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Abstract

In this thesis, we study the fixed point approach for solving optimization problems in real
Hilbert, Banach and Hadamard spaces. These optimization problems include the vari-
ational inequality problem, split variational inequality problem, generalized variational
inequality problem, split equality problem, monotone inclusion problem, split monotone
inclusion problem, minimization problem, split equilibrium problem, among others. We
consider some interesting classes of mappings such as the nonexpansive semigroup in real
Hilbert spaces, strict pseudo-contractive mapping in real Hilbert spaces and 2-uniformly
convex real Banach spaces, nonexpansive mapping between a Hilbert space and a Banach
space, and quasi-pseudocontractive mapping in Hilbert spaces and Hadamard spaces. We
introduce several iterative schemes for approximating the solutions of the various aforemen-
tioned optimization problems and fixed point problems and prove their convergence results.
We adopt and implement several inertial methods such as the inertial-viscosity-type algo-
rithm, relaxed inertial subgradient extragradient, modified inertial forward-backward split-
ting algorithm viscosity method, among others. Furthermore, we present several novel and
practical applications of our results to solve other optimization problems, image restora-
tion problem, among others. Finally we present several numerical examples in comparison
with some results in the literature to illustrate the applicability of our proposed methods.
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CHAPTER 1

General Introduction

1.1 Background of study

Optimization theory has shown to be a very important research area with numerous ap-
plications in various fields. This is because many problems arising from these fields can
be modeled as optimization problems. Optimization problems include; the variational
inequality problem (VIP), split variational inequality problem (SVIP), generalized vari-
ational inequality problem (GVIP), variational inclusion problem (VqIP), split monotone
variational inclusion problem (SMVqIP), split equality problem (SEqp), split equilibrium
problem (SEP), minimization problem (MP), among others. These optimization problems
can be transformed into a fixed point problem (FPP) of a suitable nonlinear mapping.
The fixed point problem is defined as follows:

Find x∗ ∈ X such that Tx∗ = x∗, (1.1.1)

where X is a metric space and T : X → X is a nonlinear mapping. We denote by F (T )
the fixed point set of T, that is

F (T ) = {x∗ ∈ X : Tx∗ = x∗}. (1.1.2)

The fixed point method is one of the most effective methods for solving optimization
problems. Fixed point theory is a crucial area of research in nonlinear functional analysis
which has continuously attracted the interest of numerous researchers due to its appli-
cations in various branches of mathematics and other related fields such as economics,
physics, chemistry, biology, dynamical system theory, data science, among others (see
[28, 87, 134, 172, 173, 212, 219, 236, 260] and other references therein).

Poincaré [207] introduced the study of the fixed point theory in 1886. Brouwer [46] in 1912
proved that a continuous mapping on a closed unit ball in finite dimensional space has

1



a fixed point. Birkoff and Kellog [42] extended the result of Brouwer [46] to the infinite
dimensional space.

The fixed points of nonlinear mappings are difficult and sometimes impossible to obtain.
Hence, there is a need to study and develop iterative schemes to approximate the fixed
points of nonlinear mappings. In 1922, Banach [38] proved the famous Banach contraction
principle which is also known as the Banach fixed point theorem. He proved that a
contraction mapping T defined on a complete metric space X has a unique fixed point.
Furthermore, he proved that for any starting point x0 ∈ X, the sequence defined by the
Picard iteration

xn+1 = Txn, n ≥ 1, (1.1.3)

converges to the unique fixed point. The Banach fixed point theorem guarantees the exis-
tence and uniqueness of fixed points of certain self mappings. This has made it one of the
main foundations of the theory of metric fixed points. However, for classes of mappings
that are more general than the class of contraction mappings, the Banach contraction
principle may fail to hold. Several examples in literature have shown that for a nonex-
pansive mapping T, the sequence generated by the Picard iteration (1.1.3) may fail to
converge even when the fixed point exists. To overcome this limitation, several authors
have studied and proposed iterative methods for approximating fixed points of mappings
that are more general that the contraction mapping. The Mann iterative method pro-
posed by Mann [171] is a more general iterative formula for approximating fixed points of
nonlinear mappings. The Mann iteration generates a sequence {xn} as follows:

xn+1 = (1− an)xn + anTxn, n ∈ N and x1 ∈ H, (1.1.4)

where {an}∞n=1 is a sequence in (0, 1) and H is a real Hilbert space. The Mann iterative

method converges weakly if T is nonexpansive, lim
n→∞

an = 0 and
∞∑
n=0

an = ∞. However,

when T is not nonexpansive, the Mann iterative method may fail to converge to a fixed
point of T even when the algorithm converges. If {an} = {λ} where λ is a positive
real number, then (1.1.4) reduces to the Kransnoselskii iterative method proposed by
Kransnoselskii [157], and if {an} = 1, then (1.1.4) reduces to (1.1.3). In 1974, Ishikawa
[127] introduced a generalization of the Mann iterative method for approximating fixed
points of pseudocontractive mappings in Hilbert spaces. Ishikawa called this generalization
the Ishikawa method and defined it as follows:

xn+1 = (1− an)xn + anT [(1− bn)xn + bnTxn], n ∈ N and x1 ∈ H, (1.1.5)

where {an}∞n=1 and {bn}∞n=1 are sequences in [0, 1]. Writing (1.1.5) in a system form, we
have {

yn = (1− bn)xn + bnTxn

xn+1 = (1− an)xn + anTyn, n ∈ N,
(1.1.6)

which implies that the Ishikawa iteration can be seen as a double Mann iteration and it
reduces to Mann iteration when bn = 0.
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Agarwal et al. [2] introduced and studied the following S-iteration method defined as
follows:

xn+1 = (1− an)Txn + anT [(1− bn)xn + bnTxn], n ∈ N and x1 ∈ H, (1.1.7)

where {an}∞n=1 and {bn}∞n=1 are sequences in (0, 1). It is well known that (1.1.7) has better
convergence properties than (1.1.4) and (1.1.5) (see [3]).

We note that (1.1.4), (1.1.5) and (1.1.7) only generates sequences that converge weakly.
However, strong convergence are more desirable than the weak convergence in infinite
dimensional space. In an attempt to obtain strong convergence results, Halpern [117]
introduced the Halpern iterative method which converges strongly to a fixed point of a
nonexpansive mapping in real Hilbert spaces. Halpern [117] defined it as follows;

xn+1 = αnu+ (1− αn)Txn, for n ∈ N, (1.1.8)

where {αn} ⊂ [0, 1] and u, x1 ∈ H. The Halpern iterative method was generalized to the
viscosity iterative method by Moudafi [181]. The viscosity iterative method is defined as
follows:

xn+1 = αnf(xn) + (1− αn)Txn, for n ∈ N, (1.1.9)

where {αn} ⊂ [0, 1] and f is a contraction mapping on H.

The implicit midpoint rule is an important method for solving Ordinary Differential Equa-
tions (ODEs) because of its ability to eliminate stability errors of systems of ODEs (see
[32, 203, 226] and other references therein). For an initial value problem of the ODE

x
′
(t) = f(x(t)), x(0) = x0, (1.1.10)

the implicit midpoint rule is a recursion procedure that generates the sequence {xn} by

xn+1 = xn + hf

(
xn + xn+1

2

)
, n ≥ 0, (1.1.11)

where h > 0 is a stepsize and f : RN → RN is a continuous function. It is known that
if f is Lipschitz continuous and sufficiently smooth, then the sequence {xn} converges to
an exact solution of (1.1.10) as h → 0 uniformly over u ∈ [0, u] for any fixed point u. In
2015, Xu et. al. [263] combined (1.1.9) and (1.1.11) for nonexpansive mappings in Hilbert
spaces and proposed a viscosity implicit midpoint rule defined as follows:

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ≥ 0, (1.1.12)

where x0 is an arbitrary point in the domain of T, f is a contraction onH and {αn} ∈ [0, 1].
They proved that the sequence generated converge strongly under some suitable conditions
to a fixed point of the nonexpansive mapping which is also a solution of a variational
inequality. It is well known that (1.1.9) and (1.1.12) converge faster than (1.1.8) (see
[263]).
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Over the years, several researchers have studied these iterative methods (1.1.4)-(1.1.12)
and their modifications for approximating fixed points of several nonlinear mappings and
solutions of optimization problems in Hilbert, Banach and Hadamard spaces (see [5, 6, 23,
24, 51, 74, 105, 110, 152, 191, 194] and other references therein).

In this thesis, we study the VIP, VqIP, SEqP, SEP, MP, FPP and other related optimiza-
tion problems in the frameworks of Hilbert, Banach and Hadamard spaces. We present
several effective iterative methods for approximating the solutions of these problems. Fur-
thermore, we analyze the convergence results of our proposed methods. Finally, we give
where necessary some applications of our results and present numerical examples to show
the applicability of our methods.

1.2 Research problems and motivation

In this section, we discuss the research problems and motivation for the study.

1.2.1 Research problems

In this thesis, we consider the following optimization problems; VIP, SVIP, GVIP, VqIP,
SMVqIP, SEqP, SEP, MP and FFP of certain nonlinear mappings in the frameworks of
Hilbert, Banach and Hadamard spaces. A detailed review of these optimization problems
and the spaces under consideration will be given in Chapter 2.

Let C be a nonempty, closed and convex subset of a real Hilbert space H and A : H → H
be an operator. The VIP is defined as follows: Find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C. (1.2.1)

We denote the solution set of the problem (1.2.1) by V I(C, A). Many authors have pro-
posed and analyzed several iterative algorithms for solving Problem (1.2.1) (see [9, 135],
and references therein). To accelerate the rate of convergence of these iterative algorithms,
authors often employ the inertial technique. Polyak [208] studied the convergence of the
following inertial extrapolation algorithm

xn+1 = xn + βn(xn − xn−1)− αnAxn, ∀n ≥ 0,

where {αn} and {βn} are two real sequences. Recently, there has been an increased interest
in studying inertial type algorithm (see [5, 7, 8, 27, 40, 96, 246] and other references
therein). On the other hand, the relaxation technique has also proven to be an essential
ingredient in the resolution of optimization problems due to the improved convergence
rate that it contributes to iterative schemes.

In this work, we propose and study new inertial viscosity Tseng’s extragradient algorithms
with self-adaptive step size for solving the VIP and the FPP in Hilbert spaces. Our main
aim is to find a common solution of the VIP (1.2.1) and the FPP (1.1.1) for an infinite
family of strict pseudo-contraction mappings T. That is, find a point x∗ ∈ C such that

x∗ ∈ Γ = V I(C, A)
⋂

∩∞
i=1F (Ti). (1.2.2)
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Furthermore, we present and study two new relaxed inertial subgradient extragradient
methods for solving quasimonotone VIPs in a real Hilbert space. Also, we present a new
inertial Tseng’s extragradient method with self-adaptive step size for approximating the
minimum-norm solutions of the quasimonotone VIP and FPP of a quasi-pseudocontractive
mapping T in the framework of Hilbert space. That is, the problem of finding a point
x∗ ∈ C such that

x∗ ∈ Γ = V I(C, A)
⋂

F (T ). (1.2.3)

The VIP (1.2.1) was later generalized to the following SVIP: Find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0, ∀ y ∈ C, (1.2.4)

and z = T x ∈ Q solves

⟨Fz, u− z⟩ ≥ 0, ∀ u ∈ Q, (1.2.5)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and
H2 respectively, A : H1 → H1, F : H2 → H2 are two operators and T : H1 → H2 is a
bounded linear operator.

To study the SVIP, we present two new relaxed methods with inertial steps and two new
inertial methods for solving the SVIP in real Hilbert spaces without any product space
transformation, and for which the underlying operators are freed from the restrictive co-
coercive assumption. Furthermore, we propose two new inertial projection and contraction
methods for solving the SVIPs in real Hilbert spaces without the co-coercive condition and
without the product space formulation, which does not fully exploit the attractive splitting
structure of the SVIP. Also, we study an inertial viscosity-type method for solving a more
generalized VIP (GVIP) in Hilbert spaces which is defined as follows: Find x ∈ C such
that 〈

Ax, y − x
〉
≥ 0, ∀y ∈ C and T x ∈ F (T ), (1.2.6)

where T is a bounded linear operator and F (T ) is as defined in (1.1.2).

Furthermore, we consider the split equalities of EP, VIP and FPP.

Let C be a nonempty, closed and convex subset of a real Hilbert spaceH and Φ : C×C → R
be a bifunction. The EP is defined as follows: Find x ∈ C such that

Φ(x, y) ≥ 0, ∀ y ∈ C. (1.2.7)

The solution set of the Problem (1.2.7) is denoted by EP (Φ).

Let H1,H2 and H3 be real Hilbert spaces. Let C,Q be nonempty, closed and convex
subsets of H1 and H2, respectively. Let F1 : H1 → H3 and F2 : H2 → H3 be bounded
linear operators. The SEqP is defined as follows:

Find x ∈ C and y ∈ Q such that F1x = F2y. (1.2.8)
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We denote the solution set of (1.2.8) by

ΩSEP :=
{
(x, y) ∈ C ×Q |F1x = F2y

}
.

In this study, we present an inertial Tseng’s algorithm for approximating the common
solution of split equalities of EP, VIP and FPP in Hilbert spaces. That is, find a point

(x, y) ∈ Γ =
{
x ∈ EP (Φ1)∩V I(C, A)∩F (Ta), y ∈ EP (Φ2)∩V I(Q, B)∩F (Tb) : F1x =

F2y
}
, where Ta and Tb are one-parameter nonexpansive semigroups and F (Ta), F (Tb) are

as defined in (1.1.2).

The next optimization problems considered in this thesis are the VqIP and the SEP.

Let H be a real Hilbert space and B : H → H be an operator. The VqIP is defined as:
Find x∗ ∈ H such that

0 ∈ (B +D)x∗, (1.2.9)

where D : H → 2H is a multivalued operator. The solution set of the Problem (1.2.9) is
called the set of zero points of (B +D) and it is denoted by (B +D)−1(0).

Let C,Q be nonempty subsets of H1,H2, respectively, and F1 : C×C → R, F2 : Q×Q → R
be bifunctions. Let T : H1 → H2 be a bounded linear operator. The SEP is defined as
follows: Find x ∈ C such that

F1(x, x
∗) ≥ 0, ∀ x ∈ C (1.2.10)

and such that

y = T x ∈ Q solves F2(y, y
∗), ∀ y∗ ∈ Q. (1.2.11)

The solution set of SEP (1.2.10)-(1.2.11) is denoted by Ω = {z ∈ EP (F1) : T z ∈ EP (F2)}.
In this study, we propose a modified inertial forward-backward splitting algorithm with
self-adaptive step size for approximating the common solution of the VqIP (1.2.9) and SEP
(1.2.10)-(1.2.11) in Hilbert spaces. That is, find a point x∗ ∈ C such that

x∗ ∈ Γ = (B +D)−1(0) ∩ Ω. (1.2.12)

Next, we extend the study of the VIP (1.2.1) from the framework of Hilbert spaces to the
framework of Banach spaces. We propose an inertial subgradient extragradient algorithm
with Armijo type step-size for solving the VIP in a 2-uniformly convex real Banach space.

The VqIP was later generalized to the SMVqIP formulated as follows:
Find x∗ ∈ H1, such that 0 ∈ B1(x

∗) +D1(x
∗),

and

y∗ = T x∗ ∈ H2 such that 0 ∈ B2(y
∗) +D2(y

∗),

(1.2.13)

where D1 : H1 → 2H1 and D2 : H2 → 2H2 are multivalued maximal monotone mappings,
B1 : H1 → H1 , B2 : H1 → H2 are operators and T : H1 → H2 is a bounded linear
operator.
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In this study, we propose a new inertial iterative algorithm with self-adaptive step size for
approximating a common solution of finite family of SMVqIPs (1.2.13) and FPP (1.1.1)
of a nonexpansive mapping between a Banach space and Hilbert space. That is,

Find x∗ ∈ H such that 0 ∈
m⋂
i=1

(Bi +Di)x
∗, Tx∗ = x∗; (1.2.14)

and

y∗ = T x∗ such that 0 ∈
m⋂
i=1

Ciy
∗, (1.2.15)

where Bi : H → H is a finite family of αi-inversely strongly monotone operators, Di :
H → 2H and Ci : X → 2X

∗
are finite families of maximal monotone operators for each

i = 1, 2, . . . m, T : H → H is a nonexpansive mapping and T : H → X is a bounded linear
operator.

We denote the solution set of Problem (1.2.14)-(1.2.15) by

Γ :=
m⋂
i=1

(Bi +Di)
−1(0) ∩

m⋂
i=1

T −1(C−1
i 0) ∩ F (T ).

Finally, we consider the MP in the framework of Hadamard spaces.

Let X be a metric space and f : X → (−∞,∞] be a proper and convex function. One of
the major and interesting problems in optimization is the problem of finding minimizers
of f. That is, find x ∈ X such that

f(x) = min
y∈X

f(y). (1.2.16)

We study two new proximal point methods. Using the first method, we find a common
solution of a finite family of MPs and FPP for a finite family of quasi-pseudocontractive
mappings and using the second method, we find a common zero of a finite family of
multivalued monotone operators which is also a common fixed point of a finite family
of quasi-pseudocontractive mappings in an Hadamard space. Furthermore, we propose a
generalized viscosity implicit rule for finding a common solution of a finite family of MPs
and FPP for a finite family of quasi-pseudocontractive mappings in an Hadamard space.

1.2.2 Motivation

The motivation for our study will be discussed under the following headings:

(a) Variational inequality and fixed point problems in real Hilbert spaces

The VIP (1.2.1) has received a lot of research attention due to its wide range of ap-
plications in diverse fields (see, for example [5, 14, 104, 110, 123, 130, 135, 149, 235]
and the references therein). Several authors have proposed and studied iterative
methods for solving the VIPs (see [5, 9, 105, 106, 135, 136, 220, 221] and other ref-
erences therein). The problem of finding the common solution of a VIP and FPP is
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motivated by the application it has in mathematical models whose constraints can
be expressed as VIPs and FPPs. In particular, such a common solution problem has
application in image recovery, signal processing, among others (see [126, 168] and
other references therein). Recently, Nadeshkina and Takahashi [185] introduced an
algorithm for finding a common solution of the FPP for a nonexpansive mapping
and the VIP. They proved that the sequence generated by their proposed algorithm
converges weakly to an element in the solution set of the problem under consider-
ation. Since the strong convergence are more desirable than the weak convergence
in infinite dimensional space, there is need to develop iterative methods that guar-
antees strong convergence. Also, since the pseudo-contractive mappings are more
general than the nonexpansive mappings, we study the monotone VIP and FPP for
a pseudo-contractive mapping in the real Hilbert space and introduce inertial itera-
tive methods for approximating a common solution of the problem. We prove that
our proposed method converges strongly to a point in the solution set. Considering
the fact that the quasimonotone VIPs are more general than the monotone VIPs,
we study the quasimonotone VIP in a real Hilbert space and introduce inertial and
relaxed subgradient extragradient methods for solving the problem. We prove that
the sequence generated by our proposed method converges weakly to the solution
of the problem. Furthermore, we introduce an effective iterative method for finding
a common solution of the quasimonotone VIP and FPP of quasi-pseudocontractive
mappings in a real Hilbert space and prove that the sequence generated by our pro-
posed method converge strongly to a point in the solution set of the aforementioned
problem. Our results extend and generalize some existing results in the literature.

(b) Split variational inequality problems in real Hilbert spaces

The SVIP which can also be viewed as a combination of the classical VIP and the
split feasibility problem (SFP) (introduced and studied by Censor et al. [57]) was
introduced and studied by Censor et al. [61]. The first known results for SVIP is
due to Censor et al. [63] (see also [61]). They studied the SVIP when the operators
are monotone and Lipschitz continuous, by first transforming the problem into an
equivalent Constrained VIP (CVIP) in the product space H1 ×H2 (see [63, Section
4]) and then employed the well-known subgradient extragradient method to solve it.
To improve this result, Tian and Jiang [243] introduced a new class of SVIP which
generalizes the class of SVIP considered by Censor et al. [63]. They proposed an
algorithm for approximating a solution of the new class of SVIP and also proved the
weak convergence of this algorithm when the mapping is nonexpansive and the cost
operator is monotone and Lipschitz continuous. Motivated by the works of Cen-
sor et al. [63], Tian and Jiang [243] and other works in this direction, we propose
two new relaxed inertial methods for solving the SVIP without any product space
transformation where the underlying operator is monotone and Lipschitz continuous.
Furthermore, we present two new methods with inertial steps for solving the SVIP
in real Hilbert spaces without any product space formulation when the cost oper-
ators are pseudomonotone and Lipschitz continuous. We prove that the sequences
generated by these methods converge strongly to a minimum-norm solution of the
problem. We further propose two new inertial projection and contraction methods
for solving the SVIPs in real Hilbert spaces without the co-coercive condition and
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without the product space formulation. Also, we propose a viscosity-type iterative
method and prove its strong convergence to a solution of the GVIP in real Hilbert
spaces. Our results extend and generalize some existing results in the literature.

(c) Split equalities variational inclusion, split equilibrium and fixed point
problems in real Hilbert spaces

The problem of finding a common solution of the split equalities of EP, VIP and
FPP of nonexpansive semigroups has applications to many nonlinear problems. Re-
cently, Latif and Eslamian [159] studied and introduced a new algorithm for finding
a common element of split equalities of EP, monotone VIP with Lipschitz operator
and fixed point problem of nonexpansive semigroups satisfying the uniformly asymp-
totically regularity (u.a.r) condition in Hilbert spaces. Motivated by this result and
other results in the literature, we propose and study an inertial Tseng’s extragra-
dient algorithm for the SEqP for finding a common element of solution of the EP,
non-Lipschitz pseudomonotone VIP and common fixed point of nonexpansive semi-
groups without the u.a.r condition. The problem of finding a common solution of
the monotone VqIP and SEP has possible applications to many nonlinear problems
and mathematical models whose constraints can be expressed as VqIPs and SEPs.
Very recently, Cholamjiak et al. [81] proposed a modified inertial forward-backward
splitting method for solving the SEP and the inverse strongly monotone VqIP. Moti-
vated by this, we propose a modified inertial forward-backward splitting algorithm
with self-adaptive step sizes for approximating the solution of the aforementioned
problem in Hilbert spaces without the inverse strongly monotone condition. Our
result extend and generalize some existing results in the literature.

(d) Variational inequality, variational inclusion and fixed point problems in
Banach spaces

It is well-known that many real life problems are generally defined in Banach spaces
than Hilbert spaces, therefore there is need to extend the study of these optimization
problems from Hilbert spaces to Banach spaces. Recently, Tan et al. [240] proposed
an inertial iterative method for solving the VIP (1.2.1) in a real Hilbert space.
Motivated by the work of Tan et al. [240], we propose and study an efficient method
for solving the VIP (1.2.1) in a 2-uniformly convex real Banach space. The problem
of finding the common solution of the SMVqIP and FPP has possible applications
to many nonlinear problems and mathematical models whose constraints can be
expressed as SMVqIPs and FPPs. Motivated by this and the ongoing research
activities in this direction, we propose and study a new inertial iterative algorithm
with self-adaptive step size for approximating a common solution of finite family of
SMVqIP and FPP for a nonexpansive mapping between a Banach space and Hilbert
space.

(e) Minimization and fixed point problems in Hadamard spaces

The Hadamard space is an analogue of the Hilbert space with related geometry in
the setting of the nonlinear space. Many results related to optimization problems
have more applications in Hadamard spaces than in Hilbert spaces. This is due to
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the fact that the classical results on optimization and FPP in Hadamard spaces oc-
cur naturally in Hilbert spaces but the converse may not be true. This motivates the
need to extend the results on optimization and FPP from the Hilbert and Banach
spaces to Hadamard spaces. Just recently, Chang et al. [70] proposed an iterative
algorithm for approximating a common solution of a finite family of MP and FPP
for two demicontractive mappings in Hadamard spaces. Motivated by this, we pro-
pose two new proximal point methods involving quasi-pseudocontractive mappings
in Hadamard spaces. Inspired by the viscosity technique, we propose a generalized
viscosity implicit rule for approximating the common solution of a finite family of
MPs and FPP for a finite family of quasi-pseudocontractive mapping in Hadamard
spaces.

1.3 Objectives

The objectives we aim to achieve at the end of this study are:

(i) to introduce and study iterative algorithms for approximating the common solutions
of VIPs and FPPs in Hilbert spaces;

(ii) to introduce efficient inertial and relaxed algorithms for approximating the solution
of the VIP without any form of monotonicity in a real Hilbert space;

(iii) to introduce iterative algorithms for approximating the solution of the SVIP without
any product space formation in real Hilbert spaces;

(iv) to introduce an efficient algorithm for approximating the solution of the GVIP in a
real Hilbert space;

(v) to introduce an effective iterative algorithm for approximating the common solution
of the split equalities of VIP, EP and FPP in real Hilbert spaces;

(vi) to introduce an iterative algorithm with self-adaptive step-size for approximating
the common solution of the VqIPs and SEPs in real Hilbert spaces;

(vii) to generalize the study of the VIPs from the framework of Hilbert space to the frame-
work of Banach space and also introduce an iterative algorithm for approximating
the solution of the VIPs in Banach spaces;

(viii) to introduce an iterative algorithm with self-adaptive step-size for approximating a
common solution of finite family of SMVqIPs and FPPs of a nonexpansive mapping
between a Banach space and Hilbert space;

(ix) to introduce the concepts of MPs and FPPs in Hadamard spaces;

(x) to apply the obtained results to solve some optimization problems;

(xi) to give some numerical experiments to illustrate the applicability of our proposed
methods and also compare them with some existing methods in the literature.
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1.4 Organization of the thesis

The thesis is organized as follows;

Chapter 1 (General Introduction): In this chapter, we give a brief background study
of our research interest. We discuss the research problems and motivations. Finally, we
state the objectives of the study and give a detailed organization of the thesis.

Chapter 2 (Preliminaries and Literature Review): In this chapter, we recall some
basic definitions, concepts, terms and results that will be needed in our study. Also, we
give a detailed literature review of some important past and recent works that are related
to our study.

Chapter 3 (Results on Variational Inequality and Fixed Point Problems in real
Hilbert Spaces): The main results of this thesis starts in this chapter. The chapter con-
sists of four (4) sections.
In Section 3.1, we give a brief introduction of the study of the chapter.
In Section 3.2, we propose and study new inertial Tseng’s extragradient algorithms with
self-adaptive step size to solve the monotone VIP and FPP in a real Hilbert space. We
prove that the sequences generated by our proposed algorithms converge strongly to the
solution set. We apply our result to solve the zero point problem (ZPP) in Hilbert spaces.
Finally, we present numerical experiments to illustrate the applicability of our proposed
methods and also compare them with some existing methods in the literature.
In Section 3.3, we introduce two new relaxed inertial subgradient extragradient methods
for solving quasimonotone VIPs in a real Hilbert space. We prove that the sequences gen-
erated by our proposed methods converge weakly to a point in the solution set. Finally,
we present numerical experiments to illustrate the applicability of our proposed methods
and also compare them with some existing methods in the literature.
In Section 3.4, we study the quasimonotone VIP with constraint of FPP of a quasi-
pseudocontractive mapping. We propose and study a new inertial Tseng’s extragradient
method with self-adaptive step size for approximating the minimum-norm solutions of
aforementioned problem. Furthermore, we present some numerical experiments for our
proposed method and compare it with other existing methods in the literature. Finally,
we apply our result to image restoration problem.
Chapter 4 (Results on Split Variational Inequality in real Hilbert Spaces): This
chapter consists of four (4) sections.
In Section 4.1, we give a brief introduction of the study of the chapter.
In Section 4.2, we propose two new relaxed inertial methods for solving the SVIP in real
Hilbert spaces without any product space transformation when the cost operator is not
co-coercive. We prove that the sequences generated by our proposed algorithms converge
strongly to a point in the solution set. Finally, we present numerical experiments to illus-
trate the applicability of our proposed methods and also compare them with some existing
methods in the literature.
In Section 4.3, we propose two new methods with inertial steps for solving the SVIP beyond
monotonicity in real Hilbert spaces without any product space formulation. We prove that
the sequences generated by these methods converge strongly to a minimum-norm solution
of the aforementioned problem. Finally, we provide several numerical experiments of the
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proposed methods in comparison with other related methods in literature.
In Section 4.4, we propose two new inertial projection and contraction methods for solv-
ing the SVIP in real Hilbert spaces. The sequences generated by these methods converge
strongly to a point in the solution set of the SVIP in real Hilbert spaces. Furthermore,
we present several numerical experiments for the proposed methods and compare their
performances with other related methods in the literature.
In Section 4.5, we propose a viscosity-type method for solving a GVIP when the cost op-
erator is pseudomonotone in a real Hilbert space. We prove that the sequence generated
by our proposed algorithm converges strongly to the solution set of the GVIP. Finally, we
present numerical experiments to illustrate the applicability of our proposed method and
also compare it with some existing methods in the literature.

Chapter 5 (Results on Split equalities Variational Inclusion and Split Equilib-
rium Problems in real Hilbert Spaces): This chapter consists of three (3) sections.
In Section 5.1, we give a brief introduction of the study of the chapter.
In Section 5.2, we propose an inertial Tseng’s extragradient algorithm with self adaptive
step size for approximating a common solution of the split equalities of EP, non-Lipschitz
pseudomonotone VIP and FPP of nonexpansive semigroups in real Hilbert spaces. We
prove that the sequence generated by our proposed method converges strongly to a point
in the solution set of the problem. Finally, we provide some numerical experiments for the
proposed method in comparison with related methods in literature.
In Section, 5.3, we propose a modified inertial forward-backward splitting algorithm with
self-adaptive step size for approximating a solution of the VqIP and SEP in real Hilbert
spaces. We prove that the sequence generated by our proposed method converges strongly
to a minimum-norm solution of the aforementioned problem. Furthermore, we apply our
result to study certain optimization problems. Finally, we provide some numerical experi-
ments of our proposed method in comparison with other existing methods in the literature.

Chapter 6 (Results on Variational Inequality, Variational Inclusion and Fixed
Point Problems in real Banach Spaces): This chapter consists of three (3) sections.
In Section 6.1, we give a brief introduction of the study of this chapter.
In Section 6.2, we study an inertial subgradient extragraident algorithm with Armijo-type
step size for solving the VIP in a real Banach space. We prove that the sequence generated
by our proposed method converges strongly to a solution of the VIP in a real Banach space.
Finally, we provide some numerical experiments of the proposed method in comparison
with other existing method in literature.
In Section 6.3, we propose and study a new inertial iterative algorithm with self-adaptive
step size for approximating a common solution of finite family of SMVqIP and FPP between
a Hilbert and Banach space. Furthermore, we apply our result to study some optimization
problems. Finally, we provide some numerical experiments to demonstrate the efficiency
of our method in comparison with some well-known methods in the literature.

Chapter 7 (Results on Minimization Problems in Hadamard Spaces): This chap-
ter consists of four (4) sections.
In Section 7.1, we give a brief introduction of the study of the chapter.
In Section 7.2, we prove some lemmas that will be required to establish our main result in
this chapter.
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In Section 7.3, we propose two new proximal point methods involving quasi-pseudocontractive
mappings in an Hadamard space. We prove that the first method converges strongly
to a common solution of a finite family of MP and FPP for a finite family of quasi-
pseudocontractive mappings in an Hadamard space. We extend this method to monotone
inclusion problems (MIPs) and prove that it converges strongly to a common zero of a
finite family of multivalued monotone operator in an Hadamard space. Furthermore, we
provide various nontrival numerical implementations of our methods in Hadamard spaces
and compare them with some other recent methods in the literature.
In Section 7.4, we propose a generalized viscosity implicit rule involving quasi-pseudocontractive
mappings in Hadamard spaces. We obtain a strong convergence result of our algorithm
to the solution set.

Chapter 8 (Conclusion, Contributions to Knowledge and Future Research): In
this chapter, we give a conclusion of our study and also highlight our contributions to
existing knowledge. Furthermore, we discuss possible problems for future research.
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CHAPTER 2

Preliminaries and Literature Review

In this section, we provide some basic definitions, terms, notations and concepts that will
be relevant throughout our study. We also give a comprehensive literature review of some
important past and recent works on optimization and fixed point problem. Furthermore,
we state some important lemmas and results that will be required in establishing the proofs
of our main results.

2.1 Geometric properties of Hilbert spaces

The Hilbert space which is an extension of the concept of Euclidean spaces to infinite
dimensional spaces is known to have the most simplest and clearly discernible geometric
properties. Let C be a nonempty, closed and convex subset of a real Hilbert space H with
norm ∥ · ∥ and inner product ⟨·, ·⟩. We will denote the weak and strong convergence of a
sequence {xn} to a point x by xn ⇀ x and xn → x, respectively. Also, we denote the set
of weak limits of {xn} by wω(xn), that is

wω(xn) := {x ∈ H : xnj
⇀ x for some subsequence {xnj

} of {xn}}.

Some of the geometric properties that characterize Hilbert spaces include: the availability
of the inner product, the fact that the nearest point map of a real Hilbert space H onto a
closed convex subset C of H is Lipschitzian with constant 1 and the following identities:

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩, (2.1.1)

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2, (2.1.2)

which hold for x, y ∈ H and λ ∈ [0, 1]. These geometric characteristics of Hilbert spaces
makes certain problems posed in Hilbert spaces more manageable than those in general
Banach spaces [74].
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2.1.1 Some inequalities that characterize Hilbert spaces

Lemma 2.1.1. [198, 201] Let H be a real Hilbert space, then the following assertions hold:

(1) 2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 = ∥x+ y∥2 − ∥x∥2 − ∥y∥2, ∀x, y ∈ H;

(2) ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2, ∀x, y ∈ H, α ∈ R;

(3) ∥x− y∥2 ≤ ∥x∥2 + 2⟨y, x− y⟩, ∀x, y ∈ H.

(4) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,∀ x, y ∈ H.

Lemma 2.1.2. [154] For x, y, v, z ∈ H, we have

2⟨x− y, v − z⟩ = ∥x− z∥2 + ∥y − v∥2 − ∥x− v∥2 − ∥y − z∥2.

Also,

∥x− y + v − z∥2 = ∥x− y∥2 + ∥v − z∥2 + 2⟨x− y, v − z⟩
= ∥x− y∥2 + ∥v − z∥2 + ∥x− z∥2 + ∥y − v∥2 − ∥x− v∥2 − ∥y − z∥2.

2.1.2 Some nonlinear single-valued mappings in Hilbert spaces

Definition 2.1.3. Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H. A mapping T : H → H is said to be

(i) L-Lipschitz if there exists L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀ x, y ∈ H;

if L = 1, then T is called nonexpansive while T is called a contraction if L ∈ [0, 1),

(ii) uniformly continuous, if for every ϵ > 0, there exists δ = δ(ϵ) > 0, such that

∥Tx− Ty∥ < ϵ whenever ∥x− y∥ < δ, ∀x, y ∈ H;

(iii) quasi-nonexpansive, if F (T ) ̸= ∅ and

∥Tx− y∥ ≤ ∥x− y∥, ∀ x ∈ H, and y ∈ F (T );

(iv) firmly nonexpansive, if

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2, ∀ x, y ∈ H;

(v) β-demicontractive with 0 ≤ β < 1, if F (T ) ̸= ∅ and

∥Tx− y∥2 ≤ ∥x− y∥2 + β∥(I − T )x∥2, ∀ x ∈ H, y ∈ F (T );
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(vi) k-strictly pseudocontractive, if for 0 ≤ k < 1

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2 ∀ x, y ∈ H. (2.1.3)

(vii) quasi-pseudocontractive, if F (T ) ̸= ∅ and

∥Tx− y∥2 ≤ ∥x− y∥2 + ∥Tx− x∥2, ∀ x ∈ H and x ∈ F (T );

(viii) η-strongly monotone, if there exists η > 0 such that〈
Tx− Ty, x− y

〉
≥ η∥x− y∥2 ∀ x, y ∈ H;

(ix) η-inverse strongly monotone (η-ism), if there exists η > 0 such that〈
Tx− Ty, x− y

〉
≥ η∥Tx− Ty∥2 ∀ x, y ∈ H;

if η = 1, then T is called firmly nonexpansive,

(x) monotone, if 〈
Tx− Ty, x− y

〉
≥ 0 ∀ x, y ∈ H;

(xi) pseudo-monotone, if〈
Tx, y − x

〉
≥ 0 =⇒

〈
Ty, y − x

〉
≥ 0 ∀ x, y ∈ H;

(xii) quasimonotone, if

⟨Ty, x− y⟩ > 0 =⇒ ⟨Tx, x− y⟩ ≥ 0, ∀x, y ∈ H,

(xiii) sequentially weakly continuous on H, if for each sequence {xn} ⊂ H we have that
{xn} converges weakly to x ∈ H implies that {Txn} converges weakly to Tx;

(xiv) sequentially weakly-strongly continuous, if for every sequence {xn} that converges
weakly to a point x, the sequence {Txn} converges strongly to Tx,

(xv) α−averaged, if f = (1−α)I+αT , where α ∈ (0, 1) and T : H → H is nonexpansive,

From the above definition, we can deduce that firmly nonexpansive mappings are 1
2
-averaged

while averaged mappings are nonexpansive. This implies that every firmly nonexpansive
mapping is nonexpansive. Clearly, the class of quasi-pseudocontractive mappings is more
general and properly contains all the other classes of mappings defined in (iii)− (vi) with
nonempty fixed points set. It is also known that every η-inverse strongly monotone mapping
is 1

η
-Lipschitz continuous. Also, if T is η-strongly monotone and L-Lipschitz continuous,

then T is η/L2-ism. Furthermore, both η-strongly monotone and η-inverse strongly mono-
tone mappings are monotone while monotone mappings are pseudo-monotone. We also
observe that monotone implies pseudo-monotone which implies quasi-monotone but the
converses are not always true. Also, observe that uniform continuity is a weaker notion
than Lipschitz continuity.
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Remark 2.1.4. It is well known that if D is a convex subset of H, then T : D → H is
uniformly continuous if and only if, for every ϵ > 0, there exists a constant M < ∞ such
that

∥Tx− Ty∥ ≤M∥x− y∥+ ϵ ∀x, y ∈ D. (2.1.4)

Example 2.1.5. Let H = l2(R), where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈ R :
∞∑
i=1

|xi|2 <

∞}. Then, the operator A : H → H defined by

A(x1, x2, x3, . . . ) = (x1e
−x21 , 0, 0, . . . )

is pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not
monotone.

Example 2.1.6. [145] Let R denote the real number with the usual norm and C = [0, 2].
Let T : C → C be defined by

Tx =
1

3

(
x2 + 2

)
for all x ∈ C, where x + 2 ≤ 3, x ∈ [0, 1] and x + 2 = 3, x > 1. Clearly F (T ) = {1, 2}.
Then T is a quasi-nonexpansive mapping but not a nonexpansive mapping.

Example 2.1.7. Let X be a real line with the usual norm and C = R. Define T : C → C
by

Tx = 7x.

T is k-strictly pseudo-contractive but not quasi-nonexpansive or nonexpansive.

Proof. It is clear that F (T ) = {0}, thus for x ∈ R, we have

|7x− 0|2 = 49|x− 0|2 > |x− 0|2

which implies that T is not quasi-nonexpansive and hence, not nonexpansive.

Next we show that T is k- strictly pseudo-contractive.

|Tx− Ty|2 = |7x− 7y|2 = 49|x− y|2.

Also,

|x− y − (Tx− Ty)|2 = |x− y − (7x− 7y)|2

= 36|x− y|2.

|Tx− Ty|2 = |x− y|2 + 48|x− y|2

= |x− y|2 + 4

3
|x− y − (Tx− Ty)|2.

Hence, T is 4
3
-strictly pseudo-contractive mapping.
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Lemma 2.1.8. [276] Let H be a real Hilbert space and S : H → H be a κ-strictly pseudo-
contractive mapping with κ ∈ [0, 1). Let Sβ := βI + (1− β)S, where β ∈ [κ, 1), then

(i) F (S) = F (Sβ),

(ii) Sβ is a nonexpansive mapping.

Lemma 2.1.9. [238] Let H1 and H2 be real Hilbert spaces. Let T : H1 → H2 be a
bounded linear operator with T ̸= 0, and S : H2 → H2 be a nonexpansive mapping. Then
T ∗(I − S)T is 1

2∥A∥2 -inverse strongly monotone.

Lemma 2.1.10. [261] Let H be a real Hilbert space and A : H → H be a nonlinear
mapping, then the following hold.

(i) A is η-inverse strongly monotone and γ > 0, then γA is η
γ
-inverse strongly monotone.

(ii) A is averaged if and only if the complement I−A is η-inverse strongly monotone for
some η > 1

2
. Indeed, for β ∈ (0, 1), A is β-averaged if and only if I −A is 1

2β
-inverse

strongly monotone.

Definition 2.1.11. A one-parameter family mapping T = {T (s) : 0 ≤ s < +∞} from
H1 into itself is said to be a nonexpansive semigroup if it satisfies the following conditions:

(i) T (0)x = x, ∀ x ∈ H1;

(ii) T (s+ u) = T (s)T (u), for all s, u ≥ 0;

(iii) for each x ∈ H1, the mapping T (s)x is continuous;

(iv) ∥T (s)x− T (s)y∥ ≤ ∥x− y∥, for all x, y ∈ H1 and s ≥ 0.

We denote the common fixed point set of the semigroup T by F (T ) = {x ∈ C : T (s)x =
x, ∀s ≥ 0}. It is well known that F (T ) is closed and convex [47].

Lemma 2.1.12. [240] Let C be a nonempty bounded closed and convex subset of a real
Hilbert space H. Let T = {T (s) : s ≥ 0} from C be a nonexpansive semigroup on C; then
for all h ≥ 0,

lim sup
t→∞, x∈C

∥∥∥1
t

∫ t

0

T (s)x− T (h)
(1
t

∫ t

0

T (s)xdx
)∥∥∥ = 0.

Lemma 2.1.13. [240] Let C be a nonempty bounded closed and convex subset of a real
Hilbert space H. Let {xn} be a sequence and let T = {T (s) : s ≥ 0} from C be a nonex-
pansive semigroup on C, if the following conditions are satisfied

(i) xn ⇀ x;

(ii) lim sup
s→∞

lim sup
n→∞

∥∥∥T (s)xn − xn

∥∥∥ = 0,

18



then, x ∈ F (T ).

Lemma 2.1.14. [112] Let H be a real Hilbert space and let S : H → H be a nonexpansive
mapping with F (S) ̸= ∅. Then, the mapping I − S is demiclosed at zero, that is, for any
sequence {xn} in H such that xn ⇀ x ∈ H and ∥xn − Sxn∥ → 0 implies x ∈ F (S).

Lemma 2.1.15. [199] Each Hilbert space H satisfies the Opial condition, that is, for any
sequence {xn} with xn ⇀ x, the inequality lim inf

n→∞
∥xn − x∥ < lim inf

n→∞
∥xn − y∥ holds for

every y ∈ H with y ̸= x.

2.2 Geometric properties of Banach spaces

In this section, we discuss some of the geometric properties of Banach spaces that will be
required in this study.

Let X be a real Banach space and C a nonempty, closed and convex subset of X . We
denote by X ∗ the dual of X and ∥ · ∥ the norm of X or X ∗.

Definition 2.2.1. A Banach space X is said to be strictly convex if for all x, y ∈ X , x ̸=
y, ∥x∥ = ∥y∥ = 1, we have ∥λx+ (1− λ)y∥ < 1, ∀λ ∈ (0, 1).

Definition 2.2.2. Let S(X ) := {x ∈ X : ∥x∥ = 1}. A Banach space X is said to be
smooth if

lim
σ→0

∥x+ σy∥ − ∥x∥
σ

exists for x, y ∈ S(X ).

Definition 2.2.3. Let E be a normed space with dim E ≥ 2. The modulus of convexity
δE : (0, 2] → [0, 1] is defined by

δE(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ = 1 = ∥y∥, ∥x− y∥ = ϵ

}
.

Definition 2.2.4. Let E be a normed space with dim E ≥ 2. The modulus of smoothness
ρX (σ) : [0,∞) → [0,∞) is defined by

ρX (σ) = sup

{
∥x+ σy∥+ ∥x− σy∥

2
− 1 : ∥x∥ = ∥y∥ = 1

}
.

Let 1 < q ≤ 2 ≤ p < ∞ with 1
p
+ 1

q
= 1. A Banach space X is called uniformly convex if

δX (ϵ) > 0 for any ϵ ∈ (0, 2], and p-uniformly convex if there exists a constant cp > 0 such

that δX (ϵ) > cpϵ
p for any ϵ ∈ (0, 2]. X is called uniformly smooth if lim

σ→0

(
ρX (σ)
σ

)
= 0 and

q-uniformly smooth if there is a constant q > 0 such that ρX (σ) ≤ qσ2 for some σ > 0.

Theorem 2.2.5. [74] Every uniformly smooth space is reflexive.
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Lemma 2.2.6. [37] The space X is 2-uniformly convex if and only if there exists µX ≥ 1
such that

∥u+ v∥2 + ∥u− v∥2

2
≥ ∥u∥2 + ∥µ−1

X v∥2, ∀ u, v ∈ X . (2.2.1)

The minimum value of the set of all µX ≥ 1 satisfying (2.2.1) ∀ u, v ∈ X is denoted by µ
and is called the 2-uniform convexity constant of X . It is easy to see that µ = 1 whenever
X is a Hilbert space. We denote the minimum value of the set of all µX ≥ 1 by µ such
that (2.2.1) holds for any u, v ∈ X .

Lemma 2.2.7. [262] Let X be a 2-uniformly smooth Banach space with the best smooth-
ness constant µ > 0. Then, the following inequality holds:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, Jx⟩+ 2∥µy∥2, ∀ x, y ∈ X .

Remark 2.2.8. In Hilbert spaces the best smoothness constant is µ = 1√
2
.

Remark 2.2.9. Every 2-uniformly convex Banach space is uniformly convex and every
Hilbert space is uniformly smooth and 2-uniformly convex.

Definition 2.2.10. The generalized duality mapping JX
p : X → 2X

∗
is defined by

JX
p (x) = {x∗ ∈ X ∗ : ⟨x, x∗⟩ = ∥x∥p, ∥x∗∥ = ∥x∥p−1, ∀ x ∈ X}.

In particular, when p = 2 the duality map J = JX
2 is called the normalized duality

map. The Hilbert spaces, Lp(or ℓp) spaces and the Sobolev spaces W k,p, (1 < p < 1) are
uniformly convex and uniformly smooth Banach spaces. Furthermore, the Lp, ℓp and W

k,p

spaces are p-uniformly smooth if 1 < p < 2 and 2-uniformly smooth if p > 2. If X = H,
where H is a real Hilbert space, we have J = I.

Now, we state the relationship between uniformly convex and uniformly smooth space.

Theorem 2.2.11. [74] Let X be a Banach space;

(i) X is uniformly smooth if and only if X ∗ is uniformly convex.

(ii) X is uniformly convex if and only if X ∗ is uniformly smooth.

We give an example of a generalized duality mapping in Banach spaces.

Example 2.2.12. [3] Let X := Lp([α, β]) (1 < p < ∞), where α, β ∈ R and let f ∈ X .
Then the generalized duality mapping JX

p is given by

JX
p (f)(t) = |f(t)|p−1 sgn(f(t)).

The normalized duality mapping is known to have the following properties [85]:

(i) If X is smooth, then J is single valued denoted by j.
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(ii) Jx is nonempty closed, convex and bounded sub set of X ∗ for all x ∈ X .

(iii) If X is reflexive, then J is surjective.

(iv) If X is strictly convex, then J is one-to-one and strictly monotone, ie ⟨x− y, Jx− Jy⟩ ≥
0, ∀ x, y ∈ X such that x ̸= y.

(v) If X is reflexive and strictly convex, then J−1 is norm-to-weak continuous.

(vi) If X is uniformly smooth and uniformly convex, then J is norm-to-norm continuous
on bounded subset of X and J−1 = J∗. Also the normalized duality mapping on X ∗

is also uniformly norm-to-norm continuous on bounded subsets of X ∗.

(vii) If X ∗ is uniformly convex, then J is single-valued, one-to-one and uniformly contin-
uous on bounded subsets of X .

If X is smooth, J : X → X ∗ is said to be weak-to-weak continuous if for every y ∈
X , ⟨y, Jxn⟩ → ⟨y, Jx⟩ as xn ⇀ x. It is known that the lp(p > 1) space has the weak-to-
weak continuous property, but the Lp(p > 2) space does not possess this property.

The Lyapunov functional ϕ : X × X → R [16] is defined by

ϕ(u, v) := ∥u∥2 − 2⟨u, Jv⟩+ ∥v∥2, ∀ u, v ∈ X .

We can easily see that

ϕ(u, v) ≥
(
∥u∥ − ∥v∥

)2
≥ 0.

Moreover, we observe that ϕ(u, u) = 0 for each u ∈ X . If X is strictly convex, then
ϕ(u, v) = 0 ⇐⇒ u = v. If X is a Hilbert space, then ϕ(u, v) = ∥u− v∥2 for all u, v ∈ X .

2.2.1 Some inequalities that characterize Banach spaces

Lemma 2.2.13. [16, 20] Suppose that X is a real, uniformly convex, smooth Banach
space. Then, the Lyapunov functional satisfies the following properties for all x, y, z ∈ X
and α ∈ (0, 1) :

(1) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩;

(2) ϕ(x, y) + ϕ(y, x) = 2⟨x− y, Jx− Jy⟩;

(3) ϕ(x, y) = ∥x∥∥Jx− Jy∥+ ∥y∥∥x− y∥;

(4) 0 ≤ (||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2;
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(5) ϕ(x, J−1(αJz + (1− α)Jy)) ≤ αϕ(x, z) + (1− α)ϕ(x, y).

Alber [16] also studied the following functional V : X × X ∗ → R defined by

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2,

for all x ∈ X and x∗ ∈ X ∗. It is easy to see from the definition of the Lyapunov functional
that

V (x, x∗) = ϕ(x, J−1x∗),

for all x ∈ X and x∗ ∈ X ∗. For each x ∈ X , the mapping f : X ∗ → R defined by
f(x∗) = V (x, x∗) for all x∗ ∈ X ∗ is a continuous and convex function. Moreover, the
functional V is known to satisfy the following inequality [15]:

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗), ∀ x ∈ X , x∗, y∗ ∈ X ∗. (2.2.2)

2.2.2 Some nonlinear single-valued mappings in Banach spaces

Definition 2.2.14. Let X be a real Banach space and C be a nonempty closed and convex
subset of X . A mapping T : X → X is said to be

(i) closed if for any sequence {xn} ⊂ C with xn → x and Txn → y, then Tx = y;

(ii) semi-compact if for any bounded sequence {xn} in C with xn−Txn → 0, there exists
a subsequence {xnk

} of {xn} which converges strongly to some x ∈ X ;

(iii) ϕ−nonexpansive, if
ϕ(Tx, Ty) ≤ ϕ(x, y), ∀ x, y ∈ X ;

(iv) quasi ϕ-nonexpansive, if F (T ) ̸= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x), ∀ x ∈ X , p ∈ F (T );

(v) firmly nonexpansive, if for all x, y ∈ X

ϕ(Tx, Ty) + ϕ(Ty, Tx) + ϕ(Tx, x) + ϕ(Ty, y) ≤ ϕ(Tx, y) + ϕ(Ty, x)

or equivalently, 〈
Tx− Ty, Jx− JTx− (Jy − JTy)

〉
≥ 0.

Remark 2.2.15. Every firmly nonexpansive mapping is nonexpansive.

Example 2.2.16. [178] Consider R with the usual norm and let R → R be a function
defined by

T (x, y) = (−y, x), ∀(x, y) ∈ R2.

Then, T is nonexpansive but not firmly nonexpansive.
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2.3 Geometric properties of geodesic metric spaces

It is well known that the geometric structure of Hilbert spaces makes problems that occur
in Hilbert spaces more manageable and easier to solve. However, most real life problems
naturally occur in nonlinear spaces (for instance, in metric spaces). Therefore, there
is the need to extend our study to nonlinear spaces. Sometimes, extending some known
results to this space may be difficult because of the nonlinear structure of nonlinear spaces.
In order to extend these results to nonlinear spaces, one needs to introduce some kind of
convex properties which provide sufficient information that ensures the applications of such
existing results. One of these properties is the existence of distance-preserving mapping,
which provides the metric space (nonlinear space) with a structure that is similar to the
linear structure of a normed linear space (in particular, Hilbert space). Metric spaces with
this distance-preserving mappings are called geodesic metric spaces.

Definition 2.3.1. [33] Let (X, d) be a metric space. A continuous mapping from the
interval [0, 1] to X is called a path.

Definition 2.3.2. Let x, y ∈ X and I = [0, d(x, y)], a geodesic path joining x to y is
a distance-preserving mapping (isometry) c : I → X, such that c(0) = x, c(d(x, y)) =
y and d(c(t), c(t

′
)) = |t− t

′ | for all t, t
′ ∈ [0, d(x, y)].

The image of a geodesic path is a geodesic segment and it is denoted by [x, y] whenever
it is unique. A metric space (X, d) is said to be a geodesic space if every pair of points x
and y in X are connected by a geodesic. A subset C of a geodesic space X is said to be
convex, if for all x, y ∈ C, the segment [x, y] remains in C. For x, y ∈ X and t ∈ [0, 1] we
write tx⊕ (1− t)y for the unique point z in the geodesic segment joining x to y such that

d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y). (2.3.1)

2.3.1 Metric midpoints

Definition 2.3.3. Let X be a metric space and x, y ∈ X. A point z ∈ X is a metric
midpoint of x and y if d(x, z) = 1

2
d(x, y).

Proposition 2.3.1. Let X be a complete metric space. Then the following are equivalent;

(a) The space X is a geodesic space.

(b) For every x, y ∈ X, there exists a point z ∈ X such that

d2(x, z) + d2(y, z) =
1

2
d2(x, y).

(c) Every pair of points in X has a metric midpoint.

Remark 2.3.4. If X is a geodesic metric space, then every pair of points in X has at
least one midpoint which is also a metric midpoint.
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Definition 2.3.5. Let X be a geometric metric space. A subset C of X is said to be
convex in C if it includes every geodesic segment joining two of its point. This means that
C is convex if x, y ∈ C, we have that tx⊕ (1− t)y ∈ C.

Remark 2.3.6. [45]

A geodesic segment in a space that is not uniquely geodesic may not necessarily be
convex.

(a)(b) A subset of a uniquely geodesic metric space which is endowed with the induced
metric is geodesic if and only if it is convex.

2.3.2 Geodesic triangles

Definition 2.3.7. A geodesic triangle △(x1, x2, x3) in a geodesic space X consists of
three points x1, x2, x3 ∈ X (which are also called the vertices of △) and a geodesic segment
between each pair of vertices (which are also known as edges of △).

Definition 2.3.8. A comparison triangle for the geodesic triangle △(x1, x2, x3) ∈ X
is a triangle △̄(x1, x2, x3) := △(x̄1, x̄2, x̄3) in Euclidean space R2 such that d(xi, xj) =
dR2(x̄i, x̄j) ∀ i, j ∈ {1, 2, 3}.

Definition 2.3.9. Let {xn} be a bounded sequence in a geodesic metric space X. Then,
the asymptotic center A({xn}) of {xn} is defined by A({xn}) = {v̄ ∈ X : lim sup

n→∞
d(v̄, xn) =

inf
v∈X

lim sup
n→∞

d(v, xn)}.

The sequence {xn} in X is said to be ∆-convergent to a point v̄ ∈ X if A({xnk
}) = {v̄}

for every subsequence {xnk
} of {xn}. In this case, we write ∆- lim

n→∞
xn = v̄ and we say that

v̄ is the ∆-limit of {xn}.

2.3.3 Geometric properties of Hadamard spaces

The Hadamard spaces which were named after Jacques Hadamard are known as complete
uniquely geodesic metric spaces of nonpositive curvatures and they include Hilbert spaces,
Euclidean spaces (Rn), R-trees, hyperbolic spaces, Hilbert ball, among others. The geom-
etry of Hadamard spaces can be seen as the nonlinearization of the geometry of Hilbert
spaces. Karl Menger [176] introduced the notion of a geodesic in metric spaces and he gen-
eralized classical results in geometry to his new metric space with geodesic. To improve
the work of Menger [176], Wald [258] introduced the notion of two-dimensional curva-
ture in metric spaces. Alexandror [17] also contributed by discovering some interesting
characteristics of the spaces. Over the years, the Hadamard spaces has shown to be an
appropriate framework for the study of optimization problems which has applications in
diverse fields such as economics, engineering and science.

Now we are in the position to present some characterizations and conditions required for
geodesic spaces to be CAT(0) spaces.
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Characterizations of CAT(0) spaces

Gromov [114] coined the term CAT(0) from the initials of three mathematicians where
C stands for Cartan, A stands for Alexandrov and T stands for Toponogov. Precisely,
CAT(0) spaces are spaces of non-positive curvature bounded above by 0.

Definition 2.3.10. A geodesic space is called a CAT(0) space if all geodesic triangles
satisfy the comparison axiom.

Definition 2.3.11. Let △ be a geodesic triangle in X and let △̄ be its comparison triangle
in R2. Then, △ is said to satisfy the CAT(0) inequality, if for all x, y ∈ △ and all
comparison points x̄, ȳ ∈ △̄,

d(x, y) ≤ dR2(x̄, ȳ).

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0)
inequality implies

d2(x, y0) ≤
1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d2(y, z). (2.3.2)

Thus, a geodesic space is a CAT(0) space if and only if it satisfies (2.3.2). It is generally
known that a CAT(0) space is a uniquely geodesic space. Inequality (2.3.2) is known as
the CN inequality of Bruhat and Titis [48].

Definition 2.3.12. A geodesic metric space X is called a CAT(0) space if all geodesic
triangles satisfy the CAT(0) inequality. Equivalently, X is called a CAT(0) space if and
only if it satisfies the CN inequality.

Theorem 2.3.13. (see [33, Theorem 1.3.2]). Let X be a complete metric space. Then
the following are equivalent.

(i) The space X is a CAT(0) space.

(ii) For every pair of points x, y ∈ X, there exists m ∈ X such that for each z ∈ X, we
have that

d2(m, z) ≤ 1

2
d2(x, z) +

1

2
d2(y, z)− 1

4
d2(x, y).

(iii) For every pair of points x, y ∈ X and ϵ > 0, there exists m ∈ X such that for each
z ∈ X, we have that

d2(m, z) ≤ 1

2
d2(x, z) +

1

2
d2(y, z)− 1

4
d2(x, y) + ϵ.

Next, we present the following Theorem which gives equivalent conditions for a geodesic
space to be a CAT(0) space.

Theorem 2.3.14. (see [33, Theorem 1.3.3]). Let X be a geodesic metric space. Then the
following are equivalent:

(i) The space X is a CAT(0) space.
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(ii) For every pair of points x, y, z ∈ X, we have

d2(m,x) ≤ 1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d2(x, z),

where m is the midpoint of [y, z].

(iii) For every geodesic x : [0, 1] → X and every point p ∈ X, we have

d2(p, x1) ≤ (1− t)d2(p, x0) + td2(p, x1)− t(1− t)d2(x0, x1).

(iv) For every x, y, u, v ∈ X, we have

d2(x, u) + d2(y, v) ≤ d2(x, y) + d2(u, v) + 2d(x, v)d(y, u).

(v) For every x, y, u, v ∈ X, we have

d2(x, u) + d2(y, v) ≤ d2(x, y) + d2(y, u) + d2(u, v) + d2(v, x).

Definition 2.3.15. A complete CAT(0) space is an Hadamard space.

2.3.4 Examples of Hadamard spaces

Now, we present some examples of Hadamard spaces;

Example 2.3.16. (Hilbert space)[33]. Hilbert spaces are Hadamard. The geodesics are
the line segments. It is also known that a Banach space is CAT(0) if and only if it is
Hilbert.

Example 2.3.17. (R- trees)[33]. A metric space (X, d) is an R-tree if it is uniquely
geodesic and for every x, y, z ∈ X, we have [x, z] = [x, y] ∪ [y, z] whenever [x, y] ∩ [y, z] =
{y}. Also, all triangles in an R-tree are trivial.

Example 2.3.18. All simply connected Riemannian manifold with non-positive sectional
curvature induced with the Riemannian metric.

2.3.5 Quasilinearization mapping and dual space

The concept of quasilinearization in Hadamard spaces was introduced by Berg and Niko-

laev [41]. They denoted a pair (a, b) ∈ X × X by
−→
ab and called it a vector. Using this

concept, they defined the quasilinearization as a map ⟨·, ·⟩ : (X × X) × (X × X) → R
defined by

⟨
−→
ab,

−→
cd⟩ = 1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, ∀a, b, c, d ∈ X. (2.3.3)

It is easy to verify that ⟨
−→
ab,

−→
ab⟩ = d2(a, b), ⟨

−→
ba,

−→
cd⟩ = −⟨

−→
ab,

−→
cd⟩, ⟨

−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩ +

⟨
−→
eb,

−→
cd⟩ and ⟨

−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, for all a, b, c, d, e ∈ X.
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Definition 2.3.19. The space X is said to satisfy the Cauchy Schwartz inequality, if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d) ∀a, b, c, d ∈ X.

Moreover, a geodesic space is a CAT(0) space if and only if it satisfies the Cauchy-Schwartz
inequality (see [138]).

Using the idea of quasilinearization mapping, Kakavandi and Amini [138] introduced the
concept of dual space of an Hadamard space X as follows:
Consider the map θ : R×X ×X → C(X,R) defined by

θ(t, a, b)(x) = t⟨
−→
ab,−→ax⟩ (t ∈ R, a, b, x ∈ X),

where C(X,R) denotes the space of all continuous real valued functions onX. The Cauchy-
Schwartz inequality implies that θ(t, a, b) is a Lipschitz function with Lipschitz semi-norm
L(θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where

L(φ) = sup
{φ(x)− φ(y)

d(x, y)
: x, y ∈ X, x ̸= y

}
is the Lipschitz semi-norm for any function φ : X → R.

Definition 2.3.20. A pseudometric D on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(θ(t, a, b)− θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

In an Hadamard space (X, d), the pseudometric space (R×X ×X,D) can be considered
as a subset of the pseudometric space of all real valued Lipschitz functions (Lip(X,R), L)
(see [93, 211, 255]).

It is shown in [138] thatD((t, a, b), (s, c, d)) = 0 if and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ for all x, y ∈

X. Thus, D induces an equivalence relation on R×X ×X, where the equivalence class of
(t, a, b) is defined as

[
−→
tab] := {

−→
scd : D((t, a, b), (s, c, d)) = 0}.

Thus, the set X∗ = {[
−→
tab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([
−→
tab], [

−→
scd]) := D((t, a, b), (s, c, d)).

Definition 2.3.21. Let (X, d) be an Hadamard space. Then, the pair (X∗, D) is called
the dual space of (X, d).

Throughout this dissertation, we shall write X∗ for the dual space of an Hadamard space
X.

Remark 2.3.22. [138] The dual of a closed and convex subset of a Hilbert space H with

nonempty interior is an Hadamard space and t(b− a) ≡ [
−→
tab] for all t ∈ R, a, b ∈ H. We

also note that X∗ acts on X ×X by

⟨x∗,−→xy⟩ = t⟨
−→
ab,−→xy⟩, (x∗ = [

−→
tab] ∈ X∗, x, y ∈ X and t ∈ R).
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2.3.6 Some inequalities that characterize Hadamard spaces

Lemma 2.3.23. [194] Let X be a CAT(0) space, x, y, z,∈ X and t ∈ [0, 1]. Then

(a) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z).

(b) d2(tx⊕ (1− t)y, z) ≤ td2(y, z) + (1− t)d2(y, z)− t(1− t)d2(x, y).

(c) d2(tx⊕ (1− t)y, z) ≤ t2d2(x, z) + (1− t)2d2(y, z) + 2t(1− t) ⟨−→xz,−→yz⟩.

2.3.7 Some nonlinear single-valued mappings in Hadamard spaces

Let X be an Hadamard space and C be a nonempty closed and convex subset of X. A
mapping T : C → C is said to be

(i) L-Lipschitzian, if there exists L > 0 such that

d(Tx, Ty) ≤ Ld(x, y), ∀ x, y ∈ C,

(ii) nonexpansive, if

d(Tx, Ty) ≤ d(x, y) ∀ x, y ∈ C,

(iii) quasi-nonexpansive, if F (T ) ̸= ∅ and

d(Tx, y) ≤ d(x, y), ∀x ∈ C and y ∈ F (T ),

(iv) demicontractive, if F (T ) ̸= ∅ and there exists k ∈ (0, 1) such that

d2(Tx, y) ≤ d2(x, y) + kd2(x, Tx), ∀ x ∈ C, ∀ y ∈ F (T ).

(v) quasi-pseudocontractive if F (T ) ̸= ∅ and

d2(Tx, y) ≤ d2(x, y) + d2(x, Tx), ∀ x ∈ C, ∀ y ∈ F (T ). (2.3.4)

Remark 2.3.24. The class of quasi-pseudocontractive mappings includes some nonlinear
mappings like nonexpansive mappings (with nonempty fixed points set), quasi-nonexpansive
mappings and demicontractive mappings.

Example 2.3.25. [186] Let C be the closed interval [0, 1] with the absolute value as norm.
Define T : C → C by

Tx =

{
1
2
, if x ∈ [0, 1

2
]

0, if x ∈ (1
2
, 1].

T is quasi-pseudocontractive but not demicontractive.
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2.3.8 Monotone operators and its resolvents in Hadamard spaces

One of the most important area of nonlinear and convex analysis is the monotone operator
theory. This is due to the role it plays in optimization theory and related mathematical
problems. In this section, we study the concept of monotone operators and its resolvent
in Hadamard spaces.

Definition 2.3.26. Let X be an Hadamard space and X∗ be its dual space. A multivalued
operator A : X → 2X

∗
is monotone if and only if for all x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay,

we have

⟨x∗ − y∗,−→yx⟩ ≥ 0.

A monotone operator A is called a maximal monotone operator if the graph G(A) of A
defined by

G(A) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ A(x)},
is not properly contained in the graph of any other monotone operator.

Definition 2.3.27. The resolvent of a monotone operator A of order λ > 0 is the multi-
valued mapping JAλ : X → 2X

∗
defined by

JAλ x :=

{
z ∈ X

∣∣ [1
λ
−→zx
]
∈ Az

}
. (2.3.5)

The operator A satisfies the range condition if for every λ > 0, D(JAλ ) = X.

The resolvent of monotone operators plays a crucial role in the approximation of solutions
of MIPs. We present some lemmas that relate the fixed points of a resolvent of a monotone
operator and the set of solutions of the MIP (1.2.16).

Lemma 2.3.28. [150] Let X be a CAT(0) space and JAλ be the resolvent of the operator
A of order λ. Then we have that

(a) For any λ > 0, R(JAλ ) ⊂ D(A) and F (JAλ ) = A−1(0), where R(JAλ ) is the range
of JAλ .

(b) If A is monotone, then JAλ is a single-valued and firmly nonexpansive mapping.

(c) If A is monotone and 0 < λ ≤ µ, then d2(JAλ x, J
A
µ x) ≤

µ−λ
µ+λ

d2(x, JAµ x), which implies

that d(x, JAλ x) ≤ 2d(x, JAµ x).

Lemma 2.3.29. [255] Let X be an Hadamard space and A : X → 2X
∗
be a monotone

mapping. Then,

d2(u, JAλ x) + d2(JAλ x, x) ≤ d2(u, x), (2.3.6)

for all u ∈ F (JAλ ), x ∈ X and λ > 0.

29



The Moreau-Yosida resolvent Jfλ : X → X of a proper convex and lower semicontinuous
function f in X is defined by

Jfλ (x) = argmin
y∈X

[
f(y) +

1

2λ
d2(y, x)

]
∀x ∈ X, λ > 0. (2.3.7)

Definition 2.3.30. Let C be a nonempty closed and convex subset of an Hadamard space
X. A mapping T : C → C is said to be ∆-demiclosed, if for any bounded sequence {xn}
in C such that ∆- lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0, then x = Tx.

2.4 Metric and generalized projections

In this section, we introduce and discuss some basic results on metric projection and
present some examples.

Definition 2.4.1. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. For every point x ∈ H, there exists a unique nearest point in C denoted by PCx such
that

∥x− PCx∥ ≤ ∥x− y∥ ∀ x ∈ H and y ∈ C.

The operator PC : H → C is called the metric projection of H onto C.

Lemma 2.4.2. [16] The operator ΠC : X → C is called the generalized projection operator
if it is the solution to the minimization problem

ΠCx = x∗ ⇐⇒ ϕ(x∗, x) = inf
u∈C

ϕ(u, x).

If X is a real Hilbert space then ΠC = PC.

The metric projection PCx is nonexpansive with the following properties;

Proposition 2.4.1. The metric projection is characterized by

⟨x− PCx, y − PCx⟩ ≤ 0 ∀ y ∈ C and x ∈ H. (2.4.1)

The consequences of Proposition 2.4.1 are

(i) the metric projection is firmly nonexpansive, that is

∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy⟩ ∀ x, y ∈ H,

(ii)
∥x− PCx∥2 + ∥y − PCx∥2 ≤ ∥x− y∥2 ∀ x ∈ H and y ∈ C.

(iii) If C is a closed subspace, then PC coincides with the orthogonal projection from H
onto C, that is, x− PCx is orthogonal to C. Hence, for any y ∈ C,

⟨x− PCx, y⟩ = 0.
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We know that the metric projections in Banach and Hadamard spaces have the same
property.

Lemma 2.4.3. [16] Let C be a nonempty, closed and convex subset of a reflexive, strictly
convex and smooth Banach space X . If x ∈ X and q ∈ C, then

q = ΠCx ⇐⇒ ⟨y − q, Jx− Jq⟩ ≤ 0, ∀ y ∈ C (2.4.2)

and

ϕ(y, ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x), ∀ y ∈ C, x ∈ X . (2.4.3)

We are now in the position to present some examples of the metric projection.

Example 2.4.4. If C = {y ∈ H : ∥y − s∥ ≤ α} is a closed ball centered at s ∈ H with
radius α ≥ 0,

PCx =

{
s+ α(x−s)

∥x−s∥ , if x /∈ C
x, if x ∈ C.

Example 2.4.5. Let C = [a, b] be a closed rectangle in Rn, where a = (a1, a2, · · · , an)T
and b = (b1, b2, · · · , bn)T , then for 1 ≤ i ≤ n

(PCx)i =


ai, xi < ai,

xi, xi ∈ [ai, bi],

bi, xi > bi

(2.4.4)

is the metric projection with the ith coordinate.

Example 2.4.6. Let C = {y ∈ H : ⟨s, y⟩ ≤ α} be a closed half space, with s ̸= 0 and
α ∈ R, then

PCx =

{
x− ⟨s,x⟩−α

∥s∥2 s, if ⟨s, x⟩ > α,

x, if ⟨s, x⟩ ≤ α
(2.4.5)

is the metric projection onto C.

Example 2.4.7. Let C = {y ∈ H : ⟨s, y⟩ = α} be a hyperplane, with s ̸= 0 and α ∈ R,
then

PCx = x− ⟨s, x⟩ − α

∥s∥2
s (2.4.6)

is the metric projection onto C.

Example 2.4.8. If C is the range of a m × n matrix A with full column rank, then
PCx = A(A∗A)−1A∗X, where A∗ is the adjoint of A.
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2.4.1 Convex functions

Definition 2.4.9. A function c : H → R is said to be Gâteaux differential at x ∈ H, if
there exists an element denoted by c′(x) ∈ H such that

lim
h→0

c(x+ hv)− c(x)

h
= ⟨v, c′(x)⟩, ∀v ∈ H,

where c′(x) is called the Gâteaux differential of c at x. We say that if for each x ∈ H, c is
Gâteaux differentiable at x, then c is Gâteaux differentiable on H.

Definition 2.4.10. A function c : H → R is called convex, if for all t ∈ [0, 1] and x, y ∈ H,

c(tx+ (1− t)y) ≤ tc(x) + (1− t)c(y).

Remark 2.4.11. We note that in an Hadamard space X, the convex function is defined
by

c(tx⊕ (1− t)y) ≤ tc(x) + (1− t)c(y) ∀x, y ∈ X, t ∈ (0, 1);

Definition 2.4.12. Let X be a geodesic metric space. The function f : D(f) ⊆ X →
R ∪ {+∞} is said to be uniformly convex (see [77]), if there exists a strictly increasing
function ϕ : R+ → R+ such that

f

(
1

2
x⊕ 1

2
y

)
≤ 1

2
f(x) +

1

2
f(y)− ϕ(d(x, y)).

Now, we present an example of a convex function in an Hadamard space.

Example 2.4.13. [35] Let X be an Hadamard space. For a finite number of points
a1, a2, . . . , aN and (w1, w2, . . . , wN) ∈ S (where S is the convex hull of the canonical basis

e1, e2, . . . , eN ∈ RN), the function f : X → R defined by f(x) =
N∑
n=1

wnd
2(x, an) is convex

and continuous.

Definition 2.4.14. A convex function c : H → R is said to be subdifferentiable at a point
x ∈ H if the set

∂c(x) = {u ∈ H | c(y) ≥ c(x) + ⟨u, y − x⟩, ∀y ∈ H} (2.4.7)

is nonempty, where each element in ∂c(x) is called a subgradient of c at x, ∂c(x) is called
the subdifferential of c at x and the inequality in (2.4.7) is called the subdifferential in-
equality of c at x. We say that c is subdifferentiable on H if c is subdifferentiable at each
x ∈ H.
We also note that if c is Gâteaux differentiable at x, then c is subdifferentiable at x, and
∂c(x) = {c′(x)}.

Remark 2.4.15. We note that in a Banach space X with a dual space X ∗, the subdiffer-
ential inequality (2.4.7) is given by

∂c(x) = {u ∈ X ∗ | c(y) ≥ c(x) + ⟨u, y − x⟩, ∀y ∈ X}. (2.4.8)
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Definition 2.4.16. Let H be a Hilbert space. The domain of a function f : H → R∪{+∞}
is defined by D(f) = {x ∈ H : f(x) < +∞}.
The function f : D(f) ⊆ H → R ∪ {+∞} is said to be

(a) proper, if D(f) ̸= ∅;

(b) lower semicontinuous at a point x ∈ D(f), if

f(x) ≤ lim inf
xn→x

f(xn),

(c) weakly lower semicontinuous at a point x ∈ D(f), if

lim inf
n→∞

f(xn) ≥ f(x),

holds for an arbitrary sequence {xn}∞n=0 in H satisfying xn ⇀ x;

(d) weakly upper semicontinuous at a point x ∈ D(f), if

f(x) ≥ lim sup
n→∞

f(xn),

holds for an arbitrary sequence {xn}∞n=0 in H satisfying xn ⇀ x;

Definition 2.4.17. A bifunction f : C × C → R is called

(i) strongly monotone on C if there exists a constant β > 0 such that

f(x, y) + f(y, x) ≤ −β∥x− y∥2, ∀x, y ∈ C;

(ii) monotone on C if
f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) pseudomonotone on C if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0 ∀ x, y ∈ C.

It is easy to see that (i) =⇒ (ii) =⇒ (iii) but the converses are not generally true.

Definition 2.4.18. A function f : C → R is said to be hemicontinuous at y ∈ C, if and
only if

lim
t→0+

f(tx+ (1− t)y) = f(y), for all x ∈ C.
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Nonlinear Multivalued mappings

In this section, we shall denote by P (C), CB(C) and 2C, the family of all nonempty prox-
iminal subsets of C, the family of all nonempty, closed and bounded subsets of C and the
family of all nonempty subsets of C respectively. Let H denote the Hausdorff metric on
CB(C), then for all A,B ∈ CB(C),

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}, (2.4.9)

where d(a,B) = inf
b∈B

∥a−b∥ is the distance from the point a to the subset B. Let T : C → 2C

be a multivalued mapping. A point x ∈ C is called a fixed point of T , if x ∈ Tx while
x ∈ C is called a strict fixed point of T , if Tx = {x}.

Definition 2.4.19. The mapping T : C → 2C is called

� L-Lipschitz, if there exists L > 0 such that

H(Tx, Ty) ≤ L∥x− y∥ ∀ x, y ∈ C,

if L = 1, then T is called nonexpansive, while T is called a contraction if L ∈ [0, 1);

� quasinonexpansive, if F (T ) ̸= ∅ and

H(Tx, p) ≤ ∥x− p∥ ∀ x ∈ C and p ∈ F (T ).

Definition 2.4.20. Let X be a Banach space and B a mapping of X into 2X
∗
. The

effective domain of B denoted by dom(B) is given as dom(B) = {x ∈ X : Bx ̸= ∅}. Let
B : X → 2X

∗
be a multivalued operator on X . Then

(i) The graph G(B) is defined by

G(B) := {(x, u) ∈ X × X : u ∈ B(x)},

(ii) the operator B is said to be monotone if ⟨x−y, u∗−v∗⟩ ≥ 0 for all x, y ∈ dom(A), u∗ ∈
Ax and v∗ ∈ Ay.

(iii) A monotone operator B on X is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator on X .

Let X be a uniformly convex and smooth Banach space with a Gâteaux differential norm
and let B : X → 2X

∗
be a maximal monotone operator. We consider the metric resolvent

of B,

QB
µ =

(
I + µJ−1

X B
)−1

, µ > 0.

It is known that the operatorQB
µ is firmly nonexpansive and the fixed points of the operator

QB
µ are the null points of B (see [152, 153]). The resolvent plays an important role in the

approximation theory for zero points of maximal monotone operators in Banach spaces.
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The following are the properties of the resolvent (see [21])

⟨QB
µ x− x∗, J(x−QB

µ x)⟩ ≥ 0, x ∈ X , x∗ ∈ B−1(0), (2.4.10)

in particular, if X is a real Hilbert space, then

⟨JBµ x− x∗, x− JBµ x⟩ ≥ 0, x ∈ X , x∗ ∈ B−1(0),

where JBµ = (I + µB)−1 is the general resolvent, B−1(0) = {z ∈ X : 0 ∈ Bz} is the set of
null points of B. Also, we know that B−1(0) is closed and convex (see [237]).

Lemma 2.4.21. [44] Let B : H → 2H be a maximal monotone mapping, and A : H → H
be a Lipschitz continuous and monotone mapping. Then the mapping A+B is a maximal
monotone.

2.5 Review on some optimization problems

2.5.1 Variational inequality and fixed point problems

The VIP which was first introduced independently by Fichera [104] and Stampacchia [228]
is a central problem in nonlinear analysis. It provides an effective tool for studying many
interesting problems across several fields of study such as economics, physics, mathematical
programming, among others (see [118, 197] and other references therein). Many authors
have proposed and analyzed several iterative algorithms for solving the VIP (1.2.1) and
other related optimization problems, (see [9, 59, 130, 132, 135, 191, 193, 233, 234, 245, 257],
and references therein).

Definition 2.5.1. [160, 175] Let A : C → X ∗ be an operator. The Minty variational
inequalities (MVI) is a problem of finding a point x∗ ∈ C such that

⟨Ay, y − x∗⟩ ≥ 0, ∀ y ∈ C. (2.5.1)

We denote the set of solution of (2.5.1) by M(C, A). It is known that pseudomonotonicity
implies M(C, A) ̸= ∅ but the converse is not true.

We have the following result showing the relationship between the VIP (1.2.1) and MVI
(2.5.1).

Lemma 2.5.2. [175] Consider the VIP (1.2.1). Suppose the mapping g : [0, 1] → X ∗

defined by g(t) = A(tx+ (1− t)y) for all x, y ∈ C and t ∈ [0, 1] (i.e, g is hemicontinuous),
thenM(C, A) ⊂ V I(C, A). However, if A is pseudomonotone, then V I(C, A) is well defined
and M(C, A) = V I(C, A).

In recent years, authors have paid a lot of attention to developing efficient iterative al-
gorithms for solving VIPs and other related optimization problems in Hilbert, Banach
and Hadamard spaces. When approximating the solution of the VIP (1.2.1) under certain
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conditions, two common methods are used namely; the projection method and the regu-
larized method. To use these methods, a certain level of monotonicity is required from the
cost operator. In this study, we focus on approximating the solution of the VIP (1.2.1)
using the projection method. Several authors have proposed and studied the projection
type algorithms for approximating the solutions of VIPs (1.2.1) (see [9, 156] and other
references therein).

In a real Hilbert space H, the following fixed point theory characterizes the solution set
of the VIP: For λ > 0, a point x∗ is a solution of the VIP if and only if

x∗ = PC(x
∗ − λAx∗),

where PC is the metric projection of H onto C. The simplest algorithm for solving the VIP
(1.2.1) is the gradient projection method given by

Algorithm 2.5.1.

xn+1 = PC(xn − λAxn), n ≥ 1,

where λ > 0. This method involves only one projection onto the feasible set C per iteration.
The weak convergence result of this method was obtained under certain strict conditions.
This method is only effective for solving VIP (1.2.1) when A is either strongly monotone or
inverse strongly monotone. To circumvent this limitation, Korpelevich [155] proposed an
extragradient method for solving the VIP (1.2.1) in Euclidean spaces when A is monotone
and L-Lipschitz continuous. The extragradient method is defined as follows:

Algorithm 2.5.2. {
yn = PC(xn − λAxn), n ≥ 1

xn+1 = PC(xn − λAyn),
(2.5.2)

where λ ∈ (0, 1
L
) and PC is the metric projection from H onto C. If the solution set

V I(C, A) is nonempty, then the sequence {xn} generated by (2.5.2) converges to an el-
ement in V I(C, A). The extragradient method involves two projections onto the feasible
set C per iteration. Computing projection onto an arbitrary closed convex set might be
computationally expensive, which could be a barrier to the implementation of the extra-
gradient method and its variants. To improve on the extragradient method, authors try
to minimize the number of evaluations of the projection map PC per iteration. Censor et.
al [58] initiated a study in this direction and proposed a new method called subgradient
extragradient method. The authors replaced the second projection onto C in Algorithm
(2.5.2) by a projection onto a specific constructible half space to come up with the following
algorithm:

Algorithm 2.5.3.
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x1 ∈ H,
yn = PC(xn − λnAxn),

Tn = {w ∈ H : ⟨xn − λnAxn − yn, w − yn⟩ ≤ 0},
xn+1 = PTn(xn − λnAyn), n ≥ 1,

(2.5.3)

where H is a real Hilbert space. Algorithm (2.5.3) is less computationally expensive and
more efficient than Algorithm (2.5.2). The authors proved that Algorithm (2.5.3) con-
verges weakly to an element in V I(C, A) ̸= ∅. To improve on Algorithm (2.5.3), Tseng
[253] proposed and studied a forward-backward method (also known as Tseng’s extragra-
dient method) which requires only one projection per iteration. The proposed method is
presented as follow:

Algorithm 2.5.4. {
yn = PC(xn − λAxn)

xn+1 = yn − λ(Ayn − Axn), ∀ n ≥ 0,
(2.5.4)

where A is monotone, L-Lipschitz continuous and λ ∈
(
0, 2

L

)
. The author proved that the

sequence {xn} generated by Algorithm (2.5.4) converges weakly to the solution set of VIP
(1.2.1) under the assumption that V I(C, A) ̸= ∅.

The step size of all the algorithms above require prior knowledge of the Lipschitz constant
of the monotone operator, which is often difficult to calculate or estimate. Recently, Yang
and Liu [266] proposed and studied a Tseng’s extragradient method combined with the
Moudafi viscosity scheme, which does not require prior knowledge of the Lipschitz constant
of the monotone operator. The authors proved strong convergence result for the proposed
algorithm. Very recently, Shehu and Iyiola [223] proposed an algorithm which combines
the viscosity method and the subgradient extragradient method for solving the VIP. They
proved that the sequence generated by their algorithm converges strongly to a point in
the solution set under appropriate conditions.

Motivated by the Tseng’s method and the importance of studying the VIPs and FPPs,
Yin et.al [270] proposed and studied a Tseng’s type algorithm where A : H → H is
quasimonotone, Lipschitz continuous and sequentially weakly continuous, and the mapping
T is pseudocontractive. The authors were only able to obtain a weak convergence result
of their method (see Appendix 3.5.17) to some point x∗ ∈ V I(C, A) ∩ F (T ) .

Chidume and Nnakwe [75] extended the study of the subgradient extragradient method
from the framework of a real Hilbert space to the framework of a 2-uniformly convex and
uniformly smooth Banach space. The authors proposed and studied the following method
for solving the VIP (1.2.1):

Algorithm 2.5.5.
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x0 ∈ X ,
yn = ΠCJ

−1(Jxn − τAxn),

Tn = {w ∈ X : ⟨w − yn, Jxn − τAxn − Jyn⟩ ≤ 0},
xn+1 = ΠTnJ

−1(Jxn − τAyn),

(2.5.5)

where ΠC : X → C is the generalized projection of the Banach space, J : X → 2X
∗
the

normalized duality mapping and τ > 0. Using this proposed method, the authors obtained
a weak convergence result.

Recently, Cai et al. [53] proposed an algorithm for solving the variational inequalities
involving monotone and Lipschitz continuous mapping in Banach spaces. The proposed
algorithm by the authors is presented as follows:

Algorithm 2.5.6.

Step 0: Let u ∈ X be a given starting point . Set n = 1.

Step 1: Given the current iterate xn, compute

yn = ΠC(Jxn − λnAxn).

If xn = yn, Stop. Else, construct the set

Tn := {z ∈ X : ⟨Jxn − λnAxn − Jyn, z − yn⟩ ≤ 0}

and compute
zn = ΠTn(Jxn − λnAyn)

and update the next iterate via

xn+1 = J−1(αnJu+ (1− αn)Jzn). (2.5.6)

Step 2: Set n := n+ 1 and go to Step 1.

Where X is a 2-uniformly convex Banach space and X ∗ the dual of X . Under certain
conditions, the authors obtained a strong convergence result for the proposed algorithm.

Recently, Tan et al. [240] proposed an inertial subgradient extragradient method with
a new Armijo type step-size strategy to solve VIP (1.2.1) in real Hilbert spaces when
the underlying operator is pseudomonotone and uniformly continuous. The proposed
algorithm is presented as follows:

Algorithm 2.5.7.

Initialization: Given λ1 > 0, θ > 0, δ > 0, ℓ ∈ (0, 1) and η ∈ (0, 1). Let x0, x1 ∈ H be
arbitrary. Set n := 1.

Iterative Steps: Given the iterates xn−1 and xn for each n ≥ 1, calculate xn+1 as follows;

Step 1: Compute
wn = xn + θn(xn − xn−1),
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where

θn :=

{
min

{
θ, τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(2.5.7)

Step 2: Compute
yn = PC(wn − λnAwn).

If wn = yn or Ayn = 0, then Stop and yn is a solution of the VIP. Otherwise, go to Step
3.

Step 3: Compute
zn = PTn(wn − λnAyn)

where
Tn := {x ∈ H |⟨wn − λnAwn − yn, x− yn⟩ ≤ 0},

λn := δℓmn and mn is the smallest nonnegative integer m satisfying

δℓm⟨Ayn − Awn, yn − zn⟩ ≤
η

2

[
∥wn − yn∥2 + ∥yn − zn∥2

]
.

Step 4: Calculate
xn+1 = αnf(xn) + (1− αn)zn.

Set n := n+ 1 and go to Step 1.

Under some mild conditions, the authors obtained strong convergence result for the pro-
posed algorithm.

2.5.2 Split variational inequality problem

The SVIP which was introduced by Censor et al. [61] can be seen as a pair of VIPs in which
a solution of one VIP occurs in the first space H1 whose image under a given bounded
linear operator A is a solution of the second VIP in the second space H2. Hence, the SVIP
(1.2.4)-(1.2.5) is an interesting combination of the classical VIP and the following SFP
introduced and studied by Censor and Elfving [57]:

Find x ∈ C such that z = Tx ∈ Q, (2.5.8)

where C,Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2

respectively and T : H1 → H2 is a bounded linear operator. Thus, it has wide applications
in many fields such as phase retrieval, medical image reconstruction, signal processing,
radiation therapy treatment planning, among others (for example, see [52, 57, 61–63, 121,
132]).

Censor et al. [63] proposed an iterative algorithm to solve the SVIP when the cost oper-
ators A and F are monotone and Lipschitz continuous. They transformed the SVIP into
an equivalent constrained VIP (CVIP) in the product space H1 × H2 (see [63, Section
4]) and then solved the problem using the well-known subgradient extragradient method

39



[59]. This product space formation has some limitations which include: the difficulty en-
countered when computing the projection onto some new product subspace formulations,
the difficulty encountered when translating the method back to the original spaces H1

and H2, and the fact that it does not fully exploit the splitting structure of the SVIP
(1.2.4)-(1.2.5) (see, for example [63, Page 12]). To circumvent these limitations, Censor
et al. [63] proposed a projection-based method that does not require any product space
formulation. This makes the projection-based method easier to implement. The pro-
posed projection-based method is presented as follows: For x1 ∈ H1, the sequence {xn} is
generated by

xn+1 = PC(I − λA)(xn + ηT ∗(PQ(I − λF )− I)Txn), n ≥ 1, (2.5.9)

where η ∈
(
0, 1

L

)
with L being the spectral radius of T ∗T and T ∗ is the adjoint of T . The

identity operator is denoted by I and PC, PQ are metric projections onto C,Q, respectively.
They obtained a weak convergence of the sequence {xn} generated by (2.5.9) to a solution
of (1.2.4)-(1.2.5) under the condition that the solution set of problem (1.2.4)-(1.2.5) is
nonempty, A,F are L1, L2-co-coercive operators respectively, λ ∈ [0, 2α], where α :=
min{L1, L2}, and for all x which are solutions of (1.2.4),〈

Ay, PC(I − λA)(y)− x
〉
≥ 0, ∀ y ∈ H. (2.5.10)

Observe that Algorithm (2.5.9) does not require the product space formation, thus it fully
exploits the attractive splitting structure of the SVIP (1.2.4)-(1.2.5). However, the authors
obtained a weak convergence of this method under some strong assumptions which are the
fact that both mappings are required to be co-coercive and (2.5.10). Many authors have
studied several methods which do not rely on assumption (2.5.10) for solving SVIP and
other related problems (see for example [131, 145, 183]), but their methods also relied on
the co-coercivity of the cost operators.

In a quest to overcome these limitations, Tian and Jiang [243] proposed an iterative method
and they defined it as follows:

Algorithm 2.5.8. 
yn = PC(xn − τnA

∗(I − S
′
)Txn)

vn = PC(yn − λnAyn)

xn+1 = PC(yn − λnAvn)

(2.5.11)

where {τn} ⊂ [a, b], {λn} ⊂ [c, d] for some c, d ∈
(
0, 1

L

)
, T : H1 → H2 is a bounded

linear operator, S
′
: H2 → H2 is a nonexpansive mapping and A : C → H1 is a mono-

tone and Lipschitz continuous mapping. They obtained a weak convergence result of the
sequence generated by Algorithm (2.5.11) to the following problem; Find

x∗ ∈ C such that ⟨Ax∗, x− x∗⟩, ∀ x ∈ C such that Tx∗ ∈ F (S
′
) (2.5.12)

where F (S
′
) is the set of fixed points of S

′
. Since strong convergence results are more

desirable and more applicable than the weak convergence results in infinite dimensional
spaces, there is need to develop algorithms that generate strong convergence results.
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Tian and Jiang [244] modified Algorithm (2.5.11) into the following viscosity method and
they defined it as follows:

Algorithm 2.5.9.


yn = PC(xn − τnA

∗(I − S
′
)Txn)

vn = PC(yn − λnAyn)

tn = PC(yn − λnAvn)

xn+1 = αnh(xn) + (1− αn)tn

(2.5.13)

where {τn} ⊂ [a, b], {λn} ⊂ [c, d] for some c, d ∈
(
0, 1

L

)
, {αn} ⊂ (0, 1), T : H1 → H2

is a bounded linear operator, S
′
: H2 → H2 is a nonexpansive mapping, h is a contrac-

tion mapping and A : C → H1 is a monotone and Lipschitz continuous mapping. We
observe that the conditions on the underlying operators in Algorithms (2.5.11)-(2.5.13)
do not require the strong co-coercive assumption but involve computation of many pro-
jections which makes them computationally expensive and may affect the efficiency of
Algorithms (2.5.11)-(2.5.13). Algorithms (2.5.11)-(2.5.13) can be used to solve the SVIP
(1.2.4)-(1.2.5) if we set S

′
= PQ(I − λA) and let A be co-coercive. This implies that

when solving the SVIP (1.2.4)-(1.2.5), these methods (Algorithm (2.5.11)-(2.5.13)) still
relies on the co-coercive assumption on the underlying operator A. To weaken the condi-
tion on the underlying operators, Pham et al. [206] combined the Halpern method with
the subgradient extragradient method for solving the SVIP (1.2.4)-(1.2.5) in real Hilbert
spaces when the underlying operators A and F are pseudomonotone and Lipschitz con-
tinuous. The authors obtained a strong convergence result of their proposed method (see
Appendix (4.3.16)) to a solution of the SVIP (1.2.4)-(1.2.5) under the following condi-
tions: lim sup

n→∞
⟨A(xn), y − yn⟩ ≤ ⟨A(x̄), y − ȳ⟩, for every sequences {xn} and {yn} in H1

converging weakly to x̄ and ȳ respectively, and lim sup
n→∞

⟨F (cn), d− dn⟩ ≤ ⟨F (c̄), d− d̄⟩ for

every sequences {cn} and {dn} in H2 converging weakly to c̄ and d̄ respectively.

To accelerate the convergence of iterative methods for solving the SVIP (1.2.4)-(1.2.5), the
inertial and relaxation techniques were employed. This dynamical approach leads to the
following Relaxed Inertial Tseng’s Forward-Backward-Forward (RITFBF) with parameter
ϕn = θh2n, ∀n ≥ 1 (see, for example [25]):

Algorithm 2.5.10.


wn = xn + αn(xn − xn−1)

yn = PC (wn − λnAwn)

xn+1 = (1− ϕn)wn + ϕn (yn + λn(Awn − Ayn)) .

(2.5.14)

When ϕn = 1 and αn = 0 for all n ≥ 1, Algorithm (2.5.14) reduces to the well-known
Tseng’s forward-backward-forward method [253], which is known to converge weakly to a
solution of the classical VIP.
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Given the importance of these two techniques (inertial and relaxation), it is of interest to
consider their combination for solving optimization problems. Attouch and Cabot [26, 27]
employed both techniques into proximal algorithms (resulting to Relaxed Inertial Proxi-
mal Algorithms (RIPA)) for solving convex minimization and null point problems. Also,
Iutzeler and Hendrickx [129] studied the influence of inertial and relaxation techniques on
the numerical performance of iterative schemes.

Remark 2.5.3. Several of the existing methods for solving the SVIP require that the
problem be transformed into a product space problem which does not fully exploit the
splitting structure of the SVIP. Therefore, there is need to develop efficient algorithms
for solving the SVIP which does not require the product space formulation and converges
to the minimum-norm solution of the SVIP. Note that in many practical problems with
physical and engineering backgrounds, it is very important if the minimum-norm solutions
of such problems can be found (see for example, [121, Section 5] and [54, 261]).

2.5.3 Split equalities of equilibrium, variational inequality and
fixed point problems

The EP (1.2.7) has received a lot of attention from several authors due to its application to
problems arising in the field of optimization, economics, physics, variational inequalities,
among others (see for example [194, 200] and other references therein). Several authors
have analyzed and proposed various iterative algorithms for approximating the solution
of the EP and other related optimization problems, (see for example [191, 205, 209] and
other references therein).

The SEP was first proposed by Moudafi [180]. It is used in numerous practical problems
such as game theory, medical image reconstruction, partial differential equation, decom-
position method, among others (see [141, 224, 241]).

If H2 = H3 and F2 = I (I is the identity operator), the equation (1.2.8) reduces to the
SFP proposed by Censor et al. [64] and defined as follows:

Find x ∈ C such that F1x ∈ Q,

where F1 : H1 → H2 is a bounded linear operator. One of the most common method for
solving (1.2.8) is the CQ projection method proposed and studied by Bryne et al. [49].
They defined it as follows:

Algorithm 2.5.11. {
xn+1 = PC(xn − ηnF∗

1 (F1xn −F2yn))

yn+1 = PQ(yn + ηnF∗
2 (F1xn −F2yn)),

(2.5.15)

where ηn ∈
(
ϵ, 2

λF1
+λF2

− ϵ
)
, and λF1 and λF2 are the matrix operator norms ∥F1∥ and

∥F2∥, respectively. Note that the step size ηn in Algorithm (2.5.15) is dependent on the
operator norms, which are difficult and sometimes impossible to compute.
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If C andQ are the sets of fixed points of some nonlinear operators, the SEP (1.2.8) becomes
the split equality common fixed point problem (SECFPP) which is defined as:

Find x ∈ F (T1) and y ∈ F (T2) such that F1x = F2y, (2.5.16)

where F (T1) ̸= ∅ and F (T2) ̸= ∅ are the sets of fixed points of T1 and T2, respectively, T1 :
H1 → H1 and T2 : H2 → H2 are nonlinear mappings and F1 : H1 → H3, F2 : H2 → H3

are bounded linear operators.

If H2 = H3 and F2 = I, then the SECFPP (2.5.16) reduces to the following split common
fixed point problem (SCFPP) introduced by Censor et al. [66]

Find x ∈ F (T1) such that F1x ∈ F (T2).

The SECFPP was first studied by Moudafi et al. [180]. They introduced the following
simultaneous iterative method for solving the SECFPP

Algorithm 2.5.12. {
xn+1 = T1(xn − ηnF∗

1 (F1xn −F2yn))

yn+1 = T2(yn + ηnF∗
2 (F1xn −F2yn)),

(2.5.17)

where ηn ∈
(
ϵ, 2

λF1
+λF2

− ϵ
)
, λF1 and λF2 are the spectral radius of F∗

1F1 and F∗
2F2, re-

spectively, and T1 and T2 are firmly quasi-nonexpansive mappings. We also observe that
the step size of Algorithm (2.5.17) depends on the operator norms. Hence to implement
Algorithm (2.5.17), one has to compute the operator norms of F1 and F2 which are diffi-
cult to compute. Several authors have studied and proposed modifications of Algorithm
(2.5.17) for better implementation (see [177, 180, 272, 273] and other references there in).

Recently, Lopez et al. [115] studied and proposed a method for estimating the step size
which does not require prior knowledge of the operator norms for solving the SFP. Dong
et al. [119] and J. Zhao [271] also proposed new choices of step size which do not require
prior knowledge of the operator norm for solving SECFPP. Zhao [271] studied the SEP
and presented the following step size which guarantees convergence of the iterative method
without prior knowledge of the operator norm of F1 and F2 :

Algorithm 2.5.13.

ηn ∈
(
0,

2∥F1xn −F2yn∥2

∥F∗
1 (F1xn −F2yn)∥2 + ∥F∗

2 (F1xn −F2yn)∥2
)
.

Recently, Latif and Eslamian [159] studied and introduced a new algorithm for finding a
common element of split equalities of EP, monotone VIP with Lipschitz operator and fixed
point problem of nonexpansive semigroups satisfying the uniformly asymptotically regu-
larity (u.a.r) condition in Hilbert spaces. The authors obtained strong convergence result
for the proposed algorithm. However, their proposed algorithm has certain drawbacks.
For instance, their method requires computing two projections each per iteration onto C
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and Q, which makes it computationally expensive to implement. Moreover, the associated
cost operators for the VIP are required to be monotone and Lipschitz continuous and
the step size of the algorithm depends on the Lipschitz constants of these operators. In
addition, the authors needed to impose the uniformly asymptotically regularity condition
on the nonexpansive semigroups to obtain their result. All of these drawbacks limit the
scope of application of their proposed method. Therefore, there is need to develop and
study effective iterative algorithms which does not depend on all the above mentioned
weaknesses.

2.5.4 Variational inclusion and split equilibrium problems

The VqIP has attracted the interest of many researchers due to its application to various
problems arising in optimal control, mathematical economics, convex programming and
other related optimization problems. Specifically, some problems in machine learning,
image processing and linear inverse problems can be modeled mathematically as VqIP
(1.2.9) [1, 10, 65, 86, 90, 111, 195, 256]. Many authors have studied and proposed iterative
algorithms for solving the VqIP (1.2.9). An efficient method for solving the VqIP is the
forward-backward splitting method considered in [11, 13, 39, 82, 86, 132, 161, 165, 203]
and is formulated as follows:

Algorithm 2.5.14.

xn+1 = (I + rD)−1(I − rB)xn, n ≥ 1,

where r > 0, (I − rB) is the forward operator and (I + rD)−1 is the resolvent operator
introduced in [179] and it is also known as the backward operator. This forward-backward
splitting method includes as special cases, the proximal point algorithm [215] and the gra-
dient method. Several authors have studied and extended the forward-backward splitting
methods. Lion and Mercier [161] introduced the Peaceman-Rachford splitting method
[204]

Algorithm 2.5.15.

xn+1 = (2JD1
r − I)(2JD2

r − I)xn, n ≥ 1

and the Douglas-Rachford splitting method [98]

xn+1 = JD1
r (2JD1

r )xn + (I − JD1
r )xn, n ≥ 1,

where JDi
r = (I + rDi)

−1 i = 1, 2, with r > 0. They obtained weak convergence of these
methods. Gibali et al. [108] introduced and studied two modifications of the forward-
backward splitting method with a new step size rule for solving VqIPs in real Hilbert spaces
where the operators are Lipschitz continuous and monotone and maximal monotone. They
obtained strong convergence results for the two methods.
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Alvarez and Attouch [18] employed the heavy ball method which was studied by Polyak
in [208] for maximal monotone operators using the proximal point algorithm. The pro-
posed algorithm combines the inertial technique and the proximal point algorithm. The
algorithm is called the inertial proximal point algorithm and it is defined as follows:

Algorithm 2.5.16. {
yn = xn + θn(xn − xn−1)

xn+1 = (I + rnD)−1yn, n ≥ 1.
(2.5.18)

They obtained a weak convergence of Algorithm 2.5.18 to a zero of B when {rn} is non-
decreasing and {θn} ⊂ [0, 1) with

∞∑
n=1

θn∥xn − xn−1∥2 <∞. (2.5.19)

Moudafi and Oliny [184] proposed an inertial proximal point algorithm for solving the zero
problem of the sum of two monotone operators, which is presented as follows:

Algorithm 2.5.17.{
yn = xn + θn(xn − xn−1)

xn+1 = (I + rnD)−1(yn − rnBxn), n ≥ 1
(2.5.20)

They obtained a weak convergence of Algorithm 2.5.20 to the zero of (B+D) when rn <
2
L
,

L is the Lipschitz constant of B and condition (2.5.19) is satisfied. Note that Algorithm
2.5.20 does not take the form of the forward-backward splitting algorithm if θn > 0 because
B is still evaluated at the point xn.

Recently, Lorenz and Pock [165] proposed the following inertial forward-backward algo-
rithm for monotone operators:

Algorithm 2.5.18.{
yn = xn + θn(xn − xn−1)

xn+1 = (I + rnD)−1(yn − rnByn), n ≥ 1
(2.5.21)

where rn > 0. They obtained a weak convergence analysis for this method. In 2018,
Cholamjiak et al. [83] introduced the following inertial forward-backward splitting algo-
rithm which combines Halpern and Mann iteration methods for solving VqIPs in Hilbert
spaces

Algorithm 2.5.19.{
yn = xn + θn(xn − xn−1)

xn+1 = βnu+ ϵnyn + µnJ
D
λn
(yn − λnByn), n ≥ 1,

(2.5.22)

45



where B : H → H is k-inverse strongly monotone operator and D : H → 2H is a maximal
monotone operator, JDλn = (I + λnD)−1, 0 < λn ≤ 2k, {αn} ⊂ [0, α] with α ∈ [0, 1) and
{βn}, {ϵn} and {un} are sequences in [0, 1] with βn + ϵn + µn = 1 satisfying some certain
conditions. They obtained a strong convergence of Algorithm 2.5.22 to an element in the
solution set.

Kazmi and Rizvi [144] introduced and studied the SEP (1.2.10)-(1.2.11). Observe that
problem (1.2.10) is the classical EP. When viewed separately, (1.2.10)-(1.2.11) are classical
EPs. Thus, SEP constitutes a pair of EPs which have to be solved so that the image y = T x
under a given bounded linear operator T , of the solution of the EP in H1, is a solution of
the other EP in H2.

Many authors have studied the problem of finding a common solution of the VqIP and SEP
due to its importance in solving real world problems whose constraints can be written as
VqIP and SEP. Very recently, Cholamjiak et al. [81] proposed a modified inertial forward-
backward splitting method for solving the SEP and the VqIP, which is presented as follows:

Algorithm 2.5.20.


yn = xn + δn(xn − xn−1)

zn = αnyn + (1− αn)T
F1
rn (I − γA∗(I − T F2

rn )A)yn,

xn+1 = βnzn + (1− βn)J
D
tn(I − tnB)zn, n ≥ 1,

(2.5.23)

where JDtn = (I + tnD)−1, {tn} ⊂ (0, 2α), {δn} ⊂ [0, δ], δ ∈ [0, 1), {rn} ⊂ (0,∞) with
γ ∈ (0, 1

L
) such that L is the spectral radius of A∗A and {αn}, {βn} are sequences in [0, 1].

Under some certain conditions they obtained a weak convergence of Algorithm 2.5.23 to
an element in the solution set (1.2.12). However, it has been pointed out by authors that
the summability condition used in Algorithm 2.5.22 and Algorithm 2.5.23 is a drawback
in their implementation. Another computational weakness of Algorithm 2.5.23 is the fact
that its step size γ depends on the norm of the operator ∥A∥, which in most cases is
unknown or very difficult to calculate or even estimate. Moreover, it is required that the
operator B in Algorithm 2.5.23 and the other algorithms above is co-coercive (inverse
strongly monotone) which is a very stringent condition. These are major drawbacks with
the above algorithms and several existing algorithms in the literature. Therefore, there is
need to develop and study effective iterative algorithms which does not depend on all the
above mentioned weaknesses.

2.5.5 Split monotone variational inclusion and fixed point prob-
lems

In 2011, Moudafi [183] introduced the SMVqIP (1.2.13). If B1 = B2 = 0 then the problem
(1.2.13) reduces to the split variational inclusion problem (SVqIP) defined as follows:

Algorithm 2.5.21.
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Find x∗ ∈ H1, such that 0 ∈ D1(x

∗),

and

y∗ = T x∗ ∈ H2 such that 0 ∈ D2(y
∗),

(2.5.24)

where 0 is the zero vector, H1 and H2 are real Hilbert spaces, D1, D2 : H2 → 2H2 are
multi-valued mappings, T : H1 → H2 is a bounded linear operator. The SVqIP is also
known as the split common null point problem (SCNPP) or the split zero problem (SZP).
It includes as special cases, the split common fixed point problem (SCFFP), the SVIP
and SFP (see [169, 182, 213] and other references therein), and it has wide applications
in different fields such as medical treatment of the intensity-modulated radiation ther-
apy (IMRT), data compression, medical image reconstruction, signal processing, phase
retrieval, among others (for example, see [52, 57, 63]). The SVqIP is considered to be a
central problem in optimization and nonlinear analysis and has attracted the attention of
several researchers because the theory provides a simple, natural and unified framework
for a general treatment of many important mathematical problems such as MPs, network
equilibrium problems, complementary problems, systems of nonlinear equations and others
( see [31, 36, 63, 86, 105, 107, 147, 151, 210, 243] and other references therein).

Byrne et al. [51] proposed and studied the following algorithms for solving the SVqIP for
two maximal monotone operators A and D in Hilbert spaces. Take x0 ∈ H1 such that

Algorithm 2.5.22.

xn+1 = JAµ (xn + λT ∗(JDµ − I)Txn) (2.5.25)

and

xn+1 = αnx0 + (1− αn)J
A
µ (xn + λT ∗(JDDµ − I)Txn) (2.5.26)

for µ > 0, T ∗ the adjoint of T , λ ∈
(
0, 2

L

)
, L = ∥T ∗T∥ and JAµ := (I + µA)−1, JDµ := (I +

µD)−1 are the resolvent operators of A and D, respectively. Under certain conditions, the
authors obtained a weak convergence result for Algorithm 2.5.25 and a strong convergence
result for Algorithm 2.5.26.

Moudafi [181] first introduced the viscosity approximation method which is defined as :
Choose x0 ∈ H such that the sequence {xn} is generated by

xn+1 = αnf(xn) + (1− αn)Sxn, ∀n ≥ 1, (2.5.27)

where {αn} ⊂ (0, 1) and f is a contraction mapping. He proved that the sequence {xn}
generated by (2.5.27) converges strongly to a fixed point of a nonexpansive mapping S
under some suitable control conditions.

Very recently, Suantai et al. [229] proposed the following viscosity iterative scheme to
approximate the solution of SVqIP between a Banach space X and a Hilbert space H :
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Algorithm 2.5.23.

xn+1 = αnf(xn) + βnxn + γnJ
A
λn(xn + λnT

∗JX (Q
D
µ − I)Txn), ∀n ≥ 1, (2.5.28)

where {µn}, {λn} ⊂ (0,∞), {αn}, {βn}, {γn} ⊂ (0, 1) and αn + βn + γn = 1, f : H → H
is a contraction, JX is the duality mapping on X , JAλ is the resolvent of A for λ > 0, QD

µ

is the metric resolvent of D for µ > 0. They proved that the sequence {xn} defined by
(2.5.28) converges strongly to a solution of the SVqIP under some certain conditions.

Many problems in sciences and engineering can be formulated as a problem of finding the
solution of a FPP of a nonlinear mapping.

Motivated by the work of Byrne et al. [51], Kazmi and Rizvi [141] proposed the following
algorithm for approximating a solution of SVqIP which is also a fixed point of nonexpansive
mapping.

Theorem 2.5.4. [141] Let H1 and H2 be two real Hilbert spaces and T : H1 → H2 be
a bounded linear operator. Let f : H1 → H1 be a contraction mapping with constant
ρ ∈ (0, 1) and S : H1 → H1 be a nonexpansive mapping. For x0 ∈ H1, let the sequences
{un} and {xn} be generated by

Algorithm 2.5.24. {
un = JBr (xn + λT ∗(JCr − I)Txn),

xn+1 = αnf(xn) + (1− αn)Sun, n ≥ 0,
(2.5.29)

where r > 0 and λ ∈
(
0, 1

L

)
, L is the spectral radius of the operator T ∗T and T ∗ is

the adjoint of T, {αn} is a sequence in (0, 1) such that lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞ and

∞∑
n=0

|αn − αn−1| < ∞. Then the sequence {un} and {xn} both converge strongly to an

element in the solution set.

Remark 2.5.5. All the above algorithms for solving SVqIP have a common feature, which
is also their computational weakness. It is the fact that their step size λ (or λn) depends
on the norm of the operator ∥T∥, which in most cases is unknown or very difficult to
calculate or even estimate. This is a major drawback of the algorithms and several ex-
isting algorithms in the literature. Therefore, there is need to develop efficient iterative
algorithms (where the step size does not depend on the operator norm) for approximating
the common solution of the SVqIP and FPP.

2.5.6 Minimization and fixed point problems

A well-known and powerful method for finding solutions of MPs is the proximal point
algorithm (PPA), which was introduced in Hilbert spaces by Martinet [174] and further
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developed by Rockafellar [215] who proved that the PPA converges weakly to a minimizer
of f . Rockafellar [215] then posed a question as to whether the PPA converges strongly
or not without additional assumptions, and this question was resolved in the negative by
Güler’s counter example (see [113]). To obtain strong convergence of the PPA, Kamimura
and Takahashi [140] incorporated the Halpern iterative method into the PPA and proved
a strong convergence of the resulting sequence to a minimizer of f.

The study of the PPA in spaces with nonlinearity plays crucial role in the branch of
analysis and geometry. For instance, the PPA in Hadamard spaces (nonlinear version of
Hilbert spaces) are known to have applications in computational phylogenetics, consensus
algorithms, modeling of airway systems in human lungs and blood vessels, computing of
medians and means, among others (see [33–35, 103] and the references therein). The PPA
was first studied in Hadamard spaces by Bačák [34] in 2013, as an extension from the
classical linear spaces (for example, Euclidean and Hilbert spaces): For a starting point
x1 ∈ X, define {xn} by

Algorithm 2.5.25.

xn+1 = argmin
y∈X

(
f(y) +

1

2λn
d2(y, xn)

)
, (2.5.30)

for each n ∈ N, where λn > 0 for all n ∈ N. Under the conditions that f has a minimizer
in X and

∑∞
n=1 λn = ∞, Bačák [34] proved that {xn} ∆-converges to a minimizer of f .

Later in 2015, Cholamjiak [79] modified the PPA (2.5.30) into the following Halpern-type
PPA and proved that it converges strongly to a minimizer of f in an Hadamard space:

Algorithm 2.5.26. {
yn = argmin

y∈X
(f(y) + 1

2λ
d2(y, xn)),

xn+1 = αnu⊕ (1− αn)yn, n ≥ 1,
(2.5.31)

where λ > 0, {αn} ⊂ (0, 1), lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞. In the same year, Cholamjiak

et al. [80] proposed the following modified PPA by using the S-type iteration process for
solving MP (2.4.4) and FPP for two nonexpansive mappings in CAT(0) spaces:

Algorithm 2.5.27. 
zn = argmin

y∈X
[f(y) + 1

2λn
d2(y, xn)],

yn = (1− βn)xn ⊕ βnT1zn,
xn+1 = (1− ηn)T1xn ⊕ ηnT2yn,

(2.5.32)

where T1 and T2 are nonexpansive mappings on X, {ηn}, {βn} are sequences in (0, 1)
and {λn} ⊂ (0,∞). They obtained a weak convergence result of Algorithm (2.5.32),
and under some compactness conditions, they obtained some strong convergence results.
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By combining the PPA with the Noor iteration process [189], Thounthong et al. [252]
proposed the following method for finding a common element of the set of fixed points
of three nonexpansive mappings and the set of minimizers of lower semicontinuous and
convex function in Hadamard spaces:

Algorithm 2.5.28. 
zn = argmin

y∈X
[f(y) + 1

2λn
d2(y, xn)],

wn = (1− ηn)xn ⊕ ηnT1zn,
yn = (1− βn)xn ⊕ βnT2wn,
xn+1 = (1− ξn)xn ⊕ ξnT3yn,

(2.5.33)

where λn > 0 for all n ∈ N, {ηn}, {βn}, {ξn} are sequences in (0, 1) and Ti(i = 1, 2, 3) are
nonexpansive mappings. They also obtained a weak convergence result and some strong
convergence results under some compactness conditions.

In 2017, Suparatulatorn et al. [232] proposed the following Halpern-type proximal point
algorithm for approximating a common solution of MP and FFP for a nonexpansive map-
ping in an Hadamard space: For arbitrary u, x1 ∈ X, define the sequence {xn} iteratively
by

Algorithm 2.5.29.

{
yn = argmin

y∈X
[f(y) + 1

2λn
d2(y, xn)],

xn+1 = αnu⊕ (1− αn)Tyn n ≥ 1,
(2.5.34)

where {αn} ⊂ (0, 1) and λn ≥ λ > 0. They obtained a strong convergence result with-
out the compactness condition. Later in 2018, Cuntavepanita and Phuengrattana [91]
extended the results of Suparatulatorn et al. [232] from one nonexpansive mapping to
a finite family of nonexpansive mappings. They obtained a weak convergence result and
under some compactness assumption, they obtained some strong convergence results.

Just recently, Chang et al. [70] proposed the following iterative algorithm for approxi-
mating a common solution of a finite family of MPs and FFP for two demicontractive
mappings in Hadamard spaces:

Algorithm 2.5.30. 
un = Smλ (xn),
yn = (1− βn)un ⊕ βnK1un,
xn+1 = (1− ηn)un ⊕ ηnK2yn, n ≥ 1,

(2.5.35)

where Ki(x) := δx⊕(1−δ)Tix, x ∈ C, i = 1, 2, Sjλ := J
fj
λ ◦Jfj−1

λ ◦, · · · , ◦Jf2λ ◦Jf1λ , j =
1, 2, · · · ,m. λ > 0, {ηn} and {βn} are sequences in (0, 1) with 0 < a ≤ ηn, βn < b <
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1. Chang et al. [70] obtained a weak convergence result and under some compactness
assumption, they obtained some strong convergence results.

Another effective iterative method for finding solutions of MPs is the viscosity implicit
method (VIM). Many authors have obtained convergence results using the VIM in more
general spaces (see [137, 264] and other references therein). This study has also been
extended to the Hadamard space (see [265]) and like every other type of iterative method,
the PPA type of VIM has also been studied in this setting. In 2015, Xu et. al. [263] applied
the VIM to the implict midpoint rule (IMR) for nonexpansive mappings in Hilbert spaces
and proposed a viscosity implicit midpoint rule (VIMR). They proved that the sequence
generated converges strongly under suitable conditions to a fixed point of the nonexpansive
mapping which is also a solution of the variational inequality.

Recently, Ahmad and Ahmad [4] proposed a VIM of IMR in Hadamard space and they
defined it as follows;

Algorithm 2.5.31.  wn = xn⊕ xn+1

2
,

yn = αn(wn)⊕ βng(wn)⊕ τnT (wn),
xn+1 = T (yn),

(2.5.36)

where {αn}, {βn} and {τn} are sequences in (0, 1), g is a contraction with a coefficient
θ ∈ [0, 1) and T is a nonexpansive mapping on D. They also obtained a strong convergence
of (2.5.36) to a fixed point of the nonexpansive mapping.

Remark 2.5.6. Besides the above mentioned works which mainly motivated our study of
MPs in Hadamard spaces, there are very few other results on MPs in Hadamard spaces.
Thus, it is very important to further develop and generalize this study in Hadamard spaces.

2.5.7 Some important lemmas

Lemma 2.5.7. [234] For each x1, · · · , xm ∈ H and α1, · · · , αm ∈ [0, 1] with
m∑
i=1

αi = 1,

the equality

∥α1x1 + · · ·+ αmxm∥2 =
m∑
i=1

αi∥xi∥2 −
∑

1≤i<j≤m

αiαj∥xi − xj∥2

holds.

Lemma 2.5.8. [89] Assume that A : H → H is a continuous and pseudomonotone oper-
ator. Then, x is a solution of (1.2.1) if and only if ⟨Ay, y − x⟩ ≥ 0, ∀y ∈ C.

Theorem 2.5.9. [124, Theorem 2.3]. Let p ∈ [1,∞) be a rational number except for
p = 1, 2. Unless P = NP , there is no algorithm which computes the p-norm of a matrix
with entries in {−1, 0, 1} to relative error with running time polynomial in the dimensions.
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Lemma 2.5.10. [261, Theorem 4.1] Assume that the solution set V I(A, C) of the classical
VIP (1.2.1) is nonempty and C is defined as C := {x ∈ H | c(x) ≤ 0}, where c : H → R is
a continuously differential convex function. Let p ∈ C. Then, p ∈ V I(A, C) if and only if
either

(i) Ap = 0, or

(ii) p ∈ ∂C and there exists ρ > 0 such that Ap = −ρc′(p), where ∂C denotes the boundary
of C.

Following Attouch and Cabot [29, pages 5, 10], we note that if xn+1 = xn+ θn(xn−xn−1),
then for all n ≥ 1, we have that

xn+1 − xn =

(
n∏
j=1

θj

)
(x1 − x0),

which implies that

xn = x1 +

(
n−1∑
j=1

l∏
j=1

θj

)
(x1 − x0).

Thus, {xn} converges if and only if x1 = x0 or if
∞∑
l=1

l∏
j=1

θj <∞.

Therefore, we assume henceforth that

∞∑
l=i

(
l∏
j=i

θj

)
<∞ ∀i ≥ 1. (2.5.37)

Hence, we can define the sequence {ti} in R by

ti :=
∞∑

l=i−1

(
l∏
j=i

θj

)
= 1 +

∞∑
l=i

(
l∏
j=i

θj

)
, (2.5.38)

with the convention
i−1∏
j=i

θj = 1 ∀i ≥ 1.

Remark 2.5.11. (See also [29]).
Assumption (2.5.37) ensures that the sequence {ti} given by (2.5.38) is well-defined, and

ti = 1 + θiti+1, ∀i ≥ 1. (2.5.39)

The following proposition provides a criterion for ensuring assumption (2.5.37).

Proposition 2.5.32. [29, Proposition 3.1] Let {θn} be a sequence such that θn ∈ [0, 1)
for every n ≥ 1. Assume that

lim
n→∞

(
1

1− θn+1

− 1

1− θn

)
= c,

for some c ∈ [0, 1). Then,
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(i) assumption (2.5.37) holds, and tn+1 ∼ 1
(1−c)(1−θn) as n→ ∞,

(ii) the equivalence 1 − θn ∼ 1 − θn+1 holds true as n → ∞. Hence, tn+1 ∼ tn+2 as
n→ ∞.

Remark 2.5.12. Using Proposition 2.5.32, we can see that θn = 1− θ̄
n
, θ̄ > 1, is a typical

example of a sequence satisfying assumption (2.5.37).
Indeed, we have that

lim
n→∞

(
1

1− θn+1

− 1

1− θn

)
= lim

n→∞

(
1

θ̄
(n+ 1)− 1

θ̄
n

)
=

1

θ̄
∈ [0, 1),

which satisfies the assumption of Proposition 2.5.32. Hence by Proposition 2.5.32(i),
assumption (2.5.37) holds.

It is worthy of note that the example θn = 1− θ̄
n
, θ̄ > 1, falls within the setting of Nesterov’s

extrapolation methods. In fact, many practical choices for θn satisfy assumption (2.5.37)
(for instance, see [29, 40, 68, 187]).

The corresponding finite sum expression for {ti} is defined for i, n ≥ 1, by

ti,n :=


n−1∑
l=i−1

(
l∏
j=i

θj

)
= 1 +

n−1∑
l=i

(
l∏
j=i

θj

)
, i ≤ n,

0, otherwise.

(2.5.40)

In the same manner, we have that {ti,n} is well-defined and

ti,n = 1 + θiti+1,n ∀i ≥ 1, n ≥ i+ 1. (2.5.41)

The sequences {ti} and {ti,n} are very crucial to our convergence analysis. In fact, their
effect can be seen in the following lemma which also plays a crucial role in establishing
our convergence results.

Lemma 2.5.13. [29, page 42, Lemma B.1]. Let {an}, {θn} and {bn} be sequences of real
numbers satisfying

an+1 ≤ θnan + bn for every n ≥ 1.

Assume that θn ≥ 0 for every n ≥ 1.

(a) For every n ≥ 1, we have

n∑
i=1

ai ≤ t1,na1 +
n−1∑
i=1

ti+1,nbi,

where the double sequence {ti,n} is defined by (2.5.40).
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(b) Under (2.5.37), assume that the sequence {ti} defined by (2.5.38) satisfies
∞∑
i=1

ti+1[bi]+ <

∞. Then, the series
∑
i≥1

[ai]+ is convergent, and

∞∑
i=1

[ai]+ ≤ t1[a1]+ +
∞∑
i=1

ti+1[bi]+ ,

where [t]+ := max{t, 0} for any t ∈ R.

Lemma 2.5.14. [29, page 7, Lemma 2.1]. Let {xn} be a sequence in H and {θn} be a
sequence of real numbers. Given z ∈ H, define the sequence {Γn} by Γn := 1

2
∥xn − z∥2.

Then

Γn+1 − Γn − θn(Γn − Γn−1) =
1

2
(θn + θ2n)∥xn − xn−1∥2 + ⟨xn+1 − wn, wn − z⟩

+
1

2
∥xn+1 − wn∥2, (2.5.42)

where wn = xn + θn(xn − xn−1).

The following lemmas are well-known.

Lemma 2.5.15. Let {xn} be any sequence in H such that xn ⇀ x. Then,

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,∀y ̸= x.

Lemma 2.5.16. [122] Let C be a closed convex set in H, f be a real-valued function on
H and define K := {x ∈ C : h(x) ≤ 0}. If K is nonempty and h is Lipschitz continuous
on C with modulus L > 0, then

dist(x,K) ≥ L−1max {f(x), 0}, ∀x ∈ C,

where dist(x,K) denote the distance function from x to K.

Lemma 2.5.17. [264] Let H be a real Hilbert space and S : H → H be a nonexpansive
mapping with F (S) ̸= ∅. If {xn} is a sequence in H converging weakly to x∗ and {(I−S)xn}
converges strongly to y, then (I − S)x∗ = y.

Lemma 2.5.18. [221] Let C ⊆ H be a nonempty, closed and convex subset of a real Hilbert
space H. Let u ∈ H be arbitrarily given, z := PCu, and Ω := {x ∈ H : ⟨x− u, x− z⟩ ≤ 0}.
Then Ω ∩ C = {z}.

Lemma 2.5.19. Let X be a smooth, strictly convex and reflexive Banach space. Let C be
a nonempty, closed and convex subset of X , and let x1 ∈ X and z ∈ C. Then, z = PCx1 if
and only if

⟨z − y, JX (x1 − z)⟩ ≥ 0, ∀y ∈ C.

Lemma 2.5.20. [164] Let X be a real Banach space. Let B : X → 2X be a maximal
monotone operator and A : X → X be a k-inverse strongly monotone mapping on X .
Define Tλ = (I + λB)−1(I − λA), λ > 0. Then we have
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(i) F (Tλ) = (A+B)−1(0);

(ii) for 0 < s ≤ λ and x ∈ X , ∥x− Tsx∥ ≤ 2∥x− Tλx∥.

Lemma 2.5.21. [128] Let X be a 2-uniformly convex Banach space and X ∗ the dual space
of X . Suppose A : X → X ∗ is uniformly continuous on bounded subsets of X and B is a
bounded subset of X . Then A(B) is bounded.

Lemma 2.5.22. [20] Suppose X is a 2- uniformly convex Banach space. Then there exists
µ ≥ 1 such that

ϕ(x, y) ≥ 1

µ
∥x− y∥2, ∀ x, y ∈ X ,

where µ is the 2-uniform convexity constant of X . If X is a Hilbert space, then µ = 1.

Lemma 2.5.23. [95] Let x ∈ X and ψ ≥ σ > 0. The following inequality holds;

∥x− ΠCJ
−1(x− ψAx)∥
ψ

≤ ∥x− ΠCJ
−1(x− σAx)∥
σ

.

Lemma 2.5.24. [139] Let X be a smooth and uniformly convex real Banach space. Let
{xn} and {yn} be two sequences in X . If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0,
as n→ ∞, then ∥xn − yn∥ → 0, as n→ ∞.

Lemma 2.5.25. [196] Let X be an Hadamard space and f : X → (−∞,∞] be a proper
convex and lower semi-continuous function. Then, d2(Jfλx, x) ≤ d2(Jfµx, x) for 0 < λ < µ
and x ∈ X.

Lemma 2.5.26. [196] Let X be an Hadamard space and fj : X → (−∞,∞], j =
1, 2, · · · ,m be a finite family of proper, convex and lower semicontinuous functions. If

0 < λ < µ and
(
∩mj=1F

(
J
(j)
µ

))
̸= ∅. Then,

F
(
Πm
j=1J

(j)
µ

)
⊆
(
∩mj=1F

(
J
(j)
λ

))
,

where, Πm
j=1J

(j)
µ = J

(1)
µ ◦ J (2)

µ ◦ · · · ◦ J (m)
µ .

Lemma 2.5.27. [158] Let X be an Hadamard space and f : X → (−∞,∞] be a proper,
convex and lower semicontinuous function. Then, for all x, y ∈ X and λ > 0, we have

1

2λ
d2(Jfλx, y)−

1

2λ
d2(x, y) +

1

2λ
d2(x, Jfλx) + f(Jfλx) ≤ f(y).

Lemma 2.5.28. [93] Let X be a CAT(0) space, {v1, v2, · · · , vN} ⊂ X and {λ1, λ2, · · · , λN} ⊂

(0, 1) with
N∑
i=1

λi = 1. Then,

d

(
N∑
i=1

⊕λivi, x

)
≤

N∑
i=1

λid(vi, x) for each x ∈ X.
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Remark 2.5.29. [93] For a CAT(0) space X, if {xi, i = 1, 2, . . . , N} ⊂ X, and αi ∈
(0, 1), i = 1, 2, . . . , N . Then by induction, we can write

N∑
i=1

⊕αixi := (1− αN)
N−1∑
i=1

⊕ αi
1− αN

xi ⊕ αNxN . (2.5.43)

Lemma 2.5.30. Let X be a CAT(0) space, {v1, v2, · · · , vN} ⊂ X and {λ1, λ2, · · · , λN} ⊂

(0, 1) with
N∑
i=1

λi = 1. Then,

d2

(
N∑
i=1

⊕λivi, x

)
≤

N∑
i=1

λid
2(vi, x)−

N∑
i,j=1,i ̸=j

λiλjd
2(vi, vj).

Lemma 2.5.31. [194] Every bounded sequence in an Hadamard space has a △-convergence
subsequence.

Lemma 2.5.32. [94] Let C be a nonempty convex subset of a CAT(0) space X and x ∈ X.
Then, u = PCx if and only if ⟨−→ux,−→uy⟩ ≤ 0 ∀y ∈ C, where PC is the metric projection of
X onto C.

Lemma 2.5.33. [255] Let X be an Hadamard space and T : X → X be a nonexpansive
mapping. Then T is a △- demiclosed.

Lemma 2.5.34. [242] Suppose {λn} and {θn} are two nonnegative real sequences such
that

λn+1 ≤ λn + ϕn, ∀n ≥ 1.

If
∑∞

n=1 ϕn <∞, then lim
n→∞

λn exists.

Lemma 2.5.35. [166] Let {an} be a sequence of nonnegative real numbers satisfying the
following

an+1 ≤ (1− βn)an + τn + γn, n ≥ 1,

where {βn} is a sequence in (0, 1) and {τn} is a real sequence. Suppose that
∞∑
n=1

γn < ∞

and τn ≤ βnM for some M > 0. Then, {an} is a bounded sequence.

Lemma 2.5.36. [9] Let {an} be a sequence of non-negative real numbers, {γn} be a se-

quence of real numbers in (0, 1) with conditions
∞∑
n=1

γn = ∞ and {dn} be a sequence of real

numbers. Assume that

an+1 ≤ (1− γn)an + γndn, n ≥ 1.

If lim sup
k→∞

dnk
≤ 0 for every subsequence {ank

} of {an} satisfying lim inf
k→∞

(ank+1 − ank
) ≥ 0,

then lim
n→∞

an = 0.
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CHAPTER 3

Results on Variational Inequality and Fixed Point Problems

3.1 Introduction

In this chapter, we present our results on monotone VIP and FPP of an infinite family
of strict pseudo-contractive mappings in the real Hilbert space and apply these results to
solve other nonlinear problems. Furthermore, using the projection technique, we present
our results on VIP for a quasimonotone and Lipschitz operator in a real Hilbert space.
Also, we present our result on quasimonotone VIP and FPP of a quasi pseudocontractive
mapping in the real Hilbert space. We provide some numerical experiments of our proposed
methods in comparison to other existing methods in the literature.

3.2 Preliminaries

Lemma 3.2.1. [276] Let C be a nonempty closed convex subset of a real Hilbert space H
and S : C → C be a k-strict pseudo-contractive mapping. Define a mapping T : C → C by
Tx = αx + (1 − α)Sx for all x ∈ C and α ∈ [k, 1). Then T is a nonexpansive mapping
such that F (T ) = F (S).

Lemma 3.2.2. [239] Assume that A : H → H is a continuous and monotone operator.
Then, x is a solution of the classical VIP (1.2.1) if and only if x is a solution of the
following problem:
Find x ∈ C such that

⟨Ay, y − x⟩ ≥ 0, ∀y ∈ C.

Definition 3.2.3. [259] Let {Sn} be a sequence of kn-strict pseudo-contractions. Define
S ′
n = tnI + (1 − tn)Sn, tn ∈ [kn, 1). Then, by Lemma 3.2.1, S ′

n is nonexpansive. In this
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work, we consider the mapping Wn defined by

Un,n+1 = I,

Un,n = ζnS
′
nUn,n+1 + (1− ζn)I,

Un,n−1 = ζn−1S
′
n−1Un,n + (1− ζn−1)I,

· · · ,
Un,k = ζkS

′
kUn,k+1 + (1− ζk)I,

Un,k−1 = ζk−1S
′
k−1Un,k + (1− ζk−1)I,

· · · ,
Un,2 = ζ2S

′
2Un,3 + (1− ζ2)I,

Wn = Un,1 = ζ1S
′
1Un,2 + (1− ζ1)I.

(3.2.1)

where {ζi} is a sequence of real numbers such that 0 ≤ ζi ≤ 1 for all i ≥ 1. For each n ≥ 1,
such a mapping Wn is nonexpansive.

We have the following lemmas relating to the mapping Wn, which are needed in proving
our main results.

Lemma 3.2.4. [225] Let C be a nonempty closed convex subset of a strictly convex Banach
space X . Let {S ′

i} be an infinite family of nonexpansive mappings of C into itself such that⋂∞
i=1 F (S

′
i) ̸= ∅ and {ζi} be a real sequence such that 0 < ζi ≤ b < 1 for all i ≥ 1. Then

we have the following:

(1) Wn is nonexpansive and F (Wn) =
⋂n
i=1 F (S

′
i) for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, then lim
n→∞

Un,kx exists;

(3) the mapping W of C into itself defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x for all x ∈ C (3.2.2)

is a nonexpansive mapping satisfying F (W ) =
⋂∞
i=1 F (S

′
i), which is called the modi-

fied W -mapping generated by S ′
1, S

′
2, · · · , ζ1, ζ2, · · · and t1, t2, · · · .

By combining Lemma 3.2.1 and Lemma 3.2.4, it follows that F (W ) =
⋂∞
i=1 F (S

′
i) =⋂∞

i=1 F (Si).

Lemma 3.2.5. [69] Let C be a nonempty closed convex subset of a strictly convex Banach
space X . Let {S ′

i} be an infinite family of nonexpansive mappings of C into itself such that⋂∞
i=1 F (S

′
i) ̸= ∅ and {ζi} be a real sequence such that 0 < ζi ≤ b < 1 for all i ≥ 1, where b

is a positive real number. If K is any bounded subset of C, then

lim
n→∞

sup
x∈K

||Wx−Wnx|| = 0.

Lemma 3.2.6. [276] If S is a k-strict pseudo-contraction on closed convex subset C of a
real Hilbert space H, then I − S is demiclosed at any point y ∈ H.
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Let V I(C, A) be the solution set of problem (1.2.1) and Γ be the solution set of the following
problem:

Find x ∈ C such that ⟨Ay, y − x⟩ ≥ 0, ∀y ∈ C. (3.2.3)

Then, Γ is a closed and convex subset of C, and since C is convex and A is continuous, we
have the following relation

Γ ⊆ V I(C, A). (3.2.4)

Lemma 3.2.7. [269] Let C be a nonempty closed and convex subset of H. If either

(i) A is pseudomonotone on C and V I(C, A) ̸= ∅,

(ii) A is the gradient of G, where G is a differential quasiconvex function on an open set
K ⊃ C and attains its global minimum on C,

(iii) A is quasimonotone on C, A ̸= 0 on C and C is bounded,

(iv) A is quasimonotone on C, A ̸= 0 on C and there exists a positive number r such
that, for every x ∈ C with ∥x∥ ≥ r, there exists y ∈ C such that ∥y∥ ≤ r and
⟨Ax, y − x⟩ ≤ 0,

(v) A is quasimonotone on C, int C is nonempty and there exists x∗ ∈ V I(C, A) such that
Ax∗ ̸= 0.

Then, Γ is nonempty.

Lemma 3.2.8. [71] Let H be a real Hilbert space and T : H → H be an L-Lipschitz
mapping with L ≥ 1 such that for all x ∈ H,

K := (1− ζ)I + ζT ((1− η)I + ηT ). (3.2.5)

If 0 < ζ < η < 1
1+

√
1+L2 , then the following conditions hold:

(a) F (T ) = F (T ((1− η)I + ηT )) = F (K);

(b) if I − T is demiclosed at 0, then I −K is also demiclosed at 0;

(c) if T is a quasi-pseudocontractive mapping, then K is a quasi-nonexpansive mapping.

3.3 Common solution of the variational inequality and

the fixed point problems

In this section, we propose and study new inertial viscosity Tseng’s extragradient al-
gorithms with self-adaptive step size to solve the VIP and the FPP in Hilbert spaces.
Our proposed methods involves a projection onto a halfspace and self-adaptive step size.
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We prove that the sequence generated by our proposed methods converges strongly to a
common solution of the VIP and FPP of an infinite family of strict pseudo-contractive
mappings in Hilbert spaces under some mild assumptions when the underlying operator is
monotone and Lipschitz continuous. Furthermore, we apply our results to find a common
solution of VIP and ZPP for an infinite family of maximal monotone operators. Finally,
we provide some numerical experiments of the proposed methods in comparison with other
existing methods in the literature.

3.3.1 Proposed method

In this section, we present the following method with self-adaptive step size for solving
the VIP (1.2.1) and the FPP (1.1.1).

Assumption 3.3.1. Suppose that the following conditions hold:

Condition A:

(A1) The feasible set C is given by

C = {x ∈ H : h(x) ≤ 0},

where h : H → R is a convex and subdifferentiable function on C.

(A2) h is weakly lower semicontinuous.

(A3) For any x ∈ H, at least one subgradient ξ ∈ ∂h(x) can be calculated, where ∂h(x) is
defined as follows

∂h(x) = {z ∈ H : h(u) ≥ h(x) + ⟨u− x, z⟩, ∀u ∈ H}.

In addition, ∂h(x) is bounded on bounded sets.

(A4) Define the set Cn by the following half-space

Cn = {x ∈ H : h(wn) + ⟨ξn, x− wn⟩ ≤ 0},

where ξn ∈ ∂h(wn). By the definition of the subgradient, it is clear that C ⊆ Cn.

Condition B:

(B1) A : H → H is monotone and Lipschitz continuous with Lipschitz constant L > 0.

(B2) The solution set Γ := {z ∈ V I(A, C)
⋂
∩∞
i=1F (Si)} is nonempty, where Si : H → H

is an infinite family of ki-strict pseudo-contractions.

(B3) D : H → H is a strongly positive bounded linear operator with the coefficient γ2.

(B4) f : H → H is a contraction with the coefficient ρ ∈ (0, 1) and 0 < γ1 <
γ2
ρ
.
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(B5) {βn}∞n=1, {θn}∞n=1and {τn}∞n=1 are positive sequences satisfying the following condi-
tions:

{βn}, {θn} ⊂ (0, 1), 0 < c1 ≤ βn, lim
n→∞

θn = 0,
∞∑
n=1

θn = ∞, lim
n→∞

τn
θn

= 0.

Algorithm 3.3.2. Inertial method with adaptive step size strategy.

Step 0: Choose sequences {θn}∞n=1 and {τn}∞n=1 such that condition (B5) holds and let
λ1 > 0, µ ∈ (0, 1), α ≥ 3 and x0, x1 ∈ H be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1

, otherwise.
(3.3.1)

Step 2: Compute
wn = xn + αn(xn − xn−1).

Step 3: Construct the halfspace

Cn = {w ∈ H |c(wn) + ⟨ξn, w − wn⟩ ≤ 0}

and compute
yn = PCn(wn − λnAwn).

If yn = wn (Awn = 0), then set wn = zn and go to Step 5. Else go to Step 4.

Step 4: compute
zn = yn − λn(Ayn − Awn).

Step 5: Compute
xn+1 = θnγ1fxn + (I − θnD)Tnzn,

where

Tn = (1− βn)I + βnWn and Wn is the mapping defined by (3.2.1).

Step 6: Compute

λn+1 =

{
min

{
µ||wn−yn||
||Awn−Ayn|| , λn

}
, if Awn ̸= Ayn

λn, otherwise.
(3.3.2)

Set n := n+ 1 and go back to Step 1.

Remark 3.3.1. Unlike several other existing methods for solving the VIP (1.2.1), our
methods involves a projection onto a half-space without any projection onto the feasible
set. Note that while projection onto the feasible set may be difficult to execute, projections
onto half-spaces have closed formulas, and hence, they are easy to execute. Thus, our
methods are more easily implementable than several existing ones in the literature. We
prove that the sequence {xn} generated by our proposed methods converges strongly to
(1.2.2) (a common solution of the VIP (1.2.1) and the FPP (1.1.1) for an infinite family
of strict pseudo-contractive mappings) in Hilbert spaces under some mild conditions when
the cost operator is monotone and Lipschitz continuous.
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Remark 3.3.2. From (3.3.2) in Algorithm 3.3.2, it is clear that λn+1 ≤ λn ∀n ≥ 1. Also,
since A is L-Lipschitz continuous, we get in the case of Awn ̸= Ayn in Algorithm 3.3.2,
that

λn+1 = min

{
µ||wn − yn||
||Awn − Ayn||

, λn

}
≥ min

{µ
L
, λn

}
,

which by induction, implies that {λn} is bounded below by min
{
µ
L
, λ1

}
. Since {λn} is

also monotone nonincreasing, we have that the limit exists, and lim
n→∞

λn ≥ min{µ
L
, λ1} > 0.

Remark 3.3.3. By condition (f), one can easily verify from (3.3.1) that

lim
n→∞

αn||xn − xn−1|| = 0 and lim
n→∞

αn
θn

||xn − xn−1|| = 0. (3.3.3)

Remark 3.3.4. By the definition of the subgradient, it is clear that C ⊆ Cn.

3.3.2 Convergence analysis

Lemma 3.3.5. Let {xn} be a sequence generated by Algorithm 3.3.2 under Assumption
3.3.1. Then

∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2.

Proof. Let p ∈ Γ. Since yn = PCn(wn − λnwn), we obtain by the characteristic property of
PCn that ⟨yn − wn + λnAwn, yn − p⟩ ≤ 0 and this implies that

⟨yn − wn, yn − p⟩ ≤ −λn⟨Awn, yn − p⟩. (3.3.4)

Also, from the definition of zn in Step 4, and Lemma 2.1.1, we have

∥zn − p∥2 ≤ ∥yn − λn(Ayn − Awn)− p∥2

= ∥yn − p∥2 + λ2n∥Ayn − Awn∥2 − 2λn⟨Ayn − Awn, yn − p⟩
= ∥wn − p∥2 + ∥yn − wn∥2 + 2⟨yn − wn, wn − p⟩+ λ2n∥Ayn − Awn∥2

− 2λn⟨Ayn − Awn, yn − p⟩
= ∥wn − p∥2 + ∥yn − wn∥2 + λ2n∥Ayn − Awn∥2 − 2⟨yn − wn, yn − wn⟩
+ 2⟨yn − wn, yn − p⟩
− 2λn⟨Ayn − Awn, yn − p⟩
= ∥wn − p∥2 − ∥yn − wn∥2 + λ2n∥Ayn − Awn∥2 + 2⟨yn − wn, yn − p⟩
− 2λn⟨Ayn − Awn, yn − p⟩ (3.3.5)
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From (3.3.4) and (3.3.5), we obtain

∥zn − p∥2 ≤ ∥wn − p∥2 − ∥yn − wn∥2 + λ2n∥Ayn − Awn∥2 − 2λn⟨Awn, yn − p⟩
− 2λn⟨Ayn − Awn, yn − p⟩
= ∥wn − p∥2 − ∥yn − wn∥2 + λ2n∥Ayn − Awn∥2 − 2λn⟨Ayn, yn − p⟩

≤ ∥wn − p∥2 − ∥yn − wn∥2 + λ2n
µ2

λ2n+1

∥yn − wn∥2 − 2λn⟨Ayn, yn − p⟩

≤ ∥wn − p∥2 −
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2. (3.3.6)

Consider the limit

lim
n→∞

(
1− λ2nµ

2

λ2n+1

)
= 1− µ2 > 0.

Hence there exists n0 ≥ 0 such that for all n ≥ n0, we have that
(
1 − λ2nµ

2

λ2n+1

)
> 0. Thus,

from (3.3.6), we have that

∥zn − p∥ ≤ ∥wn − p∥.

Lemma 3.3.6. Let {xn} be a sequence generated by Algorithm 3.3.2 under Assumption
3.3.1. Then, {xn} is bounded.

Proof. First, we show that PΓ(I − D + γ1f) is a contraction of H. For all x, y ∈ H, we
have

∥PΓ(I −D + γ1f)x− PΓ(I −D + γ1f)y∥ ≤ ∥(I −D + γ1f)x− (I −D + γ1f)y∥
≤ ∥(I −D)x− (I −D)y∥+ γ1∥fx− fy∥
≤ (1− γ2)∥x− y∥+ γ1ρ∥x− y∥
= (1− (γ2 − γ1ρ))∥x− y∥.

Hence, PΓ(I − D + γ1f) is a contraction. Let p ∈ Γ. Then from the definition of wn in
Step 2, we have

∥wn − p∥ = ∥xn + αn(xn − xn−1)− p∥
= ∥xn − p∥+ αn∥xn − xn−1∥.

Also, from Step 2, we observe that αn∥xn − xn−1∥ ≤ τn,∀n ≥ 1, which implies that

αn
θn

∥xn − xn−1∥ ≤ τn
θn

→ 0, as n→ ∞. (3.3.7)

Hence, there exists M1 > 0 such that

αn
θn

∥xn − xn−1∥ ≤M1, ∀n ≥ 1. (3.3.8)
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This implies that ∥wn − p∥ ≤ ∥xn − p∥+ θnM1, ∀n ≥ 1 and hence

∥zn − p∥ ≤ ∥wn − p∥ ≤ ∥xn − p∥+ θnM1. (3.3.9)

From Step 5, we have

∥Tnzn − p∥ ≤ ∥(1− βn)zn + βnWnzn − p∥
≤ (1− βn)∥zn − p∥+ βn∥Wnzn − p∥
≤ (1− βn)∥zn − p∥+ βn∥zn − p∥
= ∥zn − p∥ (3.3.10)

From (3.3.9) and (3.3.10), we obtain for all n ≥ n0,

∥xn+1 − p∥ ≤ ∥θnγ1fxn + (1− θnD)Tnzn − p∥
= ∥θn(γ1fxn −Dp) + (1− θnD)(Tnzn − p)∥
≤ θn∥γ1fxn −Dp∥+ (1− θnγ2)∥Tnzn − p∥
≤ θn∥γ1(fxn − fp) + (γ1fp−Dp)∥+ (1− θnγ2)∥zn − p∥
≤ θnγ1ρ∥xn − p∥+ θn∥γ1fp−Dp∥+ (1− θnγ2)(∥xn − p∥+ θnM1)

≤ (1− θn(γ2 − γ1ρ))∥xn − p∥+ θn∥γ1fp−Dp∥+ θnM1

= (1− θn(γ2 − γ1ρ))∥xn − p∥+ θn(γ2 − γ1ρ)
∥γ1fp−Dp∥+M1

γ2 − γ1ρ

≤ max
{
∥xn − p∥, ∥γ1fp−Dp∥+M1

γ2 − γ1ρ

}
≤ max

{
∥xn0 − p∥, ∥γ1fp−Dp∥+M1

γ2 − γ1ρ

}

Hence, the sequence {xn} is bounded. Consequently, {wn}, {yn} and {zn} are also bounded.

Lemma 3.3.7. Assume that {wn} and {yn} are sequences generated by Algorithm 3.3.2
such that
lim
n→∞

||wn − yn|| = 0. If {wnj
} converges weakly to some x̂ ∈ H as j → ∞, then x̂ ∈

V I(C, A).

Proof. Since wnj
⇀ x̂, then by the hypothesis of the lemma it follows that ynj

⇀ x̂ as
j → ∞. Also, since ynj

∈ Cnj
, then by the definition of Cn we get

h(wnj
) + ⟨ξnj

, ynj
− wnj

⟩ ≤ 0. (3.3.11)

By the boundedness of {wn} and by condition (A3), there exists a constant M > 0 such
that ||ξnj

|| ≤M for all j ≥ 0. Then, from (3.3.11) we obtain h(wnj
) ≤M ||wnj

−ynj
|| →

0 as j → ∞, and this in turn implies that lim inf
j→∞

h(wnj
) ≤ 0. Applying condition (A2),

we have h(x̂) ≤ lim inf
j→∞

h(wnj
) ≤ 0. This implies that x̂ ∈ C. From Lemma 2.4.1, we obtain

⟨ynj
− wnj

+ λnj
Awnj

, z − ynj
⟩ ≥ 0, ∀ z ∈ C ⊆ Cnj

.
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Since A is monotone, we have

0 ≤ ⟨ynj
− wnj

, z − ynj
⟩+ λnj

⟨Awnj
, z − ynj

⟩
= ⟨ynj

− wnj
, z − ynj

⟩+ λnj
⟨Awnj

, z − wnj
⟩+ λnj

⟨Awnj
, wnj

− ynj
⟩

≤ ⟨ynj
− wnj

, z − ynj
⟩+ λnj

⟨Az, z − wnj
⟩+ λnj

⟨Awnj
, wnj

− ynj
⟩.

Letting j → ∞, and since lim
j→∞

||ynj
− wnj

|| = 0, we have

⟨Az, z − x̂⟩ ≥ 0, ∀ z ∈ C.
Applying Lemma 3.2.2, we have that x̂ ∈ V I(C, A).
Lemma 3.3.8. Let {xn} be a sequence generated by Algorithm 3.3.2 under Assumption
3.3.1. Then,

∥xn+1 − p∥2 ≤ (1− ηn)∥xn − p∥2 + ηn

[ θnγ
2
2

2(γ2 − γ1ρ)
M3 +

3M2(1− θnγ2)
2

2(γ2 − γ1ρ)

αn
θn

||xn − xn−1||

+
1

(γ2 − γ1ρ)
⟨γ1fp−Dp, xn+1 − p⟩

]
− (1− θnγ2)

2

(1− θnγ1ρ)

[(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

+ βn(1− βn)∥Wnzn − zn∥2
]
,

where ηn = 2θn(γ2−γ1ρ)
(1−θnγ1ρ) .

Proof. Let p ∈ Γ. Then from Step 2, by applying the Cauchy-Schwartz inequality and
Lemma 2.1.1, we obtain

||wn − p||2 = ||xn + αn(xn − xn−1)− p||2

= ||xn − p||2 + α2
n||xn − xn−1||2 + 2αn⟨xn − p, xn − xn−1⟩

≤ ||xn − p||2 + α2
n||xn − xn−1||2 + 2αn||xn − xn−1||||xn − p||

= ||xn − p||2 + αn||xn − xn−1||(αn||xn − xn−1||+ 2||xn − p||)
≤ ||xn − p||2 + 3M2αn||xn − xn−1||

= ||xn − p||2 + 3M2θn
αn
θn

||xn − xn−1||, (3.3.12)

where M2 := supn∈N{||xn − p||, αn||xn − xn−1||} > 0.

Now, applying the last inequality Lemma 2.1.1 and (3.3.6), we have

∥Tnzn − p∥2 = ∥(1− βn)(zn − p) + βn(Wnzn − p)∥2

≤ (1− βn)∥zn − p∥2 + βn∥Wnzn − p∥2 − βn(1− βn)∥Wnzn − zn∥2

≤ (1− βn)∥zn − p∥2 + βn∥zn − p∥2 − βn(1− βn)∥Wnzn − zn∥2

= ∥zn − p∥2 − βn(1− βn)∥Wnzn − zn∥2

≤ ∥wn − p∥2 −
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 − βn(1− βn)∥Wnzn − zn∥2

≤ ||xn − p||2 + 3M2θn
αn
θn

||xn − xn−1|| −
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

− βn(1− βn)∥Wnzn − zn∥2. (3.3.13)
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Also, by applying Lemma 2.1.1 and (3.3.13), we have

∥xn+1 − p∥2 = ∥θnγ1fxn + (1− θnD)Tnzn − p∥2

= ∥θn(γ1fxn −Dp) + (1− θnD)(Tnzn − p)∥2

≤ (1− θnγ2)
2∥Tnzn − p∥2 + 2θn⟨γ1fxn −Dp, xn+1 − p⟩

≤ (1− θnγ2)
2∥Tnzn − p∥2 + 2θnγ1⟨fxn − fp, xn+1 − p⟩

+ 2θn⟨γ1fp−Dp, xn+1 − p⟩

≤ (1− θnγ2)
2
[
∥xn − p∥2 + 3M2θn

αn
θn

||xn − xn−1||

−
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 − βn(1− βn)∥Wnzn − zn∥2

]
+ 2θn⟨γ1fxn − fp, xn+1 − p⟩+ 2θn⟨γ1fp−Dp, xn+1 − p⟩

≤ (1− θnγ2)
2∥xn − p∥2 + 3M2(1− θnγ2)

2θn
αn
θn

||xn − xn−1||

− (1− θnγ2)
2

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 − (1− θnγ2)

2βn(1− βn)∥Wnzn − zn∥2

+ 2θnγ1⟨fxn − fp, xn+1 − p⟩+ 2θn⟨γ1fp−Dp, xn+1 − p⟩

≤ (1− θnγ2)
2∥xn − p∥2 + 3M2(1− θnγ2)

2θn
αn
θn

||xn − xn−1||

− (1− θnγ2)
2

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

− (1− θnγ2)
2βn(1− βn)∥Wnzn − zn∥2 + 2θnγ1ρ∥xn − p∥∥xn+1 − p∥

+ 2θn⟨γ1fp−Dp, xn+1 − p⟩

≤ (1− θnγ2)
2∥xn − p∥2 + 3M2(1− θnγ2)

2θn
αn
θn

||xn − xn−1||

− (1− θnγ2)
2
[(

1− λ2nµ
2

λ2n+1

)
∥yn − wn∥2 + βn(1− βn)∥Wnzn − zn∥2

]
+ θnγ1ρ

(
∥xn − p∥2 + ∥xn+1 − p∥2

)
+ 2θn⟨γ1fp−Dp, xn+1 − p⟩

= ((1− θnγ2)
2 + θnγ1ρ)∥xn − p∥2 + θnγ1ρ∥xn+1 − p∥2

+ 3M2(1− θnγ2)
2θn

αn
θn

||xn − xn−1||+ 2θn⟨γ1fp−Dp, xn+1 − p⟩

− (1− θnγ2)
2
[(

1− λ2nµ
2

λ2n+1

)
∥yn − wn∥2 + βn(1− βn)∥Wnzn − zn∥2

]
.
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From this, we obtain

∥xn+1 − p∥2 ≤ (1− 2θnγ2 + (θnγ2)
2 + θnγ1ρ)

(1− θnγ1ρ)
∥xn − p∥2

+
θn

(1− θnγ1ρ)

[
3M2(1− θnγ2)

2αn
θn

||xn − xn−1||+ 2⟨γ1fp−Dp, xn+1 − p⟩
]

− (1− θnγ2)
2

(1− θnγ1ρ)

[(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 + βn(1− βn)∥Wnzn − zn∥2

]
=

(1− 2θnγ2 + θnγ1ρ)

(1− θnγ1ρ)
∥xn − p∥2 + (θnγ2)

2

(1− θnγ1ρ)
∥xn − p∥2

+
θn

(1− θnγ1ρ)

[
3M2(1− θnγ2)

2αn
θn

||xn − xn−1||+ 2⟨γ1fp−Dp, xn+1 − p⟩
]

− (1− θnγ2)
2

(1− θnγ1ρ)

[(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 + βn(1− βn)∥Wnzn − zn∥2

]
≤
(
1− 2θn(γ2 − γ1ρ)

(1− θnγ1ρ)

)
∥xn − p∥2

+
2θn(γ2 − γ1ρ)

(1− θnγ1ρ)

[ θnγ
2
2

2(γ2 − γ1ρ)
M3 +

3M2(1− θnγ2)
2

2(γ2 − γ1ρ)

αn
θn

||xn − xn−1||

+
1

(γ2 − γ1ρ)
⟨γ1fp−Dp, xn+1 − p⟩

]
− (1− θnγ2)

2

(1− θnγ1ρ)

[(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 + βn(1− βn)∥Wnzn − zn∥2

]
,

where M3 = sup{∥xn − p∥2 : n ∈ N} and thus we obtain the desired conclusion.

We are now in the position to give the main theorem for Algorithm 3.3.2.

Theorem 3.3.9. Let {xn} be a sequence generated by Algorithm 3.3.2 under Assumption
3.3.1. Suppose that {Wn} is the sequence defined by (3.2.1). Then, the sequence {xn}
converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ(I − D + γ1f)x

∗ is a solution of the
variational inequality

⟨(D − γ1f)x
∗, x∗ − x⟩ ≤ 0, ∀x ∈ Γ.

Proof. Since x∗ = PΓ(I −D + γ1f)x
∗, we obtain from Lemma 3.3.8 that

∥xn+1 − x∗∥2 ≤ (1− ηn)∥xn − x∗∥2

+ ηn

[ θnγ
2
2

2(γ2 − γ1ρ)
M3 +

3M2(1− θnγ2)
2

2(γ2 − γ1ρ)

αn
θn

||xn − xn−1|| (3.3.14)

+
1

(γ2 − γ1ρ)
⟨γ1fx∗ −Dx∗, xn+1 − x∗⟩

]
.

Now, we claim that the sequence {∥xn− x∗∥} converges to zero. To show this, by Lemma
2.5.36 it suffices to show that lim sup

k→∞
⟨γ1fx∗ −Dx∗, xnk+1 − x∗⟩ ≤ 0 for every subsequence
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{∥xnk
− x∗∥} of {∥xn − x∗∥} satisfying

lim inf
k→∞

(∥xnk+1 − x∗∥ − ∥xnk
− x∗∥) ≥ 0. (3.3.15)

Suppose that {∥xnk
−x∗∥} is a subsequence of {∥xn−x∗∥} such that (3.3.15) holds. From

Lemma 3.3.8, we obtain

(1− θnk
γ2)

2

(1− θnk
γ1ρ)

(
1−

λ2nk
µ2

λ2nk+1

)
∥ynk

− wnk
∥2 ≤ (1− ηnk

)∥xnk
− x∗∥2 − ∥xnk+1 − x∗∥2

+ ηnk

[ θnk
γ22

2(γ2 − γ1ρ)
M3

+
3M2(1− θnk

γ2)
2

2(γ2 − γ1ρ)

αn
θnk

||xnk
− xnk−1||

+
1

(γ2 − γ1ρ)
⟨γ1fx∗ −Dx∗, xnk+1 − x∗⟩

]
.

By (3.3.15) and the fact that lim
k→∞

ηnk
= 0 (since lim

k→∞
θnk

= 0), we obtain

(1− θnk
γ2)

2

(1− θnk
γ1ρ)

(
1−

λ2nk
µ2

λ2nk+1

)
∥ynk

− wnk
∥2 → 0, as k → ∞.

Consequently, we have

lim
k→∞

∥ynk
− wnk

∥ = 0. (3.3.16)

Following similar argument, from Lemma 3.3.8 we have

lim
k→∞

∥Wnk
znk

− znk
∥ = 0. (3.3.17)

From the definition of znk
in Step 4 and (3.3.16), we have

∥znk
− wnk

∥ = ∥ynk
− λnk

(Aynk
− Awnk

)− wnk
∥

≤ ∥ynk
− wnk

∥+ λnk
∥Aynk

− Awnk
∥

≤ ∥ynk
− wnk

∥+ λnk

µ

λnk+1

∥wnk
− ynk

∥

=

(
1 +

λnk
µ

λnk+1

)
∥ynk

− wnk
∥ → 0, as k → ∞,

which implies that

lim
k→∞

∥znk
− wnk

∥ = 0. (3.3.18)

From (3.3.16) and (3.3.18) we have

lim
k→∞

∥ynk
− znk

∥ = 0. (3.3.19)
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Also, from (3.3.17), (3.3.18) and (3.3.19), we get

lim
k→∞

∥wnk
− ynk

∥ = 0 lim
k→∞

∥Wnk
znk

− wnk
∥ = 0, lim

k→∞
∥Wnk

znk
− ynk

∥ = 0.

(3.3.20)

Now, from Step 2 and by Remark 3.3.3, we get

lim
k→∞

∥wnk
− xnk

∥ = lim
k→∞

αnk
∥xnk

− xnk−1∥ = 0. (3.3.21)

From (3.3.18), (3.3.20) and (3.3.21), we obtain

lim
k→∞

∥znk
− xnk

∥ = 0, lim
k→∞

∥Wnk
znk

− xnk
∥ = 0. (3.3.22)

By applying (3.3.17), we have

∥Tnk
znk

− znk
∥ = ∥(1− βnk

)znk
+ βnk

Wnk
znk

− znk
∥ (3.3.23)

≤ (1− βnk
)∥znk

− znk
∥+ βnk

∥Wnk
znk

− znk
∥ → 0, k → ∞.

Now, by using (3.3.18), (3.3.21) and (3.3.23) we obtain

lim
k→∞

||Tnk
znk

− wnk
|| = 0, lim

k→∞
||Tnk

znk
− xnk

|| = 0. (3.3.24)

Consequently, by applying the fact that lim
k→∞

θnk
= 0 we get

∥xnk+1 − xnk
∥ = ∥θnk

γ1fxnk
+ (1− θnk

D)Tnk
znk

− xnk
∥

= ∥(θnk
γ1fxnk

− θnk
Dxnk

) + (1− θnk
D)(Tnk

znk
− xnk

)∥
≤ θnk

∥γ1fxnk
−Dxnk

∥+ (1− θnk
γ2)∥Tnk

znk
− xnk

∥ → 0, k → ∞.

Hence

lim
k→∞

∥xnk+1 − xnk
∥ = 0. (3.3.25)

Now, we show that wω(xn) ⊂ ∩∞
i=1F (Si) = F (W ). Let z ∈ wω(xn) and suppose that

z /∈ F (W ), that is, Wz ̸= z. From (3.3.22), we have that wω(xn) = wω(zn) and by Lemma
2.1.15 we have

lim inf
k→∞

||znk
− z|| < lim inf

k→∞
|znk

−Wz|||

≤ lim inf
k→∞

{||znk
−Wznk

||+ ||Wznk
−Wz||}

≤ lim inf
k→∞

{||znk
−Wznk

||+ ||znk
− z||}. (3.3.26)

Since xnk
∈ K for all k ≥ 1 and wω(xn) = wω(zn), we obtain

||Wznk
− znk

|| ≤ ||Wznk
−Wnk

znk
||+ ||Wnk

znk
− znk

||
≤ sup

x∈K
||Wx−Wnk

x||+ ||Wnk
znk

− znk
||.
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By applying Lemma 3.2.5 and (3.3.17), we have lim
k→∞

||Wznk
− znk

|| = 0. Combining this

with (3.3.26) yields
lim inf
k→∞

||znk
− z|| < lim inf

k→∞
||znk

− z||,

which is a contradiction. Hence, we have z ∈ F (W ) = ∩∞
i=1F (Si), i.e., wω(xn) ⊂ F (W ) =⋂∞

i=1 F (Si).

Next, we show that wω(xn) ⊂ V I(C, A). By invoking Lemma 3.3.7, it follows from (3.3.20)
that z ∈ V I(C, A). Thus, wω(xn) ⊂ Γ.

From the fact that lim
k→∞

∥xnk
−znk

∥ = 0, we have that wω{xn} = wω{zn}. By Lemma 3.3.6,

we have that {xnk
} is bounded which implies that there exists a subsequence {xnkj

} of
{xnk

} such that xnkj
⇀ x̄ and

lim
j→∞

⟨γ1fx∗ −Dx∗, xnkj
− x∗⟩ = lim sup

k→∞
⟨γ1fx∗ −Dx∗, xnk

− x∗⟩

= lim sup
k→∞

⟨γ1fx∗ −Dx∗, znk
− x∗⟩.

Since x∗ = PΓ(I −D + γ1f)x
∗, we have that

lim sup
k→∞

⟨γ1fx∗ −Dx∗, xnk
− x∗⟩ = lim

j→∞
⟨γ1fx∗ −Dx∗, xnkj

− x∗⟩

= ⟨γ1fx∗ −Dx∗, x̄− x∗⟩
≤ 0. (3.3.27)

From (3.3.25) and (3.3.27), we have

lim sup
k→∞

⟨γ1fx∗ −Dx∗, xnk+1 − x∗⟩ = lim sup
k→∞

⟨γ1fx∗ −Dx∗, xnk
− x∗⟩

= ⟨γ1fx∗ −Dx∗, x̄− x∗⟩
≤ 0. (3.3.28)

By applying Lemma 2.5.36 to (3.3.14) and using (3.3.28) together with the fact that
lim
n→∞

θn = 0 and lim
n→∞

αn

θn
∥xn−xn−1∥ = 0, we have that lim

n→∞
∥xn−x∗∥ = 0. Therefore, {xn}

converges strongly to x∗.

Next, we propose our second algorithm which is a slight modification of Algorithm (3.3.2).

Algorithm 3.3.3. Inertial method with adaptive step size strategy.

Step 0: Choose sequences {θn}∞n=1 and {τn}∞n=1 such that condition (B5) holds and let
λ1 > 0, µ ∈ (0, 1), α ≥ 3 and x0, x1 ∈ H be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1

, otherwise.
(3.3.29)

Step 2: Compute
wn = xn + αn(xn − xn−1).
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Step 3: Construct the halfspace

Cn = {w ∈ H |c(wn) + ⟨ξn, w − wn⟩ ≤ 0}

and compute
yn = PCn(wn − λnAwn).

If yn = wn (Awn = 0), then set wn = zn and go to Step 5. Else go to Step 4.

Step 4: compute
zn = yn − λn(Ayn − Awn).

Step 5: Compute
xn+1 = θnγ1fwn + (I − θnD)Tnzn,

where

Tn = (1− βn)I + βnWn and Wn is the mapping defined by (3.2.1).

Step 6: Compute

λn+1 =

{
min

{
µ||wn−yn||
||Awn−Ayn|| , λn

}
, if Awn ̸= Ayn

λn, otherwise.
(3.3.30)

Set n := n+ 1 and go back to Step 1.

Theorem 3.3.10. Let {xn} be a sequence generated by Algorithm 3.3.3 under Assumption
3.3.1. Suppose that {Wn} is the sequence defined by (3.2.1). Then, the sequence {xn}
converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ(I − D + γ1f)x

∗ is a solution of the
variational inequality

⟨(D − γ1f)x
∗, x∗ − x⟩ ≤ 0, ∀x ∈ Γ.

Proof. The proof of this result follows similar argument with the proof of the result of
Theorem (3.3.9).

Taking γ1 = 1 and D = I in Theorem 3.3.9 (where I is the identity mapping), we obtain
the following:

Algorithm 3.3.4. Inertial method with adaptive step size strategy.

Step 0: Choose sequences {θn}∞n=1 and {τn}∞n=1 such that condition (B5) holds and let
λ1 > 0, µ ∈ (0, 1), α ≥ 3 and x0, x1 ∈ H be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1

, otherwise.

Step 2: Compute
wn = xn + αn(xn − xn−1).
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Step 3: Construct the halfspace

Cn = {w ∈ H |c(wn) + ⟨ξn, w − wn⟩ ≤ 0}

and compute
yn = PCn(wn − λnAwn).

If yn = wn (Awn = 0), then set wn = zn and go to Step 5. Else go to Step 4.

Step 4: compute
zn = yn − λn(Ayn − Awn).

Step 5: Compute
xn+1 = θnfxn + (I − θn)Tnzn,

where

Tn = (1− βn)I + βnWn and Wn is the mapping defined by (3.2.1).

Step 6: Compute

λn+1 =

{
min

{
µ||wn−yn||
||Awn−Ayn|| , λn

}
, if Awn ̸= Ayn

λn, otherwise.

Set n := n+ 1 and go back to Step 1.

Corollary 3.3.5. Let {xn} be a sequence generated by Algorithm 3.3.4 under Assumption
3.3.1. Suppose that {Wn} is the sequence defined by (3.2.1). Then, the sequence {xn}
converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ(f)x

∗ is a solution of the variational
inequality

⟨(I − f)x∗, x∗ − x⟩ ≤ 0, ∀x ∈ Γ.

Taking γ1 = 1, D = I (where I is the identity mapping) and Sn = S for all n ≥ 1 in
Theorem 3.3.9, we obtain the following:

Algorithm 3.3.6. Inertial method with adaptive step size strategy.

Step 0: Choose sequences {θn}∞n=1 and {τn}∞n=1 such that condition (B5) holds and let
λ1 > 0, µ ∈ (0, 1), α ≥ 3 and x0, x1 ∈ H be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1

, otherwise.

Step 2: Compute
wn = xn + αn(xn − xn−1).
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Step 3: Construct the halfspace

Cn = {w ∈ H |c(wn) + ⟨ξn, w − wn⟩ ≤ 0}

and compute
yn = PCn(wn − λnAwn).

If yn = wn (Awn = 0), then set wn = zn and go to Step 5. Else go to Step 4.

Step 4: compute
zn = yn − λn(Ayn − Awn).

Step 5: Compute
xn+1 = θnfxn + (I − θn)Tnzn,

where
Tn = (1− βn)I + βnS.

Step 6: Compute

λn+1 =

{
min

{
µ||wn−yn||
||Awn−Ayn|| , λn

}
, if Awn ̸= Ayn

λn, otherwise.

Set n := n+ 1 and go back to Step 1.

Corollary 3.3.7. Let {xn} be a sequence generated by Algorithm 3.3.6 under Assumption
3.3.1. Then the sequence {xn} converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ(f)x

∗

is a solution of the variational inequality

⟨(I − f)x∗, x∗ − x⟩ ≤ 0, ∀x ∈ Γ.

3.3.3 Applications

The zero point problem
In this section, we apply our results to finding a common solution of VIP and ZPP for an
infinite family of maximal monotone operators.

Let F : H → H be a single-valued nonlinear mapping and B : H → 2H be a multi-
valued mapping. The problem of finding a zero of the sum of two monotone operators,
which is formulated as the following MIP is to find a point x ∈ H such that

0 ∈ (F +B)x. (3.3.31)

This problem includes, as special cases, convex programming, VIP, SFP and MP. More
precisely, some concrete problems in machine learning, image processing and linear inverse
problem can be modeled mathematically as this form, see [86, 92, 99, 110]. We denote the
zero point set {x ∈ H : 0 ∈ (F +B)x} of F +B by (F +B)−10.
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Definition 3.3.11. Let B : H → 2H be a multivalued mapping. The effective domain of
B denoted by D(B) is given as D(B) = {x ∈ H : Bx ̸= ∅}.

Definition 3.3.12. Let B : H → 2H be a multi-valued operator on H. Then

(1) the graph G(B) is defined by

G(B) := {(x, u) ∈ H ×H : u ∈ B(x)};

(2) the operator B is said to be monotone if ⟨x−y, u−v⟩ ≥ 0 for all x, y ∈ D(B), u ∈ Bx,
and v ∈ By;

(3) A monotone operator B on H is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator on H;

(4) For a maximal monotone multivalued mapping B on H and r > 0, the operator

JBr := (I + rB)−1 : H → D(B)

is called the resolvent of B.

Remark 3.3.13. In [101], it was shown that F (JBr ) = B−10 ≡ {x ∈ H : 0 ∈ Bx} for all
r > 0 and JBr is singled-valued and firmly nonexpansive, that is,

||JBr x− JBr y|| ≤ ⟨JBr x− JBr y, x− y⟩, for all x, y ∈ H.

The following lemma will also be employed in establishing our results in this section.

Lemma 3.3.14. [22] Let C be a nonempty closed convex subset of H, G : H → H be a
mapping and B : H → 2H be a maximal monotone operator. Then F (JBr (I − rG)) =
(G+B)−1(0).

Now, we have the following results.

Theorem 3.3.15. Let H be a Hilbert space and suppose that {Wn} is the sequence defined
by (3.2.1). Let Bi : H → 2H be an infinite family of maximal monotone mappings with
D(Bi) ̸= ∅ and JBi

ri
is the resolvent of Bi for each ri > 0. Suppose that {xn} is a sequence

generated by Algorithm 3.3.2 such that Assumption 3.3.1 is satisfied. Then the sequence
{xn} converges strongly to a point x̂ ∈ Γ = V I(C, A)

⋂
∩∞
i=1(B

−1
i 0) ̸= ∅, where x̂ =

PΓ(I −D + γf)(x̂) is a solution of the variational inequality

⟨(D − γf)x̂, x̂− x⟩ ≤ 0 for all x ∈ Γ.

Proof. Since JBi
ri

is nonexpansive and F (JBi
ri
) = B−1

i 0, then the result follows from Theo-
rem 3.3.9 by taking JBi

ri
= Si in Definition 3.2.3.
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Theorem 3.3.16. Let H be a Hilbert space and suppose that {Wn} is the sequence defined
by (3.2.1). Let Bi : H → 2H be an infinite family of maximal monotone mappings with
D(Bi) ̸= ∅, JBi

ri
is the resolvent of Bi for each ri ∈ (0, 2δi) and Fi : H → H be an

infinite family of δi−inverse strongly monotone mappings. Suppose that {xn} is a sequence
generated by Algorithm 3.3.2 such that Assumption 3.3.1 is satisfied. Then the sequence
{xn} converges strongly to a point x̂ ∈ Γ = V I(C, A)

⋂
∩∞
i=1(Bi + Fi)

−10 ̸= ∅, where
x̂ = PΓ(I −D + γf)(x̂) is a solution of the variational inequality

⟨(D − γf)x̂, x̂− x⟩ ≤ 0 for all x ∈ Γ.

Proof. Since Fi is δi−inverse strongly monotone, I − riFi is nonexpansive. By the nonex-
pansiveness of JBi

ri
, it follows that JBi

ri
(I − riFi) is also nonexpansive. The proof follows

from Theorem 3.3.9 by applying Lemma 3.3.14 and taking JBi
ri
(I−riGi) = Si in Definition

3.2.3.

3.3.4 Numerical experiments

In this section, using some test examples, we discuss the numerical behavior of Algorithm
3.3.2 as well as compare it with Appendix 3.3.19 proposed by Thong and Hieu [249],
Appendix 3.3.20 proposed by Yang and Liu [266], the method of Shehu and Iyiola [223,
Algorithm 1] (see Appendix 3.3.21) and the method of Fan and Qin [102, Algorithm 5] (see
Appendix 3.3.22). We perform all implementations using Matlab 2016 (b), installed on
a personal computer with Intel(R) Core(TM) i5-2600 CPU@2.30GHz and 8.00 Gb-RAM
running on Windows 10 operating system. In Tables 3.3.1-3.3.2, “No. of Iter.” means the
number of iterations.

In our computations, we define h(x) = ∥x∥2 and choose θn = 1
n+1

, γ1 = 0.1, βn = 1
2(1+ 1

n
)
,

τn = 1
(n+1)3

, λ1 = 0.8, and µ = 0.7. Furthermore, in the implementation, we define TOLn :=

∥xn+1 − xn∥ and use the stopping criterion TOLn < 10−2 for the iterative processes.

Example 3.3.17. Let H = Rm with standard topology, fx = x
6
, Dx = x and Sn : H → H

be a mapping defined by Snx := 1
5n
x ∀x ∈ H. Let A : Rm → Rm(m = 15, 30, 45, 60) be an

operator defined as

Ax =Mx+ q

and

M = NNT + S∗ + E

where N is an m × m matrix, S∗ is an m × m skew-symmetric matrix, E is an m × m
diagonal matrix with its diagonal entries being nonnegative and q ∈ Rm. The feasible set
C is given by

C = {x = (x1, · · · , xm) ∈ Rm : −2 ≤ xi ≤ 5, i = 1, · · · ,m}.

It is obvious that A is monotone and Lipschitz continuous with Lipschitz constant L =
∥M∥. The entries of N,S∗ are generated randomly in [−2, 2] as well as the starting points
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Figure 3.1: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.

x0, x1 and the diagonal entries of E are in (0, 2), and q is taken as the zero vector in Rm.
We plot the graph of ∥xn+1 − xn∥ against number of iterations choosing m = 15, 30, 45, 60
and α = 7. The numerical results are reported in Figure 3.1 and Table 3.3.1.

Table 3.3.1. Numerical results for Example 3.3.17.

App.
3.3.19

App.
3.3.20

App.
3.3.21

App.
3.3.22

Alg.
3.3.2

m = 15 No. of Iter. 20 20 4 19 12
m = 30 No. of Iter. 20 20 4 19 12
m = 45 No. of Iter. 25 25 4 22 13
m = 60 No. of Iter. 13 21 4 21 13

Example 3.3.18. Let H = L2([0, 1]) be endowed with inner product

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt, ∀ x, y ∈ H and norm ||x|| :=
(∫ 1

0

|x(t)|2dt
) 1

2
, ∀ x, y ∈ H.
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Now, define A : H → H by

A(x)(t) = max{0, x(t)}, for all t ∈ [0, 1], x ∈ H.

It is easy to see that A is monotone 1-Lipschitz continuous on H. Let f(x) = x
2
(t), Dx =∫ 1

0
tx(s)dx and C := {x ∈ H : ∥x∥ ≤ 1} be the unit ball. Then V I(C, A) = {0} ≠ ∅.

We define the mapping Sn : L2([0, 1]) → L2([0, 1]) by

Snx(t) =

∫ 1

0

tnx(s)ds, t ∈ [0, 1].

Then, Sn is an infinite family of nonexpansive mappings. Indeed, we have

|Snx(t)− Sny(t)|2 = |
∫ 1

0

tn(x(s)− y(s))ds|2

≤
(∫ 1

0

tn|x(s)− y(s)|ds
)2

≤
∫ 1

0

|x(s)− y(s)|2ds

= ||x− y||2.

Thus, we obtain that

||Snx− Sny||2 =
∫ 1

0

|Snx(t)− Sny(t)|2 ≤ ||x− y||2.

Let {ζn} be a sequence of nonnegative real numbers defined by ζn = { n
n+1

} for all n ∈ N
and Wn be a mapping generated by {Sn} and {ζn}. We consider the following cases with
α = 3 for the numerical experiments of this example.
Case 1: Take x1(t) = 1 + t2 and x0(t) = t+ 5.

Case 2: Take x1(t) = t2 + 1 and x0(t) = cos(t).

Case 3: Take x1(t) = t+ 1 and x0(t) = t+ t3.

Case 4: Take x1(t) = t+ 1 and x0(t) = 2 sin(3t).
The numerical results are reported in Figure 3.2 and Table 3.3.2.

Table 3.3.2: Numerical results for Example 3.3.18
App.
3.3.19

App.
3.3.20

App.
3.3.21

App.
3.3.22

Alg.
3.3.2

No. of Iter. 14 13 9 7 5
No. of Iter. 14 13 9 8 5
No. of Iter. 15 13 10 8 5
No. of Iter. 15 13 10 8 5
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Figure 3.2: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.
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Appendix 3.3.19. The Algorithm in [249]

Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Compute
yn = PC(xn − λnAxn),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λ∥Axn − Ayn∥ ≤ µ∥xn − yn∥. (3.3.32)

If xn = yn, then stop and xn is the solution of VIP (1.2.1). Otherwise,

Step 2: Compute
xn+1 = αng(xn) + (1− αn)zn,

where zn = yn − λn(Ayn − Axn),
Set n := n+ 1 and return to Step 1,

Appendix 3.3.20. The Algorithm [266]

Initialization: Given λ0 > 0, µ ∈ (0, 1). Let x0 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Given the current iterate xn, compute

yn = PC(xn − λnAxn),

If xn = yn, then stop and xn is the solution of VIP (1.2.1). Otherwise,

Step 2: Compute
xn+1 = αng(xn) + (1− αn)zn,

and

λn+1 =

{
min{ µ∥xn−yn∥

∥Axn−Ayn∥ , λn}, if Axn − Ayn ̸= 0,

λn, otherwise

where zn = yn − λn(Ayn − Axn),
Set n := n+ 1 and return to Step 1

Appendix 3.3.21. The Algorithm in [223].

Initialization: Given l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Compute
yn = PC(xn − λnAxn),

where λn = lmn , where mn is the smallest nonnegative integer m such that

λn∥Axn − Ayn∥ ≤ µ∥xn − yn∥. (3.3.33)

If xn = yn, then stop and xn is the solution of VIP (1.2.1). Otherwise,

79



Step 2: Construct

Tn = {x ∈ H : ⟨xn − λnAxn − yn, x− yn⟩ ≤ 0}

and compute
zn = PTn(xn − λnAyn).

Step 3: Compute
xn+1 = αnf(xn) + (1− αn)zn,

where f : H → H is a contraction mapping with constant ρ ∈ [0, 1).

Set n := n+ 1 and return to Step 1.

Appendix 3.3.22. The Algorithm in [102].

Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Set
wn = xn + αn(xn − xn−1)

and compute
yn = PC(wn − λnAxn),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λ∥Awn − Ayn∥ ≤ µ∥wn − yn∥. (3.3.34)

If wn = yn, then stop and yn is the solution of VIP (1.2.1). Otherwise,

Step 2: Compute
xn+1 = αnf(xn) + γnzn + βnwn,

where zn = yn − λn(Ayn − Awn),
A : H → H is monotone and Lipschitz continuous, f : H → H is a contraction with
constant ρ ∈ [0, 1) and αn + βn + γn = 1.

Set n := n+ 1 and return to Step 1.

3.4 On quasimonotone variational inequality problems

In this section, we present two new relaxed inertial subgradient extragradient methods for
solving VIPs in a real Hilbert space. We establish the convergence of the sequence gener-
ated by these methods when the cost operator is quasimonotone and Lipschitz continuous,
and when it is Lipschitz continuous without any form of monotonicity. The methods com-
bine both the inertial and relaxation techniques in order to achieve high convergence speed.
Furthermore, we present some experimental results to illustrate the profits gained from
the relaxed inertial steps.
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3.4.1 Proposed methods

In this section, we present our methods and discuss their features. We begin with the
following assumptions under which we obtain our convergence results.

Assumption 3.4.1. Conditions on the inertial and relaxation factors:

Suppose that θn ∈ [0, 1) and ρn ∈ (0, 1] for all n ≥ 1 such that lim inf
n→∞

ρn > 0. Assume that

there exists ϵ ∈ (0, 1) such that for n large enough,

(3.4.1)

2(1− ϵ)1−ρn
2ρn

(1− θn−1) ≥
θntn+1

(
1 + θn + 2

[
1−ρn
2ρn

(1− θn)− 1−ρn−1

2ρn−1
(1− θn−1)

]
+

)
, if ρn ∈ (0, 1),

(1− ϵ)(1− θn−1) ≥ θntn+1

(
1 + θn +

[
θn−1 − θn

]
+

)
, if ρn = 1.

Assumption 3.4.2. We further make the following assumptions:

(a) Γ ̸= ∅,

(b) A is Lipschitz-continuous on H with constant L > 0,

(c) A is sequentially weakly continuous on C,

(d) A is quasimonotone on H,

(e) The set {z ∈ C : Az = 0} \ Γ is a finite set.

We now present the proposed methods of this section.

When the Lipschitz constant L is known, we present the following method for solving the
VIP (1.2.1).

Algorithm 3.4.3. Relaxed inertial subgradient extragradient method with fixed stepsize.

Step 0: Choose sequences {θn} and {ρn} such that θn ∈ [0, 1) and ρn ∈ (0, 1] for all
n ≥ 1. Let λ ∈ (0, 1

L
) and x0, x1 ∈ H be given arbitrarily. Set n := 1.

Step 1: Given the current iterates xn−1 and xn (n ≥ 1), compute

wn = xn + θn(xn − xn−1)

and
yn = PC(wn − λAwn).

If wn = yn: STOP. Otherwise, go to Step 2.
Step 2: Construct the half-space

Tn = {x ∈ H : ⟨wn − λAwn − yn, x− yn⟩ ≤ 0}.
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Then, compute
zn = PTn(wn − λAyn)

and

xn+1 = (1− ρn)wn + ρnzn.

Set n := n+ 1 and return to Step 1.

In situations where the Lipschitz constant L is not known, we present the following method
with adaptive stepsize for solving the VIP (1.2.1).

Algorithm 3.4.4. Relaxed inertial subgradient extragradient method with adaptive step-
size strategy.

Step 0: Choose sequences {θn} and {ρn} such that θn ∈ [0, 1) and ρn ∈ (0, 1] for all
n ≥ 1. Let λ1 > 0, µ ∈ (0, 1) and x0, x1 ∈ H be given arbitrarily. Choose a nonnegative

real sequence {dn} such that
∞∑
n=1

dn <∞. Set n := 1.

Step 1: Given the current iterates xn−1 and xn (n ≥ 1), compute

wn = xn + θn(xn − xn−1)

and
yn = PC(wn − λnAwn).

If wn = yn: STOP. Otherwise, go to Step 2.
Step 2: Construct the half-space

Tn = {x ∈ H : ⟨wn − λnAwn − yn, x− yn⟩ ≤ 0}.

Then, compute
zn = PTn(wn − λnAyn)

and

xn+1 = (1− ρn)wn + ρnzn,

where

λn+1 =


min

{
µ(∥wn−yn∥2+∥zn−yn∥2)

2⟨Awn−Ayn,zn−yn⟩ , λn + dn

}
, if ⟨Awn − Ayn, zn − yn⟩ > 0,

λn + dn, otherwise.

(3.4.2)

Set n := n+ 1 and return to Step 1.

82



Remark 3.4.1. In a special case when ρn = 1, ∀n ≥ 1, we have that xn+1 = zn. Thus,
Algorithms 3.4.3 and 3.4.4 reduce to the inertial version of the subgradient extragradient
method of Censor et al. [58–60]. In such case, we have the following simple criteria which
guarantee Assumption 3.4.1, as well as assumption (2.5.37).

Proposition 3.4.5. Assume that {θn} is a nondecreasing sequence that satisfies θn ∈
[0, 1) ∀n ≥ 1 with lim

n→∞
θn = θ such that the following condition holds:

1− 3θ > 0. (3.4.3)

Then, assumption (2.5.37) and Assumption 3.4.1 hold.

Proof. Observe that θn ≤ θ, ∀n ≥ 1. Thus, we have that assumption (2.5.37) is satisfied

and tn ≤ 1
1−θ , ∀n ≥ 1 (see [29]). Now, observe that 1−3θ > 0 implies that (1−θ) > θ(1+θ)

1−θ .
This further implies that there exists ϵ ∈ (0, 1) such that

(1− ϵ)(1− θ) ≥ θ(1 + θ)

1− θ
. (3.4.4)

Since θn ≤ θ, ∀n ≥ 1, we obtain from (3.4.4) that

(1− ϵ)(1− θn−1) ≥
θ(1 + θ)

1− θ
≥ θntn+1(1 + θn), (3.4.5)

for some ϵ ∈ (0, 1). Since θn−1 ≤ θn, ∀n ≥ 1, we obtain that

θntn+1(1 + θn) = θntn+1(1 + θn + [θn−1 − θn]+).

Combining this with (3.4.5), we get that Assumption 3.4.1 is satisfied.

Proposition 3.4.6. Suppose that θn ∈ [0, 1), ∀n ≥ 1 and there exists c ∈ [0, 1
2
) such that

lim
n→∞

(
1

1− θn+1

− 1

1− θn

)
= c (3.4.6)

and

lim inf
n→∞

(1− θn)
2 > lim sup

n→∞

θn(1 + θn)

1− 2c
. (3.4.7)

Then, assumption (2.5.37) and Assumption 3.4.1 hold.

Proof. It follows from Proposition 2.5.32(i) that assumption (2.5.37) holds.
Now, from (3.4.7), we obtain that

lim inf
n→∞

(1− θn−1)
2 > lim sup

n→∞

θn(1 + θn)

1− 2c
. (3.4.8)

Thus, there exists ϵ ∈ (0, 1) sufficiently small enough such that

lim inf
n→∞

(1− θn−1)
2 > lim sup

n→∞

θn(1 + θn)

1− 2c− ϵ(1− c)
> lim sup

n→∞

θn(1 + θn)

1− 2c
. (3.4.9)
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This implies that

(1 + o(1))θn(1 + θn) ≤ [1− 2c− ϵ(1− c) + o(1)](1− θn−1)
2

= [(1− ϵ)(1− c)− (2c− c+ o(1))](1− θn−1)
2

≤ [(1− ϵ)(1− c)− θn(c+ o(1))](1− θn−1)
2,

which implies that

(1− ϵ)(1− c)(1− θn−1)
2 ≥ (1 + o(1))θn

(
1 + θn + (1− θn−1)

2 + o
(
(1− θn−1)

2
))
.

(3.4.10)

Now, observe from (3.4.6) that

θn−1 − θn + c(1− θn−1)(1− θn) = o ((1− θn−1)(1− θn)) ,

which implies from Proposition 2.5.32(ii) that

θn−1 − θn = −c(1− θn−1)(1− θn) + o ((1− θn−1)(1− θn))

= −c(1− θn−1)
2 + o(1− θn−1)

2 as n→ ∞.

This implies that

|θn−1 − θn| = | − c(1− θn−1)
2 + o(1− θn−1)

2|
≤ c(1− θn−1)

2 + o(1− θn−1)
2 as n→ ∞. (3.4.11)

Combining (3.4.10) and (3.4.11), we obtain that

(1− ϵ)(1− c)(1− θn−1)
2 ≥ (1 + o(1)) θn (1 + θn + [θn−1 − θn]+) . (3.4.12)

By Proposition 2.5.32, we have that tn+1 ∼ tn ∼ 1
(1−c)(1−θn−1)

as n→ ∞.

Hence, (3.4.12) is equivalent to

(1− ϵ)(1− c)(1− θn−1)
2 ≥ θn

(1− c)(1− θn−1)
tn+1 (1 + θn + [θn−1 − θn]+) ,

which further implies Assumption 3.4.1.

When ρn ̸= 1, then we have the following proposition which provides some criteria for
ensuring Assumption 3.4.1, as well as assumption (2.5.37).

Proposition 3.4.7. (See for example, [29, Proposition 3.3]).
Suppose that θn ∈ [0, 1) and ρn ∈ (0, 1) for all n ≥ 1. Assume that there exist c ∈ [0, 1)
and c̄ ∈ [c, 1) such that

lim
n→∞

(
1

1− θn+1

− 1

1− θn

)
= c,
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lim
n→∞

γn+1 − γn
γn(1− θn)

= c̄

and

lim inf
n→∞

γn(1− θn)
2 > lim sup

n→∞

θn(1 + θn)

1− c̄
,

where γn = 1−ρn
2ρn

. Then, assumption (2.5.37) and Assumption 3.4.1 hold.

Remark 3.4.2. It is worthy of note that many practical choices for the inertial and relax-
ation factors θn and ρn, respectively, satisfy Assumption 3.4.1. In fact, similar conditions
as in Propositions 3.4.5-3.4.7 have already been used in the literature to ensure the conver-
gence of inertial and relaxation methods (see [165, 246, 247] and the references therein).
Thus, Assumption 3.4.1, as well as assumption (2.5.37) are much more weaker than the
assumptions in those works in the literature.
Moreover, we shall give in Section 3.4.3, some typical examples of θn and ρn which satisfy
the conditions in Propositions 3.4.5-3.4.7 (therefore, satisfying assumption (2.5.37) and
Assumption 3.4.1). Then, we check the sensitivity of both θn and ρn in order to find nu-
merically, the optimum choice of these parameters with respect to the convergence speed
of our proposed methods.

3.4.2 Convergence analysis

Lemma 3.4.3. Let {xn} be a sequence generated by Algorithm 3.4.3 such that Assumption
3.4.2(a)-(b) hold. Then,

Γn+1 − Γn − θn(Γn − Γn−1)

≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 − γn∥xn+1 − wn∥2 −

ρn
2
(1− λL)

[
||wn − yn||2 + ||zn − yn||2

]
,

where γn := 1−ρn
2ρn

and Γn := 1
2
∥xn − z∥2, ∀z ∈ Γ.

Proof. Let z ∈ Γ. Since xn+1 − wn = ρn(zn − wn), we obtain

⟨xn+1 − wn, wn − z⟩ = ρn⟨zn − wn, wn − zn⟩+ ρn⟨zn − wn, zn − z⟩
= −ρn∥zn − wn∥2 + ρn⟨zn − wn, zn − z⟩
= −ρ−1

n ∥xn+1 − wn∥2 + ρn⟨zn − wn + λAyn, zn − z⟩
− λρn⟨Ayn, zn − z⟩
≤ −ρ−1

n ∥xn+1 − wn∥2 + λρn⟨Ayn, z − zn⟩, (3.4.13)

where the last inequality follows from z ∈ Γ ⊆ Tn and the characteristic property of PTn
(see (2.4.1)).
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Now, using (3.4.13) in Lemma 2.5.14, we obtain

Γn+1 − Γn − θn(Γn − Γn−1)

≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 − ρ−1

n ∥xn+1 − wn∥2 + λρn⟨Ayn, z − zn⟩+
1

2
∥xn+1 − wn∥2

=
1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2 −

1

2ρn
∥xn+1 − wn∥2

+ λρn⟨Ayn, z − zn⟩

=
1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2 + λρn⟨Ayn, z − zn⟩

− 1

2ρn
· ρ2n∥wn − zn∥2

=
1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2 + λρn⟨Ayn, z − zn⟩ (3.4.14)

− ρn
2
∥wn − yn∥2 −

ρn
2
∥yn − zn∥2 − ρn⟨wn − yn, yn − zn⟩,

where the last equality follows from Lemma 2.1.1.

Since yn ⊂ C and z ∈ Γ, we get from (3.2.3) that ⟨Ayn, yn − z⟩ ≥ 0,∀n ≥ 1. That is
⟨Ayn, yn − zn + zn − z⟩ ≥ 0,∀n ≥ 1. This implies that

λ⟨Ayn, z − zn⟩ − ⟨wn − yn, yn − zn⟩ ≤ λ⟨Ayn, yn − zn⟩ − ⟨wn − yn, yn − zn⟩
= ⟨λAyn − wn + yn, yn − zn⟩. (3.4.15)

Substituting (3.4.15) into (3.4.14), we obtain that

Γn+1 − Γn − θn(Γn − Γn−1)

≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2

−ρn
2

(
∥wn − yn∥2 + ∥yn − zn∥2

)
+ ρn⟨λAyn − wn + yn, yn − zn⟩

=
1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2 −

ρn
2

(
∥wn − yn∥2 + ∥yn − zn∥2

)
+ρn⟨wn − λAwn − yn, zn − yn⟩+ λρn⟨Awn − Ayn, zn − yn⟩

≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2 (3.4.16)

− ρn
2

(
∥wn − yn∥2 + ∥yn − zn∥2

)
+ λρn⟨Awn − Ayn, zn − yn⟩,

where the last inequality follows from the definition of Tn.

Now, from the Lipschitz continuity of A, we obtain

⟨Awn − Ayn, zn − yn⟩ ≤ L||wn − yn||||zn − yn||

=
L

2

[
||wn − yn||2 + ||zn − yn||2

− (||wn − yn|| − ||zn − yn||)2
]

≤ L

2

(
||wn − yn||2 + ||zn − yn||2

)
. (3.4.17)
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Substituting (3.4.17) into (3.4.16), we obtain the desired conclusion.

Lemma 3.4.4. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37) and Assumption 3.4.2(a)-(b) hold. Then, the following inequality holds:

n−1∑
i=1

ti+1,n

[ (
2γi(1− θi)

2 − (θi + θ2i )
)
∥xi − xi−1∥2

+2γi(1− θi)
(
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

)]
≤ 2t1|Γ1 − Γ0|+ 2Γ0,

where ti,n is as defined in (2.5.40).

Proof. By Lemma 2.1.1, we obtain

∥xn+1 − wn∥2 = ∥xn+1 − xn − (xn − xn−1) + (1− θn)(xn − xn−1)∥2

= ∥xn+1 − 2xn + xn−1∥2 + (1− θn)
2∥xn − xn−1∥2

+2(1− θn)⟨xn+1 − 2xn + xn−1, xn − xn−1⟩
= ∥xn+1 − 2xn + xn−1∥2 + (1− θn)

2∥xn − xn−1∥2

+(1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2 − ∥xn+1 − 2xn + xn−1∥2

]
= θn∥xn+1 − 2xn + xn−1∥2 + (1− θn)

2∥xn − xn−1∥2

+(1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2

]
≥ (1− θn)

2∥xn − xn−1∥2 (3.4.18)

+ (1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2

]
.

Using (3.4.18) in Lemma 3.4.3, and noting that 1− λL > 0, we obtain

Γn+1 − Γn − θn(Γn − Γn−1) ≤
1

2
(θn + θ2n)∥xn − xn−1∥2 − γn(1− θn)

2∥xn − xn−1∥2

− γn(1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2

]
=
[1
2
(θn + θ2n)− γn(1− θn)

2
]
∥xn − xn−1∥2

− γn(1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2

]
.

This together with Lemma 2.5.13(a) imply that

Γn − Γ0 =
n∑
i=1

(Γi − Γi−1)

≤ t1,n(Γ1 − Γ0)

+
n−1∑
i=1

ti+1,n

[(1
2
(θi + θ2i )− γi(1− θi)

2
)
∥xi − xi−1∥2

]
−

n−1∑
i=1

ti+1,n

[
γi(1− θi)

(
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

)]
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Noting that t1,n ≤ t1, we obtain

n−1∑
i=1

ti+1,n

[ (
2γi(1− θi)

2 − (θi + θ2i )
)
∥xi − xi−1∥2

+ 2γi(1− θi)
(
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

)]
≤ 2t1,n(Γ1 − Γ0) + 2(Γ0 − Γn)

≤ 2t1|Γ1 − Γ0|+ 2Γ0 − 2Γn.

Using Γn = 1
2
∥xn − z∥2 ≥ 0, ∀n ≥ 1 in the above inequality, we obtain the desired

conclusion.

Lemma 3.4.5. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37) and Assumption 3.4.2(a)-(b) hold. Then, the following inequality holds:

n−1∑
i=1

2γi−1(1− θi−1)− θiti+1

(
1 + θi + 2

[
γi(1− θi)− γi−1(1− θi−1)

]
+

)
∥xi − xi−1∥2

≤ 2
[
t1|Γ1 − Γ0|+ Γ0 + t1γ0(1− θ0)∥x1 − x0∥2

]
.

Proof. Observe that

n−1∑
i=1

ti+1,n · 2γi(1− θi)
[
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

]
= 2

n−1∑
i=1

(
ti,nγi−1(1− θi−1)− ti+1,nγi(1− θi)

)
∥xi − xi−1∥2

+ 2t1,nγn−1(1− θn−1)∥xn − xn−1∥2 − 2t1,nγ0(1− θ0)∥x1 − x0∥2

≥ 2
n−1∑
i=1

(
ti,nγi−1(1− θi−1)− ti+1,nγi(1− θi)

)
∥xi − xi−1∥2

− 2t1,nγ0(1− θ0)∥x1 − x0∥2

≥ 2
n−1∑
i=1

(
ti,nγi−1(1− θi−1)− ti+1,nγi(1− θi)

)
∥xi − xi−1∥2 (3.4.19)

− 2t1γ0(1− θ0)∥x1 − x0∥2,

where the last inequality follows from t1,n ≤ t1.

Now, using (3.4.19) in Lemma 3.4.4, we obtain that

n−1∑
i=1

ti+1,n

(
2γi(1− θi)

2 − (θi + θ2i )
)
∥xi − xi−1∥2

+2
n−1∑
i=1

(
ti,nγi−1(1− θi−1)− ti+1,nγi(1− θi)

)
∥xi − xi−1∥2

≤ 2t1|Γ1 − Γ0|+ 2Γ0 + 2t1γ0(1− θ0)∥x1 − x0∥2.
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That is

n−1∑
i=1

[
ti+1,n(2γi(1− θi)

2 − (θi + θ2i )− 2γi(1− θi)) + 2ti,nγi−1(1− θi−1)
]
∥xi − xi−1∥2

≤ 2
[
t1|Γ1 − Γ0|+ Γ0 + t1γ0(1− θ0)∥x1 − x0∥2

]
.

(3.4.20)

Now, recall from (2.5.41) that ti,n = 1+ θiti+1,n for all i ≥ 1 and n ≥ i+1. Hence, we have

2ti,nγi−1(1− θi−1) = 2
[
γi−1(1− θi−1) + θiti+1,nγi−1(1− θi−1)

]
.

This implies that

ti+1,n

[
2γi(1− θi)

2 − (θi + θ2i )− 2γi(1− θi)
]
+ 2ti,nγi−1(1− θi−1)

= ti+1,n

[
2γi(1− θi)

2 − (θi + θ2i )− 2γi(1− θi) + 2θiγi−1(1− θi−1)
]

+ 2γi−1(1− θi−1)

= 2γi−1(1− θi−1) + ti+1,n

(
− 2γiθi(1− θi)− (θi + θ2i ) + 2θiγi−1(1− θi−1)

)
= 2γi−1(1− θi−1)− θiti+1,n

(
2γi(1− θi) + 1 + θi − 2γi−1(1− θi−1)

)
≥ 2γi−1(1− θi−1)− θiti+1,n

(
1 + θi + 2

[
γi(1− θi)− γi−1(1− θi−1)

]
+

)
≥ 2γi−1(1− θi−1)− θiti+1

(
1 + θi + 2

[
γi(1− θi)− γi−1(1− θi−1)

]
+

)
, (3.4.21)

where the last inequality follows from ti+1,n ≤ ti+1.
Now, using (3.4.21) in (3.4.20), we obtain that the desired conclusion.

Lemma 3.4.6. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37), Assumption 3.4.1 and Assumption 3.4.2(a)-(b) hold. Then,

∞∑
n=1

θntn+1∥xn − xn−1∥2 <∞.

Proof. Without loss of generality, we may assume that inequality (3.4.1) holds true for all
n ≥ 1. That is,

(3.4.22)

2ϵγn−1(1− θn−1) ≤
2γn−1(1− θn−1)− θntn+1

(
1 + θn + 2

[
γn(1− θn)− γn−1(1− θn−1)

]
+

)
, if ρn ∈ (0, 1),

ϵ(1− θn−1) ≤
(1− θn−1)− θntn+1

(
1 + θn +

[
θn−1 − θn

]
+

)
, if ρn = 1,

where γn = 1−ρn
2ρn

, for all n ≥ 1.
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At this point, we divide our proof into two cases.

Case 1: Suppose that ρn ∈ (0, 1), ∀n ≥ 1. Then, using (3.4.22) in Lemma 3.4.5, we
obtain

n−1∑
i=1

ϵγi−1(1− θi−1)∥xi − xi−1∥2 ≤ t1|Γ1 − Γ0|+ Γ0 + t1γ0(1− θ0)∥x1 − x0∥2. (3.4.23)

Now, taking limit as n→ ∞ in (3.4.23), we obtain that

∞∑
i=1

γi−1(1− θi−1)∥xi − xi−1∥2 <∞. (3.4.24)

Again, from (3.4.22), we obtain that

1

2
θntn+1 ≤ γn−1(1− θn−1)−

1

2
θntn+1

(
θn + 2

[
γn(1− θn)− γn−1(1− θn−1)

]
+

)
− ϵγn−1(1− θn−1)

≤ γn−1(1− θn−1). (3.4.25)

Using (3.4.25) in (3.4.24), we obtain

∞∑
i=1

θiti+1∥xi − xi−1∥2 <∞.

Case 2: Suppose that ρn = 1, ∀n ≥ 1. Then, xn+1 = zn and γn = 0, ∀n ≥ 1.
Setting x = wn − yn and y = xn+1 − yn in Lemma 2.1.1, and using its result in Lemma
3.4.3, we obtain

Γn+1 − Γn − θn(Γn − Γn−1) ≤ 1

2
(θn + θ2n)∥xn − xn−1∥2

− 1

2

[
||wn − yn + xn+1 − yn||2 + ||wn − xn+1||2

]
≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 −

1

2
||wn − xn+1||2. (3.4.26)

Now, using (3.4.18) in (3.4.26), and repeating the same line of proof as in Lemma 3.4.4,
we get

n−1∑
i=1

ti+1,n

[ (
(1− θi)

2 − (θi + θ2i )
)
∥xi − xi−1∥2 + (1− θi)

(
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

)]
≤ 2t1|Γ1 − Γ0|+ 2Γ0. (3.4.27)

Similar to (3.4.19), we have

n−1∑
i=1

ti+1,n(1− θi)
[
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

]
≥

n−1∑
i=1

(
ti,n(1− θi−1)− ti+1,n(1− θi)

)
∥xi − xi−1∥2 (3.4.28)

− t1(1− θ0)∥x1 − x0∥2.

90



Also, using (3.4.28) in (3.4.27), and repeating the same line of proof as in Lemma 3.4.5,
we get

n−1∑
i=1

(1− θi−1)− θiti+1

(
1 + θi +

[
θi−1 − θi

]
+

)
∥xi − xi−1∥2

≤ 2t1|Γ1 − Γ0|+ 2Γ0 + t1(1− θ0)∥x1 − x0∥2. (3.4.29)

Using (3.4.22) in (3.4.29), and repeating the same line of proof as in Case 1, we obtain

∞∑
i=1

θiti+1∥xi − xi−1∥2 <∞,

which yields the desired conclusion.

Lemma 3.4.7. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37), Assumption 3.4.1 and Assumption 3.4.2(a)-(b) hold. Then,

(a) lim
n→∞

∥xn − z∥ exists for all z ∈ Γ, and consequently, {xn} is bounded.

(b) lim
n→∞

[∥wn − yn∥2 + ||zn − yn||2] = 0,

(c) lim
n→∞

∥xn − wn∥ = 0.

Proof.

(a) From Lemma 3.4.3, we obtain

Γn+1 − Γn ≤ θn

(
Γn − Γn−1

)
+

1

2

(
θn + θ2n

)
∥xn − xn−1∥2

− ρn
2
(1− λL)

[
||wn − yn||2 + ||zn − yn||2

]
≤ θn

(
Γn − Γn−1

)
+ θn∥xn − xn−1∥2 −

ρn
2
(1− λL)

[
||wn − yn||2 + ||zn − yn||2

]
(3.4.30)

≤ θn

(
Γn − Γn−1

)
+ θn∥xn − xn−1∥2, (3.4.31)

where the second inequality follows from θ2n ≤ θn and the third inequality follows from
1− λL > 0.

Now, applying Lemma 2.5.13(b) and Lemma 3.4.6 in (3.4.31), we obtain that
∞∑
n=1

[
Γn −

Γn−1

]
+
< ∞. Since Γn = 1

2
∥xn − z∥2, we get that lim

n→∞
∥xn − z∥2 exists. Hence, {xn} is

bounded.
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(b) By applying Lemma 2.5.13(a) in (3.4.30), we obtain that

Γn − Γ0 =
n∑
i=1

(
Γi − Γi−1

)
≤ t1,n

(
Γ1 − Γ0

)
+

n−1∑
i=1

ti+1,n

[
θi∥xi − xi−1∥2 −

ρi
2
(1− λL)

[
||wi − yi||2 + ||zi − yi||2

] ]
≤ t1

(
Γ1 − Γ0

)
+

n−1∑
i=1

ti+1θi∥xi − xi−1∥2

−
n−1∑
i=1

ti+1,n
ρi
2
(1− λL)

[
||wi − yi||2 + ||zi − yi||2

] ]
,

which implies that

n−1∑
i=1

ti+1,n
ρi
2
(1− λL)

[
||wi − yi||2 + ||zi − yi||2

] ]
≤ Γ0 − Γn + t1(Γ1 − Γ0)

+
n−1∑
i=1

ti+1θi∥xi − xi−1∥2

≤ Γ0 + t1|Γ1 − Γ0|

+
n−1∑
i=1

ti+1θi∥xi − xi−1∥2

<∞,

where the last inequality follows from Lemma 3.4.6.

Since ti+1,n = 0 for i ≥ n, letting n tend to ∞, the monotone convergence theorem then
implies that

∞∑
i=1

ti+1
ρi
2
(1− λL)

[
||wi − yi||2 + ||zi − yi||2

] ]
<∞. (3.4.32)

Since lim inf
n→∞

ρn > 0, there exists M > 0 such that ρn ≥ M for n large enough. Now,

replacing i with n in (3.4.32) and noting that tn ≥ 1,∀n ≥ 1, we obtain from (3.4.32) that
∞∑
n=1

M
2
(1− λL) [||wn − yn||2 + ||zn − yn||2] <∞, which further gives that

lim
n→∞

[
||wn − yn||2 + ||zn − yn||2

]
= 0.

(c) Since wn = xn + θn(xn − xn−1), we obtain from Lemma 3.4.6 that

∞∑
n=1

tn+1∥wn − xn∥2 ≤
∞∑
n=1

θntn+1∥xn − xn−1∥2 <∞.

Noting that tn ≥ 1,∀n ≥ 1, we conclude immediately that lim
n→∞

∥wn − xn∥ = 0.
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Lemma 3.4.8. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37), Assumption 3.4.1 and Assumption 3.4.2(a)-(d) hold. If x∗ is one of the weak
cluster points of {xn}, then we have at least one of the following: x∗ ∈ Γ or Ax∗ = 0.

Proof. By Lemma 3.4.7(a), we can choose a subsequence of {xn} denoted by {xnk
} such

that xnk
⇀ x∗ ∈ H. Also, from Lemma 3.4.7(b),(c), we obtain that lim

n→∞
∥yn − xn∥ = 0.

Hence, we can choose a subsequence {ynk
} of {yn} such that ynk

⇀ x∗. Note that x∗ ∈ C
since {ynk

} ⊂ C.

We now consider two possible cases.

Case 1: Suppose that lim sup
k→∞

∥Aynk
∥ = 0. Then, lim

k→∞
∥Aynk

∥ = lim inf
k→∞

∥Aynk
∥ = 0. Also,

by the sequentially weakly continuity of A on C, we obtain that Aynk
⇀ Ax∗. Thus, by

the weakly lower semicontinuity of ∥ · ∥, we have that

0 < ∥Ax∗∥ ≤ lim inf
k→∞

∥Aynk
∥ = 0, (3.4.33)

which implies that Ax∗ = 0.

Case 2: Suppose that lim sup
k→∞

∥Aynk
∥ > 0. Then, without loss of generality, we can choose

a subsequence of {Aynk
} still denoted by {Aynk

} such that lim
k→∞

∥Aynk
∥ =M > 0. Also by

the characteristics property of PC, we obtain for all x ∈ C that

⟨wnk
− λAwnk

− ynk
, x− ynk

⟩ ≤ 0.

This implies that

1

λ
⟨wnk

− ynk
, x− ynk

⟩+ ⟨Awnk
, ynk

− wnk
⟩ ≤ ⟨Awnk

, x− wnk
⟩. (3.4.34)

Thus, we obtain from Lemma 3.4.7(b) that

0 ≤ lim inf
k→∞

⟨Awnk
, x− wnk

⟩ ≤ lim sup
k→∞

⟨Awnk
, x− wnk

⟩ <∞, ∀x ∈ C. (3.4.35)

Now, note that

⟨Aynk
, x− ynk

⟩ = ⟨Aynk
− Awnk

, x− wnk
⟩+ ⟨Awnk

, x− wnk
⟩+ ⟨Aynk

, wnk
− ynk

⟩.
(3.4.36)

Moreover, since A is Lipschitz continuous on H, we obtain from Lemma 3.4.7(b) that
lim
k→∞

∥Awnk
− Aynk

∥ = 0. Hence, we obtain from Lemma 3.4.7(b), (3.4.35) and (3.4.36)

that

0 ≤ lim inf
k→∞

⟨Aynk
, x− ynk

⟩ ≤ lim sup
k→∞

⟨Aynk
, x− ynk

⟩ <∞, ∀x ∈ C. (3.4.37)

Based on (3.4.37), we consider two cases under Case 2, as follows:

Case A: Suppose that lim sup
k→∞

⟨Aynk
, x− ynk

⟩ > 0,∀x ∈ C. Then, we can choose a subse-

quence of {ynk
} denoted by {ynkj

} such that lim
j→∞

⟨Aynkj
, x− ynkj

⟩ > 0. Thus, there exists
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j0 ≥ 1 such that ⟨Aynkj
, x − ynkj

⟩ > 0,∀j ≥ j0, which by the quasimonotonicity of A

on H, implies ⟨Ax, x − ynkj
⟩ ≥ 0,∀x ∈ C, j ≥ j0. Thus, letting j → ∞, we obtain that

⟨Ax, x− x∗⟩ ≥ 0, ∀x ∈ C. Hence, x∗ ∈ Γ.

Case B: Suppose that lim sup
k→∞

⟨Aynk
, x − ynk

⟩ = 0,∀x ∈ C. Then, by (3.4.37), we obtain

that

lim
k→∞

⟨Aynk
, x− ynk

⟩ = 0,∀x ∈ C, (3.4.38)

which implies that

⟨Aynk
, x− ynk

⟩+ |⟨Aynk
, x− ynk

⟩|+ 1

k + 1
> 0, ∀x ∈ C. (3.4.39)

Also, since lim
k→∞

∥Aynk
∥ = M > 0, there exists k0 ≥ 1 such that ∥Aynk

∥ > M
2
,∀k ≥ k0.

Therefore, we can set qnk
=

Aynk

∥Aynk
∥2 , ∀k ≥ k0. Thus, ⟨Aynk

, qnk
⟩ = 1,∀k ≥ k0. Hence, by

(3.4.39), we obtain〈
Aynk

, x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1
− ynk

]〉
> 0,

which by the quasimonotonicity of A on H, implies〈
A
(
x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

])
, x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
− ynk

〉
≥ 0.

This further implies that

⟨Ax, x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
− ynk

⟩

≥ ⟨Ax,A(x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
), x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
− ynk

⟩

≥ −∥Ax− A(x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
)∥

×
(
∥x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
− ynk

∥
)

≥ −L∥qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
∥ · ∥x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
− ynk

∥

=
−L

∥Aynk
∥

(
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

)
· ∥x+ qnk

[
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

]
− ynk

∥

≥ −2L

M

(
|⟨Aynk

, x− ynk
⟩|+ 1

k + 1

)
M1, (3.4.40)

for some M1 > 0, where the existence of M1 follows from the boundedness of {x +

qnk

[
|⟨Aynk

, x−ynk
⟩|+ 1

k+1

]
−ynk

}. Note from (3.4.38) that lim
k→∞

(
|⟨Aynk

, x−ynk
⟩|+ 1

k+1

)
= 0.

Hence, letting k → ∞ in (3.4.40), we get that ⟨Ax, x − x∗⟩ ≥ 0,∀x ∈ C. Therefore,
x∗ ∈ Γ.
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Lemma 3.4.9. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37), Assumption 3.4.1 and Assumption 3.4.2(a)-(d) hold. Then {xn} has at most one
weak cluster point in Γ.

Proof. Suppose on the contrary that {xn} has at least two weak cluster points in Γ. Let
x∗ ∈ Γ and x̄ ∈ Γ be any two weak cluster points of {xn} such that x∗ ̸= x̄. Also, let {xnj

}
be a subsequence of {xn} such that xnj

⇀ x̄, as j → ∞. Then, by Lemma 3.4.7(a) and
Lemma 2.5.15, we have

lim
n→∞

∥xn − x̄∥ = lim
j→∞

∥xnj
− x̄∥

= lim inf
j→∞

∥xnj
− x̄∥

< lim inf
j→∞

∥xnj
− x∗∥

= lim
n→∞

∥xn − x∗∥

= lim inf
k→∞

∥xnk
− x∗∥

< lim inf
k→∞

∥xnk
− x̄∥ = lim

n→∞
∥xn − x̄∥,

which is a contradiction. Therefore, {xn} has at most one weak cluster point in Γ.

Theorem 3.4.10. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assump-
tion (2.5.37), Assumption 3.4.1 and Assumption 3.4.2(a)-(e) hold. Then {xn} converges
weakly to an element of V I(C, A).

Proof. By Assumption 3.4.2(e), {x ∈ C : Ax = 0} \ Γ is a finite set. Hence, by Lemma
3.4.8 and Lemma 3.4.9, we have that {xn} has finite weak cluster points in V I(C, A). Let
x1, x2, · · · , xm be the weak cluster points of {xn}, and let {xink

} be a subsequence of {xn}
such that xink

⇀ xi, as k → ∞. Then, we obtain

lim
k→∞

〈
xink

, xi − xj
〉
=
〈
xi, xi − xj

〉
,∀j ̸= i. (3.4.41)

Now, for j ̸= i, set q = β−1(xi − xj), where β = ∥xi − xj∥. Then,

⟨xi, q⟩ = β−1⟨xi, xi − xj⟩

= β−1
(
∥xi∥2 − ⟨xi, xj⟩

)
= β−1

[
∥xi∥2 − 1

2
∥xi∥2 − 1

2
∥xj∥2 + 1

2
∥xi − xj∥2

]
=

1

2β

(
∥xi∥2 − ∥xj∥2

)
+

1

2
β

>
1

2β

(
∥xi∥2 − ∥xj∥2

)
+

1

4
β. (3.4.42)

For sufficiently large k, we obtain from (3.4.41) and (3.4.42) that

xink
∈
{
x : ⟨x, q⟩ > 1

2β

(
∥xi∥2 − ∥xj∥2

)
+

1

4
β
}
. (3.4.43)
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Hence, there exists N1 > N (N ∈ N) such that

xink
∈ Bi :=

m⋂
j=1,j ̸=i

{
x :
〈
x,

xi − xj

∥xi − xj∥

〉
>

1

2∥xi − xj∥

(
∥xi∥2 − ∥xj∥2

)
+ ϵ0

}
,∀n ≥ N1,

(3.4.44)

where

ϵ0 = min
{1
4
∥xi − xj∥ : i, j = 1, 2, · · · ,m, i ̸= j

}
.

Now, from Lemma 3.4.7(b), we obtain that lim
n→∞

∥zn − wn∥ = 0. Since xn+1 − wn =

ρn(zn − wn) and {ρn} is bounded, we obtain that lim
n→∞

∥xn+1 − wn∥ = 0. This together

with Lemma 3.4.7(c), imply that lim
n→∞

∥xn+1 − xn∥ = 0. Hence, there exists N2 > N1 > N

such that ∥xn+1 − xn∥ < ϵ0,∀n ≥ N2.

Claim: {xn} has only one weak cluster point in V I(C, A).
Suppose on the contrary that {xn} has more than one weak cluster points in V I(C, A).
Then, there exists N3 ≥ N2 > N1 > N such that xN3 ∈ Bi and xN3+1 ∈ Bj, where

Bj : =
m⋂

i=1,i ̸=j

{
x :
〈
− x,

xj − xi

∥xj − xi∥

〉
<

1

2∥xj − xi∥

(
∥xi∥2 − ∥xj∥2

)
− ϵ0

}
,

i, j ∈ {1, 2, · · · ,m} andm ≥ 2. (3.4.45)

In particular, we have

∥xN3+1 − xN3∥ < ϵ0. (3.4.46)

Since xN3 ∈ Bi and xN3+1 ∈ Bj, we obtain that〈
xN3 ,

xi − xj

∥xi − xj∥

〉
>

1

2∥xi − xj∥

(
∥xi∥2 − ∥xj∥2

)
+ ϵ0 (3.4.47)

and 〈
− xN3+1,

xi − xj

∥xj − xi∥

〉
>

1

2∥xi − xj∥

(
∥xj∥2 − ∥xi∥2

)
+ ϵ0. (3.4.48)

Adding (3.4.47) and (3.4.48), and using (3.4.46), we obtain

2ϵ0 <
〈
xN3 − xN3+1,

xi − xj

∥xi − xj∥

〉
≤ ∥xN3+1 − xN3∥ < ϵ0, (3.4.49)

which is not possible. Hence, our claim holds. That is, {xn} has only one weak cluster
point in V I(C, A). Therefore, we conclude that {xn} converges weakly to an element of
V I(C, A).

Remark 3.4.11.
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(i) The conclusion of Theorem 3.4.10 still hold even if λ ∈ (0, 1
L
) in Algorithm 3.4.3 is

replaced with a variable stepsize λn such that 0 < infn≥1 λn ≤ supn≥1 λn <
1
L
. However,

choosing this variable stepsize still requires the knowledge of the Lipschitz constant L.

(ii) When the Lipschitz constant is not known, we refer to Algorithm 3.4.4, where the
choice of λn does not depend on its knowledge. Note from the stepsize λn in (3.4.2), that
lim
n→∞

λn = λ and λ ∈ [min{µ
L
, λ1}, λ1 + d], where d =

∑∞
n=1 dn (see also [162, Lemma 3.1]).

(iii) When dn = 0, then the stepsize λn generated by Algorithm 3.4.4 is similar to that in
[267]. We recall that the stepsize in [267] is monotone non-increasing, thus, their methods
may depend on the choice of the initial stepsize λ1. However, the stepsize given in (3.4.2)
is non-monotonic and hence, the dependence on the initial stepsize λ1 is reduced.

In the light of the above remark, we analyze the convergence of Algorithm 3.4.4 in what
follows.

Lemma 3.4.12. Let {xn} be a sequence generated by Algorithm 3.4.4 such that Assump-
tion 3.4.2(a)-(b) hold. Then,

Γn+1 − Γn − θn(Γn − Γn−1)

≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 − γn∥xn+1 − wn∥2

−ρn
2

(
1− λn

µ

λn+1

)[
||wn − yn||2 + ||zn − yn||2

]
,

where γn := 1−ρn
2ρn

and Γn := 1
2
∥xn − z∥2, ∀z ∈ Γ.

Proof. By following the same line of proof used in obtaining (3.4.16), we have

Γn+1 − Γn − θn(Γn − Γn−1)

≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 +

ρn − 1

2ρn
∥xn+1 − wn∥2 (3.4.50)

−ρn
2

(
∥wn − yn∥2 + ∥yn − zn∥2

)
+ λnρn⟨Awn − Ayn, zn − yn⟩.

If ⟨Awn −Ayn, zn − yn⟩ ≤ 0, then we obtain the conclusion of Lemma 3.4.12 immediately
from (3.4.50).
In the case that ⟨Awn − Ayn, zn − yn⟩ > 0, we obtain from (3.4.2) that

⟨Awn − Ayn, zn − yn⟩ ≤
µ

2λn+1

(
∥wn − yn∥2 + ∥zn − yn∥2

)
. (3.4.51)

Substituting (3.4.51) into (3.4.50), we obtain the desired conclusion.

Lemma 3.4.13. Let {xn} be a sequence generated by Algorithm 3.4.3 such that assumption
(2.5.37) and Assumption 3.4.2(a)-(b) hold. Then, the following inequality holds:

n−1∑
i=1

ti+1,n

[ (
2γi(1− θi)

2 − (θi + θ2i )
)
∥xi − xi−1∥2

+2γi(1− θi)
(
∥xi+1 − xi∥2 − ∥xi − xi−1∥2

)]
≤ 2t1|Γ1 − Γ0|+ 2Γ0,
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where ti,n is as defined in (2.5.40).

Proof. By following the same line of proof used in obtaining (3.4.18), we have

∥xn+1 − wn∥2 ≥ (1− θn)
2∥xn − xn−1∥2

+ (1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2

]
. (3.4.52)

Also, by Remark 3.4.11(ii), we obtain that limn→∞ λn
µ

λn+1
= µ ∈ (0, 1). Thus, there exists

n0 ≥ 1 such that ∀n ≥ n0, 0 < λn
µ

λn+1
< 1. Hence, we get from Lemma 3.4.12 and (3.4.52)

that

Γn+1 − Γn − θn(Γn − Γn−1) ≤ 1

2
(θn + θ2n)∥xn − xn−1∥2 − γn∥xn+1 − wn∥2

≤
[1
2
(θn + θ2n)− γn(1− θn)

2
]
∥xn − xn−1∥2

−γn(1− θn)
[
∥xn+1 − xn∥2 − ∥xn − xn−1∥2

]
, ∀n ≥ n0.

The remaining part of the proof is the same as the proof of Lemma 3.4.4.

In similar manner, we have that Lemma 3.4.5 to Lemma 3.4.9 hold for Algorithm 3.4.4.
Thus, we have the following theorem whose proof is the same as the proof of Theorem
3.4.10.

Theorem 3.4.14. Let {xn} be a sequence generated by Algorithm 3.4.4 such that assump-
tion (2.5.37), Assumption 3.4.1 and Assumption 3.4.2(a)-(e) hold. Then {xn} converges
weakly to an element of V I(C, A).

Remark 3.4.15. From our analyses, one can see that Assumption 3.4.1 is mainly used
to guarantee the summation:

∞∑
n=1

θntn+1∥xn − xn−1∥2 <∞ (3.4.53)

obtained in Lemma 3.4.6. Thus, if we assume that (3.4.53) directly, then we do not need
Assumption 3.4.1 for the convergence of our methods.
In the case where ρn = 1, ∀n ≥ 1, our methods correspond to the inertial subgradient
extragradient methods. Note that if θn ∈ [0, θ] for every n ≥ 1, where θ ∈ [0, 1), then
tn ≤ 1

(1−θ) ∀n ≥ 1. Under these settings, (3.4.53) is guaranteed by the condition

∞∑
n=1

θn∥xn − xn−1∥2 <∞. (3.4.54)

Thus, instead of Assumption 3.4.1, we may assume directly that θn ∈ [0, θ], ∀n ≥ 1
and that condition (3.4.54) holds. Recall that this condition has been used by numerous
authors to ensure convergence of inertial methods (see, for example, [18, 84, 165, 167, 184]
and the references therein).
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Remark 3.4.16. Note that we did not make use of Assumption 3.4.2(c)-(e) in the proof
of Lemma 3.4.3-3.4.7. Suppose that H is a finite dimensional Hilbert space, then under
Assumption 3.4.2(a)-(b), we get from Lemma 3.4.7(a) that there exists a subsequence
{xnk

} of {xn} such that {xnk
} converges to some point x∗. By Lemma 3.4.7(b)(c), we get

lim
k→∞

∥wnk
− ynk

∥ = 0

and

lim
k→∞

∥wnk
− xnk

∥ = 0.

Thus, by the definition of yn and the continuity of A, we have

x∗ = lim
k→∞

xnk
= lim

k→∞
ynk

= lim
k→∞

PC(wnk
− λAwnk

) = PC(x
∗ − λAx∗),

which implies that x∗ ∈ V I(C, A).

Now, replacing z by x∗ in Lemma 3.4.7(a), we obtain that lim
n→∞

∥xn − x∗∥2 exists. Since

x∗ is a cluster point of {xn}, we obtain that {xn} converges to x∗.

In summary, in a finite dimensional Hilbert space, our methods require that Γ ̸= ∅ and the
operator A only needs to be Lipschitz continuous without any form of monotonicity.

To achieve this (convergence without any form of monotonicity) in infinite dimensional
Hilbert space, we replace Assumption 3.4.2(d)-(e) with the following:

(d)* If xn ⇀ x∗ and lim sup
n→∞

⟨Axn, xn⟩ ≤ ⟨Ax∗, x̄⟩, then lim
n→∞

⟨Axn, xn⟩ = ⟨Ax∗, x∗⟩.

(e)* The set V I(C, A) \ Γ is a finite set.

In fact, we have the following theorem.

Theorem 3.4.17. Let {xn} be a sequence generated by Algorithm 3.4.3 (or Algorithm
3.4.4) such that assumption (2.5.37), Assumption 3.4.1, Assumption 3.4.2(a)-(c) and con-
ditions (d)*-(e)* hold. Then {xn} converges weakly to an element of V I(C, A).

Proof. First notice that Assumption 3.4.2(d) was used only after (3.4.37) in order to
establish the conclusion of Lemma 3.4.8.
But from (3.4.37), we have that

0 ≤ lim inf
k→∞

⟨Aynk
, x− ynk

⟩, ∀x ∈ C.

Now, let {ck} be a sequence of positive numbers such that lim
k→∞

ck = 0 and ⟨Aynk
, x −

ynk
⟩+ ck > 0, ∀k ≥ 0, x ∈ C. Then,

⟨Aynk
, x⟩+ ck > ⟨Aynk

, ynk
⟩, ∀k ≥ 0, x ∈ C. (3.4.55)

Note that ynk
⇀ x∗ and x∗ ∈ C. Thus, we have in particular,

⟨Aynk
, x∗⟩+ ck > ⟨Aynk

, ynk
⟩, ∀k ≥ 0. (3.4.56)
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Taking limit as k → ∞ in (3.4.56), and using the sequentially weakly continuity of A, we
obtain that

⟨Ax∗, x∗⟩ ≥ lim sup
k→∞

⟨Aynk
, ynk

⟩,

which by condition (d)* and (3.4.55) implies that

⟨Ax∗, x∗⟩ = lim
k→∞

⟨Aynk
, ynk

⟩

= lim inf
k→∞

⟨Aynk
, ynk

⟩

≤ lim
k→∞

(⟨Aynk
, x⟩+ ck) = ⟨Ax∗, x⟩.

This further implies that x∗ ∈ V I(C, A).
Now, using condition (e)* and following similar line of proof as in Lemma 3.4.9 and
Theorem 3.4.17, we get that {xn} converges weakly to x∗.

Remark 3.4.18.

(i) If xn ⇀ x∗ and A is sequentially weakly-strongly continuous, then A satisfies condi-
tion (d)*.

(ii) In the numerical experiments, we do not need to consider condition (e) (or (e)*).
First note that whenever ||yn − wn|| < ϵ, Algorithm 3.4.3 and Algorithm 3.4.4 ter-
minate in a finite step of the iterations (and yn is the solution of the VIP (1.2.1)).
But from Lemma 3.4.7(b), lim

n→∞
||yn − wn|| = 0 and condition (e) (or (e)*) was not

used in establishing it.

We now give some remarks regarding the contributions in this work.

Remark 3.4.19.

(1) If we set the inertial factor θn = 0 and relaxation factor ρn = 1, then our Algorithm
3.4.4 reduces to Algorithm 3.3 of [162]. Note that these parameters (factors) play
vital role in improving the convergence rate of iterative methods. In fact, their influ-
ence with regards to the numerical performance of iterative schemes was discussed
in [129]. Moreover, the benefits gained from incorporating the steps of these two
parameters in our algorithms, are further verified in Section 3.4.3. Thus, bearing
in mind the importance of these two parameters in iterative algorithms, we can see
that our methods significantly improve the methods in [162].

(2) In the study of inertial methods for solving VIPs (even for monotone mappings), the
inertia parameter is usually restricted in [0, 1

3
) and/or required to be nondecreasing
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with an upper bound (see, for example, [18, 165, 246, 247]). In many cases, to en-
sure convergence, authors usually require the inertial parameter to depend on the
knowledge of the Lipschitz constant of the cost operator which sometimes is very
difficult to estimate in practice (see, for instance, [97]). Another condition usually
imposed on the inertial parameter in the literature, is condition (3.4.54), which rely
on the sequence {xn}. One of the novelties of this work is that we derived a general
condition (Assumption 3.4.1) which is weaker than the above conditions used in the
literature for ensuring the convergence of inertial methods for VIPs. As a result, we
developed a different technique to ensure the convergence of our methods.

(3) In addition to (2) above, bearing in mind the Nestrov’s accelerated scheme ([187]),
another novelty of this work, is that the assumptions on the inertial and relaxation
paramters of this work, allow the case where θn converges to a point very close to
1 (see Remark 2.5.12 and the choices in Experiment 1 of Section 3.4.3), which is
very crucial in the study of inertial methods. This is actually where the relaxation
effect and the parameter ρn come into play, as crucial ingredients of our methods.
Thus, the novelty of this work is not only in improving the convergence rate of
the methods in [162] but to provide weaker conditions on the inertial parameter
in methods for solving VIPs and also to offer a different but unified technique in
proving their convergence. Furthermore, we employed condition (Assumption 3.4.1)
where joint adjustments of the inertial and relaxation parameters play crucial role
(for instance, see Experiment 1). Indeed, this is a new perspective in the study of
inertial methods for VIPs. Moreover, our study offers many possibilities for future
research in this direction; like how to modify Assumption 3.4.1 so that θn is allowed
to converge to 1?

3.4.3 Numerical experiments

In this section, we give some numerical examples to show the implementation of our
proposed methods (Algorithm 3.4.3 and Algorithm 3.4.4). We also compare our new
methods with Algorithms 3.1 and 3.3 in [162], and Algorithm 2.1 in [269].

The codes are written in Matlab 2016 (b) and performed on a personal computer with
an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM. In Tables 3.4.1-3.4.5,
“Iter.” means the number of iterations while “CPU” means the CPU time in seconds.
In our computations, we define TOLn := ||yn − wn|| for Algorithm 3.4.3 and Algorithm
3.4.3. While for Algorithms 3.1 and 3.3 in [162], we define TOLn := ∥yn−xn∥/min{λn, 1}
and for Algorithm 2.1 in [269], we define TOLn := ∥xn − zn∥ = ∥xn − PC(xn − Axn)∥
(as done in [162] and [269], respectively). Then, we use the stopping criterion TOLn < ε
for the iterative processes, where ε is the predetermined error. These choices of stopping
criterion for these methods are the best to be able to terminate the algorithms based on
the examples we consider. As done in [162], we take ε = 10−6 for all Algorithms.
We choose µ = 0.5, dn = 100

(n+1)1.1
and λ1 = 1 for Algorithm 3.4.4 and Algorithms 3.1 and

3.3 in [162]; λ = 1
2L

for Algorithm 3.4.3; γ = 0.4 and σ = 0.99 for Algorithm 2.1 in [269].
These choices are the same as in [162, 269] and are optimal values for these parameters.
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Example 3.4.20. Let C = [−1, 1] and

Ax =


2x− 1, x > 1,
x2, x ∈ [−1, 1],
−2x− 1, x < −1.

Then, A is quasimonotone and 2-Lipschitz continuous. Also, Γ = {−1} and V I(C, A) =
{−1, 0}.

Example 3.4.21. Let C = {x ∈ R2 : x21 + x22 ≤ 1, 0 ≤ x1} and A(x1, x2) = (−x1ex2 , x2).
Then, A may not be quasimonotone. We can also check that (1, 0) ∈ Γ and V I(C, A) =
{(1, 0), (0, 0)} (see [162, Section 4]), which by Remark 3.4.16 satisfy our assumptions. This
example was also tested in [162].

Example 3.4.22. We next consider the following problem which was also considered in
[162, 170, 231].
Let C = [0, 1]m and Ax = (f1x, f2x, · · · , fmx),
where fix = x2i−1 + x2i + xi−1xi + xixi+1 − 2xi−1 + 4xi + xi+1 − 1, i = 1, 2, · · · ,m,
x0 = xm+1 = 0.

We test these examples under the following experiments.

Experiment 1
In this first experiment, we check the behavior of our methods by fixing the inertial
parameter and varying the relaxation parameter. We do this in order to check the effects
of the relaxation parameter on our methods.

For Example 3.4.20: We take θn = 3n+1
10n+5

with ρn = 1 (which by Proposition 3.4.5,

satisfies assumption (2.5.37) and Assumption 3.4.1), and θn = 19
20

− 1

(n+1)
1
2

with ρn ∈
{ 1
20
+ 1

(n+1)2
, 1

20
+ 2

(n+1)3
, 1

20
+ 3

(n+1)4
, 1
20
+ 5

(n+1)4
} (which also satisfies assumption (2.5.37)

and Assumption 3.4.1 by Proposition 3.4.7).
Also, we take x1 = 1 and x0 = 0.5 for this example. Since the Lipshitz constant is
known for this example, we use Algorithm 3.4.3 and Algorithm 3.4.4 for the experiment
and obtain the numerical results listed in Table 3.4.1 and Figure 3.3. From the table and
graph, we can see that ρn = 1 performs better than other choices made for Algorithm
3.4.3 and Algorithm 3.4.4.

For Example 3.4.21 and Example 3.4.22: We take θn = 9.9
10

− 1
n+1

with ρn = 1
(which by Proposition 3.4.6 (see also Remark 2.5.12), satisfies assumption (2.5.37) and
Assumption 3.4.1), and θn = 9

10
− 1

(n+1)
1
3
with ρn ∈ { 1

10
+ 1

n+1
, 1

11
+ 1

n+1
, 1

12
+ 1

n+1
, 1
13
+ 1

n+1
}.

Also, we take x1 = (0.1, 0.5) and x0 = (0.2, 0.1) for Example 3.4.21 while for Example
3.4.22, we choose x1 and x0 randomly with m = 50. For these examples, we use Algorithm
3.4.4 for the experiment and obtain the numerical results listed in Table 3.4.2 and Figure
3.4. From the table and graph, we can see that the ρn = 1

11
+ 1

n+1
performs better than

other choices made for Example 3.4.21 while ρn = 1
10

+ 1
n+1

performs better for Example
3.4.22, which validates the benefits sometimes brought by the relaxation parameter.
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Experiment 2
In this experiment, we compare our methods with Algorithms 3.1 and 3.3 in [162], and
Algorithm 2.1 in [269]. Here, we randomly choose the θn and ρn from Experiment 1, and
then, consider the following cases for the starting points in each example.

For Example 3.4.20: Case I: x1 = 0.2, x0 = 0.1 and Case II: x1 = 0.6, x0 = 0.2.

For Example 3.4.21: Case I: x1 = (1, 0.5), x0 = (0.2, 0.1) and Case II: x1 = (0.1, 0.2),
x0 = (0.3, 0.5).

For Example 3.4.22: Case I: m = 100 and Case II: m = 150 (x1 and x0 are randomly
taken).

We use Algorithm 3.4.1 and Algorithm 3.4.4 for the comparison in Example 3.4.20 while
we use only Algorithm 3.4.4 for the comparison in Example 3.4.21 and Example 3.4.22.
The numerical results are given in Tables 3.4.3-3.4.5 and Figures 3.5-3.7. The results show
that our methods perform better than Algorithms 3.1 and 3.3 in [162], and Algorithm 2.1
in [269].

Table 3.4.1. Numerical results for Example 3.4.20 (Experiment 1).
ρn Algorithm

3.4.3
Algorithm
3.4.4

1 CPU
Iter.

0.0016
7

0.0015
3

1
20

+ 1
(n+1)2

CPU
Iter.

0.0022
13

0.0027
6

1
20

+ 2
(n+1)3

CPU
Iter.

0.0026
8

0.0020
9

1
20

+ 3
(n+1)4

CPU
Iter.

0.0028
11

0.0028
12

1
20

+ 5
(n+1)4

CPU
Iter.

0.0597
21

0.0146
20

Table 3.4.2. Numerical results for Algorithm 3.4.4 (Experiment 1).
ρn Example

3.4.21
Example
3.4.22

1 CPU
Iter.

0.0123
20

0.0232
68

1
10
+ 1

n+1
CPU
Iter.

0.0162
23

0.0107
39

1
11
+ 1

n+1
CPU
Iter.

0.0050
16

0.0304
45

1
12
+ 1

n+1
CPU
Iter.

0.0149
30

0.0346
51

1
13
+ 1

n+1
CPU
Iter.

0.0163
45

0.0257
71
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Figure 3.3: The behavior of Algorithms 3.4.3 and 3.4.4 for Example 3.4.20 (Experiment
1).
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Figure 3.4: The behavior of Algorithm 3.4.4 for Examples 3.4.21 and 3.4.22 (Experiment
1).
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Figure 3.5: The behavior of TOLn for Example 3.4.20 (Experiment 2): Left: Case I;
Right: Case II.

Table 3.4.3. Numerical results for Example 3.4.20 (Experiment 2).
Cases Algorithm

3.4.3
Algorithm
3.4.4

Algorithm
3.1 in [162]

Algorithm
3.3 in [162]

Algorithm
2.1 in [269]

I CPU
Iter.

0.0223
795

0.0289
922

0.0612
1002

0.0621
998

0.0923
1848

II CPU
Iter.

0.0244
788

0.0272
936

0.0672
996

0.0662
992

0.0900
1828

Table 3.4.4. Numerical results for Example 3.4.21 (Experiment 2).
Cases Algorithm

3.4.4
Algorithm
3.1 in
[162]

Algorithm
3.3 in [162]

Algorithm
2.1 in [269]

I CPU
Iter.

0.0036
16

0.0200
55

0.0149
52

0.1780
927

II CPU
Iter.

0.0062
44

0.0185
80

0.0181
77

0.1289
1427

Table 3.4.5. Numerical results for Example 3.4.22 (Experiment 2).
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Figure 3.6: The behavior of TOLn for Example 3.4.21 (Experiment 2): Left: Case I;
Right: Case II.

Cases Algorithm
3.4.4

Algorithm
3.1 in
[162]

Algorithm
3.3 in [162]

Algorithm
2.1 in [269]

I CPU
Iter.

0.0049
37

0.0931
65

0.0911
62

0.2021
952

II CPU
Iter.

0.0041
42

0.0916
56

0.0900
54

0.2102
2427

3.5 On minimum-norm solutions of quasimonotone

variational inequalities with fixed point constraint

The class of quasimonotone mappings are known to be more general and applicable than
the classes of pseudomonotone and monotone mappings. However, only very few results
can be found in the literature on quasimonotone VIPs and most of these results are
on weak convergent algorithms. In this section, we study the quasimonotone VIP with
constraint of FPP of quasi-pseudocontractive mappings. We introduce a new inertial
Tseng’s extragradient method with self-adaptive step size for approximating the minimum-
norm solutions of the aforementioned problem in the framework of Hilbert spaces. We
prove that the sequence generated by the proposed method converges strongly to a common
(minimum-norm) solution of the quasimonotone VIP and FPP of quasi-pseudocontractive
mappings without the Lipschitz continuity and sequentially weakly continuity conditions
often assumed by authors when solving VIPs. We provide several numerical experiments
for the proposed method in comparison with existing methods in the literature. Finally,
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Figure 3.7: The behavior of TOLn for Example 3.4.22 (Experiment 2): Left: Case I;
Right: Case II.

we applied our result to image restoration problem. Our result improves, extends and
generalizes several of the recently announced results in this direction.

3.5.1 Proposed method

In this section, we present our proposed method. We begin by giving the following as-
sumptions under which our strong convergence result is obtained.

Assumption 3.5.1. Suppose that the following conditions hold:

(a) The feasible set C is a nonempty, closed and convex subsets of the real Hilbert space
H.

(b) A : H → H is quasimonotone and uniformly continuous on H.

(c) The mapping A : H → H satisfies the following property:
whenever {xn} ⊂ C, xn ⇀ x∗, one has ∥Ax∗∥ ≤ lim inf

n→∞
∥Axn∥.

(d) T : H → H is a quasi-pseudocontractive mapping such that I − T is demiclosed at
zero.

(e) The set ΓD = ΩD ∩ F (T ) ̸= ∅.

(f) {αn} ⊂ (0, 1),
∞∑
n=1

αn = ∞, lim
n→∞

αn = 0, {τn} ⊂ [a, b] ⊂ (0, 1), 0 < ζ < η <

1
1+

√
1+L2 .
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(g) Let {ϵn} be a positive sequence such that lim
n→∞

ϵn
αn

= 0.

(h) Let {ρn} be a nonnegative sequence such that
∞∑
n=1

ρn < +∞.

Algorithm 3.5.2.

Step 1: Select initial point x0, x1 ∈ H1, let λ1 > 0, µ ∈ (0, 1), θ ≥ 3 and set n = 1. Given
the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n :=

{
min

{
n−1
n+θ−1

, ϵn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+θ−1

, otherwise.
(3.5.1)

Step 2: Compute

wn = (1− αn)
(
xn + θn(xn − xn−1)

)
.

Step 3: Compute
yn = PC(wn − λnAwn).

If wn = yn and Twn = wn, then stop: wn is a solution of the Problem (1.2.3). Otherwise,
go to Step 4.

Step 4: Compute
zn = yn − λn(Ayn − Awn).

Step 5 Compute

xn+1 = (1− τn)wn + τn

(
(1− ζ)I + ζT ((1− η)I + ηT )

)
zn,

where

λn+1 =

{
min

{
µ∥wn−yn∥
∥Awn−Ayn∥ , λn + ρn

}
if Awn − Ayn ̸= 0,

λn + ρn, otherwise.
(3.5.2)

Set n := n+ 1 and go back to Step 1.

Remark 3.5.1.

� Step 1 of Algorithm 3.5.2 is easily implemented since the knowledge of the value of
∥xn − xn−1∥ is prior known before choosing θn.

� The algorithm involves only one projection onto the feasible set C per iteration,
which makes the implementation of the algorithm computationally less expensive.

� Step 5 of Algorithm 3.5.2 guarantees the strong convergence of the algorithm to a
point in the solution set of the problem.
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� The step size (3.5.2) is self adaptive, and generates a non-monotonic sequence of
step sizes. This makes the implementation of Algorithm 3.5.2 possible without the
prior knowledge of the Lipschitz constant.

� The condition (c) is strictly weaker than the sequentially weakly continuity condition,
which is commonly used in the literature when solving pseudomonotone VIP.

Remark 3.5.2. By conditions (f) and (g), from (3.5.1) we observe that

lim
n→∞

θn||xn − xn−1|| = 0 and lim
n→∞

θn
αn

||xn − xn−1|| = 0. (3.5.3)

First, we prove some lemmas which will be employed in proving our strong convergence
theorem for the proposed algorithm.

3.5.2 Convergence analysis

Lemma 3.5.3. Let {λn} be a sequence generated by Algorithm 3.5.2. Then, we have

lim
n→∞

λn = λ, where λ ∈
[
min{ µK , λ1}, λ1 + Φ

]
and Φ =

∞∑
n=1

ρn.

Proof. Since A is uniformly continuous, then by (2.1.4) it follows that for any given ϵ > 0,
there existsM <∞ such that ∥Awn−Ayn∥ ≤M∥wn−yn∥+ϵ. Thus, when Awn−Ayn ̸= 0
for all n ≥ 1 we have

µ∥wn − yn∥
∥Awn − Ayn∥

≥ µ∥wn − yn∥
M∥wn − yn∥+ ϵ

=
µ∥wn − yn∥

(M + ϵ1)∥wn − yn∥
=
µ

K
,

where ϵ = ϵ1∥wn − yn∥ for some ϵ1 ∈ (0, 1) and K = M + ϵ1. Therefore, by the definition
of λn+1, the sequence {λn} has lower bound min{ µK , λ1} and upper bound λ1 + Φ. By
Lemma 2.5.34, it follows that lim

n→∞
λn exists and denoted by λ = lim

n→∞
λn. Clearly, we have

λ ∈
[
min{ µK , λ1}, λ1 + Φ

]
.

Remark 3.5.4. The step size generated in Algorithm 3.5.2 is permitted to increase per
iteration which reduces its dependence on the initial step size. The step size may not
increase when n is large enough. In our convergence analysis, we assume that Algorithm
3.5.2 does not terminate in finite number of iterations.

Lemma 3.5.5. Let {xn} be a sequence generated by Algorithm 3.5.2 under Assumption
3.5.1. Then

∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2.
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Proof. From (3.5.2), we obtain

λn+1 = min
{ µ∥wn − yn∥
∥Awn − Ayn∥

, λn + ρn

}
≤ µ∥wn − yn∥

∥Awn − Ayn∥
,

which implies that

∥Awn − Ayn∥ ≤ µ

λn+1

∥wn − yn∥, ∀n ≥ 1. (3.5.4)

Let p ∈ ΓD. From Lemma 2.1.1 and the definition of zn in Step 4, we have

∥zn − p∥2 ≤ ∥yn − λn(Ayn − Awn)− p∥2

= ∥yn − p∥2 + λ2n∥Ayn − Awn∥2 − 2λn⟨Ayn − Awn, yn − p⟩
= ∥wn − p∥2 + ∥yn − wn∥2 + 2⟨yn − wn, wn − p⟩+ λ2n∥Ayn − Awn∥2

− 2λn⟨Ayn − Awn, yn − p⟩
= ∥wn − p∥2 + ∥yn − wn∥2 − 2⟨yn − wn, yn − wn⟩+ 2⟨yn − wn, yn − p⟩
− 2λn⟨Ayn − Awn, yn − p⟩+ λ2n∥Ayn − Awn∥2

= ∥wn − p∥2 − ∥yn − wn∥2 + 2⟨yn − wn, yn − p⟩ (3.5.5)

− 2λn⟨Ayn − Awn, yn − p⟩+ λ2n∥Ayn − Awn∥2.

Since yn = PC(wn− λnwn) and p ∈ ΓD ⊂ C, we obtain from the characteristic property of
PC that

⟨yn − wn + λnAwn, yn − p⟩ ≤ 0,

which implies that

⟨yn − wn, yn − p⟩ ≤ −λn⟨Awn, yn − p⟩. (3.5.6)

Also since yn ∈ C and p ∈ ΓD ⊂ ΩD, we have

⟨Ayn, yn − p⟩ ≥ 0, ∀ n ≥ 0. (3.5.7)

Applying (3.5.4), (3.5.6) and (3.5.7) in (3.5.5), we obtain

∥zn − p∥2 ≤ ∥wn − p∥2 − ∥yn − wn∥2 − 2λn⟨Awn, yn − p⟩ − 2λn⟨Ayn − Awn, yn − p⟩
+ λ2n∥Ayn − Awn∥2

= ∥wn − p∥2 − ∥yn − wn∥2 − 2λn⟨Ayn, yn − p⟩+ λ2n∥Ayn − Awn∥2

≤ ∥wn − p∥2 − ∥yn − wn∥2 + λ2n
µ2

λ2n+1

∥yn − wn∥2

= ∥wn − p∥2 −
(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2. (3.5.8)
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Since the limit

lim
n→∞

(
1− λ2nµ

2

λ2n+1

)
= 1− µ2 > 0, (3.5.9)

there exists n0 > 0 such that for all n > n0, we have
(
1− λ2nµ

2

λ2n+1

)
> 0.

Hence, applying (3.5.9) to (3.5.8), we have that

∥zn − p∥ ≤ ∥wn − p∥. (3.5.10)

Lemma 3.5.6. Let {xn} be a sequence generated by Algorithm 3.5.2 under Assumption
3.5.1. Then, {xn} is bounded.

Proof. Let p ∈ ΓD. From the definition of wn in Step 2, we have

∥wn − p∥ = ∥(1− αn)(xn + θn(xn − xn−1))− p∥
= ∥(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)− αnp∥
≤ (1− αn)∥xn − p∥+ (1− αn)θn∥xn − xn−1∥+ αn∥p∥

= (1− αn)∥xn − p∥+ αn

[
(1− αn)

θn
αn

∥xn − xn−1∥+ ∥p∥
]
.

By (3.5.3), we have

lim
n→∞

[
(1− αn)

θn
αn

∥xn − xn−1∥+ ∥p∥
]
= ∥p∥.

Thus, there exists a constant M1 > 0 such that (1−αn)
θn
αn
∥xn− xn−1∥+ ∥p∥ ≤M1 for all

n ∈ N. This implies that

∥wn − p∥ ≤ (1− αn)∥xn − p∥+ αnM1. (3.5.11)

Hence, from (3.5.10) and (3.5.11) we have

∥zn − p∥ ≤ ∥wn − p∥ ≤ (1− αn)∥xn − p∥+ αnM1. (3.5.12)

Let K = (1− ζ)I+ ζT ((1− η)I+ ηT ) then, from the definition of xn+1 in Step 5, Lemma
2.5.27, Lemma 3.2.8 and (3.5.8), we have

∥xn+1 − p∥2 = ∥(1− τn)wn + τnKzn − p∥2

= ∥(1− τn)(wn − p) + τn(Kzn − p)∥2

= (1− τn)∥wn − p∥2 + τn∥Kzn − p∥2 − τn(1− τn)∥Kzn − wn∥2

≤ (1− τn)∥wn − p∥2 + τn∥zn − p∥2 − τn(1− τn)∥Kzn − wn∥2

≤ (1− τn)∥wn − p∥2 + τn

[
∥wn − p∥2 −

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

]
− τn(1− τn)∥Kzn − wn∥2

= ∥wn − p∥2 − τn

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2 − τn(1− τn)∥Kzn − wn (3.5.13)
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By the condition on τn, (3.5.9) and (3.5.11), we have

∥xn+1 − p∥ ≤ ∥wn − p∥
≤ (1− αn)∥xn − p∥+ αnM1

≤ max {∥xn − p∥, M1}
...

≤ max {∥xn0 − p∥, M1}.

Hence, {xn} is bounded. Consequently, {wn}, {yn} and {zn} are also bounded.

Lemma 3.5.7. Assume that {wn} and {yn} are sequences generated by Algorithm 3.5.2
under Assumption 3.5.1 and lim

k→∞
∥wnk

− ynk
∥ = 0. Suppose there exists a subsequence

{wnk
} of {wn} such that {wnk

} converges weakly to some x∗ ∈ H as k → ∞, then we
having one of the following: x∗ ∈ ΩD or Ax∗ = 0.

Proof. Since {wn} is bounded, then wω(wn) is nonempty. Let x∗ ∈ wω(wn) be an arbitrary
element. Then, there exists a subsequence {wnk

} of {wn} such that wnk
⇀ x∗ as k → ∞.

By the hypothesis of the lemma we have that ynk
⇀ x∗ ∈ C as k → ∞. Now, we divide

the proof into two cases.

Case 1: If lim sup
k→∞

∥Aynk
∥ = 0, then lim

k→∞
∥Aynk

∥ = lim inf
k→∞

∥Aynk
∥ = 0. Since {ynk

}

converges weakly to x∗ ∈ C and A satisfies condition (c), we have

0 ≤ ∥Ax∗∥ ≤ lim inf
k→∞

∥Aynk
∥ = 0.

Hence, we obtain Ax∗ = 0.

Case 2: If lim sup
k→∞

∥Aynk
∥ > 0, without loss of generality, we let lim

k→∞
∥Aynk

∥ = N > 0.

Then there exists a K ′ ∈ N such that ∥Aynk
∥ > N

2
, ∀ k ≥ K ′. By the characteristic

property of PC, we have

⟨wnk
− λnk

Awnk
− ynk

, x− ynk
⟩ ≤ 0, x ∈ C,

which implies that

1

λnk

⟨wnk
− ynk

, x− ynk
⟩ ≤ ⟨Awnk

, x− ynk
⟩ , ∀ x ∈ C.

Consequently, we have

1

λnk

⟨wnk
− ynk

, x− ynk
⟩+ ⟨Awnk

, ynk
− wnk

⟩ ≤ ⟨Awnk
, x− wnk

⟩ , ∀ x ∈ C.

(3.5.14)

Applying lim
k→∞

λnk
= λ > 0 and the hypothesis of the lemma to (3.5.14), we have

0 ≤ lim inf
k→∞

⟨Awnk
, x− wnk

⟩ ≤ lim sup
k→∞

⟨Awnk
, x− wnk

⟩ < +∞, ∀ x ∈ C. (3.5.15)
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Observe that

⟨Aynk
, x− ynk

⟩ = ⟨Aynk
− Awnk

, x− wnk
⟩+ ⟨Awnk

, x− wnk
⟩+ ⟨Aynk

, wnk
− ynk

⟩ .
Since A is uniformly continuous on H, we have from the hypothesis of the lemma that

lim
k→∞

∥Awnk
− Aynk

∥ = 0. (3.5.16)

From the hypothesis of the lemma, (3.5.14), (3.5.15) and (3.5.16), we have

0 ≤ lim inf
k→∞

⟨Aynk
, x− ynk

⟩ ≤ lim sup
k→∞

⟨Aynk
, x− ynk

⟩ < +∞, ∀ x ∈ C. (3.5.17)

If lim sup
k→∞

⟨Aynk
, x− ynk

⟩ > 0, ∀ x ∈ C, then there exists a subsequence {ynkj
} of {ynk

}
such that

lim
j→∞

〈
Aynkj

, x− ynkj

〉
> 0.

Thus, there exists j0 ∈ N such that
〈
Aynkj

, x− ynkj

〉
> 0, ∀ j ≥ j0, which by the

quasimonotonicity of A on H implies that
〈
Ax, x− ynkj

〉
≥ 0, ∀x ∈ C, j ≥ j0. Letting

j → ∞, we have x∗ ∈ ΩD.

If lim sup
k→∞

⟨Aynk
, x− ynk

⟩ = 0, ∀ x ∈ C, we obtain from (3.5.17) that

lim
k→∞

⟨Aynk
, x− ynk

⟩ = lim sup
k→∞

⟨Aynk
, x− ynk

⟩ = lim inf
k→∞

⟨Aynk
, x− ynk

⟩ = 0. (3.5.18)

Let δk =
∣∣∣ ⟨Aynk

, x− ynk
⟩
∣∣∣+ 1

k+1
. Then, we have

⟨Aynk
, x− ynk

⟩+ δk > 0. (3.5.19)

Let unk
=

Aynk

∥Aynk
∥2 ∀ k ≥ K ′, we have ⟨Aynk

, unk
⟩ = 1. Then, from (3.5.19) we have that

for all k ≥ K ′

⟨Aynk
, x+ δkunk

− ynk
⟩ > 0.

By the quasimonotonicity of A, we have for all k ≥ K ′

⟨A(x+ δkunk
), x+ δkunk

− ynk
⟩ ≥ 0. (3.5.20)

Consequently, by applying (2.1.4) and (3.5.20) we have ∀ x ∈ C, k ≥ K ′

⟨Ax, x+ δkunk
− ynk

⟩ = ⟨Ax− A(x+ δkunk
), x+ δkunk

− ynk
⟩

+ ⟨A(x+ δkunk
), x+ δkunk

− ynk
⟩

≥ ⟨Ax− A(x+ δkunk
), x+ δkunk

− ynk
⟩

≥ −∥Ax− A(x+ δkunk
)∥∥x+ δkunk

− ynk
∥

≥ −δk(M ′ + ϵ2
′)∥unk

∥∥x+ δkunk
− ynk

∥
(where ϵ′ = ϵ2

′∥δkunk
∥ for some ϵ2

′ ∈ (0, 1),M ′ < +∞)

= −δk
(M ′ + ϵ2

′)

∥Aynk
∥

∥x+ δkunk
− ynk

∥

≥ −δk
2(M ′ + ϵ2

′)

N
∥x+ δkunk

− ynk
∥. (3.5.21)
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Letting k → ∞ in (3.5.21), and applying the fact that limk→∞ δk = 0 together with the
boundedness of {∥x+ δkunk

− ynk
∥}, we have

⟨Ax, x− x∗⟩ ≥ 0, ∀ x ∈ C,

which implies that x∗ ∈ ΩD as desired.

Lemma 3.5.8. Let {xn} be a sequence generated by Algorithm 3.5.2 under Assumption
3.5.1. Then,

∥xn+1 − p∥2 ≤ (1− αn)∥xn − p∥2 + αndn − τn

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

− τn(1− τn)∥Kzn − wn∥2.

Proof. Let p ∈ ΓD. From Lemma 2.1.1 and the definition of wn, we have

∥wn − p∥2 = ∥(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)− αnp∥2

≤ ∥(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)∥2 + 2αn⟨−p, wn − p⟩
≤ (1− αn)

2∥xn − p∥2 + 2(1− αn)θn∥xn − p∥∥xn − xn−1∥+ θ2n∥xn − xn−1∥2
(3.5.22)

+ 2αn⟨−p, wn − xn+1⟩+ 2αn⟨−p, xn+1 − p⟩

Applying (3.5.22) in (3.5.13), we have

∥xn+1 − p∥2 ≤ (1− αn)
2∥xn − p∥2 + 2(1− αn)θn∥xn − p∥∥xn − xn−1∥+ θ2n∥xn − xn−1∥2

+ 2αn⟨−p, wn − xn+1⟩+ 2αn⟨−p, xn+1 − p⟩ − τn

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

− τn(1− τn)∥Kzn − wn∥2

≤ (1− αn)∥xn − p∥2

+ αn

[
2(1− αn)∥xn − p∥ θn

αn
∥xn − xn−1∥+ θn∥xn − xn−1∥

θn
αn

∥xn − xn−1∥

+ 2∥p∥∥wn − xn+1∥+ 2⟨p, p− xn+1⟩
]
− τn

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

− τn(1− τn)∥Kzn − wn∥2

= (1− αn)∥xn − p∥2 + αndn − τn

(
1− λ2nµ

2

λ2n+1

)
∥yn − wn∥2

− τn(1− τn)∥Kzn − wn∥2,

where

dn =
[
2(1− αn)∥xn − p∥ θn

αn
∥xn − xn−1∥+ θn∥xn − xn−1∥

θn
αn

∥xn − xn−1∥

+2∥p∥∥wn − xn+1∥+ 2⟨p, p− xn+1⟩
]
.

This completes the proof.
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Theorem 3.5.9. Let {xn} be a sequence generated by Algorithm 3.5.2 such that Assump-
tion 3.5.1 holds and Ax ̸= 0, ∀x ∈ C. Then, the sequence {xn} converges strongly to a
point x̄ ∈ ΓD ⊂ Γ, where x̄ = PΓD

(0).

Proof. Let x̄ ∈ ΓD ⊂ Γ, where x̄ = PΓD
(0). Then, it follows from Lemma 3.5.8 that

∥xn+1 − x̄∥2 ≤ (1− αn)∥xn − x̄∥2 + αndn (3.5.23)

where

dn =
[
2(1− αn)∥xn − x̄∥ θn

αn
∥xn − xn−1∥+ θn∥xn − xn−1∥

θn
αn

∥xn − xn−1∥

+2∥x̄∥∥wn − xn+1∥+ 2⟨x̄, x̄− xn+1⟩
]
.

Now, we claim that the sequence {∥xn − x̄∥} converges to zero. To show this, by Lemma
2.5.36 it suffices to show that lim sup

k→∞
dnk

≤ 0 for every subsequence {∥xnk
− x̄∥} of {∥xn−

x̄∥} satisfying

lim inf
k→∞

(
∥xnk+1

− x̄∥ − ∥xnk
− x̄∥

)
≥ 0. (3.5.24)

Suppose that {∥xnk
− x̄∥} is a subsequence of {∥xn− x̄∥} such that (3.5.24) holds. Again,

from Lemma 3.5.8, we obtain

τnk

(
1−

λ2nk
µ2

λ2nk+1

)
∥ynk

− wnk
∥2 + τnk

(1− τnk
)∥Kznk

− wnk
∥2 ≤ (1− αnk

)∥xnk
− x̄∥2

− ∥xnk+1
− x̄∥2 + αnk

dnk
.

By (3.5.24) and the condition on αnk
it follows that

lim
k→∞

[
τnk

(
1−

λ2nk
µ2

λ2nk+1

)
∥ynk

− wnk
∥2 + τnk

(1− τnk
)∥Kznk

− wnk
∥2
]
= 0.

By (3.5.9) and the conditions on the control parameters, we obtain

lim
k→∞

∥ynk
− wnk

∥ = 0, lim
k→∞

∥Kznk
− wnk

∥ = 0. (3.5.25)

From (3.5.25), we have

lim
k→∞

∥Kznk
− ynk

∥ = 0.

Moreover, from the definition of zn and by applying (3.5.4) and (3.5.25), we get

∥znk
− ynk

∥ = λn∥Awnk
− Aynk

∥ ≤ µλnk

λnk+1

∥wnk
− ynk

∥ → 0, k → ∞. (3.5.26)

115



From the definition of xnk+1
in Step 5 and (3.5.25), we have

∥xnk+1
− wnk

∥ = ∥(1− τnk
)wnk

+ τnk
Kznk

− wnk
∥

= τnk
∥Kznk

− wnk
∥ → 0, k → ∞. (3.5.27)

From (3.5.25) and (3.5.27), we obtain

lim
k→∞

∥xnk+1
− ynk

∥ = 0. (3.5.28)

Now, from Step 2 and by Remark 3.5.3, we get

∥wnk
− xnk

∥ = ∥(1− αnk
)(xnk

+ θnk
(xnk

− xnk−1))− xnk
∥

= ∥(1− αnk
)(xnk

− xnk
) + (1− αnk

)θnk
(xnk

− xnk−1)− αnk
xnk

∥
≤ (1− αnk

)∥xnk
− xnk

∥+ (1− αnk
)θnk

∥xnk
− xnk−1∥+ αnk

∥xnk
∥

→ 0, k → ∞. (3.5.29)

From (3.5.25)-(3.5.29), we have

lim
k→∞

∥ynk
− xnk

∥ = 0, lim
k→∞

∥Kznk
− znk

∥ = 0, lim
k→∞

∥znk
− xnk

∥ = 0. (3.5.30)

Moreover, from (3.5.28) and (3.5.30) we obtain

lim
k→∞

∥xnk+1
− xnk

∥ = 0. (3.5.31)

Since {xn} is bounded, we have that wω(xn) ̸= ∅. Let z ∈ wω(xn) be arbitrary. Then,
there exist a subsequence {xnk

} of {xn} such that xnk
⇀ z as k → ∞. By (3.5.29) and

(3.5.30) we have wω(xn) = wω(yn) = wω(wn). Since yn ∈ C and C is weakly-closed, we
have z ∈ C. By the assumption that Ax ̸= 0, ∀x ∈ C, it follows that Az ̸= 0. Thus, by
Lemma 3.5.7 and (3.5.25), it follows that z ∈ ΩD. Consequently, we have wω(xn) ⊂ ΩD.
Also, since lim

n→∞
∥xnk

− znk
∥ = 0, we have znk

⇀ z as k → ∞. Since I−K is demiclosed at

zero, it follows from (3.5.30) and Lemma 3.2.8(a) that z ∈ F (K) = F (T ). Consequently,
we have wω(xn) ⊂ F (T ). It therefore follows that wω(xn) ⊂ ΓD.

Next, by the boundedness of {xnk
}, it follows that there exists a subsequence {xnkj

} of

{xnk
} which converges weakly to some x̂ ∈ H, and such that

lim
j→∞

〈
x̄, x̄− xnkj

〉
= lim sup

k→∞
⟨x̄, x̄− xnk

⟩ . (3.5.32)

From (3.5.32) and the fact that x̄ = PΓD
(0) we have

lim sup
k→∞

⟨x̄, x̄− xnk
⟩ = lim

j→∞

〈
x̄, x̄− xnkj

〉
= ⟨x̄, x̄− x̂⟩ ≤ 0. (3.5.33)
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From (3.5.31) and (3.5.33), it follows that

lim sup
k→∞

〈
x̄, x̄− xnk+1

〉
= lim sup

k→∞
⟨x̄, x̄− xnk

⟩ = ⟨x̄, x̄− x̂⟩ ≤ 0. (3.5.34)

Thus, by (3.5.34) and the fact that lim
k→∞

∥xnk+1 − wnk
∥ = lim

k→∞

θnk

αnk
∥xnk

− xnk−1∥ = 0, we

obtain lim sup
k→∞

dnk
≤ 0. Now, applying Lemma 2.5.36 to (3.5.23) we have lim

n→∞
∥xn−x̄∥ = 0.

Therefore, {xn} converges strongly to x̄.

3.5.3 Numerical experiments

In this section, we discuss the numerical behavior of our proposed Algorithm 3.5.2 and
also compare it with the methods of Salahuddin [217] (see Appendix 3.5.15), Liu et.al [162]
(see Appendix 3.5.16), Ogwo et al. [193] (see Appendix 3.5.3), Alakoya et al. [12] (see
Appendix 3.5.4) and Yin et.al [270] (see Appendix 3.5.17). We perform all implementations
using Matlab 2016 (b), installed on a personal computer with Intel(R) Core(TM) i5-2600
CPU@2.30GHz and 8.00 Gb-RAM running on Windows 10 operating system. In Tables
3.5.1-3.5.2, “No. of Iter.” means the number of iterations.

In our computation, we choose θ = 3.5, λ1 = λ = s = 0.65, µ = 0.7, ϵn = 1
(2n+1)3

, αn =
1

2n+1
, τn = n+1

2(n+3)
, ρn = 10

(n+1)2
, f(x) = x

2
and Sx = x

3
. For Appendix 3.5.3, we choose

ψn = 3n+1
10n+5

and for Appendix 3.5.17, we choose φn = n
2n+7

, χn = n
2n+5

, ϕn = n
10n+2

.

We begin by presenting some examples in the finite dimensional Hilbert space.

Example 3.5.10. Let C = [−1, 1] and define

Ax =


2x− 1, x > 1,

x2, x ∈ [−1, 1],

−2x− 1, x < −1.

Then, A is quasimonotone and uniformly continuous but neither pseudomonotone nor
monotone. Moreover, let Tx = x. Then, T is 1-Lipschitz quasi-pseudocontractive. Let
ζ = 0.3, η = 0.4.

We consider the following cases for the numerical experiments of this example.
Case 1: Take x1 = 0.3 and x0 = 0.5.

Case 2: Take x1 = 0.29 and x0 = 0.66.

Case 3: Take x1 = 0.28 and x0 = 0.72.

Case 4: Take x1 = 0.30 and x0 = 0.48.

Table 3.5.1: Numerical results for Example 3.5.10
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Figure 3.8: Top left: Case 1; Top right: Case 2; Bottom left: Case 3; Bottom right: Case
4.

Cases App.
3.5.15

App
3.5.16

App.
3.5.3

App.
3.5.4

App.
3.5.17

Alg.
3.5.2

Case 1 No. of Iter. 41 41 45 25 66 21
CPU time
(sec)

0.0063 0.0128 0.0238 0.0084 0.0091 0.0083

Case 2 No. of Iter. 42 42 39 24 80 21
CPU time
(sec)

0.0106 0.0067 0.0081 0.0057 0.0079 0.0067

Case 3 No. of Iter. 40 40 45 25 64 21
CPU time
(sec)

0.0106 0.0064 0.0087 0.0059 0.0056 0.0062

Case 4 No. of Iter. 43 43 33 24 84 21
CPU time
(sec)

0.0107 0.0059 0.0083 0.0059 0.0063 0.0056

Example 3.5.11. Let A : R2 → R2 be defined by

A(x1, x2) = (−x1ex2 , x2)
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and
C = {x ∈ R2 : x21 + x22 ≤ 1, 0 < x1}.

Moreover, we define Tx = −5
3
x. Then, T is 5

3
-Lipschitz quasi-pseudocontractive. Let

ζ = 0.28, η = 0.32. It can be easily verified that all the conditions imposed in Algorithm

3.5.2 are satisfied. We choose T (x1, x2) =
(
− 5

4
x1, x2

)
. One can easily show that T is

−5
4
-Lipschitz continuous and quasi-pseudocontractive. We consider the following cases for

the numerical experiments of this example.
Case 1: Take x1 = (0.1, 0.2)T and x0 = (0.2, 0.9)T .

Case 2: Take x1 = (0.1, 0.2)T and x0 = (0.3, 0.8)T .

Case 3: Take x1 = (0.1, 0.1)T and x0 = (0.2, 0.7)T .

Case 4: Take x1 = (0.1, 0.1)T and x0 = (0.3, 0.6)T .

Table 3.5.2: Numerical results for Example 3.5.11

Cases App.
3.5.15

App
3.5.16

App.
3.5.3

App.
3.5.4

App.
3.5.17

Alg.
3.5.2

Case 1 No. of Iter. 15 20 16 31 89 10
CPU time
(sec)

0.0129 0.0071 0.0090 0.0080 0.0099 0.0075

Case 2 No. of Iter. 14 20 14 31 85 10
CPU time
(sec)

0.0111 0.0066 0.0088 0.0077 0.0108 0.0078

Case 3 No. of Iter. 14 20 19 31 80 10
CPU time
(sec)

0.0117 0.0064 0.0087 0.0079 0.0100 0.0078

Case 4 No. of Iter. 14 19 18 31 75 10
CPU time
(sec)

0.0120 0.0062 0.0085 0.0079 0.0097 0.0075

Now, we present an example in the infinite dimensional Hilbert space.

Example 3.5.12. LetH =

{
x = (x1, x2, · · · , xi, · · · ) :

∞∑
i=1

|xi|2 < +∞

}
. Let u, v ∈ R such

that 0 < v
2
< u < v. Let Cu =

{
x ∈ H : ∥x∥ ≤ u

}
and Avx =

(
v − ∥x∥

)
x. It is known

that A is quasimonotone and Lipschitz continuous (see [217]). In this example, we take
u = 4, v = 5. Furthermore, let Tx = −2x. Then, T is 2-Lipschitz quasi-pseudocontractive.
Let ζ = 0.22, η = 0.27. We consider the following cases for the numerical experiments of
this example

Case 1: Take x1 =

(
5
7
, 1
7
, 1
35
, · · ·

)
and x0 =

(
1
2
, 1
6
, 1
18

)
.
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Figure 3.9: Top left: Case 1; Top right: Case 2; Bottom left: Case 3; Bottom right: Case
4.
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Case 2: Take x1 =

(
4
7
, 1
7
, 1
28
, · · ·

)
and x0 =

(
1
3
, 1
9
, 1
27
, · · ·

)
.

Case 3: Take x1 =

(
3
4
, 1
4
, 1
12
, · · ·

)
and x0 =

(
2
5
, 1
5
, 1
10
, · · ·

)
.

Case 4: Take x1 =

(
3
5
, 1
5
, 1
15
, · · ·

)
and x0 =

(
2
3
, 1
3
, 1
6
, · · ·

)
.

Table 3.5.3: Numerical results for Example 3.5.12

Cases App.
3.5.4

Alg.
3.5.2

Case 1 No. of Iter. 23 18
CPU time
(sec)

0.0378 0.0162

Case 2 No. of Iter. 23 18
CPU time
(sec)

0.0297 0.0116

Case 3 No. of Iter. 23 18
CPU time
(sec)

0.0243 0.0125

Case 4 No. of Iter. 23 18
CPU time
(sec)

0.0283 0.0123

Remark 3.5.13. Most of the results in the literature for approximating the solution of
quasimonotone (or without monotonicity) VIP in infinite dimensional Hilbert spaces are
weak convergence results. Hence, we can only compare our Algorithm 3.5.2 in infinite
dimensional Hilbert spaces with Appendix 3.5.4 in Example 3.5.12.

Example 3.5.14. (Application to Image Restoration Problem).
In this last experiment, we consider an application to image restoration problem. We
compare the performance of our Algorithm 3.5.2 with Appendix 3.5.15, Appendix 3.5.16
and Appendix 3.5.3.

We recall that the image restoration problem can be formulated as the following linear
inverse problem:

v = Dx+ e (3.5.35)

where x ∈ RN is the original image, D ∈ RM×N is the blurring matrix, v ∈ RM is
the observed blurred image while e is the Gaussian noise. Solving Problem (3.5.35) is
equivalent to solving the convex MPs

min
x∈RN

{1
2
||Dx− v||22 + λ||x||1

}
, (3.5.36)
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Figure 3.10: Top left: Case 1; Top right: Case 2; Bottom left: Case 3; Bottom right:
Case 4.
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where λ > 0 is the regularization parameter, ∥ · ∥2 denotes the Euclidean norm and ∥ · ∥1
is the ℓ1-norm. Our goal is to restore the original image x given the data of the blurred
image v. We can express the MPs (3.5.36) as a VIP by taking A := DT (Dx − v). It is
known in this case that the operator A is monotone and ∥DTD∥-Lipschitz continuous
(thus A is quasimonotone and uniformly continuous). We consider the 291 × 240 Pout,
256 × 256 Cameraman 275 × 252 Circuit, and 128 × 128 Forest images from MATLAB
Image Processing Toolbox. Moreover, we use the Gaussian blur of size 7× 7 and standard
deviation σ = 4 to create the blurred and noisy image (observed image) and use the
algorithms to recover the original image from the blurred image. Also, we measure the
quality of the restored image using the signal-to-noise ratio defined by

SNR = 20× log10

(
∥x∥2

∥x− x∗∥2

)
,

where x is the original image and x∗ is the restored image. Note that, the larger the
SNR, the better the quality of the restored image. We choose the initial values as x0 =
0 ∈ RN and x1 = 1 ∈ RN . The results are reported in Table 3.5.4, which shows the SNR
values for each algorithm, and Figure 3.11 shows the original, blurred and restored images.
The major advantages of our proposed Algorithm 3.5.2 over the algorithms in Appendix
3.5.15, Appendix 3.5.16 and Appendix 3.5.3 compared with are the higher SNR values for
generating the recovered images.

Table 3.5.4: Numerical results for image restoration Problem 3.5.36

Pout Cameraman Circuit Forest
App.
3.5.15

SNR 5.91 5.82 5.82 5.91

App.
3.5.16

SNR 9.78 12.40 13.36 9.19

App. 3.5.3 SNR 9.78 9.52 9.55 9.79
Alg. 3.5.2 SNR 18.93 18.63 16.07 23.79

Appendix 3.5.15. Algorithm 1 of Salahuddin [217]

Initialization: Let x0 ∈ C and λ ∈ [a, b], where 0 < a ≤ b < 1
L
be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step 0. Set n = 0.

Step 1. If
xn = PC(xn − λAxn),

then stop and xn is the solution of VIP (1.2.1). Otherwise, set

Step 2:
yn = PC(xn − λAxn),

and
xn+1 = PC(xn − λAyn),

Set n := n+ 1 and return to Step 1.
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Figure 3.11: Comparison for numerical results for image restoration Problem (3.5.36) :
Top: Pout; Next: Cameraman; Next:Circuit; Bottom: Forest.
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Appendix 3.5.16. Algorithm 1 of Liu et.al [162]

Step 0: Take λ0 > 0, x0 ∈ H, 0 < µ < 1. Choose a nonnegative real sequence {ρn}
such that

∞∑
n=0

ρn < +∞.

Step 1: Given the current iterate xn, compute

yn = PC(xn − λnAxn).

If xn = yn, (or Ayn = 0), then stop and yn is a solution of the VIP. Otherwise, go to Step
2.

Step 2: Compute
xn+1 = yn − λn(Ayn − Axn),

where

λn+1 =

{
min

{
µ∥xn−yn∥
∥Axn−Ayn∥ , λn + ρn

}
if Axn − Ayn ̸= 0,

λn + ρn, otherwise.
(3.5.37)

Set n := n+ 1 and go back to Step 1.

Algorithm 3.5.3. Algorithm 2 of Ogwo et al. [193]

Step 0: Choose sequences {ψn} and {τn} such that ψn ∈ [0, 1) and τn ∈ (0, 1] for all
n ≥ 1. Let λ1 > 0, µ ∈ (0, 1) and x0, x1 ∈ H be given arbitrarily. Choose a nonnegative

real sequence {ρn} such that
∞∑
n=1

ρn <∞. Set n := 1.

Step 1: Given the current iterates xn−1 and xn (n ≥ 1), compute

wn = xn + ψn(xn − xn−1)

and
yn = PC(wn − λnAwn).

If wn = yn: STOP. Otherwise, go to Step 2.
Step 2: Construct the half-space

Tn = {x ∈ H : ⟨wn − λnAwn − yn, x− yn⟩ ≤ 0}.

Then, compute
zn = PTn(wn − λnAyn)

and

xn+1 = (1− τn)wn + τnzn,

where
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λn+1 =


min

{
µ(∥wn−yn∥2+∥zn−yn∥2)

2⟨Awn−Ayn,zn−yn⟩ , λn + ρn

}
, if ⟨Awn − Ayn, zn − yn⟩ > 0,

λn + ρn, otherwise.

(3.5.38)

Set n := n+ 1 and return to Step 1.

Algorithm 3.5.4. Algorithm 1 of Alakoya et al. [12]

Step 1: Select initial point x0, x1 ∈ H1. Given the iterates xn−1 and xn for each n ≥ 1,
choose ϑn such that 0 ≤ ϑn ≤ ϑ̄n, where

ϑ̄n :=

{
min

{
ϑ, ϵn

∥xn−xn−1∥

}
, if xn ̸= xn−1

ϑ, otherwise.
(3.5.39)

Step 2: Compute
wn = xn + ϑn(xn − xn−1).

Step 3: Compute
yn = PC(wn − λnAwn).

If wn = yn (or Ayn = 0) then stop: wn is a solution of the Problem (1.2.3). Otherwise, go
to Step 4.

Step 4: Compute
zn = yn + λn(Ayn − Awn).

Step 5 Compute
xn+1 = αnf(xn) + (1− αn)zn,

where

λn+1 =

{
min

{
µ∥wn−yn∥
∥Awn−Ayn∥ , λn + ρn

}
if Awn − Ayn ̸= 0,

λn + ρn, otherwise.
(3.5.40)

mi

Set n := n+ 1 and go back to Step 1.

Appendix 3.5.17. Algorithm 1 of Yin et. al [270]

Step 0: Take s0 > 0, x0 ∈ H, 0 < µ < 1.

Step 1: Let the nth iterate xn be given. Compute

v̄n = (1− χn)xn + χnSxn
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and
vn = (1− φn)xn + φnSv̄n

Step 2: Let the nth step size sn be known. Compute

yn = PC(vn − snAvn)

and
xn+1 = (1− ϕn)vn + ϕn

[
yn + sn(Avn − Ayn)

]
where

sn+1 =

{
min

{
µ∥vn−yn∥
∥Avn−Ayn∥ , sn

}
if Avn − Ayn ̸= 0,

sn, otherwise.
(3.5.41)

Set n := n+ 1 and go back to Step 1.
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CHAPTER 4

Results on Split Variational Inequality Problems

4.1 Introduction

In this chapter, we propose and study iterative algorithms for approximating solutions of
SVIPs and GVIP in the framework of real Hilbert spaces. We present numerical examples
of our proposed methods in comparison to other methods in literature to illustrate the
applicability of our proposed methods.

4.2 On split variational inequality problems without

product space formulation

Many methods have been proposed in the literature for solving the SVIP. Most of these
methods either require that this problem is transformed into an equivalent VIP in a prod-
uct space, or that the underlying operators are co-coercive. However, it has been discov-
ered that such product space transformation may cause some potential difficulties during
implementation and its approach may not fully exploit the attractive splitting nature of
the SVIP. On the other hand, the co-coercive assumption of the underlying operators
would preclude the potential applications of these methods. To avoid these setbacks,
we propose two new relaxed inertial methods for solving the SVIP without any product
space transformation, and for which the underlying operators are freed from the restric-
tive co-coercive assumption. The methods proposed, involve projections onto half-spaces
only, and originate from an explicit discretization of a dynamical system, which combines
both the inertial and relaxation techniques in order to achieve high convergence speed.
Moreover, the sequence generated by these methods is shown to converge strongly to a
minimum-norm solution of the problem in real Hilbert spaces. Furthermore, numerical
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implementations and comparisons are given to support our theoretical findings.

4.2.1 Proposed methods

In this section, we present our proposed methods and discuss their features. We begin
with the following assumptions under which our strong convergent results are obtained.

Assumption 4.2.1. Suppose that the following conditions hold:

(a) The feasible sets C and Q are nonempty closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively.

(b) The sets C and Q are defined as

C = {x ∈ H1 | c(x) ≤ 0} and Q = {w ∈ H2 | q(w) ≤ 0} ,

where c : H1 → R and q : H2 → R are continuously differentiable convex func-
tions such that c′(·) and q′(·) are Lipschitz continuous with constants K1 and K2,
respectively.

(c) A : H1 → H1 and F : H2 → H2 are monotone and Lipschitz continuous with
Lipschitz constants L1 and L2, respectively.

(d) T : H1 → H2 is a bounded linear operator and the solution set Γ := {z ∈ V I(A, C) :
Tz ∈ V I(F,Q)} of the SVIP (1.2.4)-(1.2.5) is nonempty, where V I(A, C) is the
solution set of the classical VIP (1.2.4).

(e) {δn}∞n=1, {θn}∞n=1and {τn}∞n=1 are positive sequences satisfying the following condi-
tions:

δn ∈ (0, 1), lim
n→∞

δn = 0,
∞∑
n=1

δn = ∞, lim
n→∞

τn
δn

= 0 and {θn} ⊂ (a, 1− δn) for some

a > 0.

(f) {ϕn}∞n=1 is a sequence of positive numbers such that ϕn ∈ (0, 1] and lim
n→∞

ϕn = ψ ∈
(0, 1].

We present the following method for solving the SVIP (1.2.4)-(1.2.5) when L1, L2, K1

and K2 are known.

Algorithm 4.2.2. Relaxed inertial method with fixed stepsizes.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1 and {τn}∞n=1 such that the conditions from
Assumption 4.2.1 (e) hold and let η ≥ 0, ϕ ∈ (0, 1], α ≥ 3 and x0, x1 ∈ H1 be given
arbitrarily. Set n := 1.
Step 1: Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1,

n−1
n+α−1

, otherwise.
(4.2.1)
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Step 2: Compute
wn = xn + αn(xn − xn−1),

and construct the half-space

Qn = {w ∈ H2 | q(Twn) + ⟨q′(Twn), w − Twn⟩ ≤ 0}.

Then compute
yn = PQn(Twn − λFTwn),

where

0 < λ <

√
ρ22K

2
2 + 2ρ2K2(1− ϕ)L2 + L2

2 − [ρ2K2 + (1− ϕ)L2]

ϕL2
2

, for some ρ2 > 0.

(4.2.2)

Step 3: Compute

zn = (1− ϕ)Twn + ϕ
(
yn + λ(FTwn − Fyn)

)
and

bn = wn + ηnT
∗(zn − Twn),

where the stepsize ηn is chosen such that for small enough ϵ > 0,

ηn ∈
[
ϵ,

∥Twn − zn∥2

∥T ∗(Twn − zn)∥2
− ϵ

]
,

if zn ̸= Twn; otherwise, ηn = η.
Step 4: Construct the half space

Cn = {x ∈ H1 | c(bn) + ⟨c′(bn), x− bn⟩ ≤ 0}.

Then compute
un = PCn(bn − µAbn),

where

0 < µ <

√
ρ21K

2
1 + 2ρ1K1(1− ϕ)L1 + L2

1 − [ρ1K1 + (1− ϕ)L1]

ϕL2
1

, for some ρ1 > 0.

(4.2.3)

Step 5: Compute
xn+1 = (1− θn − δn)bn + θntn,

where
tn = (1− ϕ)bn + ϕ

(
un + µ(Abn − Aun)

)
.

Set n := n+ 1 and go back to Step 1.

In the case where the Lipschitz constants L1, L2, K1 and K2 are not known, we present
the following method with adaptive stepsizes for solving the SVIP (1.2.4)-(1.2.5).
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Algorithm 4.2.3. Relaxed inertial method with adaptive stepsize strategy.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1, {ϕn}∞n=1 and {τn}∞n=1 such that the conditions
from Assumption 4.2.1 (e)-(f) hold and let η ≥ 0, 0 < ai <

√
(1− ψ)(2− ψ) + (1− ρ2i )−

(1 − ψ) for some ρi > 0, i = 1, 2, λ1 > 0, µ1 > 0, α ≥ 3 and x0, x1 ∈ H1 be given
arbitrarily. Set n := 1.
Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1,

n−1
n+α−1

, otherwise.
(4.2.4)

Step 2: Compute
wn = xn + αn(xn − xn−1),

and construct the half-space

Qn = {w ∈ H2 | q(Twn) + ⟨q′(Twn), x− Twn⟩ ≤ 0}.

Then compute
yn = PQn(Twn − λnFTwn),

where

λn+1 =


min

{
a2||Twn−yn||√

||FTwn−Fyn||2+∥q′(Twn)−q′(yn)∥2
, λn

}
,

if ||FTwn − Fyn||2 + ∥q′(Twn)− q′(yn)∥2 ̸= 0,

λn, otherwise.

(4.2.5)

Step 3: Compute

zn = (1− ϕn)Twn + ϕn

(
yn + λn(FTwn − Fyn)

)
and

bn = wn + ηnT
∗(zn − Twn),

where the stepsize ηn is chosen such that for small enough ϵ > 0,

ηn ∈
[
ϵ,

∥Twn − zn∥2

∥T ∗(Twn − zn)∥2
− ϵ

]
,

if zn ̸= Twn; otherwise, ηn = η.
Step 4: Construct the half-space

Cn = {x ∈ H1 | c(bn) + ⟨c′(bn), x− bn⟩ ≤ 0}.

Then compute
un = PCn(bn − µnAbn),
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where

µn+1 =


min

{
a1||bn−un||√

||Aun−Abn||2+∥c′(un)−c′(bn)∥2
, µn

}
,

if ||Aun − Abn||2 + ∥c′(un)− c′(bn)∥2 ̸= 0,

µn, otherwise.

(4.2.6)

Step 5: Compute
xn+1 = (1− θn − δn)bn + θntn

where
tn = (1− ϕn)bn + ϕn

(
un + µn(Abn − Aun)

)
.

Set n := n+ 1 and go back to Step 1.

Remark 4.2.1.

� Observe that Algorithms 4.2.2 and 4.2.3 can be viewed as modified RITFBF (2.5.14),
involving only one projection onto the half-space Cn per iteration for solving the clas-
sical VIP inH1 and another RITFBF involving one projection onto the half-spaceQn

per iteration under a bounded linear operator T for solving another VIP in another
space H2, without further projections onto feasible sets, unlike other existing meth-
ods for solving SVIPs, where projections onto feasible sets are required; for instance,
the method in [106, 221] for the case of classical VIP. A notable advantage of these
methods (Algorithms 4.2.2 and 4.2.3) is that the co-coercive assumption on the oper-
ators A and F usually used in many works (see for example, [131, 142, 143, 146, 190])
to guarantee convergence is dispensed with, and no product space formulation of any
sort is required under this setting, unlike in [63, 121].

� The stepsizes {λn} and {µn} given by (4.2.5) and (4.2.6), respectively are generated
at each iteration by some simple computations. Thus, Algorithm 4.2.3 is easily im-
plemented without the prior knowledge of the Lipschitz constants L1, L2, K1 and
K2 unlike in [106, Algorithm 4.1] where the knowledge of the Lipschitz constant is
required and [221, Algorithm 3.3] where the stepsize is assumed to be 1.

� Step 1 of our methods is also easily implemented since the value of ||xn − xn−1|| is
a prior known before choosing αn.

� Step 5 of both algorithms guarantee the strong convergence to the minimum-norm
solution of the SVIP .

� It is easy to see that Cn ⊃ C and Qn ⊃ Q. Furthermore, since Cn and Qn are half-
spaces, the projections onto them have explicit formulas. In fact, un and yn in our
methods can be calculated as:

un =

{
bn − µAbn, if c(bn)− µ⟨c′(bn), Abn⟩ ≤ 0,

bn − µAbn − c(bn)−µ⟨c′(bn),Abn⟩
||c′(bn)||2 c′(bn), otherwise

(4.2.7)
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and

yn =

{
Twn − λFTwn, if q(Twn)− λ⟨q′(Twn), FTwn⟩ ≤ 0,

Twn − λFTwn − q(Twn)−λ⟨q′(Twn),FTwn⟩
||q′(Twn)||2 q′(Twn), otherwise.

(4.2.8)

Hence, our methods are computationally less expensive than other existing methods for
solving the SVIP (1.2.4)-(1.2.5). This benefit (brought by the half-spaces) is further veri-
fied in our numerical analysis.

Remark 4.2.2. The choice of the stepsize ηn in Step 3 of Algorithms 4.2.2 and 4.2.3 do
not require the prior knowledge of the operator norm ∥T∥, unlike in [63, 121, 183, 244].
Note that algorithms whose implementation depends on the operator norm require the
computation of the norm of the bounded linear operator, which in general is a very difficult
task to accomplish as shown in [124, Theorem 2.3].
Also, we note that the value of the constant η in our methods does not influence the
algorithms, but it was introduced for the sake of clarity. In what follows, we show that
ηn is well-defined, and then, present an alternative choice for ηn without involving the
constant η.

Proposition 4.2.4. The stepsize ηn given in Step 3 of Algorithm 4.2.2 (or Algorithm
4.2.3) is well-defined.

Proof. Let z ∈ Γ. Then, by Lemma 2.1.1 , we obtain

∥T ∗(Twn − zn)∥∥wn − z∥ ≥ ⟨T ∗(Twn − zn), wn − z⟩
= ⟨Twn − zn, Twn − Tz⟩

=
1

2

[
∥Twn − zn∥2 + ∥Twn − Tz∥2 − ∥zn − Tz∥2

]
. (4.2.9)

Furthermore, we claim that

∥zn − Tz∥2 ≤ ∥Twn − Tz∥2 − ϕ
[
2− ϕ− ϕλ2L2

2 − 2λ(1− ϕ)L2 − 2ρ2λK2

]
∥Twn − yn∥2.

(4.2.10)

We shall prove this claim (inequality (4.2.10)) later in Lemma 4.2.3 without involving the
stepsize ηn.

Now, by the condition on λ, that is, from (4.2.2), we obtain(
ϕL2

2λ+ ρ2K2 + (1− ϕ)L2

)2
< ρ22K

2
2 + 2ρ2K2(1− ϕ)L2 + L2

2

= ρ22K
2
2 + 2ρ2K2(1− ϕ)L2 + (1− ϕ)2L2

2 + ϕL2
2(2− ϕ).

By some simple simplifications, we get

λ2ϕ2L4
2 + 2λϕL2

2ρ2K2 + 2λϕL2
2(1− ϕ2)L2 − ϕL2

2(2− ϕ) < 0.

Since L2, ϕ > 0, dividing through by L2
2ϕ, we obtain

λ2ϕL2
2 + 2λρ2K2 + 2λ(1− ϕ)L2 − (2− ϕ) < 0,
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which implies that

2− ϕ− λ2ϕL2
2 − 2λρ2K2 − 2λ(1− ϕ)L2 > 0. (4.2.11)

Hence, we obtain from (4.2.10) that

∥zn − Tz∥2 ≤ ∥Twn − Tz∥2. (4.2.12)

Note that if λ is replaced with λn as in Algorithm 4.2.3, we will use inequality (4.2.65)
(instead of (4.2.10)) and relation (4.2.67) (instead of (4.2.11)) to get (4.2.12). Therefore,
substituting (4.2.12) into (4.2.9), we obtain that

∥T ∗(Twn − zn)∥∥wn − z∥ ≥ 1

2
∥Twn − zn∥2. (4.2.13)

Now, for zn ̸= Twn, we have that ∥Twn− zn∥ > 0. This together with (4.2.13), imply that
∥T ∗(Twn − zn)∥∥wn − z∥ > 0. Hence, we have that ∥T ∗(Twn − zn)∥ ̸= 0. Therefore, ηn is
well-defined.

We now give an alternative way of choosing the stepsize ηn in our methods.
First, observe from Step 3 of Algorithms 4.2.2 and 4.2.3, that

ηn∥T ∗(Twn − zn)∥2 ≤ ∥Twn − zn∥2 − ϵ∥T ∗(Twn − zn)∥2, (4.2.14)

which implies that

η2n∥T ∗(Twn − zn)∥2 − ηn∥Twn − zn∥2 ≤ −ϵηn∥T ∗(Twn − zn)∥2. (4.2.15)

Thus, ηn can be chosen such that for small enough ϵ > 0,

ηn ∈
[
ϵ,

∥Twn − zn∥2

1 + ∥T ∗(Twn − zn)∥2
− ϵ
]
. (4.2.16)

Then, we can see that

ηn ≤
∥Twn − zn∥2 − ϵ

(
1 + ∥T ∗(Twn − zn)∥2

)
1 + ∥T ∗(Twn − zn)∥2

,

which implies that

ηn + ηn∥T ∗(Twn − zn)∥2 ≤ ∥Twn − zn∥2 − ϵ− ϵ∥T ∗(Twn − zn)∥2.

This further gives (4.2.14) and consequently (4.2.15).
As we shall see in our convergence analysis, (4.2.14) and (4.2.15) play crucial role in our
proofs. Therefore, one can either choose the stepsize in Step 3 or that in (4.2.16), to ensure
the convergence of Algorithms 4.2.2 and 4.2.3.
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4.2.2 Convergence analysis

Lemma 4.2.3. Let {xn} be a sequence generated by Algorithm 4.2.2 under Assumption
4.2.1. Then

∥zn − Tp∥2 ≤ ∥Twn − Tp∥2 − ϕ
[
2− ϕ− ϕλ2L2

2 − 2λ(1− ϕ)L2 − 2ρ2λK2

]
∥Twn − yn∥2

(4.2.17)

and

∥tn − p∥2 ≤ ∥bn − p∥2 − ϕ
[
2− ϕ− ϕµ2L2

1 − 2µ(1− ϕ)L1 − 2ρ1µK1

]
∥bn − un∥2,

(4.2.18)

for all p ∈ Γ, where ρ1, ρ2 are positive constants.

Proof. Let p ∈ Γ. Then Tp ∈ V I(F,Q) ⊂ Q ⊂ Qn. Since yn = PQn(Twn − λFTwn) and
Tp ∈ Qn, we obtain from the characteristic property of PQn , that

⟨Twn − λFTwn − yn, yn − Tp⟩ ≥ 0

or equivalently

2⟨Twn − yn, yn − Tp⟩ − 2λ⟨FTwn − Fyn, yn − Tp⟩ − 2λ⟨Fyn, yn − Tp⟩ ≥ 0. (4.2.19)

Also, from Lemma 2.1.1 , we obtain that

2⟨Twn − yn, yn − Tp⟩ = ∥Twn − Tp∥2 − ∥Twn − yn∥2 − ∥yn − Tp∥2. (4.2.20)

Again, since F is monotone, we obtain that

⟨Fyn, yn − Tp⟩ = ⟨Fyn − FTp, yn − Tp⟩+ ⟨FTp, yn − Tp⟩
≥ ⟨FTp, yn − Tp⟩. (4.2.21)

Substituting (4.2.20) and (4.2.21) into (4.2.19), we obtain

∥yn − Tp∥2 ≤ ∥Twn − Tp∥2 − ∥Twn − yn∥2 − 2λ⟨FTwn − Fyn, yn − Tp⟩ (4.2.22)

+ 2λ⟨FTp, Tp− yn⟩.

Also, since zn = (1− ϕ)Twn + ϕ
(
yn + λ(FTwn − Fyn)

)
, we get

∥zn − Tp∥2 = ∥(1− ϕ)(Twn − Tp) + ϕ(yn − Tp) + ϕλ(FTwn − Fyn)∥2

= (1− ϕ)2∥Twn − Tp∥2 + ϕ2∥yn − Tp∥2 + ϕ2λ2∥FTwn − Fyn∥2

+ 2ϕ(1− ϕ)⟨Twn − Tp, yn − Tp⟩+ 2λϕ(1− ϕ)⟨Twn − Tp, FTwn − Fyn⟩
+ 2λϕ2⟨yn − Tp, FTwn − Fyn⟩
= (1− ϕ)2∥Twn − Tp∥2 + ϕ2∥yn − Tp∥2 + ϕ2λ2∥FTwn − Fyn∥2

+ ϕ(1− ϕ)
[
∥Twn − Tp∥2 + ∥yn − Tp∥2 − ∥Twn − yn∥2

]
+ 2λϕ(1− ϕ)⟨Twn − Tp, FTwn − Fyn⟩+ 2λϕ2⟨yn − Tp, FTwn − Fyn⟩
= (1− ϕ)∥Twn − Tp∥2 + ϕ∥yn − Tp∥2 − ϕ(1− ϕ)∥Twn − yn∥2 (4.2.23)

+ ϕ2
nλ

2∥FTwn − Fyn∥2

+ 2λϕ(1− ϕ)⟨Twn − Tp, FTwn − Fyn⟩+ 2λϕ2⟨yn − Tp, FTwn − Fyn⟩.
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Substituting (4.2.22) into (4.2.23), we obtain

∥zn − Tp∥2 ≤ (1− ϕ)∥Twn − Tp∥2

+ ϕ
[
∥Twn − Tp∥2 − ∥Twn − yn∥2 − 2λ⟨FTwn − Fyn, yn − Tp⟩

]
+ ϕ2λ⟨FTp, Tp− yn⟩ − ϕ(1− ϕ)∥Twn − yn∥2 + ϕ2λ2∥FTwn − Fyn∥2

+ 2λϕ(1− ϕ)⟨Twn − Tp, FTwn − Fyn⟩+ 2λϕ2⟨yn − Tp, FTwn − Fyn⟩
= ∥Twn − Tp∥2 − ϕ(2− ϕ)∥Twn − yn∥2 + ϕ2λ2∥FTwn − Fyn∥2 (4.2.24)

+ 2λϕ(1− ϕ)⟨Twn − yn, FTwn − Fyn⟩+ 2λϕ⟨FTp, Tp− yn⟩
≤ ∥Twn − Tp∥2 − ϕ(2− ϕ)∥Twn − yn∥2 + ϕ2λ2L2

2∥Twn − yn∥2

+ 2λϕ(1− ϕ)L2∥Twn − yn∥2 + 2λϕ⟨FTp, Tp− yn⟩
= ∥Twn − Tp∥2 − ϕ

[
2− ϕ− ϕλ2L2

2 − 2λ(1− ϕ)L2

]
∥Twn − yn∥2 (4.2.25)

+ 2λϕ⟨FTp, Tp− yn⟩.

Now, if FTp = 0, then we obtain the desired conclusion from (4.2.25).
However, if FTp ̸= 0, then we obtain from Lemma 2.5.10 that Tp ∈ ∂Q and there exists
ρ2 > 0 such that FTp = −ρ2q′(Tp). Since Tp ∈ ∂Q, q(Tp) = 0.
Also, since q is a differentiable convex function, it follows from (2.4.7) that

q(yn) ≥ q(Tp) + ⟨q′(Tp), yn − Tp⟩

=
−1

ρ2
⟨FTp, yn − Tp⟩,

which implies that

⟨Tp− yn, FTp⟩ ≤ ρ2q(yn). (4.2.26)

Since yn ∈ Qn, we have

q(Twn) + ⟨q′(Twn), yn − Twn⟩ ≤ 0. (4.2.27)

Again, since q is a differentiable convex function, we obtain from (2.4.7) that

⟨q′(yn), Twn − yn⟩+ q(yn) ≤ q(Twn). (4.2.28)

From (4.2.27), (4.2.28) and the Lipschitz continuity of q′(·), we obtain

q(yn) ≤ ⟨q′(yn)− q′(Twn), yn − Twn⟩ ≤ K2∥yn − Twn∥2. (4.2.29)

By substituting (4.2.26) and (4.2.29) into (4.2.25), we obtain the desired conclusion (4.2.17).

Following the same line of argument, we obtain (4.2.18).

Lemma 4.2.4. Let {xn} be a sequence generated by Algorithm 4.2.2 under Assumption
4.2.1. Then, {xn} is bounded.

Proof. Let p ∈ Γ. Since wn = xn + αn(xn − xn−1), we have

∥wn − p∥ ≤ ∥xn − p∥+ αn∥xn − xn−1∥.
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Also, from Step 1, we observe that αn∥xn − xn−1∥ ≤ τn, ∀n ≥ 1, which implies that

αn
δn

∥xn − xn−1∥ ≤ τn
δn

→ 0, as n→ ∞. (4.2.30)

Hence, there exists M1 > 0 such that

αn
δn

∥xn − xn−1∥ ≤M1, ∀n ≥ 1. (4.2.31)

This implies that

∥wn − p∥ ≤ ∥xn − p∥+ δnM1, ∀n ≥ 1. (4.2.32)

Now, by Lemma 4.2.3 (inequality (4.2.17)) and (4.2.11), we obtain that

∥zn − Tp∥2 ≤ ∥Twn − Tp∥2. (4.2.33)

From Step 3, Lemma 2.1.1 and (4.2.33), we obtain

∥bn − p∥2 = ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 + 2ηn⟨wn − p, T ∗(zn − Twn)⟩
= ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 + 2ηn⟨Twn − Tp, zn − Twn⟩
= ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2

+ ηn
[
∥zn − Tp∥2 − ∥Twn − Tp∥2 − ∥zn − Twn∥2

]
≤ ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 − ηn∥zn − Twn∥2 (4.2.34)

= ∥wn − p∥2 − ηn
[
∥zn − Twn∥2 − ηn∥T ∗(zn − Twn)∥2

]
.

Thus, by the condition on ηn, that is, from (4.2.14), we obtain that

∥bn − p∥2 ≤ ∥wn − p∥2,

which implies from (4.2.32) that

∥bn − p∥ ≤ ∥wn − p∥ ≤ ∥xn − p∥+ δnM1 ∀n ≥ 1. (4.2.35)

From Step 5, we have

∥xn+1 − p∥ = ∥(1− θn − δn)(bn − p) + θn(tn − p)− δnp∥
≤ ∥(1− θn − δn)(bn − p) + θn(tn − p)∥+ δn∥p∥. (4.2.36)

But from (4.2.18), condition (4.2.3) and (4.2.35), we get that

∥(1− θn − δn)(bn − p) + θn(tn − p)∥2 = (1− θn − δn)
2∥bn − p∥2 + θ2n∥tn − p∥2

+ 2(1− θn − δn)θn⟨bn − p, tn − p⟩
≤ (1− θn − δn)

2∥bn − p∥2 + θ2n∥bn − p∥2

+ 2(1− θn − δn)θn∥bn − p∥2

≤ (1− δn)
2∥wn − p∥2. (4.2.37)

Hence, (4.2.36) becomes

∥xn+1 − p∥ ≤ (1− δn)∥wn − p∥+ δn∥p∥
≤ (1− δn) [∥xn − p∥+ δnM1] + δn∥p∥
≤ (1− δn)∥xn − p∥+ δn(M1 + ∥p∥),

which implies from Lemma 2.5.35 that {xn} is bounded.

137



Lemma 4.2.5. Let {xn} be a sequence generated by Algorithm 4.2.2 under Assumption
4.2.1. Suppose that there exists a subsequence {xnk

} of {xn} which converges weakly to a
point z ∈ H1 and lim

k→∞
∥bnk

− wnk
∥ = 0 = lim

k→∞
∥bnk

− tnk
∥. Then z ∈ Γ.

Proof. From Step 2 and (4.2.30), we get that

lim
n→∞

∥wn − xn∥ = lim
n→∞

δn ·
αn
δn

∥xn − xn−1∥ = 0. (4.2.38)

Since the subsequence {xnk
} of {xn} is weakly convergent to a point z ∈ H1, it follows

that the subsequence {wnk
} of {wn} is also weakly convergent to z ∈ H1. This, together

with our hypothesis imply that {bnk
} converges weakly to z. Again, since T is a bounded

linear operator, we obtain that {Twnk
} converges weakly to Tz.

Now, without loss of generality, we may assume that zn ̸= Twn. Then,

ηn ∈
[
ϵ,

∥zn − Twn∥2

∥T ∗(zn − Twn)∥2
− ϵ

]
.

Thus, putting (4.2.15) into (4.2.34), we obtain that

∥bnk
− p∥2 ≤ ∥wnk

− p∥2 − ηnk
ϵ∥T ∗(znk

− Twnk
)∥2

≤ ∥wnk
− p∥2 − ϵ2∥T ∗(znk

− Twnk
)∥2, (4.2.39)

which implies that

ϵ2∥T ∗(znk
− Twnk

)∥2 ≤ ∥wnk
− p∥2 − ∥bnk

− p∥2

≤ ∥wnk
− bnk

∥2 + 2∥wnk
− bnk

∥∥bnk
− p∥.

Thus, by our hypothesis, we obtain

lim
k→∞

∥T ∗(znk
− Twnk

)∥ = 0. (4.2.40)

From (4.2.34) and (4.2.40), we obtain

ηnk
∥znk

− Twnk
∥2 ≤ ∥wnk

− p∥2 − ∥bnk
− p∥2 + η2nk

∥T ∗(znk
− Twnk

)∥2

≤ ∥wnk
− bnk

∥2 + 2∥wnk
− bnk

∥∥bnk
− p∥+ η2nk

∥T ∗(znk
− Twnk

)∥2

→ 0, as k → ∞.

Since ηnk
≥ ϵ > 0, we get that

lim
k→∞

∥znk
− Twnk

∥ = 0. (4.2.41)

From (4.2.17), we obtain

ϕ
[
2− ϕ− ϕλ2L2

2 − 2λ(1− ϕ)L2 − 2ρ2λK2

]
∥Twnk

− ynk
∥2 ≤ ∥Twnk

− Tp∥2 − ∥znk
− Tp∥2

≤ ∥Twnk
− znk

∥2

+ 2∥Twnk
− znk

∥∥znk
− Tp∥.

138



Thus, taking limit as k → ∞ in the previous inequality, we obtain from (4.2.41) and
(4.2.11) that

lim
k→∞

∥Twnk
− ynk

∥ = 0. (4.2.42)

Now, by the monotonicity of F , the characteristic property of PQn and Q ⊂ Qn, we obtain
for all w ∈ Q that

0 ≤ ⟨ynk
− Twnk

+ λFTwnk
, w − ynk

⟩
= ⟨ynk

− Twnk
, w − ynk

⟩+ λ⟨FTwnk
, Twnk

− ynk
⟩+ λ⟨FTwnk

, w − Twnk
⟩

≤ ∥ynk
− Twnk

∥∥w − ynk
∥+ λ∥FTwnk

∥∥Twnk
− ynk

∥
+λ [⟨FTwmk

− Fw,w − Twnk
⟩+ ⟨Fw,w − Twnk

⟩]
≤ ∥ynk

− Twnk
∥∥w − ynk

∥+ λ∥FTwnk
∥∥Twnk

− ynk
∥ (4.2.43)

+λ⟨Fw,w − Twnk
⟩.

Thus, passing limit as k → ∞ in the previous inequality, we obtain

⟨Fw,w − Tz⟩ ≥ 0, ∀w ∈ Q,

and from Lemma 3.2.2, we have that Tz ∈ V I(F,Q).

Again, by our hypothesis and (4.2.18), we obtain that

ϕ
[
2− ϕ− ϕµ2L2

1 − 2µ(1− ϕ)L1 − 2ρ1µK1

]
∥bnk

− unk
∥2 ≤ ∥bnk

− p∥2 − ∥tnk
− p∥2

≤ ∥bnk
− tnk

∥2

+ 2∥bnk
− tnk

∥∥tnk
− p∥

→ 0, as k → ∞,

which by condition (4.2.3), implies that

lim
k→∞

∥bnk
− unk

∥ = 0 (4.2.44)

Similar to (4.2.43), we obtain from the monotonicity of A, the characteristic property of
PCn and C ⊂ Cn, that

0 ≤ ∥unk
− bnk

∥∥x− unk
∥+ µ∥Abnk

∥∥bnk
− unk

∥+ µ⟨Ax, x− bnk
⟩, ∀x ∈ C.

Passing limit as k → ∞ in the previous inequality, we obtain from (4.2.44) that

⟨Ax, x− z⟩ ≥ 0, ∀x ∈ C.

Therefore, we obtain from Lemma 3.2.2 that z ∈ V I(A, C). Hence, z ∈ Γ.

We now present the first theorem of this work.

Theorem 4.2.6. Let {xn} be a sequence generated by Algorithm 4.2.2 under Assumption
4.2.1. Then, {xn} converges strongly to p ∈ Γ, where ∥p∥ = min{∥z∥ : z ∈ Γ}.
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Proof. Let p ∈ Γ. Then, from Step 2, we obtain

∥wn − p∥2 = ∥xn − p∥2 + α2
n∥xn − xn−1∥2 + 2αn⟨xn − p, xn − xn−1⟩

≤ ∥xn − p∥2 + α2
n∥xn − xn−1∥2 + 2αn||xn − p||||xn − xn−1||

= ∥xn − p∥2 + αn∥xn − xn−1∥ [αn∥xn − xn−1∥+ 2∥xn − p∥]
≤ ∥xn − p∥2 + 3αn∥xn − xn−1∥M2, (4.2.45)

for some M2 > 0. Thus, from (4.2.35), (4.2.18) and (4.2.45), we get

∥(1− θn)bn + θntn − p∥2 = ∥(1− θn)(bn − p) + θn(tn − p)∥2

= (1− θn)
2∥bn − p∥2 + θ2n∥tn − p∥2 + 2(1− θn)θn⟨bn − p, tn − p⟩

≤ (1− θn)
2∥wn − p∥2 + θ2n∥wn − p∥2 + 2(1− θn)θn⟨bn − p, tn − p⟩

≤ (1− θn)
2∥wn − p∥2 + θ2n∥wn − p∥2 + 2(1− θn)θn∥wn − p∥2

≤ ∥xn − p∥2 + 3αn∥xn − xn−1∥M2.

From Step 5, the previous inequality and (4.2.30), we get

∥xn+1 − p∥2 = ∥(1− δn) [(1− θn)bn + θntn − p]− [δnθn(bn − tn) + δnp] ∥2

≤ (1− δn)
2∥(1− θn)bn + θntn − p∥2 − 2⟨δnθn(bn − tn) + δnp, xn+1 − p⟩

≤ (1− δn)∥(1− θn)bn + θntn − p∥2 + 2δnθn⟨bn − tn, p− xn+1⟩
+ 2δn⟨p, p− xn−1⟩
≤ (1− δn)∥(1− θn)bn + θntn − p∥2 + 2δnθn∥bn − tn∥∥p− xn+1∥
+ 2δn⟨p, p− xn+1⟩
≤ (1− δn)

(
∥xn − p∥2 + 3αn∥xn − xn−1∥M2

)
+ 2δnθn∥bn − tn∥∥p− xn+1∥

+ 2δn⟨p, p− xn+1⟩
≤ (1− δn)∥xn − p∥2 + 3αn∥xn − xn−1∥M2 + 2δnθn∥bn − tn∥∥p− xn+1∥
+ 2δn⟨p, p− xn+1⟩
= (1− δn)∥xn − p∥2 + δndn, n ≥ 1,

where dn = 3αn

δn
∥xn − xn−1∥M2 + 2 (θn∥bn − tn∥∥p− xn+1∥+ ⟨p, p− xn+1⟩) .

According to Lemma 2.5.36, to conclude our proof, it suffices to show that lim sup
k→∞

dnk
≤ 0

for every subsequence {∥xnk
− p∥} of {∥xn − p∥} satisfying the condition;

lim inf
k→∞

(∥xnk+1 − p∥ − ∥xnk
− p∥) ≥ 0. (4.2.46)

To show that lim sup
k→∞

dnk
≤ 0, suppose that {∥xnk

− p∥} is a subsequence of {∥xn − p∥}

such that (4.2.46) holds. Then,

lim inf
k→∞

(
∥xnk+1 − p∥2 − ∥xnk

− p∥2
)
= lim inf

k→∞

[
(∥xnk+1 − p∥ − ∥xnk

− p∥)

× (∥xnk+1 − p∥+ ∥xnk
− p∥)

]
≥ 0. (4.2.47)
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Now, observe that

∥(1− θn − δn)(bn − p) + θn(tn − p)∥2 = (1− θn − δn)
2∥bn − p∥2

+ 2(1− θn − δn)θn⟨bn − p, tn − p⟩+ θ2n∥tn − p∥2

≤ (1− θn − δn)
2∥bn − p∥2

+ (1− θn − δn)θn∥bn − p∥2

+ (1− θn − δn)θn∥tn − p∥2 + θ2n∥tn − p∥2

≤ (1− θn − δn)(1− δn)∥bn − p∥2 (4.2.48)

+ θn(1− δn)∥tn − p∥2.

Then, from Step 5, (4.2.48) and (4.2.18), we get

∥xn+1 − p∥2 = ∥(1− θn − δn)(bn − p) + θn(tn − p)− δnp∥2

= ∥(1− θn − δn)(bn − p) + θn(tn − p)∥2 + δ2n∥p∥2

− 2δn⟨(1− θn − δn)(bn − p) + θn(tn − p), p⟩
≤ (1− θn − δn)(1− δn)∥bn − p∥2 + θn(1− δn)∥tn − p∥2 + δnM3

≤ (1− θn − δn)(1− δn)∥bn − p∥2 (4.2.49)

+ θn(1− δn)∥bn − p∥2 + δnM3

− θn(1− δn)
(
ϕ
[
2− ϕ− ϕµ2L2

1 − 2µ(1− ϕ)L1 − 2ρ1µK1

]
∥bn − un∥2

)
≤ (1− θn − δn)(1− δn)∥wn − p∥2 + δnM3

+ θn(1− δn)∥wn − p∥2

− θn(1− δn)
(
ϕ
[
2− ϕ− ϕµ2L2

1 − 2µ(1− ϕ)L1 − 2ρ1µK1

]
∥bn − un∥2

)
≤ ∥xn − p∥2 (4.2.50)

− θn(1− δn)ϕ
[
2− ϕ− ϕµ2L2

1 − 2µ(1− ϕ)L1 − 2ρ1µK1

]
∥bn − un∥2

+ δn

(
3
αn
δn

∥xn − xn−1∥M2 +M3

)
,

for some M3 > 0.
Let V := 2−ϕ−ϕµ2L2

1−2µ(1−ϕ)L1−2ρ1µK1. Then, from (4.2.50), (4.2.47) and (4.2.31),
we obtain

lim sup
k→∞

(
θnk

(1− δnk
)ϕV ∥bnk

− unk
∥2
)
≤ lim sup

k→∞

(
∥xnk

− p∥2 − ∥xnk+1 − p∥2
)

+ lim sup
k→∞

δnk
(3M1M2 +M3)

= − lim inf
k→∞

(
∥xnk+1 − p∥2 − ∥xnk

− p∥2
)

≤ 0.

This implies that

lim
k→∞

∥bnk
− unk

∥ = 0. (4.2.51)
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Since A is Lipschitz continuous on H1, we obtain from (4.2.51) that

lim
k→∞

∥Abnk
− Aunk

∥ = 0. (4.2.52)

Also, from Step 5, we have that

∥tnk
− bnk

∥ = ∥(1− ϕ)bnk
+ ϕunk

+ ϕµ(Abnk
− Aunk

)− bnk
∥

≤ ϕ∥unk
− bnk

∥+ ϕµ∥Abnk
− Aunk

∥,

which implies from (4.2.51) and (4.2.52) that

lim
k→∞

∥tnk
− bnk

∥ = 0. (4.2.53)

From (4.2.49) and (4.2.39), we obtain

∥xnk+1 − p∥2 ≤ (1− θnk
− δnk

)(1− δnk
)∥bnk

− p∥2 + θnk
(1− δnk

)∥bnk
− p∥2 + δnk

M3

≤ ∥bnk
− p∥2 + δnk

M3

≤ ∥wnk
− p∥2 − ϵ2∥T ∗(znk

− Twnk
)∥2 + δnk

M3,

which implies from (4.2.45) that

lim sup
k→∞

∥T ∗(znk
− Twnk

)∥2 ≤ 1

ϵ2
lim sup
k→∞

(
∥xnk

− p∥2 − ∥xnk+1 − p∥2
)

+
1

ϵ2
lim sup
k→∞

(
δnk

(
3
αnk

δnk

∥xnk
− xnk−1∥M2 +M3

))
≤ −1

ϵ2
lim inf
k→∞

(
∥xnk+1 − p∥2 − ∥xnk

− p∥2
)
≤ 0.

Thus,

lim
k→∞

∥T ∗(znk
− Twnk

)∥ = 0. (4.2.54)

Hence, by Step 3, we obtain

∥bnk
− wnk

∥ = ηnk
∥T ∗(znk

− Twnk
)∥ → 0, as k → ∞. (4.2.55)

From Step 5 and (4.2.53), we get

∥xnk+1 − bnk
∥ ≤ θnk

∥bnk
− tnk

∥+ δnk
∥bnk

∥ → 0, as k → ∞. (4.2.56)

From (4.2.55) and (4.2.56), we get

lim
k→∞

∥xnk+1 − wnk
∥ = 0. (4.2.57)

From (4.2.38) and (4.2.57), we get

lim
k→∞

∥xnk+1 − xnk
∥ = 0. (4.2.58)
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By Lemma 4.2.4, there exists a subsequence {xnkj
} of {xnk

} which converges weakly to z,
and such that

lim sup
k→∞

⟨p, p− xnk
⟩ = lim

j→∞
⟨p, p− xnkj

⟩ = ⟨p, p− z⟩.

Also, since we have established (4.2.53) and (4.2.55), we can apply Lemma 4.2.5 to get
that z ∈ Γ. Note also that p = PΓ0. Thus, we obtain from the previous inequality that

lim sup
k→∞

⟨p, p− xnk
⟩ = ⟨p, p− z⟩ ≤ 0,

which together with (4.2.58), imply that

lim
k→∞

⟨p, p− xnk+1⟩ ≤ 0. (4.2.59)

Now, recall that dnk
= 3

αnk

δnk
∥xnk

−xnk−1∥M2+2 (θnk
∥bnk

− tnk
∥∥p− xnk+1∥+ ⟨p, p− xnk+1⟩) .

So, by (4.2.30), (4.2.53) and (4.2.59), we obtain that lim sup
k→∞

dnk
≤ 0. Hence, we get that

lim
n→∞

∥xn − p∥ = 0. Therefore, {xn} converges strongly to p = PΓ0.

Remark 4.2.7.

� We observe that if we set H1 = H2 = H, F = 0 and T = IH (the identity oper-
ator on H) in Algorithm 4.2.2, we obtain as a corollary, a relaxed inertial Tseng’s
forward-backward-forward with fixed stepsizes, involving only one projection onto
the half-space Cn per iteration, for solving the classical VIP (1.2.4) when A is mono-
tone and Lipschitz continuous. This method for solving the classical VIP (1.2.4) is
also the first in the literature.

� The conclusion of Theorem 4.2.6 still holds even if the fixed stepsizes λ and µ given
by (4.2.2) and (4.2.3), respectively, are replaced with variable stepsizes µn and λn,
respectively such that

0 < inf
n≥1

µn ≤ sup
n≥1

µn <

√
ρ22K

2
2 + 2ρ2K2(1− ϕ)L2 + L2

2 − [ρ2K2 + (1− ϕ)L2]

ϕL2
2

and

0 < inf
n≥1

λn ≤ sup
n≥1

λn <

√
ρ21K

2
1 + 2ρ1K1(1− ϕ)L1 + L2

1 − [ρ1K1 + (1− ϕ)L1]

ϕL2
1

.
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Having concluded the convergence analysis of the first method of this work, we now study
the convergence analysis of the second method (Algorithm 4.2.3), which do not depend
on the availability of the Lipschitz constants. We begin with the following useful remarks
and lemmas.

Remark 4.2.8. The stepsizes {λn} and {µn} generated by Algorithm 4.2.3 are monotoni-

cally non-increasing sequences with lower bounds min

{
λ1,

a2√
L2
2+K

2
2

}
and min

{
µ1,

a1√
L2
1+K

2
1

}
,

respectively.

Indeed, it is obvious that λn+1 ≤ λn, ∀n ∈ N. Also, since F is L2-Lipschitz continuous
and q′ is K2-Lipschitz continuous, we get in the case where ∥FTwn−Fyn∥2 + ∥q′(Twn)−
q′(yn)∥2 ̸= 0 that

λn+1 = min

{
a2∥Twn − yn∥√

∥FTwn − Fyn∥2 + ∥q′(Twn)− q′(yn)∥2
, λn

}

≥ min

{
a2∥Twn − yn∥√

L2
2∥Twn − yn∥2 +K2

2∥Twn − yn∥2
, λn

}

= min

{
a2√

L2
2 +K2

2

, λn

}
.

Hence, by induction, we obtain that {λn} is bounded below by min

{
a2√
L2
2+K

2
2

, λ1

}
. Similar

argument holds for {µn}.

Note that Remark 4.2.8 implies that the limits of {λn}, {µn} exist, and lim
n→∞

λn ≥

min

{
a2√
L2
2+K

2
2

, λ1

}
, lim
n→∞

µn ≥ min

{
a1√
L2
1+K

2
1

, µ1

}
.

Remark 4.2.9. From (4.2.5), we observe that√
∥FTwn − Fyn∥2 + ∥q′(Twn)− q′(yn)∥2 ≤

a2
λn+1

∥Twn − yn∥, ∀n ∈ N

holds for both ∥FTwn − Fyn∥+ ∥q′(Twn)− q′(yn)∥ ≠ 0 and otherwise. This implies that

∥FTwn − Fyn∥2 + ∥q′(Twn)− q′(yn)∥2 ≤
a22
λ2n+1

∥Twn − yn∥2, ∀n ∈ N, (4.2.60)

which further implies

∥FTwn − Fyn∥ ≤ a2
λn+1

∥Twn − yn∥, ∀n ∈ N. (4.2.61)

144



Lemma 4.2.10. Let {xn} be a sequence generated by Algorithm 4.2.3 under Assumption
4.2.1. Then, for all p ∈ Γ, there exists n0 ≥ 1 such that

||Twn − yn||2 ≤ Kn

(
||Twn − zn||2 + 2||Twn − zn||||zn − Tp||

)
, (4.2.62)

and

||bn − un||2 ≤ Ln
(
||bn − tn||2 + 2||bn − tn||||tn − p||

)
, (4.2.63)

where

Kn =

 1

ϕn

[
2− ϕn − λ2n

a22
λ2n+1

− ρ22 − 2λn(1− ϕn)
a2
λn+1

]


and

Ln =

 1

ϕn

[
2− ϕn − µ2

n
a21
λ2n+1

− ρ21 − 2µn(1− ϕn)
a1
µn+1

]
 ,

with ρ1, ρ2 been positive constants, for all n ≥ n0.

Proof. By replacing λ with λn and ϕ with ϕn in (4.2.24), we have

∥zn − Tp∥2 ≤ ∥Twn − Tp∥2 − ϕn(2− ϕn)∥Twn − yn∥2 (4.2.64)

+ ϕ2
nλ

2
n∥FTwn − Fyn∥2 + 2λnϕn(1− ϕn)⟨Twn − yn, FTwn − Fyn⟩

+ 2λnϕn⟨FTp, Tp− yn⟩.

Suppose FTp = 0. Then, we obtain from (4.2.61) and (4.2.64) that

∥zn − Tp∥2 ≤ ∥Twn − Tp∥2 − ϕn(2− ϕn)∥Twn − yn∥2 + ϕnλ
2
n∥FTwn − Fyn∥2

+2λnϕn(1− ϕn)⟨Twn − yn, FTwn − Fyn⟩

≤ ∥Twn − Tp∥2 − ϕn(2− ϕn)∥Twn − yn∥2 + ϕnλ
2
n

a22
λ2n+1

∥Twn − yn∥2

+ 2λnϕn(1− ϕn)
a2
λn+1

∥Twn − yn∥2

= ∥Twn − Tp∥2 − ϕn

[
2− ϕn − λ2n

a22
λ2n+1

− 2λn(1− ϕn)
a2
λn+1

]
∥Twn − yn∥2

≤ ∥Twn − Tp∥2 (4.2.65)

− ϕn

[
2− ϕn − λ2n

a22
λ2n+1

− 2λn(1− ϕn)
a2
λn+1

− ρ22

]
∥Twn − yn∥2,

for some ρ2 > 0.
Now, since the limit of {λn} exists, then lim

n→∞
λn = lim

n→∞
λn+1. Hence, by Assumption 4.2.1

(f) and the condition on a2, we obtain that

lim
n→∞

[
2− ϕn − λ2n

a22
λ2n+1

− ρ22 − 2λn(1− ϕn)
a2
λn+1

]
=
(
2− ψ − a22 − ρ22 − 2a2(1− ψ)

)
> 0.

(4.2.66)
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Thus, there exists n0 ≥ 1 such that

2− ϕn − λ2n
a22
λ2n+1

− ρ22 − 2λn(1− ϕn)
a2
λn+1

> 0, ∀n ≥ n0. (4.2.67)

Hence, we obtain from (4.2.65) that

∥Twn − yn∥2 ≤

 1

ϕn

(
2− ϕn − λ2n

a22
λ2n+1

− ρ22 − 2λn(1− ϕn)
a2
λn+1

)


·
(
∥Twn − Tp∥2 − ∥zn − Tp∥2

)
=

 1

ϕn

(
2− ϕn − λ2n

a22
λ2n+1

− ρ22 − 2λn(1− ϕn)
a2
λn+1

)


·
(
∥(Twn − zn) + (zn − Tp)∥2 − ∥zn − Tp∥2

)
(4.2.68)

for all n ≥ n0, which by some simple simplifications, gives (4.2.62).

Now, suppose FTp ̸= 0. Then, from (4.2.26) and (4.2.29), we obtain

⟨FTp, Tp− yn⟩ ≤ ρ2⟨q′(yn)− q′(Twn), yn − Twn⟩. (4.2.69)

Also, observe that

2λnρ2⟨q′(yn)− q′(Twn), yn − Twn⟩ ≤ λ2n∥q′(yn)− q′(Twn)∥2 + ρ22∥yn − Twn∥2. (4.2.70)

Substituting (4.2.69) and (4.2.70) into (4.2.64), and using (4.2.61) and (4.2.60), we obtain

∥zn − Tp∥2 ≤ ∥Twn − Tp∥2 − ϕn(2− ϕn)∥Twn − yn∥2 + ϕnλ
2
n∥FTwn − Fyn∥2

+ 2λnϕn(1− ϕn)⟨Twn − yn, FTwn − Fyn⟩+ ϕnλ
2
n∥q′(yn)− q′(Twn)∥2

+ ϕnρ
2
2∥yn − Twn∥2

= ∥Twn − Tp∥2 − ϕn(2− ϕn)∥Twn − yn∥2

+ ϕnλ
2
n

[
∥FTwn − Fyn∥2 + ∥q′(Twn)− q′(yn)∥2

]
+ 2λnϕn(1− ϕn)⟨Twn − yn, FTwn − Fyn⟩+ ϕnρ

2
2∥yn − Twn∥2

≤ ∥Twn − Tp∥2 − ϕn(2− ϕn)∥Twn − yn∥2 + ϕnλ
2
n

a22
λ2n+1

∥Twn − yn∥2

+ 2λnϕn(1− ϕn)
a2
λn+1

∥Twn − yn∥2 + ϕnρ
2
2∥yn − Twn∥2

= ∥Twn − Tp∥2

− ϕn

[
2− ϕn − λ2n

a22
λ2n+1

− 2λn(1− ϕn)
a2
λn+1

− ρ22

]
∥Twn − yn∥2.

Notice that this is the same as (4.2.65). Hence, we obtain (4.2.62).

Also, we can follow the same line of proof as above to establish (4.2.63).
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We now state and prove the strong convergence theorem for Algorithm 4.2.3.

Theorem 4.2.11. Let {xn} be a sequence generated by Algorithm 4.2.3 under Assumption
4.2.1. Then, {xn} converges strongly to p ∈ Γ, where ∥p∥ = min{∥z∥ : z ∈ Γ}.

Proof. Let p ∈ Γ. Then, by replacing µ and λ with µn and λn, respectively in Lemma 4.2.4,
and using (4.2.65) and (4.2.67), we can easily get that {xn} is bounded. Furthermore, we
can follow the same argument as in the proof of Theorem 4.2.6 to obtain (4.2.53), (4.2.54)
and (4.2.55). Also, using (4.2.54) and (4.2.55), we can get (4.2.41).
Hence, from (4.2.41), Lemma 4.2.10 (that is, (4.2.62)) and (4.2.66), we obtain that

lim
k→∞

∥Twnk
− ynk

∥ = 0.

In a similar way, we can show that

lim
k→∞

∥bnk
− unk

∥ = 0.

Following the same arguments as in Lemma 4.2.5 and Theorem 4.2.6, we obtain the rest
of the proof.

Remark 4.2.12.

(1). Similar to Remark 4.2.7, we obtain a relaxed inertial Tseng’s forward-backward-
forward with adaptive stepsizes, involving only one projection onto the half-space Cn
per iteration, for solving the classical VIP (1.2.4) when A is monotone and Lipschitz
continuous as a corollary. This method is also new.

(2). Our proofs are independent of the usual “Two cases Approach” which have been
used widely in many works (see, for example, [106, 221, 244]) to guarantee strong
convergence of iterative methods. Hence, the techniques used in obtaining our strong
convergence analysis are new for solving the SVIP (1.2.4)-(1.2.5).

(3). If Step 1 of Algorithm 4.2.2 and Algorithm 4.2.3 are replaced with the following:
0 ≤ αn ≤ ᾱn, where

ᾱn :=

{
min

{
α, τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

α, otherwise,

with α ∈ [0, 1), we still have valid conclusions of Theorem 4.2.6 and Theorem 4.2.11.
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4.2.3 Numerical experiments

In this section, using various test examples, we discuss the numerical behavior of Algorithm
4.2.2 and Algorithm 4.2.3, and we compare them with the methods of He et al. [121,
Algorithm 1] (see Appendix 4.2.17), Reich and Tuyen [213, Theorem 4.4] (see Appendix
4.2.18) and Tian and Jiang [244, Algorithm (4.8)] (see Appendix 4.2.19).

We perform all implementations using Matlab 2016 (b), installed on a personal computer
with Intel(R) Core(TM) i5-2600 CPU@2.30GHz and 8.00 Gb-RAM running on Windows
10 operating system. In Tables 4.2.1-4.2.3, “Iter.” means the number of iterations while
“CPU” means the CPU time in seconds.
In our computations, we randomly choose the relaxation stepsize ϕ ∈ (0, 1] and the starting
points x0, x1 ∈ H1 (see the cases below). We also choose randomly, the parameters η ≥ 0,
λ1 > 0 and µ1 > 0 (the choices of these parameters will be discussed in Remark 4.2.16).
We choose δn = 1

n+1
, θn = 1

2
− δn and αn = ᾱn with τn = δn

n0.01 and different choices of
α := 3, 6, 9, 12, 15, which we will discuss in detail in our numerical analysis. Furthermore,
in the implementation, we define

TOLn :=
1

2

(
||xn − PCn(xn − µAxn)||2 + ||Txn − PQn(Txn − λFTxn)||2

)
,

and use the stopping criterion TOLn < ε for the iterative processes, where ε is the prede-
termined error.

Firstly, we consider two examples in finite dimensional spaces. In these examples, we
compare Algorithm 4.2.2 with the method of He et al. [121] since their method is given
in finite dimension spaces.

Example 4.2.13. Consider the following separable, convex and quadratic programming
problem, which has been considered by [121, Example 5.2] for their numerical experiments.

min
x,y

{G1(x) +G2(y) | Tx = y, x ∈ C, y ∈ Q} , (4.2.71)

where

G1(x) =
1

2
xTM1x+ qT1 x and G2(y) =

1

2
yTM2y + qT2 y (xT means the transpose of x).

Problem (4.2.71) can also be rewritten as the SVIP (1.2.4)-(1.2.5), where

A(x) =M1x+ q1 and F (y) =M2y + q2.

For i = 1, 2, the matrices Mi are formed as: Mi = Vi
∑

i V
T
i , where Vi = I − 2viv

T
i

∥vi∥2 and∑
i = diag(σi1, σi2, · · · , σiNi

) are the Householder and the diagonal matrices, respectively,
with N1 = N and N2 = m being the dimensional of x and y, respectively. Furthermore,

σi,j = cos
jπ

Ni + 1
+ 1 +

cos π
Ni+1

+ 1− Ĉi(cos
Niπ
Ni+1

+ 1)

Ĉi − 1
, j = 1, 2, · · · , Ni,
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where Ĉi is the preset condition number of Mi.

As done in He et al. [121, Example 5.2], we choose Ĉi = 104, qi = 0, i = 1, 2 and uniformly
take the vector vi ∈ RNi (i = 1, 2) in (−1, 1). In this case, A and F are monotone
and Lipschitz continuous operators with Li = ||Mi||, i = 1, 2 (which can be computed
in Matlab). Furthermore, we generate the bounded linear operator T ∈ RM×N with
independent Gaussian components distributed in the interval (0, 1), and then normalize
each column of T with the unit norm.

Now, consider an ellipsoid in RN as the feasible set C. That is, C = {x ∈ RN : (x −
d)TP (x − d) ≤ r2}, where P is a positive definite matrix, d ∈ RN and r > 0. Then, the
projection onto C is difficult to compute (see, for example [119]). Consider the convex
function c : RN → R defined by c(x) = 1

2

[
(x− d)TP (x− d)− r2

]
, ∀x ∈ RN . Then, C

is a level set of c. That is, C := {x ∈ RN : c(x) ≤ 0}. Also, it is easy to see that c
is differentiable on RN . In fact, c′(x) = P (x − d), ∀x ∈ RN . Hence, c′ is K1-Lipschitz
continuous with K1 = ||P ||.
Now, let λmax and λmin be maximum and minimum eigenvalues of P , respectively.
Suppose d = 0, since

||A(x)||
||c′(x)||

=
||M1x||
||Px||

≤ ||M1||||x||
λmin||x||

=
||M1||
λmin

holds for arbitrary x ∈ RN , x ̸= 0, we have that ρ1 =
||M1||
λmin

(see [119]).
On the other hand, suppose d ̸= 0, since

||A(x)||
||c′(x)||

=
||M1x||

||P (x− d)||
≤ ||M1|| (||x− d||+ ||d||)

λmin||x− d||
≤

||M1||
√
λmax

(
r + ||d||

√
λmin

)
λ

3
2
minr

holds for all x ∈ ∂C, we have that ρ1 =
||M1||

√
λmax(r+||d||

√
λmin)

λ
3
2
minr

.

Let Q = {y ∈ Rm : q(y) ≤ 0}, where q(y) = y21 − 2y1 +
∑m

j=2 y
2
j . Then, the explicit

expression for projection onto Q may be difficult to find (see for example, [120]). Also,
we note that q is a countinuously differentiable convex function, and q′ is K2-Lipschitz
continuous with K2 = 2. Moreover, ρ2 = ||M2|| (see [120]). Since the Lipschitz con-
stants L1, L2, K1, K2 are known and we know ρ1, ρ2, we can choose in Algorithm 4.2.2,

µ =

√
ρ21K

2
1+2ρ1K1(1−ϕ)L1+L2

1−[ρ1K1+(1−ϕ)L1]

2ϕL2
1

and λ =

√
ρ22K

2
2+2ρ2K2(1−ϕ)L2+L2

2−[ρ2K2+(1−ϕ)L2]

2ϕL2
2

,

and take the starting point x1 = (1, 1, . . . , 1)T while the entries of x0 are randomly gener-
ated in [0, 1].
For Algorithm 1 of He et al. [121], we take

µ1 = 5
(
||T THT ||+ L1

)
/v, µ2 = 10

(
||T THT ||+ L2

)
/v, v = 0.8, H = 2

||TTT ||IN , γ = 1.2

and ρ1 = −1.5 (which is the optimum choice in their implementation), with starting points
x1 = (1, 1, . . . , 1)T , y1 = (0, 0, . . . , 0)T and λ1 = (0, 0, . . . , 0)T . Since PC and PQ seem not
to have explicit expressions, Algorithm 1 of He et al. [121] may be difficult to implement
for this example. Therefore, we use the technique proposed in this study, that is, we
replace C and Q in their algorithm with Cn and Qn, then use the formulas similar to
(4.2.7) and (4.2.8) for the implementation. Furthermore, we consider different scenarios of
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Figure 4.1: The behavior of TOLn with ε = 10−6 for Example 4.2.13: Top Left: (N,m) =
(100, 50); Top Right: (N,m) = (300, 150); Bottom Left: (N,m) = (500, 250); Bottom
Right: (N,m) = (1000, 500).

the problem’s dimensions. That is, N = 100, 300, 500, 1000 and m = N/2. We also take
ε = 10−6 for the stopping criterion and obtain the numerical results reported in Table 4.2.1
and Figure 4.1. We stress that these choices are the same as in He et al. [121, Example
5.2].

Table 4.2.1. Numerical results for Example 4.2.13 with ε = 10−6.
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(N,m) Alg.4.2.2
α = 3

Alg.4.2.2
α = 6

Alg.4.2.2
α = 9

Alg.4.2.2
α = 12

Alg.4.2.2
α = 15

He et al.

(100, 50)
CPU
Iter.

0.1917
826

0.0805
759

0.1205
798

0.0948
735

0.1337
803

10.5882
2482

(300, 150)
CPU
Iter.

0.1378
1211

0.1455
1241

0.1609
1238

0.1235
1233

0.1217
1251

15.6402
8140

(500, 250)
CPU
Iter.

0.2162
1458

0.1814
1480

0.1739
1456

0.1953
1468

0.1944
1459

16.9445
30043

(1000, 500)
CPU
Iter.

0.4489
1604

0.4561
1622

0.5391
1617

0.4120
1620

0.4624
1627

39.0961
73092

Example 4.2.14. Let C = {x ∈ R2 : c(x) := x21 − x2 ≤ 0} and Q = {y ∈ R2 : q(y) :=
y21 + y22 − 2 ≤ 0},
where x = (x1, x2) and y = (y1, y2). Define A,F : R2 → R2 by

A(x) = (3Ψ(x1), 2x1 + x2), F (x) = (6Ψ(x1), 4x1 + 2x2),

where

Ψ(s) =


e(s− 1) + e, if s > 1,

es, if − 1 ≤ s ≤ 1,

e−1(s+ 1) + e−1, if s < −1.

Then, one can easily verify that L1 =
√
9e2 + 5 and L2 = 2

√
9e2 + 5. Also, it is easy to

see that c and q are continuously differentiable convex functions with Lipschitz constants
K1 = K2 = 2. Moreover, we have that ρ1 = 3

√
e2 + 1 and ρ2 =

3
2

√
e2 + 1 (see for example,

[120]). Furthermore, we choose the same parameters as in Example 4.2.13 and use the
stopping criterion ε = 10−3.

By considering the following cases for the numerical experiments, we obtain the numerical
results displayed in Table 4.2.2 and Figure 4.2.
Case 1: Take x1 = (1, 0.5)T and x0 = (2, 3)T .

Case 2: Take x1 = (2, 1)T and x0 = (0.5, − 1)T .

Case 3: Take x1 = (1, − 1)T and x0 = (2, − 2)T .

Case 4: Take x1 = (0.5, 4)T and x0 = (−1, − 3)T .

Table 4.2.2. Numerical results for Example 4.2.14 with ε = 10−3.
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Figure 4.2: The behavior of TOLn with ε = 10−3 for Example 4.2.14: Top Left: Case 1;
Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.
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Cases Alg.4.2.2
α = 3

Alg.4.2.2
α = 6

Alg.4.2.2
α = 9

Alg.4.2.2
α = 12

Alg.4.2.2
α = 15

He et al.

1 CPU
Iter.

0.0203
29

0.0160
30

0.0168
28

0.0261
28

0.0202
29

1.1282
73

2 CPU
Iter.

0.0229
36

0.0162
38

0.0168
35

0.0161
38

0.0147
37

1.0324
86

3 CPU
Iter.

0.0240
37

0.0166
35

0.0167
37

0.0160
36

0.0153
34

1.1263
89

4 CPU
Iter.

0.0216
52

0.0181
52

0.0169
47

0.0187
53

0.0165
46

1.1308
75

We present the next example in an infinite dimensional Hilbert space. In this example, we
compare Algorithm 4.2.3 with the methods of Reich and Tuyen [213] and Tian and Jiang
[244], since their methods are given in infinite dimensional Hilbert spaces.

Example 4.2.15. Let H1 = H2 = L2([0, 1]) be endowed with inner product

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt, ∀ x, y ∈ L2([0, 1])

and norm

||x|| :=
(∫ 1

0

|x(t)|2dt
) 1

2
, ∀ x, y ∈ L2([0, 1]).

Let φ be an arbitrary fixed element in C([0, 1]) (the space of all real-valued continuous
functions on [0, 1]) and C = Q = {x ∈ L2([0, 1]) : ∥φx∥ ≤ 1}. In particular, for all t ∈ [0, 1],
we define φ(t) = e−t for C and φ(t) = e−5t for Q. Then, C and Q are nonempty closed
and convex subsets of L2([0, 1]). However, we know from [119] that the explicit formulas
for projections onto C and Q may be difficult to find.

Now, let c, q : L2([0, 1]) → R be defined by c(x) = q(x) = 1
2

(
∥φx∥2 − 1

)
, ∀x ∈ L2([0, 1]),

where φ(t) = e−t for c and φ(t) = e−5t for q; t ∈ [0, 1]. Then, c, q are convex functions
with C and Q being level sets of c and q, respectively. Also, c and q are differentiable
on L2([0, 1]). In fact, c′(x) = φ2x, ∀x ∈ L2([0, 1]). Furthermore, c′ and q′ are Lipschitz
continuous.
Now, define A : L2([0, 1]) → L2([0, 1]) by Ax(t) = max{0, x(t)}, ∀x ∈ L2([0, 1]). Then,
A is monotone and Lipschitz continuous. Also, let F : L2([0, 1]) → L2([0, 1]) be defined
by Fx(t) =

∫ t
0
x(s)ds, ∀x ∈ L2([0, 1]), t ∈ [0, 1]. Then F is monotone and Lipschitz

continuous.
Let mφ = mint∈[0,1]|φ(t)| = e−1. Then,

∥Ax∥
∥c′(x)∥

=
∥x+∥
∥φ2x∥

≤ ∥x∥
m2φ∥x∥

= e2

holds for all x ∈ L2([0, 1]), x ̸= 0 (see [119]). Thus, we have that ρ1 = e2. Similarly,
ρ2 =

2
π
e10.

We consider the following cases for the numerical experiments of this example. The results
of the experiments are given in Table 4.2.3 and Figure 4.3.
Case 1: Take x1(t) = 1 + t2, x0(t) = t+ 5 and ϕn = n

2n+5
.
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Figure 4.3: The behavior of TOLn with ε = 10−5 for Example 4.2.15: Top Left: Case 1;
Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.

Case 2: Take x1(t) = sin(t), x0(t) = t+ 1 and ϕn = n
n+10

.

Case 3: Take x1(t) = t+ 1, x0(t) = t+ t3 and ϕn = n
n+10

.

Case 4: Take x1(t) = 0.7e−t + 1, x0(t) = t+ t3 and ϕn = 2n
18n+1

.

Table 4.2.3. Numerical results for Example 4.2.15 with ε = 10−5.
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Cases Alg.4.2.3
α = 3

Alg.4.2.3
α = 6

Alg.4.2.3
α = 9

Alg.4.2.3
α = 12

Alg.4.2.3
α = 15

Reich
Tuyen

Tian
Jiang

1 CPU
Iter.

2.9827
16

2.3552
16

2.3725
16

2.1437
16

2.3514
16

7.0796
20

12.3607
81

2 CPU
Iter.

2.4189
17

1.9850
17

1.9034
17

1.8323
17

1.8094
17

5.4496
20

9.9440
83

3 CPU
Iter.

2.2188
16

1.8285
16

1.8093
16

1.6663
16

1.6729
16

5.3220
20

9.9360
82

4 CPU
Iter.

2.3943
16

2.0577
16

1.9658
16

1.7530
16

1.7740
16

5.6309
20

10.0070
80

Remark 4.2.16. In each example, using different starting points and varying both the
inertial and relaxation stepsizes α and ϕ (ϕn), respectively, we obtain the numerical results
displayed in Tables 4.2.1-4.2.3 and Figures 4.1-4.3. We compared our proposed Algorithm
4.2.2 with the method of He et al. [121, Algorithm 1] in Examples 4.2.13 and 4.2.14 while
our proposed Algorithm 4.2.3 is compared with the methods of Reich and Tuyen [213,
Theorem 4.4] and Tian and Jiang [244, Algorithm (4.8)] in Example 4.2.15.
Furthermore, the following were observed from our numerical experiments:

� We have seen from the numerical examples that the projections onto feasible sets are
generally difficult to compute. Thus, the benefits brought from the half-space tech-
nique (introduced in our methods) are further verified by our numerical experiments.

� In the numerical experiments, we choose the parameters η ≥ 0, λ1 > 0 and µ1 > 0
randomly and observed that the number of iteration does not change and no signif-
icant difference in the CPU time irrespective of the choices of the parameters.

� In each of the examples, we check the sensitivity of α as we vary ϕ (ϕn) for each
starting points, in order to know if these choices affect the efficiency of our methods.
We can see from the tables and graphs that the gap between the best results and the
worst results of Algorithm 4.2.2 and Algorithm 4.2.3 is acceptably small, especially
in Example 4.2.14 and Example 4.2.15. We can also see from Table 4.2.1 and Figure
4.1 that for solving problem (4.2.71), the efficiency of Algorithm 4.2.2 is slightly af-
fected by the dimensionality of the problem. These means that the proposed relaxed
inertial technique has efficient and stable performance for each group of random data.

� It can also be inferred from the tables and figures that in terms of both CPU time and
number of iterations, our proposed Algorithm 4.2.2 outperforms the method of He
et al. [121, Algorithm 1] in Example 4.2.13 and Example 4.2.14, while our proposed
Algorithm 4.2.3 outperforms the methods of Reich and Tuyen [213, Theorem 4.4]
and Tian and Jiang [244, Algorithm (4.8)] in Example 4.2.15. Hence, our methods
are more efficient and more implementable than these other methods for solving the
SVIP.
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Appendix 4.2.17. Algorithm 1 of He et al. [121].

Stop 0. Given a symmetric positive definite matrix H ∈ Rm×m, γ ∈ (0, 2) and ρ ∈
(ρmin, 3), where ρmin := max

{
−3, 2(v−1)µ1

4ζmax(TTHT )

}
and T : RN → Rm is a linear operator

(where T T means the transpose of T ). Set an initial point u1 := (x1, y1, λ1) ∈ Ω :=
C × Q × Rm, where C and Q are nonempty closed and convex subsets of RN and Rm,
respectively.
Step 1. Generate a predictor ũn := (x̃n, ỹn, λ̃n) with appropriate parameters µ1 and µ2 :

λ̄n = λn −H(Txn − yn),

x̃n = PC

[
xn − 1

µ1

(
A(xn)− T T λ̄n

)]
,

λ̂n = λn −H(T x̂n − yn), where x̂n := ρxn + (1− ρ)x̃n,

ỹn = PQ

[
yn − 1

µ2
(F (yn) + λ̂n)

]
,

λ̃n = λn −H(T x̃n − ỹn).

(4.2.72)

Step 2. Update the next iterative un+1 := (xn+1, yn+1, λn+1) via

un+1 := un − γαkd(un, ũn),

where
αk :=

φ(un,ũn)
∥d(un,ũn)∥2 ,

d(un, ũn) := G(un − ũn)− ξn,

φ(un, ũn) :=
〈
λn − λ̃n, ρT (xn − x̃n)− (yn − ỹn)

〉
+ ⟨un − ũn, d(un, ũn)⟩ ,

ξn :=

 ξnx

ξny

0

 :=

A(xn)− A(x̃n) + T THT (xn − x̃n)
F (yn)− F (ỹn) +H(yn − ỹn)

0

 , A and F are monotone and

Lipschitz continuous with constants L1 and L2 respectively, and

G :=

µ1IN + ρT THT 0 0
0 µ2Im +H 0
0 0 H−1

 is the block diagonal matrix, with identity

matrices IN and Im of size N and m, respectively. The parameters µ1 and µ2 are chosen
such that

∥ξnx∥ ≤ vµ1∥xn − x̃n∥ and ∥ξny∥ ≤ vµ2 ∥yk − ỹn∥,

where v ∈ (0, 1).

Appendix 4.2.18. The Algorithm in Reich and Tuyen [213, Theorem 4.4].
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For any initial guess x1 = x ∈ H1, define the sequence {xn} by

yn = V I(C, λnA+ IH1 − xn),

zn = V I(Q, µnF + IH2 − Tyn),

Cn = {z ∈ H1 : ||yn − z|| ≤ ||xn − z||},
Dn = {z ∈ H1 : ||zn − Tz|| ≤ ||Tyn − Tz||},
Wn = {z ∈ H1 : ⟨z − xn, x1 − xn⟩ ≤ 0},
xn+1 = PCn∩Dn∩Wn(x1), n ≥ 1,

where IH1 and IH2 are identity operators in H1 and H2 respectively, and {λn} and {µn}
are two given sequences of positive numbers satisfying the following condition:

min
{
inf
n
{λn}, inf

n
{µn}

}
≥ r > 0.

Appendix 4.2.19. Algorithm (4.8) of Tian and Jiang [244].

Let {xn}, {yn}, {tn} and {wn} be sequences generated by x1 = x ∈ C and

yn = PC(xn − ηnT
∗(I − PQ(I − λF ))Txn),

tn = PC(yn − λnAyn),

Tn = {w ∈ H1 : ⟨yn − λnAyn − tn, w − tn⟩ ≤ 0},
wn = PTn(yn − λnAtn),

xn+1 = αnh(xn) + (1− αn)wn, n ≥ 1,

where T : H1 → H2 is a bounded linear operator, A : C → H1 is a monotone and L-
Lipschitz continuous operator with L > 0, F : H2 → H2 is a k-inverse strongly monotone
mapping and h : H1 → H1 is a σ-contractive mapping with 0 ≤ σ < 1. The sequence {ηn}
is in [a, b], for some a, b ∈

(
0, 1

∥T∥2

)
, {λn} is in [c, d], for some c, d ∈

(
0, 1

L

)
, {αn} is in

(0, 1) with lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞.

4.3 On split variational inequality problem beyond

monotonicity

In solving the SVIP, very few methods have been considered in the literature and most
of these few methods require the underlying operators to be co-coercive. This restrictive
co-coercive assumption has been dispensed with in some methods; many of which require
a product space formulation of the problem. However, it has been discovered that this
product space formulation may cause some potential difficulties during implementation and
its approach may not fully exploit the attractive splitting structure of the SVIP. In this
study, we present two new methods with inertial steps for solving the SVIP in real Hilbert
spaces without any product space formulation. We prove that the sequence generated
by these methods converges strongly to a minimum-norm solution of the problem when
the operators are pseudomonotone and Lipschitz continuous. Also, we provide several
numerical experiments of the proposed methods in comparison with other related methods
in the literature.
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4.3.1 Proposed methods

In this section, we present our proposed methods and discuss their features. We begin
with the following assumptions under which our strong convergence results are obtained.

Assumption 4.3.1. Suppose that the following conditions hold:

(a) The feasible sets C and Q are nonempty closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively.

(b) A : H1 → H1 and F : H2 → H2 are pseudomonotone, sequentially weakly continuous
and Lipschitz continuous with Lipschitz constants L1 and L2, respectively.

(c) T : H1 → H2 is a bounded linear operator and the solution set Γ := {z ∈ V I(A, C) :
Tz ∈ V I(F,Q)} is nonempty, where V I(A, C) is the solution set of the classical VIP
(1.2.4).

(d) {δn}∞n=1 and {τn}∞n=1 are positive sequences satisfying the following conditions:

δn ∈ (0, 1), lim
n→∞

δn = 0,
∞∑
n=1

δn = ∞ and lim
n→∞

τn
δn

= 0.

(e) {θn} ⊂ (a, 1− δn) for some a > 0.

We present the following method for solving the SVIP (1.2.4)-(1.2.5) when L1 and L2 are
known.

Algorithm 4.3.2. Modified projection and contraction method with fixed stepsize.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1 and {τn}∞n=1 such that the conditions from
Assumption 4.3.1 (d)-(e) hold and let η ≥ 0, γi ∈ (0, 2), i = 1, 2, µ ∈ (0, 1

L1
), λ ∈

(0, 1
L2
), α ≥ 3 and x0, x1 ∈ H1 be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1

, otherwise.
(4.3.1)

Step 2: Compute
wn = xn + αn(xn − xn−1),

yn = PQ(Twn − λFTwn),

zn = Twn − γ2βnrn,

where rn := Twn−yn−λ(FTwn−Fyn) and βn := ⟨Twn−yn,rn⟩
∥rn∥2 , if rn ̸= 0; otherwise, βn = 0.

Step 3: Compute
bn = wn + ηnT

∗(zn − Twn),

where the stepsize ηn is chosen such that for small enough ϵ > 0,

ηn ∈
[
ϵ,

∥Twn − zn∥2

∥T ∗(Twn − zn)∥2
− ϵ

]
,
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if zn ̸= Twn; otherwise, ηn = η.
Step 4: Compute

un = PC(bn − µAbn),

tn = bn − γ1γnvn,

where vn := bn − un − µ(Abn − Aun) and γn := ⟨bn−un,vn⟩
∥vn∥2 , if vn ̸= 0; otherwise, γn = 0.

Step 5: Compute
xn+1 = (1− θn − δn)bn + θntn.

Set n := n+ 1 and go back to Step 1.

In the situation where L1 and L2 are not available, we present the following method
with adaptive stepsize for solving the SVIP (1.2.4)-(1.2.5).

Algorithm 4.3.3. Modified projection and contraction method with adaptive stepsize
strategy.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1 and {τn}∞n=1 such that the conditions from
Assumption 4.3.1 (d)-(e) hold and let η ≥ 0, γi ∈ (0, 2), ai ∈ (0, 1), i = 1, 2, λ1 > 0,
µ1 > 0, α ≥ 3 and x0, x1 ∈ H1 be given arbitrarily. Set n := 1.
Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
n−1

n+α−1
, τn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1

, otherwise.
(4.3.2)

Step 2: Compute
wn = xn + αn(xn − xn−1),

yn = PQ(Twn − λnFTwn),

zn = Twn − γ2βnrn,

where rn := Twn−yn−λn(FTwn−Fyn), βn := ⟨Twn−yn,rn⟩
∥rn∥2 , if rn ̸= 0; otherwise, βn = 0; and

λn+1 =

{
min

{
a2||Twn−yn||
||FTwn−Fyn|| , λn

}
, if FTwn ̸= Fyn

λn, otherwise.
(4.3.3)

Step 3: Compute
bn = wn + ηnT

∗(zn − Twn),

where the stepsize ηn is chosen such that for small enough ϵ > 0,

ηn ∈
[
ϵ,

∥Twn − zn∥2

∥T ∗(Twn − zn)∥2
− ϵ

]
,

if zn ̸= Twn; otherwise, ηn = η.
Step 4: Compute

un = PC(bn − µnAbn),
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tn = bn − γ1γnvn,

where vn := bn − un − µn(Abn − Aun), γn = ⟨bn−un,vn⟩
∥vn∥2 , if vn ̸= 0; otherwise, γn = 0; and

µn+1 =

{
min

{
a1||bn−un||
||Aun−Abn|| , µn

}
, if Abn ̸= Aun

µn, otherwise.
(4.3.4)

Step 5: Compute
xn+1 = (1− θn − δn)bn + θntn.

Set n := n+ 1 and go back to Step 1.

We now highlight some of the features of our proposed methods.

Remark 4.3.1.

� Observe that Algorithm 4.3.2 and Algorithm 4.3.3 can be viewed as modified pro-
jection and contraction methods involving one projection onto C per iteration for
solving the classical VIP in H1 and another projection and contraction methods in-
volving one projection onto Q per iteration under a bounded linear operator T for
solving another VIP in another space H2, with no extra projections onto half-spaces
or feasible sets unlike the method in [206] (see Appendix 4.3.16), where extra projec-
tions onto half-spaces are required. In fact, an interesting feature of the projection
and contraction methods used here is that rn of Step 2 in Algorithms 4.3.2 and 4.3.3
can be described as weighted average of (Twn − yn ∼ λFTwn) and a hypothetical
(Tw̃n − ỹn ∼ λFTw̃n) in H2, where Tw̃n = Twn − λFTwn and ỹn = yn − λFyn.
We also have similar description for vn of Step 4. This looks very similar to the
Heun’s method or modified Euler method from numerical methods for solving ordi-
nary differential equations (see [230, page 328] for details). Furthermore, we can see
that

βn||rn||2 = ⟨Twn − yn, rn⟩, ∀n ≥ 1 (4.3.5)

holds for both rn = 0 and rn ̸= 0. Similarly, we have that

γn||vn||2 = ⟨bn − un, vn⟩, ∀n ≥ 1 (4.3.6)

holds for both vn = 0 and vn ̸= 0.

� Another notable advantage of Algorithm 4.3.2 and Algorithm 4.3.3 for solving the
SVIP (1.2.4)-(1.2.5) is that the monotonicity assumption on the operators A and F
usually used in many other works (see for example, [61, 63, 121, 131, 145, 190, 213,
243, 244]) to guarantee convergence, is dispensed with and no extra projections are
required under this setting unlike in [206].

� The stepsizes {λn} and {µn} given by (4.3.3) and (4.3.4), respectively are generated
at each iteration by some simple computations. Thus, Algorithm 4.3.3 is easily
implemented without the prior knowledge of the Lipschitz constants L1 and L2.
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� Step 1 of our methods is also easily implemented since the value of ||xn− xn−1|| is a
priori known before choosing αn. In our numerical analysis (Section 4.3.3), we shall
check the sensitivity of α in order to find numerically, the optimum choice of α with
respect to the convergence speed of our proposed methods.

� Step 5 of both algorithms guarantee the strong convergence to a minimum-norm
solution of the problem.

� Unlike in [61, 63, 121], we can see that Algorithm 4.3.2 and Algorithm 4.3.3 do not
require any product space formulation, thereby avoiding any potential difficulties
that might be caused by the product space.

Remark 4.3.2. The choice of the stepsize ηn in Step 3 of Algorithms 4.3.2 and 4.3.3 do
not require the prior knowledge of the operator norm ∥T∥. Furthermore, the value of η
does not influence the algorithms, but it was introduced for the sake of clarity. We show
in the following lemma that ηn is well-defined (see also [275, Remark 2.3, Lemma 2.3] and
[274, Lemma 3.3]).

Lemma 4.3.3. The stepsize ηn given in Step 3 of Algorithms 4.3.2 and 4.3.3 is well-
defined.

Proof. Let z ∈ Γ. That is, z ∈ V I(A, C) and Tz ∈ V I(F,Q). Then, by Cauchy-Schwarz
inequality and Lemma 2.1.1 , we obtain

∥T ∗(Twn − zn)∥∥wn − z∥ ≥ ⟨T ∗(Twn − zn), wn − z⟩
= ⟨Twn − zn, Twn − Tz⟩

=
1

2

[
∥Twn − zn∥2 + ∥Twn − Tz∥2 − ∥zn − Tz∥2

]
. (4.3.7)

Since zn = Twn − γ2βnrn, we obtain that

∥zn − Tz∥2 = ∥Twn − Tz∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − Tz, rn⟩

= ∥Twn − Tz∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − yn, rn⟩ − 2γ2βn⟨yn − Tz, rn⟩.

(4.3.8)

Since yn = PQ(Twn − λFTwn) and Tz ∈ Q, we obtain from the characteristics property
of PQ that

⟨Twn − λFTwn − yn, yn − Tz⟩ ≥ 0. (4.3.9)

Also, since Tz ∈ V I(F,Q) and yn ∈ Q, we have that

⟨FTz, yn − Tz⟩ ≥ 0 (see Inequality (1.2.1)),

which by the pseudomonotonicity of F and λ > 0, implies

⟨λFyn, yn − Tz⟩ ≥ 0. (4.3.10)
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Adding (4.3.9) and (4.3.10), we obtain

⟨Twn − yn − λ(FTwn − Fyn), yn − Tz⟩ ≥ 0.

That is

⟨rn, yn − Tz⟩ ≥ 0 (which is still true if λ is replaced with λn as in Algorithm 4.3.3).
(4.3.11)

On the other hand, we have from the Lipschitz continuity of F and λ ∈ (0, 1
L2
), that

⟨Twn − yn, rn⟩ = ⟨Twn − yn, Twn − yn − λ(FTwn − Fyn)⟩
= ∥Twn − yn∥2 − ⟨Twn − yn, λ(FTwn − Fyn)⟩
≥ ∥Twn − yn∥2 − λ∥Twn − yn∥∥FTwn − Fyn∥
≥ (1− λL2)∥Twn − yn∥2 ≥ 0, (4.3.12)

which by the definition of βn, implies that βn ≥ 0, ∀n ≥ 1 (this is still true even if we
replace λ with λn as in Algorithm 4.3.3). Thus, using (4.3.11) and (4.3.5) in (4.3.8), and
nothing that γ2 ∈ (0, 2), we obtain

∥zn − Tz∥2 ≤ ∥Twn − Tz∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − yn, rn⟩

= ∥Twn − Tz∥2 + γ22β
2
n∥rn∥2 − 2γ2βn · βn∥rn∥2

= ∥Twn − Tz∥2 − γ2(2− γ2)β
2
n∥rn∥2

≤ ∥Twn − Tz∥2. (4.3.13)

Substituting (4.3.13) into (4.3.7), we obtain that

∥T ∗(Twn − zn)∥∥wn − z∥ ≥ 1

2
∥Twn − zn∥2. (4.3.14)

Now, for zn ̸= Twn, we have that ∥Twn− zn∥ > 0. This together with (4.3.14), imply that
∥T ∗(Twn − zn)∥∥wn − z∥ > 0. Hence, we have that ∥T ∗(Twn − zn)∥ ̸= 0. Therefore, ηn is
well-defined.

We also make the following observation regarding ηn. Note from Step 3 of Algorithms 4.3.2
and 4.3.3, that

ηn∥T ∗(Twn − zn)∥2 ≤ ∥Twn − zn∥2 − ϵ∥T ∗(Twn − zn)∥2, (4.3.15)

which implies that

η2n∥T ∗(Twn − zn)∥2 − ηn∥Twn − zn∥2 ≤ −ϵηn∥T ∗(Twn − zn)∥2. (4.3.16)

Note also that, we can replace the choice of ηn in Step 3 of Algorithm 4.3.2 and Algorithm
4.3.3 with the following: For small enough ϵ > 0,

ηn ∈
[
ϵ,

∥Twn − zn∥2

1 + ∥T ∗(Twn − zn)∥2
− ϵ
]
. (4.3.17)
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Then, we can see that

ηn ≤
∥Twn − zn∥2 − ϵ

(
1 + ∥T ∗(Twn − zn)∥2

)
1 + ∥T ∗(Twn − zn)∥2

,

which implies that

ηn + ηn∥T ∗(Twn − zn)∥2 ≤ ∥Twn − zn∥2 − ϵ− ϵ∥T ∗(Twn − zn)∥2.

This further gives (4.3.15) and consequently (4.3.16).
As we shall see in our convergence analysis, (4.3.15) and (4.3.16) play crucial role in our
proofs. Therefore, one can either choose the stepsize in Step 3 or that in (4.3.17), to ensure
the convergence of Algorithms 4.3.2 and 4.3.3.

4.3.2 Convergence analysis

Lemma 4.3.4. Let {xn} be a sequence generated by Algorithm 4.3.2 under Assumption
4.3.1. Then, {xn} is bounded.

Proof. Let p ∈ Γ. Then Tp ∈ V I(F,Q) ⊂ Q. From the definition of wn, we have

∥wn − p∥ = ∥xn + αn(xn − xn−1)− p∥
≤ ∥xn − p∥+ αn∥xn − xn−1∥.

Also, from Step 1, we observe that αn∥xn − xn−1∥ ≤ τn, ∀n ≥ 1, which implies that

αn
δn

∥xn − xn−1∥ ≤ τn
δn

→ 0, as n→ ∞. (4.3.18)

Hence, there exists M1 > 0 such that

αn
δn

∥xn − xn−1∥ ≤M1, ∀n ≥ 1. (4.3.19)

This implies that

∥wn − p∥ ≤ ∥xn − p∥+ δnM1, ∀n ≥ 1. (4.3.20)

Since yn = PQ(Twn − λFTwn), we obtain by the characteristic property of PQ that

⟨yn − Twn + λFTwn, yn − Tp⟩ ≤ 0. (4.3.21)

Again, since Tp ∈ V I(F,Q) and yn ∈ Q, we obtain that

⟨FTp, yn − Tp⟩ ≥ 0,

which follows from the pseudomonotonicity of F that ⟨Fyn, yn−Tp⟩ ≥ 0. Since λ > 0, we
get

⟨λFyn, yn − Tp⟩ ≥ 0. (4.3.22)
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Combining (4.3.21) and (4.3.22), we have

⟨Twn − yn − λ(FTwn − Fyn), yn − Tp⟩ ≥ 0. (4.3.23)

From Step 2 and (4.3.23), we obtain

⟨Twn − Tp, rn⟩ = ⟨Twn − yn, rn⟩+ ⟨yn − Tp, rn⟩
= ⟨Twn − yn, rn⟩+ ⟨yn − Tp, Twn − yn − λ(FTwn − Fyn)⟩
≥ ⟨Twn − yn, rn⟩,

which implies that

−⟨Twn − Tp, rn⟩ ≤ −⟨Twn − yn, rn⟩. (4.3.24)

Since zn = Twn − γ2βnrn, we have that ||βn · rn||2 = γ−2
2 ||zn − Twn||2.

Thus, from Lemma 2.1.1, (4.3.5) and (4.3.24) (nothing that βn and γ2 are nonnegative),
we obtain

∥zn − Tp∥2 = ∥Twn − γ2βnrn − Tp∥2

= ∥Twn − Tp∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − Tp, rn⟩

≤ ∥Twn − Tp∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − yn, rn⟩

= ∥Twn − Tp∥2 + γ22β
2
n∥rn∥2 − 2γ2βn · βn∥rn∥2

= ∥Twn − Tp∥2 − γ2(2− γ2)∥βn · rn∥2

= ∥Twn − Tp∥2 − γ−1
2 (2− γ2)||zn − Twn||2. (4.3.25)

Also, we obtain from Step 3, Lemma 2.1.1 and (4.3.25) that

∥bn − p∥2 = ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 + 2ηn⟨wn − p, T ∗(zn − Twn)⟩
= ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 + 2ηn⟨Twn − Tp, zn − Twn⟩
= ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2

+ ηn
[
∥zn − Tp∥2 − ∥Twn − Tp∥2 − ∥zn − Twn∥2

]
≤ ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 − ηn∥zn − Twn∥2 (4.3.26)

= ∥wn − p∥2 − ηn
[
∥zn − Twn∥2 − ηn∥T ∗(zn − Twn)∥2

]
.

Thus, by (4.3.15), we obtain that

∥bn − p∥2 ≤ ∥wn − p∥2,

which implies from (4.3.20) that

∥bn − p∥ ≤ ∥wn − p∥ ≤ ∥xn − p∥+ δnM1, ∀n ≥ 1. (4.3.27)

Following similar argument used in obtaining (4.3.25), we get

∥tn − p∥2 = ∥bn − γ1γnvn − p∥2

≤ ∥bn − p∥2 − γ−1
1 (2− γ1)∥tn − bn∥2. (4.3.28)

164



Also, by Step 5, we get

∥xn+1 − p∥ = ∥(1− θn − δn)(bn − p) + θn(tn − p)− δnp∥
≤ ∥(1− θn − δn))(bn − p) + θn(tn − p)∥+ δn∥p∥. (4.3.29)

But from (4.3.27) and (4.3.28), we obtain that

∥(1− θn − δn)(bn − p) + θn(tn − p)∥2 = (1− θn − δn)
2∥bn − p∥2 + θ2n∥tn − p∥2

+ 2(1− θn − δn)θn⟨bn − p, tn − p⟩
≤ (1− θn − δn)

2∥wn − p∥2 + θ2n∥bn − p∥2

+ 2(1− θn − δn)θn∥bn − p∥2

≤ (1− δn)
2∥wn − p∥2. (4.3.30)

Hence, (4.3.29) becomes

∥xn+1 − p∥ ≤ (1− δn)∥wn − p∥+ δn∥p∥
≤ (1− δn) [∥xn − p∥+ δnM1] + δn∥p∥
≤ (1− δn)∥xn − p∥+ δn(M1 + ∥p∥),

which implies from Lemma 2.5.35 that {xn} is bounded.

Lemma 4.3.5. Let {xn} be a sequence generated by Algorithm 4.3.2 under Assumption
4.3.1. Suppose that, there exists a subsequence {xnk

} of {xn} which converges weakly to a
point z ∈ H1 and lim

k→∞
∥bnk

− wnk
∥ = 0 = lim

k→∞
∥bnk

− tnk
∥, then z ∈ Γ.

Proof. Without loss of generality, we may assume that zn ̸= Twn. Then,

ηn ∈
[
ϵ,

∥zn − Twn∥2

∥T ∗(zn − Twn)∥2
− ϵ

]
.

Thus, putting (4.3.16) into (4.3.26), we obtain that

∥bnk
− p∥2 ≤ ∥wnk

− p∥2 − ηnk
ϵ∥T ∗(znk

− Twnk
)∥2

≤ ∥wnk
− p∥2 − ϵ2∥T ∗(znk

− Twnk
)∥2, (4.3.31)

which implies that

ϵ2∥T ∗(znk
− Twnk

)∥2 ≤ ∥wnk
− p∥2 − ∥bnk

− p∥2

≤ ∥wnk
− bnk

∥2 + 2∥wnk
− bnk

∥∥bnk
− p∥.

Thus, by our hypothesis, we obtain

lim
k→∞

∥T ∗(znk
− Twnk

)∥ = 0. (4.3.32)

From (4.3.26) and (4.3.32), we obtain

ηnk
∥znk

− Twnk
∥2 ≤ ∥wnk

− p∥2 − ∥bnk
− p∥2 + η2nk

∥T ∗(znk
− Twnk

)∥2

≤ ∥wnk
− bnk

∥2 + 2∥wnk
− bnk

∥∥bnk
− p∥

+ η2nk
∥T ∗(znk

− Twnk
)∥2 → 0, as k → ∞.
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Since ηnk
> ϵ > 0, we obtain that

lim
k→∞

∥znk
− Twnk

∥ = 0. (4.3.33)

From (4.3.12), we obtain

⟨Twnk
− ynk

, rnk
⟩ ≥ (1− λL2)∥Twnk

− ynk
∥2. (4.3.34)

Since λ ∈ (0, 1
L2
), we have that 1 − λL2 > 0. Thus, we obtain from (4.3.34) and (4.3.5)

that

∥Twnk
− ynk

∥2 ≤
(

1

1− λL2

)
⟨Twnk

− ynk
, rnk

⟩

=

(
1

1− λL2

)
βnk

∥rnk
∥2

=

(
1

1− λL2

)
βnk

∥rnk
∥∥Twnk

− ynk
− λ(FTwnk

− Fynk
)∥

≤
(

1

1− λL2

)
βnk

∥rnk
∥ (∥Twnk

− ynk
∥+ λ∥FTwnk

− Fynk
∥)

≤
(

1

1− λL2

)
βnk

∥rnk
∥ (∥Twnk

− ynk
∥+ λL2∥Twnk

− ynk
∥)

=

(
1 + λL2

1− λL2

)
∥Twnk

− ynk
∥βnk

∥rnk
∥

= γ−1
2

(
1 + λL2

1− λL2

)
∥Twnk

− ynk
∥∥znk

− Twnk
∥,

where the last equality follows from znk
= Twnk

−γ2βnk
rnk

, that is, βnk
||rnk

|| = γ−1
2 ||znk

−
Twnk

||.
Therefore, we obtain from (4.3.33) that

∥Twnk
− ynk

∥ ≤ γ−1
2

(
1 + λL2

1− λL2

)
∥Twnk

− znk
∥ → 0, as k → ∞. (4.3.35)

By the characteristic property of PQ, we obtain for all x ∈ Q that

⟨Twnk
− λFTwnk

− ynk
, x− ynk

⟩ ≤ 0.

This implies that

1

λ
⟨Twnk

− ynk
, x− ynk

⟩+ ⟨FTwnk
, ynk

− Twnk
⟩ ≤ ⟨FTwnk

, x− Twnk
⟩. (4.3.36)

Thus, we obtain from (4.3.35) that

0 ≤ lim inf
k→∞

⟨FTwnk
, x− Twnk

⟩, ∀x ∈ Q. (4.3.37)

Now, note that

⟨Fynk
, x− ynk

⟩ = ⟨Fynk
− FTwnk

, x− Twnk
⟩+ ⟨FTwnk

, x− Twnk
⟩

+ ⟨Fynk
, Twnk

− ynk
⟩. (4.3.38)
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Moreover, since F is Lipschitz continuous on H2, we obtain from (4.3.35) that

lim
k→∞

||FTwnk
− Fynk

|| = 0.

Hence, we obtain from (4.3.35), (4.3.37) and (4.3.38) that

0 ≤ lim inf
k→∞

⟨Fynk
, x− ynk

⟩, ∀x ∈ Q. (4.3.39)

We now show that Tz ∈ VI(F,Q). Let {ck} be a sequence of positive numbers such that
ck+1 ≤ ck, ∀k ≥ 1 and ck → 0 as k → ∞. For each k ≥ 1, denote by Nk, the smallest
positive integer such that

⟨Fynj
, x− ynj

⟩+ ck ≥ 0, ∀j ≥ Nk, (4.3.40)

where the existence of Nk follows from (4.3.39). Note that {Nk} is increasing since {ck}
is decreasing. Also, since {yNk

} ⊂ Q for all k ≥ 1, we have that FyNk
̸= 0. Hence, we

can set qNk
=

FyNk

∥FyNk
∥2 , for each k ≥ 1. Then, ⟨FyNk

, qNk
⟩ = 1, for each k ≥ 1. Thus by

(4.3.40), we have ⟨FyNk
, x+ ckqNk

− yNk
⟩ ≥ 0, which by the pseudomonotonicity of F on

H2, yields

⟨F (x+ ckqNk
), x+ ckqNk

− yNk
⟩ ≥ 0. (4.3.41)

This further implies that

⟨Fx, x− yNk
⟩ ≥ ⟨Fx− F (x+ ckqNk

), x+ ckqNk
− yNk

⟩ − ck⟨Fx, qNk
⟩. (4.3.42)

Now, from Step 2 and (4.3.18), we get that

lim
n→∞

∥wn − xn∥ = lim
n→∞

αn∥xn − xn−1∥ = lim
n→∞

δn ·
αn
δn

∥xn − xn−1∥ = 0. (4.3.43)

Since the subsequence {xnk
} of {xn} is weakly convergent to a point z ∈ H1, it follows

that the subsequence {wnk
} of {wn} is also weakly convergent to z ∈ H1. Again, since

T is a bounded linear operator, we obtain that {Twnk
} converges weakly to Tz. Hence,

by (4.3.35), we have that {ynk
} also converges weakly to Tz. Note that Tz ∈ Q since

{ynk
} ⊂ Q. Thus, by the sequentially weakly continuity of F on Q, we obtain that {Fynk

}
converges weakly to FTz. Now, if FTz = 0, then Tz ∈ V I(F,Q). So, let FTz ̸= 0. Then,
by the weakly lower semicontinuity of ∥ · ∥, we obtain that

0 < ∥FTz∥ ≤ lim inf
k→∞

∥FyNk
∥.

Since {ynk
} ⊂ {yNk

}, we obtain that

0 ≤ lim sup
k→∞

∥ckqNk
∥ = lim sup

k→∞

(
ck

∥Fynk
∥

)
≤

lim sup
k→∞

ck

lim inf
k→∞

∥Fynk
∥
≤ 0

∥FTz∥
= 0.

Therefore, lim
k→∞

ckqNk
= 0. Thus, letting k → ∞ in (4.3.42), we have

⟨Fx, x− Tz⟩ ≥ 0, ∀x ∈ Q, (4.3.44)
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which implies by Lemma 2.5.8 that Tz ∈ V I(F,Q).

Next, we show that z ∈ V I(A, C). Now, observe that, if we follow similar argument used
in getting (4.3.35), and noting (by our hypothesis) that limk→∞ ∥bnk

− tnk
∥ = 0, we can

also get

∥bnk
− unk

∥ ≤ r−1
1

(
1 + µL1

1 + µL1

)
∥bnk

− tnk
∥ → 0, as k → ∞. (4.3.45)

Thus, using (4.3.45), the characteristics property of PC and the Lipschitz continuity of A
on H1, we obtain (by following similar argument used in getting (4.3.39)) that

0 ≤ lim inf
k→∞

⟨Aunk
, y − unk

⟩, ∀y ∈ C. (4.3.46)

Now, since {wnk
} converges weakly to z, we obtain by our hypothesis and (4.3.45) that

the subsequences {bnk
} and {unk

} of {bn} and {un} respectively, converge weakly to z.
Again, since {unk

} ⊂ C, we have that z ∈ C. Thus, by the sequential weakly continuity of
A on C, we obtain that {Aunk

} converges weakly to Az.
Thus, we can follow similar proof used in obtaining (4.3.44), to get

⟨Ay, y − z⟩ ≥ 0, ∀ y ∈ C, (4.3.47)

which by Lemma 2.5.8, implies z ∈ VI(A, C). Hence, we conclude that z ∈ Γ.

We are now in position to give the main theorem for Algorithm 4.3.2.

Theorem 4.3.6. Let {xn} be a sequence generated by Algorithm 4.3.2 under Assumption
4.3.1. Then, {xn} converges strongly to p ∈ Γ, where ∥p∥ = min{∥z∥ : z ∈ Γ}.

Proof. Let p ∈ Γ. Then, from Step 2 and (4.3.19), we obtain

∥wn − p∥2 = ∥xn − p∥2 + α2
n∥xn − xn−1∥2 + 2αn⟨xn − p, xn − xn−1⟩

≤ ∥xn − p∥2 + α2
n∥xn − xn−1∥2 + 2αn||xn − p||||xn − xn−1||

= ∥xn − p∥2 + αn∥xn − xn−1∥
[
δn ·

αn
δn

∥xn − xn−1∥+ 2∥xn − p∥
]

≤ ∥xn − p∥2 + αn∥xn − xn−1∥ [δnM1 + 2∥xn − p∥] . (4.3.48)

Since by Lemma 4.3.4, {xn} is bounded, then, there exists M2 > 0 such that

(δnM1 + ∥xn − p∥) ≤M2, ∀n ≥ 1.

Hence, we obtain from (4.3.48) that

∥wn − p∥2 ≤ ∥xn − p∥2 + 3αn∥xn − xn−1∥M2. (4.3.49)
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Thus, from (4.3.27) and (4.3.28), we get

∥(1− θn)bn + θntn − p∥2 = ∥(1− θn)(bn − p) + θn(tn − p)∥2

= (1− θn)
2∥bn − p∥2 + θ2n∥tn − p∥2

+ 2(1− θn)θn⟨bn − p, tn − p⟩
≤ (1− θn)

2∥wn − p∥2 + θ2n∥wn − p∥2

+ 2(1− θn)θn⟨bn − p, tn − p⟩
≤ (1− θn)

2∥wn − p∥2 + θ2n∥wn − p∥2 + 2(1− θn)θn∥wn − p∥2

≤ ∥xn − p∥2 + 3αn∥xn − xn−1∥M2.

From Step 5, the previous inequality and (4.3.18), we get

∥xn+1 − p∥2 = ∥(1− δn) [(1− θn)bn + θntn − p]− [δnθn(bn − tn) + δnp] ∥2

≤ (1− δn)
2∥(1− θn)bn + θntn − p∥2 − 2⟨δnθn(bn − tn) + δnp, xn+1 − p⟩

≤ (1− δn)∥(1− θn)bn + θntn − p∥2 + 2δnθn⟨bn − tn, p− xn+1⟩
+ 2δn⟨p, p− xn−1⟩
≤ (1− δn)∥(1− θn)bn + θntn − p∥2 + 2δnθn∥bn − tn∥∥p− xn+1∥
+ 2δn⟨p, p− xn+1⟩
≤ (1− δn)

(
∥xn − p∥2 + 3αn∥xn − xn−1∥M2

)
+ 2δnθn∥bn − tn∥∥p− xn+1∥

+ 2δn⟨p, p− xn+1⟩
≤ (1− δn)∥xn − p∥2 + 3αn∥xn − xn−1∥M2 + 2δnθn∥bn − tn∥∥p− xn+1∥
+ 2δn⟨p, p− xn+1⟩
= (1− δn)∥xn − p∥2 + δndn, n ≥ 1,

where dn = 3αn

δn
∥xn − xn−1∥M2 + 2 (θn∥bn − tn∥∥p− xn+1∥+ ⟨p, p− xn+1⟩) .

According to Lemma 2.5.36, to conclude the proof, it sufficies to show that lim sup
k→∞

dnk
≤ 0

for every subsequence {∥xnk
− p∥} of {∥xn − p∥} satisfying the condition;

lim inf
k→∞

(∥xnk+1 − p∥ − ∥xnk
− p∥) ≥ 0. (4.3.50)

To show that lim sup
k→∞

dnk
≤ 0, suppose that {∥xnk

− p∥} is a subsequence of {∥xn − p∥}

such that (4.3.50) holds. Then,

lim inf
k→∞

(
∥xnk+1 − p∥2 − ∥xnk

− p∥2
)
= lim inf

k→∞

[
(∥xnk+1 − p∥ − ∥xnk

− p∥)

× (∥xnk+1 − p∥+ ∥xnk
− p∥)

]
≥ 0. (4.3.51)
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Now, observe that

∥(1− θn − δn)(bn − p) + θn(tn − p)∥2 = (1− θn − δn)
2∥bn − p∥2

+ 2(1− θn − δn)θn⟨bn − p, tn − p⟩+ θ2n∥tn − p∥2

≤ (1− θn − δn)
2∥bn − p∥2 + (1− θn − δn)θn∥bn − p∥2

+ (1− θn − δn)θn∥tn − p∥2 + θ2n∥tn − p∥2

≤ (1− θn − δn)(1− δn)∥bn − p∥2 (4.3.52)

+ θn(1− δn)∥tn − p∥2.

Also, since {xn} and {δn} are bounded, there exists M3 > 0 such that

(δn∥p∥+ 2||xn+1 − (1− δn)p||) ||p|| ≤M3

, for all n ≥ 1. Hence, from Step 5, (4.3.28), (4.3.49) and (4.3.52), we get

∥xn+1 − p∥2 = ∥(1− θn − δn)(bn − p) + θn(tn − p)− δnp∥2

= ∥(1− θn − δn)(bn − p) + θn(tn − p)∥2 + δ2n∥p∥2

− 2δn⟨(1− θn − δn)(bn − p) + θn(tn − p), p⟩
≤ ∥(1− θn − δn)(bn − p) + θn(tn − p)∥2

+ δn
(
δn∥p∥2 + 2||(1− θn − δn)(bn − p) + θn(tn − p)|| ||p||

)
= ∥(1− θn − δn)(bn − p) + θn(tn − p)∥2

+ δn (δn∥p∥+ 2||xn+1 − (1− δn)p||) ||p||
≤ (1− θn − δn)(1− δn)∥bn − p∥2 + θn(1− δn)∥tn − p∥2 + δnM3

≤ (1− θn − δn)(1− δn)∥bn − p∥2 + θn(1− δn)(∥bn − p∥2 (4.3.53)

− γ−1
1 (2− γ1)∥tn − bn∥2) + δnM3

≤ (1− θn − δn)(1− δn)∥wn − p∥2 + θn(1− δn)(∥wn − p∥2

− γ−1
1 (2− γ1)∥tn − bn∥2) + δnM3

≤ ∥wn − p∥2 − θn(1− δn)γ
−1
1 (2− γ1)∥tn − bn∥2 + δnM3

≤ ∥xn − p∥2 − θn(1− δn)γ
−1
1 (2− γ1)∥tn − bn∥2

+ δn

(
3
αn
δn

∥xn − xn−1∥M2 +M3

)
,

Thus, from (4.3.51) and (4.3.19), we obtain

lim sup
k→∞

(
(1− δnk

)θnk
γ−1
1 (2− γ1)∥tnk

− bnk
∥2
)
≤ lim sup

k→∞

(
∥xnk

− p∥2 − ∥xnk+1 − p∥2
)

+ lim sup
k→∞

(δnk
(3M1M2 +M3))

= − lim inf
k→∞

(
∥xnk+1 − p∥2 − ∥xnk

− p∥2
)

≤ 0,

which implies that

lim
k→∞

∥tnk
− bnk

∥ = 0. (4.3.54)
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From (4.3.53) and (4.3.31), we obtain

∥xnk+1 − p∥2 ≤ (1− θnk
− δnk

)(1− δnk
)∥bnk

− p∥2 + θnk
(1− δnk

)∥bnk
− p∥2 + δnk

M3

≤ ∥bnk
− p∥2 + δnk

M3

≤ ∥wnk
− p∥2 − ϵ2∥T ∗(znk

− Twnk
)∥2 + δnk

M3,

which implies from (4.3.49) that

lim sup
k→∞

∥T ∗(znk
− Twnk

)∥2 ≤ 1

ϵ2
lim sup
k→∞

(
∥xnk

− p∥2 − ∥xnk+1 − p∥2
)

+
1

ϵ2
lim sup
k→∞

(
δnk

(
3
αnk

δnk

∥xnk
− xnk−1∥M2 +M3

))
≤ −1

ϵ2
lim inf
k→∞

(
∥xn+1 − p∥2 − ∥xnk

− p∥2
)
≤ 0.

Thus,

lim
k→∞

∥T ∗(znk
− Twnk

)∥ = 0. (4.3.55)

Hence, by Step 3, we obtain

∥bnk
− wnk

∥ = ηnk
∥T ∗(znk

− Twnk
)∥ → 0, as k → ∞. (4.3.56)

From Step 5 and (4.3.54), we get

∥xnk+1 − bnk
∥ ≤ θnk

∥bnk
− tnk

∥+ δnk
∥bnk

∥ → 0, as k → ∞. (4.3.57)

From (4.3.56) and (4.3.57), we get

lim
k→∞

∥xnk+1 − wnk
∥ = 0. (4.3.58)

From (4.3.43) and (4.3.58), we get

lim
k→∞

∥xnk+1 − xnk
∥ = 0. (4.3.59)

By Lemma 4.3.4, there exists a subsequence {xnkj
} of {xnk

} which converges weakly to z,
such that

lim sup
k→∞

⟨p, p− xnk
⟩ = lim

j→∞
⟨p, p− xnkj

⟩ = ⟨p, p− z⟩.

Also, since we have established (4.3.54) and (4.3.56), then we can apply Lemma 4.3.5 to
get that z ∈ Γ.
Thus, since p = PΓ0, we obtain from the previous inequality that

lim sup
k→∞

⟨p, p− xnk
⟩ = ⟨p, p− z⟩ ≤ 0,

which implies by (4.3.59) that

lim
k→∞

⟨p, p− xnk+1⟩ ≤ 0. (4.3.60)

Now, recall that dnk
= 3

αnk

δnk
∥xnk

−xnk−1∥M2+2 (θnk
∥bnk

− tnk
∥∥p− xnk+1∥+ ⟨p, p− xnk+1⟩) .

Thus, by (4.3.18), (4.3.54) and (4.3.60), we obtain that lim sup
k→∞

dnk
≤ 0. Hence, get that

lim
n→∞

∥xn − p∥ = 0. Therefore, {xn} converges strongly to p = PΓ0.
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Remark 4.3.7.

� Observe that by setting H1 = H2 = H, F = 0 and T = IH (the identity operator on
H) in Theorem 4.3.6, we obtain as a corollary, an inertial projection and contraction
method requiring only one projection onto the feasible set C per iteration, with fixed
stepsize for solving the classical VIP (1.2.1) when A is pseudomonotone and Lipschitz
continuous.

� The conclusions of Lemma 4.3.4, Lemma 4.3.5 and Theorem 4.3.6 still hold even if
µ ∈ (0, 1

L1
) and λ ∈ (0, 1

L2
) in Algorithm 4.3.2 are replaced with variable stepsizes

µn and λn, respectively such that

0 < inf
n≥1

µn ≤ sup
n≥1

µn <
1

L1

and 0 < inf
n≥1

λn ≤ sup
n≥1

λn <
1

L2

.

We now turn to establish the strong convergence of Algorithm 4.3.3. We begin with the
following useful results.

Remark 4.3.8.

(i) From (4.3.3) in Algorithm 4.3.3, it is clear that λn+1 ≤ λn, ∀n ≥ 1. Also, since F is
L2-Lipschitz continuous, we get in the case of FTwn ̸= Fyn in Algorithm 4.3.3, that

λn+1 = min

{
a2||Twn − yn||
||FTwn − Fyn||

, λn

}
≥ min

{
a2
L2

, λn

}
,

which by induction, implies that {λn} is bounded below by min
{
a2
L2
, λ1

}
. Since

{λn} is also monotone nonincreasing, we have that the limit exists, and lim
n→∞

λn ≥
min{ a2

L2
, λ1} > 0.

(ii) Similar to (i), we have that the limit of the stepsize {µn} exists and lim
n→∞

µn ≥
min{ a1

L1
, µ1} > 0.

Lemma 4.3.9. Let {xn} be a sequence generated by Algorithm 4.3.3 under Assumption
4.3.1. Then,

||Twn − yn|| ≤ γ−1
2

(
λn+1 + λna2
λn+1 − λna2

)
||Twn − zn||, ∀n ≥ 1 (4.3.61)

and

||bn − un|| ≤ γ−1
1

(
µn+1 + µna1
µn+1 − µna1

)
||bn − tn||, ∀n ≥ 1. (4.3.62)

Proof. From (4.3.3), we know that

||FTwn − Fyn|| ≤
a2
λn+1

||Twn − yn||, ∀n ≥ 1, (4.3.63)
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holds for both FTwn = Fyn and FTwn ̸= Fyn. Thus, similar to (4.3.12), we obtain that

⟨Twn − yn, rn⟩ ≥ ∥Twn − yn∥2 − λn∥Twn − yn∥∥FTwn − Fyn∥

≥ (1− λn
a2
λn+1

)∥Twn − yn∥2,

which implies that

∥Twn − yn∥2 ≤
1(

1− λn
a2
λn+1

)⟨Twn − yn, rn⟩

≤ 1(
1− λn

a2
λn+1

)βn∥rn∥(∥Twn − yn∥+ λn
a2
λn+1

∥Twn − yn∥
)

=

(
1 +

λna2

λn+1

1− λna2
λn+1

)
βn∥rn∥∥Twn − yn∥

= γ−1
2

(
λn+1 + λna2
λn+1 − λna2

)
∥Twn − zn∥∥Twn − yn∥.

This further gives (4.3.61). In a similar manner, we get (4.3.62).

In the light of Remark 4.3.8 and Lemma 4.3.9, we have the following result.

Theorem 4.3.10. Let {xn} be a sequence generated by Algorithm 4.3.3 under Assumption
4.3.1. Then, {xn} converges strongly to p ∈ Γ, where ∥p∥ = min{∥z∥ : z ∈ Γ}.

Proof. Let p ∈ Γ. Then, by replacing µ and λ with µn and λn, respectively in Lemma
4.3.4, we can easily get that {xn} is bounded.
Also, from Remark 4.3.8 (i), we obtain that

lim
n→∞

(
λn+1 + λna2
λn+1 − λna2

)
=

1 + a2
1− a2

. (4.3.64)

Similarly, from Remark 4.3.8 (ii), we obtain that

lim
n→∞

(
µn+1 + µna1
µn+1 − µna1

)
=

1 + a1
1− a1

. (4.3.65)

Furthermore, we can follow the same argument as in the proof of Theorem 4.3.6 to obtain
(4.3.54), (4.3.55) and (4.3.56). Also, using (4.3.55) and (4.3.56), we can get (4.3.33).
Hence, from (4.3.33), (4.3.61) and (4.3.64), we obtain that

lim
k→∞

∥Twnk
− ynk

∥ = 0.

Again, from (4.3.54), (4.3.47) and (4.3.65), we obtain that

lim
k→∞

∥bnk
− unk

∥ = 0.

The rest of the proof follows the same arguments as in Lemma 4.3.5 and Theorem 4.3.6.
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Remark 4.3.11.

� Similar to Remark 4.3.7, we can obtain as corollary, an inertial projection and con-
traction method with adaptive stepsize, requiring only one projection onto the feasi-
ble set C per iteration, for solving the classical VIP (1.2.4) when A is pseudomonotone
and Lipschitz continuous.

� As seen in our convergence analysis, we did not follow the usual “Two Cases Ap-
proach” (i.e., Case 1 and Case 2) used in many works to guarantee strong conver-
gence of iterative methods. Thus, the techniques and ideas employed in our strong
convergence analysis are new for solving the SVIP (1.2.4)-(1.2.5).

� If the operators A and F are monotone and Lipschitz continuous, then we do not
need them to be sequentially weakly continuous. This is because the sequential
weakly continuity assumption was only used after (4.3.36) to get the conclusion of
Lemma 4.3.5. But, from (4.3.36), we obtain

0 ≤
〈
FTwnk

, x− Twnk

〉
+

1

λ

〈
ynk

− Twnk
, x− ynk

〉
+
〈
FTwnk

, Twnk
− ynk

〉
≤
(〈
FTwnk

− Fx, x− Twnk

〉
+
〈
Fx, x− Twnk

〉)
+

1

λ
∥ynk

− Twnk
∥∥x− ynk

∥

+ ∥FTwnk
∥∥Twnk

− ynk
∥

≤
〈
Fx, x− Twnk

〉
+

1

λ
∥ynk

− Twnk
∥∥x− ynk

∥+ ∥FTwnk
∥∥Twnk

− ynk
∥, ∀x ∈ Q,

where the last inequality follows from the monotoncity of F . Thus, by passing limit
as k → ∞ and noting that {Twnk

} converges weakly to z, we obtain from (4.3.35)
that

⟨Fx, x− Tz⟩ ≥ 0, ∀x ∈ Q,

which follows from Lemma 2.5.8 that Tz ∈ V I(F,Q). Similarly, we also get that
z ∈ V I(A, C). Hence, the conclusion of Lemma 4.3.5 holds.

� In finite dimensional spaces, Theorem 4.3.6 and Theorem 4.3.10 are still true if the
operators A and F are only required to be pseudomonotone and Lipschitz continuous.
This is an improvement over the result of He et al. [121] since no product space
formulation is required even with the relaxed pseudomonotonicity assumption.

� The conclusions of Theorem 4.3.6 and Theorem 4.3.10 are still valid if Step 1 of
Algorithm 4.3.2 and Algorithm 4.3.3 is replaced with the following: 0 ≤ αn ≤ ᾱn,
where

ᾱn :=

{
min

{
α, τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

α, otherwise,

with α ∈ [0, 1).
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4.3.3 Numerical experiments

In this section, we discuss the numerical behavior of Algorithm 4.3.2 and Algorithm 4.3.3
using various test examples. In all of these examples, we give numerical comparison of our
methods with the methods of He et al. [121, Algorithm 1] (see Appendix 4.2.17), Pham
et al. [206, Algorithm 1] (see Appendix 4.3.16), Reich and Tuyen [213, Theorem 4.4] (see
Appendix 4.2.18) and Tian and Jiang [244, Algorithm (3.1)] (see Algorithm (2.5.9)).

All codes are written in Matlab 2016 (b) and performed on a personal computer with
an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM. In Tables 4.3.1-4.3.3,
“Iter.” means the number of iterations while “CPU” means the CPU time in seconds.
In our computations, we randomly choose x0, x1 ∈ H1 (see the cases below), η ≥ 0,
γi ∈ (0, 2), ai ∈ (0, 1), i = 1, 2, λ1 > 0 and µ1 > 0 (the choices of these parameters will
be discussed in Remark 4.3.15). We choose δn = 1

n+1
, θn = 1

2
− δn and αn = ᾱn with

τn = δn
n0.01 and different choices of α := 3, 6, 9, 12, 15, which will be discussed in detail in

our numerical analysis.

Furthermore, we define

TOLn :=
1

2

(
||xn − PC(xn − µAxn)||2 + ||Txn − PQ(Txn − λFTxn)||2

)
for Algorithm 4.3.2, Algorithm 4.3.3, He et al. [121, Algorithm 1], Pham et al. [206,
Algorithm 1] and Reich and Tuyen [213, Theorem 4.4]. While for Algorithm (2.5.9), we
define

TOLn :=
1

2

(
||xn − PC(xn − µAxn)||2 + ||Txn − STxn||2

)
,

and use the stopping criterion TOLn < ε for the iterative processes, where ε is the prede-
termined error. Note that if TOLn = 0, then xn ∈ Γ, that is, xn is a solution of the SVIP
considered in this work.

We first consider an example in finite dimensional spaces. In this example, we carry out
our comparsion with the method of He et al. [121] since their method is given in finite
dimensional spaces.

Example 4.3.12. Following [121, Example 5.2] (see also [116]), we consider a separable,
convex and quadratic programming problem

min
x,y

{G1(x) +G2(y) | Tx = y, x ∈ C, y ∈ Q} , (4.3.66)

where

G1(x) =
1

2
x′M1x+ q′1x and G2(y) =

1

2
y′M2y + q′2y (x′ means the transpose of x).

Problem (4.3.66) can also be rewritten as the SVIP (1.2.4)-(1.2.5), where

A(x) =M1x+ q1 and F (y) =M2y + q2.

The matrices Mi (i = 1, 2) are formed as: Mi = Vi
∑

i V
′
i , where Vi = I − 2viv

′
i

∥vi∥2 and∑
i = diag(σi1, σi2, · · · , σiNi

) are the Householder and the diagonal matrix, respectively,
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with N1 = N and N2 = m being the dimensional of x and y, respectively. Furthermore,

σi,j = cos
jπ

Ni + 1
+ 1 +

cos π
Ni+1

+ 1− Ĉi(cos
Niπ
Ni+1

+ 1)

Ĉi − 1
, j = 1, 2, · · · , Ni,

where Ĉi is the present condition number of Mi.

As in He et al. [121, Example 5.2], we choose Ĉi = 104, qi = 0, i = 1, 2 and uniformly take
the vector vi ∈ RNi (i = 1, 2) in (−1, 1). Thus, A,F are monotone and Lipschitz continuous
operators with Li = ||Mi||, i = 1, 2 (which can be computed in Matlab). Furthermore, we
generate the bounded linear operator T ∈ RM×N with independent Gaussian components
distributed in the interval (0, 1), and then normalize each column of T with the unit
norm. We set C = {x ∈ RN : ||x|| ≤ 1} and Q = {y ∈ Rm : l ≤ y ≤ u}, where all
the entries of l ∈ Rm and u ∈ Rm are the smallest and the largest components of ỹ = T x̃,
respectively, with x̃ been a sparse vector whose components are uniformly distributed in
(0, 1). The projections onto C and Q are effectively computed in Matlab. More so, we
consider different scenarios of the problem’s dimensions. That is, N = 100, 300, 500, 1000
and m = N/2.

Since the Lipschitz constants Li (i = 1, 2) can be known, we choose in Algorithm 4.3.2,
µ = 0.5

L1
and λ = 0.75

L2
, and take the starting point x1 = (1, 1, . . . , 1)′ while the entries

of x0 are randomly generated in [0, 1]. For Algorithm 1 of He et al. [121], we take
µ1 = 5 (||T ′HT ||+ L1) /v, µ2 = 10 (||T ′HT ||+ L2) /v, v = 0.8, H = 2

||T ′T ||IN , γ = 1.2

and ρ = −1.5 (which is the optimum choice in their implementation), with starting points
x1 = (1, 1, . . . , 1)′, y1 = (0, 0, . . . , 0)′ and λ1 = (0, 0, . . . , 0)′. Furthermore, we take ε =
10−8 for the stopping criterion and obtain the numerical results reported in Table 4.3.1
and Figure 4.4. We stress that these choices as well as the stopping criterion are the same
as in He et al. [121, Example 5.2].

Table 4.3.1. Numerical results for Example 4.3.12 with ε = 10−8.
(N,m) Alg.4.3.2

α = 3
Alg.4.3.2
α = 6

Alg.4.3.2
α = 9

Alg.4.3.2
α = 12

Alg.4.3.2
α = 15

He et al.

(100, 50) CPU
Iter.

0.0305
18

0.0284
18

0.0195
18

0.0190
18

0.0180
18

0.2552
178

(300, 150) CPU
Iter.

0.0048
19

0.0033
19

0.0031
19

0.0030
19

0.0030
19

0.0388
216

(500, 250) CPU
Iter.

0.0055
20

0.0045
20

0.0042
20

0.0041
20

0.0041
20

0.0619
232

(1000, 500) CPU
Iter.

0.0081
21

0.0081
21

0.0080
21

0.0079
21

0.0074
21

0.1591
275

The next two examples are given in infinite dimensional Hilbert spaces. In these examples,
we carry out our comparisons with the methods of Pham et al. [206], Reich and Tuyen
[213] and Tian and Jiang [244] since their methods are given in infinite dimensional Hilbert
spaces.
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Figure 4.4: The behavior of TOLn with ε = 10−8 for Example 4.3.12: Top Left: (N,m) =
(100, 50); Top Right: (N,m) = (300, 150); Bottom Left: (N,m) = (500, 250); Bottom
Right: (N,m) = (1000, 500).
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Example 4.3.13. LetH1 = (l2(R), ||.||l2) = H2, where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈

R :
∞∑
i=1

|xi|2 < ∞} and ||x||l2 :=

(
∞∑
i=1

|xi|2
) 1

2

, ∀x ∈ l2(R). Now, define the operator

T : l2(R) → l2(R) by
Tx =

(
0, x1,

x2
2
,
x3
3
, . . .

)
, ∀x ∈ l2(R).

Then, T is a bounded linear operator on l2(R) with adjoint

T ∗y =
(
y2,

y3
2
,
y4
3
, . . .

)
, ∀y ∈ l2(R).

Indeed, let x = (x1, x2, x3, . . . ), y = (y1, y2, y3, . . . ) be arbitrary in l2(R) and α1, α2 be
arbitrary in R. Then,

T (α1x+ α2y) =

(
0, α1x1 + α2y1,

α1x2 + α2y2
2

,
α1x3 + α2y3

3
, · · ·

)
=

(
0, α1x1,

α1x2
2

,
α1x3
3

, · · ·
)
+
(
0, α2y1,

α2y2
2

,
α2y3
3

, · · ·
)

= α1T (x) + α2T (y).

Therefore, T is linear. Furthermore, ||Tx||l2 ≤ ||x||l2 , ∀x ∈ l2(R). Thus, T is also bounded.
The verification that T ∗ is the adjoint of T follows directly from definition.

Let C = Q = {x ∈ l2(R) : ||x − a||l2 ≤ r}, where a = (1, 1
2
, 1
3
, · · · ), r = 3 for C and

a = (1
2
, 1
4
, 1
8
, · · · ), r = 1 for Q. Then C,Q are nonempty closed and convex subsets of

l2(R). Thus,

PC(x) = PQ(x) =

{
x, if x ∈ ||x− a||l2 ≤ r,
x−a

||x−a||l2
r + a, otherwise.

Now, define the operators A,F : l2(R) → l2(R) by

A(x1, x2, x3, . . . ) = (x1e
−x21 , 0, 0, . . . ), F (x1, x2, x3, . . . ) = (5x1e

−x21 , 0, 0, . . . ).

Then, by Example 2.1.5, A,F are pseudomonotone, Lipschitz continuous and sequentially
weakly continuous but not monotone.

More so, for Algorithm (2.5.9), we define the mappings S, h : l2(R) → l2(R) by Sx =
(0, x1, x2, . . . ) and hx =

(
0, x1

2
, x2

2
, · · ·

)
, for all x ∈ l2(R). Then, we consider the following

cases for the numerical experiments.
Case 1: Take x1 = (1, 1

2
, 1
3
, · · · ) and x0 = (1

2
, 1
5
, 1
10
, · · · ).

Case 2: Take x1 = (1
2
, 1
5
, 1
10
, · · · ) and x0 = (1, 1

2
, 1
3
, · · · ).

Case 3: Take x1 = (1, 1
4
, 1
9
, · · · ) and x0 = (1

2
, 1
4
, 1
8
, · · · ).

Case 4: Take x1 = (1
2
, 1
4
, 1
8
, · · · ) and x0 = (1, 1

4
, 1
9
, · · · ).
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Figure 4.5: The behavior of TOLn with ε = 10−9 for Example 4.3.13: Top Left: Case 1;
Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.
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Table 4.3.2. Numerical results for Example 4.3.13 with ε = 10−9.
Cases Alg.4.3.3

α = 3
Alg.4.3.3
α = 6

Alg.4.3.3
α = 9

Alg.4.3.3
α = 12

Alg.4.3.3
α = 15

Pham
et al.

Reich
Tuyen

Tian
Jiang

1 CPU
Iter.

0.0040
17

0.0031
17

0.0025
17

0.0027
17

0.0027
17

0.0056
69

0.0113
105

0.1071
159

2 CPU
Iter.

0.0039
16

0.0038
16

0.0033
16

0.0048
16

0.0051
16

0.0120
66

0.0671
130

0.1000
152

3 CPU
Iter.

0.0029
17

0.0034
17

0.0029
17

0.0045
17

0.0051
17

0.0070
69

0.0133
101

0.1059
158

4 CPU
Iter.

0.0030
17

0.0032
17

0.0027
17

0.0034
17

0.0037
17

0.0076
68

0.0142
125

0.1060
157

Example 4.3.14. Let H1 = H2 = L2([0, 1]) be endowed with inner product

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt, ∀ x, y ∈ L2([0, 1])

and norm

||x|| :=
(∫ 1

0

|x(t)|2dt
) 1

2
, ∀ x, y ∈ L2([0, 1]).

Let T : L2([0, 1]) → L2([0, 1]) be defined by

Tx(s) =

∫ 1

0

K(s, t)x(t)dt, ∀x ∈ L2([0, 1]),

where K is a continuous real-valued function on [0, 1]× [0, 1]. Then, T is a bounded linear
operator with adjoint

T ∗x(s) =

∫ 1

0

K(t, s)x(t)dt, ∀x ∈ L2([0, 1]).

In particular, we define K(s, t) = e−st for all s, t ∈ [0, 1].

Let C = {x ∈ L2([0, 1]) : ⟨y, x⟩ ≤ b}, where y = t + 1 and b = 1, then C is a nonempty
closed and convex subset of L2([0, 1]). Thus, we define the metric projection PC as:

PC(x) =

{
b−⟨y,x⟩
||y||2 y + x, if ⟨y, x⟩ > b,

x, if ⟨y, x⟩ ≤ b.

Also, let Q = {x ∈ L2([0, 1]) : ∥x∥ ≤ r}, where r = 2, then Q is a nonempty closed and
convex subset of L2([0, 1]). Thus, we define PQ as:

PQ(x) =

{
x, if x ∈ Q,
x

∥x∥2 r, otherwise.

Now, define A : L2([0, 1]) → L2([0, 1]) by

A(x)(t) = e−∥x∥
∫ t

0

x(s)ds, ∀x ∈ L2([0, 1]), t ∈ [0, 1].
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Then, A is pseudomonotone and Lipschitz continuous but not monotone on L2([0, 1]) (see
[250]).

Also, define F : Q → L2([0, 1]) by

F (x)(t) := g(x)M(x)(t), ∀ x ∈ Q, t ∈ [0, 1],

where g : Q → R is defined by g(x) := 1
1+∥x∥2 and M : L2([0, 1]) → L2([0, 1]) is defined

by M(x)(t) :=
∫ t
0
x(s)ds, ∀x ∈ L2([0, 1]), t ∈ [0, 1]. As given in [222], g is 16

25
-Lipschitz

continuous and 1
5
≤ g(x) ≤ 1, ∀ x ∈ C. Also, M is the Volterra intergral mapping which

is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous
but not monotone (see [222]).

For Algorithm (2.5.9), we define the mapping S : L2([0, 1]) → L2([0, 1]) by

Sx(t) =

∫ 1

0

tx(s)ds, t ∈ [0, 1].

Then, S is nonexpansive. Indeed, we have

|Sx(t)− Sy(t)|2 = |
∫ 1

0

t(x(s)− y(s))ds|2 ≤
(∫ 1

0

t|x(s)− y(s)|ds
)2

≤
∫ 1

0

|x(s)− y(s)|2ds

= ||x− y||2.

Thus, we obtain that

||Sx− Sy||2 =
∫ 1

0

|Sx(t)− Sy(t)|2 ≤ ||x− y||2.

We also define h : L2([0, 1]) → L2([0, 1]) by

hx(t) =

∫ 1

0

t

2
x(s)ds, x ∈ [0, 1].

Similar to above, it can also be shown that h is a contraction mapping.

We consider the following cases for the numerical experiments of this example.
Case 1: Take x1(t) = 1 + t2 and x0(t) = t+ 5.

Case 2: Take x1(t) = sin(t) and x0(t) = t+ 1.

Case 3: Take x1(t) = t+ 1 and x0(t) = t+ t3.

Case 4: Take x1(t) = 0.7e−t + 1 and x0(t) = t+ t3.

Table 4.3.3. Numerical results for Example 4.3.14 with ε = 10−10.
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Figure 4.6: The behavior of TOLn with ε = 10−10 for Example 4.3.14: Top Left: Case 1;
Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.
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Cases Alg.4.3.3
α = 3

Alg.4.3.3
α = 6

Alg.4.3.3
α = 9

Alg.4.3.3
α = 12

Alg.4.3.3
α = 15

Pham
et al.

Reich
Tuyen

Tian
Jiang

1 CPU
Iter.

3.6417
30

3.4282
30

3.4009
30

3.3256
30

3.3112
30

12.6238
77

9.7880
35

25.7461
178

2 CPU
Iter.

3.9291
31

3.7850
31

3.6274
31

3.4970
31

3.4821
31

12.8552
80

10.3671
37

27.8420
181

3 CPU
Iter.

3.6099
30

3.3950
30

3.3538
30

3.3495
30

3.3447
30

12.6815
78

10.1993
36

26.2060
179

4 CPU
Iter.

3.6508
30

3.4405
30

3.3442
30

3.3112
30

3.2636
30

12.9326
79

10.0650
36

26.3111
178

Remark 4.3.15. By using different starting points and varying the inertial extrapolation
factor α in each example (Examples 4.3.12-4.3.14), we obtain the numerical results dis-
played in Tables 4.3.1-4.3.3 and Figures 4.4-4.6. We compared our proposed Algorithm
4.3.2 with the method of He et al. [121, Algorithm 1] in Example 4.3.12 while our proposed
Algorithm 4.3.3 is compared with the methods of Pham et al. [206, Algorithm 1], Reich
and Tuyen [213, Theorem 4.4] and Tian and Jiang [244, Algorithm (3.1)] in Examples
4.3.13-4.3.14.
Furthermore, we note the following from our numerical experiments:

� In the numerical experiments, we randomly choose the parameters η ≥ 0, γi ∈
(0, 2), ai ∈ (0, 1), i = 1, 2, λ1 > 0 and µ1 > 0, and observed that irrespective of the
choices made, the number of iteration does not change and no significant difference
in the CPU time.

� In all the examples, we check the sensitivity of α for each starting points in order to
know if the choices of α affect the efficiency of our methods. We can see from the
tables and graphs that the number of iterations for our proposed methods remain
consistent (well-behaved) for α = 3, 6, 9, 12, 15. Also, there are no much significant
difference in the CPU time as we vary α in {3, 6, 9, 12, 15}. However, it can be in-
ferred from Table 4.3.1 that as α increases from 3 to 15, the convergence speed of
Algorithm 4.3.2 increases. Therefore, the optimum choice of α for Example 4.3.12
is α = 15. Similarly, we can see from Table 4.3.3 that as α increases from 3 to 15,
the convergence speed of Algorithm 4.3.3 also increases. Hence, the optimum choice
of α for Example 4.3.14 is again α = 15. Unfortunately, we cannot follow similar
pattern for Example 4.3.13, but we can see clearly that the the optimum choice of
α for this example is α = 9.

� It can also be inferred from Table 4.3.1 that in Example 4.3.12, the number of it-
erations for our proposed Algorithm 4.3.2 is almost the same for all starting points
while the method of He et al. [121, Algorithm 1] depends on the different starting
points. Also, from Tables 4.3.2-4.3.3, we see that for all starting points in Exam-
ple 4.3.13-4.3.14, the number of iterations for our proposed Algorithm 4.3.3 is more
consistent than every other methods.
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� From the tables and figures, we can see clearly that in terms of both CPU time
and number of iterations, our proposed Algorithm 4.3.2 outperforms the method of
He et al. [121, Algorithm 1] in Example 4.3.12 while our proposed Algorithm 4.3.3
outperforms the methods of Pham et al. [206, Algorithm 1], Reich and Tuyen [213,
Theorem 4.4] and Tian and Jiang [244, Algorithm (3.1)] in Examples 4.3.13-4.3.14.
Hence, our methods are more efficient than these other methods.

Appendix 4.3.16. Algorithm 1 of Pham et al. [206].

Step 0. Choose µ0, λ0 > 0, µ, λ ∈ (0, 1), {τn} ⊂ [τ , τ̄ ] ⊂
(
0, 1

||T ||2+1

)
, {αn} ⊂ (0, 1)

such that lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞.

Step 1. Let x1 ∈ H1. Set n = 1.
Step 2. Compute

un = Txn,

vn = PQ(un − µnfun),

wn = PQn(un − µnfvn),

where
Qn = {w2 ∈ H2 : ⟨un − µnfun − vn, w2 − vn⟩ ≤ 0}

and

µn+1 =

{
min

{
µ||un−vn||
||fun−fvn|| , µn

}
, if fun ̸= fvn,

µn, otherwise.

Step 3. Compute
yn = xn + τnT

∗(wn − un),

zn = PC(yn − λnAyn),

tn = PCn(yn − λnAzn),

where
Cn = {w1 ∈ H1 : ⟨yn − λnAyn − zn, w1 − zn⟩ ≤ 0}

and

λn+1 =

{
min

{
λ||yn−zn||
||Ayn−Azn|| , λn

}
, if Ayn ̸= Azn,

λn, otherwise.

Step 4. Compute
xn+1 = αnx1 + (1− αn)tn.

Set n := n+ 1 and go back to Step 2.
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4.4 Projection and contraction methods for split vari-

ational inequality problem

In the literature, several methods have been proposed for solving the SVIP and most of
these methods require that the underlying operators be co-coercive while some of them
requires product space formulation of the problem. These restrictive conditions affect the
feasibility of these existing methods. In order to overcome these setbacks, we propose two
new inertial projection and contraction methods for solving the SVIP in real Hilbert spaces
without the co-coercive condition and without the product space formulation, which does
not fully exploit the attractive splitting structure of the SVIP. The sequences generated by
these methods converge strongly to the solution of the SVIP in real Hilbert spaces under
the assumptions that the operators are pseudomonotone, Lipschitz continuous and without
the sequentially weakly continuity condition. Furthermore, we present several numerical
experiments for the proposed methods and compare their performance with other related
methods in the literature.

4.4.1 Proposed methods

In this section, we present our proposed methods for solving the SVIP (1.2.4)-(1.2.5).

Assumption 4.4.1. Suppose that the following conditions hold:

(a) The feasible sets C and Q are nonempty closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively.

(b) A : H1 → H1 and F : H2 → H2 are pseudomonotone and Lipschitz continuous with
Lipschitz constants L1 and L2, respectively.

(c) A : H1 → H1 and F : H2 → H2 satisfy the following property
whenever {xn} ⊂ C and {yn} ⊂ Q, and xn ⇀ x, yn ⇀ y one has ∥Ax∥ ≤
lim inf
n→∞

∥Axn∥ and ∥Fy∥ ≤ lim inf
n→∞

∥Fyn∥.

(d) T : H1 → H2 is a bounded linear operator and the solution set Γ := {z ∈ V I(A, C) :
Tz ∈ V I(F,Q)} is nonempty, where V I(A, C) is the solution set of the classical VIP
(1.2.4).

(e) {αn} ⊂ (0, 1] is non-increasing with lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞.

(f) 0 ≤ θn ≤ θn+1 ≤ θ < 1
3
, σ ∈ (0, 1

2
].

(g) {ϕn} and {ψn} are non-negative sequences such that
∑∞

n=1 ϕn < +∞ and
∑∞

n=1 ψn <
+∞.

When the Lipschitz constants L1 and L2 are known, we present the following method for
solving the SVIP (1.2.4)-(1.2.5).
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Algorithm 4.4.2. Inertial projection and contraction method with fixed step size.

Step 0: Choose sequences {αn}∞n=1 and {θn}∞n=1 such that the conditions from Assump-
tion 4.4.1 (e)-(f) hold and let η ≥ 0, γi ∈ (0, 2), i = 1, 2, µ ∈ (0, 1

L1
), λ ∈ (0, 1

L2
), and

x0, x1 ∈ H1 be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn (n ≥ 1), αn ∈ (0, 1) and θn ∈ [0, 1
3
), compute

wn = αnx0 + (1− αn)xn + θn(xn − xn−1).

Step 2: Compute
yn = PQ(Twn − λFTwn),

zn = Twn − γ2βnrn,

where rn := Twn−yn−λ(FTwn−Fyn) and βn := ⟨Twn−yn,rn⟩
∥rn∥2 , if rn ̸= 0, otherwise βn = 0.

Step 3: Compute
bn = wn + ηnT

∗(zn − Twn),

where the step size ηn is chosen such that for some ϵ > 0, ηn ∈
(
ϵ, ∥Twn−zn∥2

∥T ∗(Twn−zn)∥2 − ϵ
)
,

if zn ̸= Twn; otherwise ηn = η.
Step 4: Compute

un = PC(bn − µAbn),

tn = bn − γ1γnvn,

where vn := bn − un − µ(Abn − Aun) and γn := ⟨bn−un,vn⟩
∥vn∥2 , if vn ̸= 0, otherwise γn = 0.

Step 5: Compute
xn+1 = (1− σ)wn + σtn.

Set n := n+ 1 and go back to Step 1.

When the Lipschitz constants L1 and L2 are not known, we present the following method
with adaptive step size for solving the SVIP (1.2.4)-(1.2.5).

Algorithm 4.4.3. Inertial projection and contraction method with adaptive step size
strategy.

Step 0: Choose the control parameters such that conditions (e)-(g) of Assumption 4.4.1
hold and let η ≥ 0, γi ∈ (0, 2) ai ∈ (0, 1), i = 1, 2, λ1 > 0, µ1 > 0, α ≥ 3 and x0, x1 ∈ H1

be given arbitrarily. Set n := 1.
Step 1: Given the iterates xn−1 and xn (n ≥ 1), αn ∈ (0, 1) and θn ∈ [0, 1

3
), compute

wn = αnx0 + (1− αn)xn + θn(xn − xn−1).

Step 2: Compute
yn = PQ(Twn − λnFTwn),

zn = Twn − γ2βnrn,
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where rn := Twn−yn−λn(FTwn−Fyn), βn := ⟨Twn−yn,rn⟩
∥rn∥2 , if rn ̸= 0, otherwise βn = 0; and

λn+1 =

{
min

{
a2||Twn−yn||
||FTwn−Fyn|| , λn + ϕn

}
, if FTwn ̸= Fyn

λn + ϕn, otherwise.
(4.4.1)

Step 3: Compute
bn = wn + ηnT

∗(zn − Twn),

where the step size ηn is chosen such that for some ϵ > 0, ηn ∈
(
ϵ, ∥Twn−zn∥2

∥T ∗(Twn−zn)∥2 − ϵ
)
,

if zn ̸= Twn; otherwise ηn = η.
Step 4: Compute

un = PC(bn − µnAbn),

tn = bn − γ1γnvn,

where vn := bn − un − µn(Abn − Aun), γn = ⟨bn−un,vn⟩
∥vn∥2 , if vn ̸= 0, otherwise γn = 0; and

µn+1 =

{
min

{
a1||bn−un||
||Aun−Abn|| , µn + ψn

}
, if Abn ̸= Aun

µn + ψn, otherwise.
(4.4.2)

Step 5: Compute
xn+1 = (1− σ)wn + σtn.

Set n := n+ 1 and go back to Step 1.

We outline and discuss some of the properties of our proposed methods.

Remark 4.4.1.

� The choice of the inertial factor θn ∈ [0, 1
3
) in Algorithms 4.4.2 and 4.4.3 is new

and different from the choices in literature (see for example [55] and other refer-
ences therein). As far as we know, this is the first time the inertial factor θn is
chosen such that θn ∈ [0, 1

3
) and solves the SVIP when the underlying operators are

pseudomonotone and Lipschitz continuous.

� Algorithm 4.4.3 uses simple step size rules in (4.4.1) and (4.4.2), which generate
non-monotonic sequences of step sizes. The step sizes are constructed such that the
dependence of the algorithm on the initial step sizes λ1 and µ1 is reduced.

� We point out that if the pseudomonotone operators A and F are sequentially weakly
continuous, then A and F satisfy condition (c) but the converse is not true. Hence,
condition (c) is strictly weaker than the sequentially weakly continuity condition
commonly employed in the literature (e.g., see [55, 191]).
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� Algorithm 4.4.2 can be viewed as a modified inertial projection and contraction
method involving one projection onto C per iteration for solving the classical VIP in
H1. Algorithm 4.4.3 can be viewed as a modified inertial projection and contraction
method involving one projection onto Q per iteration under a bounded linear oper-
ator T for solving VIP in H2. Our methods improves other methods in literature
which requires extra projections onto half-spaces or feasible sets (see [206] (see Ap-
pendix 4.3.16) and other references therein). In Step 2 of Algorithms 4.4.2 and 4.4.3,
rn can be described as weighted average of (Twn−yn ∼ λFTwn) and a hypothetical
(Tw̃n − ỹn ∼ λFTw̃n) in H2, where Tw̃n = Twn − λFTwn and ỹn = yn − λFyn.
In Step 4 of Algorithms 4.4.3 and 4.4.3, vn follows similar description. From Step 2
and Step 4 of Algorithms 4.4.3 and 4.4.3, we have

βn||rn||2 = ⟨Twn − yn, rn⟩, ∀n ≥ 1 (4.4.3)

holds for both rn = 0 and rn ̸= 0. Similarly, we have that

γn||vn||2 = ⟨bn − un, vn⟩, ∀n ≥ 1 (4.4.4)

holds for both vn = 0 and vn ̸= 0.

� The step sizes {λn} and {µn} given by (4.4.1) and (4.4.2), respectively are generated
at each iteration by some simple computations which makes Algorithm 4.4.3 easier
to implement since it does not require the prior knowledge of the Lipschitz constants
L1 and L2.

� Algorithms 4.4.2 and 4.4.3 does not require any product space formulation unlike
other algorithms in literature which require that the problem be transformed into
a product space (see [63] and other references therein). This makes our algorithms
easier to implement since they do not encounter the difficulties that might be caused
by the product space.

Remark 4.4.2. [192] The choice of the step size ηn in Step 3 of Algorithms 4.4.2 and 4.4.3
do not require the prior knowledge of the operator norm ∥T∥. Furthermore, the value of
η does not influence the algorithms, but it was introduced for the sake of clarity.

Lemma 4.4.3. [192] The step size ηn given in Step 3 of Algorithms 4.4.2 and 4.4.3 is
well-defined.

4.4.2 Convergence analysis

Lemma 4.4.4. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1. Then, the following inequality holds:

∥xn+1 − p∥2 ≤ ∥wn − p∥2 − ∥xn+1 − wn∥2, ∀ p ∈ Γ. (4.4.5)
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Proof. Let p ∈ Γ. From the definition of yn and the characteristic property of PQ, we
obtain

⟨yn − Twn + λFTwn, yn − Tp⟩ ≤ 0. (4.4.6)

Since Tp ∈ V I(F,Q) and yn ∈ Q, we have

⟨FTp, yn − Tp⟩ ≥ 0

and from the pseudomonotonicity of F we have,

⟨Fyn, yn − Tp⟩ ≥ 0.

Since λ > 0, we obtain

⟨λFyn, yn − Tp⟩ ≥ 0. (4.4.7)

Adding (4.4.6) and (4.4.7), we obtain

⟨Twn − yn − λ(FTwn − Fyn), yn − Tp⟩ ≥ 0. (4.4.8)

From (4.4.8) and the definition of rn in Step 2, we obtain

⟨Twn − Tp, rn⟩ = ⟨Twn − yn, rn⟩+ ⟨yn − Tp, rn⟩
= ⟨Twn − yn, rn⟩+ ⟨yn − Tp, Twn − yn − λ(FTwn − Fyn)⟩
≥ ⟨Twn − yn, rn⟩,

which implies that

−⟨Twn − Tp, rn⟩ ≤ −⟨Twn − yn, rn⟩. (4.4.9)

From the definition of zn in Step 2, we have

||βn · rn||2 = γ−2
2 ||zn − Twn||2. (4.4.10)

Hence, from Lemma 2.1.1, (4.4.3), (4.4.9) and (4.4.10) we obtain

∥zn − Tp∥2 = ∥Twn − γ2βnrn − Tp∥2

= ∥Twn − Tp∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − Tp, rn⟩

≤ ∥Twn − Tp∥2 + γ22β
2
n∥rn∥2 − 2γ2βn⟨Twn − yn, rn⟩

= ∥Twn − Tp∥2 + γ22β
2
n∥rn∥2 − 2γ2βn · βn∥rn∥2

= ∥Twn − Tp∥2 − γ2(2− γ2)∥βn · rn∥2

= ∥Twn − Tp∥2 − γ−1
2 (2− γ2)||zn − Twn||2. (4.4.11)

Also, from Step 3, Lemma 2.1.1 and (4.4.11) we obtain

∥bn − p∥2 = ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 + 2ηn⟨wn − p, T ∗(zn − Twn)⟩
= ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 + 2ηn⟨Twn − Tp, zn − Twn⟩
= ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2

+ ηn
[
∥zn − Tp∥2 − ∥Twn − Tp∥2 − ∥zn − Twn∥2

]
≤ ∥wn − p∥2 + η2n∥T ∗(zn − Twn)∥2 − ηn∥zn − Twn∥2 (4.4.12)

= ∥wn − p∥2 − ηn
[
∥zn − Twn∥2 − ηn∥T ∗(zn − Twn)∥2

]
.

189



Thus, by the condition on ηn, we obtain that

∥bn − p∥2 ≤ ∥wn − p∥2,

Following similar argument used in obtaining (4.4.11), we obtain

∥tn − p∥2 = ∥bn − γ1γnvn − p∥2

≤ ∥bn − p∥2 − γ−1
1 (2− γ1)∥tn − bn∥2. (4.4.13)

From Step 5 we have,

∥xn+1 − p∥2 = ∥(1− σ)wn + σtn − p∥2

= ∥(1− σ)(wn − p) + σ(tn − p)∥2

= (1− σ)∥wn − p∥2 + σ∥tn − p∥2 − (1− σ)σ∥wn − tn∥2. (4.4.14)

Substituting (4.4.13) into (4.4.14), we have

∥xn+1 − p∥2 ≤ (1− σ)∥wn − p∥2 + σ
(
∥bn − p∥2 − γ−1

1 (2− γ1)∥tn − bn∥2
)

− (1− σ)σ∥wn − tn∥2

= (1− σ)∥wn − p∥2 + σ∥bn − p∥2 − σγ−1
1 (2− γ1)∥tn − bn∥2

− (1− σ)σ∥wn − tn∥2

≤ (1− σ)∥wn − p∥2 + σ∥wn − p∥2 − σγ−1
1 (2− γ1)∥tn − bn∥2

− (1− σ)σ∥wn − tn∥2

= ∥wn − p∥2 − σγ−1
1 (2− γ1)∥tn − bn∥2 − (1− σ)σ∥wn − tn∥2. (4.4.15)

From Step 4, we have tn−wn = 1
σ
(xn+1−wn). Substituting this into the previous equality

we have,

∥xn+1 − p∥2 ≤ ∥wn − p∥2 − σγ−1
1 (2− γ1)∥tn − bn∥ − (1− σ)σ · 1

σ2
∥xn+1 − wn∥2

= ∥wn − p∥2 − σγ−1
1 (2− γ1)∥tn − bn∥ −

( 1
σ
− 1
)
∥xn+1 − wn∥2

≤ ∥wn − p∥2 −
( 1
σ
− 1
)
∥xn+1 − wn∥2

≤ ∥wn − p∥ − ζ∥xn+1 − wn∥2,

where ζ :=
(

1
σ
− 1
)
.

Lemma 4.4.5. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1. Then ∀ p ∈ Γ, we have

∥xn+1 − p∥2 − ∥xn − p∥2 ≤ αn∥xn − x0∥2 + θn∥xn − p∥2 − θn−1∥xn−1 − p∥2 (4.4.16)

− (1− 3θn+1 − αn)∥xn − xn+1∥2

− 2αn⟨xn − p, xn − x0⟩ − 2θn+1∥xn+1 − xn∥2

+ 2θn∥xn − xn−1∥2 − αn+1∥x0 − xn+1∥2.
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Proof. From the definition of wn and Lemma (2.1.1), we have

∥wn − p∥2 = ∥αnx0 + (1− αn)xn + θn(xn − xn−1)− p∥2

= ∥(xn − p) + θn(xn − xn−1)− αn(xn − x0)∥2

= ∥xn − p∥2 + ∥θn(xn − xn−1)− αn(xn − x0)∥2

+ 2⟨xn − p, θn(xn − xn−1)− αn(xn − x0)⟩
= ∥xn − p∥2 + ∥θn(xn − xn−1)− αn(xn − x0)∥2 (4.4.17)

+ 2θn⟨xn − p, xn − xn−1⟩ − 2αn⟨xn − p, xn − x0⟩.

Now, replacing p with xn+1 in (4.4.17), we obtain

∥wn − xn+1∥2 = ∥xn − xn+1∥2 + ∥θn(xn − xn−1)− αn(xn − x0)∥2 (4.4.18)

+ 2θn⟨xn − xn+1, xn − xn−1⟩ − 2αn⟨xn − xn+1, xn − x0⟩.

Substituting (4.4.17) and (4.4.18) into (4.4.5) and from the condition on σ, we have

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + ∥θn(xn − xn−1)− αn(xn − x0)∥2 + 2θn⟨xn − p, xn − xn−1⟩
− 2αn⟨xn − p, xn − x0⟩ − ∥xn − xn+1∥2 − ∥θn(xn − xn−1)

− αn(xn − x0)∥2 − 2θn⟨xn − xn+1, xn − xn−1⟩+ 2αn⟨xn − xn+1, xn − x0⟩
= ∥xn − p∥2 + 2θn⟨xn − p, xn − xn−1⟩ − 2αn⟨xn − p, xn − x0⟩
− 2θn⟨xn − xn+1, xn − xn−1⟩ − ∥xn − xn+1∥2 + 2αn⟨xn − xn+1, xn − x0⟩
= ∥xn − p∥2 + 2θn⟨xn − p, xn − xn−1⟩ − 2αn⟨xn − p, xn − x0⟩
+ θn∥xn − xn+1∥2 + θn∥xn − xn−1∥2 − θn∥(xn − xn+1) + (xn − xn−1)∥2

− ∥xn − xn+1∥2 + 2αn⟨xn − xn+1, xn − x0⟩.

Hence,

∥xn+1 − p∥2 − ∥xn − p∥2 ≤ 2θn⟨xn − p, xn − xn−1⟩ − 2αn⟨xn − p, xn − x0⟩ (4.4.19)

− (1− θn)∥xn − xn+1∥2 + θn∥xn − xn−1∥2

− θn∥(xn − xn+1) + (xn − xn−1)∥2 + 2αn⟨xn − xn+1, xn − x0⟩.

Applying Lemma 2.1.1 to (4.4.19), we obtain

∥xn+1 − p∥2 − ∥xn − p∥2 ≤ θn∥xn − xn−1∥2 − (1− θn)∥xn − xn+1∥2 − 2αn⟨xn − p, xn − x0⟩
+ 2θn⟨xn − p, xn − xn−1⟩+ 2αn⟨xn − xn+1, xn − x0⟩
= θn∥xn − xn−1∥2 − (1− θn)∥xn − xn+1∥2 − 2αn⟨xn − p, xn − x0⟩
− θn∥xn−1 − p∥2

+ θn∥xn − p∥2 + θn∥xn − xn−1∥2 − αn∥x0 − xn+1∥
+ αn∥xn+1 − xn∥2 + αn∥xn − x0∥2,

which implies that

∥xn+1 − p∥2 − ∥xn − p∥2 ≤ αn

(
∥xn − x0∥2 − ∥x0 − xn+1∥2

)
+ θn

(
∥xn − p∥2 − ∥xn−1 − p∥2

)
(4.4.20)

−
(
1− θn − 2θn+1 − αn

)
∥xn+1 − xn∥2 − 2αn⟨xn − p, xn − x0⟩

− 2θn+1∥xn+1 − xn∥2 + 2θn∥xn − xn−1∥2.
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Using the fact that {θn} is non-decreasing and {αn} is non-increasing on (4.4.20), we
obtain (4.4.16), which is the desired conclusion.

Lemma 4.4.6. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1. Then {xn} is bounded.

Proof. Let p ∈ Γ, then from (4.4.16) and Lemma 2.1.1, we have

∥xn+1 − p∥2 − ∥xn − p∥2 ≤ αn∥xn − x0∥2 + θn∥xn − p∥2 − θn−1∥xn−1 − p∥2

− (1− 3θn+1 − αn)∥xn − xn+1∥2 − 2θn+1∥xn+1 − xn∥2

+ 2θn∥xn − xn−1∥2 − αn+1∥x0 − xn+1∥2 − 2αn⟨xn − p, xn − x0⟩
= αn∥xn − x0∥2 + θn∥xn − p∥2 − θn+1∥xn−1 − p∥2

− (1− 3θn+1 − αn)∥xn − xn+1∥2 − 2θn+1∥xn+1 − xn∥2

+ 2θn∥xn − xn−1∥2 − αn+1∥x0 − xn+1∥2 − αn∥xn − p∥2

− αn∥xn − x0∥2 + αn∥x0 − p∥2

≤ θn∥xn − p∥2 − θn−1∥xn−1 − p∥2 − (1− 3θn+1 − αn)∥xn − xn+1∥2
(4.4.21)

− 2θn+1∥xn+1 − xn∥2

+ 2θn∥xn − xn−1∥2 − αn∥xn − p∥2 + αn∥x0 − p∥2.

From this we obtain

∥xn+1 − p∥2 − ∥xn − p∥2 + αn∥xn − p∥2

≤ θn∥xn − p∥2 − θn−1∥xn−1 − p∥2 − (1− 3θn+1 − αn)∥xn − xn+1∥2

− 2θn+1∥xn+1 − xn∥2 + 2θn∥xn − xn−1∥2 + αn∥x0 − p∥2. (4.4.22)

Let ρj := e

j∑
i=1

αi

, j ≥ 1. Since ex ≥ x+ 1 for all x ∈ R, we have

1

ρn+1

(
ρn+1∥xn+1 − p∥2 − ρn∥xn − p∥2

)
= ∥xn+1 − p∥2 − ∥xn − p∥2

+
1

ρn+1

(
ρn+1 − ρn

)
∥xn − p∥2

≤ ∥xn+1 − p∥2 − ∥xn − p∥2 + αn+1∥xn − p∥2.

Since {αn} ⊂ (0, 1] is non-increasing, we have

1

ρn+1

(
ρn+1∥xn+1 − p∥2 − ρn∥xn − p∥2

)
≤ ∥xn+1 − p∥2 − ∥xn − p∥2 + αn∥xn − p∥2.

(4.4.23)
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From (4.4.22) and (4.4.23), we obtain

1

ρn+1

[
ρn+1∥xn+1 − p∥2 − ρn∥xn − p∥2

]
≤ θn∥xn − p∥2 − θn−1∥xn−1 − p∥2

− (1− 3θn+1 − αn)∥xn+1 − xn∥2

− 2θn+1∥xn+1 − xn∥2 + 2θn∥xn − xn−1∥2

+ αn∥x0 − p∥2.

Since ρn ≤ ρn+1, ρn+1 = ρne
αn+1 and {αn} ⊂ (0, 1] is non-increasing, we have

ρn+1∥xn+1 − p∥2 − ρn∥xn − p∥2 ≤ ρn+1θn∥xn − p∥2 − ρnθn−1∥xn−1 − p∥2

− ρn+1(1− 3θn+1 − αn)∥xn+1 − xn∥2

− 2ρn+1θn+1∥xn+1 − xn∥2 + 2ρnθne
αn+1∥xn − xn−1∥2

+ ρn+1αn∥x0 − p∥2,

which implies that

ρn+1∥xn+1 − p∥2 − ρn∥xn − p∥2 ≤ ρn+1θn∥xn − p∥2 − ρnθn−1∥xn−1 − p∥2

− ρn+1

[
1− θn+1

(
3 + 2(eαn+1 − 1)

)
− αn

]
∥xn+1 − xn∥2

− 2ρn+1θn+1e
αn+1∥xn+1 − xn∥2 + 2ρnθne

αn∥xn − xn−1∥2

+ ρn+1αn∥x0 − p∥2.

Since {θn} ⊂ [0, θ], we have

1− θn+1(3 + 2(eαn+1 − 1))− αn ≥ 1− θ(3 + 2(eαn+1 − 1))− αn, ∀n ∈ N. (4.4.24)

Since θ ∈ [0, 1
3
) and lim

n→∞
αn = 0, it follows that the right-hand side of (4.4.24) is bounded

below by a positive number, i.e., there exists a constant ξ > 0 such that 1 − θn+1(3 +
2(eαn+1 − 1))− αn ≥ ξ, for all n ∈ N sufficiently large, say for all n ≥ n0. Hence, we have

ρn+1∥xn+1 − p∥2 − ρn∥xn − p∥2 ≤ ρn+1θn∥xn − p∥2 − ρnθn−1∥xn−1 − p∥2

− ξ∥xn+1 − xn∥2

− 2ρn+1θn+1e
αn+1∥xn+1 − xn∥2 + 2ρnθne

αn∥xn − xn−1∥2

+ ρn+1αn∥x0 − p∥2,

which implies that for all n ≥ n0,

∥x0 − p∥2
n∑

k=n0+1

ρk+1αk ≥ ρn+1∥xn+1 − p∥2 + 2ρn+1θn+1e
αn+1∥xn+1 − xn∥2

− ρn+1θn∥xn − p∥2 − ρn0+1∥xn0+1 − p∥2

− 2ρn0+1θn0+1e
αn0+1∥xn0+1 − xn0∥2 + ρn0+1θn0∥xn0 − p∥2.

(4.4.25)
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Dividing the last inequality by ρn+1 and omitting non-positive terms, we have

∥xn+1 − p∥2 − θn∥xn − p∥2 ≤ e−tn+1
[
ρn0+1∥xn0+1 − p∥2 + 2ρn0+1θn0+1e

αn0+1∥xn0+1 − xn0∥2

− ρn0+1θn0∥xn0 − p∥2
]

+ ∥x0 − p∥2e−tn+1

n∑
k=n0+1

αke
tk+1 (4.4.26)

where tn :=
n∑
i=1

αi. Since αk ∈ (0, 1] for all k ∈ N, we observe that αketk+1 ≤ e2(etk −etk−1),

for all k ≥ 2, so that

n∑
k=n0+1

ρk+1αk =
n∑

k=n0+1

αke
tk+1 ≤ e2(etn − etn0 ) ≤ e2etn .

Using (4.4.26), the fact that {θn} ⊂ [0, θ] ⊂ [0, 1
3
) and e−tn+1 ≤ 1, we have

∥xn+1 − p∥2 ≤ θ∥xn − p∥2 + ρn0+1∥xn0+1 − p∥2 + 2ρn0+1θn0+1e
αn0+1∥xn0+1 − xn0∥2

+ e2∥x0 − p∥2. (4.4.27)

Applying (4.4.27), θ ∈ [0, 1) and the convergence of the geometric series, we obtain

∥xn+1 − p∥2 ≤ θn−n0∥xn0+1 − p∥2 (4.4.28)

+
1

1− θ

[
ρn0+1∥xn0+1 − p∥2 + 2ρn0+1θn0+1e

αn0+1∥xn0+1 − xn0∥2 + e2∥x0 − p∥2
]

Since θ < 1, it follows that {xn} is bounded.

Lemma 4.4.7. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1. Suppose

lim
n→∞

∥xn+1 − xn∥ = 0

and

lim
n→∞

(
∥xn+1 − p∥2 − θn∥xn − p∥2

)
= 0.

Then {xn} converges strongly to p.

Proof. By the hypothesis of the lemma we have that

0 = lim
n→∞

(
∥xn+1 − p∥2 − θn∥xn − p∥2

)
= lim

n→∞

[(
∥xn+1 − p∥+

√
θn∥xn − p∥

)
×
(
∥xn+1 − p∥ −

√
θn∥xn − p∥

)]
. (4.4.29)
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We claim that this implies

lim
n→∞

(
∥xn+1 − p∥+

√
θn∥xn − p∥

)
= 0,

and from this it follows that {xn} converges strongly to p. On the contrary, assume that
this limit does not hold. Then there exists a subset K ⊆ N and a constant β > 0 such
that

∥xn+1 − p∥+
√
θn∥xn − p∥ ≥ β, ∀ n ∈ K. (4.4.30)

Using (4.4.29) and the fact that θn ≤ θ < 1, we have

0 = lim
n∈K

(
∥xn+1 − p∥ −

√
θn∥xn − p∥

)
= lim sup

n∈K

(
∥xn+1 − xn + xn − p∥ −

√
θn∥xn − p∥

)
≥ lim sup

n∈K

(
∥xn − p∥ − ∥xn+1 − xn∥ −

√
θn∥xn − p∥

)
≥ lim sup

n∈K

(
(1−

√
θ)∥xn − p∥ − ∥xn+1 − xn∥

)
= (1−

√
θ) lim sup

n∈K
∥xn − p∥ − lim

n∈K
∥xn+1 − xn∥

= (1−
√
θ) lim sup

n∈K
∥xn − p∥.

Thus, we have lim sup
n∈K

∥xn − p∥ ≤ 0. Since lim inf
n∈K

∥xn − p∥ ≥ 0 holds, it follows that

lim
n∈K

∥xn − p∥ = 0.

Applying (4.4.30), we obtain

∥xn+1 − xn∥ ≥ ∥xn+1 − p∥ − ∥xn − p∥
= ∥xn+1 − p∥+

√
θn∥xn − p∥ − (1 +

√
θn)∥xn − p∥

≥ β

2

for all n ∈ K sufficiently large, which contradicts the assumption that lim
n→∞

∥xn+1−xn∥ = 0.

Hence, the result follows.

Lemma 4.4.8. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1 such that lim

n→∞
∥xn+1 − xn∥ = 0. Suppose there exists a subsequence {xnk

} of {xn},
which converges weakly to a point z ∈ H1 and lim

k→∞
∥bnk

− wnk
∥ = 0 = lim

k→∞
∥bnk

− tnk
∥,

then z ∈ Γ.
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Proof. From the definition of wn in Step 1 and by the statement of the hypothesis together
with the fact that lim

n→∞
αn = 0, we obtain

∥wn − xn∥ = ∥αn(x0 − xn) + θn(xn − xn−1)∥
≤ αn∥x0 − xn∥+ θn∥xn − xn−1∥ → 0, as n→ ∞ (4.4.31)

Since the subsequence {xnk
} of {xn} is weakly convergent to a point z ∈ H1, it follows

that the subsequence {wnk
} of {wn} is also weakly convergent to z ∈ H1. Again, since T

is a bounded linear operator, we obtain that {Twnk
} converges weakly to Tz.

Without loss of generality, we may assume that zn ̸= Twn, then ηn ∈
(
ϵ, ∥zn−Twn∥2

∥T ∗(zn−Twn)∥2 −ϵ
)
.

Hence, we obtain from (4.4.12) that

∥bnk
− p∥2 ≤ ∥wnk

− p∥2 − ηnk
ϵ∥T ∗(znk

− Twnk
)∥2

≤ ∥wnk
− p∥2 − ϵ2∥T ∗(znk

− Twnk
)∥2, (4.4.32)

which implies that

ϵ2∥T ∗(znk
− Twnk

)∥2 ≤ ∥wnk
− p∥2 − ∥bnk

− p∥2

≤ ∥wnk
− bnk

∥2 + 2∥wnk
− bnk

∥∥bnk
− p∥.

From our hypothesis, we have

lim
k→∞

∥T ∗(znk
− Twnk

)∥ = 0. (4.4.33)

From (4.4.12) and (4.4.33), we have

ηnk
∥znk

− Twnk
∥2 ≤ ∥wnk

− p∥2 − ∥bnk
− p∥2 + η2nk

∥T ∗(znk
− Twnk

)∥2

≤ ∥wnk
− bnk

∥2 + 2∥wnk
− bnk

∥∥bnk
− p∥+ η2nk

∥T ∗(znk
− Twnk

)∥2

→ 0, as k → ∞.

Since ηnk
> ϵ > 0, we obtain

lim
k→∞

∥znk
− Twnk

∥ = 0. (4.4.34)

Using the definition of rn in Step 2, we observe

⟨Twnk
− ynk

, rnk
⟩ = ⟨Twnk

− ynk
, Twnk

− ynk
− λ(FTwnk

− Fynk
)⟩

= ∥Twnk
− ynk

∥2 − ⟨Twnk
− ynk

, λ(FTwnk
− Fynk

)⟩
≥ ∥Twnk

− ynk
∥2 − λ∥Twnk

− ynk
∥∥FTwnk

− Fynk
∥

≥ (1− λL2)∥Twnk
− ynk

∥2. (4.4.35)

Since λ ∈ (0, 1
L2
), we have that 1− λL2 > 0. Hence, from (4.4.35), (4.4.10) and (4.4.3) we
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obtain

∥Twnk
− ynk

∥2 ≤
(

1

1− λL2

)
⟨Twnk

− ynk
, rnk

⟩

=

(
1

1− λL2

)
βnk

∥rnk
∥2

=

(
1

1− λL2

)
βnk

∥rnk
∥∥Twnk

− ynk
− λ(FTwnk

− Fynk
)∥

=

(
1

1− λL2

)
βnk

∥rnk
∥∥(Twnk

− ynk
) + λ(Fynk

− FTwnk
)∥

≤
(

1

1− λL2

)
βnk

∥rnk
∥ (∥Twnk

− ynk
∥+ λ∥Fynk

− FTwnk
∥)

≤
(

1

1− λL2

)
βnk

∥rnk
∥ (∥Twnk

− ynk
∥+ λL2∥ynk

− Twnk
∥)

=

(
1 + λL2

1− λL2

)
∥Twnk

− ynk
∥βnk

∥rnk
∥

= γ−1
2

(
1 + λL2

1− λL2

)
∥Twnk

− ynk
∥∥znk

− Twnk
∥,

which implies from (4.4.34) that

∥Twnk
− ynk

∥ ≤ γ−1
2

(
1 + λL2

1− λL2

)
∥Twnk

− znk
∥ → 0, as k → ∞. (4.4.36)

Since {Twnk
} converges weakly to Tz, then it follows from (4.4.36) that {ynk

} also con-
verges weakly to Tz. Also, since {ynk

} ⊂ Q, we have that Tz ∈ Q .

By the characteristic property of PQ, we obtain ∀ x ∈ Q that

⟨Twnk
− λFTwnk

− ynk
, x− ynk

⟩ ≤ 0,

which implies

1

λ
⟨Twnk

− ynk
, x− ynk

⟩+ ⟨FTwnk
, ynk

− Twnk
⟩ ≤ ⟨FTwnk

, x− Twnk
⟩. (4.4.37)

Hence, applying (4.4.36) in (4.4.37), we obtain that

0 ≤ lim inf
k→∞

⟨FTwnk
, x− Twnk

⟩, ∀x ∈ Q. (4.4.38)

Observe that

⟨Fynk
, x− ynk

⟩ = ⟨Fynk
− FTwnk

, x− Twnk
⟩+ ⟨FTwnk

, x− Twnk
⟩ (4.4.39)

+ ⟨Fynk
, Twnk

− ynk
⟩.

Since F is Lipschitz continuous on H2, we obtain from (4.4.36) that

lim
k→∞

||FTwnk
− Fynk

|| = 0.
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Hence, from (4.4.36), (4.4.38) and (4.4.39), we obtain that

0 ≤ lim inf
k→∞

⟨Fynk
, x− ynk

⟩, ∀x ∈ Q. (4.4.40)

Next, we show that Tz ∈ VI(F,Q). Now, we choose a sequence {δk} of positive numbers
such that δk+1 ≤ δk, ∀ k ≥ 1 and δk → 0 as k → ∞. From (4.4.40), we denote by Nk

(for each k ≥ 1), the smallest positive integer such that

⟨Fynj
, x− ynj

⟩+ δk ≥ 0, ∀j ≥ Nk. (4.4.41)

Since {δk} is decreasing, we have that {Nk} is increasing. Also, since {yNk
} ⊂ Q for

all k ≥ 1, we can suppose FyNk
̸= 0 (otherwise, yNk

is a solution). Hence, we can set

qNk
=

FyNk

∥FyNk
∥2 for each k ≥ 1. Then, ⟨FyNk

, qNk
⟩ = 1 for each k ≥ 1.

Therefore, from (4.4.41) we have

⟨FyNk
, x+ δkqNk

− yNk
⟩ ≥ 0,

which implies from the pseudomonotonicity of F on H2 that

⟨F (x+ δkqNk
), x+ δkqNk

− yNk
⟩ ≥ 0. (4.4.42)

This implies that

⟨Fx, x− yNk
⟩ ≥ ⟨Fx− F (x+ δkqNk

), x+ δkqNk
− yNk

⟩ − δk⟨Fx, qNk
⟩. (4.4.43)

Now, if FTz = 0, then Tz ∈ V I(F,Q). So, we may suppose that FTz ̸= 0. Since {ynk
}

converges weakly to Tz, then by Condition (c) we obtain

0 < ∥FTz∥ ≤ lim inf
k→∞

∥FyNk
∥.

Since {ynk
} ⊂ {yNk

}, we obtain that

0 ≤ lim sup
k→∞

∥δkqNk
∥ = lim sup

k→∞

(
δk

∥Fynk
∥

)
≤

lim sup
k→∞

δk

lim inf
k→∞

∥Fynk
∥
≤ 0

∥FTz∥
= 0.

Therefore, lim
k→∞

δkqNk
= 0. Thus, letting k → ∞ in (4.4.43), we have

⟨Fx, x− Tz⟩ ≥ 0, ∀x ∈ Q, (4.4.44)

which implies by Lemma 2.5.8 that Tz ∈ V I(F,Q).

Next, we show that z ∈ V I(A,C). Following similar method of proof used in obtaining
(4.4.36) and noting our hypothesis lim

k→∞
∥bnk

− tnk
∥ = 0, we obtain

∥bnk
− unk

∥ ≤ r−1
1

(
1 + µL1

1 + µL1

)
∥bnk

− tnk
∥ → 0, as k → ∞. (4.4.45)
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Following similar method of proof used in obtaining (4.4.40), we obtain from (4.4.45), the
characteristic property of PC and the Lipschitz continuity of A on H1 that

0 ≤ lim inf
k→∞

⟨Aunk
, y − unk

⟩, ∀y ∈ C. (4.4.46)

From our hypothesis, (4.4.45) and the fact that {wnk
} converges weakly to z, we obtain

that the subsequences {bnk
} and {unk

} of {bn} and {un} respectively, converge weakly to
z. Also, since {unk

} ⊂ C, we have that z ∈ C. Following similar method of proof used in
obtaining (4.4.44), we obtain

⟨Ay, y − z⟩ ≥ 0, ∀ y ∈ C, (4.4.47)

which implies by Lemma 2.5.8, that z ∈ VI(A,C). Hence, we conclude that z ∈ Γ.

Lemma 4.4.9. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1. Then, for each n ≥ 1

vn := ∥xn − p∥2 + αn∥xn − x0∥2 − θn−1∥xn−1 − p∥2 + 2θn∥xn−1 − xn∥2 ≥ 0.

Proof. Since {θn} ∈ [0, 1
3
) is non-decreasing, we have from Lemma 2.1.1 that

vn = ∥xn − p∥2 + αn∥xn − x0∥2 − θn−1∥xn−1 − xn + xn − p∥2 + 2θn∥xn−1 − xn∥2

= ∥xn − p∥2 + αn∥xn − x0∥2 − θn−1∥xn−1 − xn∥2 − θn−1∥xn − p∥2

− 2θn−1⟨xn−1 − xn, xn − p⟩+ 2θn∥xn−1 − xn∥2

= ∥xn − p∥2 + αn∥xn − x0∥2 − θn−1∥xn−1 − xn∥2 − θn−1∥xn − p∥2

− θn−1

[
∥xn−1 − xn∥2 + ∥xn − p∥2 − ∥xn−1 − 2xn + p∥2

]
+ 2θn∥xn−1 − xn∥2

= ∥xn − p∥2 + αn∥xn − x0∥2 − 2θn−1∥xn−1 − xn∥2 − 2θn−1∥xn − p∥2

+ θn−1∥xn−1 − 2xn + p∥2 + 2θn∥xn−1 − xn∥2

≥ ∥xn − p∥2 + αn∥xn − x0∥2 − 2θn∥xn−1 − xn∥2 −
2

3
∥xn − p∥2

+ θn−1∥xn−1 − 2xn + p∥2 + 2θn∥xn−1 − xn∥2

=
1

3
∥xn − p∥2 + αn∥xn − x0∥2 + θn−1∥xn−1 − 2xn + p∥2

≥ 1

3
∥xn − p∥2 + αn∥xn − x0∥2

≥ 0,

which is the desired conclusion.

We are now in a position to prove the main theorem for Algorithm 4.4.2.

Theorem 4.4.10. Let {xn} be a sequence generated by Algorithm 4.4.2 under Assumption
4.4.1. Then, {xn} converges strongly to p ∈ Γ, where p = PΓx0.
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Proof. From Lemma 4.4.9 and (4.4.16), we obtain

vn+1 − vn + (1− 3θn−1 − αn)∥xn − xn+1∥2 ≤ −2αn⟨xn − p, xn − x0⟩. (4.4.48)

We consider two cases for our proof.

CASE 1: Let z ∈ Γ. Suppose for some n0 ∈ N large enough, we have vn+1 ≤ vn for all
n ≥ n0. Then by Lemma 4.4.9 we have vn ≥ 0,∀n ≥ 1 and lim

n→∞
vn = lim

n→∞
vn+1 exists.

Since {xn} is bounded, there exists a constant M > 0 such that 2|⟨xn− p, xn− x0⟩| ≤M.
Hence, there exists N ∈ N and ξ1 > 0 such that (1 − 3θn+1 − αn) ≥ ξ1,∀n ≥ N. Hence,
from (4.4.48) we have that for all n ≥ N

ξ1∥xn − xn+1∥2 ≤ vn − vn+1 + αnM → 0, n→ ∞.

Thus,

lim
n→∞

∥xn+1 − xn∥ = 0. (4.4.49)

From the definition of wn in Step 1 and by applying (4.4.49) together with the fact that
lim
n→∞

αn = 0, we have

∥wn − xn∥ = ∥αn(x0 − xn) + θn(xn − xn−1)∥
≤ αn∥x0 − xn∥+ θn∥xn − xn−1∥ → 0, n→ ∞ (4.4.50)

Consequently, we have

∥wn − xn+1∥ → 0, n→ ∞. (4.4.51)

From (4.4.15), we have

σγ−1
1 (2− γ1)∥tn − bn∥2 ≤ ∥wn − p∥2 − ∥xn+1 − p∥2

=
(
∥wn − p∥ − ∥xn+1 − p∥

)(
∥wn − p∥+ ∥xn+1 − p

)
≤ ∥wn − xn+1∥

(
∥wn − p∥+ ∥xn+1 − p

)
≤ ∥wn − xn+1∥M1

where M1 := sup
n≥1

{∥wn − p∥+ ∥xn+1 − p∥}. Hence

∥tn − bn∥ → 0, n→ ∞. (4.4.52)

Similarly, we obtain from (4.4.15) that

∥wn − tn∥ → 0, n→ ∞.
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Consequently, we have

∥bn − wn∥ → 0, n→ ∞. (4.4.53)

Using the fact that {xn} is bounded, {vn} is convergent and lim
n→∞

αn = 0, we obtain from

Lemma 4.4.9 that

λ := lim
n→∞

(
∥xn+1 − p∥2 − θn∥xn − p∥2

)
<∞, (4.4.54)

which is the limit of lim
n→∞

vn+1. Consequently, from Lemma 4.4.9, we have λ ≥ 0. We show

that λ = 0 holds. So that it follows from Lemma 4.4.7 that the sequence {xn} converges
strongly to the solution p.

Suppose on the contrary λ > 0. Since {xn} is bounded by Lemma 4.4.6, there exists a
subsequence {xnk

} of {xn} which converges weakly to z, such that

lim inf
n→∞

⟨xn − p, p− x0⟩ = lim
k→∞

⟨xnk
− p, p− x0⟩ = ⟨z − p, p− x0⟩. (4.4.55)

By applying (4.4.52) and (4.4.53), it follows from Lemma 4.4.8 that z ∈ Γ. Since p = PΓx0,
we obtain from (4.4.55)

lim inf
n→∞

⟨xn − p, p− x0⟩ = ⟨z − p, p− x0⟩ ≥ 0, (4.4.56)

which follows from (4.4.55) that

lim
k→∞

⟨xnk
− p, p− x0⟩ ≥ 0.

From (4.4.54), we have

lim inf
n→∞

∥xn+1 − p∥2 ≥ lim
n→∞

(
∥xn+1 − p∥2 − θn∥xn − p∥2

)
= λ,

and since λ > 0, we have

∥xn+1 − p∥2 ≥ 1

2
λ, ∀n ≥ n1

for some sufficiently large n1 ∈ N. Observe that

⟨xn − p, xn − x0⟩ = ∥xn − p∥2 + ⟨xn − p, p− x0⟩.

Then, by applying (4.4.56) we have

lim inf
n→∞

⟨xn − p, xn − x0⟩ = lim inf
n→∞

(
∥xn − p∥2 + ⟨xn − p, p− x0⟩

)
≥ lim inf

n→∞

(1
2
λ+ ⟨xn − p, p− x0⟩

)
=

1

2
λ+ lim inf

n→∞
⟨xn − p, p− x0⟩

≥ 1

2
λ.
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Again, using the assumption that λ > 0, we have

⟨xn − p, xn − x0⟩ ≥
1

4
λ, ∀n ≥ n2,

for some sufficiently large n2 ∈ N such that n2 ≥ n1. From (4.4.48), we have

vn+1 − vn ≤ −1

2
αλ, ∀n ≥ n2.

Applying Lemma 4.4.9, it follows from the last inequality that

1

2
λ

n∑
k=n2

αk ≤ vn2 − vn ≤ vn2 , ∀n ≥ n2.

Since λ > 0, this gives the summability of the sequence {αn} which contradicts
∞∑
n=1

αn = ∞.

Therefore, we must have λ = 0, and it follows that the sequence {xn} converges strongly
to p = PΓx0 as required.

CASE 2: Suppose that {vn} is not monotonically decreasing. Let τ : N → N be defined
for all n ≥ n0 for some n0 ∈ N large enough by

τ(n) := max{k ∈ N : k ≤ n, vk ≤ vk+1}.

Observe that τ(n) is a non-decreasing sequence such that τ(n) → ∞ as n→ ∞ and vτ(n)
≤

vτ(n)+1 for all n ≥ n0. Similar to CASE 1, for some constant M > 0, we obtain from
(4.4.48) that

ξ1∥xτ(n)+1
− xτ(n)

∥ ≤ ατ(n)M → 0. (4.4.57)

Consequently, we get

∥xτ(n)+1
− xτ(n)

∥ → 0, n→ ∞. (4.4.58)

Also, following similar procedure as in CASE 1, we obtain

∥xτ(n)
− wτ(n)

∥ → 0, n→ ∞.

∥tτ(n)
− bτ(n)

∥ → 0, n→ ∞.

∥wτ(n)
− tτ(n)

∥ → 0, n→ ∞.

∥bτ(n)
− wτ(n)

∥ → 0, n→ ∞. (4.4.59)

Observe from (4.4.48) that for j ≥ 0, we have vj+1 < vj when xj /∈ Ω := {x ∈ H :
⟨x− x0, x− p⟩ ≤ 0}. Since vτ(n)

≤ vτ(n)+1, we have that xτ(n)
∈ Ω ∀ n ≥ n0. We have from
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Lemma 4.4.6 that {xτ(n)
} is bounded, hence there exists a subsequence, again say {xτ(n)

}
which converges weakly to some z ∈ H1. Since Ω is a closed and convex set, then it is
weakly closed and it follows that z ∈ Ω. By (4.4.59), it follows from Lemma 4.4.8 that
z ∈ Γ. Hence, we have z ∈ Ω ∩ Γ. In view of Lemma 2.5.18, we know that Ω ∩ Γ contains
only p as its element. Consequently, we have z = p. Moreover, since xτn ∈ Ω we have

∥xτ(n)
− p∥2 = ⟨xτ(n)

− x0, xτ(n)
− p⟩ − ⟨p− x0, xτ(n)

− p⟩
≤ −⟨p− x0, xτ(n)

− p⟩.

Taking the lim sup of the above inequality, we get

lim sup
n→∞

∥xτ(n)
− p∥ ≤ 0.

Thus,

∥xτ(n)
− p∥ → 0, n→ ∞. (4.4.60)

We claim that this implies lim
n→∞

vτ(n)+1 = 0. From the definition of vτ(n)+1
, we have

vτ(n)+1
= ∥xτ(n)+1

− p∥2 + ατ(n)+1
∥xτ(n)+1

− x0∥2 − θτ(n)
∥xτ(n)

− p∥2

+ 2θτ(n)+1
∥xτ(n)+1

− xτ(n)
∥2

= ∥xτ(n)+1
− xτ(n)

+ xτ(n)
− p∥2 + ατ(n)+1

∥xτ(n)+1
− x0∥2 − θτ(n)

∥xτ(n)
− p∥2

+ 2θτ(n)+1
∥xτ(n)+1

− xτ(n)
∥2.

Using (4.4.58), (4.4.60), the boundedness of {θn} and {xn} and the fact that lim
n→∞

αn = 0,

we obtain that lim
n→∞

vτ(n)+1
= 0.

Next, we show that lim
n→∞

vn = 0. Observe that for all n ≥ n0, we have vτ(n)
≤ vτ(n)+1

if

n ̸= τ(n) since vj > vj+1 for τ(n) + 1 ≤ j ≤ n− 1. It follows that ∀n ≥ n0, we have

vn ≤ max{vτ(n)
, vτ(n)+1

} = vτ(n)+1
→ 0.

Hence,

lim sup
n→∞

vn ≤ 0.

From Lemma 4.4.9, we have that

lim inf
n→∞

vn ≥ 0.

Thus,

lim
n→∞

vn = 0.
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Using the fact that {xn} is bounded, lim
n→∞

αn = 0 and by (4.4.48), we have

∥xn − xn+1∥ → 0, n→ ∞,

which implies from the definition of vn that

lim
n→∞

(
∥xn+1 − p∥2 − θn∥xn − p∥2

)
= 0.

Thus, by Lemma 4.4.7 we obtain that {xn} converges strongly to p = PΓx0, which com-
pletes the proof.

Remark 4.4.11. [192]

� Setting H1 = H2 = H, F = 0 and T = IH (the identity operator on H) in Theo-
rem 4.4.10, we obtain an inertial projection and contraction method requiring only
one projection onto the feasible set C per iteration with fixed step size for solving
the classical VIP (1.2.4) when A is pseudomonotone and Lipschitz continuous as a
corollary.

� The conclusions of Lemma 4.4.4, Lemma 4.4.8 and Theorem 4.4.10 still hold even if
µ ∈ (0, 1

L1
) and λ ∈ (0, 1

L2
) in Algorithm 4.4.2 are replaced with variable step sizes

µn and λn, respectively such that

0 < inf
n≥1

µn ≤ sup
n≥1

µn <
1

L1

and 0 < inf
n≥1

λn ≤ sup
n≥1

λn <
1

L2

.

For the convergence analysis of Algorithm 4.4.3, which does not require the Lipschitz
constants of the underlying cost operators to be known, we first state the following lemma
on the step size rules derived from [162]. The proof of the lemma is similar to the method
of proof in [162]. Hence, we omit the proof here.

Lemma 4.4.12. Let {λn} and {µn} be the sequences generated by (4.4.1) and (4.4.2), re-
spectively. Then the sequences {λn} and {µn} are well defined, and lim

n→∞
λn = λ, lim

n→∞
µn =

µ, where λ ∈
[
min

{
a2
L2
, λ1
}
, λ1 +Φ

]
, µ ∈

[
min

{
a1
L1
, µ1

}
, µ1 +Ψ

]
, and Φ =

∑∞
n=1 ϕn,Ψ =∑∞

n=1 ψn.

Lemma 4.4.13. Let {xn} be a sequence generated by Algorithm 4.4.3 under Assumption
4.4.1. Then,

||Twn − yn|| ≤ γ−1
2

(
λn+1 + λna2
λn+1 − λna2

)
||Twn − zn||, ∀n ≥ 1 (4.4.61)

and

||bn − un|| ≤ γ−1
1

(
µn+1 + µna1
µn+1 − µna1

)
||bn − tn||, ∀n ≥ 1. (4.4.62)
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Proof. From (4.4.1), we have that

||FTwn − Fyn|| ≤
a2
λn+1

||Twn − yn||, ∀n ≥ 1, (4.4.63)

holds for both FTwn = Fyn and FTwn ̸= Fyn. Similar to (4.4.35), we obtain

⟨Twn − yn, rn⟩ ≥ ∥Twn − yn∥2 − λn∥Twn − yn∥∥FTwn − Fyn∥

≥ (1− λn
a2
λn+1

)∥Twn − yn∥2,

which implies that

∥Twn − yn∥2 ≤
1(

1− λn
a2
λn+1

)⟨Twn − yn, rn⟩

≤ 1(
1− λn

a2
λn+1

)βn∥rn∥(∥Twn − yn∥+ λn
a2
λn+1

∥Twn − yn∥
)

=

(
1 +

λna2

λn+1

1− λna2
λn+1

)
βn∥rn∥∥Twn − yn∥

= γ−1
2

(
λn+1 + λna2
λn+1 − λna2

)
∥Twn − zn∥∥Twn − yn∥,

which reduces to (4.4.61) when simplified further. In a similar manner, we get (4.4.62).

Remark 4.4.14. Replacing µ and λ with µn and λn, respectively in Lemma 4.4.4, we
obtain that {xn} is bounded.

By Lemma 4.4.12, it follows that

lim
n→∞

(
λn+1 + λna2
λn+1 − λna2

)
=

1 + a2
1− a2

(4.4.64)

and

lim
n→∞

(
µn+1 + µna1
µn+1 − µna1

)
=

1 + a1
1− a1

. (4.4.65)

Following the similar procedure used in Theorem 4.4.10, we obtain the following strong
convergence theorem for Algorithm 4.4.3.

Theorem 4.4.15. Let {xn} be a sequence generated by Algorithm 4.4.3 under Assumption
4.4.1. Then, {xn} converges strongly to p ∈ Γ, where p = PΓx0.

Remark 4.4.16.
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� The method of proof in this work is different from the method of proof used in
obtaining strong convergence for SVIPs.

� Similar to Remark 4.4.11, we obtain an inertial projection and contraction method
with adaptive step size, requiring only one projection onto the feasible set C per iter-
ation, for solving the classical VIP (1.2.4) when A is pseudomonotone and Lipschitz
continuous as a corollary.

� When the operators A and F are monotone and Lipschitz continuous, we do not
need them to satisfy Condition (c). This is because Condition (c) was only used
after (4.4.37) to get the conclusion of Lemma 4.4.8. But, from (4.4.37) and the
monotonicity of F , we obtain

0 ≤
〈
FTwnk

, x− Twnk

〉
+

1

λ

〈
ynk

− Twnk
, x− ynk

〉
+
〈
FTwnk

, Twnk
− ynk

〉
≤
(〈
FTwnk

− Fx, x− Twnk

〉
+
〈
Fx, x− Twnk

〉)
+

1

λ
∥ynk

− Twnk
∥∥x− ynk

∥

+ ∥FTwnk
∥∥Twnk

− ynk
∥

≤
〈
Fx, x− Twnk

〉
+

1

λ
∥ynk

− Twnk
∥∥x− ynk

∥+ ∥FTwnk
∥∥Twnk

− ynk
∥, ∀x ∈ Q,

Passing limit as k → ∞, noting that {Twnk
} converges weakly to Tz and applying

(4.4.36), it follows from the last inequality that

⟨Fx, x− Tz⟩ ≥ 0, ∀x ∈ Q.

Consequently, by Lemma 2.5.8 we have that Tz ∈ V I(F,Q). Similarly, we obtain
that z ∈ V I(A, C). Hence, we conclude that Lemma 4.4.8 holds.

� Theorem 4.4.10 and Theorem 4.4.15 are still true if the operators A and F in finite
dimensional spaces are only required to be pseudomonotone and Lipschitz contin-
uous which is an improvement over the results in literature since no product space
formulation is required even with the relaxed pseudomonotonicity assumption.

4.4.3 Numerical experiments

In this section, using some test examples, we discuss the numerical behavior of our meth-
ods, Algorithm 4.4.2 and Algorithm 4.4.3, as well as compare them with the methods
of Tian and Jiang [243] (Algorithm (2.5.11)), Tian and Jiang [244] (Algorithm (2.5.13)),
Pham et. al [206] (see Appendix 4.3.16) and Ogwo et. al [192] (see Algorithm 4.3.3).

In our computations, we randomly choose x0, x1 ∈ H1, γ1 = 1.8, γ2 = 1.1, a1 = 0.6, a2 =
0.4, λ1 = 0.85 and µ1 = 0.9. We choose αn = 1

n+1
, θn = 0.29, σ = 0.45, ϕn = 1

(n+1)2
, ψn =

1
(n+2)2

in Algorithm 4.4.2 and Algorithm 4.4.3. Also, we choose δn = 1
n+1

, θn = 1
2
− δn,

αn = ᾱn, τn = δn
n0.01 and α = 3 in the method of Ogwo et al. [192, Algorithm 3.3]. Using
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MATLAB 2019(b) and the stopping criterion ||xn+1–xn|| < 10–3, we plot the graphs of
errors against the number of iterations in each case. The numerical results are reported
in Figure 4.7, Figure 4.8, Table 4.4.1 and Table 4.4.2.

Example 4.4.17. Let H1 = H2 = L2([0, 2π]) be equipped with inner product

⟨x, y⟩ =
∫ 2π

0

x(t)y(t)dt, ∀ x, y ∈ L2([0, 2π])

and norm

||x|| :=
(∫ 2π

0

|x(t)|2dt
) 1

2
, ∀ x, y ∈ L2([0, 2π]).

Then we define A : L2([0, 2π]) → L2([0, 2π]) by

A(x)(t) = e−∥x∥
∫ t

0

x(s)ds, ∀x ∈ L2([0, 2π]), t ∈ [0, 2π].

From [250], we have that A is pseudomonotone and Lipschitz continuous but not monotone
on L2([0, 1]).

Let C = {x ∈ L2([0, 2π]) : ⟨y, x⟩ ≤ v}, where y = t + et and v = 1, then C is a nonempty
closed and convex subset of L2([0, 2π]). We define the metric projection PC as:

PC(x) =

{
x− ⟨y,x⟩−v

||y||2 y, if ⟨y, x⟩ > v,

x, if ⟨y, x⟩ ≤ v.

Also, let Q = {x ∈ L2([0, 2π]) : ∥x − a∥l2 ≤ d}, where a = t + 3 and d = 2, then Q is a
nonempty closed and convex subset of L2([0, 2π]). We define PQ as:

PQ(x) =

{
x, if x ∈ Q,
x−a

∥x−a∥2d+ a, otherwise.

We define the operator F : Q → L2([0, 2π]) by

F (x)(t) := G(x)M(x)(t), ∀ x ∈ Q, t ∈ [0, 2π],

where G : Q → R is defined by g(x) := 1
1+∥x∥2 and M : L2([0, 2π]) → L2([0, 2π]) is defined

by M(x)(t) :=
∫ t
0
x(s)ds, ∀ x ∈ L2([0, 2π]), t ∈ [0, 2π]. We have that G is 16

25
-Lipschitz

continuous and 1
5
≤ G(x) ≤ 1, ∀ x ∈ C (see [222]). Hence, from [222], we have that

F is pseudomonotone and Lipschitz continuous but not monotone since M is a Volterra
intergral mapping which is bounded and linear monotone.

Let T : L2([0, 2π]) → L2([0, 2π]) be defined by

Tx(s) =

∫ 2π

0

K(s, t)x(t)dt, ∀ x ∈ L2([0, 2π]),

where K is a continuous real-valued function on [0, 2π] × [0, 2π]. Then, T is a bounded
linear operator with adjoint

T ∗x(s) =

∫ 2π

0

K(t, s)x(t)dt, ∀ x ∈ L2([0, 2π]).
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In particular, we define K(s, t) = e−st for all s, t ∈ [0, 2π]. For Algorithms (2.5.11) and
(2.5.13), we define the mapping S : L2([0, 2π]) → L2([0, 2π]) by

Sx(t) =

∫ 2π

0

tx(s)ds, t ∈ [0, 1].

Then, S is nonexpansive. For Algorithm (2.5.13), we define h : L2([0, 2π]) → L2([0, 2π])
by

hx(t) =

∫ 2π

0

t

2
x(s)ds, x ∈ [0, 1].

Then, h is a contraction mapping.

We consider the following cases for the numerical experiments of this example.
Case 1: Take x0(t) = t+ 2 and x1(t) = 0.7e−t.

Case 2: Take x0(t) = 2t+ 1 and x1(t) = e−3t.

Case 3: Take x0(t) = 2t+ 1 and x1(t) = e−t.

Case 4: Take x0(t) = t2 + 2t+ 1 and x1(t) = e−3t.

Table 4.4.1: Numerical results for Example 4.4.17

Alg.
(2.5.11)

Alg.
(2.5.13)

App.
4.3.16

App.
4.3.3

Alg.
4.4.2

Alg.
4.4.3

Case 1 No. of Iter. 2 13 19 6 4 4
CPU time
(sec)

0.3973 1.2733 3.4674 8.6063 6.1012 4.0227

Case 2 No. of Iter. 2 12 19 6 4 4
CPU time
(sec)

0.3821 1.3016 3.3446 8.5436 4.9278 3.7949

Case 3 No. of Iter. 2 12 19 6 4 4
CPU time
(sec)

0.4129 1.2087 3.5745 8.7931 8.9403 7.7985

Case 4 No. of Iter. 2 13 19 6 4 4
CPU time
(sec)

0.3821 1.3016 3.6063 8.7372 11.3910 11.9466

Example 4.4.18. LetH1 = (l2(R), ||.||l2) = H2, where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈

R :
∞∑
i=1

|xi|2 <∞} and ||x||l2 :=
(

∞∑
i=1

|xi|2
) 1

2

, ∀x ∈ l2(R).

Define the operators A,F : l2(R) → l2(R) by A(x1, x2, x3, . . . ) = (3x1e
−x21 , 0, 0, . . . ) and

F (x1, x2, x3, . . . ) = (7x1e
−x21 , 0, 0, . . . ) respectively. Then, A,F are pseudo-monotone, Lip-

schitz continuous and sequentially weakly continuous but not monotone. Let T : l2(R) →
l2(R) be defined by Tx =

(
0, x1,

x2
2
, x3

3
, ...
)
, for all x ∈ l2(R). Then, T is a bounded linear

operator on ℓ2(R) with adjoint T ∗y =
(
y2,

y3
2
, y4

3
, ...
)
for all y ∈ l2(R).

Now, define C = Q = {x ∈ l2(R) : ||x− a||l2 ≤ b}, where a = (1, 1
2
, 1
3
, · · · ) and b = 3 for C
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Figure 4.7: Top left: Case 1; Top right: Case 2; Bottom left: Case 3; Bottom right: Case
4.
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and a = (1
2
, 1
4
, 1
8
, · · · ), b = 1 for Q. Then C,Q are nonempty closed and convex subsets of

l2(R). Thus,

PC(x) =

{
x, if ||x− y||ℓ2 ≤ b,
x−y

||x−y||l2
b+ a, otherwise.

Furthermore, we define the mappings S, h : l2(R) → l2(R) by Sx = −4(x1, x2, x3, . . . ) and
hx =

(
x1
2
, x2

2
, x3

2
, · · ·

)
for all x ∈ l2(R), and consider the following cases for the starting

point:

Case 1: Take x0 = (1
5
, 1
15
, 1
45
, · · · ) and x1 = (1, 1

2
, 1
4
, · · · ).

Case 2: Take x0 = (2
5
, 2
15
, 2
45
, · · · ) and x1 = (2, 1, 1

2
, · · · ).

Case 3: Take x0 = (1
5

1
15
, 1
45
, · · · ) and x1 = (1

2
, 1
4
, 1
8
, · · · ).

Case 4: Take x0 = (−3, 3
2
,−3

4
, · · · ) and x1 = (1

3
, 2
9
, 4
27
· · · ).

Table 4.4.2 Numerical results for Example 4.4.18
Alg.
(2.5.11)

Alg.
(2.5.13)

App.
4.3.16

App.
4.3.3

Alg.
4.4.2

Alg.
4.4.3

Case 1 No. of Iter. 2 6 14 7 4 4
CPU time
(sec)

0.0350 1.1215 0.0438 0.0512 0.1102 0.00186

Case 2 No. of Iter. 2 8 14 7 4 4
CPU time
(sec)

0.0093 0.7225 0.0331 0.0393 0.1011 0.0104

Case 3 No. of Iter. 2 6 14 6 4 4
CPU time
(sec)

0.0150 0.7402 0.0332 0.0378 0.1037 0.0119

Case 4 No. of Iter. 2 8 14 7 4 4
CPU time
(sec)

0.0091 0.7182 0.0333 0.0347 0.1051 0.0169

4.5 On a class of generalized variational inequality

problem

The purpose of this study is to propose an inertial extrapolation method for solving a cer-
tain class of VIP more general than the classical VIP in real Hilbert spaces. Our proposed
method is of viscosity-type and converges strongly to a solution of the aforementioned
problem when the underlying/cost operator is pseudo-monotone and uniformly continu-
ous; this makes our method to be potentially more applicable than most existing methods
in the literature. To support our results numerically, we considered some examples in both
finite and infinite dimensional Hilbert spaces and compared our results with other existing
results in the literature.
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4.5.1 Main results

In this section, we present and study the proposed method for solving Problem (1.2.6). We
begin with the following conditions: H1 and H2 are two real Hilbert spaces, T : H1 → H2

is a bounded linear operator, S : H2 → H2 is a κ-strictly pseudocontractive mapping
with κ ∈ [0, 1), and g : H1 → H1 is a contraction mapping with constant ρ ∈ (0, 1).
Furthermore, we make the following assumptions:

Assumption 4.5.1. Suppose that the following conditions holds:

(1) a. The set C is a nonempty, closed and convex subset of H1.

b. A : H1 → H1 is pseudo-monotone, uniformly continuous and sequentially
weakly continuous on bounded subsets of C.

c. The solution set Γ := {z ∈ V I(C, A) : Tz ∈ F (S)} is nonempty.

(2). {γn}∞n=1 and {ϵn}∞n=1 are positive sequences satisfying the following conditions:

a. γn ∈ (0, 1), lim
n→∞

γn = 0,
∞∑
n=1

γn = ∞.

b. lim
n→∞

ϵn
γn

= 0.

Algorithm 4.5.2.

Initialization: Choose sequences {γn}∞n=1, {δn}∞n=1 and {εn}∞n=1 such that the condition
from Assumption 3.1(2) hold and let γ, σ ∈ (0, 1), δ ∈ [0, 1) and x0, x1 ∈ H1 be given
arbitrarily. Set n := 1.

Iterative Steps: Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose δn such that
0 ≤ δn ≤ δ̄n, where

δ̄n =

{
min

{
δ, εn

∥xn−xn−1∥

}
, if xn ̸= xn−1

δ, otherwise
(4.5.1)

Step 2. Set wn := xn + δn(xn − xn−1) and compute

un = wn − τnT
∗(I − Sβ)Twn, (4.5.2)

where Sβ is as defined in Lemma 2.1.8.
Compute zn := PC(un − A(un)). If un − zn = 0, then stop. Otherwise go to Step 3.
Step 3. Compute yn = un − γmn(un − zn), where mn is the smallest nonnegative integer
satisfying

⟨A(yn), un − zn⟩ ≥
σ

2
∥un − zn∥2. (4.5.3)

Set ηn := γmn .
Step 4. Compute

xn+1 = γng(xn) + (1− γn)PCn(un), (4.5.4)
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where Cn := {x ∈ H1 : fn(x) ≤ 0} and

fn(x) := ⟨A(yn), x− yn⟩. (4.5.5)

Set n := n+ 1 and go back to Step 1.

Remark 4.5.1. If {yn} is bounded, then fn is Lipschitz continuous. Indeed, if {yn} is
bounded, then there exists M̄ > 0 such that ∥A(yn)∥ ≤ M̄ for all n ≥ 1. Thus, for each
x, y ∈ C, we obtain

||fn(x)− fn(y)|| = ||⟨A(yn), x− yn⟩ − ⟨A(yn), y − yn⟩||
= ||⟨A(yn), x− y⟩||
≤ ∥A(yn)∥∥x− y∥
≤ M̄∥x− y∥.

Therefore, fn is Lipschitz continuous.

Lemma 4.5.2. Suppose that Assumption 4.5.1 holds. Then, the linesearch (4.5.3) is well
defined.

Proof. Suppose un = zn, then the method terminates at the solution of the GVIP (1.2.6).
Let un ̸= zn, we prove by contradiction by assuming that the contrast of (4.5.3) holds,
that is, for every nonnegative integer n

⟨A(yn), un − zn⟩ <
σ

2
∥un − zn∥2,

where yn = un − ηn(un − zn). Since yn → un as n → ∞ and A is continuous, it follows
from taking the limits as n→ ∞ that

⟨A(un), un − zn⟩ ≤
σ

2
∥un − zn∥2. (4.5.6)

Since zn = PC(un − A(un)), we have

⟨un − A(un)− zn, u− zn⟩ ≤ 0, ∀ u ∈ C.

Choose u = un then, we have

∥un − zn∥2 ≤ ⟨A(un), un − zn⟩. (4.5.7)

Combining (4.5.6) and (4.5.7), we obtain

∥un − zn∥2 ≤
σ

2
∥un − zn∥2

which contradicts the fact that un ̸= zn. Thus, the linesearch (4.5.3) is well defined.

Lemma 4.5.3. Let {xn} be a sequence generated by Algorithm 4.5.2 such that Assumption
4.5.1 hold, then we have that {xn} is bounded.
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Proof. Let x∗ ∈ Γ, then from Lemma 2.1.10 (i),(ii), Lemma 2.1.8 and Lemma 2.1.9,
we obtain that I − τnT

∗(I − Sβ)T is τn∥T∥2-average. That is, I − τnT
∗(I − Sβ)T =

(1 − βn)I + βnSn, ∀n ≥ 1, where βn = τn∥T∥2 and Sn is nonexpansive for all n ≥ 1.
Clearly, βn ∈ (0, 1). Therefore, we can rewrite un from (4.5.2) as

un = (1− βn)wn + βnSnwn, n ≥ 1. (4.5.8)

Hence, for any x∗ ∈ Γ, we obtain that

∥un − x∗∥2 ≤ (1− βn)∥wn − x∗∥2 + βn∥Snwn − x∗∥2 − βn(1− βn)∥wn − Snwn∥2

≤ ∥wn − x∗∥2 − βn(1− βn)∥wn − Snwn∥2

≤ ∥wn − x∗∥2. (4.5.9)

Thus, from (4.5.4) and (4.5.9), we obtain that

∥xn+1 − x∗∥ ≤ γn∥g(xn)− x∗∥+ (1− γn)∥PCn(un)− x∗∥
≤ γn∥g(xn)− x∗∥+ (1− γn)∥un − x∗∥
≤ γn∥g(xn)− x∗∥+ (1− γn)∥wn − x∗∥
≤ γn∥g(xn)− x∗∥+ (1− γn) (∥xn − x∗∥+ δn∥xn − xn−1∥)
≤ (1− γn)∥xn − x∗∥+ γnρ∥xn − x∗∥+ γn∥g(x∗)− x∗∥ (4.5.10)

+ (1− γn)δn∥xn − xn−1∥
≤ (1− γn(1− ρ))∥xn − x∗∥+ γn∥g(x∗)− x∗∥+ δn∥xn − xn−1∥.

Now observe from (4.5.1) that

δn∥xn − xn−1∥ ≤ ϵn ∀n ≥ 1,

which implies that

δn
γn

∥xn − xn−1∥ ≤ ϵn
γn

→ 0, as n→ ∞. (4.5.11)

Hence, there exists M > 0 such that

δn
γn

∥xn − xn−1∥ ≤M, ∀n ≥ 1.

Therefore, (4.5.10) becomes

∥xn+1 − x∗∥ ≤ (1− γn(1− ρ))∥xn − x∗∥+ γn(∥g(x∗)− x∗∥+M)

≤ max
{
∥xn − x∗∥, ∥g(x

∗)− x∥+M

1− ρ

}
...

≤ max
{
∥x1 − x∗∥, ∥g(x

∗)− x∥+M

1− ρ

}
.

Therefore, {xn} is bounded.
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Lemma 4.5.4. Let {xn} be a sequence generated by Algorithm 4.5.2 such that Assumption
4.5.1 holds. If lim

n→∞
∥PCn(un)− un∥ = 0, then

(i) lim
n→∞

ηn∥un − zn∥2 = 0.

(ii) lim
n→∞

∥un − zn∥ = 0.

Proof. Let x∗ ∈ Γ. Since A is uniformly continuous on bounded subsets of H1, then
{A(xn)}, {A(yn)}, {wn} and {un} are bounded. Also, using (4.5.3) we have

fn(un) = ⟨A(yn), un − yn⟩

= ηn⟨A(yn), un − zn⟩ ≥ ηn
σ

2
∥un − zn∥2. (4.5.12)

Thus, applying Lemma 2.5.16 and Remark 4.5.1, we obtain

∥PCn(un)− x∗∥2 ≤ ∥un − x∗∥2 − ∥PCn(un)− un∥2

= ∥un − x∗∥2 − dist2(un, Cn)

≤ ∥un − x∗∥2 −
(

1

M
fn(un)

)2

≤ ∥un − x∗∥2 −
(

1

2M
σηn∥un − zn∥2

)2

. (4.5.13)

Since {xn} is bounded, we obtain from (4.5.13), (4.5.9) and (4.5.4) that(
1

2M
σηn∥un − zn∥2

)2

≤ ∥un − x∗∥2 − ∥xn+1 − x∗∥2 + γn∥g(xn)− x∗∥2

≤ ∥un − xn+1∥2 + ∥xn+1 − x∗∥2 + 2∥un − xn+1∥∥xn+1 − x∗∥
− ∥xn+1 − x∗∥2 + γn∥g(xn)− x∗∥2

= ∥un − xn+1∥2 + 2∥un − xn+1∥∥xn+1 − x∗∥+ γn∥g(xn)− x∗∥2

= ∥un − xn+1∥ [∥un − xn+1∥+ 2∥xn+1 − x∗∥] + γn∥g(xn)− x∗∥2

≤ (∥un − PCnun∥+ ∥PCnun − xn+1∥)M1 + γn∥g(xn)− x∗∥2

≤ ∥un − PCnun∥M1 + γnM1∥g(xn)− PCnun∥+ γn∥g(xn)− x∗∥2,
(4.5.14)

where M1 := sup
n≥1

{∥un − xn+1∥+ 2∥xn+1 − x∗∥}. Hence lim
n→∞

ηn∥un − zn∥2 = 0.

We now show that lim
n→∞

∥un − zn∥ = 0.

From Algorithm 4.5.2, we obtain that lim inf
n→∞

ηn ≥ 0.

Case 1: Suppose that lim inf
n→∞

ηn > 0. Then, we obtain that

lim sup
n→∞

∥un − zn∥2 ≤ lim sup
n→∞

(
ηn∥un − zn∥2

)(
lim sup
n→∞

1

ηn

)
≤
(
lim sup
n→∞

ηn∥un − zn∥2
)(

1

lim inf
n→∞

ηn

)
= 0.
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Hence, lim sup
n→∞

∥un − zn∥ = 0, which implies that

lim
n→∞

∥un − zn∥ = 0.

Case 2: Suppose that lim inf
n→∞

ηn = 0.Without loss of generality, we may assume that there

exists a subsequence of {ηn} still denoted by {ηn} such that lim
n→∞

ηn = 0 and lim
n→∞

∥un −
zn∥ = t ≥ 0.

Setting vn = un +
1
γ
ηn(zn − un), we obtain that

lim
n→∞

∥vn − un∥ = 0. (4.5.15)

Also, by the definition of vn and (4.5.3), we obtain

⟨A(vn), un − zn⟩ <
σ

2
∥un − zn∥2,

which implies that

2⟨A(vn)− A(un), un − zn⟩+ 2⟨A(un), un − zn⟩ < σ∥un − zn∥2, ∀n ≥ 1. (4.5.16)

Set sn := un − A(un), then (4.5.16) becomes

2⟨A(vn)− A(un), un − zn⟩+ 2⟨un − sn, un − zn⟩ < σ∥un − zn∥2,

which implies

∥sn − un∥2 − ∥sn − zn∥2 < (σ − 1)∥un − zn∥2 (4.5.17)

− 2⟨A(vn)− A(un), un − zn⟩, ∀n ≥ 1.

Since A is uniformly continuous on bounded subsets of H1, if t > 0 then we obtain from
(4.5.15) and (4.5.17) that

lim sup
n→∞

(
∥sn − un∥2 − ∥sn − zn∥2

)
≤ (σ − 1)t < 0.

For ε = −(σ−1)
2

t > 0, there exists N ∈ N such that

∥sn − un∥2 − ∥sn − zn∥2 ≤ (σ − 1)t+ ε =
(σ − 1)t

2
< 0 ∀n ∈ N, n ≥ N.

Thus, we obtain that
∥sn − un∥ < ∥sn − zn∥ ∀n ≥ 1.

That is, ∥(un−A(un))−un∥ < ∥(un−A(un))−PC(un−A(un))∥ which is a contradiction.
Therefore, t = 0. Hence, lim

n→∞
∥un − zn∥ = 0.

Lemma 4.5.5. Let {xn} be a sequence generated by Algorithm 4.5.2 such that Assumption
4.5.1 holds. If there exists a subsequence {xnk

} of {xn} which converges weakly to a point
z ∈ H1 and lim

k→∞
∥unk

− wnk
∥ = 0 = lim

k→∞
∥PCnk

(unk
)− unk

∥, for some subsequences {unk
}

and {wnk
} of {un} and {wn} respectively. Then, z ∈ Γ.
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Proof. By Step 2 and (4.5.11), we obtain that

lim
n→∞

∥wn − xn∥ = lim
n→∞

δn∥xn − xn−1∥ = lim
n→∞

γn ·
δn
γn

∥xn − xn−1∥ = 0. (4.5.18)

Now, let {xnk
} be a subsequence of {xn} that converges weakly to some z ∈ H1. Thus,

{wnk
} also converges weakly to z ∈ H1. Hence, by our hypothesis, there exists a subse-

quence {unk
} of {un} that converges weakly to z ∈ H1. We may also assume without loss

of generality that, the subsequence {τnk
} of {τn} converges to a point say τ ∈

(
0, 1

∥T∥2

)
.

Also, by Lemma 2.1.9, T ∗(I − Sβ)A is an inverse strongly monotone operator. Therefore,
{T ∗(I − Sβ)Twnk

} is bounded. Hence, we obtain that

∥(I − τnk
T ∗(I − Sβ)T )wnk

− (I − τT ∗(I − Sβ)T )wnk
∥ = |τnk

− τ |∥T ∗(I − Sβ)Twnk
∥

→ 0, as k → ∞.

That is,
lim
k→∞

∥unk
− (I − τT ∗(I − Sβ)T )wnk

∥ = 0,

which implies from our hypothesis that

lim
k→∞

∥wnk
− (I − τT ∗(I − Sβ)T )wnk

∥ = 0. (4.5.19)

Thus, by Lemma 2.5.17, we obtain that z ∈ F (I − τT ∗(I − Sβ)T ), which together with
Lemma 2.1.8 implies that

Tz ∈ F (Sβ) = F (S). (4.5.20)

Now, from the characteristics property of metric projection PC, we obtain for all x ∈ C
that

⟨unk
− A(unk

)− znk
, x− znk

⟩ ≤ 0, ∀x ∈ C,

which implies that

0 ≤ ⟨znk
− unk

+ A(unk
), x− znk

⟩
= ⟨znk

− unk
, x− znk

⟩+ ⟨A(unk
), unk

− znk
⟩+ ⟨A(unk

), x− unk
⟩

≤ ∥znk
− unk

∥∥x− znk
∥+ ∥A(unk

)∥∥unk
− znk

∥+ ⟨A(unk
), x− unk

⟩. (4.5.21)

Fix x ∈ C and let k → ∞, since lim
k→∞

∥unk
− znk

∥ = 0 (by Lemma 4.5.4), we have from

(4.5.21) that

0 ≤ lim inf
k→∞

⟨A(unk
), x− unk

⟩ ∀x ∈ C. (4.5.22)

Now, choose a sequence {δk} of positive numbers such that δk+1 ≤ δk, ∀ k ≥ 1 and δk →
0 as k → ∞. Then, for each δk, we denote by Nk (which exists as a result of (4.5.22))
the smallest positive integer such that

⟨Aunj
, x− unj

⟩+ δk ≥ 0 ∀j ≥ Nk. (4.5.23)
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Since {δk} is decreasing, we have that {Nk} is increasing. Furthermore, we set for each

k ≥ 1, mNk
=

AuNk

∥AuNk
∥2 , provided AuNk

̸= 0. Then it is easy to see that ⟨AuNk
,mNk

⟩ =

1 for each k ≥ 1. Thus, by (4.5.23), we have that

⟨AuNk
, x+ δkmNk

− uNk
⟩ ≥ 0,

which implies by the pseudo-monotonicity of A that

⟨A(x+ δkmNk
), x+ δkmNk

− uNk
⟩ ≥ 0. (4.5.24)

Now, by the sequentially weakly continuity of A, we have that {Aunk
} converges weakly

to Az. If Az = 0, then z ∈ V I(C, A). On the other hand, if we suppose that Az ̸= 0, then
by the weakly lower semicontinuity of ∥ · ∥, we obtain that

0 < ∥Az∥ ≤ lim inf
k→∞

∥Aunk
∥.

Since {uNk
} ⊂ {unk

}, we obtain that

0 ≤ lim sup
k→∞

∥δkmNk
∥ = lim sup

k→∞

(
δk

∥Aunk
∥

)

≤
lim sup
k→∞

δk

lim inf
k→∞

∥Aunk
∥

≤ 0

∥Az∥
= 0.

Therefore, lim
k→∞

∥δkmNk
∥ = 0. Thus, letting k → ∞ in (4.5.24) yields

⟨Ax, x− z⟩ ≥ 0 ∀x ∈ C, (4.5.25)

which implies by Lemma 2.5.2 that z ∈ V I(C,A). This together with (4.5.20) gives that
z ∈ Γ.

We give our main result in the next theorem.

Theorem 4.5.6. Let Assumption 4.5.1 hold. Then the sequence {xn} generated by Algo-
rithm 4.5.2 converges strongly to z∗ := PΓg(z

∗).

Proof. Let z∗ = PΓg(z
∗), then from (4.5.9) and Lemma 2.1.1, we obtain

∥un − z∗∥2 ≤ ∥wn − z∗∥2

= ∥xn − z∗ + δn(xn − xn−1)∥2

= ∥xn − z∗∥2 + 2δn⟨xn − xn−1, xn − z∗⟩+ δn∥xn − xn−1∥2.
= ∥xn − z∗∥2 + δn

(
−∥xn−1 − z∗∥2 + ∥xn − z∗∥2 + ∥xn − xn−1∥2

)
+ δn∥xn − xn−1∥2

= ∥xn − z∗∥2 + δn
(
∥xn − z∗∥2 − ∥xn−1 − z∗∥2

)
+ 2δn∥xn − xn−1∥2. (4.5.26)
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By (4.5.4), (4.5.26) and Lemma 2.1.1, we obtain that

∥xn+1 − z∗∥2 = ∥γn(g(xn)− z∗) + (1− γn)(PCn(un)− z∗)∥2

≤ (1− γn)∥un − z∗∥2 − (1− γn)∥PCn(un)− un∥2

+ 2γn⟨g(xn)− z∗, xn+1 − z∗⟩
= (1− γn)∥xn − z∗∥2 − (1− γn)∥PCn(un)− un∥2 (4.5.27)

+ δn(1− γn)
(
∥xn − z∗∥2 − ∥xn−1 − z∗∥2

)
+ 2δn(1− γn)∥xn − xn−1∥2 + 2γn⟨g(xn)− z∗, xn+1 − z∗⟩.
≤ (1− γn)∥xn − z∗∥2 + γn [2⟨g(xn)− z∗, xn+1 − z∗⟩]

+ γn

[
δn
γn

(1− γn)
[
∥xn − z∗∥2 − ∥xn−1 − z∗∥2 + 2∥xn − xn−1∥2

]]
= (1− γn)∥xn − z∗∥2 + γnv̄n (4.5.28)

where v̄n := 2⟨g(xn)−z∗, xn+1−z∗⟩+ δn
γn
(1−γn) [∥xn − z∗∥2 − ∥xn−1 − z∗∥2 + ∥xn − xn+1∥2] .

To show that {xn} converges to z∗, we shall apply Lemma 2.5.36. That is, we show that
lim sup
k→∞

v̄nk
≤ 0 for every subsequence {∥xnk

− z∗∥} of {∥xn− z∗∥} satisfying the condition

lim inf
k→∞

(∥xn+1 − z∗∥ − ∥xnk
− z∗∥) ≥ 0. (4.5.29)

Now, suppose that {∥xnk
− z∗∥} is a subsequence of {∥xn− z∗∥} such that (4.5.29) holds.

Then,

lim inf
k→∞

(
∥xnk+1 − z∗∥2 − ∥xnk

− z∗∥2
)

= lim inf
k→∞

[(∥xnk+1 − z∗∥ − ∥xnk
− z∗∥) (∥xnk+1 − z∗∥+ ∥xnk

− z∗∥)]

≥ 0. (4.5.30)

On the other hand, we obtain from (4.5.27) that

(1− γnk
)∥PCnk

unk
− unk

∥2 ≤ ∥xnk
− z∗∥ − ∥xnk+1 − z∗∥2

+ δnk
(1− γnk

)
[
∥xnk

− z∗∥2 − ∥xnk−1 − z∗∥2
]

+ 2δnk
∥xnk

− xnk−1∥2 + 2γnk
⟨g(xnk

)− z∗, xnk+1 − z∗⟩
= ∥xnk

− z∗∥ − ∥xnk+1 − z∗∥2

+ δnk
(1− γnk

)
[
(∥xnk

− xnk−1∥+ ∥xnk−1 − z∗∥)2
]

− δnk
(1− γnk

)
[
∥xnk−1 − z∗∥2

]
+ 2δnk

∥xnk
− xnk−1∥2 + 2γnk

⟨g(xnk
)− z∗, xnk+1 − z∗⟩

≤ ∥xnk
− z∗∥ − ∥xnk+1 − z∗∥2

+ δnk

[
∥xnk

− xnk−1∥2 + 2∥xnk
− xnk−1∥∥xnk−1 − z∗∥

]
+ 2δnk

∥xnk
− xnk−1∥2 + 2γnk

⟨g(xnk
)− z∗, xnk+1 − z∗⟩

→ 0 as k → ∞.
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From (4.5.30) and Assumption 3.1, we have

lim sup
k→∞

(1− γnk
)∥PCnk

unk
− unk

∥2 ≤ lim sup
k→∞

[
∥xnk

− z∗∥ − ∥xnk+1 − z∗∥2
]

+ lim sup
k→∞

[
γnk

· δnk

γnk

[
∥xnk

− xnk−1∥2
]]

+ lim sup
k→∞

[
γnk

· δnk

γnk

[
2∥xnk

− xnk−1
∥∥xnk−1 − z∗∥

]]
+ lim sup

n→∞

[
2γnk

· δnk

γnk

∥xnk
− xnk−1∥2

]
+ lim sup

n→∞
[2γnk

⟨g(xnk
)− z∗, xnk+1 − z∗⟩]

= − lim inf
k→∞

[
∥xnk+1 − z∗∥2 − ∥xnk

− z∗∥2
]

≤ 0.

Hence,

lim
k→∞

∥PCnk
unk

− unk
∥ = 0. (4.5.31)

From (4.5.9) and (4.5.26), we obtain that

βnk
(1− βnk

)∥wnk
− Snk

wnk
∥ ≤ ∥wnk

− z∗∥2 − ∥unk
− z∗∥2

≤ ∥xnk
− z∗∥2 − ∥unk

− z∗∥2

+ δnk
(∥xnk

− z∗∥2 − ∥xnk−1 − z∗∥)
+ 2δnk

∥xnk
− xnk−1∥2. (4.5.32)

Again from (4.5.27), we obtain

−∥unk
− z∗∥2 ≤ −∥xnk+1 − z∗∥2 + 2γnk

⟨g(xnk
)− z∗, xnk+1 − z∗⟩,

which implies from (4.5.32) that

βnk
(1− βnk

)∥wnk
− Snk

wnk
∥ ≤ ∥xnk

− z∗∥2 − ∥xnk+1 − z∗∥2

+ 2γnk
⟨g(xnk

)− z∗, xnk+1 − z∗⟩
+ δnk

(
∥xnk

− z∗∥2 − ∥xnk−1 − z∗∥2
)
+ 2δnk

∥xnk
− xnk−1∥.

(4.5.33)

By taking the lim sup as k → ∞ in (4.5.33), we obtain that

lim sup
k→∞

βnk
(1− βnk

)∥wnk
− Snk

wnk
∥ = 0.

Hence,

lim
k→∞

∥wnk
− Snk

wnk
∥ = 0.

This implies that

lim
k→∞

∥wnk
− unk

∥ = βnk
lim
n→∞

∥wnk
− Snk

wnk
∥ = 0. (4.5.34)
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By similar method as in (4.5.18), we obtain

lim
k→∞

∥wnk
− xnk

∥ = 0. (4.5.35)

From (4.5.4), we obtain that

lim
k→∞

∥xnk+1 − PCnk
(unk

)∥ = 0. (4.5.36)

Using (4.5.36), (4.5.31), (4.5.34) and (4.5.35), we obtain that

lim
k→∞

∥xnk+1 − xnk
∥ = 0. (4.5.37)

Since {xnk
} is bounded, we take a subsequence {xnkj

} of {xnk
} such that {xnkj

} converges

weakly to z ∈ H1 and

lim sup
k→∞

⟨g(z∗)− z∗, xnk
− z∗⟩ = lim

j→∞
⟨g(z∗)− z∗, xnkj

− z∗⟩

= ⟨g(z∗)− z∗, z − z∗⟩.

Also, we obtain from (4.5.31), (4.5.34) and Lemma 4.5.5 that z ∈ Γ. Since z∗ = PΓg(z
∗),

we obtain from the previous equality that

lim sup
k→∞

⟨g(z∗)− z∗, xnk
− z∗⟩ ≤ 0, (4.5.38)

which implies by (4.5.37) that

lim sup
k→∞

⟨g(z∗)− z∗, xnk+1 − z∗⟩ ≤ 0. (4.5.39)

Thus, lim sup
k→∞

v̄nk
≤ 0. Hence from Lemma 2.5.36, we obtain that {xn} converges strongly

to z∗.

Remark 4.5.7. Observe that by setting H1 = H2 = H, S = I and T = IH (the iden-
tity operator on H) in Theorem 4.5.6, we obtain as a corollary, an inertial extrapolation
method for solving the classical VIP (1.2.1) when the cost operator is pseudo-monotone
and Lipschitz continuous.

4.5.2 Numerical experiments

We give in this section, some numerical examples of Algorithm 4.5.2 in comparison with
Algorithm 4.5.11 and related methods in the literature (Algorithm (4.5.41), Algorithm
(4.5.42) and Algorithm (4.5.43)) for solving the class of split VIP (Problem (1.2.6)) con-
sidered in this work. All codes are written in Matlab 2016 (b) and performed on a personal
computer with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM. In Ta-
bles 4.5.1-4.5.3, “Iter.” means the number of iterations while “CPU” means the CPU time
in seconds. In our computations, we choose γ = 1

4
= σ, γn = 1

5n+1
, δn = δ̄n, ϵn = γn

n0.01

and δ = 0.3. Also, we define g(x) = 2x
7

and S(x) = −4x. Then, g is a contraction with
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coefficient ρ = 2
7
and S is 3

5
-strictly pseudocontractive. Thus, we can choose β = 3

5
, so

that Sβ(x) = −x.
Furthermore, we define TOLn := 1

2
(||xn − PC(xn − λAxn)||2 + ||Sxn − STxn||2), and use

the stopping criterion TOLn < ε for the iterative processes, where ε is the predetermined
error. Note that if TOLn = 0, then xn is a solution of problem (1.2.6).

Example 4.5.8. Let H1 = RN and H2 = Rm. Define A : RN → RN by A(x) =
Mx + q, where the matrix M is formed as: M = V

∑
V ′, with V = I − 2vv′

∥v∥2 and∑
= diag(σ11, σ12, · · · , σ1N) been the Householder and the diagonal matrix, respectively,

and

σ1j = cos
jπ

N + 1
+ 1 +

cos π
N+1

+ 1− Ĉ(cos Nπ
N+1

+ 1)

Ĉ − 1
, j = 1, 2, · · · , N,

where Ĉ is the present condition number ofM ([121, Example 5.2]). In the numerical com-

putation, we choose Ĉ = 104, q = 0 and uniformly take the vector v ∈ RN in (−1, 1). Thus,
A is pseudo-monotone and uniformly continuous (see [121]). Furthermore, we generate the
bounded linear operator T ∈ RM×N with independent Gaussian components distributed
in the interval (0, 1), and then normalize each column of T with the unit norm. We set
C = {x ∈ RN : ||x|| ≤ 1}. The projection onto C is effectively computed in Matlab. We
consider different scenarios of the problem’s dimensions. That is, N = 100, 300, 500, 1000
and m = N/2, with starting points x1 = (1, 1, . . . , 1)′ and x0 = (0, 0, . . . , 0)′. For this
example, we take ε = 10−6 as the stopping criterion and obtain the numerical results
reported in Table 4.5.1 and Figure 4.9.

Table 4.5.1. Numerical results for Example 4.5.8 with ε = 10−6.
(N,m) Algorithm

4.5.2
Algorithm
4.5.11

Algorithm
(4.5.41)

Algorithm
(4.5.42)

Algorithm
(4.5.43)

(100, 50) CPU
Iter.

0.0545
412

0.1525
785

0.1435
633

0.1708
1465

0.1762
979

(300, 150)
CPU
Iter.

0.0368
277

0.1510
635

0.1285
448

0.1523
1465

0.1619
865

(500, 250)
CPU
Iter.

0.0314
283

0.1365
823

0.1280
501

0.1498
1465

0.1505
838

(1000, 500)
CPU
Iter.

0.0569
473

0.1414
795

0.1345
578

0.1747
1465

0.1704
790

Example 4.5.9. Let H1 = (l2(R), ||.||l2) = H2, where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈

R :
∞∑
i=1

|xi|2 < ∞} and ||x||l2 =

(
∞∑
i=1

|xi|2
) 1

2

, ∀x ∈ l2(R). Now, define the operator

T : l2(R) → l2(R) by Tx =
(
0, x1,

x2
2
, x3

3
, . . .

)
, ∀x ∈ l2(R). Then, T is a bounded linear

operator on l2(R) with adjoint T ∗y =
(
y2,

y3
2
, y4

3
, . . .

)
, ∀y ∈ l2(R).
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Figure 4.9: The behavior of TOLn with ε = 10−6 for Example 4.5.8: Top Left: (N,m) =
(100, 50); Top Right: (N,m) = (300, 150); Bottom Left: (N,m) = (500, 250); Bottom
Right: (N,m) = (1000, 500).
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Let C = {x ∈ l2(R) : |xi| ≤ 1
i
, i = 1, 2, 3, . . . }. Then, we have explicit formula for PC.

Now, define the operator A : l2(R) → l2(R) by

Ax =

(
||x||+ 1

||x||+ α

)
α,

for some α > 0. Then, A is pseudomonotone on l2(R), uniformly continuous and sequen-
tially weakly continuous on C but not Lipschitz continuous (see [248]). For this example,
we take ε = 10−8 as the stopping criterion and choose the starting points as follows:
Case 1: Take x1 = (1, 1

2
, 1
3
, · · · ) and x0 = (1

2
, 1
5
, 1
10
, · · · ).

Case 2: Take x1 = (1
2
, 1
5
, 1
10
, · · · ) and x0 = (1, 1

2
, 1
3
, · · · ).

Case 3: Take x1 = (1, 1
4
, 1
9
, · · · ) and x0 = (1

2
, 1
4
, 1
8
, · · · ).

Case 4: Take x1 = (1
2
, 1
4
, 1
8
, · · · ) and x0 = (1, 1

4
, 1
9
, · · · ).

The numerical results reported in Table 4.5.2 and Figure 4.10.

Table 4.5.2. Numerical results for Example 4.5.9 with ε = 10−8.
Cases Algorithm

4.5.2
Algorithm
4.5.11

Algorithm
(4.5.41)

Algorithm
(4.5.42)

Algorithm
(4.5.43)

1 CPU
Iter.

0.0136
37

0.1101
44

0.1110
58

0.1229
145

0.1334
118

2 CPU
Iter.

0.0146
40

0.1103
57

0.1100
60

0.1238
199

0.1314
123

3 CPU
Iter.

0.0190
38

0.1127
50

0.1212
58

0.1185
148

0.1283
118

4 CPU
Iter.

0.0136
34

0.1183
65

0.1183
53

0.1253
89

0.1435
107

Example 4.5.10. Let H1 = H2 = L2([0, 2π]) be endowed with inner product

⟨x, y⟩ =
∫ 2π

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 2π])

and norm

||x|| :=
(∫ 2π

0

|x(t)|2dt
) 1

2 ∀ x, y ∈ L2([0, 2π]).

Let C = {x ∈ L2([0, 2π]) : ||x − e||L2 ≤ b}, where e = 2 + sin 2t and b = 1. Then, the
metric projection PC is defined as:

PC(x) =

{
x, if x ∈ C,
x−e

||x−e||L2
b+ e, otherwise.

Now, define the operator A : L2([0, 2π]) → L2([0, 2π]) by

Ax(t) = L(x)D(x)(t), x ∈ L2([0, 2π]), t ∈ [0, 2π],
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Figure 4.10: The behavior of TOLn with ε = 10−8 for Example 4.5.9: Top Left: Case 1;
Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.
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where L(x) := 1
1+||x||2L2

and D is the Volterra integral mapping (which is monotone,

bounded and linear, see [39]), defined by

Dx(t) =

∫ t

0

x(s)ds, x ∈ L2([0, 2π]), t ∈ [0, 2π].

Then A is pseudo-monotone on L2([0, 2π]). Let T : L2([0, 2π]) → L2([0, 2π]) be defined by

Tx(s) =

∫ 2π

0

K(s, t)x(t)dt ∀x ∈ L2([0, 2π]),

where K is a continuous real-valued function defined on [0, 2π] × [0, 2π]. Then T is a
bounded linear operator with adjoint

T ∗x(s)

∫ 2π

0

K(t, s)x(t)dt ∀x ∈ L2([0, 2π]).

We take ε = 10−10 as the stopping criterion and choose the starting points as follows:
Case 1: Take x1(t) = 1 + t2 and x0(t) = t+ 5.

Case 2: Take x1(t) = 2t+ t2 and x0(t) = t+ 1.

Case 3: Take x1(t) = 0.7e−t + 1 and x0(t) = t+ t3.

Case 4: Take x1(t) = sin(t) + 1 and x0(t) = et.
The numerical results shown in Table 4.5.3 and Figure 4.11.

Table 4.5.3. Numerical results for Example 4.5.10 with ε = 10−10.
Cases Algorithm

4.5.2
Algorithm
4.5.11

Algorithm
(4.5.41)

Algorithm
(4.5.42)

Algorithm
(4.5.43)

1 CPU
Iter.

5.2616
56

12.2498
95

12.6245
76

13.4485
68

150.5827
158

2 CPU
Iter.

5.8211
53

8.9063
93

8.5748
73

9.4896
65

124.5990
151

3 CPU
Iter.

5.1099
55

11.1716
95

11.8042
76

14.2559
68

173.8901
157

4 CPU
Iter.

6.5188
55

24.9020
67

29.0189
102

46.8546
89

167.9730
157

Appendix 4.5.11. The Algorithm of [249]

Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Compute
yn = PC(xn − λnAxn),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λn∥Axn − Ayn∥ ≤ µ∥xn − yn∥. (4.5.40)
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Figure 4.11: The behavior of TOLn with ε = 10−10 for Example 4.5.10: Top Left: Case
1; Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.
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If xn = yn, then stop and xn is the solution of VIP. Otherwise,

Step 2: Compute
xn+1 = αng(xn) + (1− αn)zn,

where zn = yn − λn(Ayn − Axn) and g is a contraction mapping on H.

Appendix 4.5.12. The Algorithm in [243].

Let x1 ∈ C, define the sequences {xn}, {yn} and {tn} by
yn = PC(xn − τnT

∗(I − S)Txn),
tn = PC(yn − λnA(yn)),
xn+1 = PC(yn − λnA(tn)), n ≥ 1,

(4.5.41)

where {τn} ⊂ [a, b] for some a, b ∈
(
0,

1

∥T∥2

)
and {λn} ⊂ [c, d] for some c, d ∈

(
0,

1

L

)
, S :

H2 → H2 is a nonexpansive mapping, and A : C → H1 is a monotone and L-Lipschitz
continuous operator.

Appendix 4.5.13. The Algorithm in Tian and Jiang [244].

Let x1 ∈ C, define the sequences {xn}, {yn}, {wn} and {tn} by
yn = PC(xn − τnT

∗(I − S)Txn),

tn = PC(yn − λnA(yn)),

wn = PC(yn − λnA(tn)),

xn+1 = αng(xn) + (1− αn)wn, n ≥ 1,

(4.5.42)

where {αn} ⊂ (0, 1) with lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞, {τn} ⊂ [a, b] for some a, b ∈(
0,

1

∥T∥2

)
and {λn} ⊂ [c, d] for some c, d ∈

(
0,

1

L

)
, S : H2 → H2 is a nonexpansive

mapping, A : C → H1 is a monotone and L-Lipschitz continuous operator and g is a
contraction on C.

Appendix 4.5.14. The Algorithm in Chidume and Nnakwe [76].

For x1 = x ∈ H1, C1 = H1 and W1 = H1, define the sequence {xn} by

yin = PCi

(
xn − τT ∗(I − Si)Txn

)
, i = 1, · · · , N

uin = PCi

(
yin − λnAi(y

i
n)
)
, i = 1, · · · , N

tin = PCi

(
yin − λnAi(u

i
n)
)
, i = 1, · · · , N

Cin =
{
z ∈ H : ∥tin − z∥ ≤ ∥xn − z∥

}
Wn =

{
z ∈ H : ⟨z − xn, x− xn⟩ ≤ 0

}
xn+1 = PCn ∩Wnx, ∀n ≥ 1,

(4.5.43)
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where Cn = ∩Ni=1Cin, τ ∈
(
0, 1

∥A∥2

)
, λn ∈

(
0, 1

L

)
, Ci, i = 1, · · · , N are nonempty closed and

convex subsets of H1 such that C = ∩Ni=1Ci ̸= ∅, T : H1 → H2 is a bounded linear operator
such that T ̸= 0 and T ∗ is the adjoint of T. Ai : Ci → H1, i = 1, · · · , N is a finite family
of monotone and L-Lipschitz mappings and Si : H2 → H2, i = 1, · · · , N is a finite family
of nonexpansive mappings.
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CHAPTER 5

Results on Split Equalities Variational Inclusion and Split

Equilibrium Problems

5.1 Introduction

In this chapter, we propose an inertial Tseng’s extragradient algorithm for approximating
a common solution of split equalities of VIP, EP and FPP of nonexpansive semigroups
mapping. Furthermore, we propose and study an iterative algorithm for approximating
the common solution of VqIP and SEP in the framework of real Hilbert spaces and apply
our result to study certain optimization problems. Finally, we present some numerical
examples of our proposed methods in comparison with other methods in the literature to
show the applicability of our proposed methods.

5.2 On split equalities of some nonlinear optimization

problems

In this work, we introduce a new inertial Tseng’s extragradient method with self-adaptive
step sizes for approximating a common solution of split equalities of equilibrium problem
(EP), non-Lipschitz pseudomonotone variational inequality problem (VIP) and fixed point
problem (FPP) of nonexpansive semigroups in real Hilbert spaces. We prove that the
sequence generated by our proposed method converges strongly to a common solution
of the EP, pseudomonotone VIP and FPP of nonexpansive semigroups mapping without
any linesearch procedure nor the sequential weak continuity condition often assumed by
authors when solving non-Lipschitz VIPs. Finally, we provide some numerical experiments
for the proposed method in comparison with related method in the literature. Our result
improves, extends and generalizes several of the existing results in this direction.
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The following assumptions are required in solving equilibrium problems.

Assumption 5.2.1. [43] Let F : C × C → R be a bifunction satisfying the following
assumptions:

1) F (x, x) = 0, ∀ x ∈ C;

2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x ∈ C;

3) for each x, y, z ∈ C, lim sup
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

4) for each x ∈ C, y → F (x, y) is convex and lower semi continuous.

Lemma 5.2.1. [87] Let F : C × C → R be a bifunction satisfying Assumption 5.2.1. For
any r > 0 and x ∈ H, define a mapping T Fr : H → C as follows

T Fr (x) =

{
z ∈ C : F (z, y) +

1

r

〈
y − z, z − x

〉
≥ 0, ∀y ∈ C

}
.

Then, we have the following

(1) T Fr is nonempty and single valued;

(2) T Fr is firmly nonexpansive, that is〈
T Fr x− T Fr y, x− y

〉
≥ ∥T Fr x− T Fr y∥2;

equivalently

∥T Fr x− T Fr y∥2 ≤ ∥x− y∥2 − ∥(I − T Fr )x− (I − T Fr )y∥2, ∀ x, y ∈ H;

(3) F (T Fr ) = EP (F ) is closed and convex.

5.2.1 Proposed method

In this section, we present our proposed method and discuss its features. We begin with
the following assumptions under which our strong convergence result is obtained.

Assumption 5.2.2. Suppose that the following conditions hold:

(a) The feasible sets C and Q are nonempty, closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively.

(b) A : H1 → H1 and B : H2 → H2 are pseudomonotone and uniformly continuous.
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(c) The mapping A : H1 → H1 and B : H2 → H2 satisfies the following property:
whenever {xn} ⊂ C, xn ⇀ x∗, one has ∥Ax∗∥ ≤ lim inf

n→∞
∥Axn∥ and whenever

{xn} ⊂ Q, xn ⇀ x∗, one has ∥Bx∗∥ ≤ lim inf
n→∞

∥Bxn∥, respectively.

(d) F1 : H1 → H3 and F2 : H2 → H3 are bounded linear operators.

(e) Φ1 : C × C → R, Φ2 : Q×Q → R are bifunctions satisfying Assumption (5.2.1) and
Φ2 is upper semi continuous in the first argument.

(f) Ta = {T1(s) : 0 ≤ s < ∞} and Tb = {T2(u) : 0 ≤ u < ∞} are one-parameter
nonexpansive semigroups on H1 and H2, respectively.

(g) The solution set Γ =
{
x ∈ EP (Φ1)∩ V I(C, A)∩ F (Ta), y ∈ EP (Φ2)∩ V I(Q, B)∩

F (Tb) : F1x = F2y
}
̸= ∅.

(h) {αn} ⊂ (0, 1),
∞∑
n=1

αn = +∞, lim
n→∞

αn = 0, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1, 0 <

lim inf
n→∞

γn < lim sup
n→∞

γn < 1.

(i) Let {ϵn} and {ζn} be positive sequences such that lim
n→∞

ϵn
αn

= 0 and lim
n→∞

ζn
αn

= 0,

respectively.

(j) Let {σn} and {µn} be a nonnegative sequences such that
∞∑
n=1

σn < +∞ and
∞∑
n=1

µn <

+∞, respectively, {tn,1}, {tn,2} ⊂ (0,+∞), lim inf rn,1 > 0, lim inf rn,2 > 0

Algorithm 5.2.3.

Step 0: Choose sequences {βn}∞n=1, {γn}∞n=1, {θn}∞n=1 and {τn}∞n=1 such that the conditions
from Assumption 5.2.2 (h)-(i) hold. Select initial point (x0, y0) ∈ H1 × H2, let η ≥ 0,
ai ∈ (0, 1), i = 1, 2, λ1 > 0, ρ1 > 0, θ > 0, τ > 0 and set n := 1.
Step 1: Given the iterates xn−1, yn−1 and xn, yn for each n ≥ 1, choose θn such that
0 ≤ θn ≤ θ̄n and τn such that 0 ≤ τn ≤ τ̄n where

θ̄n :=

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(5.2.1)

Step 2: Compute

wn = (1− αn)
(
xn + θn(xn − xn−1)

)
.

Step 3: Compute
zn = wn − ηnF∗

1 (F1wn −F2φn),

ϕn = UΦ1
rn,1

zn,

un = PC(ϕn − λnAϕn),
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vn = un − λn(Aun − Aϕn),

xn+1 = (1− βn)vn + βn
1

tn,1

∫ tn,1

0

T1(s)vn ds

and

λn+1 =

{
min

{
a1||un−ϕn||
||Aun−Aϕn|| , λn + σn

}
, if Aun ̸= Aϕn

λn + σn, otherwise.
(5.2.2)

Step 4: Compute

τ̄n :=

{
min

{
τ, ζn

∥yn−yn−1∥

}
, if yn ̸= yn−1

τ, otherwise.
(5.2.3)

Step 5 Compute

φn = (1− αn)
(
yn + τn(yn − yn−1)

)
,

kn = φn + ηnF∗
2 (F1wn −F2φn),

Step 6: Compute
ψn = UΦ2

rn,2
kn,

sn = PQ(ψn − ρnBψn),

bn = sn − ρn(Bsn −Bψn),

yn+1 = (1− γn)bn + γn
1

tn,2

∫ tn,2

0

T2(u)bn du

and

ρn+1 =

{
min

{
a2||sn−ψn||
||Bsn−Bψn|| , ρn + µn

}
, if Bsn ̸= Bψn

ρn + µn, otherwise,
(5.2.4)

where the step size ηn is chosen such that for small enough ϵ > 0,

ηn ∈
[
ϵ,

2∥F1wn −F2φn∥2

∥F∗
2 (F1wn −F2φn)∥2 + ∥F∗

1 (F1wn −F2φn)∥2
− ϵ

]
,

if F1wn ̸= F2φn; otherwise, ηn = η.

Set n := n+ 1 and go back to Step 1.

Remark 5.2.2. The step sizes generated in (5.2.2) and (5.2.4) are allowed to increase per
iteration. This reduces their dependence on the initial step sizes. When n is large enough
the step size may not increase. We assume that the Algorithm 5.2.3 does not terminate
in finite number of iterations.
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Remark 5.2.3. By conditions (h) and (i), from (5.2.1) we observe that

lim
n→∞

θn||xn − xn−1|| = 0 and lim
n→∞

θn
αn

||xn − xn−1|| = 0. (5.2.5)

Similarly, from (5.2.3) we have

lim
n→∞

τn||yn − yn−1|| = 0 and lim
n→∞

τn
αn

||yn − yn−1|| = 0. (5.2.6)

Remark 5.2.4. Since the limit

lim
n→∞

(
1− λ2na

2
1

λ2n+1

)
= 1− a21 > 0, (5.2.7)

there exists n01 > 0 such that for all n > n01 , we have
(
1− λ2na

2
1

λ2n+1

)
> 0.

Similarly, we have that

lim
n→∞

(
1− ρ2na

2
2

ρ2n+1

)
= 1− a22 > 0, (5.2.8)

and there exists n02 > 0 such that for all n > n02 , we have
(
1− ρ2na

2
2

ρ2n+1

)
> 0.

Now, we set n0 = max{n01 , n02}.

Remark 5.2.5. From the definition of ηn, that is,

ηn ∈
[
ϵ,

2∥F1wn −F2φn∥2

∥F∗
2 (F1wn −F2φn)∥2 + ∥F∗

1 (F1wn −F2φn)∥2
− ϵ

]
we have

(ηn + ϵ)
[
∥F∗

2 (F1wn −F2φn)∥2 + ∥F∗
1 (F1wn −F2φn)∥2

]
≤ 2∥F1wn −F2φn∥2.

Expanding the last inequality, we have

ηn · ϵ
[
∥F∗

2 (F1wn −F2φn)∥2 + ∥F∗
1 (F1wn −F2φn∥)2

]
≤ ηn

(
2∥F1wn −F2φn∥2

− ηn

[
∥F∗

2 (F1wn −F2φn)∥2+

∥F∗
1 (F1wn −F2φn)∥2

])
. (5.2.9)

5.2.2 Convergence analysis

Lemma 5.2.6. Let {λn} and {ρn} be sequences generated by Algorithm 5.2.3. Then, we

have lim
n→∞

λn = λ, where λ ∈
[
min{ a1

K1
, λ1}, λ1 + b1

]
, b1 =

∞∑
n=1

σn, for some K1 > 0 and

lim
n→∞

ρn = ρ, where ρ ∈
[
min{ a2

K2
, ρ1}, ρ1 + b2

]
, b2 =

∞∑
n=1

µn, for some K2 > 0.
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Proof. Since A is uniformly continuous, we obtain from (2.1.4) that for any given ϵ > 0,
there exists a constant M < +∞ such that ∥Aun −Aϕn∥ ≤M∥un − ϕn∥+ ϵ. Thus, when
Aun − Aϕn ̸= 0 for all n ≥ 1 we have

a1∥un − ϕn∥
∥Aun − Aϕn∥

≥ a1∥un − ϕn∥
M∥un − ϕn∥+ ϵ

=
a1∥un − ϕn∥

(M + ϵ1)∥un − ϕn∥
=

a1
K1

,

where ϵ = ϵ1∥un − ϕn∥ for some ϵ1 ∈ (0, 1) and K1 = M + ϵ1. Hence, from the definition
of λn+1, the sequence {λn} is bounded below by min{ a1

K1
, λ1} and above by λ1 + b1. By

Lemma 2.5.34, it follows that lim
n→∞

λn denoted by λ = lim
n→∞

λn exists. Clearly, we have

λ ∈
[
min{ a1

K1
, λ1}, λ1 + b1

]
.

Similarly, we have lim
n→∞

ρn = ρ, and ρ ∈
[
min{ a2

K2
, ρ1}, ρ1 + b2

]
.

Lemma 5.2.7. Let
{
(xn, yn)

}
be a sequence generated by Algorithm 5.2.3 under Assump-

tion 5.2.2. Then

∥zn − x∗∥2 + ∥kn − y∗∥2 ≤ ∥wn − x∗∥2 + ∥φn − y∗∥2.

Proof. Let (x∗, y∗) ∈ Γ. Then, by applying Lemma 2.1.1, we have

∥zn − x∗∥2 = ∥wn − ηnF∗
1 (F1wn −F2φn)− x∗∥2

= ∥wn − x∗∥2 + η2n∥F∗
1 (F1wn − F2φn)∥2 − 2ηn ⟨wn − x∗, F∗

1 (F1wn −F2φn)⟩
= ∥wn − x∗∥2 + η2n∥F∗

1 (F1wn − F2φn)∥2 − 2ηn ⟨F1wn −F1x
∗, F1wn −F2φn⟩

= ∥wn − x∗∥2 + η2n∥F∗
1 (F1wn − F2φn)∥2 − ηn∥F1wn −F1x

∗∥2− (5.2.10)

ηn∥F1wn −F2φn∥2 + ηn∥F2φn −F1x
∗∥2.

Similarly, we have

∥kn − y∗∥2 = ∥φn + ηnF∗
2 (F1wn −F2φn)− y∗∥2

= ∥φn − y∗∥2 + η2n∥F∗
2 (F1wn − F2φn)∥2 − ηn∥F2φn −F2y

∗∥2 (5.2.11)

− ηn∥F1wn −F2φn∥2 + ηn∥F1wn −F2y
∗∥2

Adding (5.2.10) and (5.2.11), we have

∥zn − x∗∥2 + ∥kn − y∗∥2 = ∥wn − x∗∥2 + ∥φn − y∗∥2

+ η2n

[
∥F∗

1 (F1wn − F2φn)∥2 + ∥F∗
2 (F1wn − F2φn)∥2

]
− ηn

[
∥F1wn −F1x

∗∥2 + ∥F2φn −F2y
∗∥2
]
− 2ηn∥F1wn −F2φn∥2

+ ηn

[
∥F1wn −F2y

∗∥2 + ∥F2φn −F1x
∗∥2
]
.
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By (5.2.9) and the fact that F1x
∗ = F2y

∗, we have

∥zn − x∗∥2 + ∥kn − y∗∥2 = ∥wn − x∗∥2 + ∥φn − y∗∥2

− ηn

[
2∥F1wn −F2φn∥2

− ηn

(
∥F∗

1 (F1wn −F2φn)∥2 + ∥F∗
2 (F1wn −F2φn)∥2

)]
≤ ∥wn − x∗∥2 + ∥φn − y∗∥2

− ηn · ϵ
[
∥F∗

2 (F1wn −F2φn)∥2 + ∥F∗
1 (F1wn −F2φn)∥2

]
≤ ∥wn − x∗∥2 + ∥φn − y∗∥2, (5.2.12)

which is the desired result.

Lemma 5.2.8. Let
{
(xn, yn)

}
be a sequence generated by Algorithm 5.2.3 under Assump-

tion 5.2.2. Then

∥vn − x∗∥2 ≤ ∥zn − x∗∥2 − ∥zn − ϕn∥2 −
(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2

and

∥bn − y∗∥2 ≤ ∥kn − y∗∥2 − ∥kn − ψn∥2 −
(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2.

Proof. Let (x∗, y∗) ∈ Γ. Since UΦ1
rn,1

is firmly nonexpansive, it follows from Lemma 5.2.1
that

∥ϕn − x∗∥2 = ∥UΦ1
rn,1

zn − x∗∥ ≤ ∥zn − x∗∥2 − ∥zn − ϕn∥2. (5.2.13)

Similarly, we have

∥ψn − y∗∥2 = ∥UΦ2
rn,2

kn − y∗∥ ≤ ∥kn − y∗∥2 − ∥kn − ψn∥2. (5.2.14)

From (5.2.2), we obtain

λn+1 = min
{ a1∥un − ϕn∥
∥Aun − Aϕn∥

, λn + σn

}
≤ a1∥un − ϕn∥

∥Aun − Aϕn∥
,

which implies that

∥Aun − Aϕn∥ ≤ a1
λn+1

∥un − ϕn∥, ∀n ≥ 1. (5.2.15)

Similarly, we have

∥Bsn −Bψn∥ ≤ a2
ρn+1

∥sn − ψn∥, ∀n ≥ 1. (5.2.16)
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From the definition of vn in Step 3 and Lemma 2.1.1, we have

∥vn − x∗∥2 ≤ ∥un − λn(Aun − Aϕn)− x∗∥2

= ∥un − x∗∥2 + λ2n∥Aun − Aϕn∥2 − 2λn⟨Aun − Aϕn, un − x∗⟩
= ∥ϕn − x∗∥2 + ∥un − ϕn∥2 + 2⟨un − ϕn, ϕn − x∗⟩+ λ2n∥Aun − Aϕn∥2

− 2λn⟨Aun − Aϕn, un − x∗⟩
= ∥ϕn − x∗∥2 + ∥un − ϕn∥2 − 2⟨un − ϕn, un − ϕn⟩+ 2⟨un − ϕn, un − x∗⟩
− 2λn⟨Aun − Aϕn, un − x∗⟩+ λ2n∥Aun − Aϕn∥2

= ∥ϕn − x∗∥2 − ∥un − ϕn∥2 + 2⟨un − ϕn, un − x∗⟩ (5.2.17)

− 2λn⟨Aun − Aϕn, un − x∗⟩+ λ2n∥Aun − Aϕn∥2.

Since un = PC(ϕn − λnAϕn) and x
∗ ∈ C, we obtain from the characteristic property of PC

that
⟨un − ϕn + λnAϕn, un − x∗⟩ ≤ 0.

This implies that

⟨un − ϕn, un − x∗⟩ ≤ −λn⟨Aϕn, un − x∗⟩. (5.2.18)

Also since un ∈ C and x∗ ∈ Γ we have

⟨Aun, un − x∗⟩ ≥ 0, ∀ n ≥ 0. (5.2.19)

Applying (5.2.13), (5.2.15), (5.2.18) and (5.2.19) in (5.2.17), we obtain

∥vn − x∗∥2 ≤ ∥ϕn − x∗∥2 − ∥un − ϕn∥2 − 2λn⟨Aϕn, un − x∗⟩ − 2λn⟨Aun − Aϕn, un − x∗⟩
+ λ2n∥Aun − Aϕn∥2

= ∥ϕn − x∗∥2 − ∥un − ϕn∥2 − 2λn⟨Aun, un − x∗⟩+ λ2n∥Aun − Aϕn∥2

≤ ∥ϕn − x∗∥2 − ∥un − ϕn∥2 + λ2n
a21
λ2n+1

∥un − ϕn∥2

= ∥zn − x∗∥2 − ∥zn − ϕn∥2 −
(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2. (5.2.20)

Following the same line of argument, we have

∥bn − y∗∥2 ≤ ∥kn − y∗∥2 − ∥kn − ψn∥2 −
(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2, (5.2.21)

which completes the proof.

Lemma 5.2.9. Let
{
(xn, yn)

}
be a sequence generated by Algorithm 5.2.3 satisfying As-

sumption 5.2.2. Then
{
(xn, yn)

}
is bounded.
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Proof. Let x∗ ∈ Γ. From the definition of wn and Lemma 2.1.1, we have

∥wn − x∗∥ = ∥(1− αn)(xn + θn(xn − xn−1))− x∗∥
= ∥(1− αn)(xn − x∗) + (1− αn)θn(xn − xn−1)− αnx

∗∥
≤ (1− αn)∥xn − x∗∥+ (1− αn)θn∥xn − xn−1∥+ αn∥x∗∥

= (1− αn)∥xn − x∗∥+ αn

[
(1− αn)

θn
αn

∥xn − xn−1∥+ ∥x∗∥
]
. (5.2.22)

By (5.2.5), we have

lim
n→∞

[
(1− αn)

θn
αn

∥xn − xn−1∥+ ∥x∗∥
]
= ∥x∗∥.

Thus, there exists a constant M1 > 0 such that (1 − αn)
θn
αn
∥xn − xn−1∥ + ∥x∗∥ ≤ M1 for

all n ∈ N. Thus, from (5.2.22) it follows that

∥wn − x∗∥ ≤ (1− αn)∥xn − x∗∥+ αnM1.

Consequently, we have

∥wn − x∗∥2 ≤ (1− αn)
2∥xn − x∗∥2 + 2αn(1− αn)M1∥xn − x∗∥+ α2

nM
2
1 . (5.2.23)

Following similar procedure, we have

∥φn − y∗∥2 ≤ (1− αn)
2∥yn − y∗∥2 + 2αn(1− αn)M2∥yn − y∗∥+ α2

nM
2
2 . (5.2.24)

Adding (5.2.23) and (5.2.24), we obtain

∥wn − x∗∥2 + ∥φn − y∗∥2 ≤ (1− αn)
2
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ 2αn(1− αn)

(
M1∥xn − x∗∥+M2∥yn − y∗∥

)
+ α2

n(M
2
1 +M2

2 )

≤ (1− αn)
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ 2αn

(
M1∥xn − x∗∥+M2∥yn − y∗∥

)
+ αn(M

2
1 +M2

2 )

= (1− αn)
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ αncn, (5.2.25)

where cn = 2
(
M1∥xn − x∗∥+M2∥yn − y∗∥

)
+M2

1 +M2
2 .

From STEP 3, and by applying Lemma 2.1.1, (5.2.20) together with Remark 5.2.7, we
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have

∥xn+1 − x∗∥2 =
∥∥∥(1− βn)vn + βn

1

tn,1

∫ tn,1

0

T1(s)vnds− x∗
∥∥∥2

=
∥∥∥(1− βn)(vn − x∗) + βn

( 1

tn,1

∫ tn,1

0

T1(s)vnds− x∗
)∥∥∥2

= (1− βn)∥vn − x∗∥2 + βn

∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds− x∗
∥∥∥2

− βn(1− βn)
∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds− vn

∥∥∥2
= (1− βn)∥vn − x∗∥2 + βn

∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds−
1

tn,1

∫ tn,1

0

T1(s)x
∗ds
∥∥∥2

− βn(1− βn)
∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds− vn

∥∥∥2
≤ (1− βn)∥vn − x∗∥2 + βn∥vn − x∗∥2

− βn(1− βn)
∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds− vn

∥∥∥2
= ∥vn − x∗∥2 − βn(1− βn)

∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds− vn

∥∥∥2
≤ ∥zn − x∗∥2 − ∥zn − ϕn∥2 −

(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2 (5.2.26)

− βn(1− βn)
∥∥∥ 1

tn,1

∫ tn,1

0

T1(s)vnds− vn

∥∥∥2
≤ ∥zn − x∗∥2. (5.2.27)

Similarly, from STEP 5, and by applying Lemma 2.1.1, (5.2.21) together with Remark
5.2.7, we have

∥yn+1 − y∗∥2 ≤ ∥kn − y∗∥2 − ∥kn − ψn∥2 −
(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2 (5.2.28)

− γn(1− γn)
∥∥∥ 1

tn,2

∫ tn,2

0

T2(u)bndu− bn

∥∥∥2
≤ ∥kn − y∗∥2. (5.2.29)

From (5.2.12), (5.2.25), (5.2.27) and (5.2.29), we have

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 ≤ ∥zn − x∗∥2 + ∥kn − y∗∥2

≤ ∥wn − x∗∥2 + ∥φn − y∗∥2

≤ (1− αn)
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ αncn

≤ max {∥xn − x∗∥2 + ∥yn − y∗∥2, cn}
...

≤ max {∥xn0 − x∗∥2 + ∥yn0 − y∗∥2, cn0}
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Thus,
{
(xn, yn)

}
is bounded. Consequently, {zn}, {vn}, {kn} and {bn} are also bounded.

Lemma 5.2.10. Let
{
(xn, yn)

}
be a sequence generated by Algorithm 5.2.3 under As-

sumption 5.2.2. Then,

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 ≤ (1− αn)
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ αndn

− ηn · ϵ
[
∥F∗

2 (F1wn −F2φn)∥2 + ∥F∗
1 (F1wn −F2φn)∥2

]
− ∥zn − ϕn∥2 − ∥kn − ψn∥2 −

(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2

−
(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2

− βn(1− βn)∥
1

tn,1

∫ tn,1

0

T1(s)vnds− vn∥2

− γn(1− γn)∥
1

tn,2

∫ tn,2

0

T2(u)bndu− bn∥2.

Proof. Let (x∗, y∗) ∈ Γ. From Lemma 2.1.1 and the definition of wn, we have

∥wn − x∗∥2 = ∥(1− αn)(xn − x∗) + (1− αn)θn(xn − xn−1)− αnx
∗∥2

≤ ∥(1− αn)(xn − x∗) + (1− αn)θn(xn − xn−1)∥2 + 2αn⟨−x∗, wn − x∗⟩
≤ (1− αn)

2∥xn − x∗∥2 + 2(1− αn)θn∥xn − x∗∥∥xn − xn−1∥+ θ2n∥xn − xn−1∥2

+ 2αn⟨−x∗, wn − xn+1⟩+ 2αn⟨−x∗, xn+1 − x∗⟩
≤ (1− αn)∥xn − x∗∥2 (5.2.30)

+ αn

[
2(1− αn)∥xn − x∗∥ θn

αn
∥xn − xn−1∥+ θn∥xn − xn−1∥ ·

θn
αn

∥xn − xn−1∥

+ 2∥x∗∥∥wn − xn+1∥+ 2⟨x∗, x∗ − xn+1⟩
]
.

Following the same line of argument, we have

∥φn − y∗∥2 ≤ (1− αn)∥yn − y∗∥2 (5.2.31)

+ αn

[
2(1− αn)∥yn − y∗∥ τn

αn
∥yn − yn−1∥+ τn∥yn − yn−1∥ ·

τn
αn

∥yn − yn−1∥

+ 2∥y∗∥∥φn − yn+1∥+ 2⟨y∗, y∗ − yn+1⟩
]
.

Adding (5.2.30) and (5.2.31) we have

∥wn − x∗∥2 + ∥φn − y∗∥2 ≤ (1− αn)
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ αndn (5.2.32)

where dn =
[
2(1−αn)∥xn−x∗∥ θnαn

∥xn−xn−1∥+θn∥xn−xn−1∥· θnαn
∥xn−xn−1∥+2∥x∗∥∥wn−

xn+1∥+ 2⟨x∗, x∗ − xn+1⟩
]
+
[
2(1− αn)∥yn − y∗∥ τn

αn
∥yn − yn−1∥+ τn∥yn − yn−1∥ · τnαn

∥yn −

yn−1∥+ 2∥y∗∥∥φn − yn+1∥+ 2⟨y∗, y∗ − yn+1⟩
]
.
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From (5.2.12), (5.2.26), (5.2.28) and (5.2.32), we have

∥xn+1 − x∗∥2 + ∥yn+1 − y∗∥2 ≤ ∥zn − x∗∥2 + ∥kn − y∗∥2 − ∥zn − ϕn∥2 − ∥kn − ψn∥2

−
(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2 −

(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2

− βn(1− βn)∥
1

tn,1

∫ tn,1

0

T1(s)vnds− vn∥2

− γn(1− γn)∥
1

tn,2

∫ tn,2

0

T2(u)bndu− bn∥2

≤ ∥wn − x∗∥2 + ∥φn − y∗∥2

− ηn · ϵ
[
∥F∗

2 (F1wn −F2φn)∥2 + ∥F∗
1 (F1wn −F2φn)∥2

]
− ∥zn − ϕn∥2 − ∥kn − ψn∥2 −

(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2

−
(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2

− βn(1− βn)∥
1

tn,1

∫ tn,1

0

T1(s)vnds− vn∥2

− γn(1− γn)∥
1

tn,2

∫ tn,2

0

T2(u)bndu− bn∥2

≤ (1− αn)
[
∥xn − x∗∥2 + ∥yn − y∗∥2

]
+ αndn

− ηn · ϵ
[
∥F∗

2 (F1wn −F2φn)∥2 + ∥F∗
1 (F1wn −F2φn)∥2

]
− ∥zn − ϕn∥2 − ∥kn − ψn∥2 −

(
1− λ2na

2
1

λ2n+1

)
∥un − ϕn∥2

−
(
1− ρ2na

2
2

ρ2n+1

)
∥sn − ψn∥2

− βn(1− βn)∥
1

tn,1

∫ tn,1

0

T1(s)vnds− vn∥2

− γn(1− γn)∥
1

tn,2

∫ tn,2

0

T2(u)bndu− bn∥2,

which is the required result.

Theorem 5.2.11. Let
{
(xn, yn)

}
be a sequence generated by Algorithm 5.2.3 such that

Assumption 5.2.2 holds. Then, the sequence
{
(xn, yn)

}
converges strongly to (x̂, ŷ) ∈ Γ,

where x̂ = PD(0) and ŷ = PE(0), D := EP (Φ1) ∩ V I(C, A) ∩ F (Ta) and E := EP (Φ2) ∩
V I(Q, B) ∩ F (Tb).

Proof. Let (x̂, ŷ) ∈ Γ, where x̂ = PD(0) and ŷ = PE(0). Then, it follows from Lemma
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5.2.10 that

∥xn+1 − x̂∥2 + ∥yn+1 − ŷ∥2 ≤ (1− αn)
[
∥xn − x̂∥2 + ∥yn − ŷ∥2

]
+ αnd̂n (5.2.33)

where d̂n =
[
2(1−αn)∥xn− x̂∥ θnαn

∥xn−xn−1∥+θn∥xn−xn−1∥ · θnαn
∥xn−xn−1∥+2∥x̂∥∥wn−

xn+1∥+2⟨x̂, x̂−xn+1⟩
]
+
[
2(1−αn)∥yn− ŷ∥ τnαn

∥yn−yn−1∥+τn∥yn−yn−1∥· τnαn
∥yn−yn−1∥+

2∥ŷ∥∥φn−yn+1∥+2⟨ŷ, ŷ−yn+1⟩
]
. Now, we claim that the sequence {∥xn− x̂∥+∥yn− ŷ∥}

converges to zero. To show this, by Lemma 2.5.36 it suffices to show that lim sup
k→∞

d̂nk
≤ 0

for every subsequence {∥xnk
− x̂∥+ ∥ynk

− ŷ∥} of {∥xn − x̂∥+ ∥yn − ŷ∥} satisfying

lim inf
k→∞

((
∥xnk+1

− x̂∥+ ∥ynk+1
− ŷ∥

)
− (∥xnk

− x̂∥+ ∥ynk
− ŷ∥)

)
≥ 0. (5.2.34)

Suppose that {∥xnk
− x̂∥+ ∥ynk

− ŷ∥} is a subsequence of {∥xn− x̂∥+ ∥yn− ŷ∥} such that
(5.2.34) holds. Again, from Lemma 5.2.10, we obtain

ηnk
· ϵ
[
∥F∗

2 (F1wnk
−F2φnk

)∥2 + ∥F∗
1 (F1wnk

−F2φnk
)∥2
]
+ ∥znk

− ϕnk
∥2 + ∥knk

− ψnk
∥2

+
(
1−

λ2nk
a21

λ2nk+1

)
∥unk

− ϕnk
∥2 +

(
1−

ρ2nk
a22

ρ2nk+1

)
∥snk

− ψnk
∥2

+ βnk
(1− βnk

)∥ 1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds− vnk

∥2 + γnk
(1− γnk

)∥ 1

tnk,2

∫ tnk,2

0

T2(u)bnk
du− bnk

∥2

≤ (1− αnk
)
[
∥xnk

− x̂∥2 + ∥ynk
− ŷ∥2

]
−
[
∥xnk+1

− x̂∥2 + ∥ynk+1
− ŷ∥2

]
+ αnk

d̂nk
.

From (5.2.34) and the condition on αnk
we have

lim
k→∞

(
ηnk

· ϵ
[
∥F∗

2 (F1wnk
−F2φnk

)∥2 + ∥F∗
1 (F1wnk

−F2φnk
)∥2
]
+ ∥znk

− ϕnk
∥2 + ∥knk

− ψnk
∥2

+
(
1−

λ2nk
a21

λ2nk+1

)
∥unk

− ϕnk
∥2 +

(
1−

ρ2nk
a22

ρ2nk+1

)
∥snk

− ψnk
∥2

+ βnk
(1− βnk

)∥ 1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds− vnk

∥2

+ γnk
(1− γnk

)∥ 1

tnk,2

∫ tnk,2

0

T2(u)bnk
du− bnk

∥2
)
= 0.

From (5.2.7), (5.2.8) and the conditions on the control parameters, we have

lim
k→∞

∥znk
− ϕnk

∥ = 0, lim
k→∞

∥knk
− ψnk

∥ = 0, lim
k→∞

∥unk
− ϕnk

∥ = 0 lim
k→∞

∥snk
− ψnk

∥ = 0

(5.2.35)

lim
k→∞

∥∥∥ 1

tnk,2

∫ tnk,2

0

T2(u)bnk
du− bnk

∥∥∥ = 0, lim
k→∞

∥∥∥ 1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds− vnk

∥∥∥ = 0.

(5.2.36)
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Also, we have

lim
k→∞

[
∥F∗

2 (F1wnk
−F2φnk

)∥2 + ∥F∗
1 (F1wnk

−F2φnk
)∥2
]
= 0

which implies that

lim
k→∞

∥F∗
2 (F1wnk

−F2φnk
)∥ = 0, lim

k→∞
∥F∗

1 (F1wnk
−F2φnk

)∥ = 0, lim
k→∞

∥F1wnk
−F2φnk

∥ = 0.

From the definition of znk
, knk

and the previous inequality we have

∥znk
− wnk

∥ = ηnk
∥F∗

1 (F1wnk
−F2φnk

)∥ → 0, as k → ∞.

∥knk
− φnk

∥ = ηnk
∥F∗

2 (F1wnk
−F2φnk

)∥ → 0, as k → ∞.

Also, from the definition of vnk
, bnk

and (5.2.35), we have

∥vnk
− unk

∥ = λnk
∥Aunk

− Aϕnk
∥ ≤ λnk

a1
λnk+1

∥unk
− ϕnk

∥ → 0, as k → ∞.

∥bnk
− snk

∥ = ρnk
∥Bsnk

−Bψnk
∥ ≤ ρnk

a2
ρnk+1

∥snk
− ψnk

∥ → 0, as k → ∞.

From (5.2.36) and Lemma 2.1.12 we have

∥vnk
− T1(v)vnk

∥ ≤
∥∥∥vnk

− 1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds
∥∥∥

+
∥∥∥ 1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds− T1(v)

1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds
∥∥∥

+
∥∥∥T1(v) 1

tnk,1

∫ tnk,1

0

T1(s)vnk
ds− T1(v)vnk

∥∥∥→ 0, as k → ∞. (5.2.37)

Similarly, we have

lim
k→∞

∥bnk
− T2(b)bnk

∥ = 0. (5.2.38)

From the definition of xnk+1
and (5.2.35), we have

∥xnk+1
− vnk

∥ =
∥∥∥(1− βnk

)vnk
+ βnk

1

tnk,1

∫ tnk,1

0

T1(s)vnk
− vnk

∥∥∥
= βnk

∥∥∥ 1

tnk,1

∫ tnk,1

0

T1(s)vnk
− vnk

∥∥∥→ 0, as k → ∞. (5.2.39)

Similarly, we have

lim
k→∞

∥ynk+1
− bnk

∥ = 0. (5.2.40)
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Now, from Step 2 and by Remark 5.2.3, we get

∥wnk
− xnk

∥ = ∥(1− αnk
)(xnk

+ θnk
(xnk

− xnk−1))− xnk
∥

= ∥(1− αnk
)(xnk

− xnk
) + (1− αnk

)θnk
(xnk

− xnk−1)− αnk
xnk

∥
≤ (1− αnk

)∥xnk
− xnk

∥+ (1− αnk
)θnk

∥xnk
− xnk−1∥+ αnk

∥xnk
∥ → 0,
(5.2.41)

as k → ∞.

Similarly, we have

lim
k→∞

∥φnk
− ynk

∥ = 0. (5.2.42)

From (5.2.35)-(5.2.42) we have

lim
k→∞

∥xnk
− ϕnk

∥ = 0, lim
k→∞

∥xnk+1
− wnk

∥ = 0, lim
k→∞

∥ynk+1
− φnk

∥ = 0.. (5.2.43)

From (5.2.41) and (5.2.43) we have

lim
k→∞

∥xnk+1
− xnk

∥ = 0. (5.2.44)

Similarly, from (5.2.42) and (5.2.43)

lim
k→∞

∥ynk+1
− ynk

∥ = 0.

To complete the proof, we show that
(
wω(xn), wω(yn)

)
⊂ Γ. Since {xn} and {yn} are

bounded we have that wω(xn) and wω(yn) are nonempty. Let x̂ ∈ wω(xn) and ŷ ∈ wω(yn)
be arbitrary elements. Then there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x̂

as k → ∞. By (5.2.41), we have wω(xn) = wω(wn). Since lim
k→∞

∥xnk
− ϕnk

∥ = 0, we have

that ϕnk
⇀ x̂ ∈ C as k → ∞. From the characteristic property of PC, we have

⟨x− unk
, ϕnk

− λnk
Aϕnk

− unk
, ⟩ ≤ 0, x ∈ C,

which implies that

1

λnk

⟨ϕnk
− unk

, x− unk
⟩ ≤ ⟨Aϕnk

, x− unk
⟩ , ∀ x ∈ C.

Consequently, we have

1

λnk

⟨ϕnk
− unk

, x− unk
⟩+ ⟨Aϕnk

, unk
− ϕnk

⟩ ≤ ⟨Aϕnk
, x− ϕnk

⟩ , ∀ x ∈ C.

(5.2.45)

Applying the fact that lim
k→∞

∥ϕnk
− unk

∥ = 0 and lim
k→∞

λnk
= λ > 0 to (5.2.45), we have

0 ≤ lim inf
k→∞

⟨Aϕnk
, x− ϕnk

⟩ , ∀ x ∈ C. (5.2.46)
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Also, we have that

⟨Aunk
, x− unk

⟩ = ⟨Aunk
− Aϕnk

, x− ϕnk
⟩+ ⟨Aϕnk

, x− ϕnk
⟩+ ⟨Aunk

, ϕnk
− unk

⟩ .
(5.2.47)

Since A is uniformly continuous on H and lim
k→∞

∥ϕnk
− unk

∥, we have

lim
k→∞

∥Aϕnk
− Aunk

∥ = 0. (5.2.48)

From (5.2.46)-(5.2.48), we have

0 ≤ lim inf
k→∞

⟨Aunk
, x− unk

⟩ ∀ x ∈ C. (5.2.49)

Let {δk} be a sequence of positive numbers such that δk+1 ≤ δk, ∀ k ≥ 1 and δk →
0 as k → ∞. Then, for each k ≥ 1, we denote by Nk the smallest positive integer such
that

⟨Aunj
, x− unj

⟩+ δk ≥ 0 ∀j ≥ Nk, (5.2.50)

where the existence of Nk follows from (5.2.49). We have that {Nk} is increasing since {δk}
is decreasing. Furthermore, since {unk

} ⊂ C we can suppose AuNk
̸= 0 (otherwise, uNk

is

a solution) and we set for each k ≥ 1, hNk
=

AuNk

∥AuNk
∥2 . Then we have that ⟨AuNk

, hNk
⟩ =

1 for each k ≥ 1. Thus, by (5.2.50), we have that

⟨AuNk
, x+ δkhNk

− uNk
⟩ ≥ 0,

which implies by the pseudo-monotonicity of A that

⟨A(x+ δkhNk
), x+ δkhNk

− uNk
⟩ ≥ 0. (5.2.51)

Since unk
⊂ C, then {unk

} converges weakly to x̂ ∈ C. If Ax̂ = 0, then x̂ ∈ V I(C, A). On
the contrary, we suppose Ax̂ ̸= 0. Since A satisfies condition (c), we have

0 < ∥Ax̂∥ ≤ lim inf
k→∞

∥Aunk
∥.

Since {uNk
} ⊂ {unk

}, we obtain that

0 ≤ lim sup
k→∞

∥δkhNk
∥ = lim sup

k→∞

(
δk

∥Aunk
∥

)
≤

lim sup
k→∞

δk

lim inf
k→∞

∥Aunk
∥
= 0.

Therefore, lim
k→∞

∥δkhNk
∥ = 0. Letting k → ∞ in (5.2.51) gives

⟨Ax, x− x̂⟩ ≥ 0, ∀x ∈ C, (5.2.52)

which implies by Lemma 2.5.2 that x̂ ∈ V I(C, A). By similar argument, we have that
ŷ ∈ V I(Q, B).
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Now, to show that x̂ ∈ F (Ta) and ŷ ∈ F (Tb). On the contrary, we suppose that T1(v)x̂ ̸= x̂
and T2(b)x̂ ̸= ŷ, for all v ≥ 0 and b ≥ 0. Then, it follows from the Opial condition of
Hilbert space and from (5.2.37) that

lim inf
k→∞

∥vnk
− x̂∥ < lim inf

k→∞
∥vnk

− T1(v)x̂∥

≤ lim inf
k→∞

{
∥vnk

− T1(v)vnk
∥+ ∥T1(v)vnk

− T1(v)x̂∥
}

≤ lim inf
k→∞

{
∥vnk

− T1(v)vnk
∥+ ∥vnk

− x̂∥
}

= lim inf
k→∞

∥vnk
− x̂∥,

which is a contradiction. Thus, it follows that T1(v)x̂ = x̂ for all v ≥ 0 which implies that
x̂ ∈ F (Ta). Similarly, ŷ ∈ F (Tb).

Next, from (5.2.35) we have that lim
k→∞

∥ϕnk
− znk

∥ = lim
k→∞

∥UΦ1
rnk,1

znk
− znk

∥ = 0, and

since znk
⇀ x̂ it follows from the demiclosed property of nonexpansive mappings that

x̂ ∈ EP (Φ1). Similarly, we have that ŷ ∈ EP (Φ2). Since F1x̂− F2ŷ ∈ wω(F1wn − F2φn),
it follows from the weakly lower semi-continuity of the norm that

∥F1x̂−F2ŷ∥ ≤ lim inf
n→∞

∥F1wn −F2φn∥ = 0.

Hence, we have that (x̂, ŷ) ∈ Γ. Since x̂ ∈ wω(xn) and ŷ ∈ wω(yn) are arbitrary elements,

it follows that
(
wω(xn), wω(yn)

)
⊂ Γ.

To conclude, we show that

lim sup
k→∞

(〈
x̂, x̂− xnk+1

〉
+
〈
ŷ, ŷ − ynk+1

〉)
≤ 0.

By the boundedness of
{
xnk

}
, it follows that there exists a subsequence {xnkj

} of {xnk
}

which converges weakly to some x̄ ∈ H, and such that

lim
j→∞

〈
x̂, x̂− xnkj

〉
= lim sup

k→∞
⟨x̂, x̂− xnk

⟩ . (5.2.53)

From (5.2.53) and the fact that x̂ = PD(0) we have

lim sup
k→∞

⟨x̂, x̂− xnk
⟩ = lim

j→∞

〈
x̂, x̂− xnkj

〉
= ⟨x̂, x̂− x̄⟩ ≤ 0. (5.2.54)

From (5.2.44) and (5.2.54), it follows that

lim sup
k→∞

〈
x̂, x̂− xnk+1

〉
= lim sup

k→∞
⟨x̂, x̂− xnk

⟩ = ⟨x̂, x̂− x̄⟩ ≤ 0. (5.2.55)

Following the same line of argument and the fact that ŷ = PE(0) we have

lim sup
k→∞

〈
ŷ, ŷ − ynk+1

〉
= lim sup

k→∞
⟨ŷ, ŷ − ynk

⟩ = ⟨ŷ, ŷ − ȳ⟩ ≤ 0. (5.2.56)
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Adding (5.2.55) and (5.2.56), we obtain

lim sup
k→∞

(〈
x̂, x̂− xnk+1

〉
+
〈
ŷ, ŷ − ynk+1

〉)
≤ 0. (5.2.57)

Thus, by (5.2.43) and (5.2.57) we have lim sup
k→∞

d̂nk
≤ 0. Now, applying Lemma 2.5.36 to

(5.2.33) we have {∥xn−x̂∥+∥yn−ŷ∥} converges to zero, which implies that lim
n→∞

∥xn−x̂∥ =

0 and lim
n→∞

∥yn − ŷ∥ = 0. Therefore,
(
{xn}, {yn}

)
converges strongly to (x̂, ŷ).

5.2.3 Numerical experiments

In this section, we discuss the numerical behavior of our method, (Proposed Alg.) Al-
gorithm 5.2.3 in comparison with the method in Appendix 5.2.2 proposed by Latif et al.
(Latif et al. Alg.), which is the only related result we could find in the literature. We plot
the graph of errors against the number of iterations in each case of both examples using
|xn+1−xn| < 10−4 and ∥xn+1−xn∥ < 10−4 in Example 5.2.12 and Example 5.2.13 respec-
tively as the stopping criterion. The numerical computations are reported in Figures 5.1
- 5.8 and Tables 5.2.1-5.2.2 with all implementations performed using Matlab 2021 (b).

In our computation, we choose θ = 3.5, τ = 2.44, λ1 = 1.5, ρ1 = 1.8, a1 = 0.8, a2 =
0.9, ϵn = ζn = 1

(2n+1)3
, αn = 3

2n+1
, βn = 1

4
, γn = 1

4
, ρn = σn = 100

(n+1)2
, η = 0.5, rn,1 =

2.8, rn,2 = 3.5, tn,1 = 4.5, tn,2 = 5.5, s = u = 1.5. For Appendix 5.2.14, we choose α =
0.85, ςn = κn = 1

6
, ξn = δn = 1−αn

2
.

Example 5.2.12. Let H1 = H2 = H3 = R the set of all real numbers with the inner
product ⟨x, y⟩ = xy, ∀ x, y ∈ R and induced norm | · |. For ri > 0, i = 1, 2, consider
C = [−10, 10] andQ = [0, 20].We define the bifunction Φ1 : C×C → R and Φ2 : Q×Q → R
as follows:

UΦ1
r1

(u) =
u

3r1 + 1
, ∀ x ∈ C

and

UΦ2
r2

(v) =
v

r2 + 1
, ∀ y ∈ Q.

Let F1x = 2x and F2x = 5x which implies that F∗
1x = 2x and F∗

2x = 5x. Next we define
A : H1 → H1 as Ax = 2x and B : H2 → H2 as Bx = 3x. We define the mappings
T1(s) : R → R and T2(u) : R → R as follows; T1(s)x = 10−sx and T2(u)y = 10−2uy.
Clearly, we observe that T1(s) and T2(u) are nonexpansive semigroups.

We choose V1 = x0,V2 = y0 and consider the following cases for the numerical experiments
of this example.
Case 1: Take (x0, y0) = (−13.5, 8.0) and (x1, y1) = (5.7,−9.1).

Case 2: Take (x0, y0) = (15.1, 7.9) and (x1, y1) = (6.4, 81.3).

Case 3: Take (x0, y0) = (10.9,−11.8) and (x1, y1) = (−37.2, 26.8).

Case 4: Take (x0, y0) = (−14.9,−9.8) and (x1, y1) = (−25.2,−17.7).
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Table 5.2.1: Numerical Results for Example 5.2.12

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Latif et al. Alg. 86 0.0085 86 0.0062 89 0.0084 88 0.0064

Proposed Alg. 5.2.3 64 0.0132 64 0.0078 64 0.0093 64 0.0018
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Figure 5.1: Example 5.2.12: Case 1
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Figure 5.2: Example 5.2.12: Case 2
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Figure 5.3: Example 5.2.12: Case 3
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Figure 5.4: Example 5.2.12: Case 4

Example 5.2.13. Let H1 = H2 = H3 = (l2(R), ∥ · ∥2), where

l2(R) := {x = (x1, x2, . . . , xn, . . .), xi ∈ R :
∞∑
i=1

|xi|2 < +∞},

||x||2 =

√
(
∞∑
i=1

|xi|2) and ⟨x, y⟩ =
∑∞

i=1 xiyi for all x ∈ ℓ2(R). For ri > 0, i = 1, 2, we

define the sets C := {x ∈ ℓ2 : ∥x∥ ≤ 1} and Q := {y ∈ ℓ2 : ∥y∥ ≤ 1}. Let F1 : H1 → H2,
F2 : H2 → H3 be defined by F1x = x

3
and F2x = 2x

5
respectively which implies that

F∗
1y = y

3
and F∗

2y = 2y
5
. Clearly, F1 and F2 are bounded linear operators. We define

Φ1 : C×C → R and Φ2 : Q×Q → R by Φ1(x, y) = ⟨L1x, y−x⟩ and Φ2(x, y) = ⟨L2x, y−x⟩,
where L1x = x

3
and L2x = x

2
. Observe that Φ1 and Φ2 satisfy Assumption 5.2.2. After

simple calculation and applying Lemma 5.2.1, we obtain

UΦ1
r1

(u) =
3u

r1 + 3
, ∀ x ∈ C,

and

UΦ2
r2

(v) =
2v

r2 + 2
, ∀ y ∈ Q.

Let A : H1 → H1 be defined by A(x1, x2, x3, · · · ) = (x1e
−x21 , 0, 0, · · · ) and B : H2 → H2 as

B(x1, x2, x3, · · · ) = (5x1e
−x21 , 0, 0, · · · ). Clearly, we see that A and B are pseudomonotone

mappings. We define the mappings T1(s) : R → R and T2(u) : R → R as follows;
T1(s)x = 10−5sx and T2(u)y = 10−3uy. Clearly, we observe that T1(s) and T2(u) are
nonexpansive semigroups.

We choose V1 = x0,V2 = y0 and consider different initial values as follows:
Case 1: x0 = (1

2
, 1
4
, 1
8
, · · · ), y0 = (1

2
, 1
4
, 1
8
, · · · );
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x1 = (1
3
, 1
9
, 1
27
, · · · ), y1 = (1

3
, 1
9
, 1
27
, · · · );

Case 2: x0 = (1
2
, 1
6
, 1
18
, · · · ), y0 = (1

2
, 1
4
, 1
8
, · · · );

x1 = (−1
3
, 1
6
,− 1

18
, · · · ), y1 = (−1

3
, 1
6
,− 1

18
, · · · );

Case 3: x0 = (3
8
, 3
16
, 3
32
, · · · ), y0 = (5

9
, 5
18
,− 5

36
, · · · );

x1 = (−1
3
, 1
9
,− 1

27
, · · · ), y1 = (1

2
, 1
6
, 1
12
, · · · );

Case 4: x0 = (3
8
, 3
16
, 3
32
, · · · ), y0 = (5

9
, 5
18
, 5
36
, · · · ).

x1 = (1
9
, 1
18
, 1
36
, · · · ), y1 = (− 7

12
, 7
24
,− 7

36
).

Table 5.2.2: Numerical Results for Example 5.2.13

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Latif et al. Alg. 72 0.0134 72 0.0192 72 0.0147 72 0.0073

Proposed Alg. 5.2.3 58 0.0211 58 0.0171 58 0.0263 58 0.0100
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Figure 5.5: Example 5.2.13: Case 1
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Figure 5.6: Example 5.2.13: Case 2

250



100 101 102

Iteration number (n)

10-4

10-3

10-2

10-1

100

E
rr

or
s

Latif & Eslamian Alg. (xn)

Latif & Eslamian Alg. (yn)

Proposed Alg.  (xn)

Proposed Alg.  (yn)

Figure 5.7: Example 5.2.13: Case 3
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Figure 5.8: Example 5.2.13: Case 4

Appendix 5.2.14. Algorithm 1 of Latif et al. [159]

Choose sequences {βn}∞n=1, {αn}∞n=1, {δn}∞n=1 such that βn+αn+δn = 1. Select initial point
x0 ∈ H1, y0 ∈ H2, let ϑ ≥ 0. Set n := 1.



zn = xn − ϑnF∗
1 (F1xn −F2yn),

ϕn = UΦ1
rn,1

zn,

un = PC(ϕn − ςnAϕn),

pn = PC(ϕn − ςnAun),

xn+1 = αnV1 + ξnpn + δnT1(s)pn

kn = yn + ϑnF∗
2 (F1xn −F2yn),

ψn = UΦ2
rn,2

kn,

sn = PQ(ψn − κnBψn),

ln = PQ(ψn − κnBsn),

yn+1 = αnV2 + ξnln + δnT2(u)ln

(5.2.58)

where the step size ϑn is chosen such that for small enough ϵ > 0,

ϑn ∈
[
ϵ,

2∥F1xn −F2yn∥2

∥F∗
2 (F1xn −F2yn)∥2 + ∥F∗

1 (F1xn −F2yn)∥2
− ϵ

]
,

if F1xn ̸= F2yn; otherwise, ϑn = η.
Set n := n+ 1 and go back to Step 1.
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5.3 On minimum-norm solutions of inclusion and split

equilibrium problems

In this work, we study the problem of finding the common solutions of VqIP and the SEP.
We propose a modified inertial forward-backward splitting algorithm with self-adaptive
step size for approximating the solution of the problem in Hilbert spaces. Unlike several
of the existing results in this direction, our proposed method only requires that the un-
derlying single-valued operator be monotone and Lipschitz continuous. This relaxes the
strong assumption of co-coerciveness (inverse strongly monotonicity) imposed in several
of the existing results. Moreover, our method combines the inertial technique with the
forward-backward splitting method and self-adaptive step sizes for solving the common so-
lution problem. Unlike several of the existing methods, the self-adaptive step sizes ensure
that knowledge of the norm of the bounded linear operator nor of the Lipschitz constant
are not required to implement our algorithm. We prove that the sequence generated by
our proposed method converges strongly to a minimum-norm solution of the aforemen-
tioned problem. Furthermore, we apply our result to study certain optimization problems.
Finally, we provide some numerical experiments of our proposed method in comparison
with other existing methods in the literature.

5.3.1 Proposed method

In this section, we present our proposed method and discuss its features. We begin by
defining the following functions;

g(x) =
1

2
∥(I − T F2

r )Ax∥2, h(x) =
1

2
∥(I − T F1

r )x∥2

and

G(x) = A∗(I − T F2
r )Ax, H(x) = (I − T F1

r )x.

It can be easily verified from Aubin [30] that g and h are weakly lower semi-continuous,
convex and differentiable functions. We now give the following assumptions under which
our strong convergence result is obtained.

Assumption 5.3.1. Suppose that the following conditions hold:

(a) The feasible sets C and Q are nonempty, closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively.

(b) F1 : C × C → R, F2 : Q×Q → R are bifunctions satisfying Assumption (5.2.1) and
F2 is upper semi continuous in the first argument.

(c) A : H1 → H2 is a bounded linear operator, B : H1 → H1 is a Lipschitz continuous
and monotone operator, and D : H1 → 2H1 is a maximal monotone operator such
that Γ = (B+D)−1(0)∩Ω ̸= ∅, where Ω = {z ∈ C : z ∈ EP (F1) and Az ∈ EP (F2)}.
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(d) {αn}, {βn} and {γn} are sequences in (0, 1) satisfying βn + γn ≤ 1, limn→∞ γn =
0,
∑∞

n=1 γn = ∞, inf(1−βn− γn)βn > 0, 0 < a ≤ αn, βn ≤ b < 1, 0 < c ≤ τn ≤ d < 4.

(e) Let {ϵn} be a positive sequence such that limn→∞
ϵn
γn

= 0 and {rn} ⊂ (0,∞) such that
lim inf
n→∞

rn > 0.

Algorithm 5.3.2.

Step 1: Select initial point x0, x1 ∈ H1, let s1 > 0, µ ∈ (0, 1), θ ≥ 3 and set n = 1. Given
the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n :=

{
min

{
n−1
n+θ−1

, ϵn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+θ−1

, otherwise.
(5.3.1)

Step 2: Compute
wn = xn + θn(xn − xn−1).

Step 3: Compute
zn = T F1

rn

(
I − λnA

∗(I − T F2
rn )A

)
wn

and
yn = αnwn + (1− αn)zn.

Step 4: Compute

un = (I + snD)−1(I − snB)yn = JDsn(I − snB)yn

and
vn = un − sn(Bun −Byn).

Step 5 Compute
xn+1 = (1− βn − γn)wn + βnvn,

where

λn :=

{
τn

g(wn)
∥G(wn)∥2+∥H(wn)∥2 , if ∥G(wn)∥2 + ∥H(wn)∥2 ̸= 0,

0, otherwise
(5.3.2)

and

sn+1 =

{
min

{
µ∥yn−un∥

∥Byn−Bun∥ , sn

}
if Byn −Bun ̸= 0,

sn, otherwise.
(5.3.3)

Set n := n+ 1 and go back to Step 1.

Remark 5.3.1. � Different from all existing methods for finding the common solu-
tions of the VIP (1.2.9) and SEP (1.2.10)-(1.2.11), our proposed method requires
the underlying operator B to be monotone and Lipschitz continuous. This relaxes
the strong assumption of co-coerciveness (inverse strongly monotonicity) on the op-
erator.
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� Contrast to the methods in the literature, the implementation of our method does
not depend on the norm of the bounded linear operator nor the Lipschitz constant
of the monotone operator. This makes our method easier to implement than several
other methods in the literature, which depends on the norm of the bounded linear
operator.

� Our method employs the inertial technique to improve the speed of convergence
of the proposed algorithm. Unlike several other inertial methods in the literature,

our method does not require the summability condition
( ∞∑
n=1

αn∥xn − xn−1∥ <∞
)
,

which makes our method easily implementable.

� The sequence generated by our proposed method was proved to converge strongly
to a minimum-norm solution of the investigated problem under mild conditions.
It is known that minimum-norm solutions of problems find applications in several
practical problems. Moreover, our convergence analysis is not dependent on the
usual “Two cases approach”, which is widely used in many papers to guarantee
strong convergence.

Remark 5.3.2. By conditions (d) and (e), one can easily verify from (5.3.1) that

lim
n→∞

θn||xn − xn−1|| = 0 and lim
n→∞

θn
γn

||xn − xn−1|| = 0. (5.3.4)

Remark 5.3.3. From (5.3.3) in Algorithm 5.3.2, we have that sn+1 ≤ sn for all n ≥ 1.
Also, from our conditions we have that B is L-Lipschitz continuous, therefore when Byn ̸=
Bun in Algorithm 5.3.2, we have

sn+1 = min

{
µ||yn − un||
||Byn −Bun||

, sn

}
≥ min

{µ
L
, sn

}
.

By induction, we obtain that {sn} is bounded below by min
{
µ
L
, s1

}
. Also, since {sn} is

monotone nonincreasing, we have that the limit exists, and lim
n→∞

sn ≥ min{ µ
L
, s1} > 0.

Remark 5.3.4. From the definition of {sn} in (5.3.3) we have

∥Byn −Bun∥ ≤ µ

sn+1

∥yn − un∥, ∀ n. (5.3.5)

Inequality (5.3.5) holds if Byn = Bun. In the case where Byn ̸= Bun, we have

sn+1 = min

{
µ∥yn − un∥
∥Byn −Bun∥

, sn

}
≤ µ∥yn − un∥

∥Byn −Bun∥
,

which implies that

∥Byn −Bun∥ ≤ µ

sn+1

∥yn − un∥.

Hence, (5.3.5) holds for both cases when Byn ̸= Bun and Byn = Bun.
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5.3.2 Convergence analysis

Lemma 5.3.5. Let {xn} be a sequence generated by Algorithm 5.3.2 under Assumption
5.3.1. Then,

∥vn − p∥2 ≤ ∥wn − p∥2 − τn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
− αn(1− αn)∥wn − zn∥2

−
(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2.

Proof. Let p ∈ Γ. Since G(wn) = A∗(I − T F2
rn )Awn, p = T F2

rn p and I − T F2
rn is firmly

nonexpansive, we have

⟨G(wn), wn − p⟩ = ⟨A∗(I − T F2
rn )Awn, wn − p⟩

= ⟨(I − T F2
rn )Awn, Awn − Ap⟩

= ⟨(I − T F2
rn )Awn − (I − T F2

rn )Ap, Awn − Ap⟩
≥ ∥(I − T F2

rn )Awn∥
2

= 2g(wn). (5.3.6)

From the definition of zn in Step 3, the nonexpansivity of T F1
rn and (5.3.6) we have

∥zn − p∥2 = ∥T F1
rn (I − λnA

∗(I − T F2
rn )A)wn − p∥2

≤ ∥(I − λnA
∗(I − T F2

rn )A)wn − p∥2

= ∥wn − p− λnG(wn)∥2

= ∥wn − p∥2 + λ2n∥G(wn)∥2 − 2λn⟨G(wn), wn − p⟩
≤ ∥wn − p∥2 + λ2n∥G(wn)∥2 − 4λng(wn)

≤ ∥wn − p∥2 − τn(4− τn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
. (5.3.7)

From the condition on τn we obtain

∥zn − p∥ ≤ ∥wn − p∥ (5.3.8)

From the definition of yn and (5.3.7) we have,

∥yn − p∥2 = ∥αnwn + (1− αn)zn − p∥2

= αn∥wn − p∥2 + (1− αn)∥zn − p∥2 − αn(1− αn)∥wn − zn∥2

≤ αn∥wn − p∥2 + (1− αn)

[
∥wn − p∥2 − τn(4− τn)

g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2

]
− αn(1− αn)∥wn − zn∥2

= ∥wn − p∥2 − τn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
(5.3.9)

− αn(1− αn)∥wn − zn∥2.
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From the condition on τn and αn, we have

∥yn − p∥ ≤ ∥wn − p∥. (5.3.10)

Applying (5.3.5) and (5.3.9), we have

∥vn − p∥2 = ∥un − sn(Bun −Byn)− p∥2

= ∥un − p∥2 + s2n∥Bun −Byn∥2 − 2sn⟨un − p,Bun −Byn⟩
= ∥yn − p∥2 + ∥un − yn∥2 + 2⟨un − yn, yn − p⟩+ s2n∥Bun −Byn∥2

− 2sn⟨un − p,Bun −Byn⟩
= ∥yn − p∥2 + ∥un − yn∥2 + 2⟨un − yn, un − p⟩ − 2⟨un − yn un − yn⟩
+ s2n∥Bun −Byn∥2 − 2sn⟨un − p,Bun −Byn⟩
= ∥yn − p∥2 + ∥un − yn∥2 + 2⟨un − yn, un − p⟩ − 2∥un − yn∥2

+ s2n∥Bun −Byn∥2 − 2sn⟨un − p,Bun −Byn⟩
= ∥yn − p∥2 − ∥un − yn∥2 + 2⟨un − yn, un − p⟩+ s2n∥Bun −Byn∥2

− 2sn⟨un − p,Bun −Byn⟩
= ∥yn − p∥2 − ∥un − yn∥2 + s2n∥Bun −Byn∥2

− 2⟨un − p, yn − un − sn(Byn −Bun)⟩

≤ ∥wn − p∥2 − τn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2

− αn(1− αn)∥wn − zn∥2 − ∥yn − un∥2 + s2n ·
µ2

s2n+1

∥yn − un∥2

− 2⟨un − p, yn − un − sn(Byn −Bun)⟩

= ∥wn − p∥2 − τn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
(5.3.11)

− αn(1− αn)∥wn − zn∥2 −
(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2

− 2⟨un − p, yn − un − sn(Byn −Bun)⟩.

From Step 4 we have that un = (I+snD)−1(I−snB)yn, hence (I−snB)yn ∈ (I+snD)un.
Since D is maximal monotone, there exists kn ∈ Dun such that

(I − snB)yn = un + snkn

which implies that

kn =
1

sn
(yn − snByn − un). (5.3.12)

We have that 0 ∈ (B+D)p and Bun+kn ∈ (B+D)un. Since B+D is maximal monotone
we obtain

⟨Bun + kn, un − p⟩ ≥ 0. (5.3.13)
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Substituting (5.3.12) into (5.3.13) we have

1

sn
⟨snBun + yn − snByn − un, un − p⟩ ≥ 0

which implies that

⟨yn − un − sn(Byn −Bun), un − p⟩ ≥ 0. (5.3.14)

Applying (5.3.14) in (5.3.11) we have

∥vn − p∥2 ≤ ∥wn − p∥2 − τn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
(5.3.15)

− αn(1− αn)∥wn − zn∥2 −
(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2,

which is the desired result.

Lemma 5.3.6. Let {xn} be a sequence generated by Algorithm 5.3.2 under Assumption
5.3.1. Then, {xn} is bounded.

Proof. Let p ∈ Γ. By applying the triangular inequality, from Step 2 we have

∥wn − p∥ = ∥xn + θn(xn − xn−1)− p∥
≤ ∥xn − p∥+ θn∥xn − xn−1∥.

From Remark 5.3.2, lim
n→∞

θn
γn
∥xn − xn−1∥ = 0. Hence, there exists a constant M1 > 0 such

that θn
γn
∥xn − xn−1∥ ≤M1 for all n ≥ 1. This implies that

∥wn − p∥ ≤ ∥xn − p∥+ γnM1. (5.3.16)

Also, since lim
n→∞

(
1− µ2 s2n

s2n+1

)
= 1− µ2 > 0 there exists n0 ∈ N such that

1− µ2 s2n
s2n+1

> 0, ∀ n ≥ n0. (5.3.17)

Applying (5.3.17) and the conditions on τn and αn in (5.3.15), we have

∥vn − p∥ ≤ ∥wn − p∥, ∀ n ≥ n0. (5.3.18)

From the definition of xn+1 in Step 4 and (5.3.18), we have for all n ≥ n0

∥xn+1 − p∥ = ∥(1− βn − γn)(wn − p) + βn(vn − p)− γnp∥
≤ ∥(1− βn − γn)(wn − p) + βn(vn − p)∥+ γn∥p∥ (5.3.19)
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and

∥(1− βn − γn)(wn − p) + βn(vn − p)∥2 = (1− βn − γn)
2∥wn − p∥2 + β2

n∥vn − p∥2

+ 2(1− βn − γn)βn⟨wn − p, vn − p⟩
≤ (1− βn − γn)

2∥wn − p∥2 + β2
n∥wn − p∥2

+ 2(1− βn − γn)βn∥wn − p∥2

= (1− γn)
2∥wn − p∥2.

Substituting the last inequality into (5.3.19) and applying (5.3.16), we have for all n ≥ n0

∥xn+1 − p∥ ≤ (1− γn)∥wn − p∥+ γn∥p∥
≤ (1− γn) [∥xn − p∥+ γnM1] + γn∥p∥
≤ (1− γn)∥xn − p∥+ γn(M1 + ∥p∥)

≤ max
{
∥xn − p∥, M1 + ∥p∥

}
...

≤ max
{
∥xn0 − p∥, M1 + ∥p∥

}
,

which implies that {xn} is bounded. Consequently, {wn}, {zn}, {yn}, {un} and {vn} are
also bounded.

Lemma 5.3.7. Assume that {un} and {yn} are sequences generated by Algorithm 5.3.2
under Assumption 5.3.1 such that lim

j→∞
∥unj

− ynj
∥ = 0 for some subsequences {unj

} and

{ynj
} of {un} and {yn}, respectively. If {ynj

} converges weakly to some x∗ ∈ H1 as j → ∞,
then x∗ ∈ (B +D)−1(0).

Proof. Let (u, v) ∈ G(B +D), that is v −Bu ∈ Du. Since

unj
= (I + snj

D)−1(I − snj
B)ynj

,

then we have

(I − snj
B)ynj

∈ (I + snj
D)unj

.

This implies that

1

snj

(
ynj

− unj
− snj

Bynj

)
∈ Dunj

.

Since D is maximal monotone, we have〈
u− unj

, v −Bu− 1

snj

(
ynj

− unj
− snj

Bynj

)〉
≥ 0,

which implies that
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〈
u− unj

, v
〉
−
〈
u− unj

, Bu+
1

snj

(
ynj

− unj
− snj

Bynj

)〉
≥ 0.

Hence, we have

〈
u− unj

, v
〉
≥
〈
u− unj

, Bu+
1

snj

(
ynj

− unj
− snj

Bynj

)〉
=
〈
u− unj

, Bu−Bynj

〉
+

〈
u− unj

,
1

snj

(ynj
− unj

)

〉
=
〈
u− unj

, Bu−Bunj

〉
+
〈
u− unj

, Bunj
−Bynj

〉
+

〈
u− unj

,
1

snj

(ynj
− unj

)

〉
≥
〈
u− unj

, Bunj
−Bynj

〉
+

〈
u− unj

,
1

snj

(ynj
− unj

)

〉
.

Now, since lim
j→∞

∥unj
− ynj

∥ = 0 and B is Lipschitz continuous, we have lim
j→∞

∥Bunj
−

Bynj
∥ = 0. Moreover, since lim

n→∞
sn = s ≥ min{s0, µL}, we get

⟨u− x∗, v⟩ = lim
j→∞

〈
u− unj

, v
〉
≥ 0.

By the maximal monotonicity of B +D , it follows that x∗ ∈ (B +D)−1(0).

Lemma 5.3.8. The following inequality holds for all p ∈ Γ and n ∈ N :

∥xn+1 − p∥2 ≤ (1− γn)∥xn − p∥2 + γn

(
3
θn
γn

∥xn − xn−1∥M2 + ∥p∥2
)

− βnτn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
− βnαn(1− αn)∥wn − zn∥2

− βn

(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2 − (1− βn − γn)βn∥wn − vn∥2

Proof. Let p ∈ Γ. Then, by applying Lemma 2.1.1 and the Cauchy-Schwartz inequality,
from Step 2 we obtain

∥wn − p∥2 = ∥xn + θn(xn − xn−1)− p∥2

= ∥xn − p∥2 + θ2n∥xn − xn−1∥2 + 2θn⟨xn − p, xn − xn−1⟩
≤ ∥xn − p∥2 + θ2n∥xn − xn−1∥2 + 2θn||xn − p||||xn − xn−1||
= ∥xn − p∥2 + θn∥xn − xn−1∥ [θn∥xn − xn−1∥+ 2∥xn − p∥]
≤ ∥xn − p∥2 + 3θn∥xn − xn−1∥M2

= ∥xn − p∥2 + 3γn
θn
γn

∥xn − xn−1∥M2, (5.3.20)
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for some M2 > 0.
From Step 5 of Algorithm 5.3.2 and by applying Lemma 2.1.1, (5.3.15) and (5.3.20) we
have

∥xn+1 − p∥2 = ∥(1− βn − γn)wn + βvn − p∥2

= ∥(1− βn − γn)(wn − p) + βn(vn − p) + γn(−p)∥2

≤ (1− βn − γn)∥wn − p∥2 + βn∥vn − p∥2 + γn∥p∥2

− (1− βn − γn)βn∥wn − vn∥2

≤ (1− βn − γn)∥wn − p∥2

+ βn

[
∥wn − p∥2 − τn(4− τn)(1− αn)

g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2

− αn(1− αn)∥wn − zn∥2 −
(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2

]
+ γn∥p∥2

− (1− βn − γn)βn∥wn − vn∥2

= (1− γn)∥wn − p∥2 − βnτn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2

− βnαn(1− αn)∥wn − zn∥2 − βn

(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2 + γn∥p∥2

− (1− βn − γn)βn∥wn − vn∥2

≤ (1− γn)

[
∥xn − p∥2 + 3γn

θn
γn

∥xn − xn−1∥M2

]
− βnτn(4− τn)(1− αn)

g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2

− βnαn(1− αn)∥wn − zn∥2 − βn

(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2 + γn∥p∥2

− (1− βn − γn)βn∥wn − vn∥2

≤ (1− γn)∥xn − p∥2 + γn

(
3
θn
γn

∥xn − xn−1∥M2 + ∥p∥2
)

− βnτn(4− τn)(1− αn)
g2(wn)

∥G(wn)∥2 + ∥H(wn)∥2
− βnαn(1− αn)∥wn − zn∥2

− βn

(
1− s2n ·

µ2

s2n+1

)
∥yn − un∥2 − (1− βn − γn)βn∥wn − vn∥2,

which is the desired result.

Lemma 5.3.9. The following inequality holds for all p ∈ Γ, M2 > 0 and n ≥ n0 :

∥xn+1 − p∥2 ≤ (1− γn)∥xn − p∥2

+ γn

[
3
θn
γn

∥xn − xn−1∥M2 + 2βn∥vn − wn∥∥p− xn+1∥+ 2⟨p, p− xn+1⟩
]
.

(5.3.21)
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Proof. Let p ∈ Γ and let dn = (1− βn)wn + βnvn then we have

∥dn − wn∥ = ∥(1− βn)wn + βnvn − wn∥ = βn∥vn − wn∥. (5.3.22)

Applying Lemma 2.1.1 and (5.3.18), we have

∥dn − p∥ = ∥(1− βn)wn + βnvn − p∥
≤ (1− βn)∥wn − p∥+ βn∥vn − p∥
≤ (1− βn)∥wn − p∥+ βn∥wn − p∥
= ∥wn − p∥, ∀ n ≥ n0. (5.3.23)

Also, from the definition of xn+1 in Step 5, (5.3.22) and (5.3.23), we have

∥xn+1 − p∥2 = ∥(1− βn − γn)wn + βnvn − p∥2

= ∥(1− βn)wn + βnvn − γnwn − p∥2

= ∥dn − γnwn − p∥2

= ∥(1− γn)(dn − p)− γn(wn − dn)− γnp∥2

≤ (1− γn)
2∥dn − p∥2 − 2⟨γn(wn − dn) + γnp, xn+1 − p⟩

= (1− γn)
2∥dn − p∥2 + 2⟨γn(wn − dn) + γnp, p− xn+1⟩

= (1− γn)∥dn − p∥2 + 2⟨γn(wn − dn), p− xn+1⟩+ 2⟨γnp, p− xn+1⟩
≤ (1− γn)∥dn − p∥2 + 2γn∥wn − dn∥∥p− xn+1∥+ 2⟨γnp, p− xn+1⟩

≤ (1− γn)
[
∥xn − p∥2 + 3γn

θn
γn

∥xn − xn−1∥M2

]
+ 2γn∥wn − dn∥∥p− xn+1∥+ 2γn⟨p, p− xn+1⟩
≤ (1− γn)∥xn − p∥2

+ γn

[
3
θn
γn

∥xn − xn+1∥M2 + 2βn∥vn − wn∥∥p− xn+1∥+ 2⟨p, p− xn+1⟩
]
,

which is the desired result.

We now prove the strong convergence theorem for Algorithm 5.3.2.

Theorem 5.3.10. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a
bounded linear operator. Let {xn} be generated by Algorithm 5.3.2 and suppose Assumption
5.3.1 is satisfied. Then, the sequence {xn} converges strongly to a point q ∈ Γ, where
∥q∥ = min{∥z∥ : z ∈ Γ}.

Proof. Since ∥q∥ = min{∥z∥ : z ∈ Γ}, then q = PΓ(0). It follows that q ∈ Γ. Now, from
Lemma 5.3.9 we obtain

∥xn+1 − q∥2 ≤ (1− γn)∥xn − q∥2

+ γn

[
3
θn
γn

∥xn − xn−1∥M2 + 2βn∥vn − wn∥∥q − xn+1∥+ 2⟨q, q − xn+1⟩
]

= (1− γn)∥xn − q∥2 + γnan (5.3.24)
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where an = 3 θn
γn
∥xn − xn−1∥M2 + 2βn∥vn − wn∥∥q − xn+1∥+ 2⟨q, q − xn+1⟩.

Now, we claim that {∥xn − q∥} converges to zero. To establish this, by Lemma 2.5.36
it suffices to show that lim sup

k→∞
ank

≤ 0 for every subsequence {∥xnk
− q∥} of {∥xn − q∥}

satisfying the condition

lim inf
k→∞

(
∥xnk+1

− q∥ − ∥xnk
− q∥

)
≥ 0. (5.3.25)

Suppose that {∥xnk
− q∥} is a subsequence of {∥xn − q∥} such that (5.3.25) holds. We

obtain from Lemma 5.3.8 that

βnk
τnk

(4− τnk
)(1− αnk

)
g2(wnk

)

∥G(wnk
)∥2 + ∥H(wnk

)∥2
+ βnk

αnk
(1− αnk

)∥wnk
− znk

∥2

+βnk

(
1− s2nk

· µ2

s2nk+1

)
∥ynk

− unk
∥2 + (1− βnk

− γnk
)βnk

∥wnk
− vnk

∥2

≤ (1− γnk
)∥xnk

− q∥2 − ∥xnk+1 − q∥2

+ γnk

(
3
θnk

γnk

∥xnk
− xnk−1∥M2 + ∥q∥2

)
.

By applying (5.3.25) and the fact that lim
k→∞

γnk
= 0, we have that

lim
k→∞

βnk
τnk

(4− τnk
)(1− αnk

)
g2(wnk

)

∥G(wnk
)∥2 + ∥H(wnk

)∥2
= 0;

lim
k→∞

βnk
αnk

(1− αnk
)∥wnk

− znk
∥2 = 0;

lim
k→∞

βnk

(
1− s2nk

· µ2

s2nk+1

)
∥ynk

− unk
∥2 = 0;

lim
k→∞

(1− βnk
− γnk

)βnk
∥wnk

− vnk
∥2 = 0.

By the conditions on the control parameters, it follows that

lim
k→∞

g2(wnk
)

∥G(wnk
)∥2 + ∥H(wnk

)∥2
= lim

k→∞
∥wnk

− znk
∥ = lim

k→∞
∥ynk

− unk
∥

= lim
k→∞

∥wnk
− vnk

∥ = 0. (5.3.26)

Since G and H are Lipschitz continuous, we have that

lim
k→∞

g(wnk
) = 0. (5.3.27)

From the definition of g(wnk
) we have

lim
k→∞

g(wnk
) = lim

k→∞

1

2
∥(I − T F2

rnk
)Awnk

∥2 = 0,
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which implies that

lim
k→∞

∥(I − T F2
rnk

)Awnk
∥ = 0. (5.3.28)

Consequently, we get

lim
k→∞

∥A∗(I − T F2
rnk

)Awnk
∥ ≤ ∥A∗∥∥(I − T F2

rnk
)Awnk

∥ = ∥A∥∥(I − T F2
rnk

)Awnk
∥ = 0.

(5.3.29)

From the definition of ynk
and by applying (5.3.26) we have

∥ynk
− znk

∥ ≤ αnk
∥wnk

− znk
∥+ (1− αnk

)∥znk
− znk

∥ → 0, k → ∞. (5.3.30)

From (5.3.26) and (5.3.30) we have

lim
k→∞

∥wnk
− ynk

∥ = 0; lim
k→∞

∥wnk
− unk

∥ = 0; lim
k→∞

∥znk
− unk

∥ = 0. (5.3.31)

From Step 5 and by applying (5.3.26) together with the fact that lim
k→∞

γnk
= 0, we have

∥xnk+1
− wnk

∥ = ∥(1− βnk
− γnk

)wnk
+ βnk

vnk
− wnk

∥
= ∥βnk

(vnk
− wnk

)− γnk
wnk

∥
≤ βnk

∥vnk
− wnk

∥+ γnk
∥wnk

∥ → 0, k → ∞. (5.3.32)

Also, by Remark 5.3.2 we have

∥wnk
− xnk

∥ = θnk
∥xnk

− xnk−1
∥ → 0, k → ∞. (5.3.33)

Also, from (5.3.32) and (5.3.33) we have

lim
k→∞

∥xnk+1 − xnk
∥ = 0 (5.3.34)

From (5.3.26)-(5.3.33) we obtain

lim
k→∞

∥xnk
− znk

∥ = 0, lim
k→∞

∥xnk
− vnk

∥ = 0, lim
k→∞

∥xnk
− unk

∥ = 0, lim
k→∞

∥xnk
− ynk

∥ = 0.

(5.3.35)

Since {xn} is bounded, wω(xn) is nonempty. Let x∗ ∈ wω(xn) be an arbitrary element.
Then, there exists a subsequence {xnk

} ⊂ {xn} such that xnk
⇀ x∗ as k → ∞. From

(5.3.35) we obtain ynk
⇀ x∗ as k → ∞. By invoking Lemma 5.3.7, it follows from (5.3.26)

that x∗ ∈ (B+D)−1(0). Since x∗ is an arbitrary element in wω(xn), it follows that wω(xn) ⊂
(B +D)−1(0).
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Next, we show that wω(xn) ⊂ Ω. First, we establish that wω(xn) ⊂ EP (F1). From znk
=

T F1
rnk

(I − λnk
A∗(I − T F2

rnk
)A)wnk

, we have

F1(znk
, y) +

1

rnk

〈
y − znk

, znk
− wnk

+ λnk
G(wnk

)
〉
≥ 0

for all y ∈ C and this implies that

F1(znk
, y) +

1

rnk

〈
y − znk

, znk
− wnk

〉
+

1

rnk

〈
y − znk

, λnk
G(wnk

)
〉
≥ 0, ∀ y ∈ C.

We have from Assumption 5.2.1 (2) that

1

rnk

〈
y − znk

, znk
− wnk

〉
+

1

rnk

〈
y − znk

, λnk
G(wnk

)
〉
≥ F1(y, znk

), ∀ y ∈ C.

Since znk
⇀ x∗, then by applying (5.3.26), (5.3.29), Assumption 5.2.1 (4) and the fact

that lim inf
k→∞

rnk
> 0, we obtain

F1(y, x
∗) ≤ 0, ∀ y ∈ C. (5.3.36)

Let yt = ty + (1 − t)x∗, ∀t ∈ (0, 1] and y ∈ C. This implies that yt ∈ C. Hence, from
(5.3.36) we get F1(yt, x

∗) ≤ 0. Applying Assumption 5.2.1 (1)-(4), we have

0 = F1(yt, yt)

≤ tF1(yt, y) + (1− t)F1(yt, x
∗)

≤ tF1(yt, y).

Hence, we have F1(yt, y) ≥ 0, ∀y ∈ C. Letting t → 0 and applying Assumption 5.2.1 (3),
we have

F1(x
∗, y) ≥ 0, ∀y ∈ C, (5.3.37)

which implies that x∗ ∈ EP (F1).

Next, we show that Ax∗ ∈ EP (F2). Since A is a bounded linear operator and wnk
⇀ x∗,

we have Awnk
⇀ Ax∗. Consequently, it follows from (5.3.28) that

T F2
rnk
Awnk

⇀ Ax∗ (5.3.38)

as k → ∞. From the definition of T F2
rnk
Awnk

, we have

F2(T
F2
rnk
Awnk

, y) +
1

rnk

〈
y − T F2

rnk
Awnk

, T F2
rnk
Awnk

− Awnk

〉
≥ 0, ∀ y ∈ Q.

Since F2 is upper semicontinuous in the first argument, it follows from (5.3.28), (5.3.38)
and the fact that lim inf

k→∞
rnk

> 0, that

264



F2(Ax
∗, y) ≥ 0, ∀ y ∈ Q, (5.3.39)

which implies that Ax∗ ∈ EP (F2). Thus, wω(xn) ⊂ Γ.

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} which converges weakly

to x̂ such that

lim sup
k→∞

〈
q, q − xnk

〉
= lim

j→∞

〈
q, q − xnkj

〉
.

Since q = PΓ(0), we have

lim sup
k→∞

〈
q, q − xnk

〉
= lim

j→∞

〈
q, q − xnkj

〉
=
〈
q, q − x̂

〉
≤ 0,

which together with (5.3.34) implies that

lim
k→∞

〈
q, q − xnk+1

〉
≤ 0. (5.3.40)

Using (5.3.26), (5.3.40) together with the fact that lim
n→∞

θn
γn
∥xn − xn−1∥ = 0, we have

lim sup
k→∞

ank
≤ 0. Now, applying Lemma 2.5.36 to (5.3.24) we have that lim

n→∞
∥xn − q∥ = 0.

Therefore, {xn} converges strongly to q.

5.3.3 Applications

In this section, we apply our result to study certain optimization problems.

Variational inclusion and split variational inequality problems

In this subsection, we apply our result to approximate the common solution of VqIP and
SVIP.

Here, we apply our result to study the following SVIP with constraint of VqIP:

Find x∗ ∈ (B +D)−1(0) such that ⟨x− x∗,M1x
∗⟩ ≥ 0, ∀ x ∈ C. (5.3.41)

and such that

y∗ = Ax∗ ∈ Q solves ⟨y − y∗,M2y
∗⟩ ≥ 0, ∀ y ∈ Q. (5.3.42)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively, M : H → H be a single-valued mapping, A : H1 → H2 is a bounded linear
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operator, B : H1 → H1 is a Lipschitz continuous and monotone operator and D : H1 →
2H1 is a maximal monotone operator. We denote the solution set of problem (5.3.41)-
(5.3.42) by Ω1 and assume that (B+D)−1(0)∩Ω1 ̸= ∅. Taking Fi(x, y) := ⟨y−x,Mix⟩, i =
1, 2, then the problem (5.3.41)-(5.3.42) becomes the problem of finding a solution of the
SEP (1.2.10)-(1.2.11) which is also a solution of the VqIP (1.2.9). Furthermore, all the
conditions of Theorem 5.3.10 hold. Thus, Theorem 5.3.10 provides a strong convergence
theorem for approximating a common solution of VqIP (1.2.9) and the problem (5.3.41)-
(5.3.42).

Convex minimization and split equilibrium problems
Let H be a real Hilbert space, f : H → R be a convex function and F : H → R be a
proper convex, lower semicontinuous function. We apply our result to approximate the
solution of the following convex MP :

min
x∈H

f(x) + F (x), (5.3.43)

which is equivalent to finding x ∈ H such that

0 ∈ ▽f(x) + ∂F (x), (5.3.44)

where ▽f is the gradient of f and ∂F is the subdifferential of F. It is known that if ▽f is
L-Lipschitz continuous, then it is 1

L
-inverse strongly monotone (co-coercive), and hence it

is L-Lipschitz continuous and monotone. Also, it is known that ∂F is maximal monotone
(see [216]). The solution set of (5.3.43) we denote by Ω2.

So, by setting B = ▽f and D = ∂F in Theorem 5.3.10, we obtain the following result for
approximating a common solution of convex MP (5.3.43) and split equilibrium problem
(1.2.10)-(1.2.11) in Hilbert spaces.

Theorem 5.3.11. Let C and Q be nonempty, closed and convex subsets of real Hilbert
spaces H1 and H2, respectively. Suppose F1 : C × C → R, F2 : Q×Q → R are bifunctions
satisfying Assumption (5.2.1) and such that F2 is upper semi continuous in the first argu-
ment. Let f : H → R be a convex and differentiable function such that ▽f is L-Lipschitz
continuous and suppose G : H → R is a proper convex, lower semicontinuous function.
Let {xn} be a sequence generated as follows:

Algorithm 5.3.3.

Step 1: Select initial point x0, x1 ∈ H1, let s1 > 0, µ ∈ (0, 1), θ ≥ 3 and set n = 1. Given
the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n :=

{
min

{
n−1
n+θ−1

, ϵn
∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+θ−1

, otherwise.
(5.3.45)

Step 2: Compute
wn = xn + θn(xn − xn−1).

266



Step 3: Compute
zn = T F1

rn

(
I − λnA

∗(I − T F2
rn )A

)
wn

and
yn = αnwn + (1− αn)zn.

Step 4: Compute
un = J∂Fsn (I − sn▽f)yn

and
vn = un − sn(▽fun − ▽fyn).

Step 5 Compute
xn+1 = (1− βn − γn)wn + βnvn,

where

λn :=

{
τn

g(wn)
∥G(wn)∥2+∥H(wn)∥2 , if ∥G(wn)∥2 + ∥H(wn)∥2 ̸= 0,

0, otherwise
(5.3.46)

and

sn+1 =

{
min

{
µ∥yn−un∥

∥▽fyn−▽fun∥ , sn

}
if ▽fyn − ▽fun ̸= 0,

sn, otherwise.
(5.3.47)

Set n := n+ 1 and go back to Step 1.

Then, the sequence {xn} converges strongly to a point q ∈ Ω2 ∩Ω, where ∥q∥ = min{∥z∥ :
z ∈ Ω2 ∩ Ω}.

5.3.4 Numerical experiments

In this section, using some test examples, we discuss the numerical behavior of Algorithm
5.3.2 as well as compare it with the standard forward-backward method (i.e when θn = 0),
Algorithm 2.5.23 proposed by Cholamjiak et al. [81], the shrinking projection method
of Cholamjiak et al. [81] (see Appendix 5.3.14), Appendix 5.3.15 and Appendix 5.3.16.
We perform all implementations using Matlab 2016 (b), installed on a personal computer
with Intel(R) Core(TM) i5-2600 CPU@2.30GHz and 8.00 Gb-RAM running on Windows
10 operating system. In Tables 5.3.1-5.3.2, “No. of Iter.” means the number of iterations.

In our computations, we choose αn = n+1
2n+1

, γn = 1
n+2

, βn = 1
2
− γn, ϵn = 1

(n+2)2
, θ =

7, s1 = 0.65, µ = 0.8, τn = 6n+2
2n+1

, rn = 3n+1
2n+1

, and we take δn = n+1
2n+3

, tn = 0.1 in Algorithm
2.5.23 and Appendix 5.3.14. Also, for Appendix 5.3.16 we choose f(x) = x

2
. Furthermore,

in the implementation, we define TOLn := ∥xn+1 − xn∥ and use the stopping criterion
TOLn < 10−2 for the iterative processes.

Example 5.3.12. Let H1 = H2 = R, the set of all real numbers with the inner product
defined by ⟨x, y⟩ = xy, ∀ x, y ∈ R and induced norm |·|. For r > 0, Consider C = [−10, 10]
and Q = [0, 20], we define the bifunctions F1 : C × C → R and F2 : Q×Q → R as follows;
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F1 = −2x2+xy+y2, F2 = −x2+xy. After simple calculation and applying Lemma 5.2.1,
we get

T F1
r (u) =

u

3r + 1
, ∀ u ∈ C

and
T F2
r (v) =

v

r + 1
, ∀ v ∈ Q.

Let A : H1 → H2 be defined by Ax = 2x, B : H1 → H1 be defined by Bx = x+ sinx and
D : H1 → H1 be defined by Dx = 5x, where x ∈ H1. Clearly, we see that B is 1

3
-inverse

strongly monotone and D is maximal monotone.

We consider the following cases for the numerical experiments of this example and choose
γ = 3

20

Case I: Take x0 = −17
33

and x1 =
2
15
.

Case II: Take x0 = −19
35

and x1 =
1
6
.

Case III: Take x0 =
11
20

and x1 =
1
7
.

Case IV: Take x0 = −10
19

and x1 = − 5
34
.

We compare the performance of our Algorithm 5.3.2 with Algorithm 2.5.23, Appendix
5.3.14, Appendix 5.3.15 and Appendix 5.3.16. We plot the graphs of errors against the
number of iterations in each case. The numerical results are reported in Table 5.3.1 and
Figure 5.9.

Table 5.3.1: Numerical results for Example 5.3.12

Alg.
2.5.23

App
5.3.14

App.
5.3.15

App.
5.3.16

Alg.
5.3.2

Case I No. of Iter. 8 3 11 17 5
CPU time
(sec)

0.0099 0.0071 0.0090 0.0063 0.0114

Case II No. of Iter. 8 3 11 17 5
CPU time
(sec)

0.0095 0.0075 0.0080 0.0072 0.0155

Case III No. of Iter. 8 3 11 16 5
CPU time
(sec)

0.0103 0.0081 0.0093 0.0084 0.0125

Case IV No. of Iter. 8 3 11 17 5
CPU time
(sec)

0.0098 0.0071 0.0082 0.0070 0.0111

Example 5.3.13. LetH1 = H2 = (l2(R), ∥·∥2), where l2(R) := {x = (x1, x2, . . . , xn, . . .), xj ∈
R :

∑∞
j=1 |xj|2 < ∞}, ||x||2 = (

∑∞
j=1 |xj|2)

1
2 and ⟨x, y⟩ =

∑∞
j=1 xjyj for all x ∈ ℓ2(R).

We define F1 : C × C → R and F2 : Q × Q → R by F1(x, y) = ⟨L1x, y − x⟩ and
F2(x, y) = ⟨L2x, y − x⟩, where L1x = x

3
and L2x = x

2
. One can easily verify that F1 and

F2 satisfy Assumption 5.2.1. Let A : H1 → H2 be defined by Ax = x
3
and A∗y = y

3
. Then,
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Figure 5.9: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.
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A is a bounded linear operator. After simple calculation and applying Lemma 5.2.1, we
obtain

T F1
r (u) =

3u

r + 3
, ∀ u ∈ C,

and

T F2
s (v) =

2v

s+ 2
, ∀ v ∈ Q.

Let B : H1 → H1 be defined by Bx = 1
3
x and D : H1 → H1 be defined by Dx = 3x,

where x ∈ H1. Clearly, we see that B is 1
2
-inverse strongly monotone and D is maximal

monotone.

We consider different initial values as follows:
Case I: x0 = (−23, 1,− 1

23
, · · · ), x1 = (1

2
, 1
4
, 1
8
, · · · );

Case II: x0 = (37, 1, 1
37
, · · · ), x1 = ( 5

18
, 5
36
, 5
72
, · · · );

Case III: x0 = (−29, 1,− 1
29
, · · · ), x1 = (−3

8
, 3
16
,− 1

32
, · · · );

Case IV: x0 = (25, 1, 1
25
, · · · ), x1 = (1

2
, 1
6
, 1
18
).

We compare the performance of our Algorithm 5.3.2 with Appendix 5.3.14, Appendix
5.3.15 and Appendix 5.3.16. We plot the graphs of errors against the number of iterations
in each case. The numerical results are reported in Table 5.3.2 and Figure 5.10.

Table 5.3.2: Numerical results for Example 5.3.13

Alg.
2.5.23

App
5.3.14

App.
5.3.15

App.
5.3.16

Alg.
5.3.2

Case I No. of Iter. 13 3 14 11 6
CPU time
(sec)

0.0137 0.0148 0.0145 0.0092 0.0175

Case II No. of Iter. 13 3 14 11 6
CPU time
(sec)

0.0114 0.0123 0.0120 0.0097 0.0170

Case III No. of Iter. 13 3 14 11 6
CPU time
(sec)

0.0113 0.0135 0.0154 0.0082 0.0150

Case IV No. of Iter. 13 3 14 11 6
CPU time
(sec)

0.0126 0.0162 0.0139 0.0122 0.0245

Appendix 5.3.14. The Algorithm in [81].

Initialization: Given γ ∈ (0, 1
L
). Let x0, x1 ∈ H1 be arbitrary.

Iterative Steps: Calculate xn+1 as follows:
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Figure 5.10: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.
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yn = xn + δn(xn − xn−1)

zn = αnyn + (1− αn)T
F1
rn (I − γA∗(I − T F2

rn )A)yn,

wn = βnzn + (1− βn)J
D
tn(I − tnB)zn,

Cn+1 = {z ∈ Cn : ∥wn − z∥2 ≤ ∥xn − z∥2 + 2δn
2∥xn − xn−1∥2 − 2δ⟨xn − z, xn−1 − xn⟩},

xn+1 = PCn+1x1, n ≥ 1,

(5.3.48)

where JDtn = (I + tnD)−1, {tn} ⊂ (0, 2α), {δn} ⊂ [0, δ], δ ∈ [0, 1), {rn} ⊂ (0,∞) with
γ ∈ (0, 1

L
) such that L is the spectral radius of A∗A and {αn}, {βn} are sequences in [0, 1].

Set n := n+ 1 and return to Step 1.

Appendix 5.3.15. The Algorithm in [108].

Initialization: Given s1 > 0, µ ∈ (0, 1). Let x1 ∈ H be arbitrary.

Iterative Steps: Given the current iterates xn, calculate the next iterate as follows:
Step 1.

yn = (I + snD)−1(I − snB)xn.

If xn = yn then stop and yn is a solution of (1.2.9). Otherwise,
Step 2. Compute

zn = yn − sn(Byn −Bxn)

and
xn+1 = (1− βn − γn)xn + γnzn.

Update

sn+1 =

{
min

{
µ∥xn−yn∥

∥Bxn−Byn∥ , sn

}
if Bxn −Byn ̸= 0,

sn, otherwise.
(5.3.49)

Set n := n+ 1 and return to Step 1.

Appendix 5.3.16. The Algorithm in [108].

Initialization: Given s1 > 0, µ ∈ (0, 1). Let x1 ∈ H be arbitrary.

Iterative Steps: Given the current iterates xn, calculate the next iterate as follows:
Step 1.

yn = (I + snD)−1(I − snB)xn.

If xn = yn then stop and yn is a solution of (1.2.9). Otherwise,
Step 2. Compute

zn = yn − sn(Byn −Bxn)

and
xn+1 = γnf(xn) + (1− γn)zn.
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Update

sn+1 =

{
min

{
µ∥xn−yn∥

∥Bxn−Byn∥ , sn

}
if Bxn −Byn ̸= 0,

sn, otherwise.
(5.3.50)

Set n := n+ 1 and return to Step 1.
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CHAPTER 6

Results on Variational Inequality, Split Monotone Variational

Inclusion and Fixed Point Problems in Banach Spaces

6.1 Introduction

The extension of known basis concepts from Hilbert spaces to Banach spaces has been
of great interest to many researchers due to the fact that many real life problems can
be posed in general Banach spaces than in Hilbert spaces. In this chapter, we propose
and study an iterative algorithm for approximating the solution of VIPs in a real Banach
space. Furthermore, between a Banach and Hilbert space, we propose and study an
effective iterative algorithm for approximating a common solution of the SMVqIP and
FPP. We apply our result to study some optimization problems and present some numerical
experiments of our methods in comparison to other methods in literature.

6.2 On pseudomonotone variational inequalities with

non-Lipschitz operators

In this section, we study the pseudomonotone VIP with non-Lipschitz operators in Banach
spaces. We propose an inertial subgradient extragradient method with Halpern technique
and Armijo type step size for approximating the solution of the problem in the frame-
work of 2-uniformly convex real Banach spaces. We prove that the sequence generated
by our proposed method converges strongly to the solution of the problem under some
mild conditions and without the weakly sequential continuity condition often assumed by
authors in solving pseudomonotone VIP. Finally, we provide some numerical experiments
for the proposed method in comparison with other existing methods in the literature. Our
result extends and improves several of the existing results in the current literature in this
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direction.

6.2.1 Proposed method

In this section, we present the proposed method and highlight some of its features. We
start by giving the following assumptions under which our strong convergence result is
obtained.

Assumption 6.2.1. Suppose that the following conditions hold:

(a) X is a real 2-uniformly convex and uniformly smooth Banach space with 2-uniform
convexity constant µ and C is a nonempty, closed and convex subset of X .

(b) A : X → X ∗ is pseudomonotone and uniformly continuous on X .

(c) The solution set V I(C, A) is nonempty.

(d) Let {τn} be a positive sequence such that lim
n→∞

τn
αn

= 0 where αn is a sequence in (0, 1)

satisfying the following conditions: lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞.

Now, our proposed method for solving the VIP (1.2.1) is presented as follows:

Algorithm 6.2.2. Inertial method with new Armijo-type step size.

Initialization: Given λ1 > 0, θ > 0, δ > 0, ℓ ∈ (0, 1) and η ∈ (0, 1
µ
). Let u, x0, x1 ∈ X

be arbitrary. Set n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{
θ, τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(6.2.1)

Step 2: Compute
wn = J−1(Jxn + θn(Jxn−1 − Jxn)).

Step 3: Compute

yn = ΠCJ
−1(Jwn − λnAwn).

If wn = yn, or Ayn = 0 then stop and yn is a solution of the VIP. Otherwise, go to Step
4.

Step 4: Compute
zn = ΠTnJ

−1(Jwn − λnAyn)

where
Tn := {x ∈ X |⟨Jwn − λnAwn − Jyn, x− yn⟩ ≤ 0},
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λn := δℓmn and mn is the smallest non-negative integer m satisfying

δℓm⟨Ayn − Awn, yn − zn⟩ ≤
η

2

[
∥wn − yn∥2 + ∥yn − zn∥2

]
. (6.2.2)

Step 5: Calculate
xn+1 = J−1(αnJu+ (1− αn)Jzn).

Set n := n+ 1 and go to Step 1.

Remark 6.2.1. If wn = yn or Ayn = 0 then yn ∈ V I(C, A). From Lemma 2.5.23 and the
fact that 0 < λn ≤ δ, we have

0 =
∥wn − yn∥

λn
=

∥wn − ΠCJ
−1(Jwn − λnAwn)∥
λn

≥ ∥wn − ΠCJ
−1(Jwn − δAwn)∥
δ

which shows that wn is a solution of the VIP. Thus, yn ∈ V I(C, A). Also, since yn ∈ C, we
observe that if Ayn = 0 then yn = ΠCJ

−1(Jyn− δAyn), which implies that yn ∈ V I(C, A).

6.2.2 Convergence analysis

Lemma 6.2.2. Suppose that Assumption 6.2.1 holds. The Armijo-like criteria (6.2.2) is
well defined. Furthermore, we have that λn ≤ δ.

Proof. If wn ∈ V I(C, A) then wn = ΠCJ
−1(Jwn − δAwn), which implies that wn = yn.

Thus mn = 0. If wn /∈ V I(C, A), we prove by contradiction by assuming that the contrast
of (6.2.2) holds, that is,

δℓm
〈
AΠCJ

−1(Jwn − δℓmAwn)− Awn, ΠCJ
−1(Jwn − δℓmAwn)− ΠTnJ

−1(Jwn − δℓmAyn)
〉

>
η

2

[
∥wn − ΠCJ

−1(Jwn − δℓmAwn)∥2 + ∥ΠCJ
−1(Jwn − δℓmAwn)− ΠTnJ

−1(Jwn − δℓmAyn)∥2
]
.

This implies that

δℓm
∥∥AΠCJ

−1(Jwn − δℓmAwn)− Awn
∥∥ · ∥∥ΠCJ

−1(Jwn − δℓmAwn)− ΠTnJ
−1(Jwn − δℓmAyn)

∥∥
> η

∥∥wn − ΠCJ
−1(Jwn − δℓmAwn)

∥∥ · ∥∥ΠCJ
−1(Jwn − δℓmAwn)− ΠTnJ

−1(Jwn − δℓmAyn)
∥∥ .

Thus, we obtain∥∥AΠCJ
−1(Jwn − δℓmAwn)− Awn

∥∥ > η

δℓm
∥∥wn − ΠCJ

−1(Jwn − δℓmAwn)
∥∥ . (6.2.3)

Next, we consider the following cases: when wn ∈ C and wn /∈ C.

First, suppose that wn ∈ C. By the continuity of A and ΠC we have

lim
m→∞

∥∥wn − ΠCJ
−1(Jwn − δℓmAwn)

∥∥ = 0.
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Consequently, by the continuity of A we get

lim
m→∞

∥∥Awn − AΠCJ
−1(Jwn − δℓmAwn)

∥∥ = 0. (6.2.4)

From (6.2.3) and (6.2.4), we obtain

lim
m→∞

∥wn − ΠCJ
−1(Jwn − δℓmAwn)∥
δℓm

= 0.

By the continuity of J, we have

lim
m→∞

∥Jwn − JΠCJ
−1(Jwn − δℓmAwn)∥
δℓm

= 0. (6.2.5)

Let qm = ΠCJ
−1(Jwn − δℓmAwn). Then from (2.4.2), we have

⟨Jqm − Jwn + δℓmAwn, y − qm⟩ ≥ 0, ∀y ∈ C,

which implies that

⟨Awn, y − qm⟩ ≥
⟨Jwn − Jqm, y − qm⟩

δℓm
.

Letting m→ ∞ and using (6.2.5), we have

⟨Awn, y − wn⟩ ≥ 0, ∀y ∈ C.

This implies that wn ∈ V I(C, A), which contradicts the hypothesis.

Next suppose wn /∈ C, then we obtain

lim
m→∞

∥∥wn − ΠCJ
−1(Jwn − δℓmAwn)

∥∥ = ∥wn − ΠCwn∥ > 0 (6.2.6)

and

lim
m→∞

δℓm
∥∥Awn − AΠCJ

−1(Jwn − δℓmAwn)
∥∥ = 0. (6.2.7)

Combining (6.2.3), (6.2.6) and (6.2.7), we obtain a contradiction. Hence, the linesearch
(6.2.2) is well defined.

Lemma 6.2.3. Let {xn} be a sequence generated by Algorithm 6.2.2 under Assumption
6.2.1 and p ∈ V I(C, A). Then, we have

lim
n→∞

θn
αn

(
ϕ(p, xn−1)− ϕ(p, xn)

)
= 0. (6.2.8)

Proof. Let p ∈ V I(C, A). From (6.2.1), we obtain

θn∥xn − xn−1∥ ≤ τn for each n ≥ 1. (6.2.9)

Since lim
n→∞

τn
αn

= 0 and lim
n→∞

αn = 0, it follows that lim
n→∞

τn = 0. Thus, we obtain
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lim
n→∞

θn∥xn − xn−1∥ ≤ lim
n→∞

τn = 0. (6.2.10)

Since J is norm-to-norm continuous on subsets of X , it follows that

lim
n→∞

θn∥Jxn − Jxn−1∥ = 0. (6.2.11)

Again, from (6.2.9) we have

lim
n→∞

θn
αn

∥xn − xn−1∥ ≤ lim
n→∞

τn
αn

= 0. (6.2.12)

Since J is norm-to-norm continuous on X , we have

lim
n→∞

θn
αn

∥Jxn − Jxn−1∥ = 0. (6.2.13)

Next, observe that

ϕ(p, xn−1)− ϕ(p, xn) = ∥p∥2 − 2⟨p, Jxn−1⟩+ ∥xn−1∥2 −
(
∥p∥2 − 2⟨p, Jxn⟩+ ∥xn∥2

)
= ∥xn−1∥2 − ∥xn∥2 + 2⟨p, Jxn − Jxn−1⟩
≤ ∥xn−1 − xn∥

(
∥xn−1∥+ ∥xn∥

)
+ 2∥p∥∥Jxn − Jxn−1∥. (6.2.14)

Now, by applying (6.2.12) and (6.2.13), it follows from (6.2.14) that

lim
n→∞

θn
αn

(
ϕ(p, xn−1)− ϕ(p, xn)

)
≤ lim

n→∞

( θn
αn

∥xn−1 − xn∥
(
∥xn−1∥+ ∥xn∥

))
+ lim

n→∞

(
2∥p∥ θn

αn
∥Jxn − Jxn−1∥

)
= 0,

which is the desired result.

Lemma 6.2.4. Let {xn} be a sequence generated by Algorithm 6.2.2 under Assumption
6.2.1. Then,

ϕ(p, zn) ≤ ϕ(p, wn)− (1− µη)
[
ϕ(yn, wn) + ϕ(zn, yn)

]
. (6.2.15)
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Proof. Let p ∈ V I(C, A). and Jdn := Jwn − λnAyn, by (2.4.3) we have

ϕ(p, zn) ≤ ϕ(p, dn)− ϕ(zn, dn)

= ∥p∥2 − 2⟨p, Jwn − λnAyn⟩+ ∥dn∥2 −
(
∥zn∥2 − 2⟨zn, Jwn − λnAyn⟩+ ∥dn∥2

)
= ∥p∥2 + ∥dn∥2 − ∥zn∥2 − ∥dn∥2 − 2⟨p, Jwn − λnAyn⟩+ 2⟨zn, Jwn − λnAyn⟩
= ∥p∥2 − ∥zn∥2 − 2⟨p, Jwn − λnAyn⟩+ 2⟨zn, Jwn − λnAyn⟩
= ∥p∥2 − ∥zn∥2 − 2⟨p, Jwn⟩+ 2⟨p, λnAyn⟩+ 2⟨zn, Jwn⟩ − 2⟨zn, λnAyn⟩
= ∥p∥2 − ∥zn∥2 + ∥wn∥2 − ∥wn∥2 − 2⟨p, Jwn⟩+ 2⟨p, λnAyn⟩+ 2⟨zn, Jwn⟩
− 2⟨zn, λnAyn⟩
=
(
∥p∥2 − 2⟨p, Jwn⟩+ ∥wn∥2

)
−
(
∥wn∥2 − 2⟨zn, Jwn⟩+ ∥zn∥2

)
− 2⟨zn, λnAyn⟩

+ 2⟨p, λnAyn⟩
= ϕ(p, wn)− ϕ(zn, wn)− 2⟨zn, λnAyn⟩+ 2⟨p, λnAyn⟩
= ϕ(p, wn)− ϕ(zn, wn) + 2λn⟨p− yn, Ayn⟩+ 2λn⟨yn − zn, Ayn⟩. (6.2.16)

Since p ∈ V I(C, A) and yn ∈ C, we have

⟨Ap, yn − p⟩ ≥ 0.

Also, since A is pseudomonotone, it follows that

⟨Ayn, yn − p⟩ ≥ 0.

Applying the last inequality in (6.2.16), we have

ϕ(p, zn) ≤ ϕ(p, wn)− ϕ(zn, wn) + 2λn⟨yn − zn, Ayn⟩. (6.2.17)

Next, by applying Lemma 2.2.13, we get

ϕ(zn, wn)− 2λn⟨yn − zn, Ayn⟩ = ϕ(zn, yn) + ϕ(yn, wn) + 2⟨zn − yn, Jyn − Jwn⟩
− 2λn⟨yn − zn, Ayn⟩
= ϕ(zn, yn) + ϕ(yn, wn)− 2⟨zn − yn, Jwn − Jyn − λnAyn⟩
= ϕ(zn, yn) + ϕ(yn, wn)− 2⟨zn − yn, Jwn − λnAwn − Jyn⟩

(6.2.18)

− 2λn⟨yn − zn, Ayn − Awn⟩.

Now, since zn ∈ Tn we obtain from the definition of Tn that

⟨zn − yn, Jwn − λnAwn − Jyn⟩ ≤ 0.

Applying the last inequality in (6.2.18), we have

ϕ(zn, wn)− 2λn⟨yn − zn, Ayn⟩ ≥ ϕ(yn, wn) + ϕ(zn, yn)− 2λn⟨yn − zn, Ayn − Awn⟩
≥ ϕ(yn, wn) + ϕ(zn, yn)− η

[
∥wn − yn∥2 + ∥yn − zn∥2

]
.

(6.2.19)
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Applying (6.2.19) in (6.2.17) and using Lemma 2.5.22, we obtain

ϕ(p, zn) ≤ ϕ(p, wn)− ϕ(yn, wn)− ϕ(zn, yn) + η
[
∥wn − yn∥2 + ∥yn − zn∥2

]
= ϕ(p, wn)− ϕ(yn, wn)− ϕ(zn, yn) + η

[
∥yn − wn∥2 + ∥zn − yn∥2

]
≤ ϕ(p, wn)− ϕ(yn, wn)− ϕ(zn, yn) + η [µϕ(yn, wn) + µϕ(zn, yn)]

= ϕ(p, wn)− (1− µη) [ϕ(yn, wn) + ϕ(zn, yn)] ,

which is the desired result.

Lemma 6.2.5. Let {xn} be a sequence generated by Algorithm 6.2.2 under Assumption
6.2.1. Then, {xn} is bounded.

Proof. Let p ∈ V I(C, A). Applying the conditions on η, we obtain from Lemma 6.2.4 that

ϕ(p, zn) ≤ ϕ(p, wn). (6.2.20)

From the definition of wn, we have

ϕ(p, wn) = ϕ(p, J−1((1− θn)Jxn + θnJxn−1))

≤ (1− θn)ϕ(p, xn) + θnϕ(p, xn−1). (6.2.21)

By the definition of xn+1, and by applying (6.2.20) and (6.2.21), we have

ϕ(p, xn+1) = ϕ(p, J−1(αnJu+ (1− αn)Jzn))

≤ αnϕ(p, u) + (1− αn)ϕ(p, zn)

≤ αnϕ(p, u) + (1− αn)ϕ(p, wn)

≤ αnϕ(p, u) + (1− αn)
[
(1− θn)ϕ(p, xn) + θnϕ(p, xn−1)

]
≤ max

{
ϕ(p, u), max{ϕ(p, xn), ϕ(p, xn−1)}

}
...

≤ max
{
ϕ(p, u), max{ϕ(p, x1), ϕ(p, x0)}

}
.

Hence, ϕ(p, xn) is bounded, and it follows that {xn} is bounded. Consequently, {wn}, {yn},
{zn} are bounded.

Lemma 6.2.6. Let {xn} be a sequence generated by Algorithm 6.2.2 under Assumption
6.2.1. Then, the following inequality holds for all p ∈ V I(C, A) :

ϕ(p, xn+1) ≤ (1− αn)ϕ(p, xn)

+ αn

[
(1− αn)

θn
αn

[
ϕ(p, xn−1)− ϕ(p, xn)

]
+ 2⟨Ju− Jp, xn+1 − p⟩

]
− (1− αn)(1− µη)

[
ϕ(yn, wn) + ϕ(zn, yn)

]
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Proof. Let p ∈ V I(C, A). From the definition of xn+1 and by applying (2.2.2), (6.2.15) and
(6.2.21), we have

ϕ(p, xn+1) = ϕ
(
p, J−1

(
αnJu+ (1− αn)Jzn

))
= V (p, αnJu+ (1− αn)Jzn)

≤ V (p, αnJu+ (1− αn)Jzn − αn(Ju− Jp)) + 2αn⟨Ju− Jp, xn+1 − p⟩
≤ αnV (p, Jp) + (1− αn)V (p, Jzn) + 2αn⟨Ju− Jp, xn+1 − p⟩
= αn(p, p) + (1− αn)ϕ(p, zn) + 2αn⟨Ju− Jp, xn+1 − p⟩

≤ (1− αn)
[
ϕ(p, wn)− (1− µη)

[
ϕ(yn, wn) + ϕ(zn, yn)

]]
+ 2αn⟨Ju− Jp, xn+1 − p⟩
≤ (1− αn) [(1− θn)ϕ(p, xn) + θnϕ(p, xn−1)] + 2αn⟨Ju− Jp, xn+1 − p⟩
− (1− αn)(1− µη)

[
ϕ(yn, wn) + ϕ(zn, yn)

]
(6.2.22)

= (1− αn)ϕ(p, xn)

+ αn

[
(1− αn)

θn
αn

[
ϕ(p, xn−1)− ϕ(p, xn)

]
+ 2⟨Ju− Jp, xn+1 − p⟩

]
− (1− αn)(1− µη)

[
ϕ(yn, wn) + ϕ(zn, yn)

]
,

which is the required inequality.

Lemma 6.2.7. Let {wn} and {yn} be sequences generated by Algorithm 6.2.2 under As-
sumption 6.2.1. If there exists a subsequence {wnk

} of {wn} such that {wnk
} converges

weakly to p ∈ C and lim
k→∞

∥wnk
− ynk

∥ = 0, then p ∈ V I(C, A).

Proof. For all x ∈ C, we obtain from (2.4.2) and the definition of {ynk
} that

0 ≤ ⟨Jynk
− Jwnk

+ λnk
Awnk

, x− ynk
⟩

= ⟨Jynk
− Jwnk

, x− ynk
⟩+ λnk

⟨Awnk
, x− ynk

⟩
= ⟨Jynk

− Jwnk
, x− ynk

⟩+ λnk
⟨Awnk

, wnk
− ynk

⟩+ λnk
⟨Awnk

, x− wnk
⟩ (6.2.23)

Next, we show that lim inf
k→∞

⟨Awnk
, x− wnk

⟩ ≥ 0, ∀ x ∈ C. We consider the following two

cases for λnk
:

Case 1: Suppose that lim inf
k→∞

λnk
> 0. Since {wnk

} is bounded and A is uniformly contin-

uous, we obtain from Lemma 2.5.21 that {Awnk
} is bounded. Since lim

k→∞
∥wnk

− ynk
∥ = 0,

{ynk
} is bounded. From the boundedness of {ynk

}, (6.2.23), the facts that J is norm-to-
norm uniformly continuous and lim inf

k→∞
λnk

> 0, we have

lim inf
k→∞

⟨Awnk
, x− wnk

⟩ ≥ 0, ∀ x ∈ C. (6.2.24)

281



Case 2: Suppose that lim inf
k→∞

λnk
= 0. Let tnk

= ΠCJ
−1(Jwnk

−λnk
ℓ−1Awnk

). From Lemma

2.5.23 and the fact that λnk
ℓ−1 > λnk

we have,

ℓ∥wnk
− tnk

∥ ≤ ∥wnk
− ynk

∥ → 0, as k → ∞.

Thus, we have that tnk
⇀ p ∈ C, which implies that {tnk

} is bounded.

Since lim
k→∞

∥wnk
− tnk

∥ = 0 and A is uniformly continuous, we obtain

lim
k→∞

∥Awnk
− Atnk

∥ = 0. (6.2.25)

Also, since J is norm-to-norm continuous we have

∥Jwnk
− Jtnk

∥ → 0, k → ∞.

From (6.2.2) we have,

λnk
ℓ−1⟨AΠCJ

−1(Jwnk
− λnk

ℓ−1Awnk
)− Awnk

, ΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)− znk
⟩

>
η

2

[
∥wnk

− ΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)∥2 + ∥ΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)− znk
∥2
]
.

Applying the Cauchy-Schwartz inequality to the last inequality, we have

λnk
ℓ−1∥AΠCJ

−1(Jwnk
− λnk

ℓ−1Awnk
)− Awnk

∥ · ∥ΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)− znk
∥

> η
[
∥wnk

− ΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)∥ · ∥ΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)− znk
∥
]
,

which implies that

λnk
ℓ−1∥Awnk

− AΠCJ
−1(Jwnk

− λnk
ℓ−1Awnk

)∥ > η∥wnk
− ΠCJ

−1(Jwnk
− λnk

ℓ−1Awnk
)∥.

From this, we have

1

η
∥Awnk

− Atnk
∥ > 1

λnk
ℓ−1

∥wnk
− tnk

∥. (6.2.26)

Applying (6.2.25) to (6.2.26) we have

lim
k→∞

1

λnk
ℓ−1

∥wnk
− tnk

∥ = 0.

From the definition of tnk
and Lemma 2.4.3, we have

0 ≤
〈
Jtnk

− Jwnk
+ λnk

ℓ−1Awnk
, x− tnk

〉
.

It follows that

1

λnk
ℓ−1

⟨Jwnk
− Jtnk

, x− tnk
⟩+ ⟨Awnk

, tnk
− wnk

⟩ ≤ ⟨Awnk
, x− wnk

⟩ , ∀ x ∈ C.
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Taking the limit of the last inequality as k → ∞ and noting the fact that J is norm-to-norm
continuous, we have

lim inf
k→∞

⟨Awnk
, x− wnk

⟩ ≥ 0, ∀x ∈ C,

which is the desired result.

Now, to complete the proof we show that p ∈ V I(C, A). Observe that

⟨Aynk
, x− ynk

⟩ = ⟨Aynk
− Awnk

, x− wnk
⟩+ ⟨Awnk

, x− wnk
⟩+ ⟨Aynk

, wnk
− ynk

⟩ .
(6.2.27)

Since lim
k→∞

∥wnk
− ynk

∥ = 0 and A is uniformly continuous, we obtain

lim
k→∞

∥Awnk
− Aynk

∥ = 0. (6.2.28)

Then, it follows from (6.2.24) and (6.2.27) that

lim inf
k→∞

⟨Aynk
, x− ynk

⟩ ≥ 0, ∀ x ∈ C.

Now, we show that p ∈ V I(C, A). We choose a decreasing sequence of positive numbers
{ζk} such that {ζk} → 0 as k → ∞. For each k, we denote the smallest positive integer
by Nk such that

⟨Aynj
, x− ynj

⟩+ ζn ≥ 0, ∀ j ≥ Nk. (6.2.29)

We observe that {Nk} is increasing since {ζn} is decreasing. However, since {ynk
} ⊂ C for

each k, we assume that AyNk
̸= 0 (otherwise, yNk

is a solution). Moreover, let dNk
∈ E

such that lim
k→∞

dNk
= d ∈ E and ⟨AyNk

, dNk
⟩ = 1 for each k. Then, from (6.2.29), we have

for each k that

⟨AyNk
, x+ ζkdNk

− yNk
⟩ ≥ 0, ∀ x ∈ C.

Since A is pseudomonotone on X , we have

⟨A(x+ ζkdNk
), x+ ζkdNk

− yNk
⟩ ≥ 0, ∀ x ∈ C.

which implies that

⟨Ax, x− yNk
⟩ ≥ ⟨Ax− A(x+ ζkdNk

), x+ ζkdNk
− yNk

⟩ − ζk⟨Ax, dNk
⟩, ∀ x ∈ C.

(6.2.30)

Since {dNk
} is bounded and lim

k→∞
ζk = 0, we have lim

k→∞
ζkdNk

= 0. Applying the fact that

A is uniformly continuous, lim
k→∞

ζkdNk
= 0, {yNk

} and {dNk
} are bounded on (6.2.30), we

have

lim inf
k→∞

⟨Ax, x− yNk
⟩ ≥ 0.

Therefore,

⟨Ax, x− p⟩ = lim
k→∞

⟨Ax, x− yNk
⟩ = lim inf

k→∞
⟨Ax, x− yNk

⟩ ≥ 0, ∀ x ∈ C.

From Lemma 2.5.2, we obtain that p ∈ V I(C, A). This completes the proof.
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Remark 6.2.8. Note that Lemma 6.2.7 holds if the mapping A in Assumption 6.2.1 (b)
is Lipschitz continuous instead of uniformly continuous. Moreover, the result of Lemma
6.2.7 also holds if the step-size of our proposed Algorithm 6.2.2 is a sequence of positive
numbers.

We are now in the position to present our main result.

Theorem 6.2.9. Let {xn} be a sequence generated by Algorithm 6.2.2 under Assumption
6.2.1. Then, {xn} converges strongly to p ∈ V I(C, A), where p = ΠV I(C,A)(u).

Proof. Let p = ΠV I(C,A)u. From Lemma 6.2.6, we have

ϕ(p, xn+1) ≤ (1− αn)ϕ(p, xn)

+ αn

[
(1− αn)

θn
αn

[
ϕ(p, xn−1)− ϕ(p, xn)

]
+ 2⟨Ju− Jp, xn+1 − p⟩

]
= (1− αn)ϕ(p, xn) + αnvn, (6.2.31)

where vn = (1− αn)
θn
αn

[
ϕ(p, xn−1)− ϕ(p, xn)

]
+ 2⟨Ju− Jp, xn+1 − p⟩.

Now, we claim that {ϕ(p, xn)} converges to zero. To establish this, by Lemma 2.5.36
it suffices to show that lim sup

k→∞
vnk

≤ 0 for every subsequence {ϕ(p, xnk
)} of {ϕ(p, xn)}

satisfying the condition

lim inf
k→∞

[
ϕ(p, xnk+1

)− ϕ(p, xnk
)
]
≥ 0. (6.2.32)

Suppose that {ϕ(p, xnk
)} is a subsequence of {ϕ(p, xn)} such that (6.2.32) holds. Again,

we obtain from Lemma 6.2.6 that

(1− αnk
)(1− µη)

[
ϕ(ynk

, wnk
) + ϕ(znk

, ynk
)
]
≤ (1− αnk

)ϕ(p, xnk
)− ϕ(p, xnk+1)

+ αnk

[
(1− αnk

)
θnk

αnk

[
ϕ(p, xnk−1)− ϕ(p, xnk

)
]
+ 2⟨Ju− Jp, xnk+1 − p⟩

]
.

By (6.2.8), (6.2.32) and the fact that lim
k→∞

αnk
= 0, we obtain

lim
k→∞

(1− αnk
)(1− µη)

[
ϕ(ynk

, wnk
) + ϕ(znk

, ynk
)
]
= 0.

By the conditions on the control sequences, it follows that

lim
k→∞

ϕ(ynk
, wnk

) = lim
k→∞

ϕ(znk
, ynk

) = 0.

From Lemma 2.5.24, we have
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∥wnk
− ynk

∥ → 0, as k → ∞ (6.2.33)

and

∥ynk
− znk

∥ → 0, as k → ∞. (6.2.34)

From (6.2.33) and (6.2.34) we have

∥wnk
− znk

∥ → 0, as k → ∞. (6.2.35)

From the definition of xnk+1
in Algorithm 6.2.2, we have

∥Jxnk+1
− Jznk

∥ ≤ αnk
∥Ju− Jznk

∥+ (1− αnk
)∥Jznk

− Jznk
∥ → 0, as k → ∞.

(6.2.36)

Since J−1 is norm-to-norm uniformly continuous on bounded subsets of X ∗, we obtain

∥xnk+1
− znk

∥ → 0, as k → ∞. (6.2.37)

Also, by applying (6.2.34) and (6.2.37) we obtain

∥xnk+1
− ynk

∥ ≤ ∥xnk+1
− znk

∥+ ∥znk
− ynk

∥ → 0, as k → ∞. (6.2.38)

From the definition of wnk
and by applying (6.2.11), we have

∥Jwnk
− Jxnk

∥ = θnk
∥Jxnk−1

− Jxnk
∥ → 0, as k → ∞.

Since J−1 is norm-to-norm uniformly continuous on bounded subsets of X ∗, we have

∥wnk
− xnk

∥ → 0, as k → ∞. (6.2.39)

From (6.2.33)-(6.2.39), we have

lim
k→∞

∥ynk
− xnk

∥ = 0, lim
k→∞

∥xnk
− znk

∥ = 0, lim
k→∞

∥wnk
− ynk

∥ = 0. (6.2.40)

Also, from (6.2.38) and (6.2.40),we have

∥xnk+1
− xnk

∥ ≤ ∥xnk+1
− ynk

∥+ ∥ynk
− xnk

∥ → 0, as k → ∞. (6.2.41)

Since {xn} is bounded, then wω(xn) is nonempty. Let x∗ ∈ wω(xn) be an arbitrary element.
Then, there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x∗ as k → ∞. Then, from

(6.2.39), we obtain wnk
⇀ x∗ as k → ∞. Now, by Lemma 6.2.7, it follows from (6.2.40) that

x∗ ∈ V I(C, A). Since x∗ ∈ wω(xn) is an arbitrary element, we have wω(xn) ⊂ V I(C, A).
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Moreover, since the sequence {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
}

which converges weakly to z∗ ∈ X . Since p = ΠV I(C,A)(u), we have that

lim sup
k→∞

⟨Ju− Jp, xnk
− p⟩ = lim

j→∞
⟨Ju− Jp, xnkj

− p⟩

= ⟨Ju− Jp, z∗ − p⟩
≤ 0. (6.2.42)

From (6.2.41) and (6.2.42), we obtain

lim sup
k→∞

⟨Ju− Jp, xnk+1
− p⟩ ≤ 0. (6.2.43)

From (6.2.8) and (6.2.43), we obtain lim sup
k→∞

vnk
≤ 0. Hence, by applying Lemma 2.5.36 to

(6.2.31) we obtain that lim
n→∞

ϕ(p, xn) = 0. It follows from Lemma 2.5.24 that lim
n→∞

∥xn −
p∥ = 0. Therefore, {xn} converges strongly to p ∈ V I(C, A), where p = ΠV I(C,A)(u).

Remark 6.2.10. In real Hilbert spaces, we have that ϕ(x, y) = ∥x− y∥2, ∀ x, y ∈ C and
ΠC = PC where PC : H → C is the metric projection of H onto C.

A mapping PC is said to be the metric projection of a real Hilbert space H onto C if for
all x ∈ H there exists a unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥, ∀ y ∈ C.

If X is a Hilbert space, then taking J = I and ϕ(x, y) = ∥x− y∥2, ∀ x, y ∈ C in Theorem
6.2.9 (where I is the identity mapping on X ), we have the following consequent result:

Corollary 6.2.3. Let {xn} be a sequence generated by Algorithm 6.2.4 below under As-
sumption 6.2.1. Then, {xn} converges strongly to p ∈ V I(C, A), where p = PV I(C,A)(u).

Algorithm 6.2.4. Inertial method with new Armijo-type stepsize.

Initialization: Given λ1 > 0, θ > 0, δ > 0, ℓ ∈ (0, 1) and η ∈ (0, 1
µ
). Let u, x0, x1 ∈ X

be arbitrary. Set n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{
θ, τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.

Step 2: Compute
wn = xn + θn(xn−1 − xn)).

Step 3: Compute

yn = PC(wn − λnAwn).
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If wn = yn, or Ayn = 0 then stop and yn is a solution of the VIP. Otherwise, go to Step
4.

Step 4: Compute
zn = PTn(wn − λnAyn)

where
Tn := {x ∈ X |⟨wn − λnAwn − yn, x− yn⟩ ≤ 0},

λn := δℓmn and mn is the smallest non-negative integer m satisfying

δℓm⟨Ayn − Awn, yn − zn⟩ ≤
η

2

[
∥wn − yn∥2 + ∥yn − zn∥2

]
.

Step 5: Calculate
xn+1 = αnu+ (1− αn)zn).

Set n := n+ 1 and go to Step 1.

6.2.3 Numerical experiments

In this section, using some test examples, we discuss the numerical behavior of Algorithm
6.2.2 and compare it with Algorithm 2.5.6 proposed by Cai et. al [53], Algorithm 2.5.7
proposed by Tan et. al [240], Appendix 6.2.13 proposed by Thong et.al [251] and Appendix
6.2.14 proposed by Reich et.al [214]. We perform all implementations using Matlab 2016
(b), installed on a personal computer with Intel(R) Core(TM) i5-2600 CPU@2.30GHz and
8.00 Gb-RAM running on Windows 10 operating system. In Tables 6.2.1-6.2.2, “No. of
Iter.” means the number of iterations.

In our computations, we choose τn = 10
(n+2)2

, αn = 1
n+2

, λ1 = λ = 0.9, θ = 0.7, δ = 2.7, ℓ =

0.5 and η = 0.6. Furthermore, in the implementation, we define TOLn := ∥xn+1−xn∥ and
use the stopping criterion TOLn < 10−3 for the iterative processes.

Example 6.2.11. Consider the linear operator A : Rm → Rm (m = 15, 30, 45, 60) defined
by

A =Mx+ q,

where
M = BBT + P +Q

with P,Q ∈ Rm×m randomly generated matrices such that P is skew-symmetric, Q is a
diagonal matrix of nonnegative entries and q is a vector in Rm. The feasible set C ⊂ Rm

is a closed and convex subset defined by

C := {x ∈ Rm : Gx ≤ b},

where G is an k × m matrix and b is a nonnegative vector. We easily observe that A
is lipschitz continuous and monotone with L = ∥M∥. Let q = 0 then, the solution set
V I(C, A) := {0}. The entries of B,P are generated randomly in [−2, 2] as well as the
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starting points x0, x1 and the diagonal entries of Q are in (0, 2), and q is taken as the zero
vector in Rm.Moreover, for Algorithm 2.5.7, we define the contraction mapping fx = 0.1x
for all x ∈ Rm. We plot the graph of ∥xn+1 − xn∥ against number of iterations choosing
m = 15, 30, 45, 60. The numerical results are reported in Figure 6.1 and Table 6.3.1.

Table 6.3.1: Numerical results for Example 6.2.11

Cases Alg.
2.5.6

Alg.
2.5.7

App.
6.2.13

App.
6.2.14

Alg.
6.2.2

m = 15 No. of Iter. 19 31 24 33 14
CPU time
(sec)

8.2375 5.3746 3.7576 5.3048 5.8052

m = 30 No. of Iter. 23 33 26 44 18
CPU time
(sec)

11.6430 6.3741 4.7479 7.8673 6.9292

m = 45 No. of Iter. 25 40 29 46 20
CPU time
(sec)

9.6496 8.3209 5.6280 9.5082 6.3000

m = 60 No. of Iter. 26 43 31 51 24
CPU time
(sec)

9.5374 10.1644 6.5321 11.4672 6.5011

Example 6.2.12. LetH1 = (l2(R), ||.||l2) = H2, where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈

R :
∞∑
i=1

|xi|2 <∞} and ||x||l2 :=
(

∞∑
i=1

|xi|2
) 1

2

, ∀x ∈ l2(R). Let C = {x ∈ l2(R) : ||x−a||l2 ≤

r}, where a = (1, 1
2
, 1
3
, · · · ), r = 3. Then C is a nonempty, closed and convex subset of

l2(R). Thus,

PC(x) =

{
x, if x ∈ ||x− a||l2 ≤ r,
x−a

||x−a||l2
r + a, otherwise.

Now, define the operator A, : l2(R) → l2(R) by

Ax =

(
∥x− a∥+ 1

∥x− a∥+ 0.7

)
x.

It is easy to see that the solution set V I(C, A) = {0}, A is pseudomonotone on l2(R),
uniformly continuous and sequentially weakly continuous on C but not Lipschitz on l2(R).

More so, for Algorithm 2.5.7, we define the mapping fx = x
2
, for all x ∈ l2(R). Then, we

take u = (1, 1
5
, 1
25
, · · · ) and consider the following cases for the numerical experiments:

Case 1: Take x1 = (−4, 1,−1
4
, · · · ) and x0 = (2, 1, 1

2
, · · · ).

Case 2: Take x1 = (−2, 1,−1
2
, · · · ) and x0 = (−3, 1,−1

3
, · · · ).

Case 3: Take x1 = (−3, 1,−1
3
, · · · ) and x0 = (−2, 1,−1

2
, · · · ).

Case 4: Take x1 = (−4, 1,−1
4
, · · · ) and x0 = (3, 1, 1

3
, · · · ).
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Figure 6.1: Top left: m = 15; Top right: m = 30; Bottom left: m = 45; Bottom right: m
= 60.
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We plot the graph of ∥xn+1 −xn∥ against number of iterations using the above four cases.
The numerical results are reported in Figure 6.2 and Table 6.3.2.

Table 6.3.2: Numerical results for Example 6.2.12

Alg.
2.5.6

Alg.
2.5.7

App.
6.2.13

App.
6.2.14

Alg.
6.2.2

Case I No. of Iter. 30 20 39 26 9
CPU time
(sec)

0.0169 0.0104 0.0102 0.0102 0.0107

Case II No. of Iter. 19 18 26 33 8
CPU time
(sec)

0.0164 0.0099 0.0091 0.0096 0.0111

Case III No. of Iter. 16 19 33 26 9
CPU time
(sec)

0.0181 0.0106 0.0124 0.0132 0.0144

Case IV No. of Iter. 35 20 39 32 9
CPU time
(sec)

0.0171 0.0093 0.0094 0.0098 0.0104

Appendix 6.2.13. (Algorithm 3.3 in [251])

Initialization: Given {αn} ⊂ (0, 1), ℓ ∈ (0, 1), β > 0, λ ∈ (0, 1
β
). Let x1 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1: Compute

zn = PC(xn − λAxn)

and rλ(xn) := xn− zn. If rλ(xn) = 0 then stop and xn is a solution of V I(C, A). Otherwise

Step 2: Compute

yn = xn − τnrλ(xn),

where τn := ℓjn and jn is the smallest non-negative integer j satisfying

⟨Axn − Ayn, rλ(xn)⟩ ≤ µ∥rλ(xn)∥2.

Step 2: Compute

xn+1 = αnf(xn) + (1− αn)PCn(xn),

where

Cn := {x ∈ C : hn(x) ≤ 0}

290



0 5 10 15 20 25 30 35 40
Iteration number (n)

10-2

10-1

100

E
rr

or
s

Algorithm 1.5
Algorithm 1.7
Appendix 7.1
Appendix 7.2
Algorithm 3.2

0 5 10 15 20 25 30 35
Iteration number (n)

10-2

10-1

100

E
rr

or
s

Algorithm 1.5
Algorithm 1.7
Appendix 7.1
Appendix 7.2
Algorithm 3.2

0 5 10 15 20 25 30 35
Iteration number (n)

10-2

10-1

100

E
rr

or
s

Algorithm 1.5
Algorithm 1.7
Appendix 7.1
Appendix 7.2
Algorithm 3.2

0 5 10 15 20 25 30 35 40
Iteration number (n)

10-2

10-1

100

E
rr

or
s

Algorithm 1.5
Algorithm 1.7
Appendix 7.1
Appendix 7.2
Algorithm 3.2

Figure 6.2: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.
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and

hn(x) = ⟨Ayn, x− yn⟩.

Set n := n+ 1 and go to Step 1.

where A : H → H is pseudomonotone, uniformly continuous and sequentially weakly
continuous on bounded subsets of C.

Appendix 6.2.14. (Algorithm 4 in [214])

Initialization: Given {αn} ⊂ (0, 1), ℓ ∈ (0, 1), β > 0, λ ∈ (0, 1
β
). Let x1 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1: Compute

zn = PC(xn − λAxn)

and rλ(xn) := xn − zn. If rλ(xn) = 0 then stop and xn is a solution of the VIP. Otherwise

Step 2: Compute

yn = xn − τnrλ(xn),

where τn := ℓjn and jn is the smallest non-negative integer j satisfying

⟨Axn − Ayn, rλ(xn)⟩ ≤
µ

2
∥rλ(xn)∥2.

Step 3: Compute

xn+1 = αnf(xn) + (1− αn)PCn(xn),

where

Cn := {x ∈ C : hn(x) ≤ 0}

and

hn(x) = ⟨Ayn, x− xn⟩+
τn
2
∥rλ(xn)∥2.

Set n := n+ 1 and go to Step 1.

where A : H → H is pseudomonotone and uniformly continuous.
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6.3 On finite family of split monotone variational in-

clusion and fixed point problems

In this section, we propose and study a new inertial iterative algorithm with self-adaptive
step size for approximating a common solution of finite family of SMVqIPs and FPP
of a nonexpansive mapping between a Banach space and Hilbert space. This method
combines the inertial technique with viscosity method and self-adaptive step size for solving
the common solution problem. We prove a strong convergence result for the proposed
method under some mild conditions. Moreover, we apply our result to study the SFP and
split minimization problem (SMP). Finally, we provide some numerical experiments to
demonstrate the efficiency of our method in comparison with some well-known methods in
the literature. Our method does not require prior knowledge or estimate of the operator
norm, which makes it easily implementable unlike so many other methods in the literature
which require prior knowledge of the operator norm for their implementation.

6.3.1 Proposed method

Let H be a real Hilbert space and let X be a uniformly convex and smooth Banach space.
Let JX be the duality mapping on X . Let T : H → X be a bounded linear operator
such that T ̸= 0 and T ∗ is the adjoint operator of T. Let f : H → H be a contraction
mapping with constant ρ ∈ (0, 1) and 0 < γ < γ

ρ
, and let S : H → H be a nonexpansive

mapping. For each i = 1, 2, · · · ,m, let Ai : H → H be a finite family of αi-inverse
strongly monotone operators, Bi : H → 2H and Ci : X → 2X

∗
be finite families of

maximal monotone operators, and let JBi
ri

be the resolvent of Bi for ri > 0 and QCi
µi

be the
metric resolvent of Ci for µi > 0. Suppose that the solution set Γ ̸= ∅. We establish the
convergence of the algorithm under the following assumptions on the control parameters:

(A1) {αn}, {δn}, {γn} ⊂ (0, 1) such that αn + δn + γn = 1, lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞;

(A2) lim inf
n→∞

δn > 0, lim inf
n→∞

γn > 0, {βn,i} ⊂ (0, 1) and
m∑
i=0

βn,i = 1, lim inf
n→∞

βn,0βn,i > 0;

(A3) 0 < a ≤ τn ≤ b < 2, 0 < c ≤ µn,i, 0 < d ≤ rn,i ≤ e < 2αi for each i = 1, 2, . . . ,m;

(A4) Let θ > 0 and {ϵn} be a nonnegative sequence such that 0 < d ≤ ϵn and ϵn = ◦(αn),
i.e., lim

n→∞
ϵn
αn

= 0.

Algorithm 6.3.1.

Step 0: Select initial points x0, x1 ∈ H and set n = 1.
Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(6.3.1)
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Step 2: Compute
wn = xn + θn(xn − xn−1).

Step 3: Compute
zn,i = wn − λn,iT

∗JX (I −QCi
µn,i

)Twn,

where

λn,i =
τn∥JX (I −QCi

µn,i
)Twn∥2

∥T ∗JX (I −QCi
µn,i)Twn∥2

.

Step 4: Compute

un = βn,0wn +
m∑
i=1

βn,iJ
Bi
rn,i

(I − rn,iAi)zn,i.

Step 5: Compute
xn+1 = αnf(xn) + δnxn + γnSun.

Set n := n+ 1 and return to Step 1.

Remark 6.3.1. By conditions (A1) and (A4), one can easily verify from (6.3.1) that

lim
n→∞

θn||xn − xn−1|| = 0 and lim
n→∞

θn
αn

||xn − xn−1|| = 0. (6.3.2)

6.3.2 Convergence analysis

Lemma 6.3.2. Let {xn} be a sequence generated by Algorithm 6.3.1 under Assumption
(A1)-(A4). Then, {xn} is bounded.

Let p ∈ Γ. Then, it follows that

p = JBi
rn,i

(I − rn,iAi)p, Tp = QCi
µn,i

Tp, and p = Sp

for all n ∈ N and i = 1, 2, . . . ,m. From the definition of wn in Step 2 and by applying
the triangle inequality, we have

||wn − p|| = ||xn + θn(xn − xn−1)− p||
≤ ||xn − p||+ θn||xn − xn−1||

= ||xn − p||+ αn
θn
αn

||xn − xn−1||. (6.3.3)

Since, by Remark 6.3.1, limn→∞
θn
αn
||xn−xn−1|| = 0, it follows that there exists a constant

M1 > 0 such that θn
αn
||xn − xn−1|| ≤M1 for all n ≥ 1. Hence, it follows from (6.3.3) that

||wn − p|| ≤ ||xn − p||+ αnM1. (6.3.4)
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From Step 3 and the property of the resolvent (2.4.10), we have

∥zn,i − p∥2 = ∥wn − λn,iT
∗JX (I −QCi

µn,i
)Twn − p∥2

= ∥wn − p∥2 − 2λn,i⟨wn − p, T ∗JX (I −QCi
µn,i

)Twn⟩
+ λ2n,i∥T ∗JX (I −QCi

µn,i
)Twn∥2

= ∥wn − p∥2 − 2λn,i⟨Twn − Tp, JX (I −QCi
µn,i

)Twn⟩
+ λ2n,i∥T ∗JX (I −QCi

µn,i
)Twn∥2

= ∥wn − p∥2 − 2λn,i⟨Twn −QCi
µn,i

Twn, JX (I −QCi
µn,i

)Twn⟩
− 2λn,i⟨QCi

µn,i
Twn − Tp, JX (I −QCi

µn,i
)Twn⟩+ λ2n,i∥T ∗JX (I −QCi

µn,i
)Twn∥2

= ∥wn − p∥2 − 2λn,i∥JX (I −QCi
µn,i

)Twn∥2

− 2λn,i⟨QCi
µn,i

Twn − Tp, JX (I −QCi
µn,i

)Twn⟩+ λ2n,i∥T ∗JX (I −QCi
µn,i

)Twn∥2

≤ ∥wn − p∥2 − 2λn,i∥JX (I −QCi
µn,i

)Twn∥2 + λ2n,i∥T ∗JX (I −QCi
µn,i

)Twn∥2

= ∥wn − p∥2 − λn,i

[
2∥JX (I −QCi

µn,i
)Twn∥2 − λn,i∥T ∗JX (I −QCi

µn,i
)Twn∥2

]
(6.3.5)

From the definition of λn,i and (6.3.5), we have

∥zn,i − p∥2 ≤ ∥wn − p∥2 −
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

. (6.3.6)

Thus, by the assumption on τn we have that

∥zn,i − p∥2 ≤ ∥wn − p∥2. (6.3.7)

From the definition of un in Step 4, the nonexpansivity of JBi
rn,i

and Lemma 2.5.7 we get

∥un − p∥2 = ∥βn,0wn +
m∑
i=1

βn,iJ
Bi
rn,i

(I − rn,iAi)zn,i − JBi
rn,i

(I − rn,iAi)p∥2

= βn,0∥wn − JBi
rn,i

(I − rn,iAi)p∥2 +
m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i

− JBi
rn,i

(I − rn,iAi)p∥2 − βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2

≤ βn,0∥wn − p∥2 +
m∑
i=1

βn,i∥zn,i − p− rn,i(Aizn,i − Aip)∥2

− βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2. (6.3.8)

Next, by applying the inversely strongly monotonicity of the Ai’s, Lemma 2.1.1 and (6.3.7),
for each i = 1, 2, . . . ,m, we observe that
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∥zn,i − p− rn,i(Aizn,i − Aip)∥2 = ∥zn,i − p∥2 − 2rn,i⟨Aizn,i − Aip, zn,i − p⟩
+ r2n,i∥Aizn,i − Aip∥2

≤ ∥zn,i − p∥2 − 2rn,iαi∥Aizn,i − Aip∥2

+ r2n,i∥Aizn,i − Aip∥2

= ∥zn,i − p∥2 − (2αi − rn,i)rn,i∥Aizn,i − Aip∥2. (6.3.9)

Now, by applying (6.3.6), it follows from (6.3.8) and (6.3.9) that

∥un − p∥2 ≤ βn,0∥wn − p∥2 +
m∑
i=1

βn,i∥zn,i − p∥2 −
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

− βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2

≤ βn,0∥wn − p∥2 +
m∑
i=1

βn,i∥wn − p∥2 −
m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

−
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2 − βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2

= ∥wn − p∥2 −
m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

(6.3.10)

−
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

− βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2

≤ ∥wn − p∥2 (6.3.11)

Consequently, we have that

∥un − p∥ ≤ ∥wn − p∥ ≤ ||xn − p||+ αnM1. (6.3.12)
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From Step 5, (6.3.12) and the nonexpansivity of S, we have

∥xn+1 − p∥ = ∥αnf(xn) + δnxn + γnSun − p∥
≤ αn∥f(xn)− p∥+ δn∥xn − p∥+ γn∥Sun − p∥
≤ αn∥f(xn)− f(p)∥+ αn∥f(p)− p∥+ δn∥xn − p∥+ γn∥un − p∥

≤ αn∥f(xn)− f(p)∥+ αn∥f(p)− p∥+ δn∥xn − p∥+ γn

(
∥xn − p∥+ αnM1

)
≤ αnρ∥xn − p∥+ αn∥f(p)− p∥+ (1− αn)∥xn − p∥+ γnαnM1

≤
(
1− αn(1− ρ)

)
∥xn − p∥+ αn(1− ρ)

[
∥f(p)− p∥

1− ρ
+

M1

1− ρ

]
≤ max

{
∥xn − p∥, ∥f(p)− p∥+M1

1− ρ

}
...

≤ max

{
∥x0 − p∥, ∥f(p)− p∥+M1

1− ρ

}
.

Hence, the sequence {xn} is bounded. Consequently, {wn}, {zn,i} and {un} are bounded.

Lemma 6.3.3. Let {xn} be a sequence generated by Algorithm 6.3.1 under Assumption
(A1)-(A4). Then, for all p ∈ Γ and n ∈ N we have:

∥xn+1 − p∥2 ≤ (1− ηn)∥xn − p∥2 + ηn

[ αn
2(1− ρ)

M3 + 3M2
γn(1− αn)

2(1− ρ)

θn
αn

∥xn − xn−1∥

+
1

(1− ρ)
⟨f(p)− p, xn+1 − p⟩

]
− σn

[ m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

+
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2 + βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]
,

where ηn = 2αn(1−ρ)
(1−αnρ)

and σn = γn(1−αn)
(1−αnρ)

.

Proof. Let p ∈ Γ. Then from Step 2, by applying the Cauchy-Schwartz inequality and
Lemma 2.1.1, we obtain

||wn − p||2 = ||xn + θn(xn − xn−1)− p||2

= ||xn − p||2 + θ2n||xn − xn−1||2 + 2θn⟨xn − p, xn − xn−1⟩
≤ ||xn − p||2 + θ2n||xn − xn−1||2 + 2θn||xn − xn−1||||xn − p||
= ||xn − p||2 + θn||xn − xn−1||(θn||xn − xn−1||+ 2||xn − p||)
≤ ||xn − p||2 + 3M2θn||xn − xn−1||

= ||xn − p||2 + 3M2αn
θn
αn

||xn − xn−1||, (6.3.13)
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where M2 := supn∈N{||xn − p||, θn||xn − xn−1||} > 0.

By applying Lemma 2.1.1, (6.3.10) and (6.3.13) we have

∥xn+1 − p∥2 = ∥αnf(xn) + δnxn + γnSun − p∥2

= ∥αn(f(xn)− p) + δn(xn − p) + γn(Sun − p)∥2

≤ ∥δn(xn − p) + γn(Sun − p)∥2 + 2αn⟨f(xn)− p, xn+1 − p⟩
= δ2n∥xn − p|2 + γ2n∥Sun − p∥2 + 2δnγn⟨xn − p, Sun − p⟩
+ 2αn⟨f(xn)− p, xn+1 − p⟩
≤ δ2n∥xn − p|2 + γ2n∥Sun − p∥2 + 2δnγn∥xn − p∥∥Sun − p∥
+ 2αn⟨f(xn)− p, xn+1 − p⟩

≤ δ2n∥xn − p|2 + γ2n∥Sun − p∥2 + δnγn

(
∥xn − p∥2 + ∥Sun − p∥2

)
+ 2αn⟨f(xn)− p, xn+1 − p⟩
≤ δn(δn + γn)∥xn − p∥2 + γn(γn + δn)∥un − p∥2 + 2αn⟨f(xn)− p, xn+1 − p⟩
= δn(1− αn)∥xn − p∥2 + γn(1− αn)∥un − p∥2 + 2αn⟨f(xn)− f(p), xn+1 − p⟩
+ 2αn⟨f(p)− p, xn+1 − p⟩
≤ δn(1− αn)∥xn − p∥2

+ γn(1− αn)
[
∥wn − p∥2 −

m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

−
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

− βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]

+ 2αnρ∥xn − p∥∥xn+1 − p∥+ 2αn⟨f(p)− p, xn+1 − p⟩
≤ δn(1− αn)∥xn − p∥2

+ γn(1− αn)
[
||xn − p||2 + 3M2αn

θn
αn

||xn − xn−1||

−
m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

−
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

− βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]

+ αnρ(∥xn − p∥2 + ∥xn+1 − p∥2) + 2αn⟨f(p)− p, xn+1 − p⟩
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= ((1− αn)
2 + αnρ)∥xn − p∥2 + αnρ∥xn+1 − p∥2

+ 3M2γn(1− αn)αn
θn
αn

||xn − xn−1||+ 2αn⟨f(p)− p, xn+1 − p⟩

− γn(1− αn)
[ m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

+
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

+ βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]
.
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From this we obtain

∥xn+1 − p∥2 ≤

(
1− 2αn + α2

n + αnρ
)

(1− αnρ)
∥xn − p∥2 + 3M2γn(1− αn)

(1− αnρ)
αn

θn
αn

||xn − xn−1||

+
2αn

(1− αnρ)
⟨f(p)− p, xn+1 − p⟩

− γn(1− αn)

(1− αnρ)

[ m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

+
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

+ βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]

=

(
1− 2αn + αnρ

)
(1− αnρ)

∥xn − p∥2 + α2
n

(1− αnρ)
∥xn − p∥2

+
3M2γn(1− αn)

(1− αnρ)
αn

θn
αn

||xn − xn−1||+
2αn

(1− αnρ)
⟨f(p)− p, xn+1 − p⟩

− γn(1− αn)

(1− αnρ)

[ m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

+
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

+ βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]

≤
(
1− 2αn(1− ρ)

(1− αnρ)

)
∥xn − p∥2

+
2αn(1− ρ)

(1− αnρ)

[ αn
2(1− ρ)

M3 + 3M2
γn(1− αn)

2(1− ρ)

θn
αn

∥xn − xn−1∥

+
1

(1− ρ)
⟨f(p)− p, xn+1 − p⟩

]
− γn(1− αn)

(1− αnρ)

[ m∑
i=1

βn,i
τn(2− τn)∥JX (I −QCi

Qµn,i
)Twn∥4

∥T ∗JX (I −QCi
µn,i)Twn∥2

+
m∑
i=1

βn,i(2αi − rn,i)rn,i∥Aizn,i − Aip∥2

+ βn,0

m∑
i=1

βn,i∥JBi
rn,i

(I − rn,iAi)zn,i − wn∥2
]
,

whereM3 = sup{∥xn−p∥2 : n ∈ N}. By taking ηn = 2αn(1−ρ)
(1−αnρ)

and σn = γn(1−αn)
(1−αnρ)

, we obtain
the desired result.
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Lemma 6.3.4. Let p ∈ Γ and suppose {xn} is a sequence generated by Algorithm 6.3.1.
Under Assumption (A1)-(A4), the following inequality holds for all n ∈ N :

∥xn+1−p∥2 ≤ αn∥f(xn)−p∥2+(1−αn)∥xn−p∥2+3M2γnαn
θn
αn

||xn−xn−1||−δnγn∥xn−Sun∥2.

Proof. Let p ∈ Γ. By applying Lemma 2.5.7, (6.3.11) and (6.3.13), from Step 5 we have

∥xn+1 − p∥2 = ∥αnf(xn) + δnxn + γnSun − p∥2

≤ αn∥f(xn)− p∥2 + δn∥xn − p∥2 + γn∥Sun − p∥2 − δnγn∥xn − Sun∥2

≤ αn∥f(xn)− p∥2 + δn∥xn − p∥2 + γn∥un − p∥2 − δnγn∥xn − Sun∥2

≤ αn∥f(xn)− p∥2 + δn∥xn − p∥2 + γn
(
||xn − p||2 + 3M2αn

θn
αn

||xn − xn−1||
)

− δnγn∥xn − Sun∥2

= αn∥f(xn)− p∥2 + (1− αn)∥xn − p∥2 + 3M2γnαn
θn
αn

||xn − xn−1||)

− δnγn∥xn − Sun∥2,

which is the desired inequality.

We are now in the position to give the strong convergence theorem for Algorithm 6.3.1.

Theorem 6.3.5. Let H be a Hilbert space, X a uniformly convex and smooth Banach
space and JX the duality mapping on X . Let {xn} be generated by Algorithm 6.3.1 and
suppose Assumption (A1-A4) are satisfied. Then, the sequence {xn} converges strongly to
a point x̄ ∈ Γ, where x̄ = PΓ ◦ f(x̄).

Proof. Let x̄ = PΓ ◦ f(x̄). From Lemma 6.3.3 we have

∥xn+1 − x̄∥2 ≤ (1− ηn)∥xn − x̄∥2 + ηn

[ αn
2(1− ρ)

M3 + 3M2
γn(1− γn)

2(1− ρ)

θn
αn

∥xn − xn−1∥

(6.3.14)

+
1

(1− ρ)
⟨f(x̄)− x̄, xn+1 − x̄⟩

]
.

Now, we claim that the sequence {∥xn − x̄∥} converges to zero. To establish this, by
Lemma 2.5.36 it suffices to show that lim sup

k→∞
⟨f(x̄)−x̄, xnk+1−x̄⟩ ≤ 0 for every subsequence

{∥xnk
− x̄∥} of {∥xn − x̄∥} satisfying

lim inf
k→∞

(∥xnk+1 − x̄∥ − ∥xnk
− x̄∥) ≥ 0.

Suppose that {∥xnk
− x̄∥} is a subsequence of {∥xn − x̄∥} such that

lim inf
k→∞

(∥xnk+1 − x̄∥ − ∥xnk
− x̄∥) ≥ 0. (6.3.15)
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From Lemma 6.3.3, we have

σnk

m∑
i=1

βnk,i

τnk
(2− τnk

)∥JX
(
I −QCi

Qµnk,i

)
Twnk

∥4

∥T ∗JX
(
I −QCi

µnk,i

)
Twnk

∥2
≤ (1− ηnk

)∥xnk
− x̄∥2

−∥xnk+1 − x̄∥2

+ηnk

[
αnk

2(1− ρ)
M3 + 3M2

γnk
(1− αnk

)

2(1− ρ)

θnk

αnk

∥xnk
− xnk−1∥+

1

αnk
(1− ρ)

⟨f(x̄)− x̄, xnk+1 − x̄⟩
]
.

Since lim
k→∞

αnk
= 0, then lim

k→∞
ηnk

= 0. Hence, by applying (6.3.15) we obtain

σnk

m∑
i=1

βnk,i

τnk
(2− τnk

)∥JX
(
I −QCi

Qµnk,i

)
Twnk

∥4

∥T ∗JX
(
I −QCi

µnk,i

)
Twnk

∥2
→ 0, as k → ∞.

By the conditions on the control parameters, it follows that

βnk,i

τnk
(2− τnk

)∥JX
(
I −QCi

Qµnk,i

)
Twnk

∥4

∥T ∗JX
(
I −QCi

µnk,i

)
Twnk

∥2
→ 0, as k → ∞ ∀i = 1, 2, . . . ,m.

Since 0 < a ≤ τnk
≤ b < 2, lim infk→∞ βnk,0βnk,i > 0 and ∥T ∗JX

(
I −QCi

µnk,i

)
Twnk

∥ is

bounded for all i = 1, 2, · · · ,m, we have that

lim
k→∞

∥JX
(
I −QCi

µnk,i

)
Twnk

∥ = 0 ∀i = 1, 2, · · · ,m. (6.3.16)

Consequently, for i = 1, 2, · · · ,m we get

∥T ∗JX

(
I −QCi

µnk,i

)
Twnk

∥ ≤ ∥T ∗∥∥JX
(
I −QCi

µnk,i

)
Twnk

∥ (6.3.17)

= ∥T∥∥JX
(
I −QCi

µnk,i

)
Twnk

∥ → 0, k → ∞.

Following similar argument, from Lemma 6.3.3 we obtain

∥Aiznk,i − Aix̄∥ → 0 k → ∞ ∀i = 1, 2, . . . ,m, (6.3.18)

and

∥JBi
rnk

,i (I − rnk,iAi) znk,i − wnk
∥ → 0 k → ∞ ∀i = 1, 2, . . . ,m. (6.3.19)

Also, from 6.3.4 we obtain

δnk
γnk

∥xnk
− Sunk

∥2 ≤ αnk
∥f(xnk

)− x̄∥2 + (1− αnk
)∥xnk

− x̄∥2 − ∥xnk+1 − x̄∥2

+ 3M2γnk
αnk

θnk

αnk

||xnk
− xnk−1||.
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By Remark 6.3.1, (6.3.15) and the conditions on the control parameters, we obtain

∥xnk
− Sunk

∥ → k → ∞. (6.3.20)

From Step 3 and (6.3.17), we have

∥znk,i − wnk
∥ = ∥wnk

− λnk,iT
∗JX

(
I −QCi

µnk,i

)
Twnk

− wnk
∥

= λnk,i∥T ∗JX

(
I −QCi

µnk,i

)
Twnk

∥ → 0, k → ∞ ∀i = 1, 2, . . . ,m.

(6.3.21)

Also, from Step 4 and (6.3.19) we get

∥unk
− wnk

∥ ≤ βnk,0∥wnk
− wnk

∥

+
m∑
i=1

βnk,i∥J
Bi
rnk

,i (I − rnk,iAi) znk,i − wnk
∥ → 0, as k → ∞. (6.3.22)

From (6.3.21) and (6.3.22), we obtain

∥znk,i − unk
∥ → 0, as k → ∞.

Also from Remark 6.3.1, we have

∥wnk
− xnk

∥ = θnk
∥xnk

− xnk−1∥ → 0, as k → ∞. (6.3.23)

From (6.3.21), (6.3.22) and (6.3.23) we have

∥znk,i − xnk
∥ → 0, ∥unk

− xnk
∥ → 0, as k → ∞. (6.3.24)

Also, from (6.3.20) and (6.3.24) we obtain

∥unk
− Sunk

∥ → 0, k → ∞. (6.3.25)

By applying (6.3.20) and the condition on αn, from Step 5 we obtain

∥xnk+1 − xnk
∥ = ∥αnk

f(xnk
) + δnk

xnk
+ γnk

Sunk
− xnk

∥
≤ αnk

∥f(xnk
)− xnk

∥+ δnk
∥xnk

− xnk
∥+ γnk

∥Sunk
− xnk

∥ → 0, as k → ∞.
(6.3.26)

To complete the proof, we need to establish that wω(xn) ⊂ Γ. Let x∗ ∈ wω(xn) be an
arbitrary element. Then, there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x∗ as

k → ∞. From (6.3.23), we have that wnk
⇀ x∗ as k → ∞. Since T is bounded and linear

we have

Twnk
⇀ Tx∗. (6.3.27)
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From (6.3.16), we have

lim
k→∞

∥
(
I −QCi

µnk
,i

)
Twnk

∥ = lim
k→∞

∥JX
(
I −QCi

µnk
,i

)
Twnk

∥ = 0 ∀i = 1, 2, . . . ,m.

(6.3.28)

This together with (6.3.27) implies that QCi
µnk

,iTwnk
⇀ Tx∗, as k → ∞ for each i =

1, 2, . . . ,m. Since QCi
µnk

,i is the metric of Ci for µnk,i > 0, we have that

1

µnk,i

JX

(
I −QCi

µnk
,i

)
Twnk

∈ CiQ
Ci
µnk

,iTwnk

for all i = 1, 2, · · · ,m. Let v ∈ X. By the monotonicity of each Ci, it follows that

0 ≤
〈
v −QCi

µnk,i
Twnk

, v∗ − 1

µnk,i

JX

(
I −QCi

µnk
,i

)
Twnk

〉
,

for all v∗ ∈ Ci(v). Passing limit as k → ∞, and by applying (6.3.28) together with the
fact that 0 < c ≤ µn,i, we obtain 0 ≤ ⟨v − Tx∗, v∗ − 0⟩ for all v∗ ∈ Ci(v), i = 1, 2, . . . ,m.
Since each Ci is maximal monotone, we have that Tx∗ ∈ C−1

i (0), for all i = 1, 2, . . . ,m.
This implies that

x∗ ∈
m⋂
i=1

T−1(C−1
i (0)). (6.3.29)

Next, we show that x∗ ∈
⋂m
i=1(Ai+Bi)

−1(0). Let Trn,i
= JBi

rn,i
(I−rn,iAi), then by applying

(6.3.19) and (6.3.21) we have

∥Trnk,i
znk,i − znk,i∥ ≤ ∥Trnk,i

znk,i − wnk
∥+ ∥wnk

− znk,i∥ → 0, k → ∞ ∀i = 1, 2, . . . ,m.

(6.3.30)

for all i = 1, 2, . . . ,m.

By the condition on rn,i, there exists ri > 0 such that rnk,i ≥ ri for all k ≥ 1 and
i = 1, 2 . . . ,m. Applying Lemma 2.5.20(ii), we have

lim
k→∞

∥Trnk,i
znk,i − znk,i∥ ≤ 2 lim

k→∞
∥Trnk,i

znk,i − znk,i∥ = 0 ∀i = 1, 2, . . . .

We know that Tri is nonexpansive and from (6.3.24) znk,i ⇀ x∗ for all i = 1, 2, . . . ,m. By
the demiclosedness of I − Tri , we have that x

∗ ∈ F (Tri) for all i = 1, 2, . . . ,m. By Lemma
2.5.20(i) we have that x∗ ∈ (Ai +Bi)

−1(0) for all i = 1, 2, . . . ,m. This implies that

x∗ ∈
m⋂
i=1

(Ai +Bi)
−1(0). (6.3.31)

Next, we show that x∗ ∈ F (S). From (6.3.24) we have that unk
⇀ x∗. By (6.3.25) and the

demiclosedness property of I −S at zero, we have that x∗ ∈ F (S). Hence, by (6.3.29) and
(6.3.31) we have that wω(xn) ⊂ Γ.
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From (6.3.24) we have wω{zn,i} = wω{xn}. By the boundedness of {xnk
} there exists a

subsequence {xnkj
} of {xnk

} such that xnkj
⇀ x† and

lim
j→∞

⟨f(x̄)− x̄, xnkj
− x̄⟩ = lim sup

k→∞
⟨f(x̄)− x̄, xnk

− x̄⟩

= lim sup
k→∞

⟨f(x̄)− x̄, znk,i − x̄⟩. (6.3.32)

Since x̄ = PΓ ◦ f(x̄), then it follows that

lim sup
k→∞

⟨f(x̄)− x̄, xnk
− x̄⟩ = lim

j→∞
⟨f(x̄)− x̄, xnkj

− x̄⟩

= f(x̄)− x̄, x† − x̄⟩
≤ 0. (6.3.33)

Thus, from (6.3.26) and (6.3.33) we have

lim sup
k→∞

⟨f(x̄)− x̄, xnk+1 − x̄⟩ = lim sup
k→∞

⟨f(x̄)− x̄, xnk+1 − xnk
⟩+ lim sup

k→∞
⟨f(x̄)− x̄, xnk

− x̄⟩

= f(x̄)− x̄, x∗ − x̄⟩
≤ 0. (6.3.34)

Applying Lemma 2.5.36 to (6.3.14), and by Remark 6.3.1, (6.3.34) together with the fact
that limn→∞ αn = 0 we have lim

n→∞
∥xn− x̄∥ = 0 as required. This completes the proof.

Taking Ai = 0 for all i = 1, 2, . . . ,m, we obtain the following consequent result.

Algorithm 6.3.2.

Step 0: Select initial points x0, x1 ∈ H and set n = 1.
Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(6.3.35)

Step 2: Compute
wn = xn + θn(xn − xn−1).

Step 3: Compute
zn,i = wn − λn,iT

∗JX (I −QCi
µn,i

)Twn,

where

λn,i =
τn∥JX (I −QCi

µn,i
)Twn∥2

∥T ∗JX (I −QCi
µn,i)Twn∥2

.

Step 4: Compute

un = βn,0wn +
m∑
i=1

βn,iJ
Bi
rn,i
zn,i.

Step 5: Compute
xn+1 = αnf(xn) + δnxn + γnSun.

Set n := n+ 1 and return to Step 1.
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Corollary 6.3.3. Let H be a Hilbert space, X a uniformly convex and smooth Banach
space and JX the duality mapping on X . Let {xn} be generated by Algorithm 6.3.2 and
suppose Assumption (A1-A4) are satisfied. Then, the sequence {xn} converges strongly to
a point x̄ ∈ Ω, where x̄ = PΩ ◦ f(x̄) and Ω =

⋂m
i=1B

−1
i (0) ∩

⋂m
i=1 T

−1(C−1
i 0) ∩ F (S)

6.3.3 Application

In this section, we apply our result to SFP and SMP.
Split feasibility problem

Let H1 and H2 be two real Hilbert spaces and let D and Q be nonempty closed convex
subsets of H1 and H2, respectively. The SFP is defined as follows:

find x∗ ∈ D such that Tx∗ ∈ Q, (6.3.36)

where T : H1 → H2 is a bounded linear operator.

Let Q be a nonempty closed convex subset of a real Hilbert spaceH and iQ be the indicator
function on Q, that is

iQ(x) =

{
0 if x ∈ Q;

∞ if x /∈ Q.

Moreover, we define the normal cone NQu of Q at u ∈ Q as follows:

NQu = {z ∈ H : ⟨z, v − u⟩ ≤ 0,∀v ∈ Q}.

It is known that iQ is a proper, lower semicontinuous and convex function on H. Hence,
the subdifferential ∂iQ of iQ is a maximal monotone operator. Therefore, we define the

resolvent J
∂iQ
r of ∂iQ, ∀r > 0 as follows:

J∂iQr x = (I + r∂iQ)
−1x, ∀x ∈ H.

Moreover, for each x ∈ Q, we have

∂iQx = {z ∈ H : iQx+ ⟨z, u− x⟩ ≤ iQu,∀u ∈ H}
= {z ∈ H : ⟨z, u− x⟩ ≤ 0,∀u ∈ Q}
= NQx.

Hence, for all α > 0, we derive

u = J∂iQr x⇔ x ∈ u+ r∂iQu

⇔ x− u ∈ r∂iQu

⇔ ⟨x− u, z − u⟩ ≤ 0 ∀z ∈ Q

⇔ u = PQx.
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Now, by applying Corollary 6.3.3 using the case for which the sequences {µn,i} and {rn,i}
are taken as constant sequences {µi} and {ri}, respectively for each i = 1, 2, . . . ,m. We
obtain the following result for approximating a common solution of finite family of SFPs
and FPP for a nonexpansive mapping between Hilbert and Banach spaces.

Theorem 6.3.6. Let Di and Qi be finite families of nonempty, closed and convex subsets
of a Hilbert space H and a uniformly convex and smooth Banach space X , respectively
for i = 1, 2, . . . ,m. Let JX be the duality mapping on X . Let T : H → X be a bounded
linear operator such that T ̸= 0 and T ∗ is the adjoint operator of T. Let f : H → H be
a contraction mapping with ρ ∈ (0, 1) and 0 < γ < γ

ρ
. Let S : H → H be a nonexpansive

mapping and suppose that the solution set Γ := F ∩F (S) ̸= ∅, where F = {x∗ ∈
⋂m
i=1Di :

Tx∗ ∈
⋂m
i=1Qi}. Let {xn} be a sequence generated as follows:

Algorithm 6.3.4.

Step 0: Select initial points x0, x1 ∈ H and set n = 1.
Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(6.3.37)

Step 2: Compute
wn = xn + θn(xn − xn−1).

Step 3: Compute
zn,i = wn − λn,iT

∗JX (I − PQi
)Twn,

where

λn,i =
τn∥JX (I − PQi

)Twn∥2

∥T ∗JX (I − PQi
)Twn∥2

.

Step 4: Compute

un = βn,0wn +
m∑
i=1

βn,iPDi
zn,i.

Step 5: Compute
xn+1 = αnf(xn) + δnxn + γnSun.

Set n := n+ 1 and return to Step 1.

Suppose Assumption (A1-A4) are satisfied. Then the sequence {xn} generated by Algo-
rithm 6.3.4 converges strongly to a point x̄ ∈ Γ, where x̄ = PΓ ◦ f(x̄).

Split minimization problem

Let H1 and H2 be real Hilbert spaces, T : H1 → H2 be a bounded linear operator.
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Given some proper, lower semicontinuous and convex functions f1 : H1 → R∪ {+∞} and
f2 : H2 → R ∪ {+∞}, the SMP is defined as: find x∗ ∈ H1 such that

x∗ ∈ argminx∈H1
f1(x) and Tx∗ ∈ argminy∈H2

f2(y). (6.3.38)

Moudafi and Thakur [182] first introduced the SMP which has attracted a lot of atten-
tion from researchers in recent years (see [1, 182, 268] and the references therein). The
SMP has been applied to the study of many problems in applied science which includes;
Fourier regularization, multi-resolution sparse regularization, alternating projection signal
synthesis problems, amongst others.

In a real Hilbert space H, the proximal operator of f is defined by

proxλ,f (x) := argminz∈H

{
f(z) +

1

2λ
∥x− z∥2

}
∀ x ∈ H, λ > 0.

It is well known that

proxλ,f (x) = (I + λ∂f)−1(x) = J∂fλ (x), (6.3.39)

where ∂f is the subdifferential of f defined by

∂f(x) = {z ∈ H : f(x)− f(y) ≤ ⟨z, x− y⟩,∀y ∈ H},

for each x ∈ H. From [50], ∂f is a maximal monotone operator and proxλ,f is firmly
nonexpansive.

By setting Bi = ∂fi and Ci = ∂gi in Corollary 6.3.3 for each i = 1, 2, . . . ,m, we obtain the
following result for approximating a common solution of finite family of SMP and FPP
for nonexpansive mapping between Hilbert and Banach spaces.

Theorem 6.3.7. Let H be a real Hilbert space and let X be a uniformly convex and smooth
Banach space. Let JX be the duality mapping on X . Let T : H → X be a bounded linear
operator such that T ̸= 0 and T ∗ is the adjoint operator of T. Let f : H → H be a
contraction mapping with ρ ∈ (0, 1) and 0 < γ < γ

ρ
, and Let S : H → H be a nonexpansive

mapping. Let fi : H → R ∪ {+∞} and gi : X → R ∪ {+∞} be finite families of proper
convex lower semicontinuous functions for i =, 2, . . . ,m. Suppose that the solution set
Γ := F

⋂
F (S) ̸= ∅, where F = {x∗ ∈

⋂m
i=1 argmin fi : Tx

∗ ∈
⋂m
i=1 argmin gi}. Let {xn}

be a sequence generated as follows:

Algorithm 6.3.5.

Step 0: Select initial points x0, x1 ∈ H and set n = 1.
Step 1: Given the iterates xn−1 and xn for each n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n,
where

θ̄n :=

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, if xn ̸= xn−1

θ, otherwise.
(6.3.40)

Step 2: Compute
wn = xn + θn(xn − xn−1).
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Step 3: Compute
zn,i = wn − λn,iT

∗JX (I − proxµn,i,gi)Twn,

where

λn,i =
τn∥JX (I − proxµn,i,gi)Twn∥2

∥T ∗JX (I − proxµn,i,gi)Twn∥2
.

Step 4: Compute

un = βn,0wn +
m∑
i=1

βn,iproxrn,i,fizn,i.

Step 5: Compute
xn+1 = αnf(xn) + δnxn + γnSun.

Set n := n+ 1 and return to Step 1.

Suppose Assumption (A1-A4) are satisfied. Then the sequence {xn} generated by Algo-
rithm 6.3.5 converges strongly to a point x̄ ∈ Γ, where x̄ = PΓ ◦ f(x̄).

6.3.4 Numerical experiments

In this section, we provide a numerical example in infinite dimensional spaces to demon-
strate the performance of Algorithm 6.3.1 and then compare it with the method of Kazmi
and Riziv [141, Theorem 3.1] (see Appendix 6.3.9), the method of Sitthithakerngkiet [218,
Theorem 3.4] (see Appendix 6.3.10), the method of Long et al. [163, Algorithm 5] (see
Appendix 6.3.11) and the method of Byrne et al. [51, Algorithm 4.4] (see Appendix
6.3.12).

We perform all implementations using Matlab 2016 (b), installed on a personal computer
with Intel(R) Core(TM) i5-2600 CPU@2.30GHz and 8.00 Gb-RAM running on Windows
10 operating system. In Tables 6.3.1, “Iter.” means the number of iterations while “CPU”
means the CPU time in seconds.

Example 6.3.8. Let H =
(
l2(R, ∥ · ∥2)

)
= X , where

l2(R) :=
{
x = (x1, x2, · · · , xn, · · · , ), xj ∈ R :

∞∑
j=1

|xj|2 <∞
}
,

∥x∥2 =
( ∞∑
j=1

|xj|2
) 1

2
for all x ∈ l2(R). Let T : H → X be defined by Tx = 3

2
x. For

i = 1, 2, · · · , 5, define Ai : H → H as Aix = x
2i
, Bi : H → H by Bix = 3

2i
x,Ci : X → X

by Cix = 5
2i
x. Then, Ai is a finite family of inverse strongly monotone operators, Bi and

Ci are maximal monotone operators for each i = 1, 2, · · · , 5. Let S : H → H be defined
by Sx = 1

2
x. Observe that S is nonexpansive. We set f(x) = x

3
, βn,0 = 5n

2(3n+2)
, βn,i =

n+4
10(3n+2)

, αn = 1
3n+1

, δn = n
3n+1

, γn = 2n
3n+1

, ϵn = 1
(3n+1)3

, τn = n
2n+1

, µn,i = rn,i = r = 0.01
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and θ = 0.6 in Algorithm 6.3.1 for each n ∈ N. We take Sn(x) =
1
2n
x,D = I and E = 1 in

Appendix 6.3.9, θn = 1
(3n+1)2

in Appendix 6.3.11 and λ = λn = 0.05.

We consider the following cases for the numerical experiments of this example.

Case I: Take x0 =
(
97, 74,−68, · · ·

)
and x1 =

(
− 1

3
,−1

6
, 1
19
· · ·
)
.

Case II: Take x0 =
(
− 66, 584, 99, · · ·

)
and x1 =

(
0.1,−0.03, 0.57, · · ·

)
.

Case III: Take x0 =
(
79, 731, 49, · · ·

)
and x1 =

(
0.7, 1

43
,− 7

39
, · · ·

)
.

Case IV: Take x0 =
(
513,−27, 88, · · ·

)
and x1 =

(
3

190
, 23
77
,−1

2
, · · ·

)
.

We compare the performance of the algorithms using the stopping criterion ∥xn+1−xn∥ <
10−2. We plot the graphs of errors against the number of iterations in each case. The
numerical results are reported in Table 6.3.1 and Figure 6.3.

Table 6.3.1: Numerical results for Example 6.3.8
App.
6.3.9

App.
6.3.10

App.
6.3.11

App.
6.3.12

Alg.
6.3.1

Case I CPU time
(sec)

0.0151 0.0062 0.0089 0.0091 0.0116

No. of Iter. 14 6 9 13 6
Case II CPU time

(sec)
0.0102 0.0091 0.0079 0.0055 0.0102

No. of Iter. 16 7 11 13 7
Case III CPU time

(sec)
0.0103 0.0055 0.0085 0.0061 0.0103

No. of Iter. 16 7 12 13 7
Case IV CPU time

(sec)
0.0101 0.0056 0.0079 0.0058 0.0106

No. of Iter. 15 7 11 13 7

Appendix 6.3.9. The Algorithm in [141].

Initialization: Given λ ∈ (0, 1
L
), r > 0. Let x0 ∈ H1 be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Compute

un = JBr

(
xn + λT ∗(JCr − I)Txn

)
.

Step 2: Compute
xn+1 = αnf(xn) + (1− αn)Sun,

where f : H → H is a contraction mapping with constant ρ ∈ (0, 1), S is a nonexpansive
mapping such that F (S) ∩ Γ ̸= ∅.

Set n := n+ 1 and return to Step 1.
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Figure 6.3: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.
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Appendix 6.3.10. The Algorithm in [218].

Initialization: Given λ ∈ (0, 1
L
), r > 0. Let x0 ∈ H1 be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Compute

yn = JBr

(
xn + λT ∗(JCr − I)Txn

)
.

Step 2: Compute
xn+1 = αnEf(xn) + (I − αnD)Snyn,

where f : H → H is a contraction mapping with constant α ∈ (0, 1), {Sn} is a sequence
of nonexpansive mappings such that F (Sn) ∩ Γ ̸= ∅, D is strongly positive bounded linear
operator with coefficient γ̄ > 0 and 0 < E < γ̄

β∗ .

Set n := n+ 1 and return to Step 1.

Appendix 6.3.11. The Algorithm in [163].

Initialization: Let r > 0.
Iterative Steps: Calculate xn+1 as follows: Let {xn} be a sequence in H1 defined by

x0, x1 ∈ H,

wn = xn + θn(xn − xn−1),

yn = JBr (I − λnT
∗(I − JCr )T )wn,

xn+1 = αnf(xn) + (1− αn)yn.

(6.3.41)

where f : H → H is a contraction mapping with constant α ∈ (0, 1).

Set n := n+ 1 and return to Step 1.

Appendix 6.3.12. The Algorithm in [51].{
v ∈ H1,

xn+1 = αnv + (1− αn)J
B
r (xn − λT ∗(I − JCr )Txn), n ∈ N,

(6.3.42)
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CHAPTER 7

Results on Minimization Problems in Hadamard Spaces

7.1 Introduction

The extension of known concepts from Hilbert and Banach spaces to Hadamard spaces
has been of great research interest to several researchers. In this chapter, we extend
our results from the frameworks of the Hilbert and Banach spaces to the framework of
an Hadamard space. We present our results on modified proximal point methods and
viscosity implicit rule involving quasi-pseudocontractive mappings in Hadamard spaces.
Furthermore, we present some numerical examples of our methods in Hadamard spaces
which are not Hilbert spaces and compare them with other results in literature to show
the applicability of our methods.

7.2 Preliminaries

Lemma 7.2.1. Let X be an Hadamard space and T : X → X be an L-Lipschitz mapping
with L ≥ 1 such that for all x ∈ X,

Kx := (1− ϵ)x⊕ ϵT ((1− γ)x⊕ γTx). (7.2.1)

If 0 < ϵ < γ < 1
1+

√
1+L2 , then the following conditions hold:

(a) x = Tx⇐⇒ x = T ((1− γ)x⊕ γTx) ⇐⇒ x = Kx;

(b) if T is △-demiclosed, then K is also △-demiclosed;

(c) if T is a quasi-pseudocontractive mapping, then K is a quasi-nonexpansive mapping.
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Proof. (a) Let x = Tx. Then, one can easily see that x = T ((1− γ)x⊕ γTx). Conversely,
let x = T ((1− γ)x⊕ γTx) and define Sγx := (1− γ)x⊕ γTx. Then TSγx = x. Thus, we
obtain from (2.3.1) that

d(x, Sγx) = γd(x, Tx) ≤ γLd(Sγx, x).

Since 0 < Lγ < 1, we obtain that x = Sγx. This implies that x = TSγx = Tx.
By similar argument, we obtain that x = T ((1− γ)x⊕ γTx) ⇐⇒ x = Kx.

(b) Let T be △-demiclosed and {xn} be a sequence in X such that △- lim
n→∞

xn = x and

lim
n→∞

d(xn, Kxn) = 0, then we have that

d(xn, Txn) ≤ d(xn, Kxn) + d((1− ϵ)xn ⊕ ϵT ((1− γ)xn ⊕ γTxn), Txn)

≤ d(xn, Kxn) + (1− ϵ)d(xn, Txn) + ϵd(T ((1− γ)xn ⊕ γTxn), Txn)

≤ d(xn, Kxn) + (1− ϵ)d(xn, Txn) + ϵLd((1− γ)xn ⊕ γTxn, xn)

= d(xn, Kxn) + [(1− ϵ) + ϵLγ] d(Txn, xn),

which implies that

d(xn, Txn) ≤
1

ϵ(1− Lγ)
d(xn, Kxn) → 0.

Since T is demiclosed, we get that x = Tx. By (a), we obtain the desired conclusion.

(c) Let y ∈ F (K) and x ∈ X. Then y ∈ F (T ). Hence, we obtain from (2.3.4) that

d2(T ((1− γ)x⊕ γTx), y) ≤ d2((1− γ)x⊕ γTx, y) + d2((1− γ)x⊕ γTx, T ((1− γ)x⊕ γTx))

≤ (1− γ)d2(x, y) + γd2(Tx, y)− γ(1− γ)d2(x, Tx)

+d2((1− γ)x⊕ γTx, T ((1− γ)x⊕ γTx))

≤ (1− γ)d2(x, y) + γd2(x, y) + γd2(x, Tx)− γ(1− γ)d2(x, Tx)

+d2((1− γ)x⊕ γTx, T ((1− γ)x⊕ γTx))

= d2(x, y) + γ2d2(x, Tx) (7.2.2)

+ d2((1− γ)x⊕ γTx, T ((1− γ)x⊕ γTx)).

But,

d2((1− γ)x⊕ γTx, T ((1− γ)x⊕ γTx)) ≤ (1− γ)d2(x, T ((1− γ)x⊕ γTx))

+ γd2(Tx, T ((1− γ)x⊕ γTx))− γ(1− γ)d2(x, Tx)

≤ (1− γ)d2(x, T ((1− γ)x⊕ γTx))

+ γL2d2(x, (1− γ)x⊕ γTx)− γ(1− γ)d2(x, Tx)

≤ (1− γ)d2(x, T ((1− γ)x⊕ γTx)) (7.2.3)

− (γ − γ2 − γ3L3)d2(x, Tx).

Now, from the condition on γ and L, we obtain that 1 − 2γ − γ2L2 > 0. Hence, we get
from (7.2.2) and (7.2.3) that

d2(T ((1− γ)x⊕ γTx), y) ≤ d2(x, y) + (1− γ)d2(x, T ((1− γ)x⊕ γTx)) (7.2.4)

− γ(1− 2γ − γ2L2)d2(x, Tx).

≤ d2(x, y) + (1− γ)d2(x, T ((1− γ)x⊕ γTx)). (7.2.5)
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Hence, we obtain from (7.2.4) that

d2(Kx, y) ≤ (1− ϵ)d2(x, y) + ϵd2(T ((1− γ)x⊕ γTx), y)

− ϵ(1− ϵ)d2(x, T ((1− γ)x⊕ γTx))

≤ d2(x, y)− ϵ(γ − ϵ)d2(x, T ((1− γ)x⊕ γTx))

≤ d2(x, y).

Lemma 7.2.2. Let X be an Hadamard space and f : X → (−∞,∞] be a proper convex
and lower semi-continuous function. Then, d2(Jfλx, x) ≤ d2(Jfµx, x) for 0 < λ < µ and
x ∈ X.

Proof. Let x, y ∈ X, then we obtain from the definition of the resolvent of f that

f(Jfµx) +
1

2µ
d2(Jfµx, x) ≤ f(Jfλx) +

1

2µ
d2(Jfλx, x), (7.2.6)

and

f(Jfλx) +
1

2λ
d2(Jfλx, x) ≤ f(Jfµx) +

1

2λ
d2(Jfµx, x). (7.2.7)

Adding both sides of relations (7.2.6) and (7.2.7), we obtain that(
1− λ

µ

)
d2(Jfλx, x) ≤

(
1− λ

µ

)
d2(Jfµx, x).

Since, 0 < λ < µ, we obtain that

d2(Jfλx, x) ≤ d2(Jfµx, x).

Lemma 7.2.3. Let X be an Hadamard space and fj : X → (−∞,∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. If 0 < λ < µ and(
∩mj=1F

(
J
(j)
µ

))
̸= ∅. Then,

F
(
Πm
j=1J

(j)
µ

)
⊆
(
∩mj=1F

(
J
(j)
λ

))
,

where, Πm
j=1J

(j)
µ = J

(1)
µ ◦ J (2)

µ ◦ · · · ◦ J (m)
µ .

Proof. Let x ∈ F
(
Πm
j=1J

(j)
µ

)
and y ∈

(
∩mj=1F

(
J
(j)
µ

))
, then by the nonexpansivity of

J
(1)
µ , we have that

d2(x, y) = d2
(
Πm
j=1J

(j)
µ x, y

)
≤ d2

(
Πm
j=2J

(j)
µ x, y

)
. (7.2.8)
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More so, we obtain from Lemma 2.5.27 that

1

2µ
d2
(
Πm
j=1J

(j)x, y
)
− 1

2µ
d2
(
Πm
j=2J

(j)
µ x, y

)
+

1

2µ
d2
(
Πm
j=2J

(j)
µ x,Πm

j=1J
(j)
µ x
)
+f
(
Πm
j=1J

(j)
µ x
)
≤ f(y).

Since f(y) ≤ f
(
Πm
j=1J

(j)x
)
, we obtain from (7.2.8) that

d2
(
Πm
j=2J

(j)
µ x,Πm

j=1J
(j)
µ x
)
≤ d2

(
Πm
j=2J

(j)
µ x, y

)
− d2

(
Πm
j=1J

(j)
µ x, y

)
≤ d2(x, y)− d2

(
Πm
j=1J

(j)
µ x, y

)
= d2

(
Πm
j=1J

(j)
µ x, y

)
− d2

(
Πm
j=1J

(j)
µ x, y

)
,

which implies that

Πm
j=1J

(j)
µ x = Πm

j=2J
(j)
µ x. (7.2.9)

Similarly, we obtain from Lemma 2.5.27 and (7.2.8) that

Πm
j=2J

(j)
µ x = Πm

j=3J
(j)
µ x = Πm

j=4J
(j)
µ x = · · · = Πm

j=m−1J
(j)
µ x = J (m)

µ x = x. (7.2.10)

From (7.2.10), we obtain that

x = J (m)
µ x = Πm

j=m−1J
(j)
µ x = J (m−1)

µ J (m)
µ x = J (m−1)

µ x. (7.2.11)

By repeating the process, we obtain

J (1)
µ x = J (2)

µ x = · · · = J (m−1)
µ x = J (m)

µ x = x. (7.2.12)

Thus, by Lemma 7.2.2, we obtain

d2(x, J
(j)
λ x) ≤ d2(x, J (j)

µ x) = 0, j = 1, 2, · · · ,m,

which implies that x ∈ F (J
(j)
λ ), j = 1, 2, · · · ,m. Hence, we get the desired conclusion.

7.3 Modified proximal point methods

In this section, we propose two new proximal point methods involving quasi- pseudo-
contractive mappings in Hadamard spaces. We prove that the first method converges
strongly to a common solution of a finite family of MPs and FPP for a finite family of
quasi-pseudocontractive mappings in an Hadamard space. We extend this method to a
more general method involving multivalued monotone operators to approximate the solu-
tion of MIP, which is an important optimization problem. We establish that this method
converges strongly to a common zero of a finite family of multivalued monotone operators
which is also a common fixed point of a finite family of quasi-pseudocontractive mappings
in an Hadamard space. Furthermore, we provide various nontrivial numerical implemen-
tations of our method in Hadamard spaces (which are non-Hilbert) and compare them
with some other recent methods in the literature.
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7.3.1 Main results

Lemma 7.3.1. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. Let Ti : X →
X, i = 1, 2, · · · , N be a finite family of L-Lipschitzian and quasi-pseudocontractive
mappings with L ≥ 1 such that Ti is demiclosed. Suppose that Ω := {∩Ni=1F (Ti) ∩(
∩mj=1argminy∈Xfj(y)

)
} ̸= ∅ and for arbitrary x1, u ∈ X, the sequence {xn} is generated

by
wn = Πm

j=1J
(j)
λn
xn = J

(1)
λn

◦ J (2)
λn

◦ · · · ◦ J (m)
λn

xn,

yn = βn,0wn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)wn ⊕ ϵn,iTi((1− γn,i)wn ⊕ γn,iTiwn)) ,

xn+1 = (1− αn)yn ⊕ αnu, n ≥ 1,

(7.3.1)

where λn > λ > 0, {αn} and {βn,i} are sequences in (0, 1) satisfying
N∑
i=0

βn,i = 1, and

0 < ϵn,i < γn,i <
1

1+
√
1+L2 , i = 1, 2, · · · , N . Then {xn} is bounded.

Proof. First observe that by Remark 2.5.29, Algorithm (7.3.1) is well defined.
Now, let p ∈ Ω and Kiwn := ((1− ϵn,i)wn ⊕ ϵn,iTi((1− γn,i)wn ⊕ γn,iTiwn)) , then we have
from (7.3.1) and Lemma 2.5.28 that

d(yn, p) = d

(
βn,0wn ⊕ (1− βn,0)

N∑
i=1

⊕ βn,i
(1− βn,0)

Kiwn, p

)

≤ βn,0d(wn, p) +
N∑
i=1

βn,id(Kiwn, p)

≤ d(wn, p) (7.3.2)

...

≤ d(xn, p). (7.3.3)

Now, using (7.3.1) and (7.3.3), we obtain that

d(xn+1, p) = d((1− αn)yn + αnu, p)

≤ (1− αn)d(yn, p) + αnd(u, p)

≤ (1− αn)d(xn, p) + αnd(u, p)

≤ max{d(xn, p), d(u, p)}.

By induction, we obtain that {xn} is bounded. Consequently {wn} and {yn} are bounded.

Theorem 7.3.2. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. Let Ti : X →
X, i = 1, 2, · · · , N be a finite family of L-Lipschitzian and quasi-pseudocontractive
mappings with L ≥ 1 such that Ti is demiclosed. Suppose that Ω := {∩Ni=1F (Ti) ∩(
∩mj=1argminy∈Xfj(y)

)
} ̸= ∅ and the sequence {xn} is generated by (7.3.1), where λn >

λ > 0, {αn} and {βn,i} are sequences in (0, 1) satisfying the following conditions:
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(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a < ϵn,i < γn,i < b < 1
1+

√
1+L2 , i = 1, 2, · · · , N ;

(iii)
N∑
i=0

βn,i = 1 and 0 < c ≤ βn,i ≤ d < 1, for all n ≥ 1.

Then, {xn} converges strongly to a point z = PΩu, where PΩ is the metric projection of X
onto Ω.

Proof. Let p ∈ Ω, then we have from Lemma 2.5.30 and (7.3.3) that

d2(yn, p) = d2

(
βn,0wn ⊕ (1− βn,0)

N∑
i=1

βn,i
(1− βn,0)

Kiwn, p

)

≤ βn,0d
2(wn, p) +

N∑
i=1

βn,id
2(Kiwn, p)− βn,0

N∑
i=1

βn,id
2(wn, Kiwn)

≤ d2(xn, p)− βn,0

N∑
i=1

βn,id
2(wn, Kiwn). (7.3.4)

Now, using (7.3.1) and (7.3.4), we have that

d2(xn+1, p) = d2(αnu⊕ (1− αn)yn, p)

≤ α2
nd

2(u, p) + (1− αn)
2d2(yn, p) + 2αn(1− αn)⟨−→up,−→ynp⟩

≤ α2
nd

2(u, p) + (1− αn)d
2(xn, p)− (1− αn)βn,0

N∑
i=1

βn,id
2(wn, Kiwn) (7.3.5)

+ 2αn(1− αn)⟨−→up,−→ynp⟩
≤ α2

nd
2(u, p) + (1− αn)d

2(xn, p) + 2αn(1− αn)⟨−→up,−→ynp⟩
= (1− αn)d

2(xn, p) + αncn, (7.3.6)

where cn = [αnd
2(u, p) + 2(1− αn)⟨−→up,−→ynp⟩] .

According to Lemma 2.5.36, to conclude our proof, it suffices to show that lim sup
k→∞

cnk
≤ 0

for every subsequence {d(xnk
, p)} of {d(xn, p)} satisfying the condition

lim inf
k→∞

(d(xnk+1, p)− d(xnk
, p)) ≥ 0. (7.3.7)

To show this, suppose that {d(xnk
, p)} is a subsequence of {d(xn, p)} such that (7.3.7)

holds. Then,

lim inf
k→∞

(
d2(xnk+1, p)− d2(xnk

, p)
)
= lim inf

k→∞
(d(xnk+1, p)− d(xnk

, p)) (d(xnk+1, p) + d(xnk
, p))

≥ 0. (7.3.8)
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Now, by (7.3.5), we obtain that

lim sup
k→∞

(
(1− αnk

)βnk,0

N∑
i=1

βnk,id
2(wnk

, Kiwnk
)

)
≤ lim sup

k→∞

(
α2
nk
d2(u, p) + (1− αnk

)d2(xnk
, p)
)

− lim sup
k→∞

(
d2(xnk+1, p)

)
+ lim sup

k→∞
(2αnk

(1− αnk
)⟨−→up,−−→ynk

p⟩)

≤ lim sup
k→∞

(
d2(xnk

, p)− d2(xnk+1, p)
)

+ lim sup
k→∞

(
α2
nk
d2(u, p)

)
+ lim sup

k→∞
(2αnk

(1− αnk
)⟨−→up,−−→ynk

p⟩)

= − lim inf
k→∞

[
d2(xnk+1, p)− d2(xnk

, p)
]

≤ 0, (7.3.9)

which implies that

lim
k→∞

d(wnk
, Kiwnk

) = 0, i = 1, 2, . . . , N. (7.3.10)

Furthermore, we obtain from (7.3.1) that

d(xnk+1, ynk
) = αnk

d(u, ynk
) → 0, k → ∞. (7.3.11)

Again, from (7.3.1) and (7.3.10), we obtain

d(ynk
, wnk

) = d

(
βnk,0wnk

⊕ (1− βnk,0)
N∑
i=1

⊕ βnk,i

(1− βnk,0)
Kiwnk

, wnk

)

≤
N∑
i=1

βnk,id(Kiwnk
, wnk

) → 0, as k → ∞. (7.3.12)

From Lemma 2.5.27 and (7.3.3), we obtain that

d2(wnk
,Πm

j=2J
(j)
λnk
xnk

) = d2(Πm
j=1J

(j)
λnk
xnk

,Πm
j=2J

(j)
λnk
xnk

)

≤ d2(Πm
j=2J

(j)
λnk
xnk

, p)− d2(wnk
, p)

...

≤ d2(xnk
, p)− d2(wnk

, p)

≤ d2(xnk
, p)− d2(ynk

, p)

= d2(xnk
, p)− d2(xnk+1, p) + d2(xnk+1, p)− d2(ynk

, p)

≤ d2(xnk
, p)− d2(xnk+1, p) + αnk

d2(u, p) (7.3.13)

+ (1− αnk
)d2(ynk

, p)− d2(ynk
, p).

By taking limsup as k → ∞ on both sides of (7.3.13), and following similar argument as
in (7.3.9), we obtain that

lim
k→∞

d
(
wnk

,Πm
j=2J

(j)
λnk
xnk

)
= d

(
Πm
j=1J

(j)
λnk
xnk

,Πm
j=2J

(j)
λnk
xnk

)
= 0. (7.3.14)
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Following the same argument as in (7.3.14), we can show that

lim
k→∞

d
(
Πm
j=2J

(j)
λnk
xnk

,Πm
j=3J

(j)
λnk
xnk

)
= · · · = lim

k→∞
d
(
J
(m)
λnk

xnk
, xnk

)
= 0. (7.3.15)

Hence, we obtain that

d(wnk
, xnk

) ≤ d
(
wnk

,Πm
j=2J

(j)
λnk
xnk

)
+ d

(
Πm
j=2J

(j)
λnk
xnk

,Πm
j=3J

(j)
λnk
xnk

)
+d
(
Πm
j=3J

(j)
λnk
xnk

,Πm
j=4J

(j)
λnk
xnk

)
(7.3.16)

+ · · ·+ d
(
J
(m)
λnk

xnk
, xnk

)
→ 0, as k → ∞.

From (7.3.12) and (7.3.16), we obtain that

lim
k→∞

d(ynk
, xnk

) = 0. (7.3.17)

Since {xnk
} is bounded in an Hadamard space X, it follows from Lemma 2.5.31 that

there exists a subsequence {xnkj
} of {xnk

} such that △ − lim
j→∞

xnkj
= v. From (7.3.16)

and (7.3.17), we have that there exist subsequences {wnkj
} and {ynkj

} of {wnk
} and {ynk

}
respectively such that △− lim

j→∞
wnkj

= v and △− lim
j→∞

ynkj
= v. Since Ti, i = 1, 2, · · · , N

is demiclosed, we obtain from Lemma 7.2.1 and (7.3.10) that v ∈ ∩Ni=1F (Ti) = ∩Ni=1F (Ki).

More so, J
(j)
λnk

is a nonexpansive mapping for each j = 1, 2, · · · ,m. Thus, we obtain from

(7.3.16) and Lemma 2.5.33 that v ∈ F
(
Πm
j=1J

(j)
λnk

)
. Thus, by Lemma 7.2.3, we have that

v ∈ ∩mj=1F
(
J
(j)
λ

)
= ∩mj=1 argminy∈Xfj(y). Hence v ∈ Ω.

Let z = PΩu, since {ynk
} is bounded. We can choose a subsequence {ynkj

} of {ynk
} that

∆-converges to v, and such that

lim sup
k→∞

⟨−→uz,−−→ynk
z⟩ = lim

j→∞
⟨−→uz,−−→ynkj

z⟩ ≤ ⟨−→uz,−→vz⟩. (7.3.18)

Since v ∈ Ω, we obtain from (7.3.18) and Lemma 2.5.32 that

lim sup
k→∞

⟨−→uz,−−→ynk
z⟩ ≤ ⟨−→uz,−→vz⟩ ≤ 0. (7.3.19)

Replacing p with z in (7.3.6), we obtain from (7.3.19) that lim sup
k→∞

cnk
≤ 0 (where cnk

=

[αnk
d2(u, z)+2(1−αnk

)⟨−→uz,−−→ynk
z⟩]). Thus, applying Lemma 2.5.36 to (7.3.6), we conclude

that d(xn, z) → 0, as n→ ∞. Therefore, {xn} converges strongly to z = PΩu.

Remark 7.3.3. Note that by setting N = 2 and letting Ti, i = 1, . . . , N to be a demi-
contractive mapping, we recover the main result of Chang et al. [70] as corollary of our
main result. Also, by setting N = 1 = m and letting T to be a nonexpansive mapping,
we recover the main result of Suparatulatorn et al. [232] as corollary of our main result.
Furthermore, we considered a finite family of MPs and FPP for a finite family of quasi-
pseudocontractive mappings, while in [72], the authors considered one MP and FPP for
a single nonexpansive mapping. Moreover, if m = 1, N = 3 and T is nonexpansive, we
recover the main result of Thounthong et al. [252]. In a similar way, we can derive the
results in [34, 79, 80, 91, 254] as corollaries of our main result.
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7.3.2 Extension to monotone inclusion problems

In this section, we extend our study so far to the following MIP: Find x ∈ X such that

0 ∈ Ax, (7.3.20)

where the multivalued operator A : X → 2X
∗
(X∗ is the dual space of the Hadamard space

X recently introduced in [138]) is monotone and may not necessarily be the subdifferential
∂f of a proper convex and lower semicontinuous function f . Note that if A = ∂f , then
problem (7.3.20) is just equivalent to problem (1.2.16).

The MIPs are known to be one of the most important problems in optimization, nonlinear
and convex analysis. The problem was first introduced in Hadamard spaces by Khati-
bzadeh and Ranjbar [150]. Since then many authors have studied this problem in Banach
and Hadamard spaces (see for example [67, 100, 125, 133, 191, 233, 255] and the references
therein). One striking shortcoming in all these works is that they fail to provide typical
example(s) of multivlaued monotone operators which are not necessarily the subdifferen-
tial ∂f of a proper convex and lower semicontinuous function. It is worthy to note that
despite that such examples are not easy to find, they are necessary to further motivate
the study of problem (7.3.20) in Hadamard spaces (from application point of view) since
the main results of all these works are about the multivalued monotone operator A. Thus,
examples of A in the form of subdifferential operator would simply not give the full essence
of studying problem (7.3.20). For this, we present in what follows, a typical example of
a monotone operator defined on an Hadamard space and valued in the dual space. We
also present a typical example of the associated resolvent operator. First, we present the
definition of these concepts.

Definition 7.3.4. (see [150]) Let X be an Hadamard space and X∗ be its dual space. A
multivalued operator A : X → 2X

∗
with domain D(A) := {x ∈ X : Ax ̸= ∅} is monotone

if and only if for all x, y ∈ D(A), x ̸= y, x∗ ∈ Ax, y∗ ∈ Ay,

⟨x∗ − y∗,−→yx⟩ ≥ 0.

Definition 7.3.5. [150] Let X be an Hadamard space and X∗ be its dual. Let A : X → 2X
∗

be a multivalued operator, then the resolvent of A of order λ > 0 is the multivalued operator
JAλ : X → 2X defined by

JAλ (x) := {z ∈ X | [ 1
λ
−→zx] ∈ Az}. (7.3.21)

Definition 7.3.6. Let X be an Hadamard space and X∗ be its dual. The subdifferential
of a function f : (−∞,+∞] → R is a multivalued function ∂f : X → 2X

∗
defined by

∂f(x) =

{
{x∗ ∈ X∗ : f(z)− f(x) ≥ ⟨x∗,−→xz⟩, ∀z ∈ X}, if x ∈ D(f),

∅, otherwise.

Example 7.3.7. Let Y = R2 be an R-tree with the radial metric dr, where dr(x, y) =
d(x, y) if x and y are situated on a Euclidean straight line passing through the origin and
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dr(x, y) = d(x,0) + d(y,0) := ∥x∥ + ∥y∥ otherwise (see [93, 148] and [202, page 65]). We
put p = (1, 0) and X = B ∪ C, where

B = {(h, 0) : h ∈ [0, 1]} and C = {(h, k) : h+ k = 1, h ∈ [0, 1)}.

Note that X is closed and convex and so, (X, dr) is an Hadamard space. To present an
example of the dual space, first note that the dual space (X∗,D) is defined as

X∗ = {[t
−→
ab] : (t, a, b) ∈ R×X ×X}

together with the associated metric D which defines an equivalence relation on R×X×X,

where the equivalence class of
−→
tab := (t, a, b) is given by

[
−→
tab] = {

−→
scd : t⟨

−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ ∀x, y ∈ X}.

Note that D((t, a, b), (s, c, d)) = 0 if and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ for all x, y ∈ X (see

[138, 150] for more details and formulation of (X∗,D)).

Thus, we can define the dual space X∗ as the space of elements [t
−→
ab] such that

[t
−→
ab] =


{s
−→
cd : c, d ∈ B, s ∈ R, t(∥b∥ − ∥a∥) = s(∥d∥ − ∥c∥)} a, b ∈ B,

{s
−→
cd : c, d ∈ C ∪ {0}, s ∈ R, t(∥b∥ − ∥a∥) = s(∥d∥ − ∥c∥)} a, b ∈ C ∪ {0},

{t
−→
ab} a ∈ B, b ∈ C.

Indeed, for each [t
−→
ab] ∈ X∗, we calculate its equivalence class as follows: If [t

−→
ab] = [s

−→
cd] ̸=

[−→pp], we must have that t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ for all x, y ∈ X.

Cases:

(1): If {a, b, c, d} ⊂ C ∪ {0}, we have that dr(e, z) = ∥e∥+ ∥z∥ for all e ∈ A and z ∈ X.

Thus, the equality t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ is equivalent to t(∥b∥−∥a∥) = s(∥d∥−∥c∥).

(2): If {a, b, c, d} ⊂ B, we obtain by similar argument as in Case 1 that the equality

t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ is equivalent to t(∥b∥ − ∥a∥) = s(∥d∥ − ∥c∥).

(3): In Case 1 and Case 2, the equation does not depend on x and y. But in other cases,
the equation depends on x and y, i.e., the equality for x, y ∈ B is different from the
equality for x, y ∈ C.

Thus, we conclude that X∗ is the dual space of X.

Now that we have both the Hadamard space and its dual space, we can now define the
monotone operator and corresponding resolvent operator.
Let A : X → 2X

∗
be defined by

Ax =


{[−→0p]} x ∈ B,

{[−→0p], [−→0x]} x ∈ C.

Then A is a multivalued monotone operator. Indeed, we consider the following cases.

Cases:
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(1): If x, y ∈ B, then Ax = Ay = {[−→0p]} and x∗ = y∗ = [
−→
0p]. So, ⟨x∗ − y∗,−→yx⟩ = 0 ≥ 0.

(2): If x, y ∈ C, then Ax = {[−→0p], [−→0x]} and Ay = {[−→0p], [−→0y]}.

(i) If x∗ = y∗ = [
−→
0p], then ⟨x∗ − y∗,−→yx⟩ = 0 ≥ 0.

(ii) If x∗ = [
−→
0x] and y∗ = [

−→
0y], then ⟨x∗ − y∗,−→yx⟩ = d2r(x, y) ≥ 0.

(iii) If x∗ = [
−→
0p] and y∗ = [

−→
0y], then

⟨x∗ − y∗,−→yx⟩ = ⟨−→yp,−→yx⟩

=
1

2
(d2r(y, x) + d2r(p, y)− d2r(p, x))

=
1

2
((∥y∥+ ∥x∥)2 + (1 + ∥y∥)2 − (1 + ∥x∥)2)

≥ 0 (since 1/
√
2 ≤ ∥x∥, ∥y∥ ≤ 1).

(iv) If x∗ = [
−→
0x] and y∗ = [

−→
0p], then ⟨x∗ − y∗,−→yx⟩ = ⟨−→px,−→yx⟩, which is similar to

(iii).

(3): If x ∈ B, y ∈ C, then Ax = {[−→0p]}, Ay = {[−→0p], [−→0y]}.

(i) If x∗ = y∗ = [
−→
0p], then ⟨x∗ − y∗,−→yx⟩ = 0 ≥ 0.

(ii) If x∗ = [
−→
0p] and y∗ = [

−→
0y], then

⟨x∗ − y∗,−→yx⟩ = ⟨−→yp,−→yx⟩

=
1

2
(d2r(y, x) + d2r(p, y)− d2r(p, x))

≥ 0 (since d(p, x) ≤ 1 ≤ d(p, y)).

Thus, A is monotone. We now compute the resolvent of A as follows:

Cases:

(I) Let x = (h, 0) ∈ B.

(i) If z = (k, 0) ∈ B and z ∈ JAλ (x), then Az = {[−→0p]} and [ 1
λ
−→zx] = [

−→
0p]. It follows

from (7.3.22) that 1
λ
(k − h) = 1 or k = h− λ.

(ii) If z = (h′, k′) ∈ C and z ∈ JAλ (x), then Az = {[−→0p], [−→0z]} and [ 1
λ
−→zx] = [

−→
0p] or

[ 1
λ
−→zx] = [

−→
0z]. Using (7.3.22) we see that both of these two cases are impossible.

(II) Let x = (h, k) ∈ C.

(i) If z = (h′, 0) ∈ B and z ∈ JAλ (x), then Az = {[−→0p]} and [ 1
λ
−→zx] = [

−→
0p] which is

impossible by (7.3.22).

(ii) If z = (h′, k′) ∈ C and z ∈ JAλ (x), then Az = {[−→0p], [−→0z]} and [ 1
λ
−→zx] ∈ Az. The

case [ 1
λ
−→zx] = [

−→
0p] is impossible. For the case [ 1

λ
−→zx] = [

−→
0z]. Using (7.3.22), we

see that 1
λ
(∥x∥−∥z∥) = ∥z∥ or ∥z∥ = 1

1+λ
∥x∥. Note that there are at most two

solutions for z.
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Therefore, we derive the resolvent as:

JAλ (x) =


{z = (h− λ, 0)} x = (h, 0) ∈ B,

{z = (h′, k′) ∈ C : (1 + λ)2(h′2 + k′2) = h2 + k2} x = (h, k) ∈ C.

Now that we have a typical example of a multivalued monotone operator (which is not
the subdifferential of a proper convex and lower semicontinuous function) in a typical
Hadamard space (which is non-Hilbert), we proceed to propose a new PPA similar to
(7.3.1) and establish that it converges strongly to a common solution of a finite fam-
ily of MIPs (7.3.20), which is also a common fixed point of a finite family of qausi-
pseudocontractive mappings in an Hadamard spaceX. We begin with the following crucial
lemmas.

Lemma 7.3.8. [150] Let X be an Hadamard space and JAλ be the resolvent of a multivalued
operator A of order λ. Then,

(i) for any λ > 0, R(JAλ ) ⊂ D(A) and F (JAλ ) = A−1(0), where R(JAλ ) is the range of J
A
λ

(we say that the operator A satisfies the range condition if for every λ > 0, D(JAλ ) =
X).

(ii) if A is monotone then JAλ is a single-valued and nonexpansive mapping,

(iii) if A is monotone and 0 < λ1 ≤ λ2, then d(x, J
A
λ1
x) ≤ 2d(x, JAλ2x).

Lemma 7.3.9. [255] Let X be an Hadamard space and A : X → 2X
∗
be a monotone

operator. Then,
d2(u, JAλ x) + d2(JAλ x, x) ≤ d2(u, x)

for all u ∈ A−1(0), x ∈ X and λ > 0.

Lemma 7.3.10. Let X be an Hadamard space and X∗ be its dual space. Let Aj : X →
2X

∗
, j = 1, 2, . . . ,m be a finite family of multivalued monotone operators. If 0 < λ < µ

and
(
∩mj=1F

(
J
(j)
µ

))
̸= ∅. Then,

F
(
Πm
j=1J

(j)
µ

)
⊆
(
∩mj=1F

(
J
(j)
λ

))
,

where, Πm
j=1J

(j)
µ = J

(1)
µ ◦ J (2)

µ ◦ · · · ◦ J (m)
µ .

Proof. By careful observation, we can see that Lemma 7.3.8 (iii) and Lemma 7.3.9 can be
used in place of Lemma 7.2.2 and Lemma 2.5.27 respectively as the monotone version of
Jλ. Thus, the proof follows similar argument as in the proof of Lemma 7.2.3.

Using Lemma 7.3.8 and Lemma 7.3.10, we can prove the following results by following
similar line of arguments as in the proof of Lemma 7.3.1 and Theorem 7.3.2.
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Lemma 7.3.11. Let X be an Hadamard space and X∗ be its dual space. Let Aj : X →
2X

∗
, i = 1, 2, . . . ,m be a finite family of multivalued monotone operators that satisfy the

range condition. Let Ti : X → X, i = 1, 2, · · · , N be a finite family of L-Lipschitzian
and quasi-pseudocontractive mappings with L ≥ 1 such that Ti is demiclosed. Suppose that
Ω := {∩Ni=1F (Ti) ∩

(
∩mj=1A

−1
j (0)

)
} ≠ ∅ and for arbitrary x1, u ∈ X, the sequence {xn} is

generated by
wn = Πm

j=1J
(j)
λn
xn = J

(1)
λn

◦ J (2)
λn

◦ · · · ◦ J (m)
λn

xn,

yn = βn,0wn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)wn ⊕ ϵn,iTi((1− γn,i)wn ⊕ γn,iTiwn)) ,

xn+1 = (1− αn)yn ⊕ αnu, n ≥ 1,

(7.3.22)

where λn > λ > 0, {αn} and {βn,i} are sequences in (0, 1) satisfying
N∑
i=0

βn,i = 1, and

0 < ϵn,i < γn,i <
1

1+
√
1+L2 , i = 1, 2, · · · , N . Then {xn} is bounded.

Theorem 7.3.12. Let X be an Hadamard space and X∗ be its dual space. Let Aj : X →
2X

∗
, i = 1, 2, . . . ,m be a finite family of multivalued monotone operators that satisfy the

range condition. Let Ti : X → X, i = 1, 2, · · · , N be a finite family of L-Lipschitzian
and quasi-pseudocontractive mappings with L ≥ 1 such that Ti is demiclosed. Suppose that
Ω := {∩Ni=1F (Ti) ∩

(
∩mj=1A

−1
j (0)

)
} ≠ ∅ and the sequence {xn} is generated by (7.3.22),

where λn > λ > 0, {αn} and {βn,i} are sequences in (0, 1) satisfying the following
conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a < ϵn,i < γn,i < b < 1
1+

√
1+L2 , i = 1, 2, · · · , N ;

(iii)
N∑
i=0

βn,i = 1 and 0 < c ≤ βn,i ≤ d < 1, for all n ≥ 1.

Then, {xn} converges strongly to a point z = PΩu, where PΩ is the metric projection of X
onto Ω.

We now give the following remark regarding Theorems 7.3.2 and 7.3.12.

Remark 7.3.13.

(i) In Theorems 7.3.2 and 7.3.12, we assumed that the solution set Ω is nonempty which
is a strict assumption. Thus, it will be interesting to study some sufficient condi-
tions which guarantee this assumption. This we will investigate in our future project.

(ii) In Theorems 7.3.2 and 7.3.12, the prior knowledge of the Lipschitz constant L is
needed which is often not known in many applications. Part of our future research
is to modify Algorithms (7.3.1) and (7.3.22) such that the prior knowledge of the
constant L is not required.
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7.3.3 Numerical experiments

In this section, we discuss the numerical behavior of Algorithm (7.3.1) using various non-
trivial test examples. We compare our method with Algorithms (2.5.33)-(2.5.35).
The codes are implemented in Matlab 2016 (b). We perform all computations on a per-
sonal computer with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM.
Throughout this section, we shall take m = 4 = N , γn,i =

n
100in+1

ϵn,i =
n

100in+11
and

βn,i =
(i+1)n+1
5(3n+1)

∀n ≥ 1, i = 0, 1, 2, 3, 4. Also, we choose αn = 3
5n+7

for Algorithms (7.3.1)

and (2.5.34). While we choose ηn = 3n
7n+1

, βn = n
2n+3

and 8n
10n+7

for Algorithms (2.5.33)
and (2.5.35).
Algorithm (7.3.1) becomes:

zn = argmin
y∈X

(
f4(y) +

1
2λn

d2(y, xn)
)
,

vn = argmin
y∈X

(
f3(y) +

1
2λn

d2(y, zn)
)
,

un = argmin
y∈X

(
f2(y) +

1
2λn

d2(y, vn)
)
,

wn = argmin
y∈X

(
f1(y) +

1
2λn

d2(y, un)
)
,

yn = βn,0wn ⊕ (1− βn,0)
4∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)wn ⊕ ϵn,iTi((1− γn,i)wn ⊕ γn,iTiwn))

xn+1 = (1− αn)yn ⊕ αnu, n ≥ 1.

We now consider the following concrete examples of fj and Ti.

Example 7.3.14. Let X = R2 be endowed with a metric d : R2×R2 → [0,∞) defined by

d(x, y) =
√

(x1 − y1)2 + (x21 − x2 − y21 + y2)2 ∀x, y ∈ R2.

Then, (R2, d) is an Hadamard space (see [100]) where the geodosic joining x to y is given
by

(1− t)x⊕ ty =
(
(1− t)x1 + ty1, ((1− t)x1 + ty1)

2 − (1− t)(x21 − x2)− t(y21 − y2)
)
.

Now define T1 : R2 → R2 by T1(x1, x2) = (x1, 2x
2
1 − x2). We see that T1 is quasi-

pseudocontractive in (R2, d) but T1 is not quasi-pseudocontractive in the classical sense.
Indeed, for all x ∈ R2 and y ∈ F (T1), we have

d2(T1x, y) = d2
(
(x1, 2x

2
1 − x2), (y1, y2)

)
= (x1 − y1)

2 + (x21 − (2x21 − x2)− y21 + 2y21 − y2)

= (x1 − y1)
2 + (−x21 + x2 + y21 − y2)

2

= (x1 − y1)
2 + (x21 − x2 − y21 + y2)

2

≤ d2(x, y) + d2(x, T1x).

Also, define Ti : R2 → R2 by

Ti(x1, x2) = −
(
2i+ 1

2

)
(x1, x2), i = 2, 3, 4.
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Then, Ti is an L-Lipschitzian and quasi-pseudocontractive mapping with L = (2i+1
2

)2 >

1, i = 2, 3, 4. Define f1 : R2 → R by f1(x1, x2) = 100 ((x2 + 1)− (x1 + 1))2 + x21. Then
f1 is a proper convex and lower semicontinuous function in (R2, d) but not convex in the
classical sense (see [100]). We also define fj : R2 → R by fj(x1, x2) = 50jx21, j = 2, 3, 4.
Then fj is a proper convex and lower semicontinuous function for each j = 2, 3, 4.

We now consider the following 4 cases for our numerical experiments for Example 7.3.14
given in FIGURE 7.1 below.

Case 1: x1 = (0.5, 1)T , u = (1, − 0.5)T and λn = 2n
n+1

.

Case 2: x1 = (1.5, 2)T , u = (1.5, 2)T and λn = 2n
n+1

.

Case 3: x1 = (0.5, e2)T , u = (−2, 2)T and λn = n
3n+2

.

Case 4: x1 = (−1, e−1)T , u = (−2, e−1)T and λn = n
3n+2

.

Example 7.3.15. Let Y := {(x, ex) : x ∈ R} and Xn := {(n, y) : y ≥ en} for each n ∈ Z.
Set X := Y ∪

⋃
n∈Z

Xn and equip it with a metric d : X ×X → [0,∞), defined by (see [67])

d(x, y) =


∫ y1

x1

||γ̇(t)||2dt+ |x2 − ex1|+ |y2 − ey1 |, if x1 ̸= y1,

|x2 − y2|, if x1 = y1,
(7.3.23)

where γ̇ is the derivative of the curve γ : R → X, define by γ(t) := (t, et) for each t ∈ R.
Then (X, d) is an Hadamard space. Let fj := j||.||22 : X → R, j = 1, 2, 3, 4. Then, fj is
proper, convex and lower semicontinuous in (X, d) (see [67, Example 7.1]).

Now, define Ti : X → X by T1(x1, x2) = T2(x1, x2) = (x1, e
x1) and T3(x1, x2) = T4(x1, x2) =

(−x1, e−x1) for all x = (x1, x2) ∈ X. Then, we check that Ti is quasi-pseudocontractive for
each i = 1, 2, 3, 4.
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Indeed, for each x, y ∈ X, we have that

d2(T1x, T1y) = d2
(
(x1, e

x1), (y1, e
y1)
)

=


(∫ y1

x1

||γ̇(t)||2dt+ |ex1 − ex1|+ |ey1 − ey1|
)2

if x1 ̸= y1,

|ex1 − ey1|2 if x1 = y1,

=


(∫ y1

x1

||γ̇(t)||2dt
)2

if x1 ̸= y1,

|ex1 − ey1|2 if x1 = y1,

≤


(∫ y1

x1

||γ̇(t)||2dt+ |x2 − ex1|+ |y2 − ey1|
)2

if x1 ̸= y1,

|x2 − y2|2 if x1 = y1,

≤ d2(x, y) + d2(x, Tx).

Therefore, T1 is quasi-pseudocontractive. The proof that Ti, i = 2, 3, 4 are also quasi-
pseudocontractive is very similar to that of T1 above.

We now consider the following 4 cases for our numerical experiments for Example 7.3.15
given in FIGURE 7.2 below.

Case 1: x1 = (2, e2)T , u = (2, e2)T and λn = n
3n+2

.

Case 2: x1 = (1, 3)T , u = (0.5, e0.5)T and λn = n
3n+2

.

Case 3: x1 = (0.5, e0.5)T , u = (3, 21)T and λn = n
n+100

.

Case 4: x1 = (−1, e−1)T , u = (−2, e−1)T and λn = n
n+100

.

Example 7.3.16. Let P(n) be the space of n×n Hermitian positive definite matrices. The
geodesic distance between A and B in P(n) (also called the Riemannian (trace) distance)
d2 : P(n)×P(n) → [0,∞) is defined by (see [88] [188, Chapter 2] [78, Example 5.2])

d2(A,B) = inf{L(c)|c : [0, 1] → P(n) is a solution curve with c(0) = A and c(1) = B}
= ∥ log(A− 1

2BA− 1
2 )∥2

=

(
m∑
i=1

log2 µi(A
−1B)

) 1
2

,

where µi(A
−1B) are the eignevalues of A−1B,L(c) :=

∫ 1

0

∥c(t)−
1
2 c

′
(t)c(t)−

1
2∥2dt, ∥A∥2 :=

(tr|A|2) 1
2 , tr is the usual trace functional and |A| =

(
AHA

) 1
2 (where AH is the conjugate
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transpose of A). The pair (P(n), d2) is an Hadamard space with geodesic joining A to B
in P(n) given by (see [73, 88, 188])

(1− t)x⊕ ty = A
1
2

(
A− 1

2BA− 1
2

)
A

1
2 , 0 ≤ t ≤ 1.

Now, define Ti : P(n) → P(n) by TiA = DHAD, i = 1, 2, 3, 4 where D ∈ GL(n) (the set of
n×n invertible matrices). Then Ti is nonexpansive (see [188, Chapter 2]), and hence, quasi-

pseudocontractive. Also, define f1 : P(n) → R by f1A =

(
m∑
i=1

logp µi(A
−1eA)

) 1
p

, where

µi(A
−1eA) are the eigenvalues of A−1eA. Then f1 is convex and lower semicontinuous

(see [19]). Again, define f2, f3, f4 : P(n) → R by f2A = − log detA, f3A = tr(A) and
f4A = tr(eA) respectively, then fj is convex and lower semicontiunous for each j = 2, 3, 4
(see [19, 227]).

We now consider the following 4 cases for our numerical experiments for Example 7.3.16
given in FIGURE 7.3 below.

Case I: x1 =

[
2 i
−i 2

]
, u =

[
5 1 + i

1− i 4

]
and λn = n

n+100
.

Case II: x1 =

[
2 2− i

2 + i 4

]
, u =

[
5 1 + i

1− i 4

]
and λn = n

n+100
.

Case III: x1 =

[
2 2− i

2 + i 4

]
, u =

[
1 4 + i

4− i 3

]
and λn = 10n

2n+5
.

Case IV: x1 =

[
3 −3− i

−3 + i 4

]
, u =

[
2 −i
i 2

]
and λn = 10n

2n+5
.

Remark 7.3.17. The numerical results for Examples 7.3.14, 7.3.15 and 7.3.16 are dis-
played in Figures 7.1, 7.2 and 7.3, respectively.
In Figures 7.1, 7.2 and 7.3, Error= d(xn+1, xn). We can see from these figures that our
algorithm requires the least number of iterations (in all the examples) when compared
with Algorithms (2.5.33)-(2.5.35). Thus, our method is more efficient than these other
methods.
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Figure 7.1: Errors vs Iteration numbers for Example 7.3.14: Case 1 (top left); Case 2
(top right); Case 3 (bottom left); Case 4 (bottom right).

7.4 On generalized viscosity implicit rule for quasi-

pseudocontractive mappings

In this section, we propose a proximal point approach of a viscosity type iterative method
for generalized viscosity implicit rule involving quasi-pseudocontractive mappings in Hadamard
spaces. We prove that the sequence generated by our proposed algorithm converges
strongly to a common solution of a finite family of MPs and FFP for a finite family
of quasi-pseudocontractive mappings in an Hadamard space.

330



Iteration number (n)
1 2 3 4 5 6 7

E
rr

or

10-2

10-1

100

101

Our Algorithm (3.1)
Algorithm (1.6)
Algorithm (1.7)
Algorithm (1.8)

Iteration number (n)
1 2 3 4 5 6 7 8

E
rr

or

10-2

10-1

100

101

Our Algorithm (3.1)
Algorithm (1.6)
Algorithm (1.7)
Algorithm (1.8)

Iteration number (n)
0 5 10 15

E
rr

or

10-3

10-2

10-1

100

101

102

103

Our Algorithm (3.1)
Algorithm (1.6)
Algorithm (1.7)
Algorithm (1.8)

Iteration number (n)
0 2 4 6 8 10 12

E
rr

or

10-3

10-2

10-1

100

101

102

Our Algorithm (3.1)
Algorithm (1.6)
Algorithm (1.7)
Algorithm (1.8)

Figure 7.2: Errors vs Iteration numbers for Example 7.3.15: Case 1 (top left); Case 2
(top right); Case 3 (bottom left); Case 4 (bottom right).
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Figure 7.3: Errors vs Iteration numbers for Example 7.3.16: Case I (top left); Case II
(top right); Case III (bottom left); Case IV (bottom right).
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7.4.1 Main result

Lemma 7.4.1. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m be
a finite family of proper, convex and lower semicontinuous functions. Let g : X → X be a
contraction with coefficient σ ∈ [0, 1). Let Jfmλn : X → X be the resolvents of a finite family
of proper, convex and lower semicontinuous functions. Let Ti : X → X, i = 1, 2, · · · , N
be a finite family of L-Lipschitzian and quasi-pseudocontractive mappings with L ≥ 1 such
that Ti is demiclosed. Suppose that Γ := {∩Ni=1F (Ti) ∩

(
∩mj=1argminy∈Xfj(y)

)
} ̸= ∅ and

for arbitrary x1, u ∈ X, the sequence {xn} is generated by
wn = θnxn ⊕ (1− θn)xn+1,

yn = β0wn ⊕ β1J
f1
λn
wn ⊕ β2J

f2
λn
wn ⊕ · · · ⊕ βnJ

fm
λn
wn,

un = βn,0yn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)yn ⊕ ϵn,iTi((1− γn,i)yn ⊕ γn,iTiyn)) ,

xn+1 = αng(xn)⊕ ψnwn ⊕ τnun,

(7.4.1)

where λn > λ > 0, {αn}, {ψn}, {τn}, {θn} and {βn,i} are sequences in (0, 1) satisfying;

(i) αn + ψn + τn = 1

(ii)
N∑
i=0

βn,i = 1,

(iii)
N∑
i=0

βi = 1,

(iv) 0 < ϵn,i < γn,i <
1

1+
√
1+L2 , i = 1, 2, · · · , N.

Then {xn} is bounded.

Proof. First observe that by Remark 2.5.29, Algorithm 7.4.1 is well defined.
let p ∈ Γ, then from the definition of yn in Algorithm 7.4.1 and Lemma 2.3.23 we have

d(yn, p) = d(β0wn ⊕ β1J
f1
λn

⊕ β2J
f2
λn

⊕ · · · ⊕ βnJ
fm
λn
wn, p)

≤ β0d(wn, p) + β1d(wn, p) + β2d(wn, p) · · ·+ βnd(wn, p)

≤ d(wn, p). (7.4.2)

Let Kiyn :=
(
(1− ϵn,i)yn ⊕ ϵn,iTi((1− γn,i)yn ⊕ γn,iTiyn)

)
, then we have from Algorithm
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7.4.1, Lemma 2.5.28, Remark 2.5.29 and (7.4.2) that

d(un, p) = d(βn,0yn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i
(1− βn,0)

Kiyn, p)

≤ βn,0d(yn, p) +
N∑
i=1

βn,id(Kiyn, p)

≤ βn,0d(yn, p) +
N∑
i=1

βn,id(yn, p)

= d(yn, p)

≤ d(wn, p). (7.4.3)

We obtain from the definition of wn in Algorithm 7.4.1 and Lemma 2.3.23 that

d(wn, p) ≤ θnd(xn, p) + (1− θn)d(xn+1, p). (7.4.4)

From the definition of xn+1 in Algorithm (7.4.1), Condition (i), (7.4.3) and (7.4.4), we
have

d(xn+1, p) = d(αng(xn)⊕ ψnwn ⊕ τnun, p)

≤ αnd(g(xn), p) + ψnd(wn, p) + τnd(un, p)

≤ αnσd(xn, p) + αnd(g(p), p) + ψnd(wn, p) + τnd(un, p)

≤ αnσd(xn, p) + αnd(g(p), p) + ψnd(wn, p) + τnd(wn, p)

≤ αnσd(xn, p) + αnd(g(p), p) + (1− αn)θnd(xn, p) + (1− αn)(1− θn)d(xn+1, p)

= (αnσ + θn(1− αn))d(xn, p) + (1− αn)(1− θn)d(xn+1, p) + αnd(g(p), p),

which implies that

(1− ((1− αn)(1− θn)))d(xn+1, p) ≤ (αnσ + θn(1− αn))d(xn, p) + αnd(g(p), p). (7.4.5)

Since αn ∈ (0, 1) and σ ∈ [0, 1), we have from (7.4.5) that

d(xn+1, p) ≤
αnσ + θn(1− αn)

1− ((1− αn)(1− θn))
d(xn, p) +

αn
1− ((1− αn)(1− θn))

d(g(p), p)

≤ 1− αn(1− σ)

1− ((1− αn)(1− θn))
d(xn, p)

+
αn(1− σ)

1− ((1− αn)(1− θn))

(
1

1− σ
d(g(p), p)

)
.

Thus, we have

d(xn+1, p) ≤ max

{
d(xn, p),

1

1− σ
d(g(p), p)

}
...

≤ max

{
d(x1, p),

1

1− σ
d(g(p), p)

}
,
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which implies that {xn} is bounded. Consequently, {g(xn)}, {wn}, {yn} and {un} are all
bounded.

Theorem 7.4.2. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. Let g : X → X be
a contraction with coefficient σ ∈ [0, 1). Let Jfmλn : X → X be the resolvents of a finite family
of proper, convex and lower semicontinuous functions. Let Ti : X → X, i = 1, 2, · · · , N
be a finite family of L-Lipschitzian and quasi-pseudocontractive mappings with L ≥ 1 such
that Ti is demiclosed. Suppose that Γ := {∩Ni=1F (Ti)∩

(
∩mj=1argminy∈Xfj(y)

)
} ≠ ∅ and the

sequence {xn} is generated by Algorithm (7.4.1), where λn > λ > 0, {αn}, {ψn}, {τn}, {θn}
and {βn,i} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a < ϵn,i < γn,i < b < 1
1+

√
1+L2 , i = 1, 2, · · · , N ;

(iii)
N∑
i=0

βn,i = 1,
N∑
i=0

βi = 1 and 0 < c ≤ βn,i ≤ d < 1, for all n ≥ 1,

(iv) αn + ψn + τn = 1.

Then, {xn} converges strongly to a point p = PΓg(p), where PΓ is the metric projection of
X onto Γ.

Proof. We can rewrite Algorithm 7.4.1 as follows;

wn = θnxn ⊕ (1− θn)xn+1,

yn = β0wn ⊕ β1J
f1
λn
wn ⊕ β2J

f2
λn
wn ⊕ · · · ⊕ βnJ

fm
λn
wn,

un = βn,0yn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
Kiyn,

zn =
(

ψn

1−αn
wn ⊕ τn

1−αn
un

)
,

xn+1 = αng(xn)⊕ (1− αn)zn.

(7.4.6)

Applying Lemma 2.5.30 to the definition of un in Algorithm 7.4.6 we obtain

d2(un, p) ≤ βn,0d
2(yn, p) +

N∑
i=1

βn,id
2(Kiyn, p)− βn,0

N∑
i=1

βn,id
2(Kiyn, yn)

≤ d2(yn, p)− βn,0

N∑
i=1

βn,id
2(Kiyn, yn). (7.4.7)

We obtain from the definition of wn in Algorithm 7.4.1 and Lemma 2.3.23 that

d2(wn, p) ≤ θnd
2(xn, p) + (1− θn)d

2(xn+1, p). (7.4.8)
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We obtain from the definition of xn+1 and zn in Algorithm 7.4.6, (7.4.2), (7.4.7) and (7.4.8)
that

d2(xn+1, p) = d2(αng(xn)⊕ (1− αn)zn, p)

≤ α2
nd

2(g(xn), p) + (1− αn)
2d2(zn, p) + 2αn(1− αn)⟨

−−−−→
g(xn)p,

−→znp⟩

≤ α2
nd

2(g(xn), p) + βnd
2(wn, p) + τnd

2(un, p) + 2αn(1− αn)⟨
−−−−→
g(xn)p,

−→znp⟩

≤ α2
nd

2(g(xn), p) + βnd
2(wn, p) + τnd

2(yn, p)− βn,0

N∑
i=1

τnβn,id
2(yn, Kiyn)

+ 2αn(1− αn)⟨
−−−−→
g(xn)p,

−→znp⟩ (7.4.9)

≤ α2
nd

2(g(xn), p) + (1− αn)d
2(wn, p)− βn,0

N∑
i=1

τnβn,id
2(yn, Kiyn)

+ 2αn(1− αn)⟨
−−−−→
g(xn)p,

−→znp⟩ (7.4.10)

≤ α2
nd

2(g(xn), p) + (1− αn)
(
θnd

2(xn, p) + (1− θn)d
2(xn+1, p)

)
− βn,0

N∑
i=1

τnβn,id
2(yn, Kiyn) + 2αn(1− αn)⟨

−−−−→
g(xn)p,

−→znp⟩ (7.4.11)

which implies that(
1− ((1− αn)(1− θn))

)
d2(xn+1, p) ≤ ((1− αn)θn)d

2(xn, p)

+ αn

[
αnd

2(g(xn), p) + 2(1− αn)⟨
−−−−→
g(xn)p,

−→znp⟩
]
.

Hence, from the previous inequality we obtain

d2(xn+1, p) ≤
(1− αn)θn

θn + αn(1− θn)
d2(xn, p)

+
αn

θn + αn(1− θn)

[
αnd

2(g(xn), p) + 2(1− αn)⟨
−−−−→
g(xn)p,

−→znp⟩
]

=

[
1− αn

θn + αn(1− θn)

]
d2(xn, p) +

αn
θn + αn(1− θn)

dn, (7.4.12)

where

dn = αnd
2(g(xn), p) + 2(1− αn)⟨

−−−−→
g(xn)p,

−→znp⟩

Using Lemma 2.5.36, we need to show that lim sup
k→∞

dnk
≤ 0 for every subsequence {d(xnk

, p)}

of {d(xn, p)} satisfying the condition

lim inf
k→∞

(d(xnk+1, p)− d(xnk
, p)) ≥ 0. (7.4.13)
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Now suppose that {d(xnk
, p)} is a subsequence of {d(xn, p)} such that (7.4.13) holds then

lim inf
k→∞

(d2(xnk+1, p)− d2(xnk
, p)) = lim inf

k→∞
(d(xnk+1, p)− d(xnk

, p))(d(xnk+1, p) + d(xnk
, p)).

From (7.4.9), we have

lim sup
k→∞

(
βnk,0

N∑
i=1

τnk
βnk,id

2(ynk
, Kiynk

)

)
≤ lim sup

k→∞

(
α2
nk
d2(g(xnk

), p)
)

+ lim sup
k→∞

(1− αnk
)
[
θnk

d2(xnk
, p)
]

+ lim sup
k→∞

(1− αnk
)
[
(1− θnk

)d2(xnk+1, p)
]

+ lim sup
k→∞

(
2αnk

(1− αnk
)⟨
−−−−−→
g(xnk

))p,−−→znk
p⟩
)

− lim sup
k→∞

(
d2(xnk+1, p)

)
≤ lim sup

k→∞

(
α2
nk
d2(g(xnk

), p)
)

+ lim sup
k→∞

(
θnk

[d2(xnk
, p)− d2(xnk+1, p)]

)
+ lim sup

k→∞

(
2αnk

(1− αnk
)⟨
−−−−→
g(xnk

)p,−−→znk
p⟩
)

which implies from the conditions on the control parameter that

lim
k→∞

d(ynk
, Kiynk

) = 0, i = 1, 2, · · · , N. (7.4.14)

We also have from Algorithm 7.4.6 and (7.4.14) that

d(unk
, ynk

) = d

(
βnk,0ynk

⊕ (1− βnk,0)
N∑
i=1

⊕ βnk,i

(1− βnk,0)
Kiynk

, ynk

)

≤
N∑
i=1

βnk,id(Kiynk
, ynk

) → 0 as k → ∞.

Hence,

lim
k→∞

d(unk
, ynk

) = 0. (7.4.15)

Also,

d(ynk
, wnk

) = d(β0wnk
⊕ β1J

f1
λnk
wnk

⊕ β2J
f2
λnk
wnk

⊕ · · · ⊕ βnk
Jfmλnk

wnk
, wnk

)

≤ d(wnk
, wnk

) → 0, as k → ∞.

Thus,

lim
k→∞

d(ynk
, wnk

) = 0. (7.4.16)
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From (7.4.15) and (7.4.16), we obtain that

lim
k→∞

d(unk
, wnk

) = 0 (7.4.17)

From Algorithm 7.4.6 and (7.4.17), we obtain

d(unk
, znk

) ≤ βnk

1− αnk

d(unk
, wnk

) +
τnk

1− αnk

d(unk
, unk) → 0, as k → ∞. (7.4.18)

Hence, from (7.4.15) and (7.4.18) we have

lim
k→∞

d(znk
, ynk

) = 0 (7.4.19)

From Algorithm 7.4.6 and the condition on θnk
we have

lim
k→∞

d(wnk
, xnk

) = 0. (7.4.20)

From (7.4.16) and (7.4.20), we have

lim
k→∞

d(ynk
, xnk

) = 0. (7.4.21)

Using (7.4.19) and (7.4.21), we have

lim
k→∞

d(xnk
, znk

) = 0. (7.4.22)

We obtain from Algorithm 7.4.6 and the condition on αn that

d(xnk+1, znk
) = 0. (7.4.23)

Hence, we obtain from (7.4.22) and (7.4.23) that

lim
k→∞

d(xnk+1, xnk
) = 0.

Since {xn} is bounded it follows from Lemma 2.5.31 that there exists a subsequence {xnkj
}

of {xnk
} which △- converges to a point v. From (7.4.22), we have that there exists a

subsequence {znkj} which also △- converges to v. Since Ti, i = 1, 2, · · · , N is demiclosed,
we obtain from Lemma 7.2.1 and (7.4.14) that v ∈ ∩Ni=1F (Ti) = ∩Ni=1F (Ki). Also, Jλnk

is
a nonexpansive mapping for each j = 1, 2, · · · ,m. We obtain from (7.4.21), Lemma 2.5.33

and Lemma 7.2.3 that v ∈ ∩Nj=1F (J
(j)
λ ) = ∩mj=1argminy∈X fj(y). Hence, v ∈ Γ.

Let p = PΓg(p). Since {xnk
} is bounded, we choose a subsequence {xnkj} which △- con-

verges to a point v. From (7.4.22), we have that {znk
} is bounded and we chose subsequence

{znkj
} which △-converges to a point v such that

lim sup
k→∞

〈−−−→
g(p)p,−−→znk

p
〉
= lim

j→∞

〈−−−→
g(p)p,−−−→znkjp

〉
=
〈−−−→
g(p)p,−→vp

〉
.
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From Lemma 2.5.32, we obtain that

lim sup
k→∞

〈−−−→
g(p)p,−−→znk

p
〉
=
〈−−−→
g(p)p,−→vp

〉
≤ 0.

Hence, from (7.4.12) and the previous inequality, we obtain that lim sup
k→∞

dnk
≤ 0, where

dnk
=
[
αnk

d2(g(xnk
), u) + 2(1− αn)

〈−−−→
g(p)p,−−→znk

p
〉]
.

Applying Lemma 2.5.36 to (7.4.12), we have that d(xn, p) → 0, as n → ∞. Therefore,
{xn} converges strongly to p = PΓg(p).

If T is a nonexpansive mapping in Theorem 7.4.2, then we obtain the following corollary.

Corollary 7.4.1. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. Let g : X → X be
a contraction with coefficient σ ∈ [0, 1). Let Jfmλn : X → X be the resolvents of a finite family
of proper, convex and lower semicontinuous functions. Let Ti : X → X, i = 1, 2, · · · , N
be a finite family of L-Lipschitzian and nonexpansive mappings with L ≥ 1 such that Ti is
demiclosed. Suppose that Γ := {∩Ni=1F (Ti)∩

(
∩mj=1argminy∈Xfj(y)

)
} ≠ ∅ and for arbitrary

x1, u ∈ X, the sequence {xn} is generated by
wn = θnxn ⊕ (1− θn)xn+1,

yn = β0wn ⊕ β1J
f1
λn
wn ⊕ β2J

f2
λn
wn ⊕ · · · ⊕ βnJ

fm
λn
wn,

un = βn,0yn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)yn ⊕ ϵn,iTi((1− γn,i)yn ⊕ γn,iTiyn)) ,

xn+1 = αng(xn)⊕ ψnwn ⊕ τnun,

(7.4.24)

where λn > λ > 0, {αn}, {ψn}, {τn}, {θn} and {βn,i} are sequences in (0, 1) satisfying
conditions (i)-(iv) then, {xn} converges strongly to a point p = PΓg(p), where PΓ is the
metric projection of X onto Γ.

By setting θn = 1
2
for n ≥ 1 in Theorem 7.4.2, we obtain the following corollary.

Corollary 7.4.2. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. Let g : X → X be
a contraction with coefficient σ ∈ [0, 1). Let Jfmλn : X → X be the resolvents of a finite family
of proper, convex and lower semicontinuous functions. Let Ti : X → X, i = 1, 2, · · · , N
be a finite family of L-Lipschitzian and quasi-pseudocontractive mappings with L ≥ 1 such
that Ti is demiclosed. Suppose that Γ := {∩Ni=1F (Ti) ∩

(
∩mj=1argminy∈Xfj(y)

)
} ≠ ∅ and

for arbitrary x1, u ∈ X, the sequence {xn} is generated by
wn =

(
xn⊕xn+1

2

)
,

yn = β0wn ⊕ β1J
f1
λn
wn ⊕ β2J

f2
λn
wn ⊕ · · · ⊕ βnJ

fm
λn
wn,

un = βn,0yn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)yn ⊕ ϵn,iTi((1− γn,i)yn ⊕ γn,iTiyn)) ,

xn+1 = αng(xn)⊕ ψnwn ⊕ τnun,

(7.4.25)

where λn > λ > 0, {αn}, {ψn}, {τn}, {θn} and {βn,i} are sequences in (0, 1) satisfying
conditions (i)-(iv), then, {xn} converges strongly to a point p = PΓg(p), where PΓ is the
metric projection of X onto Γ.
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By setting g(xn) = u for all n ≥ 1, u ∈ X fixed in Theorem 7.4.2, we obtain the following
corollary with the Halpern-type algorithm

Corollary 7.4.3. Let X be an Hadamard space and fj : X → (−∞,+∞], j = 1, 2, · · · ,m
be a finite family of proper, convex and lower semicontinuous functions. Let Jfmλn : X → X
be the resolvents of a finite family of proper, convex and lower semicontinuous func-
tions. Let Ti : X → X, i = 1, 2, · · · , N be a finite family of L-Lipschitzian and
quasi-pseudocontractive mappings with L ≥ 1 such that Ti is demiclosed. Suppose that
Γ := {∩Ni=1F (Ti) ∩

(
∩mj=1argminy∈Xfj(y)

)
} ̸= ∅ and for arbitrary x1, u ∈ X, the sequence

{xn} is generated by
wn = θnxn ⊕ (1− θn)xn+1,

yn = β0wn ⊕ β1J
f1
λn
wn ⊕ β2J

f2
λn
wn ⊕ · · · ⊕ βnJ

fm
λn
wn,

un = βn,0yn ⊕ (1− βn,0)
N∑
i=1

⊕ βn,i

(1−βn,0)
((1− ϵn,i)yn ⊕ ϵn,iTi((1− γn,i)yn ⊕ γn,iTiyn)) ,

xn+1 = αnu⊕ ψnwn ⊕ τnun,

(7.4.26)

where λn > λ > 0, {αn}, {ψn}, {τn}, {θn} and {βn,i} are sequences in (0, 1) satisfying
conditions (i)-(iv) then, {xn} converges strongly to a point p = PΓg(p), where PΓ is the
metric projection of X onto Γ.
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CHAPTER 8

Conclusion, Contributions to Knowledge and Future research

8.1 Conclusion

In this thesis, we studied optimization and FPP in the frameworks of Hilbert, Banach and
Hadamard spaces. We developed several effective algorithms for solving these problems.
Our results complement several existing results in the literature. In Chapter 1 of this
thesis, we gave a comprehensive background of our study which highlighted some of the
importance of the optimization problems and FPP. We discussed some iterative schemes for
solving these aforementioned problems. Furthermore, we discussed our research problems
and motivation. Finally, we discussed the objectives of our study and presented the
organization of our study. In Chapter 2 of this thesis, we discussed the geometry of the
Hilbert, Banach and Hadamard spaces and presented some basic definitions, terms and
concepts used in this study. We gave a detailed literature review of past works which
motivated our study and presented some results that were important to our study. In
Chapter 3, we studied the VIPs and FPP in the framework of a real Hilbert space. We
studied the SVIPs and GVIP in the framework of real Hilbert spaces in Chapter 4. In
Chapter 5 of this thesis, we presented our results on SEqP, VqIP and SEP in the framework
of Hilbert spaces. Furthermore, we extended our results from the framework of Hilbert
spaces to the framework work of Banach spaces. In Chapter 6 of this thesis, we presented
our results on VIP, VqIP and FPP in the framework of Banach space. Finally, we extended
our results from the framework of Banach space to the framework of the Hadamard space.
In Chapter 7 of this thesis, we presented our results on MPs in Hadamard spaces. In each
of these chapters, we presented numerical examples of our algorithms in comparison with
other existing algorithms in the literature to show the applicability of our methods. We
also presented where necessary some applications of our results.
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8.2 Contributions to Knowledge

Generally, the results obtained in this thesis extend and improve several other existing
results in the literature in the frameworks of Hilbert, Banach and Hadamard spaces. In
Chapter 3 of this thesis, we studied and improved several existing works on VIP and FPP
in the framework of Hilbert spaces. In Section 3.3, we generalized the result of Nadeshk-
ina and Takahashi [185] from approximating the common solution of the VIP and FPP of
a nonexpansive mapping to approximating the common solution of VIP and FPP of an
infinite family of strict pseudo-contractive mappings. We obtained a strong convergence
result of our proposed method. Furthermore, we applied our result to find a common
solution of VIP and ZPP for an infinite family of maximal monotone operators. In Sec-
tion 3.4, we proposed two new relaxed inertial subgradient extragradient methods, and
proved that they converge weakly to a solution of VIP when the operator A is quasimono-
tone and Lipschitz continuous, and when it is Lipschitz continuous without any form of
monotonicity. The assumptions on the inertial and relaxation factors in this work, are
weaker than those in many works in literature for solving VIPs. Our work generalizes the
results of Liu et al. [162] and Ye et al. [269]. In Section 3.5, we generalized the result
of Yin et al. [270] from approximating a common solution of VIP and FPP of a pseu-
docontractive mapping when the cost operator is quasimonotone, Lipschitz continuous
and sequentially weakly continuous to approximating the common solution of VIP and
FPP of a quasi-pseudocontractive mapping when the cost operator is quasimonotone, uni-
formly continuous (which is a weaker condition that the Lipschitz continuity) and without
the sequentially weakly continuous condition. We obtained a strong convergence result
of our proposed method to the minimum-norm solution of the aforementioned problem.
Furthermore, we applied our result to image recovery.

In Chapter 4 of this thesis, we studied the SVIPs and GVIP in the framework of real Hilbert
spaces. In Section 4.2, we introduced two new relaxed inertial Tseng’s forward-backward-
forward for solving the SVIP in real Hilbert spaces without any product space formulation
when the underlying operator is monotone and Lipschitz continuous. We proved that
the proposed methods converges strongly to the minimum-norm solution of the SVIP. In
Section 4.3, our results extend and improve the works of Pham et al. [206] and Reich et
al. [213] by introducing two new inertial projection and contraction methods for solving
the SVIP when both underlying operators are pseudomonotone, Lipschitz continuous and
without any product space reformulation of the original problem with minimized number
of projections per iteration. Our results in Section 4.4 generalized the works of Tian and
Jiang [244] and Ogwo et al. [192] by introducing two inertial projection and contraction
methods for solving the SVIP when the underlying operators are pseudomonotone and
Lipschitz continuous without the sequentially weakly continuity condition. In Section 4.5,
we proposed a viscosity-type iterative method for solving the GVIP in real Hilbert spaces.
We obtained a strong convergence result of our proposed method to a solution of the
GVIP.

In Chapter 5, we studied the SEqP, VqIP and SEP in the framework of Hilbert spaces.
In Section 5.2, we generalized the result of Latif and Eslamian [159] from approximating
the common solution of the split equalities of EP, Lipschitz monotone VIP and FPP
of nonexpansive semigroups satisfying the u.a.r condition to approximating the common
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solution of the split equalities of EP, non-Lipschitz pseudomonotone VIP and FPP of
nonexpansive semigroups without the u.a.r condition. We obtained a strong convergence
result of our proposed method to a common solution of the aforementioned problem. In
Section 5.3, we improved the result of Cholamjiak et al. [70] from approximating the
common solution of SEP and VqIP in Hilbert spaces using the summability condition to
approximating the common solution of SEP and VqIP without the summability condition.
Furthermore, we proved that the sequence generated by our proposed method converges
strongly to a minimum solution (which finds application in several practical problems) of
the aforementioned problem.

Next, we extended some of our results in the previous chapters to the framework of Banach
spaces. In Section 6.2, we extended the result of Tan et al. [240] from approximating the
solution of the VIP in a real Hilbert space to a 2-uniformly convex real Banach space. In
Section 6.3, we extended the result of Long et al. [163] from approximating the SVqIP
in Hilbert spaces to approximating a common solution of finite family of SMVqIP and
FPP for nonexpansive mappings between a Banach and Hilbert space without the prior
knowledge of the operator norm. Furthermore, we applied our results to study SFP and
SMP.

Finally, we extended some of our earlier results to the framework of Hadamard spaces.
We studied the MPs and FPP in the framework of Hadamard spaces. In Section 7.2, we
generalized the result of Chang et al. [70] from approximating a common solution of a
finite family of MPs and FPP for two demicontractive mappings in Hadamard spaces to
approximating a common solution of a finite family of MPs and FPP of a finite family
of quasi-pseudocontractive mapping in Hadamard spaces. Furthermore, we extended this
method to a more general method involving the resolvents of multivalued monotone op-
erators and established that it converges strongly to a common zero of a finite family of
multivalued monotone operators which is also a common fixed point of a finite family of
quasi-pseudocontractive mappings in Hadamard spaces. In Section 7.3, we generalized the
result of Ahmad and Ahmad [4] for approximating a common solution of a MP and FPP of
a nonexpansive mapping using the viscosity implicit midpoint rule in Hadamard spaces to
approximating a common solution of MP and FPP of a quasi-pseudocontractive mapping
using the proximal point approach of a viscosity type iterative method for a generalized
implicit rule in Hadamard spaces.

8.3 Future research

Some of the possible research problems we will like to consider for future research are
highlighted below.

In Chapter 3 of this thesis, the VIPs and FPP were studied in the framework of a real
Hilbert space. In future research, we desire to extend our results from the framework of
Hilbert spaces to more general Banach spaces and possibly, Hadamard spaces. Also, in
Chapter 4, the SVIPs were studied when the cost operators are either pseudomonotone or
monotone mappings in the framework of Hilbert spaces. It is known that the quasimono-
tone operators are more general and applicable than the pseudomonotone and monotone
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mappings. In future, we intend to extend our results on SVIPs to when the cost operators
are quasimonotone mappings. Furthermore, we hope to extend our results on SVIPs to a
more general Banach space.

Note that the split equalities of EP, VIP and FPP considered in this thesis were studied in
the framework of Hilbert spaces when the cost operator is pseudomonotone and uniformly
continuous. Also, the VqIP and SEP considered in this thesis were studied in the framework
of Hilbert spaces when the cost operators were monotone and Lipschitz continuous. In our
future research, we desire to extend our results on SEqP, VqIP and SEP to the framework
of more general Banach spaces when the cost operators are quasimonotone and uniformly
continuous.

In Chapter 6, we studied the VIP in the framework of Banach space when the operator
is pseudomonotone and non-Lipschitz. We also studied the SMVqIPs and FPP of a non-
expansive mapping between a Banach space and a Hilbert space. In future, we intend to
extend these results to a more general mapping when the cost operator is quasimonotone
and uniformly continuous in the framework of Hadamard space. Furthermore, we note
that the MPs considered in this thesis were studied in the framework of the Hadamard
spaces. In future, we desire to study these results in the framework of p-uniformly convex
metric spaces.
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[113] O. Güler, On the convergence of the proximal point algorithm for convex minimiza-
tion, SIAM J. Control Optim., 29 (1991), 403-419.

[114] M. Gromov, Hyperbolic groups. Essays in group theory, Math. Sci. Res. Inst. Publ.
8. New York: Springer. 75-253.
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[164] G. López, M.V. Márquez, F. Wang, H.K. Xu, Forward-backward splitting methods
for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), Article ID
109236, doi.org/10.1155/2012/109236.

[165] D.A. Lorenz, T. Pock, An inertial forward–backward algorithm for monotone inclu-
sions, J. Math. Imaging Vis., 51 (2015), 311-325.
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