equational theory has the same expressive
power as first order logic in three variables.

In classical propositional logic, p → q is defined as (¬ p) ∨ q, but most
non-classical logics reject this ‘material’ implication. Intuitionistic logic [35] is
motivated by a desire to distinguish constructive proofs from non-constructive
ones. It rejects the Boolean principles (¬¬ p)→ p and p∨¬ p. Relevance logic
[1, 30] rejects the ‘paradoxes’ of material implication, such as p→ (q → p) and
(p ∧ ¬ p) → q, which allow us to draw conclusions from irrelevant premisses.
Linear logic [16, 6, 34] is motivated in part by computer science; it treats
the premisses in a derivation as resources and is sensitive to the number of
times that they are used. In particular, it rejects the contraction principle
(p→ (p→ q))→ (p→ q).

The models of intuitionistic logic (i.e., Heyting algebras) are distributive
lattices in which conjunction is represented by the greatest lower bound, ∧.
Implication can then be characterized by the law of residuation

c ≤ a→ b iff a ∧ c ≤ b.

In the models of the principal relevance logic R (i.e., De Morgan monoids), a
similar law holds, viz.

c ≤ a→ b iff a · c ≤ b,

where · is co-tenability, i.e., p · q : = ¬ (p → ¬ q). The same applies to linear
logic (except that the algebras are different). In certain logics, however, · is a
primitive connective, not definable in terms of the other symbols. This is true
of several many-valued logics [17]. It is also true of the Lambek calculus [23],
where · represents the juxtaposition of grammatical categories (such as noun
or verb); it is therefore noncommutative, but the law of residuation still holds
in the algebraic models.
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Substructural logics.

Since so many differently motivated logics are modeled by classes of residu-
ated structures, general studies of such systems began during the 1980s. They
are often called substructural logics [14, 26, 27], because they may lack some of
the so-called structural rules

(C) � (p→ (q → r))→ (q → (p→ r)) (exchange)

(W) � (p→ (p→ q))→ (p→ q) (contraction)

(K) � p→ (q → p) (weakening).

For instance, linear logic satisfies (C) but violates both (W) and (K). These
three laws have a natural significance in proof theory [15, 25]. In residuated
structures, they take the following algebraic form, where t is an identity element
for · :

(C) x · y ≈ y · x (commutativity)

(W) x ≤ x · x (square-increasing law)

(K) x ≤ t (integrality).

There are also significant logics that are not modeled by residuated structures
at all, e.g., quantum logics [12] and sub-intuitionistic logics [36, 4]. But in this
dissertation, we shall be concerned only with substructural logics. Moreover,
in the corresponding residuated structures, · will always be associative and
commutative, so → shall replace \, / throughout.

Problems and Methodology.

Logics are usually specified formally by postulates that are either axioms
(like (C), (W), etc.) or inference rules, of which

p , p→ q � q (modus ponens)

is a common example. A formula α is a theorem if it has a proof, i.e., if there
is a finite sequence of formulas, terminating with α, where each item in the
sequence is an instance of an axiom or can be obtained from previous items by
application of an inference rule. It may happen that a non-theorem β becomes
provable in this way when we add a set of formulas Γ to the stock of axioms
(without also adding the instances of the formulas in Γ). In this case, we call
Γ � β a derivable rule of the system. Theorems can be thought of as derivable
rules ∅ � β with no premisses.

In the context of substructural logics, some natural questions then arise.
Typically, the language (a.k.a. signature) will consist of some–possibly all–of
the symbols→, ·,∧,∨,¬, t. For a subset S of this language and a derivable rule
Γ � α in which only symbols from S occur, can Γ � α already be derived from
the postulates that use only the symbols in S ∪ {→}? To demonstrate this is
to prove a deductive separation theorem for the system, and it signifies that the
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system is ‘well-axiomatized’. This property is philosophically important when
the system is motivated primarily by its postulates in a limited subsignature
(such as → alone).

Two further questions that arise for every logic are the decision problem
and the deducibility problem. The decision problem asks whether there is an
algorithm that tests formulas for theoremhood. Equivalently (modulo Church’s
thesis), it asks whether the set of theorems of the logic is recursive. If this
is the case, the system is said to be decidable. The deducibility problem asks
whether the set of derivable rules Γ � α (Γ finite) is recursive, in which case
this problem is said to be solvable and the logic strongly decidable.

One way to prove a deductive separation theorem for a formal system is
to establish a suite of embedding theorems, showing that each model of the
postulates in a subset of the signature can be embedded into a model of the
full system–this for all (or all indicated) subsets of the signature. And one
way to prove that a finitely axiomatized system has a solvable deducibility
problem is to prove that it is modeled by a class K of algebras enjoying the
finite embeddability property (FEP): this means that every finite subset of an
algebra in K can be extended to a finite algebra in K, with preservation of all
partial operations.

Embedding theorems and finiteness properties (such as the FEP) are there-
fore related topics, and they shall be the main preoccupations of this disserta-
tion.

Although we tend, where possible, to explain things from a general per-
spective (using in particular the Blok-Pigozzi theory of ‘algebraizable’ logics
developed in [9]), the results here shall all concern substructural logics and the
classes of residuated structures that model them. Where universal algebraic
methods are used, we assume only a very rudimentary background on the part
of the reader–no more than can be found, for instance, in the early chapters
of [10].

The results.

In Paper 1 (i.e., [18]), several algebraic embedding theorems are established,
each of which asserts that a certain kind of residuated structure can be em-
bedded into a richer one. In almost all cases, the original structure has a
compatible involution ¬, which must be preserved by the embedding. The
required properties of ¬ are

¬¬x ≈ x

x ≤ y =⇒ ¬ y ≤ ¬x

x · z ≤ y ⇐⇒ (¬ y) · z ≤ ¬x.



5

Using these results, we obtain deductive separation theorems for various
substructural formal systems having the double negation and contraposition
axioms

� (¬¬ p)→ p and � (p→ ¬ q) → (q → ¬ p).

The systems covered here include exponential-free classical linear logic (a.k.a.
CFLe), its contractive extension LR (a.k.a. CFLec), its affine extension (i.e.,
BCK-logic or CFLew), and to a limited extent the distributive systems R and
RW.

Because the results in Paper 1 separate rules (as opposed to theorems),
they go further than earlier work on separation in the literature, which either
treated fewer subsignatures or focussed on the conservation of theorems only.
This earlier work is summarized in Paper 1, with references.

Relevance logics are usually distinguished by their satisfaction of the con-
traction axiom (W), and sometimes other properties as well. Anderson and
Belnap’s system R and its extension RM by the mingle axiom

(M) � p→ (p→ p)

have been studied by relevance logicians for several decades. It is known thatR
is undecidable but, thanks to the mingle axiom, its extension RM is decidable.
However, RM lacks the variable sharing property, which is regarded by the
Anderson-Belnap school as a necessary condition for relevant implication. For
instance (¬ (p→ p))→ (q → q) is a theorem ofRM (not ofR), but no variable
occurs both in ¬ (p→ p) and in q → q.

To overcome this problem, Avron [5, 7, 8] introduced, among other systems,
a simply axiomatized relevance logic RMImin, which has many of the desirable
features of RM, including the mingle axiom. He proved that RMImin is decid-
able and has the variable sharing property. But the deducibility problem and
the finite model property for RMImin were not addressed in his work.

Paper 2 ([19]) strengthens Avron’s result by showing that the set of fi-
nite derivable rules of RMImin is also recursive, not merely the set of theo-
rems. As RMImin has (demonstrably) no deduction theorem, this stronger
result does not follow from the fact that RMImin is decidable. The algebraic
counterpart of RMImin is the variety RDL of all relevant disjunction lattices.
These are idempotent commutative residuated lattice-ordered semigroups–not
monoids–with a compatible involution. The approach of Paper 2 is to prove
that RDL has the FEP. This implies that RMImin has the strong finite model
property (i.e., every finite non-derivable rule is refutable in some finite relevant
disjunction lattice), and it follows that RMImin has a solvable deducibility
problem. Paper 2 also provides an analysis of RDL that is slightly simpler than
Avron’s.
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Besides RDL, an investigation of semiconic residuated structures is carried
out in Papers 3 and 4 ([20, 21]). These are subdirect products of residuated
ordered monoids in which the identity element t is comparable with all other
elements. The class IP of all idempotent commutative residuated partially
ordered monoids is a quasivariety, and so is the class SCIP of all semiconic
algebras in IP. Neither IP nor SCIP is a variety. The lattice-ordered members
of SCIP (enriched with the operations ∧,∨) form a variety SCIL which is not
locally finite. In other words, SCIL contains some finitely generated algebras
that are not finite.

Nevertheless, it is proved in Paper 3 that SCIP is locally finite. This result fa-
cilitates a proof that for every relative subvariety K of SCIP, the lattice-ordered
members of K have the FEP. (A relative subvariety of K is a subquasivariety
that is the intersection of K with some variety.) In particular, SCIL itself has
the FEP. This is of interest, since SCIL contains all Brouwerian lattices (i.e., the
algebraic models of positive intuitionistic logic) as well as all positive Sugihara
monoids (these model the positive fragment of RM). The results in Paper 3
therefore give a unified explanation of the strong finite model property for
many extensions of these and other systems. It is also proved in Paper 3 that
SCIL has continuously many semisimple subvarieties, and that the involutive
algebras in SCIL are subdirect products of chains.

Another logical system introduced by Anderson and Belnap isRMO→ which
is axiomatized in the signature {→} by

� (p→ q)→ ((r → p)→ (r → q)) (prefixing),

exchange (C), mingle (M) and contraction (W), with modus ponens as the sole
inference rule. If we add the usual axioms for fusion (·) and for the Ackermann
truth constant t to RMO→, the resulting system RMO∗ is a conservative
extension of RMO→, i.e., the deductive separation theorem holds for RMO∗.
(This is partly due to the absence of negation.) Now RMO∗ is algebraized by
the quasivariety IP. It follows from the general theory of algebraization that
the axiomatic extensions of RMO∗ are algebraized by the relative subvarieties
of IP, and this correspondence is a bijection. Thus, by Paper 3, if the algebraic
counterpart of an axiomatic extension of RMO∗ consists of semiconic algebras,
it will be locally finite. Consequently, such extensions are decidable provided
they are finitely axiomatized.

It is therefore useful to have a characterization of the semiconic relative
subvarieties of IP. In Paper 4, it is proved that a relative subvariety of IP
consists of semiconic algebras if and only if it satisfies the equation

(x→ t)→ x ≈ x.

As SCIP does not satisfy this equation, it follows that SCIP is not itself a relative
subvariety of IP.
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In logical terms, it follows from Paper 4 that when an axiomatic extension
of RMO∗ has

((p→ t)→ p)→ p

among its theorems then it is locally tabular, i.e., for each finite number n, there
are only finitely many logically inequivalent formulas in n variables. The finitely
axiomatized axiomatic extensions of RMO∗ include the ∧,→ fragment of in-
tuitionistic logic and the ·,→, t fragment of RMt. 1 It is well known that these
two incomparable systems are locally tabular (and have solvable deducibility
problems), but Paper 4 gives a common explanation of these phenomena, that
applies to many other systems as well.
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Abstract. This paper establishes several algebraic embedding theorems,
each of which asserts that a certain kind of residuated structure can be em-
bedded into a richer one. In almost all cases, the original structure has a
compatible involution, which must be preserved by the embedding. The re-
sults, in conjunction with previous findings, yield separative axiomatizations
of the deducibility relations of various substructural formal systems having
double negation and contraposition axioms. The separation theorems go
somewhat further than earlier ones in the literature, which either treated
fewer subsignatures or focussed on the conservation of theorems only.

1. Introduction

Most of the results in this paper are embedding theorems for ordered struc-
tures with a residuated commutative semigroup operation · and a compatible
involution, i.e., an involution ¬ for which the law

x · z ≤ y ⇐⇒ ¬ y · z ≤ ¬x

holds. The principal results are stated precisely below, for ease of subsequent
reference, but the details need not be absorbed on first reading.

(i) Every compatibly involutive residuated commutative po-
semigroup satisfying x ≤ x · (y → y) can be embedded into
one that is a monoid, in such a way that the square increas-
ing law x ≤ x · x is preserved. (→ denotes residuation.)

(ii) Every compatibly involutive residuated commutative lattice-
ordered semigroup satisfying ((x→ x) ∧ (y → y))→ z ≤ z
can be embedded into one that is a monoid, by a construc-
tion that preserves both distributivity and the square in-
creasing law.

Key words. Residuation, involution, substructural logics, embedding, separation.
2000 Mathematics Subject Classification. 03B47, 03G25, 06D99, 06F05.
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(iii) Every compatibly involutive residuated commutative po-
monoid can be embedded into one that is distributive lattice-
ordered, by a construction that preserves integrality.

(Integrality is the demand that the monoid identity be the greatest element.)

(iv) Every square increasing compatibly involutive commutative
residuated po-monoid can be embedded into a de Morgan
monoid .

Finally, structures without · and ¬ are considered, and it is proved that

(v) If a distributive lattice-based algebra 〈A;→,∧,∨〉 (with pos-
sibly a distinguished element t) can be embedded into a
residuated lattice-ordered commutative monoid (with iden-
tity t), then it can be embedded into one that is still distrib-
utive. The construction can be made to preserve integrality
and the square increasing law.

The proofs of (iv) and (v) occurred to us after reading Meyer and Routley’s
papers [30, 36] on relational structures.

These five results can obviously be composed. They contribute to a body
of recent algebraic work on residuation (see [23]), but they also have a logical
interpretation: when taken in conjunction with [19, 26, 27, 34, 41], they imply
separation theorems for the deducibility relations 
F of various Hilbert-style
formal systems F. In each case, F specifies a substructural logic with the double
negation law.

The sense of deducibility in this paper is the most simple-minded one: Γ 
 α
is deducible in F iff α becomes provable in F once we treat each formula in Γ as
an extra axiom. (These extra axioms may be used arbitrarily often in a proof
of α and they need not be used at all; their instances are not treated as extra
axioms.) So theoremhood coincides here with deducibility from an empty set
of premisses. The reader is warned that in the literature, 
 sometimes denotes
other forms of derivability. The separation theorems say that when Γ 
 α is
deducible in F, then it is already deducible in the subsystem of F determined
by the postulates involving only→ and the connectives of Γ∪{α}. The systems
F include exponential-free classical linear logic (a.k.a. CFLe), its contractive
extension LR (a.k.a. CFLec), its affine extension (i.e., BCK—logic or CFLew)
and to a limited extent the distributive systems R and R-W.

Partial separation theorems for most of these systems can already be found
in the literature, particularly the work of Meyer and Routley [26, 27, 30, 36], to
which detailed reference will be made later. Further sources include Maksimova
[25], and Ono and Komori [34]. These papers axiomatize the theorems of formal
systems F in certain subsignatures. Fragments of the full deducibility relation
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F are not discussed, although separative postulates for 
F can be inferred
when the proofs amount to embedding constructions–see below. Also, for some
negation-less substructural logics, deducibility was axiomatized separatively in
[41]. Here we extend the scope of [41] by incorporating classical negation.

Deduction theorems can sometimes be used to show that an axiomatization
of the theorems of a system in a restricted vocabulary also axiomatizes the
corresponding fragment of the deducibility relation. But this applies only when
the deduction theorem is expressed in the restricted vocabulary. For all systems
considered here, with the exception of BCK—logic, the pertinent deduction
theorems involve ∧ and t (or alternatively, exponentials); see [4, 18]. Thus,
they do not help us to axiomatize fragments of 
F that have negation but
which lack ∧ or t. Items (i)—(v) above cover these gaps. (For R and R-W, the
lingering effect of distributivity on signatures between {→,∨} and {·,→,∨, t}
remains unknown.)

Substructural logics often have a Gentzen-style presentation G with the sub-
formula property, e.g., Girard’s full linear logic [20, 40]. To pre-empt possible
confusion, let us note that this offers no short-cut to the results of this paper,
even when we have good ways of translating back into the Hilbert formalism.
Subformula properties yield theorem-separation only, as they apply to sequents

G α1, . . . , αn ⇒ β that are provable without extra axioms. In all cases under
discussion here, the correct interpretation of Γ 
F α is : ⇒ α is provable in
G with the help of the new axioms ⇒ γ (γ ∈ Γ).

On the other hand, embedding results induce deductive separation theorems
in general, because 
F can always be translated into a set of universal sen-
tences in a first order language with just one predicate symbol. Thus 
F has a
semantics consisting of algebras with one indicated relation, and this semantics
can be honed down systematically to a universal Horn class of ‘reduced’ models
(see Section 7). For the systems considered in this paper, the sole predicate
is interchangeable with a partial order in the reduced models, which include
the residuated structures featuring in (i)—(v). When we restrict attention to
the subsystem FS determined by the postulates of F in a subsignature S (with
→), the translation is unaffected, but the reduced models have fewer operations
and characteristic properties. Now suppose each reduced model of 
FS can be
embedded into some reduced model of 
F, where the embedding preserves and
reflects the indicated order. Of course universal sentences persist in substruc-
tures. So a universal sentence in the vocabulary of the models of 
FS will be
true in these models if it holds in the richer models of 
F . Consequently, an
expression Γ 
 α in the vocabulary of S will be deducible in FS if it is deducible
in F, by the soundness of 
F, the embedding theorem, and the completeness
of 
FS . That is to say, FS axiomatizes the S—fragment of 
F.
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2. Residuated Structures

A (commutative) po-semigroup is a structure 〈A; ·,≤〉 where 〈A; ·〉 is a com-
mutative non-empty semigroup and ≤ is a partial order of A that is compatible
with · in the sense that for all a, b, c ∈ A,

if a ≤ b then c · a ≤ c · b.

If, in addition, t ∈ A is an identity element for · then we call 〈A; ·, t,≤〉 a
(commutative) po-monoid.

Although we omit the word ‘commutative’ for the sake of brevity, commuta-
tivity is always assumed when we speak of po-semigroups or richer structures.
We shall generally use t to denote the identity element of a monoid.

Definition 2.1. By a residuated (commutative) po-semigroup we mean a struc-
ture 〈A; ·,→,≤〉 such that 〈A; ·〉 is a commutative non-empty semigroup, ≤ is
a partial order of A, and for all a, b, c ∈ A,

c ≤ a→ b ⇐⇒ a · c ≤ b (residuation).

If, in addition, t ∈ A is an identity element for · then we call 〈A; ·,→, t,≤〉 a
residuated (commutative) po-monoid.

Proposition 2.2 lists some well known consequences of these definitions. Item
(ii) confirms that the {·,≤}—reduct of a residuated po-semigroup is indeed a po-
semigroup, i.e., ≤ is compatible with ·. For construction purposes the following
fact is more useful than the definitions:

A structure 〈A; ·,≤〉 is the {·,≤}—reduct of a residuated po-
semigroup iff it is a po-semigroup and for any pair a, b ∈ A,
there is a largest c ∈ A such that a · c ≤ b. (The largest c with
this property becomes a→ b.)

Proposition 2.2. Every residuated po-semigroup satisfies :

(i) x ≤ y → (y · x)

(ii) x ≤ y =⇒ z · x ≤ z · y

(iii) x ≤ y =⇒ z → x ≤ z → y & y → z ≤ x→ z

(iv) x ≤ y → z ⇐⇒ y ≤ x→ z

(v) x ≤ (x→ y)→ y

(vi) (x · y)→ z ≈ y → (x→ z) ≈ x→ (y → z)

Notation. We define |x | := x→ x.

Definition 2.3. The designated elements of a residuated po-semigroup are the
elements a such that | a | ≤ a.
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In a residuated po-monoid, it turns out that the designated elements are just
the upper bounds of the identity, i.e., for all elements a,

a is designated iff t ≤ a.

This is property (3) in the proposition below. It also turns out that all elements
of the form | a | are themselves designated. This follows from property (6).

Proposition 2.4. Every residuated po-monoid satisfies

(1) t ≤ |x |

(2) x ≈ t→ x ≈ x · |x | ≈ |x | → x

(3) t ≤ x ⇐⇒ | x | ≤ x

(4) x ≤ y ⇐⇒ t ≤ x→ y ⇐⇒ |x→ y | ≤ x→ y

(5) |x | ≤ y =⇒ | y | ≤ y

(6) |x | ≈ || x || ≈ |x | · |x |.

Each of these laws follows easily from its predecessors and the definition of
residuation.

For any partially ordered set 〈A;≤〉, a subset X of A is said to be upward
closed provided that whenever a ∈ X and a ≤ b ∈ A then b ∈ X.

Definition 2.5. An implicative po-semigroup is a residuated po-semigroup in
which the set of designated elements is upward closed and for any elements a, b,

a ≤ b iff a→ b is designated.

It follows from Proposition 2.4 (4),(5) that

every residuated po-monoid is implicative (as a po-semigroup)

and, as the next result makes clear, this is almost a characterization of implica-
tivity. The equivalence of (iii) and (iv) below comes from Meyer [26]. A proof
of the equivalence of (i)—(iii) can be found in [22]; a variant of this result for
structures with an involution appears in Avron [4, 6].

Theorem 2.6. For any residuated po-semigroup A = 〈A; ·,→,≤〉, the follow-
ing conditions are equivalent :

(i) A is implicative;
(ii) | a | → b ≤ b for all a, b ∈ A ;
(iii) a ≤ a · | b | for all a, b ∈ A ;
(iv) A may be embedded into a residuated po-monoid.

At this point we should clarify the sense of ‘embedded’ in (iv) and in the
sequel. An algebra is understood in this paper to be a non-empty set on which
operations (and no relations) have been indicated. An ordered algebra is an
algebra with an indicated partial order. An embedding between algebras is, as
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usual, an injection that preserves all the indicated operations. An embedding
between ordered algebras is understood to be an order preserving and order
reflecting map (hence an injection) that preserves all the indicated operations.
By an embedding of a structure into a richer one we mean an embedding
into the appropriate reduct of the richer structure. The main point of these
definitions is that when an embedding A→ B exists, if a universal first order
sentence of the language of A is true in B, then it is also true in A.

It follows from Theorem 2.6 that implicative po-semigroups satisfy all of the
conditions among (1)—(6) that do not mention t, because these are universal
first order sentences. (Here and subsequently we tend to suppress quantifiers
when writing universal sentences.)

Definition 2.7. A po-semigroup is said to be square increasing if it satisfies
x ≤ x · x.

Meyer’s proof of the equivalence of (iii) and (iv) in Theorem 2.6 actually
shows the following (which he stated explicitly):

Theorem 2.8. Every square increasing implicative po-semigroup can be em-
bedded into a square increasing residuated po-monoid.

3. Involution Properties

For any set A, a function ¬ : A→ A is said to be self-inverting if ¬¬ a = a
for all a ∈ A. In this case ¬ is obviously a bijection.

An involution of a partially ordered set 〈A;≤〉 is a self-inverting function
¬ : A → A that is order reversing in the sense that whenever a, b ∈ A with
a ≤ b then ¬ b ≤ ¬ a.

When denoting involution, we adopt the convention that ¬ binds more
strongly than any other basic operation, e.g., ¬ a→ b abbreviates (¬ a)→ b.

Definition 3.1. Given a po-semigroup 〈A; ·,≤〉, we say that a self-inverting
function ¬ : A→ A is compatible (with ·) provided that for all a, b, c ∈ A,

a · c ≤ b iff ¬ b · c ≤ ¬ a.

Lemma 3.2. Let A = 〈A; ·,→,≤〉 be a residuated po-semigroup and ¬ a self-
inverting unary operation on A. Consider the following conditions:

(i) ¬ is an involution of 〈A;≤〉 and a · b = ¬ (a→ ¬ b) for all a, b ∈ A ;
(ii) a→ ¬ b = b→ ¬ a for all a, b ∈ A ;
(iii) ¬ is compatible with · .

In general, (i)⇒ (ii)⇒ (iii). If 〈A; ·,→,≤〉 satisfies x · |x | ≈ x – in particu-
lar, if 〈A; ·,→,≤〉 is implicative – then all three conditions are equivalent.
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A proof of this lemma can be found for instance in [22]. Note that the
equation in (i) could have been replaced by

(7) a→ b = ¬ (a ·¬ b) for all a, b ∈ A.

Indeed, each of these two equations is a substitution instance of the other,
modulo the self-inversion law.

Definition 3.3. A structure 〈A; ·,→,¬,≤〉 will be called a c-involutive resid-
uated po-semigroup if 〈A; ·,→,≤〉 is a residuated po-semigroup and ¬ is a
compatible involution of 〈A; ·,≤〉.

c-Involutive residuated po-monoids are defined analogously.

Note. In many texts, c—involutive structures are simply called ‘involutive’.

It follows that every c-involutive implicative po-semigroup–and in particular
every c-involutive residuated po-monoid–has all of the properties of ¬ listed in
Lemma 3.2. Such a structure is definitionally equivalent to its {·,¬,≤}—reduct,
by (7). And for each element a, we have | ¬ a | = | a |, by part (ii) of Lemma 3.2
and the self-inversion law. Therefore,

¬ a is designated iff | a | ≤ ¬ a iff a ≤ ¬ | a |.

Notation. In a c-involutive residuated po-monoid, we define f = ¬ t.

Then, for any element a, we have ¬ a = a → f and (a → f) → f = a.
Indeed, a → f = ¬ (a ·¬ f) = ¬ (a · t) = ¬ a, whence the second equation
is just the self-inversion law. Up to definitional equivalence, the c-involutive
residuated po-monoids are just the residuated pomonoids with a distinguished
element f satisfying (x → f) → f ≈ x. Any structure of the latter kind is
implicative, so once we define ¬x = x→ f, the identity x→ ¬ y ≈ y → ¬x
follows from Proposition 2.2(vi). Then c—involutivity follows, by Lemma 3.2.

We can now prove the embedding theorem labeled (i) in the Introduction.

Theorem 3.4. Every c-involutive implicative po-semigroup can be embedded
into a c-involutive residuated po-monoid.

If the original structure is square increasing then the containing structure
can be chosen square increasing also.

Proof. Suppose A = 〈A; ·,→,¬,≤′〉 is a c-involutive implicative po-semigroup.
Let ⊥,�, f and t be four distinct non-elements of A and let

B = A ∪ {⊥,�, f, t}.

We extend ≤′ to a partial order ≤ of B, as follows. It is easy to see that there
is just one binary relation ≤ on B having the following itemized properties for
all a ∈ A (where of course x < y means ‘x ≤ y and x �= y’).
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Hasse diagram of 〈B;≤〉. The circle represents 〈A;≤′〉.

There are two possibilities: t �≤ f (left) and t < f (right).

Darkened vertices indicate designated elements.

• ≤ is reflexive and anti-symmetric on B ;

• the restriction of ≤ to A is ≤′ ;

• ⊥ < a, f, t and a, f, t < � and ⊥ < � ;

• f �≤ t and f �≤ a and a �≤ t ;

• t < a iff a is designated ;

• a < f iff ¬ a is designated (i.e., iff a ≤′ ¬ | a |) ;

• t < f iff ∃ b ∈ A such that b,¬ b are both designated.

(See the accompanying Hasse diagram.) We need to satisfy ourselves that ≤ is
transitive, and therefore a partial order.

Condition (5) of Proposition 2.4 says that the designated elements of A form
an upward closed set, so if t < a ∈ A and a ≤′ b ∈ A then t < b. By a dual
argument (using involution properties), if a, b ∈ A with a ≤′ b and b < f then
a < f. The only conceivable problem is this: if there is no b ∈ A for which
b,¬ b are both designated, then t �< f, by the seventh postulate. In this case,
might f nevertheless dominate t in the transitive closure of ≤ ? Since ≤′ (and
therefore ≤) is transitive on A, this can happen only when there are elements
a, b ∈ A with a ≤′ b, where a and ¬ b are both designated in A. But since A’s
set of designated elements is upward closed, b must be designated in this case,
so b and ¬ b are both designated, a contradiction. Thus, ≤ is indeed a partial
order, and we may drop all reference to ≤′ without fear of confusion.

We extend ¬ to a unary operation on B by defining

¬� = ⊥, ¬⊥ = �, ¬ t = f, and ¬ f = t.

Clearly, ¬ is an involution of 〈B;≤〉. We extend · to a commutative binary
operation on B by defining, for all b ∈ B,

⊥ · b = ⊥ = b ·⊥ ; � · b = � = b ·� whenever b �= ⊥ ;

t · b = b = b · t ; f · b = � = b · f whenever b /∈ {⊥, t} .
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Since A was a po-semigroup, it is easy to see that · is associative on B and
that 〈B; ·, t,≤〉 is a po-monoid. Note that x · x = x for x ∈ {⊥,�, t}, while
f · f = �. Therefore, 〈B; ·,≤〉 is square increasing if A is. Now we define

a→ b = ¬ (a ·¬ b) for all a, b ∈ B.

Thus, → extends the residuation of A. For all b ∈ B, we have t → b = b,
because ¬ (t ·¬ b) = ¬¬ b, while b→ f = ¬ b, just as in the remarks preceding
the statement of this theorem. To show that 〈B; ·,→, t,≤〉 is a residuated po-
monoid, we first verify that for all x, y ∈ B,

(†) x ≤ y iff t ≤ x→ y.

Let x, y ∈ B. If x, y ∈ A then (†) follows from Proposition 2.4(4) and
Theorem 2.6, so we may assume that x, y are not both in A. Since ⊥ → y =
¬ (⊥ ·¬ y) = ¬⊥ = � for all y ∈ B, (†) holds when x = ⊥. Also, since
t → y = y for all y ∈ B, (†) holds when x = t. So we may assume that
x /∈ {⊥, t}.

Consequently, x ≤ f iff ¬ x is t or a designated element of A, iff t ≤ ¬x =
x → f. This shows that (†) holds when y = f. Further, since x → � =
¬ (x ·¬�) = ¬ (x ·⊥) = ¬⊥ = �, (†) holds when y = �. So we may assume
that y /∈ {f,�}.

Since x �= ⊥, we have x → ⊥ = ¬ (x ·¬⊥) = ¬ (x ·�) = ¬� = ⊥, so
both sides of (†) are false for y = ⊥. And since y �= �, i.e., ¬ y �= ⊥, we have
� → y = ¬ (� ·¬ y) = ¬� = ⊥, so both sides of (†) are false for x = �. We
may therefore assume that y �= ⊥ and x �= �.

Since x /∈ {⊥, t}, we have x → t = ¬ (x ·¬ t) = ¬ (x · f) = ¬� = ⊥, so
both sides of (†) are false for y = t. We may now assume that y �= t, which
means that y ∈ A. Then x /∈ A, which forces x = f. Note that ¬ y ∈ A, so
f ·¬ y = �. Thus, f → y = ¬ (f ·¬ y) = ¬� = ⊥, so both sides of (†) are
false for x = f. This completes the proof of (†). Now we claim that

(††) (x · z)→ y = z → (x→ y) for all x, y, z ∈ B.

Indeed, let x, y, z ∈ B. By the commutativity and associativity of · in B,

(x · z)→ y = ¬ ((x · z) ·¬ y) = ¬ ((z · x) ·¬ y)

= ¬ (z · (x ·¬ y)) = ¬ (z ·¬¬ (x ·¬ y))

= ¬ (z ·¬ (x→ y)) = z → (x→ y).

Then, by (†) and (††),

x · z ≤ y iff t ≤ (x · z)→ y = z → (x→ y) iff z ≤ x→ y.
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Thus, 〈B; ·,→, t,≤〉 is a residuated po-monoid. By design, ¬ is a compatible
involution and the inclusion map is an embedding. �

4. Lattice-Ordered Residuated Structures

A (commutative) lattice-ordered semigroup, or briefly a lo-semigroup, is an
algebra 〈A; ·,∧,∨〉 such that 〈A;∧,∨〉 is a lattice, 〈A; ·〉 is a commutative
semigroup, and

a · (b ∨ c) = (a · b) ∨ (a · c)

for all a, b, c ∈ A. In this case, clearly, 〈A; ·,≤〉 is a po-semigroup, where ≤
denotes the lattice order.

(Commutative) lo-monoids 〈A; ·,∧,∨, t〉 are defined analogously.

Definition 4.1. An algebra 〈A; ·,→,∧,∨〉 will be called a residuated (com-
mutative) lo-semigroup if 〈A;∧,∨〉 is a lattice and 〈A; ·,→,≤〉 is a residuated
po-semigroup, where ≤ denotes the lattice order. In this case, it is easily shown
that 〈A; ·,∧,∨〉 is indeed a lo-semigroup.

Residuated (commutative) lo-monoids 〈A; ·,→,∧,∨, t〉 are defined in an anal-
ogous way. (In the literature they are often called ‘commutative residuated
lattices’; see [21].)

These structures will be called distributive, square increasing, or implica-
tive (respectively) if their lattice reducts, their po-semigroup reducts, or their
residuated po-semigroup reducts have the indicated property.

Theorem 4.2. The following conditions on a residuated lo-semigroup A are
equivalent :

(i) A may be embedded into a residuated lo-monoid ;
(ii) A satisfies (|x | ∧ | y |)→ z ≤ z ;
(iii) A is implicative and |x | ∧ | y | is designated for all elements x, y of A.

Proof. The equivalence of (i) and (ii) follows from axiomatizations in [41,
Sec. 7]. Assuming (ii) and equating the variables x, y, we can infer that A
is implicative. Also, if we substitute | x | ∧ | y | for z in (ii), we get the re-
maining statement of (iii). Conversely, given (iii), if || x | ∧ | y || ≤ |x | ∧ | y |
then (|x | ∧ | y |) → z ≤ ||x | ∧ | y || → z ≤ z, by Proposition 2.2(iii) and
implicativity. �

Condition (ii) was isolated in [17], in a narrower context.

With every residuated lo-monoid A = 〈A; ·,→,∧,∨, t〉 we can associate a
residuated po-monoid Aord = 〈A; ·,→, t,≤〉, where ≤ is the order induced
by the lattice operations. When we say that a residuated po-monoid can be
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embedded into A, we mean that it can be embedded into Aord. Similarly for
other lattice-based structures.

The following result was proved by Meyer in [26, Sec. III].

Theorem 4.3. Every residuated po-monoid may be embedded into a residuated
distributive lo-monoid by a construction that preserves the square increasing
law.

It follows that every implicative po-semigroup may be embedded into a resid-
uated distributive lo-monoid, with preservation of the square increasing law.
(See Theorems 2.6 and 2.8.) But the proofs of these theorems do not make
provision for the existence and preservation of involution operators.

Definition 4.4. An algebra 〈A; ·,→,∧,∨,¬〉 will be called a c-involutive resid-
uated lo-semigroup if 〈A; ·,→,∧,∨〉 is a residuated lo-semigroup and ¬ is a
compatible involution of its residuated po-semigroup reduct.

c-Involutive residuated lo-monoids are defined analogously.

If ¬ is an involution of a lo-semigroup, it is easy to see that de Morgan’s laws
¬ (x ∧ y) ≈ ¬x ∨ ¬ y and ¬ (x ∨ y) ≈ ¬x ∧ ¬ y hold universally.

The next theorem is similar to a result of Meyer [27], which dealt with
semigroup-based structures. In its present form, it is a specialization of [19,
Thm. 9.1(ii),(iii)], where the proof can be found.

Theorem 4.5. Every residuated lo-monoid can be embedded into a c-involutive
residuated lo-monoid by a construction that preserves both distributivity and the
square increasing law.

For any algebra A = 〈A; 〈oA : o ∈ O〉〉 and any S ⊆ O, the S—subreducts of
A are just the subalgebras of the S—reduct 〈A; 〈oA : o ∈ S〉〉 of A.

The following result gives algebraic form to the technique of ‘t—surrogates’,
which was invented by Anderson and Belnap in their analysis of entailment
and relevance logic (see [1], [2, p. 343]).

Theorem 4.6. Let A be a finitely generated subreduct of a c-involutive resid-
uated lo-monoid C, and assume that the signature of A includes → and ∧
but excludes t. Let G = {g1, . . . , gn} be a finite generating set for A and define
tG = | g1| ∧ . . . ∧ | gn|.

Then tG ≤ | a | and tG → a = a for all a ∈ A, and tG is independent of the
choice of G. If the signature of A includes · as well, then a · tG = a for all
a ∈ A.

The reference to ≤ is unambiguous, since A is closed under ∧C. Note that
tG ∈ A and tC ≤ tG, by Proposition 2.4(1) (applied in C). It can happen that
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tG > tC /∈ A, even when · is present. A detailed proof of Theorem 4.6 can be
found in [31], except for the claim that tG → a = a. From tG ≤ | a | and Propo-
sition 2.2(iv) (applied in C), we get a ≤ tG → a. Also, tG ≤ (tG → a)→ a,
by a similar application of Proposition 2.2(v), so tC ≤ (tG → a) → a. Then
tG → a ≤ a, by Proposition 2.4(4) (again applied in C).

Remark 4.7. If we omit the term ‘c-involutive’ from the statement of Theo-
rem 4.6, the result is still true, in view of Theorem 4.5.

On its own, implicativity does not entail the equivalent conditions of Theo-
rem 4.2. This point was made in [17] and it is borne out by the next example.

Example 4.8. Let 〈A;∧,∨〉 be the lattice depicted below.
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Let · be the idempotent commutative binary operation on A such that ⊥ · x =
⊥ for all x ∈ A and x · y = � for distinct x, y ∈ A \ {⊥}. This is an as-
sociative operation and 〈A; ·,≤〉 is a po-semigroup. It is easy to see that it
is residuated. If we set ¬⊥ = �, ¬� = ⊥, ¬ a = a and ¬ b = b then the
residuation is definable by x → y = ¬ (x ·¬ y), hence ¬ is a compatible invo-
lution, by Lemma 3.2. Observe that | ⊥ | = | � | = � and | a | = a and | b | = b,
so A = 〈A; ·,→,∧,∨,¬〉 is implicative. But | a | ∧ | b | = a ∧ b = ⊥ is not
designated; equivalently, (| a | ∧ | b |)→ ⊥ = � �≤ ⊥. Consequently, although
〈A; ·,→,¬,≤〉 can be embedded into a c-involutive residuated po-monoid (The-
orem 3.4), no such embedding can preserve ∧ and ∨. Even if we ignore the
involution, the ¬ —free reduct of A cannot be embedded into a residuated lo-
monoid, by Theorem 4.2.

This motivates the theorem labeled (ii) in the Introduction, which we can
now prove.

Theorem 4.9. Let A be a residuated lo-semigroup or a c-involutive residuated
lo-semigroup. If A satisfies the identity (|x | ∧ | y |)→ z ≤ z then A can be
embedded into a c-involutive residuated lo-monoid.

If, moreover, A is distributive or square increasing or both then the contain-
ing algebra can be chosen to have the same attributes.
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Proof. We deal first with the case where A is c-involutive. Let A satisfy the
given inequality.

First suppose A is finitely generated and let H be a finite generating set for
A. Then G = H ∪{¬h : h ∈ H} is a generating set for the {·,→,∧,∨}—reduct
A
+ of A. This follows from de Morgan’s laws and the identities ¬ (x · y) ≈

x→ ¬ y and ¬ (x→ y) ≈ x ·¬ y, which jointly show that all expressions built
up from H using ·,→,∧,∨ and ¬ can be built up from G without using ¬. So
A
+ is also finitely generated.

Let tG ∈ A be defined as in Theorem 4.6. By assumption, A+ satisfies
(|x | ∧ | y |)→ z ≤ z, so Theorem 4.2 tells us that A+ is a subreduct of a
residuated lo-monoid. Now Remark 4.7 permits us to apply Theorem 4.6 to
A
+, so tG is an identity for · on A, i.e., A+ is already the {·,→,∧,∨}—reduct of

a residuated lo-monoid. And since no new elements need be added toA+ to get
a monoid, A itself is the {·,→,∧,∨,¬}—reduct of a c-involutive residuated lo-
monoid 〈A; ·,→,∧,∨,¬, tG〉. So the result holds for finitely generated algebras
A (the preservation claims being trivial for this construction).

Next, suppose A is not finitely generated. The class of c-involutive residu-
ated lo-semigroups satisfying (|x |∧| y |)→ z ≤ z is closed under ultraproducts
and subalgebras, since it is defined by universal first order sentences. Now A,
like every algebra, may be embedded into an ultraproduct of finitely gener-
ated subalgebras of itself: see for instance [11, Thm.V.2.14]. We have already
shown that each finitely generated subalgebra Ai of A is the reduct of a c-
involutive residuated lo-monoid At

i, so A is a {·,→,∧,∨,¬}—subreduct of the
corresponding ultraproductB of the algebrasAt

i, and this ultraproduct is itself
a c-involutive residuated lo-monoid. Distributivity and the square increasing
law are preserved in the formation of subalgebras, expansions by constants,
and ultraproducts, since they too are universal first order sentences. So these
properties (and their conjunction) persist in the passage from A to B.

Finally, suppose A is merely a residuated lo-semigroup (without ¬) satis-
fying the given inequality. Carrying out the above argument but omitting all
reference to G and working with H instead, we get a simpler proof that A
may be embedded into a residuated lo-monoid (without ¬) in such a way that
distributivity and the square increasing law are preserved. (We can’t simply
use Theorem 4.2 here, because its proof in [41] does not establish preservation
of distributivity.) Then applying Theorem 4.5, we deduce the result. �

Definition 4.10. A relevant algebra is a square increasing c-involutive residu-
ated distributive lo-semigroup satisfying (| x | ∧ | y |)→ z ≤ z.

A de Morgan monoid is a square increasing c-involutive distributive residu-
ated lo-monoid. (These names come from [17] and [2], respectively.)

As an instance of Theorem 4.9, we have:
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Corollary 4.11. Every relevant algebra may be embedded into a de Morgan
monoid.

5. Adding Distributive Lattice Operations

Our aim in the present section is to prove Claim (iii) from the Introduction:

Theorem 5.1. Every c-involutive residuated po-monoid may be embedded into
a c-involutive residuated distributive lo-monoid (which may be chosen complete).

As we noted earlier, the proof of Theorem 4.3 is not helpful here; it can’t be
adapted to cater for an involution.

Definition 5.2. By an involutive → po-monoid we shall mean a structure
A = 〈A; ·,→,¬, t,≤〉 such that 〈A; ·, t,≤〉 is a po-monoid, ¬ is an involution of
〈A;≤〉 (not necessarily a compatible involution), and → is an arbitrary binary
operation on A.

If in addition, 〈A; ·,→, t,≤〉 is a residuated po-monoid, we call A an involu-
tive residuated po-monoid.

Here we continue to take commutativity of · for granted. The first part of
the definition looks rather strange, in that → is essentially redundant, but by
recognizing this category of objects we will be able to manage our notational
conventions more efficiently. We repeat our caution to the reader that in the
context of residuated po-monoids, the term ‘involutive’ is used in many texts–
including some cited here–to mean ‘c-involutive’.

For the remainder of this section, let A = 〈A; ·,→,¬, t,≤〉 be an involutive
→ po-monoid. Let U(A) be the set of all upward closed subsets of A. Thus,
∅ and A itself belong to U(A), and so do all sets of the form

[ x ) := {a ∈ A : a ≥ x} (x ∈ A).

The smallest upward closed set containing a subset S of A will be denoted by
[S ). Thus, [S ) =

⋃
x∈S [ x ) = {a ∈ A : a ≥ x for some x ∈ S}. For X,Y ⊆ A

and a ∈ A, we define

X ∗ Y := {x · y : x ∈ X and y ∈ Y } .

For X,Y ∈ U(A), we define:

X · Y := [X ∗ Y ) = {a ∈ A : a ≥ x · y for some x ∈ X and some y ∈ Y }

X → Y := {a ∈ A : X ∗ {a} ⊆ Y }

¬X := {a ∈ A : ¬ a /∈ X}

Lemma 5.3. U(A) is closed under ·, → and ¬ .
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This follows easily from the definitions. Using the compatibility of ≤ with ·,
we see that whenever x ∈ A and Z ∈ U(A), then

(8) [ x ) ·Z = [ {x} ∗ Z ).

Now we define

U(A) := 〈U(A); ·,→,¬, [ t ),⊆〉.

With respect to present assumptions and notational conventions, we have:

Lemma 5.4. U(A) is an involutive residuated po-monoid whose order ⊆ is a
distributive complete lattice order, with ∩ and ∪ as binary meet and join, and
for all x, y ∈ A,

[ x ) · [ y ) = [ x · y ) and [ x )→ [ y ) = {z ∈ A : x · z ≥ y}.

Note. ¬ [ x ) �= [¬x ) and, usually, [ x )→ [ y ) �= [ x→ y ).

The proof of Lemma 5.4 is straightforward. The order-theoretic claims
are justified because upward closure persists under arbitrary intersections and
unions, and of course ∩ distributes over ∪.

It follows that we may repeat the construction on U(A). Thus we define
U2(A) := U(U(A)) and

U
2(A) := U(U(A)) = 〈U2(A); ·,→,¬, [[ t )),⊆〉

and we conclude from Lemma 5.4 that U 2(A) is also an involutive residuated
po-monoid, whose order ⊆ is a distributive complete lattice order, with ∩ and
∪ as lattice operations. If x ∈ A and X ∈ U(A) then

(9) x ∈ X iff [ x ) ⊆ X iff X ∈ [[x )).

Lemma 5.5. If x, y ∈ A then, in U 2(A),

[[ x ))→ [[ y )) = {Z ∈ U(A) : x · z ≤ y for some z ∈ Z}.

Proof. Let Z ∈ U(A). By Lemma 5.4, Z ∈ [[ x )) → [[ y )) iff [ y ) ⊆ [ x ) ·Z =
[ {x} ∗ Z ) (by (8)), iff y ∈ [ {x} ∗ Z ) (because [ {x} ∗ Z ) is upward closed) iff
y ≥ x · z for some z ∈ Z. �

We define a function hA from A into U2(A) by:

hA : x �→ [[ x )) = {X ∈ U(A) : x ∈ X} ,

where the equality follows from (9). We have noted that the function x �→ [ x )
from A to U(A) fails to preserve ¬ and →. Nevertheless, it is easy to prove

Lemma 5.6. hA is an order preserving and order reflecting homomorphism
between the monoid reducts of A and U 2(A) which preserves ¬.
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Proof. The claims about order are obvious, while two applications of Lemma 5.4
show that · is preserved. For any x ∈ A and X ∈ U(A), we have X ∈ ¬ [ [ x ))
iff ¬X /∈ [[ x )) iff x /∈ ¬X (by (9)) iff ¬x ∈ X iff X ∈ [ [¬x )) (by (9)). So
¬ [[ x )) = [[¬x )). �

Now we strengthen the requirements on A, requiring first that it be an
involutive residuated po-monoid, not merely an involutive → po-monoid.

Lemma 5.7. For any involutive residuated po-monoid A, the function hA
preserves → and is therefore an embedding A→ U

2(A) of involutive residuated
po-monoids.

Proof. Let x, y ∈ A. We need to show that [[ x )) → [[ y )) = [[ x → y )). Let
Z ∈ U(A). By Lemma 5.5, we have Z ∈ [[ x )) → [[ y )) iff x · z ≤ y for some
z ∈ Z, iff z ≤ x→ y for some z ∈ Z, iff x→ y ∈ Z (since Z is upward closed),
iff Z ∈ [[ x→ y )) (by (9)). �

Finally, we show that when A is a c-involutive residuated po-monoid, as
opposed to an involutive one, then U 2(A) is also c-involutive.

Theorem 5.8. For any c-involutive residuated po-monoid A, the structure
U
2(A) is also a c-involutive residuated po-monoid.

Proof. Recall that we define f = ¬ t in A. Since A is c-involutive, ¬x = x→ f
for all x ∈ A. Similarly, to show that U 2(A) is c-involutive, it suffices to
show that ¬C = C → [ [ f )) for all C ∈ U2(A) (see the remarks preceding
Theorem 3.4). So let C ∈ U2(A) and Z ∈ U(A). Now

Z ∈ ¬C iff ¬Z /∈ C

iff ∀V ∈ C, V �⊆ ¬Z (since C is upward closed)

iff ∀V ∈ C, ∃ v ∈ V such that v /∈ ¬Z

iff ∀V ∈ C, ∃ v ∈ V such that ¬ v ∈ Z

iff ∀V ∈ C, ∃ v ∈ V such that v → f ∈ Z

iff ∀V ∈ C, ∃ v ∈ V, ∃ z ∈ Z such that z ≤ v → f

(since Z is upward closed)

iff ∀V ∈ C, ∃ v ∈ V, ∃ z ∈ Z such that v · z ≤ f

iff ∀V ∈ C, f ∈ [V ∗ Z ) = V ·Z

iff ∀V ∈ C, V ·Z ∈ [[ f )) (by (9))

iff C ∗ {Z} ⊆ [[ f ))

iff Z ∈ C → [[ f )).

This shows that ¬C = C → [ [ f )), as required. �



CONSERVING INVOLUTION IN RESIDUATED STRUCTURES 25

Now the algebra 〈U2(A); ·,→,∩,∪,¬, [ [ t ))〉 is a c-involutive residuated
distributive complete lo-monoid, and Theorem 5.1 follows from Theorem 5.8
and Lemma 5.7.

Definition 5.9. A po-monoid is said to be integral if its identity t is its greatest
element.

The construction for Theorem 5.1 does not preserve integrality, i.e., when A
is integral, U 2(A) need not be. Indeed, if t is the greatest element of A then
hA(t) is the set of all non-empty elements of U(A). In this case, there is one
(and only one) element of 〈U2(A);⊆〉 not dominated by hA(t), namely U(A).
On the other hand, one may check that U2(A)\{∅, U(A)} is closed under all of
the operations ·,→,∩,∪,¬, and the integral algebra on this subuniverse may
take the place of U 2(A) in the theorem. Note that we do not also throw out
the extreme elements of U(A) in the amended construction. They are needed
to ensure that the extrema of U2(A) are indeed superfluous. The integral
algebra is still a complete lattice, as the top element of U2(A) was completely

join-irreducible in U 2(A), while the involution ensures dual behaviour at the
bottom. Thus we have:

Corollary 5.10. Every integral c-involutive residuated po-monoid may be em-
bedded into an integral c-involutive residuated distributive lo-monoid (which can
be chosen complete).

The construction that establishes Theorem 5.1 also fails to preserve the
square increasing law. In the next section we shall present a more complex
construction which does preserve this law. But to prove that the construction
works, we shall need to use the fact that the original po-monoid A is square
increasing. So that argument cannot replace our present proof of Theorem 5.1.

The clause ¬X := {a ∈ A : ¬ a /∈ X} defining involution inU (A) appeared
originally in [7] in a related but different context. It is known as the ‘Routley
star’, owing to its appearance in [38], where ¬ a is denoted as a∗.

6. De Morgan Monoids and the Square Increasing Law

Recall that a de Morgan monoid is a c-involutive square increasing residuated
distributive lo-monoid. Our aim in this section is to prove Claim (iv) from the
Introduction, i.e.:

Theorem 6.1. Every c-involutive square increasing residuated po-monoid can
be embedded into a de Morgan monoid (which can be chosen complete).

Although no embedding theorem of this kind was claimed by Meyer and
Routley in [30], the key ingredients of our proof are suggested by that paper.
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For the rest of this section, let A = 〈A; ·,→,¬, t,≤〉 be a c-involutive square
increasing residuated po-monoid. We define

x+ y := (¬x)→ y .

It is well known and easy to verify that + is associative, commutative and has
identity f (= ¬ t).

Lemma 6.2. A satisfies

x+ x ≤ x(10)

x ≤ y =⇒ z + x ≤ z + y(11)

¬ (x+ y) ≈ ¬x ·¬ y and ¬ (x · y) ≈ ¬x+ ¬ y(12)

x · (y + z) ≤ (x · y) + z(13)

x · y ≤ w & x′ · y′ ≤ w′ =⇒ x · x′ · (y + y′) · z · z′ ≤ (z ·w) + (z′ ·w′)(14)

x · y ≤ w & x′ · y′ ≤ w =⇒ x · x′ · (y + y′) ≤ w.(15)

[Of these properties, only (10) and (15) rely on the square increasing law.]

Proof. Let x, y, z ∈ A. By the square increasing law and c-involution properties,
¬x ≤ ¬x ·¬x = ¬ (¬x → x) = ¬ (x+ x), so x + x ≤ x, proving (10). (11)
follows from Proposition 2.2(iii) and the definition of +, while (12) follows from
Lemma 3.2 and the definitions.

For (13), we need to prove that x · (¬ y → z) ≤ ¬ (x · y) → z. This is
equivalent to ¬ (x · y) · x · (¬ y → z) ≤ z, by definition of →. Now

¬ (x · y) · x · (¬ y → z) = (x→ ¬ y) · x · (¬ y → z)

= x · (x→ ¬ y) · (¬ y → z) (by commutativity)

≤ ¬ y · (¬ y → z) ≤ z (by definition of →).

(14): Using (13) and the commutativity and associativity of · and +, we
calculate that

x · x′ · (y + y′) = x′ · x · (y + y′) ≤ x′ · ((x · y) + y′)

= x′ · (y′ + (x · y)) ≤ (x′ · y′) + (x · y) = (x · y) + (x′ · y′),

and similarly, z · z′ · (w+w′) ≤ (z ·w)+(z′ ·w′). So if x · y ≤ w and x′ · y′ ≤ w′

then, by (11),

x · x′ · (y + y′) · z · z′ ≤ ((x · y) + (x′ · y′)) · z · z′

≤ (w + w′) · z · z′ = z · z′ · (w + w′) ≤ (z ·w) + (z′ ·w′).

(15): Set z = z′ = t and w′ = w in (14), then invoke (10) for w+w ≤ w. �
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Definition 6.3. An intensional filter of A shall mean a subset F of A that is
either empty or an upward closed subsemigroup of 〈A; ·〉, i.e., whenever x ∈ F
and x ≤ y ∈ A then y ∈ F , and whenever x, y ∈ F then x · y ∈ F .

Lemma 6.4. For each x ∈ A, the set [ x ) : = {a ∈ A : a ≥ x} is an
intensional filter of A.

Proof. If x ≤ y ∈ A and x ≤ z ∈ A then x ≤ x · x ≤ y · z. �

Arbitrary intersections of intensional filters are intensional filters again. So
the set IFil(A) of all intensional filters of A becomes a complete lattice with
respect to set inclusion, whose extrema are ∅ and A. For each X ⊆ A, let
IFg(X) denote the smallest intensional filter of A containing X, i.e.,

IFg(X) =
⋂
{F : X ⊆ F ∈ IFil(A)}.

Lemma 6.5.

IFg(X) = {a ∈ A : a ≥ x1 · . . . · xn for some x1, . . . , xn ∈ X, where n > 0}.

In particular, IFg({x}) = [ x ) for all x ∈ A.

Proof. For the first claim, it suffices to note that the set on the right of the
equality is an intensional filter containing X, and it is also contained in any
intensional filter that contains X. The second claim follows from Lemma 6.4.

�

Corollary 6.6. If F is an intensional filter of A and x ∈ A then

IFg(F ∪ {x}) = {a ∈ A : a ∈ F or a ≥ x or ∃f ∈ F such that a ≥ f · x}.

This follows easily from Lemma 6.5, in view of commutativity, the square
increasing law and the closure properties of F .

Definition 6.7. For F,G ∈ IFil(A), we define

F ◦G := {a ∈ A : a ≥ f · g for some f ∈ F and some g ∈ G}.

Lemma 6.8. 〈 IFil(A); ◦, [ t ),⊆〉 is a po-monoid, and F ◦ F ⊆ F for all in-
tensional filters F of A.

Proof. Closure of IFil(A) under ◦ follows easily from the commutativity of ·
(along with associativity and order compatibility). Then 〈IFil(A); ◦, [ t ),⊆〉 is
a (commutative) po-monoid, by Lemma 5.4. If F is an intensional filter of A
and a ∈ F ◦ F then a ≥ f1 · f2 for some f1, f2 ∈ F , hence a ∈ F . �

Definition 6.9. An intensional filter F of A is said to be prime provided that
whenever a, b ∈ A with a+ b ∈ F then a ∈ F or b ∈ F .
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The next lemma is analogous to the prime filter theorem for distributive
lattices–but here ·,+ take over the roles of ∧,∨. Analogues of Lemmas 6.10
and 6.11 appear in [30].

Lemma 6.10. Let X ∪ {y} ⊆ A, where y /∈ IFg(X). Then there is an inten-
sional filter M of A that is a ⊆—maximal element of the set

{F ∈ IFil(A) : X ⊆ F and y /∈ F}.

Further, any such M is a prime intensional filter of A.

Proof. The first assertion is a straightforward application of Zorn’s Lemma.
Let M be an intensional filter of A that is maximal in the indicated sense. We
must show that M is prime. Suppose not. Then there exist a, b ∈ A \M with
a+b ∈M . SoM is a proper subset of each of the intensional filters IFg(M∪{a})
and IFg(M ∪ {b}). By the maximality of M , we have y ∈ IFg(M ∪ {a}) and
y ∈ IFg(M ∪ {b}). By Corollary 6.6, there exist f1, f2 ∈M such that

( y ≥ a or y ≥ f1 · a ) and ( y ≥ b or y ≥ f2 · b ).

Now by (10) and (15),

• if y ≥ a and y ≥ b then y ≥ a+ b

• if y ≥ f1 · a and y ≥ b then y ≥ f1 · (a+ b)

• if y ≥ a and y ≥ f2 · b then y ≥ f2 · (a+ b)

• if y ≥ f1 · a and y ≥ f2 · b then y ≥ f1 · f2 · (a+ b).

(In the second and third items, set x′ = t in (15).) Then, since f1, f2, a+b ∈M ,
we have y ∈M , contradicting our choice of M . �

Lemma 6.11. (Primeness Lemma) Let F,G be intensional filters of A and let
P be a prime intensional filter of A.

(i) If F ◦G ⊆ P then there exists a prime intensional filter F ′ of A such
that F ⊆ F ′ and F ′ ◦G ⊆ P.

(ii) If F ◦G ⊆ P then there exist prime intensional filters F ′, G′ of A such
that F ⊆ F ′ and G ⊆ G′ and F ′ ◦G′ ⊆ P.

Proof. Since ◦ is commutative on intensional filters, two applications of (i) will
yield (ii). To prove (i), we apply Zorn’s Lemma to the set

Σ = {X ∈ IFil(A) : X ◦G ⊆ P and F ⊆ X}

and deduce that Σ has a ⊆—maximal element. Let F ′ be any ⊆—maximal
element of Σ. We need to show that the intensional filter F ′ is prime. Suppose
not. Then there exist a, b ∈ A \ F ′ with a + b ∈ F ′. So by the maximality of
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F ′ we must have IFg(F ′ ∪{a}) ◦G �⊆ P and IFg(F ′∪{b}) ◦G �⊆ P , i.e., there
exist e ∈ IFg(F ′ ∪ {a}), e′ ∈ IFg(F ′ ∪ {b}) and g, g′ ∈ G such that

(16) e · g /∈ P and e′ · g′ /∈ P.

Since e ∈ IFg(F ′ ∪ {a}) and e′ ∈ IFg(F ′ ∪ {b}), Corollary 6.6 shows that there
exist f, f ′ ∈ F ′ such that

( e ≥ a or e ≥ f · a ) and ( e′ ≥ b or e′ ≥ f ′ · b ).

Now the next four assertions follow from (14), where in some cases we substitute
t for suitable variables.

• if e ≥ a and e′ ≥ b then (e · g) + (e′ · g′) ≥ (a+ b) · g · g′

• if e ≥ f · a and e′ ≥ b then (e · g) + (e′ · g′) ≥ f · (a+ b) · g · g′

• if e ≥ a and e′ ≥ f ′ · b then (e · g) + (e′ · g′) ≥ f ′ · (a+ b) · g · g′

• if e ≥ f · a and e′ ≥ f ′ · b then (e · g) + (e′ · g′) ≥ f · f ′ · (a+ b) · g · g′.

Then, since F ′ and G are closed under · and f, f ′, a+ b ∈ F ′ and g, g′ ∈ G and
F ′ ◦ G is upward closed and contained in P , it follows in all four cases that
(e · g) + (e′ · g′) ∈ P . This, with (16), contradicts the primeness of P . �

Notation. PIFil(A) shall denote the set of all prime intensional filters of A.

Definition 6.12. For each P ∈ PIFil(A) we define ¬P := {a ∈ A : ¬ a /∈ P}.

Lemma 6.13. PIFil(A) is closed under ¬.

Proof. Let P ∈ PIFil(A). Upward closure of ¬P follows from the fact that
¬ is an involution. Closure under · follows from the primeness of P , in view
of (12). Dually, primeness of ¬P follows from (12) and the fact that 〈P ; ·〉 is
empty or a subsemigroup of 〈A; ·〉. �

Lemma 6.13 is the main reason for confining attention to the prime filters,
since IFil(A) is not closed under ¬.

Lemma 6.14. For all P,Q ∈ PIFil(A) and all W ∈ IFil(A),

(i) ¬¬P = P,
(ii) if P ⊆ Q then ¬Q ⊆ ¬P,
(iii) if P ◦W ⊆ Q then (¬Q) ◦W ⊆ ¬P.

Proof. (i) and (ii) follow from Lemma 5.4.

To prove (iii), suppose P ◦ W ⊆ Q. Let a ∈ (¬Q) ◦W . Then a ≥ b ·w
for some w ∈ W and some b ∈ ¬Q, so ¬ b /∈ Q. Now ¬ b ≥ ¬ a ·w, by
compatibility of ¬. Since ¬ b /∈ Q and Q is upward closed, we must have
¬ a ·w /∈ Q. It then follows from P ◦W ⊆ Q that ¬ a ·w /∈ P ◦W . So ¬ a /∈ P ,
i.e., a ∈ ¬P . This shows that (¬Q) ◦W ⊆ ¬P . �
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For any α, β ⊆ PIFil(A), we define α ∗ β := {F ◦G : F ∈ α and G ∈ β}.
This is not a binary operation on the power set of PIFil(A), since PIFil(A) is
not generally closed under ◦.

Definition 6.15. D(A) shall denote the set of all upward closed subsets of
〈PIFil(A);⊆〉. So α ∈ D(A) iff α is a set of prime intensional filters of A such
that for any prime intensional filters P,Q of A, if P ∈ α and P ⊆ Q then
Q ∈ α.

Definition 6.16. Let α, β ∈ D(A) and x ∈ A.

(i) We define α · β to be the set of all prime intensional filters of A that
contain an element of α ∗ β, i.e.,

α · β := {P ∈ PIFil(A) : P ⊇ Pα ◦ Pβ for some Pα ∈ α and some Pβ ∈ β}.

(ii) We define α→ β to be the set of all prime intensional filters W of A such
that every prime intensional filter containing an element of α ∗ {W} belongs to
β, i.e.,

α→ β := {W ∈ PIFil(A) : ∀Q ∈ PIFil(A) ∀Pα ∈ α (Q ⊇ Pα◦W =⇒ Q ∈ β)}.

(iii) We define ¬α := {P ∈ PIFil(A) : ¬P /∈ α}.

(iv) We define h(x) := {P ∈ PIFil(A) : x ∈ P}.

It is easy to see that

Lemma 6.17. D(A) is closed under ·,→ and ¬, as well as the intersections
and unions of arbitrary subsets. If x ∈ A then h(x) ∈ D(A).

Let D(A) = 〈D(A); · ,→,∩,∪,¬, h(t)〉.

Lemma 6.18. D(A) is a complete de Morgan monoid.

Proof. It follows from Lemmas 6.17 and 6.8 that 〈D(A); · ,→,⊆〉 is a resid-
uated lo-semigroup, whose order is a distributive complete lattice order, with
∩ and ∪ as meet and join. To see that this structure is square increasing, let
α ∈ D(A) and let P ∈ α. By Lemma 6.8, P ⊇ P ◦ P , so P ∈ α · α. Thus,
α ⊆ α · α.

We need to show that h(t) is an identity for · in D(A). Let P ∈ α · h(t), so
P ⊇ Pα ◦ Pt for some Pα ∈ α and some Pt ∈ h(t). Then t ∈ Pt, so Pt ⊇ [ t ), as
Pt is upward closed. Thus, Pα ◦ Pt ⊇ Pα ◦ [ t ), whence P ⊇ Pα ◦ [ t ) = Pα (by
Lemma 6.8). Then P ∈ α, as α is upward closed. This shows that α · h(t) ⊆ α.

For the reverse inclusion, let P ∈ α. By Lemma 6.8, P ⊇ P ◦ [ t ). So it
follows from the Primeness Lemma 6.11 that there is a prime intensional filter
F ′ of A such that P ⊇ P ◦ F ′ and [ t ) ⊆ F ′, i.e., t ∈ F ′, i.e., F ′ ∈ h(t). This
shows that P ∈ α · h(t). Thus, α ⊆ α · h(t), as required.
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It remains only to prove that ¬ is a compatible involution. Let α, β ∈ D(A).
For any prime intensional filter P of A, we have ¬¬P = P , by Lemma 6.14(i).
So in this case, P ∈ ¬¬α iff ¬P /∈ ¬α iff ¬¬P ∈ α iff P ∈ α. Thus,
¬¬α = α.

Now 〈D(A); ·,→,⊆〉 is implicative, because · is a monoid operation onD(A).
So by Lemma 3.2, it remains only to show that α → ¬β = β → ¬α. By
symmetry, we need only show that α → ¬β ⊆ β → ¬α. Let W ∈ α → ¬β.
So

(17) ∀Q ∈ PIFil(A) ∀Pα ∈ α, if Q ⊇ Pα ◦W then Q ∈ ¬β.

Now let Q′ be any prime intensional filter of A and suppose Pβ ∈ β with
Q′ ⊇ Pβ ◦W . We need to prove that Q′ ∈ ¬α. Suppose Q′ /∈ ¬α. Then

(18) ¬Q′ ∈ α.

From Q′ ⊇ Pβ ◦W and Lemma 6.14(iii), we infer that

(19) ¬Pβ ⊇ (¬Q′) ◦W.

It follows from (17), (18) and (19) that ¬Pβ ∈ ¬β. So ¬¬Pβ /∈ β, i.e., Pβ /∈ β.
This contradicts our assumption that Pβ ∈ β, so Q′ ∈ ¬α. �

Lemma 6.19. The function x �→ h(x) from A into D(A) is order preserving
and order reflecting, hence injective. It also preserves ·,¬,→ and the identity.

Proof. Since (prime) intensional filters are upward closed, h preserves order.
Let x, y ∈ A. Suppose x �≤ y, i.e., y /∈ [ x ) = IFg({x}) (by Lemma 6.5). So by
Lemma 6.10, there exists a prime intensional filter M of A with y /∈ M such
that [ x ) ⊆ M , i.e., x ∈ M . Then M ∈ h(x). Now h(x) �⊆ h(y), otherwise we
would have M ∈ h(y), hence y ∈M , a contradiction.

It is easily shown that h(x) · h(y) ⊆ h(x · y). For the reverse inclusion, let
P ∈ h(x · y), so x · y ∈ P . Since P is upward closed and ≤ is compatible with
· in A, it follows that [x ) ◦ [ y ) ⊆ P . Then by the Primeness Lemma 6.11(ii),
there are prime intensional filters F ′, G′ of A such that F ′ ◦ G′ ⊆ P and
[x ) ⊆ F ′ and [ y ) ⊆ G′, i.e., x ∈ F ′ and y ∈ G′, i.e., F ′ ∈ h(x) and G′ ∈ h(y).
It follows that P ∈ h(x) · h(y). This proves that h(x · y) ⊆ h(x) · h(y), so h
preserves ·.

Preservation of ¬ follows straightforwardly from the definitions. Lemma 6.18
shows that h(t) is the identity for · on D(A). It also shows that A and D(A)
both satisfy x→ y ≈ ¬ (x ·¬ y), so h preserves → as well. �

The last two lemmas establish Theorem 6.1.

There are other ways of embedding c-involutive residuated po-monoids into
lattice-ordered ones, while preserving the square increasing law and integrality.
One of these is an adaptation of the Dedekind-MacNeille completion, discussed
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in [4, 5, 32, 33] and [40, Ch. 8]. But the construction preserves all existent meets
and joins from the original po-monoid, whence the lattice-based structure that
it produces is not generally distributive. So we could not have used this method
to prove Theorem 6.1 or Theorem 5.1. Alternative constructions involving a
‘perp-style’ involution feature in [14] and subsequent papers of Dunn. They
derive from Goldblatt’s semantics for orthologic and have been adapted to
linear logic. They too are designed to produce non-distributive lattices.

7. Some Formal Systems

The embedding results established thus far will help us to prove separation
theorems for the deducibility relations of various substructural logics. This will
be done in Section 8. First, we need a unified account of the precise relation-
ships between the residuated algebraic structures and the logical systems.

Positive linear (propositional) logic is specified by the following formal sys-
tem in the signature {·,→,∧,∨, t}. We denote this system by LL+. Our t is
often denoted as 1 in linear logic, e.g., in [40].

(P1) 
 p→ p (identity)

(P2) 
 (p→ q) → ((r → p)→ (r → q)) (prefixing)

(P3) 
 (p→ (q → r))→ (q → (p→ r)) (exchange)

(P4) p, p→ q 
 q (modus ponens)

(P5) 
 (p ∧ q)→ p

(P6) 
 (p ∧ q)→ q

(P7) 
 ((p→ q) ∧ (p→ r)) → (p→ (q ∧ r))

(P8) p, q 
 p ∧ q (adjunction)

(P9) 
 p→ (p ∨ q)

(P10) 
 q → (p ∨ q)

(P11) p→ r, q → r 
 (p ∨ q)→ r

(P12) 
 p→ (q → (q · p))

(P13) 
 (p→ (q → r)) → ((q · p)→ r)

(P14) 
 t

(P15) 
 t→ (p→ p)

We refer to (P1)—(P15) as the postulates of LL+, and we call modus ponens,
adjunction and (P11) the inference rules. The remaining postulates are called
the axioms of LL+. In an inference rule, the formulas on the left of 
 are
called the premisses, and those on the right the conclusion. In this paper,
when we speak of formal systems in general, it is understood that an inference
rule always has a single conclusion and only finitely many premisses. A formal



CONSERVING INVOLUTION IN RESIDUATED STRUCTURES 33

system may have infinitely many postulates; it is assumed to come with an
infinite supply of (propositional) variables, which may as well be considered
fixed for all systems.

The deducibility relation 
F of a formal system F is defined as the relation
from sets of formulas to single formulas that contains a pair 〈Γ, α〉 just when
there is a proof of α from Γ in F. A proof of this kind is any finite sequence of
formulas terminating with α, such that every item in the sequence belongs to
Γ or is a substitution instance of a formula that is either an axiom of F or the
conclusion of an inference rule of F, where in the last case, the same substitution
turns the premisses of the rule into previous items in the sequence. To signify
that such a proof exists, we write Γ 
F α, omitting Γ when it is empty. The
theorems of F are the formulas α such that 
F α.

1

Definition 7.1. Let F be any formal system and S any subset of its signature.

The S—fragment of 
F is the set of all pairs 〈Γ, α〉 in 
F such that all
connectives occurring in Γ ∪ {α} belong to S. (Sentential constants count as
connectives of rank 0.)

The S—postulates of F are the postulates of F in which all occurring connec-
tives belong to S.

As a consequence of general results in [24], the S—fragment of 
F is itself
the deducibility relation of a formal system whose signature is S. Of course the
latter system is not unique, but any such system will be called an axiomatization
of the S—fragment of 
F . Finite axiomatizability need not persist in fragments.

The following separation theorem for 
LL+ was proved in [41].

Theorem 7.2. The S—fragment of 
LL+ is axiomatized by the S—postulates
among (P1) — (P15), provided that S includes →.

Hilbert-style presentations of linear logic usually include an axiom

(20) 
 ((p→ r) ∧ (q → r)) → ((p ∨ q) → r)

and exclude the inference rule (P11). The formula (20) is a theorem of LL+

but to include it as an axiom in preference to (P11) would be to destroy the
above separation theorem for fragments of 
LL+ with → and ∨ but not ∧: see
[41, Ex. 1]. The theorems of LL+ do not include

(W) 
 (p→ (p→ q)) → (p→ q) (contraction)

(D) 
 (p ∧ (q ∨ r)) → ((p ∧ q) ∨ (p ∧ r)) (distribution).

1Our definition of ‘deducibility’ is a common one, but it is at odds, for instance, with the
usage of [2]. There, ‘deducibility’ is taken to be the converse of ‘entailment’, so the meaning
of α 
 β is constrained by the principle that it must coincide with the meaning of 
 α→ β.
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The following abbreviations are standard:

LR+ := LL+ ∪ {(W)}
R-W+ := LL+ ∪ {(D)}

R+ := LL+ ∪ {(W), (D)}

(The names will be clarified later.)

Theorem 7.3. The S—fragment of 
LR+ is axiomatized by contraction and
the S—postulates among (P1) — (P15), provided that S includes →.

This was proved in [41, Sec. 9]. Some parts of the result can be inferred from
[25, 26]; see Remark 8.5.

Separation theorems in the literature have tended to focus on the axiomati-
zation of theorems, rather than of deducibility relations. To be precise about
this: suppose F and F′ are formal systems whose respective signatures are S
and S ′, where S ′ ⊆ S (with preservation of the ranks of symbols). If (i) F and
F′ have the same theorems in the vocabulary of S ′ and (ii) every postulated
inference rule of F′, considered as a schematic rule in the vocabulary of S,
preserves the full set of theorems of F, then we say that F′ axiomatizes the
S′—theorems of F. In fact, whenever we make this claim in the present paper,
a stronger version of (ii) will hold: the postulated rules of F′ will actually be-
long to 
F. Even in this situation, it need not follow that F′ axiomatizes the
S′—fragment of 
F.

Negation.

The formal system CL is got by adding to LL+ a unary connective ¬ (called
negation) and the axioms

(P16) 
 (p→ ¬ q)→ (q → ¬ p) (contraposition)

(P17) 
 ¬¬ p→ p (double negation)

(P18) 
 ¬ (¬ (p→ p) ∨ ¬ (q → q)).

It specifies classical linear logic (without bounds and exponentials). We are
deviating from [40] and other texts in taking ¬ to be a primitive connective.
The reasons for doing this will be explained in Remark 8.6. We are also carrying
over to ¬ our notational conventions for involution, e.g., ¬ binds more strongly
than any other connective to be discussed. Likewise, | p | shall continue to
abbreviate p→ p. The theorems of CL include the converse of double negation.

Remark 7.4. The theorem (p · q) → ¬ (p→ ¬ q) and its converse can both be
proved using only the {·,→,¬}—postulates of CL. Moreover, if we had defined
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p · q as ¬ (p→ ¬ q) then we could have proved (P12) and (P13) using only the
{→,¬}—postulates of CL. We express the conjunction of these two facts by
saying that · is definable over CL in terms of → and ¬ only.

In the definition of 
CL, the axiom (P18) is redundant. However, when we
want a separative axiomatization of 
CL , (or even just the theorems of CL)
then (P18) turns out to be indispensable. The next remark explains this.

Remark 7.5. De Morgan’s laws are reflected in the well known fact that

(p ∨ q)→ ¬ (¬ p ∧ ¬ q) and (p ∧ q)→ ¬ (¬ p ∨ ¬ q)

and their converses are theorems of CL; the proofs use only the {→,∧,∨,¬}—
postulates of CL. If we had defined p ∨ q as ¬ (¬ p ∧ ¬ q) then we could
have proved all of the {→,∨,¬}—postulates of CL using only the {→,∧,¬}—
postulates. Dually, if we had defined p ∧ q as ¬ (¬ p ∨ ¬ q) then we could
have proved all of the {→,∧,¬}—postulates of CL using only the {→,∨,¬}—
postulates. But it is here that we need (P18): without it we cannot derive
adjunction, whence we cannot prove theorems like (p→ p) ∧ (q → q). (This is
demonstrated rigorously in Remark 8.3 below.)

Extending each of LR+, R-W+ and R+ by the axioms (P16)—(P18), we get
systems denoted respectively by LR, R-W and R. In other words,

LR = CL ∪ {(W)}
R-W = CL ∪ {(D)}
R = CL ∪ {(W), (D)}.

R specifies the principal relevance logic of [2], except that we follow [3] in
including t in its signature. The name R-W (often written as RW) signifies
‘R minus (W)’. LR stands for ‘Lattice—R’, where ‘lattice’ is to be contrasted
with ‘distributive lattice’. For information about LR, see [39, 28]. For R-W

see papers of Brady, Giambrone and Meyer, particularly [9].

Definition 7.6. For any formal system F and any subset S of its signature,
let FS denote the formal system with signature S consisting of just the S—
postulates of F.

Consider the array of logical systems and algebraic structures in Table 1.
On each line of the table, the algebraic structures of the indicated kind form a
strict universal Horn class (in the sense of first order logic with equality). In
particular, this class is closed under ultraproducts. The following soundness
and completeness theorems are essentially well known. A sketch of the proof
will be given presently.
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TABLE 1. Some formal systems and their reduced models

(Recall that all semigroup operations are assumed commutative.)

CL c-involutive residuated lo-monoids
LL+ residuated lo-monoids
CL ·,→,∧,∨,¬ c-involutive residuated lo-semigroups

satisfying (|x | ∧ | y |)→ z ≤ z
CL ·,→,¬, t = R-W·,→,¬, t c-involutive residuated po-monoids
CL ·,→,¬ = R-W·,→,¬ c-involutive implicative po-semigroups

R-W c-involutive residuated distributive lo-monoids
R-W+ residuated distributive lo-monoids
R-W·,→,∧,∨ distributive residuated lo-semigroups

satisfying (|x | ∧ | y |)→ z ≤ z
R-W·,→,∧,∨,¬ c-involutive residuated distributive lo-semigroups

satisfying (|x | ∧ | y |)→ z ≤ z

LR square increasing c-involutive residuated lo-monoids
LR+ square increasing residuated lo-monoids
LR ·,→,∧,∨,¬ square increasing c-involutive residuated

lo-semigroups satisfying (|x | ∧ | y |)→ z ≤ z

R de Morgan monoids
R+ square increasing distributive residuated lo-monoids
R ·,→,∧,∨ square increasing distributive residuated

lo-semigroups satisfying (|x | ∧ | y |)→ z ≤ z
R ·,→,∧,∨,¬ relevant algebras
R ·,→,¬, t = LR ·,→,¬, t square increasing c-involutive residuated po-monoids
R ·,→,¬ = LR ·,→,¬ square increasing c-involutive implicative

po-semigroups

Theorem 7.7. Let L be any one of the formal systems in Table 1 and let C
be the class of all algebraic structures of the kind indicated on its right in the
table. Then for any set Γ ∪ {α} of formulas of L,

(21) Γ 
L α iff {| γ | ≤ γ : γ ∈ Γ} |=C |α | ≤ α.

If t belongs to the signature then

(22) Γ 
L α iff {t ≤ γ : γ ∈ Γ} |=C t ≤ α.
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Let Fm denote the formula algebra of L, i.e., the absolutely free algebra in
the signature of L, freely generated by the variables. The right hand side of
(21) means that for any homomorphism h from Fm into the algebra reduct A
of a structure 〈A,≤〉 ∈ C, if h(| γ |) ≤ h(γ) for all γ ∈ Γ then h(|α |) ≤ h(α).
The last clause really means: if h[Γ] consists of designated elements then h(α)
is designated (because h(|β |) = |h(β) | for any formula β).

Note that the relation |=C is finitary, because C is closed under ultraproducts.
Since 
L is also finitary, it would not have weakened Theorem 7.7 had we
restricted (21) to the case where Γ is finite. In that case the right hand side of
(21) asserts that C satisfies a strict universal Horn sentence, viz.,

C |= (& γ ∈Γ | γ | ≤ γ) =⇒ |α | ≤ α.

Of course (22) follows from (21) when t is expressed, in view of Proposi-
tion 2.4(3), and in this case the universal Horn sentence above becomes

C |= (& γ ∈Γ t ≤ γ) =⇒ t ≤ α.

Proof sketch for Theorem 7.7: Following Bloom [8], we may consider any for-
mal system F as a first order system F∀, without equality, having just one
unary predicate, P say. The postulates Γ 
 α of F induce the proper axioms
∀x ((& γ∈ΓP (γ)) =⇒ P (α)) of F∀, where x lists the apparent variables of
Γ ∪ {α}. (The proper axiom is understood to be ∀xP (α) when Γ = ∅.) A
matrix model of F is just a model of F∀, i.e., it is a structure 〈A, X〉, where A
is an algebra in the signature of F and X is a subset of the universe of A that
contains all A—instances of the axioms of F and is closed under the inference
rules of F. Such a model is said to be reduced if no non-identity congruence
of A makes X a union of congruence classes. Now every formal system F is
sound and complete with respect to its class of reduced matrix models–where
the sense of ‘〈A,X〉 satisfies Γ 
 α’ is

(23) for every homomorphism h : Fm→ A, if h[Γ] ⊆ X then h(α) ∈ X.

This result can be found in [42]. But we can simplify the meaning of ‘reduced’.

If F has a binary connective → such that


F p→ p

p, p→ q, q → p 
F q

p1 → q1, q1 → p1, . . . , pn → qn, qn → pn 
F α(p1, . . . , pn)→ α(q1, . . . , qn)

for every connective α of F, where n is the rank of α, then the reduced matrix
models of F are just the matrix models 〈A, X〉 of F such that for all a, b ∈ A,

if a→ b ∈ X and b→ a ∈ X then a = b.

(Formal systems with the properties just postulated belong to the class of
‘equivalential’ systems of [12, 16], whose definition is more general. An analo-
gous characterization of reduced models holds for all such systems.)
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Now let L and C be as in Theorem 7.7. The above discussion applies to
L. Up to first order definitional equivalence, the class of all reduced matrix
models 〈A, X〉 of L turns out to be just C where, for any x, y ∈ A, we define
that x ≤ y iff x → y ∈ X, and conversely that x ∈ X iff |x | ≤ x (iff t ≤ x
when t is expressed). One has to verify that the axioms and inference rules
of L induce in the reduced matrix models exactly the defining postulates of C.
This is an exercise that has been carried out by many researchers for many of
the values of L and C, so we shall omit the calculations. (Much of the detail
can be found in [41, Sec. 6,7].) Thus the ‘reduced’ soundness and completeness
theorem involving (23) becomes (21) in the case of L. �

8. Deductive Separation Theorems

We can now prove some separation theorems that incorporate negation. For
the remainder of this section, we assume that S ⊆ {·,→,∧,∨,¬, t}.

Theorem 8.1. If S includes → then the S—fragment of 
CL is axiomatized
by the S—postulates of CL, i.e., by the S—postulates among (P1) — (P18).

Proof. Let S be a proper subset of {·,→,∧,∨,¬, t}, containing →. Suppose
Γ 
CL α where Γ ∪ {α} consists of S—formulas. We must show that Γ 
CLS α.
We may assume without loss of generality that Γ is finite, since 
CL is finitary
and 
CLS is monotonic.

Let RL and c-IRL denote the class of all residuated lo-monoids and the class
of all c-involutive residuated lo-monoids, respectively. Since Γ 
CL α, it follows
from Theorem 7.7 that

(24) c-IRL |= (& γ ∈Γ | γ | ≤ γ) =⇒ |α | ≤ α.

Suppose first that S excludes ¬. By Theorem 4.5, every residuated lo-monoid
can be embedded into one that is c-involutive. So

(25) RL |= (& γ ∈Γ | γ | ≤ γ) =⇒ |α | ≤ α,

because universal sentences persist in substructures. Then by Theorem 7.7,
Γ 
LL+ α, so Γ 
LL+S α, by the Separation Theorem 7.2 for 
LL+ . But

LL+S = CLS (as ¬ /∈ S), so Γ 
CLS α.

We may now assume that S contains ¬. Then by Remark 7.4, we may
assume that S also contains ·. Likewise, by Remark 7.5, we may assume that
S contains ∧ iff it contains ∨.

Let C be the class of all structures of the kind alongside CLS in Table 1. In
view of Theorem 7.7, we need only show that

(26) C |= (& γ ∈Γ | γ | ≤ γ) =⇒ |α | ≤ α.
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Just as above, (26) will follow from (24) if every structure in C can be embedded
into an algebra in c-IRL. So it remains only to show that this is the case.

Now the possible values of S are

S1 = {·,→,¬, t}, S2 = {·,→,∧,∨,¬}, S3 = {·,→,¬}.

If S = S1 then by Theorem 5.1, every structure in C embeds into one in
c-IRL. If S = S2, the same conclusion follows from Theorem 4.9. If S = S3
then every structure in C embeds into a c-involutive residuated po-monoid, by
Theorem 3.4, and therefore into an algebra from c-IRL, by Theorem 5.1. �

A slight modification of the argument gives:

Theorem 8.2. If S includes → then the S—fragment of 
LR is axiomatized
by the S—postulates of LR, i.e., by contraction and the S—postulates among
(P1) — (P18).

Proof. Where we invoked Theorems 7.2 and 5.1 in the previous proof, we rely
instead on Theorems 7.3 and 6.1. Then all embedding constructions used in
the proof preserve the square increasing law, so the result follows. �

Remark 8.3. (Irredundance of (P18)) We claimed earlier that if (P18) is omit-
ted from the definition of CL then the separation theorem fails. To demonstrate
this, let

F = CL ·,→,∨,¬ \ {(P18)}.

It is enough to show that 
F �= 
CL ·,→,∨,¬ , because the {·,→,∨,¬}—fragment

of 
CL is just 
CL ·,→,∨,¬ , by Theorem 8.1. Let A be the algebra in Exam-

ple 4.8, let A− be its ∧—free reduct 〈A; ·,→,∨,¬〉 and let X = {a, b,�}. Then
〈A−, X〉 is a matrix model of F, and it is reduced, because for all x, y ∈ A, if
x→ y ∈ X and y → x ∈ X then x = y. In 〈A−, X〉, we have

¬ (¬ | a | ∨ ¬ | b |) = ¬ (¬ a ∨ ¬ b) = ¬ (a ∨ b) = ¬� = ⊥ /∈ X.

Since 〈A−,X〉 does not satisfy (P18), it is not a matrix model of 
CL ·,→,∨,¬ .

Therefore 
F �= 
CL ·,→,∨,¬. Of course this reflects the fact that adjunction

is not satisfied by 〈A,X〉. Similar remarks apply to LR, because the algebra
A is square increasing (in fact idempotent).

The next theorem incorporates the distributivity axiom, and a large part of
its content is due to Meyer and Routley; see Remark 8.5 below.

Theorem 8.4. Let F be R-W or R and let S contain → . If S includes ∧ or
excludes ∨ then the S—fragment of 
F is axiomatized by the S—postulates of F.
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Proof. In the case of R-W, we use the proof of Theorem 8.1, omitting the
excluded signatures from consideration. Where we invoked Theorem 7.2, we
need instead a distributive version of the result. If S ⊆ {·,→,∧, t} then the
S—fragment of 
R-W·,→,∧, t

= 
CL ·,→,∧, t is axiomatized by the common S—

postulates of R-W and CL, by Theorem 8.1. Moreover, the common {·,→,∧, t}—
postulates axiomatize the {·,→,∧, t}—fragment of 


R-W
+. This follows from

Theorem 4.3. And 

R-W

+ is a fragment of 
R-W, by Theorem 4.5.

With these modifications, the proof strategy of Theorem 8.1 takes care of
almost all the subsignatures. But we must also show that when S is {·,→,∧,∨}
or {→,∧,∨} or {→,∧,∨, t}, then the S—fragment of 
R-W is axiomatized by
the S—postulates for R-W. The embedding theorem needed in the first case is
supplied by Theorem 4.9. In the latter two cases, we use Theorem 9.13 below,
which we have postponed because of its more complex statement.

In the case of R, we make similar modifications to the proof of Theorem 8.2
(rather than that of 8.1) noting that the square increasing law is preserved in
all of the constructions now employed–including that of 9.13. �

Remark 8.5. (Antecedents) The theorems of R in most subsignatures of
{·,→,∧,∨,¬, t} were axiomatized in the early 1970s, mostly by Meyer and
Routley. See [26, 27, 36, 30] and Maksimova’s paper [25]. In some (but not
all) cases the arguments can be applied to systems weaker than R. Analogous
results for logics weaker than CL and LL+ can be found in [37] and [10]; see
Dunn [13] also.

Theorem 8.4 makes a mathematically stronger statement in that it deals with
the full relation 
R, as opposed to the theorems only. Many of the proofs in
[25, 26, 27, 29] supply algebraic embedding constructions, so the conservation
results in these cases already apply to the deducibility relations. The exceptions
have been covered in the present paper. In [30, 36], Meyer and Routley used
their ternary frame semantics to obtain further conservation results for the
theorems of R. The proofs in these papers would need to be supplemented
before they could be applied to deducibility relations. Meyer and Routley had
the tools to supplement them, but they also had reasons for not emphasizing
deducibility relations. In relevance logic (and elsewhere), a ‘logic’ is usually
identified with its set of theorems, and not with the deducibility relation of the
formal system that initially specifies it.

Remark 8.6. (Inferential Negation) In many expositions of linear logic, nega-
tion is embodied by the sentential constant f (often denoted 0) that corresponds
intuitively to ¬ t ; see for instance [40]. Then ¬ p can be defined as p→ f. Ob-
serve that t is then definable in terms of → and f alone, as f → f. So in
this approach, any subsignature that expresses implication and negation must
express t. This would eliminate several fragments considered above, making
any separation theorem less informative. Some of the fragments at issue have
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significant extensions in which it is not possible to add t conservatively (along
with (P14), (P15)); see [5, 6].

Remark 8.7. (Adding Bounds) The formal systems considered here are often
augmented by sentential constants ⊥,� (called ‘bounds’) together with the
axioms 
 ⊥ → p and 
 p→ �. This move preserves the separation theorem
for LL+, as can be shown by an easy modification of [41, Prop. 5.4]. But
it destroys the separation theorem for CL, since the bounds interact with
double negation to produce negation-free theorems that are not provable from
the negation-free postulates (including the postulates for the bounds). For
instance, as we verify below, the bounded involutive algebraic models satisfy

(27) � → t ≤ ((x→ ⊥)→ ⊥)→ x

but the bounded non-involutive models (which include Heyting algebras) clearly
do not. So by the obvious extension of Theorem 7.7, the formula

(28) (� → t) → (((p→ ⊥)→ ⊥)→ p)

is a theorem of the bounded extension of CL but not that of LL+. To verify
(27), observe that in any bounded involutive model, we have � → t = f → ⊥,
by contraposition. Thus, using the principle that (x → y) · (y → z) ≤ x → z,
we infer that (x → f) · (� → t) ≤ x → ⊥, i.e., � → t ≤ (x → f) → (x → ⊥).
Then

(� → t) · ((x→ ⊥)→ ⊥) ≤ ((x→ f)→ (x→ ⊥)) · ((x→ ⊥)→ ⊥)

≤ (x→ f)→ ⊥ ≤ (x→ f)→ f = x

and (27) follows. We could eliminate t from (28), replacing it by p→ p.

In the usual Gentzen systems for CL and LL+, a similar phenomenon arises:
see [40, p. 39].

For the case of LR, we can give analogous examples in which ⊥ is also
eliminated. Let ϕ be any negation-free tautology of classical propositional logic
that is not provable in intuitionistic propositional logic, and let tϕ denote the
formal conjunction of all | p | where p is a variable occurring in ϕ. For instance,
we could take Peirce’s Law ((p→ q)→ p)→ p for ϕ, with tϕ = | p |∧| q |. It can
be shown that the formulas (� → t)→ ϕ and (� → tϕ)→ ϕ are theorems
of the bounded extension of LR, but they are not provable in the bounded
extension of LR+ (nor that of R+).

9. Product-free Algebras

Theorem 9.13 below is needed to complete the proof of Theorem 8.4. We
postponed this material until now because the algebras involved are less intu-
itive than those discussed thus far.
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Definition 9.1. By a pre-residuated lattice we shall mean a {→,∧,∨}—subreduct
of a residuated lo-monoid, i.e., an algebra A = 〈A;→,∧,∨〉 that can be em-
bedded into (the {→,∧,∨}—reduct of) some residuated lo-monoid.

Similarly, a pre-residuated t—lattice is a {→,∧,∨, t}—subreduct of a residu-
ated lo-monoid.

Note that pre-residuated t—lattices satisfy all of the identities and quasi-
identities in Propositions 2.2 and 2.4 whose statements omit ·, and pre-residuated
lattices satisfy those that omit both · and t. In particular, pre-residuated t—
lattices satisfy t → x ≈ x. On the other hand, it follows directly from [41,
Thm. 6.6] that an algebra A = 〈A;→,∧,∨, t〉 is a pre-residuated t—lattice if
(and only if) 〈A;→,∧,∨〉 is a pre-residuated lattice and A satisfies | t | ≤ t
and | t → | x || ≤ t → |x |. Now these two laws follow easily from the axiom
∀x (t → x ≈ x) over the class of pre-residuated lattices with a distinguished
element t. (In the case of the second law, use the fact that all pre-residuated
lo-monoids satisfy ||x || ≈ |x |, by Proposition 2.4(6).) Therefore we have

Lemma 9.2. An algebra A = 〈A;→,∧,∨, t〉 is a pre-residuated t—lattice iff
〈A;→,∧,∨〉 is a pre-residuated lattice and t→ a = a for all a ∈ A.

For the sake of concreteness, we add that the class of pre-residuated lattices
is axiomatized by the lattice identities for ∧ and ∨ together with the following
laws (where α ≤ β formally abbreviates α ∧ β ≈ α):

x→ y ≤ (y → z) → (x→ z)

x→ (y → z) ≈ y → (x→ z)

(x→ y) ∧ (x→ z) ≈ x→ (y ∧ z)

y → z ≤ (x ∧ y)→ z

x ≤ ((x→ y) ∧ z)→ y

(|x | ∧ | y |)→ z ≤ z

This can be inferred from [41, Sec. 7], but we shall not rely on this axiomati-
zation in the sequel.

Definition 9.3. A pre-residuated lattice (or t—lattice) is said to be contractive
if it satisfies the law x→ (x→ y) ≤ x→ y.

Lemma 9.4. A pre-residuated lattice (or t—lattice) is contractive iff it can be
embedded into a square increasing residuated lo-monoid.

Proof. Use the proof of [41, Thm. 6.6], but replace the appeal to [41, Thm. 5.6]
by an appeal to [41, Thm. 9.3]. �

Taking Theorem 4.5 into account we have:
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Corollary 9.5. Every pre-residuated lattice (or t—lattice) can be embedded into
a c-involutive residuated lo-monoid, and if the original algebra is contractive
then the containing algebra can be chosen square increasing.

Theorem 7.7 and its proof remain intact if we extend Table 1 as follows.

R-W→,∧,∨, t distributive pre-residuated t—lattices
R-W→,∧,∨ distributive pre-residuated lattices

R→,∧,∨, t contractive distributive pre-residuated t—lattices
R→,∧,∨ contractive distributive pre-residuated lattices

Although the construction in [19] that establishes Theorem 4.5 preserves
distributivity, the one used in [41] does not. Therefore, a different argument
will be needed to show that

Theorem 9.6. Every distributive pre-residuated lattice (or t—lattice) can be
embedded into a distributive residuated lo-monoid in such a way that if the
original algebra is contractive then the containing algebra is square increasing.

The proof of Theorem 9.6 requires some work. The next result allows us to
confine the problem to the case of t—lattices.

Theorem 9.7. Every distributive pre-residuated lattice can be embedded into a
distributive pre-residuated t—lattice in such a way that contraction is preserved.

Proof. The proof is similar to that of Theorem 4.9. Let A be a distributive
pre-residuated lattice. If A is finitely generated then, by Theorem 4.6, A
has an element tG such that tG → a = a for all a ∈ A. In this case, by
Lemma 9.2, 〈A;→,∧,∨, tG〉 is already a distributive pre-residuated t—lattice,
trivially contractive if A was. And ifA is not finitely generated, we can imitate
the ultraproduct argument in the proof of Theorem 4.9. �

So, for the rest of this section, A = 〈A;→,∧,∨, t〉 is assumed to be a distrib-
utive pre-residuated t—lattice and B = 〈B; ·,→,∧,∨, t〉 a residuated lo-monoid
(not assumed distributive) into which A can be embedded. By Corollary 9.5,
we may assume that B is square increasing if A is contractive.

The proof of Theorem 9.6 given below is suggested by results of Routley and
Meyer from [36]. The distributivity of A will not be used until Lemma 9.10.

By a filter of A we shall mean a lattice-filter of the {∧,∨}—reduct of A,
i.e., a subset F of A that is upward closed and closed under meets. (We allow
filters to be empty.) The set Fil(A) of all filters of A is closed under arbitrary
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intersections and so becomes a complete lattice when ordered by set inclusion.
The least filter containing a subset X of A is denoted by Fg(X). Thus,

Fg(X) = {a ∈ A : a ≥ x1 ∧ · · · ∧ xn for some x1, . . . , xn ∈ X, where n > 0}.

In particular, if x ∈ A then Fg({x}) = [ x ). We may conclude:

Lemma 9.8. If ∅ �= F ∈ Fil(A) and x ∈ A then

Fg(F ∪ {x}) = {a ∈ A : a ≥ f ∧ x for some f ∈ F}.

For F,G ∈ Fil(A), we define

F ◦G := {a ∈ A : f ≤ g → a for some f ∈ F and some g ∈ G}.

Notice that Definition 6.7 could have been phrased this way, in view of the
definition of residuation. Indeed, for any a ∈ A, we have a ∈ F ◦ G iff there
exist f ∈ F and g ∈ G such that a ≥ g · f (= f · g) in B. Working in B we see
immediately that F ◦G is upward closed in A. Also, if f · g ≤ a and f ′ · g′ ≤ b,
where f, f ′ ∈ F , g, g′ ∈ G and a, b ∈ A, then in B,

(f ∧ f ′) · (g ∧ g′) ≤ (f · g) ∧ (f ′ · g′) ≤ a ∧ b.

So F ◦G is closed under ∧, whence ◦ is a binary operation on Fil(A).

Lemma 9.9. 〈Fil(A); ◦, [ t ),⊆〉 is a po-monoid, and if A is contractive then
F ◦ F ⊆ F for all F ∈ Fil(A).

Proof. Evidently, ◦ is commutative and ⊆—preserving on Fil(A) and, working
again in B, we see easily that it is associative, with identity [ t ). If A is
contractive then B may be assumed square increasing, hence B satisfies

x ∧ y ≤ (x ∧ y) · (x ∧ y) ≤ x · y.

Now let a ∈ F ◦ F , where F ∈ Fil(A). Then for some f, f ′ ∈ F , we have
f · f ′ ≤ a in B, hence f ∧ f ′ ≤ a, so a ∈ F . This shows that F ◦ F ⊆ F . �

A filter F of A is said to be prime if whenever a, b ∈ A with a ∨ b ∈ F then
a ∈ F or b ∈ F . We shall need the following variant of Lemma 6.11 (which has
analogues in [15, 35]):

Lemma 9.10. (Second Primeness Lemma) Let F,G be filters of A and let P
be a prime filter of A. If F ◦G ⊆ P then there exists a prime filter F ′ of A
such that F ⊆ F ′ and F ′ ◦G ⊆ P.

Proof. By Zorn’s Lemma, we may choose an F ′ that is ⊆—maximal in the set

Σ = {X ∈ Fil(A) : X ◦G ⊆ P and F ⊆ X}.

We show that F ′ is prime. If not then there exist a, b ∈ A \F ′ with a∨ b ∈ F ′.
So Fg(F ′ ∪{a}) ◦G �⊆ P and Fg(F ′ ∪{b}) ◦G �⊆ P , by the maximality of F ′,
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i.e., there exist e ∈ Fg(F ′ ∪ {a}), e′ ∈ Fg(F ′ ∪ {b}), g, g′ ∈ G and k, k′ ∈ A \ P
with e ≤ g → k and e′ ≤ g′ → k′. In B we have g · e ≤ k and g′ · e′ ≤ k′, so

(g ∧ g′) · (e ∨ e′) = ((g ∧ g′) · e) ∨ ((g ∧ g′) · e′) ≤ (g · e) ∨ (g′ · e′) ≤ k ∨ k′,

whence, in A,

(29) e ∨ e′ ≤ (g ∧ g′)→ (k ∨ k′).

Recall that F ′ �= ∅, as a∨b ∈ F ′. Since e ∈ Fg(F ′∪{a}) and e′ ∈ Fg(F ′∪{b}),
Lemma 9.8 shows that there exist f, f ′ ∈ F ′ with e ≥ f ∧ a and e′ ≥ f ′ ∧ b.
Then, by distributivity,

f ∧ f ′ ∧ (a ∨ b) = (f ∧ f ′ ∧ a) ∨ (f ∧ f ′ ∧ b) ≤ (f ∧ a) ∨ (f ′ ∧ b) ≤ e ∨ e′,

whence f ∧f ′∧ (a∨ b) ≤ (g∧g′)→ (k∨k′), by (29). Since f ∧f ′∧ (a∨ b) ∈ F ′

and g ∧ g′ ∈ G, it follows that k ∨ k′ ∈ F ′ ◦ G. Thus k ∨ k′ ∈ P , because
F ′ ◦G ⊆ P . But k, k′ /∈ P , so this contradicts the primeness of P . �

We use PFil(A) to denote the set of all prime filters of A, and M(A) to
denote the set of all upward closed subsets of 〈PFil(A);⊆〉. For α, β ∈ M(A)
and x ∈ A, we define α · β, α → β and h(x) just as in Definition 6.16, except
that we replace PIFil(A) by PFil(A) throughout. It is easy to see that M(A)
is closed under ·, → and the intersections and unions of arbitrary subsets, and
that if x ∈ A then h(x) ∈M(A).

Let M(A) = 〈M(A); · ,→,∩,∪, h(t)〉.

Lemma 9.11. M(A) is a distributive residuated lo-monoid. If A is contrac-
tive then M(A) is square increasing.

The proof is similar to that of Lemma 6.18, but ¬ is not involved, and we
use the second Primeness Lemma 9.10 in the proof, instead of the first.

Lemma 9.12. An injective homomorphism from A into the {→,∧,∨, t}—
reduct of M (A) is defined by x �→ h(x) = {P ∈ PFil(A) : x ∈ P}.

Proof. The argument that h reflects order (and is therefore injective) is similar
to the proof of Lemma 6.19. Where we previously invoked Lemma 6.10, we use
the prime filter theorem for distributive lattices instead.

Let x, y ∈ A. Clearly, a filter of A contains x ∧ y iff it contains both x and
y, while a prime filter of A contains x ∨ y iff it contains at least one of x, y. It
follows that h(x∧y) = h(x)∩h(y) and h(x∨y) = h(x)∪h(y). By Lemma 9.11,
h(t) is the identity of M(A), i.e., h preserves t.

It remains only to show that h(x → y) = h(x) → h(y). Let P ∈ h(x → y),
so x → y ∈ P . Let Q ∈ PFil(A) and Px ∈ h(x), i.e., x ∈ Px. If Q ⊇ Px ◦ P
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then, since x ≤ (x→ y)→ y, we have y ∈ Px ◦ P , hence y ∈ Q, i.e., Q ∈ h(y).
Thus, P ∈ h(x)→ h(y). Conversely, suppose P ∈ h(x)→ h(y), so

(30) ∀Q ∈ PFil(A), ∀Px ∈ h(x), if Q ⊇ Px ◦ P then Q ∈ h(y).

We must show that P ∈ h(x → y), i.e., that x → y ∈ P . We claim that
y ∈ [ x ) ◦ P . Indeed, suppose y /∈ [ x ) ◦ P . Since 〈A;∧,∨〉 is distributive,
there is a prime filter Q of A with [ x ) ◦ P ⊆ Q and y /∈ Q. By the second
Primeness Lemma 9.10, there is a prime filter F of A such that F ◦P ⊆ Q and
[x ) ⊆ F . Then x ∈ F , i.e., F ∈ h(x). Since Q ⊇ F ◦ P , it follows from (30)
that Q ∈ h(y), i.e., y ∈ Q, a contradiction.

This vindicates the claim that y ∈ [x ) ◦ P . Thus there exist z ∈ P and
x′ ∈ [ x ) such that z ≤ x′ → y. In this case x ≤ x′, so x′ → y ≤ x→ y, hence
z ≤ x→ y. Since z ∈ P , it follows that x→ y ∈ P , as required. �

In view of Theorem 9.7, the last two lemmas deliver Theorem 9.6. Applying
Theorem 4.5, we get the next result, finishing the proof of Theorem 8.4.

Theorem 9.13. Every distributive pre-residuated lattice (or t—lattice) can be
embedded into a c—involutive distributive residuated lo-monoid in such a way
that if the original algebra is contractive then the containing algebra is square
increasing.

Remark 9.14. Suppose A is an integral distributive pre-residuated t—lattice.
Just as in the remarks preceding Corollary 5.10, the function h of Lemma 9.12
embeds A into the integral algebra that results from removing the two extreme
elements of M(A). So Theorem 9.6 remains true if we add the demand that
integrality (or integrality and contraction) be preserved by the construction.
This completes the proof of item (v) from the introduction.

The following result is proved in [19, Sec. 6]:

Theorem 9.15. Every residuated lo-monoid can be embedded into a c-involutive
residuated lo-monoid that is bounded (as a lattice), by a construction that pre-
serves distributivity as well as the greatest element of the algebra, if this exists.

The construction mentioned here does not preserve the square increasing
law, unlike the one in Theorem 4.5. Also, it does not preserve least elements,
where these exist. But from Remark 9.14 and Theorem 9.15 we obtain

Corollary 9.16. Every integral distributive pre-residuated t—lattice can be em-
bedded into an integral distributive c-involutive residuated lo-monoid.

Remark 9.17. (BCK-logic) If we add to CL the weakening axiom p→ (q → p),
we get BCK-logic, or affine classical linear logic (without exponentials). The
models that would correspond to this extension in Table 1 are just the integral
c-involutive residuated lo-monoids. In these algebras, t is definable as x → x.
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The Separation Theorem 8.1 remains true if we replace CL by its affine exten-
sion. (Adjunction can be replaced by the axiom 
 p→ (q → (p ∧ q)), while
(20) could replace (P11).) Much of the content of this result was established
by Ono and Komori [34], but the only negation dealt with in [34] is the intu-
itionistic one, i.e., inferential negation without the double negation axiom. The
proof of the separation theorem remains the same, except that Theorems 3.4
and 4.9 are not needed, since a monoid identity is always definable. When us-
ing Theorem 5.1, we need the amendment in Corollary 5.10. This amendment
and the one in Remark 9.14 (yielding Corollary 9.16) give us a deductive sep-
aration theorem for the extension of R-W by weakening, excluding signatures
with ∨ but not ∧ from consideration. (The use of Theorem 9.7 falls away.) No
such result holds for LR, nor for R, because weakening collapses these systems
to classical logic, while it collapses their positive fragments only to positive
intuitionistic logic.
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Abstract. It is proved that the variety of relevant disjunction lattices has
the finite embeddability property. It follows that Avron’s relevance logic
RMImin has a strong form of the finite model property, so it has a solv-
able deducibility problem. This strengthens Avron’s result that RMImin is
decidable.

1. Introduction

A formal system is said to have the variable sharing property for a connective
→ provided that in all theorems of the form ϕ→ ψ, at least one variable occurs
both in ϕ and in ψ. This property serves as a measure of reliability in relevance
logic. Anderson and Belnap’s system R satisfies this criterion [1, pp. 254, 417] 1,
but it turns out that R is undecidable [20]. Its extension RM is much more
intelligible–in particular its deducibility problem is solvable [12]–but RM

lacks the variable sharing property [1, pp. 148, 397].

In [2, 5] Avron introduced, among other systems, a simply axiomatized rele-
vance logic RMImin, which has many of the desirable features of RM, including
the mingle axiom p→ (p→ p). He proved that RMImin is decidable and has
the variable sharing property for →.

The proof of decidability for RMImin is given in [6], and it proceeds by
cut elimination in a suitable Gentzen system. As usual with such arguments,
no light is shed on the effectiveness of deducibility. Moreover, RMImin has
(demonstrably) no deduction theorem of the kind that transforms deducibility
problems into decision problems. Another question not addressed in [2]—[7] is

Key words. Relevance logic, mingle, residuation, relevant disjunction lattice, finite em-
beddability property, finite model property, deducibility problems.
2000 Mathematics Subject Classification. 03B47, 03G25, 06D99, 06F05, 08A50, 08C15.
1Here we refer to the original formulation of R, without the constant t, i.e., we mean the

system called R ·,→,∧,∨,¬ in Paper 1.
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whether RMImin has the finite model property with respect to its equivalent
algebraic semantics–the variety RDL of all relevant disjunction lattices. In
other words, can every non-theorem of RMImin be refuted in a finite relevant
disjunction lattice?

Building on Avron’s work, we shall prove here that RDL has the finite em-

beddability property–i.e., every finite subset of a relevant disjunction lattice
may be extended to a finite relevant disjunction lattice with preservation of all
partial operations. This implies a strong form of the finite model property for
RMImin, which allows us to conclude that RMImin has a solvable deducibility
problem, i.e., its set of finite derivable rules is recursive.

2. The Formal Systems

We use RMI→ ,¬ to denote the following formal system, whose signature is
{→,¬} . We adopt the convention that ¬ binds more strongly than any other
connective to be discussed, e.g., ¬ p→ q abbreviates (¬ p)→ q.

(B) � (p→ q) → ((r → p)→ (r → q)) (prefixing)

(C) � (p→ (q → r))→ (q → (p→ r)) (exchange)

(W) � (p→ (p→ q)) → (p→ q) (contraction)

(M) � p→ (p→ p) (mingle)

(CP) � (p→ ¬ q)→ (q → ¬ p) (contraposition)

(DN) � ¬¬ p→ p (double negation)

(MP) p, p→ q � q (modus ponens)

Using (M), (W) and (MP), we can prove that �RMI→ ,¬ p → p. So we may
view RMI→ ,¬ as the system got by adding the mingle axiom (M) to the
implication-negation fragment of the principal relevance logic R. Like all rele-
vance logics, RMI→ ,¬ rejects the weakening postulate, i.e.,

��RMI→ ,¬ p→ (q → p).

We denote by RMImin the formal system with signature {→,∧,¬} got by
adding the following postulates to RMI→ ,¬ .

(∧1) � (p ∧ q)→ p

(∧2) � (p ∧ q)→ q

(RAd) p→ q, p→ r � p→ (q ∧ r) (rule addition)

This system was introduced by Avron, who proved in [4, 5] that RMImin is a
strongly conservative extension of RMI→ ,¬ . In other words, every derivable
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rule of RMImin whose statement uses nothing but→,¬ and variables is already
derivable in RMI→ ,¬ .

We are using ‘derivable’ in its traditional sense here. To be clear about this:
for any formal system F, the notation Γ �F α signifies that there is a proof of
α from Γ in F. A proof of this kind is understood to be any finite sequence
of formulas terminating with α, such that each item in the sequence belongs
to Γ or is a substitution instance of a formula that is either an axiom of F

or the conclusion of an inference rule of F, where, in the last case, the same
substitution turns the premisses of the rule into previous items in the sequence.
When this is true we call the string of symbols Γ � α a derivable rule of F. So
the theorems of F are just the derivable rules with an empty set of premisses.

Avron proved in [6] that RMImin has the interpolation property, i.e., when-
ever �RMImin

ϕ→ ψ then �RMImin
ϕ → η and �RMImin

η → ψ for some
formula η whose variables all occur both in ϕ and in ψ. This implies the
variable sharing property for →, defined in the Introduction.

As in [5], it can be shown that:

�RMImin
((p→ q) ∧ (p→ r)) → (p→ (q ∧ r)) (addition)

p→ q, q → p �RMImin
(p→ q) ∧ (q → p)

The converse of addition is also a theorem of RMImin. However, the full
adjunction rule is not derivable in RMImin, i.e.,

p, q ��RMImin
p ∧ q ,

and this is one of the system’s most important features. A related fact is that
RMImin cannot be extended conservatively by the Ackermann truth constant
t with its characteristic axioms � t and � t → (p → p), as this would make
adjunction derivable. Even in RMI→ ,¬ , the t—postulates would induce new
theorems in the t—free vocabulary, such as ¬ (p→ p)→ (q → q). (This formula
is a theorem of RM but not of RMImin, nor of R. It shows that RM lacks the
variable sharing property for →.)

If we define disjunction and fusion (·) by

p ∨ q := ¬ (¬ p ∧ ¬ q) and p · q := ¬ (p→ ¬ q)

then, as shown in [5],

�RMImin
p→ (p ∨ q)

�RMImin
q → (p ∨ q)

�RMImin
((p→ r) ∧ (q → r)) → ((p ∨ q)→ r)

(F1) �RMImin
p→ (q → (q · p))



52 A FINITE MODEL PROPERTY FOR RMIMIN

(F2) �RMImin
(p→ (q → r)) → ((q · p)→ r) .

We could have formulated RMImin with ∨ and · as primitive connectives,
provided the above five formulas were added as axioms. Similarly, fusion can
be taken primitive in RMI→ ,¬ , with axioms (F1) and (F2). In the algebraic
analysis of these systems it is convenient to take the signatures of RMI→ ,¬

and RMImin to be {·,→,¬} and {·,→,∧,∨,¬}, respectively.

3. Residuated Structures

The equivalent algebraic models for RMI→ ,¬ and RMImin were identified in
[4, 5]. They are special residuated structures with a unary operator ¬ that rep-
resents negation. We shall define these structures in a slightly more economical
way, using a formalism dual to [4, 5] and giving more emphasis to residuation
than to properties of ¬. This makes it easier to compare the structures with
the models of neighbouring systems like intuitionistic linear logic.

Definition 3.1. By a (commutative) residuated po-semigroup we shall mean a
structure 〈A; ·,→,≤〉 such that

(a1) 〈A;≤〉 is a partially ordered set, with A �= ∅ ;
(a2) · is a binary operation on A that is associative and commutative ;
(a3) → is a binary operation on A such that for all a, b, c ∈ A,

c ≤ a→ b iff a · c ≤ b ;

in particular, a · (a→ b) ≤ b .

Note that the semigroup 〈A; ·〉 in the definition is not assumed to be a
monoid, i.e., · need not have an identity element in A. This is essential for
the applications to follow. We summarize some well known consequences of
the definition.

Proposition 3.2. Every residuated po-semigroup satisfies :

(i) x ≤ y → (y · x)
(ii) x ≤ y =⇒ z · x ≤ z · y
(iii) x ≤ y =⇒ z → x ≤ z → y & y → z ≤ x→ z
(iv) x ≤ y → z ⇐⇒ y ≤ x→ z
(v) (x · y)→ z ≈ y → (x→ z) ≈ x→ (y → z)

Condition (ii) says that ≤ is compatible with · in a residuated po-semigroup.
To show that a commutative semigroup with a compatible partial order is the
{·,≤}—reduct of a residuated po-semigroup, it is enough to verify that it is
residuated in the sense that for any x, y, there is always a largest z with the
property that x · z ≤ y. (The largest such z becomes x→ y.)
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An element a of a residuated po-semigroup A is said to be idempotent if
a · a = a. We say that A is idempotent if all of its elements are.

Lemma 3.3. Let 〈A; ·,→,≤〉 be an idempotent residuated po-semigroup. Then

a · (a→ a) = a for all a ∈ A.

Proof. Let a ∈ A. Applying (a3) to a · a = a, we get a ≤ a → a. Then
a = a · a ≤ a · (a→ a) ≤ a, so a · (a→ a) = a. �

4. Negation and Involution

For any set A, a function ¬ : A→ A is said to be self-inverting if ¬¬ a = a
for all a ∈ A. In this case ¬ is obviously a bijection.

Lemma 4.1. Let 〈A; ·,→,≤〉 be a residuated po-semigroup and ¬ : A→ A a

function. Then the following conditions are equivalent.

(i) For all a, b, c ∈ A, we have a · c ≤ b iff ¬ b · c ≤ ¬ a.
(ii) a→ b = ¬ b→ ¬ a for all a, b ∈ A.

If ¬ is also self-inverting then these conditions are equivalent to

(iii) a→ ¬ b = b→ ¬ a for all a, b ∈ A.

Proof. By (a3), the quasi-equation x · z ≤ y ⇐⇒ ¬ y · z ≤ ¬x is equivalent to
z ≤ x→ y ⇐⇒ z ≤ ¬ y → ¬x in any residuated po-semigroup. This in turn
is equivalent to the law x → y ≈ ¬ y → ¬x, because ≤ is reflexive and anti-
symmetric. Now (ii) and (iii) are interchangeable when ¬ is self-inverting. �

Definition 4.2. A self-inverting unary operation on (the universe of) a resid-
uated po-semigroup will be called a negation if it satisfies the equivalent con-
ditions of Lemma 4.1 2.

Definition 4.3. An involution of a partially ordered set 〈A;≤〉 is a self-
inverting function ¬ : A→ A that is order reversing in the sense that whenever
a, b ∈ A with a ≤ b then ¬ b ≤ ¬ a.

Lemma 4.4. Let A = 〈A; ·,→,≤〉 be a residuated po-semigroup satisfying

x · (x→ x) ≈ x. Then any negation on A is an involution of 〈A;≤〉.

Proof. Let ¬ be a negation on A, and suppose a, b ∈ A with a ≤ b. Then
a · (¬ b → ¬ b) = a · (b → b) ≤ b · (b → b) ≤ b, so ¬ b · (¬ b → ¬ b) ≤ ¬ a (as
¬ is a negation). But by assumption, ¬ b = ¬ b · (¬ b→ ¬ b), so ¬ b ≤ ¬ a. �

Combining Lemmas 3.3 and 4.4, we have:

2 i.e., if it is compatible with · in the sense of Paper 1.
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Corollary 4.5. On an idempotent residuated po-semigroup, any negation is an

involution.

Lemma 4.6. Let 〈A; ·,→,≤〉 be a residuated po-semigroup and ¬ an involution

of 〈A;≤〉. Then the following conditions are equivalent.

(i) ¬ is a negation.

(ii) a · b = ¬ (a→ ¬ b) for all a, b ∈ A.
(iii) a→ b = ¬ (a ·¬ b) for all a, b ∈ A.

Proof. Suppose that (i) holds and let a, b ∈ A. Since ¬¬ (a → ¬ b) · a =
a · (a→ ¬ b) ≤ ¬ b and ¬ is a negation, b · a ≤ ¬ (a→ ¬ b). Also, from b · a ≤
b · a and negation properties, we get ¬ (b · a) · a ≤ ¬ b, i.e., ¬ (b · a) ≤ a→ ¬ b.
Since ¬ is also an involution, we may infer that ¬ (a → ¬ b) ≤ b · a, hence
¬ (a→ ¬ b) = b · a = a · b. We have shown that (i) implies (ii).

If (ii) holds then, by the commutativity of · and the self-inversion law,
a→ ¬ b = b→ ¬ a for all a, b ∈ A, i.e., (i) is true. Finally, each of the equations
in (ii) and (iii) is an instance of the other, modulo the self-inversion law. �

Lemma 4.7. Let ¬ be a negation on an idempotent residuated po-semigroup

〈A; ·,→,≤〉. Then ¬ a→ a = a for all a ∈ A.

Proof. By Corollary 4.5, ¬ is an involution of 〈A;≤〉. Let a ∈ A. By idempo-
tence and Lemma 4.6, ¬ a = ¬ a ·¬ a = ¬ (¬ a→ a), hence a = ¬ a→ a. �

5. Implicative Po-Semigroups

Notation. From now on, |x | shall abbreviate x→ x.

Definition 5.1. An implicative po-semigroup is a residuated po-semigroup
〈A; ·,→,≤〉 such that | a | → b ≤ b for all a, b ∈ A.

The significance of this notion will emerge in Theorem 5.5. First, we need:

Lemma 5.2. A residuated po-semigroup A = 〈A; ·,→,≤〉 is implicative iff

a ≤ a · | b | for all a, b ∈ A . In this case, a · | a | = a for all a ∈ A.

Proof. Let a, b ∈ A. Then a ≤ | b | → (| b | · a), by Proposition 3.2(i). If
A is implicative then | b | → (| b | · a) ≤ | b | · a = a · | b |, so a ≤ a · | b |.
Conversely, if A satisfies x ≤ x · | y |, i.e., x ≤ | y | · x, then | a | → b ≤
| a | · (| a | → b) ≤ b, so A is implicative.

If A is implicative then, as we have just shown, a ≤ a · | a |. But the reverse
inequality a · | a | ≤ a follows from (a3), so a · | a | = a. �
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The last assertion of Lemma 5.2 combines with Lemma 4.4 to give:

Corollary 5.3. On an implicative po-semigroup, any negation is an involution.

Definition 5.4. An element a of a residuated po-semigroup will be called a
designated element if | a | ≤ a.

The next result serves to motivate Definition 5.1. It is a ¬ —free formulation
of [4, Prop. I.3]. (See [3] also.)

Theorem 5.5. A residuated po-semigroup 〈A; ·,→,≤〉 is implicative iff both

of the following two conditions hold for all a, b ∈ A.

(i) a ≤ b iff a→ b is designated.

(ii) If a is designated and a ≤ b then b is designated.

In this case, | a | is designated for all a ∈ A.

Proof. (⇒) : Suppose 〈A; ·,→,≤〉 is implicative, and let a, b ∈ A. We must
prove statements (i) and (ii).

(i) Suppose a ≤ b. We must show that | a → b | ≤ a → b. From a ≤ b we
infer | a | = a→ a ≤ a→ b, because→ preserves order in its second argument
(Proposition 3.2(iii)). Then, because → reverses order in its first argument,

| a→ b | = (a→ b)→ (a→ b) ≤ | a | → (a→ b) ≤ a→ b ,

using implicativity for the last inequality. Conversely, if | a → b | ≤ a → b
then, by Lemma 5.2, commutativity and order compatibility,

a ≤ a · | a→ b | ≤ a · (a→ b) ≤ b.

(ii) Assume | a | ≤ a and a ≤ b, hence | a | ≤ b. We must prove that | b | ≤ b.
Using Lemma 5.2, order compatibility and commutativity, we may verify this
as follows: | b | ≤ | b | · | a | ≤ | b | · b = b · | b | = b.

(⇐) : Assume that (i) and (ii) hold, and let a, b ∈ A. Since b ≤ b, it follows
from (i) that | b | is designated. Now | b | ≤ a→ (a · | b |), by Proposition 3.2(i).
So by condition (ii) of the present theorem, a→ (a · | b |) is designated. Then by
condition (i), a ≤ a · | b |. Thus 〈A; ·,→,≤〉 is implicative, by Lemma 5.2. �

In [16], Meyer proved that a residuated po-semigroup is implicative iff it can
be embedded into a residuated po-monoid, i.e., into a residuated po-semigroup
that has an identity element for ·. An ‘embedding’ is understood here to
preserve all operations and to preserve and reflect the relation ≤ . Meyer’s
result would fail if we added lattice operations to the signature of residuated po-
semigroups; see [14]. (The additional axiom x ≤ x · x is assumed throughout
[16], but it is not needed in the proof of the embedding theorem.)
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Proposition 5.6. Let 〈A; ·,→,≤〉 be an implicative po-semigroup in which

every designated element is idempotent. Then ≤ is equationally definable by

x ≤ y ⇐⇒ | x→ y | ≈ x→ y .

Proof. Let a ∈ A. We claim that a is designated iff | a | = a. The implication
from right to left is immediate. Conversely, if a is designated, i.e., if | a | ≤ a,
then by assumption, a · a = a, whence a ≤ a → a = | a |. So in this case
| a | = a, and the claim is true. Now the result follows from Theorem 5.5(i). �

6. Relevant Disjunction Algebras

Definition 6.1. A relevant disjunction structure is an idempotent residuated
po-semigroup with a negation.

The negation in the definition is necessarily an involution, by Corollary 4.5.
Therefore, the structures are definitionally equivalent to ones introduced under
the same name by Avron in [4]. The name refers to the derived operation
x + y : = ¬x → y, which is often called relevant disjunction. In [4], +
was taken as primitive in preference to ·, and properties of → were mainly
expressed in terms of +,¬. Up to definitional equivalence, the following result
is [4, Prop. I.5(1)] (minus the redundant hypothesis that ¬ is an involution).
The proof below is modeled on Avron’s argument.

Theorem 6.2. (Avron) Every relevant disjunction structure is implicative.

Proof. Let A = 〈A; ·,→,¬,≤〉 be a relevant disjunction structure. We have
observed that A satisfies x ≤ |x |, as a consequence of idempotence. Since ¬
is a negation, | ¬x | = |x | holds in A, so A satisfies

(1) x ≤ |x | and ¬x ≤ |x |.

Let a, b ∈ A and define c = | a | → b. We must show that c ≤ b. By (1),
¬ a ≤ | a |. Therefore,

¬ a · c = ¬ a · (| a | → b) ≤ | a | · (| a | → b) ≤ b,

so c ≤ ¬ a→ b, by (a3). We may re-write this as

(2) c ≤ ¬ b→ a ,

since ¬ is a negation. Using commutativity and (1), we also get

c · a = a · c = a · (| a | → b) ≤ | a | · (| a | → b) ≤ b,

so a ≤ c → b, by (a3). Since → preserves order in its second argument,
it follows that ¬ b → a ≤ ¬ b → (c → b). This together with (2) yields
c ≤ ¬ b → (c → b). By Proposition 3.2(v), this becomes c ≤ c → (¬ b → b).
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Then by (a3), c · c ≤ ¬ b → b. But c · c = c, by assumption, and ¬ b → b = b,
by Lemma 4.7, so c ≤ b, as required. �

We could have defined relevant disjunction structures as idempotent resid-
uated po-semigroups with an involution, satisfying x · y ≈ ¬ (x → ¬ y): see
Lemma 4.6. From Theorem 6.2 and Proposition 5.6, we infer:

Corollary 6.3. The order on a relevant disjunction structure is equationally

definable by x ≤ y ⇐⇒ | x→ y | ≈ x→ y .

It follows that these structures may be treated as pure algebras. To be
precise, we make the following definition.

Definition 6.4. The algebra reduct 〈A; ·,→,¬〉 of a relevant disjunction struc-
ture 〈A; ·,→,¬,≤〉 will be called a relevant disjunction algebra.

The class of all relevant disjunction algebras will be denoted by RDA.

WhenA denotes an algebra, it will be understood that A denotes its universe.
When dealing with algebras, we use the class operator symbols I, H, S, P, PS
and PU to stand, respectively, for closure under isomorphic and homomorphic
images, subalgebras, direct and subdirect products, and ultraproducts. Recall
that a variety is the class of all models of a set of formal equations α ≈ β in
a fixed algebraic signature. A quasivariety is the class of all models of a set
of formal quasi-equations (&i<k αi ≈ βi ) =⇒ α ≈ β (k finite). Recall also
that for any class X of similar algebras, the variety generated by X, i.e., the
smallest variety containing X, is HSP(X), while the quasivariety generated by
X is ISPPU(X) (see for instance [10, Thms. II.9.5, II.11.9, V.2.23, V.2.25]). The
variety generated by a quasivariety Q is just its homomorphic closure H(Q).
We abbreviate HSP({A}) as HSP(A), etc.

Using Corollary 6.3, we may express all the defining properties of relevant
disjunction structures as quasi-equations in ·,→,¬ ; in particular, the anti-
symmetric law for ≤ becomes

(3) | x→ y | ≈ x→ y & | y → x | ≈ y → x =⇒ x ≈ y.

Therefore, RDA is a quasivariety. We shall see presently that it is not a variety.

Let Fm denote the absolutely free algebra in the signature {·,→,¬}, freely
generated by an infinite set of variables. The following strong soundness and
completeness theorem for RMI→ ,¬ was proved in [4, 5].

Theorem 6.5. (Avron) For any set Γ ∪ {α} of {·,→,¬}—formulas,

(4) Γ �RMI→ ,¬ α iff {| γ | ≈ γ : γ ∈ Γ} |=RDA |α | ≈ α.
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The right hand side of (4) means that for any homomorphism h from Fm

into a relevant disjunction algebra, if h(| γ |) = h(γ) for all γ ∈ Γ then h(|α |) =
h(α). The last clause really means: if h[Γ] consists of designated elements then
h(α) is designated (because h(|ϕ |) = | h(ϕ) | for any formula ϕ). When Γ is
finite, the right hand side of (4) asserts that RDA satisfies a quasi-equation,
viz.

RDA |= (& γ ∈Γ | γ | ≈ γ ) =⇒ |α | ≈ α.

Example 6.6. Let n be an ordinal, n ≤ ω. We identify n with its set of
predecessors, i.e., n = {m ∈ ω : m < n}. Let ⊥,� be two distinct non-
elements of ω and let An = n ∪ {⊥,�}. We impose a partial order ≤ on An,
defining that ⊥ < m < � for all m ∈ n, while distinct elements of n are
incomparable. In A0 = {⊥,�}, we define ⊥ < �.

Let · be the idempotent commutative binary operation on An such that
⊥ · a = ⊥ for all a ∈ An and a · b = � whenever a, b are distinct elements
of An \ {⊥}. This is an associative operation, with which ≤ is compatible.
We define ¬⊥ = � and ¬� = ⊥ and ¬ a = a for all a ∈ n, so ¬ is an
involution of 〈An;≤〉. It is easily verified that 〈An; ·,≤〉 is residuated, and that
a → ¬ b = b → ¬ a for all a, b ∈ An, so An = 〈An; ·,→,¬〉 belongs to RDA.
Note that | ⊥ | = � and that | a | = a for all a ∈ An \{⊥}. The Hasse diagrams
of A3 and Aω are depicted below. Darkened circles indicate the designated
elements.
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Because x→ y is definable as ¬ (x ·¬ y), subalgebras of relevant disjunction
algebras are just subsemigroups closed under ¬. For each m < n, the set {m}
is a subuniverse of An. If m ≤ n then Am is a subalgebra of An. Conversely,
every nontrivial subalgebra of An is isomorphic to Am for some m ≤ n.

In A1, the equivalence relation θ that identifies ⊥ with � but not with 0 is
a congruence, and A1/θ violates (3), so A1/θ /∈ RDA. Thus RDA is not closed
under homomorphic images, so RDA is not a variety.
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Avron proved in [4, I.11, II.24] that if a formal equation α ≈ β is valid in Aω

then it holds in all relevant disjunction algebras (see [2] also). Since varieties
are determined by the equations that they satisfy, this amounts to:

Theorem 6.7. The variety generated by all relevant disjunction algebras is

generated by Aω, i.e., H(RDA) = HSP(Aω).

On the other hand, RDA �= ISPPU(Aω), i.e., Aω does not generate the
quasivariety RDA; see [4, p. 729].

By an n—generated algebra we mean one that is generated by a set having
at most n elements. For signatures with no constant symbols, we make the
convention that no algebra is ‘0—generated’. A variety V is said to be locally

finite if every finitely generated algebra in V is a finite algebra.

In [2, II.7], a finite model property for RMI→ ,¬ was inferred from Theo-
rems 6.5 and 6.7. The strictly stronger assertion that H(RDA) is a locally finite
variety was not claimed or proved in [2]—[7]. It is essential for the main result
of the present paper, so we shall confirm it here. A key fact is the next lemma,
which is readily verified.

Lemma 6.8. Every n—generated subalgebra of Aω is isomorphic to a subalgebra

of An.

Now we employ a standard argument. For any variety V, the V—free n—
generated algebra in V shall be denoted by F V(n). If F V(n) is finite for all
finite n then V is locally finite, because every n—generated algebra in V is a
homomorphic image of F V(n). Recall that for any class X of similar algebras,
FHSP(X)(n) ∈ ISP(X). (See [10, § II.10—11].)

Theorem 6.9. The variety H(RDA) is locally finite. In particular, every fi-

nitely generated relevant disjunction algebra is finite.

Proof. Let F = FH(RDA)(n), where n is finite. It suffices to show that F is finite.
By Theorem 6.7, F = FHSP(Aω)(n) so, as noted above, F ∈ ISP(Aω). For every
class X of similar algebras, we have ISP(X) = IPSS(X), so we may assume that
F is a subdirect product of subalgebras of Aω. These subalgebras are n—
generated, because they are homomorphic images of F . Then by Lemma 6.8,
F is a subdirect product of subalgebras of An.

Let Y be an n—element free generating set for F . Every homomorphism from
F into An is determined by its restriction to Y , but there are only |An ||Y | =
(n + 2)n distinct functions from Y into An. Therefore F may be represented
as an irredundant subdirect product of subalgebras of An, indexed by a set I
with | I | ≤ (n+ 2)n. Now F embeds into the direct power An

I , so F is finite,
with |F | ≤ |An || I | ≤ (n+ 2)((n+2)

n). �
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7. Relevant Disjunction Lattices

In general, the order reduct of a relevant disjunction algebra need not be
lattice-ordered; see [4, Prop. I.29].

Definition 7.1. An algebra 〈A; ·,→,∧,∨,¬〉 is called a relevant disjunction

lattice if 〈A;∧,∨〉 is a lattice and 〈A; ·,→,¬,≤〉 is a relevant disjunction struc-
ture, where ≤ denotes the lattice order.

The class of all relevant disjunction lattices will be denoted by RDL.

It was pointed out in [4] that RDL is a variety. The following strong soundness
and completeness theorem for RMImin was proved in [5].

Theorem 7.2. (Avron) For any set Γ ∪ {α} of {·,→,∧,∨,¬}—formulas,

Γ �RMImin
α iff {| γ | ≈ γ : γ ∈ Γ} |=RDL |α | ≈ α.

In [4], there are two proofs that every relevant disjunction algebra may be
embedded into a relevant disjunction lattice. The first proof, which is sketched
briefly and abstractly, relies implicitly on the Dedekind-MacNeille completion
procedure, so the embedding preserves all existent meets and joins from the
original algebra. This feature of the construction is critical for our applica-
tion. For the monoid-based algebras of linear logic, analogues of the Dedekind-
MacNeille construction have been studied in [3, 17, 18, 19]. We sketch the proof
of the embedding theorem below, giving details only where the account from
the monoidal case requires modification. Recall that the order ≤ on a relevant
disjunction algebra A is understood to be defined on A as in Corollary 6.3.

Theorem 7.3. (Avron) Every relevant disjunction algebra A can be embedded

into a relevant disjunction lattice B in such a way that, for any a, b, c ∈ A,

if c = inf 〈A ;≤〉 {a, b} then c = a ∧B b ;

if c = sup 〈A ;≤〉 {a, b} then c = a ∨B b ;

if A is finite then so is B.

Proof. Let A ∈ RDA. We apply the Dedekind-MacNeille construction to
〈A;≤〉. Thus, for any subset X of A, we define

X→ = {a ∈ A : a ≥ x for all x ∈ X} and X← = {a ∈ A : a ≤ x for all x ∈ X}

and C(X) = X→←. A subset X of A will be called closed if C(X) = X. In
this case X is also downward closed, i.e., whenever y ∈ A and y ≤ x ∈ X then
y ∈ X. Let B denote the set of all closed subsets of A. Then |B | ≤ 2 |A |, so
B is finite if A is. Now C a closure operator on subsets of A (i.e., arbitrary
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intersections of closed sets are closed), so B is a complete lattice with respect
to set inclusion, where

X ∧ Y = X ∩ Y and X ∨ Y = C(X ∪ Y ), provided X, Y ∈ B.

The function h : A→ B defined by

h(x) = C({x}) ( = (x ] := {a ∈ A : a ≤ x} )

is order preserving and order reflecting (hence injective) and it preserves exis-
tent suprema and existent infima from 〈A;≤〉.

Proceeding as in [17] or [19, Ch. 8], we define, for subsets X, Y of A,

X ∗ Y = {x · y : x ∈ X and y ∈ Y },

and it follows that C(X) ∗ C(Y ) ⊆ C(X ∗ Y ), hence

(5) C(X ∗ Y ) = C(C(X) ∗ C(Y )).

Then for any closed sets X,Y ∈ B, we define

X · Y = C(X ∗ Y ) and X → Y = {a ∈ A : X ∗ {a} ⊆ Y }.

Evidently, · is a commutative binary operation on B. It is also associative on B,
as a consequence of (5). Further, B is closed under →, and the lattice-ordered
semigroup 〈B; · ,⊆〉 is residuated, with → as its residuation operation. Also,
h preserves · and →. All of these claims can be proved just as in [17] or [19].
In these sources it is assumed that A has an identity for ·, but no use is made
of that assumption in establishing the present claims.

To see that · is also idempotent, letX ∈ B. For each x ∈ X, the idempotence
of · in A gives x = x · x ∈ X ∗ X ⊆ X ·X. Conversely, if x, x′ ∈ X and
u ∈ X→ then x · x′ ≤ u · u = u, so X ∗X ⊆ X→← = X, as X is closed. Thus,
X ·X = C(X ∗X) ⊆ X and so X ·X = X, as required.

The treatment of ¬ in [17] and [19] does rely on the existence of an identity
for ·. But following Avron [4] instead, we may define, for each X ∈ B,

¬X =
⋂
x∈X (¬x ] ,

i.e., for each a ∈ A, we have

a ∈ ¬X iff a ≤ ¬x for all x ∈ X.

We always have ¬X ∈ B, because ¬X is an intersection of closed sets.

Let X, Y ∈ B. Since the operation ¬ of A is an involution of 〈A;≤〉, it is
easy to see that X ⊆ ¬¬X. Conversely, let a ∈ ¬¬X and let u ∈ X→. For
all x ∈ X, we have x ≤ u, hence ¬u ≤ ¬x, i.e., ¬u ∈ ¬X. Since a ∈ ¬¬X,
this implies that a ≤ ¬¬u = u. So a ∈ X→← = X (as X is closed). Thus,
¬¬X ⊆ X, and so ¬¬X = X.
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To show that X → ¬Y = Y → ¬X, let a ∈ X → ¬Y . This means that
for all x ∈ X, we have x · a ∈ ¬Y , i.e., x · a ≤ ¬ y for all y ∈ Y . Since
the operation ¬ of A is a negation, for all y ∈ Y , we have y · a ≤ ¬x for
all x ∈ X, i.e., Y ∗ {a} ⊆ ¬X, i.e., a ∈ Y → ¬X. We have shown that
X → ¬Y ⊆ Y → ¬X, and the converse inclusion follows by symmetry. Thus
¬ is a negation on 〈B; · ,→,⊆〉, and so B = 〈B; ·,→,∩,∨,¬〉 is a relevant
disjunction lattice. Using only the fact that ¬ (on A) is an involution, we can
easily show that ¬ ( x ] = (¬x ] for all x ∈ A, i.e., h preserves ¬. �

8. The Strong Finite Model Property

Definition 8.1. Let K be a class of algebras in a common signature. We
say that K has the finite embeddability property, or briefly the FEP, provided
that every finite subset X of an algebra C in K may be extended to a finite

algebra B in K with preservation of all partial operations. (This means that
for any basic operation symbol f of arbitrary rank m, if a1, . . . , am ∈ X and
f C(a1, . . . , am) ∈ X then fB(a1, . . . , am) = f

C(a1, . . . , am).)

Let V be any variety. Clearly, if V is locally finite then it has the FEP. But
varieties with the FEP need not be locally finite. Let Vfin denote the class of all
finite algebras in V. If V has the FEP, it is easy to see that a universal sentence of
the first order theory (with equality) determined by the signature of V holds in
Vfin only if it holds throughout V. Since quasi-equations are universal sentences
and since quasivarieties are determined by the quasi-equations that they satisfy,
it follows in this case that V = ISPPU(Vfin). That is, any variety with the FEP
is generated as a quasivariety by its finite members. (The converse holds if the
signature is finite: see for instance [9].) We can now prove the main algebraic
result of the present paper:

Theorem 8.2. The variety of relevant disjunction lattices has the finite em-

beddability property.

Proof. Let C ∈ RDL and let X be a finite subset of C. Let C− be the RDA—
reduct 〈C; ·,→,¬〉 of C, and let A be the subalgebra of C− generated by X,
so A ∈ RDA. Now A is a finite relevant disjunction algebra, by Theorem 6.9,
because X is finite. The partial operations ·,→ and ¬ of X are preserved in
the passage from X to A, by definition of A. Note that C and A induce the
same order ≤ on X, because this order is equationally defined in terms of →,
as in Corollary 6.3, and →C extends →A.

Suppose x, y ∈ X with x ∨C y ∈ X. Then x, y ≤ x ∨C y ∈ A, and if
x, y ≤ z ∈ A then x, y ≤ z ∈ C, so x ∨C y ≤ z. This shows that x ∨C y is the
join of {x, y} in 〈A;≤〉. The same applies to meets, so all C—induced meets
and joins that exist in 〈X;≤〉 are preserved in 〈A;≤〉.
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Now by Theorem 7.3, A can be embedded into a finite relevant disjunction
lattice B (because A is finite). This implies that the operations ·,→ and
¬ of A are preserved in the passage from A to B. But the statement of
Theorem 7.3 allows us to choose B so that existent meets and joins in 〈A;≤〉
are also preserved in the passage to B. So all C—induced partial operations on
X are preserved in the passage from X to B, proving the FEP for RDL. �

Corollary 8.3. RDL = ISPPU(RDL fin), i.e., RDL is generated as a quasi-

variety by its finite members.

Although Avron proved in [6] that RMImin is decidable, no finite model
property for RMImin was asserted or proved in [2]—[7]. Corollary 8.3 implies
the following ‘strong’ finite model property:

Corollary 8.4. For any finite set Γ ∪ {α} of {·,→,∧,∨,¬}—formulas, if the

rule Γ � α is not derivable in RMImin then it is refuted in some finite relevant

disjunction lattice B, in the sense that B fails to satisfy the quasi-equation

(& γ ∈Γ | γ | ≈ γ ) =⇒ |α | ≈ α .

Proof. If Γ ��RMImin
α then the displayed quasi-equation fails in some member

of RDL, by Theorem 7.2. Then, by Corollary 8.3, the same quasi-equation must
fail in some finite algebra in RDL. �

By a well known theorem of Harrop [15], if a formal system is finitely axioma-
tized in a finite signature and has the strong finite model property with respect
to an effective semantics then it has a solvable deducibility problem, i.e., its set
of finite derivable rules is recursive. So we may infer from Corollary 8.4 that:

Corollary 8.5. RMImin has a solvable deducibility problem.

This strengthens Avron’s result in [6] that RMImin is decidable (i.e., that
its set of theorems is recursive). The two results are not connected by any de-
duction theorem. Indeed, RMImin demonstrably lacks even a local deduction-
detachment theorem in the precise general sense of [8, 11, 13]. This can be
shown by analogy with [21, Ex. 2].
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Abstract. An idempotent residuated po-monoid is semiconic if it is a
subdirect product of algebras in which the monoid identity is comparable
with all other elements. It is proved that the quasivariety SCIP of all semi-
conic idempotent commutative residuated po-monoids is locally finite. The
lattice-ordered members of this class form a variety SCIL, which is not lo-
cally finite, but it is proved that SCIL has the finite embeddability property
(FEP). More generally, for every relative subvariety K of SCIP, the lattice-
ordered members of K have the FEP. This gives a unified explanation of
the strong finite model property for a range of logical systems. It is also
proved that SCIL has continuously many semisimple subvarieties, and that
the involutive algebras in SCIL are subdirect products of chains.

1. Introduction

A class K of similar algebras is said to have the finite embeddability property
(briefly, the FEP) if every finite subset of an algebra in K can be extended to a
finite algebra in K, with preservation of all partial operations. If a finitely ax-
iomatized variety or quasivariety of finite type has the FEP, then its universal
first order theory is decidable, hence its equational and quasi-equational theo-
ries are decidable as well. Where the algebras are residuated ordered groupoids,
these theories are often interchangeable with logical systems of independent in-
terest. Partly for this reason, there has been much recent investigation of
finiteness properties such as the FEP in varieties of residuated structures.

A residuated partially ordered monoid is said to be idempotent if its monoid
operation is idempotent. In this case, the partial order is equationally definable,
so the structures can be treated as pure algebras. Such an algebra is said to
be conic if each of its elements lies above or below the monoid identity; it
is semiconic if it is a subdirect product of conic algebras. In this paper, it is
proved that the class SCIP of all semiconic idempotent commutative residuated

Key words. Residuated lattice, finite embeddability property, locally finite.
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po-monoids is locally finite, i.e., every finitely generated member of this class
is a finite algebra. It turns out that SCIP is a quasivariety; it is not a variety.

The lattice-ordered members of SCIP form a variety SCIL, provided that we
add the lattice operations ∧,∨ to the similarity type. This variety is not
locally finite, but the local finiteness of SCIP facilitates a proof that SCIL has
the FEP. In fact, it is shown here that for every relative subvariety K of SCIP,
the lattice-ordered members of K form a variety with the FEP. It is also shown
that SCIL has a continuum of semisimple subvarieties.

The variety SCIL contains all Brouwerian lattices, i.e., the algebraic models
of positive intuitionistic logic. SCIL also includes all positive Sugihara monoids
(cf. [27]); these algebras model the positive fragment of the system RM. The
results here give a unified explanation of the strong finite model property for
many extensions of these and other systems. They partially generalize the main
theorem of [30], which showed that the variety generated by all idempotent
commutative residuated chains is locally finite. Another generalization of that
result, in a different direction, has been obtained in [28]. Finally, it is shown
here that the involutive algebras in SCIL are subdirect products of chains.

Notation 1.1. In a given poset, [ a ) denotes the set of all upper bounds of an
element a (including a itself), and ( a ] the set of all lower bounds. For a subset
X of a given poset, [X ) abbreviates

⋃
a∈X [ a ), and (X ] =

⋃
a∈X ( a ]. We say

that X is upward closed if [X ) = X, and downward closed if (X ] = X.

The class operator symbols H, S, P and PU stand for closure under homo-
morphic images, subalgebras, direct products and ultraproducts, respectively.

2. Residuated Structures, Idempotence and Conicity

A structure 〈A; ·,→, t,≤〉 is called a commutative residuated po-monoid (briefly,
a CRP) if 〈A;≤〉 is a poset, 〈A; ·, t〉 is a commutative monoid, and→ is a binary
residuation operator–which means that for all a, b, c ∈ A, we have

c ≤ a→ b iff a · c ≤ b.

This residuation law can be stated equivalently as follows: ≤ is compatible
with · and for every a, b ∈ A, there is a largest c ∈ A with a · c ≤ b ; moreover,
the largest such c is a→ b.

The following well-known properties of CRPs will be needed.
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Proposition 2.1. Every CRP satisfies:

x · (x→ y) ≤ y(1)

x ≤ y =⇒ z · x ≤ z · y(2)

x ≤ y =⇒ z → x ≤ z → y and y → z ≤ x→ z(3)

(x · y) → z ≈ y → (x→ z) ≈ x→ (y → z)(4)

x ≤ (x→ y) → y, hence(5)

((x→ y) → y) → y ≈ x→ y(6)

x ≤ y ⇐⇒ t ≤ x→ y, hence(7)

t ≤ x→ x(8)

t ≤ x ⇐⇒ x→ x ≤ x(9)

x ≤ y ⇐⇒ (x→ y) → (x→ y) ≤ x→ y(10)

x ≈ t→ x ≈ (x→ x)→ x ≈ x · (x→ x)(11)

x→ x ≈ (x→ x) → (x→ x)(12)

x→ y ≤ (z → x) → (z → y) and x→ y ≤ (y → z)→ (x→ z).(13)

A CRP is said to be idempotent if it satisfies x · x ≈ x. In this case, we must
have a ≤ a → a for every element a (because a · a ≤ a). Thus, the following
result is immediate from (9), (10) and (4).

Corollary 2.2. For any elements a, b of an idempotent CRP, we have

t ≤ a iff a = a→ a ;(14)

a ≤ b iff a→ b = (a→ b)→ (a→ b) ;(15)

a→ (a→ a) = a→ a.(16)

It follows from (15) that an idempotent CRP 〈A; ·,→, t,≤〉 is definitionally
equivalent to its pure algebra reductA = 〈A; ·,→, t〉. So, from now on, we treat
these idempotent structures as pure algebras with a definable partial order.

Definition 2.3. A CRP is said to be conic if each of its elements a is compa-
rable with t, i.e., a ≤ t or t ≤ a.

Although an idempotent CRP need not be lattice-ordered, the next propo-
sition shows that certain meets and joins are forced to exist.

Proposition 2.4. Let A be an idempotent CRP. Then, for all a, b ∈ A,

(i) if t ≤ a, b then a · b = a ∨ b ;

(ii) if a, b ≤ t then a · b = a ∧ b ;

(iii) if a ≤ b and A is conic then a · b = a or a · b = b.
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Proof. (i) Suppose t≤ a, b. So, b ≤ a · b and a ≤ a · b, by (2). Let c ∈ A be
an upper bound of a, b, i.e., a, b ≤ c. Then, by (2) and idempotence, we have
a · b ≤ c · c = c. Thus a · b = a ∨ b.

(ii) is proved similarly.

(iii) Suppose a ≤ b. If A is conic then, by (i) and (ii), we may assume that
a < t < b. In this case, a ≤ a · b ≤ b, by (2). If a · b ≤ t, then by (ii) and
idempotence, a · b = a · a · b = a ∧ (a · b) = a. Otherwise, t ≤ a · b, by conicity,
and then by (i) and idempotence, a · b = a · b · b = (a · b) ∨ b = b. �

Notation 2.5. From now on, | x | shall abbreviate the term x→ x.

The following result is essentially taken from [28].

Lemma 2.6. Let A be a conic idempotent CRP and let a, b ∈ A.

(i) a �≤ b if and only if a→ b < t.

(ii) If | a | < | b | then a · b = b.

(iii) If | a | = | b | then | a · b | = | a→ b | = | a | = | b |.

(iv) If | a | < | b | then a→ b = b and b→ a = b→ t.

(v) If | a | ≤ b then a→ b = b.

Proof. Detailed proofs of (i), (ii) and (iii) can be found in [28, Lemma 4.8,
Thms. 4.10, 5.3].

(iv) Suppose | a | < | b |. Then b �= t, because | t | = t ≤ | a |, by (11) and (8).
By (ii), a · b = b ≤ b, so b ≤ a → b. On the other hand, | a | < | b | ≤ | a→ b |,
by (13). So, a→ b = a · (a→ b) ≤ b, by (ii) and (1), whence a→ b = b. Next,
we show that b→ a = b→ t. If a ≤ t, then b→ a ≤ b→ t, by (3). On the
other hand, b · (b→ t) ≤ t. Thus, by (ii) and (2), b · (b→ t) = a · b · (b→ t)
≤ a · t = a. So, b→ t ≤ b→ a, whence b→ a = b→ t. We may therefore as-
sume that t < a. Then, by (3), b→ t ≤ b→ a. It remains to show that
b→ a ≤ b→ t. Since A is conic, there are only the following two possibili-
ties: b < t < a or t < a, b.

If b < t < a, then since b · (b→ a) ≤ a, it follows from idempotence, (2) and
(ii) that b · (b→ a) = b · b · (b→ a) ≤ b · a = b < t. So, b→ a ≤ b→ t.

If t < a, b, then a = | a | < | b | = b, by (14), so b→ a < t, by (i). Since
| a | < | b | ≤ | b→ a | (by (13)), we have a · (b→ a) = b→ a, by (ii). It then
follows from idempotence, (1) and (2) that

b · (b→ a) = b · (b→ a) · (b→ a) ≤ a · (b→ a) = b→ a < t.

So, b→ a ≤ b→ t.

(v) Suppose | a | ≤ b. If | a | < b, then b = | b |, by (14), so the result is
immediate from (iv). If | a | = b, then a→ b = a→ | a | = | a | = b, by (16). �
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Lemma 2.7. Let A be a conic idempotent CRP, and let a, b ∈ A.

(i) If a ≤ t, then a→ t = a→ a.

(ii) If t ≤ a, b and a �≤ b, then a→ b = a→ t.

(iii) (a→ t) · b ≤ a→ b.

(iv) If b ≤ t ≤ a, then a→ b = (a→ t) · b and b→ a = (b→ t) · a.

(v) If a and b are incomparable, then a→ t = b→ t.

(vi) The elements a and b→ t are comparable.

(vii) If | a | and | b | are incomparable, then t < a, b.

Proof. (i) Suppose a ≤ t. Then a→ a ≤ a→ t, by (3). For the reverse inequal-
ity, it follows from (1) and (8) that a · (a → t) ≤ t ≤ a → a. Consequently,
a→ t ≤ a→ (a→ a) = a→ a, by (16).

(ii) Suppose t ≤ a, b and a �≤ b. By Lemma 2.6(i), a → b < t ≤ a. It then
follows from Proposition 2.4(iii) that a · (a → b) = a or a · (a → b) = a → b.
But a · (a → b) ≤ b and a �≤ b, so a · (a → b) = a → b < t. It follows that
a→ b ≤ a→ t. For the reverse inequality, since t ≤ b, we have a→ t ≤ a→ b,
by (3).

(iii) By (1), a · (a → t) ≤ t. So, a · (a → t) · b ≤ t · b = b, by (2). It follows
that (a→ t) · b ≤ a→ b.

(iv) Suppose b ≤ t ≤ a. By (3) and (11), we have a → b ≤ a → t and
a → b ≤ t → b = b. Thus, a → b ≤ (a → t) · b, by (2) and idempotence. It
then follows from (iii) that a→ b = (a→ t) · b.

Since b ≤ t ≤ a, we have b → t ≤ b → a and a = t → a ≤ b → a, by
(3) and (11). We shall show that b → a is the least upper bound of b → t

and a. Let c be any upper bound of b → t and a in A. So, | b | = b → t ≤ c,
using (i). Thus, b → c = c, by Lemma 2.6(v). It then follows from a ≤ c and
(3) that b → a ≤ b → c = c. So, b → a = (b → t) ∨ a = (b → t) · a, by
Proposition 2.4(i).

(v) Suppose a and b are incomparable. So, a → b < t and b → a < t, by
Lemma 2.6(i). It then follows from (iii) that (a → t) · b ≤ a → b < t and
(b → t) · a ≤ b → a < t. Thus, a → t ≤ b → t and b → t ≤ a → t, i.e.,
a→ t = b→ t.

(vi) Suppose a and b→ t are incomparable. Then a→ t = (b→ t) → t, by
(v). So (a→ t) → t = ((b→ t) → t) → t = b→ t, by (6). Thus, a is incompa-
rable with (a→ t) → t, contradicting (5).

(vii) If t �< b then b ≤ t, so | b | = b→ t, by (i). In this case | a | is comparable
with | b |, by (vi). The same conclusion follows when t �< a, by symmetry. �

As a consequence of Lemma 2.7(v) and (3), we have:
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Corollary 2.8. If A is a conic idempotent CRP then {a → t : a ∈ A} is a
chain in 〈A;≤〉.

3. Lattice-Ordered Structures

An algebra 〈A; ·,→,∧,∨, t〉 is called a commutative residuated lattice (briefly,
a CRL) if 〈A;∧,∨〉 is a lattice and 〈A; ·,→, t,≤〉 is a CRP, where ≤ denotes
the lattice order. The class of all CRLs is a finitely axiomatized variety [14].

Definition 3.1. A CRL is said to be semiconic if it is isomorphic to a subdirect
product of conic CRLs.

Lemma 3.2. The class of all semiconic CRLs is a variety.

Proof. Let K be the class of all conic CRLs and V the variety generated by
K. Since K is axiomatized by universal positive sentences, viz. the identities
of CRLs together with ∀x (x ∧ t = x or x ∧ t = t), it is closed under the
class operators H, S and PU. Now CRLs are congruence distributive, as they
have lattice reducts, so the subdirectly irreducible algebras in V belong to
HSPU(K) (by Jónsson’s Theorem, see [16] or [17] or [10, Thm. IV.6.8]), hence
they are conic. Thus, V consists of semiconic CRLs, by Birkhoff’s subdirect
decomposition theorem [10, Thm. II.8.6]. The converse inclusion is obvious, so
the class of semiconic CRLs coincides with V, and is therefore a variety. �

Remark 3.3. By the above proof and [12, p. 234], the variety of semiconic
CRLs is axiomatized, relative to CRLs, by the identity

(x ∧ t) ∨ ((x→ t) ∧ t) ≈ t.

If A = 〈A; ·,→,∧,∨, t〉 is an idempotent CRL, then the algebra 〈A; ·,→, t〉
is called the {·,→, t}—reduct of A, and its subalgebras are called the {·,→, t}—
subreducts of A. Evidently, these subreducts are idempotent CRPs, and they
are conic if A is. Conversely:

Theorem 3.4. (cf. [26]) Every idempotent CRP A is a {·,→, t}—subreduct of
an idempotent CRL, which can be chosen conic if A is conic.

Proof. Let A be an idempotent CRP. We apply the Dedekind-MacNeille con-
struction to 〈A;≤〉. For each X ⊆ A, let X→ =

⋂
a∈X [ a ) and X← =

⋂
a∈X ( a ]

and C(X) = X→←. Let B = {C(X) : X ⊆ A}, so B consists of downward
closed subsets of 〈A;≤〉. For X, Y ∈ B, define

X · Y = C({x · y : x ∈ X and y ∈ Y }) ;

X → Y = {a ∈ A : x · a ∈ Y for all x ∈ X} ;

X ∨ Y = C(X ∪ Y ).

Now B = 〈B; ·,→,∩,∨, ( t ]〉 is a CRL and the map a �→ ( a ] is an injective
homomorphism from 〈A; ·,→, t〉 into 〈B; ·,→, ( t ]〉 (see [26] or [33, Chap. 8]).
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Also, B is idempotent, because A is (see the proof of [15, Thm. 7.3] if neces-
sary). It is easily verified that B is conic if A is. �

Since we consider idempotent CRPs as pure algebras, we may define a semi-
conic idempotent CRP to be any subdirect product of conic idempotent CRPs.
The obvious commutativity between taking subreducts and taking subdirect
products yields the next corollary.

Corollary 3.5. An algebra is a semiconic idempotent CRP iff it is a {·,→, t}—
subreduct of a semiconic idempotent CRL.

4. A Locally Finite Quasivariety

Notation 4.1. From now on, SCIP shall denote the class of all semiconic
idempotent CRPs, and SCIL the class of all semiconic idempotent CRLs.

Obviously, SCIL is a variety, in view of Lemma 3.2. Since SCIL is a quasi-
variety, it follows from Corollary 3.5 and a well known theorem of Maltsev that
SCIP is also a quasivariety (see [23, p. 216]). However, SCIP is not a variety,
as it contains a reduct of the 3-element Sugihara monoid. This reduct is the
idempotent CRP on the chain −1 < 0 < 1, where 0 is the identity for · and
1 · −1 = −1. It has a homomorphic image that is not an idempotent CRP.
(This is well known. The image is got by identifying −1 with 1 but not with
0, and it violates the quasi-identity

∀x∀y ((x→ y = | x→ y | & y → x = | y → x |) =⇒ x = y) .

This quasi-identity holds in all idempotent CRPs, as it expresses the anti-
symmetry of the definable order ≤.)

A CRP or a CRL is said to be integral if its monoid identity t is its greatest
element. An integral idempotent CRP [resp. CRL] is called a Brouwerian
semilattice [resp. a Brouwerian lattice]. Brouwerian semilattices form a variety,
denoted here by BS.

A class K of similar algebras is said to be locally finite if every finitely gener-
ated algebra in K is finite. It is proved in [24] that BS is locally finite, but the
variety of Brouwerian lattices is not: see for instance [4, Chap. IX]. So SCIL is
not locally finite, as it obviously contains all Brouwerian lattices.

The free spectrum of BS is the function fBS : ω → ω such that each fBS(n)
is the cardinality of the free n-generated algebra in BS. So, every n-generated
Brouwerian semilattice has at most fBS(n) elements. Obviously, fBS(0) = 1
and fBS(1) = 2. It is known that fBS(2) = 18 ([3]) and that

fBS(3) = 623, 662, 965, 552, 330

([9, 21, 20]). More information can be found in [18].
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Theorem 4.2. Let A be an n-generated conic idempotent CRP, where n ∈ ω.
Then |A | ≤ 2n + n− 1 + fBS(2

n + n− 1).

Proof. Let Y be a generating set for A, where |Y | ≤ n. We may assume that
t /∈ Y . Let

r = | Y ∩ [ t )| and s = |Y ∩ ( t ]| ,

so r + s ≤ n. Also, let

C = {t} ∪ Y ∪ {y → t : y ∈ Y } ∪ {(y → t) → t : y ∈ Y }.

Then C is closed under the term function of x→ t. This follows from (6) and
the fact that t→ t = t. We partition C into two sets C1 and C2, where

C1 = {a ∈ C : t < a} and C2 = {a ∈ C : a ≤ t}.

Let
D = {a1 · . . . · ak : a1, . . . , ak ∈ C1 and 0 < k ∈ ω}.

Obviously, D is closed under · . By Proposition 2.4(i), the elements of D satisfy
x · y = x ∨ y. Thus 〈D; ·〉 is a (join) semilattice generated by C1.

By Corollary 2.8, the set

X := {y → t : t > y ∈ Y } ∪ {(y → t)→ t : t < y ∈ Y }

is a chain in C1 ∪ {t}, with |X| ≤ r + s ≤ n. Now |D | is the number of joins
of non-empty subsets of C1. We shall establish a certain upper bound for |D |.
Any join of elements of X is an element of X, so we need only consider

(i) joins of non-empty subsets of C1 \X and
(ii) joins of sets of the form {x} ∪ Z where t < x ∈ X and Z ⊆ C1 \X.

Since |C1 \X| = r ≤ n, the number of joins as in (i) is at most

2|C1\X| − 1 ≤ 2n − 1.

In (ii), the join of {x} ∪ Z is x or the join of Z, because Lemma 2.7(vi) shows
that x is comparable with all elements of Z. Thus, the number of joins arising
from (ii) and not arising from (i) is at most |X| ≤ n. Consequently,

|D | ≤ 2n − 1 + n.

Let
E = {b1 · . . . · bk : b1, . . . , bk ∈ C2 and 0 < k ∈ ω}.

It follows similarly from Proposition 2.4(ii) that 〈E; ·〉 is a (meet) semilattice
generated by C2, and by Corollary 2.8,

{y → t : t < y ∈ Y } ∪ {(y → t)→ t : t > y ∈ Y }

is a chain in C2 with at most n elements. So, just as in the case of D, we obtain

|E \ {t} | ≤ 2n − 1 + n.
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We verify inductively that

(17) if a ∈ D then a→ t ∈ E.

Certainly, if a ∈ C1 then a → t ∈ C2 ⊆ E. Now let a = a1 · . . . · ak+1 ∈ D,
where 0 < k ∈ ω and a1, . . . , ak+1 ∈ C1. Then

a→ t = (a1 · . . . · ak+1)→ t

= (a1 · . . . · ak)→ (ak+1 → t) (by (4))

= ((a1 · . . . · ak)→ t) · (ak+1 → t) (by Lemma 2.7(iv)).

By an induction hypothesis, both (a1 · . . . · ak) → t and ak+1 → t are in E, so
a→ t ∈ E, as required. This confirms (17). Similarly,

(18) if b ∈ E then b→ t ∈ D ∪ {t}.

We also need to verify that, for all a ∈ A,

(19) if | a | ∈ D ∪ {t} then | a→ t | ∈ D ∪ {t}.

Let a ∈ A. If a ≤ t then | a | = a → t, by Lemma 2.7(i). Thus, by (12),
| a→ t | = || a || = | a |. Then (19) is trivial. So we may assume that t < a. By
(14), a = | a |. If | a | ∈ D ∪ {t} (i.e., a ∈ D), then a → t ∈ E, by (17), hence
| a→ t | = (a→ t) → t ∈ D∪{t}, by Lemma 2.7(i) and (18). This proves (19).

Let X0 = E, and for each i ∈ ω, let

Xi+1 = Xi ∪ {a · b : a, b ∈ Xi} ∪ {a→ b : a, b ∈ Xi}.

We claim that, for every i ∈ ω and c ∈ A,

(20) if c ∈ Xi then | c | ∈ D ∪ {t}.

We prove (20) by induction on i. If i = 0, then (20) is just (18). Suppose
that i ≥ 0 and that (20) holds for i. Let c ∈ Xi+1 \ Xi, so c is a · b or a → b
for some a, b ∈ Xi. If | a | and | b | are comparable then | a · b | ∈ {| a |, | b |}
and | a → b | ∈ {| b |, | a → t |}, by Lemma 2.6(ii),(iii),(iv), so | c | ∈ D ∪ {t},
by the induction hypothesis and (19). If | a | and | b | are incomparable then
t < a = | a | and t < b = | b |, by Lemma 2.7(vii) and (14), so a, b ∈ D ∪ {t},
by the induction hypothesis. In this case, t < a · b, so | a · b | = a · b ∈ D ∪ {t}
(because D ∪ {t} is closed under ·), while Lemma 2.7(ii) and (19) show that
| a→ b | = | a→ t | ∈ D ∪ {t}. This completes the proof of (20).

Let

F = {a ∈
⋃
i∈ωXi : a ≤ t}.

Evidently, F is closed under ·, so 〈F ; ·, t〉 is a commutative idempotent monoid,
still partially ordered by the restriction of ≤, which remains compatible with
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the restriction of ·. Note that t is the greatest element of F . For every a, b ∈ F ,
we define

a→′ b =

{
t if a ≤ b ;
a→ b otherwise.

The operation →′ is well defined on F , by Lemma 2.6(i) and the fact that
t ∈ E ⊆ F . For each a, b ∈ F , it is easy to see that a→′ b is the largest c ∈ F
such that a · c ≤ b, so 〈F ; ·,→′, t〉 is a Brouwerian semilattice.

Let E∗ be the subuniverse of 〈F ; ·,→′, t〉 generated by E \ {t}. We shall
show that F = E∗. Let c ∈ F . We need to prove that, for every i ∈ ω,

(21) if c ∈ Xi then c ∈ E∗.

The proof is by induction on i. Since X0 = E ⊆ E∗, we assume that (21) holds
for some i ≥ 0, and that c ∈ Xi+1 \Xi, so c is a · b or a→ b for some a, b ∈ Xi.
Note that c ≤ t, because c ∈ F .

Suppose c = a · b. Since c ≤ t, the proof of Proposition 2.4(iii) shows that
if a < t < b then c = a ∈ Xi ∩ F , while if b < t < a then c = b ∈ Xi ∩ F . In
both cases, c ∈ E∗, by the induction hypothesis. If t ≤ a, b, then c = t ∈ E∗.
If a, b ≤ t then a, b ∈ F , so by the induction hypothesis, a, b ∈ E∗, whence
c ∈ E∗, because E∗ is closed under ·.

Suppose c = a → b. If a ≤ b, then c = t ∈ E∗, so we may assume that
a �≤ b. If t < a and t ≤ b then c = a → t, by Lemma 2.7(ii). In this case,
because t < a, we also have | a | = a ∈ D, by (20), so it follows from (17) that
c = a → t ∈ E, hence c ∈ E∗. Suppose b ≤ t < a. Then c = (a → t) · b, by
Lemma 2.7(iv). Just as in the previous case, a→ t ∈ E∗, because t < a. Since
b ≤ t, we have b ∈ F , hence b ∈ E∗, by the induction hypothesis. Since E∗

is closed under ·, we have c = (a → t) · b ∈ E∗. Finally, suppose a, b ≤ t, so
c = a→′ b and a, b ∈ F . Thus a, b ∈ E∗, by the induction hypothesis. Now E∗

is closed under →′, so c = a→′ b ∈ E∗. This finishes the proof of (21), and so
F = E∗. It follows that

|F | = |E∗ | ≤ fBS ( |E \ {t} | ) ≤ fBS(2
n + n− 1).

Lastly, we show that D ∪ F is closed under · and →. Clearly, D and F
are closed under ·. And if a ∈ F and b ∈ D, or vice versa, then a and b are
comparable, hence a · b = a or a · b = b, by Proposition 2.4(iii). So D ∪ F is
closed under ·.

If a ∈ F then a ≤ t, so by Lemma 2.7(i) and (20), a → t = | a | ∈ D ∪ {t}.
If a ∈ D then by (17), a → t ∈ E ⊆ F . Therefore D ∪ F is closed under
the term function of x → t. If a ∈ F and b ∈ D, then by Lemma 2.7(iv),
a → b = (a → t) · b, hence a → b ∈ D ∪ F . Similarly, if a ∈ D and b ∈ F ,
then a → b ∈ D ∪ F . If a, b ∈ D then, by Lemma 2.6(v), Lemma 2.7(ii) and
(17), a → b = b ∈ D or a → b = a → t ∈ E. If a, b ∈ F and a ≤ b, then
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a → b = | a → b | ∈ D ∪ {t} by (15) and (20). If a, b ∈ F and a �≤ b, then
a→ b < t, hence a→ b ∈ F , by definition of F . So, D ∪ F is closed under →.

Since Y ⊆ D ∪ F , it follows that D ∪ F = A. Now |A | = |D |+ |F |, so

|A | ≤ 2n + n− 1 + fBS(2
n + n− 1). �

For any quasivariety K, an algebra A is said to be K—subdirectly irreducible if
the following is true: whenever h : A→

∏
i∈I Ai is a subdirect embedding with

Ai ∈ K for every i, then at least one of the projection maps πj :
∏

i∈I Ai → Aj

has the property that πjh : A ∼= Aj . Just as in Birkhoff’s subdirect decompo-
sition theorem, every algebra in a quasivariety K is isomorphic to a subdirect
product of K—subdirectly irreducible algebras in K (see [29, Thm. 1.1]).

Corollary 4.3. SCIP is locally finite.

Proof. If A ∈ SCIP is n-generated and SCIP—subdirectly irreducible then A is
conic, so by Theorem 4.2, |A | is bounded by a finite cardinal whose value de-
pends only on n (and not on the choice of A). Therefore, a standard argument
shows that SCIP is locally finite–see for instance [30, Thm. 1]. �

5. The Finite Embeddability Property

Definition 5.1. Let K be a class of similar algebras. We say that K has the
finite embeddability property (briefly, the FEP ) if every finite subset X of an
algebra A ∈ K can be extended to a finite algebra B ∈ K with preservation
of all partial A—operations, i.e., for any basic operation symbol f of arbitrary
rank n, if a1, . . . , an ∈ X and fA(a1, . . . , an) ∈ X then

fB(a1, . . . , an) = fA(a1, . . . , an).

Without weakening the FEP, we could re-define ‘preservation of partial A—
operations’ as follows: there exists an injective function α : X → B such that
for every basic operation symbol f , of rank n say, if a1, . . . , an ∈ X and
fA(a1, . . . , an) ∈ X then

fB(α(a1), . . . , α(an)) = α(fA(a1, . . . , an)).

A function α of this kind is called a partial A—embedding of X into B.

Clearly, every locally finite class has the FEP. When a variety has the FEP,
it may have subvarieties that lack the FEP (unlike the case of local finiteness).
Although the variety SCIL is not locally finite, we shall prove in this section
that it does have the FEP.

Lemma 5.2. ([5, Lemma 3.7]) Let V be a variety, and suppose that every finite
subset of a subdirectly irreducible algebra in V can be extended to a finite algebra
in V with preservation of partial operations. Then V has the FEP.
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In [5], this lemma is stated with the extra hypothesis that the finite contain-
ing algebra can be chosen subdirectly irreducible as well. We repeat the proof
here, to reassure the reader that this extra demand is not necessary.

Proof. Let X be a finite subset of some A ∈ V. We may assume that A is
a subdirect product of subdirectly irreducible algebras Ai ∈ V (i ∈ I). For
each i, the finite subset πi[X] of Ai can be extended to a finite algebra A′

i ∈ V
with preservation of partial Ai—operations, by assumption. Then the algebra∏

i∈I A
′
i ∈ V is an extension of X in which all partial A—operations are pre-

served. Since X is finite, there is a finite subset J of I such that the projection
map πJ :

∏
i∈I A

′
i →

∏
i∈J A

′
i restricts to an injection X →

∏
i∈J A

′
i. This in-

jection is a partial A—embedding of X into the finite algebra
∏

i∈J A
′
i ∈ V. �

Lemma 5.3. Let A be a finite conic idempotent CRP. Then A is lattice-
ordered.

Proof. Let a, b ∈ A. We claim that a and b have a greatest lower bound in
A. We may assume that a and b are incomparable, so a, b ≤ t or t ≤ a, b. In
the first case, a · b = a ∧ b, by Proposition 2.4(ii). In the second case, the set
S = {c ∈ A : t ≤ c and c ≤ a, b} is closed under ·, by idempotence. Since S
is finite and non-empty, the product p of all elements of S exists, and p ∈ S.
Clearly, p is the greatest element of S, so p is the greatest lower bound of {a, b},
because A is conic. This shows that 〈A;≤〉 is a meet semilattice, and a dual
argument shows that it is also a join semilattice. �

A relative subvariety of a quasivariety K is a subquasivariety M of K such
that M = K ∩ V for some variety V. Equivalently, it is a subclass of K that is
axiomatized, relative to K, by some set of identities.

Notation 5.4. For any class K of idempotent CRPs, let KL denote the class
of all lattice-ordered members of K, considered as CRLs. In other words, KL is
the class of all CRLs whose {·,→, t}—reducts belong to K.

Clearly, if K is a relative subvariety of SCIP then KL is a subvariety of SCIL.

Theorem 5.5. Let K be a relative subvariety of SCIP. Then the variety KL

has the finite embeddability property.

Proof. Let X be a finite subset of a subdirectly irreducible algebra A ∈ KL.
Since KL ⊆ SCIL, it follows that A is conic. The {·,→, t}—reduct A− of A
belongs to K, and therefore to SCIP. LetB− be the subalgebra ofA− generated
by X. Then B− is a finite conic algebra in K, by Corollary 4.3. By Lemma 5.3,
B
− is lattice ordered, i.e., it is the {·,→, t}—reduct of a (finite) CRL B ∈ KL.

The partial A—operations ·,→, t are preserved in the passage from X to B,
by definition of B−. Observe that for any b, b′ ∈ B, we have b ≤A b′ iff b ≤B b′,
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because both orders are definable in terms of → alone (by (15)), and because
→A and→B coincide on B. So we can write b ≤ b′ unambiguously in this case.
Now let c, d ∈ X and suppose c ∨A d ∈ X. Since c, d ≤ c ∨A d ∈ B, we have
c ∨B d ≤ c ∨A d. Also, since c, d ≤ c ∨B d ∈ B ⊆ A, we have c ∨A d ≤ c ∨B d,
whence c ∨B d = c ∨A d. A similar argument holds for meets, so all partial
A—operations are preserved in the passage from X to B. This shows that KL

has the FEP, in view of Lemma 5.2 (which applies because KL is a variety). �

Remark 5.6. A variant of Lemma 5.2 holds for quasivarieties K if we re-
place ‘subdirectly irreducible’ by ‘K—subdirectly irreducible’. However, in an
arbitrary subquasivariety K of SCIP or of SCIL, there is no guarantee that the
K—subdirectly irreducible algebras will be conic. This is why Theorem 5.5 is re-
stricted to the relative subvarieties of SCIP. In this connection, see Remark 5.9
as well.

For any class M of similar algebras, the class of all finite algebras in M will
be denoted by Mfin. If M has the FEP, then every universal first order sentence
that fails in some member of M must also fail in some member of Mfin. This
conclusion, restricted to quasi-identities, is often called the ‘strong finite model
property’. It shows that every quasivariety M with the FEP is generated by its
finite members, i.e., M = SPPU(Mfin). (The converse holds for quasivarieties of
finite type: see [8, Thm. 3.1].) A finitely axiomatized quasivariety of finite type
with the FEP has a decidable universal theory; in particular its equational and
quasi-equational theories are decidable (see for instance [5, Lemma 3.13]).

Corollary 5.7. For every relative subvariety K of SCIP, the variety KL is gen-
erated as a quasivariety by its finite members. If KL is also finitely axiomatized
(e.g., if K is finitely axiomatized), then KL has a decidable universal theory.

In particular, since SCIL = SCIPL and since SCIL is finitely axiomatized (see
Remark 3.3), we may deduce:

Corollary 5.8. SCIL has the finite embeddability property, and it is generated
as a quasivariety by its finite members and has a decidable universal theory.

Remark 5.9. Theorem 5.5 says, in effect, that when we add to the axioms of
SCIL any set of equational axioms that use only the operation symbols ·,→, t,
then the resulting subvariety of SCIL has the FEP. The reader might there-
fore wonder whether every subvariety of SCIL has the FEP. This is not the
case. There are even varieties of Brouwerian lattices that are not generated
as varieties by their finite members. This can be deduced from the literature
on Heyting algebras and super-intuitionistic logics. See for instance [31], [11,
Chap. 6] and [22, Thm. 2]. (A Heyting algebra is a Brouwerian lattice with a
distinguished least element.)
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6. The Lattice of Varieties of Idempotent Semiconic CRLs

Definition 6.1. A (deductive) filter of a CRL is an upward closed submonoid
that is also closed under meets.

Let A be a CRL. Arbitrary intersections of filters of A are filters again, so
the filters of A form a complete lattice when ordered by set inclusion. For
each X ⊆ A, let FgX denote the smallest filter of A containing X. For any
a, b ∈ A,

(22) b ∈ Fg {a} iff (a ∧ t)n ≤ b for some n ∈ ω

(see [1]). Clearly, the smallest filter of A is [ t ). Every filter distinct from [ t )
contains an element strictly below t (as it contains t and is closed under meets).
It is well known that the congruence lattice of A is isomorphic, under the map
θ �→ [ t/θ ), to the lattice of filters of A. This, together with (22), implies that
a nontrivial CRL is simple iff for any two elements a, b < t, there is a natural
number n such that an ≤ b. In the idempotent case, this becomes:

Lemma 6.2. An idempotent CRL is simple iff it has exactly one element
strictly below t.

The sole element below t is obviously the least element of a simple idempotent
CRL, but there may be elements incomparable with t. Of course, if ⊥ is the
least element of a CRL, then the CRL also has a greatest element, namely
⊥ → ⊥. Therefore, every simple idempotent CRL is bounded.

The variety of idempotent CRLs has equationally definable principal congru-
ences (EDPC) [1]. This claim amounts, in effect, to the special case of (22) in
which n is always 1 (because of idempotence). Every variety with EDPC has
the congruence extension property and is congruence distributive [19]. Further
information about EDPC can be found in [6] and subsequent papers of Blok
and Pigozzi, as well as [17].

Lemma 6.3. In a variety with EDPC, the class of simple algebras is closed
under ultraproducts and under subalgebras.

The claim about ultraproducts is pointed out in [7]. The one about subal-
gebras follows from the congruence extension property.

A variety is said to be semisimple if all of its subdirectly irreducible members
are simple algebras. Galatos [13] has shown that there are just two minimal
(nontrivial) varieties of idempotent CRLs. These two varieties are semisimple,
and they consist of semiconic algebras. One of them is generated by the unique
2-element CRL, denoted here byC2. The other is generated by the CRL—reduct
of the 3-element Sugihara monoid discussed in Section 4.

Further information about varieties of idempotent CRLs can be found in
[32]. It is known that there are 2ℵ0 such varieties, because there are already
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this many varieties of Brouwerian lattices [34]. However, there is only one
nontrivial semisimple variety of Brouwerian lattices, viz. HSP(C2). So there
remains the question: how many semisimple varieties of idempotent CRLs are
there?

We shall prove in this section that there are already 2ℵ0 semisimple varieties
of semiconic idempotent CRLs.

We consider a denumerable sequence of finite posets P2, P3, P4, . . . , none
of which embeds into any other. These posets are called “crowns” and they
appeared in [25], where it was first reported that there are 2ℵ0 varieties of
lattices. The n th crown Pn has the following Hasse diagram.
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For each n, we extend Pn (= {a0, . . . , an, b0, . . . , bn}) to the poset An depicted
below, by adding three elements ⊥ , t ,�.
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This construction does not disturb the non-embeddability relations between
the structures. Clearly, An is lattice-ordered for n ≥ 2. For every a, b ∈ An, we
define

a · b =

{
a ∨ b if a, b ≥ t ;
⊥ otherwise.
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Then 〈An ; · , t〉 is an idempotent commutative monoid, and for all a, b, c ∈ An,
if a ≤ b then c · a ≤ c · b. Moreover,

(23) for every a, b ∈ An there is a largest c ∈ An with a · c ≤ b.

So, if we denote the largest such c by a→ b, then An = 〈An; ·,→,∧,∨, t〉 is a
conic idempotent CRL, which is simple, by Lemma 6.2. To establish (23), one
verifies that

a→ b =






� if a = ⊥ ;
b if t ≤ a ≤ b ;
⊥ if a �≤ b.

Lemma 6.4. For any subsets M and N of {A2,A3,A4, . . . }, if M �= N then
HSP(M) �= HSP(N).

Proof. If M �= N then we may assume (by symmetry) that there is an i ≥ 2
such that Ai ∈ M but Ai �∈ N. In view of the non-embeddability relations, no
algebra in N has a subalgebra isomorphic to Ai. Since Ai is a finite algebra
of finite type, the property of not having a subalgebra isomorphic to Ai can
be expressed as a universal first order sentence (equivalent to the negation of
the diagram sentence of Ai). Since universal sentences persist in ultraproducts
and subalgebras, Ai �∈ SPU(N). As the variety of idempotent CRLs has EDPC,
Lemma 6.3 shows that SPU(N) consists of simple algebras, hence the nontrivial
algebras in HSPU(N) are isomorphic to ones in SPU(N). Thus, Ai �∈ HSPU(N).
Then, since Ai is simple (and therefore subdirectly irreducible), it follows from
Jónsson’s Theorem that Ai /∈ HSP(N), and so HSP(M) �= HSP(N). �

This proof also shows that all subdirectly irreducible algebras in HSP(N) are
simple, because they are isomorphic to algebras in SPU(N). Thus, HSP(N) is
semisimple for all N ⊆ {A2,A3,A4, . . . }. So the lemma shows that the number
of semisimple subvarieties of SCIL is at least as large as the power set of ω. On
the other hand, every variety of countable type has at most 2ℵ0 subvarieties,
so we have proved:

Theorem 6.5. There are just 2ℵ0 semisimple varieties of semiconic idempotent
CRLs.

Remark 6.6. Lemma 6.4 could alternatively be proved with the aid of a result
of Blok and Pigozzi [6]: in a variety V of finite type with EDPC, every finite
subdirectly irreducible algebra A is ‘splitting’, i.e., the lattice of subvarieties
of V is the disjoint union of [ HSP(A) ) and (W ] for some variety W.

7. Distributivity and Involution

The lattice reduct of an algebra in SCIL need not be distributive, e.g., the
algebras An constructed in Section 6 are non-distributive for n ≥ 3. But it is
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well known and easily verified that every CRL satisfies

x · (y ∨ z) ≈ (x · y) ∨ (x · z).

In the idempotent case, Proposition 2.4(ii) shows that · and ∧ coincide for
elements below t. This establishes the following result.

Lemma 7.1. In an idempotent CRL, the sublattice 〈( t ];≤〉 is distributive.

A (compatible) involution on a CRL A is a function ¬ : A → A such that
¬¬ a = a and a → ¬ b = b → ¬ a for all a, b ∈ A. In this case, De Morgan’s
laws for ¬ ,∧ and ∨ hold, so the map a �→ ¬ a is an anti-automorphism of the
lattice reduct of A. If we add ¬ to the basic operations of A, the resulting
algebra is called an involutive CRL.

It is well known that a CRL has an involution iff it has an element f such
that (a → f) → f = a for all elements a. Indeed, we can define f = ¬ t, and
conversely, ¬ a = a → f for all a. This shows that an involutive CRL and its
CRL—reduct have the same congruences, so the former is subdirectly irreducible
(or semiconic) iff the latter is.

An involutive CRL is called a Sugihara monoid if it is distributive and idem-
potent. Dunn, in his contributions to [2], proved that every Sugihara monoid
is a subdirect product of chains, and that the variety of Sugihara monoids is
locally finite.

Theorem 7.2. Every semiconic idempotent involutive CRL is distributive, and
therefore a Sugihara monoid.

Proof. Since the semiconic idempotent involutive CRLs form a variety, it is
enough to prove the result for subdirectly irreducible algebras. Let A be such
an algebra, so A is conic.

The lattice 〈( t ];≤〉 is distributive, by Lemma 7.1, so by conicity, it suffices
to show that 〈[ t );≤〉 is also distributive. Let f = ¬ t. Since ¬ is an anti-
automorphism of 〈A;∧,∨〉 that sends t to f, and since distributivity is a self-
dual property, the lattice 〈[ f );≤〉 is distributive. But f ≤ t, by idempotence.
Indeed, from f · f = f, we get

f ≤ f → f = f → ¬ t = t→ ¬ f = ¬ f = t.

So 〈[ t );≤〉, being a sublattice of 〈[ f );≤〉, is distributive. �

Thus, we gain no new finiteness results by imposing involution on the alge-
bras in SCIL. Moreover, since the subdirectly irreducible Sugihara monoids are
totally ordered, most of the algebras in SCIL (or in SCIP) cannot be embedded
into involutive algebras in SCIL.
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Abstract. Anderson and Belnap’s implicational system RMO→ can be
extended conservatively by the usual axioms for fusion and for the Ackermann
truth constant t. The resulting system RMO∗ is algebraized by the quasi-
variety IP of all idempotent commutative residuated po-monoids. Thus,
the axiomatic extensions of RMO∗ are in one-to-one correspondence with
the relative subvarieties of IP. An algebra in IP is called semiconic if it de-
composes subdirectly (in IP) into algebras where the identity element t is
order-comparable with all other elements. The semiconic algebras in IP are
locally finite. It is proved here that a relative subvariety of IP consists of
semiconic algebras if and only if it satisfies x ≈ (x → t) → x. It follows
that if an axiomatic extension of RMO∗ has ((p → t) → p) → p among
its theorems then it is locally tabular. In particular, such an extension is
strongly decidable, provided that it is finitely axiomatized.

1. Introduction

There are now several different motivations for the study of logics that lack
the weakening axiom p → (q → p). The first systems of this kind were devel-
oped by relevance logicians, who also debated the merits of the weaker mingle
postulate p → (p → p). In the principal relevance logic R, and more gener-
ally in extensions of the intensional fragments of R, this postulate amounts to
idempotence of the fusion connective (·), so its adoption as an axiom leads to
a reduction in the number of independent formulas, improving the chances of
decidability.

In [1, p. 98], Anderson and Belnap introduced the purely implicational formal
system RMO→ axiomatized by

Key words. Residuation, mingle, semiconic, locally tabular, quasivariety.
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(B) (p→ q) → ((r → p) → (r → q)) (prefixing)

(C) (p→ (q → r)) → (q → (p→ r)) (exchange)

(I) p→ p (identity)

(W) (p→ (p→ q)) → (p→ q) (contraction)

(M) p→ (p→ p) (mingle),

where the sole inference rule is modus ponens, viz.

(MP) 〈{p, p→ q}, q 〉.

The postulates other than (M) axiomatize the implication fragment of R, and
they are intuitionistically valid. In RMO→, the identity axiom is redundant,
since it can be derived from (W), (M) and (MP).

Information about RMO→ can be found in [1, 13, 16]. It follows from a
result of Church [8, 9] that RMO→ enjoys a variant of the classical deduction
theorem:

Γ ∪ {ϕ} �RMO→
ψ iff ( Γ �RMO→

ϕ→ ψ or Γ �RMO→
ψ ).

As Church observed (in greater generality), this result persists even when we
extend RMO→ by arbitrary new axioms, possibly involving new connectives
or sentential constants, provided that we do not add any new inference rules.

If we add a negation to RMO→, as well as the usual axioms of double
negation and contraposition, we obtain a definable fusion p · q := ¬ (p→ ¬ q),
but we also obtain new theorems in the purely implicational vocabulary [2];
systems of this kind have been analyzed in detail in [3, 4, 5, 11].

On the other hand, we might choose to omit negation and to add to RMO→

a primitive fusion and the Ackermann truth constant, accompanied by the
usual postulates, as follows:

Definition 1.1. RMO∗ shall denote the formal system with language ·,→, t
that is axiomatized by the postulates of RMO→, together with

p→ (q → (q · p))

(p→ (q → r)) → ((q · p) → r)

t

t→ (p→ p).

It turns out that the purely implicational theorems of RMO∗ are just those
of RMO→. The same applies to derivable rules, in view of Church’s deduction
theorem. This conservation result is explained, for instance, in [17, Remark,
p. 267].
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The finitely axiomatized extensions of RMO∗ include two well understood
systems, viz. the ∧,→ fragment of intuitionistic propositional logic and the
intensional fragment of RMt. These two mutually incomparable systems and
all of their finitely axiomatized extensions are decidable, because both systems
are locally tabular–this means that for each finite number n, there are only
finitely many logically inequivalent formulas in n variables.

In this paper, we shall prove a simultaneous generalization of these facts
by considering the equivalent algebraic semantics for RMO∗, which is the
quasivariety of idempotent commutative residuated po-monoids. It follows from
a result in [12] that an axiomatic extension of RMO∗ will be locally tabu-
lar whenever its algebraic counterpart consists of semiconic algebras (defined
in Section 5). We prove here that this happens exactly when the extension
includes the formula ((p → t) → p) → p among its theorems. The result
encompasses the intuitionistic case and the case of RMt.

2. Preliminaries

Given a fixed algebraic language (or type) and an infinite set of variables,
let Fm denote the absolutely free algebra, freely generated by the variables.
Formulas are just elements of the universe of Fm, and substitutions are endo-
morphisms of Fm.

A (finitary) formal system F over this language is meant here to consist of a
set of formulas, called axioms, and a set of pairs 〈Φ, ϕ〉, called inference rules,
where Φ ∪ {ϕ} is a finite set of formulas. The elements of Φ are called the
premisses of 〈Φ, ϕ〉, and ϕ is called the conclusion.

Given a formal system F, the deducibility relation �F is the relation from
sets of formulas to single formulas that contains a pair 〈Γ, α〉 just when there is
a proof of α from Γ in F. A proof of this kind is any finite sequence of formulas
terminating with α, such that every item in the sequence belongs to Γ or is a
substitution instance of a formula that is either an axiom of F or the conclusion
of an inference rule of F, where in the last case, the same substitution turns
the premisses of the rule into previous items in the sequence. To signify that
such a proof exists, we write Γ �F α; then 〈Γ, α〉 is called a derivable rule of F.
In this case, we omit Γ when it is empty. The theorems of F are the formulas
α such that �F α.

Let K be a class of algebras in the language under discussion. The equational
consequence relation |=K from sets Σ of equations to single equations ϕ ≈ ψ is
defined as follows: Σ |=K ϕ ≈ ψ iff for every homomorphism h from Fm into
an algebra in K, if h(α) = h(β) for all α ≈ β ∈ Σ then h(ϕ) = h(ψ).
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For sets of equations Σ and Ψ, the notation Σ |=K Ψ means Σ |=K ϕ ≈ ψ for
all ϕ ≈ ψ ∈ Ψ, and similarly for �F. We shall use Σ =||=K Ψ as an abbreviation
for the conjunction of Σ |=K Ψ and Ψ |=K Σ, and similarly for �F.

Blok and Pigozzi proposed a general notion of an algebraizable logic in [7]. In
current terminology, a formal system F is said to be (elementarily) algebraizable
if there exists a quasivariety K in the language of F, as well as a finite family
of unary equations δi(x) ≈ εi(x), i ∈ I, and a finite family of binary formulas
∆j(x, y), j ∈ J , such that for any set of formulas Γ ∪ {α},

Γ �F α iff {δi(γ) ≈ εi(γ) : γ ∈ Γ, i ∈ I} |=K {δi(α) ≈ εi(α) : i ∈ I};

{δi(∆j(x, y)) ≈ εi(∆j(x, y)) : i ∈ I, j ∈ J} =||=K x ≈ y.

In this case, for any set of equations Σ ∪ {ϕ ≈ ψ}, we also have

Σ |=K ϕ ≈ ψ iff {∆j(α, β) : α ≈ β ∈ Σ, j ∈ J} �F {∆j(ϕ, ψ) : j ∈ J};

{∆j(δi(p), εi(p)) : i ∈ I, j ∈ J} �F p.

Furthermore, the so-called defining equations δi(x) ≈ εi(x), i ∈ I, and the
equivalence formulas ∆j(x, y), j ∈ J , are unique up to interderivability in |=K

and in �F, respectively, and the quasivariety K is unique [7]. We call K the
equivalent quasivariety of F.

3. Residuated Po-Monoids

In this section and the next, we discuss the algebraization of RMO∗.

Definition 3.1. A structure 〈A; ·,→, t,≤〉 is called a commutative residuated
po-monoid (briefly, a CRP) if 〈A;≤〉 is a po-set, 〈A; ·, t〉 is a commutative
monoid, and → is a binary residuation operator–which means that for all
a, b, c ∈ A, we have

c ≤ a→ b iff a · c ≤ b.

This residuation law can be stated equivalently as follows: ≤ is compatible with
· (in the sense of (2) below) and for every a, b ∈ A, there is a largest c ∈ A
with a · c ≤ b. (The largest such c becomes a→ b.)

Notation 3.2. From now on, |x| shall abbreviate x→ x.

The following properties of CRPs are well known.
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Proposition 3.3. Every CRP satisfies:

x · (x→ y) ≤ y(1)

x ≤ y =⇒ z · x ≤ z · y(2)

x ≤ y =⇒ z → x ≤ z → y and y → z ≤ x→ z(3)

(x · y) → z ≈ y → (x→ z) ≈ x→ (y → z)(4)

x ≤ (x→ y) → y, hence(5)

((x→ y) → y) → y ≈ x→ y(6)

t ≤ |x|(7)

x ≤ y ⇐⇒ t ≤ x→ y ⇐⇒ |x→ y| ≤ x→ y(8)

x ≈ t→ x ≈ |x| → x(9)

|| x || ≈ |x| .(10)

A CRP is said to be idempotent if it satisfies x · x ≈ x.

Proposition 3.4. For any elements a, b of an idempotent CRP, we have

a ≤ b iff a→ b = |a→ b| ; in particular,(11)

t ≤ a iff a = |a| ;(12)

a→ |a| = |a| ;(13)

a ≤ (a→ t) → a.(14)

if t ≤ a ≤ b then a · b = b.(15)

Proof. By idempotence, we have a · a ≤ a and thus a ≤ a → a = |a|. So (11)
follows immediately from (8). Then (12) follows from (11), because t→ a = a
(by (9)). Also, (13) follows from (4) and idempotence.

By (1), we have a · (a → t) ≤ t, so a · a · (a → t) ≤ a · t, by (2). Thus,
a · (a→ t) ≤ a, by idempotence, i.e., a ≤ (a→ t) → a.

If t ≤ a ≤ b then, by (2) and idempotence, b = t · b ≤ a · b ≤ b · b = b, so
a · b = b. �

It follows from (11) that an idempotent CRP 〈A; ·,→, t,≤〉 is definitionally
equivalent to its pure algebra reductA = 〈A; ·,→, t〉. So, from now on, we treat
these idempotent structures as pure algebras with an equationally definable
partial order, always denoted by ≤.

Notation 3.5. For the remainder of the paper, IP shall denote the class of all
idempotent CRPs.

Obviously, IP is a quasivariety. It is not a variety, as it contains the idempo-
tent CRP on the 3-element chain −1 < 0 < 1, where 0 is the identity for · and
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1 ·−1 = −1. It is well known that this 3-element algebra has a homomorphic
image that is not an idempotent CRP (see for instance [12]).

In [12, Thm. 3.4], it is shown that every algebra in IP can be embedded into a
lattice-ordered algebra in IP. This, together with [17, Cor. 9.4; Remark, p. 267]
establishes that for any set of formulas Γ ∪ {α} over the language of RMO∗,

Γ �RMO
∗ α iff {γ ≈ |γ| : γ ∈ Γ} |=IP α ≈ |α| .

Since IP satisfies (10) and x ≤ y ⇐⇒ x→ y ≈ |x→ y|, it is easy to see that

{x→ y ≈ |x→ y| , y → x ≈ |y → x|} =||=IP x ≈ y.

Thus, we have

Theorem 3.6. RMO∗ is algebraizable with equivalence formulas x → y and
y → x and defining equation x ≈ x→ x, and IP is the equivalent quasivariety
of RMO∗.

4. Filters, Relative Congruences and Relative Subvarieties

Definition 4.1. Let F be a formal system and A an algebra of the same type.
A subset X of A is called an F—filter of A if for every homomorphism h from
Fm into A, we have

h(ϕ) ∈ X, for every axiom ϕ of F;

if h[Φ] ⊆ X then h(ϕ) ∈ X, for every inference rule 〈Φ, ϕ〉 of F.

In this case, for any set of formulas Γ∪{α} over the language of F, if Γ �F α
and h is a homomorphism from Fm into A with h[Γ] ⊆ X, then h(α) ∈ X.
This follows by induction on the length of a proof of α from Γ in F. Note that
arbitrary intersections of F—filters are still F—filters.

A subset X of an idempotent CRP A = 〈A; ·,→, t〉 is said to be upward
closed provided that whenever a ∈ X and a ≤ b ∈ A, then b ∈ X. We call X
a submonoid of A if t ∈ X and whenever a, b ∈ X, then a · b ∈ X.

Lemma 4.2. Let A be an idempotent CRP. Then the RMO∗—filters of A are
exactly the upward closed submonoids of A.

Proof. Suppose X is an RMO∗—filter of A. If a ∈ X and a ≤ b ∈ A, then
a → b = |a→ b|, by (11), so a → b ∈ X (by the identity axiom of RMO∗).
In this case, it follows that b ∈ X, by modus ponens. Thus, X is upward
closed. Certainly, t ∈ X because t is an axiom of RMO∗. If a, b ∈ X then,
since q → (p → (p · q)) is an axiom of RMO∗, we have a · b ∈ X, by two
applications of modus ponens. So X is a submonoid of A.

Conversely, suppose X is an upward closed submonoid of A. Let h be a
homomorphism from Fm into A, and let ϕ be an axiom of RMO∗. Then
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t ≤ |h(ϕ)| = h(ϕ), by (7) and Theorem 3.6. So h(ϕ) ∈ X, because t ∈ X and
X is upward closed. If a, a→ b ∈ X, where b ∈ A, then a · (a→ b) ≤ b, by (1),
whence b ∈ X, because X is an upward closed submonoid of A. This shows
that X is an RMO∗—filter of A. �

Notation 4.3. From now on, given any po-set 〈A;≤〉 and a ∈ A, we use [a)
to abbreviate {b ∈ A : a ≤ b}, and (a] to abbreviate {b ∈ A : b ≤ a}.

If A is an idempotent CRP and X ⊆ A, then FgX shall denote the smallest
RMO∗—filter of A containing X. Lemma 4.2 yields:

Corollary 4.4. For any element a of an idempotent CRP, we have

Fg{a} = [t) ∪ [a).

Clearly, the smallest RMO∗—filter of any idempotent CRP is [t). Thus, every
RMO∗—filter distinct from [t) contains an element not above t.

Definition 4.5. Let K be a quasivariety and A an algebra of the same type. A
congruence θ of A is called a K—congruence if the factor algebra A/θ belongs
to K. We refer to K—congruences as relative congruences when K is understood.

The K—congruences of A form an algebraic lattice under set inclusion, which
coincides with the ordinary congruence lattice when K is a variety and A ∈ K.

Definition 4.6. Given a subset X of an algebra A, we use Ω(X) to denote
the largest congruence of A such that X is a union of congruence classes.

The congruence Ω(X) always exists. When X is a filter of an algebraizable
formal system then Ω(X) has the internal characterization given in the next
theorem. This result is one of several characterizations of algebraizable logics
proved by Blok and Pigozzi in [7].

Theorem 4.7. A formal system F is algebraizable with equivalent quasivariety
K iff for every algebra A of the same type, the mapping X �→ Ω(X), restricted
to the F—filters X of A, is an isomorphism between the lattices of F—filters
and K—congruences of A.

In this case, for every F—filter X of an algebra A, we have

Ω(X) := {〈a, b〉 ∈ A× A : ∆A

j (a, b) ∈ X for all j ∈ J},

where ∆j(x, y), j ∈ J , are the equivalence formulas.

Corollary 4.8. Let X be an RMO∗—filter of an algebra A ∈ IP. Then

(i) Ω(X) = {〈a, b〉 ∈ A × A : a → b, b → a ∈ X}, and this relation is an
IP—congruence of A.

(ii) for any a ∈ A, we have a ∈ X iff 〈a, |a|〉 ∈ Ω(X).
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(iii) for any elements a, b in A, we have a → b ∈ X iff a/Ω(X) ≤ b/Ω(X)
in the factor algebra A/Ω(X).

Proof. Item (i) follows from Theorems 3.6 and 4.7. Then (ii) follows from (i).
Indeed, |a| → a = a, by (9), while a→ |a| = |a| ∈ X, by (13) and the identity
axiom of RMO∗. Finally, (iii) follows from (ii), using (11). �

Definition 4.9. An algebra A in a quasivariety K is said to be K—subdirectly
irreducible (or relatively subdirectly irreducible) if the identity relation on A is
completely meet irreducible in the K—congruence lattice of A, i.e., A has a
least non-identity K—congruence.

Clearly, if a K—subdirectly irreducible algebraA ∈ K is a subdirect product of
a family of algebras Ai ∈ K (i ∈ I), then A ∼= Ai for some i ∈ I. The following
adaptation of Birkhoff’s subdirect decomposition theorem to quasivarieties is
well known (see [15, Thm. 1.1]).

Theorem 4.10. Every algebra in a quasivariety K is isomorphic to a subdirect
product of relatively subdirectly irreducible algebras in K.

Given a po-set 〈A;≤〉, and an element x ∈ A, we say that x splits 〈A;≤〉 if

A = [x) ∪
·

(a]

for some a ∈ A, where ∪
·

indicates disjoint union (i.e., x �≤ a). That is to say,
x splits 〈A;≤〉 iff a : = max≤ {b ∈ A : x �≤ b} exists, i.e., iff A has a largest
element not above x.

Theorem 4.11. An idempotent CRP A is IP—subdirectly irreducible iff t splits
the po-set 〈A;≤〉.

Proof. By Theorems 3.6 and 4.7, A is IP—subdirectly irreducible iff A has a
least RMO∗—filter distinct from [t). Since [t) is contained in every RMO∗—
filter, the latter demand means that there exists a ∈ A such that t �≤ a and
Fg{a} ⊆ Fg{b} whenever t �≤ b ∈ A. But for a, b ∈ A with t �≤ a, we have

Fg{a} ⊆ Fg{b} iff a ∈ Fg{b} = [t) ∪ [b) (Corollary 4.4) iff a ∈ [b) iff b ≤ a.

So A is IP—subdirectly irreducible iff a := max≤ {b ∈ A : t �≤ b} exists. �

Definition 4.12. A relative subvariety of a quasivariety K is a subquasivariety
M of K such that M = K ∩ V for some variety V. Equivalently, it is a subclass
of K that is axiomatized, relative to K, by some set of equations.

If M is a relative subvariety of a quasivariety K then for every A ∈ M, the
M—congruences of A are exactly the K—congruences of A. So in this case, an
algebra in M is M—subdirectly irreducible iff it is K—subdirectly irreducible.
This need not be true if M is merely a subquasivariety of K.
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Definition 4.13. By a (co-lingual) extension of a formal system F, we mean
any formal system F′ over the same language such that for any set of formulas
Γ ∪ {α}, if Γ �F α then Γ �F′ α.

In this case, we call F′ an axiomatic extension of F if there is a set Π of
formulas, closed under substitution, such that for every set of formulas Γ∪{α},
we have Γ �F′ α iff Γ ∪ Π �F α.

In practice, axiomatic extensions of F are normally produced by adjoining
new axioms to F but leaving the inference rules fixed.

In general, the extensions of an algebraizable system are themselves alge-
braizable, with the same defining equations and equivalence formulas. The next
result is a consequence of this. It follows directly from [7, Cor. 4.9, Thm. 2.17].

Theorem 4.14. If we identify formal systems that have the same deducibil-
ity relation, then the extensions of RMO∗ are in one-to-one correspondence
with the subquasivarieties of IP, and the axiomatic ones with the relative sub-
varieties of IP. In the case of the axiomatic extensions, the mutually inverse
correspondences are

F �→ {A ∈ IP : A satisfies α ≈ |α| for every theorem α of F} ;

Q �→ RMO∗ ∪ {α : Q satisfies α ≈ |α|}.

The former function takes an axiomatic extension to its equivalent quasivariety.

The one-to-one correspondences in this theorem are in fact lattice anti-
isomorphisms.

5. Semiconic Algebras

Definition 5.1. A CRP is said to be conic if each of its elements a is compa-
rable with t, i.e., a ≤ t or t ≤ a.

An idempotent CRP is said to be semiconic if it is isomorphic to a subdirect
product of conic idempotent CRPs.

Proposition 5.2.

(i) For any element a of a conic CRP, if a→ t < t then t < a ;

(ii) Every conic CRP satisfies the quasi-equation x→ t ≤ x =⇒ t ≤ x.

Proof. (i) If a ≤ t then t ≤ a→ t, by (8). So the result follows from conicity.

(ii) Let A be a conic CRP and a ∈ A. Suppose that a→ t ≤ a. By conicity,
a < t or t ≤ a. If a < t then t ≤ a → t, by (8), and thus a < a → t, which
contradicts a→ t ≤ a. So we must have t ≤ a, as required. �
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In the idempotent case, the following additional properties are known. Proofs
can be found in [12, 14].

Lemma 5.3. Let A be a conic idempotent CRP. Then, for all a, b ∈ A,

if a ≤ b then a · b = a or a · b = b ;(16)

if a ≤ t then a→ a = a→ t ;(17)

if t ≤ a ≤ b then a→ b = b ;(18)

if t ≤ a < b then b→ a = b→ t ;(19)

if b ≤ t ≤ a then a→ b = (a→ t) · b and b→ a = (b→ t) · a.(20)

Notation 5.4. We denote the class of all semiconic idempotent CRPs by SCIP.

It is shown in [12] that SCIP is a quasivariety, but not a variety. The next
theorem is also proved in [12].

Theorem 5.5. SCIP is locally finite, i.e., every finitely generated semiconic
idempotent CRP is finite.

In the equivalent quasivariety of an algebraizable logic, finiteness results of
this kind have implications for the decidability of the system and its exten-
sions (see Section 6). So Theorem 5.5 prompts the question: which axiomatic
extensions of RMO∗ are algebraized by semiconic algebras? In view of Theo-
rem 4.14, this problem amounts to finding a syntactic characterization of the
relative subvarieties of IP that consist of semiconic algebras. The solution is
given below, and this is the main algebraic result of the present paper.

Theorem 5.6. A relative subvariety W of IP consists of semiconic algebras iff
W satisfies x ≈ (x→ t) → x.

Proof. (⇐) SupposeW satisfies x ≈ (x→ t) → x, and letA be a relatively sub-
directly irreducible algebra in W. In view of Theorem 4.10, it suffices to show
that A is conic. Since W is a relative subvariety of IP, A is IP—subdirectly irre-
ducible. So, by Theorem 4.11, A = (a] ∪ [t) for some a ∈ A with t �≤ a. In par-
ticular, a→ t belongs to (a] or to [t). If a→ t ∈ (a], then t ≤ (a→ t) → a = a,
by (8) and the assumption. This contradicts t �≤ a, so we must have a→ t ∈ [t),
i.e., t ≤ a→ t. Then a < t and, since A = (a] ∪ [t), this shows that A is conic.

(⇒) Conversely, let W consist of semiconic algebras, and suppose that W
does not satisfy x ≈ (x→ t) → x. Since subdirect products preserve equations,
Theorem 4.10 shows that there is a relatively subdirectly irreducible algebra
B in W and an element b ∈ B such that b �= (b → t) → b. Then, by (14), we
must have b < (b→ t) → b.

Since B ∈ W and W is a relative subvariety of IP, B is IP—subdirectly
irreducible. But, by assumption, B is a subdirect product of conic algebras
from IP, so one of these algebras is isomorphic to B. Thus, B is conic.
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Now if t ≤ b → t, then by (3) and (9), (b → t) → b ≤ t → b = b,
contradicting b < (b→ t) → b. So b→ t < t, by conicity of B. It then follows
from Proposition 5.2(i) that t < b. So b→ t < t < b < (b→ t) → b. Let

B′ = {b→ t, t, b, (b→ t) → b}.

We shall show that B′ is a subuniverse of B. Since B′ is linearly ordered, it
follows from (16) that B′ is closed under ·. Using (20), (5) and (15), we obtain
(b → t) → b = ((b → t) → t) · b = (b → t) → t. So B ′ is closed under the
term function of x→ t, by (6). Using (17)—(20), we see that for any elements
c, d ∈ B′,

c→ d =






d if t ≤ c ≤ d ;
c→ t if c = d ≤ t or t ≤ d < c ;

(c→ t) · d if c ≤ t ≤ d or d ≤ t ≤ c.

Therefore, B′ is closed under → (since it is closed under · and under the term
function of x→ t). This confirms that B′ is the universe of a subalgebra B′ of
B. Let A = B

′ ×B′. Then A ∈ W, because quasivarieties are closed under
subalgebras and products. Let

a′ = 〈b, b→ t〉, b′ = 〈(b→ t) → b, b→ t〉 and t′ = 〈t, t〉,

so a′, b′, t′ ∈ A. Now

(a′ → t′) → a′ = 〈b→ t, (b→ t) → t〉 → 〈b, b→ t〉

= 〈(b→ t) → b, b→ t〉 (by (20) and (6))

= b′.

So (a′ → t′) → a′ ∈ Fg{b′}. But, a′ �∈ Fg{b′}, by Corollary 4.4, because neither
[t′) nor [b′) contains a′. This, together with Corollary 4.8(iii), shows that the
factor algebra A/Ω(Fg{b′}) does not satisfy the quasi-equation

(21) x→ t ≤ x =⇒ t ≤ x

(as a′/Ω(Fg{b′}) violates this law). Since W is a relative subvariety of IP and
A ∈ W, any IP—congruence of A is a W-congruence. So A/Ω(Fg{b′}) ∈ W, by
Corollary 4.8(i). Thus, W does not satisfy (21).

On the other hand, because W ⊆ SCIP, every quasi-equation that holds
in all conic idempotent CRPs must hold in W, and one of these is (21), by
Proposition 5.2(ii). This contradiction completes the proof. �

The next example shows that SCIP itself does not satisfy the equation in
Theorem 5.6.
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Example 5.7. The chain −2 < 0 < 1 < 2 is the order reduct of an idempotent
CRP A with identity 0, in which

a · b =

{
the element of {a, b} with the larger absolute value, if |a| �= |b| ;
min≤ {a, b}, otherwise.

To see quickly that · is associative, note that it is also the minimum operation
of a different chain on A, viz. −2 ≺ 2 ≺ 1 ≺ 0. (We shall make no further use
of �.) Now ≤ is compatible with ·, and for all a, b ∈ A = {−2, 0, 1, 2}, the set
{c ∈ A : a · c ≤ b} is non-empty, as a ·− 2 = −2. So this set has a ≤—greatest
element, which becomes a→ b.

Clearly, A ∈ SCIP. But in A, we have (1 → 0) → 1 = (−2) → 1 = 2 > 1.
This shows that SCIP does not satisfy x ≈ (x→ t) → x.

Corollary 5.8. SCIP is not a relative subvariety of IP.

Proof. This follows from Theorem 5.6 and Example 5.7. �

In other words, although SCIP is axiomatizable by quasi-equations, it cannot
be axiomatized relative to IP by any set of equations. In fact, because of
Corollary 5.8, the following problem is open:

Problem 1. Axiomatize SCIP. Is SCIP finitely axiomatizable?

The analogous problem for the algebras in IP that are subdirect products of
chains does not seem to be any easier.

6. Logical Consequences

Definition 6.1. If a formal system F is algebraizable with equivalence formu-
las ∆j(x, y), j ∈ J , then two formulas ϕ and ψ of F are said to be logically
equivalent provided that �F ∆j(ϕ, ψ) for all j ∈ J .

In this case, F is said to be locally tabular if for each integer n ≥ 0, there
are only finitely many logically inequivalent formulas in n fixed variables.

So in RMO∗, logical equivalence of ϕ and ψ has the expected meaning:
�RMO

∗ ϕ→ ψ and �RMO
∗ ψ → ϕ.

When a formal system F is algebraizable with equivalent quasivariety K,
then F is locally tabular if and only if K is locally finite. (This follows easily
from a consideration of free algebras in K.) In this case, it is clear that F has
the strong finite model property, i.e., whenever Γ ��F α (Γ finite) then some
finite algebra in K witnesses the failure of

(
& i∈I ; γ∈Γ δi(γ) ≈ εi(γ)

)
=⇒ δk(α) ≈ εk(α)
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for some k ∈ I, where δi(x) ≈ εi(x), i ∈ I, are the defining equations. Indeed,
some algebra A ∈ K must witnesses such a failure (by algebraizability), and
then the witnessing elements generate a finite witnessing subalgebra of A (by
local finiteness). Theorem 5.6 has the following consequence:

Corollary 6.2. An axiomatic extension F of RMO∗ is locally tabular (and
therefore has the strong finite model property) if its theorems include the formula
((p→ t) → p) → p.

Proof. Let K be the equivalent quasivariety of F. For any formulas α and β,
Theorem 4.14 and (11) show that �F α → β iff K satisfies α→ β ≈ |α→ β|
iff K satisfies α ≤ β. In particular, if �F ((p→ t) → p) → p, then K satisfies
(x→ t) → x ≤ x, and therefore x ≈ (x→ t) → x, by (14). Then, since K is
a relative subvariety of IP, it follows from Theorem 5.6 that K consists of
semiconic algebras. So K is locally finite, by Theorem 5.5, hence the result. �

Using a variant of Harrop’s theorem [10] (cf. [6, Lemma 3.13]), we infer:

Corollary 6.3. If an axiomatic extension F of RMO∗ is finitely axiomatized
and if �F ((p→ t) → p) → p, then F has a solvable deducibility problem, i.e.,
its set of finite derivable rules is recursive. In particular, F is decidable.

Recall that the semi-relevant system RM (‘R—mingle’) is the extension of
R by (M), and that RMt is the extension of RM by the constant t and the
axioms t and t → (p → p). These systems are discussed for instance in [1].
Corollaries 6.2 and 6.3 both apply to the ∧,→ fragment of intuitionistic logic
and to the ·,→, t fragment of RMt. For these two incomparable systems,
the conclusions of the corollaries are of course well known, but their common
explanation, via the shared theorem ((p→ t) → p) → p, is new.
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