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Abstract 

Prinolan Govender                                                                                                                         

School of Mathematics, Statistics and Computer Science                                                            

Master of Computer Science 

The Blood Assignment Problem (BAP) is a real world and NP-hard combinatorial 

optimization problem. The study of BAP is significant due to the continuous demand for 

blood transfusion during medical emergencies. However, the formulation of this problem 

faces various challenges that stretch from managing critical blood shortages, limited shelf life 

and, blood type incompatibility that constrain the random transfusion of blood to patients. 

The transfusion of incompatible blood types between patient and donor can lead to adverse 

side effects on the patients. Usually, the sudden need for blood units arises as a result of 

unforeseen trauma that requires urgent medical attention. This condition can interrupt the 

supply of blood units and may result in the blood bank importing additional blood products 

from external sources, thereby increasing its running cost and other risk factors associated 

with blood transfusion. This however, might have serious consequences in terms of medical 

emergency, running cost and supply of blood units. Therefore, by taking these factors into 

consideration the aforementioned study implemented five global metaheuristic optimization 

algorithms to solve the BAP. Each of these algorithms was hybridized with a sustainable 

blood assignment policy that relates to the South Africa blood banks. The objective of this 

study was to minimize blood product wastage with emphasis on expiry and reduction in the 

amount of importation from external sources. Extensive computational experiments were 

conducted over a total of six different datasets, and the results validate the reliability and 

effectiveness of each of the proposed algorithms. Results were analysed across three major 

aspects, namely, the average levels of importation, expiry across a finite time period and 

computational time experienced by each of the metaheuristic algorithms. The numerical 

results obtained show that the Particle Swarm Optimization algorithm was better in terms of 

computational time. Furthermore, none of the algorithms experienced any form of expiry 

within the allotted time frame. Moreover, the results also revealed that the Symbiotic 

Organism Search algorithm produced the lowest average result for importation; therefore, it 

was considered the most reliable and proficient algorithm for the BAP. 

Keywords: Blood assignment, metaheuristics, genetic algorithm, particle swarm 

optimization, duellist algorithm, symbiotic organism search, grey wolf optimizer. 
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Chapter One 

 Introduction 

1.1 Background 

Human blood management is characterized by a string of factors which can prove to be 

complicated over time [1]. Blood banks often face the scenario of insufficient Whole Blood 

(WB) units in storage to allocate to patients in need. A WB unit is comprised of four main 

components, with each component serving a specific purpose within the blood cell [2]. 

 Red blood cells (RBC): Carry oxygen (O2) throughout the body, and remove Carbon 

Dioxide (CO2). 

 White blood cells (WBC): Fight against biological threats within the body, and are 

known as the body’s immune system. 

 Platelets (PLT): Seal of wounds and prevent bleeding. 

 Plasma: Transports nutrients and proteins to parts of the body, and holds RBC, WBC 

and PLT cells. 

The majority of WB units in blood banks are usually attained through voluntary donations, 

and this in turn starts the process of blood screening to identify any potential blood related 

threats which could harm the receiving patient. Any infected blood donations are 

immediately discarded, whilst the other donations deemed as clean, are stored in ideal 

conditions to be used for future distribution. It is possible for each component of a blood cell 

to be used individually for various medical scenarios, however this study will not focus on 

the individual usage of blood components, but its focus would be on the overall WB unit. In 

accordance to the ABO blood system (a system used to classify the nature of an individual’s 

blood type) [3, 46], blood within humans have four different blood groups, namely A, B, AB, 

O. With the introduction of a Rhesus (Rh) value which can either be positive (+) or negative 

(-), it ends up doubling the initial blood groups which results in eight different blood types. 

The different blood types play a vital role with regards to storage, and distribution. In terms 

of storage, certain blood types are considered as rare, as very few individuals carry this 

particular blood type, for example, the blood type 𝐴𝐵- is extremely scarce within the South 

African population as 1% of the total population carry AB- blood. With regard to distribution, 

the relevance of blood types and compatibility plays an important role during transfusion. 
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Cases have arisen when medical knowledge was insufficient, where patients received 

incompatible blood types which have adverse health effects resulting in blood clumping (also 

referred to as agglutination), which can be life threatening. 

The demand for WB units can be broken down into two main scenarios. The first scenario 

relates to premeditated medical events which are in need of WB units, this can involve events 

such as general surgeries. Premeditated events allow the blood bank to allocate adequate 

amounts of WB units towards the desired patient. In addition, if the blood banks have an 

inadequate amount of WB units to meet the demand, then it still leaves the blood bank with 

adequate time to import additional units from external sources. The second scenario relates to 

unforeseen patients who are in immediate need of WB units. Blood banks tend to struggle to 

fulfil this type of demand if large influxes of patients are in need of treatment involving blood 

units at the same time. Most blood banks tend to stock-pile WB units and other blood 

products during periods of expected sudden trauma, however this is not a solution as demand 

for WB units can still out-weigh the on-hand supply. The act of importing additional WB 

units raises the expenses incurred by the blood bank. Therefore, blood banks face the 

important challenge of controlling their blood product inventories [43]. Another factor which 

can contribute towards additional expenses relates to expiration of WB units. Expiry of units 

occurs when the WB units exceed the expected shelf-life, and the act of disposing the WB 

units in an appropriate manner increases the blood banks expenses. The act of freezing blood 

units can prolong the lifespan of the cells, however, this study will ignore such WB units. The 

proposed blood assignment method generally seeks to minimize wastage of blood products 

by efficiently assigning blood to patients and preserving blood stock pile by allocating 

available blood to different blood types.  

The Blood Assignment Problem (BAP) is an optimization task which tries to efficiently 

assign WB units to patients in need, whilst trying to minimize the amount of importation and 

expiry within the blood bank. The BAP is comprised of several individual components which 

can demonstrate issues when trying to formulate a mathematical model for the problem at 

hand. Such components include daily demand, cross-matching of blood types, importing 

additional blood units and expiring WB units when these have exceeded their shelf-life. In 

addition, the research conducted in this study is from a perspective of the South African 

National Blood Service (SANBS) and in relation to the South African population.  
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blood types. Each blood type must first try and satisfy the demand pertaining to their own 

types, once their respective demands have been met, only then can the act of compatibility 

distribution occur. Compatibility distribution in this study relates to using the remaining units 

from each blood type and redistributing those units to other compatible blood types. The act 

of redistribution minimizes additional blood importation from external sources, and uses 

resources more effectively. However, if the remaining WB units after redistribution cannot 

meet up to a day’s demand, then additional WB units would be imported from external 

sources. The act of importing WB units incurs additional expenses for the blood bank, and 

must therefore be minimized. The BAP can be summarized into four major components: 

i. Supply: Stock on hand at any given moment. 

ii. Demand: Relates to both planned and unplanned requests for WB units. 

iii. Importation: Utilizes additional WB units from external sources in order to satisfy a 

demand. 

iv. Expiry: Occurs when WB units exceed their shelf-life. 

Figure 2 is a flowchart depicting the steps taken each day within the blood bank for the 

management of WB units. In addition, it also illustrates the steps that must be fulfilled in 

order for additional WB unit importation to occur. 
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1.3 Motivation 

The notion of optimization can successfully be applied to various complex decision making 

or allocation problems [4]. The BAP is considered as a NP-hard problem, due to the 

complexities associated with blood assignment process such as the stochastic behaviour of 

daily demand, influx of supply and blood compatibility [5]. Prior research specifically 

dedicated for the BAP is relatively scarce, with only a handful of research tackling the 

problem from an optimization perspective. An optimized blood distribution system can be a 

difficult task due to the overwhelming factors that act upon the system [47], however blood is 

often the solution for patients who experience large amounts of blood loss during 

surgeries/trauma, anaemia or other blood related illnesses [48]. Therefore, the need for an 

efficient blood allocation system in blood banks is justified. 

The following study of the BAP attempts to incorporate a previous mathematical model [7] and 

explores different metaheuristic algorithms to work the BAP. The algorithms implemented in 

this study include: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Duelling 

Algorithm (DA), Symbiotic Organism Search (SOS), and the Grey Wolf Optimizer (GWO). 

The BAP can also be seen as a perishable inventory problem, the current study can therefore 

contribute towards future research relating to blood and other relatable perishable inventory 

problems. Prior research suffered with the inability of using appropriate real-world datasets to 

examine their implementations for working the BAP. Due to confidentiality issues, this study 

also could not utilize real-world datasets. To confront this problem, datasets were 

stochastically generated, and in addition the current study attempted to utilise events and 

statistics prevalent to South Africa. By utilising such factors, the datasets (though randomly 

generated) can try to reduce such randomness when generating values for demand of WB 

units. The idea behind generating datasets using a statistical approach is based on social 

convention; the demand for WB units should have certain trends. For example, the demand 

for WB units should have a greater need during months that experience more public holidays 

or breaks from educational institutions due to higher levels of dangerous activity such as 

drunk driving and other criminal activities.  

 

Expenses are an aspect that must be within any organization, and SANBS is no different. In 

accordance to [5], SANBS requires various equipment and chemicals in order to test and 

store WB units. Testing WB units is a vital component of any blood bank to ensure that the 

units are viable (do not contain harmful diseases), and do not transmit any pathogens to 
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receiving patients. A study conducted by [6] emphasized the four main activities related to 

blood and blood product management which includes: 

 

i. Production costs: Relate to costs of running blood campaign collections, also 

included in this amount will be procedures in related to testing the WB units. 

ii. Expiry costs: WB units have a lifespan of between 30-35 days, once a WB unit has 

exceeded its lifespan, there are costs attached to incinerating the units. 

iii. Inventory costs: Costs associated with keeping WB units at optimum temperatures 

and in an adequate environment. 

iv. Importation costs: If in the event the supply at hand does not cover the demand for 

that day, additional WB units will have to be imported in order to fulfil the remaining 

demand. 

 

The current study will focus only on costs related to expiry and importation, as by 

minimizing the objective function of the BAP, this will relate to lower costs incurred by the 

blood bank. 

1.4 Aim and Objectives 

The primary objective of this project is to obtain an in-depth understanding of the BAP 

inventory management process. The work done in this study attempts to offer content which 

could possibly advance the research of the BAP or similar perishable inventory related 

problems. In addition, this study implemented a more accurate method when generating 

stochastic datasets. The following are the specific objectives that will be accomplished in this 

study: 

 

i. Development of a robust blood bank management policy which aims at efficiently 

using WB units. 

ii. Implementation of five population-based metaheuristic algorithms to work the BAP. 

The algorithms include: GA, PSO, DA, SOS and GWO. These algorithms will be 

evaluated against each other and results will be documented in a meaningful manner 

which will aid in determining the superior implementation for the BAP. 

iii. To generate a variety of stochastically based datasets which will examine how 

efficiently the blood bank is able to distribute WB units, and to test the levels of 

importation and expiry that might be faced. The datasets will embody various 
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situations that the blood bank may experience during the course of its existence. Some 

of the datasets will also provide a social approach in order reduce randomness with 

reference to demand generation. This social component will be based on a South 

African perspective, and will incorporate aspects like public holidays, and terms in 

educational institutions.  

1.5. Scope and limitations 

The BAP is comprised of various components such as WB unit deterioration, random nature 

of demand and supply as well as WB compatibility. Due to these components and other 

factors certain assumptions will be introduced in order to develop a mathematical model that 

would be adequate for the problem at hand:  

 

i. Race, gender, age and other contributing traits that characterize an individual will be 

ignored. The focus of the study is solely based on blood units. 

ii. All WB units will be deemed as “clean”, this means that no WB unit will contain 

pathogens. 

iii. A year will consist of 365 days. 

iv. The lifespan of a WB unit will be 30 days. This is in accordance to the study 

conducted by [7, 42]. 

v. The first day (day 1) will have no carryover of WB units from the previous day. 

vi. All blood types will first fulfil requests associated with their blood types, from there, 

the remainder from each blood group can contribute to other compatible blood types. 

 

An additional limitation relates to the use of datasets in this study. Due to confidentiality 

issues, datasets were randomly generated using percentage bounds to generate values for 

supply. The concept of percentage bound is elucidated in Chapter Three.  

1.6. Methodology 

The BAP is comprised of various components that were examined individually in order to 

formulate a mathematical model. The methodology followed a step-by-step pattern as various 

components relied upon the previous steps in order to proceed. Figure 3 illustrates a flow 

diagram of the steps conducted in this research of the BAP. The methodology consists of 

seven main steps which will be expanded upon in later chapters: 
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Step 1: Obtain an in-depth understanding of blood banking, and implement an appropriate 

policy for issuing WB units. 

Step 2: Adapt the five metaheuristic algorithms namely, GA, PSO, DA, SOS and GWO to 

the chosen blood banking policy, in order to solve the BAP. 

Step 3: Since the datasets are stochastically generated, certain restrictions must be followed 

in order to mimic real life scenarios that may be faced by the blood bank at any given 

moment. 

Step 4: In order to test how effectively each Metaheuristic Algorithm works the BAP, each 

algorithm will be subjected to the datasets.  

Step 5: Computational results were used to determine the superiority of each algorithm. The 

assessment of each algorithm was based on the results obtained in correlation to the objective 

function of the BAP (further discussed in Chapter Three).  

Step 6: Record results in a manner that aids in identifying the better algorithm both 

analytically and visually. 

Step 7: The records obtained from step 6 allowed for an extensive review of each 

metaheuristic algorithm which in turn revealed the best suited algorithm to work the BAP. 
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Figure 3: Flowchart representation of the steps conducted in this study of the BAP. 

1.7 Thesis Layout 

Chapter One presents the background of the study, motivation of work, problem statement, 

research objectives, and scope and limitation of the work. Chapter Two presents the review of 

related work on the BAP. Chapter Three describes the research methodology based on the 

BAP which includes the development of a mathematical model and implementation of the 

metaheuristics algorithm. Chapter Four discusses the results obtained for each metaheuristic 

in accordance to each dataset. Finally, Chapter Five includes the final remarks relating to the 

BAP in this study as well as future directions. 
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Step 2: Implement the 

different Metaheuristic 
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Step 3: Generate datasets 
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Metaheuristic Algorithms  
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achieved from each 

algorithm  

Step 7: Compare and 

contrast the results 

achieved.  
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Chapter Two 

Literature review 

This chapter provides insight to previous literature that has studied the blood management 

process as well as research conducted in relation with the BAP. In order to understand the 

BAP, it is important to obtain an in-depth understanding with regards to individual 

components that compile the BAP. Due to the nature of data generation, it is also imperative 

to understand certain attributes which pertain to the South Africa population. 

2.1 Blood Basics 

Blood transfusions save thousands of lives on a daily basis by means of medical treatment 

[8]. Before divulging the mathematical and computational components of prior research, 

blood itself has been extensively researched with the aim of improving health care for 

individuals. Experiments relating to blood transfusions were conducted in several steps. First 

attempts of blood transfusion involved human’s drinking or bathing in donor blood [53], but 

as medical knowledge evolved transfusion attempts between animals were examined, and 

then from animal into man with the first evidence of a transfusion occurring around 1666 in 

Oxford [9]. Since then, the advancements of medical technology have assisted with the 

understanding of blood compatibility and transfusion. Using incompatible blood types for 

transfusion often resulted in blood clumping and other negative side effects upon the patient. 

In 1927, antigens A and B where discovered followed by antigen O which resulted in the 

widely known ABO blood grouping system [10]. With the introduction of Rh value 

(mentioned in Chapter One), this further resulted to eight different blood types found in 

humans. Table 1 shows an illustration of compatibility among blood types. Note that “YES” 

implies that the blood types are compatible, and “NO” indicates that they are not compatible. 
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Table 1: Representation of blood compatibility [7] 

Blood Types A+ A- B+ B- AB+ AB- O+ O- 

A+ YES YES NO NO NO NO YES YES 

A- NO YES NO NO NO NO NO YES 

B+ NO NO YES YES NO NO YES YES 

B- NO NO NO YES NO NO NO YES 

AB+ YES YES YES YES YES YES YES YES 

AB- NO NO NO YES NO YES NO YES 

O+ NO NO NO NO NO NO NO YES 

O- NO NO NO NO NO NO NO YES 

  

Even though blood is donated as whole units, the units can still be separated into its various 

components, these components can be used for treating medical conditions which pertain to 

the components’ function (discussed in section 1.1). For example, blood platelets can be 

harvested and utilized for patients with bleeding disorders [11, 41]. The act of separating 

components for individual usage fully maximizes its utility at aiding patients with various 

health issues. Possible blood substitutes originated from the early 1600’s [44], however [45] 

reported possible side effects with the use of artificial blood such as a negative response from 

the body’s immune system. 

 

WB units are stored in freezers at certain temperatures in order to prolong their lifespan. 

Depending on the anticoagulant (a solution used to preserve WB units) used within the blood 

unit, lifespan per WB unit may vary. Temperatures inside these freezers range between 2-4 

degrees Celsius with a lifespan ranging between 28-42 days [12]. Cryo-preservation relates to 

freezing WB units in order to drastically prolong their lifespan and can be viable for up to 10 

years [13]. However, the act of freezing can be time consuming and incurs additional costs by 

the blood bank. These frozen WB units also follow specific guidelines when thawing out and 

require sophisticated equipment during the Cryo-preservation process. 
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2.2 Overview of Metaheuristics 

The following study implemented a diverse range of nature inspired metaheuristics in order 

to work the BAP. The list includes GA, PSO, DA, SOS and the GWO, each of which have 

been implemented in various optimization problems in the past. A Metaheuristic is defined as 

a “high level problem independent algorithm framework that provides a set of strategies to 

develop heuristic optimization algorithms”, unlike normal heuristics which are problem 

dependent [14]. Though the algorithms vary with regard to structure and implementation, the 

overall goal of generating potential solutions and selecting the best outcome remains the 

same. A massive advantage of using a metaheuristic algorithm lies in its ability for the 

algorithm to find a good solution with minimal computational effort or iterative methods. 

This study opted to use metaheuristics from previous literature, such as the GA and PSO, as 

this study incorporates a different model for supply generation that differs from previous 

work. Therefore, it would be interesting to see the results obtained in this study and compare 

it to previous relatable work. Secondly, the remaining metaheuristics, DA, SOS, and GWO 

have not yet be examined for the BAP, and are therefore implemented in this study. 

 

GA is an extensively researched algorithm with a wide-range of applications to solve 

complex optimization problems. According to the work presented in [15], the GA utilises 

sub-procedures in order to morph a potential solution so as to obtain an improved solution. 

The School Timetabling Problem (STP) has been broadly studied by various researchers with 

many implementations utilising the GA or a hybridized version to work the problem. The 

report conducted in [16] summarized various hybrid implementations and compared results 

obtained from the various hybrid GA algorithms for the STP. Another use of GA was 

exemplified in the Bus Driver Scheduling Problem (BSP). The study in [17] modified the GA 

by implementing a "pieces-of-work" coding scheme which was broken into two aspects, the 

first being the duties and secondly the pieces of work. The chromosome was created using 

each piece of work representing a gene. Dias’s work showed a unique implementation of GA 

for solving the BSP, and proved to produce quick and satisfactory results. 

 

The development of the PSO has been accredited to Kennedy [18]. PSO has been applied to 

many problems like Artificial Neural Network (ANN) training, Fuzzy Control (FC), Pattern 

Classification and Function Optimization. In recent years, PSO has received a lot of 

recognition due to its fast convergence rate and ease for implementing the algorithm to solve 
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problems. The Job Shop Scheduling (JSS) problem is a well-known optimization problem, 

with the objective of minimizing completion time for all jobs to be completed, a study 

conducted in [19], applied PSO towards the JSS which resulted in a positive outcome of the 

PSO successfully achieving the JSS objective function.  

 

The DA is an optimization algorithm which is based on how humans fight and learn from 

each other in order to improve their fighting capabilities [20]. The study conducted in [21] 

compared the GA and DA algorithms using two benchmarks which were maximization 

problems, results indicated that the DA approach achieved better and faster solutions, DA 

achieved solutions in 143 iterations, whilst GA needed 166 iterations. [21] further compared 

the DA algorithm to the PSO and Imperialist Competitive Algorithm (ICA), and discovered 

that DA achieved better results than PSO with regards to computational time. 

 

The Parallel Machine Scheduling Problem (PMSP) is a combinatorial optimization problem 

which has been extensively researched. The problem consists of similar or unrelated types of 

multiple numbers of machines in which jobs can simultaneously be scheduled. In [22], an 

improved SOS algorithm was implemented and used to solve the PMSP with the objective of 

minimizing makespan. The SOS algorithm was originally introduced by Cheng in 2014 in 

which the algorithm was implemented to solve numerical engineering optimization problems 

[23]. The study conducted by [22] compared the results of the SOS implementation to 

previous work and found that the SOS algorithm outperforms for all the problem instances 

that were tested. 

 

The Real Power Economic Dispatch (RPED) relates to allocating optimal power generation 

towards thermal units without violating constraints within the system. The RPED is 

considered as a non-linear problem [24]. In [24], the GWO algorithm was implemented and 

employed to solve the RPED, whilst examining the algorithms’ effectiveness, robustness and 

feasibility. The tests were conducted with different kinds of constraints with results achieving 

minimum fuel expenditure. 

 

Overall, metaheuristics have been implemented on a variety of complex problems. The 

literature mentioned above is just some of the studies in which GA, PSO, DA, SOS and 

GWO were examined. Even though metaheuristics differ with regards to implementation and 

structure, the overall aim relates to obtaining the best solution to solve a problem. The 
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following research tries to contribute towards the study of these metaheuristics in reference to 

the aspect of medicinal optimization.  

2.3 Blood management 

Apart from the BAP, various components of blood management have been scrutinized over 

the years in order to make every aspect as efficient as possible. Blood management is defined 

as the appropriate use of blood and blood components with the aim of minimizing their usage 

[25]. The following section will have an in-depth analysis of prior research pertaining to WB 

and blood product management. 

 

The study conducted in [4] focused towards minimizing the distance between blood centres 

and hospitals by means of graph partitioning coupled with metaheuristic algorithms, namely, 

Colliding Bodies Optimization (CBO). Results indicated that the proposed algorithm 

performed satisfactory in relation to optimal points of view and computational time. Another 

study which focused on blood bank locations was presented in [26], the study focused on 

three main costs which was in need of minimization, namely, fixed costs, delivery costs and 

emergency referral costs. The Capacitated Location Problem with Emergency Referral Model 

(CLPER) incorporates decision-making processes to determine the optimal number and 

locations for blood banks. In [26], the author formulated the CLPER as an integer 

programming model, and used real-world data from the Thai Red Cross Society. Results 

stated that the maximum distance between blood bank and hospital is 45 kilometres. The 

study in [27] incorporated a single and double allocation model which implied that the 

demand for blood can either be supplied from a single or from two blood banks with both 

models being represented by an integer programming model. Overall, the study indicated 

which blood banks offered the lowest delivery costs. 

 

Studies pertaining to the BAP mainly analyse the overall blood bank issuing policy, and find 

ways to try and minimize expiration and importation of additional blood units from external 

sources. Research conducted in [3], [7], [8] and [28] followed the same overall structure 

within regards to mathematical model, but differed with regard to the metaheuristic 

algorithms implemented to work the BAP. Other similarities between the mentioned 

literatures lie with regard to the objective function of minimizing overall blood importation 

from external sources and dataset generation. In terms of datasets, data had to be randomly 

generated due to confidentiality issues when trying to obtain real-world datasets. The datasets 
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examined varying situations which the blood bank could be exposed to. Such a situation 

includes a case where demand for blood units heavily exceeded supply, or vice versa. 

 

The work presented in [3] conducted an in-depth study mainly pertaining to GA and hybrid 

GA implementations. The Metaheuristic Algorithms used within this study included GA, 

Adaptive Genetic Algorithm (AGA), Simulated, Annealing Genetic Algorithm (SAGA), 

Adaptive, Simulated Annealing, Genetic Algorithm (ASAGA) and the Hill Climbing (HC) 

Algorithm. In addition, the study also looked at the Simple Assignment Algorithm (SAA) in 

comparison to the Multiple Knapsack Assignment (MKA). The simple assignment approach 

states that blood units are set aside to meet the demand for the day, and once these units are 

set aside, they cannot be selected again. On the other hand, the MKA investigated if cross-

matching between blood types can satisfy the demand in a day. Results indicated that all of 

the algorithm implementations achieved optimal fitness with the HC algorithm demonstrating 

greater results, whilst the MKA proved efficient in minimizing the amount of imported blood 

units. In [7], the PSO in conjunction with the MKA policy was implemented to solve the 

BAP. Also demonstrated in this research was the FIFO issuing system which was 

incorporated to minimize expiration. Results proved that the PSO implementation produced 

satisfactory results with low importation levels and no form of expiry. Another study 

conducted in [8] implemented different metaheuristic techniques, namely, the Tabu Search 

(TS) and Simulated Annealing (SA) to optimize the BAP, also included in this study was the 

hybridization between TS and SA. The hybrid implementation used TS in order to obtain the 

initial solutions to the BAP which was then passed onto SA for better exploitation. Results 

indicated that TS does not produce an efficient solution, whilst SA and the hybrid approach 

both fared well in optimizing the BAP. The final study that will be analysed relates to the 

work presented in [28], which involved the implementation of two local search techniques, 

namely, the Greedy randomized adaptive search procedure (GRASP) and Dynamic 

Programming (DP) in conjunction with the MKA. DP showed to import 𝑂+and 𝑂− blood 

rather heavily for the first 50 days until levelling out, whilst GRASP imported gradually as 

the days increased. GRASP did seem to cope much better than DP when demand exceeded 

supply for blood units. The results in [28] also concluded that population based algorithms 

tend to produce better results than local searches. A bi-objective integer programming 

approach was conducted by [60], who also analysed the stochastic nature of demand and 

supply, whilst incorporating importation to meet the demand for a day. 
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Blood Type A+ A- B+ B- AB+ AB- O+ O- 

Proportion (%) 32 5 12 2 3 1 39 6 

 

Due to the variety of cultures in South Africa, the country also experiences a number of 

different public holidays. These holidays are derived from a variety of events, some of which 

are issued to honour the past of South African history, whilst others are culturally based. In 

addition to public holidays, educational facilities such as schools and tertiary institutes take 

mid-term breaks. The importance of these dates relates to the social behaviour aspect that will 

be represented in the BAP model. In theory, individuals indulge in more dangerous activities 

during months with more breaks and public holidays, therefore leading to an increase in 

demand of blood and blood products. Reports have shown that South Africa experiences an 

increase in the amount of drunk driving levels during Easter [32], therefore blood banks tend 

to stock-pile blood products as precautionary measures. 

Table 3: Representation of the starting month and ending month of most educational 

institutions in South Africa [33]. 

Educational institutions terms Start Month End Month 

1 January March 

2 April June 

3 July September 

4 October December 
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Table 4: Representation of the public holidays in South Africa within a year 

Date Percentage bound (%) 

1 January New year’s day 

21 March Human Rights day 

14 April Good Friday 

17 April Family day 

27 April Freedom day 

1 May Workers day 

16 June Youth day 

9 August Woman’s day 

24 September Heritage day 

16 December Day of recognition 

25 December Christmas day 

26 December Boxing day 

 

The current chapter has provided more in-depth knowledge pertaining to blood, 

metaheuristics, and blood management with relation to the South African population. It 

attempts to further the research for the BAP by implementing five population-based 

metaheuristics and comparing the results between the implementations as well as previous 

literature in order to establish the superior algorithm. The relevance of incorporating South 

African statistics tries to minimize unpredictability when generating stochastic datasets. 

Previous work dealing with the BAP also suffered with the issue of obtaining real-world 

datasets and therefore randomly generated their own data in accordance to certain 

restrictions. The method implemented in this study for generating data tries to bridge the gap 

from the previous work, and which can also contribute towards future work pertaining to 

inventory management problems. 
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Chapter Three 

 Research Methodology 

Demand and supply for WB units follow a stochastic trend, even though this study tries to 

implement a method for randomly generating datasets based on a specific month. However, 

in the real world, mass demand for WB units may occur at any moment regardless of the 

month. On an ideal day the total value for WB unit demand will be equal to the supply on 

hand, this eliminates the possibility of expiration, and also prevents the blood bank from 

importing additional WB units from external sources. This chapter will explore the technical 

components that were implemented to work the BAP, which includes global optimisation 

implementations, the blood compatibility process, expiring old WB units, and importing 

additional WB units when demand exceeds supply for a day.  

As mentioned previously, the demand and supply for WB units follows a stochastic trend. In 

an ideal day, the supply for each blood type would meet the exact demand level which in turn 

eliminates importation from additional units, as well as carrying over excess stock which 

opens the WB units to possible expiry. Therefore, several metaheuristic algorithms were 

implemented which randomly generates a demand and supply based on South African social 

trends with each implementation trying to find the best possible solution for the day. 

Inclusive of the algorithms, there are four aspects which are combined to offer a solution for 

the BAP, and consequently offer optimal WB unit assignment in relation to demand. The four 

components include the global optimisation implementations, the blood compatibility 

process, expiring old WB units, and importing additional WB units when demand exceeds 

supply for a day.  

3.1 Mathematical model 

3.1.1 Objective function 

The objective function for the BAP is given by equation eq. 1. The aim relates to minimizing 

the total amount of importation of WB units, as well as to minimize the expiration 

experienced by the blood bank. The objective function will also be used as a measure of how 

well a metaheuristic algorithm managed to minimize the levels of importation and expiration 

eq. 1. Breaking down eq. 1 reveals two sub equations namely 𝐼𝑡𝑜𝑡𝑎𝑙  and 𝐸𝑡𝑜𝑡𝑎𝑙  eqs. 2 and 3, 

which represent the total levels of importation and expiry respectively on a daily basis. The 
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combinations of both eq. 2 and eq. 3 result in the objective function of eq. 1. A low value for 

eq. 1 represents a positive result, as the blood bank would incur a lower expense relating to 

importation and disposing of WB units, likewise a higher value for eq. 1 is deemed as a 

negative result for the blood bank. A negative result implies two things about the blood bank, 

firstly WB units are not being utilised efficiently which could be linked to the blood banks 

issuing policy or an external factor relating to donors or patients, for example, donations 

exceeding requests may result in possible expiry, and requests exceeding donations will result 

in higher importation levels. 

Let  

𝐼: Represent the amount of importation  

𝐸: Represent the amount of expiration 

𝑑: Represent the day 

 

Min:∑ (
𝑛

𝑑=1
𝐼𝑇𝑜𝑡𝑎𝑙 + 𝐸𝑇𝑜𝑡𝑎𝑙)d         (1) 

 

Where: 

1 ≤ 𝑑 ≤ 365,  

𝐼𝑡𝑜𝑡𝑎𝑙 =  𝐼𝐴+(𝑑) +  𝐼𝐴−(𝑑) +  𝐼𝐵+(𝑑) + 𝐼𝐵−(𝑑) + 𝐼𝐴𝐵+(𝑑) + 𝐼𝐴𝐵−(𝑑) + 𝐼𝑂+(𝑑) + 𝐼𝑂−(𝑑)  (2) 

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝐴+(𝑑) + 𝐸𝐴−(𝑑) +  𝐸𝐵+(𝑑) + 𝐸𝐵−(𝑑) + 𝐸𝐴𝐵+(𝑑) + 𝐸𝐴𝐵−(𝑑) + 𝐸𝑂+(𝑑) +  𝐸𝑂−(𝑑)  (3) 

 

Demand constraint 
𝐷𝑑 ≤ 𝑉𝑑, ∀ 𝐵           (4) 

Supply constraints 
𝑅 = (𝑆𝐵)𝑑 - (𝐷𝐵)𝑑          (5) 

𝑆𝑑 = 𝑅𝑑−1 + 𝑆𝑑, ∀ 𝐵          (6) 

Importation constraints 
𝑊ℎ𝑒𝑛 (𝐷𝐵) 𝑑 > (𝑆𝐵) 𝑑  

 (𝐼𝐵)𝑑 = (𝐷𝐵) 𝑑 - (𝑆𝐵) 𝑑           (7) 

Expiration constraints 

When 𝑑 >  30  

If ∑ (𝐷𝐵) 𝑑  
𝑡

𝑑=30
 < (𝑆𝐵) 𝑑−30         (8) 

Then 
(𝐸𝐵) 𝑑  =  (𝑆𝐵) 𝑑−30 − ∑ (𝐷𝐵) 𝑑  

𝑡

𝑑=30
           (9) 

where 1 ≤ 𝑑 ≤ 365  

Non-negativity constraints 
𝐼, 𝐸 ≥ 0            (10) 

Where: 

𝑡: Represents a finite time period 



33 
 

𝑑: Day                 

𝐵: Blood type                 

𝐼: Represents importation across 𝑡                                 

𝐸: Represents expiration across 𝑡 

𝑆: Supply for any given day                                                          

𝐷: Demand for any given day            

𝑅: Remaining blood units  

V: Represents an initial blood volume available in the blood bank 

 

Comments: 

1. The Objective function is to minimize expiration and importation within a finite frame. 

2. Relates to the total amount of importation per blood type. 

3. Relates to the total amount of expiration per blood type. 

4. Demand for WB units, must be less than or equal to the volume in the blood bank for all 

blood types. 

5. WB supply minus WB demand equates to the remaining WB units per blood type, only 

when supply exceeds demand in a given day. 

6. Add the remaining WB units from the previous day to the new influx of supply to obtain 

the supply value for the new day. 

7. When demand exceeds supply for a certain blood type, import additional WB units from 

external sources. 

8. Condition: If the demand summed over 30 days exceeds the supply value of (day-30).  

9. Expiration equals to the demand summed over 30 days subtracted from the supply on (day 

- 30). 

As mentioned previously, the BAP is constituted of various components which contribute 

towards its complexity (section 1.5). In order to work the BAP, various hard constraints were 

presented (eq. 4-10) which focused on such components. 

 

 At the start of a new day, the supply level for WB units cannot equal 0. 

 Demand must be satisfied on a daily basis. If the demand exceeds supply then the 

blood bank must utilise compatible units. If the demand still exceeds supply then extra 

units must be imported from external sources in order to meet the demand. 

 A WB unit must not exceed its shelf-life of 30 days. If a WB unit bypasses this shelf-

life it has expired, and must be removed from the blood bank. 
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 Pulling additional WB units from compatible blood types to meet the demand for a 

day must be done in descending order. In other words, remaining WB units from a 

blood type with a higher proportion (table 2) must be used first, followed by the 

second highest proportion, and so on.  

3.1.2 Generating Demand and Supply 

Due to confidentiality issues, it was not possible to use datasets from hospitals/clinics in this 

study. In order to test each implementation, values for both demand and supply had to be 

randomly generated. In order to generate more accurate values, this study incorporated South 

African social trends based on monthly statistics. Ideally the most adequate statistics would 

be related to monthly usage of blood products in the country, however these statistics could 

not be found. Instead this study will incorporate monthly holidays as well as school terms and 

breaks from other educational institutions. The idea behind this method tries to show that the 

demand for blood has trends associated with a specific month. For example, demand would 

be expected to have a higher value in a month like December due to many people being off 

from work, schools and other institutions, as well as the rise of dangerous events such as 

drinking and driving and criminal events. In South Africa, months like April or December 

experience more public holidays (refer to Table 3), resulting in more holiday-makers 

venturing on roads, and due to the influx of road-users, the rate of motor vehicle accidents 

increases, therefore blood banks tend to stock-pile blood products as a precautionary 

measure. Taking this and other social trends into account like educational institution terms 

(refer to Table 2), it is possible to allocate each month with a specified percentage range for 

generating a value for demand. There were no significant events apart from occasional blood 

drives for generating values for supply, therefore the supply bounds will be set between 25% 

and 75%, which are bounds adapted from previous research conducted in [3] [7] [28].  
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Table 5: Illustration of the percentage bounded ranges used for generating demand. 

Month Upper and lower percentage bounds (%) 

January 35-85 

February 25-50 

March 25-75 

April 65-90 

May 25-75 

June 35-85 

July 65-90 

August 25-75 

September 10-50 

October 25-75 

November 25-75 

December 65-90 

 

Due to no prior literature using such a technique for generating dataset values, the percentage 

ranges stated in Table 5 can be subjected to change depending upon the individual’s 

perspective towards the situation. Ideally, the most appropriate form of statistics that can be 

used is the monthly request for WB units as recorded by the SANBS. However, this study 

tries to convey the concept of stochastically generating values, but to remove some of the 

randomness when generating amounts in order to obtain more accurate data. The percentages 

displayed in table 5 are formed from the statistics based of schooling terms and South African 

public holidays illustrated in tables 3 and 4 respectively. 

Using the percentage bounds in Table 5, it is now possible to generate demand, as well as 

supply using eq. 12. 

Let: 

𝐴: Represent the initial volume in a blood bank 

𝑑: Represent a day 

𝑚: Represent a month 
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𝑏: Represent a blood type 

𝐵𝑢: Represent the upper percentage bound 

 𝐵𝑙: Represent the lower percentage bound        

 

𝑆𝑢𝑝𝑝𝑙𝑦
𝑏
𝑜𝑟 𝐷𝑒𝑚𝑎𝑛𝑑𝑏 = 𝐴 . (𝑟𝑛𝑔(𝐵𝑈 − 𝐵𝑙)𝑚

)       (11) 

 

From eq. 11, the supply or demand is generated by randomly selecting a percent between the 

upper and lower bounds depending on the month the system is currently in (this is established 

in accordance to the current day). This is then multiplied by the initial volume in a blood 

bank which generates a value for supply or demand. Once a value has been generated, the 

value is then split into 8 sub-values in accordance to Table 2, this accurately represents the 

quantity in accordance to blood proportion in the South African population.  

3.1.3 Updating blood supply 

The act of updating WB unit supply has two core components linked to it. Component 1 

relates to daily donations received to the blood bank. Component 2 is the addition of the 

previous day’s remainder added onto the new stock of the day. If the system is in the first day 

or there is no remainder from the previous day, then the remainder equates to 0. As suggested 

from Figure 1, the act of issuing WB units to patients follows the First-in-First-out (FIFO) 

principle, therefore any remaining units from the previous day will be issued out to patients 

first, whilst the newer units will remain in the queue until called upon. Eq. 12 states that the 

supply of blood type 𝑏 equates to the sum of current supply plus the remainder value of 𝑏 

from day(𝑑 − 1). 

Let  

𝑅: Represent the remainder              

𝑑: Represent a day                                                      

𝑏: Represent a blood type 

(𝑆𝑢𝑝𝑝𝑙𝑦
𝑏
)
𝑑

= (𝑆𝑢𝑝𝑝𝑙𝑦
𝑏
)
𝑑
 + (𝑅𝑏)𝑑−1         (12) 

Where 𝑑 ≥ 1 

3.1.4 Expiring Blood Units 

WB units are considered a perishable commodity due to its limited lifespan. The WB units 

can be frozen to prolong its lifespan; however, this adds further costs incurred by the blood 

bank. This study neglects the use of frozen WB units, and sets expiration of these units to 30 

days in accordance to the study conducted in [7]. This implies that a WB unit will be 
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discarded if it is not used within 30 days of its first entry into the blood bank, as the blood 

cells would denature. The following algorithm states conditions that must be satisfied in order 

for expiry to occur. It is unlikely for expiry to occur when the daily demand and supply have 

similar levels or the daily demand exceeds the daily supply over a period of days, if these 

events occur then it is unlikely for a unit of blood to be on the shelf for 30 days. Below is 

Algorithm 1 which illustrates the pseudocode relating to the logic used when calculating 

expiration of WB units within the blood bank. 

Algorithm 1: Pseudocode for Expiring WB units. 

1: Setup control parameters: Supply:𝑆, Demand: 𝐷,                           

2: Day: 𝑑, Expiration for the day: 𝐸, Demand summed over a specified period:𝑆𝑢𝑚𝑑,     

3:                             

4. Begin Algorithm                

5:  If 𝑑 > 30 Then   

6:  For i = 1 to 30  //30 represents the lifespan of a WB units                        

7:   𝑆𝑢𝑚𝑑 += 𝐷𝑑                     

8:   End For               

9:  If 𝑆𝑢𝑚𝑑 < (𝑆𝑏)𝑑 − 30 Then                         

10:                 E = ((Sb)d-30) – 𝑆𝑢𝑚𝑑                          

11:                //supply on (𝑑 − 30) – 𝑆𝑢𝑚𝑑 over 30 days equates to expiry                  

12:   End if                                   

13: End if                                               

14:                          

15: End Algorithm                      

 

Algorithm 1 is only executed after day 30, due to WB units having a lifespan of 30 days. 

Therefore, it’s impossible to have units expiring before this period, this also allows the 

implemented system to be more efficient. 

3.1.5 Importing additional blood units 

Importing additional blood units to meet the demand in a day poses further expenses by the 

blood bank. Logically minimizing the levels of importation would result in lower expenses, 

and would imply that the blood bank is utilising its resources efficiently. The amount of WB 

unit importation is dependent on the difference between the demand and supply within the 

day. For example, if the demand for a certain blood type is 10 units, and the current supply is 

only 5 units (after pulling from other compatible blood types) this would result in the blood 

bank importing an additional 5 WB units from an external source in order to meet the 

demand. Two circumstances have to occur before importation can take place, these include 
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I. Demand exceeding supply in a given day. 

II. Demand still exceeds supply after additional blood units are pulled from compatible 

blood types. 

If the two circumstances are satisfied, only then can additional blood units can be imported 

from external sources. In theory, importation should have higher levels in the first few 

starting days of a planning horizon, once an accumulation of certain blood types occur, 

importation starts to decline.  

3.1.6 Bottom-up technique 

When the WB units on hand cannot meet the demand for a day, additional units from other 

compatible blood types are used. Each blood type must fulfil their corresponding requests 

before distributing towards other compatible blood types. The bottom-up technique relates to 

a system which pulls from compatible blood types. Therefore, remaining units from a day are 

then split according to the number of possible compatible types. By implementing this 

technique, the blood bank will reduce importation of blood units, and utilise its resources 

more effectively, as compatible blood units will be distributed to patients rather than staying 

in storage. There are some medical cases which require the patient’s specific blood type, 

however this study has chosen to ignore these occurrences. Unfortunately, this does hinder 

the deployment of a real-world system, but the aspect of blood specific cases could not be 

included due to inaccessible real world data. 
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Table 6: Representation of the blood types and the compatible blood types it can distribute 

towards (Caption seems to be incomplete) 

 

 

 

 

 

 

 

 

 

 

The process of utilising compatible blood is conducted in accordance to the proportion of 

blood types in South Africa (Table 2). The higher the proportion of a certain blood type 

results in that blood type distributing first, whilst a lower proportion results in the blood type 

being utilised last. For example, if A+ requires additional units, it would first pull from O+ 

blood which has a proportion of 39%, if the demand is still not satisfied, more blood units 

will be pulled from O- and finally if the demand still exceeds supply more units will be pulled 

from A-. After conducting the bottom-up technique, and if the demand still exceeds supply, 

then additional WB units will be imported. The act of pulling from compatible blood units in 

this manner tries to maximize the storage of blood types which have the lowest proportion 

(have a higher rarity). More common blood types also have a higher percentage of resupply. 

3.1.7. Individual representation 

Due to the limited number of different blood types in humans, it is therefore possible to 

create a finite individual of size eight (eight blood types) with each segment in the individual 

of a decimal type to take into account a relevant values for supply, demand, importation and 

expiration. The following figure represents a typical individual. 

 

Blood type Can distribute to Splitting 

A+ A-, O+, O- (RemainderA+)

3
 

A- O- (RemainderA−)

1
 

B+ B-, O+, O- (RemainderB+)

3
 

B- O- (RemainderB−)

1
 

AB+ A+, A-, B+, B-AB-, 

O+, O- 

(RemainderAB+)

7
 

AB- A-, B-, O- (RemainderAB−)

3
 

O+ O- (RemainderO+)

1
 

O- N/A N/A 
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conducted in [35], classified the GA process into five major components, namely, fitness 

function, population, selection, crossover and mutation. These five components were also 

incorporated in this study of the BAP. The structure of the individual (Figure 5) makes it 

possible to implement the genetic operators. The purpose of selection, crossover and mutation 

are explained below: 

I. Selection: the process for selecting specific individuals from a population was 

conducted using tournament selection. A specified tournament size was 

established; from here the two individuals with the greatest fitness values are used 

for the next process. 

 

II. Crossover: the two individuals that were previously selected are now subjected to 

the crossover process. Conventionally a crossover operator would select n (where 

n > 0) random crossover points in each individual and swap the genes 

accordingly. Due to the unique nature of the individual, swapping random points 

would result in inaccurate readings based on the blood percentages in the 

population. For example, a case could arise where the A+ segment (which has a 

relatively high percentage) could swap with a lower percentage segment such as 

O-. Due to this possibility, the current study implemented uniform crossover 

which selects 𝑛 random points in both individuals and swaps their corresponding 

values. After conducting the crossover method, the algorithm is now left with two 

newly formed individuals, each of these individuals have their fitness calculated, 

with the fittest individual being chosen and subjected to the next step. Figure 6 

depicts the crossing over method. 

Figure 6 as presented below represents the mechanics for the crossing over algorithm used 

within GA, to promote diversity within a population. Note that Figure 5 illustrates the labels 

for each position which is applied to the individuals in Figure 6.  
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      Random crossover positions: 1, 3, 7 

     Original Individual 1 

48 8 18 3 5 2 59 11 

 

     Original Individual 2 

57 6 22 2 6 2 47 8 

 

        After crossing over 

 

Offspring 1 

57 8 22 3 5 2 47 11 

 

Offspring 2 

48 6 18 2 6 2 59 8 

 

Figure 6: Depiction of the crossing over effect between two individuals and the results 

obtained 

III. Mutation: mutation alters part of the individual to obtain a newer individual. This 

study used point mutation, the process randomly selects n number of points in the 

individual, and recalculates the value at that position, the recalculation process 

will only occur if that value in the supply individual does not equal to the value in 

the demand individual. For example, if position 5 would be selected, the algorithm 

would then generate a new value for supply by initial random amount, and 

multiplying it by 39% (proportion of the blood type in South Africa).  
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Figure 7 as presented below depicts the effect of mutation on an individual. Note that Figure 

5 illustrates the labels for each position which is applied to the individuals in Figure 7. 

Mutation position: 3, 4 

 

Original Individual 1 

48 8 18 3 5 2 59 11 

 

After mutation process 

 

Mutated Individual 1 

48 8 20 5 5 2 59 11 

 

Figure 7: Illustration of the mutation process of an individual and the result obtained 

Once these steps have been completed, the individual is then placed into a new population 

(regeneration process), with the cycle continuing until the maximum generation size is met, 

or a solution is found for the day. Below is algorithm 2 which illustrates the GA algorithm 

that was implemented in this study of the BAP. 

Algorithm 2: Pseudocode for the Genetic Algorithm  

1. Setup control parameters: Population size: 𝑛, Regeneration rate: 𝑅,                                     

2. Mutation rate: 𝑀, Crossover rate: 𝐶         

3. Begin   

4. For i = 1 to 𝑛                                              

5. Generate initial population 

6. End For 

7. While stopping criteria is false// Or maximum iterations is met  

8.  Implement selection based on point a 

9.  Implement crossover as depicted in Figure 6 in accordance with 𝐶 

10.  Implement mutation as depicted in Figure 7 in accordance with 𝑀 

11.  Evaluate individual using its fitness function 

12.  Generate new population 

13. End While 

14. Return best global individual 

15. End                       

3.2.2. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) is a population-based metaheuristic which utilises a 

swarm of particles to perform is optimization process [7, 56]. The PSO algorithm mimics 



44 
 

behavioural patterns from animal groups that do not have a specific leader, such as a flock of 

birds [36]. The algorithm begins by randomly distributing particles in a solution space and 

then begins its iterative process to try and locate the best solution. The optimization process 

relies on communication between particles in order to establish movement of the particles 

within the search space. The particles utilise both the experience of itself, as well as reachable 

neighbouring particles to guide the searching process. Given an n-dimensional space, each 

particle is characterized by a position vector Xi = (Xi1 . . . Xin) as well as a velocity vector Vi = 

(Vi1, . . ., Vin). Both Xi and Vi make use of the following equations to iteratively update 

themselves.  

Let                  

𝑃𝑖: Represents the best personal best position                      

𝑃𝑔: Represents the global best position                            

𝑟1, 𝑟2: Represents random values between [0, 1]                       

𝑐1, 𝑐2: Represents scaling parameters.                                          

𝜔: Represents the inertia weight                                                              

𝑡: Represents the iteration index 

𝑉𝑖(𝑡 + 1) =  ω 𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑖 − 𝑋𝑖) + 𝑐2𝑟2(𝑃𝑔 − 𝑋𝑖)      (13) 

𝑋𝑖(𝑡 + 1) = 𝑋(𝑡) + 𝑉𝑖(𝑡 + 1)         (14) 

A further look at the parameters, in correlation with eqs. 13 and 14 reveal that 𝑐1 and 𝑐2 

exert random forces in the direction of both 𝑃𝑖 and 𝑃𝑔, whilst the 𝜔 value aids in regulating 

the velocity which in turn helps to balance global and local searches. In this paper the PSO 

system was customized in order to conform to the BAP. For example, considering the PSO 

particles and particle positions; the study conducted by [7] used a string representation (using 

letters corresponding to blood types) for the daily demand and supply, and transformed the 

string into values to represent certain components in equations (13) and (14). This current 

study opts out of a string representation, instead using the individual representation in Figure 

3, it is possible to sum each segment to obtain a value which can relate to either 𝑋𝑖, 𝑃𝑖 and 

𝑃𝑔.  
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Algorithm 3: Pseudocode for the Particle Swarm Optimization 

1:  Setup control parameters: Swarm size: 𝑠, Problem Dimension:𝑑,             

2:  Search range: 𝑋𝑚𝑖𝑛, , 𝑋𝑚𝑎𝑥, Velocity range:  𝑉𝑚𝑖𝑛,,𝑉𝑚𝑎𝑥, Inertia weight: ω            

3.  

4: Begin Algorithm                                  

5: Initialize position and velocity for all particles in problem space 

6:  While stopping criteria is false do                   

7:   Compute ω 

8:  For i =1 to 𝑠 

9:   For j=1 to 𝑑  

10:    Update velocity using eq. 6 and check boundary using  

11:    Update position using eq. 7 and check if boundary is valid. 

12:    Compute f(𝑋𝑖) 

13:  End for 

14:   If 𝑓(𝑋𝑖) < 𝑓(𝑝𝑏𝑒𝑠𝑡) Then 

15:   𝑝𝑏𝑒𝑠𝑡   𝑋𝑖 

16:    

17:   If 𝑓(𝑋𝑖) < 𝑓(𝑔𝑏𝑒𝑠𝑡) Then 

18:   𝑔𝑏𝑒𝑠𝑡  𝑋𝑖     

19:   

20:  End for 

21:  End while 

22: Return 𝑔𝑏𝑒𝑠𝑡                 23: 

End Algorithm 

                      

3.2.3. Duellist Algorithm 

The Duellist Algorithm (DA) is based on the GA approach, which was inspired by human 

fighting and the ability of learning [20, 55]. With the DA approach, all the individuals within 

a population are referred to as duellist, with the aspect of fighting to determine champions, 

winners and losers within the population. Unlike the GA approach which produce blind 

solutions (blind solutions relate to individuals being produced that may not be a better 

solution), the DA subjects’ loser individuals to learn from the winner which tries to minimize 

the blind effect. A winner between two individuals is based on the physical nature of an 

individual (fitness value) as well as a luck coefficient (LC), which is a randomly generated 

value. The DA implements several steps before conducting a duel between two individuals: 
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I. Pre-Qualification: if the duellist is above a set fitness level, then the duellist is not 

selected to duel. This reduces computational time as duellists that are deemed as unfit 

will automatically be rejected due to the fact that they will not be able to attain a 

positive outcome when duelling with another individual. 

 

II. Board of champions: the board of champions aims at keeping the best duellist in the 

competition. The purpose of the champion is to train newer duellists to compete 

against each other. If the newer duellist has a better fitness than the original champion, 

then the duellist swaps positions with the champion. 

 

III. Duelling schedule: the schedule between two duellists is set randomly, with each 

duellist using their fighting potential as well as LC to determine a winner. 

Conventionally, the higher the fighting potential and LC coefficient results in an 

individual having a greater chance of becoming a winner. In accordance to the BAP, 

the best solution is considered to be the individual with the lowest fitness value, 

therefore to adapt the DA in conjunction with the BAP, the inverse function of the 

randomly generated LC value is added to the fitness using the following equations and 

algorithm: 

Algorithm 4: Pseudocode for the duellist outcome after the fighting process 

1.  Setup control parameters:𝐷𝑢𝑒𝑙𝑙𝑖𝑠𝑡𝐴, 𝐷𝑢𝑒𝑙𝑙𝑖𝑠𝑡𝐵, Luck coefficient: 𝐿𝐶          

2.                                                                           

3.  𝐴 (𝐿𝑢𝑐𝑘)   [𝐴(𝐹𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)  ∙  (𝐿𝐶 + (𝑟𝑎𝑛𝑑(0 − 1) ∙  𝐿𝐶))] -1                        

4.  𝐵(𝐿𝑢𝑐𝑘)   [𝐵(𝐹𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)  ∙  (𝐿𝐶 + (𝑟𝑎𝑛𝑑(0 − 1) ∙  𝐿𝐶))] -1                         

5.                  

6. If (𝐴(𝐹𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)  +  𝐴(𝐿𝑢𝑐𝑘) ≤ 𝐵(𝐹𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)  +  𝐵(𝐿𝑢𝑐𝑘)) Then                      

7.                                    

8.   𝑊𝑖𝑛𝑛𝑒𝑟   𝐷𝑢𝑒𝑙𝑖𝑠𝑡𝐴                

9.   𝐿𝑜𝑠𝑒𝑟   𝐷𝑢𝑒𝑙𝑖𝑠𝑡𝐵              

10.                          

11. Else                               

12.  𝑊𝑖𝑛𝑛𝑒𝑟   𝐷𝑢𝑒𝑙𝑖𝑠𝑡𝐵               

13.  𝐿𝑜𝑠𝑒𝑟   𝐷𝑢𝑒𝑙𝑖𝑠𝑡𝐴              

14. End If                    

Algorithm 4 illustrates the process of establishing a winner and loser when conducting a duel 

between two individuals. Each duellist utilizes a luck coefficient which aids them during a 

duel.  
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IV. Duellist improvement: after conducting the duel, the duellists are categorized either 

as a winner, loser or champion. The loser and winner are then treated to a form of 

learning in order to improve representations. The loser learns from the winner, whilst 

the winner trains himself by randomly regenerating values for each segment only if 

that segment does not match the demand for a day, in hopes that the new result is 

better than the previous value. Since the demand and supply for a day follow the same 

individual representation, if the segment in the winner or loser individual matches the 

demand segment, then the segment does not change.  

Algorithm 5: Pseudocode for the Duellist Algorithm 

1. Setup control parameters: Amount of duellists: 𝑛, Champion: 𝐶        

2:  

3.   

4: Begin                                   

5: For 𝑖 = 0 to 𝑛 

6.  Register duellists in tournament  

7. End For 

8. Determine 𝐶 

9.  

10. While stopping criteria is false do //Or maximum iteration is met 

11.  Duel between duellist A and B 

12.  Determine 𝑤𝑖𝑛𝑛𝑒𝑟 and 𝑙𝑜𝑠𝑒𝑟 

13.  𝑊𝑖𝑛𝑛𝑒𝑟 trains further 

14.  𝐿𝑜𝑠𝑒𝑟 learns from 𝑤𝑖𝑛𝑛𝑒𝑟 

15.  Eliminate duellist with worst fitness 

16. 

17.             If (fitness (𝑊𝑖𝑛𝑛𝑒𝑟) < fitness (𝐶)) 

18.        𝐶 = 𝑊𝑖𝑛𝑛𝑒𝑟 

19.        End If 

20. End While 

21. 

22. Return 𝐶 

23. 

24. End Algorithm 

                      

 

3.2.4. Symbiotic Organism Search 

The Symbiotic Organism Search (SOS) algorithm simulates the interactive behaviour of 

organisms within nature [37]. A notable advantage of the SOS algorithm is that it does not 

require any specific parameter tuning [38]. With reference to task scheduling optimization 
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problems, the SOS provided near optimal solutions, and has since drawn attention to its 

capabilities for other optimization tasks [57]. A standard SOS algorithm is broken into three 

main categories, namely, Mutualism, Commensalism and Parasitism, each of these phases 

alters an individual(s) within a population attempting to obtain a better solution than its 

original representation. Unlike the GA algorithm which procreates individuals, the SOS tries 

to adapt individuals through a series of phases: 

I. Mutualism: Organisms interact with each other in a way that benefits both parties. In 

other words, the individuals do not experience any form of hazardous behaviour 

which could threaten an individual’s integrity. Eqs. 15, 16 and 17 convey the act of 

mutualism between two individuals. 

Let 𝑋𝑖 and 𝑋𝑗 represent two random individuals within a population, and MV 

represent the Mutual Vector. 

𝑋𝑖new = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0, 1) ∙ (𝑋best – 𝑀𝑉 ∙ 𝐵𝐹1)       (15) 

𝑋jnew = 𝑋j + 𝑟𝑎𝑛𝑑(0, 1) ∙ (𝑋best – 𝑀𝑉 ∙ 𝐵𝐹2)       (16) 

Where: 

 𝑀𝑉 = (𝑋𝑖 + 𝑋𝑗) / 2          (17) 

The value obtained from (𝑋best – 𝑀𝑉) tries to increase survival in the population, with 

all improved individuals replacing the original individuals. 

II. Commensalism: Organisms interact with each other in a way that results in one 

organism benefiting without harming or altering the other organism. Selection of two 

organisms is done randomly from the population, and have their fitness values 

evaluated, the fitter individual is labelled as 𝑋𝑖 and the inferior individual is labelled 

as 𝑋𝑗. 

𝑋𝑖𝑛𝑒𝑤 =  𝑋𝑖 + 𝑟𝑎𝑛𝑑 (−1, 1). (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑗)       (18) 

𝑋𝑖 benefits from 𝑋𝑗 by means of (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑗)      (19) 

III. Parasitism: Organisms interact with each other in a way that benefits one organism 

(parasite) whilst harming the other organism (host). To evaluate a form of parasitism 

for the BAP, two individuals from a population are randomly selected, with each of its 

fitness values evaluated as being similar to the commensalism phase. Following the 

evaluation, the fitter individual is labelled as the parasite, and the inferior as the host. 
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The parasite then swaps segments of its representation with the host only if the value 

(from the host) improves its original solution. Algorithm 6 illustrates the SOS 

procedure, the algorithm was tailored to incorporate the BAP with the parasite section 

returning the best solution.  

Algorithm 6: Symbiotic organism search algorithm 

1: Setup control parameter: Ecosystem size: 𝑛, Host: 𝐻, Parasite: 𝑃 

2:  

3: Begin Algorithm 

4: Generate initial population of blood types X={X1, X2, … , Xn}, and evaluate its fitness 

5:    While stopping criteria is false //Or maximum iterations is met 

6: 𝐅𝐨𝐫 𝑖 = 1: 𝑛 

7:  Calculate fitness of each individual organism (blood types) 

8: 𝑋𝑏𝑒𝑠𝑡 = individual with lowest fitness  

9: End For 

10: //Implement the three SOS interaction phases 

11: Mutualism phase (section 3.2.4 I) 

12: Commensalism phase (section 3.2.4 II) 

13: Parasitism phase (section 3.2.4 III) 

14:    //Begin Parasitism Phase      

15: for i = 1 to length (𝑃)   

16:     if (𝑃[i] is not equal to 𝑑𝑒𝑚𝑎𝑛𝑑 [i]) Then 

17:         𝑠𝑡𝑜𝑟𝑒 𝑑𝑖𝑓𝑓1 =  𝑑𝑒𝑚𝑎𝑛𝑑 [𝑖] –  𝐻 [𝑖]                    

18:         𝑠𝑡𝑜𝑟𝑒 𝑑𝑖𝑓𝑓2 =  𝑑𝑒𝑚𝑎𝑛𝑑 [𝑖] –  𝑃 [𝑖] 
19:     end if     

20:     if (𝑑𝑖𝑓𝑓1 < 𝑑𝑖𝑓𝑓2) Then             

21:            swap host and parasite segments.    

22:     end if 

23:    if (𝑑𝑖𝑓𝑓1 ≥ 𝑑𝑖𝑓𝑓2) Then   

24:                    do not replace value. 

25:    end if 

26:      // End Parasitism Phase                     

27:     If (fitness (Par) < fitness (𝑋𝑏𝑒𝑠𝑡)) Then        

28:  𝑋𝑏𝑒𝑠𝑡 = 𝑃𝑎𝑟            

29:     End If                   

30.    End While                                          

31: Return 𝑋𝑏𝑒𝑠𝑡            

32: End Algorithm              

 

3.2.5. Grey Wolf Optimizer 

The GWO was inspired from the canine family, with wolves being considered as apex 

predators (top of the food chain) [39, 58]. The algorithm is moulded around a pack of wolves 
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(the pack ranging between 5- 12 wolves), with each pack containing 3 key members with the 

first, second and third also referred to as the alpha (α), beta (β) and delta (δ) respectively. 

Each of these wolves have their own tasks within the pack, for example the α is tasked with 

leading the pack, β wolf aids the α in decision making and is second in command, with δ 

wolves having to submit to α and β wolves. The lowest ranking wolves are referred to as 

omega wolves, which are considered the scapegoats of the pack. The GWO is defined as a 

predatory space of artificial wolves contained in a 𝑁 × 𝐷 where N is the number of wolves 

and D is the amount of variables of the BAP. The 𝑖𝑡ℎ position of a wolf is represented by 

𝑋𝑖 =  (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝐷) with 𝑋𝑖𝐷 is the dth variable value of the ith artificial wolf. Each value 

for 𝑋 is represented by the sum of the supply for the day, with the summed demand value 

representing the prey. According to the study in [40, 54], the hunting patterns of grey wolves 

follow a certain pattern: 

 Tracking, chasing and moving towards the prey, 

 Encircling, and harassing the prey until it stops moving, and, 

 Moving forward to attack the prey. 

Using this information, the GWO can be broken into individual components and 

mathematically modelled. 

  

I. Wolf pack hierarchy: the fittest individual within the pack will be deemed as the α 

wolf, likewise the second and third fittest individual will be the 𝛽 and 𝛿 wolf 

respectively, whilst the remaining wolves will be deemed as the 𝜔. The GWO 

algorithm utilises this hierarchy in order to conduct the optimization process. 

II. Encircling the prey: as mentioned previously, wolves encircle their prey during a 

hunt. The following equations are proposed for calculating the encircling behaviour. 

 

Let 𝐴 and 𝐶 represent coefficient vectors. 

 

�⃗�   = 2 . 𝑟2⃗⃗  ⃗           (20) 

�⃗�   = 2𝑎  . 𝑟1⃗⃗⃗⃗  . 𝑎            (21) 

 

Where 𝑎  is linearly decreased over a set number of iterations from 2 to 0. Whilst 𝑟1⃗⃗⃗⃗  ⃗, 

𝑟  2 ⃗⃗ ⃗⃗ ⃗⃗  ⃗represent random vectors between 0 and 1 

 

�⃗⃗�  = |�⃗�  . �⃗� p (t) – �⃗�  (t) |           (21) 
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�⃗� (t+1) = �⃗� p(t) – �⃗�  . �⃗⃗�           (22) 

 

Where t indicates the iteration, 𝑋 p is the position vector of the prey and 𝑋  represents the 

position vector of the hunter (grey wolf). 

 

III. Hunting: the hunting component utilises the alpha wolf to lead the hunt, the beta and 

delta wolf may part-take in the hunt occasionally. It is assumed that the alpha, beta 

and delta wolves have better knowledge regarding the prey than the omega wolves. 

Due to the alpha taking the lead in the hunt, we assign the best candidate solution to 

the alpha wolf, and in ascending order of fitness, allocate the remaining candidate 

solutions to the beta, delta and omega wolves. After allocation of candidate solutions, 

the wolves then iteratively update their positions using the following equations. 

 

�⃗⃗� α = |�⃗�  1 . �⃗� α - 𝑋 |            (23) 

�⃗⃗� β = |�⃗�  2 . �⃗� β - �⃗� |            (24) 

�⃗⃗� δ = |�⃗�  3 . �⃗� δ - �⃗� |            (25) 

 

�⃗� 1 = �⃗� α – �⃗� 1 (�⃗� α)           (26) 

�⃗� 2 = �⃗� β – �⃗� 1 (�⃗� β)           (27) 

�⃗� 3 = �⃗� δ – �⃗� 1 (�⃗⃗� δ)           (28) 

 

�⃗� (𝑡 + 1) = (�⃗� 1 + �⃗� 2 + �⃗� 3) / 3         (29) 

 

 

IV. Exploitation (Attacking process): by decreasing the value of 𝑎  over a set number of 

iterations, this mimics the process of a wolf approaching the prey. According to eq. 

(21), 𝑎  is a component in calculating 𝐴  which in turn decreases 𝐴 . The values for 𝐴  

lies between [-1, 1] with each position of the search agent lying between this specified 

range, if 𝐴   is less than 1, this can be deemed as the wolf moving towards the prey. 

 

V. Exploration (Searching for prey): as wolves search for prey, they tend to diverge 

from the pack, and then converge during an attack. The divergence pattern can be 

calculated using the value of 𝐴  bounded between [-1, 1] this allows for global 

exploration to take place. Exploration is also favoured by component 𝐶  which 

contains random values between [0, 2]. Component 𝐶  allocates random weights to the 

prey in order to emphasize (C > 1) and de-emphasize (C < 1). As mentioned 

previously, 𝐴  is linearly decreased by 𝑎 , and C is assigned random values to 
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emphasize the exploration process. Component C can also be interpreted as naturally 

occurring obstacles which occur during a hunt. Depending on the position of the wolf, 

C can randomly give the prey a weight which either makes it easier or harder for the 

wolf to catch the prey.  

 

VI. General implementation: the GWO starts with an initial random population of grey 

wolves (candidate solutions) which in correlation with the BAP, are represented as the 

supply of blood units for the day. The demand for WB units in a day is interpreted as 

the prey. The position of each wolf and prey equates to the sum of the values of each 

segment within the individual’s representation (Figure 3). Using the equations stated 

in (20-29), each candidate solution iteratively updates their position from the prey, 

with the parameter 𝑎  being linearly decreased from 2 to 0 over a number of iterations. 

Candidate solutions tend to converge towards the prey when |𝐴 | < 1 and diverge when 

|𝐴 | > 1. The termination criteria terminate when the max number of iterations have 

been reached, or the supply equates to the demand for a day. The reduced amount of 

search parameters of the GWO implementation is an important advantage of the 

algorithm [29]. Algorithm 7 is a pseudocode which illustrates the GWO 

implementation used in this study of the BAP. 
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Algorithm 7: Pseudocode for the Grey Wolf Optimizer 

1. Setup control parameter: Pack size: 𝑛, Coefficient vectors: 𝐴  and  𝐶 , Best individual: α, 

2. Second Best individual: β, Third Best individual: δ 

3.  

4. Begin Algorithm 

5.  For length of pack size Then 

6.  Generate initial population  

7.  Evaluate fitness of each individual 

8.  End for 

9. 

10.  Assign α  

11.  Assign β  

12. Assign δ  

13. 

14.  While stopping criteria is false//Or maximum iterations is met 

15.  𝑾𝒉𝒊𝒍𝒆 𝑖 = 0 to n do 

16.   Update search agents using eq. 23 

17.   Decrement parameter 𝑎  

18.   Update coefficients 𝐴  and 𝐶 using eq. 13 and 14 

19.   Evaluate fitness of each search agent 

20.   Increment 𝑖 

21.  End While 

22.  Update α, β, δ 

23. End While 

24. 

25. Return α individual  

26. 

27.End Algorithm               

 

3.3 Data generation 

Information obtained from the rate of demand over a prolonged period of time can be useful 

for creating a data bank which will aid decision making, in addition it offers a way for 

maximizing efficiency and service delivery [49]. Some of the previous work relating to blood 

management have managed to obtain real-world datasets [50, 51, 52] in the form of case 

studies that occurred within a hospital. In order to evaluate the effectiveness of a system, it 

would be ideal to obtain real-world data, however stochastic datasets have been used as 

substitutes in cases where real-world data proved difficult obtainable.  
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As mentioned previously, datasets in this study were generated stochastically as real-world 

datasets could not be attained. As such, previous work done by [7, 8, 28] constructed datasets 

using ranged percentage bounds and subsequently randomly selected a percentage between 

the bounds. This study also adopted the same principles and used a Random Number 

Generator (RNG) in order to generate the datasets. The datasets were run over a course of 1 

year (365 days) and generated values for supply and demand of WB units. The blood bank 

can also experience certain situations which it must deal with for example, the demand for 

WB units could exceed the supply or vice versa. The following table lists the different 

datasets used for testing each metaheuristic algorithm. Note that SAGV represents South 

African Generated Values. 

Table 7: Representation of the datasets 1-6 used in this study of the BAP 

Dataset Initial Blood Volume Demand bounds (%) Supply bounds (%) 

1 500 25-75 25-75 

2 500 SAGV 25-75 

3 500 75-100 25-50 

4 500 25-50 75-100 

5 5000 25-75 25-75 

6 5000 SAGV 25-75 

In accordance to Table 7 the following offers a more detailed explanation relating to each 

dataset, and the purpose for using those specific percentage bounds. 

I. Dataset 1 

Dataset 1 was regarded as the control dataset, and was used as a comparison to other datasets. 

Previous literature pertaining to the BAP used similar percentage ranges and initial blood 

volumes, therefore it seemed appropriate to evaluate the metaheuristic algorithms with these 

parameters.  

II. Dataset 2 

Apart from the different metaheuristic algorithms that were implemented to work the BAP, 

this study also incorporated a unique method for generating demand based on South African 

statistics (Section 2.4). Dataset 2 represented this ideology and tries to minimize the 

stochastic nature when randomly generating values for WB unit demand. The SAGV 

illustrated in Table 5 correlate to percentage bounds mentioned in Table 7.  
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III. Dataset 3 

The blood bank can face a situation where the demand for WB units heavily exceeds the 

current supply on hand. Dataset 3 tests this scenario, and it was expected for the importation 

levels to increase radically in order to satisfy the demand. More importation results in a 

greater expense being incurred by the blood bank, therefore dataset 3 tested how well an 

algorithm coped with a higher demand volume. 

IV. Dataset 4 

Dataset 4 tests the opposite of Dataset 3. In this scenario the blood bank faces an excess 

supply of WB units with minimal demand. It would be expected for the expiry levels to 

increase as the more stock of WB units will remain on the shelf and not be used within its 

lifespan. This also incurs additional expenses by the blood bank and implies that the blood 

bank is not utilising its WB stock efficiently.  

V. Datasets 5 and 6 

Datasets 5 and 6 were a replica of Datasets 1 and 2 respectively. However, they differ by 

means of initial WB volume being 5000 units instead of 500 units. This dataset examines 

how well the metaheuristic algorithm copes with larger volumes of WB units.  

3.4 Parameter Setting 

The following section illustrates the parameters used per Metaheuristic implementations. In 

order to keep this study valid, population size, and maximum iterations were set to 50 and 

1000 respectively per Metaheuristic Algorithm. Due to the varying structure of each 

algorithm, individual parameters were required. Previous work [7], [8] utilized specific 

values for their parameters pertaining to the GA and PSO. Since the GWO, SOS and DA 

implementations were not previously subjugated to the BAP, parameter setting followed 

previous work ascertaining to other forms of research. Note that RNG represents a Random 

Number Generator. 

I. GA 

 Generation rate: 25% 

 Crossover rate: 70% 

 Mutation rate: 5% 

II. PSO 

 Swarm size: 50 

 𝑐1 and 𝑐2: 1.7 
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 𝜔: 0.715 

 𝑟1 and 𝑟2: RNG [0, 1] 

III. DA 

 Luck Coefficient = 0.01 

IV. SOS 

 No form of parameters 

V. GWO 

 α : 2 

 𝑟1⃗⃗⃗⃗  and 𝑟2⃗⃗⃗⃗  : RNG [0, 1]   

This chapter aimed at providing an insight to the metaheuristic algorithms used in this study, 

and reported the stochastic datasets used to examine each algorithm. As mentioned earlier, 

the parameter setting for each metaheuristic algorithm was adapted from previous literatures, 

and to keep each result valid, each metaheuristic implementation was examined over a set 

population size of 50 with a maximum iteration of 1000. 
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Chapter Four 

Experimental Results 

The previous chapter gave an overview of the mathematical model and metaheuristic 

algorithms used in this study of the BAP. The following chapter will offer line graphs and 

averages attained in association with each metaheuristic. The objective function relates to 

minimizing the overall importation and expiration of blood units, whilst ensuring that all 

blood demands are met within a day. In an ideal day the request levels would be identical to 

the stock on hand which is deemed as a solution. A solution being located implies that no 

form of importation can occur, and the chances of possible expiry are reduced. The chances 

of finding a solution was higher at the start of the year as stock-piling might have taken some 

time to come into effect. Once a system was in the stock-piling phase, then the chances of 

obtaining a solution largely decreased. This chapter also provides an in-depth comparison 

between each algorithm in order to establish which algorithm performed the best for the 

particular dataset. Note that “MT” refers to metaheuristic.  

4.1 Experimental setup 

Each of the Metaheuristic Algorithms was implemented on Intel core i5 CPU with 2.5GHz 

and 4GB RAM and Windows 10.0 Operating system, while the implementation software was 

Java. Each of the algorithms was subjected to the datasets mentioned in Table 7 in order to 

obtain an output. Four variables were recorded, namely, demand, supply, importation and 

expiration, an algorithm would be deemed as effective if it amasses low amounts of expiry 

and importation of WB units. In total, five metaheuristics were subjected to six datasets 

resulting in 30 outcomes, all of which were tabulated and graphed accordingly. Since the 

remainder from the previous day was being added to the donations received by the current 

day, it was unlikely for a solution to be found. With this in mind the results were evaluated 

using three different aspects 

 Running time 

 Average amounts of both importation and expiration 

 Time taken before stock-piling occurred 
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Running time relates to the duration for an algorithm to run over a 365-day period, the 

smaller the running time the better the algorithm. The average amounts for both expiration 

and importation correlates to the objection function mentioned in Section 3.1.1. Finally, the 

time taken for stock-piling to occur drastically reduces the levels of importation, and can 

therefore be seen as a positive effect. Stock-piling does increase the risk of possible expiry, 

but due to the lifespan of a WB unit being 30 days, and the manner in which data is 

generated, it is unlikely for a blood unit to exceed this time frame. 

4.2 Results and Discussion 

4.2.1 Dataset 1 

Dataset 1 posed as the control dataset as previous literature used similar percentage bounds 

when generating demand and supply values. A control dataset establishes a baseline of results 

that can be compared against other datasets in order to attain similarities and differences. 

Dataset 1 used percentage bounds ranging between 25% – 75% for generating both demand 

and supply. 
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Table 8: Average results achieved for each metaheuristic implementation subjected to dataset 

1 for each blood group measured in units. 

 

 

 

 

MT Variable A+ A- B+ B- AB+ AB- O+ O- 

GA Supply 40.00 6.25 15.00 2.50 3.75 1.25 48.75 8.75 

 

 Demand 192.81 88.67 78.67 35.41 15.27 6.36 131.83 87.80 

 

 Import 0.00 0.00 0.08 0.01 0.28 0.01 0.02 0.00 

 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PSO Supply 162.7 7.25 61.35 3.26 16.16 12.90 47.51 9.94 

 Demand 40.51 6.33 15.19 2.53 3.80 1.27 49.37 8.86 

 Import 2.81 1.71 0.67 0.70 0.48 0.02 14.90 2.39 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA Supply 295.00 133.40 120.90 56.00 26.50 11.00 176.20 136.40 

 

 Demand 39.27 6.14 14.72 2.45 3.68 1.23 47.86 8.59 

 Import 0.45 0.03 0.17 0.00 0.25 0.02 0.35 0.02 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SOS Supply 192.81 88.67 78.67 35.41 15.27 6.36 131.83 87.80 

 Demand 40.00 6.25 15.00 2.50 3.75 1.25 48.75 8.75 

 Import 0.00 0.00 0.08 0.01 0.28 0.01 0.02 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GWO Supply 60.07 30.10 20.73 6.41 1.76 1.51 68.73 16.79 

 Demand 40.32 6.30 15.12 2.52 3.78 1.26 49.14 8.82 

 Import 1.36 0.01 1.07 0.09 2.02 0.26 1.14 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 9: Representation of the running time per metaheuristic for dataset 1 

 

 
 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: Representation of a line graph over a period of 365 days for the GA implementation 

of dataset 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Representation of a line graph over a period of 365 days for the PSO 

implementation of dataset 1 

Metaheuristic Time (Ms) Time(Minutes) 

GA 4748287 79.14 

PSO 504291 8.40 

DA 4899566 81.66 

SOS 4776186 79.60 

GWO 4752407 79.21 
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Figure 10: Representation of a line graph over a period of 365 days for the DA 

implementation of dataset 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Representation of a line graph over a period of 365 days for the SOS 

implementation of dataset 1 
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Figure 12: Representation of a line graph over a period of 365 days for the GWO 

implementation of dataset 1 

4.2.2. Discussion for dataset 1  

Figures 8-12 represent line graphs obtained when each metaheuristic was subjected to dataset 

1. Table 9 illustrates the running times obtained per algorithm, most algorithms achieved a 

running time exceeding 70 minutes, however the PSO algorithm was much quicker achieving 

a duration time of 8.4 minutes. No algorithms experienced any form of expiry throughout the 

time frame: 

 The GA algorithm experienced stock-piling around day 233, before this period 

imports occurred on sporadic days mainly for blood types B+ and AB+. Blood types 

A+, A- and O- experienced no form of importation within the time frame. Around days 

22, 85 and 127, the algorithm experienced very brief periods of stock-piling, however 

these lasted for periods of approximately 20 days. 

 PSO experienced stock piling at a very early period (around day 90). However, low 

levels of importation still occurred throughout the 365-day period, with importation 

mainly being accredited to blood types A+ and O-. This implies that the algorithm 

struggled to stock-pile for these blood types in particular. 

 DA experienced a brief period of stock-piling around day 73, however this only 

occurred for approximately 30 days. A steady rate of stock-piling only started to occur 

after day 180, this resulted in large amounts of WB units supply and no form of 

importation for any blood types.  

 The SOS algorithm experienced stock-piling around day 120, with very little 

importation levels throughout the time frame.  
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 GWO produced random results throughout its time frame with no distinguishable 

pattern. The GWO algorithm never experienced stock-piling and had minimal 

importation amounts occurring frequently. The results also show that O- blood was 

the only blood type not to experience importation, whilst blood types A-, B- and AB- 

had relatively small importation averages. This implies that the algorithm was able to 

manage blood types that are rarer (scarce in society) more efficiently, 

After assessing each algorithm, it was definitive that the SOS algorithm outperformed the 

other algorithms when subjected to dataset 1. Even though the SOS algorithm performed 

much slower (in terms of computational time) to the PSO system, it incurred the lowest 

averages relating to importation, and was the second fastest to experience stock-piling. 
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4.2.3 Dataset 2 

Dataset 2 incorporates South African generated values in order to generate percentage bounds 

for each month (Table 5). Due to certain months having lower percentage bounds, the overall 

averages attained for both demand and supply are lower as compared dataset 1. A more in-

depth comparison is discussed in Section 4.3 

Table 10: Average results achieved for each metaheuristic implementation subjected to 

dataset 2 for each blood group measured in units. 

 

MT Variable A+ A- B+ B- AB+ AB- O+ O- 

GA Supply 157.87 26.43 59.48 20.51 13.08 9.35 192.73 39.42 

 Demand 19.67 3.07 7.38 1.23 1.84 0.61 23.98 4.30 

 Import 0.07 0.00 0.01 0.00 0.01 0.00 0.09 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PSO Supply 278.14 3.57 101.07 1.79 24.84 10.51 25.50 4.98 

 Demand 19.28 3.01 7.23 1.20 1.81 0.60 23.50 4.22 

 Import 1.29 0.71 0.09 0.31 0.23 0.04 5.60 0.96 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA Supply 27.40 8.53 10.29 3.27 1.90 1.07 35.90 9.99 

 Demand 20.01 3.13 7.51 1.25 1.88 0.63 24.39 4.38 

 Import 2.61 0.09 0.81 0.03 0.60 0.12 1.38 0.13 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SOS Supply 222.87 43.48 76.14 24.06 19.19 9.34 294.67 52.15 

 Demand 19.08 2.98 7.15 1.19 1.79 0.60 23.25 4.17 

 Import 0.11 0.00 0.03 0.00 0.01 0.00 0.08 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GWO Supply 29.48 15.30 10.10 3.90 0.85 0.86 35.87 7.73 

 Demand 19.96 3.12 7.48 1.25 1.87 0.62 24.33 4.37 

 Import 0.72 0.01 0.52 0.05 1.02 0.17 0.57 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 11: Representation of the running time per metaheuristic for dataset 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Representation a line graph over a period of 365 days for the GA implementation 

of dataset 2 

 

 

 

 

 

 

 

 

Figure 14: Representation of a line graph over a period of 365 days for the PSO 

implementation of dataset 2 

 

 

 

 

Metaheuristic Time (Ms) Time(Minutes) 

GA 3983352 66.38 

PSO 561452 9.35 

DA 4113223 68.55 

SOS 4665054 77.75 

GWO 4525144 75.41 
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Figure 15: Representation of a line graph over a period of 365 days for the DA 

implementation of dataset 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Representation of a line graph over a period of 365 days for the SOS 

implementation of dataset 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
 

Figure 17: Representation of a line graph over a period of 365 days for the GWO 

implementation of dataset 2 

 



67 
 

4.2.4 Discussion for Dataset 2 

Figures 13-17 represent line graphs obtained when each metaheuristic was subjected to 

Dataset 2, whilst Table 11 depicts the running times obtained per algorithm. In comparison to 

the running times achieved from Dataset 1, all the algorithms except the PSO achieved 

smaller computational times. A noteworthy aspect relates to the average demands attained per 

blood type. Due to the generation of demand values in Dataset 2 the average levels have 

decreased for the majority of the algorithms. Similar to Dataset 1, no form of expiry occurred 

for any of the algorithms: 

 The GA algorithm experienced stock-piling at a very early period (around day 43), 

with the largest importation amounts occurring for blood types A+ and O+, implying 

that the algorithm cannot attain adequate blood supplies for two relatively abundant 

blood types. 

 Similar to the results obtained from the GA algorithm, the PSO heavily imports for 

blood types A+ and O+. In addition, the PSO took a larger computational time in 

comparison to Dataset 1, and only achieved stock-piling around day 77. 

 The line graph depicted in Figure 15 is similar to the pattern obtained from Dataset 1 

results for DA, in that the supply for blood heavily fluctuates between days. Even 

though the DA algorithm achieved stock-piling at a very early stage (day 25), the 

accumulation of small importation levels for the less common blood types occurred 

throughout the time frame. 

 The SOS algorithm achieved stock-piling around day 148 which in prospective??? to 

the other algorithms can be deemed as considerably slow. However, similar to dataset 

1 the SOS algorithm achieved very low importation levels. 

 In Dataset 1, the GWO algorithm did not achieve stock-piling, and there was no 

difference in Dataset 2. The average importation levels for GWO were relatively low, 

with importation occurring throughout the time frame. 

Due to the algorithm experiencing stock-piling at an early period coupled with its low 

importation levels for the certain blood types, the GA can be deemed as the more efficient 

algorithm for Dataset 2. Dataset 2 tried to emphasize the concept of generating data based on 

South African statistics, the fluctuating demand bounds directly link with the decrease in total 

averages attained per blood type as compared to Dataset 1. 
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4.2.5 Dataset 3 

Dataset 3 served to examine how well each metaheuristic algorithm performed when 

subjected to an instance of the demand exceeding the supply. As expected the average levels 

of demand per blood type exceeded the average supply. This is a scenario which was 

identified as an expense to the blood bank due to additional WB units needing to be imported 

to satisfy the demand in a day. 

Table 12: Average results achieved for each metaheuristic implementation subjected to 

Dataset 3 for each blood group measured in units. 

MT Variable A+ A- B+ B- AB+ AB- O+ O- 

GA Supply 25.72 4.12 9.65 1.67 2.32 0.90 31.31 5.68 

 Demand 38.69 6.05 14.51 2.42 3.63 1.21 47.16 8.46 

 Import 18.96 2.94 7.11 1.18 1.82 0.61 23.11 4.12 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PSO Supply 33.26 8.13 16.11 5.07 0.97 2.54 47.98 12.35 

 Demand 40.54 6.33 15.20 2.53 3.80 1.27 49.41 8.87 

 Import 7.69 0.40 1.19 0.08 2.86 0.24 3.05 0.13 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA Supply 41.47 6.48 15.55 2.59 3.89 1.30 50.55 9.07 

 Demand 48.83 16.24 17.84 6.15 2.19 1.73 56.38 18.24 

 Import 7.07 0.68 2.85 0.28 2.06 0.26 8.13 0.91 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SOS Supply 68.90 28.51 27.04 11.63 3.08 2.40 72.98 30.71 

 Demand 37.16 5.81 13.93 2.32 3.48 1.16 45.29 8.13 

 Import 1.20 0.01 0.39 0.01 1.51 0.10 0.68 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GWO Supply 16.14 3.20 6.25 0.38 0.85 0.05 19.01 4.46 

 Demand 21.06 3.29 7.90 1.32 1.97 0.66 25.66 4.61 

 Import 6.43 1.14 2.34 1.10 1.15 0.63 8.10 0.97 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 13: Running time per metaheuristic for Dataset 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Representation of a line graph over a period of 365 days for the GA 

implementation of Dataset 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Representation of a line graph over a period of 365 days for the PSO 

implementation of Dataset 3 

 

 

Metaheuristic Time (Ms) Time(Minutes) 

GA 3872251 64.54 

PSO 494639 8.24 

DA 4203022 70.05 

SOS 4765186 79.42 

GWO 4623043 77.05 
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Figure 20: Representation of a line graph over a period of 365 days for the DA 

implementation of Dataset 3 

 
                   

 

 

 

 

 

 

 

 

 

 

  

Figure 21: Representation of a line graph over a period of 365 days for the SOS 

implementation of Dataset 3 

 

 

 

 

 

 

 

Figure 22: Representation of a line graph over a period of 365 days for the GWO     

implementation of Dataset 3 
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4.2.6. Discussion for Dataset 3 

Dataset 3 tested how well a blood bank coped when the demand exceeded the supply on hand 

for any given day. None of the algorithms achieved stock-piling, and achieved drastic 

increases in regards to the average importation levels for each blood type. Figures 18-22 

represent line graphs obtained when each metaheuristic was subjected to Dataset 2, whilst 

Table 13 depicts the running times obtained per algorithm. In comparison to the running 

times achieved from Dataset 1, all algorithms experienced a decrease in total time taken for 

the algorithm to terminate. There were no significant aspects to analyse per algorithm as no 

stock-piling or expiry occurred. Overall the SOS system delivered far fewer importation 

levels per blood type and can be deemed as the best algorithm to work Dataset 3. 
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4.2.7 Dataset 4 

Dataset 4 tested the opposite of Dataset 3 whereas the supply exceeded the demand within the 

time frame. The level of expiry was expected to increase, however due to the lifespan of a 

WB unit being 30 days the level of expiry across any algorithm remained at 0. If expiry did 

occur, it would have implied that the metaheuristic algorithm could not utilise WB unit 

resources efficiently, and in the real-world blood banks would be expected to dispose of these 

unusable WB units in a proper manner which incurs additional expenses. 

Table 14: Average results achieved for each metaheuristic implementation subjected to 

Dataset 3 for each blood group measured in units 

 

MT Variable A+ A- B+ B- AB+ AB- O+ O- 

GA Supply 2124.89 335.79 791.17 152.07 195.07 66.28 2583.42 469.82 

 Demand 20.62 3.22 7.73 1.29 1.93 0.64 25.13 4.51 

 Import 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PSO Supply 3584.50 6.29 1350.75 2.52 328.10 100.46 49.15 8.80 

 Demand 20.65 3.23 7.74 1.29 1.94 0.65 25.17 4.52 

 Import 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA Supply 1893.13 470.49 715.33 169.36 175.23 56.17 506.27 461.14 

 Demand 19.71 3.08 7.39 1.23 1.85 0.62 24.02 4.31 

 Import 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SOS Supply 3419.58 565.67 1308.53 209.98 326.20 98.90 4172.27 746.18 

 Demand 18.84 2.94 7.07 1.18 1.77 0.59 22.96 4.12 

 Import 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GWO Supply 3977.10 617.69 1498.53 257.23 363.27 118.53 4843.29 868.76 

 Demand 20.31 3.17 7.61 1.27 1.90 0.63 24.75 4.44 

 Import 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 15: Running time per metaheuristic for dataset 4 

Metaheuristic Time (Ms) Time(Minutes) 

GA 5220157 87.00 

PSO 500968 8.34 

DA 5135744 85.60 

SOS 5978164 99.63 

GWO 5998772 99.97 

 

 

 

 

 

 

 

 

 

Figure 23: Representation of a line graph over a period of 365 days for the GA 

implementation of Dataset 4 

 

 

 

 

 

 

 

 

Figure 24: Representation of a line graph over a period of 365 days for the PSO 

implementation of Dataset 4 
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Figure 25: Representation of a line graph over a period of 365 days for the PSO 

implementation of Dataset 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Representation of a line graph over a period of 365 days for the SOS 

implementation of Dataset 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Representation of a line graph over a period of 365 days for the GWO 

implementation of Dataset 4 

 



75 
 

4.2.8. Discussion for dataset 4 

Dataset 4 tested the opposite of Dataset 3, as the percentage bounds for generating supply 

greatly outweighed the bounds for generating demand. In theory, the levels of expiry were 

expected to drastically increase. However, after analysing the results, no form of expiry 

occurred due to the 30 lifespan of WB units. Practically it is unrealistic for a WB unit to stay 

in storage above its allotted lifespan unless demand is non-existent. Dataset 4 revealed that all 

the algorithms shared similar graphical shapes with the supply trend exceeding the demand 

trend. In addition, none of the algorithms experienced importation or expiration with similar 

computational times as compared to Dataset 1. Taking these factors into account, all 

algorithms performed efficiently when subjected to Dataset 4. 
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4.2.9. Dataset 5 

A blood bank can be subjected to a mass collection of WB units, which is what Dataset 5 

examined. The percentage bounds used for demand and supply replicated the bounds used in 

Dataset 1, but utilised 5000 WB units as an initial volume instead of 500 units. 

Table 16: Average results achieved for each metaheuristic implementation subjected to 

Dataset 5 for each blood group measured in units. 

MT Variable A+ A- B+ B- AB+ AB- O+ O- 

GA Supply 5205.15 816.14 1952.03 320.22 485.21 159.66 6334.86 1136.78 

 Demand 383.20 59.87 143.70 23.95 35.92 11.97 467.02 83.82 

 Import 1.88 0.31 0.70 0.10 0.28 0.06 2.31 0.39 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PSO Supply 3331.25 80.35 1264.40 40.95 307.45 106.53 503.23 108.92 

 Demand 397.69 62.14 149.13 24.86 37.28 12.43 484.68 86.99 

 Import 46.06 14.62 5.68 5.70 6.45 0.40 129.94 19.75 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA Supply 3442.04 1749.02 1325.24 674.90 310.58 108.34 2190.95 1773.78 

 Demand 396.28 61.92 148.60 24.77 37.15 12.38 482.97 86.69 

 Import 2.87 0.15 0.57 0.00 1.91 0.03 2.24 0.09 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SOS Supply 2404.66 1184.73 882.15 438.40 238.29 86.86 1639.28 1220.06 

 Demand 397.86 62.17 149.20 24.87 37.30 12.43 484.89 87.03 

 Import 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GWO Supply 637.34 252.61 230.45 70.28 19.65 17.99 771.21 161.06 

 Demand 424.51 66.33 159.19 26.53 39.80 13.27 517.38 92.86 

 Import 7.73 0.21 6.15 0.39 20.15 0.93 5.22 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 17: Running time per metaheuristic for Dataset 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 28: Representation of a line graph over a period of 365 days for the GA 

implementation of Dataset 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Representation of a line graph over a period of 365 days for the PSO 

implementation of Dataset 5 

 

Metaheuristic Time (Ms) Time(Minutes) 

GA 4422080 73.70 

PSO 504499 8.40 

DA 4203022 70.05 

SOS 5805914 96.76 

GWO 4385240 73.09 
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Figure 30: Representation of a line graph over a period of 365 days for the DA 

implementation of Dataset 5 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Representation of a line graph over a period of 365 days for the SOS 

implementation of Dataset 5 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Representation of a line graph over a period of 365 days for the GWO 

implementation of Dataset 5 
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4.2.10. Discussion of dataset 5 
 

Dataset 5 was a replica of Dataset 1 in the aspect of percentage bounds for demand and 

supply. The only difference lay in the initial volume of blood units which was 5000 units. 

This tested how well a blood bank was able to efficiently distribute large volumes of WB 

units. As expected the average levels for demand and supply increased accordingly. The 

increase in WB volume had very little effect on the computational time for the algorithms, 

and no form of expiry occurred: 

 

 GA in proportion to the large volume of WB units, experience very low amounts of 

importation, and similar to Dataset 1 experienced stock-piling at a very early stage 

(approximately day 35). After stock-piling, there were no visible forms of importation 

experienced throughout the remainder of the time frame. 

 PSO delivered very high importation levels especially for blood types A+ and O+ with 

stock-piling occurring around day 150. Similar to Dataset 1, the PSO algorithm still 

imported WB units even after stock-piling occurred. 

 The DA was similar to the GA in that the importation levels were quite low with 

blood type B- experiencing no form of imports. Stock-piling occurred around day 240 

after which the supply trends followed the same fluctuating pattern as compared to 

dataset 1. 

 SOS system posed the largest change in comparison to Dataset 1. The algorithm 

experienced stock-piling from day 1 which resulted in no form of importation except 

for blood type AB+.  

 GWO followed its typical sporadic graphical trend with no stock-piling occurring 

within the timeframe, as such the GWO implementation incurred imports for specific 

blood types throughout the allotted time frame. 

 

Dataset 1 used an initial volume of 500 WB units, whilst Dataset 5 used 5000 units. Even 

though there was a drastic difference between the initial blood unit volumes, most algorithms 

displayed similar behaviour and graphical trends. The SOS was by far the most effective 

algorithm with almost no form of importation and was the fastest to reach the effect of stock-

piling.  
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4.2.11 Dataset 6 

Since this study’s aim relates to incorporating SAGV for stochastically generating demand 

and supply values, the introduction of Dataset 6 seemed imperative. Dataset 6 follows the 

same demand bounds of Dataset 2, but utilised a higher initial WB unit volume of 5000 units.  

Table 18: Average results achieved for each metaheuristic implementation subjected to 

Dataset 6 for each blood group measured in units 

 

MT Variable A+ A- B+ B- AB+ AB- O+ O- 

GA Supply 17293.71 2700.27 6485.94 1082.13 1619.56 536.04 21076.53 3779.62 

 Demand 345.93 54.05 129.72 21.62 32.43 10.81 421.60 75.67 

 Import 0.73 0.11 0.28 0.05 0.07 0.03 0.90 0.16 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PSO Supply 10808.48 59.98 4047.42 24.02 1011.76 334.79 467.84 83.99 

 Demand 351.56 54.93 131.84 21.97 32.96 10.99 428.47 76.90 

 Import 0.29 17.44 0.11 6.96 0.03 0.01 136.02 24.41 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DA Supply 15915.12 7070.80 5962.89 2671.17 1466.52 489.37 7503.44 7096.10 

 Demand 344.48 53.82 129.18 21.53 32.29 10.76 419.83 75.35 

 Import 0.90 0.00 0.24 0.00 0.29 0.00 0.88 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SOS Supply 5157.35 914.22 2439.90 430.83 549.99 206.36 7621.29 1389.61 

 Demand 354.62 55.41 132.98 22.16 33.25 11.08 432.20 77.57 

 Import 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GWO Supply 830.88 360.82 292.25 106.79 14.26 23.18 963.91 205.18 

 Demand 349.75 54.65 131.16 21.86 32.79 10.93 426.26 76.51 

 Import 4.83 0.04 7.61 0.35 38.30 1.14 7.45 0.00 

 Expiry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 19: Running time per metaheuristic for Dataset 6 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Representation of a line graph over a period of 365 days for the GA 

implementation of Dataset 6 

 

 

 

 

 

 

 

 

Figure 34: Representation of a line graph over a period of 365 days for the PSO 

implementation of Dataset 6 

 

 

Metaheuristic Time (Ms) Time(Minutes) 

GA 4321070 72.017 

PSO 503324 8.38 

DA 4302052 71.70 

SOS 5906312 98.43 

GWO 4362574 72.70 



82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 355: Representation of a line graph over a period of 365 days for the DA 

implementation of Dataset 6 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Representation of a line graph over a period of 365 days for the SOS 

implementation of Dataset 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Representation of a line graph over a period of 365 days for the GWO 

implementation of Dataset 6 
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4.2.12. Discussion of Dataset 6 

The last analysis of results related to Dataset 6. Dataset 6 was a replica of Dataset 2 in terms 

of percentage bounds, but was similar to Dataset 5 in testing a larger volume of WB units. 

Due to the percentage bounds being generated by South African statistics on a monthly basis, 

the demand and supply averages were expected to decrease. The results are as follows: 

 GA performed efficiently, with stock-piling occurring around day 14, but did 

experience relatively high importation amounts before stockpiling occurred. Overall 

the average importation levels for each blood type are relatively small in comparison 

to the initial volume of WB units. 

 The results obtained from the PSO algorithm was a large improvement than the 

previous Dataset 5 results. However, blood type O+ still experienced very large 

importation levels throughout the time period. The algorithm did experience stock 

piling around day 35, but similar to the previous datasets sporadic amounts of 

importation still occurred even though the event of stock-piling occurred. 

 For the DA implementation, blood types A+, B+, AB+ and O+ were the only types to 

experience importation, however these values where relatively small. The algorithm 

experienced stock-piling around day 40, and followed its fluctuating supply trend 

thereafter. 

 Unlike Dataset 5, the SOS algorithm did not experience stockpiling from the day 1, 

but rather around day 17. After stock-piling occurred, no form of importation was 

experienced. Similar to Dataset 5, the only blood type to experience importation was 

type AB+ 

 In previous datasets, the GWO did not experience any form of stock-piling. However, 

Dataset 6 reveals small periods of stock-piling which could be due to the unique 

nature of WB unit demand generation. This was an improvement as stock-piling 

decreased the overall importation experienced for each blood type.    

Even though the SOS algorithm was the second fastest to experience stock-piling, it was still 

considered as the best algorithm for Dataset 6. SOS experienced no form of importation, 

except for blood type AB+ 

4.3. Comparison between demand generations 

As emphasized in the previous chapters, this study incorporated a method for generating 

values for WB unit demands by incorporating statistics from South Africa. Previous literature 
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used fixed percentage bounds over a set time frame, which was illustrated in this study by 

Dataset 1. As proven by the results analysed in Dataset 1 and 2, the average demand and 

supply per blood type in Dataset 2 was smaller due to unique percentage bounds allocated to 

each month instead of a constant percentage bound used in Dataset 1. The statistics used to 

generate Dataset 2 includes public holidays and breaks from educational institutions within 

South Africa. The idea behind using such statistics is to emphasize the fact that WB units 

would have a higher demand in months which experienced an increase in dangerous activities 

such as drinking and driving, criminal events, etc. Therefore, this section serves as an 

analysis between the results obtained from generating demand values between the two 

mentioned methods. Below are 5 line graphs (figures 38–42) depicting the curvature of 

demand generation using the fixed percentage bound in comparison to the SAGV method per 

metaheuristic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Representation of a comparison between demand generations for GA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Representation of a comparison between demand generations for PSO 
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Figure 40: Representation of a comparison between demand generations for DA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Representation of a comparison between demand generations for SOS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Representation of a comparison between demand generations for GWO 

 

Figures 38-42 represent line graphs depicting the demand generated using fixed percentage 

bounds versus bounds generated using SAGV. A noticeable component relating to a fixed 



86 
 

percentage bound relates to the absolute randomness in regards to the line trend, whereas the 

trend based on SAGV seems to have periods with high and low variations. With reference to 

SAGV, around days 28-55 (represents February) across Figures 38–42 indicate that the 

demand for WB units is generally lower, which correlates to the assumption that months with 

fewer public holidays and breaks from educational institutions should utilise fewer WB units. 

The opposite assumption relates to high WB unit demand which is clearly depicted in a 

month like December (days 331-365) which illustrates a much higher demand curvature. 

4.4 Comparison with results from the literature 

Previous research pertaining to the BAP utilised different blood banking policies and 

metaheuristics in comparison to this study. To assess the results obtained in this study, 

comparisons were made with regards to the average amount of importation and expiration. 

Due to the differences in mathematical models across some of the literatures, a precise 

comparison could not be attained. Taking this factor into account, it was possible to examine 

certain results achieved from studies conducted in [3, 7, 28]. Each of these studies 

implemented different metaheuristic algorithms with very similar blood banking structures, 

and identified the best algorithm that produced satisfactory results. Table 20 illustrates the 

best algorithms in accordance to each individuals study. 

Table 20: Representation of the best algorithms in association to each research contribution 

towards the BAP 

Reference Best metaheuristic algorithm 

[28] GRASP 

[7] PSO 

[3] HC 

 

The study conducted by [28] recorded cumulative amounts correlating to importation for 

datasets 2 and 3 over a period of 90 days. Datasets 1, 2 and 3 used initial blood volumes of 

500, 1000 and 2000 units respectively. On day 90, the GRASP algorithm depicted a 

cumulative import amount of 1097 WB units with most of the imports being attributed to 

blood type O-. Due to the time frame being restricted to just 90 days, it can therefore be 

predicted that the level of importation followed an exponential growth, and more importation 

would occur in the future. Results also indicated that the GRASP algorithm struggled to 
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handle blood types of a higher rarity such as blood type O-. Overall, five datasets were 

implemented, but Dataset 2’s results could only be acquired. 

The study in [7] implemented 7 datasets, however Datasets 6 and 7 could only be examined 

due to the time period replicating this study’s range of 365 days. Dataset 6 used an initial 

volume of 500 WB units whilst Dataset 7 used 1000 units, both of the datasets used fixed 

percentage bounds ranging between 25-75%. In [7], the PSO algorithm was implemented to 

solve the BAP in conjunction with the 7 datasets. These datasets could be compared to 

Datasets 1 and 6 in the current study as these are similar with regard to parameters. Table 21 

illustrates the average results attained from Dataset 1 in this study and Dataset 6 in [7] study 

Table 21: Comparison between the results obtained in [7] and the current study per blood 

type 

 

Table 21 depicts similar averages attained per blood types expect blood types O+ and O-. The 

study by [7] also presented much larger averages attained for these blood types with a total 

average of 1.8 WB unit import, whilst the current study only recorded an average of 0.4 WB 

unit import. The drastic difference can be contributed to the current study utilising the 

previous days remaining WB units which was not a method implemented in [7]. 

The current study and research in [7] both examined the metaheuristic algorithms with a 

larger initial volume of WB units, however [7] used 1000 WB units, whilst the current study 

used 5000 units. Table 22 below compares the results obtained between the two studies. 

Table 22: Comparison between the results obtained in [7] and the current study per blood 

type for a larger initial WB unit volume 

Study A+ A- B+ B- AB+ AB- O+ O- 

The current study (SOS result) 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 

PSO result [7] 0.00 0.98 0.00 0.17 0.00 0.01 1.22 3.08 

The current study recorded that the best metaheuristic implementation for Dataset 5 was the 

SOS algorithm, as it incurred no importation except for blood type AB+. The study in [7] 

displayed a total average of 5.46 WB units. Overall the comparison between these two studies 

Study A+ A- B+ B- AB+ AB- O+ O- 

The current study (GA result) 0.00 0.00 0.08 0.01 0.28 0.01 0.02 0.00 

PSO result [7] 0.00 0.30 0.00 0.05 0.00 0.01 0.41 1.03 
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has justified that the act of using the previous day’s remaining WB units to treat patients 

greatly reduces the levels of importation. 

The study in [7] was derived from the work done in [3] in 2012. Dataset 1 in [3] used an 

initial WB units volume of 500 blood units, as well as percentage bounds ranging between 

25-75%. Likewise, Dataset 3 used a much larger initial volume of WB units (2000 units) with 

identical percentage bounds to Dataset 1. Comparisons were therefore made to dataset 5 of 

this study 

Table 23: Comparison between the results obtained in [3] and the current study per blood 

type with an initial volume of 500 WB units. 

 

Averages obtained from [3] were evaluated over a period of 90 days with blood type O+ and 

O- having the lowest averages with regard to importation levels. The GA implementation in 

this study out-performed the HC algorithm, however the GA algorithm did experience higher 

averages for blood types B+ and AB+ when compared to the results of [3]. 

Table 24: Comparison between the results obtained in [3] and the current study per blood 

type for a larger initial WB unit volume 

 

In [3], Dataset 3 used an initial WB unit volume of 2000, but still produced much larger 

averages as compared to the SOS algorithm in this study. Blood types AB+ and AB- in [3] 

recorded no form of importation, whilst the current study incurred imports for blood type 

AB+. This could imply that the HC algorithm performs well only for types AB+ and AB- 

when exposed to larger WB unit volumes. 

The results examined in this section can be subjected to debate due to the varying parameters 

for each of the datasets used in relation to the previous literature. Previous work failed to 

utilise the remaining WB units from the previous day and therefore needed to import 

additional units to satisfy the demand on a regular basis. The interpretation of the BAP in 

Study Dataset A+ A- B+ B- AB+ AB- O+ O- 

The current study (GA result) 1 0.00 0.00 0.08 0.01 0.28 0.01 0.02 0.00 

HC result [3] 1 0.00 0.42 0.00 0.11 0.00 0.01 0.67 2.02 

Study Dataset A+ A- B+ B- AB+ AB- O+ O- 

The current study (SOS result) 5 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 

HC result [3] 3 2.73 0.80 1.96 1.03 0.00 0.00 7.14 5.80 
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these studies shows many correlations with respect to data generation, and overall 

mathematical structure. This study has opted out of the conventional interpretation and has 

tried to further the research relating to the BAP by covering different mathematical 

implementations. 
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Chapter Five 

Summary, Conclusion and Future Work 

5.1 Summary 

The BAP is seen as an optimization problem which tries to efficiently distribute WB units to 

patients in need, whilst trying to reduce the levels of importation and expiration experienced 

within the blood bank. Both expiration and importation have expenses associated to these 

events, and will therefore increase the expenses of a blood bank. Blood was also seen as a 

precious commodity, therefore expiration of WB units can be seen as the blood bank wasting 

valuable resources. Due to the BAP containing various components, developing a 

mathematical model proved difficult, and therefore required certain assumptions to be 

introduced. The assumptions revolved around physical attributes relating to a WB unit such 

as lifespan, disregarding human characteristics, ignoring frozen units, etc. In order to verify 

whether this study produced successful results, an aim and objectives list was generated 

which incorporated components tailored to the development of the BAP (refer to Section 

1.4). The current study successfully completed all the points mentioned in Section 1.4 and 

ventured into newer territory by implementing different metaheuristic algorithms which 

differed from previous literature.   

The FIFO system for issuing blood was represented by the blood banking policy. There were 

other sub-components within the issuing system, however the main emphasis was placed on 

the queueing technique represented in Figure 1. The FIFO system decreased the likelihood of 

expiration thus allowing the blood bank to utilise WB units efficiently. Five metaheuristic 

algorithms were used to implement the proposed BAP and these include GA, PSO, DA, SOS 

and GWO. Prior research made use of the GA and PSO algorithms and subjugated the 

algorithms in accordance to the BAP. The DA, SOS and GWO are relatively newer 

techniques with no record of these algorithms being implemented and used to solve the BAP, 

thus the current study has contributed toward the development of the BAP by means of 

implementing different metaheuristics as compared to previous work.  

Furthermore, most of the literature suffered from the inability of utilising real-world datasets 

due to confidentiality issues, and therefore generated their own datasets based off scenarios 

that could be faced by the blood bank. This study incorporated the same data generating 
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techniques, but tried to reduce the randomness by incorporating statistics based on South 

Africa. Generating percentage bounds in such a manner not only reduces randomness but can 

also conform to other countries’ statistics, for example if a certain country experiences more 

public holidays in a different month as compared to that of South Africa, then the bounds can 

be changed accordingly. Finally, the last aspect related to determining the best metaheuristic 

algorithm which produced the most satisfactory results in relation to the proposed BAP 

objective function that was discussed in depth in Chapter Four. 

5.2 Conclusion 

The current study looked at the applications of metaheuristics algorithms coupled with a 

mathematical model to solve the BAP.  Each of the algorithms was subjected to stochastically 

generated datasets which tested various scenarios that could be imposed upon the blood bank. 

In addition, this study incorporated South African statistics when generating some of the 

datasets. This method of dataset generation tries to reduce randomness when generating 

values, and contributes towards the study of blood management or other related perishable 

inventory problems. Prior literature merely allocated percentage bounds to each dataset, and 

did not incorporate any relevant statistics when generating these bounds.  

It can be concluded that the SOS algorithm outperformed the other implementations. Whilst 

the SOS algorithm was by no means the fastest, its results of low importation levels and no 

form of expiry made up for its lack of speed. The PSO algorithm was deemed as the fastest 

for producing an output, but suffered with constant low-level imports even after stockpiling 

occurred. GA and DA did not report significant results, however the GA did perform the best 

when exposed to Dataset 2, indicating that the GA performs well when exposed to SAGV. 

The worst algorithm was the GWO due to no form of consistent stock-piling across any of the 

datasets. The GA and PSO algorithms were implemented in previous literature as reported in 

[3] and [7] respectively. The study conducted in [3] implemented various hybrid 

implementations of the GA as well as the HC algorithm, and reported that the HC 

outperformed the other implementations. With reference to the results obtained by [7], the 

PSO algorithm seemed to perform well in producing low importation levels, however the 

algorithm was only run over a course of 90 days and did not incorporate the same model of 

adding the previous day’s remainder to the current day’s supply, thus the findings in this 

study cannot be compared to the research conducted by [7]. Overall the current study has 

furthered the research relating to the BAP by implementing newer metaheuristics, namely, 
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the DA, SOS and GWO, and incorporated a more consistent and stable method of 

stochastically generating datasets which can contribute to other relatable inventory 

management problems. In addition, certain ideas and assumptions from previous literature 

were expanded upon in this study in order to build a more accurate mathematical model. 

5.2.1 Research Contribution                              

The current study proposed a new mathematical model, that considers the issue of blood 

compatibility and expiration. More so, three new computational models that are based on the 

global metaheuristic algorithms namely, DA, SOS and GWO were equally proposed and 

implemented to solve the BAP. Furthermore, this study attempted to improve upon the aspect of 

stochastic datasets generation. As mentioned previously, stochastic datasets are used when real world 

datasets cannot be obtained. The issue with using stochastic datasets relates to the complete 

randomness when generating values, with the aid of statistics relating to South African public 

holidays, and schooling terms, the randomness of stochastic dataset was minimized. Even though this 

technique of dataset generation is not perfected, it is a method open for expansion and further 

improvement. Lastly, this research also explored the aspect of WB unit expiry which was not 

considered in many of the previous literatures. 

5.3 Future work 

It will be interesting to evaluate the performances of the various implementations discussed 

in this thesis using real-world datasets, especially for locations where accessibility to 

sensitive data are not hindered. However, if datasets are still being stochastically generated, 

then possible improvement can be considered from the aspect of utilising more statistical 

variables when allocating percentage bounds to each month. The mathematical model can 

also be improved upon, for example, those procedures that requires patients’ specific blood 

types, this accessory could be implemented in future research. Finally, the field of 

metaheuristics is an ever expanding area, this can also be considered a source of motivation 

for which even more state-of-the-art metaheuristic algorithms could be tailored for the 

implementation of various models of the BAP. 
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Appendix A 

User Manual 

 

The metaheuristic algorithms were implemented using the Java programming language on the 

Eclipse Neon IDE version 4.6.0. The program can be run by simply opening the JAR file 

which will present a GUI as depicted in fig. A.0.1. 

 

 

 

 

 

 

 

 

 

Fig. A.0.1: Representation of the GUI used to run the metaheuristic algorithms 

The GUI presents the user with 12 radio buttons split into 5 radio buttons for the 

metaheuristic algorithms, and 7 radio buttons for the datasets. Also on the GUI are 2 buttons 

for running and closing the application. 

 First click on the radio button for the metaheuristic you wish to run. 

 Next click on the dataset you wish to test. 

 Finally click the run button to start the algorithm. 

Following these steps will open a blank window. The window will only display the final 

results obtained once the all the days have been completed (365 days). Most of the algorithms 

took around 60+ minutes to complete therefore it will take a while before all the days results 

are displayed. Due to the large number of generations per algorithm, it seemed best to only 

display the best results achieved per day. It is advisable to select the “test dataset” in 

conjunction with any metaheuristic algorithm as the test dataset only runs over a period of 10 

days with fewer iterations etc. which will complete much faster, but offer poorer results.  

Below is fig. A.0.2 which illustrates the layout of the results once all the days have been 

completed. 
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Fig. A.0.2: Illustrates the output representation for a metaheuristic algorithm 

Fig A.0.2 depicts 8 columns with each column representing a specific blood type. On the left 

are 4 variables namely demand, supply, import, and expiry. The values corresponding to both 

the row and column convey upon the result achieved for that particular day per blood type. 

The blood types that are more common in society will have relatively higher values, and the 

supply per blood type should increment as time progresses due to the stock-piling effect. 

Finally the algorithm terminates after 365 days have completed and displays the averages 

attained per variable. 

 

 

 

 

 

 

 

 




