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ABSTRACT 

The aim of this work is to present a new approach, namely, Structure Based Partial Solution 

Search (SBPSS) to solve the Examination Timetabling Problem. The success of the 

Developmental Approach in this problem domain suggested that the strategy of searching the 

spaces of partial timetables whilst constructing them is promising and worth pursuing. This 

work adopts a similar strategy. Multiple timetables are incrementally constructed at the same 

time. The quality of the partial timetables is improved upon by searching their partial solution 

spaces at every iteration during construction. Another key finding from the literature survey 

revealed that although timetables may exhibit the same behaviour in terms of their objective 

values, their structures or exam schedules may be different. The challenge with this finding is 

to decide on which regions to pursue because some regions may not be worth investigating due 

to the difficulty in searching them. These problematic areas may have solutions that are not 

amenable to change which makes it difficult to improve them. Another reason is that the 

neighbourhoods of solutions in these areas may be less connected than others which may restrict 

the ability of the search to move to a better solution in that neighbourhood. By moving to these 

problematic areas of the search space the search may stagnate and waste expensive 

computational resources. One way to overcome this challenge is to use both structure and 

behaviour in the search and not only behaviour alone to guide the search. A search that is guided 

by structure is able to find new regions by considering the structural components of the 

candidate solutions which indicate which part of the search space the same candidates occupy. 

Another benefit to making use of a structure-based search is that it has no objective value bias 

because it is not guided by only the objective value.  This statement is consistent with the 

literature survey where it is suggested that in order to achieve good performance the search 

should not be guided by only the objective value. The proposed method has been tested on three 



vii 

popular benchmark sets for examination timetabling, namely, the Carter benchmark set; the 

benchmark set from the International Timetabling competition in 2007 and the Yeditepe 

benchmark set. The SBPSS found the best solutions for two of the Carter problem instances. 

The SBPSS found the best solutions for four of the competition problem instances. Lastly, the 

SBPSS improved on the best results for all the Yeditepe problem instances. 
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 CHAPTER 1: INTRODUCTION 

1.1 Purpose of the Study 

The purpose of this work is to propose a new approach, namely, Structure Based Partial 

Solution Search (SBPSS) to solve the Examination Timetabling Problem (ETP). This problem 

has been well researched over the years and many approaches have been proposed to solve it 

[1]. A survey of the literature revealed that searching the spaces of partial timetables does result 

in good quality complete timetables. The same strategy was adopted by the Developmental 

Approach (DA) [2]. It was successfully applied to the uncapacitated version of the ETP and it 

obtained results comparable to other best performing nature-inspired methods for this problem 

domain. Later work by Rajah and Pillay [3] revealed that the performance of the DA may be 

improved by removing random exams from the partially complete timetable and reassigning 

them during construction. The approach proposed in this study adopts some of the same 

strategies. Multiple timetables are incrementally constructed at the same time. The quality of 

the partial timetables are improved upon by searching their partial solution spaces at every 

iteration after the assignment of a new examination during construction. The SBPSS has a 

deconstruction phase where exams are removed from each of the timetables. The exams that 

are removed are then reassigned to each of the partial timetable solutions in the next 

construction phase of the SBPSS. 

Another key finding from the literature survey revealed that some timetables may exhibit the 

same behaviour in terms of the objective value although they have different structures. The 

search may not be able to decide on which regions to pursue if the same regions have similar 

behaviour. Some regions are difficult to search and are not worth investigating because the 

likelihood of finding better quality solutions in these areas is minimal. One reason is that these 

problematic areas may have solutions that are not amenable to change and cannot be easily 
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improved upon. Another reason is that that these areas may contain neighbourhoods that are 

less connected and not easy to traverse [4]. As a result the ability of the search to move to a 

better solution in such neighbourhoods is restricted. By moving to these problematic regions of 

the search space the search may stagnate and waste expensive computational resources. The 

proposed approach then addresses this challenge by adopting a search that is guided by not only 

behaviour but also by structure when moving through the solution space towards more 

promising regions. This reduces any objective value bias in the search process. This approach 

is consistent with the literature survey where it is suggested that in order to achieve good 

performance the search should not be guided by the objective value alone [5]. The approach 

finds new regions by considering the structural components of the candidate solutions which 

indicate which part of the search space the same candidates occupy. The proposed approach has 

been tested on three popular benchmark sets for the ETP, namely, the Carter benchmark set; 

the benchmark set from the International Timetabling competition in 2007 (ITC2007) and the 

Yeditepe benchmark set. The SBPSS found the best solutions for two of the Carter problem 

instances. The SBPSS found the best solutions for four of the competition problem instances. 

Lastly, the SBPSS improved on the best results for all the Yeditepe problem instances. 

1.2 Aims 

The aim of this work is to present a new approach, namely, Structure Based Partial Solution 

Search (SBPSS) to solve the Examination Timetabling Problem (ETP).  

1.3 Objectives 

The objectives of this work are as follows: 
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• To demonstrate that the use of structure combined with behaviour in terms of the 

objective value to guide the search is a worthwhile and promising approach to solving 

the ETP. 

• To demonstrate that searching partial solution spaces whilst constructing solutions leads 

to good quality solutions for the ETP. 

• To combine the structure-based search together with partial solution space in a structure-

based partial solution space to solve the ETP.   

1.4 Outline of dissertation/thesis structure 

The rest of this thesis is structured as follows: 

Chapter 2 is devoted to defining metaheuristics. The chapter presents some popular 

trajectory-based and population-based approaches. The remainder of the chapter focuses on the 

diversification and intensification capabilities of the considered approaches. 

Chapter 3 introduces the ETP and the two main versions of the problem, namely, the capacity 

and uncapacitated versions. The benchmark problem sets that represent both versions that are 

used for assessment in this study are then presented. This is followed by a review of the best 

performing approaches for each benchmark problem set.  

Chapter 4 outlines the different research methodologies and the methodology adopted in this 

study. The chosen methodology steps are explained and the technical specifications for this 

study are also given. 

Chapter 5 introduces the new approach proposed to solve the Examination Timetabling 

Problem. The approach and the parameters used by the approach are explained in detail. This 
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is followed by a discussion on how the approach is implemented to solve the problems from 

the benchmarks sets for both the capacitated and uncapacitated version of the Examination 

Timetabling Problem. 

Chapter 6 presents the results for all simulations and discusses the reasons for the results 

obtained. 

Chapter 7 concludes this thesis by providing a summary of the work done and any 

conclusions that are drawn. Also included in the chapter is the future work that should be 

considered in extending this work. 

 



5 

 CHAPTER 2: METAHEURISTICS 

2.1. Introduction 

NP-hard combinatorial optimization problems such as Timetabling Problems cannot be solved 

completely in polynomial time. In such cases it may be more desirable to find near-optimal 

solutions in a reasonable amount of time. Methods used to solve NP-hard problems in this 

manner are referred to as approximate methods. One popular class of approximate methods are 

metaheuristics. The focus in this chapter is to provide background information on 

metaheuristics. Subsection 2.2 defines metaheuristics. Subsection 2.3 explains the two broad 

categories of metaheuristics, namely, trajectory-based methods and population-based methods 

together with an overview of some of the popular approaches found in both these categories. 

Subsection 2.4 provides an overview of the search mechanisms used by metaheuristics. The 

chapter is concluded in subsection 2.5. 

2.2. Definition and Characteristics of Metaheuristics 

Glover [6] first introduced the term metaheuristics to refer to a category of approximate 

algorithms used to find near-optimal solutions to complex problems. Many definitions for 

metaheuristics have been proposed over the years. Osman and Laporte [7] define a 

metaheuristic as a higher level process which guides lower level heuristics to effectively explore 

the solution space. Similarly, Lodi et al. [8] describe a metaheuristic as a master process that 

guides subordinate heuristic processes to find good solutions. In general, metaheuristics refer 

to those methods that employ higher level strategies to overcome the limitations of problem-

specific search heuristics in order to efficiently and effectively explore the search space to find 

better solutions. The performance of a metaheuristic is dependent on two key processes; 
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• Diversification [6] – this process describes the ability of the search to find new areas 

in the search space which may potentially have better solutions in pursuit of the 

global optimum. The search may also need to return to areas already found to be 

promising for further investigation.  

• Intensification [6] – this process describes the ability of the search to efficiently and 

effectively investigate a region of interest in order to find better quality solutions. 

An effective search needs to strike a fine balance between the level of intensification and 

diversification that is performed [9]. There is a trade-off between these two competing 

processes because as one is increased the other is decreased [10]. Too much intensification 

leads to the search spending too much time investigating areas that are suboptimal and wasting 

expensive resources. The search is more likely to converge prematurely and become trapped in 

a local optimum. On the other hand, too much diversification can lead to the search spending 

insufficient time investigating good performing areas and missing the opportunity to find better 

solutions in these areas. In the next subsection the different categories of metaheuristics are 

presented. 

2.3. Categories of Metaheuristics 

Metaheuristics may be classified in many different ways.  One such classification makes use of 

the number of solutions that are considered at any one time by the approach. Based on this 

definition, there are two broad categories of metaheuristics, namely, trajectory-based 

metaheuristics and population-based metaheuristics [5]. Trajectory-based methods operate on 

a single solution at any one time and follow a single path or trajectory in the solution space. 

Population-based metaheuristics operate on multiple candidate solutions at the same time 
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resulting in multiple paths being followed in the solution space at the same time. In the next 

few subsections each category is discussed and examples of each category are provided.  

2.3.1. Overview of Popular Trajectory-Based Metaheuristics 

Over the years many trajectory-based approaches have been proposed. Some approaches have 

gained in popularity because new ways have been found to improve performance. In some cases 

new variants to existing approaches have been introduced which outperform their constituents. 

In this section some of the early methods that are still widely adopted today either as a variant 

or as an enhancement are considered. Simulated Annealing, Tabu Search, Greedy Randomised 

Adaptive Search and Variable Neighbourhood Search are presented in that order. 

2.3.1.1. Simulated Annealing 

Simulated Annealing (SA) is based on the annealing process of metals and is employed to 

improve initial complete solutions [11]. The search accepts a neighbouring candidate solution 

only if it is better than the current solution or with a probability � (referred to as the transition 

probability). This neighbouring candidate solution then becomes the current solution. The 

transition probability follows the Boltzmann distribution and is calculated using a temperature 

� which is initialised at the beginning to some user defined maximum value. As the algorithm 

progresses T is reduced according to a predefined cooling schedule. A bigger difference in cost 

between the neighbouring candidate solution and the current candidate solution decreases the 

probability of acceptance of the neighbouring candidate solution whilst a higher temperature 

increases the probability of acceptance of the neighbouring candidate solution. Therefore, at 

the beginning of the algorithm the probability of accepting neighbours that are worse than the 

current candidate solution is high but the probability of acceptance decreases as the temperature 
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T approaches zero. At this stage the algorithm becomes a simple iterative improvement search 

method.  

The cooling schedule may be implemented in different ways in SA. The study by 

Elmohammed et al. [12] compared two different types of cooling schedules. The first type 

considered was geometric cooling which allows for a faster reduction in temperature. The new 

temperature is calculated using the equation; ���� =	∝ �	
����� and 0<∝<1. The other type 

considered was adaptive cooling where ���� is determined by considering all the costs obtained 

at	�	
�����. The lowest cost is then used to determine the new temperature. Adaptive cooling 

allows for the system to be cooled much slower than geometric cooling. Kusumawardani et al. 

[13] point out that besides the cooling schedule, the initial temperature and the number of 

iterations and evaluations performed by the approach at a specific temperature also affect 

performance. The initial temperature should be high enough to increase the acceptance of new 

solutions. The number of iterations at a certain temperature improves the likelihood of accepting 

a worse solution because of the inherent randomness in the search. The FASTSA method by 

Leite et al. [14] showed that the performance of SA may be improved by reducing the number 

of evaluations performed by the search in a single iteration. The temperature value was divided 

into temperature intervals. If there was no permissible move for a solution component in the 

preceding interval then it was ignored by the search in the current interval thereby, reducing the 

number of evaluations.  

A popular variant to SA is the Great Deluge algorithm (GD) [15]. The GD is based on the 

analogy that a person will attempt to stay above rising waters in a deluge to avoid drowning. 

As the algorithm progresses the water level which represents the acceptance criterion for 

neighbouring solutions also rises. Gradually the acceptance of neighbouring solutions is 
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reduced based on the water level. The rate at which the water rises is determined by a decay 

function which is based on a user-defined parameter known as the decay rate.  

2.3.1.2. Tabu Search 

Similar to SA, the Tabu Search method (TS) [6] is also used to improve initial solutions. TS 

selects the best move from the list of available moves in a single iteration which is similar to a 

best improvement local search. However, TS makes use of a memory structure known as a tabu 

list to record past moves made by the search. The tabu list is consulted before any move is 

made. If the move features in the list then it is not carried out. The tabu list is therefore used to 

prevent the search from returning to candidate solutions already visited and may even cause the 

search to move to solutions that are worse than the current candidate solution. Sometimes it 

may be necessary to allow the search to perform moves that do feature in the tabu list. This may 

be the case when there is a need to allow the search to revisit areas in the search space found to 

be promising. In this case aspiration criteria are used. Aspiration criteria enable the search to 

make moves that are currently not permitted because they feature in the tabu list for a limited 

period.  

The most basic implementation of a tabu list is as a queue of fixed size [16]. As a new move 

is added to the list the oldest move is removed. A dynamic list was used in the study by Gaspero 

and Schaerf  [16] where a move was kept in the list for k moves. The value of k was a random 

number chosen between a user-defined upper and lower bound. Lawal et al. [17] extended the 

TS approach by applying a weighting system to the hard and soft constraints. White and Xie 

[18] showed that using a longer tabu list in longer-term memory may also improve performance. 

Instead of using the tabu list to record moves, Kendall and Hussain [19] recorded low-level 

heuristics already applied in their hyper-heuristic approach. Hyper-heuristics search the 
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heuristic space to determine which low-level heuristic to apply next. The hyper-heuristic used 

considered heuristics that were not in the tabu list and chose one to apply next. The study 

showed that keeping good performing heuristics too long in the tabu list decreased overall 

performance. On the other hand, if the tabu duration is too short the search is limited to a small 

solution space because of the increased likelihood of reusing the same heuristic.  

2.3.1.3. Greedy Randomised Adaptive Search Procedure 

The Greedy Randomised Adaptive Search Procedure (GRASP) [20] [21] is another popular 

metaheuristic. The basic approach consists of two phases. In the first phase a solution is 

constructed and in the second phase it is improved upon using local search. The construction 

phase is a multi-start process that is similar to the semi-greedy heuristic proposed by Hart and 

Shogan [22]. Solution elements are incorporated one at a time into the partial candidate solution 

until it is complete. The next solution element to be added is chosen at random from a list of 

solution elements referred to as a Restricted Candidate List (RCL). The RCL is initialised at 

the beginning of the algorithm by including all the candidate solution components. The RCL is 

rebuilt at each iteration and consists of those solution elements which when incorporated into 

the current candidate partial solution results in the least increase in cost in the candidate 

solution. Some search strategies that may be followed in the second phase include the best-

improving strategy and the first-improving strategy [23]. The latter is faster because it returns 

the first solution found to be better whilst the former considers all the neighbouring solutions 

before returning the best one found.  

There are two approaches that may be followed when deciding on the composition of the 

RCL. The first approach is the use of a cardinality-based criterion whereby the RCL is limited 

to a specific number of solution elements [20]. The number of elements is provided upfront 
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before the start of the construction process and the solution elements considered for the RCL 

are the ones which provide the least incremental cost to the partial solution for that iteration 

step.  The second approach makes use of a value-based criterion. In this case the RCL is made 

up of all solution elements 
 whose incremental cost is �����
� ∈ 	 �������� , �������+∝

�������� − ��������� and ∝∈ �0,1!.  If ∝= 0 then the strategy is completely greedy because 

only the best performing solution element at that iteration is chosen for addition into the partial 

solution. On the other hand, if ∝= 1 then the strategy is completely random because any 

solution element from those available at that iteration may be chosen for addition to the partial 

solution.  

GRASP is easily implemented and hybridised with other local search algorithms like TS for 

the solution improvement phase [4]. Souza et al. [24] and Prais and Ribeiro [25] make use of 

TS in the local search phase of GRASP. GRASP was also successfully hybridised with 

population-based methods. Ahuja et al. [26] made use of GRASP to generate the initial 

population for a genetic algorithm when solving the Quadratic Assignment Problem. Rocha et 

al. [27] also implemented GRASP for the Course Timetabling Problem. The classes that were 

the most difficult in terms of the hard constraint were scheduled first in the construction phase. 

The soft constraint cost of each class was considered in the construction of the RCL. Local 

search was used in the improvement phase of GRASP to improve the solution from the initial 

phase.   

2.3.1.4. Variable Neighbourhood Search 

Variable Neighbourhood Search (VNS) [28] makes use of a set of neighbourhoods. The set of 

neighbourhoods are defined upfront. The neighbourhoods may be arbitrarily chosen or may be 

a set of nested neighbourhoods with increasing size. A set of nested neighbourhoods is one 
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where the first neighbourhood is a subset of the second one which is turn is a subset of the third 

and so on. Once VNS finds a local optimum in one neighbourhood, it escapes that optimum by 

changing the neighbourhood. VNS consists of three phases, namely, a shaking phase, a local 

search phase and a move phase. In the shaking phase a candidate solution in the kth 

neighbourhood is randomly selected to be the local search starting point. Local search is 

performed to improve the current solution. After the local search, the new candidate solution 

replaces the current candidate solution if it is better and a new neighbourhood structure is 

considered. 

Burke et al. [29] investigated two variants of VNS to solve the Examination Timetabling 

Problem. In the first variation the search moved to a new neighbourhood only when it was 

unable to improve the solution any further in the current neighbourhood. This is different from 

the standard VNS where the neighbourhoods are recycled independent of the behaviour of the 

search. The second variant made use of a Genetic Algorithm (GA) to evolve a fixed set of 

neighbourhoods. Each individual in the population represented an ordered list of 

neighbourhoods which was used by VNS to determine the order in which the neighbourhoods 

were searched.  

More recently, Alegfragis et al. [30] proposed a VNS framework for the Uncapacitated 

Examination Timetabling Problem. The framework allows for the use of multiple metaheuristic 

algorithms such as SA and Great Deluge. Associated with each metaheuristic is a set of defined 

local search moves and neighbourhoods that are implemented to improve the solution. In the 

beginning VNS randomly choses a metaheuristic and applies to an initial solution in an attempt 

to improve it. If the solution cannot be further improved upon then VNS considers a different 

metaheuristic to improve the same solution  
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2.3.2. Overview of Popular Population-Based Metaheuristics 

There have been many population-based methods developed over the years. Evolutionary 

Algorithms is a popular class of methods that are based on the natural selection and evolutionary 

processes found in nature [31]. Genetic Algorithms belong to this class of methods and these 

methods are discussed in this work. Another class of population-based methods that is also 

inspired by nature are Swarm Intelligence approaches. Swarms such as bees tend to overcome 

their limited capabilities to find food by collectively collaborating with each other and 

interacting with their environment [32].  Swarm Intelligence approaches model the collective 

behaviour of swarms and their interactions with their environment and how they use this global 

information to solve complex problems. The Ant Colony Optimisation method and Particle 

Swarm Optimisation method from this class are discussed in this work. 

2.3.2.1. Genetic Algorithms 

In Genetic Algorithms (GA) a population of individuals is evolved from one generation to the 

next until convergence occurs or the termination criteria have been met. Each individual 

represents a candidate solution to the problem at hand  [31]. The process begins with an initial 

population which is then evaluated using a fitness function. Based on the selection method 

adopted, individuals from the current population are chosen as parents for the individuals of the 

next generation. The parents are subjected to crossover and mutation to create offspring that 

make up the new generation. The new generation then replaces the current generation. This 

process continues until the termination criteria have been met. On completion, only the fittest 

solution in the current generation is returned.  

Yadav and Sohal [33] present a study of the various selection techniques adopted by GA for 

the selection of individuals to act as parents from the current generation. One of the most 

commonly used methods is tournament selection. In tournament selection a fixed number of 
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randomly chosen individuals are first selected from the population. The fittest individual in that 

selection is then returned. The crossover operator performs local search and promotes 

convergence of the algorithm. Lim et al. [34] provide a survey of the more commonly used 

crossover and mutation operators in GA. The most basic is the single-point crossover. In this 

crossover operator, a random point is chosen in the chromosomes of each parent and the 

information after that point is exchanged between the two parents to create the offspring. The 

mutation operator maintains diversity in the population. The rate at which mutation occurs is 

lower than the rate at which crossover occurs. Mutation involves making small random 

alterations to the chromosomes of the offspring. A wide selection of mutation operators has 

been used. For example, timetables in timetabling problems may be mutated by moving a 

randomly selected exam from one randomly chosen period to another in the same timetable.  

Genetic Algorithms (GAs) has been implemented in various ways to improve performance.  

Hong et al. [35] point out that the performance of a GA is directly linked to the choice of 

crossover operator and mutation operator used. Sastry et al. [36] also noted this observation and 

proposed the Dynamic GA (DGA) which implements multiple crossover and mutation 

operators instead of the traditional GA which makes use of a single crossover operator and a 

single mutation operator. The GA can be applied in more than one phase in an approach. The 

two-phased approach by Pillay and Banzhaf [37] made use of a GA in the first phase to find 

feasible solutions and in the second phase a different GA was used to improve the individuals 

evolved from the first phase.  

2.3.2.2. Ant Colony Optimisation 

Ant Colony Optimisation (ACO) is based on the foraging behaviour of real ants where ants use 

pheromone deposits to find the shortest path to their food [38]. In the beginning each ant follows 

a different path to find food. As each ant returns to the nest after finding food it deposits 
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pheromone on its trail. As more ants follow the same path more pheromone is deposited leading 

to more ants picking up the same trail. This leads to a path reinforcement loop which has been 

experimentally proven to enable ants to find the shortest path [39]. The pheromone update 

process in ACO consists of two processes, namely, a pheromone deposit process and a 

pheromone evaporation process. In the pheromone deposit process, solution components that 

are associated with high quality solutions have their pheromone values increased making these 

solution components more desirable to ants in the following iterations. The pheromone deposit 

process takes place after ants have finished with solution construction. The pheromone 

evaporation process takes place during solution construction and the process involves reducing 

the pheromone values on solution components. The aim is to make some solution components 

less desirable to ants during construction. Once a solution has been completed the entire process 

is restarted. This continues until no new solutions can be found or the termination criterion has 

been met. 

ACO was first applied to the Traveling Salesman Problem and then adapted later on to solve 

other problems like the ETP [40] and the Job Scheduling Problem [41]. ACO has many variants 

[42]. A popular variant to ACO is the Min-Max Ant System (MMAS) [43]. In MMAS only the 

ant which returns the best candidate solution in a cycle is allowed to deposit pheromone. 

Another variant is the Rank-Based Ant System (ASrank) [44] where ants are ranked according 

to trail lengths. Only a fixed number of the best ants are allowed to make deposits. The deposits 

are weighted by allowing the ants with shorter paths to make larger deposits. Eley [40] noted 

that a large difference in pheromone deposit values may result in search stagnation due to the 

likelihood of all the ants returning to the same solution. The MMAS also introduces a range of 

possible pheromone values to limit search stagnation. Djannaty and Mirzaei [45] improved the 

performance of MMAS by incorporating local search in the form of the Great Deluge, a variant 
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of SA. Local search was used to improve the best solution in each cycle before the pheromone 

update process. An improved local search incorporating memory was also used in the hybrid 

ACO approach by Abounacer et al. [46]. The local search method was similar to TS in that it 

kept a record of explored solutions to avoid recycling and made use of backtracking to improve 

the search process.    

 

2.3.2.3. Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) [47] is based on the flocking behaviour of birds. PSO 

makes use of a number of particles to move through the search space to find the global best 

position [32] [47]. Each particle represents a candidate solution to the problem and has a 

velocity and a position in the search space. The particle also keeps record of the best position 

found in its path so far. After each evolutionary cycle the velocity of each particle is calculated 

by adding its current velocity to the influence from its current best position and the swarm’s 

best position. An inertia weight variable w is used to control the influence of previous velocities 

on the particle’s new velocity [48]. The new position of each particle is then computed by using 

the particle’s updated velocity. Gradually, the particles move towards the global best position 

in the swarm. Every particle swarm has a defined topology which describes how the particles 

are connected. The neighbourhood of a particle is then the set of particles in the swarm to which 

it is topologically connected. The neighbourhood of a particle may be a subset of the swarm or 

contain the entire swarm itself. 

Fealko [49] used a constraint version of the traditional PSO to ensure that only feasible 

regions of the solution space are considered. The constrained PSO made use of a low-level 

construction heuristic to generate an initial population of particles representing only feasible 

candidate solutions and the modified PSO only accepted feasible solutions during the 
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optimisation process. Chu et al. [50] proposed a self-mutated PSO. The movement of each 

particle is processed by choosing a random solution component from the particle’s best solution 

found so far and a random solution component from the best solution found by the swarm so 

far.  

2.4. Diversification and Intensification Mechanisms in Metaheuristics 

In this section the diversification and intensification capabilities of the metaheuristics presented 

earlier in this chapter are discussed. Both these capabilities are defined and discussed earlier in 

section 2.2. The search capabilities of trajectory-based methods are first looked at followed by 

population-based methods.  

2.4.1. Trajectory-Based Methods 

Trajectory-based methods have good intensification capabilities [5]. They are able to 

investigate good performing areas to find better solutions. Once the search finds a local 

optimum through exploitation it needs to be able to move out of the optimum in pursuit of the 

global optimum by accepting uphill moves. Otherwise the search will return a solution which 

is suboptimal. Spending too much time stuck in a local optimum is costly in terms of processing 

time. Therefore the performance of the search is highly dependent on the effectiveness and 

efficiency of the mechanism used to escape the local optimum. The escape mechanisms adopted 

by the trajectory-based methods and their search capabilities are presented in turn. 

Tabu Search (TS) maintains a tabu list which plays a key role in the intensification and 

diversification capabilities of the search. The search is prohibited from carrying out moves that 

feature in the list. This may cause the search to carry out worse or uphill moves. In doing so the 

search is able to go beyond any local optima it is stuck in. The use of aspiration criteria also 

improves diversification because the search is allowed to perform prohibited moves that feature 
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in the tabu list. The way the tabu list is implemented also determines the performance of the 

search. There have been many different approaches to the implementation. Blum and Roli [51] 

state that a smaller sized (tenure) tabu list causes the search to focus on small areas of the search 

space. A larger tenure causes the search to explore larger search areas because a greater number 

of moves in the neighbourhood is prohibited. Battiti and Tecchiolli [52] noticed that an increase 

in the number of moves being repeated is an indication that the search required more 

diversification. This was done by dynamically increasing the tabu tenure for a short while. 

White and Xie [18] also used the frequency of moves to improve performance. A frequency 

table was kept in memory and if a move was repeated the table was updated accordingly. In this 

way moves with high frequency values were avoided.    

Simulated Annealing (SA) makes use of a cooling schedule and a temperature T to control 

the level of intensification and diversification and to escape from any local optima. SA is more 

likely to accept uphill moves in the beginning stages when T is relatively high. As the algorithm 

progresses T is decreased according to a cooling schedule which in turns decreases the 

probability of accepting uphill moves [53] [54]. In the beginning more diversification takes 

place. As the algorithm progresses the level of diversification decreases whilst that of 

intensification increases. Blum and Roli  [51] state that convergence to the optima is likely if 

the cooling schedule is slow but this is not practical in real-world applications where faster 

cooling rates are required. It is also observed that if the system cools too quickly then the search 

may be unable to move out of local optima because the probability of accepting uphill moves 

is too low. One of the approaches adopted to solve this problem is the use of non-monotonic 

cooling schedules. The traditional SA makes use of a monotonic cooling schedule because the 

temperature only decreases as the algorithm progresses. Non-monotonic cooling schedules 

allow for the temperature to be increased in some way during the search. This is referred to as 
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reheating and has been used successfully [51]. Elmohammed et al. [12] used a reheating 

technique to explicitly increase the diversification capabilities of the search. The authors state 

that if the best cost so far is high then the temperature required to escape the local minimum 

must be just as high. Abrahamson et al. [55] also made use of a similar heating technique as a 

function of cost where the reheating technique considered the heat of the current system and 

the cost of the current best solution found. Cooling schedules enable the search to balance the 

amount of intensification and diversification performed. It is also shown by Abdullah et al. [56] 

that the choice of neighbourhood may lead to better quality solutions. The same conclusion was 

reached by Thomson and Dowsland [57] when comparing the results from three different move 

operators. A change in the move operator changes the neighbourhood which affects 

performance.  

The RCL in GRASP plays a key role in the exploratory capabilities of the search because 

the next solution element to be added to the partial solution is randomly chosen from the RCL. 

The size of the RCL is another important factor that determines performance. The smaller the 

size, the more deterministic the approach becomes because the choice of solution elements is 

limited. Prais and Ribeiro [25] argue that allowing for the size of the RCL to change during the 

construction phase enabled the approach to construct more diverse solutions. A Reactive 

GRASP was proposed for the Matrix Composition Problem and it outperformed the standard 

GRASP [25]. The information gathered about the quality of previously found solutions was 

used to self-tune the restrictiveness of the RCL by building a discrete list of acceptable values 

to be used for the size of the RCL. The size of the RCL was then randomly selected from this 

built list at every iteration in the construction phase. This approach appeared to be more robust 

because there was no need to manually define the size of the RCL. Burke et al. [4] also 

acknowledged the size of the RCL affects the quality of results obtained and proposed a hyper-
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heuristic approach to adaptively determine the size of the RCL at each iteration. The hyper-

heuristic operated on two low-level construction heuristics, namely, the saturation degree and 

the largest weighted degree. Blum and Roli [51] argue that the choice of construction 

heuristic(s) employed in the construction phase is an important factor in determining the quality 

of the initial solutions constructed. Using a good quality initial solution enables GRASP to have 

a good starting point for the second phase leading to better overall performance.   

In Variable Neighbourhood Search (VNS) the number of neighbourhood structures used 

determines the amount of intensification and diversification. If the number is small then more 

intensification takes place as previously found promising areas in the search space are revisited 

more often. On the other hand, a large number of neighbourhood structures allows for more 

diversification. Also the search achieves diversification by changing the neighbourhood 

structure when the current candidate solution cannot be improved.  

2.4.2. Population-Based Methods 

Population based methods consider multiple points in the search space at the same time because 

they operate on multiple candidate solutions at the same time.  As a result they have an inherent 

ability to quickly sample the search space and have strong diversification capabilities. In pursuit 

of the global optima the search may converge to a local optimum and return less desirable 

results. This issue is known as premature convergence and good performing population-based 

methods need to effectively and efficiently deal with this issue. 

Genetic Algorithms (GAs) evolve the population from one generation to the next by using 

genetic operators. The traditional GA uses a crossover operator to exploit the search space by 

recombining the traits of parents to create offspring. However, over many generations the 

crossover operator causes the individuals to become more similar to each other. As diversity in 
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the population decreases, the diversification capability of the GA also decreases. To solve this 

problem the GA makes use of the mutation operator to maintain diversity and increase 

diversification. The mutation operator modifies individuals in the population and in doing so 

moves the search to different areas in the search space. Conversely, too high diversity in the 

population can lead to deterioration in performance [58]. A user-defined probability is used to 

determine the rate of mutation and limit the diversity in the population. Other techniques have 

been used in GA to preserve diversity and to avoid premature convergence. Gupta and Ghafir 

[59] provide a review of methods used to maintain diversity. One such technique is Crowding 

introduced by de Jong [60].  Crowding takes place at the replacement stage in the GA after the 

new offspring have been created. For example, in the Deterministic Crowding approach, 

offspring are paired with the parents they are similar to. If the offspring is fitter than the parent 

it is paired with, then it takes the place of that parent in the next generation. Another key design 

issue in GA is the size of the initial population. Larger populations enable the search to be more 

exploratory as more points in the search space are sampled. However, as the population size is 

increased the overhead in terms of processing time and resources are increased. A population 

size that is too large causes very slow convergence which may be impractical in some 

applications. A small population size also affects performance as diversification is reduced and 

may result in premature convergence [61]. Some approaches have been proposed to improve 

processing times when larger populations are required. Parallel Genetic Algorithms (PGAs) 

may be used to reduce processing times when larger population sizes are required because it is 

implemented to run over multiple processors instead of a single serial machine [62] [63]. Pappu 

et al. [64] proposed a PGA for the Examination Timetabling Problem by implementing a client-

server architecture. The initial population was generated on the server. Thereafter copies of the 

population was evolved on separate clients. At regular intervals the information from the clients 

was used to update the population on the server. The design of the system allowed for new 
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clients to be added to increase exploration without the need to disrupt the entire process. The 

Island Model paradigm is another approach that takes advantage of the architecture of PGA 

when dealing with large population sizes [65]. In this case the initial population is divided into 

groups and each group is evolved independently on different hardware processes. Corcoran and 

Wainwright [66] made use of an Island Model in their PGA to solve the Job Scheduling 

Problem. Vasileios et al. [67]  implemented a PGA on a Graphics Processor Unit (GPU) for the 

Examination Timetabling Problem. It was argued that a GPU makes use of expanded memory 

and threads to speed up processing times. The use of threads allowed for the crossover and 

mutation operations to be performed in parallel. The approach was more exploratory as it made 

use of larger population sizes. Umbarkar and Joshi [68] provide a review of this and other 

parallel computing paradigms that have been used to reduce GA runtimes. 

Ant Colony Optimisation (ACO) is based on how biological ants follow trails produced by 

pheromone deposits to find the shortest path to their food. Premature convergence is also a 

concern with ACO. The method converges when more and more ants begin to follow paths that 

have common points. This leads to a loss in diversity. A high diversity means that most of the 

ants are not influenced by the current best path found. A low diversity means that most of the 

ants are following the best ant (current best path) and convergence has occurred. In the standard 

ACO the pheromone evaporation rate may be used to balance the level of diversification and 

intensification performed by the search and avoid premature convergence. A lower rate of 

evaporation increases diversification because it causes the ants to traverse suboptimal paths 

which improves the likelihood of finding new paths [69]. Conversely, a higher rate of 

evaporation has an intensifying effect. The ants are forced to converge on paths that are 

traversed the most in order to find shorter paths. Other approaches have been proposed to 

improve diversity. Mohsen [70] put forward a hybrid ACO method to solve the Travelling 
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Salesman Problem (TSP). ACO was used to create an initial population. The population 

diversity was then calculated using a method based on Euclidean distance. If the diversity was 

too low then a mutation operator was used to increase diversity As a result, diversification was 

increased because mutation moves the search to a different area in the search space. On the 

other hand, if the diversity was too high then a version of Simulated Annealing was used to 

increase intensification. The Max-Min Ant System (MMAS) introduced by Stutzle and Hoos 

[71] limited the pheromone trails values with an interval defined upfront to avoid search 

stagnation where the same solution is returned by multiple ants. In this study only the best 

performing ant was allowed to update pheromone trails and two alternatives were considered. 

The trails were either updated by the current best performing ant in each iteration or the global 

best performing ant from all previous iterations or evolutionary cycles. Chen and Liu [72] state 

that a shortcoming of MMAS is the slow convergence rate due to the limits imposed on the 

pheromone trail values. The authors proposed a multi-colony system for TSP on top of a cluster 

of processors. The master processor keeps track of the global best solution found so far by all 

colonies. Each colony runs on a slave processor. Once a colony converges to local optima it is 

reported to the master and a new colony is initialised to run in its place. The method reported 

convergence times faster than parallel independent runs. The authors showed that multi-colony 

systems have an increased capability to escape local optima compared to single colony systems. 

Particle Swarm Optimisation (PSO) is based on the flocking behaviour of birds. Particles 

represent candidate solutions and they fly through a multi-dimensional search space in pursuit 

of a global optima. Each particle has a position and velocity and is influenced by the global 

information of the flock. Earlier versions made use of velocity limits to control the level of 

intensification and diversification in the search process. If a particle’s velocity was higher than 

a defined limit then it was reset to the value of the limit. This velocity clamp mechanism 
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improved convergence but was ineffective in enabling the search to escape a local optima [73]. 

Shi and Eberhart [74] introduced the inertia weight w to balance the amount of diversification 

and intensification and overcome premature convergence. W models the inertia of the particle 

and represents its resistance to steering. The inertia weight w controls the influence of previous 

velocities on the particle’s current velocity. By gradually decreasing w in a linear fashion, 

diversification is reduced and intensification is increased. Cheng and Shi [73] state that the 

capability of the search is limited because of the difficulty in dynamically adjusting w to control 

the level of exploration and exploitation especially in complex or large-scale problems. The 

authors propose a novel equation to control population diversity by making use of the average 

velocity of the swarm and a user-defined parameter value. The equation is used to vary the 

current position of a particle in order to increase or decrease swarm diversity. There have been 

many hybrid implementations of PSO which incorporated local search to improve performance 

[75]. Abayomi et al. [76] combined PSO with local search to successfully develop an efficient 

automatic exam scheduler for a university in Nigeria. Tassopoulos [77] also combined local 

search with PSO in their hybrid method to solve high school timetabling problems. A move 

operator was used to change the particle’s current position. It swapped courses between two 

timeslots in a random fashion. The performance of the hybrid was shown to be superior to the 

GA and SA for the same problem sets.  

2.5. Summary 

Most combinatorial optimisation problems cannot be solved optimally in polynomial time. In 

such cases it is more desirable to find near-optimal solutions in finite time. Metaheuristics have 

received much attention over the years because they are able to find good performing solutions 

in reasonable time to difficult problems. In general, a metaheuristic makes use of higher-level 

strategies to overcome the limitations of lower level search heuristics to find better solutions.  
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This means that they are able to strike a better balance in diversification and intensification. 

Good performing methods need to perform adequate diversification in order to find better 

performing search areas. At the same, the method needs to be effective in searching good areas.  

 There are two categories of metaheuristics, namely, trajectory-based methods and 

population-based methods. The former considers one solution at a time and follows a single 

trajectory in the search space. The latter considers multiple solutions at a time. A key problem 

is the issue of local optima traps in trajectory-based methods where the search is ended 

prematurely leading to poor performance. Such methods need to have a way to overcome this 

challenge. For example, TS makes use of a tabu-list. The search is not allowed to perform 

moves that feature in the tabu-list. This causes the search to eventually accept an uphill (worse) 

move and is then able to move out of the local optimum. The tenure of the list is also important. 

Tabu-lists that are too short may cause the search to revisit old moves more often. This limits 

exploration. Other trajectory-based methods covered in this chapter include SA, GRASP and 

VNS. SA makes use of a cooling schedule to control the amount of intensification and 

diversification performed by the search. If the temperature of the system is cooled too quickly 

then the level of exploration is reduced. GRASP makes use of a RCL to control the amount of 

intensification and diversification performed by the search.  

Population-based methods were also discussed in this chapter. A key challenge with these 

methods is premature convergence. This happens when the search converges too quickly and 

further exploration is halted. GAs are able to overcome this issue to some extent in different 

ways. Making use of larger populations improves exploration and slows shown convergence. 

In some cases this may be undesirable particularly if processing time is an issue and a solution 

needs to be found in a reasonable time.  The GA also makes use of mutation to increase diversity 
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in the population. By increasing the population diversity the convergence is slowed. Again, 

there needs to be a fine balance as too much diversity can lead to poor performance. It is 

important for convergence to happen in an acceptable time. Other population-based methods 

discussed include Ant Colony Optimization and Particle Swarm Optimization. Both these 

methods are inspired by nature and are based on the foraging behaviour of ants and bird 

respectively. The diversification and intensification mechanisms of these methods are also 

elaborated on. In next chapter the Examination Timetabling Problem is introduced and defined.  
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 CHAPTER 3: EXAMINATION TIMETABLING PROBLEM 

The Examination Timetabling Problem (ETP) is defined in this chapter along with the best 

performing methods for this problem domain. The chapter is structured as follows; Section 3.1 

defines the ETP. Section 3.2 presents the benchmark sets used to represent the capacitated 

version of the ETP and some of the best performing approaches for these benchmarks. Section 

3.3 focuses on the benchmark set used to represent the incapacitated version of the ETP and the 

best performing approaches for that set. A critical analysis of the literature is given in Section 

3.4 and section 3.5 concludes the chapter.  

3.1. Examination Timetabling Problem Defined 

The Timetabling Problem remains a well-studied one. The problem is a combinatorial one and 

in some cases optimisation by exact techniques is not possible in an acceptable time.  According 

to Lawler [78],  the mathematical analysis of an arrangement of discrete objects or the ordering 

thereof is a combinatorial one. However, in most cases it is not necessary to enumerate all the 

possible arrangements but rather to find the optimal arrangement which Lawler defines as 

combinatorial optimisation. Wren [79] further categorized the Timetabling Problem as the 

allocation of a set of resources to a set of objects in space time whilst satisfying a given set of 

problem constraints. Burke et al. [80] provide a more general definition for the Timetabling 

Problem. The problem is defined as a set of parameters  �, ",#, $ which are finite sets that 

represent timeslots, resources, meetings and constraints respectively. The aim is then to find 

the best allocation of resources and times for meetings. The allocation should be one that 

satisfies all the problem constraints as far as possible. Schaerf [81] further categorizes 

timetabling into three main focus areas, namely, school timetabling, university course 

timetabling and examination timetabling. School timetabling involves organising school 
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resources in a way that satisfies a set of requirements set by the school. More specifically, it is 

the scheduling of one or more tuples to timetable slots. Each tuple is a set of resources such as 

teachers, subjects and classrooms. Course timetabling is similar to school timetabling. It 

involves scheduling a set of courses to a limited number of timetable slots. Each course is taught 

to a group of students by a specific lecturer in a specific lecture room. Lastly, examination 

timetabling is the scheduling of examinations to timetable slots. An exam is taken by a group 

of students in a specific venue.  

All timetabling problems have a set of constraints that need to be satisfied. There are two 

types of constraints, namely, hard constraints and soft constraints [82]. In order for a timetable 

to be usable (feasible) it must satisfy all hard constraints. For example, a hard constraint for the 

school timetabling is that no teacher must be allocated to different classrooms in the same 

timetable slot. In the case of examination timetabling, a hard constraint is that exams that have 

common students must not be allocated to the same timetable slot. It is not necessary to satisfy 

all soft constraints in order for a timetable to be feasible. Also, it may not be possible to satisfy 

all soft constraints because some may be contradictory. Instead, the quality of a timetable is 

determined by the extent to which all soft constraints are satisfied.  An example of a soft 

constraint for school timetabling is that teachers may have individual preferences when it comes 

to teaching specific subjects at specific times. An example of a soft constraint for examination 

timetabling is the requirement that the scheduling of exams with different durations to the same 

room in the same timetable slot should be avoided to minimise student movements during the 

exam.  

There are two versions of the ETP, namely, the capacitated and uncapacitated version. In the 

capacitated version the sizes of the rooms used to write the exams need to be considered 
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whereas, in the uncapacitated version there is no limit on the room sizes. Each version is 

represented by one or more benchmark sets in the literature.  

3.2. The Uncapacitated Version of ETP 

In the uncapacitated version of the ETP, the capacities of the exam venues or rooms are not 

considered. Room sizes are assumed to be unlimited. This version is represented by the Carter 

benchmark set which is introduced in section 3.2.1. This is followed by section 3.2.2 which 

presents the best performing approaches for this benchmark set. 

3.2.1. The Carter Benchmark Set 

The Carter benchmark set was introduced in 1996 [83]. It consists of thirteen instances taken 

from selected schools and universities in Canada, America, United Kingdom and Middle East.  

The benchmark set is shown in table 3.1. Each column gives the characteristics of each instance, 

namely, number of periods/timeslots, number of exams, number of students and the conflict 

density. The conflict density indicates the proportion of students who write the same exams. 

Hec-s-92 has the highest conflict density which indicates a high proportion of students sit for 

the same exams.  

Table 3.1 The Carter Benchmark Set 

Instance Number of 

Periods 

Number of  

Exams 

Number of 

Students 

Conflict 

Density 

car-f-92 32 543 18419 0.14 

car-s-91 35 682 16925 0.13 

ear-f-83 24 190 1125 0.27 

hec-s-92 18 81 2823 0.42 
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kfu-s-93 20 461 5349 0.06 

lse-f-91 18 381 2726 0.06 

rye-s-93 23 486 11483 0.08 

sta-f-83 13 139 611 0.14 

tre-s-92 23 261 4360 0.18 

uta-s-92 35 622 21266 0.13 

ute-s-92 10 184 2749 0.08 

yor-f-83 21 181 941 0.29 

pur-s-93 42 2419 30029 0.03 

This benchmark set has only one hard constraint which is that no student should be scheduled 

to take two of more exams in the same period. The spacing of exams for students has a direct 

influence on the pass rate. Also students tend to prefer timetables that have an element of 

fairness where the timetable does not disadvantage certain students [84]. The soft constraint 

that measures the spacing of exams which have common students aims to address this issue by 

promoting timetables that are more evenly spaced. The exam spread is calculated as shown in 

equation 3.1 below and timetables that minimize this value are preferred.  

 %�&'() = 	
∑��+,-�	.�,-

/
                                      (3.1) 

where: 

1) 0�1�2� 	is distance in periods between  '
(3� and  '
(32. 

2) ��3�2 is the number of students sitting for both exams 
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3) % is the total number of students.  

4) 0�1�2� = 	256+,-  where 1�2 ∈ {1,2,3,4,5} , 0 otherwise.   

3.2.2. Best Performing Methods for the Carter Benchmark Set 

Burke and Bykov [85] built on the success of the Great Deluge in solving timetabling problems 

by proposing a variant known as the Flex-Deluge. The Great Deluge accepts both uphill (worse) 

and downhill (better) moves. However, it was observed that by modifying the acceptance 

criterion the performance may be improved. The Flex-Deluge introduces an additional 

parameter to slow the rate of acceptance of both uphill and downhill moves. This allows the 

Flex-Deluge to spend more time than the Great Deluge exploring and finding better solutions. 

Leite et al. [86] also made use of the Great Deluge in an evolutionary approach by proposing 

a memetic algorithm. A memetic algorithm is a GA that incorporates local search to improve 

the fitness of the offspring after the recombination process. The initial population was organised 

into groups (complexes) and each complex was evolved independently. The Great Deluge (see 

section 2.3.1.1) was used to improve solutions after the recombination process. After each 

evolutionary step, the complexes were shuffled by reorganising the individuals. The shuffling 

of complexes and use of recombination between complexes enabled the search to explore new 

areas.  

Later on in 2018, Leite et al. [87] proposed a cellular memetic algorithm combined with the 

Threshold Algorithm (TA). TA is a variation to Simulated Annealing (SA) (see section 2.3.1.1). 

In SA the selection criterion is probabilistic whereas in TA it is deterministic and a solution is 

only accepted if it is below the annealing threshold. Cellular memetic algorithms organise the 

population in a connected graph where each vertex represents an individual that is linked to its 
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neighbours. During the recombination process an individual is recombined with its nearest 

neighbour in the graph allowing for greater diversity in the chosen parents.  

Bellio et al. [88] also made use of SA in an approach that has two stages. SA was 

implemented for both stages. The aim of the first stage was to render a randomly generated 

timetable feasible. This was achieved by performing moves that reduced examination conflicts 

until there were no hard constraint violations. The aim of the second phase was to improve the 

quality of the timetable from the first phase by making use of move operators that reduced the 

soft constraint cost.   

Rather than working on improving complete solutions Mandal and Kahar [89] considered 

improving partial solutions. After each iteration a user-defined number of exams were assigned 

to the partial solution and then the Great Deluge (see section 2.3.1.1) was used to improve the 

solution quality. The process was repeated until all exams were scheduled. The candidate 

solutions were constructed using different construction heuristics. The saturation degree 

heuristic performed the best from the four heuristics considered. The saturation degree 

construction heuristic gives priority to the exam with the least number of feasible period options 

in the current version of the timetable.  

Caramia et al. [90] instead scheduled exams in a greedy fashion. Exams were scheduled to 

slots that incurred the least cost. Backtracking was used to resolve exam conflicts. Each 

scheduled exam was assigned a penalty score which was updated after a new exam was 

scheduled. A move operator was used to reduce exam penalties. In some cases it was observed 

that after all exams were scheduled some periods remained unused. In this case the cost 

reduction in moving all the exams to an unused period was computed. Only exams with the 

highest cost reduction were then moved to the new period.  
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3.3. The Capacitated Version of ETP 

In the capacitated version of the ETP, the capacities of the exam venues or rooms must be 

considered. In this study, the capacitated version of the ETP is represented by the examination 

benchmark set released for the International Timetabling competition in 2007 (ITC2007) and 

the Yeditepe benchmark set. The ITC2007 benchmark set is discussed in section 3.3.1 along 

with best performing approaches found in literature for this benchmark set in section 3.3.2. The 

Yeditepe benchmark set is discussed in section 3.3.3 along with best performing approaches 

found in literature for this benchmark set in section 3.3.4. 

3.3.1. The ITC2007 Benchmark Set  

The ICT2007 benchmark set was meant to present a realistic view of examination timetabling 

in practice [91]. It is more constrained than the Carter benchmark set in that it has a richer set 

of hard and soft constraints. The twelve instances for this benchmark set is shown table 3.2. 

The columns from left to right in the table show the number of students in a particular problem 

instance, the number of exams in that instance, the number of rooms, the conflict density and 

lastly the number of periods. 

 

Table 3.2  The ITC2007 Benchmark Set 

Instance Number of 

students 

Number of 

exams 

Number of 

rooms 

Conflict 

Density 

Number of 

Periods 

1 7891 607 7 0.05 54 

2 12743 870 49 0.01 40 

3 16439 934 48 0.03 36 
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4 5045 273 1 0.15 21 

5 9253 1018 3 0.009 42 

6 7909 242 8 0.06 16 

7 14676 1096 15 0.02 80 

8 7718 598 8 0.05 80 

9 655 169 3 0.08 25 

10 1577 214 48 0.05 32 

11 16439 934 40 0.03 26 

12 1653 78 50 0.18 12 

The hard constraints for the ITC2007 are summarized below;   

• There must be no student clashes. 

• The capacity of each room is fixed and must not be exceeded. 

• The exam duration must not exceed the period duration. 

• Some exams must be written simultaneously. 

• Some exams must be written before others. 

• Some exams require exclusive use of the room.  

The soft constraints for the ITC2007 are summarized below.   

• The number of times a student has consecutive exams in the same day. 

• The number of times a student writes more than one exam in the same day. 

• The number of times the spacing between exams for a student is less than a specific 

value is also counted. 

• Frontload penalty which penalises large exams that are scheduled later on. 
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• Exams with different durations being written in the same room are also penalized. 

• The scheduling of exams in specific periods incurs certain penalties. 

• The scheduling of exams in specific rooms incurs certain penalties. 

Some of the soft constraints for this benchmark set are contradictory such as the period 

spread and front loading constraints. The period spread constraint promotes timetables that have 

more free periods between exams for students. The front loading constraint penalizes timetables 

that have larger exams in terms of student numbers scheduled in the last periods. Therefore 

period spread is restricted by the front loading constraint. 

McCollum et al. [91] gives a more detailed description of the constraints and description of 

the objective function.   

3.3.2. Best Performing Methods for the ITC2007 Benchmark Set 

The multi-phased approach by Muller [92] performed the best in the Second Timetabling 

Competition in 2007. An initial solution was constructed in the first phase. The second phase 

employed a problem specific hill climbing routine to find the local optimum. The solution was 

further improved upon by a bounded Great Deluge (see section 2.3.1.1) in the improvement 

phase. The bound value was increased whenever the search reached the lower limit of the 

bound. The number of times the bound was increased with no improvement in the overall best 

solution was recorded. If this number exceeded a predefined limit then the upper bound was 

increased to allow search to move out of the local optimum. Simulated Annealing (SA) (see 

section 2.3.1.1) was used in the next phase for further improvement of the solution. The method 

also proved to be versatile as it was applied to the other two tracks in the competition with 

minor modifications.  
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The FASTSA method proposed by Leite et al. [14] adopted the same approach as the 

previous method to resolve conflicts in the initial solution construction process. The method 

used a variant of SA termed FASTSA. The FASTSA was able to achieve faster processing 

times over the standard SA by reducing the number of evaluations performed on every iteration. 

The temperature schedule was segmented into intervals referred to as bins. If an attempt to 

move an exam in the previous iteration was not successful then it was recorded in an appropriate 

bin and the search ignored any moves relating to that exam in future iterations. One of the 

drawbacks of FASTSA was the loss generality that is present in the standard SA.  

The multi-staged approach proposed by Gogos et al. [93] was placed second behind Muller 

in the same competition. GRASP was used to generate the initial solutions. A limited form of 

backtracking was used to resolve any conflicts in the initial solution construction phase. A tabu 

list was also used to record which exams were reassigned in the backtracking process. SA with 

Kempe chains was used in the second phase to refine initial solutions. In the third and last phase 

each period was inspected in turn using a novel Integer Programming approach to further 

improve the solutions. In 2010, Gogos et al. [54] proposed several improvements to the 

approach to achieve better performance. One of the improvements was the addition of more 

search heuristics.  

The cellular memetic approach by Leite et al. [87] also performed well for this benchmark 

set. It was already discussed in section 3.2.2. 

Many of the best performing methods discussed so far incorporate SA or a variation thereof. 

Bykov and Petrovic [94] state that whilst SA has proven to be effective in solving the 

examination problem there is a need to consider approaches that are similar to but easier to 

implement than SA. The Late Acceptance Hill-Climbing Algorithm (LAHC) by Burke et al. 
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[82] is one such example of a system that is similar to SA without the need for a cooling 

schedule. Following the success of LAHC in solving the ETP a new hill-climbing method called 

Step Counting Hill Climbing Algorithm (SCHC) was proposed by Bykov and Petrovic [94]. A 

cost bound is used as the acceptance criterion for new solutions. It is updated using the current 

best after a user defined number of steps (iterations). Different variations to SCHC were 

considered and the results show that the variant where only the accepted moves were counted 

performed the best.   

3.3.3. The Yeditepe Benchmark Set  

The Yeditepe benchmark set is made up of eight instances taken from the Yeditepe University 

from eight semesters over three years [95]. It differs from the other two benchmark sets in that 

the timetables are a fixed size for all problem instances with each day having only three periods. 

It differs from the Carter benchmark because the capacity of exam venues must not be exceeded. 

It is also more realistic than the Carter benchmark set because it provides additional information 

on the time and day of each period which is absent in the Carter benchmark. The soft constraint 

is more restrictive than the Carter benchmark because it requires that students must not be 

scheduled to sit for exams on consecutive periods on the same day. The Yeditepe benchmark 

set is similar in nature and format to the ITC2007 benchmark set but has fewer constraints. For 

example, there are no ordering rules when scheduling exams as is the case with ITC2007. As a 

result the Yeditepe benchmark set provides the researcher with an opportunity to study real-

world problems without too many real-world constraints. The three different benchmark marks 

set provides three levels of difficulty in terms of how constrained the problem is, with the Carter 

benchmark set being the easiest to solve followed by the Yeditepe benchmark set and then lastly 

the ITC2007 benchmark set being the hardest. 
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Parkes et al. [95] provides more details on this set and the definition of its objective function.  

The Yeditepe benchmark set is listed in table 3.3 followed by the hard and soft constraints of 

the problem. The columns in the table from left to right show the number of students in that 

problem instance, the number of exams, the number of enrolments and lastly the conflict 

density. 

 

Table 3.3: The Yeditepe Benchmark Set 

Instance Number of 

students 

Number of 

exams 

Number of 

enrolments 

Conflict 

Density 

20011 559 126 3486 0.18 

20012 591 141 3708 0.18 

20013 234 26 447 0.25 

20021 826 162 5755 0.18 

20022 869 182 5687 0.17 

20023 420 38 790 0.2 

20031 1125 174 6714 0.15 

20032 1185 210 6833 0.14 

The hard constraints this benchmark set are: 

• No student clashes are allowed. 

• The number of students taking an exam cannot exceed the room capacity. 

The soft constraints for this benchmark set are: 
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• The number of times a student is expected to take exams in consecutive periods must 

be minimized otherwise a penalty is incurred.  

3.3.4. Best Performing Methods for the Yeditepe Benchmark Set 

Very few approaches have been applied to the Yeditepe benchmark set. The multi-phased 

method Muller  [92] used to win in the Second International Timetabling competition was 

successfully applied to this set and good results were obtained. This method was discussed in 

section 3.3.2.   

Muklason et al. [84] used a different approach. A survey of student preferences with respect 

to exam timetables was carried out. The study revealed that students thought of a timetable as 

being fair if it did not have any exam arrangement that favoured certain students. Fairness was 

defined as new objective and included in the problem description. To solve the new multi-

objective problem a two-phased approach was implemented. Ordering heuristics with Squeaky 

Wheel optimization [96] were employed in the first phase to construct solutions. To improve 

the solution in the second phase a hyper-heuristic was implemented to select the heuristic to 

apply to the solution next and the Great Deluge was used to handle the move acceptance part. 

The method obtained better results than the approach by Muller for seven problem instances.  

3.4. Critical Analysis 

A survey of the literature revealed that solving the Examination Timetabling Problem (ETP) is 

not a trivial task. Trajectory-based methods, population-based methods and hybrid methods 

were proposed to solve ETP with varying degrees of success. Some of the more popular 

population-based methods include Evolutionary Algorithms and Ant Systems [75] [97]. 

Trajectory-based methods like Simulated Annealing and Tabu Search also proved to be popular 

[98] [6]. One of the challenges encountered in the ETP is that timetables with different 
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structures map to the same objective value. This issue is discussed in more detail below in 

subsection 3.5.1 and a justification for a structure-based search to address this problem is 

provided. An analysis of the literature also provided insight on some of the promising directions 

taken by researchers to solve the ETP. One interesting approach is searching the partial solution 

space of timetables [3]. Subsection 3.5.2 provides information on this approach and a 

justification for this approach is also provided.  

3.4.1. Justification for using a structure-based search 

An analysis of the timetable space reveals that timetables that have different structure may have 

the same behaviour in terms of the objective value. The challenge is then to decide which of 

these timetables is suitable. A survey of the best performing approaches for the ETP shows that 

little or no consideration is given to structure by current solvers. Most of the methods have an 

objective value bias which means the search is mostly guided by the objective value. Both Tabu 

Search and Simulated Annealing only accept permitted neighbouring solutions that have a 

better objective value than that of the current solution.  Relying only on the objective value 

makes the search more prone to local optimum traps and approaches need to have mechanisms 

in place to deal with this issue. For example, some SA approaches allow for the temperature T 

to be increased in order to accept worse moves.  

Blum et al. [51] state in order to achieve good performance, the search should not be guided 

solely by the objective value. Existing approaches make use of only the objective value to 

decide where to move the search and take structure into consideration when applying operators 

to move the search. In this work a search that combines objective value with structure is 

proposed to move the search.  It is anticipated that the use of structure will reduce the objective 

value bias which may lead to an improved performance by the search. Regions of the solution 

space may be identified by considering the structure of the timetables that occupy the same 
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regions. By taking this approach it is hypothesized that although regions may exhibit the same 

behaviour in terms of the objective value, the same regions will be distinguishable in terms of 

structure. New regions would be those that are structurally different from ones previously 

considered.  

 
The SBPSS uses structure explicitly and combines it with the objective value to move the 

search. The other approaches make use of only the objective value to move the search.  Also 

the other approaches.  

3.4.2. Justification for the searching in partial solution spaces 

The success of the Developmental Approach (DA) in solving ETP highlighted how searching 

the space of partial timetables whilst incrementally building them leads to good quality 

timetables [2]. The DA is a trajectory-based method that terminates once construction of the 

timetables is completed. Each iteration consists of an exam being scheduled to the partial 

solution and thereafter a set of hill-climbers are used to improve the partial solution. This 

approach is different from other popular trajectory-based methods like Tabu Search where 

solution refinement is only performed on completed solutions [6]. A single trajectory is 

followed in the search space [75]. Burke et al. [29] state that if a completed solution is too far 

from the global optimum it may be difficult to reach the optimum especially if its 

neighbourhood is disconnected. The use of search during the construction of timetables allows 

the DA to constantly adjust the trajectory of the search in order to improve performance. Mandal 

and Kahar [89] also adopted this strategy to search the space of partial examination timetables. 

The method differed from the DA in two ways. Firstly, search was performed after a group of 

exams were scheduled whereas the DA performed search at every iteration after an exam had 
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been scheduled. Secondly, the DA employed simple hill-climbers for the local search whilst 

Mandal and Kahar [89] used a more advanced search method in the form of the Great Deluge.  

The good performance of methods that search partial solution spaces suggests that this 

strategy is promising and worth pursuing. Furthermore, the search may be performed at regular 

or variable intervals during construction. The search itself may be in the form of simple hill-

climbers or using other approaches like the Great Deluge.  

3.5. Summary 

Timetabling problems are concerned with the allocation of meetings to timeslots whilst making 

the best use of resources within a set of constraints. Examination Timetabling falls in this 

category and is the scheduling of examinations to timeslots. The problem has a set of hard and 

soft constraints. A hard constraint may be one where the capacity of a venue must not be 

exceeded. A soft constraint may be one where exams need to be evenly spread out.  In order for 

a timetable to be feasible it must meet all the hard constraints. It is not always possible for all 

the soft constraints to be met as some may be contradictory. The extent to which the soft 

constraints are satisfied represents the quality of the timetable. In this study three benchmark 

problem sets are used to provide an empirical evaluation of the proposed approach. The first is 

the Carter benchmark set which represents the uncapacitated version of the Examination 

Timetabling Problem (ETP). The capacity of examination venues are not considered for this set 

of problems. The Carter benchmark consists of thirteen problem instances taken from various 

universities and schools across Canada. The only hard constraint is that no student must be 

scheduled to write two or more exams in the same period. The soft constraint cost measures the 

spread of exams for students. The next benchmark set used is the Yeditepe Benchmark set. This 

set is of importance because it consists of real-world problems from the University of Yeditepe. 
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It has eight problem instances and represents the capacitated variant of the Examination 

Timetabling Problem. The capacity of examination venues must be not be exceeded. The soft 

constraint is that students must not be scheduled to sit for exams on consecutive periods on the 

same day. The timetables are a fixed size with each day having only three periods. The ITC2007 

benchmark set is the most constraint of the three benchmarks and resembles real-world 

problems more closely. It is made of twelve problem instances and represents the capacitated 

version of ETP. This benchmark set has hard constraints for both the venues and the timeslots. 

For example, some examinations require exclusive use of venues and some examinations need 

to be written in a particular order or at the same time. For each benchmark set the best 

performing approaches found in literature are discussed in this chapter.  

A critical analysis of the literature was also carried out in this chapter.  A case is made for 

the use of a search that combines both the objective value and structure. It was argued that 

making use of objective value alone to guide the search is not enough to improve performance. 

The use of structure with the objective value to guide the search has been proposed. One of the 

reasons is that regions that have similar objective values may have different structure. By using 

structure the search may then be able to find new regions that are structurally different.   A case 

was also made for searching partial solution spaces whilst incrementally constructing solutions. 

The Developmental Approach (DA) was cited as an example of an approach that proved good 

performance can be obtained for this problem domain. It searches the partial timetable space 

whilst constructing the timetables. In the next chapter the methodology adopted in this study is 

presented.  
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 CHAPTER 4: RESEARCH METHODOLOGY 

In this chapter the methodology adopted in this research is described. In the first section a 

summary of the popular research methodologies in the field of Computer Science is given. In 

section 4.2 reasons are given for the choice of methodology used in this work. Section 4.3 

outlines the methodology steps. Section 4.4 lists the benchmark sets that are used to test the 

proposed method. Section 4.5 provides details of the technical specifications. Section 4.6 

describes the parameter tuning process used in this study. The chapter is summarized in section 

4.7. 

4.1. Research Methodologies 

According to Bakar [99] the main objective of research is add something new to the body of 

knowledge. It was also noted that although Computer Science itself is a highly complex and 

technical field, the applicability and usability by everyone should be considered. Deyemer [100] 

argues that research in Computer Science has many branches or areas of interest. It has roots in 

both mathematics and engineering. This has resulted in some methodologies being based on 

mathematics such as axioms and proofs and, on the other hand, some methodologies being 

based on approaches in engineering.   

Ramesh et al. [101] proposes a way to characterize research in Computer Science by 

considering certain key areas such as how the research was done, the level of analysis 

undertaken in the study and so forth. The same work made use of four classifications, namely, 

mathematical studies, simulation, concept implementation and laboratory experiment. Work 

that made use of mathematical techniques was classified under mathematical studies. 

Simulation referred to work that made use of simulations as their primary methods.  Concept 

implementation referred to those studies where a prototype was developed to demonstrate a 
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proof. Lastly, laboratory experiment referred to work where a newly proposed method (system) 

was compared to existing methods (system). However, it was noted not all the classifications 

are related to research in Computer Science. Another classification was proposed by Johnson 

[102]. It consisted of four research methodologies commonly adopted by researchers in 

Computer Science, namely, proof by demonstration, the empirical method, proof using 

mathematical means and hermeneutics.  

The proof by demonstration methodology involves proposing an initial solution and then 

recording the results of the implementation. The recorded results are then used to refine the 

solution. This process is repeated until the objectives have been achieved or until no further 

refinement is possible. A drawback of this methodology is that no hypothesis is proposed prior 

to the solution being built. Another challenge is that in some cases the initial solution may fail 

completely and not yield any conclusions. The empirical method moves away from developing 

artefacts. Instead a hypothesis is formulated at the beginning of the process. The method used 

to test the hypothesis is then outlined because it is important that the test is repeatable to enable 

other researchers to assess the method. The results are recorded and used to make an informed 

decision on whether to accept or reject the initial hypothesis. This method also has some 

challenges. It is difficult to keep the control variables such as the environment and computing 

platforms the same to ensure the tests are repeatable to draw the same conclusions. To overcome 

the issue of maintaining an unbiased test, the proof by mathematical means methodology was 

proposed. Mathematical derivations are used to accept or refute any inferences at the beginning 

of the process. Hermeneutics is similar to the proof by demonstration methodology but instead 

of being objective in the testing process the system is implemented in its intended environment. 

By using subjective testing a more realistic picture of the success of the system can be realised.  
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4.2. Justification for chosen research methodology 

As stated in Chapter 1 the objective of this work is to develop a novel approach to solve the 

Examination Timetabling Problem (ETP). Furthermore, the proposed approach should perform 

well for all versions of ETP using the same parameter tuning process and values. This would 

ensure that the approach is a general one which works well for the whole problem domain.    

According to Baker [99] one of the key research activities is the choice of research 

methodology used. It is also noted that the methodology chosen must be suitable to ensure that 

the conclusions drawn are accepted.  As stated in the previous section there are four widely 

used methodologies in computer science, namely, namely, proof by demonstration, the 

empirical method, proof using mathematical means and hermeneutics. The appropriateness of 

each of these methodologies will be considered in turn in section 4.2.1 to section 4.2.4. 

4.2.1. Proof by demonstration 

The proof by demonstration method allows for an initial prototype to be developed and then 

refined many times until the objectives have been met.  In the case of ETP it may not be possible 

to develop a novel approach that works well initially especially if the problem domain has 

different versions. Also, problem instances in the same problem set may have different 

characteristics and complexities. To achieve the objectives it would be necessary to first 

develop a prototype and repeatedly test and refine the approach until a suitable level of 

performance is achieved. The proof by demonstration method is considered a suitable method 

because it allows the refinement of an initial prototype until the objectives has been met.  

4.2.2. Empirical method 

A hypothesis is formulated at the beginning of this method and then it is either accepted or 

rejected at the end. This method does not allow for use of any artefacts or prototypes. There is 
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no refinement of any initial prototype in this methodology. Therefore, it is not suitable because 

the study requires that a prototype be developed and iteratively refined. Also, no initial 

hypothesis is required in this study.  

4.2.3. Proof using mathematical means 

This method involves the use of proofs and derivations which is not appropriate for this 

research. 

4.2.4. Hermeneutics 

  Hermeneutics has its roots in social science. The system is deployed in its intended 

environment and observed. This allows for a more subjective assessment of the proposed 

system. Hermeneutics requires that humans using the system be observed which is not relevant 

for this study. 

In conclusion, it has been shown that the most suitable approach from all the methodologies 

described in section 4.1 is the proof by demonstration methodology for this study. This 

methodology allows for an initial prototype to be built and then refined many times until the 

objectives have been met. The next section provides the methodology steps to be followed in 

this research when developing the new approach to solve the ETP. 

4.3. Methodology steps 

The methodology steps in the study are as follows: 

• An initial approach will be developed based on the conclusions drawn from the 

analysis of the literature. The approach will make use of structure and objective 
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value to guide the search process. The search process will search the solution spaces 

of partial timetables.  

• The approach will be evaluated using the benchmark sets that represent the different 

versions of the ETP.  

• The approach is stochastic in nature and multiple runs will be done to assess the 

performance and test the statistical significance of the results. For each run a 

different seed will be used for the random number generator. The performance of 

the approach will be compared to other leading methods for the same benchmark 

sets. In the case where the approach has failed to find a feasible solution or produce 

good results then the reasons for failure or poor performance will be recorded. 

• The approach will be revised based on the recorded reasons for poor performance. 

• The revised approach will be re-evaluated using the same benchmark sets and any 

reasons for poor performance or failure will be recorded again. Statistical tests will 

be done to ascertain the significance of the results. This iterative refinement process 

will continue until no significant improvement in the approach can be achieved or 

until the objectives have been met.  

• In the case where the approach has failed to find suitable solutions to any problem 

instances then the reasons for the failure will be reported. Reasons for any poor 

performance will be also reported. This report may be used in future work to 

improve the performance of the approach. 

• The results obtained by the final revised approach will be used to draw conclusions 

on the performance of the approach in solving the ETP. 
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4.4.  Benchmark Sets 

This approach will be tested on three popular benchmarks used to compare and contrast 

methods. The benchmark sets are the Carter benchmark set, the ITC2007 benchmark set and 

the Yeditepe benchmark set. All these benchmark sets were described in detail in Chapter 3.  

4.5. Technical Specifications 

The approach will be developed on a computer desktop running Windows 7 professional (64-

bit Operating System). The approach will be developed using Java version 1.6 and the open 

source Eclipse IDE from IBM. The technical specifications of the desktop are Intel® Core™ 

i7-6700 CPU @ 3.40 Ghz with 7.88 GB usable RAM. The server cluster at the CHPC (Centre 

for High Performance Computing) in Cape Town, South Africa will be used to run simulations 

[103]. The wall time will be restricted to 48 Hours in keeping with CHPC policy. 

4.6. Parameter Tuning 

All metaheuristics have a set of user-defined parameters that need to be calibrated before such 

methods can be used to solve problems [74]. Eben and Smit [104] state that there are two 

distinct classes of parameters, namely, parameter control and parameter tuning. In parameter 

control the parameter values which are set at the beginning are changed based on a chosen 

control strategy as the algorithm progresses. Parameter tuning is different in that the parameter 

values are set at the beginning and remain the same until the algorithm terminates. In this study 

only parameter tuning is relevant as the parameter values set at the beginning of the proposed 

approach to solve the ETP will not be changed as the algorithm progresses.  

Parameter tuning is not a trivial process [105]. For example, parameters with numeric 

parameter values may have large parameter spaces that need to be considered to find optimal 

parameter values. As a result this exercise is also an optimisation problem. Dobslaw [106] states 
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that there is no generic approach that may be used to set optimal parameter values in 

metaheuristics for a given problem domain. It is also the case that there are no optimal parameter 

values for problem instances within the same problem domain due to the difference in features 

and the complexity between the instances. However, taking the approach to perform parameter 

tuning for every problem instance is both time consuming and computationally expensive [105]. 

The aim of this work is to find an approach that works well for both the capacitated and 

uncapacitated versions of the ETP. For this reason parameter tuning will not be done for each 

problem instance in each benchmark set representing each version of the problem. Instead, an 

initial set of parameter values will be set up front and kept the same for each problem instance. 

In this way, the aim of finding an approach that generalises well across all problem sets may be 

achieved. To find the initial parameter values, the following approach will be used;  

• First, all parameters will be set to those typically found in literature. 

• Next, trial runs will be performed to assess the impact on performance caused by 

varying the value of a single parameter whilst keeping the other parameter values the 

same. Once a suitable parameter value has been found for that parameter which 

performs satisfactorily, the other parameters will be investigated in turn.  

• In the end a suitable set of initial parameter values for the proposed approach will be 

found.  

4.7. Summary 

The proof by demonstration methodology will be used to meet the objectives of this research. 

This methodology allows for an initial approach to be iteratively refined until the objectives 

have been met or until no further improvement is possible. The output or results from each 

refinement will be used to inform the refinements made to the approach in the next testing cycle. 
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Three benchmark sets will be used for the evaluation. The chosen benchmark sets represent 

both the capacitated and uncapacitated version of the ETP. Technical specifications are given 

for the computer that will be used to build the approach and revisions. Lastly, the method used 

for parameter tuning in the proposed approach is outlined. In the next chapter, the proposed 

Structure Based Partial Solution algorithm is introduced and the approach is presented in detail.   
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 CHAPTER 5: STRUCTURE BASED PARTIAL SOLUTION SEARCH 

In this chapter the Structure Based Partial Solution Search (SBPSS) method is introduced and 

discussed in detail. Section 5.1 provides an overview of the SBPSS. Section 5.2 describes the 

SBPSS algorithm in detail. Section 5.3 outlines the SBPSS parameters values used. Section 5.4 

discusses the application details for the three benchmark sets. Section 5.5 concludes the chapter. 

5.1. Overview of the SBPSS 

In this subsection the phases of the SBPSS are discussed in section 5.1.1. This is followed by a 

description of the search process employed by the SBPSS in section 5.1.2. 

5.1.1. SBPSS Phases 

The SBPSS is made up of two phases, namely, a construction phase and a deconstruction phase 

as shown in figure 5.1. 

 

Figure 5.1 SBPSS Phases 

 

Construction Phase 

Deconstruction Phase 

Start 
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The algorithm begins with the construction phase. In this phase multiple timetables are 

constructed simultaneously by scheduling exams incrementally. A construction heuristic is used 

to determine the order in which the exams are scheduled. This phase terminates when all exams 

have been scheduled and completed timetables have been produced. The algorithm then enters 

a deconstruction phase.  In this phase randomly chosen examinations are removed from the 

completed timetables to produce partially completed timetables. The algorithm then re-enters 

the construction phase where those examinations that have been removed are rescheduled to 

produce new completed timetables. The algorithm cycles between the construction and 

deconstruction phase until the stopping condition has been met. This recycling process enables 

the search to explore more of the solution space in an attempt to find better performing regions. 

5.1.2. SBPSS Search Process 

In section 2.4.2 in chapter 2, it was stated that multi-point search methods have good 

diversification capabilities because these methods sample more of the search space at the same 

time. The SBPSS inherits this trait as it is a multi-point search method which constructs multiple 

timetables at the same time. The critical analysis in chapter 3 (section 3.4) argued that a search 

that is structure-based and one that works in the partial solution space should be considered. 

The SBPSS makes use of a structure-based search and searches partial solution spaces whilst 

constructing timetables. The behaviour of the search process in the SBPSS is determined by 

both the construction phase and deconstruction phase which is discussed in sections 5.1.2.1 and 

section 5.1.2.2 respectively. 

5.1.2.1. Search Performed in the Construction Phase 

The aim of the construction phase is to construct complete timetables. Therefore, multiple 

iterations of the search process shown in figure 5.2 take place in this phase until construction 
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of all timetables have been completed. Each step in the search process is discussed in turn 

below. 

 

Figure 5.2: Search Process in Construction Phase 

 

• Step 1 – Assign an exam 

Every iteration the process is started by assigning an exam to the partial timetable under 

construction.  A construction heuristic is employed to determine the order in which exams are 

scheduled.  

• Step 2 – Find new regions 

After the assigning of exams to the partial timetables, the search explores the partial solution 

space to find new regions. It makes use of the structure of the timetables to achieve this 

objective by delineating points in the partial solution space into regions based on structure. 

Points that are similar in structure occupy the same region in the solution space. The region is 

then defined by the common structural components among the points in that region. Similarly, 

in examination timetabling, the partial timetables which represent points in the solution space 
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are organised into regions with the ones that are similar belonging to the same region. Two or 

more timetables may be considered similar if the number of common structural components 

among them is greater than a similarity threshold value which is a parameter value for the 

algorithm.  This is computed by making use of equation 5.1 below where pi and  pj  are partial 

timetable solutions under inspection. If the computed value is above the threshold value then 

both solutions are considered to be similar. 

%<3=(&<�>	�ℎ&'�ℎ�=) = 	
∑ 	,-
@
,AB

�
∗ 100 > �<3�ℎ&'�ℎ                                                      (5.1) 

 Where:  m is the number of components in pi and  cFG =1 if  cFG is a solution component in 

both pi and pj. Example 5.1 provides an illustration of this process. Table 5.1 shows two 

timetables with five periods each and ten exams. The similarity threshold in this example is 5%. 

Table 5.1 Similarity Index Example 

 

 

    

 

The table shows that in timetable1; exam e0 is assigned to period 0 and exam e1 assigned to 

period 1 and so forth. Using equation 5.1 the value of m (number of assignments in both 

timetables) is ten because ten exams have been scheduled in both timetables. Also in seven of 

the ten assignments, the same exams have been scheduled to be taken in the same periods. 

Therefore, the number of common assignments is seven and the computed similarity index is 

70%. The two timetables are then considered to be similar in structure because their similarity 

index is above the 5% threshold. Finally, the region occupied by both timetables is defined by 

 HI HJ HK HL HM HN HO HP HQ HR 

Timetable1 0 1 1 2 0 2 4 2 3 4 

Timetable2 0 1 0 2 1 4 4 2 3 4 
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the exams that have the same scheduling. The size of the timetable does not have an impact on 

the similarity index or influence its value because it is expressed as a ratio of the number of 

common components for the timetables being compared which is m in equation 5.1 shown 

above  

The SBPSS continues in this fashion to organise all partial timetables under construction 

into regions. It may be the case that the similarity index for some timetables may not be above 

the required threshold. This may result in regions that have only one timetable. The end result 

is a set of one or more new regions where each region consists of one or more partial timetables. 

Each region may be defined by the common exam assignments among the timetables in that 

region. For example, figure 5.3 shows ten timetables represented by points in the solution space 

S. In this example three regions were found. Region1 has only one point because that timetable 

does not share any common structural components with any of the other timetables. Region2 

has five points because the similarity index for all five timetables in this region is above the 

required threshold. The same argument is made for region3 which has four points.  

 

Figure 5.3: Solution Space S delineated into three regions 
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• Step 3 – Search the new regions. 

After a set of new regions has been found the SBPSS proceeds to search within each of these 

newly found regions. The SBPSS makes use of a number of hill-climbers. The aim of these 

methods is to investigate and exploit the new regions to find better quality partial timetables. 

The SBPSS makes use of two distinct types of search methods. The first type searches the same 

partial timetable in an attempt to improve the quality. The second type exchanges information 

between partial timetables in the same region in order to improve quality of one or more 

timetables. These search methods are problem dependant and are discussed later as part of the 

implementation details in section 5.4.1.3.  

 

• Step 4 – Replace existing regions if new regions are better performing. 

After the new regions have been searched, the SBPSS evaluates them to determine if the same 

regions should be retained.  If the search was successful in improving the quality of some of 

the timetables in some of the regions then the number of common solution components among 

the timetables in those changed regions would increase. Also, these regions will be considered 

to be better performing because they have better quality timetables. If this is the case then the 

new regions replace the existing set of regions before entering a new iteration in the 

construction phase. The evaluation is done by counting the number of common exam 

assignments (structural solution components) among the partial timetables in each region 

(similarity index of the region). Thereafter, the average similarity index value for the whole set 

of regions is calculated.  If this average commonality value is greater than that of the current 

set of regions then the new set of regions replaces the current set.  This means that the new set 

of regions are better performing because there is a greater number of common exam 

assignments in each region because of the improved quality of partial timetables in them.  
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Example 5.2 provides an illustration of this process. Figure 5.4 shows the current set of 

regions and the new regions found by the search in solution space S. The current set has three 

regions with two timetables found in region1, four timetables found in region2 and so forth. 

Similarly the new set has two regions with six timetables found in region1 and four timetables 

found in region2. Table 5.2 shows the same two sets of regions. The similarity index for each 

region is given and is computed using equation 5.1. This value represents the number of 

common exam assignments among the timetables in that region as described earlier in example 

5.1 using table 5.1. The average similarity index is also given. This value is calculated by 

summing the similarity index for each region and then dividing it by the number of regions 

being counted. The results in table 5.2 show that the average similarity index for the current set 

and the new set is 7% and 5.5% respectively. Therefore, the SBPSS retains the current set of 

regions and discards the new set of regions.   

 

Figure 5.4 Solution Space S with New Regions and Old Regions 
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Table 5.2 Average Similarity Index for Regions 

Current Set New Set 

Region Similarity Index Region Similarity Index 

Region1 7% Region1 6% 

Region2 8% Region2 5% 

Region3 6%   

Average Similarity 

Index 
7% 

Average Similarity 

Index 
5.5% 

 

•  Step 5 – Exit the phase if all the exams have been allocated, otherwise continue. 

After a decision has been made on whether to keep the current set of regions or replace the 

current set of regions with the new set of regions, the SBPSS exits the construction phase if all 

the exams have been assigned and timetable construction has been completed. Otherwise, a new 

search cycle is performed in this phase.  

5.1.2.2. Search Performed in the Deconstruction Phase 

No search takes place in the deconstruction phase. However, this phase enables the search to 

be restarted at a different location in the partial solution space. By removing random 

examinations from a completed timetable, a new partial timetable is produced. In the next 

construction cycle the search uses this new partial timetable as a new starting point in the partial 

solution space. In chapter 2 it was stated that performance may be improved in two ways; 

• Allow the search to return to areas already found to be promising for further 

investigation because these areas are likely to have better solutions and  

• Allow the search to find new areas to search. 
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To ensure that the SBPSS is able to achieve both these objectives two input parameter values 

are used to determine the number of examinations to remove from the completed timetables in 

this phase. The two parameter values used are unschePsmall and unschePlarge. These 

parameter values are defined later in section 5.3 and are problem dependant. The smaller of the 

two unschePsmall allows for a smaller number of examinations to be removed. As a result, the 

search is restarted close to good solutions already found. However, it may be the case that after 

a limited number of attempts the search may not be able to find better solutions in the same 

area. In this case the search is moved to a further location by removing a larger number of 

examinations from the completed solutions using the larger unschePlarge parameter value. In 

this way, the search is more exploratory because it is able to return to good areas to find better 

solutions or move to new unvisited areas to search. 

5.2. The SBPSS algorithm 

In this section the SBPSS algorithm is presented and discussed in detail. The SBPSS algorithm 

is shown in figure 5.5. 

The parameter values required by the SBPSS algorithm shown in figure 5.5 are simThresh, 

unschePsmall and unschePlarge. These parameter values are defined in section 5.3. Section 

5.1.2.1 also explains the use of simThresh by way of an example. Section 5.1.2.2 explains the 

need for unschePsmall and unschePlarge. The SBPSS algorithm begins by initializing all the 

partial solutions (line 2). Each solution is initialized by selecting a solution component at 

random from the list of unscheduled solution components and assigning it to the empty solution. 

Thereafter, the partial solution space is delineated into an initial set of regions curRegs using 

the find_regions operator (line 3). The delineation process is discussed in detail in section 

5.1.2.1. The find_regions operator is shown in figure 5.6 and requires the set of partial solutions 

nParSolns to delineate and a similarity index threshold 	�<3�ℎ&'�ℎ to determine structural 
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similarity. The operator iterates through each partial solution and organises them into regions 

based on similarity in structure using equation 5.1 (refer to example 5.1 in section 5.1.2.1 for 

an illustration of this process). 

After the initial set of regions has been identified, the SBPSS then proceeds to construct 

nParSolns solutions by repeating the steps from line 5 to line 12 until construction is completed. 

First a solution component is added to each of the partial solutions in parSolns to produce a set 

of new partial solutions newParSolns (line 6). The set of newParSolns are then delineated into 

a set of new regions newRegs using the find_regions operator again (line 8). The SBPSS then 

uses a set of search operators (discussed in section 5.4.1.4) to search each region in turn (line 

9). 

Thereafter, the new regions newRegs are evaluated (line 10). The evaluation involves 

counting the number of common solution components among each partial solution in a region. 

Thereafter, the average for the whole set of regions is calculated.  If the average commonality 

value is greater than that of the current set of regions then the new set of regions replaces the 

current set (refer to example 5.2 in section 5.1.2.1 for an illustration of this process).  It may be 

the case that the new set of regions does not perform as well at the current set. To ensure that 

sufficient exploration of the search space takes place it is necessary for the SBPSS to make 

numerous attempts to find better performing regions (lines 7-11). The amount of exploration is 

controlled by a parameter value input to the algorithm, namely, exploitIts. This parameter is set 

up front and determines the amount of exploration that takes place. 
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  1: Procedure SBPSS (simThresh, unschePsmall, unschePlarge) 

2:   Initialize parSolns partial solution points 

3:   Delineate parSolns into regions curRegs = findRegions (simThresh; parSolns)  

4:   While maxExplorationHours  has not been reached Do 

5:     While  parSolns  partial solution points are incomplete Do 

6:    Add a new solution component to each partial solution in parSolns to produce newParSolns 

7:        For Its ← 1, exloitIts Do 

8:           Delineate newParSolns into regions newRegs = findRegions (simThresh; newParSolns)  

9:           Perform search in each region in  newRegs  

10:         Evaluate newRegs and replace curRegs	with newRegs if better 

11:       End For 

12:     End While 

13:     The current_best performing solution becomes the best_so_far solution if it is better 

14:     If the best_so_far  is unchanged after nAttempts attempts Then 

15:      remove  unschePlarge solution components in each completed candidate solution 

16:      Else 

17:     remove  unschePsmall solution components in each completed candidate solution. 

18:      End If 

19:   End While 

20: End Procedure 

Figure 5.5 Structure Based Solution Search Algorithm 
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After the construction phase has been completed the SBPSS finds the current best 

performing solution in terms of the objective value in the current cycle and replaces the best 

1: Procedure FINDREGIONS( simThresh, nParSolns)  

2:  Add the first partial solution to reg0 

3:  Add reg0 to list of regions   

4:  While nParSolns is not empty Do 

5:    Remove parSoln from nParSolns 

6:        For i ← 1, n Do 

7:           If parSoln is similar to solutions in regi Then   

8:            Add parSoln to region regi  

9:         End If 

10:      End For 

11:      If parSoln is not added to a region Then 

12:        Create a new region regj 

13:        Add parSoln to regj 

14:      End If 

15: End While  

16: End Procedure 

Figure 5.6 FindRegions Algorithm 
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performing solution found so far with it if it is better (line 13). The deconstruction phase follows 

immediately after the construction phase (lines 14-18). In this phase solution components are 

removed from each completed solution. The solution components that are removed from one 

solution differ to those of another solution due to the random nature of the process. Two 

different parameter values which are supplied upfront  as input values to the algorithm are used 

to determine the number of solution components to remove from the solutions, namely, 

ST��ℎ'U�3(== and	ST��ℎ'U=(&V'. The reasons for using these two parameter values are 

given in section 5.1.2.2. The smaller of the two ST��ℎ'U�3(== is used to determine the number 

of solution components to remove during each deconstruction cycle. However, if the best 

solution found so far remains unchanged after a number of attempts then a larger number of 

solutions components are removed using the ST��ℎ'U=(&V' value. The number of attempts is 

a parameter value to the algorithm.  

After the deconstruction stage the SBPSS re-enters the construction phase to reconstruct the 

deconstructed partial solutions (refer to section 5.1.1). The SBPSS continues in this fashion 

interchanging between the construction and deconstruction phases until the maximum run time 

allowed as determined by the maxExplorationHours parameter value has been reached. This 

terminates the algorithm. As explained in section 5.1.1 the interchanging between these two 

phases enables the search to return to areas previously found to be promising or to find new 

regions for investigation. 

5.3. SBPSS parameters 

The user defined parameters for the SBPSS are defined in table 5.2: 
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Table 5.3 SPBSS Parameters 

SBPSS parameter Description 

simThresh Integer percentage value that determines whether partial solutions are 

similar. 

unschedPsmall Small integer percentage value that determines the number of 

solution components to be removed during the deconstruction 

process. 

unschedPlarge Large integer percentage value that determines the number of 

solution components to be removed during the deconstruction 

process. 

nAttempts Integer value that specifies the number of operator iterations. 

exploretIts  Integer value that specifies the number of exploration iterations. 

maxExplorationHours Integer value that specifies the number of hours the SBPSS should 

run for before terminating. 

5.4. Applying SBPSS to the Examination Timetabling Problem 

The SBPSS is applied to the capacitated and uncapacitated versions of the ETP. However, there 

are details which are common for both versions and these are provided in section 5.4.1.  Section 

5.4.2 provides the specific application details for the capacitated version of ETP.  

Section 5.4.3 provides the specific application details for the uncapacitated version of ETP. 

5.4.1. Common application details 

The common application details consist of the parameter tuning process, solution initialization 

process, solution construction heuristic and move operators which are described in section 

5.4.1.1, section 5.4.1.2, section 5.4.1.3 and section 5.4.1.4 respectively. 



66 

5.4.1.1. Parameter tuning 

It has already been stated in section 4.6 in chapter 4 that the approach should generalise well 

across all problem instances in both versions of the ETP, namely, the capacitated and the 

uncapacitated version. Section 4.6 also outlines the process followed for parameter tuning in 

this work. Basically it involves tuning each parameter value whilst keeping the rest of the 

parameter values the same until all parameter values have been tuned. 

Table 5.4 shows the parameter values used in this study for all three benchmark sets tested, 

namely, ITC2007 benchmark set, Carter benchmark set and Yeditepe benchmark set. For the 

problem at hand 100 timetables were found to be a suitable representation of the search space. 

Using a larger number of timetables resulted in minimal improvement but increased runtimes 

considerably. This was most noticeable for the problem instances that have larger number of 

students and exams. The value for simThresh was set at 5%. Using smaller values for this 

parameter resulted in a fewer regions being found by the FindRegions operator with each region 

consisting of a larger number of timetables. For example, the set12 problem instance in the 

ITC2007 benchmark set has only 78 exams and using a simThresh of 1% resulted in 2 or less 

regions being found as the algorithm progressed. This is not ideal as more regions need to be 

found to improve the diversification capabilities of the search. Regions that are too large restrict 

the intensification capabilities of the search because more points in the region under 

investigation needs to be considered. The value for unschePsmall was set at 5%. Using a smaller 

value than this was not practical for the smaller problem instances. For example, in the case of 

the set12 problem instance, making use of a value of 1% results in no exams being removed 

from the completed timetables in the deconstruction phase. As a result, the algorithm is halted 

prematurely. Using large values resulted in large jumps being made in the solution space for 

the larger problem instances. Making large jumps on every iteration reduced the effectiveness 
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of the search. The value of unschePlarge was set at 20%. Using smaller values did not allow 

the search to effectively move beyond a local optimum for the smaller problem instances. Using 

a larger value caused the performance of the search to deteriorate in most cases as the search 

was moved away from promising regions in the search space. The values for exploitIts and 

nAttempts were both set at 50. These values were informed by the literature; in particular the 

study by Rajah and Pillay [3] which showed that satisfactory results may be obtained with these 

parameter values when the Developmental Approach was tested on the Carter benchmark set. 

Lastly, the number of runs used was thirty to allow statistical testing.  

Table 5.4 SBPSS Parameter Values 

Parameter Value 

'
�=�<�W�� 50 

ST��ℎ'U�3(== 5% 

�<3�ℎ&'�ℎ 5% 

ST��ℎ'U=(&V' 20% 

TX��'3��� 

runs 

50 

30 

5.4.1.2. Solution Initialization 

For all three benchmark sets, the solution timetables are initialized in the same way. An exam 

is randomly selected from the list of unscheduled exams.  The exam is removed from the list 

and is assigned to a feasible timeslot. A timeslot is considered feasible if it does not violate any 

hard constraints to the problem at hand. A timeslot consists of just a period for the uncapacitated 

problem set whilst for the capacitated version it consists of a period and a room. Therefore in 

the uncapacitated version only a feasible period is required. However, for the capacitated 
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version a feasible timeslot is one where a feasible period is found and that period has a feasible 

room as well.  

5.4.1.3. Solution construction heuristic 

The timetables are constructed using a construction heuristic, namely, the saturation degree, to 

determine the order in which the exams are scheduled. This heuristic works as follows; each 

unscheduled exam is assigned a saturation degree score which represents the number of feasible 

periods that it may be assigned to in the current timetable. The exam with the least saturation 

degree is then scheduled first because it is the most constrained from the other unscheduled 

exams. If there is more than one feasible period then the exam is scheduled in the period with 

the least cost. After an exam has been scheduled the saturation degrees of the remaining 

unscheduled exams are updated. It may be the case that there is more than one exam with the 

same saturation degree. In this study, the exam with the most students is used to break the tie 

and is scheduled next. If there are remaining exams to be scheduled and there are no feasible 

periods available then the exams are scheduled in periods chosen at random. 

5.4.1.4. Move operators 

 All move operators employed by the SBPSS are hill-climbers because only moves that improve 

the solution quality are accepted. The aim of the operators is to exploit the region of interest in 

order to find better quality solutions. All move operators make use of the Kempe chain heuristic 

to resolve exam conflicts and maintain feasibility [14]. The Kempe chain heuristic moves exams 

between timeslots that are in conflict.  

Figure 5.7 shows two periods. Period A has four exams, namely, e1, e2, e3 and e4. Period B has 

two exams, namely, e5 and e6. The exam conflict matrix is shown in Table 5.5.  The conflict 

matrix shows that exams e1 and e5 have common students and should not be scheduled together. 
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Also exams e2 and e5 have common students. The hard constraint for this illustration is that 

exams that share students should not be scheduled in the same period.  

 

Table 5.5 Example Conflict Matrix 

 e1 e2 e3 e4 e5 e6 

e1 0 0 0 0 1 0 

e2 0 0 0 0 1 0 

e3 0 0 0 0 0 0 

e4 0 0 0 0 0 0 

e5 1 1 0 0 0 0 

e6 0 0 0 0 0 0 
 

 Period 

A 

 Period B 

Start e1 e2 

e3 e4 

 e5 e6 

 

    

Step 1 e2 e3 

e4 

e1 e5 e6 

    

Step 2 e2 e3 

e4 

e5 

 

e1 e6 

    

Step 3 e3 e4 

e5 

e2 e1 e6 

    

End e3 e4 

e5 

 e1 e2 

e6 

 

Figure 5.7 Kempe Chain Heuristic Example 
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The aim in this example is to move e1 from period A to period B. Step 1 shows e1 being 

moved to period B. This move causes e5 to be moved out of period B to period A as shown in 

step 2 because e5 and e1 are in conflict with each other and having them both in the same period 

would violate the hard constraint. In step 3 e2 is moved out of period A to period B to maintain 

feasibility because it is in conflict with e5. After the process has stopped exams e3, e4 and e5 are 

left in period A. Exams e1, e2 and e6 are left in period B. 

The move operators are MovePeriodSame, MovePeriodRandom, SwapPeriodRandom, 

2WaySwapPeriodRandom, PeriodChange, MoveRoomSame and MoveRoomRandom. These 

operators are presented in the section 5.4.1.4.1 to section 5.4.1.4.7 respectively. 

5.4.1.4.1. MovePeriodSame 

This operator uses information from one timetable to make informed decisions on move 

operations on another timetable. In this way solutions share knowledge about the solution space. 

Figure 5.8 shows two timetables timetablei and timetablej before and after the move is 

performed.  Both timetables are randomly selected in a region. Both timetables have ten exams 

and five periods.  In timetablei   e0 is assigned to period 0, e1 is assigned to period 1 and so forth. 

Before the move e3 in timetablei   is assigned to period 2. However, the same exam is assigned 

to period 3 in timetablej. This information is used by the operator to move e3 in timetablei   to 

period 3 to match the assignment in timetablej. The move is only performed if it results in a 

reduction in the hard or soft constraint costs. 

 

Before 

 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 

timetablei 0 1 1 2 0 2 4 2 3 4 

timetablej 0 3 0 3 1 4 4 2 3 4 
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5.4.1.4.2. MovePeriodRandom 

This operator is different from the MovePeriodSame operator in that it involves only one 

timetable. The aim of this operator is to perform local search on the same timetable.  

Figure 5.9 shows two randomly selected periods in a randomly selected timetable before and 

after the move is performed.  An exam is randomly selected in period A and it is moved to 

period B. In this example, exam e1 which is assigned to period A is chosen and moved to period 

B. The move is only performed if it results in a reduction in the hard or soft constraint costs. 

 Period A  Period B 

Start e1 e2 

e3 e4 

 e5 e6 

 

    

Step 1 e2 e3 

e4 

e1 e5 e6 

    

End e2 e3 

e4 

 e1 e5 

e6 

 

Figure 5.9 MovePeriodRandom Example 

            

After timetablei 0 1 1 3 0 2 4 2 3 4 

 timetablej 0 3 0 3 1 4 4 2 3 4 

Figure 5.8 MovePeriodSame Example 
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5.4.1.4.3. SwapPeriodRandom 

This move operator is different from the MovePeriodRandom operator in that it involves two 

periods in the same timetable. The aim of this operator is to perform local search on the same 

timetable by swapping exams between periods.  

Figure 5.10 shows two randomly selected periods in a randomly selected timetable before and 

after the move is performed.  An exam is randomly selected in period A and another exam in 

randomly selected in period B. The selected exams are then swapped between the periods. In 

this example, exam e1 and exam e5 are swapped between the periods. After the move is 

completed exams e2, e3, e3 and e5 are left in period A and exams e1 and e6 are left in period B. 

The move is only performed if it results in a reduction in the hard or soft constraint costs. 

 Period A  Period B 

Start e1 e2 

e3 e4 

 e5 e6 

 

    

Step 1 e2 e3 

e4 

e1 e6 

 e5 

    

End e2 e3 

    e4  e5  

 e1  

e6 

 

Figure 5.10 SwapPeriodRandom Example 

5.4.1.4.4. 2WaySwapPeriodRandom 

This move operator is similar to the previous operator but instead of two periods being 

compared there are three periods in the comparison.  The aim of this operator is then to search 

a wider area in the same timetable. The cost of swapping an exam between period 1 and period 

2 is compared with swapping the exam with period 3. The swap that has the most savings in 
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terms of the soft constraint cost and the hard constraint costs is then performed. The Kempe 

chain heuristic is used to resolve any potential exams conflicts that may arise as a result of the 

move. The move is only performed if it results in a reduction in the hard or soft constraint costs. 

5.4.1.4.5. PeriodChange 

Rather than swapping just a pair of exams between periods, this operator swaps all the exams 

between periods. In this way it is more exploratory then the other two swap operators, namely, 

SwapPeriodRandom and 2WaySwapPeriodRandom. A timetable is randomly selected in a 

region and then two periods are randomly chosen in the same timetable. All the exams in one 

period are swapped with those in the other period. The move is only carried out if there is a 

decrease in the soft constraint cost of the timetable and the move does not violate any hard 

constraints. In this example, in figure 5.11 period A starts off with exams e1, e2, e3 and e4. Period 

B has exams e5 and e6. After the move is completed exams e5 and e6 are left in period A.  Exams 

e1, e2, e3 and e4 are left in Period B.  

 Period A  Period B 

Start e1 e2 

e3 e4 

 e5 e6 

 

    

Step 1  e1 e2 e3 e4  

 e5 e6 

    

End e5 e6 

 

 e1 e2 

e3 e4 

 

Figure 5.11 PeriodChange Example 
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5.4.1.4.6. MoveRoomSame  

The previous move operators involved period assignments whereas this operator and the next 

involve room assignments. The aim of this operator is to search the room spaces in periods. 

Similar to the MovePeriodSame operator, this operator uses the information from one timetable 

to make an informed move in another timetable to further exploit the search space. An exam 

from timetablei is randomly selected and is moved to a new room. The destination room is the 

same one that the same exam is assigned to in timetablej.  Figure 5.12 shows timetables 

timetablei and timetablej that have been randomly selected in a region. Exam e0 is assigned to 

period 0 and room 0 in timetablei. It is assigned to period 1 and room 3 in timetablej.  Exam e0 

is then moved to room 3 in period 0 in timetablei to match the room it is assigned to in timetablej. 

The move is only performed if there is a reduction in hard and soft constraint costs.    

 

 

 

5.4.1.4.7. MoveRoomRandom 

This operator searches the room spaces in the same period in the same timetable and is different 

from the MoveRoomSame operator in that it involves only one timetable.  

Before 

 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 

timetablei [0,0] [0,1] [0,1] [0,2] [0,0] [0,2] [0,2] [0,2] [0,3] [0,0] 

timetablej [1,3] [1,0] [1,0] [1,3] [1,1] [1,2] [1,1] [1,2] [1,3] [1,3] 

            

After timetablei [0,3] [0,1] [0,1] [0,2] [0,0] [0,2] [0,2] [0,2] [0,3] [0,0] 

 timetablej [1,3] [1,0] [1,0] [1,3] [1,1] [1,2] [1,1] [1,2] [1,3] [1,3] 

Figure 5.12 MoveRoomSame Example 
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Figure 5.13 shows two randomly selected rooms in a randomly selected timetable before and 

after the move is performed.  Next an exam is randomly selected in room A and it is moved to 

room B. In this example exam e1 which is assigned to room A is chosen and moved to room B. 

The move is only performed if it results in a reduction in the hard or soft constraint costs. After 

the move is completed exams e2, e3 and e4 are left in room A. Exams e1, e5 and e6 are left in 

room B. 

 Room A  Room B 

Start e1 e2 

e3 e4 

 e5 e6 

 

    

Step 1 e2 e3 

e4 

e1 e5 e6 

    

End e2 e3 

e4 

 e1 e5 

e6 

 

Figure 5.13 MoveRoomRandom Example 

5.4.2. Applying the SBPSS to the Capacitated Version of the ETP 

The SBPSS was applied to both the ITC2007 benchmark set and Yeditepe benchmark set which 

represent this version of the ETP. The hard and soft constraints for both these benchmark sets 

are provided in Chapter3. As stated in section 3.3, in this version of the ETP the capacity of the 

rooms must be considered. Exams can only be written in rooms where the capacity of the room 

equals or exceeds the total number students for those exams. Some exams require exclusive use 

of a room as a hard constraint. At the start of the algorithm the timetables are initialized as 

described in section 5.4.1.2 using the parameter values listed in section 5.4.1.1. The saturation 
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degree is used to construct the solutions as described in section 5.4.1.3.  All move operators 

listed in section 5.4.1.4 were implemented for both these benchmark sets. 

5.4.3. Applying the SBPSS to the Uncapacitated Version of the ETP 

The SBPSS was applied to the Carter benchmark set which represents the uncapacitated version 

of the ETP. The problem constraints are given in section 3.2.1 in chapter 3.  Timetables were 

initialized as describe in section 5.4.1.2 and constructed as described in section 5.4.1.3 using 

the parameter values listed in section 5.4.1.1. The move operators involving rooms were not 

implemented because there are no room constraints for this version. Therefore, only the move 

operators dealing with periods, namely, MovePeriodSame, MovePeriodRandom, 

PeriodChange, SwapPeriodRandom and 2WaySwapPeriodRandom were implemented.  

5.5. Summary 

This chapter first provided an overview of the SBPSS by introducing the construction and 

deconstruction phases. The search process for each of the phases was given in detail. Search 

takes place during construction using a search that combines structure with the objective value. 

Search is done on every iteration. The SBPSS algorithm was presented and discussed in detail. 

The saturation degree was used as the solution construction heuristic. The parameter tuning 

process and parameter values used in this study is also given. The SBPSS is applied to both the 

capacitated and uncapacitated versions of the ETP. Hill-climbers are applied for each version 

to improve the quality of the timetables under construction. The room operators were not 

required for the uncapacitated version of the ETP. The results of the implementation are given 

in the next chapter. 
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 CHAPTER 6: RESULTS AND DISCUSSION 

In this chapter the results of the SBPSS is presented and discussed. The key design properties 

are assessed and the results are presented in section 6.1. The results obtained by the SBPSS 

when applied to the capacitated version of the Examination Timetabling Problem (ETP) are 

given in section 6.2. This is followed by the results for the uncapacitated version in section 6.3. 

Section 6.4 concludes the chapter. 

6.1. Assessment of SBPSS Design Properties 

The SBPSS has two key design features, namely, it searches the space of partial timetables and 

has a search that is guided by structure. Section 6.1.1 assesses the effectiveness of working in 

the partial solution space. Section 6.1.2 assesses the effectiveness of employing a search that is 

guided by structure.  

6.1.1. Effectiveness of search in partial solution space 

An investigation was undertaken to test the impact on performance when working in the partial 

solution space for the ETP. The investigation involved comparing the difference in performance 

between performing search or no search during construction. Four problem instances from the 

Carter benchmark set, namely, hec-s-92, ute-s-92, yor-f-83 and tre-s-92 were used for this 

investigation. Thirty runs were done to allow for statistically testing. Each run used a different 

seed for the random number generator. A hundred timetables were constructed in each run as 

this was considered to suitably represent the solution space (refer to section 5.4.1.1).  All runs 

produced feasible timetables and the results of soft constraint costs are given in Table 6.1. The 

best, average and variance of the soft constraint cost from all runs performed is shown. The 

results show clearly that improved results are produced for all problem instances when search 

is performed during solution construction as opposed to no search during construction. 
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Table 6.1 Results of No Search and Search during Construction 

 

 

 

 

 

 

 

Statistical tests were done to ascertain the significance of the result that using search during 

construction improves performance. The null hypothesis (H0) is that search makes no difference 

to performance during construction. The alternate hypothesis is that search improves 

performance. Table 6.2 shows the critical values for each level of significance and the decision 

rule on whether to accept or reject the null hypothesis.  Table 6.3 shows the Z-values for each 

of the problem instances. 

Table 6.2 Levels of Significance and Decision Rules 

Levels of significance Accept/Reject Rules 

0.01 Reject H0 if Z >2.33 

0.05 Reject H0 if Z >1.64 

0.10 Reject H0 if Z >1.28 

  

Instance 

No Search Search during Construction 

Best Average Variance Best Average Variance 

hec-s-92 13.027 13.734 0.115 10.601 10.756 0.007 

yor-f-83 42.260 44.515 0.376 36.227 37.053 0.143 

ute-s-92 30.012 30.900 0.232 25.024 25.189 0.007 

tre-s-92 9.761 10.230 0.029 8.036 8.156 0.004 
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Table 6.3 Z-Values for each Problem Instance 

Instance Z value 

hec-s-92 46.82 

yor-f-83 56.74 

tre-s-92 62.44 

ute-s-92 63.70 

The result that using search during solution construction is better than no search is significant 

at all levels of significance for the four problem instances tested. Therefore, the use of search 

construction is justified.  

The next investigation assessed the impact on performance when search is performed at 

different intervals during solution construction. The same problem instances from the previous 

investigation were used. The same number of runs and timetables in each run as in the previous 

investigation was used. Four scenarios were considered in the investigation: 

• Search is performed on every iteration of algorithm. 

• Search is performed on every 5th iteration of the algorithm. 

• Search is performed on every 10th iteration of the algorithm. 

• Search is performed on every 20th iteration of the algorithm. 

All the runs for all the problem instances produced feasible timetables. Therefore, only the 

soft constraint cost was used to compare the results of each scenario. Table 6.4 shows the 

iteration search results from the study. For each of the scenarios, the best, average and variance 

of the soft constraint cost from all runs performed is shown. However, using the best produced 

result to determine the interval at which search should be performed does not allow for 
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conclusive findings. For example, in the case of tres-s-92, in the same table, a better result is 

obtained when search is performed at every 10th iteration compared to every 5th iteration. This 

inconsistency may be due to the stochastic nature of the method. Therefore, it is more useful to 

make use the average results across all runs in order to draw meaningful conclusions. The best 

average values are in bold. By considering the average results it is clear that the best results are 

obtained when search is performed on every iteration in the algorithm. 

Table 6.4 Iteration Search Results 

Figure 6.1 shown below provides a graphical comparison for each of the tested scenarios. 

The scenario where search is used at every iteration is used as the baseline to compare the 

average soft constraint cost of each scenario to complete the assessment. This approach allows 

for a pairwise comparison between competing scenarios. Figure 6.1 illustrates that the 

frequency at which search is performed affects performance. At the 5th, 10th and 20th iteration 

there is a positive increase in all the soft constraint costs indicating that the best performance is 

achieved when search is done at every iteration. Furthermore, in general performance decreases 

as the interval at which search is performed is decreased for all problem instances. 

  

Instance Every Iteration Every 5th Iteration Every 10th iteration Every 20th iteration 

 Best Avg Var Best Avg Var Best Avg Var Best Avg Var 

hec-s-92 10.601 10.756 0.007 10.734 10.942 0.015 10.819 11.063 0.014 10.951 11.394 0.092 

yor-f-83 36.227 37.053 0.143 36.998 37.453 0.081 36.745 37.514 0.121 36.863 38.108 0.325 

ute-s-92 25.024 25.189 0.007 25.009 25.214 0.009 25.003 25.217 0.015 25.081 25.282 0.008 

tre-s-92 8.036 8.156 0.004 8.112 8.196 0.002 8.085 8.210 0.003 8.119 8.254 0.003 
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Figure 6.1 Soft Constraint Cost at Different Iterations 

6.1.2. Effectiveness of a structure-based search  

A separate study was undertaken to assess the effectiveness of using a search combined with 

structure and objective value instead of a search solely guided by the objective value. The same 

problem instances and number of runs from the previous study were used. All runs for all the 

problem instances tested produced feasible timetable solutions. Therefore, only the soft 

constraint cost was used to compare both approaches to search. The results are shown in Table 

6.5. For each case, the best soft constraint cost obtained is shown in the table. This is followed 

by the average and variance soft constraint costs from all runs. The best results are in bold. The 

results in the table suggest that using a search combined with structure leads to superior 

performance. The average scores obtained for all problem instances are better for the combined 

search. Also, the lower variance scores by the combined search indicate that this approach 

performs consistently better across all runs. 
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Table 6.5 Objective Value Based Search versus Combined Search 

Instance Objective Value-Based Search Combined Search 

 Best Average Variance Best Average Variance 

hec-s-92 10.7326 10.9952 0.0188 10.6008 10.7561 0.0068 

yor-f-83 36.6142 38.1949 0.2824 36.2274 37.0528 0.1427 

tre-s-92 8.1374 8.2326 0.0024 8.0365 8.1561 0.0038 

ute-s-92 25.0447 25.2609 0.0135 25.0236 25.2138 0.0075 

Statistical tests were done to ascertain the significance of the result that using a combined 

search is better than using a search guided solely by the objective value. The null hypothesis 

(H0) is that both approaches have the same performance. The alternate hypothesis is that a 

combined search has a better performance. Table 6.2 shows the critical values for each level of 

significance and the decision rule on whether to accept or reject the null hypothesis.  Table 6.6 

shows the Z-values for each of the problem instances. 

Table 6.6 Z-Values for each Problem Instance 

Instance Z value 

hec-s-92 8.19 

yor-f-83 9.59 

tre-s-92 5.33 

ute-s-92 1.78 

The result that using search combined with structure is better than a search guided by the 

objective value alone is significant at all levels of significance for the four problem instances 

tested. Therefore, the use of search that is combined with structure is justified. 
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6.2. Results for the Capacacitated Version of the ETP 

In this section the results for the benchmark sets representing the capacitated version of the ETP 

are presented and discussed. Section 6.2.1 presents results for the ITC2007 benchmark set and 

Section 6.2.2 presents results for the Yeditepe benchmark set.  

6.2.1. The ITC2007 Benchmark Set Results 

Table 6.7 summarizes the results for the ITC2007 benchmark set using the parameter values 

stated in chapter 5. The table shows the best soft constraint cost obtained, followed by the 

average soft constraint cost and the variance for all the runs.  

Table 6.7 SBPSS Results for ITC2007 Benchmark Set 

Instance Best Average Variance Average Runtime (seconds) 

1 3925 4208.80 19501.06 43200 

2 376 478.43 2115.56 43200 

3 8245 8924.40 133525.77 43200 

4 12493 13050.67 100582.92 43200 

5 2659 2761.80 2908.51 86400 

6 25205 25903.50 115897.91 43200 

7 3901 4429.23 91177.70 86400 

8 6756 8146.10 556412.16 86400 

9 910 1008.83 3568.01 43200 

10 12939 13091.43 5136.19 86400 

11 24809 25684.50 292857.84 86400 

12 5095 5192.83 2248.14 43200 
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The runtimes were varied for each problem instance based on the instance size as determined 

by the number of exams and students for that instance. Each of the runs for each of the problem 

instances produced feasible timetables. Table 6.8 compares the results of SBPSS to the current 

state of the art methods found in the literature that have achieved the best performance.  The 

best results are in bold. These methods were discussed in section 3.3.2 in chapter 3.  

Table 6.8 Comparison of SBPSS to State of the Art for the ITC2007 Benchmark Set 

Instance SBPSS Muller[92] Gogos et 

al.[107]  

Bykov and 

Petrovic[94] 

Leite et 

al.[14] 

Leite et 

al.[87] 

Set1 3925 4370 4128 3647 5050 6207 

Set2 376 400 380 385 395 535 

Set3 8245 10049 7769 7487 9574 13022 

Set4 12493 18141 13103 11779 12299 14302 

Set5 2659 2988 2513 2447 3115 3829 

Set6 25205 26585 25330 25210 25750 26710 

Set7 3901 4213 3537 3563 4308 5508 

Set8 6756 7742 7087 6614 7506 8716 

set9 910 1030 913 924 977 1030 

set10 12939 16682 13053 12931 13449 13894 

set11 24809 34129 24369 23784 30112 39783 

set12 5095 5535 5095 5097 5148 5142 

All the other approaches in the comparison used to improve initial completed solutions. The 

SBPSS is the only method in this comparison that works in the partial solution space.  All of 

the other methods use a search that is guided solely by the objective function. The SBPSS is 
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different in that it uses a search that combines structure as well. The SBPSS is able to produce 

the best results for four problem instances, namely, set2, set6, set9 and set12. For the rest of the 

instances, it produces results comparable to the other leading methods. It performs well for the 

larger problem instances like set2 and set3 with 870 and 934 exams respectively.  

6.2.2. The Yeditepe Benchmark Set Results 

Table 6.9 summarizes the results obtained when the SBPSS was applied to the Yeditepe 

benchmark set. All the runs produced feasible timetables resulting in zero hard constraint costs. 

The table shows the best soft constraint cost obtained, followed by the average soft constraint 

cost and the variance from the all the runs. The last column shows the average runtime in 

seconds. 

Table 6.9 SBPSS Results for the Yeditepe Benchmark Set 

Instance Best Average Variance Average Runtime (seconds) 

20011 47 49.8 1.2 21600 

20012 102 108.68 14.14 21600 

20013 29 29 0 3600 

20021 47 55.16 15.01 21600 

20022 129 151.04 146.52 21600 

20023 56 56 0 3600 

20031 99 129.76 147.94 21600 

20032 359 385.28 162.92 21600 

The SBPSS has the same performance for all runs for instances 20013 and 20023 as indicated 

by the zero variance. It may be the case that these instances cannot be improved upon or the 
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SBPSS is less effective in solving them. Table 6.10 compares the results of SBPSS to the current 

state of the art methods found in the literature that have achieved the best performance for this 

benchmark set. The best results are in bold. These methods were discussed in section 3.3.4 in 

chapter 3. The SBPSS improves on the best results for all problem instances in this benchmark 

set. There are not many methods in the literature to compare the results with.  

Table 6.10 Comparison of SBPSS to State of the Art for the Yeditepe Benchmark Set 

Instance SBPSS Muller[92] Muklason et al.[84] 

20011 47 62 56 

20012 105 125 122 

20013 29 29 29 

20021 55 70 76 

20022 129 170 162 

20023 56 70 56 

20031 169 223 143 

20032 377 440 434 

The results show that the SBPSS outperforms both best methods it is compared to. All three 

approaches perform the same for the instance 20013. SBPSS is the only method in the 

comparison that searches partial solution spaces and makes use of a search that combines 

structure with the objective value. 

6.3. Results for the Uncapacacitated Version of the ETP 

In this section the results for the benchmark set representing the uncapacitated version of the 

ETP are presented and discussed. Section 6.3.1 presents results for the Carter benchmark set.  
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6.3.1. The Carter Benchmark Set Results 

 
Table 6.11 summarizes the results obtained when the SBPSS was applied to the Carter 

benchmark set. The table shows the best soft constraint cost obtained, followed by the average 

soft constraint cost and the variance from the all the runs. The last column gives the runtime in 

seconds. All the runs produced feasible timetables. 

Table 6.11 SBPSS Results for the Carter Benchmark Set 

Instance Best Average Variance Average Runtime (seconds) 

hec-s-92 10.032 10.165 0.0048 86400 

car-s-91 4.390 4.632 0.0177 172800 

car-f-92 3.701 3.880 0.0116 172800 

ute-s-92 24.759 24.871 0.0041 86400 

tre-s-92 7.619 7.891 0.0125 86400 

lse-f-91 9.804 9.993 0.0079 86400 

kfu-s-93 12.810 13.003 0.0087 172800 

yor-f-83 34.413 35.240 0.0958 86400 

uta-s-92 3.035 3.182 0.0061 172800 

ear-f-83 32.588 33.120 0.0584 86400 

sta-f-83 157.032 157.048 0.0001 86400 

rye-s-93 7.849 8.079 0.0081 172800 

Table 6.12 compares the results of SBPSS to the current state of the art methods found in 

the literature that have achieved the best performance for this benchmark set. The best results 

are in bold. These methods are discussed in section 3.2.2 in chapter 3. The SBPSS has results 
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comparable to the other leading methods. The SBPSS obtains the best result for two problem 

instances, namely, tre-s-92 and yor-f-83.  

Table 6.12 Comparison of SBPSS to State of the Art for the Carter Benchmark Set 

Instance SBPSS 

Caramia 

et al.[90] 

Burke et 

al.[29] 

Burke and 

Bykov[85] 

Mandal and 

Kahar[89] 

Leite et 

al.[87] 

Bellio et 

al.[88] 

car-s-91 4.39 6.6 4.6 4.32 4.58 4.31 4.25 

car-f-92 3.70 6.0 3.9 3.67 3.82 3.68 3.66 

ear-f-83 32.59 29.3 32.8 32.62 33.23 32.48 32.42 

hec-s-92 10.03 9.2 10.0 10.03 10.32 10.03 10.03 

kfu-s-93 12.81 13.8 13.0 12.80 13.34 12.81 12.80 

lse-f-91 9.80 9.6 10.0 9.78 10.24 9.78 9.77 

rye-s-93 7.85 6.8 - 7.91 9.79 7.89 7.9 

sta-f-83 157.03 158.2 156.9 157.03 157.12 157.03 157.03 

tre-s-92 7.62 9.4 7.9 7.64 7.84 7.66 7.68 

uta-s-92 3.03 3.5 3.2 2.98 3.13 3.01 2.97 

ute-s-92 24.76 24.4 24.8 24.78 25.28 24.80 24.79 

yor-f-83 34.41 36.2 34.9 34.71 35.46 34.45 34.48 

The method put forward by Mandal and Kahar [89] is similar to the SBPSS in that it also 

employs search during construction. It makes use of the Great Deluge to improve the quality of 

the partial timetables. The SBPSS makes use of simple hill-climbers to improve solution 

quality. Despite using the Great Deluge which is more advanced than local search it is unable 

to outperform the SBPSS. This seems to indicate that using a structure-based search is effective 

in moving the search to better performing areas. Leite et al. [87] used the Threshold algorithm 
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with a memetic algorithm. The Threshold algorithm only accepts moves that are lower than a 

threshold. The SBPSS makes use of greedy hill-climbers because it only accepts moves that 

improve the current solution. Although both methods are different in this respect they are 

similar in performance especially for the problem instances with high conflict densities like 

hec-s-92 and ute-s-92.  

6.4. Summary 

This chapter presented the results of two separate investigations on the design properties of the 

SBPSS. In the first investigation the impact of using search during solution construction was 

studied. It was found that performance was improved when search was performed in the partial 

solution space during solution construction. Furthermore, it was also shown that performing 

search on every iteration in the algorithm after assigning a new exam maximized performance. 

The next investigation studied the impact on performance when the search was combined with 

structure. The results from the investigation showed that using a search that combined structure 

with the objective value improved performance. Statistical tests were done to ascertain the 

significance of the results. The results were found to be significant for all levels of significance.  

The rest of the chapter presented the results when the SBPSS was used to solve the problems 

from the benchmark sets representing both the capacitated and uncapacitated versions of the 

ETP. The SBPSS was able to solve all problem instances for both the ITC2007 benchmark set 

and the Yeditepe benchmark set. For the ITC2007 benchmark set it obtained the best result for 

four of the problem instances. For the Yeditepe benchmark set it obtained the best result for all 

problem instances. The SBPSS also performed well for the Carter benchmark set which 

represented the capacitated version of the ETP. It found the best result for three of the problem 

instances. For the other problem instances the SBPSS obtained results comparable to the state 
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of the art methods for all benchmark sets. The SBPSS is different from all the other leading 

methods in that it is the only approach to combine structure with the objective value to guide 

the search in the solution space.  
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 CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

7.1. Introduction 

In this chapter the conclusion to the work presented in this thesis is drawn. The aim and 

objectives of this study were provided in detail in chapter 1. Chapter 2 provided background 

information on various metaheuristics that have proven popular over the years. Chapter 3 

focussed on the Examination Timetabling Problem (ETP) and presented some of the best 

performing approaches for this problem domain. Chapter 4 outlined the proof by demonstration 

methodology adopted in this study. Chapter 5 introduced the SBPSS as the proposed method to 

solve the ETP. Chapter 6 presented the results obtained when the SBPSS was evaluated using 

the problems from the different benchmark sets. 

In section 7.2, the objectives outlined in chapter 1 are revisited. For each stated objective a 

case is made on how the proposed approach has met that objective. Section 7.3 outlines the 

contributions to new knowledge by this work. Section 7.4 draws conclusions on the success of 

this study in meeting the aim and the defined objectives at the beginning in chapter 1. Lastly in 

section 7.5 the future work for this thesis is presented. 

7.2. Revisiting objectives 

This subsection focuses on how the objectives for this work have been met. The objectives have 

been outlined in section 1.3 in the chapter 1. These objectives are relisted here for discussion 

purposes. A write-up is also provided on how each objective has been met. 



92 

• Objective 1: To demonstrate that the use of structure combined with behaviour 

in terms of the objective value to guide the search is a worthwhile and 

promising approach to solving the ETP. 

The literature survey revealed that behaviour in terms of the objective value was a popular 

approach used to guide the search in the solution space. The problem with this approach is that 

regions that are similar in behaviour may have different structure. Using behaviour alone may 

cause the search to pursue poor performing regions resulting in the opportunity to find better 

solutions being lost. The SBPSS is able to overcome this problem because it makes use of a 

search that combines structure with behaviour in terms of the objective value to find new 

regions in the search space. Each timetable represents a point in the search space and timetables 

that are similar in structure occupy the same region of the search space. The search finds new 

regions by delineating the timetables into regions using structure. This is achieved by organising 

timetables that are similar in structure into regions. The search then investigates each of the 

new found regions to find better quality timetables.  

 

A separate study was undertaken to assess the effectiveness of using a search combined with 

structure and objective value instead of a search solely guided by the objective value. Four 

problem instances from the Carter benchmark set, namely, hec-s-92, ute-s-92, yor-f-83 and tre-

s-92 were used for this investigation. It was thought that these problem instances provided a 

fair representation of the benchmark. Hec-s-92 has the highest conflict density whilst ute-s-92 

has the least number of periods. Yor-f-83 and tre-s-92 are medium sized instances in terms of 

the number of examinations.  All runs for all the problem instances tested produced feasible 

timetable solutions. Therefore, only the soft constraint cost was used to compare both 

approaches to search. The results are shown in Table 6.5. The results in the table indicate that 

using a search combined with structure leads to superior performance. The average scores 
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obtained for all problem instances were better for the combined search. Also, the lower variance 

scores by the combined search indicate that this approach performs consistently better across 

all runs. The result was found to be statistically significant at all levels of significance. 

• Objective 2: To demonstrate that searching partial solution spaces whilst 

constructing solutions leads to good quality solutions to the ETP. 

An investigation of the effectiveness of searching the partial solution space whilst 

constructing timetables was undertaken (Refer to section 6.1.1).  Four problem instances from 

the Carter benchmark set, namely, hec-s-92, ute-s-92, yor-f-83 and tre-s-92 were used for this 

investigation. A baseline was established by performing runs for all four instances without the 

use of search during construction. Thereafter, search during construction was introduced and 

the same number of runs were performed. All runs produced feasible timetables and the results 

of soft constraint costs are given in Table 6.1. The results clearly showed that improved results 

were produced for all problem instances when search was performed during solution 

construction as opposed to no search during construction. The results obtained were  statistically 

significant at all levels of significance.   

The interval at which search should be performed during construction was also investigated 

(refer to section 6.1.1). Four different scenarios were compared. First search was performed on 

every iteration during construction. In the second scenario search was performed on every 5th 

iteration. In the third scenario search was performed on every 10th iteration. In the last scenario 

search was performed on every 20th iteration.  The results showed that searching on every 

iteration was overall the best approach. The results obtained were statistically significant at all 

levels of significance.   
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The SBPSS follows this strategy; it searches the partial timetable space during construction 

and has two phases, namely, a construction and a deconstruction phase. In the construction 

phase complete timetables are constructed incrementally by assigning exams to partial 

timetables. Search is performed on every iteration after a new exam has been scheduled. 

Problem dependant search operators are called on each iteration. In the deconstruction phase, 

new partial timetables are produced by removing random exams from completed timetables. 

The SBPSS then reconstructs new timetables by rescheduling the exams that have been 

previously removed in the new partial timetables. No search takes place in the deconstruction 

phase. However, this phase enables the search to be restarted at a different location in the partial 

solution space. By removing random examinations from a completed timetable, a new partial 

timetable is produced. In the next construction cycle the search uses this new partial timetable 

as a new starting point in the partial solution space.  

• Objective 3: To combine structure-based search together with partial solution 

space in a structure-based partial solution space to solve the ETP. 

The proposed approach was evaluated using both the capacitated and uncapacitated version of 

the ETP. The Carter benchmark set which represented the uncapacitated version of the ETP. 

The ITC2007 benchmark set and the Yeditepe benchmark set represented the capacitated 

version of the problem. SBPSS successfully solved the problems set for both of the versions. 

The SBPSS found the best result for two of the problem instances in the Carter benchmark set. 

It found the best result for four of the problem instances from the ITC2007 benchmark set and 

found the best results for all of the problem instances for the Yeditepe benchmark set. Overall 

the performance of the SBPSS was satisfactory and its results compared well with the state of 

the art for all benchmark sets. 
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7.3. Contributions to new knowledge 

The research conducted presents a novel approach to solving the ETP. It incorporates a multi-

point search approach with a structure-based search that operates in the solution spaces of 

partial timetables. The approach performs well for both the capacitated and uncapacitated 

version of the ETP. 

7.4. Conclusion 

The research conducted has met all the objectives that were set out at the beginning in Chapter 

1. The use of a structured-based search combined with behaviour in terms of the objective value 

does improve performance. The searching of solution spaces of partial timetables leads to good 

quality timetables. The proposed approach is able to successfully solve all the problem instances 

in all benchmark sets that represent both the capacitated and uncapacitated version of the ETP. 

It found the best results for two of the problem instances in the Carter benchmark set. It found 

the best result for four of the instances in the ITC2007 benchmark set and the best result for all 

the instances in the Yeditepe benchmark set. Finally, it compares favourably to other state of 

the art methods for all benchmark sets. 

 

7.5. Future Work 

 
The SBPSS has been shown to work well for the ETP. However, some observations have been 

made with regards to performance as follows: 

• All work done in this study made use of manual parameter tuning. Joshi and Basal 

[108] state that the choice of parameter values impacts the performance of an 

approach and finding the good parameter values is a difficult task. Huang et al. [109] 
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note that manual parameter tuning is time-consuming and often biased. Also, one 

set of parameter values may work well for a problem instance but less effective for 

another problem instance. This is often referred to as the no free-lunch theorem on 

optimisation [110]. One solution is to make use of automatic parameter tuning 

approaches.  One approach is use a set of training data to find suitable parameter 

values to apply to the problem at hand. Bellio et al. [88] used to this approach to 

find good results for ETP. Another approach is the F-Race method [111] where 

competing candidate set of parameter values are compared to each other using 

statistical testing and the poor performing candidate set of parameter values are 

discarded until a single set of values is found that performs well. In future work it 

may be useful to consider an automatic parameter tuning approach as a way to to 

realise an improvement in performance.  

• One of the observations made was that due to the stochastic nature of the SBPSS 

infeasible initial timetables would sometimes be constructed. In some cases the 

removal of exams from feasible timetables during the deconstruction phase would 

cause infeasible timetables to be reconstructed in the construction phase. This is not 

ideal because the existence of infeasible points and regions in the solution space 

causes the SBPSS to waste valuable resources working in these poor regions. Future 

work may investigate ways of overcoming this challenge. One solution would be to 

add a repair mechanism in the construction process to enable the SBPSS to produce 

only feasible solutions. As a result, the effectiveness of the search may be improved 

because the search will only take place in feasible regions. 

• Another observation made was that as the algorithm progressed structural diversity 

among the timetables was decreased because the timetables become more similar in 

structure. This results in a loss of information for the search process thereby 
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reducing its effectiveness. The SBPSS has no mechanism in place to measure 

structural diversity in the regions. As a result, resources are wasted by the search 

spending too much time in regions which have points that are very similar. Future 

studies may consider ways to overcome this issue. One way would be to use 

Euclidean distance to measure diversity of points in a region. In this way the search 

can concentrate on regions that are more diverse.  

In an order to improve the generality of the approach, the SBPSS may be applied to other 

problems. Two directions may be pursued here; 

• The SBPSS was only applied to the ETP. This problem falls in the broader category 

of timetabling problems. Other variations such as the School Timetabling Problem 

exist. Future studies may consider applying the SBPSS to other timetabling problems 

to develop the SBPSS as a method that works well for all timetabling problems. 

• Another direction would be to consider using SBPSS to solve problems in other 

domains. For example, the Traveling Salesman Problem is described as the problem 

of finding the shortest route to take when visiting a set of towns. It is also an 

optimisation problem and using a structure-based search will be a novel approach to 

solve this problem. This would develop the SBPSS as a method that also works well 

across multiple problem domains.  
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