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Abstract

The Bulawayo Emergency Medical Services (BEMS) department continues to rely on judge-

mental methods with limited use of historical data for future predictions, strategic, tactical

and operational level decision making. The rural to urban migration trend has seen the

sprouting of new residential areas, and this has put pressure to the limited health, housing

and education resources. It is expected that as population increases, there is subsequent

increase in demand for public emergency services. However, public emergency ambulance

demand trends has been decreasing in Bulawayo over the years. This trend is a sign of limited

capacity of the service rather than demand itself. The situation demanded for consolidated

efforts across all sectors including research, to restore confidence among residents, reduce

health risk and loss of lives.

The key objective was to develope a framework that would assist in integrating fore-

casting, simulation and optimisation techniques for ambulance deployment to predefined

locations with heterogeneous demand patterns under stochastic environments, using multi-

ple performance indicators. Secondary data from the Bulawayo Municipality archives from

2010 to 2018 was used for model building and validation. A combination of methods based

on mathematics, statistics, operations research and computer science were used for data

analysis, model building, sensitivity analysis and numerical experiments.

Results indicate that feed forward neural network (FFNN) models are superior to tra-

ditional SARIMA models in predicting ambulance demand, over a short-term forecasting
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horizon. The FFNN model is more inclined to value estimation as compared to SARIMA

model, which is directional as depicted by the linear pattern over time. An ANN model with

a 7-(4)-1 architecture was selected to forecast 2019 public emergency ambulance demand

(PEAD). Peak PEAD is expected in January, March, September and December whilst lower

demand is expected for April, June and July 2019.

Simulation models developed mimicked the prevailing levels of service for BEMS with

six(6) operational ambulances. However. the average response times were well above 15

minutes, with significantly high average queuing times and number of ambulances queuing

for service. These performance outcomes were highly undesirable as they pose a great threat

to human based outcomes of safety and satisfaction with regards to service delivery.

Optimisation for simulation was conducted by simultaneously minimising the average

response time and average queuing time, while maximising throughput ratios. Increasing

the number of ambulances influenced the average response time below a certain threshold,

beyond this threshold, the average response time remained constant rather than decreasing

gradually. Ambulance utilisation inversely varied to increase in the fleet size. Numerical

experiments revealed that reducing the response time results in the reduction in number of

ambulances required for optimal ambulance deployment. It is imperative to simultaneously

consider multiple performance indicators in ambulance deployment as it balances resource

allocation and capacity utilisation, while avoiding idleness of essential equipment and human

resources. Management should lobby for de-congestion and resurfacing of old and dilapidated

roads to increase access and speed when responding to emergency calls.

Future research should investigate the influence of varying service time on optimum

deployment plans and consider operational costs, wages and other budgetary constraints

that influence the allocation of critical but scarce resources such as personnel, equipment

and emergency ambulance response vehicles.
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Chapter 1

Introduction

Despite the ever- increasing rural to urban migration which has seen the population of urban

areas in Zimbabwe increasing, Bulawayo City included, health services delivery remains low

in terms of efficiency, effectiveness and equality. This migration trend has seen the sprouting

of new residential areas (formal and informal) and has put pressure on the limited resources

in terms of housing, health and education among many other critical human social amenities

(Potts, 2000, 2006; Tawodzera, 2011). It is expected that as the population increases, there

is subsequent increase in demand for public emergency services. This has not been the case

with the demand trends for public ambulance emergencies in Bulawayo. One would assume

that if service delivery is poor, an affected individual will turn to other alternatives which

might as well be expensive or the individual might even live to meet his or her fate.

Despite reaching the highest annual public ambulance service demand total of 66630 in

1998, the trend has been decreasing up-until 2008 (6595) for Bulawayo City (Fig. 1.1). A

significant increase was experienced between 2009 and 2011. This could have been influenced

by the use of a multi-currency currency system which included the use of United States

Dollars (USD) among a mixed bag of currencies. However, there has been a decreasing

trend between 2012 up to 2018. The situation therefore, calls for consolidated efforts across

1
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all sectors including research in order to restore confidence among residents whilst reducing

health risk and minimising the loss of lives. Planning into the future to restore a balanced

fire and ambulance level of preparedness are vital in order to prevent the loss of lives and

property in isolated incidences and let alone a disaster such as cholera outbreaks, fire or

major road accidents.

 

Figure 1.1: Annual PEAD, Bulawayo, Zimbabwe (1991-2018).

Zimbabwe has not been spared with a declining economy characterised by hyperinflation,

drought and political violence that has seen the increase in poor service delivery across

all economic, social and political divides. However, there has been renewed hope with the

new dispensation after the November, 2017 events which led to the removal of the long-

serving president who presided during this period of mixed fortunes in Zimbabwe. There

has been a call for public and private investment partnership in all sectors of the economy

with the health sector being one of them. The new government has since adopted the
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new mantra dubbed “Zimbabwe is Open for Business”. A blue print entitled “Transitional

Stabilisation Programme (TSP)” was adopted by the Zimbabwean government with the

objective of creating a conducive environment to stimulate the Zimbabwean economy. The

research is envisaged to have been conducted at an opportune time as Zimbabwe is going

through a new political and economic dispensation where the government has also made

pronouncements for foreign direct investment.

Zimbabwe being a member of the United Nations is obliged also to focus on the sustain-

able development goals (SDGs) and the health sector being one of the critical areas. Goal

number three (3) is focused on the good health and well-being of citizens (Qasim, 2013).

Zimbabwe is also a signatory to the Abuja Declaration of April 2001, which compels African

Union governments to allocate at least 15% of their total annual budget towards the health

sector. The issue of public emergency ambulance service provision plays a critical role in

ensuring the good health and well-being of the general populace.

The government of Zimbabwe after realising the importance of this sector undertook a

national status survey on all fire and ambulance services in the country through the Ministry

of Local Government, Public Works and National Housing. The objective of the audit was

to assess the extent of preparedness in the provision of Fire and Ambulance services by Local

Authorities.

1.1 Roles and Responsibilities of Fire and Ambulance

Services

According to the Local Authorities Fire and Ambulance Emergency Services Operational

Procedure Manual (Page 2-3), the functions can be divided into four broad but inter-

dependent categories.
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1.1.1 Command and Administration Unit

The functions of this unit includes: ensuring the overall safety of the Local Authority and

its residents through the maintenance of a well-equipped and well-trained Fire Department,

recruitment, training, and supervision of an appropriate number of Fire-fighters, Ambu-

lance personnel, support staff and their development, procurement of appropriate equip-

ment, guided by current trends, research, need, and experience, advising Council on matters

relating to Public Safety, and ensuring a high-level of cooperation with other Council Depart-

ments, and the formulation of policies and the general maintenance of emergency vehicles,

plant and equipment.

1.1.2 Fire Fighting and Rescue Unit

This unit of a Local Authority is responsible for: immediate dispatch of fire engines, ambu-

lances and personnel to any emergency involving fire, or any other situation where human

life is at risk, rescuing of affected or injured persons from the situation and the initiation of

appropriate medical care and investigating the cause of the situation leading to identifying

factors that could be changed to prevent a similar occurrence.

1.1.3 Emergency Medical Services Unit

Key functions of this unit include to assessing any call for help required, dispatching ap-

propriate human and material resources and to implement appropriate medical care at the

scene and transportation of the patient(s) to the most appropriate facility.

1.1.4 Fire Prevention Unit

This unit has the mandate of maintaining a high standard of fire prevention and public safety

in all public buildings, thereby reducing to the lowest level possible, the risk of fire. It is also
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mandated to conduct regular inspections of all factories, commercial buildings, places where

flammable liquids are stored, shops and places of public gathering, to ensure compliance

with fire prevention by-laws and building codes.

1.2 Laws Governing Operations of Ambulance Services

in Local Authorities

Section 200 (1) of the Urban Councils Act [Chapter 29:15] and First Schedule Section 35 of

the Rural District Councils Act [Chapter 29:13] state that the Ambulance Services division

provide emergency services in the form of conveying patients and performing first aid on

patients from their home or incident scene to the hospital. The ambulance crew treats the

patient during the rescue operation and performs en-route treatment of patients on their

way to the hospital. Incidents are prioritised according to their demand for attention as life

threatening, serious or minor. Life-threatening incidents require special medical attention

other than just conveying the patient to hospital. These include maternity emergencies and

medical emergencies like asthma, diabetes, choking, heart attack, stroke and collapsing cases.

According to the Operational Procedures Manual, categories of emergencies are set after

considering incidents where life is in immediate danger and these are given a higher priority

than the non-emergency request for transport. The control room attendant gives instructions

to callers on what to do whilst the ambulance is on its way. Maternal conveyances and

medical conveyances do not require special medical attention but just convey the patient

to the hospital. When a patient has been conveyed and handed over to the hospital, the

ambulance crew in the event that the patient has cash, receives payment and issues a receipt

in accordance with the fees schedule. If the patient does not have cash on hand they prepare

the client’s bill which is supposed to be settled at the Local Authority’s Treasury Department.
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The laundry, cleaning and disinfection of vehicles are done using equipment available at the

Local Authorities fire premises.

1.2.1 Fire Tenders and Ambulances Response Time

The International Standards of Fire Cover (2.14) states that the location of Fire stations

should allow the responding team to reach the scene of the incident within five minutes after

receiving the call in Cities, Municipalities and Town Councils and within twenty minutes

in Rural District Councils after receiving the call. Where life is in danger, the fire tenders

are supposed to be accompanied by an ambulance. The fire stations are supposed to have

fire tenders and ambulances. The quantity of fire tenders and ambulances required by Local

Authorities is dependent upon whether it is a City Council, Municipal Council, Town Coun-

cil, Local Board or Rural District Council. According to Fire-by laws, Local Authorities are

supposed to charge fire levy to ratepayers for capacitating the fire and ambulance services.

1.2.2 Funding of Fire and Ambulance Services in Local Authori-

ties

The Fire and Ambulance services in Local Authorities are revenue collection units and their

finances are controlled centrally by the Treasury Departments. The Treasury Department’s

source of funds is mainly from ratepayers in the form of rates and tariff charges. The Treasury

Departments provide and manage funds of the Fire and Ambulance services in accordance

with the approved budgets.
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1.3 Operations of the BEMS Department

The Bulawayo Emergency Ambulance Services (BEMS) is a non-profit organisation that is

managed by the Bulawayo City Council. The headquarters are at Famona fire station and the

other substations are Northend, Nketa and Nkulumane. Each station was assigned to cover

particular geographical zones in Bulawayo city. The control room is manned from The Tower

Block in the city centre. This is where all calls are received and managed through a fully

computerised emergency communication and mobilisation system manned by two (2) officers

twenty-four (24) hours a day and three hundred and sixty-five (365) days a year. Details

of the call received in the Control Room are recorded and the nearest station mobilised to

respond to a reported emergency.

The BEMS department uses the manual system to capture information on every call that

is received. This information enables the BEMS to prepare monthly reports on how they are

performing. These reports have indicated that the organisation is finding it more and more

difficult to meet its service targets.

When a call arrives at BEMS headquarters members of staff in the control room identify

an available ambulance that is either idle at its base station or returning from its previously

assigned job and dispatch this vehicle to the scene. After initial treatment at the scene, the

ambulance crew transports the patient to a hospital, performs a hand over and take-over

procedure to hospital staff, and then returns to its base station. If further transport services

are not required, the ambulance returns directly to its base from the scene. The vehicle is

considered available to receive calls as soon as it begins returning to base.
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1.3.1 Operational Challenges being faced by BEMS Department

in Recent Years

According to a report in response to the National Status Survey of 2017 on all fire and

ambulance services in the country, Bulawayo City continues to face operational challenges in

its service delivery. Bulawayo is ill-equipped in terms of aged equipment, obsolete command

vehicles and ambulances. The authorized establishment of 176 fire and 114 ambulance crew

staff has not been met over the years, Bulawayo operates with a meagre number of personnel

currently at ±50 percent for both fire and rescue ambulance services.

The Ministry of Local Government, Public Works and National Housing imposed a freeze

on the recruitment of fire-fighters and ambulance staff and this has affected the Bulawayo

Emergency Services levels of preparedness in conducting their business. There is critical

shortage of personnel. The planned outcome of the job evaluation and rationalization exercise

has seen the division being downsized to 93 fire fighters to cover a three- (3) shift system.

The absence of adequate personnel results in ill-preparedness of the emergency services to

deal with major incidents or disasters.

Bulawayo City has four (4) fire stations strategically located to respond to any part of

the City’s ±483 square kilometres in ten (10) minutes. The City has grown exponentially

without a corresponding increase in the number of fire stations and personnel to reduce

the response time from ten (10) to five (5) minutes. The current economic performance and

other factors affecting the financial position of the Local Authority is having a direct bearing

on the number of stations that can be established and operated to reduce the response time

to five (5) minutes.

Only six (6) ambulances are operated per shift to service the entire City and beyond

owing to lack of Ambulance Technicians/Emergency Medical Technicians. Though old, the

available ambulance fleet allows the division to operate ±11 ambulances per shift. However,
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this is against a stipulated requirement of thirty-two ambulances.

Suburbs such as Mahatshula, Woodville, Cow-dray Park, Waterford and others, takes

between 20 and 30 minutes to reach them a situation that increases damage to property and

loss of lives, above all dissatisfaction from the public and the affected.

The City of Bulawayo Fire and Ambulance Services has a fully computerised emergency

communication and mobilisation system manned by two (2) officers 24/7, 365 days a year.

Details of the call received in the Control Room are recorded and the nearest station mo-

bilised to respond to a reported emergency. Notable deficiencies are the absence of a redun-

dancy system to support continuity of communication in the event of a sudden breakdown

of the system. A number of emergency vehicles lack mobile radios to ensure communication

between responding teams and the emergency control room.

1.3.2 Persistent Technical Challenges faced by Ambulance Ser-

vices Department

Though every call is recorded as it is received, this is still being done manually and the final

consolidation of the information is done on a monthly basis. The summary of ambulance

demand calls is done by category and on monthly basis. However, the daily demand is

overlooked which could be used effectively to forecast either daily, weekly or monthly demand.

There has been no full utilisation of historical data to assist in forecasting demand for

ambulance services in the near to distant future. The organisation relies on judgemental

methods based on knowledge and qualified guesses of present and future events.

Though there is deliberate effort to achieve the 5 minutes’ response time as an interna-

tional practice, this has continued to elope the efforts by the responsible authorities. This

failure to meet such standards has been compounded by a shortage of staff, ambulance ve-

hicles and the ever-increasing residential housing boundaries and the population of the city.
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Response time is defined as the time interval between receiving a call to the time that an

ambulance first arrives at the scene is a key performance measure.

Calls are still being attended on “first come first serve” (FIFO) though priority is being

given to Road Traffic Accidents (RTA). The speed of response depends not on the condition

of the patient but on the volume of calls being responded to and how far away the nearest

ambulance might be. This has serious consequences on the patient’s life and property. This

motivates the researcher to also focus on issues of efficiency in terms of service delivery of

the Bulawayo Fire Brigade Services.

Those in the fire and ambulance professions are concerned with rescuing lives and saving

property. The question that arises is, is Bulawayo prepared for a major incident, let alone a

disaster? The main objective in terms of ambulance logistics is to ensure that the customer

who is the patient in need of ambulance services is satisfied. To achieve this, the whole

process starts in the general planning by management, which has a strong bearing on the

quality of service delivery. The issue of response time is a critical aspect of emergency

response and has to be considered seriously, as every second counts when life or property is

at risk.

The Bulawayo ambulance services continues to face problems, which are common to any

ambulance service provider all over the world today. The ambulance services department

faces a host of difficult policy questions related to the operation of the service. Henderson

and Mason, (2004) propounded key sample questions that every other ambulance service

provider should consider namely: how many ambulances should be employed and where

should they be stationed, how can one distribute a limited number of ambulances between a

high-demand residential area and a low-demand residential area, what procedures and poli-

cies must be adhered to as calls for assistance are received in order to ensure rapid response

to calls while obtaining complete and quality information to allow for correct dispatching,

should ambulances be used for non-urgent patient transfers without compromising the usual
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emergency response function, how dispatching decisions should be made when multiple ve-

hicles are available for emergency dispatch and how can geographical information systems

(GIS) be incorporated in the assignments and allocation of ambulances?

1.4 Problem Statement

Demand for public emergency ambulance services has been on the decrease for a prolonged

period. Since efforts are gradually being made to restore sanity to the service delivery, there

is a need to increase the confidence of clients with limited resources. Two important bold

steps must be taken in order to address this fundamental issue. The first is to optimally use

the current resources in order to restore confidence among the residents of Bulawayo whilst

reducing the health risk and minimising the loss of lives. Secondly, there is a need to build

capacity over the years to come and this can be attained by embarking on strategic and

rigorous scientific research to meet the required international standards.

There is need therefore to develop robust and smart planning methods to ensure a balance

between the number of ambulances available and skilled personnel manning these in line with

the financial resources available and the corresponding demand within the demand zones.

Operational challenges arising from the depleted number of ambulances, increasing pop-

ulation, expansion of residential boundaries and the diminishing staff establishment of the

respective stations has indirectly compromised issues such as equality, effectiveness and effi-

ciency in the provision of public emergency ambulance services. There is need to seriously

consider the use of forecasting, simulation and optimisation tools to forecast demand and

track performance measurements that would assist in the allocation of these scarce resources.

Henderson and Mason (2005) found that statistical information, outlining when and

where calls are likely to occur, is rarely used to support decision-making.. This is mainly due

to the inability of the technical systems used by ambulance organisations (including BEMS)
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to supply relevant statistical data. Methods for utilising the data have to be developed and

explored in this research. To effectively direct efforts into solving the challenges being faced

by the BEMS, the researcher will focus on how neural networks, simulation modelling and

optimisation techniques can be integrated and adopted in forecasting and capacity planning

in addressing issues of equality, effectiveness and efficiency.

1.5 The Motivation of the Study

There has been a lot of work done in literature that focused on capacity and staffing of base

stations, bases location, scheduling of ambulance crews whose focus was mainly based on the

known deterministic demand and supply side of the ambulance service logistic chain (Batta

et al., 1989; Başar et al., 2012; Bélanger et al., 2019). The deterministic demand component is

the number of emergency ambulance calls received, and the deterministic supply component

is the availability of ambulance personnel and ambulance vehicles (Bélanger et al., 2019).

However, little has been done to assess the impact of the stochastic nature of the input

data (emergency ambulance calls), the response time, service time and the overall utility of

the ambulance vehicles which has a strong influence in addressing logistical issues such as

equality, efficiency and effectiveness in the provision of public emergency services.

The situation calls for consolidated efforts across all sectors including research, in order

to restore confidence among residents, reduce health risk and loss of lives. Planning into

the future to restore a balanced fire and ambulance level of preparedness is vital in order to

prevent the loss of lives in isolated incidences or even a disaster such as the cholera outbreaks

that have been experienced in recent years (Chronicle, 2018), fire or major road accidents.
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1.6 Research Objectives

The objectives of the study are to:

(i) Identify the operational and technical challenges being faced by the organisation in

terms of public emergency ambulance service delivery.

(ii) Validate the forecasting performance of neural networks against traditional forecasting

techniques in forecasting ambulance demand.

(iii) Forecast annual demand for resource planning and mobilisation.

(iv) Develop a framework for integrating forecasting, simulation and optimisation tech-

niques for heterogeneous regions to improve levels of preparedness, equality, efficiency

and effectiveness in emergency ambulance services.

1.7 Research Questions

The researcher is motivated by important questions stated below:

(i) What are the current operational and technical challenges being faced by the organi-

sation in terms of public emergency ambulance service delivery?

(ii) Is there a comparative advantage of using neural networks in predicting near to distant

deterministic demand to help improve public emergency ambulance preparedness?

(iii) How can simulation modelling be integrated with forecasting using artificial neural net-

works and optimisation techniques in decision making processes focused on improving

levels of preparedness, equality, efficiency and effectiveness in emergency ambulance

services?
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1.8 Expected Benefits of the Study

The forecasted demand would assist in resource planning which is not limited to the allocation

of ambulances to the respective stations but include staff training, ambulance servicing,

community awareness campaigns, scheduling of annual leave days for members of staff, hiring

of equipment or manpower and even routine checks on the alertness of the ambulance team

as a whole.

The use of simulation techniques will help to measure the capacity of achieving set per-

formance measurements as guided by international standards whilst directly or indirectly ad-

dressing important aspects of equality, efficiency and effectiveness in the provision of service

to the citizens. The optimisation would ensure the development of optimal or near-optimal

ambulance deployment plans under multiple performance indicators to ensure equality, effi-

ciency and effectiveness in EMS resource mobilisation, allocation and utilisation. Addition-

ally, the research will contribute to the body of literature by demonstrating how artificial

neural networks (future demand) work. The integration of simulation modeling and opti-

mization in decision making can prove to be effective and provide a number of scenarios for

consideration prior to committing resources for emergency medical services systems. The

integrated strategy can further be adopted for decision making to similar cases that involve

a server-to-customer operating environment such as taxis and vehicle recovery machinery.

1.9 Delimitation of Study

The research will be confined to identifying appropriate neural network models, simulation

and optimisation techniques that can be integrated and utilised in improving public ambu-

lance emergency preparedness. The research will focus on the period spanning from January

1991 to December 2019. Bulawayo City Council’s Department of Fire and Ambulance Ser-
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vices will be used as a case study.

1.10 Limitations of the Study

The study relied on secondary data which was largely available on hard copies. It implied

manual data capturing as the current database is operating on partial automation. How-

ever, thorough data mining was performed to ensure completeness and accuracy of source

data. The advent of COVID-19 posed serious challenges to the execution of the study as it

minimised levels of engagement with relevant stakeholders. However, alternative channels of

engagement were adopted to ensure the progress of the study. Though Bulawayo was used as

a case study, some generalisations can be made for other public emergency service providers.

1.11 Organisation of the Study

The study comprises eight chapters, the first chapter covers the introduction, background,

problem statement, objectives, research questions, delimitations as well as the limitations

of the study. Chapter 2 covers the literature review, empirical evidence as well as the

conceptual framework of the study. Chapter 3 provides the methodology while Chapter 4

covers the development of forecasting models using artificial neural networks (ANN) and

seasonal autoregressive integrated moving average models (SARIMA). Chapter 5 focuses on

simulation modelling of the emergency medical services (EMS) for the heterogeneous regions.

Chapter 6 covers sensitivity analysis by adopting the optimisation for simulation approach.

Chapter 7 focuses on numerical experiments to explore the influence of standardising response

time on optimal ambulance deployment plans. Chapter 8, the final chapter presents the

discussion and conclusion of the study.



Chapter 2

Literature Review

2.1 Introduction

Literature review is an assessment of a body of research that addresses the research questions.

The literature review helps in identifying what is known about the specific study area and

ultimately will help in the identification of issues that the body of research does not address.

This helps to create a case for why further research has to be conducted. The objective of

the review of literature is to describe, summarise and clarify literature in order to build a

conceptual framework for the research.

This section will review literature on time series analysis, forecasting, simulation and

optimisation and how these can be integrated in order to help improve the levels of pre-

paredness for public ambulance emergency response through an informed decision-making

process. In principle it will assess the current state of research on the topic, identify key

questions that need further research and the determination of methodologies used in sim-

ilar past studies. The literature review also provides some background knowledge of the

mathematical concepts that are incorporated in the analysis.

16
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2.2 Forecasting

Henderson and Mason (2005) highlighted that quantitative decision processes are becoming

increasingly important in providing public accountability for the resource decisions that have

to be made and that any solution to such problems require careful balancing of political,

economic and medical objectives. There is need therefore, to strike a balance between num-

bers of ambulances available and skilled personnel manning these in line with the financial

resources available through smart and robust planning.

Eldabi and Young (2007) argued that the provision of efficient and fair service to citizens

or the population is a key goal of any emergency medical service and that this can be achieved

by exploiting the use and integration of operations research, quantitative techniques and

simulation techniques to provide decision making tools to emergency service management.

They further argued that as populations are dynamic and evolving with regards to the

demographics and their expectations, there is a corresponding increase in demand for better

service to more people in a uniform manner.

To achieve this, future predictions have to be made using historical time series data.

According to Tealab (2018), time series is a general problem of great practical interest in

many disciplines and it allows you to discover, with some margin of error, the future values

of a series from its past values.

2.3 The Nature of Time Series Data

A time series is a sequence of time-ordered data values that are measurements of some

physical, biological, economical, or environmental phenomena of interest. Time series is

defined by Shumway and Stoffer (2000) as a collection of random variables indexed according

to the order they are obtained in time. A time series can also be defined as a sequence of
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numerical observations naturally ordered in time (Wilson et al., 2015).

Here xt denotes the value taken by the time series at time t = 0, 1, 2, .... A common

time series variable used widely in time series analysis is the white noise. It is a collection of

uncorrelated random variables wt, with mean zero and a finite variance σ2
w (Shumway and

Stoffer, 2000). Common components in time series data include trends, cyclical, irregular

and seasonal variations. When analysing such data for forecasting purposes, two questions

of paramount importance are that: 1) does the data exhibit a discernible pattern? and 2)

can this pattern be exploited to make a meaningful forecast? The approach by which a

researcher tries to answer such mathematical and statistical questions posed by these time

correlations is referred to as time series analysis.

According to Chatfield and Weigend (1994) time series analysis has three goals: fore-

casting, modelling and characterisation. The aim of forecasting (predicting) is to accurately

predict the short-term evolution of the system; the goal of modelling is to find the description

that accurately capture features of the long-term behaviour of the system whilst character-

isation is an attempt with little or no prior knowledge to determine important properties

such as randomness of a system. The research will primarily focus on all three goals of time

series analysis.

Time series analysis can be broadly classified into univariate time series and multivariate

time series analysis. In univariate time-series data, the statistical relationship is unidirec-

tional in that the forecast variable is influenced by its lags or the lags of other predictor

variables (or features). A good example of univariate time series data is given by equation

2.1:

yt = µ+ φ1yt−1 + φ2yt−2 + εt. (2.1)

In multivariate time series data, the forecast variable is influenced by a co-movement of an-
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other time-series data. A good example of multivariate time series data is given by equation

2.2:

yt = µ+ φiyt−1 + ψjxt−1 + εt, (2.2)

where yt and xt are stationary time series and εt is the white noise. The mean µ and

model parameters φi and ψj are also known model constants.

2.4 Time Series Forecasting Models

The demand for ambulance services in a zone, or the probability that an ambulance will

be needed in a zone can be estimated in different ways. Common methods for forecasting

demand include causal methods, time series models and judgemental methods. In causal

methods, the forecasted demand is expressed as a function of independent variables such as

for example, population and employment in the zone. Kamenetzky et al. (1982) described

the development of a causal model for estimating the demand for pre-hospital care in South-

western Pennsylvania.

Time series models are based on historical data, which is analysed to find out how the

demand varies with time. However, the method to be used also depends on a variety of char-

acteristics of the time series. It might depend on whether the time series data is univariate

or multivariate time series data. Seasonal variations will be evident for ambulance health

care as the demand in a zone might vary depending on the time of the day, which day of the

week it is, or which month it is. In the study by Repede and Bernardo (1994), the demand

inter-arrival rate for a district was found to depend on the day of the week and the hour of

the day.

Judgemental methods rely on qualified guesses of the present and future events. The
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knowledge that a political rally, football tournament, marathon race, a big cultural or busi-

ness exhibition event will take place in a zone is likely to increase the expected demand for

ambulances. A combination of the three types of methods may be required in order to obtain

a balanced estimation of the ambulance health care demand in a zone.

2.5 Conventional Time Series Forecasting Techniques

Linear time series forecasting techniques such as integrated autoregressive moving average

models, moving averages, exponential smoothing have been used for time series analysis for

decades in different areas of science, engineering, industry and commerce. Other various non-

linear techniques have been proposed and applied to real-world problems, but like the linear

techniques, they have a huge drawback as they require specific model assumptions (Alpaslan

et al., 2012). Such non-linear models include Vector Autoregressive Models (VAR), Au-

toregressive Conditional Heteroskedastic (ARCH), Generalised Autoregressive Conditional

Heteroskedastic (GARCH), and Threshold Autoregressive (TAR) models.

Real-world problems in the modern-day are characterised by non-linear patterns and

behaviours which demand the use of non-linear techniques. There has been a shift of focus

with the growing use and application of artificial neural networks because of their flexibility

and remarkable features (Aras and Kocakoç, 2016). A neural network is defined by Hastie

et al. (2009) as a non-linear statistical model which could be a two-stage regression or

classification model, typically represented by a network diagram and good at modelling any

complex function where the relationship is unknown.
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2.6 Nonlinear Time Series Models

2.6.1 Artificial Neural Networks

Mitrea et al. (2009) defines an artificial neural network (ANN) as an information processing

system that has been developed as generalizations of mathematical models of human neural

biology. The use of artificial neural networks has grown over the years and has been applied

to different fields in various forms due to their flexibility. According to Rather et al. (2015),

these non-linear models overcome the limitation of linear models as they are able to capture

the non-linear pattern of data, thus improving their prediction performance.

Over the years there has been a substantial use and comparison between neural networks

and traditional time series forecasting techniques in different areas of applications such as

health (Süt and Şenocak, 2007), geophysics (Goutorbe et al., 2006), geomechanics (Sadiq

et al., 2003), stock markets (Herliansyah et al., 2017), chemical engineering (Noor et al.,

2010; Prasad Y and Bhagwat, 2002), electrical engineering (Karami, 2010), global logistics

(Bowersox et al., 2003), construction engineering (Zichun et al., 2012), financial business

support (Tsai, 2008) and in insurance (Sha, 2008). Mitrea et al. (2009), made a comparison

between neural networks and traditional forecasting methods in inventory management. The

results showed that forecasting with neural networks offers better performance in comparison

with traditional methods. Aish et al. (2015)used artificial neural networks to predict the

efficiency of a reverse osmosis desalination plant in the Gaza Strip. A statistical model was

compared with the developed models and it was found that ANN provided better predictions

than conventional methods. However, a few researchers such as Raeesi et al. (2014) and

Adebiyi et al. (2014) have made an attempt to apply neural networks on univariate data and

make comparisons with the traditional methods. Moreover, such comparisons have not been

applied to a case of demand for public emergency ambulance services. Raeesi et al. (2014)

used feed-forward neural networks for short-term prediction using univariate data of the first
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300 days of the year and values of the 301st days were predicted. The data was transformed

into lags that would help to meet the multivariate conditions required by the neural network

architect. Herliansyah et al. (2017) in their research study on the application of feed-forward

neural networks (FFNN) for forecasting the Indonesia Exchange Composite Index concluded

that with fewer data observations (54 training data points, 13 model validation data points),

FFNN was still able to produce accurate predictions, react to sensitive changes and model

the trend series well.

Despite these studies indicating that neural networks have superiority over traditional

techniques, there are other studies reporting that traditional techniques outperform neural

networks (Aras and Kocakoç, 2016). According to Anderson (1995) in a standard picture

of the neuron presented in Fig. 2.1, dendrites receive inputs from other cells, the soma (cell

body) and dendrites process and integrate the inputs, and information is transmitted along

the axon to the synapses, whose outputs provide input to other neurons or effect organs.

 

 

 

Figure 2.1: A Dendritic Tree of Several Neurons (Anderson J.A., 1995).
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The structure of the artificial neural network (ANN) model is regarded as simpler than

the immensely complex structure of the human neural system, in practice they can produce

interesting and significant results in various real-life applications such as classification, image

processing and forecasting (Alpaslan et al., 2012). In classification, the neural networks are

able to carry pattern recognition, feature extraction, image extraction. Neural networks are

also able to reduce white noise by recognising patterns in the inputs and producing noiseless

outputs and are also capable to extrapolate historical data. Neural networks have the ability

to learn and figure out how to perform their function on their own and are able to determine

their function based only on sample units. They are also able to produce reasonable outputs

for inputs it has not been taught how to deal with before.

2.6.2 The Generic Neural Network Neuron

The generic neural network unit has two parts. The first part inputs from the synapses are

added together, with individual synaptic contributions combining independently and adding

algebraically, giving a resultant activity level (Anderson, 1995). The second part is used

to generate the final output activity of the neuron by using the activity as the input to

a nonlinear function relating activity level to output a value. The generic neural network

neuron is presented in Fig. 2.2.

The single neuron has its response a non-linear function of the weighted sum of all input

signals. A constant bias signal must be applied to all neurons in a feed-forward neural

network. All weights that are used to weight the individual input signals are grouped in a

weight vector W (Herliansyah et al., 2017). f(∗) is the non-linear sigmoid function (activation

function) that is applied to the weighted sum of all input signals. The response of the single

neuron is then given by equation 2.3:
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Figure 2.2: The Generic Neural Network Neuron.

Output = f(u1w1j + u2w2j + u3w3j + ...+ unwnj + bias). (2.3)

This can be generalised by the equation 2.4 given by:

Yj = f(
N∑
n=1

WnUn + bias) = f(WU) + bias, (2.4)

where Wn is the weight matrix , Un is the input value matrix and bias is the error of

approximation.

A widely used NN structure among modellers is the Feed Forward Neural Network

(FFNN), also known as the multilayer perceptron (MLP) (Herliansyah et al., 2017). Accord-

ing to Mitrea et al. (2009) many varieties of neural network techniques including Multilayer

Feed-forward NN, Recurrent NN, Time delay NN and Nonlinear Autoregressive Exogenous

NN have been proposed, investigated, and successfully applied to time series prediction and
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causal prediction. The different architectures are shown in Fig. 2.3.

 

Figure 2.3: (a) Multilayer Feed Forward NN, (b) Recurrent NN, (c) Time Delay NN and (d)
Nonlinear Autoregressive Exogenous NN.

2.6.3 Feed Forward Neural Networks

A feed-forward neural network consists of three basic layers, the input layer, hidden layer(s)

and the output(s) as shown in Fig. 2.4. The network is called feed-forward because in-

formation flows only from the input to the output and there are no recurrent or backward

connections. Each layer consists of neurons and there is no connection between neurons

that are in the same layer. The activation functions are used for neurons in the hidden

and output layers only; the output layer might contain one or more outputs depending on

the phenomenon under investigation. However, literature has shown that the majority of

studies use a single output for forecasting purposes (Alpaslan et al., 2012). A three-layer

FFNN structure is shown in Fig. 2.4.
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Figure 2.4: Feed-forward Neural Network For Time Series Forecasting.

The input vector is represented by Yj denoted by Yj = {y1, y2, y3, ..., yn}; Wjk(j =

1, 2, 3, ..., n; k = 1, 2, 3, ...,m) is the connection weight vector of the j nodes of the input

layer to the k nodes of the hidden layer; Xk(k = 1, 2, 3, ...,m) is the vector of k neurons in

the hidden layer; Wk(k = 1, 2, 3, ...,m) is the connection weights of the k nodes of the hidden

layer to the output layer; and Y is the unit output vector for the neural network with one

output neuron. Θk(k = 1, 2, 3, ..., k) is the bias value of the hidden layer nodes and Θ is the

bias value of the output layer. The output of the hidden layer is determined by the formula:

Xk = f(Σn
j=1WjkYj + Θk). (2.5)

The output of the output layer is determined by the formula:

Y = f(Σm
k=1WkXk + Θ), (2.6)
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where f is the activation function for the hidden and output layers.

2.6.4 Generation of Neural Network Weights

The weights in a neural network are the most important factor in determining its function.

Training is the process of presenting the network with some sample data and modifying the

weights to better approximate the desired function. The two main types of training are

supervised training and unsupervised training. In supervised training, the neural network

is supplied with inputs and the desired outputs. The response of the network to the inputs

is measured and the weights are modified to reduce the difference between the actual and

the desired outputs. A schematic representation of supervised neural network training is

summarised in Fig. 2.5.

 

Figure 2.5: A Schematic Diagram for a Neural Network Supervised Training.

In unsupervised training, the neural network adjusts its own weights so that similar
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inputs generate similar outputs. The network identifies the differences in the inputs and

patterns without any external assistance. According to Ciaburro and Venkateswaran (2017),

an epoch is a single iteration through the process of providing the network with input and

updating the network’s weights. Several epochs are required to train the neural network

efficiently. The process of adjusting the weights of a neural network uses an algorithm called

backpropagation in order to minimise the error of estimating the model during the training

of the neural network.

2.6.5 Activation Functions

Activation functions are applied to the weighted sum of the inputs of a neuron to produce

the output. Widely used activation functions have a very large number of shapes and the

activation function family include the logistic function, hyperbolic tangent, step function,

linear function, rectified linear function, and arctangent functions Key desirable properties

of an activation function are that; it must be differentiable, simple and fast in processing

and should not be zero centred (Ciaburro and Venkateswaran, 2017).

The exact nature of the function has little effect on the abilities of the neural networks.

Weights in a neural network are the most important factor in determining its function.

The activation functions are used for neurons in the hidden and output layers. Activation

functions provide the non-linear mapping, hence activation functions which that are nonlinear

are desired in the hidden layer. Both linear and non-linear functions can be adopted for the

output neuron(s).

The Sigmoid Function

A sigmoid function is smooth, continuous and monotonically increasing implying that the

derivative of the sigmoid function is always positive. It has a bounded range but never
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reaches a maximum or minimum. The most commonly used sigmoid function is the logistic

function as represented in Fig. 2.6 and is represented by a generalised equation 2.7:

f(x) =
1

1 + e−x
. (2.7)

The calculation of derivatives is important for neural networks and the logistic function has

a generalised derivative given by equation 2.8:

f
′
(x) = f(x)(1− f(x)). (2.8)

When a logistic activation function is used, values will be transformed into the interval (0, 1).

The Hyperbolic Tangent Function

The hyperbolic tangent function (Fig. 2.6) is also the most commonly used activation scaled

sigmoid function (Goutorbe et al., 2006) that transforms values into the interval (−1, 1) by

using the formula given by equation 2.9:

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (2.9)

The Linear Function

The linear function (Fig. 2.6) is mostly used in literature in the output layer where the

desired outputs are real values from negative infinity to positive infinity. It is in the form

of a polynomial of one degree which generates a straight line without any curves. The

generalised formula is given by equation 2.10:

y = f(x) = x. (2.10)
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(a) Logistic Activation Function 

 

 

(b) Hyperbolic Activation Function 

 

 

(c) Linear Activation Function 

 

Figure 2.6: A Collage of Sigmoid Activation Functions.
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2.6.6 Neural Network Model Building Process

Aish et al. (2015) stated that there are a number of issues that need to be addressed in

setting-up and training a multilayer neural network and these include: selecting how many

hidden layers to use in the network, deciding on how many neurons to use in each hidden

layer, finding a comprehensively optimal solution that avoids local minima, converging to

an optimal solution in a reasonable period of time and validating the neural network for

over fitting if it might have occurred during the training process. Seven (7) steps can be

adopted whilst addressing the above-mentioned issues or concerns in the neural network

model building and forecasting process. The seven key steps are summarised in Fig. 2.7.

 

Figure 2.7: The Seven Step Neural Network Model Building and Forecasting Process.

Step 1 involves the pre-processing of data and choosing the activation functions for both

the hidden and output layers. According to Mitrea et al. (2009) pre-processing represents

data coding, enrichment and cleaning which involves accounting for noise and dealing with
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missing information. Pre-processing also involves the normalisation of data (scaling down)

to an interval [0, 1] in order to prevent saturation of hidden nodes before feeding into the

neural network (Kitapcı et al., 2014). Normalisation also ensures that none of the vari-

ables over dominates the other variables and it assists in achieving quick convergence during

training of the neural network. In data pre-processing, there are three basic normalisation

techniques available: Min-Max normalisation, Z-score normalisation, and sigmoid normal-

isation (Kheirkhah et al., 2013). The min-max normalisation is the most commonly used

technique and the formula can be generalised by equation 2.11:

y
′

i =
yi −Min(yi)

Max(yi)−Min(yi)
, (2.11)

where y
′
i is the normalised value at the time i, yi, Max(yi) and Min(yi) represents the

observed values, maximum and minimum values of observations respectively, of variable yi

over the range of data (Alpaslan et al., 2012).

Step 2 involves the determination of the lengths of training and the testing sets. The

first set, called the ‘model-building’ set or training set, is used to develop the network model.

The second data set, called the testing or prediction set is used to evaluate the forecasting

ability of the selected model. Higher percentages are usually assigned to the training set

and lower percentages to the testing set. The length of the testing set is implemented in

various neural network architectures in literature at 10%, 15%, 20% and 30%. In a study

by Alpaslan et al. (2012), they concluded that the smaller the testing set length, the more

accurate the obtained forecasts are.

Step 3 involves the modelling aspects of the neural network. The architecture of the

neural network is determined by the number of hidden and output layers, the number of

neurons in all of the layers, training algorithm parameters and the performance measure.

There is no general rule for the selection of the appropriate number of hidden layers and
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the most popular approach in finding the optimal number of the hidden layer is by trial and

error (Güler and Übeyli, 2005).

It is important to note that neural networks without hidden units are equivalent to

linear statistical forecasting methods (Cheng and Titterington, 1994). Hidden units perform

the mapping between the input and output variables as well as to provide the non-linearity

feature to neural networks, in addition to find out patterns in the dataset (Aras and Kocakoç,

2016). It is expected that the number of the parameters and the degree of non-linearity of

the neural network increases as the number of hidden units (neurons) increases. A balance,

therefore, has to be made as the use of an excessive number of hidden units can lead to

overfitting of training data by the neural network. In general, a small number of hidden

units are recommended to avoid the neural network from overfitting the training dataset.

Wanas et al. (1998) after an empirical study, proposed that the number of hidden units

is given by log (N) where N is the number of training samples. These can be increased

during training of the neural network however; a general rule is that there must not exceed

two-thirds of the input neurons.

Performance measures are used for comparing the performances of selected neural network

models on validation data. The mean square error (MSE) and the mean absolute error

(MAE) are the two classical accuracy measurements used in literature though other variants

such as root mean squared error (RMSE) and mean absolute percentage error (MAPE) were

implemented. Despite both the MSE and the MAE being measures of accuracy and the

degree of spread, the former has been the most popular of the two due to its theoretical

relevance in statistical modelling (Aras and Kocakoç, 2016). The MAE gives equal weight

to all errors while the MSE assigns more weight to large errors. The MSE is more sensitive

to outliers than the MAE. The formulations of the MSE, RMSE and MAE are given by:

MSE =
1

N
ΣN
t=1(yt − ŷt)2, (2.12)
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RMSE =

√
1

N
ΣN
t=1(yt − ŷt)2, (2.13)

MAE =
1

N
ΣN
t=1|(yt − ŷt)|, (2.14)

where yt is the actual observation for the period t, ŷt is the forecast for the same period, and

N is the length of the test set. The MSE and the MAE are both measures of accuracy and

the degree of spread of data points (Aras and Kocakoç, 2016). The MAE is a measurement

of how close forecasts are to the actual data points; the average of the absolute errors

(Herliansyah et al., 2017). Values predicted from the training sample and values in the test

set were utilised to calculate the performance measures. Forecasts for the year 2018 were

calculated by using the best weight values obtained in the selected model.

Step 4 involves the generation of input values of the neural network. The input values

are lagged time series. If for a time series Yt has m lagged time series Yt−1, Yt−2, . . . , Yt−m,

then m neurons are employed in the input layer. The selection of the number of inputs used

in the model is based on trial and error (Belayneh et al., 2014).

Step 5 involves the calculation of the best weight values of the neural network through

the use of a training algorithm. Training a network involves the adjusting of weights of the

network using different learning algorithms. Süt and Şenocak (2007) used several training

algorithms in their research that are available for use and these included the backpropagation

(BP), quick propagation (QP), delta-bar-delta (DBD), the extended delta-bar-delta (EDBD)

and Levenberg-Marquardt algorithms.

Backpropagation, also called backward error propagation or backprop, is the most pop-



2.6. NONLINEAR TIME SERIES MODELS 35

ular and widely used network learning algorithm (Rumelhart et al., 1985; Anderson, 1995;

Duda et al., 2012). There are used in a multilayer architecture, where in addition to the

input and output layers, there are also one or more hidden layers that are neither input nor

output. Backpropagation is a rule that generalises the gradient descent method as a way

of changing the weights in the hidden layer of a FFNN. It gives the change ∆wjk(i) in the

weight of the connection between neurons j and k at iteration i as:

∆wjk(i) = −α ∂E

∂wjk(i)
+ µ∆wjk(i− 1), (2.15)

where α is called the learning coefficient, ∆wjk(i− 1) the weight change in the immediately

preceding iteration and µ the momentum coefficient (Güler and Übeyli, 2005).

The learning coefficient ensures a maximum decrease of the error function thus increasing

the convergence speed. If it is too small, convergence will be extremely slow and if too large,

the error function will not converge. The momentum coefficient tends to aid convergence as

it works as a low-pass filter by reducing rapid fluctuations. It applies smoothed averaging

to the change in weights whilst also avoiding local minima (Goutorbe et al., 2006).

Step 6 involves the calculation of the performance measure. A performance measure is

based on the difference between predictions from training (in sample) and testing set (real

values) values. The MSE and the MAE are the commonly used performance measures and

the model with the least value is selected for forecasting.

Step 7 is the forecasting stage where forecasts beyond the validation set are calculated

using the best weight values obtained in step 5. According to Günay (2016), the assumption

here is that if the model was able to predict the demand in this time interval with a good

accuracy, it could be used for forecasting the future demand with high reliability.
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2.7 Linear Time Series Analysis Methods

There are two main methods of forecasting linear time series data namely: The regression

method and the Box-Jenkins method. The two methods differ in that a regression model is

a structural or causal forecasting method that requires the forecaster to know in advance at

least some of the determinants of the response variable whereas the Box-Jenkins technique

can be used when these determinants of the variable are not readily available. Other linear

models that can be used for prediction include the exponential smoothing models, gener-

alised autoregressive conditional heteroscedasticity and stochastic volatility models, which

are predominantly used in predicting stock returns (Rather et al., 2015). It is the Box-

Jenkins methodology that is going to be used for forecasting purposes in this research. Jere

et al. (2017) applied the same methodology in a study to forecast the second-hand car impor-

tation in Zambia and the methodology was found to be superior as compared to exponential

smoothing models for univariate time series analysis.

2.7.1 Theoretical Properties of the ARIMA Models

In Box-Jenkins methodology, we start with the observed time series itself (with no explana-

tory variables) and examine its characteristics in order to get an idea of what black box

(simulation model) we might use to transform the series into white noise (residuals). We

begin by trying the most likely of many black boxes and, if we get white noise, we assume

that this is the “correct” model to use in generating forecasts of the series. White noise has

two characteristics: there is no relationship between consecutively observed values, and the

previous values do not help in predicting future values.
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2.7.2 Stationarity Assumption

When applying ARIMA models to time series data, it is assumed that the data is stationary.

The stationarity assumption requires that the mean, variance and autocorrelation of the

time series data does not change over time. Non-stationarity is common when components

of time-series data such as trend, seasonality, cyclicity and irregularity are not accounted for

in the model building process. When time-series data is not stationary, differencing both

the ordinary and seasonal components is performed to ensure that stationarity is achieved.

2.7.3 Basic ARIMA Models

When choosing the best time series model, there are three basic types of models to be

examined: Many variations within each of these three types can be developed depending on

how the time series data is structured. The three basic models are: moving average (MA(q))

models, autoregressive (AR(p)) models and the mixed autoregressive/moving average models

known as autoregressive integrated moving averages (ARIMA (p, d, q)) (Shumway and

Stoffer, 2000).

Moving Average MA(q) Model

A moving average MA(q) model of order q predicts Yt as a function of the past forecast errors

in predicting Yt (Shumway and Stoffer, 2000). Consider wt to be the white noise series; a

moving average would then take the form presented in equation 2.16:

Yt = wt + θ1wt−1 + θ2wt−2 + . . . + θqwt−q, (2.16)

where:

� wt is the value at time t of white noise.
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� Yt is the observed value at time t.

� θ1, θ2, ...θq are the coefficients (or ”weights”).

� wt−1, ..., wt−q are the previous values of the white noise series.

If the linear combination of values is then applied with the backshift operator given by;

Bkwt = wt−k, (2.17)

where

Bwt = wt−1, B
2wt = wt−2, B

3wt = wt−3, . . . , B
kwt = wt−k. (2.18)

The MA(q) model equation becomes:

Yt = (1 + θ1B + θ2B
2 + ...+ θqB

q)wt. (2.19)

If θ(B) is the moving average operator given by;

θ(B) = 1 + θ1B + θ2B
2 + ...+ θqB

q. (2.20)

Then the MA(q) model can be written in the equivalent form

Yt = θ(B)wt. (2.21)

Autoregressive AR(p) Models

The equation for the autoregressive model AR(p) of order p is similar to the MA(q) model

except that the dependent variable Yt depends on its own previous values rather than white
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noise series of residuals (Shumway and Stoffer, 2000). It takes the form presented in equation

2.22:

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + wt, (2.22)

where;

� wt is the value at time t of white noise.

� Yt is the observed value at time t.

� φ1, φ2, ...φp are the coefficients (or ”weights” ).

� Yt−1, ..., Yt−q are the previous values of the time series at time t.

Since the regression of the AR(p) model is of the same series, the model adopts the name

autoregression. The linear combinations can also be written using the backshift operator

such that;

Yt − φ1Yt−1 − φ2Yt−2 − ...− φpYt−p = wt, (2.23)

(1− φ1B − φ2B
2 − ...− φpBp)Yt = wt. (2.24)

If φ(B) the autoregressive operator is introduced and is given by;

φ(B) = 1− φ1B − φ2B
2 − ...− φpBp. (2.25)

The AR(p) model can be written in the equivalent form

φ(B)Yt = wt. (2.26)
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Autoregressive Moving Average ARMA (p, q) Models

The combination of an AR and an MA model is called ARMA, which stands for autoregressive

moving average model (Shumway and Stoffer, 2000). It can be represented as follows:

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q. (2.27)

The equation above defines a mixed autoregressive moving average model of order p, q;

and is written as ARMA (p, q). When differencing is used to make a time series stationary,

it is common to refer to the resulting model as an ARIMA (p, d, q) type model. The d inside

the parenthesis refers to the degree of difference. An ARIMA model is then categorically

referred to as an autoregressive integrated moving average model. The ARIMA (p, d, q)

model can be concisely represented by an equation given by;

φ(B)(1−B)dYt = θ(B)wt, (2.28)

or equivalently as equation 2.29.

φ(B)5d Yt = θ(B)wt. (2.29)

The higher-order differencing is represented by equation 2.30;

(1−B)dYt = 5dYt. (2.30)
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Multiplicative Seasonal Autoregressive Integrated Moving Average

(SARIMA) model

Components of time series data namely; seasonality, trend, cyclicity and irregularity, are key

to model development. Seasonality refers to a consistent shape in the series that recurs with

some periodic regularity. It can also be referred to as regular up and down fluctuation or

short-term variations due to seasonal factors. Monthly ambulance calls data is likely to have

a strong yearly component occurring at lags that are multiples of s = 12, because of strong

relations of activities to the calendar year. This might lead to the adoption of autoregressive

and moving average polynomials that identify with seasonal lags called multiplicative sea-

sonal autoregressive integrated moving average models (Shumway and Stoffer, 2000) given

by ARIMA (p, q, d) x (P, D, Q)s. The model can be written in the general form:

Φp(B
s)φ(B)∇D

s ∇dYt = ΘQ(Bs)θ(B)wt, (2.31)

where:

� wt is the value at time t of white noise.

� Yt is the observed value at time t.

� φ(B) = 1−φ1B−φ2B
2− ...−φpBp is the ordinary autoregressive component of order

p.

� θ(B) = 1 + θ1B+ θ2B
2 + ...+ θqB

q is the ordinary moving average component of order

q.

� ∇dYt = (1−B)dYt is the ordinary differenced component of order d.

� ∇D
s = (1−Bs)D is the seasonal difference of order D at lag s.
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� Φp(B
s) and ΘQ(Bs) are the seasonal autoregressive and moving average difference of

orders P and Q at lag s.

2.7.4 The Box-Jenkins Identification Process

The four basic steps of the Box-Jenkins identification process are outlined in Fig. 2.8. These

include: Identifying the tentative model, estimation of model parameters, diagnostic check

for the adequacy of the model and forecasting with the chosen model.

 

Figure 2.8: The Box-Jenkins Identification Process.

2.7.5 Identifying the Tentative Model

As a first step, the raw series is examined to identify which of the many available models can

be selected as the best representation of the series. The time series plot; the autocorrelation

and partial autocorrelation functions of the time series in question can be used to accomplish
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this. If the raw series is not stationary, it will be necessary to modify the original series by

transforming it. The main methods used to transform non-stationary time series data are

differencing and Box-Cox transformations.

Differencing

Differencing is a special type of filtering, which is particularly useful for removing a trend by

simply differencing a given series until it becomes stationary. This method is an integral part

of the procedures advocated by Box and Jenkins, (1970) as highlighted by Anderson (1977).

For non-seasonal data, first differencing is usually sufficient to attain apparent stationarity,

so that the new series does not have the linear trend. Depending on the nature of time-series

data, one can use second-order differencing in order to eliminate a quadratic trend so that a

single long cycle not eliminated by the de-trending procedure will be addressed.

Box-Cox Transformation

The algorithmic and square root transformation are special cases of the class of transforma-

tions called the Box-Cox transformation and are applied to make a time series stationary.

Given an observed time series xt and a transformation parameter λ, the transformed series

is given by equation 2.32;

g(x) =


xλ−1
λ
, λ 6= 0

log(x), λ = 0
..................................................................................(2.32)

This is effectively just a power transformation when λ 6= 0. If λ = 0, it becomes a

logarithmic transformation. A Box-Cox power transformation on the dependent variable

is a useful method to alleviate heteroscedasticity when the distribution of the dependent
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variable is not known. It is important to note that for the transformation to be applicable,

the series has to be strictly positive (Proietti and Lütkepohl, 2013).

2.7.6 Estimation of Model Parameters

The second step in the process after a tentative model has been identified is the estimation

of the parameters of the model. The general rules to be used in identifying a model if the

time series data is found to be stationary at this stage can be summarised as:

� If the autocorrelation function abruptly stops at some point, say after q spikes, then

the appropriate model is an MA (q) type.

� If the partial autocorrelation function abruptly stops at some point, say after p spikes,

then the appropriate model is an AR (p) type.

� If neither function falls off abruptly, but does decline toward zero in some fashion, the

appropriate model is an ARMA (p, q).

Autocorrelation Function (ACF)

A correlation of a variable with itself at different times is known as autocorrelation. Autocor-

relation measures the linear predictability of the series at time t, say xt using only the values

xs. It can be shown that −1 ≤ ρ(s, t) ≥ 1 using the Cauchy-Schwarz inequality (Shumway

and Stoffer, 2017). The ACF which is a measure of association has a characteristic equation

given by;

ρx(s, t) =
γx(s, t)√

γx(s, s)γx(t, t)
, (2.33)

where:

� ρx(s, t) is the autocorrelation function for a series x, at time s and t.
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� γx(s, t) is the autocovariance function for a series x, at time s and t.

� γx(s, s) is the variance for a series x, at time s.

� γx(t, t) is the variance for a series x, at time t.

The autocovariance function is defined by the second-moment product as:

γx(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)]∀s, t. (2.34)

The autocovariance of the time series at time s of the time series is given by:

γx(s, s) = cov(xs, xs) = E[(xs − µs)2] = σ2
x. (2.35)

If a time series model is second order stationary, (stationary in both mean and variance):

µt = µ and σ2
x = σ2 for all t, then an autocovariance function can be expressed as a function

only of the time lag k:

γk = E[(xt − µ)(xt+k − µ)]. (2.36)

The autocorrelation function ACF can now be defined as

ρk =
γk
σ2
, (2.37)

where σ2 = γ0.Thus, the autocorrelation is now only a function of lag k. In simple terms,

ACF tells you how correlated points are with each other, based on how many time steps

they are separated by.
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Partial Autocorrelation Function (PACF)

The Partial Autocorrelation Function is a second function that expresses information useful

in determining the order of an ARIMA model. This function is constructed by calculating

the partial correlation between Xt and Xt−4 after statistically removing the influence of Xt−1,

Xt−2, and Xt−3 from both Xt and Xt−4. The autoregressive order, p, is estimated as the lag

of the last large partial autocorrelation. The values of PACF range from −1 to 1.

The Goodness of Fit Test

Shumway and Stoffer (2017) proposed Akaike’s Information Criterion (AIC) as a good mea-

sure of goodness of fit. The general equation of the AIC is given by equation 2.38:

AIC = ln (σ̂2
k) +

2k

n
. (2.38)

The terms are defined as follows:

� k is the number of parameters in the model.

� σ2
k is the maximum likelihood estimator of variance.

� n is the sample size.

The idea behind the AIC is to minimise σ2
k together with a term proportional to the

number of parameters in the model. The model yielding the minimum AIC specifies the

best model. If two or more models are almost similar in their fit of the data; it is suggested

that the simpler of the similar models be chosen for actual forecasting.

2.7.7 Diagnostic Check of Selected Model

The third step is to diagnose if the correct model has been chosen. When a model has been

fitted to a time series, it is advisable to check that the model does provide an adequate
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description of the data. As with most statistical models, this is usually done by looking at

the residuals, which are defined as: residual = observation – fitted value. The residuals

should: be normally distributed, be independent of each other, and have a constant mean

and variance.

Test for the Normality of Residuals

Test for normality can be achieved in two ways, by plotting a histogram or a dot plot of the

residuals and construction of a normal probability curve. The plot of the histogram should

resemble a sample from a normal distribution centred at zero. A normal probability plot

will resemble a straight line otherwise the normality assumption is violated. In visualising

the straight line, more emphasise should be on the central values of the plot than on the

extremes (Montgomery and Runger, 2014).

Test of Independence of Residuals

Two methods for testing for the independence of residuals are to be implemented. The first

method involves the plotting of residuals against the fitted values. Authors have argued that

if the model is correct, the plot should be structure less (Mapuwei et al., 2016). Another

important tool is to plot the ACF of the residuals and this should not show any significant

terms even though we expect approximately 1
20

to be above ± 2√
n
.

Test of Constant Mean and Variance on the Residuals

Plotting the time series of the residuals of the chosen model is sufficient to test for the

homogeneity of the mean and variance of the residuals. This is expected to show any changes

in the mean and variance with time.
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The Ljung-Box Pierce Statistic

The Ljung-Box Pierce statistic tests whether the residual autocorrelations as a set are signif-

icantly different from zero (test of independence) and that any random shocks are probably

uncorrelated. If the residuals are significantly different from zero, the model should be

reformulated (Shumway and Stoffer, 2000). A hypothesis can be developed as follows:

H0 : Q = 0 (the residuals are not correlated).

H1 : Q 6= 0 (the residuals are correlated).

The Chi-square statistic is calculated as:

Q = n(n+ 2)
H∑
h=1

ρ̂2
e(h)

n− h
, (2.39)

with H − p− q degrees of freedom, where:

� Q is the Ljung-Box-Pierce test statistic (or Q statistic).

� n is the length of the time series.

� h is the first k correlations being checked.

� p is the number of AR terms.

� q is the number of MA terms.

� ρ̂e is the sample correlation value at lag h.

Under the null hypothesis at of model adequacy, asymptotically (n→∞), Q ∼ χ2
H−p−q.

Thus we reject the null hypothesis at α if the value of Q exceeds the (1− α) quantile of the

χ2
H−p−q distribution (Shumway and Stoffer, 2000).
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2.7.8 Cross-Validation of Forecasting Models

After the diagnostic testing and the actual forecasting are done, it is always imperative to

validate the chosen model. Validation of the selected model in any model building process

is the final step. Model validation involves the checking of the model against independent

data. They are three basic methods of validating a forecasting model namely: use of holdout

sample to check the model and its predictive ability, also known as data splitting, collection

of new data to check the model and its forecasting ability and comparison of results with

theoretical expectations earlier results.

Data Splitting Process

Data splitting is reasonably effective when the data set is large enough to split the data into

two sets. The first set, called the ‘model-building’ set, is used to develop the model. The

second data set, called the validation or prediction set is used to evaluate the forecasting

ability of the selected model. If the quality of the forecast is not acceptable, another fore-

casting model is selected. The problem with this technique is that we are not using all the

information available to us to fit the model

Collection of New Data

Neter et al. (1989) proposed that the best means of model validation is through the collection

of new data and examining whether the model developed from earlier data is still applicable

to the new data. If it is justifiable then one has the assurance about the applicability of

the model to data beyond those on which it is based and or to forecast future data with a

minimum of errors. Collection of new data sometimes is neither practical nor feasible due

to constraints such as data availability and costs.
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Use of Theoretical Expectations

This is also another alternative though it heavily relies on other studies done previously.

Sometimes it can be handy especially when there is a time constraint depending on the

nature of the research.

2.8 Simulation Modelling

Introduction

There has been a vast amount of academic literature developed with regard to emergency

service stations (ESS). The locations of ESS includes components such as fire brigades,

emergency service stations, hospitals, police and ambulances which are key components in

addressing issues of delivering quality health care and a reliable response system. Strategic

planning and location of these ESS is anticipated to reduce the fatalities and disabilities

caused by events that require emergency services. Such events include accidents, pandemic

diseases such as cholera and malaria, natural disasters, illness, and fires among many others.

El Sayed (2012), in a review paper highlighted that there is a growing need across the

world for emergency medical services (EMS) to increase coordination in patient care and

quality care at lower costs by continuously monitoring the system’s overall performance

and effectiveness of the different pre-hospital interventions. Here, an emergency medical

service (EMS) can be generalised as a system that provides pre-hospital care to a specified

population or citizens in need for emergency medical service. The Institute of Medicine

(IOM) report of 2006, defined quality as the degree to which health services for individuals

and populations increase the likelihood of desired health outcomes and are consistent with

current knowledge. The report further highlighted that the six dimensions of quality care

are: care that is safe, effective, patient-centered, timely, efficient and equitable.
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Equality

According to Aringhieri et al. (2017), equity is one of the most challenging concerns in the

healthcare sector, especially in EMS systems as it evaluates the fairness of how resources

specifically EMS vehicles are allocated to service the demand in different geographical areas

or population groups. Equity is usually bench marked on the distance or response time

travelled by EMS vehicles. However, equity is an aspect that can be embedded in other

factors of EMS such as the workloads of the EMS vehicles and medical staff.

Inequalities that may exist in the ambulance services may be associated with: differences

between economically poor and rich communities, differences in people who may not use

ambulance services to the same extent as people from other geographical areas or population

groups with similar health needs and by levels of difficulty in accessing services by people

living in different geographical areas. Demand zones located in the same city or urban

zone can be different from each other in some characteristics, which calls for differential

treatment of these demand zones. Bélanger et al. (2019) argue that equity is sometimes

more of a perception than a measure as in some cases a customer might feel dissatisfied

even though receiving service of a high standard, and might feel accessing worse service than

what other customers are receiving. Despite such challenges, the issue of equality must be

addressed in a more strategic, scientific and holistic manner.

Efficiency

The Scottish Ambulance Service Board Report of the priority-based Dispatch Project (2002)

defined efficiency as a means of generating more or better output (volume or quality of

service) from the available resources or achieving the same volume or quality of output with

fewer resources. One can therefore generalise efficiency as delivering an intended output for

fewer resources. Efficiency in this research is focusing on matching the resource deployment
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to the needs of a geographical area.

Effectiveness

Effectiveness implies doing what is expected and it implies being adequate to complete a set

purpose. In emergency ambulance logistics, effectiveness would imply that the ambulances

are meeting the expected transportation of the medical equipment, staff and patients from

one point to another in the logistic chain without causing any unnecessary delays. In essence

it encompasses issues around capacity utilisation levels. In simple terms ambulances must

be fully utilised and idleness is not the desired outcome, whilst overuse is also undesirable.

Therefore, there is a need to strike a balance to ensure the smooth provision of emergency

ambulance services. In cases where there is overuse of ambulances, there is increased tear

and wear leading to unnecessary breakdowns. Idleness would imply that some areas where

the ambulance is needed are actually being deprived.

2.8.1 The Focus of Simulation Modelling

It is against this background that the overall aim of this research is also to ensure equality,

efficiency and effectiveness in the mobilisation and allocation of resources considering pos-

sible variations in demand across the city of Bulawayo through the use of robust modelling

techniques to help achieve high levels of preparedness.

Several models have been proposed in the literature, with different objective functions,

constraints and methods of solutions in trying to address issues of quality in EMS. Pinto

et al. (2015) highlighted that even though these models share common design elements,

often the emergency delivery systems are specifically designed to meet the needs of a certain

context. Aringhieri et al. (2017) emphasized that in order to manage a comprehensive

and reliable EMS system, relevant data should be forecasted, complex systems should be
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modelled, efficient solutions and accurate dispatching policies should be designed. It is this

level of expected rigour that is going to be adopted by this research while maintaining a

reasonable balance among the interacting components in addressing these challenges.

The focus of the research is on the deployment of ambulances to service stations. The

ultimate goal of any emergency medical system is to respond in an organized and quick way

using minimum resources as possible, to all requests requiring emergency prehospital care.

According to Zhen et al. (2014) the rising costs of medical equipment, increasing call volumes,

worsening traffic conditions in urban areas make emergency medical service control centers

face increasing pressure to meet performance targets. Such endeavors have been hampered by

the uneven distribution of the population in the city, distribution of health centers, medical

response vehicles, technical staff and the ambulance service stations resulting in failing to

meet the performance measures such as the response time. The ambulance control centers

have the responsibility to allocate the optimal number of ambulances in service stations so

that medical service is provided to patients in an efficient manner. However, challenges

continue to be faced in deploying the ambulances to waiting bases due to the uncertainty of

the demand calls, travel time and service time which are often random in nature.

2.8.2 The General EMS Vehicle Dispatch and Service Process

Bélanger et al. (2019) classified EMS into two main groups: Anglo-American and Franco-

German. In the Anglo-American group which the Zimbabwean government has adopted,

the EMS is separated from the medical system and instead offer sorely paramedic care.

The main objective in this scenario is to allow the EMS team to respond to calls as soon

as possible whilst ensuring a fast and safe transportation of the patient to the appropriate

medical center. The Franco-German system is designed to provide mobile and on-site medical

care. It is considered in this scenario that the speed in the transportation of the patient
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is less important as compared to the former. The later system is yet to be adopted by the

government of Zimbabwe.

The Anglo-American approach consists of a systematic process that adheres to the follow-

ing steps when responding to emergency medical calls: the arrival of an emergency call, call

screening, vehicle dispatching, vehicle travelling from its current location to the emergency

scene, on scene treatment and finally patient transportation to a health facility. Figure 2.9 is

a resemblance of the generic ambulance emergency system applicable to two main dispatch

approaches that are widely considered in literature namely; the static dispatch approach and

the multi-location dispatch approach.

In a static dispatch model, ambulances are strictly dispatched from their fixed bases

whilst in the case of the multi-location model, ambulances are dispatched wherever they

are. The dynamic dispatch approach which is not represented in Fig.3.1 is applicable where

ambulances can be dispatched and rerouted at any time in order to serve a high priority

call. According to Pinto et al. (2015), the dynamic dispatch approach always requires the

system to be capable of identifying the position of the ambulance and this requires the use

of a specialized software called the geographical information system (GIS).

2.9 Location, Relocation and Dispatching Trends in

EMS Research

There has been recent development of optimization models aimed at addressing the dynamic

contexts of EMS in assisting decision-makers in improving pre-hospital care service delivery.

Başar et al. (2012) in an attempt to design a reusable model in different contexts, developed a

systematic classification that goes a long way in locating the direction of this research which

mainly focuses on the sizing and siting of emergency medical ambulances. Leknes et al. (2017)
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Figure 2.9: EMS Vehicle Dispatch and Service Process (R. McCormack and G. Coates, 2015).

highlighted that the sizing of the fleet of ambulances and the allocation of ambulances to the

ambulance stations are part of the tactical problems that any EMS provider has to address

as part of strategic planning. Başar et al. (2012) categorized the optimization models into

three main components namely: problem type, modeling and solution which culminated to

a taxonomy of ESS (Table 2.1).
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Table 2.1: Literature on the Taxonomy of the ESS Location Problem.

Section A Section B

1. Problem type 2.2.5 Types of servers

1.1 Type of Emergency 2.2.5.1 Single

1.1.1 Fire 2.2.5.2 Multiple

1.1.2 Large scale emergency or disaster 2.2.6 Costs

1.1.3 Ambulance 2.2.7 Number of servers required

1.1.4 Hospital 2.2.8 Busy function

1.1.5 Police 2.2.8.1 System wide

1.1.6 General or not specified 2.2.8.2 Individual

1.2 Model Structure 2.2.9 Reliability

1.2.1 Deterministic 2.2.10 Queue size limit

1.2.2 Stochastic 2.3 Decision variables

1.2.2.1 Objective function 2.3.1 Coverage variables

1.2.2.2 Constraints 2.3.1.1 Single

1.3 Variation in Time 2.3.1.2 Multiple

1.3.1 Static 2.3.2 Server assignment variables

1.3.2 Dynamic 2.3.2.1 Continuous

1.3.2.1 Short-term (redeployment) 2.3.2.2 Binary/integer

1.3.2.2 Long term (strategic) 2.4 Constraints

1.4 Number of objectives 2.4.1 Coverage constraints

1.4.1 Single 2.4.1.1 At least once

1.4.2 Multiple 2.4.1.2 At least multiple

2. Modeling 2.4.1.3 Proportional

2.1 Objective Function 2.4.1.4 Mixed
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Section A Section B

2.1.1 Min. total no. of facilities 2.4.2 Server capacity constraints

2.1.2 Minimize the total distance or

time to serve all calls 2.4.3 Priority of servers

2.1.3 Minimize the sum of costs 2.4.4 Max. no. of servers

at each location

2.1.4 Minimize the maximum travel time

or distance to any single call 2.4.5 Maximum distance constraints

2.1.5 Max. the covered area or demand once 2.4.6 Upper bound on no. of servers

2.1.6 Maximize the covered area or

demand multiple times 2.5 Type of model

2.1.7 Maximize the total area or

demand covered with a given probability 2.5.1 Integer programming

2.1.8 Maximize the expected area

or demand covered 2.5.2 Dynamic programming

2.1.9 Max. the probability of service being

available within a specified distance 2.5.3 Goal programming

2.2 Parameters 2.5.4 Fuzzy programming

2.2.1 Demand 2.5.5 Non-linear

2.2.1.1 Real demand 2.5.6 Simulation

2.2.1.2 Synthetic demand 3. Solution

2.2.2 Response data 3.1 Optimal

2.2.2.1 Travel time 3.2 Heuristic

2.2.2.2 Distance 3.3 Metaheuristic

2.2.3 Server capacity 3.3.1 Tabu search
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Section A Section B

2.2.3.1 Capacitated server 3.3.2 Ant colony

2.2.3.2 Uncapacitated server 3.3.3 Genetic algorithm

2.2.4 Server location 3.3.4 Simulated annealing

2.2.4.1 Discrete 3.3.5 Others

2.2.4.2 Continuous space 3.4 Simulation

Note. Table 2.1 adopted from Başar et al. (2012).

Aringhieri et al. (2017) in a review paper, classified the existing literature based on two

key concepts: equity and uncertainty. However, the researcher observed that despite the

difference in approach, there is convergence of ideas in the discussions by different authors

with regards to the study of EMS systems. In a review paper by Bélanger et al. (2019), they

proposed that in as much as a lot of research has been done on decision aspects of EMS,

the decision levels can be broadly classified under strategic, tactical and operational levels

as represented in Table 2.2.

The strategic decision level focuses on decisions that are static in nature such as the

location of the ambulance stations, fleet dimensioning and staff hiring. The tactical level

addresses decisions such as the location of standby sites, crew pairing and scheduling, and

fleet management strategies. However, research efforts in the recent years have attempted

to address the issue of uncertainty and dynamics involved in EMS and hence the emergence

of models that focus more on the operational decisions. The main thrust at the operational

level is to address short-term issues such as relocation and vehicle dispatching strategies as

summarized in Table 2.2.

The complexity of contexts in which EMS manifest has led to the development of different

models depending on the interaction between location, relocation and dispatch decisions over
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Table 2.2: Classification of Decision Problems in EMS Management and Proposed Strategies
and Models.

Decision Level Decisions Strategies Models
Ambulance station location

Strategic Fleet dimensioning
Staff hiring
Standby sites allocation

Tactical Crew pairing and scheduling

Operational

Fleet management strategies

Ambulance location

Static location

Single coverage
Multiple coverage
Prob. and stochastic
Stochastic and robust
location-allocation
Maximal survival
Equity

Relocation

Multi-period
Real-time or online
Compliance table
or offline
ADP-based

Ambulance dispatching
Nearest vehicle
Other rules

Note. Table 2.2 adopted from Bélanger et al. (2019).

the years. Early studies that created the foundations of EMS research were based on the

static ambulance location assumption. The static ambulance location problem assumes that

after completing a mission, each ambulance will return to its designed standby site defined

according to the predetermined location plan.

Bélanger et al. (2019) classified these early models into three main categories in their

chronological order of evolution: single coverage deterministic models, multiple coverage

deterministic models and probabilistic and stochastic models. Despite their classical as-

sumption, static ambulance location models evolved over time by integrating more realistic
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features of the problem such as demand uncertainty, availability of vehicles, dispatch delays,

distances travelled, traffic congestion and different types of response vehicles in the waiting

bases.

2.9.1 Single Coverage Models

Early research on the formulation of static ambulance location problem was based on the

idea of coverage. Toregas et al. (1971) proposed the location set covering problem (LSCP)

based on the idea of coverage. The objective of the model was to minimize the number of

vehicles ensuring that all zones are adequately covered. This class of optimization problems

were classified as deterministic single coverage models. It assumed that a vehicle was always

available upon arrival of a demand call.

However, the model had its own limitations related to the assumptions adopted for deter-

ministic single coverage models. Firstly, the number of ambulances required to accomplish

a complete coverage might be very high and unrealistic considering that the human and

material resources are always scarce and costly. Secondly, decision makers are not merely

concerned about coverage, instead they also consider seriously the best levels of utilisation

of the allocated ambulance vehicles. The models also assumed that a vehicle is always avail-

able upon arrival of an emergency call which is always not the case in practice. A practical

example arises when two consecutive emergency demand calls are received from the same

zone covered by the same vehicle and there is little time between servicing the first call and

the second call. A delay however has to occur in such instances.

2.9.2 Multiple Coverage Models

Church and ReVelle (1974) upon realizing these limitations, formulated the maximal cover-

ing location problem (MCLP) which sought to maximize the demand covered by a specific
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vehicle fleet size. Other researchers made follow ups to these early problems in carrying out

empirical researches that would try to address different aspects of the problem by looking at

scenarios where two different types of ambulances are applied Schilling et al. (1979). Despite

their simplicity in formulation and limitations in application to real world EMS, determin-

istic single coverage models then opened up research space for other variants such as the

deterministic multiple coverage models and probabilistic and stochastic models.

The deterministic multiple coverage models unlike the deterministic single coverage mod-

els improved in the aspect being more applicable to real-life situations. Researchers were

focused on issues around the stochastic or randomness nature of the calls for emergency ve-

hicles and their availability. They mainly focused on increasing the chances or likelihood of

having a demand zone covered by one vehicle by increasing the number of vehicles available

to cover the demand zone.

This led to the development of the hierarchical objective set covering model (HOSC)

proposed by Daskin and Stern (1981) to cover the aspect of multiple coverage. The HOSC

minimized the number of vehicles needed to ensure a complete coverage and maximize the

number of vehicles that can cover a zone. The HOSC had its own limitations as the additional

vehicle would directly increase the number of vehicles required to ensure complete zone

coverage, The allocation of two vehicles to a demand zone might not necessarily ensure full

vehicle utilization as there is high likelihood that the vehicles will not be busy simultaneously

at the same time. Moreover, it is argued that since it does not consider the specific demand

of a zone, there is likelihood that HOSC will group vehicles to zones that can be easily

covered leaving harder to reach zones only to be covered once.

Several variants to already discussed optimization problems were developed by researchers

such as Eaton et al. (1986), Gendreau et al. (2001), Doerner et al. (2005), Beaudry et al.

(2010) and more recently Su et al. (2015). Each of the research conducted aimed at improving

the limitations of one model or addressing other important aspects of the EMS problem.
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Important aspects of the EMS that were addressed by such models included: putting limits to

the response time, maximizing the demand covered twice given a specific number of vehicles

to locate, minimizing both costs of delayed services and the operating costs, imposing limits

to ambulance workloads and dispatching multiple types of vehicles under various priority

levels.

A more significant contribution for static ambulance location models was the maximal-

multiple location covering problem (MMLCP). Storbeck (1982) proposed a goal programming

formulation named the maximal-multiple location covering problem (MMLCP). The aim of

the MMLCP was to locate a fixed fleet of vehicles in order to simultaneously minimize

the uncovered demand and maximize the number of demand zones covered by more than

one vehicle. It is important to highlight that the later research was inclined at collecting

empirical data that would then be transformed to solve realistic EMS situations.

2.9.3 Probabilistic and Stochastic Models

The study of EMS has a significant number of variables that are often characterized by

uncertainty in their occurrence. This led to the development of probabilistic and stochastic

models that rely on the calculation of expected values and are often referred to expected

covering location models. These models generally seek to determine a set of vehicle locations

that maximizes the expected coverage.

Daskin (1983) developed a maximum expected covering location problem (MEXCLP)

whose objective was to locate a given number of ambulance vehicles in order to maximize

the expected coverage. The expected coverage depended on what was referred to as the

busy fraction. Bélanger et al. (2019) defined the busy fraction as the probability that a

vehicle is unavailable to respond to an emergency call. In developing the MEXCLP it was

assumed that the busy fraction is known and the same for all vehicles, the busy fraction
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is independent of the vehicle location and each vehicle operates independently. Despite

the significant contribution of the MEXCLP in improving service delivery, it had its own

limitations.

Several variants of probabilistic and stochastic models were developed to address differ-

ent aspects of the EMS. These included the adjusted maximum expected covering location

problem (AMEXCLP) which allowed the relaxation of the vehicle independence assumption

by integrating a corrective factor in the objective function using the queuing theory. Of sig-

nificance was the proposal by Batta et al. (1989) to use the hypercube model to estimate the

expected coverage given a set location plan. However, the limitations of these models was

that they assumed deterministic travel times which in practice varies between two locations

due to factors such as roads, weather and traffic congestion.

Research by Ingolfsson et al. (2008), proposed a model in which the call delay time (chute

time) and the dispatching priorities for ambulance vehicles are considered in the model.

Restrepo et al. (2009) propounded a model that locate ambulances over a set of waiting bases

in order to minimize calls that are expected to find no ambulance available in their waiting

bases. The concept of queuing theory made a mark in the development of EMS optimization

models. Galvão et al. (2005) proposed a model inspired by the maximum availability model

(MALP) that uses queuing theory to represent a more realistic life situation of the EMS

problem. The model incorporated a corrective factor in the probabilistic constraints that

consider vehicle-specific busy fractions rather than zone-specific ones and the cooperation of

vehicles in responding to emergency calls. The model embedded the the hypercube model

in the local search methods.
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2.9.4 Stochastic and Robust Location-allocation Models

The stochastic and robust location-allocation models endeavored to account for the random-

ness of the call arrivals. According to Bélanger et al. (2019), unlike the other discussed

demand coverage maximization models, location-allocation inspired models aim to minimize

costs under demand satisfaction constraints. Zhang and Li (2015) formulated an ambulance

location-allocation model that they applied to a case of a city in China with a range of

twenty to seventy stations. The model simultaneously minimized the ambulance operating

and transportation costs and the demands not served on time. They incorporated chance-

constraints to deal with demand uncertainty and these constraints ensured with a given

probability that the number of vehicles located in a demand zone can satisfy the number of

concurrent demands emanating in the area assigned to it.

Boujemaa et al. (2018) formulated a two-stage stochastic location-allocation model to

design an EMS in Tunisia. The model was designed to simultaneously determine the location

of ambulance stations, the number and type of ambulances to be deployed and the demand

zones to be covered by each station. Despite the high level of formulation of stochastic

and robust location-allocation models, they require vast computational turn around time in

solving them and this has reduced their attractiveness for adoption.

2.9.5 Fuzzy Models

Aringhieri et al. (2017) indicated that this paradigm of fuzzy models is mostly applicable

to deal with the uncertainty in the number of emergency calls. The fuzzy paradigm allows

the use of qualitative data as well as expert-based knowledge by characterising them as

linguistic terms. In essence, the fuzzy models are applied when the stochastic framework or

the probabilistic paradigm cannot be used.
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2.9.6 Human Outcome-based Models

Early research by Daskin and Stern (1981) and Daskin (1983), focused on performance-based

indicators such as coverage and the proportion of emergency calls responded within a fixed

time frame . Over the years, there has been growing need to satisfy the patient’s outcomes

such as safety and satisfaction whilst optimizing the use of scarce resources. This has seen

the emergence of the maximal survival and equity models that are inclined to integrating

patient outcomes into the decision-making process by EMS organizations.

Survival Models

Erkut et al. (2008) proposed the maximal survival location problem (MSLP) considering pa-

tient outcomes. The model considers the probability of survival of a patient by including it

in the objective function that attempts to maximize the expected number of lives. When the

model was applied to a case of Edmonton in Canada, the results indicated a significant in-

crease in the number of survivors. Bélanger et al. (2019) argues that despite benefits through

the consideration of patient survivability in location models, response time thresholds and

coverage are still the important metrics in evaluating EMS performance.

Equity Models

Aringhieri et al. (2017) indicated that equity is one of the most challenges in the healthcare

sector and specifically EMS as it evaluates the fairness of how resources are distributed to

patients in heterogenous societies. Such disparities exist between urban and rural areas

or between high density suburbs and low-density suburbs. If issues around equity are not

addressed in such scenarios, it would imply that lives are valued differently in different areas.

This has led to the development of two schools of thought namely: horizontal equity and

vertical equity. In addressing horizontal equity, it is considered that all demand nodes are
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treated in an equal manner whilst in vertical equity demand nodes are treated differently. In

general practice, EMS providers are deemed to be providing equitable services if they favor

disadvantaged groups.

Bélanger et al. (2019) argues that equity is a complex phenomenon in the study of EMS

and can be more meaningful when it considers the standing perspective of the key stake-

holder(s). They considered the patient’s perspective and the service provider’s perspective as

key stakeholders in EMS system. The patient is mainly concerned about fairness in the con-

text of patient’s outcomes and patient’s waiting time. The stakeholder perspective mainly

focuses on the issues around fairness in the distribution of workload as an example. This

aspect of EMS affects directly the retention of skilled personnel and the level of attracting

new employees to the organization.

2.10 Why Simulation Modelling?

Simulation modelling is the process of designing a model of a real system and conducting

experiments with this model for the purposes of understanding the behavior of the system

and or evaluating various strategies for the operation of the system.

Henderson and Mason (2005) asserted that even though the hypercube model remains

a powerful modelling approach, it requires several assumptions with regards to the way

ambulances are dispatched whilst posing a great threat in convincing decision makers to

adopt its predictions due to model complexities. This is a common feature for most models

that have been discussed so far in literature.

Zhen et al. (2014) highlighted that even though minimal covering models, maximum

covering models and double standard models have been developed based on either integer

programming or dynamic programming formulation methodologies, finding their solutions

is time consuming as they need to solve an optimisation sub-model every time a decision
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has to be made. It is from this stand point that the research team adopted a simulation

optimisation method that enabled them to evaluate operational performance of deployment

plans through a detailed simulation model.

Pinto et al. (2015) argues that ambulance services have been examined in a variety of ways

including queueing theory and hypercube models, mixed integer programming, stochastic

optimization and dynamic programming. However, they purported that despite simulation

modelling being seemingly costly in implementing, it allows a more detailed description of

the system and allows the analysis of dynamic effects. Such uniqueness makes the simulation

approach to system analysis a cut above the rest especially in the aspect of decision making.

Pinto et al. (2015) argued further and stated that the high number of variables and the

random nature of demand makes the analysis for decision-making a combinational problem

with a higher number of alternatives and renders deterministic methods unattractive.

According to Eldabi and Young (2007), the pressure for better services, low availability of

resources and need to assess the impact of changes before actual implementation has created

huge opportunities of increasing modelling and simulation in healthcare. Thus, simulation

modelling is an attractive alternative as it allows an analysis of different scenarios before

the actual implementation. Pinto et al. (2015) acknowledged that there could be many

dimensions of uncertainty in modelling an ambulance service, however, these dimensions

can be portioned with relative ease and changed when moving from one ambulance service

provider to another.

Simulation modelling techniques allows one to gain information and insight into the

operation of the system without disturbing the system. Simulation also allows one to develop

resource and operation policies to improve the system performance by observing different

system scenarios through visualization and animation. In other cases, simulation modeling

is used to test and validate new systems before their implementation. It has been however

observed in literature that every other analytical method used in the discipline of operations
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research such as: linear programming, network analysis, meta heuristics, queuing theory,

game theory and simulation has got its on merits and demerits when applying them to solve

real life problems. Below are a summary of the advantages and disadvantages of using the

simulation analytical method or technique.

2.10.1 Advantages of Simulation

Some of the advantages of using the simulation modelling technique are summarised as

follows:

� The technique requires fewer assumptions in application and captures more of the

actual or true characteristics of a system under study.

� The concept of simulation is much easier to comprehend, thus making it easier to have

a buy-in or to justify to key stakeholders involved in the study.

� The technique allows one to gain information and insight on how the system under

study works, its behaviour over time and not just the end result.

� The communication tools embedded in the technique such as visualisation and anima-

tion stimulates discussion about all aspects of the system under study.

� The technique allows one to use non-standard distributions, hence it provides the

flexibility to describe events and timings as they occur.

� The technique allows for the assessment of different system scenarios using different

performance measures without disturbing the actual system in operation.



2.10. WHY SIMULATION MODELLING? 69

2.10.2 Disadvantages of Simulation

Some of the disadvantages of using the simulation modelling technique are summarised as

follows:

� The utility of the simulation study results depends on the skills of the modeller and the

quality of the model which makes it subjective in terms of its application and adoption.

� The collection of reliable secondary and primary data for the development of a simu-

lation model can be time consuming and this translates to be expensive.

� Simulation models do not produce an optimal solution, however they serve as a tool for

analysis of the behaviour of a system under the stipulated conditions by the researcher.

Aringhieri et al. (2017) argued that a combination of appropriate approaches could help

EMS managers to come up with more realistic models which could fully capture the com-

plexity of the system and provide a better overview of the whole system.

2.10.3 Empirical Evidence of Simulation Modelling in EMS

There has been a wide range of research on emergency medical services using simulation

modelling as a solution method of preference. In other cases, there has been a deliberate

attempt to integrate different operations research techniques in order to improve the robust-

ness of the results and analysis of the developed models. Silva and Pinto (2010) integrated

simulation and optimisation techniques to analyse and evaluate the emergency medical sys-

tem of the city of Belo Horizonte in Brazil. In their research, they focused on two critical

aspects of service: how the system responded to an increased demand and the re-sizing of

the ambulance fleet in order to significantly reduce the response time. Simulation in this case

allowed different scenarios to be assessed without interfering with the actual EMS system.
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Whereas the use of optimisation for simulation improved the search for optimal settings of

the system. More recently, Pinto et al. (2015) designed a generic method to develop simula-

tion models for ambulance systems which integrated simulation and optimisation techniques.

The model was validated using a case study of Belo Hoizonte in Brazil and the UK system.

Aboueljinane et al. (2014) carried out a simulation study to improve the performance

of the emergency medical service of the French Val-de-Marne department. They focused

on five strategies namely: varying the number and workload of resources, improving the

EMS team deployment, regionalising the response, multi-period redeployment and process

improvement. In all these strategies, they employed the discrete event simulation (DES)

model in assessing different scenarios whilst using coverage and the utilisation rate as the

performance measurements. In the application of the multi-period redeployment strategy,

where the assignment of EMS teams were adjusted to adequately cover changing demand

patterns, Aboueljinane et al. (2014) managed to demonstrate on how the simulation optimi-

sation can be incorporated in the DES model in order to handle the large number of possible

redeployment plans. Results of this strategy indicated that the multi-period redeployment

solution provided improved coverage and utilisation rates. Coverage here is considered as

the percentage of calls for which the response time does not exceed a specific target time.

An example could be 80% of calls less or equal to 20 minutes of response time. The human

resources utilisation rate was defined as the total workload divided by the total operating

time.

Zhen et al. (2014) developed a simulation optimisation framework for ambulance de-

ployment and relocation and applied it to the metropolitan city of Shanghai in China. In

this framework, they applied a simulation optimisation method to evaluate the operational

performance of deployment plans through a detailed simulation model. Key considerations

were made on the stochastic and dynamic nature of emergency call arrivals, complex traf-

fic conditions and emergency fulfillment processes such as ambulance traveling and serving
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processes were made. Their research findings indicated that simulation optimisation is more

appropriate for making deployment decisions when there are limited number of ambulances

(scarce resources) in order to optimise the deployment instead of just allocating them in a

balanced manner. Another important result from this research was that establishing more

ambulance bases or involving more hospitals into the system does not guarantee the de-

ployment of ambulances in a balanced way. The main reason proposed to influence this

phenomenon was that the uneven ambulance deployment decision is directly influenced by

the uneven distributions of population and uneven traffic densities and congestion among

different areas.

2.11 A Framework for Developing Simulation Models

Simulation models for EMS are generally developed specific for each case. However, there are

three core areas of any EMS namely: call generation, dispatch of ambulances and ambulance

journey. In the system, ambulances are permanent entities and calls are temporary entities.

Attributes have to be generated for both the ambulances and the calls at the beginning of

a simulation run. The ambulance tasks include: travel, service at the scene, delivery at the

hospital and restocking. However, all or a few of these ambulance tasks maybe performed

due to the nature of the call. It is therefore imperative to discuss some of the salient features

of the EMS in order to help in the formulation of the input parameters of the simulation

model, the assumptions to be made, performance measures and the selection criteria for the

optimum model.

2.11.1 Call Features

The main characteristic feature of calls is its level of uncertainty which manifest in the form

of seasonal patterns and the associated randomness in their occurrence. Such trends are
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highly depended on the geographical distribution of the population, call arrival rate, type of

emergency incident and the level of risk of the patient demanding for service. The calls have

to be directed to the respective substations or waiting bases. These calls also need to be

categorized depending on the severity of the case based on the judgement of the dispatchers

at the call center.

Arrival Rates

The demand for emergency medical services is uncertain and random in nature. According

to Matteson et al. (2011), variations can be observed with seasonal trends over a year, days

of the month, week of the year and hours of the day. There is need to strike a balance

to avoid either underestimating or overestimating the call arrival rates. Underestimating

the call arrivals has implications such as under-staffing and excessively high response times.

Over-estimating the call arrivals would imply over-staffing and high operational inefficiencies.

Pinto et al. (2015) acknowledged that resources are always scarce and there is always need to

operate a system within some cost constraints and this implies that there is need to maximize

the utilization of resources.

Several methods in literature have been proposed in order to model the call arrival rates.

Setzler et al. (2009) in a comparative study on emergency call demand used artificial neural

networks and their approach offered a significant improvement at the hourly level. Channouf

et al. (2007) made an attempt to model the daily call arrival rate as a Gaussian with fixed

day-of-week, month-of-year, special day effects and fixed day month interactions. Despite

the advent of several methods attempting to model call arrival rates, Matteson et al. (2011)

emphasized that the standard and universal practice is that hourly call-arrival volume is a

Poisson distribution.
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Geographical Distribution of Calls

There is general consensus in literature that different zones generate different demand pat-

terns resulting in non-uniform call distributions. The call-arrival also varies from time to

time even within a time frame of a day. In a case study in Turkey by Swalehe and Aktas

(2016), they recommended that more ambulances should be deployed near residential areas

at night than workplaces and more should be deployed near workplaces during day times

than at night to ensure that ambulances are closer to where they might be needed most.

This is a clear indication that geographical distribution of calls plays a vital role in designing

simulation models.

2.11.2 Types of Emergency and Ambulance Requirements

When calls are received by an operator at a centralized call center, the call operator deter-

mines the level of the emergency into three categories. Category 1 is classified as urgent and

life threatening cases which include among them road traffic accidents, general accidents or

emergencies such as cardiac arrests. Category 2 is classified as urgent but not life threaten-

ing cases. It comprises of maternity emergencies that would have been verified from clinics

and are for referral transfers (maternity clinics). Category 2 also includes maternity cases

from home and these are emergency calls related to maternity issues from homes that have

not been verified by medical doctors (clinics from home). Lastly, Category 3 is classified as

non-urgent calls which comprises of removals or transfers from one institution to another

and might also include chronic cases, psychiatric patient transfers and blood transfers.

Ambulance Features

Different scenarios exist in literature as propounded by Aboueljinane et al. (2014) and Pinto

et al. (2015), where different kinds of ambulances are available to respond to different kinds
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of emergency incidences. In other setups there is only one type of ambulance or with the

same fitted features to respond to emergency calls. In other scenarios, two or more dif-

ferent types of vehicles are available for dispatch. In recent years there has been the use

of helicopters for emergency rescue missions and the Scottish Ambulance Service is a good

example. When designing analytical and simulation models, such variations if considered

ensures the robustness of the model.

Ambulance Dispatch

Three main dispatch models that exist in literature are the static, multi-location and the

dynamic dispatch models. In a static dispatch model, ambulances are strictly dispatched

from their fixed bases. After rendering service at the scene, the ambulance either transfers the

patient to the medical center or returns back to the base and stay there waiting for the next

dispatch. In the case of the multi-location model, ambulances are dispatched wherever they

are. The allocation to a new case can occur from the moment the ambulance delivers a patient

at the hospital or soon after completing service at the scene of an incident. In the multi-

location model, the ambulances do not necessarily have to return to their waiting stations

before the next dispatch. The dynamic dispatch approach is applicable where ambulances

can be dispatched and rerouted at any time in order to serve a high priority call. It implies

that the ambulance remains available even after it has been dispatched.

Calls requiring emergency medical services arrive by phone and is attended to by a

dispatcher. The dispatcher upon interrogating the caller for emergency services makes a

decision by asking some predefined questions and determines the priority of the call (Zhen

et al., 2014). Aringhieri et al. (2017) defines dispatching in the context of EMS as the act of

choosing appropriate EMS vehicles to respond to emergency calls based on the nature and

location of calls. Old EMS organisations used to employ the first come first serve (FIFO)

criteria or the closest-idle criteria, which sends the closest available EMS vehicle to each
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call. Current trends have seen the development of priority rules which normally assigns high

priorities to life threatening incidences.

Lee (2012) proposed that ambulance dispatching decisions can be categorised as either

call-initiated or ambulance vehicle-initiated and these are highly dependent on the busyness

of the EMS system. In the call-initiated based decision, the dispatcher is mandated to select

one of the current idle ambulance vehicles to be dispatched after the arrival of an emergency

call. In the vehicle-initiated approach, the dispatcher has to choose on the emergency calls

queuing whenever an ambulance vehicle is freed to service another call. Call-initiated deci-

sions are idle in scenarios where the EMS system load is low whereas the vehicle-initiated

decisions are appropriate in high load EMS systems.

Ambulance Routing

In practice, it is possible that an ambulance can also be given a specific route to follow when

responding to an emergency call. The concept of rerouting is applicable in the context of

dynamic dispatch model. Aringhieri et al. (2017) defines routing as the act of defining the

exact path a dispatched ambulance should follow to reach a patient or a specified hospital.

When ambulances are being routed special consideration is given to essential parameters

such as the road damage status, distance and level of congestion. Pinto et al. (2015) argued

that dynamic dispatch models are more efficient as they require fewer ambulances. However,

if re-routing does not occur frequently, the multi-location dispatch model is more appropriate

as it is simple and does not require the use of the expensive GIS tools.

EMS Crew and Ambulance Journey

The three key elements of the ambulance journey along with the EMS crew are: provision of

service at the scene, delivery of patient at the hospital and restocking of medical resources.

The servicing process of the ambulance crew begins when the ambulance arrives at the scene.
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There are three possibilities that could confront the ambulance crew: false and malicious

alarm, false alarm with good intent and the true existence of an emergency case that needs

attention of which service is rendered.

A call is classified as false and malicious if the call is made to the station and yet there is

no genuine reason for making the call as there would not have been an emergency at all. Such

calls are made by individuals with the intent to test the responsiveness and preparedness of

the EMS. However, such is not desirable as it puts to waste the scarce resources such as fuel,

human capital and time among many others. In the case of false alarm with good intent, the

call will be genuine as there will be need for emergency services, however, the source might

then find another alternative means of transport to transfer the patient to a medical centre

or would have received the required attention before the arrival of the emergency medical

crew.

After rendering service on the scene, the ambulance is likely to transfer the patient to

the hospital. However, it is possible that the ambulance can be deployed back to the waiting

base or may be dispatched to serve a new call in the case where there is no need to transfer

the patient to a medical institution. There are cases when ambulances are diverted when

they reach a hospital or medical institution and realise that they are fully occupied in terms

of their capacity. Such ambulance diversions cause system delays. It is also a reality that

an ambulance could be diverted to a specific medical center due to the nature or condition

of the patient during transition from the scene to an intended medical center. Some models

would also try and account for such system delays. Lastly, it is the responsibility of the

ambulance crew to ensure that the medical aid materials are replenished time and again

when they return to their waiting bases.
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2.11.3 Simulation Model Formulation Framework

The simulation model development framework will adopt the one applied by Pinto et al.

(2015) which focused on four fundamental aspects namely: Analysis of the main input

parameters, development of the simulation model, analysis of the performance measures,

and use of optimization for simulation to analyse the scenarios.

However, it is important to note that the model development is embedded in the gen-

eral steps that has to be performed when conducting a simulation study. The steps are

summarised in Figure 2.10.

Ingolfsson et al. (2008) presented an ambulance optimisation model that minimises the

number of ambulances needed to provide a specific service level. Their model considered the

randomness that occurs in the inter-arrival of calls, response time (delay and travell time)

and service time (delay on scene and travel to health institution or waiting station). These

stochastic aspects of service delivery indirectly incorporates the uncertainty in the ambulance

availability in determining the response time. They argued that models that do not account

for the uncertainty of one of the components of response time and ambulance availability

is likely to overestimate the possible service level for a given number of ambulances or

underestimate the number of ambulances needed to provide a specific service level. therefore,

the simulation models to be developed will take cognisance of the uncertainty or stochastic

nature of the inter-arrival of calls, response time and service time.

Due to the heterogeneous nature of the medical service demand, the problem is focused

on how to deploy a given amount of ambulances to sub-stations (waiting bases) in the city in

order to optimise the service delivery whilst addressing issues of equality, effectiveness and

efficiency. The geographical location of a sub-station has an indirect influence on the overall

performance of the service delivery in terms of the response time and service time. Leknes

et al. (2017), emphasised that the service time highly depends on the travelling distances in
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Figure 2.10: Fundamental Steps in a Simulation Study.
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the area that the station covers, nature of roads and distance to the nearest hospital. Hence,

sub-stations were considered separately to ensure robustness of the simulation models. The

model also acknowledges that ambulances are not always available, hence the calls have to

queue for the service.

In order to assess the performance of the simulation model for future demand forecasts

from ANN models, specific multiple performance measures were adopted. The basis of

using multiple performance measures is derived from Knight et al. (2012), who were able

to demonstrate the benefits of using multiple performance measures rather than a single

performance measure based on average response time. The performance measures to be

considered for model building and model evaluation are namely: the average entity time

in system, average response time, average response queue time, average number of calls in

response queue and the ambulance utility levels.

The study will further explore some hypothetical situations using numerical experiments

in order to determine some managerial implications that might arise due to unpredictable

circumstances in future. The study also employed discrete event simulation that simulates

the operational process levels of an EMS involving the call arrival, dispatch, ambulance

travelling and servicing activities.

2.12 Optimisation for Simulation

Azadivar (1999) and Pinto et al. (2015) are in agreement that the optimisation for simulation

model cannot be written in the standard form as in deterministic models as the objective

function or constraints or both are embedded in the simulation model as decision parame-

ters of the model and can only be evaluated by a computer simulation. Such optimisation

problems can be solved using non-formal ways referred to as heuristics.

In computer science, artificial intelligence and mathematical optimisation, a heuristic
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is a technique used to solve a problem more quickly when classic methods are too slow.

This approach to problem solving, learning, or discovery employs a practical method not

guaranteed to be optimal or perfect, but sufficient for immediate goals. The process of

determining the optimal solution for simulation by heuristics is shown in Fig. 2.11. The

optimisation problem according to Fu (2002) can be formulated as follows:

MinθεΘJ(θ) = E [C(θ, w)] (2.40)

subject to:

R(θ, w) ≤ RT

Ni(θ, w) ≤ NLS ∼ ∀i

where:

� θ is vector of input variables (the set of substations for allocation and quantity of

ambulances at each base).

� J(θ) is objective function.

� w is number of replication.

� E [C(θ, w)] is expected value of C(θ, w).

� R(θ, w) is response times for the sample θ in replication w for ambulance units respec-

tively.

� Ni(θ, w) is quantity of ambulance units allocated in base i at the sample θ and repli-

cation w.

� RT is upper response times of the ambulance units.
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� NLS is upper bounds for total ambulance units in each base.

As suggested by Pinto et al. (2015), to solve the problem, an optimiser and a simulator

must work together as shown in Fig. 2.11. The simulator evaluates the performance of each

candidate solution, while the optimiser uses heuristics to seek the candidate solutions.

 

Figure 2.11: A Schematic Diagram of Optimisation for Simulation Approach (Pinto et al.,
2015).

2.13 Chapter Conclusion

2.13.1 Relevance of Literature to Research Objectives

The literature review covered the area of time series analysis models (non-linear or linear)

and how they can be used to predict future values that can be used for decision making

at the strategic level. The emergency of artificial neural networks and its application to
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other critical and related sectors were discussed. The literature review has also discussed

the early approaches applied in EMS studies in solving issues around location, relocation

and dispatch of ambulances in an EMS system together with the associated challenges. The

review of literature has also highlighted the growing advantages of using simulation modelling

techniques in solving EMS system challenges of inequality, inefficiencies and ineffectiveness

in the allocation of emergency ambulances.

Literature has also indicated that current research in EMS is seized in finding ways

of addressing challenges at strategic, tactical and operational levels. The main strategic

challenge is the location of ambulances and stations. Tactical challenges are the sizing

of the fleet of ambulances and their allocation to the ambulance stations. Operational

challenges involves decisions on which ambulance(s) to be dispatched and the reallocation

of ambulances.

However, the available literature failed to locate the comparison of the use of emerging

non-linear times series analysis techniques (ANN models) and the traditional linear time

series analysis techniques (SARIMA) in predicting future demand for public emergency am-

bulances. Furthermore, the literature was unable to identify how the predicted static demand

forecasts can be integrated by simulation modelling and optimisation techniques in address-

ing issues of resource mobilisation and allocation in order to increase levels of preparedness to

respond to calls in an equitable, efficient and effective manner whilst assessing performance.

2.13.2 Conceptual Framework

The conceptual framework highlights how forecasting, simulation and optimisation tech-

niques can be integrated in an attempt to improve public emergency ambulance preparedness

whilst achieving important decision outcomes of resource mobilisation and allocation. Such

a matrix is expected to address issues of equality, efficiency and effectiveness in the man-
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agement of scarce resources whilst also being able to visualise and assess the performance of

the EMS system. The research will follow the following conceptual framework as presented

in Fig. 2.12.
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Figure 2.12: The Conceptual Framework of the Study.



Chapter 3

Methodology

3.1 Introduction

This chapter focuses on the methodology which is principally guided by the conceptual

framework. It focuses on the sources of data, analysis tools, software packages and methods

of data analysis applied to the research study. The focus of the study was be divided

into three broad sections namely: forecasting, simulation and optimisation for simulation as

presented in the conceptual framework.

3.2 Forecasting

In this section, sources of data, time series analysis models and the model building processes

are discussed in detail. Performance measures and selection criteria of the two models

of interest; the FFNN and seasonal ARIMA model, will be discussed together with their

mathematical formulation and application to time series analysis.

84
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3.2.1 Model Input Data

Historical data on ambulance services for the Bulawayo city municipality, covering the period

January 1991 to December 2018, were retrieved from the archives. For purposes of developing

forecasting models, data for the period January 2010 to December 2018 was used because

of the absence of cyclic and irregularity components in the time series data as compared to

previous years. Each call for public ambulance emergency services is received and recorded at

a control centre operated continuously everyday throughout the year. Monthly compilation is

done and the information captured is stored in a database for billing and other management

processes.

The data splitting approach was adopted in order to compare the two suggested models.

Data from January 2010 to December 2017 was used for model building and the data for

the year 2018 was used for model cross-validation and comparisons of the two modelling

approaches. This translates to 96 observations for model building and 12 observations for

model cross-validation. The flowchart of the methodology is presented in Fig. 3.1.

3.2.2 Feed-Forward Neural Networks

The feed-forward neural network architecture was trained by the “neuralnet” function of the

R-package, which is a network training function that updates weights and bias values during

training. The network is called feed-forward because information flows only from the input

to the output and there are no recurrent or backward connections as presented in Fig. 2.4.

Each layer consists of neurons and there is no connection between neurons that are in the

same layer. A three-layer FFNN structure was also presented in Fig. 2.4.

The input data consisted of seven (7) inputs based on the lagged annual monthly demand

for the years 2010 to 2016. The input and output data of the neural network is summarised

in Table 3.1. Here, we assume that the demand for the next month is a function of the past
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Figure 3.1: Forecasting Model Building and Selection Procedure.
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values of the previous months recorded at the same time. The model equation is represented

by the generalised equation 3.1:

yt+12 = f(yt, yt−12, yt−24, yt−36, yt−48, yt−60, yt−72) + Θt+12, (3.1)

where yt is the observed demand value for the current month, yt−12 is the demand value

of the previous month and so on, whilst yt+12 is the demand for the next month, and Θt+12 is

the associated bias. Günay (2016) implemented the same approach in his study of forecasting

annual gross electricity demand. The selection of the optimal number of inputs is based on

trial and error as mentioned in (Belayneh et al., 2014).

Table 3.1: Sample of Input and Output Data of the Neural Network.

Year 2010 2011 2012 2013 2014 2015 2016 2017
Month yt−72 yt−60 yt−48 yt−36 yt−24 yt−12 yt yt+12

January 1790 2152 2299 2288 2232 1954 1804 1724
February 1602 2095 2196 2238 2092 1853 1770 1603

March 1939 2238 2291 2413 2254 2003 1858 1753
April 1955 2214 1933 2073 2043 1813 1805 1637
May 2049 2215 2155 2261 2106 1832 1732 1674
June 1949 2253 2209 2246 2059 1758 1719 1554
July 2000 2274 2404 2093 2207 1869 1760 1724

August 2046 2255 2486 2214 2119 1834 1748 1650
September 2118 2419 2446 2247 2044 1818 1788 1583
October 2247 2011 2441 2289 2132 2033 1810 1649

November 2193 2446 2235 2197 1971 1898 1762 1626
December 2245 2353 2387 2289 2018 1952 1779 1674

Data Preprocessing

When designing ANN, data is pre-processed first before model fitting. Pre-processing repre-

sents data coding, enrichment and cleaning which involves accounting for noise and dealing

with missing information. Pre-processing also involves the normalisation of data (scaling



88 CHAPTER 3. METHODOLOGY

down) to an interval [0, 1] in order to prevent saturation of hidden nodes before feeding into

the neural network (Kitapcı et al., 2014). Three basic normalisation techniques that can be

used in data preprocessing, namely; min-max normalisation, Z-score normalisation and the

sigmoid normalisation technique according to Kheirkhah et al. (2013). The input values were

first normalised using the minimum-maximum criteria in order to optimise the convergence

rate of the neural network model.

Neural Network Model Training and Testing Sets

When the data has been processed, the network model-building process begins. The pro-

cessed data is separated into two sets, namely; model-building set and testing set. The first

set, called the ’model-building’ set or training set, is used to develop the network model. The

second set, called the testing or prediction set is used to evaluate the forecasting ability of

the model. Higher percentages are usually assigned to the training set and lower percentages

to the testing set (Tsai, 2008). In different neural network architectures in literature (Ki-

tapcı et al., 2014; Alpaslan et al., 2012), 10%, 15%, 20%, and 30% have been implemented

to time-series data as the length of the testing set. Seventy-two (72) and twenty-four (24)

observations were used as training and testing sets respectively. This translates to 75% for

the training set and 25% for the testing set. It has been observed in the literature that the

smaller the test set length, the more accurate the forecasts are (Alpaslan et al., 2012).

Neural Network Model Architecture

The architecture of the neural network is determined by the number of hidden and output

layers, the number of neurons in all of the layers, training algorithm parameters and the

performance measure. There is no general rule for the selection of the appropriate number

of hidden layers and the most popular approach in finding the optimal number of the hidden

layer is by trial and error (Güler and Übeyli, 2005). The architecture of the neural network
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can be generalised by an expression 3.2:

I − (H1, H2, H3, ..., Hn)−O, (3.2)

where I represents the number of input nodes, Hn the number of neurons in hidden layer

n, and O the number of neurons in the output layer. An example is an ANN with seven

(7) input nodes, one hidden layer with three (3) neurons and one (1) output neuron can be

represented as 7-(3)-1 respectively.

Neural Network Model Training

Training of a NN is a process of determining the weights of the neural network as well

as the number of neurons in the different layers of the network. According to Prasad Y

and Bhagwat (2002), this is an optimisation process whose aim is to find a set of optimum

weights with which reasonable predictions can be made. Supervised training with resilient

backpropagation as the training algorithm was used and demand calls of 2017 were set as

the target values. Backpropagation, also called backward error propagation or backprop, is

the most popular and widely used network learning algorithm (Sadiq et al., 2003; Rumelhart

et al., 1985; Anderson, 1995; Duda et al., 2012). Backpropagation is a rule that generalises

the gradient descent method as a way of changing the weights in the hidden layer of a

FFNN. It gives the change ∆wjk(i) in the weight of the connection between neurons j and

k at iteration i as

∆wjk(i) = −α ∂E

∂wjk(i)
+ µ∆wjk(i− 1), (3.3)

where α is called the learning coefficient, ∆wjk(i− 1) the weight change in the immediately
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preceding iteration and µ the momentum coefficient (Güler and Übeyli, 2005).

The learning coefficient ensures a maximum decrease of the error function thus increasing

the convergence speed. If it is too small, convergence will be extremely slow and if too large,

the error function will not converge. The momentum coefficient tends to aid convergence as

it works as a low-pass filter by reducing rapid fluctuations. It applies smoothed averaging

to the change in weights whilst also avoiding local minima (Goutorbe et al., 2006).

The resilient backpropagation was used with the threshold value for the training data set

at 0.01. The threshold or average error ensures that a network only converges only when

the error reaches below the chosen threshold value (Rather et al., 2015). The learning rate

factors were set at a minimum of 0.5 and maximum of 1.2 The momentum was not pre-set

allowing the machine to adopt default values.

The selection of the initial number of hidden neurons was initially based on the logarithm

of the training observations (Wanas et al., 1998), and the calculated value (log 84) was two.

These were increased during training of the neural network however; a general rule is that

there must not exceed two-thirds of the input neurons.

The logistic function and the linear function were implemented as the activation functions

in the hidden and output layers respectively. Alpaslan et al. (2012) in their statistical

approach in selecting activation functions recommended the use of the logistic activation

function in the hidden layers and the linear function in the output layer. The results obtained

accurate short-term forecasting horizons. A single output neuron with a linear activation

function was applied to the neural network.

Neural Network Model Selection

The number of hidden layers and neurons in the selection process were systematically varied

in order to obtain the most accurate models as proposed by Sadiq et al. (2003). It is impor-

tant to note that neural networks without hidden units are equivalent to linear statistical
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forecasting methods (Cheng and Titterington, 1994). Hidden units perform the mapping be-

tween the input and output variables as well as to provide the non-linearity feature to neural

networks, in addition to finding out patterns in the dataset (Aras and Kocakoç, 2016). The

selection of the best three models among the neural networks was based on the performance

measures namely: mean absolute error (MAE) and the residual mean square error (RMSE).

The MSE and the MAE are both measures of accuracy and the degree of spread of data

points (Aras and Kocakoç, 2016). The MAE is a measurement of how close forecasts are to

the actual data points; the average of the absolute errors (Herliansyah et al., 2017). Values

predicted from the training sample and values in the test set were utilised to calculate the

performance measures. Forecasts for the year 2018 were calculated by using the best weight

values obtained in the selected model.

3.2.3 Multiplicative Seasonal Autoregressive Integrated Moving

Average(SARIMA) Model

According to Rather et al. (2015), various linear models can be used for prediction includ-

ing exponential smoothing models, generalised autoregressive conditional heteroscedasticity

and stochastic volatility models, which are predominantly used in predicting stock returns.

However, Jere et al. (2017) applied the Box-Jenkins methodology using autoregressive inte-

grated moving average models (ARIMA) on a univariate time series in a study to forecast

the second-hand car importation in Zambia and the methodology was found to be superior

to exponential smoothing models. The Box-Jenkins methodology was adopted in this study.

ARIMA Model Building

When developing an ARIMA model using the Box-Jenkins methodology, four stages have to

be followed: identification, estimation, diagnosis and forecasting. Components of time series
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data namely; seasonality, trend, cyclicity and irregularity, are key to model development.

Seasonality refers to a consistent shape in the series that recurs with some periodic regularity.

It can also be referred to as regular up and down fluctuation or short-term variations due to

seasonal factors. Monthly ambulance calls data is likely to have a strong yearly component

occurring at lags that are multiples of s = 12, because of strong relations of activities to

the calendar year. This might lead to the adoption of autoregressive and moving average

polynomials that identify with seasonal lags called multiplicative seasonal autoregressive

integrated moving average models as proposed by Shumway and Stoffer (2000) given by

ARIMA (p, q, d) x (P, D, Q)s.

Stationarity Assumption

When applying ARIMA models to time series data, it is assumed that the data is stationary.

The stationarity assumption requires that the mean, variance and autocorrelation of the

time series data does not change over time. Non-stationarity is common when components

of time series data such as trend, seasonality, cyclicity and irregularity are not accounted for

in the model building process. When time-series data is not stationary, differencing both the

ordinary and seasonal components as presented in equation (2.31) is performed to ensure

that stationarity is achieved.

Model Selection and Diagnosis

The Akaike Information Criterion (AIC) proposed by Shumway and Stoffer (2000) for time

series data, was used to select the best model considering that the time series is stationary and

that the model attains a minimum AIC value. Model diagnostic checks were implemented

to check whether the residuals of the model resembled white noise. The plot of residuals

against time was also applied to check for constant mean and variance assumption. A normal

probability plot and the histogram plot were applied to test for the normality of the residuals.
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The ACF and the PACF of the residuals were plotted to check for the independence of

residuals. To complement the visual approaches, the Ljung-Box Pierce statistic as proposed

by Shumway and Stoffer (2000) was used to further ascertain the independence of residuals.

3.2.4 Comparison of the Neural Network and SARIMA Models

A cross-validation study was conducted by selecting the best model from each of the FFNN

and SARIMA models. The predicted values and the actual values were used to calculate the

performance of each model using the mean absolute error (MAE) and the root mean square

error (RMSE) as the performance measures. MAE gives equal weighting to differences from

actual values whilst the RMSE apportions a huge penalty in these differences and is more

appropriate in identifying outliers (Aras and Kocakoç, 2016). This makes the MAE a more

appropriate tool for testing goodness of fit as compared to the RMSE. The paired sample

t-test (at 5% level of significance) was carried out to validate any significant differences

between the actual values and predicted values of each of the two models using the Minitab

statistical package. For a model to be of good fit, there should not be significant differences

between the actual and predicted values (p > 0.05). Using the selected superior model,

forecasts for 2019 were carried out and inferential deductions made.

3.3 Simulation

The simulation model development will focus on four fundamental aspects namely: deriva-

tion of the main input parameters, development of the simulation model, analysis of the

performance measures, and use of optimization for simulation to analyse the scenarios.
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3.3.1 Description of the Bulawayo EMS Response System

The Bulawayo Emergency Medical Services (BEMS) adopted the regionalised response strat-

egy where EMS teams are assigned to serve a pre-specified area or region. In this strategy,

it is assumed that if the assigned EMS team(s) is busy, the closest team must perform the

mission. The main advantage of this strategy is to minimise travel times due to the reduced

size of the geographic area that the EMS teams need to travel between call locations.

Bulawayo is divided into two broad regions, the eastern and western regions, for emer-

gency response purposes. The eastern region covers the low-density suburbs characterised

by low population densities as compared to the western region characterised by high popu-

lation densities. Both the Eastern and Western regions are further split into two subregions

to which an ambulance base station is assigned. Currently there are four base stations,

two in each region namely: Famona and Northend (Eastern region), Nketa and Nkulumane

(Western region). The regions and their respective suburbs are summarised in Table 3.2.

Call Features

The study considered the geographical distribution of emergency calls of the four stations:

Famona, Northend, Nketa and Nkulumane. The study will determine the distributions of

arrival rates of calls for each substation using historical data of 2018 using the ARENA

package.

Types of Emergency and Ambulance Requirements

The types of emergencies are broadly categorised into five(5) distinct categories with as-

signed unique codes for tracking, rescue team deployment and reporting purposes. These

are summarised in Table 3.3. For simulation modelling purposess, the model will adopt the

codes Cat A, Cat B and Cat C for distinguishing the different emergency response categories
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Table 3.2: Regions, Stations and Areas of Coverage for BEMS.

Region Station Suburbs Covered

Eastern

City Centre, Hillside, Ascot, Willsgrove, Glencoe, Lochview
Famona Riverside, Buena Vista, Manningdale, Sunnighill, Woodlands,

Waterford, Matsheumhlope, Fortune gate, Malindela,
Bradford, Selbourne park, Whitecairns, Eloana, Fourwinds,
Bradfield, Barham green, Hillcrest, Surburbs, Centenary park,
Waterfalls, Morningside, Belmont, Ilanda, Montrose, Greenhill

Pardonhust, Saurcetown, Tagela, Norwood, Richmond
Northend, Windsor park, Glenville, Trenance, Highmount

Northend Parklands, Harrisvale, Quenspark West, Khumalo,
Romney Park, Nortgate, Newmansford, Lobenvale, Kennilworth
Sunnyside, Glengary, Woodville, Northlea, Quenspark East
Makokoba, Thorngrove, Steeldale, Mzilikazi, Kingsdale
Nguboyenja, Burombo flats, Barbourfields, Mahatshula

Western

Matshobana, Mpopoma, Kelvin north, Entumbane,
Njube, Lobengula, Iminyela, Mabutweni, Pelandaba, Luveve

Nketa Enqotshweni, Enqameni, Gwabalanda, Pumula, Hyde park
Magwegwe, Pumula, Cowdray Park, Emakhandeni

Nkulumane 1 to 12, Kelvin west and east, Tshabalala, Sizinda
Nkulumane Tshabalala extension, Nketa 6 to 9, Emganwini, West Somerton

Southworld, Sidojiwe hostel, Donnington, Newton west, Westgate,

as discussed in literature review.

Table 3.3: Description of Emergency Response Categories and Codes.

Simulation Code Data Code Description
Cat A: Urgent and life threatening RTA Road traffic accidents

1A Accident/Emergencies
Cat B: Urgent but not life threatening symptoms 1B Maternity clinics

2 Clinics from home
Cat C: Non-urgent calls 3 Removals/transfers

The BEMS is currently operating using the Anglo-American response strategy where the

EMS is separated from the medical system as it offers only paramedic care. The BEMS

uses different kinds of vehicles but fitted with the same equipment features to respond to
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emergency calls.

Ambulance dispatch, which is the act of choosing an appropriate EMS vehicle to respond

based on the nature and location of call guided by set standard rules and guidelines is

performed by a dispatcher upon receiving calls requiring EMS. Currently, BEMS is inclined

to call-initiated dispatch decision-making strategy where the dispatcher is mandated to select

one of the idle ambulance vehicles to be dispatched after the arrival of an emergency call.

BEMS employs the first come first serve (FIFO) dispatch strategy with priority given to

road traffic accidents in the case where waiting calls are in the response system. The BEMS

assumed a multi-location dispatch model, where the ambulances may be dispatched from

wherever they are.

When responding to calls, EMS crews are not given specific routes to follow as in the

case of dynamic dispatch systems. In cases where an ambulance call is cancelled, it is

recorded and normally such cases occur when there is a duplication of calls or the use of

other emergency ambulance service providers by the caller. When responding, EMS medical

crews can encounter: false and malicious calls (FAM), false alarm with good intent (FAGI)

and true existence of a call. All these scenarios are reported and recorded during response.

The EMS crew is expected to provide service at the scene, deliver a patient to a medical

institution, perform hand-over and take-over procedures at medical centre, restocking and

fueling of vehicle.

The study will assume a static ambulance deployment model which seeks to allocate

a fixed number of ambulances to a set of known fixed base stations with the objective of

ensuring that the best medical outcomes for patients are achieved. This will help determine

the capacity and staffing of ambulance stations by optimising the number of ambulances

needed to provide an efficient and effective service level for the set of existing ambulance

stations with known locations. A logical presentation of the BEMS multi-location dispatch

model is presented in Fig. 3.2.
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Part A of the dispatch model represents the call generation process whilst Part B rep-

resents the dispatch process. Part C represents cancelled calls which emanate from calls

that do not require an ambulance response or occurs when the caller sort for another service

provider or there has been a duplication of a call. Part D represents a case where service

on the scene is not required. Normally these are calls recorded as a false malicious alarm

(FAM) or a false alarm good intention (FAGI). Part E represents a case where service on

the scene is required and the patient is transferred to the hospital. Part F represents the

material replenishment process where a decision is made whether to replenish the medical

resources or not. It also includes aspects of vehicle service or refueling.

3.3.2 Data Manipulation and Analysis

The simulation model to be developed will incorporate the randomness in call arrivals, re-

sponse time and service time. The model will adhere to the assumptions listed in the next

section which depicts the activities and protocols followed by the BEMS in responding to

emergency calls as discussed.

Assumptions of the Simulation Model

� The arrival rate of calls may vary and is time-dependent. Calls are also related to the

socio-economic conditions of the population.

� The calls are serviced as per first come first serve (FIFO).

� The ambulance could only serve one call at a time.

� The ambulances have the same capacity in terms of size and equipment and each

ambulance team is made up of the driver and an attendant.

� Ambulances are to be allocated randomly.



3.3. SIMULATION 99

� Response time is the time between the receipt of a call and to when the ambulance

team arrive at the scene.

� Service time is the time between the arrival of the ambulance team at the scene until

they have performed hand-over take-over at the medical centre and the vehicle is ready

to depart for the station and available to perform another task.

� Total duration in the system is the time from when a call is received up to when the

ambulance is ready to depart for the station ready to perform another task.

Estimation of Statistical Distributions of Simulation Model Parameters

The call inter-arrival time, response time, and service time distributions will be generated

in the ARENA simulation package using the Input Analyser module on the 2018 histori-

cal data. Possible statistical distributions that can be fitted to the empirical distribution

functions generated by these different sample data in ARENA include the Poisson, Normal,

Exponential, Erlang, Gamma, Log-normal and Weibull distribution. The selection of the

best distribution is based primarily on the square error (s.e) criterion given by equation 3.4.

s.e = Σn
i=1(fi − f(xi))

2, (3.4)

where:

� n is the number of histogram intervals,

� fi is the relative frequency of the data for the ith interval, and

� f(xi) is the relative frequency of the fitted probability distribution function in the ith

interval.
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Test for the goodness of fit is an additional feature of the Input Analyser module to

ascertain the goodness of fit of the hypothetical distribution using both the Chi-square

test and the Kolmogorov-Smirnov (KS) test. The Chi-square goodness of fit test is a non-

parametric test used to find out how the observed value is significantly different from the

expected value. The KS-test is also a non-parametric test that compares the sample data to a

known distribution and assists in determining whether they have the same distribution. Both

tests compare a known hypothetical (specified) probability distribution to the distribution

generated by the sample data. For both the Chi-square and KS-test for the goodness of fit,

in general, the higher the p-value the better the fit.

The Chi-square test for goodness of fit is guided by the following hypothesis:

H0: The data comes from the specified distribution.

H1: The data does not match the specified distribution.

The KS-test for goodness of fit is guided by the following hypothesis:

H0: The data comes from the specified distribution.

H1: At least one data value does not match the specified distribution.

Estimation of Proportions of Model Parameters

The monthly and daily occurrences of demand per station were computed from the forecasts

data generated by the feed-forward neural network. Allocations to the different stations

(Famona, Northend, Nketa and Nkulumane) will be based on proportions calculated from

the historical data of 2018. The probability of occurrence of each medical condition/category

(Cat A, Cat B and Cat C) shall be computed in Excel based on the 2018 annual historical

data.
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Simulation Model Development and Performance Measures

The simulation model will be developed using the ARENA simulation package. The perfor-

mance measures considered for the simulation models are the average entity time in system,

average response time, average response queue time, the average number of calls in the re-

sponse queue, and capacity utilization of ambulances. These were also generated using the

ARENA package.

3.3.3 Sensitivity Analysis

Sensitivity analysis entails looking at different scenarios and observing how they affect the

overall model performance. It involves changes to model parameters and subsequently ob-

serving how these changes affect the general model performance. It helps to answer pertinent

questions or concerns post-analysis. The research will explore the following scenarios as part

of simulation model development sensitivity analysis.

� Optimum static ambulance deployment maintaining response time distributions (RTD).

� Optimum static ambulance deployment to predicted ANN demand, maintaining the

RTD.

3.3.4 Numerical Experiments

Numerical experiments are focused on evaluating different scenarios and observing how they

affect the overall model performance. It also involves changing model parameters and sub-

sequently observing how these changes affect the general model performance. It helps to

answer important questions and concerns post analysis and their managerial implications.

The research will explore the numerical experiments as part of simulation model develop-

ment.
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� The influence of standardising the response time on the optimal ambulance deployment

plan.

When analysing the different scenarios, special consideration will be given to the simu-

lation model performance measures as proposed in literature.

3.4 Chapter Conclusion

Chapter 3 focused on the research methodology which was anchored on the development

of forecasting and simulation models and subsequently on sensitivity analysis of developed

models. The next chapter, Chapter 4 will focus on the development of forecasting models

using both the artificial neural network and SARIMA models.



Chapter 4

Forecasting Models: ANN and

SARIMA Models

4.1 Introduction

Chapter 4 focuses on the development of forecasting models for univariate time series of

ambulance demand for short-term forecasting horizons using artificial neural networks (ANN)

and seasonal autoregressive integrated moving average (SARIMA) models. A comparative

analysis was conducted to select the best model with high predictive power of the public

emergency ambulance demand (PEAD) using monthly historical data from 2010 to 2017

and compared against observed data of 2018. Based on the selected model, short-term

annual PEAD forecasts for 2019 were predicted. Results of ANN models are presented first

followed by results of the SARIMA models and finally the best model is selected and used

for prediction.

103
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4.2 The Demand Time Series Plot

A time series plot of the monthly public ambulance demand is summarized in Fig. 4.1.

Chatfield, (1996) defined trend as a long-term change in the mean level and this trend

is evident in the time series data. Differencing the time series data would help achieve

stationarity when using ARIMA models. There are also seasonal patterns that recur after

every multiple of lags of twelve (12), hence there is an expectation of including seasonality in

the model. The random components are generally insignificant. The neural network models

however, do not require any prior conditions such as linearity or stationarity of the time

series data.

 

Figure 4.1: The Public Emergency Ambulance Time Series Plot.
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4.2.1 Selecting the Best Neural Network Model

Several models of different architectures were systematically selected starting with two hidden

units (log 84 = 2) in a hidden layer and gradually increasing them. The models were

predominantly divided into two distinct sets, one with a single hidden layer and the other

with two hidden layers respectively. The selection of the number of inputs in the model was

based on trial and error (Belayneh et al., 2014). The mean square error (MSE) and mean

absolute error (MAE) were used as the performance measures during training. Three models

were selected and forecasts were generated for the year 2018 as a model cross-validation

process. The RMSE and MAE were used as final performance measures for selecting a

suitable model for the neural network and the results are summarized in Table 4.1 and Table

4.2 respectively.

Table 4.1: Feed Forward Neural Network Model Selection.

Testing set Testing set Validation Validation
Model Structure (MSE) (MAE) (RMSE) (MAE)

1 7-(3)-1 268.14 5.29 165.28 114.54
2 7-(3,2)-1 169.41 3.26 138.20 108.08
3 7-(4)-1 402.18 6.26 137.19* 94.00*

Note:* is the minimum value of the performance measure across all models.

The architecture of the FFNN (7 − (4) − 1) with seven input nodes, one hidden layer

(4 neurons) and one output neuron was the best model with the lowest MAE of 94.0 and

RMSE of 137.19. The neural network topology is presented in Figure 4.2.

4.2.2 Multiplicative SARIMA Model Selection

Several models were considered by the algorithm in the R-package but theARIMA(0, 1, 1)(0, 0, 2)12

model was the best according to the Akaike Information Criteria (AIC) with a value AIC =

1162.57 as presented in Table 4.3.
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Figure 4.2: Visualisation of the Architecture of the FFNN (7-(4)-1).
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Table 4.2: Forecast Data Generated by the Three Neural Network Models.

Actual 7-(3)-1 7-(3,2)-1 7-(4)-1
Month (2018) FFNN Model 1 FFNN Model 2 FFNN Model 3

January 1569 1613 1613 1623
February 1452 1481 1498 1500

March 1684 1659 1656 1668
April 1477 1499 1409 1407
May 1440 1291 1266 1417
June 1470 1098 1162 1268
July 1612 1563 1547 1588

August 1515 1444 1476 1462
September 1543 1563 1569 1539
October 1330 1673 1696 1686

November 1427 1608 1594 1617
December 1564 1633 1650 1652

MAE 114.54 108.08 94.00*
RMSE 165.28 138.20 137.19*

Note:* is the minimum value of the performance measure across all models.

Table 4.3: Summary of ARIMA(0, 1, 1)(0, 0, 2)12 Model Estimation Results.

Parameter MA 1 SMA 1 SMA 2 Variance Log. likelihood AIC
Coefficient -0.5767 0.1953 0.4011 10900 -577.28 1162.57

s.e. 0.0871 0.1023 0.1447

SARIMA Model Diagnosis

The histogram of the residuals (Fig. 4.3) showed that the data is normally distributed with a

mean zero. The normal probability Q-Q plot of residuals (Fig. 4.3) showed a linear trend to

confirm that the residuals are normally distributed. When visualizing the straight line, more

emphasis was given to the central values of the plot than on the extremes (Montgomery and

Runger, 2014). The results are sufficient to affirm that the normality assumption is satisfied.

The plots of the ACF and PACF of residuals resembled an insignificant number of the

spikes being significantly different from zero (Fig. 4.4), as it is expected that approximately

1

20
to be above ± 2√

n
. The Ljung-Box test statistic (at 5% level of significance) value of
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(a) Residual Plots of Ambulance Demand Data 

 

 

 

 

(b) The Normal Q-Q plot of Residuals 

 

Figure 4.3: Test for Normality of Residuals of SARIMA Model.
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p = 0.6118(> 0.05) calls for the failure to reject the null hypothesis and hence, conclude that

the residuals are not correlated. This validates the requirement that the residuals must be

independent.

Plotting residuals against time (order of the data) does the test for homogeneity of the

mean and variance of the residuals. This is expected to show any changes in the mean and

variance with time. The plot of the residuals against order of the data (Fig. 4.5) shows

that the mean of the residuals varies closely to zero with a relatively constant variance as

expected.

4.2.3 Comparison of the Neural Network and SARIMA Models

The actual monthly ambulance demand data for 2018 was compared with the forecasts using

the two selected models as presented in Table 4.4.

Table 4.4: Forecasts of Ambulance Demand by FFNN and SARIMA Models.

Month Actual (2018) SARIMA FFNN
January 1569 1605 1623
February 1452 1595 1500

March 1684 1624 1668
April 1477 1601 1407
May 1440 1593 1417
June 1470 1580 1268
July 1612 1587 1588

August 1515 1596 1462
September 1543 1605 1539
October 1330 1600 1686

November 1427 1589 1617
December 1564 1606 1652

MAE 105.71 94.00∗
RMSE 125.28∗ 137.19

Note:* is the minimum value of the performance measure across all models.

It can be observed in Fig. 4.6 that the pattern of the FFNN model is inclined to value
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(a) Autocorrelation Function of Residuals 

 

 

(b) Partial Autocorrelation Function of Residuals 

Figure 4.4: Test for Independence of Residuals of SARIMA Model.
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Figure 4.5: Homogeneity Test for the Mean and Variance of Residuals of SARIMA Model.

estimation as compared to SARIMA which is directional as depicted by the linear pattern

over time. The FFNN was able to detect the hidden patterns of the time series data. These

findings concur with findings from a study carried out by Adebiyi et al. (2014) for stock

price predictions.

In terms of the MAE the FFNN is superior to the SARIMA model. When considering

the RMSE, the SARIMA model is superior to the FFNN. However, it must be noted from

literature (Aras and Kocakoç, 2016), that the MAE gives equal weighting to differences

from actual values whilst the RMSE apportions a huge penalty in these differences and is

more appropriate in identifying outliers. This makes the MAE an appropriate tool for the

goodness of fit.

Paired sample t-tests at 5% level of significance for the actual values and predicted values

were applied to both models. The calculated p-value for FFNN was 0.493(> 0.05) (Table
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Figure 4.6: Comparison of Actual and Predicted Values of Time Series Models.

4.5) and we conclude that there is no significant difference between the forecast and actual

values of public emergency ambulance demand. The calculated p-value for the SARIMA

model was 0.005(< 0.05) (Table 4.6) and we conclude that there is significant difference

between the forecast and actual values of public emergency ambulance demand. The results

resonate with findings in the literature that propounded that neural network models are

superior to ARIMA models in time series prediction (Adebiyi et al., 2014).

Table 4.5: Paired Sample T-test Results: Actual versus FFNN Forecast of 2018 Demand.

S.E. t- p-
N Mean s.d. Mean value value 95% C.I.

Actual 12 1506.92 94.54 27.29 -0.71 0.493 (-177.67,60.33)
FFNN 12 1535.58 127.78 36.89

Difference 12 -28.67 140.07 40.44
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Table 4.6: Paired Sample T-test Results: Actual versus SARIMA Forecast of 2018 Demand.

S.E. t- p-
N Mean s.d. Mean value value 95% C.I.

Actual 12 1506.92 94.54 27.29 -3.55 0.005 (-148.23,-34.77)
SARIMA 12 1598.42 11.33 3.27
Difference 12 -91.5 89.29 25.78

4.2.4 Public Emergency Ambulance Demand Forecast for 2019

The selected neural network model was used to forecast the public emergency ambulance

demand for 2019 as shown in Figure 4.7. The demand is expected to peak in January, March,

September and December 2019. Lower demand is projected in April, June and July.

 

Figure 4.7: Public Emergency Ambulance Demand Forecast for 2019 Using FFNN.

Even though models that forecast weekly, daily, and hourly demands were not developed

at this level, such important quantitative measures can be derived from such forecasts and be

fully utilised for strategic planning purposes to ensure that there is adequate preparedness
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to respond to ambulance calls and a summary is given in Table 4.7 and Fig. 4.8.

Table 4.7: Monthly, Weekly and Daily Projected Number of Calls for 2019.

Year Monthly number Number of days Weekly Daily
(2019) of calls in a month demand demand

January 1622 31 406 53
February 1494 28 374 54

March 1713 31 429 56
April 1368 30 342 46
May 1482 31 371 48
June 1318 30 330 44
July 1391 31 348 45

August 1526 31 382 50
September 1572 30 393 53
October 1541 31 386 50

November 1532 30 383 52
December 1638 31 410 53

4.3 Chapter Conclusion

Performance measures; MAE and the paired sample t-test indicate that the FFNN models

are superior to traditional SARIMA models in time series prediction of ambulance demand

in the city of Bulawayo, over a short-term forecasting horizon. It was found that the FFNN

model is more inclined to value estimation as compared to the SARIMA model, which is

directional as depicted by the linear pattern over time.

Therefore, the FFNN model derives its model prediction accuracy from this unique char-

acteristic. The FFNN model building process used 96 observations, where seventy-two (72)

and twenty (24) observations were used as training and testing sets respectively. With such

small sample data, it can be concluded that the FFNN model is able to accomplish accu-

rate predictions as it was able to detect the hidden patterns of the time series better than

the SARIMA model. The SARIMA model required the assumption of stationarity to be



4.3. CHAPTER CONCLUSION 115

 

Figure 4.8: Projected Weekly and Daily Number of Ambulance Calls for 2019.

satisfied before model building and also to be verified post model development. However,

such assumptions are not required in the development of FFNN. Therefore the FFNN is a

parsimonious, simple model with no assumptions and requires fewer variables in the model

building but with greater explanatory power as compared to the SARIMA model.

It was observed that using the architecture of one hidden layer produced more accurate

results than those obtained from architectures with two hidden layers for short-term fore-

casting horizons. Therefore, the use of a single hidden layer is adequate in developing FFNN

for short-term forecasting horizons. Reducing the number of input neurons did not improve

the model accuracy. The researchers recommend that Bulawayo City Council should delib-

erately adopt and integrate such forecasting tools to assist them in their strategic resource

planning activities.

Based on the performance measures, the parsimonious FFNN model was selected to pre-
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dict short-term annual ambulance demand. Demand forecasts with FFNN for 2019 reflected

the expected general trends in Bulawayo. The forecasts indicate high demand during the

months of January, March, September and December. These four non-consecutive months

are often characterised by public holidays and wet weather conditions resulting in high

demand for public ambulance service demand. Key ambulance logistic activities such as

vehicle servicing, replenishment of essential equipment and drugs, staff training, leave days

scheduling and mock drills need to be planned for April, June and July when low demand

is anticipated. This deliberate planning strategy would avoid a dire situation whereby am-

bulances are available but without adequate staff, essential drugs and equipment to respond

to public emergency calls (or vice versa).



Chapter 5

Simulation Modelling for

Heterogeneous Regions

5.1 Introduction

In this chapter, simulation modelling is performed to determine the appropriate model for

static ambulance deployment for the heterogeneous regions using the prevailing service de-

livery levels. No attempt was made to find an optimal solution which will be covered in the

next chapter using sensitivity analysis and optimisation techniques. The chapter focuses on

the development of simulation models that incorporate the randomness that occurs in the

inter-arrival of calls, the response time (delay and travel time) and service time (delay on

scene and travel to health institution or base station). These random aspects of EMS pa-

rameters indirectly incorporate the uncertainty in the ambulance availability in determining

the overall response time. According to Ingolfsson et al. (2008), models that do not consider

and incorporate the uncertainty of response time, service time and ambulance availability

are likely to overestimate or underestimate the number of possible ambulances required to

provide specific service levels. In cases where the ambulance is not available, it usually

117
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manifests as queuing delays as the ambulances will be busy responding to other calls. It

was a common feature that a backup is offered from the nearest sub-station or that fire

fighting vehicle or in other cases a supervisors’ vehicle(s) are used to respond due to unavail-

ability of ambulances at the specific sub-station offering EMS. Random and non-random

model input parameters required for simulation model development included among them,

the response time distributions, service time distributions and proportion of occurrence of

different emergency categories. Performance measures such as the average entity time in the

system, average response time, average response queue time, the average number of calls in

the response queue, throughput ratio and the ambulance utility levels were used to evaluate

the models.

The chapter also considered that the geographical location of a sub-station has an indirect

influence on the overall performance of service delivery as influenced by the randomness

nature of inter-arrivals of calls, response time, service time and the prevalence of different

levels of the urgency of calls. The service time depends on the traveling distances in the

geographical area that the sub-station covers, the nature and density of roads, and the

distance to the nearest hospital. Hence, sub-stations were considered separately to ensure

the robustness of the simulation models. Leknes et al. (2017) presented almost a similar

EMS problem which focused on an ambulance station location and allocation problem which

they referred to as the Maximum Expected Location Problem for Heterogeneous Regions

(MEPLP-HR). In their case they formulated a mixed-integer linear program to solve the

problem. In our case we adopted simulation model techniques.

5.2 Estimation of Simulation Model Input Parameters

Call inter-arrival time, response time, service on scene delay time (SOS) and no-service on

scene required delay time (NSOS) distributions were generated in the ARENA simulation
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package using the 2018 historical data. A summary of the results is presented in Table 5.1.

Table 5.1: Simulation Model Parameter Distributions for the Heterogeneous Sub-stations.

Famona

Inter-arrival time Response time
0.999+WEIB(180;1.17) 2+GAMM(22;1.48)
Service on scene delay No-service on scene delay

-0.001+164*BETA(2.7;6.47) -0.5+72*BETA(0.606;1.2)

Northend

Inter-arrival time Response time
3+GAMM(143;1.33) 2+GAMM(23.9;1.36)

Service on scene delay No-service on scene delay
N(51.6;23.7) -0.001+WEIB(25.9;0.834)

Nketa

Inter-arrival time Response time
-0.001+WEIB(64;1.06) -0.001+ERLA(18.5;2)
Service on scene delay No-service on scene delay

2+201*BETA(3.81;10.9) -0.001+EXPO(23.6)

Nkulumane

Inter-arrival time Response time
0.999+GAMM(93.6;1.73) 0.999+GAMM(21.8;1.62)

Service on scene delay No-service on scene delay
N(53;19.8) -0.5+63*BETA(0.484;0.79)

It was also necessary to determine the proportion of emergency calls and non-emergency

calls. The emergency calls are those that required the dispatch of an ambulance after being

assessed by the dispatcher in the call centre. The non-emergency calls included cancelled

calls and those that were attended to by other private emergency service providers. Global

values of these parameters were calculated for all the four sub-stations as presented in Table

5.2.

Table 5.2: Summary of Model Input Parameters for the Heterogeneous Sub-stations.

Item Parameter Frequency Proportion % Frequency

Call filter
Emergency calls 16648 0.92 92%

Non-emergency calls 1435 0.08 8%
Total 18083 1.00 100%

Calls required to be categorised into three categories namely: category A (Road traffic

accidents/emergencies), category B (Maternity clinics/maternity clinics from home) and cat-

egory C (Removals/transfers) together with their probability of occurrences. It was observed
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from the data that these vary from one sub-station to another and hence were computed

separately for each sub-station. The service on scene delay (SOS) and no service on scene

required delay (NSOS) proportions of occurrence was also computed and the statistics are

summarised in Table 5.3. The NSOS proportions were derived from the false alarm good

intent (FAGI) and false alarm malicious (FAM) calls as these usually result in fewer time

delays as compared to cases where service on the scene is required and rendered to the

patient(s).

Table 5.3: Nature of Service and Call Category Classification Proportions by Sub-station.

Station SOS NSOS Total Cat A Cat B Cat C Total
Famona 0.84 0.16 1.0 0.69 0.26 0.05 1.0

Northend 0.84 0.16 1.0 0.58 0.34 0.08 1.0
Nketa 0.93 0.07 1.0 0.56 0.37 0.07 1.0

Nkulumane 0.94 0.06 1.0 0.62 0.36 0.02 1.0

The NSOS emergencies emanate from the FAM and FAGI where the general service time

is smaller as compared to cases where SOS is required and rendered. Proportions of the

SOS emergencies are seemingly higher in the western suburbs (Nketa and Nkulumane) as

compared to the eastern suburbs (Famona and Northend).

5.3 Developing Simulation Models

Simulation models are to be developed taking consideration of the model parameters devel-

oped in the last section whilst performance measurements are recorded from the ARENA

simulation package. In developing the simulation model, the number of ambulances was in-

cremented from one (1) to the stipulated number of allocated ambulances to each sub-station

whilst changes in performance measures namely: average time of a call in system, average

response time, average number of calls in response queue, average queue time, throughput

ratio and ambulance utility levels were being observed.
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The throughput ratio, represents the number of emergency ambulance calls that are

served divided by the calls generated for the 24 hour day period and is expressed as a

fraction. A fraction given by 10
15

, would imply that of the fifteen(15) received emergency calls,

ten(10) were served up to the point where a patient was delivered at a health institution

during the 24 hour working period. The remaining five(5) calls were still within the system

awaiting some form of service. According to the official reports from the department of the

fire brigade, Famona was allocated one(1), Northend one(1), Nketa three(3) and Nkulumane

one(1) ambulance(s) respectively. A schematic diagram of the simulation model in ARENA

is presented in Figure 5.1.

 

Figure 5.1: A Schematic Diagram of a Simulation Model in ARENA.
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5.3.1 Simulation Model Building for Famona Station

Famona station was allocated one(1) ambulance to service its allocated geographical area.

A summary of simulation modelling results is presented in Table 5.4.

Table 5.4: Simulation Model Performance Measures for Famona Station.

Number of Ambulances 1
Average time in system (minutes) 86.15
Average response time (minutes) 40.51
Average number in response queue 0.04
Average queue time (minutes) 6.58
Throughput ratio 8

9
=0.89

Ambulance utility (%) 48

On average a single emergency call is queuing for an ambulance for an average time of

approximately seven(7) minutes. The ambulance response time is averaging at approximately

41 minutes, while it takes approximately 86 minutes to completely service an emergency call.

The single ambulance allocated has an utility of 48% of its allocated day-time which implies

that it is busy 48% of the day. The throughput ratio stands at 89%.

5.3.2 Simulation Model Building for Northend Station

Northend station was allocated one(1) ambulance to service its allocated geographical area.

A summary of simulation modelling results is presented in Table 5.5.

Table 5.5: Simulation Model Performance Measures for Northend Station.

Number of Ambulances 1
Average time in system (minutes) 102.74
Average response time (minutes) 58.70
Average number in response queue 0.19
Average queue time (minutes) 24.99
Throughput ratio 11

11
=1.00

Ambulance utility (%) 60
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On average an emergency call in Northend station’s geographical area of service is queuing

for approximately twenty-five(25) minutes. The ambulance response time is averaging at

approximately 59 minutes and it takes approximately 103 minutes to completely service an

emergency call. The single ambulance allocated has a utility level of 60% which implies that

it is busy 60% of the day. The throughput ratio stands at 100%.

5.3.3 Simulation Model Building for Nketa Station

According to the official reports from the department of fire brigade, Nketa station was

allocated three(3) ambulances to service its allocated geographical area. A summary of

simulation modelling results is presented in Table 5.6.

Table 5.6: Simulation Model Performance Measures for Nketa Station.

Number of Ambulances 1 2 3
Average time in system (minutes) 358.69 112.88 94.33
Average response time (minutes) 306.04 64.92 49.02
Average number in response queue 4.95 0.42 0.05
Average queue time (minutes) 289.73 26.07 3.21
Throughput ratio 16

22
=0.73 22

23
=0.96 24

24
=1.00

Ambulance utility (%)
Ambulance 1 100 78 54
Ambulance 2 66 45
Ambulance 3 53
Average ambulance utility (%) 100 72 42

Results for the Nketa station indicate that as the number of ambulances increases, there

is a corresponding improvement in the performance measures as submitted in Table 5.6.

The average time that an emergency call spends in the system decreases as the number

of allocated ambulances increases. The response time, the number of calls in the response

queue and the corresponding average time in the queue also decreases as the number of

ambulance allocation increases. The throughput ratio, increases with an increase in allocated

ambulances. However, the ambulance utilisation levels decrease as the number of allocations
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increases. These general insights are presented in Figure 5.2.

 

Figure 5.2: Influence of Varying Fleet Size on Performance Measures.

For the three(3) allocated ambulances for Nketa station, there is an average response

time of approximately 49 minutes with an average queue size of one(1) ambulance. The

resulting average queuing time of approximately three(3) minutes was observed. With the

three allocated ambulances, the ambulance utilisation stands at 42% with a throughput ratio

of 100% implying that all calls are responded to and attended to a point where appropriate

medical attention is provided for the 1440 minutes (24 hours) day.

5.3.4 Simulation Model Building for Nkulumane Station

Nkulumane station was allocated one(1) ambulance to service its allocated geographical area.

A summary of simulation modelling results is presented in Table 5.7.

An emergency call in the Nkulumane station’s geographical area of service with a single
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Table 5.7: Simulation Model Performance Measures for Nkulumane Station.

Number of Ambulances 1
Average time in system (minutes) 97.81
Average response time (minutes) 43.21
Average number in response queue 0.02
Average queue time (minutes) 3.67
Throughput ratio 7

7
=1.00

Ambulance utility (%) 46

ambulance allocated has an average queuing time of approximately 4 minutes. The ambu-

lance response time is averaging at approximately 43 minutes and it takes approximately

98 minutes to completely service an emergency call. The single ambulance allocated has

a utility level of 46% which implies that it is busy 46% of the day. The throughput ratio

stands at 100%.

5.4 Chapter Conclusion

The chapter focused on developing simulation models for the four sub-stations established to

service-specific geographical areas. Model input parameters such as inter-arrival time distri-

butions, response time distributions, service time distributions, proportions of occurrence of

emergency calls and emergency categories were computed using historical data. The models

developed are adequately mimicking the prevailing EMS process for Bulawayo city. It was

observed that the number of false alarm malicious (FAM) and false alarm good intent (FAGI)

calls are more prevalent in the eastern suburbs (Famona and Northend) as compared to their

counterparts in the western suburbs (Nketa and Nkulumane). This might imply that east-

ern suburb residents find themselves with a wide range of alternatives for health emergencies

resulting in more cases of false alarm with good intent (FAGI). Model performance measures

were observed and recorded, and among them included average time a call spends in the

system, average response time per entity, average response queue time, average number of
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calls in response queue and ambulance utility.

Results from Nketa station which was allocated more than one ambulance indicate that

as the number of ambulance sizes increases, there is a corresponding improvement in the

performance measures. The average time that an emergency call spends in the system

decreases as the number of allocated ambulances increases. The response time, the number

of calls in the response queue and the corresponding average time in the queue also decrease

as the number of ambulance sizes increases. The throughput ratio, increases with an increase

in allocated ambulances. The ambulance utilisation levels decrease as the ambulance fleet

size increases.

The average response times are relatively high in comparison to international standards

of 5 to 10 minutes as stipulated in the literature. Average queuing times and number of

ambulances queuing are significantly high and undesirable in terms of service delivery as

they have a negative bearing on human-based outcomes of safety and satisfaction. Safety

in terms of the chances of survival and satisfaction in terms of quality of service delivery

across the EMS response cycle. The general expectation is that no call should queue for

service. Hence, there is a need to determine the optimum ambulance deployment models

that minimises the number of ambulances needed to provide a specific service level. The

next chapter seeks to address the issue by adopting optimisation for simulation through the

use of sensitivity analysis.



Chapter 6

Sensitivity Analysis: Optimisation for

Simulation

6.1 Introduction

This chapter focuses on finding optimal fleet size by applying the optimisation for simula-

tion technique to analyse the different model scenarios based on the performance measures.

Sensitivity analysis on the developed models was conducted in order to investigate various

scenarios in the build-up to public emergency preparedness. The chapter also focuses on in-

tegrating the ANN public emergency ambulance demand (PEAD) forecasts, whilst adjusting

the ambulance fleet sizes in order to optimise the levels of preparedness. The objective is

to evaluate whether the adopted deployment plan is adequate to meet future demand levels

as predicted by ANN. Multiple performance measures such as average entity time in the

system, average response time, average response queue time, the average number of calls in

the response queue, throughput ratios, and the ambulance utility levels will be considered

to evaluate the models.
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6.2 Optimum Static Ambulance Deployment Maintain-

ing RTD

This section employs sensitivity analysis to explore the influence of increasing the ambulance

fleet size whilst maintaining the same response time distributions for all the sub-stations.

Six performance measures namely: average entity time in the system, average response time,

average response queue time, the average number of calls in the response queue, throughput

ratios, and the ambulance utility levels were used to identify the optimal static ambulance

deployment.

6.2.1 Ambulance Deployment Plan for Famona Station

Famona station was initially allocated one(1) ambulance to service its allocated geographical

area. Increasing the ambulance fleet size from one(1) to two(2) resulted in positive significant

improvements of all the performance measures except for the utilization levels which dropped

from 48% to 24% as presented in Table 6.1. Further increase in fleet size from two(2) to

three(3) did not result in changes of all the performance measures except for the utilisation

levels which decreased from 24% to 15% respectively. Therefore two(2) ambulances result

as the optimal static ambulance deployment when maintaining the system predetermined

response time distribution.

This optimal static deployment of two(2) ambulances for Famona station will result in

an average response time of 32 minutes, with no queuing calls and an average call time in

the system of 73 minutes. The two ambulances are expected to be busy 24% of the 24 hour

shift time. Eighty percent of the calls received in the shift will be serviced right up to the

process end depending on the needs of the patient.
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Table 6.1: Simulation Model Performance Measures for Famona Station.

Number of Ambulances 1 2 3
Average time in system (minutes) 86.15 73.06 73.06
Average response time (minutes) 40.51 32.29 32.29
Average number in response queue 0.04 0.0 0.0
Average queue time (minutes) 6.58 0.0 0.0
Throughput ratio 8

9
=0.89 8

10
=0.80 8

10
=0.80

Ambulance utility (%)
Ambulance 1 48 31 17
Ambulance 2 16 19
Ambulance 3 10
Average ambulance utility (%) 48 24 15

6.2.2 Ambulance Deployment Plan for Northend Station

Northend station was initially allocated one(1) ambulance to service its allocated geograph-

ical area. Increasing the ambulance fleet size from one(1) to two(2) resulted in positive

significant improvements of all the performance measures except for the utilization levels

which decreased from 60% to 19% as presented in Table 6.2. Further increase in fleet size

from two(2) to three(3) did not result in changes of all the performance measures except

for the utilization levels which decreased from 19% to 13% respectively. Therefore two(2)

ambulances result as the optimal static ambulance deployment when maintaining the system

predetermined response time distribution.

This optimal static deployment of two(2) ambulances for Northend station will result in

an average response time of 44 minutes, with no queuing calls and an average call time in the

system of 79 minutes. The two ambulances are expected to be busy 19% of the 24 hour shift

time. All of the calls received in the 24-hour shift will be serviced right up to the process

end depending on the needs of the patient.
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Table 6.2: Simulation Model Performance Measures for Northend Station.

Number of Ambulances 1 2 3
Average time in system (minutes) 102.74 78.89 78.89
Average response time (minutes) 58.70 44.39 44.39
Average number in response queue 0.19 0.0 0.0
Average queue time (minutes) 24.99 0.0 0.0
Throughput ratio 11

11
=1.00 7

7
=1.00 7

7
=1.00

Ambulance utility (%)
Ambulance 1 60 31 26
Ambulance 2 7 13
Ambulance 3 0.0
Average ambulance utility (%) 60 19 13

6.2.3 Ambulance Deployment Plan for Nketa Station

Nketa station was officially allocated three(3) ambulances to service its geographical zone.

As the number of ambulances was increased systematically from three(3) to five(5), there

was a corresponding significant improvement of all the performance measures except for the

utilisation levels with observed decreasing trends. The utilisation levels decreased from 42%

to 30% as presented in Table 6.3.

Table 6.3: Simulation Model Performance Measures for Nketa Station.

Number of Ambulances 1 2 3 4 5 6
Aveg. time in system (min.) 358.69 112.88 94.33 95.74 87.43 87.43
Aveg. response time (min.) 306.04 64.92 49.02 41.5 40.68 40.68
Aveg. no. in response queue 4.95 0.42 0.05 0.01 0.0 0.0
Aveg, queue time (min.) 289.73 26.07 3.21 0.81 0.0 0.0
Throughput ratio 16

22
= 0.73 22

23
=0.96 24

24
=1.0 22

24
=0.92 25

25
=1.0 25

25
=1.0

Ambulance utility (%)
Ambulance 1 100 78 54 55 48 39
Ambulance 2 66 45 35 28 20
Ambulance 3 53 28 29 27
Ambulance 4 30 11 12
Ambulance 5 35 30
Ambulance 6 24
Aveg. ambulance utility (%) 100 72 42 37 30 25
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A further attempt to increase the ambulance fleet size from five(5) to six(6) did not

yield any changes in the performance measures except for the ambulance utility levels which

decreased from 30% to 25% respectively. Therefore five(5) ambulances result as the optimal

static ambulance deployment when maintaining the system predetermined response time

distribution.

This optimal static deployment of five(5) ambulances to Nketa station will result in an

average response time of 41 minutes, with no queuing calls and an average call time in the

system of 87 minutes. The five ambulances are expected to be busy 30% of the 24-hour time

shift. All of the calls received in the 24-hour shift will be serviced right up to the process

end depending on the needs of the patient.

6.2.4 Ambulance Deployment Plan for Nkulumane Station

Nkulumane station was officially allocated a single ambulance to service the allocated geo-

graphical zone. When the ambulance fleet size was increased from one(1) to two(2), all the

performance measures significantly increased positively except for the ambulance utilization

levels which decreased from 29% to 24% as presented in Table 6.4. An attempt to increase

the fleet size further from two(2) to three(3) ambulances did not yield any changes for the

performance measures except for the utilization levels which dropped from 24% to 16% as

expected. Therefore two(2) ambulances result as the optimal static ambulance deployment

when maintaining the system predetermined response time distribution for Nkulumane sta-

tion.

This optimal static deployment of two(2) ambulances for the Nkulumane station will

result in an average response time of 44 minutes, with no queuing calls and an average call

time in the system of 83 minutes. The two ambulances are expected to be busy 24% of

the 24 hour shift time. Eighty-six percent of the calls received in the 24-hour shift will be
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Table 6.4: Simulation Model Performance Measures for Nkulumane Station.

Number of Ambulances 1 2 3
Average time in system (minutes) 97.81 83.04 83.04
Average response time (minutes) 43.21 43.95 43.95
Average number in response queue 0.02 0.0 0.0
Average queue time (minutes) 3.67 0.0 0.0
Throughput ratio 7

7
=1.00 6

7
=0.86 6

7
=0.86

Ambulance utility (%)
Ambulance 1 29 32 32
Ambulance 2 15 0.0
Ambulance 3 15
Average ambulance utility (%) 29 24 16

serviced right up to the process end depending on the needs of the patient.

6.2.5 Summary Statistics for Static Ambulance Deployment Plan

This section explored the concept of optimising the fleet sizes whilst maintaining constant

input parameters such as response time, service time and category occurrence proportions

without specifying the actual number of ambulances being serviced on a specific 24 hour (1440

minutes) working day. Table 6.5 is a summary of performance statistics for the optimum

static ambulance deployment for the four sub-stations. The abbreviations used in Table 6.5

are defined as:

� AVTIS is the average total duration in the system (minutes).

� AVRT is the average response time per entity (minutes).

� AVNRQ is the average number of calls in the response queue.

� AVQT is the average queuing time per call (minutes).

� NEC is non-emergency calls

� TPR is the throughput ratio expressed as a percentage.
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� AUR is the average utility ratio expressed as a percentage.

� NOA is the number of ambulances.

Table 6.5: Summary Statistics for Static Ambulance Deployment by Sub-station.

Sub-station AVTIS AVRT AVNRQ AVQT TPR AUR Optimal Current Deficit
(min.) (min.) (min.) (%) (%) size size

Famona 73.06 32.29 0 0 80 24 2 1 1
Northend 78.89 44.39 0 0 100 29 2 1 1

Nketa 87.43 40.68 0 0 100 30 5 3 2
Nkulumane 83.04 43.95 0 0 86 24 2 1 1

Overall 80.61 40.33 0 0 91.5 24.25 11 6 5

It can be observed that even though optimum fleet sizes have been determined for each

sub-station, the response times remain relatively high ranging from 32.29 minutes (Famona)

and 44.39 minutes (Northend). Results indicate that the average total duration time in the

system for each call is high in the western suburbs serviced by Nketa and Nkulumane sub-

stations as compared to the eastern suburbs covered by Famona and Northend sub-stations

respectively. Across all the sub-stations, it is taking an average of more than an hour (60

minutes) to completely service an emergency ambulance call.

Under the prevailing conditions, there is a deficit of five (5) ambulances to maintain

the optimal fleet size where queues and queuing time for an ambulance are reduced to

zero. However, there is a need to look into the future and assess the performance of the

models using forecasts from the ANN. This will help in the strategic, tactical and operational

planning in the EMS delivery process.
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6.3 Integrating ANN PEAD Forecasts in Ambulance

Deployment

The objective is to integrate the ANN public emergency ambulance demand (PEAD) fore-

casts and the optimal models developed in the prior section. The optimum ambulance allo-

cations determined in the previous section were: Famona (2), Northend (2), Nketa (5) and

Nkulumane (2) ambulances respectively. The inter-arrival time, service time and response

time distributions will be maintained in the sensitivity analysis.

6.3.1 Computation of Expected Daily PEAD from ANN Forecasts

In order to apportion the predicted public emergency ambulance demand(PEAD) by ANN

to the different sub-stations, proportions of occurrence of demand calls at each station were

computed using historical data of 2018. A summary of the calculations of proportions is pre-

sented in Table 6.6. The calculated proportions were as follows: Famona (18.1%), Northend

(17.6%), Nketa (47.1%) and Nkulumane (17.2%) respectively.

These proportions were then used to apportion the 2019 ANN forecasts as an integration

of the forecasting and simulation concepts for future EMS preparedness. A summary of the

expected monthly public ambulance demand calls per station is presented in Table 6.7.

The expected average daily calls per station were further calculated and results are sum-

marised in Table 6.8. These calculated expected daily calls will be incorporated in the

determination of the optimal number of ambulances to be allocated in each station every

month of 2019.
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Table 6.6: Proportions of PEAD Occurrences in Sub-stations.

Month Famona Northend Nketa Nkulumane Total
January 261 254 679 248 1442
February 244 237 633 232 1346

March 273 266 711 260 1510
April 250 243 650 238 1381
May 245 238 636 233 1352
June 251 244 652 238 1384
July 267 260 694 254 1475

August 259 252 675 246 1433
September 247 240 643 235 1365
October 224 218 585 213 1240

November 238 231 620 226 1315
December 254 247 662 242 1405

Station Total 3013 2930 7840 2865 16648
Calculated Ratio 0.181 0.176 0.471 0.172 1

% ratio 18.1% 17.6% 47.1% 17.2% 100%

6.3.2 Optimum Deployment Plan for Famona Station

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 8, 9 and 10 as the expected daily number of calls for Famona station.

Reference is made to Table 6.8. The ambulance fleet sizes were incremented from one(1) to

three(3) whilst monitoring the performance measures.

In all cases with expected daily demands of 8, 9 or 10 calls respectively, increasing the

number of ambulances beyond two(2) ambulances did not significantly improve any of the

performance measures (Table 6.9). The deployment of two(2) ambulances would therefore

ensure that no ambulance is queuing with throughput ratios above 89% recorded. It can

be observed that ambulance utility levels decrease with an increase in ambulance fleet size.

Thus increasing the ambulance fleet size beyond the threshold of two(2) ambulances did not

bring any significant changes in the performance measures. Thus two(2) ambulances are the

optimum ambulance allocation throughout the calendar year of 2019 as they were adequate

to cover the expected annual daily demands of 8, 9, and 10 for the Famona sub-station.
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Table 6.7: Expected Monthly Ambulance Demand Per Sub-station.

Station ANN Forecast Famona Northend Nketa Nkulumane
(2019) (18.1%) (17.6%) (47.1%) (17.2%)

January 1622 294 285 764 279
February 1494 270 263 704 257

March 1713 310 301 807 295
April 1368 248 241 644 235
May 1482 268 261 698 255
June 1318 239 232 620 227
July 1391 252 245 655 239

August 1526 276 269 719 262
September 1572 285 277 740 270
October 1541 279 271 726 265

November 1532 277 269 722 264
December 1638 296 289 771 282

Total 18197 3294 3203 8570 3130

Table 6.8: Expected Daily Ambulance Demand Per Sub-station.

Station Days in the Month Famona Northend Nketa Nkulumane
January 31 9 9 25 9
February 28 10 9 25 9

March 31 10 10 26 10
April 30 8 8 21 8
May 31 9 8 23 8
June 30 8 8 21 8
July 31 8 8 21 8

August 31 9 9 23 8
September 30 10 9 25 9
October 31 9 9 23 9

November 30 9 9 24 9
December 31 10 9 25 9

Overall average 9 9 24 9
Maximum 10 10 25 10
Minimum 8 8 21 8

6.3.3 Optimum Deployment Plan for Northend Station

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 8, 9, and 10 as the expected daily number of calls for Northend station.
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Table 6.9: Optimum Deployment Plan for Famona Station.

Calls NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
(N) (min.) (min.) (min.) (%) (%) (min.) (min.)

1 86.15 38.80 0.03 5.32 8/8 0.45 16.44 65.9
N=8 2 76.06 33.07 0.0 0.0 8/8 0.21 15.62 64.37

3 73.06 33.07 0.0 0.0 8/8 0.14 15.62 64.37
1 86.15 40.51 0.04 6.58 8/9 0.48 16.44 65.9

N=9 2 73.06 32.29 0.0 0.0 8/9 0.23 15.62 64.37
3 73.06 32.29 0.0 0.0 8/9 0.15 15.62 64.37
1 86.15 40.51 0.04 6.58 8/9 0.48 16.44 65.9

N=10 2 73.06 32.29 0.0 0.0 8/9 0.24 15.62 64.37
3 73.06 32.29 0.0 0.0 8/9 0.15 15.62 64.37

Reference is made to Table 6.8. The ambulance fleet sizes were incremented from one(1) to

three(3) whilst monitoring the performance measures.

In all the cases with expected daily demands of 8, 9 or 10 calls respectively, increasing

the ambulance fleet size beyond two(2)ambulances did not significantly improve any of the

performance measures (Table 6.10). The deployment of two(2) ambulances would therefore

ensure that no ambulance is queuing with throughput ratios of 100% recorded. It was also

observed that ambulance utility levels decrease with an increase in ambulance fleet size.

Thus increasing the ambulance fleet size beyond the threshold of two(2) ambulances did not

bring any significant changes in the performance measures. Thus two(2) ambulances are the

optimum ambulance allocation throughout the calendar year of 2019 as they were adequate

to cover the expected annual daily demands of 8, 9, and 10 for Northend station.

6.3.4 Optimum Deployment Plan for Nketa Station

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 21, 23, 24, 25 and 26 as expected daily number of calls. Reference is made to

Table 6.8. The ambulance fleet sizes were incremented from two(2) up to six(6) ambulances

whilst recording the performance measures.
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Table 6.10: Optimum Deployment Plan for Northend Station.

Calls NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
(N) (min.) (min.) (min.) (%) (%) (min.) (min.)

1 93.87 47.63 0.09 17.91 7/7 0.37 31.82 52.0
N=8 2 94.34 49.26 0.0 0.0 6/6 0.20 34.47 55.68

3 94.34 49.26 0.0 0.0 6/6 0.13 34.47 55.68
1 93.79 46.67 0.09 15.67 8/8 0.43 31.82 52.22

N=9 2 85.65 49.26 0.0 0.0 6/6 0.18 27.78 53.63
3 85.65 49.26 0.0 0.0 6/6 0.13 27.78 53.63
1 103.01 54.85 0.14 22.61 9/9 0.50 31.82 52.84

N=10 2 78.89 44.40 0.0 0.0 7/7 0.19 26.84 53.63
3 78.89 44.40 0.0 0.0 7/7 0.13 26.84 53.63

In all the cases with expected daily demands of 21, 23, 24, 25 and 26 calls respectively,

increasing the ambulance fleet size beyond five(5) ambulances did not significantly improve

any of the performance measures (Table 6.11). The deployment of five(5) ambulances would

therefore ensure that no ambulance is queuing with throughput ratios of 100% recorded. It

was also observed that ambulance utility levels decreased with an increase in ambulance fleet

size. Thus increasing the ambulance fleet size beyond the threshold of five(5) ambulances

did not bring any significant changes in the performance measures. Thus five(5) ambulances

are the optimum ambulance allocation throughout the calendar year of 2019 as they were

adequate to cover the expected annual daily demands of 21, 23, 24, 25 and 26 for Nketa

station.

6.3.5 Optimum Deployment Plan for Nkulumane Station

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 8, 9, and 10 as the expected daily number of calls for the Nkulumane

station. Reference is made to Table 6.8. The ambulance fleet sizes were incremented from

one(1) to three(3) whilst monitoring the performance measures.

In all the cases with expected daily demands of 8, 9 or 10 calls respectively, increasing
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Table 6.11: Optimum Deployment Plan for Nketa Station.

Calls NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
(N) (min.) (min.) (min.) (%) (%) (min.) (min.)

2 120.75 66.38 0.30 24.20 18/18 0.61 53.18 54.61
3 101.16 51.82 0.05 4.05 19/19 0.43 0.0 49.34

N=21 4 93.72 44.02 0.01 0.97 20/20 0.32 11.84 51.7
5 92.21 41.75 0.0 0.0 20/20 0.26 11.84 52.49
6 92.21 41.75 0.0 0.0 20/20 0.26 11.84 52.49
2 113.3 61.06 0.3 22.48 19/19 0.60 53.18 52.06
3 102.59 53.74 0.05 3.66 21/21 0.48 0.0 48.84

N=23 4 94.47 42.95 0.01 0.88 22/22 0.36 11.84 53.41
5 89.23 39.71 0.0 0.0 22/22 0.27 11.84 51.32
6 89.23 39.71 0.0 0.0 22/22 0.23 11.84 51.32
2 112.16 59 0.3 21.36 20/20 0.63 53.18 53.16
3 98.97 51.62 0.05 3.5 22/22 0.48 23.42 49.75

N=24 4 95.74 42.95 0.01 0.88 22/22 0.37 11.84 54.74
5 89.73 40.7 0.0 0.0 23/23 0.29 19.56 53.45
6 89.73 40.7 0.0 0.0 23/23 0.24 19.56 53.45
2 115.24 59.58 0.31 20.98 21/21 0.69 53.18 56.08
3 96.87 49.79 0.05 3.35 23/23 0.50 23.42 49.33

N=25 4 95.74 41.49 0.01 0.84 22/23 0.39 11.84 54.74
5 88.97 41.07 0.0 0.0 24/24 0.30 20.14 53.45
6 88.97 41.07 0.0 0.0 24/24 0.25 20.14 53.45
2 113.51 62.25 0.35 23.01 22/22 0.69 43.77 52.93
3 94.33 49.02 0.05 3.21 24/24 0.51 17.09 49.33

N=26 4 95.74 41.49 0.01 0.81 22/23 0.37 11.84 54.74
5 87.43 40.68 0.0 0.0 25/25 0.30 15.78 52.65
6 87.43 40.68 0.0 0.0 25/25 0.25 15.78 52.65

the ambulance fleet size beyond two(2)ambulances did not significantly improve any of the

performance measures (Table 6.12). The deployment of two(2) ambulances would therefore

ensure that no ambulance is queuing with throughput ratios of 86% recorded. It was also

observed that ambulance utility levels decrease with an increase in ambulance fleet size.

Thus increasing the ambulance fleet size beyond the threshold of two(2) ambulances did not

bring any significant changes in the performance measures. Thus two(2) ambulances are the

optimum ambulance allocation throughout the calendar year of 2019 as they were adequate
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Table 6.12: Optimum Deployment Plan for Nkulumane Station.

Calls NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
(N) (min.) (min.) (min.) (%) (%) (min.) (min.)

1 97.81 43.21 0.02 3.67 7/7 0.46 50.86 56.06
N=8 2 83.04 43.95 0.0 0.0 6/7 0.20 34.5 53.54

3 83.04 43.95 0.0 0.0 6/7 0.13 34.5 53.54
1 97.81 43.21 0.02 3.67 7/7 0.46 50.86 56.09

N=9 2 83.04 43.95 0.0 0.0 6/7 0.20 34.5 53.54
3 83.04 43.95 0.0 0.0 6/7 0.13 34.5 53.54
1 97.81 43.21 0.02 3.67 7/7 0.46 50.86 56.09

N=10 2 83.04 43.95 0.0 0.0 6/7 0.20 34.5 53.54
3 83.04 43.95 0.0 0.0 6/7 0.13 34.5 53.54

to cover the expected annual daily demands of 8, 9, and 10 for the Nkulumane station.

6.3.6 Computation of Fleet Sizes for Expected Daily Calls from

ANN Forecasts

The Optimum ambulance deployment plan results when integrating ANN forecasts for 2019

for all the sub-stations will not change (Table 6.13).

Table 6.13: Computation of Fleet Sizes on Expected Daily Calls (N) from ANN Forecasts.

Expected Daily Calls (N)

Region Station N=8 N=9 N=10 N=21 N=23 N=24 N=25 N=26
Eastern Famona 2 2 2 - - - - -
Suburbs Northend 2 2 2 - - - - -
Western Nketa - - - 5 5 5 5 5
Suburbs Nkulumane 2 2 2 - - - - -

A summary of the annual deployment plan is presented in Table(6.14). Indications are

that the initial optimum deployment plan will not change when considering the annual ANN

expected daily demand forecasts.

The results therefore, imply that the initially determined optimum deployment plan of
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Table 6.14: Optimal Fleet Size For ANN Expected Daily Ambulance Demand Forecasts by
Sub-station.

Station Famona Northend Nketa Nkulumane Fleet Size
January 2 2 5 2 11
February 2 2 5 2 11

March 2 2 5 2 11
April 2 2 5 2 11
May 2 2 5 2 11
June 2 2 5 2 11
July 2 2 5 2 11

August 2 2 5 2 11
September 2 2 5 2 11
October 2 2 5 2 11

November 2 2 5 2 11
December 2 2 5 2 11

eleven(11) ambulances is adequate to meet future demand as predicted by ANN.
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6.4 Chapter Conclusion

Chapter six (6) focused on developing optimal ambulance deployment plans by incorporating

ANN forecasts and varying the fleet sizes while observing the multiple performance measures.

Key insights can be derived from Nketa Station with a wide variation in the expected number

of calls and ambulance fleet size required for deployment in achieving the optimal solution.

A summary of key indicators was tracked as fleet sizes were incremented to optimal levels

as presented in Figure 6.1. As the fleet size is increased there is a corresponding decrease in

the average response time to a specific threshold (5 ambulances) and beyond this optimal

fleet size, the average response time remains constant. It was also observed that as the fleet

size increases to a specific threshold, the average queuing time also decreases to zero. The

same applies to the number of calls queuing in the response time. However, the ambulance

utilisation levels vary inversely with an increase in fleet size. The optimum deployment plans

still have a high average response time which is far above the recommended international

standards, hence the need to adjust accordingly through the numerical experiments.

From the results, it was observed that increasing the number of ambulances influences

the average response time below a certain threshold. When the fleet size is increased beyond

this threshold, no significant changes occur in the performance measures. It was observed

that as the fleet size is increased, the ambulance utilisation levels decreased. Hence, there is a

need to balance resource allocation and capacity utilisation to avoid the idleness of essential

equipment and human resources. This has a significant direct influence on additional costs

that have to be incurred with increased number of emergency ambulances and personnel,

whom in some cases will be idle. The integration of ANN forecasts did not bring any

significant changes to the initial optimum deployment plan: Famona (2), Northend (2),

Nketa (5) and Nkulumane (2) ambulances respectively, throughout the the year of 2019.

The results imply that the initial deployment plan was adequate to meet future demand for
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(a) Influence of Increasing Number of Ambulances on Average Response Time and 

Queuing Time  
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Figure 6.1: Implications of Varying Fleet Sizes on Performance Indicators.
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ambulance services. Under the prevailing conditions, there is a deficit of five (5) ambulances

to maintain the optimal fleet size where queues and queuing time for an ambulance are

reduced to zero. Average response times across the four heterogeneous regions remain high

far beyond the 5 to 10 minutes international standard. Chapter seven (7) will investigate

the influence of changing the response time distributions on the average response time and

optimum deployment plans in order to meet international prescribed standards.



Chapter 7

Numerical Experiments

7.1 Introduction

In this chapter, numerical experiments are conducted in order to investigate various scenarios

in the build-up to public emergency preparedness. The chapter will integrate the ANN public

emergency ambulance demand (PEAD) forecasts, whilst adjusting the ambulance fleet sizes

in order to optimise the levels of preparedness. Special consideration would involve the

determination of an optimal static ambulance deployment plan by varying the response time

to international standards against the predicted ANN values. Performance measures such as

the average entity time in the system, average response time, average response queue time,

the average number of calls in the response queue, throughput ratio, and the ambulance

utility levels will be considered to evaluate the models.

7.2 Empirical Evidence

Several researchers have made similar attempts in conducting numerical experiments to

specific areas across the world involving emergency medical services. Ingolfsson et al. (2008)

145
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focused on the allocation of ambulance vehicles to a set of (existing or planned) ambulance

stations with known locations and alluded that the action to reduce response time due to

delays (pre-trip delay and queuing delay) is far easier and less costly to reduce than travel

times. Pre-trip delays emanate from call delay or chute delay. A call delay is the time spent

on taking a call, establishing the severity of the call and dispatching an ambulance crew.

Chute delay is the time that elapses from when a crew is dispatched until the vehicle starts

moving. Queuing delays occur when no ambulance(s) are available either busy attending to

other calls and is often attributed to system congestion. The study indicated that reducing

the travel times usually requires adding ambulance stations or hospitals which is costly as

the municipality is currently financially under-resourced. Their emphasis on response time

was that reducing the time by 5 seconds, is actually 5 seconds saved and it does not matter

which component of response time these savings have come from. Here, the expectation is

that reducing the response time has a huge bearing in improving service delivery, survival

rates and patient satisfaction.

Leknes et al. (2017) presented almost similar research of an EMS problem which focused

on ambulance station location and allocation problem which they referred to as the Maximum

Expected Location Problem for Heterogeneous Regions (MEPLP-HR). Its main objective was

to give the population of Sor-Trondelag County in Norway the best possible EMS according to

a set of selected performance measures. They highlighted that the probability of an available

ambulance depends on the arrival rate of calls at a station, number of ambulances allocated to

the station, the service time of the ambulances and the priority given to calls (urgency levels)

as determined by the EMS provider. In their research they were able to demonstrate that as

the response time decreases, there is a corresponding increase in the probability of survival

of a patient. They further demonstrated that as the service rate (calls/hour) increases, the

probability of no available ambulance decreases. They were also able to demonstrate that as

the arrival rate increases, the probability of no available ambulances increases as it translates
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to an increase in demand for EMS provision.

Zhen et al. (2014) applied the simulation optimisation framework for ambulance deploy-

ment and relocation to the city of Shanghai in China. In their case, they also carried out

some numerical experiments to determine the influence of parameters on the response time

and the ambulance deployment plan. They were able to observe that the number of ambu-

lances, the number of ambulance bases, and the number of hospitals had an impact on the

average response time.

The focus of this chapter is therefore to explore the influence of varying the response time

distribution on the optimum deployment plan to international standards of 5 to 10 minutes

by adopting a uniform distribution U(5; 10). Both U(10; 15) and U(5; 10) distributions were

investigated in order to track any trends in the influence of varying response time distribu-

tions on deployment plans. This was strongly motivated by the fact that it is easier, cheaper

and feasible for management to control some of the processes that are directly linked to the

response time. Implications to managerial decision-making as a result of the findings will be

discussed in detail.

7.3 Influence of Standardising Response Time

This section focuses on adjusting fleet size by varying the response time distributions (RTD)

to a uniform distribution with parameters U(10; 15) and U(5; 10) whilst incorporating the

ANN forecasts. The uniform distribution of the response time would allow the response

time to vary between 10 and 15 minutes and, 5 and 10 minutes respectively. The simulation

model parameters such as the inter-arrival of calls and service time distributions would be

maintained whilst the performance measures such as the overall total duration of a call in

system, an average number of calls in response queue, the average time in response queue,

throughput ratio and ambulance utilisation levels will be observed to evaluate the models.
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This section explores the impact of reducing the response time on the overall deployment

plan for future planning by including the ANN forecasts. Table 7.1 is a summary of key

parameters to be considered in the model build-up process.

Table 7.1: Proposed Simulation Model Response Time Distributions and Parameters Per
Sub-station.

Station Initial Proposed Current Opt. Expected ANN
RTD RTD Fleet Size forecasts

Famona 2+GAMM(22;1.48) U(10;15)/U(5;10) 2 8,9,10
Northend 2+GAMM(23.9;1.36) U(10;15)/U(5;10) 2 8,9,10

Nketa -0.001+ERLA(18.5;2) U(10;15)/U(5;10) 5 21,23,24,25,26
Nkulumane 0.999+GAMM(21.8;1.62) U(10;15)/U(5;10) 2 8,9,10

7.3.1 Comparison of Optimum Deployment Plans for Famona Sta-

tion

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 8, 9, and 10 as the expected daily number of calls for Famona Station (Table

7.1). The response time distribution is assumed to follow a uniform distribution given by

U(10; 15). Results indicate that increasing the number of ambulances beyond the threshold

of one(1) ambulance would not improve the performance measures for all the cases (N= 8,

8 and 10) as presented in Table 7.2. However, the average response time has significantly

improved by standardising the response time distribution.

A comparison of the different performance changes due to the influence of the changes in

response time distributions on the optimal deployment plan for Famona Station by adopting

a U(5, 10) response distribution was conducted. A comparative summary of consolidated

results of the optimum deployment plans is presented in Table 7.3.

The overall optimal deployment plan for Famona changes for all the expected daily fore-

casts (N=8, 9 and 10) from ANN. The optimum number of ambulances (NOA) decreases
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Table 7.2: Optimum Deployment Plan for Famona Station: RTD ∼ U(10; 15).

ANN NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
Forecasts (min.) (min.) (min.) (%) (min.) (min.)

1 52.92 12.92 0.0 0.0 8/8 0.29 15.62 64.37
N=8 2 52.92 12.92 0.0 0.0 8/8 0.15 15.62 64.37

3 52.92 12.92 0.0 0.0 8/8 0.10 15.62 64.37
1 52.92 12.89 0.0 0.0 8/9 0.33 15.62 64.37

N=9 2 52.92 12.89 0.0 0.0 8/9 0.17 15.62 64.37
3 52.92 12.89 0.0 0.0 8/9 0.11 15.62 64.37
1 52.92 12.79 0.0 0.0 8/10 0.33 15.62 64.37

N=10 2 52.92 12.29 0.0 0.0 8/10 0.18 15.62 64.37
3 52.92 12.79 0.0 0.0 8/10 0.12 15.62 64.37

from two(2) to one(1) as the response time is set between 5 to 10 minutes using the uniform

distribution U(5; 10) for all the cases. Therefore reducing the response time impacts posi-

tively on the performance measures/indicators. The average response time decreases whilst

the number of ambulances required to be deployed decreases without compromising service

delivery. Notably, the average total time a call is reported to be in the system significantly

decreases even though fewer ambulances would have been deployed across all the considered

cases. Moreover, the average utilisation levels (AUR) of ambulances increased significantly

with the reduced response time. Under these prevailing conditions, no emergency ambulance

call is expected to queue for service. The throughput ratios remained constant across the

optimal deployment plans.

7.3.2 Comparison of Optimum Deployment Plans for Northend

Station

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 8, 9, and 10 as the expected daily number of calls for Northend station (Table

7.1). The response time distribution is initially assumed to follow a uniform distribution

given by U(10; 15) and the summary of results is presented in Table 7.4.
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Table 7.4: Optimum Deployment Plan for Northend Station: RTD ∼ U(10; 15).

ANN NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
Forecasts (min.) (min.) (min.) (%) (min.) (min.)

1 53.71 16.25 0.02 4.14 6/6 0.21 23.78 51.14
N=8 2 56.61 11.83 0.0 0.0 6/6 0.12 34.47 55.68

3 56.61 11.83 0.0 0.0 6/6 0.08 34.47 55.68
1 51.28 15.87 0.02 3.55 7/7 0.23 23.61 51.14

N=9 2 58.04 11.63 0.0 0.0 7/7 0.14 34.47 55.36
3 58.04 11.63 0.0 0.0 7/7 0.09 34.47 55.36
1 57.45 15.54 0.02 3.11 8/8 0.30 36.38 51.14

N=10 2 58.90 11.63 0.0 0.0 8/8 0.17 34.47 54.95
3 58.90 11.63 0.0 0.0 8/8 0.11 34.47 54.95

A comparison of the performance changes due to the influence of changes in response time

distribution on optimal deployment plan for Northend Station was performed incorporating

results from adopting a U(5, 10). A comparative summary of consolidated results is presented

in Table 7.5.

The overall optimal deployment plan for Northend Station did not change for expected

daily forecasts (N=8, 9 and 10) from ANN forecasts. The optimum number of ambu-

lances (NOA) remains at two(2), however, significant decreases in the average response time

(AVRT) and the average total duration time of call in the system (AVTIS) were recorded re-

spectively. In all the cases discussed no emergency call is expected to queue for service. The

total number of ambulances to be served within a day as depicted by the throughput ratios

(TPR) of (6/6, 7/7 and 8/8) is expected to increase with reduced response time represented

by U(10; 15) and U(5; 10) respectively.

7.3.3 Comparison of Optimum Deployment Plans for Nketa Sta-

tion

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 21, 23, 24, 25 and 26 as expected daily number of calls (Table 7.1). The
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response time distribution is initially assumed to follow a uniform distribution given by

U(10; 15) and results are summarised in Table 7.6.

Table 7.6: Optimum Deployment Plan for Nketa Station: RTD ∼ U(10, 15).

ANN NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
Forecasts (min.) (min.) (min.) (%) (min.) (min.)

2 85.12 21.30 0.10 8.45 19/19 0.46 49.24 64.73
3 65.49 12.72 0.0 0.0 19/19 0.29 28.41 57.34

N=21 4 65.49 12.72 0.0 0.0 19/19 0.22 28.41 57.34
5 65.49 12.72 0.0 0.0 19/19 0.17 28.41 57.34
6 65.49 12.72 0.0 0.0 19/19 0.14 28.41 57.34
2 82.48 12.63 0.0 0.0 20/21 0.48 49.24 60.89
3 65.48 12.63 0.0 0.0 20/21 0.31 28.41 57.1

N=23 4 65.48 12.63 0.0 0.0 20/21 0.24 28.41 57.1
5 65.48 12.63 0.0 0.0 20/21 0.19 28.41 57.1
6 65.48 12.63 0.0 0.0 20/21 0.16 28.41 57.1
2 82.05 21.81 0.13 9.0 20/20 0.51 49.24 60.82
3 64.29 12.57 0.0 0.0 21/22 0.32 28.41 55.53

N=24 4 64.29 12.57 0.0 0.0 21/22 0.24 28.41 55.53
5 64.29 12.57 0.0 0.0 21/22 0.19 28.41 55.53
6 64.29 12.57 0.0 0.0 21/22 0.16 28.41 55.53
2 80.31 21.45 0.13 8.57 21/21 0.52 40.27 60.82
3 64.29 12.68 0.0 0.0 21/23 0.33 28.41 55.53

N=25 4 64.29 12.68 0.0 0.0 21/23 0.25 28.41 55.53
5 64.29 12.68 0.0 0.0 21/23 0.20 28.41 55.53
6 64.29 12.68 0.0 0.0 21/23 0.16 28.41 55.53
2 78.56 21.05 0.13 8.19 22/22 0.54 40.27 59.23
3 64.29 12.68 0.0 0.0 21/23 0.33 28.41 55.53

N=26 4 64.29 12.68 0.0 0.0 21/23 0.25 28.41 55.53
5 64.29 12.68 0.0 0.0 21/23 0.20 28.41 55.53
6 64.29 12.68 0.0 0.0 21/23 0.16 28.41 55.53

A comparison of the performance changes due to the influence of changes in response

time distribution by considering U(10; 15) and U(5; 10) uniform distributions on optimal

deployment plans for Nketa Station was performed. A comparative summary of consolidated

results is presented in Table 7.7 for all cases (N=21, 23, 24, 25 and 26) respectively.

Results in Table 7.7 indicate that reducing the response time by adopting a uniform
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distribution U(5; 10) resulted in the decrease of the optimal number of ambulances required

to achieve an optimal deployment plan. For Nketa Station the adoption of U(5; 10) would

result in a drop of the threshold fleet size from five(5) to three(3) ambulances across the

different scenarios (N=21, 23, 24, 25 and 26). Utilisation capacity levels increased with a

reduction of response time regardless of the decrease of the fleet size from five(5) to three(3)

ambulances across all the cases. The throughput ratios remain relatively high despite the

decrease in optimum fleet size where no emergency ambulance call is queuing for service.

Hence, service provision is not compromised by the resulting influence of reducing response

time and fleet size.

7.3.4 Comparison of Optimum Deployment Plans for Nkulumane

Station

The ANN forecasts indicated that over the whole year, across the different 12 months would

assume values of 8, 9, and 10 as the expected daily number of calls for Nkulumane sta-

tion (Table 7.1). The response time distribution is initially assumed to follow a uniform

distribution given by U(10; 15) and a summary of results is presented in Table 7.8.

Table 7.8: Optimum Deployment Plan for Nkulumane Station: RTD ∼ U(10; 15).

ANN NOA AVTIS AVRT AVNRQ AVQT TPR AUR NSOS SOS
Forecasts (min.) (min.) (min.) (%) (%) (min.) (min.)

1 57.64 12.71 0.0 0.0 7/7 0.28 34.5 52.76
N=8 2 57.64 12.71 0.0 0.0 7/7 0.14 34.5 52.76

3 57.64 12.71 0.0 0.0 7/7 0.09 34.5 52.76
1 57.64 12.71 0.0 0.0 7/7 0.28 34.5 52.76

N=9 2 57.64 12.71 0.0 0.0 7/7 0.14 34.5 52.76
3 57.64 12.71 0.0 0.0 7/7 0.09 34.5 52.76
1 57.64 12.71 0.0 0.0 7/7 0.28 34.5 52.76

N=10 2 57.64 12.71 0.0 0.0 7/7 0.14 34.5 52.76
3 57.64 12.71 0.0 0.0 7/7 0.09 34.5 52.76

A comparison on the performance changes due to the influence of changes in response
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time distribution on optimal deployment plan for Nkulumane Station was performed by

incorporating results from further adopting a U(5; 10) distribution as the response time

distribution. A comparative summary of consolidated results is presented in Table 7.9 for

all cases (N=8, 9 and 10) respectively.

In all the cases (N=8, 9 and 10), the threshold of one(1) ambulance was achieved and

any increase beyond this fleet size would not positively influence changes in the performance

measures (Table 7.9). Ambulance utility levels (AUR) increased as the optimal number of

ambulances allocated decreased. Results indicate that reducing the response time between

5 and 10 minutes by adopting a U(5; 10) distribution resulted in the decrease of the optimal

number of ambulances required to achieve an optimal deployment plan, without having calls

queuing for ambulance response services. Throughput ratios were observed to increase with

the variations in the response time distributions i.e. U(5; 10).
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7.3.5 Optimal Fleet Sizes for ANN Forecasts and Selected RTD

A summary of the optimum deployment plans when integrating ANN forecast and the re-

spective response time distributions are summarised in Table 7.10. Generally, the number

of ambulances required is high in the Western suburbs as compared to the Eastern suburbs.

The integration of the expected daily forecasts from ANN and the simulation modelling

process resulted in an optimal deployment plan presented in Table 7.10. The deployment

plan for the U(5; 10) indicates that eight(8) ambulances are required in February, March,

September and December whilst seven(7) ambulances are required for January, April, May,

June, July, August, September, October and November respectively.
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7.4 Implications of The Numerical Experiments

Standardising the response time between 5 to 10 minutes by adopting a uniform distribution

U(5, 10)) had a positive influence on the optimal deployment plan. It resulted in a significant

decrease in the number of ambulances to be deployed. The decrease in ambulances deployed

did not affect the overall performance of EMS provision as it resulted in the decreases of the

average response time, average total duration of the call in the system and reduced queuing

time to zero. The ambulance utilisation levels and the throughput ratios remained relatively

high and in some cases were observed to be increasing, implying that reducing the response

time impacts positively on the overall performance of the models. A comparison of the

ambulance deployment plans before and after adjusting for the response time distributions

is shown in Fig. 7.1.

To management, it is imperative to seriously consider ways of reducing the response time

as it has significant bearing in reducing the required number of ambulances, a critical but

scarce resource. A reduced number of ambulances, brings about reduced requirement of

human capital and also a reduced workload as staff members would be able to be rotated

more frequently as per international standards. One way is to focus on reducing the per-

trip delays which are operationally possible. There is a need therefore to manage activities

within the call center. This might include digitisation of switch boards in the call center,

training of the paramedics and provision of proper and modern equipment to the response

teams as this will go a long way in reducing the chute delay time. Provision of well serviced

and equipped ambulances will translate to reducing the ambulance travel time to the scene

where the emergency service is required. As an important department of Bulawayo City

Council, the department of fire and ambulance services could also lobby for decongestion

and resurfacing of old and dilapidated roads in order to increase access and speed when

responding to emergency calls based on scientific evidence.
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Figure 7.1: Comparison of Annual Optimum Deployment Plans for BEMS (2019).
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7.5 Chapter Conclusion

In this chapter, numerical experiments were conducted by integrating the ANN public emer-

gency ambulance demand (PEAD) forecasts, whilst adjusting the ambulance fleet sizes in

order to optimise the levels of preparedness. The focus of this chapter was to explore the

influence of varying the response time distribution on the optimum deployment plan to inter-

national standards of 5 to 10 minutes by adopting a uniform distribution given by U(5; 10).

This was strongly motivated by the fact that it is easier, cheaper and feasible for management

to control some of the processes that are directly linked to the response time. Performance

measures such as the average total entity time in the system, average response time, average

response queue time, the average number of calls in the response queue, and the ambu-

lance utility levels were considered in evaluating the models. Implications to managerial

decision-making as a result of the findings were discussed in detail. A comparison of the

deployment plans obtained from Chapter 6 and Chapter 7 were conducted in order to ascer-

tain the influence of the response time as a parameter on the performance of the simulation

models. It can be concluded from the results that for medical resources such as ambulances,

it does not always translate that, the more resources deployed the better the performance.

The increase in the number of ambulances does not always positively influence the average

response time. When the number of ambulances exceeds a certain threshold, the average

response time stays at a certain level rather than decreasing gradually. It is also imperative

to consider simultaneously multiple performance indicators such as the average total dura-

tion of a call in the system, average number of calls in queue, the average call queuing time,

throughput ratios and the ambulance utilisation levels to complement the average response

time as a performance measure. It is imperative for management to seriously consider ways

of reducing the response time as it has significant bearing in reducing the required number

of ambulances, a critical but scarce resource. It would also translates to reduced workloads
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on the response teams. However, based on the scientific evidence, management could lobby

for the decongestion and resurfacing of old and dilapidated roads in order to increase access

and speed when responding to emergency calls. Training and provision of appropriate and

modern equipment to the response teams will go a long way in reducing the chute delay

time.



Chapter 8

Discussion and Conclusion

8.1 Introduction

The overall cross-cutting objective of the thesis was to develop and demonstrate the applica-

bility of a strategy to integrate forecasting using artificial neural networks (ANN), simulation

and optimisation techniques for ambulance deployment to predefined locations with hetero-

geneous demand patterns under stochastic environments, using multiple performance indi-

cators. Chapter 8 forms the basis of formulating the conclusion of the thesis as it highlights

the discourse from Chapter 1 to Chapter 7. It discusses the findings and makes conclusions

to the study.

8.2 Discussion

The Bulawayo ambulance service department continues to rely on judgemental methods

with limited use of historical data for future predictions. The organisation continues to face

problems, which are common to any ambulance service provider all over the world today.

Despite the ever-increasing rural to urban migration which has seen the population of urban

164
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areas in Zimbabwe increasing, Bulawayo City included, heath services delivery remains low

in terms of efficiency, effectiveness and equality. This migration trend has seen the increase

of unemployment in urban areas, the sprouting of new residential areas, both formal and

informal and this has put pressure on the limited resources in terms of housing, health and

education among many other critical human social amenities.

It is expected that as the population increases, there is a subsequent increase in demand

for public emergency services. This has not been the case with the demand trends for

public emergency ambulance in Bulawayo. However, the trend has been decreasing and this

observed decrease might be a sign of limited capacity of the service rather than demand

itself. The situation therefore, called for consolidated efforts across all sectors including

research, in-order to restore confidence among residents, reduce health risks and loss of lives.

Planning into the future to restore a balanced emergency ambulance level of preparedness is

necessary in order to prevent the loss of lives in isolated incidences or even a disaster such as

cholera outbreaks, fire or major road accidents that have been experienced in recent years

in Bulawayo.

One of the key objectives of this thesis was to determine the operational and technical

challenges being faced by Bulawayo Emergency Medical Services (BEMS) in terms of emer-

gency medical service (EMS) delivery. The second objective was to make a comparative

analysis on the predictive power between artificial neural networks (ANN) and traditional

seasonal autoregressive integrated moving average models (SARIMA) in forecasting annual

public emergency ambulance demand (PEAD). The other broad key objective was to inte-

grate forecasting (using artificial neural networks), simulation and optimisation techniques in

decision-making process in ambulance preparedness for heterogeneous regions using multiple

performance indicators. This was envisaged to address issues around equality, effectiveness

and efficiency in service delivery.

Chapter 1 focused on the introduction of the thesis by providing a background of the
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study, problem statement, motivation of the study, research objectives, research questions,

expected benefits of the study and the delimitation of the study. Chapter 2 focused on the

review of related literature. It explored both nonlinear and linear time series models with

emphasis placed on artificial neural networks and SARIMA models suitable for forecasting

PEAD for short-term forecasting horizons. Literature on forecasting, simulation modelling

and optimisation techniques was explored considering the gaps that exists in the body of

knowledge with regards to emergency medical services. The review of literature culminated

in the development of a conceptual framework for the study.

Chapter 3 dwelt on the methodology of the study aimed at integrating forecasting, simu-

lation and optimisation techniques for ambulance preparedness. Justifications and empirical

evidence on the use of simulation for modelling the EMS were presented. The data used

in this study was collected from the Bulawayo Municipality archives from 2010 to 2018 for

model building and validation. A combination of methods based on mathematics, statis-

tics, operations research and computer science were used for data manipulation. Various

computing packages such as R, Minitab, Excel and Arena were employed and integrated for

data analysis, model building and sensitivity analysis. Chapter 4 focused on a comparative

analysis of the predictive power of artificial neural networks and SARIMA models in fore-

casting PEAD for 2019. The mean absolute error (MAE), root mean square error (RMSE)

and the paired sample t-test were used as performance measures to select the best demand

forecasting model.

Chapter 5 presented the development of simulation models for the heterogeneous regions

of Bulawayo city using Arena. Chapter 6 presented the process of sensitivity analysis by

integration simulation and optimisation techniques in determining optimum ambulance de-

ployment plans under multiple performance indicators. The performance indicators included

average response time, average total duration time of the call in the system, average response

queue time, average number of calls in the response queue, throughput ratio and the am-
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bulance utilisation levels. Further analysis was implemented in integrating ANN forecasts

under multiple performance indicators whilst maintaining the response time distributions in

determining optimal deployment plans for the four heterogeneous regions namely: Famona,

Northend, Nketa and Nkulumane. Chapter 7 presented numerical experiments that explored

the influence of varying the response time distributions to the international standard of be-

tween 5 to 10 minutes by adopting a uniform distribution U(5; 10) on the optimal deployment

plan. However, in order to trace any trends, a uniform distribution given by U(10; 15) was

also explored. Chapter 8 focused on the discussion of the results and conclusion of the thesis.

In the comparative study on modelling univariate time series ambulance demand, the

performance measures; MAE and the paired sample t-test indicate that the feed-forward

neural network (FFNN) models are superior to traditional SARIMA models in time series

prediction of ambulance demand in the city of Bulawayo, over a short-term forecasting

horizon. It was discovered that the FFNN model is more inclined to value estimation as

compared to the SARIMA model, which is directional as depicted by the linear pattern over

time. The FFNN model derives its model prediction accuracy from this unique characteristic.

The FFNN model building process used 96 observations, where seventy-two (72) and twenty

(24) observations were used as training and testing sets respectively. With such small sample

data, the FFNN model was able to accomplish accurate predictions as it was able to detect

the hidden patterns of the time series better than the SARIMA model. The SARIMA

model required the assumption of stationarity to be satisfied before model building and also

to be verified post-model development. However, such assumptions were not required in

the development of FFNN. Therefore the FFNN is a parsimonious, simple model with no

assumptions that requires fewer variables in the model building but with greater explanatory

power as compared to the SARIMA model. It was observed that using the architecture of

one hidden layer produced more accurate results than those obtained from architectures

with two hidden layers for short-term forecasting horizons. Therefore, the use of a single
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hidden layer is adequate in developing FFNN for short-term forecasting horizons. Reducing

the number of input neurons did not improve the model accuracy. An ANN model with a

7-(4)-1 architecture was selected to forecast the 2019 public emergency ambulance demand

(PEAD). Peak PEAD is expected in January, March, September, and December whilst lower

demand is expected for April, June, and July 2019.

Probabilistic and stochastic simulation model input parameters were developed using

the 2018 data to capture the random or stochastic nature of the inter-arrival rates of calls,

response time, service time, occurrences of emergency calls, and their levels of severity due

to the heterogeneous demand zones namely: Famona, Northend, Nketa, and Nkulumane.

The number of false alarm malicious (FAM) and false alarm good intent (FAGI) calls were

prevalent in the eastern suburbs (Famona and Northend) as compared to the western sub-

urbs (Nketa and Nkulumane). Implications are that eastern suburb residents find themselves

with a wide range of alternatives for health emergencies resulting in more cases of FAGI.

This however, justifies the need for equitable deployment of ambulance resources to meet the

heterogeneous needs of the populace by ensuring that ambulances are deployed where they

are needed most. Simulation models developed mimicked the prevailing levels of service

for BEMS with six(6) operational ambulances. The general simulation models developed

indicated that average response times are well above 15 minutes, with significantly high av-

erage queuing times and the number of ambulances queuing for service. These performance

outcomes are highly undesirable as they pose a great threat to human-based outcomes of

safety and satisfaction with regards to service delivery. The general expectation is that no

call should queue for service. Hence, there was a need to determine the optimum ambu-

lance deployment plans that minimises the response time whilst adjusting for the number of

ambulances needed to provide a specific service level.

Optimisation for simulation was conducted by simultaneously minimising the average

response time, average queuing time and maximizing throughput ratios and utililisation lev-
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els. Increasing the number of ambulances influenced the average response time below a

certain threshold, beyond this threshold, the average response time stayed at a certain level

rather than decreasing gradually and no significant changes occurred in other performance

measures. Ambulance utilisation inversely varied to increase in the fleet size. A total of

eleven(11) ambulances are required to meet the future demand of 2019. Under these pre-

vailing conditions, there is a deficit of five(5) ambulances to maintain a balanced optimal

fleet size where queues and queuing time for an ambulance are reduced to zero. However,

the average response times remained high, above the recommended international standards.

The influence of varying the response time distributions on the optimum deployment plans

to international standards of 5 to 10 minutes by adopting a uniform distribution given by

U(5; 10) was explored using numerical experiments. The ANN public emergency ambulance

demand (PEAD) forecasts were incorporated, whilst adjusting the ambulance fleet sizes in

order to optimise the levels of preparedness. This was strongly motivated by the fact that it

is easier, cheaper and feasible for management to control processes that are directly linked

to the response time such as pre-trip delays, chute time and queuing time. The adoption of

U(5; 10) resulted in a decrease in the total ambulance deployment from eleven(11) to eight(8)

ambulances. This implies that reducing the response time results in the reduction in number

of ambulances required for optimal ambulance deployment.

8.3 Conclusion

The researcher recommends that Bulawayo City Council should deliberately adopt and inte-

grate artificial neural networks as key forecasting tools to assist in strategic resource planning

activities due to its explanatory power. Key ambulance logistic activities such as vehicle ser-

vicing, replenishment of essential equipment and drugs, staff training, leave days scheduling

and mock drills need to be planned for when low demand is predicted. This deliberate plan-
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ning strategy would avoid a dire situation whereby ambulances are available but without

adequate staff, essential drugs and equipment to respond to public emergency calls. It is

imperative for EMS research to simultaneously consider multiple performance indicators to

complement the average response time in ambulance deployment. This goes a long way

in balancing resource allocation and capacity utilisation to avoid the idleness of essential

equipment and human resources.

For medical resources such as ambulances, the more resources deployed does not always

translate to better performance. Decision-makers in EMS must seriously consider ways of

reducing the response time as it has significant bearing in reducing the required number

of ambulances, a critical but scarce resource. Efforts must be directed towards digitisation

of switch boards in the call center, training of the paramedics and provision of relevant

modern equipment to the response teams. Training and provision of appropriate and modern

equipment to the response teams will go a long way in reducing the call delay time, chute

time and ultimately the response time. This also translates to reduced workloads on the

response teams as fewer ambulances are required implying that a few response teams are

required to meet the public emergency ambulance demand needs. Based on the scientific

evidence, management could lobby for de-congestion and resurfacing of old and dilapidated

roads in order to increase access and speed when responding to emergency calls.

An important contribution of this paper was to develop and demonstrate a framework for

integrating forecasting, simulation and optimisation techniques for ambulance deployment

in a heterogeneous region under multiple performance measures. The methodology removed

several simplifying assumptions that are necessary for other models. The proposed strategy

ensures that ambulances are deployed where they are needed most (equity), ambulances meet

the set performance targets (effectiveness) and ensures that throughput ratios and utilisation

levels remain significantly high (efficiency) to avoid idleness or excessive overloads. The

simplified strategy is key for preparedness and can be adapted to operational environments
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that involve a server-to-customer relationship with relative ease. Such could involve the

operation of a fleet of taxis or breakdown recovery vehicle service. Future research should

endeavour to investigate the influence of varying service times on the optimum deployment

plans and also consider an extension of the study to include operational costs, wages and

other budgetary constraints that influence the allocation of critical but scarce resources such

as personnel, equipment and emergency ambulance response vehicles.
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Artificial Neural Networks: The Case of Public Ambulance Emergency Pre-
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Figure A.2: Research Paper Number 2: Submission Communication Letter
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Figure A.3: Research Paper Number 2: Journal Details
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Figure A.4: Research Paper Number 2: Abstract of Research Paper
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Figure A.5: Research Paper Number 3: Submission Communication Letter
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Figure A.6: Research Paper Number 3: Journal Details
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Figure A.7: Research Paper Number 3: Abstract of Research Paper
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