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Abstract 

Sustaining the socioeconomic and ecological benefits of South African plantation forests 

is challenging. A more systematic and rapid forest inventory system is required by forest 

managers. This study investigates the utility of medium (ASTER 15 m) and high 

(IKONOS 1-4 m) spatial resolution satellite imageries in an effort to improve the remote 

capture of structural attributes of even-aged Eucalyptus plantations grown in the warm 

temperate climatic zone of southern KwaZulu-Natal, South Africa. 

The conversion of image data to surface reflectance is a pre-requisite for the 

establishment of relationships between satellite remote sensing data and ground collected 

forest structural data. In this study image-based atmospheric correction methods applied 

on ASTER and IKONOS imagery were evaluated for the purpose of retrieving surface 

reflectance of plantation forests. Multiple linear regression and canonical correlation 

analyses were used to develop models for the prediction of plantation forest structural 

attributes from ASTER data. Artificial neural networks and multiple linear regression 

were also used to develop models for the assessment of plantation forests structural 

attributes from IKONOS data. The plantation forest structural attributes considered in this 

study included: stems per hectare, diameter at breast height, mean tree height, basal area, 

and volume. In addition, location based stems per hectare were determined using high 

spatial resolution panchromatic IKONOS data where variable and fixed window sizes of 

local maxima were employed.    

The image-based dark object subtraction (DOS) model was better suited for atmospheric 

correction of ASTER and IKONOS imagery of the study area. The medium spatial 

resolution data were not amenable to estimating even-aged Eucalyptus forest structural 

attributes. It is still encouraging that up to 64 % of variation could be explained by using 

medium spatial resolution data. The results from high spatial resolution data showed a 

promising result where the ARMSE% values obtained for stems per hectare, diameter at 

breast height, tree height, basal area and volume are 7.9, 5.1, 5.8, 8.7 and 8.7, 

respectively. Results such as these bode well for the application of high spatial resolution 

imagery to forest structural assessment. The results from the location based estimation of 
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stems per hectare illustrated that a variable window size approach developed in this study 

is highly accurate. The overall accuracy using a variable window size was 85% (RMSE 

of 189 trees per hectare).  

The overall findings presented in this study are encouraging and show that high spatial 

resolution imagery was successful in predicting even-aged Eucalyptus forest structural 

attributes in the warm temperate climates of South Africa, with acceptable accuracy.   
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CHAPTER 1 

GENERAL INTRODUCTION  

1.1 Introduction 

Forests have played a vital role in the economic and social development of South Africa 

(Department of Water Affairs and Forestry; DWAF, 2005). Plantation forests were 

introduced in South Africa in the late 19th Century, when the indigenous forests could not 

support the increasing industrial demand (Chamshama and Nwonwu, 2004). The 

development of plantation forests in South Africa is primarily aimed at benefiting the 

economy of the country (Tewari, 2001). A forestry product report by Chamberlain et al. 

(2005) indicated that the contribution of plantation forests to the South Africa GDP is R 

12.2 billion. The authors furthermore illustrated that the country’s economy also benefits 

through round-wood (saw-logs) exports, earning foreign exchange to the value of about R 

270 million. Plantation forests supply domestic fuel-wood, as well as providing the raw 

material for downstream activities such as pulp milling, paper manufacturing, 

sawmilling, mining timber, pole manufacturing, fibreboard manufacture, charcoal, and 

woodchip production. All of these activities benefit the country’s economy and many 

such benefits have been noted to have occurred in areas where economic alternatives are 

limited. Further to this, it should be noted that many of the social benefits of plantation 

forests are inextricably tied to the economic benefits, as in the case of employment and 

recreation privileges.  

Over and above the socioeconomic benefits, ecological benefits of plantation forests have 

also been acknowledged by many regional and international institutions (Nambiar, 1999; 

Landsberg and Coops, 1999; Franklin, 2001; DWAF, 2005; FAO, 2005). Forests in 

general contribute to temperature and humidity moderation and absorb CO2 (Brown, 

2002; Goodale et al., 2002; Grace et al., 2002; Dong et al., 2003; Beedlow et al., 2004). 

Carbon is stored in both above and below ground biomass as well as dead wood and litter 

(Chen et al., 2006; Peichl and Arain, 2006; Quaife et al., 2008). In some situations forests 

can also increase fog condensation, thus replenishing soil moisture (Frahm and 

Grandstein, 1991; Kidron, 2005; Eugster et al., 2006). Finally, planting trees and re-
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establishing vegetative cover also provide a means to reverse desertification and support 

agricultural production and community livelihoods (FAO, 2005).  

The subject of interest becomes not so much a question of what the benefits of plantation 

forests are, but more of how to maximize, or perhaps optimize these benefits to satisfy as 

many interest groups as possible. Sustaining the multiple benefits and functions of all 

types of forests and woodlands is one of the main challenges that forest management 

faces today. In South Africa, as in other countries, there has been a general shift in forest 

management practice towards the concept of sustainability since the Rio Earth Summit 

(UNCED, 1992). As a result, the South African government stipulated a forest act, the 

main notion of which is: “to ensure that South Africa’s forests are protected, used, 

developed, conserved, managed and controlled in a sustainable and equitable manner, for 

the benefit of all” (National Forest Act, 1998).  

Ensuring the implementation of sustainable forest management practice requires reliable, 

up to date, and synoptic spatial information regarding the status, trends, and structural 

characteristics of forest resources (Holmgren and Thuresson, 1998; Wulder, 1998; 

Nambiar, 1999; Franklin, 2001; Boyd and Danson, 2005; FAO, 2005; Duvemo and 

Lämäs, 2006; Barth et al., 2006). In addition to forest structural parameters being useful 

for ecosystem monitoring and management, current and accurate spatial information is 

instrumental for effective policies and planning implementation, as well as prioritizing 

interventions such as allocation of forest operations (Loveland et al., 2000; Holmgren and 

Persson, 2002; Mather, 2005; Valerie and Sherri, 2005). This information can also help to 

valuate forest resources for effective investment and forestry certification as well as raise 

the profile of the sector (Holmgren and Thuresson, 1998; Frost et al., 2003; Duvemo and 

Lämäs, 2006).  

Currently in South Africa, the acquisitions of forest status and structural characteristics 

are often based upon field observations at sample locations throughout plantation stands. 

A plantation forest stand, sometimes also called plantation forest compartment, is the 

basic unit of data collection and plantation management operations, and typically 

represents a homogeneous forest region between approximately 1-35 ha in size. The 
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homogeneity of a plantation stand is defined by the site index, the age of the growing 

stock, the distribution of tree species, and other relevant stand characteristics (Esler, 

2005).  

The current state-of-the-art in terms of the South Africa forest inventory system relies 

heavily on the delineation of plantation stands by overhead digitizing from digital colour 

infrared aerial photographs, at a scale of 1:10000. During the field inventory, pre-

delineated plantation stand borders are checked using GPS data and possible errors are 

corrected. Stand-level forest structural parameters, such as stems per hectare, tree height, 

and diameter at breast height are enumerated from sample plots, which typically 

represent 5 % of the plantation stand, whereas basal area and merchantable volume are 

computed from the enumerated parameters (Esler, 2004). The information content and 

inventory cycle of the current systems are satisfactory, considering the fact that the 

current approach to forest inventory is designed to provide forest information for decision 

making related mainly to cuttings and harvesting operations. In this kind of field 

inventory, the accuracy of forest structural attribute assessment is highly dependent on 

the skills of the forester. The relative estimation error of stem volume obtained from field 

stand-level inventories usually varies between 10 % and 15 % (Esler, 2004). More 

importantly, field-based forest surveying has limitations with regard to high costs and 

low spatial coverage and frequency (Wulder, 1998; Franklin, 2001; Wulder and Franklin, 

2007; Duvemo and Lämäs, 2006).  

In order to achieve the goals set by the South African forest act, it is clear that a more 

systematic and rapid approach to forest inventory is required. This goal has led to much 

research in the field of cost-effective, rapid, accurate, and precise forest inventory 

approaches. Efforts have focused mainly on supplementing field-based forest surveys 

with information from aerial and satellite remote sensing (Holmgren and Thuresson, 

1998; Wulder, 1998; Franklin, 2001; Boyd and Danson 2005). An important development 

over the last ten years, scientific advances in remote sensing have produced a number of 

techniques that can retrieve information for various management areas ranging from 

strategic to operational forestry. Relatively new remote sensing systems such as ASTER, 

IKONOS, QuickBird, Radar, Lidar, can cover large areas in a fraction of the time 
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required by field workers. In addition, such systems offer a sampling intensity that 

approaches full coverage as opposed to current selective or targeted sampling through 

field plots. Data are acquired in digital form and can be processed to information by a 

computer, while integration with other datasets in a GIS is also possible (Running et al., 

2000). Additionally, data may be processed in an automated fashion, minimizing 

subjectivity in the interpretation of the images (Wulder, 1998; Boyd and Danson, 2005). 

These are important advances, as it is generally acknowledged that remote sensing can 

provide information that is not currently part of an existing forest inventory. 

Accordingly, a great deal of progress has been made in the development of remote 

sensing applications for the collection of forest resource information, e.g., Lu et al. (2004, 

forest above ground biomass estimation using Landsat TM); Ingram et al. (2005, forest 

height, diameter at breast height and stems per hectare using Landsat ETM+); Heiskanen 

(2006, forest biomass and leaf area index using ASTER data); Kayitakire et al. (2006, 

diameter at breast height, basal area, volume, stems per hectare and tree height using 

IKONOS data); Sivanpillai et al. (2006, forest stand age and stems per hectare using 

Landsat ETM+). These remote sensing studies used different types of satellite systems 

that have been launched over the past 30 years. In general, satellite remote sensing can be 

used to provide three types of forest information: 

1. Information on the spatial extent of forest cover, which can be used to assess the 

spatial dynamics of forest cover.  

2. Information related forest type and species composition. 

3. Structural and chemical characteristics of forests.  

Chiefly, this study is concerned with optical, passive satellite remote sensing methods 

and their application to the estimation of forest structural attributes.    

The dependence between forest structural attributes and remotely sensed reflectance can 

be modelled either physically or empirically. Thus far empirical models have been more 

successful. Double sampling (e.g., Poso et al., 1999) and linear regression models (e.g., 

Franklin, 2001; Lu et al., 2004; Kayitakire et al., 2006) constitute classical approaches, 
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but nonparametric regression methods, e.g., k-nearest neighbours estimation and artificial 

neural network methods,  have recently become popular both in research and practice 

(e.g., Hyyppä et al., 2000; Franco-Lopez et al., 2001; Tomppo et al., 2002; Holmström 

and Fransson, 2003; Jensen and Binford, 2004; Mäkelä and Pekkarinen, 2004; Tomppo, 

2005;  Gebreslasie et al. (In press)). The successful exploitation of remote sensing relies 

on defining the link between the remotely sensed data and field surveyed variables of 

interest. Therefore, novel approaches are needed for up-scaling field observations to 

match the reflectance values for calibration and validation of remote sensing models.  

1.2 Objectives of the study  

This study contributes to the current body of knowledge in terms of the application of 

optical, passive remote sensing to the estimation of forest structural attributes in the 

plantation forests of a warm-temperate climatic zone in KwaZulu-Natal, South Africa. 

The forest structural attributes under investigation were stems per hectare, diameter at 

breast height, mean tree height, basal area, and volume. The specific objectives provide a 

general outline of the study approach for the specific research area and are as follows: 

1. To investigate image-based atmospheric correction methods for ASTER and 

IKONOS imagery in a plantation forest context. 

2. To examine the potential of medium spatial and high spectral resolution remote 

sensing imagery for the estimation of forest structural attributes.  

3. To analyse the potential of high spatial resolution remote sensing imagery for the 

estimation of forest structural attributes 

4. To develop an algorithm for the estimation of stems per hectare based on high 

spatial resolution satellite imagery.   

1.3 Outline of the thesis 

The thesis contains eight chapters, five of which were prepared in a peer-reviewed 

publication format with the intention of submitting to peer-reviewed journals. Of the five 

papers, two papers have been published and the remaining three papers have been 

submitted but are still in review. Chapter one deals with the introduction, which covers 
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the current state of the research problem and the objectives of study. The second chapter 

provides a background of optical remote sensing and its application to the prediction of 

forest structural attributes (published). The third chapter describes the study area. In this 

chapter the location, climate, geology, soil, topography, vegetation, and the main land use 

practices are discussed. Following this, chapter four investigates image-based 

atmospheric correction methods for ASTER and IKONOS imagery (submitted). The fifth 

chapter examines the potential of high spectral resolution ASTER satellite imagery for 

the estimation of Eucalyptus forest structural attributes (published). Chapter six analyses 

the textural information of IKONOS imagery for the estimation of Eucalyptus forest 

structural attributes using linear and non-linear statistical analysis (submitted). Following 

this, chapter seven deals with the detection of trees using both variable and fixed window 

size approaches to local maximum filtering for the estimation of stems per hectare, based 

on panchromatic IKONOS data (submitted). Finally, a general conclusion is presented in 

chapter eight.         

Chapters 4-7 have been prepared to each form a stand-alone chapter of this thesis, 

contributing to the overall research objectives. As far as possible, the content of the 

journal papers has been maintained, meaning that each of these chapters is separately 

introduced with separate conclusions being made, which link with subsequent chapters. 

The approach which was used invariably resulted in some overlap in terms of method 

description and illustrations. However, these limitations are deemed to be insignificant 

when considering the critical peer-review process and the fact that the chapters are 

presented as stand-alone research papers that can be read and understood in their specific 

research context and on their own merit. 
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2.1 Introduction 

Remote sensing is defined by Lillesand et al. (2004) as the science of processing and 

interpreting images and related data obtained by sensing systems which, without being in 

physical contact with the object, are able to record electromagnetic energy 

reflected/emitted by the earth’s surface. Thus, the object-related interaction between 

matter and electromagnetic radiation is represented. Aerial photography in the visible 

portion of the electromagnetic wavelength was the original form of remote sensing, but 

technological developments have enabled the acquisition of information at high spectral 

resolution. The capacity of remote sensing to identify and monitor land surfaces and 

environmental conditions has expanded greatly over the last few years and it appears that 

remotely sensed data will become an essential tool in natural resource management. The 

general aim of forest remote sensing is to infer information on the physiological and 

biochemical conditions of the forests from the measurements of the reflected 

electromagnetic radiation (Wulder, 1998; Franklin, 2001; Lillesand et al., 2004). The 

amount of radiation is measured by a variety of passive and active sensors, which are at a 

time onboard (air and/or space platforms). The focus of this thesis is on high spectral and 

spatial resolution optical satellite remote sensing i.e. ASTER and IKONOS satellite 

imagery. 

2.2 Properties of Optical Remote Sensing 

Optical remote sensing can be defined as using reflected sunlight energy from the visible 

to shortwave infrared (SWIR) spectral domains (400 - 2500 nm wavelengths). The 

optical sensors designed to study the land surface operate in spectral wavelength in which 

the atmospheric transmission is high (Lillesand et al., 2004). The atmosphere scatters and 

absorbs the radiation on its path from the sun to Earth’s surface and from Earth’s surface 

to the sensor. Reflectance (Figure 2.1), which is the interaction between the solar 

radiation and the Earth’s surface, in this case vegetation canopy, is a compound of 

absorption and scattering processes occurring at the leaf level, combined with structural 

influences operating at the canopy level. The amount of reflected radiation varies as a 

function of five optical domains: spectral, spatial, temporal, angular, and polarization 

(Rees, 1990; Sabins, 1997; Donoghue, 2000; Lillesand et al., 2004). The polarization 
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domain is not covered in this chapter. These domains are interdependent and yet they are 

often considered individually during sensor development and image analysis. 

 

Figure 2.1 Spectral reflectance curve of green vegetation (Sabins, 1997) 

Spectral variability of reflectance is probably the most applied source of information in 

the remote sensing of vegetation studies (Sabins, 1997; Lillesand et al., 2004). Vegetation 

typically shows a low reflectance in the visible range of the spectrum, mainly in the blue 

and red band. The main factors are absorption by chlorophylls and carotenoid 

photosynthetic pigments which absorb light in the visible spectrum (Woolley, 1971; 

Baret and Guyot, 1991; Danson and Curran, 1993; Lucas and Curran, 1999; Lillesand et 

al., 2004). Reflectance increases as we move up around 700nm (red edge) and high 

reflectance occur in the near infrared (NIR) range of the spectrometer (Lillesand et al., 

2004). The cellular structure of the leaf chiefly determines the high levels of reflectance 
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in the near infrared spectrum, where absorption by pigments and water is generally low 

(Franklin and Wulder, 2002).   

The reflectance varies also as a function of the images’ spatial resolution. Spatial 

resolution refers to the level of spatial detail that is provided by the image (Strahler et al., 

1986; Wulder, 1998). The content of the pixel is determined by the sensors instantaneous 

field of view on the ground and spatial response function (Lillesand et al., 2004). The 

pixel size denotes to the area on the ground covered by a single pixel in the image. 

Although it is common to categorize the image data according to the absolute pixel size, 

the spatial resolution is probably best understood relative to the size of objects that needs 

to be sensed. Strahler et al. (1986) developed a systematic typology for remote sensing 

models and introduced the concepts of low-resolution (L) and high-resolution (H). 

Important concepts are scene and image, and size of the scene objects and spatial 

resolution of the image. In the H-resolution case, the scene varies at a lower spatial 

frequency than image sampling and individual features can be resolved. On the other 

hand, in L resolution case, the scene objects are smaller than the spatial resolution of the 

image. Mixed pixels are a typical L-resolution problem, occurring when two or more 

scene objects of interest fall within a single pixel. The spatial resolution is also closely 

related to the selection of image processing methods (Strahler et al., 1986; Woodcock et 

al., 1988). 

The reflectance of the land surface, particularly vegetations, can also vary considerably as 

a function of time due to the seasonality of vegetation cover (Song et al., 2001; Franklin 

2001; Franklin and Wulder, 2002). The temporal resolution refers to the average revisit 

period at a constant site (Chen and Cihlar, 1996; Lillesand et al., 2004; Aplin, 2005). It 

depends on various factors, including the swath width, satellites orbital altitude, sensor 

view angle, sensor tilting capabilities and latitude.   

The reflectance varies also as a function of the sensor viewing angles and sun 

illumination angles (Liesenberg et al., 2007). This angular variation of the reflectance is 

described by the bidirectional reflectance distribution function. The reflectance of forests 
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is distinctively determined by the optical properties of canopy components, structural 

characteristics, and topography (Asner et al., 1998). 

2.3 Forest attributes extraction approaches using optical remote sensing 

2.3.1 Medium spatial resolution and forest structural attributes  

Contextual attributes refer to those variables that can be determined using medium 

resolution satellite sensors such as Landsat Thematic Mapper, SPOT HRV and the 

Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER). These 

variables are usually derived at the stand and forest scale, because the spatial resolution 

of the sensor is not fine enough to discriminate between tree canopies. Various forest 

structural and biophysical attributes have been assessed using medium resolution passive 

remote sensing and empirical approaches. Appendix 2.1 provides an overview of some of 

the significant publications in this area of research. Maselli et al. (2005) used the K-

nearest neighbours approach and were able to estimate basal area with a reasonable 

amount of accuracy (RMSE = 4.02 m2 ha-1). Ingram et al. (2005) also modelled and 

mapped basal area and stand density but used correlation and artificial neural networks 

(ANN). Basal area was found to be correlated with spectral reflectance (r = -0.77, p < 

0.01: MIR band) while weak relationships were identified between spectral response and 

stand density (r = -0.21, p < 0.01: Red band). On the other hand, stand density was 

strongly correlated with the Normalised Difference Vegetation Index (r = 0.69, p < 0.01). 

Further analysis using an ANN (jackknife method) revealed that the ANNs produced 

strong and significant relationships between in situ measures of basal area and predicted 

measures of the same variable (r = 0.79, p < 0.01). The discrepancy between spectral 

reflectance and vegetation indices is also highlighted in the mapping and modelling of 

leaf-area-index (LAI), an important structural parameter that is directly related to rates of 

energy-mass exchange, biomass partitioning, and productivity (Jensen and Binford, 

2004). 

Curran et al. (1992); Brown et al. (2000) originally suggested that LAI should be 

estimated and mapped using vegetation indices. Several studies have taken place since 

then with the notable publications mentioned in Appendix 2.1, wherein most of the 
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researchers report good relationships between LAI and spectral reflectance. Recently 

Heiskanen (2006) used ASTER data to estimate tree biomass and LAI. Both spectral 

reflectance data and vegetation indices returned similar results with differences between 

the two highlighted only when advanced statistical techniques and transformed indices 

were used. The lowest Root Mean Square Errors (RMSEs) reported were 3.45 t ha-1 

(41%) and 0.28 m2 m-2 (37%) for biomass and LAI, respectively (Heiskanen, 2006). This 

result highlights the advances made in terms of sensor design and performance. Nearly all 

published literature on modelling and mapping of LAI use either Landsat TM or ETM+. 

With the launch of ASTER, the research community enters a new age where both high 

spectral resolution reflectance and vegetation indices can be used. The approach now 

becomes increasingly important since it determines the outcome and gives researchers the 

freedom to explore various quantitative procedures. However, critical to forest inventory 

is the move from canopy structure to practical inventory-related variables, e.g. stems-per-

hectare, mean height, and stem volume. 

Stem volume is arguably the most important variable in plantation forestry in South 

Africa and the ability to model and map the spatial distribution of merchantable timber 

volume using remote sensing technologies is a central goal of much research. 

International research such as described in Appendix 2.1 focuses on the derivation of 

timber volume for planning purposes, while Steininger (2000) focussed on deriving 

timber volume estimates in support of quantifying carbon sequestration in regenerating 

forests in the Amazon basin. The approach remains fairly standard irrespective of the 

application; empirical relationships are derived between in situ timber volume estimates 

and spectral reflectance data (Rahman et al., 2005). These empirical relationships are 

then used to derive spatially explicit maps of timber volume, which in turn are used for 

planning purposes. The accuracy of these methods is tested using reference areas of 

known volume. Both Franco-Lopez et al. (2001); Mäkelä and Pekkarinen (2004) reported 

similar results using the k-nearest neighbours approach (Appendix 2.1), while Steininger 

(2000) reported that relationships between in situ forest parameters and remotely sensed 

estimations of forest structure tend to saturate in old growth forests. Lu (2005) supports 

the findings of Steininger (2000) in that regenerating forests return stronger relationships 
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than mature forests. Similar to volume, biomass plays an important role in understanding 

the function of forests in the carbon cycle. Zheng et al. (2004) show that models vary 

between species and that the combined use of different species in empirical modelling 

does not necessarily improve estimation. It can be concluded from studies presented in 

Appendix 2.1 that it is possible to model and map biomass using medium resolution 

remotely sensed data and in situ biomass measures, while Foody et al. (2003) illustrated 

that it is not possible to transfer empirically derived models between sites when using 

these types of methods.  

2.3.2 High spatial resolution and forest structural attributes  

The increased availability of high spatial resolution imagery, together with improvements 

in scene processing and interpretation techniques, allows for the extraction of additional 

information based on image texture (Coops et al., 1998). Image texture is an important 

product of high resolution image analysis as it describes the variation of image tones that 

are related to the spatial distribution of tree features in the forests (Cohen et al., 1990; 

Franklin, 2001). The texture of a scene is primarily related to the size of the objects in the 

scene and the spatial resolution of the remote sensing instrument (Van der Sanden and 

Hoekman, 2005). Two most utilised methods exist for the derivation of spatial 

information from remotely sensed data; semi-variogram modelling and grey-level co-

occurrence matrices (GLCM).  Semi-variogram modelling, as described by Woodcock et 

al. (1988) has been used for various forest-related researches including damage caused by 

pollution (Levesque and King, 1999). The authors identified several relationships 

between in situ measurements of forest structure and various attributes of a semi-

variogram model, for example the range and sill of the variogram were strongly related to 

a visual stress index, while the ranges of all variogram models were also strongly related 

to crown size and canopy closure. Levesque and King (1999) concluded that different 

image resolutions were suited to different tasks, while Treitz (2001) examined spatial 

resolution but included an analysis of the spatial structure of canopies in the visible and 

NIR reflectance bands. Optimal image resolution for crown delineation was determined 

by Hyppänen (1996) using semi-variograms and spatial autocorrelation. The range of the 

semi-variogram was used to measure the autocorrelation of pixels while local variance 
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curves were used to determine the spatial resolution that maximises the variance between 

adjacent pixels. Variogram modelling has for instance been used by Treitz and Howarth 

(2000) to investigate spatial scale and ecosystem classifications.  

Grey-level co-occurrence matrices (GLCM) have been used to enhance multispectral 

classification of high resolution satellite imagery. GLCM use filters combined with first 

and second order measures of variance to determine the grey level differences within a 

predefined region. They inform on the general variation or structure of the image which 

in turn reflects the variation of forest canopies (Haralick et al., 1973). Franklin et al. 

(2000) incorporated textural measures derived from GLCM (homogeneity and entropy) 

into a classification of forest species composition using airborne multispectral images. 

Results indicated that the inclusion of the GLCM layer improved classification by 

between 5 and 12 % depending on whether hardwood or softwood stands were analysed. 

Franklin et al. (2001) once again used GLCM in testing first (variance) and second 

(homogeneity) order textural measures to determine the optimal application for forest age 

separability using an IKONOS panchromatic image. Findings indicated that second-order 

texture values derived using larger filter windows returned better results than first order 

measures. Further analysis by Kayitakire et al. (2006) showed that it was possible to use 

textural indices derived from a GLCM of an IKONOS-2 image to derive and estimate 

forest structural variables such as age, crown circumference, tree height, stand density 

and basal area. Empirical relationships were derived between in situ measures of forest 

structure and GLCM features. Coefficients of determination ranged from 0.35 (basal 

area) to 0.82 (tree height). The authors reported that prediction errors of four out of five 

variables were within accepted sampling inventory errors (RMSE of less than 20%). 

High spatial resolution remotely sensed images, both airborne and space-borne, have 

been also used to measure tree level structural characteristics. Most applications of high 

spatial resolution imagery chiefly focus on automated identification of tree location and 

crown delineation (Larsen and Rudemo, 1998; Culvenor, 2002; Pouliot et al., 2002; 

Wulder et al., 2000; Wulder and White, 2004; Leckie et al., 2005; Pouliot and King, 

2005). Furthermore, high spatial resolution imagery has also been used for direct 

estimation of canopy cover (Levesque and King, 2003; Furusawa et al., 2004; Wang et 
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al., 2005; Xu et al., 2006), age (Franklin et al., 2001), and predicting various forest 

structural attributes (Greenberg et al., 2005; Kayitakire et al., 2006). High spatial 

resolution data with image pixels smaller than the dimensions of individual tree crowns 

can provide information on the physical structure of individual trees as well as health and 

degradation (Goodwin et al., 2005; Souza and Roberts, 2005). Appendix 2.2 provides an 

overview of various approaches used to quantify forest resources using high spatial 

resolution imagery. The table highlights three broad approach used, namely image 

segmentation, textural analysis, and pixel- and object-based approaches.  

Derivation of location-based variables from high resolution imagery typically involves 

some form of image segmentation. Pal and Pal (1993) give a detailed review of image 

segmentation procedures. Segmentation procedures attempt to segment and identify tree 

crowns in high-resolution multispectral imagery. These algorithms originally attempted 

to map the location of each individual tree. Gougeon (1995) used a fairly simple 

approach that exploited valleys in image brightness seen between tree crowns to segment 

and then count individual tree crowns within an image (Valley-following approach). The 

approach described by the author identified 81 % of the trees within the study area 

correctly. The valley-following approach has also been used by Leckie et al. (2005) 

returning accuracies ranging from 50 – 80 %. Pitkänen (2001) also attempted to identify 

individual trees but used an image smoothing supported by binarization approach, with 

accuracies ranging from 70 – 95 %. Culvenor (1998) extended the valley following 

approach and developed the Tree Identification and Delineation Algorithm (TIDA), an 

approach that attempts to not only identify individual trees but also delineate individual 

tree crowns using a top-down spatial clustering approach. The author did not report any 

quantitative results but noted that the algorithm was developed for applications in native 

Eucalyptus forests. Tree crown delineation algorithms have also been developed by Pinze 

(1998); Uuttera et al. (1998); Pouliot et al. (2002); Pouliot and King (2005). Local 

maxima filtering techniques have also been employed by Dralle and Rudemo (1997) with 

Wulder et al. (2000) extending the approach by using variable window sizes based on 

tree size and species. The authors found that errors of omission and commission were a 

function of crown radii. In addition to variable size windows, authors have also used 
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region growing techniques supported by fuzzy rule classification to identify and delineate 

individual trees as well as their crowns (Brandtberg, 2002; Erikson, 2003). The extension 

of these algorithms is those designed to locate and classify individual trees in mixed-

species forests (Leckie et al., 2003; 2005). The specification of both tree location and 

species type stems from the need to develop accurate volume assessments of mixed 

species forests, facilitating effective and sustainable management. These methods of tree 

detection and tree crown delineation have been used in various forest conditions. An 

alternative approach to deriving information on the structural characteristics of forests 

involves the use of image textural attributes. 

Finally, in recent years the use of contextual or object-oriented classification procedures 

such as those implemented in the eCognition (Definiens, 2005) software package have 

returned interesting results. Contextual classifiers utilize both the spectral and spatial 

characteristics of a pixel. In these methods the classification of an individual pixel is 

influenced by the characteristics of the surrounding pixels (Gong and Howarth, 1992). 

Sharma and Sarkar (1998) have demonstrated a contextual classification technique that is 

modifiable for either high or low-resolution imagery and Bunting and Lucas (2006) have 

used object orientated classification procedures to delineate and classify tree crowns in 

Australian mixed species forests. Wang et al. (2004) tested both pixel-based and object-

based classification for mapping Mangrove forests with IKONOS imagery. Even though 

both procedures provided adequate results, the authors found that they were able to 

increase the accuracy of the species classification from 80.4 % to 91.4 % by combining 

the two in a scale parameter optimisation procedure. 
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CHAPTER 3 

STUDY AREA 

3.1 Introduction 

This study has been conducted in the Kwazulu-Natal province of South Africa. The 

province is situated on the eastern-half of the country. The study sites are situated 

approximately 50 km south of Pietermaritzburg around the town of Richmond. The area 

is located in what is known locally as the southern Natal Midlands. The sites chosen for 

this research are all managed by the Midlands District of MONDI SA – Forest Company. 

Geographically, the site lies between 29° 43' 4'' and 29° 56' 49'' South and 30° 1' 43'' and 

30° 17' 26'' East. Figure 3.1 provides a map of the study site, the location of the sampled 

forest stands.  

3.2 Climate 

The study area falls within the summer rainfall region of South Africa experiencing cold, 

dry winters and warm, wet summers. Figure 3.2 provides some information regarding the 

climate of the study area (Temperature in oC is on the left y-axis while rainfall is on the 

right y-axis). Mean annual rainfall ranges from 746 mm to 1100 mm (Schulze, 1997). 

Rainfall is associated with either frontal weather systems originating from the south or 

thunderstorms generated from convection activity. Temperatures range from the high 

20’s to below 10 oC. The extreme temperature changes are a function of altitude and 

proximity to the warm Indian Ocean, with higher lying areas experiencing much colder 

temperatures than low lying areas. This has a direct impact on the site selection for 

various plantation species and will be discussed in section 3.5 bellow. 
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Figure 3.1 Map showing the location of the study area 
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Figure 3.2 Climate of the Richmond area and surrounds (Schulze, 1997). 

3.3 Geology and soils 

The soils of the study area characterized by fine, sandy clay and humic topsoils underlain 

by yellow or red apedal subsoils. Dominant soil forms are Inanda and Mogwa, with 

Hutton being the subdominant soil form (Pallett, 1993). Clay content varies between 34 

% and 45 % in topsoil horizons and attains values of up to 60 % in deeper subsoils (Kunz 

and Pallett, 2000). Dolerite dykes and sills occur commonly in the landscape with 

associated “red” soils of the Hutton and Inanda forms (Kunz and Pallett, 2000). Narrow 

riparian areas have hydeomorphic soils of the Tukulu and Katspruit forms. The Mispah 

soil form is also present in this area, as are shallow soils on shales (Kunz and Pallett, 

2000).  
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3.4 Topography 

The topography of the Richmond area is flat with undulating hills and is classified by 

Schulze (1997) as being low mountains. Altitude ranges from 362 meters to over 1500 

meters with an average altitude of around 874 meters. Once past the Umkomaas River 

valley, the topography becomes progressively flatter as one moves west towards the 

Eastern Cape. 

3.5 Land Use 

The primary land use in the Richmond area is agriculture. The primary agricultural 

activities include plantation forestry, sugar cane and to a lesser extent dairy farming. 

Local subsistence farming also takes place in and around rural villages. The plantation 

forests are stocked with exotic hardwood and softwood species that are grown primarily 

for pulp and paper production, with smaller industries in the area making use of timber 

for furniture and construction purposes. Softwood species are of the genus Pinus with P. 

patula, P. taeda and P. elliottii and hardwood species are either eucalyptus (Gum) or 

acacia (wattle). The eucalyptus species (the subject of this research) can be broken into 

two categories, defined by their wood density. Soft gums (sub-tropical) are generally 

grown in the warmer areas and have a lower wood density than the hard gums (cold-

tolerant). Soft gums include the E. saligna and E. grandis species while hard gums 

include the E. dunnii, E. nitens and E. smithii variants. Recently the industry has been 

experimenting with clonal hybrids such as E. grandis x E. nitens.  

3.6 References  

Schulze, R. E. 1997, South African Atlas of Agrohydrology and Climatology. Water 

Research Commission, Pretoria, Report TT82/96, pp. 31.  

Pallett, R.N. 1993, Forest land types of the Natal Region. SAPPI Forests (pty) Ltd. 

Kunz, R.P., Pallett, R.N. 2000, A stratification system based on climate and lithology for 

locating commercial forestry permanent sample plots. Institute for commercial forestry 

research Bulletin series 01/2000. Pietermaritzburg.    



 34

 

 

CHAPTER 4 

Image-based reflectance conversion of ASTER and IKONOS 
imagery as precursor to structural assessment of plantation 

forests in KwaZulu-Natal, South Africa 
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Gebreslasie, M., Ahmed, F. B., and van Aardt, J. (2008) Image-based atmospheric 
correction of ASTER and IKONOS imagery for plantation forests in KwaZulu-Natal, 
South Africa Southern Forests: A Journal of Forest Science (Submitted) 
 
 

Abstract. Reflectance-converted imagery is a requirement for establishing temporally 

robust remote sensing algorithms, given the reduction of time-specific atmospheric 

effects. Thus, in this study image-based atmospheric correction methods for ASTER and 

IKONOS imagery for retrieving surface reflectance of plantation forests in KwaZulu-

Natal, South Africa were evaluated. This effort formed part of a larger initiative that 

focused on retrieval of forest structural attributes from resultant reflectance imagery. 

Atmospheric correction methods in this study included the apparent reflectance model 

(AR), dark object subtraction model (DOS), and the cosine approximation model 

(COST). Spectral signatures derived from different image-based models for ASTER and 

IKONOS was inspected visually as first departure. This was followed by comparison of 

the total accuracy and Kappa index computed from supervised classification of images 

that were derived from different image-based atmospheric correction of ASTER and 

IKONOS imagery. The classification accuracy of DOS images derived from ASTER and 

IKONOS imagery exhibited percentages of 93.3 % and 94.7 %, respectively. 

Classification accuracies for images from AR and COST, on the other hand, resulted in 

lower accuracy values of 87.9 % and 83.6 % for ASTER and 90.5 % and 92.8 % for 

IKONOS, respectively. We concluded that the image-based DOS model was better suited 

to atmospheric correction for ASTER and IKONOS imagery in this study area and for the 

purpose of forest structural assessment. This has important implications for the 

operational use of similar imagery types for forest inventory approaches. 

Keywords: Image-based atmospheric correction, surface reflectance, ASTER, IKONOS, 

plantation forests  

4.1 Introduction            

Remote sensing satellite sensors typically record the intensity of electromagnetic 

radiation (EMR) as digital number (DN) values (Jensen, 1996). The DN values of each 
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image are specific to the type of sensor and the atmospheric condition during image 

acquisition (Richter, 1996). In principle any sensor that observes the earth’s surface in the 

visible or near-infrared regions of the electromagnetic spectrum will record a signal that 

consists of two kinds of brightness (Lillesand et al., 2004). The first brightness is due to 

reflectance from the earth’s surface, which is usually of interest for remote sensing 

scientists. The second is brightness related to the signal interacting with atmospheric 

particles and is ultimately seen as image noise that should be removed. Atmospheric 

correction is an essential component of the image processing chain, especially as far as 

multi-temporal studies are concerned (Lillesand et al., 2004). Many studies are aimed at 

establishing proof-of-concept, and as such implement radiance imagery and stop short of 

conversion to reflectance. For example, in satellite remote sensing research conducted in 

South Africa, Ghebremicael et al. (2003) and Norris-Rogers (2005) applied either 

radiance-based analysis or reflectance at top of atmosphere. This can be circumvented by 

applying a number of existing atmospheric correction methods to remove or reduce 

atmospheric effects and extract surface reflectance.  

Methods that convert radiance imagery to reflectance generally are grouped into radiative 

transfer models and relative atmospheric correction or reflectance conversion models. 

Radiative transfer models include MODTRAN (Berk et al., 1998), FLAASH (Matthew et 

al., 2002), and 6S (Vermote et al., 1997). Various researchers have claimed that radiative 

transfer models provide higher levels of accuracy when compared to relative atmospheric 

correction models (Wu et al., 2005; Kotchenova et al., 2006; Richter et al., 2006). 

However, Tachiiri (2005) and Kotchenova et al., (2006) ascertained that the operational 

aspect of radiative transfer models requires a large selection of parameters, which are 

often difficult to measure. Such approaches typically require in-situ measurements of 

Rayleigh scattering, aerosol attenuation, water vapor absorption, and ozone absorption at 

the time of satellite over flight (Vermote et al., 1997; Berk et al., 1998). These 

measurements are often difficult to obtain in practice and the procedures involved are too 

expensive to be used operationally. The caveat is that unacceptable levels of accuracy 

would result if the default parameters of these methods are applied (Wu et al., 2005).   
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Relative atmospheric correction methods avoid the measurement of atmospheric 

components at the time of satellite over-flight. Examples of these methods include the 

apparent reflectance model (Caselles and Garcia, 1989), DOS (Kaufman and Sendra, 

1988), and COST (Chavez, 1996). Furthermore, the input information required to run the 

relative atmospheric correction methods are derived from the image itself (Karpouzli and 

Malthus, 2003). One primary assumption to take note of, however, is that these methods 

assume a linear relationship between the radiances at top of atmosphere and at ground 

level for the variety of earth features present in the image for a specific image band 

(Chavez, 1996; Perry et al., 2000). Relative atmospheric correction methods are useful 

when limited ground level image information is available. These methods are aimed at 

simplification of atmospheric correction, further minimizing the cost of image 

processing.  

Operational forestry inventory could greatly benefit from atmospheric correction that is 

based on the acquired digital image itself, without the need for atmospheric 

measurements during satellite over-flight. This would reduce cost of operations, while 

also ensuring that algorithms are transferable through time, given the use of reflectance, 

as opposed to radiance. However, a limited body of literature exists that might assist in 

the selection of an effective method for particular applications in different climatic zones 

of the world (Song et al., 2001; Lu et al., 2002).  This part of the study therefore has as 

objective the evaluation of relative atmospheric correction methods for retrieving canopy 

surface reflectance using ASTER and IKONOS imagery for study sites located in the 

warm-temperate KwaZulu-Natal province of South Africa, which is home to large scale 

industrial forestry operations. This study presented results from a visual evaluation of 

atmospheric correction outcomes as well as verifying which approach is best suited to 

general forestry operations, with “forest classification” used as a proxy for such 

operations. 
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4.2 Materials and Methods 

4.2.1 Study Site 

The study area used to assess the effectiveness of atmospheric correction methods is 

located in a warm temperate zone in the southern KwaZulu-Natal province of South 

Africa, also known as the KwaZulu-Natal Midlands. The sites chosen for this research 

are all managed by MONDI-SA Forest Company. Geographically, the site lies between 

29° 43' 4'' and 29° 56' 49'' South and 30° 1' 43'' and 30° 17' 26'' East, as shown in Figure 

4.1. It contains many water bodies, including the Umkomaas river valley, where lakes 

formed as a result of gravel extraction and are now used for recreation, and includes 10 

large and medium reservoirs that provide water to the livestock and poultry farms in the 

area. 

 

Figure 4.1 Map showing the location of the study site 

The study area falls within the summer rainfall region of South Africa and experiences 

cold dry winters and warm wet summers. The mean annual rainfall ranges from 746 mm 

to 1100 mm (Schulze, 1997). Rainfall is associated with either frontal weather systems 

originating from the south or thunderstorms generated from convection activity. 
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Temperatures range from upper 20 °C to below 10 °C. The extreme temperature change 

is a function of altitude and proximity to the warm Indian Ocean with higher lying areas 

experiencing much colder temperatures than low lying areas. Generally, the area is 

characterized by dense natural and commercial forests. Large areas are stocked with 

exotic hardwood and softwood species that are grown primarily for pulp and paper 

production. Sugar cane production and dairy farming, to a lesser extent, are also practised 

in the area. Local subsistence farming is prevalent in and around rural villages.  

4.2.2 Remote sensing data  

ASTER and IKONOS imagery, which cover the entire study area, were captured during 

October, 2006. The ASTER data were delivered in HDF format and processed to 

radiance level. The spatial resolution of the ASTER image is 15 m in the visible-near-

infrared (VNIR) region and 30 m in the shortwave-infrared (SWIR) region (Abrams, 

2000). The IKONOS images were acquired at an off-nadir angle (25°) with pixel size of 4 

m in the VNIR region. The data were provided in Geo-tiff format with metadata and 

rational polynomial coefficient equations (RPC). The RPC file contains rational function 

polynomial coefficients that are generated by the data provider based on the position of 

the satellite at the time of image capture. Both data sets were geometrically corrected 

using ancillary metadata, e.g., RPC inputs, as well as differentially corrected GPS ground 

control points and a digital terrain model and the over all total root mean square error 

(RMSE) of less than half a pixel was obtained.  

4.2.3 Atmospheric Correction Methods 

The conversion of remotely sensed DN or radiance values to at satellite radiance (Lrad) is 

the first step in the relative atmospheric correction procedure. Various methods of DN to 

Lrad conversion exist; however, equations 1 and 2 were used to convert digital numbers of 

ASTER and IKONOS, respectively, to satellite radiance. Coefficients for the derivation 

of Lrad, such as the calCoef factor, and bandwidths for ASTER and IKONOS imagery are 

listed in Table 4.1.  

Lrad = (DN-1)* Unit conversion coefficient     (1) 
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Lrad = 
Bandwidth*calCoef

DN*410        (2) 

where: 

Lrad = satellite radiance (mWcm-2 ster-1 µm-1) 

DN = Digital Number 

calCoef = calibration coefficient 

Table 4.1 ASTER and IKONOS band dependent parameters  
 

Bands 

  

ASTER IKONOS 

calCoef 

[mW/cm2/sr] ESUN 

Bandwidth 

(µm) 

calCoef 

[mW/cm2/sr] ESUN 

Bandwidth 

(µm) 

1 None None None 72.8 1939 0.071 

2 67.6 1847 0.089 72.7 1847 0.089 

3 70.8 1553 0.066 94.9 1536 0.066 

4 42.3 1118 0.13 84.3 1147 0.13 

The next step was to correct effects due to both solar angle and the atmospheric 

conditions, with the output being surface reflectance (Lλ). Mean solar irradiance (ESUN) 

for ASTER and IKONOS are listed in Table 4.1. These coefficients were obtained from 

the user guide for each sensor, which can also be computed based on the image 

acquisition date and time, and the longitude and latitude of the study area. After 

computing the at-satellite radiance for the imagery, relative reflectance conversion 

models were applied.  

4.2.3.1 Apparent reflectance model 

The apparent reflectance model (Equation 3) was used in the first instance. This method 

corrects the effects caused by variations in solar radiance and sun zenith angle, while 

ignoring the effects caused by atmospheric scattering and absorption. Users should thus 

take note that this is not a true atmospheric correction, but merely a conversion to 

apparent reflectance without taking atmospheric conditions into account. 
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Lλ = 
)zCOS θ*(ESUN

)2d*radL*(Π
      (3) 

where : 

Lλ = Satellite reflectance  

Π = 3.14152 

Lrad = Satellite radiance (mWcm-2 ster-1 µm-1) 

d2 = the square of the Earth-Sun distance in Astronomical units 

ESUN = mean solar irradiance in (mWcm-2 µm-1) 

θZ = sun zenith angle in radiance    

The earth-sun distance (d) can be obtained from the Astronomical Almanac according to 

the image acquisition date that is Julian day (refer to Table 4.2). The square of the Earth-

Sun distance in astronomical units (d2) is calculated using equation 4,   

d2 = (1 – 0.01674 cos (0.9856 (Julian day - 4))) 2   (4) 

Table 4.2 Julian day for IKONOS and ASTER  

Characteristic IKONOS ASTER 

Date/time(GMT) 2006-10-23/08:17 2006-10-10/ 10:55 

Julian day 2454032 2454050 

d2 1.033108 1.00882 

4.2.3.2 Dark object subtraction model  

The DOS model is also strictly an image-based procedure, corrects for the effects caused 

by sun zenith angle, solar radiance, and atmospheric scattering, but cannot correct for 

atmospheric absorption (Wu et al., 2005). Equation 5 below was applied to ASTER and 

IKONOS imagery: 
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Lλ = 
)zCOS θ*(ESUN

haze)]radL-rad(L*2d*[Π
   (5) 

where: Lrad haze is Atmospheric scattered path radiance for band  

The haze value was derived from the image DN values using the histogram of a dark 

object method for the purposes of this study. An iterative process was used to generate 

more acceptable values in image locations with limited or no black or high absorption 

features. This was achieved by iteratively using a lower starting haze value until no over 

corrections occurred. That is, if an initialization haze value resulted in the predicted 

values for other bands being higher than some of the actual image DNs, a lower starting 

haze value was iteratively selected. Chavez (1988) contended that a realistic haze value 

for most warm temperate zones should range between 1% and 2%. 

4.2.3.3 Cosine of atmospheric transmittance model  

The COST model (Equation 6) is also an image based procedure, which incorporates all 

the corrections of the above two models and also takes into account the atmospheric 

transmittance components.   

Rλ = 
TAUz)*zCOS θ*ESUN*(TAUv

haze)]radL-rad(L*2d*[Π
  (6) 

where: 

TAUv = Atmospheric transmittance along the path from the ground surface to the sensor 

TAUz = Atmospheric transmittance along the path from the sun to the ground surface 

TAUv and TAUz typically can be estimated from optical thickness. Chavez (1996) 

proposed two approaches to estimate the atmospheric transmittance. One method uses the 

cosine of the solar zenith angle for TAUz, which is called the COST model. Another 

method uses default TAUz values, which are the average for each spectral band, derived 

from the radiative transfer code. TAUv was set equal to 1, because the viewing (zenith) 

angles for both satellites used in this study were minimal.  
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4.3 Accuracy Assessment of Atmospheric Corrections 

The most appropriate way to evaluate atmospheric correction approaches for any given 

study area, is to compare in situ measurements of surface reflectance at the time of image 

acquisition with estimates for these parameters resulting from the various approaches to 

atmospheric correction (Moran et al., 1997). Unfortunately, such in situ measurements 

are not generally available, which was the case in this study. This caveat can be mitigated 

through comparison of spectral signatures from the same land cover, which were 

extracted from both images after AR, DOS, and COST atmospheric correction methods 

were applied. Such a qualitative comparison can be used to assess which atmospheric 

correction method resulted in the most reasonable outcome based on the spectral 

distribution at different wavelengths for that land cover. This approach is based on the 

assumption that the reflectance for the same land cover for each correction model should 

be similar for disparate, but spectrally comparable imaging sensors, given that 

atmospheric and radiometric effects are removed and environmental conditions remain 

similar.  

An additional, quantitative attempt was made to evaluate the usefulness of these methods 

based on the accuracies of image supervised classifications using a maximum likelihood 

classification rule. The most crucial aspect in traditional supervised classification is the 

selection of training pixels. The selection of training samples largely depends upon the 

knowledge of the study area and data, well as the classes to be extracted (ERDAS, 2006). 

In this study a database from a forest company, which lists the land cover, plantation 

species (Acacia, Eucalyptus, and Pinus), and age, was used to support the selection of the 

training samples and to validate the classification results. We included specifically wattle 

(Acacia mearnsii), Eucalyptus (E. grandis and E. Grandis x nitens), and pine (P. patula) 

in the training sample selection. Supervised classification was conducted using the 

identified training pixels for the atmospherically corrected data, i.e., AR, DOS, and 

COST processed imagery. Finally, accuracy assessment of classification results was 

performed based on an error matrix. The overall classification accuracies and Kappa 

coefficients were used to compare the classification accuracy assessments among 

atmospheric correction approaches.  
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4.4 Results and Discussion 

4.4.1 Visual Assessment  

Figure 4.2 shows a comparison of forest reflectance signatures from ASTER and 

IKONOS imagery after atmospheric correction using the AR, DOS, and COST correction 

methods and the maps of ASTER and IKONOS after atmospheric correction are also 

illustrated in appendix 4.1 and 4.2. The reflectances of each band, such as green, red and 

NIR, is represented by the average values from matured stands of wattle, Eucalyptus, and 

Pine forest stands, as well as from roads and open areas within the study site.  

The AR model for reflectance conversion resulted in the highest surface reflectance in the 

visible and near infrared bands (Figure 4.2 a-f), when compared to the DOS and COST 

approaches in the case of the ASTER and IKONOS imagery. This was attributed to the 

fact that the apparent reflectance model only corrects for the effects caused by the sun 

angle, sun-earth distance, and the solar radiance. This model ignores the effects of 

atmospheric scattering. However, reflectance in the visible bands is heavily impacted by 

atmospheric scattering, which results in image additive effects (Lillesand et al., 2004). 

While the DOS and COST model correct for the sun angle, sun-earth distance, solar 

radiance, and atmospheric scattering, the COST model additionally corrects for the 

atmospheric transmittance along the path (Chavez, 1996). The COST model exhibited 

similar reflectance values to the DOS model in the visible bands (Figure 2 a, b, d, and e). 

This was attributed to the geometrical source-target-sensor properties when the satellite 

images were captured (θ < 35°); atmospheric transmittance is less affected by 

atmospheric conditions at smaller observation/zenith angles (Wu et al., 2005). The results 

from Wu et al. (2005) showed that the COST model suffers from over- and under-

correction when the sensor angle is respectively higher or lower than 35°.    

The NIR reflectance of ASTER and IKONOS imagery (Figure 4.2 c and f), derived from 

the COST model, was distinctively lower than that from the DOS model used in this 

study. This was attributed to the fact that atmospheric scattering is limited at longer 

wavelengths (Lillesand et al., 2004) and as a result the COST model over-corrected in 

this spectral region (Wu et al., 2005). Wu et al. (2005) corroborated this finding by 
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concluding that the COST model underestimated (over-corrected) surface reflectance in 

especially the near–infrared spectral region. This lead to our conclusion that the DOS 

model provided the most reasonable results in the case of this study site and source-

target-sensor geometry.   
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Figure 4.2 Surface reflectance signatures of derived using the ARM, DOS, and COST 

reflectance conversion models for ASTER and IKONOS imagery 
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4.4.2 Classification  

Supervised classification was also employed to assess the performance of the AR, DOS, 

and COST reflectance conversion or atmospheric correction methods. The overall 

supervised classification accuracies are presented in Table 4.3. Comparison of the overall 

accuracies and Kappa indices of the three reflectance images, computed from ASTER 

and IKONOS radiance imagery, showed that the accuracy of the DOS image was 

marginally higher than for the other two models. The AR model performed surprisingly 

well, given that this model generally overestimates surface reflectance, since atmospheric 

scattering and absorption are neglected in its calculation. The apparent reflectance model 

approach does not correct for the effects of the atmosphere, it only converts the radiance 

data into normalised, unit-less reflectance. This is a very popular method since it is easy 

to implement and is less likely to produce an erroneous result.   

This study concluded that the improvement in classification accuracy of DOS over COST 

resulted from the viewing angle (θ) being considered in the COST model. Wu et al. 

(2005) have shown that areas that are located away from the direct viewing angle (nadir) 

tend to be strongly over-corrected or under-corrected. Instead of reducing the effect of 

atmospheric effects on surface reflectance, the COST model potentially could increase 

image degradation in areas at off-nadir viewing.  

It should be noted that a variety of sensor and scene characteristics have been assumed 

negligible in terms of impact on this study. These characteristics include differences 

related to sensor spatial and spectral specifications, scene geometry, and scene 

component qualities. This latter aspect refers specifically to the nature of the selected 

land cover classes and their differentiability in spectral space. We assumed that these 

classes are spectrally separable to a reasonable degree and that this separability would 

pronounce itself in the case of both sensors. More research is required to establish 

whether or not any one reflectance conversion approach might prove superior in the case 

of different land cover classes or varying multispectral sensor characteristics. 
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Table 4.3 Comparative data of supervised image classification accuracies for all three 
reflectance conversion approaches 
 

Classified images 
ASTER Image IKONOS Image 

AR 
model 

DOS 
model 

COST 
model 

AR 
model 

DOS 
model 

COST 
model 

Total accuracy (%) 87.9 93.3 89.6 90.5 94.8 92.8 
Kappa index 0.78 0.85 0.72 0.89 0.94 0.90 

 

4.4.3 Conclusions  

This paper discussed the basic concepts and theory of relative atmospheric correction 

methods, followed by qualitative and quantitative evaluation of the performance of three 

popular reflectance conversion methods. Spectral signature interpretation and supervised 

classification were applied to compare the performance of reflectance conversion 

methods for ASTER and IKONOS imagery in a warm temperate plantation forestry 

environment. Both assessment methods indicated that the dark object subtraction (DOS) 

atmospheric correction method for ASTER and IKONOS imagery, given image and 

sensor parameters and the specific study site, performed better than the apparent 

reflectance (AR) and Cosine of atmospheric transmittance (COST) models.  

Many remote sensing researchers (e.g., Lu et al., 2002; Wu et al., 2005) recommend as 

simple as possible atmospheric correction method for remote sensing forestry 

applications. Although we concluded that the DOS model (ASTER and IKONOS 

imagery) was best suited to the study site in question, the influence of specific sensor 

characteristics and spectral scene properties were not investigated. We also argue that the 

two true atmospheric correction methods, namely DOS and COST, are preferable to the 

AR reflectance conversion approach, since the latter does not take atmospheric conditions 

into account. This could prove limiting in the case of multi-temporal studies or 

applications. It is furthermore recommended that future work focus on validation of the 

results presented here, using in situ measurements of surface reflectance at the time of 

image acquisition.  However, it is encouraging to note that relatively simple, non-

radiative transfer models potentially could be used to convert imagery to reflectance for 

the purposes of multi-temporal plantation forestry operations in temperate warm climates.   
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CHAPTER 5 

Estimating plot-level forest structural attributes using high 
spectral resolution ASTER satellite data in even-aged 

Eucalyptus plantation forests, in KwaZulu-Natal, South Africa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* This chapter is based on: 
 
 
Gebreslasie, M., Ahmed, F. B., and van Aardt, J. (2008) Estimating plot-level forest 
structural attributes using high spectral resolution ASTER satellite data in even-aged 
Eucalyptus plantations, in KwaZulu-Natal, South Africa. Southern Forests: A Journal of 
Forest Science 71, 3: 227-236.  
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Abstract. This study assessed the suitability of both visible and shortwave infrared 

reflectance bands and various vegetation indices derived from ASTER imagery for 

estimating forest structural attributes of Eucalyptus species in the midlands southern 

KwaZulu-Natal, South Africa. The empirical relationships between forest structural 

attributes, i.e. stems per hectare (SPHA), diameter at breast height (DBH), mean tree 

height (MTH), basal area and volume, and ASTER data were derived using correlation 

and Canonical Correlation Analysis (CCA). The results indicated weak relationships 

between the studied forest structural attributes and ASTER data. In the younger 

plantation stands (4-6 years) the adjusted R2 values from CCA regression for SPHA, 

DBH, MTH, basal area and volume were 0.54, 0.64, 0.34, 0.25 and 0.30, respectively. 

The adjusted R2
 
values in the mature stands (7-9 years) were distinctly weaker with 

values of 0.51, 0.56, 0.25, 0.20, and 0.27 for SPHA, DBH, MTH, basal area, and volume, 

respectively. Although results could be construed as implying that ASTER satellite data 

are not amenable to mono-culture plantation structural attribute estimation, it was still 

encouraging that up to 64% of structural parameter variation could be explained by 

spectral data alone.  

Keywords: ASTER dataset, spectral vegetation indices, plantation structural attributes  

5.1 Introduction  

Forest structural attributes, such as volume, basal-area, SPHA, and tree height are 

important data needed for effective forest management. Currently, in South Africa, field 

surveys are used to gather information regarding the structural attributes of plantation 

forests. Even though this method provides highly accurate measurements of forest 

structural attributes, it is costly and time consuming (Trotter et al., 1997; Ahmed 2006). 

Many researchers, e.g., Wulder (1998), Hyyppä et al. (2000), Lu et al. (2004), and 

McRoberts and Tomppo (2007), have recommended that remotely sensed data be 

investigated as an alternative means of acquiring information about forest resources. A 

large number of remote sensing studies has shown that prediction of forest structural 

attributes using optical remote sensing has been based on empirical relationships 

established between the field measured data and remote sensing data, such as wavelength 
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bands and vegetation indices. A variety of vegetation indices have been developed using 

broad-band remotely sensed data based on the spectral features of green vegetation.      

The most common indices are the Simple Ratio (SR) (Birth and McVey 1968), 

Difference Vegetation Index (DVI) (Tucker 1979), and Normalized Difference 

Vegetation Index (NDVI) (Rouse et al., 1973). These indices enhance the spectral 

contribution of vegetation, while minimising that of the background. However, the 

empirical relationship between forest structural attributes and vegetation indices could be 

affected by canopy closure, under-storey vegetation, and soil background reflectance 

(Spanner et al., 1990). Thus, other indices, e.g., NDVIc (Nemani et al., 1993), Modified 

Soil-Adjusted Vegetation Index (MSAVI; Qi et al., 1994), Reduced Simple Ratio (RSR; 

Brown et al., 2000), Perpendicular Vegetation Index (PVI; Richardson and Wiegand, 

1977), and Transformed Soil-Adjusted Vegetation Index (TSAVI; Baret and Guyot, 

1991) were developed to reduce the effects of background reflectance. Brown et al. 

(2000) recommended that the integration of the shortwave infrared bands in vegetation 

indices could unify different cover types and reduce the background effects. In addition, 

remote sensing data transformation methods like Principal Components Analysis appear 

to provide acceptable estimation results (Lu et al., 2004). 

Remote sensing studies, conducted in forested areas, have indicated that relationships 

between forest structural attributes and remote sensing data differ depending on the 

geographic settings of the study sites and level of management. Lu et al. (2004) analysed 

forest structural attributes and Landsat TM data in Brazilian Amazon basin. Single band 

TM-5 and linear transformed indices such as 1st principal component (PC1), brightness of 

the tasselled cap transform, and albedo were strongly correlated with forest structural 

attributes. Freitas et al. (2005), on the other hand, found a significant relationship 

between moisture vegetation index using band 5 and band 7 of Landsat TM-5 with forest 

structure attributes using linear regression methods in Atlantic rainforests. In addition, 

Hall et al. (2006) explored the empirical relationships between forest structural attributes 

and Landsat ETM+ data in west-central Alberta, Canada. The study concluded that bands 

3, 4, 5, and 7 returned the strongest relationships with forest structural attributes 

prediction. In a managed forest plantation in northern Wisconsin, USA, Zheng et al. 



 55

(2004) found that DBH estimates for hardwood forest were strongly related to stand age 

and near-infrared reflectance, while for softwood forests the estimates were strongly 

related to the NDVIc. Another study in mountain birch forests northernmost Finland 

conducted by Heiskanen (2006) indicated that NDVI, MSAVI and Simple Ratio (SR) of 

ASTER data showed a significant relationship with biomass and LAI. Sivanpillai et al. 

(2006), in turn, used multivariate regression techniques to generate relationships between 

Landsat ETM+ reflectance values and commercially managed loblolly pine stand 

characteristics in east Texas, USA. They suggested that combinations of NDVI, a simple 

ratio of ETM4/ETM3, and the tasselled cap wetness index were better predictors of stand 

age and stand density for young stands, whereas principal components yielded valuable 

information about the relationship between stand structure and reflectance values 

recorded by the ETM+ sensor for mature stands. These studies in a way indicated that 

satellite data in general are potentially valuable for characterizing forest structural 

attributes in a variety of environments, differently.  

The statistical analysis used for understanding the relationships among spectral remote 

sensing responses and forest structural attributes should accommodate the possibility that 

these relationships may require complex solutions. Lu et al. (2004) and Sivanpillai et al. 

(2006) suggested that multiple-variable models offered substantial improvement over 

single variable approaches. Canonical Correlation Analysis (CCA) is a multivariate 

statistical analysis that provides a method to combine several independent variables into a 

single index (Cohen et al., 2003; Heiskanen, 2005). CCA enables the visual comparison 

of single indices with the multiple regression analysis, but it also enables the use of the 

Reduced Major Axis (RMA) method in the estimation (Cohen et al., 2003). The results of 

a CCA are comparable to studies that employ multiple regression analysis (Cohen et al., 

2003).  

The objective of this part of the study therefore was to analyse the potential of ASTER 

data sets (spectral wavelengths bands and spectral vegetation indices) for the estimation 

of plantation forest structural attributes using linear and non-linear canonical correlation 

statistical regression methods in Eucalyptus commercial plantations in the midlands 

southern KwaZulu-Natal, South Africa. 
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5.2 Materials and Methods  

5.2.1 Study Area  

The study area is located in the southern KwaZulu-Natal province of South Africa, also 

known as the KwaZulu-Natal Midlands. The sites chosen for this research are all 

managed by MONDI-SA Forest Company. Geographically, the site lies between 29° 43' 

4'' and 29° 56' 49'' South and 30° 1' 43'' and 30° 17' 26'' East, as shown in Figure 5.1. The 

terrain in the study area ranges from gently undulating to highly dissected, strongly 

rolling, and hilly topography. Elevations range between 800 and 1400 m above-mean-

sea-level. The geology consists of sandstone and clay formations, which have resulted in 

sandy clay to sandy clay loam soils. Plantation forestry is a major land use in the study 

area due to the suitable climate and soils. Rainfall ranges from 820 to 1300 mm, but 

averages 1000 mm per annum mostly falling between October and April. Temperatures 

vary between 24 ºC to 26 ºC in summer, but drop to between 5ºC and 14 ºC in winter.  

 
Figure 5.1 Map showing the location of the study site 
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5.2.2 Field measurements  

A Geographical Information System (GIS) database of the forest company was consulted 

in order to select stands of interest. This data set is considered accurate by the forest 

practitioners (scale of 1:10000) and is routinely updated. The data indicates the current 

status of the plantations, including spatial characteristics and detailed management 

information. Attributes used in the selection procedure were the spatial location and 

extent of each compartment or stand, species type, planting and felling dates (age), stand 

site index, and coppice status.  

The centre of each circular, 15 m radius plot was located using a compass and distance 

tape, relative to an accurate differential GPS location external to the stand in order to 

avoid within-stand GPS multi-path effects. Plot area was adjusted for slope in non-

horizontal topography using a slope reading taken from a Vertex III hypsometer. Plots 

subsequently were mapped and spatially referenced in a GIS using these data (i.e. GPS 

readings, bearings, and distance). 

The field data collection was conducted in October 2006. Plantation structural attributes 

measured during the field surveys were DBH and total height. These variables were in 

turn used to derive plot-level basal area and volume. Since height measurements were 

only taken for selected trees, plot-level relationships between height and DBH of 

corresponding trees were established using regression equations. The heights of non-

measured trees were modelled using the equation with the highest R2
 
value. In total 84 

plots, representing two age groups were (4-6 and 7-9 years) surveyed in this study; the 

descriptive statistics for each group are presented in Table 5.1. 
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Table 5.1 Descriptive statistics of tree-level plantation structural attributes  
4-6 years 7-9 years 

 SPHA  

DBH 

(cm)  

Tree 

height 

(m)  

BA 

(cm2) 

Volume 

(m3)  SPHA 

DBH 

(cm) 

Tree 

height 

(m)  

BA 

(cm2) 

Volume 

(m3)  

N  44 44 44 44 44 40 40 40 40 40 

Minimum   12.2 13.9 124 0.073  14.6 18.1 180.2 0.14 

Maximum   19.8 23 326.5 0.314  29.4 36.1 708.4 1.17 

Mean   15.6 18 212 0.169  18.7 24.1 307.1 0.352 

S.D   2.1 2.453 58.5 0.064  3.1 0.6 110.5 0.212 

BA = basal area, DBH = Diameter at breast height, SPHA stem per hectare, cm = 

centimetre, m = metre 

Basal area and tree volume are dependent variables that incorporate DBH and tree height 

as independent or predictor variables. Equations 1 and 2 were used to derive basal area 

and volume per plot, respectively. Table 5.2 provides the coefficients used for volume 

estimations. These equations are standard formulae used by commercial forest companies 

in South Africa. 

∑
=

=
n

1i
2DBH

4
πBasalarea ……………………………………………..1 

[ ]height) log(tree3β(DBH)10log1β10 Volume
+

= …………………..2 

Table 5.2 Coefficients used for volume estimation 
Species β1 β3 Reference 

Eucalyptus grandis 2.1513 1.0007 Coetzee, 1992 

Eucalyptus nitens 2.0752 1.4279 Coetzee, 1992 

5.2.3 Remote sensing data and processing  

An ASTER scene acquired on October 2006 and processed to level 1A product (Abrams, 

2000) was used in this study. ASTER is a medium spatial resolution multispectral imager 
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onboard NASA’s Terra spacecraft, launched in December 1999 (Yamaguchi et al., 1998). 

ASTER has three subsystems operating in different spectral regions, namely the visible 

and near infrared (VNIR), and shortwave infrared (SWIR) regions as shown in table 5.3. 

The spatial resolutions are 15, 30, and 90 m for VNIR, SWIR, and TIR, respectively. The 

thermal data were not used in this study, given the focus on plantation attribute 

assessment using relatively standard VNIR to SWIR wavelengths. The imagery was 

ortho-rectified and converted to Universal Transverse Mercator (UTM) projection and 

WGS 84 datum (zone 36). A 10 m spatial resolution digital terrain model and 45 ground 

control points, which were collected during field campaign, were used for this purpose. A 

nearest neighbour re-sampling technique was used and an overall total root mean square 

error (RMSE) of less than half a pixel was obtained. 

Table 5.3 Characteristics of the ASTER VNIR and SWIR subsystems 
System Band number Spectral range (µm) Spatial resolution 

VNIR 1 0.52 - 0.60 

15  2 0.63 - 0.69 

 3 0.76 - 0.86 

SWIR 4 1.600 - 1.700 

30 

 

 5 2.145 - 2.185 

 6 2.185 - 2.225 

 7 2.235 - 2.285 

 8 2.295 - 2.365 

  9 2.360 - 2.430 

An atmospheric correction method, namely improved dark object subtraction (Chavez, 

1988), was applied to convert the imagery from radiance to reflectance. The offset and 

gain, satellite viewing angle, and sun elevation were obtained from the ASTER header 

file. The band-centre wavelength for each band was obtained from the ASTER User 

Handbook (Abrams, 2000). A range of spectral vegetation indices that theoretically are 

capable of reducing background effect subsequently were calculated as shown in table 

5.4 in order to evaluate their potential for predicting plantation structural attributes. These 

indices were NDVI, MSAVI, PVI, TSAVI, and Reduced Simple Ratio (RSR). Principal 
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components were also evaluated in order to determine if these components, aligned to the 

axes of variation within the image, improved estimation of plantation structural attributes. 

Although principal components are time-dependent imagery derivatives, they serve to 

elucidate which spectral region combinations are best suited to address the objective of 

this study. Principal components therefore should be applied with caution, since the axes 

of variation for time t1, might be different from the axes found during time t2. 

Table 5.4 Spectral vegetation indices examined in this study 
Spectral Index Equations Reference 

NDVI 
RedNIR
RedNIR

+
−  

Rouse et al. (1973) 

MSAVI 
Red)2(NIR20.5)(NIR0.5NIR −−+−+  Qi et al. (1994) 

PVI 

12a

bRed*aNIR

+

+−  
Richardson and 

Wiegand (1977) 

TSAVI 

)2a0.08(1b)a(NIRRed

bRed*aNIR*a
++−+

−−  
Baret and Guyot 

(1991) 

RSR 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−

minSWIRmaxSWIR
minSWIRSWIR

1
Red
NIR  

Brown et al. (2000) 

where: SWIRmin and SWIRmax in the RSR are the minimum and maximum reflectances 

observed in the field plots, a and b in the PVI and TSAVI formulae represent the soil 

gradient and intercept, respectively. 

5.2.4 Spectral data extraction  

A plot-level average reflectance value was derived from the corresponding image for 

each plot subsequent to calculation of vegetation indices. These data were then used as 

part of the empirical model development. The average reflectance for each field plot was 

extracted from ASTER spectral reflectance and computed vegetation indices in order to 

reduce errors of image registration and location of the sample plots (Heiskanen, 2006). 

ASTER band 2 was assigned to the “Red”, band 3 to the “NIR”, and band 4 to the 

“SWIR” variable in the index equations. The slope and intercept of the soil line required 
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for the derivation of the PVI and TSAVI were determined from a scatter-plot as shown in 

figure 5.2 of the red and NIR ASTER reflectance values. Finally, the extracted spectral 

information and plantation attributes were imported into Statistical Analysis Software 

(SAS) for statistical analysis (SAS Inc. 1999). The final dataset consisted of 14 ASTER 

spectral information (independent variables) in addition to 5 plot-level plantation 

attributes (dependent variables) for 84-sample plots (observations). 

 

 

 

 

 

 

Figure 5.2 Scatter-plot of the ASTER Red band and NIR band reflectance and estimated 
soil line 

5.2.5 Statistical analysis  

Preliminary analyses of the plantation structural attributes and ASTER spectral 

reflectance were conducted within the SAS statistical package using descriptive statistics 

and correlation analyses. The total observations were sorted into age groups of 4-6 years 

(44 sample plots/observations) and 7-9 years (40 sample plots/observations). 

Accordingly, descriptive statistics were extracted for each plantation attribute to verify 

that no extreme outliers existed in the database and that a sufficient range for each of the 

plantation attributes was surveyed. Pearson’s product moment correlation coefficients 

were calculated for the entire dataset (regardless of age) in order to identify how variables 

were related to each other. Spectral response curves were also plotted in order to build an 

understanding of how remote sensing spectral response was affected by plantation (tree) 

age. Finally, correlation analyses were conducted separately for the identified age groups, 
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young plantations and mature plantations, to determine which ASTER spectral 

information were significantly related to each plantation attribute.  

Multiple linear regression methods that incorporate a variety of independent variables 

were required to test the significance of ASTER spectral information for estimating 

plantation structural attributes. CCA is a well-known technique in multivariate statistical 

analysis that measures the linear relationship between multiple data sets (Cohen et al., 

2003). In this case plantation structural attributes and ASTER spectral information were 

investigated. CCA maximizes the correlation between sets of variables and provides a set 

of coefficients for the independent variables that aligns them with the variation in the 

dependent variables (Cohen et al., 2003). When those coefficients are applied to the 

independent variables, the result is a set of CCA scores corresponding to a single 

integrated index.  

In this study the CCA coefficients were computed for dependent variables, i.e., SPHA, 

DBH, MTH, basal area, and volume, while independent variables, namely ASTER 

spectral bands, spectral vegetation indices, and log-transformed ASTER spectral bands 

were converted to the corresponding CCA scores. CCA was computed for the two age 

groups separately. Non-linear relationships between the plantation attributes and ASTER 

spectral information also were investigated in this study. The natural log transformation 

of the ASTER spectral bands and the pertinence of exponential and natural log 

transformations of the plantation attributes (dependent variables) models were examined. 

Model selection was based on the correlation coefficient of determination for each of the 

dependent plantation attributes. 

5.2.6 Model evaluation 

We used cross-validation, a procedure in which each sample value is iteratively removed 

from the data set while the model is fitted on the remainder of the data points, to check 

the consistency of the models. For CCA models, cross-validation results were assessed 

with scatter-plots of the observed versus predicted values, mainly to evaluate model 

linearity.  
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5.3 Results and Discussion  

Appendix 5.1 summarizes the plot-level correlation coefficients between the plantation 

structural attributes and ASTER reflectance bands, vegetation indices, and log-

transformed ASTER bands using all datasets, regardless of age. Relatively low 

correlation coefficients were evident for all plantation structural attributes; in most cases 

the correlation (r) was less than 0.39. Despite the poor correlation, a general evident trend 

was that vegetation indices performed better than ASTER reflectance bands in terms of 

absolute correlations when related to plantation structural attributes (refer to Appendix 

5.1). 

Figure 5.3 (a-d) shows the ASTER spectral response curves observed between ages 4-9 

years. Spectral reflectance generally decreased with increasing stand age. A distinct 

decrease in spectral reflectance is observed at age 7 (Figure 5.3 a-d). A more subtle 

decrease in NIR spectral reflectance is observed between stand ages of 4-6 years old, 

while the NIR spectral reflectance decreased sharply at the age of 7 (Figure 5.3-c). The 

visible bands of ASTER (green and red bands) and NDVI changed in a similar fashion, 

with ASTER band-2 (red band) showing a gentle and constant decrease between the ages 

of 4-9 years old (Figure 3-b). However, ASTER NIR provided the best distinction 

between stand ages, thus it is interesting to note that 4-6 years old plantation stands 

exhibited higher reflectance values when compared to stands that were 7-9 years old. 

From field observations we deduced that younger stands in a plantation forest scenario 

often are denser with fewer canopy gaps, thereby creating a smoother and more 

homogenous canopy layer with reduced shadows and subsequent increased infrared 

reflectance. On the other hand, mature plantation stands, unlike young stands, typically 

have lower densities and more gaps in the canopy because of thinning practices and 

mortality, which result in increased canopy shadows. Infrared radiation therefore 

penetrates deeper into the plantation canopy and internal scattering and absorption reduce 

total outgoing radiance (Danson and Curran, 1993; Sivanpillai et al., 2006). Analysis in 

this study therefore was conducted separately for young plantation stands (4-6 years) and 

mature stands (7-9 years). 
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Figure 5.3 ASTER VNIR spectral response curves observed between ages 4-9 years  

Appendix 5.2 summarizes the correlation coefficients between the structural attributes 

and ASTER spectral information (ASTER reflectance bands, vegetation indices, and log-

transformed ASTER bands) at plot-level for the young and mature plantation stands, 

respectively. In spite of the low overall r values, the red band, NIR band, and NDVI 

performed distinctly better than other variables in this study (Appendix 5.2). Red band of 

the Landsat TM, SPOT XS, and ASTER sensors were reported as the best predictor of 

forest attributes in a number of studies. Heiskanen (2005), for example, found that the red 

band was the best predictor of volume and Leaf Area Index (LAI) in mountain birch 

forests in northern Sweden, while Eklundh and Olsson (2003) and Xu et al. (2003) also 

reported high correlations between the red spectral region and forest attributes in more 

productive deciduous stands and broadleaved stands in savanna regions. Furthermore, the 

red band has proven to be well correlated to forest attributes in coniferous stands (Häme 

et al., 1997). However, Fassnacht et al. (1997) logged poor performance by the red 

spectral region in a study conducted in hardwoods, where the ASTER NIR band (Band 3) 

was noted as the best predictor of forest structural attributes. Direct relationships between 
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the NIR spectral region and forest structural attributes have been reported for deciduous 

stands (Eklundh and Olsson 2003; Lu et al., 2004).  

It is also interesting to note that highest correlations are observed between mature 

plantation forest attributes and NDVI. NDVI has been shown to be particularly useful in 

more open forest stands (Badwar et al., 1986; Nemani et al., 1993; Zheng et al., 2004). 

SWIR bands exhibited a very weak correlation coefficient for young and mature age 

groups of plantation stands, which was mainly attributed to their spatial resolution (30 m) 

as related to the local scale of the variables to be inventoried. 

The analysis, which was conducted on separate age classes of forest stand (4-6 years and 

7-9 years), resulted in an improvement in the relationships between plantation attributes 

and ASTER spectral information (Appendix 5.2). Thus, the prediction models in the next 

section were developed for these age classes. 

5.3.1 Canonical correlation analysis  

The correlation values between plantation attributes (SPHA, DBH, MTH, basal area, and 

volume) and the CCA scores from ASTER spectral bands, vegetation indices, and log-

transformed spectral bands for young and mature plantation stands are shown in 

Appendix 5.2. In most cases the CCA scores computed from ASTER vegetation indices 

and log-transformed data resulted in the highest correlation with plantation structural 

attributes.  

The CCA scores exhibited an improved correlation with plot-level plantation attributes 

over the single ASTER reflectance bands and ASTER vegetation indices. CCA scores, 

which showed the highest correlation with the structural attributes were selected, the 

relationships are statistically significant (significant at p < 0.05) but moderate 

relationship. The CCA scores were insensitive to the variability in the commercially 

managed plantations. Further modelling of these selected CCA scores are discussed in the 

next section. 
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5.3.2 Models for young plantation stands  

The linear regression models of the plantation attributes and the coefficients of 

determination (R2), RMSE, and RMSE values are reported in Table 5.5. CCA scores of 

vegetation indices exhibited the highest predictive ability for SPHA, DBH, MTH, and 

volume at plot-level. The coefficient of determination (R2) values were 0.57, 0.64, 0.34, 

0.25 and 0.30, respectively, while the RMSE values were 171 SPHA, 1.23 cm, 1.98 m, 

3.91 cm2 and 67.8 m3/ha, respectively, for the young stands (Table 5.5). A direct 

relationship was observed between the CCA scores of vegetation indices and plot-level 

assessments of plantation structural attributes, i.e., SPHA, DBH, MTH, and volume. 

CCA scores of ASTER spectral bands returned the highest predictor of basal area at plot-

level (R2
 
= 0.25; RMSE = 3.91 m2/ha) for young stands (Table 5.5). An inverse 

relationship was observed between the CCA score of ASTER reflectance bands and plot-

level basal area (Table 5.5). Prediction error estimation using the leave-one-out cross-

validation method yielded relative errors for young plantation stands of 16%, 17.9%, 

20.7%, 17.9%, and 26.9% for SPHA, DBH, MTH, basal area, and volume, respectively 

(Table 5.5).  

Table 5.5 Regression models, coefficients of determination (R2), RMSE, and RSME % 
values for young plantation stands (n = 44) 
  Model R2 RMSE RMSE % 

SPHA  1283 x CCA-VIs + 1060.8 0.57 171 16 

DBH (cm)  11.01 x CCA-VIs + 15.613 0.64 1.23 17.91 

MTH (m)  9.47 x CCA-VIs + 18.044 0.34 1.98 20.7 

BA (cm2)  -15.47 x CCA-bands + 21.334 0.25 3.91 17.89 

Volume (m3)  205.1 x CCA-VIs + 168.55 0.30 67.8  26.9 

5.3.3 Models for mature plantation stands  

Modelling based on CCA scores, computed from ASTER vegetation indices, proved 

superior for SPHA assessment at plot-level with adjusted R2
 
= 0.51; RMSE = 242 SPHA; 

(Table 5.6) when compared to CCA scores of ASTER bands and log-transformed 

ASTER bands in the case of older plantation stands. The model exhibited a positive 

relationship between the CCA scores of vegetation indices and SPHA. A linear 
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regression of CCA scores of log-transformed ASTER spectral bands resulted in the best 

predictions for DBH, MTH, and volume at the plot-level with the adjusted R2
 
= 0.56, 

0.25, and 0.27, respectively (Table 5.6) when compared to CCA scores of ASTER bands 

and ASTER vegetation indices. The models for DBH and MTH exhibited a negative 

relationship between CCA scores for vegetation indices and the dependent variables 

DBH and MTH. The model based on CCA scores of ASTER reflectance bands was a 

better predictor of basal area at plot-level (R2
 
= 0.20; RMSE = 5.07 m2/ha; Table 5.6) 

when compared to CCA scores of ASTER vegetation indices and log-transformed 

ASTER reflectance bands. The model exhibited positive relationships between CCA 

scores of ASTER reflectance bands and basal area. 

Table 5.6 Regression models, coefficients of determination, RMSE and RMSE% for 
mature plantation attributes (n = 40) 
  Model R2 RMSE RMSE % 

SPHA  843 x CCA-VIs + 1105.7 0.51 242 21 

DBH (cm) -10.42 x CCA-log-T-bands + 15.613 0.56 2.7 28.0 

MTH (m) -14.21 x CCA-log-T-bands + 24.185 0.25 3.01 21.9 

BA (cm2)  26.01 x CCA-bands + 32.068 0.20 5.07 15.4 

Volume (m3)  181 x CCA-log-T-bands + 620 0.27 56.2 32.9 

Prediction error estimation using the leave-one-out cross-validation method yielded 

relative errors for mature plantation stands of 21%, 28%, 21.9%, 15.4%, and 32.9% for 

SPHA, DBH, MTH, basal area, and volume, respectively (Table 5.6). Relative prediction 

errors for all five plantation structural attributes did not comply with required accuracy 

for operational purposes, as the %RMSE were higher than the tolerated sampling survey 

error of 15%.   

These relatively weak regression models for the estimation of plantation attributes at plot-

level were attributed to the pattern of plantation stand development. In most cases higher 

crown closure and stems per hectare were observed in young plantation stands when 

compared to mature stands. As the plantation stands advanced towards later development 

stages, mortality rates increase as a result of competition for light, water, and soil 

nutrients. Thinning practices in commercial forests also influence crown closure and 
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resultant canopy gaps in older stands. Therefore, decreasing stems per hectare and 

increasing size and visibility of shadows are commonly observed in older plantation 

stands. These patterns of stand development and management, which cause increased 

absorption of in the NIR spectral region, were identified as key factors that resulted in 

generally weaker regression models for the prediction of plantation forest attributes in 

older stands. Another factor that potentially could have contributed to the weak 

regression models within the two studied age groups was similar crown closures within 

young and/or mature age groups of plantation stands. This in effect causes reduced 

within-age-group-spectral variable ranges and hence leads to potentially weaker models. 

Therefore, plantation forests of similar ages often exhibit comparable levels of crown 

closure and could potentially have similar spectral reflectances, even given varying sub-

canopy plantation structural attributes. Homogenous canopy-level properties within age 

groups of plantation forests was identified as one of the key factors that prevented 

development of stronger regression models from medium spatial resolution remote 

sensing data.  

5.4 Conclusions  

In this study, relationships between reflectance data recorded by the ASTER sensor and 

structural attributes of Eucalyptus plantation forests were analysed through correlation 

and regression techniques. It was shown that reflectance-based data, e.g., reflectance, 

vegetation indices, and Canonical Correlation Analysis (CCA), extracted from various 

ASTER bands, resulted in acceptable, but not stellar modelling of plantation forest 

structural attributes in homogenous Eucalyptus stands. We therefore concluded that 

ASTER spectral data on their own are not sufficient for the prediction of plantation 

structural attributes in commercially managed Eucalyptus plantation stands, especially 

given operationally unacceptable RMSE values (> 15%). However, one should consider 

that (i) the models generated in this study are limited to this geographic area and 

commercially managed Eucalyptus plantation stands, (ii) the addition of auxiliary 

variables such as in situ stand attributes could improve modelling abilities, and (iii) R2 

values greater than 0.60 in the case of selected structural variables indicates potential for 

the application of these types of remote sensing data to plantation forest structural 
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assessment. This latter observation is especially critical in the sense that limited canopy-

level variation, at the level where most spectral-vegetation interaction takes place, could 

mask sub-canopy structural variation in homogenous stands. Hence the achieved R2 

results could also be deemed promising where essentially two-dimensional remote 

sensing image data are used for structural assessment in such forest environments.  

These types of spectral datasets could also be useful for obtaining information about 

stand characteristics following events like pest infestation or natural disasters (Eva and 

Lambin, 1998) and for fire and moisture stress detection (Rock et al., 1986; Musick and 

Pelletier, 1988).  

Recent studies have demonstrated that certain plantation stand attributes could be derived 

with greater accuracies from high spatial resolution satellite remote sensing data. For 

example, Coops and Culvenor (1999), Hyyppä et al. (2000), Kiyatikire et al. (2006), and 

Chubey et al. (2006) demonstrated that IKONOS and Quickbird satellite data could be 

used estimate such stand characteristics. Although information derived from IKONOS 

data could perhaps better be used in plantation forest environments to gain insights about 

stand characteristics, the application of medium resolution data, such as those used in this 

study, has potential for scaling purposes. 
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CHAPTER 6 

Extracting structural attributes from high spatial resolution 
IKONOS imagery using image texture analysis and artificial 
neural networks in even-aged Eucalyptus plantation forests in 

KwaZulu-Natal, South Africa,  
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Abstract. In this study the suitability of optical IKONOS satellite data (multispectral and 

panchromatic) for the estimation of forest structural attributes, i.e. stems per hectare 

(SPHA), diameter at breast height (DBH), mean tree height (MTH), basal area, and 

volume in plantation forest environments was assessed. The relationships of these forest 

structural attributes to image texture that were derived from statistically-based texture 

analysis were analyzed. The coefficients of determination of multi-linear regression 

models developed for the estimation of SPHA, DBH, MTH, basal area, and volume using 

texture features derived from multispectral data were 0.63, 0.68, 0.81, 0.86, and 0.86, 

respectively. When the statistical texture features derived from panchromatic data were 

applied the coefficients of determination for the respective forest structural attributes 

increased by 25%, 31%, 6%, 0.2%, and 0.2%, respectively. Artificial neural network 

(ANN) models also developed to predict the same forest structural attributes. The ANN 

produced strong and significant relationships between estimated and actual measures of 

SPHA, DBH, MTH, basal area, and volume (r = 0.83, 0.83, 0.93, 0.94, and 0.94, 

respectively) based on multispectral imagery and (r = 0.98, 0.95, 0.95, 0.93, and 0.98, 

respectively) based on panchromatic imagery. The relative estimation errors of the five 

studied forest structural attributes were comparable to the usual sampling inventory errors 

when statistical texture indicators, derived from panchromatic data and the ANN 

statistical method, were applied. Errors were 7.8%, 5.1%, 5.8%, 8.7%, and 8.7% for 

SPHA, DBH, MTH, basal area and volume, respectively. A sensitivity analysis of ANN 

and stepwise regression algorithms showed that the most important texture features were 

the entropy, variance, and contrast for panchromatic data. Results such as these bode well 

for the application of high spatial resolution imagery to forest structural assessment. 

Keywords: Forest structural attributes Texture, IKONOS, and ANN 

6.1 Introduction 

Forest structural attributes are currently collected manually through field surveys and 

established inventory approaches in South Africa. Even though these methods provide 

highly accurate measurements of forest structural attributes, South African forest 

companies have concluded that existing approaches are costly and time consuming.  
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Consequently, a remote sensing research cooperative between the forestry industry and 

the Council for Scientific Industrial Research‘s Forestry and Forest Product centre 

(CSIR-FFP) was established to investigate the potential of satellite remote sensing data 

for the estimation of forest structural attributes at reasonable accuracies. The premise for 

this cooperative stems from the general acknowledgement that remote sensing can play 

an important role in forestry as a tool for acquiring information about the location, extent, 

composition, and structure of forest resources as part of industrial forest inventories 

(Muinonen et al., 2001; Lu et al., 2004; Boyd and Danson, 2005; Chubey et al., 2006; 

McRoberts and Tomppo, 2007). Remote sensing studies have also been recommended as 

cost-effective sources of gathering information (Hyyppä et al., 2000; Boyd and Danson, 

2005; Kayitakire et al., 2006).  

Much research has been conducted to measure forest structural attributes since the advent 

of environmental satellite remote sensing in approximately 1972. Examples of such 

studies are numerous: Coops and Culvenor (1999) used SPOT imagery to delineate 

compartments boundaries, Sivanpillai et al. (2006) applied Landsat ETM+ to estimate 

stand age and density, Lu et al. (2004) and Rahman et al. (2005) used Landsat TM and 

ETM+ to estimate forest biomass. Similarly, Heiskanen (2006) used ASTER to estimate 

biomass and leaf area index (LAI), Ingram et al. (2005) used Landsat to estimate volume, 

basal area, and diameter at breast height (DBH), and Hall et al. (2006) used Landsat 

ETM+ to map aboveground biomass and volume, to name but a few. Gebreslasie et al. 

(2008) applied ASTER imagery for the prediction of volume, basal area, DBH, and mean 

tree height for the same species and geographical area applicable to the current study. 

Results in terms of coefficients of determination were as high as 0.64 for DBH and as 

low as 0.20 for volume, which indicated a need for the evaluation of multispectral and 

panchromatic imagery of higher spatial resolution as applied to the same species/area.  

The listed studies have shown varying degrees of success in predicting forest structural 

attributes; however, none of them have achieved a satisfactory result as far as operational 

uses in a plantation forest management scenario is concerned. A review paper by 

Holmgren and Thuresson (1998) concluded that results from low spatial resolution 

multispectral sensors can best be considered to be insignificant for forest management 
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planning. Hyyppä et al. (2000) showed that the accuracy of models for the prediction of 

forest inventory parameters was greatly influenced partly by spatial resolution of the 

remote sensing data employed and partly by the size of the forest compartments being 

studied. Subsequently, low spatial resolution satellite sensors were found to be 

insufficient for measuring spatial variation at homogenous and relatively small forest 

stands. As stated below the advances in high spatial resolution satellite imagery, such as 

those found in imagery from the IKONOS and QuickBird sensors, therefore present 

important new opportunities for the estimation of forest structural attributes.  

However, the current techniques to process and analyze satellite image data, e.g., the use 

of vegetation indices or single band approaches, may not be amenable for extraction of 

more detailed structural information provided by high spatial resolution image data 

(Goetz et al., 2003). A special emphasis therefore has been placed on feature extraction 

and structural image analysis methods in the case of such imagery. Gougeon et al. (1999), 

Wulder et al. (1998), Culvenor (2002), Kayitakire et al. (2006) have acknowledged that 

textural and/or spatial information often plays a major role in the interpretation of high 

spatial resolution remotely sensed images of forests. 

Textural analysis is one of the approaches used to extract spatial information from high 

spatial resolution imagery and is founded on the precept that images are composed of 

spectral/tonal and textural information (Lillesand et al., 2004). The texture of an image 

contains important information about the spatial and structural information of objects 

(Franklin et al., 2001; Coburn and Roberts, 2004; Kayitakire et al., 2006). A number of 

techniques have been developed for image texture analysis. Coburn and Roberts (2004) 

identified four main approaches, namely statistical, geometrical, model-based, and signal 

processing. This study examines the potential of statistical texture analysis for the 

estimation of forest structural attributes. Detailed explanations of the other three 

techniques of textural analysis can be found in Ojala and Pietikyinen (1996), Materka and 

Strzelecki (1998), Mihran and Jain (1998), Tuceryan and Jain (1998).  

Statistical texture analysis, which is the most frequently cited method for image texture 

analysis, takes into consideration the distribution and variation of spectral/tonal 
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variability in a given local area (Haralick, 1979; St-Louis et al., 2006). Depending on the 

number of pixels that define the local area, statistical methods can be classified into first 

order statistical texture analysis or Gray Level Occurrence Matrix (GLOM) and second 

order statistical texture or Gray Level Co-occurrence Matrix (GLCM) approaches 

(Haralick et al., 1979; Mihran and Jain, 1998). The basic difference is that GLOM 

estimates properties of individual pixel values in a given moving window size, thereby 

largely ignoring the spatial interaction between image pixels. In contrast, GLCM estimate 

properties of more than two pixel values occurring at specific locations relative to each 

other.  

Statistical texture information has often been used in feature detection or feature 

classification (Franklin et al., 2000; Rao et al., 2002; Norris-Rogers, 2006). Franklin et al. 

(2001) used the variance and homogeneity statistical texture features, derived from 

IKONOS panchromatic images, for stand age estimation. Their results showed that 

second order homogeneity texture values were the most effective in estimation of stand 

age, returned R2 of 78 %. Kayitakire et al. (2006) have also used variance, contrast, and 

correlation statistical texture features, extracted from IKONOS panchromatic data, for the 

prediction of stand age, top height, diameter at breast height, stand density, and basal 

area. The coefficients of determination of the models were 0.81, 0.76, 0.82, 0.82, and 

0.35, respectively. The authors also showed that the most important parameters were the 

texture feature, window size, and displacement, whereas the direction (θ ) parameter had 

a minimal effect on the coefficients of determination. These studies sourced the spatial 

characteristics of a forest, which were used to estimate forest structural attributes, from 

single band high spatial resolution imagery, while also relying on limited statistical 

texture features. This is in contrast to a recent study by Johansen et al. (2007), who 

showed that textural information of an image greatly depends on the type of image 

analyzed with regard to spectral domain, the spatial resolution, and the characteristics of 

sensed objects (dimension, shape, and spatial distribution). This outlines the importance 

of expansion of such approaches to multispectral, high spatial resolution imagery.    

However, although studies by Franklin et al. (2001) and Kayitakire et al. (2006) used 

linear regression statistical analysis to estimate forest structural attributes from statistical 
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texture features, such an approach typically assume a linear relationship between 

variables of interest. The statistical analysis used for understanding the relationships 

among remote sensing information and forest structural attributes should accommodate 

for the possibility that these relationships may be non-linear and complex. An Artificial 

Neural Network offers a powerful method for analysing complex relationships among 

variables, without making assumptions about data distributions and variable linearity 

(Pao, 2008). ANNs are capable of handling non-normality, non-linearity, and collinearity 

in a system (Haykin, 1994). Thus the major attraction of ANNs is that they offer a 

powerful means for analyzing complex datasets without making pre-emptive assumptions 

about data characteristics, as opposed to many conventional statistical approaches (Boyd 

et al., 2002).  

The objectives of this part of the study therefore were to (i) investigate the significance of 

statistical texture features computed from multispectral and panchromatic IKONOS 

imagery for the estimation of forest structural attributes, namely SPHA, DBH, MTH, BA, 

and volume, (ii) compare the significance of window/kernel size on such an analysis, and 

(iii) investigate and compare the existing linear and non-linear relationships between 

statistical texture features and field-measured forest structural attributes, with the aim of 

identifying the best estimator for the forest variable of interest.  

6.2 Materials  

6.2.1 Study site 

The study area is located in the southern KwaZulu-Natal province of South Africa, also 

known as the KwaZulu-Natal Midlands. The sites chosen for this research are all 

managed by MONDI-SA Forest Company. Geographically, the site lies between 29° 43' 

4'' and 29° 56' 49'' South and 30° 1' 43'' and 30° 17' 26'' East, as shown in Figure 5.1. The 

terrain in the study area ranges from gently undulating to highly dissected, strongly 

rolling, and hilly topography. Elevations range between 800 and 1400 m above-mean-

sea-level. The geology consists of sandstone and clay formations, which have resulted in 

sandy clay to sandy clay loam soils. Plantation forestry is a major land use in the study 

area due to the suitable climate and soils. Rainfall ranges from 820 to 1300 mm, but 
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averages 1000 mm per annum mostly falling between October and April. Temperatures 

vary between 24 ºC to 26 ºC in summer, but drop to between 5ºC and 14 ºC in winter.  

Figure 6.1 Map showing the location of the study site 

6.2.1 Field data 

A Geographical Information System (GIS), compiled and provided by MONDI-SA, was 

consulted in order to select stands of interest. This data set is considered accurate by the 

forest practitioners (spatial resolution of 1:10000) and is routinely updated. The data 

indicate the current status of the plantations, including spatial characteristics and detailed 

management information. Attributes used in the selection procedure were the spatial 

location and extent of each compartment or stand, species type, age, planting and felling 

dates, and coppice status. Only Eucalyptus species were considered from this dataset. 

These species were chosen given the need identified by the forestry sector to focus on 

their management towards increased productivity, which was in turn driven by the 

growing demands for various end products.  

A circular 15 m radius plot was delimited in each selected stand. The centre of each 

circular plot was located using a compass and distance tape, relative to an accurate 

differentially-corrected GPS location external to the stand in order to avoid within stand 
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GPS multi-path effects. Plot area was adjusted for slope in non-horizontal topography 

using a slope reading taken from a Vertex III hypsometer. Plots subsequently were 

mapped and spatially referenced in a GIS using these data (i.e., GPS readings, bearings, 

and distance). 

The field data collection was conducted in October 2006. Forest structural attributes 

measured during the field surveys were DBH and total height. These variables were in 

turn used to derive basal area and volume. Since height measurements were taken for 

selected trees, the relationships between height and DBH of corresponding trees could be 

established using regression equations. The height of non-measured trees was modelled 

using the equation with the highest R2 value. A total of 122 plots, located in 37 stands, 

were surveyed in this study. 

Basal area and tree volume are dependent variables that incorporate DBH and tree height 

as independent or predictor variables. Equations 1 and 2 were used to derive tree basal 

area and volume, respectively. Table 6.1 provides the coefficients used for volume 

estimations. These equations are standard formulae used by South Africa forestry 

companies. 

 Basal area ∑
=

=
n

1i
2DBH

4
π                                                                   (1) 

height)] log(tree3β(DBH)10log1[β
10Volume

+
=                                  (2) 

Table 6.1 Coefficients used for volume estimation 
Species ß1 ß3 Reference 

Eucalyptus grandis 2.1513 1.0007 Coetzee, 1992 

Eucalyptus nitens 2.0752 1.4279 Coetzee, 1992 

6.2.2 Remote sensing data 

IKONOS multispectral and panchromatic images that were acquired on October 2006 

were used in this study. Detailed information about the acquisition configuration is 

reported in Table 6.2.  
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Table 6.2 IKONOS image characteristics  
Characteristic Specifications 

Date/time(GMT) 2006-10-23/08:17 

Sun angle elevation 52.875° 

Sun Angle azimuth 41.4681° 

Sensor angle elevation 66.99317° 

Sensor angle azimuth 359.97° 

Spectral bands wavelengths  

        Band 1 (blue)  0.45 - 0.52 µm 

        Band 2 (green) 0.52 - 0.6 µm 

        Band 3 (red) 0.63 - 0.69 µm 

        Band 4 (NIR) 0.76 - 0.9 µm 

        Panchromatic 0.45 - 0.9 µm 

The imagery was geo- and ortho-rectified and converted to Universal Transverse 

Mercator (UTM) projection and WGS 84 (zone 36) datum. A 10 m spatial resolution 

digital terrain model (DTM) and 48 ground control points, which were collected during 

the field campaign, were used for this purpose. A nearest neighbour re-sampling 

technique was used and an overall total root mean square error (RMSE) of less than half a 

pixel was obtained. 

6.3 Methods 

6.3.1 Texture feature extraction 

GLOM and GLCM features were studied in terms of their ability to estimate target forest 

structural attributes. The ability of quantifying image texture using statistical texture 

analysis (Haralick et al., 1979; Hay et al., 1996) creates an opportunity to estimate forest 

structural attributes (Franklin et al., 2001; Kayitakire et al., 2006).  

The size of the matrix computed from the statistical texture features depends on the data 

range of pixel grey values; images of large numbers of data bits may result in large 

matrices during statistical operation and require a substantial amount of memory and 
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computer processing unit (CPU) cycles to handle the computation (Tsai and Chou, 2006). 

Only a pick of these features, which are relevant for remote sensing image analysis, were 

therefore selected in order to reduce the computational complexity. Six GLOMs, namely 

data range, mean, variance, entropy and angular second moment (ASM) as shown in 

Appendix 6.1, were calculated for the four spectral bands and the panchromatic band of 

the IKONOS image using 3x3, 5x5, and 7x7 moving window sizes. These window sizes 

were chosen to cover a range of sizes corresponding roughly to the space between the 

homogenous patches of trees in the plantation forest. Six GLCMs, namely mean, 

variance, entropy, correlation, contrast and ASM (refer to Appendix 6.1) were also 

calculated using the three above-mentioned window sizes. The description of the selected 

statistical texture models is given in Appendix 6.1. These selected statistical textures 

were used to extract image texture features from IKONOS multispectral and 

panchromatic imagery on a per-band basis. 

The GLCM of an image is an estimate of the second order joint probability, P δ (i, j), of 

the intensity value of two pixels (i and j) and a displacement (δ ) along a given angle (θ ), 

i.e. the probability that i and j have the same intensity (Haralick et al., 1979). Haralick et 

al. (1979) furthermore suggested using GLCMs calculated from four angles (θ ), namely 

θ= 0°, 45°, 90°, and 135° and displacement vectors (δ ) with δ=1 or 2 pixels. However, 

finding GLCMs for all angles ( θ ) would require a large amount of calculations. 

Literature also shows that the angle ( θ ) parameter has a minimal effect on the 

coefficients of determination (Kayitakire et al., 2006). In this study, the selected GLCMs 

were calculated using δ  = 1 and δ= 2 as displacement vector, with θ= 90°. Because of 

the homogenous nature of the plantation forests in question and the minimal effect of 

angle on the coefficients of determination, a single angle was deemed adequate for this 

study. The designed methodology accordingly resulted in a total of 226 statistical texture 

features, calculated using GLOMs, GLCMs ( δ =1), and GLCMs ( δ =2) from 

multispectral IKONOS imagery. Calculations for panchromatic IKONOS imagery 

resulted in a total of 54 statistical texture features.  
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6.3.2 Statistical analyses 

Preliminary analysis, including a normality test, was conducted in SPSS (SPSS V.15 

2006) using a Kolmogorov-Smirnov z-test. This effectively tested whether the 

observations could reasonably have come from the specified normal distribution. 

Generally, the datasets in this study conformed to statistically normal distributions, while 

allowing for potential outliers in the histogram distribution. Thus, the applicability of the 

statistical texture features and the effect of the three moving window sizes for the 

estimation of forest structural attributes were studied using Pearson’s correlation 

coefficients. A stepwise selection algorithm was also employed to select a subset of 

independent variables that explain most of the variability in the dependent variable. The 

stepwise algorithm was designed to start with the null model, with a probability for entry 

of 0.05. Specifying a null model (forward selection) as a starting point is more 

conservative than the usual method of starting with the full model. Using this method 

avoids issues related to model over-fitting that could occur giving the high correlations 

between the covariates present in the full model (Diamantopoulou, 2005). These selected 

variables were used to develop a model using multiple linear regression and non-linear 

(ANN) statistical methods.             

6.3.3 Multiple linear regressions 

A multiple linear regression statistical method (Equation 3) was used to develop models 

for the estimation of forest structural attributes, i.e., DBH, MTH, SPHA, BA, and 

volume. Multiple linear regression models were fitted using the selected statistical texture 

features as independent variables, computed separately from multispectral and 

panchromatic IKONOS images. Performance of the regression models was evaluated 

based on the coefficient of determination, RMSE, and fit of the field-measured versus 

predicted forest structural attributes.  

Y = βo + β1 X1 + β2 X2 + …+ βi Xi       (3)                              
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6.3.4 Artificial neural network  

Multi Layer Perceptron (MLP) neural networks were used in this study, to predict the 

selected forest structure attributes (Jensen et al., 1999; Carvalho et al., 2004; Chitroub, 

2005; Ingram et al., 2005). MLP neural networks are often classified as back propagation 

training, where back propagation consists of fitting the weights of the model by a 

criterion function, usually squared error or maximum likelihood, using a gradient 

optimization method (Fauselt, 1994; Haykin, 1994; Patterson, 1996). The error in back 

propagation MLP neural networks, i.e., the difference between the predicted and 

observed outcomes, is propagated back from the output to the connection weights in 

order to modify the weights so as to minimize the error of prediction (Fauselt, 1994; 

Haykin, 1994; Patterson, 1996). The geometry of a MLP neural network, which 

determines the number of connection weights and how these are arranged, depends on the 

number of hidden layers and number of nodes in these hidden layers. It has been 

recommended that a network with one hidden layer can appropriately be used in most 

general problems (Jensen et al., 1999; Ingram et al., 2005). Three interconnected layers of 

neurons, namely an input layer, hidden layer, and output layer, consequently were 

employed in this study to develop the final ANN model. 

Division of the available data sample into two subsets, one each for model development 

and model validation, is a common practice in ANN statistical analysis methods (Haykin, 

1994). We used a subset of 70% of the sampled dataset for ANN model development and 

the remaining 30% was kept for testing the ANN model. Cross-validation was also used 

to assess the robustness of the developed model for the estimation of forest structure 

attributes. Therefore, the best model was selected based on the coefficient of 

determination and absolute error of the three models encompassed by the development 

model, test model, and validation model.          

The input variables, selected using the stepwise selection algorithm, were kept constant 

for both the multiple linear regression and ANN approaches in this study. Therefore, the 

individual ANN model developed in this study has multiple input variables (independent) 

and one output variable (field enumerated forest structural attribute). Figure 6.2 below 
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summarizes the basic expressions that describe the structure of the ANN developed for 

this study.  

 

 

 

 

 

 

 

 

 

Figure 6.2 A schematic representation of the ANN. 

where Xi represents the input parameters (statistical texture features), wi is the weight 

value, hi is the hidden value after subtraction of the threshold (bias), Th constitutes the 

hidden nodes’ threshold (bias), Hi is the hidden value after sigmoid transformation, Oi is 

the preliminary output value after subtraction of the threshold (bias), To constitute the 

outputs’ threshold (bias), OP is the final output after sigmoid transformation.  

The input parameters of ANN models should be standardized between 0 and 1 (Jensen et 

al., 1999), hence a linear transformation equation (Equation 4) was developed for this 

purpose. 

Standardized value = (R-min) / (max-min)      (4)  
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where R is the real input value, min is the minimum value in the training data input, and 

max is the maximum value in the training data input. 

In this study, the optimum number of neurons in the hidden layer of each model was 

determined by varying their number, starting with a minimum of 1 and then increasing 

the network size by iteratively adding 1 neuron. STATISTICA 7 neural network toolbox 

(Statsoft, 2004) was used for training and testing of ANN models. Finally, the maximum 

number of training epochs (training cyclone) to train was set at 5000. The correlation 

coefficient and the mean absolute error of the training dataset and test dataset were used 

to evaluate the performance of the developed ANN models. 

6.3.5 Performance assessment   

The reliability of the models for the estimation of forest structural attributes was assessed 

using the coefficient of determination (R2), coefficient of correlation (r), root-mean-

square error (RMSE; Equation 5), and absolute root-mean-square error percentage 

(ARMSE %; Equation 6). Generally, a high R2, low RMSE value, and an ARMSE% < 

10%, are indicative of a good model fit. Although the performance of the developed 

ANN models was assessed using the correlation between the observed and predicted 

values for both model development and model test datasets, cross-validation was also 

used in this study.    

RMSE = 
N

XX
n

x
obspred∑

=

−
1

2)(
       (5) 

ARMSE% = 
obs

RMSE
μ

         (6) 

where Xpred is the model-predicted value, Xobs is the observed value, and obsμ is the mean 

of the field-observed values. 
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6.4 Results  

6.4.1 General  

Figure 6.3 shows the correlation coefficients that were obtained for each of the forest 

structural attributes and average result of all texture features, computed separately for 

each multispectral IKONOS band. This figure is aimed at assessing the reliability of each 

band for estimation of forest structural attributes. Band 3 returned the highest correlation 

coefficients in all cases, while Band 4 resulted in the second highest correlation 

coefficients and Bands 1 and 2 returned the lowest value in all cases as shown in figure 

6.3.  

 
Figure 6.3 Illustration of the IKONOS bands effect for the estimation of forest structural 

attributes 

The moving window size used to extract statistical texture features is a key parameter in 

image texture analysis, usually selected by semivariogram analysis (Zawadzki et al., 

2005). However, in this study an effort was made to understand how the correlation 

coefficient varied with varying window size. Where several values are tested in an effort 

to identify the value that minimizes a given error function. Figure 6.4 shows the 

correlation coefficient that was obtained for each forest structural attribute and statistical 

texture feature, computed using window sizes of 3x3, 5x5, and 7x7 pixels. The results 
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showed that statistical texture features computed using a 3x3 window size returned the 

highest correlation coefficient for the estimation of all selected forest structural attributes. 

Generally, the correlation coefficients declined substantially with increasing window size 

and tended to level off at a window size 5x5 pixels for both multispectral and 

panchromatic datasets. This outcome was however expected, given the homogenous and 

regularly-patterned tree objects in the imagery. 

 
Figure 6.4 Illustration of the window size effect for the estimation of forest structural 

attributes 

Figure 6.5(a) shows the coefficient of determination that was obtained for each forest 

structural attribute and GLOM, GLCM (δ1), and GLCM (δ2) features computed from 

multispectral IKONOS bands 2, 3, and 4 using a 3x3 window size. GLCM (δ1) features 

computed from multispectral IKONOS bands 2, 3, and 4 using a 3x3 window size 

consistently were the best estimators. Figure 6.5(b) also shows the coefficient of 

determination that was obtained for each forest structural attribute and GLOM, GLCM 

(δ1), and GLCM (δ2) features computed from panchromatic IKONOS image using a 

3x3 window size. Figure 6.5 (a&b) depicts that generally the strength of models 

developed from GLCM declined with an increase in pixel displacement. The coefficient 

of determination returned from GLCM δ2 (pixel displacement of 2) is slightly lower than 

the coefficient of determination returned from GLCM δ 1 (pixel displacement of 1). 
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These results support the published results of Kayitakire et al. (2006) for a similar 

comparison.   

  

 

 

 

 

Figure 6.5 Illustration of the statistical texture order and pixel displacement parameter 
effect on the estimation of forest structural attributes  

6.4.2 Multiple linear regression models  

A multiple linear combination of GLCM δ =1 texture features computed from 

multispectral IKONOS image were identified based on their strength for the estimation of 

forest structural attributes. Table 6.4 summarizes the coefficients of determination for 

forest structural attributes and predictor variables derived from the GLCMδ=1 feature for 

multispectral IKONOS. SPHA was best explained by the combination of ASM, 

correlation computed from Band 3, and ASM computed from Band 4 (adjusted R2 = 

0.63). ASM and correlation computed from Band 4 and Band 3, respectively, were 

inversely related with SPHA, whereas ASM computed from Band 3 was directly related 

with SPHA as shown in Table 6.4. A linear combination of Band 3 mean and Band 4 

entropy was the best predictor of DBH (adjusted R2 = 0.68). An inverse relationship was 

observed between Band 3 mean and DBH, whereas a direct relationship was observed 

between Band 4 entropy and DBH. A linear combination of entropy and ASM, both 

computed from Band 2, as well as the mean and entropy, both computed from Band 3, 

resulted in the best predictive capability for MTH (adjusted R2 =  0.81). Basal area (BA) 

was best explained by the combination of ASM computed from Bands 3 and 4, and 

correlation and entropy computed from Band 3 (adjusted R2 = 0.81). ASM, entropy and 

correlation computed from bands 3 were directly related with BA, whereas ASM 
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computed from Band 4 was inversely related with BA (Table 6.4). Finally, volume was 

found to be related to correlation and entropy computed from Band 3 (adjusted R2 = 

0.86). Entropy and correlation computed from band 3 were directly related with volume 

as shown in Table 6.4.  

Table 6.4 Best regression model for each forest structural variable, based on multi-
spectral IKONOS imagery and GLCM δ=1 (n=37)  
 Model Adj R2 RMSE ARMSE 

% 
SPHA 4829.466 + 3136.982 (B3-ASM) - 5172.186 (B4-

ASM) - 194.35 (B3-Correlation) 
0.63 155 spha** 13.4 

DBH 28.207 - 1.191 (B3-Mean) + 17.278 (B4 -
Entropy) 

0.68 1.6 cm** 8.6 

MTH 219.224 - 1.651 (B3-Mean) + 9.509 (B3-Entropy) 
- 131.015 (B2-Entropy) -187.217 (B2-ASM) 

0.81 1.8 m* 7.7 

BA 88.179 -99.756 (B4-ASM) + 4.545 (B3-
Correlation) + 19.822 (B3-Entropy) + 25.276 
(B3-ASM) 

0.85 2.4 cm* 8.3 

Vol. -289.694 + 140.690 (B3-Correlation) + 427.378 
(B3-Entropy) 

0.86 43.9cm3* 16.0 

** Significant at 0.05 
*   Significant at 0.01 
ASM = Angular second moment energy 

A separate analysis was conducted for panchromatic IKONOS imagery, which is 

characterised by a high spatial resolution and a single band data. A multiple linear 

combination of GLOM and GLCM δ=1 features resulted in the best predictors of forest 

structural attributes (refer to Figure 6.5b). Table 6.5 summarizes the coefficients of 

determination for forest structural attributes and selected statistical texture analysis 

features (GLOM and GLCM δ =1) computed for the panchromatic IKONOS image. 

SPHA was best explained by the combination of entropy and variance of GLOM, as well 

as contrast and variance of GLCM δ=1 (adjusted R2 = 0.78). Entropy and contrast were 

inversely related with SPHA, whereas variance of GLOM and GLCM δ=1 was directly 

related with SPHA (Table 6.5). A linear combination of entropy and variance of GLOM 

and GLCM δ=1, respectively, proved to be the best estimator of DBH (adjusted R2 = 

0.89). An inverse relationship was observed between variance and DBH, whereas a direct 

relationship was observed between entropy and DBH (Table 6.5). A linear combination 

of entropy, computed from GLOM, and contrast and entropy, computed from 



 93

GLCM δ=1, was the best estimator of MTH (adjusted R2 = 0.85). Basal area (BA) were 

best explained by the combination of variance computed from GLOM and GLCMδ=1 

(adjusted R2 = 0.86). A direct relationship was observed between BA and variance of 

GLOM, whereas inverse relationship was observed between variance of GLCMδ=1 and 

BA (Table 6.5). Finally, volume was found to be related to variance and entropy, both 

computed from GLOM and GLCMδ=1 (adjusted R2 = 0.88). Variance and entropy of 

GLOM as well as entropy of GLCM δ=1 were directly related with volume, whereas 

variance of GLCMδ=1 was inversely related with volume (Table 6.5).  

Table 6.5 Best regression model for each forest structural variable, based on 
panchromatic IKONOS imagery and GLCM δ=1 (n=37)  
 Model Adj 

R2 
RMSE ARMSE 

% 
SPHA - 5737.757 - 1134.248 (GLOM-Entropy) + 1.744 

(GLOM-Variance) + 1.017 (GLCM-Variance) - 
15.292 (GLCM-Contrast) 

0.78 118 spha* 10.1 

DBH 21.379 + 18.809 (GLOM-Entropy) - 0.0125 
(GLCM-Variance) 

0.89 0.9 cm* 4.5 

MTH - 611.98 + 236.512 (GLOM-Entropy) + 73.127 
(GLCM- Entropy) - 0.01017 (GLCM-Variance) - 
0.146 (GLCM- Contrast) 

0.85 1.7 m** 6.7 

BA - 150.2 + 0.05966 (GLOM Variance) – 0.00355 
(GLCM Variance) 

0.86 2.4 cm** 8.5 

Vol. - 14258.638 + 0.437 (GLOM-Variance) + 
4850.217 (GLOM-Entropy) + 1543.938 (GLCM-
Entropy) - 0.193 (GLCM-Variance) 

0.88 41cm3** 15.4 

** Significant at 0.05    
*   Significant at 0.01 

As can be seen in Tables 6.4 and 6.5, model coefficients were statistically significant at 

0.05 for functions that estimate SPHA and DBH in the cases of multispectral IKONOS 

variables. Model coefficients were statistically significant at 0.01 for the same variables, 

i.e., SPHA and DBH, in the case of panchromatic IKONOS imagery as shown in Table 

6.5. Furthermore, the model coefficients for estimation of MTH, BA, and volume were 

statistically significant at 0.01 in the cases of multispectral IKONOS variables. Results 

for the same variables, but based on panchromatic IKONOS imagery, showed that 

coefficients were significant at the 0.05 level. Some caution in the interpretation of the 

SPHA and volume estimation models are necessary as their absolute root mean square 
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percentage error (ARMSE %) was greater than 10%, or slightly higher than the 

acceptable error level in South African commercial plantation forestry.  

Figures 6.6 a-e and f-j show the scatter-plots of field-measured and predicted forest 

structural attributes for the multispectral IKONOS variables and panchromatic IKONOS 

variables, respectively. The figures also show the correlation coefficients between the 

field-measured and predicted forest structural attributes.  
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Figure 6.6 Comparison of field measured and predicted forest structural attributes (n=37). 

Subset figures a-e and f-j show cases for multispectral and panchromatic IKONOS 
data, respectively   
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Figure 6.7 shows the comparison between multiple linear regression models developed 

using statistical features calculated from multispectral and panchromatic IKONOS 

imagery. The models developed for the estimation of SPHA, DBH, MTH, BA, and 

volume using statistical texture features computed from panchromatic IKONOS imagery 

returned the highest correlation coefficients, even though results for BA and volume were 

almost similar.      
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Figure 6.7 Comparison of models developed from multispectral and panchromatic 
IKONOS imagery 

6.4.3 Artificial neural network models  

Evaluation of experimental results of the developed ANN models with varying number of 

nodes in the hidden layer was conducted as a first step. We observed a significant 

difference in the use of varying number of nodes in the hidden layer architectures. The 

optimal number of nodes in the hidden layer with the best possible training parameter 

values is presented in Table 6.6 for the prediction of SPHA, DBH, mean tree height, 

basal area, and volume. Two and four nodes in the hidden layer were found to be most 

appropriate for the estimation of SPHA and DBH, while mean tree height, basal area, and 

volume each required three nodes in the hidden layer for the training and testing process 

using datasets computed from multispectral IKONOS imagery. Conversely, ANN models 

with four for SPHA, three for DBH and MTH, and two for BA and volume nodes in the 
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hidden layer were found to be appropriate for the training and testing process using 

datasets computed from panchromatic IKONOS imagery. An example showing the 

procedure used to select the optimal number of nodes in the hidden layer is illustrated in 

Figure 6.8.  

Table 6.6 The ANN-MLP profile for prediction of the various structural parameters using 
multi-spectral and panchromatic imagery 
 Multispectral Panchromatic 

 Profile Input 

Hidden-

node Profile Input 

Hidden-

node 

SPHA MLP 3:3-2-1:1 3 2 MLP 4:4-4-1:1 4 4 

DBH MLP 2:2-4-1:1 2 4 MLP 2:2-3-1:1 2 3 

MTH MLP 4:4-3-1:1 4 3 MLP 4:4-3-1:1 4 3 

BA MLP 4:4-3-1:1 4 3 MLP 2:2-2-1:1 2 2 

Volume MLP 2:2-3-1:1 2 3 MLP 4:4-2-1:1 4 2 

 

 

 

 

 

 

 

 

 
Figure 6.8 Selection of optimal number of nodes in the hidden layer 
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The optimum numbers of nodes, which returned the highest correlation coefficient for 

training, testing, and overall datasets, were selected for each model. In general, the 

procedure employed for the selection of the optimal number of nodes confirms the 

robustness of the models developed for the prediction of forest structural attributes in this 

study. Connection weights and thresholds for ANN-MLP models, computed using 

multispectral IKONOS and panchromatic IKONOS imagery, are presented in Tables 6.7 

and 6.8, respectively.  

Table 6.7 Connection weights and thresholds of ANN-MLP models for forest structural 
attributes using multi-spectral IKONOS imagery 

 

 

 

Model 
Hidden 
Nodes 

Weight Threshold (bias)

Input 
Output 
neuron Hidden Output

 
SPHA 
 

  
B3-
Correlation B3-SM B4-SM   HT     

1 -1.09 1.72 -0.38   0.64 0.05 -0.23 
2 0.43 0.049 -0.76   0.74 -0.76   

 
 
DBH 
 

  B3-Mean 
B4-
Entropy    HT     

1 0.07 0.06    -0.04 -0.82 -0.60 
2 0.19 -0.29    -0.26 -0.04   
3 0.08 0.05    0.03 -1.28   

4 0.41 -0.40     -0.97 -0.03   

 
 
MTH 
 

  
B2-
Entropy B2-SM 

B3-
Entropy 

B3-
Mean HT     

1 2.20 1.93 -0.99 -0.85 -3.43 1.60 -0.06 
2 0.01 0.02 -1.17 -1.98 -0.76 0.54   
3 -0.88 0.12 -0.22 -0.56 1.80 -1.63   

BA 
   

B3-
Correlation 

B3-
Entropy B3-SM 

B4-
SM HT     

1 -0.49 -0.40 -0.11 0.33 -3.63 0.98 2.46 

 
 
Volume 
 

  
B3-
Correlation 

B3-
Entropy    HT    

1 -0.54 0.58    -0.45 0.93 0.13 
2 -1.11 0.79    1.03 -0.57  
3 2.06 0.07     0.83 1.16   
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Table 6.8 Connection weights and thresholds of ANN-MLP models for forest structural 
attributes using panchromatic IKONOS imagery 

Model 
Hidden 
Nodes 

Weight Threshold (bais) 

Input 
Output 
neuron Hidden Output

  
  
  
SPHA 
  

  
GLOM-
Entropy 

GLOM-
Variance

GLCM-
Variance

GLCM-
contrast HT    

1 -0.81 -0.50 1.51 -0.19 1.43 0.37 -0.17 
2 0.20 -0.84 0.25 0.08 1.14 -1.01  
3 -0.46 -1.72 0.76 -0.02 -1.21 -0.40  
4 0.46 0.73 0.99 0.86 -0.16 0.44  

  
 DBH 
  

  
GLOM 
Entropy 

GLCM-
Variance     HT     

1 0.01 -0.02    -0.01 -0.93 -0.71 
2 -0.52 1.11    -0.99 -0.20  
3 -0.01 0.02     0.01 -0.63   

 MTH 
  

  
GLOM-
Entropy 

GLCM-
Entropy 

GLCM-
Variance

GLCM-
contrast HT    

1 0.43 -1.17 -0.80 -0.98 -0.47 -0.37 -0.16 
2 -0.30 -0.93 -0.28 0.69 -0.58 0.36  
3 0.16 -0.29 -1.12 -0.17 0.99 -0.29  

  
BA 
  

  
GLOM-
Variance 

GLCM-
Variance     HT     

1 -0.25 -0.50    -0.67 -0.74 -0.65 
2 1.09 -1.07     0.77 -0.30   

Volume 
 

  
GLOM-
Entropy 

GLOM-
Variance

GLCM-
Entropy 

GLCM-
Variance HT    

1 -0.90 -0.46 0.83 1.37 -1.12 0.42 0.14 
2 -0.86 -0.66 2.18 1.38 1.35 0.39   

Table 6.9 shows the correlation coefficient and the root mean square error (RMSE), with 

the values of RMSE also being expressed as % of the mean of the observation values, 

between each measured forest structural attribute and the associated estimated forest 

structural attribute for training, test, and pooled datasets. Table 6.9 illustrates that the 

ANN models, which are developed using statistical texture features computed from 

multispectral IKONOS data, produced acceptable models for the estimation of forest 

structural attributes. The relationship between observed and predicted values based on the 

pooled dataset was r = 0.83, 0.83, 0.93, 0.94, and 0.94, while their respective RMSE 

values were 140 spha, 1.51 cm, 1.60 m, 2.23 cm2, and 42.82 cm3 for SPHA, DBH, mean 

tree height, basal area, and volume, respectively. The corresponding values for the test 

dataset were 0.83, 0.85, 0.94, 0.94, and 0.95 (correlation coefficients), with RMSE values 
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of 195 spha, 1.46 cm, 1.92 m, 1.59 cm2, and 44.74 cm3, respectively. The similarity 

between the coefficients of the pooled and testing datasets is indicative of the strength of 

the developed models. 

Table 6.9 further serves to illustrate that the ANN models, which are developed using 

statistical features computed from panchromatic IKONOS imagery, arguably produced 

the best models for the estimation of forest structural attributes. The relationships 

between observed and predicted values using the pooled dataset were r = 0.99, 0.95, 0.95, 

0.93, and 0.98, while their RMSE values were 86 spha, 0.88 cm, 1.25 m, 2.34 cm2, and 

22.79 cm3 for SPHA, DBH, MTH, BA, and volume, respectively. Application of the test 

dataset resulted in correlation coefficients of 0.95, 0.99, 0.93, 0.93, and 0.99; the 

corresponding RMSE values were 90 spha, 0.86 cm, 1.43 m, 2.54 cm2, and 30.13 cm3, 

respectively. These results also bode well in terms of relative strength of the models 

developed.  
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Table 6.9 ANN model performance for forest structural attribute estimation using multi-
spectral and panchromatic IKONOS imagery 

Model Data 
Multispectral IKONOS Panchromatic IKONOS 

N Corr.Coef. RMSE ARMSE% Corr.Coef. RMSE ARMSE%

  
SPHA 
  

Training  0.83 123 11.1 0.90 96 8.18 19 
Testing 0.83 195 17.4 0.95 90 9.14 9 
Cross 
validation 0.82 105 10.3 0.94 47 4.93 9 
Pooled 0.83 140 12.9 0.99 86 7.89 37 

  
DBH 
  

Training  0.86 1.3 7.4 0.93 1.04 6.25 19 
Testing 0.85 1.4 8.4 0.99 0.86 4.98 9 
Cross 
validation 0.84 1.9 11.4 0.99 0.37 2.14 9 
Pooled 0.83 1.5 8.7 0.95 0.88 5.07 37 

  
MTH 
  

Training  0.93 1.4 6.8 0.95 1.10 5.11 19 
Testing 0.94 1.9 9.0 0.93 1.43 6.37 9 
Cross 
validation 0.95 1.5 6.8 0.95 1.37 6.10 9 
Pooled 0.93 1.6 7.4 0.95 1.26 5.81 37 

  
BA 
  

Training  0.94 2.3 8.8 0.91 2.64 9.48 19 
Testing 0.94 1.6 5.9 0.93 2.54 9.78 9 
Cross 
validation 0.94 2.5 9.3 0.99 1.16 4.46 9 
Pooled 0.94 2.2 8.3 0.93 2.34 8.71 37 

  
Volume 
  

Training  0.92 39.9 15.5 0.99 10.97 4.32 19 
Testing 0.95 44.7 16.7 0.99 30.13 9.63 9 
Cross 
validation 0.96 46.7 21.2 0.95 31.20 9.97 9 
Pooled 0.94 42.8 16.3 0.98 22.80 8.68 37 

Figure 6.9 shows the comparison between models developed using statistical texture 

features calculated from multispectral and panchromatic IKONOS imagery. The models 

developed for the estimation of SPHA, DBH, MTH and volume using statistical texture 

features computed from panchromatic IKONOS returned relatively higher correlation 

coefficients when compared to the corresponding models computed from multispectral 

IKONOS imagery. Models for the estimation of BA, using variables computed from 

either multispectral or panchromatic IKONOS imagery, resulted in similar correlation 

coefficients.      
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Figure 6.9 Comparison of models developed using statistical texture features computed 
from multispectral and panchromatic IKONOS imagery 

6.4.4 Comparison of the MLR and ANN 

Figure 6.10 (a) shows the performance comparison between MLR and ANN models 

developed using statistical texture features computed from multispectral IKONOS data. 

Figure 6.10 (a) illustrates that higher ARMSE% values were observed in the case of the 

MLR models for the estimation of SPHA and MTH; increases of 1.97% and 2.19% in 

ARMSE% were observed for SPHA and MTH, respectively, when comparing MLR to 

ANN models. Conversely, slightly higher (0.87%) ARMSE% values were observed for 

the ANN models in the cases of DBH and volume estimations. The ARMSE% of MLR 

and ANN models for the estimation of BA was the same, while they are below 10%.  

Figure 6.10 (b), also shows the performance comparison between MLR and ANN 

models, developed using statistical texture features computed from panchromatic 

IKONOS data. Higher ARMSE% values were observed for the MLR models in the cases 

of SPHA, MTH, and volume estimations. Increased errors of 12.54%, 7.19%, and 

27.96% were observed for SPHA, MTH, and volume, respectively, when comparing 

MLR to ANN models. However, slightly higher ARMSE% outcomes were observed for 

estimation of DBH (0.79%) and BA (1.10%) when applying ANN instead of MLR 

models.  
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Figure 6.10 Comparison of models developed using multiple linear regression and 
artificial neural network statistical methods for the estimation of forest structural 
attributes computed from multispectral (a) and panchromatic (b) IKONOS imagery 

6.5 Discussions  

6.5.1 Forest attribute estimation from multispectral IKONOS imagery 

Band 3 (red) and Band 4 (NIR) of IKONOS imagery provided useful information for the 

estimation of forest structural attributes. For example, the red band generated the most 

useful GLCM statistical texture features (correlation and entropy variables) for the 

estimation of volume from the multispectral IKONOS bands. GLCM statistical texture 

features (angular second moment energy and correlation), computed from the red and 

NIR bands, respectively, also resulted in the most suitable variables for the estimation of 

SPHA. Furthermore, the entropy and mean of GLCM statistical texture features 

computed from red and NIR bands, respectively, returned the highest coefficient of 

determination for the estimation of DBH. In yet another important example, GLCM 

statistical texture features, e.g., angular second moment, correlation, and entropy, 

computed from the red band and the second moment computed from NIR band, resulted 

in the highest coefficient of determination for the estimation of basal area. Finally, the 

GLCM statistical texture features of angular second moment and entropy, computed from 

the NIR band, and entropy and variance computed from the red band returned the highest 

coefficient of determination for the estimation of mean tree height. The structurally-

relevant information embedded in the red and NIR spectral regions has been confirmed 
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results from various other studies, e.g., Foody et al. (1997), Häme et al. (1997), Eklundh 

and Olsson (2003), Xu et al. (2003), Lu et al. (2004), Ingram et al. (2005), Heiskanen 

(2006), van Aardt et al. (2007) 

A key observation from this study, is that strong relationships between IKONOS-derived 

statistical texture features and field-measured forest structural attributes provide evidence 

that important plantation structural information can be extracted from remote sensing 

imagery using textural features. This adds to previous studies which showed that when 

only IKONOS spectral information was used, e.g., band reflectance and/or vegetation 

index data, the highest R2 values for the estimation of forest structural attributes varied 

from 0.30 to 0.66 (vanAardt et al., 2007).  This study contributed to the body of evidence 

that conclusively shows that statistical texture features can improve the estimation 

accuracy for forest structural attributes. Similar results on the importance of texture for 

estimating forest structure attributes from high spatial resolution image data have been 

documented in other studies, e.g., Coops and Culvenor (2000), Franklin et al. (2001), 

Kayitakire et al. (2006), and Johansen et al. (2007).  

All five forest variables were accurately estimated when using multiple regression 

models. The highest R2 value was achieved for volume, while the lowest was for SPHA; 

however, the RMSE% returned for volume was the highest at 16.1%. It is interesting to 

note that mean tree height resulted in the lowest RMSE% of 7.71%. This corresponds 

with results from Kayitakire et al. (2006).   

6.5.2 Forest attribute estimation from panchromatic IKONOS imagery 

Results from the stepwise selection algorithm indicated that the best relationships were 

achieved through a combination of GLOM and GLCM statistical texture features in a 

multi-regression model. This demonstrated that the combination of the different 

information sources i.e. GLOM and GLCM provided unique information towards the 

estimation of forest structural attributes at high levels of accuracy. However, one of the 

aims of this study was to provide models that had estimation errors that addressed 

requirements from plantation forest managers. Thus the GLOM features and GLCM 
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features were used collectively for developing multi-regression and ANN models for the 

estimation of forest structural attributes.   

Sensitivity analysis also showed that GLCM variance and GLCM entropy statistical 

features resulted in improved relationships with forest structural attributes, when 

compared to alternative statistical texture features. A number of studies, including 

Franklin et al. (2001), Rao et al. (2002), Coburn and Roberts (2004), and Kayitakire et al. 

(2006), have mentioned the value that variance and entropy have when gauging forest 

structure using panchromatic IKONOS imagery.  

6.5.3 Comparison between multispectral and panchromatic IKONOS 
imagery 

Multiple linear regression models resulted in strong correlations between selected 

statistical texture features and forest structural attributes and, thus, are potentially 

promising for operational forest structural attribute estimation. The panchromatic data 

resulted in increased estimation accuracy of the SPHA, DBH, MTH, BA, and volume by 

19.7%, 23.8%, 5.5%, 0.1%, and 0.2% respectively as compared with the multispectral 

data. Models based on the panchromatic IKONOS data provided the highest estimates of 

forest structural attributes (Tables 5 and Table 9). The possession of high spatial and 

wide wavelength range leads the potential applications of panchromatic IKONOS data 

for the estimation of forest structural attributes. Studies by Franklin et al. (2001) and 

Kayitakire et al. (2006) found that panchromatic IKONOS image effectively estimated 

forest variables. A study by Hyyppä et al. (2000) furthermore asserted that the accuracy 

of forest structural variable estimations increase with an increase in the spatial resolution 

of the sensor used. 

6.5.4 Comparison between a multiple linear regression and artificial neural 
network  

Although the results from multiple linear regression models exhibited strong correlations 

between selected statistical texture features and forest structural attributes, the ANN 

approach was robust across all forest structural attributes and provided more estimation 

power than linear regression models. Using a neural network, the root mean square error 



 106

for the forest structural attribute estimation models was reduced by almost half in certain 

instances. The strong and significant relationships between estimated and actual field 

measured forest structural attributes supports the utility of ANN for the estimation of 

forest structural attributes from statistical texture features in this study (refer to Figure 

6.10). The observed improved performance of the ANN approach over the MLR 

approach was attributed mainly to the ability of ANN’s to capture non-linear 

relationships (Ingram et al. 2005). Their intrinsic non-linear structure makes them 

particularly suitable as fitting tools in forest structure applications.    

6.6. Conclusions 

Two independent investigations were conducted during the course of this study; the first 

investigation used statistical texture features computed from multispectral IKONOS 

imagery, while the second investigation used statistical texture features computed from 

panchromatic IKONOS imagery, both for the estimation of forest structural attributes. 

Multiple linear regression and artificial neural network statistical approaches were 

employed to measure the relationship between field measured forest structural attributes 

and statistical texture features computed from the multispectral and panchromatic 

IKONOS imagery.  

The study illustrated that estimation of forest structural attributes using statistical texture 

features, computed from panchromatic IKONOS imagery, have significant potential. The 

model developed using the artificial neural network method for the prediction of stems 

per hectare, diameter at breast height; mean tree height, basal area, and volume were 

better performed for estimating forest structural attributes for the study site.  

This study demonstrated the potential of remote sensing high spatial resolution imagery 

(IKONOS) for Eucalyptus plantation forest structural attribute prediction in the temperate 

climatic zone of South Africa. However, further research is required to document the 

performance of the retrieval under different environmental conditions and topographical 

changes, as well as for other species.  
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CHAPTER 7 

Individual tree detection based on variable and fixed window 
size local maxima filtering applied to IKONOS imagery for 
even-aged Eucalyptus plantation forests in KwaZulu-Natal, 

South Africa 
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Abstract. Detection of individual trees remains a challenge for forest inventory efforts in 

especially homogeneous, even-aged plantation scenarios. Mainly detection of individual 

trees using local maxima filtering was applied to airborne imagery, where point spread 

function and signal-to-noise ratio are smaller comparing to satellite-borne imagery. This 

led to the development of a novel approach to local maxima filtering for tree detection in 

plantation forests in KwaZulu-Natal, South Africa, using satellite remote sensing 

imagery. The developed approach is based on Gaussian smoothing for noise reduction 

and image classification, i.e. natural break classification to determine the threshold for 

removing pixels of extremely bright and dark areas in the imagery. These pixels are 

assumed to belong to the background and hinder the search for tree peaks. A 

semivariogram technique was applied to determine variable window sizes for local 

maxima filtering within a plantation stand. A fixed window size for local maxima 

filtering was also applied using pre-determined tree spacing. Evaluation of the various 

approaches was based on aggregated assessment methods. The overall accuracy using a 

variable window size was 85 % (RMSE = 189 trees), whereas a fixed window size 

resulted in an accuracy of 80 % (RMSE = 258 trees). The approach worked remarkably 

well in mature forest stands as compared to the young forest stands. These results are 

encouraging to temperate-warm climate plantation forest companies, who deals with 

even-aged, broadleaf plantations and forest inventory practices that require assessment at 

the age of eight years, or one year before harvesting.    

7.1 Introduction  

The structural attribute of interest in this study is stems per hectare (SPHA). SPHA forms 

the basis of forest inventory, e.g., scaling of tree-level volume and biomass estimates to 

larger areas, and as such is very important to forest management decision making (Leckie 

et al., 2003). The most widely used method for deriving forest structure information 

currently entails the utilization of sampling designs with often randomly selected plots. 

This leads to derivation of the final forest stand parameters based on statistical 

extrapolation methods (Esler, 2004). However, even though field-based approaches are 

effective in terms of accuracy and precision of estimates, such approaches typically are 

costly, which leads to infrequent assessment. Remote sensing approaches, on the other 
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hand, provide potential low-cost alternatives to field based assessment, but require the 

development of methods for accurate extraction of the required information (Wulder, 

1998; Hyyppä et al., 2000; Boyd and Danson, 2005). A specific piece of the forest 

inventory puzzle is accurate assessment of SPHA. This has lead to the extraction of 

individual tree locations using high spatial resolution remote sensing imagery, an 

alternative to remote sensing empirical approaches (Roberts et al., 2007). Research on the 

topic of individual tree detection, which became possible with the advent of very high 

spatial resolution imagery, remains a relatively new focus in the remote sensing 

community.  

The basic theory behind tree detection techniques is that variations between image 

brightness values at tree crown apexes and decreasing brightness towards the crown 

edges can be used to delineate tree crowns (Brandtberg, 2002; Culvenor, 2002; Leckie et 

al., 2003; Erikson and Olofsson, 2005). Accurate estimation of individual tree location 

and extent ultimately can provide estimates of SPHA and spatial patterns that are in turn 

useful as inputs to growth modelling and merchantable volume estimation models.  

A variety of approaches to tree detection exist.  The template matching method, where a 

series of models are constructed to characterize what a tree looks like at different 

locations in an image, takes into consideration the tree’s geometric and radiometric 

properties. Once this information has been developed, a moving-window correlation 

procedure is implemented to search for the best matching facet, i.e., where trees are most 

likely to occur (Pollock, 1999; Larsen and Rudemo, 1998; Quackenbush et al., 2000; 

Olofsson et al., 2006). The valley-following method is based on a set of predefined rules 

that are required before the actual crown-following takes place (Gougeon, 1995; 

Culvenor, 2002; Persson, et al., 2002). Tree peaks are identified by following the local 

upward gradient from a given pixel to the brightest local value. In contrast, the edge 

detection method evaluates the occurrence of edges over several image scales to define a 

region in which the brightness pixel value is taken as a representative location of the tree 

peak (Brandtberg and Walter, 1998). Finally, local maxima filtering (Wulder et al., 2000; 

Pouliot et al., 2002; Wang et al., 2004; Wulder and White, 2004; Korpela et al., 2006), 
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where the maximum pixel brightness value is assumed to represent the tree peak, applies 

a moving-window of a specified window size.  

Promising results for detection of individual trees in plantation forests have been 

reported, with local maxima approaches used in Canada (Wulder et al., 2000; Wulder et 

al., 2002; Wulder and White, 2004) and Finland (Pitkänen, 2001). Wulder et al. (2000) 

used a 1 meter spatial resolution image, which was simulated from the six channels of the 

Multi-Detector Electro-Optical Imaging Sensor (MEIS-II), for the detection of tree 

location in British Colombia, Canada for Douglas fir (pseudotsuga menziesii) and red 

cedar (Thuja plicata) species. The local maximum filtering approach included smoothing 

and a fixed window-size was applied. The method showed that 64 % of trees could be 

correctly located, while a 22 % commission error and 36 % omission error was observed. 

The authors included a variable window size, defined by image spatial structure, at the 

same study site for the same imagery. They reported an overall accuracy of 67 % and a 

decrease in commission error to 11 % (Wulder et al., 2002). Wulder and White (2004) 

also compared airborne (MEIS-II) and satellite (IKONOS) high spatial resolution image 

for detection of individual trees in British Colombia, Canada. The results of the local 

maxima approach showed that although the IKONOS data accurately identified 85 % of 

individual trees in the study area, the commission error was large at 51 %. When 

compared to an overall accuracy of 64 % for the MEIS-II data with a commission error of 

22 %, an error of 51 % may deter forest managers from using this approach. Pitkänen 

(2001) used aerial-image data of 75 cm spatial resolution detection of tree location in 

southern Finland for Scots pine (Pinus sylvestris) species. Gaussian image smoothing and 

binarization were introduced as pre-processing steps. Smoothing was used for noise 

reduction, while binarization was used to restrict the local maxima search to the bright 

areas of the images that were assumed to be tree crowns. The approach yielded 

acceptable results in forest stands with a low density, with 95 % of the trees being 

detected in these forest stands, whereas only 54 % were detected in high density forest 

stands.  

Studies such as those described above promise well for the application of high spatial 

resolution remote sensing data to the detection of individual trees. However, conclusive 



 117

results are still lacking in temperate-warm climates for broadleaf, even-aged plantations 

scenarios. In this study we therefore investigated the local maxima filtering approach to 

this problem in even-aged South African Eucalyptus plantations. Local maxima filtering 

makes an assumption that the peak of the crown reflectance is located at, or very close to, 

the treetop and that it has relatively high spectral reflectance at this location and is 

surrounded by a dark background. We hypothesised that the probability of finding the 

peak of a tree crown could be increased by removing the extreme bright and dark pixels 

from the imagery before variable window local maxima filtering.  

In this study, local maxima filtering methods introduced by Wulder et al. (2000) were 

expanded to improve tree detection using high spatial resolution satellite remote sensing 

imagery (panchromatic IKONOS imagery) in Eucalyptus plantations. The aims of this 

study were (i) to investigate natural break classification, which was carried out prior to 

the local maxima tree detection in order to eliminate non-tree crown area from the 

imagery and (ii) to compare the results from variable window size local maxima filtering 

to those obtained from fixed window size local maxima filtering. The variable window 

size was defined using voronoi diagrams and average semivariance range, while a priori 

tree spacing information was used in the case of a fixed window size. 

7.2 Materials and Methods  

7.2.1 Study area 

The study area is located in the southern KwaZulu-Natal province of South Africa, also 

known as the KwaZulu-Natal Midlands. The sites chosen for this research are all 

managed by MONDI-SA Forest Company. Geographically, the site lies between 29° 43' 

4'' and 29° 56' 49'' South and 30° 1' 43'' and 30° 17' 26'' East, as shown in Figure 5.1. The 

terrain in the study area ranges from gently undulating to highly dissected, strongly 

rolling, and hilly topography. Elevations range between 800 and 1400 m above-mean-

sea-level. The geology consists of sandstone and clay formations, which have resulted in 

sandy clay to sandy clay loam soils. Plantation forestry is a major land use in the study 

area due to the suitable climate and soils. Rainfall ranges from 820 to 1300 mm, but 
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averages 1000 mm per annum mostly falling between October and April. Temperatures 

vary between 24 ºC to 26 ºC in summer, but drop to between 5ºC and 14 ºC in winter.  

 
Figure 7.1 The location of the study sites in KwaZulu-Natal, South Africa 

7.2.2 Field data  

The study was based on data from a conventional forest inventory, carried out by 

MONDI-BP. The field data collection was conducted in October 2006 in 18 Eucalyptus 

plantation stands. Conventional forest inventory was based on sample plot measurements 

and visual estimation. The centre of each circular, 15 m radius plot was located using a 

compass and distance tape, relative to an accurate differentially-corrected global position 

systems (GPS) location external to the stand, in order to avoid within-stand GPS multi-

path effects. Plot area was adjusted for slope in area of non-flat topography using a slope 

reading taken from a Vertex III hypsometer. Plots were subsequently mapped and spatially 

referenced in a Geographic Information System (GIS) using these data (i.e., GPS readings, 

bearings, and distance). Diameter at breast height (DBH; cm), total tree height (m), and stems 

per sampled plot were obtained and SPHA were computed for each stand.    
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The descriptive statistics from the field data are depicted in Table 7.1. The average stem 

per hectare was 1085 SPHA with a standard deviation of 253 SPHA. The mean tree 

height was 21.1 m with standard deviation of 4.3 m. The mean DBH was 17.2 cm, 

whereas the smallest tree had a DBH of 12.2 cm.  

Table 7.1 Descriptive statistics of tree-level plantation structural attributes  
Character  SPHA  DBH (cm)  Tree height (m)  

Number-stands 16 16 16 

Mean value  1085 17.2 21.1 

Standard Deviation  253 3.1 4.3 

Minimum Value 598 12.2 13.9 

Maximum Value 1522 29.4 36.1 

7.2.3 Remote sensing data 

The panchromatic IKONOS images used in this study were acquired on October 2006. 

Detailed information about the acquisition configuration is reported in Table 7.2.  

Table 7.2 IKONOS image characteristics  
Characteristic Specifications 

Date/time(GMT) 2006-10-23/08:17 

Sun angle elevation 52.875° 

Sun Angle azimuth 41.4681° 

Sensor angle elevation 66.99317° 

Sensor angle azimuth 359.97° 

Spectral bands wavelengths 0.45 - 0.9 µm 

The imagery was geo- and ortho-rectified and converted to Universal Transverse 

Mercator (UTM; zone 36) projection and WGS 84 datum. A total of 48 ground control 

points were used for this purpose. A nearest neighbour re-sampling technique was used 

and an overall total root mean square error of less than half a pixel was obtained. 
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7.2.4 Tree detection procedures  

Panchromatic IKONOS imagery was employed in this study for the detection of trees and 

subsequent estimation of stems per hectare, using local maxima filtering. The intent was 

not to further develop local maxima filtering, which has been well-researched in the past 

(Wulder et al., 2000; Wulder and White, 2004). We chose to rather focus on its 

application to even-aged, broadleaf Eucalyptus plantations, evaluate variations in 

algorithm inputs (window size determination), and apply local maxima filtering to high 

spatial resolution satellite imagery, as opposed to airborne data.   

The only modification was introduced in the pre-processing stage of the imagery. Image 

pre-processing is a flexible stage where the user enhances the image data to maximize 

crown distinction from background cover types (Lillesand et al., 2004) and thereby 

optimizes the performance of local maximum filtering. The choice of enhancements 

depends on the imagery and requires some experimentation (Ju et al., 2005). We first 

smoothed the images using Gaussian smoothing for noise reduction. Secondly, image 

classification was applied using natural break classification. This was performed to 

determine the required threshold for cropping pixels of extreme bright and dark areas in 

the imagery, assumed to be background, and thus restrict the search for the local maxima. 

Finally, the locations of trees were extracted using two filtering window sizes. The first 

filtering window size was based upon the average semivariance range at each pixel. The 

second was based on the spacing between trees during the establishment phase of each 

plantation; this information is readily available from the MONDI-BP database, as it is the 

case for most well-managed plantations. The plantation compartments in the image were 

subdivided using voronoi polygon before semivariance calculation. A systematic 

framework of our approach is presented in Figure 7.2. 

 

 



 121

 

 

 

 

 

 

 

 

 

Figure 7.2 Diagram of the processing and analysis flow used in this study 

7.2.4.1 Gaussian image smoothing 

Image smoothing with two dimensional isotropic Gaussian kernels was applied to the 

panchromatic IKONOS imagery. The Gaussian smoothing filter results in a fuzzy image 

due to the removal of fine details and noise (Dralle and Rudemo, 1996). This filtering 

method uses a bell-shaped Gaussian distribution. Thus, the filter reduces the noise level 

in the image and also raises the radiometric values of the tree peaks, which theoretically 

results in reduced errors of commission (overestimation). Smoothing based on a Gaussian 

core is driven by two parameters, namely the standard deviation and window size 

(Pitkänen, 2001). In this study, standard deviation (δ) and window size were set to 1 and 

3 x 3 pixels, respectively. The equation for Gaussian smoothing is: 

22
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where i and j represent the distance in pixels between the centre of the core and a pixel in 

the 3 x 3 window, and δ is the standard deviation, which determines the form of Gaussian 

distribution.   
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7.2.4.2 Threshold definition  

Major portions of the plantation stand images are comprised of tree crown, shadow, and 

bare soil (or under-storey vegetation). This leads to the natural break classification step 

that seeks to separate trees from their background. Therefore natural break classifications 

were used to define the threshold borderline between tree crowns and non-vegetation 

areas (such as shadows). This threshold was used to exclude non–tree pixels/values, or 

background, from the image.  

Natural break classification uses an iterative algorithm to optimally assign data to classes, 

such that the variances within all classes are minimized, while the variances among 

classes are maximized. Accordingly, experimental tests were conducted on natural break 

classification using four, five, six, seven, and eight classes, with the intention of 

exploring the appropriate number of classes required to determine the threshold. This was 

followed by cropping the first and the last classes, which are assumed to be background 

(under-storey vegetation) and shadow reflection, for each experimental natural break 

classification test. Thus, the natural break method of classification helps to estimate a 

suitable “tree-no tree” threshold value.  

7.2.4.3 Variable Window size  

Voronoi polygons were first used to address the determination of variable window size 

within plantation stands for this study. Each plantation stand was divided into smaller 

polygon units using voronoi polygons. Semivariance was employed afterwards to 

determine the appropriate window size for each polygon. This approach was developed 

with the intention of capturing small variability within the forest stands. The window size 

computed using semivariance for each voronoi polygon is referred to as variable window 

size (VWS) in further discussions.  

Semivariance is a well-known tool in geo-statistics and measures the spatial continuity of 

a feature over a range of space (Franklin et al., 1996; Johnston et al., 2001). For the 

purposes of remote sensing, Curran (1988) describes semivariance as the relationship 

between a pair of pixels found h pixels apart, recorded as the average squared difference 
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between all pixel pairs. The semivariogram (Equation 2) is a graphical representation of 

the average semivariance of several pixel pairs at each lag h and displays the spatial 

variability within the data set by capturing the variance between spatially separated pixels 

(Woodcock et al., 1988; Cohen et al., 1990; Wulder et al., 2000).  

( ) ( )[ ]∑
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2

2
1)(  ……….equation 2 

where xi is a data location, h is a vector of distance, Z (xi) is the data value of a specific 

attribute at location xi, and m is the number of data pairs for a certain distance and 

direction of h units apart. A typical example of the semivariogram form is illustrated in 

Figure 7.3. 

Figure 7.3 Illustration of a theoretical semivariogram diagram (Goovaert, 1997) 

The sill is the plateau where the semivariogram levels off (slope = 0) and indicates the 

maximum variability between pixels. The nugget is the vertical discontinuity at the 

origin. Finally, the range is the distance at which the semivariogram reaches the sill, or at 

which two data points are uncorrelated.  

We adopted the bounded semivariogram model with a maximum number of lags set to 

100, or the maximum radius polygon in ArcGIS 9.1 (ESRI, 2007). The lag size was set to 

equal the employed image pixel size, i.e., 1 m. Curran and Atkinson (1998) stated that the 

reliability of semivariance Y(h) degraded with increasing lag (h). Furthermore, in this 

Structured 

Nugget 

Range Sill = structured 
      variable + Nugget 



 124

study, the effect of anisotropy was controlled by computing average omni-directional 

semivariance from the central pixel. Computing an average range value for each pixel in 

the image reduces problems that arise when attempting to select a representative single 

transect origin and angle (Wulder et al. 1998). The semivariance range values were then 

mapped to window size. Finally, local maxima filtering was carried out in ArcGIS 9.1 

(ESRI 2007) using the average semivariance range to define the input window size 

parameter. A fixed window size (FWS) was also applied in this study using pre-

determined spacing as an input window size parameter to the local maximum filtering 

algorithm. 

7.2.6 Accuracy assessment of tree detection 

Evaluation of classification-type approaches is typically based on aggregated assessment 

methods. These methods average the detected data and reference data within a given area 

for comparison (e.g., the number of trees detected per hectare). Accurate individual tree 

location results are preferred as more detailed information is provided for inventory and 

further analysis; however, this is difficult to achieve for a large study area. Aggregated 

estimates generally result in higher accuracies than individual estimates, as errors of 

omission and commission in tree detection tend to be averaged out during the aggregation 

process. Detection accuracy in this study was determined by comparing the field 

measured trees to those detected in the panchromatic IKONOS. Root mean square error 

(RMSE) and relative RMSE% were used for this purpose: 
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where: n is the number of observations, pi is the predicted value from tree detection 

method, oi represents the observed values, and ō observed mean.  
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7.3 Results and Discussion 

Natural break classification based on six classes was found to be most appropriate 

(Figure 7.4) during the classification assessment, even though underestimation occurred. 

Natural break classifications with fewer than six classes, i.e., four and five classes, were 

found to distinctly underestimate SPHA. The two opposite threshold values were close to 

the median of the histogram in these cases and resulted in a narrow range of values used 

for local maxima filtering. This in turn led to underestimation SPHA. On the other hand, 

natural break classification with more than six classes, i.e., seven and eight classes, 

resulted in overestimation of SPHA (Figure 7.4). In these cases, threshold values were 

close to the minimum and maximum values of the histogram. As a result, a wide range of 

values, including shadow pixel values, were computed for local maxima filtering.   
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Figure 7.4 Estimated SPHA, as a function of forest stands age, at different numbers of 
classes for natural break classification 

Results obtained from the resultant local maxima filtering, based on VWS and FWS, are 

summarized in Table 7.3. The accuracy of both approaches was higher for mature 

plantation stands as opposed to younger stands. For example, in the case of the VWS 

approach, the accuracy achieved for young plantation stands, defined as less than six 
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years old, was 75 %. This was in stark contrast to the observed 90 % accuracy achieved 

for mature plantation stands, defined as older than six years. The same trend was 

observed in the case of the FWS approach. The accuracy for the young plantation stands 

was 67 %, while the accuracy achieved for the mature stands was 88 %. This increase in 

accuracy with increasing stand age was attributed to increasing between crown gaps due 

to tree mortality, the result of competition for resources. This finding compared 

favourably with the previously published research by Wulder et al. (2000) and Pitkänen 

(2001). We therefore concluded that local maxima filtering methods were able to identify 

trees in low density forest stands (mature stands), due to the background being clearly 

distinguishable from the crown. This characteristic resulted in accurate estimations of 

SPHA using panchromatic IKONOS imagery, especially using the VWS in mature 

stands. This result is encouraging to the South African forest industry, since forestry 

inventories are usually conducted at age eight, or one year before harvesting.         

Table 7.3 Results of SPHA estimation using VWS and FWS as inputs to local maxima 
filtering at different plantation stand ages 
AGE 

(years) 

Observed 

SPHA VWS SPHA FWS SPHA 

Accuracy 

VWS (%) 

Accuracy 

FWS (%) 

4 1275 956 857 75 67

5 1214 972 827 80 68

6 1239 1074 1046 87 84

7 905 796 808 88 89

8 988 908 869 92 88

9 997 898 879 90 88

Plantation forest management requires that inventory errors are minimised, but still 

requires a choice between whether or not a small number of falsely identified trees 

(commission errors) or missed trees (omission errors) are allowable. We chose to 

optimise the filtering approach to minimise errors of commission. However, this resulted 

in many small trees not being identified, due to the chosen optimization strategy. 

Ultimately, both the VWS and FWS approaches exhibited underestimation throughout 

the plantation stands (Figure 7.5). The developed approach is based on the assumption 
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that, although both types of error are unwanted, the exclusion of a small number of 

relatively small trees impacted the calculation of per-hectare volume less than would the 

overestimation of tree numbers. 

It is interesting to note from Figure 7.5, that the difference between observed and 

predicted stems per hectare, especially when using VWS, constantly decreased with the 

plantation stand age. We recommend that a correction factor is applied in such cases to 

achieve a 1:1 relationship between observed and predicted SPHA, which would be an 

interesting avenue for further research.  

The underestimation of trees was attributed to a number of plantation growth dynamics. 

Tree gap size within a stand often reflects changes in stand age, where young stands 

typically have fewer gaps between trees and SPHA is equal to that at establishment of the 

stand. Young plantation stands are known to exhibit more homogeneous and smooth 

canopy surfaces and it is thus unreasonable to expect that a natural break classification 

and also a local maxima filtering technique from 1-meter spatial resolution would be able 

to accurately distinguish separate tree objects. We therefore concluded that 1 m spatial 

resolution panchromatic imagery is perhaps too coarse to accurately detect individual tree 

crowns of even-aged Eucalyptus-type species at young ages. The mature forest stands, 

with an observed accuracy level of 90%, appeared to have a more pronounced between-

tree stand structure, which proved amenable to local maxima filtering based on high 

spatial resolution panchromatic space-borne imagery. 
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Figure 7.5 Estimated SPHA, as a function of forest stands age, using VWS and FWS 
window size inputs to local maxima filtering 

Table 7.4 shows a summary of overall percentage accuracy results achieved using the 

VWS and FWS window size approaches for panchromatic IKONOS imagery. Estimation 

of SPHA based on the VWS approach exhibited a slightly higher accuracy of 85% 

(RMSE = 189 trees/ha; relative RMSE% = 17%) than that found for the FWS approach 

(accuracy = 80%; RMSE = 258 trees/ha; relative RMSE% = 23 %). We concluded that, 

overall, the adaptations to the local maxima filtering approach resulted in good accuracies 

for temperate-warm, even-aged, homogeneous Eucalyptus plantations. As comparison, 

Wulder and White (2004) reported an overall accuracy of 85% and an overestimation 

error of 51% for individual tree detection in plantation forest stands using IKONOS 

panchromatic imagery. These results imply that the method developed in this study could 

be used as a tool for SPHA estimation, especially in older pulpwood plantation stands, 

i.e., approximately one year before harvesting.   
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Table 7.4 Overall accuracies for SPHA estimation using local maxima filtering based on 
the VWS and FWS approaches to window size selection 
 Accuracy (%) RMSE %RMSE 

VWS 85 189 17

FWS 80 258 23

7.4 Conclusions 

The methods used in this study for the estimation of SPHA constitute an amended and 

arguably improved approach to the complex issue of forest structural attribute estimation 

using satellite remote sensing imagery in plantation forestry. The approach, namely local 

maxima filtering based on window size determination from semivariance calculations, 

worked remarkably well for the detection of trees in “mature” pulpwood plantation 

stands. It performed slightly worse in younger plantation stands, which often have a 

denser, smoother canopy and resultant decrease in between-tree spectral separation.  

The approach to individual tree detection consisted of first reducing noise and isolating 

the tree crowns from the background vegetation. This was achieved by using Gaussian 

smoothing and natural break classification, respectively. Secondly, the plantation stands 

were divided into smaller areas using voronoi polygons, prior to the application of 

variable window size computation within each forest stand. Finally, local maxima 

filtering was applied for the detection of tree peaks; the window size, required for the 

filtering process, was based on semivariance calculations (variable window size) and pre-

determined tree spacing information (fixed window size). These approaches were tested 

on 1 m spatial resolution panchromatic satellite imagery.  

This research has demonstrated that SPHA can be successfully estimated from 

panchromatic IKONOS imagery by applying the developed methodology. The level of 

success appeared to be dependent mainly on tree density, which is a function of 

plantation stand age. The between-tree spacing in young plantation stands result in 

limited to non-existent distinct spectral brightness valleys between trees in the 

panchromatic imagery. As such, the method proved to be more adept to SPHA estimation 

in mature plantation stands, which typically exhibit increased between-tree spacing due to 
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mortality and resource competition. The comparison between the VWS and FWS window 

size selection approaches showed that the VWS technique was superior to the FWS 

technique, with a reported RMSE difference of 69 trees/ha. The relative RMSE% 

difference was 6%, with VWS being superior at a relative RMSE% of 17%. The resultant 

ability of the VWS technique to produce superior tree density estimates was attributed to 

its aptitude to directly estimate the size of features within stands, rather than relying on a 

priori tree spacing information.  

The main benefit of the proposed method is that estimation of SPHA would be more 

accurate and timely than that of conventional inventories, even being less precise. 

However, even though the reported relative RMSE percentages are marginally higher 

than acceptable values (± 10%), these results bode well for the application of synoptic 

and accessible satellite imagery to forest inventory. In addition, a variety of additional 

management information could be synthesized from the developed approach, such as 

forest gap size and distribution. Variation in the image platform and spatial resolution, in 

addition to viewing angle and sun angle, are likely to limit the ability to achieve 

repeatable results in multi-temporal imagery. Thus, further research is recommended to 

test and extend the results of this study to a wider range of plantation forest 

environments. 
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CHAPTER 8 

Conclusions and Recommendations 

This study examined the potential of optical remote sensing for estimating stems per 

hectare, diameter at breast height, tree height, basal area and volume of the even-aged 

Eucalyptus forests in the warm temperate climate of KwaZulu-Natal in South Africa. 

More specifically, the study focused on investigating the utility of medium spatial 

resolution, viz multispectral ASTER data for the estimation of forest structural attributes 

using empirical models. The study also focused on investigating the utility of high spatial 

resolution, viz multispectral and panchromatic IKONOS data for the estimation of forest 

structural attributes and individual tree detection. The study area were located in the 

warm temperate climatic zone in southern KwaZulu-Natal, South Africa.  

The basic concepts and theory of relative atmospheric correction methods were 

discussed. The relative atmospheric correction methods, viz apparent reflectance model 

(AR), dark object subtraction model (DOS), and cosine approximation model (COST) 

were tested on both ASTER and IKONOS imagery. The qualitative and quantitative 

performances of these atmospheric correction methods were evaluated and summary 

results were presented. The DOS atmospheric correction method for ASTER and 

IKONOS imagery, within the given image and sensor parameters and for the given study 

area, performed relatively better than the AR and COST models. Thus it could be 

concluded that the image-based DOS model is better suited to atmospheric correction of 

ASTER and IKONOS imagery in the study area and for the purpose of forest structural 

assessment. It is encouraging to note that relatively simple, non-radiative transfer models 

could potentially be used to convert imagery to reflectance for the purposes of multi-

temporal plantation forestry operations in the warm temperate climates of South Africa. It 

is furthermore recommended that future work could focus on the validation of the results 

presented here, using in situ measurements of surface reflectance at the time of image 

acquisition.     

The utility of medium spatial resolution satellite imagery (ASTER) for assessment of 

plantation forest structural attributes viz stems per hectare, diameter at breast height, tree 
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height, basal area, and volume, was examined for the study area. The statistical 

relationships between plot-level field measurements of structural attributes and ASTER 

data were investigated using multiple linear and non-linear regression analyses as well as 

canonical correlation analysis. Single spectral bands and several vegetation indices were 

included in the analysis. Results in terms of coefficients of determination were as high as 

0.64 for DBH and as low as 0.20 for volume, which indicated a need for the evaluation of 

high spatial resolution satellite imagery as applied to the same species and area. It could 

be concluded that medium spatial resolution satellite imagery on their own are not ideal 

for the prediction of forest structural attributes in even-aged Eucalyptus plantation forests 

as the models generally return operationally unacceptable ARMSE% values of greater 

than 10 %. However, one should consider that the addition of ancillary variables, viz age 

and site index, which can be accessed through forestry databases, could improve 

modelling abilities.   

The investigations of high spatial resolution satellite imagery (multispectral and 

panchromatic IKONOS) for the prediction of forest structural attributes were conducted 

independently using their textural information. Image texture information is an important 

product of high resolution image analysis. Statistical texture features, viz grey level 

occurrence matrix (GLOM) and grey level co-occurrence matrix (GLOM), were 

extracted from the four bands of multispectral IKONOS imagery and from a 

panchromatic IKONOS band. Multiple linear regression and artificial neural network 

statistical approaches were employed to establish the relationships between field 

measured forest structural attributes and statistical texture features computed from the 

multispectral and panchromatic IKONOS imagery. The models developed using artificial 

neural network, which uses panchromatic IKONOS data as an input variable for the 

prediction of forest structural attributes returned promising results as compared to 

multispectral IKONOS data. This study demonstrated the potential of high spatial 

resolution panchromatic IKONOS imagery and artificial neural network statistical 

approach for the prediction of forest structural attributes in the warm temperate zones of 

South Africa. However, further research is required to document the performance of the 
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developed models under different environmental conditions as well as for other 

plantation forest species.  

A new approach to local maxima filtering was also developed in this study for the 

estimation of stems per hectare in Eucalyptus plantation forests using panchromatic 

IKONOS satellite imagery. This approach was based on Gaussian smoothing for noise 

elimination and image classification. Natural break classification was used to determine 

the threshold at which to crop pixels of extreme bright and dark areas in the imagery 

(assumed background), to restrict the search for tree peaks. A semivariogram technique 

was applied to determine variable window sizes for local maxima filtering within a 

plantation stand. This study demonstrated that by applying this methodology, stems per 

hectare can be estimated with satisfactory accuracy. Variation in the sensor platform and 

spatial resolution, in addition to viewing angle and sun angle, are likely to limit the 

ability to achieve repeatable results in multi-temporal imagery. Thus, further experiments 

should be carried out to test and extend the results of this study to a wider range of 

plantation forest environments and conditions. 
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Appendix 2.1: Examples of medium resolution studies using passive optical remote sensing 
 

Forest Type Sensor Variables Methods Results Reference 
Temperate Coniferous 

forests 
(Kansas, USA) 

Landsat TM Leaf Area Index Adjusted R2 & Standard Error R2 = 0.74 
SEE = 0.04 

Turner et al. 
(1999) 

Boreal Forests: Spruce Pine 
& Aspen 
(Canada) 

Landsat TM Leaf Area Index Simple ratio & bivariate regression 
analysis R2= 0.51 – 0.70 Brown et al. 

(2000) 

Norway Spruce & Scots Pine 
(Sweden) Landsat ETM+ Leaf Area Index Correlation 

SR & NDVI 
SR: R = 0.73;  

NDVI: R = 0.77 
Eklundh et al. 

2001 

Long leaf pine, Turkey oak, 
Sand pine, Pond cypress, 

Black gum (Florida, USA) 
Landsat TM Leaf Area Index Multiple regression 1 & Artificial Neural 

Networks 2 

R2 = 0.83 1
RMSE = 0.86 1 

R2 = NA 2 

RMSE = 0.67 2 

Jensen & 
Binford  
(2004) 

Boreal forest, Black spruce 
(North America) Landsat ETM+ Leaf Area Index Ordinary Least Squares Regression R2 = 0.82 

RMSE = 10.41 
Cohen et al. 

(2003) 

Pine & Broad-leaved species 
(Finl&) Landsat TM Timber Volume K nearest neighbours (k-NN) RMSE = 86.1 m3/ha 

Mäkelä & 
Pekkarinen 

(2001) 
Aspen, Birch, Spruce & Fir 

(Minnesota, USA) Landsat TM Timber Volume K nearest neighbours (k-NN) with 
empirical bootstrapping 

95 % confidence interval RMSE 
= 48,68 – 54,58 m3 / ha 

Franco-Lopez et 
al. (2001) 

Lodgepole pine, white & 
black spruce, aspen, poplar 

(Alberta: Canada) 
Landsat ETM+ Volume & biomass Stand height & crown closure: inputs to 

BioSTRUCT model 
Volume: RMSE = 4 m3/ha 
Biomass: RMSE = 4 t/ha 

Hall et al. 
(2006) 

Mixed Northern hardwood, 
Pine & 

Mixed Pine / Hardwood 
(Wisconsin, USA) 

Landsat ETM+ Aboveground biomass Multiple Regression 
Hardwood R2 = 0.95 

Pine R2 = 0.86 
All R2 = 0.67 

Zheng  et al. 
(2004) 

Tropical Forests 
(Borneo) Landsat TM Aboveground biomass Artificial Neural Networks 

 
R2= 0.8 

 

Foody et al. 
(2001) 

Tropical Forests  
(Brazilian Amazon) Landsat TM Aboveground biomass 

Stepwise Linear Regression 
Successional Forest (SF) 

Mature Forest (MF) 

SF R2 = 0.755 
MF R2 = 0.498 Lu (2005) 

Conifer 
(Italy) 

Multitemporal 
Landsat ETM+ Basal Area K nearest neighbours (k-NN) r = 0.588 

RMSE = 4.02 m2 ha-1 
Maselli et al. 

(2005) 
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Appendix 2.2: Examples of high resolution studies using passive optical remote sensing 
 

 
 
 
 

Forest Type Sensor Variables Methods Results Reference 

Douglas-fir  
(Canada) IKONOS Forest Age Class  

Separability 

First- and second-order textural 
methods (variance and 

homogeneity) 

Larger filters more effective at 
separating stands and second 
order texture values for age 

discrimination 

Franklin  et al. 
(2001) 

Scots Pine, Norway 
Spruce, European Aspen, 

Grey Alder (Finland) 
Compact Imaging System Individual Tree Detection Image smoothing and 

binarization 
70 – 95% trees correctly 

identified Pitkänen (2001) 

Coniferous plantation 
(Vancouver, British 

Columbia) 
MEIS-II  Individual Tree Detection Local maximum filter 67% overall accuracy Wulder et al. (2002)

Scots Pine, Norway 
Spruce, Birch and 

European Aspen (Sweden) 

Kodak Aerochrome 
Infrared Film 2443 Individual Tree Crowns Region growing supported by 

fuzzy rules 
93% of stems correctly 

identified Erikson (2003) 

Coastal Coniferous Species 
(Canada) 

CASI  
Imaging spectrometer Individual Tree Crowns  

Valley Following (Gougeon 
1995) and Object Orientated 

ML classification 

70 – 85% trees correctly 
identified 

Composition error = 13% 
Leckie et al. (2003) 

Mangroves  
(Panama) IKONOS Mangrove and Mangrove 

Species classification 
Object- and Pixel-based 

classification 

Pixel = 88.9% 
Object = 80.4% 

Combined = 91.4% 
Wang et al. (2004) 

Western Hemlock, 
Amabilis fir, and Western 

Redcedar 
Canada 

CASI  
Imaging spectrometer Automated Tree Recognition 

Valley Following (Gougeon 
1995) and Object Orientated 

ML classification 

50 – 60% trees correctly 
identified 

Composition error = 20 – 60% 
Leckie et al. (2005) 

Even aged Spruce stands 
(Belgium) IKONOS-2 

Age, top height, crown 
diameter, stand density and 

basal area 

Grey level co-occurrence 
matrix ( Variance, contrast and 

correlation) 
R2 = 0.76 – 0.82 Kayitikare et al. 

(2006) 



 139

Appendix 4.1 ASTER data after atmospheric correction using AR, DOS, and COST  

 
 

 
 

 

ARM

DOS

COST
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Appendix 4.2 IKONOS data after atmospheric correction using AR, DOS, and COST 

 
 

 
 

 

ARM

DOS

COST
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Appendix 5.1 Correlation coefficients between plantation attributes and ASTER spectral 
information 

  SPHA DBH MTH BA Vol. 

Band-1 0.013 -0.067 0.026 -0.086 -0.085 

Band-2 0.278 -0.201 -0.300 -0.346 -0.317 

Band-3 0.208 0.198 0.261 0.311 0.202 

Band-4 0.167 0.156 -0.074 -0.079 -0.075 

Band-5 0.098 -0.108 -0.031 -0.056 -0.086 

Band-6 0.044 -0.111 -0.091 -0.116 -0.118 

Band-7 -0.034 0.053 0.064 0.055 0.071 

Band-8 0.000 -0.158 -0.168 -0.202 -0.207 

Band-9 -0.066 -0.122 -0.172 -0.227 -0.228 

CCA-Bands 0.5417 0.4393 0.4931 0.4167 0.535 

NDVI 0.381 0.308 0.322 0.362 0.377 

MSAVI 0.381 0.084 0.315 0.339 0.350 

PVI 0.334 -0.004 0.273 0.295 0.312 

TSAVI 0.288 0.087 0.320 0.346 0.357 

RSR -0.078 0.223 0.168 0.171 0.173 

PCA-1 0.001 -0.005 0.022 0.058 0.009 

PCA-2 0.353 -0.025 0.227 0.285 0.298 

PCA-3 -0.258 0.005 -0.246 -0.218 -0.247 

CCA-VIs 0.4291 0.4887 0.4859 0.5454 0.4775 

Log-T-Band-1 0.018 -0.086 -0.001 -0.102 -0.102 

Log-T-Band-2 -0.070 -0.180 -0.206 -0.270 -0.303 

Log- T-Band-3 0.306 0.053 0.307 0.317 0.321 

Log- T-Band-4 0.183 -0.233 -0.117 -0.098 -0.100 

Log- T-Band-5 0.119 -0.160 -0.108 -0.087 -0.131 

Log- T-Band-6 0.061 -0.168 -0.166 -0.159 -0.165 

Log- T-Band-7 -0.030 0.027 0.021 0.036 0.051 

Log- T-Band-8 0.025 -0.240 -0.264 -0.266 -0.278 

Log- T-Band-9 -0.059 -0.189 -0.271 -0.293 -0.302 
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Appendix 5.2 Correlation coefficients between plantation attributes and ASTER spectral information for young and mature plantation 
stands  
 

Young plantation stands (4-6 years) Mature plantation stands (7-9 years) 

  SPHA DBH MTH BA Vol. SPHA DBH MTH BA Vol. 

Band-1 0.28 -0.28 0.10 -0.03 -0.02 -0.22 -0.01 -0.10 -0.25 -0.22 

Band-2 0.65 0.55 0.48 0.39 0.49 0.59 0.43 0.32 0.43 0.42 

Band-3 -0.62 -0.44 0.33 0.21 -0.25 -0.58 -0.42 -0.45 -0.32 -0.32 

Band-4 0.27 -0.39 -0.06 -0.18 -0.20 0.10 -0.09 -0.48 0.06 0.02 

Band-5 0.19 -0.14 0.12 0.04 0.03 0.05 -0.18 -0.29 -0.18 -0.24 

Band-6 0.07 -0.07 0.09 -0.04 -0.03 0.14 -0.08 -0.11 0.03 -0.02 

Band-7 -0.01 -0.11 -0.05 -0.16 -0.14 -0.03 0.12 0.09 0.21 0.17 

Band-8 -0.02 -0.03 0.08 -0.08 -0.04 0.18 -0.24 -0.29 -0.16 -0.22 

Band-9 -0.01 0.00 0.08 -0.03 0.00 -0.04 -0.10 -0.23 -0.20 -0.23 

CCA-Bands 0.73* 0.70* 0.50** 0.52** 0.53** 0.39** 0.51** 0.60* 0. 65* 0.66* 

NDVI 0.55 -0.50 -0.42 -0.34 -0.40 -0.59 0.48 0.46 0.47 0.47 

MSAVI 0.60 -0.54 -0.30 -0.42 -0.47 -0.56 0.36 0.41 0.39 0.39 

PVI 0.66 -0.57 0.02 0.00 -0.06 0.00 0.17 0.30 0.37 0.39 

TSAVI -0.19 0.32 0.07 0.19 0.20 -0.10 0.12 0.12 -0.01 0.03 

RSR -0.09 0.23 0.07 0.18 0.18 -0.11 0.17 0.17 0.05 0.09 

PCA-1 0.19 -0.37 -0.12 -0.12 -0.01 0.05 0.05 0.01 0.08 0.01 
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Young plantation stands (4-6 years) Mature plantation stands (7-9 years) 

  SPHA DBH MTH BA Vol. SPHA DBH MTH BA Vol. 

PCA-2 0.67 -0.60 -0.07 -0.02 -0.11 0.08 0.15 0.29 0.41 0.41 

PCA-3 -0.59 0.57 0.03 0.06 0.10 0.01 -0.03 -0.13 -0.11 -0.16 

CCA VI 0.75* 0.80* 0.60* 0.50** 0.57* 0.56* 0.51** 0.52** 0.50* 0.55** 

Log-T Band1 0.29 -0.28 0.10 -0.03 -0.02 -0.22 -0.01 -0.09 -0.24 -0.22 

Log-T Band2 -0.65 0.55 0.48 0.39 0.43 -0.51 -0.44 -0.32 -0.42 -0.43 

Log-T Band3 0.61 -0.53 0.35 0.22 -0.33 -0.08 0.41 0.47 0.33 0.34 

Log-T Band4 0.28 -0.40 -0.06 -0.18 -0.20 0.10 -0.10 -0.09 0.05 0.01 

Log-T Band5 0.19 -0.14 0.13 0.04 0.04 0.05 -0.18 -0.30 -0.18 -0.24 

Log-T Band6 0.05 -0.06 0.09 -0.05 -0.03 0.13 -0.08 -0.11 0.03 -0.02 

Log-T Band7 -0.02 -0.10 -0.04 -0.15 -0.13 -0.04 0.13 0.10 0.21 0.17 

Log-T Band8 -0.05 -0.01 0.08 -0.09 -0.05 0.17 -0.24 -0.30 -0.17 -0.23 

Log-T Band9 -0.03 0.01 0.08 -0.04 0.00 -0.05 -0.09 -0.23 -0.20 -0.23 

CCA-Log  0.73* 0.69* 0.51 0.52 0.53 0.39 0.53 0.61 0.64 0.66 

* Correlation is significant at the 0.05 level 
      ** Correlation is significant at the 0.01 level 
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Appendix 6.1 Description of the selected statistical texture features 
Statistical 

Features 

Formula Description 

GLOM GLCM 

Data Range ∑ −
k

i kpk )()( μ   The min-max of 
reflectance results  

Mean ∑
=0

)(2/1
i

iip  ∑∑
− −

+−
1 1

)],(*)(*[2/1
i

i

j

j

jipjjipi  
Provided the mean of 
the grey levels in the 
window.  

Variance ∑
=

−
0

2 )()(
i

ipi μ  ),()(),()( 2
1 1

2 jiPjjipi
i

i

j

j

μμ −+−∑∑
− −

 

Information on how 
spread out the 
distribution of grey 
levels is. It is expected 
to be large if the grey 
levels of the image are 
spread out 

Entropy 
))((log)(

1

0
2 ipip

l

k
∑
−

=

−

 

∑∑
− −

−
1 1

)},(log{),(
i

i

j

j
jipjip  Measures the 

randomness of a grey 
level distribution. It is 
expected to be high if 
the grey levels are 
distributed randomly 
through the image 

Correlation  

ji

l

i

j

j
jijijpi

δδ

μμ∑∑
− −

−
1 1

),(*
 

Measures the linear 
dependency of grey 
levels on those of 
neighbouring pixels in 
the GLCM 

Contrast 
∑
−1

2 )(
i

i
iPi  ∑∑

− −

−
1 1

2 ),()(
i

i

j

j

jipji  
Measures the local 
contrast of an image. 
It is expected to be 
low if the grey levels 
of each pixel pair are 
similar 

 

ASM 

 

2

0
))((∑

=i
ip  

∑∑
− −1 1

2),(
i

i

j

j
jip  

Measures the number 
of repeated pairs. It is 
expected to be high if 
the occurrence of 
repeated pixel pairs is 
high 

where: k = number of gray tone values, μ = mean gray tone value, p(i) is the ith entry of 
the occurrence matrix, p (i, j) is the (i, j) th entry of the normalized grey level co-
occurrence matrix, ∑∑=

i j
i jiip ),(μ , ∑∑=

i j
j jijp ),(μ , ∑∑ −=

i j
ii jipi ),()( 22 μδ , 

and ∑∑ −=
i j

jj jipi ),()( 22 μδ  


