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Abstract

In this thesis, we study multivalued monotone operators in Hadamard spaces and intro-
duce a new mapping given by a finite family of these operators. We propose a modified
Halpern-type algorithm for this mapping and prove that the algorithm converges strongly
to a common solution of a finite family of monotone inclusion problems and fixed point
problem for a nonexpansive mapping in Hadamard spaces. Furthermore, we study some
viscosity approximation techniques for approximating a common solution of a finite family
of monotone inclusion problems and fixed point problem for nonexpansive mapping, which
is also a unique solution of some variational inequality problems in Hadamard spaces. More
s0, we propose and study some viscosity-type proximal point algorithms for approximating
a common solution of minimization problem and fixed point problem for nonexpansive mul-
tivalued mappings, which is also a unique solution of some variational inequality problems
in Hadamard spaces. We then progress to propose some iterative algorithms for approxi-
mating a common solution of a finite family of minimization, monotone inclusion and fixed
point problems for demicontractive-type mappings in Hadamard spaces. In addition, we
study equilibrium problems in Hadamard spaces and propose some viscosity-type proxi-
mal point algorithms, comprising of a nonexpansive mapping and resolvents of monotone
bifunctions. We then prove that the proposed algorithms converge strongly to a common
solution of a finite family of equilibrium problems in Hadamard spaces. To generalize
the study of equilibrium problems in Hadamard spaces, we introduce a new optimization
problem in Hadamard spaces, called the mixed equilibrium problem, and establish the
existence of solutions for this problem in Hadamard spaces. We then analyze the asymp-
totic behavior of the sequence generated by a certain proximal point algorithm for this
new optimization problem in Hadamard spaces. We also introduce and study a new class
of mappings called the generalized strictly pseudononspreading mappings in Hadamard
spaces. We then propose a Mann and Ishikawa-type algorithms for this class of mappings
and prove that both algorithms converge strongly to a fixed point of the generalized strictly
pseudononspreading mapping. More so, we propose an S-type iteration and a viscosity-
type iteration for approximating a fixed point of this mapping, which is also a solution of
minimization and monotone inclusion problems in Hadamard spaces. To further generalize
the study of optimization and fixed point problems, we study the concept of minimization
and fixed point problems for nonexpansive mappings in geodesic metric spaces more gen-
eral than Hadamard spaces, namely, the p-uniformly convex metric spaces. We introduce
the concept of split minimization problems in p-uniformly convex metric spaces and study
both Mann and Halpern proximal point algorithms for solving these problems in these
spaces. Furthermore, we introduce the classes of asymptotically demicontractive multival-
ued mappings in Hadamard space, strict asymptotically pseudocontractive-type mappings
in p-uniformly convex metric space and generalized strictly pseudononspreading mappings
in p-uniformly convex metric spaces. Moreover, we propose several iterative algorithms for
approximating a common fixed point of finite family of these mappings. As application
of the above study, we solve variational inequality problems and convex feasibility prob-
lems in Hadamard spaces. More so, we give several nontrival numerical examples of our
results. Using these examples, we carry out various numerical experiments of these results
in comparison with other important existing results in the literature. The results of the
numerical experiments show that our theoretical results have competitive advantages over



existing results in the literature. In some cases, we see that these numerical results are not
applicable in Hilbert and Banach spaces. This means that, established results concerning
optimization and fixed point problems in these spaces (Hilbert and Banach) cannot be
applied to such examples. Finally, some open problems regarding our results are identified
and discussed, which offer many opportunities for future research.
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Chapter 1

General Introduction

1.1 Background of study

Optimization problems which includes minimization problems, variational inequality prob-
lems, equilibrium problems, monotone inclusion problems, among others, are known to be
very useful in diverse fields such as ecology, physics, economics, computer science and engi-
neering, since many problems arising from these fields can be modeled as an optimization
problem. Thus, various methods for solving optimization problems have been developed
and studied by numerous authors. Among these methods are the fixed point methods,
proximal-like methods, auxiliary principles, decomposition methods, extra-gradient meth-
ods and normal map equations (for example, see [5, 7, 91, , , , ]). In recent
years, optimization problems have been extensively studied in both Hilbert and Banach
spaces by using the methods mentioned above. One of the most successful and effective
methods for solving optimization problems is the fixed point method. As a result of this,
a lot of research efforts have been devoted in developing different techniques for finding
solutions of optimization problems using the fixed point methods.

Let X be a metric space, a point x € X is called a fixed point of a nonlinear mapping
T:X — X if Te = z. In general, finding a solution of an optimization problem is equiv-
alent to finding a fixed point for a suitable nonlinear mapping. For instance, a solution
of a minimization problem is a fixed point of the resolvent of the convex function asso-
ciated with the minimization problem. Also, a solution of a monotone inclusion problem
is a fixed point of the resolvent of the monotone operator associated with the monotone
inclusion problem. Thus, the fixed point method for solving optimization problems is con-
cerned with developing different iterative algorithms for finding fixed points of resolvent of
mappings associated with these problems. Therefore, fixed point theory is of paramount
importance in the study of optimization problems. It can also be said that fixed point
theory is one of the most flourishing areas of research in nonlinear analysis that has en-
joyed rapid development over the years, and has continued to attract the interest of many
researchers due to its extensive applications in diverse mathematical problems such as
inverse problems, signal processing, game theory, fuzzy theory, optimal control problems
and many others (see [11, 12, 14, 17, 51, 59, , , , , , , , ] and



the references therein). Thus, the theory of fixed point can be considered as the kernel of
modern nonlinear and convex analysis.

It is well known that the pivot of the metric fixed point theory is the Banach contraction
mapping principle, which states that; a contraction mapping 7' defined on a complete
metric space X always has a unique fixed point, and for any starting point x; € X, the
sequence defined by the Picard iteration process x,,.1 = T'x,, n > 1, converges strongly
to that fixed point. This principle was stated by Banach [21] in 1922. Tt is the most
widely applied fixed point theorem in nonlinear analysis, since the contraction condition
on the mapping 7' is easy to check and only the structure of a complete metric space
is required. However, for classes of mappings more general than the class of contraction
mappings, one may not be able to apply the Banach contraction mapping principle. For
instance, there are several examples in the literature (see [19, 80, |) which show that
for a nonexpansive mapping, its Picard iteration process may not converge to its fixed
point, even when the fixed point exists. As a result of this, considerable efforts have been
made to approximate fixed points of not only nonexpansive mappings, but more general
mappings, by developing different iteration methods. For example, the Mann iteration
process introduced by Mann [124], is defined in a real Hilbert space H as follows:

{xl €4, (1.1.1)

Tpr1 = (1 —ap)x, + @, Txy, Yn > 1,

where {a,,} is a sequence in [0,1]. It is well known that, if the Mann iterative process
converges, then it will converge to a fixed point of a continuous mapping 7. However, if
T is not continuous, then the Mann iteration process may fail to converge to a fixed point
of T" even when it converges (see for example, [19, 81, 86, 107]). In 1974, Ishikawa [37]
introduced the following generalization of the Mann iteration process, called the Ishikawa
iteration process for approximating fixed points of pseudocontractive mappings in Hilbert
spaces.

Tonr1 = (1 — an)xy + @ Tyn, (1.1.2)
Yn = (1 - Bn)xn + 5nT5L‘na vn > 17

where {a,} and {5, } are sequences in [0, 1].

Recently, Agarwal et al. [2] introduced and studied the following S-iteration process:
r1 € H,
Tpt1 = (1 —ap)T, + Ty, (1.1.3)

where {a,} and {3,} are sequences in (0,1). It was observed in [2] that iteration process
(1.1.3) is independent of (1.1.1) and (1.1.2), and has better convergence rate than (1.1.1)
and (1.1.2).



In general, the Picard, Mann, Ishikawa and S-iteration processes only converge weakly.
However, in infinite dimensional spaces, strong convergence are more desirable and inter-
esting than weak convergence. For this reason (among others), Halpern [¢1] introduced
the following Halpern iterative process which converges strongly to a fixed point of a
nonexpansive mapping in real Hilbert spaces.

u,r1 € H, (1.1.4)
Tpi1 = apu+ (1 — )Ty, o

where {a,} is a sequence in [0, 1]. An important generalization of the Halpern iteration
process is the viscosity iteration process proposed in real Hilbert spaces by XU [190], as

follows:

H

et (1.1.5)
Tn41 = anf($n> + (1 - an>T'Tn7

where {a,} is a sequence in [0, 1] and f is a contractive mapping on X. One important
advantage of Algorithm (1.1.5) over the Halpern iteration process (1.1.4) is that it also
converges strongly to a unique solution of some variational inequalities associated with
the contractive mapping f. Furthermore, the viscosity iteration process is shown to have
higher rate of convergence than the Halpern iteration process (see [138, 171]).

For so many years, many researchers have studied the above iteration processes and their
modifications to approximate fixed points of nonexpansive mappings and wider classes
of mappings in Hilbert and Banach spaces (see, for example [38, 19, 90, , , ,

, , , , ] and the references therein). These iterative methods and their
modifications have been extensively studied in Hilbert and Banach spaces to approximate
solutions of optimization problems since in most cases, finding exact solutions of opti-
mization problems is generally very difficult. The study has recently been generalized
from these linear spaces (Hilbert and Banach spaces) to nonlinear spaces, precisely, the
differentiable manifolds, Hadamard spaces and p-uniformly convex metric spaces. Inter-
estingly, these studies already have more applications in nonlinear spaces than in linear
spaces. For instance, many non-convex problems in the linear settings can be viewed as
convex problems in the nonlinear spaces (see Example 4.3.9). Also, the minimizers of
energy functional (an example of a convex and lower semicontinuous functional on an
Hadamard space) are very useful in geometry and analysis. Furthermore, the study of
minimization problems in Hadamard spaces have proved to be very useful in computing
medians and means of trees, which are very important in computational phylogenetics,
difussion tensor imaging, consensus algorithms and modeling of airway systems in human
lungs and blood vessels (see [15, 16, 17, 18, 72, 73] for details). Thus, nonlinear spaces
are more suitable frameworks for the study of optimization problems. However, this study
has not been extensively developed in these spaces (the nonlinear spaces). Therefore, it
is our intention in this thesis to further develop and generalize the study of optimization
and fixed point problems in nonlinear spaces, particularly, in Hadamard and p-uniformly
convex metric spaces.



1.2 Research problems and motivation

In this section, we discuss the research problems and motivation of our study.

1.2.1 Research problems

Let C' be a nonempty set and f be any real-valued convex function defined on C. The
Minimization Problem (MP) is defined as:

Find z* € C' such that f(z*) < f(y), Vye C. (1.2.1)

We study in this work, the notion of MPs in Hadamard spaces. We then generalize the
study to p-uniformly convex metric spaces, and introduce the following two notions of
Split Minimization Problem (SMP) in p-uniformly convex metric spaces:

min V(z,y) such that (z,y) € X x X, (1.2.2)

where V(z,y) = f(z) + g(y) Yo,y € X and f,g: X — (—o0,+00] are convex functions,
and

min V(z,y) such that (z,y) € X xY, (1.2.3)

where X and Y are p-uniformly convex metric spaces (not necessarily equal) and U :
X XY — (—00,400] is a function defined by ¥(z,y) = f(z) + g(y); f: X — (—00, +0]
and g : Y — (—o00,+0o0] are convex functions. Furthermore, we propose the following
backward-backward algorithm

Yn = Ji Tn (1.2.4)
Tny1 = J;{nyn7 n > 17

and alternating proximal algorithm

— : 1 p
Tpi1 = argmin (Q/(x,yn) + pug—ld(xn’x) ) , ¢ € X, 125
Yn+1 = argmin (lp(xn—i-la y) + led(ymy)p) , yeY, n>1,
yey Pln

in p-uniformly convex metric spaces, for solving SMP (1.2.2) and SMP (1.2.3) respectively.

Also, we study an important generalization of the MP (1.2.1) in Hadamard spaces; namely,
the following Monotone Inclusion Problem (MIP) (also known as the problem of finding
a zero of a monotone operator): Find z € D(A) such that

0 e A(z), (1.2.6)

where A is a multivalued monotone operator and D(A) := {x € C : A(z) # 0} is the
domain of A. We then extend this study to find a common solution of MPs and MIPs
in Hadamard spaces. More so, we introduce a new mapping given by a finite family of
multivalued monotone operators in Hadamard spaces.

4



Another important generalization of the MP is the following Equilibrium Problem (EP),
defined as:

Find z* € C' such that (z*,y) >0, Vy € C, (1.2.7)

where ¢ : C' x C' — R is a bifunction.
In this work, we study the approximation of a common solution of finite family of EPs
and fixed point problems for certain nonlinear mappings in Hadamard spaces. We then

generalize this study by introducing a new class of EPs in Hadamard spaces, namely the
Mixed Equilibrium Problem (MEP), defined as:

Find z* € C such that ¢(z*,y) + f(y) — f(z") >0, Vy e C. (1.2.8)

Let C be a nonempty closed and convex subset of a real Hilbert space H and T be a
nonlinear mapping defined on C'. The Variational Inequality Problem (VIP) is defined in
real Hilbert spaces as:

Find = € C such that (T'z,y —z) > 0 Vy € C. (1.2.9)

The VIP was recently formulated in Hadamard spaces by Khatibzadeh and Ranjbar [99]
as:

ooy
Find x € C such that (Tzz, 7)) > 0 Vy € C. (1.2.10)
Recall also that the Convex Feasibility Problem (CFP) is defined as:

Find z € N, C;, (1.2.11)
where C;,i = 1,2,..., N is a finite family of nonempty closed and convex sets such that
Y, Gy 0.

We shall apply some of our results to solve VIPs and CFPs in Hadamard spaces.

Finally, we introduce and study certain classes of mappings in both Hadamard and p-
uniformly convex metric spaces. In particular, we introduce a more general class of
nonspreading-type mappings, which we called the class of generalized strictly pseudonon-
spreading mappings, and we study fixed point properties for this class of mappings.

1.2.2 Motivation

The motivation of our study will be discussed in two headings; namely, Hadamard spaces
and p-uniformly convex metric spaces.

1. Hadamard spaces:

Hadamard spaces also known as complete CAT(0) spaces (which we will discuss in
details in Chapter 2) have recently turned out to be a suitable framework for geo-
metric group theory, convex analysis, optimization and nonlinear probability theory.
The attractiveness of these spaces for solving optimization problems stems from
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the fact that some of the recent results relating to optimization problems in these
spaces, already have more applications in Hadamard spaces than in Hilbert spaces
(see [1D, 16, 17, 72, 73]). We have already highlighted in Section 1.1, some of the
importance of studying optimization and fixed point problems in Hadamard spaces.
However, we will also like to add that, another remarkable application in Hadamard
spaces is in the use of gradient flow theorem to counter a conjecture of Donaldson
on the asymptotic behavior of the Calabi flow in Kahler geometry (see [15]). Also,
the theory of optimization has successfully been applied to finding minimizers of
submodular functions on modular lattices (see [15]).

To further increase the motivation of our study in Hadamard spaces, let us consider
the following example.

Example 1.2.1. Let X = R? be endowed with a metric dx : R? x R* — [0, 00)
defined by

dx(z,y) = \/(551 —y1)? + (2f — 2 — 4} + 12)? Vr,y € R
Then, (R? dx) is an Hadamard space with the geodesic joining x to y given by
(L=t @ty = (1 - )z +ty, (1= )y +ty)* — (L= t)(2] — 22) =ty —2)) -

Now define T : R? — R? by T(x1,12) = (v1,223 — x3). Clearly, T is not a nonex-
pansive mapping in the classical sense. However, T is nonexpansive in (R? dx) (see
Ezample 4.5.9 for details).

Again, define f:R* = R by f(x1,29) = 100((z2 + 1) — (z1 + 1)*)2 + 3. Then f is

not convex in the classical sense but convex in (R?, dx) (see [19/]).

Thus, existing results on fixed point problems for nonexpansive mappings and on
optimization problems for convex functions in Hilbert spaces are not applicable to
Example 1.2.1. Therefore, this example (among others) motivates the need to gen-
eralize the results on optimization and fixed point problems from Hilbert spaces to
Hadamard spaces.

. p-uniformly convex metric spaces:

Despite the interesting applications of Hadamard spaces, the only Banach spaces
which are Hadamard spaces are Hilbert spaces. Thus, there is a need to further
generalize the study of optimization and fixed point problems to higher nonlinear
spaces which generalizes other Banach spaces and are more applicable than these
Banach spaces. For this reason, we studied the concept of minimization problems and
fixed point problems for certain nonlinear mappings in p-uniformly convex metric
spaces which are natural generalizations of p-uniformly convex Banach spaces.

Moreover, we note that some recent results obtained in p-uniformly convex metric
spaces have already found applications in LP-Wasserstein spaces, Finsler and metric

geometry (see [52, , , , ] and the references therein). More so, the
theory of optimization in p-uniformly convex metric spaces has been applied to
obtain solutions of initial boundary value problems for p-harmonic maps (see [110]).
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To further inspire the study of optimization and fixed point problems in p-uniformly
convex metric spaces, we shall construct in Chapter 2 (see Example 2.1.36), an
example of a p-uniformly convex metric space which is not an Hadamard space for
p > 2.

In summary, despite that the theory of optimization in Hadamard and p-uniformly convex
metric spaces are still in the developing stage, they already have interesting applications
within and outside mathematics, and they open many new possibilities for further research.
Therefore, the need to further develop the study of optimization and fixed point problems
in these spaces arises. Thus, we carry out our study in these two spaces.

1.3 Objectives

The main objectives of this work are to:

(i)

(vii)

(viii)

further develop the study of MIPs using Halpern-type and viscosity-type iteration
processes in Hadamard spaces,

introduce and study various iterative algorithms for approximating common solu-
tions of MPs and MIPs in Hadamard spaces,

further develop the concept of EPs in Hadamard spaces,
introduce the concept of MEPs in Hadamard spaces,

apply the results of the above mentioned optimization problems to solve other opti-
mization problems like VIPs and CFPs,

introduce a new class of nonspreading-type mappings more general than other classes
of nonspreading-type mappings, and study the fixed point problems for this class of
mappings in both Hadamard and p-uniformly convex metric spaces,

generalize the study of MPs and fixed point problems from Hadamard spaces to
p-uniformly convex metric spaces,

introduce the classes of asymptotically demicontractive multivalued mappings in
Hadamard spaces and strict asymptotically pseudocontractive-type mappings in p-
uniformly convex metric space,

propose several iterative algorithms for approximating a common fixed point of the
mappings mentioned in (viii),

give nontrivial numerical experiments of our results in comparison with other im-
portant results in the literature in order to illustrate the applicability and the com-
petitive advantages of our results over existing results in the literature,

highlight and discuss some open problems concerning our study for the purpose of
further studies.



1.4 Organization of the thesis

The thesis is organized into nine chapters as follows:

Chapter 1 (General Introduction): In this chapter, we give a brief background of
our study. We also discuss the research problems and the motivation for our study. Fur-
thermore, we give the objectives of the study and a comprehensive organization of the
thesis.

Chapter 2 (Preliminaries and Literature): In this chapter, we give basic definitions
and discuss some concepts, terms and results that are important to our study. We also
give detailed literature review of some recent and important past works on optimization
and fixed point problems.

Chapter 3 (Contributions to Monotone Inclusion Problems in Hadamard Spaces):
The main results of this thesis begins in this chapter. The chapter comprises of five sec-
tions.

In Section 3.1, we give a brief introduction of the main results in this chapter.

In Section 3.2, we introduce and prove some new lemmas that will be needed in establish-
ing the main theorems of Chapter 3.

In Section 3.3, we introduce a new mapping given by a finite family of multivalued mono-
tone operators in an Hadamard space. We further propose a modified Halpern-type al-
gorithm for the mapping and prove a strong convergence theorem for approximating a
common solution of a finite family of monotone inclusion problems in an Hadamard space.
We also applied the results established in this section to solve a finite family of minimiza-
tion problems in an Hadamard space. A numerical example of our algorithm in nonlinear
setting is given to further show the applicability of the main results.

In Section 3.4, we propose and study a Halpern-type PPA for approximating a common
solution of a finite family of monotone inclusion problems and fixed point problem for a
nonexpansive mapping in an Hadamard space. Numerical example of the result obtained
in this section is also given to further show its applicability.

In Section 3.5, we study some viscosity-type proximal point algorithms which comprise of
a nonexpansive mapping and a finite sum of resolvents of monotone operators, and prove
their strong convergence to a common solution of a finite family of MIPs and fixed point
problems for nonexpansive mapping, which is also a unique solution of some variational
inequality problems (associated with contraction mappings) in Hadamard spaces. We ap-
ply the results obtained in this section to solve convex feasibility problems and variational
inequality problem associated with a nonexpansive mapping.

Chapter 4 (Contributions to Minimization and Monotone Inclusion Problems
in Hadamard Spaces): This chapter also comprises of five sections organized as follows:
In Section 4.1, we give a brief introduction of our study in Chapter 4.

In Section 4.2, we discuss some lemmas that are associated with convex functions for the
minimization problems.

In Section 4.3, we propose and study some viscosity-type proximal point algorithms for
approximating a common solution of minimization and fixed point problems for nonexpan-
sive multivalued mappings, which is also a unique solution of some variational inequality
problems. Furthermore, we give some numerical examples of our algorithm in order to



show its competitive advantage over existing algorithms in the literature.

In Section 4.4, we propose a Halpern algorithm and prove its strong convergence to a zero
of a monotone operator which is also a minimizer of a proper convex and lower semicontin-
uous function and a fixed point of a demicontractive-type mapping in Hadamard spaces.
In Section 4.5, we extend the results obtained in Section 4.4 to finite family of minimiza-
tion, monotone inclusion and fixed point problems using a modified Ishikawa iteration
process.

Chapter 5 (Contributions to Equilibrium Problems in Hadamard Spaces): This
chapter is devoted to the study of equilibrium problems and mixed equilibrium problems
in Hadamard spaces. It also comprises of five sections:

In Section 5.1, we give a brief introduction of the main results in this chapter.

In Section 5.2, we discuss some important results that will be needed in this chapter.
We also prove some new lemmas that are required to establish the main theorems of the
chapter.

In Section 5.3, we propose and study a viscosity-type proximal point algorithm for ap-
proximating a common solution of a finite family of equilibrium problems and fixed point
problem for a nonexpansive mapping in an Hadamard space. Applications of the results
we shall establish in this section to other optimization problems in Hadamard spaces are
also discussed.

In Section 5.4, we study the asymptotic behavior of the sequence given by a viscosity-type
algorithm and extend the study to approximate a common solution of finite family of
equilibrium problems in Hadamard spaces.

In Section 5.5, we introduce and study the concept of mixed equilibrium problems in
Hadamard spaces.

Chapter 6 (Generalized Strictly Pseudononspreading Mappings in Hadamard
Spaces): This chapter also comprises of 5 sections. Section 6.1 and 6.2 deals with a brief
introduction of our study and the discussion of some important results that will be needed
in the chapter. In Section 6.3 to 6.5, we introduce and study a new class of mappings
called the class of generalized strictly pseudononspreading mappings in Hadamard spaces.
We then propose the Mann and Ishikawa-type algorithms for this class of mappings and
prove that both algorithms converge to a fixed point of the generalized strictly pseudonon-
spreading mapping. We also propose an S-type iteration and a viscosity-type iteration for
approximating a fixed point of the new mapping, which is also a minimizer of a convex
function and a zero of a monotone operator.

Chapter 7 (Contributions to Minimization Problems in p-uniformly Convex
Metric Spaces): In this chapter, we generalize the study of minimization and fixed
point problems from Hadamard spaces to p-uniformly convex metric spaces. Precisely,
we introduce and study the Mann and Halpern algorithms for solving minimization and
fixed point problems in these spaces. We also introduce and study the notion of split
minimization problems in p-uniformly convex metric spaces.

Chapter 8 (Contributions to Fixed Point Problems in Geodesic Metric Spaces):
This chapter focuses only on fixed point problems for mappings more general than the ones
studied in Chapter 3 to Chapter 7. In particular, we introduce the classes of asymptot-
ically demicontractive multivalued mappings in Hadamard space, strict asymptotically



pseudocontractive-type mappings in p-uniformly convex metric space and generalized
strictly pseudononspreading mappings in p-uniformly convex metric spaces. We also pro-
pose several iterative algorithms for approximating a common fixed point of finite family
of these mappings.

Chapter 9 (Conclusion, Contribution to Knowledge and Future Research): In
this chapter, we give the conclusion of our study and highlight the contributions of our
study to existing knowledge. We also identify and discuss possible areas of future research.
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Chapter 2

Preliminaries and Literature Review

In this chapter, we provide definitions of basic terms and concepts that will be useful
throughout our research. We also give detailed literature review of some recent and im-
portant past works on optimization and fixed point problems. Furthermore, we recall
important results that are required in the proofs of the main results of this thesis.

2.1 Preliminaries and definitions

In this section, we give definitions of concepts and discuss some important results.

2.1.1 Geometry of geodesic metric spaces

Many real-world problems such as modeling of airway systems in human lungs and blood
vessels, diffusion tensor imaging, computational phylogenetics, inverse problems, signal
processing, image recovery, game theory, fuzzy theory and others, naturally occur in metric
spaces (for example, see [15, 16, 17, 72, 73]). However, the structure of metric spaces
sometimes makes it difficult to apply existing results to solve these problems. Therefore,
the need to consider some properties which provides sufficient information that guarantees
the applications of such existing results in metric spaces arises. One of such properties
is the existence of distance-preserving mapping. This property provides the metric space
with a structure that is analogue (in some ways) to the linear structure of a normed linear
space. Metric spaces with this property are called geodesic metric spaces. In other words,
a metric space (X,d) (or simply X) is called a geodesic space, if every two points x and
y in X are joined by a distance-preserving mapping (or an isometry) c : [0,d(x,y)] — X
such that ¢(0) = z, ¢(d(x,y)) =y and d(c(t), c(t')) = [t — | for all £,¢" € [0,d(x,y)]. The
image of c is called a geodesic segment joining = to y. When it is unique, it is denoted by
[z,y]. A metric space X is called a uniquely geodesic space, if every two points of X are
joined by only one geodesic segment. For all z,y € X and t € [0, 1], we write tz & (1 —t)y
for the unique point z in the geodesic segment joining x and y such that

d(z,z) = (1 —t)d(xz,y) and d(z,y) = td(z,y). (2.1.1)
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We now give another characterization of geodesic metric spaces through the existence of
metric midpoints. First, we recall the definition of a metric midpoint.

Definition 2.1.1. Let X be a metric space and v,y € X. A point z € X is a metric
midpoint of x and y if d(z,z) = d(y, z) = 2d(z,y).

Proposition 2.1.2. (see [17]). Let X be a complete metric space. Then the following are
equivalent.

(i) The space X is a geodesic space.

(i1) For every x,y € X, there exists a point z € X such that

1
dQ(J}7Z> + dz(yu Z) = §d2(1’,y)

(i1i) Every pair of points in X has a metric midpoint.

Definition 2.1.3. Let X be a geodesic metric space. A subset C' of X is said to be convex
if Cincludes every geodesic segments joining two of its points. In other words, C' is convex
if for every x,y € C, we have that tx & (1 —t)y € C.

Remark 2.1.4. (see [71]).

(i) A geodesic segment in a space that is not uniquely geodesic may not necessarily be
CONVEL.

(i1) A subset of a uniquely geodesic metric space which is endowed with the induced
metric, 1s geodesic if and only if it is convex.

Some fundamental examples of geodesic metric spaces

The most common example of a uniquely geodesic metric space is R™. In this case, the
unique geodesic segment joining any two points, say x and vy, is the line seqment between
them, i.e., the set of points {(1 —¢)x +ty | 0 <t < 1}. In view of Remark 2.1.4 (ii), we
can see that a round disc in R? is a geodesic metric space while a circle in R? is not.

More generally, a normed linear space E endowed with the metric d(z,y) = ||z — y|| is
a geodesic metric space. Here, the distance preserving mapping t — tz + (1 — t)y from
[0,1] into X, is a linearly reparameterized geodesic joining x and y in E. E is uniquely
geodesic if and only if the unit ball in E is strictly convex (see [31, 19] for the definition
of a strictly convex unit ball).

Other fundamental examples of geodesic metric spaces includes the model spaces of con-
stant curvature M}', complete Riemannian manifolds, polyhedral complexes, Busemann
spaces, Hadamard spaces, p-uniformly convex metric spaces (see [17, 31, 35, 78, 93] for
a detailed treatment of these spaces). However, we shall discuss two of these examples
(namely, the Hadamard spaces and p-uniformly convex metric spaces) in the next two
subsections, since the main results of this thesis were carried out in these two spaces. But
first, we recall an important tool for comparing the geometry of an arbitrary geodesic
metric space to that of the Euclidean plane R2.
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Definition 2.1.5. Let X be a geodesic metric space. A geodesic triangle A(xq,xs,x3)
in X consist of three points x1,xs,x3 in X (known as the vertices of A) and a geodesic
segment between each pair of vertices (known as the edges of A).

A comparison triangle for the geodesic triangle A(x1, T, x3) in X is a triangle A(xy, 9, 13) :=
A(Zy, Ta, T3) in the Euclidean plane R? such that d(x;,x;) = dge(Z;, Z;) fori,j € {1,2,3}.

As we shall see in the next subsection, Definition 2.1.5 plays an important role in the
characterization of Hadamard spaces.

We now end this subsection, with the following notion of A-convergence in geodesic metric
spaces, which was first introduced and studied by Lim [119]. We begin with the following
definition of asymptotic center.

Definition 2.1.6. Let {x,} be a bounded sequence in a geodesic metric space X. Then,
the asymptotic center A({x,}) of {x,} is defined by

A({z,}) = {v € X : limsupd(v, z,,) = inf limsup d(v, z,)}.

n—00 veX poo

Definition 2.1.7. A sequence {z,} in X is said to be A-convergent to a point v € X if
A({xn, }) = {0} for every subsequence {x,, } of {xn}. In this case, we write A-lim z,, = v

(see [07]). B

2.1.2 Geometry of Hadamard spaces

Hadmard spaces which are also referred to as complete uniquely geodesic metric spaces of
nonpositive curvature, include Euclidean spaces R", Hilbert spaces, complete simply con-
nected Riemannian manifolds of nonpositive sectional curvature (for example, the classical
hyperbolic spaces and the manifold of positive definite matrices) [31], nonlinear Lebesgue
spaces [17], R-trees [17], Hilbert ball [7(], Hyperbolic spaces [158], among others. The
geometry of Hadamard spaces can be seen as the nonlinearization of the geometry of
Hilbert spaces. The history of Hadamard spaces can be traced to the 1936 paper of Wald
[187]. Later (in the 1950s), Alexandrov [3] discovered some interesting characteristics of
the space, and as a result of this, Hadamard spaces are sometimes referred to as spaces
of nonpositive curvature in the sense of Alexandrov. Since then, Hadamard spaces have
proved very useful in the study of geometric group theory. Analytical results first ap-
peared in Hadamard spaces in the late 1990s, and it turns out that Hadamard spaces are
appropriate frameworks for the theory of convex and nonlinear analysis. More so, the
space has also proved to be an appropriate framework for the study of optimization prob-
lems which may be applied to science, economics and engineering. A typical description
of such application is an application to computational phylogenetics which can be found
in an excellent book of Bacdk [17]. Other interesting applications include applications
to difussion tensor imaging, consensus algorithms, modeling of airway systems in human
lungs and blood vessels, modular lattices, the existence of Lipschitz retractions in finite
subsets spaces and Kdahler geometry (see [15, 18, 16, 17, 72, 73] for details).
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Characterizations of CAT(0) spaces

In what follows, we give various characterizations (definitions) of CAT(0) spaces.

The acronym CAT(0) was coined by Gromov [77] in 1987, where C stands for Cartan, A
for Alexandrov, T for Toponogov and 0 is the upper curvature bound. Different means
(including geodesic and comparison triangles, see Definition 2.1.5) have been employed to
characterize (or define) CAT(0) spaces. We present some of them here under the following
headings:

1. Geodesic and comparison triangles.
2. Quadratic and nonquadratic inequalities.
3. Busemann and Ptolemaic spaces.

4. Cauchy-Schwartz inequality.

1. Geodesic and comparison triangles:

Let A be a geodesic triangle in X and A be its comparison triangle in R2, then A is said
to satisfy the CAT(0) inequality if for all points z,y € A and z,y € A,

d(z,y) < dg2(Z, 7). (2.1.2)
Let x,y, z be points in X and yy be the midpoint of the segment [y, z|, then the CAT(0)

inequality implies

1 1 1
d2<l’,y0) < §d2<$,y) + §d2($72) - ZdZ(yVZ) (213)

Inequality (2.1.3) is known as the CN inequality of Bruhat and Titis [31].

Definition 2.1.8. A geodesic metric space X is called a CAT(0) space if all geodesic
triangles satisfy the CAT(0) inequality. Equivalently, X is called a CAT(0) space if and
only if it satisfies the CN inequality.

2. Quadratic and nonquadratic inequalities:

First, we present the following Theorem which gives equivalent conditions for a complete
metric space to be a CAT(0) space via some useful inequalities.

Theorem 2.1.9. (se [17, Theorem 1.8.2]). Let X be a complete metric space. Then the
following are equivalent.

(i) The space X is a CAT(0) space.

(i1) For every pair of points x,y € X, there exists m € X such that for each z € X, we
have that

1 1 1
dz(ma Z) < §d2(l',2') + §d2(ya Z) - ZdQ(ZE,y)
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(111) For every pair of points x,y € X and € > 0, there exists m € X such that for each
z € X, we have that

1 1 1
dQ(m,z) < §d2(;€72) + §d2<y7 Z) - Zd2($>y) t+é€.

Next, we present the following Theorem which gives equivalent conditions for a geodesic
space to be a CAT(0) space.

Theorem 2.1.10. (see [17, Theorem 1.3.3]). Let X be a geodesic metric space. Then the
following are equivalent:

(i) The space X is a CAT(0) space.

(i1) For every pair of points x,y,z € X, we have

1 1 1
dQ(m7 ZL’) < §d2(l‘7y) + §d2(l’, Z) - ZdQ(Iv 2)7

where m is the midpoint of |y, z].

(11i) For every geodesic x : [0,1] — X and every point p € X, we have

d*(p, z;) < (1 —t)d*(p, 20) + td*(p, v1) — t(1 — t)d* (o, 71).

(iv) For every x,y,u,v € X, we have

d*(z,u) + d*(y,v) < d*(x,y) + d*(u,v) + 2d(z,v)d(y, u).

(v) For every x,y,u,v € X, we have

d*(z,u) + d*(y,v) < d*(z,y) + d*(y, u) + &*(u,v) + d*(v, z).

3. Busemann and Ptolemaic spaces:

Here, we characterize CAT(0) spaces using the notion of Busemann and Ptolemaic spaces.
We begin with the definitions of these two spaces.

Definition 2.1.11. Let X be a geodesic space. Then X is said to have nonpositive cur-
vature in the sense of Busemann [50] if for every z,y,z € X, we have that 2d(my, ms) <
d(x,y), where my is a midpoint of [z, z] and my is a midpoint of [y, z]. A geodesic space with
this property is called a Busemann space. A common example of a Busemann space is a
strictly convex Banach space. For detailed treatment of Busemann spaces (see [15, 17, 50]).

Definition 2.1.12. Let X be a metric space. Then X is called Ptolemaic, if for all
L1, T2,T3, Ty € X7

d(xl, Ig)d(fﬁg, I4) S d(l’l, Z'Q)d(l’g, .%'4) + d(l’g, $3)d($4, .Il).

For more discussion on Ptolemaic spaces, see [7/] and the references therein.
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Theorem 2.1.13. [7/] A geodesic metric space is a CAT(0) space if and only if it is
Busemann and Ptolemaic.

4. Cauchy-Schwartz inequality:

To characterize CAT(0) spaces via the Cauchy-Schwartz inequality, we will need the notion
of quasilineraization mapping, introduced in CAT(0) spaces by Berg and Nikolaev [20].

Definition 2.1.14. Let X be a CAT(0) space. Denote the pair (a,b) € X x X by ab and
call it a vector. Then, a mapping (.,.) : (X x X) x (X x X) — R defined by

(ab, cd) = % (d(a,d) + d2(b,¢) — d*(a, ¢) — (b, d)) Va,b,c,d € X

1s called a quasilinearization mapping.

It is easily to check that (%,%) = d*(a,b), <£,;l> = —(%,2[}, (%,&lx = (@,&b +

(eb, cdy and (ab, cd) = (cd, ab) for all a,b, ¢, d,e € X.

Definition 2.1.15. [20]. A geodesic metric space is a CAT(0) space if it satisfies the
following Cauchy-Schwartz inequality:

_>
(ab, cd) < d(a,b)d(c,d) Ya,b,c,d € X.
Definition 2.1.16. A complete CAT(0) space is called an Hadamard space.

Some typical examples of Hadamard spaces

Having studied various characterizations of CAT(0) spaces, we now turn to present some
typical examples of complete CAT(0) spaces. Detailed constructions of these examples can

be found in [103, , 194].

Example 2.1.17. (see [19/]). Let X = R? be endowed with a metric dx : R*xR? — [0, 00)
defined by

dx(z,y) = \/(931 —y)? + (o] — 22 — yf +1p)? Yo,y € R
Then, (R? dx) is an Hadamard space with the geodesic joining x to y given by
(1-—thrdty = ((1 — )y +ty, (1=t +ty)* — (1 — ) (2F — ) — t(y — yg)) )

Example 2.1.18. (see [15/]). Let X = {& = (x1,22) € R* : xy3 > 0} be the Poincaré
plane endowed with the Riemannain metric given by

1 .
g =92 = 5 G2 = 0 for each point (xq,x2) € X.
2

Then, X s an Hadamard space.

Example 2.1.19. Let Y = R? be an R-tree with the radial metric d,, where d.(x,y) =
d(z,y) if x and y are situated on a FEuclidean straight line passing through the origin and
d.(z,y) = d(z, 0) + d(y, 0) := ||z|| + ||y|| otherwise. We put p = (1,0) and X = BUC,
where

B ={(h,0):he]0,1]} and C={(h,k):h+k=1he]0,1)}.

Note that X is closed and convex and so, (X,d,) is an Hadamard space.
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2.1.3 Dual space of an Hadamard space

Based on the notion of quasilinearization mapping, the notion of dual space of an Hadamard
space X was introduced by Kakavandi and Amini [95] as follows: Consider the map
O:Rx X x X — C(X) defined by

O(t, a,b)(x) = t(ab, at), (2.1.4)

where C'(X) is the space of all continuous real-valued functions on X. Then the Cauchy-
Schwarz inequality implies that O(¢, a, b) is a Lipschitz semi-norm L(O(t,a, b)) = |t|d(a, b)
for all a,b € X, where

fz) = [(y)

L(f) = sup { i)

is the Lipschiz semi-norm of the function f : X — R. Now, define the pseudometric D on
R x X x X by

:x,yeX,x#y},

D((t,a,b),(s,c,d)) = L(O(t,a,b) — O(s, ¢, d)).

D((t,a,b),(s,c,d)) = 0 if and only if t(%,@} = 3(31,:17;/) for all z,y € X (see [91,
Lemma 2.1]). For an Hadamard space X, the pseudometric space (R x X x X, D) can
be considered as a subspace of the pseudometric space (Lip(X,R), L) of all real-valued
Lipschitz functions. Also, the metric D defines an equivalence relation on R x X x X,

where the equivalence class of tva% := (t,a,b) is given by

ltab] = {5cd : t(ab, 7)) = s(cd, 7)) Yo,y € X).
Thus, X* = {[t%] :(t,a,b) € R x X x X} is a metric space with D as the metric.
Definition 2.1.20. Let (X,d) be an Hadamard space. Then, the pair (X*,D) is called
the dual space of (X,d).

Throughout this thesis, we shall simply write X* for the dual space of X.
Remark 2.1.21. (see [05]).

(i) The dual space X* acts on X x X by (¢, zf) = t(a?,@), where x* = [t%] €
X* z,y,a,b€ X andt € R.

(i) The dual of a closed and convex subset %{ a Hilbert space H with nonempty interior
]

is also a Hilbert space and t(b — a) = [tab] for allt € R, a,b€ H.

We now construct a typical (non-trivial) example of the dual space of the Hadamard space
defined in Example 2.1.19.

Example 2.1.22. Let (X,d,) be as defined in Example 2.1.19. Then, its dual space X*
is the space of elements [t%] such that

%
{scd :c,d € B,s €R, t([[bl] — lall) = s(lld]| —llc[)} a,b € B,
tab] = {scd:c,de CU{0},s € R, t([|b]| — [la]]) = s(ld|| = [lc[)}  a, b€ CU{0O},
{tab} weB, beC.
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To see this, for each t% ] € X*, we calculate its equivalence class as follows: If t?

[scd ﬁ we must have that ¢ % @ = 5( cd .@ for all z,y € X, where p is as defined
in Example 2.1.19.

Cases:
(D): If {a,b,c,d} C CU{0}, we have_t)hat d,.(e,z) = |le]| + ||z]| for all e € A and z € X.
Thus, the equality t(a ﬁ = s(cd, 7)) is equivalent to t(||b]| — |lal]) = s(||d|| = ||¢])-

(H): If a,b,c,d} C B, we obtain by similar argument as in Case I that the equality
@ — s{cd ﬁ/ ) is equivalent to ¢(|[b]| — [lal[) = s(l|d|| — [lc]})-

(III): In Case I and Case II, the equation does not depend on x and y. But in other cases,
the equation depends on = and y, i.e., the equality for x,y € B is different from the
equality for x,y € C.

Thus, we conclude that X* defined above is the dual space of the Hadamard space X
defined in Example 2.1.19.

2.1.4 Monotone operators

Thanks to the concept of dual space of an Hadamard space, we can now study the notion
of multivalued monotone operators defined on an Hadamard space and valued in the dual
space, whose theory is known to be one of the most important theory in optimization,
nonlinear and convex analysis.

Definition 2.1.23. Let X be an Hadamard space and X* be its dual space. A multivalued
operator A : X — 2% with domain D(A) := {x € X : Ax # 0} is monotone, if for all
x,y € D(A), v £y, 2" € Az and y* € Ay, we have

(" =y, yt) > 0
A is called a-strongly monotone, if there exists o > 0 such that
(z* —y*, y#) > ad®(z,y) Y,y € D(A),z* € Az, and y* € Ay.
Clearly, every a-strongly monotone operator is monotone.

Definition 2.1.24. [05] Let X be an Hadamard space and X* be its dual space. Let
A X — 2% be any multivalued operator. Then, the resolvent of A of order X > 0 is a
mapping Jit : X — X defined by
1
JMz) ={ze€ X | [Xﬁ] € Az} (2.1.5)
Remark 2.1.25. (see [05]). A monotone operator A is said to satisfy the range condition
if for every A >0, D(J{) = X.
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In what follows, we give a detailed construction of a multivalued monotone operator to-
gether with its resolvent. The construction will be done in the setting of the Hadamard

space defined in Example 2.1.19 and its corresponding dual space defined in Example
2.1.22.

Example 2.1.26. Let Y = R? be an R-tree with the radial metric d,, where d.(x,y) =
d(z,y) if x and y are situated on a Fuclidean straight line passing through the origin and
d.(z,y) = d(x,0) 4+ d(y, 0) := ||z|| + ||y|| otherwise. Let p = (1,0) and X = BUC, where

B={(h0):he0,1]} and C={(hk):h+k=1/he][0,1)}

Then, (X,d,) is an Hadamard space and X* which is the space of elements [t%] such that

{scd ¢,d € B,s € R i([[b]| — |[al]) = s([|d]| — [c[])} a,b € B,
tab) = § {scd: e,d € CU{0}, s € Rt(|lb] - llall) = s(dll - [lel)} a.be CU{0§21.6)
{t%} a€ B, beC,

is the dual space of X (see Example 2.1.22).
Now, define A: X — 2% by

{l

{[0p),[02]} weC.

I} x € B,
Az =

=l 2

Then A is a multivalued monotone operator. To see this, we consider the following cases.

Cases:

(I): If x,y € B, then Az = Ay = {| ]} and z* = y* [E)p] So, (x* —y*, yt) =0 > 0.
ﬁ

0], [0} and Ay = {[0p], [0y]}.
(i) If z* = y* = [ﬁp], then (z* —y*,y#) =0 > 0.

(II): If x,y € C, then Ax = {]

(ii) If & = [02] and y* = [0g), then (x* —y,5&) = d2(x.y) > 0.
(iii) If x* = [?p] and y* = [@], then

(@~ yE) = {ub.yt)

= (B, 2) + Epy) — B(p, )

= %((H?JH +2l)? + @+ [yl = (1 + [|=[)?)
>0 (since 1/v/2 < ||, lyll < 1).
(iv) ?fa;* = [0_>x] and y* = [ﬁp], then (x* — y*, yt) = (pt,y#), which is similar to
(H1): Iz € B,y € C. then Av = {[0p]}. Ay = {[03]. 03]}
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(i) If z* = y* = [ﬁp], then (z* — y*,y#) = 0 > 0.
(ii) If x* = [5);0] and y* = [@], then
(" —y'gt) = (gh.yt)
= (@) + &) - Ep,)
>0 (since d(p,x) <1 <d(p,y)).

Thus, A is monotone.
Now, we compute the resolvent of A as follows:

Cases:

(I) Let x = (h,0) € B,
(i) If 2 = (k,0) € B and z € J{(x), then Az = {[719]} and [%ﬁ] = [?p] It follows
from (2.1.6) that 3(k—h) =1 ork=h— A\
(ii) If = = (W, k') € C and = € Ji(x), then Az = {[0p], [0%]} and [234] = [0p] or
[%ﬁ] = [az)] Using (2.1.6) we see that both of these two cases are impossible.

(II) Let x = (h, k) € C.

impossible by (2.1.0).

(ii) If = = (W, K') € C and z € J{\(x), then Az = {[0p], (03]} and [L172] € Az. The
case [%ﬁ] = [ﬁp] is impossible. For the case [%ﬁ] = [0_2] Using (2.1.6) we
see that 5 ([|lz|| = llzI]) = [Iz]| or ||zl = 5 l=]l. Note that there are at most two
solutions for z.

(i) If z= (W,0) € B and z € J}(z), then Az = {[E)p]} and [%ﬁ] = [5);0] which is
—

Therefore,

{z=(h=X0)} z = (h,0) € B,
JHr) =
’ {z=(K)eC: A+ N2 (W?+K?) =h2+ K} x=(hk) €C.

We now list other examples of monotone operators existing in the literature.

Example 2.1.27. (see [155, p.25]). Let X be as defined in Example 2.1.18. For each
T € X, we have

1
(u,v)z = —(u,v) for any pair (u,v) € Tz X x T3 X,
€3

where (.,.)z and (.,.) denote the inner product in Tz X (the tagent space of X at &) and
R? respectively.
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Then, A: X — 2T% (where TX = UXTEX) defined by
zc

(2z119, 23 — 22), if 23 + (9 — 2)% > 4,
A(z) = < {t(2z1m9, 23 —22): t € ]0,1]}, if 22 + (29 — 2)? = 4,
(0,0), if if 2 4 (23 — 2)? < 4

18 monotone.

Example 2.1.28. Let X be an Hadamard space and X* be its dual space. Then, the
subdifferential Of : X — 2% of a proper conver and lower semicontinuous function f :
X — (—o00, 0], defined by

[o" € X0 f(2) - f(2) = (o, &), V=€ X}, ifw e D(f),

2.1.7
0, otherwise ( )

Of(x) = {

is a monotone operator (see [95]). In particular, for a nonempty, closed and convex subset
C of X, the indicator function dc : X — R defined by

So(z) = {0’ yred, (2.1.8)

400, otherwise
s a proper convex and lower semicontinuous function. Thus, the subdifferential of 0¢,

o) = {o* e X*: (2", 22) <0Vze C} ifz e C, (2.1.9)
T 0, otherwise o

18 a monotone operator.

Example 2.1.29. Let X be an Hadamard space and X* be its dual space. LetT : X—j X
be a nonexpansive mapping. Then, the mapping A : X — 2% defined by Az := [Txz] is
monotone.

In the next theorem, we present the relationship between monotone operators and their
resolvents in CAT(0) spaces. We first recall the following definition which we will need in
what follows.

Definition 2.1.30. Let X be an Hadamard space. A nonlinear mapping T : X — X is
said to be firmly nonexpansive (see [05]), if

d*(Tx, Ty) < (TxTy, 7)) Yo,y € X.

Remark 2.1.31. From Cauchy-Schwartz inequality, it is clear that every firmly nonex-
pansive mapping is NONETPaSIve.

Theorem 2.1.32. (see [05]). Let X be a CAT(0) space and J§* be the resolvent of a
multivalued operator A of order . Then,

(i) for any A > 0, we have that R(J{}) C D(A) and F(J{}) = AY0), where R(J{) is
the range of J{* and F(J3') is the set of fived points of J§,

(ii) if A is monotone, then Ji' is a singlevalued and firmly nonexpansive mapping,

(iii) if A is monotone and 0 < X < p, then d*(Jilz, Jilz) < ﬁdQ(x, Jihr).
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2.1.5 Geometry of p-uniformly convex metric spaces

In this section, we briefly discuss the notion of p-uniformly convex metric spaces. A
detailed discussion of these spaces can be found in [52, , , , , , ].

To further generalize established results in other Banach spaces like p-uniformly convex
Banach spaces, Noar and Silberman [133] introduced the notion of p-uniformly convex
metric spaces in 2011 as follows.

Definition 2.1.33. (see [177]). Let 1 < p < oo, a metric space X is called p-uniformly
convez with parameter ¢ > 0 if X is a geodesic space and for all x,y,v € X and t € [0, 1],

dv,(1=t)x @ ty)’ < (1 —t)d(v,x)P + td(v,y)’ — gt(l —t)d(z,y)". (2.1.10)

The notion of p-uniformly convex metric space is an obvious generalization of the classical
notion of p-uniformly convex Banach space (see [20, 133]). More precisely, LP-spaces with
p > 2 are typical examples of p-uniformly convex metric spaces. Furthermore, when
p =2 = cin (2.1.10), we obtain the CAT(0) inequality (see [31, 133]). In fact, every
CAT(0) space is 2-uniformly convex with parameter ¢ = 2 and every CAT (k) space (k > 0)
with diam(X) < ;7 is 2-uniformly convex with parameter ¢ = (7 — 2vV'ke) tan(vke) for
any 0 < e < ;7=—diam(X) (see [111, 133, 143, 160]).

Remark 2.1.34. Inequality (2.1.10) ensures that p-uniformly convexr metric spaces are
uniquely geodesic.

Proposition 2.1.35. (see [110]). Let W,(t) :=t(1—t)* @ (1 —t)t?, and since 55t(1—t) <

W,(t) <t(1—t), t €0,1], then, one can easily see that a geodesic metric space X is p-

8

uniformly conver with parameter ¢ € (0, 55| if and only if there exists a constant k € (0, 1]

such that for all z,y,v € X and t € [0, 1],

d(v,(1—t)x @ ty)? < (1 —t)d(v,z)? +td(v,y)’ — kW,(t)d(z,y)P. (2.1.11)

We now give a concrete example of a p-uniformly convex metric space which is not an
Hadamard space (for p > 2).

Example 2.1.36. Let P(n) be the space of an n x n Hermitian positive definite matrices.

For1 < p < o0, the geodesic distance between A and B in P(n) (also called the p-Schatten

distance) d, : P(n) x P(n) — [0,00) is defined by

dy(A,B) = inf{L(c) | ¢:[0,1] = P(n) is a smooth curve with c¢(0) = A and ¢(1) = B}
= |[log(A™2BA™2)]|,

P

= <Z log” Mi(A_lB)) 7

where p;(A™'B) are the eigenvalues of A~ B, L(c) := fol ||c(t)_%c'(t)c(t)_%||pdt, I|A|l, ==
(tr\A[p)%, tris the the usual trace functional and |A] = (AHA)z (where A® is the conjugate
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transpose of A). The pair (P(n),d,) is a p-uniformly convex metric space with geodesic
joining A to B in P(n) given by

1 1 1 t 1
(1—t)z @ty = A3 (A‘EBA‘E) AB0<t<1.

Other examples of p-uniformly convex metric spaces can be found in [52].

2.1.6 Some operators in geodesic metric spaces
Nonlinear singlevalued mappings
Definition 2.1.37. Let X be a geodesic metric space and T : X — X be a nonlinear

mapping. Throughout this thesis, we shall denote by F(T), the set of fized points of T.
The mapping T is said to be

L-Lipschitzian, if there exists L > 0 such that

d(Tz,Ty) < Ld(z,y) Vz,y € X,
if L €10,1), then T is called contraction, while T' is called nonexpansive, if L = 1;
e quasinonexpansive, if F(T) # 0 and

d(Tx,y) <d(x,y) Vy € F(T), v € X;
o k-demicontractive, if F(T) # 0 and there exists k € [0,1) such that
d*(Tz,y) < d*(z,y) + kd*(Tx,2) Vo € X, y € F(T);

e uniformly L-Lipschitzian, if there exists L > 0 such that

d(T"z, T"y) < Ld(z,y) Vz,y € X,n > 1;

o asymptotically nonexpansive, if there exists a sequence {k,}5°; C [1,00), lim k, =1
n—oo
such that
d(T"z, T"y) < kyd(z,y) Vn > 1 and z,y € X

e asymptotically demicontractive, if F(T) # 0 and there exists a sequence {k,}>2, C
[1,00), lim k, =1 such that
n—oo

dQ(T”:B, y) < kndQ(x, y) + de(a:, T"z)

for some k € [0,1) and for alln > 1, x € X,y € F(T);
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o ({pnl}, {vn}, @)-total asymptotically demicontractive, if F(T) # () and there exist a
constant k € [0,1) and sequences {pn}, {va} C [0,00) with p, — 0, v, — 0, and a
strictly increasing continuous function ¢ : [0,00) — [0, 00) with ¢(0) =0 such that

& (T"x,y) < d*(z,y) + pnd (d(z,y)) + kd*(z, T"z) + v,
foralln>1, x € X,y e F(T);
e asymptotically regular, if lim d(T"z, T"'x) =0 Vr € X.
n—oo

Remark 2.1.38. Besides being an obvious generalization of the class of contraction map-
pings, the class of nonexpansive mappings is very important for the following reasons,
among others (see [72]):

(i) The class of nonexpansve mappings is closely connected with the monotonicity meth-
ods developed since the early 1960’s.

(11) They appear in applications as transition operators for initial value problems of dif-
ferential inclusion problems of the form 0 € % + T(t)u, where T(t) is a setvalued
dissipation operator which is also minimally continuous.

Remark 2.1.39. Clearly, nonexpansive mappings (with nonempty fized points set) C
quasinonexpansive mappings C demicontractive mappings. There are several examples
in the literature which show that these inclusions are proper (see for example [9, 50, 90]
and the references therein). Furthermore, the class of demicontractive mappings is known
to be of central importance in optimization theory since it contains many common types
of operators that are useful in solving optimization problems (see [00, , | and the
references therein,).

Nonlinear Multivalued mappings

Let X be a metric space, a subset C' of X is called proximinal, if for each x € X, there
exists z € C such that d(z, z) = inf{d(z,y) : y € C'}. We shall denote by P(X), the family
of all nonempty proximinal subsets of X, C'B(X) the family of all nonempty closed and
bounded subsets of X and 2% the family of all nonempty subsets of X. Let H denote the
Hausdorff metric induced by the metric d, then for all A, B € 2X,

H(A, B) = max{supd(a, B), supd(b, A)}, (2.1.12)

acA beB

where d(a, B) = gng d(a,b) is the distance from the point a to the subset B. Let T : X —
S

2% be a multivalued mapping. A point x € X is called a fixed point of T', if x € T'x while
r € X is called a strict fixed point of T, if Tx = {x}. The mapping T : X — 2% is called

e [-Lipschitz, if there exists L > 0 such that
H(Tz,Ty) < Ld(z,y) V z,y € X,

if L =1, then T is called nonexpansive, while T is called a contraction if L € (0, 1);
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e quasinonexpansive, if F(T) # () and
H(Tx,p) <d(x,p) Ve X andpe F(T),

o uniformly L-Lipschitzian, if there exists a constant L > 0 such that

H(T"x, T"y) < Ld(z,y) Vn > 0,z,y € C.

Convex functions
Here, we present a brief and concise study of convex functions that are important to our
work.

Definition 2.1.40. Let X be a geodesic metric space. The domain of a function f : X —
R U {400} is defined by D(f) ={zx € X : f(x) < +oo}.
The function f: D(f) € X — RU {400} is said to be

e proper, if D(f) # 0;

e convex, if
[tz (1 =ty <tf(x)+ 1 -1)f(y) Yo,y € X, t € (0,1);

o uniformly convex (see [52]), if there exists a strictly increasing function ¢ : R, — Ry
such that

(0o ) < 50+ 570) - otda )y

e lower semicontinuous at a point x € D(f), if

f(x) < liminf f(z,),

n—oo

for each sequence {x,} in D(f) such that lim x, = x;
n—oo

e upper semicontinuous at a point x € D(f), if

f(z) > limsup f(z,),

n—oo
for each sequence {x,} in D(f) such that lim x, = x.
n—oo

We say that f is lower semicontinuous (or upper semicontinuous) on D(f), if it is
lower semicontinuous (or upper semicontinuous) at any point in D(f).

The following is an example of a convex function in an Hadamard space.

Example 2.1.41. [/0] Let X be an Hadamard space. For a finite number of points
ai,as,...,ay and (wy,ws, ..., wy) € S (where S is the convex hull of the canonical basis

N
e1,ea,...,ex € RY) the function f: X — R defined by f(x) = . w,d*(x,a,) is convex
n=1

and continuous.
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2.2 Literature review

In this section, we review some recent and important past works on minimization problems,
monotone inclusion problems, equilibrium problems and fixed point problems. We shall
discuss in details, mainly the works done in Hadamard and p-uniformly convex metric
spaces, since these two spaces are our major interest in this thesis. For related impor-
tant works in other spaces (like the Hilbert spaces, Banach spaces, topological spaces,
Hadamard manifolds, Hilbert unit balls), we shall simply refer the readers to them.

2.2.1 Minimization problems

MPs (1.2.1) are very useful in optimization theory, convex and nonlinear analysis. One of
the most popular and effective methods for solving MPs is the Proximal Point Algorithm
(PPA), introduced by Martinet [126] in 1970 and further developed by Rockafellar [159] in
real Hilbert spaces as follows: Let f be a proper convex and lower semicontinuous function
defined on a real Hilbert space H. The PPA is defined for arbitrary x; € H by

) 1
russ = angmig (£0) + g1 lly = 2l) 02 1, 221
where p, > 0 for all n > 1. Rockafellar [159] proved that the PPA converges weakly

to a minimizer of a proper convex and lower semicontinuous function and raised a very
important question as to whether the PPA converges strongly or not. The question was
resolved in the negative by Giiler [79] who constructed a counterexample showing that the
PPA does not necessarily converges strongly (see also [23, 25] for more counterexamples on
this subject matter). In other words, except additional conditions are imposed on either
the convex function or on the underlying space, only weak convergence results for PPA are
expected. In order to obtain strong convergence of the PPA, Kamimura and Takahashi [96]
modified the PPA (2.2.1) into a Halpern-type PPA, and proved that it converges strongly to
a minimizer of f when f is a proper convex and lower semicontinuous function. Since then,
different modifications of the PPA for solving MPs have been introduced, well-developed
and extensively studied in both Hilbert and Banach spaces (see [1, 33, 92, , 139] and
the references therein).

The study of the PPA for solving MPs has recently been generalized from Hilbert spaces
to nonlinear spaces, in particular, the Hadamard manifolds and Hilbert unit balls (see
for example [62, 71, , | and the references therein). It is important to note that,
although the PPA was first introduced and studied in the linear settings, it is known to
have some important metric characteristics (see [13]). Thus, these generalizations (that
is, generalizing the study of PPA from Hilbert spaces to nonlinear spaces) are ideal and
very important. Motivated by this, Bacdk [18] in 2013, further generalized the study of
the PPA (for solving MPs) to the setting of Hadamard spaces, as follows: For arbitrary
point 21 in an Hadamard space X, define the sequence {z,} iteratively by

Toi1 = JI (2,), n > 1, (2.2.2)

Hn
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where p,, > 0 for all n > 1, and ‘];{ : X — X is the Moreau-Yosida resolvent of a proper
convex and lower semicontinuous function defined by

J)(z) = argmin (f(v) + icﬁ(v, x)) . (2.2.3)

veX

Remark 2.2.1. We note that the mapping J,{ is firmly nonexpansive (by Remark 2.1.31,
it is nonexpansive) and well defined for all > 0 (see [130]). Furthermore, if f is a proper

convex and lower semicontinuous function, then F(JI) coincides with the set argminf(y)
yeX

of minimizers of f (see [130), /).

Bacdk [18] proved that the PPA (2.2.2) A-converges to a minimizer of f provided that
> fn = oo and f has a minimizer in X. More precisely, he proved the following
theorem.

Theorem 2.2.2. Let X be an Hadamard space and f : X — (—o0, 0] be a proper convex
and lower semicontinuous function. Suppose that f has a minimizer in X and {pu,} is a

o0
sequence of positive real numbers such that »_ p, = oo. Then, for arbitrary starting point
n=1

x1 € X, the sequence {x,} generated by (2.23) A (weakly)-converges to a minimizer of f.

Since then, there has been increasing interest in the study of PPA for solving MPs by
numerous researchers in Hadamard spaces. For instance, in 2014, Bacdk [16] employed
a splitting version of the PPA for minimizing the sum of finitely many convex functions
in Hadamard spaces. In 2015, Cholamjiak et. al. [55] proposed a new algorithm by
combining the PPA and the S-type iteration process (1.1.3), resulting into the following
S-type PPA for approximating a common solution of MP (1.2.1) and fixed point problem
for two nonexpansive mappings in an Hadamard space: For arbitrary x; € X, define the
sequence {x,} by

Zp = arg Minye x [f(y) + 2%ﬂdQ(y, )|,
Tn+1 = (1 - an)Tlxn s> anTQyn7 Vn > 17

where f: X — (—o00, 0] is a proper, convex and lower semicontinuous function, 77, T5 are
nonexpansive mappings on X, {«,} and {f,} are sequences in (0, 1) satisfying some con-
ditions, and {u,} is a sequence such that p,, > > 0 for all n > 1. They obtained strong
convergence results of the iteration process (2.2.4) under some compactness conditions.
Later in 2016, Suparatulatorn et al. [174] proposed a new algorithm by combining the
PPA and the Halpern iterative process (1.1.4) (resulting into a Halpern-type PPA) to ap-
proximate a common solution of MP and fixed point problem for nonexpansive singlvalued
mapping in an Hadamard space. They proved the following strong convergence result.

Theorem 2.2.3. Let X be an Hadamard space and f : X — (—o0,00] be a proper

convex and lower semicontinuous function. Let T be a nonexpansive mapping on X such

that Q == F(T) Narg m1)1<1 f(y) is nonempty. Assume that {u,} is a sequence such that
ye
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Wy > >0 for some p and for all n > 1. Suppose that u,xy € X are arbitrarily chosen
and {x,} is generated in the following manner:

Yn = argmingex {f W) + 3y 20) | (2.2.5)
Tpi1 = au® (1 — a,)Tyy,

for each n > 1, where {a,} is a sequence in (0,1) satisfying
(I)lim «,, =0,
n—oo

(II) > o, = o0,
n=1

(III) > | — 1] < 00,
n=1

(IV) 2 ln = pina| < 00
Then {x,} strongly converges to z € Q which is the nearest point of Q to .

For more important results on MPs in Hadamard spaces, see [8, 16, 16, 54, | and the
references therein.

Since Hilbert spaces are the only Banach spaces which are Hadamard spaces, there is
a need to further generalize the study of MPs to more general nonlinear spaces which
includes other Banach spaces. The study of MPs in such nonlinear spaces, in particular,
p-uniformly convex metric spaces, is part of our interest in this work. However, existing
results concerning PPA in Hadamard spaces cannot be simply carried into p-uniformly
convex metric spaces due to the structure of the space; the smoothness constant ¢ (see
inequality (2.1.10)) among others, always serves as a natural obstacle to be overcome in
order to extend existing results on PPA to p-uniformly convex metric space.

Let X be a p-uniformly convex metric space. Choi and Ji [52] introduced the notion of

p-resolvent mapping of a proper, convex and lower semicontinuous function f in X as
follows: For z € X and p > 0, J{f : X — X is defined by

1
J)(z) = arg 1;%1)1? (f(v) - ﬂd@’ :v)p) : (2.2.6)
Clearly, if p = 2, then (2.2.6) reduces to the Moreau-Yosida resolvent (2.2.3). Using
(2.2.6), they proved that the PPA converges to a minimizer of f in a p-uniformly convex
metric space. In fact, they proved the following theorem.

Theorem 2.2.4. [52, Theorem 3.6] Let X be a p-uniformly convex metric space with
parameter ¢ > 0 and diameter o > 0. Let f : X — (—o0,00| be a proper uniformly
convez, lower semicontinuous function, and {u,} be a sequence of positive real numbers

such that lim ﬁ = 0. Suppose that the sequence {x,} in X is generated by the
n—oo i=1 Hi

following PPA:
Ty = Jjn(xn,1)7 n Z 1, (227)

where J] is as defined in (2.2.6). Then, {x,} converges to a minimizer of f.
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Kuwae [110] defined the p-resolvent mapping slightly different from the one in (2.2.6) as
follows:

Jlf(x) = argmin (f(v) + p’ui_ld(v,x)p) : (2.2.8)

veX

Observe that if we set p = 2 in #, then (2.2.8) reduces to (2.2.6). Thus, (2.2.8) is
more general than (2.2.6), and known to be applicable in obtaining solutions of initial
boundary value problems for p-harmonic maps (see [110] for more details). Kuwae [110]
also proved the existence of minimizers of proper lower semicontinuous coercive functions
in p-uniformly convex metric spaces.

Remark 2.2.5. To the best of our knowledge, the results of Kuwae [110], Choi and Ji
[52] are the only results on MPs in p-uniformly convex metric spaces. Thus, there are still
a lot to be done on MPs in p-uniformly conver metric spaces given their importance in
these spaces. Inspired by this, we further develop and generalize the study of MPs in these
spaces in. Chapter 7.

2.2.2 Monotone inclusion problems

One of the most important problems in monotone operator theory is the MIP (1.2.6),
which is also known as the problem of finding zeros of monotone operators. The quest in
developing different techniques for solving this problem by many researchers has become
enormous in recent time, since many mathematical problems such as MPs (1.2.1), VIPs
(1.2.10), fixed point problems, CFP (1.2.11), saddle point problems, and others, can be
modeled as MIP (1.2.6). For instance, the problem of finding a zero of a monotone operator
is the problem of finding a solution of MP for a proper convex and lower semicontinuous
function. In this case, the monotone operator is the subdifferential of the convex function.
Also, a zero of a monotone operator is a solution of a VIP associated to the monotone
operator. More so, a zero of a monotone operator is a fixed point of a nonexpansive map-
ping. In this case, the monotone operator is defined as in Example 2.1.29. Furthermore,
it describes the equilibrium or stable state of an evolution system governed by the mono-
tone operator, which is very important in ecology, physics, economics, among others (see
[24, 30, 49, 98, | and the references therein). One of the most popular techniques for
approximating solutions of (1.2.6) is the PPA. MIP (1.2.6) has been extensively studied
using the PPA and its modifications by numerious authors in both Hilbert and Banach
spaces (see [37, 38, 45, 96, 97, , , , | and the references therein).

The study of MIP was recently extended from Hilbert spaces to Hadamard spaces by
Khatibzadeh and Ranjbar [98]. In 2016, Khatibzadeh and Ranjbar [98] introduced and
studied the following PPA in Hadamard spaces for approximating a solution of MIP (1.2.6),
for which they obtained a A-convergence result:

{xo € X, (2.2.9)

_ JA
Lpn = J)\nmn—lu

where J§! is the resolvent of the monotone mapping A with sequence {\,} C (0, 00)
such that Y >° | A, = co. They also obtained a strong convergence result using the above
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PPA under the assumption that A is strongly monotone. More precisely, they proved the
following theorems.

Theorem 2.2.6. [95] Let X be an Hadamard space and X* be its dual space. Let A :
X — 2% be a multivalued monotone operator which satisfies the range condition and
A7H0) #£ 0. Let {\.} be a sequence of positive real numbers such that 0 < X < \,,. Then,
the sequence {x,} generated by (2.2.9) A-converges to an element of A~1(0).

Theorem 2.2.7. [08] Let X be an Hadamard space and X* be its dual space. Let A: X —
2X" be a multivalued o-strongly monotone operator which satisfies the range condition and

A7H0) # 0. Let {\,} be a sequence of positive real numbers such that > A, = oco. Then,

n=1

the sequence {x,} generated by (2.2.9) converges strongly to the single element x of A=1(0).

Very recently, Ranjbar and Khatibzadeh [153] proposed the following Mann-type and
Halpern-type PPA in Hadamard spaces for approximating solutions of (1.2.6):
e X,
o , (2.2.10)
Tpt1 = QnTn @ (1 — ) J5 Ty

and

) e X7
o ., (2.2.11)
Tpg1 = ou @ (1 — ay)J3 2,

where {\,} C (0,00) and {a,} C [0,1]. Under some conditions, they obtained A-
convergence result using (2.2.10) and strong convergence result using (2.2.11). Motivated
by the work of Khatibzadeh and Ranjbar [98], Heydari et.al. [33] modified the PPA (2.2.9)
in order to approximate a common solution of a finite family of MIPs in Hadamard spaces.
They obtained a A-convergence result when the underlying operators are monotone and
a strong convergence result when these operators are strongly monotone.

Remark 2.2.8. Besides the results of Khatibzadeh and Rangbar [95], Heydari et.al. [57],
Rangbar and Khatibzadeh [155], which mainly motivate our study of MIPs (1.2.6) in
the next chapter, we would like to mention that there are few other results on MIPs in
Hadamard spaces (see for example, [0, /1, /7, , , /). This then means that,
the study of MIPs in Hadamard spaces is still in the developing stage. Therefore, it is
important to further develop and generalize this study in Hadamard spaces.

2.2.3 Equilibrium problems

EP (1.2.7) is another important area of research in mathematics that has attracted the
interest of many researchers in recent time. It includes many other optimization and math-
ematical problems as special cases; namely, MPs, VIPs, complementarity problems, fixed
point problems, CFPs, among others. Thus, EPs are of central importance in optimization
theory as well as in nonlinear and convex analysis.
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Throughout this thesis, we shall denote the solution set of the EP(1.2.7) by EP (¢, C') and
call all points in X satisfying (1.2.7), an equilibrium point of the underlying bifunction ¢.

EPs have been widely studied in Hilbert, Banach and topological vector spaces by many
authors (see [27, 28, 59, 89, 176, 179]), as well as in Hadamard manifolds (see [58, 130]).
The EP (1.2.7) was recently studied in Hadamard spaces by Kimura and Kishi [100] under
the assumption that the Hadamard space must satisfy the Convex Hull Finite Property
(CHFP) (see [100, 108] for the definition of CHFP). In particular, they proved the following
theorem.

Theorem 2.2.9. Let X be an Hadamard space with CHFP and C be a nonempty closed
and convex subset of X. Let {a,} be a sequence of real numbers satisfying 0 < a < oy, <
b < 1. For arbitrary 1 € X, define the sequence {x,} in X by

Tpt1 = Qpn @ (1 — ) JPx,,n > 1, (2.2.12)

where J¥ : X — C is the resolvent of the bifunction ¢ satisfying some conditions (see
[100, Condition 1]). Then, {x,} A-converges to an element of EP(p,C).

Very recently, Kumam and Chaipunya [108] studied the EP (1.2.7) in Hadamard spaces
without the CHFP assumption. They established the existence of an equilibrium point of a
bifunction satisfying some convexity, continuity and coercivity assumptions, and they also
established some fundamental properties of the resolvent of the bifunction. Furthermore,
they proved that the PPA A-converges to an equilibrium point of a monotone bifunction
in an Hadamard space. More precisely, they proved the following theorem.

Theorem 2.2.10. Let C' be a nonempty closed and convex subset of an Hadamard space
X and ¢ : C' x C — R be monotone, A-upper semicontinuous in the first variable such
that D(JY) D C for all A > 0. Suppose that EP(p,C) # 0 and for an initial guess xo € C,
the sequence {x,} C C is generated by

Ty = J{ (vp-1), n €N,

where {\,} is a sequence of positive real numbers bounded away from 0. Then, {z,}
A-converges to an element of EP(p,C).

In the linear settings (for example, in Hilbert spaces), EPs have been generalized into an
important optimization problem called the MEP (1.2.8). The MEP is an important class
of optimization problems since it contains many other optimization problems as special
cases. For instance, if ¢ = 0 in (1.2.8), then the MEP (1.2.8) reduces to MP (1.2.1).
Also, if f =0 in (1.2.8), then the MEP (1.2.8) reduces to the EP (1.2.7). Therefore, it is
indisputable that MEP is one of the most general and applicable problems in optimization
theory. The existence of solutions of MEP (1.2.8) was established in Hilbert spaces by
Peng and Yao [118] (see also [10]). Since then, many authors have extensively studied the
MEP (1.2.8) in both Hilbert and Banach spaces (see [10, 75, 1416, 118] and the references
contained therein).

Remark 2.2.11. The study of EPs in Hadamard spaces is still in the embryonic stage
since there are very few results concerning EPs in Hadamard spaces. Thus, it is important
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to further develop its study in these spaces. More so, to the best of our knowledge, MEP
(1.2.8) has never been studied in the frame work of Hadamard spaces. Since MEPs contain
both MPs and EPs as special cases in Hilbert spaces, it is important to extend its study
to Hadamard spaces, so as to unify other optimization problems (in particular, MPs and
EPs) in Hadamard spaces.

2.2.4 Fixed point problems

The approximation of solutions of fixed point problems for nonlinear mappings is one of
the most flourishing areas of research in mathematics that has enjoyed prosperous de-

velopment in the last fifty years or so (see [19, , ]). Its extensive applications in
diverse mathematical problems such as inverse problems, signal processing, game theory,
fuzzy theory and many others (see [51, 127, 156, 59] and the references therein) is of great

interest and has been a major source of attraction for researchers in this direction. Fur-
thermore, many mathematical problems emanating from biology, engineering, economics,
computer science, are among others which can be modeled as a fixed point problem. As
mentioned earlier, the origin of fixed point problems in metric spaces goes back to the
Banach contraction mapping principle. Since then, there have been rapid growing interest
in this direction. For instance, the work of Kirk [104] was the pioneer work of fixed point
theory in Hadamard spaces, after which Dhompongsa and Panyanak [105], Saejung [161],
Shi and Chen [167], Wangkeeree et al. [185], Shi et al. [168], among others, continued to
obtain interesting fixed point results in Hadamard spaces.

In 2003, Kirk [101] proved that every nonexpansive singlevalued mapping defined on a
nonempty closed convex and bounded subset of a CAT(0) space has a fixed point. In
2008, Dhompongsa and Panyanak [105] proved the following theorems for approximating
solutions of fixed point problems for nonexpansive mappings in Hadamard spaces.

Theorem 2.2.12. Let C' be a bounded closed and convex subset of X and T : C' — C' be
a nonexpansive asymptotically reqular mapping. Then, for any xo € C, the sequence {x,}
generated by the Picard iteration process, A-converges to an element of F(T).

Theorem 2.2.13. Let C' be a bounded closed and convex subset of X and T : C' — C' be
a nonexpansive mapping. Then, for any initial point xo € C, the sequence {x,} generated
by the following Mann iteration process, A-converges to an element of F(T):

Tpi1 = @y, ® (1 — a,)Tx,, n >0, (2.2.13)

where {ay,} is a sequence in (0,1) such that > o, = oo and limsup o, < 1.
n=0 n—00

Theorem 2.2.14. Let C' be a bounded closed and convex subset of X and T : C'— C' be
a nonexpansive mapping. Then, for any initial point xog € C, the sequence {x,} generated
by the following Ishikawa iteration process, A-converges to an element of F(T)):

Tni1 = T (B Tx, @ (1 — Bn)zy) & (1 — o)z, n >0, (2.2.14)
where {a, } and {B,} are sequences in (0, 1) such that > a,(1—a,) =00, > fu(l—a,) <
n=0 n=0

oo and limsup 3, < 1.

n—oo
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Later in 2009, Saejung [161] introduced the following Halpern iteration process and proved
its strong convergence to a fixed point of a nonexpansive mapping in an Hadamard space:
For arbitrary u,x; € C, let {x,} be generated by

Tpt1 = au® (1 —a,)Tx,, Yn > 1. (2.2.15)
In fact, he proved the following theorem.

Theorem 2.2.15. Let C' be a closed and convex subset of an Hadamard space X and
T :C — C be a nonexpansive mapping with nonempty fized point set F(T). Suppose that
{z,} is generated by (2.2.15), where {a,} is a sequence in (0,1) satisfying

(i) lim «, = 0;

n—o0

B (o.9)
(1) > o, = o0
n=1

n—oo \ &n+l

(111) Y | — apy1] < 00 or lim < == > =1.
n=1

Then, {x,} converges to z € F(T) which is the nearest point of F(T') to u.

In 2012, Shi and Chen [167] studied the following viscosity iteration process for approxi-
mating fixed points of a nonexpansive mapping 7' in Hadamard spaces: Let x; € C be a
unique fixed point of the contraction z — tf(x) & (1 —t)Tx, t € (0,1); i.e.,

v =tf(x) ® (1 —t)Txy. (2.2.16)
Also, for arbitrarily zg € C, let {z,,} be a sequence generated by
Tpi1 = Qnf(2,) ® (1 — )Tz, n >0, (2.2.17)
where {a,} C (0,1). They proved that {x;} defined by (2.2.16) converges strongly to
T € F(T) such that & = Pp(p) f(Z) satisfies property P, i.e., if for x,u,y1,y, € X,
d(x, Pyygu)d(z,y1) < d(z, Py you)d(z, y2) + d(x, w)d(y1, y2)-

Furthermore, they obtained that {z,} defined by (2.2.17) converges strongly to & € F(T)
under appropriate conditions on {a,,}.

By using the concept of quasilinearization mapping, Wangkeeree and Preechasilp [181]
improved Shi and Chen’s results. In fact, they proved some strong convergence theorems
for the two iterative schemes (2.2.16) and (2.2.17) in an Hadamard space without the
property P.

Later, Wangkeeree et al. [185] studied some strong convergence theorems of the viscosity
approximation schemes for an asymptotically nonexpansive mapping in Hadamard spaces:
Let C be a closed convex subset of an Hadamard space X and T : C' — C' be an asymptot-
ically nonexpansive mapping. For a given contraction f on C' and «, € (0, 1), let x,, € C
be a unique fixed point of the contraction z — a, f(z) ® (1 — a,)T"x; i.e.

Ty =anf(z,) ® (1 —ap)T"x,, n>1. (2.2.18)
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Also, for arbitrary x; € C, let {x,} be a sequence defined by
Tpi1 = anf(z,) ® (1 — )Tz, n>1. (2.2.19)

They proved that the iterative schemes (2.2.18) and (2.2.19) converge strongly to the same
point & := Pp f(Z), which is the unique solution of the variational inequality:

(Ff3,73) >0, z€F(T) (2.2.20)

In 2013, Kim [102] studied the Ishikawa-type iterative scheme for approximating fixed point
of a completely continuous and uniformly L-Lipschitzian asymptotically demicontractive
singlevalued mapping in an Hadamard space (see Definition 2.1.37). Under some compact-
ness conditions, Kim [102] obtained a strong convergence result. In 2014, Liu and Chang
[120] proved some strong convergence theorems using Mann- and Ishikawa-type iterative
schemes for uniformly L-Lipschitzian asymptotically demicontractive singlevalued map-
ping. Several other authors have also studied fixed point problems for nonlinear mappings
in Hadamard spaces (see, for example [8, 9, 27,
and the references therein).

) 9 9 ) ) ) 9 3 ) ]

Researchers are now beginning to extend the study of fixed point problems for nonlinear
mappings from Hadamard spaces to p-uniformly convex metric spaces. To the best of our
knowledge, there are only two results on fixed point problems for nonlinear mappings in
p-uniformly convex metric spaces (see [53, 160]). However, we shall omit the discussion
of these results since they are not of interest to our study on fixed point problems in
p-uniformly convex metric spaces.

2.3 Some important lemmas

In this section, we recall important lemmas which will be needed in the poof of our main
results. We begin with the following important inequalities.

Lemma 2.3.1. Let X be a CAT(0) space, w,z,y,z € X and t,s € [0,1]. Then

(i) d(tz & (1 —t)y, 2) < td(z, z) + (1 — t)d(y, 2) (see [65]).

(ii) d(tx ® (1 —t)y, 2) < td*(z, 2) + (1 — 1)d(y, 2) — (1 — t)d%(z, ) (sce [65]).
(iii) 2tz & (1 —t)y, 2) < £2d%(z, 2) + (1 — 1)2d2(y, z) + 26(1 — £)(Z2, y2) (see [67]).
(iv) d(tw @ (1 — t)z, ty ® (1 — t)2) < td(w,y) + (1 — t)d(z, z) (see [31]).

(v) z =tz ® (1 —t)y implies (27, z0) < t(zy, z£) (see [67]).

(vi) dtz ® (1 —t)y, sz ® (1= s)y) < [t — s|d(z,y) (see [12]).

Lemma 2.3.2. [18/] Let X be a CAT(0) space. For any t € [0,1] and u,v € X, let
uy =tu@® (1 —t)v. Then, for all z,y € X, we have
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(i) (uk, ) < t{ud, wl) + (1 — t) (0, ugl));

(ii) (ugt, ) < t(uk,u)) + (1 — t)(vk, ut);

(iii) (ugt, v) < t(ut, vf) + (1 — t) (0, vf);

(iit) d*(w,u) < d*(y,w) + 2(z3, T0).

Lemma 2.3.3. [150] Let X be a CAT(0) space. Let {x;,i = 1,2,...,N} C X and
€0,1], i=1,2,...,N such that fjai — 1. Then,

=1

N
d (@ aixi,z> < Z% xi,z), Vz € X.
i=1

Remark 2.3.4. [150]. For a CAT(0) space X, if {x;,i = 1,2,...,N} C X, and «; €
0,1], i =1,2,...,N. Then by induction, we can write

o « apN_—
@O&il'i = (1—CYN)|: L xr1 D 2 o@D+ D Nl ITn_1| © anTn
=1 1—05N 1—OéN 1—OéN
N-1 o
= (1—aN)i6:?1_ain@aNxN. (2.3.1)

The following Lemmas are very important as regards to A-convergence.

Lemma 2.3.5. [05] Every bounded sequence in an Hadamard space always have a /\-
convergent subsequence.

Lemma 2.3.6. [/1/] Let X be an Hadamard space. Then, every bounded sequence in X
has a unique asymptotic center.

Lemma 2.3.7. [00] If {x,} is a bounded sequence in a closed and convex subset C' of an
Hadamard space, then the asymptotic center of {x,} is in C.

Let {z,,} be a bounded sequence in a closed and convex subset C' of an Hadamard space.
We use the notation
Ty, = w <= ®(w) = inf ®(x),
zeC

where ®(x) = limsupd(z,,z). We note that z,, — w if and only if A({z,}) = {w} (see

[132]). o

Lemma 2.3.8. [172] If {x,} is a bounded sequence in a closed and convex subset C' of an

Hadamard space, then A-lim x,, = w implies that x,, — w.
n—oo

Lemma 2.3.9. [17/, Opial’s Lemma] Let X be an Hadamard space and {x,} be a sequence
wn X. If there exists a nonempty subset F' in which
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(i) lim d(x,, z) exists for every z € F, and
n—oo
(11) if {xn,} is a subsequence of {x,} which is A-convergent to x, then x € F.

Then, there is a p € F such that {x,} is A-convergent to p in X.

Lemma 2.3.10. [9/] Let X be an Hadamard space, {x,} be a sequence in X and x € X.
Then, {x,} /-converges to x if and only if lim sup(Zz,,, 7)) < 0 for ally € C.
n—o0

Definition 2.3.11. Let X be a complete convexr metric space and T : X — X be any
nonlinear mapping. T is said to be A-demiclosed, if for any bounded sequence {x,} in X
such that A-lim x,, = z and lim d(z,, Tx,) =0, then z = Tz.

n—oo n—oo
Lemma 2.3.12. [00] Let X be an Hadamard space and T : X — X be a nonexpansive
mapping, then T is A-demiclosed.

Lemma 2.3.13. [29] Let C be a closed and convez subset of an Hadamard space X and
T :C — CB(C) be a nonexpansive multivalued mapping, then the conditions that {z,} A-
converges to x and {d(z,,z,)} converges strongly to 0 (where z, € Tx,), imply that
xeTx.

Lemma 2.3.14. [1/9] Let X be an Hadamard space and T : X — X be a generalized
asymptotically nonspreading mapping, then T is A-demiclosed.

We now recall other important lemmas to our study.

Lemma 2.3.15. (see [115, Lemma 7]) Let X be a uniformly convex hyperbolic space with
modulus of uniform convexity n. For any ¢ > 0, € € (0,2], A € [0,1] and v,z,y € X, we
have that

d(z,v) < ¢, d(y,v) < c and d(z,y) > ec imply that d((1-N)xBAy,v) < (1-2A(1=)n(c,€))c.

Remark 2.3.16. If X is a CAT(0) space, then X is uniformly convex with modulus of
uniform convexity n(c, €) = % (see [115, Proposition 8]).

Lemma 2.3.17. [175] Let {x,} and {y,} be bounded sequences in a metric space of hy-
perbolic type X and {B,} be a sequence in [0,1] with liminf 3, < limsup £, < 1. Suppose
n—oo

n—o0

that Ty = Bptn © (1 — Bo)yn for all n > 0 and limsup(d(Yn+1, Yn) — d(Tpi1, ) < 0.

n—00

Then lim d(y,,x,) = 0.
n—oo

Lemma 2.3.18. [189] Let C be a closed and convexr subset of an Hadamard space X
and T : C — C be a uniformly L-Lipschitzian and ({p}, {v.}, ¢)-total asymptotically
demicontractive mapping with F(T) # 0. If {x,} is a bounded sequence in C such that
A-T}Lrlgoxn =p and Jirgod(xn, Tz,) =0. Then Tp = p.

Remark 2.3.19. If ¢(\) = A\? and v, = 0 for each n > 1, then in Lemma 2.3.18, T is an
asymptotically demicontractive mapping.
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Definition 2.3.20. [05] Let C' be a nonempty closed and convex subset of a CAT(0) space
X. The metric projection of X onto C' is a mapping Po : X — C which assigns to each
x € X, the unique point Pcx in C such that d(z, Pox) = inf{d(x,y) : y € C'}.

Lemma 2.3.21. [05, Theorem 2.4] Let C' be a nonempty closed and convex subset of an
Hadamard space X, x € X andu € C. Then, u = Pz if and only if <y7¢, ﬂ) >0vyeC.

Lemma 2.3.22. [88] Let X be a metric space and A, B € P(X). Then, for all a € A,
there exists b € B such that d(a,b) < H(A, B).

Lemma 2.3.23. [171] Let X be a complete metric space and T be a mapping from X to
CB(X) such that for all z,y € X,

H(Tx,Ty) < Ad(z,y),
where 0 < A < 1. Then T has a fized point.

The following lemmas are very useful to our study in p-uniformly convex metric spaces.

Lemma 2.3.24. [100],[70]. For p > 1, let X be a complete p-uniformly conver metric
space with parameter ¢ > 0. Then,

(i) every bounded sequence in X has a unique asymptotic center,

(i1) every bounded sequence in X has a A-convergent subsequence.

Lemma 2.3.25. For p > 1, let X be a complete p-uniformly convexr metric space with
parameter ¢ > 0, and T : X — X be a nonexpansive mapping. Then T is A-demiclosed.
The proof follows easily from the proof of [00, Lemma 2.3]

We now end this section with the following results which play vital roles in establishing
strong convergence results.

Lemma 2.3.26. [191]. Let {a,} be a sequence of non-negative real numbers satisfying
an—l—l S (1 - an>an + O‘nfsn + 7n7 n Z 07

where {ay, }, {0,} and {v,} satisfy the following conditions:
(i) {a,} C[0,1], > a, = o0,

n=0
(#) limsup 6,, < 0,

n—oo
o

(711) v, > 0(n > 0), Y < 00,

n=0

Then lim a, = 0.
n—oo

Lemma 2.3.27. [123] Let {a,} be a sequence of non-negative numbers such that
an+1 S (1 - Oén)an + anéna

where {6,} is a sequence of real numbers bounded from above and {a,} C [0,1] satisfies
>y, = 00. Then it holds that

lim sup a,, < limsupd,.
n—oo n—oo
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Lemma 2.3.28. [108] Suppose that {z,} is A-convergent to q and there exists y € X
such that imsup d(x,,y) < d(q,y), then {x,} converges strongly to q.

n—oo

Lemma 2.3.29. [122]. Let {a,} be a sequence of real numbers such that there exists a
subsequence {n;} of {n} such that an, < an,4+1 Vj € N. Then there exists a nondecreasing
sequence{my} C N such that my — oo when the following properties are satisfied by all
(sufficiently large) numbers k € N:

Uy < U1 a0 A < Q1.

In fact, m, = max{i < k:a; < a;11}.
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Chapter 3

Contributions to Monotone Inclusion
Problems in Hadamard Spaces

3.1 Introduction

The extension of known concepts from Hilbert, Banach and topological vector spaces, as
well as differentiable manifolds to Hadamard spaces has been of great interest to many
researchers in this subject field. One of such known concept is the theory of monotone
operators which is known to be one of the most important notions in optimization theory.
Monotone operator theory is an area of research in mathematics that has received a lot of
attention over the years. An important problem in monotone operator theory is the MIP
(1.2.6). In Section 2.2.2, we reviewed some important works that motivate our study of
MIPs in Hadamard spaces. In this chapter, based on Remark 2.2.8, we shall propose and
study some strong convergence theorems for approximating solutions of MIPs in Hadamard
spaces, and also apply the obtained results to solve other related mathematical problems
with numerical examples.

3.2 Preliminaries

In this section, we introduce and prove some new lemmas that will be needed in establishing
the proposed strong convergence theorems of this chapter. We begin with the following
important inequalities.
Lemma 3.2.1. Let X be a CAT(0) space, {x;, i =1,2,... N} C X, {y;, i=1,2,...,N} C
N
X and o; € [0,1] for eachi=1,2,...,N such that > a; = 1. Then,
=1

(2

N N N
=1 =1 =1

Proof. (By induction). For N = 2, the result follows from Lemma 2.3.1 (iv). Now, assume
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that (3.2.1) holds for N = k, for some k > 2. Then, we prove that (3.2.1) also holds for
N =k + 1. Indeed, by (2.3.1), Lemma 2.3.1 (iv) and our assumption, we obtain that

k+1 k+1
d| Do P
i=1 i=1

! k
o Q;
= d|(1—ap 7 D 1Tk, (1 — Qg ————U; B Q1 Yht1
(00 o0 =% nersin (1 o) ) = B
k o k o
< (1= oaypy)d — D ——y; Q1 d(Tpyn,
< ( k1) <2.6:?1—04k+1 iez?l_ak—i-ly) + Qg1 d(Tpy1, Yrt1)
k
< Y aid(wi i) + s d(Teg, Yrr)

=1

k+1

i=1

Hence, (3.2.1) holds for N = k+ 1. Therefore, we conclude by induction that (3.2.1) holds
for all N € N. ]

Lemma 3.2.2. Let X be a CAT(0) space, x1, x5, x5 € X and ay, s, as, 1, P, B3 € [0, 1]
such that oy + as + a3 =1 and B + PBo + B3 = 1. Then,

3 3
o aq
d o;T;, s < lag — d(xq,x —I—(l— )dm,x]
(ze:? lez?ﬂ ) s ﬂg‘[l—%(l ) 1 —as e

(8%

+| 1 fQBg (1= Bs)d(z1, x2). (3.2.2)

1—063

Proof. From Lemma 2.3.1 (vi), (iv), (i) and (2.3.1), we obtain

3 3 2 2
o Q;
d (@%%,@ﬁi%> < d ((1 _@3)@—1 _a31’¢@043$3,(1 _53)@—1 — xi@ﬁﬂ':s)
i=1 i=1 = =

=1 =1
2 2
+d ((1 — [3) @ 1 —x; @ Baxs, (1 — Ps) @ 1 fzﬁsﬂh S3) 53353)
i=1 i=1
2
< |ag — Bs]d (@1(_1 11527933)
S ;
+(1 — Bg)d (@ 1— 043111'7 @ 1 ﬁgl'Z) + 6361(1’3,1‘3)
< oz — fs) L Oqa d(x1,x3) + (1 — 7 flag) d(xz,a::s)]
+| 1 (_1/20{3 - 1 fQ/B |(1 - 63)d($17$2)

40



Remark 3.2.3. Observe that, if we set az = 53 = 0, then Lemma 3.2.2 reduces to Lemma
2.5.1 (vi).

Lemma 3.2.4. Let X be an Hadamard space and A : X — 25 be a monotone operator.
Then,

(i) d*(u, J{z) + d*(J{w, x) < d*(u,z) for allu € F(JP), x € X and A > 0,

(i) d(J{z, J}z) < (,/1 — %) d(z, J}tz), Vo e X and for 0 < X < p.

Proof. (i) For any u € A~Y(0), # € D(J{') and A > 0, we obtain from Theorem 2.1.32 (i)
and (ii), and by the definition of firmly nonexpansive mapping that

—
ATz u) < (J{x u,zh)

1
= 3 (®(Jz,u) + d*(u, z) — d*(Jz, 7)),
which implies
d?*(u, J{x) + d*(J{x, ) < d?(u, z).
(ii) From Theorem 2.1.32 (iii), we obtain that

A —A
pt R O J;?x) < ﬂTdZ(x, Jl‘:‘x),

which implies that
A
d*(Jia, J;:‘.I) < (1 - ;) d?(, Jl’:‘m).

d(J{'w, Jtw) < (, /11— g) d(z, J;'z).

Remark 3.2.5. Observe that the inequality in Lemma 3.2./ (i) is a property of any firmly
nonexpansive mapping. That is, if T is a firmly nonexpansive mapping, then from the
definition of quasilinearization mapping (Definition 2.1.1/), we obtain

That is,

O

d*(u, Tx) + d*(Tz,r) < d*(u,x), Yu € F(T), z € X.

Lemma 3.2.6. Let X be an Hadmard space and X* be its dual space. Let T : X — X be
a nonexpansive mapping and for each 1 =1,2,... N, let Jf" be the resolvent of monotone

operators A; of order A > 0 such that F(T)ﬂF(JfN)ﬂF(JfN’l)ﬂ- COF(J)NF (M) # 0.
Then

F(ToJ™ o " "o..oJf2o0 ) = F(T)NFJM)NFIN N nF(J{2) N F(IM).
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Proof. Clearly, F(T)NF(JAVYNF(J{N") N N F(J2) N F(JM) C F(ToJM™ o JiN o

o J2 o JM).

We now show that F(T o JfN o J)‘\qN‘l 0---0 J)f\b o J;\“l) C F(T) N F(J;\lN) N F(JfN_l) N

N F(J2) N F(JM.

Let &Y = J{M 0 JV " 6.0 J&2 0 JM and @9 = I, then for any z € F(T o ®Y) and

ye F(T)NFJMYNFJN) N0 F(J22) N F(JM), we have that

P(z,y) = E(TPVz,TOy)
< &0z, ®Vy)
= dg(@ivm,y).

From Lemma 3.2.4 (i) and (3.2.3), we have

P (T (@), oV ) < (@Y e, y) — BT (@Y ), y)

dQ(x7 y) - dZ(q)é\V'Ia y)
& (DY, y) — (D} x,y),

VAN VANNEER

which implies
ol = @f\v_lx.
Also, from Lemma 3.2.4 (i) and (3.2.3), we have

(Y r, @Y ) < (DY Pa,y) — (DY o, y)

d*(z,y) — d*(®" 'z, y)
(DY, y) — (P z,y),

VAN VANNEER

which implies
CIDf\Vflac = q)f\vfzx.

Continuing in this manner, we obtain that

Pr=0""o=0" =0 2= . =Plx =0z =P\r =1

From (3.2.6), we obtain
T = J/‘\L‘lx.
From (3.2.6) and (3.2.7), we obtain

r =03 = J2(JiMe) = Jw,
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Continuing in this manner, we obtain

:E:J;fha::Jfo:---:JfN’lx:Jme. (3.2.9)
Finally, from (3.2.6), we get
r=T(®)z) =T (3.2.10)

Thus, we have from (3.2.9) and (3.2.10) that F(T o JI¥ o JiN"" o ... 0 Jf2 o JM) C
F(T)N F(JM™)n F(JfN’l) N---NF(J*?) N F(J"), which completes the proof. O
Lemma 3.2.7. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X7 i =1,2,...,N be a finite family of multivalued monotone operators and T : X — X
be a nonexpansive mapping. Then, for ; € (0,1) with Zi]\io B; = 1, the mapping S
defined by Syx := 601*@51Jf1x6962J:\423:@- . -@BNJf‘Nx is nonexpansive and F(ToS,) C
AN F(JMY N F(T) forallz € X, 0 < X < p.

Proof. Since A; is monotone for each i = 1,2,..., N, it follows from Theorem 2.1.32 that
Jf" is single-valued and nonexpansive for A > 0, i = 1,2,..., N. Thus, by Lemma 3.2.1,
we obtain

d(Sxa,Sxy) < Bod(x,y) + rd( I3 a, Ty) + -+ Byd(J{Nx, JNy)
N
=0
= d(z,y).
Hence, S is nonexpansive.
Now, let z € F(T 0 S,) and v € N, F(J*) N F(T). Then, by Lemma 3.2.1, we obtain

d(z,v) d(S,z,v)

Bod(z,v) + Bld(J;:‘lx, v)+ -+ BNd(J;:‘N:U, v)
N-1

> Bd(w,v) + Byd( SV, v) (3.2.11)
=0

dz:ic, v).

IAIA

IN

IN

From (3.2.11), we obtain that

N-1

d(z,v) =Y Bid(z,v) + nd(J¥a,v) = (1 = By)d(z, v) + Bd(J; N a, v),

=0
which implies that d(z,v) = d(J¥z,v). Similarly, we obtain

d(z,v) = d(J;?N—lx, V)= = d(Jlqu:, v) = d(J/f‘l:c,v).
Thus,

d(xz,v) = d(Jfo,v) = =d(foxr @ ﬁlj;flx & ﬂgJ,‘j‘zx DD BNJ;:‘N:B,U). (3.2.12)
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Now, let d(z,v) = ¢. If ¢ > 0, and there exist € > 0 and 4,5 € {0,1,2,..., N}, i # j such
that d(Jx, Jf z) > ec (where J{ = I), then since X is uniformly convex, we obtain
from Lemma 2.3.15 that

d(Box @ ﬁlj;jh:ic &> ﬂngf‘Qa: DD BNJ;‘Nx, v) < ¢ =d(z,v),
and this contradicts (3.2.12). Hence, ¢ = 0. This implies that = v, hence
x=Jkz i=1,2,... N (3.2.13)
Thus, d(z, Tx) = d(T'S,x, Tx) < d(S,z,x) < 0, which implies that z = T'z.
Since 0 < A < u, we obtain from Theorem 2.1.32 (iii) and (3.2.13) that
d(z, inm) < 2d(z, inx) =0,1=1,2,...,N.

Hence, z = inx, i=1,2,...,N. Therefore, we conclude that F(T'0.S,) C ﬂf\ilF(Jf") N
F(T). O

3.3 Iterative algorithm for a family of monotone in-
clusion problems in Hadamard spaces

Here, we introduce a new mapping given by a finite family of multivalued monotone opera-
tors in an Hadamard space. We further propose a modified Halpern-type algorithm for the
mapping and prove a strong convergence theorem for approximating a common solution
of finite family of monotone inclusion problems in an Hadamard space. We also applied
our results to solve a finite family of MPs in an Hadamard space. A numerical example
of our proposed algorithm in nonlinear setting is given to further show the applicability
of the obtained results.

3.3.1 Main results

Definition 3.3.1. Let X be an Hadamard space and X* be its dual space. Let A; :
X — 2% i =1,2,...,N be multivalued monotone operators with resolvent operators
Jil), i1=1,2,...,N. Then, we define the mapping T,, : X — X as follows:

(U7 = T,

Uz =aD T Ve @b a @ e,

U = ol 10Nz @ b UL % ® cn DUz,

Uz = aP IPOUP e @ 0P Uz @ U, (3.3.1)
U7(LN71)Q: _ aq(lel)JiNfl)UéN 2)37 @ b UéN 2)33 EB U(N 2) z,

(T = U,(LN)x = agN)J)(\]:)Ur(LN Uy &5 bn ,(LN Vo cn U,(LN 1):1;,
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for all x € X, n > 1, where {\,} is a sequence of real numbers and {a,(f)}, {bﬁf)}, {cﬁf)}
are sequences in [0, 1] such that

a + 5D 4 =1 =12 .. .N.

n n n

For the case where A, = \, ai) = a@, ) =@ and ¢! =@ ¥n>1,i=1,2,...,Nin
(3.3.1), we have the mapping T : X — X defined as

Te=UWNg = a(N)JiN)U(N_l)x @ bMUNVg @ MyW-Lyg, (3.3.2)

Lemma 3.3.2. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i = 1,2,..., N be multivalued monotone operators that satisfy the range condition.
Suppose T' := NN A71(0) # 0 and the mapping T, : X — X is defined by (3.3.1).
Then, US),USLQ),...,UT(LN*U,TH are nonexpansiwe, and I' = F(T,). In particular, T is
nonezpansive and I' = F(T).

Proof. Tt follows from Theorem 2.1.32 that Jizn) is nonexpansive for each ¢ = 1,2,..., N.
Thus, for each z,y € X, we obtain from Lemma 3.2.1 that

d(Tyr, Toy) < aMdJNVUN Dz, JMVUNDy) 4 6N dUN Y, UNDy)
DU, TNy

d(UT(LN_l)x7 UT(LN_l)y)

agN_nd(Jg—l)UT(LN_z)x, Jg—l)UT(LN—z)w + b(N—l)d<U(N—2)x7 U(N—Q)y)
e (U, UNy)

AU, UM Dy)

VARVAN

IN

< d(UYa,UMy)
< d(z,y).
Hence, Ufll), 79), ce N1 and T, are nonexpansive. We now show that I' = F/(7},). For

this, it is obvious that I' C F(7},). So, we only show that F(T,) C I'. Let p € F(T,,) and
z € I', we obtain from (3.3.1) and Lemma 2.3.3 that

d(p,z) < ale)d(J)(\J:)UT(LN_l)p, z) + b,(lN)d(Uqu_l)p, z) + chN)d(UT(LN_l)p, 2)
< aMd(I\VUNp, 2) + 6N AUNVp, 2) + AUV, 2)
< dUNp, 2
< NV VAINTIUN D, 2) 4 VAU D, 2) + VAU Dp, 2)
< dUNp,z)
< aPd(IPUWp, 2) + bPd(UWp, 2) + Pd(UDp, 2) (3.3.3)
< dUPp,z)
< aPd(Jp, 2) + bV d(p, 2) + Pd(p, z)
< d(p, z).
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Thus, we obtain that
d(p,z) = aDd(J)p, 2) + 6D d(p, 2) + Vd(p, 2),
which implies that d(p, z) = d(J /(\i)p, z). Similarly, we obtain
d(p,z) = d(Jg)p, Z) == d(J/(\fjfl)p, z) = d(Jg)p, z).

Thus, by the uniform convexity of X (see Remark 2.3.16), we obtain that J /(\Zn)p =p, 1=
1,2,...,N. Therefore, F(T,,) C I" and this completes our proof. O

Lemma 3.3.3. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i = 1,2,..., N be multivalued monotone operators that satisfy the range condition.

Let T, : X — X be defined by (3.3.1) and T : X — X be defined by (3.3.2), where {\,}
is a sequence of real numbers and {as)}, {bq(f)}, {c,(f)} are sequences in [0, 1] such that the
following conditions are satisfied
(i) o +0) + P =1, i=1,2,... N,
(i) limal =a®, i=1,2,... N,
n—oo

(i) 0 < A\, < AVn >1, and lim A\, = \.

n—oo

Then, lim d(T,x,Tx) =0 Vz € X.

n—oQ

Proof. Let x € X, then from (3.3.1), (3.3.2), Lemma 3.2.1, Lemma 3.2.2 and Lemma 3.2.4
(ii), we obtain that

d(UWMz, UM ) d(ag)J/(\i)x oMz @ Ve, a(l)J)(\l)x oWz @ W)

< d(ag)J/(\i)x ®bWVr @ Ve, a,(ll)J)(\l)x oMz @ V)
+d(a£Ll)J§1)x @bV @ Ve, a(l)JS)x oMz @ cWVa)
< ag)d(J/(\i)x, Jﬁl)x) + d(afll)J/(\l)x o bWV @ Ve, a(l)JS)x o bVz @ cWVa)
< ag)d(J/(\l)x, Jﬁl)x)
o | M b M
+]al) = at| @ \2) + (1= —— | d(x, ]} )
1 —anp 1 —anp
by b
H T — gl (- e o)
An
< al) ( 1- 7) d(zx, J/(\l)x) + ‘aﬁll) - a(l)‘d(x, J/(\l)x)
A1) ) @
< 1—7%—‘&” —aW| | d(z, Jy z). (3.3.4)
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By the same argument as above, we obtain that

dUN z, UNz)
= d@dM VTNV @b MUN Vg @ MU

a™ J,(\ JyN= lx@b Wy @ MyW= 1):1:)
d(a™ I UN Dz @ b MUN Vg @ MUNVg,

n

aM I TN Dz gy MUN D @ MUN V)

n

+d( (N J(N)UN Dz @ bMUWN-Dg g (MyuN-1)
N gy WN=Dg g p(N leg@gmleh)

+d( (V) J(N)U( Dz @ dMU Ny g (MyWN=Dg,
N JM TNV @ bMyN-Dg g (MY N-1yg)

N)d(J)(\iV)UéNfl)xj Jif)U(N—l)x) I agN)d(JQ/)U(N—l)I’ J§N)U(N,1)x)

FOAUE D, UV Dz 1 (U D, U
l b(N)

(N)

IN

IA

AUV Vg, SN )

1—an

bsbN) N-1 (N)rr(N—-1
1= —5 | AUV, U(%ﬂ

1—an
dUN "V, UNDg) 4 aMd(JNVUN Vg, JMUN-Dg)

(N)

IN

d(UN Vg, JNTWN=1 )

—Qa

IN

n n

An
dUWN Vg, UN V) 4 oV ( 1- T) d(UNg, J)(\N)U(N_l)x)

+|alM — a™Md(UN g, JMYN=1) )

d(UWN Vg, UN"Yg) 4 (\ [1— % + MLN) _ a(N)]> AUV, J>(\N)U(N_1)x)
d(UT(LNJ)gC7 U(Nj)x) + (« [1— % + ‘angl) _ a(Nl)‘> d(U(N*%c, J>(\N71)U(N72)1’)
[, An
+ < 1— 5N + |a7(1N) _ &(N)|> d(U(Nfl)x’ JiN)U(N*Ux)
) UWNV=2)

= d(U(N Ay, z)

2
Z <‘ /1 -2 _|_ ‘CL%N i+1) a(NiJrl)’) d(U(Nfi)x, J)(\Nfz#l)U(N,i)x)
B N-1 '
d(U (1) + ( /1 _|_ ‘a (N—i+1) _ (N7i+1) ‘) d(U(Nfi)x, J)(\N—H-l)U(N,i)x).

=1

IN

IA

IA
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Thus from (3.3.4), we obtain that

[{  An
d(T,z, Tx) < ( 1— 5% + a7(11) _ a(l)]> d(z, J)(\l)x)
+Z (,/ ML ‘a(N i+1) _ (N—i—&-l)‘) d((](]\/’—i)x, J)(\N—i—i—l)U(N_i)x)'

It then follows from conditions (ii) and (iii) that lim d(7,z, Tz) = 0. O

n—oo

Lemma 3.3.4. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i1 =1,2,..., N be multivalued monotone operator that satisfy the range condition. Let
{z,} be a bounded sequence in X and the mappmg T, : X — X be defined by (3.3.1),

where {\,} is a sequence of real numbers and {a } {b(Z } {cn } are sequences in [0, 1]
such that the following conditions are satisfied

(i) a4 =1, i=1,2,...,N,

(i) 3 |a¥ —a? || < o0, i=1,2,...,N,
n=1

(111)) 0 < Aoy <A\, VR >1, and ) ( 1- A””) < 00.

A
n=1 "

Then, > d(Thxn, Th1x,) < 00.

n=1
Proof. Following the line of argument in the proof of Lemma 3.3.3, we obtain that

d(Tnxrm Tnflxn)

N
An— ; —i —i —i —i
> (w - Sl -l *”l> AU 2 IV )
An— -
) a (V S W A —aﬁl“‘) .

IN

IN
—_
|
kg
3 |
+
BN
=
SQ”‘
L=
L

where M := sup {Z au, Nl 2 J/(\]:jJrl)UT(ﬁf l)xn)} Thus, by conditions (ii) and (iii),

n>1
we obtain from (3.3.5) that Z d(Thxp, Th1x,) < 00. O
n=1
Theorem 3.3.5. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X° i =1,2,..., N be multivalued monotone mappings that satisfy the range condition.
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Let T,, be defined by (3.3.1) such that conditions (i)-(iii) in Lemma 3.3. are satisfied.
Suppose that T # (0, let u,xy € X be arbitrary and the sequence {x,} be generated by

Tl = u® (1 — o) Tz, n>1, (3.3.6)

where {ay,} is a sequence in [0, 1], satisfying the following conditions

C1: lim o, =0,
n—o0

C2: Y ay, = 00,
n=1

o0
C3: > |an — apq| < 0.
n=1

Then {x,} converges strongly to an element of T.

Proof. Let p € ', then from (3.3.6), Lemma 2.3.1 (i) and Lemma 3.3.2, we have that

d(Tps1,p) = d(au® (1 — a,)T,o,,p)
< apd(u,p) + (1 — ay)d(x,, p)
< max{d(u,p),d(z,,p)}

max{d(u,p),d(x1,p)},

which implies that {d(x,, p)} is bounded. Consequently, {z,,} and {7}z, } are also bounded.

From (iv) and (vi) of Lemma 2.3.1, we obtain

d(xn+17 xn) = d(OénU D (]- - an)Tna]na Qp—1U D (]- - an—l)Tn—lxn—l)

< dlapu® (1 — o) Ty, apu @ (1 — o)1 12,-1)
+d(apu ® (1 — ap)Th1mn—1, 010 ® (1 — ay1)Th17p-1)
< (1= an)d(Thwn, Ty1xn-1) + oy — a1 |d(u, Ty 1, 1)
< (1= an)d(Th1xn, Th12n—1) + (1 — an)d(Thxn, Tio124)
+|a, — ap_1|d(u, Th—12,-1)
< (1= ap)d(zp, xn1) + o — anq|d(u, Ty 120 1) + d(Thxn, Th124).

It then follows from conditions C2 and C3, Lemma 3.3.4 and Lemma 2.3.26 that

lim d(x,41,2,) =0. (3.3.7)

n—oo

Also, from (3.3.6), Lemma 2.3.1 (i) and using 7" as defined in (3.3.2), we have

d(xy,, Tx,) d(xp, Tpi1) + d(zper, Thxyn) + d(Thx,, Txy,)
d(xp, Tpa) + d(aau @ (1 — )Tz, Thr,) + d(Thx,, Txy)

d(xp, Tpir1) + and(u, Thxy) + d(Thxn, Txy,),

IA AN A
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which implies from C1, Lemma 3.3.3 and (3.3.7) that

lim d(z,,Tx,) = 0. (3.3.8)

n—0o0

Since {x,} is bounded and X is an Hadamard space, then from Lemma 2.3.5, there exists
a subsequence {z,, } of {z,} such that A—klim Ty, = 2. Thus, it follows from (3.3.8) and
—00

Lemma 2.3.12 that z € F(T) =T.

Moreover, from Lemma 2.3.10, we obtain for arbitrary u € X that

lim sup(uZ, z,2) < 0. (3.3.9)

n—oo

From the Cauchy-Schwartz inequality, we obtain

<1ﬁ,Tn$n z) = (@,Tn:vn Tn) + (@,m>
< d(u, 2)d(Tpan, ) + (U2, T,2),

which implies from (3.3.8) and (3.3.9) that

lim sup(u, Tpa, z) < 0. (3.3.10)

n—oo

Thus from condition C1, we get

lim sup (oznd2(u, z)+2(1— an)(iﬁ,Tnxnd) <0. (3.3.11)

n—oo

Finally, we show that {z,} converges strongly to z € I". From (3.3.6) and Lemma 2.3.1(ii),
we obtain

d*(2pp1,2) < 2d?(u, 2) + (1 — )22 (T, 2) + 200 (1 — ) (W, Ty 2),
which implies

Bznp1,2) < (1= n)d?(zn, 2) + an (andQ(u, 2) +2(1 — o) (i, Totn 2>)(3.3.12)

Hence, from (3.3.11) and Lemma 2.3.26, we conclude that {z,} converges strongly to
zel. O

By setting N = 1, o\l = 1, b =M =0in Algorithm (3.3.1) and a¥ = 1, b = 1) =
0, we have that T, = J )(\711) and T' = J)(\l). In this case, we obtain the following result.

Corollary 3.3.6. Let X be an Hadamard space and X* be its dual space. Let A : X —
2X" be a multivalued monotone mapping that satisfies the range condition. Suppose that
A0) #£ 0, let u, 1 € X be arbitrary and the sequence {z,} be generated by

Tpa1 = apu @ (1 — o)y, Tp, 1> 1, (3.3.13)

where {a,} is a sequence in [0,1] and {\,} is a sequence of real numbers satisfying the
following conditions
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C1: lima, =0,

n—oo
o
C2: Y ay, = 00,
n=1
o0

C3: la, — a1 | < 00,
n=1

Ci: 0< A1 <A,V > 1, and E( 1—>‘”*1> < 0.

A
n=1 "

Then {x,} converges strongly to an element of A~*(0).

3.3.2 Application

Here, we apply our results to solve a finite family of MPs in Hadamard space.

Let X be an Hadamard space and X* be its dual space. Then, the subdifferential 0f of a
proper convex and lower semicontinuous function f (see (2.1.7)) is proved in [95] to have
the following properties:

(i) df is a monotone operator,
(ii) &f satisfies the range condition. That is, D(J2) = X for all X > 0,

(iii) f attains its minimum at x € X if and only if 0 € df(z).
Now, consider the following MP: Find z € X such that

f(z) = min f(y). (3.3.14)

yeX

It follows from property (iii) that (3.3.14) can be formulated as follows: Find x € X such
that

0€df(x).
Thus, by properties (i) and (ii), and by setting A; = df;, ¢ = 1,2,..., N in Definition
3.3.1 and Theorem 3.3.5, we obtain the following result.

Theorem 3.3.7. Let X be an Hadamard space and X* be its dual space. Let f; : X —
(—o0,00], i = 1,2,..., N be a finite family of proper, convexr and lower semicontinuous
functions, and T, be defined by (3.3.1) such that conditions (i)-(iii) in Lemma 3.3./ are
satisfied. Suppose that T* = NN, 0f71(0) # 0, let u,z; € X be arbitrary and the sequence
{z,} be generated by

Tpt1 = apu @ (1 — o)z, n> 1, (3.3.15)

where {ay,} is a sequence in [0, 1], satisfying the following conditions

C1: lim o, =0,

n—o0
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C2: 3> ay, = 00,

C3: >0 | o — | < o0.

Then {x,} converges strongly to an element of I'*.

3.3.3 Numerical example

We now recall Example 2.1.26 for the numerical experiments of the results obtained in this
section in comparison with the results of Takahashi and Shimoji [177]. Let Y = R? be an R-
tree with the radial metric d,., where d,.(z,y) = d(z, y) if z and y are situated on a Euclidean
straight line passing through the origin and d.(z,y) = d(x,0) + d(y,0) = ||z| + ||y]
otherwise. We put p = (1,0) and X = BU C, where

B ={(h,0):he]0,1]} and C ={(h,k):h+k=1he0,1)}.

For each [ta? ] € X*, we obtain

{Scd ¢,d € B, s eR, t([|b]| — [lal]) = s([|ld]| = [[]})} a,b € B,
tab) = {scd:c.de CU{0},s € R, t(|b] — al) = s(ldll - e} a,be CU{0},
{tab} a€ B, beC,
Now, define A : X — 2% by
%
{{op]} x € B,

Then, A is monotone and

{z=(h—X0)} z = (h,0) € B,
J{ (x) =
{z=MNK)eC: 1+ N*(W*+k?*)=h+k*} z=(hk)eC.
Let ) = o = %, b = ) = % and ¢ = c® = 3 vyp > 1, i =1,2,3. Then, (3.3.1)
becomes:

UMz = % J)(\A)ZE + a:)
Uz =1 (JVUV + U,S%) , (3.3.16)
Tow =3 (JOUP2+UPx), v >1
while Algorithm (1) of Takahashi and Shimoji [177] becomes:
UMe =1 (1M + :z:)
Uz =1 (JW Un -+ :x) (3.3.17)
Tnx:%( —|—x>,Vn21.
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Figure 3.1: Errors vs Iteration number (n): Case I(a) (left); Case I(b) (right).

Now, take o, = m Vn > 1, then «, satisfies the conditions in Theorem 3.3.5. Hence,
for u,x; € X, Algorithm (3.3.6) becomes:

U + 2n+1
2(n+1) 2(n+1)

Tyl = T,x,, n>1. (3.3.18)

Case I

(a) Take z1 = (—1, —0.5)7, u=(—0.5, 0.1)7 and A = 0.00004.

(b) Take z; = (0.3, 0.06)T, u = (0.2, 0.9)7 and \ = 5.
Case 11

(a) Take z; = (1, 0.5)T, u= (=1, —0.5)T and A = 0.1.

(b) Take z; = (1, 0.5)T, u= (-1, —0.5)7 and \ = 3.
Case II1

(a) Take z; = (2, —0.5)7, u= (-1, 0.5)7 and A = 1.

(b) Take z; = (—0.5, 2)*, w= (0.5, —1)7 and \ = 1.

93



Errors

Errors

0.9 T

0.8

—— Our Algorithm
Takahashi and Shimoji

20 30 40
Iteration number (n)

50

Errors

Figure 3.2: Errors vs Iteration number (n)

14 T

121

08 r

06

04r

—— Our Algorithm
Takahashi and Shimoji

Figure 3.3:

10 15 20 25
Iteration number (n)

30

Errors

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—— Our Algorithm
Takahashi and Shimoji

10 15
Iteration number (n)

20

: Case II(a) (left); Case II(b) (right).

18

1.6

14

1.2

0.8

0.6

0.4

0.2

—— Our Algorithm
Takahashi and Shimoji

10 15
Iteration number (n)

20

Errors vs Iteration number (n): Case III(a) (left); Case III(b) (right).

54



Remark 3.3.8. By considering the 3 Cases above, we compare our algorithm with that of
Takahashi and Shimogji [177]. The numerical results (see Figures 3.1, 3.2 and 3.3) show
that our algorithm converges faster than that of Takahashi and Shimogi [177]. However,
an improvement of the example studied in this section would be that of the "proximal-like
algorithm”, since it performs better than the one given in this section. In fact, the reason
(among other possible reasons) our scheme performs better than that of Takahashi and
Shimoji [177] is because it is more closer to the "proximal-like algorithm” compared to the
one of Takahashi and Shimogi [177] (this observation was brought to our attention by the
anonymous reviewer). Therefore, it is ideal to put forward the following important question
for further study: Is it possible to find such an example (the ”proxzimal-like algorithm”) so
as to obtain better numerical results than the one considered in this paper?

3.4 Halpern iteration process for monotone inclusion
and fixed point problems in Hadamard spaces

In this section, motivated by Remark 2.2.8 and the importance of nonexpansive map-
pings (see Remark 2.1.38), we propose and study a Halpern-type PPA for approximating
a common solution of a finite family of monotone inclusion problems and fixed point prob-
lem for a nonexpansive mapping in an Hadamard space. We also applied our results to
approximate a common solution of a finite family of MPs and fixed point problem for
nonexpansive mapping in an Hadamard space. Numerical example of the result obtained
in this section is also given to further show its applicability.

3.4.1 Main results

Theorem 3.4.1. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X7 i =1,2,..., N be multivalued monotone operators that satisfy the range condition
and T be a nonexpansive mapping on X. Suppose that I' := F(T) N (ﬂiJLAi_l(O)) + (.
Let u,x1 € X be arbitrary and the sequence {z,} be generated by

(3.4.1)

Y = I 0 Jy THone0 R 0 Ty (w),
Tpt1 = au @ (1 — )Ty, n>1,

where A € (0,00) and {a,} C [0, 1], satisfying the following conditions

C1: lima, =0,
n—oo

C2: > a, = o0,
n=1

o0
C3: Y |y — apq] < o00.
n=1

Then {x,} converges strongly to an element of T.

95



Proof. Let pe T, &Y = J¥ o JV " o...0J} 0 J}, where ®) = I. Then from (3.4.1), we
have

d(Tpi1,p) = d(anu® (1 —an)Tyn,p)
and(u, p) + (1 — an)d(Tyn, p)
and(u, p) + (1 = a,)d(®Y z,, p)
apd(u,p) + (1 — an)d<¢iv_1$mp)

IA A CIA

< Oznd(u,p) + (1 - an)d<xn7p)
< max{d(u,p),d(z,,p)},

which implies by mathematical induction that
d(xy,p) < max{d(u,p),d(z1,p)}, Vn > 1. (3.4.2)

Therefore, {d(z,,p)} is bounded. Consequently, {z,},{y,} and {T'y,} are all bounded.
From (3.4.1) and Lemma 2.3.1, we have

d(xpi1,2,) = dlau® (1 — an)Tyn, - 1u® (1 — ap1)TYn_1)

d(anu @ (1 — an)TYn, anu ® (1 — ) TYn—1)

+d(apu @ (1 — ) Typ—1, tn_1u ® (1 — 1) TYpn_1)

(1 — a)d(TYn, Typn—1) + |y — an_1|d(w, Tyn_1)

)A(Yns Yn—1) + |an — an—1]d(u, Tyn—1)

(1 —ap)d(xy, Tpo1) + |an — ap_1|d(u, Typ_1). (3.4.3)

IA

IA N CIA
_
|
Q
3

By applying condition C2 and C3 in (3.4.3), we have from Lemma 2.3.26 that
lim d(zp41,2,) = 0. (3.4.4)

n—o0
Now, observe that
(@0, p) = P (20s1,p) < (@0, Tat1) + d(@ns1,p)]” = (2011, 0)
d* (2, Tni1) + 2d(n, Tpy1)d(Tni1, D),
which implies from (3.4.4) that

lim [d2(:1:n,p) — dQ(an,p)} =0. (3.4.5)

n—o0

From Lemma 2.3.1 and Lemma 3.2.4, we have

P (au @ (1 — )Ty, p)

d2 ($n+1 ) p)

< apd(u,p) + (1 — ) (Tyn, p) — an(l — a,)d*(u, Tyy)

< and*(u,p) + (1 — ) d*(Tyn, p)

< apd?(u,p) + (1 = an)d*(yn, p)

< a,d*(u,p) + d*(yn, p) (3.4.6)
< and*(u,p) + (Y 1w, p) — (Y, yn),
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which implies

dz(yna (Div_lxn) S andQ(u,p) + dZ(q)iV_lxmp) - d2($n+1>p)
S andQ(u7p) + dQ(xnap) - d2(xn+17p) — 07 as n — o0.
That is
lim d*(y,, @) 'z,) = 0. (3.4.7)
n—oo
From (3.4.6), we have
d2<xn+1ap) é Oéndz(uvp) + d2<ynap)
< and?(u, p) + (P ', p)
< and(u,p) + (@Y P, p) — (P 22, Y 12y,

which implies

P(ON 1w, @V 21,) < and(u,p) + (DY 2, p) — d*(Tni1, D)
< and*(u,p) + (w0, p) — &*(xni1,p) = 0, as n — oo.
That is
lim (®Y 'z, Y 22,) = 0. (3.4.8)

Continuing in the same manner, we have that

lim d*(®Y %z, ®Y *z,) = = lim d*(®3x,, Pyz,) = lim d*(®)z,, PQz,) = 0(3.4.9)
n—00 n— 00 n—0o0
Thus,

A Yy T0) < (Y, @Y 1) + (PN 1y, N 2w,) + 0+ (PR, BR,) + (PR, 7)),
which implies from (3.4.7), (3.4.8) and (3.4.9) that
lim d(yn,r,) = lim d(®Yz,,,) = 0. (3.4.10)

n—oo n—o0

From (3.4.1), (3.4.4), (3.4.10), Lemma 2.3.1 (i) and condition C1, we obtain

d(xy,, Tx,,) d(xp, Tpi1) + d(Tpe1, Tyn) + d(Typ, Tzy)
d(xna anrl) + d(anu S (1 - O‘n)Tym Tyﬂ) + d(@/m xn)

d(xp, Tps1) + and(u, Typ) + d(Yn, x,) — 0, as n — oo.

VANVANRVAN

That is

lim d(z,,Tx,) = 0. (3.4.11)

n—o0

From (3.4.10) and (3.4.11), we have

d(xn, Ty,) < d(xp,Tx,) + d(Tz,, Ty,)
< d(xp, Tz,) + d(Tn, yn) — 0 as n — 0.
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That is
lim d(z,, Ty,) = lim d(z,, T®Yx,) = 0. (3.4.12)

n—oo n—oo
Since {x,} is bounded and X is an Hadamard space, then from Lemma 2.3.5, there exists
a subsequence {z,, } of {x,} such that A—klim T,, = 0 for some v € X. Also, since T o ®f
—00

is the composition of nonexpansive mappings, it implies that T o CI)]AV is nonexpansive.
Thus, it follows from (3.4.12) and Lemma 2.3.12 that v € F(T o ®Y). Hence, by Lemma
3.2.6, we obtain that v € T'.

Again, since {z,, } A—converges to v € I', it follows from Lemma 2.3.9 that there exists
z € I" such that {x,} A—converges to z. Thus, we obtain from Lemma 2.3.10 that

lim sup(uZ, z,2) < 0. (3.4.13)

n—oo

By using the quasilinearization properties, we obtain

(2, Tynz) = (ith, Tyza) + (W2, T2)
< d(u, 2)d(Tyn, rn) + (@,xﬁ),

which implies from (3.4.12) and (3.4.13) that

—
lim sup (w2, Typz) < 0. (3.4.14)

n—o0

By condition C1 and inequality (3.4.14), we get

timsup (and?(u, 2) +2(1 = o) (i, T7>nz>) <0. (3.4.15)

n—oo

Next, we show that {z,} converges strongly to z. From (3.4.1) and Lemma 2.3.1 (iii), we
obtain

d*(Tny1,2) < 2d%(u, 2) + (1 — )2 d*(Tyn, 2) + 20, (1 — an)(iﬁ,Tyn z),
which implies
A (2pi1,2) < (1 —an)d®(z,,2) +ap <and2(u, 2) +2(1 — o) (@2, Ty z)) :

It follows from (3.4.15) and Lemma 2.3.26 that {z,} converges strongly to z. O

By setting N =1 in Theorem 3.4.1, we obtain the following result.

Corollary 3.4.2. Let X be an Hadamard space and X* be its dual space. Let A : X —
2X" be a multivalued monotone mapping that satisfies the range condition and T be a
nonezpansive mapping on X. Suppose that T := F(T) N A~Y0) # 0. Let u,z; € X be
arbitrary and the sequence {x,} be generated by

{y” = Han), (3.4.16)

Tpt1 = au® (1 — a,)Ty,, n>1,

where A € (0,00) and {a,} C [0, 1], satisfying the following conditions
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C1: lima, =0,

n—oo
o0
C2: > a, = o0,
n=1
o
C8: > |y — apq| < 0.

n=1

Then {x,} converges strongly to an element of T.

By setting T" = I (I is the identity mapping on X) in Theorem 3.4.1, we obtain the
following result.

Corollary 3.4.3. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i =1,2,...,N be multivalued monotone mappings that satisfy the range condition.
Suppose that NN, A;71(0) # 0. Let u,xy € X be arbitrary and the sequence {x,} be
generated by

Tyl = u® (1 —ay,)Jy o JY o0 Jiody(x,), n>1, (3.4.17)

where A € (0,00) and {a,} C [0, 1], satisfying the following conditions

C1: lima, =0,
n—oo

C2: Y ay, = 00,
n=1

C8: > |y — ap1| < 0.
n=1
Then {x,} converges strongly to an element of NN, A;*(0).

3.4.2 Application

By similar discussion as in Section 3.3.2, we can apply Theorem 3.4.1 to establish the
following theorem for approximating a common solution of a finite family of MPs and
fixed point problem for nonexpansive mapping.

Theorem 3.4.4. Let X be an Hadamard and X* be its dual space. Let f; : X —
(—o0,00], i = 1,2,...,N be a finite family of proper, lower semicontinuous and con-
vex function and let T be a nonexpansive mapping on X. Suppose that T* := F(T) N
(NN, 0f71(0)) # 0. Let u,zq € X be arbitrary and the sequence {x,} be generated by

Ofn— 2 1
{?/n _ J)r?fzv o J)\fN log...o Jff o Jff (Z‘n), (3_4.18)

Tpt1 = au® (1 — a,)Ty,, n >0,
where A € (0,00) and {a,} C [0, 1] satisfying the following conditions
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C1: lima, =0,

n—o0

C2: > a, = o0,

n=1

C3: Y |y — apyq] < 00.
n=1
Then {x,} converges strongly to an element of T*.

3.4.3 Numerical example

We give a numerical example in (R?,|].]|2) (where R? is the Euclidean plane) to support
our main result. Let N = 2 in Theorem 3.4.1, then for i = 1, we define A, : R? — R? by

Ai(z) = (21 + xo, T3 — 7).

Then A; is a monotone operator.

Recall that [t%] =t(b—a), for all t € R and a,b € R? (see [95]). Using this, we have for
each z € R? that

1
Ji(z) =2 <= X(m—z):Alz

— =+ M)z
— z=(I+)A) 2.

Hence, we compute the resolvent of A; as follows:
A O PPY A P
Il) = ({0 1}'* {—A NV
R N A P
N - 1+ A i)
SOl 222 | A 1A [

(T XN)xr = Arg Awg + (14 N
N T4H22042X2 7 14+2242X2 )

Thus,

1420 4+2X2 7 142\ 4222

Now, for i = 2, let Ay : R> — R? be defined by

AQ((L’) = ($2, — .Il).
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So that by the same argument as in above, we obtain

2 o Jfl—)\ZEQ .Z'Q—f—/\l'l
JA@_( 14+22 7 14N >

Thus for ¢ = 1,2, we obtain

L4+ X—= M)z — (20 + N2 2\ + N2 1+X— )\

(T+X)(1T4+22+2X2) 7 (1+X)(1+2X+2)\?)

Let T : R? — R? be defined by T'(z1,22) = (=22, 7). Then T is a nonexpansive mapping.

Take o, = =7, then {a,} satisfies the conditions in Theorem 3.4.1.

Hence, for u, z; € R?, our Algorithm (3.4.1) becomes:

{yn = J3(Jla,),

. . (3.4.19)
Tn+l = 7 + myn, n > 1.
Case I

(a) Take z; = (0.5, 0.25)7, w = (1, 0.5)7 and X\ = 0.001.
(b) Take z; = (0.5, 0.25)T, uw = (1, 0.5)" and A = 0.000002.

Case 11

(a) Take 21 = (1, 0.5)7, u = (~1, 0.5)7 and A = 0.0002.
(b) Take z; = (0.1, 0.03)7, u = (0.3, 0.1)7 and A = 0.0002.

Case 111

(a) Take z; = (—1, —0.5)7, u=(—0.5, 0.1)T and A = 0.00004.
(b) Take ; = (0.3, 0.06)7, u = (0.2, 0.9)” and A = 0.000009.

Mathlab version R2014a is used to obtain the graphs of errors against number of iterations,
execution time against accuracy and number of iterations against accuracy.
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Figure 3.7: Case II(b): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Figure 3.8: Case III(a): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Figure 3.9: Case III(b): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).

3.5 Viscosity iterative techniques for monotone in-
clusion and fixed point problems in Hadamard
spaces

Like the Halpern algorithm, the viscosity algorithm also converges strongly. However,
one advantage of the viscosity algorithm over the Halpern iteration process is that it also
converges strongly to a unique solution of the VIP (1.2.10) associated with a contraction
mapping. Furthermore, the viscosity iteration process has higher rate of convergence than
the Halpern iteration process (see [138, Remark 3.7 (iii), (iv)]). Motivated by this, we
study in this section, some viscosity-type proximal point algorithms which comprise of a
nonexpansive mapping and a finite sum of resolvents of monotone operators, and prove
their strong convergence to a common solution of a finite family of MIPs, which is also
a fixed point of a nonexpansive mapping and a unique solution of some VIPs (associated
with contraction mappings) in an Hadamard space. We apply our results to solve CFPs
(1.2.11) and VIPs associated with a nonexpansive mapping.

3.5.1 Main results

Theorem 3.5.1. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X7 i =1,2,...,N be a finite family of multivalued monotone operators that satisfy the
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range condition. Let T be a nonexpansive mapping on X and h be a contraction mapping
on X with coefficient 7 € (0,1). Suppose that T' := F(T) N (NX,A;7'(0)) # 0 and for
arbitrary x1 € X, the sequence {x,} is generated by

Yn = BoTn D 5117;1,35571 D 52J,€L233n S---D BNJiNl"n, (3.5.1)
Ty = anh(z,) & (1 — )Ty, n>1, o
where 0 < X < A\, Yn > 1 and {«,} is in (0,1) satisfying the following conditions:
(i) lima, =0 and > a, = oo,
n—oo n=1
N
(i) B; € (0,1) with > p; = 1.
i=0
Then, {x,} converges strongly to zZ € T' which solves the variational inequality
(zh(z),u%) >0, Vuel. (3.5.2)

Proof. Step 1: We first show that (3.5.1) is well defined. Let Sy, x, := Box, ® Blanlxn &>

ﬁngn?:En @ P BNJian, then by Lemma 3.2.7, we have that S is nonexpansive for all
n > 1. Now, define the mapping T : X — X as follows:

The = a,h(z) @ (1 — ay,) TSy, .
Since T' is nonexpansive, we obtain from Lemma 2.3.1 (iv) that

AT, Th) < and(h(@),h(y)) + (1 — a,)d(TS,z, TS,y)
< Tagd(z,y) + (1 — a)d(Spz, Spy)
<

(Tay, + (1 — ay)) d(z, y).

Since 7 € (0,1), we have that 0 < (T, + (1 — a,,)) < 1. Hence, T" is a contraction for

each n > 1. Therefore, by Banach contraction mapping principle, there exists a unique
fixed point z,, of T for each n > 1. Thus, (3.5.1) is well defined.

Step 2: Next, we show that {z,} is bounded. Let v € T', by (3.5.1) and Lemma 2.3.1 (i),
we obtain

d(x,,v) and(h(zy),v) + (1 — ap)d(Tyy,, v)
A 7d(Zn, v) + apd(h(v),v) + (1 — ay)d(Yn, v)

(1 —an(1— T))d(xn, V) + and(h(v),v),

IA A

IN

which implies that
d(h(v),v)

d <
(0, v) < 1—71

(3.5.3)
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Hence, {x,} is bounded. Consequently, {y,} {Ty,} and {h(z,)} are all bounded.

Step 3: We now show that lim d(z,,Ty,) = lim d(x,, TS\, x,) =0 and z € I'.
n—oo n—o0

From (3.5.1) and Lemma 2.3.1, we obtain that

d(xn, Ty,) = dlanh(z,) ® (1 — an)TYn, Tyn)
< apd(h(zn), Tyy). (3.5.4)

Since {h(x,)} and {T'y,} are bounded, we obtain from condition (i) and (3.5.4) that

lim d(z,,, Ty,) = lim d(z,,, TS\, x,) = 0. (3.5.5)

n—o0 n—oo

Now, by the boundedness of {z, } and the completeness of X, we obtain from Lemma 2.3.5
that there exists a subsequence {z,, } of {z,} such that A — klim T, = U. Again, since
—00

T o S), is nonexpansive (and every nonexpansive mapping is demiclosed), it follows from
(3.5.5), Lemma 3.2.7 and Theorem 2.1.32 (i) that o € F(T0Sy,) C NY, F(J{)NF(T) =T.

Step 4: We show that {z,} converges strongly to z. Since {z,, } A—converges to v € I"
and by (3.5.3), lim d(z,,v) exists for all v € ', we obtain from Lemma 2.3.9 that there
n—oo

exists z € I" such that {x,} A—converges to z. Thus, by Lemma 2.3.10, we obtain that

—
lim sup(h(z)z, m> <0. (3.5.6)

n—o0

Also, by Lemma 2.3.1 (iii) and (3.5.1), we have

d*(xn,2) < apd®(h(x,),2) + (1'—-&n)d2ﬁfyn75)
+2a,(1 — ) (h (azn)z Tyn )
z) +

< ald(hlwn),2) + (1 = an)d(zn, 2) X
#2001~ 02) (h(a2)= Tonaa) + (h(2a)h(Z), 20%)
—>
+(h(2)Z, 222)]
< oznd2(h( n), Z)+ (1 — ozn)d2(xn, Z) N
120 (1 — a)[(e(an) 2, Tymin) + 7d%(2n, 2) + (h(2)5, Tn2)]
< [(1 — ay) + 210, (1 — ozn)] d*(z,, %)

tan, [andz(h(:vn), 2) +2(1 — o) d(Ty,, xn)] d(h(z), 7)

+200(1 — a){h(2)2, 7). (357)
Therefore
2 5 - T 2
Pz, 7) < [and®(h(xy,), 2) + 2(1 — an)d(TYn, x0)]|d(h(2,),2)  2(1 — a,)(h(2)Z, 2, 2)

1—27(1 — )] 1—-27(1—ay,)]
which implies from condition (i), (3.5.5) and (3.5.6) that

lim d?(z,, Z) = 0.

n—oo
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Therefore, lim z, = Z.
n—oo

Step 5: Finally, we show that Z is a solution of (3.5.2). From Lemma 2.3.1 (ii) and
(3.5.1), we obtain for all u € I" that

A (xm, 1) < apd®(h(zm),w) + (1 — ) d*(Tym, v)

( (

( (@m), TYm)

< d® (W), ) + (1 — ) d(2, )
— (1 — O‘m)dQ(h(xm)a Tym),

which implies
A (zm,u) < d*(h(zm),u) — (1 — ) d*(h(z), Tym).
Thus, taking limit as m — oo, we obtain
d*(z,u) < d*(h(2),u) — d*(h(2), 2).

Hence,
(Gh(3, i) = %(dQ(h(z),u) Pz )~ P(h(z).7)) 20, VueT.

Therefore, we have that z solves the variational inequality (3.5.2).
Now, assume that {x,, } A—converges to u. Then, by the same argument, we obtain that
u € I" solves the variational inequality (3.5.2). That is,

(M,E> <0. Also (%,2_@ <0.

Now, adding both, we get

0 > (2h(2),30) — (uh(u), Z0)
= (zh(u), Z0) + (h(u)h(Z), Z0)

— (43, Z0) — (zh(u), )

= (3, 7u) — (h(u)h(2), uZ)
(Z4, 70) — d(h(w)h(2))d(u, %)

AVARLY,

which implies that d(z,u) = 0. Hence, Z = u. Therefore, {x,} converges strongly to Z,
which is a solution of the variational inequality (3.5.2). O

By setting 7' = I (where [ is the identity mapping on X) and h(x) = ¢ for arbitrary but
fixed c € X and Vx € X, we obtain the following corollary which is of Halpern type.

Corollary 3.5.2. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X7 i =1,2,...,N be a finite family of multivalued monotone operators that satisfy the
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range condition. Suppose that T' := NN, A;1(0) # 0 and for arbitrary ¢, v, € X, the
sequence {x,} is generated by

(3.5.8)

Yp = Boxn & ﬂlj)ﬁjl’n ©® BQJ;?TL?J;” PP ﬁNanana
T =@ (1 —ay)yn, n>1,

where 0 < A < A\, Yn > 1 and {«,} is in (0,1) satisfying the following conditions:
(i) lim o, =0 and > 7 o, = 00,
n—oo

(ii) B € (0,1) with SN B = 1.
Then, {x,} converges strongly to z € T.

By setting N =1 in Theorem 3.5.1, we obtain the following result.

Corollary 3.5.3. Let X be an Hadamard space and X* be its dual space. Let A : X —
2X" be a multivalued monotone operator that satisfies the range condition. Let T be a
nonexpansive mapping on X and h be a contraction mapping on X with coefficient T €
(0,1). Suppose that I :== F(T) N A~Y(0) # 0 and for arbitrary x; € X, the sequence {x,}

15 generated by
Ty, = anh(x,) & (1 —ay,)T (Boa:n &) ﬂlJ/‘\L‘nmn) , o n>1, (3.5.9)

where 0 < XA <\, Yn > 1 and {«,} is in (0,1) satisfying the following conditions:
(i) lima, =0 and Y 7, o, = 00,
n—oo
Then, {x,} converges strongly to zZ € T' which solves the variational inequality
5 —2
(zh(z),uz) >0, Yuel. (3.5.10)

We now present the second theorem for this section.

Theorem 3.5.4. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i =1,2,...,N be a finite family of multivalued monotone operators that satisfy the
range condition. Let T be a nonexpansive mapping on X and h be a contraction mapping
on X with coefficient 7 € (0,1). Suppose that T := F(T) N (NX,A;7'(0)) # 0 and for
arbitrary x, € X, the sequence {x,} is generated by

Wn = 125-h(zn) & 125-Tyn, (3.5.11)

Tpt+1 = ann S (]- - Bn)wny n 2 ]-a

where {a, }, {Bn} and {~,} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:
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(1) lim o, =0 and > a, = o0,
n—oo

n=1

(ii) 0 < hmmfﬁn <limsupf, <1, a,+ B, +7% =1Vn>1,

n—oo

(11i)) 0 < A<\, Vn>1 and lim A\, = A,

n—o0

(i) B; € (0,1) with %B,- =1.

=0

Then, {x,} converges strongly to z € T.

Proof. Step 1: We show that {x,} is bounded. Let w € I' and set Sy x, := Bozr, &
ﬁlJﬁlxn @ - D BNJ:\qu:vn, then from (3.5.11), Lemma 2.3.1 (i) and Lemma 3.2.7, we

obtain that

d(xpi1,u) < Bud(xy,u) + (1 = By)d(w,, )
On Tn

< Bpd(xp,u) + (1= 6,) L 5n Tn),u) + T Bnd(Tyn,u)
< ) + (= 52) |12 rdon, ) + 2 d(h(0,0) +
< (Bn+ Ton)d(zn, w) + Vad(Sh, Tn, u) + and(h(u), u)
= (1 —-a,(1=7))d(zp,u) + a,d(h(u),u)

d(h(u),w)
< max {d(IL‘n, u) + ﬁ}

d(h(u),u)
< max {d(:pl,u) + ?} :

Hence, {x,} is bounded. Consequently, {y,}, {h(x,)} and {T'(y,)} are all bounded.
Step 2: Next, we show that lim d(z,.1,2,) = 0. Now, from (3.5.11), Lemma 2.3.1
n—ro0

(iv),(vi) and the nonexpansivity of 7, we obtain that

Qpt1 In+1 Qn Tn
d(Wpq1,w,) = d(—hxn O ——TYpy1, T,) @ Tn>
(s, n) 1= g, @) & 775 ST 7 g hlen) @ 75Ty
(7% Ay,
< A @ (T2 T
Ontq Qpy1
Oty (1 - 22ty
]-_Bn—&—l ( ) ( 1_6714—1) Y
Qnt1 Qnt1 Op Qi
+d<—hxn@1——Tn, a) @ (1 — Tn)
Ontq (7}
< ———7d(xpi, Ty 1-— n+1, Yn
— 1 _/Bn-i,-lT (ZL' +1, T )+ ( 1 — /Bn ) (y +1, Y )
|t Y \d(h(x), Tyn) (3.5.12)

]-_ﬁn—l—l_]-_ﬁn
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Without loss of generality, we may assume that 0 < A\, ; < A, Vn > 1. Thus, from
(3.5.11), condition (iv), Lemma 3.2.1 and Lemma 3.2.4 (ii), we obtain

AdYni1,9n) = A(BoTnp1 B By IAN Tnir, Botn @ - @ By N wy)

N
< 6Od(xn+17 xn) + Z 6id(J)1j‘rf+1x”+1’ J:\L‘T:J,’n)
1=1

N N
< Bod(Tnrr,n) + Y Bd( T3 wngr, T ) 4> Bd(TLE i, i)
i=1 =1

An
< d(:zcn+1,xn)+< 1 )\“)M, (3.5.13)

where M := sup{ Zf\il ﬁid(Jfoa:n, ,,) }. Substituting (3.5.13) into (3.5.12), we obtain that
n>1

an+1 an+1
1- ﬁn+1 11— 6n+1

H(= 5 0w

Ont1 W d(h(x), Tyn)

d<wn+17 U}n> S Td(anrh .%'n) + (1 - )d(anrla l‘n)

_ [1_M(1—7’)]d($n+17$n)+( 1_)‘;:1><1_1f"—5:+1>]\/[

d(h(zn), Tyn)-

’ Qnit1 Ay

1 - 5n+1 1- Bn

Since lim a;,, =0, lim A, = A and {h(z,)}, {Ty,} are bounded, we obtain that
n—oo

n—oo

lim sup (d(wn-‘rl, wn) - d<xn+17 xn)) S 0.

n—oo

Thus, by Lemma 2.3.17 and condition (ii), we obtain that

lim d(wy,x,) = 0. (3.5.14)

n—oo

Hence, by Lemma 2.3.1, we obtain that
d(zpi1,n) < (1 = Bn)d(wy, z,) — 0,  as n— oo. (3.5.15)
Step 3: We now show that lim d(x,,T(Sy,)z,) = 0 = lim d(w,,T(S),)w,). Observe
n—oo

n—o0
from Remark 2.3.1 that (3.5.11) can be rewritten as

{yn = Boxn ® Bljfnlmn PP BNJ;?TLN‘T”?

3.5.16
Bt = () © (1= ) (B2 ) > 1 (3516

Thus, by Lemma 2.3.1, we obtain that

Brnn @ 1 TYn By @ VT Yn
v InZIn) < fnom o In” In . 5.
d(an, =) > < and(h(a:n), 1= o) ) — 0, as n—oo. (3.5.17)
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Also, from (2.1.1), we obtain

nLn ' Yn n

(1 - O‘n)

which implies from (3.5.15) and (3.5.17) that

n

1 Z/Oénd(xn7Tyn) S d([L’n, :Un-i-l) + d<xn+17 B(l_—zén>y> — 07 as m — 0.
Hence,
lim d(z,,Ty,) = lim d(x,,T(Sy,)z,) = 0. (3.5.18)

n—oo n—oo

Since {z,} is bounded and X is an Hadamard space, then by Lemma 2.3.5, there exists a
subsequence {z,, } of {x,} such that A — klim Tp, = 4. Again, by the nonexpansivity of
—00

T oS, , we obtain from (3.5.18), condition (iii), Lemma 3.2.7 and Theorem 2.1.32 (i) that
i€ F(ToSy,)CnN,F(JMNF(T) =T.

Also, by (3.5.14) and (3.5.18), we obtain

d(wy, T(Sy,)wn) d(Wy, Tp) + d(zp, T (SN, )xn) + d(T'(Sx,)xn, T(Sy, )wn)

<
< 2d(wp, x,) + d(zp, T(Sy,x,) = 0, as n — 0. (3.5.19)

—
Step 4: Next, we show that limsup(h(z)z, xnﬁz> <0.

n—oo

If we set Tha = Bz ® (1 — Bn)w, where w = (l‘f—’gmh(x) ® (IZ—TEMT(S,\m)x, then by

following the same method of proof as in the proof of Theorem 3.5.1, we get that T" is
a contraction for each m > 1. Thus, there exists a unique fixed point z,, of T Vm > 1.
That is,

Zm = Pmzm ® (1 — Bm)wp, where w,, = (lf—'gm)h(zm) &) (lz—ng(S’\m)zm‘ Furthermore, it
follows from Theorem 3.5.1 that lim z,, =%z € I'. Thus, we obtain that
m—00

d('zma wn) = d(ﬂm'zm % (1 - 5m)wm7 wn)
S Bmd(zn% wn) + (1 - ﬂm)d(wma wn)a

which implies that

d(Zm, W) < d(Wp, wy,). (3.5.20)
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From (3.5.20) and Lemma 2.3.1(v), we obtain that
d2 (wm7 wn) = <wmwn7 wmwn>

= <me<S)\m)Zmu wmwn> + <T(S>\m)zmwn7 m)
>
< O (R )T(Sn, ) oms i) + (T (Sh, 20, W)

(1 - Bm)
7 ¢ — (6779
(1= iy M TS ) + g 5 (e

(0T (v ) + (T (S, o) B ), )

T(Sy,, W), W)
A

—
d(h(zm), T(Sx,,2m))d(Wna, 2m) + m(h(zm)zm, Zmily)

(1= 5m) (T (S o) 22 + AT (S, ), T (S, w2)) (10, 10,
+ d(T(Sy,, wn), wy)d (W, W)

< a —mﬁm) d(h(zm), T(Sx,,2m))d(Wn, 2m) +

+ A <ZmT(S/\mzm;7 men>

(1 o 5m)
+ d(2m, Wi ) d(Wpn, wy) 4+ d(T(Sx,, wn), wy)d(Wy, Wy,)
< 1= ) d(h(2m), T(S,, 2m))d(Wn; 2m) + (1= Bm)

Qi
+ —d
(1 - Bm)
which implies that

(h(zm) 2, Wnzm) < d(B(2m), T(Sx, ) 2m)d(Wn, Zm) + d(zZms TS, ) 2m ) d(Zms Win)
(1 _ Bm)

Om

——y ;
(h(zm)Wn, Zmwy,)

_|_

IN +

_|_

i )<h<zm>zmim>

) 3
(h(Zm)Zm, ZmWn)

+

d(T (S, )Wn, Wy ) AWy, Wy ).

Thus, taking limsup as n — oo first, then as m — oo, it follows from (3.5.14), (3.5.18)
and (3.5.19) that

— ;
lim sup lim sup(h (2 ) 2m, Wnzm) < 0. (3.5.21)

msup lim su
Furthermore,
(hZ)Z, 5E) = (W2 () 202) + (B (o) 2o, T + (A2 oy )
(o) oms 72 + (2 202)

d(hZ), M(z2))d(2n, Z) 4+ d(h(2m), 2m)d(Z0, w0) + (h(2im) Zms WZm)

+

<

+d(h(zm), 2m)d(2m, Z) + d(zm, 2)d(zn, Z)
< (1

_|_

+ 7)d(zm, 2)d(z0, Z) + (h(2m) Zm, m>
[d(x, wy) + d(2m, 2)|d(h(2m), 2m),
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which implies from (3.5.14), (3.5.21) and the fact that lim z,, = Z, that

m—r0o0
— —
lim sup(h(z)z, :?) = lim sup lim sup(h(z)z, .I?>
n—00 m—00  n—0oo
— ;
< lim sup lim sup(h(zm,) 2m, Wnzm) < 0. (3.5.22)

m— 00 n—oo

Step 5: Finally, we show that {z,} converges strongly to z € I.

From Lemma 2.3.2, we obtain that
Ay,

(1 - Bn)
Qp < —=
(7% —_ — Vn . B

o O (h(E)E ) + (1 —

(1_671) (1_671) 1_571

Qy, oy, 9 Ay, — —
(i e e N

()2, 2n2) + q In s JEnZ, 2,%)

—
(Wn%, Tn?) <

rd*(x,,Z) + Yd* (2, Z)

Thus, from Lemma 2.3.1, we have
A (2041, 2) < Bud? (20, Z) + (1 = Bn)d?(wn, Z)
= /Bn (l’n, ) + (1 = Bo)(wnz, w,2)

)+
< (1 —an(l —7))d*(z,,2) + an(l —7)

+ (1 = Bn)d(wy, z,)d(wy, 2). (3.5.23)

By (3.5.14) and applying Lemma 2.3.26 to (3.5.23), we obtain that {x, } converges strongly
to z O

By setting T' = I in Theorem 3.5.4, where [ is an identity mapping on X, we obtain the
following result.

Corollary 3.5.5. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i =1,2,...,N be a finite family of multivalued monotone operators that satisfy the
range condition. Let h be a contraction mapping on X with coefficient T € (0,1). Suppose
that T := NN, A;7H0) # 0 and for arbitrary x1 € X, the sequence {x,,} is generated by

Yn = Boxn @ BlJAlen - D ﬁNanana

Wn = 725-h(Tn) & 125 Yn, (3.5.24)

Tpy1 = ann (1 - Bn)wna n Z 1.

where {a, }, {Bn} and {~,} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:
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(1) lim o, =0 and > a, = o0,
n—o0 n=1

(i1) 0 < liminfg, <limsupfB, <1, a, + fp+ v =1Vn > 1,
n—oo

n—oo

(11i)) 0 < A<\, Vn>1 and lim A\, = A,

n—o0

(iv) B; € (0,1) with f} B =1.

=0

Then, {x,} converges strongly to z € T.

By setting N =1 in Theorem 3.5.4, we obtain the following result.

Corollary 3.5.6. Let X be an Hadamard space and X* be its dual space. Let A : X —
2X" be a multivalued monotone operator that satisfies the range condition. Let T be a
nonexpansive mapping on X and h be a contraction mapping on X with coefficient T €
(0,1). Suppose that I := A~ (0) N F(T) # 0 and for arbitrary x; € X, the sequence {x,}
1s generated by

— _QOn 7 .
{wn = 12 h(wn) @ 25T (B @ BrTS, ea) (3.5.25)

Tpi1 = Bnxn @ (1 — Bp)wy,, n>1.

where {ay, }, {Bn} and {v,} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:

o0
(i) lim a,, =0 and a, = 00,
n—oo n=1

(i7) 0 <liminff, < limsupf, <1, ap+ Bn+7 =1Vn > 1,
n—oo

n—oo

(i) 0 < A <\, Vn>1 and lim A\, = A,
n—oo

(iv) B; € (0,1),i=0,1 with By + B, = 1.

Then, {x,} converges strongly to z € T.

3.5.2 Applications

In this subsection, we apply our results to solve variational inequality and convex feasibility
problems.
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Variational inequality problem

Let us consider the following VIP associated with a nonexpansive mapping 7"

Find z € C such that (m,ﬁﬁ >0vVyeC. (3.5.26)

Recall that the metric projection Po : X — C' is defined for z € X by d(z, Pcz) =
ingd(x,y) and characterized by, z = Pea if and only if (z,%3) < 0, Yy € C (see [99]).
ye

Now, using the characterization of Py, we obtain that
-
& = PoTe < (Tzz, 7)) > 0 Vy € C.

Therefore, © € F(PcoT) if and only if  solves (3.5.26). Recall also that the subdifferential
of an indicator function J¢, given as

e X* o (a* < if
o) = {z* € (x*,22) <0VzeC}ifz e, | (3.5.27)
0, otherwise

is a monotone operator which satisfies the range condition (see Example 2.1.28).
Thus, by (2.1.5), we obtain that
1
z=JYp = [Xz?] € 00pz <= (z1,72])) <0, Vy € C <= 2z = Poz.  (3.5.28)
Thus, by letting z = x, we obtain that z = Pex if and only if z € (0d¢)~1(0). Therefore,
we get that
7 € (06c) N 0)NF(T) = 2 € F(Po)NF(T) = z€ F(PooT).

Thus, suppose that the solution set of problem (3.5.26) is €2, then by setting A = dd¢ in
Corollary 3.5.6, we apply Corollary 3.5.6 to obtain the following result for approximating
solutions of the VIP (3.5.26) in Hadamard spaces.

Theorem 3.5.7. Let C' be a nonempty closed and convex subset of an Hadamard space
X and X* be the dual space of X. Let T : X — X be a nonexpansive mapping and h be a
contraction mapping on X with constant T € (0,1). Suppose that Q # () and the sequence
{z,} is generated for arbitrary z; € X by

W, = 125-h(zn) & 25T (50:% 5> 51Jffcxn) ,
Tpy1 = ﬁnxn & (1 - Bn)wn, n>1.

where {ay,}, {Bn} and {y.} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:

(3.5.29)

(1) lim o, =0 and > o, = oo,
n—oo n=1

(i7) 0 <liminfp, < limsupf, <1, ap + B+ =1Vn > 1,
n—oo

n—oo

(i) 0 <A<\, Vn>1 and lim A\, = A,
n—oo

(iv) B; € (0,1),i=0,1 with fo + B = 1.

Then, {x,} converges strongly to an element of Q.

76



Convex feasibility problem

Let C' be a nonempty closed and convex subset of X and C;,7 = 1,2,..., N be a finite
family of nonempty closed and convex subsets of C' such that NY ,C; # 0. Recall that the
convex feasibility problem is defined as:

Find 2 € C such that z € N, C;. (3.5.30)
Now, observe that (3.5.28) implies that = = Jféoix — v = Pex, i =1,2,...,N.
Therefore, by setting A; = 0d¢, in Corollary 3.5.5 and ani =P, 1 =12,...,Nin
Algorithm (3.5.24), we can apply Corollary 3.5.5 to approximate solutions of (3.5.30).

77



Chapter 4

Contributions to Minimization
Problems and Monotone Inclusion
Problems in Hadamard Spaces

4.1 Introduction

As mentioned in Section 1.1, the study of MPs in Hadamard spaces have proved to be very
useful within and outside mathematics. The most remarkable of them, is the application
to computing of medians and means of trees, which are very important in computational
phylogenetics, diffusion tensor imaging, censensus algorithms and modeling of airway sys-
tems in human lungs and blood vessels. In this chapter, we shall further investigate the
study of MPs in Hadamard spaces. Then, we will study some strong convergence results for
approximating a common solution of MPs, MIPs and fixed point problems in Hadamard
spaces.

4.2 Preliminaries

In this section, we highlight some lemmas that are associated with convex functions for
MPs.

Lemma 4.2.1. [130]. Let X be a CAT(0) space and f : X — (—o0, 00| be a proper convex
and lower semicontinuous function. For each x € X and A > p > 0, the following identity

holds:

A —
Ha=Jf (T“J{x ® %x) ,

where J)]\c is the Moreau-Yosida resolvent of f defined as in (2.2.3).
Lemma 4.2.2. [112]. Let X be a CAT(0) space and f : X — (—o0,00] be a proper convex

and lower semicontinuous function. Then, for all x,z € X and p > 0, we have

1 1 1
ﬂdQ(Jl{x,z) — Z(f(x,z) + ZdQ(m, J,{x) + f(J}:x) < f(2). (4.2.1)
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Definition 4.2.3. Let X be a CAT(0) space. A function f : D(f) C X — (—o0,00] is
said to be A-lower semicontinuous at a point x € D(f), if

flz) < lini)inff(xn), (4.2.2)

for each sequence {x,} in D(f) such that A-lim z, = x. We say that f is A-lower

—00
semicontinuous on D(f) if it is A-lower semicontinuous at any point in D(f).

Lemma 4.2.4. [15] Let X be an Hadamard space and f : X — R be a convex and lower
semicontinuous function. Then f is A-lower semicontinuous.

Lemma 4.2.5. Let X be a CAT(0) space and f : X — (—o0,00] be proper conver and
lower semi-continuous function. Then,
d?(Jfx, ) < d*(Jfz,z) for 0 < X< p and x € X.

Proof. Let x,y € X, then we obtain from (2.2.3) that

1 1
f 2(71f < 2
f(Jhx) + 2ud (S x) < fly) + 2ud (y, ).
In particular, we have that
1 o / [
f(Jlz) + ﬂd (Jlx,x) < f(J{z) + ﬂd (J{z, ). (4.2.3)
Similarly, we obtain
1 1
f 2( 1f 2
f(J5x) + ﬁd (Jiz,x) < f(Jg:L‘) + ﬁd (J!fa:,:c) (4.2.4)

Adding (4.2.3) and (4.2.4), we obtain that

A A
Tz, z) - ;d%J{x,x) < d2(J‘{x,x) - ;dQ(Jl{x,x).

(1 — 2) d*(Jx ) < (1 - %) d*(Jlz, z).

That is,

Since, 0 < A\ < p, we obtain that
Bz, x) < d2(J/fx,w).
O

Lemma 4.2.6. Let C be a closed and convex subset of an Hadamard space X and f; : X —
(—00,00], i = 1,2,..., N be a finite family of proper convex and lower semi continuous
mappings such that ﬂfilargmi}} fily) # 0. Let {u,} and {z,} be bounded sequences such
ye
that
Uy = Po(Jyo o Jyvn 00 e 0,0 (z)),
where J, ) denotes J/J\céi) (for simplicity) and {)\S)L 1 =1,2,...,N s a sequence such
that AV > \O > 0 for each i = 1,2,....N and n > 1. If limd(u,,z,) = 0, then
n—oo

lim d(Jy¢) 2n, 2n) = 0, for eachi=1,2,...,N.

n—oo
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Proof. Let p € NY  argmin f;(y).
yeX

Set w Y = J/\mw,(f), for each i =1,2,..., N,

where w!) = = z,, for all n > 1. Then,

( ) J)\(l) (Zn) w,(f’) = J)\

N+1
) OJ)\(1)(Z,L), cee wg ) J)\(N) oJ -1 00 (9 OJ/\(l) (Zn)
n n n n n

By Lemma 4.2.2, we obtain
@) = Sed(pwh)) + S d () wi ) + fwi™) < £p).
As f(p) < f(wgﬂ)), so we have that

d(wy), wit) < d(p,w)) — d*(p,wy V).

Taking sum in the above inequality from i = 1 to « = N, we obtain

N
S W), wit) < dP(p,z) — d(p,wiN)
i=1
< d2(p7 Zn) - dz(p7 un)
< [d(ps un) + d(un, z0)]° — d*(p, un)
< d*(2n, Un) + 2d(2n, U )d(p, uy) — 0 as n — oo,
which implies
lim d(w®,wi*) =0, i=1,2,...,N. (4.2.5)

n—oo

By (4.2.5) and triangle inequality, we obtain for each i = 1,2,..., N, that
lim d(z,, w!™) = lim d(wlV, wl*D) = 0. (4.2.6)

n—oo n—oo

Also, since A > A > 0 for all n > 1, we obtain by Lemma 4.2.1 and (4.2.5) that

d(wﬁf),JAu)wfp) < d( w,) ,J/\mw()) — 0, asn—o00, 1=1,2,...,N. (4.2.7)

Since Jy@) is nonexpansive, we have from (4.2.5) and (4.2.6) that

d(J/\u) Zns J)\(i)w,(f)) d(J)\(z)Zn7 J)\( )w(Hl ) —+ d(J/\(i)wT(f+1), J)\(i)wg))

<
< d(zp, wD) £ d(wY D) -0, asn — oo, (4.2.8)
By (4.2.5)-(4.2.8), we obtain

d(J/\(i)Zn,Zn> < d (J)\(i)zn, J)\(i)w,(f)) +d (J)\(i)wq(l (: ) + d( (H—l ) + d( +1) Zn)
— 0 as n — oo.

That is,
lim d(Jyi2n,2,) =0, 1 =1,2,... N.

n—o0
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4.3 Viscosity approximation methods for solving min-
imization problems in Hadamard spaces

In this section, we propose and study some viscosity-type proximal point algorithms for
approximating a common solution of MP and fixed point problem for nonexpansive multi-
valued mappings, which is also a unique solution of some variational inequality problems.
Furthermore, numerical examples of our algorithm are given to show its competitive ad-
vantage over existing algorithms in the literature.

4.3.1 Main results

In what follows, we propose our implicit iterative net for our first convergence theorem of
this section: For each t € (0, 1], let the net {x;} be generated by

w =3, (@), (4.3.1)
xp =tg(uy) ® (1 — vy, v € Tuy,

where J )]; is the resolvent of a proper convex and lower semicontinmuous function f, g is
a contraction mapping and 7' is a nonexpansive multivalued mapping.

The implicit iterative net (4.3.1) clearly generalizes the following implicit iteration studied
by Saejung [161]: For ¢t € (0,1) and fixed u € C, {x;} is defined by

rp=tu® (1 —t)Txy, (4.3.2)

where T is a nonexpansive singlevalued mapping defined on C'

Observe that the implicit iteration (4.3.2) is of Halpern-type, and as mentioned earlier,
the rate of convergence of Halpern-type iterations is relatively lower than that of viscosity-
type iterations.

Note also that, if th = [ in (4.3.1) (where I is the identity mapping on X), then (4.3.1)
reduces to

xp=tf(x) ® (1 —t)u(xy), u(zy) € T(xy) (4.3.3)
studied by Bo and Yi [29]. Thus, iterative net (4.3.1) extends the implicit iteration of Bo
and Yi [29] to an implicit proximal point iteration.

We now present our strong convergence theorem for the implicit proximal point iteration
(4.3.1).

Theorem 4.3.1. Let X be an Hadamard space and f : X — (—o00, +00| be a proper conver
and lower semicontinuous function. Let T : X — P(X) be a nonexpansive multivalued
mapping such that Tp = {p}, for each p € F(T) and I := F(T) N argmingex f(y) is
nonempty. Suppose that g is a contraction mapping defined on X with coefficient p € (0,1)
and \y > X > 0 for some \. Let the net {x,} be defined by (4.5.1) such that Lemma 2.3.22
holds. Then, the net {x;} converges strongly to T = Prg(Z) (where Pr is the metric
projection of X onto I' ) which also solves the variational inequality

(Tg(®), 73) > 0, Vo €T. (4.3.4)
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Proof. By similar argument as in the proof of |

well-defined.

Let p € I, then from (4.3.1), Lemma 2.3.1 and Lemma 2.3.22, we obtain

d(xt,p) d(

td(
td(
d

t

VAN VAN VANRVAN

t(pd(
(tp +

IA

which implies

g(ur) @ (1 = t)ve, p)
9(ur), p) + (1 —t)d(ve, p)
g(ur),p)) + (1 — ) H(T'uy, Tp)
(d(g(ue), 9(p)) + d(g(p),p)) + (1 = t)d(us, p)
t(pd(uy, p)) + d(g(p), p)) + (1 — t)d(uy, p)
(p )

J/]\ctxta )) +d(g(p » D

(1 —1t))d(zs, p) + td(g(p), p),

dlanp) < T—d(a(p).p)

Hence, {z;} is bounded. Consequently, {u;}, {v;} and {g(u;)} are also bounded.

From (4.3.1), we have

Pr% d(xg,v) = lim d(tg(us) @& (1 —t)ve, vy)

< hmtd( (ut),v) = 0.
t—0
From Lemma 4.2.2, we have that
1 1
2—)\td2(ut,p) - 2—)%012(%]9) + 2—)\td (e, ur) < f(p) — flur).

Since f(p) < f(uy) for all n > 1, we obtain

d2 (Ut,

) < &? (xt, ) d2($taut).

Thus, using (4.3.6) and Lemma 2.3.1, we have

dQ(xt7p)

VAN VAN VAN VAN

which implies that
d2 (th, Ut)

That is,

d*(tg(u,) ® (1 — )y, p)
td2(9(“t)7p) +(1- t)dQ(Ut,P)
td*(g(u,),p) + (1 — ) H*(Tuy, Tp)
td*(g(us), p) + (1 — t)d*(uy, p)
tdZ(g(ut),p) + d2($t,p) — d* (g, uy),

lim dQ(Z’t, ut) = 0.

t—0
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(4.3.6)

(4.3.7)



From (4.3.5) and (4.3.7), we obtain
lim d?(uy, v;) = 0. (4.3.8)
t—0

Since A\; > A > 0, we obtain from (4.3.7) and Lemma 4.4.1 that

d(l’t, J){[Et) S d(l‘t, J/J\Ctl’t>
= d(zy,u;) > 0ast — 0. (4.3.9)

Let z,, := x;,, for all m > 1, with ¢,, € (0,1] and t,, — 0, as m — oo. Since {z,,} is
bounded and X is an Hadamard space, then from Lemma 2.3.5, we may assume that /-
lim,;, 00 T, = T. Since T' is a nonexpansive multivalued mapping, it follows from (4.3.7),
(4.3.8) and Lemma 2.3.13 that T € F(T'). Also, since J{ is a nonexpansive mapping, it
follows from (4.3.9) and Lemma 2.3.12 that T € F(J{). Therefore {z,,} A-converges to
T € I'. Thus, by Lemma 2.3.10, we obtain

—
lim sup(g(7)z, :c?@ <0. (4.3.10)

m—r0o0

We now show that lim z,, = Z. From Lemma 2.3.2, we obtain
m—0o0

P, T) = W@>
< tnlglun), xmx>+<1 b)) (U, T )
< << )T, T) + (1= t)d(V, D) (2, T)
< m<< )T, T) + (1= t) H (Tt 7)1, 7)
< m(( m)T, >+(1 tm)d(J Ty T)A( Ly, T)
< tlg(um)t, o) + (1 = tn)d* (@, 2)
< twlg(u ><x3 Tn) + b (9(@)7, 2m) + (1 = b)) (0, 7)
< B (20 T) + g (D)F, ) + (1 =t (0, T),

which implies
1 — —
d*(z,, ) < 1—<g(f)j,xmx>. (4.3.11)
P

Thus, from (4.3.10) and (4.3.11), we obtain that

lim z,, = Z. (4.3.12)

m— 00

Next, we show that Z € T" solves the variational inequality (4.3.4).
From (4.3.1), Lemma 2.3.1 and Lemma 2.3.22, we obtain for any z € I" that

d(z4,2) = d*(tg(u) ® (1 — t)vy, 2
P (glw), 2) + (1 — D, ) — (1 — ) (glw), v)
td*(g(ur), 2) + (1 = )d* (2, 2) — t(1 = t)d*(g(uy), v),
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which implies
& (zy,2) < d*(g(wp), 2) — (1 = )d*(g(ur), ve).
So that
d* (2, 2) < d*(g(um), 2) — (1 — ) d*(g(tm), V). (4.3.13)
Taking limit as m — oo, we obtain from (4.3.5), (4.3.7) and (4.3.13) that
d*(z,2) < d*(g(),2) — d*(9(z), ). (4.3.14)

From (4.3.14) and by the definition of quasilinearization mapping, we obtain
1
(zg(z ,z_:')v> =3 ((g(z),2) — d*(9(2),2) — d*(z,2)) >0, Vz € L. (4.3.15)

Thus, Z € T" solves the variational inequality (4.3.4).

We now show that the net {z;} converges strongly to z. We may assume that z,,, — 2* €
I', where s,, = 0 as m — oco. Then by same argument as above, we obtain that x* also
solves the variational inequality (4.3.4). That is,

(@), 725 < 0, (zg(z"), 77) < 0.

Thus,
— —
0 > (fg(f),fx*) (x*g(x"), zx™)
o i e A e S
= (:Eg(x L Tx") + (9(x™)g(T), Za™) — (a*x, z2") — (Tg(x™), Tx™)
gy i P Gy
= (za®,707) — (9(2")g(7), 2" T)
> (1-p)d(z,2"),
which implies that d*(z,z*) = 0. Thus, ¥ = x*. Hence, the net {x;} converges to z € T’
which also solves the variational inequality (4.3.4). O

Next, we present the following strong convergence theorem for our proposed viscosity-type
PPA.

Theorem 4.3.2. Let X be an Hadamard space and f : X — (—o00, +00| be a proper convex
and lower semicontinuous function. Let T : X — P(X) be a nonexpansive multivalued
mapping such that Tp = {p}, for each p € F(T) and I := F(T) N argmingex f(y) is
nonempty. Suppose that g is a contraction mapping defined on X with coefficient p € (0,1)
and A, > X > 0 for some \. Let x1 € X be arbitrarily chosen and the sequence {x,} be
generated by

{ tn = J5 (), (4.3.16)

Tpi1 = thg(u,) & (1 —t,)v,, where v, € T'(u,)Vn > 1,

such that Lemma 2.3.22 holds and {t,} is a sequence in (0,1) satisfying
(i) lim t, =0,
n—oo



D
(i) > t, =00
n=1
oo w
(111) > |tne1 — tn] < o0,
n=1

(1v) > Ao — Ang1] < o0

n=1
Then the sequence {x,} converges strongly to T € T' which also solves the variational
inequality (4.3.4).

Proof. Let p € ', then from (4.3.16), Lemma 2.3.1 and Lemma 2.3.22, we obtain

d(Tpi1,p) = ( (un) @ (1 = tn)vn, p)

nd(g(un), p) + (1 —t,)d(vn, p)
nd(9(un),p)) + (1 — to) H(Tuy, Tp)
( (9(un), 9(p)) + d(g(p),p)) + (1 — t)d(us, p)
tn(pd(un, p)) +d(g(p),p)) + (1 — tn)d(un, p)
(tnp + (1 = tn))d(zn, p) + tad(g(p), p),

(VAN VAN VAN VAN VAN

that is

1

—pd(g(p),p)}-

d(@ns1, p) < max{d(wn, p), 17—

By induction, we obtain that

1

—pd(g(p)m)}-

d(xn—l—lap) S max{d(xl,p), 1 —

Hence, {z,} is bounded. Consequently, {u,}, {v,} and {g(u,)} are also bounded.

Next, we show that lim,, . d(x, 11, 2,) = 0. Without loss of generality, let us assume that
An > Ap_1. Since A\, > A > 0 Vn > 1, then from Lemma 4.2.1, we obtain

d(una un—l) S d(u'm (])J\cnxn—l) + d(J)j;xn—la un—l)
= d(J/]\cnIn, J/J\anEn_l) + d(J)];.I'n_l, J)]\cn_ll‘n_l)

An — An An
< d(ZEn,ZL‘n 1)+d<<]fn 1()\—1Jf Tpo1 D ) 11;”—1)7‘];;_1'1;”_1)

< d($n7$n—1) + d(%‘]fn’rn—l D A;_lxn—la xn—l)

)\n - )\nfl
An

An — A

|)\—1|d(c]{n$n1, 37n71>

[An

— Ao
%d((]{nxn_l,xn_l). (4.3.17)

= d(xna xn—l) + d(J)]\cnxn—la xn—l)
= d(xnvxnfl) +

S d(xm xn—l) +
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Also, from (4.3.16) and (4.3.17), we obtain
d(l‘n—l—lvxn) - d(tng(un) ¥ (1 tn)vna n— lg(un 1) S¥) (1 - tn—l)vn—l)
d(tng(un) @ (1 = tn)vn, thg(un) © (1 —ty)vn_1)
d(tng(un) b ( tn)vnfla tng(unfl) > (1 - tn)vnfl)
d(tng(un 1) (1 —t )Un la n— lg(un—l) 7] (1 - tn—l)vn—l)

— tp)d(Vn, V1) + td(g(un), g(tn-1))

tn — tno1ld(g(tn-1),vn-1)

(1 = tn)d(un, un—1) + tnd(g(un), g(un-1))

[ty — tn—1|d(g(tn-1),vn-1)

((1 - tn) + tnp)d(um un—l) + |tn - tn—1|d(vn—1a g(un—l))

(1 —t,) + tup) (d(:cn, Tp_1) + —Mn _;\n_l|d(anxn1, l'n1))
tn — tn1ld(vn-1, g(tn-1))

(1 —t(1 —p))d(2n, 2p_1)

A — Ap—
(1t - )P At )

+
+ |tn - tn—1|d(vn—lag(un—1))-

IN + IN + IN + + IA
’f_.\

IN

_I_

Using conditions (ii), (iii) and (iv), we obtain by Lemma 2.3.26 that
lim d(z,11,2,) = 0. (4.3.18)

n—0o0
From Lemma 4.2.2, we have that

1

mcﬂ(un,p) — KCP(SC”,]?) + KdQ(xna un) < f( ) f(un)

Since f(p) < f(u,) for all n > 1, we obtain
d*(tp,p) < d*(xy,p) — d* (2, uy). (4.3.19)
Thus, using (4.3.19) and Lemma 2.3.1, we obtain
(tn) ® (1 = tn)vn, p)
tad®(g(un),p) + (1 — t,)d* (v, p)
(un)
(un)

( p
tnd®(g(un), p) + (1 — tn)d*(un, p)
tnd?(g(un), p) + d* (20, p) — d* (2, upn),

dz(xn+17p> d2 (tng Up,

VAR VANRVA

which implies that

& (wn,un) < tad?(9(un),p) + d* (w0, p) — & (2p41,p)

<
< tndZ(g(un>ap) + d2<xm xn—i—l) + 2d<xm xn—i—l)d(xn—khp)'
It then follows from (4.3.18) and condition (i) that

lim d*(zp, u,) = 0. (4.3.20)

n—o0
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Since A, > A > 0, we obtain from (4.3.20) and Lemma 4.4.1 that

d(x,, J)]\C:z:n) < d(zy, J{n:rn)
= d(xp,u,) — 0 asn — oco. (4.3.21)

Again,

d(“na Un) d(“na xn) + d<xn7 anrl) + d($n+17 /Un)
d(Up, Tn) + d(Tn, Tpi1) + d(tng(un) © (1 — tn)vn, vn)

d(xna xn—i-l) + d(um an) + tnd(g(un)7 U'fl)?

IA A IA

which implies from (4.3.18), (4.3.20) and condition (i), that

lim d(up,v,) = 0. (4.3.22)

n—oo

Since {z,} is bounded and X is an Hadamard space, then from Lemma 2.3.5, there
exists a subsequence {x,, } of {x,} such that A-limy_,o. z,,, = Z. It follows from (4.3.20)
that there exists a subsequence {u,,} of {u,} such that A-limj ,u, = Z. Since T
is a nonexpansive multivalued mapping, it follows from (4.3.22) and Lemma 2.3.13 that
T € F(T). Also, since Jj\c is a nonexpansive mapping, it follows from (4.3.21) and Lemma
2.3.12that T € F (J)]f ). Therefore T € I". Following similar argument as in Theorem 4.3.1,
we can show that Z also solves the variational inequality (4.3.4). Thus, we conclude that
z € T also solves the variational inequality (4.3.4).

Next, we show that

lim sup(g (), 2,%) < 0.
n—oo
Observe that
—_— —
lim sup(g(7)z, aﬁ)) = lim sup(g(Z)7, x,, 7). (4.3.23)
n—00 k—o0

Since {z,, } A— converges to T, by Lemma 2.3.10, we have

—_—
lim sup(¢(Z)7, z,,x) < 0.

k—o00

This together with (4.3.23) gives

|

lim sup(g(Z)z, :;%) <0. (4.3.24)

n—o0

Finally, we prove that {x,} converges strongly to .



For any n > 1, let z, = t,7 ® (1 — t,)v,. Thus, by Lemma 2.3.2, we obtain

P(@041.T) < (20 T) + 2Tz, Copi )

< u—w%%@@:%igaﬁﬁaﬁ>_+__+

a1 = o) g ), i) 101 = 1) )
< G—HW%%@+%ﬁM%ﬁwm@>

(1~ ) (g, Br)
:(Lmﬁﬂ%@+%@Wﬁ£;§% L
= (1= )20, ) + 260 (9 ()9 (@), 2o 1B) + (G@T, Turi)
< (1= 0 (0, )+ 2t (pln, 011,7) + (0T, i)
< (1= )20 (w0, T) + 240 (9T, T 13)

+ ot (AP (20, T) + d* (2041, 7)),

which implies that

2t,, ( 1 ) 9 . 2, —— —— 2
d n b 1 - 4, d ) n —nM7
() < (1= 22 ) @ 3) 4 2 ) +

where M = sup,,»,{d*(z,,7)}. Thus, we have

-2 —
dQ(xn_,_hE) < (1 _ M) d2( —) + QtN(l - P) ((g(az)x,anx} n t, M ) ‘

1 —tup L—tup 1—p 2(1-p)
—_—
If we let ~, = ( t” and ¢, = %p(g(i)f, Tp1T) + 2(1 say M, we obtain that
A (2p41,T) < (1 = 7)d* (20, T) + Yn0p. (4.3.25)

It then follows from (4.3.18), (4.3.24), (4.3.25) and Lemma 2.3.26 that {x,} converges
strongly to Z which solves the variational inequality (4.3.4). O

Corollary 4.3.3. Let X be an Hadamard space and f : X — (—o0,+o0] be a proper
convex and lower semi-continuous function. Let T : X — X be a nonexpansive single-
valued mapping such that I' := F(T') N argmingex f(y) is nonempty. Suppose that g is a
contraction mapping defined on X with coefficient p € (0,1) and A\, > XA > 0 for some .
Let x1 € X be arbitrarily chosen and the sequence {x,} be generated by

n ) 4.3.26
{ Toa1 = tng(uy) & (1 — t,)Tuy, ( )

for each n > 1, where {t,} is a sequence in (0,1) satisfying
(i) lim t, =0,
n—oo

M)im:w
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o)
(i1i) S Jtusr — ta] < 00,
n=1

(1v) > [An — Ang1] < o0
n=1

Then, the sequence {x,} converges strongly to T € T', which also solves the variational
inequality

—

(Tg(T),23) > 0, z € T, (4.3.27)
By setting g(z) = u for arbitrary but fixed v € X and for all z € X, in Corollary 4.3.3,
we obtain the following result which coincides with [174, Theorem 3.1].

Corollary 4.3.4. Let X be an Hadamard space and f : X — (—o0,400] be a proper
convex and lower semi-continuous function. Let T : X — X be a nonexpansive single-
valued mapping such that I' := F(T) N argminyex f(y) is nonempty. Suppose that A, >
A > 0 for some \. Let u,x1 € X be arbitrarily chosen and the sequence {x,} be generated

by

n ’ 4.3.2
{ Tpp1 = tht B (1 - tn)Tu”7 ( ’ 8)

for each n > 1, where {t,} is a sequence in (0, 1) satisfying
(i) lim t, =0,
n—oo
(1)) > t, = o0,
n=1
(111) > |tns1 — tn] < 00,
n=1

(1v) > [An — Ang1] < o0
n=1

Then the sequence {x,} converges strongly to T € I' which also solves
(Ta,73) >0, z T, (4.3.29)

which by Lemma 2.5.21 implies that & = Pru. In other words, the sequence {x,} converges
strongly to © € I which is the nearest point of I' to u.

The following corollary of Theorem 4.3.2 coincides with Theorem 2.3 of [161].

Corollary 4.3.5. Let X be an Hadamard space and T : X — X be a nonexpansive single-
valued mapping such that F(T) is nonempty. Suppose that u,x1 € X are arbitrarily chosen
and the sequence {x,} is generated by

Tpr1 = tau ® (1 —t,) Ty, (4.3.30)

for each n > 1, where {t,} is a sequence in (0,1) satisfying
(i) lim t, =0,
n—oo

(i) > t, = o0,
n=1
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o)
(i1i) S Jtusr — ta] < c0.
n=1

Then, the sequence {x,} converges strongly to @ € F(T) which is the nearest point of F(T)
to u.

The following corollary of Theorem 4.3.2 coincides with Theorem 3.2 of [29].

Corollary 4.3.6. Let X be an Hadamard space and T : X — P(X) be a nonezpansive
multivalued mapping such that Tp = {p}, for each p € F(T) and F(T) # 0. Suppose
that g is a contraction mapping defined on X with coefficient p € (0,1). Let z; € X be
arbitrarily chosen and the sequence {x,} be generated by

Tpt1 = tng(xy) B (1 —tp)vn, v, € Ty, (4.3.31)

for each n > 1, where {t,} is a sequence in (0, 1) satisfying

(i) lim, o t, =0,

(ii) Dy tn = 00,

(111) 3257 [tnar — tn] < o0

Then the sequence {x,} converges strongly to T € F(T) which also solves the variational
imequality

(Tg(®), 73) > 0, « € F(T). (4.3.32)

Remark 4.3.7. (1) Our main results generalize and extend the results of Suparatula-
torn et al. [17]] from approximating a common solution of minimization problem
and fixed point problem for singlevalued nonexpansive mapping to approximating a
common solution of minimization problem and fixed point problem for multivalued
nonexpansive mapping which is also a unique solution of some variational inequal-
ities (see Corollary 4.3.4). Furthermore, our algorithm (Algorithm 4.3.16) has the
potential of converging faster than Algorithm (2.2.5) studied by Suparatulatorn et al.
[17]], since our algorithm is of viscosity-type. Examples are given below to further
illustrate this (see Figures 1 and 2).

(2) Our results also extend the results of Bo and Yi [20] from approximating a fized point
of nonexpansive multivalued mapping to approximating a fixed point of nonexpansive
multivalued mapping which is also a solution of minimization problem (see Corollary

4.5.6).

(8) Our theorem (Theorem /.3.2) extends Theorem 2.3 of Saejung [101] (which is a
Halpern’s convergence theorem) from approximating a fixed point of a singlevalued
mapping to approximating a fized point of a multivalued mapping which is also a min-
imizer of a proper convex and lower semicontinuous function and a unique solution
of some variational inequalities (see Corollary 4.3.5).

4.3.2 Numerical examples

In this subsection, we present two numerical examples of our algorithm (Algorithm 4.3.16)
in R? and in an Hadamard space to show its advantage over existing algorithms in the
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literature.

Throughout this section, we shall take ¢,, = n+r1 Vn >1and g(z) = 3z Vz € X.
Example 4.3.8. Let X = R? be endowed with the Euclidean norm ||.||2. Define T : R? —
R? by T(xy,w9) = (—x1,23). Then, T is a nonexpansive mapping.

Let f : R? — (—o0,400| be defined by f(z) = ||z|[1 + 5||z|)3 + (1, —2)"x + 8, then f is
a proper convexr and lower semi-continuous function. Thus, by using the soft thresholding
operator (see [50]) and the proximity opperator (see [00]), we obtain that

, 1
J (@) = agmin[f(y) + 5llz —ylP]
yeR 2
= prox;x
r—(1,-2)T
= Pproxj.| (¥)
; 2

—1/—-1
= <max{%,0} sgn(xzq — 1),

2] -1 g
max{%,()} sgn(x2+2)) :

where sgn(.) is the signum function of o € R defined by

1, ifa>0
sgn(a) =< 0, ifa=0 (4.3.33)
-1 ifa<O.

Example 4.3.9. Let X = R? be endowed with a metric dx : R* x R? — [0, 00) defined by

dx(z,y) = /(21— 10)? + (&3 — 22 — 2 + 1) Vi € B

Then, (R?,dx) is a complete CAT(0) space (see [19/, Example 5.2]) with the geodesic
joining x to y given by

1=tz @ty = ((1—t)z + tyr, (1 =)oy + tyr)® — (L= t) (2] — 22) — (45 — v2)) -

Now define 7' : R?* — R? by T'(z1,72) = (71,222 — x4). Clearly, T is not a nonexpansive
mapping in the classical sense. However, it is easy to check that T is nonexpansive in
(R% dx). Indeed, for all z,y € R?

dx(Te,Ty) = \Jr =)+ (af — (202 —22) — 4 + (2% — 1))’

= \/(1’1 —y1)? 4 (22 — 29 — Y2 + y2)?
= dx(.%,y>

Again, define f : R? = R by f(z1,22) = 100((z2+1) — (z1+1)?)*+2%. Then f is a proper
convex and lower semi-continuous function in (R? dx) but not convex in the classical sense

(see [194]).
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Using Example 1 and 2, we compare our algorithm (Algorithm (4.3.16)) with Algorithm
(2.2.15) of Saejung [161], the algorithm of Bo and Yi (see [29, Algorithm (3.7)]) and
Algorithm (2.2.5) of Suparatulatorn et al. [171], by considering the following 4 cases (see
Figures 4.1 and 4.2):

Case 1: z; = (0.5,—0.25)T and u = (2,8)7,
Case 2: 1 = (1,3)" and u = (2,8)7,

Case 3: 71 = (—1,-3)" and u = (0.5,1)7,
Case 4: 7, = (—1,-3)T and u = (-0.5, —1)T.
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Figure 4.1: Errors vs Iteration numbers for Example 1: Case 1 (top left); Case 2 (top
right); Case 3 (bottom left); Case 4 (bottom right).

Remark 4.3.10. We can see from the graphs that our viscosity-type algorithm converges
faster than the Halpern-type algorithms studied by Saejung [101] and Suparatulatorn et
al. [17]]. Observe also that, although the algorithm studied by Bo and Yi [29] is also of
viscosity-type, our algorithm performs better than it. One possible reason for this could
be because of the fact that our viscosity-type iteration is more closer to the proximal point
algorithm compared to that of Bo and Yi [20]. In fact, this could also be the reason behind
the better performance of Algorithm (2.2.5) of Suparatulatorn et al. [17/] compared to
Algorithm (2.2.15) of Saejung [101] as shown by the numerical results.
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Figure 4.2: Errors vs Iteration numbers for Example 2: Case 1 (top left); Case 2 (top
right); Case 3 (bottom left); Case 4 (bottom right).
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4.4 A modified Halpern iteration process for solving
minimization, monotone inclusion and fixed point
problems in Hadamard spaces

In this section, we propose a modified Halpern algorithm and prove its strong convergence
to a zero of a monotone operator which is also a minimizer of a proper convex and lower
semicontinuous function and a fixed point of a demicontractive-type mapping (see Remark
2.1.39 for the importance of demicontractive-type mappings in optimization theory) in
Hadamard spaces. Furthermore, we applied our result to approximate a common solution
of MP, MIP and fixed point problem for demimetric mappings (recently introduced in
Hadamard spaces [%]) in Hadamard spaces.

4.4.1 Main results

Definition 4.4.1. Let X be a CAT(0) space. A mapping T : X — X s called k-
demicontractive-type, if F(T) # (0 and there exists k € (—oo, 1) such that

d*(Tz,y) < d*(z,y) + kd*(Tx,2) Vo € X, y € F(T). (4.4.1)

Proposition 4.4.2. Let X be a CAT(0) space andT : X — X be a k-demicontractive-type
mapping with k € (—oo,1). Then F(T) is closed and convet.

Proof. We first show that F'(T) is closed. Let {z,} be a sequence in F(T') such that {x,}
converges to x*.

Case 1. If k € [0,1), then from (4.4.1) we obtain that

d*(Tz*, x,) < d*(x*, 2,) + kd*(Tx*, x*)
< [d(z*, zn) + VEd(Tz*, 2))?,

which implies
d(z*, Tx*) < d(z*, 2p) + Vkd(z,, Tz")
< 2d(z*, ) + VEd(z*, Tx").
This implies that (1 — Vk)d(z*, Ta*) < 2d(z*,x,) — 0 as n — oco. Since vk < 1, it
follows that x* € F(T).
Case 2. Suppose k € (—00,0), we obtain from (4.4.1) that

d*(Tz*, z,) < d*(x*, 2,) + kd*(Tx*, 2¥)
< d*(z*, ).

Taking limits of both sides, we obtain that d*(T'z*, z*) < 0. Hence z* € F(T). Thus, from
Case 1 and Case 2, we conclude that F(7T) is closed.
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Next, we show that F(T) is convex. Let z = tz @ (1 — t)y for each z,y € F(T) and

t €[0,1]. By Lemma 2.3.1(ii), (2.1.1) and (4.4.1), we obtain

d*(z,Tz) = d(tr @ (1 —t)y,Tz)
<td*(z,Tz)+ (1 —t)d*(y, Tz) — t(1 — t)d*(=x, y)
= t[(l o t)2d2<$,y) + kd2(27TZ)] + (1 o t)[tZdz(J:a y) + kd2(Z7T’Z>] o t(l - t)d2((13, y)
= kd*(2,Tz).

Since k < 1 it follows that z € F(T') and so F(T') is convex.

O

Lemma 4.4.3. Let X be a CAT(0) space and T : X — X be a k-demicontractive-type
mapping with k € (—oo, 5] and B € (0,1). Let Tgx = Px & (1 — B)Tx, then Ty is quasi-
nonezpansive and F(Tz) = F(T).

Proof. Let x € X and ¢ € F(T). From (4.4.1) and from Lemma 2.3.1 (ii), we have

< ﬁd2<l‘, q) + (1 - ﬁ)dQ(T:C7 Q) - ﬁ(l - 6)d2(T£L',$)

= d*(¢, ) + (1 — B)(k — B)d*(x, T'x)

< d*(z,q).
Therefore, T is quasinonexpansive.
We next show that F'(T3) = F(T'). Let x € F(T3), then x = Tsx. So,

d(x,Tz) =d(fx® (1 — )Tz, Tx)
< fd(z, Tz),
which implies that (1—8)d(z, Tz) < 0. By the condition on /3, we obtain that d(z, T'z) < 0.
Therefore, v € F(T), and thus F(T3) C F(T).
Similarly, let x € F(T'), then = T'xz. By Lemma 2.3.1, we obtain
d(z,Tpzr) = d(Tz, fr & (1 — B)Tx)
< Bd(Tw, ) + (1 - B)d(Tw, Tz) = 0,

which implies that d(x, Tzz) = 0, thus x € F (1) and therefore F(T') C F(75). Hence,

we obtain the desired result. O]

Lemma 4.4.4. Let X be an Hadamard space and X* be its dual space. LetT : X — X
be a k-demicontractive-type mapping with k € (—oo, 3] and B € (0,1). Let A: X — 2%°
be a multivalued monotone operator and f : X — (—oo,00] be a proper convex and lower
semicontinuous function. Suppose that F(Tg) N F(J3,)NF(J1,) # 0, then for 0 < Ay < Ay
and 0 < p2y < o, we have that

F(TgoJy o Jl) S F(T)NF(JL)NF(JL),

where Tgx = fx @& (1 — B)Tx.
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Proof. Let z € F(Tzo Jy, o JI ) and y € F(T3) N F(Jy,) N F(J},). Then, from Lemma

4.4.3, we obtain that

&(z,y) = (T3 (J],x)),y)
< (I3 (L) ).

From Lemma 3.2.5 and (4.4.2), we have

dQ(Jj\‘;(JlJ:Qa:) JI )

7T p2

d*(J,x,y) — (I3 (J],7), )
d2($, y) - dQ(JfQ(J;{gm)) y)
dQ(‘])g(J;{gx)v y) - dg(‘])j\i(‘]ﬁ{gx}v y)v

VAN VAN VAN

which implies

Ju (@) = J) x.
Furthermore, from Lemma 4.2.2, we have

» Y o

241z 2412

2412
Since f(y) < f(JI{Qx), we obtain from (4.4.2) that

d2<‘];{2xax> d2($,y> - dz(‘];{gxay)
d2($,y> - dz(Jg(J;{g‘T)?y)

dz(Jg(J;{g‘T)? y) - d2<‘]<12(‘];{2x)7 y)7

VAR VAN VAN

which implies
Jf;x = 2.
From (4.4.3) and (4.4.5), we obtain
xr = J,\A;(J;;x) = Jz.
Also, we obtain from Lemma 4.4.3 and (4.4.6) that
x = Ts(J5 (J],2)) = Tsw = Ta.

Furthermore, by setting z = Jlflx in Lemma 4.2.2, we obtain that

1 1
f 20 71f ! 2(1f
f(J],@) + 2M2d (Jhx, ) < f(J52) + 2M2d (J, 2, 2).

Similarly, we obtain

1 1
f(ngzv) + Q_Mdz(‘];{1$’ x) < f(J,fQ:B) + Q—MdQ(J/f;:B,x).
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(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)



Adding (4.4.8) and (4.4.9), we obtain that

d2(J/flyc,:U) - %dQ(J/flx,x) < d2(J/fzx,:U) - %dQ(J/fo,x).

That is,

H1'\ 52 H1'\ 52
(1 - E) d (Jf:lx,x) < (1 - E) d (Jf;x,x).

Since 0 < 1 < 9, we obtain that
d(Jf:la:,x) < d(J/fo,x).

Thus, from (4.4.5), we obtain that z € F(J1 ).

Also, from Theorem 2.1.32 (iii) and (4.4.6), we obtain that € F(J3:). Therefore, we
conclude that F(Tgo J3i o JI,) S F(T)n F(J¢)n F(J]). O

Theorem 4.4.5. Let X be an Hadamard space and X* be its dual space. Let T : X — X
be a k-demicontractive-type mapping with k € (—oo, B8] and f € (0,1) such that T is A-
demiclosed. Let A : X — 2% be a multivalued monotone operator that satisfies the range
condition and f : X — (—o00,00] be a proper conver and lower semicontinuous function.
Suppose that T := F(T) N A1(0) N arggéigg f(y) # 0 and the sequence {x,} is generated

for arbitrary u,x, € X by

an)xn @D apu,
Y)Y @ T 0 I3 o JL yn, (4.4.10)
Tp+1 = (1 - ﬁn)yn S¥ ﬁnzTH n Z 17

zn = (1—
where Tpr = o & (1 — B)Tx, { .} and {p,} are sequences in (0,00), {an}, {Bn} and
{7} are sequences in (0,1) such that the following conditions are satisfied:

Cl: 0<pu<pp and 0 < X<\, foralln > 1,
C2: lima, =0 and > o, = o0,
n—00 nel
C3:0<a< B, mb<l.
Then, {x,} converges strongly to an element of T.
Proof. Let p € T, then from (4.4.10), Lemma 4.4.3 and Lemma 2.3.1 (ii), we obtain

d*(2,p) = A*((1 = 70)¥n ® 7T5(J5 (J] yn)), p)
< (1= %) (Yn, p) + 1 d® (T (3 (J) 4n))s 2) = V(1 = 70) A (g, To (I (T2, ym)))
< (Y, 0) = (1 = Y)Y, T( T3 (J] yn)))
< d*(Yn, p). (4.4.11)
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From (4.4.10) and (2.1.1), we obtain that

d(xn-f—lv yn) = d((l - Bn)yn % ﬂnzn; yn)
= Bud(2n,Yn), (4.4.12)

which implies that

1

d2(zn7yn) = @dQ(anrl;yn)

_ M) 44.13
= B ( Wby ) e

Again, from (4.4.10), (4.4.11) and (4.4.13), we obtain
d2(x'n+17p) < (1 - Bn)dQ(ymp) + ﬁndz(zn’p) - Bn(l - 6n)d2<ym Zn)

< ep) = (1= B i ) (4.4.14)

< d*(yn, p),

which implies from Lemma 2.3.1 (i) that

i)
d(mn-l-l»p) S (1 - an)d(:vn,p) + and(uvp)
< max{d(x,,p),d(u,p)}

max{d(z1,p),d(u,p)}.

Therefore, {z,,} is bounded. Furthermore, we obtain from (4.4.14) and Lemma 2.3.1 (iii)
that

dz(:Bn_H,p) < Ozid2(u,p) + (1 - O‘n)ng(xnap) + 20‘71(1 - O‘n)@mv CW@
(1= B, )

n

< (1= a)d*(@n, p) + afd®(u, p) — 200 (1 — 0, (Wh, p7)

- %(1 - Bn)dQ(xn—i—h yn)
= (1 = a)d*(wn, p) + an(—0n), (4.4.15)

where 6, = —a,d?(u, p) + 2(1 — o) (wp, pry) + (1 = B)d*(Tni1,yn).  (4.4.16)

Qi Bn,

Since {z,} is bounded, it is bounded below. Thus, {d,} is bounded below, which implies
that {—d,} is bounded above. Therefore, we obtain from condition C2 of Theorem 4.4.5,
and Lemma 2.3.27 that

lim sup d*(x,,, p) < limsup(—d,,)

n—oo n—oo

= —liminf §,, (4.4.17)

n—oo

99



which implies that lim infd,, < —limsupd?(x,,p). Hence, lim infd,, exists. Thus, we obtain
n—oo n—oo n—oo

from (4.4.16) and condition C2 that

lim inf §,, = lim inf <2<@7p7n> +

n—o0 n—oo

1
1-— n d2 n+1y, JIn .
(= B
Since {z,} is bounded and X is complete, we obtain from Lemma 2.3.5 that there exists
a subsequence {x,, } of {x,} such that A—klim Tp, =2 € X and
— 00

n—oo

lim lnf5 - hm (2<@7m> + —(1 - Bnk)dQ(Ink-‘rlvynk)) : (4418)

ng~nNg

Using the fact that {z,} is bounded and lim infd, exists, we get that

n—o0

{ankﬁnk (1= Bn,)d*(zp, 11, ynk)} is bounded. By condition C3, we obtain that — Bnk (1—
Bry) = = 6 (1 —=b) > 0. Thus, {a 15 d2(xnk+1,ynk)} is bounded. Also, from condition
C3, we obtaln that 0 < 5"’“ < a"k — 0, k — .
Tk
Therefore, we obtain from (4.4.13) that
lim d(zn,, Yn,) = 0. (4.4.19)
k—ro0
From (4.4.12), (4.4.19) and condition C3, we obtain that
kli)m d(Zp,+1,Yn,,) = 0. (4.4.20)
From (4.4.11), we obtain
Yoo (L= Y ) Yo Ton,) < (Y ) — d* (205 1)
< A (Yo 2n) + 2d(Yn, 20, )d (20, D),
which implies from condition C3 that
lim (Y To (I3, (S5, Ym))) = 0. (4.4.21)
—00

Now, Let v,, = J/\Ank (sznk (Yn,))- Then, from Lemma 3.2.5 and (4.4.21), we obtain that

dQ(Unk’ ‘],un (ynk)) dz(J;{nk (ynk>’p) - dz(Unmp)

&* (Y, p) — d* (T, D)
> Yny, Tovn, ) + 2d(Yn, ; Tovn, )d(Tavn,,p) — 0. (4.4.22)

VAR VAN VAN

Also, from Lemma 4.2.2 and noting that f(p) < f(J}] (ynk)), we obtain that

AT ) v) S P p) = (T (Yo, p)
< d*(Yny, p) — P(Tpvn,,p) — 0, as k — oco. (4.4.23)
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From (4.4.22) and (4.4.23), we obtain that
lim d(vay, yo,) = lim (5, (T, (). 0n,) = 0. (4.4.24)
Furthermore, from (4.4.21) and (4.4.24), we obtain

lim d(vy,, Tsvn,) = 0. (4.4.25)

k—o0

Again, from (4.4.10) and condition C2, we obtain
A(Ynys Tny,) < apd(u,z,,) — 0 as k — oo. (4.4.26)

Since A—klim T, = 2z, we obtain from (4.4.24) and (4.4.26) that A—klim Yn, = 2z and A-
— 00 — 00

klim Un, = 2. It then follows from Lemma 2.3.12, Lemma 4.4.4, (4.4.24), (4.4.25) and

—00

condition C1 that z € F(Tjs o Jﬁl o Jlfn) CET)NFJNHN F(J;Jj) =T.

Furthermore, since A—khm Zn, = %, we obtain from Lemma 2.3.10 that
—00

limsup(u?, zz,’) > 0 for arbitrary u € X.

k—o0

Thus, from (4.4.18) and (4.4.20), we obtain that

liminf 6, = 2 lim (4, zz, ) > 0. (4.4.27)

n—o0 k—o0

Hence, from (4.4.17), we obtain that

lim sup d*(z,, z) < —liminf 6,, < 0.

n—o00 n—oo

Therefore, lim d(z,,2) = 0 and this implies that {z,} converges strongly to z € I'. ]

n—oo

Corollary 4.4.6. Let X be an Hadamard space and X* be its dual space. Let T : X — X
be a k-demicontractive-type mapping with k € (—oo, ] and B € (0,1) such that T is
A-demiclosed. Suppose the sequence {x,} is generated for arbitrary u,x; € X by

— )z, ® ayu,
- ’Yn)yn > 'YnTﬁyn7 (4428)
Tnt1 = (1 - ﬁn)yn b 5nzn7 n > 17

—_ =

yn:(
zn = (

where Tgx = fx & (1 — )Tz, {an}, {Bn} and {y,} are sequences in (0,1) such that the
following conditions are satisfied:

Cl: lima, =0 and > o, = o0,
n—oo n=1

C2: 0<a< By, <b<l.

Then, {x,} converges strongly to an element of F(T).
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If £ =0 and {u,}, {\.} are constant sequences in Theorem 4.4.5, then we obtain the
following result.

Corollary 4.4.7. Let X be an Hadamard space and X* be its dual space. Let A : X — 2X°
be a multivalued monotone operator that satisfies the range condition and T : X — X
be a nonezrpansive mapping. Let f : X — (—o0,00] be a proper conver and lower semi-
continuous function. Suppose that T := F(T)NA~1(0)N arggl&i}r{l f(y) # 0 and the sequence

{z,} is generated for arbitrary u,x; € X by

1 — ay)x, © ayu,
Tp4+1 = (1 - 6n)yn S¥ ﬁnzna n Z 17

where X and p are in (0,00), {an}, {Bn} and {y.} are sequences in (0,1) such that the
following conditions are satisfied:

Cl: lima, =0 and > a, = o0,

n—o0 n=1

C2: 0<a<Byym<b<l.

Then, {x,} converges strongly to an element of T.

Corollary 4.4.8. Let X be an Hadamard space and X* be its dual space. Let A : X — 2X°
be a multivalued monotone operator that satisfies the range condition and T : X — X be
a nonexpansive mapping. Suppose that T := A~1(0) N F(T) # 0 and the sequence {x,} is
generated for arbitrary u,r, € X by

— )T, © ayu,
= V)Un B VT © I3 yn, (4.4.30)
Tp4+1 = (]- - Bn)yn ¥ 6712717 n Z 17

yn:(
(

where {\,} is sequence in (0,00), {a,}, {Bn} and {v,} are sequences in (0,1) such that
the following conditions are satisfied:

Cl: 0 <A<\, foralln>1,
C2: lima, =0 and > o, = o0,
n—00 nel

C3:0<a<fBn,y<b<l.
Then, {x,} converges strongly to an element of T.
In what follows, we apply our result (Theorem 4.4.5) to approximate a common solution of
MP, MIP and fixed point problem for demimetric mappings. We begin with the definition

of demimetric mapping.
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Definition 4.4.9. [5] Let X be a CAT(0) space. A mapping T : X — X is said to be
k-demimetric, if F(T) # 0 and there exists k € (—oo,1) such that

(T, 2T7) > %dQ(LTx) Vo € X,y € F(T). (4.4.31)

Theorem 4.4.10. Let X be an Hadamard space and X* be its dual space. LetT : X — X
be a k-demimetric mapping with k € (—oo, ] and B € (0,1) such that T' is A-demiclosed.
Let A : X — 2% be a multivalued monotone operator that satisfies the range condition and
f:X = (—o00,00] be a proper convex and lower semicontinuous function. Suppose that
[:=F(T)nA0)N arggréi)r(l f(y) # 0 and the sequence {x,} is generated for arbitrary

u, 1 € X by

)Ty B apu,

Vn)yn b 7nTB o J)‘f‘n © J;{nyna (4432)
Tp4+1 = (1 - Bn)yn ¥ 571271; n Z 17

where Tpr = fr & (1 — )Tz, {\.} and {p,} are sequences in (0,00), {ay,}, {Bn} and
{vn} are sequences in (0,1) such that the following conditions are satisfied:

yn:(l_
zn = (1 —

Cl: 0<pu<p, and 0 < A<\, foralln >1,
C2: lima, =0 and Y " oy, = 00,

n—o0

C3:0<a<B,,mb<l1.
Then, {x,} converges strongly to an element of T.

Proof. Since T is k-demimetric, then we obtain from the definition of quasilinearization
mapping that

% [d*(y, ) + d*(z, Tx) — d*(y, Tx)] > %dQ(x,Tx).
That is
d*(y, Tx) < d*(y, ) + kd*(z, Tz).
Thus, applying Theorem 4.4.5, we obtain the desired conclusion. O

4.5 A modified Ishikawa iteration process for a fam-
ily of minimization, monotone inclusion and fixed
point problems in Hadamard spaces

Here, we extend the results obtained in Section 4.4 to finite family of MPs, MIPs and fixed
point problem for asymptotically demicontractive mapping in Hadamard spaces using a
modified Ishikawa iteration process, and we further gave a numerical example of this
iteration process to show its applicability.
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4.5.1 Main results

Theorem 4.5.1. Let X be an Hadamard space and X* be its dual space. Let A; : X —
2X" i =1,2,... N be multivalued monotone operators that satisfy the range condition and
i X = (—00,00], j=1,2,...,m be proper convex and lower semi continuous functions.
LetT : X — X be a uniformly L-Lipschitzian and asymptotically demicontractive mapping
with constant k € (0,1) and sequence {k,}:>, C [1,00) such that Y o (k2 —1) < oc.

Suppose that T' := F(T) N (N, 4;'(0)) N (ﬂ}llargmi}r(l fj(y)) # 0. Let u,xqy € X be
ye
arbitrary and the sequence {x,} be generated by
Uy = (1 = t)x, ® thu,
u, = &Y o \Ifff(vn),
Tn41 = (1 - an)“n @ anTnyna n > ]-7

where @) = JYVoJ to---0Jfo ), @ =1, U = JroJr oo, @ =1, A\ pe
(0,00) and {t,},{Bn}, {an} are sequences in (0,1) satisfying the following conditions:

(4.5.1)

C1: limt, =0,
n—oo
C2: > t, = o0,
n=1
C3: 0<e<a,<kB,<pB,<b< 2 where § := sup k,,

(e i

C4: lim %=t = 0.

n—oo tn

Then {x,} converges strongly to an element of T.

Proof. We first observe that since T" is uniformly L-Lipschitzian, we obtain from (4.5.1)
that

d(T"up, T"yn) < Ld(upn,yn)
= Ld(upn, (1 = Bn)u, @ B, T"uy)
< LBnd(un, T"uy,). (4.5.2)
Let p € I, then from (4.5.1) and (4.5.2), we have
(T, ) < b (Yo, p) + kd? (Y, T"yn)

= kndQ((l — Bp)tn, @ Bn T up, p) + de(yn, T"y,)

< k(1= Bo)d (tn, p) + K Bnd® (T, p) — kB (1 = Bn)d® (i, Ty
+Ed* (1 — B)un D BaT tn, Ty,
< k(1= Bo)d? (un, p) + knBnd® (T Uy, p) — knBn(1 — B,)d* (U, T uy,)
+k(1 — 5n)d2(un, T"y,) + kﬁndQ(T"un, T"yn) — kBn(1 — ﬁn)d2(T"un, Up)
< En(1 = Bo)d? (un, p) + knBnd*(T Uy, p) — knBn(1 — B,)d* (tn, T u,)

+k(1 = Bp)d* (un, T™yn) + kLB d* (up, T™uy) — kBn(1 — Bo)d* (T uy, uy,)
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IN

Also, from (4.5.1),

d? ($n+1 ) P)

Since > 7 (k2

are all bounded.

En(1 — Bo)d*(tn, p) + knfh [k:nd2(un,p) + kd?(up, T"un)}
—kn B (1 — Bo)d* (up, T"up) + k(1 — B)d* (tn, Ty
+EL2B3d* (U, T™uy) — kBn(1 — Bo)d*(T™uy, uy,)
(kn — FnfBn + kiﬁn)d2 (Un, p)
—Bn [(1 = Bo)(kn + k) — kL?B2 — kky| d*(wn, T uy)
k(1 = Bo)d (tn, T"yn)
[ki(l — Bn) + kiﬂn} d2(un,p) + k(1 - Bn)d2(un7Tnyn)
—Bn [(1 = Bo)(kn + k) — KL* B2 — kky)| d*(up, T uy,)
kfde(ump) + k(l - /Bn)d2(um Tnyn)
—Bn [(1 = By)(kn + k) — kL?B2 — kky| d*(wn, T"u,). (4.5.3)
(4.5.3) and condition C3 , we obtain
< (I—-ay) 2(“717]7) + Oznd2(T"ymp) —ap(l - O‘n)dz(uanyn>
< (1= ) d* (Un, p) + ank2d*(up, p) + kan (1 — B)d* (tn, T™yy)
—anBn [(1 = Bo)(ky + k) — kL*B2 — kky | d*(up, T )
—ay (1 — )d2<um T"yy)

< kid2(un,p) —ap [(1 = k) + (kBn — an)] d2(um T"yn)
— B [(1 = Ba) (kn + k) = kL2 B3 — ko] & (un, T )
S kid2(un7p)
— 0 [(1 = ) (i + k) — KL2B3 — k] o (un, Ty -
< 14 (2 - 1] (. p) (4.55)
= [1+ (K2 — 1] (@Y V) 0., p)
< (U (k7 = D] (@Y v, p)
< [0+ (2 - 1] (W
< [+ (B2 = 1)) A, p)
< [+ (K = D] (v, p)
< [T+ (K2 =1)] [(1 = tp)d*(@n, p) + tad*(u,p)]
< [+ (82 = 1)] mas{d? (e, ), (0, p)}
< L0+ 07 = D] max{d(21,p), d*(u. p)}.

— 1) < o0, then we have that {z,} is bounded. Consequently, {u,}, {v,}

From (4.5.1) and condition C1, we have that

lim d(v,, z,) < lim t,d(u,z,) = 0. (4.5.6)

n—o0 n—oo
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We now divide our proof into two cases.

Case 1: Suppose that {d*(x,,p)} is monotonically non-increasing, then lim {d*(z,,p)}
n—o0

exists. Consequently,

lim [d*(zn41,p) — d*(zn,p)] = 0. (4.5.7)

n—oo

From Lemma 3.2.4 (i) and (4.5.4), we obtain

B (Up, @Y 10™,) = (T (RN T, OV ,)
< (@Y, p) — P (IY (O, p)

= d2(vn,xn) + 2d(vp, x,)d(x,, p)

1
+ |d* (2, p) — EdQ(an,p) . (4.5.8)

Since lim k, =1 and lim d(x,,p) exists, we have from (4.5.6) and (4.5.8) that

n—oo n—oo

lim d?(u,, ®Y '0"v,) = 0. (4.5.9)

n—oo

Again, from Lemma 2.3.1 and Lemma 3.2.4 (i), we obtain

(O Wy, O 2T, < PR TP vy, p) — dP(DY M0y, p)

d2(vn,p) - dQ(unap)
1
S dz(vnap) - k_gdz(xn-i-lap)
< d*(0n, ) + 2d(0n, T, )d(, p)
1
+ |d* (2, p) — ﬁdz(aﬁnﬂ,p) — 0. (4.5.10)
Continuing in the same manner, we have that
lim @ (@)W v, YW w,) = - = lim (@300, Wiv) =0, (45.11)
Also, from Lemma 4.2.2, we have
idQ(\Dm id2 \I,m—l + id2(\ljm—l pm f(\I’m ) < f( )
2/,L M,Un?p)_Qlu/ ( 1 UN7p) 2/_1, 1 Una ,u,p)+ M’Un — p *
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Since f(p) < f(¥}'v,), we have that

2 m m—1 2 m—1 2 m
d (q}“ Un’\I/# Un) < d (\Iju Un7p) —d (\II,U, Unap)

d*(vn, p) — d2(un,p)
S d2(vnap> - kgd (‘rn-‘rl)p)
< (v, ) + Qd(vm T)d(2n, p)

+ |d* (2, p) — k_Qd (Tps1,p)| — 0, asn — oco. (4.5.12)

Using similar argument as above, we can show that

lim d*(U" o, U7 2y,) = - = lim d2(\1121)n, \Illvn) = lim dQ(len,vn) = 0.4.5.13)
Thus,

d(tup,vy) < d(uy, @iv_l\llevn) + d(@f\v_lllf;”vn, @ﬁ\v_Z\IflTvn)
o d( RN, Uy, ) + (V) 0, Uy,
—I—d(\I/T_lvn, \IIL”_Q?J”) +oee d(\I/Lvn, Un),
which implies from (4.5.9), (4.5.10), (4.5.11), (4.5.12) and (4.5.13), that

lim d(uy,,v,) = lim d((IDN\Ifmvn,vn) = 0. (4.5.14)

n—oo n—oo

From (4.5.6) and (4.5.14), we obtain

lim d(uy,z,) = 0. (4.5.15)

n—oo

Since {d*(z,,p)} and {k,} are bounded, then there exists M > 0 such that

M = sup{d*(z,, p), k>}.

n>1

Thus, from (4.5.4), we obtain

d*(2p11,p) — d* (20, D)

< kpd*(up, p) — d* (20, p)
—a, B [(1 — Bo)(kp + k) — KL*B% — } d?(tp, T™uy, )
< K2 (up, ) + K2d* (2, p) + 2k2d (un, n)d(:vn,p) d*(x,,p)
—anfn [(1 = ) (ko + k) = KL?B7 — ko] & (un, T"uy,)
< Md* (Un, ) + 2M3d(up, 2,) + (k2 — 1)M
— B [(1 = Bp) (b + k) — kL?B2 — kky, | d® (un, T"uy). (4.5.16)

Since > 7 (k2 — 1) < oo, then lim (k2 — 1) = 0. Thus, letting

n—o0

Op = Oénﬁn [(1 - ﬁn)(kn + k) - kLQﬁZ - kkn} )
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we obtain from (4.5.16) and (4.5.15) that

Snd* (U, T™uy) < Md?* (U, 2) + 2M3d(up, x,) + M (K2 — 1)
+d* (2, p) — d*(2p41,p) — 0, as n — oo. (4.5.17)

From condition C3, we obtain that 2k — b(k + 0) > kb (k+5) +4L2. This implies that

2k — b(k + 0)])* > AL%k*0* + b*(k + 6),

which further implies that
k — bk — bd — kL*b* > 0.

Thus,

bn = B [(kn + k) — kky — Ba(k + kn) — KL?52]
€ [(kn + k) — kn — Bu(k + k) — kL25%]

€ [k — bk — bk, — kL]

€ [k — bk — b — kL?b*] > 0.

vV VvV Vv

Hence, from (4.5.17), we obtain
lim d(u,,T"u,) = 0. (4.5.18)

n—o0

From (4.5.1) and condition C3, we obtain
lim d(yn,u,) < lim B,d(T"uy,, u,) = 0. (4.5.19)
n—oo n—oo

Since T is uniformly L-Lipschitzian, we obtain from (4.5.18) and (4.5.19) that

A1, 9n) < (1= )d(tn, Yn) + nd(T"Yns Yn)
< (1 = ap)d(tn, Yn) + and(T"yp, T"uy)
+at, [d(T g, ) + d(Yn, )]
< (1= an)d(un, yn) + an Ld(Yn, un)
)

+au, [d(T™ Uy, up) + d(Yn, un)] — 0, as n — oco. (4.5.20)
From (4.5.15), (4.5.19) and (4.5.20), we have
lim d(z,.1,2,) = 0. (4.5.21)

n—o0

Again, since T is uniformly L-Lipschitzian, we obtain

d(tp, Tun) < d(un, T"up) + d(T" Uy, T'uy,)
< d(tp, T"uy) + Ld(T™ 'uy,, uy,)
< d(ty, T™uy) + Ld(T™  upy, T" Mty 1)
+Ld(T" Yy, 1) + Ld(tp_1, uy)
< d(tp, T"up) + L*d(tn, 1)
+Ld(T™ 1, 1) + Ld(tp_1, uy)
< d(tp, T"up) + Ld(T™ "1, 1)

(L2 + L) [d(tn, ) 4+ d(2p, Tp1) + d(Tp_1, Up1)],
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which implies from (4.5.15), (4.5.18) and (4.5.21) that

lim d(uy,, Tu,) = 0. (4.5.22)

n—o0

Since {x,} is bounded and X is an Hadamard space, then from Lemma 2.3.5, there exists
a subsequence {x,, } of {x,} such that A—klim Tp, = 2. It follows from (4.5.15) that there
— 00

exists a subsequence {u,, } of {u,} such that A—klim Up, = 2. Thus, from (4.5.22) and
—00

Lemma 2.3.18, we obtain that z € F(T). Also, since ®} o W7 is the composition of

nonexpansive mappings, it implies that ®} o U7 is nonexpansive. Thus, it follows from
(4.5.14) and Lemma 2.3.12 that z € F(@f\v o \Ifm) It then follows from Lemma 4.4.4 that

ze (NN, 4;,10) N (ﬂ}”_larg HH)I(I fj(y)>. Therefore, z € T.
ye
Furthermore, for arbitrary u € X, we have from Lemma 2.3.10 that

lim sup(uZ, 7,2) < 0, (4.5.23)

n—oo

which implies from condition C1 that

lim sup (t,d*(u, 2) + 2(1 — t,) (4%, 7,2)) < 0. (4.5.24)

n—0o0

Next, we show that {x,} converges strongly to z. Since {u,} is bounded, there exists
M’ > 0 such that d*(u,,2) < M’V n > 1. Thus, from (4.5.5) and Lemma 2.3.1 (iii), we
obtain

dQ(l’n_H,Z) < d2(una ) (k2_ )d2 Un, 2 )
< d(up, 2) + (ky = )M
< QY T, 2) + (ki — )M
é dQ(\I/L”vn,z)Jr(ka—l)M'
< Plon2) + (- )M
< (1= t0)2d* (2, 2) + 202 (u, 2) 4 2, (1 — t,) (W2, Tn2) + (k2 — )M’
< (L= t)d (2, 2) + to (tad® (u, 2) + 2(1 — 1) (0%, T 2))

+(k2 —1)M’". (4.5.25)
Since Y07 (k2 —1)M’ < oo, it then follows from (4.5.24), (4.5.25) and Lemma 2.3.26 that
{z,,} converges strongly to z.

Case 2: Suppose that {d?(x,,p)} is monotonically non-decreasing. Then, there exists a
subsequence {d*(x,,,p)} of {d*(x,,p)} such that d*(z,,,p) < d*(xn,1,p) for all i € N.
Thus, by Lemma 2.3.29, there exists a nondecreasing sequence {my} C N such that
my — 00, and

d2($mkap) < dQ(xkarlap) and dz(xlmp) < d2($mk+1>p) Vk e N.
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Thus, with this and (4.5.5), we obtain

0 < lim( (Timg+1,D) (T, P
k—o00

)
)

IN

lim sup
n—oo

-Tn—l—la xnap

IN

IN

lim sup
n—oo

(1 = t0)d(2n, p) + tnd?(u, p) + (K2 — 1)d*(tn, p) — d*(2n, p))

limsup [t (d*( — d*(2p,p)) + (ki —1)M'] =0,

n—oo

(d?

limsup (d*(un, p) — 1)d*(un,p) — d*(z,,p))
(C
[

IN

which implies

lim (d*(2my41,p) — A (Tm,,p)) = 0. (4.5.26)

k—o00

Following the same line of argument as in Case 1, we can verify that

B (fn @2 (u, 2) 4 2(1 — b, ) (@2, 222)) < 0. (4.5.27)

k—o0

Also from (4.5.25), we have
(g1, 2) < (1=t ) (s 2) g (g (1, 2) + 2(1 = ), Ty 2)) + (K2, — )M

Since d*(zyn,, 2) < d*(Xm, 11, 2), we have

: K2 —1)M
dQ(xmk’ Z) < (tmde(uv z) + 2(1 - tmk><ﬂ7xmk >) + %7
mg
which implies from (4.5.27) and condition C4 that
lim d*(x,,,,2) = 0. (4.5.28)
k—ro0
Since d*(zg, z) < d*(xp, 11, 2), we obtain from (4.5.28) and (4.5.26) that klim d*(zy, z) = 0.
— 00
Thus, from Case 1 and Case 2, we conclude that {x,} converges to z € I'. O

If T is a uniformly L-Lipschitzian and asymptotically nonexpansive mapping defined on
X, then we obtain the following result.

Corollary 4.5.2. Let X be an Hadamard space and X* be its dual space. Let A; + X —
2X" i =1,2,... N be multivalued monotone operators that satisfy the range condition and
fi+ X = (—o00,00], j=1,2,...,m be proper convex and lower semi continuous functions.
LetT : X — X be a uniformly L-Lipschitzian and asymptotically nonexpansive mapping.

Suppose that T := F(T) N (N, 4;71(0)) N (ﬂm 1ar’gmln fily )) # 0. Let u,xy € X be

arbitrary and the sequence {x,} be generated by
vy = (1 —t,)x, @ tyu,
u, = dY o \Ifl’f(vn),

Tpi1 = (1 —ap)u, @ @, Ty, n > 1,

(4.5.29)
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where Y = JY¥ o J{ o 0 R0 J), =1, ¥ =JVo o0l d), @) =1,
A i€ (0,00) and {t,} is a sequence in (0,1) satisfying the following conditions:

C1: limt, =0,

n—oo
C2: > t, = o0,

n=1
C3:0<e<a,<b<landl<e<p,<b<1,

C4: lim Bt = 0.

n—00 tn

Then {x,} converges strongly to an element of T.

By setting N =m = 1 in Theorem 4.5.1, we obtain the following result.

Corollary 4.5.3. Let X be an Hadamard space and X* be its dual space. Let A : X — 2X°
be multivalued monotone operator that satisfies the range condition and f : X — (—o0, 0]
be proper convex and lower semi continuous function. Let T : X — X be a uniformly
L-Lipschitzian and asymptotically demicontmctive mapping with constant k € (0,1) and

sequence {k,}>2; C [1,00) such that Z(k2 —1) < oo. Suppose that T := F(T)NA~1(0)N
argmi)r(l fly) £ 0. Let u,z1 € X be arbztmry and the sequence {x,} be generated by
ye

= (1 - tn)xn @ tyu,
Up = Jy 0 Jyu(vn),
Yn = (1 - ﬁn)un ® BT U,
Tpi1 = (1 — ap)u, @ @, Ty, n > 1,

(4.5.30)

where A\, € (0,00) and {t,},{Bn},{an} are sequences in (0,1) satisfying the following
conditions:

C1: limt, =0,
n—oo
C2: > t, =
n=1
C3:0<e<a, <kB,<pB,<b< Z__ , where § := sup k,,

== IS RAC SR =

C4: lim ~=— kil _ ),

n—o0 tn

Then {x,} converges strongly to an element of T.

By setting N =m =1 and T = I (I is the identity mapping on X) in Theorem 4.5.1, we
obtain the following result.
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Corollary 4.5.4. Let X be an Hadamard space and X* be its dual space. Let A : X —
2X" be multivalued monotone operator that satisfies the range condition and f : X —
(—00, 00| be proper convex and lower semi continuous function. Suppose thatT' := A~1(0)N
arggréi)r(l fly) £ 0. Let u,zy € X be arbitrary and the sequence {x,} be generated by

v, = (1 —tp)x, ® thu,

Ix o Ju(vn)),

Yn = (1 — Bn>un D B,

Tor1 = (1 — ap)ty ® apyn, n > 1,

S
S
I
—~

(4.5.31)

where A\, € (0,00) and {t,}, {60}, {an} are sequences in (0,1) satisfying the following
conditions:

C1: limt, =0,
n—o0

C2: Y t, = oc.
n=1

Then {x,} converges strongly to an element of T.

4.5.2 Numerical example

In this subsection, we give a numerical example of Theorem 4.5.1 to illustrate the appli-
cability of our main result. Let X = R? be endowed with the euclidean norm |.||2. Let
B : R? — R? be defined by B(x) = (221 + x2, x1 + 322) and b" = (0,0). Let m = 1 in
Theorem 4.5.1, we define f : R* — (—o0, oc| by

() = 5l1BG) ~ bl

Then, f is a proper convex and lower semi continuous function, since B is a continuous
linear mapping (see [120]). Thus for u = 1, we obtain from [126] that

h(a) = Proxy(a) = arguin | )+ o~ oI
yeR

= (I+B"B)™Y(z + B™b).

o = (b 0+ 98 )G 4D
(lpte )

So that

Let N =1 in Theorem 4.5.1, we define A : R* — R? by A(z) = (21,21 — 73). Then, A is
a monotone mapping.
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We note that [t%} =t(b—a), forall t € R and a,b € R? (see [97]). Thus, we have for
each z € R? that

1
I(r) =2 <= X(x—z) € Az

— =1+ )NA)z
— z=({I+\A) .

So that for A = 2, we compute the resolvent of A as follows:

we = (53 +2ft 4)) [

Thus, for N=m =1, A =2 and p = 1, we obtain

11131 - 5I2 37131 - 28%2
Bl he) = ( 205 205 ) '

Let T : R* — R? be defined by T'(z) = =2%. Then T is a demicontractive mapping with
k = é This implies that 7" is an asymptotically demicontractive mapping with k& = %
and k, = 1 for all n > 1. Thus, we obtain that § = 1. It is easy to see that T is also
uniformly L-Lipschitzian with L = % Now, if we take b = = and € = —L- then condition

10 1000’
C3 becomes:

0<—1 < <B”<ﬁ <1 <—2
o, < — L, < — .
1000 — 5 10 6++/45
So that, if we choose £, = ﬁ, a, = ﬁ and t, = ﬁ, then t,,, 8, and «,, satisfy the

conditions in Theorem 4.5.1.
Hence, for u, z; € R?, our Algorithm (4.5.1) becomes:

( 2n

U
i1 ln T o1
Up = JQ(JlUn)a
— N S _ _3_
Yn = <1 10+%> Un = 5042 Uns

— _ 1 - _3 >
\In+1 = <1 50+%> Un 100+%y”’ nzl.

Un =

(4.5.32)

Case I Take z; = (0.1, 0.5)T and v = (0.1, 0.5)T.

Case II Take z; = (0.1, 0.5)" and u = (1, 1.5)T.

Case III Take z; = (=1, —0.5)" and u = (-1, 1.5)7.

The Mathlab version used is R2014a and the figures are as follows:
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Figure 4.3: Case I: errors vs number of iterations (top); execution time vs accuracy (bottom
left); number of iterations vs accuracy (bottom right).
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Figure 4.4: Case II: errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Figure 4.5: Case III: errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Chapter 5

Contributions to Equilibrium
Problems in Hadamard Spaces

5.1 Introduction

EPs include other optimization problems like MPs, VIPs, CFPs, among others. Thus, they
are known to be of central importance in optimization theory as well as in nonlinear and
convex analysis. However, as mentioned in Remark 2.2.11, the study of EPs in Hadamard
spaces is still in the embryonic stage since there are very few results concerning EPs in
Hadamard spaces. Thus, it is important to further develop its study in Hadamard spaces.
In this chapter, we shall further develop and generalize the study of EPs in Hadamard
spaces. Then, we extend the study to the study of MEP (1.2.8) in Hadamard spaces, and
also apply our results to solve other optimization problems like the MPs, VIPs and CFPs.

5.2 Preliminaries

Here, we discuss some important results that will be needed in this chapter, which includes
the study of the existence of resolvent operators and solution of equilibrium problems.

For a nonempty subset C' of X, we denote by conv(C'), the convex hull of C. That is, the
smallest convex subset of X containing C. Recall that the convex hull of a finite set is the
set of all convex combinations of its points.

Theorem 5.2.1. (The KKM Principle) (see [108, Theorem 3.8]). Let C' be a nonempty,
closed and convex subset of an Hadamard space X and G : C — 2° be a setvalued mapping
with closed values. Suppose that for any finite subset {x1,xs,...,2,} of C,

conv({xy, 9, ..., xm}) C U G(x;). (5.2.1)

Then, the family {G(x)}zcc has the finite intersection property. Moreover, if G(xg) is

compact for some xy € C, then () G(x) # 0.
zcC
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Theorem 5.2.2. [108, Theorem 4.1] Let C' be a nonempty closed and convex subset of an
Hadamard space X and ¢ : C' x C'— R be a bifunction satisfying the following:

(A1) p(z,z) >0 for each x € C,
(A2) for every x € C, the set {y € C : p(z,y) < 0} is convez,
(A3) for every y € C, the function x — p(x,y) is upper semicontinuous,

(A4) there exists a compact subset L C C' containing a point yo € L such that ¢(x,yo) < 0
whenever © € C\ L.

Then, problem (1.2.7) has a solution.

In [105], the authors introduce the resolvent of the bifunction ¢ associated with the EP
(1.2.7). They defined a perturbed bifunction F; : C' x C — R (z € X)) of ¢ by

Fi(z,y) = ¢(x,y) — <ﬁ,@), Va,y e C. (5.2.2)

The perturbed bifunction F has a unique equilibrium called the resolvent operator J¥ :
X — 2% of the bifunction ¢ (see [103]), that is

J#(x) == EP(F,,C)={z€ C:p(z,y) — (z,z)) >0, y€ C}, = € X. (5.2.3)
It was established in [108] that J¥ is well defined.

Definition 5.2.3. Let X be a CAT(0) space and C be a nonempty closed and convex
subset of X. A function ¢ : C x C' = R is called monotone if o(x,y) + ¢(y,z) <0 for all
x,y e C.

Lemma 5.2.4. [108, Proposition 5.4] Suppose that ¢ is monotone and D(J?) # (). Then,
the following properties hold.

(i) J¥ is singlevalued.
(i) If D(J¥) D C, then J?¥ is nonexpansive restricted to C'.
(111) If D(J¥) D C, then F(J¥) = EP(p,C).
Theorem 5.2.5. [108, Theorem 5.2] Suppose that ¢ has the following properties
(1) o(x,x) =0 for all z € C,
(i1) ¢ is monotone,
(i1i) for each x € C, y — @(x,y) is convex and lower semicontinuous.

(iv) for each y € C, o(x,y) > limsup, o ¢((1 —t)x © tz,y) for all x,z € C.
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Then D(J¥) = X and J¥ single-valued.

Remark 5.2.6. It follows from (5.2.3) that the resolvent JY of the bifunction ¢ and order
A > 0 is given as

J2(2) = EP(Fy,C) = {2 € C : p(z,9) + %(ﬁ, >0, yeCl ze X, (5.24)

where F is defined in this case as

1
Fi(z,y) == ¢(x,y) + X(?x,ﬁ/% Ve,ye C, T € X. (5.2.5)

Lemma 5.2.7. Let C' be a nonempty, closed and convex subset of an Hadamard space X
and ¢ : C x C'— R be a monotone bifunction such that C' C D(JY) for A > 0. Then, the
following hold:

(i) JY is firmly nonexpansive restricted to C.
(ii) If F(JY) # 0, then
A (J{r,x) < d*(z,v) — d*(J{z,v) Vo € C, v € F(JT).
(ii1) If 0 < X\ < p, then d(Jfw, J{z) < /1 — %d(m, J¢w), which implies that d(x, J{r) <
2d(x, JPw) Vo € C.

Proof. (i) Let ,y € C, then by Lemma 5.2.4 (i) and the definition of J, we have

]| — ——>
p(Jiz, J{y) + (@ J{w, J{x{y) 2 0 (5.2.6)
and
1 — ——5
P(Xy: JXw) + 1y Sy, Iy Jx) 2 0. (5.2.7)

Adding (5.2.6) and (5.2.7), and noting that ¢ is monotone, we obtain

(e, Jw5y) + WISy, FyIfa)) = 0,

> =

which implies that

(#, T ILy) = (JLadly, Jady).
That is,

—
(@, S JLy) > d* (T, JLy). (5.2.8)

(ii) It follows from (5.2.8) and the definition of quasilinearization that
d*(z, J{x) < d*(z,v) — d*(v, J{x) Vo € O, v € F(JY).
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(iii) Let x € C' and 0 < A < pu, then we have that

| — ———
o(J{x, J7x) + X( J{w, J{x7r) >0 (5.2.9)
and
1 —> =57
o(J7x, J{x) + —(xJfw, JPxJ{x) > 0. (5.2.10)
w

Adding (5.2.9) and (5.2.10), and by the monotonicity of ¢, we obtain that
— A — ———
(JYwz, JPxJ{x) > —(JZwx, JExJ{T).
I
By the definition of quasilinearization, we obtain that

(é + 1) P (Jfx, J{x) < (1 — é) d*(z, J7x) + <i N 1> d*(z, J{ ).

[t i ft

Since % < 1, we obtain that

A A
(— + 1) d*(Jfx, J{x) < (1 - —) d*(z, JPx),

u 1t

d(J7w, J{xr) <4 [1— id(:c, Jix). (5.2.11)
\/ I

Furthermore, by triangle inequality and (5.2.11), we obtain

which implies

d(z, J{r) < 2d(x, Jfx).
[

Remark 5.2.8. We note here that, if the bifunction ¢ satisfies assumption (i)-(iv) of
Theorem 5.2.5, then the conclusions of Lemma 5.2.7 hold in the whole space X .

Lemma 5.2.9. Let C' be a nonempty, closed and convex subset of an Hadamard space X
and T be a nonexpansive mapping on C. Let p; : C x C =R, 1 =1,2,..., N be a finite
family of monotone bifunctions such that C C D(J{') for X > 0. Then, for B; € (0,1)
with Zé\io Bi = 1, the mapping Sy : C' — C' defined by Sz := fox @ (1 J{'x ® foJ*x B
- @ BNJI{NT for all x € C, is nonexpansive and F(T o Sy,) € N F(J{) N F(T) for
0 < A1 < Ay, where Sy, : C' — C'is defined by Sy,x := Box® I DB S 2@ - -DBNJI{N x
forallx € C.

Proof. 1t follows easily from the proof of Lemma 3.2.7. m
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5.3 A viscosity-type proximal point algorithm for equi-
librium and fixed point problems in Hadamard
spaces

In this section, we propose and study a viscosity-type PPA, comprising of a nonexpansive
mapping and a finite sum of resolvent operators associated with monotone bifunctions. A
strong convergence of the proposed algorithm to a common solution of a finite family of
EPs and fixed point problem for a nonexpansive mapping is established in an Hadamard
space, and applications of the established results to solve other optimization problems
(like, EPs, MPs, and CFPs) and fixed point problems in Hadamard spaces are discussed.

Remark 5.3.1. We will like to emphasize that, approrimating a common solution of EPs
(or VIPs) and fixed point problems are very applicable in practice. It has been estab-
lished in [85] that finding a common solution of such problems have some applications
to mathematical models whose constraints can be expressed as EPs (or VIPs) and fived
point problems. In fact, this happens in practical problems like signal processing, network
resource allocation, image recovery, among others.

5.3.1 Main results

Theorem 5.3.2. Let C' be a nonempty closed and convex subset of an Hadamard space
X and p; : CxC — R, i = 1,2,...,N be a finite family of monotone and upper
semicontinuous bifunctions such that C C D(J{') for X > 0. Let T : C — C be a
nonezpansive mapping and g : C' — C be a contraction mapping with coefficient 7 € (0, 1).
Suppose that T := NN, EP(¢;, C)NF(T) # 0 and for arbitrary z; € C, the sequence {x,}
1s generated by

{yn = Sx,Tn = Boxn ® L1 20 @ B2 I 00 @ -+ @ By TN 2y, (5.3.1)

Tpt+1 = ang(xn) ¥ ann ¥ %zTym n Z 17

where {a, }, {Bn} and {v,} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:

[ee]
(i) lima, =0 and > a, = oo,
n—o0 n=1

(17) 0 <liminffs, < limsupf, <1, ap+ Bn+7 =1Vn > 1,
n—oo

n—oo

(i1i)) 0 < A<\, Vn>1 and lim A\, = A,

n—o0

(iv) B; € (0,1) with iﬁi =1.

=0

Then, {x,} converges strongly to z € T.
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Proof. Step 1: We show that {z,} is bounded. Let u € T', then by Lemma 2.3.3, we
obtain that

d(rni1,u) < and(g(zn), u) + Bud(wn, u) + Wmd(Tyn, u)
< aprd(xg,u) + and(g(u), w) + Bud(zn, w) + Ypd(yn, w)
< anTd(Tn,u) + (o + Bn)d(xn, u) + and(g(u), u)
= (1 —a,(1—=7))d(x,,u) + a,d(g(u),u)
<

o { () + I

1—71

< max {d(xl,u) + M} :

1—17
Hence, {x,} is bounded. Consequently, {y,}, {g(z,)} and {T'(y,)} are all bounded.
Step 2: We show that lim d(z,41,z,) = 0. Observe from Remark 2.3.4, that (5.3.1) can
be rewritten as YHOO
Yn = Sn,Tn 1= Bon © S1J5 00 © - © By I
Wn = 125-9(0) © 125 1Y, (5.3.2)
Tnar = Bottn © (1 — By, 1> 1.

Now, from (5.3.2), Lemma 2.3.1 (iv),(vi) and the nonexpansivity of T, we obtain that

Qpt1 In+1 Oé Tn
d(Wpq1,w,) = d(— Tpt1) & —————TYpi1, g(x,) P T n)

< AT g(ann) @ (1= ) Ty, o —g() & (1= =) Ty, )

1- Bn-‘rl 1- 6n+1 ﬁn—f—l 1— Bn—&-l
Q41 Q41 Qp ap
+d<— )@ (1 — —L Ty, ——g(x,) & (1 — Tn)
(677 NN] (79}
< ——7d Tpt1,Tn) + l———7—)d n+1l, In
1— /8n+1 ( +1 ) ( 1 — /6n+1) (y +1,Y )
(7% Qanp
| |d(g(2n), Tyn) (5.3.3)

11— ﬁn—l—l a 1-— ﬁn
Without loss of generality, we may assume that 0 < A,y < A, Vn > 1. Thus, from (5.3.2),
condition (iv), Lemma 3.2.1 and Lemma 5.2.7 (iii), we obtain

AWYnt1,0n) = d(Botnir @ SIS Tnga @ - B BNILY g, Boxn @ B1I 00 @ - © By TN 1)

n+1 n+1

< Bod(Tpi1, Tn) +Zﬁl STt I )

=1

S /60 ($n+laxn +Zﬂz )\+1$n+17 )\ +1 +Zﬁz J;\szrlxnanzxn)

N
< i) + (1= 2) S B 1)
n i=1
/\n+1 ~
< d(a;n+1,xn)+< - )M, (5.3.4)

122



_ N
where M := sup{ ) Bid((])\;ﬂxn,xn)}. Substituting (5.3.4) into (5.3.3), we obtain that

n>1 =1

Q41 Q41
———7d 1l——)d
1 - 5n+1T (41, 2) + ( 1 - Bn-i—l) (Zn+1,@0)

(1= (- 2 )

Opt1 Qp
— d(g(zn), Tyn
T o 1= B, |0 (@) Ton)

an+1 )\n—f—l Ofn+1
= - -9 D)]d(x,, ,xn—i—( 1 )(1——)1\/[
[ 1—5n+1( )] d(@ni1,20) " T
’ Opt1 [0

1_Bn+1_1_ﬁn

Since lim a,, =0, lim A, = A and {g(z,)}, {Ty,} are bounded, we obtain that
n—o0

n—oo

d<wn+17 U)n>

_|_

d(g(zn), TYn)-

lim sup (d(wn+17 wn) - d<xn+17 xn)) S 0.

n—oo

Thus, by Lemma 2.3.17 and condition (ii), we obtain that

lim d(wy,x,) = 0. (5.3.5)

n—oo

Hence, by Lemma 2.3.1 we obtain that
d(zpi1,n) < (1 — Bn)d(wy, x,) — 0,  as n— oo. (5.3.6)

Step 3: We show that lim d(x,,T(Sy,)z,) =0 = lim d(w,, T(S,,)w,). Notice also that

n—oo n—o0
(5.3.1) can be rewritten as

) <Bn:cn D VT yn

(1— o) > Yn = S o

Tn1 = ang(@n) ® (1 -

Thus, by Lemma 2.3.1, we obtain that

Bnn @ YT yn
(1—ay)

Also, from (2.1.1), we obtain

Bnn & VT yYn

e (1 —an)

) < and(g(:vn), ) —0, as n—oo. (5.3.7)

d( Bny, EB%Tyn> _ M
(=) 1

which implies from (5.3.6) and (5.3.7) that

d(n, Tyn),

n

n n+n 7’LT n
1 jand<xnaTyn) S d(l‘n, iL‘n+1) + d<xn+17 %) — 07 as mn — 0.
Hence,
lim d(z,,Ty,) = lim d(x,,T(S\,)z,) = 0. (5.3.8)

n—oo n—oo
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Now, since {z,} is bounded and X is a complete CAT(0) space, then from Lemma 2.3.5,
there exists a subsequence {x,, } of {z,} such that A — klim Tp, = Z. Again, since T'o Sy,
ﬁ

is nonexpansive (and every nonexpansive mapping is demiclosed), it follows from (5.3.8),
condition (iii), Lemma 3.2.7 and Lemma 5.2.4 (iii) that z € F(T o Sy,) C "X, F(J{) N
F(T)=T.

Also, we have

d(wy, T(Sy,)wy) < d(wp, x,) + d(x,, T(Sy,)xn) + d(T(Sy, )Tn, T(S),)ws)
< 2d(wp, ) + d(x,, T(S),2n) — 0, as n — oo. (5.3.9)

—
Step 4: We show that lim sup(g(Z)z, ﬁ) <0.

n—o0

Now, define T,z = B,z @ (1 — B,)w, where w = (e z) ® =h ey T(Sy, )z, then T,
is a contractive mapping for each n > 1. Thus, there exists a unique fixed point z, of
T, Vn > 1. That is,

Zm = Bmzm ® (1 — Bim) W, where w,, = e )g( m) D (T'_%T(S,\m)zm
Moreover, hm L 2 =7 € I' (see Theorem 3.5.1).

Thus, we obtain that

d(2m, wn) = d(Bmzm © (1 = Bm) Wi, wy)
S Bmd(znmwn) + (1 - 5m)d(wma wn)a

which implies that
d(Zm, wy) < d(Wy,, wy,). (5.3.10)
From (5.3.10) and Lemma 2.3.1(v), we obtain that

d2(wma wn) - <wmwn7 wmwn>

- ; R ;
(Wi T(Sy,,) 2m, Wmwy,) + (T(S),,) 2mWn, W Wy, )

(1?—7%)<9(zm)T(SAm)zni, W) + (T(S,, Zm )W, Wty

Oy

(1 - Bm)

<9(Zm>T<S/\mzmj> wm—z>m> + ﬁ@(zm)wn, zm—w_b

Zm;7zmwm S)\ Zm) (S)\mwnjawmwm>

< uf—%md(g(zm), (S, 2m) ) (W, 2m) + ﬁ@(zm)zm, )
1 _ 5 mv men + d (S,\mzm), T(SAmwn))d(wm, wn)

+ d( (S, wn), Wy )d(Wy,, wy,)

d(9(zm), T(Sx2m))d(Wn, 2m) + O ) (9(2m)2m, m)

<a—m _m
_(1_6771) (1_6m
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+ _(1 fmﬁ _> <m, Zm—w>n> + d(Zm, Wi ) d (Wi, wy,) + d(T (S, Wy, Wy )d (W, wy,)
[07%% . N

< (1 _ Bm) d(g<zm)= T(S)\mzm))d(wna Zm) (1 — 6m)< (zm)zrm men>

" (1 —mﬁm) d(2m, T (Sx, 2m) ) A Wiy 2m) + d(Winy wy) + d(T'(Sy,, wn ), W) d(wn, W),

which implies that

(9(2m )Zmawnzm> < d(9(2m), T(Sx,)2m)d(Wn, 2m) + d(2m, T(Sx,,)2m ) d(2m, W)

+ Md(T(SM)wm W ) A (Wi, Wiy ).

Am
Thus, taking limsup as n — oo first, then as m — oo, it follows from (5.3.5),(5.3.8) and
(5.3.9) that

—— ;
lim sup lim sup(g(zm ) 2m, Wnzm) < 0. (5.3.11)

m—0o0 n—oo

Furthermore,

(90205 TnE) = (909 (s 22} + (9o o T} + (92 2 )
+ (9 (zm) 2o mE) + (s 1)
< d(9(2), 9(2m)) AT Z) + A(g(zm), Z)d (s W) + (g o) 2, T
+d(9(2m), 2m)d(2m, Z) + d(2m, 2)d(2y, Z)
< (14 7z 2)d (0, 2) + (9 (om) s ) + [ w00) + A, 2] (), 20),

which implies from (5.3.5), (5.3.11) and the fact that lim z,, = Z, that

m—o0

— —
lim sup(g(2)Z, 2,%) = lim sup lim sup(g(2)Z, 7,,)
- ;
< lim sup lim sup(g(2m) Zm, Wnzm) < 0. (5.3.12)

m— 00 n—oo

Step 5: Lastly, we show that {x,} converges strongly to z € I'.

From Lemma 2.3.2, we obtain that

A5 < T @)t md) + s TS)n 5
< f"ﬁn)< 9(2n)g(Z), 7,%) + q f”ﬁn) (9(Z)%, 1)
+(1j”ﬁn) (T <5An)xn,z>d(xn,z)‘—>
=0 fnﬁn)rd%xn, I+ g —Bn>< 97 22) + (1 - 1fﬁn)d2(xn,z)
- [y 0 )] e+ gy @RS
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Thus, from Lemma 2.3.1, we have

d*(2ny1,2) < Bud*(1,,2) + (1 — Bo)d*(wy, %)
= Bud®(20,2) + (1 — Bo) (wn, w,3)

= B2, %) + (1 — Bo)[(wnZ, i0nzr) + (w0, E, 20 2)

]
< [Ba + 0T + 9l (0,2 (L= Bu) (0, 0,30) + alg(2)%, 2,7)
< (1 - 01 = ) (0,2) + (1~ 7) | 2 —(g(2)%, )
+ (1 = B)d(wn, w) M. (5.3.13)
By (5.3.5) and applying Lemma 2.3.26 to (5.3.13), we obtain that {x, } converges strongly
to z. [

Corollary 5.3.3. Let C' be a nonempty closed and convezr subset of an Hadamard space
X and p; : CxC — R, i = 1,2,...,N be a finite family of monotone and upper
semicontinuous bifunctions such that C C D(J{') for X > 0. Let g : C — C be a
contraction mapping with coefficient T € (0,1). Suppose that T := "X EP(p;, C) # 0 and
for arbitrary x, € C, the sequence {x,} is generated by

(5.3.14)

Yn = Sx,n = Botn ® S1I{ Tn @ B0 @ -+ ® BN TN T,
Tpt+1 = O‘ng(xn) ¥ ann D VnlYn, N = 1,

where {ay,}, {Bn} and {v.} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:

o
(1) lima, =0 and > a, = oo,
n—o0 n=1

(i7) 0 <liminfp, < limsupf, <1, ap+ Bpn+7 =1Vn > 1,
n—oo

n—oo

(1)) 0 < A<\, Vn>1 and lim A\, = A,

(i) B; € (0,1) with %@- =1.
i=0

Then, {x,} converges strongly to z € T.

Corollary 5.3.4. Let C be a nonempty closed and convex subset of an Hadamard space
X and ¢ : C x C — R be a monotone and upper semicontinuous bifunction such that
C C D(JY) for A\ > 0. Let T : C — C be a nonexpansive mapping and g : C — C be a
contraction mapping with coefficient 7 € (0,1). Suppose that T := EP(o,C)NF(T) # 0
and for arbitrary x1 € C, the sequence {x,} is generated by

n — Jf ns
Yn =I5, 0 (5.3.15)
Tp4+1 = O‘ng<xn) S 6nIn S anTyna n Z 17

where {a, }, {Bn} and {~,} are sequences in (0,1), and {\,} is a sequence of positive real
numbers satisfying the following conditions:
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(1) lim o, =0 and > a, = o0,
n—o0 n=1

(i7) 0 <liminfp, < limsupf, <1, ap+ Bn+7 =1Vn > 1,
n—oo

n—oo

(1)) 0 < A<\, Vn>1 and lim A\, = A.

n—o0

Then, {x,} converges strongly to z € T.

5.3.2 Applications

In this subsection, we give application of our results to solve MPs, VIPs and CFPs in
Hadamard spaces.

Minimization problem

Let h : X — R be a proper convex and lower semicontimnuous function. Consider the
bifunction ¢, : €' x C'— R defined by

on(x,y) = h(y) — h(z), Yo,y € C.

Then, ¢, is monotone and upper semicontinuous (see [108]). Moreover, EP (g, C) =
argming h, J% = prox" and D(prox") = X (see [103]). Now, consider the following
finite family of MP and fixed point problem:

Find z € F(T) such that h;(z) < hi(y), Vy € C, i =1,2...,N, (5.3.16)

where 7T is a nonexpansive mapping. Thus, by setting in = proxl/(i in Algorithm (5.3.1),
we can apply Theorem 5.3.2 to approximate solutions of problem (5.3.16).

Variational inequality problem

Let S:C — C’_lze_}a nonexpansive mapping. Now define the bifunction pg: C x C' — R
by @s(x,y) = (Szx,z]). Then, pg is monotone and J#5 = JS (see [19, 09]). Consider the
following finite family of variational inequality and fixed point problems:

s
Find z € F(T) such that (Sixx,@> >0,Vyed,i=1,2...,N, (5.3.17)
where T' is a nonexpansive mapping on C. Thus, by setting J{' = Jf; in Algorithm

(5.3.1), we can apply Theorem 5.3.2 to approximate solutions of problem (5.3.17).

Convex feasibility problem

Let C;,2=1,2,..., N be a finite family of nonempty closed and convex subsets of C' such
that NY,C; # 0. Now, consider the following CFP:

Find 2 € F(T) such that z € NY,C;. (5.3.18)

127



We know that the indicator function dc is a proper convex and lower semicontinuous
function. By letting ¢ = h and following similar argument as in the case of MP, we obtain
that ¢, is monotone and upper semicontinuous, and J#c = prox’¢ = Pg. Therefore, by
setting J¥ = Pg,, ¢ = 1,2,..., N in Algorithm (5.3.1), we can apply Theorem 5.3.2 to
approximate solutions of (5.3.18).

5.4 Asymptotic behavior of viscosity-type proximal
point algorithm

In this section, we study the asymptotic behavior of the sequence given by the following
viscosity-type PPA and extend the study to approximate a common solution of finite
family of EPs in Hadamard spaces. For z; € C, define the sequence {x,} C C by

Tnp1 = ang(n) ® (1 — o) JY on, (5.4.1)

where {a,} is a sequence in (0,1), {\,} is in (0,00), ¢ is a contraction on C' and ¢ is a
bifunction from C' x C' into R.

5.4.1 Main results

Lemma 5.4.1. Let C be a nonempty closed and convex subset of an Hadamard space X
and ¢ : C x C — R be a bifunction satisfying assumptions (i)-(iv) of Theorem 5.2.5.
Then, for \,;u > 0 and x,y € C, we have the following inequalities:

d*(J{x, Jfy) < 2xp(JSw, JEy) + d(x, I y) — d*(x, J{x) (5.4.2)
and
A+ ) d* (TS, Jfy) + pd*(J{x, 2) + A (JFy,y) < AP (J{x,y) + pd*(J{y, x).  (5.4.3)

Proof. We first prove (5.4.2). Let A, u > 0 and z,y € C. Then, by the definition of the
resolvent, we obtain that

1 —> ——
o(Jix, z) + X(a:fo, Jixz) >0V 2z € C,

which implies that

— —
0 <2X\p(J{x, z) + 2(x iz, J{xz)
=2 \p(J{z,2) + d*(z, 2) — &*(x, J) — d*(J{x, 2)
< 20p(J{x, 2) + d*(z,2) — d*(w, J{x). (5.4.4)
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Now, set z = tJ7y @ (1 —t)J{x for all t € (0,1) in (5.4.4). Since  satisfies conditions (i)
and (iii) of Theorem 5.2.5, we obtain that
&z, J{w) < 2(te( IS, Ty) + (1= (S, I{))
+ td*(z, JPy) + (1 — t)d*(x, J{x) — t(1 — t)d*(JLy, J{x)
= 2\tp(JLx, JPy) + td*(x, JEy) 4+ (1 — t)d*(z, J{z) — t(1 — t)d*(J 7y, J{x),

(5.4.5)
which implies that
dP(x, Jx) < 20p(J{x, JPy) + dP(x, Jfy) — (1 —t)d*(J 7y, Jix). (5.4.6)
Thus, taking limit as ¢ — 0, we obtain
P (J{x, J0y) < 2Xp(JLw, JEy) + d(x, JSy) — d*(z, J{x). (5.4.7)

Next, we prove (5.4.3). From (5.4.7), we obtain that
pd?(JZw, JPy) < 20up(JLw, JPy) + pd?(x, Jfy) — pd?(x, J{x).
Similarly, we have
A (J2y, J{x) < 2udep(J0y, J{x) + AP (y, J{x) — Ad®(y, J7y).
Adding both inequalities and using condition (ii) of Theorem 5.2.5, we get
A+ ) d*(JLa, J2y) + pd*(z, J{x) + M (y, J2y) < pd?(x, JPy) + Ad°(y, J{x).
O

Lemma 5.4.2. Let C be a nonempty closed and convex subset of an Hadamard space X
and ¢ : C' x C'— R be a bifunction satisfying assumptions (i)-(iv) of Theorem 5.2.5. Let

{A\n} be a sequence in (0,00) and v be an element of C. Suppose that lim A, = oo and
n—oo

A({ T} xn}) = {0} for some bounded sequence {x,} in X, then v € EP(p,C).

Proof. From (5.4.3), we obtain that
A + DAP(JE z,, J?0) + d2(JL 2, ) + Aad?(J?0,0) < d2(J?0, 20) + Md?(JE 2, 0),
( o o An

which implies that

1
d*(J{ p, J?D) < )\—dg(J“"@,:rn) + d*(J{ xn, ).

n

Since lim A, = 0o, {z,} is bounded and A({J{ x,}) = {0}, we obtain that
n—oo

limsup d(J5 x,, J?0) < limsup d(J5 ,, 0)

n—oo n—oo

= inf limsup d(Jy zn,y),

y€X noco

which by Lemma 2.3.6 and Lemma 5.2.4(iii) implies that v € F(J?) = EP(p,C). O
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Theorem 5.4.3. Let C' be a nonempty closed and convex subset of an Hadamard space
X and ¢ : C x C' — R be a bifunction satisfying assumptions (1)-(iv) of Theorem 5.2.5.
Let g be a contraction on C with coefficient v € (0,1) and {z,} be a sequence defined
by (5.4.1), where {a,} is a sequence in (0,1) and {\,} is a sequence in (0,00) such that

lim A\, = co. Then, we have the following:
n—oo

(i) The sequence {J5, xn} is bounded if and only if EP(p,C') is nonempty
(i1) If hm a, =0, Z oan = 00 and EP(p,C) # 0, then {x,} and {J} x,} converge
stmngly to an element of EP(p,C).

Proof. (i) Suppose that {J{ x,} is bounded. Then by Lemma 2.3.24, there exists v € X
such that A({J} xz,}) = {v}. Since a,,,y € (0,1), we obtain from (5.4.1) that

d(Tny1,0) < and(g(zn),0) + (1 = an)d(J5 ©,,0)
< anyd(zn,0) + and(g(v),0) + (1 — ay)d(JS 2,,0)
< d(zn, 0) + and(9(v),0) + d(J5 2,,0)
< no1Yd(Tn-1,0) + ap_1d(9(0),0) + (1 = ap1)d(JY _ Tno1,0)
+a,d(g(0),v) + d(J5 x,,0)
<

d(zn-1,9) + an1d(g(v),0) + d(J{,_ Tn-1,0) + and(g(v),0) + d(JS 2, 0).

Thus, by induction and the fact that {J{ x,,} is bounded for all n > 1, we get that {z,}
is bounded. Also, since hm An = 00 and A({JS 2 }) = {0}, we obtaln by Lemma 5.4.2

that v € EP(p,C). Hence EP(go, (') is nonempty.

Conversely, let EP(p,C) be nonempty. Then, there exists a point say v € C such that
v € EP(p,C). Thus by (5.4.1), we obtain that

d(Tny1,7) < and(g(zn), ) + (1 = an)d(J5 x,,0)
< anyd(2n, 0) + and(g(v),0) + (1 — ay)d(JS 2,,0)
< (1=l =9))d(@n, 0) + and(g(0), 7)
< max{d(z,,0), d(;%+>’;v>}
< max{d(x;,0), M}

1=y
Therefore, {x,} is bounded. Consequently, {J x,} is also bounded.

(ii) Since EP(p,C) is nonempty, we obtain from part (i) that {z,} and {J z,} are
bounded. Now, let v, = J{ x, for all n > 1 and v € EP(p,C), then we obtain from
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Lemma 5.3.5 (iii) that

(2041, 0) < (1 — 0n)?d? (vn, ) + 200(1 — an){g(@n)B, 0nd) + a2d(g(xn), D)
—
< (1= ) 2d% (20, 0) + 20 (1 — ) (g ()0, 020) + a2d2(g (), D)
< (1 - )% U

A0 (@0, 0) + (g(0)0, )
+ oznd2(g(xn),77)
< (1 —2a,(1 - 'y))dQ(:L’n, v) + 204%(1 — ”y)dz(xn,z_))
—
+20,(1 — ) {(g(0)0, 0a0) + a2d(g(,), D)
(1 — 2, (1 = 4))d* (20, D) + 200, (1 — 76y, (5.4.8)

(1 - an) 7 — 2 _ 1

—(g(v)v, vaU) + | d :L'mv) to——

i) N T

for all v € EP(p,C). Furthermore, since {v,} is bounded, we obtain from Lemma 2.3.5

that there exists a subsequence {v,, } of {v,} that A-converges to some ¢ € C. Thus,

by Lemma 2.3.6, we obtain that A({v,, }) = {0}. Moreover, klim An, = 00 and {xp, } is
—00

bounded. Hence, by Lemma 5.4.2, we obtain that 0 € EP(p,C).

where ¢,, =

d*(g(n), v)) . (5.4.9)

Next, we show that {x,} converges strongly to an element of EP(p,C). Since the sub-
sequence {vy, } of {v,} A-converges to 0 € EP(p,C), we obtain from Lemma 2.3.9 that
there exists Z € EP(p,C) such that {v,} A-converges to z. Thus, by Lemma 2.3.10, we
obtain that

—
lim sup(g(Z)z, zﬁ) <0, (5.4.10)

n—oo

which by setting © = Z in (5.4.9), implies that lim sup d,, < 0. Therefore, applying Lemma
n—oo

2.3.26 to (5.4.8), gives that {x,} converges strongly to z € EP(y,C). It then follows that
{J{ xn} also converges strongly to z € EP(p,C). O

We are now going to apply Theorem 5.4.3 to approximate a common solution of finite
family of equilibrium problems. We begin with the following lemma.

Lemma 5.4.4. Let C be a nonempty closed and convex subset of an Hadamard space X
and p; : OxC =R, 7 =1,2,...,m be a finite family of bifunctions satisfying assumptions

J

(i)-(iv) of Theorem 5.2.5. Then, for A > 0, we have F 1:[1 ij> = N F (JY7), where
[T = Jg o Jgroe-o Jgmr o g,

j=1

Proof. 1t follows from the proof of Lemma 3.2.6. m
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Theorem 5.4.5. Let C be a nonempty closed and convex subset of an Hadamard space X
and p; : OCxC =R, j=1,2,...,m be a finite family of bifunctions satisfying assumptions
(i)-(iv) of Theorem 5.2.5. Let g be a contraction mapping on C with coefficient v € (0, 1).
Suppose that for arbitrary x, € C, the sequence {x,} is generated by

Tng1 = ang(@n) ® (1= ap) [ [ I a0, n>1, (5.4.11)
j=1
where TT J{ = J{ 0 J{? 0o 0 T 0 J{™, {an} is a sequence in (0,1) and {\,} is
j=1
a sequence in (0,00) such that lim A, = oco. If lima,, = 0, > a, = co and I' :=
n—o0 n—oo n—1

NN EP(p;, C) # 0, then the sequence {x,} converges strongly to an element of T.

Proof. By Theorem 5.4.3 (ii) and Lemma 5.2.4 (iii), we obtain that {x, } converges strongly
to an element of F (H;ﬂ:l ij) . Therefore, we conclude by Lemma 5.4.4 (ii) and Lemma

5.2.4 (iii) that {z,} converges strongly to an element of I O

By setting g(x) = w for all z € C and for arbitrary but fixed u € C, we obtain the following
corollary.

Corollary 5.4.6. Let C' be a nonempty closed and convex subset of an Hadamard space X
and p; : OxC =R, 7 =1,2,...,m be a finite family of bifunctions satisfying assumptions
(1)-(iv) of Theorem 5.2.5. Let g be a contraction mapping on C with coefficient v € (0, 1).
Suppose that for arbitrary u,x; € C, the sequence {x,} is generated by

Tns = au® (1= o) [[ {20, n > 1, (5.4.12)

Jj=1

m

Pi TPl ©2 Pm—1 ©m . . .

where H1 S = I oS o0 Ji T o U™, {an} is a sequence in (0,1) and {\,} is
j:

a sequence in (0,00) such that lim A\, = oo. If lima, = 0, a, = o0 and T’ =
n—00 n—00 nel

NYLEP(p;,C) # 0, then the sequence {x,} converges strongly to an element of T.

5.5 Mixed equilibrium problems in Hadamard spaces

Motivated by Remark 2.2.11, it is our intention in this section, to further generalize the
study of EPs in Hadamard spaces. In particular, we introduce and study mixed equilibrium
problems in Hadamard spaces. First, we establish the existence of solutions of the mixed
equilibrium problem, and the unique existence of the resolvent operator for the problem.
We then prove a strong convergence of the resolvent and a A-convergence of the PPA to a
solution of the mixed equilibrium problem under some suitable conditions. Furthermore,
we study the asymptotic behavior of the sequence generated by a Halpern-type PPA for
the mixed equilibrium problem.
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5.5.1 Existence of solutions for mixed equilibrium problems

Theorem 5.5.1. Let C' be a nonempty closed and convex subset of an Hadamard space
X. Let f:C — R be a real-valued function and p : C' x C'— R be a bifunction such that
the following assumptions hold:

(A1) p(x,2) =0 Vz e C,
(A2) for every x € C, the set {y € C : p(x,y) + f(y) — f(x) < 0} is convex,

(A3) there exists a compact subset D C C' containing a point yo € D such that p(z,yo) +
f(yo) — f(x) < 0 whenever x € C\D.

Then, the MEP (1.2.8) has a solution.

Proof. For each y € C, define the setvalued mapping G : C' — 2¢ by

Gy) ={r € C:o(x,y)+ fly) — f(z) > 0}. (5.5.1)

By (A1), we obtain that, for each y € C, G(y) # 0 since y € G(y). Also, we obtain from
(A2) that G(y) is a closed subset of C for all y € C.

We claim that G satisfies the inclusion (5.2.1). Suppose for contradiction that this is
not true, then there exist a finite subset {y1 Yo, s Ymp of C and oy > 0, Vi =
1,2,--- ,m with Z a; = 1 such that y* = Zazyl ¢ G(y;) for each i = 1,2,--- ;m. That

=1
is, there exists y* € conv({y1,yo, - - ym}) such that y* ¢ G(y;), for each 1,2,--- 'm. By

(5.5.1), we obtain for each ¢ = 1,2,--- ;m that

oW y) + fly) — fly") <O0.

Thus, foreachi =1,2,...,m, y; € {y € C: o(y*,y)+ f(y) — f(y*) < 0}, which is convex
by (A2). Since conv({y1, Y2, ,Ym}) is the smallest convex set containing vy, vz, - . -, Ym,
we have that conv({y1, 92, - ,ym}) C{y € C: o(y*,y)+ f(y) — f(y*) < 0}, which implies
that y* € {y € C': p(y", y) + f(y) — f(y") <0} That is, 0 = o(y",y") + f(y") — f(y*) <O,

which is a contradiction. Therefore, G satisfies the inclusion (5.2.1).

Now, observe that (A3) implies that, there exists a compact subset D of C' containing
yo € D such that for any z € C'\ D, we have

e(x,y0) + fyo) — f(x) <0,
which further implies that
G(yo) ={z € C:o(x,y0) + f(yo) — f(z) 2 0} C D.
Thus, G(yo) is compact. It then follows from Theorem 5.3.12 that () G(y) # 0. This

yeC
implies that there exists * € C' such that

pa®y) + fly) = flz") =2 0V y el
That is, MEP (1.2.8) has a solution. ]
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5.5.2 Existence and uniqueness of resolvent operators

Definition 5.5.2. Let X be an Hadamard space and C' be a nonempty subset of X. Let
v : Cx C — R be a bifunction, f: C — R be a real-valued function, T € X and A\ > 0,
we define the perturbation Fz : C x C'— R of ¢ and f, by

Ei(w,y) = ple,) + f) ~ [@) + ST Voyel (552

In the next theorem, we shall prove the existence and uniqueness of solution of the following
auxiliary problem: Find z* € C' such that

Fi(z*,y) >0 YyeC, (5.5.3)

where F} is as defined in (5.5.2). The proof for existence is similar to the proof of Theorem
5.5.1. But for completeness, we shall give the proof here.

Theorem 5.5.3. Let C' be a nonempty closed and convex subset of an Hadamard space
X. Let f: C"—= R be a convex function and ¢ : C' x C' — R be a bifunction such that the
following assumptions hold:

(A1) p(x,z) =0 Vz e C,

(A2) ¢ is monotone, i.e., p(z,y) + ¢(y,z) <0 V z,y, € C,

(A3) o(x,.): C — R is convex ¥V z € C,

(A4) for each T € X and X\ > 0, there exists a compact su_bfet Dz C C' containing a point
yz € Dz such that p(z,yz) + f(yz) — f(z) + %(@,fz) < 0 whenever z € C\ D;.

Then (5.5.3) has a unique solution.
Proof. Let Z be a point in X. For each y € C, defined the setvalued mapping G : C' — 2¢
by
1 —
Gly) = {2 € O play) + f(y) — f(a) + 5 (T 7) > 0}

Then, it is easy to see that G(y) is a nonempty closed subset of C. As in the proof of
Theorem 5.5.1, we claim that G satisfies the inclusion (5.2.1). Suppose for contradiction

that this is not true, then there exists y* = > a;y; € conv({y1,ya, - , Ym}) such that
i=1

. R i e :
By (A3) and the convexity of f, we obtain that
Ozsa(y,y)+f(y)—f(y)+A<yy zy")
m 1 j
<Y iy u) + flys) — X(Zazy Yi, TY )<07

i=1 =1
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which is a contradiction. Therefore, G satisfies the inclusion (5.2.1). By (A4), we obtain
that G(yz) C Dz. Thus, G(yz) is compact and by Theorem 5.3.12, we get that [ G(y) #

yeC
(). Therefore (5.5.3) has a solution.

Next, we show that this solution is unique. Suppose that x and z* solve (5.5.3). Then,

0< Bl %) = plo,a%) + £(a*) — [(a) + 5 (3, 72)
and 1 — —
0< Fula®,2) = pla®,a) + f(a) — f(a") + 3 (50 2°0).

Adding both inequalities and noting that ¢ is monotone, we obtain that

1 — — —
0< 3 <<x?:,a:x*) + (fx*,a:x*))
1
= —Xd(x,x*)2,
which implies that x = z*. [

Definition 5.5.4. Let X be an Hadamard space and C be a nonempty closed and convex
subset of X. Let ¢ : C' x C — R be a bifunction and f : C — R be a convex function.
Assume that (5.5.3) has a unique solution for each A > 0 and x € X. This unique solution
s denoted by J/{ipx and it is called the resolvent operator associated with ¢ and f of order
A >0 and at x € X. In other words, the resolvent operator associated with ¢ and f, is the
setvalued mapping Jf\c@ - X — 29 defined by

Rp(@) = EP(F;, ) = {z € C 1 p(z,y) + f(y) — f(2) + %@,% >0, Yy € C}(5.54)
for all x in X.

Under the assumptions of Theorem 5.5.3, we have the unique existence of J/{p(a:). There-
fore, J)J;O is well-defined.

5.5.3 Fundamental properties of resolvent operators

Theorem 5.5.5. Let C' be a nonempty closed and convex subset of an Hadamard space

X. Let f : C — R be a convex function and ¢ : C x C — R be a bifunction satisfying
assumptions (Al1)-(A4) of Theorem 5.5.3. For A > 0, we have that Ji:o is singlevalued.

Moreover, if C C D(J/]\ip), then

(1) J ip is firmly nonexpansive restricted to C,
(ii) for F(J{SD) # 0, we have

dQ(J/(;m,x) < d*(x,v) — dQ(J)];Dx,v) VeeC, Yve F(J)’;),
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(11i) for 0 < A < p, we have d(Jf x, J/’\c <,/1 d (z, J};p , which implies
that d(x, J{,x) < 2d(z, Ji,x) ¥z €C,

» il
(iv) F(J{,) = MEP(p, f.C).
Proof. For each x € D(J/J\c )and A > 0, let 21, 2, € J1, »T- Then from (5.5.4), we have

o(21,22) + f(22) — f(z1) + %(Zz_;,x_zb > ()

and
1
©(22,21) + f(21) — flz2) + X<22—Za 775) > 0.
Adding both inequalities and using assumption (A2), we obtain that

(zz), 717) > 0,

which implies that dz(zl, 29) < 0. This further implies that z; = 25. Therefore, J )]\:0 is single
valued.

(i) Let =,y € C, then

1 ? ?
o(J, J) + F(TLy) — F(T{ ) + X<J{¢m{¢y, v J{,z) >0 (5.5.5)
and
! A
(‘] <py7 ) f( ) f(‘]/\goy) + X<J)\gpy‘])\gox7y‘]/\¢y> Z O (556)

Adding (5.5.5) and (5.5.6), and noting that ¢ is monotone, we obtain

1 >
3 (<$Ji}«%‘, T T + wI{,y. J@@/&%)) >0,
which implies that
(@, T, d ) = (T d oy, Jadiy).
That is,
—>
(@, J,xd ) > d* (T @, Ty). (5.5.7)

(i) It follows from (5.5.7) and the definition of quasilinearization that

d?(, J/’\c@x) < d*(x,v) — d*(v, Jf\;:z:) VeeC, ve F(J/J\cw).

(iii) Let z € C' and 0 < A < p, then we have that

1 7
~(x g, T ] x) >0 (5.5.8)

(L i) + F () = F( ) + S
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and

\

1
@(ngx, J/{:Da:) + f(J)’;x) — f(J,J;@x) + ;(a:Jlfsax J! xJ/J\:pa:) > 0. (5.5.9)

g

Adding (5.5.8) and (5.5.9), and using the monotonicity of ¢, we obtain that

\ \

A
<Jj\c¢x:c JI xJ{SD:@ > /;(Jlfwm: JI :L’J/J\cwx).

e »

By quasilinearization, we obtain that

A A A
(E n 1) dz(‘]/{sox’ J)Jipx) < (1 — ;) d?(x, Jl’;px) + (; - 1) & (x, J/J\;x).

Since ﬁ < 1, we obtain that

A A
(; + 1) dQ(J/J;Px’ J{(pa:) < (1 — ;) & (z, J,J;D:C),

/ A

Moreover, we obtain by triangle inequality and (5.5.10) that

which implies that

d(z, Ji;:c) < 2d(x, JI x).

» g

(iv) Observe that

v € F(7,) & ole.) + f(o) — f(z) + (7. 7) > 0 vy € €

& o, y)+ fly) = flr) 20Vy e C
s x e MEP(p, f,C).

]

Remark 5.5.6. Since firmly nonexpansive mappings are nonexpansive and the set of fized
points of nonexpansive mappings is closed and conver, we obtain from (i) and (iv) of
Theorem 5.5.5 that M EP(yp, f,C) is closed and conver.

5.5.4 Convergence of resolvents

For the rest of this chapter, we shall assume that D(.J /(;) D (', where (' is a nonempty
closed and convex subset of an Hadamard space X.

In the following theorem, we shall prove that {J};:B} converges strongly to a solution of
MEP (1.2.8) as A — 0.
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Theorem 5.5.7. Let f : C' — R be a convex and lower semicontinuous function and
p : OCxC — R be A-upper semicontinuous in the first argument which satisfies assumptions
(A1)-(A4) of Theorem 5.5.3. If MEP(p, f,C) # 0, then {J{was} converges strongly to
q€ MEP(p, f,C), which is the nearest point of MEP(p, f,C) to x as A — 0.

Proof. Let v € MEP(p, f,C), since J/’\:O is nonexpansive (see Theorem 5.5.5 (i) and Re-
mark 5.5.6), we obtain that {J{wx} is bounded. Let {\,} be a sequence that converges
to 0 as n — oo. Then {J)’fnwx} is bounded. Thus, by Lemma 2.3.24 (i), there exists a
subsequence {Jf\cnwx} of {J{Wx} that A-converges to ¢ € C.

Now, observe that, by the definition of J f(p, the A-upper semicontinuity of ¢, lower semi-
continuous of f and Lemma 4.2.4, we obtain that

o(q,y) + f(y) — flg) = 0.

Therefore, ¢ € MEP(¢p, f,C). Hence, we obtain from Theorem 5.5.5(ii) that

d*(J] _z x) < d*(z,v) Yo e MEP(g, f,C).

nk®"?

Since d?(.,z) is A-lower semicontinuous, we obtain that

d*(q,z) < li;ninf d*(J) _x,x) < d*(z,v) Yve MEP(y, f,0),

)\nkSO ’

which implies that
d(g,xz) < d(x,v) Yv e MEP(p, f,C).

Thus, ¢ = Prz, where Pr is the metric projection of X onto I', and I' = M EP(¢p, f,C).
Therefore, by taken A\, = A, we have that {J)];Dx} A-converges to ¢ = Prz as A — 0.
Now, observe also that Theorem 5.5.5(ii) implies that

d(J/{PJ:,x) <d(q, ).
It then follows from Lemma 2.3.28 that {J/{lo:p} converges strongly toq = Prras A — 0. [

By setting f = 0 in Theorem 5.5.7, we obtain the following result.

Corollary 5.5.8. Let ¢ : C x C — R be A-upper semicontinuous in the first argument
which satisfies assumptions (A1)-(A4) of Theorem 5.5.5. If EP(p,C) # 0, then {Jy,x}
converges strongly to ¢ € EP(p, C), which is the nearest point of EP(p,C) to x as A — 0.

5.5.5 Proximal point algorithm

In this section, we study the A-convergence of the sequence generated by the following
PPA for approximating solutions of MEP(1.2.8): For an initial starting point z; in C,
define the sequence {z,} in C' by

Tyl = Jow,, n>1, (5.5.11)

Anp
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where {\,} is a sequence in (0,00), ¢ : C x C' — R is a bifunction and f : C' — Ris a
convex function.

Recall that the PPA does not converge strongly in general without additional assumptions
even for the case where ¢ = 0. See for example [159], the question of interest raised by
Rockafellar as to whether the PPA can be improved from weak convergence (an analogue of
A-convergence) to strong convergence in Hilbert space settings. Several counterexamples
have been constructed to resolve this question in the negative (see [23, 25, 79]). Therefore,
only weak convergence of the PPA is expected without additional assumptions. Thus, we
propose the following A-convergence theorem for the PPA (5.5.11).

Theorem 5.5.9. Let f : C' — R be a convex and lower semicontinuous function and
v : OxC — R be A-upper semicontinuous in the first argument which satisfies assumptions
(A1)-(A4) of Theorem 5.5.5. Let {\,} be a sequence in (0,00) such that 0 < A < X\, ¥n >
1. Suppose that MEP(p, f,C) # 0, then, the sequence given by (5.5.11) A-converges to
an element of MEP (o, f,C).

Proof. Let v e MEP(p, f,C). Then, by Remark 5.5.6 and Theorem 5.5.5(iv), we obtain
that
d(v, 2ni1) = d(v, J{ an) < d(v,3,),

which implies that lim d(x,,v) exists for all v € MEP(y, f,C). Hence {x,} is bounded.
n—oo
It then follows from Theorem 5.5.5(ii) that
d*(2pi1, 2n) < d*(Tn,v) — d*(Tpe1,v) — 0, as n — oo.

That is,

lim d(x,41,2,) = 0. (5.5.12)

n—oo

Since {z,} is bounded, then there exists a subsequence {z,;} of {z,} that A-converges
to a point, say ¢ € C. From (5.5.11) and (5.5.4), we obtain that

1 \ \
O(Tnr+1,y) + f(y) = f(@nps1) > —)\—k<xnk$nk+i7 Tnk17)
1
Z _)\_kd(xnk-i—h Ink>d<xnk+1a y) (5513)

Since 0 < A < A\, {z,} is bounded, ¢ is A-upper semicontinuous in the first argument
and f is lower semicontinuous, we obtained from (5.5.12) and (5.5.13) that

#(a,y) + f(y) = f(g) = limsup (p(znks1,y) + f(y)) = lminf (1)

k—o0

M
> Y lim sup d(zpg+1, Tng) = 0, (5.5.14)

k—o00

for some M > 0 and for all y € C. This implies that ¢ € MEP(¢p, f,C).
It then follows from Lemma 2.3.9 that {z,} A-converges to an element of M EP(p, f,C).
O
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By setting f = 0 in Theorem 5.5.9, we obtain the following result which coincides with
[108, Theorem 7.3].

Corollary 5.5.10. Let p : C' x C' — R be A-upper semicontinuous in the first argument
which satisfies assumptions (A1)-(A4) of Theorem 5.5.3 and {\,} be a sequence in (0, c0)
such that 0 < A < X\, V n > 1. Suppose that EP(p,C) # 0, then, the sequence given for
x1 € C by

Tnp1 = Sa,pTn, 1 2>1

A-converges to an element of EP(p,C).

By setting ¢ = 0 in Theorem 5.5.9, we obtain the following corollary which is similar to
[18, Theorem 1.4].

Corollary 5.5.11. Let f : C' — R be a convex and lower semicontinuous function and
{A\n} be a sequence in (0,00) such that 0 < A < \,, V n > 1. Suppose that argmi(r} fly) #0,
ye

then, the sequence given for x1 € C' by
Top1 = J{ Ty, n > 1 (5.5.15)

A-converges to an element of argmig f(y).
ye

5.5.6 Assymptotic behavior of Halpern’s algorithm

To obtain strong convergence result, we modify the PPA into the following Halpern-type
PPA and study the asymptotic behavior of the sequence generated by it: For x1,u € C,
define the sequence {z,} C C by

Tptr1 = au @ (1 — an)Jf T, (5.5.16)

Anp

where {a,} is a sequence in (0,1) and {\,}, ¢ and f are as defined in (5.5.11).
We begin by establishing the following lemmas which will be very useful to our study.

Lemma 5.5.12. Let f : C — R be a convex and lower semicontinuous function and
¢ : C x C — R be a bifunction satisfying (A1)-(A4) of Theorem 5.5.3. If \,u > 0 and
x,y € C, then the following inequalities hold:

d2(Jf\c¢x, Ji@y) < 2)\g0(J)];0x, Jl{@y) + 2/\(f(JLJZPy) — f(J{wx)) + d?(, J/f@y) — d?(, Jf\lax)
(5.5.17)

and

(A + u)dz(J/{;x, Jlfwy) + p,dz(Jf\ipm, x)+ )\dQ(J/f;Dy, y) < )\dQ(Ji:Dx, y) + udQ(Jf\;y, x).
(5.5.18)

Proof. We first prove (5.5.17). Let A\, u > 0 and x,y € C. Then, by (5.5.4), we obtain

that L

/ f Lo 7
(Jy,m,2) + f(z) — [(J3,2) + X<xjksox’ Ji,22) 20V 2 € C,
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which implies that

—_— —
2)\f(J/’\ipx) < QA@(J{wx, 2) 42X\ f(z) + Q(xJ/’\ipx, Jf@xz)

= 20p(J{ 1w, 2) + 2Af(2) + d*(x, 2) — & (2, JL,) — d*(J{,x, 2)

< 2\p(J{, 7, 2) + 2\ f(2) + d* (@, 2) — d*(x, J) x). (5.5.19)

Now, set z = t.J] y @ (1 — t)J{&c for all t € (0,1) in (5.5.19). Since f is convex and ¢
satisfies conditions (A1) and (A3) of Theorem 5.5.3, we obtain that

QAf(Jf\ipx) + d*(, J/’\ipac) <2\ (tgo(Jf\:Dx, Jl’;oy) + (1 - t)gp(Jipx, J/J\:Dx)>

+ 20 (L) + (1= O ()

+td*(z, IS y) + (1 — t)d*(x, Jipaz) —t(1 —t)d*(J1 y, Jf\;a:)
= 20t (. L) + 20 (L () + (1= ) ()

+td (w, JLy) + (1 — t)d*(a, Jipx) —t(1 —t)d*(J/ y, Jf\;:z),

(5.5.20)
which implies that
Af (T a) + d*(x, JL,x) < 2Xp(JL o, JIy) + 2Xf(J1y)
+d(x, T]y) — (1= t)d*(J]y, ] ,x). (5.5.21)

Ast — 0in (5.5.21), we obtain (5.5.17).

Next, we prove (5.5.18). From (5.5.17), we obtain that
pud?(JLa, JIy) < 2hule(T o, Jly) + F(TLy) — F(TL2)] + pd?(z, T]y) — pd*(x, J] ).
Similarly, we have
AP ( TSy, Jw) < 2uX[o(Tfy, J0) + F(I{2) = F(TL)] + A (y, J{,x) = A (y, JLy).
Adding both inequalities and noting that ¢ is monotone, we get

(A + ,u)dQ(J)’;x, Jgpy) + pd?(z, J)J:px) + Ad*(y, J;{wy) < pd?(x, Jf;oy) + Ad*(y, Jj;x).

]

Lemma 5.5.13. Let f : C — R be a convexr and lower semicontinuous function and ¢ :

C'xC — R be a bifunction satisfying (A1)-(A4) of Theorem 5.5.5. Let {\,} be a sequence

in (0,00) and T be an element of C. Suppose that lim \, = co and A({J] z,}) = {v} for
n—r00 n

some bounded sequence {x,} in X, then v € MEP(p, f,C).
Proof. From (5.5.18), we obtain that
A+ DA (T] w0, JI0) + AP (T{ i, 20) + Nad?(TL0,0) < dP(TL0, 20) + Xad? (], 20, ),
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which implies that

1 _
)\—ndQ(ng,xn)—i—d?(Jf T, 0)>.

Since lim \, = 0o, {z,} is bounded and A({J] z,}) = {o}, we obtain that
n—0o0 n

d*(J] jwn, JI0) <

lim sup d(J{nwxn, Jgt’)) < lim sup d(J)’;wxn, 0)

n—00 n—00
— ; f
— y%l)f( 11?_>S£p d(JAn¢xn,y),
which by Lemma 2.3.24 (ii) and Theorem 5.5.5(iv) implies that 0 € F(J]) = MEP(¢p, f,C).
[l

Theorem 5.5.14. Let f : C — R be a convex and lower semicontinuous function and
v C x C — R be a bifunction satisfying (A1)-(A4) of Theorem 5.5.3. Let {x,} be a
sequence defined by (5.5.16), where {a,} is a sequence in (0,1) and {\,} is a sequence in
(0,00) such that lim A, = co. Then, we have the following:

n—o0

(i) The sequence {J){W:cn} is bounded if and only if MEP(p, f,C) # (.
(i) If nli_)II;oOén =0, Y an =00 and ' := MEP(p, f,C) # 0, then {x,} and {J} ,x,}

n=1
converge to v = Pru, where Pr 1s the metric projection of X onto I.

Proof. (i) Suppose that {J{nxn} is bounded. Then by Lemma 2.3.24 (ii), there exists
v € X such that A({J{nxn}) = {v}. From (5.5.16) and Lemma 2.3.1 (i), we obtain that

A(Tps1,0) < ond(u, ) + (1 — o)d(J]

)\nwxna ?7)7

which implies that {z,} is bounded. Also, since lim A, = oo and A({J)J;wiﬁn}) = {0}, we
n—o0

obtain by Lemma 5.5.13 that M EP(p, f,C) # 0.

Conversely, let MEP(p, f,C) # (). Then, we may assume that © € MEP(p, f,C) # 0.
Thus by (5.5.16) and Lemma 2.3.1, we obtain that

A(2ni1,0) < ud(u,0) + (1= a)d(J{ 2,,)
< apd(u,v) + (1 — ay)d(x,, 0)
< max{d(u,v),d(x,,v)},
which implies by induction that
d(z,,v) < max{d(u,v),d(z1,0)} Vn > 1. (5.5.22)

Therefore, {z,} is bounded. Consequently, {.J {n@xn} is also bounded.

(ii) Since I' := MEP(p, f,C) # (), we obtain from (5.5.22) that {z,} and {ancpxn} are
bounded. Furthermore, we obtain from Lemma 2.3.1 (ii) that

d*(p11,0) < and*(u,0) + (1 — )d2(Jf oTny U D) — an(l — ay)d*(u, J{nwxn)
< d(u,0) + (1= ) d* (20, 0) — o (1 — o)d* (u, Y, )
= (1 —an)d®(z,,0) + and, ¥n > 1, (5.5.23)
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where 4, = d*(u,v) + (a,, — 1)d*(u, J{Wxn). Now, set v, = J,(W% Vn > 1. Then, by
the boundedness of {v,} and Lemma 2.3.24 (i), we obtain that there exists a subsequence
{vn,} of {v,} that A-converges to some 0 € C. Thus, by Lemma 2.3.24 (ii), we obtain
that A({v,, }) = {0}. Moreover, klggo)\nk = oo and {,, } is bounded. Hence, by Lemma

5.5.13, we obtain that © € M EP(y, f,C).

Next, we show that {z,} converges to ©. By the A-lower semicontinuity of d?(u,.), we
obtain that

d*(u,0) < liminf d*(u, v, ) = lim d*(u,v,,) = liminf d*(u, v,). (5.5.24)
k—oo k—o0 n—00
Since d,, = d*(u, ) + (an, — 1)d*(u, v,), lim o, =0, v = Pru and ¢ € ', we obtain from
n—o0

the definition of Pr and (5.5.24) that

limsupd, < d*(u,v)— liminf d*(u,v,)

n—oo n—oo

< d*(u,9) — liminf d*(u, v,) < 0.

- n—00

Thus, applying Lemma 2.3.26 to (5.5.23), gives that {x,} converges to v = Pru. It then
follows that {J )’; »Tn} 1s convergent to v = Pru. O

By setting f = 0 in Theorem 5.5.14, we obtain the following result for equilibrium problem
in an Hadamard space.

Corollary 5.5.15. Let ¢ : C' x C' — R be a bifunction satisfying (A1)-(A3) of Theorem
5.5.3 and {x,} be a sequence defined for u,xq € C, by

Tpy1 = u @ (1 — ap)JIx, o Tn, (5.5.25)

where {a, } is a sequence in (0,1) and {\,} is a sequence in (0, 00) such that lim \, = occ.
n—oo

Then, we have the following:
(i) The sequence {J,\Wxn} is bounded if and only if EP(p,C) # 0.

(i1) If hm a, =0, Z an, =00 and T := EP(p,C) # 0, then {x,} and {J\,,x,} converge

tov = Ppu where Pp zs the metric projection of X onto I.

By setting ¢ = 0 in Theorem 5.5.14, we obtain the following result which coincides with
[101, Theorem 5.1].

Corollary 5.5.16. Let f : C'— C be a proper convex and lower semicontinuous function
and {x,} be a sequence defined for u,z, € C, by

Tpr1 = ou @ (1 — an)J{nxn, (5.5.26)

where {a, } is a sequence in (0,1) and {\,} is a sequence in (0, 00) such that lim \, = occ.
n—oo

Then, we have the following:
(i) The sequence {Jf xn} is bounded if and only if argmig fy) #0.
€

(i) If hm a, = 0, Z a, = oo and I' = argmmf( ) # 0, then {z,} and {J x,}

converge to v = Pru, ’where Pr is the metric pmjectzon of X onto T.

143



Remark 5.5.17. To establish the above results, we assumed that D(J)J:O) D C (see the
assumption at the beginning of Subsection 5.5./ and in the results of Section 5.5). However,

we do not know if any of these results (the results established in Section 5.5) can be obtained
without this assumption.
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Chapter 6

Generalized Strictly
Pseudononspreding Mappings in
Hadamard Spaces

6.1 Introduction

Let X be an Hadamard space and 7" be a nonlinear mapping on X. T is called

e nonspreading (see [100]), if

2d*(Tx, Ty) < d*(Tx,y) + d*(Ty,z) Y,y € C;

o [-strictly pseudononspreading (see [150]), if
(2 — K)d*(T2, Ty)
< kd*(z,y) + (1 —k)d*(y, Tx) + (1 — k)d*(x, Ty) + kd*(z, Tx) + kd*(y, Ty)
for all x,y € C;

e generalized asymptotically nonspreading (see [149]), if there exist two mappings f, ¢ :
C — [0,7], v < 1 such that

d*(T"z, T"y) < f(x)d*(T"z,y) + g(x)d*(T"y,z) Yo,y € C, n €N,

and
0< f(x)+g(x) <1VzeCl,

if n =1, then T is called (f, g)-generalized (or simply generalized) nonspreading.
It is clear that nonspreading mappings with nonempty fixed point sets are quasinonexpan-
sive. Also, if T' is a generalized nonspreading mapping and f(z) = % = g(x) Vx € C, then

T reduces to a nonspreading mapping. It is also clear that every nonspreading mapping is
0-strictly pseudononspreading. The class of k-strictly pseudononspreading mappings was
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first introduced and studied in Hilbert spaces by Osilike and Isiogugu [145], and was later
extended to R-Trees settings in [150, |. In general, the class of nonspreading-type map-
pings (that is, the class of nonspreading, k-strictly pseudononspreading and generalized
nonspreading mappings) are known to be very useful in solving mean ergodic problems (see
for example, [109, , , 189]). Thus, numerous researchers have studied these classes of
mappings (both singlevalued and multivalued) in Hilbert spaces and spaces more general
than Hilbert spaces (see, for example [121, , , 189] and the references therein).

Now, consider the following two examples (see Section 6.2 for proofs).

Example 6.1.1. Let T : [0,00) — [0,00) be defined by

T oo ez
0, if x €0,1).

Then, T is a generalized nonspreading mapping with f, g : [0,00) — [0,0.9] defined by

] >1 +2a if x 2 ]-7
=% Tezlo = e Y
0.9, ifzel0,1) 0, if z € [0,1).

However, T is not k-strictly pseudononspreading. To see this, take x =1 and y = 0.5.

Example 6.1.2. Let T : [0,1] — R be defined by Tx = —3z. Then, T is a k-strictly
pseudononspreading mapping but not a generalized nonspreading mapping.

Examples 6.1.1 and 6.1.2 show that the class of generalized nonspreading mappings and
the class of k-strictly pseudononspreading mappings are independent. Since both classes
of mappings are independent and at the same time, very useful (especially in solving mean
ergodic problems), it is important and of great interest to consider a class of mappings
that will bridge the gap between these classes of mappings. Motivated by this, we shall
introduce a new class of nonspreading-type mappings that will serve as a bridge in con-
necting the two classes of mappings (the class of k-strictly pseudononspreading mappings
and the class of generalized nonspreading mappings). We shall call this class of mappings,
the class of (f, g)-generalized (or simply generalized) k-strictly pseudononspreading map-
pings. Furthermore, we shall discuss some fixed point properties of this class of mappings
and prove some strong convergence results for it.

6.2 Preliminaries

We first introduce our new class of nonspreading-type mappings.

Definition 6.2.1. Let X be a metric space. We say that a mapping T : D(T) C X — X
is (f, g)-generalized (or simply generalized) k-strictly pseudononspreading if there exist two
functions f,g: D(T) C X — [0,7], v <1 and k € [0,1) such that

(1=k)d*(Tx, Ty) < kd*(z,y)+[f(x) — k] &*(Tz, y)+[g(x) — k| d*(z, Ty)+kd*(z, Tx)+kd*(y, Ty)
Va,y € D(T), and
0< f(z)+g(z) <1Vxe D).
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Remark 6.2.2.

(i) Clearly, every generalized nonspreading mapping is a generalized 0-strictly pseudonon-
spreading mapping.

(i1) Every k-strictly pseudononspreading mapping is a generalized k-strictly pseudonon-
spreading mapping. Indeed, if T 1s a k-strictly pseudononspreading mapping, then for all
x,y € D(T), there ezists k € [0,1) such that

(2 — k)d*(Tx, Ty) < kd*(z,y) + (1 — k)d*(Tz,y) + (1 — k)d*(z, Ty) + kd*(x, Tx) + kd*(y, Ty),

which tmplies
EN o k 1 kN , 1 kN ,
— — < — - — — - — —
(1 2)al(Ta:,Ty) < 2d(m,y)—|—(2 2>d(y,T$)+<2 2)d(a:,Ty)

—l—gdz(a:, Tz) + §d2(y, Ty).
That is
(1-K)d* (T2, Ty) < Kd*(z,y)+ (f(z) = k) d*(Tz,y) + (9(x) — k) d*(z, Ty)
+K d*(z, Tx) + K'd(y, Ty),
where f(z) = g(z) = 1, Vo € D(T) and k' = &
k-strictly pseudononspreading mapping.

€ [0,1). Hence, T is a generalized

The following examples show that the class of k-strictly pseudononspreading mappings
and the class of generalized nonspreading mappings are properly contained in the class of
generalized k-strictly pseudononspreading mappings.

First, we give an example of a generalized k-strictly pseudononspreading mapping which
is not k-strictly pseudononspreading.

Example 6.2.3. Let T : [0,00) — [0,00) be defined by
S Pr=i LS E
0, if x €[0,1).

Then, T is not k-strictly pseudononspreading. In fact, if we take x =1 and y = 0.5, then
Tz—Ty|? = 0.82644, |x—y|* = 0.25, klz—Tz—(y—Ty)|*> = 0.16736k, 2(x—Tx,y—Ty) =
0.09091.

Hence,
Tz — Ty|* = 0.82644 > 0.34091 + 0.16736k = |z — y|* + k|z — Tax — (y — Ty)|* + 2(x —
Tx??/ - Ty>7

for all k € [0,1).

However, T is a generalized k-strictly pseudononspreading mapping with k = 0. To see
this,
let f,g:1]0,00) — [0,0.9] be defined by

)0, if v > 1,
flo) = {0.9, if € 0,1)
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and

—L _ ifr>1
g(z) = { @) o=l
0, if x € [0,1).

Case 1: Ifx > 1 andy € [0,1), then To = 1+, Ty =0, f(x) =0 and g(v) = —5

33—1—1—10 ’
Thus, we obtain

Tz —Ty|* = - <0+ g(x)a® = f(x)ly — Tz + g(a)e — Ty|*.

1
(z+ 1)
Case 2: Ifz €[0,1) andy > 1, then Tx =0, Ty = —1+, f(x) =0.9 and g(x) = 0.

Y+’

Thus, we obtain

1
Ta — Tyl* = TFESE f@)y® +0= f(a)ly = Tl + g(z)|z — Ty|*.
Y710
Case 3: Ifx > 1 andy > 1, then Tx = HIL, Ty = ﬁ, f(z) =0 and g(x) = ﬁ
10 10 10
Thus, we obtain
L 2 (z—yp)p?

1
Tz — Ty|* = — =
|ar+1—10 y+%‘ (x+ 15)°(W + 1)
and

1 1 o (1 -2y — )
P =

Tr — .
crEl o rrl T Tepe e

f(@)ly — Tx|* + g(2)|z — Ty|* =

Since (x—y)* —(1—zy—E)* <0, we conclude that |[Tx—Ty* < f(x)|ly—Tz|*+g(z)|z—
TyP,
forallz > 1 and y > 1.
For the case where z,y € [0,1), we have that |[Tx—Ty|*> = 0 < f(z)|ly—Tz|*+g(z)|z—Ty|>.
Thus,

Tw = Ty < f(o)ly — Taf + g(x)lz — Tyl Va,y € [0,00).
Hence, T is a generalized nonspreading mapping. It then follows that T is a generalized
k-strictly pseudononspreading mapping with k = 0.

We now give an example of a generalized k-strictly pseudononspreading mapping which is
neither k-strictly pseudononspreading nor generalized nonspreading.

Example 6.2.4. Let T : [0,00) — R defined by
T — {—33:, if x € [0,1],

E if x € (1,00).

We first show that 7" is not k-strictly pseudononspreading. Indeed, if x = % and y = %,
then
Tz —Ty|*> = 3.64463, |z —y|> = 0.58778, klx — Tz — (y—Ty)|* = 1.30513k, 2(x —Tz,y —
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Ty) = 0.50909.

Hence,

Tz — Ty|* = 3.64463 > 1.09687 + 1.30513k = |z — y|* + k|lz — Tz — (y — Ty)|* + 2(x —
Tx,y—Ty) Yk € [0,1).

Therefore, T' is not k-strictly pseudononspreading.

Next, we show that T is not generalized nonspreading. Suppose for contradiction that

T is a generalized nonspreading mapping, then we can always find two functions f,g :
[0, 00) = [0,7], v < 1 such that

Tz —Ty|* < f(z)|Tx —y> + g(x)|Ty — z|* Va,y € [0,00)
and
0< f(z)+g(z) <1Vzel0,00).

In particular, for = 0 and y = 1, we have that

9= Tz —Ty]> < f(x)|Tz — y|* + g(z)|Ty — z|* = f(z) + 9g(z).
That is,

9 < f(z) + 9g(z). (6.2.1)
If f(z) =0, then we have that 9 < 9¢g(x) < 9 and this is a contradiction. Now, suppose
f(z) # 0, then we obtain from (6.2.1) that f(z) > 9(1—g(x)) > 9f(x) (since f(z)+g(z) <
1). This implies that 1 > 9 and this is a contraction. Therefore, T" is not generalized
nonspreading.

Finally, we show that 7' is a generalized k-strictly pseudononspreading mapping with
k= %. To see this,
let f,g:1]0,00) — [0,0.9] be defined by

fa) = &, ifae(0,1],
&, ifze(1,0)
and
o(z) = =, ifae(0,1],
&5, ifz e (1,00).

Case 1: If z,y € [0,1], then Tz = =3z, Ty = =3y, f(z) = 35 and g(z) = 75. So that,

—8x2—48xy—T72y?

(1= Tz—Ty|* = Zlz—yl*, [f(z)—F]|Tz—y|* =0, [g(z)—Z]|a—Ty|* = =201

14422 9 2 _ 144y
10 ° 1_0|y_Ty| - 10 °

1%|x —Tz|? =
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Hence,

9 2 9 2 9 2
—|z — — —\||Tx — — —\lg =T
10\56 yI” + [f(z) 10]! z —yl” + [g(7) 10]\@“ Yl
9 9

- _T 2 - _T 2
+10|w x| +10|y Y|

9 | 2 13622 + 72y% — 48zy
= — | —
0" 10

9 9
> Dl a2 2 _ 2
> 1O|x Y| (1 10) | Tz — Ty|

Case 2: If 2,y € (1,00), then Tz =1, Ty = é, f(z) = & and g(x) = 3. So that,

2,2 2 2
(1= $)To - TyP = ZH2 Bjo— g = S0 () — )70 — g =
—8x2y%—8+16xy
1022 ?
4_18,2 4_ 18,2
l9(x) = fglle = Ty =0, {5l — Taf® = 253862 Fly — Ty|* = 5=,
Hence,

2=yl + (@) — 1 ]ITe — gl +lo(x) — ]~ Ty

9 9
o —Tal? + |y — Ty|?
+10|x z|? + 1O|y Yl
182"y + 102%y* + 162y° + y* + 92% — 182%° — 3622

1022y?

Observe that

18242 +1022y*+162y3+y2+ 922 —18x3y3 —3622y2 . 242 —2xy
10x2y? 10x2y?

18z%y2+1022y* +162y> +822+2xy—18x3y3 —3622y2
= 8oy #1027y + :cylaerxy2+xy Ly Ty zOforallx,yE(l,oo).

Hence, we conclude that

(1= BTz =Tyl < Sl =yl +17(e) = ST =y +loe) — Sl =Tyl + Slo ~ Tl +
for all z,y € (1,00).

Case 3: If 2 € (1,00) and y € [0,1], then Tz = 1, Ty = =3y, f(x) = 75 and g(z) = 5.
So that,
(1 — §)|Tw — Tyl = Bl Sy — g2 = S0l [f(g) — ST — yf? =

102 10
—8x2y?—8+16zy
102 )

241822 2
[g(x) = S|z = Tyl> =0, Hlo—Taf? = L5822 Sy — Ty|? = 150
Hence,

9 2 9 2 9 2, 9 2, 9 2

2|z — — Tz — =Tyl + —|z —Tal> + —|y—T
1ol —ul + (@) = pllTe —yl" + lg(@) — lle = Tyl" + g5l = Tal™ + 51y — Tl
18z% + 1452%y% + 16zy + 1 — 1823y — 1822
1022 '
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Observe that
18x* +14522y% +162y+1—18z3y—1822 _ 1+46zy+92%y?

18z% 413622 %9:6120 1823y —18z2 1027
X X Ty — X — T
= 4 >0 for all z € (1,00) and y € [0, 1].

Hence, we conclude that

(1= %)|T€—Ty|2 < gle —yl?+[f(2) = 51Tz —y* + [9(2) — flle = Ty|* + 5lo — Tx* +
161y — Tyl
for all z € (1,00) and y € [0, 1].

Case 4: If x € [0,1] and y € (1,00), then Tx = =3z, Ty = i, f(x) = 55 and g(z) = 1.
So that,

X ZB2 2 1’2 2_ X
(1 — )|Ta — Ty = 2oemie . flo —y|? = 225, [f(2) — [Tz —y* =0,

10y2 10
_8r2y2— 2 4_ 2
[g(x)—l%Hx—TyP:W, %\:c—Ta:'|2:14146” , %’y—TZ/P:W
Hence,

2w =yl + [7(x) — <y — Tl + [o(a) — e ~ Ty

9 9
e -T 2 - _T 2
+1gle — Tl + 5l — Tyl
18y* + 145222 + 162y + 1 — 18zy> — 18y?
10y? '

By similar argument as in Case 3, we obtain that

(91—%)|T95—Ty|2 < wlr—yP+1f(2) = GlITe -y +[g(x) — lle =Tyl + fGlo =Tz +
161y — Tyl
for all z € [0,1] and y € (1, 0).

Therefore, T' is a generalized k-strictly pseudononspreading mapping with k = %.

Proposition 6.2.5. The class of k-strictly pseudononspreading mappings and the class
of generalized nonspreading mappings are independent. That is, the class of generalized
nonspreading mappings is not a subclass of the class of k-strictly pseudononspreading map-
pings, and the class of k-strictly pseudononspreading mappings is not a subclass of the class
of generalized nonspreading mappings.

Proof. First, we recall that the mapping defined in Example 6.2.3 is a generalized non-
spreading mapping but not a k-strictly pseudononspreading mapping.

However, if we consider the mapping 7 : [0,1] — R defined by Tx = —3z. Then, T is k-
strictly pseudononspreading but not generalized nonspreading. To see that T is k-strictly

pseudononspreading, observe that
Tz —Ty|* =9z —y|?, |[v—Tx—(y—Ty)|* =16z —y|* and 2(z — Tz, y — Ty) = 32xy.
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Thus,
Tz —Ty|* = |v—y|*+8lz—yf
8
= Iff?—y|2+1—6|x—Tx—(y—Ty)|2

1
< |x—y|2+§|x—Taf—(y—Ty)|2+2<:v—T:v,y—Ty>,

since 32zy > 0 Va,y € [0, 1].

But, if we take x = 0 and y = 1, by the same argument as in Example 6.2.4, we obtain
that T is not a generalized nonspreading mapping. Hence, our proof is complete. O

Remark 6.2.6. Observe that if T is (f, g)-generalized k-strictly pseudononspreading with
F(T) # 0 and f(p) # 0 Vp € F(T), then for each p € F(T) and y € D(T), we have

d*(p, Ty) < f(p)d*(p, y) + 9(p)d*(p, Ty) + kd*(y, Ty),

which implies
(1= g(p)d*(p, Ty) < f(p)d*(p,y) + kd*(y, Ty).
Since f(p) + g(p) < 1, we obtain

2 2 k 2
d*(p, Ty) < d°(p,y) + md (y, Ty). (6.2.2)

Proposition 6.2.7. Let C' be a nonempty closed and convex subset of an Hadamard space
X and T : C — C be (f,g)-generalized k-strictly pseudononspreading mapping with k €
0,1), where f,g:C = [0,7], v<1 and 0 < f(z)+ g(x) <1 for all x € C. Suppose that
F(T) # 0 and f(p) # 0, with % < B <1 for each p € F(T), then F(T) is closed and

conver.

Proof. We first show that F'(T) is closed. Let {x,} be a sequence in F(T') such that {xz,}
converges to z* € C. Since T is (f, g)-generalized k-strictly pseudononspreading mapping,
then from (6.2.2), we obtain

d*(z,, Tz*) < dQ(l‘n,CL‘*)—i-f(]; )dQ(:L'*,TI'*)
< [d(azn,$*) + f(l; )d(x*,Tx*)

Thus,

dz*, Tz*) < d(z*,z,)+d(z,, Tz")

* k * *
< 2d(x*,x,) + f(xn)d(x ,Tx™)
< 2d(x*, x,) + A/ Bd(x*, Ta*), (6.2.3)
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which implies
1 —+/Bd(z*, Tx*) < 2d(z*, z,) — 0, as n — co.

Since /B < 1, it follows that d(x*, Tz*) = 0. Therefore, z* € F(T).

Next, we show that F(T) is convex. Let z = tx @ (1 — t)y for each z,y € F(T) and
t € [0, 1], then from
Lemma 2.3.1, (2.1.1) and (6.2.2), we obtain

d*(z,T%) d(tr @ (1 —t)y, Tz)

td?(z,T2) + (1 — )d*(y, Tz) — t(1 — t)d*(z, y)

t [dz(x, z) + %cp(z, Tz)]

+(1—1) {dQ(y, z) + %dQ(z,Tz)] —t(1 —t)d*(x,y)

(
t { (1 —1)*d*(z, y) —i—Ldz(z Tz)}
(

IN

IN

/()

+(1—1t) {tZdQ(x y) + %dQ(z Tz)] —t(1 —t)d*(x,y)

R
m) d*(z,Tz)

L
/()
Md?*(z,Tz),

t

(1)

IN

— k_k
where M := max{f(x), f(y)}. Thus,

(1— M)d*(z,Tz) <0.
Since M < 1, it follows that z € F(T'), which completes our proof. ]

Lemma 6.2.8. Let C be a nonempty closed and convex subset of an Hadamard space X
and T : C' — C be (f, g)-generalized k-strictly pseudononspreading mapping with k € [0, 1),
where f,g : C — [0,7], v < 1 and 0 < f(z) + g(z) < 1 for all x € C. Suppose
k< = f(x) for all x € C, and {x,} is a bounded sequence in C such that A-lim z, = z

n—oo
and hrn d(zn,Tx,) =0. Then z € F(T).

n—oo

Proof. Since A-lim x,, = 2z, we have from Lemma 2.3.8 that x,, — z. Thus, by Lemma
n—oo

2.3.7, we obtain that A({z,}) = {z}. Hence, since lim d(z,,Tz,) = 0, we have that
n—oo
®(z) := limsup d*(z,, 2) = limsup d*(T'z,, z), which implies that ®(Tz) = lim sup d*(z,,Tz) =

n—0o0 n—o0 n—oo

limsup d?(Tx,,Tz). Now, since T is (f, g)-generalized k-strictly pseudononspreading, we
n—oo
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obtain

—_
|
N>
2
8

3
~
8
3

~—

_I_

2
~
N
~
8
3

~—
~—

2, Twy) +2(1 — k)d(2pn, Txy)d(Tz, Txy) + (1 — k)d*(Tz, Txy,)

1 —k)d*(z,, Tx,) +2(1 — k)d(zy,, Ta,)d(Tz, Txy,) + kd* (2, 1,)

+[f(2) — K]d*(Tz, 2,) + [9(2) — k|d* (2, Txy) + kd*(2,Tz) + kd*(zn, Tx,,)

(1 —k)d*(z,, Tx,) + 2(1 — k)d(x,, Tx,)d(Tz, Tx,) + kd*(z, x,)

+f(2) = K& (T2, ) + [9(2) — K] (d(2, 20) + (20, Tn))?

+kd*(2,T2) + kd*(z,, T,,)
= (1 = Kk)d*(zn, Txpn) + 2(1 — k)d(z, T2n)d(T2, Txy,) + kd* (2, z,,)
+[f(2) — K]d*(Tz, x,) + [9(2) — k]d* (2, z,) + 2[g(2) — k|d(z, x,,)d(z,, Tx,)
+1g(2) — kd*(z, Txy,) + kd* (2, T2) + kd®*(z,,, Tx,),

IN

IN

which implies

(1= £(2))(2n,T)

d*(z, Txy) + 2(1 — K)d(zp, T2,)d(T2, Txy) + g(2)d*(2, 1,,)
+2[g(2) — Kld(z, z,)d(2n, Txy) + [9(2) — k|d* (2, Txy) + kd*(2, T2)
g(2)d*(z,2,) + kd*(2,T2) + d*(zn, Txyn) + 2M (1 — k)d(z,, Tx,)
+2M[g(2) — Kld(zn, Tzy) + [g(2) — K)d* (2, T,),

IN

IN

where M := sup,,»,{d(zn, 2),d(Tx,,Tz)}. Taking limsup on both sides of the inequality
above, we obtain

limsup(l — f(2))d*(z,,Tz) < limsup [g(2)d*(zn, 2) + kd*(2,T2)] . (6.2.4)

n—oo n—oo

That is,
(1— f(2)®(Tz) < g(2)®(2) + kd*(z,Tz). (6.2.5)

Now, by letting ¢ = £ in Lemma 2.3.1 (ii), we obtain

T 1 1
2 (:cn Z@2 Z) < 2d2(xn, &)+ (0, T2) = 1 (2, T2),

Taking lim sup on both sides of the inequality above and noting that A({z,}) = {2}, we

obtain
B(2) < @ (Z @ TZ) < %q)(z) + %@(Tz) - idz(z,Tz).
That is,
d*(z,Tz) < 20(Tz) — 29(2). (6.2.6)
From (6.2.5) and (6.2.6), we obtain
d*(z,Tz) < 29(2) O(2) + 2k d*(z,Tz) — 29(z)
T 1= f(7) 1=f(z) ’
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which implies

1 f(z) — 2 2g(z)+ 1) 1)

= /) d*(z,Tz) < 1= 72) (2). (6.2.7)
Since g(z) + f(z) < 1, we obtain from (6.2.7) that
(1 — f(2) — 2k) d*(2,Tz) <0.
Since k < %(Z), it follows that z € F/(T). Hence, our proof is complete. [

6.3 Convergence theorems for the class of generalized
strictly pseudononspreading mappings in Hadamard
spaces

Here, we state and prove some strong convergence theorems of the Mann-type and Ishikawa-
type algorithms for approximating fixed points of generalized strictly pseudononspreading
mappings in Hadamard spaces.

6.3.1 Main results

The Mann-type strong convergence theorem.

Theorem 6.3.1. Let C' be a nonempty closed and convex subset of an Hadamard space
X and T be (f,g)-generalized k-strictly pseudononspreading mapping on C with constant
ke [0,1), where f,g:C —[0,7], v <1 and 0 < f(x)+ g(x) <1 for all x € C. Suppose
F(T) # 0 and k < min{f(x), %(m)} for each x € C. Let u,xy € C be arbitrary and the
sequence {x,} be generated by

n — 1_tn n tn )
{y (1= tn)n & tut (6.3.1)

Tpt+1 = (]— - an)yn ¥ O-/nTyn7 n Z 17

where {t,} and {a,} are sequences in [0, 1], satisfying the following conditions

C1: limt, =0,
n—o0

C2: > t, = o0,
n=1

05’.‘0<a§an§1—%foreachpEF(T).

Then {x,} converges strongly to an element of F(T).
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Proof. Let p € F(T), then from (6.2.2), (6.3.1) and Lemma 2.3.1, we obtain

E(p, ) < (1= an)d®(p,yn) + and®(p, Tyn) — an(1l — ap)d* (Yn, Tyn)

< (1- an)dQ(p7 Yn) + {dg(ﬂ Yn) + %dQ(ynyTyn)

—an (1 — an)d*(yn, Tyn)

: RN T

= d*(p,yn) — {(1 — f(p)) n] A (Yn, Tyn) (6.3.2)
< d*(p, (1 —tp)z, ® tyu) (6.3.3)
< (1 —t,)d*(p, z,) + tod*(p,u)
< max{d’*(p, zn), d*(p,u)}
S max{d2(p, 1‘1), dQ(p, U)}

Therefore, {d*(p, z,)} is bounded. Consequently, {z,} and {y,} are bounded.
Again, from (6.3.1), we obtain

lim d(z,, y,) < hm tnd(zn,u) = 0. (6.3.4)

n—o0
We divide our proof into two cases.

Case 1: Suppose that {d?(x,,p)} is monotonically non-increasing, then lim {d*(p,z,)}
n—oo

exists. Consequently,

lim [d*(p, 2,) — d*(p, Tnt1)] = 0. (6.3.5)

n—o0

Thus, from (6.3.2), we have

a Kl - L) - an] & (Yo, Tyn) < & (pyyn) — (P, T011)

f(p)
< (1- tn)dQ(p7 Tn) + tndQ(p, u) — dz(pa Try1)

dQ(pv l‘n) - dz(p7 xn+1)
+tn [d2(p, u) — d*(p, xn)] — 0, as n — oo.

By condition C3, we obtain that

lim d*(yn, Ty,) = 0. (6.3.6)

n—o0

Since {z,} is bounded and X is an Hadamard space, then from Lemma 2.3.5, there exists
a subsequence {z,, } of {x,} such that A- hm 0 Ty, = 2. It follows from (6.3. 4) that there

exists a subsequence {y,,} of {y,} such that A- l1m 0 Yy, = 2 Thus, from (6.3.6) and
Lemma 6.2.8, we obtain that z € F(T).

Furthermore, for arbitrary u € X, we have from Lemma 2.3.10 that

lim sup(zt, zz,,) < 0, (6.3.7)

n—oo
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which implies from condition C1 that

lim sup (t,d*(z,u) + 2(1 — t,){z4, zz,)) < 0. (6.3.8)

n—00

We now show that {x,} converges strongly to z. From (6.3.3) and Lemma 2.3.1, we obtain

(2, 0011) < d*(z,(1 —t,)z, © tau)
(1 — t,)2d% (2, @) + 2d%(z,u) + 26, (1 — t,)(Zx,,, Z0)

<
< (1= t)d (2, 20) + t (tnd?(z,u) +2(1 — t,)(ZEp, Z0)) . (6.3.9)

Hence, from (6.3.8) and Lemma 2.3.26, we conclude that {z,} converges strongly to z.

Case 2: Suppose that {d?(x,,p)} is monotonically non-decreasing. Then, there exists a
subsequence {p,d*(z,,)} of {p,d*(x,)} such that d*(p,z,,) < d*(p,Tn,+1) for all i € N.
Thus, by Lemma 2.3.29, there exists a nondecreasing sequence {my} C N such that
my, — oo, and

d*(p, Ty, ) < d*(p, Tpmy 1) and d*(p, 21) < d*(p, T, +1) Yk € N. (6.3.10)
Thus, from (6.3.3) and (6.3.10), we obtain

0 S lim (dQ(pa Imk-‘rl) - dQ(pv mmk))

k—o0

IN

lim sup
n—oo

( p, xn—H d (p> .Tn))
lim sup ( (1 —t,)d*(p, ) + tad®(p,u) — d*(p, In))
[

IN

n—oo

lim sup tn( dQ(p,a:n))] 0,

n—oo

IN

which implies

lim (d*(p, Tmyt1) — (P, Ty, )) = 0. (6.3.11)

k—o00

Following the same line of argument as in Case 1, we can show that

W (t,, 0% (2, 1) + 2(1 — by, ) (W, Z2mr)) < 0. (6.3.12)

k—o0

Also, from (6.3.9) we have
(2, i) < (1=t )2 (2, Ty ) + oy (b @ (2, 0) + 2(1 = 0, ) (20, ZTr)) -
Since d*(z, &, ) < d*(z, Tm, 1), We obtain
A (2, Tmy) < (b d(2,0) + 2(1 = 0, ) (20, ZTmy) ) -
Thus, from (6.3.12) we get

lim d*(z,,,,) = 0. (6.3.13)

k—00

It then follows from (6.3.10), (6.3.11) and (6.3.13) that klim d?(z,x1) = 0. Therefore, we
—00
conclude from Case 1 and Case 2 that {z,} converges to z € F(T). O
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In view of Remark 6.2.2, we obtain the following corollaries.

Corollary 6.3.2. Let C' be a nonempty closed and convex subset of an Hadamard space
X and T be a generalized nonspreading mapping on C with F(T) # (). Let u,x; € C be
arbitrary and the sequence {x,} be generated by

{yn = (1 - tn)xn > tnua

(6.3.14)
Tpt1 = (1 - an)yn ¥ anTynv n Z ]-7

where {t,} and {a,} are sequences in [0, 1], satisfying the following conditions

C1: limt, =0,
n—oo

C2: > t, = o0,
n=1

C3: 0<a<a,<b< 1.

Then {x,} converges strongly to an element of F(T).

Corollary 6.3.3. Let C' be a nonempty closed and convex subset of an Hadamard space
X and T be a k-strictly pseudononspreading mapping on C with F(T) # (. Let u,x; € C
be arbitrary and the sequence {x,} be generated by

(6.3.15)
Topr1 = (1 — an)yn ® @ Ty,, n>1,

where {t,} and {a,} are sequences in [0, 1], satisfying the following conditions

C1: limt, =0,
n—oo

C2: > t, = o0,
n=1

C3: 0<a<a,<1-—k.
Then {z,} converges strongly to an element of F(T).

The Ishikawa-type strong convergence theorem.

Theorem 6.3.4. Let C' be a nonempty closed and convex subset of an Hadamard space X .
Let T' be an L-Lipschitzian and (f,g)-generalized k-strictly pseudononspreading mapping
on C with constant k € (0,1), where f,g: C —[0,7], v <1 and 0 < f(x) + g(xz) <1 for
all x € C. Suppose F(T) # 0 and k < min{f(z), %(m)} for each x € C. Let u,z1 € C be
arbitrary and the sequence {x,} be generated by

uy, = (1 —t,)x, ® tyu,
Yn = (1 = Bn)tn © BT un, (6.3.16)
Tpy1 = (1 - an)un D anTyn7 n =1,

where {t,}, {Bn} and {a,,} are sequences in [0, 1], satisfying the following conditions
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C1: limt, =0,

n—oo
C2: > t, =00
n=1
C3:0<a§ozn§%6n<ﬁn§b< 2 , for eachp € F(T).

(1+@)+\/(1+@)2+4L2
Then {x,} converges strongly to an element of F(T).

Proof. Let p € F(T), since T is L-Lipschitzian and generalized k-strictly pseudonon-
spreading, we obtain from (6.2.2), (6.3.16) and Lemma 2.3.1 that

2 2 L 2
d°(p,Tyn) < d°(p,yn) + f<p)d (Yn> Tyn)

— P(p, (1= Bu)un ® BuTun) + %d%(l — Bo)tn @ BuTtm; Ty)

(1- m d2<p, un> + Bud? (p, Tun) — Bu(1 — Bu)d? (tn, Tun)
—|— ) [(1 & (tn, Tyn) + Bad® (T, Tyn) — Bu(1 — B)d® (un, Tuy)]

)
( n)dQ(pa Un) + Bnd2<pu Tun) Bn(l - 5n)d2<un;TUn)
k 2 L 233 1200 Tu
(p>(1 Br)d” (tn, Tyn) + e )L Brd” (tn, T'uy)
k
f() ( _ﬁn> (uanun)

(1= B (0, ) + B | (9, t1n) + =2~ (11, Tt)

f(p)
_ﬁn(l - 5n)d2<umTun>
k ) k 203 32 U U
o (L= B D) + o LA i T
k 2
_mﬁn(l - Bn>d (umTu”)

= d(p,u,) +

IN

IN

IN

k 2
m(l - Bn)d (umTyn)
-8 {(1—5 )(1+i) _ R (1+L2B2)} d? (uy, Tuy,) (6.3.17)

Also, from (6.3.16), (6.3.17) and condition C3, we obtain

dZ(pa xn+1) < (1 - O‘n)d2(p7 un) + O‘nd2(p> Tyﬂ) - an<1 - O‘n>d2(unaTyn)
< (1= ). ) + 0. ) + Gz (1= B )
k k 2102 2 U U
b [(1= B+ 55) = 7 (14 1262)| T

—a, (1 — an)dz(un, Ty,)
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2 D L AL A TR -V
< d (p, un) n (1 f(p)) + (f(p)ﬁn n) d ( mTyn)
[ k k 2102 ] 2
—tnfn _(1 — Ba)(1+ W) ~ 0 (1+L ,Bn)_ & (un, Tuy)
< dz(p7 un)
[ k k 2102 ] 2
— 0B _(1 — Ba)(1 + W) i) (1+L Bn)_ d*(up, Tuy,) (6.3.18)
< d*(p, (1 —t,)z, © tyu) (6.3.19)
< (1 —t,)d*(p,w,) + tod*(p,u)
< max{d*(p,x,),d*(p,u)}

S max{dQ(p, $1)7 d2(pa U)}
Therefore, {d*(p,x,)} is bounded. Consequently, {z,}, {u,} and {y,} are all bounded.
From (6.3.16) and condition C1, we obtain that

lim d(up,z,) < lim t,d(u,z,) = 0. (6.3.20)

n—oo n—oo
We now consider two cases for our proof.

Case 1: Suppose that {d*(p,x,)} is monotonically non-increasing, then lim d?(p,z,)
n—oo

exists. Hence,

lim [d*(p, 2p41) — d*(p, zn)] = 0. (6.3.21)

n—oo

Let P, = a, 0, | (1 = 5,)(1 + fé“p)) f(p) (1+ Lzﬂz)}, then we obtain from (6.3.18) that

Pod?®(un, Tu,) < d*(p,up) — d*(p, wpi1)
< (1= ta)d(p, 2p) + tad*(p,u) — d*(p, 2p4a)
= d'(p,x) — d*(p, 20t1)
+ tn [d*(p,u) — &P(p,x,)] — 0, as n — oo. (6.3.22)

2
From condition C3, we obtain that 2—b (1 + @) > b\/<1 + %) + 4L2. Which implies
that

L BN fp) 2
250 b(1+ f(p\/ 1+ 10N e

i (0 505)] =2 (5) # (m)

which after simplification yields

ko ko k
ftp) flp) f(p)

That is,




Thus,

k k 9 09

P, = .8, {(1 _ﬁn)(l + m) - m (1 + L 571)]
2 L _ L _ L _ L 2 2
> a0 ) g~ 0 )~ 7

2 k k ko oo
> a |:(1+m)—1—b(1+m)—m[/b:| > 0.

Hence, we obtain from (6.3.22) that
lim d(uy, Tu,) = 0. (6.3.23)

n—00

Since {x,} is bounded and X is an Hadamard space, then from Lemma 2.3.5, there exists
a subsequence {z,,} of {x,} such that A—klim T, = 2. It then follows from (6.3.20),
—00

(6.3.23) and Lemma 6.2.8, that z € F(T).

Furthermore, for arbitrary u € X, we have from Lemma 2.3.10 that

lim sup (24, zz,) < 0, (6.3.24)

n—oo

which implies from condition C1 that

lim sup (t,d*(z,u) + 2(1 — t,)(zt, zz,)) < 0. (6.3.25)

n—o0

Next, we show that {z,} converges strongly to z. From (6.3.19) and Lemma 2.3.1, we
obtain

d*(z, (1 —ty)x, © tyu)
(1 — t,)2d% (2, @) + 2d%(z,u) + 26, (1 — t,)(Zx,,, Z0)
(1= t)d(2, 20) + tn (tad?(2, 1) + 2(1 — t,,) (z5, Z0)) . (6.3.26)

d2<z7 xn-l—l)

VANRVANRVA

Hence, from (6.3.25) and Lemma 2.3.26, we obtain that {x,} converges strongly to z.

Case 2: Suppose that {d*(x,,p)} is monotonically non-decreasing. Then, there exists a
subsequence {p,d*(z,,)} of {p,d*(x,)} such that d*(p,z,,) < d*(p,n,+1) for all i € N.
Thus, by Lemma 2.3.29, there exists a nondecreasing sequence {my} C N such that
my — oo, and

dQ(pa ZL‘mk) S d2(p7 xmk-i-l) and d2(p7 ‘Tk) S dz(pv xmk-l-l) Vk S N (6327)
Thus, from (6.3.19) and (6.3.27), we obtain

0 < lim( (p,mel) (p7xmk))

k—oo

IA

lim sup (p, Tpt1) —d’ (p, xn))

n—oo

(&
lim sup ( (1 = t2)d*(p, ) + tad® (p,u) — d*(p, xn))
[

IN

n—oo

limsup [t,, (d*( —d*(p,z,))] =0,

n—oo

IA
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which implies

lim (d*(p, Tmyt1) — (P, Ty )) = 0. (6.3.28)

k—o00

Following the same line of argument as in Case 1, we can show that

klim (L d®(z,0) +2(1 — tm, ) (2T, 2Zmy)) < 0. (6.3.29)
—00

Also, from (6.3.26) we have
(2, i) < (1=t )2 (2, Ty ) + o (b @ (2, 0) + 2(1 = 0, ) (20, 2Ty )) -
Since d*(z, &, ) < d*(z, T, +1), We obtain
A (2, Tmy) < (b d(2,0) + 2(1 = ) (20, ZT0my) ) -

Thus, from (6.3.29) we get

lim d*(z,,,,) = 0. (6.3.30)
k—o0
It then follows from (6.3.27), (6.3.28) and (6.3.30) that klim d?(z,x1) = 0. Therefore, we
—00
conclude from Case 1 and Case 2 that {z,} converges to z € F(T). O

Also, by Remark 6.2.2, we obtain the following corollaries.

Corollary 6.3.5. Let C' be a nonempty closed and convex subset of an Hadamard space
X and T be a generalized nonspreading mapping on C with F(T) # (). Let u,x; € C be
arbitrary and the sequence {x,} be generated by

Uy, = (1 —t,)x, & tyu,
Yn = (1 = Bp)uyn ® BT up, (6.3.31)
T = (1 — ap)ty ® @, Ty,, n>1,

where {t,}, {Bn} and {a,} are sequences in [0, 1], satisfying the following conditions

C1: limt, =0,
n—oo

C2: Y t, = o0,
n=1

C3:0<a<a,<b<land0<a<f,<b<l.

Then {x,} converges strongly to an element of F(T).

Corollary 6.3.6. Let C' be a nonempty closed and convex subset of an Hadamard space
X. Let T be an L-Lipschitzian and k-strictly pseudononspreading mapping on C with
constant k € (0,1). Suppose F(T) # 0 and for arbitrary u,z; € C, the sequence {x,} be
generated by

1
= (1= Bo)un ® By Tuy, (6.3.32)
Tnt1 = (1 - an)un b anTyrn n > 17

where {t,}, {Bn} and {a,,} are sequences in [0, 1], satisfying the following conditions
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C1: limt, =0,

n—oo
C2: Y t, = o0,
n=1
C3: 0<a<a,<kB,<pB,<b< 2

ComCoET
Then {x,} converges strongly to an element of F(T).

Remark 6.3.7. We now put forward the following important questions concerning the
class of generalized strictly pseudononspreading mappings introduced and studied in this
Section.

1. Is it possible to give an example of this class of mappings in a setting more general
than R?

2. Is it possible to extend the mapping from singlevalued to multivalued?

3. We do not know if our class of mappings generalizes the class of generalized asymp-
totically nonspreading mappings introduced in [1/9]. Thus, is it possible to introduce
a class of mappings which is more general than our class of mappings and at the
same time, more general than the class of asymptotically nonspreading mappings?
In other words, is it possible to introduce the class of generalized asymptotically
strictly pseudononspreading mappings?

6.4 S-iteration for minimization and fixed point prob-
lems for two families of generalized strictly pseudonon-
spreading mappings in Hadamard spaces

Here, using a modified S-type iteration process (1.1.3), we introduce a modified PPA for
approximating a common solution of a finite family of MPs and fixed point problems
for two finite families of generalized k-strictly pseudononspreading mappings. Numerical
example in support of our main result is given to illustrate its applicability.

6.4.1 Main results

Lemma 6.4.1. Let C' be a closed and convexr subset of an Hadamard space X and T :
C — C be (f,g)-generalized k-strictly pseudononspreading mapping with k € [0,1) such
that F(T) # 0, where f,g: C — [0,7], v < 1 and 0 < f(x) + g(x) < 1 for all x € C.
Let Tz : C' — C be defined by Tgx = pr & (1 — B)Tx Vo € C, where % < B < 1 with
f(p) #0 for each p € F(T). Then,

(a) F(Tp) = F(T),

163



(b) Ty is quasinonexpansive.
Proof. (a) If § =0, then T =T'. Thus, F(T') = F(1p). Now, let 8 # 0.
For each p € F(1;), we have that p = Tsp and by Lemma 2.3.1 (i), we have
d(p, Tp) < Bd(p,Tp), which implies (1 — 5)d(p, Tp) < 0.
Since § < 1, it follows that p € F(T'). Thus, F(T3) C F(T).

We now show that F(T') C F(1p). Let p € F(T), then Tp = p and by Lemma 2.3.1 (i)
we have

d(p,Tsp) = d(p, Bp ® (1 — B)p) < 0, which implies that p € F(Tj). Thus,
F(T) C F(Tp). Therefore, F(T3) = F(T).

(b) First, observe that if T" is (f, g)-generalized k-strictly pseudononspreading mapping,
then for each p € F(T)) = F(13) and z € C, we obtain from Lemma 2.3.1 (ii) and (6.2.2)
that

d*(Tpp, Tsz) = d*(p,fx® (1—p)Tx)
Bd*(p,z) + (1 — B)d*(p, Tx) — B(1 — B)d*(z,Tx)

B (p, ) + (1 - B) [d2<p, 0+ m}
_B(1 - B)d (e, Tx)

IN

IN

k
= d(p,x)+1-7 (—— )de,Tx
(p,z) + (1= 5) ) (z, Tx)
< &(p).
Therefore, T is quasinonexpansive. O]

Theorem 6.4.2. Let C' be a closed and convex subset of an Hadamard space X and
hi : X = (—o00,00], i = 1,2,...,N be a finite family of proper convex and lower semi
continuous mappings. For each j = 1,2,...,m, let T; : C — C be a finite family of
(fj. gj)-generalized kj-strictly pseudononspreading mapping with k; € [0,1), where f;,g;
C —=100,7, vy <1land 0 < fj(x) +gj(x) <1 forallz € C, and S; : C — X be a
finite family of (f}, g})-generalized k';-strictly pseudononspreading mapping with k’; € [0, 1),
where f, 9 : C = [0,7], v < 1 and 0 < fi(x) + gj(x) < 1 for all x € C. Suppose that

I = (N7, F(Ty) N (N7, F(S;) N (ﬂﬁvlarggrgg h,(y)) # (. Let u,xy € X be arbitrary

and the sequence {x,} be generated by

zn = (1 —t,)x, ® tyu,
Up = Pc(J)\gLN) o) J)\;N*) o---0 >\5L2) o) Jk%l)(z”))’
yn = B u, @ /37(11)T(5,1)Un ® 57(12)T(ﬁ,2)un S--- D ﬁém)T(ﬁ,m)um

Tpt+1 = CV7(10)T‘(B,m)un > Oégl)s(a,l)un S a7(12)5(a,2)un - &glm)S(a,m)yna n > 17

(6.4.1)

where Tig jyx = Px @ (1 — B)Tx and S jyr = ar @ (1 — «)S;z, j = 1,2,...,m, for
all x € C such that Tig; and S(g; are A-demiclosed with % < B <1, filp) #0
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% < a <1, fi(p) # 0 respectively, for each j = 1,2,...,m and for each p €
(N1 F(T) N (N F(S))), {ta ), {)\%)}, {Bflj)} and {ag)} are sequences in (0, 1) satisfying
the following conditions:

C1: limt, =0,
n—o0

C2: > t, =00
n=1

C3: 0<a<a, B <b<1, j=0,1,2,...,m such that Zagj) =1 and Zﬁr(bj) =1
j=0 j=0
foralln>1,

Cy: {)\g)} is a sequence such that AD S @ foralln >1, i =1,2,...,N and some
2D >0,

Then, {x,} converges strongly to an element of T.

Proof. Let p € I'. Then for each j = 1,2,...,m, we have by Lemma 6.4.1 that p =
Tis.j\P = S(a,jP, and T(g jy and S(, ;) are quasi-nonexpansive mappings. Set @f\v = J
Jyw-n ool A2 © J oL where <I>§ = I. Now by (6.4.1) and Lemma 2.3.3, we have

d(p,was1) < aVd(p, T(ﬂ mytin) + a0 d(p, Stanytn) + AP d(p, S(a2ytn)
+---+ 05 d(p, S(a m)yn)
< “”d( n) + o\Vd(p,u) + oPd(p,un) + -+ + ol d(p, yn)

< Zoc (p, un) + @BV d(p, un) + BV d(p, Tig1yun)

W)d(p, B2)Un) + -+ BId(p, T(gm)tin)]
m—1
< 3 aDdp,u) + oM d(p, u,)
7=0
= d(p,un) (6.4.2)

d(p, zn) (6.4.3)
n)d(p; 2n) + tnd(u, p)

max{d(p, xn), d(p,u)}

max{d(p, z1),d(p,u)}.
Therefore, {d(p,x,)} is bounded. Hence, {z,}, {y.}, {z.} and {y,} are all bounded.
From (6.4.1), Lemma 2.3.1 (i) and condition C1, we obtain that

(VAN VANRN VANNE VAN VAN
—
I
~

d(zn, xn) < tpd(u,z,) — 0, as n — 0. (6.4.4)
We need to consider two cases for our proof.
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Case 1: Suppose that {d(p,z,)} is monotonically non-increasing. Then lim d(p,z,,)

n—oo
exists. Without loss of generality, we may assume that

lim d(p,z,) = ¢ > 0. (6.4.5)

n—oo

Since, Pg is firmly nonexpansive, therefore, we have
S~ 1
d*(p, up) < (Top, @3 2, p) = 5 (@0, un) + &(p, @3, 20) — @ (un, B 20))
which together with (6.4.2), (6.4.3), (6.4.4) and (6.4.5), implies that

d2(p7 q)ﬁ\\izn) - dQ(p7 un)
d2(p7 (I)i\izn) - dQ(pa xn—‘rl)

d2(un, @f\\;zn)

IA A

d2(p, Zn) - d2(p7 $n+1)
&*(p, n) + 2d(p, ) d(2, 2) + d* (2, 2)
—d*(p, Tpy1) — 0 as n — oo. (6.4.6)

IN AN -

We now show that hm d(un, Jy\ituy) =0, i=1,2,...,N.
Indeed, it follows from Lemma 4.2.2 that

1 _ 1 _
_d2(p7 (I))]Yn 1271) + _dZ(CI)iV;LZm (I)J)XL lzn) + f (Cl)i\;) S f(p)

—d2 N z) —
(p, X, 20) 2, 2\,

2\,
Since f(p) < f (@5 ), we have by (6.4.2), (6.4.5) and (6.4.4) that

(PN 20, @V 12) < PP(p, OY ' 2n) — dP(p, Y 20)
S dQ(p7 (I)i\;ilzn) - d2(p7 xn+1)
S d2(p7 Zn) - dz(p7 xn—i—l)
< d*(zn, Tp) + 2d(2n, 7,)d(p, 2,)

+ [dQ(P» x,) — d*(p, xn+1)} — 0, as n — oo. (6.4.7)
Similarly, we obtain by Lemma 4.2.2, (6.4.2), (6.4.5) and (6.4.4) that

dz(q)i\l_lzna (I)i\;_QZn) < dQ(pa (I))]XL_QZTL) - dz(p7 (I)f\\;_lzn)

S dQ(p’ (I)i\;_an) - dQ(p7 (I)i\;Zn)
S d2 (p’ q)J)\\;_an) - dQ(p7 xn—&-l)
< d*(p,z,) — d*(p, Tpt1) — 0, as n — oo. (6.4.8)

Continuing in this manner, we can show that

lim d*(®)?2,, @Y %2,) = -+ = lim d*(DF z,, P} 2,) = lim d*(®} 2,,2,) = 0.(6.4.9)

n—oo n—o0 n—oo
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Thus,
A(tn, 2n) < d(tp, B 2,) + d(PY 2, PF ' 2) + d(PY 2, @Y 22,) + - + d(P], 20, 20),
which implies by (6.4.6), (6.4.7), (6.4.8) and (6.4.9) that
lim d(uy, z,) = 0. (6.4.10)

n—o0

It follows from (6.4.10) and Lemma 4.2.6 that

d( S\ Un, un) < d(Jyo)Un, Iy 2n) + d(yo) 20, 20) + d(20, Up)
< 2d(uy, z) + d(Jy6) 20, 2n) = 0, asn — 00, i =1,2,..., N.

That is,
lim d(up, Jyou,) =0, for each i =1,2,..., N. (6.4.11)

n—oo

Next, we show that lim d(u,,z,) = 0 and lim d(p,y,) = c¢. By (6.4.4) and (6.4.10), we
n—o0

n—oo
obtain

lim d(uy,,z,) = 0. (6.4.12)

n—oo

Again, by (6.4.1), we have

d(p,tp1) < ) d(p, Tgmyun) + i d(p, Saayun) + P d(p, S(a,2)tn)

+ oo ™ d(p, Sy Yn)

ogflo)d(p, up,) + Ozg)d(p, Uup) + OégLZ)d(p7 Up) + -+ O‘ém)d(]% Yn)
(1- O‘gn))d(n Uup) + O‘Szm)d(n Yn)

< (1=al™)d(p, z,) + ald(p, y»)
< (1= o) [(1 = t)d(p, ) + tad(p, w)] + @™ d(p, y)
< (1 - O‘?SM))d(p? xn) + tn(l - a;m))d(]L u) + Ongm)d(p’ yn)a
which implies
1
d(pa xn) < " (m) [d<p7 xn) - d(pa anrl) + (1 - Oégtm)ﬂnd(uap)} + d(p7 yn)

o
It then follows from (6.4.5) and conditions C1 and C3 that

c = liminf d(p, z,) < liminfd(p, y,). (6.4.13)
n—0o0 n—00
Also, by (6.4.1), we have

dp,yn) < BYVd(p,u,) + BVd(p, Tis1yun) + BPd(p, Ts.2)tn)
+ o B d(p, T mytin)
D, Un) (6.4.14)

IANIA A
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which implies that

limsup d(p, y,,) < limsup (d(p, z,,) + t, [d(p,u) — d(p, xz,)]) = c. (6.4.15)

n—oo n—oo

Thus, by (6.4.13) and (6.4.15), we have

lim d(p,y,) = c. (6.4.16)

n—oo

We now show that lim d(u,, T yu,) = 0, for each j =1,2,...,m and lim d(uy,y,) = 0.

n—00 n—00

Indeed, by (6.4.1), Lemma 2.3.3 and Lemma 6.4.1, we have

BBV A (, Tig,yun)

M

C(pyn) < BOP(p,un) + Y BV (p, Tip jyun) —

j=1 j=1
Z sy T(5.5yun; T(g,rytin)
Jr=Lj#r
< o) =Y BB (un Tipgun) — Y BYBYE(Lpyun, Tigryun),
J=1 Jr=1j#r

which implies

Z B(O d2 Un, T(ﬁj)un) S dz(P, un) - dQ(p7 yn)

< d2(un7 Tp) + 2d(ty, ,)d(p, ) + d2(pa Ty) — dQ(pa Un)-

By (6.4.5), (6.4.12), (6.4.16) and condition C3, we obtain that

lim d(un, Tigyun) =0, j=1,2,...,m. (6.4.17)

n—oo

Thus, by (6.4.1), (6.4.17) and Lemma 2.3.3, we have
d(un, yn> < Béo)d(una un) + Bél)d(una T(B,l)un> + ﬁ7(z2)d(u"7 T(572)un)
Tt @sm)d(um T(8,m)tn) — 0 as n — oo. (6.4.18)

Next, we show that lim d(uy, S jyun) = 0, foreach j =1,2,...,m — 1, and lim d(yn, S(a,m)¥n) =
n—0o0

n—oo
0.

By (6.4.1), (6.4.14), Lemma 2.3.3 and Lemma 6.4.1, we obtain

m—1

dz(pa Tpt1) < 047(10)612(17’ Tigmyun) + Z ag)dZ(}% S(a.dytin) + a;m)d2(p> S(am)Yn)

j=1

— oz(o)(Jc,(f)al2 (T(8,m)Un, S(a,jytn) — a,(lo)oz(m) d? (T(8,m)Un> S(a,m)¥n)

n n

j=1
m—1 m—1

- aﬁlm)ar(f)f(s(a’m)ym S(a,j)un) - Z ag)ag)d2(s(avj)u”’ S(O‘v’")u”)
j=1 Jr=Lj#r
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< d2(p, Up) — Z a,, dQ(Tﬁ m)Un, S(a,j)Un) — ago)oz,(im)dQ(T(ﬁ,m)un, S(am)Yn)

j=1
m—1
_Za(m) ])dQ(S(am yn’ aj un Z Oé T)dQ S(a] UnaS(ar)un)
j=1 Jr=Lj#r

which implies by (6.4.5) and (6.4.12) that

—1
Oé;O)Oé(j)dz (T(B,m)un7 S(a,j)un) =+ &;O)Oé(m)dQ (T(B,m)una S(a,m)yn) < d2 (pa un) - d2 (pa xn+1)

n n
1

3

J
— 0 asn — 0.

This together with condition C3, implies that

lim d(Tg,m)tn, Stajytn) =0, j=1,2,...,m —1 (6.4.19)
n—oo
and
lim d(7{g,m)tn, Sta,m)¥n) = 0. (6.4.20)
n—oo

By (6.4.17), (6.4.19) and triangle inequality, we obtain

lim d(uy,, Saju.) =0, j=1,2,. —1. (6.4.21)

n—oo

Furthermore,

d(ynu S(a,m)yn> < d(ynp un) + d<un7 T(,B,m)un) + d(T(B,m)una S(a,m)yn)a
which implies by (6.4.17), (6.4.18) and (6.4.20) that

lim d(yn, S(a,m)yn) = 0. (6.4.22)

n—o0

Moreover, as {z,} is bounded and X is a Hadamard space, so by Lemma 2.3.5, there
exists a subsequence {z,, } of {x,} such that A—klim zp, =z € C. It follows from (6.4.12)
— 00

and (6.4.18) that there exist subsequences {uy, } of {u,} and {y,,} of {y,} such that

A- khm Uy, = 2 = A—klim Un,,- Since Tig ;) and S, ;) are A-demiclosed, it follows from
—00 —00

(6.4.17), (6.4.21), (6.4.22) and Lemma 6.4.1 that z € ("7 F(T(a) N (N F(Ss)) =
(N, F(T})) N (N, F(S;)). Also, since Jyu is nonexpansive for each i = 1,2,..., N,
we obtain by (6.4.11) and Lemma 2.3.12 that z € N, F(Jy») = (N argmingex f;(y))
Hence z € I'.

Furthermore, for arbitrary v € X, we have by Lemma 2.3.10 that

lim sup (24, zz,) < 0, (6.4.23)

n—oo

which implies by condition C1 that

limsup (t,d*(z,u) + 2(1 — t,)(z4, zz,)) < 0. (6.4.24)

n—o0
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We now show that {z,} converges strongly to z. By (6.4.4) and Lemma 2.3.1, we obtain

d2<27l’n+1) < d2(Z7 Z’fl)
(1 — t0)2d(2, xn) + d?(z, 1) + 26, (1 — t,)(Z0, 2x,))

<
< (1= to)d?(2,2,) + ty (tad?(2,u) + 2(1 — t,)(Z0, Z2,)) . (6.4.25)

Hence, by (6.4.24) and Lemma 2.3.26, we conclude that {z,} converges strongly to z.

Case 2: Suppose that {d?(p,x,)} is monotonically non-decreasing. Then, there exists a
subsequence {d*(p,x,,)} of {d*(p,z,)} such that d*(p,z,,) < d*(p,x,,4+1) for all i € N.
Thus, by Lemma 2.3.29, there exists a nondecreasing sequence {my} C N such that
my — 00, and

d*(p, Ty, ) < d*(p, Ty 1) and d*(p, 21) < d*(p, T, +1) Yk € N. (6.4.26)

Thus, by (6.4.3), (6.4.26) and Lemma 2.3.1, we obtain

0 < lim ((p, 2p1) — (0, 7m,))
< limsup ( (D, Tny1) — d*(p, xn))
< li:nﬁso;p ( (p, zn) — d*(p, a:n))
< li:nﬁsoljp( 1 —t,)d*(p, ) + tod*(p,w) — d*(p, 2,))
= li:nﬁsoljp [tn ( — d*(p, mn))] =0,
n—o0
which implies that
]}erolo ((p, Timy+1) — d*(p, Ty, )) = 0. (6.4.27)
Following the arguments as in Case 1, we can show that
W (£, @2 (2, 1) + 2(1 = by, ) (W, Z2mr)) < 0. (6.4.28)

k—o00

Also, by (6.4.25) we have
(2, i) < (1=t )2 (2, Ty ) + oy (b @ (2, 1) + 2(1 — 0, ) (20, ZTmr)) -
Since d*(z, xpm,) < d*(z, Tm,4+1), We obtain
A (2, Ty ) < (b d(2,0) + 2(1 — 0, ) (20, 2T ) ) -
Thus, by (6.4.28) we get

lim d*(z,,,,) = 0. (6.4.29)

k—o0

It then follows from (6.4.26), (6.4.27) and (6.4.29) that Jim d?(z,x1) = 0. Therefore, we
—00
conclude by Case 1 that {z,} converges to z € I'. O
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By setting N = 2 = m in Theorem 6.4.2, we obtain the following result.

Corollary 6.4.3. Let C' be a closed and convex subset of an Hadamard space X and
hi: X — (—o00,00|, i = 1,2 be a finite family of proper conver and lower semi continuous
mappings. For each j = 1,2, let T; : C' — C be a finite family of (f;, g;)-generalized k;-
strictly pseudononspreading mapping with k; € [0,1), where f;,g; : C — [0,7], v <1 and
0 < fi(x)+g;(z) <1 forallz € C, and Sj : C — X be a finite family of (f}, g;)-generalized
k-strictly pseudononspreading mapping with kj € [0,1), where fi, g5 : C — [0,7'], v/ <1
and 0 < fj(x) + gj(z) <1 for all x € C. Suppose that I := (N3_, F(TJ)) N (ﬂ?le(Sj)) N

(ﬂ?zl arggréi)r(l hi(y)> # 0. Let u,z; € X be arbitrary and the sequence {x,} be generated
by

zn = (1 —ty)x,  tyu,
=Fo(Jy@ 0 J (1)( n));
Yn (O)Un D 6” HUn D 67(12)T(B,2)una

Tp41 = a'EZO)T(ﬁ, 2)Un @ agtl)s(a,l)un S a'ng)S(a,Q)yna n > 17

(6.4.30)

where Tig jyr = fr® (1—F)T;x andSw xr = ozx@(l—oz)S-x j=1,2, for allx e C such
(p) # 0 and 7t < o < 1,
fi(p) # 0 Tespectwely, for each j = 1,2 and for each p € (ﬂz VF(T5) N (ﬂ2 WF(S5)),
{t.}, (MY {89} and {a$} are sequences in (0,1) satisfying the following conditions:

that Tﬂj) and S ;) are

C1: limt, =0,
n—oo

C2: > t, =00
n=1

2
C3: 0<a<oz£f), n)<b<1 ]—0,1,2$uchthat2a(])—1andZB,(f)zlforall
=0 7=0
n>1,

Cy: {/\%)} is a sequence such that AP > \@ for alln >1, i=1,2 and some \¥) > 0.
Then, {x,} converges strongly to an element of T.

In view of Remark 6.2.2, we obtain the following corollaries which extend and improve the
main results of Osilike and Isiogugu [115], Bac¢dk [16] and Bacdak [15].

Corollary 6.4.4. Let C' be a closed and convex subset of an Hadamard space X and
hi : X — (—o0,00], i = 1,2,...,N be a finite family of proper convex and lower semi
continuous mappings. For eachj=1,2,...,m, letT; : C — C be a finite family of (f;, g;)-
generalized nonspreading mapping, where f;,g; : C —[0,7], v <1, 0 < fj(z) + g;(z) <1
forallz € C, and S; : C — X be a finite family of (f}, gj)-generalized nonspreading
mapping, where fi,g; : C — [0,7], v < 1,0 < fi(x) + gj(x) < 1 for all z € C.
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Suppose that T := (N1, F(T;)) N (N1, F(S;)) N (ﬂfilargmin hi(y)) #0. Let u,xy € X
yeX

be arbitrary and the sequence {x,} be generated by

zn = (1 —t,)x, & tyu,
up = Po(Jyan 0 Jyow-n 0+ 0J @ 0 J 0 (z)),
U = B ® BV Ty, ® B Ty @ -+ @ B T,

Tn+1 = O‘£LO)Tmun @ 051(11)511//11 @ a£12)52un EB tre @ Oé'glm)Smyﬂn n Z 17

(6.4.31)

where {t,}, {,\53)}, {ﬁ,(f)} and {ag)} are sequences in (0,1) satisfying the following condi-
tions:

C1: limt, =0,
n—oo

C2: > t, = o0,
n=1

03:0<a<ay, g <b<1,j=0,1,2,...,m such that Zozg) =1 and Zﬁ,ﬁj) =1
J=0 j=0
foralln>1,

CY: {)\Ef)} is a sequence such that AD S \@ foralln > 1, i =1,2,...,N and some
2D >0,

Then, {x,} converges strongly to an element of T.

Corollary 6.4.5. Let C' be a closed and convex subset of an Hadamard space X and
hi : X = (—o00,00], i = 1,2,...,N be a finite family of proper convex and lower semi
continuous mappings. For each j = 1,2,....m, letT; : C = C and S; : C — X be
finite family of k;-strictly pseudononspreading mappings with k; € [0,1) and finite family
of k}—strictly pseudononspreading mappings with k; € [0,1) respectively. Suppose that

I:= (N, F(Ty)) N (N, F(S;) N <ﬂf\;1arggréi)1? hz(y)) # 0. Let u,xy; € X be arbitrary

and the sequence {x,} be generated by

zn = (1 = t,)x, @ tyu,
up = Po(Jyo0 0 Jyv-n 0-+-0J @ 0 J,a)(2n)),
o = B, @ ﬁél)T(BJ)un & ﬁg)T(g,z)un ©--D @gm)T(ﬁ,m)um

Tn+1 = Q%O)T(ﬂ,m)un @ Q%I)S(a,l)un S a£12)5(a,2)un D---D Oéng)S(B,m)yna n=>1,

(6.4.32)

where Tig jyxr = Br®(1—P)T;x and S jyr = ar®(1—a)S;x, j=1,2,...,m, forallz € C
such that k; < 8 <1 and k; < a < 1. For eachi,j = 0,1,2,...,m, {tn},{/\,(f)},{ﬁ,@}

and {oz,(f)} are sequences in (0,1) satisfying the following conditions:

C1: limt, =0,

n—o0
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C2: > t, = o0,

n=1

C3 0<a< aﬁf), ) < b < 1 such that Z;”:()aﬁf) =1 and Z;nzoﬁy(bj) =1 foralln>1,

Cy: {)\g)} is a sequence such that AD S @ for alln >1, i =1,2,...,N and some
2D >0,

Then, {x,} converges strongly to an element of T.

6.4.2 Numerical example
Let X =R, be endowed with usual metric and C' = [0, 100]. Then,

0, if x <0,
Po(z)=qx, ifxel0, 100],
100, if z > 100

is a metric projection onto C'. For m = 1, we define S : C' — R by

Sy — 1—33:, %f x € 0,1],
Lo ifg e (1, 100].

x’

Then, S is an (f’, g')-generalized k'-strictly pseudononspreading mapping with k' = 3

and f',¢" : [0, 100] — [0, 9] defined by

0 ifx e 0,1] L ifz € [0,1]
! — 117 [ b d / — 11° y 41y
/@) {i ifee (1,100 IO =910 s e 1100,

117 110

Also, we define T': C' — C' by

1
S b= if x € [1,100],
0, if x € [0,1).

Then, T is an (f, g)-generalized k-strictly pseudocontractive mapping with & = 0 and
f59:[0,100] — [0, 55] defined by

: 1 :
Fa) = {09 %fme [1,100], amd gla) = {m %fa;e 1, 100,
5 ifze(0,1) 0, if x € [0,1).
Clearly, F(T) N F(S) = {0}. Thus, we can choose a@ = % = -5 and § = 0. Then,
Sax = f—&x + ( — %90) Sz and Tge = Tx.
Let N = 2. Then for i = 1,2, we define hy, hy : R — (=00, 00| by hi(z) = |Bi(z) — b |?
and hy(z) = 1|Bs(x) — be|?, where By (z) = 2z, By(x) = 5z and by = by = 0. Since B; is a
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continuous and linear mapping, so for each ¢ = 1,2, h; is a proper convex and lower semi
continuous mapping (see [120]). Thus, for A, = 1, we have that (see [120])

) 1
Jiw(x) = Proxpx = arg min (hl(y) + ély - a:]2)

= (I+ B'B) Yz + B'b).

_ 1 0 _ =n (1) _ 2n45 0) _ =n (1) _ n+1 e
Take t, = 375, an” = 505, am’ = 553, P’ = 5,57 and Br’ = sn1- Now, conditions

C1-C4 in Theorem 6.4.2 are satisfied.
Hence, for u,z; € R, our Algorithm (6.4.1) becomes:

zn = (1 —ty)z, + thu,

un = Po (J1 (J1)(20)))

Yn = 57(10)%1 + ﬁT(ll)T,Bum

Tpt1 = Oéme)T,gun + osz)Sayn, n>1.

(6.4.33)

Case I: Take ;1 =1 and © = 0.1.
Case II: Take ;1 = 0.5 and v = 0.1.
Case III: Take 1 = 0.5 and u = 2.

The following table shows results of our numerical experiment based on Mathlab version
R2016a software.
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Figure 6.1: Errors vs number of iterations for Case I, Case II and Case III.
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Iteration | Errors for Case | Errors for Case Il Errors for Case 11

Numbers u=0.1 u=0.1 u=2
1 1.0000 0.5000 0.5000
2 0.7560 0.3760 0.3000
3 0.1715 0.0857 0.0858
4 0.0485 0.0246 0.0367
5 0.0149 0.0077 0.0192
6 0.0049 0.0027 0.0116
7 0.0017 0.0010 0.0077
8 0.0007 0.0005 0.0055
9 0.0003 0.0003 0.0041
10 0.0002 0.0002 0.0032
11 0.0001 0.0001 0.0026
12 0.0001 0.0001 0.0021
13 0.0001 0.0001 0.0018
14 0.0001 0.0001 0.0015
15 0.0001 0.0001 0.0013

TABLE 1. Showing numerical results for Case I, Case Il and Case IlI.
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6.5 Iterative algorithm for monotone inclusion prob-
lems and fixed point problem for a family of gen-
eralized strictly pseudononspreading mappings in
Hadamard spaces

In this section, we introduce a new mapping given by a finite family of a generalized strictly
pseudononspreading mappings. Also, we introduce a viscosity-type proximal point algo-
rithm and prove its strong convergence to a common solution of a finite family of monotone
inclusion problems and fixed point problem for the new mapping in an Hadamard space. A
numerical example of our algorithm to show its applicability is presented. Our numerical
experiment shows that our algorithm converges faster than other related algorithms in the
literature.

6.5.1 Main results

Definition 6.5.1. Let C' be a nonempty closed and convez subset of a CAT(0) space X and
T,:C — C,i=12,...,N be finite family of (f:, g;)-generalized k;-strictly pseudonon-
spreading mappings. Then, we define the mapping W,, : C' — C' as follows:

U(O)x—x,

Unl)x—an Slx@b x@cg) x,

Un2):v—an SUn x@b(Q)U x@cﬁ,,) x,

Uz = aP 5507 @ 0P Uz @ P, (6.5.1)

UnN 1)IL'—CLn SN 1UnN 2[E@b(N 1)UN 2 EB £LN 1) z,
\an:UéN)x:an SNUnN 1x€an Uy(LN D:U@C% )a:,

where Sz = 6Vx @ (1-— (57(5))7}36, i=1,2,...,N forallz e C, {@g)}a {bg)}a {Cg)} and
{657} are sequences in (0,1) such that ai + b + ¢ =1, i=1,2,...,N.

Lemma 6.5.2. Let C' be a nonempty closed and convex subset of a CAT(0) space X
and T; : C — C, i = 1,2,...,N be a finite family of (fi, g;)-generalized k;-strictly
pseudononspreading mappings with k; € [0,1), where f;,g; :+ C — [0,7], v < 1 and
0 < filx) +gi(x) <1 forallx € C, i = 1,2,...,N. Suppose that NN, F(T;) # 0
and W,, is defined by (6.5.1), where {a,(f)}, {bg)} and {cg)} are in [e,1 — €|, for all
n>114=1,2,...,N and for some e € (0,1). Fori = 1,2,...,N, let S; be as de-
fined in (6.5.1), where ff(in) <oV <1, n>1 wih fi(p) # 0 for each p € NY,F(T;).
Then,

(a) d(p, S;x) < d(p,z) Ve € C, pe "X F(T;), i=1,2,...,N,
(b) ML F(Ti) = N, F(S;) = F(Wa),
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(c) W, is quasinonezpansive.

Proof. (a) Since T; is (f;, g;)-generalized k;-strictly pseudononspreading mapping, then for
each p € N, F(T;) and x € C, we obtain for each i = 1,2,..., N that

which implies
(1= gi(p))d(p, Tix) < fi(p)d*(p, x) + kd*(x, Tyx).
Since fi(p) + ¢i;(p) < 1fori=1,2,..., N, we obtain that

d*(p, Tyw) < d*(p, x) + d*(z, Tyx). (6.5.2)

k;
fi(p)
Thus, by Lemma 2.3.1 (ii), we have for each x € C, p € "N, F(T;) and i = 1,2,..., N
that

d*(p,Siz) = d*(p,6Wxd (1 —0\Tix)
< W (p,x)+ (1—60)d*(p, Tix) — 6“( — 0d?(z, Tyz)
< OV d(p,x) —60) {d ) (, Tx)} — 601 = 6D (x, Ty
k;
= dp,x)+(1—6D) ( sl )dszx
(p.2) 20 (z, Tiz)
< d*(p, ),

which implies that d(p, S;z) < d(p,z) for all z € C, p € N, F(T;) and for each i =
1,2,...,N.

(b) First, we show that NY,F(S;) = N, F(T;). For i = 1, observe that if 5 =0 for

any n > 1, then S; = 7). Hence, F(S;) = F(T}). Now, assume that stV 2 0 for all
n > 1. Then, for each p € F(S;), we have from Lemma 2.3.1 (i) that d(p,Tip) =
d(6p o (1 = ) Tp, Tip) < oM d(p, Tip), which implies that (1 — 57(1))d(p, Tip) < 0.
Since 0 < 1 V¥n > 1, it follows that p € F(Ty). Hence, F(S;) C F(Ty). Thus, by
repeating the same argument for ¢ = 2,3..., N, we can show that F'(S;) C F(T;) for each
i=2,3,...,N.

On the other hand, let p € F(T;), then from Lemma 2.3.1 (i), we have for each i =
1,2,..., N that

d(p, Sip) = d(p, sp @ (1— 5§Li))p) < 0. Hence, p € F(S;). Thus, F(T;) C F(S;) for each
i=1,2,... N.

Therefore, F(S;) = F(T;), i = 1,2,..., N, which implies that NY, F(T;) = N, F(S;).
Next, we show that N\Y, F'(S;) = F(W,). It is obvious that NY, F(S;) € F(W,,). Therefore,
we will only show that F'(W,,) C NX, F(S;).
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Let p € F(W,), then for any z € N, F(T;) = NX,F(S;), we have from (6.5.1), Lemma
6.5.2(a) and Lemma 2.3.3 that

d(z,p)

IA A

IN Il

IA

IA

IN

—~

IN

IN

IN

IN

IN

a™Md(z, S U N=Up) + b Md(z, UNYp) 4+ ¢Md(z, p)
aMd(z,U )—l—b(N)d(z UN"Dp) + Md(z, p)

(1= M) [d( aM ISy UNPp @ bV IUN 2 p @ V)]

+ [ (1-— (N) }

(1 — M) [aﬁlN 1)d(z, SN,lU,(LN_z)p) + oV d(z, UN2p) + N Vd(z, p)]

+[1= (1= "] d(z,p)

(1= e =¥ )d(z, UM p) + [1 = (1 = V) (1 = )] d(2,p)

(1

n

)
CgN))(l — cgN*I)) [CL?(lN*Z)d(z, SN_2U7S - p) + bnN72)d(z, Un *3)]9)

e 2Dd(zp)| + [1 = (1= ™)1 = )] d(z,p)
L= e = )1 = (2, U p)

n n

+1= (=) =) = )] d(z,p)

2 2
[T = d(z. N 2p) + 1= TJ(1 - c;N—%] d(z,p)
=0 1=0

c(

N—(N-2) N—(N-2)
H [1-— cﬁlN—i)} d(z,UNp) 4+ |1 — H (1—cN=0) [ d(z,p)
i=0 i=0
N-3 N-3
[1— M) d(z, UPp) + (1= [ (1= MDY d(z,p)
=0 =0
N-3
[1—cN] [aPd(z, SsUVp) + bPd(2, UVp) + ¢ Pd(z, p)]
=0
N-3
S I l))] d(z,p)
i=0
N-2 N-2
(1= T d(z,UMp) + |1 =[] (1 - cffv—“)] d(z,p) (6.5.3)
=0 =0
N—2
[1 — C;N_Z)} [a(l)d(z, Sip) + bgll)d(z,p) + ¢! )d(z,p)}
=0
N-2
+ (1= 1] =N d(z,p) (6.5.4)
i=0
N-1 N-1
[0 e+ 1 T - e
i=0 i=0
z,p).
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From (6.5.4), we obtain that

N—-2
[T (1= Y97 [aPd(z, Sip) + bV d(z, p) + cVd(z, p)]
1=0

1—Huﬂﬂmh@m

+

which implies that

That is,

d(z,p) = a{)d(z, Sip) + (1 —
Thus, d(z,p) = d(z,S1p). Hence, Sip = p.
Again, from (6.5

al)d(z, p).

.3), we obtain that

N-2 N-2
H [1— M) d(z, UVp)+ (1= [ (1 =Y Z))] d(z,p)
=0 =0
This implies that d(z,p) = d(z, U,(ll)p). Hence,
UWp = p. (6.5.5)
Similarly, we obtain that
N-3
H [1- N [alPd(z, SoUMp) + 6@d(z, UVp) + Cf)d(z,p)]
=0
N-3
+|1- M) ] d(z,p),
z:O

which implies that d(z,p) = a1’ d(z, SyU"p) +b5d(z, Us p) + e d(=
from (6.5.5) that

d(z,p) = aPd(z, Sop) + (
d(z, S2p). Hence,

,p). Thus, we obtain

1-— CLT(?))d(Z,p).
That is, d(z,p) =

Sap = p. (6.5.6)
Continuing in this manner, we can show that S;p = p,
MY, F(S;). Therefore, F(W,,)

1= 3,4,..

., N. Hence, F(W,,) C

(¢) Let p € F(W,) and x € C, then from (6.5.1), Lemma 6.5.2(a),(b) and Lemma 2.3.3
we obtain
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@A
=2

d(p, UN D) Vd(p, Sy UN D) + 6N Dd(p, UN D) + N Dd(p, x)
“Vd(p, UNz) + b Vd(p, UN P x) + N Vd(p, x)

— ) d(p, UNa) + [1 = (1= )] d(p, z)

2

L= [ =) | dip,)

i=1

IAIA A
:@/‘\ﬁ
=

~—~
—_

[1— 9] d(p, UN ) +

IN
et

N-1 N-1
B TP e
i=1 i=1
< d(p,z) (6.5.7)
Also, we obtain from (6.5.1) and (6.5.7) that
d(p,Wnz) = d(p,aM Sy UN b x@b(N)U(N_l)x@cglN)x)
< @ d(p, SyULN V) +4Vd(p, UM Vi) + Vd(p, )
< apVd(p, U<N D) + O, Uz + N d(p, )
< aMd(p,x) + bV d(p, ) + ¢Md(p, 2)
= d(p,z). (6.5.8)
[

Theorem 6.5.3. Let C' be a nonempty closed and convex subset of an Hadamard space
Xand T, : C — C, i = 1,2,...,N be a finite family of (fi, g;)-generalized k;-strictly
pseudononspreading mappings with k; € [0,1), where fi,g; :+ C — [0,7], v < 1 and
0< fi(zx)+gi(x)<1forallxeC,i=12,...,N. Let A;: X - 2%, i=12,...,N
be multivalued monotone mappings that satisfy the range condition and f be a contraction
mapping on X with coefficient T € (0,1). Suppose that T := MY, F(T;)N (MY, A;7(0)) # 0
and W, is as defined in (6.5.1) such that W, is A- demzclosed for each n > 1, where
{a%)}, {bg)} and {cg)} are in [e,1 — €] for some € € (0,1), f( 7 < W < 1 with fi(p) #0
for each p € N, F(T;), i =1,2,...,N and for alln > 1. Let x; € X be arbitrary and
the sequence {x,} be defined by

( )In @ Oénf<l'n),
= (1 = 70)Yn @ W Wa(Po(J{ o JY o0 J o Jiyn)), (6.5.9)
$n+1 - ( - Bn)yn EB 5712717 n Z 17

where A > 0, {a}, {6} and{y.} are sequences in (0,1) such that the following conditions
are satisfied:

Cl: lima, =0 and ) a, = o0,
n—o0 nel

C2: 0<a<fny <b<l.
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Then, {x,} converges strongly to an element of T.

Proof. First, we show that {z,} is bounded.
Let p € T, then from (6.5.9), Lemma 6.5.2 and Lemma 2.3.1 (ii), we obtain
d* (20, p) = (1 = a)yn ® 1 Wa(Pe(J3 0 JY o0 J3 0 Jiyn)). p)
< (1= 7)d*(Yn, p) + md*(Wa(Pe(Jy 0 ™ o0 J3 0 Jyya)), p)
— V(1 = Y)Y Wa(Pe(J3 0 JY H o0 T3 0 Jyyn)))

d (yna ) ’Yn(l - ’Yn)dQ(ym Wn(PC<J>]\V © ‘])]\V_l 00 Jf © JAlyn»)
< (Yo p). (6.5.10)

Also, from (6.5.9) and (2.1.1), we obtain that

d(xn-i-lv yn) = d((l - ﬁn)yn s> 571/277,7 yn)

Again, from (6.5.9), (6.5.10) and (6.5.11), we obtain
& (@n11,) < (1= Ba)d®(Yn, p) + Bud® (20, 0) = Bull = Bu)d® (Yn, 2n)
< d*(Yn, p) — ﬁln(l — Bn)d* (T 41, Yn) (6.5.12)
< d*(yn, ),
which implies from Lemma 2.3.1 (i) that

d($n+17p) S d(yn7p)

< (1= apn)d(@n, p) + and(f(2,),p)

< (1= an(l =7))d(@n, p) + and(f(p),p)
< max{d(z,,p), %p);p)}

< max{d(z,.p), L)y

Therefore, {z,} is bounded. Consequently, {y,}, {z,} and {f(z,)} are all bounded.
From (6.5.12), (6.5.9) and Lemma 2.3.1 (iii), we obtain that

P(2041,0) < (1~ ) (20, p) + 20,(1 — a ><x—n}aﬂ3 )+ a2d2<f< 2):p)
< (1= 02, p) + 2001 = o) (P F0), 7o) + (F ), )
+and*(f(xn), p)
<(1- o )2 d? (2, p) + 20, (1 — ) (TdQ(an,p p, ﬁ ) + o, d2 Tn), D)
< (1= 2a,(1 = 7))d*(z0, p)
2021 = 1) (2,0) + 200 (1 — @) {F @)D, Td) + 2 (f(24),p)
= (1 = 20, (1 = 7))d* (20, p) + 200 (1 — 7) T, (6.5.13)
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(1—an) 777 2 1 2
where T,, = (1_—7)<f(p)p, Tnb) + o (d (20, p) + 2= T>d (f(wn)7p)>(6-5-14)

Also, from (6.5.9), we obtain that
A(Yn, Tn) < and(f(x,),x,) — 0, as n — oo. (6.5.15)

Case 1: Suppose that {d*(z,,p)} is monotone decreasing. Then, lim d*(z,,p) exists.
n—oo

Consequently, we obtain that

lim (d*(zy,p) — d*(®ns1,p)) = 0= lim (d*(@ns1,p) — d*(,, D)) - (6.5.16)

n—oo n—o0

Thus, we obtain from (6.5.12) and (6.5.15) that

1

ﬂ (1 - ﬁn) (xn+17yn> S d2(yn7p) - d2<l’n+1,p)

< AP (Y, n) + 2d(Yn, 20)d(20, p) + d* (20, p) — d* (2041, )
— 0, as n — oo,

which implies from condition C2 of Theorem 6.5.3 that

lim d(x,41,yn) = 0. (6.5.17)

n—o0

Thus, we obtain from (6.5.11) that

lim d(z,, yn) =0. (6.5.18)

n—o0

Also, from (6.5.10) and (6.5.18), we obtain that

V(L = 30) & (Yo, Wa(Pe(JY 0 JY om0 SR 0 Jiya))) < d*(yn, p) — d*(20, 1)
< & (Yn, 20) + 2d(Yn, 20)d(2, )
+d2(znap) - d2(zn7p) — 0.
This, together with condition C2 implies
im d(yp, Wo(Po(Jy o JN o -0 JF 0 Jiy,))) = 0. (6.5.19)

n—oo

Now, let u, = Po(®Yy,), where &Y = JN o J¥ "1 o... 0 J2 0 J} with ® = I. Since, P is
firmly nonexpansive, we obtain from Remark 3.2.5 and (6.5.19) that

&> (p, ©Y ) d*(p, ®Nyn) — d*(p, uy)
d*(p, yn) — d*(p, Wuy)
d?(p, W) + 2d(p, Wy, ) d(Watiy, yn)

+d? (Wt yn) — d*(p, W) — 0 as n — o0, (6.5.20)

IA A IA
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Similarly, since J{¥ is firmly nonexpansive, we obtain that

&*(p, Y yn) — d*(p, 3 yn)

dQ(q)ivym q)iv_lyn) (

&*(p, yn) — d*(p, un)
(
(

IN

p.Yn) — d*(p, Wyuy,)
d*(p, Wouy) + 2d(p, Wyun ) d(Wtn, yn)
+d* (Wottn, yn) — d*(p, Wpu,) — 0 as n — 0o, (6.5.21)

ININCIA
T

Continuing in this manner, we can show that

lim d?(®Y 'y, Y 2yn) = -+ = lim d*(®3yn,yn) = 0. (6.5.22)

n—oo n—oo

Thus,
d(tn, yn) < d(un, ©Vyn) + d(O} Yy, @iv_lyn) + d(@i\[—lym q)iv_Qyn) +o 4 d(D3Yns Yn),
which implies from (6.5.20), (6.5.21) and (6.5.22) that

lim d(un, yn) = lim d(Po(JY o JV " o 03 0 J )Y, Yn) = 0. (6.5.23)

n—oo

Furthermore, from (6.5.19) and (6.5.23), we obtain

lim d(up, Wyu,) = 0. (6.5.24)

n—0o0

Since {z,} is bounded and X is an Hadamard space, then by Lemma 2.3.5, there exists
a subsequence {z,,} of {z,} such that A—klim Zpn, = 2. Thus, we obtain from (6.5.15)
—00
and (6.5.23) that A—klim Yn, = 2 and A—klim un, = z for some subsequences {y,, } and
—00 —00
{tn, } of {y,} and {u,} respectively. Thus, by the demicloseness of W,, (6.5.24) and
Lemma 6.5.2(b), we obtain that z € F(W,) = NN, F(T;). Again, since Po and Ji, i =
1,2,..., N are nonexpansive mappings, and the composition of nonexpansive mappings is

nonexpansive, we obtain from Lemma 2.3.12, Lemma 3.2.6 and (6.5.23) that z € F(Pg o
JYo ¥ o 0J}oJ) = F(Po)NF(JYYNF(JYH)N---nF(J})NF(J}). Hence, z € T.

Next we show that {z,} converges strongly to v € I'. Since {z,, } A—converges to z € T,
it follows from Lemma 2.3.9 that there exists v € I' such that {z,} A-converges to v.
Thus, by Lemma 2.3.10, we obtain that

i sup(F(0)0, 7t < 0.

n—oo

Hence, we obtain from (6.5.14) and condition C1 of Theorem 6.5.3 that limsup 7;, < 0.

n—oo
Also, we obtain from (6.5.13) that
d*(2p11,v) < (1 = 20a,(1 — 7))d* (20, v) + 20, (1 — 7)T,. (6.5.25)

Therefore, by Lemma 2.3.26 and condition C1 of Theorem 6.5.3, we obtain that {z,}
converges strongly to v € .
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Case 2: Suppose that {d*(z,,p)} is not monotone decreasing. Then, there exists a
subsequence {d*(z,,,p)} of {d*(x,,p)} such that d*(z,,,p) < d*(x,,.1,p) for all i € N.
Thus, by Lemma 2.3.29, there exists a nondecreasing sequence {my} C N such that
my — oo and

dZ(xmkap) < dQ(xkarlap) and dz(xlmp) < d2(xmk+17p) Vk e N.

Thus, we have

0 % I e~ )
S hm sup (d Ln+1,P d2('rn’p))
n—oo
< limsup ( (yn,p) — d*( $mp))
n—oo
< limsup (andQ(f(xn),p) + (1 — a)d(wn, p) — d*(2p, p))
n—oo
< limsup a, (dQ(f(@"n),p) - d2(ﬂ?mp)> =0,
n—oo
which implies
k’lirgo (dz(xmk—i-lvp) - dQ(xmk’p)) =0. (6526)

Following the same line of argument as in Case 1, we can verify that

—
klim( (V)0, Ty 0) <0 and  lim T, < 0. (6.5.27)
_>

k—o0

Also from (6.5.25), we have
A (T, 11,0) < (1= 20, (1 = 7))d* (T, v) + 200, (1 — 7) T, . (6.5.28)
Since d*(Zp,,v) < d*(Tpm,11,v), we have
@ (@my,0) < T
which implies from (6.5.27) that

lim d*(x,,,,v) = 0. (6.5.29)

k—o00

Since d?(xy,, 2) < d*(Tm,4+1,v), we obtain from (6.5.29) and (6.5.26) that Jim d?(xp,v) = 0.
—00

Thus, from Case 1 and Case 2, we conclude that {z,} converges to v € T'. O

By letting the mapping W,, defined by (6.5.1), to be generated by a finite family of gen-

eralized nonspreading mappings and k-strictly pseudononspreading mappings, we obtain
the following corollaries.
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Corollary 6.5.4. Let C' be a nonempty closed and convex subset of an Hadamard space X
and T; : C — C, i =1,2,...,N be a finite family of generalized nonspreading mappings.
Let A; : X — 2X7 i =1,2,..., N be multivalued monotone mappings that satisfy the
range condition and f be a contraction mapping on X with coefficient T € (0,1). Suppose
that T := N, F(T;) N (N, A;71(0)) # 0, and for arbitrary 1 € X, let the sequence {x,}
be defined by

)T, B Qi f (),
’7n)yn D 7an(PC(J)]\V o J)]\V_l O-++0 Jg o Jiyn)), (6530)

Tp+1 = (1 - ﬁn)yn S¥ ﬁnzna n 2 17

yn:(]-_
zn = (1—

where A > 0, {a, }, {B,} and {y,} are sequences in (0,1) such that the following conditions
are satisfied:

Cl: lima, =0 and Yy .~ o, = 00,
n—oo
C2: 0<a<fpy <b<l.

Then, {x,} converges strongly to an element of T.

Corollary 6.5.5. Let C' be a nonempty closed and convex subset of an Hadamard space
XandT;: C — C, v =1,2,...,N be a finite family of k;-strictly pseudononspreading
mappings with k; € [0,1). Let A; : X — 2% i = 1,2,..., N be multivalued monotone
mappings that satisfy the range condition and f be a contraction mapping on X with
coefficient T € (0,1). Suppose that T := N F(T;) N (N, A;71(0)) # 0 and W, is defined
by (6.5.1) such that W, is A-demiclosed for each n > 1, where {agf)}, {bg)} and {c,(f)} are
in [e,1 — €] for some e € (0,1), k; < < 1fori=1,2,...,N andn > 1. Let x;1 € X be
arbitrary and the sequence {x,} be defined by

)y @ o f(24),
YV )n B YW (Pe(JN o JY o0 JF o Jiy,)), (6.5.31)

Tpt1 = (]‘ - Bn):yn S BTLZ’VM n Z 17

Yn = (1 -
zn = (1—
where X > 0, {a, }, {Bn} and {v,} are sequences in (0,1) such that the following conditions
are satisfied:
C1: lima, =0 and Y7 a, = 00,

n—o0

C2: 0<a< By, <b<l.
Then, {x,} converges strongly to an element of T.
By letting the mapping W,, defined by (6.5.1), to be generated by a finite family of non-

expansive mappings, and by setting f(x) = wu for arbitrary but fixed u € X and for all
x € X, we obtain the following corollary (whose algorithm is of Halpern-type).
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Corollary 6.5.6. Let C' be a nonempty closed and convez subset of an Hadamard space
Xand T, : C — C, 1 = 1,2,...,N be a finite family of nonexpansive mappings. Let
A X = 2% i =1,2,...,N be multivalued monotone mappings that satisfy the range
condition. Suppose that T := NY, F(T;) N (ﬂﬁilA[l(O)) # 0, and for arbitrary u,z, € X,
let the sequence {x,} be defined by

Yn = (1 - an)xn ® a,u,
Zn = (1= 7)Yn @ 1WWa(Po(JY o N o 0 Ji o Jlyy)), (6.5.32)
= (1= Bn)yn © Brzn, n > 1,

where A > 0, {a}, {Bn} and{y.} are sequences in (0,1) such that the following conditions
are satisfied:

Tny1

Cl: lima, =0 and " o, = 0,
n—oo

C2: 0<a<fpy <b<l.

Then, {x,} converges strongly to an element of T.

6.5.2 Numerical example

Let X = R be endowed with the usual metric and C' = [0, 100]. Then,

0, ifz<0,
Po(z)=qx, ifxel0, 100],
100, if z > 100

is a metric projection onto C'. Let N = 2, then for ¢ = 1, define T} by

. A, i e [1,100]
xr =
' 0, ifzelo1).

Then, 77 is an (f1, g1)-generalized k;-strictly pseudononspreading mapping with k; = 0
and fi, g1 : [0,100] — [0, 5] defined by

, 1 '
filz) = 097 ?fx € [1,100], and () = L @D if 2 € [1, 100],
if x €0,1) 0 e 0.1).

10

Also, for ¢ = 2, we define T, by

T =3z, ifxel0,1],
Tr =
2 1o ifxe (1, 100].

x’

9

Then, Tj is an (fs, g2)-generalized ky-strictly pseudononspreading mapping with ky = 55

and fa, g : [0, 100] — [0, 12] defined by

711

20 ifz e [0,1] L ifx €]0,1]
— 117 » Db d — 11° )
fa(@) {L ifee (1,100 9207 =10 iy e (1,100,

117 117
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1
Clearly, N2_, F(T;) = {0}. Now, observe that -22. = 2 < 2"*2 1 Thyg we can choose

f2(0) 100 — 100n
1 , . , . , .
5 = % and 6% = 0 for all n > 1. Also, let oY) = T b = %, D = % for
all n > 1, ¢ = 1,2. Then, the mapping W,, defined by (6.5.1) becomes:
Uy(lo)ac =z,
Uz = e+ g + g5, (6.5.33)
1 1
We = UPw = g2 | uVa + (1 2 ) ule| + 25000 + 220, n > 1
and the mapping W), of Takahashi and Shimoji [177, Algorithm (1)] becomes:
UV =z
L., _ _n n
Un'x = 3?2J53T1x +(1- ?ﬁw) z, (6.5.34)
2n 2n
W, =Up"x = MTQ n x+(1—6n+3)x, n > 1.

Let A; : R — R be defined by A;(x) = 2iz. Then A; is monotone for each i = 1,2. Now,
recall that [t%} = t(b—a), forallt € Rand a,b € R (see [153]). Thus, Ji(z) = (I+14;) .
Let f : R — R be defined by f(z) = 32. Take a,, = n%l, B = 5311 and v, = 4’:;12 for
all n > 1. Then, {a,}, {8.} and {7, } satisfy conditions C1-C2 in Theorem 6.5.3. Hence,

Algorithm (6.5.9) becomes:

_ _n

3
Yn = 7T+ Tmrny Lo

o = foia¥n + gars Wa(Po( T (T3yn))). (6.5.35)
Tp+1 = g::i]iyn + 52212717 n Z 1
and Algorithm (3.4.1) of Ugwunnadi et. al [182] becomes:
u,r1 € X,
yn = J3 (A (20)), (6.5.36)

Tpp1 = nLHu +(1- %H)Wnyn, n>1,

where W, is defined by (6.5.33).
Case I Take ;1 = 0.5 and A = 0.5.
Case II Take 1 = 0.5 and A = 2.
Case III Take z; = 1 and A = 2

Using Algorithm (6.5.35), we compared the W, mapping defined by (6.5.33) and the
W,, mapping defined by (6.5.34) as shown in Figure 6.2 for Cases 1, 2 and 3. Also, we
compared Algorithm (6.5.35) with Algorithm (6.5.36) using the same W,, mapping (defined
by (6.5.33)) as shown in Figure 6.3 for Cases 1, 2 and 3. The graphs below show that our
algorithm converges faster than that proposed by Ugwunnadi et. al. [182], Takahashi and
Shimoji [177].
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Figure 6.2: Errors vs Iteration number (n): Case I (left); Case 2 (middle); Case 3 (right).
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Figure 6.3: Errors vs Iteration number (n): Case I (left); Case 2 (middle); Case 3 (right).
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Chapter 7

Contributions to Minimization
Problems in p-uniformly Convex
Metric Spaces

7.1 Introduction

In an attempt to generalize the study of optimization and fixed point problems from
linear spaces (mainly Hilbert spaces) to nonlinear spaces, we discussed in the previous
chapters (Chapter 3-6), our contributions to the study of these problems in Hadamard
spaces. In this chapter, we shall further generalize the study of these problems to more
general nonlinear spaces. In particular, we shall study MPs and fixed point problems in
p-uniformly convex metric spaces which are natural generalizations of p-uniformly convex
Banach space. Moreover, as mentioned in Remark 2.2.5 and Section 2.2.4, very few results
on MPs and fixed point problems exists in p-uniformly convex metric spaces. Thus, it is
very necessary to further develop the study of these problems in these spaces.

7.2 Preliminaries

In this section, we introduce and prove some new important results in p-uniformly convex
metric spaces that are useful in establishing our theorems in this chapter. We begin with
the following important definition.

Definition 7.2.1. Let X and Y be two complete p-uniformly convex metric spaces. Then
the Cartesian product X XY is a complete p-uniformly convex metric space endowed with
the metric d: (X xY) x (X xY) — [0,00) defined by

3=

d((x1, 1), (T2, 42)) = [dx (z1, 22)P + dy (y1,92)"]7 , Vr1,20 € X, pr,y2 €Y. (7.2.1)

Lemma 7.2.2. Forl < p < oo, let X be a p-uniformly convex metric space with parameter
c>0and f: X — (—o0,+00] be a proper conver and lower semicontinuous function.
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Then, for all a,b,c,d € X, we have
2

d(a,b)? +d(c,d)? < - (d(a,c)? +d(a,d)? + d(b, c)? + d(b,d)").
c

Proof. From (2.1.10), we obtain that
1 1.1 1\’
< — —-b. — —
0 < d(za@ 2b,2c€B 2d)

1
< 3 [d(a, ) + d(a, d)? + d(b, )P + d(b, d)P — g (d(c, d)? + d(a, b)P)] ,
which implies

d(a,b)? +d(c,d)P < % (d(a,c)? + d(a,d)? + d(b,c)’ 4+ d(b,d)?) .

7.2.1 Unique existence of resolvent of convex functions

Here, we discuss the unique existence of the resolvent of a proper convex and semicontin-
uous function defined in (2.2.8).

Proposition 7.2.3. [177] Let X be a geodesic space and f : X — (—o0,+00] be a
proper uniformly convex and lower semicontinuous function. Then, there exists a unique
minimizer v € X of f (that is © ::argmi)rgf(v)).

ve

Proposition 7.2.4. For 1 < p < oo, let X be a p-uniformly conver metric space with
parameter ¢ > 0 and f : X — (—o00,+00| be a proper convex and lower semicontinuous
function. Then, for any i > 0 and x € X, there exists a unique point, say Jl{(x) € X (see
(2.2.8)) such that

f(Jl{(:v)) + d(Jl{(:v),m)p = inf (f(v) - puil d(v,x)p) ) (7.2.2)

plup*1 veX

Proposition 7.2.4 which is also known as the unique existence of resolvent of a proper
convex and lower semicontinuous function, is proved in [110, Proposition 3.26] under the
following assumption:

Assumption (see [110, Assumption 3.21]): Fix ¢ > 0, then for A € R, ¢ := %, assume
that for any z € X, =,y € D(f), there exists a geodesic 7 : [0,]] — X with v(0) = z and

v(l) = y such that t — f(y(t)) + ——=d(2,7(t)), t € [0,1] is p-uniformly ( s+ /\>—

=T puP
convex for each p € (0, (¢/pA~1)771),

FOO) + e OF £ (1=0760) +H60) + L OF + —Ldea by
1 c »
5 (o +2) 1= 000 20)
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and the geodesic v satisfies d(x,~(t)) < td(x,y) Vt € [0, 1].

Using Proposition 7.2.3, we prove Proposition 7.2.4 without this assumption. Furthermore,
our method of proof is shorter and easier to read.

Proof. Let Gf(v) :== f(v)+ Zﬁd(v, )P, Clearly, G, is a proper and lower semicontinuous
mapping. Also, Gﬁ is uniformly convex. For this, let v = tvy @ (1 — t)vy for all v, v € X
and t € [0,1] (in particular, t = 3), we obtain from the convexity of f and (2.1.10) that

1 1 1 1
Gﬁ(ivl S%) 5?}2) < 5 (f(l)l) -+ ]Fd(vl, q;)p>
1 1 » c »
—I—§ f(vs) + = d(vg, x)P | — 8p,upfld(vl’ vg)
1 c
= §G£<U1) + Gﬁ(”ﬂ - Spp—1 d(vy, va)",

which implies that G;]: is uniformly convex. Hence, by Proposition 7.2.3, we obtain the
desired conclusion. [

7.2.2 Fundamental properties of resolvent of convex functions

We now obtain some basic properties of the resolvent of a proper convex and lower semi-
continuous function.

Lemma 7.2.5 (Firmly nonexpansive-type property). For 1 < p < oo, let X be a
p-uniformly convex metric space with parameter ¢ > 0 and f : X — (—o0, +00] be a proper
convex and lower semicontinuous function. Then, for all x1,x9 € X, we have

1
d(Jlfxl, Jl]:wQ)p < - [d(ngl,xg) +d(J,fx2,x1)p - d(J,fxl,xl)p - d(J,f:xQ,xg)p] :

Proof. From (2.2.8) (or (7.2.2)), we obtain that

d(Jg$,x)p < f(z)+ cd(z,2)P Vz e X,

puP~1 PP

Now, set z = (1 —t)v ® tJl{x, t € [0,1). Then, we obtain from the convexity of f and the
inequality (2.1.10) that

! Lo P _ foy, (=1) v
f(Jx) + e d(Jjz,x)P < (1—t)f(v) +tf(Jir)+ P d(v, x)
—i—pupfld((]ux,a:)p —QPMpfl d(v, J,r)?,

which implies (since ¢ # 1) that
- _ ct
o ) + AT af < () o, 2 — S, oy, (723)
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Ast — 11in (7.2.3), we obtain
_ _ c
o () + A xl < e () + d(w, 2 — Sd(v, Hay. (7:24)
Now, for x1, 2z € X, we obtain from (7.2.4) that

plup_lf(J/fxl) + d(J,fxly )"
C
< p T f () + (s, 30)" = 5d(Tfn, i) (7.2:5)

and

plup_lf(invg) + d(z],{ff% xa)”
C
< pu f (L) + A, el = ST, Tl (7.2.6)

Adding (7.2.5) and (7.2.6), we obtain
1
d(Jlfxl, Jlfo)p < - [d(Ji:xl,xg) +d(JI{x2,x1)p - d(JI{xl,xl)p - d(JfoQ,l‘Q)p] .

O

Remark 7.2.6. (a) Observe that if ¢ > 2 and p = 2 in Lemma 7.2.5, then by the
definition of quasilinearization mapping (see Definition 2.1.1/), one obtains that Jg:
is a firmly nonexpansive mapping in a CAT(0) space. That is,

—_—
d(Jlfxl, J/]:.TQ)Z S <Jl{l'1¢];{.’132,$11’2> vxl,fﬂg € X,

which by Cauchy-Schwartz inequality gives that J,{ is nonexpansive in a CAT(0)
space.

(b) From (7.2.4), we obtain that

d(v, ng)p < 2 [d(v, z)? — d(Jg:L’,x)” — puP! (f(Jf:x) — f(v))], YveX.

Cc

(c¢) If we replace convexity of f with uniform convexity in Lemma 7.2.5, then (b) becomes

d(v, Jiz)" < : [d(v, )P — d(Jfz,2) — pu~" (¥(d(v, J]2)) + f(Jz) = f(v))]

Cc

for allv e X.

Lemma 7.2.7 (Nonexpansive property). For 1 < p < oo, let X be a p-uniformly
conver metric space with parameter ¢ > 2 and f : X — (—o0,400] be a proper convex and
lower semicontinuous function. Then, the resolvent Jlf of f is nonexpansive. That is, for
all z1, 29 € X, we have

d(JlJ;xl, ngg) < d(zq, ).
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Proof. By Lemma 7.2.2 and Lemma 7.2.5 (note that ¢ > 2), we obtain that

1(2
d(J#f‘/I/‘l,Jl{x'Q)p S —|:—(d(Jl{Jfl,JgfL’Q)p—f-d(Jg[Ehl’l)+d(Ji$2,I2)p+d(1}1,I2>p>

c|C
—d((]l{l‘l, ZEl)p — d((]l{l'g, ZEQ)p

1
< 5 A ey, Jlas) + d(wr, @)

which yields the desired conclusion. O]

Lemma 7.2.8 (Monotonicity of resolvent). For1l < p < oo, let X be a p-uniformly convex
metric space with parameter ¢ > 0 and f : X — (—00,400] be a proper conver and lower
semicontinuous function. Then, for 0 < uy < ua, we have

d(Jlflx,x) < d(J/fQ:L',m) Ve e X.

Proof. Let x € X. We obtain from (2.2.8) (or (7.2.2)) that

1
FUL2) + ——d(Jf,z,2)? < f(I] @) + ——d(J] 2, ). (7.2.7)
Y225 yUi5)
Similarly, we obtain
FUIL @)+ ——d(J] 2, 2) < f(Jf,2) + ——d(J],x, ). (7.2.8)

by 2251
Adding (7.2.7) and (7.2.8), we obtain that

,upil ,upfl
(1 — ;_1> d(J] z,x)P < (1 - ;_1) d(J}, @, x)P.
25) o

p—1
Since, 0 < p1 < pg, therefore 1 — (%) > (. Thus, we obtain that

d(Jlflx,x) < d(J[;x,x).
[

Lemma 7.2.9 (Monotonicity of resolvent). For1l < p < oo, let X be a p-uniformly convex
metric space with parameter ¢ > 0 and f: X — (—00,400] be a proper conver and lower
semicontinuous function. Then, for 0 < p; < ps, we have

1

2 PN P

d(J} @, J] ) < {E (1 — Z;l)} d(z, J] ) Yz € X.
2

Proof. From (2.2.8), we obtain that

)
f(J,z) + d(v,z)? Vv e X.

+
PPt PPt



Let v = (1 —t)J 2 & tJ) x, t € [0,1). Then, we obtain from the convexity of f and the
inequality (2.1.10) that

1—1¢
f(J[;x) + p_ld(Jj;x, )l < (1- t)f(Jlflx) + tf(Jl’;x) + —( p_zd(ngx,x)p
P2 P2
t ct(l—t)
+pu2p_1 d(J/.Jl;x’ :L‘)p - 2pﬂ2p_l d(‘]g1$7 Jng-)p,

which implies that

f(Jf;x) + d(Jf;ac,x)p

phaP™!

ct
2ppgP~!

< f(Jlflx) + d(Jlflxw)p - d(J/fla:, Jli;x)p. (7.2.9)

ppaP !
Letting t — 1 in (7.2.9), we obtain that

c
2ppgP!

d(J] @, J] ) < f(J] @) — f(T],2) +

1977 T2

[d(ngw, x)P — d(J/fQ:c, 2)?](7.2.10)

ppP!
Similarly, we obtain that

Cc

» <y

[d(J[;x, x)P — d(Jlflx, z)P](7.2.11)

ppaPt
Adding (7.2.10) and (7.2.11), and noting that p; < us, we obtain that

¢ 1 1 1/ 1 1
! I )P - — f P
2p (ﬂlpl + qupl) d(J;ﬂJT, J,u2$) < D (ugpl ulpl) d(JMZB,JT)

1 1 1
- ( — ) d(Jng,x)p

p \ Pt poP!

1 1 1
T Yaeer
D \ 1P~

froP 1

+

which after further simplification implies that

2 N
d(Jlflx, J[;x) < {E (1 — ,up_1>] d(z, Jlf;x).
2

]

Lemma 7.2.10. For 1 < p < oo, let X be a p-uniformly convexr metric space with pa-
rameter ¢ > 0 and f : X — (—o00,+00| be a proper, conver and lower semicontinuous
function. For py, po > 0 and x1,x9 € X, the following inequality holds:

& _ _ _ _
5 S s AT T+ s (T, a)P T (T, )

< ’uzloild(J/J:lxl’ x2>p + /Lgild(‘]/);x?: xl)p'
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Proof. Put z =z and v = JJ x5 in (7.2.4) to obtain
c
pua?  f (T @) + AT m, )P < pu? T (T ae) 4 d( T @, 3)P — §d(Ju2$27 JIx)P.
That is,
c _
§d(¢];{1$1, Jl{2$2)p + d(J;]:ll‘l, Z’l)p —|—p,u]f ! (f(ngxl) — f(Jl{Q.Q?g)) < d(J}]:QZL‘Q, xl)p,
from which we obtain that

_1]cC _
P ! bd(t];{liﬁ, J,{Qﬂh)p + d(c],{liﬁl, x1)? + ppy ! (f(J,flfﬂl) - f(J,{Q-TCz))}
< pug_ld(Jlf T, x1)P. (7.2.12)

2

Similarly, we obtain

4 [c _
p:u]f ! bd(t],];ifm J,{lxl)p + d(J,{QiUm z9)? +PM§ ! (f(J,le’z) - f(«];{lfﬁl))}
< pullj_ld(leﬂfl,$2)p. (7.2.13)
Adding (7.2.12) and (7.2.13), we obtain the desired conclusion. O

Lemma 7.2.11. For1 < p < oo, let X be a p-uniformly convexr metric space with param-

eter ¢ > 2 and f : X — (—o00,+00] be proper, conver and lower semicontinuous function
such that for >0 F(J/) # 0 (where F(J]) denotes the set of fixed points of J) ). Then,

f _ .
F(J;) = argminf(y).
Proof. Let v € F(J}). Then, by (2.2.8), we obtain that

f(0) < fv) +

= d(v,0)P.

Letv= (1—t)y®tvforally € X and ¢t € [0,1). Then, by the convexity of f and (2.1.10),
we obtain that

(1-¢) _\p t o, a(l—=1)
o d(y, )" + pup_ld(%v) T ot

(1=1)f(0) <A —=1)f(y) + d(y,v)".

Since ¢ > 2, therefore we obtain that

tH1— 1)
pur~t

d(y, v)" < (1 —1)(f(y) — f(v)) +

which implies that
td(y, v)" < pu"~" (f(y) — f(9)) + d(y, D)".
As t — 1, we obtain that
0< fly) - f(v) Yy € X.

Hence, 7 € argmin f(y).
ence, ¥ € argmin f(y)
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Conversely, suppose that v € argmi)r(l f(y). Then, we obtain by (2.2.8) that
ye

1
pur~t

d(J0,0)? < f(v) +

7

f(JIv) + d(v,0)P.

ppr—t

Let v = (1 —t)o @ t.J/v, for t € [0,1). Then, we obtain by the convexity of f and (2.1.10)
that

1

o dUfo P < (L= 0f(0) ~ (1= 0FU]D) + —dl(1 - Do e o)
11—t t P ct(1 —1t) o
< = d(v,0)P + plup_ld(Juv,'u)p ~ S (Jlffu,v)p,

which implies that

ct(1—1) o
(1 +—- t) d(Jv,v)? <0.

Since t # 1, we obtain that v € F(J]). Hence, F(J]) = argmi)rflf(y). O
ye
Lemma 7.2.12. For 1 < p < oo, let X be a p-uniformly convex metric space with param-

eter ¢ > 2 and f : X — (—o0,+00] a proper, convex and lower semicontinuous function.
Then, for u > 0, we have the following:

(i) d(z*, Jjx)? + d(J]x, z)P < d(z*,x)P for allz € X and x* € F(J));

(i) F (HLJ,@) — A, F (Jff)) where [[7, 9 = Tl o Jf2 o0 Jin-t o Jfn,
Proof. (i) Let # € X and 2* € F(J]). Then by setting v = * in (7.2.4), we obtain that

c * — * *
Since 2* € F(J}), therefore by Lemma 7.2.11 we obtain that f(z*) < f(J/z). Hence, we
obtain that
* 7f f *
d(z*, Jyx)? +d(Jyx, 2)” < d(a*, z)P.

(ii) Clearly, N7, F° (J,S”) CF <H;’L:1J,Sj)) . Thus, we only have to show that F' (HTzlJ,(f)) C

N F (J,Sj)). For this, let z € F (HTZlJ,Sj)> and y € N F (Jfbj)), we obtain by Lemma
7.2.7 that

m m p
d(z,y) = d(HJE%c,HJﬁ”y)
j=1 j=1
m D
d(HJpx,y) : (7.2.14)
j=2

IN
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Furthermore, we obtain by (i), Lemma 7.2.7 and (7.2.14) that

m m p m p m
d (HJlgj)x, HJ&”Q:) < d (HJ,Sj)x,y> —d (HJ,Sj)
J=2 J=1 j=2 j=1

which implies

Similarly, we obtain that

m m P m p m
d (HJ/Sj)xv HJISJ'):U> < d (HJ,SJ)% y> —d <HJISJ)
Jj=3 3=2

which implies

From (7.2.17), we have
T = Jlfmx.
From (7.2.17) and (7.2.18), we obtain
T = H Jlgj)x = J/fm‘lJ,fmx = Jlfm‘lx.
j=m—1

198

p
)

(7.2.15)

(7.2.16)

(7.2.17)

(7.2.18)

(7.2.19)



Continuing in this manner, we obtain from (7.2.15)-(7.2.19) that

— Jfm-2, _ — Jfe. — 7f
r=Jr == J2r=Jl. (7.2.20)
That is,
Nl — jf2. — — Jfm-1, — Jfm
Jre=JPr == e =" =1 (7.2.21)
Hence, we obtain the desired conclusion. [

7.3 Mann-type algorithm for minimization and fixed
point problems in p-uniformly convex metric spaces

In this section, we propose a modified Mann-type PPA involving nonexpansive mapping
and prove that the sequence generated by the algorithm A-converges to a common solution
of a finite family of minimization problem which is also a fixed point of a nonexpansive
mapping in the frame work of a complete p-uniformly convex metric space.

7.3.1 Main results

Lemma 7.3.1. Forl < p < oo, let X be a p-uniformly convex metric space with parameter
c>2and fi : X = (—o0,00], i = 1,2,..., N be a finite family of proper conver and
lower semicontinuous functions. Let T : X — X be a nonexpansive mapping and let

I':=F(T)N ﬂi]ilargmi)r(l fi(y)) # 0. For arbitrary x, € X, let the sequence {x,} be
ye
generated by

fro=dip s ol oo 81

Tp41 = Apdy 7] (]- - an)Tyna n 2 ]-)

where {/\,(f)}, 1 = 1,2,...,N is a sequence such that AP s A0 s for each i =
1,2,...,N, n>1 and {a,} is a sequence in |a, b], for some a,b € (0,1).

Then,

(a) Jingodp(xn, z) exists for all z € T

(i+1) () )

(b) Jlrgod(Txn, T,) =0 = Jgrgod(JA(i>w§Li),w£f)), where wy " = J mwn’ and wi =z, for
eachi=1,2,...,N andn > 1.
Proof. Let z € I'. Since

wfj“) = J/\(i)wff), foreachi=1,2,..., N,

where w%l) = x,, for all n > 1. Then,

199



( ) J)‘(l) ($n> wq(lg) - J)\g) © J)H(ll) (l’n), A wT(lN) - J/\%N—l) o J)\glz) o) J)\S) (Z‘n)7 ng‘H) —
Yn-

Thus, we obtain from (2.1.10) and Lemma 7.2.7 and Lemma 7.2.11 that

AP (xps1,2) < apdP(z,, 2

< apdP (g, 2 1 — ap,)dP (w™HD 2) — Eozn(l — ) dP (T, Tyn) (7.3.2)
= a,d’(x,, 2 1 —ay)d? J/\Slmwg ). 2) = (1 — o) dP (2, Ty

IA
S
3
%
8

3
I\

P (2, 2) + (1 — a)dP (WD, z) — gozn(l — a)dP (T, Ty,)  (7.3.3)

< d(xn, 2),

which implies that lim dP(x,, z) exists for all z € T.

n—oo

Thus, {x,} is bounded and hence, {y,} and {T'y, } are also bounded. It then follows from
(7.3.3) that

gan(l — ay)dP(x,, Ty,) — 0, as n — oo.

By the condition on «,,, we obtain that

lim d”(z,, Ty,) = 0. (7.3.4)

n—o0

By Lemma 7.2.12, we obtain for each i = 1,2,..., N that

d(wl 2) < dP(w?, 2) — dP(w®, wli). (7.3.5)

n n

By setting i« = N in (7.3.5), we obtain from (7.3.2) that

P (Tnt1,2) < Qpd® (0, 2) + (1 — o) dP (WY, 2)
< an(a,2) + (1= @)l 2) = (1= )’ (wl®, w"*)
< apdP(z,,2) + (1 —an)dp(w ,2) — (1= ap)dP (w) (N) wleH))
S and (xn,z) (1 — Oén)dp<$ ,Z) (1 — )dp( (N) ’wr(LNJrl))

= @(wn,2) = (1= an)d(w™, wi*Y),
which implies from Lemma 7.3.1 (a) that
(1 — an)d(w™, w™ DYy - 0 as n — oco.
By the condition on «,,, we obtain that
lim @ (w™, w™D) = 0. (7.3.6)

n—o0
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Similarly, we obtain for i = N — 1, (7.3.2) and (7.3.5) that

AP (i1, 2) < pdP(Tn, 2) + (1 — ) dP (W), 2)
< ndP (2, 2) + (1 — o) dP(wVY 2) — (1 = a,)dP (w1 )
< pdP (2, 2) + (1 — o) dP (0D, 2) — (1 = )P (W=D V)

P (2, 2) + (1 — @ )dP (2, 2) — (1 — ai)dP (wM Y, V)

= dp(xm Z) - (1 - an>dp(wnN71)a wT(lN))’

which implies from Lemma 7.3.1 (a) and the condition on «, that

lim d@ (w1, wM) = 0. (7.3.7)

n—oo

Continuing in this manner, we can show that

lim d(w?, w*) =0, i=1,2,...,N —2. (7.3.8)

n
n—oo

This, together with (7.3.6) and (7.3.7), gives

lim d(w®, wi™)=0,i=1,2,...,N. (7.3.9)

n—oo

From (7.3.9), and applying triangle inequality, we obtain for each ¢ = 1,2,..., N +1, that

lim d(z,,w?) = lim d(w®,w?) = 0. (7.3.10)
n— 00 n—o0

Since AY > A® > 0 for all n > 1, we obtain from Lemma 7.2.8 and (7.3.9) that
d (wff), wa@) < d (wff), JA<i)w7(f)> — 0, asn —o00, 1=1,2,...,N. (7.3.11)
Moreover, we obtain from (7.3.4) and (7.3.10) that

d(xy,, Txy,) d(zp, Tyn) + d(Tyn, Txy)

d(Tn, Tyn) + d(Yn, xn) — 0 as n — oo. (7.3.12)

IA A

]

Theorem 7.3.2. For 1 < p < oo, let X be a complete p-uniformly convex metric space
with parameter ¢ > 2 and f; : X — (—o0,00|, i = 1,2,..., N be a finite family of proper
conver and lower semicontinuous functions. Let T : X — X be a nonexpansive mapping

and let T := F(T)N (ﬂf\il argmin fl(y)> # 0. For arbitrary x, € X, let the sequence {x,}
ye

be generated by (7.3.1), where {)\sf)}, 1=1,2,...,N is a sequence such that AP S A0 =0
for each i =1,2,... . N, n > 1 and {a,} is a sequence in [a, b], for some a,b € (0,1).
Then, {x,} A-converges to some x* € T.
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Proof. Since {z,} is bounded and X is a complete p-uniformly convex metric space, then
by Lemma 2.3.24 (i), {z,,} has a unique asymptotic center. That is, A({z,}) = {z*}. Let
{2, } be any subsequence of {z,} such that A({z,, }) = {u}. Then, by (7.3.12), we have
that Ji_)rgod(xnk,Txnk) = 0. Thus, by Lemma 2.3.24 (ii) and Lemma 2.3.25, we obtain that

u € F(T). Since Jyu is nonexpansive for each i = 1,2,... N, it follows from Lemma
2.3.24 (ii), (7.3.10) and (7.3.11) that u € N, F(Jy» ). Hence from Lemma 7.2.11, we have
that v € T

Furthermore, from Lemma 7.3.1 (a), we obtain that lim d(z,,u) exists. Thus, by the
n—oo

uniqueness of asymptotic centers, we have

IA

lim sup d(z, , u) lim sup d(x,,, , ")
k—ro0 k—o0

lim sup d(z,, =)
n—oo

lim sup d(z,, u)
n—oo

lim d(z,,u)

n—oo

lim sup d(x,, , u),
k—o0

1 VA VAN

which implies that z* = u. Therefore, {x,} A-converges to z* € . O

Recall that Hadamard spaces are p-uniformly convex metric spaces with p = 2 and param-
eter ¢ = 2. Also, if p = 2, the p-resolvent reduces to the Moreau-Yosida resolvent mapping
in Hadamard spaces. Therefore, if we let p = 2 and ¢ = 2 in Theorem 7.3.2, we obtain the
following result.

Corollary 7.3.3. Let X be an Hadamard space and f; - X — (—o0, 0], i =1,2,..., N be
a finite family of proper convexr and lower semi continuous functions. Let T : X — X be a

nonexpansive mapping and I' := F(T) N (ﬁf\]l argmi)r(l fz(y)> # (. For arbitrary v, € X,
ye

let the sequence {x,} be generated by (7.3.1), where {AS)}, i=1,2,...,N is a sequence
such that \Y > A\® > 0 for eachi=1,2,....,N, n>1 and {a,} is a sequence in [a, b],
for some a,b € (0,1). Then, {z,} A-converges to some z* € I

Remark 7.3.4. In general, existing results on PPA in Hadamard spaces (that is, the case
where p = ¢ = 2) cannot be simply carried into p-uniformly conver metric spaces due to
the structure of the space. For example, the smoothness constant (parameter) ¢ € (0,00)
s a natural obstacle one has to overcome in order to extend such results to p-uniformly
convexr metric spaces. The results of this section are established under the assumption
that ¢ € [2,00). However, we do not know whether these results still hold if we consider
ce (0,2).
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7.4 Halpern-type algorithm for minimization and fixed
point problems in p-uniformly convex metric spaces

In the previous section, we obtained a A-convergence result using the modified Mann
iteration process. However, in infinite dimensional spaces, it is more desirable to study
strong convergence results. Therefore, it is our interest in this section, to study Halpern-
type algorithms for the purpose of establishing strong convergence results for minimization
and fixed point problems in p-uniformly convex metric spaces. We shall also discuss some
numerical experiments in p-uniformly convex metric spaces to show the applicability of
our results in this space.

7.4.1 Main results

Lemma 7.4.1. For1l < p < oo, let X be a p-uniformly convex metric space with parameter
c>2and S : X — X be a nonexpansive mapping. Let w € X be fixed, then for each
t € (0,1), the mapping f, : X — X defined by

fir =tu® (1 —t)Sz Vre X, (7.4.1)
has a unique fized point v, € X. That is,
ry = froy = tu ® (1 — t)Sx,. (7.4.2)

Proof. From (7.4.1) and (2.1.10), we obtain

A i)’ < (i, u)? + (1= 0d(fi, Syl = (1= d(u, Sy)?
< 2d(u,w)? + (1 — t)d(Sz, u)? — gﬁ(l — O)d(u, Sz)? + (1 — t)d(u, Sy)”
(1 — £)2d(Sz, Sy)” — gm — )2d(u, Sz)? — gt(l — )d(u, Sy)”
< (1 =t)%d(z,y)",

Thus, f; is a contraction with constant (1 — t)%, and by Banach contraction mapping
principle, we obtain the desired conclusion. [

Definition 7.4.2. [161, 169] A continuous linear functional u defined on l, (where ly, is
the Banach space of bounded real sequences) is called a Banach limit, if

HMH = :U’(L 17 . ) =1 and ,un<an) - ,Un(an+1> Va, € l.

Lemma 7.4.3. [101, 169] Let (ay,aq,...) € l be such that u,(a,) < 0 for all Banach
limits p, and limsup(a,+1 — a,) < 0. Then, limsupa,, < 0.
n—oo n—o0

Lemma 7.4.4. For1l < p < oo, let X be a p-uniformly convex metric space with parameter
¢c>2and S : X — X be a nonexpansive mapping. Then F(S) # 0 if and only if {x:}
defined by (7.4.2) is bounded ast — 0. Furthermore, we have the following
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(i) {x¢} converges to v = Pp(syu, where Pps) is the the nearest point map (projection)

of X onto F(S).

(it) d(u,v)P < 2p, (d(u, 2,)P) for all Banach limits p and all bounded sequences {x,}
with {x, — Sx,} converging strongly to 0.

Proof. Let F(S) # 0, then it is easy to show that {z;} is bounded. Now suppose that
{z¢} is bounded, we prove that F(S) # (. Let {t,} be a sequence in (0,1) such that
lim ¢, = 0. Then, {z;,} is bounded. Thus, by Lemma 2.3.24 (i), there exists v € X such

t}Tat A({z,}) = {v}. That is

limsup d(v, z,) = inf limsup d(y, z;,). (7.4.3)

n—o00 yeX noco

Using the nonexpansivity of S and (7.4.2), we obatin

limsup d(xy,, Sv)? < limsup (d(zy,, Sxy,) + d(Swy,, Sv))’
o < li:r?soljp (tnd(u, Szy,)) + d(xy,,v))"
= li:rZsO;p d(zy,,v)P. (7.4.4)
Setting ¢ = £ in (2.1.10), we obtain
d(zy.., %sv o %v)p < %d(xtn, Su)P + %d(xtn, v) = Sd(Sv, )" (7.4.5)

Since A({z,}) = {v}, then by setting y = 1Sv® v in (7.4.3), we obtain from (7.4.5) that

1 1
limsupd(xy,,v)? < limsupd(zy,, ESU @ —v)?

-
n—00 n—00 2

1 1
< 5 limsup d(z,, Sv)? + 5 limsup d(zy,,v) — gd(Sv, V)P,

n—oo n—0o0

which implies from (7.4.4) that

d(Sv,v)? < 2limsupd(zy,, Sv)’ — 2limsup d(xy, , v)?

n—oo n—oo
< 2limsupd(zy,,v)? — 2limsup d(zy,,v)? = 0. (7.4.6)
n—oo n—o0

Hence, v € F(S). Therefore, F(S) # (.
We now give the proofs of (i) and (ii).
(i) Let v = Pp(syu, then {z,} is bounded. Since ¢ > 2, we obtain from (7.4.2) and (2.1.10)
that
dv,z)? = d(v,tu® (1 —t)Sx;)?
td(v, u)? + (1 — t)d(v, Sa,)P — %:(1 — )d(u, Sa)?

AN

< td(v,u)? + (1 — t)d(v, ) — gt(l — t)d(u, Sz,)?,
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which implies that
d(v,z)? < d(v,u)’ + (t — 1)d(u, Sz¢)P. (7.4.7)

Now, let {t,,} be any sequence in (0, 1) such that t,, — 0, as m — oo. Since {z; } is
bounded, it follows from Lemma 2.3.24 (ii) that there exists a subsequence {z;,, } of {z,, }
that A-converges to ¢ € X. Thus, by Lemma 2.3.24 (i), we obtain that A ({z,,}) = {q}.
By the same argument as in (7.4.3)-(7.4.6), we obtain that g € F(S5).
Now, observe that d(zy,,, Sz;,,) — 0, as m — oo. Thus, we may assume that the subse-
quence {Sxy,, } of {Sxz,,} A-converges to ¢ € F/(S) and

lim d(u, Szy,, )’ = lﬁﬁiiif d(u, Szy,,)P. (7.4.8)

k—o0

It then follows from the A-lower semicontinuity of d(u,.)? and (7.4.8) that
d(u,q)” < liminf d(u, Szy,, )P = lim d(u, Szy,, )P = liminf d(u, Sy, )". (7.4.9)
k—o0 k k—o0 k m—00

Since v = Ppsyu and ¢ € F(S), then we have that d(v,u) < d(q,u). Thus, letting
di,, = d(v,u)? + (t,, — 1)d(u, Szy,, )P, we obtain from (7.4.9) that

limsupd,,, = d(v,u)?+ limsup (—d(u,Szy,,)")
m—r0o0 m—r00
< d(q,u)? —liminf d(u, Sz, )P <O0. (7.4.10)
m—0o0

From (7.4.7) and (7.4.10), we obtain that lim supd(v, x;,, )P < 0. Therefore, lim d(v,z;,,) =
m—0o0

m—0o0
0, and this implies that {x;,, } converges strongly to v. Hence, it follows that {x;} converges

strongly to v = Pp(syu.

(i) Let {z;,, } be a sequence defined by (7.4.2), where {¢,,} is as defined in (i). Then by
(i), lim x4, = v, where v = Pp(syu.
m—r0o0

From (7.4.2) and (2.1.10), we obtain that

| o

d(Tp, 21, )P < tpd(zy, w)’ + (1 —t,)d(z,, Sz, )P —
< tpd(xp, )P + (1 —t) [d(z,, Szn) + d
—St(1 = tu)d(u, Sy, )"

tn(1 — t)d(u, Sz, )P
any S:Ctm)]p

—~ DN

< tnd(Xn, w)? 4+ (1 — t) [d(xn, Sn) + d(20, 24,
—%mu—umﬂwS@Q? (7.4.11)

Since p is a Banach limit, then (7.4.11) becomes
i (A, 20,)7) < ot (@0, w)?) + (1= bt (A, 21, )7) = St = t)d(u, S, )
which implies
pin (A, 24,,)7) < p (d(@, w)P)
By letting m — oo in (7.4.11), we obtain
pin (A, 0)") < oo (g, w)?) = Sd(u,v0),

which gives the desired conclusion. [

c

5 (1 —ty,)d(u, Szy,,)P.
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Lemma 7.4.5. For p > 1, let X be a p-uniformly convex metric space with parameter

c>2and S : X — X be a nonexpansive mapping. Let T; - X — X, 1 =1,2,...N be a

finite family of firmly nonexpansive-type mappings such that F(S) N F(Ty) N F(Ty_1) N
~NF(T)NF(Ty) #0. Then

F(SOTNOTN_lo"’OTQOTl):F(S)ﬂF(TN)ﬂF(TN_l)ﬂ"'ﬂF(Tg)ﬂF(Tl).

Proof. The proof follows easily from the proof of Lemma 7.2.12 (ii). O

Theorem 7.4.6. For 1 < p < oo, let X be a complete p-uniformly convex metric space
with parameter ¢ > 2 and f; : X — (—o0,00|, i = 1,2,..., N be a finite family of proper
convex and lower semicontinuous functions. Let T : X — X be a nonexpansive mapping
and I' :== F(T) N (N, argmingex fi(y)) # 0. For arbitrary u,z1 € X, the sequence {,}
be generated by

_ g/N fN-1 . fa f1
Yn = 3w © Sy 0000 Sl 0 i (), (7.4.12)
Tpr1 = @ (1 — )Ty, n>1,
where {a,} is a sequence in (0,1) and {)\,(f)}, i=1,2,...,N is a sequence in (0, 00) with

M) > AO > 0 such that

(i) lima, =0 and > a, = oo,
n—oo

n=1

o0
(11) Y | — anyr] < 00,

n=1

1
(m)Z( %ipll)p<oo,i:1,2,...,]\7.

Then, {z,} converges strongly to v = Pru, where Pr is the nearest point map (projection)
of X ontoT'.

Proof. First, we show that {z,} is bounded.
Set wi Y = Jféi)wf(f), 1=1,2,...,N, where wl) = Iy, for all n > 1. Then,

(2) — szl)(xn) (3) — sz o sz

A2 >\<1>( n)y ey Wnl = J)\%N—l) o J A2 © JAS)(‘W") and
(N+1) _
Wn,

Now, let v € I', then we obtain from (2.1.10), (7.4.12), Lemma 7.2.11 and Lemma 7.2.7
that

d(xpi1,0)P < apd(u,v)P 4+ (1 — ay,)d(Typ, v)P
< apd(u, v)? 4 (1 — ap)d(w™MD v)P (7.4.13)
= apd(u,v)’ + (1 — an)d(Jf(N)w(N) v)P
< apd(u, v)? 4+ (1 — ay)d(xy,, v)P
< max{d(u,v)”, d(zn, v)"},
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which implies by induction that
d(zp,v)? < max{d(u,v)?,d(z1,v)P} Vn > 1. (7.4.14)

Therefore, {z,} is bounded. Consequently, {y,} and {T'y,} are also bounded.

Next, we show that lim d(x,,x,.1) = 0.
n—oo

We may assume without loss of generality that /\Sl1 < )\ﬁf), 1=1,2,...,N, n>1. Thus,
from (7.4.12) and Lemma 7.2.9, we obtain

i i+1 i i i ( i i i i
d (w0, wi™) < d (S, gl el ) +d (Wyl, J;‘(i)lw;n)

i p—1 P
N (i) 2 </\n71> 0 -
ST P o PRV | EPTORUR
c N\~ Ay
()
< d <JI§_11) S‘l), J)]\cgff_ll)wnl__ll)) +d <J£§Z_‘_11)ws_—11)7 J)J\Cz:ll)wg:ll)>

. -1
)
)

o lN

VAN
ISH
/N
S
=
|
=
S
T
AR
=
N———
_l’_
|
ol
N I D S e — |
—_
|
/N
>
=
AR
N——
hi
iR
=
ISH
/N
S
=
|
=
<
>
L
=
S
T
AR
=
N———

ot )
1
N-1 9 </\(Z—f)>p_1 P
Y E 5 d(ngf),JfFﬂws:f)>. (7.4.15)

N1
=0 (Agf_]))p
Since ¢ > 2, we obtain from (7.4.12) and (2.1.10) that

d(xn+1u xn)p
d(au ® (1 — an) Ty, 1w ® (1 — 1) Typ—1)?

ap_1d(a,u @ (1 — ) Tyn, w)? + (1 — 1) d(apu ® (1 — @) TYn, TYp—1)P
1
—5047%1(1 - Oénfl)d(ua Tynfl)p

IN

S an—l(l - an)d(Tyna u)p - gan—lan(l - an)d(u7 Tyn)p + an(l - an—l)d(ua Tyn—l)p
(1= an1)(1 — an)d(Tyn, Tyn_1)? — 5(1 — an1)an(1 — ap)d(u, Ty,)?
c
—§Oén—1(1 - Oén—1)d(U, Tyn—l)p
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Cllp—1

: ) (1— an_l)} d(u, Tyn1)?

gan(l =) (1= )| d(w, Ty,

< (1= )1 = ap)d(w™MD wM D)
+a, — ap1|d(u, Typ-1)? + | — a1 |d(u, Ty,)P. (7.4.16)

For i = N, we obtain from (7.4.15) and (7.4.16) that

< (1= )1 = an)d(yn, yat)” + | (00 -

C
+ [(an—l - §an—1an -

A(Tni1,7,)" < (1= ap1)(1 —an) [d(wg)v wg—)l)
N-L g (Afﬁ;j)y ' ! P
+> = R G d (w1(1N1] Jffgv %wszlj))]
=0 ()\n _]>
+lan — ana| [d(u, Tyn—1)" + d(u, Ty,)"]
(- )1 - a) {dm,mnl)

N\ ] P
NIE (A;—1])> d (w7, g N7 ’
+ - - A\ p—1 (wn 1 J ~j) Wn—1 )
]ZO c ()\nN_])>

+lan — anal [d(u, Typ—1)" + d(u, Tyn)"]
which implies that

d(xn+17$n) S (l_an)d(xnyxn—l)

A N—j) p-1 P
BE - d (w75 )
()\%N_j)>p 1 n—1 AWN=7) Fn—1
+ay, — ap_1| [d(u, Ty,—1) + d(u, Ty,)]
p—1 P
> [, ()
< (I—ap)d(xp, )+ |- |1 - — M
)\(N) P
(N 1) p—1 A\ ]?
2 (M 2 (M)
+ |- p . o1 M+ - p—1 M
c )\(N 1) c <)\£L1)>
o, — 1| (u Tyn 1) +d(u, Ty,)], (7.4.17)
L (N=j) gfn—j (N j
where M := sup Z d( 0 W) Wi ) . Therefore, using conditions (ii), (iii)
’VL>1 ,] =0
of Theorem 7.4.6, and applying Lemma 2.3.26 in (7.4.17), we obtain that
lim d(x,,x,41) = 0. (7.4.18)
n—oo
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We now show that lim d(z,,TJ ()xn) =0,41,2...,N.

n—oo

From Lemma 7.2.12, we obtain for each i = 1,2,..., N that

d(wi ), o) < d(w),v)? — d(w), wiV)P. (7.4.19)

n

By setting i« = N in (7.4.19), we obtain from (7.4.13) that

(
A(Tny1, ) < apd(u,v)’ 4+ (1 — ap)d(w™D )P
< and(u,v)? + (1 — an)d(w™, 0)P — (1 — ap)d(w®™, w?+Dyw
< a0 + (1= )0 — (1= ) W,

which implies that

(1 — ap)d(wd w™N+Dyp apld(u,v)? — d(x,, v)?] + d(xy, v)? — d(zp41,0)?
an|d(u, v)" — d(an, v)"]

+Hd(xp, Tpi1) + d(Tpe1,0)]P — d(xpe,0)P. (7.4.20)

IAINA

Using (7.4.18) and condition (i) of Theorem 7.4.6 in (7.4.20), we obtain

lim d(w?™, w1y = 0. (7.4.21)

n—o0

Also, by setting i = N — 1 in (7.4.19), and following the steps as above, we obtain

lim d(w® Y, w™) =0. (7.4.22)

n
n—o0

Repeating the same process, we can show that

lim d(w®, wi)=0,i=1,2,...,N —2. (7.4.23)

n—oo

This, together with (7.4.21) and (7.4.22), gives

lim d(w®, wi*) =0, i=1,2,...,N. (7.4.24)

n
n—oo

From (7.4.24), and applying triangle inequality, we obtain for each i = 1,2,... . N + 1,
that

lim d(z,, w?) = lim d(w],w?) =0. (7.4.25)

n—oo n—oo

Since 0 < A < )\ff) for all n > 1, we obtain from Lemma 7.2.8 and (7.4.24) that
d( ) JE “) < d (w;;v, Jfg'i)wﬁf)> 50, asn — 00, i =1,2,...,N. (7.4.26)
Furthermore, we obtain from (2.1.1), (7.4.18) and (7.4.25) that

d(xy,, Tx,) d(xn, Tyn) + d(Tyn, Txy)

d('ITH In—l—l) + d(‘rTH-lv Tyn) + d(yTw I‘n)
d(zp, Tni1) + and(u, Tyn) + d(yn, ) — 0, n — oo, (7.4.27)

<
<
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Also, from (7.4.25) and (7.4.27), we obtain that

d(xn, Ty,) < d(xn, Tx,) + d(Tz,, Ty,)
< d(xp, Try) + d(@p, yn) — 0, n — 0. (7.4.28)

Again, we obtain from (7.4.25), (7.4.26) and (7.4.28) that

d(@n, TT)yz) < d(@n, Tyn) + d(Tyn, TJL 20)
< d(wn, Tya) + dw, Tf wid)
< d(wy, Tyn) + A, 0®) + d(w D, w))
+d(wS, 75w + d( I wl Jf;)wﬂ)
<

d(xn,Tyn)er( (N+1) (1))
+2d(wM, w?) + d(w ),szz)w ) =0, n—oco. (7.4.29)

Next, we show that {z,} converges strongly to v = Pru.

Let v = Pi%xt’ where {z;} is as defined in (7.4.2) with S =T o J){é}’\,) o J){f\]]\, ! e J/J\c(ﬂ)

Then, by Lemma 7.4.4, Lemma 7.4.5 and Lemma 7.2.7, we obtain that v = PF(S)u = Pru.
Thus, from (2.1.10), we obtain

A(2ps1, 0 < and(u, 7Y + (1 — ap)d(Tyn, B)° — gan(l — a)d(u, Ty,
< (1= a)d(wn, 7) + an <d(u, )P — 5(1 — ay)d(u, Tyn)p> . (7.4.30)

By Lemma 7.4.4 (i), we obtain that p, (d(u,v)? — 2d(u,z,)’) < 0 for all Banach limits
p. Also, we obtain from (7.4.18) that

2 2
nmwpQﬂwm%~dwwwaﬂ—MWmv——ﬂmam>so
n—00 (& C
Hence, it follows from Lemma 7.4.3 that
. _ 2
lim sup (d(u,’u)p — —d(u, xn)p) <0. (7.4.31)
n—oo C
From (7.4.28) and (7.4.31), we obtain that
: _ 2
lim sup (d(u, )P — =(1 — a,)d(u, Tyn)p) <0. (7.4.32)
n—00 C
Using (7.4.32) and applying Lemma 2.3.26 in (7.4.30), we obtain that {z,} converges
strongly to v = Pru. O]
The following corollary of Theorem 7.4.6 generalizes the results of [174, Theorem 3.1] and

[161, Theorem 2.3] in Hadamard spaces.
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Corollary 7.4.7. Let X be a complete 2-uniformly convexr metric space with parameter
¢ = 2 (in particular, an Hadamard space) and f; : X — (—o0,00], i = 1,2,...,N be a
finite family of proper convex and lower semicontinuous functions. LetT : X — X be a

nonezpansive mapping and I' :== F(T)N (ﬂfvlargmi)r(l fl-(y)> # (). For arbitrary u,z, € X,
yE

the sequence {x,} be generated by

= NOJle o J2 o g (x,

Y AN A © 70 (@), (7.4.33)
Tyl = QU D (1 an)Tyn, n>1,

where {a,, } is a sequence in (0,1) and {)\%)}, i=1,2,...,N is a sequence in (0, 00) with

AD > 0D > 0 such that

(1) lima, =0 and > a, = oo,
n—oo

n=1

o0
(i) > | — apgr| < 00,
n=1

o0 (2)
(iii) S ( 1—%) <o0,i=1,2,...,N.
n=1 n

Then, {x,} converges strongly to v = Pru, where Pr is the nearest point map (projection)
of X onto T'.

By setting 7' = I in Theorem 7.4.6 (where I is the identity mapping on X'), we obtain the
following new result in p-uniformly convex metric space.

Corollary 7.4.8. For p > 1, let X be a complete p-uniformly convex metric space with

parameter ¢ > 2 and f; : X — (—o0,00|, i = 1,2,...,N be a finite family of proper

convex and lower semicontinuous functions. Let T' := NY_ arg Hll)I(l fily) £ 0. For arbitrary
ye

u,x1 € X, the sequence {x,} be generated by

_ JfN o JfN 1 .5 Jf2 o Jfll
(N) (2) ( )( ) (7434)
Tpy1 = QpU D (1 - an)yn7 n Z 17
where {ay,} is a sequence in (0,1) and {Aﬁf)}, i=1,2,...,N is a sequence in (0, 00) with

AS) > A9 > 0 such that

(i) lima, =0 and > a, = oo,
n—o0

n=1
. o0
(11) Y |y — anyr] < 00,
n=1

) )pfl

1
0o (i P
(i) 3 (1—(&#) <o0,i=1,2... N.
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Then, {x,} converges strongly to v = Pru, where Pr is the nearest point map (projection)
of X onto T'.

Remark 7.4.9. Since viscosity-type algorithms have higher rate of convergence than the
Halpern-type, and Halpern-type convergence theorems imply viscosity-type convergence the-
orems. It is natural to ask whether it is possible to replace the Halpern algorithm in Theo-
rem 7.4.6 with a viscosity algorithm and obtain similar result? In other words, is it possible
to study viscosity-type algorithms for minimization and fized point problems in p-uniformly
convex metric spaces?

Asymptotic behavior of Halpern-type algorithm for minimization problems in
p-uniformly convex metric space

We now study the asymptotic behaviour of the sequence {z,} generated by the following
Halpern-type PPA:

X
{“’ e (7.4.35)

Tpr1 = apu @ (1 — an)Jann,

where {a,} and {u,} are sequences in [0,1) and (0,00) respectively, and f : X —
(—o00, +00] is a proper convex and lower semicontious function. We also extend our study
to examine the behaviour of the sequence given by the following Halpern-type PPA involv-
ing finite composition of resolvents of proper convex and lower semicontinuous functions:

;o1 € X,
i — (7.4.36)
Tpt1 = QU D (1 - an) | lj:l J, wTny, N2> 1,

where []72, Jh = JIL o Jl2 oo Jimt o JIm {a,} is a sequence in [0,1) and {y,} is a
sequence in (0, co).
Lemma 7.4.10. For 1 < p < oo, let X be a complete p-uniformly convex metric space

with parameter ¢ > 2 and f : X — (—o0,+00] a proper, convex and lower semicontinuous
function. Let {u,} be a sequence of positive real numbers. Suppose lim p, = oo and
n—oo

A({J] xn}) = {0} for some bounded sequence {x,} of X. Then v is a minimizer of f,
that is, v € argmi)lgf(y).
ye

Proof. By Lemma 7.2.10, we obtain that
c

—1 — —1 R _ —1 _
Q(Mﬁ +1)d(J] 2, JTOVP+d(T] 20, 2P+ (T 0,0)P < d(TT0, 2Pl (T @, D),

which implies

c ~ _ _
§d(‘];{n$n> JIo)P < = d(J70, z,)P + d(Jl{nxn,v)p.

Un
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By lim p,, = 0o and {z,} is bounded, we obtain that
n—oo

%lim sup d(Jgnxn, JIT)P < lim sup d(Jgnxn, v)P.

n—o0 n—oo

Furthermore, since A({J] z,}) = {0} and ¢ > 2, we obtain that

lim sup d(Jgnxn, JI5) < limsup d(Jgnxn,@) = inf limsup d(Jgna:n,y). (7.4.37)

n—00 n—00 yeX poco

By (7.4.37), Lemma 2.3.24 (i) and Lemma 7.2.11, we obtain that v € F(J7) = argmi)r(lf(y).
yE
[l

Theorem 7.4.11. For 1 < p < oo, let X be a complete p-uniformly convex metric space
with parameter ¢ > 2 and f : X — (—o0,+00] a proper, conver and lower semicontinuous
function. Let {x,} be the sequence defined by (7.4.35), where {a,} is a sequence in [0, 1)
and {p,} is a sequence in (0,00) such that JL%un = 00. Then, the following hold:

(i) The sequence {Jinxn} is bounded if and only if argmi)lflf(y) # 0.
ye

(ii) If lima,, =0, >°° @, = 00 and argmi)r(lf(y) # 0, then {x,} and {J] x,} converge
n—oo ye

to an element of argminf(y).
yeX

Proof. (i) Suppose that {Jf x,,} is bounded. Then by Lemma 2.3.24 (i), there exists v € X
such that A({J] x,}) = {0}. Thus, from (7.4.35), we obtain that

d(xpi1,0)? < apd(u,v)? + (1 — an)d(J/{nxn,ﬂ)p,

which implies that {x,} is bounded. Also, since lim p, = oo and A({J] z,}) = {0}, we

n—0o0

obtain by Lemma 7.4.10 that v is a minimizer of f. Hence, argmi)lgf(y) £ .
ye

Conversely, let argmi)? f(y) # (. Then, we may assume that ¥ is a minimizer of f. Thus
ye

by (7.4.35) and Lemma 7.2.7, we obtain that

d(@ni1,0)P < and(u, )’ + (1 — ap)d(J] x,,0)
< apd(u, )" + (1 — a)d(xy, 0)P
< max{d(u,v)?,d(x,,v)"},

which implies by induction that
d(z,,v)’ < max{d(u,v)?, d(z1,0)’} Vn > 1. (7.4.38)

Therefore, {x,,} is bounded. Consequently, {J/ x,} is also bounded.
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(ii) Since argmi)rclf(y) # 0, we obtain from (7.4.38) that {z,} and {J/ x,} are bounded.
ye
Furthermore, we obtain by (2.1.10) and Lemma 7.2.7 that

n 1- n
P (1 an)d(JL, 2, D) — Q(de(u, JE )

< Pt (1 — ap)d(zy,0)P — apn(1l — o )d(u, J/{nxn)p
= (1 —ap)d(x,,0)? + and, Vn > 1, (7.4.39)

AN

=
3
=
&

]

d<xn+1a 17)19

N

o
3
=
S

1]

where §,, = d(u,?)? + (ay, — 1)d(u, Jgnxn)p. Now, set v,, = J,{nxn Vn > 1. Then, by the
boundedness of {J/ x,}, we obtain by Lemma 2.3.24 (i) that there exists a subsequence
{vn, } of {v,} that A-converges to some v € X. Thus, by Lemma 2.3.24 (i), we obtain
that A({v,, }) = {0}. Moreover, kli—{go'unk = oo and {x,, } is bounded. Hence, by Lemma

7.4.10, we obtain that © is a minimizer of f.

Next, we show that {z,} converges to 0. Observe that

d(u,0)? < liminf d(u, v,, )’ = lim d(u,v,, )’ = liminf d(u, v,)?.

k—o0 k—o0 n—00
Thus,
limsup é,, < d(u,v)? — liminf d(u, v,)? < 0.
n—00 n—eo
Now, Lemma 2.3.26 applied to (7.4.39), gives that {z,} converges to . O]

In what follows, we shall apply Theorem 7.4.11 to establish the convergence of Halpern-
type PPA (7.4.36) involving finite composition of resolvents of f.

Theorem 7.4.12. For 1 < p < oo, let X be a complete p-uniformly convex metric space
with parameter ¢ > 2 and f; : X — (—o00, +00| be proper, convexr and lower semicontinuous
functions. Let {x,} be a sequence generated by (7.4.36), where {a,,} is a sequence in [0, 1)

and {p,} is a sequence in (0,00) such that lim p, = oco. If lima,, =0, > a, = oo and
n—oo n—oo n=1

=N, argryréi)lgfj (y) # 0, then the sequence {x,} converges to an element of I'.

Proof. By Theorem 7.4.11 (ii) and Lemma 7.2.11, we obtain that {z,} converges to an
element of F H;n:1 Ji') . Therefore, we conclude by Lemma 5.4.4 (ii) and Lemma 7.2.11

that {x,} converges to an element of T'. O

Corollary 7.4.13. Let X be a complete 2-uniformly convex metric space (in particular,
an Hadamard space) and f; : X — (—o0, +00] be proper, conver and lower semicontinuous
functions. Let {x,} be a sequence generated by (7.4.36), where {a,,} is a sequence in [0, 1)

and {p,} is a sequence in (0,00) such that lim p, = co. If lima,, =0, > a, = oo and
n—00 n—00 nel

.= ﬁ;”zlargryréi)l(lfj (y) # 0, then the sequence {x,} converge to an element of T.

Proof. Take p =2 = ¢ in Theorem 7.4.12. [
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7.4.2 Numerical example

In this subsection, we discuss some numerical experiments of Algorithm (7.4.12) (in com-
parison with the algorithm studied by Okeke and Izuchukwu [137] and Suparatulatorn et
al. [171]) in a p-uniformly convex metric space, to show its applicability and advantage.

Let P(n) be the space of n x n Hermitian positive definite matrices. For 1 < p < oo,

the geodesic distance between A and B in P(n) (also called the p-Schatten distance)

d, : P(n) x P(n) — [0, 00) is defined by (see [01], [135, Chapter 2] and [53, Example 5.2])

dy(A,B) = inf{L(c) | c:[0,1] = P(n) is a smooth curve with ¢(0) = A and ¢(1) = B}
= |[log(4"2BA™]],

= (Z log” Mz‘(A_lB)> ;
=1

where p;(A™'B) are the eigenvalues of A™'B, L(c fo l|c(t He(t)"z||,dt, [|All, =

(tr|A|p)%, tr is the the usual trace functional and |A| = (AHA) (where AH is the conjugate
transpose of A). The pair (P(n),d,) is a p-uniformly convex metric space with geodesic
joining A to B in P(n) given by (see [18, 61, 135])

1 1 1 t 1
(1—t)x @ty = As (ATBA*E) A3, 0<t<1.
Now, define T : P(n) — P(n) by TA = D7 AD, where D € GL(n) (the set of n x n
invertible matrices). Then T is a nonexpansive mapping (see [135, Chapter 2]). Also, define
fi:P(n) = Rby LA = (Z log? ;Li(AleA)) ’ , where p;(A~1e?) are the eigenvalues of
i=1

A~teA. Then f; is convex and lower semicontinuous (see [0]). Again, define fy, f3, fy :
P(n) — R by foA = —logdetA, fsA = tr(A) and f,A = tr(e?) respectively, then f; is

convex and lower semicontiunous for each ¢ = 2, 3,4 (see [0, 172]).
Take o, = m and \) = 7;—;1, i =1,2,3,4, for all n > 1. Hence, Algorithm (7.4.12)
becomes

Zp = argmilyex (fl ( N 1) dX(U7xn>p) )
W, = arg min,ecx <f2 ( ) dx (v, z,)P ),
)

P (7.4.40)

)

§ Un = argmingex ( f3(v) + # dx (v, wy,
Y = argming,ex ( fa(v) + % dX(U,Un)p> )

(Tnt1 = 37 D (3n+1)Tym n=1

the algorithm studied by Okeke and Izuchukwu [137] becomes
wn:argminvex< ( E 1>dX (v, ) p),
Yn = arg min’UGX < < AP—1 dX U » Wn p) ) (7441)

Tnt1 = 37 @ (3n+1)Ty”’ n =1,
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and the algorithm studied by Suparatulatorn et al. [174] becomes

{yn — argminyex (F(v) + () dx(v,2a)?) (7.4.42)

_ 3
Tnt1 = 557 D (547)Tn, 2 1.

We now consider the following 4 cases for our numerical experiments.

CaseI:xlz[Q. Z] andu:{ g 1+Z},

—i 2 1—¢ 4
CaseII:xlzb_QH. 24_2} andu:{lii 111,
CaseIII:x1:[2_2i_Z. 24_Z] andu:Lii 4;_2},
Case IV: z; = [—33+i _34_ Z] and u = B _21

Remark 7.4.14. Using different choices of the initial matrices x1 and u (that is, Case
I-Case IV ), we obtain the numerical results shown in Figure 7.1, Table 1 and Table 2. We
see in the figures that the error values converge to 0, suggesting that by choosing arbitrary
starting vectors, the sequence {x,} converges to the common minimizer of f;, i =1,2,3,4
which is also a fized point of T'. In all our comparisons (see the table and graphs), we see
that our algorithm performs better than the algorithms studied in [137] and [17]].
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1.4 T T T T T T 4.5 T T T T T T

—©— Our Algorithm 4.1 —©— Our Algorithm 4.1
—&— Algorithm 4.2 of Okeke and Izuchukwu 4 —=©&— Algorithm 4.2 of Okeke and Izuchukwu
12+ Algorithm 4.3 of Suparatulatorn et al. . Algorithm 4.3 of Suparatulatorn et al.

35

Errors

1 2 3 4 5 6 7 8 6 7
Iteration number (n) Iteration number (n)
3 T T T T T T T 25 T T T T T T
—©— Our Algorithm 4.1 —©— Our Algorithm 4.1
—=©— Algorithm 4.2 of Okeke and Izuchukwu —=©— Algorithm 4.2 of Okeke and Izuchukwu
i Algorithm 4.3 of Suparatulatorn et al. Algorithm 4.3 of Suparatulatorn et al.
257 i
2 2
S : S
w w
1 2 3 4 5 6 7 8 9 4 5 6 7
Iteration number (n) Iteration number (n)

Figure 7.1: Errors vs Iteration numbers: Case I (top left); Case II (top right); Case III
(bottom left); Case IV (bottom right).
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Table 1. Showing CPU time and iteration number

Initial Vectors Our Algorithm 7.4.35 Algorithm 7.4.36 Algorithm 7.4.37
with Tol=102 | Iter CPU Iter CPU | Iter CPU
Casel 6 1.0670 | 11 1.3310 | 15 1.3910
Case Il 6 1.0530 | 11 1.3010 | 15 1.3820
Case lll 7 1.0650 | 18 1.4310 | 25 1.8230
Case IV 5 1.0260 | 8 1.0910 |11 1.3200
Table 2. Showing CPU time and iteration number
Initial Vectors Our Algorithm 7.4.35 Algorithm 7.4.36 Algorithm 7.4.37
Iter CPU
with Tol=103 | Iter CPU Iter CPU
Case | 7 1.2290 | 10 1.4330 | 11 1.3980
Case Il 7 1.2390 | 10 1.4340 | 11 1.3980
Case lll 7 1.2290 | 11 1.4330 | 21 2.0240
Case IV 6 1.0010 | 8 1.2920 | 9 1.2990

In the tables above, Iter denotes iteration number, CPU denotes the CPU time in seconds
and Tol denotes tolerance (stopping criterion).
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7.5 Proximal-type algorithms for split minimization
problems in p-uniformly convex metric spaces

In this section, we study the strong convergence of some proximal-type algorithms. Recall
that the PPA only converges weakly even in Hilbert spaces, unless additional assump-
tion(s) are imposed on either the convex function or on the underlying space. Since our
interest here is to obtain strong convergence results, we shall assume that the proper lower
semicontinuous function f is uniformly convex. More precisely, we study the strong con-
vergence of the backward-backward algorithm and the alternating proximal algorithm to
a solution of SMPs in complete p-uniformly convex metric spaces.

7.5.1 Backward-backward algorithm

The backward-backward algorithm is defined for an initial point x; € X as:

Y = ST (7.5.1)
Tpy1 = J,{,Lynv n > 17

where {u,, } is a sequence of positive real numbers and f, g : X — (—o00, 0] are two proper,
convex and lower semicontinuous functions (see [22] for a related work in the frame work
of Hadamard spaces). In what follows, we shall study the strong convergence of Algorithm
(7.5.1) to a solution of the following SMP:

min V(z,y) such that (z,y) € X x X, where ¥(z,y) = f(x) + g(y) Yo,y € X.(7.5.2)

We begin with the following lemma.

Lemma 7.5.1. For 1 < p < oo, let X be a p-uniformly conver metric space with param-
eter ¢ > 0 and f,g : X — (—00,400] be two proper, conver and lower semicontinuous
functions. Let {z,} and {y,} be defined by (7.5.1), where {u,} is a sequence of positive
real numbers. Then, for any v = (z,y) € X x X, we have

Z?:_ll d(vv Ui)p B % 2?22 d(v? Ui)p

T(v,) — U(v) < 2o , (7.5.3)
Py !
where v, = (Tn,yn) € X x X.
Proof. By (7.5.1) and (2.2.8), we obtain that
1 p 1 P
9(Wn) + —=3d(Yn, ©)" < g(y) + —5=d(wn, ) (7.5.4)
and
1 p 1 p
f(Tny1) + Td(xwrla Yn)' < f(x) + ?d(yn, ) (7.5.5)
Pln Pln
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Adding (7.5.4) and (7.5.5), we obtain for all z,y € X that

f(xn—‘rl) + g(yn) + p;;_l [d<xn+17 yn)p + d(yn, xn)p]

n

< f<x>+g<y>+]%[d(yn,mud(xn,y)p]. (7.5.6)

n
In particular, for y = y,,, we obtain that

f(xn-&-l) + p 1771 [d($n+1a yn)p + d(ym xN)p]

n

1
pitn

< flz)+

1 [d(ym x)p + d(xna yn)p] . (7.5.7)

Now, by interchanging f and g, and starting the iteration process at y; in (7.5.1), then by
an argument similar to above, we obtain that

9 Ynt1) + f(2n) + » i_1 [d(Yns1, 2n)? + d(2y, yn)”]

n

< o)+ /o) + - L ()P + d(y )] (75.8)

mn
By setting © = x,, in (7.5.8), we obtain

1

g(yn+1) + p—1 [d(ynJrla xn)p + d(xm yn)p]
Plin
1
< gly)+ — [d(x, y)P + d(yn, z,)] . (7.5.9)
Pln
Adding (7.5.7) and (7.5.9), we obtain
1
J(@ns1) + 9(yns1) + o (@1, Yn)" + d(Ynr1, 2)!] < (@) +9(y)
1
+pup,1 [d(zn, y)" + d(yn, )],
which gives by (7.2.1) that
1
U(vnt1) + —7dVns1,0)" < V(v) + — = d(vy, v)". (7.5.10)

Plin blin
Thus, by Remark 7.2.6 (b), (or inequality (7.2.4)), we obtain that

PP (W (vnsr) — () < d(v,v,) — %d(v,vn+1)p. (7.5.11)

By letting v = v,, in (7.5.10), we obtain that

1
U (vnt1) + ] d(Vps1,0n)P < U (vy,),
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which implies that {¥(v,)} is monotone non-increasing. Thus, we obtain from (7.5.11)
that

=3
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which yields the desired conclusion. O]

Theorem 7.5.2. For 1 < p < oo, let X be a complete p-uniformly convex metric space
with parameter ¢ > 0 such that the diameter of X x X is K > 0. Let f,g: X — (—o00, +o0]
be two proper, uniformly conver and lower semicontinuous functions and {x,}, {yn} be
sequences defined by (7.5.1), where {u,} is a sequence of positive real numbers such that
lim ﬁ = 0. Then, {(xn,yn)} converges to a solution of (7.5.2).

n—o0 Zz 1 M5

Proof. Since the diameter of X x X is K > 0, therefore we obtain from (7.5.3) that

o)) — W) < it v~ § 5, (v, v

. (7.5.13)
pZz 11 qup '
_1\KP
< (nn 1)p 7 — 0, as n — oo.
PYicy M
That is, lim ¥(v,) < ¥(v) for all v € X x X, which implies that
n—oo
lim ¥(v,) = inf ¥(v). (7.5.14)

n—00 vE(X XX)

Furthermore, we obtain by Proposition 7.2.3 that, there exists a unique minimizer v €
(X x X) of W. Thus, by (7.5.14), we obtain that

lim ¥(v,) = ¥(0). (7.5.15)

n—oo

Also, using the uniform convexity of W, we obtain that there exists a function ¢ : R, — R
with () = 0 <=t = 0 such that

qf (%vn & %vm) < %(\If(vn) F (o)) — B(d(vn, o), Fnm > 1.

Since Y(t) = 0 <=t = 0, we obtain from (7.5.15) that d(v,,v,) — 0, as n,m — oo.
Thus, {v,} is a Cauchy sequence in X x X. As X is complete, so X x X is also complete.
Thus, {v,} converges to a point say v € X x X. It follows from the lower semicontinuity of
U (since f and g are lower semicontinuous functions) and (7.5.3) that ¥(0) = vei)r{{ X\I/(v).

Therefore, we conclude that {v,} = {(x,,y,)} converges to a solution of (7.5.2). O
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Remark 7.5.3. If X is a complete 2-uniformly convexr metric space in Theorem 7.5.2
with parameter ¢ = 2 for X x X, then (7.5.13) becomes

>icy d(v,0:)* — Z? o d(v,v;)?

U(v,) —U(v) < 222 T

d(v,v1)? Ul)
221 1 Iul
n—1
which implies that lim V(v,) = inf W (v), provided lim ) p; = co. In this case, we
n—00 vE(X X X) n—=00 ;—1

do not need the assumption that X x X has a diameter K > 0. Thus, we obtain the
following result from Theorem 7.5.2.

Corollary 7.5.4. Let X be a complete 2-uniformly convex metric space (in particular, an
Hadamard space) and f,g : X — (—o0,+0o0] be two proper, uniformly convex and lower
semicontinuous functions. Suppose that {x,} and {y,} are sequences defined by (7.5.1),
where {p,} is a sequence of positive real numbers such that . p, = co. Then, {(xn, yn)}

n=1
converges to a solution of (7.5.2).

7.5.2 Alternating proximal algorithm

In problem (7.5.2), the functions f and g are defined on the same space X. In this
subsection, we shall consider the SMP for the case where f and ¢ are defined on two
different p-uniformly convex metric spaces, say X and Y respectively. That is, we consider
the following SMP:

min ¥(z,y) such that (z,y) € X XY, (7.5.16)

where X and Y are two different p-uniformly convex metric spaces and ¥ : X x Y —
(—o0, +00] is a function defined by ¥ (z,y) = f(x) + g(y); f : X — (—o0,+0o0] and
g:Y — (—o0,+00] are two proper convex and lower semicontinuous functions.

To solve problem (7.5.16), we define the following algorithm called the alternating proximal

algorithm: For arbitrary point v; = (x1,y;) in X x Y, the sequence {v,} = {(z,,y,)} in
X x Y is defined as follows:

(wn,yn) — (-Tn+layn) — ($n+1>yn+1)a

B . _1 p
Tnt1 = AIgMIN (W(I’yn) + puﬁ_ld(xn’x) ) et (7.5.17)
Yn+1 = argmin (qj(l'n-i-la y) + 11’71 d(yn7y)p> Y < }/’ " Z 17
yey Pln

where {p,} is a sequence of positive numbers. We remark here that, in each iteration, we
have to solve the following subproblems:

min ¥(z,y,) + ——d*(x,,x), wherez € X (7.5.18)

js
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and
1

p—1
n

min V(x,41,y) + d*(Yn,y), wherey €Y. (7.5.19)

In order to solve the subproblem (7.5.18) or (7.5.19), we employ the following PPA: For
arbitrary z; € X, {z,} is generated by

1
Tpy1 = argmin (f(x) + ——=d(zn, x)p> , n>1, (7.5.20)
zeX pug
where f(z) = U(z,y,). This process has been studied in several settings. For instance,
in Euclidean spaces (see [11, 14]), Hilbert spaces (see [12, 39]), Hadamard manifolds (see
[64]) and Hadamard spaces (see [(3]).

Algorithm (7.5.17) has many applications, for instance, it has applications in decision
science ([11]), game theory ([12, 61]), PDE’s and many other disciplines (see [12, 63]).
Furthermore, unlike Algorithm (7.5.1), Algorithm (7.5.17) allows us to check or monitor
what happens in each space of action after a given iteration (see [03]).

Therefore, it is of practical importance to study problems of the form (7.5.16) using Al-
gorithm (7.5.17). To this end, we present the following convergence result for problem

(7.5.16).

Theorem 7.5.5. For 1 < p < oo, let X and Y be two complete p-uniformly convex
metric spaces with parameter ¢ > 0 and such that the diameter of X xY is K > 0. Let
f:X = (—o00,+00] and g : Y — (—o00,+00] be two proper, uniformly conver and lower
semicontinuous functions and {(x,,y,)} be the sequence defined by (7.5.17), where {p,} is
a sequence of positive real numbers such that im —"5— = 0. Then, {(z,,yn)} converges

n—oo 2ui=1 H;
to a solution of (7.5.16).
Proof. By (7.5.17) (also see (7.5.20)), we obtain that

f(@ni1) + g(yn) + %d(wn, x)P (7.5.21)

1
o1 0@ Tna)” < S (@) + glm) + 2

pHP

and

LAy ) < 9(@) + [ () + —

9(Yns1) + f(@ny1) + d(yn, y)P. (7.5.22)

puP~1 puP~1

Adding above two inequalities, we obtain that

f(@ni1) + 9(Ynt1) + [d(n, Tn1)” + d(Yny Yns1)"]

ppp~!

[d(zn, )" + d(Yn, y)*],

< flx)+aly) + =

which gives by (7.2.1) that

1
\Ij(xn+17 yn+1) + pup_l d<<xn7 yn)a (:UnJrla yn+1))p

mn

n

< U(z,y)+ le((xn, Un), (2, y))P. (7.5.23)
pu
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Set v = (z,y) and v, = (T, yn) in (7.5.23), to get

1 1
\I/(Un+1) + ?d(vn, Un+1)p S Q(U) + ?d(vn, U)p. (7524)
Pltin Pln

As in the proof of (7.5.10) -(7.5.12), we can show that that

Z?:_l d(vv Ui)p -3 ?: d(v? Ui)p
U(v,) — (o) < &= pznfliﬁ—l : |
=1 )

Hence, by a proof similar to that of Theorem 7.5.2, we obtain the desired conclusion. []

(7.5.25)

Corollary 7.5.6. Let X and Y be two complete 2-uniformly convexr metric spaces (in
particular, Hadamard spaces). Let f : X — (—oo,+00] and g : Y — (—00,400] be two
proper, uniformly convex and lower semicontinuous functions. Suppose that {(T,,yn)} is
a sequence defined by (7.5.17), where {u,} is a sequence of positive real numbers such that
Yooy = 00. Then, {(x,,yn)} converges to a solution of (7.5.16).

Proof. Tt follows from Theorem 7.5.5 and Remark 7.5.3. O]
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Chapter 8

Contributions to Fixed Point
Problems in Geodesic Metric Spaces

8.1 Introduction

Besides optimization problems, we also studied fixed point problems for nonlinear map-
pings like nonexpansive (both singlevalued and multivalued), quasinonexpansive, demi-
contractive, demimetric and nonspreading-type mappings in previous chapters. In this
chapter, we shall focus only on fixed point problems for nonlinear mappings more general
than the ones we had previously studied. In particular, we shall introduce and study the
classes of asymptotically demicontractive multivalued mappings in Hadamard spaces, strict
asymptotically psuedocontractive-type mappings in p-uniformly convex metric spaces and
generalized strictly pseduononspreading mappings in p-uniformly convex metric spaces.

8.2 Iterative algorithm for a finite family of asymp-
totically demicontractive multivalued mappings
in Hadamard Spaces

In this section, motivated and inspired by the concept of asymptotically demicontrac-
tive singlevalued mappings introduced in Hadamard spaces by Liu and Change [120] (see
Section 2.2.4), we introduce the following concept of asymptotically demicontractive mul-
tivalued mapping as follows:

Let C' be a nonempty subset of an Hadamard space X. A mapping T : C C X — P(X)
is said to be asymptotically demicontractive multivalued mapping, if there exist a constant
k € [0,1) and a sequence {u,} € [0,00) with nll_{goun = 0 such that for all x € C, p €

F(T), n>1 and w, € T"x, we have
HA(T"z,p) < (14 uy)d*(z,p) + kd*(z,w,), (8.2.1)

where H denotes the Hausdorff metric defined by (2.1.12).
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In what follows, we prove the strong convergence of a modified Mann iteration to a common
fixed point of a finite family of the new class of mappings in the frame work of Hadamard
spaces. Furthermore, we give a numerical example of our iterative method to show its
applicability.

8.2.1 Main results

Lemma 8.2.1. Let C' be a closed and convex subset of a CAT(0) space X and T; :
CCcX — PX),i =12,---,m) be a finite family of uniformly L;-Lipschitzian and
asymptotically demicontractive multivalued mappings such that k; € [0,1) with sequences
{pny} C [0,00) such that (" F(T;) # 0. Let {anu)}i2y be sequences in (0,1) such that
aniy < 1=k, 1 =1,2,...,m, and S, be a mapping generated by T1,T5,Ts, ..., T, and
(1) An(2)s n(3)s -+, An(m) @S follows:

Unyr = (1= an)Un)T © an)Zn),
Un@r = (1= an@)Un))T D an@)2n2),

Un(mfl)x = (1 - an(mfl))Un(mf2)x S An(m—1)~n(m—1),
SpT = Un(m)x = (1 — an(m))Un(m_l)x D An(m)Zn(m); (8.2.2)
where Up) = I and 2,4y € T]'Up—1yx for each i@ = 1,2,---m and x € X. Then, the
following hold:

(i) d(Spx,p) < (14 An)d(x,p) Vp € (V;2) F(Ti), where A, = (1 + max apn@pn@)™ — 1,

1<i<m

(i) d(Spx, Spy) < Ld(z,y), where L :== max L.

1<i<m

Proof. For any p € (-, F(T;),x € C and 2,,;y € T*Upi—1)x for each i = 1,2,--- ,m using
Lemma 2.3.1, we obtain

d2(5n$7p> = d2((1 - an(m))Un(m 1)T D An(m)Zn(m p)

)

< (1 — an(m))dQ(Un(m HT, p) + an(m)dz(zn(m),p)
~n(m) (1 = () )@ (Un(m—1)%5 Znom))

< (1 = an(m)) & (Ungm-1)2, ) + Ay H? (2n(m), D)
~m)(1 = ))& (Unon—1)T, Zn(om))

< (1= ())& (Unm-1), p)

() [(1+ i) (Unim-1)%, P) + k@ (Un(n-1)2; Zn(m) )]
~(m)(1 = @) & (Unom—1)T, Zn(om))

= [1 4 an(m) )| @* (Unm-1)T, p)
— () (1 = @) = ki) (Un(m-1)Z; Zn(m))

= [1 + an(m)pn(m)]{d2((1 - an(m—l))Un(m—2)x S an(m—l)zn(m—l)ap)}
_@n(m)<1 — Gp(m) — km)dQ(Un(mfl)xv zn(m))
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IN

IN

IN

IA

IA

IA

[]- + an(m)pn(m)]{(l - an(m—l))d2(Un(m—2)xap>

+n(m-1)* (Zn(m—1), D) — Anim-1)(1 = @nm-1))d* Unm—-2), Zn(mfl))}
_a'n(m)(1 — Qn(m) — km>d2(Un(m—l)x7 Zn(m))
[1 + an(m)pn(m)]{(l - an(m—l))dQ(Un(m—2)xap)

Fanin-1yH (2nm-1)2) = @nim-1)(1 = @uin—1))@* (U2, 2n<m71>)}
—n(m) (1 — p(m) —-kzn)dQ((InOn,lyr,zHOn))

1+ an(mwn(m)]{(l — tp(m-1))d* (Un(m-2)2, D)

Fann-1)[(1 + pugn—1)) & (Unin-22, p) + km-1d*(Unin-2)2, 2n(m-1))]
~an(n-1)(1 = tnim-1))d* (Un(m-22, Zn<m—1>)}

—n(m)(1 = Qpm) — K )dQ(Un (m=1)T; Zn(m))

1+ angmyprimy)[1 + @nm—1)Paim-1)1d* (Un(m—2)2, p)

—An(m) (1 — Angm—-1) — km—1)[1 + an(m)pn(m)]dQ(Un(m,Q)x, Zn(m—1))
—Qn(m) (1 = apm) — km d? (Un(m-1)2, Zn(m))

[1 4 @) P [1 + @nm—1)Pnim-1)][1 + Gn(m-—2)Pnim-2)d* (Unim-37, p)
—an(m-2)(1 = @ngn-2) = km-2)[1 + @n@m-1)Pn(m-1))

X [1 + an(m)pn(m)]dQ(Un(mfZ)xa Zn(mfl))
_an(m—1)<]— — Op(m—1) — km—l)[]- + an(m)pn(m)]d2(Un(m—2)xa Zn(m—l))
_an(m)<1 — Gp(m) — kde(Un(m—l)xv zn(m))

2

H[l + (i) Pr(i)) A (2, D)

=0
_an(]- — Qp(m) — km)d2(Un(m—l)x7 Zn(m))
2 -1
- Z H an(m—i)<]— — Qp(m—i) — km—z)
j=1 j=0

X [1 + @n(m—j)pn(m—j)]dQ(Un(m—i—l)xy Zn(m—i))

- Z H n(m—i)(1 = Gnm—i) = Fm—i)

X [1 + an(m—j)pn(m—j)]d2(Un(m—i—l)xv Zn(m—i))
) \m j2
(1+ @%ﬁanmpn(z)) d*(z,p)

_an(l — Qp(m) — km)dz(Un(mfl)xa Zn(m))
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where A, := (1 4+ m

m—11i—1

o Z H a"(m—i)(l — Qn(m—i) — k’m—z’)

j=1 j=0

X [1 + an(m—j)pn(m—j)]d2(Un(m—i—l)xa Zn(m—i))
= (L4 X)d(z,p)

_an(l — Qp(m) — km)d2<Un(m—1)xa Zn(m))

m—11:—1

- Z H a'n(m—z)(l — Qp(m—i) — kmfz)

j=1 j=0
X [1 + an(mfj)pn(mfj)]dQ(Un(mfifl)a% Zn(mfz))
< (14 X)d*(z,p)

1<Z%>fnan(i)pn(i)) -1

(i) Let z,y € C, then from (8.2.2), if m = 1 the result follows. Assume m # 1, then for

any i € {1,2,--- ,m}, zn) € T)'Upi—1y® and wyy € T7'Upi—1)y, we obtain from Lemma
2.3.1 that
d(Snw, Sny) < (1 = an@))d(Ungi—1)7, Unii—1)Y) + n(iyd(2n()s Wn(i))
< (1 = @) d(Un(i—1)®, Uni—1)y) + ey H(T] Uniry2, T Un(i—1)Yy)
< (1 = an@))d(Uni—1)%, Uni—1)y) + @) Lid(Up -1y, Uni—1)y)
< 1+ anp(Zi = DI (1 = @n1)d(Un-2y, Uni2py)
Fan(i—1yd(Zn(i-1), wn(i—l))}
< [ an (L — 1)]{(1 = an(i-1))A(Un(i-2)%, Un(i-2)Y)
+an(i—1)H(ﬂnUn(i—1)$a TinUn(i—l)y)}
< 1+ any(Zi = DI (1 = @n1)d(Un-22, Uni2py)
+an(i—1)Li—1d(Up -1y, Un(z’—1)y)}
= [+ an@(Li = DI + ang-1)(Lics = D]d(Unii—2)7, Uni-2)y)
< [+ @y (L — D][1 4 ap—1y(Lizg — 1)) x - -
x[1+ an(g)(Lg — D1+ an(l)(Ll — l)}d(Un(O)l’, Un(o)y)
= I +aue(L; = Dd(z,y)
j=1
< [L+ maxan(L; — D'd(z, y)
< [+ max(L; —1)f'd(z,y)

[max L;]"d(z, y).

1<j<i
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Letting L := [111<1a2<L ], we obtain
<j<i

d(Snx, Spy) < Ld(z,y). (8.2.5)
O]

Theorem 8.2.2. Let C' be a closed and convexr subset of an Hadamard space X and
T,:CC X — P(X),(i=1,2,---,m) be a finite family of uniformly L;-Lipschitzian and
asymptotically demicontractive multivalued mappings and /\-demiclosed such that k; €
[0,1) with sequences {pnu} C [0,00) such that (\“, F(T;) # 0. Let S, be as in Lemma
8.2.1, where ty;y € Tixy with d(Tp, ths)) = d(xy, Tixy,) foralli=1,2,--- m. Let {a, }32,
{Bn}n_l and {an) iz, be sequences in (0,1) satisfying the conditions:

(c1) 7}1_)1[2004” = 0;

(c2) > o, = oo,
n=1

(c3) lim 22 = 0; where lim A, = 0;

n—oo " n—o00
(¢5) 0<a<f,<b<1V¥n>1.

Then, the sequence {x,}5°, defined iteratively for arbitrary x; € C, by

Yn = (1 - an)xny
{ Tni1 = (1= B2)Yn D BuSnn, (8.2.6)

converges strongly to p € (-, F(T;).

Proof. Let 6,, :== (1 4+ BpAn),. Since there exists Ny > 0 such that ’\" < % for all

n > Ny and for some € > 0 satisfying 0 < (1 — €)d,, < 1, then for any p € Nir, F(T;) and
n > Ny, we obtain from Lemma 8.2.1 (i) and (8.2.6) that

d*(yo,p) = d*((1 = an)zn,p)
= d*(a,(0) @ (1 — ay)zs,p)
< 0, d?(0,p) + (1 — ) d* (20, p) — (1 — a)d?(z,,, 0) (8.2.7)

and
& (2p11,0) < (1= B2)(Yns ) + Bud®(Snns 2) — Bu(1 = Bn)d* (Yns Snyn)

< (1= Ba)d(Yns p) + Bull + Aa)d(Yns ) = Bu(1 = Ba)d*(Yns )
= [1= B+ Bu(1+ X (Yn, p) = Bu(1 = Bu)d* (Yn, Snyin) (8.2.8)
< [1+ Budnld®(Yn, p)
< [ Bl (0 (0,p) + (1= a)d(wa,1))
< [1= (1 = €)dn]d*(wn, p) + 6,d°(0, p)
= [1— (1= €)du]d*(wn,p) + (1 = €)dn[(1 — €)]d*(0, p)
< max {d2(xn,p), (1—¢)” 1d2(0,p)}.
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By induction, we have
(. p) < max {d(wn,,p), (1= )20, p) }, n > No.

Thus, {x,}22, is bounded, and hence {y,}>, is bounded. Furthermore from the recursion
formula (8.2.6), we obtain

A(Yn, ) = d(an,(0) @ (1 — ap)xy, x,)
< 0,d(0,x,) + (1 — ay)d(zp, x,) — 0 as n — oo. (8.2.9)

Since {y, }5°, is bounded, then for some D > 0, d(y,,p) < D. From (8.2.8), we obtain

&*(2p1,p) < d*(20,p) + BudnD
—Bn(1 = Bn)d*(Yn, Snijn)- (8.2.10)

Moreover from (8.2.6) and Lemma 2.3.1 (iii), we obtain
(Yo, p) < a2d*(p,0) + (1 = )@ (20, p) + 20(1 — @) (Op, Tap),  (8:2.11)
which implies from (8.2.10) that

AP (2ny1,p) < a2d*(0,p) + (1 — ay,)d* (2, D)
+2a,(1 — an)(@, Zub) + BudnD

—Bn(1 = Bu)d® (Yn, Snyn) (8.2.12)
< (1= ap)d* (@, p) + and®(0,p) + Bu D
120, (1 — ) (0p, T (8.2.13)

Since {z,,}5°, and {y,}>>, are bounded, then there exists D; > 0 such that

and?(0,p) + (1 — a,){0p, Top) < D1 ¥n > 1. (8.2.14)

Then from (8.2.12) and (8.2.14), we obtain

ﬁn(l - 5n)d2<yna Snyn) S d2($n>p) - d2(:cn+1,p)
+an[D1 + BudnD — d*(x,,p)]. (8.2.15)

We consider two cases to complete the proof.
Case 1. Assume that for any ny € N such that {d(z,,p)}5°, is nonincreasing. Since
{z,}5°, is bounded, {d(z,,p)}>2, is convergent. Then from (8.2.15) and condition (c5),
we obtain

Bl = Bo)d* (Y, Snyn) — 0 as n — oo,

which implies that
A(Yn, Snyn) — 0 as n — oo. (8.2.16)
Thus,

A(n, Snyn) < d(Tn, Yn) + d(Yn, Spyn) — 0 (8.2.17)
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as n — o0o. Also from (8.2.6), (8.2.9) and (8.2.17), we obtain

d(zpi1, ) < (1= Bn)d(Yn, Tn) + Bud(Sn¥n, x,) — 0, as n — oo. (8.2.18)
In what follows, we prove that lim d(x,,t,@)) = 0 for each i = 1,2,--- ,m and t,;) € Tixy.
n—oo

But from (ii) of Lemma 8.2.1, we obtain

d(xna Snyn) + d(Snym Snxn)
d(Zn, Spyn) + Ld(Yn, T0).

Then from (8.2.9) and (8.2.17), we obtain
d(xy, Spx,) — 0 as n — 0o, (8.2.19)

Since

it implies that

lim d(z,,p) = lim d(S,2n, p). (8.2.20)

n—oo

From (8.2.3), we obtain

d2(8nxmp) < (1 + )‘ :En?p H An(1 1 — Ap(1) — kl)

x(1+ an(mfj)pn(m*j))d2(Un(0)xn’ Zn(1))
(]_ + /\n)d2($n,p) — an(1)<1 — Qp(1) — kl)d(xna Zn(l))7

IN

which implies that
a1y (1 = nqy — k1)d(@n, 201)) < & (20, p) — A (Sp@p, p) + And? (20, D).

From (8.2.20) and condition (c4), we obtain

lim d(2y,, 2,(1)) = 0. (8.2.21)
n—oo
Thus, from (8.2.2), we obtain
d(Un)®n, Tn) = an)d(Tn, 2n)) = 0 as n — o0, (8.2.22)

Letting wy,(1) € T{'x,, we obtain
d(Wn(1y, 2n1)) < H(TT @0, TV Unyn) < Lid(2p, 2n) — 0 as n — 0,

hence
A(Tn, Wny) < d(y, 2na)) + d(2n); Wnay) — 0 as n — 0.
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Also from (8.2.3), we obtain

P (Spwn,p) < (14 A)d* (20, p) H 2 (1 — a2y — k)
)

<1+anm ) Pn(m—j ( 1)Tns Zn( ))
< (14 MN)d (2, p) — n(2)(1 — an2) — k2)d(Un1)Zn, 2n(2)),

which implies
(2 )(1 — Ap(2 kQ)d(U 1)Tn, Zn(Q)) < d2($nap) - dQ(Snxnap) + AndQ(fnap)'
From (8.2.20), we obtain

lim d(Up1)Zn, Zn(2)) = 0. (8.2.23)

n—o0

From (8.2.2), we obtain
d(Un(Q)xna xn) < (1 - an(2))d(Un(1)xna xn) + an(2)d<zn(1)7 Zn)7
then

lim d(Uy2)%n, ) = 0. (8.2.24)

n—o0

Letting wy,(2) € T3'xy, then
d(2n(2), Wne2)) < H(T3 UpyTn, T3 n) < Lod(Uny@n, x,) — 0 as n — 00,
hence

d(xm wn(2)) S d(mn’ U, n(1) In) + d(U mn’ Zn(2)>
+d(2n(2), Wn(2)) = 0 as n — oo.
Repeating these steps, we obtain
lim d(Up2)%n, Znz) =0 and  lim d(wys), 2(3)) = 0.
n—oo n—oo

Thus

d(Wn(3); Tn) < d(Wne3)s 2ne3)) + d(Zn3), Un@)Tn)
+d(Up2)p, xn) = 0 as n — oo.

By continuing in this way, we can show that

lim d(wp), ©,) =0, 1 =1,2,--- ,m, where wyy) € T'x,. (8.2.25)

n—oo
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Since wyy C Ti'x, for any i = 1,2,--- ,m, it follows that Tyw,; C T, 'z,. Now, let
Unt1(i) € Tiwne), then we have that v, 1) € Tinﬂxn. Then, since T; is uniformly L;
Lipschtzian, for each 1 = 1,2,--- ,m, we obtain

IN

A(Vnt1(i), Wnta(s)) + d(Wni1(i), Tn1)
d(Tpi1, Tp) + d(Tn, W)

/H<Tz’n+1xnv Tz'nJrlanrl) + d(wn—i-l(i)a Tpi1)
d(Ty1, Tn) + d(n, wn(i))

(Li + 1)d(w 41, 70) + d(Wn 1), Tny1)
+d(3§'n, wn(i)).

d(vn+1(i)a wn(i))

IN

IA

From this together with (8.2.18) and (8.2.25), we obtain that

lim d(vn+1(i), wn(i)) = O, 1= 1, 2, e, M. (8.2.26)

n—oo

Letting t,) € Tz, for each ¢ = 1,2,--- ,m, then from (8.2.25) and (8.2.26), we obtain

d(tn(iy, Tn) d(tn(i); Unt1(s)) + A(Uns1(); Wn(i)) + d(Wns), Tn)
H(Tiwn, T wn) + d(Vnga() Wags)) + d(Wag), 20)
Lid(xn, T} ) + d(Vpg1(), Wag)) + AWy, Tn)
Lid(zy, WnyTn) + d(Vng1(i), W) + A(Wag), T0)

= (Li + 1)d(zn, wn(i)xn) + d<vn+1(i)7 wn(i))'

IA A CIA

Then from (8.2.25) and (8.2.26), we obtain

i d(tngy, 20) =0, i =1,2,--- ,m. (8.2.27)

n—o0

Moreover, since {x,} is bounded and X is an Hadamard space, we choose a subsequence
{zn,} of {z,,} such that A — limz,, = p. Then, from (8.2.27) and the demiclosedness of
T; for each ¢ = 1,2,...,m, we obtain that p € ()", F(T;). Also, from Lemma 2.3.10, we

have lim sup(@, m) <0.

n—oo

Thus, from inequality (8.2.13), we get that, for n > Ny

d2<xn+lap> S (]- - Oén)d2(l’n,p> + OéidZ(O,p) + Bn)\nD
+20,,(1 — ) (0p, Znb)

An
= (1 - Oén)dQ(xnap> + O, and2(07p) + a_ﬁnD + 2<1 - O‘n)<@7 m> .

It then follows from Lemma 2.3.26 that d(x,,p) — 0 as n — oco. Consequently, x,, — p.

Case 2. Suppose that for each Ny € N, {d(z,,p)}n>n, is not a decreasing sequence.
Then, there exists a subsequence {n;} of {n} such that

d(xnk ) p) < d<xnk+17 p)
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for all £ € N. Then, by Lemma 2.3.29, there exists an increasing sequence {rs}s>n, such
that ry — oo, d(p,z,,) < d(p,x,,4+1) and d(p, zs) < d(p, z,,+1) for all s > Ny. Then from
(8.2.12) and the fact that a,, — 0, we get

Br, (1 — Brs)dg(yma Srolr,) < dz(:ltrs,p) - dQ(xrs—&-lap)

A
+ay, (ar, d(0.p) + ., 2D = d(a,.p)

Ts

+2&T5 (1 - Oérs)<(?p7 'Z'Ts >

This implies d(y,, Sr,yr,) — 0 as s = co. Thus, as in Case 1, we obtain that d(xz,_, t, @) —

0ass— oo_f)or each i =1,2,--- ;m and also following the same argument in Case 1, we
get lim sup(Op, m> < 0. Then (8.2.12), we obtain,
n—oo

P (2r,41.0) < (1= ap)d(zp,,p) + o d*(0,p) + B Ar, D
20, (1 — v, ) (0p, D). (8.2.28)

Since d*(z,,,p) < d*(x,.11,p), (8.2.28) implies that

aTsd2<sz7p> < d2($rsap) - d2<xrs+17p> + a35d2(07p)
+57’5)\7"5D + QQTS (1 - a'f’s)<0_]>)7 x’/‘s >
< a2d(0,p) + B A, D + 200, (1 — 0,)(0, p, T

In particular, since a,., > 0, we get

Ar,
Ts

%
+2(]‘ - ars)<0p7 :I:Ts >

d*(2m;,p) <, d*(0,p) + B, D

%
Then, since lim sup(0p, xrﬁ) < 0 and ;\ﬁ — 0 as s — oo, we obtain that d(z,,,p) — 0

n—oo

as s — oo. This together with (8.2.28) give d(z,,11,p) — 0 as s — 00. But d(zg,p) <
d(x,,1,p), for all s > Ny, thus we obtain that xs — p. Therefore, from the above two
cases, we can conclude that {z,}>, converges strongly to an element of ()", F'(T;) and
the proof is complete.

]

8.2.2 Numerical example
In this subsection, we give a numerical example to show that our proposed iterative method
can be implemented. Let X = R, endowed with the usual metric. Foreachi =1,2,...,m,

define T; : [0,00) — P(X) by

1
5L —gx], Vz € [0, 00).
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Then, for each i = 1,2,...,m, T} is asymptotically demicontractive multivalued mapping,
with F(T;) = {0}. Indeed for all z € [0,00) and for each i = 1,2,...,m,

1 1
H17,0) = mae{ Iyl [al )
= |i.a:]2 I+ |z — 0" + |z — of". (8.2.29)
an an
Also, for each w) € Tl'z, wi = —a'z, where gz < o™ < 5, we have for each i =
1,2,...,m that
i — 2 = | — a"z — 22 = (1+ ™) |z — 0%, (8.2.30)

From (8.2.29) and (8.2.30), we obtain that
1
H(T)'x,0) < <1+—.) |z —0|" +

< <1+i.) ]w—0|2+%|w;—x‘2

Hence, T; is asymptotically demicontractive multivalued mapping for each i =1,2,...,m

We also check that T; is uniformly L;-Lipschitzian for each ¢ = 1,2,...,m. Indeed, for

each z,y € [0,00) and for each i = 1,2,...,m, we have
1 1 1 1
T, Tiy) = T =y I
H( x y) max{] 3znx + 3zny‘ ‘ 22nw + any‘}
= hle—y
- 2m y
< —lz—uy.
< 5 !x yl
Therefore, T; is uniformly %—Lipschitzian foreachi=1,2,...,m.

For m = 3, let a,) = 7854?72’;5 Vn > 1, i = 1,2,3. Then, (8.2.2) becomes:

_ 55n
Unyz = (1 784n+5) T+ R 784n+5 n(1)
Unt = (1 = mm5a05) Un() + tagsnss 2n(2)s (8.2.31)

_ 16 165n
Sn® = ( - 2352n+5) Un@)Z + mwsanss2n3), V0 21,

#Un(z’—l)%, - #Un(i_1 x} foralln>1, 1=1,2,3.

Now, take a,, = n+r1 and (3, = 5.5 for all n > 1, then all the conditions in Theorem 8.2.2

are satisfied. Thus, (8.2.6) becomes:

where z,;) € [—

Yn = 71T 8.2.32
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We now consider the following cases for our numerical experiments.

Case 1: 21 = —1 and Case 2: z; = 1.

Case 3: r; = —20 and Case 4: z; = 20.
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Figure 8.1: Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case
3 (bottom left); Case 4 (bottom right).
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8.3 Iterative algorithm for finite family of strict asymp-
totically pseudocontractive mappings in p-uniformly
convex metric spaces

Marino and Xu [125] proved that the Mann iterative sequence converges weakly to a fixed
point of a k-strictly pseudocontractive mapping in Hilbert spaces. However, according
to them, it is not known if their result (see [125, Theorem 3.1]) also holds in uniformly
convex Banach spaces with a Fréchet differentiable norm. In other words, they posed the
following question: Can Riech’s theorem involving nonexpansive mapping in uniformly

convex Banach space (see [150, Theorem 2]) be extended to k-strictly pseudocontractive
mapping in the same space?
Hu and Wang [¢1] provided a partial answer to the above question of Marino and Xu

[125], by proving some weak convergence theorems for approximating fixed points of k-
strictly pseudocontractive mapping with respect to p, which they defined as follows in
p-uniformly convex Banach spaces: Let D be a nonempty subset of a real Banach space E
and T': D — D be any nonlinear mapping. Then, the mapping 7" is said to be a k-strictly
pseudocontractive mapping with respect to p, if there exists a constant k € [0, 1) such that

[Tz = Ty[|” < [lz —y[|” + k[|(z = Tx) = (y = Ty)||" Yo,y € D.

Motivated by the results of Hu and Wang [34], we introduce and study a new class of map-
pings more general than that studied by Hu and Wang [31]. Furthermore, we shall study
the demicloseness principle for the newly introduced class of mappings. We shall further
introduce and study a new scheme in p-uniformly convex metric spaces and establish its
A-convergence to a common fixed point of a finite family of these mappings in the frame
work of complete p-uniformly convex metric spaces.

8.3.1 Main results

Definition 8.3.1. Let D be a nonempty subset of a p-uniformly convexr metric space X.

A mapping T : D — D 1is said to be k-strict asymptotically pseudocontractive with respect

to p, if there exist a constant k € [0,1) and a sequence {u,}>>; C [1,00) with lim u, =1
n—oo

such that

d(T"z, T"y)P < upd(z,y)’ + k (d(x, T"x) + d(y, T"y))" Vz,y € D, n > 1.

Lemma 8.3.2. (Demicloseness Principle) Let D be a nonempty closed and convex subset
of a complete p-uniformly convex metric space X with p > 1 and parameter ¢ > 0. Let
T :D — D be a uniformly L-Lipschitzian and k-strict asymptotically pseudocontractive
mapping with respect to p with k < min{1, ¢} and sequence {u,};>, C [1,00). Suppose
{z,} is a bounded sequence in D such that A-lim z,, = z and lim d(z,,Tx,) = 0. Then

n—oo n—o0
z€ F(T).
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Proof. Since T is uniformly L-Lipschitzian and lim d(z,,Tz,) = 0, we obtain for any
n—oo
fixed integer r > 1 that

d(x,, T xy,) d(xy, Txy) + d(Txy, szn) 4+ d(T’"’lxn, T"x,)

<
< rLd(z,,Tx,) — 0, as n — oo.

Also, since {z,} is a bounded sequence in X, we have from Lemma 2.3.24 (i) that {z,}
has a unique asymptotic center in X. Thus, using the hypothesis that A-lim z, = z,

n—oo
it follows that A({z,}) = {z}. Let ¥(z) := limsupd(z,, z). Since lim d(z,,T"z,) = 0,
n—00 n—o0
for each r > 1, we obtain that ¥(z) = limsupd(T"z,, z). Hence, we get that U(7T"z) =
n—oo

lim supd(x,,, T"z) = limsupd(T"z,,, T"z). Thus, we obtain from Definition 8.3.1 that

n—s00 n—o0
Ad(T"xn, T"2)P < upd(zy, 2)P + k (d(z,, T"x) + d(2,T72))".
Taking lim sup on both sides, we obtain that
U(T"2)P < U (z)P + kd(z,T"2)P. (8.3.1)
By letting ¢ = 1 in (2.1.10), we have that

z®T"z
2

1 1
d(z, P < G, 2 + Sd(w, T2 - gd(z, T2 ).

Taking lim sup on both sides of the above inequality and noting that A({z,}) = {2}, we
obtain that

1 c
il Py TP _ T \D
5 2\11(7;) + 2\IJ(T z) 8d(Z,T 2)P,

T p
\I/(z)pS\I/(Z@TZ> < 1

which implies
cd(z, T z)P < AU(T"z)P — 4V (2)P. (8.3.2)

From (8.3.1) and (8.3.2), we obtain that
(¢ —4k)d(z,T"z)? < 0. From the condition on k, we obtain that d(z,77z) = 0 for each
r > 1. Hence, we obtain that

d(z,Tz) d(z,T"2) +d(T"z,Tz)

d(z,T"2) + Ld(T" 'z, 2) = 0,
thus we obtain that z € F(T). O

Lemma 8.3.3. Let D be a nonempty closed and convex subset of a p-uniformly convex
metric space X with p > 1 and parameter ¢ > 0. For each i =1,2,...,1, letT;: D — D
be uniformly L;-Lipschitzian and k;-strict asymptotically pseudocontractive mapping with
respect to p, with k € [0,1), k = max{k;, i =1,2,...,1}, k; €[0,1), i =1,2,...,1 and
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sequence {u;, }52, C [1,00). Suppose that T := Nl_,F(T;) # 0 and for arbitrary x, € D,
the sequence {x,} is generated by

('Tn—i-l = (1 - aln)y(l—l)n s> O‘lnirlny(l—l)na

Ya—1n = (1 = ag—nn)ya—2yn ® aa—1n T 1Y1—-2)n,

g (8.3.3)
Yon = (]- - a2n)y1n S7) 052nT2ny1n7

LY1n = (1 — a1n)Yon ® a1, 17 Yon,

where Yo, = T, Yn > 1, and the following conditions are satisfied:

O0<a<a;<1-—2%k, > {r<1a<xlum—1> < oo and L = max{L;, i =1,2,...,1}.
n=1 1S

Then, (a)lim d(z,, z)? ezists for all z € T and (b)lim d(z,, Tix,) =0, i =1,2,...,1.
n—o00 n—0o0

Proof. (a) Let z € I, then we obtain from (2.1.10) and Definition 8.3.1 that

d(Ya-1yn, 2)°
< (1= ag-yn)d(ya-2)n: 2)” + aa-1ad(T71Ya-2)n, 2)"
—Ca(l_l)n<12_ Oé(l_l)n)d(y(zfz)n, T Ya—2yn)”
(1 = o1y dWt—2yms 2)P + O—1m [u(l_l)nd(y(l_g)m 2P + ka1 d(T 1Y a—2yn y(l—2)n)p]
_ca(z—l)n(lz_ Oé(l_l)n)d(y(zfz)n, T Ya—2yn)”
(-1 (1 = @-1yn) + Ua-1)n0-1)n] AY-2)n, 2)"

c(l — aq_1n .
% - k(ll)‘| d(y(172)na Tl_ly(lﬂ)n)p

IN

IA

—Q(-1)n

c(1 = ag-1))

5 — /f(z1)} d(Ya—2yn, T ya—2pm)*.  (8.3.4)

= Ug—1)nd(Ya—2yn, 2)" — a-1)n {
Similarly, we obtain
d(Ya-2n,2)" < ug-2)nd(Ya-syn, 2)"
— Q-2 [W - k(z—z)} d(Ya-sn, T 2ya-3)n)"- (8.3.5)
From (8.3.4) and (8.3.5), we obtain
d(y(l—l)m z)P

< Uy U—2)nd(Y—3yn: 2)P — Ua—1)n -2y {w - k(l—z)} A(Y(-3yn, 11 2Y-3)n)"
—Q(-1)n {w - k‘(z1)} d(Ya-2)n T 1Ya—2)n)"

= ﬁ Ua-iynd(Ya-3yns 2)” — U-1)n-2)n lw - k?(l—2)] A(Ya-3yn, 11" 2Ya-3)n)"
i=1
—Q(~1)n {w - k(l—l)} d(Ya—2yn, T 1Ya-2)n)"
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3 2
c(1 — ag-_smn)
< Hu(l—i)nd(y(l—4)nu 2P — Hu(l—i)na(l—S)n {(#
=1

— ka—sy | Y-y, T2 3ya—ayn)”

, 2
=1
1—a l n
—U(—1)nQ(1-2)n {% — ka2 } d(Ya-sym, T 2Ya-3yn)"
(1 —aqg_1yn) .
—Q(1~1)n {% — ka-1y | dWa—2yn, T1"1ya—2yn)”
(1 — oy "
S Hu(l z)n y0n7 Hu(l —1) naln [Tl) - k1:| d<y0n>T1 yOn)p
2
(1 — ag_3)m) .
— = Hu(lfi)na(lf?))n {+ — ka—3)| d(Ya—aym, I}  sya—ay)”
=1
(]' — Q(-2) ) n
—U(—1)nQ(1-2)n {+ — ka—2y | d(Wu-3ym> 17" 2Ya—3ym)"
(1 —ag_1yn) .
—Q(1—-1)n |:+ - k(ll):| d(y(lfQ)m T'l—ly(lfQ)n)p (836)

Again, we obtain from (8.3.3), (8.3.6), (2.1.10) and Definition 8.3.1 that

d(ns1,2)" < (1 = ) d(Wa—1yns 2)° + 0@nd(T72 1 Ya-1)n, 2)°
_caln(l — app)

5 A(Ya—1yn, T]"Ya-1yn)”

< (1= am)dY-1yn, 2)" + i [nd(Ya-1yn, 2)” + kid(T Y1y, Y-1)n)")
—Md(y(z—nm T"Y-1yn)”

< U d(Ya-1yn, 2)P — iy [w - k?z} d(Ya-1yn T Ya-1yn)*

< -1 ] ) -2 (1= o) o

> Eu(l—i)nuln (yom Z) - Eu(l—i)nulnaln [T - ]ﬁ] d(yon, T yon)

2

I — a3

— = Hu(l—i)nulna(l—S)n {—( 2( ) _ ka3 } d(Ya—aym, T 3Ya—aym)”
i—1

c(1 —ag_2)n)
2

C(l — a(lfl)n)
2

- kl} d(Ya-1yn T Ya-1yn)°

—U(—1)n U (1—2)n [ - k(z-z)} d(Ya-3m, T 2Ya-3m)"

— U (1 1)n l — k(z-1)} d(Ya—2yn: T)" 1Ya-2)n)"

c(l — o,
—azn{( . In)
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l

-1
c(l —aqp o
= Hu(l—iﬂ)nd(%a Z)p - Hu(l—i+1)na1n [% - k1:| d(?/0m T yon)p
i=1 i=1

c(l — aq_1yn "
— = U Q1) {% — k(l—l)} d(Ya—2ym, T 1Ya—2)n)”
c(l —ay, n
—oy, [% - kl} d(WYa—1yn, T]"Ya-1)m)" (8.3.7)
!

< H U(l7i+1)nd<xna Z)p

=1
<

1<i<l

1+ (max{um}>l - 1] d(z,, 2)P.

Since > 7, (maxum — 1) < o0, it follows that lim d(z,,2)P exists. Hence {z,} is

1<i<l n—00
bounded.

(b) Since lim u;, =1, i =1,2,...,1, we obtain from (8.3.7) and the condition on «;, that
n—oo
lim d(y(i—l)'rw ﬂny(i—l)n)p = 0, 1= 17 2, e l. (838)
n—oo

From (8.3.3), (2.1.10) and (8.3.8), and noting that yy,, = x,, we obtain
A(Y1n, Tn)? < a1, d(TV Ty, v,)P — 0, as n — oo. (8.3.9)
Now, observe that from Definition 8.3.1, we obtain that
AT, Ty < [(un)rd(z,y) + k (A, T ) + d(y, T"y))| .
for each x,y € D. That is,
ATz, T"y) < (up)rd(z,y) + k> (d(z, T"x) + d(y, T"y)) . (8.3.10)
Thus,

d(Tgna:na wn) S d<T2nxn> Tznyln) + d<T2ny1n) yln) =+ d(yln) :Cn)
|1+ (20)7 | d(a, y10) + (ko) (@, Ta) + |1+ (k)

=

IN

] d(Tznylm yln)-

Since 1 — (/{;2)% > 0, we obtain from (8.3.8) and (8.3.9) that

lim d(T3'xy, z,) = 0. (8.3.11)

n—oo
Again, from (8.3.8) and (8.3.9), we obtain
d(T5 Y1, 2n) < (20, y10) + d(Y1n, T5'Y1n) — 0, as n — oo. (8.3.12)
Thus, we obtain from (8.3.3) and (8.3.9) that

d(Yon, Tn)? < (1 — agn)d(Yin, ©n)? + a2nd(T5 Y10, )P — 0, as n — 0. (8.3.13)
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From (8.3.10), we obtain
d(T;[En, xn) S d<T§Lxm T;y2n> + d<T§Ly2m an) + d(y2n7 xn)
< 1 () | s yon) + (k)P d(n, Tywa) + 1+ (k) | AT, yon).
Since 1 — (k3)7 > 0, we obtain from (8.3.8) and (8.3.13) that

lim d(13'z,, z,) = 0. (8.3.14)

n—oo

Continuing in this manner, we can show that

lim d(x,,T'z,) =0, i =4,5,...,1L (8.3.15)
n—oo

Hence, we have that
lim d(z,,T'z,) =0, i=1,2,...,1L (8.3.16)
n—oo

Also, using similar argument as the one used in obtaining (8.3.9) and (8.3.13), we can
show that

lim d(zp41,2,) = 0. (8.3.17)

n—o0

Since 7" is uniformly L-Lipschitzian, we obtain

d(xp, Tixy) < d(zn,T'x,) + d(T] x,, Tix,)
< d(zn, T'wn) + Lid(T '@y, )
< d(zn, T'wn) + LA(T 2, T 1) + LA(T 21, 1) + Ld(2,1, 7,)
< d(zn, T ) + (L* + L)d(Tpn, Tp1) + LA(T 201, 70 1).

It follows from (8.3.16) and (8.3.17) that

lim d(2,, Tywn) =0, i =1,2,...,1. (8.3.18)

n—oo

]

Theorem 8.3.4. Let D be a nonempty closed and convex subset of a complete p-uniformly
convex metric space X with p > 1 and parameter ¢ > 0. For each i = 1,2,...,1, let
T; : D — D be uniformly L;-Lipschitzian and k;-strict asymptotically pseudocontractive
mapping with respect to p, with k < min{1l, $}, k = max{k;, i =1,2,...,1} and sequence
{uin}o2, C [1,00). Suppose that T' := NI_F(T;) # O and for arbitrary x, € D, the
sequence {x,} is generated by Algorithm (8.3.3), where yo,, = x, Yn > 1, and the following
conditions are satisfied:

0<a<a,<1—2k,> <{1<1?§<lum — 1) <ooand L =max{L;, i=1,2,...,1}.

Then {x,} A-converges tov € I,
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Proof. Since {z,} is bounded, then by Lemma 2.3.24 (i), {z,} has a unique asymp-

totic center. That is, A({z,}) = {v}. Let {x,,} be any subsequence of {z,} such that

A({zn,}) = {u}. Then, by (8.3.18), we have that klim d(zp,, Tixn,) = 0,1 = 1,2,...,L
— 00

Thus, by Lemma 2.3.24 (ii) and Lemma 8.3.2, we obtain that u € I.

Moreover, from Lemma 8.3.3 (a), we obtain that lim d(x,,u) exists. Thus, by the unique-
n—o0

ness of asymptotic centers, we have

IN

lim sup d(z, , u) lim sup d(z, , v)
k—o0 k—o0

lim sup d(z,, v)
n—oo

IN

IA

lim sup d(z,, u)
n—oo

55, Al )

lim sup d(x,, , u),
k—o00

which implies that v = u. Therefore, {z,,} A-converges to v € I'. O

By setting p = 2 and ¢ = 2 in Theorem 8.3.4, we obtain the following result.

Corollary 8.3.5. Let X be an Hadamard space and D be a nonempty closed and convex
subset of X. For each i = 1,2,...,1, let T; : D — D be uniformly L;-Lipschitzian and
k;-strict asymptotically pseudocontractive mapping, with k <€ [0, %), k = max{k;, i =
1,2,...,1} and sequence {u;,}°°, C [1,00). Suppose that T := N._ F(T;) # 0 and for
arbitrary xy € D, the sequence {x,} is generated by Algorithm (8.3.3), where yo, =
Tn Yn > 1, and the following conditions are satisfied:

O<a<ay,<l—k,> ~, Maxi, — 1) < oo and L = max{L;, i=1,2,...,1}.

Then {x,} A-converges to v eT.

8.4 Iterative algorithm for finite family of general-
ized k-strictly pseudononspreading mappings in
p-uniformly convex metric spaces

In this section, motivated by the study of the class of generalized strictly pseudononspread-
ing mappings in Hadamard spaces, discussed in Chapter 6 of this thesis, we introduce and
study this class of mappings in p-uniformly convex metric spaces. Furthermore, using
Algorithm (8.3.3), we establish a A-convergence result for approximating a common fixed
point of a finite family of this class of mappings in p-uniformly convex metric spaces.

8.4.1 Main results

Definition 8.4.1. Let X be a p-uniformly convexr metric space with p > 1. A mapping
T :D(T) C X — X is said to be (f,g)-generalized (or simply generalized) k-strictly
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pseudononspreading with respect to p, if there exist two functions f,g : D(T) C X —
0,7], v <1 and k € [0,1) such that

(1 —k)d(Tz, Ty)?
< kd(z,y)? + [f(x) — k] d(Tx,y)? + [g(x) — k] d(z, Ty)? + kd(xz, Tx)? + kd(y, Ty)",

Ve, y € D(T) and
0< f(z)+g(z) <1Vxe D).

We next study the demicloseness principle for generalized k-strictly pseudononspreading
mappings with respect to p.

Lemma 8.4.2. (Demicloseness Principle) Let D be a nonempty closed and convex subset
of a complete p-uniformly convexr metric space X with p > 1 and parameter ¢ > 0. Let
T :D — D be (f,qg)-generalized k-strictly pseudononspreading mapping with respect to p,
where k € [0,1), f,g: D —1[0,7], v<1and 0 < f(z) 4+ g(x) <1 for all x € D. Suppose
k< C(I_T(m)) for all x € D, and {z,} is a bounded sequence in D such that A-lim x,, = v

n—o0
and lim d(x,, Tx,) = 0. Then v € F(T).
n—oo

Proof. Since {z,} is a bounded sequence in X, we have from Lemma 2.3.24 (i) that {z,}
has a unique asymptotic center in X. Thus, by the hypothesis that A-lim z, = v, it

n—o0

follows that A({z,}) = {v}. Let ¥(v) := limsupd(v,z,). Since lim d(z,,Tz,) = 0, we
n—»00 n—00
obtain that ¥(v) = limsupd(v,Tx,). Hence, we get that U(Tv) = limsupd(z,, Tv) =
n—o00 n—0o0
lim supd(T'x,, Tv). Also, we have from Definition 8.4.1 that
n— oo

(1 —k)d(Tv, Tz,)?
< kd(v,2,)" + [f(0) — k]d(TV,x,)? + [g(v) — k]d(v, Tx,)? + kd(0, TO)? + kd(z,,, T2,)P.

Now, taking limsup on both sides of the above inequality, we obtain that
(1 — f(0))¥(To)* < g(v)¥(9)? + kd*(v,TV). (8.4.1)

By letting ¢ = 3 in (2.1.10), we obtain

_ T7 P 1 1
d("5 ) < v+ pdTo,,) - . To) (842)

Taking lim sup on both sides of (8.4.2) and noting that A({z,}) = {v}, we obtain that

v® To\" 1 1
vop <o (2210 < ly@p 4 -u(Toy — Sdw, Toy,
2 2 2 8
which implies that
cd(v, TO) < 4U(T0)” — 40 (). (8.4.3)
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Substituting (8.4.1) into (8.4.3), we obtain

which implies

e = f(v)) =4k, o, 4g@) +f(0) = 1)
= /(o) d(v, To)? < - U

Since g(v) + f(v) < 1, we obtain from (8.4.4) that

(v)P. (8.4.4)

(c(1 = f(v)) —4k) d(v,Tv)? <O0.
It then follows from the condition k < C(I_Tf(”_)), that v € F(T). O

Lemma 8.4.3. Let D be a nonempty closed and convexr subset of a p-uniformly convex
metric space X with p > 1 and parameter ¢ > 0. Fori=1,2,...,r, letT; : D — D be a
finite family of (f;, g;)-generalized k;-strictly pseudononspreading mapping with respect to
p, where k; € [0,1), fi,gi: D — [0,7], v <1 and 0 < fi(z) + ¢g;(x) < 1 for all x € D.
Suppose T :=N,_,F(T) # 0 and for arbitrary x1 € D, the sequence {x,} is generated by

(xn+1 = (1 - Brn)w(r—l)n S2) 5rnTrw(r—1)nu
W(r—1)n = (1 - B(r—l)n)w(r—Q)n S B(T—l)nTr—lw(r—Z)na

: (8.4.5)
Wan = (1 — Pon) Wi @ BonTownn,
W1y, = (1 = Bin)Won & B1nT1Won,
where wo, =, Yn>1, and 0 < a < G;, < 1 — 2%, fi(v) #0, for each v € T.
Then, lim d(v, x,)P ezists for all v € T'.
n—oo
Proof. Let v € I', then we obtain from Definition 8.4.1 that
(1 —g(v))d(v,Ty)" < f(v)d(v,y)’ + kd(y,Ty)" Vy € D.
Since f(v) + g(v) < 1, we obtain that
k
d(v, Ty)" < d(v,y)’ + ——~d(y, Ty)". (8.4.6)

fw)
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Now, from (2.1.10), (8.4.5) and (8.4.6), we obtain

d<vaw(r71)n)p < (1 _/B(rfl)n)d(v W(r—2) ) +Br 1)n (U7Tr—1w(r72)n)p
_Cﬂ(rfl)n(l

- ﬁ(rfl)n)

IA

B [d@ W o) +

Cﬁ(r 1) (1 _6(7" l)n)

= (U

_ﬁ(r 1)n |:

2
P

wr 2)n

.

)
c(l = Be-1n)  ke-1)

D
f(r 1(

d(w(er)nv Tr— 1 w(r72)n)p

d(w(r—2)7u Trflw('r—2)n>p
(1 - 5(T—1)n)d(v7 w(r—2)n>p

) d(TTfﬂU(r—Q)m w(r—Q)n)p

2

Following the same process as above, we obtain

d(’U, w(r72)n>p
< d(U, w(r—3)n)p

C(]. - B(r—2)n> k(r—

f(r—l)

2)

_5(1"72)71 |:

2

f(r—2) (U

) :| d(w(rf?))nv Tr—2w(r73)n>p-

(v)

Again, from (2.1.10), (8.4.5), (8.4.6), (8.4.7) and (8.4.8), we obtain

d</Ua xn-i—l)p

<

IN

IN

IN

IN

(1 - ﬁrn) (U W(r— l)n) + B(T)nd
Bl

2

d(U, w(r—l)n)p - ﬂrn |:C(
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By the condition on {f;,}, i = 1,2,...,r, we obtain that lim d(v,z,)? exists. ]

n—oo
Theorem 8.4.4. Let D be a nonempty closed and convex subset of a complete p-uniformly
convexr metric space X with p > 1 and parameter c > 0. Fori=1,2,...,r, letT; : D — D
be a finite family of (f;, gi)-generalized k;-strictly pseudononspreading mapping with respect
to p, where k; € [0,1), fi,gi: D —[0,7], v <1 and 0 < fi(z)+ ¢g;(x) <1 for all z € D.
Suppose T := NI_F(T) # 0 and for arbitrary x1 € D, the sequence {x,} is generated by
Algorithm (8.4.5), where wy, = x, Yn > 1, and the following conditions are satisfied:
ki<w and0<a§5m<1—2%, fi(v) #0, for allv eT.
Then {x,} A-converges to an element of .

Proof. Since lim d(v, z,,)P exists, then we obtain from (8.4.9) and the condition on {5;,}, i =

12, rthat
nhi& d(Wi—1yn, Tiw—1yn)? =0, 1 =1,2,...,7. (8.4.10)
From (2.1.10), (8.4.5), (8.4.10), and noting that wy, = z,, we obtain
d(win, )P < Brad(Tixy,, x,)P — 0, as n — oo. (8.4.11)
Also, from (2.1.10) (8.4.5) and (8.4.10), we obtain that
d(wop, wi,)P < Pond(Towy, wi,)? — 0, as n — co. (8.4.12)
It then follows from (8.4.11) and (8.4.12) that
nh_}IIOlo d(wap, x,) = 0. (8.4.13)

Following the same process as in (8.4.11)-(8.4.13), we can show that
lim d(wg—1yn, zn) =0, 1 =1,2,...,7. (8.4.14)
n—oo

Now, from Lemma 8.4.3, we obtain that {x,} is bounded. Thus, by Lemma 2.3.24
(i), {x,} has a unique asymptotic center, say v. That is, A({z,}) = {0}. Let {z,,}
be any subsequence of {x,} such that A({z,,}) = {a}. Then, by (8.4.14), we obtain
for each i = 1,2,...,r that, A{w-1)s,) = {u}. Also, we obtain from (8.4.10) that
limy, o0 d(W(i—1)yny, Tiw(i—1yn,) = 0, 4 = 1,2,...,r. Thus, by Lemma 2.3.24 (ii) and Lemma
8.4.2, we obtain that u € .

Moreover, from Lemma 8.4.3, we obtain that lim d(u, x,) exists. Thus, by the uniqueness
n—oo

of asymptotic centers, we have

IN

lim sup d(@, x, ) lim sup d(v, ,,, )
k—o0 k—o0

lim sup d(v, z,,)
n—oo

IN

IN

lim sup d(@, x,,)
n—oo

lim d(a, x,)

= limsupd(a,zy,,),

k—ro0

which implies that © = @. Therefore, {z,,} A-converges to v € I'. O
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By setting p = 2 and ¢ = 2 in Theorem 8.4.4, we obtain the following result.

Corollary 8.4.5. Let D be a nonempty closed and convex subset of an Hadamard space.
Fori = 1,2,....r, let T, : D — D be a finite family of (fi,g:)-generalized k;-strictly
pseudononspreading mapping with constant k; € [0,1), where f;,g; : D — [0,7], v < 1
and 0 < fi(x) 4+ g;(x) < 1 for all x € D. Suppose I' := NI_F(T) # 0 and for arbitrary
x1 € D, the sequence {x,} is generated by Algorithm (8.4.5), where wy, = ©, Yn > 1, and
the following conditions are satisfied:

kl<%@) and0<agﬁm<1—%, fi(v) #0, for each v € T.

Then {x,} A-converges to an element of T.
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Chapter 9

Conclusion, Contribution to
Knowledge and Future Research

In this chapter, we conclude the study of this thesis and highlight the contributions of our
study to knowledge. We also identify and discuss possible areas of future research.

9.1 Conclusion

This thesis presented a systematic and comprehensive study of optimization and fixed
point problems in both Hadamard and p-uniformly convex metric spaces. Some of these
studies are generalizations of existing results from Hilbert and Banach spaces to these
spaces, and others are completely new results even in Hilbert and Banach spaces. We have
presented our study in a coherent manner, first by giving in Chapter 1, a brief background
of our study for which we highlighted some of the importance of optimization and fixed
point problems in general. We also highlighted some of the successful methods used for
solving these problems, and the relationships between optimization problems and fixed
point problems. We then discussed the research problems studied in this thesis, mainly
the ones studied in Chapter 3 to Chapter 8 of this thesis. Afterwards, we highlighted
the motivation behind the study of these problems, and the objectives of our study. We
then progressed to Chapter 2, to define some basic terms and concepts that was useful
throughout our study, gave a detailed literature review of past works that motivated our
study and lastly recalled a number of results that were very important to our study. As
seen in Chapter 3 to Chapter 8 (which are the main results of this thesis), our results
provided important insight of our contribution to the study of optimization and fixed
point problems in both Hadamard and p-uniformly convex metric spaces. Chapter 3 to
Chapter 6 were devoted to the study of optimization problems and fixed point problems
in Hadamard spaces. Chapter 7 was devoted to the study of minimization and fixed
point problems in p-uniformly convex metric spaces, while Chapter 8 was all about fixed
point problems of higher nonlinear mappings in both Hadamard and p-uniformly convex
metric spaces. In each of these chapters, several numerical experiments of our results in
comparison with other results in the literature were given to illustrate the applicability
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and advantages of our results over the existing results in the literature. In some cases,
we see that these numerical results are not applicable in the linear settings (Hilbert and
Banach spaces). This means that, established results on optimization and fixed point
problems in these spaces cannot be applied to such examples. Furthermore, some open
problems concerning our established results were also presented (for instance, see Remark
3.3.8, 5.5.17, 6.3.7, 7.3.4 and 7.4.9).

9.2 Contribution to knowledge

In general, the results of this thesis are generalizations of existing results from Hilbert and
Banach spaces to Hadamad and p-uniformly convex metric spaces. In many cases, they
are completely new results even in Hilbert and Banach spaces. In particular, we made the
following contributions, among others.

In chapter 3, we generalize the results of Khatibzadeh and Ranjbar [98], Ranjbar and
Khatibzadeh [153] (see Theorems 2.2.6 and 2.2.7) from approximating a solution of a
monotone inclusion problem to approximating a common solution of a finite family of
monotone inclusion problems, which is also a fixed point of a nonexpansive mapping and a
unique solution of some variational inequality problems in Hadamard spaces. Furthermore,
to obtain strong convergence results for monotone inclusion problems in Hadamard spaces,
Heydari et.al. [83] assumed that the underlying operator, be strongly monotone, while
we obtained our strong convergence results without the strong monotonicity assumption.
Also, the authors in [95] introduced the concept of dual space of an Hadamard space and
the authors in [98] introduced the concept of resolvent of a monotone operator defined on
an Hadamard space and valued in the dual space. However, examples of these concepts
were not given to motivate the study of monotone inclusion problems in Hadamard spaces,
and also to be certain that these sets (the dual space and the resolvents) are not empty.
In Subsection 3.3.2, we gave examples of these concepts (see also Section 2.1.3 and Section
2.1.4 for a detailed discussion of these examples).

In Chapter 4, we generalize the results of Bacdk [13] (see Theorem 2.2.2) from A-convergence
results for approximating a solution of minimization problem to strong convergence re-
sults for approximating a solution of minimization problem which is also a fixed point of
a multivalued nonexpansive mapping and a unique solution of some variational inequality
problems in Hadamard spaces. Furthermore, we generalize the work of Suparatulatorn et.
al. [174] from solving a minimization problem and fixed point problems for nonexpansive
mapping to solving a finite family of minimization problem, monotone inclusion problem
and fixed point problems for mappings more general than nonexpansive mappings. We
also gave numerical examples of our results in Hadamard spaces.

The results established in Chapter 5 of this thesis served as a continuation of the works of
Kimura and Kishi [100], Kumam and Chaipunya [108]. They also extend related results
from Hilbert spaces to Hadamard spaces. In particular, the results of Section 5.3 and
5.4 generalized the results of Kimura and Kishi [100] (see Theorem 2.2.9, Kumam and
Chaipunya [108] (see Theorem 2.2.10) from A-convergence results for equilibrium prob-
lems to strong convergence results for finite family of equilibrium problems and fixed point
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problems. Furthermore, the results in Section 5.5 extends the results on mixed equilib-
rium problems from the frame work of real Hilbert spaces to Hadamard spaces. They
also extends the results of Kimura and Kishi [100], Kumam and Chaipunya [108] from
equilibrium problems to mixed equilibrium problems.

The class of mappings introduced in Chapter 6 is more general than the class of map-
pings introduced in [106],[145] and several other classes of nonspreading-type mappings.
Furthemore, the results obtained in Chapter 6 generalize and improve the results of Os-
ilike and Isiogugu [145] from fixed point problems for strictly pseudononspreading map-
pings in Hilbert spaces to fixed point problems for generalized strictly pseudononspread-
ing mappings in Hadamard spaces. Also, in [119, Theorem 3.12], the author proved a
A-convergence of the Mann-type iteration to a fixed point of a generalized asymptotically
nonspreading mapping while in Chapter 6 of this thesis, we prove some strong conver-
gence of Mann-type, Ishikawa-type, S-type and viscosity-type algorithms to a common
fixed point of a finite family of generalized strictly pseudononspreading mappings which
is also a common solution of a finite family of minimization and monotone inclusion prob-
lems in Hadamard spaces. Therefore, our results generalize, improve and complement the
results in [145], [119] and host of other related results in this direction.

In Chapter 7, we further developed the study of minimization problems and fixed point
problems in p-uniformly convex metric spaces since very few results have been studied in
these spaces. First, we improved on the proof of Kuwae [110] for the existence of resolvent
of convex function, by removing Assumption 3.21 imposed by Kuwae [I10] and by given
a more shorter and comprehensive method of proof (see Proposition 7.2.4). We further
developed several properties of the resolvent operators. The main results in Section 7.3 and
7.4 improve and generalize the main results of Choi and Ji [52] from solving minimization
problems in p-uniformly convex metric spaces to solving finite family of minimization
problems and fixed point problems in p-uniformly convex metric spaces. Also, the results
in Section 7.5 generalize results on split minimization problems from the frame work of
real Hilbert and Banach spaces, as well as Hadamard spaces to p-uniformly convex metric
spaces. From application point of view and to further motivate the study in p-uniformly
convex metric spaces, we gave a typical example of this space, as well as examples of
convex functions and nonexpansive mappings in the space (see Subsection 7.4.2).

The class of mappings introduced and studied in Section 8.2 is more general than that
introduced and studied by Liu and Chang [120]. Also, the class of mappings introduced
and studied in Section 8.3 of this thesis is more general than that introduced and studied by
Hu and Wang [31]. Furthermore, we generalized the results of Hu and Wang [31] from the
frame work of p-uniformly convex Banach spaces to the frame work of p-uniformly convex
metric spaces. More so, the results in Section 8.4 generalize the results on nonspreading
mappings and strictly pseudononspreading mappings in p-uniformly convex Banach spaces.

In addition to these contributions, the open problems identified and discussed in this
thesis, offer many opportunities for future research.
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9.3 Future research

As mentioned in the previous section, the questions identified and discussed in this thesis
(see for example, Remark 3.3.8, 5.5.17, 6.3.7, 7.3.4 and 7.4.9), offer many opportunities
for future research. Part of our future research is to try and answer these questions.

Very recently, Alizadeh et. al. [1] solved the variational inequality problem (1.2.10) in
Hadamard spaces when the cost operator 7' is an inverse strongly monotone mapping.
However, we know that monotone and pseudomonotone mappings are more general and
more applicable than inverse strongly monotone mappings. But it is yet unknown if
the VIP (1.2.10) can be solved in Hadamard spaces when the cost operator T is either
monotone or pseudomonotone. Part of our future research will be to solve the VIP (1.2.10)
in Hadamard spaces when the mapping 7" is atleast monotone. Furthermore, in our future
research, we shall try to formulate the VIP, when the cost operator is defined on an
Hadamard space and valued in the dual space, which will have an obvious relationship

with the classical VIP (1.2.9) in Banach spaces and offcourse, will improve the formulation
of Khatibzadeh and Ranjbar [99].

In Section 5.5, we solved the mixed equilibrium problem (1.2.8) in Hadamard spaces. A
generalization of this problem called the Generalized Mixed Equilibrium Problem (GMEP)
has been studied in Hilbert spaces (see [10, 75, 146] and the references contained therein),
which is defined as:

Find z* € C' such that (2", y) + f(y) — f(z") + (Tx",y —x*) >0, Vye C, (9.3.1)

where ¢ is a bifunction satisfing some monotonicity and convexity assumptions, f is a
convex and lower semicontinuous functions and 7" is a nonlinear operator. It is indisputable
that GMEP (9.3.1) is one of the most general and applicable problems in optimization
theory since it includes MPs (1.2.1), EPs (1.2.7) and MEPs (1.2.8) as special cases. Thus,
we dare to believe that the GMEP (9.3.1) will prove very useful in Hadamard spaces.
Therefore, we intend in future, to generalize the GMEP (9.3.1) from the frame work of
real Hilbert spaces to Hadamard spaces.
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