

Structure Based Partial Solution Search for the
Examination Timetabling Problem

Christopher Bradley Rajah

Supervisor: Professor Nelishia Pillay

Submitted in fulfilment of the academic requirements of

Doctor of Philosophy

Computer Science

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Pietermaritzburg

South Africa

January 2021

ii

PREFACE

The research contained in this thesis was completed by the candidate while based in the

Discipline of Computer Science, School of Mathematics, Statistics and Computer Science of

the College of Agriculture, Engineering and Science, University of KwaZulu-Natal,

Pietermaritzburg, South Africa.

The contents of this work have not been submitted in any form to another university and,

except where the work of others is acknowledged in the text, the results reported are due to

investigations by the candidate.

Signed: Professor Nelishia Pillay

Date:

iii

DECLARATION 1: PLAGIARISM

I, Christopher Bradley Rajah, declare that:

 (i) the research reported in this dissertation, except where otherwise indicated or

acknowledged, is my original work;

 (ii) this dissertation has not been submitted in full or in part for any degree or

examination to any other university;

 (iii) this dissertation does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other persons;

 (iv) this dissertation does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written sources have been

quoted, then:

 a) their words have been re-written but the general information attributed

to them has been referenced;

 b) where their exact words have been used, their writing has been placed

inside quotation marks, and referenced;

 (v) where I have used material for which publications followed, I have indicated in

detail my role in the work;

 (vi) this dissertation is primarily a collection of material, prepared by myself,

published as journal articles or presented as a poster and oral presentations at conferences. In

some cases, additional material has been included;

iv

 (vii) this dissertation does not contain text, graphics or tables copied and pasted from

the Internet, unless specifically acknowledged, and the source being detailed in the dissertation

and in the References sections.

Signed: Christopher Bradley Rajah

Date: 29 January 2021

v

DECLARATION 2: PUBLICATIONS

The following publications are associated with the research presented in this thesis:

[1] C. Rajah and N. Pillay, “A Study of Cell Depletion in the Developmental Approach for

the Uncapacitated Examination Timetabling Problem,” 2013. Annual Conference of the

Operations Research Society of South Africa (ORSSA 2013), pp. 102-111.

[2] C. Rajah and N. Pillay, “Combining development and evolution: Case study: One

dimensional bin-packing,” in IJCCI 2015 - Proceedings of the 7th International Joint

Conference on Computational Intelligence, 2015, vol. 1, pp. 188–195.

[3] C. Rajah and N. Pillay, “A Structure-Based Partial Solution Search for the Examination

Timetabling Problem,” in 2019 IEEE Congress on Evolutionary Computation, CEC 2019 -

Proceedings, 2019, pp. 81–86.

[4] C. Rajah and N. Pillay, “A Revised Structure-Based Partial Solution Search for the

Examination Timetabling Problem,” in Journal of the Operational Research Society, under

review.

vi

ABSTRACT

The aim of this work is to present a new approach, namely, Structure Based Partial Solution

Search (SBPSS) to solve the Examination Timetabling Problem. The success of the

Developmental Approach in this problem domain suggested that the strategy of searching the

spaces of partial timetables whilst constructing them is promising and worth pursuing. This

work adopts a similar strategy. Multiple timetables are incrementally constructed at the same

time. The quality of the partial timetables is improved upon by searching their partial solution

spaces at every iteration during construction. Another key finding from the literature survey

revealed that although timetables may exhibit the same behaviour in terms of their objective

values, their structures or exam schedules may be different. The challenge with this finding is

to decide on which regions to pursue because some regions may not be worth investigating due

to the difficulty in searching them. These problematic areas may have solutions that are not

amenable to change which makes it difficult to improve them. Another reason is that the

neighbourhoods of solutions in these areas may be less connected than others which may restrict

the ability of the search to move to a better solution in that neighbourhood. By moving to these

problematic areas of the search space the search may stagnate and waste expensive

computational resources. One way to overcome this challenge is to use both structure and

behaviour in the search and not only behaviour alone to guide the search. A search that is guided

by structure is able to find new regions by considering the structural components of the

candidate solutions which indicate which part of the search space the same candidates occupy.

Another benefit to making use of a structure-based search is that it has no objective value bias

because it is not guided by only the objective value. This statement is consistent with the

literature survey where it is suggested that in order to achieve good performance the search

should not be guided by only the objective value. The proposed method has been tested on three

vii

popular benchmark sets for examination timetabling, namely, the Carter benchmark set; the

benchmark set from the International Timetabling competition in 2007 and the Yeditepe

benchmark set. The SBPSS found the best solutions for two of the Carter problem instances.

The SBPSS found the best solutions for four of the competition problem instances. Lastly, the

SBPSS improved on the best results for all the Yeditepe problem instances.

viii

ACKNOWLEDGMENTS

A number of special acknowledgements deserve specific mention:

My wife, Mrs Dolores Rajah, who helped me to persevere and not to quit throughout this

journey;

My parents, Mr Dhuravasan Rajah and Mrs Dhanaluchmee Rajah, for their continued support

and encouragement;

My supervisor, Professor Nelishia Pillay, for her guidance and who helped me reach the end

goal;

The University of KwaZulu-Natal for allowing me to pursue my studies.

ix

TABLE OF CONTENTS

 Page

PREFACE .. ii

DECLARATION 1: PLAGIARISM ... iii

ABSTRACT .. vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xiii

LIST OF FIGURES .. xv

CHAPTER 1: INTRODUCTION .. 1

1.1 Purpose of the Study ... 1

1.2 Aims .. 2

1.3 Objectives .. 2

1.4 Outline of dissertation/thesis structure .. 3

CHAPTER 2: METAHEURISTICS .. 5

2.1. Introduction .. 5

2.2. Definition and Characteristics of Metaheuristics ... 5

2.3. Categories of Metaheuristics .. 6

2.3.1. Overview of Popular Trajectory-Based Metaheuristics .. 7

2.3.1.1. Simulated Annealing .. 7

2.3.1.2. Tabu Search .. 9

2.3.1.3. Greedy Randomised Adaptive Search Procedure .. 10

2.3.1.4. Variable Neighbourhood Search .. 11

2.3.2. Overview of Popular Population-Based Metaheuristics ... 13

2.3.2.1. Genetic Algorithms .. 13

2.3.2.2. Ant Colony Optimisation ... 14

2.3.2.3. Particle Swarm Optimisation ... 16

2.4. Diversification and Intensification Mechanisms in Metaheuristics 17

x

2.4.1. Trajectory-Based Methods .. 17

2.4.2. Population-Based Methods ... 20

2.5. Summary .. 24

CHAPTER 3: EXAMINATION TIMETABLING PROBLEM .. 27

3.1. Examination Timetabling Problem Defined .. 27

3.2. The Uncapacitated Version of ETP .. 29

3.2.1. The Carter Benchmark Set .. 29

3.2.2. Best Performing Methods for the Carter Benchmark Set ... 31

3.3. The Capacitated Version of ETP .. 33

3.3.1. The ITC2007 Benchmark Set... 33

3.3.2. Best Performing Methods for the ITC2007 Benchmark Set .. 35

3.3.3. The Yeditepe Benchmark Set ... 37

3.3.4. Best Performing Methods for the Yeditepe Benchmark Set .. 39

3.4. Critical Analysis ... 39

3.4.1. Justification for using a structure-based search ... 40

3.4.2. Justification for the searching in partial solution spaces ... 41

3.5. Summary .. 42

CHAPTER 4: RESEARCH METHODOLOGY.. 44

4.1. Research Methodologies .. 44

4.2. Justification for chosen research methodology ... 46

4.2.1. Proof by demonstration ... 46

4.2.2. Empirical method .. 46

4.2.3. Proof using mathematical means .. 47

4.2.4. Hermeneutics ... 47

4.3. Methodology steps ... 47

4.4. Benchmark Sets .. 49

4.5. Technical Specifications .. 49

4.6. Parameter Tuning ... 49

4.7. Summary .. 50

CHAPTER 5: STRUCTURE BASED PARTIAL SOLUTION SEARCH 52

5.1. Overview of the SBPSS ... 52

5.1.1. SBPSS Phases .. 52

5.1.2. SBPSS Search Process .. 53

xi

5.1.2.1. Search Performed in the Construction Phase ... 53

5.1.2.2. Search Performed in the Deconstruction Phase ... 59

5.2. The SBPSS algorithm... 60

5.3. SBPSS parameters .. 64

5.4. Applying SBPSS to the Examination Timetabling Problem .. 65

5.4.1. Common application details.. 65

5.4.1.1. Parameter tuning .. 66

5.4.1.2. Solution Initialization ... 67

5.4.1.3. Solution construction heuristic ... 68

5.4.1.4. Move operators ... 68

5.4.1.4.1. MovePeriodSame .. 70

5.4.1.4.2. MovePeriodRandom .. 71

5.4.1.4.3. SwapPeriodRandom .. 72

5.4.1.4.4. 2WaySwapPeriodRandom ... 72

5.4.1.4.5. PeriodChange .. 73

5.4.1.4.6. MoveRoomSame .. 74

5.4.1.4.7. MoveRoomRandom ... 74

5.4.2. Applying the SBPSS to the Capacitated Version of the ETP 75

5.4.3. Applying the SBPSS to the Uncapacitated Version of the ETP 76

5.5. Summary .. 76

CHAPTER 6: RESULTS AND DISCUSSION ... 77

6.1. Assessment of SBPSS Design Properties ... 77

6.1.1. Effectiveness of search in partial solution space .. 77

6.1.2. Effectiveness of a structure-based search ... 81

6.2. Results for the Capacacitated Version of the ETP ... 83

6.2.1. The ITC2007 Benchmark Set Results .. 83

6.2.2. The Yeditepe Benchmark Set Results .. 85

6.3. Results for the Uncapacacitated Version of the ETP ... 86

6.3.1. The Carter Benchmark Set Results.. 87

6.4. Summary .. 89

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER

RESEARCH ... 91

7.1. Introduction .. 91

xii

7.2. Revisiting objectives .. 91

7.3. Contributions to new knowledge.. 95

7.4. Conclusion .. 95

7.5. Future Work ... 95

REFERENCES .. 98

xiii

LIST OF TABLES

Table Page

Table 3.1 The Carter Benchmark Set ... 29

Table 3.2 The ITC2007 Benchmark Set .. 33

Table 3.3: The Yeditepe Benchmark Set ... 38

Table 5.1 Similarity Index Example .. 55

Table 5.2 Average Similarity Index for Regions ... 59

Table 5.3 SPBSS Parameters ... 65

Table 5.4 SBPSS Parameter Values ... 67

Table 5.5 Example Conflict Matrix .. 69

Table 6.1 Results of No Search and Search during Construction .. 78

Table 6.2 Levels of Significance and Decision Rules .. 78

Table 6.3 Z-Values for each Problem Instance .. 79

Table 6.4 Iteration Search Results.. 80

Table 6.5 Objective Value Based Search versus Combined Search .. 82

Table 6.6 Z-Values for each Problem Instance .. 82

Table 6.7 SBPSS Results for ITC2007 Benchmark Set ... 83

Table 6.8 Comparison of SBPSS to State of the Art for the ITC2007 Benchmark Set 84

xiv

Table 6.9 SBPSS Results for the Yeditepe Benchmark Set ... 85

Table 6.10 Comparison of SBPSS to State of the Art for the Yeditepe Benchmark Set 86

Table 6.11 SBPSS Results for the Carter Benchmark Set ... 87

Table 6.12 Comparison of SBPSS to State of the Art for the Carter Benchmark Set 88

xv

LIST OF FIGURES

Figure Page

Figure 5.1 SBPSS Phases ... 52

Figure 5.2: Search Process in Construction Phase ... 54

Figure 5.3: Solution Space S delineated into three regions .. 56

Figure 5.4 Solution Space S with New Regions and Old Regions .. 58

Figure 5.5 Structure Based Solution Search Algorithm ... 62

Figure 5.6 FindRegions Algorithm .. 63

Figure 5.7 Kempe Chain Heuristic Example ... 69

Figure 5.8 MovePeriodSame Example ... 71

Figure 5.9 MovePeriodRandom Example .. 71

Figure 5.10 SwapPeriodRandom Example .. 72

Figure 5.11 PeriodChange Example ... 73

Figure 5.12 MoveRoomSame Example ... 74

Figure 5.13 MoveRoomRandom Example ... 75

Figure 6.1 Soft Constraint Cost at Different Iterations .. 81

1

 CHAPTER 1: INTRODUCTION

1.1 Purpose of the Study

The purpose of this work is to propose a new approach, namely, Structure Based Partial

Solution Search (SBPSS) to solve the Examination Timetabling Problem (ETP). This problem

has been well researched over the years and many approaches have been proposed to solve it

[1]. A survey of the literature revealed that searching the spaces of partial timetables does result

in good quality complete timetables. The same strategy was adopted by the Developmental

Approach (DA) [2]. It was successfully applied to the uncapacitated version of the ETP and it

obtained results comparable to other best performing nature-inspired methods for this problem

domain. Later work by Rajah and Pillay [3] revealed that the performance of the DA may be

improved by removing random exams from the partially complete timetable and reassigning

them during construction. The approach proposed in this study adopts some of the same

strategies. Multiple timetables are incrementally constructed at the same time. The quality of

the partial timetables are improved upon by searching their partial solution spaces at every

iteration after the assignment of a new examination during construction. The SBPSS has a

deconstruction phase where exams are removed from each of the timetables. The exams that

are removed are then reassigned to each of the partial timetable solutions in the next

construction phase of the SBPSS.

Another key finding from the literature survey revealed that some timetables may exhibit the

same behaviour in terms of the objective value although they have different structures. The

search may not be able to decide on which regions to pursue if the same regions have similar

behaviour. Some regions are difficult to search and are not worth investigating because the

likelihood of finding better quality solutions in these areas is minimal. One reason is that these

problematic areas may have solutions that are not amenable to change and cannot be easily

2

improved upon. Another reason is that that these areas may contain neighbourhoods that are

less connected and not easy to traverse [4]. As a result the ability of the search to move to a

better solution in such neighbourhoods is restricted. By moving to these problematic regions of

the search space the search may stagnate and waste expensive computational resources. The

proposed approach then addresses this challenge by adopting a search that is guided by not only

behaviour but also by structure when moving through the solution space towards more

promising regions. This reduces any objective value bias in the search process. This approach

is consistent with the literature survey where it is suggested that in order to achieve good

performance the search should not be guided by the objective value alone [5]. The approach

finds new regions by considering the structural components of the candidate solutions which

indicate which part of the search space the same candidates occupy. The proposed approach has

been tested on three popular benchmark sets for the ETP, namely, the Carter benchmark set;

the benchmark set from the International Timetabling competition in 2007 (ITC2007) and the

Yeditepe benchmark set. The SBPSS found the best solutions for two of the Carter problem

instances. The SBPSS found the best solutions for four of the competition problem instances.

Lastly, the SBPSS improved on the best results for all the Yeditepe problem instances.

1.2 Aims

The aim of this work is to present a new approach, namely, Structure Based Partial Solution

Search (SBPSS) to solve the Examination Timetabling Problem (ETP).

1.3 Objectives

The objectives of this work are as follows:

3

• To demonstrate that the use of structure combined with behaviour in terms of the

objective value to guide the search is a worthwhile and promising approach to solving

the ETP.

• To demonstrate that searching partial solution spaces whilst constructing solutions leads

to good quality solutions for the ETP.

• To combine the structure-based search together with partial solution space in a structure-

based partial solution space to solve the ETP.

1.4 Outline of dissertation/thesis structure

The rest of this thesis is structured as follows:

Chapter 2 is devoted to defining metaheuristics. The chapter presents some popular

trajectory-based and population-based approaches. The remainder of the chapter focuses on the

diversification and intensification capabilities of the considered approaches.

Chapter 3 introduces the ETP and the two main versions of the problem, namely, the capacity

and uncapacitated versions. The benchmark problem sets that represent both versions that are

used for assessment in this study are then presented. This is followed by a review of the best

performing approaches for each benchmark problem set.

Chapter 4 outlines the different research methodologies and the methodology adopted in this

study. The chosen methodology steps are explained and the technical specifications for this

study are also given.

Chapter 5 introduces the new approach proposed to solve the Examination Timetabling

Problem. The approach and the parameters used by the approach are explained in detail. This

4

is followed by a discussion on how the approach is implemented to solve the problems from

the benchmarks sets for both the capacitated and uncapacitated version of the Examination

Timetabling Problem.

Chapter 6 presents the results for all simulations and discusses the reasons for the results

obtained.

Chapter 7 concludes this thesis by providing a summary of the work done and any

conclusions that are drawn. Also included in the chapter is the future work that should be

considered in extending this work.

5

 CHAPTER 2: METAHEURISTICS

2.1. Introduction

NP-hard combinatorial optimization problems such as Timetabling Problems cannot be solved

completely in polynomial time. In such cases it may be more desirable to find near-optimal

solutions in a reasonable amount of time. Methods used to solve NP-hard problems in this

manner are referred to as approximate methods. One popular class of approximate methods are

metaheuristics. The focus in this chapter is to provide background information on

metaheuristics. Subsection 2.2 defines metaheuristics. Subsection 2.3 explains the two broad

categories of metaheuristics, namely, trajectory-based methods and population-based methods

together with an overview of some of the popular approaches found in both these categories.

Subsection 2.4 provides an overview of the search mechanisms used by metaheuristics. The

chapter is concluded in subsection 2.5.

2.2. Definition and Characteristics of Metaheuristics

Glover [6] first introduced the term metaheuristics to refer to a category of approximate

algorithms used to find near-optimal solutions to complex problems. Many definitions for

metaheuristics have been proposed over the years. Osman and Laporte [7] define a

metaheuristic as a higher level process which guides lower level heuristics to effectively explore

the solution space. Similarly, Lodi et al. [8] describe a metaheuristic as a master process that

guides subordinate heuristic processes to find good solutions. In general, metaheuristics refer

to those methods that employ higher level strategies to overcome the limitations of problem-

specific search heuristics in order to efficiently and effectively explore the search space to find

better solutions. The performance of a metaheuristic is dependent on two key processes;

6

• Diversification [6] – this process describes the ability of the search to find new areas

in the search space which may potentially have better solutions in pursuit of the

global optimum. The search may also need to return to areas already found to be

promising for further investigation.

• Intensification [6] – this process describes the ability of the search to efficiently and

effectively investigate a region of interest in order to find better quality solutions.

An effective search needs to strike a fine balance between the level of intensification and

diversification that is performed [9]. There is a trade-off between these two competing

processes because as one is increased the other is decreased [10]. Too much intensification

leads to the search spending too much time investigating areas that are suboptimal and wasting

expensive resources. The search is more likely to converge prematurely and become trapped in

a local optimum. On the other hand, too much diversification can lead to the search spending

insufficient time investigating good performing areas and missing the opportunity to find better

solutions in these areas. In the next subsection the different categories of metaheuristics are

presented.

2.3. Categories of Metaheuristics

Metaheuristics may be classified in many different ways. One such classification makes use of

the number of solutions that are considered at any one time by the approach. Based on this

definition, there are two broad categories of metaheuristics, namely, trajectory-based

metaheuristics and population-based metaheuristics [5]. Trajectory-based methods operate on

a single solution at any one time and follow a single path or trajectory in the solution space.

Population-based metaheuristics operate on multiple candidate solutions at the same time

7

resulting in multiple paths being followed in the solution space at the same time. In the next

few subsections each category is discussed and examples of each category are provided.

2.3.1. Overview of Popular Trajectory-Based Metaheuristics

Over the years many trajectory-based approaches have been proposed. Some approaches have

gained in popularity because new ways have been found to improve performance. In some cases

new variants to existing approaches have been introduced which outperform their constituents.

In this section some of the early methods that are still widely adopted today either as a variant

or as an enhancement are considered. Simulated Annealing, Tabu Search, Greedy Randomised

Adaptive Search and Variable Neighbourhood Search are presented in that order.

2.3.1.1. Simulated Annealing

Simulated Annealing (SA) is based on the annealing process of metals and is employed to

improve initial complete solutions [11]. The search accepts a neighbouring candidate solution

only if it is better than the current solution or with a probability � (referred to as the transition

probability). This neighbouring candidate solution then becomes the current solution. The

transition probability follows the Boltzmann distribution and is calculated using a temperature

� which is initialised at the beginning to some user defined maximum value. As the algorithm

progresses T is reduced according to a predefined cooling schedule. A bigger difference in cost

between the neighbouring candidate solution and the current candidate solution decreases the

probability of acceptance of the neighbouring candidate solution whilst a higher temperature

increases the probability of acceptance of the neighbouring candidate solution. Therefore, at

the beginning of the algorithm the probability of accepting neighbours that are worse than the

current candidate solution is high but the probability of acceptance decreases as the temperature

8

T approaches zero. At this stage the algorithm becomes a simple iterative improvement search

method.

The cooling schedule may be implemented in different ways in SA. The study by

Elmohammed et al. [12] compared two different types of cooling schedules. The first type

considered was geometric cooling which allows for a faster reduction in temperature. The new

temperature is calculated using the equation; ���� =	∝ �	
����� and 0<∝<1. The other type

considered was adaptive cooling where ���� is determined by considering all the costs obtained

at	�	
�����. The lowest cost is then used to determine the new temperature. Adaptive cooling

allows for the system to be cooled much slower than geometric cooling. Kusumawardani et al.

[13] point out that besides the cooling schedule, the initial temperature and the number of

iterations and evaluations performed by the approach at a specific temperature also affect

performance. The initial temperature should be high enough to increase the acceptance of new

solutions. The number of iterations at a certain temperature improves the likelihood of accepting

a worse solution because of the inherent randomness in the search. The FASTSA method by

Leite et al. [14] showed that the performance of SA may be improved by reducing the number

of evaluations performed by the search in a single iteration. The temperature value was divided

into temperature intervals. If there was no permissible move for a solution component in the

preceding interval then it was ignored by the search in the current interval thereby, reducing the

number of evaluations.

A popular variant to SA is the Great Deluge algorithm (GD) [15]. The GD is based on the

analogy that a person will attempt to stay above rising waters in a deluge to avoid drowning.

As the algorithm progresses the water level which represents the acceptance criterion for

neighbouring solutions also rises. Gradually the acceptance of neighbouring solutions is

9

reduced based on the water level. The rate at which the water rises is determined by a decay

function which is based on a user-defined parameter known as the decay rate.

2.3.1.2. Tabu Search

Similar to SA, the Tabu Search method (TS) [6] is also used to improve initial solutions. TS

selects the best move from the list of available moves in a single iteration which is similar to a

best improvement local search. However, TS makes use of a memory structure known as a tabu

list to record past moves made by the search. The tabu list is consulted before any move is

made. If the move features in the list then it is not carried out. The tabu list is therefore used to

prevent the search from returning to candidate solutions already visited and may even cause the

search to move to solutions that are worse than the current candidate solution. Sometimes it

may be necessary to allow the search to perform moves that do feature in the tabu list. This may

be the case when there is a need to allow the search to revisit areas in the search space found to

be promising. In this case aspiration criteria are used. Aspiration criteria enable the search to

make moves that are currently not permitted because they feature in the tabu list for a limited

period.

The most basic implementation of a tabu list is as a queue of fixed size [16]. As a new move

is added to the list the oldest move is removed. A dynamic list was used in the study by Gaspero

and Schaerf [16] where a move was kept in the list for k moves. The value of k was a random

number chosen between a user-defined upper and lower bound. Lawal et al. [17] extended the

TS approach by applying a weighting system to the hard and soft constraints. White and Xie

[18] showed that using a longer tabu list in longer-term memory may also improve performance.

Instead of using the tabu list to record moves, Kendall and Hussain [19] recorded low-level

heuristics already applied in their hyper-heuristic approach. Hyper-heuristics search the

10

heuristic space to determine which low-level heuristic to apply next. The hyper-heuristic used

considered heuristics that were not in the tabu list and chose one to apply next. The study

showed that keeping good performing heuristics too long in the tabu list decreased overall

performance. On the other hand, if the tabu duration is too short the search is limited to a small

solution space because of the increased likelihood of reusing the same heuristic.

2.3.1.3. Greedy Randomised Adaptive Search Procedure

The Greedy Randomised Adaptive Search Procedure (GRASP) [20] [21] is another popular

metaheuristic. The basic approach consists of two phases. In the first phase a solution is

constructed and in the second phase it is improved upon using local search. The construction

phase is a multi-start process that is similar to the semi-greedy heuristic proposed by Hart and

Shogan [22]. Solution elements are incorporated one at a time into the partial candidate solution

until it is complete. The next solution element to be added is chosen at random from a list of

solution elements referred to as a Restricted Candidate List (RCL). The RCL is initialised at

the beginning of the algorithm by including all the candidate solution components. The RCL is

rebuilt at each iteration and consists of those solution elements which when incorporated into

the current candidate partial solution results in the least increase in cost in the candidate

solution. Some search strategies that may be followed in the second phase include the best-

improving strategy and the first-improving strategy [23]. The latter is faster because it returns

the first solution found to be better whilst the former considers all the neighbouring solutions

before returning the best one found.

There are two approaches that may be followed when deciding on the composition of the

RCL. The first approach is the use of a cardinality-based criterion whereby the RCL is limited

to a specific number of solution elements [20]. The number of elements is provided upfront

11

before the start of the construction process and the solution elements considered for the RCL

are the ones which provide the least incremental cost to the partial solution for that iteration

step. The second approach makes use of a value-based criterion. In this case the RCL is made

up of all solution elements
 whose incremental cost is �����
� ∈ 	 �������� , �������+∝

�������� − ��������� and ∝∈ �0,1!. If ∝= 0 then the strategy is completely greedy because

only the best performing solution element at that iteration is chosen for addition into the partial

solution. On the other hand, if ∝= 1 then the strategy is completely random because any

solution element from those available at that iteration may be chosen for addition to the partial

solution.

GRASP is easily implemented and hybridised with other local search algorithms like TS for

the solution improvement phase [4]. Souza et al. [24] and Prais and Ribeiro [25] make use of

TS in the local search phase of GRASP. GRASP was also successfully hybridised with

population-based methods. Ahuja et al. [26] made use of GRASP to generate the initial

population for a genetic algorithm when solving the Quadratic Assignment Problem. Rocha et

al. [27] also implemented GRASP for the Course Timetabling Problem. The classes that were

the most difficult in terms of the hard constraint were scheduled first in the construction phase.

The soft constraint cost of each class was considered in the construction of the RCL. Local

search was used in the improvement phase of GRASP to improve the solution from the initial

phase.

2.3.1.4. Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) [28] makes use of a set of neighbourhoods. The set of

neighbourhoods are defined upfront. The neighbourhoods may be arbitrarily chosen or may be

a set of nested neighbourhoods with increasing size. A set of nested neighbourhoods is one

12

where the first neighbourhood is a subset of the second one which is turn is a subset of the third

and so on. Once VNS finds a local optimum in one neighbourhood, it escapes that optimum by

changing the neighbourhood. VNS consists of three phases, namely, a shaking phase, a local

search phase and a move phase. In the shaking phase a candidate solution in the kth

neighbourhood is randomly selected to be the local search starting point. Local search is

performed to improve the current solution. After the local search, the new candidate solution

replaces the current candidate solution if it is better and a new neighbourhood structure is

considered.

Burke et al. [29] investigated two variants of VNS to solve the Examination Timetabling

Problem. In the first variation the search moved to a new neighbourhood only when it was

unable to improve the solution any further in the current neighbourhood. This is different from

the standard VNS where the neighbourhoods are recycled independent of the behaviour of the

search. The second variant made use of a Genetic Algorithm (GA) to evolve a fixed set of

neighbourhoods. Each individual in the population represented an ordered list of

neighbourhoods which was used by VNS to determine the order in which the neighbourhoods

were searched.

More recently, Alegfragis et al. [30] proposed a VNS framework for the Uncapacitated

Examination Timetabling Problem. The framework allows for the use of multiple metaheuristic

algorithms such as SA and Great Deluge. Associated with each metaheuristic is a set of defined

local search moves and neighbourhoods that are implemented to improve the solution. In the

beginning VNS randomly choses a metaheuristic and applies to an initial solution in an attempt

to improve it. If the solution cannot be further improved upon then VNS considers a different

metaheuristic to improve the same solution

13

2.3.2. Overview of Popular Population-Based Metaheuristics

There have been many population-based methods developed over the years. Evolutionary

Algorithms is a popular class of methods that are based on the natural selection and evolutionary

processes found in nature [31]. Genetic Algorithms belong to this class of methods and these

methods are discussed in this work. Another class of population-based methods that is also

inspired by nature are Swarm Intelligence approaches. Swarms such as bees tend to overcome

their limited capabilities to find food by collectively collaborating with each other and

interacting with their environment [32]. Swarm Intelligence approaches model the collective

behaviour of swarms and their interactions with their environment and how they use this global

information to solve complex problems. The Ant Colony Optimisation method and Particle

Swarm Optimisation method from this class are discussed in this work.

2.3.2.1. Genetic Algorithms

In Genetic Algorithms (GA) a population of individuals is evolved from one generation to the

next until convergence occurs or the termination criteria have been met. Each individual

represents a candidate solution to the problem at hand [31]. The process begins with an initial

population which is then evaluated using a fitness function. Based on the selection method

adopted, individuals from the current population are chosen as parents for the individuals of the

next generation. The parents are subjected to crossover and mutation to create offspring that

make up the new generation. The new generation then replaces the current generation. This

process continues until the termination criteria have been met. On completion, only the fittest

solution in the current generation is returned.

Yadav and Sohal [33] present a study of the various selection techniques adopted by GA for

the selection of individuals to act as parents from the current generation. One of the most

commonly used methods is tournament selection. In tournament selection a fixed number of

14

randomly chosen individuals are first selected from the population. The fittest individual in that

selection is then returned. The crossover operator performs local search and promotes

convergence of the algorithm. Lim et al. [34] provide a survey of the more commonly used

crossover and mutation operators in GA. The most basic is the single-point crossover. In this

crossover operator, a random point is chosen in the chromosomes of each parent and the

information after that point is exchanged between the two parents to create the offspring. The

mutation operator maintains diversity in the population. The rate at which mutation occurs is

lower than the rate at which crossover occurs. Mutation involves making small random

alterations to the chromosomes of the offspring. A wide selection of mutation operators has

been used. For example, timetables in timetabling problems may be mutated by moving a

randomly selected exam from one randomly chosen period to another in the same timetable.

Genetic Algorithms (GAs) has been implemented in various ways to improve performance.

Hong et al. [35] point out that the performance of a GA is directly linked to the choice of

crossover operator and mutation operator used. Sastry et al. [36] also noted this observation and

proposed the Dynamic GA (DGA) which implements multiple crossover and mutation

operators instead of the traditional GA which makes use of a single crossover operator and a

single mutation operator. The GA can be applied in more than one phase in an approach. The

two-phased approach by Pillay and Banzhaf [37] made use of a GA in the first phase to find

feasible solutions and in the second phase a different GA was used to improve the individuals

evolved from the first phase.

2.3.2.2. Ant Colony Optimisation

Ant Colony Optimisation (ACO) is based on the foraging behaviour of real ants where ants use

pheromone deposits to find the shortest path to their food [38]. In the beginning each ant follows

a different path to find food. As each ant returns to the nest after finding food it deposits

15

pheromone on its trail. As more ants follow the same path more pheromone is deposited leading

to more ants picking up the same trail. This leads to a path reinforcement loop which has been

experimentally proven to enable ants to find the shortest path [39]. The pheromone update

process in ACO consists of two processes, namely, a pheromone deposit process and a

pheromone evaporation process. In the pheromone deposit process, solution components that

are associated with high quality solutions have their pheromone values increased making these

solution components more desirable to ants in the following iterations. The pheromone deposit

process takes place after ants have finished with solution construction. The pheromone

evaporation process takes place during solution construction and the process involves reducing

the pheromone values on solution components. The aim is to make some solution components

less desirable to ants during construction. Once a solution has been completed the entire process

is restarted. This continues until no new solutions can be found or the termination criterion has

been met.

ACO was first applied to the Traveling Salesman Problem and then adapted later on to solve

other problems like the ETP [40] and the Job Scheduling Problem [41]. ACO has many variants

[42]. A popular variant to ACO is the Min-Max Ant System (MMAS) [43]. In MMAS only the

ant which returns the best candidate solution in a cycle is allowed to deposit pheromone.

Another variant is the Rank-Based Ant System (ASrank) [44] where ants are ranked according

to trail lengths. Only a fixed number of the best ants are allowed to make deposits. The deposits

are weighted by allowing the ants with shorter paths to make larger deposits. Eley [40] noted

that a large difference in pheromone deposit values may result in search stagnation due to the

likelihood of all the ants returning to the same solution. The MMAS also introduces a range of

possible pheromone values to limit search stagnation. Djannaty and Mirzaei [45] improved the

performance of MMAS by incorporating local search in the form of the Great Deluge, a variant

16

of SA. Local search was used to improve the best solution in each cycle before the pheromone

update process. An improved local search incorporating memory was also used in the hybrid

ACO approach by Abounacer et al. [46]. The local search method was similar to TS in that it

kept a record of explored solutions to avoid recycling and made use of backtracking to improve

the search process.

2.3.2.3. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) [47] is based on the flocking behaviour of birds. PSO

makes use of a number of particles to move through the search space to find the global best

position [32] [47]. Each particle represents a candidate solution to the problem and has a

velocity and a position in the search space. The particle also keeps record of the best position

found in its path so far. After each evolutionary cycle the velocity of each particle is calculated

by adding its current velocity to the influence from its current best position and the swarm’s

best position. An inertia weight variable w is used to control the influence of previous velocities

on the particle’s new velocity [48]. The new position of each particle is then computed by using

the particle’s updated velocity. Gradually, the particles move towards the global best position

in the swarm. Every particle swarm has a defined topology which describes how the particles

are connected. The neighbourhood of a particle is then the set of particles in the swarm to which

it is topologically connected. The neighbourhood of a particle may be a subset of the swarm or

contain the entire swarm itself.

Fealko [49] used a constraint version of the traditional PSO to ensure that only feasible

regions of the solution space are considered. The constrained PSO made use of a low-level

construction heuristic to generate an initial population of particles representing only feasible

candidate solutions and the modified PSO only accepted feasible solutions during the

17

optimisation process. Chu et al. [50] proposed a self-mutated PSO. The movement of each

particle is processed by choosing a random solution component from the particle’s best solution

found so far and a random solution component from the best solution found by the swarm so

far.

2.4. Diversification and Intensification Mechanisms in Metaheuristics

In this section the diversification and intensification capabilities of the metaheuristics presented

earlier in this chapter are discussed. Both these capabilities are defined and discussed earlier in

section 2.2. The search capabilities of trajectory-based methods are first looked at followed by

population-based methods.

2.4.1. Trajectory-Based Methods

Trajectory-based methods have good intensification capabilities [5]. They are able to

investigate good performing areas to find better solutions. Once the search finds a local

optimum through exploitation it needs to be able to move out of the optimum in pursuit of the

global optimum by accepting uphill moves. Otherwise the search will return a solution which

is suboptimal. Spending too much time stuck in a local optimum is costly in terms of processing

time. Therefore the performance of the search is highly dependent on the effectiveness and

efficiency of the mechanism used to escape the local optimum. The escape mechanisms adopted

by the trajectory-based methods and their search capabilities are presented in turn.

Tabu Search (TS) maintains a tabu list which plays a key role in the intensification and

diversification capabilities of the search. The search is prohibited from carrying out moves that

feature in the list. This may cause the search to carry out worse or uphill moves. In doing so the

search is able to go beyond any local optima it is stuck in. The use of aspiration criteria also

improves diversification because the search is allowed to perform prohibited moves that feature

18

in the tabu list. The way the tabu list is implemented also determines the performance of the

search. There have been many different approaches to the implementation. Blum and Roli [51]

state that a smaller sized (tenure) tabu list causes the search to focus on small areas of the search

space. A larger tenure causes the search to explore larger search areas because a greater number

of moves in the neighbourhood is prohibited. Battiti and Tecchiolli [52] noticed that an increase

in the number of moves being repeated is an indication that the search required more

diversification. This was done by dynamically increasing the tabu tenure for a short while.

White and Xie [18] also used the frequency of moves to improve performance. A frequency

table was kept in memory and if a move was repeated the table was updated accordingly. In this

way moves with high frequency values were avoided.

Simulated Annealing (SA) makes use of a cooling schedule and a temperature T to control

the level of intensification and diversification and to escape from any local optima. SA is more

likely to accept uphill moves in the beginning stages when T is relatively high. As the algorithm

progresses T is decreased according to a cooling schedule which in turns decreases the

probability of accepting uphill moves [53] [54]. In the beginning more diversification takes

place. As the algorithm progresses the level of diversification decreases whilst that of

intensification increases. Blum and Roli [51] state that convergence to the optima is likely if

the cooling schedule is slow but this is not practical in real-world applications where faster

cooling rates are required. It is also observed that if the system cools too quickly then the search

may be unable to move out of local optima because the probability of accepting uphill moves

is too low. One of the approaches adopted to solve this problem is the use of non-monotonic

cooling schedules. The traditional SA makes use of a monotonic cooling schedule because the

temperature only decreases as the algorithm progresses. Non-monotonic cooling schedules

allow for the temperature to be increased in some way during the search. This is referred to as

19

reheating and has been used successfully [51]. Elmohammed et al. [12] used a reheating

technique to explicitly increase the diversification capabilities of the search. The authors state

that if the best cost so far is high then the temperature required to escape the local minimum

must be just as high. Abrahamson et al. [55] also made use of a similar heating technique as a

function of cost where the reheating technique considered the heat of the current system and

the cost of the current best solution found. Cooling schedules enable the search to balance the

amount of intensification and diversification performed. It is also shown by Abdullah et al. [56]

that the choice of neighbourhood may lead to better quality solutions. The same conclusion was

reached by Thomson and Dowsland [57] when comparing the results from three different move

operators. A change in the move operator changes the neighbourhood which affects

performance.

The RCL in GRASP plays a key role in the exploratory capabilities of the search because

the next solution element to be added to the partial solution is randomly chosen from the RCL.

The size of the RCL is another important factor that determines performance. The smaller the

size, the more deterministic the approach becomes because the choice of solution elements is

limited. Prais and Ribeiro [25] argue that allowing for the size of the RCL to change during the

construction phase enabled the approach to construct more diverse solutions. A Reactive

GRASP was proposed for the Matrix Composition Problem and it outperformed the standard

GRASP [25]. The information gathered about the quality of previously found solutions was

used to self-tune the restrictiveness of the RCL by building a discrete list of acceptable values

to be used for the size of the RCL. The size of the RCL was then randomly selected from this

built list at every iteration in the construction phase. This approach appeared to be more robust

because there was no need to manually define the size of the RCL. Burke et al. [4] also

acknowledged the size of the RCL affects the quality of results obtained and proposed a hyper-

20

heuristic approach to adaptively determine the size of the RCL at each iteration. The hyper-

heuristic operated on two low-level construction heuristics, namely, the saturation degree and

the largest weighted degree. Blum and Roli [51] argue that the choice of construction

heuristic(s) employed in the construction phase is an important factor in determining the quality

of the initial solutions constructed. Using a good quality initial solution enables GRASP to have

a good starting point for the second phase leading to better overall performance.

In Variable Neighbourhood Search (VNS) the number of neighbourhood structures used

determines the amount of intensification and diversification. If the number is small then more

intensification takes place as previously found promising areas in the search space are revisited

more often. On the other hand, a large number of neighbourhood structures allows for more

diversification. Also the search achieves diversification by changing the neighbourhood

structure when the current candidate solution cannot be improved.

2.4.2. Population-Based Methods

Population based methods consider multiple points in the search space at the same time because

they operate on multiple candidate solutions at the same time. As a result they have an inherent

ability to quickly sample the search space and have strong diversification capabilities. In pursuit

of the global optima the search may converge to a local optimum and return less desirable

results. This issue is known as premature convergence and good performing population-based

methods need to effectively and efficiently deal with this issue.

Genetic Algorithms (GAs) evolve the population from one generation to the next by using

genetic operators. The traditional GA uses a crossover operator to exploit the search space by

recombining the traits of parents to create offspring. However, over many generations the

crossover operator causes the individuals to become more similar to each other. As diversity in

21

the population decreases, the diversification capability of the GA also decreases. To solve this

problem the GA makes use of the mutation operator to maintain diversity and increase

diversification. The mutation operator modifies individuals in the population and in doing so

moves the search to different areas in the search space. Conversely, too high diversity in the

population can lead to deterioration in performance [58]. A user-defined probability is used to

determine the rate of mutation and limit the diversity in the population. Other techniques have

been used in GA to preserve diversity and to avoid premature convergence. Gupta and Ghafir

[59] provide a review of methods used to maintain diversity. One such technique is Crowding

introduced by de Jong [60]. Crowding takes place at the replacement stage in the GA after the

new offspring have been created. For example, in the Deterministic Crowding approach,

offspring are paired with the parents they are similar to. If the offspring is fitter than the parent

it is paired with, then it takes the place of that parent in the next generation. Another key design

issue in GA is the size of the initial population. Larger populations enable the search to be more

exploratory as more points in the search space are sampled. However, as the population size is

increased the overhead in terms of processing time and resources are increased. A population

size that is too large causes very slow convergence which may be impractical in some

applications. A small population size also affects performance as diversification is reduced and

may result in premature convergence [61]. Some approaches have been proposed to improve

processing times when larger populations are required. Parallel Genetic Algorithms (PGAs)

may be used to reduce processing times when larger population sizes are required because it is

implemented to run over multiple processors instead of a single serial machine [62] [63]. Pappu

et al. [64] proposed a PGA for the Examination Timetabling Problem by implementing a client-

server architecture. The initial population was generated on the server. Thereafter copies of the

population was evolved on separate clients. At regular intervals the information from the clients

was used to update the population on the server. The design of the system allowed for new

22

clients to be added to increase exploration without the need to disrupt the entire process. The

Island Model paradigm is another approach that takes advantage of the architecture of PGA

when dealing with large population sizes [65]. In this case the initial population is divided into

groups and each group is evolved independently on different hardware processes. Corcoran and

Wainwright [66] made use of an Island Model in their PGA to solve the Job Scheduling

Problem. Vasileios et al. [67] implemented a PGA on a Graphics Processor Unit (GPU) for the

Examination Timetabling Problem. It was argued that a GPU makes use of expanded memory

and threads to speed up processing times. The use of threads allowed for the crossover and

mutation operations to be performed in parallel. The approach was more exploratory as it made

use of larger population sizes. Umbarkar and Joshi [68] provide a review of this and other

parallel computing paradigms that have been used to reduce GA runtimes.

Ant Colony Optimisation (ACO) is based on how biological ants follow trails produced by

pheromone deposits to find the shortest path to their food. Premature convergence is also a

concern with ACO. The method converges when more and more ants begin to follow paths that

have common points. This leads to a loss in diversity. A high diversity means that most of the

ants are not influenced by the current best path found. A low diversity means that most of the

ants are following the best ant (current best path) and convergence has occurred. In the standard

ACO the pheromone evaporation rate may be used to balance the level of diversification and

intensification performed by the search and avoid premature convergence. A lower rate of

evaporation increases diversification because it causes the ants to traverse suboptimal paths

which improves the likelihood of finding new paths [69]. Conversely, a higher rate of

evaporation has an intensifying effect. The ants are forced to converge on paths that are

traversed the most in order to find shorter paths. Other approaches have been proposed to

improve diversity. Mohsen [70] put forward a hybrid ACO method to solve the Travelling

23

Salesman Problem (TSP). ACO was used to create an initial population. The population

diversity was then calculated using a method based on Euclidean distance. If the diversity was

too low then a mutation operator was used to increase diversity As a result, diversification was

increased because mutation moves the search to a different area in the search space. On the

other hand, if the diversity was too high then a version of Simulated Annealing was used to

increase intensification. The Max-Min Ant System (MMAS) introduced by Stutzle and Hoos

[71] limited the pheromone trails values with an interval defined upfront to avoid search

stagnation where the same solution is returned by multiple ants. In this study only the best

performing ant was allowed to update pheromone trails and two alternatives were considered.

The trails were either updated by the current best performing ant in each iteration or the global

best performing ant from all previous iterations or evolutionary cycles. Chen and Liu [72] state

that a shortcoming of MMAS is the slow convergence rate due to the limits imposed on the

pheromone trail values. The authors proposed a multi-colony system for TSP on top of a cluster

of processors. The master processor keeps track of the global best solution found so far by all

colonies. Each colony runs on a slave processor. Once a colony converges to local optima it is

reported to the master and a new colony is initialised to run in its place. The method reported

convergence times faster than parallel independent runs. The authors showed that multi-colony

systems have an increased capability to escape local optima compared to single colony systems.

Particle Swarm Optimisation (PSO) is based on the flocking behaviour of birds. Particles

represent candidate solutions and they fly through a multi-dimensional search space in pursuit

of a global optima. Each particle has a position and velocity and is influenced by the global

information of the flock. Earlier versions made use of velocity limits to control the level of

intensification and diversification in the search process. If a particle’s velocity was higher than

a defined limit then it was reset to the value of the limit. This velocity clamp mechanism

24

improved convergence but was ineffective in enabling the search to escape a local optima [73].

Shi and Eberhart [74] introduced the inertia weight w to balance the amount of diversification

and intensification and overcome premature convergence. W models the inertia of the particle

and represents its resistance to steering. The inertia weight w controls the influence of previous

velocities on the particle’s current velocity. By gradually decreasing w in a linear fashion,

diversification is reduced and intensification is increased. Cheng and Shi [73] state that the

capability of the search is limited because of the difficulty in dynamically adjusting w to control

the level of exploration and exploitation especially in complex or large-scale problems. The

authors propose a novel equation to control population diversity by making use of the average

velocity of the swarm and a user-defined parameter value. The equation is used to vary the

current position of a particle in order to increase or decrease swarm diversity. There have been

many hybrid implementations of PSO which incorporated local search to improve performance

[75]. Abayomi et al. [76] combined PSO with local search to successfully develop an efficient

automatic exam scheduler for a university in Nigeria. Tassopoulos [77] also combined local

search with PSO in their hybrid method to solve high school timetabling problems. A move

operator was used to change the particle’s current position. It swapped courses between two

timeslots in a random fashion. The performance of the hybrid was shown to be superior to the

GA and SA for the same problem sets.

2.5. Summary

Most combinatorial optimisation problems cannot be solved optimally in polynomial time. In

such cases it is more desirable to find near-optimal solutions in finite time. Metaheuristics have

received much attention over the years because they are able to find good performing solutions

in reasonable time to difficult problems. In general, a metaheuristic makes use of higher-level

strategies to overcome the limitations of lower level search heuristics to find better solutions.

25

This means that they are able to strike a better balance in diversification and intensification.

Good performing methods need to perform adequate diversification in order to find better

performing search areas. At the same, the method needs to be effective in searching good areas.

 There are two categories of metaheuristics, namely, trajectory-based methods and

population-based methods. The former considers one solution at a time and follows a single

trajectory in the search space. The latter considers multiple solutions at a time. A key problem

is the issue of local optima traps in trajectory-based methods where the search is ended

prematurely leading to poor performance. Such methods need to have a way to overcome this

challenge. For example, TS makes use of a tabu-list. The search is not allowed to perform

moves that feature in the tabu-list. This causes the search to eventually accept an uphill (worse)

move and is then able to move out of the local optimum. The tenure of the list is also important.

Tabu-lists that are too short may cause the search to revisit old moves more often. This limits

exploration. Other trajectory-based methods covered in this chapter include SA, GRASP and

VNS. SA makes use of a cooling schedule to control the amount of intensification and

diversification performed by the search. If the temperature of the system is cooled too quickly

then the level of exploration is reduced. GRASP makes use of a RCL to control the amount of

intensification and diversification performed by the search.

Population-based methods were also discussed in this chapter. A key challenge with these

methods is premature convergence. This happens when the search converges too quickly and

further exploration is halted. GAs are able to overcome this issue to some extent in different

ways. Making use of larger populations improves exploration and slows shown convergence.

In some cases this may be undesirable particularly if processing time is an issue and a solution

needs to be found in a reasonable time. The GA also makes use of mutation to increase diversity

26

in the population. By increasing the population diversity the convergence is slowed. Again,

there needs to be a fine balance as too much diversity can lead to poor performance. It is

important for convergence to happen in an acceptable time. Other population-based methods

discussed include Ant Colony Optimization and Particle Swarm Optimization. Both these

methods are inspired by nature and are based on the foraging behaviour of ants and bird

respectively. The diversification and intensification mechanisms of these methods are also

elaborated on. In next chapter the Examination Timetabling Problem is introduced and defined.

27

 CHAPTER 3: EXAMINATION TIMETABLING PROBLEM

The Examination Timetabling Problem (ETP) is defined in this chapter along with the best

performing methods for this problem domain. The chapter is structured as follows; Section 3.1

defines the ETP. Section 3.2 presents the benchmark sets used to represent the capacitated

version of the ETP and some of the best performing approaches for these benchmarks. Section

3.3 focuses on the benchmark set used to represent the incapacitated version of the ETP and the

best performing approaches for that set. A critical analysis of the literature is given in Section

3.4 and section 3.5 concludes the chapter.

3.1. Examination Timetabling Problem Defined

The Timetabling Problem remains a well-studied one. The problem is a combinatorial one and

in some cases optimisation by exact techniques is not possible in an acceptable time. According

to Lawler [78], the mathematical analysis of an arrangement of discrete objects or the ordering

thereof is a combinatorial one. However, in most cases it is not necessary to enumerate all the

possible arrangements but rather to find the optimal arrangement which Lawler defines as

combinatorial optimisation. Wren [79] further categorized the Timetabling Problem as the

allocation of a set of resources to a set of objects in space time whilst satisfying a given set of

problem constraints. Burke et al. [80] provide a more general definition for the Timetabling

Problem. The problem is defined as a set of parameters �, ",#, $ which are finite sets that

represent timeslots, resources, meetings and constraints respectively. The aim is then to find

the best allocation of resources and times for meetings. The allocation should be one that

satisfies all the problem constraints as far as possible. Schaerf [81] further categorizes

timetabling into three main focus areas, namely, school timetabling, university course

timetabling and examination timetabling. School timetabling involves organising school

28

resources in a way that satisfies a set of requirements set by the school. More specifically, it is

the scheduling of one or more tuples to timetable slots. Each tuple is a set of resources such as

teachers, subjects and classrooms. Course timetabling is similar to school timetabling. It

involves scheduling a set of courses to a limited number of timetable slots. Each course is taught

to a group of students by a specific lecturer in a specific lecture room. Lastly, examination

timetabling is the scheduling of examinations to timetable slots. An exam is taken by a group

of students in a specific venue.

All timetabling problems have a set of constraints that need to be satisfied. There are two

types of constraints, namely, hard constraints and soft constraints [82]. In order for a timetable

to be usable (feasible) it must satisfy all hard constraints. For example, a hard constraint for the

school timetabling is that no teacher must be allocated to different classrooms in the same

timetable slot. In the case of examination timetabling, a hard constraint is that exams that have

common students must not be allocated to the same timetable slot. It is not necessary to satisfy

all soft constraints in order for a timetable to be feasible. Also, it may not be possible to satisfy

all soft constraints because some may be contradictory. Instead, the quality of a timetable is

determined by the extent to which all soft constraints are satisfied. An example of a soft

constraint for school timetabling is that teachers may have individual preferences when it comes

to teaching specific subjects at specific times. An example of a soft constraint for examination

timetabling is the requirement that the scheduling of exams with different durations to the same

room in the same timetable slot should be avoided to minimise student movements during the

exam.

There are two versions of the ETP, namely, the capacitated and uncapacitated version. In the

capacitated version the sizes of the rooms used to write the exams need to be considered

29

whereas, in the uncapacitated version there is no limit on the room sizes. Each version is

represented by one or more benchmark sets in the literature.

3.2. The Uncapacitated Version of ETP

In the uncapacitated version of the ETP, the capacities of the exam venues or rooms are not

considered. Room sizes are assumed to be unlimited. This version is represented by the Carter

benchmark set which is introduced in section 3.2.1. This is followed by section 3.2.2 which

presents the best performing approaches for this benchmark set.

3.2.1. The Carter Benchmark Set

The Carter benchmark set was introduced in 1996 [83]. It consists of thirteen instances taken

from selected schools and universities in Canada, America, United Kingdom and Middle East.

The benchmark set is shown in table 3.1. Each column gives the characteristics of each instance,

namely, number of periods/timeslots, number of exams, number of students and the conflict

density. The conflict density indicates the proportion of students who write the same exams.

Hec-s-92 has the highest conflict density which indicates a high proportion of students sit for

the same exams.

Table 3.1 The Carter Benchmark Set

Instance Number of

Periods

Number of

Exams

Number of

Students

Conflict

Density

car-f-92 32 543 18419 0.14

car-s-91 35 682 16925 0.13

ear-f-83 24 190 1125 0.27

hec-s-92 18 81 2823 0.42

30

kfu-s-93 20 461 5349 0.06

lse-f-91 18 381 2726 0.06

rye-s-93 23 486 11483 0.08

sta-f-83 13 139 611 0.14

tre-s-92 23 261 4360 0.18

uta-s-92 35 622 21266 0.13

ute-s-92 10 184 2749 0.08

yor-f-83 21 181 941 0.29

pur-s-93 42 2419 30029 0.03

This benchmark set has only one hard constraint which is that no student should be scheduled

to take two of more exams in the same period. The spacing of exams for students has a direct

influence on the pass rate. Also students tend to prefer timetables that have an element of

fairness where the timetable does not disadvantage certain students [84]. The soft constraint

that measures the spacing of exams which have common students aims to address this issue by

promoting timetables that are more evenly spaced. The exam spread is calculated as shown in

equation 3.1 below and timetables that minimize this value are preferred.

 %�&'() = 	
∑��+,-�	.�,-

/
 (3.1)

where:

1) 0�1�2� 	is distance in periods between '
(3� and '
(32.

2) ��3�2 is the number of students sitting for both exams

31

3) % is the total number of students.

4) 0�1�2� = 	256+,- where 1�2 ∈ {1,2,3,4,5} , 0 otherwise.

3.2.2. Best Performing Methods for the Carter Benchmark Set

Burke and Bykov [85] built on the success of the Great Deluge in solving timetabling problems

by proposing a variant known as the Flex-Deluge. The Great Deluge accepts both uphill (worse)

and downhill (better) moves. However, it was observed that by modifying the acceptance

criterion the performance may be improved. The Flex-Deluge introduces an additional

parameter to slow the rate of acceptance of both uphill and downhill moves. This allows the

Flex-Deluge to spend more time than the Great Deluge exploring and finding better solutions.

Leite et al. [86] also made use of the Great Deluge in an evolutionary approach by proposing

a memetic algorithm. A memetic algorithm is a GA that incorporates local search to improve

the fitness of the offspring after the recombination process. The initial population was organised

into groups (complexes) and each complex was evolved independently. The Great Deluge (see

section 2.3.1.1) was used to improve solutions after the recombination process. After each

evolutionary step, the complexes were shuffled by reorganising the individuals. The shuffling

of complexes and use of recombination between complexes enabled the search to explore new

areas.

Later on in 2018, Leite et al. [87] proposed a cellular memetic algorithm combined with the

Threshold Algorithm (TA). TA is a variation to Simulated Annealing (SA) (see section 2.3.1.1).

In SA the selection criterion is probabilistic whereas in TA it is deterministic and a solution is

only accepted if it is below the annealing threshold. Cellular memetic algorithms organise the

population in a connected graph where each vertex represents an individual that is linked to its

32

neighbours. During the recombination process an individual is recombined with its nearest

neighbour in the graph allowing for greater diversity in the chosen parents.

Bellio et al. [88] also made use of SA in an approach that has two stages. SA was

implemented for both stages. The aim of the first stage was to render a randomly generated

timetable feasible. This was achieved by performing moves that reduced examination conflicts

until there were no hard constraint violations. The aim of the second phase was to improve the

quality of the timetable from the first phase by making use of move operators that reduced the

soft constraint cost.

Rather than working on improving complete solutions Mandal and Kahar [89] considered

improving partial solutions. After each iteration a user-defined number of exams were assigned

to the partial solution and then the Great Deluge (see section 2.3.1.1) was used to improve the

solution quality. The process was repeated until all exams were scheduled. The candidate

solutions were constructed using different construction heuristics. The saturation degree

heuristic performed the best from the four heuristics considered. The saturation degree

construction heuristic gives priority to the exam with the least number of feasible period options

in the current version of the timetable.

Caramia et al. [90] instead scheduled exams in a greedy fashion. Exams were scheduled to

slots that incurred the least cost. Backtracking was used to resolve exam conflicts. Each

scheduled exam was assigned a penalty score which was updated after a new exam was

scheduled. A move operator was used to reduce exam penalties. In some cases it was observed

that after all exams were scheduled some periods remained unused. In this case the cost

reduction in moving all the exams to an unused period was computed. Only exams with the

highest cost reduction were then moved to the new period.

33

3.3. The Capacitated Version of ETP

In the capacitated version of the ETP, the capacities of the exam venues or rooms must be

considered. In this study, the capacitated version of the ETP is represented by the examination

benchmark set released for the International Timetabling competition in 2007 (ITC2007) and

the Yeditepe benchmark set. The ITC2007 benchmark set is discussed in section 3.3.1 along

with best performing approaches found in literature for this benchmark set in section 3.3.2. The

Yeditepe benchmark set is discussed in section 3.3.3 along with best performing approaches

found in literature for this benchmark set in section 3.3.4.

3.3.1. The ITC2007 Benchmark Set

The ICT2007 benchmark set was meant to present a realistic view of examination timetabling

in practice [91]. It is more constrained than the Carter benchmark set in that it has a richer set

of hard and soft constraints. The twelve instances for this benchmark set is shown table 3.2.

The columns from left to right in the table show the number of students in a particular problem

instance, the number of exams in that instance, the number of rooms, the conflict density and

lastly the number of periods.

Table 3.2 The ITC2007 Benchmark Set

Instance Number of

students

Number of

exams

Number of

rooms

Conflict

Density

Number of

Periods

1 7891 607 7 0.05 54

2 12743 870 49 0.01 40

3 16439 934 48 0.03 36

34

4 5045 273 1 0.15 21

5 9253 1018 3 0.009 42

6 7909 242 8 0.06 16

7 14676 1096 15 0.02 80

8 7718 598 8 0.05 80

9 655 169 3 0.08 25

10 1577 214 48 0.05 32

11 16439 934 40 0.03 26

12 1653 78 50 0.18 12

The hard constraints for the ITC2007 are summarized below;

• There must be no student clashes.

• The capacity of each room is fixed and must not be exceeded.

• The exam duration must not exceed the period duration.

• Some exams must be written simultaneously.

• Some exams must be written before others.

• Some exams require exclusive use of the room.

The soft constraints for the ITC2007 are summarized below.

• The number of times a student has consecutive exams in the same day.

• The number of times a student writes more than one exam in the same day.

• The number of times the spacing between exams for a student is less than a specific

value is also counted.

• Frontload penalty which penalises large exams that are scheduled later on.

35

• Exams with different durations being written in the same room are also penalized.

• The scheduling of exams in specific periods incurs certain penalties.

• The scheduling of exams in specific rooms incurs certain penalties.

Some of the soft constraints for this benchmark set are contradictory such as the period

spread and front loading constraints. The period spread constraint promotes timetables that have

more free periods between exams for students. The front loading constraint penalizes timetables

that have larger exams in terms of student numbers scheduled in the last periods. Therefore

period spread is restricted by the front loading constraint.

McCollum et al. [91] gives a more detailed description of the constraints and description of

the objective function.

3.3.2. Best Performing Methods for the ITC2007 Benchmark Set

The multi-phased approach by Muller [92] performed the best in the Second Timetabling

Competition in 2007. An initial solution was constructed in the first phase. The second phase

employed a problem specific hill climbing routine to find the local optimum. The solution was

further improved upon by a bounded Great Deluge (see section 2.3.1.1) in the improvement

phase. The bound value was increased whenever the search reached the lower limit of the

bound. The number of times the bound was increased with no improvement in the overall best

solution was recorded. If this number exceeded a predefined limit then the upper bound was

increased to allow search to move out of the local optimum. Simulated Annealing (SA) (see

section 2.3.1.1) was used in the next phase for further improvement of the solution. The method

also proved to be versatile as it was applied to the other two tracks in the competition with

minor modifications.

36

The FASTSA method proposed by Leite et al. [14] adopted the same approach as the

previous method to resolve conflicts in the initial solution construction process. The method

used a variant of SA termed FASTSA. The FASTSA was able to achieve faster processing

times over the standard SA by reducing the number of evaluations performed on every iteration.

The temperature schedule was segmented into intervals referred to as bins. If an attempt to

move an exam in the previous iteration was not successful then it was recorded in an appropriate

bin and the search ignored any moves relating to that exam in future iterations. One of the

drawbacks of FASTSA was the loss generality that is present in the standard SA.

The multi-staged approach proposed by Gogos et al. [93] was placed second behind Muller

in the same competition. GRASP was used to generate the initial solutions. A limited form of

backtracking was used to resolve any conflicts in the initial solution construction phase. A tabu

list was also used to record which exams were reassigned in the backtracking process. SA with

Kempe chains was used in the second phase to refine initial solutions. In the third and last phase

each period was inspected in turn using a novel Integer Programming approach to further

improve the solutions. In 2010, Gogos et al. [54] proposed several improvements to the

approach to achieve better performance. One of the improvements was the addition of more

search heuristics.

The cellular memetic approach by Leite et al. [87] also performed well for this benchmark

set. It was already discussed in section 3.2.2.

Many of the best performing methods discussed so far incorporate SA or a variation thereof.

Bykov and Petrovic [94] state that whilst SA has proven to be effective in solving the

examination problem there is a need to consider approaches that are similar to but easier to

implement than SA. The Late Acceptance Hill-Climbing Algorithm (LAHC) by Burke et al.

37

[82] is one such example of a system that is similar to SA without the need for a cooling

schedule. Following the success of LAHC in solving the ETP a new hill-climbing method called

Step Counting Hill Climbing Algorithm (SCHC) was proposed by Bykov and Petrovic [94]. A

cost bound is used as the acceptance criterion for new solutions. It is updated using the current

best after a user defined number of steps (iterations). Different variations to SCHC were

considered and the results show that the variant where only the accepted moves were counted

performed the best.

3.3.3. The Yeditepe Benchmark Set

The Yeditepe benchmark set is made up of eight instances taken from the Yeditepe University

from eight semesters over three years [95]. It differs from the other two benchmark sets in that

the timetables are a fixed size for all problem instances with each day having only three periods.

It differs from the Carter benchmark because the capacity of exam venues must not be exceeded.

It is also more realistic than the Carter benchmark set because it provides additional information

on the time and day of each period which is absent in the Carter benchmark. The soft constraint

is more restrictive than the Carter benchmark because it requires that students must not be

scheduled to sit for exams on consecutive periods on the same day. The Yeditepe benchmark

set is similar in nature and format to the ITC2007 benchmark set but has fewer constraints. For

example, there are no ordering rules when scheduling exams as is the case with ITC2007. As a

result the Yeditepe benchmark set provides the researcher with an opportunity to study real-

world problems without too many real-world constraints. The three different benchmark marks

set provides three levels of difficulty in terms of how constrained the problem is, with the Carter

benchmark set being the easiest to solve followed by the Yeditepe benchmark set and then lastly

the ITC2007 benchmark set being the hardest.

38

Parkes et al. [95] provides more details on this set and the definition of its objective function.

The Yeditepe benchmark set is listed in table 3.3 followed by the hard and soft constraints of

the problem. The columns in the table from left to right show the number of students in that

problem instance, the number of exams, the number of enrolments and lastly the conflict

density.

Table 3.3: The Yeditepe Benchmark Set

Instance Number of

students

Number of

exams

Number of

enrolments

Conflict

Density

20011 559 126 3486 0.18

20012 591 141 3708 0.18

20013 234 26 447 0.25

20021 826 162 5755 0.18

20022 869 182 5687 0.17

20023 420 38 790 0.2

20031 1125 174 6714 0.15

20032 1185 210 6833 0.14

The hard constraints this benchmark set are:

• No student clashes are allowed.

• The number of students taking an exam cannot exceed the room capacity.

The soft constraints for this benchmark set are:

39

• The number of times a student is expected to take exams in consecutive periods must

be minimized otherwise a penalty is incurred.

3.3.4. Best Performing Methods for the Yeditepe Benchmark Set

Very few approaches have been applied to the Yeditepe benchmark set. The multi-phased

method Muller [92] used to win in the Second International Timetabling competition was

successfully applied to this set and good results were obtained. This method was discussed in

section 3.3.2.

Muklason et al. [84] used a different approach. A survey of student preferences with respect

to exam timetables was carried out. The study revealed that students thought of a timetable as

being fair if it did not have any exam arrangement that favoured certain students. Fairness was

defined as new objective and included in the problem description. To solve the new multi-

objective problem a two-phased approach was implemented. Ordering heuristics with Squeaky

Wheel optimization [96] were employed in the first phase to construct solutions. To improve

the solution in the second phase a hyper-heuristic was implemented to select the heuristic to

apply to the solution next and the Great Deluge was used to handle the move acceptance part.

The method obtained better results than the approach by Muller for seven problem instances.

3.4. Critical Analysis

A survey of the literature revealed that solving the Examination Timetabling Problem (ETP) is

not a trivial task. Trajectory-based methods, population-based methods and hybrid methods

were proposed to solve ETP with varying degrees of success. Some of the more popular

population-based methods include Evolutionary Algorithms and Ant Systems [75] [97].

Trajectory-based methods like Simulated Annealing and Tabu Search also proved to be popular

[98] [6]. One of the challenges encountered in the ETP is that timetables with different

40

structures map to the same objective value. This issue is discussed in more detail below in

subsection 3.5.1 and a justification for a structure-based search to address this problem is

provided. An analysis of the literature also provided insight on some of the promising directions

taken by researchers to solve the ETP. One interesting approach is searching the partial solution

space of timetables [3]. Subsection 3.5.2 provides information on this approach and a

justification for this approach is also provided.

3.4.1. Justification for using a structure-based search

An analysis of the timetable space reveals that timetables that have different structure may have

the same behaviour in terms of the objective value. The challenge is then to decide which of

these timetables is suitable. A survey of the best performing approaches for the ETP shows that

little or no consideration is given to structure by current solvers. Most of the methods have an

objective value bias which means the search is mostly guided by the objective value. Both Tabu

Search and Simulated Annealing only accept permitted neighbouring solutions that have a

better objective value than that of the current solution. Relying only on the objective value

makes the search more prone to local optimum traps and approaches need to have mechanisms

in place to deal with this issue. For example, some SA approaches allow for the temperature T

to be increased in order to accept worse moves.

Blum et al. [51] state in order to achieve good performance, the search should not be guided

solely by the objective value. Existing approaches make use of only the objective value to

decide where to move the search and take structure into consideration when applying operators

to move the search. In this work a search that combines objective value with structure is

proposed to move the search. It is anticipated that the use of structure will reduce the objective

value bias which may lead to an improved performance by the search. Regions of the solution

space may be identified by considering the structure of the timetables that occupy the same

41

regions. By taking this approach it is hypothesized that although regions may exhibit the same

behaviour in terms of the objective value, the same regions will be distinguishable in terms of

structure. New regions would be those that are structurally different from ones previously

considered.

The SBPSS uses structure explicitly and combines it with the objective value to move the

search. The other approaches make use of only the objective value to move the search. Also

the other approaches.

3.4.2. Justification for the searching in partial solution spaces

The success of the Developmental Approach (DA) in solving ETP highlighted how searching

the space of partial timetables whilst incrementally building them leads to good quality

timetables [2]. The DA is a trajectory-based method that terminates once construction of the

timetables is completed. Each iteration consists of an exam being scheduled to the partial

solution and thereafter a set of hill-climbers are used to improve the partial solution. This

approach is different from other popular trajectory-based methods like Tabu Search where

solution refinement is only performed on completed solutions [6]. A single trajectory is

followed in the search space [75]. Burke et al. [29] state that if a completed solution is too far

from the global optimum it may be difficult to reach the optimum especially if its

neighbourhood is disconnected. The use of search during the construction of timetables allows

the DA to constantly adjust the trajectory of the search in order to improve performance. Mandal

and Kahar [89] also adopted this strategy to search the space of partial examination timetables.

The method differed from the DA in two ways. Firstly, search was performed after a group of

exams were scheduled whereas the DA performed search at every iteration after an exam had

42

been scheduled. Secondly, the DA employed simple hill-climbers for the local search whilst

Mandal and Kahar [89] used a more advanced search method in the form of the Great Deluge.

The good performance of methods that search partial solution spaces suggests that this

strategy is promising and worth pursuing. Furthermore, the search may be performed at regular

or variable intervals during construction. The search itself may be in the form of simple hill-

climbers or using other approaches like the Great Deluge.

3.5. Summary

Timetabling problems are concerned with the allocation of meetings to timeslots whilst making

the best use of resources within a set of constraints. Examination Timetabling falls in this

category and is the scheduling of examinations to timeslots. The problem has a set of hard and

soft constraints. A hard constraint may be one where the capacity of a venue must not be

exceeded. A soft constraint may be one where exams need to be evenly spread out. In order for

a timetable to be feasible it must meet all the hard constraints. It is not always possible for all

the soft constraints to be met as some may be contradictory. The extent to which the soft

constraints are satisfied represents the quality of the timetable. In this study three benchmark

problem sets are used to provide an empirical evaluation of the proposed approach. The first is

the Carter benchmark set which represents the uncapacitated version of the Examination

Timetabling Problem (ETP). The capacity of examination venues are not considered for this set

of problems. The Carter benchmark consists of thirteen problem instances taken from various

universities and schools across Canada. The only hard constraint is that no student must be

scheduled to write two or more exams in the same period. The soft constraint cost measures the

spread of exams for students. The next benchmark set used is the Yeditepe Benchmark set. This

set is of importance because it consists of real-world problems from the University of Yeditepe.

43

It has eight problem instances and represents the capacitated variant of the Examination

Timetabling Problem. The capacity of examination venues must be not be exceeded. The soft

constraint is that students must not be scheduled to sit for exams on consecutive periods on the

same day. The timetables are a fixed size with each day having only three periods. The ITC2007

benchmark set is the most constraint of the three benchmarks and resembles real-world

problems more closely. It is made of twelve problem instances and represents the capacitated

version of ETP. This benchmark set has hard constraints for both the venues and the timeslots.

For example, some examinations require exclusive use of venues and some examinations need

to be written in a particular order or at the same time. For each benchmark set the best

performing approaches found in literature are discussed in this chapter.

A critical analysis of the literature was also carried out in this chapter. A case is made for

the use of a search that combines both the objective value and structure. It was argued that

making use of objective value alone to guide the search is not enough to improve performance.

The use of structure with the objective value to guide the search has been proposed. One of the

reasons is that regions that have similar objective values may have different structure. By using

structure the search may then be able to find new regions that are structurally different. A case

was also made for searching partial solution spaces whilst incrementally constructing solutions.

The Developmental Approach (DA) was cited as an example of an approach that proved good

performance can be obtained for this problem domain. It searches the partial timetable space

whilst constructing the timetables. In the next chapter the methodology adopted in this study is

presented.

44

 CHAPTER 4: RESEARCH METHODOLOGY

In this chapter the methodology adopted in this research is described. In the first section a

summary of the popular research methodologies in the field of Computer Science is given. In

section 4.2 reasons are given for the choice of methodology used in this work. Section 4.3

outlines the methodology steps. Section 4.4 lists the benchmark sets that are used to test the

proposed method. Section 4.5 provides details of the technical specifications. Section 4.6

describes the parameter tuning process used in this study. The chapter is summarized in section

4.7.

4.1. Research Methodologies

According to Bakar [99] the main objective of research is add something new to the body of

knowledge. It was also noted that although Computer Science itself is a highly complex and

technical field, the applicability and usability by everyone should be considered. Deyemer [100]

argues that research in Computer Science has many branches or areas of interest. It has roots in

both mathematics and engineering. This has resulted in some methodologies being based on

mathematics such as axioms and proofs and, on the other hand, some methodologies being

based on approaches in engineering.

Ramesh et al. [101] proposes a way to characterize research in Computer Science by

considering certain key areas such as how the research was done, the level of analysis

undertaken in the study and so forth. The same work made use of four classifications, namely,

mathematical studies, simulation, concept implementation and laboratory experiment. Work

that made use of mathematical techniques was classified under mathematical studies.

Simulation referred to work that made use of simulations as their primary methods. Concept

implementation referred to those studies where a prototype was developed to demonstrate a

45

proof. Lastly, laboratory experiment referred to work where a newly proposed method (system)

was compared to existing methods (system). However, it was noted not all the classifications

are related to research in Computer Science. Another classification was proposed by Johnson

[102]. It consisted of four research methodologies commonly adopted by researchers in

Computer Science, namely, proof by demonstration, the empirical method, proof using

mathematical means and hermeneutics.

The proof by demonstration methodology involves proposing an initial solution and then

recording the results of the implementation. The recorded results are then used to refine the

solution. This process is repeated until the objectives have been achieved or until no further

refinement is possible. A drawback of this methodology is that no hypothesis is proposed prior

to the solution being built. Another challenge is that in some cases the initial solution may fail

completely and not yield any conclusions. The empirical method moves away from developing

artefacts. Instead a hypothesis is formulated at the beginning of the process. The method used

to test the hypothesis is then outlined because it is important that the test is repeatable to enable

other researchers to assess the method. The results are recorded and used to make an informed

decision on whether to accept or reject the initial hypothesis. This method also has some

challenges. It is difficult to keep the control variables such as the environment and computing

platforms the same to ensure the tests are repeatable to draw the same conclusions. To overcome

the issue of maintaining an unbiased test, the proof by mathematical means methodology was

proposed. Mathematical derivations are used to accept or refute any inferences at the beginning

of the process. Hermeneutics is similar to the proof by demonstration methodology but instead

of being objective in the testing process the system is implemented in its intended environment.

By using subjective testing a more realistic picture of the success of the system can be realised.

46

4.2. Justification for chosen research methodology

As stated in Chapter 1 the objective of this work is to develop a novel approach to solve the

Examination Timetabling Problem (ETP). Furthermore, the proposed approach should perform

well for all versions of ETP using the same parameter tuning process and values. This would

ensure that the approach is a general one which works well for the whole problem domain.

According to Baker [99] one of the key research activities is the choice of research

methodology used. It is also noted that the methodology chosen must be suitable to ensure that

the conclusions drawn are accepted. As stated in the previous section there are four widely

used methodologies in computer science, namely, namely, proof by demonstration, the

empirical method, proof using mathematical means and hermeneutics. The appropriateness of

each of these methodologies will be considered in turn in section 4.2.1 to section 4.2.4.

4.2.1. Proof by demonstration

The proof by demonstration method allows for an initial prototype to be developed and then

refined many times until the objectives have been met. In the case of ETP it may not be possible

to develop a novel approach that works well initially especially if the problem domain has

different versions. Also, problem instances in the same problem set may have different

characteristics and complexities. To achieve the objectives it would be necessary to first

develop a prototype and repeatedly test and refine the approach until a suitable level of

performance is achieved. The proof by demonstration method is considered a suitable method

because it allows the refinement of an initial prototype until the objectives has been met.

4.2.2. Empirical method

A hypothesis is formulated at the beginning of this method and then it is either accepted or

rejected at the end. This method does not allow for use of any artefacts or prototypes. There is

47

no refinement of any initial prototype in this methodology. Therefore, it is not suitable because

the study requires that a prototype be developed and iteratively refined. Also, no initial

hypothesis is required in this study.

4.2.3. Proof using mathematical means

This method involves the use of proofs and derivations which is not appropriate for this

research.

4.2.4. Hermeneutics

 Hermeneutics has its roots in social science. The system is deployed in its intended

environment and observed. This allows for a more subjective assessment of the proposed

system. Hermeneutics requires that humans using the system be observed which is not relevant

for this study.

In conclusion, it has been shown that the most suitable approach from all the methodologies

described in section 4.1 is the proof by demonstration methodology for this study. This

methodology allows for an initial prototype to be built and then refined many times until the

objectives have been met. The next section provides the methodology steps to be followed in

this research when developing the new approach to solve the ETP.

4.3. Methodology steps

The methodology steps in the study are as follows:

• An initial approach will be developed based on the conclusions drawn from the

analysis of the literature. The approach will make use of structure and objective

48

value to guide the search process. The search process will search the solution spaces

of partial timetables.

• The approach will be evaluated using the benchmark sets that represent the different

versions of the ETP.

• The approach is stochastic in nature and multiple runs will be done to assess the

performance and test the statistical significance of the results. For each run a

different seed will be used for the random number generator. The performance of

the approach will be compared to other leading methods for the same benchmark

sets. In the case where the approach has failed to find a feasible solution or produce

good results then the reasons for failure or poor performance will be recorded.

• The approach will be revised based on the recorded reasons for poor performance.

• The revised approach will be re-evaluated using the same benchmark sets and any

reasons for poor performance or failure will be recorded again. Statistical tests will

be done to ascertain the significance of the results. This iterative refinement process

will continue until no significant improvement in the approach can be achieved or

until the objectives have been met.

• In the case where the approach has failed to find suitable solutions to any problem

instances then the reasons for the failure will be reported. Reasons for any poor

performance will be also reported. This report may be used in future work to

improve the performance of the approach.

• The results obtained by the final revised approach will be used to draw conclusions

on the performance of the approach in solving the ETP.

49

4.4. Benchmark Sets

This approach will be tested on three popular benchmarks used to compare and contrast

methods. The benchmark sets are the Carter benchmark set, the ITC2007 benchmark set and

the Yeditepe benchmark set. All these benchmark sets were described in detail in Chapter 3.

4.5. Technical Specifications

The approach will be developed on a computer desktop running Windows 7 professional (64-

bit Operating System). The approach will be developed using Java version 1.6 and the open

source Eclipse IDE from IBM. The technical specifications of the desktop are Intel® Core™

i7-6700 CPU @ 3.40 Ghz with 7.88 GB usable RAM. The server cluster at the CHPC (Centre

for High Performance Computing) in Cape Town, South Africa will be used to run simulations

[103]. The wall time will be restricted to 48 Hours in keeping with CHPC policy.

4.6. Parameter Tuning

All metaheuristics have a set of user-defined parameters that need to be calibrated before such

methods can be used to solve problems [74]. Eben and Smit [104] state that there are two

distinct classes of parameters, namely, parameter control and parameter tuning. In parameter

control the parameter values which are set at the beginning are changed based on a chosen

control strategy as the algorithm progresses. Parameter tuning is different in that the parameter

values are set at the beginning and remain the same until the algorithm terminates. In this study

only parameter tuning is relevant as the parameter values set at the beginning of the proposed

approach to solve the ETP will not be changed as the algorithm progresses.

Parameter tuning is not a trivial process [105]. For example, parameters with numeric

parameter values may have large parameter spaces that need to be considered to find optimal

parameter values. As a result this exercise is also an optimisation problem. Dobslaw [106] states

50

that there is no generic approach that may be used to set optimal parameter values in

metaheuristics for a given problem domain. It is also the case that there are no optimal parameter

values for problem instances within the same problem domain due to the difference in features

and the complexity between the instances. However, taking the approach to perform parameter

tuning for every problem instance is both time consuming and computationally expensive [105].

The aim of this work is to find an approach that works well for both the capacitated and

uncapacitated versions of the ETP. For this reason parameter tuning will not be done for each

problem instance in each benchmark set representing each version of the problem. Instead, an

initial set of parameter values will be set up front and kept the same for each problem instance.

In this way, the aim of finding an approach that generalises well across all problem sets may be

achieved. To find the initial parameter values, the following approach will be used;

• First, all parameters will be set to those typically found in literature.

• Next, trial runs will be performed to assess the impact on performance caused by

varying the value of a single parameter whilst keeping the other parameter values the

same. Once a suitable parameter value has been found for that parameter which

performs satisfactorily, the other parameters will be investigated in turn.

• In the end a suitable set of initial parameter values for the proposed approach will be

found.

4.7. Summary

The proof by demonstration methodology will be used to meet the objectives of this research.

This methodology allows for an initial approach to be iteratively refined until the objectives

have been met or until no further improvement is possible. The output or results from each

refinement will be used to inform the refinements made to the approach in the next testing cycle.

51

Three benchmark sets will be used for the evaluation. The chosen benchmark sets represent

both the capacitated and uncapacitated version of the ETP. Technical specifications are given

for the computer that will be used to build the approach and revisions. Lastly, the method used

for parameter tuning in the proposed approach is outlined. In the next chapter, the proposed

Structure Based Partial Solution algorithm is introduced and the approach is presented in detail.

52

 CHAPTER 5: STRUCTURE BASED PARTIAL SOLUTION SEARCH

In this chapter the Structure Based Partial Solution Search (SBPSS) method is introduced and

discussed in detail. Section 5.1 provides an overview of the SBPSS. Section 5.2 describes the

SBPSS algorithm in detail. Section 5.3 outlines the SBPSS parameters values used. Section 5.4

discusses the application details for the three benchmark sets. Section 5.5 concludes the chapter.

5.1. Overview of the SBPSS

In this subsection the phases of the SBPSS are discussed in section 5.1.1. This is followed by a

description of the search process employed by the SBPSS in section 5.1.2.

5.1.1. SBPSS Phases

The SBPSS is made up of two phases, namely, a construction phase and a deconstruction phase

as shown in figure 5.1.

Figure 5.1 SBPSS Phases

Construction Phase

Deconstruction Phase

Start

53

The algorithm begins with the construction phase. In this phase multiple timetables are

constructed simultaneously by scheduling exams incrementally. A construction heuristic is used

to determine the order in which the exams are scheduled. This phase terminates when all exams

have been scheduled and completed timetables have been produced. The algorithm then enters

a deconstruction phase. In this phase randomly chosen examinations are removed from the

completed timetables to produce partially completed timetables. The algorithm then re-enters

the construction phase where those examinations that have been removed are rescheduled to

produce new completed timetables. The algorithm cycles between the construction and

deconstruction phase until the stopping condition has been met. This recycling process enables

the search to explore more of the solution space in an attempt to find better performing regions.

5.1.2. SBPSS Search Process

In section 2.4.2 in chapter 2, it was stated that multi-point search methods have good

diversification capabilities because these methods sample more of the search space at the same

time. The SBPSS inherits this trait as it is a multi-point search method which constructs multiple

timetables at the same time. The critical analysis in chapter 3 (section 3.4) argued that a search

that is structure-based and one that works in the partial solution space should be considered.

The SBPSS makes use of a structure-based search and searches partial solution spaces whilst

constructing timetables. The behaviour of the search process in the SBPSS is determined by

both the construction phase and deconstruction phase which is discussed in sections 5.1.2.1 and

section 5.1.2.2 respectively.

5.1.2.1. Search Performed in the Construction Phase

The aim of the construction phase is to construct complete timetables. Therefore, multiple

iterations of the search process shown in figure 5.2 take place in this phase until construction

54

of all timetables have been completed. Each step in the search process is discussed in turn

below.

Figure 5.2: Search Process in Construction Phase

• Step 1 – Assign an exam

Every iteration the process is started by assigning an exam to the partial timetable under

construction. A construction heuristic is employed to determine the order in which exams are

scheduled.

• Step 2 – Find new regions

After the assigning of exams to the partial timetables, the search explores the partial solution

space to find new regions. It makes use of the structure of the timetables to achieve this

objective by delineating points in the partial solution space into regions based on structure.

Points that are similar in structure occupy the same region in the solution space. The region is

then defined by the common structural components among the points in that region. Similarly,

in examination timetabling, the partial timetables which represent points in the solution space

1. Assign an

exam

2. Find new

regions

3. Search the

new regions

4. Replace

existing regions

if new regions

are better

performing

5. Exit phase if

all exams have

been allocated

otherwise

continue

Construction Phase

55

are organised into regions with the ones that are similar belonging to the same region. Two or

more timetables may be considered similar if the number of common structural components

among them is greater than a similarity threshold value which is a parameter value for the

algorithm. This is computed by making use of equation 5.1 below where pi and pj are partial

timetable solutions under inspection. If the computed value is above the threshold value then

both solutions are considered to be similar.

%<3=(&<�>	�ℎ&'�ℎ�=) = 	
∑ 	,-
@
,AB

�
∗ 100 > �<3�ℎ&'�ℎ (5.1)

 Where: m is the number of components in pi and cFG =1 if cFG is a solution component in

both pi and pj. Example 5.1 provides an illustration of this process. Table 5.1 shows two

timetables with five periods each and ten exams. The similarity threshold in this example is 5%.

Table 5.1 Similarity Index Example

The table shows that in timetable1; exam e0 is assigned to period 0 and exam e1 assigned to

period 1 and so forth. Using equation 5.1 the value of m (number of assignments in both

timetables) is ten because ten exams have been scheduled in both timetables. Also in seven of

the ten assignments, the same exams have been scheduled to be taken in the same periods.

Therefore, the number of common assignments is seven and the computed similarity index is

70%. The two timetables are then considered to be similar in structure because their similarity

index is above the 5% threshold. Finally, the region occupied by both timetables is defined by

 HI HJ HK HL HM HN HO HP HQ HR

Timetable1 0 1 1 2 0 2 4 2 3 4

Timetable2 0 1 0 2 1 4 4 2 3 4

56

the exams that have the same scheduling. The size of the timetable does not have an impact on

the similarity index or influence its value because it is expressed as a ratio of the number of

common components for the timetables being compared which is m in equation 5.1 shown

above

The SBPSS continues in this fashion to organise all partial timetables under construction

into regions. It may be the case that the similarity index for some timetables may not be above

the required threshold. This may result in regions that have only one timetable. The end result

is a set of one or more new regions where each region consists of one or more partial timetables.

Each region may be defined by the common exam assignments among the timetables in that

region. For example, figure 5.3 shows ten timetables represented by points in the solution space

S. In this example three regions were found. Region1 has only one point because that timetable

does not share any common structural components with any of the other timetables. Region2

has five points because the similarity index for all five timetables in this region is above the

required threshold. The same argument is made for region3 which has four points.

Figure 5.3: Solution Space S delineated into three regions

Solution Space S

region1

region
2

region
3

57

• Step 3 – Search the new regions.

After a set of new regions has been found the SBPSS proceeds to search within each of these

newly found regions. The SBPSS makes use of a number of hill-climbers. The aim of these

methods is to investigate and exploit the new regions to find better quality partial timetables.

The SBPSS makes use of two distinct types of search methods. The first type searches the same

partial timetable in an attempt to improve the quality. The second type exchanges information

between partial timetables in the same region in order to improve quality of one or more

timetables. These search methods are problem dependant and are discussed later as part of the

implementation details in section 5.4.1.3.

• Step 4 – Replace existing regions if new regions are better performing.

After the new regions have been searched, the SBPSS evaluates them to determine if the same

regions should be retained. If the search was successful in improving the quality of some of

the timetables in some of the regions then the number of common solution components among

the timetables in those changed regions would increase. Also, these regions will be considered

to be better performing because they have better quality timetables. If this is the case then the

new regions replace the existing set of regions before entering a new iteration in the

construction phase. The evaluation is done by counting the number of common exam

assignments (structural solution components) among the partial timetables in each region

(similarity index of the region). Thereafter, the average similarity index value for the whole set

of regions is calculated. If this average commonality value is greater than that of the current

set of regions then the new set of regions replaces the current set. This means that the new set

of regions are better performing because there is a greater number of common exam

assignments in each region because of the improved quality of partial timetables in them.

58

Example 5.2 provides an illustration of this process. Figure 5.4 shows the current set of

regions and the new regions found by the search in solution space S. The current set has three

regions with two timetables found in region1, four timetables found in region2 and so forth.

Similarly the new set has two regions with six timetables found in region1 and four timetables

found in region2. Table 5.2 shows the same two sets of regions. The similarity index for each

region is given and is computed using equation 5.1. This value represents the number of

common exam assignments among the timetables in that region as described earlier in example

5.1 using table 5.1. The average similarity index is also given. This value is calculated by

summing the similarity index for each region and then dividing it by the number of regions

being counted. The results in table 5.2 show that the average similarity index for the current set

and the new set is 7% and 5.5% respectively. Therefore, the SBPSS retains the current set of

regions and discards the new set of regions.

Figure 5.4 Solution Space S with New Regions and Old Regions

Solution Space S Solution Space S

region1

region
2

region
3

Current Regions

region

1

region
2

New Regions

59

Table 5.2 Average Similarity Index for Regions

Current Set New Set

Region Similarity Index Region Similarity Index

Region1 7% Region1 6%

Region2 8% Region2 5%

Region3 6%

Average Similarity

Index
7%

Average Similarity

Index
5.5%

• Step 5 – Exit the phase if all the exams have been allocated, otherwise continue.

After a decision has been made on whether to keep the current set of regions or replace the

current set of regions with the new set of regions, the SBPSS exits the construction phase if all

the exams have been assigned and timetable construction has been completed. Otherwise, a new

search cycle is performed in this phase.

5.1.2.2. Search Performed in the Deconstruction Phase

No search takes place in the deconstruction phase. However, this phase enables the search to

be restarted at a different location in the partial solution space. By removing random

examinations from a completed timetable, a new partial timetable is produced. In the next

construction cycle the search uses this new partial timetable as a new starting point in the partial

solution space. In chapter 2 it was stated that performance may be improved in two ways;

• Allow the search to return to areas already found to be promising for further

investigation because these areas are likely to have better solutions and

• Allow the search to find new areas to search.

60

To ensure that the SBPSS is able to achieve both these objectives two input parameter values

are used to determine the number of examinations to remove from the completed timetables in

this phase. The two parameter values used are unschePsmall and unschePlarge. These

parameter values are defined later in section 5.3 and are problem dependant. The smaller of the

two unschePsmall allows for a smaller number of examinations to be removed. As a result, the

search is restarted close to good solutions already found. However, it may be the case that after

a limited number of attempts the search may not be able to find better solutions in the same

area. In this case the search is moved to a further location by removing a larger number of

examinations from the completed solutions using the larger unschePlarge parameter value. In

this way, the search is more exploratory because it is able to return to good areas to find better

solutions or move to new unvisited areas to search.

5.2. The SBPSS algorithm

In this section the SBPSS algorithm is presented and discussed in detail. The SBPSS algorithm

is shown in figure 5.5.

The parameter values required by the SBPSS algorithm shown in figure 5.5 are simThresh,

unschePsmall and unschePlarge. These parameter values are defined in section 5.3. Section

5.1.2.1 also explains the use of simThresh by way of an example. Section 5.1.2.2 explains the

need for unschePsmall and unschePlarge. The SBPSS algorithm begins by initializing all the

partial solutions (line 2). Each solution is initialized by selecting a solution component at

random from the list of unscheduled solution components and assigning it to the empty solution.

Thereafter, the partial solution space is delineated into an initial set of regions curRegs using

the find_regions operator (line 3). The delineation process is discussed in detail in section

5.1.2.1. The find_regions operator is shown in figure 5.6 and requires the set of partial solutions

nParSolns to delineate and a similarity index threshold 	�<3�ℎ&'�ℎ to determine structural

61

similarity. The operator iterates through each partial solution and organises them into regions

based on similarity in structure using equation 5.1 (refer to example 5.1 in section 5.1.2.1 for

an illustration of this process).

After the initial set of regions has been identified, the SBPSS then proceeds to construct

nParSolns solutions by repeating the steps from line 5 to line 12 until construction is completed.

First a solution component is added to each of the partial solutions in parSolns to produce a set

of new partial solutions newParSolns (line 6). The set of newParSolns are then delineated into

a set of new regions newRegs using the find_regions operator again (line 8). The SBPSS then

uses a set of search operators (discussed in section 5.4.1.4) to search each region in turn (line

9).

Thereafter, the new regions newRegs are evaluated (line 10). The evaluation involves

counting the number of common solution components among each partial solution in a region.

Thereafter, the average for the whole set of regions is calculated. If the average commonality

value is greater than that of the current set of regions then the new set of regions replaces the

current set (refer to example 5.2 in section 5.1.2.1 for an illustration of this process). It may be

the case that the new set of regions does not perform as well at the current set. To ensure that

sufficient exploration of the search space takes place it is necessary for the SBPSS to make

numerous attempts to find better performing regions (lines 7-11). The amount of exploration is

controlled by a parameter value input to the algorithm, namely, exploitIts. This parameter is set

up front and determines the amount of exploration that takes place.

62

 1: Procedure SBPSS (simThresh, unschePsmall, unschePlarge)

2: Initialize parSolns partial solution points

3: Delineate parSolns into regions curRegs = findRegions (simThresh; parSolns)

4: While maxExplorationHours has not been reached Do

5: While parSolns partial solution points are incomplete Do

6: Add a new solution component to each partial solution in parSolns to produce newParSolns

7: For Its ← 1, exloitIts Do

8: Delineate newParSolns into regions newRegs = findRegions (simThresh; newParSolns)

9: Perform search in each region in newRegs

10: Evaluate newRegs and replace curRegs	with newRegs if better

11: End For

12: End While

13: The current_best performing solution becomes the best_so_far solution if it is better

14: If the best_so_far is unchanged after nAttempts attempts Then

15: remove unschePlarge solution components in each completed candidate solution

16: Else

17: remove unschePsmall solution components in each completed candidate solution.

18: End If

19: End While

20: End Procedure

Figure 5.5 Structure Based Solution Search Algorithm

63

After the construction phase has been completed the SBPSS finds the current best

performing solution in terms of the objective value in the current cycle and replaces the best

1: Procedure FINDREGIONS(simThresh, nParSolns)

2: Add the first partial solution to reg0

3: Add reg0 to list of regions

4: While nParSolns is not empty Do

5: Remove parSoln from nParSolns

6: For i ← 1, n Do

7: If parSoln is similar to solutions in regi Then

8: Add parSoln to region regi

9: End If

10: End For

11: If parSoln is not added to a region Then

12: Create a new region regj

13: Add parSoln to regj

14: End If

15: End While

16: End Procedure

Figure 5.6 FindRegions Algorithm

64

performing solution found so far with it if it is better (line 13). The deconstruction phase follows

immediately after the construction phase (lines 14-18). In this phase solution components are

removed from each completed solution. The solution components that are removed from one

solution differ to those of another solution due to the random nature of the process. Two

different parameter values which are supplied upfront as input values to the algorithm are used

to determine the number of solution components to remove from the solutions, namely,

ST��ℎ'U�3(== and	ST��ℎ'U=(&V'. The reasons for using these two parameter values are

given in section 5.1.2.2. The smaller of the two ST��ℎ'U�3(== is used to determine the number

of solution components to remove during each deconstruction cycle. However, if the best

solution found so far remains unchanged after a number of attempts then a larger number of

solutions components are removed using the ST��ℎ'U=(&V' value. The number of attempts is

a parameter value to the algorithm.

After the deconstruction stage the SBPSS re-enters the construction phase to reconstruct the

deconstructed partial solutions (refer to section 5.1.1). The SBPSS continues in this fashion

interchanging between the construction and deconstruction phases until the maximum run time

allowed as determined by the maxExplorationHours parameter value has been reached. This

terminates the algorithm. As explained in section 5.1.1 the interchanging between these two

phases enables the search to return to areas previously found to be promising or to find new

regions for investigation.

5.3. SBPSS parameters

The user defined parameters for the SBPSS are defined in table 5.2:

65

Table 5.3 SPBSS Parameters

SBPSS parameter Description

simThresh Integer percentage value that determines whether partial solutions are

similar.

unschedPsmall Small integer percentage value that determines the number of

solution components to be removed during the deconstruction

process.

unschedPlarge Large integer percentage value that determines the number of

solution components to be removed during the deconstruction

process.

nAttempts Integer value that specifies the number of operator iterations.

exploretIts Integer value that specifies the number of exploration iterations.

maxExplorationHours Integer value that specifies the number of hours the SBPSS should

run for before terminating.

5.4. Applying SBPSS to the Examination Timetabling Problem

The SBPSS is applied to the capacitated and uncapacitated versions of the ETP. However, there

are details which are common for both versions and these are provided in section 5.4.1. Section

5.4.2 provides the specific application details for the capacitated version of ETP.

Section 5.4.3 provides the specific application details for the uncapacitated version of ETP.

5.4.1. Common application details

The common application details consist of the parameter tuning process, solution initialization

process, solution construction heuristic and move operators which are described in section

5.4.1.1, section 5.4.1.2, section 5.4.1.3 and section 5.4.1.4 respectively.

66

5.4.1.1. Parameter tuning

It has already been stated in section 4.6 in chapter 4 that the approach should generalise well

across all problem instances in both versions of the ETP, namely, the capacitated and the

uncapacitated version. Section 4.6 also outlines the process followed for parameter tuning in

this work. Basically it involves tuning each parameter value whilst keeping the rest of the

parameter values the same until all parameter values have been tuned.

Table 5.4 shows the parameter values used in this study for all three benchmark sets tested,

namely, ITC2007 benchmark set, Carter benchmark set and Yeditepe benchmark set. For the

problem at hand 100 timetables were found to be a suitable representation of the search space.

Using a larger number of timetables resulted in minimal improvement but increased runtimes

considerably. This was most noticeable for the problem instances that have larger number of

students and exams. The value for simThresh was set at 5%. Using smaller values for this

parameter resulted in a fewer regions being found by the FindRegions operator with each region

consisting of a larger number of timetables. For example, the set12 problem instance in the

ITC2007 benchmark set has only 78 exams and using a simThresh of 1% resulted in 2 or less

regions being found as the algorithm progressed. This is not ideal as more regions need to be

found to improve the diversification capabilities of the search. Regions that are too large restrict

the intensification capabilities of the search because more points in the region under

investigation needs to be considered. The value for unschePsmall was set at 5%. Using a smaller

value than this was not practical for the smaller problem instances. For example, in the case of

the set12 problem instance, making use of a value of 1% results in no exams being removed

from the completed timetables in the deconstruction phase. As a result, the algorithm is halted

prematurely. Using large values resulted in large jumps being made in the solution space for

the larger problem instances. Making large jumps on every iteration reduced the effectiveness

67

of the search. The value of unschePlarge was set at 20%. Using smaller values did not allow

the search to effectively move beyond a local optimum for the smaller problem instances. Using

a larger value caused the performance of the search to deteriorate in most cases as the search

was moved away from promising regions in the search space. The values for exploitIts and

nAttempts were both set at 50. These values were informed by the literature; in particular the

study by Rajah and Pillay [3] which showed that satisfactory results may be obtained with these

parameter values when the Developmental Approach was tested on the Carter benchmark set.

Lastly, the number of runs used was thirty to allow statistical testing.

Table 5.4 SBPSS Parameter Values

Parameter Value

'
�=�<�W�� 50

ST��ℎ'U�3(== 5%

�<3�ℎ&'�ℎ 5%

ST��ℎ'U=(&V' 20%

TX��'3���

runs

50

30

5.4.1.2. Solution Initialization

For all three benchmark sets, the solution timetables are initialized in the same way. An exam

is randomly selected from the list of unscheduled exams. The exam is removed from the list

and is assigned to a feasible timeslot. A timeslot is considered feasible if it does not violate any

hard constraints to the problem at hand. A timeslot consists of just a period for the uncapacitated

problem set whilst for the capacitated version it consists of a period and a room. Therefore in

the uncapacitated version only a feasible period is required. However, for the capacitated

68

version a feasible timeslot is one where a feasible period is found and that period has a feasible

room as well.

5.4.1.3. Solution construction heuristic

The timetables are constructed using a construction heuristic, namely, the saturation degree, to

determine the order in which the exams are scheduled. This heuristic works as follows; each

unscheduled exam is assigned a saturation degree score which represents the number of feasible

periods that it may be assigned to in the current timetable. The exam with the least saturation

degree is then scheduled first because it is the most constrained from the other unscheduled

exams. If there is more than one feasible period then the exam is scheduled in the period with

the least cost. After an exam has been scheduled the saturation degrees of the remaining

unscheduled exams are updated. It may be the case that there is more than one exam with the

same saturation degree. In this study, the exam with the most students is used to break the tie

and is scheduled next. If there are remaining exams to be scheduled and there are no feasible

periods available then the exams are scheduled in periods chosen at random.

5.4.1.4. Move operators

 All move operators employed by the SBPSS are hill-climbers because only moves that improve

the solution quality are accepted. The aim of the operators is to exploit the region of interest in

order to find better quality solutions. All move operators make use of the Kempe chain heuristic

to resolve exam conflicts and maintain feasibility [14]. The Kempe chain heuristic moves exams

between timeslots that are in conflict.

Figure 5.7 shows two periods. Period A has four exams, namely, e1, e2, e3 and e4. Period B has

two exams, namely, e5 and e6. The exam conflict matrix is shown in Table 5.5. The conflict

matrix shows that exams e1 and e5 have common students and should not be scheduled together.

69

Also exams e2 and e5 have common students. The hard constraint for this illustration is that

exams that share students should not be scheduled in the same period.

Table 5.5 Example Conflict Matrix

 e1 e2 e3 e4 e5 e6

e1 0 0 0 0 1 0

e2 0 0 0 0 1 0

e3 0 0 0 0 0 0

e4 0 0 0 0 0 0

e5 1 1 0 0 0 0

e6 0 0 0 0 0 0

 Period

A

 Period B

Start e1 e2

e3 e4

 e5 e6

Step 1 e2 e3

e4

e1 e5 e6

Step 2 e2 e3

e4

e5

e1 e6

Step 3 e3 e4

e5

e2 e1 e6

End e3 e4

e5

 e1 e2

e6

Figure 5.7 Kempe Chain Heuristic Example

70

The aim in this example is to move e1 from period A to period B. Step 1 shows e1 being

moved to period B. This move causes e5 to be moved out of period B to period A as shown in

step 2 because e5 and e1 are in conflict with each other and having them both in the same period

would violate the hard constraint. In step 3 e2 is moved out of period A to period B to maintain

feasibility because it is in conflict with e5. After the process has stopped exams e3, e4 and e5 are

left in period A. Exams e1, e2 and e6 are left in period B.

The move operators are MovePeriodSame, MovePeriodRandom, SwapPeriodRandom,

2WaySwapPeriodRandom, PeriodChange, MoveRoomSame and MoveRoomRandom. These

operators are presented in the section 5.4.1.4.1 to section 5.4.1.4.7 respectively.

5.4.1.4.1. MovePeriodSame

This operator uses information from one timetable to make informed decisions on move

operations on another timetable. In this way solutions share knowledge about the solution space.

Figure 5.8 shows two timetables timetablei and timetablej before and after the move is

performed. Both timetables are randomly selected in a region. Both timetables have ten exams

and five periods. In timetablei e0 is assigned to period 0, e1 is assigned to period 1 and so forth.

Before the move e3 in timetablei is assigned to period 2. However, the same exam is assigned

to period 3 in timetablej. This information is used by the operator to move e3 in timetablei to

period 3 to match the assignment in timetablej. The move is only performed if it results in a

reduction in the hard or soft constraint costs.

Before

 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

timetablei 0 1 1 2 0 2 4 2 3 4

timetablej 0 3 0 3 1 4 4 2 3 4

71

5.4.1.4.2. MovePeriodRandom

This operator is different from the MovePeriodSame operator in that it involves only one

timetable. The aim of this operator is to perform local search on the same timetable.

Figure 5.9 shows two randomly selected periods in a randomly selected timetable before and

after the move is performed. An exam is randomly selected in period A and it is moved to

period B. In this example, exam e1 which is assigned to period A is chosen and moved to period

B. The move is only performed if it results in a reduction in the hard or soft constraint costs.

 Period A Period B

Start e1 e2

e3 e4

 e5 e6

Step 1 e2 e3

e4

e1 e5 e6

End e2 e3

e4

 e1 e5

e6

Figure 5.9 MovePeriodRandom Example

After timetablei 0 1 1 3 0 2 4 2 3 4

 timetablej 0 3 0 3 1 4 4 2 3 4

Figure 5.8 MovePeriodSame Example

72

5.4.1.4.3. SwapPeriodRandom

This move operator is different from the MovePeriodRandom operator in that it involves two

periods in the same timetable. The aim of this operator is to perform local search on the same

timetable by swapping exams between periods.

Figure 5.10 shows two randomly selected periods in a randomly selected timetable before and

after the move is performed. An exam is randomly selected in period A and another exam in

randomly selected in period B. The selected exams are then swapped between the periods. In

this example, exam e1 and exam e5 are swapped between the periods. After the move is

completed exams e2, e3, e3 and e5 are left in period A and exams e1 and e6 are left in period B.

The move is only performed if it results in a reduction in the hard or soft constraint costs.

 Period A Period B

Start e1 e2

e3 e4

 e5 e6

Step 1 e2 e3

e4

e1 e6

 e5

End e2 e3

 e4 e5

 e1

e6

Figure 5.10 SwapPeriodRandom Example

5.4.1.4.4. 2WaySwapPeriodRandom

This move operator is similar to the previous operator but instead of two periods being

compared there are three periods in the comparison. The aim of this operator is then to search

a wider area in the same timetable. The cost of swapping an exam between period 1 and period

2 is compared with swapping the exam with period 3. The swap that has the most savings in

73

terms of the soft constraint cost and the hard constraint costs is then performed. The Kempe

chain heuristic is used to resolve any potential exams conflicts that may arise as a result of the

move. The move is only performed if it results in a reduction in the hard or soft constraint costs.

5.4.1.4.5. PeriodChange

Rather than swapping just a pair of exams between periods, this operator swaps all the exams

between periods. In this way it is more exploratory then the other two swap operators, namely,

SwapPeriodRandom and 2WaySwapPeriodRandom. A timetable is randomly selected in a

region and then two periods are randomly chosen in the same timetable. All the exams in one

period are swapped with those in the other period. The move is only carried out if there is a

decrease in the soft constraint cost of the timetable and the move does not violate any hard

constraints. In this example, in figure 5.11 period A starts off with exams e1, e2, e3 and e4. Period

B has exams e5 and e6. After the move is completed exams e5 and e6 are left in period A. Exams

e1, e2, e3 and e4 are left in Period B.

 Period A Period B

Start e1 e2

e3 e4

 e5 e6

Step 1 e1 e2 e3 e4

 e5 e6

End e5 e6

 e1 e2

e3 e4

Figure 5.11 PeriodChange Example

74

5.4.1.4.6. MoveRoomSame

The previous move operators involved period assignments whereas this operator and the next

involve room assignments. The aim of this operator is to search the room spaces in periods.

Similar to the MovePeriodSame operator, this operator uses the information from one timetable

to make an informed move in another timetable to further exploit the search space. An exam

from timetablei is randomly selected and is moved to a new room. The destination room is the

same one that the same exam is assigned to in timetablej. Figure 5.12 shows timetables

timetablei and timetablej that have been randomly selected in a region. Exam e0 is assigned to

period 0 and room 0 in timetablei. It is assigned to period 1 and room 3 in timetablej. Exam e0

is then moved to room 3 in period 0 in timetablei to match the room it is assigned to in timetablej.

The move is only performed if there is a reduction in hard and soft constraint costs.

5.4.1.4.7. MoveRoomRandom

This operator searches the room spaces in the same period in the same timetable and is different

from the MoveRoomSame operator in that it involves only one timetable.

Before

 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

timetablei [0,0] [0,1] [0,1] [0,2] [0,0] [0,2] [0,2] [0,2] [0,3] [0,0]

timetablej [1,3] [1,0] [1,0] [1,3] [1,1] [1,2] [1,1] [1,2] [1,3] [1,3]

After timetablei [0,3] [0,1] [0,1] [0,2] [0,0] [0,2] [0,2] [0,2] [0,3] [0,0]

 timetablej [1,3] [1,0] [1,0] [1,3] [1,1] [1,2] [1,1] [1,2] [1,3] [1,3]

Figure 5.12 MoveRoomSame Example

75

Figure 5.13 shows two randomly selected rooms in a randomly selected timetable before and

after the move is performed. Next an exam is randomly selected in room A and it is moved to

room B. In this example exam e1 which is assigned to room A is chosen and moved to room B.

The move is only performed if it results in a reduction in the hard or soft constraint costs. After

the move is completed exams e2, e3 and e4 are left in room A. Exams e1, e5 and e6 are left in

room B.

 Room A Room B

Start e1 e2

e3 e4

 e5 e6

Step 1 e2 e3

e4

e1 e5 e6

End e2 e3

e4

 e1 e5

e6

Figure 5.13 MoveRoomRandom Example

5.4.2. Applying the SBPSS to the Capacitated Version of the ETP

The SBPSS was applied to both the ITC2007 benchmark set and Yeditepe benchmark set which

represent this version of the ETP. The hard and soft constraints for both these benchmark sets

are provided in Chapter3. As stated in section 3.3, in this version of the ETP the capacity of the

rooms must be considered. Exams can only be written in rooms where the capacity of the room

equals or exceeds the total number students for those exams. Some exams require exclusive use

of a room as a hard constraint. At the start of the algorithm the timetables are initialized as

described in section 5.4.1.2 using the parameter values listed in section 5.4.1.1. The saturation

76

degree is used to construct the solutions as described in section 5.4.1.3. All move operators

listed in section 5.4.1.4 were implemented for both these benchmark sets.

5.4.3. Applying the SBPSS to the Uncapacitated Version of the ETP

The SBPSS was applied to the Carter benchmark set which represents the uncapacitated version

of the ETP. The problem constraints are given in section 3.2.1 in chapter 3. Timetables were

initialized as describe in section 5.4.1.2 and constructed as described in section 5.4.1.3 using

the parameter values listed in section 5.4.1.1. The move operators involving rooms were not

implemented because there are no room constraints for this version. Therefore, only the move

operators dealing with periods, namely, MovePeriodSame, MovePeriodRandom,

PeriodChange, SwapPeriodRandom and 2WaySwapPeriodRandom were implemented.

5.5. Summary

This chapter first provided an overview of the SBPSS by introducing the construction and

deconstruction phases. The search process for each of the phases was given in detail. Search

takes place during construction using a search that combines structure with the objective value.

Search is done on every iteration. The SBPSS algorithm was presented and discussed in detail.

The saturation degree was used as the solution construction heuristic. The parameter tuning

process and parameter values used in this study is also given. The SBPSS is applied to both the

capacitated and uncapacitated versions of the ETP. Hill-climbers are applied for each version

to improve the quality of the timetables under construction. The room operators were not

required for the uncapacitated version of the ETP. The results of the implementation are given

in the next chapter.

77

 CHAPTER 6: RESULTS AND DISCUSSION

In this chapter the results of the SBPSS is presented and discussed. The key design properties

are assessed and the results are presented in section 6.1. The results obtained by the SBPSS

when applied to the capacitated version of the Examination Timetabling Problem (ETP) are

given in section 6.2. This is followed by the results for the uncapacitated version in section 6.3.

Section 6.4 concludes the chapter.

6.1. Assessment of SBPSS Design Properties

The SBPSS has two key design features, namely, it searches the space of partial timetables and

has a search that is guided by structure. Section 6.1.1 assesses the effectiveness of working in

the partial solution space. Section 6.1.2 assesses the effectiveness of employing a search that is

guided by structure.

6.1.1. Effectiveness of search in partial solution space

An investigation was undertaken to test the impact on performance when working in the partial

solution space for the ETP. The investigation involved comparing the difference in performance

between performing search or no search during construction. Four problem instances from the

Carter benchmark set, namely, hec-s-92, ute-s-92, yor-f-83 and tre-s-92 were used for this

investigation. Thirty runs were done to allow for statistically testing. Each run used a different

seed for the random number generator. A hundred timetables were constructed in each run as

this was considered to suitably represent the solution space (refer to section 5.4.1.1). All runs

produced feasible timetables and the results of soft constraint costs are given in Table 6.1. The

best, average and variance of the soft constraint cost from all runs performed is shown. The

results show clearly that improved results are produced for all problem instances when search

is performed during solution construction as opposed to no search during construction.

78

Table 6.1 Results of No Search and Search during Construction

Statistical tests were done to ascertain the significance of the result that using search during

construction improves performance. The null hypothesis (H0) is that search makes no difference

to performance during construction. The alternate hypothesis is that search improves

performance. Table 6.2 shows the critical values for each level of significance and the decision

rule on whether to accept or reject the null hypothesis. Table 6.3 shows the Z-values for each

of the problem instances.

Table 6.2 Levels of Significance and Decision Rules

Levels of significance Accept/Reject Rules

0.01 Reject H0 if Z >2.33

0.05 Reject H0 if Z >1.64

0.10 Reject H0 if Z >1.28

Instance

No Search Search during Construction

Best Average Variance Best Average Variance

hec-s-92 13.027 13.734 0.115 10.601 10.756 0.007

yor-f-83 42.260 44.515 0.376 36.227 37.053 0.143

ute-s-92 30.012 30.900 0.232 25.024 25.189 0.007

tre-s-92 9.761 10.230 0.029 8.036 8.156 0.004

79

Table 6.3 Z-Values for each Problem Instance

Instance Z value

hec-s-92 46.82

yor-f-83 56.74

tre-s-92 62.44

ute-s-92 63.70

The result that using search during solution construction is better than no search is significant

at all levels of significance for the four problem instances tested. Therefore, the use of search

construction is justified.

The next investigation assessed the impact on performance when search is performed at

different intervals during solution construction. The same problem instances from the previous

investigation were used. The same number of runs and timetables in each run as in the previous

investigation was used. Four scenarios were considered in the investigation:

• Search is performed on every iteration of algorithm.

• Search is performed on every 5th iteration of the algorithm.

• Search is performed on every 10th iteration of the algorithm.

• Search is performed on every 20th iteration of the algorithm.

All the runs for all the problem instances produced feasible timetables. Therefore, only the

soft constraint cost was used to compare the results of each scenario. Table 6.4 shows the

iteration search results from the study. For each of the scenarios, the best, average and variance

of the soft constraint cost from all runs performed is shown. However, using the best produced

result to determine the interval at which search should be performed does not allow for

80

conclusive findings. For example, in the case of tres-s-92, in the same table, a better result is

obtained when search is performed at every 10th iteration compared to every 5th iteration. This

inconsistency may be due to the stochastic nature of the method. Therefore, it is more useful to

make use the average results across all runs in order to draw meaningful conclusions. The best

average values are in bold. By considering the average results it is clear that the best results are

obtained when search is performed on every iteration in the algorithm.

Table 6.4 Iteration Search Results

Figure 6.1 shown below provides a graphical comparison for each of the tested scenarios.

The scenario where search is used at every iteration is used as the baseline to compare the

average soft constraint cost of each scenario to complete the assessment. This approach allows

for a pairwise comparison between competing scenarios. Figure 6.1 illustrates that the

frequency at which search is performed affects performance. At the 5th, 10th and 20th iteration

there is a positive increase in all the soft constraint costs indicating that the best performance is

achieved when search is done at every iteration. Furthermore, in general performance decreases

as the interval at which search is performed is decreased for all problem instances.

Instance Every Iteration Every 5th Iteration Every 10th iteration Every 20th iteration

 Best Avg Var Best Avg Var Best Avg Var Best Avg Var

hec-s-92 10.601 10.756 0.007 10.734 10.942 0.015 10.819 11.063 0.014 10.951 11.394 0.092

yor-f-83 36.227 37.053 0.143 36.998 37.453 0.081 36.745 37.514 0.121 36.863 38.108 0.325

ute-s-92 25.024 25.189 0.007 25.009 25.214 0.009 25.003 25.217 0.015 25.081 25.282 0.008

tre-s-92 8.036 8.156 0.004 8.112 8.196 0.002 8.085 8.210 0.003 8.119 8.254 0.003

81

Figure 6.1 Soft Constraint Cost at Different Iterations

6.1.2. Effectiveness of a structure-based search

A separate study was undertaken to assess the effectiveness of using a search combined with

structure and objective value instead of a search solely guided by the objective value. The same

problem instances and number of runs from the previous study were used. All runs for all the

problem instances tested produced feasible timetable solutions. Therefore, only the soft

constraint cost was used to compare both approaches to search. The results are shown in Table

6.5. For each case, the best soft constraint cost obtained is shown in the table. This is followed

by the average and variance soft constraint costs from all runs. The best results are in bold. The

results in the table suggest that using a search combined with structure leads to superior

performance. The average scores obtained for all problem instances are better for the combined

search. Also, the lower variance scores by the combined search indicate that this approach

performs consistently better across all runs.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

Every Iteration Every 5th Iteration Every 10th iteration Every 20th iteration

D
if

fe
re

n
ce

 i
n

 C
o

st

Different Iterations

Average Cost at Different Iterations

HEC YOR UTE TRE

82

Table 6.5 Objective Value Based Search versus Combined Search

Instance Objective Value-Based Search Combined Search

 Best Average Variance Best Average Variance

hec-s-92 10.7326 10.9952 0.0188 10.6008 10.7561 0.0068

yor-f-83 36.6142 38.1949 0.2824 36.2274 37.0528 0.1427

tre-s-92 8.1374 8.2326 0.0024 8.0365 8.1561 0.0038

ute-s-92 25.0447 25.2609 0.0135 25.0236 25.2138 0.0075

Statistical tests were done to ascertain the significance of the result that using a combined

search is better than using a search guided solely by the objective value. The null hypothesis

(H0) is that both approaches have the same performance. The alternate hypothesis is that a

combined search has a better performance. Table 6.2 shows the critical values for each level of

significance and the decision rule on whether to accept or reject the null hypothesis. Table 6.6

shows the Z-values for each of the problem instances.

Table 6.6 Z-Values for each Problem Instance

Instance Z value

hec-s-92 8.19

yor-f-83 9.59

tre-s-92 5.33

ute-s-92 1.78

The result that using search combined with structure is better than a search guided by the

objective value alone is significant at all levels of significance for the four problem instances

tested. Therefore, the use of search that is combined with structure is justified.

83

6.2. Results for the Capacacitated Version of the ETP

In this section the results for the benchmark sets representing the capacitated version of the ETP

are presented and discussed. Section 6.2.1 presents results for the ITC2007 benchmark set and

Section 6.2.2 presents results for the Yeditepe benchmark set.

6.2.1. The ITC2007 Benchmark Set Results

Table 6.7 summarizes the results for the ITC2007 benchmark set using the parameter values

stated in chapter 5. The table shows the best soft constraint cost obtained, followed by the

average soft constraint cost and the variance for all the runs.

Table 6.7 SBPSS Results for ITC2007 Benchmark Set

Instance Best Average Variance Average Runtime (seconds)

1 3925 4208.80 19501.06 43200

2 376 478.43 2115.56 43200

3 8245 8924.40 133525.77 43200

4 12493 13050.67 100582.92 43200

5 2659 2761.80 2908.51 86400

6 25205 25903.50 115897.91 43200

7 3901 4429.23 91177.70 86400

8 6756 8146.10 556412.16 86400

9 910 1008.83 3568.01 43200

10 12939 13091.43 5136.19 86400

11 24809 25684.50 292857.84 86400

12 5095 5192.83 2248.14 43200

84

The runtimes were varied for each problem instance based on the instance size as determined

by the number of exams and students for that instance. Each of the runs for each of the problem

instances produced feasible timetables. Table 6.8 compares the results of SBPSS to the current

state of the art methods found in the literature that have achieved the best performance. The

best results are in bold. These methods were discussed in section 3.3.2 in chapter 3.

Table 6.8 Comparison of SBPSS to State of the Art for the ITC2007 Benchmark Set

Instance SBPSS Muller[92] Gogos et

al.[107]

Bykov and

Petrovic[94]

Leite et

al.[14]

Leite et

al.[87]

Set1 3925 4370 4128 3647 5050 6207

Set2 376 400 380 385 395 535

Set3 8245 10049 7769 7487 9574 13022

Set4 12493 18141 13103 11779 12299 14302

Set5 2659 2988 2513 2447 3115 3829

Set6 25205 26585 25330 25210 25750 26710

Set7 3901 4213 3537 3563 4308 5508

Set8 6756 7742 7087 6614 7506 8716

set9 910 1030 913 924 977 1030

set10 12939 16682 13053 12931 13449 13894

set11 24809 34129 24369 23784 30112 39783

set12 5095 5535 5095 5097 5148 5142

All the other approaches in the comparison used to improve initial completed solutions. The

SBPSS is the only method in this comparison that works in the partial solution space. All of

the other methods use a search that is guided solely by the objective function. The SBPSS is

85

different in that it uses a search that combines structure as well. The SBPSS is able to produce

the best results for four problem instances, namely, set2, set6, set9 and set12. For the rest of the

instances, it produces results comparable to the other leading methods. It performs well for the

larger problem instances like set2 and set3 with 870 and 934 exams respectively.

6.2.2. The Yeditepe Benchmark Set Results

Table 6.9 summarizes the results obtained when the SBPSS was applied to the Yeditepe

benchmark set. All the runs produced feasible timetables resulting in zero hard constraint costs.

The table shows the best soft constraint cost obtained, followed by the average soft constraint

cost and the variance from the all the runs. The last column shows the average runtime in

seconds.

Table 6.9 SBPSS Results for the Yeditepe Benchmark Set

Instance Best Average Variance Average Runtime (seconds)

20011 47 49.8 1.2 21600

20012 102 108.68 14.14 21600

20013 29 29 0 3600

20021 47 55.16 15.01 21600

20022 129 151.04 146.52 21600

20023 56 56 0 3600

20031 99 129.76 147.94 21600

20032 359 385.28 162.92 21600

The SBPSS has the same performance for all runs for instances 20013 and 20023 as indicated

by the zero variance. It may be the case that these instances cannot be improved upon or the

86

SBPSS is less effective in solving them. Table 6.10 compares the results of SBPSS to the current

state of the art methods found in the literature that have achieved the best performance for this

benchmark set. The best results are in bold. These methods were discussed in section 3.3.4 in

chapter 3. The SBPSS improves on the best results for all problem instances in this benchmark

set. There are not many methods in the literature to compare the results with.

Table 6.10 Comparison of SBPSS to State of the Art for the Yeditepe Benchmark Set

Instance SBPSS Muller[92] Muklason et al.[84]

20011 47 62 56

20012 105 125 122

20013 29 29 29

20021 55 70 76

20022 129 170 162

20023 56 70 56

20031 169 223 143

20032 377 440 434

The results show that the SBPSS outperforms both best methods it is compared to. All three

approaches perform the same for the instance 20013. SBPSS is the only method in the

comparison that searches partial solution spaces and makes use of a search that combines

structure with the objective value.

6.3. Results for the Uncapacacitated Version of the ETP

In this section the results for the benchmark set representing the uncapacitated version of the

ETP are presented and discussed. Section 6.3.1 presents results for the Carter benchmark set.

87

6.3.1. The Carter Benchmark Set Results

Table 6.11 summarizes the results obtained when the SBPSS was applied to the Carter

benchmark set. The table shows the best soft constraint cost obtained, followed by the average

soft constraint cost and the variance from the all the runs. The last column gives the runtime in

seconds. All the runs produced feasible timetables.

Table 6.11 SBPSS Results for the Carter Benchmark Set

Instance Best Average Variance Average Runtime (seconds)

hec-s-92 10.032 10.165 0.0048 86400

car-s-91 4.390 4.632 0.0177 172800

car-f-92 3.701 3.880 0.0116 172800

ute-s-92 24.759 24.871 0.0041 86400

tre-s-92 7.619 7.891 0.0125 86400

lse-f-91 9.804 9.993 0.0079 86400

kfu-s-93 12.810 13.003 0.0087 172800

yor-f-83 34.413 35.240 0.0958 86400

uta-s-92 3.035 3.182 0.0061 172800

ear-f-83 32.588 33.120 0.0584 86400

sta-f-83 157.032 157.048 0.0001 86400

rye-s-93 7.849 8.079 0.0081 172800

Table 6.12 compares the results of SBPSS to the current state of the art methods found in

the literature that have achieved the best performance for this benchmark set. The best results

are in bold. These methods are discussed in section 3.2.2 in chapter 3. The SBPSS has results

88

comparable to the other leading methods. The SBPSS obtains the best result for two problem

instances, namely, tre-s-92 and yor-f-83.

Table 6.12 Comparison of SBPSS to State of the Art for the Carter Benchmark Set

Instance SBPSS

Caramia

et al.[90]

Burke et

al.[29]

Burke and

Bykov[85]

Mandal and

Kahar[89]

Leite et

al.[87]

Bellio et

al.[88]

car-s-91 4.39 6.6 4.6 4.32 4.58 4.31 4.25

car-f-92 3.70 6.0 3.9 3.67 3.82 3.68 3.66

ear-f-83 32.59 29.3 32.8 32.62 33.23 32.48 32.42

hec-s-92 10.03 9.2 10.0 10.03 10.32 10.03 10.03

kfu-s-93 12.81 13.8 13.0 12.80 13.34 12.81 12.80

lse-f-91 9.80 9.6 10.0 9.78 10.24 9.78 9.77

rye-s-93 7.85 6.8 - 7.91 9.79 7.89 7.9

sta-f-83 157.03 158.2 156.9 157.03 157.12 157.03 157.03

tre-s-92 7.62 9.4 7.9 7.64 7.84 7.66 7.68

uta-s-92 3.03 3.5 3.2 2.98 3.13 3.01 2.97

ute-s-92 24.76 24.4 24.8 24.78 25.28 24.80 24.79

yor-f-83 34.41 36.2 34.9 34.71 35.46 34.45 34.48

The method put forward by Mandal and Kahar [89] is similar to the SBPSS in that it also

employs search during construction. It makes use of the Great Deluge to improve the quality of

the partial timetables. The SBPSS makes use of simple hill-climbers to improve solution

quality. Despite using the Great Deluge which is more advanced than local search it is unable

to outperform the SBPSS. This seems to indicate that using a structure-based search is effective

in moving the search to better performing areas. Leite et al. [87] used the Threshold algorithm

89

with a memetic algorithm. The Threshold algorithm only accepts moves that are lower than a

threshold. The SBPSS makes use of greedy hill-climbers because it only accepts moves that

improve the current solution. Although both methods are different in this respect they are

similar in performance especially for the problem instances with high conflict densities like

hec-s-92 and ute-s-92.

6.4. Summary

This chapter presented the results of two separate investigations on the design properties of the

SBPSS. In the first investigation the impact of using search during solution construction was

studied. It was found that performance was improved when search was performed in the partial

solution space during solution construction. Furthermore, it was also shown that performing

search on every iteration in the algorithm after assigning a new exam maximized performance.

The next investigation studied the impact on performance when the search was combined with

structure. The results from the investigation showed that using a search that combined structure

with the objective value improved performance. Statistical tests were done to ascertain the

significance of the results. The results were found to be significant for all levels of significance.

The rest of the chapter presented the results when the SBPSS was used to solve the problems

from the benchmark sets representing both the capacitated and uncapacitated versions of the

ETP. The SBPSS was able to solve all problem instances for both the ITC2007 benchmark set

and the Yeditepe benchmark set. For the ITC2007 benchmark set it obtained the best result for

four of the problem instances. For the Yeditepe benchmark set it obtained the best result for all

problem instances. The SBPSS also performed well for the Carter benchmark set which

represented the capacitated version of the ETP. It found the best result for three of the problem

instances. For the other problem instances the SBPSS obtained results comparable to the state

90

of the art methods for all benchmark sets. The SBPSS is different from all the other leading

methods in that it is the only approach to combine structure with the objective value to guide

the search in the solution space.

91

 CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

7.1. Introduction

In this chapter the conclusion to the work presented in this thesis is drawn. The aim and

objectives of this study were provided in detail in chapter 1. Chapter 2 provided background

information on various metaheuristics that have proven popular over the years. Chapter 3

focussed on the Examination Timetabling Problem (ETP) and presented some of the best

performing approaches for this problem domain. Chapter 4 outlined the proof by demonstration

methodology adopted in this study. Chapter 5 introduced the SBPSS as the proposed method to

solve the ETP. Chapter 6 presented the results obtained when the SBPSS was evaluated using

the problems from the different benchmark sets.

In section 7.2, the objectives outlined in chapter 1 are revisited. For each stated objective a

case is made on how the proposed approach has met that objective. Section 7.3 outlines the

contributions to new knowledge by this work. Section 7.4 draws conclusions on the success of

this study in meeting the aim and the defined objectives at the beginning in chapter 1. Lastly in

section 7.5 the future work for this thesis is presented.

7.2. Revisiting objectives

This subsection focuses on how the objectives for this work have been met. The objectives have

been outlined in section 1.3 in the chapter 1. These objectives are relisted here for discussion

purposes. A write-up is also provided on how each objective has been met.

92

• Objective 1: To demonstrate that the use of structure combined with behaviour

in terms of the objective value to guide the search is a worthwhile and

promising approach to solving the ETP.

The literature survey revealed that behaviour in terms of the objective value was a popular

approach used to guide the search in the solution space. The problem with this approach is that

regions that are similar in behaviour may have different structure. Using behaviour alone may

cause the search to pursue poor performing regions resulting in the opportunity to find better

solutions being lost. The SBPSS is able to overcome this problem because it makes use of a

search that combines structure with behaviour in terms of the objective value to find new

regions in the search space. Each timetable represents a point in the search space and timetables

that are similar in structure occupy the same region of the search space. The search finds new

regions by delineating the timetables into regions using structure. This is achieved by organising

timetables that are similar in structure into regions. The search then investigates each of the

new found regions to find better quality timetables.

A separate study was undertaken to assess the effectiveness of using a search combined with

structure and objective value instead of a search solely guided by the objective value. Four

problem instances from the Carter benchmark set, namely, hec-s-92, ute-s-92, yor-f-83 and tre-

s-92 were used for this investigation. It was thought that these problem instances provided a

fair representation of the benchmark. Hec-s-92 has the highest conflict density whilst ute-s-92

has the least number of periods. Yor-f-83 and tre-s-92 are medium sized instances in terms of

the number of examinations. All runs for all the problem instances tested produced feasible

timetable solutions. Therefore, only the soft constraint cost was used to compare both

approaches to search. The results are shown in Table 6.5. The results in the table indicate that

using a search combined with structure leads to superior performance. The average scores

93

obtained for all problem instances were better for the combined search. Also, the lower variance

scores by the combined search indicate that this approach performs consistently better across

all runs. The result was found to be statistically significant at all levels of significance.

• Objective 2: To demonstrate that searching partial solution spaces whilst

constructing solutions leads to good quality solutions to the ETP.

An investigation of the effectiveness of searching the partial solution space whilst

constructing timetables was undertaken (Refer to section 6.1.1). Four problem instances from

the Carter benchmark set, namely, hec-s-92, ute-s-92, yor-f-83 and tre-s-92 were used for this

investigation. A baseline was established by performing runs for all four instances without the

use of search during construction. Thereafter, search during construction was introduced and

the same number of runs were performed. All runs produced feasible timetables and the results

of soft constraint costs are given in Table 6.1. The results clearly showed that improved results

were produced for all problem instances when search was performed during solution

construction as opposed to no search during construction. The results obtained were statistically

significant at all levels of significance.

The interval at which search should be performed during construction was also investigated

(refer to section 6.1.1). Four different scenarios were compared. First search was performed on

every iteration during construction. In the second scenario search was performed on every 5th

iteration. In the third scenario search was performed on every 10th iteration. In the last scenario

search was performed on every 20th iteration. The results showed that searching on every

iteration was overall the best approach. The results obtained were statistically significant at all

levels of significance.

94

The SBPSS follows this strategy; it searches the partial timetable space during construction

and has two phases, namely, a construction and a deconstruction phase. In the construction

phase complete timetables are constructed incrementally by assigning exams to partial

timetables. Search is performed on every iteration after a new exam has been scheduled.

Problem dependant search operators are called on each iteration. In the deconstruction phase,

new partial timetables are produced by removing random exams from completed timetables.

The SBPSS then reconstructs new timetables by rescheduling the exams that have been

previously removed in the new partial timetables. No search takes place in the deconstruction

phase. However, this phase enables the search to be restarted at a different location in the partial

solution space. By removing random examinations from a completed timetable, a new partial

timetable is produced. In the next construction cycle the search uses this new partial timetable

as a new starting point in the partial solution space.

• Objective 3: To combine structure-based search together with partial solution

space in a structure-based partial solution space to solve the ETP.

The proposed approach was evaluated using both the capacitated and uncapacitated version of

the ETP. The Carter benchmark set which represented the uncapacitated version of the ETP.

The ITC2007 benchmark set and the Yeditepe benchmark set represented the capacitated

version of the problem. SBPSS successfully solved the problems set for both of the versions.

The SBPSS found the best result for two of the problem instances in the Carter benchmark set.

It found the best result for four of the problem instances from the ITC2007 benchmark set and

found the best results for all of the problem instances for the Yeditepe benchmark set. Overall

the performance of the SBPSS was satisfactory and its results compared well with the state of

the art for all benchmark sets.

95

7.3. Contributions to new knowledge

The research conducted presents a novel approach to solving the ETP. It incorporates a multi-

point search approach with a structure-based search that operates in the solution spaces of

partial timetables. The approach performs well for both the capacitated and uncapacitated

version of the ETP.

7.4. Conclusion

The research conducted has met all the objectives that were set out at the beginning in Chapter

1. The use of a structured-based search combined with behaviour in terms of the objective value

does improve performance. The searching of solution spaces of partial timetables leads to good

quality timetables. The proposed approach is able to successfully solve all the problem instances

in all benchmark sets that represent both the capacitated and uncapacitated version of the ETP.

It found the best results for two of the problem instances in the Carter benchmark set. It found

the best result for four of the instances in the ITC2007 benchmark set and the best result for all

the instances in the Yeditepe benchmark set. Finally, it compares favourably to other state of

the art methods for all benchmark sets.

7.5. Future Work

The SBPSS has been shown to work well for the ETP. However, some observations have been

made with regards to performance as follows:

• All work done in this study made use of manual parameter tuning. Joshi and Basal

[108] state that the choice of parameter values impacts the performance of an

approach and finding the good parameter values is a difficult task. Huang et al. [109]

96

note that manual parameter tuning is time-consuming and often biased. Also, one

set of parameter values may work well for a problem instance but less effective for

another problem instance. This is often referred to as the no free-lunch theorem on

optimisation [110]. One solution is to make use of automatic parameter tuning

approaches. One approach is use a set of training data to find suitable parameter

values to apply to the problem at hand. Bellio et al. [88] used to this approach to

find good results for ETP. Another approach is the F-Race method [111] where

competing candidate set of parameter values are compared to each other using

statistical testing and the poor performing candidate set of parameter values are

discarded until a single set of values is found that performs well. In future work it

may be useful to consider an automatic parameter tuning approach as a way to to

realise an improvement in performance.

• One of the observations made was that due to the stochastic nature of the SBPSS

infeasible initial timetables would sometimes be constructed. In some cases the

removal of exams from feasible timetables during the deconstruction phase would

cause infeasible timetables to be reconstructed in the construction phase. This is not

ideal because the existence of infeasible points and regions in the solution space

causes the SBPSS to waste valuable resources working in these poor regions. Future

work may investigate ways of overcoming this challenge. One solution would be to

add a repair mechanism in the construction process to enable the SBPSS to produce

only feasible solutions. As a result, the effectiveness of the search may be improved

because the search will only take place in feasible regions.

• Another observation made was that as the algorithm progressed structural diversity

among the timetables was decreased because the timetables become more similar in

structure. This results in a loss of information for the search process thereby

97

reducing its effectiveness. The SBPSS has no mechanism in place to measure

structural diversity in the regions. As a result, resources are wasted by the search

spending too much time in regions which have points that are very similar. Future

studies may consider ways to overcome this issue. One way would be to use

Euclidean distance to measure diversity of points in a region. In this way the search

can concentrate on regions that are more diverse.

In an order to improve the generality of the approach, the SBPSS may be applied to other

problems. Two directions may be pursued here;

• The SBPSS was only applied to the ETP. This problem falls in the broader category

of timetabling problems. Other variations such as the School Timetabling Problem

exist. Future studies may consider applying the SBPSS to other timetabling problems

to develop the SBPSS as a method that works well for all timetabling problems.

• Another direction would be to consider using SBPSS to solve problems in other

domains. For example, the Traveling Salesman Problem is described as the problem

of finding the shortest route to take when visiting a set of towns. It is also an

optimisation problem and using a structure-based search will be a novel approach to

solve this problem. This would develop the SBPSS as a method that also works well

across multiple problem domains.

98

REFERENCES

[1] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y. Lee, “A survey of search

methodologies and automated system development for examination timetabling,” J.

Sched., vol. 12, no. 1, pp. 55–89, Feb. 2009.

[2] N. Pillay and W. Banzhaf, “A developmental approach to the uncapacitated examination

timetabling problem,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5199

LNCS, Springer Berlin Heidelberg, 2008, pp. 276–285.

[3] C. Rajah and N. Pillay, “A Study of Cell Depletion in the Developmental Approach for

the Uncapacitated Examination Timetabling Problem,” in Annual Conference of the

Operations Research Society of South Africa (ORSSA 2013), 2013, pp. 102–111.

[4] E. Burke, R. Qu, and A. Soghier, “Adaptive selection of heuristics within a GRASP for

exam timetabling problems,” Proc. Multidiscip. Conf. Sched. Theory Appl. MISTA 2009,

no. August, pp. 409–423, 2009.

[5] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, Sep. 2003.

[6] F. Glover, M. Laguna, F. Glover, and M. Laguna, “Tabu Search Principles,” in Tabu

Search, Springer {US}, 1997, pp. 125–151.

[7] I. H. Osman and G. Laporte, “Metaheuristics: A bibliography,” Ann. Oper. Res., vol. 63,

pp. 513–623, 1996.

99

[8] A. Lodi, S. Martello, and D. Vigo, “Neighborhood Search Algorithm for the Guillotine

Non-Oriented Two-Dimensional Bin Packing Problem,” in Meta-Heuristics: Advances

and Trends in Local Search Paradigms for Optimization, Springer US, 1999, pp. 125–

139.

[9] G. R. Raidl, “A unified view on hybrid metaheuristics,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2006, vol. 4030 LNCS, pp. 1–12.

[10] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, “A brief survey on hybrid

metaheuristics,” in Bioinspired Optimization Methods and their Applications -

Proceedings of the 4th International Conference on Bioinspired Optimization Methods

and their Applications, BIOMA 2010, 2010, pp. 3–16.

[11] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” J. Stat.

Phys., vol. 34, no. 5–6, pp. 975–986, Mar. 1984.

[12] M. A. S. Elmohamed, P. Coddington, and G. Fox, “A comparison of annealing

techniques for academic course scheduling,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1998, vol. 1408, pp. 92–112.

[13] D. Kusumawardani, A. Muklason, and V. A. Supoyo, “Examination timetabling

automation and optimization using greedy-simulated annealing hyper-heuristics

algorithm,” in Proceedings of 2019 International Conference on Information and

Communication Technology and Systems, ICTS 2019, 2019, pp. 164–169.

100

[14] N. Leite, F. Melício, and A. C. Rosa, “A fast simulated annealing algorithm for the

examination timetabling problem,” Expert Syst. Appl., vol. 122, pp. 137–151, May 2019.

[15] G. Dueck, “New optimization heuristics; The great deluge algorithm and the record-to-

record travel,” J. Comput. Phys., vol. 104, no. 1, pp. 86–92, 1993.

[16] L. Di Gaspero and A. Schaerf, “Tabu search techniques for EXAMINATION

TIMETABLING,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, vol. 2079

LNCS, pp. 104–117.

[17] H. D. Lawal, I. A. Adeyanju, E. O. Omidiora, O. T. Arulogun, and O. I. Omotosho,

“University Examination Timetabling Using Tabu Search,” Int. J. Sci. Eng. Res., vol. 5,

no. 10, pp. 785–788, 2014.

[18] G. M. White and B. S. Xie, “Examination timetables and tabu search with longer-term

memory,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, vol. 2079 LNCS, pp.

85–103.

[19] G. Kendall and N. M. Hussin, “A tabu search hyper-heuristic approach to the

examination timetabling problem at the MARA university of technology,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2005, vol. 3616 LNCS, pp. 270–293.

[20] T. A. Feo and M. G. C. Resende, “Greedy Randomized Adaptive Search Procedures,” J.

101

Glob. Optim., vol. 6, no. 2, pp. 109–133, 1995.

[21] M. G. C. Resende and C. C. Ribeiro, “Greedy randomized adaptive search procedures:

Advances and extensions,” in International Series in Operations Research and

Management Science, vol. 272, Springer New York LLC, 2019, pp. 169–220.

[22] J. P. Hart and A. W. Shogan, “Semi-greedy heuristics: An empirical study,” Oper. Res.

Lett., vol. 6, no. 3, pp. 107–114, Jul. 1987.

[23] M. H. Gashti and H. Javanshir, “Greedy Randomized Adaptive Search Procedures for a

Single Product Network Design Model,” IJRRAS, vol. 6, no. 4, pp. 419–423, 2011.

[24] M. J. F. Souza, N. Maculan, and L. S. Ochi, “A GRASP-Tabu Search Algorithm for

Solving School Timetabling Problems,” in Metaheuristics: Computer Decision-Making.

Applied Optimization, Springer, Boston, MA, 2003, pp. 659–672.

[25] M. Paris and C. C. Ribeiro, “Reactive GRASP: An Application to a Matrix

Decomposition Problem in TDMA Traffic Assignment,” INFORMS J. Comput., vol. 12,

no. 3, pp. 164–176, 2000.

[26] R. K. Ahuja, J. B. Orlin, and A. Tiwari, “A greedy genetic algorithm for the quadratic

assignment problem,” Comput. Oper. Res., vol. 27, no. 10, pp. 917–934, 2000.

[27] W. De, S. Rocha, M. Claudia, S. Boeres, and M. C. Rangel, “A GRASP Algorithm for

the University Timetabling Problem,” Pract. Theory Autom. Timetabling, pp. 29–31,

2012.

102

[28] P. Hansen and N. Mladenović, “Variable neighborhood search,” in Handbook of

Heuristics, vol. 1–2, 2018, pp. 759–787.

[29] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic, and R. Qu, “Hybrid variable

neighbourhood approaches to university exam timetabling,” Eur. J. Oper. Res., vol. 206,

no. 1, pp. 46–53, Oct. 2010.

[30] P. Alefragis, C. Gogos, C. Valouxis, and E. Housos, “A multiple metaheuristic variable

neighborhood search framework for the Uncapacitated Examination Timetabling

Problem,” Pract. Theory Autom. Timetabling, vol. 1, pp. 13–21, 2021.

[31] J. H. Holland, Adaptation in Natural and Artificial Systems. 2019.

[32] H. R. Ahmed and J. I. Glasgow, “Swarm Intelligence: Concepts, Models and

Applications,” Queen’s Univ. Sch. Comput. Tech. Reports, 2012.

[33] S. L. Yadav and A. Sohal, “Study of the various selection techniques in Genetic

Algorithms,” Int. J. Eng. Sci. Math., vol. 11, no. 2, pp. 198–204, 2007.

[34] S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and K. Y. Leong, “Crossover

and mutation operators of genetic algorithms,” Int. J. Mach. Learn. Comput., vol. 7, no.

1, pp. 9–12, 2017.

[35] T. P. Hong, H. S. Wang, W. Y. Lin, and W. Y. Lee, “Evolution of appropriate crossover

and mutation operators in a genetic process,” Appl. Intell., vol. 16, no. 1, pp. 7–17, 2002.

[36] K. Sastry, D. E. Goldberg, and G. Kendall, “Genetic algorithms,” in Search

103

Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, Second Edition, 2014, pp. 93–118.

[37] N. Pillay and W. Banzhaf, “An informed genetic algorithm for the examination

timetabling problem,” Appl. Soft Comput., vol. 10, no. 2, pp. 457–467, Mar. 2010.

[38] M. Dorigo and T. Stützle, “The Ant Colony Optimization Metaheuristic: Algorithms,

Applications, and Advances,” in Handbook of Metaheuristics. International Series in

Operations Research & Management Science, vol. 57, F. Glover and Kochenberger

G.A., Eds. Springer, Boston, MA, 2003, pp. 250–285.

[39] V. Maniezzo and A. Carbonaro, “An ANTS heuristic for the frequency assignment

problem,” Futur. Gener. Comput. Syst., vol. 16, no. 8, pp. 927–935, Jun. 2000.

[40] M. Eley, “Ant algorithms for the exam timetabling problem,” Pract. Theory Autom.

Timetabling VI, pp. 167–180, 2007.

[41] W. Deng, J. Xu, and H. Zhao, “An Improved Ant Colony Optimization Algorithm Based

on Hybrid Strategies for Scheduling Problem,” IEEE Access, vol. 7, pp. 20281–20292,

2019.

[42] M. Dorigo and T. Stützle, “Ant colony optimization: Overview and recent advances,” in

In: Gendreau M., Potvin JY. (eds) Handbook of Metaheuristics. International Series in

Operations Research & Management Science, vol 272. Springer, Cham.

https://doi.org/10.1007/978-3-319-91086-4_10, vol. 272, 2019, pp. 311–351.

[43] T. Stützle and H. Hoos, “Improvements on the Ant-System: Introducing the {MAX}-

104

{MIN} Ant System,” in Artificial Neural Nets and Genetic Algorithms, Springer Vienna,

1998, pp. 245–249.

[44] B. Bullnheimer, R. Hartl, and C. Strauss, “A New Rank Based Version of the Ant System

- A Computational Study,” Manage. Sci., vol. 7, no. JANUARY 1999, pp. 25–18, 2016.

[45] F. Djannaty and A. R. Mirzaei, “Enhancing max-min ant system for examination

timetabling problem,” Int. J. Soft Comput., vol. 3, no. 3, pp. 230–238, 2008.

[46] R. Abounacer, J. Boukachour, B. Dkhissi, and A. E. H. Alaoui, “A Hybrid Ant Colony

Algorithm for the Exam Timetabling Problem,” Rev. Africaine la Rech. en Inform.

Mathématiques Appliquées, vol. 12, pp. 15–42, 2016.

[47] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International

Conference on Neural Networks - Conference Proceedings, 1995, vol. 4, pp. 1942–1948.

[48] S. Larabi Marie-Sainte, “A survey of Particle Swarm Optimization techniques for

solving university Examination Timetabling Problem,” Artif. Intell. Rev., vol. 44, no. 4,

pp. 537–546, 2015.

[49] A. Akhtar, “Evolution of Ant Colony Optimization Algorithm -- A Brief Literature

Review,” arXiv, 2019.

[50] Shu-Chuan Chu, Yi-Tin Chen, and Jiun-Huei Ho, “Timetable Scheduling Using Particle

Swarm Optimization,” in First International Conference on Innovative Computing,

Information and Control, 2006, pp. 324–327.

105

[51] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison,” ACM Computing Surveys, vol. 35, no. 3. pp. 268–308, 2003.

[52] R. Battiti and G. Tecchiolli, “The Reactive Tabu Search,” ORSA J. Comput., vol. 6, no.

2, pp. 126–140, 1994.

[53] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”

in Readings in Computer Vision, M. Fischler and O. Firschein, Eds. Elsevier, 1987, pp.

606–615.

[54] C. Gogos, P. Alefragis, and E. Housos, “An improved multi-staged algorithmic process

for the solution of the examination timetabling problem,” Ann. Oper. Res., vol. 194, no.

1, pp. 203–221, Feb. 2012.

[55] D. Abramson, M. Krishnamoorthy, and H. Dang, “Simulated annealing cooling

schedules for the school timetabling problem,” Asia-Pacific J. Oper. Res., vol. 16, no. 1,

pp. 1–22, 1999.

[56] S. Abdullah, S. Ahmadi, E. K. Burke, M. Dror, and B. McCollum, “A tabu-based large

neighbourhood search methodology for the capacitated examination timetabling

problem,” J. Oper. Res. Soc., vol. 58, no. 11, pp. 1494–1502, 2007.

[57] J. M. Thompson and K. A. Dowsland, “Variants of simulated annealing for the

examination timetabling problem,” Ann. Oper. Res., vol. 63, pp. 105–128, 1996.

[58] S. F. Galan and O. J. Mengshoel, “Generalized crowding for genetic algorithms,” in

Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference,

106

GECCO ’10, 2010, pp. 775–782.

[59] D. Gupta and S. Ghafir, “An Overview of methods maintaining Diversity in Genetic

Algorithms,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 5, pp. 56–60, 2012.

[60] K. de Jong, “Adaptive System Design: A Genetic Approach,” IEEE Trans. Syst. Man.

Cybern., vol. SMC-10, no. 9, pp. 566–574, 1980.

[61] C. R. Reeves, “Genetic algorithms and grouping problems,” IEEE Transactions on

Evolutionary Computation, vol. 5, no. 3. p. 297, 2001.

[62] M. Linder and I. Sekaj, “Parallel genetic algorithms,” in Mendel, 2011, pp. 9–15.

[63] M. Nowostawski and R. Poli, “Parallel genetic algorithm taxonomy,” Int. Conf.

Knowledge-Based Intell. Electron. Syst. Proceedings, KES, pp. 88–92, 1999.

[64] S. Pappu, K. T. Talele, and J. Mandviwala, “Application of Parallel Genetic Algorithm

for Exam Timetabling Problem,” Int. J. Sci. Eng. Res., vol. 3, no. 9, pp. 1–4, 2012.

[65] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic algorithm: On

separability, population size and convergence,” J. Comput. Inf. Technol., vol. 7, no. 1,

pp. 33–47, 1999.

[66] A. L. Corcoran and R. L. Wainwright, “A parallel island model genetic algorithm for the

multiprocessor scheduling problem,” in Proceedings of the ACM Symposium on Applied

Computing, 1994, vol. Part F1294, pp. 483–487.

107

[67] V. Kolonias, G. Goulas, C. Gogos, P. Alefragis, and E. Housos, “Solving the

examination timetabling problem in GPUs,” Algorithms, vol. 7, no. 3, pp. 295–327, Jul.

2014.

[68] A. Umbarkar and M. Joshi, “Review of Parallel Genetic Algorithm Based on Computing

Paradigm and Diversity in Search Space,” ICTACT J. Soft Comput., vol. 03, no. 04, pp.

615–622, 2013.

[69] M. Dorigo and T. Stützle, “The Ant Colony Optimization Metaheuristic,” in Ant Colony

Optimization, 2018.

[70] A. M. Mohsen, “Annealing Ant Colony Optimization with Mutation Operator for

Solving TSP,” Comput. Intell. Neurosci., vol. 2016, 2016.

[71] T. Stützle and H. H. Hoos, “MAX-MIN Ant System,” Futur. Gener. Comput. Syst., vol.

16, no. 8, pp. 889–914, 2000.

[72] E. Chen and X. Liu, “Multi-Colony Ant Algorithm,” in Ant Colony Optimization -

Methods and Applications, 2011.

[73] S. Cheng and Y. Shi, “Diversity control in particle swarm optimization,” in IEEE SSCI

2011 - Symposium Series on Computational Intelligence - SIS 2011: 2011 IEEE

Symposium on Swarm Intelligence, 2011, pp. 110–118.

[74] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1998, vol. 1447, pp. 591–600.

108

[75] M. Baghel, Shikha Agrawal, and S. Silakari, “Survey of Metaheuristic Algorithms for

Combinatorial Optimization,” Int. J. Comput. Appl., vol. 58, no. 19, pp. 21–31, 2012.

[76] O. Abayomi-Alli, A. Abayomi-Alli, S. Misra, R. Damasevicius, and R. Maskeliunas,

“Automatic Examination Timetable Scheduling Using Particle Swarm Optimization and

Local Search Algorithm,” in Data, Engineering and Applications, 2019, pp. 119–130.

[77] I. X. Tassopoulos and G. N. Beligiannis, “A hybrid particle swarm optimization based

algorithm for high school timetabling problems,” Appl. Soft Comput. J., vol. 12, no. 11,

pp. 3472–3489, 2012.

[78] E. L. Lawler, “Combinatorial Optimization : Networks and Matroids,” Comb. Optim.

networks matroids, 1976.

[79] A. Wren, “Scheduling, timetabling and rostering - A special relationship?,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 1996, vol. 1153, pp. 46–75.

[80] E. Burke, D. de Werra, and J. Kingston, “Applications to Timetabling,” in Handbook of

Graph Theory, CRC Press London, 2013, pp. 530–562.

[81] A. Schaerf, “Survey of automated timetabling,” Artif. Intell. Rev., vol. 13, no. 2, pp. 87–

127, 1999.

[82] E. K. Burke and Y. Bykov, “A late acceptance strategy – the new general-purpose

optimisation metaheuristic,” Memory, no. February, pp. 1–29, 2009.

109

[83] M. W. Carter, G. Laporte, and S. Y. Lee, “Examination timetabling: Algorithmic

strategies and applications,” J. Oper. Res. Soc., vol. 47, no. 3, pp. 373–383, Mar. 1996.

[84] A. Muklason, A. J. Parkes, E. Özcan, B. McCollum, and P. McMullan, “Fairness in

examination timetabling: Student preferences and extended formulations,” Appl. Soft

Comput. J., vol. 55, pp. 302–318, 2017.

[85] E. K. Burke and Y. Bykov, “An adaptive flex-deluge approach to university exam

timetabling,” INFORMS J. Comput., vol. 28, no. 4, pp. 781–794, 2016.

[86] N. Leite, F. Melício, and A. C. Rosa, “A shuffled complex evolution algorithm for the

examination timetabling problem,” in Studies in Computational Intelligence, vol. 620,

2016, pp. 151–168.

[87] N. Leite, C. M. Fernandes, F. Melício, and A. C. Rosa, “A cellular memetic algorithm

for the examination timetabling problem,” Comput. Oper. Res., vol. 94, pp. 118–138,

Jun. 2018.

[88] R. Bellio, S. Ceschia, L. Di Gaspero, and A. Schaerf, “Two-Stage Multi-Neighborhood

Simulated Annealing for Uncapacitated Examination Timetabling,” Comput. Oper. Res.,

vol. 132, p. 105300, Aug. 2021.

[89] A. K. Mandal and M. N. M. Kahar, “Solving examination timetabling problem using

partial exam assignment with great deluge algorithm,” in I4CT 2015 - 2015 2nd

International Conference on Computer, Communications, and Control Technology, Art

Proceeding, 2015, pp. 530–534.

110

[90] M. Caramia, P. Dell’Olmo, and G. F. Italiano, “Novel Local-Search-Based Approaches

to University Examination Timetabling,” INFORMS J. Comput., vol. 20, no. 1, pp. 86–

99, Feb. 2008.

[91] B. McCollum et al., “Setting the research agenda in automated timetabling: The second

international timetabling competition,” INFORMS J. Comput., vol. 22, no. 1, pp. 120–

130, Feb. 2010.

[92] T. Müller, “{ITC}2007 solver description: a hybrid approach,” Ann. Oper. Res., vol. 172,

no. 1, pp. 429–446, Oct. 2009.

[93] C. Gogos, P. Alefragis, and E. Housos, “A multi-staged algorithmic process for the

solution of the examination timetabling problem,” in 7th International Conference on

the Practice and Theory of Automated Timetabling, PATAT 2008, 2008.

[94] Y. Bykov and S. Petrovic, “A Step Counting Hill Climbing Algorithm applied to

University Examination Timetabling,” J. Sched., vol. 19, no. 4, pp. 479–492, 2016.

[95] A. J. Parkes and E. Özcan, “Properties of yeditepe examination timetabling benchmark

instances,” in PATAT 2010 - Proceedings of the 8th International Conference on the

Practice and Theory of Automated Timetabling, 2010, pp. 531–534.

[96] R. Qu and E. K. Burke, “Hybridizations within a graph-based hyper-heuristic framework

for university timetabling problems,” J. Oper. Res. Soc., vol. 60, no. 9, pp. 1273–1285,

2009.

[97] C. Blum and M. López-Ibáñez, “Ant colony optimization,” in Intelligent Systems, 2016.

111

[98] D. Henderson, S. H. Jacobson, and A. W. Johnson, “The Theory and Practice of

Simulated Annealing,” in Handbook of Metaheuristics, 2006, pp. 287–319.

[99] N. Abu-Baker, “(PDF) Research Methods in Computer Science,” 2018. [Online].

Available:

https://www.researchgate.net/publication/323867128_Research_Methods_in_Compute

r_Science. [Accessed: 30-Apr-2021].

[100] S. Demeyer, “Research methods in computer science,” in IEEE International Conference

on Software Maintenance, ICSM, 2011, pp. 25–30.

[101] V. Ramesh, R. L. Glass, and I. Vessey, “Research in computer science: An empirical

study,” J. Syst. Softw., vol. 70, no. 1–2, pp. 165–176, 2004.

[102] C. Johnson, “What is Research in Computing Science?,” 2006. [Online]. Available:

http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html. [Accessed:

30-Apr-2021].

[103] H. Performance, “Center for High Performance Computing,” vol. 14, pp. 1–6, 2003.

[104] S. K. Smit and A. E. Eiben, “Parameter tuning of evolutionary algorithms: Generalist vs.

specialist,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6024 LNCS, no.

PART 1, pp. 542–551.

[105] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyzing

evolutionary algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1. pp. 19–

112

31, 2011.

[106] F. Dobslaw, “Recent Development in Automatic Parameter Tuning for Metaheuristics,”

Proc. 19th Annu. Conf. Dr. Students-WDS, pp. 54–63, 2010.

[107] C. Gogos, G. Goulas, P. Alefragis, V. Kolonias, and E. Housos, “Distributed scatter

search for the examination timetabling problem,” in PATAT 2010 - Proceedings of the

8th International Conference on the Practice and Theory of Automated Timetabling,

2010, pp. 211–223.

[108] S. K. Joshi and J. C. Bansal, “Parameter tuning for meta-heuristics,” Knowledge-Based

Syst., vol. 189, Feb. 2020.

[109] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning Methods for

Metaheuristics,” IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 201–216, Apr. 2020.

[110] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE

Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997.

[111] O. Maron and A. Moore, “Hoeffding Races: Accelerating Model Selection Search for

Classification and Function Approximation,” Adv. Neural Inf. Process. Syst., vol. 6, pp.

59–66, 1993.

