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ABSTRACT 

Introduction 

The kidneys play a pivotal role in maintaining fluid and electrolyte homeostasis and 

regulating blood pressure. Multiple vasoactive peptides interact to exert autocrine and 

paracrine influences on the renal circulation, tubular function and mitogenesis. Endothelin-

1 is now known to be the most potent vasoconstrictor yet described, with natriuretic and 

mitogenic effects. Endothelin-1 exerts its effects via two receptors: the ETA receptor 

mediates vasoconstriction; the ETs receptor functions as a clearance receptor and has 

vasodilator effects by clearing endothelin-1 from the circulation as well as promoting 

natriuresis and diuresis. The natriuretic peptides exert potent natriuretic and diuretic 

effects. Circulating atrial natriuretic peptide is produced primarily in response to increased 

intravascular volume. Elevated levels of atrial natriuretic peptide are present in 

hypertension, nephrotic syndrome and acute and chronic renal failure. Kinins bind to their 

receptors at target organs and exert potent effects in vasodilatation, blood pressure 

reduction, vascular permeability, smooth muscle contraction, natriuresis, diuresis and renal 

blood flow. The kinin B2 receptor is the constitutive receptor and mediates most of the 

actions of kinins; the BI receptor is induced by inflammation. The connecting tubule cells 

show a loss of the kinin generating enzyme, tissue kallikrein in hypertension and renal 

failure. 

Aim: 

The aim of this thesis was to study a group of vasoactive peptides of differing 

physiological actions, namely, endothelin-1, atrial natriuretic peptide and kinins in models 

XIX 



of human renal inflammation, namely acute renal allograft rejection and 

glomerulonephritis. The hypothesis is that these peptides are closely inter-related, both 

anatomically and functionally and counter-balance each other's molecular and cellular 

effects. 

Methods: 

Ethical permission for the study was obtained from the Ethics Committee of the Medical 

School, University of Natal. 

1. Blood and urine samples and renal biopsies were collected from renal transplant

recipients with acute rejection and patients with renal parenchymal disease who underwent 

routine diagnostic renal biopsies. Blood and urine samples were collected from renal 

donors and normal volunteers; normal kidney tissue was obtained from forensic autopsies 

carried out within 24 hours of death. Plasma and urinary endothelin-1 was measured by 

ELISA; plasma and urinary atrial natriuretic peptide by radio-immunoassay; basal and 

generated kinins were measured in urine by ELISA; urinary tissue kallikrein by an 

enzymic assay as well as by ELISA. 

2. Immunocytochemistry was carried out on renal biopsy material for endothelin-1

and its receptors (ET A and ETs) using the peroxidase-anti peroxidase (PAP) method, 

immunofluorescent technique with confocal microscopy and immuno-electron microscopy. 

In addition endothelin-1 mRNA expression was detected by in situ reverse transcriptase­

polymerase chain reaction in acute rejection biopsies and control kidney tissue. Atrial 

natriuretic peptide immunolabelling was carried out by the PAP method. Tissue kallikrein 

immunofluorescent labelling was examined by confocal microscopy. The PAP images 

were analysed by the Kontron KS 300 (Zeiss GmbH, Germany), running on Windows 
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95™ . Confocal images were analysed by the Analysis 2.1 Pro system (Soft-Imaging 

GmbH, Germany). 

3. Total body water was measured by bioelectrical impedance in 5 renal transplant

patients, 4 patients with renal disease and 3 control subjects. Renal plasma flow was 

measured using sodium 131 iodohippurate in 6 renal transplant patients. 

Results: 

I. Endothelin-1 and ET A and ETs receptors

Plasma endothelin-1 levels were elevated in patients with chronic renal failure on dialysis, 

decreased after renal transplantation, rose again during acute rejection and subsequently 

decreased after treatment of rejection. Urinary endothelin-1 excretion was increased during 

acute rejection. Plasma endothelin-1 concentrations were elevated in both proliferative and 

non-proliferative glomerulonephritis, with the highest levels 111 proliferative 

glomerulonephritis, hypertensive glomerulonephritis patients and those on dialysis. 

Immunocytochemistry showed increased endothelin-1 labelling of distal tubules and the 

luminal brush border of proximal tubules during acute rejection. In addition endothelin-1 

label was demonstrated in lymphocytes and plasma cells of the interstitial inflammatory 

infiltrate in acute rejection. Endothelin-1 immunolabelling was increased in proximal and 

distal tubules in proliferative glomerulonephritis. The ETA receptor was upregulated in 

both acute rejection and glomerulonephritis in the proximal and distal tubules and 

collecting ducts. The ETs receptor immunolabelling was decreased in glomeruli, proximal 

and distal tubules and collecting ducts in acute rejection and glomerulonephritis. Immuno­

electron microscopy revealed endothelin-1 and endothelin receptor labelling in epithelial 

cells of proximal and distal tubules, endothelial cells of blood vessels and glomerular 

capillaries. Label was found in the intercellular system and within secretory vesicles and 
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vacuoles as well as mitochondria. Endothelin-1 label was demonstrated in lymphocytes 

and plasma cells during acute rejection. Endothelin-1 mRNA was upregulated in tubular 

epithelial cells and capillary endothelial cells, as well as the inflammatory infiltrate d_uring 

acute rejection. 

2. Atrial natriuretic peptide

Plasma and urinary atrial natriuretic peptide concentrations were elevated during acute 

rejection. Atrial natriuretic peptide immunolabelling of glomeruli and collecting ducts was 

decreased in acute rejection and glomerulonephritis, while labelling of distal tubules and 

blood vessels was similar to controls. 

3. Tissue kallikrein and kinins

Urinary tissue kallikrein enzymic activity was reduced in dialysis patients pnor to 

transplant, rose after transplant, decreased during acute rejection and rose again after 

treatment of rejection. Urinary tissue kallikrein enzymic activity and basal kinin excretion 

was reduced in stable transplant recipients and in kidney donors after nephrectomy; basal 

kinin urinary excretion rose during acute rejection. Kinin generation in the urine was 

decreased in renal transplant patients during acute rejection as well as the donors after 

nephrectomy. Urinary tissue kallikrein excretion was decreased in glomerulonephritis. 

Basal kinins in urine were similar in patients with glomerular disease and controls; 

however significantly decreased kinins were generated in glomerulonephritis patients. 

Reduced tissue kallikrein immunolabelling was observed in the distal tubule during acute 

rejection and with renal parenchymal disease. 
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4. Total body water was increased during acute rejection; effective renal plasma flow

was reduced during acute rejection. 

Discussion and Conclusions: 

This thesis is the first study of endothelin-1 and its receptors in human renal inflammation 

and provides evidence of upregulation of ET A receptors and downregulation of ETa 

receptors in the kidney in renal inflammatory conditions (acute rejection and 

glomerulonephritis ). 

I) The downregulation of ETB receptors may account for the fluid retention and

hypertension that occur during acute rejection and glomerulonephritis; ETB receptors in the 

tubule inhibit sodium and water reabsorption in the distal tubule; ETa receptors are also 

clearance receptors and play a role in clearing circulating endothelin-1, thereby reducing 

its predominantly ET A-mediated pressor actions. Elevated plasma endothelin-1 levels may 

be as a result of its impaired clearance, as well as increased production by mononuclear 

cells (macrophages and monocytes) in renal inflammation. Cytokines produced during 

rejection and glomeruloneplu·itis may also be responsible for the elevation in plasma 

endothelin-1. None of the patients had histological or biochemical evidence of 

cyclosporine toxicity; cyclosporine therefore probably did not play a major role 111 

increasing plasma endothelin-1 in this study. 

2) The elevated plasma and urinary atrial natriuretic peptide levels are probably a

response to increased intravascular volume and hypertension in these patients; in addition, 

atrial natriuretic peptide production may be stimulated by the increased endothelin-1 

present. Reduced atrial natriuretic peptide immunolabelling in collecting ducts may be a 
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reflection of impaired natriuresis and diuresis, resulting in the fluid retention observed in 

these patients. 

3) Decreased urinary tissue kallikrein activity may be a reflection of reduced distal

nephron function and may mediate the hypertension that accompanies renal disease. 

Multiple vasoactive mediators have an impact on renal function; future therapy should be 

inclusive of the functions regulated by endothelin-1, atrial natriuretic peptide and kinins. 

Current therapy suggestive of this approach are angiotensin converting enzyme inhibitors, 

which block angiotensin II and decrease endothelin-1 while enhancing nitric oxide, 

prostacyclin and kinins. 
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CHAPTER 1 

INTRODUCTION 



1.1 VASOACTIVE PEPTIDES IN THE KIDNEY 

1.1.1 VASOACTIVE MODULATORS OF RENAL FUNCTION 

Many vasoactive substances, both circulating and local, influence the tone of the afferent 

and efferent glomerular arterioles (Fig 1.1-1 ). These include a variety of vasoconstrictor 

molecules such as angiotensin, catecholamines, vasopressin and endothelin (ET)- I as well 

as vasodilator substances, such as bradykinin, adrenomedullin, natriuretic peptides, 

adenosine and prostaglandins (Egido, 1996). Whereas some of these regulators of vascular 

tone are either released into or formed in the circulation, others are produced by endothelial 

cells, including those lining the glomerulus. 

Systemic 
BP 

-t,. Bradykinin f 
f Adenosine f 

f Prostaglandins f 
� Natriuretic peptides� 
* Adrenomedullin *

-t,. NO -t,.
RA RE 

t Angiotensin � 

Vasopressin 

tEndothelin 
Sympathetic 

Thromboxane t 

Fig 1.1-1: Vasoactive substances influencing tone and resistance in renal vasculature. 

Ref.: Johnstone CI et al. (1998). Journal of Hypertension, 16 (4): Sl-7 (S4) 
Abbreviations: RA =afferent artery; RE =efferent artery; BP= blood pressure; NO= nitric 
oxide 
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The endothelium is a monolayer of cells that forms the inner lining of all blood vessels. 

Endothelial cells synthesize many active substances, including large molecules [such as 

fibronectin and heparan sulphate, interleukin (IL)-1, tissue plasminogen activator] and 

various growth-promoting factors as well as smaller molecules [such as prostacylin, 

endothelium-derived relaxing factor (EDRF)/nitric oxide (NO), platelet-activating factor 

and ET-1]. The outer surface of endothelial cells contains angiotensin-converting enzyme, 

which catalyses the formation of angiotensin II from its inactive precursor angiotensin I. It 

also inactivates bradykinin (reviewed by Vane et al., 1990). In this way, many of them 

interact with EDRF / NO which mediates signal transduction. Nitric oxide is a powerful 

regulator of intrarenal haemodynamics and its release is stimulated by pressure and sheer 

stress (Webb, 1997), as is ET-1 and angiotensin II. 

Vasoconstrictors not only increase blood pressure but are also anti-natriuretic and neuro­

excitatory, and stimulate growth and hypertrophy. In contrast, vasodilators lower blood 

pressure and are also natriuretic and neuro-inhibitory, and inhibit growth and hypertrophy. 

Some growth factors, such as transforming growth factor (TGF)-P and platelet-derived 

growth factor (PDGF), may be vasoactive. Both angiotensin II and ET-1 are potent stimuli 

for cytokine production and extracellular matrix formation (Egido, 1996). 

The relationship between ET-1 and cytokines is dual. Renal cells stimulated by TGFP, 

PDGF and IL-1 p, secrete endothelin-1. Endothelin-1 induces the expression and synthesis 

of various cytokines in mesangial cells. Interleukin-6 synthesis has been reported to be 

stimulated by ET-1, angiotensin II and arginine vasopressin in mouse mesangial cells 

(Fujibayashi et al, 1991 ). It is likely that vasoactive hormones, growth factors and 
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cytokines are activated and, conversely, inhibited by the same stimuli, including 

mechanical stress, stretch and pressure transmission and immunological injury. 

Many vasoactive substances directly affect glomerular permeability and mesangial cell 

function. In the renal cortex, angiotensin II and ET-1 act as vasoconstrictors to decrease 

renal blood flow and glomerular filtration rate, whereas bradykinin causes vasodilation and 

increases glomerular capillary permeability. In the medulla, angiotensin II and ET cause 

vasoconstriction of the outer medullary descending vasa recta and thereby decrease vasa 

recta and papillary blood flow, whereas bradykinin exerts opposite effects (Navar et al., 

1996). Receptor-mapping studies in the rat kidney have shown that the distribution of 

angiotensin II subtype 1 (AT 1), endothelin A and B (ET A and ET 8) and kinin B2 receptors 

closely overlaps at several anatomical sites, including the renal vasculature, glomeruli, and 

the inner stripe of the outer medulla. In the cortex, the distribution of A T 1 and ET 8 

receptors is similar in glomeruli and proximal tubules. In contrast, B2 receptor density is 

low in the cortex. AT 1 receptors are predominantly in mesangial cells whereas ET 8 

receptors are present mainly in endothelial cells of glomerular capillaries. In the medulla, 

ET 8 and B2receptors are abundant in the inner medulla towards the tip of the papillae, 

whereas AT 1 receptors are not readily detected in this region. However, receptor binding 

sites for these peptides all occur in the inner stripe of the outer medulla, suggesting their 

role in the regulation of renal medullary haemodynamics, tubular transport processes and 

probably long-term blood pressure homeostasis. These peptides also promote cell 

proliferation and extracellular matrix synthesis in renal medullary interstitial cells (Zhuo et 

al., 1998). 
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1.1.2 ENDOTHELINS IN THE KIDNEY 

Yanagisawa and colleagues (1988a) reported an endothelium-derived factor (a 21 ammo 

acid peptide) as the most potent vasoconstrictor ever described to date. This substance was 

named endothelin (ET). Subsequent studies showed that ET was one of a family of 3 

isopeptides, all of which were formed through a 2-step processing pathway from their 

respective precursor peptides that shared high sequence homology but were encoded by 

distinct genes. Endothelin isopeptides share a marked structural similarity to the 

sarafotoxins (SRTX), peptides isolated from the Israeli burrrowing asp, Atractaspis 

engaddensis [Kloog et al., 1988; (Fig 1.2-1)]. The ETs and SRTXs act through common 

receptors to evoke a multitude of biological effects. Isoforms of SRTX have been utilised 

as tools for the characterisation of ET receptors (Sokolovsky, 1994 a and b ). 

ET-I is the major isopeptide produced by human endothelial cells and is present in the 

greatest concentration in blood. The concentrations of ET- I, though detectable in the 

human circulation, are very low (in the picomolar range). However, as ET- I is released 

predominantly in an abluminal direction towards the underlying smooth muscle (Wagner et 

al., 1992), the tissue concentration is likely to be sufficiently high to activate local 

receptors. Recent studies, using inhibitors of ET synthesis or receptor antagonists, suggest 

that ET-I is released tonically to maintain basal systemic vascular resistance in humans 

(Haynes and Webb, 1994). In this way, ET-I might balance out the dilator effects of nitric 

oxide (NO), which is also thought to be released in a tonic manner [(Vallance et al., 1989; 

Haynes et al., 1993); Fig 1.2-2]. 
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Fig 1.2-1: Amino acid sequence of endothelin isopeptides 

Ref: Brenner B Met al. (1989), Journal of Clinical Investigation, 84: 13 73-13 78 (1375) 

While the synthesis of NO can be increased within minutes in response to various stimuli, 

ET-1 synthesis is regulated at the transcriptional level with a resultant delay in release 

(Yanagisawa et al., 1988b; Boulanger and Lilscher, 1990). Nitric oxide has a short half-life, 

and its effects can be terminated quickly by cessation of release; in contrast endothelial ET-

1 binds to its receptors on smooth muscles irreversibly, and its constrictor and pressor 

effects are of longer duration (Hirata et al., 1988; Yanagisawa et al., 1988 b ). 
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Fig 1.2-2: Endothelium-derived factors that regulate vascular smooth muscle 

Ref: Kohan D E (1997), American Journal of Kidney Disease, 29: 2-26 (5) 
Abbreviations: ER= endoplasmic reticulum; IP3= inositol triphosphate; PLC= phospho­
lipaseC; [Ca2+]= calcium concentration; PGii= prostacyclin; PKC= protein kinase C; 
PLA2

= phospho-lipase A2

Intensive research into the ET system has greatly improved our understanding of the genes 

that encode for ET-1 and its isopeptides, of the enzymes involved in its synthesis and the 

receptors that by activating signaling pathways mediate its actions. 
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1.1.2.1 ENDOTHELIN GENERATION AND CLEARANCE 

1.1.2.1.1 Endothelin genes and regulation 

At least 3 genes encoding ET- like sequences in mammalian genomes (Inoue et al., 1989b), 

have been shown to encode the precursors of ET-2 and ET-3, in addition to prepro ET-I. In 

the human genome, the ET-1 gene is found on chromosome 6 (Bloch et al., 1989 a; Hoehe 

et al., 1993), the ET-2 gene on chromosome 1 (Bloch et al., 1991) and the ET-3 gene on 

chromosome 20 (Bloch et al, 1989 b ). Endothelin gene expression has been demonstrated 

in the brain and spinal cord, lung, kidney, gut, eye, pituitary and amnion (reviewed by 

Simonson, 1993). The endothelium is the major site of ET gene expression. The genes 

encoding ET precursors have promoter regions through which external factors are able to 

modulate transcription (Hilkert et al., 1992; Benatti et al., 1994). Extracellular factors can 

influence ET-1 generation both positively and negatively through liberation of a series of 

intracellular mediators that modulate gene transcription. Several agents, including insulin, 

thrombin, low density lipoprotein, angiotensin II, vasopressin and ET-1 itself (Emori et al., 

1991; Boulanger et al., 1992; Emori et al., 1992; Kohno et al., 1992; Benatti et al., 1994) 

enhance ET-I generation via activation of protein kinase C [(PKC); Table 1.2-1]. 

Responsiveness to PKC is mediated by binding of the proto-oncogenes,jun and/as to the 

Activator Protein-I (AP-1) transcription regulatory element of the ET-1 promotor (Curran 

and Franza, 1988; Lee et al., 1991 ). PKC activation is also thought to be a mechanism by 

which low levels of shear stress (1.8 dyne/cm2) enhance endothelial ET-I release (Kuchan 

and Frangos, 1993; Wang et al., 1993). Higher levels of shear stress (>6 dyne/cm2) activate 

another mechanism that inhibits ET-1 mRNA transcription (Kuchan and Frangos, I 993; 

Malek et al., 1993). This effect is prevented by inhibitors of NO synthesis and by 

methylene blue, an inhibitor of guanylate cyclase, suggesting that endothelial cells release 
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NO in response to shear stress, and inhibit ET-I synthesis through formation of cyclic 

GMP. Synthesis of ET-I is inhibited by thrombin (Boulanger and Liischer, 1990), heparin 

(Yokokawa et al., 1993), atrial and brain natriuretic peptides (Kohno et al., 1991) and by 

the prostanoids, prostaglandin E2 and prostacyclin (Prins et al., 1994). One action of cyclic 

GMP is to reduce the availability of intracellular calcium, which may be relevant for the 

inhibition of ET-I synthesis, as calcium chelation similarly reduces ET-I release from 

endothelial cells (Emori et al., 1992). 

1.1.2.1.2 Processing of endothelin precursors 

Endothelin isopeptides arise from post-translation processing of large isopeptide-specific 

prohormones in a manner analogous to other peptides. The 212-amino acid pre-proET-1 

undergoes proteolytic cleavage between Lys 52-Arg 53 and Arg
90

-Arg91 to release the 38 

amino acid precursor, big ET-I; this step may be dependant on one of the proprotein 

convertases (Steiner et al., 1992; Seidah et al., 1993). Furin, a proprotein convertase of the 

constitutive secretory pathway, has been proposed as a likely candidate (Laporte et al., 

1993). Big ET-I is less active than ET-I for displacement of binding to ET receptors and in 

stimulating vascular contraction in vitro (Hirata et al., 1990). The release of the 

biologically active 21 amino acid ET-I requires selective cleavage of the Trp21 
-Va!22 bond 

in the carboxy terminal portion of big ET-1, catalysed by endothelin-converting enzyme 

activity [(ECE); Fig 1.2-3]. Several ECE-like enzyme activities representing different 

endopeptidase classes have been identified (reviewed by Opgenorth et al., 1992; Turner 

and Murphy, 1996). These include serine proteases (Yanagisawa et al., 1988 b; McMahon 

et al., 1989; Takaoka et al., 1990a; Kaw et al., 1992; Wypij et al., 1992), aspartate 

proteases such as pepsin (Takaoka et al., 1990 b) and Cathepsin D (Sawamura et al., 1990), 

and soluble thiol protease (Deng et al., 1992). The physiologically relevant ECE is a 
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membrane-bound, zinc-containing metalloprotease that is inhibited by phosphoramidon, a 

neutral (metallo) endopeptidase (NEP 24.11) inhibitor (Opgenorth et al., 1992). The 

activity of this ECE is not affected by thiorphan (another NEP inhibitor) or by inhibitors of 

the neutral metalloprotease angiotensin converting enzyme (ACE). Human ECE - I has a 

neutral pH optimum and is inhibited by phosphoramidon (Schmidt et al., 1994; Yorimitsu 

et al., 1995). A second novel enzyme, ECE-2 has been cloned more recently (Emoto and 

Yanagisawa, 1995); this enzyme is also inhibited by phosphoramidon. ECE-1 is widely 

distributed but not found in neurons and glia in the brain. ECE-2, in contrast, seems to be 

most abundantly expressed in neural tissues (Emoto and Yanagisawa, 1995). Both ECE-1 

and ECE-2 are predicted to be integral membrane proteins and therefore the primary site 

for cleavage of endogenous big ET-1 could be at the plasma membrane or at an intra­

membranous site. 

Exogenous big ET-1 can be converted to ET-1 in vivo (McMahon et al., 1991 ), in vitro

(Auguet et al., 1992) and in cos cells transfected with the ECE-1 gene (Xu et al., I 994), 

consistent with localisation of ECE at an accessible plasma membrane site. Endogenous 

big ET-1 is most likely to be converted during its transit through the intracellular 

constitutive secretory pathways, especially within the Golgi apparatus. Formation of ET-I 

in secretory vesicles that can recognise transport pathways could explain the directional 

release ofET-1 towards the abluminal surface of endothelial cells (Wagner et al., 1992). 
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1.1.2.1.3 Sites of endothelin synthesis and secretion 

Endothelin-1 is secreted by a constitutive pathway but recent evidence suggests that in 

some cells, ET can be secreted by a regulated pathway via secretory granules. Endothelial 

cells in culture secrete about 80% of ET-I into the basolateral compartment (Wagner et al., 

1992). Stimulation with thrombin doubles ET-I secretion. Numerous cells in culture, 

including endothelial cells (Yanagisawa et al., 1988a; Bloch et al., 1989a; Saito et al., 

1989), vascular smooth muscle cells (Resink et al., 1990a; Yu and Davenport, 1995), 

mesangial cells (Sakamoto et al., I 990; Zoja et al., 1991 ), and glial cells (MacCumber et 

al., 1990), secrete a constant level of ET into the culture supernatant, suggesting a 

constitutive pathway for secretion, which is supported by immunocytochemical studies on 

endothelial cells (Nakamura et al., I 990). Immunoreactive ET-I is detected primarily in the 

endothelial cell layer in human blood vessels (Howard et al., 1992; Tokunaga et al., 1992; 

Saetrum Opgaard et al., I 994; Properzi et al., I 995), consistent with the idea that ET-I is 

released by endothelial cells to act on the underlying smooth muscle cells. In situ

hybridisation for ECE-1 mRNA also shows the most intense labelling over vascular 

endothelial cells of most tissues (Xu et al., 1994). The secretory pathway involves the 

rough endoplasmic reticulum, Golgi cisternae, Golgi vesicles and small exocytic vesicles 

directly beneath the plasma membrane. A variety of stimuli increase ET secretion, as 

shown in Table 1-1. In most cases induction of ET-I secretion above basal levels requires 

2-5 h, and most likely results from ET gene induction. ET-I secretion by endothelial cells

is inhibited by atrial natriuretic factor (Saijonmaa et al., 1990; Kohno et al., 1991; Hu et al., 

1992) and by co-culture with cells of the vascular media (Stewart et al., 1990), which might 

protect vascular target cells from excessive ET-I production. Endothelial secretion is also 

inhibited by activation of protein kinase A (Sakamoto et al., 1992). 
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Table 1-1. Factors that influence ET-1 biosynthesis 

Fluid-mechanical shear stress 

Hypoxia 

Thrombin 

Transforming growth factor-� 

Interleukin- I 

Tumour necrosis factor 

Bradykinin 

Arginine vasopressin 

Epidermal growth factor 

Endo toxin 

Oxidized low-density lipoprotein 

Insulin 

Insulin-like growth factor I 

Thromboxane A2 

Epinephrine 

High glucose 

Ca2+ 

ionophores 

Phorbol esters 

Endothelin-1 
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Immunoreactive ET peptides have been demonstrated in secretory vesicles in the posterior 

pituitary of the rat (Yoshizawa et al., 1990). These are depleted upon water deprivation, 

suggesting that ET-I is secreted in response to changes in extracellular fluid volume or 

osmolarity and might be involved in neurosecretion and osmolar regulation. Glomerular 

immunoreactive ET-I is localised primarily in the endothelium and to a lesser extent, in the 

mesangium. Focal staining was also observed in the proximal tubule brush border (Wilkes 

et al., 1991 ). Experiments with primary cultures ( derived from nephron segments) reveal 

that renal tubule cells secrete abundant amounts of ET-I >ET-3; ET synthesis is much 

greater from medullary tubular segments with inner medullary collecting duct > medullary 

thick ascending limb > cortical collecting tubule >> proximal tubule (Kohan, 1991 ). It is 

thus possible to conclude that ET acts at multiple sites in the kidney, including the 

glomerulus (probably at afferent and efferent vascular smooth muscle and mesangial cells), 

medulla (probably loop of Henle and collecting ducts), vasa recta bundles and perhaps at 

the proximal tubules. ET might act at other renovascular sites, including the interlobular 

and arcuate arteries and possibly the vascular smooth muscle cells in the postglomerular 

medullary circulation. The proximal location of cells in the cortex and medulla expressing 

ET binding sites and preproET mRNA transcripts suggests that ET acts as an autocrine or 

paracrine peptide (Simonson, 1993). 

1.1.2.1.4 Clearance and degradation of endothelin 

The plasma half-life of ET-I in humans is less than 1.5 min because of its efficient 

extraction by the splanchnic and renal vascular beds (Weitzberg et al., 1991; Gasic et al., 

1992). Although ET-1 is also taken up by the lungs, pulmonary clearance is less important 

in humans than in other species (Ray et al., 1992; Hemsen et al., 1995). Extraction of ET-I 

follows binding to cell surface receptors, which are then internalised, allowing degradation 
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to be carried out within the cell, perhaps in lysosomes (Loffler et al., 1991 ). ET 8 receptors 

may have a role in clearance of ET-1, as suggested by increased circulating concentrations 

of ET-I with mixed ET A/ET s receptor antagonists (Loffler et al., 1993 ), or a ET 8 selective 

receptor antagonist (Fukuroda et al., 1994) but not by ET A selective antagonists. A soluble 

protease found in human platelets, vascular smooth muscle and endothelial cells may be a 

possible candidate for an intracellular degrading enzyme (Jackman et al., 1992, 1993). A 

deamidase with similar characteristics was purified from rat kidney (Deng et al., 1994; 

Janas et al., 1994). The ETs can also be degraded by neutral endopeptidases [NEPs, (E.C. 

24.11 )], which are associated with arterial and venous endothelial cell plasma membranes 

(Llorens-Cortes et al., 1992). Activated polymorphonuclear leucocytes are able to rapidly 

inactivate ET-1 through release of a protease, believed to be cathepsin G, which degrades 

ET by cleavage of His 16
- Leu 17 (Fagny et al., 1992; Patrignani et al., 1992); this process 

may have a role in acute inflammation following adhesion of polymorphonuclear 

leucocytes to vascular endothelial beds. 

1.1.2.2. ENDOTHELIN RECEPTORS 

The ETA type receptor is characterised by its very high (subnanomolar) affinity for ET-I 

and ET-2, and its 70-100 fold lower affinity for ET-3, while the ET8receptor has high and 

equal affinity for all 3 isopeptides. The cDNAs encoding the human ET A and ET B receptors 

predict 427 and 442 aminoacids respectively (Fig 1.2-4), and the overall identity between 

the two mature proteins is reported to be between 55% and 64%, depending on the tissue 

studied. The ET A and ET 8 receptor genes, located on chromosomes 4 (Hosoda et al., 1992) 

and 13 (Arai et al., 1993) respectively, have similar structural organisation, suggesting that 

they originated from the same ancestral gene. 
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Fig 1.2-4: Transmembrane topography of endothelin receptors. 

Ref: Sakamoto H et al. (1993), J Biol Chem, 268: 8547-8553 (8548) 
The number of amino acids ( circles) is based on the ETA sequence; striped circles depict 
the sequence introduced to ETB and the insertions by arrows. Closed circles denote amino 
acid residues that are identical in ET A and ETB receptors; open circles the non-identical 
residues. Position of the restriction sites used to construct chimeric receptors are shown 

with arrowheads with the names of the enzymes. Abbreviations: N= amino terminal; C= 

carboxy terminal; aa= amino acid. 

Screening of amphibian cDNA libraries has revealed the existence of 2 alternate receptor 

clones: ETc receptor subtype showing relative selectivity for ET-3, cloned from Xenopus 

dermal melanophores (Kame et al., 1993); ET AX, cloned from Xenopus heart, has a 

relatively high affinity for ET-1 (like the ETA receptor) but an uncharacteristic low affinity 

for the ETA selective ligand BQ-123 (Kumar et al., 1994). 

As with the ET genes, the nontranscribed 5' flanking regions of the ET receptor genes 

contain a number of regions in the regulation of gene transcription (Hosoda et al., 1992; 
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Arai et al., 1993). Exogenous factors can act through these regions to increase receptor 

transcription, namely upregulation of ET receptor mRNA by insulin (Frank et al., 1993), or 

ET 8 receptor mRNA by angiotensin II (Kanno et al., 1993). These mechanisms may be 

important in the regulation of responsiveness to the ETs in pathophysiological states. One 

of the major factors that reduces ET receptor numbers at the cell surface is prolonged 

exposure to ET-I, because of down-regulation or feedback inhibition of receptor 

expression (Hirata et al., 1988) or both in combination. All of the cloned ET receptor genes 

predict a heptahelical membrane spanning structure, common to members of the G-protein 

coupled receptor superfamily and similar to many neuropeptide receptors (Fig 1.2-4; 

Burbach and Meijer, 1992). The seven transmembrane domains and cytoplasmic loops of 

the receptors are highly conserved and the N-terminal and extracellular domains exhibit 

differences in both length and amino acid sequences (Ogawa et al., I 991; Elshourbagy et 

al., 1993; Sakamoto et al., 1993). The extracellular terminal regions of peptide G-protein 

coupled receptors are known to be important for ligand binding (Nagayama et al., I 991 ). 

The amino acid loops of the receptor proteins have been a speci fie source for the harvesting 

of anti-peptide antibodies. 

In vascular tissue, ETA receptor mRNA is expressed predominantly in smooth muscle. 

while ET 8 receptor mRNA is most abundant in endothelial cells, suggesting that 

constriction of vascular smooth muscle is mediated predominantly by ET A receptors, and 

that constriction is modified by release of relaxing factors from the endothelium via 

stimulation of ET 8 receptors (reviewed by Gray and Webb, 1996). Any analysis of the 

renal actions of ET requires an understanding of the distribution and molecular 

characterization of ET receptors. Both glomeruli and the inner medulla express abundant 
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binding sites for 125 I-ET-1 autoradiography (reviewed by Simonson, 1993). Precise cellular 

localizations are unavailable. Equilibrium binding studies in cultured medullary interstitial 

cells confirm the existence of high affinity (Kd=57pM) ET receptors in the medulla. A high 

density of ET-1 binding sites is also present in longitudional bands over the inner stripe of 

the outer medulla. In humans, the distribution of binding sites for ET-1, ET-2 and ET-3 and 

sarafotoxin 6b is similar, supporting the notion that different ET isopeptides act on the 

kidney (Waeber et al., 1990). ET-1 binds nearly irreversibly to its receptor and is not 

displaced by peptides such as angiotensin II, atrial natriuretic peptide and arginine 

vasopression, and is unaffected by dihydropyridine, phenylalkylamine and benzothiazepine 

calcium channel blockers (Kohzuki et al., 1989; Orone et al., 1990). Equilibrium binding 

studies with the ET 8 specific agonist sarafotoxin 6c and theET A receptor antagonist 

BQ 123 demonstrate that the kidney cortex expresses equal numbers of ET A and ET s 

receptors (Nambi et al., 1992). Steady-state mRNA levels for both ET A and ET B receptors 

have been observed by Northern blot analysis in adult rat kidney. In situ hybridisation 

reveals differential localization of ETA and ET B receptors. ET A mRNA is expressed in 

renal arteries and in afferent and efferent glomerular arterioles, implicating ET A receptors 

in the intense renal vasoconstriction induced by ET-1. ET A receptors have also been 

characterized from microdissected nephron segments of the glomerulus, vasa recta bundle 

and arcuate artery. ET 8 receptors are abundantly expressed by glomerular endothelial cells 

and in vasa recta bundles; weak hybridization signals corresponding to ET 8 mRNA were 

also observed over epithelial cells in thin segments of Henle's loop and over interstitial 

cells but not over epithelial cells of collecting ducts. In constrast, mRNA transcripts for 

ET A and ET 8 have been demonstrated by RT-PCR of RNA isolated from inner medullary 

collecting ducts in vitro (reviewed by Simonson, 1993). These studies demonstrate that ET 

binds to high-affinity, saturable, cognate receptors in the kidney. Moreover, the distribution 
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of ETA and ET s receptors suggests multiple actions on renal haemodynamics, glomerular 

function, medullary blood flow and perhaps, proximal tubular reabsorption or secretion. A 

large number of ET receptor antagonists (peptide and non-peptide, selective and non­

selective) have become available and have confirmed the role of ET-1 in pathology, the 

first report using BQ-123 (Moreland, 1994). 

1.1.2.3 MODE OF ACTION 

Low levels of plasma ET-1 are consistent with the predominantly basolateral secretion of 

ET-1 by endothelial cells. Thus it would appear that circulating ET-1 simply reflects 

spillover from local ET-1 release. The peptide is rapidly cleared from the plasma and 

degraded, consistent with a predominantly autocrine/paracrine action of ET. In some 

instances, circulating ET might be biologically active. Doubling of plasma ET levels by 

exogenous infusion causes a significant increase in peripheral and renal vascular resistance 

without affecting coronary vascular resistance or mean arterial pressure (Lerman et al., 

1990). Moreover, elevated ET plasma concentrations have been reported in some 

pathophysiological states that might activate high-affinity ET receptors (Lerman et al., 

1991 ). 

1.1.2.3.1 Transmembrane signalling by endothelin 

Endothelin peptides evoke complex, tightly regulated pathways of signal transduction that 

result in short-term (i.e. contraction, secretion) and long-term (i.e. mitogenesis) biological 

actions (Simonson and Dunn, 1990). Endothelin initially activates a membrane 

transduction process comprising a G protein-coupled cell surface receptor, coupling G-
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protein(s) and phospholipase C or other G protein-activated effectors (Fig 1.2-5). 

Endothelin rapidly induces a dose-dependent increase in phosphatidylinositol turnover. 

Activation of phospholipase C by ET produces at least 2 second messengers: 1,4,5-

triphosphate which diffuses to specific receptors on specialised compartments of the 

endoplasmic reticulum to release intracellular calcium; and 1,2-diacylglycerol, which 

remains in the plasma membrane and (with cofactors calcium and phosphatidylserine) 

activates phospholipase C. Calcium signalling is thought to mediate some short-term 

effects of ET such as vasoconstriction in the kidney and in other organ systems. Calcium 

signalling appears to be a nearly universal response to ET receptor activation (reviewed by 

Simonson, 1993). Calcium signalling induced by ET-1 requires conversion of proET-1 to 

ET- I. Endothelin peptides release calcium from intracellular stores. Endothelin-1 increases 

calcium influx from the extracellular space by activating multiple types of calcium 

channels in the plasma membrane. Evidence suggests that protein kinase C mediates both 

short and long-term events of ET. Evidence also suggests that ET-1 stimulates 

phospholipase A activity resulting in increased arachidonic acid-derived mediators such as 

prostaglandins and thromboxane. Both ETA and ET 8 receptors can stimulate phospholipase 

A2 (Simonson, 1993). Endothelin activates the electroneutral Na
+ 
- K

+ 
anti port:

sarcolemmal Na
+
- K

+ 
exchange has been demonstrated to sensitise cardiac myofilaments to 

intracellular calcium, thereby contributing to the inotropic activity of ET (Kramer et al., 

1991 ). Endothelin has also been shown to increase the Na
+ 
- K

+ 
-Cr co transport system in

vascular smooth muscle cells (Rosati et al., 1990). 
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Fig. 1.2-5 Transmembrane signalling by ET-1 
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Ref: Simonson, MS (1993). Physiological Reviews, 73, 375-411 (383) 

Abbreviations: ROC= receptor-operated calcium channel; VOC= voltage-gated calcium 

channel; pH= intracellular pH; IP3 = inositol 1,4,5-triphosphate; IP 4= inositol 1,3,4,5-

tetrakisphosphate; [Ca2+
]= intracellular calcium concentration 

In addition to activating the serine/threonine-specific protein kinase C, ET also activates S6 

kinase (Resink et al., 1990 b ), which phosphorylates the sixth protein on the small 

ribosomal subunit, and is thought to contribute to mitogenic signalling. Endothelin-1 

causes tyrosine and threonine phosphoryation and activation of mitogen-activated protein 

(MAP) kinase in mesangial cells, which is also postulated to contribute to mitogenic 

signalling (Wang et al., 1992). 

1.1.2.3.2. Signal transduction in the nucleus 

Cells proliferate when stimulated by high concentrations of ET. Endothelin has been 

reported to increase the expression of several genes including collagenase, prostaglandin 

endoperoxidase synthase and platelet-derived growth factor A and B chains. Further, ET-1 

enhances the ability of epidermal growth factor to induce colony formation in semi-soft 
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agar. Endothelin-1 elevates the expression of transcription factors such as c-fos, c-jun, c­

myc and VL-30. Induction of both c-fos and c-jun by ET is rapid and transient, consistent 

with a role for these trans-acting factors as a genetic switch. It is also likely that by 

induction of trans-acting factor genes, ET contributes to long-term changes in cell 

phenotype (reviewed by Simonson, 1993). 

1.1.2.4 REGULATION OF RENAL HAEMODYNAMICS 

Renal haemodynamics influence renal function by controlling, in part, glomerular filtration, 

tubular secretion and reabsorption, and urine concentration and dilution. Changes in renal 

haemodynamics act by regulating blood flow and hydraulic pressure in the glomeruli, 

peritubular and medullary micro-circulation (Dworkin et al., 1991 ). Renal vascular tone is 

regulated by a-and P-adrenergic sympathetic output, and by the levels of circulating 

vasoactive compounds such as angiotensin II, prostaglandins, arginine vasopressin, atrial 

natriuretic peptide and kinins. Renal vasomotor tone is exquisitely sensitive to ET-1 

(Simonson, 1993). Systemic infusions of ET-1 cause a marked increase in renal vascular 

resistance (RVR), and a decline in renal plasma flow (RPF) and glomerular filtration rate 

(GFR). Changes in RPF occur rapidly and are dose-dependant: maximal decreases occur 

20-30 min after infusion, after which RPF gradually increases and returns to baseline after

1-2 h. The increase in RVR following ET-1 infusion results from intense contraction of

glomerular arterioles (afferent> efferent), and arcuate and interlobular a11eries. ET-1 may 

induce renal vasoconstriction via platelet-activating factor and increase in cytosolic free 

calcium (Simonson and Dunn, 1992). Direct infusion of ET-1 into the renal artery in dogs 

causes a rapid transient increase in RPF followed by a marked long-lasting decrease (Stacy 
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et al., 1990). The decline in RPF is partially attenuated by dihydropyridine calcium channel 

blockers and by atrial natriuretic peptide (Katoh et al., 1990). On a molar basis, ET-1 is 30 

times more potent than angiotensin II and 50 times more potent than noradrenaline (Cairns 

et al., 1989). 

Hypotheses for a role for ET in local control of blood flow in the kidney and autoregulation 

are: (i) an increase in blood flow may be sensed at the endothelium by shear stress 

receptors, which then transduce a signal to increase the rate of ET-I secretion by 

endothelial cells. Endothelin-1 would then diffuse to nearby vascular smooth muscle cells, 

bind to specific receptors and induce a phospholipase C-dependant signalling cascade to 

initiate contraction of the blood vessel via an excitation-contraction coupling, signal 

transduction process. The resultant increase in vasomotor tone would oppose the increase 

in blood flow, and function as a myogenic mechanism of autoregulation. Secretion of ET 

by endothelial cells would counteract the vasodilatory signals released by endothelial cells, 

such as endothelium derived relaxing factor (EDRF), kinin-forming enzymes and 

prostacyclin. Thus, ET-1 would function in concert with other endothelium-derived 

vasoactive factors to produce regional regulation of blood flow; (ii) a second hypothesis is 

that ET contributes to tubulo-glomerular feedback in response to increased NaCl delivery 

at the macula densa by inhibiting renin secretion (Simonson, 1993). 
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1.1.2.5 EFFECTS ON GFR AND GLOMERULAR FUNCTION 

1.1.2.5.1 Endothelin and GFR 

Single nephron GFR (SNGFR) is the product of net filtration pressure (P ur) across the 

glomerular capillary and the ultrafiltration coefficient (Kr). ET-I acts on both variables to 

regulate SNGFR. Mildly pressor doses of ET-1 cause a greater increase in efferent than 

afferent arteriolar contraction thereby increasing Pur (King et al., 1989). While this would 

favour filtration, a decline in Kr and a modest decline in glomerular capillary flow rate (QA) 

cause SNGFR to remain relatively constant at these low doses of ET-1. Higher doses of 

ET-I cause profound increases in afferent and efferent resistance, and a decline in QA and 

Kr, thereby reducing GFR. ET-1 evokes contraction of glomerular mesangial cells via 

excitation-contraction coupling, suggesting that a reduction in filtering surface area might 

mediate the fall in Kr by ET (reviewed by Simonson, 1993). 

1.1.2.5.2. Endothelin and mesangial cells 

Mesangial cells are specialized microvascular pericytes located in the central region of the 

glomerular tuft between capillary loops. Mesangial cells help regulate GFR by controlling 

Kr; they also process macromolecules (including immune complexes) trapped within the 

mesangium. In addition, mesangial cells synthesize and assemble the mesangial matrix, 

which is a major determinant of the visco-elastic properties of the mesangium. Endothelins 

have both contractile and pro-mitogenic actions on mesangial cells, which might contribute 

to the glomerular response to injury. Prostaglandins help regulate contraction and 

mitogenesis of mesangial cells in culture. ET-1 evokes arachidonic acid release and 

production of PGE2 from mesangial cells. ET-1 is a potent growth factor for mesangial 

cells and stimulates quiescent mesangial cells to enter 0 1 and proliferate. ET-I also 
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increases mesangial DNA topoisomerase-1 activity by a pertussis toxin-sensitive pathway. 

Mesangial cells in vivo are normally quiescent. Mesangial proliferation is a common 

finding in glomerular inflammation suggesting that local overproduction of ET-1 might 

serve as a pro-inflammatory signal in glomerular injury. Pro-inflammatory agents such as 

IL-1 and TGF p stimulate ET secretion in endothelial and mesangial cells, supporting this 

hypothesis. ET-I induces platelet-derived growth factor (PDGF) A and B chain expression 

in human mesangial cells; AP-I transcription factors probably mediate induction of the 

collagenase gene by ET-I in mesangial cells (reviewed by Simonson, 1993). 

1.1.2.6 EFFECTS ON SODIUM 

A major function of the kidney is to regulate extracellular fluid volume (ECFV) and thus 

mean arterial pressure, both of which may be regulated by ET. ECFV is primarily 

determined by total exchangeable sodium and therefore alterations in renal sodium 

excretion, which represents the difference between the filtered load of sodium and the 

amount of sodium reabsorbed at various tubular sites. ET-I appears to have diverse effects 

on renal sodium handling and the precise role of ET-1 in renal sodium excretion is unclear. 

Systemic infusions of ET-1 decrease sodium excretion in some studies (Goetz et al., 1988; 

Hirata et al., 1989; Miller et al., 1989), but in others (King et al., 1989; Garcia et al., I 990), 

ET-1 was modestly natriuretic despite a decline in RBF. lntrarenal infusions of ET-1 cause 

no change in sodium excretion, whereas higher doses decrease sodium excretion (Katoh et 

al., 1990; Stacy et al., 1990), suggesting that ET has an intrarenal natriuretic effect but that 

the influence of other extra- and intrarenal mechanisms might oppose this action. 
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1.1.2.6.1 Endothelin and the filtered load of sodium 

ET-I reduces GFR and would therefore be expected to reduce the filtered load of sodium, 

resulting in decreased sodium excretion. The haemodynamic actions of ET-1 would reduce 

the peritubular capillary Starling pressures, thereby leading to enhanced removal of sodium 

from the peritubular interstitial space into the peritubular capillaries. 

1.1.2.6.2 Endothelin and the Renin-Angiotensin-Aldosterone System 

The renin-angiotensin system is the chief regulator of ECFV. Angiotensin II (All) increases 

proximal tubular fluid reabsorption via alterations in renal haemodynamics and by directly 

stimulating proximal tubule sodium reaborption. All also stimulates adrenal aldosterone 

secretion, which stimulates sodium reabsorption by the late distal tubules and collecting 

ducts. ET-I stimulates the apical Na
+ 
-K

+ 
exchanger and the basolateral Na

+ 
-H co-3 

cotransporter (Eiam-Ong et al., 1992). Both the haemodynamic and proximal tubular 

actions of ET-1 might be similar to those of AIL ET-I infusion increases circulating levels 

of aldosterone (Goetz et al., 1988; Miller et al., 1989). Systemic infusion of ET- I sharply 

increases plasma renin activity (Goetz et al., 1988; Miller et al., 1989) which may reflect 

activation of the intrarenal baroreceptor and macula densa-mediated pathways of renin 

secretion. In vitro experiments with superfused juxtaglomerular cells, cortical slices and 

isolated rat glomeruli demonstrate inhibition of renin release by ET-I (Takagi et al., 1989). 

The inhibitory effect of ET-I is attenuated in the absence of extracellular calcium. 

ET-1 therefore has variable effects on renin release: when ET-I is secreted locally, it likely 

inhibits renin release via a calcium-dependent mechanism, resulting in decreased 

aldosterone secretion, thereby reducing sodium reabsorption and increasing sodium 
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excretion; high levels of circulating ET-I would increase renin secretion either directly at 

the adrenal glomerulosa, or indirectly as a result of profound renal vasoconstriction, 

resulting in increased aldosterone, enhanced sodium reabsorption and decreased sodium 

excretion. Thus the net effect of ET-I on renal sodium handling would depend on whether 

ET-I functions as a circulating or local peptide hormone. 

1.1.2.6.3 Endothelin and atrial natriuretic peptide secretion. 

Atrial natriuretic peptide (ANP), released from cardiac atrial myocytes in response to atrial 

stretch, regulates sodium excretion by directly stimulating natriuresis through guanylate 

cyclase linked ANP receptors, increases GFR by enhancing the filtered load of sodium and 

concomitantly inhibiting sodium reabsorption at the collecting duct. ANP also indirectly 

decreases sodium reabsorption by inhibiting renin secretion and AII-induced aldosterone 

release. ET-I infusion elevates circulating levels of ANP (Goetz et al., 1988; Miller et al., 

1989). ANP is a potent vasodilatory compound and the major function of ANP secretion 

could be to antagonise the contractile effects of ET-I and AII on vascular smooth muscle 

and on glomerular mesangial cells (Neuser et al., 1990). 

1.1.2.6.4 Endothelin and sodium-potassium-ATP in the collecting duct 

Systemic infusions of ET-I (at doses that do not markedly impair GFR) produced modest 

natriuresis. In addition to its effect on ANP stimulation, ET might also produce natriuresis 

by inhibiting Na
+ 

_K
+

-ATPase activity in the medullary collecting duct (Zeidel et al., 1989), 

thereby reducing the electrochemical gradient favouring sodium reabsorption. ET-!­

induced inhibition of Na
+

-K
+

-ATPase is abolished by ibuprofen, suggesting that the 

inhibitory action 1s mediated by prostanoids. Table 1-2 summarizes the possible 

mechanisms by which ET modifies sodium excretion by the kidney. 
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Table 1-2. Effects of Endothe]in-1 on renal sodium regulation 

Natriuretic actions of endothelin 

Inhibition of renin secretion: local effect on JG cells 

Increase of atrial natriuretic peptide secretion: direct action at 
cardiac atrial myocytes 

Inhibition ofNa
+

-K
+

-ATPase in medullary collecting ducts: 
mediated by prostaglandin synthesis 

Anti-natriuretic actions of endotheJin 

Reduction in filtered load of Na
+

: reduction in glomerular 
filtration rate 

Increase in plasma aldosterone: direct effect on adrenal 
glomerulosa or from decreased renal haemodynamics 

Possible stimulation of Na
+ 

reabsorption by direct action of 
endothelin-1 on proximal tubule 

Reduction of peritubular capillary Starling gradient in favour of 
Na

+ 

reabsorption 

1.1.2.7 ENDOTHELIN AND RENAL WATER REABSORPTION 

Renal water reabsorption is regulated indirectly by plasma osmolality, which evokes 

changes in pituitary arginine vasopressin (AVP) release. In the absence of A VP, collecting 

ducts are highly impermeable to water. A VP acts on renal collecting duct cells to stimulate 

insertion of preformed water channels into their apical membrane, causing the cells to 

become permeable to water. This results in movement of water from the tubular lumen to 

the interstitium. These effects of A VP are mediated by V 2 A VP receptors with consequent 

activation of adenylate cyclase (reviewed by Simonson, 1993). ET-1 increases urine flow 

rate despite a decrease in RBF and GFR (Goetz et al., 1988; Badr et al., 1989), suggesting 
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that ET-I might also regulate water reabsorption. Infusion of ET-I into conscious dogs 

decreases urine osmolality despite a constant level of circulating A VP (Goetz et al., 1989). 

Evidence suggests that ET- I can antagonise A VP-dependent cyclic AMP accumulation. In 

microdissected nephron segments, ET-1 dose-dependently (0.1-1 0.0nM) inhibits A VP­

evoked cAMP accumulation in the cortical collecting duct, outer medullary collecting duct 

and inner medullary collecting duct (Tomita et al., 1990). ET-I has no effect on A VP­

dependent cAMP accumulation in other nephron segments. This inhibitory effect is 

independent of calcium channel activity or prostaglandin synthesis but is dependent on 

protein kinase C activity. 

Immunoreactive ET peptides have been demonstrated in secretory vesicles in the rat 

posterior pituitary, and the vesicles were depleted by water deprivation (Ptashne, 1988). 

Therefore ET-I secretion, stimulated by water deprivation, could reduce water excretion 

directly by inhibiting baroreceptor reflexes or reducing GFR. 

1.1.2.8 ENDOTHELIN IN RENAL PA THOPHYSIOLOGY 

Endothelins affect three major aspects of renal physiology (i) vascular and mesangial tone, 

(ii) cell proliferation and matrix formation and (iii) sodium and water excretion. The

evidence for a pathophysiologic role of ET-1 in renal dysfunction is reviewed. 

1.1.2.8.1 Ischaemic acute renal failure 

This is commonly precipitated by an initial episode of severe renal ischaemia followed by 

several days or weeks of the kidneys failing to function normally. Reduction of renal blood 
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flow is the hallmark of this maintenance phase of ischaemic acute renal failure. Increased 

tissue concentrations of ET-1 during the initial 24 hours of the maintenance phase 

(Shibouta et al., 1990), a 5-10 fold increase in ET-I mRNA in glomeruli and inner 

medullary collecting ducts (Terada et al., I 992) and in renal tissue homogenate (Firth and 

Ratcliffe, 1992) during the first 48 hours, suggest a role for ET-I in this phase of ischaemic 

acute renal failure. Elevated plasma ET- I concentrations have been reported in patients 

with acute renal failure (Nakanishi et al., 1990). Beneficial effects of infusions of anti-ET 

antibody have been described on functional (Kon et al., 1989; Shibouta et al., 1990; Lopez­

Farre et al., 1991 ), histologic and biochemical parameters (Shibouta et al., I 990) of the 

kidney. Anti-ET antibody treatment during the maintenance phase caused a fall in elevated 

afferent and efferent arteriolar resistances, improved glomerular plasma flow and increased 

single nephron filtration rate (Kon et al., 1989); however normal control values were not 

re-established by this treatment. Subsequent studies in rats and dogs have shown that 

administration of ET receptor antagonists ameliorated impaired GFR, RBF and sodium 

excretion following transient renal artery or abdominal aortic occlusion (Stingo et al., 

1993; Brooks et al., 1994; Chan et al., 1994; Gellai et al., 1994, 1995; Krause et al., 1995; 

Kusumoto et al., 1994). Endothelin-1 production and binding were increased in ischaemic 

kidneys (Firth and Ratcliffe, 1992; Nambi et al., 1993). Increased ET-1 production may be 

due to hypoxia and oxygen radical production. Renal ischaemia causes tissue hypoxia 

which can increase renal ET-1 production. When renal perfusion is restored, there is an 

increase in reactive oxygen species due to metabolic impairment induced during ischaemia. 

These oxygen radicals ( especially hydrogen peroxide) may augment ET-I production 

(Hughes et al., 1996). Hence, once the initial ischaemic event is resolved, prolonged release 

of ET-I may perpetuate a reduced RBF and GFR. 
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1.1.2.8.2 Nephrotoxic acute renal failure 

Endothelin-1 may be involved in the pathogenesis of many toxic nephropathies, including 

that due to cyclosporine A (CyA), radiocontrast and endotoxaemia. 

1.1.2.8.2.1 Cyclosporine 

Endothelin-1 mediates acute Cy A-induced renal vasoconstriction. Cyclosporine and related 

immunosuppressants such as Tacrolimus (FK506) directly stimulated ET-1 release from 

mesangial and /or endothelial cells (Langman and Yatscoff, 1994; Goodall et al., 1995; 

Kohno et al., 1995). Cyclosporine A increased renal ET-1 mRNA expression (Iwasaki et 

al., 1994). Anti-ET antibodies and ET receptor antagonists ameliorated acute CyA-induced 

renal vasoconstriction (Kon and Awazu, 1992; Lanese and Conger, 1993; Conger et al., 

1994; Brooks and Contino, 1995; Kon et al., 1995). Salt-depleted rats given CyA daily for 

5 weeks developed a reduced GFR and tubulo-interstitial fibrosis. The decrease in GFR 

was ameliorated by concurrent administration of an ET A/ET 8 receptor antagonist, while 

fibrotic changes were unaltered (Kon et al., 1995), suggesting that ET-1 is a mediator of the 

vasoconstrictor but not fibrotic effects of Cy A. 

1.1.2.8.2.2 Radiocontrast nephropathy 

An increased risk of radiocontrast-induced acute renal failure is well known in the setting 

of the elderly patient suffering from diabetes mellitus, hypertension, arteriosclerosis and/or 

reduced renal function. Endothelin-1 stimulation has been observed with both ionic and 

non-ionic radiocontrast agents (Nakayama et al., 1991; Obialo et al., 1991). Decrease in 

renal blood flow by a third was demonstrated in rats following radiocontrast 

administration; however simultaneous infusion of the ET antagonist CP 170687 partially 

prevented this (Cantley et al., 1992). Endothelin-1 receptor antagonists markedly inhibited 
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the decrease in renal perfusion induced by radiocontrast agents (Oldroyd et al., 1995). If 

prostaglandin formation is unimpaired, both the vasoconstrictive response to the 

radiocontrast and the degree of protection offered by ET receptor blockade are greatly 

reduced (Cantley et al., 1993). 

1.1.2.8.2.3 Bacterial toxins 

Gram-negative bacterial sepsis and endotoxaemia cause systemic vasodilatation and renal 

vasoconstriction. The endotoxin lipopolysaccharide directly stimulated endothelial cell ET­

I release and increased renal tissue levels of ET-1 (Nambi et al., I 994; Kaddoura et al., 

1996). Anti-ET-I antibodies or ECE-blockade ameliorated the renal vasoconstrictor effects 

of endothelin in this condition (Morise et al., 1994). Nonspecific ET receptor blockage may 

further reduce systemic blood pressure in septic shock, suggesting that ET-I protects 

against lipopolysaccharide-induced hypotension (Kohan, 1997). Urinary ET-I was elevated 

in children with post-diarrhoeal haemolytic-uraemic syndrome, while serum from these 

children increased endothelial cell ET-1 production (Kohan et al., 1994). Purified Shigella 

toxin stimulated ET-I release by human glomerular endothelial cells (Kohan, I 997). 

Endothelin-1 also increased von Willebrand factor release, induced micro-thrombosis and 

caused a consumptive coagulopathy (Halim et al., 1994; Schulz et al., 1995). These studies 

suggest that ET-I is involved in the pathogenesis of post-diarrhoeal haemolytic-uraemic 

syndrome. 

1.1.2.8.3. Miscellaneous disorders 

The following disorders are associated with increased renal ET-I production: 

nephrotoxicity due to amphotericin B and cisplatin, glycerol-induced myoglobinuric renal 

failure, hepatorenal failure (Kohan, 1993; Karam et al., 1995), obstructive uropathy (Klahr 
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et al., 1991; Kelleher et al., 1992), acute vascular renal transplant rejection (Watschinger et 

al., 1991 ), renal vasculitides (Kanno et al., 1990), erythropoietin-induced hypertension 

(Sekino et al., 1991) and hypertensive disorders of pregnancy (Kamoi et al., 1990). 

1.1.2.8.4 Proliferative glomerular disease 

There is evidence to suggest that ET-1 is involved in the pathogenesis of proliferative 

glomerulonephritis. Renal ET-1 production was increased in experimental and human 

glomerulonephritis (Murer et al., 1994; Roccatello et al., 1994; Nakamura et al., 1995a; 

Yoshimura et al., 1995), while ET 8 receptor expression was upregulated in 

glomerulonephritis in the rat (Yoshimura et al., 1995). ET-1 is a potent mitogen and partly 

mediated the proliferative effects of several cytokines (Bakris and Re, 1993; Kohno et al., 

1994; Nitta et al., 1995). Inflammatory cytokines and proteinuria per se augmented renal 

ET-1 production (Zoja et al., 1995). ET-I may activate and be chemotactic for monocytes, 

which can in turn secrete ET-1 (Martin-Nizzard et al., 1991; Achmad and Rao, 1992). ET 

receptor antagonists reduced mesangial cell proliferation in experimental mesangial 

proliferative glomerulonephritis (Fukuda et al., 1996) and decreased renal injury in murine 

lupus nephritis (Nakanmra et al., 1995b ). Renal ET-1 mRNA levels were elevated in 

polycystic kidney disease (Nakamura et al., 1993; Hocher et al., 1998). 

1.1.2.8.5 Renal fibrosis 

Endothelin-1 also contributes to excessive accumulation of extracellular matrix 

components and fibrosis by increasing renal cell fibronectin and collagen production, tissue 

inhibitor of metalloprotease levels and the release of cytokines that stimulate matrix 

accumulation (Ong et al., I 994; Ruiz-Ortega et al., 1994). ET-I antagonism decreased 

matric accumulation in experimental models of glomerulonephritis (Fukuda et al., 1996). 
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Chronic treatment with an ET receptor antagonist attenuated increases in glomerular 

mRNA levels of collagen, laminin, tumour necrosis factor, TGF-P, PDGF and basic 

fibroblast growth factor in diabetic rats (Nakamura et al., 1995c). Once substantial renal 

scarring occurs, there is an inevitable progression to end stage kidney disease, a process 

involving gradual glomerular sclerosis and interstitial fibrosis. Endothelin receptor 

blockade reduced proteinuria and glomerulosclerosis and protected against hypertension 

and elevations in serum creatinine in the 5/ 6 nephrectomy rat model (Benigni et al., 1993 

and 1996). 

1.1.2.8.6 Renal endothelin-1 in essential hypertension 

Alterations in ET-1 in the renal vasculature and renal tubules have differing effects on 

blood pressure. In the vasculature, increases in ET-1 predominantly cause vasoconstriction 

with a hypertensive effect. Increased ET-1 in the nephron probably enhances sodium and 

water excretion, favouring hypotension (reviewed by Markewitz and Kohan, 1995; 

Schiffrin, 1995). Renal vascular responsiveness to ET-1 in animal models of essential 

hypertension is controversial with both enhanced and unchanged renal vascular 

responsiveness reported. Whole kidney ET-1 expression has been reported to be increased, 

unchanged or decreased in hypertensive animals in different studies. Infusion of anti-ET 

antibodies into spontaneously hypertensive rats (SHR) resulted in a 50% increase in RBF 

while having no effect on Wistar Kyoto (WKY) rats (Ohno et al., 1992). ET A receptor 

blockade increased RBF in SHR and DOCA-salt hypertensive rats but not in their 

normotensive controls (Fujita et al., 1996). Thus evidence suggests that enhanced intrarenal 

ET-1 activity augments renal vasoconstriction in animals with genetic hypertension. 

Urinary ET-1 excretion was markedly reduced in patients with essential hypertension 

(Hoffman et al., 1994). ET-1 production was much lower in inner medullary collecting duct 
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(IMCD) cells and in the outer and inner medulla from hypertensive SHR rats compared 

with WKY controls (Hughes et al., 1992). Bosentan, a mixed ETA/ET 8 receptor antagonist, 

administered to patients with mild-moderate essential hypertension was as effective as 

enalapril (inhibitor of angiotensin converting enzyme) in controlling blood pressure, 

suggesting that ET-I contributes to hypertension in these patients (Krum et al., 1998). 

1.1.2.8. 7 Chronic renal failure and hypertension 

Plasma ET-I levels are frequently elevated in patients with chronic renal failure or on 

dialysis (Shichiri et al., 1990; Warrens et al., 1990; Stockenhuber et al., 1992). Further 

fractionation by gel permeation chromatography revealed borderline increased plasma ET­

I with marked elevations of big ET-I and other large forms of ET, with an increase of 

about 500% above control (Saito et al., 199 I). Although plasma ET-I levels correlate with 

the degree of hypertension in chronic renal failure patients, this observation has not been 

uniformly noted. The kidney is a major site of ET-1 metabolism (Abassi et al., 1992); 

plasma ET-1 half-life was increased in bilaterally nephrectomised rats (Kohno et al, 1989). 

Dialysis may elevate ET-I levels. The type of dialysis membrane may influence plasma 

ET-I levels (Niwa et al., 1993; Ross et al., 1993 ); plasma ET-I levels were reduced when 

high flux membranes are used. Thus patients with chronic renal failure or end stage renal 

disease have borderline elevated plasma ET-I levels due partly to reduced ET-I clearance 

while intrarenal generation of ET-1 may be increased. 

1.1.2.8.8 Renal transplantation 

Plasma ET-I levels were reported to be elevated in predialysis patients with chronic renal 

failure and in patients on regular haemodialysis; plasma ET-I levels were normal in stable 

renal transplant patients treated with CyA (Stockenhuber et al., 1992). An association 
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between increased plasma ET-I levels and CyA was first suggested in a renal transplant 

patient receiving high doses of CyA (Fogo et al., 1990). After administration of CyA, 

plasma ET-I levels increase transiently in transplant patients because ET- I is rapidly 

metabolised and cleared from the systemic circulation (Grieff et al., 1993). The 

inflammatory process of acute cellular rejection is predominantly confined to the 

interstitium and marked intragraft upregulation of ET-I may occur without significant 

changes in ET-I plasma concentrations (Watschinger et al., I 995), unless there is 

endothelial damage as occurs with vascular rejection (Watschinger et al., 1994). Activated 

mononuclear cells that infiltrate the allograft secrete a variety of cytokines (Blancho et al., 

1993; Halloran et al., 1993; Hancock 1984), that have been shown to influence the 

production of ET-I by other cells in vitro. Tumour necrosis factor a increased ET-1 mRNA 

and ET-I release in capillary endothelial cells, epithelial cells and rat mesangial cells 

(Kohan 1991); IL-IP induced ET-I release from renal epithelial cells (Ohta et al., 1990). 

Platelet activation and intravascular coagulation (attributable to endothelial injury) 

appeared to trigger the release of TGFP, thromboxane A2, POOF and thrombin from 

platelets accumulating in the graft. This resulted in ET-I secretion and upregulation of ET-

I gene expression in endothelial, vascular smooth muscle and renal mesangial and 

epithelial cells (Kurihara et al., 1989; Watschinger and Sayegh, 1996). Renal allografts 

with chronic rejection and transplant-associated arteriosclerosis were reported to express 6-

fold more ET-I in the neointima of the vasculature, when compared to allografts with acute 

rejection or normal control kidneys (Simonson et al., 1998). 
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1.1.3 ATRIAL NATRIURETIC PEPTIDE IN THE KIDNEY 

Fallowing the observation by de Bold and colleagues (1981) that infusion of extracts of 

atrial tissue caused a copious diuresis, atrial natriuretic peptide, the first member of a 

family of peptides with potent natriuretic, diuretic and vasorelaxant activity was isolated 

and later cloned (Kangawa and Matsuo, 1984). 

1.1.3.1 BIOCHEMISTRY 

Three peptides comprise the natriuretic peptide family: atrial natriuretic peptide (ANP), 

brain natriuretic peptide (BNP) and C-type natriuretic peptide [(CNP) Fig 1.3-1). ANP is 

produced primarily from cardiac atria, with increased atrial wall tension (reflecting 

increased intra vascular volume) as the major stimulus. Various substances for example 

endothelin, arginine vasopressin and catecholamines, directly stimulate the secretion of 

ANP. The precursor protein (pro ANP) is composed of 126 amino acids; cleavage releases 

a 98 amino acid amino-terminal fragment and a 28 amino acid carboxy-terminal portion 

that is the mature ANP (Fig 1.3-2). Both fragments circulate in the plasma and their 

concentrations are increased in patients with increased intravascular volume (for example, 

congestive heart failure). The ANP gene is also expressed in the kidney and a 32-amino 

acid peptide called urodilantin is generated from the precursor in the urine (Schulz-Knappe 

et al., 1988). Urodilantin may be important for the local regulation of sodium and water 

handling in the kidney. 
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Pro-ANP
PH7J 

---- -·� 

CNP 

Fig 1.3-1: Amino acid sequence of the natriuretic peptides in humans 

Ref: Gunning ME and Brenner BM (1992), Kidney Int, 42: S127-133 (S128) 

In the kidney, ANP has been localised to the renal artery wall (Koseki et al., 1986), 

glomeruli (Koseki et al., 1986), descending vasa recta (Koseki et al., 1986; Naruse et al., 

1988), inner medullary collecting tubule (Koseki et al., 1986; Bianchi et al., 1987) and 

distal convoluted tubular cells, intercalated cells of the connecting tubules and collecting 

ducts (Figueroa et al., 1990). BNP, a 32-amino acid molecule which is released from a I 08 

amino acid precursor, is present in brain and cardiac ventricles. It circulates in the plasma 

and concentrations are increased in patients with ventricular hypertrophy or congestive 
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heart failure (Levin et al., 1998). Two C-type natriuretic peptides (22 and 53 amino acids in 

length) have been identified. The 22 amino acid peptide predominates in the central 

nervous system, anterior pituitary, kidney and vascular endothelial cells. Its concentration 

in plasma is very low. Other related peptides, guanylin and uroguanylin, are 15- and 16-

amino acid peptides produced primarily in the gastro-intestinal tract. They may regulate 

salt and water transport across the intestinal mucosa and co-ordinate intestinal reabsorption 

with renal excretion of sodium. 

Fig 1.3-2: Processing pathway of ANP 
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1.1.3.2 NATRIURETIC PEPTIDE RECEPTORS 

Natriuretic peptides exert their effects through interaction with high-affinity receptors on 

the surface of target cells. Natriuretic peptide receptors A and B are linked to the cGMP­

dependent signalling cascade, and mediate many of the cardiovascular and renal effects by 

activation of guanylylcyclase. The A receptor binds both ANP (preferentially) and BNP; 

the B receptor binds C-type natriuretic peptide. The A receptor is the most abundant type in 

large blood vessels (which also have some B receptors). B receptors predominate in the 

brain. Both receptors are present in adrenal glands and the kidney. 

All three peptides bind with equal affinity to the natriuretic peptide receptor C, which is 

involved in clearance of the peptides. The natriuretic peptides bind to it, are internalized 

and enzymatically degraded, after which the C receptor returns to the cell surface (Maack 

et al., 1987). Circulating natriuretic peptides are also inactivated by cleavage by neutral 

endopeptidases present within renal proximal tubular cells and vascular cells. The plasma 

half-life of immunoreactive ANP is 2.5-4.5 min. Multiple organs (liver, kidney and lower 

limb) extract ANP from the blood. The kidneys clear approximately 20% of the total ANP 

(Vierhapper et al., 1990). The A receptor is expressed in the kidney, lung, heart and 

adipose tissue with its mRNA expressed in the renal glomerulus, adrenal zona glomerulosa, 

anterior pituitary, cerebellum and heart. The B receptor is present in the brain, lung, kidney. 

placenta and heart. Its mRNA is detected in the adrenal medulla, cerebellum and pituitary 

gland. The C receptor is abundantly present in the renal cortex, lung, placenta and heart: its 

mRNA is distributed in the renal glomerulus, adrenal gland, cerebral cortex, cerebellum 

and heart (reviewed by Nakao et al., 1996). 
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1.1.3.3 ACTIONS OF NATRIURETIC PEPTIDES 

1.1.3.3.1 Renal Actions 

The natriuretic and diuretic actions of natriuretic peptides are due to both renal 

haemodynamic and direct tubular actions. ANP causes dilatation of afferent arterioles and 

constriction of efferent arterioles, resulting in increased pressure within the glomerular 

capillaries (Marin-Grez et al., 1986). This causes a rise in GFR. ANP also increases cGMP 

in mesangial cells, relaxing these cells and thereby increasing the effective surface area for 

filtration (Fried et al., 1986; Stockand and Sansom, 1997). However, plasma concentrations 

of ANP that do not increase GFR cause natriuresis, indicating that ANP has direct tubular 

actions for example by locally produced peptides (such as urodilantin) or by systemic ANP. 

ANP can inhibit angiotensin II-stimulated sodium and water transport in proximal 

convoluted tubules (Harris et al., 1987). It inhibits tubular water transport in collecting 

ducts by antagonizing the action of vasopressin (Dillingham and Anderson, 1986), and

stimulates cGMP production in the inner medullary collecting duct, blocking sodium 

reabsorption (Sonnenberg et al., 1986; Zeidel, 1995). 

Infusions of ANP, that raise their plasma concentrations slightly above normal, result in 

diuresis and natriuresis without changes in blood pressure; they reduce plasma renin and 

aldosterone concentrations and inhibit angiotensin II-stimulated aldosterone secretion. HS-

142-1, a competitive natriuretic peptide antagonist binding to receptor A or B, blocks

natriuresis and diuresis, increases renal vascular resistance and increases plasma renin, 

aldosterone and catecholamine concentrations in normal, diabetic and cirrhotic rats with 

ascites (Sano et al., 1992; Angeli et al., 1994; Zhang et al., 1994 ). 
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In summary, ANP affects many aspects of renal function. It increases renal blood flow, 

and by selective action on glomerular arterioles, increases glomerular capillary hydraulic 

pressure and GFR. Glomerular ultrafiltration coefficient is also increased via inhibition by 

ANP of the actions of angiotensin II and ADH. In the proximal tubule, ANP opposes 

angiotensin II-mediated sodium reabsorption and in the distal tubule, aldosterone-mediated 

sodium reabsorption. In the collecting duct, ANP inhibits ADH-mediated water 

reabsorption and directly inhibits inner medullary collecting duct sodium transport. These 

effects, together with increased vasa recta blood flow and hydraulic pressure, favour 

increased excretion of sodium from the renal medullary interstitium into the urine. ANP 

directly inhibits renin secretion by the juxtaglomerular cells and aldosterone secretion by 

the adrenal zona glomerulosa. 

1.1.3.3.2.Cardiovascular actions 

Sustained low dose infusions in animals reduce peripheral vascular resistance (PVR) and 

lower blood pressure (Charles et al., 1993) but high doses increase PVR despite the 

decrease in blood pressure (Lappe et al., I 985). The decrease in blood pressure results 

partly from a reduction in cardiac preload caused by shift of fluid from the intravascular 

into the extravascular compartment. ANP increases venous capacitance and promotes 

natriuresis and also reduces sympathetic tone in the peripheral vasculature. CNP is a more 

potent dilator of veins than the other two peptides. 

Natriuretic peptides have anti-mitogenic activity: ANP and CNP inhibit mitogenesis in 

cultured vascular cells and in balloon-injured carotid arteries in rats (ltoh et al., 1990; 
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Furuya et al., 1993), thereby modulating growth within the vascular wall in disorders such 

as atherosclerosis, hypertension and post-angioplasty restenosis. 

1.1.3.3.3 Actions on the Central Nervous System 

ANP and BNP do not cross the blood-brain barrier but they reach sites in the CNS outside 

this barrier for example the subfomical organ, hypothalamic median eminence and area 

postrema. All 3 natriuretic peptides (but especially CNP) are produced in the brain. Pressor 

substances for example endothelin, vasopressin and norepinephrine stimulate the release of 

ANP from cultured hypothalamic neurons. Natriuretic peptides in the brain inhibit the 

appetite for salt and water drinking, and inhibit the secretion of vasopressin and 

corticotrophin, thus co-ordinating central and peripheral actions in controlling fluid and 

electrolyte homeostasis. 

1.1.3.4 ANP AND RENAL PATHOLOGY 

1.1.3.4.1 Hypertension 

Levels of ANP and BNP are elevated in hypertension, with a positive correlation between 

the severity of hypertension and degree of peptide elevation (Cheung and Brown, 1994). 

ANP immunoreactivity was reduced in hypertensive nephrosclerotic distal tubules, 

probably as a result of reduced renal tubular mass (Figueroa et al., 1990). Upregulation of 

the A receptor subtype occurred in hypertensive rats, together with increased levels of ANP 

and BNP (Yoshimoto et al., 1995). Restriction fragment length polymorphism exists in the 

second intron of the human ANP gene, a candidate gene for familial susceptibility to 

hypertension (Ramasawmy et al., 1994). Furthermore, restriction fragment length 
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polymorphism at the ANP gene locus has been reported in hypertension associated with 

aldosterone-producing adenoma (Tunny et al., 1994). Animal studies have defined the role 

of natriuretic peptides in preventing the development of hypertension: transgenic mice, that 

showed over-expression of the genes for ANP or BNP, had plasma natriuretic peptide 

levels that were at least 10 times that of normal litter mates, and systolic blood pressures 

that were 20-30 mmHg lower. Mice with homozygous inactivation of the ANP gene on a 

low salt diet had slightly elevated blood pressures; it rose markedly on a high salt diet. 

Heterozygotes (with a normal basal blood pressure) had a similar response. Mice with 

inactivation of the A receptor had an elevated basal blood pressure but did not respond to 

salt loading with increases in blood pressure (John et al., 1995). During aldosterone 

hypersecretion or exogenous mineralocorticoid administration, sodium is retained for a few 

days, after which there is an escape from sodium-retention; plasma ANP concentration 

rises, coincident with escape (Yokota et al., 1994). Administration of ANP reduced BP and 

promoted sodium excretion in patients with essential hypertension (Weder et al., 1987). 

1.1.3.4.2 Nephrotic syndrome 

Endogenous plasma ANP levels were increased in nephrotic syndrome (Woolf et al., 

1989). A blunted natriuretic response, observed during head-out water immersion studies 

in nephrotic syndrome patients with avid sodium retention, suggests a relative hypo­

responsiveness of the distal tubule to ANP (Peterson et al., 1988). Exogenous ANP caused 

an increase in proteinuria in patients with nephrotic syndrome (Zietse and Schalekamp, 

1988), which may lead to further sodium retention. 
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1.1.3.4.3 Acute renal failure 

Plasma levels of ANP and its second messenger cGMP were elevated during acute renal 

failure and tended to return towards normal values at recovery. ANP and cGMP correlated 

significantly with total blood volume and the fractional excretion of sodium (Kanfer et al., 

1989). In a randomised controlled study of 53 patients, ANP administered parenterally to 

patients with acute renal failure due to acute tubular necrosis resulted in a significant 

improvement in GFR and reduced the need for dialysis (Rahman et al., 1994a). These 

results were not substantiated in a larger multicentre, randomized double-blind, placebo­

controlled trial of anaritide (ANP) in 504 critically ill patients with acute tubular necrosis 

(Allgren et al., 1997). Prophylactic use of Ularitide (previously called Urodilantin), a 

natriuretic peptide recovered from human urine, resulted in significant reduction in 

requirement for haemodialysis or haemofiltration in patients with acute renal failure 

following cardiac surgery or organ transplantation (Meyer et al., 1996). 

1.1.3.4.4 Chronic renal failure 

Plasma concentrations of all three natriuretic peptides were elevated in clu·onic renal 

failure, probably because of reduced clearance (Prins et al., 1996). Infusion of doses of 

ANP slightly above the physiological range in patients with moderate chronic renal failure 

secondary to glomerulonephritis resulted in a natriuretic response similar to that of normal 

controls, together with a marked increment in the urinary excretion of urea, potassium and 

phosphate (De Nicola et al., 1997). The elevated levels of ANP in patients with chronic 

renal failure were significantly lowered by haemodialysis (Hasegawa et al., 1986; Niwa et 

al., 1993), in particular by haemodialysis with fluid removal or haemofiltration (Shiota et 

al., 1990). Plasma concentrations of ANP were not generally elevated in children on 
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peritoneal dialysis; in some children with elevated ANP levels, plasma ANP concentrations 

declined to normal values with fluid withdrawal (Bald et al., 1994). 

1.1.3.4.5 Renal transplantation 

ANP concentrations ( elevated before transplantation) decreased after successful and 

increased after failed renal transplantation (Zuber et al., 1993). Studies in renal transplant 

recipients (Bricker et al., 1956), and in subjects with autonomic failure (Gill and Bartter, 

1966) suggest that renal denervation impairs sodium conservation in the presence of dietary 

sodium restriction. Renal sympathetic nerve activity profoundly affects all aspects of renal 

function. Efferent sympathetic nerve stimulation increases tubular sodium and water 

reabsorption and produces a fall in GFR and renal blood flow mediated by preglomerular 

vasoconstriction (Kopp and Di Bona, 1982). Head-out water immersion studies in stable 

renal transplant recipients showed a diuretic and natriuretic response with elevation in 

plasma ANP and increased urinary tissue kallikrein excretion; plasma renin activity did not 

suppress with water immersion, probably as a result of a reduction in sympathetic nerve 

traffic to the juxtaglomerular apparatus (Al-Haidary et al., 1990). Low dose ANP infusion 

to stable renal transplant recipients resulted in immediate natriuresis and urinary cyclic 

GMP excretion as well as albuminuria, in contrast to the delayed response seen in normal 

subjects (Lipkin et al., 1992). Intravenous infusion of ANP during acute renal allograft 

rejection in a canine model resulted in increased urine flow rates and an increase in GFR, 

together with a fall in mean arterial pressure in the presence of an unchanged haematocrit 

(Lewis et al., 1993). 
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1.1.4 KININS IN THE KIDNEY 

The early indication of tissue kallikrein in urine became evident when Abelous and Barder 

(1909) detected the presence of a hypotensive substance in normal human urine that they 

called urohypotensin. Further experiments on the kinin-forming enzymes commenced in 

1926 when Frey and colleagues reported that injections of pancreatic extract, pancreatic 

secretion and urine into anaesthetized, normotensive dogs reduced arterial blood pressure 

(Frey, 1926; Frey et al., 1930; Frey and Werle, 1933). The active principle in urine was 

assumed to be identical with that in the pancreas, and therefore the hypotensive substance 

was named kallikrein from the Greek word "kallikreas" for pancreas. A decade later Rocha 

e Silva and colleagues (1949) found that incubating dog plasma with snake venom and 

trypsin produced an agent that lowered blood pressure, and in vitro caused a slowly 

developing contraction of guinea pig ileum. This peptide agent was named bradykinin from 

the Greek word "slow moving" because of the slow contraction of the guinea pig ileum. 

The vasoactive peptides formed by kallikrein (kallidin) and trypsin (bradykinin) from 

endogenous protein substrates (kininogens) were given the generic name of kinins. 

In humans there are two kinin-forming enzymes, namely plasma and tissue (glandular) 

kallikrein and two substrates, high and low molecular weight, H-kininogen (HK) and L­

kininogen [(LK); Fig 1.4-1 ]. Plasma prekallikrein (PPK), a cofactor of coagulation, is 

activated by factor Xlla to form plasma kallikrein (PK), which in turn, cleaves bradykinin 

(BK) from H-kininogen. Tissue kallikrein (TK), on the other hand, is either released mainly 

in its active form or requires to be proteolytically cleaved to an active state. Tissue 

kallikrein cleaves lysyl-BK (kallidin) from L-kininogen (Fig 1.4-2). The regulatory role of 
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plasma and tissue kallikrein-kinin systems is different and functions independently of each 

other in vivo. The proportion in active forms varies in the different biological fluids. 

Fig 1.4-1 The two kinin release systems involving plasma and tissue kallikrein 
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Kinins bind to their receptors at target organs and exert potent effects in vasodilatation, 

blood pressure reduction, vascular permeability, smooth muscle contraction, pain 

generation, natriuresis, diuresis and renal blood flow. The systemic half-life of kinins is 

very short ( 15-30 sec); however concentrations in biological fluids although low (10·11 

mmol) in human plasma, have a longer half life. The binding capacity of tritiated BK along 

the nephron of the rabbit is maximal at cortical collecting ducts and outer medullary ducts 

(Kauker, 1980; Tomita and Pisano, 1984). 
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Fig 1.4-2: Overview of the kallikrein-kininogen-kinin- cascade 
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1.1.4.1 RENAL TISSUE KALLIKREIN 

Tissue kallikrein is present in the plasma but the organ or tissue source is not known 

(Nustad et al., 1979; Geiger et al., 1980). The activity of TK is regulated by inhibitors 

present in plasma (Lawton et al., 1981) and urine. In spite of such inhibition, kinins are 

generated but in negligible measurable amounts (Scicli et al., 1982 and 1983). 

1.1.4.1.1 Localisation 

More than 85% of the active and inactive tissue kallikrein in the rat kidney is localised in 

the granular portions of the distal tubules and cortical collecting ducts [Tomita et al., 1981; 

Omata et al., 1982; Vio and Figueroa, 1985; (Fig 1.4-3)]. Kallikrein is present in the 

granular cells of the connecting tubule of the distal nephron, where it is concentrated 

mainly on the luminal side of the cells and at both sides of the nuclei, and to a lesser extent, 

is associated with plasma membranes and basolateral infoldings. The immunoreactivity is 

related to free polyribosomes, rough endoplasmic reticulum and Golgi complexes, 

suggesting that kallikrein is actively synthesised in these cells (Figueroa et al., 1984; Vio 

and Figueroa, 1985). Tissue kallikrein mRNA is expressed predominantly in the cells of 

the distal tubules but reported also in the vascular pole of the glomeruli (Xiong et al., 

1989), and in the connecting tubules of the outer cortex (El-Dahr and Chao, 1992). Tissue 

kallikrein mRNA and protein are present in the walls of renal blood vessels (Cumming et 

al., 1994). 
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Fig 1.4-3: Localisation of components of the renal kallikrein kin in system 
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Ref.: Katori M and Majima M (1996). Japanese Journal of Pharmacology, 70: 95-128 (99). 

Abbreviations: GL=glomerulus; PCT=proximal convoluted tubule; DCT=distal convoluted 

tubule; PST=proximal straight tubule; MD=macula densa; CNT=connecting tubule; 

CCT=cortical collecting tubule; MCT=medullary collecting tubule 

1.1.4.1.2 Stimuli for renal tissue kallikrein secretion 

Renal perfusion pressure may be one of the major factors controlling urinary kallikrein 

excretion (Bevan et al., I 974; Lauar et al., 1982; Bhoola and Lauar, 1983; Misumi et al.. 

1983). A low sodium diet or salt deprivation accelerated renal kallikrein synthesis and 

excretion in humans (Geller et al., 1972; Bascands et al., 1987). The effects of a high 

sodium intake are controversial: acute sodium loading in rats induced an increase in urinary 

kallikrein excretion (Marin-Grez et al., 1984). Feeding rats a high salt diet for IO days 

decreased the total immunoreactive kallikrein in the urine and kidney (Lieberthal et al.. 

1983). The increased kallikrein excretion due to prolonged sodium deprivation may be 
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mediated by aldosterone release through activation of the renin-angiotensin system and was 

reversed by spironolactone (Margolius et al., 1974a). 

Experiments with isolated perfused rat kidney demonstrated the stimulatory effect of 

potassium on the secretion of tissue kallikrein (Lauar et al., 1982; Lauar and Bhoola, 1986). 

Patients with hyperaldosteronism excreted higher amounts of kallikrein in the urine 

(Margolius et al., 1972 and 19746 ). Administration of spironolactone to patients with 

hyperaldosteronism decreased the high urinary kallikrein excretion (Margolius et al., 

1974b ). Removal of aldosterone-producing tumours reversed the increased excretion of 

urinary kallikrein (Miyashita, I 971 ). Urinary kallikrein excretion varied directly with 

potassium intake and parallelled aldosterone excretion in both normal and hypertensive 

subjects. The increase in urinary kallikrein in hypertensive subjects by potassium intake 

was less than that in normotensive subjects; the increase in white subjects was higher than 

in black subjects (Horwitz et al., 1978). Electron microscopy showed that a high potassium 

diet produced hypertrophy and hyperplasia of the kallikrein-containing cells of the 

connecting tubule, including hyperplasia of the Golgi complex and rough endoplasmic 

reticulum and secretory vesicles containing kallikrein (Vio and Figueroa, 1987). 

Intravenous infusion of vasopressin stimulated both the release of urinary kallikrein and the 

intrarenal formation of kinin in dogs and rats (Fejes-Toth et al., I 980). Other hormones 

affecting synthesis, activity or release of renal kallikrein are oestrogens, mineralocorticoids, 

glucocorticoids, testosterone, thyroxine, insulin, catecholamines and angiotensin (Bhoola et 

al., 1992; Margolius, 1995). 
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1.1.4.1.3 Gene expression of tissue kallikrein 

Tissue kallikrein belongs to a multi-gene family, is clustered on chromosome 19 at q 13.2-

13.4, is composed of 5 exons and 4 introns with its length being 4.5 kilobase pairs (Inoue et 

al., 1989a; Berg et al., 1992). The family is strictly conserved and comprises members with 

close sequence homology. In humans until recently, 3 genes were known: hKLK 1 

(glandular kallikrein), hKLK3 (prostatic specific antigen) and hKLK2, and present on the 

long arm of chromosome 19 (Riegman et al., 1992; Clements, 1994 and 1998; Mahabeer 

and Bhoola, 2000). Recent evidence suggests a larger family than hitherto realised, with the 

discovery of a new hKLK-L2 human gene (Yousef and Diamandis, 1999), hKLK4 

(Stephenson et al., 1999) and hKLK-L4 (Yousef et al., 1999), and several other kallikrein­

like genes (KLK-L) in humans (Diamandis, 2000). Table 1-3 shows the localisation of 

tissue kalikrein genes in different organs. 

Table 1-3. Expression of Tissue Kallikrein Genes in Human Tissue 

Kidney Salivary Pancreas Breast Endo Ovary Prostate 

metrium 

KLKl hKLKl KLKl KLKl KLKl KLKl KLKl 

KLKl* KLK3 

KLK3* KLK3* KLK3 KLK2 KLK2 
KLK3* KLK2 KLK3 KLKl* 

KLK4 * KLK3* KLK2 

KLK3* 

*Induction in tumours

New kallikrein-like gene family 

KLK-Ll, -L2, L-3, L-14, L-15, L-16 (Yousef and Diamandis, 2000) 

Organization of the human kallikrein gene (hKLK) family on chromosome 19q13.4-

q13.3 

hKLKl - tissue prokallikrein (Mahabeer and Bhoola, 2000); 

hKLK3 - prostate specific antigen (Rae et al., 1999) 

hKLK2 - trypsin-like protease (Yousef et al., 2000) 

hKLK4 - matrix serine protease (Stephenson et al., 1999) 
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Gene induction of tissue kallikrein and the subsequently formed kinins enhances the 

proliferation of tumour cells (Rae et al., 19999). KLK-L2 and KLK-Ll are upregulated by 

oestrogens and other hormones in the breast cancer cell line BT-474 (Yousef and 

Diamandis, 1999; Yousef et al., 1999); while KLK-L4 is downregulated in breast cancer 

(Yousef et al., 2000) and NES 1 in breast and possibly other cancers (Diamandis et al., 

2000). 

1.1.4.1.4 Inhibitors of tissue kallikrein 

Kallistatin, a tissue kallikrein inhibitor belonging to the serpin superfamily, inhibits human 

tissue kallikrein activity (both kininogenase and amidolytic activity) towards either 

kininogen or a tripeptide substrate (Chao et al., 1990, Zhou et al., 1992). Its major site of 

synthesis is the liver, with lower levels of expression levels in the pancreas and kidney. The 

mRNA of this protein is expressed in the inner medullary ducts of the kidney with small 

amounts in the outer medullary collecting duct, proximal convoluted tubules and the 

glomerulus (Yang et al., 1994). The human kallistatin gene displays the 5 exon-4 intron 

gene structure and is located on chromosome 14q3 l-32. l (Chai et al., I 994 ). The 

circulating inhibitor of TK is a 1-antitrypsin inhibitor, which also inhibits urinary tissue 

kallikrein (Geiger and Mann, 1976). 

1.1.4.2 KININOGENS 

The human kininogen gene, which codes the endogenous protein substrate for the 

kallikreins is localised to chromosome 3q26➔qter (Fong et al., 1991). Kininogen has been 

detected in human urine (Hial et al., 1976; Pisano et al., 1978). lmmunoreactive kininogen 

55 



was localized in the principal cells of the collecting duct and restricted to the luminal 

portion of the principal cells (Figueroa et al., 1988). The close relationship between the 

cells containing tissue kallikrein and its substrate, kininogen suggests that kinins could be 

generated in the lumen of the collecting tubules. The mRNA of L-kininogen is expressed in 

the renal cortex and medulla, suggesting the biosynthesis of L-kininogen in the distal 

tubule (Iwai et al., 1988). Infusion of partially purified rat L-kininogen into mutant 

kininogen-deficient Brown Norway-Katholiek rats increased kinin excretion in ureter urine, 

whereas infusion of kininogen caused only a slight increase in kinins in the urine 

(Hagiwara et al., 1994), suggesting that the kidney secretes L-kininogen, and that urinary 

kallikrein releases urinary kinin mainly from L-kininogen. 

1.1.4.3 KININASES 

The turnover of kinins depends on both the rate of formation and the rate of destruction. 

After kinins are formed, they are rapidly destroyed by the enzymic action of peptidases. 

Kininases, which inactivate plasma kinins, are distributed in 2 major portions of the 

nephron: in the proximal tubules and the medullary collecting ducts. Kininase 11 

(angiotensin converting enzyme) is concentrated along the brush border membrane of 

proximal tubule cells and the S3 segments of the proximal tubules (Marchetti et al., 1987; 

Ikemoto et al., 1990). Almost all of the [3H] BK injected into the proximal tubules is 

destroyed in the proximal tubules (Carone et al., 1976). Microdissection techniques 

indicate that kininase activity is present in both proximal tubules and medullary collecting 

ducts (Marchetti et al., 1987). Neutral endopeptidase (NEP) accounts for more than half of 

the renal kininases in humans (Ura et al., 1993), while accounting for 68% of the total 
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kininase activity in rat urine, with kininase II and kininase I accounting for 23% and 9% 

respectively (Ura et al., 1987). Neutral endopeptidase is present in the outer surface of the 

brush border of proximal tubules and to a lesser extent, in the vesicular organelles in the 

apical cytoplasm and basal infoldings of the proximal tubule cells (Schulz et al., 1988). 

Carboxypeptidases (M and N) cleave the C-terminal arginine of kinins, suggesting a ready 

source of substrate (arginine) for the endothelial synthesis of nitric oxide by NOS (Sakuma 

et al., 1988). 

1.1.4.4 KININ RECEPTORS 

Presently, kinin receptors are characterized as B 1, B2 and perhaps B3 (Regoli and Barabe, 

1980). B 1 receptors are induced especially after an insult for example, with E Coli 

endotoxin or lipopolysaccharide, whereas B2 are constitutive and are present universally in 

mammalian tissues. The constitutive B2 receptor, that accounts for the majority of the 

physiological effects of kinins, is a member of the superfamily of G-protein-coupled (Ga 

and Gq) rhodopsin-like receptors characterized by seven transrnembrane regions connected 

by three extracellular and three intracellular loops (Burch and Axelrod, 1987). Homology 

to other receptors of this family is most pronounced in the transmembrane regions, whereas 

the loop regions are more divergent in their sequence. The B2 receptor protein consists of 

364 amino acids, is highly glycosylated, exists in multiple isoforms at 69 kDa with 

isoelectric points of pH 6.8-7.1, and contains the kinin binding site at the amino-terminal 

part of the third extracellular loop [(Figure 1.4-4); Abu Alla et al., 1993; 1996]. The human 

B2 receptor density is highest in the kidney but is also present in heart, lung, brain, uterus 

and testes (McEachern et al., 1991; Hess et al., 1992). In the rat kidney, the B2 receptor has 
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been found in the straight portions of the proximal tubules, distal straight tubules, 

connecting tubules and collecting ducts (Figueroa et al., 1995). The B2 receptors are 

present in the luminal membranes, basal infoldings of the tubular cells and in smooth 

muscle cells of cortical radial artery and afferent arterioles. 
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Figure 1.4-4: Comparison of the amino-acid sequences of human B 1 and B2 receptors 

Each circle represents a single amino acid, identical amino acids being denoted in white, 

differences in black and deletions in the B 1 receptor in light grey. Deletions in the B2 receptor are 

shown in dark grey. The seven putative transmembrane-spanning domains are also shown. A 

putative disulfide bond between two cystine residues in the extracellular loops is shown by the 

line. 

The B2 receptors are co-localized with tissue kallikrein and kininogen in connecting 

tubules and collecting duct cells respectively. The localization of the B2 receptor has been 
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mapped to chromosome l 4q32, comprises more than 28kb and is organised in 3 exons and 

2 intrans (Powell et al., 1993; Ma et al., 1994). B2 binding sites, following chronic ACE 

inhibitor treatment and using the radio-labelled analogue c i25I-HPP-HOE 140) of the B2

receptor antagonist HOE 140, have been ultrastructurally mapped to the vasa recta bundles, 

capillary endothelial cells, epithelial cells of the thin limbs, distal tubule, collecting duct 

and renal medullary interstitial cells (RMIC) in the inner stripe of the outer medulla. In the 

inner medulla, B2 binding sites were localised to RMICs, loops of Henle, capillary 

endothelium and collecting duct epithelial cells (Dean et al., 1997). Kinins, acting via B2 

receptors, increase intracellular calcium concentration, inhibit adenylate cyclase activity, 

stimulates the formation of inositol phosphates. 

The kinin BI receptor, which was initially defined as the one mediating the contractile 

effect of kinins on the isolated rabbit aorta (Regoli et al., 1977), apparently is rapidly 

upregulated in immunopathology under the influence of inflammatory mediators [ cytokines 

(IL-1 P), endotoxins (lipopolysaccharides)] and growth promoters (Marceau, 1995). 

Structurally, this receptor also has the characteristics of a classical G-protein-coupled 

receptor, and is composed of 353 amino acids, which have a 36% homology to the amino 

acid sequence of the B2 receptor [Figure 1.4-4; (Menke et al., 1994)]. The Bl receptor has 

been localised to chromosome l 4q32 (Bachvarov et al., 1996, I 998; Chai et al., 1996). In 

smooth muscle, the B 1 receptor appears to signal via phosphatidylinisitol hydrolysis (Butt, 

et al., 1995), while stimulation of BI receptors on macrophages by the kinin degradation 

product des-Arg9-BK, causes the release of IL-I (interleukin) and TNF [tumour necrosis 

factor; (Tiffany and Burch, 1989)]. In vivo BI receptor mediation includes the effect on 
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blood pressure (Tokamasu et al., 1995), persistent hyperalgesia (Perkins et al., 1993) and 

plasma extravasation (Cruwys et al., 1994). 

Cellular actions following kinin binding to these G-protein coupled receptors are mediated 

by all of the known second messenger systems including the phospholipases C and A2,

which increases the synthesis of inositol triphosphate and arachidonic acid respectively 

(Mahan and Burch, 1990), as well as the participation of NO, especially on neurones and 

blood vessels. The metabolism of BK to des-Arg9BK and L-arginine by the kininase 1 

group of enzymes, either close to or within endothelial cells or in synaptic clefts, provides 

the primary substrate for the formation of NO [endothelium derived relaxing factor 

(EDRF)]. The released L-arginine acts as the substrate for NO synthetase, which rearranges 

the guanidino nitrogen to produce NO (Erdos, 1990; Bhoola et al., 1992). 

The affinity of BI receptors for kinin and kinin analogues differ markedly from that of B2 

receptors. The effects of BK and lys-BK are mediated by the B2 receptors while those of 

the metabolites desArg
9-BK and lys-desArg9 

-BK are mediated by the B 1 receptor 

(Marceau, 1995). A third kinin receptor (B3) or a subtype may exist in bovine aortic 

endothelial cells, in microvasculature of guinea pig hindbrain and in cultured guinea pig 

smooth muscle cells (Burch et al., I 993; Pyne and Pyne, 1993). At these sites, variant 

responses to BI and B2 agonists and antagonists suggest a possible interaction with another 

receptor subtype. 
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1.1.4.5 KININ ANTAGONISTS 

As a result of the recent cloning of kinin receptor genes, considerable advances in kinin 

research have seen the emergence of numerous potent and highly specific kinin receptor 

antagonists that may have therapeutic value. Modifications saw the emergence of Lys­

(Leu8)des-Arg9BK as a high-affinity B 1 antagonist (Rego Ii and Barabe, I 980) and more 

recently, Ac-Lys-(MeAla
6

, Leu8)-des-Arg9BK was found to be a metabolically multi­

resistant B 1 antagonist (Drapeau et al., 1993). lcatibant (HOE-140), a selective B2 

antagonist more potent than NPC-567, was found to display greater resistance to 

degradation as it was metabolically stable (Hock et al., 1991 ). HOE 140 and NPC-17761, a 

bis-maleimidohexane-dimer analogue of HOE-140, became the "second-generation" kinin 

antagonists. The "third-generation" single-chain kinin antagonists (B-9224, B-9430, and B-

9668), which have high potency at both B 1 and B2 receptors (Burkard et al., 1996; Stewart 

et al., 1996) contain the novel amino acids a-(2-indanyl)-glycine at position 5 and D-a(2-

indanyl)-glycine at position 7. B-9878 has been fashioned as a bi-kinin-Iike peptide. 

Thus, several hundred analogues of the kinin nonapeptide have since been synthesized and 

have given mixed results due to their antagonistic behaviour towards other agonists. The 

"second-generation" kinin antagonists have been used in clinical trials with some success 

in allergic rhinitis (Austin et al., 1994) and atopic asthma (Akbary et al., 1996). The "third­

generation" kinin antagonists have been shown to be selectively cytotoxic for cells of 

SCLC in vitro (Chan et al., 1996) and in vivo (Stewart et al., 1997). The recent discovery of 

the first nonpeptide competitive B2 receptor antagonist WIN 64338 (Sawutz et al., I 994), 

which is stable to proteolytic degradation, may have therapeutic roles in the near future. In 
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animals, kinin antagonists have also been shown to block kinin-induced hypotensive shock, 

as well as non-specific stimulus-induced pain, nasal allergies, and carageenan-and 

thermally-induced oedema (Rodell et al., 1995). 

Inhibitors of ACE, a member of the K-11 group of enzymes that rapidly inactive kinins, 

and also convert the decapeptide angiotensin 1 to an octapeptide angiotensin 11, are 

probably the best examples of drugs acting on the kinin system that are used in clinical 

medicine. The mode of action of ACE inhibitors as antihypertensive agents have been 

shown to be due to both the inhibition of angiotensin 11 (a potent vasoconstrictor) 

production, as well as an increase in circulating levels of kinins (Shimamoto et al., 1990). 

The hypotensive efficacy of these inhibitors has also been shown to correlate with the 

reduced activity of ACE in brain, kidney, and vascular smooth muscle (Unger et al., 1987). 

Recent studies on isolated bovine coronary arteries indicate that the hypotensive effect of 

ACE inhibitors (moexiprilat and ramiprilat) are due to the relaxation of vascular smooth 

muscle, facilitated by the accumulation of endothelium-derived kinins in or at the vessel 

wall (Hecker et al., 1993). 

1.1.4.7 KININS AND BLOOD PRESSURE 

The observation of reduced urinary excretion of tissue kallikrein in untreated hypertensives 

was made as early as 1934 by Elliot and Nuzum, and confirmed more than 3 decades later 

in hypertensive humans and rats (Margolius et al., 1971 and 1974b; Carretero and Scicli. 

1971 ). It has been reported that 20% of patients with essential hypertension have low 

kallikrein excretion (Zschiederich et al., 1980). White patients with uncomplicated 
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essential hypertension have been reported to have normal kallikrein excretion rates with 

normal plasma renin activity and aldosterone (Lawton and Fitz, 1977); only hypertensives 

over the age of 40 excreted a significantly lower kallikrein (Koolen et al., I 984a). Black 

people (adults and children) excreted markedly less kallikrein compared to whites, 

regardless of blood pressures, with black hypertensive subjects showing the lowest 

excretion of kallikrein (Zinner et al., 1976; Levy et al., I 977). 

Gender differences in renal kallikrein excretion have been reported, with females excreting 

more kallikrein than males (Hughes et al., 1988); urinary kallikrein levels rise during the 

luteal phase and return to levels similar to males and postmenopausal females during the 

follicular phase (Albano et al., 1994). Urinary kallikrein activity increased in white females 

during the luteal phase but did not change in blacks (Kailasam et al., 1998). 

Japanese patients with low renin hypertension showed significant reductions in urinary 

kallikrein and kinin excretion, together with increased levels of a kallikrein inhibitor and 

kininase in urine and with reduced levels of kininogen (Nakahashi et al., 1986). South 

African Indians with essential hypertension showed lower urinary kallikrein excretion 

compared to Black South Africans (Seedat et al., I 999). The urinary kallikrein excretion 

was significantly lower in salt-sensitive hypertensives than in salt-resistant hypertensives 

and showed an inverse correlation with plasma atrial natriuretic peptide levels (Ferri et al., 

1994). Patients with malignant essential hypertension excreted less urinary kallikrein than 

those with non-malignant essential hypertension and normotensive control subjects (Hilme 

et al., 1992). A recent study involving 57 Utah subjects' pedigrees indicated that a 

dominant allele expressed as high urinary kallikrein excretion may be associated with a 
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decreased risk of essential hypertension (Berry et al., 1989): the "low homozygotes" would 

have a high risk of hypertension; the heterozygote genotype on a low potassium intake 

would have a high susceptibility to hypertension, whereby a low potassium diet in this 

group predisposes them to hypertension. This study showed a direct association between 

urinary kallikrein and urinary potassium and the risk of developing hypertension. A high 

potassium diet administered to SHRs resulted in a greater amount of urinary kallikrein 

excreted, paralleled by a reduction in blood pressure (Barden et al., 1988). Potassium 

appears to be a stimulus for tissue kallikrein (Lauar and Bhoola, 1986), increasing 

kallikrein excretion in the urine as well as producing hypertrophy and hyperplasia of CNT 

cells together with an increase in the number of immunoreactive secretory vesicles in these 

cells (Vio and Figueroa, 1987). 

In the two kidney, one clip Goldblatt hypertensive rat, kallikrcin levels were low in the 

urine from the stenotic kidney and normal or less reduced in the contralateral kidney 

(Girolami et al., 1983). B2 receptor density was increased to a greater extent in the 

contralateral kidney than in the stenotic kidney (Emond et al., 1991 ). Reduced urinary 

kallikrein excretion has been reported in genetically hypertensive rat models (Dahl, Milan, 

New Zealand, Fawn-hood, Sabra), in rats made hypertensive by deoxycorticosterone plus 

1 % salt, and in the Okamoto-Aoki spontaneously hypertensive rat (reviewed by Katori and 

Majima, 1996). Kininogen-deficient Brown Norway Katholiek rats became hypertensive on 

a moderate salt intake and non-pressor doses of angiotensin II. 

Kallikrein gene therapy, in the form of human kallikrein DNA constructs under the control 

of the metallothionein metal response element, the cytomegalovirus promoter/enhancer or 
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the Rous sarcoma virus 3 1 -LTR, caused a prolonged reduction in blood pressure for 8-10 

weeks following a single injection given to the SHR adult male intravenously, 

intramuscularly, intraperitoneally, into the portal vein and intracerebroventricular route 

(Chao and Chao, 1997). This hypotensive effect was reversed by a subcutaneous injection 

of aprotonin, a potent tissue kallikrein inhibitor. Icatibant acetate (HOE 140), a B2 receptor 

antagonist, given together with captopril, attenuated the hypotensive effect of captopril by 

53% in black and white subjects on a low sodium diet (Gainer et al., 1998). This study 

provides evidence that kinins contribute substantially to the hypotensive effects of ACE 

inhibition. 

1.1.4.8 KININS AND RENAL DISEASE 

1.1.4.8.1 Nephrotic Syndrome 

Urinary kallikrein excretion was found to be markedly increased in patients with nephrotic 

syndrome, irrespective of the level of renal function (Cumming and Robson, 1985), while 

patients with glomerulonephritis (without nephrotic syndrome) had reduced urinary 

kallikrein excretion compared to healthy volunteers. Kallikrein excretion correlated with 

plasma renin activity but not with plasma volume (Cumming et al., 1989). Infusion of 

kallikrein into the renal artery of dogs caused proteinuria, which was abolished by aprotinin 

(Murakami et al., 1968). Kinins are potent stimulators of phospholipase A2 and promote 

synthesis of arachidonic acid metabolites, including thromboxane A2 (Regoli and Barabe, 

1980). Increased glomerular synthesis of thromboxane has been suggested as a cause of 

proteinuria in nephrotic syndrome (Remuzzi et al., 1985). 
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1.1.4.8.2. Parenchymal renal disease and renal failure 

Patients with renal parenchymal disease and hypertension with impaired renal function had 

a more marked decrease in urinary kallikrein excretion compared to hypertensive subjects 

with normal renal function, who also had a reduced urinary kallikrein excretion but less so 

(Mitas et al., 1978). Spontaneously hypertensive rats at 78 weeks showed a dramatic 

decrease in the number of tubules and cells immunostaining for tissue kallikrein, while 

there was no difference between SHR and WKY rats during 4-52 weeks. In humans with 

advanced hypertensive nephropathy similarly, there was a reduction in the percentage of 

tubules (CNT) and cells with immunoreactive tissue kallikrein (Figueroa et al., 1992). 

Prevalence of the 0699 ➔ C polymorphism of the Bl receptor was found to be present 

significantly less frequently in several aetiological subgroups of uraemic patients 

(Bachvarov et al., 1998). Thus, the polymorphism of the B 1 receptor promotor may be a 

marker of prognostic significance for the preservation of renal function. 

1.1.4.8.3 Dialysis 

Patients with end stage renal failure on haemodialysis have fluctuations in their sodium and 

volume status. While urinary tissue kallikrein excretion was decreased in patients before 

haemodialysis, a significant increase in 24 hour urinary tissue kallikrein was observed in all 

patients after haemodialysis (Girolami et al., 1991 ). Immediate hypersensivity or 

anaphylactoid reactions have been reported within the first 10 minutes of commencing 

haemodialysis. Plasma kinin levels were noted to be significantly increased during 

hypersensitivty reactions during haemodialysis (Verresen et al., 1994). A higher incidence 

of hypersensitivity reactions was observed in patients treated with ACE inhibitors while 

undergoing haemodialysis with polyacrilonitrile membranes (Tielemans et al., 1990; 

Verresen et al., 1990). In vitro studies showed that plasma kallikrein activation and release 
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of bradykinin was related to electronegativity of the dialyzer membrane, as well as plasma 

dilution with residual saline rinsing solution at the commencement of dialysis and a fall in 

pH (Renaux et al., 1999). 

1.1.4.8.4 Renal transplantation 

Hypertension frequently accompanies renal transplantation. Proposed mechanisms for 

hypertension include acute rejection, chronic rejection, therapy with steroids and 

cyclosporine, renal insufficiency, presence of the recipient's own diseased kidneys, 

transplant renal stenosis, increased activity of the vasoconstrictor systems ( eg. renin­

angiotensin, endothelin) and decreased activity of vasodilator systems. Urinary kallikrein 

excretion was found to be decreased in hypertensive patients and in those with renal 

complications (more markedly decreased with acute tubular necrosis than acute rejection). 

Urinary kallikrein excretion was also lower in cadaver graft recipients who tend to be more 

hypertensive (O'Connor et al., 1982). 

Urinary excretion of tissue kallikrein was reduced in renal transplant recipients and more 

markedly so following acute rejection (Moodley et al., 1996). TK immunoreactivity was 

reduced in acute rejection both on immunocytochemistry and electron microscopy; while 

TK was observed mainly at the luminal side of distal connecting tubules and collecting 

ducts, there was a shift in immunolabelling to the basolateral membranes (Ramsaroop et 

al., 1997). A marked rise in urinary kallikrein excretion occurred 1-3 days before the 

clinical diagnosis of acute rejection was made (Brouhard et al., 1982; Kool en et al., 1984b ). 

Lower urinary kallikrein excretion was found in transplant recipients compared to controls, 

probably related to reduced renal function or reduced renal mass (Koolen et al., 1984b; 
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Marin-Grez et al., 1982). It has been suggested that tissue kallikrein excretion rate might be 

a useful indicator of functional distal tubular mass: kallikrein excretion was significantly 

decreased in renal transplant recipients and uninephrectomized donors (Spragg et al., 

1985). Decreased kallikrein excretion followed cylosporine administration (Spragg et al., 

1988; Martinez et al., 1990). Short term cyclosporine administration decreased kallikrein 

and kinin B2 receptor mRNA expression in rat kidney cortex (Bompart et al., 1996). 

1.1.4.8.5 Obstructive uropathy 

Intrarenal vasoconstrictor-vasodilator imbalance has been observed in obstructive uropathy, 

resulting in a marked increase in renal vascular resistance and profound reduction in renal 

blood flow and GFR. Excessive production of angiotensin II, thromboxanes, leukotrienes, 

vasopressin and endothelin-1 has been described. In rats with unilateral ureteric ligation, 

systolic pressure, plasma angiotensin II levels, plasma renin activity, angiotensin I and 

plasma angiotensin converting enzyme (ACE) - kininase II activity was elevated. Blockade 

of angiotensin II receptors with losartan normalised blood pressure. Renin mRNA content 

and angiotensin II were elevated in obstructed kidneys. ACE-kininase II activity was 

elevated in both the obstructed and contralateral kidneys. Total immunoreactive kallikrein 

content and tissue kallikrein mRNA levels were markedly reduced in obstructed kidneys 

(El-Dahr et al., 1993). Reduced intrarenal kinin generation may therefore aggravate 

vasoconstriction produced by high local levels of angiotensin II and ET-I in the obstructed 

kidney. 

1.1.4.8.6 Endotoxaemia 

Lipopolysaccharide (LPS) induces arterial hypotension in endotoxaemia by releasing kinins 

via activation of plasma prekallikrein by limited proteolysis of H-kininogen (Kalter et al., 
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I 983; Muller-Ester! and Fritz, I 984). Administration of selective kinin antagonists to rat 

models with endotoxic shock has produced conflicting results: Weipert et al. ( 1988) 

reported attenuation of the hypotensive effect while Berg et al. (1989) found no effect on 

the hypotensive response to LPS. Bacterial LPS strongly induced the expression of B 1 

receptor mRNA in the efferent arteriole, the medullary and inner medullary thin limb and 

the distal tubule, with more moderate expression in the glomerulus, proximal tubules and 

medullary thick ascending limb and slight expression in the cortical duct (Marin-Castano et 

al., 1998); BI-receptor mRNA was not detected under physiological conditions. Induction 

of BI receptor mRNA expression resulted in functional receptor expression, as increases in 

intracellular calcium were observed during B 1-agonist stimulation. LPS treatment also 

increased expression of B2 receptor mRNA in all segments of the nephron except the 

glomerulus, inner medullary thin limb and outer medullary collecting duct; however no 

changes in intracellular calcium were found. 

1.1.4.8. 7 Nephrotoxic acute renal failure 

Gentamycin is an antibiotic commonly used in life threatening gram-negative bacterial 

sepsis. Nephrotoxicity occurs in approximately a third of patients treated with gentamcyin 

for more than 7 days (Mathew, 1992). Gentamycin suppressed the urinary excretion of 

endogenous tissue kallikrein in rats. Systemic delivery of the human tissue kallikrein gene 

in the rat model of gentamycin-induced acute renal failure significantly increased renal 

blood flow, GFR and urine flow while attenuating renal tubular damage, cell necrosis and 

luminal protein casts (Murakami et al., 1998). The mechanism of improved renal function 

following kallikrein gene delivery appears to be mediated via kinin through a nitric oxide 

signal transduction pathway. 
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1.2. RENAL DISORDERS 

1.2.1 ACUTE RENAL ALLOGRAFT REJECTION 

Renal transplantation is the treatment of choice for patients with end stage renal disease. 

Success in transplantation is limited by the availability of donor organs and the occurrence 

of complications such as acute rejection, infections and chronic allograft nephropathy. 

1.2.1.1 Immunology 

Renal allograft rejection depends on the co-ordinated activation of alloreactive T cells and 

antigen-presenting cells (for example, monocyte-macrophages, dendritic cells and B cells). 

This process involves the activity of antibodies and inflammatory mediators, adhesion 

molecules, chemokines and cytokines (Fig 2-1 ). The extent and severity of the rejection 

response depends on genetic similarities between donor and recipient, circumstances 

surrounding organ harvest and early graft dysfunction, the type of tissue engrafted and 

effectiveness of immunosuppresion. The characteristic feature of acute rejection is the 

infiltration of the graft by host mononuclear cells (lymphocytes and macrophages). 

Immunohistologically these have been characterized as T and B lymphocytes, macrophages 

and natural killer cells (Medawar, 1944; Mason and Morris, 1986). Stimulated B 

lymphocytes differentiate into antibody-producing plasma cells which secrete nonspecific 

and specific anti-donor antibodies (Tilney et al., 1979). The immunological host response 

to foreign tissue comprises 2 limbs: an afferent or sensitizing limb and an efferent or 

effector limb (Gowans et al., 1962). T cell activation begins when T cells recognize 

intracellularly processed fragments of foreign proteins embedded in the groove of the 
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major histocompatibility complex (MHC) proteins, expressed on the surface of antigen 

presenting cells (Krensky et al., 1990; Weiss and Littman, 1994). 

CD4 and CDS proteins, expressed on peripheral blood T cells, bind to human leucocyte 

antigen (HLA) class II and class I molecules respectively (Miceli and Parnes, 1991 ). The 

complex of T cell-antigen receptor and CD3, CD4 and CDS proteins physically associate 

with and activate several intracellular protein tyrosine kinases, resulting in mobilization of 

ionized calcium from bound intracellular stores by inositol triphosphate. The increased 

intracellular free calcium and sustained activation of protein kinase C function 

synergistically in promoting the expression of several nuclear regulatory proteins, and in 

the transcriptional activation and expression of genes central to T cell growth (Krensky et 

al., 1990; Weiss and Littman, 1994). Calcineurin, a calcium and calmodulin-dependent 

serine-threonine phosphatase, participates in signal transduction. Inhibition of the 

phosphatase activity of calcineurin is central to the immunosuppressant activity of 

cyclosporine and tacrolimus (Liu et al., 1991; Fruman et al., 1992). 

Cytokines are soluble mediators of cellular communication and mediate interactions 

between leucocyte populations, and between leucocytes and cells m the donor organ. 

Cytokines of the interleukin (IL) family, derived from antigen-presenting cells (namely IL­

I and IL-6), also provide co-stimulatory signals that result in T cell activation. T cell­

derived cytokines (for example IL-2 and IL-4) and contact between T and B cells through 

specific pairs of receptors and co-receptors provide signals essential for B-cell stimulation 

(Clark and Ledbetter, 1994). T cell proliferation is the result of IL-2 expression that is 

dependent on T cell activation. IL-2 triggers the activation of protein tyrosine kinases that 
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results in the expression of several DNA-binding proteins (including c-jun, c-fos and c­

myc) and progression of the cell cycle. 

Indirect allorecognltlon 

Direct allorecognltlon 

Self 
11nt1cer,, ,t 

p,esent111C oeU 

C04 T cell 
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Fig 2-1: Cellular interactions that form the anti-allograft response 

Ref: Denton MD et al. (1999), Lancet, 353: 1083-1091 (1084) 

Delayed type 
hypersensitivity 

Alloantlbody 
production 

Cytotoxic T cell 
mediated cell death 

Abbreviations: TCR= T cell receptor; MHC= major histocompatibility complex 

Activated macrophages elaborate IL-I, which causes CD4+ T cells to produce a series of 

humoral mediators. Other macrophage-derived cytokines, important in graft destruction, 

include tumour necrosis factors (TNFP and TNFa). The ability of activated CD4+ T 

lymphocytes to elaborate lymphokines is critical in the early phases of acute rejection. 

CD+ 4 cells can be divided into 2 subclasses: T helper 1 (Th I) and T helper 2 (Th2). Th 1 

cells produce effector lymphokines, especially IL-2, which causes differentiation and 

proliferation of activated T lymphocytes and stimulates B cell maturation. Interferon 

(IFN) I derived from Th 1 cells, induces and intensifies class I and II MHC antigen 

expression on the graft, and stimulates B cells to increase antibody production. It may also 

increase lymphocyte adhesiveness to an antigenic surface by upregulating leucocyte 
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function-associated antigen-I (LF A-1) expression (Paineau et al., 1989; Patarroyo and 

Makgoba, 1989). Th 2 cells produce inhibitory products such as IL-4 and IL- I 0. 

The net result of cytokine production is the emergence of antigen-specific, graft-infiltrating 

and destructive T cells. Cytokines also activate macrophages and other inflammatory cells, 

and the production of antidonor antibodies by stimulated T cells. Cytokines can amplify the 

ongoing immune response by up-regulating the expression of HLA antigens and co­

stimulatory molecules (such as B7) on graft parenchymal cells and antigen-presenting cells. 

The co-stimulators direct T cell differentiation, for example into a CD4
+ 

Thl cell which 

secretes lymphokines, facilitating cytotoxic T lymphocyte killing of cells; or differentiates 

into a CD4
+ 

Th 2 cell which stimulates antibody production by B cells (Dallman, 1995). 

Cell killing may occur via specific T-cell products, such as granzyme B (a serine esterase 

protein) and perforin (a pore-forming lytic protein), which have been reported to correlate 

closely with acute rejection of grafts (Clement et al., 1994). The type of organ grafted, 

HLA matching between donor and host and the degree of pre-sensitisation influence the 

acute rejection process. CD4
+ 

T helper cells are the primary, initiating and organizing 

component of host immuno-responsiveness against grafts. CD 8
+ 

cells are recruited 

secondarily to the site to complete the acute rejection process (Tilney et al., 1984; Mason 

and Morris, 1986; Mason, 1987). 

With completion of the rejection episode and destruction of the graft, intrinsic control 

mechanisms return the host activated immune processes to baseline. There is progressive 

decrease in the expression of graft antigens, slowing of clonal expansion of lymphocyte 

subpopulations, with reversion to their resting state; elaboration of cell products and 

surface receptors gradually cease. Suppressor mechanisms may reverse the intense 
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inflammatory process. Th2 cells may produce cytokines (for example, IL-4 and IL-I 0) 

which may inhibit alloresponsiveness and counter the effector activity of Thi-derived 

IFNI, TNFa and IL-Ip. 

Long term graft survival rate has not improved despite major improvements in one year 

graft survival. The half-life of cadaveric renal allografts remains at approximately 7 years 

(Paul and Benediktsson, 1993). The major reason for graft loss is chronic rejection or 

chronic allograft nephropathy, which may be related to poor HLA matching, more frequent 

acute rejection episodes, cytomegalovirus infections, ischaemic and reperfusion injury to 

the graft, the initial amount of functioning renal mass and nephron number (Brenner and 

Milford, 1993). Periglomerular and perivascular macrophages secrete cytokines that are 

profibrogenic, including platelet-derived growth factor (PDGF) and transforming growth 

factor (TGF)-p. This is associated with upregulation of the ET-I gene expression in 

endothelial, vascular smooth muscle and renal mesangial and epithelial cells and results in 

ET-1 secretion (Kurihara et al., I 989; Watschinger and Sayegh, 1996). Increased 

intracellular adhesion molecule-I (ICAM-1) expression is found on the glomeruli of rat 

renal allografts undergoing acute rejection (Azuma et al., 1994). The gradual functional 

deterioration caused by the development of glomerulosclerosis and arterial obliteration may 

also cause systemic hypertension which causes the remaining functional glomeruli to 

hyperfilter before eventually fibrosing, thus resulting in progressive renal damage 

(Neuringer and Brenner, 1992). 

Summary: The primary cells involved in rejection are T lymphocytes and macrophages: T 

lymphocytes are important regulators and effectors in rejection; macrophages and dendritic 

cells are important in antigen presentation. Other cells involved are B cells, natural killer 
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cells, neutrophils, eosinophils and platelets. Soluble factors important in acute rejection 

include components of the complement system, coagulation factors, leukotrienes, kinins 

and inflammatory cytokines. Recipient T lymphocytes recognise foreign HLA class II 

molecules in the allograft, and are activated to proliferate, differentiate and secrete a variety 

of cytokines. Cytokines upregulate expression of HLA class II antigens, stimulate B 

lymphocytes to produce antibodies against the allograft and help cytotoxic T cells, 

macrophages and natural killers cells to develop cytotoxicity against the graft. 

1.2.1.2 Histopathology 

The early stage of acute cellular rejection in the renal allograft is characterized by a 

perivenular and periglomerular infiltrate of transformed lymphocytes and macrophages. 

This is followed by infiltration of the interstitium and tubular epithelium (Fig 2-2). The 

interstitial infiltrate is pleomorphic, consisting predominantly of variably sized 

lymphocytes as well as macrophages, eosinophils, plasma cells and neutrophils (Porter et 

al., 1964). The interstitial infiltrate is associated with oedema, and there may also be 

extravasation of erythrocytes. The tubular lumina become dilated, brush borders disappear 

and cell death occurs. With vascular involvement, arteries and arterioles undergo 

subendothelial infiltration by lymphocytes and macrophages. The endothelium is often 

lifted from its basement membrane and, in some cases, small deposits of fibrin and 

platelets are found in relation to the endothelial injury. The mononuclear cell inflammation 

uncommonly infiltrates transmurally, involving the blood vessel wall and resulting in an 

inflammatory necrotizing arteritis. The Banff classification standardized the criteria for the 

histologic diagnosis of renal allograft pathology internationally as depicted in Tables 1-4 

and 1-5 (Solez et al., 1993; Racusen et al., 1999). 
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Table 1-4. Banff Classification: Criteria for acute rejection in renal allograft biopsies 

Grade I, mild acute rejection 

Cases with significant interstitial infiltration (>25% of parenchyma affected) and foci 
of moderate tubulitis (>4 mononuclear cells/tubular cross section or group of 10 
tubular cells) 

Grade II, moderate acute rejection 

Cases with (A) significant interstitial infiltration and foci of severe tubulitis > l 0 
mononuclear cells/tubular cross section) and/or (B) mild or moderate intimal 
arteritis 

Grade III, severe acute rejection 

Cases with severe intimal arteritis and/or "transmural" arteritis with fibrinoid 
change and necrosis of medial smooth muscle cells. Recent focal infarction and 
interstitial haemorrhage without other obvious cause are also regarded as 
evidence for Grade III rejection 

Table 1-5. Banff Classification of acute rejection. Numerical codes 

g 0,1,2,3 

0, I, 2, 3 

0, I, 2, 3 

V 0,1,2,3 

no, mild, moderate, severe glomerulitis (g3 = mononuclear cells in 
capillaries of all or nearly all glomeruli with endothelial enlargement 
and luminal occlusion) 

no, mild, moderate, severe interstitial mononuclear cell infiltration (In 
rejection oedema and lymphocyte activation usually accompany 
mononuclear cell infiltration; i3 = > 50% of parenchyma inflamed) 

no, mild, moderate, severe tubulitis (t3 = > IO mononuclear cells per 
tubule or per 10 tubular cell in several tubules) 

no, mild, moderate, severe intimal arteritis (v3 = severe intimal arteritis 
and/or transmural arteritis and/or hemorrhage and recent infarction 
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1.2.2 GLOMERULONEPHRITIS 

The severity of glomerular injury is determined by (1) the primary insult and secondary 

mediators involved (2) the site of injury and (3) the speed of onset, extent and intensity of 

disease. 

1.2.2.1 Immune glomerular injury 

Glomeruli are susceptible to a variety of inflammatory, metabolic, haemodynamic, toxic and 

infectious insults. Most human glomerular disease is triggered by immune attack, diabetes 

mellitus or hypertension. Similar clinicopathological presentations are provoked by different 

aetiologies. Infections and vasculitides can trigger acute proliferative glomerulonephritis; 

metabolic disorders such as diabetes mellitus and deposition diseases (for example, amyloid) 

can induce glomerulosclerosis with nephrotic syndrome. Glomerular injury at different sites 

results in characteristic disease patterns and clinicopathological presentations (Table 1-6). 

Table 1-6. Correlation between site of glomerular injury and clinicopathologic 

presentation 

Target of injury Physiologic role Response to injury Renal disease 

Endothelial cell Maintains glomerular Vasoconstriction acute renal failure 
perfusion 
prevents leucocyte leucocyte infiltration focal/ diffuse 
adhesion proliferative GN 
Prevents platelet Intra vascular Thrombotic 
aggregation microthrombi microangiopathies 

Mesangial cell controls glomerular Proliferation/tmatrix Mesangioproliferative 
filtration surface area GN/glomerulosclerosis 

Basement prevents filtration of Proteinuria membranous GN 
membrane plasma proteins 
Visceral prevents filtration of Proteinuria minimal change 
epithelial cell plasma proteins disease/FSGS 
Parietal epithelial maintains Bowman's crescent formation crescentic GN 
cell space 
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Endothelial and subendothelial injury results in (1) recruitment of leucocytes (2) abnormal 

haemostasis leading to thrombotic microangiopathies and (3) vasoconstriction and mesangial 

cell contraction leading to acute renal failure. Mesangial injury, usually immunological in 

origin, results usually in asymptomatic abnormalities of the urinary sediment and mild renal 

insufficiency. Proteinuria is the dominant presentation with injury to the subepithelial aspect 

of the glomerular basement membrane and visceral epithelial cells. 

Immune-mediated glomerulonephritis accounts for a large proportion of acquired renal 

disease. The majority are associated with deposition of antibodies within the glomerular tuft. 

indicating dysregulation of humoral immunity. Cellular immunity, by modulating antibody 

production also contributes to the pathogenesis of glomerulonephritis via antibody-dependent 

cytotoxicity. Formation of antigen-antibody complexes activates complement and leads to a 

significant inflammatory response. Localization of these complexes in the different structures 

of the glomerular capillary determines the presence and severity of the inflammatory response. 

The role of complement in immune-mediated renal injury has been clearly established in anti­

glomerular basement membrane (GBM) antibody glomerulonephritis, membranous 

nephropathy and mesangial proliferative nephritis. 

Secondary immune mechanisms involve the cascade of inflammatory mediators that may be 

recruited to propagate renal damage after the primary glomerular attack. These include 

cytokines, growth factors, reactive oxygen metabolites, platelet-activating factor and 

eicosanoids, proteases and vasoactive substances (ET and EDRF). The presence of an 

inflammatory infiltrate is associated with generation of multiple mediators that participate in 
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the decrease in glomerular filtration rate (GFR) associated with the different types of 

glomerulonephritis. Leukotrienes, especially leukotriene D4 (LTD4), generated by 

neutrophils, play a significant role in the glomerular haemodynamic changes associated with 

immune injury; LTD4 receptor blocker partially ameliorates the decrement in the 

ultrafiltration co-efficient in the anti-Thy-I antibody model (Bresnahan et al., 1992). 

Leukotriene generation is antagonised by 15-lipoxygenase products (lipoxin A4 and lipoxin 

B4) produced by macrophages (Badr, I 992). The glomerular response to immune injury 

therefore depends on the interaction between leukotrienes derived from neutrophils and 

lipoxins generated by macrophages, both cell types stimulated by the presence of antigen­

antibody complexes. 

Thromboxane A 2 (TXA2) and prostaglandin E2 (PGE2), generated by endothelial, mesangial 

and epithelial cells of the glomeruli, are involved in glomerular immune injury. TXA2 is 

associated with renal vasoconstriction and reduction in the ultrafiltration co-efficient in the 

early phases of immune injury; normalization of GFR and renal plasma flow in the later stages 

depends on the generation of PGE2 . The highest concentrations of PGE2 are present in the 

medullary collecting duct; its production is regulated by sodium chloride, molarity and 

bradykinin (Zusman and Keiser, 1977). Studies in humans and animals have shown that PGE2 

and PGii are natriuretic (Johnston et al., l 967; Bolger et al., 1978) and can stimulate renin 

release. PGE2 antagonizes arginine vasopressin (A VP)-induced water reabsorption (Grantham 

and Orloff, 1968). 
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Nitric oxide (NO) may contribute to immunologic renal disease by different and seemingly 

opposing mechanisms. Cytokines produced during renal injury stimulate nitric oxide synthase 

(NOS) to form NO in infiltrating macrophages as well as in glomerular endothelial and 

mesangial cells. In immune complex nephritis, isolated glomeruli and infiltrating 

macrophages produce large amounts of NO; cellular NO secretion and urinary NO excretion is 

augmented; inducible NOS (iNOS) mRNA expression is stimulated (Jansen et al., 1994). The 

L-arginine analogue, N°-monomethyl-L-arginine(L-NMMA) is able to prevent the onset of

glomerulonephritis in this model. Mesangial cells are stimulated by NO to increase capillary 

surface area and glomerular ultrafiltration coefficient, with consequent hyperfiltration and 

possible glomerular scamng (Zatz and DeNucci, 1991 ). Focal or segmental 

glomerulosclerosis occurs after reduction of renal mass due to the resulting hyperfiltration, 

and to increased intraglomerular hydraulic pressure. Inhibition of NO by N°-nitro-L-arginine 

methylester (L-NAME) and L-NMMA leads to increased intraglomerular hydraulic pressure, 

accompanied by renal vasoconstriction, proteinuria and glomerular sclerosis (Reyes et al., 

1993). Glomerular scarring can be prevented and renal vascular resistance ameliorated in renal 

mass-ablated animals that have been fed with L-arginine (Reyes et al., I 994), thus 

demonstrating the protective role of NO in glomerulosclerosis. NO also has anti-thrombotic 

and platelet-inhibitory effects in glomerular injury (Shultz and Raij, 1992). Thus, elevated NO 

levels in glomerulonephritis affect vascular tone, mesangial relaxation and tissue perfusion. 

The resulting glomerular hyperfiltration is thought to directly affect mesangial integrity and 

lead ultimately to glomerulosclerosis. 

A hallmark of proliferative glomerulonephritis is an increase in glomerular cell number, 

which initially is due predominantly to infiltration of the glomerular tuft by leucocytes. 
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Subsequently, resident glomerular cells proliferate in response to growth factors such as 

epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and thrombospondin. 

Glomerular inflammation can resolve with complete recovery of renal function or with a 

variable degree of scarring and chronic renal insufficiency. 

Transforming growth factorp (TGFP) stimulates production of extracellular matrix by most 

glomerular cells, inhibits synthesis of tissue proteases that normally degrade matrix proteins, 

and is a potent stimulus for scar formation following glomerular injury. Angiotensin II, PDGF 

and endothelins are other potential modulators of this process (Wilson, 1996). Moderate to 

severe glomerulonephritis is usually associated with tubulo-interstitial inflammation and 

scarring, which correlates closely with long term impairment of renal function. 

1.2.2.2 Non-immunological glomerular injury 

Nephropathy complicates approximately 30% of type I and 20% of type 2 diabetes mellitus. It 

is characterized clinically by proteinuria and progressive renal insufficiency and 

pathologically by glomerulosclerosis due to thickening of the glomerular basement membrane 

(GBM) and mesangial expansion with extracellular matrix. This may be triggered by 

glomerular hypertension, the direct effect of hyperglycaemia on mesangial cells, advanced 

glycosylation end products, growth factors such as growth hormone, insulin growth factor I 

(IGF 1 ) and angiotensin II, cytokines (such as TGFP), hyperlipidaemia and cell sorbitol 

accumulation and myoinositol deficiency (secondary to activation of the aldose reductase 

polyol pathway). Haemodynamic factors also play a central role. High intraglomerular 

pressure is a major cause of glomerular injury and can result from systemic hypertension or a 
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local change in glomerular haemodynamics. Nephron loss, from any cause, is followed by 

compensatory hyper-filtration in the remaining functional glomeruli in an effort to maintain 

GFR. Over years, the hyperfiltering remnant nephrons develop focal and segmental 

glomerulosclerosis and eventually, global sclerosis (Neuringer and Brenner, 1992). TGF� may 

be an important regulator of matrix accumulation in remnant nephrons. Other mediators are 

angiotensin II, PDGF and endothelins. 
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1.3. AIM OF STUDY 

Vasoactive substances, with directly opposing effects, are present and functional in the 

kidney. Previous reports in the literature are predominantly those of animal experiments or 

human studies of isolated peptides. The aims of this thesis have been: 

( 1) To examine the role of functionally opposing vasoactive peptides ( endothelin-1, atrial

natriuretic peptide and kinins) in a human model of renal inflammation, namely acute renal 

rejection and glomerulonephritis. Comparison was made with various glomerular disorders in 

an effort to assess the effect of immunosuppressive drugs on these peptides. 

(2) To study the localisation of ETA and ET 8 receptors in these renal disorders, as this has

not been previously elucidated in human renal disease. 
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CHAPTER 2 

MATERIALS AND METHODOLOGY 
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2.1 ETHICAL APPROVAL AND PATIENT/GUARDIAN CONSENT 

Ethical permission for the study was obtained from the Ethics Committee of the Medical 

School, University of Natal. Permission for the collection of post-mortem tissue samples had 

been obtained from Professor J B Botha, Head - Department of Forensic Medicine, University 

of Natal. Normal kidney tissue was collected at autopsy with the co-operation of the attending 

Forensic Surgeon. Consent was obtained from patients, normal subjects and the family of the 

deceased (Appendix 2.1.1 and 2.1.2). Pathological kidney tissue was collected at the Renal 

Unit, Addington Hospital, Durban. All patients were informed by myself that blood and urine 

samples and a small piece of kidney tissue that will be removed at biopsy will be used for 

research purposes. 

2.2 SAMPLE COLLECTION 

2.2.1 RENAL DISORDERS 

2.2.1.1 Acute renal allograft rejection 

Samples of blood, spot urine and kidney biopsy material were collected from renal transplant 

patients undergoing graft dysfunction. Renal biopsies were undertaken for routine diagnostic 

purposes, and those patients with a diagnosis of acute rejection were included in the study. All 

relevant personal and clinical details together with all medications that had been administered 

are recorded in Appendix 2.2.1. l 
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2.2.1.2 Renal parenchymal disease 

Blood, spot urine and renal biopsy material was collected from patients with haematuria, 

proteinuria, nephrotic syndrome or renal dysfunction who underwent routine diagnostic renal 

biopsies. The tissue was processed as in 2.3. I. I below. All relevant clinical details are 

recorded in Appendix 2.2.1.2. This group of patients served as disease controls. 

2.2.2 CONTROLS 

2.2.2.1 Kidney donors 

Blood and spot urine samples were collected from kidney donors prior to uni-nephrectomy; 

these served as controls and were compared with samples collected post-uninephrectomy. 

2.2.2.2 Post mortem kidney tissue 

Human kidney tissue was collected from individuals who had died in or soon after arrival at 

hospital, or were declared dead on arrival at hospitals in the Durban area, as a result of trauma 

not involving the abdomen or sudden unexplained death. The corpses were immediately 

refrigerated and maintained at 4°C in the hospital or state morgue. The age, sex, cause and 

time of injury and death was recorded, together with all medications that had been 

administered before death (Appendix 2.2.2). Kidney tissue was collected within 24h of death 

in 5% (v/v) formal saline and served as normal controls. 
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2.3 SAMPLE PROCESSING AND STORAGE 

2.3.1 KIDNEY TISSUE 

2.3.1.1 Tissue processing 

Kidney tissue was processed as follows: 

• 0.5cm3 of tissue in 5% formal saline (v/v) fixative for 24 h at room temperature (RT) to be

embedded in paraffin wax and used for light microscopy (Appendix 2.3.1. la)

• 0.25cm3 of tissue in 2% paraformaldehyde (PFA, w/v)/1 % gluteraldehyde (v/v; pH 7.2)

fixative for 2 h at 4°C to be embedded in resin and used for immuno-electron microscopy

• 0.25cm3 of tissue in 4% PFA (w/v)/2% gluteraldehyde (v/v; pH 7.4) a modified Karnovsky

fixative [Karnovsky, 1965], for 2 h at 4°C to be embedded in resin and used for

transmission electron microscopy (TEM); Appendix 2.3.1.1 b

2.3.1.2 Tissue fixation and wax embedding for light microscopy 

Sections (5mm thick) of kidney were placed in tissue cassettes. These tissue samples were 

dehydrated and embedded in paraffin wax using absolute ethanol, xylene and wax under 

sterile conditions in an automatic tissue processor (Shandon), and these samples were used for 

both light microscopy and in situ RT-PCR. The automated schedule of steps outlining the 

fixation, dehydration, clearing, infiltration and embedding carried out by the Department of 

Histopathology, University of Natal are listed in Appendix 2.3.1. la. Of these wax embedded 

tissue samples, three µm sections were adhered onto plain glass slides for histology, as well as 

poly-L-lysine (Sigma Chemicals, St. Louis) coated glass slides to be used for the localisation 

of endothelin and its receptors, TK and ANP by immunocytochemistry (ICC). Four micron 
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sections of these tissue samples were adhered onto glass slides coated with a 2% solution (v/v) 

of 3-aminopropyltriethoxysilane (Sigma Chemicals, St. Louis) in acetone for the 

demonstration of ET-1 expression by in situ RT-PCR. 

2.3.1.3 Tissue fixation and resin embedding for electron microscopy 

2.3.J.3.J Tissue fixation for transmission electron microscopy (TEM) 

Biopsy tissue for TEM was immediately immersed in Kamovsky's fixative for 90 min at 4°C. 

The specimen was then diced into lmm3 cubes and re-immersed in fresh Kamovsky's fixative 

for a further 30 min. Thereafter, the tissue was transferred to 0.2M sodium cacodylate (pH 

7.2) maintained at 4°C until embedded and polymerised in low viscosity embedding media 

(Electron Microscopy Services, Pennsylvania, USA) as outlined in Appendix 2.2.1. lb 

[Glauert, 1975]. 

2.3.1.3.2 Tissue fvcation for immuno-electron microscopy 

Biopsy tissue for immuno-electron microscopy was immediately immersed in 2% PF A 

(w/v)/1 % gluteraldehyde fixative (v/v, pH 7.2) for 2 h at 4°C, then transferred to 0.2 M 

sodium cacodylate buffer (pH 7.2) maintained at 4°C before resin embedding. 

2.3.1.3.3 Resin embedding for electron microscopy 

The fixed tissue was dissected into l rnm3 sections and placed in disposable baskets in a tissue 

processor (Reichert-Lynx). The machine was programmed to incubate the sections in a series 

of reagents as described in Appendix 2.3. l. lb. The tissue was then removed from the 

processor and polymerised in pure resin overnight at 40°C. 
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2.3.1.4 Sample storage 

2.3.1.4.J Wax embedded tissue 

The wax embedded tissue samples were stored at room temperature (RT) for future 

microscopic and immunohistochemical analysis. 

2.3.1.4.2 Resin embedded tissue 

The resin embedded tissue samples were stored at room temperature (RT) for future 

microscopic and immuno- histochemical analysis as outlined in section 2.6. 

2.3.2 URINE SAMPLES 

2.3.2.1 Endothelin-1 (ET-1) 

Spot urine samples (10 ml) were collected in 200 ul bacitracin [(bacteriostat); 2840 u/ml; 

Sigma, St Louis] and 200 ul Soyabean trypsin inhibtor [(SBTI, inhibitor of arginine 

proteases); 2720 u/ml, Sigma, St Louis] and centrifuged at 1400xg for 20 min at 4°C. One ml 

supernatant was aliquotted into microfuge tubes containing 200 ul mediator peptide inhibitor 

cocktail (see Appendix 2.3) and stored at -20°C until ET-1 measurements were made. 

2.3.2.2 Tissue kallikrein 

10 ml urine samples were decanted into corningware tubes containing 200 ul bacitracin and 

200 ul SBTI (inhibitor of arginine proteases other than TK). Urine was centrifuged at 1400xg 

for 20 min at 4 °C. Thereafter 1 ml of urine was aliquotted into eppendorf tubes containing 50 

ul 0.2M Tris-HCl (pH 8.2) and stored at -20°C until assayed. 
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2.3.2.3 Basal kinin generation 

Spot urine samples were collected in corningware tubes (Corning, USA) containing 200 ul 

kininase inhibitor mediator peptide cocktail (Appendix 2.3), excluding STB I and aprotinin 

(so that kinins could be generated from endogenous kininogen) and centrifuged at I 400xg for 

20 min at 4°C. One ml aliquots were stored in eppendorf tubes at -20°C until the kinin 

generation assay. 

2.3.2.4 ANP 

Spot urine samples were collected in 200 ul bacitracin/SBTI and centrifuged at 1400xg for 20 

min at 4°C. One ml supernatant was aliquotted into eppendorf tubes containing 200 ul 

mediator peptide inhibitor cocktail and stored at -20°C until assayed. 

2.3.3 BLOOD SAMPLES 

2.3.3.1. Endothelin-1 

Whole blood samples were collected from patients recumbent for 20 min in chilled sodium 

ethylenediamine tetraacetic acid (EDT A; 2mg/ml, w/v) tubes and centrifuged immediately at 

1400xg for 20 min at 4°C. One ml plasma was transferred into polypropylene tubes (Corning. 

USA) containing 200ul peptide inhibitor cocktail and stored at -20°C until assayed. 

2.3.3.2 ANP 

Whole blood samples were collected as reported in 2.3.3.1 above and stored at -20°C until the 

assay was done. 
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2.4 ANTIBODY PROFILES 

2.4.1 Endothelin-1 (ET-1) antibody 

The ET-1 antibody was supplied by Biomedica (Vienna, Austria). The immunogen was 

human ET-1 coupled to bovine serum albumin (BSA) and keyhole limped haemocyanine 

(KLH). The antibody was raised in the rabbit, and produced as an immuno-affinity purified 

IgG, lyophilized in 0.05 M borate buffer (pH 8.5). The antibody specificity was I 00% with 

ET-1, 142% with ET-2, 98% with ET-3, and less than 1% with Big ET 1-38 and Big ET­

fragment 22-38, Sarafotoxin and ANP. 

2.4.2 Endothelin receptor antibodies 

2.4.2.1 Endotlzelin A (ET A) receptor antibody 

ETA receptor antibodies (AS444) were kindly provided by Werner Mi.iller-Estcrl (Institute of 

Biochemistry, University Hospital Frankfurt, Theodore-Stern-Kai 7, D-60590, Frankfurt, 

Germany). AS444 raised in the rabbit against peptide sequences CON 25 (ED I- from the NH2 

terminal) and CTS 24 (ED4 -from the carboxy terminal) of the human ET A receptor. The 

whole antiserum was lyophilized and reconstituted with distilled water. 

2.4.2.2 Endotlzelin B (ET8) receptor antibody 

ET 8 receptor antibodies (AS445) were also provided by Werner Mtiller-Esterl. AS445 was 

raised in the rabbit against peptides CGL-26 (ED I-from the amino terminal) and CLK (ED4-

from the carboxy terminal) of the ET 8 receptor. The whole antiserum was lyophilized and 

reconstituted with distilled water. 
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2.4.3 ANP antibody 

ANP antibody, raised against human ANP 1-28, was supplied by the Peptide Institute (Osaka, 

Japan). The antiserum was lyophilized with 0.001 M PBS (pH 7.0). The immunogen was 

ANP (human, 1-28)-TG (bovine thyroglobulin). The specificity of ANP (human, 1-28) was 

reported to be 100 %, ANP (human, 7-28) 100 %, [Met (0) 12]-ANP (human, 1-28) 150%, 

ANP (rat, 1-28) 55 % and 13-ANP (human, 1-28 dimer) 100 %. The sensitivity (IC50) was 0.28 

pmol/ml. There was no cross-reactivity against Oxytocin, (Arg8)-Vasopressin, Somatostatin, 

(Met5)-Enkephalin and 13-Endorphin (human). 

2.4.4. Tissue kallikrein antibody 

2.4.4.J Generation of anti-human rTK antibody 

Anti tissue kallikrein antibody directed against recombinant tissue kallikrein (rTK) generated 

in E. Coli transfected with human tissue cDNA was raised in the goat. The recombinant TK 

(rTK) was supplied by Dr Michael Kemme (Institute for Technical University of Darmstadt, 

Darmstadt, Germany). 

2.4.4.2 Antibody Production 

A healthy goat was initially immunised by a single intramuscular injection of recombinant 

tissue kallikrein (rTK), conjugated in 125 µl Titermax® adjuvant. Thereafter, a booster 

programme using similar doses of conjugated antigen was initiated over a 4 month period. 

Serum from pre-booster (non-immune) and fortnightly venous bleeds was used to determine 

cross-reactivity, specificity and antibody titre. The titre was determined by a standard single 

site enzyme-linked immunosorbant assay (ELISA) using human urinary kallikrein (Protogen, 

Sweden) as the antigen. The titre increased from 1: 50 to an optimum of I :800. 
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2.4.4.3 Antibody isolation and purification 

The isolation and characterization of the IgG was performed according to the method 

described by Johnstone and Thorpe ( 1982). The serum proteins were double precipitated with 

14 % NaSO4 
(w/v), and centrifuged at 3000xg. The precipitate was reconstituted up to 30 % of 

the original volume with distilled H2O, and dialysed against 0.07 M sodium phosphate buffer 

(pH 6.3) for 24 h at 4°C. Isolation of the IgG was performed using a diethylaminoethyl 

sephadex (DEAE), a-25 ion exchange column (Sigma) with 0.02 M sodium phosphate buffer 

(pH 8.0). One ml fractions were collected. Those fractions showing the highest absorbance 

(0.311 - 0.827) at 280 nm were pooled. The protein concentration of this pooled fraction was 

1.11 mg/ml. The IgG was then characterized on 7 % sodium dodecyl-sulphate polyacrylamide 

gel (SDS-PAGE) against IgG molecular weight markers (Sigma MW SOS 70) to determine 

purity. The purity, specificity and sensitivity of the antibodies were verified by a single site 

ELISA using human urinary kallikrein (HUK, which also determined the antibody titre), 

Western blot (immunoblotting), positive control tissue and preabsorption with rTK in 

immunocytochemical studies, as well as the use of control human urine (TK is present in 

human urine in readily measurable concentrations), in an ELISA which demonstrated the 

reproducibility of the results produced with these antibodies. The optimal rTK concentration 

detected was 7.5 ug and the optimal antibody dilution was 1: 2000; 30 µl aliquots were stored 

at -20°C.The methodology is described in Appendix 2.4.4.3 a-c. 
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2.5 MEASUREMENTS 

2.5.1 ENDOTHELIN-1 ELISA 

ET-1 was measured in plasma and urine by a sandwich-type enzyme immunoassay, based on 

the method of Suzuki et al. (1989), using a commercial kit supplied by Wako Chemical 

Industries, Osaka (Japan). A sandwich-type antigen-antibody complex < anti ET-I 

monoclonal antibody: ET-I: enzyme-labelled anti ET-I polyclonal antibody > was formed. 

Microplates coated with anti ET-I monoclonal antibody were incubated with the samples and 

enzyme-labelled antibody (peroxidase-labelled anti ET-I polyclonal antibody). After washing 

the plates with PBS and removing unbound material, the amount of enzyme (peroxidase) 

bound to the plate is directly proportional to the amount of ET-I in the sample, and was 

determined by a colour reaction using 0-phenylenediamine and hydrogen peroxide as 

substrates measured at 492 nm. All measurements were made in duplicate. When I ml of 

plasma was spiked with a known concentration of ET-1, recovery rates of 97.3% and 98% 

were achieved. Repeated assays yielded an inter-assay co-efficient of variation of 6.1 %. Data 

report included with the kit indicated that cross-reactivities with ET-3 and Big ET-1 were 

below 0.4%, and a measurable range of 2-200 pg/ml (corresponding to 0.5-50 pg/ml when I 

ml of plasma is pre-treated). The detailed methodology is tabulated in Appendix 2.5.1 a. The 

standard curve is shown in Appendix 2.5.1 b. 

2.5.2 ATRIAL NA TRIURETIC PEPTIDE RIA 

Blood samples collected in chilled sodium EDTA (2 mg/ml, w/v) tubes was centrifuged at 

1400xg for 20 min at 4 °C. One ml plasma was aliquotted into microfuge tubes containing 200 

µI peptide inhibitor cocktail and stored at -20° until the assay. Urine samples were collected in 
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chilled tubes containing 200 ul thiomersal (Sigma, St Louis) and 200 ul SBTI (4mg/ml) and 

centrifuged at 1400xg for 20 min at 4°C. One ml supernatant was aliquotted into microfuge 

tubes containing 100 ul 0.2 M Tris buffer (pH 8.2). ANP was extracted from plasma and urine 

samples using Sep-Pak C18 cartridges. The cartridges were activated with 1ml 60 % 

acetonitrile in I % trifluoroacetic acid (TF A). The plasma sample was acidified with 0.1 % 

TF A and loaded onto Sep-Pak cartridges. After washing, ANP was eluted with 60 % 

acetonitrile in 1 % TF A. The eluant was evaporated to dryness under a nitrogen stream at 

37°C in a water bath. The residues were reconstituted with a buffer solution and subjected to 

RIA using a commercial kit (Peninsula Laboratories, Belmont, Ca). Standard curve was 

generated on semi-log graph paper. To calculate the amount of peptide in the original sample, 

the concentration of the assayed sample was multiplied by the dilution factor used to prepare 

the sample. Measurements were expressed in pg/ml. Detailed methodology is outlined in 

Appendix 2.5.2a. The standard curve is shown in Appendix 2.5.2b. 

2.5.3 ASSAYS FOR TISSUE KALLIKREIN (TK) 

The presence of active TK in urine samples was determined by an amidolytic assay whereas 

total immunoreactive TK was measured by ELISA. Purified human urinary tissue kallikrein 

(HUK, Calbiochem, Lucerne) was used to validate both the amidolytic assay and ELISA, and 

these results were used to calculate both the intra- and inter-assay coeffficients of variation. 

2.5.3.1 Controls for Amidase assay, TK ELISA and Kinin generation ELISA 

A large volume of pooled human urine (from normal volunteers), a fairly good source of TK, 

was collected in thiomersal. Aliquots (1ml) were mixed with 50 ul of 40 mM Tris (pH 8.0) 

per ml of urine and stored at -20°C. Serial dilutions of this urine were included as controls for 
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both the amidolytic assay and TK ELISA. These values were used to calculate both the intra­

and inter-assay coefficients of variation. For basal kinin values, aliquots were mixed with 100 

ul of inhibitor cocktail (refer to Appendix 2.3) per ml of urine, and for the kinin generation 

assay, 100 ul kinin generating cocktail (Appendix 2.3) per ml of urine and stored at -20°C. 

These were used as controls for the kinin generation ELISA. One set of plain urine samples 

stored at -20°C, without any buffer, was used to measure total protein. 

2.5.3.2 Enzymic assay (amidolytic microassay) 

This is a colorimetric, end-point microassay using a microtitre plate for the measurement of 

the enzymic activity of TK in biological samples. The amount of TK is measured by assessing 

the activity of the enzyme on the selective, synthetic substrate, H-D-Val-Leu-Arg-pNA 

[(S2266, Kabivitrum, Sweden); Amundson, 1979] in the presence of soya bean trypsin 

inhibitor (SBTT) as modified by Lauar et al. (1982), and further developed as an end-point 

assay in a microtitre plate by Rahman et al. (19946). The enzymic activity of TK is 

proportional to the release of para-nitroaniline (pNA) from H-D-Val-LeuArg-pNA, which has 

a peak absorbance at 405 nm. A microassay standard curve was constructed using human 

urinary kallikrein (HUK, Calbiochem, Lucerne) from which the concentration of TK in urine 

samples were measured in ng/ml (Appendix 2.5.3.2b). Control urine was included in each run 

to determine inter-assay coefficient of variation. During each assay, 2 sets of plates were 

processed simultaneously, ohe being the measurement of TK activity at zero time (blank), and 

the other the enzymic activity of TK after a 3 h incubation. All determinations were performed 

in triplicate as tabulated in Appendix 2.5.3.2a. 
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2.5.3.3 TK ELISA 

Aliquots of urine were used to measure total TK (in triplicate) by a sandwich ELISA using 

goat anti-human rTK IgG and rabbit anti-human rTK IgG. The anti-species antibody, anti­

rabbit IgG raised in sheep (Sigma, St Louis), was conjugated with the enzyme alkaline 

phosphatase, that hydrolyses the chromogenic substrate disodium p-nitrophenyl phosphate 

(pNPP). The stepwise procedure is described in Appendix 2.5.3.Ja. The standard curve is 

depicted in Appendix 2.5.3.Jb. 

2.5.4 MEASUREMENT OF BASAL KININ LEVELS AND KININOGENASE 

ACTIVITY OF TK BY KININ GENERATION ELISA 

The capacity to form kinins by TK from the kininogen in urine was determined by initially 

generating the release of its kinin moiety with endogenous TK followed by the quantitative 

analysis of the released kinin by ELISA. An important aspect of this assay is the use of two 

separate kininase/protease inhibitor cocktails (Appendix 2.3). Firstly, one set of aliquots of all 

samples and control urine were stored in inhibitor cocktail that contained proteins that 

inhibited the enzymic activities of TK, PK and other trypsin-like proteases ( l O uM aprotonin, 

w/v, l O uM SBTI, w/v), thereby preventing the release of kinin from endogenous kininogen. It 

also contained IO uM captopril, an inhibitor of the KIi family of kininases, and 10 uM 

phosphoramidon, another kininase inhibitor, to ensure that the basal kinins present in the 

samples were not destroyed. A second set of aliquots of all samples and control urine 

contained peptidases that prevented the destruction of kinins but permitted its formation. The 

second aliquot of each sample and control urine was stored in kinin generating cocktail, which 

was similar to the inhibitor cocktail except that it lacked aprotonin and SBTI. The absence of 

these protease inhibitors ensured that kinin could be released from endogenous kininogen and 
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protected by inhibitors of the peptidases. Activation of endogenous TK was achieved by 

incubating equal volumes of urine and generating cocktail for 60 min at 3 7°C in the presence 

of kininase inhibitors to limit the degradation of the generated kinin (Appendix 2.5.4). The 

released kinin was then extracted with acid-alcohol (absolute alcohol/3 mM HCI, v/v) and 

measured by a competitive ELISA following overnight incubation with a standard amount of 

monoclonal mouse anti-BK IgG (SBKl) at 4°C, to bind the released kinin. Known amounts of 

standard BK (1.25 - 150 ng BK/ml, Sigma, St. Louis) were also allowed to react overnight 

with standard amounts of SBKI. The wells of a Nunc Immulon Maxisorp™ ELISA plate 

(Nunc, UK) were coated with a standard amount of BK conjugated to cytochrome C using the 

linker N-succimidyl 3- (2-pyridyldithio) propionate (SPDP). The kinin-SBK 1 reaction 

mixtures were then added to each well and incubated for 3 h at 37°C so that any remaining 

free antibody could react with the BK-SPDP-cytochrome C conjugate bound to the ELISA 

plate. The secondary antibody wa!> an anti-mouse IgG labelled with the enzyme alkaline 

phosphatase, which converted the colourless disodium p-nitrophenyl phosphate (pNPP) to a 

yellow chromogen that has a maximal absorbance at 405 nm. The absorbance values obtained 

for the standard BK was used to plot a standard curve of absorbance versus log concentration 

from which the basal and generated kinin contents of the tissue extracts were determined 

(Appendix 2.5.4b). The basal and generated kinin contents of control urine were also 

measured during each run to determine the inter- and intra-assay coefficients of variation. The 

detailed stepwise method for the competitive ELISA is tabulated in Appendix 2.5.4a. 
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2.6 IMMUNOLOCALISATION OF ET-1 AND ETA AND ET8 RECEPTORS, ANP 

AND THE KININ FORMING ENZYME TISSUE KALLIKREIN 

2.6.1 LIGHT MICROSCOPY: PEROXIDASE-ANTIPEROXIDASE (PAP) 

IMMUNOLABELLING METHOD 

Three um thick sections of wax-embedded tissue were adhered onto adhesive coated (poly-L­

lysine, Sigma Chemicals) slides. The technique used was adapted from that described by 

Robinson et al. (1990), MacLennan et al. (1990) and Marriott and Carlton (1990). The kidney 

sections were placed on a heating mantle at 60°C until the wax melted. The PAP method 

required dewaxing the tissue sections using xylene and rehydration with increasingly dilute 

alcohol solutions ( 100%, 90%, 70% ethanol) and distilled water as the final rehydrant. When 

the tissue was partially rehydrated, it was immersed in absolute methanol (99.9%; Saarchem, 

S Africa) for 20 min to quench endogenous peroxidases. The tissue was then heated in 0.1 M 

sodium citrate buffer (pH 6.0) at 80°C for 8 min for antigen retrieved in a Sharp R-4A52 

microwave oven (Sharp Electronics, Japan). The tissue was further blocked with 5% H202/ 

95% MeOH for 5 min to quench endogenous peroxidases. Immunolabelling for ET A and ET 8

receptors, ANP and TK was carried out similarly at the following dilutions: ET-I 1 :50; ET A 1: 

650; ET 8 I: 500; ANP I: I 00. Incubation with the specific primary antibody in 0.1 M 

phosphate buffer (pH 7.4)/1 % BSA (v/v)] was carried out for 2 min. Next the tissue was 

incubated with biotin link (DAKO K0690) for 2 min, and then treated with Strepavidin 

(DAKO K0690) for 2 min. The sections were washed between incubations by submerging the 

slides for 5 min in 0.01 M PBS (pH 7.4) containing 27 mM potassium chloride, 0.137 M 

sodium chloride (w/w) (Sigma) for 5 min and the tissue sections were not allowed to dry out. 

All dilutions were made up in 0.01 M PBS/I% BSA (pH 7.4, v/v). Labelled slides were stored 
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in the dark to preserve the immunoprecipitant label. The labelling antibody, containing the 

PAP immunoenzyme complex, was visualised by incubating the sections for 2-5 min with 

liquid 3,3' diaminobenzidine (DAB) precipitant (DAKO, K3465). The sections were 

counterstained with Mayers' haematoxylin (Sigma, St Louis) for 3-5 min. Sections were then 

dehydrated and mounted with a permanent medium (Entellen, Merck Gmbh) and 

immunovisualised by conventional light microscopy under a Nikon photomicroscope (Nikon 

Optiphot, Japan). The detailed methodology is described in Appendix 2.6.2. 

2.6.2 CONFOCAL MICROSCOPY: FLUORESCENT IMMUNOLABELLING 

METHOD 

This process required melting the wax on a heating mantle, dewaxing in xylene and 

rehydrating the 3 micron sections with increasingly dilute alcohol solutions ( I 00 %, 90 %, 70 

%) and distilled H20 as the final rehydrant. Endogenous peroxidases were quenched by 

immersing the sections in I 00% MeOH for 20 min. Antigen retrieval was carried out by 

heating the tissue in 0.1 M sodium citrate buffer (pH 6.0) at 80°C for 3 min in a microwave 

oven (Sharp R-4A52), and nonspecific sites blocked with human IgG (Sigma) for 2 min. 

Immunolabelling for ET-I, ETA and ETB receptors, ANP, and TK was carried out similarly 

at the following dilutions: ET-I I: 50; ETA I: 650; ET 8 I: 500; TK I: 1000. The tissue 

sections were incubated with the specific primary antibody diluted in 0.1 M PBS (pH 7.4) for 

18h at 4°C. The bound primary antibody complex was conjugated to a fluorescein labelled 

[fluorescein isothiocyanate (FITC), 525 nm, Sigma] anti-rabbit lgG for 30 min at RT. All 

washing steps were carried out in 0.0lM PBS (Sigma; pH 7.4). Fluorescent labelling was 

analysed using the Leica TD4 confocal microscopy system (Leica, Germany). All dilutions 

were made up in 0.0IM PBS/0.1% BSA (v/v, pH 7.4) and tissue sections were not allowed to 

IOI 



dry out between incubations. Labelled slides were stored in the dark at 4°C to limit bleaching 

of the fluorescent tag. The detailed method is outlined in Appendix 2.6.3. 

2.6.3 ELECTRON MICROSCOPY: IMMUNOLOCALISATION OF ENDOTHELIN-1 

AND ITS RECEPTORS IN THE HUMAN KIDNEY 

Fresh tissue was immersed in 1 % glutaraldehyde (v/v) and 4% paraformaldehyde (w/v) 

fixative in a 0.2 M cacodylate buffer (pH 7.2) for 4 h at 4°C, then transferred to sodium 

cacodylate buffer (0.2 M, pH 7.2) until processed. The fixed tissue was divided into 1 mm 

cubes, and processed in an automatic Reichert-Lynx tissue processor. The specimens were 

then rotated through a pre-programmed sequence of dehydration in graded alcohol solutions 

(70%, 90% and absolute alcohol) for 15 min each, immersed in an intermediate solvent 

(propylene oxide) for 30 min and then in spurr-epoxy resin for 120 min (2 changes of 60 min 

each). The sections were then embedded in pure resin overnight at 60°C and I µm sections cut 

with a Reichert Ultra cut ultramicrotome (Jung, Germany). Sections were collected onto glass 

slides, heat fixed, stained with 1 % alkaline toluidine blue (Sigma) and examined with a Nikon 

microscope. Fields of interest were selected, 50 nm sections cut and collected onto uncoated 

Nickel grids prior to immunostaining. The sections were incubated with rabbit anti ETl ,  ETA 

and ETB antibodies ( dilutions of 1: I 00, I: 1000 and I: I 000 respectively) and goat anti-rabbit 

IgG (1: 100 dilution) conjugated with a 10 nm Aurogold probe. Sections were counterstained 

with 2% uranyl acetate and 1 % Reynold's lead citrate (Pelco International, California, USA) 

and examined under a Jeol 1010 transmission electron microscope. The detailed methodology 

is outlined in Appendix 2.6.4. 
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2.6.4 CONTROLS FOR ICC 

2.6.4.1 Negative controls for ICC 

Loss of immunolabelling following preabsorption of the primary antibody with an excess of 

rTK demonstrated the specificity of the antibody. The goat anti-human rTK antibody was 

diluted 1:500 with 0.01 M phosphate buffer (pH 7.2) and an equal volume added to 500 ul of a 

2 mg/ml stock solution of rTK to yield a final concentration of I mg antigen (rTK) per ml. 

This was mixed and incubated overnight at 4°C to allow formation of antigen antibody 

complexes. Following centrifugation (2200 x g, 4°C, Biofuge 13R), the preabsorbed antibody 

was used to replace the primary antibody. An additional control was the replacement of the 

primary antibody by I 00 ul PBS. The immunolocalisation procedure is described in section 

2.6.1. 

2.6.4.2 Positive tissue controls for Immunocytochemistry 

Since TK is abundant in the duct cells of the human salivary glands, samples of fresh human 

salivary gland were collected at post-mortem, fixed in 5% formal saline and embedded in 

paraffin wax. During each labelling run, this appropriate positive control tissue demonstrated 

the presence of TK in the apical region of duct cells in human salivary glands (Schachter, 

1980; Orstavic, 1980). Placental tissue and cardiac atria were used as positive control tissue 

for ET-1 and ANP respectively. 

2.7 EXPRESSION OF ENDOTHELIN-1 mRNA IN THE HUMAN KIDNEY 

2.7.1 In situ reverse transcriptase polymerase chain reaction (RT-PCR) 

Four µm thick wax impregnated tissue sections, placed on pre-treated glass slides, were 

dewaxed in xylene and rehydrated in ethanol into water. The tissue was then treated with 
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20µg/ml Proteinase K [in 100 mM Tris HCl (pH 8.0), 50m M EDT A v/v] for 25 min at 37°C 

to permeabilise the cell membranes. This was followed by a DNAse treatment overnight to 

destroy all DNA present. cDNA synthesis using the Moloney murine leukaemia virus (M­

MuL V) reverse transcriptase and the First Strand Synthesis Kit (Pharmacia, Sweden) was then 

carried out at 37°C for 1 h. The PCR reaction was followed in the presence of the appropriate 

primers and a freshly prepared colour substrate (1 :50 dilution of nitroblue tetrazolium/ 5-

bromo-4-chloro-3-indoyl-phosphate (Roche) and incubated at RT in the dark until a reddish­

purple colour precipitate was visible. The detailed methodology is outlined in Appendix 2. 7. 

2.8 MEASUREMENT OF RENAL PLASMA FLOW 

Effective renal plasma flow (ERPF) was measured in 6 stable renal transplant patients ( on day 

3 post transplant) and one control subject in the Medical Physics Department at Addington 

Hospital, Durban, using sodium 131 iodohippurate. Simultaneous measurement of GFR was 

made using 99M Technetium-diethelene triamine penta acetate (Tc-DTPA). ERPF was 

repeated in 3 of the patients, 2 during an episode of acute rejection. 

2.9 MEASUREMENT OF TOTAL BODY WATER 

Assessment of excess fluid distribution by total body water (TBW) was made by bioelectrical 

impedance analysis (BIA) using the Biostat body composition analyser (BodyTrak, Cape 

Town) in 5 transplant patients, 4 patients with renal disease and 3 controls. Electrodes are 

placed on the right hand and right foot with the subject relaxed in the supine position. A high 
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frequency electrical current discriminates between the different impedances ( or resistances) of 

muscle and fat. A comprehensive body composition analysis is given which calculates data on 

ideal body weight, fat weight, lean weight, TBW, BMR and estimated average energy 

requirement and corresponding normal ranges. BIA correlations against densitometry and 

dilution techniques such as D20 and H20 have enabled accurate determinations of TB W to be 

simply and rapidly made. 

2.10 PHOTOMICROGRAPHY 

Initially for light microscopy, tissue sections processed by the PAP method and stained with 

DAB were examined, and areas of interest photographed, with a Nikon binocular Optiphot 

photomicroscope (Nikon, Japan) with objective magnifications ranging from 1 Ox to I 00x 

using Kodak 160 ASA (Eastman-Kodak, USA) colour film. For tissue sections labelled with a 

fluorescent tag, immunofluorescence was observed with a Leitz DM IRB confocal microscope 

(Leica, Gem1any) attached to Diamond Pro 17 (Mitsubishi) and Diamond Pro 21 T 

(Mitsubishi) monitors. Confocal images were recorded at a pixel density of 225 x 225 pixels 

in 8 bit tagged image file (tit) format. Subsequently, PAP and fluorescent-labelled tissue 

sections were viewed under a Leica DMLB microscope and the images captured with a Leica 

DC 100 digital camera (Leica, Germany). These 24 bit images were also recorded in tagged 

image file (tit) format. 
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2.11 IMAGE ANALYSIS 

2.11.1 Analysis of PAP images 

PAP immuno-stained tissue slides were viewed by a Nikon Optiphot microscope (Nikon, 

Japan) which was interphased to a 3 CCD digital camera system (Sony Corp., Japan). The 

quantitative image analyser used to determine the labeling intensity of the PAP immuno­

localisation was the Kontron Elektronic KS 300 (Zeiss GmbH, Germany), runnmg on 

Windows 95™ , (Microsoft Corp., USA). The digital images captured were processed and 

converted to grey image ranging in grey density from O to 255. The areas of PAP labelling 

were segmented. This involved the immuno-positive areas being separated from their 

environments on the basis of their grey values (set up threshold factor), thereby creating a 

binary image for quantification. The grey values in the image represent the intensity of the 

label over the entire area of possible x-y co-ordinates. A coloured contour was superimposed 

on the binary image to complement previous threshold areas. This image was then masked 

onto the original image of the chosen areas. The median maximal density of immuno-labelling 

was then calculated as pixels per unit area. Figure 2.11.1 is a photomicrographic 

representation of this procedure. 
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2.11.2 Analysis of immunofluorescent images 

Determination of the amount of ET-1, ETA and ETa receptors and TK were computed by 

image analysis. Confocal scanning laser microscopy is a powerful imaging technique in which 

the staining intensity of fluorescently labelled tissue section could be viewed. An important 

capability of the confocal microscope is that it can optically cut sections through tissue. This 

feature was used to determine the middle plane of the cell or tissue section, and an image 

representative of the whole cell was then generated. 

Confocal images were typically recorded at a pixel density of 225x225 pixels. The grey scale 

ranged from Oto 256, and was divided into 8 equal phases (POLI Look-Up-Table), with each 

phase having a lower and upper threshold value on the grey scale. All the pixels in each phase 

were attributed with a colour for easy visible distinguishing between the phases. The 

breakdown of the phases is as follows: 

PHASE Lower and upper Fluorescence intensity 
threshold 

1 purple 0-56 No fluorescence 
2 blue 
3 cyan 56-88 Low fluorescence 
4 green 89- 154 Medium fluorescence 
5 yellow 
6 orange 155 -256 High fluorescence 
7 red 
8 white 

The analysis performed in this study was based on a breakdown of the number of pixels per 

phase of the grey scale in the cytoplasm of various structures in the normal and diseased 

kidney. The amount of antigen was estimated by analysis of the computer generated confocal 
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images using the Analysis 2.1 Pro system (Soft-Imaging Software GmbH, 1996, Germany). In 

order to analyse the cytoplasm only of each structure of interest (proximal-, distal-, collecting 

tubules and glomerulus), a mask had to be generated for each type of structure. The regions of 

interest (ROI) - first the whole tubule, then the tubule duct and nuclei - are encircled. These 

images are then turned into black and white images and the one deducted from the other to 

generate the cytoplasm-only mask. A histogram was generated showing the pixel-breakdown 

in the cytoplasm of the different structures. This information was used to calculate the number 

of pixels falling within each phase, as well as the area analysed. This data, exported to 

Microsoft Excel was computed to calculate the mean intensity of immunolabelling per phase 

in (n) number of cells applying the unit pixel/µm2
• 

2.12 STATISTICAL ANAL YIS 

Statistical analysis was carried out by the Instat 2 computer programme and reviewed by a 

statistician. Results are presented as the mean and standard error of mean (SEM). Significance 

was calculated by a two-tailed, unpaired Student's t-test, the Mann-Whitney test and the 

Kruskal-Wallis test. Levels of significance were determined using a 95 % confidence interval; 

a p-value < 0.05 was taken to be statistically significant. 
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APPENDIX (A) OF BUFFERS, REAGENTS 

AND METHODS 
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Appendix A 2.1.1 Consent form for Controls 

A 2.1.1.1 Normal subjects 

We plan to study hormones produced by patients with kidney disease and to compare this with 
normal subjects as yourself. You will be required to bring a 24-hour collection of urine and 
have blood taken from a vein in your arm. 
You are free to agree or refuse to participate in this study. 

Sicabanga ukwenza ucwaningo ngo'ju olukhiqizwa zindlala (hormones) emzimbeni Kololu 
cwaningo sizo qhathanisa ama hormones abantu abaguliswa yi zinso - na bantu abangaguli 
ndawo. Kuzo dingeka umchamo oqongelelwe ilanga lonke nobusuku bonke- uma useletha -
kuzo thathwa igazi engalweni nje ngoku jwayelekile. 
Ukhululekile ukwala uma ungathandi uku zibandakanya na lolu cwaningo. 

Name/ Igama Date 

A 2.1.1.2 Informed Consent for the Collection of Autopsy tissue 

To the guardian 

I wish to determine the role of peptides in kidney disease and compare the changes in disease 
with normal human tissue. To accomplish the above objective I need small samples of normal 
human tissue, which is most easily obtained from the post- mortem procedure. 
Please consent to the above so that I may be able to accomplish this investigation. 

Ngifisa ukubheka iqhaza elibanjwa ngama-enzyme ezifeni zezinso. Bese ngiziqhathanisa 
nalezo zabantu abangaka ngenwa yilezozifo. Ukuze lolocwaningo luphumelele ngingatho 
koza ukuthola isicutshana sense engenasifo. Lesosicutshana singatholakala kalula uma 

udokotela enza uqhaqho lokuthola imbangela yokufa komuntu, obengaphethwe yisifo sezinso. 
Ngicela usayine; usinike imvume yokukwenza lokhu, ngoba ngayo ngiyethemba lolucwaningo 
luyoba yimpumelelo. 

Igama Lomzali/ Umbheki kamufi 
Name of guardian 
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Appendix A 2.1.2 Consent form for patients 

As you know, your kidney is not functioning normally. It is essential that you have a 
procedure called "kidney biopsy" so that the cause of the kidney failure can be determined, in 
order that you may be treated correctly. A scan of the kidney will be done in the Ultrasound 
Department, and a fine needle will be passed into the kidney tissue (which will be made pain­
free by an injection of local anaesthetic) and a small amount of kidney tissue will be removed 
and will be sent to the Laboratory for diagnosis of your condition. A portion will be used for 
research to study localisation of peptides in kidney disease. After the biopsy, you may find 
blood in the urine, this usually settles in about 2 days. If it does not settle (which is rare), 

various treatments (including surgery) may be undertaken to stop the bleeding. 
Blood will be taken from a vein in the arm and urine will be collected on the day of the biopsy 

to study hormones produced by your kidney. 
You are free to agree or refuse permission for any of these procedures. 

Njengoba wazi ukuthi izinso zakho azisebenzi ngendlela efanele; kubalulekile ukuba 
kuthathwe isicutshana ensweni yakho; sihlolwe, ukuze kutholakale ukuthi kungani 

ingasebenzi ukuhlanza igazi nokwenza umchamo ngendlela efaneleyo. Lokhu kuyosiza 

kakhulu ekwelashweni kwakho. Uyoyiswa emafutheni (Ultrasound Department) lapho 

okuyofike kuthathwe khena isithombe sezinso. Kuyobe sekufakwa inalithi encane kwenye 

yesinzo zakho, kuthathwe isicutshana esincane senso. Yisona-ke esizoya kohlolwa ukuze 

kutholakale imbangela yokungasebenzi kwezinso zakho. Uyoqale unikwe umjovo, oyokwenza 
ukuba kube ndikindiki; ukuze kungabibuhlungu. 

Kuyobe sekuthathwa igazi engalweni yakho, kanye nomchamo ukuze kuyohlolwa kubhekwe 

izinjengezi (hormones) ezibalulekile empilweni yomuntu; ezikhiqizwa yizinso. 
Emva kokuthathwa kwesicutshana ensweni, kunokwenzeka umchamo wakho ube negazi. 
Ngokujwayelekile lokhu kuyaphela ezinsukwini mhlawumbe ezimbili. Uma kungapheli 
zikhona izindlela zokunqamula lokho kopha. Kungenzeka-ke nokho ugcine usuhlingwa ukuze 
kunqanyulwe ukopha, kodwa yinto engajwayelekile leyo neze neze. 

Imiphumela yalolucwaningo iyosiza impilo yakho; kodwa-ke ukhululekile ukwala uma 
ungathandi ukuzibandakanya nalolucwaningo. 

Name (Igama) Date 
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Appendix A 2.3: Reagents for Sample Collection (2.2), Processing and Storage (2.3) 

1. Sterile normal saline (NS) (0.9% NaCl, w/v, pH 7, Sabax)

2. SBTI (2720 rn1its/ml in 0.2 M Tris, Sigma)

3. Bacitracin (2840 units/ml in 0.2 M Tris, Sigma); 0.0147g in 10 ml

4. PBS (0.2 M; pH 7.4). NaH2PO4 3.12g; NaH2HPO4 11.32g; NaCl 8.5g

5. 5% formal saline (41 % formaldehyde / 0.9% NaCl, I :8 v/v) - dilute formaldehyde (35%,

Saarchem, SA) I :7 in 0.9% NaCl

6. 2% (w/v) paraformaldehyde (PF A) and I% (v/v) gluteraldehyde - dissolve 2 g PF A

(Saarchem, SA) in I 00 ml sodium cacodylate buffer (0.2 M, pH 7.2) at 60°
C, and add 4 ml

of a 25% Gluteraldehyde solution (Saarchem, SA). Store at 4°C

7. Karnovsky's fixative ( 4% PF A, w/v and 2% gluteraldehyde v/v, pH 7.4) - dissolve 4 g PF A

in 100 ml sodium cacodylate buffer (0.2 M, pH 7.2) at 60
°
C, and add 8 ml of a 25%

Gluteraldehyde solution (Saarchem, SA). Store at 4°C

8. Sodium cacodylate buffer (0.2 M, pH 7.2) - dissolve 4.28g Cacodylic acid Na salt (Acros

Organics, USA) in I 00 ml dH2O. To 25 ml of this stock add 2.1 ml 0.2 M HCI { 1.7 ml

cone HCI (Saarchem, SA) made up to 100 ml with dH2O} and make up to 100 ml to

adjust to pH 7.2.

9. TK cocktail 40 mM Tris, pH 8 - dissolve 4.8 g Trizma base (Sigma Chemicals, St. Louis) in 

800 ml dH2O, adjust pH to 8.0 with HCI and adjust volume to 1 L.

10. Kinin generating cocktail: (60 mM EDTA, 6 mM phenanthraline, 10 uM captopril and 10

uM phosphoramidon) - all w/v and dry reagents purchased from Sigma Chemicals, St. Louis

11. Basal kinin and kinin inhibitor cocktail : (60 mM EDTA, 6 mM phenanthraline, 10 uM

captopril, IO uM phosphoramidon, IO uM SBTI and l 0 uM aprotonin) - all w/v and dry

reagents purchased from Sigma Chemicals, St. Louis.
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Appendix A 2.3.1.2 Fixation, Dehydration and Embedding schedule for light microscopy 

Reagents 

1. 5% formal saline ( 41 % formaldehyde / 0.9% NaCl, 1 :8 v/v) - dilute formaldehyde (35%,

Saarchem, SA) 1 :7 in 0.9% NaCl

2. Absolute ethanol (99% ethanol, Saarchem, SA)

3. Xylene (AR, Saarchem, SA)

4. Paraffin wax (Paraplast plus, Sherwood Medical, St. Louis, USA)

Procedure 

STEP SOLUTION 

1. Fixation - 5% formal saline

2. Fixation - 5% formal saline

3. Dehydration - absolute ethanol

4. Dehydration - absolute ethanol 

5. Dehydration - absolute ethanol 

6. Dehydration - absolute ethanol 

7. Dehydration - absolute ethanol 

8. Dehydration - absolute ethanol

9. Dehydration - absolute ethanol

10. Clearing - xylene

11. Clearing - xylene 

12. Vacuum infiltration I - paraffin wax 

13. Vacuum infiltration 2 - paraffin wax 

14. Embedding - paraffin wax 
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24°C 1 h 

24°C I h 

24
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24°C I h 
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c I h 
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0

c I h 

60°C I h 
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°

C I h 

20°c 20 min 



Appendix A 2.3.1.3 Fixation, Dehydration and Embedding schedule for electron 
microscopy 

Reagents 

1. 2% (w/v) paraformaldehyde (PF A) and 1 % (v/v) gluteraldehyde - dissolve 2 g PF A in I 00

ml sodium cacodylate buffer (0.2 M, pH 7.2) at 60°c, and add 4 ml of a 25%

Gluteraldehyde solution (Saarchem, SA). Store at 4°C

2. Karnovsky's fixative (4% PFA, w/v and 2% gluteraldehyde v/v, pH 7.4) - dissolve 4 g PFA

in 100 ml sodium cacodylate buffer (0.2 M, pH 7.2) at 60°c, and add 8 ml of a 25%

Gluteraldehyde solution (Saarchem, SA). Store at 4°C

3. Sodium cacodylate buffer (0.2 M, pH 7.2) - dissolve 4.28 g Cacodylic acid Na salt (Acros

Organics, USA) in 100 ml dH20. To 25 ml of this stock add 2.1 ml 0.2 M HCl {1.7 ml

cone HCl (Saarchem, SA) made up to 100 ml with dH20} and make up to I 00 ml to

adjust to pH 7.2.

4. Absolute ethanol (99% ethanol, Saarchem, SA)

5. Propylene oxide (Sigma Chemicals, St. Louis)

6. Araldite epoxy resin (Spurr, Electron Microscopy Sciences, Pennsylvania, USA)

Procedure 

STEP SOLUTION TEMP 

1. Fixation for TEM - Karnovsky's fixative RT 

2. Fixation for Immuno-electron microscopy - 2% PFA/1% 4°c

gluteraldehyde

-, 
_,. Second fixation for TEM - Karnovsky's fixative RT 

4. Store fixed tissue from 2 and 3 above in Sodium cacodylate 4°c 

buffer (0.2 M, pH 7.2) before embedding 

5. Sodium cacodylate buffer (0.2 M, pH 7.2) RT 

6. Dehydration - 70% ethanol RT 

7. Dehydration - 90% ethanol RT 

8. Dehydration - absolute ethanol RT 

9. Dehydration - absolute ethanol RT 

10. Dehydration - absolute ethanol RT 

11. Dehydration - absolute ethanol RT 

12. Clearing - Propylene oxide RT 

13. Infiltration - 50/50 propylene oxide and resin RT 

14. Infiltration - Pure resin RT 

15. Infiltration - Pure resin RT 
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90 min 

2 h

30 min 

20 min 

20 min 

30 min 

30 min 

15 min 

15 min 

15 min 

15 min 

30 min 

30 min 

60 min 

60 min 



Appendix A 2.4.4.3a Isolation of IgG from serum 

Reagents 

I. Diethylaminoethyl sephadex (DEAE A-25, Sigma Chemicals, St. Louis) - in 50 ml wet

settled volume of 0.07 M phosphate buffer.

2. 14% Sodium sulphate - dissolve 0.14 g anhydrous Na2SO4 (Saarchem, SA) in I ml serum

3. 0.07 M Sodium phosphate pH 6.3 - dissolve 54.6 g NaH2PO4 (Saarchem, SA) in 5 1 dH2O

Method 

STEP SOLUTION TEMP. TIME 

I. Warm serum in water bath 25°C 15 min 

2. Add anhydrous sodium sulphate to make a 18% (w/v) 25
°
C 30 min 

solution, stir to dissolve and incubate

3. Centrifuge at 3000xg 25°C 30 min 

4. Discard supernatant, note volume of protein precipitate and 25°
C 

redissolve in warm H2O up to half the original volume 

5. Add anhydrous sodium sulphate to make a 14% (w/v) 25°C 30 min 

solution, stir and incubate 

6. Centrifuge at 3000xg 25
°C 30 min 

7. Discard supernatant, redissolve precipitate in warm water up 4
°c ON 

to one third of starting volume and dialyse against 0.07M

phosphate buffer

8. Equilibrate I On exchanger (DEAE) with the 0.07 M 4
°
c ON 

phosphate buffer 

9. Pack hydrated ion exchanger into a polypropylene column RT 

and wash with 3 column volumes 0.07 M phosphate buffer at

a flow rate 1 ml/min

10. Load - dialysate RT 

11. Elute - with 0.07 M phosphate buffer, collect 1 ml fractions RT 

12. Measure absorbance at 280 nm RT 

13. Pool fractions with highest absorbance 
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Appendix A 2.4.4.Jb Titre determination for anti-rTK antibody in rabbit and goat serum 

Reagents 

1. Human Urinary Kallikrein (HUK, Calbiochem, USA)

2. Coating buffer (Na2CO3/NaHCO3, pH 9.6) - dissolve 1.59 g Na2CO3 (Saarchem, SA) and

2.93 g NaHCO3 (Saarchem, SA) in 1 1 dH2O

3. 0.01 M PBS/ 0.5% (v/v) Tween - dilute 100 ul Tween 20 (Sigma Chemicals, St. Louis) in

200 ml 0.01 M PBS { 1 PBS tablet (Sigma Chemicals, St. Louis) dissolved in 200 ml

dH2O}

4. 5% (w/v) Milk protein blocker - dissolve 5g Country Pasteur fat free milk powder

(Nutritional Foods, SA) in 100 ml PBS. Make fresh.

5. Rabbit anti-goat (Sigma Chemicals, St. Louis) or sheep anti-rabbit (Boehringer

Mannheim, Germany) IgG conjugated to alkaline phosphatase

6. 0.1 M PBS/0.1 % BSA (w/v) - dissolve 1.56 g NaH2PO4 (Saarchem, SA), 5.66 g Na2HPO4

(Saarchem, SA) and 4.25 g NaCl (Saarchem, SA) in 800 ml dH2O, adjust to pH 7 with

HCl, add 1 g BSA (Fraction V, Boehringer mannheim) and make up to 1 I. Store at 4°C.

7. Phosphatase substrate (pNPP, Sigma Chemicals, St. Louis)

Procedure 

STEP SOLUTION 

1. Dilute HUK (stored at -20°
C in aliquots of 1200 ng/400 ul

NS) in 4ml coating buffer (Na2CO3/NaHCO3 , pH 9.6) to

obtain 5 ug HUK/ml coating buffer

2. Coat ELISA plate (Corning) by adding 1 00ul of diluted

HUK to each well

3. Wash plate with 0.1 M PBS/Tween 

4. Block plate twice with 5%Elite/5%BSA 

5. Dilute serum 1/200; 1 /400; 1/800; 1/1600 and 1/3200 

with 0.1 M PBS/0.1 % BSA 

6. Load 1 00ul of diluted serum (triplicate). Blanks are wells 

filled with 100 ul 0.1 M PBS/0.1 % BSA 

7. Wash plate with 0.1 M PBS/Tween 

8. Load 1 00ul of alkaline phosphatase conjugated anti-goat 

or anti-rabbit IgG diluted 1/250 in 0.1 M PBS/0.1 % BSA 

9. Wash plate with 0.1 M PBS/Tween

10. Load plate with 100 ul 1 mg/ml phosphatase substrate and

read at 405nm, until absorbance readings peak at 1.0-1.5

units
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37°c 60 min 
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Appendix A 2.4.4.3c Western Blot Analysis for Rabbit and Goat anti- human rTK IgG 

Reagents 

1. Recombinant tissue kallikrein (rTK, 750 ug/ml, supplied by Dr. Michael Kemme,

Institute for Biochemistry, Technical University of Darmstadt, Germany).

2. PBS pH 7.2 - dissolve 1 PBS tablet (Sigma Chemicals, St. Louis) in 200 ml dH20

3. 22 µm Nitrocellulose paper (Amersham, England)

4. 3 µm Whatman paper (Whatman, England)

5. Blocking solution (Boehringer Mannheim, Catalogue No. 258576)

6. Rabbit and goat anti-human rTK IgG isolated in 2.4.3

7. TBST {10 mm Tris pH 9.5, 150 mM NaCl, 0.05% (v/v) Tween 20}

8. 3% (w/v) BSA in TBST - dissolve 3 g BSA (Fraction V, Boehringer Mannheim)

9. Secondary antibodies:

9.1 Alkaline phosphatase conjugated rabbit anti-goat IgG (Sigma chemicals, St. Louis)

diluted 1: 10000 with TBST 

9.2 Sheep anti-rabbit IgG conjugated to alkaline phosphatase (Boehringer Mannheim, 
Germany) diluted 1 :3000 with TBST 

10. Detection buffer (0.1 M Tris-HCI, 0.05M MgC]z, 0.1 M NaCl, pH 9.5)

11. Chromogen 0.375 mg/ml NBT (nitro blue tetrazolium chloride)/0.188 mg/ml BCIP (5-

bromo-4-chloro-3-indoyl-phosphate)

12. 0.05M EDTA ( ethylenediamine-tetra-acetic acid) (Sigma, St. Louis) pH 8

13. 40% Acrylamide Stock solution (w/v) - dissolve 40 g acrylamide (Sigma Chemicals, St.

Louis) and 1.07 g N,N'-Bisacrylamide (BDH, UK) in 100 ml dH20 by stirring in the dark

with a bit of Amberlite mixed bed ion exchange resin (Sigma chemicals, St. Louis). Filter

through 0.45 um millipore filter and store at 4°C

14. 1.125 M Tris, pH 8.8 (w/v)-dissolve 136.12 g Trizma base (Sigma Chemicals, St. Louis)

in 800 ml DEPC treated H20, adjust to pH 8.8 with HCl and make up to I L.

15. 10% Sodium dodecyl sulphate (SDS, w/v) - dissolve 10 g SDS (Amresco, Ohio, USA) in

100 ml DEPC treated H20

16. TEMED (BDH, UK)

17. 10% Ammonium peroxodisulphate (APS, w/v)- dissolve 10 g APS (BDH, UK) in 100

ml dH20.

18. 0.5 M Tris, pH 6.8 - dissolve 61.5 g Trizma base (Sigma Chemicals, St. Louis) in 800 ml
DEPC treated H20, adjust to pH 6.8 with HCI and make up to 1 L.

19. Loading buffer (10% SDS, 1 % bromophenol blue, 5% 13-mercaptoethanol, 1 % glycerol,
0.5M tris-HCl pH 6.8)

20. Prestained low range standards - Ovalbumin 43 kDa, Carbonic anhydrase 29 kDa,

Lactoglobulin 18.4 kDa, Lysozyme 14.3 kDa, Bovine Trypsin Inhibitor 6.3 kDa, Insulin

2.9 kDa (Life Technologies former Gibco/BRL, Germany)
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21. Low range molecular weight markers - lysozyme 14.4 kDa, trypsin inhibitor 21.5 kDa,

carbonic anhydrase 31 kDa, ovalbumin 45 kDa, serum albumin 66.2 kDa and
phosphorylase B 97.4 kDa ( Biorad, USA)

22. Running Buffer (0.4M glycine, 0.02M SDS, 0.12M Tris-HCI, pH 8.3 )

23. Transfer buffer (10% methanol, 0.025M Tris-HCI, 0.192M glycine, pH 8.3 )

24. 0.4% Tween 20/PBS (200 µl Tween 20 in 50 ml PBS)

25. India ink solution {50 µl India ink ( Pelikan drawing ink A, Pelikan, Germany) in 50 ml

0.3% Tween 20/PBS}

26. Composition of Running and Stacking gels

15% Running gel 5% Stacking Gel 

40% Acrylamide Stock 18 ml 2.5 ml 

1.125 M Tris, pH 8.8 16 ml 5 ml 

dH2O 14 ml 12.5 ml 

10% SDS 480 ul 200 ul 

TEMED 20 ul 25 ul 

10% APS 200 ul 150 ul 

Procedure 

CHECKERBOARD TEST FOR ANTIGEN AND ANTIBODY DILUTION 

STEP PROCEDURE TEMP TIME 

1. Serially dilute rTK stock (250 to 0.9 ng/ml) with PBS

2. Cut Nitrocellulose paper into 8 mm x 8 cm strips

3. Spot 1µ1 of each dilution of rTK l cm apart on each of the RT lh

nitrocellulose strips and dry on Whatman paper 

4. Block non-specific binding sites with 1 x blocking solution RT 2xl0 min 

with shaking 

5. Prepare serial dilutions of rabbit & goat anti-human rTK fgG 4
°
C ON 

with 3% BSA in TBST and incubate with shaking 

6. Wash in TBST RT 3Xl0min 

7. Incubate with secondary antibody RT 3 h 

8. Wash in detection buffer RT 3Xl0min 

9. Incubate with chromogen solution in the dark RT few min 

10. Stop reaction with 0.05M EDT A RT 5-10 min 

11. Wash with dH2O RT 30 min 

12. Press dry between Whatman paper, mount, seal in cellophane
& determine optimal rTK cone.& Ab dilution
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SOS-PAGE 

I. Clean Mini Protean® II Electrophoretic cell (Biorad, USA) 
with 70% alcohol and dH20 and assemble 

2. Prepare 15% running gel and pour into gel tank RT 1 h 

3. Mix 20 ul of 1 mg /ml concentrations of MWM, antigens and 95 OC 5 min 
control proteins with 14 ul loading buffer Ice Until use 

4. Prepare 5% stacking gel and pour into gel tanks RT I h 

5. Load wells with 10 ul of each protein from 3 in duplicate

6. Assemble apparatus and electrophoresis at 160 m V l h

ELECTROPHORETIC TRANSFER 

I. Cut Whatman paper & nitrocellulose membrane

2. Equlibrate gel, Whatman paper, nitrocellulose membrane and RT 2-3 min
Biorad fibre pads in transfer buffer

3. Assemble Mini Transblot® Electrophoretic transfer cell
(Biorad, USA) with gel (reversed left to right) closer to
negative electrode & nitrocellulose near +ve eloctrode

4. Perform protein transfer at 90 Ma 2h 

5. Remove and cut nitrocellulose membrane

IMMUNOBLOTTING 

I. Block non -specific binding sites with 1 x blocking solution RT 30 min 

2. Wash in PBS RT 3XI0min 
" 
.) . Incubate with 1 ° Ab diluted in in 1 x blocking solution 4°c overnight 

4. Wash in TBST RT 3Xl O min 

5. Incubate with 2° Ab diluted in TBST RT 3 h 

6. Wash in detection buffer RT 3Xl0 min 

7. Incubate with chromogen solution in the dark RT few min 

8. Stop reaction with 0.05M EDT A RT 5-10 min

9. Wash with dH20 RT 30 min 

10. Press dry between Whatman paper, mount, seal in cellophane 
& determine optimal rTK cone.& Ab dilution 

PROTEIN STAINING 

I. Wash with 0.4% Tween 20/PBS RT 2x 5 min 

2. Place in ink solution RT 15 min 

3. Destain with multiple washes of PBS RT Few min 

4. Dry on Whatman paper, mount and seal in cellophane 
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A-2.5.1 ENDOTHELIN-1 ELISA (PLASMA AND URINE)

(A) SAMPLE COLLECTION AND PRE TREATMENT

1) Collect whole blood from recumbent patients in chilled sodium EDTA (2 mg/ml) tubes and

centrifuge immediately at 1400xg for 20 min at 4°C. 

2) Transfer plasma into polypropylene tubes with 200 ul kinin cocktail and store at> -20°C.

3) Collect urine in 200 ul/ Bacitracin/SBTl solution; centrifuge at 3000 rpm for 20 min at

40c.

4) 1 ml of supernatant is placed into polypropylene tubes with 200ul of kinin cocktail and

stored at -20°C. 

(B) SAMPLE PREPARATION

1) Holding the Sep-Pak C-18 column (Waters, Milford, USA) vertically, wash it by injecting

5ml of the following solutions, in the order shown : eluent, methanol, distilled water, 4% 

acetic acid. The eluant comprised 10ml dH2O, 4ml acetic acid and 86ml ethanol. 

2) Fix a I Om! syringe (without the plunger) to the activated Sep-Pak column and add a small

amount of 4% acetic acid with a micropipette to remove air bubbles in the connection between 

the column and the syringe. 

3) Add 3ml 4% acetic acid into a polypropylene tube containing I ml plasma and mix well.

4) Transfer this mixture of plasma and 4% acetic acid into the syringe and let the specimen

pass through the Sep-Pak column by gravitation. 

5) Wash the wall of the polypropylene tube with I ml 4% acetic acid and transfer this into the

syringe and let it pass through the column. 

6) Wash the column with 10 ml of distilled water.

7) After all the water has passed through the column, remove the column from the IO ml

syringe and fix it to a 5ml syringe and elute the absorbed fraction with 4ml of eluent into a 

polypropylene tube. 

8) The eluate is then evaporated to dryness under a stream of nitrogen at 3 7°C.

9) Add I ml ethanol to the dry residues thus obtained, mix well with a vortex mixer to obtain a

suspension of the residues. 

10) Evaporate the suspension to dryness under a stream of nitrogen at 3 7°C.

11) The dry residues are reconstituted with 250ul of buffer solution (50mM Good's buffer, pH

8.0) mixed with a vortex mixer and sonicated for IO min. 
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12) The suspension is transferred to a microfuge tube and centrifuged ( 12000 rpm r 5 min.

13) The supernatant obtained is used for Endothelin-1 assay.

(C) ENDOTHELIN-1 MEASUREMENT

The solution from the microplate wells (Wako Chemical Industries, Osaka, Japan) is removed 

before use and the plate washed three times with washing solution (PBS). 

1) Prepare Endothelin-1 standards by adding 1 ml of buffer solution to one bottle of standard

Endothelin-1 (I ng/ml), dissolve and transfer the solution to a polypropylene tube. 

3) Serial dilutions with Good's buffer were made using five polypropylene tubes to obtain

standards of 200, 40, 8,2, and 0 pg/ml. 

4) Add 50ul of buffer solution to all wells and add I 00ul of standard solutions prepared above

and samples in duplicate. 

5) Mix gently, seal the plates with parafilm and incubate for 24 hours at 4°C.

6) Wash the plate 4 times with PBS using an automated plate washer (BioTek Instruments

Inc. Model ELP-40). 

7) Add IO0ul of the peroxidase labelled anti-ET 1 polyclonal antibody (1.5 µg/ml; raised in the

rabbit) solution to all wells except those containing the reagent blanks. 

8) Add I 00ul buffer solution to wells with reagent blanks.

9) Mix gently, seal the plate with parafilm and incubate at 4°C for 24 h.

10) Remove the reaction mixture and wash the plate 4 times with PBS.

11) Add 100 ul colouring reagent (O-phenylenediamine 14.4mmol/l) to all wells, mix gently

and allow it to stand for 60 min at room temperature in the dark. 

12) Stop the reaction by adding 100 ul reaction terminator (sulphuric acid 49mg/ml) to all

wells. 

13) Measure the absorbances of the samples and standards against the reagent blank by a

microplate reader (Bio-tek Model ELX800) at 492 nm. 

14) A graph is plotted on logarithmic graph paper using the absorbance of each standard

(ordinate) against its Endothelin-1 concentration (abscissa). 

15) Endothelin-1 concentration of the samples can be read directly from this curve by plotting

the measured absorbance and dividing by 4, as the actual specimens used for endothelin-1 are 

concentrated 4 times. 
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A-2.5.2 ANP RIA PROCEDURE

MATERIALS 

• RIA Buffer Concentrate ( 4x), 50ml

• Standard Peptide; 12.8 g lyophilized powder

• Rabbit antiserum specific for the peptide; lyophilized powder for 13 ml

• 1251-Peptide; lyophilized powder (1.5 µCi)

• Goat Anti-Rabbit IgG serum (GARGG); lyophilized powder for 13 ml

• Normal Rabbit Serum (NRS); lyophilised powder for 13 ml

• Instructions/flow sheet of RIA protocol and guidelines for the calculation results

• Data sheet

DAY 1: 

1. With distilled water, dilute the RIA Buffer Concentrate to a final volume of 200ml. Vortex

at room temperature. This buffer will be used to reconstitute all of the other components in 

this kit and should be used for dilution of samples, if needed. 

2. Reconstitute the standard peptide with I ml of RIA buffer.

3. Reconstitute the rabbit anti-peptide serum with 13 ml of RIA buffer.

4. Reconstitute the samples with the RIA buffer. Prepare a dilution series of the standard

ranging from 0.1 pg- 64 pg/tube.

5. Set up the initial RIA reactions in 12x75 mm polystyrene tubes.

a) Label tubes : TC-I, TC-2, NSB-1, NSB-2, TB-I, TB-2 and #7-22 for the standards

(where TC is total counts, NSB is non-specific binding and TB is total binding).

b) Label tubes #23-125 for the unknown samples.

c) Pipette 200 µl of RIA Buffer into the TC and NSB tubes.

d) Pipette 100 µl of RIA Buffer into the TB tubes.

e) Pipette 100 µl of the standards I through B into duplicate tubes #7-22.

f) Pipette 100 µl of primary antibody (rabbit anti-peptide serum) into TB-1, TB-2 tubes,

#7-22 tubes, and tubes #23 and higher. DO NOT ADD ANTIBODY TO THE TC

AND NSB TUBES.

g) Vortex the contents of each tube.

h) Cover and incubate overnight (16-24 h) at 4°C.

6. Cover and store all rehydrated solutions at 4°C, except for the standard peptide solution

which should be kept frozen at -20°C, or lower, for maximum stability.
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DAY2: 

7. Reconstitute the 1251-Peptide with l ml of RIA buffer. Mix thoroughly (this is your stock

solution). After rehydration, cover and store the tracer solution at -20°C, or lower, for

maximjum stability.

8. Combine X µI of 125 I-Peptide with X ml of RIA buffer and mix well. Measure with a

gamma counter to achieve between l 0000-15000 cpm. 

9. Add 100µ1 of the tracer to each solution test tube in the assay.

10. Vortex each test tube.

11. Cover and incubate overnight (16-24 h) at 4°C.

DAY3: 

12. Reconstitute the Goat Anti-rabbit IgG serum (GARGG) with 13ml of RIA buffer.

13. Reconstitute the Normal Rabbit Serum (NRS) with 13 ml of RIA buffer.

14. Add 100 µl of GARGG to every test tube.

15.Add 100 µI ofNRS to every test tube.

16. Vortex each tube and incubate at room temperature for 90 minutes.

17. Add 500 µl of RIA Buffer to each tube and vortex.

18. Centrifuged the samples at 3,000 rpm (approx. l 700xg) for 20 minutes at 4°C.

19. Set aside the TC tubes. DO NOT ASPIRATE THE TC TUBES.

20. For the remaining tubes, carefully aspirate the supernatant (do not decant since the pellet

may be lost or excess liquid may be left in the test tube).

SUMMARY OF ASSAY PROTOCOL 

1. Add sample or standard and antiserum.

2. Vortex and incubate overnight (16-24 h) at 4°C.

3. Add 1251-Peptide.

4. Vortex and incubate overnight (16-24 h) at 4°C.

5. Add GARGG and NRS.

6. Vortex at room temperature for 90 min.

7. Add RIA buff er.

8. Vortex and centrifuge for 20 minutes at l 700xg.

9. Aspirate off the supernatant (except TC tubes).

10. Count assay tubes.

11. On semilog graph paper, determine the concentration of samples against known standards.
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Appendix A 2.5.3.la T K Functional Microassay (Amidase) 

Colorimetric assay for the measurement of functionally active and total TK in biological 

samples 

Reagents: 

Amidase buffer: 

Assay buffer: 

S2266 Solution: 

SBTI/Bacitracin: 

Sample collection: 

0.2 M Tris-HCl, pH 8.2 

300 ug/ml SBTI and 375 ug/ml EDTA in 0.2 M Tris-HCI pH8.2 

1.5 M in deionised water, (Chromogenix, Sweden) 

1.47 g/ml of SBTI (Sigma); 2720units/mg, 40 mg/ml Bacitracin 
(Sigma) in 0.2 M Tris-HCl, pH 8.2 

1. Urine samples (approx 15ml) collected immediately in 200 ul SBTI/Bacitracin /Tris-HCl

buffer at 4°c, and thereafter stored in 200 ul 0.2 M Tris-HCI pH 8.2 per l 000 ul sample, in

l ml aliquots, at -20°c.

2. One set of plain urine samples collected and stored, without any buffer, for total protein

determination, at -20°c

Method: 

1. On two sets of plates, 50 ul HUK (Protogen) of each standard human urinary kallikrein

(400 ng/ml - 12.5 ng/ml, in 0.2 M Tris-HCl pH8.2) is to be added to 50 ul Assay buffer

containing SBTI and EDT A. One plate is incubated at 3 7°c for 30 min. ( on tissue culture

plates, Corning Cell Wells™, 25860, Corning, New York). To the other plate, 50 ul dH2O

is added to each of the wells and the plate is read at 405 nm on Biorad Microplate Reader

(model 3550). This would determine the zero activity blank.

2. To the incubated plate, add 50 ul of the substrate S2266 and incubate again for 3 h at 37°c.

3. Read at 405 run on microplate reader.

4. 50 ul Standard/samples done in triplicate

5. Blanks will only contain assay buffer.

6. Total protein measurement done according to Bradford determination.

(300 ul Biorad bradford reagent, diluted 1/5 in dH2O, added to 30 ul of sample/Std. and

read at 595 run. Blanks are dH2O.)

7. Activity expressed as ngTK/ ug protein
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Appendix A 2.5.3.2b Measurement of Total protein [Bradford, 1976/ 

Reagents 

I. Bovine Serum Albumin (BSA, Fraction V, Boehringer Mannheim)

2. Biorad Protein Assay Reagent (Biorad, UK)

Procedure 

STEP SOLUTION 

1. Protein standard - 100 ml of 1 mg/ml BSA was prepared and stored in 1 ml

aliquots at -20C. A single I ml aliquot of this standard was serially diluted with

dH20 from 1000 to 16 ug/ml. 30 ul of each dilution was added to a microassay

plate in triplicate.

2. Blank - 30 ul dH20 was added to 3 wells of the plate

3. Samples - were added in triplicate to the plate

4. Biorad Protein Assay Reagent - was diluted 1/5 in dH20 and 300 ul was added to

each well of the plate

5. Read absorbance at 595 nm immediately

6. Calculation - subtract the absorbance of the blanks from the absorbance of the 

standards and samples. 

Plot absorbance vs concentration of BSA standards. 

Read protein concentration of samples from this graph. 

7. TK enzymic activity is expressed as ng TK / ug protein 

All stages are performed at RT 
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Appendix A 2.5.3.3 TK ELISA 

Reagents and Immunochemicals: 

1. Coating buffer (Na2CO3/NaHCO3 , pH 9.6)

2. Substrate buffer (5 mM MgCli/10% Diethanolamine, pH 9.8)

3. Milk protein blocker (5% Elite)

4. PBS/Tween (0.01M phosphate buffered saline/0.5% Tween 20)

5. Human Urinary Kallikrein

6. Goat anti-human TK IgG (30 ng/ml)

7. Rabbit anti-human TK IgG (25 ng/ml)

8. Anti-rabbit alkaline phosphatase (Sigma)

9. diphenylparanitroalaninephosphate substrate tablets (pNPP, Sigma)

Procedure: 

1. Coat the ELISA plate (Corning) with 100 ul, 30 ng/ml Goat anti- human TK in coating

buffer and incubate overnight at 4°c. (Make one vial up to 10ml)

2. Wash the plate 3x3min with PBS/Tween. Block with 200 ul of milk blo(.;ker for 30 min at

room temperature (RT). Wash again. Repeat blocking step. Wash.

3. Load the plate with 100 ul of sample or standard and incubate for 1 hr at 37°c (water bath).

Wash.

4. Load the plate with 100 ul, 25 ng/ml of rabbit anti- human TK and incubate for 1 hr at 37°c

(water bath). (Make one vial up to 12ml). Wash.

5. Incubate with 100 ul of anti-rabbit alkaline phosphatase (1:250 dilution in 0.0IM PBS).

Wash

6. Add 100 ul of I mg/ml pNPP substrate to the wells (1 tablet in 5 ml of substrate buffer) and

allow colour to develop for 1 hr.

Controls: Urine pool controls double-diluted from 1/8 to 1/512 in 0.0 I M PBS. 

Also, known samples are rerun to test for interassay variation 

Blanks: Use 0.01 M PBS instead of samples or standards. 

Standard Curve: Different concentrations of Human Urinary Kallikrein were run and a 

linear-linear relationship was obtained -200 ng/ml double diluted down 6X . 
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Appendix A 2.5.4 KININ ELISA 

Conjugation 

Reagents: 

1. SDP- 13 uM in 0. lM Phosphate buffer pH 8.6, 20% Ethanol

5 mg SPDP (Sigma P3415) + 500 ul phosphate buffer+ 200 ul ethanol

first dissolve SPDP in EtOH, and then add buffer

2. Cytochrome C- 10 uM in 0.1 M phosphate buffer pH 8.6

1 mg cytochrome C (Sigma C6913) + 833.33 ul phosphate buffer.

3. Bradykinin lmM

1 mg BK (Sigma)+ 943 2 ul O.OJM PBS pH 7.4

Method: 

1. Mix 1 volume SPDP with 1 volume Cytochrome C, and incubate at 22°
c for 60 min.

2. Filter solution through ultra-free (Millipore) 10 000 nominal weight cut off filters to

remove any unconjugated SPDP ( may require 2-3 h).

3. Resuspend top part in two volumes of 0.3 M phosphate buffer pH 6 ( i.e. to give

original volume)

4. Add one volume of BK and incubate at 22°c for 60 min. Each batch of conjugate has to be 

tested for optimal concentration before use in ELISA (usually this is between 3-4 ug/ml

protein or approx. 1: 160 dilution).

5. Store at -200c in aliquots after testing for optimum concentration.

ELISA procedure: 

1. Coat Nunc Immulon Maxisorp™ microtitre plate overnight with 100 ul/well of

cytochrome-SPDP-BK conjugate (optimal concentration determined for each batch: ± 3-4

ug/ml) in sodium carbonate/coating buffer, pH 9.6 at 4°c.

2. Also overnight at 4°c, incubate sample or standard with equal volume of SBKl a-BK

antibody (1: 1000 in PBS)

3. The next day, wash plate with 0.0lM PBS/ 0.5% Tween, 3X3min; and then block plate

with 200 ul of 5% Milk blocker.
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4. Incubate for 30 min at room temperature (RT). Wash with PBS/Tween 3X3min and repeat

blocking step. Wash again.

5. Incubate 100 ul/well of preincubated sample or standard for 3 hrs/ 37°c. Wash.

6. Incubate l 00 ul/well with alkaline phosphatase labelled a-mouse lgG (1 :250 in PBS) for 2

hrs at 37°c. Wash.

8. Finally add l 00 ul of the substrate pNPP ( l  mg/ml in coating buffer) to the plate and

incubate at RT for approx. l hr, or until sufficient maximum absorbance values obtained at

405 nm (±1.8 AU) on Biorad microplate reader

Blanks: 

Non-specific binding to the plate was determined by incubating only SBKl a-BK (l/1000 in 

PBS (preincubated with equal volume of PBS buffer). 

The wells used for the blanks were coated with coating buffer only, and no conjugate. 

Endogenous (basal) kinins and Kinin Generation for ELISA measurement. 

Urine 

Reagents: 

1. Kininase inhibitor cocktail: kinin cocktail excluding SBTI and Aprotinin

2. Acid-Alcohol: absolute Ethanol/ 0.1 % cone. HCI

Methods: 

A: Endogenous (basal) kinins 

1. Thaw urine and centrifuge at 5000xg/10 min/4°c (stored in KI cocktail wth SBTI

and Aprotinin)

2. Remove 500 ul and add to 500 ul acid-alcohol and place at -20°c for 90 min.

3. Centrifuge (5000xg/10 min/4°c) and keep supernatant.

4. Wash pellet with 500 ul of acid-alcohol (I :2 in dH2O) and centrifuge (5000xg/l 0

min/4°c).

5. Pool supernatants and place in 24-well cell culture plate and evaporate to dryness at 55°c

overnight.

6. Resuspend dry residue in 500 ul ( original volume) of assay buffer and

centrifuge(S000xg/10 min/4°c). Use clear supernatant for ELISA measurements.
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B: Kinin Generation 

1. Thaw urine and centrifuge at 5000xg/10 min/4
°c (stored in KI cocktail without SBTI

and Aprotinin)

2. Mix 500 ul of urine with 500 ul kinin cocktail and incubate for 60 min at 3 7°c.

3. Remove 500 ul and add to 500 ul acid-alcohol and place at -20°C for 90 min.

4. Centrifuge(5000xg/10 min/4°c) and keep supernatant.

5. Wash pellet with 500 ul of acid-alcohol (1 :2 in dH20) and centrifuge (5000xg/l 0

min/4°C).

6. Pool supernatants and place in 24-well cell culture plate and evaporate to dryness at 55°c

overnight.

7. Resuspend dry residue in 500 ul (original volume) of assay buffer and centrifuge

(5000xg/10 min/4°
c). Use clear supernatant for ELISA measurements.

C: Controls 

I. BK STD. CURVE: Bradykinin diluted to give concentrations of 150 ng/ml double-diluted

down to 2.34 ng/ml in PBS buffer.

2. CONTROLS: Urine pool, spiked at 2 concentrations of BK ( I 00 & 50 ng/ml) Acid-alcohol

extraction. Gives the variation for the extraction procedure and ELISA at two

concentrations of BK.

Urine pool samples are spiked with BK and the double-diluted to determine whether

concentrations of BK linearly diluted out with dilutions of urine
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Appendix A 2.6.2 IMMUNOCYTOCHEMISTRY: PAP METHOD 

1. For wax-embedded tissue, place on heating mantle until wax melts.

2.Dewax in:
Dehydrate in:

Xylene 
100 % EtOH 
100 % MeOH 

90%EtOH 

70%EtOH 

dH2O 

3. Boil (80°
c) in 0. lM Na-citrate pH 6.0 ( microwave)

Allow to cool to room temp

place in dH2O

4. Use Dako PAP marker and wash in 0.0lM PBS/1 %BSA.

5. Incubate in 10% H2O2/ 95 % MeOH

Wash in 0.01M PBS. 

..... 2 xl0 min/ RT 

.... .2 x 5 min/ RT 

..... 1 x 20min/R T 

..... 2 x 4 min/ RT 

..... 1 x 3 min/ RT 

..... 1 x 5 min/ RT 

..... ± 3min HIGH 

..... 5min LOW 

..... ± 20min 

.... ±5min 

..... 2 x l 5min/RT 

6. Incubate with l O antibody ( diluted in Maleic acid/ milk blocker)

Incubate overnight at 4°c under humid conditions. 

Wash in 0.0lM PBS 

7. Incubate with Biotin link (DAKO K0690)

Wash in 0.0lM PBS . 

20 min/RT 

8. Incubate with Strepavidin 2° antibody (DAKO K0690) ..... 20 min/RT 

Wash in 0.0lM PBS. 

9. Incubate with liquid DAB (Dako)

10. Counterstain in Mayers' Hemotoxylin

Wash in tap H2O

11. Dehydrate tissue through EtOH into Xylene

Mount in Entellen (Merck)

1-5 min/RT

.3-5min/RT 

.5min 

* Method controls are l O antibody replaced with buffer or non-immune serum.

* All dilutions made up in 0.01M PBS/ 1 %BSA.

* Do not allow tissue sections to dry out.
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Appendix A 2.6.3 IMMUNOFLUORESCENCE 

1. For wax-embedded tissue, place on heating mantle until wax melts

2. Dewax in
Dehydrate in

Xylene 

100 %EtOH 

100 % MeOH 

90 %EtOH 

70 %EtOH 

dH2O 

.... 2 x 10 min/ RT. 

.... 2 x 5 min/ RT. 

..... 1 X 20 min/RT. 

..... 2 x 4 min/ RT. 

.... 1 x 3 min/ RT. 

.... 1 x 5 min/ RT. 

3. Boil (80°
c) in 0. lM Na-citrate pH 6.0 ( Ag retrieval) ±3. min HIGH 

Allow to cool to room temp

place in dH2O 

4. Use Dako marker and wash in 0.0 l M PBS/0.1 %BSA

Incubate with 1 % Human IgG

Wash in 0.0IM PBS.

.... 5 min MED LOW 

.... ±20 min 

.... 15 min/RT. 

5. Incubate with 1° 
antibody (diluted in 0.0lM PBS/I %BSA)

Incubate overnight at 4°c under humid conditions. 
Wash in 0.0IM PBS. 

6. Incubate with anti-species Fluorescent conjugate

Wash in 0.0 lM PBS. 

7. Mount with 10 % PBS/90 % glycerol.

*Method controls are 1 ° antibody replaced with buffer

* All dilutions made up in 0.1 M PBS/0.1 %BSA.

* Do not allow tissue sections to dry out.

* Store labelled slides in the dark.

* Only antigen retrieval done in microwave.
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Appendix A 2.6.4 IMMUNO-ELECTRON MICROSCOPY 

Tissue fixation and processing for Immunoelectron microscopy. 

Biopsy tissue for immuno-electron microscopy was immediately immersed in 4 % PF A/ 1 % 

gluteraldehyde fixative for 2 h at 4°C, then transferred to 0.2 M sodium cacodylate buffer, pH 

7.2, maintained at 4°C. The fixed tissue was dissected into lmm3 sections and processed in an 

automatic Reichert-Lynx em tissue processor. During processing the specimens were retained 

in baskets at a fixed processing station and agitated. The specimens rotated through a 

preprogrammed sequence as outlined in Table l. 

TABLE 1. Dehydration and Embedding schedule for immunoelectron microscopy 

STEP SOLUTIONS TEMP TIME 

1 Sodium cacodylate buffer (0.2M, pH 7.2) 4°c 10 min 

2 Sodium cacodylate buffer (0.2M, pH 7.2) 4°c 10 min 

3 Dehydration - 70% ethanol 4°c 30 min 

4 Dehydration - 90% ethanol 20°c 30 min 

5 Dehydration - absolute ethanol 20°c 15 min 

6 Dehydration - absolute ethanol 20°c 15 min 

7 Dehydration - absolute ethanol 20°c 15 min 

8 Dehydration - absolute ethanol 20°c 15 min 

9 Intermediate solvent - Propylene oxide 20°c 30 min 

10 Infiltration - 50/50 propylene oxide and epoxy resin 20°c 30 min 

11 Infiltration - Spurr epoxy resin (Spurr ARJ, 1969) 60°C 60 min 

12 Infiltration - Spurr epoxy resin 60°C 60 min 

13 Polymerization - Spurr epoxy resin 60°C 48 h 
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Ultramicrotomy 

Semi-thin section (lµm) were cut with a Reichert Ultra cut ultramicrotome using glass knives. 

Sections were collected onto glass slides, heat-fixed, stained with 1 % alkaline toluidine blue 

and examined with a Nikon Optiphot photomicroscope. Fields of interest were selected and 

located on the block face, and the block trimmed to produce a "mesa" with a trapezoidal 

shape. Ultrathin section (50-60nm) were cut and collected onto uncoated Nickel grids prior to 

immunostaining 

Immunostaining (see Table 2) 

a. Etch Nickel grid by floating on a droplet of 5 % hydrogen peroxide for 5 min.

b. Place grid in a drop of distilled water for 1 min then jet wash into 10 ml distilled water and

dry on fibre free paper. 

c. Submerge grid in blocking medium (non-immune serum from species in which primary

antibody was raised) for 30 min and blot dry on filter paper. 

d. Incubate grid in a 30 µl droplet of primary antibody for 3 h. Optimised antibody dilution in 

50 mM Tris. (pH 7.2). 

e. Submerge grid in droplet of 50 mM Tris (pH 7.2) for l min then jet wash grid with 20ml

50 mM Tris. (pH7.2). 

f. Submerge grid in droplet of 50 mM Tris containing 0.2 % BSA (pH 7.2) for 5 min, then jet

wash grid with 20ml 50 mM Tris containing 0.2 % BSA (pH 7.2). 

g. Submerge grid droplet of 50 mM Tris containing I% BSA (pH 8.2) for 5 min.

h. Incubate grid secondary antibody (IgG against primary antibody-raised in a different

species conjugated to l 0nm immunogold particles) diluted 1 : 200 in 50 mM Tris (pH 8.2) for 

l h.

i. Droplet wash (1 min) and jet wash grid with 20ml of the following series ofreagents.

a) 50 mM Tris containing 0.2 % BSA (pH 7.2).

b) 50 mM Tris (pH 7.2).

c) Distilled water.

d) Counterstain with saturated ethanolic uranyl acetate for 5 min.

e) Jet wash in 20 ml distilled water and blot dry.

f) Incubate grid in Reynolds lead citrate for 3 min.

g) Jet wash well with distilled water and blot onto filter paper.
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TABLE2 I t . .  : mmunos ammg 

STEP PROCESS REAGENT TIME 
1 Etching 11202 (5 %) 3 min 
2 Wash 10 ml grid distilled 
3 Blocking Blocking medium (nonimrnune serum from rabbit 30min 
4 Incubation Primarv antibody (see notes) l 80min
5 Jet wash 50mM Tris (pH 7.2) -20 ml per grid 
6 Jet wash 50mM Tris+ 0.2% BSA (pH 7.2) 20ml/grid 
7 Jet wash 50 mM Tris + 1 % BSA (pH 8.2) 20ml/grid 5 min 
8 Incubation Secondary antibody (anti-rabbit) conjugated to 60 min 

l 0nm immunogold particles 1 : l 00) IN 50mM
Tris pH 8.2

9 Jet wash 50 mM Tris+ 0.2% BSA pH 7.2 20 ml per grid 
10 Jet wash 50mM Tris pH 7.2 20 ml per grid 
11 Jet wash Distilled water 20 ml per grid 
12 Stain Saturated ethanolic uranyl acetate 5 min 
13 Jet wash Distilled water 20 ml per grid 
14 Counterstai Reynold's lead citrate (Reynolds ES, 1963)* 3 min 

n 

15 Jet wash Distilled water 20 ml per grid 
Grid can be stored at room temperature in a grid box until viewed. 

Control samples : 

Method Control : Step ( d) : instead of primary antibody, 50 mM Tris pH 7.2 was used. 

Primary antibodies : 

ET 1 : rabbit anti ET 1 antibody (Biogenesis, Poole, UK) 

ETA receptor : rabbit anti ET A antibody ( donated by Werner MUiler-Ester!) 

ET 8 receptor: rabbit anti ET 8 antibody (donated by Werner MUiler-Ester!) 

Dilutions : 

ET i l : 100 

ETA 1 : 1000 

ETa I: 1000 
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A 2.7 JN SITU REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION (in 

situ RT-PCR) 

SOLUTIONS 

2 % 3-Aminopropyltriethoxysilan in acetone 

Add 2 ml 3-Aminopropyltriethoxysilan to 98 ml of acetone. 

0.1 % DEPC dH2O 

• Add I 00 µl of DEPC to I 00 ml dH2O i.e. I ml of DEPC to I L dH2O

1 M Phosphate Buffered Saline (PBS), pH 7.4 (1 L ) 

29.25g Na2HPO4 x H2O ; 4.90g KH2PO4; 160.00g NaC 

• Dissolve the above in 1000 ml distilled H20.

• Autoclave

0.05 M Phosphate Buffered Saline (PBS). pH 7.4 (1 L ) 

• 50 ml IM PBS, pH 7.4 (I l )  + 950 ml dH2O

4 % Paraformaldehyde in PBS 

• Dissolve 40 g of Paraformaldehyde in 800 ml of 0.05M PBS.

• Place on a heating plate with stirrer and heat the solution to about 80 °C.

• The paraformaldehyde has dissolved when the solution is clear.

• Top up the volume to I 000 ml with 0.05 M PBS and allow to cool.

• Filter the solution through 2 layers of Whatman filter paper No. I and store at 4°C.

I M  Tris HCl, pH 7.5 

• Dissolve 121 g Tris Base in 800 ml DEPC dH2O

• Adjust pH to 7.5 with concentrated HCI.

• Cool, determine final pH and bring volume to IL.

50 mM Tris HCl , pH 7.5 

• Dilute 10 ml l M Tris HCl , pH 7.5 with 190 ml DEPC dH2O

(Final Volume 200ml) 

0.5 % Acetic Anhydride 

• Mix 25 ml IM Tris HCl, pH 7.5; 225 ml DEPC dH2O andl250 µl Acetic Anhydride.

Prepare just before use
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Proteinase K Solution (1 mg/ml) 

• Dissolve 1 mg Proteinase K in 50 mM Tris-HCl, pH7.5, 5 mM EDTA (Stock Solution)

(**) Required dilution needs to be determined for each tissue.

20 X SSC 

• Dissolve 175.3 g NaCl and 88.2 g Sodium Citrate in 800 ml H20.

• Adjust the pH to 7.0 with a few drops of 10 N solution of NaOH.

• Adjust volume to lL.

• Autoclave.

2XSSC 

• Dilute 100 ml 20 X SSC with 900ml of DEPC dH20 . (Final Volume IL.)

SILANISATION OF SLIDES 

Require: 

Slides 

3-Aminopropyltriethoxysilan- obtained from Fluka Chemika- 09324 ( 100 ml)

Chloroform 

Absolute Ethanol 

Acetone 

Distilled H20 

Method 

• Put slides into slide holder and immerse into chloroform for 30 min at room temperature.

• Remove slides, shake off excess chloroform and immerse the slides into absolute ethanol

for 30 min at room temperature.

• Air dry the slides for one h.

• Immerse slides in 2 % 3-Aminopropyltriethoxysilan in Acetone for 5 min.

• Quickly dip the slides into acetone - 2 times, and shake off excess acetone.

• Wash the slides by dipping into distilled H20 and shaking off excess water.

• Dry in 42 °C oven overnight and store in slidebox.
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CUTTING TISSUE 

Require 

Microtome 

Wax embedded tissue (Place in the freezer for½ an hour) 

Silanated slides 

RNase Away 70 % Ethanol 

Water bath with DEPC dH2O 

Method 

1. Clean all equipment with RNAse away

2. Wipe the blade with xylene to remove any wax .

3. Fill a water bath with 0.1 % DEPC dH2O and maintain at 60 °C.

4. Cut 4 µm thick sections place on silan pre-treated slides and dry at 55 °C for 2h store in a

clean dust free slide box.

NOTES: Ensure that wax block is cold before cutting. 

Do not touch the blade or covering plate with your fingers (Becomes warm) .. 

FIXATION OF TISSUE 

Require 

Freshly prepared 4 % Paraformaldehyde in PBS (pH 7.5) 

0.05 M PBS 

Ethyl Alcohol series (70 %, 80 %, 90 % and 100 %) 

Xylol (Xylene) 

0.1 M HCl 

0.5 % Acetic Anhydride 

Method 

Dewax in xylene 3 X 10 min. 

Rehydrate in an alcohol series as follows: 

100 % - 2 X 5 min; 90 % - 1 X 5 min; 70 % - 1 X 5 min; 50 % - 1 X 5 min; 

DEPC dH2O - 1 X 5 min. 

Place in 4 % Paraformaldehyde - 1 X 60 min. 
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Wash in 0.05 M PBS - 1 X 10 min. 

Wash in 0.1 M HCI - 1 X 10 min (Denature proteins ) 

Wash in 0.05 M PBS - 2 X 10 min. 

Wash in 0.5 % Acetic Anhydride - 1 X 10 min. 

Wash in 0.05 M PBS -1 X 10 min. 

Dehydrate in an ethyl alcohol series: 50 % - 1 X 5 min; 70 % - 1 X 5 min; 90 % - 2 X 5 min 

and 100 % -2 X 5 min. Store at 4 °C in a dust free environment. 

PRE-TREATMENT OF SLIDES 

Require 

Frames 

Proteinase K Solution (I mg/ml) in 50 mM Tris-HCI, pH7.5, 5 mM EDT A (Stock Soln). 

(The Proteinase K concentration may need to be optimised) 

0.05 M PBS 

DNase (Boehringer Mannheim) 

50 mM Tris-HCI, pH7.5, 5 mM MgCh 

RNase Inhibitor (Boehringer Mannheim) 

Method 

1. Place a frame around the tissue so as to form a well.

2. Treat the tissue with pre-digested Proteinase K (I 0µg/ml) (Sigma) in a moist chamber at

37°C for 30 min (Proteinase K treatment must be empirically determined).

3. Wash with PBS - 3 X 10 min.

4. Incubate the slides at in a moist chamber at 37 °C overnight in the presence of a DNase

solution that consists of

RNase-free DNase (Concentration) 

RNase inhibitor (Concentration) 

1 M Tris HCl pH 7.5 

25 mM MgCh 

DEPC dH2O 

µI 

3 

2 

2 

8.5 

46.5 

5. Wash with 50 mM Tris-HCI, pH7.5 - 3 X 10 min.
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REVERSE TRANSCRIPTION 

Require 

DTT 

dNTPs 

Buffer 

DEPC Treated H2O 

RNase inhibitor 

25 mM MgC!i 

Moloney Murine Leukemia Virus (M-MuLV) reverse transcriptase 

The above is obtained in the First Strand cDNA Synthesis Kit (Pharmacia Biotech) 

Specific Primer 

Method 

1. Make up RT mix using

Primer 2 µI ( 10 mM) 

DTT 2 µI 

DEPC dH2O 36 µI 

Bulk (Kit) 10 µl 

Total 50 µI 

2. Remove excess buffer from the slides.

3. Place 50 µI of the RT mix over the tissue and covered with parafilm

4. Incubate at 37 °C for 1 h

5. At this point the slides can be stored at -20 °C until the PCR step.

6. Incubate in the presence of 5 % BSA for 30 min at 3 7 °C.

7. Wash in PBS for 10 min

8. Incubate in the presence of 10 % Milk Blocker for 15 min

9. Wash in PBS for 10 min
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POLYMERASE CHAIN REACTION 

Require 

10 X Taq buffer 
25 mM MgCh 
dATP, dCTP, dGTP and dTTP (100 mM stock each) 
Primer 1 
Primer 2 
dH2O 
nitroblue tetrazolium/ 5-bromo-4chloro-3ndoyl-phosphate (I :50 dil)- colour substrate 
Taq DNA Polymerase 
Cover slips (Plastic) 
Mineral Oil 

Method 

1. Make up the PCR mix as follows:

10 X Taq Buffer 
25 mM MgCh 
(I 00 mM) dATP, 
dCTP, dGTP and 
dTTP 
Primer I 
Primer 2 
dH20 

DNA Taq 

µl 

5 
7 

4 µl altogether ( I µl each) 
2 
2 
27 

2. Carefully remove the RT solution off the tissue sections.

3. Place 50 µl of the PCR mix onto the tissue.

4. Cover with plastic cover slips and surround cover slip with Mineral Oil.

5. Place on the PCR block and set programme with the required parameters.

6. After the PCR reaction is complete, remove the plastic cover slips.

7. Place the slides into xylene for about IO - 20 sec to remove mineral oil (if used).

8. Wash slides twice in 0.1 X SSC at 45 °C for 20 min with continuous shaking.

9. Cover slides with freshly prepared colour substrate solution in 1 x detection buffer (1 mM

Tris, I mM NaCl, 0.5 mM MgCli, pH 9.5) and incubate in the dark at RT until a reddish­

purple colour precipitate is visible 

I 0. Examine the slides under a Leica DMLB microscope. 
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CHAPTER 3 

RESULTS 
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3.1 ASSESSMENT OF EXCESS FLUID DISTRIBUTION BY BIOELECTRICAL-
IMPEDANCE ANALYSIS 

Fluid retention frequently accompanies renal disease and renal failure. Measurement of total 

body water (TBW) by bioelectrical impedance analysis (BIA) is useful in assessing the state of 

hydration. Bioelectrical-impedance analysis of 5 transplant recipients, 4 patients with renal 

parenchymal disease and 3 control subjects was made, using the Biostat body composition 

analyser (BodyTrak, Cape Town, South Africa). 

Bioelectrical-impedance measurements 

Patient Weight BMl TBW (L) TBW(%) Weight 

(k�) Chan2e (k�) 

TP,. 63.3 19.7 41.5 65.8 Baseline 

TP 1 -Day 3 68.8 21.5 46.5 67.3 5.5 

TP 1 -Day6- AR 66.2 20.6 47.4 71.8 2.9 

TP 1-Week 6 63.2 19.7 42.9 68.1 -0.1

TP2 65 22.5 35.8 55.1 Baseline 

TP2-Day 3 70.2 24.2 41.8 59.7 5.2 

TP2-Day 9- AR 68 23.5 39.3 57.7 3 

TPi-Day 35 67.5 23.2 36.8 54.9 2.5 

TP3 57 22.5 26.6 46.7 Baseline 

TP3-Day 3 62 24.8 31.1 50.1 5 

TP3-Day 11 56.4 22.4 27.0 48.2 -0.6

TP4.AR 89.5 28.7 39.7 44.6 

TPs.AR 71.0 23.5 43.2 60.9 

RD 1.MCNS 34 16.0 21.7 63.8 

RD2.MCNS 79 28 36.2 45.8 

RD3.MCNS 65.4 28.1 30.5 46.9 

RD4.MN 64 23.2 36.6 57.2 

Control I 60 26.3 27.5 45.9 

Control 2 58 22.4 28.7 49.4 

Control 3 43.3 17.0 22.7 52.8 

Abbreviations: BMI= body mass index; kg= kilograms; L= litres; TP= transplant recipient; 
RD= primary renal disease; TBW= total body water; AR= acute rejection; MCNS= nephrotic 
syndrome due to minimal change disease; MN= membranous nephropathy 

As expected, body weight correlated with BMI (p<0.0001, linear regression; p=0.0076, 

Spearman's rank correlation). There was a significant correlation between body weight and 

total body water (p=0.0007, linear regression; P=0.0002, Spearman's rank correlation) and 
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between BMI and total body water (p=0.0024, linear regression; p=0.0023, Spearman's rank 

correlation), in keeping with the fluid retention present during acute rejection and renal 

disease. 

3.2 MEASUREMENT OF RENAL PLASMA FLOW 

Effective renal plasma flow (ERPF) was measured in 6 stable renal transplant recipients on 

day 3 post-transplant and one control subject using Sodium 131Jodohippurate. The glomerular 

filtration rate (GFR) was measured simultaneously, using 99
01Technium-diethelenetriamine

pentaacetate (Tc-DTP A). ERPF measurement was repeated in 3 of the 6 patients, 2 of whom 

(patients 1 and 5) were undergoing an episode of acute rejection. ERPF was reduced during 

acute rejection. 

Patient Post TP GFR ECF ERPF 
Day ml/min ml ml/min 

1 3 44 16495 381 

1-AR 8 37 16495 190 

2 3 40 11711 184 

3 3 85 11794 340 

4 3 93 15066 372 

5 3 61 16177 277 

5-AR 6 51 10050 224 

6 3 35 22472 331 

6 - stable 6 41 21795 444 

Control - 114 18498 573 
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There was no correlation between GFR and ERPF (p=0.0535) and between GFR and ECF 

(p=0.6829, linear regression) probably because of the small sample size; it would be 

anticipated that a fall in GFR is the consequence of a decrease in renal blood flow and ERPF. 

resulting in an increase in ECF. 

3.3 ENDOTHELIN STUDY 

3.3.1 PATIENT DEMOGRAPHICS 

The total number of subjects in this sector of the study was one hundred and one. Of these, 

twenty six were kidney transplant recipients undergoing acute rejection, twenty nine were 

patients with glomerular and other renal disorders and twenty four were patients with end 

stage renal failure on dialysis. The twenty two controls comprised seventeen kidney donors 

prior to nephrectomy and five healthy volunteers. For the purposes of statistical analysis for 

measurement ofET-1 in plasma and urine, n= patient numbers. 

3.3.1.1 Acute Rejection Group 

Twenty six renal transplant patients with acute rejection were studied in this group. There 

were 24 males and 2 females; of these, 17 had received kidneys from living related donors, 2 

had received kidneys from living unrelated donors and 7 from cadaver donors. Their mean age 

was 38.27 years (range 16-53 years). There was no difference in age when compared to the 22 

control subjects (p=0.495, unpaired t test). In the acute rejection group, rejection was mild in 7 

patients, moderate in 12 and severe in 7 (Appendix 3.3.1.1). The severity of rejection was 

categorised according to the Banff 1995 classification. 
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3.3.1.2 Renal Disorders 

Twenty nine patients with various renal disorders were studied in this group. Of these, 16 

were males and 13 females, with a mean age of33.17 years (range 13-59 years). Six patients 

had mesangiocapillary glomerulonephritis (MCGN), 4 had class IV lupus nephritis (SLE), 5 

membranous nephropathy (MGN), 5 minimal change disease with nephrotic syndrome 

(MCNS), 4 immunoglobulin A (IgA) nephritis, 2 hypertensive nephrosclerosis (HPT neph), 2 

chronic interstitial nephritis (CIN) and 

glomerulonephritis [(MPGN); Appendix 3.3.1.2). 

3.3.1.3 Control Group 

patient with mesangioproliferative 

Twenty two subjects formed the control group; 17 were kidney donors who were studied prior 

to uni-nephrectomy; 5 were healthy volunteers. There were 13 males and 9 females with a 

mean age of 34.32 years (range 21-48 years). Their details are presented in Appendix 3.3.1.3 

3.3.2 PLASMA ENDOTHELIN-1 VALUES 

Literature suggests that plasma ET- I concentrations are elevated in the circulation in renal 

failure (Shichiri et al., 1990; Stockenhuber et al., 1992) or show a borderline increase (Saito et 

al., 1991 ). It has been suggested that plasma ET-I levels are elevated during acute rejection 

only if there has been concomitant endothelial cell damage (Watschinger et al., 1994). 

3.3.2.1 Controls 

The mean value for plasma ET-I in 22 control subjects measured 0. 76 pg/ml, median of 0.69 

pg/ml and range of 0.4-1.55 pg/ml (Table 3.3.2) 
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3.3.2.2 Acute Rejection Group 

i) The mean value for plasma ET-1 was 1.71 pg/ml with a median value of 1.50 pg/ml and

range of 0.63-5.25 pg/ml in the acute rejection group (n=26). There was no correlation 

between serum creatinine and plasma ET-1 in the patients with acute rejection; the correlation 

coefficient (r) equalled 0.29 and a p value of 0.17 (linear regression). 

ii) Circulating ET-1 levels were significantly increased in the rejection group when compared

to control subjects, with a p value of 0.0002 (unpaired-t test), as indicated in Table 3.3.2. 

Table 3.3.2 Plasma Endothelin-1 levels in acute rejection and controls 

Control Rejection 

n 22 26 

Mean±SEM 0.76 ± 0.065 1.71 ± 0.21 

SD 0.31 1.05 

Median 0.69 1.5 

Range 0.40-1.55 0.63-5.25 

p (unpaired t-test) 
0.0002 

n= Patient numbers; measurements: pg/ml 

3.3.2.2.1 Serial plasma endothelin-1 levels after renal transplantation 

Plasma ET- I levels were measured serially in renal transplant patients. The mean ± SEM and 

median values for plasma ET-1 were 2.01 ± 0.23pg/ml before transplantation (n= l 7), 1.42 ± 

0.14 pg/ml following transplantation on day 3-4 (n= I 8), I. 74 ± 0. I 8 pg/ml during acute 

rejection (n=16) and 1.37 ± 0.12 pg/ml after treatment and recovery from rejection (n= l 1) 

respectively; the median values were 1.84 pg/ml; 1.3 pg/ml, 1.56 pg/ml and 1.2 pg/ml 
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respectively and tabulated in 3.3.2.2.1. Plasma ET-I levels showed cyclical changes during 

acute rejection and the subsequent treatment phase. Following transplantation, plasma ET-I 

levels declined significantly (p=0.036, Mann Whitney test), but levels rose during acute 

rejection (p=0.47, Mann-Whitney test). Once the rejection episode was treated, plasma ET-I 

levels decreased again (p=0. I 2, Mann-Whitney test). This post-treatment value was lower 

than that measured prior to transplantation (p=0.04I2, unpaired t-test). 

Table 3.3.2.2.1 Serial Plasma Endothelin 1 levels in renal transplantation 

(i) Pre-TP ( ii) Post-TP (iii) Acute (iv)After

rejection Rejection Rx

n 17 18 16 11 

Mean±SEM 2.01 ± 0.23 1.42 ± 0.14 1.74 ± 0.18 1.37 ± 0.12 

SD 0.93 0.61 0.72 0.41 

Median 1.84 1.3 1.56 1.20 

Range 1.1 -4.29 0.71 -2.64 0.87-3.76 0.85-2.16 

p(Mann- (i) VS (ii) : 0.036 (iii) vs (iv) : 0.12

Whitney test) (i) vs (iv): 0.0412*; (ii) vs (iii) : 0.18 ; (i) VS (iii) ; 0.47

n= patient numbers *Unpaired t-test ; measurements: pg/ml 

3.3.2.3 Renal diseases 

The mean plasma value for ET-1 measured 1.98 pg/ml in this group (n=29}, with a median 

value of 1.6 pg/ml and a range of 0.45-5.56 pg/ml; the mean value was significant when 

compared to control subjects with a p value of <0.01 (Tukey Kramer multiple comparisons). 

There was a significant correlation between plasma ET-1 and serum creatinine levels in this 
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group, with r=0.55 and a two-tailed p value of 0.0019 (linear regression). For the purposes of 

further analysis, the renal diseases were grouped into proliferative and non-proliferative 

disorders. 

3.3.2.3.1 Proliferative glomerulonephritis 

Thirteen patients with proliferative glomerulonephritis (prolif. GN) had a mean plasma value 

for ET-1 of2.8lpg/ml, median of 3.0 pg/ml and range of 0.6-5.56 pg/ml. 

3.3.2.3.2 Non-proliferative glomerulonephritis 

The 16 patients with non-proliferative disorders had a mean plasma value for ET-1 of 1.3 

pg/ml, median of 1.07 pg/ml and range of 0.45-3 .0 pg/ml. 

Table 3.3.2.3 Plasma Endothelin-1 in Renal Disorders 

(i)Control (ii)Whole Group (iii)Prolif (iv) Non Prolif
GN GN

n 22 29 13 16 

Mean ± 0.76 ± 1.98 ± 0.26 2.81 ± 1.30 ±
SEM 0.065 0.42 0.21 
SD 0.31 1.39 1.50 0.85 

Median 0.69 1.60 3.0 1.07 

Range 0.40-1.55 0.45-5.56 0.60-5.56 0.45-3.0 

p* (i) vs (ii) : <0.01 (iii) vs (iv)< 0.01

(i) vs (iii) : <0.001; (i) vs (iv) 0.0096 (unpaired t-test)
n== Patient numbers; *Tukey Kramer multiple comparisons ; measurements: pg/ml 

The difference between these two histological groups was statistically significant, with the 

highest levels of plasma ET-I in proliferative GN (p<0.01). The difference between patients 
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with proliferative GN and control subjects was highly significant with a p value of <0.001. 

Plasma ET-1 was increased in patients with non-proliferative diseases compared to control 

subjects (p=0.0096, unpaired t-test). 

3.3.2.3.3 Hypertensive glomerulonephritic subjects 

Fifteen patients were hypertensive (HPT) in this group, with a mean plasma value for ET-1 of 

2.52 pg/ml, median of 2.53 pg/ml and range of 0.6-5.56 pg/ml. 

3.3.2.3.4 Normotensive glomerulonephritic subjects 

The 14 normotensive (NBP) patients had a mean plasma value for ET-1 of 1.39 pg/ml, median 

of 0.87 pg/ml and range of 0.45-4.0 pg/ml. 

Table 3.3.2.3 Plasma Endothelin-1 in Renal Disorders 

(i) Control (ii) HPT (iii) NBP

n 22 15 14 

Mean±SEM 0.76 ± 0.065 2.52 ± 0.37 1.39± 0.30 

SD 0.31 1.44 1.11 

Median 0.69 2.53 0.87 

Range 0.40-1.55 0.60-5.56 0.45-4.0 

p (unpaired t- (ii) vs (iii) : 0.0261

test) (i) vs (ii) :0.0001 *; (i) vs (iii) : 0.0155

n= patient numbers; * Mann Whitney test ; measurements: pg/ml 

Plasma ET-I was significantly increased in hypertensive patients when compared with 

normotensive patients, with a p value of 0.0261 (unpaired t test); the p value of 0.000 I was 
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highly significant when comparing the hypertensive patients with control subjects. Plasma 

ET-I was increased in patients with normotensive renal disorders compared with controls 

(p=0. 015 5, unpaired t test). 

3.3.2.3.5 Dialysis patients 

Patients on dialysis (n =26) had a mean value for plasma ET-I of 2.4 pg/ml; median 2.07 

pg/ml; range 0.29-5.56 pg/ml. 

3.3.2.3.6 Patients not requiring dialysis 

In comparison, 26 patients who were not dialysis-requiring had a mean value for plasma ET-1 

of I. 7 pg/ml, median of 1.6 pg/ml and range of 0.45-4.12 pg/ml. 

Table 3.3.2.3 Plasma Endothelin-1 in Renal Disorders 

(i) Control (ii) Dialysis (iii)Non-dialysis
n 22 26 26 

Mean±SEM 0.76 ± 0.065 2.40 ± 0.25 1.70 ± 0.22 

SD 0.31 1.27 1.13 

Median 0.69 2.07 1.60 

Range 0.40-1.55 0.29-5.56 0.45-4.12 

p (unpaired t- (i)vs(ii)<0.0001; (ii) vs (iii) : 0.0428
test) (i) vs (iii) : 0.0004

n= patient numbers ; measurements: pg/ml 

Plasma ET-I was significantly increased in both the dialysis and non-dialysis requiring 

groups. The difference between the dialysis-requiring and non-dialysis groups was significant 
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(p=0.0428); and also when comparing the dialysis-requiring group with control subjects 

(p<0.0001) and non-dialysis patients with control subjects (p=0.0004). 

3.3.3 URINE ENDOTHELIN-1 VALUES 

It has been suggested that ET-1 is generated in situ in the kidney in renal disorders and levels 

in the urine may reflect renal synthesis of the peptide. 

3.3.3.1 Urine endothelin-1 levels in acute rejection 

The mean value for urinary ET-I was 1.67 pg/ml in 17 patients with acute rejection with a 

median value of 1.23 pg/ml and range of 0.7-4.7 pg/ml; corresponding control values (n= l I) 

were mean = 0.37 pg/ml, median = 0.2 pg/ml and range of 0.0-1.58 pg/ml (Table 3.3.3). The 

difference was significant, with a p value of 0.005 (Mann Whitney test). There was no 

correlation between serum creatinine and urine ET-I levels, with r = 0.11 and p=0.66. 

Table 3.3.3 Urine Endothelin-1 levels 

(i) Control (ii) Rejection (iii) GN

n 11 17 11 

Mean±SEM 0.37 ± 0.13 1.67 ± 0.35 0.41 ± 0.13 

Median 0.20 1.23 0.38 

Range 0-1.58 0.70-4.70 0-1.09

p (i) vs (ii) : 0.005* (i) vs (iii) : 0.80*

n= patient numbers; *Mann Whitney; measurements: pg/ml 
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3.3.3.2 Urine endothelin-1 levels in renal disease 

Urinary ET-1 excretion in glomerulonephritis (n= l 1) measured a mean± SEM of 0.41 ± 0.13 

pg/ml, median of 0.38 pg/ml and range of 0.0 - 1.09 pg/ml. This was similar to controls 

(p=0.80; Mann-Whitney test) where the mean ± SEM was 0.37 ± 0.13 pg/ml, median of 0.20 

pg/ml and range of 0.0 - 1.58 pg/ml 

3.3.4 LOCALISATION OF ENDOTHELIN-1 AND THE ENDOTHELIN 

RECEPTORS ET A AND ET s IN THE KIDNEY 

Histological sections of one per patient, when viewed at a magnification of x40 showed 1-2 

glomeruli per section, whereas the tubules were numerous. Field means of immunolabel were 

derived in pixels per micron2 for the different regions of interest, namely glomeruli, tubules 

and renal blood vessels and compared statistically. Because of the complex nature of the study 

and access to tissue samples, it was not possible to always receive adequate numbers of tissue 

samples in each category. Therefore non-parametric tests were used, since it was not known 

whether the study population was normally distributed. 

3.3.4.1 Immonoperoxidase: Peroxidase-antiperoxidase (PAP) labelling 

The PAP-immunolabelled images were quantitatively analysed by the Kontron Elektron KS 

300 (Zeiss GmbH, Germany) analyser, running on Windows 95. The digital images were 

converted to grey images ranging in grey scale density from 0 to 255. The median maximal 

density of immunolabelling was calculated as field means in pixels per micron2 and 

statistically analysed. 
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3.3.4.1.] Control kidney tissue 

ET- I immunolabelling was observed in glomerular capillary loops, distal tubules and 

collecting ducts as well as the endothelium and smooth muscle cells of media of arterioles of 

control kidney tissue. [Fig 3.1 (C)]. EndothelinA (ETA) receptor immunolabelling was 

visualised in distal tubules and collecting ducts. Minimal labelling was observed in glomeruli 

and blood vessels [Fig 3.2 (C)]. Endothelin8 (ET 8) receptor was immunovisualised in distal

tubules and collecting ducts and minimally focally in the mesangium in control kidney tissue. 

In addition, immunolabelling of endothelium and smooth muscle cells of the media of blood 

vessels was observed [Fig 3.3 (C)]. 
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3.3.4.1.2 Acute rejection 

Endothelin-1 

There was decreased immunolabelling for ET-I in glomeruli in acute rejection compared to 

control glomeruli [p=0.0095, Mann-Whitney test; Fig 3.1 (A)]. Although the values for 

rejection tubules were lower when compared to controls, the difference was not significant 

(p=0.20); the difference was not significant when comparing tubules in mild rejection 

(n=3) and severe rejection (n=2) with controls and with each other. 

Table 3.3.4.1 ET-1 in acute rejection (PAP immunolabelling) 

GLOMERULI TUBULES 

Control Rejection Control 

n 4 6 4 

Mean±SEM 138.33 ± 4.38 100.55 ± 5.37 94.01 ± 6.86 

SD 8.76 13.16 13.75 

Median 139.4 101.85 87.74 

Range 127. 77-146. 74 81.06-116.69 85.97-114.6 

p(Mann- 0.0095 

Whitney test) 

n = number of histological sections; one section per patient; 

measurements: pixels/micron2 

Endothelin Receptors 

ETA Receptor 

Rejection 

4 

81.48 ±6.68 

13.35 

77.49 

70.3-100.66 

0.20 

While there was increased ET A receptor labelling in acute rejection, the site and intensity of 

immunolabelling of the ETA receptor in glomeruli (p=0.14, Mann-Whitney test) and 

tubules (p=0.075) was not significantly increased in acute rejection when compared to 
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control kidney tissue (Table 3.3.4.1 ). There appeared to be no difference when comparing 

glomeruli from mild rejection (n=2) and severe rejection (n=5) or tubules from mild 

rejection (n=4) and severe rejection (n=6) with each other and with controls. The images 

are depicted in Figure 3.2. 

Table 3.3.4.1 ETA Receptor in acute rejection (PAP labelling) 

GLOMERULI TUBULES 

Control Rejection Control Rejection 

n 6 7 5 10 

Mean±SEM 113.64 ±5.01 127.14 ±7.71 127.52±31.92 147.16±4.59 

SD 12.26 20.41 71.36 14.52 

Median 116.74 136.55 97.94 147.76 

Range 90.85-124.61 96.84-144.03 91.1-255.0 116.29-165.71 

p(Mann- 0.14 0.075 

Whitney test) 
2 

n - number of h1stolog1cal sections ( one per patient); measurements: p1xels/m1cron 

ETB Receptor 

There was significantly increased ET 8 receptor immunolabelling of glomeruli in acute 

rejection (p=0.0022, Mann-Whitney test) and decreased immunolabelling of tubules 

(p=0.0076, Mann-Whitney test) when compared to control kidney tissue. Glomerular 

labelling in both mild (n=3) and severe (n=3) rejection was significantly increased when 

compared to controls (p<0.05, Tukey-Kramer multiple comparisons). There was no 

difference in the glomerular labelling when comparing mild and severe rejection. There 

was a significant decrease in tubular labelling when comparing mild rejection (n=3; 
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p=0.04 7) and severe rejection (n=3; p=0.038) with controls (Mann-Whitney test). The 

images are shown in Figure 3.3. 

Table 3.3.4.1 ET 8 Receptor in glomeruli in acute rejection (PAP labelling) 

GLOMERULI 

(i) Control (ii) Rejection (iii)Mild (iv)Severe
Rejection Rejection

n 6 6 3 3 

Mean ± SEM 77.16±14.79 138.73±3.22 136.32±5.0 141.14±4.59 

SD 36.22 7.89 8.66 7.94 

Median 78.96 136.7 132.32 138.7 

Range 30.81-115.84 130.39-150.02 130.39-146.26 134.71-150.02 

p* (i)vs(ii) 0.0022; (i)vs(iii):0.023 (i)vs(iv):0.0238; (iii)vs(iv):0.4

*Mann-Whitney test; n = number of histological sections (one per patient);
measurements: pixels/micron2

Table 3.3.4.1 ET 8 Receptor in tubules in acute rejection (PAP labelling) 

TUBULES 

(i) Control (ii) Rejection (iii)Mild (iv)Severe
Rejection Rejection

6 9 3 4 

Mean±SEM 149.56±4.98 129.12±3.54 129.26±3.57 126.68±6.21 

SD 12.20 10.62 6.17 12.42 

Median 153.92 128.51 128.51 129.14 

Range 129.85-162.03 111.18-145.97 123.49-135.77 111.18-145.97 

p(Mann- (i)vs(ii):0.0076; (i)vs(iii):0.0476 (i)vs(iv): 0.038
Whitney) 

.2 
n = number of h1stolog1cal sections ( one per patient); measurements. p1xels/m1cron 
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3.3.4.J.3 Glomerulonephritis 

ET-1 

ET-1 immunolabelling was decreased in glomeruli (p=0.049, Mann-Whitney test), and 

similarly in tubules (p=0.90) in glomerulonephritis when compared to control kidney 

tissue. Glomerular labelling was significantly decreased in proliferative glomerulonephritis 

(n=6) when compared to controls (p<0.001), and non-proliferative glomerulonephritis 

(n=2; p<0.01; Tukey-Kramer multiple comparisons). There was no difference in tubular 

labelling in proliferative (n=13) and non-proliferative (n=3) glomerulonephritis. The 

images are depicted in Figure 3.1 (B). 

Table 3.3.4.1.3 ET-1 in glomeruli in renal disease (PAP labelling) 

GLOMERULI 

(i)Control (ii) GN (iii)Non-prolif (iv)Prolif GN
GN

n 4 8 2 6 

Patients 4 8 2 6 

Mean±SEM 138.33±4.38 104.27±8.23 136.67±14.2 93.48±4.44 

SD 8.76 23.27 20.08 10.87 

Median 139.4 91.08 136.67 90.42 

Range 127.77-146.74 85.11-150.86 122.47-150.86 85.11-115.19 

p(Tukey- (i)vs(ii):0.049**; (i)vs(iii)>0.05 (i)vs(iv)<0.01; (iii)vs(iv)<0.01

Kramer) 

**(Mann-Whitney test); 
pixels/micron2

n = number of histological sections measurements: 
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T able 3.3.4.1.3 ET-1 in tubules in renal disease (PAP labelling) 

T UBULES 

Control GN 

D 4 18 

Mean±SEM 94.01± 6.86 91.3± 6.6 

SD 13.75 28.02 

Median 87.74 100.78 

Range 85.97-114.6 25.52-135.81 

p (Mann-Whitney 0.90 

test) 

n = number of histological sections ( one per patient); measurements: pixels/micron2

ET A Receptor 

The images are depicted in Figure 3.2 (B). 

Table 3.3.4.1.3 ET A receptor in glomeruli in renal disease (PAP labelling) 

GLOMERULI 

Control GN 

n 6 7 

Mean±SEM 128.34±8.44 129.43±5.93 

SD 20.68 15.69 

Median 121.29 129.98 

Range 113.42-167.3 106.3-150.65 

p (Mann-Whitney 0.92 

test) 

n = number of histological sections ( one per patient); measurements: pixels/micron2
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ETA receptor immunolabelling was significantly increased in tubules (p=0.026, Mann­

Whitney test) and similarly in glomeruli (p=0.92) of renal biopsies with glomerulonephritis 

when compared to control kidney tissue (Table 3.3.4.1.3) 

Table 3.3.4.1.3 ETA receptor in tubules in renal disease (PAP labelling) 

(i) Control (ii Non-prolif GN (iv) Prolif GN

n 7 11 3 

Mean±SEM 109.1±9.8 133.22±5.52 130.2±6.49 

SD 25.94 18.31 11.24 

Median 100.85 130.87 135.94 

Range 90.96-167.21 105.33-162.82 117.25-137.41 

p (Mann (i) vs(ii) :0.026 (i)vs(iii) >0.05 (ii)vs(iii) >0.05 

Whitney test) 

n = number of histological sections ( one per patient); measurements: pixels/micron2

ETn Receptor 

ET 8 receptor immunolabelling was increased in glomeruli of glomerulonephritis kidney 

tissue but the increase was not statistically significant; the labelling was decreased in 

tubules in glomerulonephritis (non-proliferative p=0.0008, proliferative GN p= 0.0001; 

Mann-Whitney test; Table 3.3.4.1.3). There was no difference when comparing 

proliferative and non-proliferative glomerulonephritis. The images are depicted in Figure 

3.3 (B). 
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Table 3.3.4.1.3 ET 8 receptor in renal disease (PAP labelling) 

GLOMERULI DIST AL TUBULES 

(i)Control (ii)Non (iii) Prolif (a)Control (b)Non

Prolif GN GN Prolif GN

n(sections) 7 8 5 7 11 

Mean± 89.05 ± 127.62 ± 124.5 ± 151.79 ± 125.33 ±

SEM 17.25 4.31 3.49 3.78 3.92 

SD 45.64 12.18 7.8 10.0 13.0 

Median 93.97 129.79 125.86 153.94 124.24 

Range 30.81- 108.31- 113.07 - 134.16- 106.21-

160.39 142.82 131.83 163.64 154.79 

p (Mann- (i) vs (ii) : 0.0541 (a) vs (b): 0.0008

Whitney) 

(c) Prolif

GN

13 

129.39 ±

1.98 

7.13 

129.74 

116.82-

144.15 

(i) vs (iii): 0.1061; (ii) vs (iii) :0.62 (a) vs (c): 0.0001; (b) vs (c) :>0.05

-n- number of patients also; measurements: p1xels/m1cron 2

3.3.4.2 Confocal microscopy: Immunofluorescent labelling 

The staining intensity of flourescent-labelled tissue sections was viewed by confocal 

scanning laser microscopy and quantitatively analysed using the Analysis 2.1 Pro system 

(Software GmbH, 1996, Germany). The mean intensity of immunolabelling was expressed 

in pixels x 100 per micron2 and statistically analysed. 

3.3.4.2.1 Acute rejection 

ET-1 

ET-1 labelling of proximal tubules in acute rejection was significantly increased in the 

rejection group as a whole when compared to controls (p=0.0016), and in mild rejection 
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compared to controls (p=0.0001) and severe rejection (p<0.05). Increased labelling was 

noted in distal tubules in mild rejection in comparison to severe rejection (p=0.0058) and 

controls (p=0.0499). While glomerular labelling was increased in rejection in comparison 

to controls, there was no statistical difference. The images are depicted in Figures 3 .4 ( A 

and B) and 3.5. 

Table 3.3.4.2.1 ET-1 in acute rejection ( immunofluorescent labelling) 

PROXIMAL TUBULES 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Rejection Re_jection

n 5 77 60 17 
(structures) 

Sections 4 19 15 4 

Mean± 11.6 ± 0.8 58.8 ± 7.6 69.3 ± 7.3 19.4 ± 6 
SEM 

Median 12.l 60.7 63.5 15.1 

SD 1.6 33.1 28.6 12.0 

Range 9.4-12.9 10.5-128.6 22.4-128.6 10.5-37 

p (i) vs (ii) : 0.0016(Mann Whitney); (i) vs (iv):>0.05**
(i) vs (iii) : 0.000I(Kruskal Wallis); (iii) vs (iv) <0.05**

** Dunn s multiple comparisons, measurements. p1xelsx 100/ micron L
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Table 3.3.4.2.1 ET-1 in acute rejection (immunofluorescent labelling) 

DIST AL TUBULES 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Re_jection Re_jection

n 4 56 52 4 
(structures) 

Patients 4 19 16 3 

Mean± 23.09±1.09 55.8 ± 7.8 63.8 ± 7.7 13 ± 1.8 
SEM 

Median 22.7 53.6 69 13.7 

SD 1.09 34 30.8 3.1 

Range 21.14-25.8 9.7-107 12.2-107 9.7-15.7 

p(Mann (i) vs (ii) : 0.47; (i) vs (iv):0.0571
Whitney) (i) vs (iii) :0.0499; (iii) vs (iv): 0.0058(Kruskal-Wallis)

measurements. pixelsx I 00/ micron 

Table 3.3.4.2.1 ET-1 in acute rejection ( immunofluorescent labelling) 

GLOMERULI 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Rejection Rejection

n 3 13 9 4 

(structures) 

Patients 3 13 9 4 

Mean± 4.2 ± 0.16 13.1 ± 3.5 15.4 ± 3.9 12.1 ± 5.6 

SEM 

Median 4.29 10.2 10.7 9.7 

SD 0.28 11.7 11.7 11.2 

Range 3.9-4.4 2.7-37.7 2.7-37.7 2.7-26.5 

p (Mann (i) VS (ii) : 0.64; (i) VS (iv):>0.05**
Whitney) (i) VS (iii) :0.33; (iii) VS (iv): 0.0727

2 I **Dunn s multiple comparisons; measurements: pixelsxl00/ micron 

n = number of structures in biopsies from the same number of patients 
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Endothelin receptors 

ETA receptor 

While ET A receptor immunolabelling of proximal tubules was increased in both mild and 

severe rejection, it was not significantly so when compared to the control kidney. Similarly, 

while ET A receptor labelling of distal tubules was increased in rejection, it was not 

significant when compared to control kidney (p=0.09, Mann Whitney test), probably 

because of the small sample numbers. ETA receptor labelling of glomeruli was similar in 

rejection and control kidney. ET A receptor labelling of collecting ducts was significantly 

increased in rejection (p=0.0238, Mann Whitney test) compared to control kidney. The 

images are depicted in Figures 3.6 (A and B). 

Table 3.3.4.2.1 ETA receptor in acute rejection ( immunofluorescent labelling) 

PROXIMAL TUBULES 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Re_jection Rejection

n 17 17 9 8 
(structures) 

Patients 3 7 3 4 

Mean± 27.5 ± 8.9 92.l ± 31.6 69.l ± 33.7 109.2 ± 51.9 
SEM 

Median 35.2 84.7 84.l 109.2 

SD 15.4 83.6 58.3 103.8 

Range 9.7-37.5 4.8-199.2 4.8-118.5 19.3-199.2 

p (Kruskal (i) vs (ii) : 0.52**; (i) vs (iv):0.69
Wallis) (i) vs (iii) :>0.05; (iii) vs (iv)>0.05

.1. **Mann Whitney, measurements. p1xelsxl 00/ micron 
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Table 3.3.4.2.1 ETA receptor in acute rejection ( immunofluorescent labelling) 

DIST AL TUBULES 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Rejection Rejection

n 8 17 12 5 
(structures) 

Patients 3 6 3 3 

Mean± 7.3 ± 6.4 43.6 ± 10.7 32.8 ± 9.8 54.4 ± 19 
SEM 

Median 1.7 41.1 32.2 73.4 

SD 11.1 26.3 17.1 32.9 

Range 0.1-20.1 16.1-73.5 16.1-50.1 16.4-73.5 

p (Kruskal (i) vs (ii) : 0.09 (Mann Whitney); (i) vs (iv):0.17
Wallis) (i) vs (iii) :>0.05; (iii) vs (iv) >0.05

measurements. p1xelsx I oo/ micron 

Table 3.3.4.2.1 ETA receptor in acute rejection ( immunofluorescent labelling) 

COLLECTING DUCTS 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Rejection Re_jection

n 15 25 19 6 

(structures) 

Sections 3 6 3 3 

Mean± 21.8 ± 3.6 102.7 ± 15.5 82.1 ± 26.4 123 ± 9.2 
SEM 

Median 19.6 114 45.7 114 

SD 6.2 38 101.9 16 

Range 17.1-28.9 29.9-141.8 29.9-114.6 113.5-141.8 

p(Mann (i) vs (ii) : 0.0238; (i) vs (iv):<0.01 **
Whitney) (i) vs (iii) :>0.05; (iii) vs (iv) >0.05

**Tukey Kramer multiple compansons; measurements: p1xelsx 100/ micron 2
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Table 3.3.4.2.1 ETA receptor in acute rejection 
(immunofluorescent labelling) 

GLOMERULI 

(i) Control (ii) Rejection

n 3 4 

Patients 3 4 

Mean±SEM 19.3 ± 9.4 7.3 ± 1.2 

Median 18.3 7 

SD 16.3 2.4 

Range 3.5-36.1 5-10.5

p(Mann (i)vs(ii) : 0.63
Whitney) 

measurements: p1xelsx I 00/ micron 

ET 8 receptor 

ET 8 receptor labelling of proximal tubules was significantly decreased in rejection 

(p<0.0364, Mann Whitney test) when compared to control kidney. While the label was 

decreased in distal tubules in severe rejection, the difference was not significant, probably 

because of small numbers. 
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Table 3.3.4.2.1 ET 8 receptor in acute rejection (immunofluorescent labelling) 

PROXIMAL TUBULES 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Re_jection Re_jection

n 15 32 17 15 
(structures) 

Patients 3 9 5 4 

Mean± 112.8 ± 5.2 29.6 ± 15 41 ± 27 15.3 ± 4 
SEM 

Median 98.9 15.3 14.2 18.1 

SD 89.2 45.1 60.5 8.1 

Range 31.3-208.1 3.9-148.9 9.3-148.9 3.9-21.2 

p(Tukey (i) VS (ii) : 0.0364**; (i) VS (iv): <0.01
Kramer) (i) vs (iii) :<0.01; (iii) vs(iv).:>0.05

** Mann Whitney, measurements. p1xelsxl00/ micron 

Table 3.3.4.2.1 ET 8 receptor in acute rejection (immunofluorescent labelling) 

DISTAL TUBULES 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Rejection Rejection

n 7 23 18 5 

(structures) 

Patients 3 7 4 3 

Mean± 43.6 ± 1.1 27.8 ± 22.9 44.6±40.2 5.4 ± 0.9 

SEM 

Median 51.2 4.9 5.6 4.9 

SD 11.1 60.6 80.4 1.6 

Range 21.7-58 2-165.1 19.9-165.1 4-7.1

p (Mann (i) VS (ii) : 0.12; (i) VS (iv):0.1

Whitney) (i) VS (iii) :0.4;(iii) VS (iv) 0.99

measurements: p1xelsx I 00/ micron 
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Table 3.3.4.2.1 ET 8 receptor in acute rejection (immunofluorescent labelling) 

GLOMERULI 

(i)Control (ii)Rejection (iii)Mild (iv)Severe
Rejection Rejection

n 4 7 3 4 
(structures) 
Patients 4 7 3 4 

Mean± 47.4 ± 5.2 2.8 ±0.2 2.7 ± 0.21 2.9 ± 0.2 
SEM 
Median 49.2 2.7 2.7 2.8 

SD 10.4 0.4 0.3 0.5 

Range 34.3-57 2.3-3.5 2.3-3 2.5-3.5 

p** (i) VS (ii) : <0.05; (i) VS (iv):<0.05
(i) VS (iii) :<0.05; (iii) VS (iv):>0.05

7 * * Dunn s multiple compansons; measurements: p1xelsx I 00/ micron

Glomerular labelling, was significantly decreased in rejection when compared to control 

kidney. The images are depicted in Figures 3.7 {A and B). 

3. 3. 4. 2. 2 G/omerulonephritis

ET-1 

ET-1 immunolabelling of proximal tubules was very significantly increased in non­

proliferative (p=0.0059) and proliferative GN (p=0.0159, Mann Whitney test) when 

compared to control kidney; however there was no difference between non-proliferative 

and proliferative GN. ET-1 labelling of distal tubules was increased in GN when compared 

to control kidney (p=0.0286). There was a significant increase in tubular labelling when 

comparing proliferative and non-proliferative GN (p=0.0346). Glomerular labelling was 
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significantly increased in ON when compared to control kidney (p=0.044). The images are 

depicted in Figures 3.4 (C) and 3.5 (C). 

Table 3.3.4.2.2 ET-1 receptor in renal disease (immunofluorescent labelling) 

PROXIMAL TUBULES 

(i)Control (ii)GN (iii)Non-
prolif GN

n 5 66 50 
(structures) 

Patients 4 18 13 

Mean± 11.7 ± 0.8 94.8 ± 24.3 88.8 ± 32 
SEM 

Median 12.1 78.7 45 

SD 1.6 100.3 115.4 

Range 9.5-12.9 11-449.5 11-449.5

p(Mann (i) vs (ii) : 0.007; (i) vs (iv):0.0159
Whitney) (i) vs (iii) : 0.0059; (iii) vs (iv): 0.12

.L measurements. p1xelsx 100/ micron 

Table 3.3.4.2.2 ET-1 receptor in renal disease 
(immunofluorescent labelling) 

DIST AL TUBULES 

(i)Control (ii)Non- (iii)Prolif
prolif GN GN

n 4 45 13 

(structures) 

Patients 4 13 4 

Mean± 23.1 ± 1.1 50.5± 7.8 103.1 ± 13.7 
SEM 

Median 22.7 49 108.4 

SD 2.2 28.1 27.4 

Range 21.1-25.8 15 -93.2 66.3-129.5 

p (Mann (i) vs (ii) :0.16; (i) vs (iii):0.0286

Whitney) (ii) vs (iii): 0.0346

measurements: p1xelsx 100/ micron 
2
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Table 3.3.4.2.2 ET-1 in renal disease (immunofluorescent labelling) 

GLOMERULI 

(i)Control (ii)GN (iii)Non- (iv)Prolif

vrolif GN GN

n 3 12 9 3 

(structures) 

Patients 3 12 9 3 

Mean± 4.2 ± 0.16 47.7 ± 15.9 45.9 ± 20.8 53 ± 19.4 

SEM 

Median 4.3 31.4 31.4 63.8 

SD 0.28 55.2 62.4 33.7 

Range 3.9-4.4 5.5-208.1 5.5-208.1 15.3-80 

p(Mann (i) vs (ii) : 0.044; (i) vs (iv):0.20

Whitney) (i) VS (iii) :0.0727; (iii) VS (iv): 0.48
.l measurements. p1xelsx 100/ micron 

Endothelin receptors 

ETA Receptor 

While ETA receptor labelling of proximal tubules was increased in GN, it was not 

significantly increased when compared to control kidney. ETA receptor labelling of distal 

tubules was significantly increased in proliferative GN when compared to non-proliferative 

GN (p=0.004, Kruskal Wallis test) and control kidney (p<0.05). ET A receptor labelling of 

glomeruli was similar in GN and control kidney. The labelling of collecting ducts was 

similar in both non-proliferative and proliferative GN compared to controls. The images 

are depicted as Figures 3.6 (C). 
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Table 3.3.4.2.2 ETA receptor in renal disease (immunofluorescent labelling) 

PROXIMAL TUBULES 

(i)Control (ii)GN (iii)Non- (iv)Prolif
prolifGN GN

n 17 46 9 37 
(structures) 

Patients 3 17 4 13 

Mean± 27.5 ± 8.9 76.6 ± 15.3 47.8 ± 10 85.4 ± 19.2 
SEM 

Median 35.2 61.9 45.9 65.8 

SD 15.4 62.9 20 69.4 

Range 9.7-37.5 0.8-204.3 30-69.4 0.7-204.3 

p (Kruskal (i) vs (ii) : 0.26**; (i) vs (iv):0.34
Wallis) (i) vs (iii) :>0.05; (iii) vs (iv)>0.05

.l **Mann Whitney, measurements. pixelsxl00/ micron 

Table 3.3.4.2.2 ETA receptor in renal disease (immunofluorescent labelling) 

DIST AL TUBULES 

(i)Control (ii)GN (iii)Non- (iv)Prolif
prolif GN GN

n 8 46 9 37 
(structures) 

Patients 3 16 4 12 

Mean± 7.3 ± 6.4 29.3 ± 8.9 2.8 ± 1.4 38.1 ± 10.8 
SEM 

Median 1.7 11.3 2.1 26.1 

SD 11.1 35.6 2.9 37.2 

Range 0.1-20.1 0.3-127.1 0.2-6.7 6.1-127.1 

p (Kruskal (i) vs (ii) : 0.37 (Mann Whitney); (i) vs (iv)<0.05
Wallis) (i) vs (iii) :>0.05; (iii) vs (iv) <0.05

.2 
measurements. pixelsx 100/ micron 
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Table 3.3.4.2.2 ET A receptor in renal disease (immunofluorescent labelling) 

COLLECTING DUCT S 

(i)Control (ii)GN (iii) Non- (iv)Prolif
prolif GN GN

n 15 40 6 34 
(structures) 

Patients 3 8 3 5 

Mean± 21.8 ± 3.6 34 ± 7.3 21 ± 7 41.9 ± 9.6 
SEM 

Median 19.6 28.8 24.5 35.8 

SD 6.2 20.5 12.1 21.4 

Range 17.1-28.9 7.5-70.5 7.4-30.9 19.2-70.5 

p (Kruskal (i) vs (ii) : 0.38 (Mann Whitney); (i) vs (iv):>0.05
Wallis) (i) vs (iii) :>0.05; (iii) vs (iv) :0.29

measurements. p1xelsx 100/ micron 

Table 3.3.4.2.2 ET A receptor in renal disease (immunofluorescent labelling) 

GLOMERULI 

(i)Control (ii)GN (iii) Non- (iv)Prolif
prolif GN GN

n 3 9 3 6 
(structures) 

Patients 3 9 3 6 

Mean±SEM 19.3 ± 9.4 8.4 ±2.7 12.9 ± 5.8 6.1 ± 2.8 

Median 18.3 4.9 15.2 3.1 

SD 16.3 8.1 10 6.8 

Range 3.6-36.1 0.1-15.6 2-21.6 0.1-15.6 

p (Kruskal (i) vs (ii) : 0.21 (Mann Whitney); (i) vs (iv):>0.05
Wallis) (i) vs (iii) :>0.05; (iii) vs (iv) :>0.05

measurements: p1xelsx I 00/ micron 
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ET 8 receptor 

While ET 8 receptor labelling was decreased in GN in proximal and distal tubules, 

collecting ducts and glomeruli, the difference was not significant probably because of the 

small sample size. The images are depicted in Figure 3.7 (C). 

Table 3.3.4.2.2 ET 8 receptor in renal disease (immunofluorescent labelling) 

PROXIMAL TUBULES 

(i)Control (ii)GN (iii)Non- (iv)Prolif
prolif GN GN

n 15 43 11 32 
(structures) 

Patients 3 11 4 7 

Mean± 112.8± 51.8 35.8 ± 10.1 44.5 ± 23.7 30.8 ± 9.8 
SEM 

Median 98.9 25.9 27.1 18.R

SD 89.2 33.5 47.4 25.9 

Range 31.2-208.1 9.1 -114.5 9.4-114.5 9.1-78.8 

p(Mann (i) vs (ii) : 0.0604; (i) vs (iv):0.067
Whitney) (i) vs (iii) :0.229; (iii) vs (iv):0.788

.1. measurements. p1xelsx I 00/ micron 
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Table 3.3.4.2.2 ET 8 receptor in renal disease (immunofluorescent labelling) 

DIST AL TUBULES 

(i)Control (ii)GN (iii)Non- (iv)Prolif
prolif GN GN

n 7 25 11 14 
(structures) 

Patients 3 11 4 7 

Mean± 43.6 ± 11.1 24.9 ± 8.6 22.6 ± 4.8 26.2 ± 13.6 
SEM 

Median 51.2 14 20.2 76.6 

SD 19.3 28.5 9.5 36.1 

Range 21.7-58 0.6-96.5 14-36 0.6-96.5 

p (Mann (i) vs (ii) : 0.17 ; (i) vs (iv):0.267
Whitney) (i) vs (iii) :0.23; (iii) vs (iv) :0.315

measurements. p1xelsx I 00/ micron 

Table 3.3.4.2.2 ET 8 receptor in renal disease (immunofluorescent labelling) 

GLOMERULI COLLECTING DUCTS 

(i)Control (ii)GN (i)Control (ii)GN

n (structures) 4 5 10 30 

Patients 4 5 4 3 

Mean± 47.4 ± 5.2 22.3 ± 8.4 51.7 ± 8.3 39.6 ± 3 
SEM 

Median 49.2 18.2 49.6 41.8 

SD 10.4 18.8 16.7 6.9 

Range 34.3-57 5.7-51.9 34.6-72.8 31.8-45.1 

p(Mann 0.38 0.4 
Whitney) 
measurements: p1xelsx I 00/ micron 
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ELECTRON MICROSCOPY: IMMUNOGOLD LABELLING 

3.3.3.2 Acute rejection 

ET-1 immuno-labelling was visualised in proximal and distal tubules (in the cytoplasm 

and, and to a lesser extent, in the nucleus), collecting ducts, endothelial cells of arteries and 

glomerular capillaries in control kidney. Gold particles occurred in clusters or singly, 

mainly along infoldings of the basolateral membranes, intercellular system, cytoplasmic 

vacuoles, mitochondrial cristae and endoplasmic reticulum. The distribution of gold 

particles was increased along the basolateral membranes of distal tubules during acute 

rejection, predominantly for ET-1 antibody. ETA and ET 8 receptor immuno-labelling was 

in a similar distribution to ET-I. Figures 3.8, 3.9 and 3.10 show the ultrastructural 

localisation of ET-1 and its receptors. Table 3-1 depicts the score of the imrnunogold 

particles for the sections examined. 

Table 3-1. IMMUNOGOLD LABELLING COUNTS IN ACUTE REJECTION 

ET-1 PTL PTB DTL DTB

Control (total count) 41 (10) 
75 (IJ) 

47 (I I) 
39 (ILJ 

Rejection (total count) 152 <19>
193 \'OJ 

184 \,OJ 
190 («J 

Control (mean/section) 4.1 5.77 4.27 3.25 

Rejection(mean/section) 8 7.42 7.36 8.64 

ETA 

Control (total) 90 (9) 
81 (10) 

57 p) 85 \IJ 

Rejection (total) 290 (_I) 
254 \d) 257 (LIJ 

257 (L,J 

Control (mean/section) 10 8.1 11.4 12.14 

Rejection(mean/section) 13.8 11.04 12.24 11.17 

ETB 

Control (total) 
?� (o) 
_.) 55 ()J 31 (•J 

29 (J) 

Rejection (total) 174 <21 > 
189 (lo) 

230 \'VJ 
256 \<IJ 

Control (mean/section) 8.3 11 7.75 9.67 

Rejection(mean/section) 8.29 7.27 11.7 12.19 

PTL = Proximal tubule, luminal portion; DTL = Distal tubule, luminal portion 

PTB = Proximal tubule, basal DTB = Distal tubule, basal; Figures in superscript = number of sections 
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3.3.4.1 Glomerulonephritis 

ET-1 immuno-labelling was visualised in proximal and distal tubules (in the cytoplasm 

and, and to a lesser extent, in the nucleus), collecting ducts, endothelial cells of arteries and 

glomerular capillaries in control kidney. ETA and ET 8 receptor immuno-labelling was 

visualised in a similar distribution to ET-1.Gold particles occurred in clusters or singly, 

mainly along infoldings of the basolateral membranes, intercellular system, cytoplasmic 

vacuoles, mitochondrial cristae and endoplasmic reticulum, in a similar distribution as in 

acute rejection. Figures 3. 8, 3. 9 and 3. l O show the ultrastructural localisation of ET-1 and 

its receptors. Table 3-2 depicts the score of the immunogold particles for the sections 

examined. 

Table 3-2. IMMUNOGOLD COUNTS IN GLOMERULONEPHRITIS 

ET-1 PTL PTB DTL OTB 

Control (total count) 18 (b/ 
22 lb/ 

32 ()) 31 (6) 

GN (total count) 76 \LO/ 
72 \L>) 

113 \LO) 89 \LI) 

Control (mean/section) 3 3.7 6.4 5.2 

GN (mean/section) 2.7 2.9 4.3 4.3 

ETA 

Control (total) 28 (Y) 
25 (10) 

31 (8) 
33 (

8) 

GN (total) 73 \L>) 59 (11) 
64 \I>/ 

70 1161 

Control (mean/section) 3.1 2.5 3.9 4.1 

GN (mean/section) 3.2 3.5 4.97 4.4 

ETB 

Control (total) 13 \b/ 15 (S) 15 (6) 37 \YJ 

GN (total) 39 l"I 48 \<LJ 77 \ib) 88 \-'>} 

Control (mean/section) 2.2 1.9 2.5 4.1 

GN (mean/section) 1.6 2.2 3.0 3.5 

GN= glomerulonephritis 
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3.3.S LOCALISATION OF ENDOTHELIN-1 mRNA IN THE HUMAN KIDNEY BY 

RT-PCR 

Table 3-3: Sequence ofEndothelin-1 primers and expected length of PCR product 
Primer Size a. Primer Sequence PCR PCR 

ET-1-
268F 

ET-1-
683R 

ET-1-
849R 

(bases) Product 

21 

21 

17 

5'-
ATGGATTATTTGCTCATGATTTT-
3' 
5'­
CAGTCTTTCTCCATAATGTCTTCA 
GC-3' 
5'- � 

CTTGGGATCATGAAAAGATGATT 
T-3'

(bp) 

415 

F : Fonvard Primer; R : Reverse Primer 

Specific reverse primers for reverse transcriptase (RT) reactions, and forward & reverse 

primer sets for non-nested polymerase chain reactions (PCR) used in the in situ RT-PCR 

detection of mRNAs for ET-I. For the RT-PCR, a predicted length of cDNA product is 

expected. 

Microscopy 

Renal biopsies from ten patients with acute rejection were studied. Label was detected in 

epithelial cells of the distal tubule and collecting duct in control kidney. Increased label 

was observed in kidney biopsies with acute rejection; in addition, label was observed in 

endothelial cells of arterioles and glomerular capillaries as well as the epithelial cells of 

Bowman's capsule, as illustrated by the images in Figures 3.11. 
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ATRIAL NATRIURETIC PEPTIDE 

Electrolyte and volume status is altered in patients with renal disease. Changes in atrial 

natriuretic peptide (ANP) would be anticipated in renal disorders. 

3.4.1 Plasma ANP 

Plasma ANP was measured by radio-immunoassay (RlA) in 16 patients with acute 

rejection and 14 control subjects. In acute rejection, the mean plasma value for ANP was 

47.36 pg/ml (SEM ± 5.26 pg/ml), median of 48.8 pg/ml and range of 13.0-80.0 pg/ml. In 

control subjects, the mean value was 23.93 pg/ml, SEM ± 2.78 pg/ml, median of 20.65 

pg/ml, range of 11.7-42.5 pg/ml (Table 3.4.1). Plasma ANP was significantly increased 

during acute rejection when compared to control subjects (p=0.00 I 1, Mann-Whitney test). 

There was no correlation between plasma ANP and serum creatinine levels (p=0.33, linear 

regression; p=0.69, Spearman rank correlation). Similarly, there was no correlation 

between plasma ANP and the degree of peripheral oedema. 

Table 3.4.1 ANP RIA results 

PLASMA ANP (pg/ml) 

Control Acute Rejection 

n (patient numbers) 14 16 

Mean ± SEM (pg/ml) 23.93 ± 2.78 47.36 ± 5.26 

SD 10.41 21.06 

Median 20.65 48.8 

Range 11.7-42.5 13.0-80.0 

p (Mann-Whitney test) O.OOll
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3.4.2 Urinary ANP results 

Urine ANP was measured in 13 patients with acute rejection and 4 control subjects. The 

mean± SEM urinary ANP value was 29.68 ± 5.01 pg/ml, median of 25.0 pg/ml and range 

of 4.5-73.6 pg/ml in acute rejection; control values were 2.65 ± 0.14 pg/ml, 2.65 pg/ml and 

2.3-3.0 pg/ml respectively. 

Table 3.4.2 Urine ANP RIA results 

URINARY ANP (pg/ml) 

Control Acute Rejection 

n (patient numbers) 4 13 

Mean ± SEM (pg/ml) 2.65 ± 0.14 29.68 ± 5.01 

SD 0.29 18.07 

Median 2.65 25.0 

Range 2.3 -3.0 4.5- 73.6 

p (Mann-Whitney test) 0.0008 

Urinary ANP was significantly increased during acute rejection when compared to controls 

(p=0.0008, Mann-Whitney test). 

3.4.3 RENAL CELLULAR LOCALISATION OF ANP: LIGHT MICROSCOPY: 

IMMUNOPEROXIDASE (PAP) METHOD 

ANP immunolabelling by the PAP method was visualised predominantly in distal tubules 

and collecting ducts in acute rejection and glomerulonephritis as well as in control kidney 
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tissue. In addition, labelling was observed in epithelial cells of Bowman's capsule, and 

endothelium and smooth muscle cells of the media of arteries and arterioles. 

3.4.3.1 Analysis of ANP labelling in acute rejection 

There was significantly decreased immunolabelling of glomeruli m biopsies of acute 

rejection (p= 0.002, Kruskal-Wallis test) compared to control kidney tissue; the labelling 

was more significantly decreased in mild rejection. The images are depicted in Figures 

3.12. 

Table 3.4.3.1 ANP image analysis in acute rejection 

GLOMERULI 

(i) Control (ii) Rejection (iii)Mild (iv)Severe

Rejection Rejection

n 6 6 4 3 

Patients 6 6 4 3 

Mean±SEM 124.12 ± 1.93 104.96 ± 4.94 98.47 ± 4.02 114.9 ± 3.85 

SD 4.72 12.11 8.04 6.66 

Median 125.91 104.64 96.53 114.59 

Range 118.23 -128.24 92.01 -121.71 92.01 -108.8 108.4-121.71 

p(Mann (i)vs(ii):0.002 **; (i)vs(iii):0.0095 (i)vs(iv):0.095; (iii)vs(iv) 0.11

Whitney) 

n= number of sect10ns ; * *Kruskal-Walhs test) ; measurements:p1xels per micron 
2

Immunolabelling of tubules in rejection was similar to control kidney tissue. ANP 

immunolabelling of arteries was similar to control kidney in acute rejection. There was 

significantly decreased immunolabelling of collecting ducts in acute rejection (p=0.0087, 

Mann-Whitney test) compared to controls. 
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Table 3.4.3.1 ANP image analysis in acute rejection 

ARTERIES 

Control Rejection 

n 6 6 

Mean±SEM 100.47 ± 5.49 104.36 ± 3.23 

SD 13.44 7.91 

Median 105.08 103.16 

Range 77.41 - 113.51 96.57 -117.59 

p(Mann Whitney) 0.4 

n= number of sections (one per patient); measurements: pixels per micron2

Table 3.4.3.1 ANP image analysis in acute rejection 

DIST AL TUBULES 

Control Rejection 

n 6 7 

Patients 6 7 

Mean± SEM 116.49 ± 5.52 107.99 ± 3.40 

SD 13.52 8.99 

Median 110.79 110.65 

Range 106.99-142.03 95.04 -120.5 

p >0.05 (Mann Whitney)

-n- number of sections; measurements: pixels per micron 
L
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T bl 3 4 3 1 ANP . I . . a e . . . image analysis m acute re.1ection 
COLLECTING DUCTS 

(i) Control (ii)Rejection (iii(Mild
Re_jection 

n 6 6 4 

Patients 6 6 4 

Mean±SEM 136.84± 2.36 113.48± 5. 75 102.5 ± 4.46 

SD 5.78 14.08 8.91 

Median 138.88 110.18 102.8 

Range 126.48-42.19 95.76-134.23 93.87-110.47 

(iv)Severe
Rejection

2 

2 

82.38 ± 22.44 

31.73 

82.38 

59.94-104.81 

p(Mann- (i)vs(ii):0.0087 (i)vs (iii) 0.0095
Whitney) (iii)vs(iv): 0.53 (i) vs (iv) <0.01 **

n- number of sections, ** Tukey-Kramer, measurements. pixels per micron 2

3.4.3.2 Analysis of ANP labelling in glomerulonephritis 

There was significantly decreased immunolabelling of glomeruli in glomerulonephritis (p= 

0.002, Kruskal-Wallis test) compared to control kidney tissue. 

Table 3.4.3.2 ANP image analysis of glomeruli in renal disease 

GLOMERULI 

(i) Control (ii) GN iii)Non-prolif (iv)Prolif GN
GN

N 6 6 2 3 
Mean ±SEM 124.12 ± 1.93 108.03 ± 1.64 104.73 ± 0.52 109.98± 2. 78 

Median 125.91 107.24 104.73 108.04 

Range 118.23-128.24 104.21-15.47 104.21-105.25 106.44-115-4 7 

p(Mann Whitney) (i)vs(ii):0.002*; (i)vs(iii):0.07 {iii)vs(iv):0.2; (i)vs (iv):0.02 
n= number of sections and number of patients; *Kruskal-Wallis; measurements: pixels per 

micron2
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Table 3.4.3.2 ANP image analysis of arteries in renal disease 

ARTERIES 

Control GN 

n 6 6 

Patients 6 6 

Mean ±SEM 100.47 ± 5.49 106.9 ± 5.96 

Median 105.08 104.1 

Range 77.41- 117.59 93.87 - 133.98 

p >0.05 (Mann Whitney)

-n- number of sect10ns, measurements. pixels per micron 2

Table 3.4.3.2 ANP image analysis in renal disease 

DIST AL TUBULES 

(i) Control (ii) GN (iii)Non-prolif (iv)Prolif GN
:;N

N 6 6 2 3 

Patients 6 6 2 3 

Mean±SEM 116.49 ± 5.52 110.42 ± 5.27 126.35 ± 4. 78 101.92 ± 1.97 

Median 110.79 104.82 126.35 101.34 

Range 106.99- 142.03 98.84 - 131.13 121.58 - 131.13 98.84 - 105.59 

p* (i)vs(ii): >0.05; (i)vs(iii) 0.29 (i)vs(iv) 0.024; (iii)vs(iv) : 0.2

2 -* Mann Whitney test; n- number of sections, measurements. pixels per micron

200 



Table 3.4.3.2 ANP image analysis in renal disease 

COLLECTING DUCTS 

(i) Control (ii) GN (iii)Non-prolif (iv)Prolif GN
GN 

6 8 5 3 

Patients 6 8 5 3 

Mean± SEM 136.84 ± 2.36 98.6 ± 8.07 123.88 ± 6.14 91.84 ± 2.66 

Median 138.88 94.5 125.71 94.25 

Range 126.48-142.19 59.94 -138.12 103.87-138.12 86.52-94.74 

p* (i) vs (ii):0.0027;(i)vs (iii) 0.095 (i) vs (iv) 0.0238; (iii) vs (iv) 0.0357

7 
*Mann-Whitney test; n= number of sections; measurements: pixels per micron

Immunolabelling of tubules was reduced in proliferative GN (p=0.024, Mann-Whitney 

test), compared to control kidney tissue. Labelling of collecting ducts was reduced in 

glomerulonephritis compared to control kidney tissue (p= 0.0027); labelling was reduced in 

proliferative glomerulonephritis compared to control kidney tissue (p=0.0238) and non­

proliferative glomerulonephritis (p=0.0357). The images are depicted in Figures 3 .12. 
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URINARY TISSUE KALLIKREIN 

The kallikrein-kinin system is known to be involved in inflammation and renal disease. 

This study measures tissue kallikrein as well as basal (endogenous) and generated kinin in 

urine in patients with acute renal allograft rejection and various renal disorders, the first 

time that such a study has been conducted. Kallikrein and kinins are produced in the kidney 

in renal disease; thus their assay in urine would reflect their status in renal disorders. 

3.5.1 PATIENT DEMOGRAPHICS 

Acute Rejection Group 

Twenty renal transplant patients with acute rejection were studied: there were 18 males and 

2 females; of these, 13 had received living related donor kidneys, 3 had received kidneys 

from living unrelated donors and 4 from cadaver donors. Their mean age was 35.8 years 

(range 16-52 years). Mild rejection was present in 5 patients, moderate rejection in I 0 

patients and severe rejection in 5 patients (Appendix 3.3.1.1 ). 

Renal Disorders 

Twenty nine patients with various renal disorders were studied: 20 were males and 9 

females, with a mean age of 34 years (range 13-60 years). Six patients had 

mesangiocapillary glomerulonephritis (MCGN), 3 had class IV lupus nephritis (SLE), I 

membranous nephropathy (MGN), 3 minimal change disease with nephrotic syndrome 

(MCNS), 3 imrnunoglobulin A (lgA) nephritis, 3 hypertensive nephrosclerosis (HPT neph), 

10 with miscellaneous causes (reflux nephropathy, obstructive uropathy, end stage diabetic 

nephropathy); 14 patients were on dialysis at the time of the study (Appendix 3.3.1.2}. 
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Control Group 

Twenty subjects formed a control group; these were kidney donors who were studied prior 

to uni-nephrectomy. There were 8 males and 12 females with a mean age of 34.8 years 

(range 22-48 years). Their details are presented in Appendix 3.3 .1.3. Further controls were 

a group of24 healthy volunteers (8 males and 16 females), mean age 45.9 years, (range 27-

64 years); 16 kidney donors (12 females and 4 males), mean age 34.5 years (range 25-52 

years) following nephrectomy who served as single-kidney controls; and 20 stable kidney 

transplant recipients, 12 males and 8 females, mean age 35.7 years (range 17-58 years) who 

served as immunosuppressive controls. 

3.5.2 MEASUREMENT OF TISSUE KALLIKREIN 

3.5.2.1 ENZYMIC ACTIVITY 

Tissue kallikrein (TK) was measured in the urine of 20 kidney donors pre-operatively and 

16 donors at 7 months to 6 years post-nephrectomy by an amidase assay; these served as 2 

and single kidney controls respectively; 20 stable transplant recipients served as an 

immunosuppressive control group. Twenty transplant recipients with acute rejection and 29 

patients with glomerulonephritis were studied. Annexure 3.5.1 outlines the details. 

3.5.2.1.1 Control subjects 

Kidney donors 

Kidney donors (prior to nephrectomy) had a mean± SEM urinary TK excretion of 50.19 ± 

20.39 ng/ug protein (range 0.02-314 ng/ug protein), with a median value of 8.09 ng/ug 

protein. The results are summarized in Table 3.5. l 
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Kidney donors (post nepltrectomy) 

Following uni-nephrectomy, mean ± SEM urinary TK excretion measured 2.13 ± 0.42 

ng/ug protein (range 0 - 5.59 ng/ug protein), with a median of 1.47 ng/ug protein. The 

difference between these donor groups before and after nephrectomy was significant, with 

a two-tailed p value of 0.017 (Mann-Whitney test). 

Stable kidney transplant recipients 

Urinary TK excretion in stable transplant recipients measured a mean± SEM of 2.07 ± 0.4 

ng/ug protein (range 0 - 6.94 ng/ug protein) and median of 2.03 ng/ug protein. Urinary TK 

excretion was similar in stable transplant recipients and donors post-uninephrectomy 

(p=0. 799; Mann-Whitney test) but was very significantly decreased when compared to 

donors pre-nephrectomy (p=0.0069; Mann-Whitney test). 

Table 3.5.1 Urinary tissue kallikrein enzymic activity 

(i) Donors (ii) Donors (iii) Stable
Pre-op Post-op Transplants

n 20 16 20 

Mean±SEM 50.19 ± 20.39 2.13 ± 0.42 2.07 ± 0.4 

SD 91.16 1.69 1.77 

Range 0.02 -314.0 0.0- 5.59 0.0-6.94 

Median 8.09 1.47 2.03 

p (Mann- (i) vs (ii): 0.017; (i)vs(iii) : 0.0069; (ii)vs(iii): 0. 799
Whitney test) 

n= patient numbers; measurements: ng/ug protein 
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3.5.1.1.2 Acute rejection 

Mean ± SEM urinary TK excretion measured 1.35 ± 0.37 ng/ug protein during acute 

rejection, with a median of 0.63 ng/ug protein and range 0 - 5.67 ng/ug protein. TK was 

very significantly decreased during rejection when compared to donors pre-nephrectomy 

(p=0.001). While urinary TK excretion was decreased during acute rejection, it was not 

significant when comparing the rejection group with donors post-uninephrectomy 

(p=0.0672) and stable renal transplant recipients (p=0.133; Mann-Whitney test). 

Table 3.5.2.1 Urinary tissue kallikrein enzymic activity 

(i)Donors (ii) Donors (iii) Stable (iv) Acute

Pre-op Post-op Transplants Rejection

n 20 16 20 20 

Mean±SEM 50.19 ± 20.39 2.13 ± 0.42 2.07 ± 0.4 1.35 ± 0.37 

SD 91.16 1.69 1.77 1.65 

Range 0.02-314.0 0.0-5.59 0.0-6.94 0.0-5.67 

Median 8.09 1.47 2.03 0.63 

p (i)vs(iv):0.001 (iii) vs (iv) : 0.133

(Mann-

Whitney test) (ii) vs (iv) : 0.0672; (ii) vs (iii) : 0. 799

n= patient numbers; measurements: ng/ug protein 

3.5.2.1.3 Serial urinary TK enzymic measurements following transplantation 

While TK excretion increased after renal transplantation, decreased during acute rejection 

and increased again after treatment of rejection, there was no significant difference in serial 

urinary TK excretion pre- and post- transplant. 
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Table 3.5.2.1.3 Serial urinary TK enzvmic activity followim! renal transolantation 

(i) Pre-TP (ii) Post TP (iii) Acute (iv) After Rx of

(D3-4) Rejection Rejection

n (patients) 12 12 17 16 

Mean±SEM 1.99 ± 0.69 3.41 ± 0.85 1.22 ± 0.40 3.05 ± 1.57 

SD 2.37 2.93 1.63 6.26 

Range 0.01 - 8.36 0.008 - 7.55 0.38-2.06 0.0-24.31 

Median 1.30 2.88 0.45 0.87 

p(Dunn's (i) vs (ii) : > 0.05 (iii) vs (iv) : > 0.05

multiple 
(i) vs (iii) : > 0.05; (i) vs (iv) : > 0.05

comparisons) 

measurements: ng/ug protein 

3.5.2.4 Renal disease 

Urinary TK excretion in this group measured a mean± SEM of 7.37 ± 2.42 ng/ug protein, 

with median of 3.0 ng/ug protein and range 0.01-48.02 ng/ug protein. TK excretion was 

markedly decreased in renal disease compared to controls [( donors prior to nephrectomy), 

p=0.0158; unpaired t test]. Urinary TK excretion was significantly decreased during acute 

rejection when compared to renal disease (p=0.0068; Mann-Whitney test). 

T able 3.5.2 Urinary tissue kallikrein enzvmic activi1 

(i)Controls (ii) Acute (iii) Renal

(Donors Pre-op) Rejection Disease

n (patients) 20 20 29 

Mean±SEM 50.19 ± 20.39 1.35 ± 0.37 7.37 ± 2.42 

SD 91.16 1.65 13.02 

Range 0.02 - 314.0 0.0-5.67 0.01 - 48.02 

Median 8.09 0.63 3.0 

p(Mann- (i) vs (iii) : 0.0158; (ii) vs (iii) : 0.0068

Whitney test) 

measurements: ng/ug protein 
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3.5.2.5 Correlation between enzymic urinary TK activity and serum creatinine 

There was no correlation between enzymic TK activity and serum creatinine by linear 

regression during acute rejection (p=0.874) and with renal disease (p=0.8566) 

3.5.3 URINARY TISSUE KALLIKREIN ELISA ASSAY 

Four groups served as controls: kidney transplant donors pre-and post-nephrectomy, 

volunteer subjects and stable renal transplant recipients. Immunoreactive tissue kallikrein 

was measured by ELISA in these control groups, serially following renal transplantation, 

during acute rejection and in patients with renal disease. Results are depicted in Table 3.5.3 

3.5.3.1 Control subjects 

Donors pre-nephrectomy 

The mean± SEM value for TK in 19 donors pre-nephrectomy measured 46.88 ± 9.4 ng/ml, 

median of 42.0 ng/ml, range of 0 - I 65.4 ng/ml. 

Donors after uni-nephrectomy 

Sixteen donors studied post-nephrectomy had TK measurements of mean ± SEM of 18.48 

± 8.3 ng/ml, median of 8.1 ng/ml and range of 0 - 128.24 ng/ml. Tissue kallikrein 

excretion was significantly decreased in donors post- nephrectomy compared to pre -

nephrectomy (p=0.0328; unpaired t test). 
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Combined group (normal volunteers and donors pre-nepltrectomy) 

Normal volunteer subjects (n=24) and kidney donors pre-nephrectomy (n= l 9) were 

combined for statistical analysis and the combined mean ± SEM was 61.14 ± 6.14 ng/ml, 

median of 66.25 ng/ml and range of0-165.39 ng/ml. 

Stable renal transplant recipients 

In 21 stable transplant recipients, TK values were mean± SEM of 47.54 ± 10.64 ng/ml, 

median of 33.2 ng/ml and range of 0 - 129.39 ng/ ml. The difference between the stable 

transplant recipients and combined controls was not significant (p=0.24; unpaired t test); 

however, TK was significantly increased in stable transplant recipients compared to donors 

post-nephrectomy (p=0.0482; unpaired t test). 

Table 3.5.3.1 Urinary Tissue Kallikrein ELISA measurements 

(i) Donors (ii) Donors (iii)Donors (iv) Stable

Pre-op Post-op preop+volunteers transplants

n 19 16 43 21 

Mean±SEM 46.88 ± 9.37 18.48 ± 8.30 61.14 ± 6.14 47.54 ± 10.64 

SD 40.83 33.21 40.25 48.74 

Range 0.0-165.39 0.0-128.24 0.0-165.39 0.0-129.39 

Median 42.0 8.1 66.25 33.2 

p (unpaired t- (i) vs (ii) : 0.0328 (iii) vs (iv) : 0.24

test) (ii) vs (iv) : 0.0482

n= patient numbers; measurements: ng/ml 
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3.5.3.2 Acute rejection 

Urinary TK excretion during 20 episodes of acute rejection was a mean ± SEM of 48.50 ± 

11.22 ng/ml, median of 42.5 ng/ml and range of 0 - 157.14 ng/ml. Urinary TK ELISA was 

significantly increased during acute rejection compared to donors post-nephrectomy 

(p=0.0474; unpaired t test); however there was no difference when compared to the stable 

transplant group (p=0.95). 

Table 3.5.3.2 Urinary Tissue Kallikrein ELISA measurements 

(i) Donors (ii) Donors (iii)Donors (iv) Stable (v) Acute
Pre-op Post-op +volunteers transplants rejection

19 16 43 21 20 

Mean±SEM 46.88± 9.37 18.48 ± 8.30 61.14± 6.14 47.54± 10.64 48.5 ± 11.22 

SD 40.83 33.21 40.25 48.74 50.18 

Range 0.0-165.39 0.0 -128.24 0.0-165.39 0.0 - 129.39 0.0 -157.14 

Median 42.0 8.1 66.25 33.2 42.5 

p(unpaired (ii) vs (v) : 0.0474; (iii) vs (iv) : 0.24; (iv) vs (v) : 0.95
t-test)

n= patient numbers; measurements: ng/ml

3.5.3.3 Serial urinary tissue kallikrein measurements following renal transplantation 

The mean, median and ranges for urinary TK are shown in Table 3.5.3.3. There was no 

statistical difference in TK excretion during the different phases at any period post­

transplantation in this group. 
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Table 3.5.3.3 Serial Tissue Kallikrein ELISA following renal transplantation 

(i) Pre-TP (ii) Post-TP (iii) During (iv) After Rx

(D3-4) acute Rei of Rejection 

n(patient 11 13 17 17 
numbers 

Mean±SEM 30.2 ± 16.42 36.20± 13.92 40.57 ± 11. 79 40.91 ± 7.45 

SD 54.45 50.19 48.60 30.72 

Range 0.0 -165.36 0.0-132.36 0.0-157.14 0.0-81.0 

Median 0.0 8.0 35.0 46.0 

(i) vs (ii) : 0.78 (iii) vs (iv): 0.98

p (unpaired 

t-test) (i) vs (iv): 0.51; (ii) vs (iii): 0.81; (i) vs (iii): 0.60

measurements: ng/ml

3.5.3.4 Renal disease 

Urinary TK excretion in 13 patients with renal disease measured a mean± SEM of 31.47 ± 

14.56 ng/ml, median of O and range of O - 165.39 ng/ml (Table 3.5.3.4). TK was 

significantly decreased in this group compared to the combined 2-kidney control group 

(p=0.0347; unpaired t test). 

Table 3.5.3.4 Urinary tissue kallikrein ELISA measurements 

(i)Donors and (ii) Acute (iii) Renal

Volunteers Rejection disease

n=numbers 43 20 13 

Mean±SEM 61.14 ± 6.14 48.5 ± 11.22 31.47 ± 14.55 

SD 40.25 50.18 52.45 

Range 0.0-165.39 0.0-157.14 0.0-165.39 

Median 66.25 42.5 0.0 

p (unpaired t- (i) vs (iii) : 0.034 7 j (ii) VS (iii) ; 0.3566

test) 

measurements: ng/ml 
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3.5.3.5 Correlation between urinary tissue kallikrein and serum creatinine 

There was no correlation between TK ELISA and serum creatinine by linear regression 

during acute rejection (p=0.7021) and with renal disease (p=0.2556). 

3.5.4 KININS 

Basal urinary kinin excretion was measured in 32 normal subjects (kidney donors and 

normal volunteers), 15 kidney donors post-nephrectomy, 22 stable transplant recipients, 20 

kidney transplants with acute rejection and 19 patients with glomerulonephritis, followed 

by measurement of generated kinin in their urine. Table 3.5.4 summarizes their 

measurements. Basal kinin excretion in the urine was decreased in kidney donors post-

nephrectomy when compared to the normal subjects (p < 0.001). 

T bl 3 5 4 B a e . .  asa urmary nm measuremen s ki t 

(i)Normal (ii)Donors (iii)Stable TP (iv)Ac (v) GN

controls post-op rejection

n=numbers 32 15 22 20 19 

Mean± 3.88 ± 0.02 ± 0.44± 15.45 ± 27.39± 23.22 

SEM 0.62 0.41 0.11 6.86 

SD 3.50 1.60 0.52 30.67 101.19 

Median 3.18 1.40 0.27 5.45 2.80 

Range 0.26 - 18.41 0.40-6.40 0.19 - 2.60 0.20- 137.5 0.20-444.8 

p (Dunn's (i) vs (ii) : < 0.001; (iii) vs (iv) : <0.001

multiple 

comparisons) (i) VS (iii) :< 0.001; (ii) VS (iii) :< 0.05; (i) VS (v) :> 0.05

measurements: ng/ml 
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Basal kinin excretion was significantly decreased in stable transplant recipients compared 

to normal subjects (p<0.001), and increased when compared to donors post nephrectomy 

(p<0.05; Dunn's multiple comparisons). Basal urinary kinin excretion was significantly 

increased during acute rejection when compared to the stable transplant recipients 

(p=<0.001). While basal kinin excretion was increased in glomerulonephritis when 

compared to normal controls, this did not reach statistical significance (p>0.05). There was 

no correlation between serum creatinine and basal kinin by linear regression during acute 

rejection (p=0.63) and renal disease (p=0.59). 

Urinary kinin generation was decreased in kidney donors post nephrectomy compared to 

normal control subjects (p=<0.00 I). Significantly decreased kinin was generated in the 

urine during acute rejection (p=0.001) and glomerulonephritis (p<0.01; Dunn's multiple 

comparisons test), compared to normal controls. There was no correlation between serum 

creatinine and generated kinin during acute rejection (p=0.56) and renal disease (p=0.43 ). 

Table 3.5.4 1 Generated urinary kinin measurements 

(i)Normal (ii)Donors (iii)Stable TPs (iv)Acute (v) GN
controls post-op Rejection

n= numbers 33 15 22 20 19 

Mean± 88.57 ± 18.67 ± 46.6 ± 25.35 ± 40.19± 
SEM 10.64 6.45 4.05 5.91 9.63 
SD 61.11 24.99 18.98 26.43 41.97 

Median 71.72 0.0 41.65 24.20 29.4 

Range 20.25 -270.8 0.0-70.5 19.0-92.3 12.98-37.72 0.0-138 

p* (i) vs (ii):< 0.001; (i) vs (iv): 0.001; (i) vs (v): < 0.01

*Dunn's multiple comparisons; measurements: ng/ml
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3.5.5 CONFOCAL MICROSCOPY: IMMUNOFLUORESCENT TK LABELLING 

Confocal images of anti-TK antibody immunolabelling in kidney biopsies of acute 

rejection, glomerulonephritis and control kidney tissue were subjected to image analysis. 

3.5.5.1 TK 

TK was immuno-visualised maximally in the connecting tubules and collecting ducts of 

control kidney tissue (Figure 3 .13 ). 

3.5.5.1.1 Acute rejection 

There was decreased TK immunolabelling in the distal tubules during rejection, 

significantly so in severe rejection when compared to control kidney (p=0.0357; Mann­

Whitney test). The data is shown in Table 3.5.5.1.1 

Table 3.5.5.1.1 TK immunofluorescence: Distal tubule 

(i) Control (ii)Mild (iii)Severe

Re.iection Rejection

n(structures) 15 14 5 

Patients 3 4 5 

Mean ±SEM 162 ± 30.3 57.8 ± 32.1 44.6 ± 15.3 

Median 154 35 30 

Range 114-218 9-152 12-87

SD 52.4 64.1 34.1 

p* (i) vs (ii): 0.11; (i) vs (iii): 0.0357

*Mann- Whitney; measurements: p1xelsx 100/micron 2
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3.5.5.1.2 Glomerulonephritis 

There was decreased immunolabelling of distal tubules in both non-proliferative and 

proliferative disorders; labelling was significantly reduced in non-proliferative GN 

(p=0.0238; Mann-Whitney test) when compared to control kidney. 

Table 3.5.5.1.2 TK immunofluorescence: Distal tubule 
(i) Control (ii)Non (iii)Proliferative

Proliferative GN GN 
n(structures) 15 7 3 

Patients 3 6 3 

Mean±SEM 162.0 ± 30.3 23 ± 13.5 40.6 ±29.2 

Median 154 10.1 16.5 

Range 114-218 2-89.5 6.5-98.7 

SD 52.5 33.1 50.6 

p* (i) vs (ii) :0.0238; (i) vs (iii) :0.10

.L *Mann-Whitney test, measurements. p1xelsx 1 00/m1cron
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Appendix B 3.1 Demographics of patients from whom kidney tissue samples were obtained at autopsy 

AGE RACE SEX CAUSE OF DEATH TIME BETWEEN AUTOPSY 
AND DEATH 

21 y African Male Stab chest 16 h 

25 y African Male Stab chest 15 h 

25 y African Male Stab chest 16 h 

30y African Male Gun shot chest 16 h 

40 y Indian Male Acute myocardial infarction 23 h 

24y Caucasian Male Acute carbon monoxide poisoning 22h 

46y Indian Male Hanging 6h 

31 y Indian Male Hanging 6h 
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Appendix 3.2.2 : Demographics of Control Group- Endothelin-1 

Subject 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

I - Indian 

B - Black 

W - White 

M - Male 

Age 

40 

35 

40 

31 

44 

30 

30 

43 

22 

48 

28 

25 

27 

45 

30 

31 

32 

33 

21 

46 

27 

47 

F - Female 

Sex 

F 

M 

M 

F 

F 

F 

M 

F 

M 

F 

M 

F 

F 

M 

F 

M 

M 

M 

M 

M 

M 

M 

Race Plasma 
ET-1 (p�/ml) 

I 1.38 

I 0.7 

I 0.9 

I 0.83 

B 0.75 

I 0.68 

I 0.73 

I 0.8 

B 1.55 

I 0.75 

I 0.58 

B 0.55 

I 0.72 

I 0.68 

I 0.63 

w 0.6 

w 0.6 

B 0.4 

I 0.68 

I 0.4 

I 0.43 

I 
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Urine ET-1 
(p�/ml) 

0.3 

0.2 

0 

0.13 

0.17 

0.7 

0.38 

0.13 

0.35 

1.58 

0.16 



,ppen 1x . . .  ahent pro I e an A d' B 3 2 3 P fil d plasma ET I. - m renal disease 
Pt Race Age Sex BP Creatinine 

µmol/1 
1 I 18 F H Dialysis 

2 B 30 M H 132 

3 B 16 M H 92 

4 B 35 M N 180 

5 I 43 F H Dialysis 

6 I 34 M H 108 

7 I 25 M H 113 

8 I 45 F N 84 

9 I 24 M H 250 

IO w 48 M H 396 

11 B 39 M H 393 

12 I 26 F H 113 

13 I 47 F H Dialysis 

14 I 13 M N 56 

15 B 21 F N 65 

16 B 33 F N 53 

17 B 59 M H 325 

18 C 22 M N 140 

19 B 24 M H 290 

20 I 35 F N 120 

21 B 30 F N 77 

22 B 32 F N 80 

23 B 32 F N 72 

24 B 26 F N 70 

25 I 26 M N 91 

26 B 34 F N 86 

27 B 55 M N 350 

28 I 38 M H 156 

29 B 52 M H 766 

Blood pressure : H = hypertensive; N= normotensive 
SLE IV= Class IV lupus nephritis 
GN = glomerulonephritis 

Proteinuria 
£/24 h 

3 

12,4 

0,67 

2,2 

4,5 

0,3 

3,6 

3,9 

3,0 

1,0 

21 

3,1 

5,2 

3,2 

13,9 

19,7 

3,9 

21 

1,3 

0,5 

10 

8 

8,2 

6,9 

I 9,8 

2,4 

1,0 

5,8 

MCNS = nephrotic syndrome due to minimal change disease 
MPGN = mesangioproliferative GN 
MGN = membranous GN 
MCGN = mesangiocapillary GN 
HPT neph = hypertensive nephrosclerosis 
CIN = chronic interstitial nephritis 
NS = nephrotic syndrome 
M = male B = black I =  Indian 
F = female W = white C = coloured 
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Renal Plasma ET-1 Urine ET 
Histoloi?y (D!!/ml) (pg/ml) 
SLEIV 4,5 

MCGN 1,6 

MPGN 0,6 0.04 

MCGN 4,0 

SLEIV 3,0 0.5 

IgA- 1,6 0 
MPGN 
MCGN 3,0 

lgA- 2,1 
MPGN 
MCGN 3,3 

MCGN 0,65 

MCGN 2,53 0.4 

SLEIY 4,12 0.95 

SLEIV 5,56 

MCNS 1,41 0 

MGN 0,45 0 

MCNS 0,63 0.38 

MGN 1,94 1.09 

lgA and 2,0 0.22 
NS 
CIN 2,8 

IgA Neph 0,6 

MCNS 0,6 

MCNS 0,48 

MGN 0,55 

MGN 0,48 

MCNS 1, I 

MGN 3,0 

CIN 2,1 

HPT Neph 1,6 

HPT Neph 1,04 0.98 



Appendix B 3.2.4:Plasma ET-1 in patients with end stage renal failure on dialysis 

Subject Age Sex BP 

1 51 M H 

2 35 M H 

3 43 M H 

4 12 M H 

5 52 M H 

6 53 M N 

7 33 M H 

8 16 M H 

9 22 M H 

10 23 F H 

11 33 M H 

12 52 M H 

13 35 M H 

14 37 M H 

15 23 M H 

16 47 F H 

17 42 F H 

18 35 M H 

19 28 M H 

20 26 M H 

21 36 M H 

22 35 M N 

23 60 F N 

24 36 F H 

M = male; F = fem ale 
H = hypertension; N = normotension 
GN= glomerulonephritis 
MCGN =mesangiocapillary GN 
SLE = systemic lupus erythematosis 
lgA= immunoglobulin A nephritis 

Diagnosis Plasma 
(pg/ml) 

Membranous GN 1,68 

MCGN 1,23 

Diabetic nephropathy 4,63 

MCGN 4,29 

Unknown 1,04 

Unknown 2,14 

Unknown 3,39 

Unknown GN 2,34 

Unknown 1,89 

Reflux nephropathy 1,9 

Unknown 3,2 

Unknown 1,11 

Unknown 2,4 

Unknown 2,63 

Unknown 1,43 

SLE 5,56 

SLE 2,13 

IgA 1,35 

Unknown 3,38 

Unknown 1,84 

Unknown GN 2,0 

Renal cortical necrosis 1,4 

Chronic interstitial 0,29 
Nephritis 

Unknown 1,6 

CAPD= continuous ambulatory peritoneal dialysis; HD = haemodialysis 
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ET-1 Dialysis 

CAPO 

CAPO 

HD 

CAPO 

HD 

HD 

HD 

CAPO 

HD 

CAPO 

HD 

CAPO 

CAPO 

HD 

CAPO 

HD 

CAPO 

CAPO 

HD 

CAPO 

HD 

HD 

HD 

CAPO 



B3.2.5 Serial ET-1 measurements before and following transplantation 

Pt Pre-TP Post-TP Acute Re_jection Post Rx Rejection 

1 1.68 2.64 1.56 1.12 

2 1.86 1.12 

3 1.23 0.82 0.87 1.12 

4 0.93 1.11 

5 4.29 2.0 

6 1.1 0.75 1.5 

7 1.1 0.95 

8 2.34 0.96 3.76 1.25 

9 1.84 1.55 

10 1.9 1.1 2.3 1.04 

11 0.8 2.33 2.16 

12 1.1 1.78 1.78 

13 2.4 � 1.45 1.98 1.5 

14 2.63 1.28 1.55 

15 1.43 1.59 1.23 0.85 

16 3.13 2.35 

17 1.35 1.03 

18 3.38 1.25 

19 2.12 1.32 

20 1.11 2.4 2.42 1.94 

21 1.5 1.73 

22 0.71 1.05 

223 





B 3.4.1.Donor Controls 

Donor Age Sex Race TKAmidase TKELISA BASAL GEN 
ng/ug protein ng/ml KININ KININ 

(ne/ml) (ne/ml) 

S1D 38 M I 12.77 70 

S5D 40 F I 3.29 73 

S8D 27 F B 14.3 56 

S12D 30 F I 28.63 15.23 

S23D 45 M I 50.68 65 

S27D 35 M I 24.22 26 1.2 98.2 

S28D 40. M I 1.37 69 2.05 100.7 

S32D 26 F I 225.9 101 2.0 174.6 

S36D 44 F B 0.02 18 

S39D 35 F I 1.37 0.0 1.9 89.2 

S41D 30 M I 64.2 70 

S42D 43 F I 314 7 2.7 113.7 

S45D 22 M B 2.43 18 

S48D 48 F I 2.79 43 3 80.9 

S51D 25 F I 222 7.4 

S52D 28 M I 29.5 42 5.0 113.7 

S53D 27 F C 3.41 12.12 

S54D 25 F B 0.02 40 7.6 40.7 

S15D 39 F I 2.52 0.0 

S18D 48 M C 0.46 165.39 
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B3.4.2 Volunteers Controls 

Patient Age Sex TKELISA TKAMIDASE KININ Gen KININ 

n�/ml n�/mmrot Basal 

249 46 F 75.97 2.18 6.05 52.78 

250 36 F 7.9 0.05 6.04 21.83 

251 42 M 25.88 0.06 8.52 41.68 

385 47 F 0 0.08 5.25 20.25 

386 38 F 50.24 0.5 4.46 20.94 

387 27 M 75.83 0.18 6.02 20.9 

388 40 M 48.01 0.18 5.86 20.45 

390 52 F 0 1.4 18.41 56.09 

448 59 F 85.13 0.15 4.27 71.72 

449 35 F 114.47 1.92 3.99 120.01 

450 so F 86.48 0.37 3.35 68.17 

451 47 F 68.76 0.25 1.18 68.09 

453 40 M 74.92 0.31 2.18 126.65 

454 43 M 118.02 0.42 1.37 74.12 

455 39 F 115.6 0.24 4.3 55.42 

456 52 M 111.91 1.23 3.96 71.13 

457 64 M 106.38 0.47 0.26 45.75 

460 42 F 88.33 0.49 0.75 67.74 

461 50 F 66.25 0.94 1.76 270.8 

462 42 F 56.98 1.11 1.54 251.5 

463 40 F 55.27 0.38 0.97 164.4 

464 48 M 85.67 0.77 1.11 155.4 

505 58 F 121.02 1.57 0.89 110.1 

506 64 F 104.35 0.12 1.14 99.5 
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B 3.4.5 Stable Transplant Patients 

TK TK KININ KININ 

Patient Sex Age ELISA AMIDASE BASAL GEN 

475 M 20 0 0.76 0.22 19 

476 M 30 60.94 2.4 0.34 56.5 

477 M 23 72.09 2.52 0.26 47.9 

478 F 42 0 2.42 0.37 30.1 

481 F 24 0 1.14 0.25 36.2 

482 M 25 33.2 

483 F 41 129.39 6.94 0.23 23.7 

484 M 43 0 0.83 0.2 40.3 

485 F 58 5.79 2.57 0.23 51 

487 M 21 9.67 0 0.48 41.7 

488 M 46 125.84 4.2 0.27 31.7 

489 M 32 0 0.12 0.53 80.4 

490 F 43 116.02 2.41 0.27 44.2 

491 M 35 66.23 4.55 0.57 92.3 

492 F 27 71.35 1.97 0.33 82.8 

493 M 47 91.74 0 0.19 40 

494 F 36 115.02 3.71 0.19 36.8 

495 M 39 0 2.09 0.36 35 

497 F 46 0 1.39 0.26 47.4 

498 M 44 86.29 0.11 0.28 65.3 

499 M 17 14.70 1.24 0.21 36.5 
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DISCUSSION 
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4.1 FLUID VOLUME STATUS AND EFFECTIVE RENAL PLASMA FLOW 

Total body water (TBW) was measured in 5 transplant recipients immediately pre­

transplant following dialysis, when they were assessed as having reached "dry" weight, 

namely showing no evidence of fluid retention. TBW was measured following 

transplantation and during rejection in 3 patients, when fluid retention was apparent; and 

again when kidney function had stabilised, demonstrating reduction in body weight and 

fluid retention and hence a reduction in TBW. Effective renal plasma flow was measured in 

6 transplant patients, and was shown to be reduced in patients during rejection. 

4.2 ENDOTHELINS IN RENAL FUNCTION AND RENAL DISEASE 

Endothelin-1 (ET-1) affects renal physiology by influencing sodium and water excretion 

and vascular and mesangial tone. It also acts as a growth factor by promoting cell 

proliferation and matrix formation. ET-1 may activate and be chemotactic for monocytes, 

which can in turn secrete ET-1 (Martin-Nizzard et al., 1991; Achmad and Rao, 1992), and 

may thus influence renal inflammation. 

4.2.1 Endothelins in acute renal allograft rejection 

ET-1 in tlze circulation and urine 

Plasma ET-1 levels were reported to be elevated in pre-dialysis patients with chronic renal 

failure and in patients on regular haemodialysis whereas they were found to be normal in 

stable renal transplant patients treated with cyclosporine A [(CyA); Stockenhuber et al., 

1992]. An association between increased plasma ET-1 levels and CyA was first suggested 
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in a renal transplant patient receiving high (toxic) doses of Cy A (Fogo et al., 1990). After 

administration of Cy A, plasma ET-1 levels increase only transiently in transplant patients, 

because ET-1 is rapidly metabolised and cleared from the systemic circulation (Grieff et 

al., 1993). Cyclosporine and related immunosuppressants such as Tacrolimus (FK506) 

directly stimulate ET-1 release from mesangial and/or endothelial cells (Langman and 

Yatscoff, 1994; Goodall et al., 1995; Kohno et al., 1995). Cyclosporine A increases renal 

ET-1 mRNA expression (Iwasaki et al., 1994). Anti-ET antibodies and ET receptor 

antagonists an1eliorated acute CyA-induced renal vasoconstriction (Kon and Awazu, 1992; 

Lanese and Conger, 1993; Conger et al., 1994; Brooks and Contino, 1995; Kon et al., 

1995). Chronic oral administration of CyA increases urinary ET-1 in the rat. Both acute 

and chronic CyA toxicity are associated with reduced renal function and elevated plasma 

ET-1. As Cy A levels reach therapeutic levels and renal function improves, urinary ET- I 

levels return to baseline (Perico et al., 1992). Mixed ET antagonist SB209670 prevented 

acute vasocontriction and reduction of renal function induced by high dose Cy A (Brooks 

and Contino, 1995). Little is known about the effect of steroids on ET-1 production and 

release. In vitro, pre-treatment of rat vascular smooth muscle cells with dexamethasone 

resulted in an attenuated response to ET- I due to down-regulation of ET A receptors. Other 

steroids (prednisolone and hydrocortisone) gave similar responses but were less effective 

(Nambi et al., 1992). 

In the present study, plasma endothelin-1 levels were measured serially, in patients prior to 

renal transplantation, post-transplantation when stable, during acute rejection and 

subsequently after treatment of rejection. The highest levels of ET-l were observed prior to 

transplant, in patients with chronic renal failure on dialysis. Following transplantation, ET-
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1 levels decreased, increased during episodes of acute rejection and decreased again after 

treatment of rejection. This corresponded with elevated urinary ET-I levels during acute 

rejection, suggesting that ET-1 is produced by the kidney, probably by inflammatory cells 

within the renal cellular structures and interstitium, reflecting endogenous renal ET-1 

synthesis (Abassi et al., 1992). 

Cellular localisation of ET-I 

Immunofluorescent studies showed increased ET-1 labelling of proximal and distal tubules 

during rejection Electron microscopy revealed ET-1 immunolabelling in epithelial cells of 

proximal and distal tubules and endothelial cells of blood vessels and glomerular 

capillaries, specifically in cytoplasm of cells, endoplasmic reticulum and mitochondria. 

Label was found in increased amounts adjacent to the intercellular system and within 

vacuoles and secretory vesicles. ET-I is stored within these vesicles and released at the cell 

surface after an appropriate stimulus. The characteristic feature of acute rejection is 

infiltration of the graft by host mononuclear cells; these lymphocytes and macrophages 

infiltrate the interstitium and tubular epithelium. The interstitial infiltrate is associated with 

oedema. In this study, ET-1 label was also demonstrated in the mononuclear cells 

infiltrating the tubules during acute rejection by electron microscopy as well as by the 

immunoperoxidase method. ET-I mRNA was upregulated in the tubular epithelial cells 

and capillary endothelial cells, as well as the inflammatory infiltrate, during acute rejection 

as demonstrated by in situ RT-PCR. The inflammatory process of acute cellular rejection is 

predominantly confined to the interstitium, and marked intragraft upregulation of ET-I 

may occur without significant changes in ET-I plasma concentrations (Watschinger et al., 

1995), unless there is endothelial damage as occurs with vascular rejection (Watschinger et 
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al., 1994). Possible causes and effects of increased ET-1 production during acute renal 

allograft rejection are suggested in Fig 4.1. 

Fig 4.1: Possible causes and effects of increased ET-1 production during acute renal 

allograft rejection. 

I ALLOGENEIC STIMULUS I 

HYPERTENSION 

• t
MONO!lUCLEAR CELLS 

INFILTRATE GRAFT 

ENDOTHELIN ♦ ---

VASOCONSTRICTION 

IRPFil 
� 

�---� 

Ref: Watschinger B and Sayegh M H (1996), Am J Kid Dis, 27: 151-161 (I 56). 

Abbreviations: RPF= renal plasma flow; GFR= glomerular filtration rate; TXA2
= 

thromboxane; OKT3= Orthoclone; PDGF= platelet-derived growth factor 

Activated mononuclear cells infiltrate the allograft and stimulate the secretion of cytokines 

which influence the production of ET-1 by other cells in vitro: tumour necrosis factor a 

increases ET-1 mRNA and causes secretion of ET-1 by capillary endothelial cells, 

235 



epithelial cells and rat mesangial cells (Kohan, 1991 ); similarly IL-Ip induces ET-1 release 

from renal epithelial cells (Ohta et al., 1990). Platelet activation triggers the release of 

transforming growth factor (TGFP), thromboxane A2, PDGF and thrombin from platelets 

that accumulate in the graft as a consequence of the rejection process. This results in ET- I 

secretion and upregulation of ET-1 gene expression in endothelial, vascular smooth 

muscle, renal mesangial and epithelial cells (Kurihara et al., 1989; Watschinger and 

Sayegh, 1996). Increased expression of the intracellular adhesion molecule-I (ICAM-1) 

expression occurs in the glomeruli of rat renal allografts undergoing acute rejection 

(Azuma et al., 1994). 

Cellular localisation of endotlte/in receptors 

Immunoperoxidase localisation showed decreased ET 8 receptor labelling in tubules during 

acute rejection; as well as an increase in ET A receptor immunofluorescent labelling in 

collecting ducts during rejection. The small numbers in each sub-category made statistical 

analysis difficult. Electron microscopy revealed ET receptor immunolabelling in epithelial 

cells of proximal and distal tubules and endothelial cells of blood vessels and glomerular 

capillaries. The clinical features of hypertension and oedema that occur during acute 

rejection may be mediated by the ET A receptor (promoting vasoconstriction) and by down­

regulation of the ET8 receptor, resulting in an anti-natriuretic effect respectively. 

Chronic rejection 

Chronic rejection is recognized as a sequelae of acute rejection, and may thus follow on as 

a result of the secretion of growth factors. Periglomerular and perivascular macrophages 
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secrete cytokines that are profibrogenic, including platelet-derived growth factor (PDGF) 

and TGF-p. The gradual functional deterioration caused by the development of 

glomerulosclerosis and arterial obliteration may also cause systemic hypertension which 

results in the remaining functional glomeruli to hyperfilter before eventually fibrosing, a 

process that progressively leads to renal damage (Neuringer and Brenner, 1992). Renal 

allografts with chronic rejection and transplant-associated arteriosclerosis have been 

reported to express 6-fold more ET-I in the neointima of the vasculature, when compared 

to allografts with acute rejection or normal control kidneys (Simonson et al., 1998). 

4.2.2 Endothelins in renal parenchymal disease 

ET-1 in the circulation and urine 

This study demonstrated that increased plasma ET-I levels were present in renal disease, 

compared to normal controls; the elevated plasma ET-I levels were found in both 

proliferative and non-proliferative glomerulonephritis (GN), with significantly higher 

levels in proliferative glomerulonephritis. Both hypertensive and normotensive patients 

with glomerulonephritis had increased plasma ET-1 levels, but with significantly higher 

levels in the hypertensive patients. Plasma ET-1 values were elevated in both dialysis- and 

non dialysis-requiring patients when compared to normal controls; plasma ET- I was 

significantly higher in dialysis patients compared to patients not requiring dialysis. Urinary 

ET-1 levels were similar in patients with glomerulonephritis and controls. 

ET-1 may be important in increasing vascular resistance in hypertension. ET- I potentiates 

the vasoconstrictor response to sympathetic stimulation (Haynes and Webb, 1998). The 

endothelin system in human hypertension resembles animal models of salt-sensitive 
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hypertension; ET-I is elevated in black hypertensives compared to white hypertensives and 

black normotensives (Ergul et al., 1996). Endothelin levels were significantly elevated in 

normotensive black adolescents with a family history of hypertension; ET- I was markedly 

increased in response to acute stressors (Treiber et al., 2000). 

Cellular localisation of ET-I 

Immunofluorescent immunocytochemistry showed increased ET-I labelling of proximal 

and distal tubules in proliferative GN biopsies. Proximal tubular labelling was observed 

mainly in the brush border, as reported by Wilkes et al. (1991). Electron microscopy 

demonstrated the presence of ET-1 in the proximal and distal tubules and glomeruli as well 

as blood vessels; the localisation was predominantly in the cytoplasm, as well as 

mitochondria and within secretory vesicles. ET-I label was present in endothelial cells of 

glomerular capillaries and arterioles as well as vascular smooth muscle cells. ET-I acts as 

an autocrine/ paracrine substance, as circulating plasma levels are lower than those 

required to elicit most of the biological actions of ET-I. The concentration of ET-I at the 

vascular smooth muscle may be several orders of magnitude higher than that in plasma 

(Yoshimura et al., 1995; Benigni, 2000). Angiotensin II stimulates the expression of ET-I 

gene in endothelial and renal cells. Part of the mitogenic effect of Angiotensin II is 

mediated by ET-I, as suggested by studies with monoclonal antibodies against ET-I 

(Bakris and Re, 1993). Data in animals with progressive nephropathies suggest that 

angiotensin conve11ing enzyme inhibitors (ACE-I), besides reducing glomerular protein 

traffic, also inhibit the exaggerated synthesis of ET-I (Zoja et al., 1998). ET-I synthesis in 

proximal tubular cells can be influenced by proteinuria (Zoja et al., 1995). 
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Cellular localisation of emlotltelin receptors 

ETA receptor labelling was increased in distal tubules in proliferative GN. ET8 receptors, 

visualised by immunoperoxidase, showed decreased labelling in tubules in GN biopsies. 

The small numbers in each sub-category made statistical analysis difficult; further studies 

with larger sample numbers would help in confirming these findings. Electron microscopy 

demonstrated the presence of ET receptors in the proximal and distal tubules and glomeruli 

as well as blood vessels. ET receptor label was present in endothelial cells of glomerular 

capillaries and arterioles as well as vascular smooth muscle cells. The role and interaction 

of the two endothelin receptors in vivo remains unclear. Activation of ET A or ET 8 receptors 

on vascular smooth muscle cells produces a pressor response through vasoconstriction, 

while activation of ET 13 receptor on the vascular endothelium produces a depressor 

response by evoking the release of vasodilators. ET 8 receptors on the vascular endothelium 

may play a role in clearing circulating ET-I, thereby reducing its predominant ETA

mediated presser actions. Activation of ET 8 on the renal tubular epithelium can act as a 

depressor mechanism by promoting natriuresis and diuresis. 

ET-1 ill renal infla111111atio11 

Mesangial proliferation is a common finding in glomerular inflammation, suggesting that 

local overproduction of ET-I might serve as a pro-inflammatory signal in glomerular 

injury. Pro-inflammatory agents, such as IL-I and TGFp, stimulate ET-1 secretion in 

endothelial and mesangial cells, supporting this hypothesis. ET-1 induces platelet-derived 

growth factor (PDGF) A and B chain expression in human mesangial cells; AP-1 

transcription factors probably mediate induction of the collagenase gene by ET-1 in 

mesangial cells (reviewed by Simonson, 1993). There is evidence to suggest that ET-1 is 

involved in the pathogenesis of proliferative glomerulonephritis. Renal ET-1 production 
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was increased in experimental and human glomerulonephritis (Murer et al., 1994; 

Roccatello et al., 1994; Nakamura et al., 1995a; Yoshimura et al., 1995). ET-I is a potent 

mitogen and partly mediated the proliferative effects of several cytokines (Bakris and Re, 

1993; Kohno et al., 1994; Nitta et al., 1995). Inflammatory cytokines and proteinuria per se 

augmented renal ET-I production (Zoja et al., 1995). ET 8 receptor expression was 

upregulated in glomerulonephritis in the rat (Yoshimura et al., 1995). ET receptor 

antagonists reduced mesangial cell proliferation in experimental mesangial proliferative 

glomerulonephritis (Fukuda et al., 1996) and decreased renal injury in murine lupus 

nephritis (Nakamura et al., 1995b). 

Endothelin-1 also contributes to excessive accumulation of extracellular matrix 

components and fibrosis by increasing renal cell fibronectin and collagen production, tissue 

inhibitor of metalloprotease levels and the release of cytokines that stimulate matrix 

accumulation (Ong et al.. 1994; Ruiz-Ortega et al., 1994). ET-1 antagonism decreased 

matrix accumulation in experimental models of glomerulonephritis (Fukuda et al., 1996). 

Chronic treatment with an ETA receptor antagonist (FR 139317, Fujisawa, Osaka, Japan) 

attenuated increases in glomerular mRNA levels of collagen, laminin, tumour necrosis 

factor, TGF-�. PDGF and basic fibroblast growth factor in diabetic rats (Nakamura et al., 

1995c). Once substantial renal scarring occurs, there is an inevitable progression to end 

stage kidney disease, a process involving gradual glomerular sclerosis and interstitial 

fibrosis. Endothelin receptor blockade reduced proteinuria and glomerulosclerosis, and 

protected against hypertension and elevations in serum creatinine levels in the 5/6 

nephrectomy rat model (Benigni et al., 1993 and 1996). Endothelin receptor antagonists 

(ETA and combined ETA/ET 8 antagonists) reduced proteinuria and the amount of periodic 
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acid Schiff (PAS) positive material as well as decreasing the over-expression of fibronectin 

and typeIV collagen in diabetic nephropathy in rats with streptozotocin-induced diabetes 

(Hocher et al., 2001). 

ET-I am/ endotltelin receptors in re11alfunctio11 

Fluid retention and hypertension accompany renal disease. Clinically, glomerular disease 

presents with oedema and an elevated blood pressure. Alterations in ET-1 in the renal 

vasculature and renal tubules have differing effects. In the vasculature, increases in ET-I 

predominantly cause vasoconstriction with a hypertensive effect. Increased ET-1 in the 

nephron probably enhances sodium and water excretion, favouring hypotension (reviewed 

by Markewitz and Kohan, 1995; Schiffrin, 1995). The ET 8 receptor was down-regulated in 

proximal and distal tubules and collecting ducts, and is probably implicated in impaired 

natriuresis. This observation may account for the fluid retention and hypertension occurring 

with acute rejection and glomerulonephritis: ET s receptors have a potentially important 

hypotensive effect via inhibition of sodium and water reabsorption in the distal nephron 

(Webb et al., 1998). The amiloride-sensitive renal epithelial sodium channel is an essential 

component for the regulation of sodium balance, blood volume and blood pressure. In vitro 

studies suggest that activation of ET 8 receptors inhibits the activity of the renal epithelial 

sodium channel in the renal collecting duct epithelium (Gallego and Ling, 1996). 

Activation of ET 8 receptors leads to down-regulation of the epithelial sodium channel in 

the renal tubule via increased production of nitric oxide (Plato and Garvin, 1999). Mean 

arterial pressure was significantly higher in ET 8 receptor deficient mice; excess dietary salt 

upregulated renal ET-1 in these rodents (Ohuchi et al., 1999). Thus ET 8 receptor activation 

has a hypotensive effect via promotion of renal sodium and water excretion. 
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Endothelin receptor antagonists have been shown to be reno-protective, namely, to 

decrease blood pressure, improve renal function and reduce proteinuria in models of renal 

disease, for example, combined ET NB receptor antagonist in immune-complex nephritis 

(Gomez-Garre et al., 1996); ETA receptor antagonist FR 139317 (Fujisawa, Osaka, Japan) 

in murine lupus nephritis (Nakamura et al., 1995b ); ET A receptor antagonist LU 135252 

(Knoll AG, Ludwighafen, Germany) and ACE inhibitor had an additive effect compared to 

either agent alone in accelerated passive Heymann nephritis (Benigni et al., 1998a); ET A 

receptor antagonist (Nakamura et al., 1995c) and mixed ET A/B receptor antagonist (Benigni 

et al., 1998b) in Streptozotocin-induced diabetes. Bosentan, a mixed ET A/ET 8 receptor 

antagonist, administered to patients with mild-moderate essential hypertension was as 

effective as enalapril (inhibitor of angiotensin converting enzyme) in controlling blood 

pressure, suggesting that ET-1 contributes to hypertension in these patients (Krum et al., 

1998). 

4.3 MODULATION OF RENAL FUNCTION AND ROLE IN RENAL DISEASE OF 

ATRIAL NATRIURETIC PEPTIDE 

Circulating atrial natriuretic peptide (ANP) is produced primarily as a response to increased 

intravascular volume; elevated levels of ANP are found in hypertensive patients, nephrotic 

syndrome and acute and chronic renal failure. 
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4.3.1 ANP and acute rejection 

Plasma concentrations of all three natriuretic peptides were elevated in chronic renal 

failure, probably because of reduced clearance (Prins et al., 1996). Infusion of doses of 

ANP slightly above the physiological range in patients with moderate chronic renal failure 

secondary to glomerulonephritis resulted in a natriuretic response similar to that of normal 

controls, together with a marked increment in the urinary excretion of urea, potassium and 

phosphate (De Nicola et al., 1997). Plasma and urinary ANP concentrations were 

significantly elevated during acute rejection, compared to normal control subjects in the 

current study. ANP concentrations decrease after a successful kidney transplant and levels 

increase again when the transplant fails (Zuber et al., 1993). In these patients, increased 

plasma ANP levels in acute rejection may occur as a response to increased intravascular 

volume and hypertension: ANP production may be stimulated by excess ET-1 being 

present. ANP inhibited uptake of IgG complexes by macrophages and increased cGMP 

levels in macrophages. This alteration in macrophage-dependant phagocytosis may be 

important in the modulation of immune complex mediated tissue injury (Mattana and 

Singha!, 1993). Immunocytochemistry revealed decreased labelling of glomeruli and 

collecting ducts during acute rejection whereas immunolabelling of tubules and arteries 

was similar to control kidney. 

Studies in renal transplant recipients (Bricker et al., 1956) and in subjects with autonomic 

failure (Gill and Bartter, 1966) suggest that renal denervation impairs sodium conservation 

in the presence of dietary sodium restriction. Efferent sympathetic nerve stimulation 

increases tubular sodium and water reabsorption and produces a fall in GFR and renal 

blood flow mediated by preglomerular vasconstriction (Kopp and Di Bona, 1982). Head­

out water immersion studies in stable renal transplant recipients showed a diuretic and 
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natriuretic response with elevations in plasma ANP and urinary tissue kallikrein excretion; 

plasma renin activity did not suppress with head-out water immersion, probably as a result 

of a reduction in sympathetic nerve traffic to the juxtaglomerular apparatus (Al-Haidary et 

al., 1990). Low dose ANP infusion to stable renal transplant recipients resulted in 

immediate natriuresis and urinary cyclic GMP excretion as well as albuminuria, in contrast 

to the delayed response seen in normal subjects (Lipkin et al., 1992). Intravenous infusion 

of ANP during acute renal allograft rejection in a canine model resulted in increased urine 

flow rates and an increase in GFR, together with a fall in mean arterial pressure in the 

presence of an unchanged haematocrit (Lewis et al., 1993). 

4.3.2 ANP and renal parenchymal disease 

Plasma ANP is elevated in animals and humans with acute and chronic renal failure, due to 

enhanced release from the atria following volume expansion and reduced clearance by the 

kidneys. Predialysis ANP levels were higher in haemodialysis than CAPO or healthy 

subjects and fell to levels similar to CAPO following dialysis. Haemodialysis patients with 

moderate and severe hypertension had higher levels of plasma ANP, proANP and cGMP 

compared to normotensive or mild hypertensives. ANP was increased in moderate and 

severe hypertension and correlated with blood pressure and left ventricular hypertrophy. In 

nephrotic syndrome, plasma ANP was normal or elevated, reflecting the plasma volume 

status of these patients; however the urinary sodium excretion in response to ANP infusion 

is blunted, irrespective of plasma ANP levels (reviewed by Awazu and Ichikawa, 1993). 

ANP stimulates kallikrein excretion transiently and is dependent on distal sodium delivery 

(Klein et al., 1989). Low supraphysiological doses of ANP to patients with moderate 

chronic renal failure due to glomerulonephritis were natriuretic, together with an increased 
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excretion of urea, potassium and phosphate (resulting in a 15-20% decrease in plasma 

levels) without any drop in blood pressure. 

There was decreased immunolabelling of glomeruli and collecting ducts m 

glomerulonephritis; labelling of tubules and arteries was similar to that of control kidney 

tissue. ANP immunoreactivity was reduced in hypertensive nephrosclerotic distal tubules, 

probably as a result of reduced renal tubular mass (Figueroa et al., 1990). Upregulation of 

the A receptor subtype occurred in hypertensive rats, together with increased levels of ANP 

and BNP (Yoshimoto et al., 1995). Renal ANP gene expression is upregulated in the 5/6 

nephJectomised Munich-Wistar rats, suggesting that local synthesis of ANP may 

participate in increasing renal sodium excretion to maintain sodium and water homeostasis 

in the face of reduced nephron numbers (Totsune et al., 1998). 

This study confirms the widespread immunolocalization of ANP in the normal human 

kidney. In the present study, the decreased immunolabelling of the collecting ducts during 

acute rejection and glomerulonephritis may be a reflection of impaired natriuresis and 

diuresis, resulting in fluid retention occurring in these patients. 

4.4 THE KALLIKREIN KININ CASCADE IN RENAL FUNCTION AND 

DISEASE 

Kallikreins are proteolytic enzymes which interact with their substrate the kininogens to 

form the vasoactive peptides, kinins. Kinins bind to their receptors at target organs and 

exert potent effects in vasodilatation, reduction of blood pressure, vascular permeability, 

natriuresis, diuresis and renal blood flow. 
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4.4.1 Tissue kallikrein in renal transplantation 

Urinary tissue kallikrein enzymic activity was significantly decreased in stable renal 

transplant recipients and in kidney donors after unilateral nephrectomy, compared to 

normal controls. This supports the findings of Spragg et al., (1985) that tissue kallikrein 

excretion rate may be a useful indicator of distal tubular mass. Serial measurements of 

urinary tissue kallikrein enzymic activity were made prior to kidney transplant, on day 3 or 

4 post transplant when the patient was stable, during an episode of acute rejection and with 

recovery after treatment of rejection. While tissue kallikrein levels rose from their pre­

transplant levels on day 3 or 4 after renal transplant, decreased again during rejection and 

rose again after treatment of rejection, the difference did not reach statistical significance .. 

Lower urinary kallikrein excretion was found in transplant recipients compared to controls, 

probably related to reduced renal function or reduced renal mass (Koolen et al., 1984b; 

Marin-Grez et al., 1982). 

There was no correlation between serum creatinine and tissue kallikrein during acute 

rejection. Serial ELISA measurements did not show any difference in total immunoreactive 

tissue kallikrein at any stage of transplantation. Tissue kallikrein showed a significant 

decrease in donors post-nephrectomy compared to pre-nephrectomy; an increase in urinary 

tissue kallikrein was observed during rejection, compared to levels in donors post 

nephrectomy. Urinary excretion of tissue kallikrein was reduced in renal transplant 

recipients and more markedly so following acute rejection (Moodley et al., 1996). Increase 

in urinary kallikrein excretion 1-3 days before clinical rejection suggests that activation of 

the kallikrein kinin cascade is associated with acute rejection (Brouhard et al., 1982; 

Koolen et al., 1984b ). In addition to kallikrein, elevations in factor XIIa, plasminogen and 

antithrombin III have been observed 2-3 days before clinical signs of rejection (Schrader et 
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al., 1988). Decreased kallikrein excretion follows cylosporine administration (Spragg et al., 

1988; Martinez et al., 1990). Short term cyclosporine administration decreaseskallikrein 

and kinin B2 receptor mRNA expression in rat kidney cortex (Bompart et al., 1996). 

Hypertension frequently accompanies renal transplantation. Proposed mechanisms for 

hypertension include acute rejection, chronic rejection, therapy with steroids and 

cyclosporine, renal insufficiency, presence of the recipient's own diseased kidneys, 

transplant renal stenosis, increased activity of the vasoconstrictor systems (for example 

renin-angiotensin, endothelin) and decreased activity of vasodilator systems. Urinary 

kallikrein excretion was found to be decreased in hypertensive patients and in those with 

renal complications (more markedly decreased with acute tubular necrosis than acute 

rejection). Urinary kallikrein excretion was also lower in cadaver graft recipients who tend 

to be more hype11ensive (O'Connor et al., 1982). 

Renal tissue kallikrein is predominantly localized in the granular portions of the distal 

tubule and cortical collecting ducts (Tomita et al., 1981; Omata et al., 1982; Figueroa et al., 

1984), where it is concentrated mainly on the luminal side of the cell and at both sides of 

the nuclei. Decreased labelling was observed in the distal tubules during acute rejection. 

TK immunoreactivity was reduced in acute rejection both on immunocytochemistry and 

electron microscopy; while TK was observed mainly at the luminal side of distal 

connecting tubules and collecting ducts, there was a shift in immunolabelling to the 

basolateral membranes (Ramsaroop et al., 1997). 
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4.4.2 Kinins in renal transplantation 

Basal urinary kinin excretion was decreased in donors following nephrectomy and in stable 

transplant recipients compared to normal control subjects but rose significantly during 

acute rejection. Kinin generation in the urine was significantly decreased in donors post­

nephrectomy and during acute rejection, compared to controls. The turnover of kinins 

depends on both the rate of formation and the rate of destruction. After kinins are formed, 

they are rapidly destroyed by the enzymic action of peptidases. Kininases, which inactivate 

plasma kinins, are distributed in 2 major portions of the nephron: in the proximal tubules 

and the medullary collecting ducts and may contribute to the decreased levels in the urine. 

4.4.3 Kinin receptors in acute rejection 

The kinin B2 receptor localises in the entire nephron in the normal control kidney and is 

down-regulated in acute rejection (Naidoo et al., 1996). The B 1 receptor is not present in 

the normal control kidney and but is strongly induced during acute rejection (Bhoola et al., 

2001 ). 

4.4.4 Role of the kallikrein-kinin system in renal transplantation 

Several factors may affect the kallikrein-kinin system in renal transplantation. The 

uninephrectomised donor and the renal allograft recipient have a single functioning kidney: 

therefore, the lower urinary tissue kallikrein excretion demonstrated in these subjects may 

be a reflection of decreased distal tubular mass. Cyclosporine A forms part of the 

immunosuppressive regimen in the majority of kidney transplant recipients. Although it is 

effective in increasing graft survival, it is also well known that its therapeutic benefits are 

counterbalanced by major side effects, including vascular toxicity, hypertension and renal 

insufficiency (Sturrock and Struthers, 1994); the hypothesis being that CyA may induce an 
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imbalance between renal vasoconstrictor ( endothelins, renin-angiotensin, thromboxane) 

and vasodilator (nitric oxide, prostaglandins, kallikrein-kinins) systems, leading to an 

increase in renal vasoconstriction. A decreased kallikrein excretion has been reported in 

renal transplant patients receiving Cyclosporine (Martinez et al., 1990) as well as a 

reduction in kinin B2 receptor mRNA expression in the cortex of the kidney (Bompart et 

al., 1996). 

The renal transplant recipient is frequently hypertensive; the blood pressure is further 

elevated during episodes of acute rejection together with deterioration in renal function; 

both of these factors have been associated with a reduced kallikrein excretion, which may 

be partially responsible for the sodium and water retention known to occur in these patients 

(and thereby further increase the blood pressure). The acute rejection process, by damaging 

the distal tubule, would decrease tissue kallikrein excretion. 

4.4.5 Tissue kallikrein in renal parenchymal disease 

Urinary kallikrein excretion is markedly increased in patients with nephrotic syndrome, 

irrespective of the level of renal function (Cumming and Robson, 1985), whereas patients 

with glomerulonephritis (without nephrotic syndrome) show reduced urinary kallikrein 

excretion compared to healthy volunteers. Kallikrein excretion correlates with plasma renin 

activity but not with plasma volume (Cumming et al., 1989). Urinary tissue kallikrein 

enzymic activity was significantly decreased in patients with renal disease compared to 

controls and was even further decreased during acute renal allograft rejection compared to 

renal disease. ELISA measurements confirmed the reduced excretion of urinary tissue 

kallikrein in renal disease. There was reduced immunolabelling of TK in distal tubules. In 

patients with renal parenchymal disease and hypertension with impaired renal function, a 
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more marked decrease in unnary kallikrein excretion was recorded, compared to 

hypertensive subjects with normal renal function, in whom a reduced urinary kallikrein 

excretion was also noted but less so (Mitas et al., 1978). Similarly in subjects with 

advanced hypertensive nephropathy, there was a reduction in the percentage of tubules and 

cells with immunoreactive tissue kallikrein (Figueroa et al., 1992). 

4.4.6 Kinins in renal parenchymal disease 

Although basal kinin levels in unne were similar for renal disease and controls, 

significantly decreased kinins were generated m the unne of patients with 

glomerulonephritis, reflecting a reduction in the kinin-producing enzyme TK during renal 

inflammation. Kinins are potent stimulators of phospholipase A2, and promote synthesis of 

arachidonic acid metabolites, including thromboxane A2 (Regoli and Barabe, 1980). 

Increased glomerular synthesis of thromboxane has been suggested as a cause of 

proteinuria in nephrotic syndrome (Remuzzi et al., 1985). 

4.4. 7 Kinin receptors in renal disease 

The constitutive B2 receptor, present along the entire nephron, was down-regulated in renal 

disease. A novel finding has been the increased expression of the inducible kinin B 1 

receptor in these patients (Naicker et al., 1999). Prevalence of the 0
699 

➔ C polymorphism 

of the kinin BI receptor was reported to be significantly less frequently in several 

aetiological subgroups of uraemic patients (Bachvarov et al., 1998). Thus, the 

polymorphism of the kinin B 1 receptor promotor may be a marker of prognostic 

significance for the preservation of renal function. 
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4.4.8 Role of kallikrein kinin system in renal parenchymal disease 

The decreased urinary kallikrein activity may be a reflection of reduced distal nephron 

function in these patients and may mediate the hypertension that accompanies renal disease 

(Margo Ii us et al., 1971 ). Clinical studies have shown that blood pressures of hypertensive 

patients can be temporarily lowered by oral administration of porcine pancreatic kallikrein 

(Overlack et al., 1981 ). Long-term infusion of tissue kallikrein via mini pumps has been 

shown to have beneficial effects by attenuating glomerulosclerotic lesions and tubular 

injury in hypertensive Dahl salt-sensitive rats (Uehara et al., 1990). A single injection of 

the human tissue kallikrein gene into the spontaneously hypertensive rat has been shown to 

reduce blood pressure for up to 10 weeks (Chao and Chao, 1997). Sub-depressor doses of 

purified rat urinary kalikrein infused for 4 weeks in Dahl salt-sensitive rats fed a high salt 

diet resulted in decreased urinary protein excretion, increased GFR and attenuated 

glomerulosclerosis, arterial and tubular injury, together with increased urinary excretion of 

NO and cGMP. These effects were diminished by co-administration of HOE-140, 

suggesting that reno-protection is mediated by the kinin B2 receptor (Hirawa et al., 1999). 

Urinary kallikrein activity was lower in hypertensive compared to normotensive 

individuals and more markedly diminished in patients with renal parenchymal disease and 

hypertension. Inhibitors of ACE, a member of the kininase (K-11) group of enzymes that 

rapidly inactivate kinins and also convert the decapeptide angiotensin 1 to an octapeptide 

angiotensin II, are probably the best examples of drugs acting on the kinin system that are 

used in clinical medicine. The mode of action of ACE inhibitors as antihypertensive agents 

have been shown to be due to both the inhibition of angiotensin 11 (a potent 

vasoconstrictor) production, as well as an increase in circulating levels of kinins 

(Shimamoto et al., 1990). The hypotensive efficacy of these inhibitors has also been shown 
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to correlate with the reduced activity of ACE in the brain, kidney, and vascular smooth 

muscle (Unger et al., 1987). Angiotensin converting enzyme (ACE) inhibitors prevent the 

conversion of Angiotensin I to Angiotensin II and increase urinary kinin excretion, while 

the effect on plasma kinins is controversial with different studies showing an increase, a 

decrease or no change (Carretero and Scicli, 1981 ). The hypotensive effect of the ACE 

inhibitor, perindopril, in spontaneously hypertensive rats, on low and high sodium diets, 

was attenuated by the kinin B2-receptor antagonist HOE 140 (Bouaziz et al., 1994). The 

beneficial effects of ACE inhibitors may be related also to the formation of nitric oxide and 

prostacyclin by kinins (Linz et al., 1993). Icatibant acetate (HOE 140), a B2 receptor 

antagonist, given together with captopril, attenuated the hypotensive effect of captopril by 

53% in black and white subjects on a low sodium diet (Gainer et al., 1998). This study 

provides evidence that kinins contribute substantially to the hypotensive effects of ACE 

inhibition. 

4.5 INTER-RE LA TIO NS HIP OF V ASOACTIVE PEPTIDES IN RENAL 

FUNCTION AND DISEASE 

Genetic and environmental factors interact to determine an individual's blood pressure. The 

kidney plays an important role in maintaining body fluid and electrolyte balance, and blood 

pressure homeostasis through actions of various humoral and paracrine/autocrine factors on 

renal medullary haemodynamics, tubular reabsorption and urine concentration. Nephron 

development is coordinated by the interaction of cell adhesion molecules, components of 

the extracellular matrix and peptide growth factors. Renal ontogeny and function are 

modulated through complex molecular interactions of endothelins, kinins, atrial natriuretic 

peptides and angiotensin. 
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Recent studies have shown that the endothelins are essential for normal foetal 

development, and that endothelin ET-1 plays an important physiological role in the 

regulation of basal vascular tone and blood pressure in healthy humans (Parris and Webb, 

1997). The spotted lethal rat carries a naturally occurring deletion of the ET 8 receptor gene 

that prevents expression of the ET 8 receptor and results in aganglionic megacolon. These 

animals also represent a model of salt sensitive hypertension; the animal is normotensive 

until challenged by a high salt diet, which significantly increases arterial pressure. The 

hypertension is completely ameliorated by the epithelial sodium channel inhibitor, 

amiloride (Pollock, 2000). In a rat model of renal disease progression, upregulation of ET-I 

during development of renal injury occurs progressively, initially in tubules and 

subsequently in glomeruli. ET-I plays a role in the progression of chronic renal disease in 

different experimental models, including renal mass reduction, lupus nephritis and 

streptozotocin-induced diabetes (Bruzzi et al., 1997). 

Endogenous ANP may help to maintain basal renal function in the normal foetal kidney 

(Silberbach et al., 1995). In addition to its vasodilator and natriuretic effects, ANP has 

antiproliferative effects. Infusion of CNP inhibits mesangial proliferation and matrix 

accumulation in a model of proliferative glomerulonephritis independent of haemodynamic 

changes (Wolf et al., 2000). 

The developing kidney expresses an endogenous, functionally active kallikrein-kinin 

system (KKS). Gene expression of the KKS is activated post-natally and appears to be 

regulated primarily at the transcriptional level. Ontogenetic studies have revealed that the 

kinin B2 receptor is over-expressed in the developing rat kidney. As kinins are potent 

vasodilator and growth-promoting factors, it has been suggested that endogenous kinins 
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mediate developmental renal growth and differentiation and modulate the maturational 

changes in renal haemodynamics (el-Dahr, 1997). 

All components of the renin-angiotensin system are highly expressed in the developing 

kidney. Antagonism of angiotensin (AT) suggests that the renin-angiotensin system may be 

an important contributor to renal ontogeny in the developing human. Maternal dietary 

protein restriction caused suppression of the foetal renin-angiotensin system, resulting in 

impaired structural and functional development (Woods, 2000). Pregnant women treated 

with ACE inhibitors for hypertension have an increased rate of foetal wastage, 

oligohydramnios, and intrauterine growth retardation; infants of ACE inhibitor-treated 

mothers have an increased incidence of severe systemic hypotension and anuria, and the 

kidneys have various structural abnormalities. Targeted mice, homozygous for a null 

deletion of the angiotensinogen gene, show a decreased maturity of glomeruli, together 

with renal vascular hypertrophy and increased glomerular matrix, associated with marked 

upregulation of TGFp. Mice devoid of ACE showed a similar phenotype. Administration 

of an AT 1 receptor blocker in neonatal rats induced irreversible renal abnormalities, 

including tubulointerstitial inflammation, papillary atrophy and pelvic dilatation and a 42 

% reduction in the number of nephrons. An increased incidence of congenital anomalies of 

the kidney and urinary tract was detected in mice deficient in the angiotensin II type 2 

(AT2) receptor. Impairment of AT2 receptor function may cause pelvi-ureteric junction 

obstruction and primary obstructive megaureter, as this receptor is postulated to be 

involved in the development of the lumen of the ureter through apoptic resorption of cells. 

The A T2 receptor was also shown to tonically decrease ACE activity in mice (reviewed by 

Hohenfellner et al., 1999). 
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ET-1, ANP, kinins and angiotensin II have been implicated in the regulation of renal 

medullary function; studies have shown that these vasoactive peptides either act alone or 

interact with each other to influence medullary/papillary blood flow and urinary water and 

sodium excretion (Cowley et al., 1995; Navar et al., 1996; Chou et al., 1990). In the cortex, 

angiotensin II and ET- I act as vasoconstrictors to decrease renal blood flow and GFR, 

whereas kinins cause vasodilatation and increase glomerular capillary permeability. In the 

medulla, angiotensin II and ET-1 cause constriction of the outer medullary vasa recta and 

thereby decrease vasa recta and papillary blood flow, whereas kinins exert opposite effects 

(Navar et al., 1996). The renin-angiotensin-aldosterone system plays an essential role in 

salt and blood pressure homeostasis and is governed mainly by renin. Local factors 

(prostaglandins, NO, ET-I) produced in the immediate vicinity of the juxtaglomerular 

apparatus (JGA) affect renin secretion and renin gene expression. Prostaglandin E2 and 

prostacyclin increase renin secretion and gene expression by activating cAMP produced in 

JG cells. The effect of NO on JG cells is not very clear but appears to stimulate renin via 

cAMP and cGMP-induced inhibition of cAMP-phosphodiesterase III. ET-1 inhibits renin 

by cAMP acting via calcium-phosphokinase C-related mechanisms (reviewed by Wagner 

et al., 1998). 

The distribution of AT 1, ET A, ET 8 and kinin B2 receptors closely overlaps at several 

anatomical sites, including renal vasculature, glomeruli and the inner stripe of the outer 

medulla. In the cortex, the distribution of AT 1 and ET 8 receptors is similar in the glomeruli 

and proximal tubules; kinin B2 receptor density is low in the cortex. In the inner medulla, 

ET 8 and B2 receptors are abundant, whereas AT I receptors are not readily detected in this 

region. Effects of angiotensin II, ET-I and kinins on cell proliferation and extracellular 

matrix synthesis in renal medullary interstitial cells imply an important interactive role in 
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chronic progressive renal disease (Zhuo et al., 1998). Angiotensin II upregulates the 

expression of growth factors and cytokines [TGFP, TNFa, osteopontin, vascular cell 

adhesion molecule-I, nuclear factor-KB (NF-KB), PDGF, bFGF, IGF], most of which 

promote cell growth and fibrosis. Angiotensin II also stimulates oxidative stress, which 

may potentiate its vasoconstrictor effect partly by increased catabolism of NO. 

Angiotensinogen gene is stimulated by NF-KB activation. Angiotensin converting enzyme 

inhibitor inhibits NF-KB activation in renal disease (Klahr and Morrissey, 2000). Multiple 

vasoactive peptides interact to exert endocrine and/ or paracrine influence on renal 

medullary microcirculation, tubular function and mitogenesis; NO, ANP and kinins may 

counteract the vasoconstrictor and mitogenic effects of ET-I and Angiotensin II. 
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CHAPTERS 

SUMMARY AND CONCLUSIONS 
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1. The kidneys play a pivotal role in maintaining body fluid and electrolyte balance

and blood pressure homeostasis through actions of various humoral and paracrine/autocrine 

factors on renal medullary haemodynamics, tubular reabsorption and urine concentration. 

Multiple vasoactive peptides interact to exert autocrine and/ or paracrine influence on the 

renal microcirculation, tubular function and mitogenesis. ET- I, ANP, kinins and 

angiotensin II have been implicated in the regulation of renal medullary function; studies 

have shown that these vasoactive peptides either act alone or interact with each other to 

influence medullary/papillary blood flow and urinary water and sodium excretion. Local 

factors (prostaglandins, NO, ET-I) produced in the immediate vicinity of the 

juxtaglomerular apparatus affect renin secretion and renin gene expression. NO, ANP and 

kinins may counteract the vasoconstrictor and mitogenic effects of ET-1 and Angiotensin 

II. 

2. Total body water (TBW) was measured in 5 transplant recipients immediately pre­

transplant following dialysis, when they were assessed as having reached "dry" weight, 

namely showing no evidence of fluid retention. TBW was measured following 

transplantation and during rejection in 4 patients, when fluid retention was apparent, and 

again when kidney function had stabilised, demonstrating reduction in body weight and 

TBW. Effective renal plasma flow was measured in 6 transplant patients and was shown to 

be reduced in patients during rejection, a reflection of the increased vasoconstriction 

present in this condition. 
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3. The primary aim of my study was to determine circulatory and cellular actions of

ET-1, ANP and kinins in human models of renal inflammation: in acute renal allograft 

rejection and renal parenchymal disease (mainly glomerular disease). 

4(i) Plasma ET-1 levels were measured serially in patients prior to renal transplantation, 

post- transplantation when stable, during acute rejection and subsequently, after treatment 

of rejection. The highest levels of ET-1 were observed prior to transplant and in patients 

with chronic renal failure on dialysis. Following transplantation, ET-1 levels decreased, 

increased during episodes of acute rejection and decreased again after treatment of 

rejection. This corresponded with elevated urinary ET- I levels during acute rejection, 

suggesting that ET-1 is produced by the kidney, specifically by inflammatory cells within 

the renal substance, reflecting endogenous renal ET-1 production. Increased plasma ET-1 

levels were present in renal disease, compared to normal controls; the elevated plasma ET-

1 levels were found in both proliferative and non-proliferative glomerulonephritis (GN), 

with significantly higher levels in proliferative glomerulonephritis. Both hypertensive and 

normotensive patients with glomerulonephritis had increased plasma ET-1 levels, with 

significantly higher ET-1 levels in hypertensive patients. Plasma ET-1 was elevated in both 

dialysis- and non dialysis-requiring patients compared to normal controls; plasma ET-I 

was significantly higher in dialysis patients compared to patients not requiring dialysis. 

Urinary ET-1 levels were similar in patients with glomerulonephritis and controls. 

4(ii) Immunocytochemistry, using immunoperoxidase and fluorescent methods, showed 

increased ET- I labelling of proximal and distal tubules during rejection, mediated by the 

ET A receptor as suggested by increase in ET A receptor labelling in collecting ducts during 
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rejection. Endothelin-B receptor labelling was decreased in distal tubules and glomeruli 

during rejection. Immunocytochemistry showed increased ET- I labelling of proximal and 

distal tubules in proliferative GN biopsies. Proximal tubular labelling was observed mainly 

in the brush border, as reported by Wilkes et al. (1991 ). ET A receptor labelling was 

increased in distal tubules in proliferative GN. ET 8 receptor labelling was decreased in 

tubules in GN biopsies. Further studies with larger sample numbers are required to confirm 

these findings. 

4(iii) Immuno-electron microscopy revealed ET-I and ET receptor labelling in epithelial 

cells of proximal and distal tubules, endothelial cells of blood vessels and glomerular 

capillaries, specifically in cytoplasm of cells, endoplasmic reticulum and mitochondria. 

Label was found in increased amounts adjacent to the intercellular system and within 

vacuoles and secretory vesicles. ET- I is stored within these vesicles an<l released at the cell 

surface after an appropriate stimulus. The characteristic feature of acute rejection is 

infiltration of the graft by host mononuclear cells; these lymphocytes and macrophages 

infiltrate the interstitium and tubular epithelium. In this study, ET-I label was also 

demonstrated in the mononuclear cells infiltrating the tubules during acute rejection by 

electron microscopy as well as peroxidase-anti peroxidase method. ET-I mRN A was 

upregulated in the tubular epithelial cells and capillary endothelial cells, as well as the 

inflammatory infiltrate, during acute rejection as demonstrated by in situ RT-PCR. 

4(iv) The down-regulation of the ET 8 has not been previously reported in renal 

inflammation and is probably implicated in impaired natriuresis. This observation may 

account for the fluid retention and hypertension occurring with acute rejection and 
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glomerulonephritis: ET B receptors have a potentially important hypotensive effect via 

inhibition of sodium and water reabsorption in the distal nephron. In vitro studies suggest 

that activation of ET B receptors inhibits the activity of the renal epithelial sodium channel 

in the renal collecting duct epithelium. Activation of ET B receptors leads to down­

regulation of the epithelial sodium channel in the renal tubule via increased production of 

nitric oxide. Thus ET B receptor activation has a hypotensive effect via promotion of renal 

sodium and water excretion. Activation of ET A or ET B receptors on vascular smooth 

muscle cells produces a pressor response through vasoconstriction, while activation of ET B

receptor on the vascular endothelium produces a depressor response by evoking the release 

of vasodilators. ET B receptors on the vascular endothelium may play a role in clearing 

circulating ET-I, thereby reducing its predominant ET A-mediated pressor actions. 

4(v) Endothelin receptor antagonists have been shown to be reno-protective, that is to 

decrease blood pressure, improve renal function and reduce proteinuria in models of renal 

disease for example, combined ET NB receptor antagonist in immune-complex nephritis 

(Gomez-Garre et al., 1996); ETA receptor antagonist in murine lupus nephritis (Nakamura 

et al., 1995b ); ET A receptor antagonist and ACE inhibitor had an additive effect compared 

to either agent alone in accelerated passive Heymann nephritis (Benigni et al., I 998a); ET A 

receptor antagonist (Nakamura et al., 1995c) and mixed ET NB receptor antagonist (Benigni 

et al., I 998b; Hocher et al., 2001) in Streptozotocin-induced diabetes. Bosentan, a mixed 

ET A/ET B receptor antagonist, administered to patients with mild-moderate essential 

hypertension was as effective as enaiapril (inhibitor of angiotensin converting enzyme) in 

controlling blood pressure, suggesting that ET-I contributes to hypertension in these 

patients (Krum et al., 1998). Angiotensin II stimulates the expression of ET-1 gene in 
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endothelial and renal cells. Part of the mitogenic effect of Angiotensin II is mediated by 

ET-I. Data in animals with progressive nephropathies suggest that ACE-I, besides reducing 

glomerular protein traffic, also inhibit the exaggerated synthesis of ET-1 (Zoja et al., 1998). 

Chronic treatment with an ET receptor antagonist attenuated increases in glomerular 

mRNA levels of collagen, laminin, tumour necrosis factor, TGF-P, PDGF and basic 

fibroblast growth factor in diabetic rats (Nakamura et al., 1995c). Once substantial renal 

scarring occurs, there is an inevitable progression to end stage kidney disease, a process 

involving gradual glomerular sclerosis and interstitial fibrosis. Endothelin receptor 

blockade reduced proteinuria and glomerulosclerosis and protected against hypertension 

and elevations in serum creatinine in the 5/6 nephrectomy rat model (Benigni et al., 1993 

and 1996). 

5. Plasma and urinary ANP concentrations were significantly elevated during acute

rejection, compared to normal control subjects in this study. Increased plasma ANP levels 

in acute rejection may be a response to increased intravascular volume and hypertension in 

these patients. ANP production may be stimulated by excess endothelin present. ANP 

stimulates kallikrein excretion transiently and is dependent on distal sodium delivery 

(Klein et al., 1989). Immunocytochemistry revealed decreased labelling of glomeruli and 

collecting ducts during acute rejection and glomerulonephritis; reduced immunolabelling of 

tubules was present in proliferative GN. This study extends knowledge of the widespread 

immunolocalization of ANP in the normal kidney. The decreased immunolabelling of the 

collecting ducts during acute rejection and glomerulonephritis may be a reflection of 

impaired natriuresis and diuresis, resulting in fluid retention occurring in these patients. 
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6(i) Urinary tissue kallikrein enzymic activity was significantly decreased in stable renal 

transplant recipients and in kidney donors after unilateral nephrectomy, compared to 

normal controls. This supports the findings of Spragg et al., (1985) that tissue kallikrein 

excretion rate may be a useful indicator of distal tubular mass. Serial measurement of 

urinary tissue kallikrein enzymic activity were made prior to kidney transplant, on day 3 or 

4 post transplant when the patient was stable, during an episode of acute rejection and after 

treatment of rejection. Tissue kallikrein levels rose from their pre-transplant levels on day 3 

or 4 after renal transplant, decreased again during rejection and rose again after treatment 

of rejection. Basal urinary kinin excretion was decreased in donors following nephrectomy 

and in stable transplant recipients compared to normal control subjects but rose 

significantly during acute rejection. Kinin generation in the urine was significantly 

decreased in donors post-nephrectomy and during acute rejection, compared to controls. 

The turnover of kinins depends on both the rate of formation and the rate of destruction. 

This finding may be a reflection of the reduction in tissue kallikrein as a consequence of 

decreased renal mass and renal inflammation. Confocal microscopy demonstrated 

decreased TK immunolabelling in the distal tubules during rejection. 

6(ii) Urinary tissue kallkrein enzymic activity was significantly decreased in patients 

with renal disease compared to controls and was even further decreased during acute renal 

allograft rejection compared to renal disease. ELISA measurements confirmed the reduced 

urinary tissue kallikrein in renal disease. There was reduced TK immunolabelling in distal 

tubules in renal disease. While basal kinin levels in urine were similar in renal disease and 

controls, significantly decreased kinins were generated in the urine of patients with 

glomerulonephritis, reflecting the reduction in the kinin-producing enzyme TK during renal 
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inflammation. The decreased unnary kallikrein activity may be a reflection of reduced 

distal nephron function in these patients and may mediate the hypertension that 

accompanies renal disease. 

6(iii) A previous study showed that the constitutive B2 receptor, present along the entire 

nephron, was down-regulated in renal disease. The B 1 receptor was induced in the kidney 

in these patients (Naicker et al., 1999; Bhoola et al., 2001 ). Other studies provide evidence 

that reno-protection is mediated by the B2 receptor (Hirawa et al., 1999) and that kinins 

contribute substantially to the hypotensive effects of ACE inhibition (Gainer et al, 1998). 

Promising studies have shown that blood pressures of hypertensive patients can be 

temporarily lowered by oral administration of porcine pancreatic kallikrein (Overlack et al., 

1981 ); infusion of tissue kallikrein via mini pumps has been shown to have beneficial 

effects by attenuating glomerulosclerotic lesions and tubular injury in hypertensive Dahl 

salt-sensitive rats (Uehara et al., 1990); a single injection of the human tissue kallikrein 

gene into the spontaneously hypertensive rat has been shown to reduce blood pressure for 

up to l O weeks (Chao and Chao, 1997); sub-depressor doses of purified rat urinary 

kalikrein infused for 4 weeks in Dahl salt-sensitive rats fed a high salt diet resulted in 

decreased urinary protein excretion, increased GFR and attenuated glomerulosclerosis, 

arterial and tubular injury. 

6(iv) Inhibitors of ACE, a member of the K-1 l group of enzymes that rapidly inactivate 

kinins, and also convert the decapeptide angiotensin 1 to an octapeptide angiotensin 11, are 

probably the best examples of drugs acting on the kinin system that are used in clinical 

medicine. The mode of action of ACE inhibitors as antihypertensive agents have been 
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shown to be due to both the inhibition of angiotensin 11 (a potent vasoconstrictor) 

production, as well as an increase in circulating levels of kinins (Shimamoto et al., 1990). 

The hypotensive efficacy of these inhibitors has also been shown to correlate with the 

reduced activity of ACE in brain, kidney, and vascular smooth muscle (Unger et al., 1987). 

Angiotensin converting enzyme (ACE) inhibitors prevent the conversion of Angiotensin I 

to Angiotensin II and increase urinary kinin excretion, while the effect on plasma kinins is 

controversial with different studies showing an increase, a decrease or no change (Carretero 

and Scicli, 1981 ). The hypotensive effect of the ACE inhibitor, perindopril, in 

spontaneously hypertensive rats on low and high sodium diets was attenuated by the kinin 

B2-receptor antagonist HOE 140 (Bouaziz et al., 1994). The beneficial effects of ACE 

inhibitors may be related to the formation of nitric oxide and prostacyclin, enchanced by 

the kinins released (Linz et al., 1993). lcatibant acetate (HOE 140), a B2 receptor 

antagonist, given together with captopril, attenuated the hypotensive effect of captopril 

7. Thus, as multiple mediators impact on renal disease, single agent therapy similarly

has its limitations; exceptions are agents such as ACE inhibitors which block angiotensin II 

and affect ET- I, NO, prostacyclin and kinins. 
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