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Abstract

The increasing demand of mobile and device connectivity poses challenging requirements for 5G

wireless communications, such as high energy- and spectral-efficiency and low latency. This

necessitates a shift from orthogonal multiple access (OMA) to Non-Orthogonal Multiple Access

(NOMA) techniques, namely, power-domain NOMA (PD-NOMA) and code-domain NOMA

(CD-NOMA). The basic idea behind NOMA schemes is to co-multiplex different users on the same

resource elements (time slot, OFDMA sub-carrier, or spreading code) via power domain (PD) or

code domain (CD) at the transmitter while permitting controllable interference, and their successful

multi-user detection (MUD) at the receiver albeit, increased computational complexity.

In this work, an analysis on the performance of the existing NOMA schemes is carried out.

Furthermore, we investigate the feasibility of a proposed uplink hybrid-NOMA scheme namely

power domain sparse code multiple access (PD-SCMA) that integrates PD-NOMA and CD-NOMA

based sparse code multiple access (SCMA) on heterogeneous networks (HetNets). Such hybrid

schemes come with resource allocation (RA) challenges namely; codebook allocation, user pairing

and power allocation. Therefore, hybrid RA schemes namely: Successive Codebook Ordering

Assignment (SCOA) for codebook assignment (CA), opportunistic macro cell user equipment

(MUE)- small cell user equipment (SUE) pairing (OMSP) for user pairing (UP), and a QoS-aware

power allocation (QAPA) for power allocation (PA) are developed for an energy efficient (EE)

system. The performance of the RA schemes is analyzed alongside an analytical RA optimization

algorithm. Through numerical results, the proposed schemes show significant improvements in the

EE of the small cells in comparison with the prevalent schemes. Additionally, there is significant sum

rate performance improvement over the conventional SCMA and PD-NOMA.

Secondly, we investigate the multiplexing capacity of the hybrid PD-SCMA scheme in HetNets.

Particularly, we investigate and derive closed-form solutions for codebook capacity, MUE

multiplexing and power capacity bounds. The system’s performance results into low outage when the

system’s point of operation is within the multiplexing bounds. To alleviate the RA challenges of such

vi
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Abstract

a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM) based

RA schemes are proposed. The results show significant capacity gain with DPR-RA in comparison

with conventional RA schemes.

Lastly, we investigate the feasibility of integrating the hybrid PD-SCMA with multiple-input multiple-

output (MIMO) technique namely, M-PD-SCMA. The attention to M-PD-SCMA resides in the need

of lower number of antennas while preserving the system capacity thanks to the overload in PD-

SCMA. To enhance spectral efficiency and error performance we propose spatial multiplexing at the

transmitter and a low complex joint MUD scheme based on successive interference cancellation (SIC)

and expectation propagation algorithm (EPA) at the receiver are proposed. Numerical results exhibit

performance benchmark with PD-SCMA schemes and the proposed receiver achieves guaranteed bit

error rate (BER) performance with a bounded increase in the number of transmit and receive antennas.

Thus, the feasibility of an M-PD-SCMA system is validated.

vii
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1. INTRODUCTION AND BACKGROUND

1 Introduction and Background

Wireless communication networks are arguably among the rapidly growing communications

technology in the last decade. Communication networks continues to re-define different aspects of

work and life in the society around the world. The burgeoning of smart devices creates a platform for

a wide array of end-user applications that have increased meteorically in the recent past. Amongst the

extensive range of mobile enabled services is the internet, which has overwhelmingly been embraced

as a decisive technology of the information age. Internet provides ubiquitous capacity of

multi-modal, interactive communication in chosen time and transcending space. Today’s smart

devices are equipped with applications that enable users perform seamless, advanced and reliable

real-time data acquisition and processing in medical, business, security, entertainment, education,

research, science and engineering related fields. Such applications require particular quality of

service (QoS) requirements from service providers such as; high traffic and data rate, low power

consumption, ultra-low latency real time services, high mobility and reliability support, radio

spectrum sharing and massively connected devices. Ultimately, mobile communication is a

prerequisite rather than luxury for sustaining a reasonable quality of modern life.

The surging QoS demands for wireless communication services has necessitated a re-design in access

to network resources by both the service providers and the end user. Compared to 4G LTE, the QoS

demands namely; spectral efficiency has increased by factors of 5 to 15, connectivity density target

expected to be ten times higher, i.e., at least 106/km2, radio latency ≤ 1ms and low-cost efficiency

of more than 100 times are required for the support of diverse compelling services [1]. In order to

meet these meticulous requirements, multi-dimensional solutions are being conceived. These include

implementation of enhanced multi-radio access protocols, deployment of multiple-input

multiple-output (MIMO), utilization of millimeter wave frequency bands and reinforcement of

infrastructural and architectural environment (including Heterogeneous networks (HetNets) where

heterogeneity of cells with different transmit power, coverage range and cost of deployment) to

increase capacity.

The radio spectrum resource is finite and scarce. Therefore, resource management is pivotal in

servicing user and network demands in the next generation wireless networks (NGWNs). Motivated

by such observations, this work focuses on the analysis of existing NOMA technologies with an

objective of developing a hybrid NOMA that blends different technologies for enhanced spectral

efficiency. In particular, we investigate the feasibility of integrating power–domain NOMA and

code–domain NOMA in an uplink hierarchical HetNet system. Parametric hybrid resource allocation

2
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2. EVOLUTION OF WIRELESS NETWORKS

(RA) schemes for such a system model are developed. An alternative dual-decomposition based RA

techniques are utilized to analytically assess the system’s performance. At the receiver, hybrid joint

multi user detectors (MUD) are proposed. Due to the potential of these technologies towards

achieving optimal spectrum sharing, this work further investigates the multiplexing capacity of the

hybrid NOMA. In order to improve the benefits of system throughput, capacity and diversity, this

work develops and investigates the application of multiple-input multiple-output (MIMO) based

hybrid NOMA transceiver system on an uplink HetNet, aimed at achieving a balance on the number

of antennas and capacity/spectral efficiency.

This chapter outlines the evolution and advancements of wireless networks, conducts literature review

on fifth generation (5G) networks including the architecture, challenges, technical requirements and

potential challenges. Furthermore, NOMA technologies are presented. Existing NOMA RA schemes

are discussed with the aim of confronting the hybrid NOMA challenges. Having outlined the 5G

challenges and the potential 5G facilitators, we formulate the research problem followed by a vivid

explanation of the research objectives and the methodology.

2 Evolution of wireless networks

The first wireless transmission in history was achieved in the year 1895 when an Italian inventor,

Marconi used radio waves wirelessly to transmit Morse code signals a distance of 3.2KMs. Since

then, engineers have been seeking to efficiently utilize radio frequency waves. In the mid-19th century,

wired telephony was already popular. Due to its restricted mobility, scientists were already designing

devices that did not require wired connection but rather transmit voice using radio waves. The first

prototype of mobile hand held devices conducted in the mid-1970s. This was deemed as the turning

point in wireless communications that led to an evolution of technologies and standards [2].

The first generation (1G) mobile network was introduced in the early 1980s. Owing to the ever-

increasing demand for more connections worldwide, there was need for rapid advancements in the

mobile communication standards. The 1G transmitted only voice signals at a frequency range of 800

MHz and 900 MHz using analog switching technology at limited bandwidth of 10 MHz. However,

1G experienced demerits of poor voice quality due to excessive interference, user support limitation

and cell coverage, degraded battery life and insecurity issues [3].

In late 1980s, the second generation (2G) of mobile communications was presented by the Global

System for Mobile communication (GSM) technology that would later become a global wireless

standard. GSM standard capability of supporting 14.4 to 64 Kbps maximum data rate was adequate

3
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2. EVOLUTION OF WIRELESS NETWORKS

for short messaging services (SMS) and email services besides better quality voice transmission. The

standard employed digital switching at a bandwidth of 30 to 200 KHz. In mid 1990s, Qualcomm

launched Code Division Multiple Access (CDMA) system which exhibited enhanced spectral

efficiency, number of users and data rate. A further improvement led to what was called 2.5G and

2.75G that saw the establishment of General Packet Radio Service (GPRS), CDMA2000 and

Enhanced Data GSM Evolution (EDGE). The maximum data rate was enhanced to 171 Kbps, 384

Kbps and 473.6 Kbps for GPRS, CDMA2000 and EDGE respectively [4], [5].

The introduction of Universal Mobile Terrestrial / Telecommunication Systems (UMTS) with a data

rate of 384kbps led to the third generation (3G) of mobile communications. 3G was apt in

multimedia chat, email, video calling, games, social media, location tracking, maps and healthcare.

For enhanced QoS, two technology improvements namely; High Speed Downlink Packet access

(HSDPA) and High-Speed Uplink Packet Access (HSUPA) that saw data rate improved to 2 Mbps

were introduced resulting to 3.5G. The 3.75G is a refinement of the 3G system employing the

High-Speed Packet Access plus (HSPA+) technology. Nevertheless, 3G roll out suffered expensive

spectrum licenses, high bandwidth requirements, compatibility issues with previous technologies,

high costs of infrastructure, devices and implementation [6].

Developed by IEEE, the fourth generation (4G) of mobile communications offered advanced data

rates, handled more advanced multimedia services while deploying the 3rd Generation Partnership

Project (3GPP) defined standards namely; long term evolution (LTE) and LTE advanced (LTE-A). 4G

uses complex modulation schemes and carrier conglomeration for simultaneous uplink and downlink

voice and data transmission over internet protocol (IP) packets. Some key features exhibited by 4G

include data rate of up to 1Gbps, enhanced security and mobility, reduced latency, high definition

(HD) gaming and streaming and enhanced voice over LTE network VoLTE. However, 4G still exhibits

challenges of infrastructural implementation costs, expensive spectrum, costly end user mobile devices

and time-consuming upgrades [7].

The fifth generation (5G) of mobile communications, currently at testing stage exhibits potential in

delivering ultra-fast internet, multimedia experience for customers, ultra-low latency significant for

mission critical applications, higher security and mobility. 5G employs heterogeneous cells, non-

orthogonal multiple access and beam forming technologies as well as cloud-based infrastructure to

improve capacity and spectrum efficiency [8–10]. Table 1 highlights the comparison of 1G to 5G

technologies.

4
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2. EVOLUTION OF WIRELESS NETWORKS

Table 1: Comparison of 1G to 5G technologies

Generation Data Rate Frequency band Technology Switching Key features

1G 14.4 Kbps 800 MHz AMPS,NMT Circuit Voice only

(1970-1980s) ,TACS services

2G 9.6/14.4Kbps 850/900/ TDMA, Circuit Voice and

(1990-2000) 1800/1900 CDMA Data services

2.5G to 2.75G 171.2 Kbps MHz GPRS Circuit Voice, Data and

(2001-2004) 20-40 Kbps 850/900/ web mobile internet,

1800/1900 low speed streaming

MHz and email services

3G 3.1 Mbps 850/900/ CDMA2000 Circuit/ Voice, Data, Multimedia,

(2001-2004) 500-700 Mbps 1800/1900/ UMTS and Packet smart phone

2100MHz EDGE applications, faster web

(1xRTT browsing,video calling

,EVDO) and TV streaming.

3.5G 14.4 Mbps 850/900/ HSPA Packet All 3G services with

(2006-2010) 1-3 Mbps 1800/1900/ enhanced speed

2100MHz and mobility support.

4G 100-300 Mbps 1.8/2.6GHz WiMAX, Packet High speed high ,

(2010 - 3-5 Mbps 2.3/2.5/ LTE and quality VoIP HD multi-

onwards) 100 Mbps 3.5 GHz Wi-Fi media streaming, 3D

(Wi-Fi) gaming,HD video

conferencing and

worldwide roaming.

5G 1-10 Gbps 1.8/2.6GHz LTE-A, Packet Super-fast mobile

(2020 - Expected OMA internet, low latency

onwards) 30-300 GHz and NOMA network for mission

critical applications,

IoT, security and

surveillance, HD multi-

media, autonomous

driving, smart health-

care applications.
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3 Fifth generation (5G) networks

In this work, the focus is on the capacity and spectral efficiency improvement of 5G networks by

considering architectural alternatives and multi-radio access techniques enhancements. The

following sections present the 5G application scenarios, challenges and potential facilitators to

address the challenges and the design fundamentals.

3.1 5G Application scenarios

There is considerable pressure with telecommunication giants to define the key 5G requirements

namely; improving cellular network architecture in order to address challenges of increased capacity,

improved data rate, minimized latency, expendable connectivity and robust QoS. According to

Mobile and wireless communications enablers for the Twenty -Twenty Information Society (METIS)

deliverables [11], [12] and International Mobile Communications framework IMT-2020 [13], 5G

targets to address three broad generic services [14] namely;

1. Enhanced Mobile Broadband (eMBB): eMBB confronts the growing traffic volume and data

rate requirements by the accelerated number of new applicants such as virtual and augmented

reality. The reliability and robustness of the bandwidth, wide-area coverage, hotspots, spectral

Fig. 1: 5G application scenarios [15].

6
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3. FIFTH GENERATION (5G) NETWORKS

Fig. 2: 5G requirements (IMT 2020) [15].

and signal efficiency will be requisite by new 5G radio systems [16].

2. massive Machine Type Communication (mMTC) : mMTC involves the massive deployments of

devices with non-delay sensitive data such as sensors and actuators, remote controlled and

readable utility meters. 5G must guarantee connectivity solutions for tens of billions of devices

with minimal human interaction. Since the devices experience diverse data traffic needs,

divergent RA solutions are vital for an efficient system [17].

3. Ultra reliable and low latency communications (URLLC): URLLC concerns the provision of

service levels with very high probability [18]. Applications where low delay and

uncompromising latency requirements are critical factors such as remote driving, smart grids,

industrial control, and haptic communication enabling remote work in, e.g., hazardous

environments or remote surgery can be supported with URLLC service. Fig. 1 and Fig. 2

illustrate the application scenarios of the 5G services and 5G requirements according to IMT

2020 [15]. respectively.

3.2 5G Challenges

Research on 5G standardization and deployment targeting to address the ubiquitous network

demands is active [19]. In this undertaking, researchers and operators are awake to the challenges,

7
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3. FIFTH GENERATION (5G) NETWORKS

not adequately addressed by already deployed 4G networks, that 5G mobile networks must address.

Challenges namely; higher capacity, higher data rate, interference management, lower end-to-end

(E2E) latency, massive device connectivity, reduced capital and operations cost, and consistent

quality of experience (QoE) provisioning are reviewed in [20], [21] and emphasized in this work.

3.2.1 Capacity and data rate

The current data traffic demands are as a result of exponential increase compared to demands in 2010.

5G and beyond mobile networks are expected to support a 1000-fold increase in the number of mobile

devices, IoTs, connected cars and homes, moving robots and sensors [8]. According to IMT-2020 [21],

traffic capacity is expected to be 10−100 Mbit/s/m2. Around 70% of this traffic capacity arise in indoor

usage such as in homesteads, offices, malls, train stations, and other public building places [22]. Even

as data traffic increases, it is observed that signalling traffic is growing 50% faster than data traffic [23].

The spectral efficiency has sharply increased 10 times while peak data rate of 10 Gb/s and 1 Gb/s

for low mobility and high mobility respectively is experienced. These scenarios call for enhanced

capacity not only in the radio access network (RAN) but also in the backbone, back-haul, and front-

haul capacities. Consensually among operators, the provision of more spectrum through deployment

of millimeter wave band, enhanced spectrum efficiency, network densification, and offloading will be

necessary to address these challenges in the RAN [24].

3.2.2 Interference management

Due to the unusual demand for high bandwidth and high spectrum sharing requirement, inter-cell

interference in ultra-dense HetNets becomes inevitable. Consequently, inter-cell interference (ICI)

management plays an increasingly important role in mobile cellular networks [25]. In dense

hierarchical networks (i.e., with several tiers), cross-tier and co-tier interference is inevitable.

Cross-tier interference prevails between users sharing spectrum resources in different layers whereas

co-tier interference occurs amongst users in the same network layer [26]. Co-tier interference can be

observed either as inter- or intra-cell interference. Due to operators’ inadequate control in planning

the small cell’s location occasioned by spontaneous deployment of small cell, inter-cell interference

presents a major challenge. In addition, the disparities in traffic loads occasioned by varying transmit

powers in different BSs leads to more challenging interference management and RA problems in

HetNets compared to conventional single-tier systems. Further, users in different tiers experiencing

different traffic restrictions (e.g., public, private, hybrid, etc.) thus exhibit diverse interference

levels [27]. Furthermore, carrier aggregation and provision of cooperation among BSs and

peer-to-peer communication (P2P) complicate the interference dynamics. Interference presents

8
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constraints in achieving 5G capacity. Potential ICI management schemes including advanced

air-interface techniques (E.g. NOMA) and advanced coordinated communications where

coordination is performed at both the network and device sides need to be designed [28].

3.2.3 End-to-end latency

In the recent decade, there has been a surge in emerging applications with ultra-low end-to-end (E2E)

latency. E2E latency is critical for real time applications such as remote-controlled medical robotics

and industrial applications that require swift feedback control cycles for proper functioning. Critical

safety-aware applications employing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications require available and reliable quick request-response and feedback control cycles.

Applications such as augmented and virtual reality require very fast feedback cycles to relieve cyber

sickness. 5G networks therefore, must be able to reliably support below 1 ms E2E latency [29], [30].

To realize the 5G ultra-low latency requirement, operators are employing new air interface techniques

with shorter transmission time interval (TTI). Enhanced higher-layer protocols such as case and

network-aware admission/congestion control algorithms can be used to replace the conventional TCP

slow start. Other techniques include use of D2D and HetNets to bring communication end-points

closer [31]. Furthermore, E2E latency can be reduced by adding more intelligence at the network

edges through pre-fetching and caching techniques, use of service-dependent location of control

plane (C-plane) protocols and automated orchestration [32].

3.2.4 Connectivity

The number of interconnected devices has meteorically increased in the recent years by between

10˘100 fold. Research by IMT-2020 outlines that 5G networks are expected to achieve a connectivity

density of 1 Million devices per square kilometre (106/km2) [29]. The devices differ in resource

requirements; devices with meagre resources and requiring only intermittent connectivity for their

operations such as sensors and those that demand an always-on connectivity for monitoring and/or

tracking for proper functioning such as traffic management services, SCADA and security support

devices. Such range of devices exhibit diverse connection and service requirement challenges for

scalable and efficient operation. A number of solution-oriented techniques can be deployed to

support hyper-connectivity including advances in air interface design, multi-radio resource access for

spectrum sharing, signalling optimization, digital signal processing techniques, intelligent clustering

and relaying techniques [33].

9
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Fig. 3: 5G challenges, facilitators and design principles [29]
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3.2.5 Cost

In the current age, connectivity is an indispensable pillar for accelerating digitalisation, driving

innovation and overall socio-economic development. As a result, it is vital to consider the investment

cost of infrastructure including roll-out costs, maintenance, managerial, and operational costs to

make connectivity a globally available, accessible, and tenable utility. These costs are huge and

operators are trying to minimize passing the costs to the consumers. As a requisite, 5G networks

from RAN, core, backbone routers, and backhaul need to devise ways that provide consumer

demands at sustainable service provision. Some 5G enablers such as deployment of ultra-dense

HetNets bring about huge equipment, maintenance and operational costs. One of the ways to cub

cost is to reduce BSs functionalities through use of one-layer functionality and keeping higher layer

functionalities to a network cloud. Another challenge is the network energy consumption, with RAN

consuming approximately 80% of the energy requirements. Smart energy management solutions that

put BS to sleep when not in use, energy efficient hardware designs, low-power backhaul, network

function virtualization (NFV) and software defined networking (SDN) can all contribute to reducing

the cost of operating a 5G network [29], [34].

3.2.6 Quality of Experience

Quality of experience (QoE) characterises the user’s perception on the application and service

reception. Since different users have unique demands, QoE is uniquely application specific and also

user-specific and thus exclusive. For instance, the quality of the encoded and delivered video affect

its QoE. Insufficient QoE leads to user discontent whereas excessive QoE strains the available user

and network resources. Depending on the application and user needs, network parameter such as

bandwidth, delay, latency and context parameters of device, user, and environment are used to

describe QoE. Most 5G enablers can significantly improve QoE. Besides, traffic optimization

techniques, cache and computing resources installation at the network edge could be employed to

meet increasing QoE expectations. Fig.3 illustrates the 5G challenges, facilitators and design

principles.

3.3 5G Technical Requirements

The minimum technical performance requirements for 5G are defined in [21]. They can be

summarised as follows;

1. Peak data rate: which is the maximum received data bits (in bit/s) assuming error-free

conditions assignable to a single mobile station. The minimum downlink and uplink peak data

11
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rate are 20 Gbit/s and 10 Gbit/s respectively.

2. Peak spectral efficiency: This is the maximum data rate under ideal conditions normalised by

channel bandwidth (in bit/s/Hz). This requirement is purposed for the evaluation of eMBB

usage scenario. The minimum downlink and uplink peak spectral efficiencies are 30 bit/s/Hz

and 15 bit/s/Hz respectively.

3. User experienced data rate:Based on the user throughput defined as the number of correctly

received bits, user experienced data rate is the 5% point of user throughput cumulative

distribution function. IMT-2020 outlines the minimum downlink and uplink user experienced

data rate for eMMB usage as 100 Mbit/s and 50 Mbit/s respectively.

4. 5th percentile user spectral efficiency: This is the 5% point of the CDF of the normalized user

throughput. The normalized user throughput is defined as the number of correctly received bits,

over a certain period of time, divided by the channel bandwidth and is measured in bit/s/Hz. The

minimum requirement in downlink and uplink is 0.3 bit/s/Hz and 0.21 bit/s/Hz respectively.

5. Average spectral efficiency: This is the aggregate throughput of all users divided by the channel

bandwidth of a specific band divided by the number of TRxPs and is measured in bit/s/Hz/TRxP.

For dense eMBB, the minimum requirement in downlink and uplink is 7.8 bit/s/Hz/TRxP and

5.4 bit/s/Hz/TRxP respectively.

6. Area traffic capacity: This is the total traffic throughput served per geographic area (in

Mbit/s/m2). The target value for Area traffic capacity in downlink is 10 Mbit/s/m2 in the

Indoor Hotspot – eMBB test environment.

7. Latency: Two types of latency are defined for eMBB and URLLC usage scenarios. User plane

latency is total time the radio network takes to send a packet from source to destination (in ms),

the minimum given as 4 ms for eMBB and 1 ms for URLLC for both downlink and uplink. On

the other hand, control plane latency refers to the transition time from idle state to the start of

continuous data transfer (active state) advised to be lower than 20 ms.

8. Connection density: Defined for mMTC usage scenario, connection density is the total number

of devices fulfilling a specific quality of service (QoS) per unit area (per km2). The minimum

requirement for connection density is 1 million devices per km2.

9. Energy efficiency: Network energy efficiency is the capability of a radio interface technology

(RIT) to minimize the radio access network energy consumption in relation to the traffic capacity

provided. Device energy efficiency is the capability of the RIT to minimize the power consumed

12
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by the device modem in relation to the traffic characteristics.

10. Reliability: Defined for uRLLC, reliability basically is the success probability of transmitting a

layer at least two thirds within a required maximum time. Proponents encourage reliability is

1− 10−5 success probability.

11. Mobility: This is the maximum mobile station speed at which a defined QoS can be achieved

(in km/h) defined for different classes of mobility namely; 0 km/h for stationary, 0 − 10 km/h

for pedestrian, 10− 120 km/h for vehicular and 120− 500 km/h for high speed vehicular. It is

envisaged that the minimum traffic channel link data rate normalized by bandwidth should be

1.5, 1.12, 0.8 and 0.45 bit/s/Hz for 10, 30, 120 and 500 km/h mobility respectively.

12. Mobility interruption time: It is the shortest time duration supported by the system during which

a user terminal cannot exchange user plane packets with any base station during transitions.

This includes time required for network procedure execution, control signalling protocol time

and other message exchange time. The minimum requirement for mobility interruption time is

0 ms for both eMBB and URLLC usage scenarios.

13. Bandwidth: Defined as the maximum aggregated system bandwidth supported by single or

multiple radio frequency (RF) carriers. The requirement for bandwidth is at least 100 MHz.

3.4 Potential 5G facilitating technologies

Recent research points out to six key facilitators that will have an immense impact on 5G

progression. They include; dense small cell deployment, massive MIMO (m-MIMO), device to

device (D2D), machine to machine (M2M), multiple radio access technologies (M-RAT) and

millimetre-wave communications. Additionally, advanced waveforms, futuristic coordinated

multipoint (CoMP), carrier aggregation, structured coding techniques, use of network virtualization

and deployment of cloud radio access networks (C-RANs) will boast 5G networks realization [19].

The 5G multitier network architecture presented in Fig. 4, [20] includes macro-cell, small-cells,

Wi-Fi, massive multiple-input, multiple-output (M-MIMO) with beamforming, internet of things

(IoT), cognitive radio networks (CRN), visible light communication (VLC), device-to-device (D2D),

machine-to machine (M2M) communications and NFV enabled network cloud. To alleviate some of

the highlighted challenges, this work focuses on establishing efficient multiple access technologies.

In particular, hybrid non-orthogonal multiple access (NOMA) technologies are proposed due to the

potential to transmit multiple users compared to the available orthogonal resource elements.
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Fig. 4: 5G network architecture [20]

3.4.1 Dense Heterogeneous Networks

Initially launched in 4G networks, dense HetNets involve deployment and concurrent operation of

sophisticated underlaid small cells in a macro-cell. The small cells are limited radius networks

complete with small base stations (SBS) and access points (APs) for spectrum re-use. Hence, they

help achieve increased spectral efficiency, network capacity and significantly reduce the power

consumption of mobile device due to its communication with nearby SBS. Small cells can be

employed in indoor and outdoor environments. However, HetNets are faced with design challenges

and require innovation in hardware miniaturization and cost reduction in the SBS design.

Furthermore, interference management presents a challenge due to the uncoordinated nature of

HetNet deployments [35]. Another potential challenge is the significant rise in the handoff rate

resulting to call drops since mobile stations (MS) must move around many hotspots. To avert this

challenge, control/user plane splitting can be deployed where MS are enabled to issue access requests

to BS and signalling techniques employed to mitigate the handover failure rate [29]. This work focus

on a design model of a hybrid NOMA technique on multi-tier HetNet consisting of small cell user

equipment’s (SUEs) and the macro user equipment’s (MUEs). In particular, we consider the small

cell spectrum resource re-use with the macro cell users, without compromising the small cell user’s

QoS requirements. To achieve the specifications, proper design of resource allocation at the

transmitter and optimal multi-user detection schemes are prudent.
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3.4.2 Massive MIMO and beamforming.

The deployment of massive MIMO (m-MIMO) involves increasing the degree of freedom in wireless

channels by use on multiple transceiver antennas. Beamforming, on the other hand, involves

concentrating a large gain limited beam-width power in a specific direction. Hence, a significant

performance improvement in terms of reliability, cell throughput and better cell edge performance

can be obtained [36]. M-MIMO suffers pilot contamination from neighbouring cells as number of

antennas grow. Other challenges include channel estimation accuracy which necessitate sophisticated

algorithms and the large-scale m-MIMO architecture requirement is a point of concern [37].

3.4.3 Device to Device Communications.

Device to Device Communications (D2D) is a potential 5G technology that enables new peer-to-peer

and location-based applications and services like public safety networks [38], [39] thereby improving

spectral resource utilization, reduce energy consumption and substantially reduce latency [40], thus

suitable for delay-sensitive application scenarios. D2D communications necessitate effective radio

resource management strategies to properly coordinate mutual interference between cellular and D2D

users in the reuse mode [41].

3.4.4 Machine to Machine Communications

Machine to Machine (M2M) communications involve applications that transmit only minimal amounts

data and only intermittently. The data exchanged in an M2M network is generally sparse since it

can be from sensors, computer devices. This kind of data creates major signalling overheads on the

mobile network [42]. Such applications include smart meters, smart traffic systems, vending machines,

security alerts and tracking. To develop an application with M2M communication there are many

issues, inter-operability, coverage, energy efficiency, portability, and scalability [9]. For interference

management and to avoid collisions, efficient MAC protocols are deployed.

3.4.5 Millimetre-wave frequency band.

Previous generations of mobile network overwhelmingly operated on the microwave band, due to its

convenient propagating characteristics, making it too scarce [20]. The ubiquitous demands for higher

capacity, connectivity and better QoS necessitate additional spectrum. Availability of substantial

quantity of spectrum can be made accessible if the millimeter-wave band is utilized to fulfil all the

5G requirements. It has been suggested that 5G uses mm-wave bands from 20 − 90 GHz due to the

availability of unused bandwidth. This band comes with challenges of propagation, atmospheric

15



i
i

“output” — 2022/7/22 — 18:21 — page 16 — #39 i
i

i
i

i
i

3. FIFTH GENERATION (5G) NETWORKS

absorption and hardware constraints in comparison with microwave band which can be mitigated by

using beamforming and a larger antenna array [43].

3.4.6 Multi-radio access technologies.

In the recent past, the radio access technologies have undergone tremendous evolvement. In

particular, for 1G, 2G, 3G, and 4G network systems, frequency division multiple access (FDMA),

time division multiple access (TDMA), code division multiple access (CDMA), and orthogonal

frequency division multiple access (OFDMA) have respectively been employed as the corresponding

key multiple access technologies [44]. These technologies are designed to orthogonally allocate

wireless resources to multiple users (OMA). Faced with increasing number of supported users by the

limited resources and channel impairments that distort the orthogonality, it remains a challenge for

OMA to meet the stringent spectral efficiency and massive connectivity 5G requirements.

Consequently, NOMA concept has been proposed. Basically, NOMA supports non-orthogonal RA

among the users, i.e., more users are supported than the number of accessible orthogonal time-,

frequency-, code-domain resources or their combinations, at the expense of increased receiver

computational complexity [1]. Several NOMA solutions are discussed in literature and broadly

categorized in three broad categories namely; power-domain NOMA, code-domain NOMA and

interleave division multiple access (IDMA). NOMA being the focus of this work, the basic principles

and theoretical analysis of the NOMA techniques is discussed in the subsequent sections. The work

further examines the possibility of blending existing NOMA techniques for a possible hybrid NOMA

with the purpose of enhancing connectivity, spectral and energy efficiency.
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Fig. 5: OMA and NOMA categories of multiple access.

4 Non-orthogonal multiple access (NOMA) technologies

In this section, we detail NOMA basic principles as contrasted to OMA. The OMA and NOMA

categories are presented in Fig. 5. In OMA techniques namely; FDMA, TDMA, CDMA and

OFDMA respectively used for 1G, 2G, 3G, and 4G, multiple users are assigned to orthogonal radio

resources in the time-, frequency-, code-domain or to their combinations. In FDMA, users transmit

unique, user-specific signals over unique frequency resources. At the receiver, each users’ data in

their corresponding frequency bands are readily detected. Likewise, in TDMA, exclusive time slots

are allocated to individual users, hence little effort to distinguish the different users’ signals at the
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receivers in the time domain is required. CDMA technique involves mapping of different users to

orthogonal spreading sequences like Walsh-Hadamard codes and then transmit while sharing the

same time-frequency resources. A decorrelation MUD is then utilized at the receiver. In OFDMA,

radio resources are split in the time-frequency grid and can be observed as a coalescing of FDMA

and TDMA [45]. Though the orthogonality in OMA resource utilization results in minimal

interference and hence low complex linear detection is sufficient, the maximal number of admissible

users is strictly limited by the number of orthogonal resources accessible in conventional OMA

schemes, which becomes a tight bound when massive connectivity is required for 5G. Besides, OMA

places a hard limit on the maximum achievable sum-rate of multi-user wireless systems [46].

NOMA schemes promise to circumvent the highlighted OMA limitations. Through non-orthogonal

allocation of resources and controlled interference, NOMA can achieve overloading by multiplexing

more users than the number of orthogonal resources. At the receiver, sophisticated MUDs with

compromising polynomial or exponential computational complexity orders as compared to OMA

receivers are employed. Generally, NOMA access schemes are classified into three broad categories

namely; inter-leaver division multiple access (IDMA), power domain NOMA (PD-NOMA) and code

domain NOMA (CD-NOMA). NOMA is the focus areas of this work and the categories are

discussed exhaustively in the sections below.

4.1 Power - Domain NOMA

The concept of PD-NOMA was first presented in [47]. Theoretically, PD-NOMA scheme draws its

roots in multi-user information theory. They include scalar and vector multiple access, superposition

coding, dirty paper coding, iterative water-filling, joint decoding including SIC and other transceiver

related schemes [48]. Through superposition coding [49], channel coding and modulation at the

transmitter, multiple users are directly superimposed on each other and simultaneously share the

time-frequency resources. PD-NOMA is achieved by allocating distinct power levels to different

Fig. 6: Downlink PD-NOMA transceiver model [1]
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Fig. 7: Uplink PD-NOMA transceiver model [1]

users. At the receiver, user detection is achieved using MUD algorithms such as SIC.

A PD-NOMA applied in the downlink and uplink scenarios for two single antenna users is shown

in Fig. 6 and Fig. 7 respectively. The total power is allocated to all the users subject to defined

power-scaling coefficients, then at the BS the users are superimposed. At the receiver, the optimal

SIC detection order relies on detecting the strongest to the weakest user. This implies that, any user

can detect its message with little interference-contamination exacted by the other users with smaller

normalized channel gain in the order. Therefore, strongest users cancel interference from weak users.

In the uplink, the BS computes the signal power loss as the signal propagates through the wireless

channel from user to BS and uses the parameter to evaluate the decoding order. We assume that gains

of all users remain constant during a frame, which is realistic for slow fading channels [50]. In an

uplink system with K users, the BS decodes j − th(j < i) user signal first before it detects the i− th

user’s signal then removes (i− 1) users’ signals from the observed signal y. The rest (K − i) signals

are treated as interference.

The performance of PD-NOMA depends majorly on the optimality of SIC. Since SIC performance is

conditioned on the number of distinct power levels and QoS requirements, several works have focused

on classic PD-NOMA power allocation schemes [51–56]. The authors show that power allocation

for the superposition process at the transmitter and SIC process at the receiver should be conducted

diligently since the power distinctiveness between the weak and strong users can be immense with
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increasing number of users or modulation orders. The research on integration of PD-NOMA with other

existing techniques such as MIMO, cognitive radio networks (CRNs), cooperative communication and

HetNets is actively on-going. Proposed for a NOMA system in [57] is a power domain cyclic spread

multiple access (PDCSMA). Though PD-NOMA offers merits of spectral and capacity enhancement,

its performance is prone to additional receiver computational complexity compared to OMA. There

is also the possibility of errors rippling and overspreading to consecutive users through the decoding

process on account a user makes an error [58].

4.2 Code - Domain NOMA

In this section, we discuss CDMA inspired code domain NOMA (CD-NOMA) schemes which

achieves user multiplexing by employing unique user-specific spreading sequences. The multiple

users then share the same time-frequency resources. Unlike in CDMA, the CD-NOMA spreading

sequences are strictly sparse and non-orthogonal with low cross-correlation.

4.2.1 Low-density spreading CDMA (LDS-CDMA) and Low-density spreading OFDM (LDS-

OFDM)

The basic principles of LDS-CDMA, observed as the very initial NOMA technique, are discussed

in [59]. LDS-CDMA draws its inspiration from the conventional CDMA and low-density parity

check (LDPC) coding [60], with the aim of reducing user interference and receiver computational

complexity. The block model of LDS-CDMA is shown in Fig. 8. In CDMA structure transmitting

over memoryless symbol-synchronous channel, every chip of the received signal carries the

contribution from all the users in the system. That is to say, each user observes the contribution from

all the other users at every received chip. Contrary, the LDS-CDMA structure switches off a large

portion of the spreading chips. This implies that each user only spreads its message over a few

number of chips. Since the number of superimposed signals carried at each chip is less than the

number of users, the imposed interference significantly reduces. By careful design of the spreading

sequences, multi-user interference can be mitigated [1]. In [61], the authors propose a structured

approach to design LDS codes for LDS-CDMA scheme. The approach involves mapping of the

signature constellation elements to the spreading matrix that hosts the spreading sequences. Authors

in [62] proposed a near-optimal MUD using belief propagation (BP) with low-computational

complexity. A dynamic factor graph-based MUD that provides a good trade-off between bit error rate

(BER) performance and computational computational complexity is proposed in [63].

The LDS-OFDM on the other hand, can be seen as a blend of OFDM and LDS-CDMA techniques.
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Fig. 8: LDS-CDMA system [59]

Here, every user’s symbol is spread across a discreetly selected number of sub-carriers and overlaid on

top of each other in the frequency domain. In the conventional OFDMA, one user symbol is mapped

to a sub-carrier and dissimilar users transmitted on disparate orthogonal subcarriers, eliminating the

interference between each other. This means that the number of sub-carriers limit the number of user

symbols transmitted. Contrary, in LDS-OFDM, user symbols are firstly convoluted with the LDS

sequences with length corresponding to the number of subcarriers. The resultant chips are transmitted

on disparate subcarriers. Here, only a fraction of the sub-carriers transmits the spread symbols and

therefore each subcarrier transmits only the chips [64]. To improve receiver computational complexity,

authors in [65] introduced an upper bound on the number of users per subcarriers. Authors in [66]

investigated link-level and system-level performance while [67] proposed a joint subcarrier and power

allocation method to improve the achievable LDS-OFDM performance.

4.2.2 Sparse Code Multiple Access (SCMA)

Sparse code multiple access (SCMA) is a novel NOMA scheme that draws its concepts from

LDS-CDMA and OFDMA [68]. Contrary to LDS-CDMA encoder that consists of a quadrature

amplitude modulation (QAM) mapper and a spreader to expand a QAM symbol to a complex symbol

sequence using a CDMA signature, SCMA structure implements a joint design of multi-dimensional

modulation and low-density spreading [69]. In SCMA, binary information is directly encoded to

multi-dimensional complex codewords from a pre-defined set of codebooks. Multiple codebooks are

generated to achieve multiple access through exclusive and sparse allocation of available resource

elements (REs). With conventional SCMA, each codebook is assigned to one user [70]. The

application of multiple users in a code book is our major pioneering and the focus of this research.

Due to sparsity, iterative MUD algorithms such as message passing algorithm (MPA) [59] and

recently proposed expectation propagation algorithm [71] can be used to detect the multiplexed
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Fig. 9: SCMA transceiver system [72]

codewords with acceptable computational complexity. An SCMA transceiver system is illustrated in

Fig. 9.

SCMA is characterized by advantages of user overloading, sparse codewords for moderate receiver

computational complexity and shaping gain contributing to multiple dimensions for multiplexing.

However, SCMA exhibits challenges namely; the multi-dimensional lattice constellation for optimal

codebook design, RA i.e., REs, codebooks and power assignment and increased decoding

computational complexity order for high number of users and constellations. Several works in

literature present codebook designs such as constellation rotation and interleaving based

techniques [71–76], golden angle modulation [77] and extended mother codebook [78] amongst

other others. On SCMA RA, heuristic based RA [79], biological based RA [80], joint subcarrier and

power allocation [81] and parametric based RA [82] among other RA schemes are proposed for

spectral and capacity enhancement. Recently, research on integrating SCMA with other multiple

access technologies has gained traction. Authors in [83] and [84] investigate the performance of

MIMO based SCMA as the number of users and antennas varies. To further enhance the spectral and

energy efficiency, the work in [85] integrates SCMA with PD-NOMA in a homogeneous network i.e.,

encoding same type of users in both the code-domain and the power-domain. This work develops a

hybrid NOMA system that encodes low-power small cell users in SCMA codebooks in the

code-domain and superimposes higher-power macro-cell users in the SCMA codebooks using

power-domain multiplexing in a HetNet system [86]. The outcome of such a technique is the
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Fig. 10: MUSA system [1]

increased number of multiple users sharing a resource block albeit the increased receiver

computational complexity.

4.2.3 Multi-user shared access (MUSA)

MUSA is a grant-free NOMA technique that is considered as an enhanced CDMA design where the

transmitted user symbols are multiplied by the same low cross correlation spreading sequence [87].

The resulting sequences are then transmitted over the same OFDM resources as shown in Fig. 10.

Before superposition in the downlink, the users are clustered where in each cluster the users’ symbols

are weighted using different power-scaling coefficients. In order to spread the superimposed symbols,

orthogonal sequences with the groups’ length are used as the spreading sequences. This implies that

users in the same cluster utilize the same spreading sequence which are orthogonal across the different

clusters. Inter-group interferences are minimized and SIC can be employed by making use of the

associated power distinctiveness. MUSA exhibits enhanced downlink capacity, an explicit benefit

from the SINR difference and SIC linearity. Additionally, MUSA can guarantee user fairness without

compromising the capacity [1], [88]. Authors in [89] propose the 5-ary codes for an uplink MUSA.

The analysis is done while varying the SIC detection order. In [90], the authors propose a PA algorithm

that guarantees sufficient power difference between signals to mitigate error propagation in a mMTC

application scenario. Authors in [91] employ MUSA to support IoT overloading requirements. In

[92], real Fourier-related transform spreading methods are proposed in order to minimize the peak-to-

average power ratio (PAPR) while increasing the stability in a fading channel environment. A deep

neural network (DNN)-based MUD that observes the correlation between the received signal and the
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Fig. 11: PDMA transceiver system [94]

user-specific spreading sequences for MUSA is proposed in [93].

4.2.4 Pattern Division Multiple Access (PDMA)

PDMA is another promising NOMA technique implemented in multiple domains to realize distinct

transmission diversity order [94]. Non-orthogonal patterns which are designed through maximization

of the diversity and minimization of the multiple users’ correlation are employed in PDMA at the

transmitter. Multiplexing is then realized in the power-, code- or spatial-domains, or their

combinations. Such design of PDMA patterns not only distinguish the user symbols utilizing similar

resources but also enhance system performance with affordable detection computational complexity.

A PDMA pattern resource mapping with six users multiplexed on four REs is illustrated in Fig. 11.

Each PDMA pattern is assigned to a single user. From Fig. 11, user1’s message is mapped to all four

REs in the group, and user2’s message is mapped to the REs 1, 2 and 3, etc. The transmission

diversity order for the six users is 4, 3, 2, 2, 1, and 1, respectively [95]. Recent studies on PDMA

include outage performance and achievable sum data rate performance investigation for 5G

systems [96] A discrete Fourier transform spread generalized multi-carrier based PDMA is proposed

in [97]. A joint PDMA transceiver proposed in [98] is designed for pattern mapping that utilizes

power and beam allocation to enhance the achievable sum rate and the access connectivity at the

transmitter respectively. A spatial filter to control the inter-beam interference and SIC are employed

at the receiver.

4.3 Interleave Division Multiple Access (IDMA)

IDMA is an interleave based NOMA technique that characterize different users based on their

different bit-level inter-leavers [99]. The IDMA transceiver system is illustrated in Fig. 12. The

symbols are first multiplied with the spreading sequences then IDMA interleaves the chips.

Accordingly, IDMA can be regarded as an effectively chip-interleaved CDMA. Fundamentally, the

IDMA idea involves utilizing user-specific inter-leavers together with low-rate channel coding as
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Fig. 12: IDMA transceiver system [100]

illustrated in Fig.12, [100]. In comparison to CDMA, IDMA can achieve 1 dB SNR gain in

overloaded systems and increased diversity gain [101]. Authors in [102] outline IDMA merits

including allowing use of iterative low-cost MUD methods and realization of near-capacity

multi-user sum-rate especially for power controlled IDMA. In addition, decentralized power control

IDMA achieves higher throughput in comparison to the conventional ALOHA in random access

scenarios. Lastly, data aided channel estimation (DACE) coupled IDMA can exploit massive multiple

input multiple output (MIMO) systems.

4.4 Other NOMA Schemes

Besides the prominent schemes, alternative novel NOMA schemes are proposed and investigated in

literature for spectral efficiency and connectivity enhancement. Successive interference cancellation

aided multiple access (SAMA) technique [103] is analogous to MUSA except that in SAMA, the non-

zero elements of its spreading sequence are equal to one for each user. The spreading sequence matrix

is designed such that the number of groups with different 1’s in the spreading sequence is maximized

while the number of the overlapping spreading sequences with the same number of 1’s is minimized.

The maximal number of users supported byN orthogonal sub-carriers can be given by 2N−1. Another

CD-NOMA scheme is the spatial division multiple access (SDMA) whereby, instead of using unique,

user-specific spreading sequences, SDMA utilizes unique, user specific channel impulse response

(CIR) to preserve the orthogonality which may be destroyed by the convolution of user symbols and

CIR over dispersive channels.
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Another category of alternative NOMA is the signature-based NOMA that constitutes the low code

rate and signature based shared access (LSSA) [104] and resource spread multiple access (RSMA)

[105]. LSSA multiplexes user symbols using specific signature patterns consisting of a complex/binary

sequence, reference signal (RS) and a short length vector permutation pattern. Similarly, RSMA

assigns unique signatures to distinguish the different users and spreads those user symbols over all the

accessible time-frequency resources. Both signature-based NOMA potentially allows synchronous

access and grant free transmissions.

Other schemes include Bit division multiplexing (BDM) NOMA which depends on structured

modulation while the time-frequency resources are split-up at the symbol level [106], compressive

sensing (CS)-based NOMA that smartly exploits either the user activity or the data sparsity [107],

low density spreading-signature vector extension (LDS-SVE) established by Fujitsu [108], frequency

domain spreading (FDS) [109], low code rate spreading (LCRS) [109] schemes initiated by Intel and

Repetition division multiple access (RDMA) developed by MTK [110].

This work focuses mainly on two NOMA schemes namely; PD-NOMA and SCMA. PD-NOMA

derives its preference on the ability to superimpose different assigned users based on the power

imbalance between the user signals through superposition coding. Through extensive research,

PD-NOMA exhibits merits of higher achievable user rates and greater spectrum efficiency compared

to OFDMA. Besides, PD-NOMA boasts of established successive interference cancellation schemes

at the receiver. Although the optimal power allocation (PA) technique to guarantee optimal power

distinctiveness amongst users is intractable, researchers have proposed near-optimal PA schemes

(such as water filling technique) to strike a balance between serving the desired QoS and interference

management. On the other hand, the code-domain based SCMA directly encodes the user symbols

into codebooks derived from low-density multi-dimensional constellations. SCMA enjoys

overloading, sparsity and shaping gain thereby contributing to multiple dimensions for multiplexing

of the users. Research has shown that SCMA achieves better link level performance, spectral and

energy efficiency outperforming other CD-NOMA schemes albeit compromised MUD computational

complexity order. Research outlines that optimal resource (i.e., codebooks, resource elements and

power) allocation enhances the performance of SCMA systems. Besides, SCMA enjoys the low

computational complexity reception techniques such as message passing algorithm (MPA),

max-log-MPA, log-MPA and expectation propagation algorithm (EPA) amongst others, due to the

sparsity of SCMA codewords. With the above in mind, the feasibility and development of a hybrid

NOMA technique that encodes user signals in code-domain using SCMA and superimposes user

signals in power-domain applying PD-NOMA necessitates an investigation.
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5 Research Problem, Motivation and Objectives

5.1 Research Problem and Motivation

In the past decade, network operators have witnessed an explosive increase in the number of

connected mobile and IoT devices that exhibit wide-ranging wireless traffic data requirements. The

prevailing challenges of resource allocation and scheduling, interference management, massive

connectivity, traffic densification, high capacity and data rate, end to end latency sensitivity, cost,

quality of experience and transceiver modelling pose considerable limitations in the development of

modern sophisticated generation of networks. One of the potential facilitators for 5G realization and

alleviation of the challenges is the design of advanced multi-radio access technologies. Research in

the recent past recommends a paradigm shift from orthogonal multiple users to resources access

(OMA) to non-orthogonal access (NOMA). NOMA supports a higher number of users than the

number of orthogonal resource slots with the aid of non-orthogonal resource allocation. This is

realized through sophisticated inter-user interference cancellation, superposition coding in

power-domain NOMA and user mapping to user-specific low density spreading sparse sequences in

code-domain NOMA. Through research, NOMA outperforms OMA in many aspects including

massive connections of devices, data throughput and spectral efficiency. However, these benefits

come at the expense of increased computational complexity at the receiver.

Motivated by this perspective and further realize the benefits of NOMA, this work explores the

possibility of extending the NOMA techniques to hybrid NOMA in order to alleviate the established

performance challenges. In particular, the feasibility and potential of a hybrid NOMA that integrates

PD-NOMA and SCMA in a heterogeneous multi-tier network is investigated. Such a hybrid NOMA

system will come with its own challenges of resource (i.e., resource elements, codebooks and power)

allocation, user clustering and multi-user detection computational complexity. Furthermore, this

work seeks to answer the questions; what is the multiplexing capacity of such a hybrid NOMA

system? Can we develop efficiently optimized resource allocation algorithms for such hybrid-NOMA

for dynamic 5G and beyond networks? Are joint low complex MUD schemes appropriate for such

technology feasible? And lastly, to enhance spectral efficiency and throughput, can we integrate the

hybrid NOMA technique with multiple transceiver systems?

5.2 Research Objectives

The following identified objectives are the focus of this thesis:

1. To provide detailed literature review on NOMA and identify appropriate resource allocation
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algorithm for NOMA schemes.

2. To develop and investigate sophisticated Hybrid-NOMA schemes build from efficiently

integrating PD-NOMA with CD-NOMA schemes feasible for 5G networks.

3. To develop efficiently optimized resource allocation algorithms for such Hybrid-NOMA for

dynamic 5G and beyond networks.

4. To investigate the multiplexing capacity bounds for the proposed Hybrid-NOMA technologies.

5. To integrate hybrid NOMA with existing MIMO technologies and examine the performance of

such a system.

6 Thesis Overview and Contributions

This research work contributes to the wealth of knowledge in wireless communication networks by

developing an uplink hybrid-NOMA technique in heterogeneous networks environment and

proposing the associated hybrid resource allocation and multi-user detection schemes. In particular,

we demonstrate the feasibility of a hybrid power-domain sparse code non-orthogonal multiple access

(PD-SCMA) that integrates both power-domain non-orthogonal multiple access (PD-NOMA) and

code-domain based sparse code multiple access (SCMA) in an uplink hierarchical HetNet system.

Moreover, the associated resource allocation schemes, multi-user detection schemes and the

multiplexing capacity bounds are summarised in sub-sections 6.1, 6.2 and 6.3 respectively. The

research contributions are outlined in sub-section 6.4. The work covered in this thesis is detailed in

paper A, paper B and paper C as presented in Part II, Part III and Part IV respectively. The conclusion

of the work and suggestions for possible future research directions are highlighted in Part V.

6.1 Resource Allocation Schemes

The hybrid-NOMA technology come with their RA challenges: macro- and small-cell users (MUE

and SUE) efficient power allocation (PA), SUEs optimal codebook assignment (CA), MUEs vs SUEs

pairing interference management among others. In order to achieve an energy efficient (EE)

PD-SCMA system, desirable and reliable resource (i.e., codebooks and power) assignment and user

pairing (UP) and clustering schemes are necessary to retain the numerous interferences below the set

temperature threshold and therefore maintain an acceptable QoS at a decent receiver computational

complexity. Firstly, a PD-SCMA system where at most one MUE is paired with SUE in a codebook

is considered and hybrid parametric based RA schemes are proposed. For such a scenario, a

successive codebook ordering assignment (SCOA) scheme featuring channel quality metric

28



i
i

“output” — 2022/7/22 — 18:21 — page 29 — #52 i
i

i
i

i
i

6. THESIS OVERVIEW AND CONTRIBUTIONS

codebook ordering for codebook assignment to SUEs is proposed for the CA. For UP, a scheme

featuring the differences in channel qualities and pairing interference metric for MUE-SUE pairing

namely opportunistic MUE-SUE pairing (OMSP) is proposed. For PA, a QoS aware power allocation

(QAPA) scheme that incorporates BS to user distance and QoS awareness metric is proposed. To

achieve a stable RA combining the CA, UP and PA iteratively, a simulation-based joint energy

efficiency (EE) resource allocation (JEERA) algorithm is then proposed. The EE performance of the

simulation-based JEERA algorithm is validated by comparing with the proposed analytical RA based

on modified dual decomposition (DDEEARA) optimization algorithm which employs a parametric

transformation of the Dinkelbach method and Lagrange dual decomposition.

Secondly, we then extend the investigation to consider a PD-SCMA system where multiple MUEs

are superimposed onto SUE assigned to the same codebook towards achieving near-optimal spectrum

sharing for future heterogeneous networks. To alleviate the RA challenges of such a system at the

transmitter, we decompose the RA problem into CA, UP and PA and propose dual parameter ranking

(DPR) schemes based RA schemes namely; dual parameter ranking for CA (DPR-CA), dual

parameter ranking for UP (DPR-UP) and dual parameter ranking for PA (DPR-PA). DPR-RA

schemes utilizes ranking metrics proposed for the dual players that is, users and resources (code and

power), to rank and contest for each other and perfectly match each other while employing a stable

matching algorithm. We then propose an alternate search method (ASM) to iteratively admit the

individual DPR-RA policies at the transmitter. In both scenarios, the proposed RA schemes result in

enhanced sum achieved rate and system capacity. Besides, the RA schemes provide significantly

improved codebook and pairing interference management, thereby enhancing the detection

experience.

In the first two scenarios, we considered users and BSs with single antennas. This work extends

the investigation to the application of multiple transceiver antennas. In particular, we employ spatial

multiplexing based MIMO technique and integrate with the proposed hybrid PD-SCMA with the aim

of striking a balance on the number of antennas, users and network capacity. Performance analysis

show that employing MIMO on PD-SCMA exhibit reduced bit-error rates, enhanced reliability and

spectrum efficiency, therefore validating the system.

6.2 Multi-User Detection schemes

The PD-SCMA system exhibits exponential multi-user detection (MUD) computational complexity

occasioned by the non-linear detection techniques. The computational complexity monotonically

rises as the number of assigned codebooks, paired MUEs, antennas and distinct power level increase.
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This work proposes two hybrid low computational complexity MUD schemes. Firstly, a joint SIC

and logarithmic message passing algorithm (Log-MPA) named SIC-Log-MPA receiver is proposed.

The combined performance effect of the SIC-Log-MPA significantly minimizes the computational

complexity order compared to the SIC-MPA. Log-MPA is capable of saving more than 40% of the

required multiplications while completely eliminating the exponential operations confronted by the

conventional MPA during the iterations. Secondly, we propose and employ a different MUD receiver

based on modified expectation propagation algorithm (EPA) and SIC (J-EPA-SIC). Differently from

MPA, modified EPA only pursues the means and variances of the transmitted messages during the

iterative detection on the factor graph. The resultant effect is a reduced linearly varying

computational complexity order unlike the exponential order exhibited with MPA. Both

SIC-Log-MPA and J-EPA-SIC can be implemented with ease on condition that the point of operation

is withing the multiplexing bound.

6.3 Multiplexing Capacity Bounds

The PD-SCMA system has various multiplexing dimensions namely; codebook multiplexing

capacity, pairing multiplexing capacity and power multiplexing. By utilizing measures of sparsity

and their attributes, we investigate and derive codebook capacity bounds, that gives the number of

admissible codebooks in a PD-SCMA system for assignment to SUEs. In pairing capacity, this work

explores the MUE multiplexing bounds in each codebook based on a proposed pairing metric.

Basically, we investigate the upper bound on the number of MUEs that can be multiplexed with a

SUE in an assigned codebook. Lastly, we investigate the maximal number of MUEs based on

maximum number of discrete and distinct power levels to enable optimal detection at the receiver

subject to outage performance and QoS constraints. It can be observed from analysis that the

codebook capacity is bounded by the positional, overloading and the derived sparsity bounds. The

pairing capacity is bounded by the proposed parameter ranking metric while the power capacity is

bounded by the number of distinct power levels to guarantee SIC and minimum QoS.

6.4 Research Contributions

The research has resulted into the following papers;

Paper A:

S. Chege and T. Walingo, "Energy efficient resource allocation for uplink hybrid power domain

sparse code non-orthogonal multiple access heterogeneous networks with statistical channel

estimation," Transactions on Emerging Tel Tech. 2021; 32:e4185. https://doi.org/10.1002/ett.4185
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The summary of this paper is as follows:

Modern 5G heterogeneous networks (HetNets) require hybrid multiple access technology for optimal

performance. The feasibility of a hybrid power domain sparse code non orthogonal multiple access

(PD-SCMA) that integrates both power domain non orthogonal multiple access (PD-NOMA) and

sparse code multiple access (SCMA) for an uplink hierarchical HetNet system is demonstrated.

Hybrid schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook

assignment (CA), opportunistic MUE-SUE pairing (OMSP) for user pairing (UP), and a QoS-aware

power allocation (QAPA) for power allocation (PA) are developed. The SCOA algorithm is based on

channel quality ordering metric, OMSP algorithm is based on channel quality diversity and pairing

interference metric while the QAPA algorithm features a QoS awareness metric. A joint energy

efficiency (EE) resource allocation (JEERA) algorithm that iteratively performs CA, UP, and PA for

small cell user equipment (SUE) and the macro user equipment (MUE) to limit interference, improve

spectral and energy efficiency is presented. The problem is formulated as a mixed integer non-convex

system EE resource allocation optimization for the small cells under QoS constraints of minimum

sum-rate, interference temperature, maximum power, and SCMA structure for a hybrid low

computational complexity joint SIC-Log-MPA receiver. A modified near-optimal dual decomposition

analytical methodology featuring Dinkelbach fractional transformations is utilized to assess the

system’s performance on an imperfect wireless channel. Through numerical results, the proposed

schemes are shown to improve the EE of the small cells in comparison with the prevalent schemes.

Paper B:

S. Chege and T. Walingo, "Multiplexing Capacity of Hybrid PD-SCMA Heterogeneous Networks,"

in IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 6424-6438, June 2022, doi:

10.1109/TVT.2022.3162304.

The summary of this paper is as follows:

Hybrid multiple access schemes are considered potential technologies towards achieving optimal

spectrum sharing for future heterogeneous networks. Multiple users are multiplexed on a single

resource unit in the code domain for sparse code multiple access (SCMA) or power domain for

power domain non-orthogonal multiple access (PD-NOMA) and in both domains for the hybrid

power domain sparse code non-orthogonal multiple access (PD-SCMA). This allows for effective

spectrum usage but comes at a cost of increased detection computational complexity resulting in loss

of performance in terms of outages. It is therefore imperative to determine the user multiplexing

capacity for effective performance. This work investigates codebook capacity bounds in small cells,
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pairing and power capacity bounds for the number of small cell user equipment’s (SUEs) and macro

cell user equipment’s (MUEs) that can be multiplexed on a codebook for the developed PD-SCMA

technology. Closed-form solutions for codebook, pairing and power multiplexing capacity bounds

are derived. The performance of the system results into low outage when the system’s point of

operation is within the multiplexing bounds. To alleviate the resource allocation (RA) challenges of

such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM)

based RA schemes are proposed. The results show significant capacity gain with DPR-RA in

comparison with conventional schemes.

Paper C:

S. Chege and T. Walingo, "MIMO based hybrid PD-SCMA Uplink Transceiver System," in IEEE

Communication Letters, (Under review)

The summary of this paper is as follows:

The application of multiple-input multiple-output (MIMO) on power domain sparse code multiple

access (PD-SCMA) system would enhance their performance by increasing the multiplexing and

diversity gains at the cost of increased detection computational complexity as more users and

antennas are deployed. This work develops and investigates the performance of spatial multiplexing

MIMO based hybrid PD-SCMA system (M-PD-SCMA) transceiver on an uplink heterogeneous

network with the aim of achieving a balance on the number of antennas and capacity/spectral

efficiency. Numerical results exhibit performance benchmark with PD-SCMA schemes and the

proposed receiver achieves guaranteed bit error rate (BER) performance with a bounded increase in

the number of transmit and receive antennas. Thus, the feasibility of an M-PD-SCMA system is

validated.
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Abstract

Modern 5G heterogeneous networks (HetNets) require hybrid multiple access technology for optimal

performance. The feasibility of a hybrid power domain sparse code non orthogonal multiple access

(PD-SCMA) that integrates both power domain non orthogonal multiple access (PD-NOMA) and

sparse code multiple access (SCMA) for an uplink hierarchical HetNet system is demonstrated.

Hybrid schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook

assignment (CA), opportunistic MUE-SUE pairing (OMSP) for user pairing (UP), and a QoS-aware

power allocation (QAPA) for power allocation (PA) are developed. The SCOA algorithm is based on

channel quality ordering metric, OMSP algorithm is based on channel quality diversity and pairing

interference metric while the QAPA algorithm features a QoS awareness metric. A joint energy

efficiency (EE) resource allocation (JEERA) algorithm that iteratively performs CA, UP, and PA for

small cell user equipment (SUE) and the macro user equipment (MUE) to limit interference, improve

spectral and energy efficiency is presented. The problem is formulated as a mixed integer non-convex

system EE resource allocation optimization for the small cells under QoS constraints of minimum

sum-rate, interference temperature, maximum power, and SCMA structure for a hybrid low

complexity joint SIC-Log-MPA receiver. A modified near-optimal dual decomposition analytical

methodology featuring Dinkelbach fractional transformations is utilized to assess the system’s

performance on an imperfect wireless channel. Through numerical results, the proposed schemes are

shown to improve the EE of the small cells in comparison with the prevalent schemes.
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1. INTRODUCTION

1 Introduction

The demand for increased capacity in 5G networks has fueled a paradigm shift from orthogonal

multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques. Unlike OMA

techniques that allow only one user to use a resource unit (RU), orthogonal frequency division

multiple access (OFDMA) subcarrier, time division multiple access (TDMA) timeslot or code

division multiple access (CDMA)’s code, NOMA allows multiplexing of several users on the same

RU resulting in high spectral efficiency, user fairness and massive connectivity [1]. NOMA schemes

permit controlled interference by non-orthogonal resource allocation. The interference and RU

limitation constraints have necessitated the development of new combined optimal radio resource

allocation (RA), user pairing (UP) and power allocation (PA) schemes for these networks.

Generally, NOMA access schemes are classified into Interleaver Division Multiple Access (IDMA),

power and code domain multiplexing [2]. IDMA utilizes user specific interleavers for

multiplexing [3] while Power domain NOMA (PD-NOMA) [4] superimposes multiple users by

allocating distinct power levels to different users at the transmitter. In code domain NOMA

(CD-NOMA) [5], multiple users share the same time-frequency resources by mapping incoming bits

to unique user-specific sparse, non-orthogonal low cross-correlation spreading sequences. In

addition, different categories of CD-NOMA have been applied on wireless networks: Sparse code

multiple access (SCMA) [6], [7] and low-density spreading multiple access (LDSMA) [8] are based

on the idea of user information being spread over multiple sub-carriers using multi-dimensional

complex codewords. Multi-user shared access (MUSA) [9], an enhanced CDMA-style scheme,

employs spreading sequences characterized by low-correlation to support overloading at the

transmitter and facilitate a near optimal interference cancellation at the receiver side. Finally, Pattern

Division Multiple Access (PDMA) [10], [11], which uses non-orthogonal patterns designed through

maximization diversity and minimization of multiple users’ correlation. These techniques employ

multi-user detection (MUD) techniques for separation of transmitted user symbols at the receiver.

Consequently, NOMA allows considerable controlled interference due to the non-orthogonal

resource sharing at the expense of magnified complexity at the receiver.

Due to their heterogeneous nature and performance requirements, future networks will require to

blend multiple access schemes resulting in hybrid NOMA schemes. At the core of PD-NOMA is the

successive interference cancellation (SIC) technique that makes it possible to assign at least one user

to a single RU by cancelling the interference resulting from the non-exclusive employment of the

RUs. On the contrary, SCMA scheme employs codebooks which are generated from a
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1. INTRODUCTION

multidimensional constellation resulting in constellation shaping gain [5]. The SCMA decoder

employs an iterative message passing algorithm (MPA) to effectively cancel interference and improve

the decoding performance at the expense of increased computational complexity. In particular, a

combination of PD-NOMA and SCMA is feasible on a heterogeneous multitier network consisting of

small cell user equipment (SUE) and the macro user equipment (MUE). This work considers

multiplexing MUEs and SUEs using PD-NOMA into the codebook while allocating different power

levels and hence apply SIC for their separation at the receiver. On the contrary, different codes are

exclusively assigned to the SUE’s in the small cells hence employing MPA for their separation. The

receiver features a low-complexity iterative hybrid MUD scheme based on SIC and log-domain MPA

(Log-MPA). This results into a hybrid power domain sparse code non-orthogonal multiple access

(PD-SCMA) scheme that combines the benefits of the two different access schemes to increase the

networks capacity.

The hybrid PD-SCMA multi-tier heterogeneous network (HetNet) schemes come with their own

challenges: MUE vs SUE power allocation (PA), SUEs vs SUEs codebook assignment (CA), MUEs

vs SUEs pairing interference among others. For the system to be effective, proper resource (i.e.,

codebooks and power) allocation and user pairing (UP) schemes are required to keep the multiple

interferences at the required levels to maintain acceptable quality of service (QoS) at decent receiver

complexity. Only then we can realize the benefits of applying hybrid PD-SCMA scheme on a

HetNet. Furthermore, the robustness and effectiveness of the developed system should be

investigated on a realistic imperfect channel with proper imperfect channel models due to numerous

co-channels, different degrees of fading and transmission delays. Analytical evaluation of the

complex system featuring multitier HetNets with both SUEs and MUEs employing multiple QoS

schemes (CA, PA, UP) is not trivial and cannot be easily evaluated by the exhaustive search methods.

This work develops an iterative joint energy efficiency (EE) resource allocation algorithm that

optimizes the performance of such a system. By decomposing the original problem into codebook

assignment, user pairing and power allocation sub-problems, we propose tractable and practical EE

resource allocation schemes.

1.1 Related Work

NOMA schemes have received significant attention in the last decade as potential multiple access

schemes for 5G technologies. In [12], a PD-NOMA scheme that clusters users based on their channel

quality differences is proposed. The scheme performs optimal PA that maximizes the

sum-throughput of all users. In [13], a PA scheme based on the sum of normalized rates for two users
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with a possible extension to more users is proposed. In [14], various fair ordering methods have been

investigated for tradeoff among the energy efficiency, fairness, harvested energy and system sum rate

in PD-NOMA based HetNets. Resource allocation in downlink HetNet NOMA for two scenarios

namely, exclusive subcarrier allocation case and intercell interference case for sum-rate maximization

are investigated in [15]. The proposed scheme decouples the optimization problem into RU

allocation and PA subproblems, which are solved by using the mesh adaptive direct search algorithm

and different successive convex approximation methods, respectively. In [16], different SCMA

configurations are employed to explore performance aspects for edge Internet of Things (IOT)

systems. A scenario where the network operator shares the uplink spectrum between the original

long-term evolution (LTE) users and new users using SCMA is investigated in [17]. A comparative

study between SCMA and PD-NOMA schemes has been presented in [18] indicating that the former

scheme achieved better performance than the latter at the expense of increased computational

complexity. In summary, a technical analysis has been reported in [19] and [20] on the feasibility,

development, performance improvement and challenges of generalized NOMA (G-NOMA)

techniques over the traditional OMA. On the contrary, the same has not been done for an uplink

hybrid HetNet with optimal resource allocation.

One of the challenges arising for SCMA is codebook resource assignment, becoming more adverse in

HetNets [21]. Dynamic CA methods proposed in [22] utilize the available channel estimation

information (CSI) to achieve user fairness and performance in a single cell network system. By

decoupling CA and PA, cost efficient EE optimization schemes are proposed for a single cell

downlink network in [23]. Specifically, a novel CA scheme employing equal power distribution is

developed. Furthermore, the authors exploit the quasi-concavity of the resultant PA problem to devise

an optimal derivative-bisection algorithm. In [24], a three-step iterative joint CA and PA algorithm is

proposed for the uplink sum-rate optimization problem. A specific codebook design method which

can cancel the effect of the dependency between the non-zero entries of codewords is presented.

Consequently, the objective function becomes a concave function in which convex optimization is

employed to obtain optimal PA. In [25], an iterative algorithm that jointly performs CA and PA

decoupled sub-problems in a SCMA-HetNet system is proposed. Since PA is a non-convex

sub-problem, a dual approach considering successive convex approximation (SCA) is employed,

while CA is in integer linear programing (ILP) form and therefore solved using ILP softwares.

Energy saving oriented codebook resource management schemes for both uplink and downlink

SCMA networks are proposed in [26]. Specifically, for the uplink networks, a dual coordinate search

approach is adopted to determine the mapping matrix and CA for minimal detection complexity. For

the downlink networks, codebook design and assignment and PA are jointly solved for minimal total
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power consumption. A Lagrangian dual decomposition technique is employed to propose a fast but

low complex iterative algorithm. In a downlink single-cell based PSMA system, joint resource

allocation and SIC ordering based on matching game and submodularity approach for sum-rate

maximization is proposed [27]. Herein, several SUEs are assigned a CB resource at the transmitter

while SIC ordering and detection employed at the receiver. Particularly, users’ CA is modelled, first,

as a many-to-many matching game where players’ preference lists are determined based on the

average channel gains. To solve the matching game, a Gale-Shapley algorithm is employed.

Secondly, the CA is modelled as a submodular optimization problem and an iterative difference of

submodular function (DSF) algorithm is proposed. The PA sub-problem employs a SCA-based

difference of convex functions (DC) method. This work forms part of our comparison algorithms.

Research on SCMA based Device-to-Device (D2D) underlay communications systems is ongoing.

In [28], an interference aware hypergraph CA algorithm that realizes full exploitation of the available

CBs is developed. Here, a codebook can be occupied by one cellular user and more than one D2D

links. [29] investigates SCMA sum rate maximization by assigning codewords of the codebook to the

cellular user based on the lower bound of the achievable user rate. An opportunistic scheduling

approach where cellular users are allocated CBs based on the available CSI is developed in [30]. A

D2D enabled cellular hybrid network based on SCMA and efficient resource management schemes

are proposed in [31]. Particularly in a downlink system, CBs are assigned cellular users (CUs) by

initially assuming equal PA, interference constraint, minimum data rate constraint. The D2D

admission for CB re-use and pairing is based on a proposed conflict graph featuring rate aware

codebook selection for the D2D system (RACBS-D2D). Lastly, PA is performed using the geometric

water filling (GWF) approach.This work is also useful in our comparisons. In the above reviewed

contributions in this subject, none is applied in an uplink PD-SCMA HetNet model. In constrast, we

develop a root mean square (RMS) channel quality metric codebook assignment that takes into

account all the RUs appended in a codebook resulting in fast assignment which consequently

improves the sum rate performance at the SBS.

The development of hybrid NOMA systems is gaining traction for HetNets. A hybrid scheme that

combines topological interference management (TIM) and NOMA in a two-stage decoding process is

introduced in [32]. TIM is applied to manage the inter-group interference while NOMA is employed

for intra-group interference through SIC. Multi-carrier NOMA (Mc-NOMA), a variation of hybrid

NOMA where the users in a network are divided into multiple groups and user with particular groups

served in the same RU to realize overloading is developed in [33]. In [34], a hybrid HetNet scheme is

proposed where NOMA is applied in the small cells and massive multiple-input multiple-output
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(MIMO) employed in macro cells. An uplink hybrid nonorthogonal multiple access (h−NOMA)

scheme utilizing power domain multiplexing for OFDM-based systems is proposed in [35]. h−

NOMA employs precoding techniques to address the high peak to average power ratio (PAPR) and

minimum mean square error (MMSE) receiver for low interference, low-complexity MUD and

consistent fairness performance. A new power domain sparse code multiple access (PSMA) is

proposed in [36]. In PSMA, multiple SUEs can reuse a codebook more than once in each cell where

for each user PD-NOMA is employed to transmit non-orthogonally. Due to unrealistic network

performance bounds occasioned by common analytical techniques, [37] proposes alternative

biological resource allocation schemes that include: the ant colony optimization, particle swarm

optimization and a hybrid adaptive particle swarm optimization algorithm for a hybrid NOMA

system. Clearly, a combination of power and code domain NOMA is more feasible on a multi-tier

multi-user network than interleaver and any of the two domains due to interleaver’s user power

imbalance scenario limitations [4]. In contrast to the previous works, this paper develops a hybrid

PD-SCMA HetNet through exclusive CA to SUE in the small cells and codebook re-use for MUEs in

the macro-cell subject to an interference threshold.

User pairing (UP) is important for optimal resource allocation in NOMA HetNet systems to avoid

pairing interference from MUE-SUE pair transmitting on the same codebook simultaneously. In [38],

a game-theoretical scheme using EE resource allocation and interference pricing for interference

limited HetNet is proposed. A modified swap matching algorithm based on stable matching theory is

proposed in [39] to allocate the spectrum resource. In [40], UP in uplink NOMA where the BS

divides the set of users into disjunct pairs and assigns the available resources to these pairs is

developed. UP schemes based on Channel Quality Indicator (CQI) for sum capacity maximization

over uplink NOMA system are proposed for both perfect and imperfect SIC in [41]. A joint UP and

PA algorithm for uplink NOMA aimed at enhancing the proportional fairness of the users is proposed

in [42]. In [43], a joint UP and access point assignment problem evaluated for near far users and far

users in D2D communication enabled dense HetNet is developed. The impacts of UP on the

performance of two NOMA systems, NOMA with fixed PA and cognitive radio inspired NOMA is

characterized in [44]. Recent research has focused on addressing UP in the current LTE-A schemes

and homogeneous PD-NOMA scenarios. This has not been implemented in a hybrid HetNet with

SUEs and MUEs. An attempt to pair the MUEs to SUE assigned codebooks via a channel quality

difference and minimal pairing interference metric is proposed in this work. This is observed to

improve SIC decoding at the SBS due to minimal pairing interference contamination and adverse

channel quality difference amongst paired users.
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In summary, this work demonstrates the feasibility of an uplink hybrid PD-SCMA HetNet with SUEs

and MUEs on a stochastic channel model in maximizing small cells’ EE while maintaining QoS at the

MBS, featuring the following:

• An uplink hybrid PD-SCMA HetNet model that integrates PD-NOMA and SCMA.

Multiplexing between the MUEs and SUEs is done in the power domain with PD-NOMA

while SUEs multiplexing is done in the code domain with SCMA. The developed receiver

features a novel low-complexity MUD scheme based on joint SIC and Log-MPA. Unlike the

receiver in [36], the complexity order of the proposed MUD reduces significantly for the

simplified sub-optimal version of MPA.

• Hybrid CA, UP and PA schemes for SUEs and MUEs. The hybrid successive codebook ordering

assignment (SCOA) for CA scheme features the channel quality metric ordering of codebooks

for allocation to MUEs and SUEs. The hybrid opportunistic MUE-SUE pairing (OMSP) for

UP features the differences in channel qualities and pairing interference metric for MUE-SUE

pairing while the hybrid QoS aware power allocation (QAPA) for PA incorporates distance and

QoS awareness metric. A practical iterative joint EE resource allocation (JEERA) algorithm

that combines CA, UP and PA is then presented. These hybrid schemes greatly limit network

interference, improve spectral and energy efficiency.

• A modified dual decomposition-based EE analytical resource allocation (DDEEARA)

optimization algorithm employing a parametric transformation from the Dinkelbach method

and Lagrange dual decomposition for system EE performance evaluation is proposed. Even

though this approach has been used extensively in literature [36], [45], [46], its application to

multiple parameters (CA, UP, PA) is not trivial since it has been developed and results

generated.

• Comparative results between the simulation-based JEERA algorithm and the analytical-based

DDEEARA algorithm,the proposed CA, UP and PA schemes versus resource allocation

schemes of [27] and [31] and lastly, PD-SCMA versus SCMA and PD-NOMA. Results show

significant energy efficiency performance improvement of the proposed PD-SCMA system

over the conventional SCMA and PD-NOMA.

1.2 Organization

The remainder of the paper is organized as follows: the system and receiver models besides problem

formulation are developed in Section 2. In Section 3, details of the proposed joint EE resource
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Table A.1: Notation and Variables

Notation Meaning Notation Meaning

C Codebooks ySUE
f,k,c Received signal at SBS

J Codebook size ηEE Energy efficiency

K SUEs in a SBS PT Total transmit power

M MUEs in the MBS Pc Circuit power

B System bandwidth Rk
min Minimum SUE rate requirement

N Resource units (RUs) Ick→m Pairing Interference (SUEs to MBS)

Mc Set of MUEs paired on codebook c Icm→k Pairing Interference (MUEs to SBS)

Bru RU bandwidth σ2ε Estimation error variance

F SBSs/Small cells du No. of users in a RU

⋆SUE
f,k,c Relation of the kth SUE on codebook c

of the f th SBS

L No. of users in a codebook

⋆MUE
m,c Relation of mth MUE on codebook c dv No. of RUs in a codecook

qSUE
f,k,c , q

MUE
m,c Codebook assignment policies σ2f,k,c Noise signal variance

Ac
k,m User pairing policy zf,k,c AWGN signal

PSUE
f,k,c , P

MUE
m,c Power allocation policies rSUE

f,k,c , r
MUE
m,c Achievable user sum rate

hSUE
f,k,c , h

MUE
m,c Channel fading gains ρ Resource mapping matrix

εSUE
f,k,c , ε

MUE
m,c Channel estimation errors R Achivable total system sum rate

σ2ε Channel error variance G Equivalent channel matrix

xSUE
f,k,c ,

xMUE
m,c

Transmitted signals γSUE
f,k,c , γ

MUE
m,c Signal to Interference and Noise Ratio

allocation (JEERA) algorithm and the individual schemes are provided. Section 4 outlines the dual

decomposition-based EE analytical resource allocation (DDEEARA) optimization algorithm. In

Section 5, the computational complexity of the proposed schemes is discussed with simulation results

and performance evaluation discussed in Section 6. Finally, the concluding remarks are presented in

Section 7.

1.3 Notation

The following notations are adopted in this work. The superscripts (·)H , (·)−1 and (·)T represents

Hermitian, inverse and transpose operators respectively. | · | and ∥ · ∥ denotes the absolute value of

a scalar and the Euclidean norm. ⊙ indicates the element-wise dot product of two matrices while ⊖
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Fig. A.1: Uplink hybrid PD-SCMA HetNet model

evaluates the difference of every value in a N × 1 vector from every value in a 1×N vector to form a

N ×N matrix of the differences. Without loss of generality, the notation •SUE
f,k,c will be used to denote

the relation between kth SUE on codebook c of the f th SBS, and •MUE
m,c , the relation between mth

MUE on codebook c. The summary list of all notations and variables is given in Table A.1.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

The proposed network model is an uplink hybrid PD-SCMA based two-tier wireless HetNet with a

centralized macro base station (MBS) serving M randomly distributed MUEs as shown in Fig. A.1.

The macro cell is overlaid by F small cells, each characterized by a centralized low power small

cell base station (SBS) serving K uniformly distributed SUEs. MUEs and SUEs are co-multiplexed

on the same time-frequency RU for enhanced spectral efficiency in an imperfect channel estimation

environment. The MUEs, SUEs, and SBS are assumed to be equipped with a single antenna. The total

network bandwidth B is equally shared by N RUs with each RU of bandwidth Bru = B/N . The

following policies are defined:

• The PA policy P =
{
PSUE
F,K,C , P

MUE
M,C

}
is such that the transmitter allocates

PSUE
F,K,C =

[
PSUE
f,k,c

]
F×K×C

power to the kth SUE on codebook c of the f th small cell and
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PMUE
M,C =

[
PMUE
m,c

]
M×C

to the mth MUE utilizing the same codebook c. Note that

PMUE
m,c >> PSUE

f,k,c .

• The CA policy Q =
{
QMUE

M,C , QSUE
F,K,C

}
where QMUE

M,C =
[
qMUE
m,c

]
M×C

and

QSUE
F,K,C =

[
qSUE
f,k,c

]
F×K×C

denote the macro cell and small cells transmitter codebook

assignment matrix respectively. Also,
[
qMUE
m,c

]
= 1 implies the mth MUE is assigned

codebook c, otherwise
[
qMUE
m,c

]
= 0. Similarly,

[
qSUE
f,k,c

]
= 1 means that codebook c is assigned

to the kth SUE in the f th small cell.

• The UP policy A =
[
Ac

k,m

]
K×M

, where Ac
k,m = 1 denotes that the kth SUE is paired with

the mth MUE on codebook c, while Ac
k,m = 0, denotes otherwise. The policy matrix A pairs

QMUE
M,C with QSUE

F,K,C .

Let H =
{
HMUE

M,C , HSUE
F,K,C

}
, where HMUE

M,C =
[
hMUE
m,c

]
M×C

and HSUE
F,K,C =

[
hSUE
f,k,c

]
F×K×C

denote

channel-fading gains of themth MUE and kth SUE in the f th small cell on codebook c. The statistical

channel coefficients are modelled as:

hMUE
m,c = ĥMUE

m,c + εMUE
m,c , (A.1)

hSUE
f,k,c = ĥSUE

f,k,c + εSUE
f,k,c , (A.2)

where ĥMUE
m,c ∼ CN

(
0, σ̂2m,c

)
and ĥSUE

f,k,c ∼ CN
(
0, σ̂2f,k,c

)
are the estimated channel gains with

variances σ̂2m,c and σ̂2f,k,c respectively. εMUE
m,c ∼ CN

(
0, σ2ε

)
and εSUE

f,k,c ∼ CN
(
0, σ2ε

)
denote the

channel estimation errors with variance σ2ε . It is assumed that estimated channel gains and errors are

uncorrelated stationary and ergodic random processes.

Considering that each codebook is exclusively assigned to a single SUE at each SBS but re-used by

MUEs in the macro-cell, the received signal ySUE
f,k,c is given by:

ySUE
f,k,c = qSUE

f,k,c h
SUE
f,k,c

√
PSUE
f,k,c x

SUE
f,k,c︸ ︷︷ ︸

DesiredSignal

+
∑

m∈Mc

Ac
k,mh

MUE
m,c

√
PMUE
m,c xMUE

m,c︸ ︷︷ ︸
PairingInterferencefromMUEs

+zf,k,c, (A.3)

where xSUE
f,k,c and xMUE

m,c are the transmitted signals of the SUE and MUE on codebook c,

respectively, Mc denotes the set of MUEs paired with SUE k on codebook c and

zf,k,c ∼ CN
(
0, σ2f,k,c

)
is the additive white Gaussian noise power (AWGN). Note that users on

different codebooks do not interfere with each other and we assume negligible inter-cell interference
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due to same codebook re-used in different small-cells. The achievable throughput at the MBS, rMUE
m,c

and at each SBS, rSUE
f,k,c are respectively given by:

rMUE
m,c = Bru log2

(
1 + γMUE

m,c

)
, (A.4)

rSUE
f,k,c = Bru log2

(
1 + γSUE

f,k,c

)
, (A.5)

where γMUE
m,c and γSUE

f,k,c are the signal to interference and noise ratio (SINR) of the mth MUE and kth

SUE in the f th small cell on codebook c respectively, given by (A.6) and (A.7).

γMUE
m,c =

qMUE
m,c PMUE

m,c

∣∣hMUE
m,c

∣∣2
qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2︸ ︷︷ ︸
PairingInterference,Ic

k→m

+σ2m,c

, (A.6)

γSUE
f,k,c =

qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2∑
m∈Mc

Ac
k,mP

MUE
m,c

∣∣hMUE
m,c

∣∣2
︸ ︷︷ ︸

PairingInterference,Ic
m→k

+σ2f,k,c

. (A.7)

Note that there is no intra-codebook interference and at most one MUE is paired to an SUE on a

codebook.As such, there is no intra-codebook MUE to MUE interference. The system’s achievable

sum rate of the SBS is given by:

R
(
Q,A,P

)
=

F∑
f=1

K∑
k=1

C∑
c=1

rSUE
f,k,c . (A.8)

2.2 Receiver Model

This work proposes a receiver featuring low-complexity MUD scheme based on a joint SIC-Log-

MPA receiver. Firstly, the iterative Log-MPA algorithm detects the transmitted signal pair on each

codebook. Thereafter, SIC sorting is applied to separate the MUE and SUE on the same codebook.

Given the received signal y, codebook size J , the joint SIC-Log-MPA receiver is a three-step decoding

process that computes the estimate of the desired signal x̂ and the bit-wise log-like ratio (LLR). This

process is shown in Algorithm 1 and described as follows:

Step I: Symbol iterative MPA decoding process: With the variable nodes (VN) and function nodes

(FNs) representing K active users and N RUs, respectively, the algorithm performs iterative

computations of log-domain extrinsic information (LDEI) sent from FN n to VN t ∈ Ψt , Sτ
n→t(ct),
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and from VN k to FN n ∈ Ψn , Dτ
t→n(ct) for the transmitted codeword ct of MUE-SUE pair t at the

τ th iteration as:

Sτ
n→t(ct) = max

ci|i∈Ψt\t

 −1
σ2f,k,n

∥∥∥∥ySUE
f,k,n −

∑
t,ct,n ̸=0

hSUE
f,t,n ct,n

∥∥∥∥2 + ∑
i∈Ψt\t

Dτ−1
i→n(ci)

 , (A.9)

Dτ
t→n(ct) = log

( 1
J

)
+

∑
i∈Ψn\n

Sτ−1
i→t (ci), (A.10)

where Ψt denotes the set of MUE-SUE pairs transmitting on the nth RU and Ψn the set of RUs in a

codebook such that ct,n, the element of ct on the nth RU, is not equal to 0. The log-domain a posteriori

probability of codeword ct is computed after L iterations and given by:

Zf,ct = log
( 1
J

)
+

∑
n∈Ψn\n

Sτmax
n→t (ct). (A.11)

Note that the low-complexity log-MPA applies a Jacobian logarithm, log
(
ea + eb

)
≈ max

(
a, b
)
, in

the simplification and elimination of the normalization operation which in effect eliminates the

exponential operations. It also simplifies the dynamic range of euclidean distance between the

observed signal and the estimated transmit symbols. This significantly reduces the number of

computationally time consuming multiplications encountered in the original MPA [47], [48].

Step II: SIC decoding [5], [49]: The SBS detects the SUE associated signal in a codeword by

regarding the MUE signal as interference using linear detection employing a MMSE detector. Using

the equivalent channel matrix G
(
f, k, c

)
=
[
hSUE
f,k,c

]
FxKxC

⊙ QSUE
F,K,C , the MMSE transformation

weight matrix estimate is given as

WMMSE

(
f, k, ct

)
=

[(
G
(
f, k, ct

))H
G
(
f, k, ct

)
+ σ2f,k,cI

]−1(
G
(
f, k, ct

))H
. (A.12)

where I is an identity matrix. The estimate of the kth SUE to the f th SBS on the codebook c, x̂f,k,ct

is derived as

x̂f,k,ct =WMMSE ∗ Zf,ct . (A.13)

In the case of more multiplexed users in one codebook, the resultant output ŷf,ct , after decoding x̂f,k,ct ,

is obtained as:
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Algorithm 1 Joint-SIC-Log-MPA Receiver

1: Input variables Q ,A, P , G , σ2f,k,c and y the received signal

2: Initialization

3: Initialize the vector D0
t→n(ct) = − log2(J),∀ct

4: Output variables x̂, bi

5: for f = 1 : F do

6: for ct = 1, 2, · · · , C do

7: Step I: log MPA iterative process

8: for τ = 1 to τmax do do

9: Compute Sτ
n→t(ct), eqn. (A.9)

10: Compute Dτ
t→n(ct), eqn. (A.10)

11: Compute Zf,ct , eqn. (A.11)

12: end for

13: end for

14: Step II: SIC decoding

15: for ct = 1, 2, · · · , C do

16: DetermineWMMSE

(
f, k, ct

)
, eqn. (A.12)

17: Compute x̂f,k,ct , eqn. (A.13)

18: end for

19: Step III: User Bits Reconstruction

20: for i ∈ 1, 2, · · · , log2(J) do

21: Compute LLR(bi), eqn (A.15)

22: if LLR(bi) ≤ 0, then b̂i = 1

23: else b̂i = 0

24: end if

25: end for

26: end for
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ŷf,ct = Zf,ct −G
(
f, k, ct

)
⊙ x̂f,k,ct . (A.14)

Step III: LLR computation: The bit-wise LLR, LLR(bi), given by (A.15), estimates each user bit b̂i

by comparing the computed LLR to zero.

LLR(bi) = max
ct∈C|bi=0

(
x̂f,k,ct

)
− max

ct∈C|bi=1

(
x̂f,k,ct

)
, (A.15)

2.3 Problem Formulation

The objective of this work is to maximize the overall sum rate with the unit power cost under the

various QoS requirements in the small cells. The system energy efficiency is formulated as a ratio of

the system sum rate to the total power consumption as [45]:

ηEE

(
Q,A,P

)
=

R
(
Q,A,P

)
PT

(
Q,A,P

)
+ Pc

(A.16)

where Pc, PT =
∑F

f=1

∑K
k=1

∑C
c=1 ξq

SUE
f,k,c P

SUE
f,k,c and ξ ∈ (0, 1) are the circuit power consumption,

total transmission power and energy conversion inefficiency respectively. Therefore, the

corresponding energy efficiency optimization problem can be expressed as:

max
Q,A,P

ηEE

(
Q,A,P

)
s.t. C1 :

C∑
c=1

rSUE
f,k,c ≥ Rk

min, ∀f, k

C2 :
K∑
k=1

qSUE
f,k,c ≤ du, ∀f, c

C3 :
∑

m∈Mc

Ac
k,mP

MUE
m,c

∣∣hMUE
m,c

∣∣2 ≤ Ic,thm→k, ∀k

C4 : qSUE
f,k,c ∈ (0, 1), ∀f, k, c

C5 : PSUE
f,k,c ≥ 0, ∀f, k, c

C6 :
C∑
c=1

qSUE
f,k,c P

SUE
f,k,c ≤ PSUE

max , ∀f, k

C7 : Ac
k,mP

MUE
m,c

∣∣hMUE
m,c

∣∣2 ≥ qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2, ∀f, k, c

(A.17)

In this problem, constraint C1 sets the HetNet QoS rate requirement to ensure guaranteed performance

of the kth SUEs in the f th small cell. Constraint C2 limits the number of users multiplexed on one

RU link. Constraint C3 sets the tolerable pairing interference on each codebook on which a MUE
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is co-multiplexed with a SUE. Constraint C4 guarantees that a codebook is allocated to at most one

user in each small cell. Constraints C5 and C6 ensure that the SUE transmit power is non-negative

and is within the maximum SUE transmit power. Lastly, constraint C7 ensures successful interference

cancellation at the SBS.

However, solving (A.17) is difficult due to its mixed combinatorial feature. In addition, combined

computational cost encountered in CA, UP and PA exhaustive search for optimal EE is prohibitive.

Thus, sub-optimal but practical algorithms are preferred in practice. For this reason, we decouple

CA, UP and PA to devise tractable algorithms. An iterative algorithm, JEERA algorithm, that jointly

optimizes the system EE based on the proposed individual schemes is presented in Section 3 together

with the proposed resource allocation schemes. An analytical evaluation scheme for the EE

optimization, DDEEARA algorithm is later presented in Section 4.

3 Proposed Energy Efficient Resource Allocation Schemes

In this section, JEERA algorithm, Algorithm 2 and the proposed CA, UP and PA schemes are

discussed. In Algorithm 2, the system EE improves at each iteration and converges at the end of the

procedure. The CA and UP are optimized using the proposed Algorithm 3 and Algorithm 4

respectively. Based on the derived CA and UP results, the PA scheme can be updated using

Algorithm 5. These proposed individual EE schemes and their matrices Q, A and P are presented in

the sub-sections that follow.

Algorithm 2 JEERA Algorithm

1: Initialization; Initialize the matrix Q(0), A(0) and P(0) =

[
PSBS
max

K
,PMBS

M d−ϖ
m

]
at t = 0

(iteration number), maximum iterations tmax and maximum tolerance ω.

2: while
(
|ηEE(t+ 1)− ηEE(t)|

|ηEE(t+ 1)|

)
≥ ω or t ≤ tmax do

3: Using P(t), SBS and MBS perform codebook assignment to obtain CA policy Q(t) using

SCOA Algorithm, Algorithm 3.

4: SBS performs user pairing to obtain the UP policy A(t) using OMSP Algorithm, Algorithm 4.

5: Based on Q(t) and A(t), update the PA P(t) using QAPA Algorithm, Algorithm 5.

6: Set t = t+ 1 and compute ηEE(t+ 1).

7: end while
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Fig. A.2: An uplink hybrid PD-SCMA resource mapping matrix ρ with N = 5, dv = 2 and C = 10, with user codebook

assignment {Q} and pairing policy {A} appended.

3.1 Successive Codebook Ordering Assignment (SCOA) Algorithm {Q}

This consists of the RU codebook mapping and the user codebook mapping. First, the codebook

RU assignment is determined by an assignment matrix {ρ}. The SCMA scheme maps a stream of

log2(J) binary bits to an N -dimensional complex codewords selected from a predefined codebook of

size J [6]. The N− dimensional codewords are sparse vectors with dv, (dv < N) non-zero entries

corresponding to dv specific RUs for a user. There are C(N, dv) =
N !

(N − dv)!dv!
codebooks for

a system with dv RUs, and the set of codebooks is denoted by C = {1, 2, · · · , C}. These vectors

form a codebook resource mapping matrix ρ =
[
ρc,n

]
C×N

, where ρc,n = 1 represents the mapping

between RU n and codebook c, ρc,n = 0, otherwise. The matrix elements are normally fixed for

SCMA transmitter resource assignment system [18], [23]. As an example of a hybrid PD-SCMA with

N = 5, du = 4 and dv = 2, the matrix ρ is illustrated in Fig. A.2 with RU’s as rows and codebooks

as columns. The CA and UP are appended to the matrix for further clarity. From the figure, ρ3,9 = 1

and ρ5,9 = 1 implies that RU3 and RU5 are mapped to CB9. The appended information indicates that

SUE1 and MUE3 are paired on CB9 such that the SUE CA matrix QSUE
F,K,C element qSUE

f,1,9 = 1 implies

SUE1 is assigned CB9 while for QMUE
M,C the element qMUE

3,9 = 1 implies MUE3 is assigned CB9.

Second, the user codebook assignment matrix scheme {Q} utilizes the Successive Codebook Ordering

Assignment (SCOA), Algorithm 3. Optimal SUE and initial MUE CA are achieved by SUE and

MUE ordering based on the channel quality metrics φSUE
f,k,c and φMUE

m,c as given in (A.18) and (A.19)
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respectively.

φSUE
f,k,c =

√√√√ 1

dv

∑
i∈Ψn

PSBS
max

K

∣∣gSUE
f,k,i

∣∣2
σ2f,k,i

(A.18)

φMUE
m,c =

√√√√ 1

dv

∑
j∈Ψn

PMBS
M d−ϖ

m

∣∣gMUE
m,j

∣∣2
σ2m,j

(A.19)

where PSBS
max denotes maximum SBS transmit power, PMBS

M is the proportion of MBS power to serve

M MUEs transmission, gSUE
f,k,i ∼ CN (0, 1) and gMUE

m,n denote the Rayleigh fading coefficients for the

nth RU link of the kth SUE and mth MUE , dm represents the distance of the mth MUE to the MBS

and ϖ is the path-loss exponent. It is clear that the metric is maximized for a user with high gain on

most of the RUs and close to the BS then minimized for a poor gain user at the cell edge. For CA

policy Q, the elements of QMUE
M,C =

[
qMUE
m,c

]
M×C

and QSUE
F,K,C =

[
qSUE
f,k,c

]
F×K×C

are determined as

follows: Select the indices of the dv largest gain coefficient RU links associated with maxφSUE
f,k,c while

each RU link is assigned to not more than du SUEs. At each index position, replace the index value

with 1 to form the codeword vector
[
ρc,n

]SUE

C×N
. This codeword is assigned to the first SUE close to

the SBS i.e. qSUE
f,1,c = 1. The same is done for MUEs while considering maxφMUE

m,c . The procedure is

repeated for the next user until all users are assigned to the corresponding codebooks.

3.2 Opportunistic MUE-SUE pairing (OMSP) Algorithm {A}

The MUE and SUE are paired when the MUEs and SUEs are assigned the same codebook such that

qMUE
m,c := qSUE

f,k,c . This implies that, A =
[
Ac

k,m = 1
]
K×M

. Based on Figure A.2, the user pairing

matrix element A9
1,3 = 1 implies that SUE1 pairs with MUE3 and transmits on RUs associated with

codebook 9. The SUE and MUE channel quality metrics φSUE
f,k,c and φMUE

m,c evaluated in (A.18) and

(A.19) form the vectors USUE
K =

[
φSUE
f,1,c , · · · , φSUE

f,K,c

]
and VMUE

M =

[
φMUE
1,c , · · · , φMUE

M,c

]
respectively. The hybrid opportunistic MUE-SUE pairing (OMSP), Algorithm 4, is based on

maximizing the channel quality metric difference (CQD), θK×M =

∣∣∣∣USUE
K ⊖ VMUE

M

∣∣∣∣ whose

elements are θk,m, and minimizing the pairing interference, IcM×K . The pairing metric, χc
m,k, is

given by:

χc
m,k = δ

(
max

(
θK×M

)
,min

(
Icmin

))
(A.20)

In this work, an assumption that a codebook can be utilized by a maximum of one SUE in the SBS

and paired to a maximum of one MUE in the MBS is made for simplicity in determining Q and A for
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Algorithm 3 SCOA Algorithm

1: Input variables; du, K ,M , C , PSUE
F,K,C and PMUE

M,C

2: Initialization; Initialize the vectors QMUE
M,C = [0], QSUE

F,K,C = [0]

3: Output variable: Qopt

4: for f = 1 : F do

5: for k = 1 : K do

6: Determine φSUE
f,k,c , eqn. (A.18)

7: for m = 1 :M do

8: Determine φMUE
m,c , eqn. (A.19)

9: i = 1, j = 1

10: while number of users assigned on each RU ≤ du do

11: for l = 1 : dv do

12: Determine t← index of lth largest gain coefficient dv RU with the maxφSUE
f,k,c

13: Determine
[
ρi,t
]SUE

C×N
by replacing the index value of position l with 1

14: Assign qSUE
f,k,i = 1

15: end for

16: i = i+ 1

17: for l = 1 : dv do

18: Determine t← index of lth largest gain coefficient dv RU with the maxφMUE
m,c

19: Determine
[
ρj,t
]MUE

C×N
by replacing the index value of position l with 1

20: Assign qMUE
m,j = 1

21: end for

22: j = j + 1

23: end while

24: end for

25: end for

26: end for

27: QSUE
F,K,C =

[
qSUE
f,k,c

]
F×K×C

, QMUE
M,C =

[
qMUE
m,c

]
M×C
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Algorithm 4 OMSP Algorithm

1: Input variables; QSUE
F,K,C , QMUE

M,C

2: Initialization; Initialize the matrix IcM×K =
[
Icm→k

]
M×K

= [0], θK×M = [0]

3: Initialize the vector USUE
K = [0], VMUE

M = [0]

4: Output variable; Aopt

5: for k = 1 : K do

6: Evaluate the matrix USUE
K

7: for m = 1 :M do

8: Evaluate the matrix VMUE
M

9: end for

10: end for

11: Evaluate the CQD, θK×M

12: for k = 1 : K do

13: for m = 1 :M do

14: Compute interference temperature coefficients, Icm→k

15: Determine matrix IcM×K , from elements Icm→k

16: end for

17: end for

18: Determine Icmin, Kuhn-Munkres on IcM×K

19: Evaluate χc
m,k, eqn. (A.20)

20: Perform post-pairing

21: Output Aopt =
[
Ac

k,m

]
K×M

PD-SCMA.

3.3 QoS Aware Power Allocation (QAPA) Algorithm {P}

Once the CA (Q) and UP (A) schemes are obtained, the power allocation scheme matrix

P =
{
PSUE
F,K,C , P

MUE
M,C

}
applies the QoS satisfaction-based metrics at the MBS and at each SBS [50].

The SUE transmission power is constrained such that the MUE can satisfy their minimum QoS. Let

Rm
min denote the minimum achievable rate for the mth MUE on codebook c. Using (A.4) and (A.6),

the MUE QoS requirement is given as:

Bru log2

(
1 +

qMUE
m,c PMUE

m,c

∣∣hMUE
m,c

∣∣2
qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2 + σ2m,c

)
≥ Rm

min. (A.21)
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3. PROPOSED ENERGY EFFICIENT RESOURCE ALLOCATION SCHEMES

Algorithm 5 QAPA Algorithm

1: Input; Rk
min, Rm

min, H, σ2m,c, σ
2
f,k,c , Ic,thk→m

2: Initialization; Initialize PSUE
f,k,c = PSBS

f,k,c /K, PMUE,init
m,c = PMBS

M d−ϖ
m

3: Output variable; Popt

4: Step I: SUE Power Allocation

5: for f = 1 : F do

6: for k = 1 : K do

7: Based on (A.21), evaluate PSUE
f,k,c , eqn. (A.22)

8: Compute P̄SUE
f,k,c , eqn. (A.23)

9: Compute PSUE,min
f,k,c for minimum SUE QoS requirement, eqn. (A.25)

10: Compute ωSUE
f,k,c , eqn. (A.26)

11: end for

12: end for

13: Step II: MUE Power Allocation

14: for m = 1 :M do

15: Determine MUE rate requirement, eqn. (A.21)

16: Compute PMUE,min
m,c , eqn. (A.27)

17: Compute ωMUE
m,c , eqn. (A.28)

18: end for

From (A.21), the SUE transmit power PSUE
f,k,c is constrained by:

PSUE
f,k,c ≤

1

qSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
(
qMUE
m,c PMUE

m,c

∣∣hMUE
m,c

∣∣2
2

Rm
min
Bru − 1

− σ2m,c

)
(A.22)

PSUE
f,k,c is also limited due to the predetermined interference threshold Ic,thk→m = qSUE

f,k,c P̄
SUE
f,k,c

∣∣hMUE
m,c

∣∣2.

Hence, by this provision, the SUE transmit power under interference awareness, P̄SUE
f,k,c is computed

as:

P̄SUE
f,k,c ≤

Ic,thk→m

qSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2 (A.23)

Similarly, using (A.5) and (A.7), the SUE transmit power constraint for its minimum QoS is computed

as in (A.24). Therefore, the minimum SUE transmit power for minimum QoS, PSUE,min
f,k,c is computed

by (A.25).

PSUE
f,k,c ≥

2
Rm
min
Bru − 1

qSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
(
qMUE
m,c PMUE

m,c

∣∣hMUE
m,c

∣∣2 + σ2f,k,c

)
(A.24)
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PSUE,min
f,k,c =

2
Rk
min
Bru − 1

qSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
(
qMUE
m,c PMUE

m,c

∣∣hMUE
m,c

∣∣2 + σ2f,k,c

)
(A.25)

Therefore, the final constrained SUE transmit power metric is given by:

ωSUE
f,k,c =


min

(
P̄SUE
f,k,c ,max

(
PSUE
f,k,c , P

SUE,min
f,k,c

)
, Pmax

f,k,c

)
, if ∆ ≥ PSUE,min

f,k,c

Infeasible, otherwise
(A.26)

where ∆ = min
(
PSUE
f,k,c , P̄

SUE
f,k,c

)
. The power allocation matrix PSUE

f,k,c is increased and decreased in

the bounds of (A.26). The minimum power requirement for each MUE to meet its own QoS is then

given by:

PMUE,min
m,c =

2
Rm
min
Bru − 1

qMUE
m,c

∣∣hMUE
m,c

∣∣2
(
qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2 + σ2m,c

)
(A.27)

As such, the power allocation metric, ωMUE
m,c , for the MUEs will be defined as

ωMUE
m,c = min

(
PMUE,init
m,c , PMUE,min

m,c

)
(A.28)

A QoS aware power allocation (QAPA) strategy for SUEs and MUEs is illustrated in Algorithm 5.

4 Dual Decomposition-based EE Analytical Resource Allocation

(DDEEARA) Evaluation Technique

The problem in (A.17) is a mixed integer non-linear programming (MINLP) and cannot be solved by

classical mathematical methods. An alternative near-optimal analytical EE resource allocation

optimization, DDEEARA is discussed in this section. To solve the problem, we employ

mathematical transformations and convex optimization techniques to transform (A.17) into a concave

problem. Thereafter, the Lagrange dual method used in [45] and [51] is applied to solve the resultant

transformed problem. However, from the Lagrangian, we obtain independent optimal points for the

CA, UP and PA based on the associated dual variables.

4.1 Problem Transformations

Since (A.17) is a non-convex fractional programming problem, we first perform integer relaxation of

CA indicators qSUE
f,k,c and qMUE

m,c as well as the pairing indicator Ac
k,m to obtain continuous variables

q̂SUE
f,k,c ∈ [0, 1], q̂MUE

m,c ∈ [0, 1] and Âc
k,m ∈ [0, 1] respectively. The relaxed continuous indicators can
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intuitively be interpreted as time-sharing QoS for codebooks. Following the integer relaxation, the

CA, UP and PA policies become Q̂ =

[
Q̂SUE

F,K,C , Q̂
MUE
M,C

]
, Â =

[
Âc

k,m

]
KxM

and

P̂ =

[
P̂SUE
F,K,C , P̂

MUE
M,C

]
respectively. The approximation of the sum-rate rSUE

f,k,c as used in [ [51]] is

given as r̂SUE
f,k,c = Bru log2

(
1 + γ̂f,k,c

)
, with γ̂f,k,c given by:

γ̂SUE
f,k,c =

q̂SUE
f,k,c P̂

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2∑
m∈Mc

Âc
k,mP̂

MUE
m,c

∣∣hMUE
m,c

∣∣2
︸ ︷︷ ︸

PairingInterference,Ic
m→k

+q̂SUE
f,k,c σ

2
f,k,c

(A.29)

Secondly, to deal with the non-linearity of the fractional objective function, a parametric

transformation from the Dinkelbach method [52] is used to transform the fractional program to a

non-fractional one. The maximum EE of the system can be defined as:

b∗ = max
Q,A,P

R
(
Q̂, Â, P̂

)
PT

(
Q̂, Â, P̂

)
+ Pc

=
R
(
Q̂∗, Â∗, P̂∗)

P ∗
T

(
Q̂∗, Â∗, P̂∗

)
+ Pc

(A.30)

which is a non-linear concave-convex fractional program. This can be transformed into an equivalent

parameterized non-fractional formform given by [46]:

max
Q,A,P

{
R
(
Q̂, Â, P̂

)
− b
(
PT

(
Q̂, Â, P̂

)
+ Pc

)}
(A.31)

with the conditions C1 - C7 of (A.17) modified to include the relaxed indicators. b is a parameter

introduced to scale the weight of PT

(
Q̂, Â, P̂

)
+ Pc. For a given value of b, the corresponding

resource allocation policy is denoted as Q̂, Â, P̂ and the optimal solution to (A.30) defined as Q∗,

A∗, P∗. Note that the solution in (A.30) is equivalent to finding the maximum energy efficiency

b∗. It can be proven that the optimal solution of the subtractive form of (A.31) is reached when

R
(
Q̂, Â, P̂

)
− b
(
PT

(
Q̂, Â, P̂

)
+ Pc

)
approaches zero [46].

4.2 Lagrange Dual Decomposition

The transformed optimization problem in (A.31) is jointly concave with respect to {Q,A,P}. It is

solved by adopting the Lagrange dual decomposition method. The difference between the primal and

dual solution is zero when strong duality holds [45]. In this case, we solve the primal problem of

(A.31) by solving its associated dual problem. The Lagrangian function can be written as:
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L
(
Q,A,P, b,ℵ

)
=

F∑
f=1

K∑
k=1

C∑
c=1

r̂SUE
f,k,c − b

( F∑
f=1

K∑
k=1

C∑
c=1

ξP̂SUE
f,k,c + Pc

)
+

F∑
f=1

K∑
k=1

λf,k

( C∑
c=1

r̂SUE
f,k,c −Rk

min

)

+

F∑
f=1

C∑
c=1

αf,c

(
du −

K∑
k=1

q̂SUE
f,k,c

)
+

K∑
k=1

βk

(
Icm→k −

∑
m∈Mc

Âc
m,cP̂

MUE
m,c

∣∣hMUE
m,c

∣∣2)

+

F∑
f=1

K∑
k=1

νf,k

(
PSUE
max −

C∑
c=1

P̂SUE
f,k,c

)
+

F∑
f=1

K∑
k=1

C∑
c=1

ϱf,k,c

(
Âc

m,cP
MUE
m,c

∣∣hMUE
m,c

∣∣2
−q̂SUE

f,k,c P
SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2).
(A.32)

where ℵ =
(
λ ≥ 0, α ≥ 0, β ≥ 0, ν ≥ 0, ϱ ≥ 0

)
are the Lagrange multipliers corresponding to the

modified constraints of C1, C2, C3, C6 and C7. The modified boundary constraints of C4 and C5

are absorbed in the Karush-Kuhn-Tucker (KKT) conditions [53]. The dual function is defined as:

g
(
b, λ, α, β, ν, ϱ

)
= max

Q,A,P
L
(
Q,A,P, b,ℵ

)
(A.33)

Given b, the dual problem of (A.17) can be expressed as:

min
λ,α,β,ν,ϱ

g
(
b, λ, α, β, ν, ϱ

)
(A.34)

s.t., λ ≥ 0, α ≥ 0, β ≥ 0, ν ≥ 0, ϱ ≥ 0 (A.35)

Since each f th SBS solves for optimal resource allocation for the k associated SUEs using local

information, (A.31) can be decomposed into f sub-problems as:

L
(
Q,A,P, b,ℵ

)
=Lf

(
Q,A,P, b,ℵ

)
− bPc −

F∑
f=1

K∑
k=1

λf,kR
k
min +

F∑
f=1

C∑
c=1

αf,cdu +
K∑
k=1

βkIcm→k

+
F∑

f=1

K∑
k=1

νf,kP
SUE
max

(A.36)

where,
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Lf
(
Q,A,P, b,ℵ

)
=

K∑
k=1

C∑
c=1

(1 + λf,k)r̂
SUE
f,k,c −

K∑
k=1

C∑
c=1

(bξ + νf,k)P̂
SUE
f,k,c −

K∑
k=1

C∑
c=1

αf,cP̂
SUE
f,k,c

−
K∑
k=1

∑
m∈Mc

Âc
m,cP̂

MUE
m,c

∣∣hMUE
m,c

∣∣2 + K∑
k=1

C∑
c=1

ϱf,k,cÂ
c
m,cP

MUE
m,c

∣∣hMUE
m,c

∣∣2
−

K∑
k=1

C∑
c=1

ϱf,k,cq̂
SUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2.
(A.37)

Optimal resource allocation solutions are obtained by applying KKT conditions in combination with

optimization methods to find the stationary point of (A.37) with respect to Q, A, and P respectively,

with λ, α, β, ν and ϱ being fixed. Therefore, the optimal power allocation solution PSUE
f,k,c can be

described mathematically as:

PSUE
f,k,c =

 Bru(1 + λf,k)

ln 2

(
bξ + νf,k + ϱf,k,c

∣∣hSUE
f,k,c

∣∣2) − 1

∆SUE
f,k,c


+

(A.38)

where [x]+ = max(0, x) and ∆SUE
f,k,c =

qSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
Ac

m,cP
MUE
m,c

∣∣hMUE
m,c

∣∣2+σ2
f,k,c

. Using the concept of marginal

benefits [45], the policy assignment of codebook c to the optimal user can be defined by:

qSUE
f,k,c = 1|k∗ = argmax

k
Γf,k,c (A.39)

where

Γf,k,c = Bru(1+λf,k)
1

ln2

PSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
Icm→k + σ2f,k,c(

1 +
PSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
Icm→k + σ2f,k,c

) −αf,c− (bξ+νf,k)P
SUE
f,k,c −ϱf,k,cPSUE

f,k,c

∣∣hSUE
f,k,c

∣∣2.
(A.40)

The optimal pairing policy, Ac
k,m can be defined as:

Ac
k,m = 1|m∗ = argmax

m
Ξf,k,c (A.41)

with Ξf,k,c given by:
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Algorithm 6 DDEEARA Algorithm

1: Initialization:

2: Initialize maximum number of the iterations Imax, maximum tolerance ω, set τ = 0

3: Initialize PSUE
f,k,c = PSBS

f,k,c /K, PMUE,init
m,c = PMBS

M d−ϖ
m

4: Initialize the energy efficiency, b

5: while
∣∣R(Q,A,P)τ − b∗(PT

(
Q,A,P

)τ
+ Pc

)∣∣ ≥ ω or τ ≤ Imax do

6: Initialize maximum number of inner loop iterations Lmax and set l = 0

7: for c = 1 : C do

8: for m = 1 :M do

9: for k = 1 : K do

10: Initialize dual variables λ, α, β, ν and ϱ

11: Using bτ , update PSUE
f,k,c eqn. (A.38)

12: Compute qSUE
f,k,c , eqn. (A.39)

13: Compute Ac
k,m, eqn. (A.41)

14: Compute the sum-rate, eqn. (A.8)

15: while dual variables have not converged or l ≤ Lmax do

16: SBS updates λl+1
f,k , αl+1

f,c , νl+1
f,k , ϱl+1

f,k,c using (A.43), (A.44), (A.46), (A.47)

17: MBS updates βl+1
k according to (A.45)

18: end while

19: end for

20: end for

21: end for

22: Set τ = τ + 1 and let bτ =
R
(
Q,A,P

)τ−1(
P ∗
T

(
Q,A,P

)τ−1
+ Pc

)
23: end while

Ξf,k,c =Bru(1 + λf,k) log2

(
1 +

qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
PMUE
m,c

∣∣hMUE
m,c

∣∣2 + σ2f,k,c

)
− βkPMUE

m,c

∣∣hMUE
m,c

∣∣2
−ϱf,k,cPMUE

m,c

∣∣hMUE
m,c

∣∣2.
(A.42)

After obtaining the optimal CA, UP and PA, we invoke the sub-gradient method to iteratively update

the dual multipliers given by:

λl+1
f,k =

[
λlf,k − ζ l1

( C∑
c=1

rSUE
f,k,c −Rk

min

)]+
(A.43)
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αl+1
f,c =

[
αl
f,c − ζ l2

(
du −

K∑
k=1

qSUE
f,k,c

)]+
(A.44)

βl+1
k =

[
βlk − ζ l3

(
Ic,thm→k −

∑
m∈Mc

Ac
k,mP

MUE
m,c

∣∣hMUE
m,c

∣∣2)]+ (A.45)

νl+1
f,k =

[
νlf,k − ζ l4

(
PSUE
max −

C∑
c=1

qSUE
f,k,c P

SUE
f,k,c

)]+
(A.46)

ϱl+1
f,k,c =

[
ϱlf,k,c − ζ l5

(
Ac

k,mP
MUE
m,c

∣∣hMUE
m,c

∣∣2 − qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2)]+ (A.47)

with ζ1, ζ2,ζ3, ζ4 and ζ5 being positive infinitesimal step sizes at iteration l. The iterative DDEEARA

can then be described by Algorithm 6.

5 CONVERGENCE AND COMPLEXITY ANALYSIS OF THE

PROPOSED SCHEMES

In this section, we outline analytical discussion of convergence and the computational complexity of

the simulation-based and analytical-based EE resource allocation schemes for the PD-SCMA system.

5.1 CONVERGENCE ANALYSIS

5.1.1 JEERA algorithm

The convergence of the JEERA algorithm is given in the following Lemma.

Lemma 5.1. For a given EE value ηEE and minimum deviation ω , the JEERA algorithm converges

within a limited finite number of iterations.

Proof. The proof of Lemma 5.1 follows similar proof of joint resource allocation algorithm (NVRA

Algorithm 4) in [54]. The maximum power of the SBS and the number of codebooks are finite.

Consequently, the EE of the system (A.17) is upper bounded. For a given Q and P, OMSP algorithm

computes the optimal Aopt. At each iteration t, OMSP computes the CQD for maximum CQD,

max θK×M and pairing interference for Icmin to optimize the pairing metric χc
m,k . Due to its

increasing monotonicity, it can be observed that OMSP converges to Aopt. Mathematically, it can be

written as
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A0 → A1 → A2 → · · · → Aopt−1 → · · · → Aopt (A.48)

Since EE is upper bounded and increased in each iteration, OMSP algorithm must converge to Aopt

within a limited finite number of iterations. To further enhance the EE, QAPA algorithm is updated in

step 3 with Q and A fixed. Consequently, the EE is increased from ηEE(t) to ηEE(t+1). Then a new

cycle for SUE codebook assignment and MUE pairing is started. Overall, the ηEE(t) is monotonically

increasing and upper bounded, which guarantees that the total number of iterations is limited for a

given deviation of ω. This is further illustrated in the numerical results.

5.1.2 DDEEARA algorithm

The convergence of the DDEEARA algorithm is given in the following Lemma.

Lemma 5.2. Algorithm 6 will converge to the optimum of dual problem A.34 given that A.35 holds, in

a finite number of iterations.

Proof. Let F (ηEE) = R
(
Q̂, Â, P̂

)
− b
(
PT

(
Q̂, Â, P̂

)
+ Pc

)
denote the Dinkelbach transformation

expression of the EE problem. For the outer layer, since F (ηEE) is strictly monotonic decreasing,

then an optimal solution η∗EE , is guaranteed when

0 = F (η∗EE) ≥ F (ηEE) = 0 (A.49)

The EE F (ηEE) improves after each outer layer iteration τ , until the convergence (eqn. A.49 is

satisfied). The convergence and optimality proof of the Dinkelbach based equivalence scheme can

be found in [52]. For the inner layer problem, the subgradient method with the constant step size is

employed to tackle the dual problem minimization. Selection of the step size is largely inspired by

its practical significance to achieve primal solutions and improve the convergence rate analysis. At

each inner layer iteration l, the Lagrange multipliers λ, α, β, ν, ϱ are cautiously selected to enhance the

square summation of step sizes in order to ensure guaranteed convergence. By introducing Theorem

4 in [55], if step size ζ li , (i = 1, 2, 3, 4) satisfies following two conditions

lim
l→∞

ζ li = 0,

∞∑
l=0

ζ li =∞ (A.50)

then, starting from any initial value of Q, A and P, the dual problem of A.17 can converge to the

optimal solution of A.34. It can be shown that for a constant step size, the solution strictly converges
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to the optimal solution of A.34. It follows that, if the inner and outer layer converges, the proof of

Lemma 5.2 is complete.

5.2 COMPLEXITY ANALYSIS

5.2.1 Receiver Complexity

The complexity of PD-NOMA and SCMA have been derived in [18]. In this analysis, G, J , du, dv, L

and τ are used to denote the equivalent channel matrix, codebook set size, number users

superimposed in one RU, number of RUs assigned to each user, number of users simultaneously

multiplexed in one codebook and the number of iterations respectively. For PD-NOMA with

S − QAM constellation [56], computing the estimated received symbol requires S(log2 S + 1)

multiplications and 2(S − 1) additions for each RU. By considering the MMSE detector at the

receiver, the solution involves the computation of MMSE transformation weight matrix estimate

given by (GHG + σ2I)−1GH . The computational complexity order of λ−1 and λHλ matrices (with

size b × b) is O(b3). For SCMA, the original MPA and log-MPA detector complexity is investigated

in [57]. Extending this knowledge to PD-SCMA, the Log-MPA algorithm increases the number of

addition operations when compared to the original MPA. However, it can save more than 40% of the

multiplications and completely eliminates the exponential operations. Assuming that the number of

users paired on a codebook is L, 2 in our case, the SBS should apply log MPA once to detect and

decode the C codebook layers. Then for each codebook layer, SIC is applied L− 1 times to correctly

decode the transmitted data. The number of additions, multiplications, exponential and comparison

operations, and the resultant overall approximate computational complexity order are summarized in

Table A.2.

5.2.2 Codebook Assignment Complexity

The codebook resource assignment at the SBS is an assignment between C codebooks and K SUEs.

The SBS exhaustively searches the best assignment. Since each codebook can only be assigned to at

most one SUE, there are K × C possible assignments with the complexity of the optimal exhaustive

search being O(2KC). The SCOA algorithm is considered as an ordering problem with respect to the

channel quality with complexity O(K2). Hence the total complexity of the SCOA algorithm is given

as O(CK2).
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Table A.2: Receiver Complexity of PD-NOMA, SCMA and PD-SCMA

Algorithms PD-NOMA SCMA PD-SCMA

ADD 2τdudv(S − 1) JduNduτ(2du + 1) +

JNduτ(dv−2)+2JNdu

2L(S−1)+(3JduNduτ+

4JNdu)

MUL 2τdudvS(log2 S +

1)

JduNduτ(du + 1) +

4JNdu

3L(log2 S + 1) +

(JduNduτ + 2JNdu)

EXP 0 JduNduτ 0

CMP 0 0 L(JduNduτ +

JNduτ(dv − 2))

Overall

complexity

order

O
((
L3 +

(2L2dv)(L −

1)
)
+ (log2 S)

)
O
((
τmax

)∣∣J∣∣dv) O
((
τmax

)
log2

∣∣J∣∣dv +

Lb3 log2 S
)

5.2.3 User Pairing Complexity

In the OMSP algorithm, pairing between SUE k and MUE m on a codebook c and is based on the

maximum channel quality difference (θK×M ) and the minimum interference temperature Icmin

obtained through the Kuhn Munkres algorithm which has a complexity of O(MK2). Since each

MUE calculates its (θk,m) and Icmin corresponding to each SUE allocated on codebook c, the

post-ordering has a complexity of O(MK). Therefore, the combined pairing complexity can be

approximated to O(MK2).

5.2.4 Power Allocation Complexity

In the QAPA algorithm, a SUE considers the rate of the pairing MUE at each cycle. The SUE then

considers its own power limitation due to interference threshold. Finally, the SUE considers its own

minimum QoS requirements before deciding on its own power limits as given in (A.26). The

complexity is of order O(MK). The MUE power allocation is based on its own minimum QoS

satisfaction and requires O(M). As such, the QAPA algorithm complexity can be defined to be of

order O(MK).

5.2.5 DDEEARA Complexity

Following the work of [51], the computational complexity of the proposed DDEEARA, Algorithm 6,

can be derived. In Algorithm 6, a worst-case complexity of searching (A.38) needs FKC operations

in each iteration, and the calculation of (A.40) for every SUE on each codebook in every small cell

71



i
i

“output” — 2022/7/22 — 18:21 — page 72 — #95 i
i

i
i

i
i
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Table A.3: Simulation parameters

Parameters Symbol Values

Carrier frequency 2GHz

MBS coverage radius 500m

SBS coverage radius 50m

Path loss exponent ϖ 3

Error variance σ2ε 0.01

RU Bandwidth Bru 10MHz

Number of SBS F 60

Number of SUEs per Small cell K 20

Number of Codebooks C 20

Number of RUs N 6

Number of RUs per codebook dv 3

Number of users in a codebook L 2

Signal to Noise Ratio SNR 32dB

SUE circuit power pc 21dBm

Noise variance σ2f,k,n −125dBm

Minimum SUE transmission rate Rk
min 5Mbps/Hz

Maximum transmission power PSUE
f,k,c 25dBm

Interference threshold Icm→k 10−5.5W

Interference threshold Ick→m 10−5.5W

Power amplifier inefficiency ξ 0.9

entails FKC operations. While using the sub-gradient method, the algorithm requires π iterations

to converge, O(KF ) calculations are required for updating each dual variable λf,k, αf,c and νf,k.

O(K) and O(KFC) calculations are required to update βk and ϱ(f, k, c) respectively. Therefore, π

is a polynomial function of F 2K2C2, and the complexity order of algorithm is O(F 2K2C2π). The

choice of the dual variables greatly affects the number of iterations and therefore must be carefully

chosen.
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6 SIMULATION RESULTS AND DISCUSSION

The performance of the proposed resource allocation algorithms in terms of EE, sum-rate and

complexity is presented herein. In the simulation model, spectrum-sharing small cells are uniformly

distributed in a cellular macro-cell with randomly distributed SUEs in a circular SBS. All the

parameters are as provided in Table A.3 unless otherwise specified. The performance of the

simulation-based JEERA algorithm is compared to the analytical DDEEARA algorithm. The

algorithms for PD-NOMA and SCMA are similar to the ones in [14] and [18] respectively, albeit the

EE resource allocation proposed in this work. Furthermore, we incorporate resource allocation

schemes of [27] and [31] in the comparative analysis. Particularly, the CA and UP algorithms in

PD-SCMA are compared with the modified matching game and submodularity approach-based CA

while PA is compared with the SCA-based DC method of PA in [27]. In addition, the proposed EE

schemes are compared with the resource management schemes in D2D enabled cellular hybrid

network of [31], albeit for a downlink system. Here, SCOA algorithm is compared with the proposed

CA based on equal power allocation, interference constraint and minimum data rate constraint,

OMSP algorithm with RACBS-D2D and lastly, QAPA with GWF algorithm.

Fig. A.3: Sum-rate vs number of SUEs for different schemes

Figs.A.3 and A.4 present the results of performance analysis. From Fig.A.3, it is observed that the
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6. SIMULATION RESULTS AND DISCUSSION

Fig. A.4: Energy efficiency vs number of SUEs for different schemes

system sum-rate increases with the number of SUEs in all the schemes. PD-SCMA performs better

than SCMA, then PD-NOMA in that order. This can be attributed to the efficient spectral RUs

utilization from non-exclusive allocation of codebooks performed at the transmitter therefore

eliminating the codebook interference in PD-SCMA. Additionally, the deployment of the combined

CA, UP and PA schemes further enhances PD-SCMA sum-rate performance compared to SCMA

with similar CA and PD-NOMA with similar PA schemes. In PD-SCMA, increased number of SUEs

and therefore codebooks translates to increased number of RUs. Consequently, more RUs can be

assigned to each user, therefore, the sum rate increases. Furthermore, the performance of the

simulated and analytical schemes is comparatively close. In Fig.A.4, it can be observed that as the

number of users increases the EE of the systems decreases across all the schemes. In comparison to

the sum-rate performance, the simulated and analytical results are comparable for the protocols.

Although the EE is higher in the beginning, it starts to deteriorate as more users transmit within the

same SBS coverage. Additional users beyond the saturation limit compromise the performance of the

system. Note that the sum-rate is closely linked to the EE protocols behavior and henceforth, we use

either one of them in subsequent discussions.

Fig.A.5 depicts the system sum-rate performance for PD-SCMA with the proposed resource allocation

schemes employed against signal to noise ratio (SNR). The results show that the sum-rate increases
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Fig. A.5: Sum-rate vs SNR for PD-SCMA resource allocation schemes

Fig. A.6: EE resource allocation schemes vs number of SUEs
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6. SIMULATION RESULTS AND DISCUSSION

monotonically with the SNR. In fact, it can be observed that PD-SCMA with CA, UP and PA schemes

achieve a higher sum-rate compared to the performance when any of the other schemes is used. This

confirms the significant performance improvement of applying the CA and UP schemes, albeit higher

performance with UP scheme. This confirms the importance of optimal pairing of users in a codebook

which gives a considerate performance improvement as opposed to the applied CA scheme.

Fig.A.6 illustrates the EE performance of the proposed resource allocation schemes versus the number

of SUEs in a SBS. It can be observed that the system EE significantly decreases with increase in

number of SUEs across all the resource allocation scheme considerations. As expected, the system

exhibits significant performance improvement when the proposed EE resource allocation algorithms

are applied and compared to SUE equal PA with random CA and UP. The proposed EE schemes

outperforms matching and submodularity resource allocation-based schemes of [27], specifically for

an increasing number of SUEs due to the interference suppression during pairing employed by the

OMSP algorithm. A performance difference in the range of 8% for few users to 20% for higher

number of users, in comparison with the efficient resource management schemes of [31], can be

observed. Despite efficient utilization of spectral resources, power dissipation in the system increases

faster than the system EE. Furthermore, PD-SCMA with the proposed EE resource allocation schemes

Fig. A.7: Sum-rate capacity vs channel estimation error
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achieve higher performance compared to uniform PA and random CA and UP.

Fig.A.7 shows the system sum-rate capacity performance versus channel estimation error variance,

σ2ε . There is a sharp decrease in the system sum-rate capacity. Furthermore, PD-SCMA with 20

users experience much degradation than with 10 users. SCMA with 10 users give a much slower

degradation than PD-SCMA. As the number of users increase, the system experiences higher CSI

imperfection from the additional noise terms. For enhanced performance, careful trade-off between

CSI error variance and the number of users is required.

Fig. A.8: Energy efficiency vs circuit to total transmit power ratio

The EE performance versus circuit power to SUE transmit power ratio Pc/PT is presented in Fig.A.8.

With maximum SUE transmit power, PSUE
max = 25dBm, the system performs less energy-efficiently

when the circuit power ratio increases for all the schemes. Following the relation in (A.16) of energy

efficiency, its value will become smaller when Pc increases. However, the PD-SCMA system equipped

with the proposed resource allocation algorithms still outperforms SCMA and PD-NOMA schemes.

In Fig.A.9, the EE performance of the proposed PD-SCMA simulation and analytical schemes at

different number of iterations in comparison to SCMA and PD-NOMA is shown. The results indicate

that all schemes converge within 600 iterations, reiterating the convergence analysis of Section 5.1.

However, PD-SCMA schemes converge to an optimal solution with higher EE compared to SCMA

77



i
i

“output” — 2022/7/22 — 18:21 — page 78 — #101 i
i

i
i

i
i
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Fig. A.9: Energy efficiency vs Iterations

and PD-NOMA. As such, PD-SCMA is feasible for practical implementation.

Lastly, the computational complexity versus the number of SUEs for the proposed algorithm is

shown in Fig.A.10. The total PD-SCMA complexity analyzed is the combinational complexity of the

proposed schemes. It is observed that the computational complexity increases with an increase in

number of SUEs. Although PD-SCMA provides improved EE and sum-rate performances, the

implementation suffers increased complexity cost than SCMA and PD-NOMA. This is largely

attributed to the number of mathematical computations required at the MUD receiver, MUE-SUE

pairing and PD-SCMA overloading. However, PD-SCMA exhibits lower complexity than PSMA

of [36] which implements the original MPA receiver
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Fig. A.10: Computational complexity vs number of SUEs

7 Conclusion

In this paper, a hybrid PD-SCMA HetNet model that combines power and code domain to multiplex

MUEs and SUEs on 5G uplink networks was developed. The model employs SCOA for UP, OMSP

for CA and QAPA for PA algorithms. The designed receiver utilizes a low-complexity MUD scheme

based on joint SIC and Log- MPA. Simulation and analytical-based EE resource allocation

performance for the small cells under QoS constraints of minimum sum-rate, interference

temperature, system maximum power is evaluated. Based on the results, the feasibility of hybrid

PD-SCMA as a multiplexing technique for MUEs and SUEs for future networks is confirmed. In

addition, the performance of PD-SCMA is better compared to that of SCMA and PD-NOMA with or

without channel estimation error albeit with increased complexity. The developed schemes namely:

SCOA for UP, OMSP for CA and QAPA for PA greatly improve the performance of PD-SCMA. Our

future work will be to investigate the multiplexing of more SUEs and MUEs on a codebook and the

subsequent development of the MUD schemes for such a system. Furthermore, the developed

protocols should be investigated from the computational model’s perspective. Besides, other

performance parameters like computational times will need to be explored in detail.
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Abstract

Hybrid multiple access schemes are considered potential technologies towards achieving optimal

spectrum sharing for future heterogeneous networks. Multiple users are multiplexed on a single

resource unit in the code domain for sparse code multiple access (SCMA) or power domain for

power domain non-orthogonal multiple access (PD-NOMA) and in both domains for the hybrid

power domain sparse code non-orthogonal multiple access (PD-SCMA). This allows for effective

spectrum usage but comes at a cost of increased detection complexity resulting in loss of

performance in terms of outages. It is therefore imperative to determine the user multiplexing

capacity for effective performance. This work investigates codebook capacity bounds in small cells,

pairing and power capacity bounds for the number of small cell user equipment’s (SUEs) and macro

cell user equipment’s (MUEs) that can be multiplexed on a codebook for the developed PD-SCMA

technology. Closed-form solutions for codebook, pairing and power multiplexing capacity bounds

are derived. The performance of the system results into low outage when the system’s point of

operation is within the multiplexing bounds. To alleviate the resource allocation (RA) challenges of

such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM)

based RA schemes are proposed. The results show significant capacity gain with DPR-RA in

comparison with conventional schemes.
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1. INTRODUCTION

1 Introduction

The demand for increased capacity for 5G networks has fueled a paradigm shift from orthogonal

multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques, namely,

power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). Recent progress on

PD-NOMA performance is reviewed in [1] while a variant scheme referred to as NOMA-2000 is

investigated in [2]. Sparse code multiple access (SCMA) is a promising CD-NOMA technique

offering overloading, sparse codewords and shaping gain contributing to multiple dimensions for

multiplexing [3], [4]. Due to their heterogeneous nature and performance requirements, future

networks will blend multiple access schemes resulting in hybrid NOMA schemes. Downlink

transceiver schemes combining PD-NOMA and CD-NOMA with SCMA are proposed in [5], [6]

and [7]. In particular, a combination of PD-NOMA and SCMA on a heterogeneous multi-tier

network (HetNet) consisting of small cell user equipment’s (SUEs) and the macro user equipment’s

(MUEs) yields a novel hybrid power domain sparse code non-orthogonal multiple access

(PD-SCMA) scheme. Recent works in [5], [7] [8], and [9] show that PD-SCMA exhibits spectral and

energy efficiency performance superiority over PD-NOMA and SCMA.

In hybrid PD-SCMA, MUEs and SUEs are co-multiplexed using PD-NOMA into a codebook, while

allocating different power levels and hence applying successive interference cancellation (SIC) for

their detection at the receiver. Furthermore, different codes are exclusively assigned to the

MUE-SUE clusters hence employing a modified log-domain message passing algorithm (log-MPA)

for interference cancellation. The codebook and pairing interference, resource unit (RU) limitation

and receiver design complexity constraints necessitate an investigation on the multiplexing capacity

performance and bounds of the number of MUEs and SUEs that can be multiplexed in one codebook

for specified outage and Quality of Service (QoS) guarantees.

Multiplexing capacity has been studied for various NOMA schemes. For PD-NOMA schemes,

closed-form capacity and outage expressions can be derived due to the linear successive decoding

algorithms employed [10]. On the contrary, the explicit outage and capacity expressions of uplink

SCMA related systems are challenging due to the iterative multi-user detection (MUD) nature and

the interactions among the multi-dimensional signals from different users, unlike with the successive

signal detection in conventional PD-NOMA. Based on the capacity region of the multiple access

channel (MAC), the capacity region theory of an uplink SCMA has been derived in [11]. In [12], the

authors investigate admissible user bounds in uplink SCMA subject to user-rate constraints. Lower

bounds of user capacity considering maximal ratio combining receiver (MRC) and SIC-MRC
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1. INTRODUCTION

receivers are presented. The per-tier outage probability and capacity considering log-normal fading

channels for small cells and Rayleigh fading channels for the macro-cell in an SCMA system is

derived in [13].

In the power domain sparse code multiple access (PSMA) of [5], SUEs multiplexed in a codebook in

each small cell are detected by employing original MPA and SIC. In [6], the authors formulate a

modified optimization problem by introducing a SIC ordering optimization variable besides

codebook and power allocation (PA). The result is an improved SIC ordering algorithm based on

network, channel gain, and available resource conditions. In [7], an investigation of user pairing

(UP), joint impact of the non-uniform power allocation and multi-dimensional code sparsity on the

wireless systems is conducted. In [8], a HetNet scheme that pairs one SUE with at most one MUE

and transmits over a codebook was considered. To enhance codebook re-use beyond the work

presented in [8], this work investigates the bounds of pairable MUEs in a codebook subject to QoS

constraints and link requirements for massive connectivity. The capacity of these systems have not

been effectively evaluated. Furthermore, PD-SCMA features cross-tier codebook resource re-use by

the SUEs and MUEs resulting in user pairing interference. This leads to the following research

questions: 1) How many codebooks can we simultaneously assign to SUEs in a small cell?, 2) How

many MUEs can be paired with a SUE on a codebook subject to an acceptable outage and QoS at the

receiver? and 3) How many power levels for guaranteed optimal SIC at each codebook? These

questions have not been tackled and as such, they are the focus of this work.

The multiplexing of MUEs and SUEs on a PD-SCMA system at the transmitter necessitates efficient

codebook assignment, power allocation and MUE vs SUE pairing policies. For codebook assignment

(CA), optimal codebook generation and capacity enhancement is required. Typical codebook

generation operations include complex conjugation, phase rotation and dimensional permutation

[12]. Optimizing these operators makes the colliding users at the RU distinct, easing the decoding

process thus enhancing the multiplexing capacity. Increasing the dimensionality for enhanced

codebook capacity has received much attention in recent times. In [14], an overloading technique that

transmit extra users with one RU is proposed albeit increased complexity of order one. In [15],

design of high dimensional codebooks involves increasing the rows and columns of the resource

mapping matrix for a constant overloading factor and complexity per user. In [16], the constraint in

SCMA that a fixed number of nonzero elements per codeword is relaxed. Instead, a user could use a

varying number of RUs to allow for a flexible system design. These techniques of increasing

codebook capacity are limited by the overloading factor and per-user complexity. By utilizing

measures of sparsity [17], [18] and their attributes, we propose codebook capacity bounds, i.e., the
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1. INTRODUCTION

number of admissible codebooks in a PD-SCMA system for assignment to SUEs.

In each codebook assigned to a SUE, we propose to superimpose multiple MUEs in PD-SCMA

scheme through a diversified power allocation technique. SIC capacity is bounded by complexity,

number of distinct power levels, QoS requirements and outage performance. In particular, a PA

technique that maximizes the number of power levels to enable multiple user SIC decoding ensures

adequate outage performance at the receiver. In [19], PA constraint requirements in downlink and

uplink systems for effective SIC are outlined. In an uplink cluster, users experience distinct channel

conditions. At the base station (BS), SIC performance relies on the distinctiveness of the received

signals. A PA based on power back-off scheme to ensure diverse arrived power in uplink NOMA is

proposed in [20]. Feasibility conditions in an energy efficiency maximization problem for effective

SIC are investigated in [21]. Authors in [22] redefine user fairness index that measures the difference

between the rates that can be achieved by the users and the fair rates suggested by the power

distribution among them, a predominant parameter in interference management and detection

process. A dynamic resource allocation (RA) that neither fixes the number of multiplexed users on

each RU nor restricts the rate assignments on sub-carriers of each user is proposed in [23]. A general

PA scheme that strictly guarantees performance gain in downlink and uplink NOMA systems is

proposed in [24]. In particular, the exact expressions for the outage probability and the average rate

achieved by the proposed scheme are derived based on the PA coefficients. However, the PA schemes

do not address a HetNet scenario of MUE-SUE codebook re-use. We propose HetNet QoS aware

user-power ranking metrics for PA to SUEs and MUEs in the network.

To minimize the SUE-MUE cluster pairing interference in a codebook, a robust UP policy is

imperative. Authors in [25] characterize the impact of UP on the performance of two NOMA

systems, NOMA with fixed PA and cognitive radio inspired NOMA. In the proposed hybrid-domain

NOMA [26], pairing is achieved by clustering the users in small path loss (strong) and large path loss

(weak) groups. Spectral efficiency is maximized through relaxation of RA non-convexity problem

constraints by using successive convex approximation (SCA) and re-weighted minimization

approaches. A pairing metric based on channel quality difference and minimal pairing interference is

proposed in [8] for an SUE-MUE pair in a codebook. In [9], users are clustered by employing

alternative biological RA schemes. To further extend the research in [8], this work proposes a UP

policy that multiplexes at least one MUE to a SUE in a codebook based on ranking parameters, then

cluster users based on a matching game.

At the transmitter, we propose the following dual parameter ranking resource allocation (DPR-RA)

techniques: dual parameter ranking for CA (DPR-CA), dual parameter ranking for UP (DPR-UP) and
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1. INTRODUCTION

dual parameter ranking for PA (DPR-PA). DPR-RA utilizes proposed ranking metrics for the dual

players i.e., users and resources (code and power), to rank and optimally match each other while

employing a matching algorithm. The individual DPR-RA policies are admitted iteratively at the

transmitter while exploiting the alternate search method (ASM) [6]. At the receiver, a dynamic

ordered low complexity hybrid SIC-log-MPA (HSLM) MUD featuring PD- and CD-NOMA that

detects multiple multiplexed users in RU is developed. First, the iterative Log-MPA algorithm detects

the transmitted symbols on the codebook. Thereafter, SIC sorting is applied to decode the MUEs and

SUE symbols on each codebook. Given a dynamic decoding order based on the user received signal

power, the users are decoded linearly employing the minimum mean square error (MMSE) detector.

Unlike the receiver in [5], [6] and [7], the complexity order of the proposed MUD reduces

significantly for the log-MPA [27]. Since the number of pairable MUEs in a codebook is constrained,

outage analysis in SIC capacity estimation is not trivial. This work utilizes the outage performance

general expressions proposed in [28] to analyze the codebook outage performance for each decoding

order based on the observation of each MUE’s received power strength as the paired number MUEs

increases.

In summary, this work investigates user multiplexing capacity for a PD-SCMA system. Specifically,

we explore the bounds of assigned codebooks in a small base station (SBS) using measures of sparsity.

In addition, we investigate the MUE multiplexing bounds in each codebook based on the pairing metric

employed and lastly, the maximal number of MUEs based on maximum number of distinct power

levels to enable optimal detection at the receiver subject to outage performance and QoS constraints.

To improve performance, this work proposes DPR-RA and ASM schemes at the transmitter. An

improved low complexity hybrid MUD is employed at the receiver. The performance of the system

is investigated considering capacity, outage probability, complexity and convergence that are derived.

From the analysis, the codebook capacity is bounded by the positional, overloading and the derived

sparsity bounds.. The pairing capacity is bounded by the proposed parameter ranking metric while

the power capacity is bounded by the number of distinct power levels to guarantee SIC and minimum

QoS. Moreover, we validate the analytical results with numerical based Monte Carlo simulations.

The capacity bounds significantly improve with the proposed DPR-RA policy in comparison with

prevalent schemes. Lastly, it is shown that the performance of the system results in low outage when

the system’s point of operation is within the multiplexing bounds.
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2. SYSTEM MODEL

1.1 Organization

The rest of the paper is organized as follows: the system model is developed in Section II. Section

III details the proposed DPR-RA schemes. Section IV outlines the hybrid receiver. The multiplexing

capacity bounds are discussed in section V. Outage probability is analyzed in section VI while the

computational complexity and convergence of the proposed schemes is presented in section VII. In

Section VIII the results and discussions are presented. Finally, Section IX concludes the paper.

1.2 Notation

The notation ∗SUE
f,k,c and ∗MUE

m,c , both in upper and lower case, represents the relation of ∗ to the kth

SUE on codebook c of the f th SBS and the relation mth MUE on codebook c, respectively. I is an

identity matrix. The superscript (·)H and (·)−1 represents Hermitian and inverse operator respectively

while | · | denotes the absolute value of a scalar.

2 System Model

The system model for an uplink hybrid PD-SCMA based two-tier HetNet model of Fig. B.1 is

considered. It comprises of a centralized macro base station (MBS) serving a set ofM = {1, · · ·M}

randomly distributed macro cell users (MUEs) and underlaid with a set of F = {1, · · ·F} small

cells, each characterized by a centralized low power small cell base station (SBS) serving a set of

K = {1, · · ·K} uniformly distributed SUEs. MUEs and SUEs are co-multiplexed on the set of

available codebooks (CB) from set C = {1, · · ·C} designed from complex mapping of the

time-frequency N = {1, · · ·N} RUs. The N−dimensional codewords of a codebook are sparse

vectors with dv (dv < N ) nonzero entries corresponding to dv specific RUs for a user.

The SUE transmit signal vector is denoted as xk =
{
xSUE
f,k,c

}K

k=1
while the MUE transmit signal vector

is xm =
{
xMUE
m,c

}M
m=1

. Consequently, we define the following policies:

• The SUE codebook assignment policy Q =
[
qSUE
f,k,c

]
F×K×C

is a matrix representation of the

small cells transmitter resource assignment. qSUE
f,k,c = 1 implies that the kth SUE is assigned

codebook c in the f th small cell and qSUE
f,k,c = 0, otherwise.

• The user pairing policy A =
[
Ac

k,m

]
K×M

is a matrix for pairing of the mth MUE to the kth

SUE on codebook c. Ac
k,m = 1 when SUE k is paired with the MUE m ∈ Mc on codebook c

and Ac
k,m = 0 denotes the contrary. HereMc = {1, · · ·m, · · · , J} is the set of paired MUEs

on codebook c used by SUE k with cardinality |Mc| = J andMc ⊂M.
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2. SYSTEM MODEL

Fig. B.1: Uplink hybrid PD-SCMA HetNet model

• The power allocation policy at the transmitter P =
{
PSUE
F,K,C , P

MUE
M,C

}
. Here,

PSUE
F,K,C =

[
PSUE
f,k,c

]
F×K×C

where PSUE
f,k,c is the allocated power to the kth SUE on codebook c

of the f th small cell. PMUE
M,C =

[
PMUE
m,c

]
M×C

where PMUE
m,c is the distinct power level

allocated to the mth MUE utilizing codebook c.

Let H =
{
HSUE

F,K,C , H
MUE
M,C

}
, where HMUE

M,C =
[
hMUE
m,c

]
M×C

and HSUE
F,K,C =

[
hSUE
f,k,c

]
F×K

. Here,

hMUE
m,c =

√
ϑm,cg

MUE
m,c and hSUE

f,k,c =
√
ϑf,k,cg

SUE
f,k,c denotes channel coefficients of MUE and SUE

averaged over the dv RUs in each codebook with ϑm,c and ϑf,k,c denoting the channel power (i.e.

large-scale fading parameter) and gMUE
m,c and gSUE

f,k,c , the small-scale fading assumed to be independent

and identically distributed (i.i.d.) complex Gaussian CN (0, 1). Each codebook is mapped to specific

RUs. The RUs to codebooks mapping matrix ρ =
[
ρn,c

]
N×C

represents an assignment such that

ρn,c = 1 if codebook c utilizes RU n, ρn,c = 0 otherwise. Each codebook c ∈ C contains D sparse

codeword vectors with dv (dv ≤ N) non-zero entries corresponding to dv specific RUs allocated. The

multiplexing model for the SUEs and MUEs is illustrated in Fig. B.2 The resultant ρ matrix is given
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2. SYSTEM MODEL

Fig. B.2: Multiplexing model for RU mapping, SUE codebook assignment and MUE pairing.

as

ρ =



1 0 · · · 1 · · · 1

1 1 · · · 0 · · · 0

0 1 · · · 1 · · · 1
...

...
. . .

...
. . .

...

1 1 · · · 0 · · · 1


(B.1)

As an example, in Fig.B.2 (a), ρ1,1 = 1 , ρ1,c = 1 and ρ1,C = 1 implies thatRU1 is mappedCB1,CBc

and CBC respectively, where |C| is the maximum number of assigned codebooks. (b) illustrates the

time-frequency representation of codebooks utilizing nth RU and lastly, (c) illustrates the transmitter

codebook resource matrix Q given by (B.2) such that SUE1 is allocated to CB2, SUEK to CB1 and

so on.

Q =



0 1 · · · 0 · · · 0

0 0 · · · 0 · · · 1
...

...
. . .

...
. . .

...

0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...

1 0 · · · 0 · · · 0


(B.2)

and the user pairing matrix A =
[
Ac

k,m

]
K×M

, ∀m ∈Mc,Mc ⊂M, given by

A =



0 0 0 0 1 0 · · · 0 · · · 1

1 0 1 0 0 1 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...
. . .

...

0 1 0 0 0 0 · · · 1 · · · 0
...

...
...

...
...

...
. . .

...
. . .

...

0 0 0 1 0 0 · · · 0 · · · 0


(B.3)

From Fig. B.2 (c) and matrix A in (B.3), we can deduce that SUE2 is paired with MUE1, MUE3
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3. DUAL PARAMETER RANKING RESOURCE ALLOCATION

and MUE6 on codebook CBC .

For the PA policy, MUEs m in a codebook c are allocated distinct power levels such that the codebook

PA vector Pc is given as

Pc =

[
PMUE
1,c PMUE

2,c · · ·PMUE
m,c · · ·PMUE

J,c PSUE
f,k,c

]T
(B.4)

where PMUE
m,c = S, S ∈ S are the distinct power levels in a set of power levels S. In Fig. B.1

(c), the distinct power levels (shapes and shades) associated with codebook C assigned to SUE2,

PC =
[
PMUE
1,C PMUE

3,C PMUE
6,C PSUE

f,2,C

]T . The PA policy for the PD-SCMA system is a vector given by

P =

[
P1P2 · · ·Pc · · ·PC

]
(B.5)

The bounds on the codebook assignment policy and the number of admissible codebooks (Q, C), the

optimal user pairing scheme and the admissible limit on the pairable number MUEs (A, J) and lastly,

maximal distinct power levels (P, S) to guarantee optimal number of MUEs S successively decoded,

determine the multiplexing capacity and are the subject of this investigation.

Algorithm 7 Transmitter ASM-RA Algorithm

Initialization: Initialize the matrix Q(0), A(0) and P(0) at iteration t = 0 and maximum iterations

tmax

1: while t ≤ tmax or Convergence is false do

2: for SBS f = 1 : F do

3: Determine DPR-PA PSUE
F,K,C(t) eqn. (B.11), (B.12) and Algorithm 9

4: Determine DPR-CA Q(t) eqn. (B.6), (B.7) and Algorithm 9

5: end for

6: Determine DPR-PA PMUE
M,C (t) eqn. (B.13), (B.14) and Algorithm 9

7: Determine DPR-UP A(t) eqn. (B.8), (B.9) and Algorithm 9

8: Set t = t+ 1 and update Q(t), A(t), P (t).

9: end while

10: RETURN Q,A,P

3 Dual Parameter Ranking Resource Allocation

In this section, the proposed hybrid PD-SCMA resource allocation scheme is presented. Based on the

ASM [6], the transmitter jointly and iteratively allocates individual resources in PA, CA and UP as

in Algorithm 7. The CA, UP and PA resource allocation policies are formulated as dual parameter
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3. DUAL PARAMETER RANKING RESOURCE ALLOCATION

ranking (DPR) problems and solved using a one-to-many matching game algorithm proposed for

stable matching [29], [30], [31] as DPR-CA, DPR-UP and DPR-PA respectively. The DPR observes

players X and Y of sets X and Y respectively, ranks and matches them accordingly based on the

preference metrics. Denote by ΘX(Y ) = ψRA
Y→X the ranking of player Y by player X . Similarly, let

ΘY (X) = ψRA
X→Y denote the ranking of player X by player Y . The preference metrics ΘX(Y ) and

ΘY (X) are defined for each DPR-RA policy in the subsequent sub-sections.

The detailed individual DPR-RA matching game-based algorithm for the RA policies is presented

in Algorithm 9 of Appendix 10.1. The convergence of the DPR-RA algorithm can be verified by

observing the preference formulation of players. Preference relations of players X ∈ X and Y ∈ Y

are fixed for a given PA. Hence, given fixed preference relations of X and Y , the DPR-RA algorithm

is known as the deferred acceptance algorithm in the two-sided matching which converges to a stable

matching denoted by µ∗RA [30] i.e., µ∗CA, µ∗UP and µ∗PA for CA, UP and PA respectively.

3.1 Codebook Assignment,{ρ,Q} , DPR-CA

The RUs to codebooks mapping matrix ρ is usually predetermined and fixed [4], [15]. The

determination of the number of codebooks C is detailed in the multiplexing section, Section V.B. In

the DPR-CA problem, codebook set C represents set of players X , while set of SUE’s K represents

set of players Y . A codebook c ∈ C ranks the SUEs employing the achievable rate RSUE
f,k,c at the

receiver, determined in Section 4, while SUE k ∈ K ranks the codebooks employing a channel

quality-based ranking metric (C.4). The ranking metrics are given by

ψCA
c→k = RSUE

f,k,c (B.6)

ψCA
k→c =

√√√√ 1

dv

∑
i∈Nc

PSBS
max

K

∣∣gSUE
f,k,i

∣∣2
σ2f,k,i

(B.7)

where PSBS
max denotes maximum SBS transmit power and Nc is the set of dv RUs utilized by codebook

c. Consequently, for the DPR-CA ΘX(Y ) = ψCA
k→c, ΘY (X) = ψCA

c→k and JCA = 1. It can be deduced

that the metric ψCA
c→k is maximized for a SUE with high gain on most of the RUs and close to the

SBS and minimized for a poor gain SUE at the cell edge. Similarly, a codebook prefers a SUE with

high achievable rate. The output of the algorithm is a stable codebook-SUE matching µ∗CA for the CA

assignment policy Q =
[
qSUE
f,k,c

]
F×K×C

.

3.2 User Pairing,{A} , DPR-UP

The SUE-MUEs pairing is defined by the pairing policy matrix A such that A =
[
Ac

m,c = 1
]
K×M

.

Similar to DPR-CA, the DPR-UP problem is modelled as a one-to-many matching game with set X
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3. DUAL PARAMETER RANKING RESOURCE ALLOCATION

and set Y representing SUE set K and MUE set M respectively. The ranking metrics are given as

follows

ψUP
m→k = RSUE

f,k,c (B.8)

ψUP
k→m =

PMUE
m,c

∣∣hMUE
m,c

∣∣2
Λm,c

− βδkPMUE
m,c

∣∣hMUE
m,c

∣∣2 (B.9)

where the first term in (B.9) represents MUE m channel gain with Λm,c = 2R
min
m,c − 1, the signal to

interference plus noise ratio (SINR) threshold corresponding to the minimum MUE rate requirement,

Rmin
m,c . The second term measures the relative loss that MUE m advances to the SUE k over the

codebook c, defined as the interference cost imposed by SBS to MUE m. β denotes a fixed coefficient

with unit interference of MBS due to the SUE on codebook c. The parameter δk, given by δk =

max

(
0,
( m∑
i=1

Ac
k,iP

MUE
i,c

∣∣hMUE
i,c

∣∣2−Ic,thm→k

)
/Ic,thm→k

)
measures the degree of violation of the pairing

interference temperature threshold at the SBS, Ic,thm→k given by

J∑
m=1

Ac
k,mP

MUE
m,c

∣∣hMUE
m,c

∣∣2 ≤ Ic,thm→k (B.10)

The MUEs rank SUEs based on SUEs achievable rate-based metric RSUE
f,k,c . Consequently, for the

DPR-UP ΘX(Y ) = ψUP
k→m and ΘY (X) = ψUP

m→k while JUP ≥ 1 represents the MUE pairing quota,

the bounds of which will be subsequently determined in section 5.3. The matching game results to a

stable SUE-MUE matching µ∗UP for the user pairing policy A = [AMUE
k,m ]K×M .

3.3 Power Allocation, {P}, DPR-PA

The DPR-PA provides the PA policy P that allocates power to SUEs and MUEs. In DPR-PA, the set

of discrete power levels S represent the set of players X while the user sets i.e., SUEs, K and MUEs,

M individually represent the set of players Y . The amount of power in the power levels S decreases

as the number of power levels increase. The ranking metrics are given as follows;

ψPA
s→k = 2R

SUE
f,k,c − 1 (B.11)

ψPA
k→s =


min

(
P̄SUE
f,k,c ,max

(
PSUE
f,k,c , P

SUE,min
f,k,c

)
, Pmax

f,k,c

)
,

if ∆ ≥ PSUE,min
f,k,c

Infeasible, otherwise.

(B.12)

ψPA
s→m = 2R

MUE
m,c − 1 (B.13)
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ψPA
m→s = min

(
PMUE
m,c , PMUE

max

)
(B.14)

where in (B.11) and (B.13), ψPA
s→i gives the achievable SINR-based metric employed by the power

levels to rank users i ∈ {k,m}. RSUE
f,k,c and RMUE

m,c denotes the achievable rate of SUEs and MUEs on

codebook c respectively.

The users rank the power levels based on a ψPA
i→s ,i ∈ {k,m} determined by the individual sets of

MUEs and SUEs. In (B.12), ψPA
k→s represents the QoS aware power allocation metric [8] employed

by the SUEs to rank the power levels PSUE
f,k,c . In (B.14), ψPA

m→s represents the minimum SINR based

metric employed by the MUEs to rank the power levels PMUE
m,c , derived as follows; Suppose that

each MUE m is required to achieve its minimum SINR Λm,c. It is desirable to provide this quality

with minimum powers. Assuming perfect SIC, we propose a PA solution that provides for individual

powers P̄MUE
m,c [32]. Based on the instantaneous SINR derived in Section 4, the MUE optimal PA

problem reduces to

Λm,c =
P̄MUE
m,c

∣∣hMUE
m,c

∣∣2
S∑

i=m+1
P̄MUE
i,c

∣∣hMUE
i,c

∣∣2 + ϕc

(B.15)

where ϕc = qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2+σ2m,c is the combined SUE interference plus noise for codebook c.

After several algebraic computations, the compact form solution of (B.15) can be given as

P̄MUE
m,c =

ϕc∣∣hMUE
m,c

∣∣2 × κm,cΛm,c

1 + Λm,c
× 1(

1−
S∑

i=1

κi,cΛi,c

1 + Λi,c

) (B.16)

where

κm,c =


1, m=1

Πk−1
j=1aj,c, m >1

(B.17)

with aj,c =
2

1 + Λj,c
. Given that PMUE

max is the maximum MUE power requirement, the MUE to power

level ranking metric ψPA
m→p can be given as in (B.14). Consequently, for the DPR-PA ΘX(Y ) = ψPA

p→i

and ΘY (X) = ψPA
i→p, i ∈ {m, k} and JPA = 1. The algorithm outputs a stable power levels to users

(i.e., SUEs, MUEs) matching µ∗PA for the PA assignment policy P =
{
PSUE
F,K,C , P

MUE
M,C

}
.
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4 PD-SCMA Receiver

In this section, the receiver MUD is presented. The received vector over an SCMA block, yru =[
yru1 y

ru
2 · · · yruN

]T is a N × 1 vector, with yrun as the received symbol on RU n given by

yrun =
K∑
k=1

ρn,ch
SUE
f,k,n

√
PSUE
f,k,n x

SUE
f,k,n

+
K∑
k=1

∑
m∈Mc

Ac
k,mh

MUE
m,n

√
PMUE
m,n xMUE

m,n + zf,k,n.

(B.18)

where zf,k,n ∼ CN (0, σ2f,k,n) is the additive white Gaussian noise (AWGN). The iterative Log-MPA

decoding process uses the information of yru to compute the received observation vector over

codebooks, ycb =
[
ycb1 , · · · , ycbC

]T with observation ycbc as the approximate received symbol for the

J MUEs and SUE of codebook c given by

ycbc =qSUE
f,k,c h

SUE
f,k,c

√
PSUE
f,k,c x

SUE
f,k,c+∑

m∈Mc

Ac
k,mh

MUE
m,c

√
PMUE
m,c xMUE

m,c + zf,k,c.
(B.19)

Note that users on different codebooks do not interfere with each other and we assume negligible inter-

cell interference resulting from codebook re-use in different small-cells. Without loss of generality,

let wMUEm,c = PMUE
m,c

∣∣hMUE
m,c

∣∣2 and λMUEm,c =
1

E(wMUEm,c)
denote the instantaneous received

signal power and its mean value respectively. Prior to decoding, the receiver determines the instant

decoding order π based on the instantaneous received user signal power [28]. Subsequently, users

are decoded in the sequence of
[
MUE1,MUE2, · · · ,MUEJ , SUEk

]
with the instantaneous signal

power relation
[
wMUE1,c , wMUE2,c , · · · , wMUEJ,c

, wSUEk,c

]
. The highest ranked user experiences

interference from all users while the lowest channel gain user effectively enjoys interference-free

transmission.
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4. PD-SCMA RECEIVER

Algorithm 8 HSLM Receiver

Input: Q ,A, P , G , σ2f,k,c and y the received signal

Output: x̂

1: for SBS f = 1 : F do

2: Perform iterative log-MPA process on yru to compute ycb for each codebook for τmax

iterations.

3: for each codebook c = 1 : C do

4: for each user i ∈ {k,m} in c do

5: Compute ℵ(i), (B.26)

6: Perform post-ordering of ℵ(i) in decreasing order

7: ȳcb = ycb × ℵ(i)

8: Apply SIC on resulting ordered signal

9: ȳcb = ȳcb −Ac
k,mh

MUE
m,c

√
PMUE
m,c xMUE

m,c

10: ℵ(i) = ℵ(i− 1)

11: end for

12: Perform user bits reconstruction by computing LLRs.

13: end for

14: end for

The instantaneous SINR of the mth MUE multiplexed at codebook c, γMUE
m,c is given by

γMUE
m,c =

Ac
m,cwMUEm,c

J∑
j=m+1

Ac
j,cwMUEj,c + ϕc

, (B.20)

while that of the J th MUE is given by

γMUE
J,c =

Ac
J,cwMUEJ,c

ϕc
, (B.21)

The SINR of the kth SUE γSUE
f,k,c , after successful SIC of all MUEs m ∈ Mc in each codebook is

given by

γSUE
f,k,c =

qSUE
f,k,c P

SUE
f,k,c

∣∣hSUE
f,k,c

∣∣2
σ2f,k,c

. (B.22)

The achievable data rate, RSUE
f,k,c is given as

RSUE
f,k,c = log2

(
1 + γSUE

f,k,c

)
, (B.23)

while that of the MUEs is similarly derived and given as

RMUE
m,c = log2

(
1 + γMUE

m,c

)
, (B.24)
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A hybrid PD-SCMA receiver is proposed in Algorithm 8. By applying a Jacobian logarithm

approximation [23], the log-MPA computes the symbol estimate transmitted over each codebook ycbc .

This estimate is passed to the next step of SIC decoding. Define G = P ⊙ H as the equivalent

received signal power matrix for the multiplexed users. The MMSE transformation weight matrix

estimate is given as [33]

WMMSE =
[
GHG+ σ2I

]−1
GH . (B.25)

Using the MMSE matrix, the decoding order metric ℵ(i) for each user on codebook c can be computed

by

ℵ(i) = |WMMSE(i)G(i)|2∑M+1
i ̸=j |WMMSE(i)G(i)|+ σ2i ∥WMMSE(i)G(i)∥2

(B.26)

Lastly, after SIC decoding, the symbol estimates for each user over a codebook can be obtained by

log-like ratio (LLR) computation [8].

5 Multiplexing Capacity Bounds

In this section, we first analyze the PD-SCMA capacity region. Secondly, we investigate codebook,

pairing and power multiplexing capacities of the hybrid PD-SCMA technology.

5.1 Capacity Region of PD-SCMA

Similar to SCMA capacity region CSCMA derived based on multiple access channels (MAC) [11],

the capacity region for the uplink PD-SCMA for both SUEs and MUEs, CPDSCMA can be derived as

(B.27). The data rate R is a (J + 1)× C × S matrix for J MUEs with S distinct power levels and a

SUE in a codebook for C codebooks.

CPDSCMA(P,H) =

{
R :

(∑
c∈C

RSUE
f,k,c +

∑
c∈C

∑
m∈Mc

RMUE
m,c

)
≤ log2

(
1 +

1

σ2f,k,c

∑
c∈C

qSUE
f,k,c ρn,c

∣∣hSUE
f,k,c

∣∣2PSUE
f,k,c

)
+

log2

(
1 +

1

σ2m,c

∑
c∈C

∑
m∈Mc

Ac
m,cρn,c

∣∣hMUE
m,c

∣∣2PMUE
m,c

)}
,

C ⊂ {1, · · · , C},Mc ⊂ {1, · · · , J}, PMUE
m,c ∈ S, S ⊂ {1, · · · , S}.

(B.27)

The capacity region CPDSCMA(P,H) represents the upper bound or maximum achievable rates of

all the users and is independent of any practical codebook design. Besides, it can be observed that

the sparsity of ρ matrix, number of pairable MUEs |Mc| = J and power levels S influence the

capacity region of (B.27). For a sparser ρ, i.e., a smaller number of ρn,c = 1, the upper bound of

101



i
i

“output” — 2022/7/22 — 18:21 — page 102 — #125 i
i

i
i

i
i

5. MULTIPLEXING CAPACITY BOUNDS

the right hand (B.27) is smaller and therefore, the achievable rate is smaller. But a sparser ρ means

less codebook interference and, therefore, the complexity of the MUD will be smaller. Increasing the

number of paired MUEs J increases capacity subject to the minimum QoS requirements and lastly,

distinct power levels in P determine the upper bounds of J given by S for optimal SIC capacity. It is

therefore imperative to re-evaluate the individual resource bounds for the system capacity.

5.2 Codebook Multiplexing Capacity, C

The number of codebooks available in a SCMA dimension is a combinational problem expressed by

the following function

C = f(N, dv, λ) (B.28)

For the capacity, the following theorem is derived.

Proposition 1. Given the different considerations, the number of admissible codebooks can be given

by the minimum of positional bound (C1), overloading bound (C2), sparsity bound (C3)

C = min{C1, C2, C3},


 N

dv


︸ ︷︷ ︸

C1

, (λ ·N)︸ ︷︷ ︸
C2

,

 N

N
2


︸ ︷︷ ︸

C3


(B.29)

Proof. The proof of the theorem can be supported by the following Lemmas.

Lemma 5.1. Positional bound: C1 =

 N

dv


Proof. C1 represents a unique solution to C resulting from inserting N − dv all-zero row vectors

within the rows of identity IN [11]. Alternatively, the generation of C codebooks is equivalent to

selecting dv positions out of N RUs, hence C ≤

 N

dv

.

Lemma 5.2. Overloading bound : C2 = (λ ·N)

Proof. C2 gives an important bound on the total number of codebooks which is a function of the

overloading factor λ defined as λ = C
N . Though desired for OMA, a large λ results in increased

number of colliding codebooks per RU, limited number of differentiable constellations generated from

the mother constellation hence difficulties in decoding the mixed signal for the MPA. Therefore, from

the overloading factor, C2 ≤ (λ ·N).
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Lemma 5.3. Sparsity bound : C3 =

 N

N
2

.

Proof. The proof of Lemma 5.3 is presented in Appendix 10.2.

5.3 MUE Multiplexing Capacity, J

In uplink PD-SCMA, a SUE is paired with J MUEs to transmit over the same codebook c. The bounds

of J is subject to the pairing interference and is conditioned on the ranking parameter ψUP
k→m.

Proposition 2. Given the pairing metric ψUP
k→m and assuming δk ̸= 0, the number of MUEs J that

can additively be paired with a SUE in codebook c is given by

J =

{
m∑
i=1

i : ψUP
k→m ≥

wMUEm,c

Λm,c
,m ∈Mc

}
(B.30)

The upper bound of J can be given when ψUP
k→m =

wMUEi,c

Λm,c
.

Proof. Given the pairing interference temperature threshold Ic,thm→k in (B.10) and assuming that δk ̸=

0, then the pairing metric (B.9) can be written as

ψUP
k→m = wMUEm,c

[
1

Λm,c
− β

( m∑
i=1

wMUEi,c − I
c,th
m→k

Ic,thm→k

)]
(B.31)

For codebook c, the MUEs are additively multiplexed with SUE k in the order of the ranking

parameter
{
ψUP
k→1

}
,
{
ψUP
k→2

}
, · · · ,

{
ψUP
k→m

}
, · · · ,

{
ψUP
k→J

}
. With each MUE additively paired, the

pairing interference
m∑
i=1

wMUEi,c monotonically increases and the term in the inner bracket,

consequently decreases. To protect the codebook QoS, it is required that the pairing metric

guarantees (B.30), the upper bound of J .

5.4 Power Multiplexing Capacity, S

The maximum MUE pairing capacity in a codebook S is a function of the power policy. The capacity

is conditioned on the number of distinct power levels that can guarantee SIC decoding. Without loss

of generality, it can be deduced that PMUE
m,c

∣∣hMUE
m,c

∣∣2 ≥ PSUE
f,k,c

∣∣hSUE
f,k,c

∣∣2. Accordingly, of interest is the

paired MUEs power level distinctions to guarantee optimal SIC of MUEs, subject to maximum power

allocation by MBS. If Γc denotes the minimum power level difference required to distinguish between

the MUE to be decoded and the remaining non-decoded MUEs, then the feasibility of effective SIC is

governed by a PA policy given by [19]:

wMUEm,c

ϕc
−

S∑
i=m+1

wMUEi,c

ϕc
≥ Γc,m = 1, 2, · · · , (S − 1), (B.32)

103



i
i

“output” — 2022/7/22 — 18:21 — page 104 — #127 i
i

i
i

i
i

6. OUTAGE PROBABILITY ANALYSIS

Given the PA (B.15), (B.16) and (B.32), the power multiplexing capacity can be characterized using

the following proposition.

Proposition 3. Considering a linear and dynamic SIC receiver cancelling L = 1 MUEs successively,

the power multiplexing capacity S is bounded such that

S < 1 +
1

acΛc
, (B.33)

where Λc denotes the MUEs uniform minimum SINR on codebook c and ac = 2/(1 + Λc).

Proof. Given that the MUEs’ desired Λm,c can be accommodated within the feasible dynamic power

constraints, (B.32), we can then determine the maximum number of MUEs, S in a codebook. For any

Λm,c < ∞, there exists a positive and limited power solution, feasible only if the conditions (B.34)

derived from (B.15), (B.16) and (B.32) are satisfied.

S∑
i=1

κi,cΛi,c

1 + Λi,c
< 1 and

S∑
i=m+1

wMUEi,c ≥
ϕc(Γc − Λm,c)

Λm,c − 1
(B.34)

With SIC linearity, we can assume that when L MUEs are successively canceled, there will be one set

of users experiencing canceled interference and another employing conventional single-user detection

[32].

1, 2, · · · , L︸ ︷︷ ︸
Cancelled signals

, L+ 1, L+ 2, · · · , S︸ ︷︷ ︸
Uncancelled signals

(B.35)

Considering a case with MUEs in a codebook having uniform minimum SINR Λc and that ac =

2/(1 + Λc), the maximum number of MUEs S must fulfill the feasibility condition

S < 1 + L+ a−L
c

(
1 +

1

Λc
− aL+1

c − 1

ac − 1

)
, L < S (B.36)

When only one MUE L = 1 is successively cancelled, then using (B.36) we can obtain the result of

Proposition 3.

6 Outage Probability Analysis

In this section, we investigate pairing outage probability based on the time-varying recieved power

strength for each MUE. Analogous to conventional uplink NOMA [34], the sum rate remains

consistent irrespective of the decoding order for each codebook. The maximum number of paired

MUEs S is a function of the pairing metric determined based on pairing interference, maximum

number of power levels and SIC receiver complexity. For each codebook, each pairing user

independently transmits its signal at either maximum transmit power or controlled transmit power. At

the receiver, the decoding order is based on the instantaneous user received signal power.
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With deteriorating channel conditions and SIC constraints, transmission reliability is not guaranteed

i.e., if the achievable rate is less than target rate, then outage occurs. Let Ec
m|π denote the event that

achievable rate RMUE
m,c of MUE m is larger than the target rate R̄MUE

m,c under a given decoding order

π. Using (B.20), (B.21) and (B.24), the probability of Ec
m∥π can be formulated as [28]

P (Ec
m|π) = P

(
RMUE

m,c ≥ R̄MUE
m,c |π

)
(B.37)

After obtaining P (Ec
m|π), the outage probability of MUE m under the given decoding order is

expressed as

P out
m|π = 1−

m∏
l=1

P (Ec
l|π) (B.38)

Now, equation (B.37) can be expressed as a joint probability P
(
RMUE

m,c ≥ R̄MUE
m,c , π

)
that events

RMUE
m,c ≥ R̄MUE

m,c and π occur simultaneously given by

P (Ec
m|π) =

P
(
RMUE

m,c ≥ R̄MUE
m,c , π

)
P (π)

(B.39)

The closed-form expression of (B.39) can be derived by first determining the probability of the

decoding order π (denominator) in the set of all possible decoding order given as

P (π) =

S∏
i=2

λMUEi,c

S∏
i=2

(
i∑

k=1

λMUEi,c

) (B.40)

From (B.20) and (B.24), and for simplicity, let w̄S
m+1 =

S∑
i=m+1

wMUEi,c . Then, for m ̸= S the

numerator in (B.39) can be given as

P
(
RMUE

m,c ≥ R̄MUE
m,c , π

)
= P

(
wMUEm,c ≥ βmw̄S

m+1, π
)

(B.41)

where βm = 2R̄
MUE
m,c − 1. The derivation of joint probability in (B.41) is highly determined by βm,

and therefore we can derive it for different cases of βm. Without losing generality, we assume that

βm ≥ 1 and only express the joint probability P
(
wMUEm,c > βmw̄

S
m+1, π

)
for m ̸= S given as

P
(
wMUEm,c > βmw̄

S
m+1, π

)
=

S∏
i=2

λMUEi,c

m∏
i=2

(
i∑

k=1

λMUEi,c

)
S∏

i=m+1

(
i∑

k=m+1

λMUEi,c + ν
m∑
j=1

λMUEj,c

) (B.42)

where ν = (i−m)βm. Besides, for the last decoded MUE S, the conditional probability P (Ec
S|π) is

given by
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P (Ec
S|π) = P

(
wMUES,c

> βSϕc, π

)

=

S∏
i=2

λMUEi,c exp

(
−

S∑
i=1

λMUEi,cβSϕc

)
S∏

i=2

(
i∑

k=1

λMUEk,c

) (B.43)

Combining (B.40) and (B.42), we can evaluate (B.39) given as (B.44).

P (Ec
m|π) =

1
S∏

i=m+1

(
i∑

k=m+1

λMUEi,c + ν
m∑
j=1

λMUEj,c

)
(B.44)

Finally, using (B.38), the outage probability expression under the condition of the rate threshold βm

and the maximum number of pairing MUEs, S is obtained.

7 Complexity and Convergence Analysis

In this section, complexity and convergence of the system is analyzed.

7.1 Complexity Analysis

The complexity of PD-NOMA and SCMA has been derived in [4]. In the uplink PD-SCMA model,

we assume that each codebook is assigned to S+1 users, (i.e., one SUE and S MUEs) simultaneously.

At the SBS, HSLM receiver applies the iterative log-MPA once to detect and decode the C codebook

layers. Then for each codebook layer, SIC is applied S times to correctly decode the transmitted

data. By considering the MMSE detector at the receiver, the solution involves the computation of

MMSE transformation weight matrix estimate given by
[
GHG + σ2I

]−1
GH . The computational

complexity order of λ−1 and λHλ (with size b × b ) is O(b3). Given that each user is assigned at

most one codebook, the complexity order of the uplink PD-SCMA can approximately be given by

O
((
τmax

)
log
(
|D|dv

)
+ Sb3

)
.

The overall complexity order of solution for the ASM method is basically a linear combination of the

complexity of each DPR-RA solution. The DPR-CA, DPR-UP and DPR-PA are modelled as one-to-

many matching games. The computational complexity of a matching algorithm is given as a linear

function of the size of its preference lists [6]. The complexity order of Algorithm 9 can be given by

O
(
C×K

)
for DPR-CA andO

(
K×S

)
for DPR-UP. The complexity order of the SUEs DPR-PA can

be approximated to O
(
K2
)

and O
(
M2
)

for MUEs DPR-PA.
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8. RESULTS AND DISCUSSION

7.2 Convergence of ASM

With the ASM method, each iteration enhances the overall solution to convergence through

improvement of each individual resource (Q, A and P).

Proposition 4. Having a feasible initialization, the transmitter resource allocation algorithm

converges to a local maximum.

Proof. Similar to the proof [6], let O(Q,A,P) denote the combined solution. For each two

consecutive iterations, we have the following relations:

O
(
P[t],Q[t],A[t]

)
=max

P
O
(
P,Q[t],A[t]

)
≥ O

(
P[t− 1],Q[t],A[t]

)
= max

Q
O
(
P[t− 1],Q,A[t]

)
≥ O

(
P[t− 1],Q[t− 1],A[t]

)
= max

A
O
(
P[t− 1],Q[t− 1],A

)
≥ O

(
P[t− 1],Q[t− 1],A[t− 1]

)

(B.45)

This means that the transmitter resource allocation ASM based algorithm gives non-decreasing sum

rate as the iterations continue, hence is ensured to converge to a locally optimal solution.

8 Results and Discussion

The analytical evaluation of the uplink hybrid PD-SCMA system is presented in this section. First, we

compare the performance of the proposed transmitter DPR-RA algorithm with the following; regular

CA, random UP and equal PA (Equal & regular RA), biological based RA algorithms in PD-SCMA

[9], sub-modularity-based CA+UP with successive convex approximation based difference of convex

functions (SCA-DC) PA [6] and lastly, efficient resource management schemes of [35]. Secondly,

we demonstrate the multiplexing capacity bound results of Propositions 1, 2 and 3 based on the RA

schemes. Besides, we present the system capacity performance with respect to the number of small cell

codebooks and multiplexed MUEs. Thirdly, outage analysis for any given decoding order considering

varying power levels and SNR is presented. To clearly understand the analytical outage performance

results, we provide the theoretical evaluations and the Monte Carlo simulations. We assume that

the path loss of each user can be offset by the path loss compensation part [21]. To cancel the pairing

interference successively, we ensure the minimum power level difference in each codebook Γc, (B.32).

With no loss of generality, we characterize the received signal to noise ratio (SNR) P
σ2
m,c

, with P set
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8. RESULTS AND DISCUSSION

Table B.1: Simulation Parameters

Parameters Values

Center carrier frequency 2GHz

MBS coverage radius 500m

SBS coverage radius 50m

Maximum transmission power 23 dBm

Noise variance, σ2x −174 dBm

Distance path loss PL(dB) = 128.1 + 37.6 log10D

Fast fading channel model gSUE
f,k,c , g

MUE
m,c ∼ CN

(
0, 1
)

RU Bandwidth 200 kHz

Minimum transmission rate 5Mbps/Hz

Interference threshold 10−5.5W

as the received power for the user with the worst large-scale fading. The detailed system parameters

and assumptions are presented in Table B.1.

Fig. B.3: System Capacity vs number of SUEs.
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8. RESULTS AND DISCUSSION

Fig. B.4: Average number of multiplexed MUEs, J vs. minimum MUE SINR Λc.

Fig. B.3 illustrates the overall system capacity performance versus the number of SUEs K. In all

the schemes, the system capacity increases with increasing number of SUEs. It can be observed that

PD-SCMA employing the DPR-RA outperforms other RA schemes due to non-exclusive allocation

of codebooks performed at the transmitter eliminating codebook interference. Additionally, the RA

schemes results in better capacity performance than the equal power and regular CB assignment,

attributed to the efficient spectral RU utilization associated with the RA schemes [5].

Fig. B.4 shows the average number of paired MUEs J against minimal SINR requirements Λc for

various RA schemes. The proposed DPR-RA algorithm outperforms the considered RA comparison

schemes at high and low minimal SINR requirements. Compared with [9], the proposed DPR-RA

scheme exhibit 8% and 1% higher the number of pairing users for high and low values of Λc

respectively. When compared with the worst case scenario RA, i.e., equal power, regular CA and

uniform UP, the improvement is much higher with 40% and 25% difference achieved for high and

low Λc respectively.

The codebook bounds C discussed in Lemma 5.1, 5.2 and 5.3 are presented in Table B.2 in terms

of N , C, dv and λ. In Lemma 5.1, dv is kept constant irregardless of the number of spectral RUs,

N. In Lemma 5.2, the number of codebooks C is a function of the overloading factor λ. By varying

λ for a fixed N , the number of codebooks and users vary at the expense of codebook interference
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8. RESULTS AND DISCUSSION

Table B.2: Codebook Capacity Bounds

N = 4 6 8 10 12 14

Lemma 1 : C =

(
N

dv

)
6 15 28 45 66 91

Lemma 2 : C = λ ·N 12 18 24 30 36 42

Lemma 3: C =

(
N

N
2

)
6 20 70 252 924 3432

Fig. B.5: System Capacity versus Resource Units.

and difficulties in signal detection. Lemma 5.3 proposes that the number of RUs per codebook, dv is

variable and a factor of N . C is then bounded such that the upper bound of dv = N/2. It is worthy

noting that fixing dv in Lemma 5.1 limits C even as additional RUs N are utilized. To optimize the

RUs and the C, Lemma 5.3 is proposed. However, it is observed that as dv approaches the upper

bound dv = N/2, C becomes very large which is impractical. Therefore, the choice of variable dv is

subject to acceptable receiver design complexity and is bounded.

The effect of the Lemmas 5.1-5.3 on the capacity is illustrated in Fig. B.5. As it can be observed,

maximal capacity is obtained when the ratio of codebooks to RUs is optimized. Though capacity

increases with RUs in Lemma 5.2, maintaining a constant overloading factor results in wasteful use
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8. RESULTS AND DISCUSSION

of RUs for the same capacity. Varying dv towards the upper bound dv = N/2 in Lemma 5.3 achieves

same optimal capacity with less RUs albeit higher overloading and hence increased receiver

complexity. As a result, beyond the system codebook bound, capacity deteriorates drastically. It can

be observed that Lemma 5.1 gives optimal capacity performance at N = 10 and C = 45, Lemma 5.2

at N = 14 and C = 42 and Lemma 5.3 at N = 6 and C = 20, beyond which this operating points,

the system capacity deteriorates. It should be noted that the minimum in Table B.2 is Lemma 5.2 but

it has not reached its maximum capacity.

Fig. B.6: System Capacity versus Resource Units.

Denote by CNorm,N , the normalized system capacity for each value of N given by CNorm,N =

Capacity/N . Fig. B.6 illustratesCNorm,N against the number of RUsN with respect to Lemmas 5.1,

5.2 and 5.3. For each Lemma, it can be observed that the normalized capacity is maximized at specific

operating points. Generally, CNorm,N diminishes with increasing number of RUs N for the three

Lemmas. However, it can be observed that Lemma 5.3 exhibits a drastic drop asN increases, followed

by Lemma 5.1 while Lemma 5.2 demonstrate a steady reduction. Beyond N = 8, the CNorm,N

falls below one, indicating a dwindling capacity performance. Note that the developed CNorm,N

performance results validates codebook capacity bounds as given in proposition 1 and further validates

the bounds in Table B.2.

The effect of varying dv in Lemma 5.1 towards the upper bound proposed in Lemma 5.3 on capacity

is illustrated in Fig. B.7. Since the number of codebooks C is a combinatorial function, for any N
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8. RESULTS AND DISCUSSION

Fig. B.7: System Capacity versus dv .

chosen, C increases drastically. As a result, for low values of dv, capacity improves gradually to the

optimal value beyond which the system capacity degenerates for each N chosen. As dv approaches

the upper bound dv = N/2, the resulting value of C exceeds the optimal value rapidly especially for

Fig. B.8: System Capacity versus Codebooks at various power level, S.
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8. RESULTS AND DISCUSSION

higher values of N and strains the system performance. Beyond the codebook bound for any N and

dv, the system yields due to overwhelming interference and complexity in the receiver. Besides, there

is improved performance while using N = 8 for extended values of dvs.

Fig. B.8 illustrates the system capacity against codebooks C for different power levels values S. It can

be observed that different power levels achieve the maximum capacity at different values of codebooks

beyond which the capacity performance deteriorates. At low value of S, capacity increases gradually

and achieves the maximum value while utilizing more codebooks than at higher S values. This can

be attributed to availability of resources at small cell to multiplex more MUEs, unlike with higher S

where the system experiences additional receiver complexity. From the figure, maximum capacity is

achieved at 24, 36 and 42 for power levels S = 5, S = 3 and S = 1 respectively.

Fig. B.9: System Capacity vs MUEs, J for different number of codebooks

The system capacity performance versus paired MUEs J for disparate number of codebooks C is

shown in Fig. B.9 as presented in proposition 2. As J increases, capacity improves to a maximum

value, beyond which, multiplexing additional MUEs deteriorates the performance due to aggravated

pairing interference in the codebook. With few codebooks assigned, the system can multiplex a

larger J with minimal performance deterioration unlike for higher number of codebooks. As an

example, with 6 codebooks, the system can multiplex 7 MUEs with significant performance while at

42 codebooks, the system can barely multiplex one MUE, J < 1.

Denote by ζ(J,C), the ratio of the number of pairable MUEs in set M and and the number of
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8. RESULTS AND DISCUSSION

Fig. B.10: The ratio ζ(J,C) versus the number of Codebooks.

codebooks in set C given as ζ(J,C) =
J

C
. Since there is a one-to-one assignment between

codebooks and SUEs of set K, then ζ(J,C) illustrates how many MUEs in the macro-cell can be

paired with SUEs in a codebook and achieve desirable QoS. Fig. B.10 depicts the ζ(J,C) versus the

number of codebooks. It can be observed that ζ(J,C) decreases with increase in the number of

codebooks. Since the small cells have a higher priority, physical resources are first allocated to them.

Due to the receiver complexity and pairing interference constraints, SUEs are prioritized for higher

QoS. As the number of codebooks increase, the resource requirement for the SUEs increases, leading

to the resources allocated to the MUEs decreasing in the case of limited physical resources.

Fig. B.11 represents the outage performance against power levels S for different codebook values.

Additive deployment of power levels subsequently increases the maximal number of MUEs that can be

multiplexed in a codebook. Power being a constrained resource, increasing the power levels gradually

violate the minimum SINR based PA (B.16) and the SIC constraint (B.32). There is substantial outage

with higher number of codebooks assigned compared to utilizing fewer codebooks. As the number

of codebooks increases, it becomes increasingly complex to decode both at MPA and SIC, therefore

resulting to outage. Based on a specified outage operating point and Λc, the maximum number of

power levels S which subsequently determine the optimal number of MUEs can be determined. For

example, designing the system to operate at an outage of 0.7, simulation results give the bounds of

S for 6, 12 and 24 codebooks is 3, 2 and 1 respectively, which validates simulation bound results of
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8. RESULTS AND DISCUSSION

Fig. B.11: Outage versus the maximum MUEs’ power levels S.

Fig. B.12: Outage versus SNR for different values of Γc.

proposition 3.

In Fig. B.12, MUEs outage probability vis-à-vis SNR for the considered dynamic ordered SIC under

different Γc is investigated. In the considered scenarios, MUEs target data rate is set equal at
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9. CONCLUSION

0.7bps/Hz and number of codebooks assigned C = 6. It is observed that a larger Γc improves outage

performance since the distinction in the power domain provides SIC advantage in detecting the

superimposed MUEs in a codebook. With the MUEs having equal target data rate, the larger Γc

weakens the pairing interference resulting in the great gaps of MUEs.

Fig. B.13: System Capacity vs MUEs vs number of codebooks.

In Fig. B.13, the capacity is presented with varying codebooks and number of MUEs. It can be

observed that as both codebook and maximum number of MUEs S increases, the capacity increases to

a maximum value, beyond which the performance deteriorates. Assigning more codebooks increases

the MPA complexity order while multiplexing many MUEs results in violation of SIC constraints

therefore deteriorating receiver capacity. From the figure, different combinations of S and number of

codebooks can be identified to design the desirable system.

9 Conclusion

In this work, the multiplexing capacity bounds for the uplink hybrid PD-SCMA is investigated

apropos the number of codebooks C, number of MUEs that can be paired with a SUE in codebook J

and the maximal MUEs S that can be multiplexed in a codebook subject to the optimal number of

power levels. To alleviate the RA challenges of uplink PD-SCMA, DPR-RA schemes are proposed

and their performance investigated. It can be observed that DPR-RA based schemes greatly improve

the performance of PD-SCMA. By using CA, UP and PA ranking parameters, measures of sparsity,
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9. CONCLUSION

SIC constraints and users’ QoS requirements, we obtain the codebook capacity bounds, MUE

multiplexing bounds and power multiplexing bounds. In addition, the numerical system capacity and

outage probability results validate our analytical multiplexing bounds. With a specified outage, the

maximum number of MUEs to be multiplexed with SUE in a codebook for PD-SCMA system with a

given number of codebooks is determined. We open a discussion on the multiplexing capacity of the

hybrid PD-SCMA scheme for a feasible NOMA technology.
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10 Appendices

10.1 A. DPR-RA Algorithm

We formulate the DPR-RA µRA matching game as follows [30]; Define a one-to-many RA matching

game by a tuple
(
X ,Y,≻X ,RA,≻Y,RA

)
. The notation ≻X ,RA= {≻X,RA}X∈X and

≻Y,RA= {≻Y,RA}Y ∈Y represent the set of preference relations of player X and Y respectively. Let

the metrics ΘX(Y ) and ΘY (X) denote the preference metric of player X in ranking Y and that of

player Y in ranking X respectively.

Definition 1. Given two disjoint finite sets of players X and Y , a matching µRA is defined as a

function µRA : Y 7→ X , such that:

• X = µRA(Y )↔ Y = µRA(X);

• |µRA(X)| ≤ JRA and |µRA(Y )| ≤ 1

Here, 1) indicates that, if player Y is matched to player X i.e., X = µRA(Y ), then player X is

also matched player Y i.e., Y = µRA(X) as well. 2) outlines the matching constraints such that

each player X can only be assigned to at most JRA players
(
µRA(X) ≤ JRA

)
and the condition(

µRA(Y ) ≤ 1
)

guarantees that at most one X player can be matched to the player Y under the

matching µRA. In the matching game, a preference X1 ≻Y,RA X2 is such that player Y prefers X1 to

X2 if Θ1(X) > Θ1(X), X1, X2 ∈ X . Similarly, Y1 ≻X,RA Y2 shows that X prefers Y1 to Y2 under

the condition that Θ1(Y ) > Θ1(Y ), Y1, Y2 ∈ Y .

Definition 2. A pair (X,Y ) ̸= µRA, X ∈ X , Y ∈ Y is said to be a blocking pair for the matching

µRA if it is not blocked by an individual player X and Y , and there exists another matching µ́RA ∈

µRA(X,Y ) such that player X and player Y can achieve a higher utility metric. This mathematically

implies that µ́RA ≻X µRA and µ́RA ≻Y µRA . A matching µRA is said to be stable if it is not blocked

by an individual player X and Y or any pair.

Definition 3. A bid value bRA
Y→X(t) = 1 when player Y prefers to associate with player X , otherwise

bRA
Y→X(t) = 0.

10.2 B. Proof of Lemma 5.3

The sparseness of codewords can be completely characterized by ρ. Let

ϱn = {c : 1 ≤ c ≤ C, ρn,c = 1} denote the index of users that contribute to the nth RU, then |ϱn|is

equal to the row weight dv of the kth row of this matrix. From signal processing, the Gini index (GI),
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Algorithm 9 DPR-RA algorithm

Initialization: Sets X , Y and channel gain matrix H

1: Set of matched Y players,YX = ∅ and

2: Maximum number of matched players in set YX , JRA

3: Set of requested Y players Yreq
X = ∅

4: Set of rejected Y players Yrej
X = ∅

5: Initialize bid request bRA
Y→X(t)

Output: a stable matching µ∗RA

6: Evaluate stable matching µ∗RA.

7: Each player Y ∈ Y constructs ≻Y,RA using the metric ΘY (X).

8: while
∑

∀X,Y b
UP
Y→X(t) ̸= 0 do

9: for each un-associated Y: do

10: Find X = argmaxX∈≻Y,RA
ΘY (X)

11: Send a request bRA
Y→X(t) = 1 to player X

12: for each player X do

13: Find X = argmaxX∈≻Y,RA
ΘY (X)

14: Update Yreq
X ←

{
Y : bRA

Y→X(t) = 1, Y ∈ Y
}

15: Construct ≻Y,RA using the metric ΘX(Y )

16: end for

17: if YX ≤ JRA then

18: YX ← YX

19: else

20: Repeat

21: Accept Y = argmaxY ∈≻X,RA

∑
Y ∈YX

ΘX(Y )

22: Update YX ← YX ∪ Y

23: Until
∣∣YX ∣∣ = JRA

24: end if

25: Update Yrej
X ←

{
Yrej
X \ YX

}
26: Remove player X ∈≻Y,RA, ∀Y ∈ Yrej

X

27: end for

28: end while

Ξ(r⃗) best describes the attributes of signal sparsity [17], [18]. We model the problem i.e., number of

RUs in a codebook, dv and using GI, we develop the codebook bounds.
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Definition 4. Given a vector r⃗ = [r1r2 · · · rN ] with its elements re-ordered and represented by r[N ]

for n = 1, 2, · · ·N where |r[1]| ≤ |r[2]| ≤ · · · ≤ |r[N ]|, the Gini Index Ξ(r⃗) is given by

Ξ(r⃗) = 1− 2

N∑
n=1

r[n]

∥r⃗∥1

(
N − n+ 0.5

N

)
(B.46)

where ∥r⃗∥1 is the l1 norm of r⃗ given by ∥r⃗∥1 =
∑
n
rn.

Contrary to other measures of sparsity, the GI, Ξ(r⃗) is normalized and assumes values between 0,

for least sparse vector with most non-zero elements, and 1 for most sparse vector with least non-zero

elements. Moreover, the value of Ξ(r⃗) is independent of the size of the vector, and hence can be used

to determine sparsity of different size vectors.

Proposition 5. Given an N−length “binary” vector, the necessary and sufficient sparsity GI value

can be given as Ξ(r⃗) ≥ 1
2 . The lower bound GI value can be given as Ξ(r⃗) = 1

2 .

Proof. The proof is by induction: Consider three vectors r⃗1 = [1011]T , r⃗2 = [1001]T and r⃗3 =

[1000]T of length N = 4. By using the l0 norm, r⃗3 is the sparsest followed by r⃗2 and r⃗1 respectively.

In our context, codebook associated with r⃗1 utilizes more dv RUs than codebook associated with r⃗2.

The GI values Ξ(r⃗1) = 0.25, Ξ(r⃗2) = 0.5 and Ξ(r⃗) = 0.75. It can be observed that increasing dv RUs

increases
∑N

n=1

r[n]

∥r⃗∥1

(
N − n+ 0.5

N

)
. We observe that, dv ≤ 1

2 ·N results in Ξ(r⃗ ≥ 0.5 sufficient

sparsity for a vector of any length N . Thus, a lower bound GI value Ξ(r⃗ = 0.5 results in an upper

bound dv = N
2
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Abstract

The application of multiple-input multiple-output (MIMO) on power domain sparse code multiple

access (PD-SCMA) system would enhance their performance by increasing the multiplexing and

diversity gains at the cost of increased detection complexity as more users and antennas are

deployed. This work develops and investigates the performance of spatial multiplexing MIMO based

hybrid PD-SCMA system (M-PD-SCMA) transceiver on an uplink heterogeneous network with the

aim of achieving a balance on the number of antennas and capacity/spectral efficiency. Numerical

results exhibit performance benchmark with PD-SCMA schemes and the proposed receiver achieves

guaranteed bit error rate (BER) performance with an increase in the number of transmit and receive

antennas. Thus, the feasibility of an M-PD-SCMA system is validated.
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1. INTRODUCTION

1 Introduction

The merits and demerits of the evolution of non-orthogonal multiple access (NOMA) schemes from

power domain NOMA (PD-NOMA), sparse code multiple access (SCMA), to the hybrid schemes

like power domain sparse code non-orthogonal multiple access (PD-SCMA) and their applications in

current communication networks have been well investigated [1–3]. This evolution is fueled by the

creation of more capacity and spectral efficiency.

Multiple-input multiple-output (MIMO) technologies have greatly improved throughput in

communication systems. Moreover, the integration of MIMO for improving the capacity of NOMA

systems is being embraced [4]. In [5], authors investigate MIMO performance with multiple

clustered users and analytically proves the superiority of MIMO-NOMA sum channel and ergodic

capacity over MIMO-OMA. MIMO-NOMA finds applications in small packet transmissions in

Internet of Things (IoT) users where users have diversified Quality of Service (QoS)

requirements [6]. In [7], diversity and multiplexing based MIMO schemes for uplink SCMA system

are investigated. It is demonstrated that improved spectral efficiency, capacity performance with

reduced antennas [8] and BER performance [9] can be achieved for a MIMO-SCMA system.

Authors in [10], [11] investigate the combined downlink detection of MIMO based SCMA for a

near-optimal BER performance and notable reduced complexity.

Though the design and application of MIMO based NOMA technologies is still in its early stages, the

modelling in hybrid NOMA schemes has so far not been undertaken to the best of our knowledge.

This could lead to improving on the benefits of the hybrid system in throughput, capacity and

diversity. However, this is fraught with the challenges of multiplexing at the transmitter and surging

complexity at the receiver as the number of users and antennas grows. Inspired by [10] and [11], the

main contribution of this work is the development and integration of MIMO schemes on a hybrid

PD-SCMA (M-PD-SCMA) uplink system. We alleviate the integration challenges by employing

spatial multiplexing (SM) based MIMO scheme at the transmitter where each transmit antenna at

each layer transmits an independent SCMA user codeword. At the receiver, we develop a joint

multi-user detection (MUD) based on modified expectation propagation algorithm (EPA) and

successive interference cancellation (SIC) (J-EPA-SIC). From the system analysis, it can be observed

that BER performance is dependent on the number of transceiver antennas. The system capacity

references PD-SCMA capacity when system’s point of operation is within the multiplexing bounds

investigated in [3] and the receiver exhibits reduced complexity. The feasibility of an M-PD-SCMA

system is thus validated. We denote by x, x, X and X a scalar, vector, matrix and set respectively.
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2. PROPOSED MIMO BASED PD-SCMA

2 Proposed MIMO Based PD-SCMA

A PD-SCMA transmitter employing the SM based MIMO on a two-tier heterogeneous network

(HetNet) model is considered. The HetNet model comprises of a centralized macro base station

(MBS) serving a set of U , (|U| = U) randomly distributed macro cell users (MUEs) and underlaid set

of F , (|F| = F ) small cells, each characterized by a centralized low power small cell base station

(SBS) serving a set of J , (|J | = J) uniformly distributed SUEs [3]. Each user and BS has Nt and

Nr transmit and receive antennas respectively.

The M-PD-SCMA transmitter consists of three stages; Firstly, the resource allocation (RA) stage,

where the resource elements (REs), codebooks and power are assigned to user symbols and

individual users respectively, and user pairing and clustering is done. Secondly, layered power

domain (PD) multiplexing stage where codeword selection and multiplexing of the selected

codewords from clustered users in PD is done. Lastly, antenna assignment stage where summed

codewords from each layer are allocated to an antenna. Similarly, to recover the approximate

transmitted user symbol ŝ, the MUD operates the received signal at nr in two stages; Firstly,

modified EPA iterative process where iterative detection of the codewords is executed followed by

user symbols reconstruction realized by computing the posterior log likelihood ratios (LLRs).

Secondly, SIC process where the signals of users with weaker channel conditions are decoded and

subtracted from the received codeword.

2.1 MIMO-based PD-SCMA Transmitter

The block diagram of the uplink M-PD-SCMA transmitter for nt-th antenna is shown in Fig. C.1.

Users are paired to form L clusters, where each cluster is assigned a unique codebook utilizing

distinct REs. Similar to the conventional SCMA, a PD-SCMA transmitter operates L layers (of set

L), on which L independent symbol streams are transmitted. A layer is constructed by drawing select

codewords from each user in the cluster matched to the layer i.e., J = 1 SUE and V MUEs from the

set VCB, (|VCB| = V,VCB ∈ U). This implies that each layer constitutes of M = (V + 1) users’

codewords and SUE to layer is a one-to-one matching, L = J . Prior to transmission, the

M-PD-SCMA performs the following steps;

1. Resource allocation: Followed by V-BLAST encoding, forward error correction (FEC) and

interleaving, every log2(M)-bit user symbols are mapped, according to SCMA encoding, to a

length−K sparse vector resulting into complex codewords sSUEj,nt and sMUEj,nt respectively

given by
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2. PROPOSED MIMO BASED PD-SCMA

Fig. C.1: System model of the proposed uplink spatial multiplexing-based M-PD-SCMA system with S = 4 codewords.

sSUEj,nt =
[
sSUEj,1,nt , · · · , sSUEj,K,nt

]T
,

sMUEj,nt =
[
sMUEv,1,nt , · · · , sMUEv,K,nt

]T (C.1)

These vectors belong to a finite set ofM, (|M| = M) codewords of a codebook CB. Here,

each CB comprises ofM = 4 codewords,M = {0, 1, 2, 3}. The entries sSUEj,nt and sMUEv,nt

denote respectively the jth SUE and vth MUE mapped to the kth RE on a CB for the nt-th

antenna. As an example from Fig. C.1., the user information symbols utilize RE1 and RE2 of

codebookCB1. Subsequently, the transmitter performs codebook and power allocation utilizing

RA schemes proposed in [3]. After RA, MUEs are paired with a SUE on a codebook using a

user pairing scheme [3] to form the L clusters.

2. Layered PD multiplexing: For the transmitting antenna nt, a codeword from each pairing user

in the cluster is selected. The selected codewords are consolidated resulting into a layer Xnt
l

given as

Xnt
l =

[
x
SUEj,nt
l x

MUE1,nt
l · · ·xMUEV,nt

l ,
]
∈ CK×M (C.2)

The entries x
SUEj,nt
l =

√
P

SUEj

l ·sSUEj,nt and x
MUEv,nt
l =

√
PMUEv
l ·sMUEv,nt and PSUEj

l

and PMUEv
l are the normalized SUE and MUE power levels respectively. The codewords in
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2. PROPOSED MIMO BASED PD-SCMA

Algorithm 10 M-PD-SCMA Transmitter algorithm

1: Initialization Initialize the sets: F ,U ,V,J and L.

2: Stage I: Resource allocation

3: Sparse encoding of incoming user symbols, eqn. (10).

4: for MUEs v = 1 : V do

5: MUE power allocation, PMUEv
l .

6: end for

7: for SBS f = 1 : F do

8: for SUE j = 1 : J and l = 1 : L do

9: SUE power allocation, PSUEj

l .

10: Codebook assignment to SUEs.

11: end for

12: SUE-MUEs pairing and clustering.

13: Stage II: Layered PD multiplexing

14: for SUE nt = 1 : Nt and m = 1 :M do

15: Select codeword m from each user in cluster l and integrate them to obtain Xnt
l , eqn. (C.2).

16: Perform PD multiplexing of message vectors in Xnt
l to obtain xnt

l .

17: Stage III: Antenna assignment

18: Sum the codewords xnt
l from all the L layers to obtain xnt .

19: Perform layer - antenna assignment.

20: Transmit xnt through antenna nt.

21: end for

22: end for

Xnt
l are then multiplexed in power domain by diversifying the allocated power levels of the

users in the clusters resulting to the layer message vector xnt
l ∈ C

K×1.

3. Antenna assignment: The vectors xnt
l from all the L layers are then summed together to obtain

the transmit vector xnt ∈ CK×1. The transmit message vector xnt is assigned to the nt−th

antenna and transmitted over the K subcarriers. Note that in the subsequent antenna nt+1, the

transmitter selects and transmits different codewords from the users in a cluster. The transmitter

algorithm is presented in Algorithm 10.

Under the constraint that no two layers should be assigned all the same REs for an affordable

complexity order, the system loading is given as λ =M ×

 L

dv

. The received signal vector after
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2. PROPOSED MIMO BASED PD-SCMA

at the nr − th receiving, ynr reads,

ynr =

Nt∑
nt=1

L∑
l=1

diag(hnt,nr

l )xnt
l + znr (C.3)

where hnt,nr

l =
[
hnt,nr

l,SUEj
hnt,nr

l,MUE1
· · ·hnt,nr

l,MUEV

]
. Through the nr − th receive antenna, hnt,nr

l,SUEj
and

hnt,nr

l,MUEv
denote SUE and MUE channel coefficients averaged over the dv in each layer l respectively.

In the uplink, since the PD-SCMA codewords from different clusters are not multiplied by the same

fading channel, a modified EPA MUD based should be considered. Consequently, we employ a

normalized channel coefficient gnt,nr

l of the multiplexed layer signal given by

gnt,nr

l =

√√√√(|hnt,nr

l,SUEj
|2 +

V∑
v=1,v∈Vc

|hnt,nr

l,MUEv
|2
)

(C.4)

2.2 MIMO-based PD-SCMA Receiver

A low complex modified joint EPA-SIC receiver is proposed for the uplink system. Unlike in MPA

[10], modified EPA only pursues the means and variances of the transmitted messages during the

iterative detection on the factor graph. The M-PD-SCMA MUD performs two steps repetitively at

antenna nr for all the layers;

Fig. C.2: Factor graph representation for a SM based M-PD-SCMA with L = 6 and K = 4 for nt = 2 and nr = 2.

codewords.
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2. PROPOSED MIMO BASED PD-SCMA

1. Modified EPA process: A factor graph representation for nt = nr = 2 is illustrated in Fig.

C.2. The circles and squares represent the layer node (variable node, (VNs)) and receive node

(resource node, (RNs)) respectively. Here, the factor graph is comprised of LNt variable nodes

vl and KNr resource nodes rk, for which each variable node is a PD multiplexed symbol of M

users. Denote by I(τ)rk−→vl(x)(respectively I(τ)vl−→rk(x)) the message corresponding to codeword

x transmitted by (to) VN vl to (by) rk at the τ th iteration. Based on [12], the modified EPA

iterative process consists of the following steps;

(a) Compute the posterior belief approximation qnt(τ)
(
xnt
l |y

)
for all xnt

l ∈ Cnt
l for each

variable node vl∈L,

qnt(τ)
(
xnt
l |y

)
∝ I∆→k(x

nt
l )

∏
k∈Iv(l)

I(τ−1)
rk−→vl

(
xnt
kl

)
(C.5)

where ∝ denotes equality up to scale and Iv(l) denotes the set of resource node indices

connected to variable node vl. We assume a uniform a-priori probability I∆→k(x
nt
l ) = 1

M .

(b) Compute the posterior mean µ
(τ)
kl and variance σ

(τ)
kl for each variable node vl∈L and

resource node rk∈Iv(l) as follows;

µ
nt(τ)
kl =

∑
x
nt
l ∈Cnt

l

qnt(τ)
(
xnt
l |y

)
· xnt

kl

σ
nt(τ)
kl =

∑
x
nt
l ∈Cnt

l

qnt(τ)
(
xnt
l |y

)
·
∣∣xnt

kl − µ
nt(τ)
kl

∣∣2 (C.6)

(c) Evaluate the means µ
nt(τ)
vl−→rk and the variances σ

nt(τ)
vl−→rk of the messages

I
nt(τ)
vl−→rk ∝ CN

(
µ
nt(τ)
vl−→rk , σ

nt(τ)
vl−→rk

)
;

σnt(τ)
vl−→rk

=

(
1

σ
(τ)
kl

− 1

σ
nt(τ−1)
rk−→vl

)−1

µnt(τ)
vl−→rk

=

(
µ
nt(τ)
kl

σ
nt(τ)
kl

− µ
nt(τ−1)
rk−→vl

σ
nt(τ−1)
rk−→vl

)−1
(C.7)

(d) Determine the means µ
nt(τ)
rk−→vl and the variances σ

nt(τ)
rk−→vl of the messages

I
nt(τ)
rk−→vl ∝ CN

(
µ
nt(τ)
rk−→vl , σ

nt(τ)
rk−→vl

)
;

µnt(τ)
rk−→vl

=
1

gnt,nr

l

(
ynr
k −

∑
i∈Ir(k),i ̸=l

gnt,nr

l · µnt(τ)
vi−→rk

)

σnt(τ)
rk−→vl

=
1∣∣gnt,nr

l

∣∣2
(
N0 −

∑
i∈Ir(k),i ̸=l

∣∣gnt,nr

l

∣∣2 · σnt(τ)
vi−→rk

) (C.8)

where Ir(k) denotes the set of variable node indices connected to resource node rk.
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3. RESULTS AND DISCUSSION

After τmax iterations on (C.6), (C.7) and (C.8) we can obtain qnt(τmax)
(
xnt
l |y

)
and the posterior

LLRs Λnt
kl can then be computed using (5) in a similar way to [12]. We initialize the iterations

with µnt(0)
rk−→vl = 0 and σnt(0)

rk−→vl =∞ where∞ is taken as a large positive constant.

2. SIC process: Having successfully recovered a layer, SIC is employed to detect the M PD

multiplexed users. Prior to decoding, the receiver computes the decoding order metric Nl

proposed in [3] for layer l. Then, the instant decoding order π is determined based on the

instantaneous received user signal power. Subsequently, users are decoded in the sequence[
MUE1,MUE2, · · · ,MUEV , SUEj

]
. The highest ranked user experiences interference

from all users while the lowest channel gain user effectively enjoys interference-free

transmission.

The complexity of the EPA can be approximated to O
(
NtKNrMdf

)
, observed to linearly scale the

both M and the degree of superposition df on a given RE which is lower than the message passing

algorithm (MPA) counterpart exhibiting O
(
KN rMNtdf

)
. The complexity of SIC is primarily in the

computation of the decoding order metric for each user multiplexed in the layer, and is given asO(b3)

for a MMSE transformation weight matrix of b × b. Consequently, the overall J-EPA-SIC receiver

complexity can approximately be given by O
(
NtKNrMdf +Mb3

)
.

3 Results and Discussion

In this section, the bit error rate (BER), capacity and complexity performance of the uplink M-PD-

SCMA system are presented. Denote by ρ the maximum number of bits per user transmitted by two

antennas during two transmission channel slots. We consider a SM based M-PD-SCMA that transmits

4 codewords which is equivalent to ρ = 8 bits/user/2 transmit antennas/2 channel use periods, when a

codebook of size M = 4 codewords is employed. Other simulation properties are as employed in [3].

Similar to numerical analysis done in [10], Fig. C.3 represents the BER performance as the number

of antennas grows for both MPA- and EPA- based M-PD-SCMA schemes. For both receiver

schemes, the BER performance improves as the number of receive antennas increases. The EPA

based receiver closely approximates the near-optimal MPA based receiver even for higher number of

antennas. Therefore, by employing more antennas, the EPA detector can achieve a near optimal

performance with low complexity.

Fig. C.4 depicts the system capacity versus the number of SUEs/layers in comparison with other

NOMA schemes. It can be observed that the system capacity for all schemes increase sharply for low

number of SUEs up to approximately 12 SUEs (12 layers), beyond which the capacity growth is
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3. RESULTS AND DISCUSSION

Fig. C.3: BER performance versus Nr with ρ = 4.

Fig. C.4: Capacity vs number of SUEs.

gradual. Increasing the number of layers results in aggravated interference that degrades the

performance. This implies that the optimal capacity can be obtained when the number of users is
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3. RESULTS AND DISCUSSION

within the multiplexing bounds. It can be observed that M-PD-SCMA capacity benchmarks

PD-SCMA and evidently outperforms MIMO-SCMA and the PD-NOMA scheme.

Fig. C.5: Capacity versus SNR.

Fig. C.5 illustrates the system capacity versus signal to noise ratio (SNR) for different number of

transmit and receive antennas. Using 12 layers and ρ = 4, capacity increases monotonically with the

SNR for different values of Nr. In fact, it can be observed that employing higher number of antennas

achieves a higher capacity due to enhanced spatial multiplexing order. In varying the Nt, the capacity

closely follows the capacity for different values ofNr hence satisfactorily justifying the use of lowered

number of transmit antennas for the same achieved system capacity.

Lastly, the computational complexity vs the number of SUEs or rather the number of layers employed

for the proposed MUD algorithm is shown in Fig. C.6. In this case we consider a fixed modulation

order M = 4 and compare the EPA with MPA based MUDs complexity orders. It can be observed

that the receiver MUD becomes more complex for both MPA and EPA as the value of L increases.

This can be attributed to the increased number of VN indices connected to a single RN rk. Predictably

from the results, EPA based MUD exhibits significantly lower complexity order than MPA. Since only

the means and variances of the messages are followed iteratively, EPA results in a linearly scaling

complexity order unlike the exponential order resulting with MPA.
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Fig. C.6: Receiver complexity versus number of layers

4 Conclusion

We have investigated the performance of spatial multiplexing uplink MIMO based hybrid power

domain sparse code multiple access (M-PD-SCMA) system. To enhance performance at the receiver,

a joint MUD based on EPA and SIC is proposed. The system’s performance is analyzed based on the

parameters of capacity, BER and complexity. Results show that M-PD-SCMA capacity benchmarks

the PD-SCMA capacity. Employing EPA based MUD significantly reduces the complexity order

compared to MPA hence a good candidate MUD even as the number of antennas grow.
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1. CONCLUSION

1 Conclusion

To conclude the thesis, this section provides a summary of the research contributions realized in this

work and provides future research directions.

In the introduction, we present a detailed description of the evolution wireless communication

networks (including 4G and 5G networks). The architecture, challenges, technical requirements and

potential facilitating technologies of 5G are well elaborated. This work focuses on NOMA and

therefore, an exhaustive analysis on the performance of the existing NOMA schemes is carried out

with the focus to develop a potential hybrid NOMA technique. We then formulate the research

problem, draw the research objectives, highlight the research overview and lastly present a summary

of the main contributions of the research. Despite their merits of enhanced data rate and capacity, 5G

networks exhibit challenges of resource allocation, interference management, spectral and energy

efficiency occasioned by HetNet deployments. One of the potential solutions for 5G realization is the

design of appropriate resource allocation and MUD schemes crucial in optimizing the performance

of these networks. This work develops a multi-tier HetNet architecture for 5G NOMA networks on

the uplink. The network modelling, feasibility, proposed schemes and their performance analysis is

expounded in the research outputs as presented in the paper summaries that follow.

In paper A, a hybrid PD-SCMA HetNet model that combines power and code domain to multiplex

MUEs and SUEs on 5G uplink networks was developed. The model employs SCOA for UP, OMSP

for CA and QAPA for PA algorithms. The designed receiver utilizes a low-complexity MUD scheme

based on joint SIC and Log- MPA. Simulation and analytical-based EE resource allocation

performance for the small cells under QoS constraints of minimum sum-rate, interference

temperature, system maximum power is evaluated. Based on the results, the feasibility of hybrid

PD-SCMA as a multiplexing technique for MUEs and SUEs for future networks is validated. In

addition, PD-SCMA outperforms SCMA and PD-NOMA with or without channel estimation error

albeit with increased complexity. The developed RA schemes greatly improve the performance of

PD-SCMA.

In paper B, the multiplexing capacity bounds for the uplink hybrid PD-SCMA is investigated with

reference to the number of admissible codebooks, number of multiplexed MUEs that can be paired

with a SUE in codebook and the maximal MUEs S that can be multiplexed in a codebook subject to

the optimal number of power levels. Furthermore, to alleviate the RA challenges in the uplink

PD-SCMA, we proposed and investigated the performance of DPR-RA schemes. It can be observed

that DPR-RA based schemes greatly improve the performance of PD-SCMA. By employing the
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2. FUTURE RESEARCH

proposed CA, UP and PA ranking parameters namely the measures of sparsity, SIC constraints and

users’ QoS requirements, the codebook capacity bounds, MUE multiplexing bounds and power

multiplexing bounds are derived. In addition, the numerical system capacity and outage probability

results validate our analytical multiplexing bounds. With a specified outage, the maximum number of

MUEs to be multiplexed with SUE in a codebook for PD-SCMA system with a given number of

codebooks is determined. The work opens a discussion on the multiplexing capacity of the hybrid

PDSCMA scheme for a feasible NOMA technology.

In paper C, the feasibility and performance of spatial multiplexing uplink MIMO based hybrid PD-

SCMA (M-PD-SCMA) system is investigated. To enhance performance at the receiver, a joint MUD

based on EPA and SIC is proposed. The system’s performance is analysed based on the parameters of

capacity, BER and complexity. Results show that M-PD-SCMA capacity benchmarks the PD-SCMA

capacity. Employing EPA based MUD significantly reduces the complexity order compared to MPA

hence a good candidate MUD even as the number of antennas grows.

2 Future Research

The developed hybrid NOMA and the proposed RA and MUD schemes has potential for further

improvement. Since PD-SCMA utilizes uniquely designed SCMA codebooks at the code-domain,

the multiplexing performance can be enhanced through prudent design of multi-user

multi-dimensional codebooks. The developed RA protocols should be investigated from the

computational model’s perspective. Besides, the performance parameters like computational times

can be further explored in detail for implementation. The application of hybrid NOMA and the

proposed RA schemes can be extended to other network environments such as cognitive radio,

visible light communications, device to device, machine to machine and vehicle to vehicle and

infrastructure amongst others.
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