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ABSTRACT 
 

The crucial role of CADD in the drug design process is now indisputable and has proven over the 

years that it can accelerate the discovery potential drug candidates while reducing the associated 

cost. Using knowledge and information about biological target or knowledge about a ligand with 

proven bioactivity, CADD, and its techniques can influence various drug discovery pipeline stages. 

The ability CADD approaches to elucidate drug-target interactions at the atomistic level allows 

for investigations of the mechanism of drugs' actions, revealing atomistic insights that influence 

drug design and improvement. CADD approaches also seek to augment traditional in vitro and in 

vivo experimental techniques and not replace them since CADD approaches can also allow 

modeling complex biological processes that hitherto seemed impossible to explore using 

experimental methods. 

According to the World Health Organization (WHO), featuring prominently in the top ten causes 

of death are cancer, lower respiratory tract infection, tuberculosis (TB), and viral infections such 

as HIV/AIDS.  Collectively, these diseases are of global health concerns, considering a large 

number of associated deaths yearly. Over the years, several therapeutic interventions have been 

employed to treat, manage, or cure these diseases, including chemotherapy, surgery, and 

radiotherapy. Of these options, small molecule inhibitors have constituted an integral component 

in chemotherapy, thereby undoubtedly playing an essential role in patient management.  

Although significant success has been achieved using existing therapeutic approaches, the 

emergence of drug resistance and the challenges of associated adverse side effects has prompted 

the need for the drug design processes against these diseases to remain innovative, including 

combining existing drugs and establishing improved therapeutic options that could overcome 

resistance while maintaining minimal side effects to patients. Therefore, an exploration of drug-
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target interactions towards unraveling mechanisms of actions as performed in the reports in this 

thesis are relevant since the molecular mechanism provided could form the basis for the design 

and identification of new therapeutic agents, improvement of the therapeutic activity of existing 

drugs, and also aid in the development of novel therapeutic strategies against these diseases of 

global health concern. 

Therefore the studies in this thesis employed CADD approaches to investigates molecular 

mechanisms of actions of novel therapeutic strategies directed towards some crucial therapeutics 

implicated in viral infections, tuberculosis, and cancer. Therapeutic targets studied included; 

SARS-CoV-2 RNA dependent RNA polymerase (SARS-CoV-2 RdRp), Human Rhinovirus B14 

(HRV-B14) and  human N-myristoyltransferases in viral infections, Dihydrofolate reductase 

(DHFR) and Flavin-dependent thymidylate synthase (FDTS) in TB, human variants of  TCR-

CD1d, and Protein Tyrosine Phosphatase Receptor Zeta (PTPRZ) in cancer.  

The studies in this thesis is divided into three domains and begins with a thorough review of the 

concept of druggability and drug-likeness since the crux of the subsequent reports revolved around 

therapeutic targets and their inhibitions by small molecule inhibitors. This review highlights the 

principles of druggability and drug-likeness while detailing the recent advancements in drug 

discovery. The review concludes by presenting the different computational, highlighting their 

reliability for predictive analysis. 

In the first domain of the research, we sought to unravel the inhibitory mechanism of some small 

molecule inhibitors against some therapeutic targets in viral infections by explicitly focusing on 

the therapeutic targets; SARS-CoV-2 RdRp, HRV-B14, and N-myristoyltransferase.  

Therapeutic targeting of SARS-CoV-2 RdRp has been extensively explored as a viable approach 

in the treatment of COVID-19. By examining the binding mechanism of Remdesivir, which 
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hitherto was unclear, this study sought to unravel the structural and conformational implications 

on SARS-CoV-2 RdRp and subsequently identify crucial pharmacophoric moieties of Remdesivir 

required for its inhibitory potency. Computational analysis showed that the modulatory activity of 

Remdesivir is characterized by an extensive array of high-affinity and consistent molecular 

interactions with specific active site residues that anchor Remdemsivir within the binding pocket 

for efficient binding. Results also showed that Remdesivir binding induces minimal individual 

amino acid perturbations, subtly interferes with deviations of C-α atoms, and restricts the 

systematic transition of SARS-CoV-2 RdRp from the “buried” hydrophobic region to the “surface-

exposed” hydrophilic region. Based on observed high-affinity interactions with SARS-CoV-2 

RdRp, a pharmacophore model was generated, which showcased the crucial functional moieties 

of Remdesivir. The pharmacophore was subsequently employed for virtual screening to identify 

potential inhibitors of SARS-CoV-2 RdRp. The structural insights and the optimized 

pharmacophoric model provided would augment the design of improved analogs of Remdesivir 

that could expand treatment options for COVID-19. 

The next study sought to explore the therapeutic targeting of human rhinoviruses (HRV) amidst 

challenges associated with the existence of a wide variety of HRV serotypes. By employing 

advanced computational techniques, the molecular mechanism of inhibition of a novel 

benzothiophene derivative that reportedly binds HRV-B14 was investigated. An analysis of the 

residue-residue interaction profile revealed of HRV upon the benzothiophene derivative binding 

revealed a distortion of the hitherto compacted and extensively networked HRV structure. This 

was evidenced by the fewer inter-residue hydrogen bonds, reduced van der Waals interactions, and 

increased residue flexibility. However, a decrease in the north-south wall's flexibility around the 
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canyon region also suggested that the benzothiophene derivative's binding impedes the “breathing 

motion” of HRV-B14; hence its inhibition. 

The next study in the first domain of the research investigated the structural and molecular 

mechanisms of action associated with the dual inhibitory activity of IMP-1088. This novel 

compound reportedly inhibits human N-myristoyltransferase subtypes 1 and 2 towards common 

cold therapy. This is because it has emerged that the pharmacological inhibition of N-

myristoyltransferase is an efficient non-cytotoxic strategy to completely thwart the replication 

process of rhinovirus toward common cold treatment. Using augmentative computational and 

nanosecond-based analyses, findings of the study revealed that the steady and consistent 

interactions of IMP-1088 with specific residues; Tyr296, Phe190, Tyr420, Leu453, Gln496, 

Val181, Leu474, Glu182, and Asn246, shared within the binding pockets of both HNMT subtypes, 

in addition to peculiar structural changes account for its dual inhibitory potency. Findings thus 

unveiled atomistic and structural perspectives that could form the basis for designing novel dual-

acting inhibitors of N-myristoyltransferase towards common cold therapy. 

In the second domain of the research, the mechanism of action of some small molecule inhibitors 

against DHFR, FDTS, and Mtb ATP synthase in treating tuberculosis is extensively investigated 

and reportedly subsequently. 

To begin with, the dual therapeutic targeting of crucial enzymes in the folate biosynthetic pathway 

was explored towards developing novel treatment methods for TB. Therefore, the study 

investigated the molecular mechanisms and structural dynamics associated with dual inhibitory 

activity of PAS-M against both DHFR and FDTS, which hitherto was unclear. MD simulations 

revealed that PAS-M binding towards DHFR and FDTS is characterized by a recurrence of strong 

conventional hydrogen bond interactions between a peculiar site residue the 2-amino-
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decahydropteridin-4-ol group of PAS-M. Structural dynamics of the bound complexes of both 

enzymes revealed that, upon binding, PAS-M is anchored at the entrance of hydrophobic pockets 

by a strong hydrogen bond interaction while the rest of the structure gains access to deeper 

hydrophobic residues to engage in favorable interactions. Further analysis of atomistic changes of 

both enzymes showed increased C-α atom deviations and an increase C-α atoms radius of gyration 

consistent with structural disorientations. These conformational changes possibly interfered with 

the enzymes' biological functions and hence their inhibition as experimentally reported. 

Additionally, in this domain, the therapeutic targeting of the ATP machinery of Mtb by 

Bedaquiline (BDQ) was explored towards unravelling the structures and atomistic perspectives 

that account for the ability of BDQ to selectively inhibits mycobacterial F1Fo-ATP synthase via its 

rotor c-ring. BDQ is shown to form strong interaction with Glu65B and Asp32B and, consequently, 

block these residues' role in proton binding and ion. BDQ binding was also revealed to impede the 

rotatory motion of the rotor c-ring by inducing a compact conformation on the ring with its bulky 

structure. Complementary binding of two molecules of BDQ to the rotor c-ring, proving that 

increasing the number of BDQ molecule enhances inhibitory potency. 

The last study in this research domain investigated the impact of triple mutations (L59V, E61D, 

and I66M) on the binding of BDQ to Mtb F1F0 ATP-synthase. The study showed that the 

mutations significantly impacted the binding affinity of BDQ, evidenced by a decrease in the 

estimated binding free energy (ΔG). Likewise, the structural integrity and conformational 

architecture of F1F0 ATP-synthase was distorted due to the mutation, which could have interfered 

with the binding of BDQ. 

The third domain of the research in this thesis investigated some small molecule inhibitors' 

inhibitory mechanism against some therapeutic targets in cancer, specifically PTPRZ and hTCR-
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CD1d. Studies in the third domain of the research in the thesis began with the investigation of the 

investigation of the inhibitory mechanism of NAZ2329, an allosteric inhibitor of PTPRZ, by 

specifical investigating its binding effect on the atomic flexibility of the WPD-loop. Having been 

established as crucial determinant of the catalytic activity of PTPRZ an implicated protein in 

glioblastoma cells, its successfully therapeutic modulation could present a viable treatment option 

in glioblastoma. Structural insights from an MD simulation revealed that NAZ2329 binding 

induces an open conformation of the WPD-loop which subsequently prevents the participation of 

the catalytic aspartate of PTPRZ from participating in catalysis hence inhibiting the activity of 

PTPRZ. A pharmacophore was also created based of high energy contributing residues which 

highlighted essential moieties of NAZ2329 and could be used in screening compound libraries for 

potential inhibitors of PTPRZ. 

A second study in this domain sought to explore how structural modification could improve a 

therapeutic agent's potency from an atomistic perspective. This study was based on an earlier report 

in which the incorporation of a hydrocinnamoyl ester on C6’’ and C4-OH truncation of the 

sphingoid base of KRN7000 generated a novel compound AH10-7 high therapeutic potency and 

selectivity in human TCR-CD1d and subsequently results in the activation of invariant natural 

killer T cells (iNKT). The hydrocinnamoyl ester moiety was shown to engage in high-affinity 

interactions, possibly accounting for the selectivity and higher potency of AH10-7. Molecular and 

structural perspectives provided could aid in the design of novel α-GalCer derivatives for cancer 

immunotherapeutics. 

Chapter 3 provides theoretical insights into the various molecular modeling tools and techniques 

employed to investigate the various conformational changes, structural conformations, and the 
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associated mechanism of inhibitions of the studied inhibitors towards viral, tuberculosis, and 

cancer therapy. 

Chapter 4 provided sufficient details on druggability and drug-likeness principles and their recent 

advancements in the drug discovery field. The study also presents the different computational tools 

and their reliability of predictive analysis in the drug discovery domain. It thus provides a 

comprehensive guide for computational-oriented drug discovery research.  

Chapter 5 provides an understanding of the binding mechanism of Remdesivir, providing structural 

and conformational implications on SARS-CoV-2 RdRp upon its binding and identifying its 

crucial pharmacophoric moieties.  

Chapter 6 explains the mechanism of inhibition of a novel benzothiophene derivative, revealing 

its distortion of the native extensively networked and compact residue profile. 

Chapter 7 unravels molecular and structural bases behind this dual inhibitory potential of the novel 

inhibitor IMP-1088 toward common cold therapy using augmentative computational and 

cheminformatics methods. The study also highlights the pharmacological propensities of IMP-

1088.  

Chapter 8 unravels the molecular mechanisms and structural dynamics of the dual inhibitory 

activity of PAS-M towards DHFR and FDTS.  

Chapter 9 reports the structural dynamics and atomistic perspectives that account for the reported 

ability of BDQ to halt the ion shuttling ability of mycobacterial c-ring. 
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Chapter 10 presents the structural dynamics and conformational changes that occur on Mtb F1F0 

ATP-synthase binding as a result of the triple mutations using molecular dynamics simulations, 

free energy binding, and residue interaction network (RIN) analyses.  

Chapter 11 explored the impact of NAZ2329, a recently identified allosteric inhibitor of Protein 

Tyrosine Phosphatase Receptor Zeta (PTPRZ), on the atomic flexibility of the WPD-loop, an 

essential loop in the inhibition of PTPRZ. The study also presents the drug-likeness of NAZ2329 

using in silico techniques and its general inhibitory mechanism.   

Chapter 12 provides atomistic insights into the structural dynamics and selective mechanisms of 

AH10-7 for human TCR-CD1d towards activating iNKT cells. 

The studies in this thesis collectively present a thorough and comprehensive in silico perspective 

that characterizes the pharmacological inhibition of some known therapeutic targets in viral 

infections, tuberculosis, and cancer. The augmentative integration of computational methods to 

provide structural insights could help design highly selective inhibitors of these therapeutic targets. 

Therefore, the findings presented are fundamental to the design and development of next-

generation lead compounds with improved therapeutic activities and minimal toxicities. 
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CHAPTER 1 

1.0 Introduction 
 

1.1 Background and rational of study 

 

The studies presented in this thesis are geared towards exploring drug-target interactions in 

antiviral, antitubercular, and anticancer therapeutic interventions using Computer-Aided Drug 

Design (CADD) approaches revealing structural and mechanistic events that could inform the drug 

design of novel and improved small molecule inhibitors. Drug discovery is multifaceted, 

comprising a diverse and multidisciplinary approach towards designing a therapeutically effective 

and commercially viable drug. Due to the complex nature of the drug discovery process, it is 

usually costly, risky, and generally time-consuming. On average, the development of one drug 

from discovery until it makes it to the market takes approximately 10-15 years, with an estimated 

average of $1.3 billion [1]. As such, viable alternatives such as CADD have widely gained traction 

in the pharmaceutical industry with its ability to accelerate the drug discovery process while 

cutting down the cost involved [2–4]. Computer-aided approaches significantly optimize the lead 

discovery stage of drug development, which is known to majorly contribute to the overall drug 

discovery expenses due to various lead testing procedures [2–5].  By unraveling the molecular 

mechanism of drug molecules by exploring drug-target interactions, CADD approaches can also 

identify potential therapeutic agents against biological targets, thereby minimizing the search 

space to be investigated by experimental methods. Also, because drug-target interactions 

culminate into the eventual change in function/behavior of biological targets [6–9], the in silico 

elucidations of these interactions further establish CADD approaches current era of drug 
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discovery. CADD techniques also seek to augment traditional in vitro and in vivo experimental 

techniques and not to replace them since CADD approaches can also allow modeling of complex 

biological processes, which hitherto seemed impossible to explore using experimental methods.   

According to the World Health Organization (WHO), featuring prominently in the top ten causes 

of death are cancer, lower respiratory tract infection, tuberculosis, and viral infections such as 

HIV/AIDS.  Collectively, these diseases are of global health concerns, considering the large 

number of associated deaths yearly. Over the years, several therapeutic interventions have been 

employed to treat, manage, or cure these diseases, including; chemotherapy, surgery, and 

radiotherapy. Of these options, small molecule inhibitors have constituted an integral component 

in chemotherapy, thereby undoubtedly playing an essential role in patient management. Although 

significant success has been achieved using existing therapeutic approaches to the emergence of 

drug resistance, the drug design processes against these diseases remain innovative, including 

combining existing drugs and establishing improved therapeutic options that could overcome 

resistance. Therefore, an exploration of drug-target interactions as performed in the reports in this 

thesis is relevant since target interaction prediction plays a vital role in the drug discovery process, 

aiming to identify new drug compounds for biological targets. 

In all, the structural and conformational elucidations unraveled this thesis coupled with 

investigated mechanisms of actions of the studied small molecule inhibitors culminates into vital 

chemical information that can contribute significantly towards the discovery of next-generation 

lead compounds with improved potency in the treatment of cancer, viral infections, and 

tuberculosis. Thus, this thesis investigates molecular and structural insights on some selected 

protein and enzyme targets implicated in the pathogenesis of the studied diseases and therefore are 

proven therapeutic targets for currently existing chemotherapies. These implicated biological 
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targets include; SARS-CoV-2 RNA dependent RNA polymerase (SARS-CoV-2 RdRp), Human 

Rhinovirus B14 (HRV-B14)  and human N-myristoyltransferase (HNMT) in viral infections, 

Dihydrofolate reductase (DHFR)  and Flavin-dependent thymidylate synthase (FDTS) in 

tuberculosis, as well as Protein Tyrosine Phosphatase Receptor Zeta (PTPRZ) and human variants 

of  CD1d-restricted T Cell Receptor (TCR-CD1d)  in cancer. Moreover, resulting insights are 

essential towards the structure-based design of highly specific small-molecule antagonists of these 

biological targets. Also reported herein are strategic optimization methods for enhancing some of 

the studied small molecule compounds' biological activity to minimize their toxic tendencies 

 

1.2 Aims and objectives of this study 

 

The primary intent of this study is to provide structural mechanistic actions and molecular insights 

on crucial therapeutic targets coupled with the in silico application of strategic drug design 

methods for optimizing the therapeutic activities of bioderived compounds and improving their 

pharmacokinetics in relation to their use in the treatment of viral infections, tuberculosis, and 

cancer. Target proteins investigated in this thesis include SARS-CoV-2 RdRp, HRV-B14, and 

human NMT in viral infections, DHFR  and FDTS in tuberculosis, human variants of  TCR-CD1d 

and PTPRZ in cancer, while the optimization methods for enhancing the biological activity of 

some of the studied small molecule compounds to minimize their toxic tendencies were also 

investigated. 

The specific goals of this thesis are highlighted below: 

1. To provide sufficient and current details on druggability and drug-likeness and principles 

their recent advancements in the drug discovery field while presenting the different 

computational tools and their reliability of predictive analysis in drug discovery: 
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1.1 To highlights the principles and methods that underline the assessment of the 

druggability of biological target 

1.2 To highlights and establish the reliability of available druggability predictive 

methods 

1.3 To outline methods for the identification of lead molecules by assessing drug-

likeness 

1.4 To highlights physiochemical properties and pharmacokinetic properties in 

determining drug-likeness 

1.5 To highlights currently available in silico techniques of predicting drug-

likeness whiles buttressing on their reliability in augmenting experimental 

methods 

 

2. To provides an understanding of the binding mechanism of Remdesivir by unraveling the 

structural and conformational implications on SARS-CoV-2 RdRp upon Remdesivir 

binding and identify its crucial pharmacophoric moieties: 

 

2.1 To model the structure of SARS-CoV-2 RdRp through homology modeling 

in the absence of its X-ray crystal structure.    

2.2 To perform molecular dynamics simulations on the modelled structure of 

SARS-CoV-2 RdRp complexed with Remdesivir 

2.3 Investigate the conformational and structural changes on SARS-CoV-2 
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RdRp upon Remdesivir binding relative to the unbound conformation 

2.4 To measure the MM/PBSA-based free binding energy of Remdesivir 

2.5 To calculate the per-residue energy decomposition of individual amino acid 

residues that interact Remdesivir  

2.6 To calculate the per-residue energy decomposition of individual amino acid 

residues that interact Remdesivir  

2.7 To construct a pharmacophore that highlights the prominent interacting 

moieties of Remdesivir using ZINCPharma 

2.8 To screen the ZINC database for potential SARS-CoV-2 RdRp inhibitors 

using the generate pharmacophore 

 

3. To provide the molecular and structural mechanism of action of a novel benzothiophene 

derivative shown to inhibit HRV viral replication: 

3.1 To obtain the X-ray crystal structures of HRV-B14 capsid 

3.2 To model the structure of the novel benzothiophene derivative and 

subsequently subject it to molecular docking to generate complexes of the 

inhibitor and the HRV-B14 capsid. 

3.3 To perform molecular dynamics simulations on the generated HRV-B14 

inhibitor complex and the unbound conformation of HRV-B14  

3.4 To explore the impact of the binding of the novel benzothiophene derivative 

on the structural dynamics of HRV-B14 upon binding to it “canyon region” 
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3.5 To explore the impact of the binding of the novel benzothiophene derivative 

on the residue interaction network of HRV-B14 upon binding to it “canyon 

region” 

3.6 To explore the impact of the binding of the novel benzothiophene derivative 

on the motion the North-South Wall of HRV-B14 upon binding to it 

“canyon region” 

3.7 To estimate the binding free energy profile of the the novel benzothiophene 

relative the known the known capsid inhibitor, Pleconaril 

3.8 To quantify the individual energy contributions of binding site residues 

towards the binding of the novel benzothiophene using per-residue energy 

decomposition approach 

 

4. To unravels molecular and structural bases behind the dual inhibitory potential of the novel 

inhibitor IMP-1088 against human N-myristoyltransferase (HNMT) subtypes 1/2 toward 

common cold therapy using augmentative computational and cheminformatics methods. 

The study also highlights the pharmacological propensities of IMP-1088: 

 

4.1 To perform a sequence of alignment of HNMT subtypes 1/2 to assess their 

sequence similarity 

4.2 To obtain the X-ray crystal structures of HNMT subtypes 1/2 and subject to 

molecular dynamics simulations complexed with IMP-1088 
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4.3 To quantify the individual energy contributions of binding site residues 

towards the binding of IMP-1088 in both subtypes 1/2 using per-residue 

energy decomposition approaches  

4.4 To estimate the relative conformational and structural changes on both 

HNMT subtypes upon binding of IMP-1088 

4.5 To perform in silico physicochemical and ADMET profiling of compound 

IMP-1088 

 

5. To unravel the molecular mechanisms and structural dynamics that are associated with the 

dual inhibitory activity of bioactive metabolite of Para-amino Salicyclic Acid (PAS-M) 

towards dihydrofolate reductase (DHFR) and flavin-dependent thymidylate synthase 

(FDTS): 

 

5.1 To highlight the crucial role of DHFR and FDTS as therapeutic targets in 

tuberculosis treatment 

5.2 To obtain the X-ray crystal structures of DHFR and FDTS and subject to 

molecular dynamics simulations complexed with PAS-M 

5.3 To measure the MM/PBSA free binding energy of PAS-M and per-residue 

interactions of interacting residues upon binding with both DHFR and 

FDTS. 

5.4 To assess the concomitant effects of PAS-M binding on the overall 

structural stability of DHFR and FDTS. 
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5.5 To reflect the dynamical interactions elicited by the PAS-M at the 

hydrophobic grooves (binding sites) of DHFR and FDTS and identify 

crucial residues involved in high-affinity binding. 

5.6 To apply appropriate metrics to evaluate the structural dynamics of the 

hydrophobic deep pockets of DHFR and FDTS upon binding of PAS-M 

 

6. To describe the structural dynamics that explicate the experimentally reported antagonistic 

features of Bedaquiline (BDQ) in halting ion shuttling by the mycobacterial c-ring by 

binding Mycobacterium tuberculosis ATP synthase: 

 

6.1 To obtain the X-ray crystal structure Mycobacterium tuberculosis ATP 

synthase complexed with BDQ and subject the complex to molecular 

dynamics simulations  

6.2 To investigate the dynamical and corresponding structural effects of the 

binding of BDQ on the primary structure of Mtb ATP synthase 
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6.3 To investigate how dual molecule or single molecule binding of BDQ on 

Mtb ATP synthase influence the inhibitory potency of BDQ. 

6.4 To perform a time‐bound analysis of the interaction of BDQ at the c‐ring 

F1F0 synthase 

6.5 To quantify the energetics of the individual residues to the total binding 

affinity of BDQ with particular emphasis on the electrostatic and van der 

Waal energy contributions using MM/PBSA calculations 

 

7. To explore the impact of triple mutations on F1F0 structure and the consequential effect 

on the binding of BDQ: 

 

7.1 Model the non-existent crystal structure of F1F0 subunit C of Mtb using 

online modelling tools such as SwissModel  

7.2 To generate a mutant Mtb F1F0 by substituting these three residues 59(Leu 

→ Val), 61(Glu → Asp) and 66(Ile → Met) in its amino acid sequence. 

7.3 To perform a 150ns MD simulation on the mutant system and also a wild 

system with BDQ binding. In all two systems resulted including Mutant-

BDQ and Wild-BDQ systems 

7.4 To assess the systems stability and other conformational dynamics such as 

flexibility and compactness. 
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7.5 To perform a Residue Interaction Network to assess the effect of mutation 

on the binding of BDQ 

7.6 To employ post-MD analysis such MM/GBSA based binding free energy 

calculation to estimate the binding affinity of BDQ with and without the 

triple mutation 

7.7 To conduct Hydrogen bond analysis on the simulated systems to ascertain 

the impact of the mutation of hydrogen formation 

 

8. To explore the structural mechanism of inhibition of Protein Tyrosine Phosphatase 

Receptor Zeta (PTPRZ) by NAZ2329, a novel allosteric inhibitor: 

8.1 To highlight the role of PTPRZ as a therapeutic target in glioblastoma  

8.2 To prepare PTPRZ complexed with NAZ2329 and followed by molecular 

dynamics simulation studies to investigate the interaction dynamics over the 

simulation period 

8.3 To assess the impact of NAZ2329 binding on the structural stability of 

PTPRZ 

8.4 To monitor the structural and conformational dynamics of the WPD-loop 

upon the binding of order NAZ2329. 

8.5 To assess the physicochemical and drug-likeness of NAZ2329  

 

9. To gain atomistic insights into the structural dynamics and selective mechanisms of AH10-

7 against human variants of TCR-CD1d toward activating invariant natural killer T 

(iNKT): 
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9.1 To highlight the pharmacological ability of α-galactosylceramide 

derivatives as immunotherapeutic agents that in cancer treatment 

9.2 To retrieve the X-ray crystal structure of 2C12 TCR-CD1d in complex with 

AH10-7 and KRN7000 and subject them to molecular dynamics 

simulations 

9.3 To investigate the mechanistic selective binding affinity mediated by the 

incorporated hydrocinnamoyl ester on the “C6” of the sugar of AH10-7 

using MM/PBSA calculations 

9.4 To investigate the atomistic binding profiles of dually modified α-GalCer 

with individual hydrophobic pocket residues through per-residue energy 

decomposition 

9.5 To explore how the dual sphinganine base and hydrocinnamoyl ester 

modification of αGalCer enhances binding interactions with TCR-CD1d 

9.6 To examine the conformational changes on human TCR-CD1d upon 

binding of AH10-7 and KRN7000  

 

 

 1.3 Novelty and significance of study 

 

Despite the availability of several therapeutic interventions against viral infections, tuberculosis, 

and cancer, these conditions persist, with these diseases featuring prominently in the top ten causes 

of death globally. Their persistence as global health concerns has been due to incidences of 

chemotherapeutic resistance and associated toxic effects over the years. Reports in this thesis 

implement several computational techniques towards augmenting experimental methods as an 
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avenue of potentially accelerating the drug discovery process of novel inhibitors that overcome 

challenges associated with existing conventional therapeutic remedies against these diseases. By 

unraveling the molecular mechanism of small molecule inhibitors against therapeutic targets 

investigated in this study, the employed CADD approaches reveal crucial atomistic and structural 

insights that could aid in designing small molecule inhibitors against the respective biological 

targets that possess improved therapeutic properties. This could also reduce the search space to be 

investigated in laboratory experiments while leading to the discovery of lasting therapeutic 

solutions since the biological targets investigated in this thesis are prominently implicated in the 

studied diseases' pathogenesis. With the use of CADD techniques, a comprehensive in silico 

perspective is offered to shed light on possible structural characteristics that allow for the inhibition 

of these implicated therapeutic targets while also revealing the amino acid residues implicated in 

the biological functions of the targets. Also, by defining these therapeutic targets' binding 

landscape, the reports in this thesis will present a prospective design of selective and unique 

inhibitors with critical pharmacophoric features that will aid in developing targeted and effective 

small molecule inhibitors towards overcoming chemotherapeutic resistance and minimizing 

toxicity effects. 
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CHAPTER 2 

 

2.0 Background on the Application of Computer Drug Design in Drug Discovery 

2.1 Introduction to Computer-Aided Drug Design 

 

Small molecule compounds play a crucial role in modern-day medicine due to their ability to either 

prevent, treat, cure, relief, or restore a diseased system to a non-diseased state. Over the years, 

development of small molecule compounds for therapeutic purposes have usually involved the 

conventional route of obtaining lead molecules and subsequently developing a scientifically 

structured process for finding small molecule compound that would possess essential biological 

properties through several trial-and-error processes. Identification of a single small molecule 

compound for patient use usually begins with an initial screening of over 10,000 candidates 

followed by hundreds of animal testing in preclinical stages and finally concluded by several 

clinical trial stages involving thousands of healthy volunteers and diseased individuals. However, 

the identification of the small molecule compounds is usually preceded by years of scientific study 

to determine the biochemistry behind a disease, for which pharmaceutical intervention is possible. 

These subsequently result in determining specific biological targets (receptors, enzymes, protein) 

whose functions must be modulated by the small molecule compounds to induce a therapeutic 

outcome [1]. 

 

With the advancement in technology, this process has gradually evolved into a more purposeful 

design, synthesis, and evaluation of the candidate small molecule compounds referred to as a 

“rational drug design process”, a process that thrives on the collaborative efforts of multiple 

disciples such as process chemistry, animal pharmacology, drug metabolism, medicinal chemistry 
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and clinical research [2].  However, this conventional process is time and resource-consuming, 

with a recent study by Wouters et al. [3] revealing that an estimated median cost of $985 million 

and an average cost of $1.3 billion is required to get a small molecule compound from the 

laboratory to the market over a 7-to-12-year period. Aside from the huge cost and time-consuming 

nature of conventional drug discovery processes, studies have shown that only 1 out of 10 

compounds that make it to clinical trials will successfully reach the market, suggesting a very low 

success rate of less than 0.001% [4,5]. These challenges have motivated the incorporation of new 

approaches into the drug discovery and development process, some of which aim to facilitate, 

expedite, and consequently to streamline the process. 
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Figure 2.1: Schematic showing the different phases of the drug discovery process [1] 

 

One such approach is Computer-Aided Drug Design, which has proven to save time, money, and 

resources [1,6–9]. Since its introduction, it is estimated that CADD currently accounts for about 10% 

of pharmaceutical research and development expenditure and continue to increase [4,10]. The 

incorporation of CADD in the drug discovery pipeline cuts across various stages of the process from 

lead discovery in its early years of application to its current application in target identification, target 

validation through to clinical trials through its ability to predict pharmacokinetic properties [4,7,11]. 
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CADD's predictive power augments the drug design and development process by screening out only 

the most promising drug candidates from large compound libraries. Thus, CADD can prune 

compounds that could result in a “dead-end” due to their unfavorable pharmacological and 

pharmacokinetic properties, thereby accelerating getting drugs to the market. CADD also provides 

thorough atomistic binding features derived from the modeling of drug-target interactions [12]. These 

detailed atomistic scale insights are nearly impossible to assess in any other way yet are crucial in the 

design of new and improved small molecules compounds. 

 

Once the possible binders are identified, combinatorial chemistry can be used to generate a series of 

derivatives. However, in the absence of a biological target, a QSAR pharmacophore can be created 

based on the structure and activity information of a ligand. The crucial pharmacophoric features can 

screen for new binders with similar features that bind to the same target. Further, properties such as 

absorption, distribution, metabolism, excretion, and toxicity can also be predicted using CADD tools 

and used to compare with bio-assay data. Compounds that make it through all preclinical assessments 

become eligible compounds for the following clinical trials. 

Figure 2.2: In silico Computer-aided drug design [13,14] 
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Over the years, CADD's application led to the successful discovery and design of some small-molecule 

compounds, notably the design of thymidylate syntheses inhibitors as anticancer inhibitors by Appelt 

et al. in 1991[15]. Similarly, in 1994, Thaisrivongs (1994) reported HIV protease inhibitors that were 

also discovered through screening or via structural-based design based upon crystal structures of HIV 

protease complexes. The crystal complexes of HIV proteases allowed for a thorough evaluation of 

enzyme-inhibitor interaction and a practical effort toward the iterative cycle of structure-based design 

of inhibitors [16]. There have also been reports of the applications of CADD techniques in the 

successful discovery of neutrophil elastase inhibitors in 1998[17]. Other notable compounds 

discovered via CADD approaches include the carbonic anhydrase inhibitor discovered in 1989 by 

Baldwin et al. as an antiglaucoma agent inhibitor and a set of synthetic sweeteners that were also 

reported in 1990. Several of these CADD interventions have resulted in the discovery of many small 

inhibitors which have either been approved or in various stages of development as presented in table 

2.1 amongst many others [18–20]. CADD has since become an essential part of the preliminary stages 

of the drug discovery pipeline of most renowned pharmaceutical companies, which has consequently 

expedited the drug development process in a more cost-efficient way towards minimizing failures in 

the final stage of clinical trials. 
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Table 2.1:  Highlights of drugs designed using CADD  

 

Drug  Year of Approval Therapeutic action 

Cimetidine 1979 H2 -receptor 

antagonist[21,22] 

Captopril 1981 Antihypertensive [23] 

Imatinib 1990 Tyrosine kinase 
inhibitor[24,25] 
 

Saquinavir 1995 Human immunodeficiency 
Virus (HIV) inhibitor [26] 

Dorzolamide 1995 Carbonic anhydrase 
inhibitor [27] 

Indinavir 1996 Human immunodeficiency 
Virus (HIV) inhibitor [26] 

Ritonavir 1996 Human immunodeficiency 
Virus (HIV) inhibitor[26,28] 

Triofiban 1998 Fibrinogen  antagonist[29] 

Norfloxacin 1998 Inhibitor of bacterial 
DNA gyrase[30,31] 

Oseltamivir 1999 Neuraminidase inhibitor[32] 

Zanamivir 1999 Active against influenza A 
and B viruses.[33] 

Gefitinib 2003 EGFR kinase 
inhibitor[34,35] 

Fosamprenavir 2003 HIV protease 
inhibitor[36,37] 

Atazanavir 2004 HIV protease 
Inhibitor[38,39] 

Sorafenib 2005 VEGFR kinase inhibitor[40–
42] 

Erlotinib 2005 EGFR kinase 
inhibitor[43,44] 

Tipranavir 2005 Nonpeptidic HIV-1 protease 
inhibitor[45] 

Darunavir 2006 Nonpeptidic HIV-1 protease 
inhibitor[46,47] 

Lapatinib 2007 EGFR / ERBB2 
inhibitor[48,49] 

Raltegravir 2007 Human immunodeficiency 
Virus (HIV) inhibitor[50] 
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Aliskiren 2007 Human renin inhibitor[51] 

Boceprevir 2011 Hepatitis C virus (HCV) 
inhibitor[52] 

Abiraterone 2011 Androgen synthesis 
inhibitor[53–55] 

Crizotinib 2011 ALK inhibitor[56,57] 

Rupintrivir Phase II clinical trials Human  rhinovirus  (HRV)  3C  
protease[58] 

TMI-005 Phase II clinical trials In Rheumatoid arthritis[59] 

LY-517717 Phase II clinical trials Serine protease Inhibitor[60] 

Nolatrexed Phase III clinical trials In Liver cancer[61] 

NVP-AUY922 Phase II clinical trials Inhibitor for HSP90[62] 

Oxymorphone Phase III clinical trials Peripheral opioid receptor 
antagonist [30,63,64] 

 

 

 
Figure 2.3: 2D structures of some small molecule inhibitors developed through CADD approaches 
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2.2 Genesis and Chronological Evolution of Computer-Aided Drug Designs 

 

Although CADD is now very popular, with most globally renowned pharmaceutical companies 

extensively employing computational tools to design and discover therapeutic products for various 

life-threatening diseases [13], CADD has been around for several years. CADD became widely 

accepted as a concept at the beginning of the 20th century after the “lock and key” concept propounded 

by P. Eh-rich (1909), and E. Fisher (1894) had occupied a better of the 19th century   This was followed 

by subsequent incorporation of statistical techniques with biological activities of compounds to 

generate a new concept call Quantitative Structure-Activity Relationships (QSAR) a few decades later.  

[66] A publication titled “Next Industrial Revolution: Designing Drugs by Computer at Merck” in the 

Fortune magazine in 1981 heightened the popularity of CADD and its ensuing relevance in the drug 

discovery process [7,68]. This was in addition to the rising popularity of the combination of CADD 

with existing molecular biology concepts and its incorporation in the prediction of structures via 

Nuclear Magnetic Resonance and X-ray crystallography [7]. Several innovations that followed, 

including advancements in combinatorial chemistry, increased the number of compound databases 

covering large chemical spaces aided in expanding drug discovery and the eventual development of 

high-throughput screening (HTS) [69–71]. The advent of HTS expedited the drug discovery and 

development process by facilitating the rapid screening of large compound libraries for compounds 

that could elicit desirable therapeutic responses against new targets [72].  HTS eventually gained 

prominence in 1992 when about 40% of drug portfolios obtained their hits from HTS [72]. Regardless 

of the ability of HTS to facilitate the rapid screening of millions of compounds and its cost-

effectiveness, the rates of obtaining successful hits are low, and identified hits might also not make it 

beyond preclinical and clinical investigations.  The failure of hits was attributed to their poor 

pharmacokinetics and physicochemical properties such as adsorption, distribution, metabolism, 

excretion, and toxicology (ADME/T). Therefore, CADD presented a viable alternative that augmented 
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the existing methods by enhancing the success rates of hit compounds, making it as drugs while 

reducing the associated colossal cost of drug discovery and development. CADD thus improves the 

bioactive molecules, develops therapeutic alternatives, and understands biological events at the 

molecular level. The onset of the 21st witnessed a rise in CADD's prominence, with the advancement 

in computational power and the development of many models and new tools. With these 

improvements, CADD application in the pharmaceutical industry has taken center stage in the drug 

discovery process, particularly when combined with advanced forms of previous computational 

techniques such as HTS and X-ray crystallography. This has allowed for the application of CADD to 

find solutions to complex pharmaceutical solutions and discover numerous drugs in the treatment of 

diseases such as glaucoma, nonsmall-cell lung cancer, and acquired immunodeficiency syndrome 

(AIDS) [73–77]. 

 

2.3 Classification of Computer-Aided Drug Design 

 

CADD has been classified mainly into two types, namely; Structure-based drug design (SBDD) 

and Ligand-based-drug design (LBDD). However, more recently, other subtypes have gained 

prominence, notably Pharmacophore-based drug design (PBDD) and Fragment-based drug design 

(FBDD), collectively referred to as hybrid-based methods. 

 

2.3.1 Structured-Based Based Methods of Drug Design 

Considered one of the most influential and innovative methods in drug design, structure-based 

drug design utilizes the three-dimensional (3D) structure of a biological target as the basis for drug 

design[9,69,71,78].  SBDD relies on understanding the mechanism of action of the bound ligands, 

the specific binding on the biological target, and thorough elucidation of the molecular dynamics 
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of the ligand-biological target complex [30,79–81]. As such, an existing X-ray crystal, Nuclear 

Magnetic Resonance (NMR) spectroscopy, or cryo-electron microscopy (EM) structures of the 

biological target complex is usually required to begin with [71,82,83]. In the absence of X-ray or 

NMR structures, molecular modelling techniques such as homology modelling is used to generate 

3D structures of biological structures of interest [84–86]. These structures are retrieved from the 

known databases; Protein Data Bank (PDB) [87] and the Protein Data Bank in Europe (PDBe) 

[88] for further evaluation. To generate ligand-biological target complexes in the absence of 

deposited complexes, known computational techniques such as molecular docking are then 

employed.  

Subsequently, molecular dynamics (MD) simulations are used to unravel the mechanism of action 

and interaction dynamics at an atomistic level [30,79–81]. Because the 3D structure of the 

biological target is the crux of SBDD, its identification of a valid biological target and 

understanding its structural dynamics is usually the first step in the entire SBDD process. SBDD 

is further sub-categorized into two approaches: de novo drug design and the ligand docking 

approach.  In de novo drug design, large compound libraries are screened to identify new ligands 

that complementarily bind to a known biological target [84]. The recent advancement in 

technology has gradually seen a merger of both approaches [84]. 
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Figure 2.4: Schematic highlighting the classification of CADD 
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2.3.2 Ligand-Based Drug Design 

 

This approach of drug design is employed when no information about the biological target is known. 

However, instead, enough information on the ligand that modulates that biological target's function is 

known [89,90]. Even though LBDD incorporates experimental approaches, its success rate is still lower 

than SBDD.  In LBDD, notable computational techniques employed in quantitative structure-activity 

relationship/quantitative structure properties relations (QSAR/QSPR) are employed to select ligands 

with potential activity-based 2D/3D structural and physicochemical properties [9,84,90–92].  The 

selection of these molecular descriptors that inform the drug design process in LBDD is usually based 

on assuming that compounds that possess structural similarities could equally possess similar 

biological activity towards a given biological target [71,93]. The knowledge of QSAR/QSPR allows 

for identifying moieties on the ligands that could influence a particular therapeutic effect and inform 

any structural modification on the ligand to improve its therapeutic potency [9,84,94]. 

 

2.3.3 Hybrid Drug Design Methods 

 

Interspersed between both SBDD and LBDD are methods that have gained prominence as CADD 

techniques, namely pharmacophore-based (PBDD) and fragment-based drug design. Hybrid 

methods also employ both SBDD and LBDD, thus in cases where there are a known biological 

target and a known ligand. In PDDD, the design of small molecules is based on the knowledge of 

chemical features of a known chemical compound required for the biological activity of that 

chemical compound [67,84,95–97]. These chemical features, referred to as pharmacophores, 

dictate the chemical compound's interaction with specific sites of a given biological target. PBDD 

has been widely explored because of its reliability over the years as a drug design method. Widely 
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explored methods under PBDD include; 3D-QSAR based pharmacophore modeling, common 

feature pharmacophore modeling, and 3D-pharmacophore modelling [84,98]. 

Fragment-based screening as an approach connects molecular fragments that have been shown to 

interact with specific sites on binding pockets to generate a small molecule compound that can be 

synthesized and be therapeutically useful [84,99].  The process of FBDD usually involves either a 

replacement of a chemical scaffold or a growing of new fragment for the purpose [84,99,100]. 

Several compounds designed via FBDD have made it through to clinical studies establishing its 

crucial role in the current day drug design and development [99,101]. 

 

2.4 Challenges of the application of CADD in drug design development 

 
Although CADD is undoubtedly a substantial part of the drug design process, it has known 

challenges that impede its overall success. As a multidisciplinary specialty, CADD requires highly 

skilled professionals with intellectual proficiency in all relevant fields, a requirement that tends to 

be a significant challenge.  Another considerable challenge of CADD is the accuracy and 

efficiency of computational techniques since, in scientific computing, several factors need to be 

considered, including; theoretical assumptions and algorithmic shortcuts, which could affect 

outcomes and predictions. This consequentially influences the quality and reliability of online 

computational resources and computational techniques such as virtual screening and ADMET 

predictions [102]. Other notable challenges include; deficiencies of CADD in chemo-genomics, 

the challenge of designing drugs with multi-targeting properties, improving the predictive capacity 

of toxicity models and side effects, and strengthening interaction with other disciplines to optimize 

the search for bioactive molecules for the treatment and/or prevention of diseases.  
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Although CADD has gained prominence, its application in the drug design and development 

process is still limited by many scientists' reluctance in integrating computational approaches with 

experimental techniques. Therefore, efforts should be made to ensure that CADD is successfully 

integrated with existing methods such as high throughput screening, combinatorial chemistry, and 

natural product-based drug discovery but not treated as a stand-alone technique of drug discovery 

[103–108]. 

 

2.6 Application of CADD in Developing Therapeutics for Viral Infections 

 

Viral infections are the most notorious of all infectious diseases.  

Viruses are obligate intracellular organisms that contain either ribonucleic acid (RNA) or 

deoxyribonucleic acid (DNA) genetic material enclosed within a capsid that causes numerous 

diseases in organisms. Several viruses have emerged in the last 40 years and have been the cause 

of significant disease outbreaks, notably; human immunodeficiency virus (HIV), influenza viruses, 

Hepatitis B virus,  Ebola virus, Zika virus,  severe acute respiratory syndrome coronavirus (SARS-

CoV), Middle East respiratory syndrome (MERS) and the most recently SARCoV-2 amongst 

many others [109–117]. As viruses continue to evolve with the emergence of drug-resistant strains, 

there is a need for new therapeutic agents to be designed as well. Available antivirals have targeted 

various viral proteins and enzymes whiles attempting to strengthen host immune responses.  The 

earliest reported antiviral application in treatment was in the 1960s in which thiosemicarbazone 

was used to treat smallpox [118]. Many approved antivirals target viral replication; however, many 

of the structures required for the process, such as ribosomes, originate from humans, whiles some 

known antiviral have associated side effects. As such, the search for safer antiviral continues. 

Although the process of designing new antivirals may be expensive, tedious, and time-consuming, 
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technological advancement has allowed for the application of cheaper and less time-consuming 

approaches such as computer-aided techniques towards designing novel and more efficient 

antivirals. Computer-aided have been employed at various stages to discover and design various 

antivirals, with some even getting approved for clinical use, as presented in table 2.1, amongst 

many others [119,120].  

With the aid of CADD techniques, the 3D structures of several structures in viruses have been 

determined via X-ray crystallography or homology modeling. Other molecular modeling 

techniques such as MD simulation and thermodynamics calculations have also allowed for the 

unraveling of atomistic insights and binding interaction dynamics that could help design novel 

antivirals with improved pharmacokinetics and physicochemical properties [118,121–123]. MD 

simulations have also helped identify hidden or allosteric binding pockets and augment existing 

antiviral drug discovery and development methods. To ensure efficient preclinical, experimental 

analyses of antiviral compounds in the CHEMBL dataset,  Vásquez-Domínguez et al. proposed a 

Perturbation-Theory Machine Learning model (PTML) [124]. The PTML model allowed for 

simplifying the management of the data in CHEMBL by considering multiple features that 

combined with preclinical, experimental anti-retroviral tests.  The application of CADD techniques 

such as virtual screening has also allowed for screening large compound libraries to identify 

potential ant-viral agents [125,126]. Some of these techniques, such as QSAR, also allow for the 

optimization of drugs against several viruses, which consequently optimize the metabolic profiles 

of the drugs [127,128]. 
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2.6.1 Anti-Viral Targets Explored in This Thesis 

 

This section will describe viral therapeutic targets that have been extensively investigated in 

relation to their interaction with specific small molecule inhibitors. The structure, functions, and 

implicated roles in viral disease pathogenesis will be discussed in detail. 

 

2.6.1.1 SARCOV-2 RNA dependent RNA polymerase 

 

One of the extensively investigated therapeutic targets in search of treatment methods against 

COVID-19 is the RNA-dependent RNA polymerase (RdRp) because of its crucial role in the 

replication and transcription of the SARSCOV-2 viral genome [129,130]. RdRp functions by 

controlling RNA strand elongation characterized by the addition of ∼30,000 nucleotides. 

SARSCOV2 RdRp is the product of the cleavage of the polyproteins 1a and 1ab from ORF1a and 

ORF1ab [131]. Structurally, RdRp consists of three subunits a catalytic non-structural protein 

(nsp) 12 (398-919) and two nsp8 and nsp7 accessory subunits [132–134].  Nsp12 houses the 

polymerase domain in a cupped “right hand” shape with palm domains, a thumb, and fingers 

[131,135,136]. The majority of the catalytic motives (A-E)  are located in the palm domain, known 

to be the most conserved.  The remaining two domains (F and G) are located in the finger domains 

[136–138]. Several reports have explored the effectiveness of RdRp as a therapeutic target for the 

treatment of COVID-19 [139,140] due to their uniquely conserved core structure the similarities 

of the motifs essential for the catalytic activity of RdRp [141,142]. Its suitability as a therapeutic 

target is based on the fact that there is no homolog of RdRp in humans [130]. Targeting RdRp over 
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the years has involved nucleoside and nucleotide analog inhibitors, which antagonize the native 

nucleosides and nucleotides and thus block viral RNA synthesis while inhibitors others induce 

mutations in the viral genome [143,144]. Due to structural similarity in conserved amino acids 

between SARCOV-2 RdRp and other different positive-sense RNA viruses, several therapeutic 

agents targeting other RdRp have been repurposed as potential therapeutic agents in COVID-19 

treatment [138,145]. Particularly at the  Notable SARSCOV-2 RdRp inhibitors include at various 

advanced stages of clinical trials includes Remdesivir [146–149], Favipiravir [150–152],  

Ribavirin[153–155] and Galidesivir [130,156,157] 

 

Figure 2.5: Linear structure of RNA Dependent RNA Polymerase (RdRp) showing the N-terminal 
domain and the main polymerase domain showing sub-domains (Finger, Palm, Thumb as well a 
ribbon diagram showing important domain in RdRp. 
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2.6.1.2 Icosahedral Viral Capsid polyproteins of Human Rhinovirus B14 (HRV-B14) 

 

Consisting of four viral capsid proteins, namely VP1, VP2, VP3, and VP4, which enclose the viral 

(+)-ssRNA strand, the icosahedral capsid polyprotein has been extensively explored as a 

therapeutic target for the treatment of HRV infectious [158,159]. Structurally, the capsid proteins' 

arrangements form a unique icosahedral symmetry, which houses 60 copies of each protein [160]. 

VP1, VP2, and VP3, which are the largest of the capsid proteins, make up the viral capsid 

polyprotein's external surface. At the same time, VP4 encompasses the polyprotein's inner surface, 

thus forming an interface between the viral (+)-ssRNA and the external capsid protein (VP1, VP2, 

and VP3). Peculiar narrow ditches around the 5-fold apex of the viral capsid called “canyons” are 

used for cell-receptor-binding, which results in the uncoating of the capsid for subsequent cell 

entry [161]. A hydrophobic groove within the “canyon” made up of residues; Leu25, Ala21, 

Leu106, Phe124, Tyr128, Iso130, Tyr152, Val176, Tyr197, Met221, Asp219A, and Ser172 has 

been targeted by many capsid inhibitors. Upon binding to the hydrophobic groove in the “canyon”, 

some of these capsid inhibitors stabilize the viral capsid dynamics and subsequently impede viral 

uncoating [162]. Notable viral capsid stabilizing inhibitors include; pleconaril (WIN-63843) and 

Vapendavir (BTA-798) [163–166].  
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Figure 2.6: Structure of icosahedral viral capsid demonstrating the unique VP1-VP3 domain 
orientations and the characteristic “canyon” drug-binding pocket. [162] 
 

2.6.1.3 Human N-myristoyltransferases 

 

N-myristoyltransferase (NMT) is a wildly conserved enzyme in eukaryotes that responsible for the 

post and co-translational modifications characterized by the transfer of myristate from myristoyl 

coenzyme A (Myr-CoA) to the N terminus of specific substrates [167,168]. NMTs belongs to the 

superfamily GCN5-related N-acetyltransferase (GNAT) [169].  In humans, NMT is expressed as 

two isoenzymes, namely; NMT1 and NMT2, and is implicated in several diseases, including viral 

infections such as common cold [170]. The implication of NMT in viral infection was evidenced 

by a mutagenesis study involving Poliovirus. It was suggested that the N-myristoylation of the 
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capsid proteinVP0 is a crucial capsid assembly and viral infectivity [171–174]. This evidence 

presents human  N-myristoyltransferase as a viable therapeutic target that is minimally affected by 

any potential mutation in the virus as well as an serotypic variation since the host N-

myristoyltransferase is an invariant factor in the replication of the virus. 

 

Figure 2.7: A) Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and IMP-1088 
inhibitor bound (PDB:5MU6). B) Human N-myristoyltransferase isoform 2 (NMT2) 
(PDB:4C2X) 
 

2.7 Application of CADD in developing therapeutics for tuberculosis 

 

Tuberculosis (TB) remains a major global health threat considering its persistence as one of the 

leading causes of death worldwide. TB is caused by the “tuberculosis complex,” namely; 

Mycobacterium tuberculosis (Mtb), Mycobacterium bovis, and Mycobacterium Africanum 

[175,176] of which Mtb is the most predominant causative agent amongst the complex. In 2018, 

about 10 million people reportedly contracted  TB, of which over half a million were reported 

attributed to Rifampin resistant TB (RR-TB) An estimated total of 1.5 million reported died from 
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these infections [177]. Considering the center stage, the drug resistance has assumed in the number 

of deaths associated with TB,  novel antitubercular agents with the improved mechanism of actions 

are of urgent need towards overcoming the burden of TB. The increase in biological data, changes 

in the number of identified biological targets, and advancement in HTS technologies and other 

technological tools have also resulted in a change in the drug discovery process for novel 

antitubercular agents. As such, CADD has gradually taken a center in the design of TB 

therapeutics. Nonetheless, the applications still have some challenges as elaborated in a report by 

Ekins et al. in 2011, which informed their recommendation that CADD techniques should be 

ideally incorporated with experimental procedures to ensure an acceleration of the TB drug 

discovery process [178]. Several in silico techniques such as virtual screening, molecular dynamics 

simulations, molecular docking, homology modeling, QSAR, and pharmacophore modeling, 

amongst many others, have been employed over the years towards designing novel TB therapeutics 

[179]. A report by Taira et al. employed virtual screening to identify compounds that could interact 

with the mycobacterial CmaA1 [180]. The virtual screening process was based on the structural 

similarity between the selected active compounds in the study. It resulted in the identification of 

two compounds that could potentially inhibit mycobacterial growth. In a more recent report by 

Kumar et al., virtual screening was combined with MD simulation and binding free energy 

calculations to identify potential inhibitors of the promising TB target, decaprenylphosphoryl-β-

d-ribose 2’-epimerase (DprE1). Their report also identified four compounds (ChEMBL2441313, 

ChEMBL2338605, ChEMBL441373 and ChEMBL1607606) as potential inhibitors of DprE1. In 

another study, Billones et al. identified potential inhibitors of Mtb l,d-transpeptidase 2 (LdtMt2), 

an enzyme responsible for the catalyzation of  3-to-3 cross-linking between amino acids in linear 

amino sugar chains needed to form the peptidoglycan layer of mycobacteria [181]. Billones et al. 
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again in 2017 also combined molecular modeling techniques and experimental methods to 

discover novel inhibitors of  Mtb 7, 8-diaminopelargonic acid synthase ( Mtb BioA )[182]. Using 

similarity search, QSAR models, and pharmacophore hypotheses, Mehra et al. also screened the 

ChemBridge database [183] for potential inhibitors of the GlmU protein that plays a key role in 

the biosynthesis of peptidoglycans and liposaccharides, molecules that promotes the growth of 

Mtb [184]. Among many others, as highlighted in table 2.2, these reports showcase some of the 

immense contributions of CADD in TB pharmaceutical research. 

 

Table 2.2: Highlights of some studies that have employed virtual screening in identifying anti-

tubercular agents [179] 

System Function PDB Anti-Mtb-

Activity 

Cyclopropane mycolic acid 
synthase 1[180] 
 

Cell wall 1KPH MIC50/5.1 μM 

l,d-transpeptidase 2[181] Cell wall 3TUR MIC94/25.0 μM 
 

GlmU protein[184] 
 

Cell wall 3ST8 
 

IC50/9.0 μM 
 

L-alanine 
dehydrogenase[185] 
 

biosynthesis of l-
alanine  
 

2VHW 
 

IC50/35.5 μM 
 

L-alanine 
dehydrogenase[186] 
 

biosynthesis of l-
alanine  
 

4LMP  
 

MIC/1.53 μM 
 

L-alanine 
dehydrogenase[187] 
 

biosynthesis of l-
alanine  
 

2VOJ 
 

MIC/11.81 µM 
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Leucyl-tRNA 
synthetase[188,189] 
 

Protein synthesis  2V0C 
 

MIC/25 µM 
 

Haloalkane 
dehalogenase[190] 
 

Unknown 
 

2QVB 
 

Kd/3.37 µM 
 

3-dehydroquinate 
dehydratase[191] 
 

shikimate pathway 
 

2Y71 
 

MIC/6.25 µg/mL 
 

3-dehydroquinate 
dehydratase [192] 
 

shikimate pathway 
 

15 PDB 
structures 
 

MIC/100 mg/ml 
 

Dihydrofolate reductase[193] 
 

folate pathway 
 

Mtb: 1DF7; 
human:1OHJ 
 

MIC/25 μM 
 

Salicylate synthase[194] 
 

iron acquisition 
 

3VEH 
 

MIC99/156 μM 
 

Transcription factor 
IdeR[195] 
 

iron acquisition 
contro 
 

1U8R 
 

MIC90/17.5 
μg/ml 
 

7,8-Diaminopelargonic acid 
synthase[182] 
 

biotin biosynthesis 
pathway 
 

3TFU  
 

MIC/25 μM 
 

7,8-Diaminopelargonic acid 
synthase[196] 
 

biotin biosynthesis 
pathway 
 

3TFU 
 

MIC/7.86 μM 
 

Flavin-dependent 
oxidoreductase MelF[197] 
 

needed to withstand 
ROS and RNS 
induced stress 
 

2WGK 
 

MIC/13.5 μM 
 

NAD⁺-dependent DNA ligase 
A[198] 
 

DNA metabolism 
 

1ZAU/1TAE 
 

MIC50/15 µM 
 

DNA Gyrase[199] 
 

DNA topology 
 

4BAE 
 

MIC/7.8 µM 
 

Flavin-dependent 
thymidylate synthase [200] 
 

DNA metabolism 
 

2AF6 
 

MIC90/125 μM 
 

Flavin-dependent 
thymidylate synthase [201] 
 

DNA metabolism 
 

2AF6 
 

IC29/100 μMb 
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2.7.1 Anti-tubercular targets explored in this thesis 

 

This section will describe anti-tubercular therapeutic targets that have been extensively 

investigated in relation to their interaction with specific small molecule inhibitors. The structure, 

functions, and implicated roles in the pathogenesis will be discussed in detail. 

 
2.7.1.1 Mycobacterial  folate biosynthetic pathway  

 

The folate biosynthetic pathway has been extensively explored as an avenue to the development 

of novel treatment measures for tuberculosis due to the many druggable targets available in the 

pathways [202].  Inhibitors that target the folate biosynthetic pathway, referred to as antifolate, 

impede the production of reduced folate cofactors via the inhibition of crucial enzymes in the 

pathway.  To synthesize folates, the enzyme dihydrofolate reductase encoded (DHFR) by folA 

gene is known to catalyze the conversion of dihydrofolate (DHF) into tetrahydrofolate (THF). The 

process employs Nicotinamide adenine dinucleotide phosphate (NADPH) as an electron donor.  

The generated THF is subsequently converted to N5, N10 Methylene tetrahydrofolate, catalyzed 

by serine hydroxymethyltransferase (SHMT).  The resultant N5, N10 Methylene tetrahydrofolate 

(mTHF), subsequently serves as a precursor for the synthesis of thymidylate in a processed 

catalyzed by the enzyme thymidylate synthase (TSase). In thymidine synthesis, TSase converts 

mTHF and 2′-deoxyuridine-5′-monophosphate (dUMP) to 2′-deoxythymidine-5′-monophosphate 

(dTMP) DHF, and the cycle repeats itself using DHFR. The mycobacterium then employs the 

generated dTMP for the synthesis of DNA. Due to this established vital role of DHFR in the 
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pathway and its powerful influence on mycobacterial DNA synthesis, it presents a viable 

therapeutic target in the design of new TB therapeutics [203,204].  

Nonetheless, many of the known available Mtb DHFR inhibitors have not achieved therapeutic 

success due to their inability to permeate the cellular membranes or a generally poor potency 

against the enzyme [205]. Other notable enzymes in the pathway that have been explored for 

therapeutic purposes in TB include the enzymes flavin-dependent thymidylate synthase (FDTS) 

and the Rv267, a functional analog of DHFR [204,206]. Encoded by the gene, thyX FDTS 

reportedly facilitates dTMP production by catalyzing the conversion of DHF to mTHF, with 

several inhibitors having been designed to target it [207,208]. Therefore its inhibition will 

consequently reduce the production of mTHF.  

Inhibitors of the folate pathways towards TB therapy over the years have included dapsone (DDS) 

and sulfamethoxazole (SMX), which inhibits dihydropteroate synthase (DHPS) [209,210], para-

aminosalicylic acid (PAS) [211], a combination of trimethoprim and sulfamethoxazole as Mtb 

DHFR inhibitors  [212] amongst many others. However, there is currently no approved treatment 

agents that target DHFR. Targeting the foliate pathways at various points using antifolates impedes 

the activated methyl cycle, which results in a decrease in the mycolic acids of the mycobacterium.  

Most recently, reports of multi-targeting agents of the cycles are gaining since these have been 

shown to possess higher therapeutic potency against the mycobacterium in relation to single 

targeting agents [204] 
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  Figure 2.8: The Folate Biosynthetic pathway in Mtb [204] 

 
 
2.7.1.2 C-rotor ring of Mycobacterium tuberculosis  F1Fo‐Adenosine Triphosphate (ATP) 
synthase 
 
 
The c-rotor ring of Mtb F1F0 ATP synthase has been established as an essential structure in 

mycobacterial ATP synthesis. Hence, several inhibitors, notably Bedaquiline (BDQ) of the 

diarylquinoline class of compounds, have therapeutically targeted it towards TB therapy [213–

219]. As a part of the membrane-embedded F1F0 ATP synthase, the c-rotor ring is harbored in the   

F0 domain. In mycobacterium, the F0 domain exists in identical forms of the c-subunit, assuming 

the shape of an hourglass-shaped cylinder and forms a central pore referred to as the c-ring 

[220,221]. As an integral of the  F1F0 ATP synthase, the c subunit is made up of two 

transmembrane helices responsible for proton translocation. Both helices also house crucial 



40 
 

residues (D28, L59, E61, A63, I66) required for sensitivity to diarylquinolines like BDQ [214,222–

224].  Structurally, F1F0 ATP synthase consists of two domains; the F1 and F0 domain. The F1 

complex facilitates the transfer of H+ from the periplasmic space to the cytoplasmic space [225–

227]. The F1 complex, which is also water-soluble, converts Adenosine Diphosphate (ADP) and 

inorganic phosphate (Pi) to ATP using H+-motive force [225,226,228] by a process referred to us 

the rotary mechanism [225,228,229]. As a crucial enzyme in the synthesis of ATP in the three 

catalytic active pockets of the F0 domain, F1Fo‐ATP synthase facilitates the shuttling of ions 

across cellular membranes [228].  

 

 

Figure 2.9: Structure of Mtb ATP synthase modelled from the structure of E. Coli ATP synthase. 
Structure highlights the various subunits  
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2.8 Application of CADD in developing therapeutics for cancer 

 

As a disease, cancer has significantly contributed to the growing mortality worldwide, with more 

than half of cancer cases in low- and middle-income countries [230]. Treatment and management 

of cancer remain a challenge, with many available interventions been halted or not making it 

beyond the clinical phases of drug development. The challenges with existing cancer therapeutics 

are mainly due to cancerous cells' multifactorial characteristics, thus evading and developing drug 

resistance to cancer therapeutics [231,232]. Targeted therapies and precision medicine have 

gradually gained prominence as an advanced therapeutic intervention to address these challenges. 

However, disease relapse,  adverse side effects, expensive treatment options, and drug resistance 

persist [233–238]. As such, the search for alternative cancer therapeutics with enhanced potency, 

cheap, minimal adverse effects, and overcome resistances remains unabated.  Conventional drug 

discovery methods in cancer therapeutics are time-consuming and expensive. However, the advent 

of CADD has sort to ameliorate some of these challenges with the hope of developing novel cancer 

therapeutics with high selectivity and minimal toxicities [8,239]. Together with experimental 

methods, these computer-aided techniques have contributed to the identification and selection of 

crucial oncogenic targets coupled as well as the strategic development of highly selective 

inhibitory methods using low cost less toxic therapeutic molecules that have significantly 

contributed towards the discovery of next-generation lead compounds with great potency in cancer 

treatment. Several reports have reported the involvement of CADD in the development of cancer 

therapeutics. For instance, in the report by Mutata et al., structure-based pharmacophore modeling 

was employed to identify potential inhibitors of p53 upregulated modulator of apoptosis (PUMA), 

whose inhibition leads to a deficiency in apoptosis and thus minimizing the risk of cancer 

development as well as drug resistance. In a separate report by Liu et al.,  a combinatorial 
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computational approach was employed in discovering potential insulin-like growth factor-1 

receptor (IGF-1R) inhibitors [240]. Considering the implication of IGF-1R in several tumors such 

as lung cancers, prostate, and breast cancers due to its crucial role in signaling various cancer 

hallmarks including cell growth, proliferation, and apoptosis, a successful inhibition could be a 

therapeutic breakthrough. In their report, virtual and pharmacophore modeling were employed to 

identify 15 compounds that exhibited potential inhibitory activity against IGF-1R. Another 

reported application of CADD in the discovery and design of anticancer inhibitors is a study by 

Chiang et al. in which ligand-based methods were used to identify tubulin inhibitors [241]. Cell 

cycle progression and cell division require tubulin polymerization. Therefore its inhibitions present 

a powerful avenue for cancer therapy. Another report by Liou in 2006 used a structure-activity 

relationship (SAR) to generate a model on a set of indole-derivatives to improve the potency and 

solubility of anticancer drug candidate BPR0L075. Computational techniques were also employed 

in a study by Noha et al. in 2011, where small molecules inhibitors of I-Kappa-B Kinase β were 

identified(IKK-β) [242]. The crucial role of IKK-β in the NF-κB signaling pathway presents them 

as viable cancer targets. Employing ligand-based pharmacophore modeling, they identified novel 

inhibitors with an affinity toward IKK-β. These studies and many others establish CADD's 

application toward the design of anticancer agents in the last couple of years. 

 

2.8.1 Anti-cancer targets explored in this thesis 

 

This section will describe therapeutic targets in cancer that has been extensively investigated in 

relation to their interaction with specific small molecule inhibitors. The structure, functions, and 

implicated roles in tuberculosis disease pathogenesis will be discussed in detail. 
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2.8.1 Anti-cancer targets explored in this thesis 

 

This section will describe cancer therapeutic targets that have been extensively investigated in 

relation to their interaction with specific small molecule inhibitors. The structure, functions and 

their implicated roles in tuberculosis disease pathogenesis will be discussed in detail. 

 

2.8.1.1 Protein Tyrosine Phosphatase Zeta (PTPRZ) 

 

Protein Tyrosine Phosphatase Receptor Zeta (PTPRZ) is a member of the R5 subfamily of 

receptor-type protein tyrosine phosphatases (RPTPs), which also has Protein Tyrosine 

Phosphatase G (PTPRG) as the other member [243,244]. Although Protein Tyrosine Phosphatases 

(PTPs)  have been implicated in many cellular processes and diseases, they are generally classified 

as "undruggable" due to the positively charged active pockets which are highly conserved 

[244,245]. PTPs are known tumor suppressors, unlike the protein tyrosine kinases (PTKs), whose 

phosphorylation regulates many cellular functions. Simultaneously, its dysregulation has also been 

linked to the cause of many cancers such as gliomas [246,247]. Structurally, PTPRZ and PTPRG 

are made of carbonic anhydrase (CAH)-like domain that occurs in extracellular, two tyrosine 

phosphatase domains which are intracellular, and a fibronectin type III-like domain [248]. 

Although PTPRZ has been extensively investigated as a viable therapeutic target for glioblastoma 

treatment due to its strong expression in gliomas, the pathophysiological implication of PTPRG is 

unclear even though it is significantly expressed in advanced astrocytomas [249–251]. By 

regulating the process of protein tyrosine phosphorylation, PTPRZ leads to the survival of 

glioblastoma cells, thus enhancing tumor growth [246].  Therefore, in glioblastoma cells, reports 
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have shown that the inhibition of PTPRZ interrupts cell proliferation, reduces the formations of 

tumors in vivo, and reduces the migration of malignant cells in vitro hence its extensive 

exploitation as a therapeutic target [251–254]. The structural architecture of the PTPRZ active site 

consists of 5 loops, namely; the P-loops (phosphate-binding loop), the WPD-loop (catalytic 

acid/base harboring), Q-loop (conserved glutamine containing), pTyr-loop (pTyr-recognition), and 

the E-loop (contains multiple conserved residues) [255,256]. By its flexible nature, the WPD loop 

encloses the catalytic site assuming the role of a gate. In the active form of PTPRZ, the flexible 

WPD-loop assumes a closed conformation, while an open conformation is assumed in an inactive 

form of PTPRZ[257]. When substrates bind to the flexible WPD-loop, it assumes a closed 

conformation, which allows the catalytic aspartate on the loop to partake in catalysis [255]. As 

such, a successful inhibition of the WPD-loop mobility could subsequently impede the process of 

catalytic activity of the PTPRZ [258,259]. Although several phosphotyrosine competitive 

inhibitors have been developed over the years, none have been able to achieve success in cancer 

therapy due to their inability to permeate cell wall or as a result of the highly conserved and 

positively charged catalytic pocket [260] 
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Figure 2.10: Structural and corresponding sequence representation of the unique regions of the 
PTPRZ protein; active site-red, allosteric site- green and WPD-loop- yellow[256].  

 

2.8.1.2 Human CD1d-restricted Invariant natural killer T cells  

 

Therapeutic targeting of human CD1d-restricted Invariant natural killer T (iNKT) cells has been 

proven by several reports to have potential therapeutic applications in supplementing immune 

responses against cancer and infections. iNKT cells form part of unconventional T cells involved 

in both innate and adaptive immune response [261,262]. A distinguishing characteristic of iNKT 
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cells, when compared to conventional T cells, is their ability to recognize lipid-based antigens 

rendered by  MHC class I-like CD1d protein [263]. Also,  a unique feature of iNKT cells in the 

presence of a semi-variant T cell receptor (TCR) found  in both humans (Vαl24Jα18) and mice 

(Vα14Jα18) which have been therapeutically exploited toward stimulating iNKT cells responses 

for anti-cancer purposes [264,265]. This has also expanded immunotherapeutic options as well as 

vaccine research [266–268]. iNKT cells exhibit selectivity towards CD1d-expressing thymocytes, 

unlike other natural killer cells that interact with class two MHC molecules [261,269,270]. The 

presence of TCR in iNKT cells also allows for their therapeutic targeting by prototype alpha-

galactosylceramide inhibitors. iNKTs dominate in the adipose but occur in low frequency in the 

blood [271,272]. Activation of iNKTs results in an increased expression of NKTs, which leads to 

the stimulation of the conventional T cells through the secretion of cytokines and mature dendritic 

cells [273,274].  When triggered by antigens, iNKT s release cytokines (Th1, Th2, and Th17) 

within a space of some few hours together with the expression of CD40L, characterizing iNKTs 

role in immune response [269,275]. The antitumor immune response of iNKTs, on the other hand, 

is characterized by inducing the release of cytotoxic lymphocytes (CTLS), activation of other 

natural killer cells, and the modulation of the immunosuppressive tumor microenvironment, which 

altogether results in the killing of cancerous cells [266,276–278]. This has informed the extensive 

investigation of iNKT as immunotherapeutic targets [266,269,278]. Notable activators of iNKTs 

towards cancer therapy have included alpha-galactosylceramide (α-GalCer) and their resulting 

derivatives and synthetic forms; KRN7000 and the more recent AH10-7 [264,265,279–282]. 
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Figure 2.11: Mode of glycolipid presentation by CD1d to NKT cells 
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CHAPTER 3 

 

3.0 Principles of Computational Chemistry and Molecular Modeling Techniques as 
Employed in Understanding the Interaction Dynamics of Biological Molecules with 
Therapeutic Agents 
 

3.1 Introduction 

 

As a fast-emerging field, computational chemistry entails the modeling and computational 

simulation of systems such as polymers, drugs, organic and inorganic molecules, and 

biomolecules, amongst many others [1,2]. Initially introduced in the 1960s, computational 

chemistry has gained immense prominence in the last several decades due to the remarkable 

improvement in computer hardware and the continuous development of advanced computational 

software [3–5]. Technological advancement has substantially increased computing power since 

faster and more efficient computational algorithms are being developed. Computational chemistry 

has simplified the hitherto complex biological and chemical problems by integrating physics, 

chemistry, biology, and mathematics. As applied in this research, computational chemistry has 

enabled the investigation of the structural mechanisms of actions and inhibitory activities 

associated with the binding of some small molecule inhibitors against some therapeutic targets 

against viruses, Mycobacterium tuberculosis, and cancer. Experimental techniques are associated 

with the high cost and time-consuming, based on proven theories, computational chemistry, and 

molecular modeling, which can address these challenges using software and computational tools 

based on empirical information. To ensure the reliability of molecular modeling procedures, 

models prepared must adhere to standard computational techniques and consider all the factors 

that ensure that the simulated models assume similarity to natural systems. Molecular modeling 
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methods incorporate the appropriate application of computational chemistry and molecular 

modeling, which in turn have been developed into several techniques such as molecular dynamics 

(MD) simulations, free binding energy analysis, molecular docking, 3D-QSAR, cheminformatics, 

and drug repurposing techniques, among several others as applied in the studies of this thesis. This 

chapter principally discusses the computational theories governing many of these computational 

techniques as employed in this thesis. The unique approaches that allow for the description of the 

interaction between atoms and molecules in the application of computational models to study 

chemical and biological systems include; quantum mechanics (QM) [6–13], molecular mechanics 

(MM)[14–16], hybrid QM/MM[17–20] and the ‘Our own N-layered Integrated Molecular Orbital 

and molecular mechanics’ (ONIOM) [21,22]. Also described are molecular force fields (MFF). 

These approaches enable a versatile and apt description of chemical, biological systems so long as 

the systems' parameters are impeccably attuned and balanced among each other [4]. Collectively, 

these approaches have allowed for the biological and chemical challenges, including but not 

limited to systems biology [23], enzyme catalysis [24], bioenergy transduction [25]  biomimetics, 

and ligand design [26]. The subsequent sessions describe these approaches as applied to achieve 

the objectives outlined in this thesis. The ensuing sessions also describe other computational 

methods as employed in this thesis. 



80 
 

 

Figure 3.1: The scientific domains in which Applications of Quantum and Molecular Mechanics 
fit into 
 

3.2 Quantum Mechanics 

Quantum mechanisms describe biological and chemical systems by portioning the atoms that make 

up the system into two components: the nuclei and the electrons that enclose the nuclei. A 

characteristic feature of QM description is that it considers all shifts in electron density that 

emanates from charge transfers, polarization, and many-body contributions. Therefore, as applied 

in molecular modeling, QM allows for the investigation of the electronic behavior of molecules 

and spatial interactions. The application of QM in addressing biological challenges has been 

widely explored in areas such as structured based drug design, protein structure and solvation, and 

refinement of biological structures by X-ray spectroscopy and NMR [27]. As employed in this 
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thesis, QM methods also allow for the unraveling of the fundamental physical basis of the catalysis 

of enzymes, a phenomenon that inspired the Noble prize winning work in chemistry by Karplus et 

al. in 2013 [28–30]. QM approaches do not require empirical parameters; as such, their application 

is not restricted to specific molecule class. Comparatively, although QM has these advantages, it 

demands increased computational effort and resources relative to MM. QM employs Schrödinger’s 

wave function to measure the system's energetics, whereas electron mapping is performed using 

the electron density approach  [31,32]. On the other hand, the electron density in QM is also 

estimated using the Born-Oppenheimer approximation theory [33]. The Schrödinger’s wave 

function and the Born-Oppenheimer approximation theory are discussed in detail in the following 

sections. The model proposed by Schrödinger’s wave function forms the basis for the current-day 

concept of an atom. 

 

Figure 3.2: Schematic showing the Application of QM Methods to Biological Problems[27] 
CSP: Chemical Shift Perturbation 
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3.2.1 The Schrödinger’s wave function 

Inspired by De Broglie’s doctoral thesis in 1925, Schrödinger initiated a study to obtain a wave 

equation applied to the hydrogen atom.  Schrödinger added his ideas, such as his interest in 

establishing stationary waves in three dimensions, analogous to sound waves in cavities [34]. In 

wave mechanics, the Schrödinger equation is used as a wave function for a particle and enables 

creating a complete model for an atom [34]. As an improvement in De Broglie’s work, the 

Schrödinger wave equation addresses De Broglie’s theory's limitations, such as its inability to cater 

to accelerated motions and rotations [34]. Schrödinger’s wave equation also attempted to reconcile 

the theoretical assumptions propounded by Heisenberg and those postulated by De Broglie while 

also showcasing a 3D orbital model for each energy sub-level described and thus assumed that 

electrons could be described as matter waves [34].  This eventually allowed for the molecular 

geometry of numerous chemical substances to be determined [34]. The Schrödinger’s wave 

equation also addresses significant challenges associated with Bohr’s model, which treated 

electrons as particles that existed in precisely-defined orbits. The basic form of Schrödinger’s 

equation is described as follows; 

 Hѱ = Eѱ             (Eq. 3.2.1) 

 

The equation's wave function is denoted by Ѱ, whereas the H and  E represent the Hamiltonian 

operator and electron binding energy, respectively. The wave function cannot predict the exact 

location of electrons, although it can describe the probability of the electrons' locations. For the 

Schrödinger equation to present a physically relevant model, the wave function must be 

normalized, continuous, single-valued, and anti-symmetric. The molecular Hamiltonian operator 
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(H) is obtained by a sum of the potential energy (V) and the kinetic energy (T) and mathematically 

described as follows; 

 

H = T + V     (Eq. 3.2.2) 

 

 

However, the Hamiltonian operator constitutes all kinetic and potential energy operators for all the 

electrons and nuclei in a molecule when relativistic effects are neglected, and particles are 

described as end masses. Subsequently, the advanced form of the equation is represented as 

follows; 

𝑯 = $− 𝒉𝟐

𝟖𝝅𝟐
∑𝒊

𝟏
𝒎𝒋
' 𝝏

𝟐

𝝏𝒙𝟐
+ 𝝏𝟐

𝝏𝒚𝟐
+ 𝝏𝟐

𝝏𝒛𝟐
) + ∑𝒊∑ < 𝒋 ,𝒆𝒊𝒆𝒊

𝒓𝒊𝒋
-.                             (Eq. 3.2.3) 

 

Where i and j represent  the electrons, mj represent mass of  electron j while rij being the distance 

between i and j electrons.   

Due to the highly complex nature of the Schrödinger’s  wave equation and its associated limitations 

in solving for molecular systems which usually consists of thousands of atoms, the Born-

Oppenheimer approximation theory as described in the ensuing session has been shown to 

compensate for this limitation in QM [35–37] 
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Figure 3.3:  Schrödinger’s 1927 model of an atom 

 

3.2.2 The  Born-Oppenheimer Approximation  

As one of the underlying fundamental concepts in quantum mechanics that describe the quantum 

states of molecules, the Born-Oppenheimer approximation allows for the separation of nuclei and 

electrons motions [38,39]. In doing so, the Born-Oppenheimer approximation can address the 

significant limitation of Schrödinger’s wave equation. Propounded by Max Born and J. Robert 

Oppenheimer in 1927, the approximation thus describes the wave function's uncoupling to that of 

the electrons [18,27,40–42]. Electrons are considered to be lighter in weight than nuclei; thus, they 

have increased velocity and move instantaneously relative to the movement of nuclei [43]. The 

difference in weight between the electrons and nuclei is accounted for by the Born-Oppenheimer 

approximation. Therefore, the electrons can almost instantaneously respond to nuclei displacement 

[44–47]. Therefore the distribution of electrons within molecules is described by nuclei location 

[44,45].  The Born-Oppenheimer approximation makes it possible for the Schrödinger equation to 

be solved for the kinetic energy of the electrons alone since the nuclei's kinetic energy will remain 
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constant.  The difference in velocities of the nuclei and electrons allows for the Born-Oppenheimer 

approximation to be applied, minimizing the complexity of the wave function of the Hamiltonian 

equation [40].  The approximation of the Hamiltonian is shown below: 

  𝜢 = − 𝒉𝟐

𝟐𝒎𝒆
∑𝒊𝜵𝒊𝟐 −	

𝒉𝟐

𝟐
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𝒆𝟐𝑨
𝒁

𝒓𝑨𝒊
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𝑹𝑨𝑩
         (Eq. 3.2.4) 

 

Where A and B denote the nuclei, while i and j represent  the electrons. MA represent the nucleus 

A mass while me denote an electron mass. RAB represents a nuclei A and B inter-distance with rij 

being the distance between i and j electrons.  ZA is nucleus A charge while rAi represents nucleus 

A and electron i inter-distance.  

 

The complexity of the Hamiltonian equation's wave function is minimized due to the variance in 

the velocities of the nuclei and the electrons when the Born-Oppenheimer is applied [40]. When 

simplified as a result of the instantaneous response of electrons to nuclear motions,  the wave 

function is subsequently expressed as follows; 

(𝒓𝒆𝒍𝒆𝒄) = 𝝍(𝒓𝒆𝒍𝒆𝒄)(𝒓𝒏𝒖𝒄𝒍)                                                                       (Eq. 3.2.5) 

 

Which is subsequently changed to 

 𝜢𝜠𝜨𝝍(𝒓𝒆𝒍) = 𝜠𝜠𝜨𝝍(𝒓𝒆𝒍)                                                                                (Eq. 3.2.6) 

 HEN symbolizes a difference between terms based on their dependence on fixed nuclear positions 

(VNN) or their dependence on the non-fixed electron positions (Hel).  An energy term EEN is 

integrated, which is derived from two sources; one being the fluctuating electron co-ordinates E 

and fixed nuclear co-ordinates N: 
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 𝜢𝒆𝒍 + 𝑽𝑵𝑵)	𝝍(𝒓𝒆𝒍) = 𝜠𝜠𝜨𝝍(𝒓𝒆𝒍)                                                                  (Eq. 3.2.7) 

The application of Born-Oppenheimer approximation to electrons in the ground states is more 

accurate than when applied to electrons in the excited states [31,43]. Upon solving the equation, it 

enables the construction of a molecular potential energy curve and a potential energy surface of a 

polyatomic molecule [43] while also permitting the identification and assessment of the 

equilibrated conformations given molecule with the lowest point on the surface [43,46]. 

 

3.2.3 Potential Energy Surface Function 

A potential energy surface is an efficient mathematical function that gives a molecule's energy as 

a function of its geometry [31]. Originating from the Born-Oppenheimer approximation, the 

potential energy surface functions play a crucial role in modeling molecular systems, describing 

and simulating molecular systems by presenting a basis for comprehending the processes 

associated with nuclear motions in molecules [48]. A full dimensional and accurate potential 

energy surface provides insights into spectroscopy, structure, and reactivity of molecules by 

probing further than the usual stationary points and barriers and solving the time-dependent 

Schrödinger equation [49–51]. In a Potential energy surface, the regions dominated by van der 

Waals interactions are vital for low-temperature phenomena and molecular stacking, which are 

essential in understanding DNA and RNA molecules. On the other hand, most stable structures on 

potential energy surfaces are covalent or ionic bond related. As displayed in the figure below, high 

potential energy regions displayed specifies high-energy nuclear arrangements or molecular 

conformations, whereas low energy regions signify low nuclear energy conformation and can be 

applied in computational chemistry for this purpose  [31,52]. 
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Figure 3.4: A graphical representation of a two-dimensional potential energy surface 

 

3.3 Molecular Mechanics 

 

Molecular mechanics (MM)  describes bonds, valence angles, and Coulomb and Lennard-Jones 

interactions to account for charge-charge and non-bonded contributions by incorporating classical 

type models [1,53]. In doing, so MM methods can predict the energy of a molecular system as a 

function of their conformation [1]. Relative to QM methods, MM force fields dominate as the 

preferred method choice for protein simulations towards understanding conformational dynamics 

of these protein structures because potential energy functions in MM methods provide a relatively 



88 
 

more accurate representation of dispersion interactions while adhering to the Newtonian laws of 

classical mechanisms [54,55]. MM has been employed to study a wide range of systems, including 

hydrocarbons, nucleic acids, membrane fragments, and material assemblies, which consist of 

thousands of atoms. The application of MM in more complex phenomena such as polarization and 

many-body contributions has also gained attention in recent years [4,56–58]. MM has also allowed 

for the study of areas (solid-state interfaces, semi-conducting systems, metals, alloys, etc.) in 

which the application of simplistic force field methods was deemed undependable [4]. s 

corresponding to the minimum-energy geometry – or more precisely, to the various probable 

potential energy surface minima [59,60]. Nonetheless, MM is appropriate for bond-breaking 

reactions, just like most ab initio methods [61]. MM or the force-field method is mathematically 

described as follows; 

             𝜠𝒕𝒐𝒕 = 𝜠𝒔𝒕𝒓 + 𝜠𝒃𝒆𝒏𝒅 + 𝜠𝒕𝒐𝒓𝒔 + 𝜠𝒗𝒅𝒘 + 𝜠𝒆𝒍𝒆𝒄                                       (Eq. 3.3.1) 

 

Where, 

Etot  = total energy,                                 Estr =  bond-stretching energy, 

Ebend = angle-bending energy               ,Etors = torsional energy,      

Evdw = van der Waals energy             Eelec = electrostatic energy 



89 
 

 

Figure 3.5: Diagrammatical depiction of bonded and non-bonded interactions acting in molecular 
motion [62]. 

 

Also, MM accounts for energy contributions from hydrogen bonding and stretch-bend coupling 

interactions. In methodical force fields, all constituent atoms are considered building blocks, 

whereas electrons are not described as separate particles. As such, rather than implementing the 

Schrödinger equation, more descriptions about the bonds are provided. This accounts for the ball-

and-spring model earlier mentioned with different atomic sizes and bond lengths while the atoms 

themselves are treated as spheres. This model was therefore termed “atom types,” which is 

dependent on the atomic number and the interconnecting chemical bonds [31,63]. From Eq. 3.8;  
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Bond stretching, which occurs between directly bonded atoms, is mathematically represented as: 

  Estr = ΣKr(r-r0)2     (Eq. 3.3.2) 

Angle bending, which occurs between atoms that are surrounded by the same central atoms is 

mathematically expressed as: 

   Eθ = ΣKθ(θ – θ0)2     (Eq. 3.3.3) 

Also, bond torsion is expressed as  

  Eϕ = ΣKϕ[1 + cos(nϕ – ϕ0)]                (Eq. 3.3.4) 

In all,  non-bonded interactions, which constitute van der Waals and electrostatic forces, we have  

 

Where, Kr, Kθ and Kϕ depict the force constants for bond, angle and dihedral angles while r0, θ0 

and ϕ0 represent the equilibrium distance, angle and phase angle. Moreover, the parameter for 

distance is rij while Aij and Bij depict the parameters for van der Waals forces. The molecular 

dielectric constant is represented by D while the point charges are qi and qj.  

 

 

 

 

 

 

(Eq. 3.3.5) 
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3.4 Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) 

Pioneered in the 1970s by Martin Karplus, Michael Levitt, and Arieh Warshel, QM/MM attempts 

to harness the advantages of both QM and MM [4,17,18,64,65]. In studying a molecular system 

with hybrid QM/MM approaches, the QM component is employed to treat the most significant 

part of the system, whereas the classical MM component is subsequently employed to model the 

rest of the system [4]. The crux of QM/MM as a method centers around the electrostatic interaction 

between QM and MM subsystems. As an advantage over individual QM and MM,  hybrid 

QM/MM methods give more accurate quantum calculations and are associated with lesser 

computational cost [66,67].  The technique of QM/MM encompasses two steps-wise domains, a 

QM, and an MM phase  [130]. In the QM phase, the reactive domain, which includes ligands and 

amino acids, is treated with QM techniques, which defines molecules' electronic structures [129]. 

This MM phase defines interactions between atoms by incorporating a force field, acting as a 

potential energy function [128,131]. Amidst the notable advantages of the hybrid QM/MM method 

over QM and MM, it may not be appropriate for every structure-based drug design study; hence 

further exploration of the technique may be required [129]. In drug discovery research, the 

application of QM/MM encompasses areas such as simulation of chemical reactions such as the 

catalytic mechanism of enzymes,  the investigation of electronic properties, and calculation of 

spectra in single simulation towards understanding the mechanism of action of some drugs [68–

70]. 

 

 

3.5 Molecular Dynamics Simulations 
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MD simulation is a widely used computational technique based on classical Newtonian mechanics 

that employs MM force fields to provide essential atomistic insights on biomolecular structures by 

simulating particulate motion as a function of time [71–74].  MD simulation was primarily 

employed in achieving the objectives of the various reports in this thesis by providing an atomistic 

time-scale insight into the conformational and structural dynamics of the studied biological targets 

with their respective bound small molecule inhibitors. Based on varying accuracy requirements, 

all forms of MD simulations including; coarse-grained (CG), united-atom (UA), and all-atom 

(AA), including explicit/implicit solvent models which are known to permit simulations of 

temporal and spatial scales, have been shown to play a vital role in drug discovery in recent years 

[75–77]. The application of MD simulation in drug discovery has included; exploring the 

mechanism of actions of therapeutic agents, identifying potential binding sites, and calculating 

binding free energies of therapeutic agents, amongst many others [77–79]. Originating in the late 

1950s, MD simulations have gained center stage in drug design in recent years, evolving to include 

the simulation of complex macromolecules such as DNA and RNA even though it began with its 

application in the simulation of simple gasses [80,81]. In the late 1970s, the first protein MD 

simulation was also reported [82]. The modeling of complex systems in MD simulations are 

carried out at atomic levels. At the same time, the equation of motions is mathematically solved to 

depict the motions and dynamics of biomolecules undergoing simulation, which allows their 

kinetic and thermodynamic properties to be derived [71,83]. MD simulation techniques are divided 

into two, namely classical and Monte Carlo (MC) MD simulation. In a Classical MD simulation, 

atoms and molecules' trajectories are generated by mathematically solving Newton’s equation of 

motion for a system of interacting particles, in which molecular mechanics defines forces between 

the particles and potential energy force fields as presented below [145]. Trajectories specify the 
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particle position and velocity, which varies with time [146]. In performing a Classical MD, the 

positions and velocities of particles, the force field, and boundary conditions must be initially 

considered.  

 

                 𝑭𝒊 = 𝒎𝒊
𝒅𝟐𝒓𝒊(𝒕)
𝒅𝒕𝟐

                                                                                 (Eq. 3.5.1) 

From the equation, ri (t) = (xi(t), yi(t), zi(t)) represents the (i) vector of the particulate position with 

a force, Fi, acting on the (i) particle at time t and particle mass mi 

 

On the other hand, MC methods seek to create an ensemble of representative configurations under 

specific thermodynamics conditions for a complex macromolecular system [84]. The preference 

of Classical MD to Monte Carlo is attributed to its ability to permit time-dependent response and 

rheological properties, amongst other dynamical properties [140]. Moreover, in classical MD, 

Newton’s equation of motions is integrated into computational algorithms (highly-advanced 

physical and mathematical algorithms), which in turn enables near-accurate real-time mechanistic 

and conformational definitions of occurring chemical reactions [85,86].  

The basic algorithm of MD simulations is shown below; 
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Figure 3.6: Schematic description of basic MD algorithm where potential energy is Epot; 
simulation time = t, iteration time is given by dt; x is atom coordinates; force component is F; a is 
given by acceleration; atomic mass is m and v represents velocity (Image adapted from [80].   
 

The trajectories generated from the simulated systems' time-scale atomistic motions are further 

analyzed to assess dynamical occurrences in simulated systems at the atomic level [87]. A 

summary of the steps followed in performing MD simulations for studies in this thesis is presented 

in the flowchart below. 

Epot{xi}

Fi= -∂EpotI∂Xi

ai = FiImi

vi (t+dt) = v(t)i + ai dt

xi (t+dt) = x(t)i + vi dt

Energy calculation
(force-field)

Forces

Numerical
integration

Trajectory



95 
 

 

Figure 3.7:  Flow chart showing steps involved in MD simulation of a drug-target complex[88] 

 

3.6 Force Fields 

 

Force fields refer to a set of potential energy functions through which force can be obtained and 

can be used to describe the energies associated with conformations of molecules [89]. 

Mathematically, force fields consist of set parameters that describe the correlative function 

between a system's energy and the coordinate of its constituents. In MD simulations performed for 

all investigations in this thesis, the AMBER force field [83] was employed for protein 

parameterization, while the General Amber Force Field (GAFF) was used for the parameterization 

Initial PDB file

Structure minimization
(release strain)

Solvation(if explicit solvent)

Initial velocity assignment and heating heating dynamics (Temp. 300k)

Equilibration dynamics

Temp. ok
?

Structure. ok
?

Rescale 
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Production dynamics (NVT,NPT) 
and trajectory analysis
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of bound inhibitors. However, several other force field has been widely used in performing MD 

simulations for various biomolecular systems, notably; CHARMM [90], GROMOS [91], NAMD 

[87] OPLS-AA [87] and ENCAD [49,92] amongst many others. Most force fields applied in MD 

simulation of proteins are harmonic motions and a description of bond lengths and angles [89]. 

The main variations between the different force field results come from the varied approaches to 

obtain the individual parameters. However, they mainly yield similar findings which corroborate 

with experimental results [75]. 

 

3.7 Post-Molecular Dynamics Analytical Methods 

 

Molecular dynamics simulations generate trajectories that encode the events that have occurred 

across the biomolecular system over a specified time-frame, either through a visual or graphical 

representation. These visual or graphical occurrences along the simulation are essential in 

unraveling appropriate events or insights, which could explain the structural activities or attributes 

of biological and non-biological molecules. These trajectories can also typify sequential snapshots 

described by velocity vectors and positional coordinates, while the time-scale evolution of the 

systems in phase space is also captured [71,93]. Several techniques and calculations have been 

established to analyze these trajectories depending on the type of MD simulation study though 

specific quantitative analyses are necessary to assist any visual systemization. In these studies, 

post analysis was required to ascertain the system's conformational stability and energetics, the 

dynamics of the biomolecular system, and the ligands binding landscape and thermodynamic 

plasticity of energies with the combined trajectories. 
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 3.7.1 System Stability, Convergence and Structural Deviations 

 

A system's convergence describes its dynamics based on typical angular vibrations of atomic bonds 

during a folding or unfolding event until it attains a state of equilibrium. Convergence measures 

the reproducibility and accuracy of a trajectory and unveiling details on whether the system has 

reached an energetically stable conformation [38]. For MD trajectories to be accurate, it is essential 

to consider the equilibrium points, conformational plateaus, and ultimate energetics. Metrics that 

are used to predict the stability of a system coupled with corresponding structural events include 

the Cα root mean square deviation (RMSD), the Cα root mean square fluctuation (RMSF), the 

radius of gyration (RoG), Surface accessible surface area (SASA) and Dynamic Cross-Correlation 

Matrix (DCCM).  

  

 

3.7.1.1 Root Mean Square Deviation (RMSD) 

 

The Cα RMSD is used to predict a biomolecular system's stability by estimating the corresponding 

deviations and motions that occur across the protein’s backbone atoms compared to their starting 

structure over the simulation time. In other terms, the spatial alterations that occur between two 

static structures of a steady trajectory can be used to evaluate system divergence. Mathematically, 

RMSD is expressed as: 

															𝑹𝑴𝑺𝑫 = >	∑𝜨F𝑹𝟏	H𝑹𝟏
𝟎I
𝟐

𝜨
?

𝟏
𝟐

                                                                            (Eq. 3.7.1) 
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The total number of atoms in the system is N. The vector position of the Cα atom of particle i is 

R1, which is predicted from the starting conformation (O) after alignment with the ultimate 

conformation with the aid of the least square fitting. Therefore, the RMSD is suitable to calculate 

the conformational alterations that occur within ligands, receptors, or complex systems during a 

simulation period and can be obtained by estimating the frame number average in each resulting 

trajectory [94,95]. In most conformational studies, an increase in atomistic motions or deviations 

depicts an unstable structure, while a decrease in these deviations is an indication of atomistic 

stability.   

 

3.7.1.2 Root Mean Square Fluctuation (RMSF) 

 

While the RMSD focuses on the whole macromolecular structure, each protein residue's 

corresponding motions can be estimated using the RMSF metrics. RMSF measures fluctuations of 

discrete amino acid residues relative to their average positions during the simulation. This, 

therefore, quantifies the relative motions of constituent residues of a protein and forms an 

important determinant in predicting the flexibility of such proteins since a high residual fluctuation 

can correlate with an increase in flexibility while low fluctuation in residual motions can indicate 

a structurally rigid protein [96,97]. Mathematically, RMSF is expressed as: 

 

						𝐬𝐑𝐌𝐒𝐅𝐢 =	
(𝐑𝐌𝐒𝐅𝐢H𝐑𝐌𝐒𝐅OOOOOOOO)

𝛔(𝐑𝐌𝐒𝐅)
                                                                          (Eq. 3.7.2) 

 

Where the RMSF of the ith residue, is RMSFi, from which the average RMSF is subtracted and 

further divided with the RMSF’s standard deviation, resulting in the standardized RMSF.  
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3.7.1.3 Radius of Gyration (RoG) 

 

The RoG of a protein can be defined as the root mean square atomistic distance from the center of 

gravity and is essential for predicting structural compactness in a protein [98,99]. Several studies 

have been used to reflect the RoG metrics' accuracy in determining protein compactness [100,101]. 

The RoG of a system is therefore mathematically represented as: 

𝒓𝟐𝒈𝒚𝒓 = F∑𝒊,𝟏
𝒏 𝑾𝒊(𝒓𝒊H𝒓,)𝟐I

∑𝒊,𝟏
𝒏 𝑾𝒊

                                                                                    (Eq. 3.7.3) 

 

Where the position of the ith atom is denoted as ri and the center weight of atom i is shown as r. 

 

3.7.1.4 Solvent Accessible Surface Area 

 

SASA has been used over the years to depict the transitional occurrence of protein atoms between 

the hydrophilic and hydrophobic regions. In other words, the mechanistic motions of constituent 

atoms from the initially exposed outer environment to the hydrophobic core region of the protein 

can be estimated. Since this transitional event can likely correlate with massive structural changes 

in proteins relative to the initial structure, this parameter has been previously adopted to predict 

protein folding and unfolding events [102–104]. 
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3.7.1.5 Dynamic Cross Correlation Matrix 

 
 
Dynamic cross-correlation matrix (DCCM) is a computational technique used to quantify correlation 

coefficients of motions between atoms within a simulated system [110]. DCCM presents a 3D matrix that 

allows for a graphical depiction of time-correlated insights on the amino acid residues that make up the 

protein structure that undergoes MD simulation.  The cross-correlation coefficient varies from -1 

(completely anticorrelated motion) to +1 (completely correlated motion). The formula used to describe 

dynamic cross-correlation is presented as follows: 

 

𝐶𝑖𝑗 = 	 RSTU.STW2

XRSY.
/2R	SY0

/2Z
1
/
                                                                                            (Eq. 3.7.4) 

 

i and j represents the ith and jth residue respectively. The displacement vectors that correspond to 

the ith and jth residue respectively is represented as Δri or Δrj .  

 

3.7.2 Free binding energy predictions 

 

Assessing binding energy is vital in protein-ligand interaction systems and other aspects of 

computational drug design discovery, such as protein-protein system behaviors [105,106]. 

Computer-based free binding energies of macromolecules and other varying molecular systems 

are calculated using either the Molecular Mechanics/Poisson-Boltzmann Surface Area 

(MM/PBSA) or Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) techniques. 

Both computational tools have been applied widely in protein-ligand interactions and are known 

for accurate results. Both methods were also used to calculate the energy contributions of 

individual residues using the per-residue energy decomposition approach after each MD  
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simulation. The binding free energy (DGbind) was determined by the equation: 

DGbind = Gcomplex - Greceptor + Gligand          (1)                                                         (Eq. 3.7.5) 

DGbind = DGgas + DGsol -TDS,                   (2)                                                         (Eq. 3.7.6) 

 

where DGbind is considered to be the summation of the gas phase and solvation energy terms less 

the entropy (TDS) term 

DEgas = DEint + D Evdw + D Eelec         (3)                                                               (Eq. 3.7.7) 

 

DEgas denotes the sum of AMBER force field internal energy terms DEint (bond, angle and torsion), 

the covalent van der Waals (DEvdw) and the non-bonded electrostatic energy component (DEelec). 

The solvation energy can be estimated from the following equation: 

 

Gsol = GGB + Gnon-polar                 (4)                                                                          (Eq. 3.7.8) 

 

Gnon_polar = gSASA + b               (5)                                                                           (Eq. 3.7.9) 

 

 GGB is the polar solvation contribution and the non-polar solvation contribution is represented as 

Gnon-polar . Both of which are determine from SASA, derived from a 1.4 A° water probe radius. 

 

3.7.3 Residue Interaction Network 

 

Residue interaction network (RIN) is a computational tool used to explore macromolecular 

systems' structural complexity. RIN makes it possible to easily visualize the kinds of interaction 
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between the residues that make up a protein and the interaction of these residues and a drug 

molecule [107,108]. The type of interactions exhibited by amino acids gives insights into the 

functional dynamics of a protein and may also account for the stronger binding of a drug [109]. In 

the studies reported herein, snapshots were taken during the molecular dynamic simulations at 

different time intervals and visualized on Discovery studio, a molecular visualization software. 

 

 

3.7.4 Principal Component Analysis 

 

As a covariance-matrixed-based method, Principal Component Analysis (PCA) is a covariance-

matrix-based approach that can be used to elucidate the vital dynamics of a simulated system on a 

low-dimensional free energy landscape [111]. PCA also allows for an elucidation of any 

displacement of atoms and any associated structural dynamics that may have occurred over a 

simulation period with a protein structure [112]. PCA symbolizes a linear transformation that 

diagonalizes the covariance matrix of a simulated system and thus deletes any instantaneous linear 

correlations in the simulated system [111,113]. The fluctuations in a simulated system can be 

described by the first few principal components of a simulated system through a decreasingly 

ordering of the eigenvalues of the transformation [111,114–116]. PCA as employed in this study 

involves the calculation of the first two principal components (PC1 and PC2) and covariance 

matrices of the C-α atoms of the simulated structure. A 2x2 covariance matrix is subsequently 

constructed from generated MD trajectories using Cartesian coordinates of C-α atoms.  
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Abstract 

 

The drug discovery process typically involves target identification and design of suitable drug 

molecules against these targets. Despite decades of experimental investigations in the drug 

discovery domain, about 96% overall failure rate has been recorded in drug development due to 

the “undruggability” of various identified disease targets, in addition to other challenges. Likewise, 

the high attrition rate of drug candidates in the drug discovery process has also become an 

enormous challenge for the pharmaceutical industry.  To alleviate this negative outlook, new trends 

in drug discovery have emerged. By drifting away from experimental research methods, 

computational tools and big data are becoming valuable in the prediction of biological target 

druggability and the drug-likeness of potential therapeutic agents. These tools have proven to be 

useful in saving time and reducing research costs. As with any emerging technique, however, 

controversial opinions have been presented regarding the validation of predictive computational 

tools. To address the challenges associated with these varying opinions, this review attempts to 

highlight the principles of druggability and drug-likeness and their recent advancements in the 

drug discovery field. Herein, we present the different computational tools and their reliability of 

predictive analysis in the drug discovery domain. We believe that this report would serve as a 

comprehensive guide toward computational-oriented drug discovery research. 

 

Keyword: druggability, drug-likeness, computer-aided drug design, drug discovery 
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1.0 Introduction 

The design and development of several therapeutic agents centered on their ability to interact with 

crucial biomolecules involved in disease progression. These biological molecules majorly include 

proteins and enzymes that drive pathogenic pathways and could represent therapeutic avenues for 

halting undesirable pathogenic development such as in cancer, TB, and neurodegenerative 

diseases, some of which have been termed ‘undruggable’ (1–4). Of the 10% of the human genome 

representing druggable targets for therapeutic agents, only half of those are relevant to disease (5–

7).  Over the years a significant advancement has been in the experimental and computational 

techniques employed in the drug discovery process,  nonetheless,  a remarkable failure of about 

96% overall failure rate been recorded in diverse drug discovery projects due to the 

‘undruggability’ of various identified protein targets, amidst other challenges (8–10).  The drug 

discovery process is usually a time-consuming process and substantial financial investment, as 

such, a 96% failure of the process due to target undruggability and other challenges necessitates 

an understanding of challenges associated with target’s undruggability. 

As essential as lead identification and lead optimization techniques are in drug discovery, the 

concept of protein druggability remains vital, usually descriptive of members of expressed protein 

cohort (proteome) that can selectively be bound and modulated by high-affinity ligands with innate 

drug-likeness (11,12). Studies have shown that among the disparate protein families that constitute 

the human proteome, about 3,000 have been targeted by small synthetic/organic drug molecules 

with regards to therapeutic intervention in diseases (13–16). As such, there remains a large pool 

of other proteins that belong to families that are not targetable or ‘uninhibitable’ by small drug 

molecules. 
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The concept of druggability has also expanded to encompass the ‘druggable genome,’ which 

describes encoding genes for proteins that are not only physiologically relevant but whose activity 

can also be regulated by high-affinity ligands (11,14,16). It is also important to mention that 

druggability as a term is more suitable to describe protein targets than DNA and RNA sequences, 

even though they may also serve as active sites for drug molecules (12,17). 

An integral component of drug development in recent years has, therefore, been target validation. 

Existing conventional processes of target validation techniques are known to investigate the 

interplay between alteration in protein biological functionality and corresponding therapeutic 

impacts. Thus, druggability incorporates a structure-based approach to evaluate tendencies that 

small drug-like molecules possess innate potencies to bind and modulate protein activities (11,13). 

Consequently, several approaches have emerged over the years to investigate the druggability of 

potential protein targets as succinctly discussed by Egner and Hillig (18). 

 

Approaches employed to determine the druggability of a protein have been categorized based on 

1) those that employ empirical analyses of established associations between drugs and proteins 2) 

structural analyses of target proteins (13,19–23). Moreover, when the protein in question is a 

member of a well-studied family with closely related homologs from which drug association 

details can be retrieved, the former method is more suitably applied (15,16). On the other hand, 

where there is no prior knowledge about the potential target or in cases where the target protein 

belongs to families for which no drug candidates are known, the latter method that employs 

structure-based predictive models is most appropriate (13).  
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A notable and pioneering contribution to the development of the structural predictive model was 

carried out by Hajduk et al., wherein they measured druggability using hit rates of NMR-based 

fragment screening for a diverse set of 23 proteins. This model incorporates a simple regression 

analysis that defined descriptors of the binding pocket such as the surface area, roughness, 

polar/apolar contact area, and the number of charged residues (21,24). Their analysis generated a 

predictive ‘druggability score,’ which is defines the logarithm of the predicted rate of NMR hit. 

Over time, a variety of methods have been developed to improve the prediction of protein 

druggability (11,13,19,23,25–27), some of which form an integral part of this review.   

 

Drug-likeness is a significant consideration in the early stages of the drug discovery process when 

selecting compounds as it helps to optimize pharmacokinetics and pharmaceutical attributes. These 

include chemical stability, solubility, bioavailability, and distribution profile (12). Drug-like 

compounds also describe chemical molecules that possess functional groups and or have physical 

properties consistent with the majority of known drugs and hence can be inferred as compounds 

that might be active biologically or might show therapeutic potential (28,29). Thus these 

compounds fall within critical physicochemical thresholds such as molecular mass, 

hydrophobicity, and polarity when compared to the narrow range distribution of approved drugs 

(30,31). Regardless, drug-like compounds hold no apparent structural similarity to any approved 

drug. Although high rates of attrition have shown in drug discovery, the preferential selection of 

compounds with innate drug-likeness increases the likelihood of surviving this occurrence (32). 

A critical understanding of the concepts of target druggability coupled with the drug-likeness of a 

chemical molecule could, therefore, further potentiate the success rate of novel chemical molecules 

towards becoming viable therapeutic options in disease intervention. 
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Therefore, in this review, we discuss the underlying principles of both druggability and drug-

likeness as it relates to the drug discovery process. Also, we list the various methods that have 

been employed over the years the predict, determine, and achieve the druggability of a novel 

protein target as previously studied. We extend this methodical review to cover evolutionary 

advances made in determining the drug-likeness of a compound coupled with relevant 

experimental and computational techniques aimed at enhancing the drug-likeness of a non-drug 

hit compound. 

 

2.0 Assessing   Druggability of Biological targets 

Advancements in the computational domain have paved a path toward algorithms that assess the 

druggability of a target and store any information in large virtual libraries. We now have access to 

a plethora of data, including protein and gene expression profiles, protein-protein interactions, and 

gene regulatory networks, thus making it possible to build combined predictive models. Initial 

algorithms used to assess druggability were designed to reproduce nuclear magnetic resonance 

(NMR) fragment screening hit rates (21,33,34). This approach, however, leads to proprietary data 

that was expensive to obtain and difficult to access publicly. Another method of assessing 

druggability was reported by Cheng et al. in which the maximum achievable affinity for a binding 

site based on the structure of the pocket was estimated (17). Likewise, a separate report by Sheridan 

et al. also described an equation that could approximate the “bindability” of a given binding pocket 

on a protein, based on similar functions and some particular descriptors as methods for assessing 

druggability(19). Experimental druggability assessments involved soaking protein crystals in 

various solvents and identifying binding sites based on X-ray diffraction data. Although this 
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method was the most reliable and validated technique, the crystallized protein was required 

(34,35).  

Various computational tools that have been developed over the year to assess the druggability of 

a target based on the availability of a protein’s 3D structure. Some of these tools are based on 

algorithms that consider structural features of a protein, including surface polarity, surface 

hydrophobicity, and pocket dimensions. The algorithms used are roughly classified into geometric 

and energetic approaches (36,37). In the geometric approach, the shape of the protein is 

investigated to identify any voids between the protein’s atoms. The energetic approach uses 

interactive molecular energies, which are mapped onto the 3D structure of the protein through 

molecular dynamics simulations. The binding pockets are then identified based on the interaction 

energy profiles that are generated (34,37). The downfall of the approaches mentioned above is that 

a 3D structure of the protein is needed, the process may be slow, and the predictive pockets cannot 

be validated until an experimental analysis is performed.  Because not all druggable targets are 

proteins, there are a few databases that identify other druggable targets, notably Therapeutic Target 

database (38), LncRNA2Target (39), and MiRBase (40). 

Four primary methods are currently used for assessing druggabilit; these include the precedence-

based, ligand-based, structure-based, and sequence-based methods, as highlighted in figure 4.1 

(11). Although each method comes with its benefits, numerous caveats need to be considered and 

accounted for when identifying an ideal target. One of the most important considerations that are 

frequently overlooked is that compounds do not always target a protein. Other existing biological 

targets include; nucleic acids, other small molecules, protein-protein interactions and nucleic acid 

complexes such as ribosomes (35).   
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2.1 Sequenced-based druggability assessment methods  

The basic unit of proteins, amino acids, which determine the function of a protein, has also been 

employed in predicting the druggability of protein drug targets. As such, sequence-based 

druggabilty assessment methods analyze sequence alignments of protein targets, identifying 

possible conserved regions that may be deemed predictive binding pockets(34). Assessment of 

potential target sequence also provides insights into essential physicochemical properties like 

solvent accessibility,  hydrophobicity, charge, and polarity, amongst other properties(41). 

Sequence-based methods have also been wildly employed in Machine-learning algorithms in 

assessing protein target druggability(41). Even though a knowledge of the target sequence could 

aid in the prediction of functional domains on the target, the target sequence alone is insufficient 

in providing an overall structural and functional insight of a protein target. Thus, the knowledge 

of target sequence alone is unable to provide details on the accessibility of these domains to either 

gene expression level, a drug molecule, or its relevance in the interactome(41).  

2.2 Structure-based druggability assessment 

Structure-based druggability assessment methods rely on a knowledge of the binding pocket 

located on the biological target to which a ligand can bind (34). Thus, for a small drug-like 

molecule to bind a protein, it requires a binding site that contains complementary characteristics, 

including an appropriate size that can accommodate a molecule and a deep hydrophobic pocket 

that can bury the drug within the protein. Large exposed polar binding sites are considered less 

druggable than smaller hydrophobic pockets (34,42).  The structure-based assessment methods 

generally involve an initial identification of possible binding pockets followed by sorting the 

identified binding pockets based on the physicochemical properties of the pocket. Sorted binding 

pockets are then compared to a reference set of known biological targets to access their degrees of 
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difficulty or druggability (43). Numerous software and online platforms have been developed to 

aid in the accurate identification of binding pockets, notably; DOGSiteScorer (26), Metapocket 

(44), PockDrug Server (45), SiteMap (23), Sitehound (46) and Open Targets (47). These online 

platforms provide essential binding pocket information, which could in determining the 

druggability of given biological targets.  

 

2.3 Ligand-based druggability assessment 

In ligand-based druggability assessment methods, the druggability of a therapeutic target is based 

on a knowledge of endogenous compounds that could bind to the target and are yet to reach clinical 

trials (34).  Several databases available online contains sufficient information about several ligands 

that could be used in predicting the druggability of a given target. Notable examples of these online 

platforms include BindingDB (48), PubChem (49), SwissTargetPredict (50), TargetHunter (51), 

Guide to pharmacology (52), National Centre for Biotechnology Information(NCBI) (53) and 

Protein data bank (54).  

2.4 Precedence-based druggability assessment 

In employing precedence-based methods for assessing druggability, knowledge of established 

proteins or drug targets is required. Precedence-based methods also rely on a knowledge of 

chemical molecules that are already undergoing clinical trials (55). This method demonstrates the 

highest level of druggability as the given target has already been proven to be safe. However, 

precedence-based methods of assessing druggability are still not a guarantee of success for 

different and or product profiles (42,56).Various databases contain information about compounds, 

targets, and published works that could be employed in precedence-based druggability 
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assessments. Notable examples of some of these freely available databases include DrugCentral 

(57), Clinicaltrials.gov (58), and Drugbank (59).  As of February 2020, the latest release of 

DrugBank(2020-01-03) alone contained about 13,491 drug entries, including 2,641 approved 

small molecule drugs, 1,364 approved biologics (proteins, peptides, vaccines, and allergenics), 

130 nutraceuticals and over 6,347 experimental (discovery-phase) drugs. 

 

 

Figure 4.1: Methods for assessing the druggability of potential disease targets. 
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3.0 Are Predictive Druggability Assessment Methods Reliable? 

 

While investigations of most disease targets have potential inhibitors, there is minimal 

experimental data associated with the research. This observation has led to almost all scientific 

domains to turn to machine learning and predictive computational tools. Not only do these methods 

save laborious hours in the wet-laboratory setting, but it also saves elaborate amounts of money 

that would have been spent on unnecessarily large stocks of reagents. Therefore, the use of 

predictive tools without validation proves to be controversial. Thus, the reliability of the results is 

questioned at every stage. 

 

Druggability assessment methods utilize a wide range of algorithms, as discussed. It may be noted 

that according to the choice of predictors and parameters, bias results may be obtained. A 

geometry-based method may find the most suitable pocket based solely on the orientation and 

shape of the protein, whereas the energy-based method may find greater molecular forces in a 

different pocket of the same protein. It is, therefore, essential to choose the appropriate predictive 

software when identifying potentially druggable pockets of a protein since the principle and level 

of accuracy of each predictive model vary. For instance, in binding pocket prediction, several 

improved approaches have been developed over the years, since many of the existing prediction 

provide varying results. One such improved binding pocket methods is the metapocket method 

(44), which combined four different methods namely, SURFNET(60), PASS(61), 

LIGSITE(cs)(62) and Q-SiteFinder(63) towards improving its binding pocket prediction success 

rate.  Therefore, although most of the various algorithms that have been employed by many 

existing druggability prediction models have been validated against different training sets, a 

comparative study of ten representative prediction methods suggest that,  of the top three 
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performing methods, 30% of clinically known binding sites were not detected with existing 

prediction tool (64). Another shortfall of druggable models is that they do not adequately account 

for dynamic protein-ligand binding interactions (35). Thus, the relevance of binding site target 

interactions further indicates that although binding pocket prediction methods are useful in 

identifying putative druggable sites, they have limitations, and are thus not allowing for validation 

analysis. Therefore, the further integration of druggability information with other parameters, 

including the lead compound’s drug-likeness, would provide a more effective and holistic 

mechanism of disease management. 

 

4.0 Identification of lead molecules by assessing drug-likeness 

The concept of drug-likeness has advanced extensively over the years, taking into consideration 

the structural, physicochemical, biochemical, pharmacokinetic (PK), and toxicity characteristics 

of a compound, thus a drug-like compound possesses sufficiently acceptable ADME properties, as 

well as sufficiently acceptable toxicity properties (65,66). Understanding these properties have 

become an integral part of drug discovery and has enabled the accurate selections of hits that are 

suitable starting points for the identification of new clinical candidates. These properties also allow 

a streamlining of drug discovery efforts towards the identification of a compound that possesses a 

higher chance of pharmacokinetic success and overall safety.  

The time-consuming nature and enormous resources required in performing in vivo studies to 

determine the drug-likeness of a compound have presented computational techniques as a viable 

alternative. Christopher Lipinski and coworkers reported the earliest report on a decisive criteria 

for identifying drug-like compounds at Pfizer in the mid-1990s (67). Since then, several reports 
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have attempted to describe the drug-likeness of compounds, including the report by Sadowski et 

al. (68) in 1998, in which, for the first time, a scoring function was employed in predicting the 

drug-likeness of the compounds using neural networks (NN). Subsequently, many other reports 

have also employed neural networks in prediction of drug-likeness (69–71). Other computer-based 

approaches and molecular descriptors that have also been employed over the years in the prediction 

of drug-likeness include, recursive partitioning(RP) (72,73), support vector machine (SVM) 

(69,74) and genetic algorithm (GA) (75,76), amongst others. Over the years, these techniques have 

gained prominence in their ability to predict drug-likeness of compounds from non-drug 

compounds satisfactorily. This eventual incorporation of in silico techniques in predicting drug-

likeness of compounds has allowed for the analysis of large compound libraries to identify 

compounds that could be subsequently prioritized for synthesis, in vitro and in vivo, and for 

thorough experimental evaluation. In silico approaches have thus minimized time and resources 

that would have been wasting in assessing non-drug molecules. Several molecular descriptors have 

been applied in profiling chemical compounds towards their drug-likeness. A report by Feher and 

Schmidt succinctly highlights several molecular descriptors that can be used in characterizing 

chemical compounds as employed in their study (77).  Nonetheless, these are usually of little 

practical help to medicinal chemist since the assessment of drug-likeness with these molecular 

descriptors are usually based on any type of countable feature or computable property instead of 

profiling based on biologically relevant parameters.  

 

4.1 Physiochemical properties and Pharmacokinetic properties in determining drug-likeness 

Assessing the pharmacokinetic and physicochemical properties of compounds in determining their 

drug-likeness occurs in the early stages of the drug discovery process. This process takes into 
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consideration structural features and physicochemical properties that complement a given 

pharmacophore without affecting it. These pharmacokinetic properties inform the behavior of 

compounds in the body with regards to absorption, distribution, and excretion. Early 

pharmacokinetics and physicochemical assessment relied on molecular properties such as polarity 

(polar surface area (PSA) and topical surface area), number of aromatic rings, and number of heavy 

atoms, lipophilicity, molecular mass, number of chiral centers, number of hydrogen bond donors 

and acceptors and number of rotatable bonds. However, recently these have been expanded to 

include complex properties such as metabolic stability, permeability, transporters, solubility, 

physiologically based pharmacokinetics, and pharmacokinetic/pharmacodynamic modeling (78–

80). A combination of all these complex properties allows for the optimization and identification 

of drug-like molecules while taking into consideration safety, selectivity, efficacy, and 

pharmacokinetics (81). Based on these molecular properties several guidelines for predicting drug-

likeness of chemical molecules have been proposed, notably, the Lipinski's rule of five (67), Veber 

rules(82), Waring drug candidate permeability (83) and Golden triangle rules(84) amongst 

numerous other existing guidelines for the prediction of drug-likeness. 

   

4.1.1 Lipinski’s rule of five (RO5) 

As one of the earliest guidelines proposed for predicting the drug-likeness of compounds, the RO5 

emerged from the deposition criteria where analysis of drug-likeness is based on lipophilicity, 

molecular weight, and counts of hydrogen bond acceptors and hydrogen bond donors (85,86). 

According Lipinski, compounds with sufficiently acceptable ADME/T properties (thus a 

molecular weight not greater than 500 Da, log P not greater than 5, hydrogen-bond donor not more 

than 5 and hydrogen bond acceptor (nitrogen and oxygen atoms) not more than 10) to survive 
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through the Phase I clinical trials, were considered drug-like. As a guideline, the Lipinski’s RO5 

is conceptually simple and straightforward to implement, hence its widespread adoption. However, 

it does not apply to natural products or substrates of biological transporters (87). Based on 

Lipinski’s assumptions, chemical molecules that violate these rules are less likely to possess many 

desirable characteristics of drugs. Nonetheless, there are plenty of examples available for RO5 

violation amongst the existing drugs, notably antibiotics, antifungals, vitamins, and cardiac 

glycosides, but yet these are orally bioavailable(88). These classes of compounds are orally 

bioavailable because they possess groups that act as substrates for transporters(88). In RO5, the 

consideration of the number of bonds is due to their direct correlation with an increase in aqueous 

solubility and a decrease in lipid bilayer permeability. On the other hand, molecular weight directly 

correlates with the size of the compounds, since large molecular weighted compound could hinder 

the diffusion of molecules across lipid bilayer membranes as well as reduce the molecule 

solubility. High lipophilicity (logP>5) often contributes to high metabolic turnover, aqueous 

solubility, and reduced intestinal absorption. However, high lipophilicity of compounds is also 

associated with an increased risk of promiscuity and toxicity since these compounds tend to bind 

to hydrophobic biological targets other than the desired target. 

 

4.1.2 Golden triangle rules 

The golden triangle as criteria for selecting drug-like compounds takes into consideration the 

metabolic stability and permeability of the compound (84). In the report by Johnson et al. structural 

properties that were assessed included molecular weight and lipophilicity (log D7.4) since these 

parameters affected almost all other drug-likeness properties, could represent other molecular 

properties such as rotatable bonds, hydrogen bond acceptors and donors, molecular volume, 
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heteroatoms and PSA (84,89). Lipophilicity and molecular weight are also good predictors of the 

survival of compounds in development and are also compatible with chemistry tools ligand 

efficiency (LE) and ligand-lipophilicity efficiency (LLE) (90).  

Drug-like compounds under the golden triangle rule, therefore, possess high membrane 

permeability and exhibits favorable metabolic stability if they have a triangle baseline: molecular 

weight of 200 and lipophilicity of -2<logD7.4<5 as well as a triangle apex: molecular weight of 

450 and logD7.4=1.0-2.0. 

 

4.1.3 Waring drug candidate permeability guideline 

The membrane permeability of small molecule compounds is a crucial metric in the drug design 

pipeline that is essential in the overall potency and in vivo efficacy of the compounds since 

membrane permeability ensures the compounds reach their intended target. As such, using 

membrane permeability as a parameter, the drug-likeness of compounds could be predicted. Using 

permeability as a parameter, Waring et al. (83), propounded a guideline for the prediction of highly 

permeable drug-like compounds with particular consideration of the apparent permeability (Papp) 

of the compounds. In their report, the Papp of the studied compounds was set within a range of 

<100nm/s(low) and >100 nm/s (high). In generating the guideline, the set range of Papp was 

statistically contrasted with other molecular property predictors such as total hydrogen bonding, 

hydrogen bond acceptors and hydrogen-bond donors, molecular weight, rotatable bonds, logD, 

PSA and logP. Their report concluded that close to property limits, the probability of obtaining 

high permeability compounds was lower. Their report also showed that the permeability of the 

compounds varies over different ranges of molecular weight.  
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5. 0 In silico Techniques in predicting drug-likeness 

The advent of computer-aided drug design has influenced a paradigm shift towards incorporating 

computational techniques in identifying drug-like compounds while eliminating compounds that 

may be unsuccessful in the drug discovery process.  Over the years, experiment filters have been 

at the forefront in the drug discovery process as the reliable methods are isolating drug-like 

compounds. However, these conventional approaches are time demanding and resource-intensive 

(28,91). As such, computational approaches have gained prominence in the last two decades as 

reliable approaches in the prediction of drug-like compounds with much ease.  Computational 

techniques have typically been involved the filtering out of non-drug compounds as well as 

compounds regarded as unfit for screening purposes by taking into consideration fundamental 

physiochemical and pharmacokinetic properties (29,92,93). In recent decades, several 

computational software and online platforms have been developed in predicting essential 

molecular properties of compounds towards the identification of drug molecules with promising 

potential of achieving success in the drug discovery process, as highlighted in Table 4.1. 

Table 4.1: In silico tools utilized in the prediction of molecule drug-likeness (94) 

In silico tool Function 

 

QikProp(https://www.schrodinger.com/qikprop) 
Distributed by Schrodinger 

Predicts and evaluates the ADME 
properties of thousands of compounds 
within a short time 
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VolSurf+(https://www.moldiscovery.com/software
/volsurf/) Distributed by Molecular Discovery Ltd. 
(moldiscovery.com) 

A computational tool that calculates and 
predicts essential ADME properties of 
compounds using predictive 3D molecular 
interaction energy grid maps.  

 

MedChem Studio (https://www.simulations-
plus.com/software/admetpredictor/medchem-
studio/) Distributed by Simulation Plus, Inc 

A platform commonly used by medicinal 
chemists and computational chemists for 
identifying lead compounds. It could also 
be employed for the optimization of the 
identified lead compounds as well as the 
prediction of ADME properties. MedChem 
studio is a complete computer-aided drug 
design package that can also be used for 
ligand-based drug design and the 
categorization of libraries of compounds.  

 

ADMET Predictor (https://www.simulations-
plus.com/software/admetpredictor/) Distributed by 
Simulations Plus, Inc 

A computational software that allows for 
the prediction of essential physiochemical 
ADMET properties as well crucial CYP 
metabolism kinetics of molecular 
structures.  ADMET Predictor can also be 
used to generate predictive models of 
entirely new properties from the user’s 
library of structures using the inbuilt 
ADMET Modeler module 

 

ADMEWORKS ModelBuilder 
(https://www.fqs.pl/en/products) Distributed by 
Fujitsu 

ADMEWORKS ModelBuilder generates 
QSAR/QSPR models that can be employed 
in predicting physicochemical and 
pharmacokinetic properties of compounds.  

 

ADMEWORKS Predictor 
(https://www.fqs.pl/en/products) Distributed by 
Fujitsu 

An in silico tool for evaluating and 
predicting essential pharmacological 
properties of compounds by employing 
QSAR based virtual screening 
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IMPACT-F 
(http://www.pharmainformatic.com/html/impact-
f.html) Developed by PharmaInformatic, Germany 

A reliable tool made up of QSAR models 
for evaluating the human oral 
bioavailability of drug candidates.   

 

ADMET Modeler (http://www.simulations-
plus.com/software/admetpredictor/admet-
modeler/) Distributed by Simulation Plus, Inc 

A plugin of the ADMET Predictor that 
addresses the tedious process of building 
reliable QSAR/QSPR models from 
experimentally derived data sets by 
automating the entire process.   

 

ACD/PhysChem Suite 
(https://www.acdlabs.com/products/percepta/) 
Distributed by ACD/Labs 

Employs fragment-based models to rapidly 
predict various physicochemical and 
pharmacokinetic properties of compounds 
such as lipophilicity (logD, logP), aqueous 
solubility, pKa values amongst other 
molecular descriptors 

 

ACD/ADME Suite 
(https://www.acdlabs.com/products/percepta/index
.php)  Distributed by ACD/Labs 

A computational tool that predicts the 
ADME properties of compounds by 
estimating various molecular descriptors 
such as oral bioavailability, blood-brain 
barrier permeability, absorption amongst 
other 

 

ACD/DMSO 
(https://www.acdlabs.com/products/percepta/index
.php)  Distributed by ACD/Labs 

Predicts solubility in DMSO solution. 

 

Discovery Studio ADMET Software 
(https://www.3dsbiovia.com/products/collaborativ
e-science/biovia-discovery-studio/qsar-admet-and-
predictive-toxicology.html) Distributed by 
Accelrys 

Predicts the ADMET properties for 
compounds 

 

MedChem Designer (http://www.simulations-
plus.com/software/medchem-designer/) 
Distributed by Simulation Plus, Inc 

ADMET properties predicting tools that 
incorporate chemical structure drawing 
features. 
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Filter-it (http://silicos-it.be.s3-website-eu-west-
1.amazonaws.com/software/filter-it/1.0.2/filter-
it.html) Distributed by Silicos-it 

Based on pre-programmed molecular 
descriptors, the Filter-it tool screens out 
compounds with undesirable properties 
from a set of compounds.   

 

PreADME (https://preadmet.bmdrc.kr/) hosted by 
Yonsei University, Seoul, Republic of Korea. 

An in silico tool for predicting the drug-
likeness of compounds as well as the 
calculation of molecular descriptors.  

 

PrologP/PprologD 
(https://www.compudrug.com/?q=node/42) 
Distributed by CompuDrug 

Employs both neural network methods and 
linear methods towards the prediction of 
the lipophilicity (logP/logD) of 
compounds. 

 

Web Services for predicting drug-likeness 

Chemicalize (https://chemicalize.com/). Provided 
by ChemAxon 

Online service for the prediction of 
physicochemical and pharmacokinetic 
properties such as logP, molecular weight, 
hydrogen bond donors, and acceptors. It 
also calculates molecular properties such 
as tautomers and PSA.  

 

SwissADME (http://www.swissadme.ch/). 
Developed and maintained by the Molecular 
Modeling Group of the SIB Swiss Institute of 
Bioinformatics 

A robust and reliable online service for 
predicting drug-likeness of compounds as 
well as their pharmacokinetic and 
physicochemical properties based on 
reliable inhouse methods notably; the 
Bioavailability rader, BOILED-Egg, 
synthetic accessibility score and, iLOGP.   

 

AqualSol(http://cdb.ics.uci.edu/cgibin/tools/AquaS
olWeb.py).  Provided by the University of 
California, Irvine 

Employs UG-RNN ensembles to predicts 
aqueous solubility of compounds.  
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Molinfo 
(http://cdb.ics.uci.edu/cgibin/tools/MolInfoWeb.py
). Provided by the University of California, Irvine 

An online platform for predicting various 
essential molecular properties of 
compounds that are of interest to medicinal 
chemists.  

 

DrugMint (http://crdd.osdd.net/oscadd/drugmint/) 
Maintained by Indraprastha Institute of Information 
Technology 

Web server predicting the drug-likeness of 
compounds. 

 

DrugLogit(http://hermes.chem.ut.ee/~alfx/druglogi
t.html) Maintained by the Institute of Chemistry, 
University of Tartu, Estonia 

An online that predicts the chances of 
chemical structural being categorized as a 
drug or a non-drug compound Web service 
to predict the probability of a compound. 
DrugLogit also performs the classification 
of compounds based on the disease 
category.  

 

AdmetSAR(http://lmmd.ecust.edu.cn/admetsar1/) 
Maintained by Shanghai Key Laboratory of New 
Drug Design, School of Pharmacy, East China 
University of Science and Technology 

A web server that predicts ADMET 
properties of compounds. A peculiar 
feature of this server is its ability to predict 
about 50 ADMET endpoints using a 
cheminformatics-based tool called 
ADMET-Simulator. 

  

PkCSM (http://biosig.unimelb.edu.au/pkcsm/) 
Developed by the University of Cambridge, UK. 

This online service employs graph-based 
signatures to calculate the pharmacokinetic 
properties of compounds.  

 

MODEL-Molecular Descriptor Lab 

(http://jing.cz3.nus.edu.sg/cgi%E2%80%90bin/mo
del/model.cgi) Maintained by the University of 
Singapore. 

Based on 3D structures, this online service 
calculates the physiochemical and 
structural properties of compounds.  

 

OSIRIS Property Explorer (https://www.organic-
chemistry.org/prog/peo/) Maintained by the Virtual 
Computational Chemistry Laboratory 

This web service allows for the calculation 
of the druglike properties of drawn 
structures as well as the prediction of 
toxicity profiles. It forms part of the 
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Actelion's in-house substance registration 
system.  

 

Property calculator 
(https://mcule.com/apps/property-calculator/) 
Provided by mcule 

Generate the physicochemical properties 
of chemical structures. 

 

PreADMET (https://preadmet.bmdrc.kr/) 
Maintained by the Bioinformatics and molecular 
design research center of Yonsei University, Korea 

An online web service that calculates the 
ADME properties of compounds. It also 
generates a drug-like compound library 
using computational methods.  

 

Databases 

ADME-AP 
(http://bidd.nus.edu.sg/group/admeap/admeap.asp) 

Maintained by the Dept. Computational Science. 
NUS 

ADME-AP is a database that houses a vast 
library of data about drug targets such as 
tissue distributions, functions, substrates, 
and known ADME linked targets.  It 
simplifies the search for drug ADME 
related proteins.  

 

The ADME database 

(https://www.fujitsu.com/jp/group/kyushu/en/solut
ions/industry/lifescience/admedatabase/) 

Distributed by Aureus 

An extensive database of structurally 
different compounds coupled with known 
ADME features.  

 

 
Nonetheless, the challenge with many of such tools is the unavailability of validating sets of 

compounds, thus some compounds are likely not to fall under any of the criteria being used by the 

computational tool.  Also, many of these computational tools identify drug-like compounds based 

on features of existing drugs, hence drug-like compounds with new properties could easily be 

mistaken as non-drug compounds (91,95). Therefore, these computational tools play an essential 

role in the early stages of the drug discovery process, where they aid in the prioritization compound 

for further experimental exploration and other techniques such as high throughput screening. 



139 
 

6.0 Conclusion 

In this review, the fundamental principles and the central concepts of druggability and drug-

likeness have been briefly communicated. There are vast amounts of information and opinions in 

the assessment and analysis of both the drug-likeness of a molecule and the identification of its 

biological target. In this study, however, computational approaches were categorized and briefly 

explained. This provided a deeper appreciation of how online predictive tools and techniques 

streamline the drug discovery process by not wasting a copious number of years with “trial and 

error” experimental investigations. Although these “click of a button” procedures may shorten the 

rational drug discovery process, it is always important to keep in mind that predictive data is only 

ever “potential” information, until validated with experimental findings. We deduce that the 

synergistic capabilities of predictive and experimental investigations may lead to a greater 

understanding of drug-resistance in diseases, thereby allowing for more rapid and efficient 

treatment regimes. 
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ABSTRACT 
Aim: We seek to provide an understanding of the binding mechanism of Remdesivir unravel the 
structural and conformational implications on SARS-CoV-2 virus RNA-dependent RNA 
polymerase upon its binding and identify its crucial pharmacophoric moieties. 
Background: The coronavirus disease of 2019 (COVID-19) pandemic has infected over a  million 
people, with over 65,000 deaths as of the first quarter of 2020. The current limitation of effective 
treatment options with no approved vaccine or targeted therapeutics for the treatment of COVID-
19 has posed serious global health threats. This has necessitated several drug and vaccine 
development efforts across the globe. To date, the farthest in the drug development pipeline so far 
is Remdesivir. 
Objectives: We perform molecular dynamics simulation, quantify the energy contributions of 
binding site residues using per-residue energy decomposition calculations, and subsequently 
generate a pharmacophore model for the identification of potential SARS-CoV-2 virus RNA-
dependent RNA polymerase inhibitors. 
Methods: Integrative molecular dynamics simulations and thermodynamic calculations coupled 
with advanced post-molecular dynamics analysis techniques were employed. 
Results: Our analysis showed that the modulatory activity of Remdesivir is characterized by an 
extensive array of high-affinity and consistent molecular interactions with specific active site 
residues that anchor Remdemsivir within the binding pocket for efficient binding. These residues 
are ASP452, THR456, ARG555, THR556, VAL557, ARG624, THR680, SER681, and SER682. 
Results also showed that Remdesivir binding, induces minimal individual amino acid 
perturbations, subtly interferes with deviations of C-α atoms and restricts the systematic transition 
of SARS-CoV-2 RNA-dependent RNA polymerase from the “buried” hydrophobic region to the 
“surface-exposed” hydrophilic region. We also mapped a pharmacophore model based on 
observed high-affinity interactions with SARS-CoV-2 virus RNA-dependent RNA polymerase, 
which showcased the crucial functional moieties of Remdesivir and was subsequently employed 
for virtual screening. 
Conclusion: The structural insights and the optimized pharmacophoric model provided would 
augment the design of improved analogs of Remdesivir that could expand treatment options for 
COVID-19 
Keywords: COVID-19; SARS-CoV-2 RNA-dependent RNA polymerase; Remdesivir, 
Homology modelling; per-residue energy decomposition; Pharmacophore; molecular dynamic 
simulations 
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1.0 INTRODUCTION 

The current global pandemic, Coronavirus disease (COVID-19), is caused by coronavirus SARS-

CoV-2, a severe acute respiratory syndrome virus [1]. Even though the origin of the disease is still 

not clear yet [2], the COVID-19 pandemic manifested first in the city of Wuhan in China in 

December of 2019[1,3–5]. As of the end of July 2020, COVID-19 has caused about 666,285 

deaths, with about 17,042,890 confirmed infected cases globally [6].  

SARS-CoV-2 is a member of an enveloped positive-sense RNA family of viruses that are about 

60nm-140nm in diameter. They possess spike-like projections on their outer surfaces, as shown in 

figure 5.1, that gives them a crown-shape appearance under an electron microscope [7]. The first 

severe acute respiratory syndrome caused by coronaviruses, SARS-CoV, occurred in 2003 [8–10]. 

SARS-CoV affected five different, with an 11% lethal rate and a global total of 8422 cases [8,9,11].  

The Middle East respiratory syndrome coronavirus (MERS-CoV)  diseases that also emerged in 

2012, affecting 2494 individuals with a 34% lethal rate was also caused by coronaviruses[12,13]. 

Although SARS-CoV-2 is less lethal compared to MERS-CoV and SARS-CoV, it however, has a 

faster rate of human to human transmission. 
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Figure 5.1: Diagram of a Coronavirus virion structure 

Transmission of COVID-19 amongst humans is through the inhalation of large droplets released 

through coughing and sneezing of an infected individual [3,14,15]. Infection of the virus can also 

occur through the touching of contaminated surfaces and then touching one’s eyes, nose, and 

face[16]. This is because the virus has been shown to survive on surfaces for days if the atmosphere 

is favourable [14,16]. Transmission via aerosolization/feco oral route has also been postulated[17]. 

Reports have shown that infected individuals can continue to transmit the disease as the symptoms 

persist, and even after the individual has clinically recovered [3,15]. Transmission can also occur 

in asymptomatic individuals before the onset of disease symptoms [14,18]. Symptomatic 

individuals usually experience fever, dyspnea, respiratory symptoms, and shortness of breath 

[14,19,20]. Severe acute respiratory syndrome, kidney failure, pneumonia, and even death may 

occur in individuals with severe forms of the disease [19]. Although COVIDS-19 affects all ages 
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with an overall fatality rate of 3%, fatality is higher in the elderly population and individuals with 

underlying co-morbidities [6,14]. 

There is currently no approved vaccine or targeted therapeutics for human coronavirus treatment, 

particularly COVID-19 [21]. Thus there is a limitation of effective treatment options. As such, all 

available treatment protocols are mainly supportive [22–24]. However, several drug development 

efforts are underway. The World Health Organisation is also currently focusing on four therapies 

which, include; Remdesivir, Chloroquine, and Hydroxychloroquine, a combination of Lopinavir 

and ritonavir with the possible addition of interferon-beta [25–27].  

As one of the small molecule inhibitors being considered for COVID-19 therapy,  Remdesivir is 

probably the most advanced of all the compounds in clinical trials [28]. It is an adenosine analog 

with broad-spectrum antiviral activity in animal models, both in vitro and in vivo, which failed as 

an Ebola drug [29]. Remdesivir has also been shown to inhibits coronaviruses that cause SARS 

and MERS [30–32]. It impedes viral replication by inhibiting the RNA-dependent RNA 

polymerase, thereby causing premature termination of RNA transcription [30,33]. 

Although Remdesivir has been shown to display potent in vitro activity against SARS-CoV-2 

RNA-dependent RNA polymerase with an EC50 at 48 hours of 0.77 µM in Vero E6 cells, and 

hence it's advancement in clinical trials, the conformational, and structural changes associated with 

SARS-CoV-2 RNA-dependent RNA polymerase upon Remdesivir binding remains unexplored. 

Conformational changes of enzymes are the hallmarks of their dynamics that have a correlation 

with the overall functions of these enzymes [34]. Conformation changes may be induced by the 

binding of ligands or other biological molecules that can modulate the function of the enzyme [35]. 

In this case, the binding of Remdesivir would have induced significant conformations. Therefore 
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to unravel these conformational changes, we used molecular dynamics simulation, a formidable 

tool that allows for an atomistic time-resolved investigation of the properties of enzyme structures 

[36,37]. Based on the structural dynamics and associated interaction profile, we also construct a 

pharmacophore model that can be used in the design of novel inhibitors with improved therapeutic 

activity against all other coronaviruses. A pharmacophore model elucidates and identifies the 

common chemical moieties of ligands which, are crucial in eliciting a biological function [38–44]. 

Therefore the model that will be generated in this study would reveal for the first time, the crucial 

moieties of Remdesivir required for its inhibition of SARS-CoV-2 RNA-dependent RNA 

polymerase using a per-residue-based energy decomposition technique. This model could 

subsequently be employed in virtual screening towards the discovery of novel SARS-CoV-2 RNA-

dependent RNA polymerase inhibitors with improved pharmacokinetics and pharmacodynamics 

properties [45] and could possibly overcome any potential drawbacks limiting the efficacy of 

existing inhibitors such as cross-resistance [46]. 

 

 

2.0 COMPUTATIONAL METHODOLOGYY 

2.1 System preparation 

2.1.1 Homology modelling model validation of SARS-CoV-2 RNA-dependent RNA polymerase 

 

The unavailability of an experimentally resolved X-ray crystal structure of SARS-CoV-2 RNA 

dependent RNA polymerase at the time of the study  prompted a construction of a putative model. 

We, therefore, retrieved the amino acid sequence of SARS-CoV-2 RNA-dependent RNA 

polymerase from the NCBI database with reference sequence YP_009725307.1. Using the online 
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server, SWISS model, [47,48], we performed structural modelling of the 3D structure of SARS-

CoV-2 RNA-dependent RNA polymerase. The homology model of SARS-CoV-2 RNA-dependent 

RNA polymerase constructed in this study was based on the experimentally resolved X-ray crystal 

structure of chain A of SARS-CoV RNA-dependent RNA polymerase structure (PDB ID: 6NUR) 

[49]. The chain A of SARS-CoV RNA-dependent RNA polymerase possessed a sequence 

similarity of 96.35%, with SARS-CoV-2 RNA dependent RNA polymerase and hence was the 

most suitable template  to be used in the construction of our model. To ensure the reliability of 

assumptions derived from the structural investigations of modelled structure, we performed a 

thorough model validation using the online platforms RAMPAGE [50] ProSA [51] and VERIFY-

3D [52]. We visually analysed the structural and similarities of the constructed model and the 

template employed by superimposing the two structures on UCSF Chimera [53].  This also allowed 

for the identification of the putative Remdesivir binding site as shown in figure 5.2.   
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Figure 5.2: Comparative sequence alignment of the constructed homology model of SARS-CoV-
2 RNA-dependent RNA polymerase and the accompanying template employed. Insert highlights 
the active site residue, VAL557 as previously reported 
 

2.1.2 Remdesivir acquisition and preparation 

In preparing for molecular docking, Remdesivir was modelled using the MarvinSketch software 

(39). The modelled structures were then taken through energy minimization using Avogadro 1.2.0 

software (40). Avogadro is integrated with UFF forcefield, and this force field was used to 

optimize the molecular geometries of the compounds and a steepest descent algorithm for 

structural minimization. The pdbqt formats of all the compounds were then generated using 

AutoDock Vina (41). In preparation for molecular docking, hydrogen ions removed, and Gasteiger 

charges added using the Graphical User Interface (GUI) of UCSF Chimera [54]. The structure was 

subsequently saved in mol2 format. 

 
 
2.2 Molecular docking and active site identification 

According to recent reports by Lung et al., the active site of SARS-CoV RNA-dependent RNA 

polymerase encompasses VAL557 and its surrounding residues [49,55]. As such, the active site 

was mapped by considering residues that were within a 5Å radius of VAL557. A grid box that 

encompassed a 5Å radius around VAL557 was used to map out the corresponding coordinates 

with the AutoDock Vina [56] incorporated in UCSF Chimera [53]. The defined coordinates of the 

Remdesivir binding site region on the modelled structure were obtained from the grid box 

coordinates x = 144.452, y = 148.961, z = 163.495 for the centre and coordinates x=10.9051, 

y=18.7302, z= 15.2392 for the size of the grid box. In preparing for molecular docking, the pdbqt 

formats of Remdesivir and the SARS-CoV-2 RNA dependent RNA polymerase model were 

generated using AutoDock Vina [56]. Molecular docking was subsequently performed using 
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AutoDock Vina. In preparing for molecular docking, the SARS-CoV-2 RNA dependent RNA 

polymerase structure was prepared using the Graphical User Interface (GUI) of UCSF Chimera 

[54], which involved the addition of hydrogen atoms. The output of the docking was viewed on 

UCSF Chimera using the integrated ViewDock module after docked complexed were saved for 

further analysis. Residues that interacted with Remdesivir in the best binding pose of the docking 

results are shown in figure 5.3. The docked complexed were then prepared for MD simulation 

following in-house pre-MD preparation protocols [57,58].  Two systems were then set up for the 

MD simulation, an apo conformation of SARS-CoV-2 RNA dependent RNA polymerase  and the 

Remdesivir bound conformation.  
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Figure 5.3: 3D representation of the SARS-CoV-2 RNA-dependent RNA polymerase model 
employed  in this study, which was pruned to minimize computational cost. Also present in the 
structure are Zinc ions (purple). Interacting active site residues are also shown in black 
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2.3 Molecular dynamics (MD) simulations  

To reveal the conformational changes that occurred on SARS-CoV-2 RNA-dependent RNA 

polymerase upon Remdesivir binding, we performed an atomic-scale MD simulation using the 

AMBER 18 GPU with an integrated PMEMD module [59,60].  This method is reliable and has 

been employed extensively in several previous studies [57,61–64].  Prior to molecular dynamics 

(MD) simulations, additional co-crystalized molecules such as crystal water, which were not 

applicable to this study, were removed from the enzyme structure using the graphical user interface 

of UCSF Chimera. In preparing Remdesivir for the MD simulation, the ANTECHAMBER module 

was employed for its parameterization, in which atomic partial charges (AM1BCC) gaff, using the 

bcc charge scheme were created [65].  On the other hand, the studied SARS-CoV-2 RNA-

dependent RNA polymerase model was also parameterized using the FF14SB AMBER force field 

[66]. Protonation of histidine residues was performed using the pdb4amber script at a constant pH 

(cpH) to ensure the compatibility of the prepared enzyme model with the LEAP module.  

Subsequently, hydrogen ions were added, followed by a neutralization of the entire prepared 

system using the LEAP module. Neutralization was carried out by the addition of either of the 

counter ions, Na+ or Cl-. Afterward, topology and coordinate files for Remdesivir, SARS-CoV-2 

RNA-dependent RNA polymerase, and their resultant complex were generated. Using a TIP3P 

orthorhombic box size of 12Å, water molecules were then added to explicitly solvate the entire 

system [67]. The two prepared systems (apo and complex) were  subjected to an initial 2000 

minimization steps at a restraint potential of 500kcal/mol. This was subsequently followed by a 

1000 steps minimization of steepest descent with no restraint. The systems were gradually heated 

from 0K to 300K for 50ps. After heating, a 500ps equilibration was performed at a constant 

pressure of 1bar. The pressure was maintained constant using Berendsen barostat [68]. Using the 
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SHAKE algorithm [69]to constrict all atomic hydrogen bonds, a 100ns MD simulation was 

performed on all systems. The MD production run was performed using a 1fs time step. 

Coordinates for generated trajectories were saved at 1ps interval and were further analysed using 

the PTRJ and CPPTRAJ modules of AMBER 18 [70]. Graphical plots for analysis of the generated 

trajectories created with the Microcal Origin analytical software [71]. 

2.4 Per-residue energy decomposition calculations 

The quantification of the energy contributions of  individual binding site residues were performed 

using per-residue decomposition analyses technique. The Per-residue decomposition analysis is 

incorporated in the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) [72–75] 

method. This allows for the identification of crucial residues required for the efficient binding and 

stabilization of Remdesivir to the SARS-CoV-2 RNA-dependent RNA polymerase.  

2.5 Pharmacophore model creation. 

Following the MD simulation of  Redemsivir complexed with RNA-dependent RNA polymerase 

of SARS-CoV-2, the online platform, ZincPharmer [76], was used to construct a pharmacophore 

model. The pharmacophore model was constructed using the pharmacophoric moieties that 

exhibited prominent interaction with the highest energy contributing amino acids, as identified in 

the per-residue energy decomposition analysis. 

3.0 RESULTS AND DISCUSSION 

3.1 Validation of modelled 3D structure of SARS-CoV-2 RNA-dependent polymerase 

The homology model of the SARS-CoV-2 RNA-dependent RNA polymerase investigated in this 

study was built using the X-ray crystal structure of  SARS-CoV  RNA-dependent RNA polymerase 

[49] due to its highest sequence identity of 96.35%. To guarantee the reliability of the atomistic 
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predictions postulated in this report based on the modelled structure, we validated our model using 

the online server, RAMPAGE. From RAMPAGE, it was revealed that 98.1% (786 amino acids) 

of the amino acid residues that constitute our model were within the favour region, as shown in 

the Ramachandran plot on figure 5.4A. Also,  only 15 amino acid residues (1.9%) of our model 

were in the allowed region, while no residue was found in the outlier region. The high percentage 

of residues in the favoured and allowed regions suggested a reliable accuracy of the dihedral and 

backbones of our constructed homology model.  To further ensure the reliability of our postulations 

from the model, the structure was also validated the PROSA online web server with the resultant 

Z-score plots presented in figure 5.4B. Validation of the PROSA web server allows for an 

evaluation of a homology model with regards to its acceptability within experimental X-ray and 

NMR limits. As shown in the Z-core plot,  our modelled SARS-CoV-2 RNA-dependent RNA 

polymerase structured exhibited a Z-score of −13.23, consistent with a relatively good quality 

homology model.  
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Figure 5.4: A) Ramachandran plots for the built homology model SARS-CoV-2 RNA-dependent 
RNA polymerase created on the RAMPAGE online webserver. B) Overall model quality of the 
homology  model of SARS-CoV-2 RNA-dependent RNA polymerase by Z-score of ProSA. C) 
Overall model quality of the homology model of SARS-CoV-2 RNA-dependent RNA polymerase 
by Z-score of ProSA 

Finally,  the quality of our model was also accessed using the online server, Verify_3D, a platform 

that employs empirical and energetic techniques to ascertain model quality. Verify_3D also 

assesses individual residue quality, as presented in figure 11.4C.  As shown,  our modelled SARS-
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CoV-2 RNA-dependent RNA polymerase recorded a Verify-3D score of 89.91%, with an average 

3D-1D score >= 0.2 score. 

3.2 Validation of model with experimentally resolved X-ray crystal structure of SARS-CoV-

2 virus RNA-dependent RNA polymerase 

Upon completion of this study, the X-ray crystal structure of SARS-CoV-2 virus RNA-dependent 

RNA polymerase bound with Remdesivir was released on the 8th of April 2020. However, a 

structural comparison and subsequent sequence alignment of our homology model and the 

experimentally resolved structure revealed a 90.78% sequence identity between both structures, as 

presented in supplementary figure S1. Particularly, the active site region of both structures 

exhibited a 100% sequence identity. The only notable difference is the incorporation of two 

catalytic magnesium ions in the experimental structure. Therefore, in light of the results, authors 

do not see any significant deviation from our results on the modelled structure. To further validate 

the reliability of the structural analysis revealed in this study from the modelled complex, we 

estimated the binding free of Remdesivir in both the modelled structure and the recently reported 

experimental complex by Yin et al.[77]. As shown in table 5.1, Remdesivir exhibited a binding 

free energy of -13.28kcal/mol  and -10.16kcal/mol in the experimental structure and the homology 

model respectively. With a minimal binding free energy difference of about -3kcal/mol between 

both structures as observed, it further suggests that there would be minimal difference in the 

binding site interaction dynamics of Remdesivir within both structures as well. Therefore, the 

structural elucidations from the homology model that are provided in this report would be similar 

to what would occur in the experimentally resolved structure, hence reliable. 
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Table 5.1:Comparative MM/GBSA-based binding free energy profile of compound Remdesivir 

ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = 
solvation free energy ΔG = gas phase free energy. 
 

3.3 Insights from binding mode exploration  of Remdesivir within  SARS-CoV-2 RNA-dependent 

RNA polymerase active site toward COVID-19 therapy 

Molecular docking was used to predict the best binding pose of Remdesivir within the active site region 

of modelled of SARS-CoV-2 RNA-dependent RNA polymerase. As presented in figure 5.5, several 

binding poses of Remdesivir were postulated with the corresponding docking score provided. The best 

binding pose, which is consistent with the most negative docking, was identified with a docking score of 

5.9kcal/mol. Complexes generated from molecular docking, however, only mimic the static “key and 

lock”  mechanism of ligand-receptor binding [78] and do not provide insights on the accurate dynamics 

of ligand-target interactions since both are flexible in reality. As such, assessment of the conformational 

changes of SARS-CoV-2 RNA-dependent RNA polymerase after molecular docking would not be 

truly representative of what would happen in reality upon Remdesivir binding. We, therefore, 

proceeded with molecular dynamics simulation of the best docked complex.   

 
 

Complexes 𝚫𝐄𝐯𝐝𝐰 𝚫𝐄𝐞𝐥𝐞 𝚫𝐆𝐠𝐚𝐬 𝚫𝐆𝐬𝐨𝐥 𝚫𝐆𝐛𝐢𝐧𝐝 

Modelled complex 
 

Experimental 
complexed 

-13.95±0.05 
 

-28.01± 0.24 
 

-69.79±0.53 
 

-31.74 ±0.56 

-30.26±0.51 
 

-59.77±0.13 
 

20.10±0.43 
 

46.49±0.47 
 

-10.16±0.11 
 

-13.28±0.25 
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Figure 5.5: Binding poses of Remdesivir in the active sites of SARS-CoV-2 RNA-dependent RNA 
polymerase and their accompanying docking score. Best binding pose of Remdesivir has a docking 
score of -5.9kcal/mol 
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3.4 Structural And Conformational  Dynamics Of SARS-Cov-2 RNA-Dependent RNA 

Polymerase Upon Remdesivir Binding 

Conformational changes of enzymes are the hallmarks of their dynamics that have a correlation 

with the overall functions of these enzymes [34]. In many cases, such conformation changes may 

be induced by the binding of ligands or other biological molecules that are able to modulate the 

function of the enzyme [35]. In this case, the binding of Remdesivir would have induced significant 

conformations. We, therefore, proceeded to investigate the structural and conformational dynamics 

of SARS-CoV-2 RNA-dependent RNA polymerase as relates to Remdesivir binding using MD 

simulation. This reliable computational technique allows the study of time-resolved properties of 

protein or enzyme structures in atomic details [36]. Post-MD simulation metrics such as C-α root 

mean square fluctuation (RMSF), C-α radius of gyration (RoG), and Solvent Accessible Surface 

Area (SASA) was thus employed assess the conformational dynamics of SARS-CoV-2 RNA-

dependent RNA polymerase.  
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Figure 5.6: Comparative conformational analyses of the unbound (black) and Remdesivir-bound 
(red) SARS-CoV-2 RNA-dependent RNA polymerase model. [A] C-α RMSD plot showing the 
degree of atomistic deviations and instability. [B] C-α RMSF plot showing individual residue 
flexibility. Blue highlight show the SARS-CoV-2 RNA-dependent RNA polymerase active site 
region and corresponding 3D representation is shown in the blue inset. Comparative radius of 
gyration plots of the unbound (black) and Remdesivir-bound (red) SARS-CoV-2 RNA-dependent 
RNA polymerase mode. [C] C-α ROG plot showing the degree of compactness of SARS-CoV-2 
RNA-dependent RNA polymerase. [D] Comparative SASA plots of the unbound (black)   
Remdesivir-bound (red) SARS-CoV-2 RNA-dependent RNA polymerase model 
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C-α RMSF can be employed to describe per-residue fluctuations across the enzyme’s secondary 

structure, while C-α RoG can be used to predict structural compactness, perturbations, and 

atomistic mobility [79–83]. C-α RMSF calculations for the unbound and Remdesivir bound   

SARS-CoV-2 RNA-dependent RNA polymerase are presented as line plots in figure 5.6B, which 

revealed that the binding of Remdesivir generally induced minimal fluctuations of individual 

residues in the overall structure when compared to unbound conformation while showed relatively 

higher residual fluctuations. On the average, unbound SARS-CoV-2 RNA-dependent RNA 

polymerase had RMSF values of 1.20Å, while Remdesivir-bound conformation had an average 

RMSF of 1.06Å. Presumably, the minimal perturbation in the structure SARS-CoV-2 RNA-

dependent RNA polymerase upon Remdesivir binding could highlight a possible mechanism by 

which Remdesivir exhibits its therapeutic modulatory activity against SARS-CoV-2 RNA-

dependent RNA polymerase. Specific peak fluctuations regions of interest occurred between 

residues “517-717”, which encompassed most of the active site residues. Thus, although there was 

minimal flexibility of residues in the entire structure of SARS-CoV-2 RNA-dependent RNA 

polymerase upon Remdesivir binding, there was an apparent disruption of the active site residues, 

as shown. This could be attributed to the direct strong molecular interactions elicited upon 

Remdesivir binding. These presumptions were further verified by calculating the C-α RMSD, 

which is able to depict the stability of SARS-CoV-2 RNA-dependent RNA polymerase across the 

MD simulation. As shown in figure 5.6A, C-α atomistic deviations of both simulated models were 

almost the same, with a difference of 0.7Å. This suggested that the binding of Remdesivir barely 

interfered with deviations of C-α atoms of SARS-CoV-2 RNA-dependent RNA polymerase, 

corroborating with the minimal residue fluctuations observed. The mean RMSD values estimated 

for the Remdesivir bound and the unbound  SARS-CoV-2 RNA-dependent RNA polymerase were 
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2.14Å and 2.07Å, respectively. Furthermore, the conformational dynamics of SARS-CoV-2 RNA-

dependent RNA polymerase were assessed from the MD simulation by estimating the C-α RoG, 

which provides insights on enzyme structure compactness. As shown in figure 5.6C, the 

Remdesivir-bound SARS-CoV-2 RNA-dependent RNA polymerase exhibited an average RoG of 

29.00Å, while the unbound conformation exhibited an average RoG 28.68Å. This suggested that 

Remdesivir binding induced a less compact structure consistent with structural unfolding.  

Nonetheless, the difference in comparison with the unbound is 0.32Å, further suggesting the 

structural unfolding with regards to Remdesivir binding is minimal. Estimations of the SASA 

provided more insights into the mechanistic perturbations of SARS-CoV-2 RNA-dependent RNA 

polymerase from the hydrophobic region (buried) to the hydrophilic phase (surface-exposed) 

according to previous studies [80,84–86]. As shown in the SASA plot on figure 5.6D, residues of 

the Remdesivir-bound SARS-CoV-2 RNA-dependent RNA polymerase appeared to be less 

surface-exposed when compared to the unbound conformation with an average SASA value of 

35164.07Å2. The unbound  SARS-CoV-2 RNA-dependent RNA polymerase exhibited a higher 

average SASA of  35641.23Å2. This could then imply that Remdesivir binding restricts the 

systematic transition of SARS-CoV-2 RNA-dependent RNA polymerase the hydrophobic region 

(buried) to the hydrophilic phase (surface-exposed) 

3.5 Extensive Redemsivir-active site modulation favour SARS-CoV-2 RNA-dependent RNA 

polymerase inhibition 

To understand the basis for the observed conformational and structural changes that occurred on 

SARS-CoV-2 RNA-dependent RNA polymerase upon Remdesivir binding, an investigation of the 

enzyme’s fundamental interaction profile, particularly at the active site, is essential. Based on 
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previous studies, it has been established that the active site of SARS-CoV, a homolog with 96.35% 

sequence similarity, is located at VAL557 [49,55]. Sequence alignment of both SARS-CoV and 

SARS-CoV-2 RNA-dependent RNA polymerase, as presented in figure 5.2, showed VAL557 was 

conserved in both enzymes. This conserved pattern of VAL557 on both structures suggests it could 

be the active site of  SARS-CoV-2 RNA-dependent RNA polymerase, whose therapeutic 

modulation, in addition to other binding pocket residues, could interfere with the overall activity 

of RNA-dependent polymerase coronaviruses. Therefore to ascertain the role of VAL557 and 

accompanying binding pocket residues in Remdesivir binding, we performed a molecular 

visualization of the interactions it elicited with Remdesivir upon binding, over a 100ns MD 

simulation using representative snapshots, 20 ns, 40 ns, 60 ns, 80 ns, 100 ns. This allowed for 

visualization of specific interactions that the active site residues engaged in with Remdesivir, 

which have also influenced its stability and binding affinity. The nature of these interactions could 

further establish or discredit the role of VAL557 in therapeutic inhibition of coronavirus RNA-

dependent RNA polymerase by Redemsivir. Also, the exploration of the molecular interactions of 

other residues that were within 5Å radius from VAL557 could highlight other crucial residues that 

influence the therapeutic efficiency of Remdesivir against SARS-CoV-2 RNA-dependent RNA 

polymerase as experimentally predicted. 
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Figure 5.7: Molecular visualization of Remdesivir at the active sites (hydrophobic pockets) of 
SARS-CoV-2 RNA-dependent RNA polymerase. Inter-molecular interactions between 
Remdesivir and active site residues in SARS-CoV-2 RNA-dependent RNA polymerase at 20 ns, 
40 ns and 60ns are shown in a, b and c respectively. A1,  B1 and B1 and C1 shows a 3D 
representation of the hydrophobicity of the Remdesivir bound at SARS-CoV-2 RNA-dependent 
active site. 
 

As shown in figure 5.7A, at 20 ns into the MD simulation, it can be observed that Remdesivir 

engages in an extensive array of strong intermolecular interactions with residues within the active 

site, including VAL557. Predominantly, Remdesivir engages in conventional hydrogen bond π-π 

stacked interactions with the hydrophobic residues. Particularly, VAL557  engages in a carbon-

hydrogen interaction Remdemsivir. Other notable interactions included salt-bridge interactions 

with both ASP623 and ARG555. At 40 ns, as shown in figure 5.7B, many of the interactions that 
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occurred at 20 ns were maintained. Again VAL557 retains in carbon-hydrogen bond interaction 

with Remdesivir, while ARG624 is also shown to engage in a π-anion interaction. At 60 ns, as 

shown in figure 5.7C, even as many interactions were again maintained, the number of 

hydrophobic interactions increased relative to interactions at 40 ns. However, the salt bridges 

elicited between ASP623 and Remdesivir were lost, with a conventional hydrogen bond interaction 

forming instead. 

 

 

Figure 5.8: Molecular visualization of Remdesivir at the active sites (hydrophobic pockets) of 
SARS-CoV-2 RNA-dependent RNA polymerase. Inter-molecular interactions between 
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Remdesivir and active site residues in SARS-CoV-2 RNA-dependent RNA polymerase at 80 ns 
and 100ns are shown in a and b respectively. a1 and b1 shows a 3D representation of the 
hydrophobicity of the Remdesivir bound active site. 

 
Towards the end of the simulation at 80 ns, as shown in figure 5.8A, the number of hydrophobic 

interactions with Remdesivir increased with many interactions observed from the beginning of the 

simulation again maintained. In addition to the conventional hydrogen bond interactions, other 

notable interactions included π-π stacked interactions with residues such as LYS676, VAL667, 

MET542, ALA688, ARG555, and TYR456. At the end of the MD simulation at 100 ns, as shown 

in figure 5.8B, the extensive pool of strong molecular interactions observed at the beginning of the 

simulations was sustained. Also, the two salt bridge interactions occurring between Remdesivir 

and ASP623, as well as ARG624, were again observed. From the observed interaction dynamics 

of Remdesivir in the SARS-CoV-2 RNA dependent RNA polymerase active site, it could be 

deduced specific residues interacted consistently, steadily, and intermittently across the 100ns MD 

simulation time. The consistency in engaging in strong interactions with Remdesivir implies that 

these interactions are essential to its therapeutic function against SARS-CoV-2 RNA dependent 

RNA polymerase. Notable interactions elicited included strong ionic and hydrogen bond formation 

and salt bridges. Thus, these interactions could have favoured the high-affinity binding and 

stability of Remdesivir in the active site of  SARS-CoV-2 RNA dependent RNA polymerase and 

could also suggest the possible structural mechanism of its therapeutic efficacy.  Also, the observed 

increase in interacting residues as the simulation proceeded further suggests that Remdemsivir 

assumed various binding orientations that allowed it to interact with more hydrophobic residues 

towards achieving stability and via favourable molecular interactions as observed. Altogether, the 

observed interaction dynamics of Remdesivir could relatively provide necessary details and 

insights into the molecular basis and mechanisms of its high-affinity binding and therapeutic 
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modulation of SARS-CoV-2 RNA dependent RNA polymerase towards as considerations as 

therapeutic for COVID-19. 

3.6 Quantitative insights into the contributions of active sight residues towards Remdesivir 

binding 

The critical roles of the putative active site residues of SARS-CoV-2 RNA dependent RNA 

polymerase were further revealed via per-residue decomposition analyses, which provided energy 

contributions of individual residues that interacted with Remdesivir at over the 100ns MD 

simulation duration. Overall, energies were decomposed into van der Waals and electrostatic 

energy, polar solvation energy, non-polar solvation energy, including their total energy 

contributions. As shown in figure 5.9 and table 5.2, many of the active site residues contributed 

significantly to the total binding of Remdesivir. 
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Figure 5.9. A) 3D homology model of model of the SARS-CoV-2 RNA dependent RNA 
polymerase complexed with Remdesivir.  B) Per-residue energy contributions plot of the 
interacting residues at the SARS-CoV-2 RNA dependent RNA polymerase active site upon 
Remdesivir binding. C) The residue ligand interaction network illustrates stabilizing hydrophobic 
interactions pocketing Remdesivir at the active site from an averaged structure.  
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Table 5.2: Tabular presentation of the estimated energy contribution of individual active 
residues 
Residue Van der Waals 

(kcal/mol) 
Electrostatic 

(kcal/mol) 
Polar 

solvation 
(kcal/mol) 

Non-Polar 
solvation 
(kcal/mol) 

Total 
(kcal/mol) 

ASP 452 -0.78±0.58 -6.56±1.19 3.37±1.21 -0.01±0.01 -3.99±1.06 
TYR 453 -0.57±0.19 0.01±0.04 0.09± 0.05 -0.01±0.01 -0.47±0.17 
TYR 456 -1.51±0.39 -0.57±0.26 0.72±0.18 -0.16 ±0.08 -1.53±0.47 
THR 540 -0.46±0.11 0.03±0.04 0.12± 0.06 -0.02±0.01 -0.34±0.11 
GLN 541 -0.09±0.01 0.05±0.04 0.05±0.05 0.00±0.00 0.01±0.03 
MET 542 -1.12±0.27 0.38±0.08 -0.04±0.09 -0.08± 0.01 -0.87±0.29 
ASN 543 -0.11±0.01 -0.19±0.10 0.24± 0.10 0.000±0.00 -0.06±0.05 
LYS 545 -0.14±0.06 -1.04±0.73 1.38±0.82 -0.00 ±0.00 0.20±0.10 
ARG 553 -0.99±0.39 -6.25±1.89 7.41±2.03 -0.22±0.07 -0.04±0.39 
ALA 554 -0.69±0.16 1.13±0.32 -0.24±0.27 -0.03 ±0.02 0.16±0.30 
ARG 555 -4.04±0.70 -6.79±2.14 9.33±2.01 -0.38±0.06 -1.88±0.77 
THR 556 -0.92±0.71 -3.18±0.78 2.71± 0.30 -0.14 ±0.02 -1.52±0.56 
VAL 557 -1.68±0.25 -0.79±0.21 1.05±0.25 -0.11±0.04 -1.53±0.27 
ALA 558 -0.84±0.27 0.05±0.01 -0.01±0.09 -0.05±0.01 -0.85±0.29 
GLY 559 -0.08±0.16 -0.08±0.03 0.12±0.03 0.00 ±0.00 -0.04±0.03 
VAL 560 -0.05±0.01 0.01±0.01 0.04±0.02 0.00±0.00 0.001±0.2 
LYS 621 -0.08±0.02 -0.59±0.34 0.72±0.38 -0.00 ±0.01 0.06±0.08 
CYS 622 -0.08±0.02 -0.01±0.05 0.08±0.06 0.00±0.00 -0.02±0.03 
ASP 623 -1.74±0.30 0.23±0.95 1.93 ±1.09 -0.23±0.03 0.19±0.69 
ARG 624 -1.71±0.59 -2.60±1.61 1.72±1.13 -0.20±0.03 -2.80±0.99 
GLU 665 -0.25±0.07 -0.70±0.31 0.69±0.39 -0.00±0.00 -0.21±0.21 
VAL 667 -0.44±0.10 0.10±0.02 -0.06±0.03 -0.02±0.01 -0.41±0.11 
LYS 676 -0.54±0.13 0.61±0.42 -0.12±0.45 -0.02±0.01 -0.06±0.39 
THR 680 -2.60±0.46 -2.77±1.11 1.88±0.51 -0.19±0.03 -3.67±0.88 
SER 681 -1.99±0.43 -0.95±0.38 1.58±0.30 -0.07±0.02 -1.44±0.65 
SER 682 -2.58±0.50 -1.25±0.56 2.21±0.60 -0.35±0.04 -1.97±0.71 
GLY 683 -0.28±0.06 0.10±0.05 0.12±0.06 -0.00±0.00 -0.05±0.06 
THR 686 -0.77±0.29 0.08±0.26 0.07±0.22 -0.05±0.04 -0.68±0.42 
ALA 687 -0.62±0.29 0.02±0.11 -0.01±0.10 -0.14±0.06 -0.75±0.38 
ASN 691 -0.31±0.20 0.06±0.25 0.14±0.29 -0.03±0.04 -0.15±0.26 
SER 759 -0.13±0.05 0.24±0.18 -0.08±0.22 -0.00±0.01 0.02±0.08 
ASP 670 0.11±0.90 -12.71±2.02 13.13±1.63 -0.37±0.03 0.16±0.80 
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Also, many of these high energy contributing residues are amongst residues that consistently 

interacted with Remdesivir. The high energies estimated are also consistent with the strong 

molecular interactions elicited upon Remdesivir binding, as highlighted over the simulation period. 

Many of these residues contributed total energies <-1kcal/mol establishing their essentiality in 

overall Remdesivir binding and stability [87]. The highest energy contributing residues with total 

energies <-1kcal/mol included, ASP452(-3.99kcal/mol), THR456(-1.53kcal), ARG555(-

1.88kcal/mol), THR556(-1.52kcal/mol), VAL557(-1.53kcal/mol), ARG624(-2.80kcal), 

THR680(-3.67kcal/mol), SER681(-1.44kcal/mol) and SER682 (-1.97kcal/mol). The identification 

of these residues could aid in the determinations of crucial pharmacophoric moieties of 

Remdesivir, which could be used in the design of improved Remdesivir analogs.  

 

3.7 Per-Residue based pharmacophore model generation reveals essential moieties of 

Remdesivir 

Previously, our research group has extensively published on methods that improve 

pharmacophore-based modelling. The earliest of such methods was the target-bound 

pharmacophore modelling approach, which highlighted the importance of incorporating the 

conformation of bound ligands in the pharmacophore model generation [88]. In improving this 

method, we outlined another pharmacophore workflow whereby the pharmacophore model was 

constructed based on high energy-contributing active amino acid residues to overall ligand binding 

[43,89,90]. High energy contributing residues are identified from per-residue energy 

decomposition analysis integrated with the MM/GBSA thermodynamics calculation. Identified 

high energy contributing residues are then mapped with corresponding interacting moieties on the 
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ligand. In this report, we followed the same protocol to generate an informative structural ensemble 

of steric and electronic features that may be in the supramolecular interaction of Remdesivir with 

SARS-CoV-2 RNA dependent RNA polymerase in figure 10B.  

 

 
Figure 5.10: A) Specific Remdesivir moieties (the 3,4‐dihydroxy‐5‐methyloxolane‐2‐carbonitrile 
moiety, pyrrolo[2,1-f][1,2,4]triazin-4-amine moiety and (1‐methoxy‐1‐oxopropan‐2‐
yl)(methyl)aminophosphonic acid) that interact with high energy contributing residues. B) 3-D 
pharmacophore model generated on ZINCPharmer (Green–hydrophobic/aromatic moiety, gold – hydrogen 
bond donor/acceptor). 
 

As observed in the ligand interaction plots many of the high energy contributing residues, notably, 

ASP452, THR456, ARG555, THR556, VAL557, ARG624, THR680, SER681 and, SER682 

interacted with specific moieties on Remdesivir by forming strong interactions with could have 

favoured its stability within the active site of  SARS-CoV-2 RNA dependent RNA polymerase. 

Specific moieties that these residues interacted with include; the 3,4‐dihydroxy‐5‐methyloxolane‐

2‐carbonitrile moiety, pyrrolo[2,1-f][1,2,4]triazin-4-amine moiety and the  (1‐methoxy‐1‐

oxopropan‐2‐yl)(methyl)aminophosphonic acid on Remdesivir as highlighted in figure 5.10A. The 

chosen essential pharmacophoric features of Remdesivir, as identified in the report, include 

aromatic/hydrophobic rings, hydrogen bond donors, and hydrogen bond acceptors, as shown in 
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figure 5.10A. To validate the pharmacophore model generated in this report, we screened the ZINC 

database for potential SARS-CoV-2 RNA dependent RNA polymerase inhibitors and identified 

11 hits compounds as presented in TableS1. A good pharmacophore model should successfully 

differentiate active compounds from inactive ones. As such, with this extensively explored 

technique used in constructing our pharmacophore model, we believe the model could be used in 

screening large compound libraries for hit identification. The pharmacophore model also presents 

a useful chemical scaffold that could serve as a starting point for the discovery of improved 

therapeutic analogs of Remdesivir that target SARS-CoV-2 RNA dependent RNA polymerase. 

Nonetheless, as an inconclusive predictive model, a further validation of the pharmacophore model 

is required  to guarantee its reliability. 

 

4.0 CONCLUSION  

In this study, we employed advanced computational techniques to understand the binding 

mechanism as well as structural and conformational implications that occur upon binding of 

Remdesivir to SARS-CoV-2 virus RNA-dependent RNA polymerase. Using a validated homology 

model of SARS-CoV-2 virus RNA-dependent RNA polymerase, our results revealed that 

Remdesivir binding is mediated by specific residues (ASP452, THR456, ARG555, THR556, 

VAL557, ARG624, THR680, SER681, and SER682) which engage in an extensive array of high-

affinity interactive with essential Remdesivir moieties.  Conformational changes observed upon 

Remdesivir included minimal individual amino acid perturbations, subtle interference in C-α 

atoms deviations, and a restriction in the systematic transition of SARS-CoV-2 RNA-dependent 

RNA polymerase from the “buried” hydrophobic region to the “surface-exposed” hydrophilic 

region. High energy contributing residues identified from per-residue energy decomposition 
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analysis were subsequently used in the construction of a pharmacophore model. This 

pharmacophore highlighted the essential moieties on Remdesivir required for SARS-CoV-2 RNA-

dependent RNA polymerase inhibition while presenting pharmacophoric features that could aid in 

the design of improved analogs of Remdesivir to augment the current treatment options for 

COVID-19. As an ongoing study, a future exploration of pharmacophore model generation 

towards hit identification  against SARS-CoV-2 RNA-dependent RNA polymerase would  involve 

the assembling of multiple inhibitors to constitute training sets that could in turn be employed in 

building a more robust pharmacophore  model via feature mapping. 
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ABSTRACT 

The challenge in targeting human rhinoviruses (HRV) over the years has been attributed to the 

wide variety in HRV serotypes. Nonetheless, the search for therapeutic agents against HRV 

continues unabated. These efforts have been augmented by the recent discovery of the novel 

benzothiophene derivative shown to inhibit HRV viral replication. Bound to subtype HRV-B14, 

the compound showed similar inhibitory activity as Pleconaril, a known capsid inhibitor. However, 

the molecular and structural basis of this inhibition remains unclear. In this in silico report, residue 

interaction network analysis revealed that the binding of the benzothiophene derivative into the 

“canyon” region of the active site of HRV-B14 distorts its initially extensively networked and 

compact residue profile. This was characterized by fewer inter-residue hydrogen bonds, reduced 

van der Waals interactions, and increased residue flexibility. Interestingly, however, the binding 

of this benzothiophene derivative decreased the flexibility of the north-south wall around the 

canyon region possibly impeding the “breathing motion” of HRV-B14, hence its inhibition. 

Atomistic insights also revealed the cruciality of Tyr152 towards inhibitor binding at HRV-B14. 

This was justified by the amino acid’s high intermolecular interaction with both inhibitors. 

Findings provide important structural insights in the inhibitory activity the novel benzothiophene 

derivative and reaffirm its promising potential as an alternative capsid inhibitor towards common 

cold therapy upon further experimental validation. 

 

Keywords: common cold, human rhinovirus, molecular dynamics simulation, residue interaction 

network 
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1.0 INTRODUCTION 

 

Coming from the picoviridae family, rhinoviruses (HRVs) are the most prominent causative agent 

of upper-respiratory infections [1]. First discovered in 1950, these viruses have evolved into at 

least 160 strains, which have been clustered into 3 subgroups (A, B and C) [2]. Although these 

viruses generally only cause acute infections, cases have been reported where HRV has been 

implicated in exacerbated chronic respiratory disease, immunodeficiencies, as well as chronic 

obstructive pulmonary diseases [3].  

 

Human HRV infections begin with the binding and translocation of the 30nm diameter, non-

enveloped virion into the cell. The genetic material is then released into the cytoplasm where the 

host ribosome translates the positive-sense, single-stranded RNA into a polyprotein that is cleaved 

to form 11 new viral proteins, eventually maturing into a new viral particle [4].   

 

The HRV polyprotein consists of 4 capsid proteins, VP 1-4, which encloses the viral RNA, as well 

as 7 non-structural proteins, including proteins 2A-C and 3A-D [1]. The capsid proteins are 

arranged in a unique icosahedral symmetrical structure, containing 60 copies of each protein [5]. 

The 3 larger proteins, VP1-3, are located at the external surface of the virus, whereas, VP4 lines 

the inner surface interfacing VP1-3 and the RNA. Crystallographic studies have indicated that 

VP1-3 comprises of 8-stranded, antiparallel beta-barrel folds and VP4 is an extended polypeptide 

[6]. This pentameric protomer structure (figure 6.1) contains structural channels, which are known 

as “canyons” around its apex.  
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Figure 6.1: Structure of icosahedral viral capsid demonstrating the unique VP1-VP3 domain 
orientations and the characteristic “canyon” drug-binding pocket.  
 
These “canyons” are used for cell-receptor binding and uncoating during entry into the cell [7,8]. 

Various sub-groups of HRV utilize small molecules, known as “pocket factors”, that bind in the 

“canyon” until a receptor becomes available. This hydrophobic binding pocket (Leu25, Ala21, 

Leu106, Phe124, Tyr128, Iso130, Tyr152, Val176, Tyr197, Met221, Asp219, and Pro172) found 

within the “canyon” has become a crucial target in several antiviral strategies against HRV [9].   

 

Over recent years, several lead molecules have been established against HRV, with capsid 

inhibitors such as Pleconaril and vapendavir showing potential to inhibit viral uncoating by 

stabilizing the cleft region [7]. These drugs, however, are yet to be approved as inhibitors of the 
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virus [9]. A study by Kim et al (2017) put forward a series of benzothiophene derivatives that were 

effective against both HRV subgroups A and B [7]. Of these compounds, Isopropyl 3-Methyl-6-

{[2-(methylcarbamoyl)pyridin-4-yl]oxy}- 

benzo[b]thiophene-2-carboxylate (compound 6g) demonstrated similar characteristics to 

Pleconaril, thus augmenting its use as a capsid inhibitor. The report by Kim et al (2017) also 

established that compound 6g binds to the Pleconaril binding site of HRV-B14 via molecular 

docking whiles also highlighting key interacting residues. Although their work identified 

compound 6g as a potential HRV capsid inhibitor, no available study currently exits to explain the 

structural mechanism by which it inhibits the capsid. 

In this investigation, we aim to develop on the above research by using a range of in silico tools to 

discover the structural mechanism of inhibition of HRV upon administration of the compound 6g. 

The binding landscape at the capsid’s “canyon” region upon binding of compound 6g will also be 

assessed, contrasted with Pleconaril. This computational approach will facilitate a further 

understanding of the machinery of the capsid protein in HRV therapy. 

 

2.0 COMPUTATIONAL METHODS 

2.1 System Preparation  

 

The X-ray crystal structures of HRV-B14 was retrieved from the Protein Data Bank with PDB 

codes 1NCQ. Using Molecular Molegro Viewer (MMV)[10] and UCSF Chimera [11], the 

structures were prepared for a 130ns Molecular Dynamics (MD) simulation. The 2D  structure of 

compound 6g was modeled using the MarvinSketch software [12]. Using the UFF [13] forcefield, 

energy optimization was performed on the 2D structure using Avogadro 1.2.0 software [13]. A 3D 

format of the structure was then saved for molecular docking and MD simulation. In preparing for 
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MD simulation hydrogen atoms and AM1-BCC charges were added to the 3D structure of 

compound 6g. Likewise, all co-crystallized non-standard residues on the 3D structures of HRV-

B14 were all removed to minimize computational cost. In all three systems were prepared for MD 

simulation; unbound HRV-B14, Pleconaril-HRV-B14 complex and compound 6g-HRV-B14 

complex. 

 

2.1.1 Molecular Docking 

 

The molecular docking protocol implemented in this study utilized AutoDock Vina tool [14] 

incorporated in UCSF Chimera with default docking parameters. Compound 6g was docked into 

the Pleconaril binding pocket of HRV-B14. In preparing for molecular docking, compound 6g was 

supplemented with Gasteiger charges followed by non-polar hydrogen bonds which were merged 

to the carbon atoms. Compound 6g was then docked into the Pleconaril binding pocket by defining 

a grid box with a spacing of 1 Å and size of 13.90 ×13.58× 6.65 pointing in x=36.34, y=4.79 and 

z=123.93 directions. The best-docked pose was then subjected to 130ns MD simulations. 

 

2.1.2 Molecular Dynamic (MD) Simulations 

 

Molecular dynamic (MD) simulations offer a robust tool to explore the physical movements of 

biological systems, providing an atomistic view of interactions that occur between atoms and 

molecules on a molecular level[15]. The insight extracted from MD simulations enable a deeper 

perspective into the dynamical evolution of biological systems and for these reasons, this 

computational technique was employed in this study [15–18]. The MD simulations were 

performed using the GPU version of the PMEMD engine supported by the AMBER 18 package 
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[19]. This was done in accordance with in-house standard MD simulation protocols employed in 

several of our previous reports [16,20,21]. The atomic partial charge for compound 6g and 

Pleconaril was determined using ANTECHAMBER using the General Amber Force Field (GAFF) 

protocol [22]. Each system was solvated using the Leap module of AMBER 18 implicitly within 

an orthorhombic box of TIP3P water molecules such that all atoms were within 10Å of any box 

edge. The Leap module was also employed to neutralize all systems by the addition of Na+ or Cl
- 

as counter ions. An initial minimization was carried out for 2000 steps with an applied restraint 

potential of 500 kcal/mol. This was closely followed by a full minimization of 1000 steps carried 

out by a conjugate gradient algorithm in the absence of all restraints. All systems were gradually 

heated from 0K to 300K for 50ps to ensure that all systems maintained a fixed number of atoms 

and a fixed volume. The solute molecules within each system were imposed with a potential 

harmonic restraint of 10kcal/mol and collision frequency of 1ps. Following the heating protocol 

that each system was subjected to, an equilibration step estimating 500ps for all systems was 

conducted with a constant operating temperature of 300K. An isobaric-isothermal (NPT) ensemble 

was mirrored by the addition of a number of atoms, and the pressure was also kept constant 1 bar 

using the Berendsen barostat.  

MD simulations on all systems were run for a total time of 130ns. In each simulation, the SHAKE 

algorithm was interpolated to constrict the bonds of hydrogen atoms. The step size of each 

simulation was 2fs, employing the SPFP precision model. Each simulation coincided with an 

isobaric-isothermal ensemble (NPT), with randomized seeding, constant pressure of 1 bar, a 

pressure-coupling constant of 2ps, a temperature of 300K, and Langevin thermostat with a 

collision frequency of 1ps. 
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2.2 Post-Dynamic Analysis 

The coordinates of the free HRV-B14 and bound complexes were then saved after every 1ps. The 

CPPTRAJ module employed in the AMBER 18 suit was employed for post dynamic analysis. The 

Root Mean Square Deviation (RMSD) and thermodynamic energy estimation of each system were 

then investigated.  

2.2.1 Residue Interaction Network Exploration (RIN) 

RIN analysis of the studied systems was performed using a snapshot generated from each system 

at the end of the 130ns MD simulation. The network of interactions with the selected snapshot was 

then obtained by uploading the .pdb file format of the snapshot onto the online platform RING 

server [23]. The generated network is downloaded in .xml format for visualization and on 

Cytoscape [24] and the RINalyzer plugin[25] was employed to visualize generated RIN. Residues 

of the HRV-B14 are represented by nodes whilst non-covalent interaction elicited between 

residues are denoted by edges. Interactions highlighted includes; hydrogen bond interactions, van 

der Waals interactions, ionic interaction amongst others. Variations in elicited interactions are 

represented by a unique color for each interaction. Incorporated in  Cytoscape is the 

NetworkAnalyzer [26] plugin, which was used to explore the node degree and node connectivity. 

Closeness centrality and shortest path betweenness of the simulated models were also analyzed 

using the RINalyzer plugin. 
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2.2.2 Binding Free Energy Calculations 

 

The Molecular Mechanics/PB Surface Area method (MM/PBSA) [27] was employed to estimate 

the binding free energy of each of the systems. Binding free energy averaged over 130000 

snapshots which were extracted from the 130ns trajectory.  

The free binding energy (ΔG) computed by this method for each molecular species (complex, 

ligand and receptor) can be represented as: 

∆G[U\] = G^_`abcd − GTc^cae_T − GbUfg\]																																									(1) 

∆G[U\] = Efgh + Gh_b − TS																																																																		(2) 

Efgh = EU\e + Ei]j + Ecbc																																																																			(3) 

Gh_b = Gkl + Gmn																																																																																			(4) 

Gmn = γSASA																																																																																											(5) 

 

The term Egas denotes the gas-phase energy, which consists of the internal energy Eint; Coulomb 

energy Eele and the van der Waals energies Evdw. The Egas was directly estimated from the 

FF14SB force field terms. Solvation free energy, Gsol, was estimated from the energy contribution 

from the polar states, GGB, and non-polar states, G. The non-polar solvation energy, SA. GSA, 

was determined from the solvent accessible surface area (SASA), using a water probe radius of 

1.4 Å, whereas the polar solvation, GGB, contribution was estimated by solving the GB equation. 

S and T denote the total entropy of the solute and temperature respectively. 
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3.0 RESULTS AND DISCUSSION 

 

3.1 Exploring the Impact of a Drug-filled “Canyon” Region on the Structural Dynamics of 

HRV-B14 

The capsid protein of HRV has been deemed a fascinating viral target due to its unique structural 

features. The capsid protein, comprising of VP1-4, contains a structural channel, known as a 

“canyon” region. This “canyon” region (Leu25, Ala21, Leu106, Phe124, Tyr128, Ile130, Tyr152, 

Val176, Tyr197, Met221, Asp219, and Pro172) mediates cell receptor binding and fusion with the 

host cell. In physiological conditions, small molecules, known as pocket factors, bind to the 

“canyon” region to stabilize the capsid until the virus locates a cell receptor [28,29]. In this study, 

the stability of the HRV-B14 was investigated upon binding of the novel benzothiophene 

derivative, Isopropyl 3-Methyl-6-{[2-(methylcarbamoyl)pyridin-4-yl]oxy}-benzo[b]thiophene-2-

carboxylate (compound 6g). This was contrasted against a known capsid inhibitor, Pleconaril. The 

stability of the MD simulation was determined by measuring the variations in the root mean square 

deviation (RMSD) of the C-α atoms across the 130ns trajectory (figure S1). RMSD calculations 

also allowed for an assessment of the reliability of the simulated models. It was evident from the 

analysis that the simulated models all achieved stability hence any further analyses performed on 

the MD trajectories were reliable. The lower RMSD of the bound HRV-B14 complexes relative to 

the unbound conformation suggests the binding of both compound 6g and Pleconaril induced a 

level of stability on HRV-B14 with respect to their C-α atoms. To ascertain the flexibility and 

conformation dynamics of the HRV-B14 upon the binding of compound 6g and Pleconaril, root 

mean square fluctuation (RMSF) of individual residues were calculated (figure 6.2). 



206 
 

  
Figure 6.2: Root mean square fluctuations of HRV Capsid protein. Increased fluctuations are seen 
in the inhibitor bound conformations 
 
 
 
Comparative analysis revealed that the compound 6g bound HRV-B14 exhibited a higher 

fluctuation of residues relative to the Pleconaril bound model. This implies the inhibitory activity 

of compound 6g resulted in an increase in residue flexibility, which could possibly interfere with 

the physiological activity of HRV-B14. Also, relative to the unbound HRV-B14, both inhibitor-

bound complexes exhibited higher flexibility of residues, suggesting their HRV-B14 inhibitory 

activity is generally characterized by a distortion an originally stiff residue conformation.  A 

calculation of the radius of gyration (Rg) was also performed to give insights into the distribution 

of atoms from the center of mass of HRV-B14 over the course of the MD simulations (figure S2). 
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Rg calculations also allowed for an assessment of the compactness of the HRV-B14 upon inhibitor 

binding. The highest Rg was observed in the compound 6g bound HRV-B14, suggesting a less 

compact protein structure relative to the other systems. This less compact protein structure 

observed in the compound 6g bound complex was consistent with the relatively higher residue 

flexibility observed in the RMSF calculations. In all, it could be presumed that the inhibitor binding 

in the canyon region of HRV-B14 induced residue flexibility and as well as a less compact protein 

conformation which could have impeded its functions. 

 

3.2 Novel benzothiophene derivative binding in “Canyon” region induces residue network 

perturbations  

The dynamics of the web of interactions elicited between residues in the active site of HRV-B14, 

particularly “canyon” region, prior to inhibitor binding and after inhibitor binding revealed 

essential atomistic insights that could form the basis HRV-B14  inhibition [30–32]. RIN as a post-

MD analysis technique has been explored extensively in previous reports for analysis of the 

residue-residue interactions for several simulation models, including mutant and wild protein 

structures [16,33,34]. Notable parameters assessed with RIN node degree, short path length, 

betweenness, and closeness centrality. Node degree described the number of connections between 

nodes is whereas the compactness of the protein network is described by the diameter (D) [35,36]. 

The betweenness and closeness centrality also revealed crucial residues within the residue 

interaction network of HRV-B14 [35,36].  The short path length parameter of analyses from the 

RIN provides insights on the flexibility of residue and takes which is described by interconnective 

edges between respective nodes [35,36].   
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Based on the residue network generated from average snapshots of each of the 130ns MD 

simulated systems, the residue-residue interactions of residues that constituted the HRV-B14 

binding site were investigated.  As shown in figure 6.3, prior to inhibitor binding, residues in the 

active site region were shown to possess an extensive broad network of interactions amongst each 

other, engaging in numerous van der Waals (̴ 45 interactions) and hydrogen bond interactions (̴ 32 

interactions). The conspicuous extensive network shown in the figure portrays a tight and compact 

residue network, with residues strongly interacting with each other to facilitate viral uncoating. 

This was characterized by a high node degree, notable betweenness, and closeness centrality of 

binding site residues within the unbound HRV-B14. The shortness in length of the connective 

edges also affirmed a compact residue network within the active site, consistent with the compact 

overall structure as observed in the Rg and RMSF calculations. 
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Figure 6.3: Residue Interaction Network of HRV-14 active site residues upon binding of 
compound 6g, Pleconaril and when unbound. The network shows an extensively tight and compact 
active site residue network in the unbound conformation which becomes distorted residue network 
with reduced interactions upon binding of both compound 6g and Pleconaril. 
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However, upon inhibitor binding, there was an obvious perturbation of the compact residue 

network of HRV-B14. This perturbation was characterized by a decrease in the number of residue-

residue interactions. Both the Pleconaril and the compound 6g bound system elicited 

approximately 30 van der Waals interactions and roughly 22 hydrogen bond interactions amongst 

neighboring residues within the active site.  A clear increase in the length of connective edges, a 

decreased node degree, as well as less prominence in closeness and betweenness within the pocket 

relative to the bound conformation, was also noted. This coupled with the fewer interactions 

confers with a less compact and a disoriented residue interaction network relative to the unbound 

system, consistent with less compact overall protein structure observed in Rg and RMSF 

calculations.  There also an increase in short path lengths amongst active site residues of the bound 

HRV-B14 relative to the unbound conformation. It could, therefore, be presumed that the binding 

of an inhibitor into the “canyon” region within the active site of HRV-B14 induces a structural 

perturbation of the residue interaction network of the region, which could, in turn, interfere with 

the functions of the protein. It was observed that the binding of both compound 6g and Pleconaril 

imposed a similar impact on the residue network profile suggesting a possible similarity in their 

inhibitory activity.   

 

3.3 Inhibitor binding impedes North-South wall motion 

The “breathing motion” of the HRV-B14 remains crucial for its biological activity and requires 

conformational flexibility of the canyon region [4]. Therefore, impeding the flexible motion of the 

canyon region will block essential interactions that occurs at the base of the canyon. To access the 

flexibility of the North-South Wall, distance analysis was calculated to assess the motion between 

the north and south wall relative to the effectiveness of each inhibitor as depicted in figure 6.4. 
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The average distance between the north and south wall calculated from the simulations were 

9.90Å, 31.74Å and 32.21Å for the HRV-B14-compound 6g complex, HRV-B14-Pleconaril 

complex and the unbound HRV-B14 and systems respectively as shown in Table 6.1.  

 

Table 6.1: Measurement of the distance by which the north and south wall moves, measured in 
Angstroms. (Δa Change between maximum and minimum distance ) 
 

 

Overall, the difference between the maximum and minimum distance throughout the 130ns MD 

simulation in the inhibitor-bound HRV-B14 were shortened relative to the unbound system. As 

shown, the compound 6g bound system displayed a substantially lower change in distance as 

opposed to the apo and HRV-B14-Pleconaril systems This suggested that bound conformation 

exhibited reduced flexibility between the north and south wall located at the at base of the canyon. 

This suggests that the inhibitory activity of compound g probably allows its effective wedging into 

the ‘canyon’ region, holding the protein together in order to elicit its therapeutic activity. The 

shorter distance between the walls in the compound 6g bound complex as the simulation proceeded 

is indicative of a decline in flexibility of the canyon region, since these walls enclose the canyon 

region. This decreased flexibility as result of the binding of compound g could possibly impede 

the “breathing motion” of HRV-B14, hence its inhibition.  

 

	 HRV-B14	 COMPOUND	6G	 PLECONARIL	

MAXIMUM	 38.98	 13.33	 36.45	
MINIMUM	 28.97	 7.86	 28.24	
AVERAGE	 32.21	 9.90	 31.74	
	ΔA	 10.01	 5.47	 8.21	
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Figure 6.4: Plot of the estimated distances between the north and south wall as well as a visual 
representation of the flexibility of walls at the base of canyon region of HRV-B14 (orange), HRV-
B14-Pleconaril (purple) and HRV-B14-compound 6g (pink) 
 
 
3.4 Comparative binding free energy profiles of novel benzothiophene derivative and 

Pleconaril 

 

The therapeutic binding of an inhibitor to any pharmacological target usually underpins the basis 

of activity of that inhibitor, as such an estimation of the binding affinity of the inhibitor is of critical 

importance [37]. To ascertain the binding affinity of compound 6g towards establishing the basis 

of its experimentally determined inhibitory prowess against HRV-B14, we calculated the binding 
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free energy of compound 6g using the MM/PBSA based approach. Binding free energy of the 

novel compound 6g was directly compared with the binding free energy of Pleconaril, the known 

HRV-B14 inhibitor. The estimated binding free energies, even though not absolute values as 

experimental values, are still reliable because the relative binding affinity between congeneric 

inhibitors can be computed. This is because binding free energies can be calculated relatively and 

efficiently using thermodynamic cycles that facilitate a small perturbation of phase space, in 

contrast to many other quantities of pharmaceutical interest that require much more computational 

resources [37]. As shown in table 6.2, compound 6g exhibited a total binding free energy of -

28.87kcal/mol, whilst Pleconaril exhibited binding free energy of -45kcal/mol. The relatively 

higher binding free energy of Pleconaril could be attributed to the increased van der Waals (-

54.50kcal/mol) and electrostatic interactions (-6.10kcal/mol) it elicited with HRV-B14 as shown 

in the MM/PBSA calculations. The relatively favorable estimated binding free energy of 

compound 6g again highlights its promising ability as a potential capsid inhibitor such as 

Pleconaril. 

 

Table 6.2: MM/PBSA-based binding free energy profiles of compound 6g and Pleconaril 

 
ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = 
solvation free energy ΔG = gas phase free energy. 

 
 

 

Systems Energy components 
(kcal/mol) 

     𝚫𝐄𝐯𝐝𝐰 𝚫𝐄𝐞𝐥𝐞 𝚫𝐆𝐠𝐚𝐬 𝚫𝐆𝐬𝐨𝐥 𝚫𝐆𝐛𝐢𝐧𝐝 
Compound 6g 

 
Pleconaril 

 
 

-37.43±	0.42 
 

-54.50 ± 0.05 
 
 

-0.70 ±	0.04  
 

-6.10 ±	0.04 
 
 

-38.13±0.43 
 

-60.60±	0.07 
 
 

9.26 ±	0.11 
 

15.60±	0.04 
 
 

-28.87±0.33 
 

-45.00 ±	0.05 
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3.5 Novel benzothiophene derivative shows strong inhibitory per-residue energy-based 

interactions with HRV-B14 

 

To establish the atomistic basis of the estimated binding free energies with particular focus on the 

energy contributions of residues that make up the “canyon” region, we calculated the per-residue 

energy composition of each active site residue of HRV-B14 towards the binding of compound 6g 

relative Pleconaril. Analyzing per-residue energy contributions towards the binding of compound 

6g was performed in  as performed in comparison with the per-residue energy contributions of 

residues that interacted with Pleconaril , since Pleconaril  has been shown to bind to the “canyon” 

and stabilize the protein, preventing the capsid from opening up as well as inhibiting the entry of 

viruses into the host cell [38]. Exploring the energy contributions of residues that constitute the 

binding region will be very critical to the inhibitory activity of compound 6g. 
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Figure 6.5: Per-residue decomposition analyses revealing individual energy contributions of 
HRV-B14 active site residues to the binding and stability of compound 6g and Pleconaril. Active 
site residue that contributed the most to binding of both inhibitors was Tyr152.  
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 As shown in figure 6.5, residues that contributed the most to the total binding of Pleconaril 

included; Ile104(-2.07kcal/mol), Tyr152(-3.14kcal/mol), Phe186(-1.30kcal/mol), Val188(-

1.79kcal/mol), Val191(-1.06kcal/mol), Tyr197 (-1.34kcal/mol), Met221(-1.47kcal/mol), and 

Met224(-1.10kcal/mol). Likewise, as shown in figure 5, residues that contributed the most to total 

binding free energy of compound 6g include Pro174(-1.42kcal/mol), Phe186 (-1.83kcal/mol), 

Leu25C(-0.95kcal/mol), Ala24C(-0.81kcal/mol), Tyr152(-2.83kcal/mol), and 

Val191(0.71kcal/mol). Interestingly, it could be observed that there were residues that consistently 

interacted in both pockets, viz; Tyr152, Val191, and Phe186 were notably the most recurrent 

residues that contributed prominently to the total binding energy of both compound 6g and 

Pleconaril. It could, therefore, be inferred that the inhibition of HRV-B14 possibly depends on the 

interaction of the given inhibitor with these three residues. Amongst these three residues, Tyr152, 

which coincidentally was the highest energy contributing residue in both the compound 6g and 

Pleconaril bound systems, further signifies its essentiality in the overall, therapeutic inhibition of 

HRV-B14. Comparatively, residues in the Pleconaril bound complex generally elicited stronger 

energies relative to the compound 6g bound complex, which possibly influenced the overall higher 

binding free energy of Pleconaril as observed. Ultimately, the ability of compound 6g to interact 

with similar residues as Pleconaril with high energies, further reaffirms its ability to inhibit HRV-

B14 in a similar fashion.  

 
4.0 CONCLUSION 

 

By employing advanced computational techniques and MD simulations, this study aimed to 

discover the structural mechanism of inhibition of HRV-B14 upon administration of the novel 

benzothiophene derivative, Isopropyl 3-Methyl-6-{[2-(methylcarbamoyl)pyridin-4-yl]oxy}-
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benzo[b]thiophene-2-carboxylate (compound 6g). The binding landscape at the capsid’s “canyon” 

region was assessed upon binding of compound 6g using Pleconaril, a known capsid inhibitor. An 

initial conformational assessment revealed that the binding of compound 6g conferred stability to 

the conformational structure of HRV-B14 relative to the unbound conformation through a 

calculation of the root mean square deviation of the C-α atoms of each simulated system. An 

estimation of the individual residue fluctuations of the entire HRV-B14 structure upon binding of 

compound 6g relative to Pleconaril further revealed that the binding of compound 6g induced 

increased residue fluctuations, which probably contributed to the inhibition of HRV-B14. A further 

exploration of individual residue behavior over the course of the 130ns MD simulation by 

employing the RIN analysis revealed that binding of an inhibitor into the “canyon” region within 

the active site of HRV-B14 distorts the initially extensively networked residues of the binding site, 

which could, in turn, possibly favored the inhibitory activities of Pleconaril and compound 6g. The 

ability of compound 6g to also perturb the residue interaction network of the HRV-B14 active site 

in a similar fashion as the known capsid inhibitor, Pleconaril, affirms its promising role as a 

potential novel capsid inhibitor. The flexibility between the north and south wall which enclose 

the active site of HRV-B14 was also analysed by calculating the distance between walls over the 

course of the simulation. Distances between the walls in the inhibitor bound systems were shorter 

in the 130ns MD simulation relative to the unbound conformation, with the shortest distance 

average distance 9.94A occurring in the compound 6g bound system. This decreased flexibility as 

result of the binding of compound g could have possibly interfering with the “breathing motion” 

of HRV-B14. Comparative binding free energy analysis using the MM/PBSA-based approached 

also revealed a total binding free energy of -28.87kcal/mol and -45kcal/mol for compound 6g and 

Pleconaril respectively, with the higher binding of Pleconaril attributing to its corresponding high 
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electrostatic and van der Waals interactions. The favorable estimated binding free energy of 

compound 6g enforces its role as a promising capsid inhibitor. Atomistic insights into the energy 

contributions of HRV-B14 active site residues using per-residue energy decomposition approach 

also revealed that the inhibitory activity of both Pleconaril and compound 6g involved engaging 

in interactions with some particular residues within the active site, notably Tyr152. Tyr152 

contributed the most towards the total binding of both Pleconaril and compound 6g, suggesting its 

key role in HRV-B14 inhibition. The structural and atomistic perspectives provided on the 

inhibitory prowess of the benzothiophene derivative, compound 6g towards HRV-B14 further 

reaffirms is promising potential as capsid inhibitor, as could therefore be further explored 

experimentally. 
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ABSTRACT 

Background: The pharmacological inhibition of human N-myristoyltransferase (HsNMT) has 

emerged as an efficient non-cytotoxic strategy to completely thwart the replication process of 

rhinovirus toward common cold treatment. This approach has potentiated the discovery of IMP-

1088, a novel compound that inhibits both HsNMT1 and HsNMT2. 

 Methods/Results: An augmentative computational and nanosecond-based analyses reveal that the 

steady and consistent interactions of IMP-1088 with specific residues; Tyr296, Phe190, Tyr420, 

Leu453, Gln496, Val181, Leu474, Glu182, and Asn246, shared within the binding pockets of both 

HNMT subtypes, in addition to peculiar structural changes account for its dual inhibitory potency. 

Conclusion: Findings unveil atomistic and structural perspectives that could form the basis for the 

design of novel dual-acting inhibitors of N-myristoyltransferase towards common cold therapy. 

  

Keywords: human N-myristoyltransferase, common cold, compound IMP-1088, Molecular 

Dynamics simulation 
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1.0 INTRODUCTION 

Respiratory tract infections are among the leading cause of severe illness and death globally, 

associated with high incidence rates and consequential economic implications [1,2]. Common in 

both adults and children, respiratory tract infections categorized into upper respiratory infections 

(URT) and lower respiratory infections [1]. Available reports suggest that 6 to 8 episodes of 

respiratory tract infections occur per child per year, with similar rates occurring in developed and 

developing countries [3,4]. Most respiratory tract infections are moderately mild and usually 

restricted to the URT [4]. Nevertheless, URT infections may spread downwards and cause severe 

in infants and young children,  and in some cases result in life-threatening infections [5].  

Accounting for more that 50% of URT infections [6,7], Human rhinoviruses (HRVs) are 

exclusively responsible for the common cold in humans, together with other life-threatening 

respiratory infections such as cystic fibrosis, chronic obstructive pulmonary disease (COPD)  and 

asthma [8,9]. Common cold constitutes an acute, self-limiting viral infection of the URT involving 

the nose, sinuses, pharynx, and larynx [10].  

Rhinoviruses are members of the picornaviridae family, consisting of viral pathogens such as 

poliovirus, foot-and-mouth disease virus, coxsackievirus, hepatitis A virus, and enterovirus 71  [9]. 

Rhinovirus is spread either directly or indirectly by contact with secretions from an infected person 

or aerosol of the secretions [7]. 

Despite their pathogenic involvements, there have been few therapeutic interventions towards 

HRV. This is widely attributed to the serotype diversity of the virus, which requires a broad-

spectrum of vaccines for thorough efficacy [11,12]. Also, RV has been observed to elicit rapid 

resistance to existing inhibitors due to its high replication and mutation rates [12]. All these have 

compounded the existing challenges of treating or suppressing RV infections.  
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In an infected host cell, the RNA genome of RV usually develops into an infectious virion during 

the viral life cycle by a series of cellular processes  [13]. These processes initiate by a translation 

of the RV RNA genome into a single polyprotein by the ribosomes of the host cell [13]. This 

results in the formation of capsid precursors by viral proteases, which are further processed into 

three capsid proteins, viz.; VP0, VP1, and VP3 [14]. The capsid proteins subsequently trigger a 

cascade of protein self-assembly leading to the development of infectious virions. The cleavage of 

VPO into VP4 and VP2 in the intact viral capsid culminates in the final maturation step [14].  

 

Figure 7.1: Schematic showing of the crucial role of N-myristoyl transferase in the viral life cycle. This 
also highlights how infectious Rhinovirus polyproteins  are generated in the cells of an infected host [9] 
 

In many picornaviruses, VP0 is encoded at the N terminus of the viral polyprotein and is 

subsequently N-myristoylated by the host cell’s N-myristoyltransferase (NMT) [9]. However, in 

humans and other higher eukaryotic organisms, NMT is expressed as NMT1 and NMT2 proteins 

in many tissues [9,15].  

Mutagenesis studies on poliovirus revealed that the N-myristoylation of NMT plays a crucial role 

in viral assembly and infectivity[15–19]. Also, RV replicates inside a host cell by invading host 

NMT and subsequently develops a capsid (shell) that protects its genetic material [20]. Therefore, 

targeting host cell NMT presents an opportunity for inhibiting the infectivity of the virus.  

Recent studies reveal that a newly discovered compound, IMP-1088, exerted potent dual inhibitory 

activities against Human N-myristoyltransferase 1 and 2 (HsNMT 1/2) by halting viral replication, 
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which ultimately results in the prevention of viral infectivity and capsid assembly without causing 

toxicity to the host cell [9]. Using a resolved X-ray crystal structure of HsNMT1/2 in complex 

with  IMP-1088, it was revealed compound IMP-1088 reportedly formed an extensive network of 

interactions at the substrate pocket of its target proteins (HsNMT1/2), which potentiates its 

unprecedented efficacy [20]. However, since these structural insights provided in their report are 

deduced from single snapshots of interactions from the X-ray crystal complexes which may be 

inadequate to provide a thorough and dynamic perspective into the mechanistic binding 

mechanistic activities of compound IMP-1088 towards HsNMT1/2, we employ more rigorous 

computational methods including molecular dynamics (MD) simulations, sequence analysis, and 

cheminformatics to provide additional molecular insights into the structural dynamics of 

HsNMT1/2 upon compound IMP-1088 binding which could account its dual binding activity. MD 

simulation allows for the mimicking of the dynamical events of molecular systems as a function 

of time, with a molecular description of all biological components (inhibitor and protein) in a 

solvent space [21,22]. MD simulations would enable a more detailed elucidation of molecular 

events and inhibitory mechanisms that characterize the dual inhibitory prowess of compound IMP-

1088.  We also employ in silico approaches to assess the physicochemical and pharmacokinetic 

profiles of compound IMP-1088. Findings would augment previous experimental efforts and also 

reveal further important structural perspectives that could advance drug development with respect 

to the treatment of respiratory tract infections, most especially those mediated by RVs. 
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2.0 COMPUTATIONAL METHODOLOGY 

2.1 System preparation 

The X-ray crystal structures of HsNMT1 and HsNMT2 were obtained from RSCB Protein Data 

Bank with code 5MU6 and 4C2X, respectively. 5MU6 is a dimer with two exact chains (A and B) 

complexed with compound IMP-1088 and myristoyl CoA; as such, we deleted chain B and 

prepared our model systems with only chain A to reduce computational cost. The HsNMT2-IMP-

1088 complex, on the other hand, was prepared by docking the 2D structure of compound IMP-

1088 into the substrate-binding pocket of HsNMT2. Prior to molecular dynamics (MD) 

simulations, additional co-crystallized molecules such as crystal water, which were not applicable 

to this study, were removed using the graphical user interface of UCSF Chimera [23]. 

 

2.2 Molecular dynamics (MD) simulations  

This was performed using the GPU version of AMBER 18 with an integrated PMEMD module 

[24], according to standard MD simulation protocols, which have been employed extensively in 

our previous reports[24–28]. IMP-1088 was parameterized using the ANTECHAMBER module 

of AMBER18 in which its atomic partial charges were generated. Parameterization with the 

ANTECHAMBER module was performed using the restrained electrostatic potential (RESP) and 

the General AMBER force field (GAFF) protocol [29].  HsNMT1 and HsNMT2 were 

subsequently parameterized using the FF14SB AMBER force field [30]. Protonation of histidine 

residues was subsequently performed using the pdb4amber files at a constant pH to prepare the 

enzyme structures for the LEAP process that followed. The Leap module integrated with 

AMBER18 was then employed for the purpose of neutralization of the entire system and for the 

addition of hydrogen atoms.  Neutralization was carried out by adding an equivalent number of 
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any of the counter ions, Na+, Cl-. Afterward, the topology and parameter files of IMP-1088, 

HsNMT1, HsNMT2, and complexes of the enzymes with the IMP-1088 were then saved. The 

Leap module also allowed for the addition of water molecules with a TIP3P orthorhombic box size 

of 7Å to explicitly solvate the entire system [31,32]. Prepared systems were then taken through a 

two-phase minimization process in which the initial minimization of 2000 steps was performed at 

500kcal/mol restraint potential. The second minimization referred to as a full minimization 

involved 1000 steps at a steepest descent with no restraint. This was followed by the gradual 

thermalization of the systems with a temperature range of 0-300K for 50ps after which each system 

was equilibrated for 500ps while the temperature and pressure were kept constant at 300K and 

1bar, respectively using the Berendsen barostat [33]. This was followed by MD production runs 

of 100ns for each system during which the SHAKE algorithm [34] was used to constrict all atomic 

hydrogen bonds. The process of MD simulation involved a 1fs time step initiation process while 

at 1ps, coordinates of simulated files were saved.  All trajectories generated over the course of the 

simulation were subsequently analyzed using the PTRJ and CPPTRAJ modules of AMBER18 

[35].  Plots to interpret findings from the generated MD trajectories were also created using 

Microcal Origin [36], while UCSF Chimera was used to visualize and create relevant images. 

 

2.3 Thermodynamics calculations 

 The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) [37–39] method was 

used to calculate binding free energy. The binding free energy (DGbind) was calculated from the 

following equations: 

DGbind = Gcomplex - Greceptor + Gligand          (1) 

DGbind = DGgas + DGsol -TDS,                   (2) 
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Where DGbind is considered to be the summation of the gas phase and solvation energy terms less 

the entropy (TDS) term 

DEgas = DEint + D Evdw + D Eelec         (3) 

DEgas is the sum of the AMBER force field internal energy terms DEint (bond, angle, and torsion), 

the covalent van der Waals (DEvdw) and the non-bonded electrostatic energy component (DEelec). 

The solvation energy is calculated from the following equation: 

Gsol = GGB + Gnon-polar                 (4) 

Gnon_polar = gSASA + b               (5) 

The polar solvation contribution is represented as GGB and while Gnon-polar is the non-polar solvation 

contribution. Gnon-polar is calculated from the solvent assessable surface area (SASA), obtained by 

means of a 1.4 A° water probe radius. The surface tension constant (c) was set to 0.0072 kcal/mol 

and b to 0 kcal/mol [40]. Per-residue decomposition analyses were also carried out to estimate 

individual energy contribution of residues of the substrate pocket towards the affinity and 

stabilization of compound IMP-1088. This was aimed at providing atomistic insights in the dual-

targeting ability of compound IMP-1088 towards HsNMT1/2, considering the fact that the 

prominent residual energy contributions could highlight essential residues. In addition to the per-

residue energy contributions of the binding site residues, we also examined the sequence similarity 

of these binding site residues in HsNMT1/2. This was done using the sequence alignment 

component of UCSF Chimera software. 
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3.0 RESULTS AND DISCUSSION 

 

3.1 Sequence profiling of HsNMT1/2 hydrophobic pockets with IMP-1088 

The ability of a small molecule compound to pharmacologically inhibit VPO N-myristoylation by 

targeting HsNMT of host cells can be considered a breakthrough towards common cold therapy. 

Inhibition of N-myristoylation interferes with the assembly of virions and, as a resultant, causes 

suppression of the infectivity and prevents RV replication. Reports of the dual-targeting ability of 

HsNT1/2 by compound IMP-1088 leaves room to explore the molecular and structural bases 

behind its dual inhibitory prowess. As such, we analysed the sequences of amino acid residues that 

constitute the compound IMP-1088 binding pockets in both HsNMT1 and HsNMT2, since these 

residues directly interacted with compound IMP-1088 and could, therefore, influence its function 

and overall binding affinity. A variation or similarity in amino acid sequences of the binding 

pockets of two different enzymes could account for the ability of a particular small molecule 

inhibitor to either bind to both or be selective towards one. With regards to the binding of 

compound IMP-1088, the binding pocket sequence analysis permitted a thorough insight into the 

molecular basis that could account for the ability of compound IMP-1088 to target both HsNMT1 

and HsNMT2. As shown in figure 7.2, binding site residues were almost but the same across both 

enzymes IMP-1088. Some of the common binding site residues across both enzyme binding 

pockets include; Tyr296, Tyr420, Leu453, Gln496, Val181, Leu474, Glu182, Tyr180, Asp183, 

Asp184, Phe188, Arg189, Phe190, Asp191, Tyr192, Asn246, Tyr420, Ser421, Asn452, Ala453 

and Leu454 amongst many others. This suggested a possible similarity in interaction dynamics 

with bound inhibitors. The almost identical binding pocket of both enzymes could also confirm an 
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analogous binding mode of any bound compounds such as IMP-1088 since interaction dynamics 

would be similar. 

 
 

Figure 7.2: Showing the sequence alignment of binding sites residues of HsNMT1 and HsNMT2 and a 
2D structure of compound IMP-1088, highlighting essential moieties. Sequence alignment reveals a 
similarity in binding site residue of both enzyme subtypes.  
 
 

3.2 IMP-1088 binding pocket stability favors dual binding activity   

To understand the conformational dynamics of compound IMP-1088 upon binding to HsNMT1 

and HsNMT2, we monitored the relative stability of compound IMP-1088 within the binding 

pockets throughout the simulation. This was done by a calculation of the root mean square 

deviation of compound IMP-1088 in both pockets. As shown in figure 7.3A, compound IMP-1088 

was relatively more stable in HsNMT1 (1.42Å) than in HsNMT2 (1.94Å). Relative stability within 

HsNMT1 is suggestive of a steady conformation, which could have allowed for favorable and 



233 
 

sustained interactions with many residues within the binding pocket. This stable conformation was 

further observed from a superimposition of three representative snapshots (initial, optimized, and 

final) of compound IMP-1088 in both systems over the course of the simulation. As shown in 

figure 7.3B and 7.3C, compound IMP-1088 maintained an almost similar conformation throughout 

the simulation in HsNMT1 relative to varying conformations within HsNMT2. The stable motions 

of compound IMP-1088 within the binding pocket of HsNMT2 could have favored interactions 

with residues within the binding pocket.  

 

Figure 7.3: A) Cα RMSD plot showing comparative stability and motions of IMP-1088 at the binding site 
HsNMT1 (blue) and HsNMT2 (red) over the 100ns simulation B) The differential positioning of IMP-1088 
in the binding site of HsNMT2 and a structural comparison of the initial (yellow), optimized (purple) and 
final snapshot at 100 ns (blue) C) The differential positioning of IMP-1088 in the binding site of HsNMT1 
and a structural comparison of the initial (yellow), optimized (purple) and final snapshot at 100 ns 
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3.3 Peculiar interactions of Tyr296 with IMP-1088 in both HsNMT1/2 reaffirms role IMP-1088  

 

As reported by Mousnier et al.,[9] interaction of compound IMP-1088  with Tyr296 in HsNMT1 

led to its displacement and subsequent burial of the compound IMP-1088 resulting in increased 

interactions. This was reaffirmed in this report by the observed sustained interactions of compound 

IMP-1088 with Tyr296 throughout the MD simulation period. As shown in figure 7.4, it was 

observed that from the beginning of the MD simulation, at 5ns and 20ns, Tyr296 elicits a p-p 

stacked interaction with the pyrazole ring of compound IMP-1088 in the HsNMT1 complex.  As 

the simulation proceeds, this p-p stacked interaction is shown to change into an alkyl interaction 

at about 60ns, as shown in figure 7.4. The alkyl interaction is subsequently maintained until the 

end of the MD simulations at 100ns. In comparison with its interaction dynamics in the HsNMT2, 

Tyr296 is shown to engage in p-p stacked interactions with the difluorophenyl indazole linker of 

IMP-1088 throughout the simulation. The replication of these crucial interactions withTyr296 in 

both subtypes further enforces the role of Tyr296 in the dual inhibitory activity of compound IMP-

1088. A time-based monitoring of the interactions that IMP-1088 engaged in over the course of 

the simulation revealed a gradual expansion of the interaction network as the simulation continued 

in both enzymes even though there was a larger pool of interactions within HNMT1 relative to 

HNMT2 as shown in figure 7.4. Also, it was also observed that the binding of compound IMP-

1088 in both enzymes involved consistent interactions with particular residues other residues; 

Phe190, Tyr420, Leu453, Gln496, Val181, Leu474, Glu182, and Asn246 across the simulation 

period as shown in figure S1 and S2. These residues consistently reoccurred throughout the 

simulation period in both systems, engaging in various strong interactions with compound IMP-

1088. It could, therefore, be inferred that the inhibitory activity of compound IMP-1088 probably 
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relied on interaction with these particular residues, hence could also possibly underpin the dual 

targeting ability of compound IMP-1088. 

 

Figure 7.4: Comparative time-based analysis of the interactions of IMP-1088 with the binding pocket of 
HsNMT1 and HsNMT2 with particular emphasis on interaction with Tyr296 chain. Shown in the table are 
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individual residues engaged in various intermolecular interactions with IMP-1088. Residues highlighted in 
red are those that consistently interacted with both HsNMT1 and HsNMT2 throughout the simulation 

 
 
3.4 Quantifying energy contribution profiles of binding site residues 

 

After the observed similarity in interacting residues in both HsNMT1 and HsNMT2 upon binding 

of IMP-1088, we proceeded to quantify the specific energy contributions of the individual residues 

towards the overall binding within the pockets. This was performed by calculation of per-residue 

based energy decomposition using the MMGBSA incorporated approach. As shown in figure 7.5, 

prominent energy contributions of active site residues were observed, with most having total 

energy contributions <-1, confirming their cruciality to overall total binding of compound IMP-

1088[41]. Comparatively, residues within the binding pocket of HsNMT1 contributed more 

towards the total binding of compound IMP-1088 relative to the binding site residues of HsNMT2, 

which could largely be attributed to the stronger interaction that’s existed between those residues 

and compound IMP-1088.  It was observed that the residues that consistently interacted with 

compound IMP-1088 in both HsNMT1 and HsNMT2 complex (Tyr296, Phe190, Tyr420, Leu453, 

Gln496, Val181, Leu474, Glu182, and As246) were among the highest energy contributing 

residues with total energies being <-1. Their prominence in total energy contributions establishes 

how essential their roles are in the activity of compound IMP-1088 in dual targeting of HsNMT1 

and HsNMT2.  
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Figure 7.5: Per-residue energy plot of residues that consistently interacted with both HsNMT1 and 
HsNMT2 over the course of the 100ns MD simulation and their corresponding ligand-residue interaction 
plots highlighting specific interactions involved 

 

3.5 Comparative binding free energy analysis of compound IMP-1088 upon binding to both 
HsNMT1/2 

Having established that compound IMP-1088 exhibits dual-targeting ability on HsNMT1 and 

HsNMT2 due to similarity of interacting residues within the respective binding pockets, we 

proceeded to estimate its total binding free energy towards both enzymes. This was to further 

assess whether the similarity of interacting residues could confer a similarity in binding affinity. 

Using the MM/GBSA approach, binding free energy of compound IMP-1088 in complex with 
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HsNMT1 and HsMNT2 was calculated as presented in Table 7.1. A total binding free energy of -

35.20kcal/mol and -30.42kcal/mol was estimated for compound IMP-1088 in the HsNMT1-IMP-

1088 and HsNMT2 complex, respectively. Although very close, compound IMP-1088 exhibited 

higher total binding free energy towards HsNMT1 relative to HsNMT2. This higher binding free 

energy could be attributed to the expanded network of stronger interactions that compound IMP-

1088 engaged in with HsMNT1 over the simulation period relative to the fewer interactions 

observed in the HsNMT2-IMP-1088 complex. This observed similarity in total binding free energy 

could also be attributed to similarity in prominent energy contributing residues (Tyr296, Phe190, 

Tyr420, Leu453, Gln496, Val181, Leu474, Glu182, and As246) as observed in the per-residue 

energy decomposition.  

Table 7.1: MM/GBSA-based binding free energy profile of compound IMP-1088 

 

ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = 
solvation free energy ΔG = gas phase free energy. 

 

 

3.6 Comparative structural impacts of IMP-1088 binding on HsNMT1 and HsNMT2 

 

The binding of any small molecular compound, in this case, compound IMP-1088, always tends 

imposing structural changes to the respective binding targets. This imposed structural implications 

could lead to a significant change in the structural architecture of the given target, which can 

Complexes 𝚫𝐄𝐯𝐝𝐰 𝚫𝐄𝐞𝐥𝐞 𝚫𝐆𝐠𝐚𝐬 𝚫𝐆𝐬𝐨𝐥 𝚫𝐆𝐛𝐢𝐧𝐝 

HsNMT1-IMP-1088 

 

HsNMT2-IMP-1088 

-44.97 ±0.33 

 

-48.69± 0.18 

 

-47.24±0.39 

 

-208.43 ±0.81 

-82.21±0.27 

 

-247.13±0.13 

 

54.03±0.36 

 

216.50±0.40 

 

-35.20±0.15 

 

-30.42±0.1 
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consequentially influence the overall function of the given target. Although the potency and drug 

worthiness of compound IMP-1088 have been thoroughly established by earlier experimental 

reports and in silico insights from this report, it was important to further delve into the impact 

IMP-1088 binding on the structural architecture of both HsNMT1 and HsNMT2. This was to 

reveal significant structural perturbations and architectural disorientations that could have 

accounted for inhibitory competence of compound IMP-1088 on both HsNMT1 and HsNMT2 by 

contrasting with their unbound forms.  

To reveal these structural occurrences, we measured parameters such as the C-α root mean square 

deviation (RMSD), root mean square fluctuation (RMSF) and C-α radius of gyration (RoG) and 

solvent accessible surface area (SASA) from the combined trajectories that were generated from 

the 100ns MD simulation. Generated plots from the analysis are presented in figure S3. Insight 

from the C-α RMSD plots provided a perspective on the stability of the simulated models, a crucial 

parameter in the overall functionality of an enzyme, which can largely be influenced by the binding 

of a ligand or a small molecule inhibitor.  

Relatively high C-α atom deviations for a given simulated system is usually consistent with 

structural instability, whereas lower atomic deviation depicts a relatively more stable system. As 

shown in figure S3, the simulated HsNMT1/2 systems both achieved convergence at ~20ns and 

~25ns, respectively. Comparatively, the compound IMP-1088 bound conformations of HsNMT1 

and HsMNT2 both exhibited lower C-α atoms deviations relative to their respective unbound 

conformations, signifying higher structural stability upon compound IMP-1088 binding with 

average C-a RMSD of 3.26Å and 6.09Å, respectively. The unbound HsMNT1 and HsMNT2 

exhibited average C-α RMSD values of 4.02Å and 6.81Å, respectively. Overall it could be deduced 

that the binding of compound IMP-1088 induced a level of stability on both HsNMT1 and 
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HsNMT2, thus impeded the deviation of respective C-α toms. The observed lower C-α RMSD in 

both HsNMT1 and HsNMT2 also suggests a similarity in the mode by which compound IMP-1080 

influences the stability of HsNMT1 and HsNMT2. Nonetheless, there was a relatively higher 

deviation in the HsNMT2 system compared to the HsNMT1 system, suggesting that compound 

IMP-1088 induced higher structural stability on HsNMT2. The flexibility of individual residues 

of a protein could influence the overall function of the protein since residue motions could inform 

how close they are to bound small molecule inhibitors in order to engage in essential interactions 

required to influence the activity of the given target. As such, we monitored the root mean square 

fluctuation of HsNMT1 and HsNMT2 in their bound and unbound conformations. This was 

performed to also deduce if the binding of compound IMP-1088 somewhat had an impact on the 

mobility of individual amino acid residues that make up HsNMT1 and HsNMT2, and as such, 

could be attributed to its inhibitory prowess as experimentally predicted.  

Insights from the comparative RMSF plots shown in figure 7.6 revealed that overall, the binding 

of compound IMP-1088 decreased the flexibility of both HsNMT1 and HsNMT2, signifying a 

similarity in its influence on residue motions. This similarity of influence on residue motions could 

possibly form the structural insight that accompanies the ability of compound IMP-1088 to dual-

target both HsNMT1 and HsNMT2. On average, unbound HsNMT1 and HsNMT2 exhibited 

RMSF values of 9.64Å and 10.36Å, respectively whereas the bound versions had lower average 

RMSF of 7.51Å and 10.27Å, respectively.  
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Figure 7.6: Characteristic secondary structure fluctuation among the unbound (blue) and IMP-1088-bound 
(red) HsNMT1/2. A) and C) RMSF plot showing regions with notable fluctuation which are indicated 
numerically. B) and D) Superimposed structures of the bound and apo conformation HsNMT1 and 
HsNMT2 showing regions with high fluctuations as indicated in 6A. 
 
To further explore the structural impact of compound IMP-1088 binding on HsNMT1and 

HsNMT2, we also assessed the compactness of the enzymes in the presence and absence of 

compound IMP-1088 throughout the 100ns simulation. This was assessed by a calculation of the 

radius of gyration of the C-α atoms of each enzyme subtype from the generated MD trajectories. 

The comparative RoG plots are presented in figure S1 with the unbound enzymes exhibiting the 
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highest RoG of 21.85Å for HsNMT1 and 22.43Å for HsNMT2. The compound IMP-1088 bound 

system exhibited relatively lower RoG of 21.77Å and 22.41Å for HsNNT1and HsMNT2, 

respectively. The lower RoG in the inhibitor bound systems were consistent with very compact 

enzyme conformation, congruous with the decreased flexibility, as shown in the RMSF 

calculations. This rigid or compact conformation of both enzymes suggested a restricted atomistic 

mobility within the enzymes, which could have inhibited crucial interactions required for the 

function of these enzymes in catalyzing RV myristoylation.  The impact of the binding of 

compound IMP-1088 on the folding and unfolding of the HsNMT1and HsNMT2 was further 

investigated by a calculation of the solvent accessible-surface area (SASA) of the bound 

complexes.  This provided insights on how individual amino acids residues of the enzymes are 

exposed to hydrophilic surface since this could influence the interaction dynamics of each amino 

acid residues to bound ligands. The unbound HsNMT1 and HsNMT2 systems exhibited an average 

SASA of 18333Å2 and 19857Å2, respectively, whereas the compound IMP-1088 bound models 

also exhibited an average SASA of 17501Å2 and 19146Å2, respectively as shown in figureS3. The 

lower average SASA values of the compound IMP-1088 bound N-myristoyltransferases infers that 

IMP-1088 binding induced a burial or folding of the individual amino acid residues of the enzymes 

and thus the residues were less surface-exposed relative to the unbound enzyme conformations. 

The folding of the amino acid residues upon IMP-1088 binding as showcased in the SASA 

calculation is consistent with the compact structure and decreased residue flexibility of the bound 

conformations as observed in the RMSF and RoG calculations. Altogether, it could be inferred 

that compound IMP-1088 inhibited the HsNMT1 and HsNMT2 by impeding atomistic residue 

fluctuation, thus inducing a compact structural conformation which culminated into a burial of 

hydrophobic residues required for the function of the HsNMT1 and HsNMT2. 
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3.7 In silico Physiochemical and ADMET profiling of compound IMP-1088 

Available in silico approaches allow for the prediction of the physicochemical and 

pharmacokinetic properties of chemical compounds prior to rigorous experimental methods. Thus, 

these approaches provide an avenue to assess the drug-likeness of the compound and how its 

physiochemical properties could influence its absorption, distribution, metabolism, and excretion 

of the chemical compound in human systems prior to the application of experimental approaches. 

Following the Lipinski’s rule of five (LRo5) [42] and using  the online platform, SwissADME [43] 

we  predict the physiochemical and pharmacokinetic descriptors of compound IMP-1088 in order 

to validate its drug-likeness as presented in Table 7.2. The descriptors, according to the LRo5 

include molecular weight (MW) [£ 500 Da], octanol-water partition coefficient [log P £ 5], H-

bond donors (HBD) [£ 5] and H-bond acceptors (HBA) [£ 10]. As estimated, compound IMP-

1088 had a molecular weight of 453.53g/mol with 33 heavy atoms, 7 rotatable bonds, 6 hydrogen 

bonds acceptors, and a molar refractivity of 126.59. Accordingly, a small MW of 453.53g/mol [£ 

500 Da] suggests that compound IMP-1088 potentiates low toxicity risk [44,45]. MW also 

determines the bioavailability of molecules because a large-sized compound would be impeded 

during transportation, absorption, and uptake by cells, which could reduce therapeutic potency 

[46,47]. Hence, the small MW of compound IMP-1088 would favor cellular uptake with little or 

no impediment to its transport and delivery at target sites. Effective delivery of the compound to 

the target site could consequently ensure that an adequate concentration of compound IMP-1088 

reaches the surface of intestinal epithelial cells for efficient absorption. The favorable MW of 

compound IMP-1088 also correlated with the moderated number of rotatable bonds (7 rotatable 

bonds) it possessed since a higher molecular weight of a compound is shown to directly correlate 

with a higher number of rotatable bonds. The lower number of rotatable bonds confers some level 
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of molecular rigidity on the structure of compound IMP-1088, which could enhance efficient 

delivery to target sites for further absorption. A highly flexible molecular structure may engage in 

unwanted interactions as it is being delivered to the target site. In all, compound IMP-1080 shows 

no violations of the rule of five, confirming its potential drug likeliness in humans with less 

toxicity.   

Table 7.2: The Summarized ADMET Profile of compound IMP-1088 

    IMP-1088    

Molecular 
formula 

Molecular 
weight 

Lipophilicity 

(LogPo/w) 

Water 

Solubility 

(LogS) 

GIT 
absorption 

BBB 

Permeability 

Bioavailability 
score 

Lipinki’s 
rule 

 

 

C25H29F2N5O 

 

454.3 

g/mol 

 

4.48 

 

-5.35 

(moderately 
soluble) 

 

High 

 

Yes 

 

0.55 

 

Yes 

 

 

The lipophilicity of compound IMP-1080 as a physiochemical feature has significant effects on 

the solubility, absorption, distribution, metabolism, and excretion properties as well as 

pharmacological activity. Using SwissADME, an octanol-water partition coefficient (log Po/w) of 

4.48 was predicted for compound IMP-1088. A favorable log Po/w usually ranges between -0.4 to 

5.6, with extremely high values suggesting a decrease in aqueous solubility with a consequential 

decrease in absorption rates. In contrast, values below -0.4 depict compounds with lower 

membrane permeability and poor absorption [47,48]. With a favorable predictive lipophilic value 

of 4.48 for compound IMP-1088, it implies that compound IMP-1088 exhibits considerable 

solubility attributes with a tendency of being adequately absorbed in human cells. This could, in 



245 
 

turn, improve the compound IMP-1088 bioavailability and permeability across membranes. In all, 

based on the pharmacokinetic features explored, compound IMP-1088 possesses a promising 

potential in its journey towards becoming a one-top therapeutic agent that inhibits both HsNMT1 

and HsNMT2. 

 

4.0 CONCLUSION 

The enzyme N-myristoyltransferase is involved in the transfer of myristate from myristoyl Co-

enzyme A to the N terminus of a range of proteins during protein translation. Two variants of this 

protein are expressed in humans, namely HsNMT1 and HsNMT2. The N-myristoylation process 

of VPO in poliovirus from a mutagenesis report proved its essentiality in the assembly of capsids 

and the infectivity of the virus. As such, therapeutic targeting of this process in humans may 

provide a viable therapeutic option in the treatment of viral infections. The ability of compound 

IMP-1088 to double target HsNMT1 and HsNMT2 in host cells has proven to be a very significant 

discovery towards the search of a lasting treatment of common cold. Using molecular dynamics 

simulation and an array of computer-aided tools, the present study, for the first time, sought to 

explore and provide structural and atomistic insight into the dual-targeting ability of compound 

IMP-1088 towards HsNMT1 and HsNMT2.  Exploration of the pattern of the amino acid 

sequences that interacted directly with compound IMP-1088 in both HsNMT1/2 revealed striking 

similarity of interacting amino acid sequences even though HsNMT1 and HsNMT2 only possessed 

an overall sequence similarity of 83.2%. Also, consistent interaction with Tyr296 resulted in the 

displacement of the Tyr296 chain which enhanced the burial of compound IMP-1088 within the 

hydrophobic pocket. The burial within the hydrophobic pocket allowed for the expansion of the 

interaction network in both complexes as simulation persisted. Quantification of the energy 
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contributions of each residue to the binding of compound IMP-1088 showed that these recurring 

residues contributed the highest energies <-1 kcal/mol, further establishing their essentiality in the 

dual acting ability of compound IMP-1088. Estimated total binding free energy of compound IMP-

1088 in HsNMT1and HsNMT2 revealed near-similar ΔGs of -35.20kcal/mol and -30.42kcal/mol, 

respectively whilst the higher binding free energy exhibited in HsNMT1 could be attributed to 

stronger active site interactions. An assessment of the conformational dynamics of HsNMT1 and 

HsNMT2 revealed that compound IMP-1088 exerted a similar pattern of structural inactivation, 

which entails reduced atomistic fluctuation and structural compactness, which culminated into the 

burial of surface-exposed residues. Finally, an assessment of pharmacological and 

pharmacokinetic profiles of compound IMP-1088 revealed a favorable predictive lipophilic value 

of 4.48 and a general agreement with the Lipinski’s rule of five, implying compound IMP-1088 

exhibits a considerable solubility attribute, which can consequentially improve its bioavailability 

and permeability across membranes. Findings from this report unveils essential atomistic insights 

from a structural perspective that support the experimentally reported inhibitory prowess of 

compound IMP-1088 against HsNMT1 and HsNMT2 while providing the basis for the design of 

improved dual-acting inhibitors. 
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Executive Summary 

Introduction 

Human rhinoviruses (HRVs) account for more than 50% of upper respiratory tract infections. 

These pathogenic organisms are exclusively responsible for common cold in humans together with 

other life-threatening respiratory infections such as asthma, cystic fibrosis and chronic obstructive 

pulmonary disease (COPD).  

N-myristoylation, catalyzed by human N-myristoyltransferase (HNMT) plays a crucial role in viral 

assembly and infectivity, and as such therapeutic targeting the HNMT in a host cell presents an 

opportunity towards inhibiting the infectivity of the rhinovirus.  

IMP-1088 was recently reported to possess potent dual inhibitory activities against HNMT1/2 

thereby halting viral replication and ultimately, elicit the prevention of viral infectivity and capsid 

assembly without causing toxicity to the host cell.  

However, the structural and molecular basis of this dual inhibitory potency remain inconclusive. 

This study therefore attempts to provide essential structural and atomistic insights that explain the 

dual-targeting of IMP-1008 while unraveling its pharmacological propensities 
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Computational Methods 

This study employed in-house pre-molecular dynamics simulation preparation protocols as 

reported in our previous reports. The X-ray crystal structures of Human N-myristoyltransferase 1 

and 2 (HNMT 1/2) were obtained from RSCB Protein Data Bank with code 5MU6 and 4C2X 

respectively. HNMT1 was retrieved co-crystallized with the novel inhibitor IMP-1088 while the 

HNMT2-IMP-1088 complex, on the other hand, was prepared by docking the 2D structure of IMP-

1088 into its substrate binding pocket. 

 A 100ns MD simulation was conducted using the AMBER18 Suite with its CPPTRJ and PTRAJ 

modules employed analyzing generated MD trajectories.  

 

Results/Discussion 

Sequence and nanosecond-based analyses identified Tyr296, Phe190, Tyr420, Leu453, Gln496, 

Val181, Leu474, Glu182, and Asn246 as residues common within the binding pockets of both 

HsNMT1 and HsNMT2 subtypes whose consistent interactions with IMP-1088 could underpin the 

basis for its dual inhibitory potency 

Consistent interaction of IMP-1088 with Tyr296 in both enzymes resulting in the displacement of 

the Tyr296 chain and enhancing the burial of compound IMP-1088 within the hydrophobic pockets 

is also confirmed 

Structural changes upon IMP-1088 binding reveal a characteristic impeding of residue 

fluctuations, structural compactness, and a consequential burial of crucial hydrophobic residues, 

features required for HsNMT1/2 functionality. 

A quantification of the energy contributions of prominent interacting residues to the binding of 

IMP-1088 in both HNMT1/2 showed that these residues contributed the highest energies <-1 
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kcal/mol, further establishing the essentially of these residues in the dual-targeting prowess of 

IMP-1088  

Estimated total binding of IMP-1088 in HNMT1/2 revealed near-similar ΔGs of -35.20kcal/mol 

and -30.42kcal/mol respectively while the higher binding exhibited in HNMT1 could be attributed 

to stronger active site interactions.  

Conclusions 

Dual-targeting activity of IMP-1088 is mediated by its interaction with specific residues (Tyr296, 

Phe190, Tyr420, Leu453, Gln496, Val181, Leu474, Glu182 and As246) accompanied by peculiar 

structural changes.  

Findings unveil interesting atomistic and structural perspectives into dual inhibitory activity of 

IMP-1088 against HNMT1/2 while providing the basis for the design of novel dual-acting 

inhibitors of N-myristoltransferase towards the treatment of common cold.  
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ABSTRACT 

Therapeutic targeting of folate biosynthetic pathway has recently been explored as a viable strategy 

in the treatment of tuberculosis. The metabolite substrate of Para-amino salicyclic acid (PAS-M) 

reportedly dual-targets dihydrofolate reductase (DHFR) and flavin-dependent thymidylate 

synthase (FDTS), two essential enzymes in folate biosynthetic pathway. However, the molecular 

mechanisms and structural dynamics of this dual inhibitory activity of PAS-M remain elusive. 

Molecular dynamics simulations revealed that binding of PAS-M towards DHFR is characterized 

by a recurrence of strong conventional hydrogen bond interactions between a peculiar DHFR 

binding site residue (Asp27) and the 2-amino-decahydropteridin-4-ol group of PAS-M. Similarly, 

the binding of PAS-M towards FDTS also involved consistent strong conventional hydrogen bond 

interactions between some specific residues (Tyr101, Arg172, Thr4, Gln103, Arg87 and Gln106) 

and the 2-amino-decahydropteridin-4-ol group, thus establishing the cruciality of the group. 

Structural dynamics of the bound complexes of both enzymes revealed that, upon binding, PAS-

M is anchored at the entrance of hydrophobic pockets by a strong hydrogen bond interaction whiles 

the rest of the structure gains access to deeper hydrophobic residues to engage in favorable 

interactions. Further analysis of atomistic changes of both enzymes showed increased C-α atom 

deviations as well as an increase C-α atoms radius of gyration consistent with structural 

disorientations. These conformational changes possibly interfered with the biological functions of 

the enzymes and hence their inhibition as experimentally reported. Structural insights provided 

could open up a novel paradigm of structure-based design of multi-targeting inhibitors of 

biological targets in the folate biosynthetic pathway towards tuberculosis therapy. 

Keywords: Mycobacterium tuberculosis, tuberculosis, dihydrofolate reductase, flavin-dependent 

thymidine synthase, folate biosynthetic pathway, Molecular dynamics simulation 
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1.0 INTRODUCTION 

As the leading cause of death from a single infectious disease, Tuberculosis (TB) is caused by  

Mycobacterium Tuberculosis (Mtb) [1].  In 2017, TB caused an estimated range of  1.2–1.4 million 

deaths among HIV-negative people and an additional 266000–335000 deaths from HIV-positive 

co-infected TB patients [1]. In a high TB burden country such as South Africa, the high mortality 

rates associated with TB is compounded by the co-infection with human immunodeficiency virus 

(HIV) [1–3]. In 2017 alone, South Africa contributed about 3% of the total global TB  cases [1,4]. 

In other to curb this global menace, several chemotherapeutic options against the mycobacterium 

have been widely explored over the years with reasonably high success rates towards treatment 

and cure of tuberculosis [5–7]. Nonetheless, these efforts have been challenged by treatment 

failure, poor adherence and the development of drug-resistant strains largely due to the long 

duration of the treatment regimen of a minimum of six months [8–10]. 

Drug resistance in TB  therapy, in particular, has contributed massively to the associated high 

mortality rates of TB such that in 2017 a range of 483000–639000 people developed rifampin 

resistant TB (RR-TB) alone [1,11–13].  With a high incidence of resistance in recent years, there 

have been reports of a subsequent relapse of the disease as well [14,15]. This has therefore led to 

a rise in the search for new therapeutic alternatives possibly targeting new enzymatic biomolecules 

implicated is various essential pathways. One of such high-value drug target therapeutic 

alternatives is the bacterial folate cycle, which is utilized in a wide range of bacterial metabolic 

processes, including DNA replication and repair[16].  
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During the folate biosynthetic pathway, dihydrofolate reductase (DHFR) is utilized as a catalyst 

to convert dihydrofolate to tetrahydrofolate. The tetrahydrofolate is acted on by serine 

hydroxymethyl transferase (SHMT) to form N5, N10 Methylene tetrahydrofolate. The 

tetrahydrofolate is further utilized as a precursor for thymidine synthesis. During this process, 

thymidylate synthase (TSase) enzyme converts N5,N10-methylene-tetrahydrofolate (MTHF) and 

2′-deoxyuridine-5′-monophosphate (dUMP) to 2′-deoxythymidine-5′-monophosphate (dTMP) 

and dihydrofolate (DHF). The dTMP is then utilized in bacterial DNA synthesis. Subsequent to 

dTMP production, the DHF can then be recycled through DHFR in the folate pathway mentioned 

above [17] (Figure 8.1). Interestingly, it was also found that flavin-dependent thymidylate synthase 

(FDTS) also allowed for dTMP production by converting DHF to MTHF. This provided a dual 

role by producing dTMP, as well as reducing DHF to MTHF [17].  

 

 

Figure 8.1: Schematic of the folate biosynthetic pathway 
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Of the plethora of studies directed toward identifying inhibitors against Mtb replication, Para-

amino salicyclic acid (PAS) is the only effective antifolate that is currently in use. The use of PAS 

in combination therapy has been evidenced to potentiate the anti-bacterial properties of isoniazid 

and streptomycin, especially against Mtb [18]. A Recent study by Haijan et al (2019) identified 

PAS as one of the very few drugs that are currently used in drug-resistant tuberculosis and further 

established its use as an alternative substrate in folate biosynthesis. Subsequent to PAS 

metabolism, the substrate is converted to PAS-M, which has shown inhibitory characteristics 

against both DHFR, although it exhibited poor binding affinity [19]. Haijan et al further explored 

the possibility of PAS-M binding to FDTS due to the structural similarities between PAS-M and 

mTHF, since mTHF is able to bind to FDTS. Their report through differential scanning calorimetry 

(DSC) revealed that PAS-M increases in melting temperature (Tm) stability implying a stabilizing 

effect of PAS-M and therefore and hence confirming its binding to Mtb FDTS. This confirmed 

dual-enzymatic binding portrayed by PAS-M may be used to overcome Mtb drug resistance by 

inhibition of more than one rate-limiting enzyme. It may also allow decreased adverse drug 

interactions due to combination therapy against tuberculosis, as well as HIV/tuberculosis co-

infections.   

Although experimental studies have defined PAS-M as an inhibitory lead molecule against DNA 

replication and repair of Mtb, there is missing evidence on the structural mechanism by which 

PAS-M inhibits the above-mentioned enzymes. To further progress through the rational drug 

design process, as well as to allow for the optimization of this lead molecule, the structural 

inhibitory mechanism of the drug is required. In this study, we therefore employ molecular 

dynamics simulations (MD) coupled with binding free energy calculations, to provide additional 

molecular and structural insights associated with the mechanistic binding of PAS-M towards both 
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DHFR and FDTS. We also elucidate the recognition mechanisms that characterize the selective 

binding of PAS-M towards mycobacterial DHFR and FDTS. Molecular dynamics simulations is 

a reliable computational technique extensively explored to mimic the dynamical events of 

molecular systems as a function of time, with a molecular description of all biological components 

(ligand and protein) in a solvent space [20]. Findings from this study will also provide important 

atomistic and structural perspectives that could aid in the design of novel multi-targeting TB 

therapy. 

 

2.0 COMPUTATIONAL METHODOLOGY 

2.1 System preparation and MD simulations 
 
The X-ray crystal structures of DHFR and FDTS were retrieved  from the RSCB Protein Data 

Bank with codes 6DDW and 2DQ7 respectively [21,22].  These structures were then prepared for 

molecular dynamics (MD) simulations using UCSF Chimera [23] and the Molecular Molegro 

Viewer (MMV)[24]. For the purpose of this study all nonstandard molecules co-crystallized with 

the enzyme structures were removed in preparation for the MD simulation to reduce computational 

cost and missing residues were added using Modeller, a structural refinement tool incorporated in 

UCSF Chimera [25]. The 3D structure of PAS-M was retrieved from the PDB structure 6DDW in 

which it was co-crystallized with DHFR and prepared for molecular docking into the binding of 

2DQ7 and subsequently MD simulation. Molecular docking of PAS-M into the FDTS binding 

pocket was performed using AutoDock Vina [26] incorporated in UCSF Chimera with default 

docking parameters. In preparing for the molecular docking, PAS-M was supplemented with 

Gasteiger charges followed by non-polar hydrogen bonds which were merged to the carbon atoms 

prior to docking. The binding site was defined using coordinates obtained from co-crystalized 
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inhibitor with FDTS. A grid box with a spacing of 1 Å and size of 11.27 ×11.08× 8.88 pointing in 

x=-2.03, y=7.21 and z=-11.06 directions). The best-docked pose for each ligand was then subjected 

to 100ns molecular dynamic simulations. Altogether, 4 systems comprising of unbound and PAS-

M bound forms of DHFR and FDTS were subjected to MD simulations using the Amber18 

software package [27]. Protein optimization and explicit solvation were carried out using the 

integrated LEAP module while the AMBER FF14SB forcefield was employed to define protein 

parameters[28]. The systems were partially minimized for 2500 steps with a restraint potential of 

500kcal/mol Å2 followed by full minimization of 10000 steps. The systems were gradually heated 

from 0-300K using a Langevin thermostat in a canonical ensemble (NVT) [29]. Equilibration was 

also carried out without restraints at a temperature of 300k in an NPT ensemble for 1000ps while 

atmospheric pressure was maintained at 1bar using the Berendsen barostat [30]. This was followed 

by MD production runs of 200ns for each system during which the SHAKE algorithm was used to 

constrict all atomic hydrogen bonds [31]. The integrated CPPTRAJ and PTRAJ modules [32] of 

AMBER18 were used to analyze resulting coordinates and trajectories while obtained data were 

plotted using Microcal Origin software [33]. UCSF Chimera was also used to visualize and analyze 

structural events. These are in accordance with our in-house MD simulation protocol that has been 

previously reported [34,35]. 

 

2.2 Binding free energy calculations 

In order to estimate the binding interactions of PAS-M to DHFR and FDTS, binding free energy 

calculations were carried out using the Molecular Mechanics/Poisson-Boltzmann Surface Area 

(MM/PBSA) method [36,37]. This approach has been widely employed in several reports [38–
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41]and has proven to be reliable in measuring binding free energies involved in protein-ligand 

complex formation. Moreover, MM/PBSA is mathematically represented as follows: 

ΔGbind = Gcomplex – Greceptor – Gligand    (1) 

Egas = Eint + Evdw +Eele     (2) 

Gsol = GGB/PB + GSA      (3) 

GSA = γSASA       (4) 

Where van der Waals and electrostatic interactions are represented as Evdw and Eele while Egas 

denote gas-phase energy and Eint as internal energy. The solvation free energy, denoted by Gsol 

represents. Gsol is obtained by a summation of the polar and nonpolar contribution states. To obtain 

the polar solvation contribution, GGB/PB, the GB/PB equation solved. Using a 1.4Å water probe 

radius, the nonpolar solvation contribution, GSA, was  calculated from the solvent accessible 

surface area (SASA. Per-residue decomposition analyses were also carried out to estimate 

individual energy contribution of binding site residues to the stabilization and affinity of masitinib. 

This could provide more insights into the basis of the pan-inhibition exhibited by masitinib since 

high residual energy contributions could depict crucial residues. 

 

 

3.0 RESULTS AND DISCUSSION 

3.1 Assessing structural stability among the simulated models 

It was important to ensure that the unbound and bound systems converged and were structurally 

stable during the 100ns MD production run to avoid disrupted motions and simulation artifacts. 

Therefore, C-α Root Mean Square Deviation (RMSD) was employed to measure structural 

stability across the studied systems. This parameter is used to estimate deviations within the 
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backbone atoms of the respective protein forms. A high RMSD value depicts an increased 

deviation in backbone atoms while on the other hand, a low RMSD value implies reduced motions 

in backbone atoms and could, in turn, explain structural stability[42–44]. The RMSD plots for 

DHFR and FDTS systems showed convergence at the beginning of the MD simulation run until 

~50ns where distinct separation in atomistic motions occurred among PAS-M-bound and unbound 

enzyme forms (Figure S1). As shown in figure S1, the binding of PAS-M to DHFR was 

characterized by  an increase in deviation among the backbone atoms (1.65Å) relative to its 

unbound conformation which exhibited relative structural stability with a lower average RMSD of 

1.29Å. Presumably, disruption of the backbone atoms in DHFR upon inhibitor binding could 

highlight the mechanistic inhibitory activity of PAS-M, since an induced loss of structural integrity 

in a protein correlate with loss of functionality [45–47]. In contrast to its influence of increase C-

a atom deviation on DHFR, the binding of PAS-M on FDTS was characterized by a decrease in c-

a atom deviation with an average RMSD of 1.65Å relative to higher average RMSD of 3.30Å. It 

could therefore be inferred that although the binding of PAS-M generally induced stabilized 

systems with average RMSD values less than 2Å, the was contrasting effect on the stability of both 

DHFR and FDTS which could be attributed to difference in amino acids sequences of the enzymes. 

 

3.2 Exploring the mechanism of PAS-M binding towards DHFR and FDTS 

The ability of a drug molecule to elicit its therapeutic (inhibitory) function is centered on its activity 

at the binding site of its target protein. Moreover, inter-molecular interactions with 

catalytic/allosteric site residues contribute significantly to ligand selectivity, binding affinity and 

stabilization. Therefore, it was essential to investigate the binding of PAS-M to DHFR and FDTS 

in order to understand the molecular basis of its dual inhibition. Firstly, we estimated binding free 



264 
 

energies involved in the interaction of PAS-M with the two enzymes using the MM/PBSA-based 

approach. Our results revealed that PAS-M bound favorably with DHFR and FDTS with ΔG 

values of -41.46kcal/mol and -20.72kcal/mol respectively (Table 8.1). The observed prominent 

difference in the estimated ΔG values could indicate dissimilar modes of binding that possibly 

underlie the observed difference in the impact of PAS-M binding on the respective stability of both 

enzymes. This may likewise be attributed to the varying prominent difference in the amino acid 

sequences of both enzymes. In addition, relatively high electrostatic and van der Waals interactions 

were involved in the binding of PAS-M towards DHFR could have accounted for its higher binding 

affinity relative to FDTS (Table 8.1).  

 

Table 8.1: MM/PBSA-based binding free energy profile of PAS-M 

 

ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = 
solvation free energy ΔG = gas phase free energy. 

 

3.3 Probing the interaction dynamics of PAS-M at DHFR and FDTS binding site 

Furthermore, molecular visualization was used to obtain insights into the activity of PAS-M at the 

respective binding pockets of DHFR and FDTS with respect to its affinity, stabilization and dual 

Systems Energy components 

(kcal/mol) 

     𝚫𝐄𝐯𝐝𝐰 𝚫𝐄𝐞𝐥𝐞 𝚫𝐆𝐠𝐚𝐬 𝚫𝐆𝐬𝐨𝐥 𝚫𝐆𝐛𝐢𝐧𝐝 

PAS-M-DHFR 

 

PAS-M-FDTS 

 

 

-46.69 ±0.11 

 

-35.50± 0.98 

 

 

-77.73±0.49 

 

-37.56 ±0.61 

 

 

-124.43±0.43 

 

-73.06±0.52 

 

 

82.97±0.27 

 

52.34±0.36 

 

 

-41.46±0.20 

 

-20.72±0.19 
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inhibitory activity. Also, this was fundamental to the identification of key binding site residues 

and their corresponding interactions with PAS-M. As shown in Figure 8.2 and 8.3, certain residues 

of the hydrophobic deep pocket elicited strong interactions with PAS-M, which accounted for its 

stability and high affinity towards both enzymes. These interactions vary from strong hydrogen 

bond interactions to general hydrophobic interactions.  

To understand the interaction dynamics of PAS-M at the binding pockets of DHFR and FDTS, we 

noted certain residues that interacted consistently, steadily and intermittently across the 100ns MD 

simulation time. These modes of interactions could relatively provide necessary details and 

insights into the molecular basis and mechanisms of PAS-M selectivity and high-affinity binding 

towards the two proteins. As shown in figure 8.2, among all interactions caused by PAS-M-binding 

towards DHFR, there was a recurrence of certain residues that consistently formed strong 

interactions with PAS-M during the simulation. Notable amongst these residues is Asp27 which 

consistently maintained a strong hydrogen bond interaction with the amino group of the 2-amino-

decahydropteridin-4-ol group of PAS-M. Other hydrogen bonded residues observed included; 

Arg60 at 10ns and Arg23 at 100ns. These hydrogen bond interactions in addition to the numerous 

hydrophobic interactions with other binding pockets residues could have collectively contributed 

to the favorable binding free energies calculated. Moreover, PAS-M was anchored at the entrance 

of the hydrophobic pocket by a strong hydrogen bond with Arg60 at 10ns and Arg23 at 100ns.  

This anchorage over the simulation period could allowed for its steady interactions of PAS-M with 

other hydrophobic residues as observed while also permitting its deep access of other hydrophobic 

residues. Access to the deep hydrophobic pocket allowed for favorable interactions with other 

hydrophobic residues which could have contributed to the total binding free energy of PAS-M 

towards DHFR. Altogether, these strong hydrogen bond interaction at the entrance of the 
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hydrophobic pocket and with the deeply embedded residues could suggestively have accounted 

for favorable affinity binding of PAS-M towards DHFR.  

 

Figure 8.2: Structural positioning and orientation of PAS-M at the hydrophobic grooves of DHFR depicting 
residues within the binding pockets at 10 ns [a], 50 ns [b] and 100 ns [c]. Hydrophobic surface 
representations of PAS-M-bound within the DHFR binding pockets (blue), highlighting hydrogen bond 
interacting residues at 10 ns [a1], 50 ns [b1] and 100 ns [c1]. 
 

Similarly, the binding of PAS-M towards FDTS was also characterized consistent strong hydrogen 

bond interactions with some specific residues over the course of the simulation.  Notable amongst 

these residues are Tyr101, Arg172, Thr4, Gln103, Arg87 and Gln106. Tyr101 in particular 

recurred throughout the simulation period. Similarly, PAS-M is anchored at the entrance of 

hydrophobic pocket by strong hydrogen bond interactions whiles the rest of the compound gains 
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access to deeper hydrophobic residues for corresponding favorable interactions. These consistent 

and steady interactions with these residues could have equally accounted for the favorable binding 

free energies towards FDTS as estimated. 

Figure 8.3:  Hydrophobic surface representations of PAS-M-bound within the FDTS binding pockets 
(blue), highlighting hydrogen bond interacting residues at 10 ns [a], 50 ns [b] and 100 ns [c].. Structural 
positioning and orientation of PAS-M at the hydrophobic grooves of FDTS depicting residues within the 
binding pockets at 10 ns [a1], 50 ns [b1] and 100 ns [c1] .  
 
 

Taken together, residues that consistently interacted with PAS-M towards the binding of both 

DHFR (Arg27) and FDTS (Tyr101) over the simulation period were shown to consistently interact 

with the amino moiety on the 2-amino-decahydropteridin-4-ol group of PAS-M. This could imply 

that interactions of this amino group could be crucial for high-affinity binding, and stability of 

PAS-M in the hydrophobic binding pockets of both enzymes and could as well account for the 

dual binding activity of PAS-M towards DHFR and FDTS.  
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The critical roles of the interactions engaged in by the amino moiety on the 2-amino-

decahydropteridin-4-ol group were further revealed via per-residue decomposition analyses, which 

provided a quantitative insight into the energy contributions of individual residues that interacted 

with PAS-M at the DHFR and FDTS binding pockets over the 100ns MD simulation duration, 

particularly Arg27 and Tyr101 respectively. As presented in figure 8.4, residues which formed the 

strongest bonds contributed the highest energies towards the binding PAS-M to either of the 

enzymes as expected. In the PAS-M-DHFR complex as shown figure 3a, residues Asp27, Arg60 

and Arg23 contributed the highest energies towards binding with total energies of -58.07kcal/mol, 

-54.29kcal/mol and -166.07kcal/mol respectively. This reaffirms the prominence of these residues 

in the inhibition of DHFR. Likewise, as shown in figure 3a', residues, Tyr101, Arg172, Gln103, 

Arg87 and Glu3 contributed the most as well towards the binding of FDTS with total energies of 

-170.37kcal/mol, -171.66kcal/mol, -43.20kcal/mol, -164.41kcal/mol and -103.88kcal/mol. 

Also, it was revealed that binding site residues in both DHFR and FDTS also contributed 

significant electrostatic energies towards the total binding of PAS-M which could accounted for 

its overall favorable binding in both pockets as estimated. 



269 
 

 

Figure 8.4 : Per-residue decomposition plots showing individual energy contributions to the binding and 
stabilization of PAS-M at the hydrophobic grooves of DHFR[a]  and FDTS [a1].  This reveals that energy 
contributions were highest in residues that formed hydrogen bond interactions with PAS-M. Corresponding 
inter-molecular interactions are shown in DHFR [b]  and FDTS [b1].  
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3.4 Structural dynamics of hydrophobic deep pockets upon PAS-M binding 

In furtherance to the peculiarities of the dual acting activity of PAS-M towards DHFR and FDTS 

as revealed in the corresponding residue interaction dynamics over the simulation period, we 

proceeded to investigate the dynamics of the hydrophobic deep pockets with respect to the dual 

and favorable binding of PAS-M. In other words, while we first investigated the dynamics of PAS-

M at the respective binding pockets of both enzymes, we further explored the dynamics of their 

hydrophobic deep pocket residues upon the binding of PAS-M across the 100ns MD simulation 

time. This investigative approach necessitated the use of metrics such as C-α root mean square 

deviation (RMSD) and C-α radius of gyration (RoG) to describe the stability and compactness 

among hydrophobic pocket residues. According to previous studies, the stability and compactness 

of these residues could influence their corresponding interactions with bound inhibitors and hence 

can be employed to describe per-residue fluctuations across a protein’s secondary structure while 

C-α RoG can be used to predict structural compactness, perturbations and atomistic mobility 

[35,46,48].  As shown on figure 8.5, the binding of PAS-M towards DHFR increased the deviation 

of C-α atoms of binding site residues within DHFR with an average RMSD of 2.57Å relative to 

the unbound conformation which exhibited a lower average RMSD of 1.29Å.  Similarly, the 

binding of PAS-M towards FDTS also induced an increased deviation of C-α atoms deviation of 

active site residues with an average RMSD of 8.09Å relative to the unbound conformation which 

also exhibited an average RMSD of 3.43Å. It can therefore be implied that the binding of PAS-M 

to both enzymes is characterized by increased instability of the binding site residues which could 

have contributed to its favorable inhibition of both enzymes as experimentally reported [19]. 

Likewise, the instability of the binding site residues due to the inhibitory presence of PAS-M have 

distorted the original conformation of the enzymes required for their biological functions. 
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Presumably, systemic structural C-α atoms deviation of active site could highlight a possible 

mechanism by which PAS-M exhibit its dual-inhibitory activities against these enzymes, that in 

turn result in the disruption of their biological activities.  

 

Figure 8.5: Comparative C-α RMSD plots showing the degree of instability and disruption induced by 
PAS-M at the binding pocket of DHFR and FDTS. Also shown is the binding site superposition of unbound 
(violet) and PAS-M-bound (red) forms of the two enzymes. 
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This presumption was further verified by calculating the C-α radius of gyration, which is able to 

depict the structural compactness of the binding pockets residues in both DHFR and FDTS across 

the MD simulation time of 100ns. As shown in figure 8.6, binding site residues of both enzymes 

exhibited increased radius of gyration of C-α atoms with an average RoG of 9.82Å and 9.65Å for 

DHFR and FDTS respectively. Active site residues of the unbound DHFR and FDTS exhibited 

lower average RoG of 8.24Å and 8.26Å. It could therefore imply that the binding of PAS-M also 

decreased the compactness of these residues, consistent with the increased deviation of C-α atoms 

as estimated relative to the unbound conformations. 
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Figure 8.6: A) Comparative compactness of PAS-M binding site residues of FDTS in the presence and 
absence of PAS-M. Binding site residues in the unbound FDTS were more compact relative to the PAS-M 
bound conformation with averagely lower RoG of 8.26 Å. B) Comparative compactness of PAS-M binding 
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site residues of DHFR in the presence and absence of PAS-M. Binding site residues in the unbound DHFR 
were more compact relative to the PAS-M bound conformation with averagely lower RoG of 8.24 Å 
 

Taken together, we could suggest that PAS-M selectively targets binding pockets residues of both 

enzymes and disrupts their original conformation by increasing their C-α atom deviations as well 

as their C-α atoms radius of gyration. These conformational changes could in turn have interfered 

with the biological functions of these enzymes and hence their inhibition as experimentally 

reported [19]. 

 

4.0 CONCLUSION 

Employing advanced computational techniques and MD simulations, this study aims to provide 

molecular perspectives into the dual inhibitory mechanisms of PAS-M towards DHFR and FDTS 

which are crucial in the folate biosynthetic pathway. Differential binding of PAS-M to these 

enzyme targets was measured using the MM/PBSA method, which revealed favorable interactions 

with ΔG values of -41.46kcal/mol and -20.72kcal/mol towards DHFR and FDTS respectively. The 

favorable binding free energies as estimated confirms the possible inhibitory activity of PAS-M 

towards DHFR and FDTS. Investigations into the interaction dynamics of PAS-M at the binding 

pockets of DHFR and FDTS revealed crucial structural insights that could have favored its dual 

binding activity. The interaction of PAS-M with DHFR was characterized by a recurrence of 

certain residues that consistently formed strong interactions with PAS-M during the simulation, 

notably Asp27 which consistently maintained a strong hydrogen bond interaction with the amino 

group of the 2-amino-decahydropteridin-4-ol group of PAS-M. Similarly, the binding of PAS-M 

towards FDTS involved consistent strong hydrogen bond interactions with some specific residues 

over the course of the simulation, notably, Tyr101, Arg172, Thr4, Gln103, Arg87 and Gln106. 



275 
 

Interestingly, upon binding to either enzyme, PAS-M is anchored at the entrance of hydrophobic 

pocket by a strong hydrogen bond interaction whiles the rest of the compound gains access to 

deeper hydrophobic residues for corresponding favorable interactions. Quantification of the energy 

contributions through per-residue energy decomposition analysis further revealed that, these same 

residues contributed the most towards total binding of PAS-M, further establishing their cruciality 

to enzyme inhibition. Analysis of the conformational changes of both enzymes upon PAS-M 

binding revealed increased C-α atom deviations as well as an increase in their C-α atoms radius of 

gyration. These conformational changes could in turn have interfered with the biological functions 

of these enzymes and hence their inhibition as experimentally reported. Identification of the 

recurring residues and their crucial roles could open up a novel paradigm of structure-based design 

of highly selective multiple targeting inhibitors of the foliate biosynthetic pathway in the treatment 

of tuberculosis, amidst the rise in TB drug resistance. A further exploration of the 2-amino-

decahydropteridin-4-ol group of PAS-M could serve as a baseline for the design of new therapeutic 

agents in TB therapy.  
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Abstract 

Therapeutic targeting of the ATP machinery of Mycobacterium tuberculosis (Mtb) has recently 

presented a potent and alternative measure to halt the pathogenesis of tuberculosis. This has been 

potentiated by the development of Bedaquiline (BDQ), a novel small molecule inhibitor that 

selectively inhibit mycobacterial F1Fo-ATP synthase by targeting its rotor c-ring, resulting in the 

disruption of ATP synthesis and a consequential cell death. Although, the structural resolution of 

the mycobacterial C9 ring in complex with BDQ provided a first-hand detail of BDQ interaction at 

the c-ring region of the ATP synthase, there still remains a need to obtain essential and dynamic 

insights into the mechanistic activity of this drug molecule towards a crucial survival machinery 

of Mtb. As such, for the first time, we report an atomistic model to describe the structural dynamics 

that explicate the experimentally reported antagonistic features of BDQ in halting ion shuttling by 

the mycobacterial c-ring, using molecular dynamic (MD) simulation and MM/PBSA methods. 

Results showed that BDQ exhibited a considerably high ΔG while it specifically maintained high-

affinity interactions with Glu65B and Asp32B, blocking their crucial roles in proton binding and 

shuttling which is required for ATP synthesis. Moreover, the bulky nature of BDQ induced a rigid 

and compact conformation of the rotor c-ring which impedes the essential rotatory motion that 

drives ion exchange and shuttling. In addition, the binding affinity of a BDQ molecule was 

considerably increased by the complementary binding of another BDQ molecule, which indicates 

that an increase in BDQ molecule enhances inhibitory potency against Mtb ATP synthase. Taken 

together, findings provide atomistic perspectives into the inhibitory mechanisms of BDQ coupled 

with insights that could enhance the structure-based design of novel ATP synthase inhibitors 

towards the treatment of tuberculosis. 

Keywords: Tuberculosis, Mycobacterium tuberculosis, Bedaquiline, Molecular Dynamic 

Simulation, Ionophores. 
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1.0 Introduction 

Tuberculosis (TB), as an infectious disease, has existed for a millennium but still remains a major 

global health concern. TB is caused by the bacillus, Mycobacterium tuberculosis (Mtb) and 

currently ranks above HIV/AIDS as the leading cause of death globally from a single infectious 

agent [1, 2]. The global incidence of TB in 2017 alone was estimated to about 10 million recorded 

cases in which the WHO South Asia region recorded the highest incidence of 44% followed by 

the WHO Africa region with about 25% of total global incidence. South Africa remains prominent 

in its contribution to total global TB burden, contributing about 3% in 2017 alone to the total global 

incidence. Nonetheless, there has been a steady decline in TB in many southern African countries, 

including South Africa between years 2010-2017. The co-infection of TB with HIV has also 

contributed immensely to its current global mortality rate. For instance, in 2017, over 50% of TB 

case were co-infected with HIV in Southern African countries. However, there has also been a 

steady decline death from TB-HIV co-infection as well in the last few years due to an increase 

coverage of antiretroviral therapy in high burden regions. The major impediment to the treatment 

of TB over the years remains the development of resistance of the mycobacterium to current 

therapeutic option. A suitable treatment regimen for TB majorly involves a combinatorial 

therapeutic approach that constitute at least four drugs namely isoniazid, rifampin, pyrazinamide 

and ethambutol [3]. Strains resistant to only one first-line anti-TB agents are categorized and 

mono-resistant TB, of which Rifampin resistance is the most common. On the other hand, 

resistance to both rifampicin and isoniazid is referred as multi-drug resistant TB (MDR-TB) and 

has been categorized as poly-resistant TB. MDR-TB cases are treated with second-line TB drugs 

which are usually more toxic and less effective as compared to the first-line agents [4, 5]. MDR-

TB in which the mycobacterium also develops resistance to any fluoroquinolone and at least one 

of the three second line injectables (capreomycin, kanamycin and amikacin) is further referred to 
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as extensively drug resistant tuberculosis (XDR-TB). In recent years, the most virulent form of 

resistant TB has been classified as totally drug resistant TB (TDR-TB) in strains are resistant to 

all the first second line TB drugs [4, 6, 7]. Hence, there has been a continual surge in the 

identification of potent and highly effective therapeutic molecules that target crucial elements 

(such as protein) involved in the pathogenesis and virulence of Mtb [8, 9]. In this regards, targeting 

the rotor ring of Mtb’s F1Fo-ATP synthase (henceforth F1Fo) has been explored over the years as a 

viable therapeutic option considering the crucial the role it plays in ATP synthesis of the 

mycobacterium [3]. The F1Fo-ATP synthase is a macromolecular, membrane-embedded protein 

complex in MTB that uses the transmembrane electrochemical ion (H+ or Na+) gradient to convert 

adenosine diphosphate (ADP) and inorganic phosphate (Pi) into adenosine triphosphate (ATP) by 

a rotary mechanism [10–13] during respiration. The membrane-embedded Fo domain of the 

complex harbors the rotor ring of the F-type ATP synthase which usually consists of identical 

copies of c-subunits that form an hourglass-shaped cylinder with a central pore (c-ring) in the 

bacteria [14]. F1Fo-ATP synthase shuttles ions across the membrane and thereby powers the 

synthesis of ATP within the three catalytically active sites of the F1 headpiece [10]. A report by 

Andries et al., in 2005, identified bedaquiline (BDQ) , via phenotypic screening, as an 

antitubercular agent which was subsequently approved by the FDA in 2012 as a member of the 

chemical class of diarylquinolines to inhibit F1F0 in mycobacteria [3, 15]. The inhibitory activity 

of BDQ demonstrates that metabolism and energy generation is a promising new target space in 

inhibiting mycobacteria. By acting as an ionophore, BDQ blocks shuttling  H+ and K+ ions across 

membranes [16]. The recently published structure of the c-ring from Mycobacterium phlei with 

bound BDQ suggested the selectivity of BDQ for only mycobacterial species as against other 

prokaryotic and eukaryotic organisms [17].  



286 
 

According to Preiss et al., BDQ has a high specificity and affinity towards the mycobacterial c-

ring of M. phlei where it binds in a lock and key fashion, with a virtually complete sequence 

conservation of this region, which suggests an identical surface profile  and binding site geometry 

possibly in all mycobacteria, and most importantly, M. tuberculosis [17]. The binding of BDQ to 

the c-ring rotor of the Fo of  mycobacterial ATP synthase results in an eventual inhibition of ATP 

synthesis leading to mycobacterial death [3, 17–20]. Although the crystal structure of F1F0 in 

complex with BDQ has been resolved experimentally, there has been little or no insights into the 

mechanisms, structural dynamics and conformational changes that accompanies the binding of 

BDQ. Moreover, these insights could be crucial to the development of novel small molecule 

inhibitors of mycobacterial F1F0 ATP synthase, most especially in the treatment of TB. Figure 9.1 

shows a 3D representation of F1F0-ATP synthase subunit c in complex with BDQ. 

The application of computational (in silico) methods in providing structural insights into the 

binding of small molecule inhibitors has gained prominence in the drug discovery process in recent 

years.  Insights from computational reports can aid in the optimization of existing small molecule 

compounds to yield enhanced and improved novel small molecule inhibitors and eventually 

improve the overall efficiency of the drug discovery process [21, 22]. Computational approaches 

have been employed in the study of several conditions and for varying purposes including 

mutational studies and the identification of new inhibitors. In mutations studies computer aided 

techniques have aided in unravelling the structural dynamics of mutant proteins as well as 

revealing the impact of mutations on the activity of bound inhibitors [23–27] while techniques 

have focused on the identification of novel compounds from large pool of existing databases[28]. 

However, in the present report, molecular dynamics simulation coupled with other computational 
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approaches was employed to provide, for the first time, atomistic insights into the reported 

ionophoric features of BDQ relative to the inhibition of ATP synthesis in Mtb.   

 

Figure 9.1: [A] Surface depiction of the mycobacterial c-ring F1F0-ATP synthase (green) bound by BDQ 
(grey). Also, active site and BDQ-interacting residues are depicted in yellow coloration and clearly shown 
in red inset. [B] 2D structure of BDQ showing constituent functional groups. 

 

 

2.0 Computational methodology 

2.1 System preparation 

The X-ray crystal structure of the c-ring rotor (Fo portion) of mycobacterial ATP synthase was 

obtained from RSCB Protein Data Bank with code 4V1F [17], which was already complexed with 

Bedaquiline (ID:5388906). This complex was then prepared for simulation using UCSF Chimera 

[29] and the Molecular Molegro Viewer (MMV) [30], a technical procedure that basically involves 

the removal of co-crystalized molecules not relevant to the study such as crystal waters. The 
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structure comprised of three chains A, B and C with BDQ bound to all three, however only the 

central region of the three BDQ molecules within the crystal structure was visible whereas parts 

of the other two molecules were partially visible. In this report our focus was restricted to the 

interaction of a single molecule of BDQ with the F1F0 structure. As such the two partially visible 

BDQ molecules were taken off leaving just the full visible molecule in the middle to reduce 

computational cost. Eventually, two systems which comprised of a BDQ-bound F1F0 and an 

unbound (apo) form of the ATP synthase were set up for the molecular dynamic (MD) simulation. 

An additional system was setup comprising two molecules of BDQ bound to F1F0 using UCSF 

Chimera-integrated AutoDock Vina module and the Molecular Molegro Viewer (MMV) to depict 

a dual BDQ-bound F1F0 ATP synthase. This was necessary to investigate the inhibitory prowess 

of dual BDQ molecules on ion-shuttling as compared to single-bound systems, a rationale that was 

aimed at providing important atomistic perspectives based on the report by Preiss et al in which 

they stated that an increased concentration of BDQ could result in the binding of the membrane 

exposed ion binding sites of the c-ring of ATP synthase by one or more molecules of BDQ with 

enhanced inhibitory potency [17]. 

 
 
2.2 Molecular dynamics (MD) simulations  
 
This was performed using the GPU version of AMBER 14 with an integrated PMEMD module 

[31], according to standard simulation protocols, which has been previously adopted in previous 

studies and enumerated as follows [32–36]. Parameterization of the inhibitor was carried out using 

the ANTECHAMBER module wherein atomic partial charges (AM1BCC) gaff, using the bcc 

charge scheme were generated [37]. The FF14SB AMBER force field [38] was then used to 

parameterize the protein. Using the LEAP module, hydrogen atoms were also added, while the 
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entire system was neutralized by the addition of counter ions (Na+, Cl-) followed by a subsequent 

generation of ligand, protein and complex topologies as well as parameter files. The systems were 

explicitly solvated with water using the TIP3P orthorhombic box size of 7Å, which enclosed all 

atoms of the protein [39]. Before running the LEAP module, the pdb4amber script was executed 

to protonate the histidine residues at a constant pH (cpH). This was appointed to automatically 

modify the protein system for use with LEAP.  Both complexes were minimized initially for 2000 

minimization steps applying a restraint potential of 500kcal/mol and then fully minimized for 

another 1000 steps of steepest descent without restrain. These minimization steps were run on 2 

computational nodes with 48 cores on a 48 hours wall-time each. Likewise, at these stages, a fixed 

protein algorithm was used to place restraints on the entire protein and hold it within the TIP3P 

water box. This was followed by the gradual thermalization of the systems with a temperature 

range of 0-300K for 50ps. Similar to initial minimization steps, thermalization was performed 

using 2 nodes, 48 cores and walltime of 48 hours. At this stage, restraints were placed on the 

ligands and proteins altogether to prevent their release from the TIP3P solvent box. Afterwards, 

the equilibration process was initialized using similar MPI run as indicated above and performed 

for 500ps while the temperature and pressure were kept constant at 300K and 1bar respectively 

using the Berendsen barostat [40]. This was followed by MD production runs of 100ns, which 

correlated with an nstlim of 50000 steps for each system during which the SHAKE algorithm [41] 

was used to constrict all atomic hydrogen bonds. Also, the iwrap algorithm was equated to 1 and 

used to hold the simulated systems in place due to thermodynamically induced atomic vibrations 

that characterize the production runs. Also, a cut off distance of 12 Å was set for non-bonded van 

der Waals interactions while the default PME method for summation carried out long-range 

adjustments for occurring electrostatic interactions. The MD simulation was initiated using a time 
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step of 1fs and coordinates saved at 1ps interval followed by subsequent analysis of trajectories 

using the integrated PTRJ and CPPTRAJ module [42]. Visualization of the complexes and data 

plots were carried out using the graphical user interface of UCSF chimera [43], and Microcal 

Origin analytical software [44] respectively. Time-scale dynamics and conformational events were 

visually depicted by retrieving selected trajectories and corresponding snapshots which were 

analyzed graphically on the graphical interface of LIGPLOT to generate ligand interaction plots. 

These were further complimented using graphical tools such as BIOVIA discovery studio to 

properly depict structural and molecular occurrences [45][46]. 

2.3 Binding Energy Calculations 

 The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) [47–50] method was 

used to calculate binding free energy. The binding free energy (DGbind) was calculated from the 

following equation: 

DGbind = Gcomplex - Greceptor + Gligand          (1) 

DGbind = DGgas + DGsol -TDS,                   (2) 

 

where DGbind is considered to be the summation of the gas phase and solvation energy terms less 

the entropy (TDS) term 

DEgas = DEint + D Evdw + D Eelec         (3) 
 

DEgas is the sum of the AMBER force field internal energy terms DEint (bond, angle and torsion), 

the covalent van der Waals (DEvdw) and the non-bonded electrostatic energy component (DEelec). 

The solvation energy is calculated from the following equation: 

 
Gsol = GGB + Gnon-polar                 (4) 

 
Gnon_polar = gSASA + b               (5) 
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The polar solvation contribution is represented as GGB and Gnon-polar is the non-polar solvation 

contribution and is calculated from the solvent assessable surface area (SASA), obtained by the 

use of a 1.4 A° water probe radius. The surface tension constant (c) was set to 0.0072 kcal/mol and 

b to 0 kcal/mol [51]. Per-residue decomposition analyses were also carried out to estimate 

individual energy contribution of binding site resides towards the affinity and stabilization of 

BDQ. This was aimed at providing atomistic insights in the ionophoric properties of BDQ towards 

the inhibition of ATP synthase considering the fact that prominent residual energy contributions 

could highlight essential residues.  

 

3.0 Results and Discussion  

3.1 Conformational dynamics of Mycobacterium tuberculosis’s F1F0 synthase upon BDQ 
binding 

Up till date, no current experimental data reveals the crystal structure for the rotor ring of Mtb’s 

F1F0 synthase thereby accounting for insufficient insights on the inhibitory activity of BDQ 

towards the inhibition of ATP synthesis in Mtb. As such, it was expedient that we employed the 

non-pathogenic Mycobacterium phlei model so as to give a clear molecular insight on the 

mechanistic activity and efficacy of BDQ. This is feasible because the c-ring of M. phlei shares a 

very high sequence homology and identity (83.7%) with	its M. tuberculosis variant, particularly in 

the transmembrane region, where the drug was proposed to bind [3, 52]. Furthermore, the 

minimum inhibitory concentration (MIC) reported for M. phlei was 0.05 mg/ml which is basically 

identical to that reported for M. tuberculosis (0.06 mg/ml) [52, 53], suggesting the identical mode 

of interaction between the drug and the rotor ring in these two species [17]. MD simulation, as a 

reliable computer aided drug design approach employed in this study, allowed for a time-bound 

analysis of the inhibitory impact of BDQ upon binding to Mtb’s F1F0 synthase in an effort to 
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impede ATP synthesis. To ensure the structural stability of the studied systems and trustworthiness 

of the findings from the resulting trajectories, an initial assessment of system convergence was 

performed, which could depict a reliable simulation run. As observed, the systems converged early 

in the simulation period (~20ns) after which they was a notable separation in motions of the Cα 

atoms among the unbound (Apo) and BDQ-bound systems, further signifying that the assumptions 

drawn from the simulated systems were reliable and depict a near accurate representation of the 

structural events that actually characterize the inhibitory activity of BDQ. From the RMSD plots, 

we also evaluated the impact of the binding of BDQ on the overall stability of F1F0 synthase, 

considering how essential, the stability of a protein is to its function. The effect of BDQ on the 

stability of F1F0 synthase as shown in the plot (Figure 9.2A), was very evident as there was an 

obvious decrease in c-α RMSD after the first 20ns relative to the unbound conformation. The 

markedly lower average RMSD of the bound conformation was suggestive of a reduced atomistic 

deviation and a structurally stable F1F0 synthase, as induced by the binding of BDQ. The relatively 

stable conformation could have ensued due to favorable steady interactions of key active site 

residues with BDQ. A further analysis of the inhibitory impact of BDQ on the structural 

conformation of F1F0 synthase was performed by an estimation of the root mean fluctuation 

(RMSF) of the individual residues. Overall, the unbound F1F0 synthase exhibited the highest 

fluctuation of amino acids with an average RMSF value of 10.9 Å relative to the BDQ-bound F1F0 

synthase. However, there was a notable increase in the flexibility of residues at region “60-75” in 

the bound system relative to the unbound conformation (Figure 9.2B). Interestingly, this region 

encompasses the ion binding site on the rotor-stator region of F1F0 synthase. This could suggest 

that although there was a slight decrease in average fluctuation of all residues of F1F0 synthase in 

the presence of BDQ, there was rather a consequential increase in the flexibility of residues that 



293 
 

directly interacted with BDQ with a <5Å radius relative to lower flexibility observed in the 

unbound conformation. We further monitored the compactness or tightness of the c-ring which has 

been experimentally reported to play a crucial role in ion exchange in the bacterial ATP synthase 

[17, 54–56] by calculating the radius of gyration (Rg) of  its Cα atoms [35, 57]. As shown in Figure 

9.2D, it was observed that the Rg of binding site residues in the BDQ-bound F1F0 synthase were 

lowered entirely during the 100ns simulation indicative of a highly compact conformation relative 

to the unbound conformation.  

Consequentially, the lower Rg indicates a relatively tighter conformation [35, 57] which would 

make it impossible for BDQ to bypass the barrier created by the pocket thereby resulting in an 

eventual blockage of the rotation of the c-ring followed by a consequential blockage of the ion 

exchange. Moreover, a disruption in the ion exchange mechanisms could consequently halt ATP 

synthesis posing a significant impact on the general bio-energetic metabolism in Mtb, which is 

ultimately fatal to the survival of mycobacteria [20, 58]. Taken together, the binding of BDQ 

lowered the structural activity in the F1F0 synthase model, which could impede or interfere with 

its critical role in the ATP synthesis machinery. 
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Figure 9.2: Conformational dynamics of F1F0 ATP synthase upon binding of BDQ. A) Plot of the RMSD 
showing a gradual increase in RMSD and subsequent steadying of the systems after about 20ns. B) RMSF 
showing the comparative fluctuations of Glu65B in the bound (BDQ) and the unbound (Apo) systems. Note: 
The scale used is from tleap numbering of residues, F1F0 of M. phlei has three chains of repeated residues 
as such the RMSF plot shows these chains in brackets and the position of the Glu65B in the two systems. 
C) Scatter plots showing fluctuations of the binding site residues among the bound and unbound systems. 
Indicated in green (unbound) and red (BDQ-bound) circles are the main residues (Glu65B) responsible for 
ion exchange in both systems D) Radius of gyration (Rg) of the binding site residues showing a low Rg due 
to the binding of BDQ resulting in a highly compact F1F0 structure. 

 

 

3.2 Dual-molecule BDQ binding increases binding affinity  

The concentration-dependent increase in the inhibitory activities of BDQ towards F1F0 synthase, 

as reported by Preiss et al., necessitated the use of the MM/PBSA approach to study the 

mechanistic single-mode and dual-mode binding and inhibitory potencies of BDQ to the target 
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protein [17]. This was to provide atomistic perspectives on the findings by Preiss et al., in which 

it was revealed that one or more BDQ molecules could approach and bind to the c-ring of ATP 

synthase depending on the concentration [17] and that the more the BDQ molecules bound the 

stronger the inhibitory potency. To this effect a third system was examined, which comprised of 

two molecules of BDQ bound to the c-ring of the ATP synthase to depict an increase in 

concentration of BDQ. Moreover, free binding energies of the BDQ singly- and dual-bound F1F0 

ATP synthase was evaluated using the MM/PBSA method to obtain a quantitative perspective into 

the mechanistic high-affinity binding and stability of the compounds at the target site of F1F0 

synthase. Differential ΔGbind free binding energies for BDQ when bound to F1F0 ATP synthase as 

a single molecule as well as double molecules were estimated and presented in Table 9.1. As 

estimated, ΔG was higher in the dual bound system as compared to the singly bound F1F0 system. 

The singly bound system had a ΔG value of -29.41kcal/mol while it was considerably higher in 

the dual system with a value of -38.13kcal/mol. Therefore, we can presume that binding affinity 

would possibly be higher when there is an increase in the number of BDQ molecules bound to 

F1F0 ATP synthase in agreement with earlier findings that reported improved BDQ potency when 

the concentration is increased [17]. Furthermore, high-affinity binding in both BDQ-bound 

systems was evidenced by the estimated high ΔE electrostatic energies as presented in Table 9.1, 

indicative of the formation of strong interactions that mediated the binding and stability of BDQ 

in both single and dual states. 

Table 9.1: MM/GBSA-based energy profiles of BDQ-singly and double-bound F1F0 ATP synthase. 

Systems Energy components 
(kcal/mol) 

          
        BDQ 

 
2BDQ 

-30.86±0.07 
 

-43.03± 0.24 

-47.49±0.35 
 

-61.77 ±0.39 

-58.35±0.36 
 

-40.8±0.55 

48.93±0.32 
 

65.68±0.41 

-29.41±0.06 
 

-39.13±0.21 
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ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = 
solvation free energy ΔG = gas phase free energy. 

 

3.3 Time-bound analysis of the interaction of BDQ at the c-ring F1F0 synthase 

To further corroborate the mechanistic binding of BDQ molecules, we performed a thorough 

elucidation of complementary interactions that occurred at the F1F0 active site when singly- or 

dually bound. This entailed a thorough molecular visualization of these interactions over the 

simulation period followed by the estimations of the residual energy contributions of residues at 

the c-ring of F1F0 synthase towards the high-affinity binding and stabilization of BDQ molecules. 

This was also important so as to be able to identify key residues that play crucial roles in the BDQ 

binding. As observed in the singly bound system, certain residues of the hydrophobic groove, 

which constitutes chains A and B, showed strong interactions with BDQ, and could underlie the 

basis for its stability and high affinity. Firstly, we investigated key residues and their roles 

involvement in the binding and stabilization of BDQ over the simulation period. This provided a 

closer look into the interaction dynamics between certain c-ring residues of F1F0 synthase and 

BDQ where it was revealed that some residues interacted in a consistent, steady and a recurrent 

manner across the 100ns of simulation period. These residues include; Glu65B, Tyr68B and Ile70A. 

Notably, these residues formed strong high affinity interactions with constituent BDQ moieties 

from the beginning of the simulation as shown at 5ns until the end of the simulation at 100ns 

(Figure 9.3).  Interestingly, among these recurrent residues was Glu65B, which has been shown to 

play a critical role in the binding of BDQ as evidenced by the systematic occurrence of strong 

hydrogen, ionic and salt bridge interactions at different periods during the simulation. According 

to previous reports, Glu65B is a conserved carboxylate harbored at the ion binding site and plays 

critical roles that majorly involve the binding and shuttling of protons [14, 17, 54, 59]. Therefore, 
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the steady engagement of BDQ with Glu65B could depict a situation whereby the primary role of 

Glu65B in ion transport is persistently blocked by BDQ, indicative of its mechanistic activity in 

disrupting the microbial (Mtb) process of ATP synthesis. Likewise, the persistence of Tyr68B and 

Ile70A in forming strong hydrophobic interaction with BDQ over the simulation period could 

suggest an augmentative role in enhancing the high-affinity binding and inhibitory activity of 

BDQ. These modes of interactions could relatively provide essential details and atomistic 

perspectives into the ionophoric inhibitory property of BDQ. 

 

 

Figure 9.3: Structural positioning and orientation of BDQ at the hydrophilic c rotor-stator region of F1F0 
synthase BLK depicting steady, consistent and recurrent interaction of BDQ with the c-ring residues.  
Surface representations of BDQ-bound c-ring in the F1F0 synthase are shown in [. The degree of H-bonds 
ranging from H-bond donor (→ magenta) to H-bond acceptor (→ light green). 
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To further delve into the nature of the binding site residue interactions, we quantified the energetics 

of the individual residues to the total binding affinity of BDQ with particular emphasis on the 

electrostatic and van der Waal energy contributions. In doing so, we estimated the individual 

energy contributions of each active site residue using the MM/GBSA-integrated per-residue 

decomposition method. Generally, residues with interaction energies lower than -0.8 kcal/mol are 

regarded as crucial in the molecular recognition, high-affinity binding and stability of small 

molecule compounds [60]. As estimated, Phe69B (-2.65 kcal/mol), Tyr68B (-2.34 kcal/mol), 

Ala66A (-1.11 kcal/mol), Glu65B (-1.04 kcal/mol) and Leu72B (-0.98 kcal/mol) exhibited the high 

energy contributions which, could suggest their high importance to the inhibitory activity of BDQ. 

However, among these residues, Phe69B showed the highest total binding energy contribution of -

2.65kcal/mol. This could have been due to the reported conformational change it exhibits in order 

to avoid steric clashes with the bulky BDQ, which could contribute to the optimal and favorable 

positioning of BDQ, and in turn account for the relatively high total energy involved. This crucial 

involvement of Phe69B could be substantiated by its intermittent interactions with BDQ over the 

simulation time, which could be vital for active site stability and optimal positioning. Interestingly, 

two of the prominent residues that contributed to the binding of BDQ were the conserved 

carboxylates; Glu65B and Asp32B, which exhibited the highest electrostatic contributions of -

47.37kcal/mol and -19.42kcal/mol respectively as shown in Figure 9.4. Earlier reports have 

indicated that the electrostatic interactions of these two residues with the DMA group of BDQ 

could account for the measured salt effects in ATP synthesis in M. smegmatis IMVs  in the 

presence of BDQ [19, 61]. As such, the prominent involvements of these two residues via 

electrostatic interactions, over the course of the simulation, as earlier estimated corroborates earlier 

experimental reports, which further emphasizes the antagonistic mechanisms the essential roles of 
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these conserved carboxylates in the binding of BDQ. Prominent van der Waals energies were also 

contributed towards the binding of BDQ by certain binding site residues which could as well favor 

the overall inhibitory activity of BDQ. Notable residues with van der Waals contributions included 

Gly62B, Glu65B, Ala66A, Ala67A, Tyr68B, Phe69B, Phe74A and Leu72B, which are consistent with 

previous experimental reports [17].  

Using the averaged structure of the BDQ-F1F0 ATP synthase complex, a closer look at the specific 

nature of interaction of the binding site residues revealed that Glu65B exhibited important 

hydrogen, ionic, salt-bridge and amide-Pi stacked interactions with BDQ, which could account for 

its high-affinity binding and stabilization (Figure 9.4). In addition, interactions elicited by BDQ 

with other active site residues included Pi-Pi T-shaped interaction with Phe69B, two Pi-alkyl 

interactions with Ile70A and a Pi-alkyl interaction with Ala66A. Overall, this blockade mechanism 

elicited by BDQ towards key residues of F1F0 ATP synthase c-ring such as Glu65B could interrupt 

the processes of ion exchange and shuttling which are crucial to the synthesis of ATP as mediated 

by the target protein. 
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Figure 9.4: Per-residue decomposition plots showing individual energy contributions to the binding and 
stabilization of BDQ at the c-ring of F1F0 synthase. Energy contributions were highest in conserved 
carboxylates (Glu65B, Asp32B) and Phe69B. Corresponding inter-molecular interactions between BDQ and 
the hydrophilic c rotor-stator region residues in F1F0 synthase is shown as well. 
 

4.0 Conclusion 

The uninterrupted synthesis of ATP is crucial for the survival of organisms, which is mediated by 

the enzyme ATP synthase. This is as well a crucial machinery that has been recently identified as 

an attractive drug target against Mtb largely due to a significant variation in the regulatory 

mechanisms amongst bacterial and eukaryotic organisms [3, 18, 62]. Among the notable 

therapeutic agents that target F-type ATP synthase is BDQ, a diarylquinoline that has been 

experimentally reported to inhibit mycobacterial ATP synthesis by binding to its hydrophilic c 

rotor-stator region. The main aim of this study was to provide atomistic insights into the inhibitory 

mechanisms of the ionophore; BDQ, when bound to F1F0 ATP synthase using MD simulations and 

MM/PBSA methods. 

Differential assessment of the single and dual binding affinities of BDQ toward F1F0 ATP synthase 

using the MMGBSA free energy calculations revealed that a higher and a more favorable binding 

of -38.13kcal/mol occurred in the dual molecule bound system relative to the single molecule 

bound system with a binding free energy of -29.41kcal/mol. This could agree with earlier reports 

which revealed that increased concentrations of BDQ enhances inhibitory potency against the ATP 

synthetic machinery of Mtb. A time-scale and nanosecond based visualization of the interaction 

dynamics between BDQ and the c-ring residues of F1F0 ATP synthase revealed a consistent and 

steady high-affinity involvement of Glu65B, a conserved carboxylate residues involved in ion 

transfer, an interaction that could explain the mechanistic inhibitory activity of BDQ since this act 

could block ion shuttling at the c-ring, which could in turn stall the operation of ATP synthase. 
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Further investigations of the involvement of individual residues at the c-ring region further 

implicated Asp32B and Phe69B, indicative of their essentiality to the binding and stability of BDQ. 

Decomposition of the ΔG revealed that Glu65B and Asp32B had high energy contributions which 

further conformed their importance as stipulated in a previous study which revealed that the 

electrostatic interactions mediated by these residues account for measured salt effect in the 

synthesis of ATP in M. smegmatis. 

Conformational dynamics of the entire F1F0 ATP synthase and the c-ring BDQ binding site 

residues were also investigated over the course of the simulation by calculating the RMSF and Rg 

of their Cα atoms. It was observed that although there was a slightly decreased average fluctuation 

of all residues of F1F0 synthase in the presence of BDQ, there was rather an increased flexibility 

of the residues that directly interacted with BDQ with a <5Å radius relative to lower flexibility in 

the unbound conformation which could have been induced by BDQ. A lower Rg of the c-ring 

suggested a tighter conformation which could have led to a blockage of c-ring rotation with a 

subsequent halt in the ion exchange required for ATP synthesis. Findings from this report provide 

atomistic perspectives into the inhibitory properties of BDQ towards ATP synthesis when bound 

to the c-ring of F1F0 synthase. These useful insights could serve as the basis for the structure-based 

design of novel and next generation of small molecule inhibitors of ATP synthase in the treatment 

of TB. Findings from this study also presents a pathway for further investigations into possible 

resistance to BDQ by mutation of the F1F0 ATP synthase due to the numerous resistant strains in 

Mycobacterium tuberculosis.  
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Abstract 

Bedaquiline (BDQ) has demonstrated formidable bactericidal activity towards Mycobacterium 

tuberculosis (Mtb) in the treatment of multi-drug resistant (MDR) and extensively drug resistant 

(XDR) tuberculosis (TB). BDQ elicits its therapeutic function by halting the ionic shuttle of Mtb 

via mycobacterial F1F0 ATP-synthase blockade. However, triple mutations (L59V, E61D and 

I66M) at the ligand-binding cavity characterize emerging BDQ-resistant strains thereby restraining 

the potentials embedded in this anti-microbial compound, particularly in MDR/XDR-TB therapy. 

In this report, the effects of these triple mutations on BDQ-Mtb F1F0 ATP-synthase binding were 

investigated using molecular dynamics, free energy binding and residue interaction network (RIN) 

analyses. 

The highlight of our findings is the drastic reduction in BDQ binding affinity (ΔG) in the triple 

mutant protein, which was caused by a systemic loss in high-affinity interactions primarily 

mediated by L59, E61 and I66. While wildtype L59 and I66 formed pi-alkyl interactions with BDQ 

at the F1F0 ATP-synthase binding site, E61 elicited conventional (O--HO) bond. Upon transition, 

V59 and I66 were devoid of interactions with BDQ while D61 existed in a weaker non-

conventional (C--HO) bond. Likewise, these mutations distorted the binding site and overall 

structural architecture of F1F0 ATP-synthase in the presence of BDQ as revealed by the RIN and 

conformational analyses. 

Insights from this study could serve as a starting point for the structure-based design of novel 

inhibitors that could overcome mutational setbacks posed by BDQ-resistant strains in MDR/XDR-

TB treatment. 

Keywords: Mycobacterium tuberculosis, Multi-Drug resistant TB, Bedaquiline, F1F0-ATP 

synthase, Molecular dynamic simulations 
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1.0 Introduction 

Tuberculosis (TB) is currently the leading cause of death from an infectious disease worldwide, 

killing more people than Human immunodeficiency virus/ Acquired immunodeficiency syndrome 

(HIV/AIDS)  [1]. Eradication of TB still remains a challenge despite the availability of vaccines 

as well as drug treatments. In 2017, 10 million people fell ill with TB, among which 1.6 million 

died from the disease (including 0.3 million among people with HIV) [1]. The continual emergence 

of resistant Mycobacterium tuberculosis (Mtb) strains further complicates existing treatment 

options and consequently poses a serious global threat toward curtailing TB epidemic.  

Resistance over the years exists in different forms, ranging from Multidrug-Resistant TB (MDR-

TB) to Extensive Drug Resistance TB (XDR-TB). While the former is mediated by an Mtb strain 

resistant to isoniazid and rifampin; the two most potent first-line anti-TB drugs [2], the latter 

describes resistance to the fluoroquinolones or injectable second-line anti-TB drugs such as 

capreomycin, viomycin and ciprofloxacin (CIP) [3]. Moreover, the most virulent form of 

resistance is described as the Totally Drug Resistant TB (TDR-TB) which categorizes strains that 

are resistant to both first-line and second-line anti-TB therapy [4]. 

The 2018 WHO Global TB report on MDR-TB revealed an estimated 588,000 cases globally with 

South Africa alone accounting for about 14,000 cases. MDR-TB strains are historically difficult 

to treat compared to drug susceptible TB, which poses a global threat towards disease eradication. 

As such there is the need to explore new therapeutic options in this field of research. Emerging 

reports have revealed that Bedaquiline (BDQ), a recently approved anti-TB drug, is potent in the 

treatment of MDR-TB and XDR-TB. 

Bedaquiline, an antibiotic drug belonging to the chemical class of diarylquinolines, was recently 

granted approval by the Food and Drugs Administration (FDA)[2]. As an anti-TB agent, BDQ has 
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shown that targeting energy metabolism is a new and efficient approach for inhibiting Mtb activity 

[5, 6]. Moreover, structural and inhibitory mechanisms that underlie BDQ mode of action at 

atomistic level have been recently elucidated in report from our research group, supportive of its 

potency. BDQ functions by targeting F1F0 ATP synthase, an essential enzyme in ATP synthesis 

[7]. Further to this, BDQ has been known to cause mycobacterial cell death through a phenomenon 

known as uncoupling in which it functions as a H+/K+ ionophore, causing transmembrane pH and 

potassium gradients to be equilibrated [8]. 

The F1F0 ATP synthase is a macromolecular membrane embedded protein complex which employs 

electrochemical ion gradient for the conversion of adenosine diphosphate (ADP) and inorganic 

phosphate into adenosine triphosphate (ATP) by a rotary mechanism [9–12]. Moreover, the Fo 

domain of the F1F0 harbors the rotor ring where BDQ is known to bind. In bacteria, it consists of 

identical copies of c-subunits forming an hourglass-shaped cylinder with a central pore known as 

the c-ring  [13]. 

In a recent study, the crystal structure of the c-ring from Mycobacterium phlei (M. phlei) in 

complex with BDQ was resolved, indicating that BDQ cannot bind to the ATP synthase of non-

mycobacterial species [14]. Also BDQ reportedly forms a large number of hydrophobic, 

hydrophilic and electrostatic interactions, which explains the high affinity binding demonstrated 

by BDQ towards the M. phlei c-ring [14]. 

Despite the widely reported potency of BDQ in the treatment of MDR-TB via F1F0 ATP synthase 

inhibition, the emergence of mutations has been related to BDQ-resistant Mtb [6, 15, 16]. The 

occurrence of a triple mutation; L59V, E61D and I66M, reportedly interferes with the direct 

binding of BDQ limiting its therapeutic efficiency [6].  
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This necessitates the development of novel therapeutic options that could help surmount BDQ 

resistance in the treatment of XDR/MDR-TB. Moreover, detailed understanding into the 

mechanisms by which triple mutation impedes BDQ activity is highly crucial, hence the design of 

this study. We employed molecular dynamics and binding analyses to obtain structural and 

molecular insights into the triple L59V, E61D and I66M mutational effects of BDQ on F1F0 ATP 

synthase. Findings would form an important basis for the design and development of novel non-

resistant Mtb F1F0 ATP synthase inhibitors. 

 

2.0 Computational Methodology 

2.1 Homology modelling of F1F0 ATP synthase of Mycobacterial tuberculosis 

The unavailability of an X-ray crystal structure for Mtb F1F0 ATP synthase necessitated the use of 

homology modeling (HM) technique to obtain its 3-D structure from a template M. phlei structure 

with PDB entry 4V1G. The FASTA sequence of the target protein used for HM was retrieved from 

Uniprot database with entry C1AMU9, having ~90% sequence similarity with M. phlei F1F0 ATP 

synthase. The HM of the Mtb  F1F0 ATP synthase was based on established in-house protocols as 

employed in our previous reports [17].  

Structural validation of the obtained model was done using MolProbity webserver [18] with a 

Ramachandran plot that provided visual representations of energetically allowed or stable regions. 

Further validation of the modelled structure was done via PROSA[19] and PROCHECK[20] 

analysis. The F1F0 structure modelled comprised of three identical chains A, B, and C, with each 

chain representing a single subunit C. 
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2.2 Molecular Docking 

Molecular docking was performed on the modelled Mtb F1F0 ATP synthase subunit C structure to 

predict the binding conformation and affinity of the BDQ within the active site region. The active 

site was determined by using the match maker functionality on UCSF Chimera [21] to superimpose 

the built homology model with the X-ray crystal structure of the template M. phlei. Molecular 

docking was then carried out using the AutoDock Vina software [23]. The grid box that defines 

the binding site region of the F1F0 was generated using the AutoDock Vina functionality on UCSF 

Chimera. BDQ was then docked to the active site region which constituted chains A and B. The 

grid box for the docking of BDQ had size and center coordinates of x = (14, -168.70), y = (11, 

58.11) and z = (10, 29.70) respectively. 

 

2.3 System Preparation  

The modelled structure of Mtb was then prepared for molecular dynamic simulation (MD) using 

UCSF chimera [24] and Molecular Molegro Viewer (MMV) [25], to eliminate molecules that are 

irrelevant to the current study. Three-point mutations 59(Leu → Val), 61(Glu → Asp) and 66(Ile 

→ Met) were carried on the protein structure (Figure 10.1) using the integrated Dunbrack rotamer 

method of UCSF Chimera [26]. Altogether, BDQ-bound non-mutated (wildtype, wt) and mutant 

(mt) systems were obtained and set up for 150ns simulation time in order to clearly distinguish 

mutational effects on BDQ activities.   
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Figure 10.1: 3-D structure of Mtb F1F0 ATP synthase (light blue) bound by BDQ (grey) at the 
active site (yellow) and showing the three mutations 59(Leu → Val), 61(Glu → Asp) and 66(Ile 
→ Met). 
 
 
Molecular dynamics (MD) simulations  
 

MD simulation was performed using the GPU version of AMBER18 with an integrated PMEMD 

module [27], according to in-house standard simulation protocols, as employed in several of our 

previous studies [28–32]. The MD simulation was initiated using a time step of 1fs and coordinates 

saved at 1ps interval followed by subsequent analysis of trajectories using the integrated PTRJ and 

CPPTRAJ module [33]. Visualization of the complexes and data plots were carried out using the 

graphical user interface of UCSF chimera [21] and Microcal Origin analytical software [34]. 
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2.5 Thermodynamic calculations 

The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) [35–38] method was used 

to calculate binding free energy of the BDQ in the wild and mutant Mtb F1F0 ATP- synthase.  

 

 

The binding free energy (DGbind) was calculated from the following equation: 

DGbind = Gcomplex - Greceptor - Gligand          (1) 

DGbind = DGgas + DGsol -TDS,                   (2) 

 

Where DGbind is considered to be the summation of the gas phase and solvation energy terms less 

the entropy (TDS) term 

DEgas = DEint + DEvdw + D Eelec         (3) 

 

DEgas is the sum of the AMBER force field internal energy terms DEint (bond, angle and torsion), 

the covalent van der Waals (DEvdw) and the non-bonded electrostatic energy component (DEelec). 

The solvation energy is calculated from the following equation: 

 
Gsol = GGB + Gnon-polar                 (4) 

 
Gnon_polar = gSASA + b               (5) 

The polar solvation contribution is represented as GGB and Gnon-polar is the non-polar solvation 

contribution and is calculated from the solvent assessable surface area (SASA), obtained by the 

use of a 1.4 A° water probe radius. The surface tension constant (c) was set to 0.0072 kcal/mol and 

b to 0 kcal/mol [39]. Per-residue decomposition analyses were also carried out to estimate 

differential energy contributions of binding site resides towards BDQ affinity and stabilization in 
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both systems. This was important to further monitor triple mutational effects on BDQ binding 

complementarity. 

 

3.0 Results and Discussion 

3.1 Structural validation of the 3D Homology model of Mtb F1F0 ATP-synthase 

 

The Molprobity web server was employed in validating the homology model built in this study 

and the resulted presented in a Ramachandran plot as shown in figure S1.  From the plot 95.2% of 

all residues were in favored region while 98.3% were in the allowed region leaving 4 residues as 

outliers. Interestingly these four outliers did not include residues of the active site region when the 

homology model was assessed for its active site residues by superimposing with the template M. 

phlei structure (4V1G) on Chimera Multi-align viewer [21].The results show a level of  precision 

of the dihedral angles and backbone in three dimensional space. In addition to this, the PROSA 

web server was used to measure the total model quality, as it affirms if built model was within the 

acceptable X-ray and NMR studies. The Z-score for the modelled ATP synthase was -1.88, as 

shown in Figure S2, which implies a good quality model for use. Further validation was also 

carried out using PROCHECK which identified 92.6% of the residues to be in the favored region, 

5.7% of the residues in the additionally allowed regions whiles 1.1% in the generously allowed 

region and 0.6% of the residues in the disallowed region (figure S3). Taken together, these 

validation protocols established the reliability of the 3D structure model used in this study. 
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3.2 Triple mutation induces loss of crucial interactions and consequential energy contributions 

 

The binding affinity of inhibitors to their respective targets is largely influenced by complementary 

interactions occurring within the binding sites, particularly with certain site residues. As such 

point-mutational changes or disorders among these residues could alter the binding mechanisms 

of high-affinity inhibitors and in turn affect their therapeutic functionalities [40, 41]. 

At first, we measured the involvement of those residues (wtLeu59A, wtIle66A and wtGlu61B) in the 

binding of BDQ prior to mutations. This was done by evaluating differential energy contributions 

of BDQ-interactive site residues across wt and mt F1F0 ATP synthase. Overall energies were 

decomposed into van der Waals and electrostatic energy including their overall contributions to 

total energy. This was performed using MM/GBSA-based per-residue energy decomposition 

method. As estimated, Leu59A, Ile66A and Glu61B contributed total energies of -2.60kcal/mol, -

1.21kcal/mol and -1.38kcal/mol respectively to BDQ binding in the wt form (Figure 5.2).  

Interestingly, we observed that the mutational change in residues (wtLeu59A→ mtVal59A; wtIle66A 

→ mtMet66A; and wtGlu61B → mtAsp61B) accounted for a reduction in total energies where 

mtVal59A, mtMet66A and mtAsp61B had energies of -1.69kcal/mol, -0.82kcal/mol and -

0.69kcal/mol respectively. These energy differences could account for weaker BDQ interactions 

given that wtLeu59A, wtIle66A and wtGlu61B played critical roles in the binding and stabilization 

of BDQ consistent with its high-affinity inhibitory activities. In a similar fashion, vdW and 

electrostatic energies were lower in the mutated residues compared to their wt forms as presented 

in Table 10.1. Relatively, an increase in positive value for the vdW energy contributions in 

mtMet66 could be more unfavorable towards BDQ binding. 

Additional insights were provided by elucidating the nature and types of bonds that occur at the 

Mtb F1F0 ATP synthase binding site relative to the BDQ activities in both wt and mt variants. 
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Table 10.1: Calculated final decomposition energies for all residues of interest. 

Energy components 
(kcal/mol) 

Residues 

Leu59A → Val59A Ile66A   →   Met66A Glu61B → Asp61B 

vdW -2.77 -1.99 -1.40 -0.62 -2.12 -0.74 

ELE -1.97 -1.68 0.86 0.96 -7.52 -5.20 

TOTAL -2.60 -1.69 -1.21 -0.82 -1.38 -0.69 

 

As shown in Figure 10.2, wtLeu59 and wtIle66 mediated a pi-alkyl interaction with BDQ; 

interactions that could be crucial for its stabilization at the binding site. However, these interactions 

were lost when mutated to Val59A and Met66A, events that could possibly affect BDQ stability 

and binding affinity. Similarly, there was the occurrence of a high-affinity hydrogen bond between 

wtGlu61B and BDQ.  
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Figure 10.2: Per-residue decomposition plots showing individual energy contributions to the 
binding of BDQwith much emphasis on the residues in the wild ATP synthase-BDQ system and 
the corresponding mutants in the mutant ATP synthase-BDQ system. Corresponding inter-
molecular interactions between the wild and mutant systems is shown as well. 

 

Moreover, while this was an OH--O H-bond type (conventional), mtAsp61B mediated an 

unconventional CH--O bond with BDQ which is less strong compared to the conventional types. 

This correlates with a reduction in ELE energy among both residues as shown in Table 10.1. 

Common to both is the attractive charge interaction mediated by Asp28B in both wt and mt variants 

as shown in the per-residue plot in Figure 10.2. 

Mutational-induced alterations in the primary or wildtype interactions mediated by BDQ could 

also correlate with the reduction in total energies observed in the mutant system. Hence, we can 
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infer that the triple mutation of wtLeu59A, wtIle66A and wtGlu61B destabilizes their critical 

involvement in BDQ binding, which could in turn account for a loss in therapeutic activity. 

3.3 Triple mutation impacts BDQ binding by disorienting residue interaction network profile of 
Mtb F1F0 ATP synthase   

 

The structural integrity of any enzyme largely depends on the inter-residue interactions existing 

between the individual residues that form the basic unit of that particular enzyme. As such any 

perturbation or disorientation of the residue interaction profile of  the enzyme, Mtb F1F0 ATP 

synthase  could possibly influence its biological activity and hence curtail its involvement in ATP 

synthesis [42, 43]. An exploration of residue-residue interaction network within Mtb F1F0 ATP 

synthase as performed in this report could also provide essential structural insights into the impact 

of BDQ binding on its structural integrity as well as reveal crucial atomistic insights into the impact 

of the induced triple mutation. Individual residues of Mtb F1F0 ATP synthase are represented by 

nodes while specific inter-residue interactions are described by edges shown in figure 10.3 and 

figure 10.4. Predominant interactions that exist between residues included hydrogen bonds, van 

der Waals interactions and ionic interactions [44]. To explore the structural impact of the induced 

triple mutation on BDQ binding, specific parameters described as centrality measures were taken 

into consideration to provide insights on the residue network profile of Mtb F1F0 ATP in its wild 

and mutant conformation. The assessed parameters included diameter density, betweenness, short 

path length, node degree and closeness centrality. The number of connections between nodes is 

described as node degree whereas the compactness of the enzyme network is described by the 

diameter (D) [43, 44]. Likewise, the sparsity of the network profile measured between 0 and 1 is 

described by the density parameter whereas the betweenness and closeness centrality revealed 

essential residues within the residue interaction network of Mtb F1F0 ATP synthase [43, 44]. The 
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short path length parameter provides insights on the residue flexibility and takes into consideration 

the interconnective edges between respective nodes[43, 44].  Results as shown in figure 10.3 for 

the wild conformation suggests the essentiality of (Leu59, Ile66 and Glu61) in the overall integrity 

of Mtb F1F0 ATP synthase considering the extensive interactions each of these residues engaged 

in with neighboring residues. These residues exhibit centrality and coordination by forming 

various interactions, notably, hydrogen bonds, van der Waals and ionic interactions with 

neighboring residues as shown in figure 10.3. As observed, there was also a high node degree as 

well as prominent betweenness and closeness centrality in the wild conformation. The observed 

shortness of length of the connective edges confers with a compact and relatively stable residue 

conformation of the BDQ bound wild conformation. The roles of these residues in imposing 

stability and compactness further highlights their cruciality in Mtb F1F0 ATP for which their 

mutation could impact inhibitor binding.  
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Figure 10.3: Residue Interaction network analysis of wild Mtb F1F0 ATP synthase in complex 
with BDQ. (A) Circled insert shows hotspot residues (Lue59A, Glu61B and Ile66A) which are 
subsequently mutated. (B) Network and topology representation highlighting both hotspot residues 
with the corresponding interacting neighboring residues. (C) Closer network view showing the 
residual interaction network and centrality of the hotspot residues. 

 

 

In contrast to wild conformation, the mutant bound conformation exhibited varying residue 

interaction network profile as shown figure 10.4. Which could largely be attributed to the induced 

triple mutation. Although the mutated residues-maintained interactions with neighboring residues 

there was an apparent reduction in node degree, much longer path lengths between nodes and a 

corresponding reduction connectivity of nodes relative to the wild conformation. These 

corresponds with a relatively loose and less compact residue interaction network profile of the 

mutant conformation. The occurrence of these observed residue network distortions even in the 
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binding of BDQ suggests that, regardless of the BDQ binding, the structural integrity of ATP 

synthase is stilled disoriented. This could eventually influence BDQ binding affinity and its 

consequential inhibitory potency.  

 

Figure 10.4: Residue Interaction network analysis of mutant Mtb F1F0 ATP synthase in complex 
with BDQ. (A) Circled insert shows hotspot mutant residues (Val59A, Asp61B and Met66A). (B) 
Network and topology representation highlighting both hotspot residues with the corresponding 
interacting neighboring residues. (C) Closer network view showing the residual interaction 
network and centrality of the hotspot residues. 
 
 
To further explore the impact of the triple mutation residues interaction profile of Mtb F1F0 ATP, 

the hydrogen bond patterns of active site residues of the wild and mutant bound conformation of 

Mtb F1F0 ATP was estimated from the generated 150ns MD trajectory. The formation of hydrogen 

bonds between residues in a protein is very essential in the conformational dynamics of the protein 

structure [45].  As shown in the comparative hydrogen bonds plot in figure 10.5A, the wild bound 
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conformation of Mtb F1F0 ATP exhibited the highest average hydrogen bonds of 94 H-bond 

interactions whiles the mutant showcased an estimated average hydrogen bonds of 92 interactions. 

The decrease in hydrogen bond interaction in the mutant bound conformation was consistent with 

the distorted residue interaction network of the mutant complex as shown in figure 10.4. The 

distorted residue network profile could have impeded the formation of hydrogen bonds, hence 

lower average hydrogen bonds as estimated. Upon mutation, Glutamate 61(Glu), the main residue 

involved in ion exchange in mycobacteria [46], was replaced with Aspartate (Asp). Even though 

both Glu and Asp are polar and negatively charge hydrophilic amino acids that are essential in the 

formation of hydrogen bonds the shorter side chain of Asp could have informed its varying 

structural impact on Mtb F1F0 ATP. Similarly in the Leu59Val mutation, although  both Leucine 

and Valine are aliphatic hydrophobic amino acids, buried in the core of the enzyme structure, the 

non-reactive side chain on Valine [46] which rarely involves in protein function could have 

accounted for the lower hydrogen bond formation. More so, unlike most amino acids which 

possess only one non-hydrogen substituent attached to the c-β carbon, Valine contains two non-

hydrogen substituents. This property of Valine could have also influenced its formation of 

hydrogen interactions with neighboring residues and a consequential decrease in hydrogen bond 

formation within the active site of the mutant Mtb ATP synthase. Mutation of Ile66 with 

methionine (Met) could have also influenced the decreased hydrogen bond formation in the mutant 

bound complex. Even though both are favorable to be substituted by each other due to their 

hydrophobic nature, the sulphur atom on methionine possibly impeded its connection with 

hydrogen atoms but rather favored its interaction with methyl groups and consequently limiting its 

reactivity within Mtb F1F0 ATP synthase.   Taken together, the triple mutation structurally distorted 
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the conformation integrity of Mtb F1F0 ATP synthase and consequential reduced its overall 

hydrogen bonding and probably the binding affinity of BDQ. 

 
Figure 10.5: (A) Comparative hydrogen bond plots of within active site region of the wild and 
mutant bound Mtb ATP synthase. (B) 3D representation of the degree of hydrogen bond donors 
(magenta) and acceptors (light green) within the active of site of the wild bound Mtb ATP synthase. 
(C) 3D representation of the degree of hydrogen bond donors (magenta) and acceptors (light green) 
within the active of site of the mutant bound Mtb ATP synthase. 
 
 
3.4 Triple mutation interferes with BDQ binding affinity on Mtb F1F0 ATP synthase 

Binding free energy, calculated using the Molecular Mechanics/Generalized Born Surface Area 

(MM/GBSA) [35–38] method was estimated to assess any differences in the binding of BDQ to 
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Mtb F1F0 ATP synthase, in the presence and absence of the induced triple mutation.  This provided 

insights on whether the mutation could probably influence BDQ binding and its overall inhibitory 

potency. Results obtained from the calculation reveals that the total binding energy of BDQ was 

higher in the wild Mtb F1F0 ATP conformation, with a total binding free energy of -30.10kcal/mol 

relative to a lower energy of -18.47kcal/mol in the mutant conformation as shown in Table 10.2. 

The lower binding of BDQ in the mutant structure could be attributed to the observed distortion in 

the residue interaction network of the mutant Mtb F1F0 ATP, characterized by increased residue 

flexibility, which could have impeded the favorable interaction crucial residues with BDQ.  

Table 10.2: Estimated Binding free energy profiles of BDQ to mutant and wild Mtb F1F0 ATP 
synthase 
 

ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free 
energy; ΔGsol = solvation free energy ΔG = gas phase free energy. 

 

 

 

 

 

Systems Energy components 

(kcal/mol) 

     𝚫𝐄𝐯𝐝𝐰 𝚫𝐄𝐞𝐥𝐞 𝚫𝐆𝐠𝐚𝐬 𝚫𝐆𝐬𝐨𝐥 𝚫𝐆𝐛𝐢𝐧𝐝 

Mutant-BDQ 

 

 

Wild-BDQ 

 

 

-36.01 ±0.06 

 

-27.67± 0.05 

 

 

-167.73±0.19 

 

 

-144.79 ±0.23 

 

-203.7±0.19 

 

 

-172.5±0.23 

 

173.64±0.17 

 

 

153.98±0.23 

 

 

-18.47±0.05 

 

 

-30.10±0.07 
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3.5 Exploration of the structural and conformational dynamics of wild and mutant Mtb F1F0 

ATP synthase upon binding of BDQ 

 

As reported experimentally, mutations on Mtb F1F0 ATP synthase causes direct structural 

interference and subsequently affects the binding of BDQ [14]. In light of this we assessed the 

stability and structural dynamics of the wild and mutant Mtb F1F0 ATP synthase to establish the 

effects of the triple mutations. To ascertain the impact of the triple mutation on structural stability 

of Mtb F1F0 ATP synthase, the root mean square deviation (RMSD) of its C-α atoms were 

calculated over the simulation period. As shown in figure 10.6A all simulated models were well 

stabilized and model was observed to have achieved convergence after about 20ns. The average 

deviations computed for C-α atoms of the mutant BDQ bound Mtb F1F0 ATP synthase was 2.83Å 

whiles the wild bound conformation exhibited an average RMSD value of 1.80Å. This suggested 

a more stable conformation in the wild conformation compared with the mutant which was 

relatively unstable.  It could therefore be inferred that the residue network disorientation and 

residue flexibility in the mutant complex as observed in the RIN analysis possibly conferred the 

observed conformational instability on Mtb F1F0 ATP synthase relative to the wild bound complex. 

This could have in turn influenced the overall binding of BDQ considering the fact that the 

increased deviation of the C-α atoms in the mutant conformation could have equally impeded the 

interaction of crucial residues required for the binding of BDQ. To further assess the 

conformational dynamics of bound Mtb F1F0 ATP synthase in the wild and mutant forms, 

fluctuations of individual residues were assessed by calculating the root mean square fluctuation 

of corresponding C-α atoms as shown in figure 10.6B. The RMSF calculations also gave insights 

on the flexibility of each residues as was observed in the RIN analysis. Comparatively, the bound 

mutant complex exhibited a slightly higher average RMSF of 12.5Å whiles the bound wild 
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conformation exhibited a exhibited a lower RMSF of 11.0Å. This higher flexibility of residues is 

also consistent with the increase in short path length of residues as observed in the RIN analysis 

further highlighting the impact of the mutation on residue flexibility as well as a consequential 

effecting on BDQ binding. In all, although the difference in average flexibility was minimal 

between the two models, the slightly higher flexibility in bound wild conformation, it confers with 

earlier assertion that mutation perturbed the conformation dynamics of Mtb F1F0 ATP synthase 

and hence influence BDQ binding. With the observed increased flexibility in the mutant complex, 

we further assessed the compactness of Mtb F1F0 ATP synthase by calculating the radius of 

gyration (RoG) of its C-α atoms over the simulation period. A compact or rigid enzyme structure 

is consistent with reduced residue flexibility of the enzyme [47]. As shown in figure 10.6C the 

mutant complex exhibited a slightly higher average RoG 20.4Å relative to the wild complex which 

exhibited an average RoG of 20.3Å. Though minimal, the slight less compact conformation of the 

mutant Mtb F1F0 ATP synthase complex due to its relatively higher RoG conferred with its slightly 

higher overall enzyme flexibility as observed in the RMSF and RIN analysis. In summary the 

effect of the induced triple mutations on F1F0 ATP synthase was definitive in causing structural 

alterations characterized by the high C-α deviations, increased residue flexibility and less compact 

enzyme structure. These structural alterations could in turn have interfered with BDQ binding, 

hence its lower binding free energy as estimated in the mutant complex.  
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Figure 10.6: A) Comparative C-α RMSD plots wild and mutant BDQ bound Mtb ATP synthase. 
B) RMSF plots showing the degree of residue fluctuations that occurred on both wild and mutant 
Mtb ATP synthase over the simulation period. Inset shows 3D representation of some prominent 
residue fluctuation regions (region 37-67 and 160-175). C) C-α Rg plot showing distinct structural 
compactness and rigidity of wild and mutant bound Mtb ATP synthase. 
 

4.0 Conclusion 

Multi-Drug resistance TB remain a public health concern and the continuous search for various 

therapeutic approaches that will counter this menace is on the rise. The recent approval of BDQ 

for the treatment of MDR-TB has shown great advancement toward attenuating the disease. By 

inhibiting ATP production in Mtb, BDQ deprives the microorganism of energy to carry out 

metabolic activities leading to cell death. However emerging reports suggests resistance to BDQ 

in Mtb to be attributed to some notable mutations {59(Leu → Val), 61(Glu → Asp) and 66(Ile → 

Met)} in the amino acid sequence of the mycobacterium. In this study we employed computational 
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methods to provide insights into the effect of mutations on the inhibitory prowess of BDQ by 

ascertaining any mutation induced structural perturbations as well as the residue interaction 

network of Mtb F1F0 ATP synthase. Per-residue energy decomposition analysis revealed that, upon 

mutation, there was reduction in the total energies contributed by the residues of interest towards 

the binding of BDQ with a corresponding loss of crucial interactions such as hydrogen and pi-

alkyl interactions that were formed with BDQ in the wild complex. A further exploration of the 

impact of the mutation revealed, the triple mutations induced, altered BDQ binding by distorting 

the structural integrity of Mtb F1F0 ATP synthase. This was characterized by an increase in short 

path lengths of edges between nodes as observed in the RIN analysis and a corresponding increase 

in individual residue flexibility as shown with increased C-α atom fluctuation and deviation of the 

mutant complex relative to the wild complex. The disorganization of the structurally compact wild 

Mtb F1F0 ATP synthase complex into a more flexible conformation upon mutation was further 

exhibited by a decrease in hydrogen bond formation in the mutant complex relative to the wild 

complex. These findings provide structural and atomistic insights into the experimental reports 

that indicate that these triple mutations could interfere with BDQ binding and consequently prevent 

its ionophoric role of halting ion transfer as an anti-TB agent. Conclusions from this report could 

also aid in the design of new Mtb F1F0 inhibitors that could overcome resistance in MDR-TB. 
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ABSTRACT 

The mobility of loops around the catalytic site of a protein remains crucial to its activity. Dynamics 

of the WPD-loop is an essential determinant of the catalytic activity of tyrosine-protein 

phosphatase zeta, an implicated protein in glioblastoma cells. The WPD-loop assumes a closed 

conformation upon substrate binding in order to position its catalytic aspartate to participate in 

catalysis. Herein, we explore the impact of NAZ2329, a recently identified allosteric inhibitor of 

tyrosine-protein phosphatase zeta, on the atomic flexibility of the WPD-loop. The druglikness of 

NAZ2329 was assessed using the SwissADME online tool. The enzymatic complex was then 

subjected to conformational simulations using the AMBER molecular dynamics software. 

Structural analysis revealed that NAZ2329 induced an open conformation of the crucial WPD-

loop, consequently impeding enzyme activity even upon substrate binding. Based on the molecular 

interactions between of NAZ2329 and tyrosine-protein phosphatase zeta, a pharmacophore model 

was generated to exhibit the important functional moieties of NAZ2329. These findings provide 

an insightful molecular and structural mechanism in targeting tyrosine-protein phosphatase zeta as 

a therapeutic intervention for glioblastoma.  We believe that this optimized pharmacophoric model 

will aid in the design of improved anti-tyrosine phosphatase agents, thus allowing for increased 

patient adherence. 

Keywords: Glioblastoma therapy, pharmacophore, molecular simulations, WPD-loop, 

conformational dynamics  
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1. INTRODUCTION 

Glioblastoma is classified as the most aggressive and frequently diagnosed central nervous system 

malignancy, with an annual incidence of 100,000 new cases, globally 1.  Adding to the complexity 

of the disease, glioblastoma is associated with poor prognosis and low survival rates. 

Glioblastomas are tumors that arise from astrocytes in the cerebral cortex, but may be found 

anywhere in the brain or spinal cord 2. The tumors are highly vascularized to allow oxygen and 

nutrients to pass through, thus increasing its growth 3. Currently, there are no preventative therapies 

or cure for the disease, with only surgical resection and adjuvant chemotherapy being available 4.  

There have been numerous studies elucidating the development of new therapeutic approaches, 

including an article that investigated the receptor type tyrosine-protein phosphatase zeta (PTPRZ) 

as a target in glioblastoma cells 5. The PTPRZ enzyme plays a crucial role in regulating protein 

tyrosine phosphorylation, thereby leading to the survival of the glioblastoma cells and promoting 

the growth of tumors 6. Due to this mechanism of action, the PTPRZ enzyme is a crucial target in 

the design of efficient inhibitors of against glioblastoma 3. Structurally, active site architecture of 

PTPRZ is made up the Phosphate binding P-loop, the catalytic acid/base aspartate containing 

WPD-loop, the conserved glutamine containing Q-loop, the pTyr-recognition pTyr-loop and the 

multiple conserved residues containing E-loop 7. As a vital component of the catalytic process of 

PTPRZ, the WPD-loop serves as a flexible gate to catalytic site which is shown to assume a closed 

conformation in active protein form and an open conformation in inactive protein form (Figure 

11.1) 8. 
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Figure 11.1: Graphical representation of the WPD-loop (yellow) of PTPRZ. The active form of 
the protein is associated with a closed WPD-loop upon binding of the natural substrate, whereas, 
an open conformation of results in an inactive protein.  

 

Upon binding of a substrate to the active site the, the WPD-loop assumes a close conformation to 

position its catalytic aspartate to participate in catalysis 7. Therefore a compromised WPD-loop 

mobility can substantially decrease the catalytic activity of the overall PTPRZ protein as was 

reported by studies with mutated tryptophan hinge residue 9,10. 

There have been multiple phosphotyrosine competitive inhibitors that have been designed to 

inhibit the PTPRZ enzyme. These compounds, however, have failed to successfully attenuate 
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cancer due to the drugs inability to permeate the cell wall 11. Another challenge when designing 

effective inhibitors of the enzyme is its highly conserved, positively charged active site. Due to 

these reasons, the enzyme was long known as an “undruggable target” 5.   

Over recent years, targeting the allosteric site of the PTP family of enzymes has proven to be 

successful 12. In 2017, a cell-permeable small molecule, NAZ2329, was identified to allosterically 

inhibit both the PTPRZ and PTPRG, thus mitigating the tumorigenicity in glioblastoma cells 13. 

This allosteric inhibition strategy has since then shown to be extremely promising in glioblastoma 

drug design. 

Here we assess, through the use of in silico tools, the structural mechanism of inhibition of 

NAZ2329 at the allosteric site of PTPRZ, with particular emphasis on the dynamics of the WPD-

loop. Also, a pharmacophore model was design based on the binding profile and structure activity 

relationship of NAZ2329 with PTPRZ. This pharmacophore model approach will facilitate the 

design of small molecule inhibitors that will not only target PTPRZ and PTPRG but will be 

applicable to other tyrosine phosphatases as well. 

2. COMPUTATIONAL METHODS 

2.1 Exploring the Drug Likeliness of NAZ2329 

SwissADME 14, an online software, was used to assess the physicochemical descriptors, the 

pharmacokinetic features and the drug-worthy nature of NAZ2329. In computing the lipophilicity 

and polarity of NAZ2329, the “Brain Or Intestinal Estimated permeation, (BOILED-Egg)” method 

was employed 14. 
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2.2 Preparation of PTPRZ System 

To identify the most suitable crystal structure for molecular dynamic simulations, all PTPRZ 

structures available on RSCB Protein Data Bank 15 were assessed. Of the eight structures, only 

four were of human origin. As our study focused on the NAZ2329 molecule bound to the allosteric 

site of PTPRZ, the PDB code 5AWX was chosen as the most suitable crystal structure. Based on 

the literature accompanying the crystal structure, it was noted that the free enzyme demonstrated 

a closed WPD-loop, whilst an open WPD-loop was depicted in the NAZ2329-bound complex. 

This justified the use of both the bound crystal structure as well as the free enzyme (PDB codes: 

5AWX and 5H08, respectively) 16.  

To validate the binding site of PTPRZ, the NAZ2329 molecule was extracted from the complex 

using the UCSF Chimera software package 17. Molecular docking was then carried out using the 

Autodock Vina plugin on the Chimera software, where default settings were used. The grid box 

was defined around the following key residues Glu1981, Arg1939, Gly1938, Pro1905, Glu1898, 

Trp1899, Val1911 and Glu1977, which covered the allosteric region of PTPRZ. The X, Y and Z 

centre values of the grid box were defined as 30.58, -2.11 and 43.21, respectively, whereas, the X, 

Y and Z size dimensions were defined as 10.8, 14.3 and 11.4, respectively. Docking results, of 

binding affinity -9.7 kcal/mol, indicated significantly similar binding poses of the original crystal 

structure to the docked NAZ2329 (Figure S1). This validated the docking pose, thus allowing 

further analysis to be carried out. The structures of PTPRZ and NAZ2329 were then prepared and 

missing residues modeled using the UCSF Chimera software package 17.  
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2.3 Molecular Dynamic (MD) Simulations 

Molecular dynamic (MD) simulations present a vigorous tool to explore the physical movements 

of atoms and molecules, and in so doing, unveiling dynamical evolution of biological systems. 

Using the GPU version of the PMEMD engine provided with the AMBER package, MD 

simulation was carried out in which the FF14SB variant of the AMBER force field 18.  

Atomic charges for NAZ2329 were created by employing the Restrained Electrostatic Potential 

(RESP) and the General amber Force Field (GAFF) in ANTECHAMBER.  Neutralization of all 

systems and addition of all hydrogen atoms was performed by using the Leap module incorporated 

in the AMBER 14 package. Na+ and Cl
- served as counter ions for the neutralization process. As 

per Leap’s default settings, the amino acids were renumbered in a sequential order, so that residue 

“G1696” was renamed as “G1”. Results were thus displayed as per renamed residues. Using TIP3P 

water molecules of 8Å box size, all systems were implicitly solvated. 

Minimizations of the systems were carried out in two separate stages. The first stage involved a 

2000 steps minimization with an incorporated restraint potential of 500kcal/mol Å2. The second 

stage involved a 1000 steps full minimization process incorporating a conjugate gradient with no 

restrain. 

All systems were then steadily heating from 0K to 300K over 50ps, in a manner that ensured that 

all systems such that the systems conserved a fixed atom number and volume. Solutes in the 

systems were given a potential harmonic restraint. A potential harmonic restraint of 10kcal/mol 

with a collision frequency of 1.0ps was imposed on solutes in all systems.  Equilibrations of all 

systems were then performed after heating over a 500ps period at a constant operating temperature 

of 300K. Constant pressure and atom numbers were also ensured by mirroring an isobaric-
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isothermal ensemble (NPT).   A 1 bar pressure was maintained for all systems using the Berendsen 

barostat.  

A 100ns MD simulation was carried out on all systems in which the SHAKE algorithm was 

incorporated to constrict bonds of hydrogen atoms.  A 2fs simulation step coupled with a SPFP 

precision model was used. The simulations coincided with isobaric-isothermal ensemble (NPT), 

with randomized seeding, constant pressure of 1 bar maintained by the Berendsen barostat, a 

pressure-coupling constant of 2ps, a temperature of 300K and Langevin thermostat with collision 

frequency of 1.0ps.  

2.4 Post-Dynamic Analysis 

The PTRAJ module of AMBER14 suit was used to analyze all trajectories generated from 

coordinates at every 1ps from all simulated systems. Also, the CPPTRAJ module of AMBER14 

package was used to analysis of RMSD, RMSF and Radius of Gyration. 

2.4.1 Binding Free Energy Calculations 

The binding free energy generated in the simulated systems was estimated using the Molecular 

Mechanics/GB Surface Area approach as has been employed  in some of our previous reports19–

21.  The estimated binding free energies may expound the binding mechanism between NAZ2329 

and PTPRZ.  From the 100ns simulation trajectory, 10000 snapshots were obtained and 

subsequently used to estimate the binding free energy.   By the MMGBSA approach, the binding 

free energy is estimated for the complex, ligand and receptor as follows; 

∆G[U\] = G^_`abcd − GTc^cae_T − GbUfg\]																																									(1) 

∆G[U\] = Efgh + Gh_b − TS																																																																		(2) 

Efgh = EU\e + Ei]j + Ecbc																																																																			(3) 
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Gh_b = Gkl + Gmn																																																																																			(4) 

Gmn = γSASA																																																																																											(5) 

Egas represents gas-phase energy and is made up of the sum total of the internal energy Eint; 

Coulomb energy Eele and the van der Waals energies Evdw. Gsol represents the solvation energy 

which is estimated by the sum total of polar state energy contributions, GGB and non-polar energy 

contributions, GSA . Using a water probe radius of 1.4 Å, GSA is estimated from the solvent 

accessible surface area (SASA). GGB is determined from the GB equation. Total entropy of solute 

and temperature is represented as S and T respectively. The accuracy of the estimated relative 

binding free energies reported here might be enhanced if the terms in the equation (2) are averaged 

over multiple conformations or MD snapshots 22, but this usually dependent on the research interest 

under consideration. Conducting MD simulations for NAZ2329, PTPRZ and the complex will 

yield more accurate results in the calculating the binding free energies; it requires greater 

computational resources, which were not readily available for this study.  

3.4.2 Dynamic Cross-correlation Analysis (DCC) 

The correlation coefficient of motions between the atoms in PTPRZ over the simulation period 

were quantified by calculating the dynamic cross correlation matrix 23. DCC was performed using 

CPPTRAJ module of the AMBER 14 suite. The formula used to describe dynamic cross 

correlation is given below: 

 

𝐶𝑖𝑗 = 	
< Δri. Δrj >

_< Δ𝑟z{ >< 	Δ𝑟|{ >a
}
{
 

 



350 
 

Where, i and j represents the ith and jth residue respectively. The displacement vectors that 

correspond to the ith and jth residue respectively is represented as Δri or Δrj .The Origin software 24 

was then used to plot the DCC matrix.  

2.4.3 Principal Component Analysis (PCA) 

Principal component analysis (PCA), is a covariance-matrix-based approach that is used to show 

the displacement of atoms and the dynamics of loops of a protein 25.   Using the PTRAJ module 

of the AMBER14 package, solvent water molecules and neutralizing ions added by the Leap 

module are stripped prior to MD trajectory generation. There is then an alignment of the stripped 

trajectories against their respective fully minimized structures. PCA was performed for C-α atoms 

on 1000 snapshots each.  The first two principal components and covariance matrices were 

calculated using scripts developed with our research group. PCA calculations were conducted over 

1000 snapshots each for C-α atoms. PC1 and PC2, which represent the first two principal 

components, are created from the trajectories averaged from the unbound PTPRZ and the bound 

system.  Using Cartesian coordinates of C-α atoms a 2X2 covariance matrix is created. The first 

two eigen vectors of covariant matrices correspond with the created PC1 and PC2. The Origin 

software24 was then employed to create PCA plots. 

 

2.5 Pharmacophore Model Creation  

Following the simulation of NAZ2329 at the active site of PTPRZ, per-residue energy 

decomposition analysis was used to determine the amino acids that contribute the most towards 

the binding of NAZ2329. In constructing the pharmacophore in this study, the pharmacophoric 

moieties that exhibited prominent interaction with highest energy contributing amino acids were 
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used. In validating and generating our model, it was uploaded on the  ZincPharmer 26 and 

LigandScout 27.   

 

 

3 RESULTS AND DISCUSSION 

3.1 Sequence analysis and structural stability of PTPRZ  

To understand the structural mechanism of inhibition of PTPRZ, it is important to identify the 

fundamental structural characteristics of the protein. Based on previous studies, it has been 

established that the active and allosteric sites may be found adjacent to each other. The WPD-loop, 

a vital catalytic site regulator, forms an outer cover to part of the allosteric site, indicating that the 

ligand that binds to this allosteric pocket would govern the dynamics of this loop. Figure 11.2 

graphically represents these unique structural features, including the corresponding amino acids 

for each region.  
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Figure 11.2: Structural and corresponding sequence representation of the unique regions of the 

PTPRZ protein; active site-red, allosteric site- green and WPD-loop- yellow (PDB Code: 5H08) 

16.  

PTPRZ as a protein expressed in the central nervous system is localized in the glial cell where it 

reportedly mediates cell adhesion signaling events during neurogenesis. The strong expression of 

PTPRZ glioblastoma 28 renders them as viable anti-cancer therapeutic targets treatment. The 

inhibitory activity of NAZ2329 as experimentally reported, could potentially influence the 

conformational stability of PTPRZ 5.  
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As such, the stability of 3-D backbone atoms of the simulated APO and complexed PTPRZ was 

ascertained by calculating the root mean standard deviation (RMSD) of the generated trajectories 

over the 100ns simulation period.  Calculated RMSD also assessed the convergence of the 

respective systems as depicted in Figure S1, with each system assuming an energetic plateau after 

about 22ns. An initial increase in RMSD to 3.4Å in the APO system between 0 to 20ns was 

observed, illustrating the dynamic conformational changes associated with the expansion of 

PTPRZ over that period. The expansion allowed infiltration of solvent molecules in hydrophobic 

pockets. However, after about 20ns, all systems rendered energetically stable. The average RMSD 

for both APO and complexed PTPRZ was 2.0Å and 1.6Å respectively. With the average RMSD 

less than 2.0Å, it was deduced that the systems attained conformational stability 29–31. The lower 

RMSD of the NAZ2329-complex relative to the APO system suggest that the inhibitory activity 

of NAZ2329 possibly induced conformational dynamics that contributed to the system achieving 

stability at a lower RMSD. 

 

3.2 Investigation of the dynamic structural features of PTPRZ WPD-Loop 

 

Considering the essential role of the WPD-loop in the catalytic activity of PTPRZ, we explored 

the atomic flexibility of the residues this loop and the entire protein upon binding NAZ2329. The 

use of the crystal structures chosen for this particular study was of utmost importance as the 

binding of NAZ2329 to the allosteric site demonstrated a modification in the crystallized WPD-

loop of the protein. To the best of our knowledge, this is the only available crystal structure that 
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demonstrates binding to the allosteric site of the PTPRZ enzyme, thus validating its use for further 

analysis.    

 

The conformational dynamics of a protein is usually largely dependent on its basic building blocks, 

thus amino acids 32, hence understanding the flexibility of amino acids that make up WPD-loop 

and PTPRZ could reveal important structural insights on the inhibitory activity of NAZ2329. The 

ligand induced motions that occur upon the binding and interaction of NAZ2329 to binding site 

residues, thus triggering a significant conformational change that influence the function of the 

protein 32. As a result of this, we calculated the root mean square fluctuation (RMSF) of the 

simulated systems illustrated in Figure 11.3.  
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Figure 11.3: (A) Shows the comparative RMSF plot of the unbound (APO-red) and bound PTPRZ 
(complexed-blue), (B) Systematic NAZ2329 inhibitory activity in opening WPD-loop across the MD 
simulation period. 
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Interestingly, residues 198-204 displayed increased fluctuation in the bound system when 

compared to that of the APO PTPRZ. This particular region of interest encompasses the WPD-

loop, a loop that serves as a flexible gate to the catalytic site of PTPRZ. A “closed” conformation 

of the WPD-loop denotes an active protein, whilst an “open” conformation indicates inactivity of 

the protein 8. It could therefore be inferred that the allosteric inhibition of NAZ2329 induced an 

open conformation of WPD-loop, resulting in an inactive protein conformation of PTPRZ. As 

shown in Figure 11.3, the was a consistent higher flexibility of the WPD-loop in the presence of 

NAZ2329 as the simulation proceeded, suggesting that the allosteric inhibitory activity of 

NAZ2329 could have induced the increased fluctuation of the WPD-loop in order to ensure its 

continuous “open” conformation and hence a consequent inactivity of PTPRZ. Overall, the 

unbound APO and complexed protein appeared to be rigid with the exceptions of select regions, 

being “175-185”, “71-76” and “34-37”. 

 

To further reveal the conformational dynamics that occur on PTPRZ due to the inhibitory action 

of NAZ2329, DCCM matrix analysis was conducted to determine the occurrence of correlated 

motions over the simulation period based on the positions of Ca atoms of the PTPRZ 33. High 

correlated motion, also referred to as positive correlation, ranges from the colour yellow to deep 

red (+1), while anti-correlated motions, also referred to as negative correlation, ranges from cyan 

to black (-1). DCCM analysis revealed that binding of NAZ2329 alters the structure conformation 

of PTPRZ as shown by the changes in the correlated motions and dynamics. There was an overall 

anti-correlated motion of residues within the WPD-loop (residues 198-204) in the bound system 

relative to more correlated motion in the APO system. Since anticorrelated motions of a protein 

may arise from a significant structural external perturbation such as ligand binding34,35, the 
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observed anticorrelated motion in the bound WPD-loop could be attributed to the allosteric 

inhibitory prowess of NAZ232936. This was also consistent with the increased residue fluctuation 

of the loop in the bound conformation as revealed in RMSF in Figure 11.3 as the simulation 

proceeded. It is also evident from the correlation matrix that a more widely correlated motion is 

observed in the APO protein, thus confirming conformational shifts after ligand binding (Figure 

11.4).  The residues within regions “71-76” and “175-185” of PTPRZ exhibited anti-correlated 

motions in both the unbound and bound system which conferred with the observed residue 

fluctuation results.  

 

 

Figure 11.4: Cross-correlation matrices of the fluctuations of C-a atoms in (A) APO and (B) 
NAZ2329-complex. 
 

Considering the fact that the biological function of a protein is influenced by its conformational 

dynamics 37,  we also employed Principal Component Analysis (PCA),  an advanced computational 
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tool to explore the conformational transitions of the APO and complexed PTPRZ over the 100ns 

simulation as illustrated in Figure 11.5. The clustering method of PCA was employed in this study 

due to its proven capability of describing varying conformational states generated during an MD 

simulation. Variations in the conformational states were described by categorizing molecular 

structures into clusters according to conformational similarities 38. Figure 11.5 highlights the 

overall motional shifts across two principle components in the case of APO and the NAZ2329-

complex.   

 

 

Figure 11.5: PCA projection of the motion of Ca atoms constructed by plotting the first two 
principal components (PC1 and PC2) in the conformational space with APO (red) and NAZ2329-
complex (black) respectively. PC1 and PC2, respectively, represent a covariance matrix after 
elimination of eigenvectors (rotational movements). Each point between the single-directional 
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motions represents a unique conformation during the simulation, whereby, similar structural 
conformations overlap in the graph. 
 

The simulated systems were projected along the directions of first two principal components (PC1 

vs. PC2) or eigenvector. The PCA scatterplot generated for the APO and complexed PTPRZ 

systems shows a significant difference between the two systems along the direction of PC1 and 

PC2. Overall, the less correlated motion of the APO system confers with the observed higher 

residue flexibility in the Figure 11.3. This implied that the inhibitory activity of NAZ2329 on 

PTPRZ triggered conformational dynamics as conferred by the conformational flexibility and 

dynamic cross-correlation analysis. The variation in structural dynamics prompted us to assess the 

binding mechanism of NAZ2329 to the allosteric site of PTPRZ. 

 

3.3 Exploring the drug likeness of NAZ2329 

Having been experimental reported to exhibit inhibitory activity against PTPRZ in mouse models, 

we used online software SwissADME 14 to determine the physicochemical descriptors, 

pharmacokinetic features and drug-worthiness of NAZ2329 (Table 11.1). 
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Table 11.1: The Swiss ADME Profile of NAZ2329. 

 

 

NAZ2329 

Molecular 

Formula 

Molecular 

Weight 

(g/mol) 

Lipophi

licity 

(iLOG

P) 

Water 

Soluble 

GIT 

Absor

ption 

BBB 

Permeabi

lity 

Bioavailab

ility 

Score 

Synthetic 

Accessibi

lity 

Drugliken

ess 

(Lipinski) 

C21H18F3NO

4S3 
501.56 3.06 Poor Low No 0.55 3.77 Yes 

 

“Boiled-Egg” Method Summary 
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The lipophilicity and polarity of NAZ2329 was computed using SwissADME, based on the  “Brain 

Or Intestinal Estimated permeation, (BOILED-Egg)” method 39. A suitable balance of the 

pharmacokinetic properties, safety, potency and selectivity is usually paramount in the design of 

therapeutic chemical agent. Chemical properties such as lipophilicity (LogP), which are assessed 

by SwissADME, are very essential features to be considered in the interaction between a chemical 

compound and its biological target. Usually lipophilicity of a chemical agent influences its 

permeability, hepatic clearance or solubility. A chemical compound with a LogP value that ranges 

from 2 to 3 exhibits a highly favorable potential of achieving permeability and first pass clearance 

40. However, NAZ2329 showed a LogP value of 3.06, an indication that NAZ2329 exhibits a less 

favorable potential of achieving permeability and first pass clearance. Although NAZ2329 

exhibited drug-likeness according to Lipinski rules of five 41, it has poor water solubility, low 

gastrointestinal absorption, and cannot permeate through the blood-brain-barrier (BBB). A low 

gastrointestinal absorption may result in a large amount of the drug being excreted resulting in a 

possible decrease inhibitory activity. The inability of NAZ2329 to pass the BBB as observed 

suggests the need for its improvement in its design as a therapeutic agent glioblastoma, a 

malignancy of the central nervous system. 

 

3.4 Estimating the binding mode of NAZ2329 to PTPRZ through Free Energy Calculations 

Using the MM/GBSA based approach; the binding free energy of the NAZ2329-complex was 

estimated over the 100ns MD simulation. This revealed the various energy contributions at the 

catalytic site. To estimate the energies contributed by individual residues located in the catalytic 

site, per residue decomposition analysis was performed. A depiction of the individual energy 

contributions and a map of the interactions between the NAZ2329 and active site residues are 
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illustrated in Figure 11.6. The estimated relative binding free energy for NAZ2329 is displayed in 

Table 11.2.  

Table 11.2: MM/GBSA-based binding free energy profile of the simulated NAZ2329 complex 

 

Figure 11.6: Energy contributions of the interacting residues at the NAZ2329 active site.  
The residue ligand interaction network illustrates stabilizing hydrophobic interactions pocketing NAZ2329 
at the active site. The highest energy contribution was two hydrogen bond interactions shared between ARG 
237 with two separate oxygen moieties of NAZ2329. 
 

Energy Components (kcal/mol) 

 ΔEvdW ΔEele ΔGgas ΔGsolv ΔGbind 

Complex 
-53.88± 

0.08 
-60. 72± 0.15 -114.60± 0.16 61.98±0.14 -52.63±0.09 

∆Eele = electrostatic energy; ∆EvdW = van der Waals energy; ∆Gbind = calculated total 

binding free energy; ∆Gsol = solvation free energy. 
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NAZ2329 showed a relative binding free energy of -52.63 kcal/mol, implying a favorable 

thermodynamic stability, which conferred with the compact bound protein upon calculation of 

radius of gyration as shown in Figure S2. Residues that contributed the most to the binding of 

NAZ2329 include; ARG 237 (-7.201 kcal/mol), PRO 203 (-2.584 kcal/mol) and GLN 279 (-2.064 

kcal/mol). From the residue-ligand interaction plot, it could be observed that, ARG 237 formed 

the most hydrogen bond interactions hence its high-energy contribution to the total binding energy 

estimated.  

 

3.5 Pharmacophore Model Creation 

An informative structural ensemble of steric and electronic features that were necessary to ensure 

supramolecular interaction of NAZ2329 with PTPRZ was generated (Figure 11.7). This chemical 

structural scaffold was developed based on the observed NAZ2329-PTPRZ interaction shown in 

Figure 11.6, while taking into consideration the residues that contributed the most to total binding 

energy as well. The generated pharmacophore model unveils useful chemical insights that could 

serve as a starting point for the discovery of improved therapeutic agents that target PTPRZ. 
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Figure 11.7. (A) Common pharmacophoric features from alignment of the PTPRZ ligand/residue 
interaction plots, 3-D pharmacophore model generated on ZINCPharmer (Green- 
Hydrophobic/Aromatic moiety, gold - hydrogen bond donor/acceptor). (B) 2-D representation of 
the chemical features required for potential PTPRZ inhibitors. 
 

 

4.0 CONCLUSION 

The comprehensive bio-computational analysis employed in this study establishes the structural 

modifications in PTPRZ subsequent to binding of allosteric inhibitor, NAZ2329. Molecular 

dynamic simulations divulged profound motional shifts the WPD-loop of the PTPRZ. This 

flexibility was reported in the RMSF analysis and verified by the graphical investigation of the 

loop at different time intervals during the simulation. Investigation of the DCC matrix and PCA 
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led to the deduction that the activity of NAZ2329 on PTPRZ triggered conformational dynamics 

that may be used to explain the mechanism of inhibition of the protein. Based on previous 

experimental evidence supporting the inhibitory activity of NAZ2329 and the structural dynamics 

leading to the design of the pharmacophore in this study, we believe that our conclusions could 

facilitate the design of small molecules that will not only inhibit PTPRZ and PTPRG, but will be 

applicable to other tyrosine phosphatases as well.  This optimized pharmacophoric approach may 

also lead to a decline in cross-resistance and may increase patient adherence.  
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Abstract 

Background: The last few decades have witnessed groundbreaking research geared towards 

immune surveillance mechanisms and have yielded significant improvements in the field of cancer 

immunotherapy. This approach narrows down on the development of therapeutic agents that either 

activate or enhance the recognitive function of the immune system to facilitate the destruction of 

malignant cells. The α-galactosylceramide derivative, KRN7000, is an immunotherapeutic agent 

that has gained attention due to its pharmacological ability to activate CD1d-restricted invariant 

natural killer T(iNKT) cells with notable potency against cancer cells in mouse models; a 

therapeutic success was not well replicated in human models. Dual structural modification of 

KRN7000 entailing the incorporation of hydrocinnamoyl ester on C6’’ and C4-OH truncation of 

the sphingoid base led to the development of AH10-7 which, interestingly, exhibited high potency 

in human cells. 

Objective/Methods: Therefore, to gain molecular insights into the structural dynamics and 

selective mechanisms of AH10-7 for human variants, we employed integrative molecular 

dynamics simulations and thermodynamic calculations to investigate the inhibitory activities of 

KRN7000 andAH10-7 on hTCR-CD1d towards activating iNKT.  

Results: Interestingly, our findings revealed that AH10-7 exhibited higher affinity binding and 

structural effects on hTCR-CD1d, as mediated by the incorporated hydrocinnamoyl ester moiety 

which accounted for stronger intermolecular interactions with ‘non-common’ binding site 

residues. 

Conclusions: Findings extracted from this study further reveal important molecular and structural 

perspectives that could aid in the design of novel α-GalCer derivatives for cancer 

immunotherapeutics. 

 

 

Keywords: Cancer immunotherapy, natural killer T-cells, dual modification, α-

galactosylceramide. 
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1.0 Introduction 

Immune surveillance mechanisms are physiologically employed in cancer to ameliorate the 

debilitating effects of the disease [1]. However, there is usually an eventual failure of the immune 

response due to changes that occur in the microenvironment, which in turn permit tumor growth 

with a concurrent sabotage of the anti-cancer immune responses [1]. Nonetheless, some immune 

cells exhibit prominent roles in regulating immune response to cancer, notably, the invariant 

natural killer T cells iNKT, distinguished by their semi-variant T cell receptor (TCR) in humans 

and mice (Vα24Jα18 in humans and Vα14Jα18 in mice) [2–5]. As a unique class of lymphocyte 

involved in both innate and adaptive immune response [6–9], iNKT are characterized by their 

ability to identify lipid-based antigens presented by the MHC class I-like CD1d protein [3,10–13].  

Unlike other natural killer cells, iNKT are selected by CD1d-expressing thymocytes instead of 

interacting with class 2 MHC molecules [6,14]. As a sub-type of NKT, iNKT are the only CD1d-

restricted cells that harbor the invariant TCR and is able to identify the prototype alpha-

galactosylceramide inhibitors [5]. Though low in frequency in the peripheral blood, iNKTs are 

dominant in the adipose tissues of both humans and mice. By secreting IL-4, iNKT assume an anti-

inflammatory role that has been shown to prevent resistance to insulin as well as inflammatory 

responses in the adipose tissue [15–20]. When activated, iNKT cells can also increase the 

expression of NKTs and consequently increase the stimulation of conventional T cells via their 

cytokine and mature dendritic cells secretion [21,22].Upon antigenic triggering, iNKT cells 

usually respond in few hours by releasing of Th1, Th2, and Th17 cytokines [23]. The involvement 

of iNKT in the rapid secretion of cytokines as well as in CD40L expression potentiates their 

prominent roles in immune response [5]. In antitumor immune response, iNKTs are directly 

involved in the killing of tumor cells via the induction and release of cytotoxic lymphocytes 
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(CTLS) coupled with the activation of NK cells and modulation of immunosuppressive tumor 

microenvironment [24,25]. Hence, considering their crucial roles in antitumor immune response, 

iNKTs have been extensively explored as immunotherapeutic targets [5,26,27].Current therapeutic 

approaches that entail iNKT cell targeting have focused on stimulating iNKT activation with the 

aid of exogenous agents, an approach referred to as active immunotherapy [24,27]. Alpha-

galactosylceramide (α-GalCer), a potent marine sponge sphingolipid antigen was identified in the 

early 1990s as an exogenous molecule that can activate iNKT towards cancer treatment [28–30]. 

Over the years, α-GalCers have been widely investigated and developed as immunotherapeutic 

agents and vaccines [26,31]. This feature has resulted in the discovery of KRN7000, the first 

synthetic α-GalCer by Kobayashi et al., in 1995[32,33] (Figure 12.1). Although KRN7000 showed 

potent anticancer properties as well as some interesting efficacy against autoimmune and 

infectious diseases in mouse models [26], its successful translation and advancement into clinical 

use has been relatively limited [34,35]. A recent phase 1 trial by Nair and Dhodapka in 2017, 

reported that KRN7000 had limited clinical benefit to humans [35,36]. However, the foremost 

challenge associated with KRN7000 is its propensity of inducing high levels of helper T cells: T 

helper 1 (Th1) and T helper 2 (Th2), a phenomenon that accounts for their contradictory function, 

which subsequently results in an unsuccessful immune response [34,37].  
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Figure 12.1: 2D structures of AH10-7 (above) and KRN7000 (below) coupled with the 3D X-ray crystal 
structure of human iNKT-TCR (middle). Red inset showcases constituent hydrophobic pocket residues. 

 

Due to the limited success recorded for KRN7000, efforts have been made over the past years to 

twig the moieties of KRN7000 so as to obtain new α-GalCer derivatives with improved potencies 

and activities in humans while propagating  the release of  either Th1 or  Th2,  but  not a concurrent 

release of both [22,37,38]. The latest of such attempts was reported by Chennamadhavuni et al., 

where a new α-GalCer derivative, AH10-7 was synthesized by incorporating a C6’’ hydro 
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cinnamoyl ester while removing the C4-OH of the sphingoid base [34] (Figure 1). This unique 

dual modification resulted in demonstratable AH10-7 potency towards the activation of iNKT in 

both mouse and human models while highly biased towards Th1 secretion. Chennamadhavuni et 

al., further explored the mechanistic basis of the dual modification of iNKT activation via X-ray 

crystallography and molecular modelling. Molecular docking and QM/MM studies showed that 

the simulated binding pose of AH10-7 reproduced well the 2C12 TCR-mCD1d-AH10-7 ternary 

complex structure obtained by X-ray crystallography with better binding affinity. However, since 

molecular docking is inadequate in providing a thorough and dynamic perspective into the 

mechanistic binding  and recognition of the dually modified α-GalCer derivative, AH10-7, this 

current study employs molecular dynamics simulation techniques to provide additional molecular 

insights into the structural dynamics and mechanistic binding of the novel α-GalCer derivative to 

human iNKT-TCR [39]. Molecular dynamics (MD) simulation mimics the dynamical events of 

molecular systems as a function of time, with a molecular description of all biological components 

(ligand and protein) in a solvent space [40]. Hence this approach would enable a detailed 

elucidation of molecular events and recognition mechanisms that characterize selective binding of 

AH10-7 [34]. Findings will also reveal important atomistic perspectives that could aid in the design 

of novel α-GalCer derivatives for cancer immunotherapeutics. 

 

2.0 Computational Methods 

2.1 System Preparation 

The X-ray crystal structures of 2C12 TCR-CD1d in complex with AH10-7 (PDB:6BNL) and 

KRN7000 ((PDB code:6BNK) [34] were retrieved respectively from RCSB Protein Data Bank 

[41] and were used as the starting structures. The retrieved structures exist as a homomultimers 
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with eight chains, however, only chains (A, C) which contained the ligand binding pockets were 

used in this study to reduce the computational cost. All non-standard residue molecules and ligands 

were deleted during the preparation of the receptor structure. Hydrogen atoms were added to the 

isolated ligands using the UCSF Chimera software package during structure preparation. Software 

was developed by the Resource for Biocomputing, Visualization, and Informatics (RBVI), 

University of California, San Francisco, USA [42]. 

 

2.2 MD simulations 

MD simulations for 2C12 TCR-CD1d complexed distinctly with AH10-7 and KRN7000 were 

performed. Altogether, three systems comprising of unbound and bound forms of 2C12 TCR-

mCD1d were subjected to MD simulations using the AMBER14 software package. Software was 

developed by Case et al., University of California, San Francisco, USA [43]. Protein optimization 

and explicit solvation were carried out using the integrated LEAP module while the AMBER 

FF14SB force field was employed to define protein parameters. The systems were partially 

minimized for 2500 steps with a restraint potential of 500 kcal/mol Å2 followed by full 

minimization of 10000 steps. The systems were gradually heated from 0-300K using a Langevin 

thermostat in a canonical ensemble (NVT) [44]. Equilibration was also carried out without 

restraints at a temperature of 300K in an NPT ensemble for 1000 ps while atmospheric pressure 

was maintained at 1 bar using the Berendsen barostat [45]. This procedure was followed by MD 

production runs of 100 ns for each system during which the SHAKE algorithm was used to 

constrict all atomic hydrogen bonds [46].The integrated CPPTRAJ and PTRAJ modules [47] of 

AMBER14 were used to analyze resulting coordinates and trajectories while obtained data were 

plotted using Microcal Origin software, developed by OriginLab Corporation, United States [48]. 
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2.3 Binding free energy calculations 

In this study, the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method  

was used to estimate the differential binding of AH10-7 and KRN7000 to 2C12 TCR-mCD1d [49] 

as employed in many of our previous reports [50–54]. This technique could help predict the 

differential binding strengths and affinities of both ligands to 2C12 TCR-mCD1d. Mathematically, 

the binding free energy (ΔG) for each complex is represented as: 

ΔGbind = Gcomplex - Greceptor - Gligand            (1) 

Egas = Eint + Evdw + Eele                 (2) 

Gsol=GPB + GSA       (3) 

GSA = γSASA      (4) 

 

Van der Waals and electrostatic interactions are represented as Evdw and Eele while Egas denotes 

gas-phase energy and Eint internal energy. The solvation free energy, denoted by Gsol represents 

the solvation free energy and can be decomposed into polar and nonpolar contribution states. The 

polar solvation contribution, GPB, is determined by solving the PB equation, whereas, GSA, the 

nonpolar solvation contribution is estimated from the solvent accessible surface area (SASA) 

determined using a water probe radius of 1.4 Å. Per-residue energy contributions of active sites 

residues towards the stabilization of AH10-7 and KRN7000were estimated using data obtained 

from the MM/PBSA calculations [49]. Energy contributions of these residues give a clue into the 

essentiality of these residues towards the stabilization of the ligands in the binding pocket and their 

consequential  favorable activity of these ligands [49]. 
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3.0 Results and Discussion 

AH10-7 successfully demonstrated its potency in human cells which earned it a significant 

advantage over earlier derivatives such as KRN7000 [34]. Investigated model systems in this 

report depict unbound human TCR-CD1d, a KRN7000-bound TCR-CD1d and a AH10-7 bound 

TCR-CD1d taken through 100 ns MD simulation to explore impact of the dual modification which 

characterize AH10-7 relative to its enhanced potency over earlier derivative, KRN7000 in human 

models. An initial sequence analysis as shown in Figure 12.2 showcased a large similarity in 

sequence of residues that interacted directly with both AH10-7 and KRN7000 due to similarity in 

structure. Nonetheless there were notable variations in the interaction with distinct residues 

observed particularly in the AH10-7 complex, which could partly be attributed to the additional 

interactions mediated by the incorporated hydrocinnamoyl ester moiety. The similarity in sequence 

of the interacting residues also suggests similar binding modes of the both AH10-7 and KRN7000. 

Figure 12.2: Comparative sequence analysis of AH10-7 and KRN7000-2C12 TCR-mCD1d complexes 
with corresponding highlights of interacting residues at the hydrophobic pockets. Green inserts indicate 
residues that directly interacts with KRN7000 while red highlights indicate residues that directly interact 
with AH10-7 
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3.1 Enhanced binding affinity and mechanistic electivity mediated by the incorporated 
hydrocinnamoyl ester on the C6” of the sugar 

 

The ability of α-GalCer to potentially activate in human iNKT cells is largely dependent on their 

respective interactions at the hydrophobic pocket on TCR-CD1d in which they bind, and the 

corresponding binding energies elicited. The respective interactions between the α-GalCer 

derivatives and amino acids at the binding pocket of TCR-CD1d are crucial to the overall stability, 

selectivity and total binding affinity. With a highly favorable binding energy of AH10-7 over 

KRN7000 from QM/MM calculations as estimated in earlier reports, we again calculated their 

total binding free energy (ΔG) over the course of the MD simulation period, in an attempt to 

corroborate earlier reports using the extensively explored MM/PBSA approach [49,51,52,55]. This 

procedure was performed to also understand the molecular basis of the reported favorable binding 

of AH10-7 over KRN7000 from experimental reports. The calculated binding free energy also 

provided a deeper quantitative understanding of the binding of both KRN7000 and AH10-7 while 

also providing a direct insight into driving forces that support their binding. As shown in Table 

12.1, AH10-7 exhibited a total binding free energy of -30.12 kcal/mol while KRN7000 exhibited 

a total binding free energy of -28.2 kcal/mol. As estimated, AH10-7 exhibited a higher binding 

affinity (ΔG) relative to KRN7000 which corroborates earlier reports in which AH10-7 exhibited 

superiority in binding over KRN7000 [34]. As presented in Table 12.1, the intermolecular van der 

Waals and electrostatic interactions provide the major contribution for the binding of both 

KRN7000 and AH10-7 even though the van der Waals forces were more prominent towards the 

binding of AH10-7 than KRN7000. The van der Waals and electrostatic energies in the TCR-

CD1d-AH10-7 were estimated as -28.11 kcal/mol and -11.81 kcal/mol, respectively as shown in 

Table 12.1. Also, a positive polar solvation energy estimation indicates the binding interactions 
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were more favorable in the hydrophobic (non-polar) regions of the ligand-protein complex. 

Likewise, we observe that van der Waals interactions further contributed to complex formation in 

both ligands. These interactions altogether, could account for the binding affinities exhibited by 

both ligands when bound to hCD1D as previously reported [34]. 

 

Table 12.1: MM/PBSA-based binding free energy profile of KRN7000 and AH10-7 

ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = solvation 
free energy ΔG = gas phase free energy. 

 

3.2 Energy-based decomposition of binding site residues and corresponding contributions 
towards ligand binding 

 

To further understand the favorable and preferential binding mechanisms of AH10-7 over 

KRN7000, we performed the decomposition of total ΔG involved with respect to the contributions 

of individual ligand binding site residues. This operation was carried out using the MM/PBSA-

incorporated per-residue energy decomposition method. Estimated per-residue energies allowed a 

more thorough quantitative insight into the differential binding mechanisms of both KRN7000 and 

AH10-7 while showcasing the superiority of AH10-7 based on the energy contribution of each 

binding site residue. An interesting observation was the obvious variation in major energy 

contributing residues when comparing both the AH10-7- and KRN7000-bound systems. Basically, 

 𝚫𝐄𝐯𝐝𝐰 𝚫𝐄𝐞𝐥𝐞 𝚫𝐆𝐠𝐚𝐬 𝚫𝐆𝐬𝐨𝐥 𝚫𝐆𝐛𝐢𝐧𝐝 

AH10-7 

 

KRN7000 

-28.11±0.13 

 

-24.75± 0.13 

 

 

-11.81±0.16 

 

-13.98±0.17 

 

 

-39.92±0.19 

 

-38.73±0.17 

 

 

9.80±0.08 

 

10.54±0.09 

 

 

-30.12±0.15 

 

-28.2±0.14 
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the involvement of certain residues that interacted with the hydrocinnamoyl ester group on C6’’ 

of AH10-7 could account for enhanced binding when compared to KRN7000. Figure 12.3 

showcases the energy contributions of residues unique to the binding of both AH10-7 and 

KRN7000. The introduction of the hydrocinnamoyl ester in AH10-7 visibly increased the number 

of interactions as compared to KRN7000 with relatively fewer interactions. As shown, many of 

the residues with higher energy contributions interacted are those involved in complimentary 

interactions with the hydrocinnamoyl ester moiety. Cumulatively, these unique interactions with 

the hydrocinnamoyl ester group in AH10-7 could have contributed to a higher affinity binding 

which favored its potent therapeutic activity in human variants. 
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Figure 12.3: Per-residue energy decomposition plot of uncommon binding site residues and their 
differential interactions with AH10-7 and KRN7000, with corresponding ligand interaction plots of average 
structures. 
 

As shown in Figure 12.4A, the modification in AH10-7 accounted for a higher number of 

conventional hydrogen bonds with shorter distances relative to those elicited by KRN7000 as 

presented in Figure 12.4B using average structures obtained from the MD trajectories. The higher 

number of conventional hydrogen interactions amidst other notable interactions such as van der 
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Waals and alkyl interactions with surrounding hydrophobic residues could have equally 

contributed to the overall high affinity binding of AH10-7 relative to KRN7000 as estimated.  
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Figure 12.4: Complementary binding site-surface interactions of [A] C6” modified hydrocinnamoyl ester 
in AH10-7 and [B] “non-modified” KRN7000 galactosyl moiety. Conventional (OH--O) and non-
conventional/carbon-hydrogen (CH--O) bonds are also indicated. 
 
A broader analysis of the differential activities of AH10-7 and KRN7000 focused on binding 

pocket residues within 5Å radius from them, which revealed striking insights that could further 

support the binding superiority of AH10-7 to 2C12 TCR-mCD1d over KRN7000 as previously 

established. Overall, residues with energy contributions less than -1.0 kcal/mol were considered 

very crucial to the interaction of the α-GalCers within the hydrophobic pocket and could 

consequently influence their overall activity [56]. From the calculations, residues within 5Å radius 

which contributed prominently to KRN7000  binding included Cys12, Val30, Ile47, Phe70, Tyr73, 

Ser76, Phe77, Asp80, Ile81, Leu84, Leu100, Leu116, Val118, Leu151, Asp153, Thr156 and 

Pro28, all located on chain C. Amongst these, residues Thr156, Asp80 and Tyr73 exhibited the 

highest energies of -4.11kcal/mol, -4.31kcal/mol and -3.88kcal/mol, respectively as shown in 

TableS1. On the other hand, residues that notably contributed to the binding of AH10-7 included 

Cys12, Val30, Lue66, Met69, Phe70, Val72, Tyr73, Ser76. Phe77, Leu79, Leu100, Leu116, 

Val118, Leu150, Asp153, Thr156, Thr159, Val160, Leu163, and Ile76, Pro28, Asn30, Asp94, and 

Arg95 on chain C. Moreover, residues Asp153, Thr156 and Tyr73 contributed the highest energies 

towards the binding and stabilization of AH10-7 with estimated total energies of -3.72 kcal/mol, -

3.52 kcal/mol and -4.56 kcal/mol, respectively (Table S2). As observed, many of the high energy 

contributing residues in both AH10-7 and KRN7000 complexes were both similar suggesting an 

analogous binding of both AH10-7 and KRN7000 as shown in the superimposed structures in 

Figure 12.5. 
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Figure 12.5: Structural superposition of AH10-7 and KRN7000 at the binding pocket of human iNKT-
TCR to depict their analogous binding modes. 



 

 
 

 

3.3 Dual sphinganine base and hydrocinnamoyl ester modification of αGalCer enhanced 
residue interactions with TCR-CD1d. 

 

To get a further molecular grasp of the effects of hydrocinnamoyl ester incorporation on the 

therapeutic potential of AH10-7 towards iNKT cellular activation in humans, we performed 

a time-scale molecular visualization of resulting snapshots (10 ns, 40 ns, 70 ns and 100 ns) 

taken across the MD simulation period as shown Figure 12.6A and 12.6B. This procedure 

permitted a thorough and dynamical exploration of the nature of interactions that the 

incorporated moieties elicited during at the hydrophobic pocket region which could have 

accounted for its favorable interaction relative to KRN7000 as evidenced by the differential 

ΔGs earlier estimated. As shown in Figure 12.6A and 12.6B, certain residues maintained 

steady “strong intermolecular” interactions with the incorporated moiety of AH10-7 at the 

hydrophobic pocket across the 100 ns simulation time. At the beginning of the simulation at 

around 10 ns, the residues: Ser30, Asp153, Thr156 and Asp80 on chain A and Gly96 on chain 

C formed strong hydrogen interactions with the modified moieties as shown in Figure 12.6A. 

At about 40 ns, these same interactions were preserved as shown in Figure 12.6A. Towards 

the end of the simulation at about 70 ns as shown in Figure 12.6B, two new hydrogen bond 

interactions were formed between the hydrocinnamoyl ester group, Asp29 and Asn30 on 

chain C in addition to Asp153 and Thr156. At the end of the simulation at 100 ns as shown 

in Figure 12.6B, strong hydrogen bonds were formed between the modified moieties and 

Asp80, Arg153 on chain A and Gly96 and Arg95 on chain C. It was observed, that although 

the interacting residues varied over the course of the simulation, most of the interactions were 
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steadily maintained with Thr153. These same set of residues were amongst the highest energy 

contributing residues in the per-residue energy decomposition calculations shown in Table 

S1. These strong interactions could have contributed to the stronger binding of AH10-7 over 

KRN7000 as estimated. These could also contribute to the enhanced therapeutic activity in 

human cells. 

 

Likewise, we monitored the interactions of KRN7000  at the hydrophobic pocket at the same 

time-scales of 10 ns, 40 ns, 70 ns and 100 ns, with keen interest on the “non-modified” region, 

allowing for comparative analysis with AH10-7 so as to properly comprehend the impact of 

the dual modification. As shown in Figure 12.6A, at 10 ns, although KRN7000 almost 

engaged in similar number of hydrogen bond interactions as AH10-7, KRN7000 had fewer 

hydrophobic contacts. Also, KRN7000 did not interact with Ser30 which was shown to form 

a strong hydrogen bond with AH10-7 at 10 ns. Similarly, at 40 ns, as shown in Figure 12.6A, 

whilst AH10-7 formed an even stronger hydrogen bond with Ser30, KRN7000 did not still 

engage in any interaction with Ser30 with few hydrophobic contacts as well. Towards the 

end of the simulation at 70 ns as shown in Figure 12.6B, although AH10-7 formed two strong 

hydrogen bond interactions with Asp153, there was no interaction of KRN7000 with Asp153. 

At the end of our simulation at 100 ns, AH10-7 again formed strong hydrogen bond 

interaction with Arg153, an interaction that did not occur again with KRN7000. Therefore, 

taken together, the strong hydrogen bond interactions engaged between AH10-7 and Ser30 

at 10 ns and 40 ns as well as the two hydrogen bond interactions with Asp153 at 70 ns and 

the single hydrogen bond with Arg95 on chain C, coupled with other hydrophobic contacts, 
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could have accounted for the more favorable activity of AH10-7 towards human TCR-CD1d 

variant; hence, the stronger binding free energy estimated compared to KRN7000. 

Previous studies have revealed that the modified sphinganine base together with the 

stabilized surface binding mediated by the C6” substitution synergistically play crucial roles 

in hCD1d binding affinity and Th1 biasing. From our findings (Figure 12.4A and B), we 

observed that the modified sphinganine base was positioned in the deep hydrophobic pockets 

of the receptor. However, the substituted hydrocinnamoyl ester group was protruded and 

made stabilizing contacts with surface residues which was essential for stabilizing the polar 

galactosyl head group for TCR recognition, affinity and potency (Figure 12.5). Additional 

interactions elicited by the C6” substituents presumably compensated for the sphinganine 

base modification. Hence, strong affinity and interaction compensation synergistically 

mediated by the C6” substituent and sphinganine base (4’OH) modification could suggest 

the Th1 biasing activity and high hCD1d binding affinity/potency of AH10-7. These are in 

line with previous reports [34]. 
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Figure 12.6: [A] Comparative time-based monitoring of complimentary interactions of “modified” 
and “non-modified” regions of AH10-7 and KRN7000, respectively at 10 ns and 40 ns. [B] 
Comparative time-based monitoring of complimentary interactions of “modified” and “non-
modified” regions of AH10-7 and KRN7000, respectively at 70 ns and 100 ns.  

 
3.4 Conformational effects of AH10-7 and KRN7000 and differential binding on hTCR-
CD1d  
 
Since proteins are basically made up of different amino acids [57], structural changes and 

alterations among these components, particularly those involved in ligand binding and 

stabilization could greatly influence overall protein function [58,59]. Moreover, the binding 

of small molecule inhibitors greatly influences the integrity of the protein active site and 
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overall conformation with regards to structure-functional inactivation or activation [59]. We, 

therefore, performed a conformational analysis of hTCR-CD1d binding site residues over the 

course of simulation comparing their dynamics in the unbound state and when distinctly 

bound by both AH10-7 and KRN7000. This procedure also enabled a thorough insight into 

the impact of the incorporated groups on AH10-7 relative to its superior therapeutic efficacy. 

Prior to the analysis of the structural dynamics, we monitored the validity of our simulated 

models which was ascertained by calculating the root mean square deviations (RMSD) of the 

Cα atoms of hTCR-CD1d across the 100 ns  simulation as presented in Figure S1 [60–62]. It 

was observed from the plot that all systems achieved convergence after about 20 ns following 

an initial gradual rise in structural deviation due to motions of constituent Cα atomsfrom the 

beginning of the simulation. Overall unbound hTCR-CD1d exhibited the highest deviation 

of Cα atoms with an average RMSD of 8.84Å while the KRN7000 bound system showcased 

the lowest deviation with an average RMSD of 6.70Å while the AH10-7-bound hTCR-CD1d 

exhibited an average RMSD of 7.14Å. Taken together, the bound systems were characterized 

by comparatively lower deviations of Cα atoms relative to the unbound hTCR-CD1d, 

suggesting that the binding of AH10-7 and KRN7000 stabilized hTCR-CD1d structure. With 

all studied systems having achieved convergence and subsequent stability after about 20 ns, 

it is suggestive that subsequent deductions and assumptions drawn from the generated MD 

trajectories are trustworthy [63]. Moreover, the binding of AH10-7 and KRN7000 to hTCR-

CD1d induced a consistent pattern of structural alteration, which was characterized by a 

decrease in deviation among the Cα backbone atoms in contrast to the unbound hTCR-CD1d 

conformation that relatively exhibited higher structural instability. Suggestively, the minimal 
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disruption of the backbone atoms in hTCR-CD1d upon binding of AH10-7 and KRN7000 

could highlight the mechanistic therapeutic potencies of these α-GalCer derivatives. 

We then proceeded to calculate the root mean square fluctuation (RMSF) of the Cα atoms as 

well as the solvent accessible surface area (SASA) of each of the residues on both chains 

over the course of the 100 ns simulation as shown in Figure 12.7. With RMSF calculations 

as shown in Figures 12.7C and 12.7D, we were able to access the flexibility of each of the 

residues while SASA (Figures 12.7A and 12.7B) calculations showcased the exposure and 

unfolding mechanism of buried residues within the hydrophobic pocket which could have 

engaged in essential interactions with bound ligands. From the RMSF plots it was observed 

that the ligand bound conformations of the hydrophobic pocket residues were less flexible 

relative to the unbound conformation, possibly implying that the binding of both AH10-7 

and KRN7000 restricted the movement of these residues and subsequently imposed some 

level of rigidity. However, relative to KRN7000, hydrophobic residues in the AH10-7-bound 

system were more flexible with an average RMSF of 7.53Å while KRN7000 exhibited an 

average RMSF of 5.8Å. The higher flexibility could be attributed to the structural 

destabilization and distortion induced by the structural modification incorporated in AH10-

7. The SASA plots also revealed that the binding of both AH10-7 and KRN7000 induced 

lower average SASA values relative to the unbound hTCR-CD1d which was consistent with 

protein folding and an expulsion of the hydrophobic residues toward the protein core. 

However, among AH10-7 and KRN7000, AH10-7 showcased higher average SASA which 

further implied that the hydrophobic residues were more exposed to the aqueous environment 

hereby exposing buried surfaces, which justifies an increase in SASA value. The exposure 
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of the buried surfaces could have potentially favored the suitable intermolecular interactions 

that contributed to the enhanced binding free energy estimated.    

Figure 12.7: A) Comparative SASA plots of residues that make up the binding pocket of both AH10-
7 and KRN7000 as well as the unbound conformation. B) 3D surface representation of the higher 
SASA of the AH10-7 complex with hydrocinnamoyl ester region showcasing the highest SAS (deep 
blue). C) Comparative RMSF plots of binding site residues with the unbound iNKT-TCR showing 
the highest residue flexibility. D) 3D representation of superimposed X-ray crystal structures of 
unbound iNKT-TCR (black) and the AH10-7 (red) and KRN7000 (green) bound complexes. 
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4.0 Conclusion 

The plethora of scientific reports that have been conducted over the years towards enhancing 

the therapeutic competence of earlier α-GalCer derivatives towards the design of improved 

molecules such as AH10-7. The recent discovery of AH10-7, which exhibited impressive 

therapeutic efficacy in human iNKT-TCR variant typified a significant breakthrough in the 

search for an alternative approach to physiological immune surveillance. The uniqueness of 

AH10-7 over previous α-GalCer derivatives is attributed to its sphingoid base and 

hydrocinnamoyl ester on its C6”. However, regardless of the exciting experimental studies, 

there is little to no reports on the structural dynamics, molecular mechanisms and binding 

profile of AH10-7 in support of its therapeutic prowess. As such, this study sought to provide 

essential and augmentative details using MD simulation techniques coupled with post-MD 

analytical methods such as RMSD, RMSF, SASA and MM/PBSA. Dual modifications of 

AH10-7 enhanced its binding superiority over the earlier α-GalCer KRN7000 by forming 

stronger intermolecular and hydrophobic interactions with some specific binding site 

residues of TCR-CD1d. Unique hydrogen bonds interactions of AH10-7 with Ser30, Asp153 

on chain A and Arg95 on the chain C could have equally accounted for its outstanding 

binding superiority as estimated in the binding free energy analysis. Although there exists 

similarity in ligand-interacting residues due to structural similarities between AH10-7 and 

KRN7000, the introduced hydrocinnamoyl ester in AH10-7 potentiated favorable 

intermolecular interactions which probably contributed to enhanced binding. Also, the dual 

modification on AH10-7 induced a higher structural flexibility and increased the exposure of 

buried hydrophobic residues which could have favored their respective interactions when 
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compared with KRN7000. Findings unveiled atomistic insights into the binding profile of 

AH10-7 and could serve as a basis for further research into sphinganine derivatives towards 

the design of novel immunotherapeutic agents that could augment current cancer therapies.  
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CHAPTER 13 

 

13.0 Conclusion and Future Perspectives 
 

13.1 Conclusions 

Studies in this thesis employed CADD approaches in unraveling the mechanism of inhibition 

of some known therapeutic targets in treating viral infections, cancer, and tuberculosis. Drug-

target interactions and mechanisms of actions elucidated in this thesis are relevant since the 

interaction dynamics of drugs at binding sites play a vital role in the drug discovery process 

by influencing new drugs' overall therapeutic success. These interactions dynamics also 

provide essential insights that could inform the identification of new drug compounds for 

biological targets or improving the therapeutic activity of existing compounds. Therapeutic 

targets investigated included; SARS-CoV-2 RNA dependent RNA polymerase (SARS-CoV-

2 RdRp), Human Rhinovirus B14 (HRV-B14) and human N-myristoyltransferases in viral 

infections, Dihydrofolate reductase (DHFR) and Flavin-dependent thymidylate synthase 

(FDTS) in tuberculosis, human variants of TCR-CD1d and Protein Tyrosine Phosphatase 

Receptor Zeta (PTPRZ). As such, the focus of this research was divided into three domains. 

The research that culminated in this thesis began with a thorough review of the concept of 

druggability and drug-likeness since the crux of the following research objectives revolved 

around therapeutics and their inhibitions by small molecule inhibitors. The review 

highlighted druggability and drug-likeness principles and their recent advancements in the 

drug discovery field. Subsequently, the different computational tools, their predictive 

analysis and reliability in drug discovery were presented. 
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In the first domain of the research, studies presented sought to unravel some small molecule 

inhibitors' mechanism against some therapeutic targets in viral infections by explicitly 

focusing on the therapeutic targets; SARS-CoV-2 RdRp, HRV-B14, and N-

myristoyltransferase.  

Studies in the first domain of the research began with an exploration of the binding 

mechanism of Remdesivir by unraveling the structural and conformational implications on 

SARS-CoV-2 RdRp towards identifying crucial pharmacophoric moieties of Remdesivir. 

Our analysis showed that the modulatory activity of Remdesivir is characterized by an 

extensive array of high-affinity and consistent molecular interactions with specific active site 

residues that anchor Remdesivir within the binding pocket for efficient binding. Results also 

showed that Remdesivir binding induces minimal individual amino acid perturbations, subtly 

interferes with deviations of C-α atoms, and restricts the systematic transition of SARS-CoV-

2 RdRp from the “buried” hydrophobic region to the “surface-exposed” hydrophilic region. 

We also mapped a pharmacophore model based on observed high-affinity interactions with 

SARS-CoV-2 RdRp, which showcased the crucial functional moieties of Remdesivir and 

was subsequently employed for virtual screening. The structural insights and the optimized 

pharmacophoric model provided would augment the design of improved analogs of 

Remdesivir that could expand treatment options for COVID-19 the molecular mechanism of 

action of a novel benzothiophene derivative against HRV-B14 was investigated. Residue 

interaction network analysis revealed that the binding of the benzothiophene derivative upon 

binding into the “canyon” region of the active site of HRV-B14 distorts its initially 

extensively networked and compact residue profile with conformational changes 
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characterized by fewer inter-residue hydrogen bonds, reduced van der Waals interactions, 

and increased residue flexibility. Also, the binding of this benzothiophene derivative 

decreased the north-south wall's flexibility around the canyon region, possibly impeding the 

“breathing motion” of HRV-B14.  

In addition, the structural and molecular mechanism of action associated with the dual 

inhibitory activity of IMP-1088, a novel compound that reportedly inhibits both HsNMT1 

and HsNMT2 towards common cold therapy was also investigated. An augmentative 

computational and nanosecond-based analyses reveal that the steady and consistent 

interactions of IMP-1088 with specific residues; Tyr296, Phe190, Tyr420, Leu453, Gln496, 

Val181, Leu474, Glu182, and Asn246, shared within the binding pockets of both HNMT 

subtypes, in addition to peculiar structural changes account for its dual inhibitory potency. 

Findings unveil atomistic and structural perspectives that could form the basis for the design 

of novel dual-acting inhibitors of N-myristoyltransferase towards common cold therapy. 

 

In the second domain of the research, studies presented attempted to unravel the mechanism 

of actions of some small molecule inhibitors against some therapeutic targets in tuberculosis 

therapy by unraveling the molecular mechanisms and structural dynamics associated with 

dual inhibitory activity of PAS-M against both DHFR and FDTS towards tuberculosis 

therapy. MD simulations revealed that PAS-M binding towards DHFR and FDTS is 

characterized by a recurrence of strong conventional hydrogen bond interactions between a 

peculiar site residue the 2-amino-decahydropteridin-4-ol group of PAS-M. 

Using an atomistic model of mycobacterial c-ring the structural dynamics that explicate the 

experimentally reported antagonistic features of BDQ in halting ion shuttling by the 
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mycobacterial c-ring towards the treatment of TB was also described. Results showed that 

BDQ exhibited a considerably high ΔG while it specifically maintained high-affinity 

interactions with Glu65B -and Asp32B, blocking their crucial roles in proton binding and 

shuttling required for ATP synthesis. Moreover, the bulky nature of BDQ induced a rigid and 

compact conformation of the rotor c-ring, which impedes the essential rotatory motion that 

drives ion exchange and shuttling. The binding affinity of a BDQ molecule was considerably 

increased by the complementary binding of another BDQ molecule, which indicates that an 

increase in BDQ molecule enhances inhibitory potency against Mtb ATP synthase. 

Furthermore, the effects of triple mutations (L59V, E61D, and I66M) on BDQ-Mtb F1F0 

ATP-synthase binding were also investigated. Findings revealed a drastic reduction in BDQ 

binding affinity (ΔG) in the triple mutant protein, which was caused by a systemic loss in 

high-affinity interactions primarily mediated by L59, E61, and I66. Likewise, these 

mutations distorted the binding site and overall structural architecture of F1F0 ATP-synthase 

in the presence of BDQ, as revealed by the RIN and conformational analyses. 

 

The last domain of the research in this thesis unraveled some small molecule inhibitors' 

mechanism against some therapeutic targets in cancer, specifically PTPRZ and hTCR-CD1d. 

In studying the possible therapeutic inhibition of PTPRZ towards cancer treatment, we 

explored the impact of NAZ2329, a recently identified allosteric inhibitor of PTPRZ, on the 

atomic flexibility of the WPD-loop. Structural analysis revealed that NAZ2329 induced an 

open conformation of the crucial WPD-loop, consequently impeding enzyme activity even 

upon substrate binding. Based on the molecular interactions between of NAZ2329 and 
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tyrosine-protein phosphatase zeta, a pharmacophore model was generated to exhibit the 

essential functional moieties of NAZ2329.  

Lastly, the mechanism behind the selective inhibition hTCR-CD1d by AH10-7 towards the 

activation of iNKT cells was also investigated. Findings revealed that AH10-7 exhibited 

higher-affinity binding and structural effects on hTCR-CD1d, mediated by the incorporated 

hydrocinnamoyl ester moiety, which accounted for stronger intermolecular interactions with 

‘non-common’ binding site residues. 

Overall, this study has provided essential conformational and structural molecular insights 

into the design and development of new therapeutic approaches to treat cancer, viral 

infections, and tuberculosis through molecular modeling and CADD. 
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13.2 Future Scope and beyond 

 

As evidenced in this research, CADD is vital in drug design research and has gained 

prominence in the pharmaceutical industry and academic research, particularly towards 

scouting and identifying potential drug candidates. The atomistic insights and molecular 

mechanisms unraveled in the research conducted in this thesis could inform future drug 

design processes, including but not limited to improving the potency of the studied inhibitors, 

repurposing the inhibitors' activity, and redesigning the compounds towards dual-targeting 

propensities. Also, the structural dynamics and conformational changes showcased upon 

inhibitor binding towards the studied inhibitors could also form the basis for the design of 

novel inhibitors to overcome resistance and increased selectivity. However, as technology 

advances, there is a need to continuously improve CADD methods towards enhancing their 

computational efficiency. Also, as the challenges of drug resistance and adverse side effects 

of drugs persist, there is a need to continue drug discovery efforts considering different 

perspectives. The concept of multi-targeting drugs should be extensively explored, 

considering its advantages in minimizing the amounts of drugs consumed for therapy and 

reducing the risk of side effects. Finally, the in silico insights provided in the reports could 

be augmented by experimental investigations while essential scaffolds highlighted could be 

optimized towards the development of novel inhibitors with improved therapeutic activity. 
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APPENDIX 
 

APPENDIX A 
 

Clement Agoni and Mahmoud Soliman (2020). “The Binding of Remdesivir to SARS-CoV-2 

RNA-Dependent Polymerase May Pave the Way Towards the Design of Potential Drugs for 

COVID-19 Treatment”.  

Current Pharmaceutical Biotechnology, (in press) 
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Figure S1: Comparative sequence alignment of the constructed homology model of SARS-CoV-2 
RNA-dependent polymerase and the experimentally resolved X-ray crystal structure of SARS-CoV-
2 RNA-dependent polymerase (PDB ID: 7BTF) . Insert highlights the active site residue, VAL557 as 
previously reported 
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Table S1: Hits compounds identified from the ZINC database using the developed pharmacophore 
model 

ZINC ID   OF HITS 2D STRUCTURE 

ZINC77 

 

ZINC7 

 

ZINC22 

 

ZINC31 

 

ZINC30690712 

 

ZINC32275064 

 

ZINC72266866 
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APPENDIX B 
 

Clement Agoni, Pritika Ramharack, Geraldene Munsamy and Mahmoud Soliman (2020), 

"Human Rhinovirus Inhibition through Capsid “Canyon” Perturbation: Structural Insights into 

the Role of a Novel Benzothiophene Derivative".  

Cell Biochemistry and Biophysics 78:3–13. 
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Figure S1: The RMSD plot depicting stability of each of the three systems throughout the 130ns 
simulation. 

 

 

 

 

Figure S2: The RG plot illustrating the difference in compactness and surface area of all four relative 
to the starting minimized structure over 130 ns simulation. 
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Figure S3: Superimposed representation of the Pleconaril bound complex (PDB:1NCQ) (blue) and 
the docked compound 6g bound complex (red). The validates that compound 6g was successfully 
docked into the Pleconaril binding site of HRV-B14 
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APPENDIX C 
 

Clement Agoni, Elliasu Y. Salifu and Mahmoud Soliman (2020). “Dual-Targeting of Human 

N-Myristoyltransferase Subtype 1/2 by IMP-1088 Halts Common Cold Pathogenesis: Atomistic 

insight”. 

 Future Virology (Submitted) 
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Figure S1: Showing nanosecond-based variation in residue-ligand interaction between 
compound IMP-1088 and binding pocket residues of HsNMT1 
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Figure S2: Showing nanosecond-based variation in residue-ligand interaction between 
compound IMP-1088 and binding pocket residues of HsNMT2 
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Figure S3: Showing the comparative RMSD plots (A,B), SASA plots (C,D) and radius of gyration 
plots (E,F) for the bound and unbound conformation of HsNMT1 and HsNMT2 
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APPENDIX D 
 

Clement Agoni, Pritika Ramharack, Elliasu Y. Salifu and Mahmoud Soliman (2020). The 

Dual-Targeting Activity of The Metabolite Substrate of Para-Amino Salicyclic Acid In The 

Mycobacterial Folate Pathway: Atomistic And Structural Perspectives.  

The Protein Journal, 39:106–117. 
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Figure S1: Comparative RMSD plot of unbound DHFR and FDTS(magenta) and when they are 
complexed with PAS-M  (purple) 
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APPENDIX E 

Elliasu Y. Salifu, Clement Agoni, Fisayo A. Olotu, Yussif M. Dokurugu, Mahmoud E. S. 

Soliman (2020), Triple Mycobacterial ATP-synthase mutations impede Bedaquiline binding: 

Atomistic and structural perspectives.  

Computational Biology and Chemistry, 85:107204. 
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Figure S1: A ramachandran plot of Mtb F1F0 ATP synthase protein. 
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Figure S2: PROSA plot showing the model quality. 
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Figure S3: PROCHECK analysis Mtb F1F0 ATP-synthase modelled structure. 
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APPENDIX F 

Clement Agoni, Pritika Ramharack and Mahmoud Soliman (2018), Allosteric Inhibition 

Induces an Open WPD-Loop: A New Avenue Towards Glioblastoma Therapy. 

 RSC Advances, 8:40187-40197. 
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Figure S1: Comparative RMSD of PTPRZ when bound to the allosteric inhibitor 
NAZ2329 (COMPLEX) and when unbound to any inhibitor (APO). 
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Figure S2: Comparative compactness of PTPRZ when bound to NAZ2329 (COMPLEX) 
and when unbound to any inhibitor (APO). 
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APPENDIX G 

Houda Washah, Clement Agoni, Fisayo A. Olotu, Geraldene Munsamy, and Mahmoud E. S. 

Soliman (2020), "Tweaking α-galactoceramides: Probing the dynamical mechanisms of 

improved recognition for invariant natural killer T-cell receptor in cancer immunotherapeutics". 

Current Pharmaceutical Biotechnology (in press). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Comparative RMSD plot of unbound human TCR-CD1d (black) and complexed with 
both AH10-7 (red) and KRN7000 (green) showing stability of simulated systems 
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Table S1: Hydrophobic site residues and corresponding per-residue energies in the presence 
of KRN7000. Residues with energies < -1kcal/mol were considered prominent. 

Residue vdW (kcal/mol) ELE (kcal/mol) TOTAL (kcal/mol) 

CYS   12 -1.683 -0.022 -1.43 

VAL  30 -0.903 -0.003 -1.124 

ILE  47 -0.92 0.005 -1.066 

PHE  70 -3.079 0.171 -2.08 

TYR  73 -4.265 -0.749 -3.879 

SER  76 -1.375 -1.264 -1.551 

PHE  77 -1.843 -0.245 -1.553 

ASP  80 1.121 -15.883 -4.315 

ILE  81 -1.163 -0.042 -1.2 

LEU  84 -1.218 0.071 -1.305 

VAL  85 -0.368 0.022 -0.332 

LEU  100 -1.416 0.041 -1.581 

LEU 116 -0.869 0.002 -1.04 

VAL 118 -0.915 -0.005 -1.074 

LEU 143 -1.525 -0.21 -1.669 

ASP 153 0.333 -16.588 -3.463 

THR 156 -3.466 -0.81 -4.114 

PRO 28c -1.384 -0.382 -1.535 

ARG 95c -2.328 0.091 -2.378 
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Table S2: Hydrophobic site residues and corresponding per-residue energies in the presence 
of AH10-7. Residues with energies < -1kcal/mol were considered prominent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residue VDW (kcal/mol) ELE (kcal/mol) TOTAL (kcal/mol) 

CYS   12 -1.902 -0.043 -1.629 

VAL  30 -0.908 -0.003 -1.129 

LEU  66 -0.999 0.149 -1.109 

MET  69 -2.247 -0.435 -2.65 

PHE  70 -3.597 0.161 -2.374 

VAL  72 -1.296 0.248 -1.565 

TYR  73 -4.895 -0.459 -4.56 

SER  76 -1.437 -1.451 -2.169 

PHE  77 -1.891 -0.126 -1.543 

ILE  76 -1.26 -0.094 -1.292 

LEU  79 -1.346 0.046 -1.415 

LEU  100 -1.773 0.049 -1.846 

LEU 116 -0.908 -0.002 -1.07 

VAL 118 -0.893 -0.005 -1.052 

LEU 150 -1.397 -0.27 -1.524 

ASP 153 0.625 -16.595 -3.716 

THR 156 -3.391 0.014 -3.521 

THR 159 -2.06 0.628 -1.816 

VAL 160 -1.276 0.229 -1.394 

LEU 163 -2.144 0.073 -2.277 

PRO 28c -1.892 -0.512 -2.09 

ASN 30c -1.099 -2.189 -1.495 

ASP 94c -0.688 0.683 -1.15 

ARG 95c -2.454 -1.559 -2.763 
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