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Abstract

In this dissertation, we introduce a shrinking projection method of an inertial type with
self-adaptive step size for finding a common element of the set of solutions of Split Gen-
eralized Equilibrium Problem (SGEP) and the set of common fixed points of a countable
family of nonexpansive multivalued mappings in real Hilbert spaces. The self-adaptive step
size incorporated helps to overcome the difficulty of having to compute the operator norm
while the inertial term accelerates the rate of convergence of the propose algorithm. Under
standard and mild conditions, we prove a strong convergence theorem for the sequence
generated by the proposed algorithm and obtain some consequent results. We apply our
result to solve Split Mixed Variational Inequality Problem (SMVIP) and Split Minimiza-
tion Problem (SMP), and present numerical examples to illustrate the performance of
our algorithm in comparison with other existing algorithms. Moreover, we investigate the
problem of finding common solutions of Equilibrium Problem (EP), Variational Inclusion
Problem (VIP)and Fixed Point Problem (FPP) for an infinite family of strict pseudo-
contractive mappings. We propose an iterative scheme which combines inertial technique
with viscosity method for approximating common solutions of these problems in Hilbert
spaces. Under mild conditions, we prove a strong theorem for the proposed algorithm and
apply our results to approximate the solutions of other optimization problems. Finally,
we present a numerical example to demonstrate the efficiency of our algorithm in compar-
ison with other existing methods in the literature. Our results improve and complement
contemporary results in the literature in this direction.

vi



Contents

Title page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Contributed papers from the dissertation . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

1.1 Background of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Statement of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9

2.1 Some useful results in Hilbert space . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Some useful operators and important results . . . . . . . . . . . . . . . . . 11

2.3 Some useful results on metric projection . . . . . . . . . . . . . . . . . . . 14

3 On Split Generalized Equilibrium and Fixed Point Problems 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Split mixed variational inequality and fixed point problems . . . . . 24

3.3.2 Split minimization and fixed point problems . . . . . . . . . . . . . 24

3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Inertial Algorithm for Solving Equilibrium, Variational Inclusion and
Fixed Point Problems 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Variational inequality problem . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Split feasibility and fixed point problems . . . . . . . . . . . . . . . 47

4.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion, Contribution to Knowledge and Future Research 52

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Contribution to knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



Declaration

This dissertation has not been submitted to this or any other institution in support of an
application for the award of a degree. It represents the author’s own work and where the
work of others has been used, proper reference has been made.

Musa Adewale Olona

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix



Contributed papers from the dissertation

Papers from the dissertation submitted and still in the refereeing process.

1. M.A Olona, T.O Alakoya, A.O-E Owolabi and O.T. Mewomo, Inertial shrinking
projection algorithm with self-adaptive step size for split generalized equilibrium and
fixed point problems for a countable family of nonexpansive multivalued mappings.
Summited to Demonstratio Mathematica.

2. M.A Olona, T.O Alakoya, A.O-E Owolabi and O.T. Mewomo, Inertial algorithm
for solving equilibrium, variational inclusion and fixed point problems for an infinite
family of strict pseudocontractive mappings. Summited to Journal of Nonlinear
Functional Analysis.

The results presented in Chapter 3 of this dissertation are from Paper 1 while results
presented in Chapter 4 of this dissertation are from Paper 2. Both papers are
submitted to journals and we hope for positive outcome.

x



CHAPTER 1

Introduction

1.1 Background of study

Many authors have studied and proposed several iterative algorithms for solving optimiza-
tion problems because of its key role in the area of research such as convex and nonlinear
analysis.

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C
be a nonempty closed convex subset of H and φ : C × C → R, F : C × C → R be two
bifunctions. The Generalized Equilibrium Problem (GEP) is to find a point x∗ ∈ C such
that

F (x∗, y) + φ(x∗, y) ≥ 0, ∀ y ∈ C. (1.1.1)

The solution set of the GEP is denoted by GEP (F, φ). In particular, If we set φ = 0 in
(1.1.1), then the GEP reduces to the classical Equilibrium Problem (EP), which is to find
a point x∗ ∈ C such that F (x∗, y) ≥ 0, ∀ y ∈ C. The solution set of EP is denoted by
EP (F ), (see [5, 39, 75] and the references contained therein).

Suppose H1 and H2 are real Hilbert spaces and C,Q are non empty closed convex subsets
of H1 and H2, respectively. Let F1, φ1 : C × C → R and F2, φ2 : Q × Q → R be bifunc-
tions, and A : H1 → H2 be a bounded linear operator. The Split Generalized Equilibrium
Problem (SGEP) is defined as follows: Find x∗ ∈ C such that

F1(x∗, x) + φ1(x∗, x) ≥ 0, ∀ x ∈ C, (1.1.2)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) + φ2(y∗, y) ≥ 0, ∀ y ∈ Q. (1.1.3)

1



We denote the solution set of SGEP (1.1.2)-(1.1.3) by

SGEP (F1, φ1, F2, φ2) := {x∗ ∈ C : x∗ ∈ GEP (F1, φ1) and Ax∗ ∈ GEP (F2, φ2)}.

Let A : H → H be a single-valued operator and B : H → 2H be a multi-valued operator.
The Variational Inclusion Problem (VIP) is defined as follows: Find a point x̂ ∈ H such
that

0 ∈ (A+B)x̂. (1.1.4)

The solution set of VIP (1.1.4) is denoted by (A + B)−1(0) and referred to as the set of
zero points of A+B. The VIP (1.1.4) includes, as special cases, convex programming, split
feasibility problems, variational inequalities and minimization problems. More precisely,
some concrete problems in machine learning, image processing and linear inverse problems
can be modeled mathematically as VIP (1.1.4), for example, see [24, 28, 33, 62]. There are
several methods for solving VIP (1.1.4) with the most successful among the methods being
the forward-backward splitting method introduced in [44, 59]. Specifically, the forward-
backward splitting method is presented as follows:

xn+1 = (I + λnB)−1(I − λnA)(xn),

where λn is a positive parameter, the operator (I −λnA) is the so-called forward operator
and (I+λnB)−1 is the resolvent operator, which was introduced in [51] and is often referred
to as the backward operator. Recently, several authors have studied and extended the
forward-backward splitting method, for example, see [3, 62, 86].
Let S : H → H be a nonlinear mapping, a point x̂ ∈ H is called a fixed point of S if
Sx̂ = x̂. We denote by F (S), the set of all fixed points of S, i.e.

F (S) = {x̂ ∈ H : Sx̂ = x̂}. (1.1.5)

If S is a multivalued mapping, i.e., S : H → 2H , then x∗ ∈ H is called a fixed point of S
if

x∗ ∈ Sx∗. (1.1.6)

The fixed point theory for multivalued mappings can be utilized in various areas such as
game theory, control theory, mathematical economics, etc. Fixed point is one of the most
effective and successful methods for solving optimization problems such as equilibrium
problem, variational inclusion problem and many more.

In this dissertation, our goal is to propose some iterative schemes for approximating the
solutions of some important optimization problems in Hilbert spaces. We establish the
strong convergence of the sequences generated by our iterative schemes and present some
numerical experiments to illustrate the performance of our methods as well as compare
them with some related methods in the literature.

1.2 Research motivation

In 2016, Suantai et al. [72] introduced the following iterative scheme for solving Split
Equilibrium Problem and Fixed Point Problem of nonspreading multi-valued mapping in
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Hilbert spaces: 
x1 ∈ C arbitrarily,

un = T F1
rn

(
I − γA∗(I − T F2

rn )A
)
xn,

xn+1 = αnxn + (1− αn)Sun,

(1.2.1)

for all n ≥ 1, where C is a nonempty closed convex subset of a real Hilbert space H, {αn} ⊂
(0, 1), {rn} ⊂ (0,∞), S is a nonspreading multivalued mapping, and γ ∈ (0, 1

L
) such that

L is the spectral radius of A∗A and A∗ is the adjoint of the bounded linear operator A.
Under the following conditions on the control sequences:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(ii) lim infn→∞ rn > 0,

the authors proved that the sequence {xn} generated by (1.2.1) converges weakly to
p ∈ F (S) ∩ SEP (F1, F2) 6= ∅.

Bauschke and Combettes [9] pointed out that in solving Optimization Problems, strong
convergence of iterative schemes are more desirable than their weak convergence counter-
parts. Hence, the need to construct iterative schemes that generate strong convergence
sequence.

Takahashi et al. [85] introduced an iterative scheme known as the shrinking projection
method for approximating the fixed point of nonexpansive single-valued mapping in Hilbert
spaces. The shrinking projection method is a famous method, which plays a significant
role in obtainning strong convergence for approximating fixed points of nonlinear map-
pings. The method has received much attention due to its applications, and it has been
developed to solve many problems, such as, EPs, VIPs and FPPs in Hilbert spaces (see,
for example [42]).

Very recently, Phuengrattana and Lerkchaiyaphum [60] introduced the following shrink-
ing projection method for solving SGEP and FPP of a countable family of nonexpansive
multivalued mappings: For x1 ∈ C and C1 = C, then

un = T
(F1,φ1)
rn (I − γA∗(I − T (F2,φ2)

rn )A)xn,

zn = α
(0)
n xn + α

(1)
n y

(1)
n + ...+ α

(n)
n y

(n)
n , y

(i)
n ∈ Siun,

Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2},
xn+1 = PCn+1x1, n ∈ N.

(1.2.2)

They proved that if

(i) lim infn→∞ rn > 0,

(ii) limn→∞ α
(i)
n exists for all i ≥ 0,

then the sequence {xn} generated by (1.2.2) converges strongly to PΓx1, where Γ =
⋂∞
i=1

F (Si)∩SGEP (F1, φ1, F2, φ2) 6= ∅ and Si is a countable family of nonexpansive multivalued

3



mappings.

It is important to point out at this point that the step size γ of the above algorithms
plays an essential role in the convergence properties of iterative methods. The results
obtained by the authors in [72] and [60], and several other related results in the literature
involve step size that requires prior knowledge of the operator norm, ||A||. One of the
drawbacks with such algorithms is that they are usually not easy to implement because
they require computation of the operator norm ||A||, which is very difficult if not impos-
sible to calculate or even estimate. Moreover, the step size defined by such algorithms
are often very small and deteriorates the convergence rate of the algorithm. In practice, a
larger stepsize can often be used to yield better numerical results.

Based on the heavy ball methods of a two-order time dynamical system, Polyak [61]
first proposed an inertial extrapolation as an acceleration process to solve the smooth con-
vex minimization problem. The inertial algorithm is a two-step iteration where the next
iterate is defined by making use of the previous two iterates. Recently, several researchers
have constructed some fast iterative algorithms by using inertial extrapolation (see, e.g.,
[2, 3, 6, 10, 21, 25, 37]).

Motivated by the above results and the ongoing research interest in this direction, we
present a new self-adaptive inertial shrinking projection algorithm, which does not require
any prior knowledge of the operator norm for finding a common element of the set of solu-
tions of SGEP and the set of common fixed points of a countable family of nonexpansive
multivalued mappings in Hilbert spaces. We prove strong convergence theorem for the
proposed algorithm and obtain some consequent results. Moreover, we apply our results
to solving Split Mixed Variational Inequality Problem (SMVIP) and Split Minimization
Problem (SMP), and we provide numerical examples to illustrate the efficiency of the pro-
posed algorithm in comparison with existing results in the current literature.

In [45], Liu introduced the following algorithm for finding a common element of the set of
solutions of EP and set of fixed points of a k-strictly pseudocontractive mapping in the
setting of real Hilbert spaces:

Algorithm 1.2.1.

F (un, y) +
1

rn
(y − un, un − xn) ≥ 0, ∀y ∈ C,

yn = βnun + (I − βn)Sun,

xn+1 = αnγf(xn) + (I − αnD)yn, ∀ n ∈ N,

where S : C → H is a k-strictly pseudocontractive mapping, f : H → H is a contraction
with constant ρ ∈ (0, 1) and D is a strongly positive bounded linear operator on H with
coefficient γ̄ and 0 < γ < γ̄

ρ
. Under some conditions on the control parameters, the author

proved that the sequence generated by the algorithm converges strongly to an element in
the solution set, which also solves certain variational inequality.

Wang in [91] proposed the following general composite iterative method for approximating

4



a common solution of an infinite family of strict pseudo-contractions in Hilbert spaces:

Algorithm 1.2.2.
x1 ∈ C
yn = βnxn + (1− βn)Wnxn,

xn+1 = αnγf(xn) + (I − µαnD)yn, ∀ n ≥ 1,

where Wn is a mapping defined by (4.2.1), f is a contraction with constant ρ ∈ (0, 1), D
is a k-Lipschitzian and η - strongly monotone operator with 0 < µ < 2η/k2. Under appro-
priate conditions on the control parameters, they proved that the sequence generated by
Algorithm 1.2.2 converges strongly to a common element of the fixed points of an infinite
family of strict pseudo-contractions, which is a also a unique solution of certain variational
inequality problem.

In 2018, Cholamjiak et al. [19] introduced the following inertial forward-backward split-
ting algorithm, which combines Halpern and Mann iteration methods for solving inclusion
problems in Hilbert spaces:

Algorithm 1.2.3.

yn = xn + αn(xn − xn−1),

xn+1 = βnu+ ξnyn + µnJ
B
λn(yn − λnAyn), n ≥ 1,

where A : H → H is a k-inverse strongly monotone operator and B : H → 2H is a maximal
monotone operator, JBλn = (I + λnB)−1, 0 < λn ≤ 2k, {αn} ⊂ [0, α] with α ∈ [0, 1) and
{βn}, {ξn} and {µn} are sequences in [0, 1] with βn + ξn + µn = 1. Under the following
conditions on the control parameters:

(1)
∑∞

n=1 αn||xn − xn−1|| <∞;

(2) limn→∞ βn = 0,
∑∞

n=1 βn =∞;

(3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2k;

(4) lim infn→∞ µn > 0,

they proved that the sequence generated by Algorithm 1.2.3 converges strongly to an ele-
ment in the solution set.

However, authors have pointed out that the summability condition (1) of Algorithm 1.2.3
is a drawback in its implementation (see [52]).

More recently, Thong and Vinh [89], studied the problem of finding a common element
of the set of solutions of variational inclusion problem and the fixed points set of a non-
expansive mapping. They introduced the following modified inertial forward-backward
splitting algorithm combined with viscosity technique for finding a common solution of
the problems in Hilbert spaces.

5



Algorithm 1.2.4.

Initialization: Select x0, x1 ∈ H and set n := 1.

Step 1. Compute

wn = xn + αn(xn − xn−1),

zn = (I + λB)−1(I − λA)wn.

If zn = wn then stop (zn is a solution to (1.3.3)). Otherwise, go to Step 2.

Step 2. Compute
xn+1 = βnf(xn) + (1− βn)Tzn.

Let n := n+ 1 and return to Step 1.

Where T : H → H is a nonexpansive mapping, f : H → H is a contraction with constant
ρ ∈ [0, 1), A : H → H is a k-inverse strongly monotone operator, B : H → 2H is a maximal
monotone operator and λ ∈ (0, 2k) is the step size of the algorithm. Under the following
conditions on the control sequences:

(1) {βn} ⊂ (0, 1), limn→∞ βn = 0,
∑∞

n=1 βn =∞, limn→∞
βn−1

βn
= 1;

(2) {αn} ⊂ [0, α), α > 0, limn→∞
αn
βn
||xn − xn−1|| = 0,

the authors proved that the sequence generated by Algorithm (1.2.4) converges strongly
to an element in the solution set.

We observe that the summability condition in Algorithm 1.2.3 has been dispensed in
Algorithm 1.2.4. However, we point out that the step size of Algorithm 1.2.4 is a constant
and hence admits the same value for each iteration. Moreover, additional restriction was
imposed on the control parameter βn, that is, limn→∞

βn−1

βn
= 1.

Motivated and inspired by the results in [19, 45, 89, 91], and the ongoing research in
this direction, we study the problem of finding common solutions of Equilibrium Problem
(EP), Variational Inclusion Problem (VIP)and Fixed Point Problem (FPP) for an infi-
nite family of strict pseudocontractive mappings. We propose an iterative scheme which
combines inertial technique with viscosity method for approximating common solutions of
these problems in Hilbert spaces. Under mild conditions, we prove a strong theorem for
the proposed algorithm and apply our results to approximate the solutions of other opti-
mization problems. Finally, we present a numerical example to demonstrate the efficiency
of our algorithm in comparison with other existing methods in the literature. Our results
improve and complement contemporary results in the literature in this direction.

1.3 Statement of problems

This dissertation focus on the following problems:

6



• Split Generalized Equilibrium Problem (SGEP): Let C ⊆ H1 and Q ⊆ H2, where H1

and H2 are real Hilbert spaces. Let F1, φ1 : C × C → R and F2, φ2 : Q×Q→ R be
nonlinear bifunctions, and A : H1 → H2 be a bounded linear operator. The SGEP
is defined as follows: Find x∗ ∈ C such that

F1(x∗, x) + φ1(x∗, x) ≥ 0, ∀ x ∈ C, (1.3.1)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) + φ2(y∗, y) ≥ 0, ∀ y ∈ Q. (1.3.2)

We denote the solution set of SGEP (1.3.1)-(1.3.2) by

SGEP (F1, φ1, F2, φ2) := {x∗ ∈ C : x∗ ∈ GEP (F1, φ1) and Ax∗ ∈ GEP (F2, φ2)}.

• Variational Inclusion Problem: Let H be a real Hilbert space with inner product
〈·, ·〉 and induced norm ‖ · ‖, and let A : H → H be a single-valued operator and
B : H → 2H be a multi-valued operator. The Variational Inclusion Problem (VIP)
is formulated as finding a point x̂ ∈ H such that

0 ∈ (A+B)x̂. (1.3.3)

We propose some iterative schemes for approximating the solutions of these problems,
establish the strong convergence of the sequences generated by these iterative schemes and
present numerical experiments to illustrate the performance of these iterative schemes as
well as compare them with some related iterative schemes in the literature. We apply
these results to solve some other important optimization problems.

1.4 Objectives

The main objectives of this work are

(i) to review some essential results on Split Generalized Equilibruim Problem (SGEP)
and Variational Inclusion Problem (VIP),

(ii) to propose some iterative schemes for approximating the solutions of SGEP, VIP
and related optimization problems,

(iii) to establish the strong convergence of the sequences generated by the proposed al-
gorithms and obtain some consequent results,

(iv) to provide numerical experiments to illustrate the performance of the proposed al-
gorithms in comparison with some existing results in the current literature,

(v) to apply our results to study certain optimization problems.

7



1.5 Organization of the dissertation

The remaining chapters of this dissertation are organized as follows
Chapter 2: In this chapter, we recall some basic notions, definitions and preliminary
results that are useful in establishing our main results.

Chapter 3: In this chapter, we introduce a shrinking projection method of inertial type
with self-adaptive step size for finding a common element of the set of solutions of split
generalized equilibrium problem and the set of common fixed points of a countable family
of nonexpansive multivalued mappings in real Hilbert spaces. Also, we present numerical
examples to illustrate the efficiency of the algorithm in comparison with other existing
algorithms.

Chapter 4: In this chapter, we study the problem of finding common solutions of Equilib-
rium Problem (EP), Variational Inclusion Problem (VIP) and Fixed Point Problem (FPP)
for an infinite family of strict pseudocontractive mappings. We propose an iterative scheme
which combines inertial technique with viscosity method for approximating common so-
lutions of these problems in Hilbert spaces. Under mild conditions, we prove a strong
theorem for the proposed algorithm and apply our results to approximate the solutions
of other optimization problems. Finally, we present a numerical example to demonstrate
the efficiency of our algorithm in comparison with other existing methods in the literature.

Chapter 5: In this chapter, we present conclusion, highlight our contribution to knowl-
edge and give some possible areas for future research work.

8



CHAPTER 2

Preliminaries

In this chapter, we recall some basic notions, definitions and preliminary results that will
be employed in this study.

2.1 Some useful results in Hilbert space

In this dissertation, our study is carried out in the framework of Hilbert space. Thus, we
give the definition of Hilbert space with examples and some basic results that are useful
in establishing our main results.

Definition 2.1.1. Let H be a linear space over the scalar field F, (F = R or C). An inner
product on H is a mapping 〈·, ·〉 : H ×H → F satisfying the following conditions for all
x, y, z ∈ H,µ, λ ∈ F:

(i) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

(ii) 〈x, y〉 = 〈y, x〉,

(ii) 〈µx+ λy, z〉 = µ〈x, z〉+ λ〈y, z〉.

The pair (H, 〈·, ·〉) is called an inner product space.

Specifically, from (ii) and (iii), the following property can be deduced:

(iv) 〈x, µy + λz〉 = µ̄〈x, y〉+ λ̄〈x, z〉.

Definition 2.1.2. A Hilbert space is a complete inner product space, that is, an inner
product space (H, 〈·, ·〉) in which every Cauchy sequence in H converges to a point in H.
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The following are examples of Hilbert space:

Example 2.1.1. (i) The space Rn is a Hilbert space with the inner product defined as
follows:

〈α, β〉 = α1, β1 + α2, β2 + · · ·+ αn, βn =
n∑
i=1

αiβi,

where α = (α1, α2, · · · , αn) and β = (β1, β2, · · · , βn) are in Rn.

(ii) The space l2(C) is a Hilbert space with the inner product defined as follows:

〈x, y〉 =
∞∑
n=1

xnyn,

where x = (x1, x2, · · · ) and y = (y1, y2, · · · ) are in l2(C).

(iii) The space L2(R) of real valued functions such that∫
R
|f(x)|2dx <∞,

is a Hilbert space with the inner product defined as follows:

〈f, g〉 =

∫
R
f(x)g(x)dx,

where f, g are in L2(R).

The following results will be needed in the sequel:

Lemma 2.1.2. [78] In a real Hilbert space H, the following inequalities hold for all x, y ∈
H :

(i) ||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉;

(ii) ||x+ y||2 = ||x||2 + 2〈x, y〉+ ||y||2;

(iii) ||x− y||2 = ||x||2 − 2〈x, y〉+ ||y||2.

Lemma 2.1.3. [36] Let H be a Hilbert space, {xn} be a sequence in H, and α1, α2, ...αN
be real numbers such that

∑N
i=1 αi = 1. Then∥∥∥∥ N∑

i=1

αixi

∥∥∥∥2

=
N∑
i=1

αi‖xi‖2 −
∑

1≤i,j≤N

αiαj‖xi − xj‖2. (2.1.1)

Lemma 2.1.4. [70] Let H be a Hilbert space, and let {xn} be a sequence in H. Let
u, v ∈ H be such that limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. If {xnk} and {xmk}
are subsequences of {xn} that converge weakly to u and v respectively, then u = v.

Lemma 2.1.5. [50] Let C be a nonempty closed convex subset of a real Hilbert space H.
Given x, y, z ∈ Hand a real number α, the set {u ∈ C : ‖y − u‖2 ≤ ‖x− u‖2 + 〈z, u〉+ α}
is closed and convex.
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2.2 Some useful operators and important results

The following are useful operators and fundamental functional analysis results needed in
this study:

Definition 2.2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
A single-valued mapping S : C → C is said to be

� L-Lipschitz if there exist L > 0 such that

‖Sx− Sy‖ ≤ L‖x− y‖, ∀ x, y ∈ C;

if L = 1, then S is nonexpansive while S is called a contraction if L ∈ (0, 1),

� δ-inverse strongly monotone if there exists a positive real number δ such that

〈x− y, Sx− Sy〉 ≥ δ||Sx− Sy||2, ∀ x, y ∈ C;

� monotone if and only if

〈y − x, Sy − Sx〉 ≥ 0, ∀ x, y ∈ C.

If S is δ-inverse strongly monotone, for each γ ∈ (0, 2δ], it is known that I − γS is a
nonexpansive single-valued mapping.

A subset K of H is called proximal if for each x ∈ H, there exists y ∈ K such that

||x− y|| = d(x,K).

We denote by CB(C), CC(C), K(C) and P (C) the families of all nonempty closed bounded
subsets of C, nonempty closed convex subset of C, nonempty compact subsets of C, and
nonempty proximal bounded subsets of C respectively. The Pompeiu-Hausdorff metric on
CB(C) is defined by

H(A,B) := max{sup
x∈A

d(x,B), sup
y∈B

d(y, A)},

for all A,B ∈ CB(C). Let S : C → 2C be a multivalued mapping. We say that S
satisfies the endpoint condition if Sp = {p} for all p ∈ F (S). For multivalued mappings
Si : C → 2C (i ∈ N) with ∩∞i=1F (Si) 6= ∅, we say that Si satisfies the common endpoint
condition if Si(p) = {p} for all i ∈ N, p ∈ ∩∞i=1F (Si).

We recall some basic and useful definitions on multivalued mappings.

Definition 2.2.2. A multivalued mapping S : C → CB(C) is said to be nonexpansive if

H(Sx, Sy) ≤ ||x− y||, ∀ x, y ∈ C.

The class of nonexpansive multivalued mappings contains the class of nonexpansive single-
valued mappings. If S is a nonexpansive single-valued mapping on a closed convex subset
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of a Hilbert space, then F (S) is closed and convex. The closedness of F (S) can easily be
extended to the multivalued case. However, the convexity of F (S) cannot be extended
(see, e.g., [? ]). But, if S is a nonexpansive multivalued mapping which satisfies the
endpoint condition, then F (S) is always closed and convex as shown by the following
result:

Lemma 2.2.1. [20] Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C → CB(C) be a nonexpansive multivalued mapping with F (S) 6= ∅ and Sp = {p}
for each p ∈ F (S). Then F (S) is a closed and convex subset of C.

The best approximation operator PS for a multivalued mapping S : C → P (C) is defined
by

PS(x) := {y ∈ Sx : ||x− y|| = d(x, Sx)}.

It is known that F (S) = F (PS) and PS satisfies the endpoint condition. Song and Cho [68]
gave an example of a best approximation operator PS which is nonexpansive, but where
S is not necessarily nonexpansive.

Definition 2.2.3. Let S : C → CB(C) be a multivalued mapping. The multivalued
mapping I−S is said to be demiclosed at zero if for any sequence {xn} ⊂ C which converges
weakly to q and the sequence {||xn − un||} converges strongly to 0, where un ∈ Sxn, then
q ∈ F (S). If S is a multivalued nonexpansive mapping, then I − S is demiclosed at zero.

Lemma 2.2.2. [30, 54] Let C be a nonempty closed convex subset of a real Hilbert space
H, and let PC : H → C be the metric projection. Then

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2, ∀ x ∈ H, y ∈ C.

The following are examples of metric projection:

Example 2.2.3. Let C = [a, b] be a closed rectangle in Rn, where a = (a1, a2, · · · , an)T

and b = (b1, b2, · · · , bn)T . The metric projection with the ith coordinate denoted by (PCx)i
is given by

(PCx)i =


ai, xi < ai,

xi, xi ∈ [ai, bi],

bi, xi > bi,

for 1 ≤ i ≤ n.

Example 2.2.4. Let C = {y ∈ H : 〈η, y〉 = β} be a hyperplane with η 6= 0, then the
metric projection onto C is defined by

PCx = x− 〈η, x〉 − β
‖η‖2

η, ∀ η ∈ R.

Assumption 2.2.5. Let C be a nonempty closed and convex subset of a Hilbert space H1.
Let F1 : C × C → R and φ1 : C × C → R be two bifunctions satisfying the following
conditions:
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(A1) F1(x, x) = 0 for all x ∈ C,

(A2) F1 is monotone, that is, F1(x, y) + F1(y, x) ≤ 0 for all x, y ∈ C,

(A3) F1 is upper hemicontinuous, that is, for all x, y, z ∈ C, limt↓0 F1

(
tz + (1− t)x, y

)
≤

F1(x, y),

(A4) for each x ∈ C, y 7→ F1(x, y) is convex and lower semicontinuous,

(A5) φ1(x, x) ≥ 0 for all x ∈ C,

(A6) for each y ∈ C, x 7→ φ1(x, y) is upper semicontinuous,

(A7) for each x ∈ C, y 7→ φ1(x, y) is convex and lower semicontinuous,

and assume that for fixed r > 0 and z ∈ C, there exists a nonempty compact convex subset
K of H1 and x ∈ C ∩K such that

F1(y, x) + φ1(y, x) +
1

r
〈y − x, x− z〉 < 0, ∀y ∈ C\K.

Lemma 2.2.6. [48] Let C be a nonempty closed and convex subset of a Hilbert space H1.
Let F1 : C × C → R and φ1 : C × C → R be two bifunctions satisfying Assumption
(2.2.5). Assume that φ1 is monotone. For r > 0 and x ∈ H1, define a mapping

T
(F1,φ1)
r : H1 → C as follows:

T (F1,φ1)
r (x) =

{
z ∈ C : F1(z, y) + φ1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, (2.2.1)

for all x ∈ H1, Then

(i) for each x ∈ H1, T
(F1,φ1)
r (x) 6= ∅,

(ii) T
(F1,φ1)
r is single-valued,

(iii) T
(F1,φ1)
r is firmly nonexpansive, that is, for any x, y ∈ H1,

‖T (F1,φ1)
r x− T (F1,φ1)

r y‖2 ≤ 〈T (F1,φ1)
r x− T (F1,φ1)

r y, x− y〉,

(iv) F (T
(F1,φ1)
r ) = GEP (F1, φ1),

(v) GEP (F1, φ1) is compact and convex.

Furthermore, assume that F2 : Q×Q→ R and φ2 : Q×Q→ R satisfy Assumption 2.2.5,
where Q is a nonempty closed and convex subset of a Hilbert space H2. For all s > 0 and
w ∈ H2, define the mapping T

(F2,φ2)
s : H2 → Q by

T (F2,φ2)
s (v) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

s
〈d− w,w − v〉 ≥ 0, ∀d ∈ Q

}
. (2.2.2)

Then we have:
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(vi) For each v ∈ H2, T
(F2,φ2)
s (v) 6= ∅,

(vii) T
(F2,φ2)
s is single-valued,

(viii) T
(F2,φ2)
s is firmly nonexpansive,

(ix) F (T
(F2,φ2)
s ) = GEP (F2, φ2),

(x) GEP (F2, φ2) is closed and convex,

where GEP (F2, φ2) is the solution set of the following generalized equilibrium problem:
find y∗ ∈ Q such that

F2(y∗, y) + φ2(y∗, y) ≥ 0 ∀ y ∈ Q.

Moreover, SGEP (F1, φ1, F2, φ2) is a closed and convex set.

Lemma 2.2.7. [22] Let C be a nonempty closed and convex subset of a Hilbert space H1.
Let F1 : C × C → R and φ1 : C × C → R be two bifunctions satisfying Assumption 2.2.5,
and let T

(F1,φ1)
r be defined as in Lemma 2.2.6 for r > 0. Let x, y ∈ H1 and r1, r2 > 0.

Then

‖T (F1,φ1)
r2

y − T (F1,φ1)
r1

x‖ ≤ ‖y − x‖+
∣∣∣r2 − r1

r2

∣∣∣‖T (F1,φ1)
r2

y − y‖.

2.3 Some useful results on metric projection

Definition 2.3.1. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. The metric projection PC is a map defined on H onto C which assigns to
each x ∈ H, the unique point in C, denoted by PCx such that

||x− PCx|| = inf{||x− y|| : y ∈ C}.

It is well known that PCx is characterized by the inequality 〈x−PCx, z−PCx〉 ≤ 0 ∀z ∈ C
and PC is a firmly nonexpansive mapping. Thus, PC is nonexpansive. Moreover, PC
satisfies the following properties:

(i) 〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2, for every x, y ∈ C;

(ii) for x ∈ H and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C; (2.3.1)

(iii) for x ∈ H and y ∈ C,

||y − PC(x)||2 + ||x− PC(x)||2 ≤ ||x− y||2. (2.3.2)
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CHAPTER 3

On Split Generalized Equilibrium and Fixed Point Problems

3.1 Introduction

In this chapter, we introduce a shrinking projection method of inertial type with self-
adaptive step size for finding a common element of the set of solutions of split generalized
equilibrium problem and the set of common fixed points of a countable family of nonexpan-
sive multivalued mappings in real Hilbert spaces. The self-adaptive step size incorporated
helps to overcome the difficulty of having to compute the operator norm while the inertial
term accelerates the rate of convergence of the proposed algorithm. Under standard and
mild conditions, we prove a strong convergence theorem for the problems under consid-
eration and obtain some consequent results. Finally, we apply our result to solving split
mixed variational inequality and split minimization problems, and we present numerical
examples to illustrate the efficiency of our algorithm in comparison with other existing
algorithms.
Precisely, we study the following problem: Let C ⊆ H1 and Q ⊆ H2, where H1 and H2

are real Hilbert spaces. Let F1, φ1 : C × C → R and F2, φ2 : Q × Q → R be nonlinear
bifunctions, and A : H1 → H2 be a bounded linear operator. The SGEP is defined as
follows: Find x∗ ∈ C such that

F1(x∗, x) + φ1(x∗, x) ≥ 0, ∀ x ∈ C, (3.1.1)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) + φ2(y∗, y) ≥ 0, ∀ y ∈ Q. (3.1.2)

We denote the solution set of SGEP (3.1.1)-(3.1.2) by

SGEP (F1, φ1, F2, φ2) := {x∗ ∈ C : x∗ ∈ GEP (F1, φ1) and Ax∗ ∈ GEP (F2, φ2)}.
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3.2 Main results

In this section, we state and prove our strong convergence theorem for finding a common
element of the set of solutions of SGEP and the set of common fixed points of a countable
family of nonexpansive multivalued mappings in real Hilbert spaces.

Theorem 3.2.1. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si} be
a countable family of nonexpansive multivalued mappings of C into CB(C). Let F1, φ1 :
C × C → R, F2, φ2 : Q × Q → R be bifunctions satisfying Assumption 2.2.5. Let φ1, φ2

be monotone, φ1 be upper hemicontinuous, and F2 and φ2 be upper semicontinuous in the
first argument. Assume that Ω =

⋂∞
i=1 F (Si) ∩ SGEP (F1, φ1, F2, φ2) 6= ∅ and Sip = {p}

for each p ∈
⋂∞
i=1 F (Si). Let x0, x1 ∈ C with C1 = C, and let {xn} be a sequence generated

as follows:

wn = xn + θn(xn − xn−1),

un = T
(F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn,

zn = αn,0un +
∑n

i=1 αn,iyn,i, yn,i ∈ Siun,
Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2

n‖xn−1 − xn‖2} ,
xn+1 = PCn+1x1, n ∈ N,

(3.2.1)

γn =


τn‖(I−T

(F2,φ2)
rn )Awn‖2

‖A∗(I−T (F2,φ2)
rn )Awn‖2

if Awn 6= T
(F2,φ2)
rn Awn,

γ otherwise (γ being any nonnegative real number),

where 0 < a ≤ τn ≤ b < 1, {θn} ⊂ R, {αn,i} ⊂ (0, 1), such that
∑n

i=0 αn,i = 1, and
{rn} ⊂ (0,∞). Suppose that the following conditions hold:

(C1) lim infn→∞ rn > 0,

(C2) The limits limn→∞ αn,i ∈ (0, 1) exist for all i ≥ 0.

Then the sequence {xn} generated by (3.2.1), converges strongly to PΩx1.

Proof. We divide the proof into several steps as follows:
Step 1: First, we show that {xn} is well-defined for every n ∈ N.
By Lemma 2.2.1 and Lemma 2.2.6, we have that SGEP (F1, φ1, F2, φ2) and

⋂∞
i=1 F (Si) are

closed and convex subsets of C. Therefore, the solution set Ω is a closed and convex subset
of C. By Lemma 2.1.5, it then follows that Cn+1 is closed and convex for each n ∈ N. Let

p ∈ Ω, then we have p = T F1,φ1
rn p and Ap = T

(F2,φ2)
rn (Ap). Since T

(F1,φ1)
rn is nonexpansive, by

Lemma 2.1.2 we have

‖un − p‖2 = ‖T (F1,φ1)
rn (wn − γnA∗(I − T (F2,φ2)

rn )Awn)− p‖2

≤ ‖wn − γnA∗(I − T (F2,φ2)
rn )Awn − p‖2

= ‖wn − p‖2 + γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖2 − 2γn〈wn − p,A∗(I − T (F2,φ2)
rn )Awn〉.

(3.2.2)
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By the firmly nonexpansivity of I − T (F2,φ2)
rn , we get

〈wn − p,A∗(I − T (F2,φ2)
rn )Awn〉 = 〈Awn − Ap, (I − T (F2,φ2)

rn )Awn〉
= 〈Awn − Ap, (I − T (f2,φ2)

rn )Awn − (I − T (F2,φ2)
rn )Ap〉

≥ ‖(I − T (F2,φ2)
rn )Awn‖2. (3.2.3)

By substituting (3.2.3) into (3.2.2), applying the definition of γn and the condition on τn,
we obtain

‖un − p‖2 ≤ ‖wn − p‖2 + γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖2 − 2γn‖(I − T (F1,φ1)
rn )Awn‖2

= ‖wn − p‖2 − γn
[
2‖(I − T (F2,φ2)

rn )Awn‖2 − γn‖A∗(I − T (F1,φ1)
rn )Awn‖2

]
= ‖wn − p‖2 − γn(2− τn)‖(I − T (F2,φ2)

rn )Awn‖2 (3.2.4)

≤ ‖wn − p‖2. (3.2.5)

Applying Lemma (2.1.3) and using (3.2.5), we have

‖zn − p‖2 = ‖αn,0un +
n∑
i=1

αn,iyn,i − p‖2

≤ αn,0‖un − p‖2 +
n∑
i=1

αn,i‖yn,i − p‖2 − αn,0
n∑
i=1

αn,i‖un − yn,1‖2

= αn,0‖un − p‖2 +
n∑
i=1

αn,id(yn,i, Sip)
2 − αn,0

n∑
i=1

αn,i‖un − yn,i‖2

≤ αn,0‖un − p‖2 +
n∑
i=1

αn,iH(Siun, Sip)
2 − αn,0

n∑
i=1

αn,i‖un − yn,i‖2

≤ αn,0‖un − p‖2 +
n∑
i=1

αn,i‖un − p‖2 − αn,0
n∑
i=1

αn,i‖un − yn,i‖2

≤ ‖un − p‖2 − αn,0
n∑
i=1

αn,i‖un − yn,i‖2 (3.2.6)

≤ ‖un − p‖2. (3.2.7)

Also, by applying Lemma 2.1.2(iii), we get

‖wn − p‖2 = ‖
(
xn − p− θn(xn−1 − x1)

)
‖2,

= ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2. (3.2.8)

By using (3.2.5) and (3.2.8) in (3.2.7), we have

‖zn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2. (3.2.9)

This shows that p ∈ Cn+1, and it follows that Ω ⊂ Cn+1 ⊂ Cn. Therefore, PCn+1x1 is
well-defined for every x1 ∈ C and the sequence {xn} is well defined.
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Step 2: Next, we show that limn→∞ xn = q for some q ∈ C.
We know that Ω is a nonempty closed convex subset of H1, then there exists a unique
w ∈ Ω such that w = PΩx1. Since xn = PCnx1 and xn+1 ∈ Cn+1 ⊂ Cn for all n ∈ N, we
have

‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀ n ∈ N. (3.2.10)

Similarly, since Ω ⊂ Cn, we have

‖xn − x1‖ ≤ ‖w − x1‖, ∀ n ∈ N. (3.2.11)

Therefore, by (3.2.10) and (3.2.11) {‖xn − x1‖} is bounded and nondecreasing, and it
follows that {xn} is bounded. Consequently, {wn}, {un}, {zn} and {yn,i} are bounded.
Hence, limn→∞ ‖xn − x1‖ exists. From the construction of Cn, it is clear that xm =
PCmx1 ∈ Cm ⊂ Cn for m > n ≥ 1. By Lemma (2.2.2), we have that

‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2 → 0 as m,n→∞. (3.2.12)

Since limn→∞ ‖xn − x1‖ exists, then it follows that {xn} is a Cauchy sequence. By the
completeness of H1 and the closedness of C, we have that there exists an element q ∈ C
such that limn→∞ xn = q.

Step 3: We next show that limn→∞ ‖yn,i − un‖ = 0 for all i ∈ N.
From (3.2.12). we get

lim
n→∞

‖xn+1 − xn‖ = 0. (3.2.13)

Since xn+1 ∈ Cn+1, then we have

‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 − 2θn〈xn − xn+1, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2.

By (3.2.13), we obtain

lim
n→∞

‖zn − xn+1‖ = 0. (3.2.14)

By applying (3.2.13) and (3.2.14), we get

‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖ → 0, n→∞. (3.2.15)

Hence, limn→∞ zn = q.
By the triangle inequality we have that

‖wn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖
≤ ‖xn − xn‖+ θn‖xn − xn−1‖.

By (3.2.13), we obtain
lim
n→∞

‖wn − xn‖ = 0. (3.2.16)

Applying (3.2.15) and (3.2.16), we get

‖zn − wn‖ ≤ ‖zn − xn‖+ ‖xn − wn‖ → 0, n→∞. (3.2.17)
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From (3.2.5) and (3.2.6), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 − αn,0
n∑
i=1

αn,i‖un − yn,i‖2,

which implies that

αn,0αn,i‖un − yn,i‖2 ≤ αn,0

n∑
i=1

αn,i‖un − yn,i‖2

≤ ‖wn − p‖2 − ‖zn − p‖2

≤ ‖wn − zn‖(‖wn − p‖+ ‖zn − p‖).

By the conditions on {αn,i} and using (3.2.17), we get

lim
n→∞

‖un − yn,i‖ = 0, ∀ i ∈ N. (3.2.18)

Step 4: We show that ‖un − xn‖ = 0.
Substituting (3.2.4) into (3.2.7), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − γn(2− τn)‖(I − T (F2,φ2)
rn )Awn‖2. (3.2.19)

From this, we obtain

γn(2− τn)‖(I − T (F2,φ2)
rn )Awn‖2 ≤ ‖wn − p‖2 − ‖zn − p‖2

≤ ‖wn − zn‖(‖wn − p‖+ ‖zn − p‖).

By the definition of γn, condition on τn and (3.2.17), we get

τn(2− τn)||(I − T (F2,φ2)
rn )Awn||4

||A∗(I − T (F2,φ2)
rn )Awn||2

→ 0, n→∞,

which implies that

||(I − T (F2,φ2)
rn )Awn||2

||A∗(I − T (F2,φ2)
rn )Awn||

→ 0, n→∞.

Since ||A∗(I − T (F2,φ2)
rn )Awn|| is bounded, then it follows that

||(I − T (F2,φ2)
rn )Awn|| → 0, n→∞. (3.2.20)

From this, we obtain

‖A∗(I−T (F2,φ2)
rn )Awn‖ ≤ ‖A∗‖‖(I−T (F2,φ2)

rn )Awn‖ = ‖A‖‖(I−T (F2,φ2)
rn )Awn‖ → 0, n→∞.

(3.2.21)
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Since T
(F1,φ1)
rn is firmly nonexpansive and I−γnA∗(I−T (F2,φ2)

rn )A is nonexpansive by invoking
Lemma 2.1.2(ii), we obtain

‖un − p‖2 = ‖T (F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn − T (F1,φ1)
rn p‖2

≤ 〈T (F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn − T (F1,φ1)
rn p,

(I − γnA∗(I − T (F2,φ2)
rn )A)wn − p〉

= 〈un − p, (I − γnA∗(I − T (F2,φ2)
rn )A)wn − p〉

=
1

2

[
‖un − p‖2 + ‖(I − γnA∗(I − T (F2,φ2)

rn )A)wn − p‖2

− ‖un − wn + γnA
∗(I − T (F2,φ2)

rn )Awn‖2
]

≤ 1

2

[
‖un − p‖2 + ‖wn − p‖2 −

(
‖un − wn‖2 + γ2

n‖A∗(I − T (F2,φ2)
rn )Awn‖2

+ 2γn〈un − wn, A∗(I − T (F2,φ2)
rn )Awn〉

)]
,

which implies that

‖un − p‖2 ≤ ‖wn − p‖2 − ‖un − wn‖2 − γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖
+ 2γn〈wn − un, A∗(I − T (F2,φ2)

rn )Awn〉
≤ ‖wn − p‖2 − ‖un − wn‖2 + 2γn‖wn − un‖‖A∗(I − T (F2,φ2)

rn )Awn‖. (3.2.22)

Substituting (3.2.22) into (3.2.6), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖un − wn‖2 + 2γn‖wn − un‖‖A∗(I − T (F2,φ2)
rn )Awn‖.

From this, we get

‖un − wn‖2 ≤ ‖wn − p‖2 − ‖zn − p‖2 + 2γn‖wn − un‖‖A∗(I − T (F2,φ2)
rn )Awn‖

≤ ‖wn − p‖2 − ‖zn − p‖2 + 2γnM‖A∗(I − T (F2,φ2)
rn )Awn‖

≤ ‖wn − zn‖(‖wn − p‖+ ‖zn − p‖) + 2γnM‖A∗(I − T (F2,φ2)
rn )Awn‖, (3.2.23)

where M = sup{‖wn − un‖ : n ∈ N}.
By applying (3.2.17) and (3.2.21) to (3.2.23), we get

lim
n→∞

‖un − wn‖ = 0. (3.2.24)

Combining this together with (3.2.16) and (3.2.17), we have

‖un − zn‖ ≤ ‖un − wn‖+ ‖wn − zn‖ → 0, n→∞ (3.2.25)

and
‖un − xn‖ ≤ ‖un − wn‖+ ‖wn − xn‖ → 0, n→∞. (3.2.26)

Step 5: Next, we show that q ∈
⋂∞
i=1 F (Si).

By (3.2.18), for all i ∈ N, we get that

lim
n→∞

d(un, Siun) ≤ lim
n→∞

‖un − yn,i‖ = 0. (3.2.27)
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For each i ∈ N, we have

d(q, Siq) ≤ ‖q − un‖+ ‖un − yn,i‖+ d(yn,i, Siq)

≤ ‖q − un‖+ d(un, Siun) +H(Siun, Siq)

≤ 2‖q − un‖+ d(un, Siun).

By (3.2.26), we have that limn→∞ un = q. Then it follows from (3.2.27) that

d(q, Siq) = 0 ∀ i ∈ N.

This show that q ∈ Siq for all i ∈ N, which implies that q ∈
⋂∞
i=1 F (Si).

Step 6: Next, we show that q ∈ GEP (F1, φ1, F2, φ2).

First, we will show that q ∈ GEP (F1, φ1). Since un = T
(F1,φ1)
rn

(
I−γnA∗(I−T (F2,φ2)

rn )A
)
wn,

then by Lemma 2.2.6, we obtain

F1(un, y) + φ1(un, y) +
1

rn
〈y − un, un − wn − γnA∗(I − T (F2,φ2)

rn )Awn〉 ≥ 0, ∀ y ∈ C,

which implies that

F1(un, y)+φ1(un, y)+
1

rn
〈y−un, un−wn〉−

1

rn
〈y−un, γnA∗(I−T (F2,φ2)

rn )Awn〉 ≥ 0, ∀ y ∈ C.

Since F1 and φ1 are monotone, we have

1

rn
〈y−un, un−wn〉−

1

rn
〈y−un, γnA∗(I−T (F2,φ2)

rn )Awn〉 ≥ F1(y, un)+φ1(y, un), ∀ y ∈ C.

By (3.2.16) and (3.2.24), and limn→∞ xn = q, we obtain limn→∞ un = q. Then by Condition
(C1), (3.2.20), (3.2.24), Assumption 2.2.5, (A4) and (A7), it follows that

0 ≥ F1(y, q) + φ1(y, q) ∀ y ∈ C.

Let yt = ty + (1 − t)q for all t ∈ (0, 1] and y ∈ C. Then, yt ∈ C, and thus F1(yt, q) +
φ1(yt, q) ≤ 0. Therefore, by Assumption 2.2.5, (A1)-(A7), we obtain

0 ≤ F1(yt, yt) + φ1(yt, yt)

≤ t
(
F1(yt, y) + φ1(yt, y)

)
+ (1− t)

(
F1(yt, q) + φ1(yt, q)

)
≤ t
(
F1(yt, y) + φ1(yt, y)

)
+ (1− t)

(
F1(q, yt) + φ1(q, yt)

)
≤ F1(yt, y) + φ1(yt, y).

This implies that,
F1(yt, y) + φ1(yt, y) ≥ 0, ∀ y ∈ C.

Letting t→ 0, and by using assumption together with the upper hemicontinuity of φ1, we
obtain

F1(q, y) + φ1(q, y) ≥ 0, ∀y ∈ C.
This implies that q ∈ GEP (F1, φ1).
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We next show that Aq ∈ GEP (F2, φ2). Since A is a bounded linear operator, then
Awn → Aq. Thus, from (3.2.20) we have

T (F2,φ2)
rn Awn → Aq. (3.2.28)

By the definition of T
(F2,φ2)
rn Awn, we have

F2

(
T (F2,φ2)
rn Awn, y

)
+φ2(T (F2,φ2)

rn Awn, y)+
1

rn
〈y−T (F2,φ2)

rn Awn, T
(F2,φ2)
rn Awn−Awn〉 ≥ 0, ∀y ∈ Q.

Since F2 and φ2 are upper semicontinuous in the first argument, then it follows from
(3.2.28) that,

F2(Aq, y) + φ2(Aq, y) ≥ 0, ∀ y ∈ Q.

This implies that Aq ∈ GEP (F2, φ2). Hence, q ∈ SGEP (F1, φ1, F2, φ2).

Step 7: Lastly, we show that q = PΩxi.
We know that xn = Pcnx1 and Ω ⊂ Cn, then it follows that 〈x1 − xn, xn − p〉 ≥ 0 for all
p ∈ Ω. Hence, we have 〈x1 − q, q − p〉 ≥ 0 for all p ∈ Ω. This implies that q = PΩx1.

Consequently, we can conclude by Steps 1-7 that {xn} converges strongly to q = PΩx1 as
required.

If φ1 = φ2 = 0 in (3.1.1)-(3.1.2), then the SGEP reduces to the SEP. Hence, from Theorem
3.2.1, we obtain the following consequent result for approximating a common element of
the set of solutions of SEP and the set of common fixed points of a countable family of
nonexpansive multivalued mappings.

Corollary 3.2.2. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}
be a countable family of nonexpansive multivalued mappings of C into CB(C). Let F1 :
C ×C → R, F2 : Q×Q→ R be bifunctions satisfying Assumption 2.2.5. Let F2 be upper
semicontinuous in the first argument. Assume that Ω =

⋂∞
i=1 F (Si) ∩ SEP (F1, F2) 6= ∅

and Sip = {p} for each p ∈
⋂∞
i=1 F (Si). Let x0, x1 ∈ C with C1 = C, and let {xn} be a

sequence generated as follows:

wn = xn + θn(xn − xn−1),

un = T F1
rn (I − γnA∗(I − T F2

rn )A)wn,

zn = αn,0un +
∑n

i=1 αn,iyn,i, yn,i ∈ Siun,
Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2

n‖xn−1 − xn‖2} ,
xn+1 = PCn+1x1, n ∈ N,

(3.2.29)

γn =


τn‖(I−T

F2
rn )Awn‖2

‖A∗(I−TF2rn )Awn‖2
if Awn 6= T F2

rn Awn,

γ otherwise (γ being any nonnegative real number).

where 0 < a ≤ τn ≤ b < 1, {θn} ⊂ R, {αn,i} ⊂ (0, 1), such that
∑n

i=0 αn,i = 1, and
{rn} ⊂ (0,∞). Suppose that the following conditions hold:
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(C1) lim infn→∞ rn > 0,

(C2) The limits limn→∞ αn,i ∈ (0, 1) exist for all i ≥ 0.

Then the sequence {xn} generated by (3.2.29), converges strongly to PΩx1.

By the properties of the best approximation operator, we obtain the following consequent
result.

Corollary 3.2.3. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si} be
a countable family of multivalued mappings of C into P (C) such that PSi is nonexpansive
and I − Si is demiclosed at zero for each i ∈ N. Let F1, φ1 : C × C → R, F2, φ2 :
Q × Q → R be bifunctions satisfying Assumption 2.2.5. Let φ1, φ2 be monotone, φ1

be upper hemicontinuous, and F2 and φ2 be upper semicontinuous in the first argument.
Assume that Ω =

⋂∞
i=1 F (Si) ∩ SGEP (F1, φ1, F2, φ2) 6= ∅. Let x0, x1 ∈ C with C1 = C,

and let {xn} be a sequence generated as follows:

wn = xn + θn(xn − xn−1),

un = T
(F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn,

zn = αn,0un +
∑n

i=1 αn,iyn,i, yn,i ∈ PSiun,
Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2

n‖xn−1 − xn‖2} ,
xn+1 = PCn+1x1, n ∈ N,

(3.2.30)

γn =


τn‖(I−T

(F2,φ2)
rn )Awn‖2

‖A∗(I−T (F2,φ2)
rn )Awn‖2

if Awn 6= T
(F2,φ2)
rn Awn,

γ otherwise (γ being any nonnegative real number).

where 0 < a ≤ τn ≤ b < 1, {θn} ⊂ R, {αn,i} ⊂ (0, 1), such that
∑n

i=0 αn,i = 1, and
{rn} ⊂ (0,∞). Suppose that the following conditions hold:

(C1) lim infn→∞ rn > 0,

(C2) The limits limn→∞ αn,i ∈ (0, 1) exist for all i ≥ 0.

Then the sequence {xn} generated by (3.2.30), converges strongly to PΩx1.

Proof. Since PSi satisfies the common endpoint condition and F (Si) = F (PSi) for each
i ∈ N, then the result follows from Theorem 3.2.1.

3.3 Applications

In this section, we apply our main result to approximate the solutions of some important
optimization problems.
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3.3.1 Split mixed variational inequality and fixed point problems

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let
B : H → H be a single-valued mapping and φ : C × C → R be a bifunction. The Mixed
Variational Inequality Problem (MVIP) is defined as follows:

Find x∗ ∈ C such that 〈y − x∗, Bx∗〉+ φ(x∗, y) ≥ 0, ∀ y ∈ C. (3.3.1)

We denote the set of solution of MVIP by MV I(C,B, φ). If we take φ = 0 in (3.3.1), then
the MVIP reduces to the Variational Inequality Problem (VIP), which is to find a point
x∗ ∈ C such that 〈y−x∗, Bx∗〉 ≥ 0, ∀ y ∈ C. The solution set of the VIP is denoted by
V I(C,B). Variational inequality was first introduced independently by Fichera [26] and
Stampacchia [69]. The VIP is a useful mathematical model that unifies many important
concepts in applied mathematics, such as necessary optimality conditions, complemen-
tarity problems, network EPs, and systems of nonlinear equations (see [24, 27, 32, 34]).
Several methods have been proposed and analyzed for solving VIP and related OPs, see
[1, 4, 15, 29, 35, 41, 79, 81] and references therein.

Here, we apply our result to study the following Split Mixed Variational Inequality Problem
(SMVIP):

Find x∗ ∈
∞⋂
i=1

F (Si) such that 〈x− x∗, B1x
∗〉+ φ1(x∗, x) ≥ 0, ∀ x ∈ C, (3.3.2)

and such that

y∗ = Ax∗ ∈ Q solves 〈y − y∗, B2y
∗〉+ φ2(y∗, y) ≥ 0, ∀ y ∈ Q, (3.3.3)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces H1 and
H2, respectively, {Si} is a countable family of nonexpansive multivalued mappings of C
into CB(C), A : H1 → H2 is a bounded linear operator, B1 : C → H1, B2 : Q →
H2 are monotone mappings, and φ1 : C × C → R, φ2 : Q × Q → R are bifunctions
satisfying assumptions (A5)-(A7). Moreover, φ1, φ2 are monotone with φ1 being upper
hemicontinuous and φ2 upper semicontinuous in the first argument. We denote the solution
set of problem (3.3.2)-(3.3.3) by Ω and assume that Ω 6= ∅. By taking Fj(x, y) := 〈y −
x,Bjx〉, j = 1, 2, then the SMVIP (3.3.2)-(3.3.3) becomes the problem of finding a solution
of the SGEP (3.1.1)-(3.1.2) which is also a solution of the countable family of nonexpansive
multivalued mappings {Si}. In addition, all the conditions of Theorem 3.2.1 are satisfied.
Hence, Theorem 3.2.1 provides a strong convergence theorem for approximating a common
solution of SMVIP and fixed point of a countable family of nonexpansive multivalued
mappings.

3.3.2 Split minimization and fixed point problems

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respec-
tively. Let f : C → R, g : Q→ R be two operators and A : H1 → H2 be a bounded linear
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operator, then the Split Minimization Problem (SPM) is defined as follows:

Find x∗ ∈ C such that f(x∗) ≤ f(x), ∀ x ∈ C, (3.3.4)

and such that
y∗ = Ax∗ ∈ Q solves g(y∗) ≤ g(y), ∀ y ∈ Q. (3.3.5)

We denote the solution set of SMP (3.3.4)-(3.3.5) by Φ and assume that Φ 6= ∅. For
some recent results on iterative algorithms for solving MP, (see [7, 8] and the references
contained therein). Let F1(x, y) := f(y)−f(x) for all x, y ∈ C and F2(u, v) := f(v)−f(u)
for all u, v ∈ Q, and taking φ1 = φ2 = 0 in the SGEP (3.1.1)-(3.1.2). Then F1(x, y)
and F2(u, v) satisfy assumptions (A1)-(A4) provided f and g are convex and lower semi-
continuous on C and Q, respectively. Clearly, φ1 and φ2 satisfy assumptions (A5)-(A7).
Therefore, from Theorem 3.2.1 we obtain a strong convergence theorem for approximating
a common solution of SMP and fixed point problem for a countable family of nonexpansive
multivalued mappings in real Hilbert spaces.

3.4 Numerical examples

In this section, we present some numerical experiments to illustrate the performance of
our algorithm as well as comparing it with Algorithm 1.2.2 in the literature. All numerical
computations were carried-out using Matlab version R2019(b).

We define the sequences {αn,i} as follows for each i ∈ N ∪ {0} and n ∈ N :

αn,i =


1

bi+1 ( n
n+1

), n > i,

1− n
n+1

(
∑n

k=1
1
bk

), n = i,

0, n < i,

(3.4.1)

where b > 1.

Example 3.4.1. Let H1 = H2 = R and C = Q = [0, 10]. Let A : H1 → H2 be defined by
Ax = x

3
for all x ∈ H1. Then, we have that A∗y = y

3
for all y ∈ H2. For x ∈ C, i ∈ N, we

define the multivalued mappings Si : C → CB(C) as follows:

Si(x) =

[
0,

x

10i

]
, ∀ i ∈ N. (3.4.2)

It can easily be checked that Si is nonexpansive for all i ∈ N, Si(0) = {0}, and
⋂∞
i=1 F (Si) =

{0}. We define the bifunctions F1, φ1 : C × C → R by F1(x, y) = y2 + 3xy − 4x2 and
φ1(x, y) = y2 − x2 for x, y ∈ C, and F2, φ2 : Q × Q → R by F2(w, v) = 2v2 + wv − 3w2

and φ2(w, v) = w − v for w, v ∈ Q. Choose rn = n−3
n+2

, θn = 0.8, and τn = 0.7. It can easily
be verified that all the conditions of Theorem 3.2.1 are satisfied with Ω = {0}. Now, we
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compute T
(F1,φ1)
r (x). We find u ∈ C such that for all z ∈ C

0 ≤ F1(u, z) + φ1(u, z) +
1

r
〈z − u, u− x〉

= 2z2 + 3uz − 5u2 +
1

r
〈z − u, u− x〉

⇔
0 ≤ 2rz2 + 3ruz − 5ru2 + (z − u)(u− x)

= 2rz2 + 3ruz − 5ru2 + uz − xz − u2 + ux

= 2rz2 + (3ru+ u− x)z + (−5ru2 − u2 + ux).

Let h(z) = 2rz2 + (3ru+ u− x)z + (−5ru2 − u2 + ux). Then h(z) is a quadratic function
of z with coefficients a = 2r, b = 3ru+ u− x, and c = −5ru2− u2 + ux. We determine the
discriminant 4 of h(z) as follows:

4 = (3ru+ u− x)2 − 4(2r)(−5ru2 − u2 + ux)

= 49r2u2 + 14ru2 − 14rux+ u2 − 2ux+ x2

= ((7r + 1)u− x)2. (3.4.3)

By Lemma 2.2.6, T
(F1,φ1)
r is single-valued. Hence, it follows that h(z) has at most one

solution in R. Therefore, from (3.4.3) we have that u = x
7r+1

. This implies that T
(F1,φ1)
r (x) =

x
7r+1

. Similarly, we compute T
(F2,φ2)
r (v). Find w ∈ Q such that for all d ∈ Q

T (F2,φ2)
s (v) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

s
〈d− w,w − v〉 ≥ 0, ∀ d ∈ Q

}
.

By following similar procedure as above, we obtain w = v+s
5s+1

. This implies that T
(F2,φ2)
s (v) =

v+s
5s+1

. We take yn,i = un
10i

for all i ∈ N. Then Algorithm (3.2.1) becomes

wn = xn + θn(xn − xn−1),

un = wn
7rn+1

− γn 15wnrn+2wn−3rn
9(7rn+1)(5rn+1)

,

zn = αn,0un +
∑n

i=1 αn,i
un
10i
,

Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2} ,

xn+1 = PCn+1x1, n ∈ N,

where

γn =


τn‖(I−T

(F2,φ2)
rn )Awn‖2

‖A∗(I−T (F2,φ2)
rn )Awn‖2

if Awn 6= T
(F2,φ2)
rn Awn,

γ otherwise (γ being any nonnegative real number).

In this example, we set the parameter b on {αn,i} in (3.4.1) to be b = 50 and we choose
different initial values as follows:
Case Ia: x0 = 11

2
, x1 = 2

5
;

Case Ib: x0 = 8, x1 = 1;
Case Ic: x0 = 5, x1 = 7

10
;
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Case Id: x0 = 6, x1 = 4
5
.

We compare the performance of our Algorithm (3.2.1) with Algorithm (1.2.2). The stop-
ping criterion used for our computation is |xn+1−xn| < 10−4. We plot the graphs of errors
against the number of iterations in each case. The numerical results are reported in Figure
3.1 and Table 3.1.

Table 3.1: Numerical results for Example 3.4.1

Alg. 1.2.2 Alg. 3.2.1
Case Ia CPU time (sec) 2.1794 0.1722

No. of Iter. 13 3
Case Ib CPU time (sec) 2.2136 0.1514

No. of Iter. 14 3
Case Ic CPU time (sec) 2.2338 0.1517

No. of Iter. 14 3
Case Id CPU time (sec) 2.1757 0.1495

No. of Iter. 14 3

Example 3.4.2. Let H1 = H2 = L2([0, 1]) with the inner product defined as

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀x, y ∈ L2([0, 1]).

Let
C := {x ∈ H1 : 〈a, x〉 = d},

where a = 2t2 and d ≥ 0. Here, we have

PC(x) = x+
d− 〈a, x〉
||a||2

a.

Also, let
Q := {x ∈ H2 : 〈c, x〉 ≤ e},

where c = t
3

and e = 1, we get

PQ(x) = x+ max

{
0,
e− 〈c, x〉
||c||2

c

}
.

We define F1 : C × C → R and F2 : Q × Q → R by F1(x, y) = 〈L1x, y − x〉 and

F2(x, y) = 〈L2x, y − x〉, where L1x(t) = x(t)
2

and L2x(t) = x(t)
5
. It can easily be verified

that F1 and F2 satisfy conditions (A1)-(A4). Also, take φ1 = φ2 = 0. Moreover, let A :

L2([0, 1])→ L2([0, 1]) be defined by Ax(t) = x(t)
2

and A∗y(t) = y(t)
2
. Then, A is a bounded

linear operator. We consider the case for which the countable family of nonexpansive
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Figure 3.1: Top left: Case Ia; Top right: Case Ib; Bottom left: Case Ic; Bottom right:
Case Id.
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multivalued mappings {Si} are singled-valued. Define a countable family of nonexpansive
mappings Si : L2([0, 1])→ L2([0, 1]) by

(Six)(t) =

∫ 1

0

tix(s)ds for all t ∈ [0, 1].

Observe that Si is nonexpansive for each i ∈ N. Choose θn = 0.9, τn = 0.8, rn = n
n+1

. It
can easily be checked that all the conditions on the control sequences in Theorem 3.2.1
are satisfied. Next, we compute T

(F1,φ1)
r (x). We find z ∈ C such that for all y ∈ C

F1(z, y) + φ1(z, y) +
1

r
〈y − z, z − x〉 ≥ 0

⇔〈z
2
, y − z〉+

1

r
〈y − z, z − x〉 ≥ 0

⇔z

2
(y − z) +

1

r
(y − z)(z − x) ≥ 0

⇔(y − z)[rz + 2(z − x)] ≥ 0

⇔(y − z)[(r + 2)z − 2x] ≥ 0. (3.4.4)

According to Lemma 2.2.6,

T (F1,φ1)
r (x) =

{
z ∈ C : F1(z, y) + φ1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C

}
,

is single-valued for all x ∈ H1. Hence, from (3.4.4) we have that z = 2x
r+2

. This implies

that T
(F1,φ1)
r (x) = 2x

r+2
. Similarly, we compute T

(F2,φ2)
r (v). We find w ∈ Q such that for all

d ∈ Q

T (F2,φ2)
s (v) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

s
〈d− w,w − v〉 ≥ 0, ∀ d ∈ Q

}
.

Following similar procedure as above, we obtain w = 5v
s+5

. This implies that T
(F2,φ2)
s (v) =

5v
s+5

. Then Algorithm (3.2.1) becomes

wn = xn + θn(xn − xn−1),

un = 2wn
rn+2
− γn 2rn+5

2(rn+5)(rn+2)
wn,

zn = αn,0un +
∑n

i=1 αn,iSiun,

Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2} ,

xn+1 = PCn+1x1, n ∈ N,

where

γn =


τn‖(I−T

(F2,φ2)
rn )Awn‖2

‖A∗(I−T (F2,φ2)
rn )Awn‖2

if Awn 6= T
(F2,φ2)
rn Awn,

γ otherwise (γ being any nonnegative real number).

Here, we set the parameter b on {αn,i} in (3.4.1) to be b = 2 and we choose different initial
values as follows:
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Case Ia: x0 = t3, x1 = t2 + t4;
Case Ib: x0 = t2 + t6 + t8, x1 = t3;
Case Ic: x0 = t5 + t9 + t11, x1 = t5;
Case Id: x0 = t+ t2 + t4 + t6, x1 = t2 + t7.

We compare the performance of our Algorithm (3.2.1) with Algorithm (1.2.2). The stop-
ping criterion used for our computation is ||xn+1 − xn|| < 10−4. We plot the graphs of
errors against the number of iterations in each case. The numerical results are reported
in Figure 3.2 and Table 3.2.

Table 3.2: Numerical results for Example 3.4.2

Alg. 1.2.2 Alg. 3.2.1
Case Ia CPU time (sec) 2.2241 1.3724

No of Iter. 23 19
Case Ib CPU time (sec) 2.2247 1.2772

No. of Iter. 23 18
Case Ic CPU time (sec) 2.1359 1.3056

No of Iter. 22 18
Case Id CPU time (sec) 2.3458 1.4506

No of Iter. 25 20
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CHAPTER 4

Inertial Algorithm for Solving Equilibrium, Variational Inclusion and

Fixed Point Problems

4.1 Introduction

In this Chapter, we study the problem of finding common solutions of Equilibrium Problem
(EP), Variational Inclusion Problem (VIP)and Fixed Point Problem (FPP) for an infinite
family of strict pseudocontractive mappings. We propose an iterative scheme which com-
bines inertial technique with viscosity method for approximating common solutions of
these problems in Hilbert spaces. Under mild conditions, we prove a strong theorem for
the proposed algorithm and apply our results to approximate the solutions of other opti-
mization problems. Finally, we present a numerical example to demonstrate the efficiency
of our algorithm in comparison with other existing methods in the literature. Our results
improve and complement contemporary results in the literature in this direction.

More precisely, we study the following problem: Let H be a real Hilbert space with inner
product 〈·, ·〉 and induced norm ‖ · ‖, and let A : H → H be a single-valued operator and
B : H → 2H be a multi-valued operator. The Variational Inclusion Problem (VIP) is
formulated as finding a point x̂ ∈ H such that

0 ∈ (A+B)x̂.

Let C be a nonempty closed convex subset of a real Hilbert space H and let F : C×C → R
be a bifunction. The Equilibrium Problem (shortly, EP) in the sense of Blum and Oettli
[11] is to find x̂ ∈ C such that

F (x̂, y) ≥ 0, ∀ y ∈ C.

32



4.2 Preliminaries

In this section, we recall some useful definitions and lemmas required for establishing our
main results.

Lemma 4.2.1. [77, 78] Let H be a real Hilbert space, λ ∈ (0, 1), then ∀x, y ∈ H, we have

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;

(ii) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2;

(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 4.2.2. [76, 77] For each x1, . . . , xm ∈ H and α1, . . . , αm ∈ [0, 1] with
∑m

i=1 αi = 1,
the following holds:

||α1x1 + . . .+ αmxm||2 =
m∑
i=1

αi||xi||2 −
∑

1≤i<j≤m

αiαj||xi − xj||2.

Lemma 4.2.3. [? ] Let {an}, {cn} ⊂ R+, {σn} ⊂ (0, 1) and {bn} ⊂ R be sequences such
that

an+1 ≤ (1− σn)an + bn + cn for all n ≥ 0.

Assume
∑∞

n=0 |cn| <∞. Then the following results hold:
(1) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
(2) If we have

∞∑
n=0

σn =∞ and lim sup
n→∞

bn
σn
≤ 0,

then limn→∞ an = 0.

Lemma 4.2.4. [2] Let {an} be a sequence of non-negative real numbers, {αn} be a sequence
in (0, 1) with

∑∞
n=1 αn =∞ and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn, for all n ≥ 1,

if lim supk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying lim infk→∞(ank+1
−

ank) ≥ 0, then limn→∞ an = 0.

Definition 4.2.1. Let H be a real Hilbert space H. A mapping T : H → H is said to be:

(1) L-Lipschitz continuous, where L > 0, if

||Tx− Ty|| ≤ L||x− y||, ∀ x, y ∈ H;

if L ∈ [0, 1), then T is called a contraction mapping;

(2) nonexpansive if T is 1−Lipschitz continuous;
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(3) k-strictly pseudo-contractive if there exists a constant k ∈ [0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2, ∀ x, y ∈ H;

(4) monotone if
〈Tx− Ty, x− y〉 ≥ 0, ∀ x, y ∈ H;

(5) k-inverse-strongly monotone (k-ism), if there exists a constant k > 0 such that

〈Ax− Ay, x− y〉 ≥ k‖Ax− Ay‖2, ∀ x, y ∈ H;

(6) firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀ x, y ∈ H,

or equivalently,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ H.

Observe that the class of k-strict pseudo-contractive mappings properly contains the class
of nonexpansive mappings. That is, T is nonexpansive if and only if T is 0-strict pseudo-
contractive. It is known that if T is a k-strict pseudo-contractiion and F (T ) 6= ∅, then
F (T ) is a closed convex subset of H (see [92]). Strict pseudo-contractions have many
applications, due to their ties with inverse strongly monotone operators. It is known that,
if B is a strongly monotone operator, then T = I − B is a strict pseudo-contraction, and
so we can recast a problem of zeros for B as a fixed point problem for T, and vice versa
(see e.g. [17, 67]).

Lemma 4.2.5. [92] Let C be a nonempty closed convex subset of a real Hilbert space H
and S : C → C be a k-strict pseudo-contractive mapping. Define a mapping T : C → C
by Tx = αx+ (1− α)Sx for all x ∈ C and α ∈ [k, 1). Then T is a nonexpansive mapping
such that F (T ) = F (S).

Definition 4.2.2. [91] Let {Sn} be a sequence of kn-strict pseudo-contractions. Define
S ′n = tnI + (1 − tn)Sn, tn ∈ [kn, 1). Then, by Lemma 4.2.5, S ′n is nonexpansive. In this
paper, we consider the mapping Wn defined by

Un,n+1 = I,

Un,n = ζnS
′
nUn,n+1 + (1− ζn)I,

Un,n−1 = ζn−1S
′
n−1Un,n + (1− ζn−1)I,

· · · ,
Un,k = ζkS

′
kUn,k+1 + (1− ζk)I,

Un,k−1 = ζk−1S
′
k−1Un,k + (1− ζk−1)I,

· · · ,
Un,2 = ζ2S

′
2Un,3 + (1− ζ2)I,

Wn = Un,1 = ζ1S
′
1Un,2 + (1− ζ1)I.

(4.2.1)

where {ζi} is a sequence of real numbers such that 0 ≤ ζi ≤ 1 for all i ≥ 1. For each n ≥ 1,
such a mapping Wn is nonexpansive.
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We have the following lemmas related to the mapping Wn, which are needed in proving
our main results.

Lemma 4.2.6. [66] Let {S ′i} be an infinite family of nonexpansive mappings on a Hilbert
space H such that

⋂∞
i=1 F (S ′i) 6= ∅ and {ζi} be a real sequence such that 0 < ζi ≤ b < 1 for

all i ≥ 1. Then we have the following:

(1) Wn is nonexpansive and F (Wn) =
⋂n
i=1 F (S ′i) for each n ≥ 1;

(2) for each x ∈ H and for each positive integer k, the limn→∞ Un,kx exists;

(3) the mapping W defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x for all x ∈ H (4.2.2)

is a nonexpansive mapping satisfying F (W ) =
⋂∞
i=1 F (S ′i), which is called the modi-

fied W -mapping generated by S1, S2, · · · , ζ1, ζ2, · · · and t1, t2, · · · .

By combining Lemma 4.2.5 and Lemma 4.2.6, it follows that F (W ) =
⋂∞
i=1 F (S ′i) =⋂∞

i=1 F (Si).

Lemma 4.2.7. [16] Let {S ′i} be an infinite family of nonexpansive mappings on a Hilbert
space H such that

⋂∞
i=1 F (S ′i) 6= ∅ and {ζi} be a real sequence such that 0 < ζi ≤ b < 1 for

all i ≥ 1, where b is a positive real number. If K is any bounded subset of H, then

lim
n→∞

sup
x∈K
||Wx−Wnx|| = 0.

Lemma 4.2.8. [57] Each Hilbert space H satisfies the Opial condition, that is, for any
sequence {xn} with xn ⇀ x, the inequality lim infn→∞ ||xn − x|| < lim infn→∞ ||xn − y||
holds for every y ∈ H with y 6= x.

Lemma 4.2.9. [92] If S is a k-strict pseudo-contraction on closed convex subset C of a
real Hilbert space H, then I − S is demiclosed at any point y ∈ H.

Lemma 4.2.10. [84] Let A : H → H be a k-inverse-strongly monotone mapping, then

1. A is 1
k
-Lipschitz continuous and monotone mapping;

2. if λ is any constant in (0, 2], then the mapping I − λA is nonexpansive , where I is
the identity mapping on H.

Definition 4.2.3. Let B : H → 2H be a multi-valued maximal monotone mapping.
Then the resolvent mapping JBλ : H → H associated with B is defined by JBλ (x) =
(I + λB)−1(x) ∀ x ∈ H, for some λ > 0, where I is the identity operator on H.

It is well known that if B : H → 2H is a multi-valued maximal monotone mapping and
λ > 0, then Dom(JBλ ) = H, and JBλ is single-valued and firmly nonexpansive mapping (see
[83] for more details on maximal monotone mapping).
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Assumption 4.2.11. For solving the EP, we assume that the bifunction F : C ×C → R
satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) F is upper hemicontinuous, that is, for all x, y, z ∈ C, limt↓0 F
(
tz + (1 − t)x, y

)
≤

F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 4.2.12. [48] Let C be a nonempty closed convex subset of a Hilbert space H and
F : C×C → R be a bifunction satisfying Assumption 4.2.11. For r > 0 and x ∈ H, define
a mapping T Fr : H → C as follows:

T Fr (x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C}. (4.2.3)

Then T Fr is well defined and the following hold:

(1) for each x ∈ H,T Fr (x) 6= ∅;

(2) T Fr is single-valued;

(3) T Fr is firmly nonexpansive, that is, for any x, y ∈ H,

‖T Fr x− T Fr y‖2 ≤ 〈T Fr x− T Fr y, x− y〉;

(4) F (T Fr ) = EP (F );

(5) EP (F ) is closed and convex.

Lemma 4.2.13. [46] Let E be a real Banach space. Let B : E → 2E maximal monotone
operator and A : E → E be a k-inverse strongly monotone mapping on E. Define Tλ =
(I + λB)−1(I − λA), λ > 0. Then we have

(i) F (Tλ) = (A+B)−1(0);

(ii) for 0 < s ≤ λ and x ∈ E, ‖x− Tsx‖ ≤ 2‖x− Tλx‖.

Lemma 4.2.14. [83] Let B : H → 2H be a set-valued maximal monotone mapping and
λ > 0. Then JBλ is a single-valued and firmly nonexapansive mapping.
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4.3 Main results

In this section, we present the proposed algorithm and investigate its convergence. Let C
be a nonempty closed convex subset of a real Hilbert space H. Let A : H → H be a k−ism
and B : H → 2H be a maximal monotone mapping. Let f : H → H be a contraction
mapping with coefficient ρ ∈ (0, 1). Let {Wn} be a sequence defined by (4.2.1) and let
F : C × C → R be a bifunction satisfying Assumption 4.2.11. Suppose that the solution
set denoted by Γ = (A+ B)−1(0) ∩ EP (F ) ∩

⋂∞
i=1 F (Si) is nonempty, where Si : H → H

is an infinite family of ki-strict pseudo-contractions. We establish the convergence of the
algorithm under the following conditions on the control parameters:

(C1) Let {δn}, {ξn}, {µn} ⊂ (0, 1), {βn} ⊂ (0, 1) such that limn→∞ βn = 0 and
∑∞

n=0 βn =
∞;

(C2) Let α > 0, {θn} be a positive sequence such that limn→∞
θn
βn

= 0;

(C3) 0 < lim infn→∞ λn < lim supn→∞ λn < 2k, {rn} ⊂ (0,∞) such that lim infn→∞ rn >
0.

Now, the proposed algorithm is presented as follows:

Algorithm 4.3.1.

Step 0 : Select initial data x0, x1 ∈ H and set n = 1.

Step 1. Given the (n− 1)th and nth iterates, choose αn such that 0 ≤ αn ≤ α̂n with α̂n
defined by

α̂n =

{
min

{
α, θn

||xn−xn−1||

}
, if xn 6= xn−1,

α, otherwise.
(4.3.1)

Step 2: Compute
wn = xn + αn(xn − xn−1).

Step 3: Compute

F (un, y) +
1

rn
〈y − un, un − wn〉 ≥ 0, ∀ y ∈ H.

Step 4: Compute
vn = δnwn + (1− δn)un.

Step 5: Compute
zn = (I + λnB)−1(I − λnA)vn.

Step 6: Compute
xn+1 = βnf(xn) + ξnxn + µnWnzn.

Set n := n + 1 and return to Step 1.
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Remark 4.3.2. By conditions (C1) and (C2), one can easily verify from (4.3.1) that

lim
n→∞

αn||xn − xn−1|| = 0 and lim
n→∞

αn
βn
||xn − xn−1|| = 0. (4.3.2)

Now, we state the strong convergence theorem as follows:

Theorem 4.3.3. Suppose that {xn} is a sequence generated by Algorithm 4.3.1 such that
conditions (C1)-(C3) are satisfied and Γ 6= ∅. Then the sequence {xn} converges strongly
to an element x̂ ∈ Γ, where x̂ = PΓ ◦ f(x̂).

First, we prove some lemmas which will be employed in establishing Theorem 4.3.3.

Lemma 4.3.4. Let {xn} be a sequence generated by Algorithm 4.3.1, then {xn} is bounded.

Proof. Let q ∈ Γ, then by Lemma 4.2.14 and the conditions on the control parameters, we
have

‖zn − q‖2 =‖(I + λnB)−1(I − λnA)vn − (I − λnB)−1(I − λnA)q‖2

≤ ‖vn − q − λn(Avn − Aq)‖2

= ‖vn − q‖2 − 2λn〈Avn − Aq, vn − q〉+ λ2
n‖Avn − Aq‖2

≤ ‖vn − q‖2 − 2λnk‖Avn − Aq‖2 + λ2
n‖Avn − Aq‖

= ‖vn − q‖2 − (2k − λn)λn‖Avn − Aq‖2 (4.3.3)

≤ ‖vn − q‖2. (4.3.4)

Thus, from (4.3.4), we have
‖zn − q‖ ≤ ‖vn − q‖. (4.3.5)

From the definition of wn, we have

‖wn − q‖ = ‖xn + αn(xn − xn−1)− q‖
≤ ‖xn − q‖+ αn‖xn − xn−1‖

= ‖xn − q‖+ βn
αn
βn
‖xn − xn−1‖. (4.3.6)

From Remark 4.3.2, it is known that limn→∞
αn
βn
‖xn − xn−1‖ = 0. Then there exists a

constant L1 > 0 such that αn
βn
‖xn−xn−1‖ ≤ L1, for all n ≥ 1. Thus from (4.3.6), we obtain

‖wn − q‖ ≤ ‖xn − q‖+ βnL1. (4.3.7)

Let T Frnwn = {un ∈ C : F (un, y) + 1
rn
〈y−un, un−wn〉 ≥ 0}. This implies that un = T Frnwn.

Since q ∈ Γ, then T Frnq = q. By the nonexpansiveness of T Frn , we have

||un − q|| = ||T Frnwn − q|| ≤ ||wn − q||. (4.3.8)

From the definition of vn and by applying (4.3.8), we have

‖vn − q‖ = ‖δnwn + (1− δn)un − q‖
≤ δn‖wn − q‖+ (1− δn)‖un − q‖
≤ δn‖wn − q‖+ (1− δn)‖wn − q‖
= ‖wn − q‖. (4.3.9)
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By combining (4.3.5), (4.3.7) and (4.3.9), we have

‖zn − q‖ ≤ ‖xn − q‖+ βnL1. (4.3.10)

Now, by applying (4.3.5), (4.3.6) and (4.3.9), we obtain

‖xn+1 − q‖ = ‖βnf(xn) + ξnxn + µnWnzn − q‖
= ||βn(f(xn)− f(q)) + βn(f(q)− q) + ξn(xn − q) + µn(Wnzn − q)||
≤ βnρ||xn − q||+ βn||fq − q||+ ξn||xn − q||+ µn||zn − q||
≤ βnρ||xn − q||+ βn||fq − q||+ ξn||xn − q||+ µn(||xn − q||+ βnL1)

= (1− βn(1− ρ))||xn − q||+ βn||fq − q||+ µnβnL1

= (1− βn(1− ρ))||xn − q||+ βn(1− ρ)
||fq − q||+ µnL1

1− ρ
≤ (1− βn(1− ρ))||xn − q||+ βn(1− ρ)M∗,

where M∗ := supn∈N{
||fq−q||+µnL1

1−ρ }. Setting an := ||xn − q||, bn := βn(1 − ρ)M∗, cn :=

0, and σn := βn(1− ρ). By Lemma 4.2.3(1) and the assumptions on the control param-
eters, it follows that {||xn − q||} is bounded and thus {xn} is bounded. Consequently,
{wn}, {un}, {vn}, {zn}, {f(xn)} are all bounded.

Lemma 4.3.5. The following inequality holds for all q ∈ Γ and n ∈ N :

||xn+1 − q||2 ≤
(

1− 2βn(1− ρ)

(1− βnρ)

)
||xn − q||2 +

2βn(1− ρ)

(1− βnρ)

{ βn
2(1− ρ)

L3

+
3L2µn(1− βn)

2(1− ρ)

αn
βn
||xn − xn−1||+

1

(1− ρ)
〈f(q)− q, xn+1 − q〉

}
− µn(1− βn)

(1− βnρ)

{
(2k − λn)λn||Avn − Aq||2 + δn(1− δn)||wn − un||2

}
.

Proof. Let q ∈ Γ, then by applying the Cauchy-Schwartz inequality and Lemma 4.2.1(i),
we have

||wn − q||2 = ||xn + αn(xn − xn−1)− q||2

= ||xn − q||2 + α2
n||xn − xn−1||2 + 2αn〈xn − q, xn − xn−1〉

≤ ||xn − q||2 + α2
n||xn − xn−1||2 + 2αn||xn − xn−1||||xn − q||

= ||xn − q||2 + αn||xn − xn−1||(αn||xn − xn−1||+ 2||xn − q||)
≤ ||xn − q||2 + 3L2αn||xn − xn−1||

= ||xn − q||2 + 3L2βn
αn
βn
||xn − xn−1||, (4.3.11)

where L2 := supn∈N{||xn − q||, αn||xn − xn−1||} > 0.
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Also, by applying Lemma 4.2.2 and (4.3.8), we obtain

||vn − q||2 = ||δnwn + (1− δn)un − q||2

= δn||wn − q||2 + (1− δn)||un − q||2 − δn(1− δn)||wn − un||2

≤ δn||wn − q||2 + (1− δn)||wn − q||2 − δn(1− δn)||wn − un||2

= ||wn − q||2 − δn(1− δn)||wn − un||2. (4.3.12)

By invoking Lemma 4.2.1, and using (4.3.3), (4.3.11) and (4.3.12), we have

||xn+1 − q||2 = ||βnf(xn) + ξnxn + µnWnzn − q||2

= ||βn(f(xn)− q) + ξn(xn − q) + µn(Wnzn − q)||2

≤ ||ξn(xn − q) + µn(Wnzn − q)||2 + 2βn〈f(xn)− q, xn+1 − q〉
≤ ξ2

n||xn − q||2 + µ2
n||Wnzn − q||2 + 2ξnµn||xn − q||||Wnzn − q||

+ 2βn〈f(xn)− q, xn+1 − q〉
≤ ξ2

n||xn − q||2 + µ2
n||zn − q||2 + 2ξnµn||xn − q||||zn − q||

+ 2βn〈f(xn)− q, xn+1 − q〉
≤ ξ2

n||xn − q||2 + µ2
n||zn − q||2 + ξnµn(||xn − q||2 + ||zn − q||2)

+ 2βn〈f(xn)− q, xn+1 − q〉
= ξn(ξn + µn)||xn − q||2 + µn(µn + ξn)||zn − q||2 + 2βn〈f(xn)− q, xn+1 − q〉

≤ ξn(1− βn)||xn − q||2 + µn(1− βn)
{
||xn − q||2 + 3L2βn

αn
βn
||xn − xn−1||

− (2k − λn)λn||Avn − Aq||2 − δn(1− δn)||wn − un||2
}

+ 2βn〈f(xn)− f(q), xn+1 − q〉+ 2βn〈f(q)− q, xn+1 − q〉

≤ ξn(1− βn)||xn − q||2 + µn(1− βn)
{
||xn − q||2 + 3L2βn

αn
βn
||xn − xn−1||

− (2k − λn)λn||Avn − Aq||2 − δn(1− δn)||wn − un||2
}

+ 2βnρ||xn − q||||xn+1 − q||

+ 2βn〈f(q)− q, xn+1 − q〉

≤ ξn(1− βn)||xn − q||2 + µn(1− βn)
{
||xn − q||2 + 3L2βn

αn
βn
||xn − xn−1||

− (2k − λn)λn||Avn − Aq||2 − δn(1− δn)||wn − un||2
}

+ βnρ(||xn − q||2

+ ||xn+1 − q||2) + 2βn〈f(q)− q, xn+1 − q〉
=
(
(1− βn)2 + βnρ

)
||xn − q||2 + βnρ||xn+1 − q||2

+ 3L2µn(1− βn)βn
αn
βn
||xn − xn−1||

+ 2βn〈f(q)− q, xn+1 − q〉 − µn(1− βn)
{

(2k − λn)λn||Avn − Aq||2

+ δn(1− δn)||wn − un||2
}
.
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This implies that

||xn+1 − q||2 ≤
(1− 2βn + β2

n + βnρ)

(1− βnρ)
||xn − q||2 +

βn
(1− βnρ)

{
3L2µn(1− βn)

αn
βn
||xn − xn−1||

+ 2〈f(q)− q, xn+1 − q〉
}
− µn(1− βn)

(1− βnρ)

{
(2k − λn)λn||Avn − Aq||2

+ δn(1− δn)||wn − un||2
}

≤ (1− 2βn + +βnρ)

(1− βnρ)
||xn − q||2 +

β2
n

(1− βnρ)
||xn − p||2

+
βn

(1− βnρ)

{
3L2µn(1− βn)

αn
βn
||xn − xn−1||+ 2〈f(q)− q, xn+1 − q〉

}
− µn(1− βn)

(1− βnρ)

{
(2k − λn)λn||Avn − Aq||2 + δn(1− δn)||wn − un||2

}
≤
(

1− 2βn(1− ρ)

(1− βnρ)

)
||xn − q||2 +

2βn(1− ρ)

(1− βnρ)

{ βn
2(1− ρ)

L3

+
3L2µn(1− βn)

2(1− ρ)

αn
βn
||xn − xn−1||+

1

(1− ρ)
〈f(q)− q, xn+1 − q〉

}
− µn(1− βn)

(1− βnρ)

{
(2k − λn)λn||Avn − Aq||2 + δn(1− δn)||wn − un||2

}
,

where L3 := sup{||xn − q||2 : n ∈ N}. This completes the proof.

Lemma 4.3.6. The following inequality holds for all q ∈ Γ and n ∈ N :

||xn+1 − q||2 ≤ (1− βn)||xn − q||2 + βn

{
||f(xn)− q||2 + 3L2µn

αn
βn
||xn − xn−1||

}
+ 2L4||Avn − Aq|| − µn||vn − zn||2 − ξnµn||Wnzn − xn||2.

Proof. Applying the fact that (I + λnB)−1 is firmly nonexpansive and I − λnA is nonex-
pansive, we have

‖zn − q‖2 = ‖(I + λnB)−1(I − λnA)vn − ‖(I + λnB)−1(I − λnA)q‖2

≤ 〈zn − q, (I − λnA)vn − (I − λnA)q〉

=
1

2
‖(I − λnA)vn − (I − λnA)q‖2 +

1

2
‖zn − q‖2 − 1

2
‖(I − λnA)vn

− (I − λnA)q − (zn − q)‖2

≤ 1

2
‖vn − q‖2 +

1

2
‖zn − q‖2 − 1

2
‖vn − zn − λn(Avn − Aq)‖2

≤ 1

2
‖vn − q‖2 +

1

2
‖zn − q‖2 − 1

2
‖vn − zn‖2 − 1

2
λ2
n‖Avn − Aq‖2

+ λn‖vn − zn‖‖Avn − Aq‖.

This implies that

‖zn − q‖2 ≤ ‖vn − q‖2 − ‖vn − zn‖2 + 2λn‖vn − zn‖‖Avn − Aq‖. (4.3.13)
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By applying Lemma 4.2.2 and using (4.3.9), (4.3.11) and (4.3.13) we have

||xn+1 − q||2 = ||βnf(xn) + ξnxn + µnWnzn − q||2

= βn||f(xn)− q||2 + ξn||xn − q||2 + µn||Wnzn − q||2 − ξnµn||Wnzn − xn||2

≤ βn||f(xn)− q||2 + ξn||xn − q||2 + µn||zn − q||2 − ξnµn||Wnzn − xn||2

≤ βn||f(xn)− q||2 + ξn||xn − q||2 + µn

{
||xn − q||2 + 3L2βn

αn
βn
||xn − xn−1||

− ‖vn − zn‖2 + 2λn‖vn − zn‖‖Avn − Aq‖
}
− ξnµn||Wnzn − xn||2

= (1− βn)||xn − q||2 + βn

{
||f(xn)− q||2 + 3L2µn

αn
βn
||xn − xn−1||

}
+ 2µnλn||vn − zn||||Avn − Aq|| − µn||vn − zn||2 − ξnµn||Wnzn − xn||2

≤ (1− βn)||xn − q||2 + βn

{
||f(xn)− q||2 + 3L2µn

αn
βn
||xn − xn−1||

}
+ 2L4||Avn − Aq|| − µn||vn − zn||2 − ξnµn||Wnzn − xn||2,

where L4 := supn∈N{µnλn||vn − zn||}. Hence, the desired result.

Lemma 4.3.7. Let q ∈ Γ. Suppose {xnk} is a subsequence of {xn} such that lim infk→∞(||xnk+1−
q|| − ||xnk − q||) ≥ 0. Then xnk ⇀ x∗ ∈ Γ, i.e. wω(xn) ⊂ Γ.

Proof. Suppose q ∈ Γ. Then, from Lemma 4.3.5 we obtain

µnk(1− βnk)
(1− βnkρ)

δnk(1− δnk)||wnk − unk ||2

≤
(

1− 2βnk(1− ρ)

(1− βnkρ)

)
||xnk − q||2 − ||xnk+1 − q||2 +

2βnk(1− ρ)

(1− βnkρ)

{ βnk
2(1− ρ)

L3

+
3L2µnk(1− βnk)

2(1− ρ)

αnk
βnk
||xnk − xnk−1||+

1

(1− ρ)
〈f(q)− q, xnk+1 − q〉

}
.

By the hypothesis of Lemma 4.3.7 together with the fact that limk→∞ βnk = 0, we have

µnk(1− βnk)
(1− βnkρ)

δnk(1− δnk)||wnk − unk ||2 → 0, k →∞.

Therefore, we have
||wnk − unk || → 0, k →∞. (4.3.14)

By following similar argument, we get from Lemma 4.3.5 that

(2k − λnk)λnk ||Avnk − Aq||2 → 0, k →∞.

By the conditions on k and λn, it follows that

||Avnk − Aq|| → 0, k →∞. (4.3.15)

Also, from Lemma 4.3.6, we have

µnk ||vnk − znk ||2 ≤ (1− βnk)||xnk − q||2 − ||xnk+1 − q||2 + βnk

{
||f(xnk)− q||2

+ 3L2µnk
αnk
βnk
||xnk − xnk−1||

}
+ 2L4||Avnk − Aq||.
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By the hypothesis of Lemma 4.3.7 and using (4.3.15) together with the condition of βn,
we have

µnk ||vnk − znk ||2 → 0, k →∞.

By the condition on µn, it follows that

||vnk − znk || → 0, k →∞. (4.3.16)

Following similar argument, from Lemma 4.3.6, we obtain

||Wnkznk − xnk || → 0, k →∞. (4.3.17)

By Remark 4.3.2, we have

||wnk − xnk || = αnk ||xnk − xnk−1|| → 0, k →∞. (4.3.18)

By the definition of vn and using (4.3.14), we obtain

||vnk − wnk || = ||δnkwnk + (1− δnk)unk − wnk ||
≤ δnk ||wnk − wnk ||+ (1− δnk)||unk − wnk || → 0, k →∞. (4.3.19)

By applying (4.3.16), (4.3.17), (4.3.18) and (4.3.19), we obtain

||Wnkznk − znk || → 0, k →∞. (4.3.20)

Combining (4.3.17) and (4.3.20) we have

||xnk − znk || → 0, k →∞. (4.3.21)

Also, using (4.3.14), (4.3.16), (4.3.18) and (4.3.21) we get

||xnk − unk || → 0, ||xnk − vnk || → 0, k →∞. (4.3.22)

By applying (4.3.17) and the condition on βn, we get

||xnk+1 − xnk || = ||βnkf(xnk) + ξnkxnk + µnkWnkznk − xnk ||
≤ βnk ||f(xnk)− xnk ||+ ξnk ||xnk − xnk ||+ µnk ||Wnkznk − xnk || → 0, k →∞.

(4.3.23)

We next show that wω(xn) ⊂ ∩∞i=1F (Si) = F (W ). Let x∗ ∈ wω(xn) and suppose that
x∗ /∈ F (W ), that is, Wx∗ 6= x∗. From (4.3.21), we have that wω(xn) = wω(zn). By Lemma
4.2.8, we have

lim inf
k→∞

||znk − x∗|| < lim inf
k→∞

|znk −Wx∗|||

≤ lim inf
k→∞

{||znk −Wznk ||+ ||Wznk −Wx∗||}

≤ lim inf
k→∞

{||znk −Wznk ||+ ||znk − x∗||}. (4.3.24)
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Since xnk ∈ K for all k ≥ 1 and limk→∞ ||xnk − znk || = 0, we obtain

||Wznk − znk || ≤ ||Wznk −Wnkznk ||+ ||Wnkznk − znk ||
≤ sup

x∈K
||Wx−Wnkx||+ ||Wnkznk − znk ||.

By applying Lemma 4.2.7 and (4.3.20), we have limk→∞ ||Wznk − znk || = 0. Combining
this with (4.3.24) yields

lim inf
k→∞

||znk − x∗|| < lim inf
k→∞

||znk − x∗||,

which is a contradiction. Hence, we have

x∗ ∈ F (W ) = ∩∞i=1F (Si), i.e., wω(xn) ⊂ F (W ) =
∞⋂
i=1

F (Si). (4.3.25)

Next, we show that x∗ ∈ EP (F ). From the definition of T Frnk
wnk , we have that

F (unk , y) +
1

rnk
〈y − unk , unk − wnk〉 ≥ 0, ∀y ∈ C. (4.3.26)

By the monotonicity of F , we have

1

rnk
〈y − unk , unk − wnk〉 ≥ F (y, unk), ∀ y ∈ C.

Since xnk ⇀ x∗, then by (4.3.22) it follows that unk ⇀ x∗. By combining (4.3.18) and
(4.3.22), and applying condition (A4) together with the fact that lim infk→∞ rnk > 0, we
obtain

F (y, x∗) ≤ 0, ∀ y ∈ C. (4.3.27)

Let yt = ty + (1 − t)x∗, ∀ t ∈ (0, 1] and y ∈ C. This implies that yt ∈ C, and it follows
from (4.3.27) that F (yt, x

∗) ≤ 0. So, by applying conditions (A1)-(A4), we have

0 = F (yt, yt)

≤ tF (yt, y) + (1− t)F (yt, x
∗)

≤ tF (yt, y).

Hence, we have
F (yt, y) ≥ 0, ∀ y ∈ C. (4.3.28)

Letting t→ 0, by condition (A3), we get

F (x∗, y) ≥ 0, ∀ y ∈ C.

This implies that
x∗ ∈ EP (F ). (4.3.29)

Finally, we show that x∗ ∈ (A + B)−1(0). Let Tnk = (I + λnkB)−1(I − λnkA), then from
the definition of zn and by applying (4.3.16) we have

lim
k→∞
‖Tnkvnk − vnk‖ = lim

k→∞
‖znk − vnk‖ = 0.
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Since lim infk→∞ λnk > 0, there exists δ > 0 such that λnk ≥ δ for all k ≥ 1. By Lemma
4.2.13(ii), we have

lim
k→∞
‖Tδvnk − vnk‖ ≤ 2 lim

k→∞
‖Tnkvnk − vnk‖ = 0.

By Lemma 4.2(ii) and Lemma 4.2.14, we have that Tδ is nonexpansive and vnk ⇀ x∗. By
the demiclosedness of I − Tδ, we have that x∗ ∈ F (Tδ). By Lemma 4.2.13(i) we obtain

x∗ ∈ (A+B)−1(0). (4.3.30)

Hence, by combining (4.3.25), (4.3.29) and (4.3.30) we have that wω(xn) ⊂ Γ as required.

Now, we prove the strong convergence result Theorem 4.3.3.

Proof. Proof of Theorem 4.3.3.

Let x̂ = PΓ ◦ f(x̂). Then it follows from Lemma 4.3.5 that

||xn+1 − x̂||2 ≤
(

1− 2βn(1− ρ)

(1− βnρ)

)
||xn − x̂||2 +

2βn(1− ρ)

(1− βnρ)

{ βn
2(1− ρ)

L3

+
3L2µn(1− βn)

2(1− ρ)

αn
βn
||xn − xn−1||+

1

(1− ρ)
〈f(x̂)− x̂, xn+1 − x̂〉

}
. (4.3.31)

Now, we claim that the sequence {||xn− x̂||} converges to zero. In order to establish this,
by Lemma 4.2.4, it suffices to show that lim supk→∞〈f(x̂) − x̂, xnk+1 − x̂〉 ≤ 0 for every
subsequence {||xnk − x̂||} of {||xn − x̂||} satisfying

lim inf
k→∞

(||xnk+1 − x̂|| − ||xnk − x̂||) ≥ 0.

Suppose that {||xnk − x̂||} is a subsequence of {||xn − x̂||} such that

lim inf
k→∞

(||xnk+1 − x̂|| − ||xnk − x̂||) ≥ 0.

Then, by Lemma 4.3.7, we have that wω{xn} ⊂ Γ. It also follows from (4.3.21) that
wω{zn} = wω{xn}. By the boundedness of {xnk}, there exists a subsequence {xnkj } of

{xnk} such that xnkj ⇀ x† and

lim
j→∞
〈f(x̂)− x̂, xnkj − x̂〉 = lim sup

k→∞
〈f(x̂)− x̂, xnk− x̂〉 = lim sup

k→∞
〈f(x̂)− x̂, znk− x̂〉. (4.3.32)

Since x̂ = PΓ ◦ f(x̂), it follows from (4.3.32) that

lim sup
k→∞

〈f(x̂)− x̂, xnk − x̂〉 = lim
j→∞
〈f(x̂)− x̂, xnkj − x̂〉 = 〈f(x̂)− x̂, x† − x̂〉 ≤ 0. (4.3.33)

Hence, by (4.3.23) and (4.3.33), we have

lim sup
k→∞

〈f(x̂)− x̂, xnk+1 − x̂〉 ≤ lim sup
k→∞

〈f(x̂)− x̂, xnk+1 − xnk〉+ lim sup
k→∞

〈f(x̂)− x̂, xnk − x̂〉

= 〈f(x̂)− x̂, x† − x̂〉 ≤ 0. (4.3.34)

Applying Lemma 4.2.4 to (4.3.31), and using (4.3.34) together with Remark 4.3.2 and the
condition on βn, we deduce that limn→∞ ||xn− x̂|| = 0 as required. Hence, that completes
the proof.
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Taking Sn = S for all n ≥ 1 in Theorem 4.3.3, then we obtain the following consequent
result.

Corollary 4.3.8. Let C be a nonempty closed convex subset of a real Hilbert space H and
f : H → H be a contraction mapping with coefficient ρ ∈ (0, 1). Let {Wn} be a sequence
defined by (4.2.1) and F : C × C → R be a bifunction satisfying Assumption 4.2.11.
Suppose that the solution set denoted by Γ 6= ∅ and let {xn} be a sequence generated as
follows:

Algorithm 4.3.9.

Step 0 : Select initial data x0, x1 ∈ H and set n = 1.

Step 1. Given the (n− 1)th and nth iterates, choose αn such that 0 ≤ αn ≤ α̂n with α̂n
defined by

α̂n =

{
min

{
α, θn

||xn−xn−1||

}
, if xn 6= xn−1,

α, otherwise.
(4.3.35)

Step 2: Compute
wn = xn + αn(xn − xn−1).

Step 3: Compute

F (un, y) +
1

rn
〈y − un, un − wn〉 ≥ 0, ∀ y ∈ H.

Step 4: Compute
vn = δnwn + (1− δn)un.

Step 5: Compute
zn = (I + λnB)−1(I − λnA)vn.

Step 6: Compute
xn+1 = βnf(xn) + ξnxn + µnSzn.

Set n := n + 1 and return to Step 1.

Suppose that conditions (C1)-(C3) are satisfied. Then the sequence {xn} generated by
Algorithm 4.3.9 converges strongly to a point x̂ ∈ Γ, where x̂ = PΓ ◦ f(x̂).

4.4 Applications

In this section, we present some applications of our main result to approximate the solu-
tions of related optimization problems.
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4.4.1 Variational inequality problem

Here, we apply our result to approximating common solutions of variational inclusion,
variational inequality and fixed point problems.

Let C be a nonempty closed convex subset of a real Hilbert space H, and P : H → H be
a single-valued mapping. The Variational Inequality Problem (VIP) is defined as follows:

Find x∗ ∈ C such that 〈y − x∗, Px∗〉 ≥ 0, ∀ y ∈ C. (4.4.1)

The solution set of the VIP is denoted by V I(C,P ). Variational inequality was first intro-
duced independently by Fichera [26] and Stampacchia [69]. The VIP is a useful mathemat-
ical model that unifies many important concepts in applied mathematics, such as necessary
optimality conditions, complementarity problems, network equilibrium problems, and sys-
tems of nonlinear equations. Several methods have been proposed and analyzed by authors
for solving VIP and related optimization problems, see [1, 15, 41] and references therein.

If we take F (x, y) := 〈y − x, Px〉, then the VIP (4.4.1) becomes the EP (4.1). More-
over, all the conditions of Theorem 4.3.3 are satisfied. Hence, Theorem 4.3.3 provides a
strong convergence theorem for approximating common solutions of variational inclusion,
variational inequality and fixed point problems for an infinite family of strict pseudocon-
tractions.

4.4.2 Split feasibility and fixed point problems

In this subsection, we derive a scheme for approximating common solutions of split feasi-
bility problem, equilibrium problem and fixed point problem from Algorithm 4.3.1.

Let H1 and H2 be two real Hilbert spaces and let C and Q be nonempty closed convex
subsets of H1 and H2, respectively. The Split Feasibility Problem (SFP) is defined as
follows:

Find x∗ ∈ C such that Ax∗ ∈ Q, (4.4.2)

where A : H1 → H2 is a bounded linear operator. Let the solution set of SFP (4.4.2)
be denoted by Ω. In 1994, the Split Feasibility Problem (SFP) was introduced by Censor
and Elfving [14] in finite dimensional Hilbert spaces for modelling inverse problems which
arise from phase retrievals and in medical image reconstruction [12]. Furthermore, the
problem (4.4.2) is also useful in various disciplines such as computer tomography, image
restoration, and radiation therapy treatment planning [13, 23]. The problem has been
studied by numerous researchers, see [12, 33]. Let f be a proper, lower semi-continuous
convex function of H into (−∞,∞). Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x)− f(y) ≤ 〈z, x− y〉,∀y ∈ H, } ∀x ∈ H.

Let C be a nonempty closed convex subset of a real Hilbert space H and ic be the indicator
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function on C, that is

ic(x) =

{
0 if x ∈ C;

∞ if x /∈ C.

Moreover, we define the normal cone NCu of C at u ∈ C as follows:

NCu = {z ∈ H : 〈z, v − u〉 ≤ 0,∀v ∈ C}.

It is known that iC is a proper, lower semi-continuous and convex function on H. Hence,
the subdifferential ∂iC of iC is a maximal monotone operator. Therefore, we define the
resolvent J∂iCr of ∂iC , ∀r > 0 as follows:

J∂iCr x = (I + r∂iC)−1x,∀x ∈ H.

Moreover, for each x ∈ C, we have

∂iCx = {z ∈ H : iCx+ 〈z, u− x〉 ≤ iCu,∀u ∈ H}
= {z ∈ H : 〈z, u− x〉 ≤ 0,∀u ∈ C}
= NCx.

Hence, for all α > 0, we derive

u = ∂iCx ⇐⇒ x ∈ u+ r∂iCu

⇐⇒ x− u ∈ r∂iCu
⇐⇒ u = PCx.

It is known that A∗(I−PQ)A is 1/||A||2-inverse strongly monotone [12]. Hence, by applying
Theorem 4.3.3, we obtain the following strong convergence theorem for approximating
common solutions of SFP, EP and FPP for an infinite family of strict pseudocontractive
mappings.

Theorem 4.4.1. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively, and f : H1 → H1 be a contraction mapping with coefficient ρ ∈ (0, 1).
Let {Wn} be a sequence defined by (4.2.1) and F : C × C → R be a bifunction satisfying
Assumption 4.2.11. Suppose that the solution set denoted by Γ = Ω∩EP (F )∩

⋂∞
i=1 F (Si)

is nonempty and let {xn} be a sequence generated as follows:

Algorithm 4.4.2.

Step 0 : Select initial data x0, x1 ∈ H and set n = 1.

Step 1. Given the (n− 1)th and nth iterates, choose αn such that 0 ≤ αn ≤ α̂n with α̂n
defined by

α̂n =

{
min

{
α, θn

||xn−xn−1||

}
, if xn 6= xn−1,

α, otherwise.
(4.4.3)

Step 2: Compute
wn = xn + αn(xn − xn−1).
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Step 3: Compute

F (un, y) +
1

rn
〈y − un, un − wn〉 ≥ 0, ∀ y ∈ H.

Step 4: Compute
vn = δnwn + (1− δn)un.

Step 5: Compute
zn = PC

[
vn − λnA∗(I − PQ)Avn

]
.

Step 6: Compute
xn+1 = βnf(xn) + ξnxn + µnWnzn.

Set n := n + 1 and return to Step 1.

Suppose that conditions (C1)-(C3) are satisfied. Then the sequence {xn} generated by
Algorithm 4.4.2 converges strongly to a point x̂ ∈ Γ, where x̂ = PΓ ◦ f(x̂).

4.5 Numerical example

In this section, we provide numerical example to illustrate the efficiency of our algorithm
in comparison with Algorithm 1.2.3 and Algorithm 1.2.4 in the literature.

Example 4.5.1. Let H = (l2(R), ‖ · ‖2), where l2(R) := {x = (x1, x2, . . . , xn, . . .), xj ∈ R :∑∞
j=1 |xj|2 < ∞}, ||x||2 = (

∑∞
j=1 |xj|2)

1
2 for all x ∈ l2(R). Let A : H → H be defined by

Ax = x
2

for all x ∈ H, and let B : H → H be defined by Bx = 3
2
x. Define the bifunction

F by F (x, y) = x(y − x). It can be verified that

T Fr x =
x

1 + r
for all x ∈ H.

Define an infinite family of mappings Sn : H → H by

Snx := − 2

n
x for all x ∈ H.

It can easily be verified that Sn is kn-strict pseudo-contractive for each n ∈ N. Define
S ′n = tnI + (1 − tn)Sn, tn ∈ [kn, 1). Let {ζn} be a sequence of nonnegative real numbers
defined by ζn = { n

3n−1
} for all n ∈ N and Wn be generated by {Sn}, {ζn} and {tn}. Let

f(x) = 1
3
x, then ρ = 1

3
is the Lipschitz constant for f. Choose α = 0.8, βn = 1

n+2
, ξn =

µn = n+1
2(n+2)

, θn = 1
(n+2)2

, δn = n
2n+1

, λn = n+1
2n+3

, rn = n
2n+3

, tn = 1
n+3

in Algorithm 4.3.1

and we take αn = 1
10n+1

, u = (1,−1
2
, 1

4
, · · · ) in Algorithm 1.2.3 and λ = 0.01 in Algorithm

1.2.4. It can easily be verified that all the conditions of Theorem 4.3.3 are satisfied.

We choose different initial values as follows:
Case IIa: x0 = (−2, 1,−1

2
, · · · ), x1 = (1

5
,− 1

10
, 1

20
, · · · ),

Case IIb: x0 = (−4, 1,−1
4
, · · · ), x1 = (1, 1

5
, 1

25
, · · · ),
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Case IIc: x0 = (−5
2
, 5

4
,−5

8
, · · · ), x1 = (1

3
, 1

6
, 1

12
, · · · ),

Case IId: x0 = (−5, 1,−1
5
, · · · ), x1 = (1,−0.1, 0.01, · · · ).

Using MATLAB 2019(b), we compare the performance of Algorithm 4.3.1 with Algorithm
1.2.3 and Algorithm 1.2.4. The stopping criterion used for our computation is ||xn+1 −
xn|| < 10−4. We plot the graphs of errors against the number of iterations in each case.
The numerical result is reported in Figure 4.1 and Table 4.1.

Table 4.1: Numerical results for Example 4.5.1

Alg. 1.2.3 Alg. 1.2.4 Alg. 4.3.1
Case I CPU time (sec) 0.0518 0.0216 0.0536

No. of Iter. 200 105 14
Case II CPU time (sec) 0.0320 0.0172 0.0266

No. of Iter. 200 130 13
Case III CPU time (sec) 0.0303 0.0151 0.0259

No. of Iter. 200 119 14
Case IV CPU time (sec) 0.0468 0.0198 0.0236

No. of Iter. 200 155 13
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Figure 4.1: Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right:
Case IV.
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CHAPTER 5

Conclusion, Contribution to Knowledge and Future Research

5.1 Conclusion

In this dissertation, we studied and introduced iterative schemes for approximating com-
mon solutions of Split Generalized Equilibrium, Variational Inclusion Problem and Fixed
Point Problem in real Hilbert spaces. In Chapter 3 we proved a strong convergence the-
orem for the problem of finding common solutions of split generalized equilibrium and
fixed point problems for a countable family of nonexpansive multivalued mappings and
obtained some consequent results. We applied our result to solving split mixed variational
inequality and split minimization problems, and we also presented numerical examples
to illustrate the efficiency of our algorithm in comparison with other existing algorithms.
Our results complement and generalize several other results in this direction in the cur-
rent literature. In Chapter 4, we introduced an iterative scheme which combines inertial
technique with viscosity method for approximating common solutions of variational in-
clusion problem, equilibrium problem and fixed point problem for an infinite family of
strict-pseudocontractive mappings in Hilbert spaces. Under mild conditions, we proved
a strong theorem for the proposed algorithm and apply our results to approximate the
solutions of other optimization problems. Finally, we present a numerical example to
demonstrate the efficiency of our algorithm in comparison with other existing methods in
the literature. Our results improve and complement contemporary results in the literature
in this direction.

5.2 Contribution to knowledge

As earlier pointed out, our results in this study generalize and improve some recent results
in the literature. The following contributions are made in this study:
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(1) In [72], Suantai et al. introduced an iterative scheme for approximating common
solution of Split Equilibrium Problem and Fixed Point Problem of nonspreading
multivalued mapping in Hilbert spaces and proved a weak convergence theorem for
the proposed algorithm. On the other hand, Phuengrattana and Lerkchaiyaphum
[60] introduced a shrinking projection method for approximating common solutions
of Split Generalized Equilibrium Problem and Fixed Point Problem for a countable
family of nonexpansive multivalued mappings in Hilbert spaces and proved a strong
convergence theorem for the proposed algorithm. The results obtained by the au-
thors in [72] and [60] require the prior knowledge of the operator norm, which is often
very difficult to estimate. Hence, this is a major drawback in the implementation
of the proposed methods. However, in Chapter 3 we introduced a new self-adaptive
inertial shrinking projection algorithm, which does not require any prior knowledge
of the operator norm for finding a common element of the set of solutions of Split
Generalized Equilibrium Problem and the set of common fixed points of a countable
family of nonexpansive multivalued mappings in Hilbert spaces. We proved strong
convergence theorem for the proposed algorithm and obtained some consequent re-
sults. Hence, our results in Chapter 3 generalize and improve the results obtained
by the authors in [72] and [60].

(2) In [45], Liu introduced an algorithm for finding a common element of the set of
solutions of Equilibrium Problem and set of fixed points of a k-strictly pseudocon-
tractive mapping in the setting of real Hilbert spaces and obtained a strong result.
Wang in [91] proposed an iterative method for approximating a common solution
of an infinite family of strict pseudocontractions in Hilbert spaces. On the other
hand, Cholamjiak et al. in [19] introduced an inertial forward-backward splitting al-
gorithm, which combines Halpern and Mann iteration methods for solving inclusion
problems in Hilbert spaces and proved a strong convergence theorem for the pro-
posed algorithm. Meanwhile, Thong and Vinh [89], studied the problem of finding a
common element of the set of solutions of variational inclusion problem and the fixed
points set of a nonexpansive mapping. The authors introduced a modified inertial
forward-backward splitting algorithm combined with viscosity technique for finding
a common solution of the problems in Hilbert spaces and obtained a strong conver-
gence result. However, the authors in [19] and [89] established their results under
some stringent conditions on the control parameters. In Chapter 4, we studied the
problem of finding common solutions of Equilibrium Problem, Variational Inclusion
Problem and Fixed Point Problem for an infinite family of strict pseudocontractive
mappings. We proposed an iterative scheme which combines inertial technique with
viscosity method for approximating common solutions of these problems in Hilbert
spaces. Under relaxed conditions on the control parameters, we proved a strong the-
orem for the proposed algorithm and apply our results to approximate the solutions
of other optimization problems. Therefore, our results in Chapter 4 extend, improve
and generalize the results obtained by the authors in [45], [91], [19] and [89].
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5.3 Future research

Our results in this dissertation were obtained in Hilbert space settings. In our future
research, we will like to extend the results obtained in this dissertation to Banach and
Hadamard spaces which are more general spaces than Hilbert space.
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