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Abstract

The study of second order ordinary differential equations is vital given their proliferation in

mechanics. The group theoretic approach devised by Lie is one of the most successful techniques

available for solving these equations. However, many second order equations cannot be reduced

to quadratures due to the lack of a sufficient number of point symmetries. We observe that

increasing the order will result in a third order differential equation which, when reduced via an

alternate symmetry, may result in a solvable second order equation. Thus the original second

order equation can be solved.

In this dissertation we will attempt to classify second order differential equations that can

be solved in this manner. We also provide the nonlocal transformations between the original

second order equations and the new solvable second order equations.

Our starting point is third order differential equations. Here we concentrate on those invariant

under two- and three-dimensional Lie algebras.
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Chapter 1

Introduction

"HOW CAN IT BE THAT MATHEMATICS, A PRODUCT OF HUMAN THOUGHT IN­

DEPENDENT OF EXPERIENCE, IS SO ADMIRABLY ADAPTED TO THE OBJECTS OF

REALITY 7" -Albert Einstein [18, p.464]

1.1 Historical Overview

The phenomenally accurate results mathematical knowledge can derive with respect to almost

everything in and beyond nature has occurred right through history. Not only were the earliest

researchers denied the right to further their wisdom had they not a thorough understanding of

mathematics, but in many old civilizations a mathematician's deduction was regarded with the

same respect as the word of the Church [19]. As man began to modernise, one would naturally

expect mathematical knowledge to reach even further dimensions.

Towards the turn of the seventeenth century, modern calculus developed encouraged by an

era of outstanding scientists whose passion and dedication towards the abstract model of the

physical world led them to the study of differential equations. Although during the next two

centuries countless techniques were designed in an attempt to provide a wide variety of methods

for solving these equations, it was not until the mid-1800's that these seemingly disconnected

methods of integration, each cQrresponding to a particular class of equations, were unified [11].
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Finally, slightly more than a century ago, the brilliant Norwegian mathematician, Sophus Mar­

ius Lie (1842-1899), made the profound and far reaching discovery that these special methods

were, in fact, all special cases of a general integration procedure based on the invariance of

the differential equation under a continuous group of transformations [30]. The many existing

integration techniques could now be combined and replaced by a method in which solvability

"vas to be determined by the available symmetries of the equation (which generated the rele­

vant transformations). Inspired by the success of his earlier work, Lie devoted the remainder

of his mathematical career to the development and application of his monumental theory of

continuous groups (later to be known as Lie groups) [30].

The main idea behind solving an ordinary differential equation is to reduce the order of the

original equation until it can be expressed in quadrature form. Unfortunately, Lie's success

failed in the case of first order ordinary differential equations in that no systematic way could

be found for finding the explicit symmetries necessary for their reduction [4]. (The occurrence

of an infinite number of symmetries for these equations is of course due to him [20, p.114].)

Thus, these equations could often only be reduced to algebraic expressions through a knowledge

of the Lie group which was to be inherited via reduction of a higher order equation [3].

The concept of symmetry can easily be regarded as one of the most valuable intellectual dis­

coveries of our time. Although it first showed itself in the form of art, it soon shed light on

geometric theory which had become very prominent during this era. Strongly influenced by

the famous geometers Darboux and Jordan, one is not surprised that symmetry was to be the

basis of Lie's research [33, 12] .

Lie's theory was based on the infinitesimal properties of groups, and the classification of equa­

tions via these groups using symmetries (by this stage already known to be a central property

of a differential equation). One was simply expected to determine the symmetry group of a

system of differential equations, and the work of Lie would provide the foundations for solvabil­

ity. Lie also investigated the close connection between continuous groups and specific algebra

systems (later to be known as Lie algebras). His numerous books, papers and articles published

during and after his lifetime portray the completeness and thoroughness of his research. Given

his lifetime of dedication and 'brilliance, one is not surprised by the powerful results which
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emerged.

By the 1930's, the world's interest in Lie had substantially decreased following the decline of

interest among the new young scholars of this time who considered the essence of his theory to be

old-fashioned [33, p.107]. Following the invention of computers during the 1940's, the problem

of solving differential equations took on a whole new light. Although the terms Lie groups

and Lie algebras retained their respect within the scientific world, the solvability of differential

equations was now to be determined by the methods of the newly growing group of computer

scientists. Finally the 1970's saw first the physicists, and soon after, the mathematicians in the

'West, returning to the world of Lie, drawn back by the strong relationships he had encountered

with symmetries. (Ovsiannikov had already rekindled interest in Lie's work in Novosibirsk in

the 1940's.)

Much of the work related to Lie's group theory was not, however, researched and published

by him. He relied greatly on enthusiastic students to develop his ideas and solve the problems

he constructed in abundance. (The oft forgotten co-authorship of his books [20, 21, 22, 23]

bear testament to this.) As one of the last great mathematicians of the nineteenth century, it

was many years before his works were published, partly due to the vastness in content he had

researched during his lifetime, as well as the depletion of collected funds following the rise of

inflation in Germany during this time [33].

In surveying Lie's contribution to Science, one must not omit the strong and loyal friendship

he maintained throughout his life with Felix Klein whose influence, both in and out of Lie's

career, had a huge and important effect on all of his works. The strong bond they maintained

and similar interest in their respective fields of studies benefitted both men, encouraging each

of them to achieve outstanding results yet concurrently neglecting the competitive atmosphere

one naturally sees to be inevitable.

Today, Lie's theory of extended groups plays an integral part in both the investigations as well

as utilization of ordinary differential equations. Not only does Lie's work constitute an easily

obtainable platform, a basis for the solvability of differential equations, but this relatively small

piece of research has the potential to perhaps one day govern all the branches in the scientific

world and it's surroundings.

3



1.2 Uses of symmetries

The symmetry group of a system of differential equations plays a major role in many of the

applications associated with differential equations. Firstly, the symmetries of ordinary differen­

tial equations are used in the reduction process, enabling one to reduce higher order equations

to quadratures. A symmetry cannot be used more than once within the reduction process and

thus solvability of a differential equation is very much dependent on the original number of

symmetries the equation to be solved possesses.

Symmetries can also be used in the transformation of equations into canonical form as well

as to determine first integrals of differential equations. They provide a means of classifying

different symmetry classes of solutions and families of differential equations.

Many equations appear to loose one or more symmetries when the order of the equation is

decreased (increased). However, it has been shown that these symmetries are not lost, but

instead become nonlocal. Equally, previously undiscovered nonlocal symmetries appear as

point symmetries following a reduction (increase) in order of an equation [12].

Symmetries take on many forms. Here we are mainly concerned with point symmetries (where

the transformations depend on the variables of the equation) and nonlocal symmetries (where

the transformations depend on the variables of the equation and integrals thereof). Nonlocal

symmetries can become point under the reduction (increase) of order of the equation. The

resulting symmetries are called hidden symmetries. A Type I hidden symmetry can occur when

the order of the equation increases, whereas decreasing the order of the differential equation

may give rise to a Type II hidden symmetry [2]. (It is this approach which we exploit.)

Furthering this idea Abraham-Shrauner et al [1] found that equations possessing no Lie point

symmetries could be reduced to quadrature form when an increase in the order of the equation

resulted in a Type I hidden symmetry.
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1.3 Outline

After introducing the salient terminology we provide an example which illustrates the impor­

tance of hidden (and hence nonlocal) symmetries. Thereafter we proceed to reduce the order of

third order ordinary differential equations invariant under two- and three-dimensional Lie al­

gebras to second order ordinary differential equations. By considering the Lie algebras of these

new equations we provide a new classification of second order ordinary differential equations

which can be solved via non-local transformations.

5



Chapter 2

Lie Theory of Differential Equations

We begin by introducing some of the concepts and terminologies we utilise in our analysis.

Thereafter, we motivate the importance of hidden (and hence non-local) symmetries by way of

an example.

2.1 Definitions

GROUP: A group C is a set of elements with a law of composition c/J between elements

satisfying the following properties[5]:

• CLOSURE PROPERTY: For any element a and b of C, c/J(a, b) is an element of C .

• ASSOCIATIVE PROPERTY: For any elements a,b and c of C,

c/J(a, c/J(b, c)) = c/J(c/J(a, b), c).

• IDENTITY ELEMENT: There exists a unique identity element I of C such that, for any

element a of C,

c/J(a,1) = c/J(I, a) = a.

• INVERSE ELEMENT: For any element a of C there exists a unique inverse element a-I

in C such that

c/J(a, a-I) = c/J(a- 1, a) = I.
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ABELIAN GROUP: A group G is Abelian if 4J(a, b) = 4J(b, a) holds for all elements a and

bin G.

GROUP OF TRANSFORMATIONS: The set of transformations

x = X(x; c),

defined for each x in the space D c R, depending on the parameter c lying in the set 5 c R, with

4J(c,8) defining a composition of parameters c and 8 in 5, forms a group of transformations

on D if:

• For each parameter c in 5 the transformations are one-to-one onto D.

• 5 with the law of composition 4J forms a group.

• .7: = :r when c = I, ie.

X(x;1) = x.

• If x = X(x; c), X = X(x; 8), then

x= X(:T; cP(c, 8)).

LIE GROUP OF TRANSFORMATIONS: A one-parameter Lie group of transforma­

tions is a group of transformations which, in addition to the above, satisfies the follmving:

• c is a continuous parameter, ie. 5 is an interval in R. (Without loss of generality c = 0

corresponds to the identity element 1).

• X is infinitely differentiable with respect to 1; in D and an analytic function of c in S.

• cP(c, 0) is an analytic function of c and 0, c E 5, 0 E 5.
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SUBGROUP: A subgroup of G is a group formed by a subset of elements of G with the

same law of composition.

EXAMPLES OF LIE GROUPS:

LINEAR GROUPS: The complex general linear group GL(n, C) and the real general linear

group GL(n, R) consist of all nonsingular complex and real n x n matrices respectively [29].

(The latter may be considered as a subgroup of the former.) The complex special linear group

SL(n, C) is the subgroup of GL(n, C) consisting of matrices with determinant one. The real

special linear group SL(n, R) is the intersection of these two subgroups, ie.

SL(n, R) = SL(n, C) n GL(n, R).

ROTATION GROUP: The rotation group SO(n, R) is the special or proper real orthogo­

nal group given by the intersection of the group of orthogonal matrices O(n, R) and the complex

special linear group, ie.

SO(n, R) = O(n, R) n SL(n, C).

LIE ALGEBRA: A Lie algebra L is a vector space together with a product [;T" y] that:

• is Bilinear (ie. linear in x and y separately),

• is Anticommutative (antisymmetric):

[1:, y] = -[V, x],

and,

• satisfies the Jacobi Identity

, [x, [V, z]] + [V, [z, xll + [z, [x, yl] = 0
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for all vectors :1:, y, z in L.

ABELlAN LIE ALGEBRA: A Lie algebra L is called Abelian (equivalently commutative)

if Vx, y E L, [x, y] = 0 [29].

SOLVABLE ALGEBRA: A Lie algebra L is called solvable if the derived series

terminates with a null ideal ie. Lk = 0, k> 0 [17, 31]. Note: Any Abelian algebra is solvable

and indeed any Lie algebra of dimension :S 3 is solvable except when dim L = 3 = dim L'.

A few comments about Lie algebras are now in order. The Jacobi identity plays the same role

for Lie algebras that the associative law plays for associative algebras. 'While we can define a

Lie algebra over any field, in practice it is usually considered over real and complex fields. 'Ne

define the product associated with the Lie algebra as that of commutation, ie.

[X, Y] = XY - YX.

If a differential equation admits the operators X and Y, it also admits their commutator [X, Y].

Lie's main result [33] is the proof that it is always possible to assign to a continuous group (Lie

group) a corresponding Lie algebra and vice versa. Thus for the real special linear group

SL(n, R) the corresponding Lie algebra is sl(n, R) and for SO(n, R), so(n, R) [13, 14]

2.2 The Algorithm

An nth order ordinary differential equation,

N(:J.;, y, y', ... , yn) = 0

9
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admits the one-parameter Lie group of transformations

.1:

fj

x + E~

y + ETJ

(2.2)

(2.3)

with infinitesimal generator

if

8 8
G = ~- +17-

8x 8y
(2.4)

(2.5)

(2.6)

where G[n] is the nth extension of G needed to transform the derivatives in (2.1) and is given

by [25]

G[n] = G +t [TJ(i) - f (i.) y(j+1)~(i-j)] 8 ~i)'
2=1 )=0 J Y

Note that the superscripts in (2.6) denote total differentiation with respect to the independent

variable. vVe say that (2.1) possesses the symmetry (group generator) (2.4) if (2.5) holds.

In the case of point symmetries we require that the coefficient functions ~ and TJ depend on the

independent and dependent variables only (in this case x and y). The operation of (2.6) on

(2.1) produces a single linear partial differential in ~ and TJ. As these functions are independent

of derivatives of y (which appear in the partial differential equation) we separate by equating

coefficients of powers of derivatives of y to zero. This leads to an overdetermined system of

linear partial differential equations, the solution of which gives ~ and r/.

Consider the equation
iv 5 I III 1yy + -y y - - = 0

2 y3 (2.7)

which arises in cosmology [24]. Utilizing MULIE [15] (a computer package for the determination

of symmetries of differential equations) the symmetries of this equation are easily found viz.

G1
8

(2.8)-
8x

G2
8 4 8

x-+-y-. (2.9)
8:1: 5 8y

Thus we are investigating a fourth order ordinary differential equation invariant under only two

point symmetries. Ordinarily, the number of symmetries present (which is all we are concerned
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with if the Lie algebra is solvable) suggests that the equation cannot be reduced to quadratures.

However, hidden symmetries arise during the reduction process, enabling one to fully reduce

this fourth order equation with only two symmetries to quadratures.

The Lie Bracket relationship of (2.8) and (2.9) is

(2.10)

Thus reduction via C2 will result in the loss of Cl as a point symmetry of the reduced equation

[30, p.148].

We consider the reduction via Cl. Utilizing the associated Lagrange's system [28]

dx

1

dy

o
dy'

- o (2.11)

we can easily see that both y and y' are characteristics, ie.

respectively. It follows that

u=y v = y' (2.12)

Thus we have reduced (2.7) to the third order equation

V"' = _ [~+ 4V'] v" _ (v')3 _ 5(V')2 +_1_
2u v v 2 2uv u4V 3 .

As expected, it is possible to rewrite C2 in terms of the new variables, viz.

o 0
X 2 = 4u- -v-.ou ov

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Hence, X 2 is a symmetry of the newly formed third order equation. (\\7e actually consider C~lJ,

the first extension of C2 . Since-.1: is not a variable relevant to the reduced equation, we ignore

the :x term.)
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We use MULIE to determine whether any other symmetries of this third order equation exist.

We discover that, in addition to (2.17),

2 0 1 0
Xl = U - + -uv-

Ou 2 Ov
(2.18)

is also a symmetry. This is a Type II hidden symmetry [2].

The Lie Bracket relationship of (2.17) and (2.18) is

(2.19)

As reduction via X2 results in the loss of Xl as a point symmetry of the reduced equation, we

attempt reduction via Xl, in which case

v2

p=­
U

q = v3 (v' - ..!!-) .
2u

(2.20)

Therefore

(2.22)

(2.21)

v

2uvv' - v2 (dq) _ 3(V')2 + 2v' _ ~
u 2v3 dp v U 2u2

(2uvv' - v2)2 (d2q ) + (3u2v2(V')2 + U2V3V" - 2uv3v' + ~v4) (2U(V')2 + 2uvv")

u4v3 dp2 u2v3 (2uvv' - v2)

6(v')3 9v'v"

v"

V"'

and so (2.16) becomes
p2 5q 7q' q,2

q"= +_--
4q2 2p2 2p q . (2.23)

X 2 now becomes
o 0

U2 = 6p op + 8q oq .

Utilizing l'vIULIE, we once again find a hidden symmetry, viz.

(2.24)

q 0 1 0
U1 = -1 - +P2-.

p'i oq op
(2.25)

Conveniently, we notice two symmetries for the reduction of a second order ordinary differential

equation, (2.23). However, once again the order in which we reduce is vital. The Lie Bracket

relationship of (2.24) and (2.25.) is

(2.26)
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(2.27)
t= (pq'_q)2

3 'P

q
8 =-

p

Reducing via Ut results in a first order ordinary differential equation with (at least) one point

symmetry. Here,

which reduces (2.23) to

(2.28)
, 1 2t

t =---
282 8

This is solved [16] (or using the integrating factor associated with the newly transformed U2

[6]) to yield

t= [J~+1].
28

(2.29)

Reversing the transformations (2.27), (2.20) and (2.12) and integrating the resulting first order

ordinary differential equations will yield the solution to the original equation.

2.3 Summary

vVe have shown that an equation with fewer than the required number of point symmetries can

still be reduced to quadratures. This was effected due to the discovery of hidden symmetries

((2.18) and (2.25)) of the reduced equations. These hidden symmetries are actually "useful"

nonlocal symmetries [11] of the original equation, viz.

3 (/ ) a 2 a- yd:r - + 3y -
2 ax ay

~ [J y (J Y2
3

dx) axJ :x + ~2 (J Y2
3

d1:) ~.

(2.30)

(2.31)

Clearly, if we knew that (2.7) possessed Cl - C4 originally, we would have realised that it could

be reduced to quadratures. However, it is not a simple matter to find nonlocal symmetries

of any ordinary differential equation although some progress was made in [10]. As a result,

indirect means have been used to classify equations via nonlocal (hidden) symmetries [3, 11].

We consider one indirect method in the next chapter.
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Chapter 3

Reduction of Third Order Equations

3.1 Introduction

In addition to the obvious importance of non-local transformations in reducing the order of

ordinary differential equations, we have highlighted an additional use in §2.2. 'vVe nO\v use these

transformations to classify equations. Our classification scheme links second order ordinary

differential equations with fewer than two symmetries to those with at least two symmetries.

Thus the original equations which are thought to be unsolvable via the Lie approach are shown

to be linked to solvable equations due to the presence of nonlocal symmetries.

The systematic application of the approach we follow was inadvertently initiated by Gonzalez­

Gascon and Gonzalez-L6pez [9]. They analysed a system of second order ordinary differential

equations not possessing any point symmetries and showed that it could still be integrated.

Their system \vas later shown to possess point symmetries [1]. Six years later, Vawda [32]

introduced a single second order ordinary differential equation which could be integrated while

possessing no point symmetries. Abraham-Shrauner et al [1] showed that this equation pos­

sessed non-local symmetries. They achieved this by increasing the order of the equation to a

third order ordinary differential equation with two point symmetries. This third order equa­

tion was reduced to a new second order linear ordinary differential equation with eight point

symmetries. After reversing the two transformations, these point symmetries became non-local
I

symmetries of the original second order ordinary differential equation. The utility of this ap-

14



proach is evident by the classification of second order ordinary differential equations with no

point symmetries subsequently undertaken by Govinder and Leach [11]. We continue in that

vein.

We start our analysis by considering third order ordinary differential equations invariant under

two- and three-dimensional Lie algebras of point symmetries. We reduce each third order

differential equation via each of its symmetries and consider the symmetries of the resulting

second order differential equations. We then provide the nonlocal transformations linking these

reduced second order differential equations. This work goes some way to filling the gap between

[3] and [11].

All equations, Lie algebras and symmetries are taken from [26, 27]. The function f is an

arbitrary function of its arguments. (When we refer to symmetries we mean point symmetries

unless otherwise indicated. When we refer to the loss of symmetries we mean in the point

sense.)

3.2 Two-Dimensional Lie AIgebras

We begin by considering the two-dimensional Lie algebras. There are two two-dimensional Lie

algebras (with two representations each) which leave third order equations invariant, mz.

2A{ : ylll f [y', y"]

2A{I: y'" f [x, y"]

AI. ylll (y")2f [V', xy"]2 .

AI!· III
"f [ "/ ']2 . Y Y x,y Y

(3.1 )

(3.2)

(3.3)

(3.4)

We consider each in turn. 'liVe do not expect to reduce these third order equations to quadra­

tures. Here we are only interested in the nonlocal transformations between the resultin<T secondo

order ordinary differential equations.
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3.2.1

The first equation we investigate is

yll/ = r [y', y"]

invariant under the two symmetries,

a
ax
a
ay'

(3.5)

(3.6)

(3.7)

Reducing via Cl,

from which we obtain

u=y

y"

y'"

,
v=y

vv'

(3.8)

(3.9)

(3.10)

Substituting into (3.5) yields
'2 1

"v [']v = - - + ~rv, vv .
V v2

(3.11)

The remammg symmetry, C 2 , can be rewritten in terms of the new coordinates. and is a

symmetry of the newly formed second order ordinary differential equation, ie.

(3.12)

Equation (3.11) does not possess any further symmetries and so can only be reduced to a first

order differential equation.

Now consider the reduction of (3.5) via C 2 . The invariants of the symmetry (3.7) are

u=x v = y' (3.13)

and we use them as the new variables. Consequently

y"

y'"

16

v'

v"

(3.14)

(3.15)



and (3.5) reduces to

V" = r [V, v'] .

Cl takes on the form (3.12) and so becomes the only symmetry of (3.16).

For completeness, we provide the nonlocal transformation from (3.11) to (3.16):

(3.16)

(3.17)

(3.18)

(Here and in what follows, the variables Ui and Vi refer to the reduction variables obtained from

the symmetry Cd

3.2.2

Consider the equation

wi th symmetries

Reducing via Cl,

from which we obtain

III - r [ "]y - x,y

a
ay

a
:]; ay'

V = y'

(3.19)

(3.20)

(3.21)

(3.22)

Substituting into (3.19) yields

y"

ylll

V'

V".

(3.23)

(3.24)

Symmetry C2 now reduces to

V" = r [u, v'] .

17
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Since (3.25) is invariant under only (3.26), (3.19) cannot be reduced to quadratures using

symmetries.

Reducing (3.19) via G2 yields

and thus

Hence, equation (3.19) reduces to

u=x

y"

y'"

I Yv=y--
X

I vv+­
u

I
" V V

V + - --.
U u2

(3.27)

(3.28)

(3.29)

" [, V] v' vv = r u, v + - - - +-.
u U u2

No\v G I reduces to
1 a

Xl =-­
u av

which is the only symmetry of (3.30)

Finally we investigate the nonlocal transformation from (3.25) to (3.30):

3.2.3

Consider the equation

y'" = (y")2r [y', xy"]

which admits the symmetries

a
ay

a a
x-+y-.ax ay

Redllcing via GI,

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

u =:1:

18

v = y' (3.37)



from which we obtain

Substituting into (3.34) yields

G2 reduces to the form

y" - v'

y'" - v".

v" = (v'?r [v, uv'].

(3.38)

(3.39)

(3.40)

(3.41)

Equation (3.40) does not possess any further symmetries and so can only be reduced to a first

order differential equation.

Now consider the reduction of (3.34) via G2 :

y
u=­

x

Therefore

,
v = y. (3.42)

Thus (3.34) reduces to

y"

ylll

(xy' - y) v'

x2

(.Ty'_y)2 v" 2y" X(y")2--'------'----'-'---- - - + --'---'--
x 4 X (xy' - y) .

(3.43)

(3.44)

v" = (r [v, Vi (v _ u)] __1_) (v')2 + 2v' .
v-u v-u

(3.45)

Unfortunately, (3.45) does not possess any symmetries (as expected). Thus the second order

equation cannot be further reduced. This result is confirmed when one examines the Lie Bracket

relationship between (3.35) and (3.36). In this particular case,

(3.46)

The nonlocal transformation from (3.40) to (3.45) is

I VIduI
(3.47)U2

UI
v2 VI' (3.48)
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It remains to consider

y'" = y"f [x, y" jy']

with the corresponding symmetries

Cl
a

-
ay

C2
a

- Yay'

Reducing first with respect to Cl, we set

(3.49)

(3.50)

(3.51)

u=x

Thus

I
V = y. (3.52)

y" v'

y'" - v"

and therefore

[ ']" I V
V= v f u, --;; .

C2 now takes on the form
a

X 2 =v­av

(3.53)

(3.54)

(3.55)

(3.56)

and can therefore be used in the reduction of (3.55). This is the only symmetry admitted by

(3.55).

On the other hand, reducing via C 2 , we set

u=x

Hence

y'
V= -.

Y
(3.57)

y"

I

y'"

I (y')2
yv +-­

Y
" y"y' 2y"y' 2(y')3

yv +-+-----
Y Y y2
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from which it follows that

v" ~ -3vv' - V3+ (V' - v') r [U, ~ +V] .

In this case the remaining symmetry will be lost.

Equations (3.55) and (3.60) are linked via

(3.60)

(3.61)

The results obtained in this section show that the third order equation invariant only under the

two dimensional Lie algebras (3.1)-(3.4) cannot be simply reduced to second order equations

with more than one symmetry. A systematic treatment of the second order equations will be

pursued elsewhere.

3.3 Three-dimensional Lie algebras

There are eleven three-dimensional Lie algebras associated with third order ordinary differential

equations. These Lie algebras (with only the non-zero commutation relations given) are

3Al

Al Efl A2 [Cl, C3] = Gl

A3,l [G2 , G3] = Gl

A3,2 [Gl , G3] = GI [G 2 , G3] = GI + G2

A3,3 [GI , G3] = GI [G2 , G3] = G2

A3,4 [GI , G3] = GI [G2 , G3] = -G2

Ail 5(0 < 10.1 < 1) [GI , G3] = GI [G2 , G3] = aG2,

A36 [G l , G3] = -G2 [G 2 , G3] = GI

A~ 7(b > 0) [GI , G3] = bGI - G2 [G2 , G3] = GI + bG2,

A3 ,8 [G l , G2] = Gl [G2 , G3] = G3 [G3 , Gd = -2G2I

A3 ,9 [Gl , G2] = G3 [G2 , G3] = GI [G3 , GI ] = G2
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We ignore 3A l and one representation of A3,3 (ie. A~:3) as the equations invariant under these

Lie algebras are linear. As a result those equations admit larger classes of Lie algebras.

3.3.1 A31,

The algebra A3,l realises the equation

ylll = r [y"] ,

which admits the following three symmetries

(3.62)

a
ay
a

ox
a

x ay '

(3.63)

(3.64)

(3.65)

Now, using each of the three symmetries, we reduce the canonical equation to second order

equations.

Reduction via Cl yields

Equation (3.62) becomes

U=X

y"

y"'

v = y'

v'

11
V.

(3.66)

(3.67)

(3.68)

v" = r [v'] .

The reduction variables obtained via Cl result in the symmetries C2 and C3 becoming

X 2
a

- au
X 3

a
-av

(3.69)

(3.70)

(3.71)

Since both X 2 and X 3 can be written in terms of u and v with a zero commutation relation, one

can positively conclude that either of these two symmetries can be used in the further reduction
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of the new second order ordinary differential equation (3.69). More importantly, this allows us

to reduce (3.69) (and hence (3.62)) to quadratures.

Reduction via G2 yields
,

u=y v=y

y" - vv'

(3.72)

(3.73)

(3.74)

Thus (3.62) reduces to

From G l , we obtain

v" = - (v'? + 2.-r [vv'].
v v 2

(3.75)

(3.76)

but G3 cannot not be written in terms of the new co-ordinates as a point symmetry.

Finally, considering G3 , we obtain

The reduced equation is

u=x

y"

y'"

v = y'

, v
v+­

u
v' v

v" + - --.
U u2

y

x
(3.77)

(3.78)

(3.79)

" V v' [' v 1v = u2 - -:;;: + r v - ~J .
G I takes on the new form

1 a
Xl = --.

u av
Once again, reduction results in the loss of a symmetry, this time G2 .

(3.80)

(3.81 )

Thus, one can now see the extent to which solvability of a differential equation is dependent

upon the order of the symmetries used in reduction. From the analysis above, it is now evident

that the equation can only bo reduced to quadratures if the third order equation is reduced
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initially by Cl' However, the two second order differential equations (3.75) and (3.80) are linked

to (3.69). The nonlocal transformations between any two of these three equations are

(3.82)

U3 - UI

JVldul
(3.83)v3 VI -

UI

and

U3 J~du2
V2

U2
(3.84)V3 V2 - J Id'

V2 u2

Therefore, if one is given a second order equation of the form (3.75) or (3.80), one can increase

its order by one, (thereby gaining asymmetry), and then reduce the third order differential

equation via Cl. Alternatively, the transformations above can be used directly.

3.3.2 A§ 2,

Consider the equation

which admits the three symmetries

Reducing via Cl, we obtain I

11/ (1f)2r [ If ']Y = Y Y expy

a
ay
a

ax
a . a

x-a + (x + y) -a .
.7: Y

(3.85)

(3.86)

(3.87)

(3.88)

U=x V = y'
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y" - v'

y'" - v"

and so (3.85) becomes

v" = (V')2r [v' exp v] .

Symmetries C2 and C3 transform to

X 2
a

- -
8u

X 3
a a

- u-+-
au av

respectively. Thus, no symmetries have been lost.

Reducing via C2 , we have

u = y v = y'

y" vv'

Substituting into the original third order equation, we have

" (v')
2

(')2r [' ]v = - -- + vvv exp v .
v

Cl and C3 are now transformed to

8
au

8 8
u-+­

8u av'

Once again reduction does not result in the loss of any of the symmetries.

Finally, reducing via C3 , we set

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

y
u = - -logx

x

Here

v = y' -logx. (3.101)

y'"

y" - [y' - y -~] v' + ~
X x 2 :17 x

(xy' ~ y - X)2 V " (y" - ~) (xy" - 1) 1 2y"
4 + (' ) + 2 --.x xy - y - x :1: x
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This implies that

V" -
(V')2 + 2v' 1
-C--'----__ + 2
v-u-1 (v-u-1)

[[( V - U - 1)v' + 1]2]+ 2 r[expv(v-u-1)].
(v-u-1)

(3.104)

Since Cl as well as C 2 fail to be written in terms of the new coordinates, u and V, the second

order differential equation (3.104) will loose both remaining symmetries.

The three second order equations are linked as follO\vs:

and

U3 _ f VI dUI - log UI
UI

V3 VI -logUI

(3.105)

(3.106)

(3.107)

Thus, given equation (3.104) which cannot be reduced to quadratures, one need only utilise

the transformations given in (3.106) and/or (3.107) enabling this apparently unsolvable second

order equation to now take on the form of (3.92) or (3.98). In both cases the new second order

equations contain two symmetries and can be reduced to quadratures.

3.3.3

Here, we consider the equation

III "r [ / "]y = y expx y
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with the following symmetries

Reducing via Cl, we utilise the substitution

(3.109)

(3.110)

(3.111)

U=X

Thus

y"

y'"

Iv=y

v'

"v.

(3.112)

(3.113)

(3.114)

Substituting for y" and ylll will reduce (3.108) to the form

v" = vir [ex;u] .

C2 and C3 are now transformed to

(]

(1)

o 0
~ + v-;::).
vU vV

Hence, neither of the remaining symmetries will be lost via this reduction route.

(3.115)

(3.116)

(3.117)

Reducing via C2 yields

u=X

Here

y"

y'"

which reduces the original equation to

Iv=y

I V
v-­

U
I

" V Vv +--­
U u2

y

x
(3.118)

(3.119)

(3.120)

I I ( ) [ ]
" v v I v r exp u

v = -- + - + v +-
U u2 U Vi + (vju) .
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Since C 3 cannot be expressed in terms of these co-ordinates, we consider only Cl, which now

takes on the form .
1 8

Xl = --.
u8v

In the case of reduction via C3 ,

(3.122)

Thus

U = logy - x
yl

V= -.

Y
(3.123)

which leads to

v ll _- (v
l
)2 _ 5v [ v

2
-Vi] + [(V-l)V

I
-V

2]r[ exp(-u) ]
- (v-I) (v-I) (v-I) (v-l)2 (v-l)v l -v2 '

(3.124)

(3.125)

(3.126)

Neither Cl nor C2 can be expressed in terms of these co-coordinates, and so the resulting

equation will be of second order with no point symmetries present, ie, an irreducible equation.

Finally, we consider the linking transformations:

(3.127)

U3 log [J VIdUI] - UI

VI
(3.128)V3

JVldul

and

U3 = log [U2 J~: dU2] - U2

V3
V2 + I(v2/u2)du2

(3.129)=
U2 I(vdu2)du2 .

Both (3.121) and (3.126) must take on the form of (3.115) to transform into a second order

differential equation with two symmetries. The above transformations allow for this.
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3.3.4 A§,3

The equation associated with this Lie algebra is

ylll = (y"?r [y']

and the symmetries associated with this equation are

o
ox
o
oy

o 0
xox + Yoy'

(3.130)

(3.131)

(3.132)

(3.133)

Now, reducing via Cl yields

from which we obtain

u=y

y"

y'lI

,
v=y

vv'

(3.134)

(3.135)

(3.136)

and it thus follows that

v" = _(v')2 + (v')2f[v].
v

(3.137)

Here, both C2 and C3 can be reduced to symmetries of equation (3.137), viz.

o
ou

o
u ou'

Reducing (3.130) by C2 , ie. via

(3.138)

(3.139)

yields

u=x v = y' (3.140)

y" v'

y'" - v"
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which gives the equation

v" = (V')2r [v]. (3.143)

Once again, both Cl and C3 become point symmetries of the new second order differential

equation as they transform as follows:

Xl
8

- -
8u

X3
8

u-
8u

Finally, we reduce the original equation by C3 . Here

(3.144)

(3.145)

. Now

y
u=­

x
v = y'. (3.146)

y" -

y'" -

(xy' - y) ,
2 Vx

(xy'_y)2" x(y")2 2y"
--'-----'-v + - -

x4 (xy' - y) _ x

(3.147)

(3.148)

This results in
( ')2 + ') ,

" = - v ~v (')2r [ ]v ( ) +v v.v-u
(3~149)

Since neither Cl nor C2 transform to symmetries in the new variables, the newly formed second

order ordinary differential equation cannot be further reduced.

The transformations linking the second order equations are

(3.150)

UI
U3 J .1... dUI

VI

V3 vI (3.151)

and

U3
JV2 du2

U2
V3 V2· (3.152)
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Thus, if one is presented with an equation of the form (3.149), one need only perform the above

transformations to convert it into a form that can be reduced to quadratures.

The equation invariant under this Lie algebra is

(3.153)

and the corresponding symmetries are as follows:

Cl
a

- -
ax

C2
a

-
ay

C3
fJ

xa ·x

'vVe first reduce (3.153) via Cl:

u=y v = y'

and so we find

y" vv'

y'" v(V')2 + v2v"

followed by

Both C2 as well as C3 can be transformed to point symmetries of (3.160), viz.

fJ
fJu
a

v­
fJv

respectively.

We now consider reduction via C2 :

(3.154)

(3.155)

(3.156)

(3.157)

(3.158)

(3.159)

(3.160)

(3.161)

(3.162)

u=x
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v = y'. (3.163)



We have

y"
, (3.164)- v

ylll " (3.165)- v

and

v" = (v') ~ r [~:] (3.166)

follows.

Both remaining symmetries can be reduced to symmetries of the new equation, ie.

a
au

a a
u--v-.

au av

Continuing our investigations, we reduce via C3. In this case,

(3.167)

(3.168)

Hence

u=y
,

v = xy. (3.169)

y"

y'" -

y'
- (v' - 1)
X

(y'fv" y" (y")2--'--- - - + --
x X y"

(3.170)

(3.171)

and . 3

v" = _ (v')2 + 3v' _ ~ + (v' -1
1)2 r [v' - 1] .

v v V V2 V
(3.172)

Cl cannot be expressed in terms of the above coordinates. However C 2 will reduce to

Now, let us investigate the links between the three transformations:
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U3 UI

V3 VI J~dUl (3.175)
VI

and

U3 Jv2du2

V3 U2 V 2· (3.176)

Here, (3.172) can take on the form (3.160) or (3.166) via a nonlocal transformation and so can

be solved.

3.3.6 A~ 4,

Next we investigate the equation

with the three symmetries

o
O.T
o
oy

8 0
x--y­ox ay'

Continuing as before, we begin with reduction via Cl:

(3.177)

(3.178)

(3.179)

(3.180)

This yields

U=y

y"

y'"

V = y'.

,
vu
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(3.183)



and therefore 2

v" = _ (V')2 + ((V')2) "3 r [V:] .
v v V2

(3.184)

Here, the symmetries G2 and G3 become

a
au

a a
u au + 2v av'

Thus, neither G2 nor G3 are lost during reduction.

Reducing via G2 yields

(3.185)

(3.186)

Thus

u=X

y"

ylll

v = y'.

v'

(3.187)

(3.188)

(3.189)

are easily determined, and therefore

(3.190)

Again, we find both Gl and G3 to be symmetries of the reduced equation

a
au

a a
u- -2v-.

au 8v

Finally, reducing via G3 , we obtain

(3.191)

(3.192)

As a result,

u = xy
y'

V= 2'
Y

(3.193)

y"

y'"

2(y')2
y2 (l;y' + y) v' +--

Y
2 ( " ')2" (yy" - 2(y'?) (xy" + 2y') 6y'y" (y')3

Y 1,y + Y V + + -- - --
y (xy' + y) Y y2 .
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Using (3.193), (3.194) and (3.195), (3.177) reduces to
4

11 u(v'f+2vv'-6 18v3 ((UV+1)V'+2V2)3r[(U 1), 21]
V = - . + 2 + 2 -I + -3 V + V2 •

UV + 1 (uv + 1) (uv + 1) V2 V2

Reduction via G3 results in the loss of both other symmetries.

(3.196)

In conclusion of this algebra, let us once again consider the transformations between the second

order differential equations obtained from the reduction via the three symmetries:

UI - Jv2du2

(3.197)

U3 - UI J~dUI
VI

VI
(3.198)V3

u 2
I

and

U3 U2 Jv2du2

V2
(3.199)v3 2'(J v2dU2)

Transforming the second order differential equation (3.196) to the form of (3.184) or (3.190)

will increase the number of symmetries it contains to two. Reduction to quadratures is now

possible.

3.3.7

In this group a 1= 1,2 is a constant. The relevant equation is defined as fo11O\\'s

y'" = (y") :=~ r [yll (y') ~=~]

and can be reduced via its three symmetries

fJ
fJx
8

fJy
fJ fJ

x-fJ + ay-.
:1: fJy
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(3.201 )

(3.202)

(3.203)



Let us begin by reducing via Cl:

Thus

u=y
I

V = y. (3.204)

and so

y" - vv'

a-3
" v' (vv')a-Z r [ I _1 ]

V = -- + V V a - 1 •

V V 2

(3.205)

(3.206)

(3.207)

C2 and C3 remain symmetries of (3.207), transforming to

a
ou

a a
au- + (a -l)v-ou OV

respectively.

Reducing via C2 we now have

(3.208)

(3.209)

From this transformation we obtain

and therefore

u=x

y"

yl/1

I
V = y.

v'

v"

(3.210)

(3.211)

(3.212)

" (' a-3 [, z-a]V = v) a-2 r v V a-1 .

As before Cl and C3 can be transformed to become symmetries of (3.213), viz.

a
ou

a a
u- + (a -l)v-

OU . ov

Let us finally consider the case in which reduction occurs via C3 . Here,

(3.213)

(3.214)

(3.215)

y
u=­

x a
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(3.216)



Thus

(xy' - ay) v' (a - 1) y'
y" _. + -'-----

X z X

(xay' - axa-Iy) (xy' - ay) v" (xy" - (a - 1) y')2 (a - 1) y'
y'" + + -'----'--

x2(a+l) X(xy' - ay) x2

(2x - (a - 1) x) y"

x 2

Substituting into the third order equation yields

(3.217)

(3.218)

v"
(a - 2) v' (a - 2) (a - 1) v
v - au (v - au) 2

a-3

[(v-au)v'+v(a-1)]a-2 r [( )' 2-a ( 1) I-a]+ 2 V - U V v a - l + a - v .
(v - au)

(3.219)

Neither Cl nor Cz can be rewritten in terms of variables of (3.219) and are therefore lost when

the equation is reduced using C3 .

As before we consider the linking transformations:

(3.220)

Ul
U3

(J v\ dUlf
'1-'1

(3.221)V3 ( r-l
J v\ dUI

and

J v2duz
U3

u a
I

V2
(3.222)V3 a=T'U I

We can use (3.221) and/or (3.222) to transform (3.219) to the form (3.207) or (3.213) in an

attempt to further reduce the'unsolvable second order equation.
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3.3.8

Here, we consider the equation

, III r [ "]yy = y

for which the following symmetries can be found:

(3.223)

Gl
a

(3.224)-
ox

G2
a

(3.225)-
ay

G3
a a

(3.226)x-+2y-.
ox ay

Following the now familiar route, we begin by reducing the equation (3.223) via the symmetry

G l :

u=y v = y'. (3.227)

Thus

" vv' (3.228)y

y'" v2v" +v(v')2 (3.229)

,vhich reduces the third order differential equation to

" (v')2 1 [ ']v = - -- + - r vv .
v v3

The remaining symmetries become

a
au

a a
u--v-.

au Dv

(3.230)

.(3.231)

(3.232)

Therefore (3.230) has two point symmetries and so can be further reduced to quadratures.

To reduce (3.223) via G2 we set

'L1 = X
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v = y' (3.233)



from which

y" - v'

y'"

When substituted into (3.223) this results in

11
V.

(3.234)

(3.235)

V" = ~r [v'] .
V

The symmetries Gland G3 transform to

a
au

a 1 fJ
u- - -v­au 2 av

and so we do not loose any symmetries.

In the last reduction we use the symmetry G3 which implies

(3.236)

(3.237)

(3.238)

It follows that

y
u=­

x 2

y'
V= -.

X
(3.239)

III

Y

(::cy' - 2y) v' y'-'----'-----::-'-'-- + -
:r2 x

(xy' - 2y)2 v" (xy" _ yl)2 y" y'
...:........::._~-'--- + - - + -

x5 X (xY' - 2y) X x2

(3.240)

(3.241 )

and thus

V" = - (v' - 1) v' + (1 )r [(v - 2u)u' + v] .
V V - 2u

(3.242)

Neither of the t\vo remaining symmetries, namely Gl nor G2 , can be rewritten in terms of these

new coordinates and therefore reduction via G3 cannot be the optimal method for solving the

differential equation (3.223).

vVith respect to the linking expressions, we have

(3.243)
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UI
U3 -

(J V\ dUI)2
VI

(3.244)V3 J .l.dUI
Vl

and

Jv2du2
U3 -

u2
2

v2
(3.245)V3

U2

In order to solve an equation of the form (3.242) one of the transformations above should be

used. This second order differential equation should then take on the form (3.230) or (3.236).

The equation relevant to this algebra is

and the symmetries are as follows:

To begin reduce (3.246) via Cl:

o
oy

o
x oy

o 0
x ox + Yoy'

(3.246)

(3.247)

(3.248)

(3.249)

Therefore

U=x

y"

yl/'

v = y'.

v'

v"
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and

v" = (V')2r [UV'] .

G2 as well as G3 can be written as symmetries of (3.253) and now take on the form

X2
8
8v

X3
8

- u
8u

'

(3.253)

(3.254)

(3.255)

Reducing via G2 yields

Thus,

and

u=x

y"

ylll

I Y
V = Y --.

x

I vv+­
u

I

" V Vv +--­
U u2

(3.256)

(3.257)

(3.258)

I ( 2" V V I V I
V = -- + - + v + -) r [uv + v] .

U u 2 U

Both Gl and G3 can be reduced to symmetries of (3.259), viz.

1 8
u8v

8
u­

8u

Thirdly, we reduce via the final symmetry G3 . Here

(3.259)

(3.260)

(3.261)

and therefore

Y
lL = -

X
v = y' (3.262)

y"

ylll

(xy' - y) Vi

x 2

(xyl_y)2 v" x(y")2 2y"----'-- + ----'--=---.:--

x 4 xy' - Y X

(3.263)

(3.264)

Substituting into (3.246) we obtain

v,,'= _(V' )2 + 2v' + (v' )2r [(v _ u) Vi].
v-u
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Cl cannot be written in terms of u and v. Only C2 can be reduced to a point symmetry of the

reduced equation, viz.

(3.266)

The transformations linking the three second order equations are

(3.267)

U3 - JVldul

V3 VI (3.268)

and

JV2U3 - du2
U2JV2 (3.269)V3 V2 + - du2'

U2

From this we observe that the easiest way in which (3.265) can be solved is by transforming it

to t?e form (3.253) or (3.259).

3.3.10 AIl
34,

The equation invariant under this Lie algebra is

Y'" - ( ") ~ r [ ~ ,,]- y x-y

and the associatedsymmetries are

a
ay

a
x ay

a a
2x-+y-.

ax ay
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(3.273)



Reducing first with respect to G l , we find

u=x

and so

y"

y'"

from which it follows that

v = y'

Vi

"v,

(3.274)

(3.275)

(3.276)

5 [3 ]v" = (v' ):3 r u"2 Vi . (3.277)

Both G2 and G3 can be reduced to symmetries of (3.277), viz.

X2
0

(3.278)
ov

o 0
(3.279)X3 2u- -V-.

oU ov

Now, let us consider reduction via G2 :

v = y' Y (3.280)u=x
x

Thus

y"
I v (3.281 )v+-

u

y'" " V v (3.282)v +---
U u2

which reduces (3.270) to the second order differential equation

" Vi V (, V ) ~ [3 I 1]
V = - u + u2 + V + ;, r u'iv + u'iv .

Neither of the remaining symmetries are lost, ie. they transform to

1 0
uov

o 0
2u-~v-

ou ov

(3.283)

(3.284)

(3.285)

Finally, reducing via G3 :

y2
U=­

X
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V = yy. (3.286)



Hence

y" -

ylll

and therefore

(2xy' - y) v' (y')2
..:....---=----::-=...:.....-- + --

X
2 Y

(2xyy' - y2)2 v" _ 2 (yy" - (y'?) _ 2x ((y')4 _ y2(y")2) + y'y"
x4y xy y (2xyy' _ y2) Y

(3.287)

(3.288)

v"
2(V')2

2v -u
(2u2

- 5uv + 6v 2
) v'

u (2v - u)2

+ [(2v ~ u) v' + ;] \ [( 2v -1 U ~) v' + v:] .
U3 (2v - U) U2 U2

Cl and C2 cannot be transformed into symmetries of (3.289).

Now, let us consider the linking expressions:

and

U2

(v2+ Jv2/u2du2) (ll2 J::dU2)'

(3.289)

(3.290)

(3.291)

(3.292)

We convert an equation of the form of (3.289) to either (3.277) or (3.283) in an attempt to

solve it.

3.3.11 AII
3,5

Here, we have the equation

", (" 2-3a [ 2a-l ,,]y = y )1-2a f xa-1y

44

(0 < la/ < 1) (3.293)



with its three symmetries

a
ay

a
C2 - x-ay

a a
C3 - (l-a)x

ax
+Y

ay
'

where a =1= 1, ~ is a constant.

We begin with reduction via Cl:

(3.294)

(3.295)

(3.296)

. Hence

U=X v = y'. (3.297)

and (3.293) is reduced to

y" v'

y'" - v"

" ,2-3a [2a-1 ,]
V = (v ) 1-2a r U a-I V .

(3.298)

(3.299)

(3.300)

Here, the remaining symmetries transform to

a
av

a a
(l-a)u-+av-

au av

and thus (3.300) contains two symmetries via which it can be reduced to quadratures.

(3.301)

(3.302)

Reducing via C 2 yields

Thus

u =.1:

y"

y'"

v = y'

, v
v+­

u ,
" v . vv +---

U u 2

y

x
(3.303)

(3.304)

(3.305)

and
: 2-3a

" V V (' V)I-2a [2a-l, _a]
V = - U + u2 + V - :;;, r u a-I V + vu a - I .
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As before, neither of the remaining symmetries are lost:

1 0
uov

o 0
(1- a)u

ou
+av

ov

(3.307)

(3.308)

Finally, reducing via G3

Hence

yl-a
u=-­

X

y'
V=-.

ya
(3.309)

y" -

y'" -

and

v"

(xy' (1 - a) - y) v' a(y')2
..:........::..~--..:--..:~ +-- (3.310)

x 2 y

(x (1 - a) ~ - yl-a) (xy' (1 - a) - y) v" (X2yll - ax2~y/)2) (xy" (1- a) + ay')
--'--------"---"'--------- + --'--------,-----=--~-------

x4 x2(xy' (1 - a) - y)

2y" 2a(y'? 2ay'y" a(y')3- - + + - -- (3.311)
x xy y y2

(1 - a) (V')2 [(1 - a) (3av2+ 2u2(u - v)) - au2v] v' av3(20. - 1)
[(1 - a) v - u] u2 [(1 - a) v - u]2 u2 [(1 - a.) v - u]2

2-3a

[(1-a)uvv'+u2v'+av2]1-2a ['( ) _a _1, 2 2a-l]+ 2 r vv 1 - a u 1- a - u 1- av + av u I-a . (3.312)
u2 [(1 - a) v - u]

Both symmetries are lost.

vVe now examine the linking transformations:

(3.313)

U3
[J Vldul]l-a

Ul
Vl

(3.314)V3
[J v1dud a

and

U3
[U2 J ~dU2r-a

1.l 2
V2 + J .!!2. dU2

V3 U2
(3.315)

[U2 I ~dU2]a.
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Equation (3.312) can be further reduced if it is transformed to either (3.300) or alternatively

to (3.306).

3.3.12

Consider

y"l = ~r [y"]
x

wi th the following symmetries

(3.316)

Reducing via Cl yields

a
ay

a
x-ay
1 a a
-x-+y-.
2 aJ; ay

(3.317)

(3.318)

(3.319)

Thus

U=x

y"

y'"

v = y'.

I
V

11v.

(3.320)

(3.321)

(3.322)

Substituting into (3.316), we obtain

V" = ~r [v'].
U

(3.323)

Both C2 as well as C3 become symmetries of equation (3.323), viz.

a
av
1 a 1 a
-U-+-V-.
2 au 2 av

(3.324)

(3.325)

Now we reduce via C2 by performing the substitutions

U=x
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I Y
V =y --

J;
(3.326)



V
y" - v' + ­

u ,
" v vy'" v + - - -.

U U 2

Therefore

" v' vIr [' v ]v = -- + - + - v + - .
U u2 U U

Rewriting Cl and C2 in terms of the new coordinates, we obtain

1 a
uav

a a
u au + v av·

Methodically, we now reduce via C3 , where

(3.327)

(3.328)

(3.329)

(3.330)

(3.331)

y
u=­

x 2

Now,

y'
V= -.

x
(3.332)

y"

y'" -

(v - 2u) v' + v

(xy' - 2y)2 v" (xy" _ y,)2 y' y"-'-----'-- + + - - -
x5 X (xy' - 2y) .1:2 X .

(3.333)

(3.334)

Hence
( (v')2 + v') 1

v" = + 2r[(v-2u)v'+v].
(v - 2u) (v - 2u)

(3.335)

Neither of the remaining symmetries can be rewritten in terms of the new coordinates.

Let us now investigate the linking expressions:

(3.336)

I

U3
Uv2dU2] 2

U2
V2

(3.337)v3 1

[J 'V2d1.l2] 2
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and
1

[U2 J(V2/u2)du2] 2

U3 -
U2

V2 + J(v2/u2)du2
(3.338)V3 - 1 •

[U2 J(v2/u2)du2]2

In this case, equations of the form (3.335) must be transformed to second order equations of

the forms (3.323) or (3.329) in order to be reduced to quadratures.

3.3.13 A~,6

The relevant equation for this algebra is

ylll = 3y'(y")2 + (1 + (y')2) 2 r [ y". 3]
1 + (y')2 (1 + (y')2) 2

with the corresponding symmetries

a
ax
a
ay
a a

y~-x~.
ux uy

Reducing via Cl, we obtain

(3.339)

(3.340)

(3.341)

(3.342)

Thus

u=y

y"

y"'

v = y'.

vv'

(3.343)

(3.344)

(3.345)

Substituting into (3.339) yields

11 (v')2 3v3 (v')2 (1+v2)2 [ vv' ]
v = --- + + r

v v2 (1 + v2) v2 (1 + v2) ~ .

Cl and C3 transform to

a
au
(1 + v

2
) ~ .

uv
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(3.347)

(3.348)



Thus, for the reduction of equation (3.346) one can use the symmetries above.

Now consider C 2. The reduction variables are

u=x

from which we find

v = y' (3.349)

y" v'

y"' - v"

(3.350)

(3.351 )

and thus

(3.352)

is the reduced equation.

Both Cl and C3 can now be written in terms of the new variables, ie.

To complete this group, we reduce (3.339) via C3 :

(3.353)

(3.354)

Thus

u

v

x2 + y2

yy' +x
Y - xy'

(3.355)

(3.356)

(3.357)y"

ylll

(-y + xy') (1 - 2xyv' + 2 (x2+ y2) y'v' + (1 + 2xyv') y'2)
x2 + y2

- 2
1

2 [4(y_xy')2 (x + yy,)2 (-v"
X +y

+ (- (y - xy,)2 (1 + y'2) 2 + 2(y - xy')(:.r + y - (x - y) y')(X - Y + (x + y) y') y"

+ (x2+ y2) (2x2 _ y2 + 3:ryy') y"2) / (4 (y _ 1:y')3 (x + yy')3))] (3.358)

and therefore

(3.359)
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is the reduced equation. Here, both of the remaining symmetries are lost.

We now move our attention to the linking expressions:

(3.360)

U3 - (/ :1 dUI) 2+ ui

v3
UIVl + J(l/VI)duI

(3.361)
UI - VI J(l/vddul

and

U3 u~ + [/ v2du2r
VI JVIduI + UI

(3.362)V3 JVIduI - UIVI

To solve an equation of the form (3.359), we must transform it using the above expressions into

either (3.346) or (3.352).

3.3.14 Ab!
3,7

'vVe next turn our attention to the third order equation invariant under A~~7

3 ' ( ")2 2 [ 11 ]
ylll = Y Y '2 + (1 + (y')2) exp (2btan- 1 Y') r . 1 Y

1 + (y) (1 + (y')2)z (exp (btan- I y'))

which admits the symmetries

a
a1;

a
ay

a a
(b1; + y) ~ + (by - 1;) ~

uX uy

where b > 0 is a constant.
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(3.364)

(3.365)

(3.366)



Reducing via G 1:

and so,

u=y
,

v=y (3.367)

Hence

y" - vv' (3.368)

(3.369)

v" = _ (1 - 2v2) (v')2 + (1 + V2)2 exp (2b tan-1 v) r [vv' exp (-b ta~-lV)]
1 + v2 v (1 + v2)2

is the reduced equation.

(3.370)

G3cannot be rewritten in terms of the new coordinates; only G2is transformed into a symmetry

of equation (3.370), viz.

Now reducing via G2 yields

(3.371)

Thus we have

and the new reduced equation is

u=x

y"

y'"

v = y'.

v'

"v

(3.372)

(3.373)

(3.374)

" 3v(v')2 + (1 + 2)2 (2bt -1) r [v' exp (-btan-
1 V)]v = 1 2 V exp an v 3·

+v (1+v2)2

In this case, neither of the remaining symmetries are lost:

8
8u

8 . 8
bu- - (1 + v 2

) -.
8u 8v

Finally, we consider reduction via G3 , with
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(3.376)

(3.377)

(3.378)

(3.379)



It follows that

(3.380)
(x + yy') (1 + (y')2)

b(x2+y2)

(1 + (y')2 + yy") (1 + (y'?)
b(x2+y2)

y"
[(x + yy') + b(xy' - y)] (1 + (y')2) v'

2 (x2+ y2)

_
[
(x + yy') + b(xy' - y)] 2 (1 + (y'?) v"ylll

X2+ y2 2

2 (x + yy,)2 (1 + (y')2) 2y'(y")2
+ b(x2+ y2)2 + (1 + (y')2)

_ [ x + yy' + y" ] [2 (x + yy') _ (1 + (y')2 + y" (y + bx)) (1 + (y')2)]
b(X2+y2) l+(y')2 X2+y2 ((x+yy')+b(xy'-y)) .

(3.381)

Equation (3.363) is now reduced to the second order differential equation

v"
(b - tan [¥ - *]) (V')2 (tan [¥ - *] - b) v"

2 (1 + btan [~ - *]) b (1 + btan [~ - *])
2 [b (1 - tan [~ - ~]) - tan2 [~ - ~]]

b2 ( 1 + b tan [~ _ ~]) 2

+ 2 exp (vb) sec' [~ - t] r [(1 + btan [~ - ~]) v' - ~] .

(1 + btan [~ - ~]) - 2 exp ( ~b ) sec [~ - ~]
(3.382)

Both of the remaining symmetries are lost.

Let us now investigate the linking expressions:

(3.383)

U3 ~ log [(j ~) du)) 2 + vi] + btan-
1 Ct~vJ

V3 ~ log [(/ 1~1 dUI) 2 + ui] + 2 tan -1 VI (3.384)

and

U3 ~ log [vi + (j v,dv,) '] +btan-) [f v~:v,]

I' [ ']V3 b log u~ + (J v2du2) + 2 tan- 1 V2· (3.385)
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Since the optimal process for reduction to quadratures is via symmetry G2 , both (3.370) and

(3.382) should be transformed to the form of (3.375) to enable them to be solved.

3.3.15

The relevant equation is as follows

y'" = _ 3xy" + 1 5 r [y" (1 + X2)~]
1+ x 2 (1 + x 2 )2

and the corresponding three symmetries are

a
x-

ay
a

ay

(
a a

1 + x
2

) ax + xy 8y .

We first reduce via G l to obtain

(3.386)

(3.387)

(3.388)

(3.389)

U=x

Proceeding as before we find

y"

y'"

11 = y'

, v
v +­

U ,
" v v

11 +--­
U u2 '

y

x
(3.390)

(3.391)

(3.392)

Equation (3.386) is now reduced to the form

v" = (v')2 + ~r [vv'] .
v v 2 (3.393)

Both G2 and G3 can be written as new symmetries to be used in the further reduction of

(3.393), ie.

1 a
U 8v

( 2) 8 81 + u - + (1 - u'V) -
8u 8v
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We now attempt to reduce (3.386) via C2 by setting

Thus

U=X v = y'. (3.396)

and therefore

y" - v'

y'" v"

," _ _ 3uv' 1 f [ I (1 2)~]v - + 5 V +U .
1+u2 (1+u2 )2

(3.397)

(3.398)

(3.399)

Only Cl can be rewritten in terms of the new coordinates (3.396) and thus used in the further

reduction of the equation (3.399):
I

(3.400)

Finally we reduce the third order equation via C3 . Here

Thus it follows

U

v

y2

1 + x 2

( 2)! I :ry
l+x y- l'

(1 + x 2 )2

(3.401)

(3.402)

y"

y'"

2y ((1 + x 2) y' - xy) v' y
--'-'---'-"--;50----'--'---- + 2

(1 + x 2 )2 (1 + x 2
)

(2y)2 [y' (1 + x 2) _ xy]2 "
9 v

(1 + x 2 ) '2

+ [(1 + x2) ~ y" - (1 + x 2) ~ Y + x 2y (1 + x 2) !]
y' [(1 + x 2) y' - xy] + y [(1 + x2) y" + xy' - y]

X 5 •

Y (1 + x 2)2 [(1 + x 2) y' - xy]

(3.403)

(3.404)

Hence, the reduced equation is

" (v')
2

v' 1 1 [1 I ]
V = -- - - - - + --f U2 (2vv + 1) .

v 2u 4uv 4'uv2

Unfortunately, reducing via C 3 , results in the loss of all remaining symmetries.
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(3.405)



We now consider the linking transformations:

(3.406)

(3.407)

and

(3.408)

Thus, (3.399) as well as (3.405) must take on the form of (3.393) which is the only second order

equation reduced from (3.386) to be invariant under two symmetries.

3.3.16 Ab!!
3,7

Here we consider the equation

1I1 __
3xy" exp (btan-

l
x) ["( 2)~ ( -1)]y - . 1 2 + 5 r y 1 + x exp -btan x

+ x (1 + 1;2)2

admitting the three symmetries

a
x­ay
a
ay

( 2) a a
1 + x ox + (xy + by) oy'

where b > 0 is once again a constant.

Reducing via Cl:

(3.409)

(3.410)

(3.411)

(3.412)

'U = x
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y

x
(3.413)



Thus

y"

y'"

I v
v+­

U
I

" V Vv +--­
U U 2

(3.414)

(3.415)

and

" v' v 3(uv' +v) exp (btan-
1u)r[( '+~) (1+ 2)~ (-bt -1 )]v = - - - - - + 5 V U exp an U

U u2 1+ u2 (1 + u2)2 U

is the reduced equation.

Only C2 can be further reduced to remain a symmetry of (3.416), ie.

1 0
X 2 = --.

uov

Reducing (3.409) via C2 yields

(3.416)

(3.417)

Hence

and therefore

U=x

y"

y'"

v = y'.

v'

v"

(3.418)

(3.419)

(3.420)

v"
3uv'

1 + u2

exp (btan-1 u) [;). ]+' ~r v/(1+u2)2exp(-btan-1u) .
(1+u2)2

(3.421)

Both Cl as well as C3 are now rewritten as symmetries of (3.421), viz.

o
ov

( 2) 0 0
X 3 - 1 + U ou + (b - u) v ov

respectively.

Finally, reducing via C3 , we set

U = log [ Y 1] - btan- 1 x
(1 + x 2)2

V - exp[-btan-1x] [-.TY(1+x2)-! +yl(1+x2)!].
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(3.427)

(3.426)

Thus we have

[
(exP(-U)V-b)V'+eXp(U)+bv] (bt -1)y" -, 3· + exp an x

(1 + x 2 ):i

y'" _ [Y' (1 + x2) - Y (x + b)] 2 exp (btan-~ x) v"

y(1+x2) (1+x2):i

+ y
y'(1+x2)-y(x+b)

[ ( ') xy(x+b) "(1 2)] [y" _ (y')2 _ 1 2X(X+b)]
x - y + by + 1+ x2 + Y + x Y y2 (1 + x2) + (1 + x2)2

y' + y" (2b - x) 3xy + 2bxy' + 2yb + (x2+ b2) y'+ - --:=.-_--=---=-----;;-..:--_--:.....=-
1 + x2 (1 + x2)2

3x2y (x + b) + bx2y + xyb2
+---'---'--'---'---'--------;;;-----

(1 + x 2)3

Therefore

v" -
exp (u) (v exp (-u) - b)

V (b2 + 1)

(b - v exp (-u)) (vexp (-u) - 2b) v'

(vexp(-u) - b)2

(3.428)

(v exp (-u) - b)2

+ 1 2 r [(exp (-u) v - b) v' + exp (u) + bv]
(v exp (-u) - b)

is the reduced equation. Reduction via G3 results in the loss of the other two symmetries.

Let us now consider the linking transformations:

(3.429)

(3.430)

and

(3.431)
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Here, we consider the optimal reduction of (3.409) to be via C2 . Thus equations of the form of

(3.416) and (3.428) should be rewritten in the form of'(3.421) via the nonlocal transformations

above.

3.3.17

The relevant equation for this Lie algebra is

y'ylll = ~(y"? + (y')2r [x]
2

and the associated symmetries are

Cl
a

-
8y

C2
a

y-
8y

C3
2 a

y ay'

(3.432)

(3.433)

(3.434)

(3.435)

While this equation does admit the three symmetries (3.433)-(3.435), it also admits the three

symmetries
8

C4 = f (x) --;;-
uX

where f (x) is the solution to .the third order ordinary differential equation

fill + 2j'r[x] + fr[x] = 0,

(3.436)

(3.437)

a fact omitted in [26, 27]. Since (3.432) admits a six-dimensional Lie algebra it lies beyond the

scope of this work.

3.3.18

For this algebra, we consider the equation

(3.438)
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and the corresponding symmetries

Cl -

Reducing (3.438) via Cl yields

(3.439)

(3.440)

(3.441 )

Therefore

U=x
I

V = y.

y" - v'

y'" v"

(3.442)

(3.443)

(3.444)

and therefore we obtain
" _ 3(v' )2 v

4
[uv

l + ~v]
V - + ')f 3 .

V U- v
(3.445)

Both C2 and C3 reduce to symmetries of (3.445), viz.

8
u­

8u
') 2 8
~uv 8v.

As a result, they can now be utilised in the reduction of (3.445).

(3.446)

(3.447)

vVe now reduce (3.438) via C2 :

Thus

y
U=­

x
I

V = y. (3.448)

y"

ylll -

(xy' - y) v'
:1;2

(xy'_y)2 V" X(y")2---'--- + --'---'--
x4 :1;y' - y

2y"
x

(3.449)

(3.450)

This will reduce the original equation to the second order equation

_(VI)2'+2v' 3(v' )2 v4 [(V-U)VI+~]
v" = + -- + f 2

(v - u) v (v - u) 2 v3 .
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Reduction via G2 results in the loss of the other two symmetries.

Finally, we consider reduction via G3 . With

y2
u=­

x

it follows that

y2
V = Y - 2xy" (3.452)

" _ (v' + ~) 2(y')2 (2xy' - y) _ 2(y')3X
Y 2y' xy yZ

'" 8(y')4VZV" (y')3 2x(y')4 (JL ~) "z _ 4(y')3
Y - Z + -- + 3 + ,+, (y) Z

xy vy y vy y Y

[
2X(y')Z y 2x(y')Z 3Y'] "+ +-- -- y.

vy 2xv yZ y

Substituting (3.452), (3.453) and (3.454) into (3.438), we obtain

v" = _ (v')Z + 2v' _ ~ +~r [4VV' _ 2V
Z

] .
v u u Z 8vz u u Z

(3.453)

(3.454)

(3.455)

On further investigation, we find that only Gz remains after reduction, and takes on the form

[) [)
Xz=u-+v-.

[)u [)v

Once again the linking expressions are as follows:

Vz

and

(3.456)

(3.457)

(3.458)

Thus, equations (3.451) and (3.455) must be transformed to the form of equation (3.445) to be

further reduced. VVe have not been able to find an explicit relationship between (uz, vz) and

(U3' V3). Fortunately, this is nqt required to link the reducible equation to the irreducible ones
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3.3.19 A3,8
III

The relevant equation is

and the corresponding symmetries are as follows:

(3.459)

Cl
0

(3.460)-
oy

C2
0 0

(3.461)x-+y-
ox oy

C3
o (2 2) 0 (3.462)2xy-+ y -x -.
ox ay

First consider reduction via Cl, which yields

U=x

Thus

y"

y"l

and via substitution

I
V = y.

Vi

V"

(3.463)

(3.464)

(3.465)

C2 and C3 now take on the forms

respectively.

Reducing via symmetry C2 we have

(3.466)

(3.467)

(3.468)

U= ~
.r
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Hence

y"
(xy' - y) v'

-
X2

ylll
(1;y'_y)2 V" X(y")2 2y"

- +X4 xy' - Y x

and it therefore follows that

11 _ (V')2 - 2v' 3v(v'? (1 + V
2

)2 r [(V - u) v' - v - V3]
V -- + + 2 3'

V-U (1+v2)(v-U) (V-U) (1+v2)2

(3.470)

(3.471)

(3.472)

Further reduction is not possible due to the fact that neither of the remaining symmetries can

be rewritten in terms of the new variables.

Finally, reducing via C3 , we have

Thus

U

v

y2
-+x
X

2xyy' + x2 _ y2

2xy - y'(x2 - y2)'

(3.473)

(3.474)

y"

y"'

(x2 _ y2 + 2xyy') (-2xy + (x2 _ y2) y,)2, 2x2(x 2+ y2) (y _ xy') (1 + y,2\ _
--'---------'--'------,;-2-'---'--'-----C-v - 2 (g.47v)

x2(x2+ y2) x2 (x2 + y2)

- 4(2
1

2)2 ((x2 - y2 + 2Xyy'f (-2x y + (x 2 _ y2)2 y,)2 (-V"
X x +y

+ (x3 (4 (y - xy') (1 + y,2) (4x3y3+ (x6 _ 9x4y2+ 3X2y4 + y6) y'

.+3x (x - y)y (x + y) (3x2+ y2) y,2 _ x2 (x4 _ 6x2 _ 3y4) y'3)

-2 (1;2 + y2) (2xy (x4 _ 6X2y2+ y4) _ (3x6 _ 29x4y2+ 17x2y4+ y6) y'

-21;y (l1x4 - 14x2y2 _ y4) y,2 + 2:r2 (x4 _ 8x2y2 _ y4) y,3) y"

-2x (.1:2 + y2) 2 (x4 _ 4x2y2+ y4 + 3xy (1;2 _ y2) y'y"2) )

/ ((x2 _ y2 + 2xyy')
3

(-2xy + (x2 _ y2) y,)3)))) (3.476)

from which it follows

(3.477)

Reduction via C3 will result in the loss of the other two symmetries.
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For completeness, let us consider the linking transformations:

f VIduI

and

[J VIduIf
-=--------='- + U I

UI
[(J v1duI)2 - UIJVI + 2UI JVIduI

[(J VIdul)2 - uyJ - VI

(3.478)

(3.479)

Thus, once again reduction to quadratures is only possible if the second order differential

equations, (3.472) and (3.477), are transformed to an equation of the form (3.466) using the

above transformations. The note at the end of §3.3.18 applies here as well.

3.3.20 A~ 9,

The final equation we investigate is

which has the three symmetries,

.(. ) a
'" SlilY ay
a
ay

G3 - -i (cosy) ~.

(3.480)

(3.481 )

(3.482)

(3.483)

While this equation does admit the three symmetries (3.481)-(3.483), it also admits the three

symmetries
a

G4 = f (x)-a
x

where f (x) is the solution to the third order ordinary differential equation

f"' + 2J'f[xJ + ff[xJ = 0,

(3.484)

(3.485)

a fact omitted in [26, 27J. Sinc~ (3.480) admits a six-dimensional Lie algebra it lies beyond the

scope of this work.
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Chapter 4

Conclusion

"Mathematics is a model of exact reasoning, an absorbing challenge to the mind, an esthetic

experience for creators and some students, a nightmarish experience to other students, and an

outlet for the egotistic display of mental power. But historically, intellectually, and practically,

mathematics is primarily man's finest creation for the investigation of nature." [18, p.vii]

In this dissertation we have attempted to illustrate the connection between second order ordi­

nary differential equations which are derived from a common third order equation. In this way

unsolvable second order differential equations can be converted to a form from where reduction

to quadratures is possible. The nonlocal transformations between the resulting second order

equations with two and fewer than two symmetries will inevitably save both in time and effort

as the third order differential equation no longer need even be considered. These results have

been submitted for publication [7].

'While we have only considered reduction variables arising from point symmetries we note that

exponential nonlocal symmetries can also be used to effect reduction [8].

Below follows a list of the second order equations with fewer than two symmetries that can

be solved via nonlocal transformations. Each set is followed by the nonlocal transformation

linking them to an equation(s) that has two point symmetries. We remind the reader that all

these results are up to an arbitrary point transformation.
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11
(Vi )2 1

(4.1)v 2 - __2_ + 2'f [V2V;]
V2 V2

V" V3 v~ f [, V3] (4.2)- - - -+ V3--3
U§ U3 U3

U2 - / VIduI (4.3)

v2 VI (4.4)

U3 - UI (4.5)

JVI dUI
(4.6)v3 VI -

UI

V~ = f [V~]

(V I )2+2v' 13 3 + ---;:-
V3 - U3 - 1 (V3 - U3 - 1)2

[

[(V3 - U3 - 1) v~ + If]+ ( 2 f[exp v3(v3- u3- 1)]
V3 - U3 - 1)

(4.7)

(4.8)

JVIduI
- loguI (4.9)U3

UI

V3 VI -logul (4.10)

U2 [J 1 ] (4.11)U3 - J l.-
dU

2 - log V2 dU2
V2

V3 - V2 -log [/ :2 dU2] (4.12)
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(4.15)

U2 - UI (4.17)

JVIduI
(4.18)V2 - VI -

UI

Us - log [J VIduI] - UI (4.19)

VI
(4.20)Vs -

JVI dUI

11 _ 'r [exp UI ] (4.21)VI - VI ,
VI

A{,s

V" = _(V~)2 + 2v~ + ( ')2r [ ] (4.22)3 ( ) V3 V3
Vs - U3

UI
(4.23)Us - J .LdUl

Vj

Vs - VI (4.24)

JV2 du2
(4.25)Us -

U2

Vs - V2 (4.26)

V" - -(v~f + (v~)2r [vd (4.27)I
VI

V" - (v~)2r [V2] (4.28)2
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V~ = _ (V~? + 3v~ _ ! + (v~ - :)~ f [V~ - 1]
Vs Vs Vs (vs) 2 Vs

(4.29)

Us - UI (4.30)

Vs - VI J~dUI . (4.31)
VI

Us - JV2 du2 (4.32)

Vs - U2V2 (4.33)

(4.34) .

(4.35)

Us - UI J~dUI (4.37)
VI

VI
(4.38)V3 -

1£21

U3 - U2 JV2du2 (4.39)

V2
(4.40)V3 -

(J V2du2)2

v" (vD' CVi )') 1 [v; ] (4.41 )- --+ - f--I
VI VI (vd!

" 4 [ Vi ]V 2 - (v;)3f ~ (4.42)
(V2)2
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(a - 2) v~ (a - 2) (a - 1) V3

V3 - aU3 (V3 - aU3)2
a-3

[(v3-au3)v~+v3(a-1)la-2r[( ) '( )2-a+( 1)( )I-a]+ 2 V3 - U3 V3 V3 a-I a - V3
(V3 - aU3)

(4.43)

UI
(4.44)U3

(J vII dUIr

VI
(4.45)V3

( r-
I

J ;1 dUI

JV2du2
(4.46)U3

U~
V2

(4.47)V3 a-I
UI

(4.48)

(4.49)

(4.50)

UI
(4.51)U3 -

(J vII dUI) 2

VI
(4.52)V3 J l.-dUI

VI

JV2 du2
(4.53)U3

U§
V2

(4.54)V3
U2
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11 (v~? 1 I (4.55)VI - -- + (-)3f [VIVI ]
VI VI

11 ~f [V;] (4.56)v2
V2

(4.57)

U3 - JVIduI (4.58)

V3 - VI (4.59)

JV2 (4.60)U3 - dU2
U2

JV2 (4.61)V3 - V2 + - dU2
U2

(4.62)

(4.63)

(4.64)

U3
(j'VI duI)2

(4.65)-
UI

V3 VI JVIduI (4.66)

U3
(U2J;;du2)2

(4.67)-
U2

V3 - ( V2 + J~: d U2) (U2 J~: d U2 ) (4.68)
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(vD~r [(Ul)~Vn

V~ _ - V~ + v~ + (v; + V2)~ r [(U2)~V; + (u2)4 v2]
U2 U2 U2

(4.69)

(4.70)

(1 - a) (v~)2 [(1 - a) (3a(v3)2 + 2(U3)2 (U3 - V3)) - a(u3)2v3]v~

[(1 - a) V3 - U3] (U3)2 [(1 - a) V3 - U3]2
2-3<1

av~ (2a - 1) [(1- a) U3V3V~ + (U3)2V~ + a(v3)2] 1-2<1
2 2 + 2 X

u3 [(1 - a) V3 - U3] (U3)2 [(1 - a) V3 - U3]

r [V3V~ (1- a)ul~<1 - ul~av~ + a(v3)2u}"--a
1

] (4.71)

U3
[J Vldul]l-a

(4.72)-
Ul

Vl
(4.73)V3 -

[J Vldult

U3
[U2 J(V2/U2)du2]l-a

(4.74)
U2

V3
V2 + J(VdU2)du2

(4.75)
[U2 J(V2/U2)du2t'

A~II
3,5

(4.76)

(4.77)

(4.78)

(4.79)
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Vz (4.80)Vs - 1

[I V2 duZ]2
1

[UZ J(vz/uz)duz]2 (4.81)Us
Uz

Vz + J(vz/uz)duz (4.82)Vs 1

[UZ J(vz/uz)duz]2

A~,6

(4.83)

(4.84)

(4.85)

U3 (/ :1 dUI) 2 + ui (4.86)

UIVl + J ;1 dUI
(4.87)Vs

Ul - 1'1 J 1:\ dUI

u3 u~ + [/ v2du2]2 (4.88)

VI J Vl du l + Ul (4.89)Vs
J Vl dul - UIVl

Ab!
3,7

(4.90)

(4.91 )

_ (1 - 2vi) (vD 2•+ (1 + (vd 2)2 exp (2b tan- 1 vd r [v1vi exp (-b tan
3
-

1 Vd] (4.92)

1 + (VI) 2 VI (1 + (Vl)2)2
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(b - tan [~ - T]) (V~) 2 (tan [~ - T] - b) v~

2 (1 + b tan [~ - T]) b ( 1 + b tan [~ - T])
2[b (1 - tan [~ - T]) - tan2 [~ - T]]

b2 (1 + b tan [~ - T]) 2

+ 2exp (V3 b) sec
2 [~ - T] r [(1 + b tan [~ - T]) v~ - ~]

(1 + b tan [~ - T]) 2 2exp (~ ) sec [~ - T]
(4.93)

UI - JV2 du2 (4.94)

VI - V2 (4.95)

U3 - ~ log [ui +UV'dU,)'] +btan-1 [J v~:u,] (4.96)

V3 - ~ log [ui + UV'dU')'] + 2 tan-
1 v, (4.97)

AIl
3,6

(4.98)

(4.99)

(4.100)

UI - U2 (4.101)

VI JV2 dU2- V2 - (4.102)U2

U3
[UI J(vI!uI)duI)2

(4.103)-
1 + (UI)2

V3 - (1 + (UI)2)~ [VI +J~:dUI] -
(UI)2 [J(vI!uI)duIl

(4.104)1

(1 + (uIF)2

" (v~? 1 I
VI = - + (pr [VIVI) (4.105)VI VI
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AbII
3,7

V~ VI 3(UIV~ +VI) exp(btan-Iud------ + X
Ul (UI)2 1+(UI)2 (1+(Ul)2)~

f [(V~ + ~:) (1+ (Ul)2)~ exp(-btan-1uI)] (4.106)

(V~)2 (b - V3 exp (-U3)) (V3 exp (-U3) - 2b) v~

exp (U3) (V3 exp (-U3) - b) (V3 exp (-U3) - b)2

V3 (b2 + 1)
(V3 exp (-U3) - b)2

+ 1 2f [(exp (-U3) V3 - b) v; + exp (U3) + bV3] (4.107)
(V3 exp (-U3) - b)

UI U2 (4.108)

f V2 du2
(4.109)VI V2 -

Uz

[ Jv,du, 1] (4.110)U3 log 1 - btan- Uz
(1 + u§)2

( 1) [-u, Jv,du, ( ') ! ] (4.111)V3 exp - btan- U2 1 + V2 1 + (U2) 2

(1 + (U2)2)2

V"2
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(4.113)



A3,8
III

V2 - VI

[J v1dud2

-'---- +Ul
UI

[(I Vl dul)2 - UiJVl + 2UI JVIdul

[(I v1dud 2 - un - VI
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(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)



(4.127)

We submit this list of equations as a contribution to the class of second order ordinary differ­

ential equations that can be reduced to quadratures. It remains to consider other third order

equations invariant under larger (> 3) dimensional Lie groups. Mahomed [26, 27] lists the

appropriate Lie algebras together with the relevant sYmmetries for these equations. However,

he does not list the equations invariant under those algebras. That is the next step in this work

- a project that is ongoing. The second order equations obtained in the two-dimensional case

also warrants further investigation.

We conclude by noting that mathematics is indeed a vital and necessary step in the exploration

of the physical world. The preciseness of the results it produces plays a major role in time

reduction, an uncontrollable variable, often considered man's greatest enemy.
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