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ABSTRACT 

Amputation revision surgery in the dysvascular patient, is associated with high 

morbidity and mortality. The Durban Metropolitan Vascular Service uses the 

Transcutaneous Oxygen Pressure (TcpO2) index of 0.55 to select the most distal 

amputation site which is likely to heal by primary intention. TcpO2 measurement is 

time consuming and as a result not all patients are assessed. Laser Doppler Fluxmetry 

(LDF) has been proposed as a rapid test of amputation wound healing potential. The 

objective of this study was to evaluate the worth of LDF in pre-operative prediction of 

amputation wound healing in the dysvascular patient. 

A validation study using the standard reactive hyperaemia experiment (Bircher 

et al.. 1994) assessed the repeatability and reproducibility of the LDF in 20 normal 

subjects. Repeatability coefficients (RC) and coefficients of variation (CV) were 

calculated for resting cutaneous blood flow variation over a two hour period 

(repeatability) and over five days (reproducibility). The results indicated large 

fluctuations in cutaneous blood flow over the five day test, with RC = 8.88 and CV =

14.4%. 

TcpO2 and LDF resting values were measured at the routine amputation sites in 

60 patients with PVD requiring amputation using a non-heated LDF probe (n = 60), 

and with a heated LDF probe (n = 35). TcpO2 absolute and index values were 

compared to the unheated, heated and vascular reserve LDF data, using a Spearman 

rank correlation test. The non-heated LDF probe was found to be of little use, while 
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the heated probe (p<0.0001) and vascular reserve (p<0.0001) values showed 

significant correlations with the TcpO2 index. The most useful absolute, heated LDF 

(4.9 a.u.) and LDF vascular reserve value (3.5 a.u.) were calculated using the Receiver 

Operator Characteristic curve. These values produced a sensitivity of 82. 76%, 

specificity of97.56%, positive predictive value of 88.88%, negative predictive value of 

96% and an overall accuracy for pre-operatively predicting wound healing potential of 

91.43%. 

The primary revision rate at King Edward VIII Hospital is 23%. Not all 

patients undergo T cpO2 measurement due to time restraints. The results suggest that 

by using LDF provocative testing in a larger group of patients, that the primary 

revision rate may be reduced further. It is concluded that widespread implementation 

of the LDF will be as useful as limited use of TcpO2 measurement for pre-operatively 

evaluating wound healing potential in the dysvascular patient. 
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CHAPTER ONE 

1.0 INTRODUCTION 

Peripheral Vascular Disease (PVD) is the commonest cause oflower limb amputation 

m the United States and Great Britain. More than 90% of the 60, 000 amputations 

performed in the United States each year are for ischaemic or infective gangrene (Krupski et 

al., 1988 ). Similar statistics have been reported in Great Britain (Mc Coll, 1986). 

Amputations in these patients are associated with high morbidity and mortality (Mars et al., 

1993). 

The problem facing the surgeon is the determination of the most distal site at which 

an amputation will heal. The more proximal the amputation, the more likely the chance of 

primary wound healing. Durham, ( 1995) states that in the past, amputations for PVD were 

performed at above-knee level in virtually all patients. Although healing rates at this level 

approached 100 percent, the overall rehabilitation potential of less than 30 percent was 

unacceptable. While this practice reduced initial morbidity, the additional energy cost 

required to use a larger and heavier prosthesis made total rehabilitation more difficult 

(Durham, 1995). Preservation of the knee or ankle joint improves the chances of successful 

rehabilitation, but increases the risk of delayed or failed wound healing, which requires 

subsequent operative revision to achieve healing. This latter approach is demoralising to the 

patient, results in increased morbidity and mortality, and may culminate in rehabilitation 

failure (Mars et al., 1993; Durham, 1995). 

The benefits to both the patients and hospital administrators of using routine pre­

operative evaluation of amputation wound healing have been reported (Malone et al., 1979 
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and Mars et al., 1993). Despite this, routine evaluation of pre-operative wound healing 

potential has not been widely implemented. A reason for this is that there is no single 

investigation which has gained universal acceptance. This is not surprising as there are many 

factors in addition to the adequacy of regional blood flow which influence wound healing. 

Investigations such as Doppler ankle brachia! pressure indices, Xenon
133 

skin clearance, 

thermography, fluorescein dye angiography, photoplethysmography, skin perfusion pressure 

measurement, transcutaneous oxygen pressure (T cp02) measurement and laser Doppler 

fluxmetry (LDF) have been tried. While each test has its proponents, it has not always been 

possible to reproduce the results reported in different settings. Of these tests, T cp02

measurement is presently held to be the most useful investigation of pre-operative wound 

healing potential (Oishhi et al., 1988; Wyss et al., 1988; Padberg et al., 1992; Mars et 

al., 1993). The test has also been plagued by inadequate discrimination at low levels of 

cutaneous oxygen (Tonnesen et al., 1978; Franzeck et al., 1982; Harward et al., 1985; 

Malone et al., 1987; Wyss et al., 1988). The use of the ratio of Tcp02 measurement 

obtained at the amputation level to that of the anterior chest wall, the Tcp02 index, has 

improved the sensitivity and specificity of the test (Mars et al., 1993). The index gives a 

better indication of oxygen delivery as it takes into account variation cause by central factors 

of oxygen delivery, such as cardiac and respiratory function. The Durban Metropolitan 

Vascular Service now uses the T cp02 index to select the most distal amputation site which 

will heal by primary intention. An amputation site with a Tcp02 index of greater than 0.55 is 

considered likely to heal (Mars et al., 1993). 

There are however, various disadvantages when using Tcp02 monitoring. Firstly, due 

to instrumental and methodological factors, Tcp02 measurement is time consuming. The test 

involves heating the underlying skin to provide maximal vasodilation of the nutrient and 

thermoregulatory vessels of the skin. With the heating element of the probe set at 45
°
C 

hyperaemic stabilisation requires 20 minutes, after which readings can be taken. Routine 

measurements are taken at the mid dorsum of the foot, l O cm below the knee over the 
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anterior compartment, 10 cm above the knee in the midline and over the anterior chest wall in 

the mid-clavicular line. With patient acclimatisation to the environmental temperature of the 

laboratory, probe calibration and measurement at the four sites, the average test time is 

approximately 2 hours. 

Over the seven year period 1989 - 1995, 1209 amputations were performed for 

peripheral vascular disease at King Edward VIII hospital, an average of 173 per year. In 

those patients undergoing amputation at a site preselected using the Tcp02 index, the 

revision rate is less than 5% (Mars et al., 1993). The overall revision rate is however 23% 

because not all patients undergo pre-operative assessment. This is in part because the 

Vascular Laboratory cannot handle the additional time consuming workload. Under these 

circumstances a test is required which is as sensitive and specific as the Tcp02 index, but 

which can be performed more rapidly. 

Recently, a Laser Doppler Fluxrneter (LDF) was acquired by the University of Natal 

Medical School. Laser Doppler Fluxmetry is non-invasive, easy to use and provides rapid 

immediate recording of skin microcirculation perfusion data. The instrument has found a 

place in the evaluation of diabetic ulcers (Belcaro et al., 1994). Theoretically, the instrument 

has been proposed to be able to improve detection of, and discrimination between, low levels 

of skin blood flow (Padberg et al., 1992). It was therefore proposed as a test of amputation 

wound healing potential and researchers have attempted to pre-operatively predict lower limb 

amputation wound healing using LDF (Holloway et al., 1983; Fairs et al., 1986; Karanfilian 

et al., 1986; Gebuhr et al., 1989; Kram et al., 1989; Lantsberg et al., 1991; Padberg et al., 

1992; Adera et al., 1995). 

Results have been prorrusmg, however there are conflicting opinions about the 

usefulness of the LDF. These revolve around the following issues. There is controversy as 

to whether skin heating is required (Karanfilian et al., 1986; Kram et al., 1989; K vernebo 
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et al., 1989; Castronuovo et al., 1987). If the test is performed on unheated skin, readings 

can be obtained 3 minutes after application of the probe. Routine testing at the four sites 

would then take less than 20 minutes. However, (Holloway et al., 1983; Matsen et al., 1984; 

Allen et al., 1987; Fairs et al., 1987; Gebur et al., 1989; Lantsberg et al., 1991; Padberg et 

al., 1992) maintain that to be clinically useful, vasodilation of the thermoregulatory 

circulation of the skin is required. In addition, several other possible shortcomings of LDF 

are documented (Belcaro et al., 1994). These include problems with calibration, variations in 

biological zero and the various ways in which the output of the LDF is expressed, which 

range from mV, arbitrary units, flux units, to blood flow per cm2
. As a result, the role of 

LDF in amputation wound healing prediction has yet to be resolved. Mars (1995) has 

therefore suggested that in order to determine if an investigation is useful, each vascular 

laboratory should establish its own values, and its own standard operating procedure, 

including validation under specific practical conditions. Similarly, in 1983, Tenland et al. 

suggested the need for development of relevant and standardised provocative procedures, in 

order to fully utilise the inherent possibilities of, and overcome the problems associated with, 

the LDF. Through following the suggestions of Mars (1995) and Tenland et al., (1983) the 

present study therefore aimed to provide initial data as to the usefulness of the LDF, as a 

non-invasive, pre-operative predictor of amputation wound healing, in the Vascular 

Laboratory at King Edward VIII Hospital. 

1.1 Statement of the Problem 

The problem addressed in this study was basically twofold: 

1. The establishment of Laser Doppler Fluxmetry normal values for the King

Edward VII1 Vascular Laboratory.

2. The evaluation of the worth of Laser Doppler Fluxmetry in pre - operative

prediction of amputation wound healing.
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1.2 Null Hypothesis 

Laser Doppler Fluxmetry with or without provocative testing is of no benefit in pre -

operative prediction of amputation wound healing in patients with peripheral vascular 

disease. 
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2.0 LITERATURE REVIEW 
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2.1 AN OVERVIEW OF THE PROBLEM 

Mars et al., (1993) argue that the incidence of PVD in the black population in 

KwaZulu Natal is steadily increasing. A feature of the disease in this population is the delay 

in presentation; with seventy - five to eighty percent presenting with established gangrene or 

infected tissue coupled with unreconstructable lower extremity arterial anatomy (Mars et al., 

1993). Many limbs are therefore unsalvageable and require amputation. The disease was 

generally thought to be uncommon in this population group. Data from the Natal Provincial 

Administration's computer records of all amputations performed at King Edward VIIl 

Hospital between 1984 and 1995 revealed that PVD and Diabetes accounted for 60 percent 

of all lower limb amputations (Figure 1 ). 

This high percentage may be due to the fact that South Africa is a developing country 

and Kostuik (1981) suggests that as developing countries acquire higher standards of living 

and populations survive longer, amputation for PVD increases as a percentage of all 

amputations. There may be another reason for the increase in the occurrence of lower limb 

amputations for PVD in the black population. This is related to their movement from the 

rural areas to the urban areas. They now have better access to hospitals where they can be 

assessed and treated for PVD. Burgess et al., (1981) discuss numerous factors which are 

relevant to the increase in PVD in KwaZulu Natal. These include, an ageing population; a 
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high incidence of diabetes; air, water and food contamination; physical inactivity; poor diet; and 

tobacco-smoking. 

/,,/, 
/] ..-----------------------' 

4000-;-

3500 ___y. 
' / 

/ 

3000 _, 
I .• 

2500 _
y

· 

2000 _y· 

1500 _/ 

1000 _,. 

500 

0------------���-�---

Figure I: 

TOTAL PVD + DIA TRAUMA OTHER 

Total number of patients undergoing lower limb amputation for PVD 
and Diabetes combined, trauma and other (198-' - 1995). 

In 1993, Mars et al., addressed the problem of amputation revision surgery at King 

Edward VIII Hospital and outlined a programme involving pre-operative assessment of 

amputation wound healing potential that would save the hospital Rl,07 million annually. In this 

study the authors reviewed the Natal Provincial Administration's centralised computer records 

of all patients admitted to King Edward VIIl Hospital between 1984 and 1988. They found that 

during the 5-year period, 965 patients required 1563 lower limb amputations for PVD, 222 

patients died in hospital. The primary revision rate, in other words, the number of first-time 

amputations that required revision, was 51%. The in-hospital mortality rate was 23,1% 
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and the mortality rate per amputation was 14,3%. They found that the primary revision rate 

was skewed due to the Vascular Services policy of performing an initial guillotine amputation 

and subsequent definitive amputation in patients with infected non-salvageable limbs (Desai 

et al., 1986). Through taking this factor into account the primary revision rate was reduced 

to approximately 35%. They described the use of the Tcp02 index which reduced the 

revision rate to 20,0% in 1989, and 8,2% in 1990. This percentage is not based on the entire 

amputee data from 1989 / 1990 but on 270 patients who met particular criteria for the study. 

Although Tcp02 monitoring reduced the primary revision rate for these particular patients, 

through reviewing the amputee records between 1989 and 1995 it can be seen that there is 

still a high percentage of primary revision amputations at King Edward VIII Hospital. 

Table I shows that during the seven-year period, 1989-1995, 1209 patients required 

1824 lower limb amputations for PVD, 250 patients died in hospital. From the table primary 

revision rate, i.e. the number of first-time amputations that require revision, for PVD and 

Diabetes, in the seven-year period of investigation was 42. 48%. The in-hospital mortality rate 

for the same patient group over the seven-year period was 20.94% while the mortality rate 

per amputation was 13. 96%. 

Once again, due to the Hospital's policy of performing an initial guillotine 

amputation, the primary revision rates presented above are skewed. Similarly to Mars et 

al's., (1993) study, it was not possible to determine exactly how many guillotine amputations 

were performed in the PVD and Diabetic patients. The figure can, however, be 

approximated by counting the number of foot and below-knee amputations that were revised 

at the same level as the initial amputation. This reduces the primary revision rate in the 

patients who survived to approximately 23%. Analysis of several series reported by Hunter 

( 1981) shows a 46% failure rate for toe amputations, and a combined 33% failure rate for 

transmetatarsal and Symes amputations. Warren et al., (1968) reported a 32% failure rate in 

below-knee amputations in 127 patients and more recently Keagy (1986) reported a 19% 
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failure rate in 626 below-knee amputations. From this it can be seen that the revised data is 

in keeping with published figures. However, the revision rate is still too high when compared 

to the norm of 20% (Mars et al., 1993) and compared to reports of revision rates as low as 

10% (Burgess et al., 1971) and less than 10% (Mars et al., 1993). The findings from the 

amputee data review emphasises the need for a continued search for the most effective, 

reliable, non-invasive method for the assessment of wound healing potential. 

Table I: Summary of PVD Amputee Data (1989 - 1995) 

89 90 91 92 93 94 

Total Nwnber of Patients 253 149 153 188 149 136 

Total No. Pat. Reauiring Rev. 114 49 82 80 65 55 

Total Nwnber of Amputations 386 203 243 293 240 202 

Primarv Revision Rate (%) 45.06 32.88 53.59 42.55 43.62 40.4➔ 

Amos Revised at same level 49 25 34 39 20 33 

Revised Revision Rate(%) 25.69 16.1 31.37 21.8 30.2 16.18 

Deaths 37 33 32 49 30 25 

In- Hospital Mortality (%) 14.62 22.15 20.92 26.06 20.13 18.38 

Mortality per Amputation (%) 9.59 16.26 13.17 16.72 12.5 12.38 

2.2 A reason behind the change in amputation philosophy, 

rehabilitation benefits 

95 Total 

181 1209 

71 516 

257 1824 

39.22 42.48 

41 241 

16.57 22.56 

44 250 

24.31 20.93 

17.1 13.96 

The success of rehabilitation following amputation is directly related to the level of 

limb ablation. Malone et al., ( 1979) have stated that "correct choice of amputation level can 

make the difference between successful prosthetic rehabilitation and a bed-and-wheelchair 
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existence". This "correct choice" in terms of successful rehabilitation referred to the below­

knee level. It is well documented that retention of the knee is especially important. A 

functional knee, will often allow an elderly person to walk, whereas he or she could not do so 

with an above-knee prosthesis. The reasons for this will be discussed in the next section. 

Assessments have shown that below-knee amputees have a greater degree of independence in 

daily living and vocational activities due to successful postoperative rehabilitation (Fisher et 

al., 1978 and Kegal et al., 1978). 

2.2.1 Advantages of below-knee amputations 

The most obvious advantage of a below-knee amputation compared to an above-knee 

amputation is biomechanical in nature. The gait of a below-knee amputee is more efficient 

than an above-knee amputee in terms of energy expenditure. Ambulation requires a 10 to 40 

per cent increase in energy expenditure for a unilateral below-knee prosthesis compared with 

a 50 to 70 per cent increase for a unilateral above-knee prosthesis (Waters et al., 1976). 

Successful rehabilitation is achieved in about 70% of all below-knee amputees but in only 10 

to 30 percent of all patients following above knee amputation (Couch et al., 1977; Roon et 

al., 1977; Steinberg et al., 1985). Malone et al., (1979) have found that geriatric patients 

who undergo unilateral below-knee amputations show a greater than 90% success rate of 

rehabilitation to ambulation compared to a success rate of 30% or less for a similar group of 

above-knee amputees. Preservation of the knee joint is therefore extremely important for 

geriatric patients, many of whom have severe coronary artery disease or severe chronic 

obstructive pulmonary disease. It is, therefore, critical that the surgeon be able to assess 

accurately the viability of the limb so that amputation can be performed at the lowest 

reasonable level (Burgess et al., 1981). 



2.3 Pre-operative assessment methods of amputation wound healing 

potential in peripheral vascular disease 

2.3.1 Conventional Methods 

I I 

This involves clinical judgement which involves the evaluation of the skin or muscle 

colour, capillary refill, and bleeding characteristics (Jones 1984) as well as the presence of 

pulses in the affected extremity, and non instrumentally assessed measurement of skin 

temperature. With the exception of pulse measurement the other methods are subjective, 

relying on the experience of the observer as well as the variable ambient lighting (Furnas et 

al., 1991 ). Malone et al., (1984) state that one physical finding that has some value in 

identifying proposed amputation levels is the presence of dependent rubor. They state that 

skin which develops dependent rubor is clearly ischaemic, and that skin with dependent 

rubor, like gangrenous tissue, is an absolute contraindication to amputation at that level. 

However, they conclude by stating that the absence of dependent rubor does not necessarily 

ensure healing ability. With regard to performing amputations at the site of the most distal 

palpable pulse these authors argue that it results in a high healing rate. However many 

patients who have healing potential at a more distal level are thus denied the benefits of an 

optimum amputation. In their final analysis on the conventional methods Malone et al., 

( 1984) conclude that "none of the methods based on clinical judgement or the results of 

physical examination have a consistent enough correlation with amputation healing to 

provide a sound basis for clinical decision making". 

2.3.2 Non-invasive/ Relatively Non-invasive Methods 

The high morbidity and mortality rates, as shown by the King Edward VIII amputee 

data, and poor rehabilitation results due to incorrect level selection have resulted in the 
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development of numerous non-mvas1ve or relatively non-mvas1ve methods for the pre­

operative evaluation of wound healing potential. 

Sarin et al., (I 991) state that the number and diversity of these various methods 

indicate that absolute determination of perfusion is not a simple problem. Different 

techniques measure different physiological parameters of cutaneous blood flow, physical 

movement, heat transport and oxygen content (Swain et al., 1989). 

The movement of blood to clear away a tracer substance is used in the 

dermofluorometric and radionuclide techniques, whilst the measurement of this movement is 

detected using ultrasound and photoplethysmography. As the blood flows through the skin 

surface it transports heat and oxygen to the area, so temperature and oxygen content 

measurement are relevant parameters. Only two methods, thermography and fluorescein 

staining, give an indication of regional flow. The remaining methods look at small volumes of 

tissue of different areas and at different depths (Swain et al., 1989). The following section 

discusses the investigations which have been used to try to assess wound healing potential. 

2.3.2.1 Thermography 

This was one of the earliest methods for evaluating skin blood flow. The method is 

simple and inexpensive. A surface thermometer is placed on the skin at the proposed level of 

amputation, and the temperature is compared with temperatures at other levels. 

Unfortunately, the temperature difference between skin with blood flow that was adequate 

for healing and skin with blood flow not adequate for healing was not broad enough to 

identify a clear point for level selection (Malone et al., 1987). The method is reported as 

"relatively" reliable for differentiating between above-knee and below-knee amputation levels 

(Golbranson et al., 1982; Spence et al., 1984). Malone et al., (1987) concluded that the 
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ultimate role of skin temperature measurement for selecting amputation level m the 

performance of Syme's, transmetatarsal, or toe amputation awaits further evaluation. 

2.3.2.2 Doppler Segmental Pressure 

The measurement of systolic blood pressure at the ankle, calf and popliteal sites, is 

one of the most widely used techniques for determining the circulatory status of an extremity. 

A correctly sized blood pressure cuff is placed about the limb at the level where the pressure 

is to be measured and is briefly inflated to more than the patient's systolic pressure. The cuff 

pressure is then progressively reduced to the point at which distal blood flow recommences. 

This pressure is recorded as the segmental systolic blood pressure. 

The onset of distal blood flow is indicated by the return of a Doppler signal from a 

superficial artery. A number of investigators have advocated segmental pressure 

measurements as a predictor of the success of an amputation (Carter, 1973; Dean et al., 

1975; Barnes et al., 1976; Verta et al., 1976; Baker et al., 1977; Wagner, 1977; Towne et 

al., 1979; Mehta et al., 1980). Some authors have recommended comparing the segmental 

pressure with that of the brachia! artery, reporting that the amputation is likely to succeed if 

the segmental pressure in the lower extremity is 35 to 45% of the brachia! systolic pressure 

(Verta et al., 1976; Wagner, 1977). Others have stated that an amputation is likely to be 

successful when the segmental pressure exceeds a certain absolute value. However, this so­

called critical value has ranged widely from forty to seventy millimetres of mercury (Carter, 

1973; Dean et al., 1975; Barnes et al., 1976; Verta et al., 1976; Baker et al., 1977; Wagner, 

1977; Towne et al., 1979; Mehta et al., 1980). 

Use of the segmental blood-pressure technique is based on several assumptions: ( l) 

the principal arteries beneath the cuff are compressible; (2) the pressure in the cuff is 

transmitted effectively to the artery; and (3) the major arterial systolic pressure is the primary 
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determinant of wound-healing. Thus, erroneous information about the local circulatory 

status is obtained if the principal arteries are less compressible than normal. In many patients 

it may be impossible to tell if arterial incompressibility is a significant source of error, in 

others it may be obvious, as when the measured pressure exceeds 300 millimetres of mercury. 

In addition to this Malone et al., (1987) state that systolic pressure measurements in patients 

with diabetes may be falsely elevated because of medial calcinosis of the popliteal and tibial 

vessels. Measurements may fail to correlate with healing if the local anatomy is not 

conducive to the uniform distribution of applied pressure (for example, at the ankle or foot 

where the bones may "shield" the arteries from the cuff pressure), if significant collaterals 

exist in the presence of major arterial occlusion, or if factors other than segmental arterial 

pressure significantly alter the metabolic potential of the skin at the intended site of 

amputation. 

In large patient populations it appears that a correlation does exist between segmental 

pressure and the success of amputation. This is not an absolute correlation, however, since 

there is a significant incidence of failure of healing in the presence of high pressures and of 

successful healing in the presence of extremely low or undetectable segmental pressures 

(Burgess et al., 1981). Unfortunately, the ankle pressure gives little, if any, guidance as to 

the possibility of healing an amputation in the below knee position. Some studies suggest an 

ankle systolic pressure of 30mmHg or more will give below knee healing (Nicholas et al., 

1982), but Clyne's (1991) experience agrees with many others, in that many patients with 

indeterminate ankle pressures went on to heal below-knee amputations (Ratliff et al., 1984). 

The Doppler method although cheap and rapidly performed, suffers from the problems of all 

preoperative predictive tests for selection of amputation level i.e. it will predict with accuracy 

nearly all those amputations that will heal, but it will suggest that a number of below-knee 

amputations should not be performed in patients who would ultimately be perfectly capable 

of healing amputations at below-knee level. Hence, if surgeons relied on these tests entirely, 

an excess of above-knee amputations would be performed. 
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2.3.2.3 Fluorescein Dye Angiography 

The measurement of skin fluorescence for determining amputation levels has been 

shown to hold promise (Swain et al., 1989; Malone et al., 1984). Following an intravenous 

infusion of sodium fluorescein, the fluorescein diffuses freely into the extracellular fluid of 

perfused tissue. This extracellular fluorescein can then be made to produce a yellow green 

fluorescence by exposure of the skin to ultraviolet or blue light. This fluorescence can then 

be quantified by instruments such as the dermofluorometer developed by Silverman et al., 

( 1985). This technique is more invasive than Doppler segmental pressure measurements 

(Malone et al., 1984). These authors go on to state that flurometry may be advantageous in 

the context of marginal limb perfusion because it facilitates easy assessment at multiple sites 

on the same limb. Techniques such as LDF and TcpO2 are less suited for evaluation of 

multiple sites. The primary problem with the use of fluorescence for amputation level 

selection has to do with its safety (Malone et al., 1984). Side effects of fluorescein include 

nausea, vomiting, hypotension, and (rarely) anaphylaxis (Malone et al., 1984; Furnas et al., 

I 991 ). 

2.3.2.4 Xenon
133 

Skin Blood Flow Measurement 

There has been extensive research on the use of Xenon 133 
skin clearance for

amputation level selection (Moore 1973; Daly et al., 1980). The technique involves the 

intradermal injection of Xenon
133 

in saline which diffuses into the capillaries; the rate of 

removal of the Xenon 133 
is proportional to the skin blood flow, calculated from the clearance

slope as measured by gamma camera (Sarin et al., 1991 ). The major difficulty with this 

method is the lack of reproducibility of the results (Malone et al., 1984). This fact may be 

due to two reasons. Firstly, the technique is greatly dependent on the accurate siting of the 

intradermal injection. If the injection is too deep (subcutaneous) then the skin blood flow 

readings will be falsely low, while if the injection is too superficial a falsely high figure will be 
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obtained (Sarin et al., 1991). The second reason, suggested by Malone et al., (1984) is that 

the quality of Xenon 133 in the form of gas dissolved in saline can vary. The product is usually 

manufactured by local nuclear medicine departments, and such local production probably 

accounts for the variability of published results. Other problems with using this technique 

include its affinity for adipose tissue and its biphasic clearance (Sarin et al., 1991 ). The 

current status on the usefulness of Xenon 133 is reflected by Malone et al., (1987) who, 

despite early enthusiasm, conclude that it is not statistically reliable as a selection method for 

amputation level determination. 

2.3.2.5 Skin Perfusion Pressure (SPP) 

The use of SPP for the evaluation of amputation wound healing potential has been 

well documented (Holstein, 1973). The technique involves an intradermal injection of a 

radioactive tracer mixed with histamine with the washout being measured with a scintillation 

counter. A blood pressure cuff is applied over the injection site and the pressure in it 

increased in steps until washout stops. This cuff pressure is taken as the SPP (Sarin et al., 

1991). Researchers have found, similarly to other techniques, that the SPP technique is 

useful for determining a cut-off point for the prediction of amputation healing (Sarin et al., 

1991). However, reviews on this technique fail to mention a cut-off point for wound healing 

failure and it is ultimately this elusive value that needs to be identified. Sarin et al., ( 1991) 

stated that this method does have its disadvantages. These authors conclude that it is time 

consuming, especially if the SPP is to be determined at more than one site, and it is painful 

enough to require analgesia. 

Two non-invasive methods for determining SPP have been found to be useful for 

predicting amputation wound healing. The earlier method introduced by Nielsen et al., 

(1973) involved the use of a photodetector applied to the skin connected to a 

plethysmograph. External counter-pressure was then applied over this using a blood pressure 
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cuff The cuff is slowly deflated and the SPP taken as the external counter pressure at the 

point when capillary blood flow recommences. Authors such as Ovesen et al., (1984) and 

Van den Broek et al., (1988) found this technique to be less reliable than other non-invasive 

methods. 

Recently, Adera et al., (1995) suggested a second method. They reported the use of 

a laser Doppler instrument for determining skin perfusion pressure. The technique involves 

the use of a specially designed blood pressure cuff, inside of which a laser Doppler probe is 

placed. The probe connected to the laser Doppler instrument is used in the same way as a 

photodetector connected to a plethysmograph, and that is to detect the pressure when 

capillary blood flow returns. The technique was found to be useful for evaluating wound 

healing potential in major amputations however the authors suggested that further study is 

required to assess the techniques ability to predict minor amputation wound healing. 

2.3.3 Transcutaneous Oxygen Pressure Measurement 

T cpO2 measurement was initially developed for monitoring perfusion in neonates. 

The method has been adapted for predicting the outcome of amputation (Ratliff et al., 1984). 

The test involves heating the underlying skin to provide maximal vasodilation of the nutrient 

and thermoregulatory vessels of the skin. The instrument uses a modified Clark type 

polarographic electrode - three 15 platinum cathodes encircled by a silver ring anode. The 

electrolytic solution bathing the electrode is covered by a thin Teflon membrane. Within the 

probe, a heating coil lies adjacent to the anode. This is controlled by a thermistor which 

constantly monitors skin temperature. The probe is attached to the skin by means of a double 

sided adhesive ring, over a drop of contact solution. The skin is heated to 45 degrees to 

achieve maximal vasodilation of the cutaneous vessels (Mars, 1995). Oxygen that is not 

taken up to meet the metabolic demands of the skin diffuses out of the skin (Figure 2), 

through the membrane, and is measured as the current generated across the electrodes ( Allen 
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et al., (I 987). Approximately 20 minutes is required before hyperaemic stabilisation is reached. 

Once this has been achieved the 95% response time is about 10 seconds (Mars 1995). The 

resulting signal is recorded as the transcutaneous oxygen tension in mmHg. According to Allen 

et al., (1987) and Mars (1995) the instrument has a number of limitations with various 

physiological, morphological and methodological factors affecting Tcp02 
measurements. 

2.3.3.I Physiological and Morphological Variables in relation to TcpO2

measurement 

The major physiological factors are cardiac output and sympathetic tone, with red blood 

cell concentration and haemoglobin saturation affecting readings to a lesser extent. A further 

variable includes arterial p02 . When blood flow is adequate, Tcp02 has been shown to reflect 

changes in arterial p02 . When blood flow is low, T cp02 follows changes in blood flow (Mars, 

1995). Under these circumstances Tcp0
2
measurements depend on arterio-venous gradients and 

cutaneous vascular resistance. This relationship is unfortunately non-linear at very low flow 

states (Matsen et al., 1984; Mars, 1995). 

Figure 2: 

Tra.n1cuu..ntou1 Oxygen Preuure Probe 

Oxygen that is not used b,y cells outside the capillaries diffuses through the skin and 

is taken up by the Tcp02 probe. 



19 

Morphological variables include the thickness of the skin and changes in vascular 

morphology with increasing age (Mars, 1995). Another variable which is physiological and 

morphological in nature is the effect that oedema has on TcpO2 readings. Sindrup et al., 

(1987) found that increased oedema paralleled a decreased TcpO2 . Oedema increases the 

distance that oxygen must travel to reach the probe. In addition, the volume in which oxygen 

must reach equilibrium, is increased by oedema, thereby lowering oxygen concentration and 

partial pressure. 

2.3.3.2 Tcp02 Methodological Variables 

Firstly, the semipermeable membrane was designed for neonatal skin, and is perhaps 

too thin for accurate readings in adults. Secondly, both the membrane and the electrolyte 

solution around the electrode must be changed regularly, and the well must be fixed with an 

air-tight seal to the skin. Other variables include electrode oxygen consumption and 

electrode response times in machines with membranes of different thickness (Allen et al., 

1987; Mars, 1995). Calibration against a zeroing solution is a simple procedure, and the 

instrument must be calibrated before it can be used on each occasion. Skin heating to 

achieve hyperaemic vasodilation requires 20 - 30 min per reading (Allen et al., 1987). 

2.3.4 Laser Doppler fluxmetry 

Sarin et al., (1991 ), state that the ideal test for selecting amputation levels would 

require no additional personnel or equipment, take little time to do and have a high sensitivity 

and specificity. Furnas et al., (1991) states that a monitoring system must fulfil several 

requirements before it can be used universally. The system should "respond rapidly and 

deliver continuous data .... The equipment should be simple, safe, inexpensive and portable ... ". 

The LDF has been proposed as a simple, rapid test of skin microcirculatory blood flow 

(Holloway et al., 1977; Nilsson et al., 1980a; Nilsson et al., I 980b ). It involves quantitative 
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evaluation of skin perfusion via the optical analogue of ultrasound Doppler measurement -

Laser Doppler Fluxmetry (LDF). 

Most clinicians are aware of the principles and use of Doppler ultrasound for 

measurement of pressure indices in the investigation of peripheral vascular disease. Sound 

waves are directed towards an advancing column of blood in a major axial artery and are 

reflected back to the probe, undergoing a Doppler shift. The laser Doppler, as its name 

implies, works on the same principle of measuring the Doppler shift, but uses photons of light 

in place of sound (Nilsson et al., l 980a and Nilsson et al., l 980b ). 

The foundation for the development of the laser Doppler was laid in 1958 with the 

development of a highly coherent monochromatic light source (laser) by Schawlow et al. In 

1964 Cummins et al., suggested that the laser could detect the movement of macromolecules 

if a proper heterodyning technique (mixing of two close frequencies and using their 

difference) was used while in the same year Yeh and Cummings documented that even very 

low flow velocities could be detected (+/- 0.07 mm sec) with this approach. LDF was 

directly applied in experimental invasive microcirculatory research by Einav et al., (1975). 

They examined microvascular bloodflow using a special microscope system. The use of the 

laser Doppler technique for blood flow measurements was first presented by Riva et al., 

(1972), studying retinal blood flow. Stem ( 1975) described the first non-invasive application 

of the Laser Doppler technique to monitor blood flow while the first portable clinical 

instrument was developed by Holloway et al., (1977). In 1980, Nilsson et al. demonstrated 

that LDF equipment in vitro gives a linear response to flow for low and moderate erythrocyte 

velocities and erythrocyte volume fractions. 
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2.3.4.1 Theory 

2.3.4.1.(i) Scattering of light within the tissue 

Within the tissue, photons of light are randomly scattered by both moving red blood 

cells as well as stationary tissue cells. The majority of photons are scattered from stationary 

tissue in a predominantly forward direction according to the Rayleigh - Debye theory, with 

less than 0.1% backscattered by moving red blood cells (Bonner, 1981). This scattering of 

light in the forward direction results in a significantly lower average frequency shift of the 

light compared with backscattering. In other words the photons scattered by the moving red 

blood cells undergo Doppler shifts in frequency while those scattered by non-moving cells 

show a minimal shift in frequency or none at all. The light being scattered from moving red 

blood cells will undergo a frequency shift according to the Doppler equation : f = (2vffi cos 

theta) I c. Where v is the velocity of the red blood cell, f0 is the frequency of the incident 

laser light, c is the speed of light in tissue and theta is the angle between the incident ray of 

light and the direction of motion of the red blood cell. The absolute value of the Doppler 

shift can only be calculated if theta is known. 

2.3.4.2 (ii) Laser 

Bircher et al., (1994) states that the traditional fluxmeters were constructed with a 

helium-neon laser tube with a wavelength of 632.8nm. Recently, fluxmeters based on a laser 

diode with a wavelength of 780 nm have appeared on the market. Belcaro et al., (1994) 

suggest that such wavelengths are not readily absorbed by tissue pigments, so that 

measurements can be made even on the darkest tissue. They also state that the use of longer 

wavelengths increases the measurement volume because of the greater penetration depth. 

The laser diode emits only one mode of laser light whereas the tube may switch between 
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different modes, particularly when warming up. Change of laser mode may be rhythmical. 

The diode may be mounted directly in the probe, and therefore an optical fibre cable can be 

avoided. In helium-neon lasers the laser light is led from the tube to the skin via optical 

fibres. Fibres create optical noise and artefacts, with a reduction in the signal-to-noise ratio. 

More recently fibres of smaller diameter and less noise have been constructed, and the 

problem of fibre artefact has more or less been overcome (Gush et al., 1987; Newson et al., 

1987). 

2.3.4.1 (iii) Photodetector 

The source of the infared light (wavelength = 760 - 800 nm) in the Laser Doppler 

used in the present study was a low-power (2 milliwatt), solid-state laser diode. The beam 

produced has a low tissue penetration and is the same type of laser commonly used in the 

telecommunications and video disk industries. This type of laser light does not damage the 

tissues under evaluation or produce an increase in tissue temperature. The light is delivered 

via a fibre optic cable to a probe which is placed on the sample tissue being monitored. 

2.3.4.1 (iv) Signal Processing 

The problem faced in analysis of the signal is three-fold. Firstly, in tissue with a high 

concentration of red blood cells light may be scattered by more than one moving cell and 

hence theta may vary between 0 and 180 degrees for each scattering event. Secondly, the 

anatomical arrangement of the microvasculature of the skin needs to be accounted for. 

Unlike the use of the Doppler ultrasound in which the sound is beamed at an advancing 

column of blood, the photons of light from the laser Doppler are reflected from blood in the 

capillary loops moving both towards, and away from the light source, and from blood in the 

deep plexus moving at right angles to the light source (Figure 3). The situation is analogous 

to swarming flying ants attracted to a street light. 
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At any one moment, the velocity of all the flying ant must be computed, their number 

counted, and correction made for the direction in which they are moving (Mars, 1995). This 

issue caused Stem (1975) to state that it is practically impossible to theoretically calculate the 

Doppler spectrum due to multiple scattering. However, in practice the measured frequency shift 

is derived from an average value of theta, the magnitude of which is unknown. Thirdly, some 

components of the electrical signal are caused by external biologic or instrumental elements ( e.g. 

vibration) and some by internal factors (mainly electronic noise) (Bircher et al., 1994).

The scattered light is collected by receiving optical fibers in the probe and returned to 

the surface of a photodetector (located in the monitor) where the photons mix (heterodyne) 

generating an electrical signal which is then analysed through mathematical filtering in the digital 

signal processor. This filtering occurs via the use of various algorithms which make major 
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computational changes taking the concentration / theta angle relationship, and anatomical 

arrangement of the microvasculature into account, as well as distinguishing between the noise 

and the true signal due to blood cell motion. 

Due to the fact that the magnitude of the Doppler frequency shift depends on the 

velocity of the red blood cells (Mars, 1995), the signal processor computes the mean Doppler 

frequency shift and scales the value accordingly, with the output being expressed in terms of 

cell velocity (the mean velocity of the moving cells); cell concentration (represents the mean 

concentration of moving cells in the tissue study area) and the flow or flux (the product of 

the number of moving cells and their mean velocity). This relationship is valid irrespective of 

how the product of red cell density and velocity is obtained. However, its validity has been 

questioned in very highly perfused tissue (Tenland, l 982). 

2.3.4.2 Terminology 

Unlike the relatively well defined geometry of the vessels ordinarily studied with 

ultrasound, the cutaneous vasculature consists of a complex network of interlacing vessels. 

Arterioles feed hairpin-like systems of capillaries that rise vertically from the papillae of the 

corium and return to the subpapillary venous plexus, whereas the larger vessels in the deeper 

dermis parallel the skin surface. The incident laser beam therefore intersects the flow vectors 

at multiple angles. More over, the light beam is scattered by the tissues both in transmission 

and again after it is reflected back to the receiving system. As a result, the frequency shifts 

represent a composite of the various velocities and angles. Along this line of thinking, 

Bircher et al., (1994) states firstly, that the expression of blood flow per gram of tissue 

therefore represents an average (qualitative information) and is not truly quantitative, because 

of the complex microanatomy of the cutaneous vasculature. 
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Due to the issue of the nature of the signal discussed above, the output from the LDF 

has been referred to as flux instead of flow. This causes some confusion and 

misunderstanding since flux is not a word in common usage. The difference in terminology is 

best explained by Almond (1994). If blood is replaced with saline that does not contain large 

scattering particles. A method that measures volume flow of the fluid, such as venous 

occlusion plethysmography, would measure approximately the same value of flow as if blood 

were present. With saline, a LDF would give a zero output because there are no scattering 

particles to produce a Doppler shift. Thus the LDF does not measure blood volume flux 

(flow) as such but rather blood cell flux (Almond, 1994). However, in most physiologic and 

clinical situations even with a variable relationship between the cellular and fluid elements, 

LDF flux and volume flow have a good correlation. Almond (1994) goes further to state 

that it is arguable that LDF flux is a more useful measurement since it is the flow of red blood 

cells that is important for maintaining the delivery of oxygen to the tissue rather than the flow 

of fluid. If the local blood haematocrit remains constant then flux and flow will be directly 

related. However, if blood cells are not homogeneously distributed within the plasma then 

the flux of red cells and blood flow will have a variable relationship (Almond, 1994). 

Additional terms used to express output signal such have been volt or m V and 

arbitrary units (a.u.). Bircher et al (1994) states that the results of LDF are essentially 

arbitrary and recommends that perfusion values be expressed as a.u. They suggest therefore 

that a.u. should be the common standard among manufacturers. The term flow may be used 

to express a concept that is more familiar to most physicians when referring to flow in certain 

contexts and considering the limitations. The European Laser Doppler Users Group 

(ELDUG) has proposed the use of the term Laser Doppler Perfusion to describe the output 

of the instrument thus avoiding the use of the words flux or flow (ELDUG, London, 1992). 

Perfusion is defined as the product of red blood cell local absolute velocity and 

concentration. 
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The Laser Doppler is easy to use and is capable of making multiple rapid 

measurements at different locations and has a continuous monitoring capability. It is non­

invasive, and hence does not interfere with the rnicrocirculation when measuring local blood 

flow. These measurements are impossible to obtain with any other non-invasive technique. 

These advantages of the instrumentation promised rapid acceptance. The latter capability has 

made the LDF particularly useful for prolonged monitoring of tissue viability, such as after 

plastic surgery or to record skin flow perfusion during sleep or in the new born. LDF, has 

found a place in the evaluation of diabetic ulcers (Belcaro et al., 1989). It has also been 

proposed as a test of amputation wound healing potential (Holloway et al., 1983; Fairs et al., 

1986; Karanfilian et al., 1986; Gebuhr et al., 1989; Kram et al., 1989; Lantsberg et al., 1991; 

Padberg et al., 1992; Adera et al., 1995). Researchers have still not been able to establish 

the LDF as a diagnostic tool and hence LDF methodology has yet to find a_ niche in the 

armamentarium of the vascular laboratory. The technique is influenced by many 

instrumental, methodological, individual, and environmental variables, which need to be taken 

into account for meaningful interpretations. These will be discussed in the next section. 

2.3.5.1 Practical Limitations 

Belcaro et al., ( 1994) state that there are various issues that must be addressed in the 

application of LDF. They argue that these become the concern of the instrument user, 

although in many cases the user has very little control over them or ability to mitigate their 

impact on measurement results. 
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2.3.5.2 Instrumental Variables 

2.3.5.2 (i) Measuring Depth 

Johansson ( 1991) states that a well-defined measuring depth is of vital importance for 

the interpretation of results obtained by any method designed to measure local 

rnicrocirculation. The measuring depth depends on biophysical factors such as the optical 

properties of the tissue. These properties include the surface properties of the skin, blood 

content of the vessels, and the composition of the skin tissue. 

2.3.5.2 (ii) Surf ace Properties 

The outer layer of the skin varies in humans from one area to another, and also from 

normal to diseased states. Patients with vascular disease often have hyperkeratosis of the 

skin, which changes the penetration depth in relation to normal skin. Also hyperpigmentation 

may affect the penetration depth, and by this the sample volume also (Fagrell, 1994). 

2.3.5.2 (iii) Composition of Skin Tissue 

Not only the blood content, but also the composition of the skin influences how the 

light is spread in the tissue. The fat content for example may vary considerably in the same 

area from one subject to another. Besides this, patients with PVD often have ischaernic 

oedema, hyperkeratosis etc., which must affect the sample volume of the instrument (Fagrell, 

1994). 
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2.3.5.2 (iv) Blood Content 

During normal conditions, the skin microvessels fill with blood in a rhythmic fashion 

caused by pressure and flow changes due to cardiac action and by vasomotion. Variations in 

the amount and the movement of blood in the measuring volume, influence the penetration 

depth of the monochromatic light that is directed onto the skin surface by the LDF and 

consequently, the sample volume shows up as continuous variations in the strength of the 

LDF signal (Fagrell, 1994). 

2.3.5.3 Instrumental Design Factors 

These include the optical fibre configuration of the transmitting and receiving fibres of 

the probe, as well as the optical wavelengths. Due to the diverse optical properties of 

different tissues and the vaiious alternative probe designs, the measuring depth has so far 

been difficult to ascertain. Consequently, comparison of results obtained by different groups 

may be ambiguous, in spite of the fact that the blood perfusion has been recorded in the same 

type of tissue. A well-defined measuring depth is, therefore, most important for the 

interpretation of the results 

By using the so-called Monte Carlo calculations (Weis et al., 1989) the theoretical 

mean measuring depth in the skin has been estimated to be O .14 mm but in an artificial model 

this value has been calculated to be approximately 1.5mm (Tamaru and Oberg, 1988). It has 

been postulated that the measuring depth is shallow, when using probes comprised of small 

core diameter fibres (0.062-0.1 mm). The use of probes with large core diameter fibres 

(0.7mm) has given LD-signal values that are linearly related to the total blood flow of deeper 

sites. (Shepherd et al., 1990). 
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Fagrell (1994) suggested that penetration depth varies from one subject to another, 

and from one moment to another. They concluded that measuring depth is not a fixed value 

for a certain tissue, but most probably is a continuous variable in all living tissues. The fibre 

separation distance in the LDF used in the present study is approximately 0.5 millimetres. In 

most biological tissues this yields a measurement depth of 1.0 millimetre. Specifically this 

means that 80% of the blood flow information is generated in the top 1. 0 millimetre layer of 

tissue. Approximately 95% of the blood flow information is generated in the top 1.5 

millimetre layer of tissue. The consequence is that at least 95% of the LDF output signal is 

made up of information gained from the deep thermo-regulatory plexus while only 

approximately 5% of the signal being derived from the nutritive layer (Mars, 1995) (Figure 

4). The LDF signal that is recorded is therefore one in which the thermoregulatory flow 

component is predominant and the nutritional flow is a small component. For this reason the 

LDF technique cannot be used for evaluating skin capillary circulation, but only the total skin 

microcirculation in humans. New microprobes may reduce the measuring depth and provide 

a means of selective evaluation of the most relevant superficial nutritional capillaries, but 

clinically relevant data are not yet available. These new probe involve using polycarbonate 

(Delrin) spacers between the probe and the skin surface. The spacers have the same optical 

density as the skin and may be useful to separate the most superficial skin flux from the total 

skin flux, which is obtained by placing the probe directly on the skin (Fagrell, 1994) 

Increasing the wavelength also provides a proportional increase in the average 

measurement depth. For example, an optical wavelength of 780 nanometers would have 

approximately 23% greater measurement depth than a wavelength of 633 nanometers 

(Vasamedics, 1995) 
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Figure�: Depth and area of LDF light penetration. 

2.3.5.3(i) Measurement Area 

Belcaro et al., (1994) state that for most instruments the sample volume is about one 

cubic millimeter and that variations in the number of capillaries per unit volume of tissue are 

evident even on this scale of sizes. Problems may be overcome by multiple recording within the 

study region, and averaging. Bircher et al., (1994) suggested that the construction of 

integrated probes, special probe holders and scanners may also overcome this problem. Salerud 

et al., (1986) developed a probe which integrated signals from seven optical fibres in order to 

try and reduv spatial and temporal variability. Theoretically this would reduce the variability 

by the factor of 7. In their experimental setups, the spatial variation was significantly reduced, 

but the modification appeared to emphasize the temporal variation. Wahlberg er al.. (1994), are 

one group of only a few who have compared a multiprobe (using 7 fibres) to a standard probe. 

These probes were placed between the knee and the first toe. The sites were chosen to fit a 

future study on amputation levels. They found that spatial variation in widely separated probe 

sites is reduced with the multi-probe. However, the temporal variation was not found to be 

reduced. In 1993, Wardell et al., reported the use of laser Doppler perfusion imaging (LDPI) 



31 

(PIM 1.0, Lisca Development AB, Sweden). This equipment involves a laser beam which 

successively scans the tissue and the backscattered and Doppler shifted light is recorded in 

several thousand measurement points. After a scan is completed all measurements are 

compiled to form a colour coded image of the tissue perfusion. Bircher et al., (1994) argues 

that these new laser Doppler modifications require further research. These new instruments 

need to be validated and documented versus standard recording, and to be shown to be a 

significant improvement. 

2.3.5.3(ii) Motion Sensitivity 

Tenland (1982) found that any movement, within the area illuminated by the laser, 

will cause the light to be spectrally broadened by the Doppler effect. Clinton ( 1991) found 

that erroneously high flow values can be the result of tissue motion. Tissue motion may be 

extrinsic (room vibration) or intrinsic (muscle fasciculation, respiration, or excessive patient 

movement). Patient movement can result in unnaturally high readings for several seconds. It 

is therefore critical that the patient realises from the beginning of measurement that he or she 

should be as relaxed and comfortable as possible in order to avoid movement of the limbs or 

a change in the blood flow which could affect the readings. 

2.3.5.3(iii) Calibration 

There are three reasons why calibration of the LDF is problematical. Firstly, The 

range of fluxmetry instruments (there are at least eight), their different principles, and the 

range of applications and modifications, together with the popularity of the method, make it 

impossible to develop one universal standard (Bircher et al., 1994). The LDF is not directly 

quantitative and hence cannot be calibrated in absolute units with each type of LD fluxmeter 

giving its own readings. This makes it difficult to compare results from different 

manufacturers (Mars, 1995). 
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Secondly, there 1s no gold standard against which to compare LD readings 

particularly in the skin. Although many studies have demonstrated a good correlation 

between LDF measurements and other methods of blood flow measurements. In these 

studies cutaneous blood flow measurement accuracy was comparable to xenon (Engelhart et 

al., 1983), plethysmography (Johnson et al., 1984), and video microscopy (Tyml et al., 

1985), in human subjects. Calibration however, has not been reported using techniques that 

more appropriately reflect capillary perfusion, such as microspheres or hydrogen clearance. 

However, this correlation that does exist with many other methods is not surprising since in 

most cases an instrument that measures flow in one vascular compartment will probably on 

average correlate with another method even if it measures flow in a different way (Almond, 

1994). 

Almond (1994) goes further to argue that the validity of a universal calibration factor 

for the LDF in all tissues is questionable. The calibration will be influenced by uncontrollable 

variables such as the heterogeneity of the distribution of red blood cells in the tissues and by 

factors affecting light penetration in the tissue such as pigmentation or epidermal thickness. 

In addition, at high red blood cell concentrations the response of the tlowmeter may be non­

linear. Because of the local nature of the measurement, recording flow in absolute units is 

not that meaningful since this may not accurately reflect the global tissue blood flow. 

Bircher et al., (1994) suggest that a standard, made of a colloidal suspension of 

microspheres can be used on a temporary basis, but the suspension is not stable over longer 

periods, and tends to flocculate. They therefore see sophisticated calibration procedures as 

not being useful or realistic for everyday use. A third difficulty linked to calibration is the 

difference between instrumental and biological zero. Tenland et al., (1983), Caspary et al., 

(1988) and Wahlberg et al., (1994) have reported that the biological zero is another 

important factor that influences the laser Doppler output variability. 
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2.3.5.(iv) The Biological Zero 

The instrumental flux zero baseline is obtained by positioning the probe against a 

white surface (white porcelain is recommended by Bircher et al., (1994). The biological zero 

is defined as the background value measured from a defined anatomical site after the arterial 

supply has been blocked with a cuff inflated to a pressure at least 25mm Hg over systolic 

pressure (Tenland et al., 1983; Caspary et al., 1988; Bircher et al., 1994; Wahlberg et al., 

(1994) and Mars, (1995). The biological zero is higher than the instrumental zero (Mars, 

1995 and Bircher et al., 1994) (Figure 6). 

The origin of the signal responsible for the biologic zero is not clearly understood for 

it varies from region to region and also from organ to organ. Caspary et al., ( 1988) and 

Mars (1995) suggest that it is probably produced by Brownian Motion while Fagrell (1994) 

states that it is generated by flow independent movements such as vasomotion activity in 

tissue. When blood flow to the skin is completely abolished, the LDF signal decreases to 

20% to 50% of the normal tissue flux measurement while in situations of inflammation or 

edema formation it increases up to 70% of the normal flux. Caspary et al., (1988) found that 

the biological zero could amount up to 80% of the total LDF signal in PVD patients. These 

authors also showed in their study, which involved measuring LDF in excised tissue, that an 

elevated baseline from the instrumental zero existed, even several hours after excision. 

However, this elevated biologic zero disappeared after a few days. Recently it has also been 

shown that the value of biological zero could vary from one moment to another in the same 

area. Sometimes it can be significantly increased in the skin of diabetic ischaemic feet 

encompassing the majority of the recorded signal (Caspary et al., 1988; Wahlberg et al., 

1992). 

The clinical implications of these findings are still not clear, and further studies are 

required. The biological zero seems to be composed of a mixture of different parameters that 
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differ from one situation to another. Some researchers have therefore suggested that in the 

practical clinical evaluation of limbs, particularly in low perfusion states, the biological zero, 

should be recorded and presented and subtracted from the total LDF signal achieved 

(Caspary et al., 1988 and Bircher et al., 1994). Fagrell (1994) states that if this is not done it 

is a great risk that, at least in some tissues, the interpretations of the results may be wrong. 

Caspary et al., (1988) concluded that although the biological zero phenomenon seems 

negligible under good perfused conditions, in cases of low perfusion (e.g. PVD patients) it 

should be taken into account when evaluating measurements, especially relative signal 

changes following provocative tests. Finally, Bircher et al., (1994) suggest that values can 

either be expressed as the value directly read from the display or as the difference from 

biological zero, and that it must be made clear in publications which mode of expression is 

being used. 

2.3.5.4 Individual Related Variables 

2.3.5.4(i) Age 

Huether et al., ( 1986) found no significant difference between laser Doppler flux in 

any of six skin sites tested in 51 healthy volunteers, age range 20-53 years. Similarly, De 

Boer, (1989) studied the volar aspects of the forearms of 156 healthy volunteers (age range 

17-63 years) and found that LD flux was not age-related. Suichies (1990) however, found a

difference in normal neonates. The LD flux decreased in the first week after birth, due to the 

further development of the capillary network in this period, resulting in an increase in the 

rnicrovasculature exchange area in the skin. The above studies were all conducted without 

heating the skin. The issue on whether to heat the skin will be discussed in detail later in the 

chapter. The effect of temperature on cutaneous blood flow has been studied by placing the 

subject's forearm in a hot water bath, and a decreased response of the cutaneous 

rnicrovasculature to thermal stimuli was found with increasing age. The studies have 
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however led Bircher et al., (1994) to conclude that for the major part of the age range, 

excluding the neonatal period, LD flux is not age dependent. 

2.3.5.4(ii) Sex and Race 

Huether (1986); Agner (1991); and Bircher et al., (1994), conclude that there appears 

to be no major sex LD flux differences. However, in an experiment with 27 healthy subjects, 

LD flux on the forearms was significantly higher in males than in females (De Boer, 1989). 

Thus, at present the findings as to relationship between sex and LD flux are contradictory. 

Nevertheless, there appears to be no major difference in cutaneous blood flow between the 

sexes. A study by Berardesca et al., (1988) comparing white and Hispanic and white and 

black subjects showed no significant differences in resting LD flux between the groups. 

However, Karanfilian et al., (1986) and Padberg et al., (1992) have reported that dark skin 

pigmentation prevented assessment of wounds by LDF. Further studies are therefore 

required. 

2.3.5.4(iii) Intra-and Inter-individual Variation 

Bircher et al., (1994) states that controversial results on the repeatability ofred blood 

cell flux have been reported. They suggest that one reason for conflicting results may be the 

small size of the measuring area and the problem of exact repositioning of the probe. 

Almond ( 1994) states that if blood flow varies significantly over the region of interest then a 

single spot measurement of LDF output may not be representative. Making several 

measurements over the region and computing an average value may help to resolve this 

problem. Braverman et al., (1990) found that flux values measured by LDF varied by more 

than 100%, depending on the type of blood vessels in the skin tissue volume measured (this 

issue which relates to variation in anatomical microvasculature will be discussed in the next 

section). Agner et al., (1990) measured resting flux bilaterally on the upper arm of 20 
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healthy subjects, and found that the intraindividual coefficient of variation was 25% as 

compared to an interindividual coefficient of variation of approximately 50%. Sundberg 

(1984) found that the forehead yielded the lowest coefficient of variation, but for continuous 

monitoring ( e.g. physiologic testing, drug evaluation), suggested that even the forearm skin 

can serve as a suitable testing site. K vemebo ( 1988) demonstrated that although the median 

values are satisfactorily reproducible for a given group of control subjects, this did not hold 

true for individual subjects. 

2.3.5.4(iv) Spatial Variations 

Sundberg (1984), states that considerable regional variation LDF readings between 

different parts of the body can be attributed to the significant regional differences in anatomy 

and function as well as the fact that the cutaneous vasculature is highly responsive. 

Braverman et al., (1990) and Colantuoni et al., (1994) discuss Sundberg's (1984) first 

point in detail. They found that variations in LDF readings were due to the structure of the 

anatomical microvasculature under the probe. Specifically, that the characteristics of the 

ensuing signals were directly related to the activity of the vessel from which they originated. 

Colantuoni et al., (1994) argue that in practice the diameter of the LDF probe is too wide to 

record flow from individual vessels, and the ensuing LDF flow measurement averages signals 

from many vessels. The LDF output could therefore be seen to be a composite of the net 

flow through the tissue with the variability of the signal being determined by the activity of 

the different microvessels. They stated that although the LDF signal is representative of 

tissue flow, it is primarily an expression of motion of blood in the tissue, regardless of its 

origin. They found that the mean flow values of larger venular vessels are always greater 

than the corresponding arteriolar order values, and hence concluded that the clinically used 

LDF signal, assumed to be representative of tissue perfusion, is mostly influenced by venular 
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flow. They went on further to state that the signal also includes non-perfusion-related 

components associated with flow variability. 

In an early report which discussed spatial variance in blood flux, Tenland (1982) 

found wide variations between adjacent skin sites on the forearms. Later Tur et al., (1983) 

reported that the lower legs and sides of the trunk showed low perfusion, but the hands, 

fingers and face had a high perfusion in healthy volunteers. They did find however that flux 

was equal in contralateral sites. DeBoer, (1989) studied 27 healthy volunteers, and found a 

significant difference between the proximal and distal regions of the volar aspects of the 

forearms with the distal values being higher. Kvemebo et al., (1988) reported that the 

highest LDF output was obtained from the pulp of the toe. This was most likely due to high 

concentration of arteriovenous shunts, a fact to be considered when nutritional flow 

conditions are the focus of an investigation. From these few studied it can be seen that 

spatial variation of blood flux is considerable and needs to be taken into account. Sundberg 

( 1984) stated that the cutaneous vasculature is highly responsive. The reason being that it is 

under the influence of constant and dynamic regulation. This regulation causes temporal 

variation in blood flux readings, a further methodological difficulty (Bircher et al., 1994). 

Spatial variation is discussed further in Chapter Four, in relation to the results of the study. 

2.3.5.4(v) Vasomotion 

Short-term variations in red blood cell flux have been recorded due to the fact that 

LDF allows continuous recording. These variations are rhythmical and there is great intra­

and interindividual variety in their magnitude (Salerud et al., 1983). The rhythms include 

those due to the cardiac cycle as well as slower rhythms, which are unrelated to the 

respiratory or cardiac cycles and independent of the autonomic nervous system. (Salerud et 

al., 1983; Tenland et al., 1983; Engelhart et al., 1986; Wilkin, 1987). The cycles only 

disappear under anaesthesia (general or local) (Salerud et al., 1983). This fact indicates that 
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these variations are vasomotor waves which are an expression of local arteriolar 

autoregulatory mechanisms independent of the central nervous system (Mars, 1995) 

Bircher et al., (1994) states that this autoregulation of the microcirculatory blood 

flow is still not fully understood. Vasomotion is accentuated under conditions of reduced 

perfusion but diminishes with severe ischaemia, a condition during which LDF-monitored 

vasomotion also disappears. Colantuoni et al., (I 994); Meyer et al., 1988; and Schmidt et 

al., 1993 have studied vasomotion and have found that some experimental studies show that 

oscillatory flow behaviour is present, starts or stops, in different situations, including 

hypertension, hypovolemic shock, and peripheral vascular insufficiency. However, LDF 

measurements from the skin of healthy subjects and patients with ischaemia present a 

variability of patterns and are obtained using different procedures. This variability, coupled 

with the lack of uniform criterion for the analysis of time-dependent LDF signals, is in part 

the reason that this methodology does not allow to unequivocally discern between normal 

and pathological perfusion conditions (Fagrell, 1984; Wilkin, 1986; Creutzig et al., 1987). 

Mars ( 199 5) concludes this argument suggesting that at present analysis of vasomotion has 

not been found to be of clinical benefit. 

2.3.5.4(vi) Temporal Variation 

Tenland et al., (I 983) found large day-to-day variations in flux during a 

reproducibility study which took repetitive recordings at different skin regions. However, 

Sundberg, ( 1984) found no significant variation in flux at 2-hour intervals and in 5 day-to-day 

measurements. Reproducible results of flux were also obtained in a large group of 

individuals where measurements were taken 1 week apart (Zeghal et al., 1986). 

Ducloux et al., 1989 found resting flux to remain stable in a short-term experiment 

(60-90 min) while Muller et al., (1987) found that resting flux and flux induced by various 
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stimuli of cutaneous vasomotor reflexes were not significantly different when measured in the 

morning and in the afternoon. Therefore, no major changes, in cutaneous blood flow during 

the day have been observed, however Bircher et al., (1994) have suggested that long-term 

studies are performed with repetitive measurements at the same time of day. Bircher et al., 

( 1994) also suggest that in the comparison of values at different sites or over periods of time 

it is important to examine individuals in the same position, as flux is dependent on posture. 

Mean values in the supine position have been reported to be higher than those measured 

sitting (Sundberg, 1984). Creutzig et al., (1987) found in healthy subjects, that leg flux 

values decrease on dependency, but not on elevation above heart level. 

2.3.5.4(vii) Physical and Mental Activity 

Exercise has a considerable influence on cutaneous blood flux. Hatanaka et al., 

(1984) showed that a slow exercise climbing two steps forty times, significantly increased 

fingertip flux while Ducloux et al., ( 1989) reported a significant increase of flux in areas of 

muscular activity between athletes and untrained individuals. Bircher et al., (1994) states 

however that pre-experimental effort influence of resting flux is of a short duration and can 

be prevented by an adaptive / acclimatization phase before the experiment. Mental stress 

(Elam et al., 1987) and performance of mathematical calculations (Wilkin et al., 1987) both 

have an influence on flux in areas rich in arteriovenous shunts and should therefore be 

avoided during LDF measurements. Also skin vasomotor reflexes such as Valsalva 

manoeuvres (Low et al., 1983; Muller et al., 1987;), deep inspirations (Muller et al., 1987) 

and hyperventilation (Smits et al., 1987) have a transient influence on flux, especially in areas 

with arteriovenous shunts. Bircher et al., (1994) therefore recommend the performance of 

measurements in a quiet environment in the absence of powerful audio-visual and other 

mental stimuli. 
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Hatanaka et al., (1984) reported that fingertip flux was not influenced by food intake. 

Bircher et al., (1994) states that all potentially vasoactive agents, such as vasodilating and 

antinflammatory drugs, as well as the consumption of nicotine, caffeine and alcohol should be 

avoided when measuring resting flux. Sundberg, (1984) and Stevenson et al., (1987) found 

that nitroglycerine and Sundberg, (1984) found that prazosine had prolonged influences on 

LDF flux. Waeber et al., (1984) reported that smoking reduced forearm LDF flux and other 

authors found that alcohol ingestion increased flux, especially in subjects with a history of 

flushing with alcohol (Wilkin et al., 1985; Wilkin., 1986). 

2.3.5.5 

2.3.5.5(1) 

Environment-related Variables 

Air Convection, Ambient and Local Temperature 

A resting individual loses heat to the environment in 4 ways: the most important is 

radiation, followed by evaporation, convection, and conduction (Nilsson et al., 1986). 

Among the factors which influence laser Doppler flux are therefore ambient temperature, 

humidity and air movements. The anatomical location is of importance here since 

arteriovenous shunts play an important role in thermoregulation; they react quickly to 

temperature changes and may considerably influence flux. 

One of the most important factors which influences cutaneous flux is skin 

temperature, which is dependent on local or environmental temperature changes. The 

ambient air temperature influences the skin temperature directly by the mechanisms 

mentioned above and indirectly by central thermoregulatory effects (Bircher et al., 1994). 

Hatanaka et al., (1984) found that within a certain range, ambient temperature had little 

influence on laser Doppler flux. These authors showed that measurements taken at the 
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fingertip at room temperatures between 4 to 38°C showed stable flux values between 17 and 

28°C, a significant decrease below 17°C and a trend towards an increase at 38°C. Winsor et 

al., (1989) found similar results at the big toe. They reported no significant effect on flux at 

room temperatures from 24 to 30°C, while from 30 to 36°C a large temperature-related 

increase in flux was observed. Sundberg, (1984); Hassan et al., (1988) and Richardson, 

(1989) reported that direct forced local cooling or warming (using a heated laser Doppler 

probe) decreases or increases laser Doppler flux respectively. 

Bircher et al., (1994) states that cool air currents significantly lower skin temperature 

and flux, though only if they are applied over a time period. Nilsson, 1987 and Nilsson et al., 

( 1986) found that forced convective cooling reduced LD flux and skin temperature 

significantly, whereas radiative cooling decreased skin temperature but did not effect laser 

Doppler flux. 

Bircher et al., (1994) therefore suggest that it is advisable to measure LD flux at 

constant environmental conditions. They state that at the usual ambient temperature of 20-

250C in a draught-free environment laser Doppler flux is relatively stable. To prevent 

unwanted effects of ambient or local temperature changes on flux these authors state that an 

adaptation of 20-30 min of the subject to the conditions in the room is mandatory. This also 

includes the removal of heavy clothing to circumvent later adaptive vasoconstriction in 

response to lower ambient temperature. 

From the above discussion it can be seen that there are a vast number of variables 

which may influence LDF measurements. In view of the questionable temporal and spatial 

reproducibility any comparison, between results obtained from different studies, with 

particular reference to the present study regarding the prediction of wound healing after 

amputation, must be very tentative. This approach is taken by Mars (1995), who suggests 

that in order for this diagnostic technique to be useful, each vascular laboratory should 
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establish its own resting LDF values. Bircher et al., (1994) also encourage researchers or 

laboratories to establish their own standard operating procedure, including validation under 

their specific practical conditions. In addition Mars (1995) suggests that provocative testing 

comparing readings before and after a particular manoeuvre should be used. Bircher et al., 

( 1994) state that currently, measurement under controlled circumstances with a defined 

purpose, and recordings expressed in arbitrary units, are often the best that is achievable. 

The following section discusses various provocative tests which have been used to over come 

the problems of calibration and absence of absolute values. These are used in addition to 

resting laser Doppler flux. 

2.6 Provocative Testing 

2.6.1 Postocclusive Reactive Hyperaemia Test 

Several investigators have concluded that the scatter of LDF resting values is too 

large to permit separation of patients with ischaemic peripheral vasculature from normal 

control subjects. Karanfilian et al., (1984); Pabst et al., (1985); Del Guercio et al., (1986) 

and Kvemebo et al., (1989), deem the Postocclusive Reactive Hyperaemia Test (PORH) 

(Figure 5) to be more clinically useful than absolute readings. These authors have 

demonstrated a standardised and highly reproducible postocclusive reactive hyperaemia 

response. The test has become a preferred method because it relies on measurement of 

relative changes and does not require calibration. The test involves monitoring of LDF 

before and after occlusion of arterial blood flow for 3 minutes with an arterial tourniquet 

(Bircher et al., 1994). Typically one of three responses occurs: a normal increase in 

measured flux after release, delayed reactive hyperaemia following tourniquet release, or a 

blunted response, with no hyperaemia occurring (Mars, 1995). 
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The LDF response to PORH depends on the initial perfusion conditions among other 

factors. The extent to which the LDF response can be used to quantify the degree of arterial 

occlusive disease has not been clearly determined. Kvernebo et al., (1989) analysed the 

PORH response in several groups of patients and control subjects. They found that the delay 

between tourniquet deflation and the first increase in recorded flux was the most sensitive 

index for separating normal subjects, claudicants, and patients with severe ischaemia 

(Fontaine III and IV classification). 

In a previous study, Pabst et al., ( 1985) used the peak PORH response and found 

significant differences between controls and severely ischaemic patients but less significant 

differences between those groups and claudicants. In an even earlier study, Karanfilian et al., 

( I 984) identified vascular beds with relatively high LDF output (finger, toe, forehead) and 

those with significantly lower signals ( e.g. plantar and dorsal aspect of the foot). They also 

found significant differences in resting baseline values between control subjects and patients 

with peripheral arterial disease; however this latter group consisted primarily of patients with 

severe ischaemia. A better separation was obtained by using the PORH response, and the 

most sensitive index was found to be the time to maximal response ( 18 seconds in the control 

group versus 150 seconds in the patient group). The observations of Del Guercio et al., 

(1986) were even more encouraging because they studied patients in Fontaine group II 

(claudicants) without signs or symptoms of severe ischaemia. From a qualitative viewpoint, 

they found a significant vasomotion response superimposed on the postocclusive reaction in 

about 80% of normal subjects, whereas only 3 5% of the patient group demonstrated this 

phenomenon. They also compared the PORH response induced by thigh cuff occlusion with 

that resulting from ankle cuff occlusion. The most pronounced differences was in the latency 

time between the end of occlusion and the subsequent resumption of cutaneous blood flow. 

Most encouraging was the difference in latency time when thigh compression was used: 

practically no overlap with the control group was seen, but there was some overlap of values 
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if ankle compression was applied. Differences in the site of the occlusive disease may have 

been responsible for this overlap. 

A less reliable separation was obtained by Seifert et al., (1988), who found a 

significant reduction of PORH response in patients with severe ischaemia but could not 

separate claudicants (Fontaine II classification) from the control group. The derivation of a 

reactive hyperaemic index in these groups showed a significant difference between the 

control and severe PVD groups at all sites on the limb. However, a distinction between mild 

and severe ischaemia could not be made at any site on the leg, an indication that the 

technique would probably be of little value in assessing amputation level. Fairs et al., (I 987) 

have concluded that in any event, producing reactive hyperaemia with severe ischaemia is 

questionable in terms of the pain it produces. In their experience they had found that pre­

operative pain is not always well controlled. Their patients were often acute admissions in 

need of immediate amputation surgery, or their condition has deteriorated rapidly following 

other unsuccessful vascular procedures. Fairs et al., (I 987) argued that any technique which 

could painlessly obtain the same information would be preferable. 

2.6.2 The Venoarteriolar Reflex 

A second test involving the Venoarteriolar Response has also been used to improve 

the sensitivity of the LDF. This is the vasoconstrictive response of the skin microcirculation 

in the foot when moving from supine to a standing position, or when lowering the leg below 

heart height . On standing, LDF and vasomotion is normally reduced. Sundberg et al., 

( 1986) assessed the effect of leg position on LD flux. They examined the effect of increased 

venous pressure by occluding venous outflow with a 40 mmHg cuff. They found a decrease 

in LDF in both healthy subjects and patients. While leg elevation caused an increase in LDF 

in both groups, the response to leg dependency was more informative, with a decrease in 

LDF in control subjects and an increase in patients. However, these results require some 
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additional qualification because the significant increase occurred at 3 7
°

C, which may have 

influenced the venoarteriolar reflex, although the same temperature did not influence the 

response in the normal control group. These results are somewhat contradictory to those 

reported by Seifert et al., (1988) who found a decrease in LDF values in sitting position in 

patients as well as control subjects. It is possible that a lower thermostat setting (32°C) may 

be the explanation. Belcaro and Nicolaides (1989), studied the effect of orthostatics on LDF 

in normal subjects, diabetics, claudicants, and patients with severe ischaernia without altering 

the skin temperature. They found a significant reduction of LDF on standing in normal 

volunteers, whereas there was no significant flux reduction in the patient group. These 

authors therefore concluded that in diabetics with microangiopathy, resting flow has been 

found to be greater than in controls and there is a reduction of the venoarteriolar response. 

2.6.3 LDF Index 

Thus far only two research articles have been found which have suggested the use of 

an LDF index in the prediction of amputation wound healing. Gebuhr et al., (1989), 

measured LD flux at the sternum as well as three sites on the lower limb. They concluded 

that sternal recordings were unnecessary when evaluating wound healing potential in the 

lower limbs of PVD patients. Kram et al., (1989) used a calf- brachia! LDF index to predict 

below - knee amputation wound healing. They did not find however, that the index increased 

predictive accuracy compared to calf LDF measurements alone, although patients with 

wounds that failed to heal tended to have lower calf - brachial indexes. 

2.7 Evaluating Wound Healing Potential using Thermal Testing 

2.7.1 Controversy: Non-heating versus Heating 

If LDF measurement is performed on unheated skin, readings can be obtained 3 

minutes after application of the probe. Routine testing at the four sites would then take less 
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than 20 minutes. There is controversy as to whether skin heating is required. Some authors 

have developed criteria based upon the difference in the LD signal between non-heated and 

heated skin for prediction of wound outcome (Holloway et al., 1983; Gebuhr et al., 1989) 

and these authors, along with others, state that addition of cutaneous heating to LDF 

measurements improves the prediction of outcome for wounds in ischaemic skin (Holloway 

et al., 1983; Matsen et al., 1984; Allen et al., 1987; Fairs et al., 1987; Gebur et al., 1989; 

Lantsberg et al., 199 I; Padberg et al., 1992). However, cutaneous heating has not been used 

routinely with LDF measurements. With Karanfilian et al., (I 986); Kram et al., ( 1989); 

Kvemebo et al., (1989); Castronuovo et al., (1987) reporting useful unheated values for 

evaluating wound healing potential pre-operatively. 

Tcp02 monitoring has been shown to be effective and reliable for evaluating wound 

healing potential (Oishi et al., 1988; Wyss et al., 1988; Mars et al., 1993). A common 

problem with Tcp02 monitoring is that low to zero readings are often found in wounds which 

healed (Franzeck et al., 1982; Harward et al., 1985; Allen et al., 1987; Wyss et al., 1988). 

In a study conducted by Padberg et al., (1992) false negative results (wounds which healed 

when predicted to fail) occurred in 7% of the wounds studied (at the criteria with the best 

overall predictive accuracy for Tcp02 (l lmmHg). This meant that 2 of 11 wounds (1 above 

knee amputation, 1 toe amputation) healed with a Tcp02 of zero. Wyss et al., (1988) 

reported 4 of 11 amputations (3 below knee, 1 foot) which healed with a Tcp02 of zero. 

Harward et al., ( 1985) reported 3 of 7 toe amputations and 6 of 7 below knee amputations 

which healed with a Tcp02 of zero. 

This problem can be understood if the findings of Matsen et al., ( 1984) are taken into 

account. The authors' results confirmed a previously hypothesised non-linear relationship 

between Tcp02 and local cutaneous blood flow . They found that a Tcp02 reading of zero 

may be obtained in the presence of significant local cutaneous blood flow. They stated 

however, that non-heated LDF measurements do not correlate with local skin perfusion 
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whereas TcpO2 and LDF measurements reflect changes in arteriovenous gradient when made 

over areas of heated skin ( 44
°
C). They concluded that the addition of cutaneous heating to 

LDF measurements enhances the capability of LDF for stratifying ischaemic wounds between 

those with marginal and inadequate blood flow. 

Kram et al., (1989) however, employing a non-heated LDF, compared dual calf 

measurements to wound outcome in 29 below knee amputations. The results were 

promising, however, not all the limbs were ischaemic and there were only four wounds which 

failed to heal. The authors also did not describe how test results influenced their clinical 

decisions. 

A study by Karanfilian et al., ( 1986) compared non-heated LDF to TcpO2 in a single 

group of forefoot wounds consisting of 20 amputations and 36 ulcerations. The authors 

concluded that TcpO2 more accurately predicted outcome (95% vs 87%), and that LDF was 

less useful because of the high incidence (23%) of false negative predictions. They reported 

that the sensitivity of the LDF was 79% while the specificity 96% (see Chapter Five for a 

discussion of this studies results). They suggested however that both methods were 

significantly more sensitive (p<0.05) than Doppler ankle pressure measurements for 

predicting healing. 

Neither Holloway et al., (1983) or Fairs et al., (1987) were able to differentiate 

amputation groups (healed or failed) from controls with nonheated measurements. Both 

Holloway et al., (1983) and Fairs et al., (1987) also calculated the relative increase in LDF 

flux produced by heating the skin (heated flux / baseline flux). Fairs et al., ( 198 7) found that 

a significant difference existed between the absolute heated flux of the control and both the 

BK and AK groups (p<0.001). The difference between the absolute heated flux of both 

amputee groups was also significant (p<0.005). A more significant difference between the 

BK and AK group was found when the relative increase in flux was considered (p<0.001). 
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The difference between the controls and BK or AK groups using this parameter was also 

significant (p<0.001). The correlation between TcpO2 and the relative increase in LD flux 

was r = 0.7, p<0.001. Relative flux was plotted rather than absolute flux as the authors' 

experience had indicated that vascular reactivity is likely to be a better indicator of potential 

for healing than absolute flow level. The correlations were very similar though marginally 

poorer for the absolute heated flux/TcpO2 characteristic. 

Holloway et al., (1983) reported findings from an uncontrolled pilot study using an 

LDF for amputation level selection. Primary wound healing for both above knee and below 

knee amputations was indicated when the flux achieved after heating was at least one third of 

that seen in controls. However, no exact values were given and the findings from Padberg et 

als '., (1992) study differed substantially. The latter study found that all above knee 

amputations healed in situations where the heated flux was less than 30% of the control 

levels. 

Pabst et al., (1985) found, in a study of LDF in controls and patients with PVD, a 

significant difference in unheated, baseline flux in the great toe, between controls and 

severely ischaemic limbs. These authors did not however find differences at more proximal 

sites between controls and either mild or severe PVD. These latter findings confirm those of 

Holloway et al., (1983); Fairs et al., (1987) and Padberg et al., (1992). 

Gebuhr et als '., (1989) study was similar to the present study. These authors studied 

22 amputations. Each patient had recordings at four level: the dorsum of the foot, 10 cm 

below the knee, 10cm above the patella, and on the sternum. Both the unheated, resting flux 

and the heated flux (after two minutes of local heating 44°C) were recorded. The flux 

increase after local heating was always prompt, and after one to two minutes no further 

increase was obtainable. The sternal recordings always showed a higher basic flux than those 

from the leg, and also the greatest increase in flux after local heating. The unheated, baseline 
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flux, before heating, showed no correlation with the amputation level, and the sternal flux did 

not correlate to the extremity flows. The increase in flux after heating, however, was directly 

related to healing. Sternal recordings would appear to be unnecessary in the normal clinical 

situation. The authors reported that if an increase of five or more arbitrary units was found 

upon heating the skin, amputation at this level was expected to be successful. They therefore 

concluded that the most distal level with a positive local heat test should be the level of 

amputation and that a positive local heat test indicated the presence of a reserve capacity in 

the microcirculation which was needed to ensure healing. It is important to note in this study 

however that, although wound healing occurred in 18 out of 21 when cutaneous heating 

produced an increase of 5 or more arbitrary units over baseline non-heated values, out of the 

four amputations that failed to heal, 3 were incorrectly predicted to heal by the criteria 

selected. 

The most recent study that reports on the use of absolute heated TcpO2 and LDF 

values is that of Padberg et al., (1992). The skin was heated to 45
°
C for both instruments. 

For predicting healing, criteria for both TcpO2 and LDF could be established with 100% 

specificity and positive predictive value. They found however that more general use of their 

criteria resulted in an unacceptably low sensitivity, negative predictive value, and/or 

accuracy. Thus, it was concluded that while this criterion may be of value in the individual 

patient, it is not appropriate for more general application. For predicting failure, only criteria 

for the LDF could be established at 100% sensitivity and negative predictive value. Criteria 

could not be established for TcpO2. False negatives occurred with TcpO2 measurement at its 

lowest predictive value. Similarly to Franzeck et al., (1982); Harward et al., (1985) and 

Wyss et al., (1988) and in support of the findings of Matsen et al., (1984), Padberg et al., 

(1992), found that patients with very low TcpO2 values proved capable of healing with 

appropriate local wound care. This included two patients with TcpO2 measurements of 0 

mmHg. In contrast, no wounds healed at a LDF range <35mv. This criterion for LDF range 

provided a sensitivity and negative predictive value of 100%, while retaining a positive 
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predictive value of 83%, and an accuracy of 85%. Padberg et al 's., (1992) study therefore 

provided a direct comparison between absolute heated probe LDF and TcpO2 measurements 

made at the same temperature and location in assessing the outcome of a single set of 

ischaemic wounds followed to definitive clinical outcomes. Both the instruments accurately 

assessed the outcome of ischaemic wounds. The authors concluded that TcpO2 excels in 

prediction of wound healing, but is less precise at low values, while LDF excels in the 

prediction of wound failure, and can discriminate between marginal and inadequate skin 

blood flow. 

2.8 Wound Healing Limitations 

The ultimate objective of preoperative LDF and TcpO2 testing ts to derive a 

numerical value above which all amputations will heal and below which none will heal. It is 

crucial to be aware however, that wound healing is a complex process. It not only 

dependent on an adequate blood and oxygen perfusion in the cutaneous microvasculature, 

but on multiple factors. These factors are the reason why there is no universal non-invasive 

technique for predicting the outcome of an amputation. 

Mars et al., (1993) suggests that a major limitation relates to the fact that non­

invasive tests are all specific, providing information on either perfusion or oxygenation of 

either the skin or the muscle. The major problem with this is that the perfusion to the skin 

and muscle at a particular site of amputation can be different. The reason being that the 

circulation to the tissues does not always originate at the same level of the axial arterial tree 

(Mars et al., 1993). Therefore, information is gained about only one aspect of the healing 

process. 

Burgess et al., ( 1981) suggest that the following variables will influence wound 

healing even if a preoperative test indicates that the circulation is adequate for healing. 
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Firstly, that postoperative blood flow 1s different to preoperative bloodflow. The 

amputation removes distal vascular runoff as well as collateral pathways. Despite this fact 

wound healing is predicted on the preoperative circulatory status. Secondly, the tests do not 

specifically quantify the ability of the limb to heal although they do provide important 

information about the circulatory status. Thirdly, surgical technique (tissue handling, flap 

length, and shape and tension of the wound) varies from patient to patient. The result being 

that the demands placed on the healing potential of the skin and underlying tissue are 

different. Another factor relates to postoperative care where specifics such as rigid dressings 

may influence wound tension and local pressure compromising circulation to the healing skin. 

A final factor which may decrease potential for wound healing is poor patient health. 

Postoperative problems such as thrombosis of the arteries to the residual limb, wound 

infection, malnutrition, pneumonia, atelectasis, and pulmonary embolism, may all compromise 

the ability of the wound to respond to the metabolic challenge of tissue-healing. Due to the 

above limitations both Burgess et al., ( 1981) and Mars et al., (1993) state that it should be 

easier to predict wound failure than wound healing. In other words a preoperative test may 

indicate that there is adequate perfusion for wound healing. However, the result may still be 

jeopardised by poor surgical technique and postoperative care as well as intercurrent disease. 

On the other hand assuming that all the above variables are optimal, if a test indicates that 

circulatory status is poor, it is easier to predict that the wound will fail to heal. 

2.9 CONCLUSION 

There is therefore a lack of knowledge regarding the use of LDF in predicting 

amputation wound healing due to the instrumentational, methodological, physiological and 

morphological differences discussed above. It is hoped that this study will be able to fill this 

gap and in doing so establish the LDF as an acceptable diagnostic tool. The use of LDF is 

increasing in the fields of physiology and pharmacology and in the practical daily clinical 

evaluation of vascular disease. The monitoring of the effects of treatment on the 
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microcirculation appears to be one of the most promising fields for the application of LDF. 

Further technical development of the LDF combined with extensive clinical research 

application may make this method one of the most interesting non-invasive fields of 

investigation in vascular disease. 
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CHAPTER THREE 

The stabilisation time, biological zero, and dynamic range of the LDF was obtained in 

a validation study on 20 healthy subjects. This study was performed in the King Edward VIII 

Hospital laboratory where the ambient temperature ranged between 20 to 23
°

C. The study 

followed the guidelines provided by Bircher et al., (1994), with emphasis on the repeatability 

and the reproducibility of the LDF. 

Repeatability is defined by these authors as expressing ''the situation under the same 

conditions, i.e., same operator, same apparatus, short time int�rval, identical sample". 

Reproducibility is defined as expressing "the situation under different conditions, 1.e., 

different laboratories, samples, different operators, different days, different instruments." 

A standard reactive hyperaemia experiment (Bircher et al., 1994) (Figures 5 and 6) 

was performed to validate the LDF. Due to the fact that the amputee study assessed 

unheated and heated LDF probe results the validation study was performed using both 

probes. 
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3.1.2 Validation Procedures 

3.1.2.1 Reproducibility Study 

The reproducibility study was performed over five days on 10 subjects (Table II). 

Each subject was tested at the same time of day for five consecutive days. Each testing 

session lasted forty-five minutes. The subjects were all assessed in the supine position. At 

the beginning of a fifteen minute acclimatisation period a standard blood pressure cuff was 

placed around the lower calf The mid-dorsum of the subject's right foot was shaved and 

cleaned with alcohol when necessary. An unheated LDF probe was placed onto the mid­

dorsum of the foot via double-sided adhesive tape. The LDF averaging time (time constant) 

was set at 0.3 seconds for the entire duration of the present study. This setting gave a good 

dynamic response and enabled the operator to readily identify non-physiological spikes. 

These could then be taken into account in the final analysis. The LDF printing mode was set 

to continuous data. This meant that two new LDF flux value were printed by the on-line, dot 

matrix, serial printer every second. After 15 minutes the printer was switched on for 15 

seconds. The printer printed 30 resting cutaneous LO flux readings. The printer was then 

switched off and the arterial supply to the foot was occluded by inflating the blood pressure 

cuff to between 200 - 250 mmHg. After 3 minutes the printer was switched on. Once the 

printer had printed 30 biological zero values the pressure in the cuff was released. The 

printer then recorded the first 15 seconds of the phase of reactive hyperaemia. For each 

subject per day, 90 unheated LDF measurements were obtained. 

The phase of reactive hyperaemia lasted from 1- 3 minutes. The cutaneous blood flux 

then decreased to resting values. After 5 minutes from the release of the blood pressure cuff 

the LDF probe was heated to 45°

C to achieve maximal vasodilation of the cutaneous vessels. 

After 3 to 5 minutes an equilibrium state was reached. The printer was then switched on for 
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15 seconds. The same protocol as for the unheated probe was followed. For each subject 

per day, 90 heated LDF measurements were obtained. 

3.1.2.2 Repeatability Study 

The repeatability study was performed on IO subjects (Table II) during a single 

testing session which lasted two hours. The same protocol was used as in the reproducibility 

study except for the following changes. The unheated test was performed five times 

consecutively. In other words the probe was only heated after the fifth phase of unheated 

reactive hyperaemia. The heated test was then performed five times. For each subject, 450 

unheated and 450 heated LDF measurements were obtained. The time interval between all 

tests ( consecutive tests within the unheated and heated probe tests and between the two 

probe tests) was 5 minutes. This ensured that stable baseline values were reached after the 

period of hyperaemia. 

3.2 Statistical techniques for assessing agreement of LDF 

measurements in validation study 

In order to validate the LDF, the agreement between the LDF values test 1 - test 5 

(repeatability), and (day 1 - day 5 (reproducibility), or in other words the measurement error 

for daily as well as day to day measurements, was assessed. The study addressed the 

problem of agreement between the measurements by considering how much they differed 

from each other. A modified method of that described by Bland and Altman (1986) was 

used. 
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Resting LD flux, Biological Zero, and peak flux (the peak value during the phase of 

reactive hyperemia) data, were reported as mean and standard deviation (SD) for each of the 5 

sets of repeated measurements in the repeatability and the reproducibility study (Tables ill and 

IV). The mean and SD were then calculated for the five tests combined and the five days 

combined. Ths mean and SD were used to calculate the coefficient of variation (Tables III and 

IV). Differences between measurements were calculated, and the average difference, i.e. the 

me::u, difference between measurements day I and day 2, day 2 and day 3, day 3 and day 4, and 

day 4 and day 5, (reproducibility); and test l and test 2, test 2 and test 3, test 3 and test 4, test 

4 and test 5 (repeatability) were assessed (Tables III and IV). The subjects were then compared 

in a one-way analysis of variance and SD was found as the square root of the mean square error. 

The Repeatability Coefficient (RC), as adopted by the British Standards Institution was 

calculated by 1.96 (two standard deviations) multiplied by SD (Tables III and IV). If the RC= 

x (representing two standard deviations) then it is expected that 96% of the differences between 

measurements t0 be smaller than x. 
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Adding or subtracting the RC from the average difference would indicate the RC range 

within which 96% of the differences between measurements would fall. If the difference lay 

outside the range this would suggest that the measurement was affected by some variable, other 

than biological or instrumental variables which account for the normal range of variation between 

repeated measurements. 

Such information is critical when assessing whether a provocative test or 

pharmacological drug affects cutaneous blood flow. If, after applying a provocative test, for 

example the standard reactive hyperearnic test, the resting cutaneous blood flow did not increase 

or decrease beyond the resting normal variation indicated by the RC, then it would suggest that 

the test had no effect on cutaneous blood flow. Any difference between the measurement 
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obtained during, or after the provocative test was applied, and the normal resting mean 

cutaneous blood flow, less than the RC, would be attributed to the normal daily or day to day 

variation and not as a consequence of the test. On the other hand, if the difference was 

greater than the range indicated by the repeatability coefficient then it suggest that the 

provocative test or vasodilator drug altered the cutaneous blood flow. 

Bland (1987) reported that the measurement error may also be reported as the 

coefficient of variation, which is the SD divided by the mean, multiplied by I 00 to give a 

percentage. This value has been used frequently in the literature to indicate the 

reproducibility or repeatability of the LDF and was therefore calculated in the present study 

in order to make comparisons. It is critical to note that this value depends on both the SD 

and the mean and therefore Bland (I 987) recommended that it is not a good method for 

calculating measurement error, particularly if the range is great compared to the size of the 

smallest observations and the error does not depend on the value of the measurement. 

3.3 Amputee Study 

3.3.l Subject Characteristics 

Sixty patients with PVD, undergoing routine evaluation of wound healing potential, 

were studied at the Non Invasive Vascular Clinic, King Edward VIII Hospital. The unheated 

LDF probe was used on 60 patients and the heated probe on 35 of the 60 patients (Table II). 

The patients were not diabetic. General demographic data was obtained (Name, Sex, Age, 

Weight, Height) as well as a standard data proforma requiring information on the subject's 

presenting complaint, past medical history, medication, physical examination including 

presence of pulses, routine blood investigations, and the results of special vascular 

investigations. Each subject was given a verbal explanation of the procedures and reasons 

behind the testing. An interpreter was used in the case of Zulu speaking subjects. Informed 



59 

consent was obtained from each subject. The subjects had no prescriptions regarding food 

intake. They were asked to relax and to remain as still as possible during the investigation. 

Prior to testing, each patient lay supine for 20 minutes to acclimatise to ambient temperature 

of the laboratory, which ranged from 20 to 23°C. To avoid the possible confounding effect of 

previous heating of the skin, laser Doppler measurements were made before TcpO2

measurement. 

Table Il: 

Reproducibility Study 

Repeatability Study 

Unheated Probe (n = 60) 

Heated Probe (n = 35) 

Demographic Data of Validation Study Subjects and PVD 

patients undergoing pre-operative assessment. 

Mean (vears) SD Ran2e Male Female 

32.8 12.18 23 - 53 4 6 

36.1 14.04 21-59 4 6 

57.68 15.36 30 -87 34 26 

55.71 15.63 30 -87 19 16 

3.3.2 Instrumentation 

3.3.2.1 LDF 

LDF was performed with a Laserflo BPM
2 Blood Perfusion Monitor, Vasamedics, St 

Paul. This instrument has a low-power (2 milliwatt), solid state laser diode which is the 

source of a monochromatic infrared light at a frequency of 760 - 800 nm. The laser is 

conducted to the skin via an optic fibre which ends in a probe that is attached to the skin by 

means of a double sided adhesive ring. The fibre separation distance in the BPM2 is 

approximately 0.5 millimetres. This yields a measurement depth of 1.0 millimetre. The 

measurement volume approximates a hemisphere of 1.0 to 1.5 millimetre radius. The BPM2

has a Model TCO Temperature Control Option which is used for the local heating of skin 
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tissue. The TCO consists of a microprocessor based add-on hardware board that is mounted 

internal to the BPM2. A Model p-422 Heater Probe was used in the study in conjunction 

with a Model p-43 5 Softip Pencil Probe. The resulting signal was recorded as the laser 

Doppler flux in arbitrary units. 

3.3.2.2 TcpO2 Monitor 

TcpO2 measurement was made using a Hewlett Packard Transcutaneous Oxygen 

Monitor. The resulting signal was recorded as the TcpO2 in mmHg. The TcpO2 index, the 

ratio oflimb to chest T cpO2 was calculated for the amputation sites. 

3.4 Unheated LDF Probe Procedures 

LDF and TcpO2 readings were taken at the three routine amputation sites (Figure 7), 

the mid dorsum of the foot (n = 33), 10cm below the tibial tuberosity over the anterior 

compartment (n = 61), 10 cm above the knee in the midline (n=24), and over the anterior 

chest wall, 5 cm below the clavicle in the mid-clavicular line (n =60). Due to the fact that this 

study was taking placing in a working environment it was not possible to obtain 60 complete 

sets of paired data (i.e. 60 subjects who had TcpO2 and LDF measurements at all three lower 

limb sites). Measurement sites were shaved and cleaned with an alcohol solution when 

necessary. No zeroing procedure was undertaken. Readings were made after 3 minutes. The 

LDF averaging time was set at 0.3 seconds. After 3 minutes the printer was switched on and 

recorded the first 15 seconds of flux. Once again the LDF printing mode was set to 

continuous data. This meant that two new LDF flux value were printed by the on-line, dot 

matrix, serial printer every second. Thirty resting cutaneous LD flux readings were therefore 

recorded and the mean over the 15 seconds calculated for each subject. The sequence of sites 

tested was chest, above knee, below knee, foot. The unheated LDF index, the ratio of limb 

to chest LDF reading was calculated for the amputation sites. 
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3.5 Heated LDF Probe Procedures 

LDF and T cpO2 readings were taken at the three routine amputation sites (Figure 7), the 

mid dorsum of the foot ( n = 17 ), I 0cm below the tibial tuberosity over the anterior compartment 

( n = 3 6), 10 cm above the knee in the midline ( n= I 7), and over the anterior chest wall, 5 cm 

below the clavicle in the mid-clavicular line (n =35). Once again due to the fact that this study 

was taking placing in a working environment it was not possible to obtain 3 5 complete sets of 

paired data (i.e. 35 subjects who had TcpO
2 
and LDF measurements at all three lower limb sites). 

Measurement sites were shaved and cleaned with an alcohol solution when necessary. 

Figure 7: 

• l 0cm above the knee on tbe mid�line 

• J Oem below the knee over the interior compartment 

/ Mid-<tonum oftht foot 

Probe placement sites on the lower limb 

No zeroing procedure was undertaken. The LDF averaging time was set at 0.3 seconds. 

A resting unheated LD flux measurement was made after 3 minutes. After 3 minutes the 
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printer was switched on and recorded the first 15 seconds of flux. The LDF probe was then 

heated to 45°
C. One 15 second recording was made after 5 minutes once the heated laser 

Doppler flux had stabilised. The printer configuration was identical to that used when 

recording unheated flux. Thirty heated flux values were therefore recorded and the mean 

over the 15 seconds was calculated for each subject. The sequence of sites tested was chest, 

above knee, below knee, foot. The heated LDF index, the ratio of limb to chest LDF 

reading, the Vascular Reserve (VR) or Heating Response (mean heated LD flux subtract the 

mean unheated LD flux) were calculated at each site. 

3.6 Statistical Analysis 

Descriptive statistics were calculated at each site for both the unheated and heated, 

absolute and index LDF values. Comparisons were made of the respective values at each 

site. The data were also pooled and correlations between the unheated data and TcpO2

(absolute and index) and the heated data and TcpO2 (absolute and index) were calculated. 

For the 3 5 heated probe subjects the change from the unheated resting LD values to the 

heated LD values were compared at each site as well as overall. The difference was termed 

the laser Doppler fluxmeter vascular reserve (LDF VR) and was compared against the TcpO2

index. A LDF VR index was also calculated and compared against the TcpO2 index. The 

statistical analysis for comparison was performed using Spearman's rank correlation test. 

Linear regression equations were calculated for both the unheated and the heated data 

for the following sets of data: pooled TcpO2 index and absolute LDF, pooled TcpO2 index 

and LDF index, pooled TcpO2 index and LDF YR, pooled TcpO2 index and LDF VR index. 

The heated LDF absolute/ TcpO2 index data as well as LDF VR / TcpO2 index data 

were also divided into those pairs classified as predicting wound healing by a TcpO2 index of 

>0.55 (41 pairs) and those pairs classified as predicting wound failure by a TcpO2 index of
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<0.55 (29 pairs). A Spearman rank correlation value and linear regression equation was 

obtained for the predicted healing set and the predicted failure set to see whether the LDF 

and Tcp02 values were correlated at both high and low perfusion states. 

The unheated, heated LDF and LDF YR, as well as the Tcp02 data underwent further 

analysis in order to determine whether there was a significant intragroup difference at the 

different amputation levels. This analyses was performed to determine whether the LDF and 

the T cp02 instruments were sensitive to the presence of PVD (indicated by a decrease in 

perfusion the more distal the measurement). The reason why the analyses was performed in 

the particular manner described above, was because for both the unheated and heated data 

only a few patients underwent evaluation at all three amputation levels. The majority were 

measured at two levels (either above-knee and below-knee, or below-knee and foot). Hence 

in order for the comparison of levels to be valid these combinations were separated from each 

other. 

For statistical analysis a paired t-test was performed comparing the laser absolute 

values at the different levels, the Tcp02 absolute and index values at the different levels, and 

the LDF VR values at the different levels. Overall for the unheated LDF data and the Tcp02

there were 18 patients who were measured at above-knee and below-knee levels, there were 

34 patients who were measured at below-knee and foot levels. For the absolute heated LDF, 

Tcp02 as well as the LDF VR data, 12 patients had above-knee and below-knee 

measurements, while 17 had below-knee compared to foot measurements. 

For all the analyses a level of probability of 0.05 was selected in order to reduce the 

chances of making a Type I error without increasing, too greatly, the chances of making a 

Type II error (Ferguson, 1981). The analysis was performed using the Microsoft Excel 

software package (with Astute, an additional statistics add-in for Excel). 
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The unheated and heated LDF studies were run in parallel to the routine TcpO2 test 

and were designed to determine how well the LDF could discriminate pre-operatively 

between levels of perfusion which indicated wound healing failure and levels which predicted 

wound healing. 

For the LDF correlation results to be of clinical use they were analysed with respect 

to the present Gold Standard for amputation site selection, the TcpO2 index of 0.55. In order 

to assess the influence that the Gold Standard had on determining the usefulness of the LDF, 

the correlation results were also analysed with respect to the following TcpO2 indices: 0.5; 

0.53; 0.57; 0.6. The decision was made that the absolute heated LDF / TcpO2 index (0.55) 

(Figure 12) correlation and the LDF VR / TcpO2 index (0.55) (Figure 15) correlation would 

be used to assess the usefulness of the heated LDF values for pre-operatively predicting 

wound healing. This was due to the fact that these comparisons had the highest correlation. 

When comparing the results from two diagnostic tests like LDF and TcpO2, using the 

TcpO2 index as the Gold Standard for predicting healing, four situations are possible: a) a 

true-positive (TP) result: the LDF value pre-operatively predicted wound healing failure and 

the wound will fail to heal according to the Gold Standard (this value is interpreted as the 

Sensitivity of the Test); b) a false-positive (FP) result: the LDF pre-operatively predicts 

failure but the wound heals; c) a false negative (FN) result: the LDF pre-operatively predicts 

healing but the wound fails to heal; and d) a true-negative (TN) result: the LDF pre­

operatively predicts healing and the wound heals (this value is interpreted as the Specificity of 

the test). The best diagnostic test is one with a small percentage of false-positives and false­

negatives in other words the test which has the highest accuracy (Altman et al., 1994) 
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The LDF was therefore evaluated through calculating the sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV) and accuracy for several 

absolute heated LDF and LDF VR cut-off points in relation to various Tcp02 indices (0.5, 

0.53, 0.55, 0.57 and 0.6). Sensitivity was defined in this study as the ability of the heated 

LDF values to predict wound healing failure (how good the test was at identifying inadequate 

perfusion, i.e. identifying the diseased) (Hulley et al., 1988). Specificity was identified as the 

ability of the LDF to predict primary healing (how good the test was at identifying adequate 

perfusion, i.e. identifying the non-diseased (Hulley et al., 1988). The PPV and NPV give an 

indication of the probability that the test would give the correct diagnosis. The PPV was the 

proportion of patients with LDF test results that predicted failure who were correctly 

diagnosed (according to the selected Tcp02 cut-off index) . The negative predictive value 

(NPV) was the proportion of patients with LDF test results that predicted healing who were 

correctly diagnosed (according to the selected Tcp02 cut-off index). Wagner et al., (1988) 

and Altman et al., (1994) state that the positive predictive value is a more clinically useful 

figure than sensitivity or specificity. Finally the accuracy of the LDF was calculated to 

determine the overall LDF measurement error taking all four of the situations TP, FP, TN, 

and FN into account. 

Sensitivity, specificity, PPV, NPV and accuracy of the LDF were calculated through 

the use of the binary table equations (Figure 8) (Dwars et al., 1992) (which manipulated 

values from the absolute heated LDF / Tcp02 index and the LDF VR / Tcp02 index 

correlation graphs (Figures 12 and 15). For both graphs the Tcp02 index was placed on the 

X-axis. The cut-off index was set at the five values mentioned above and the vertical line

(shown in each graph) through the data, from the Tcp02 index was used to separate healing 

from non healing wounds. On the right hand side of this line the Tcp02 data predicted that 

wounds would heal while on the left hand side of the line the data predicted that the wounds 

would fail. For each Tcp02 cut-off index, out of the total number of measurements (70 for 

each graph), the data that predicted wound healing failure (values below the cut-oft) and the 
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number that predicted wound healing (values at or above the cut-off) differed which played a 

role in altering the usefulness of a particular LDF cut-off point in relation to the selected 

TcpO2 index. 

For each TcpO2 index used as a cut-off, several absolute heated LDF values (ranging 

from 4 a.u. to 6 a.u.) and LDF VR values (ranging from 2.8 a.u. to 4.7 a.u.) were selected on 

the Y-axis to represent heated LDF values or cutaneous blood flow cut-offs which may be

useful for pre-operative assessment of wound healing. The horizontal line through the data 

represents the absolute, heated LDF or LDF VR value which showed the division between 

healing and non healing wounds. Data below this line predicted that wounds would fail to 

heal while data above this line predicted that wounds would heal. 

These two lines divide the graphs into four sections. These four sections represent 

the four classifications shown in the binary table (Figure 8). For example, from Figure 12 it 

can be seen using a selected cut-off absolute LDF value of 4.9 that the top left hand section 

represents those LDF measurements which predicted healing according to the LDF but were 

predicted to fail according to the T cpO2 index. These values are called the false negative 

(FN) results because the LDF suggests that there is no indication of PVD or no compromise 

of perfusion, however according to the T cpO2 index the wound will fail to heal 

postoperatively. The top right hand section shows those measurements which predicted 

healing according to the LDF and the TcpO2 index. These measurements are called true 

negatives (TN) because the LDF showed that there was no indication of PVD or compromise 

of perfusion and the TcpO2 index predicted healing. The bottom left hand comer shows 

those LDF measurements which predicted failure and the TcpO2 index predicted failure. 

These values are called true positives (TP) because the LDF values indicated the presence of 

PVD and blood flow compromise and the TcpO2 index predicted wound healing failure. The 

bottom right hand comer shows those values where the LDF predicted failure and the TcpO2

index predicted healing. These values are called false positives (FP). The LDF values 
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indicated the presence of PVD and blood flow compromise, while the Tcp02 index predicted 

that wounds would heal. 

The FN, TN, TP, FP, together with the total LDF predicted failure result (TP + FP) 

and LDF predicted heal results (FN + TN) and the total failed wounds (TP + FN) and healed 

wounds (FP + TN) predicted by the Tcp02 index were counted for each absolute heated LDF 

and LDF VR selected cut-off value in relation to the various Tcp02 indices. These values 

were used to calculate the sensitivity, specificity, PPV, NPV and accuracy of the absolute 

heated LDF and LDF VR selected cut-off values. 

I Will fail I 
I LDF TEST RESULT I 

I Will heal I 

I GOLD STANDARD I 

Fail I I Heal I 

!al !bl 
True Positive False Positive 

tc7 icil 
False Negative True Negative 

Sensitivity = iffir- Specificity= 

a+d 
Accuracy= 

a+b+c+d 

PPV= 

Figure 8: 

iffir NPV= TffiJ-

Binary table evaluates sensitivity, specificity, PPV, NPV 

and accuracy of LDF for pre-operatively predicting wound 

healing. 
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The aim of the present study was to calculate an absolute LDF value or LDF VR 

value that would be the most useful for pre-operatively evaluating wound healing potential. 

This present study used the Receiver Operator Characteristic (ROC) curve (Altman et al., 

1994) to make a more sensitive selection for the cut-off This is a graphic way of portraying 

the trade-offs involved between improving either the LDF's sensitivity or its specificity. As 

was stated earlier sensitivity and specificity were calculated for several absolute, heated LDF 

and LDF VR measurements in relation to various TcpO2 indices. For each absolute, heated 

LDF or LDF VR value in relation to a particular TcpO2 index, sensitivity was plotted against 

I-specificity.

According to Altman et al., (1994), the ideal test is one that yields a curve that 

coincides with the upper left corner of the graph ( 100% sensitivity and 100% specificity). A 

worthless test would give a straight line from the bottom left corner to the top right corner: 

with each incremental gain in sensitivity being matched by an equal loss in specificity. A 

global assessment of the performance of the test [ called the diagnostic accuracy (Zweig et 

al., 1993)] is given by the area under the ROC curve and is calculated through the use of the 

following equation: Area under Curve = ½ { (a1 + a2) * (b2 - b,)} (Zweig et al., 1993). 

Most ROC curves have a very steep section, in which the sensitivity increases a great 

deal while the false-positive rate hardly changes. It makes little sense to choose the cut-off 

point in this section, since moving up the curve will increase sensitivity without substantially 

reducing specificity. Similarly, selecting the cut-off point in the flat region, in which the 

sensitivity stays about the same while the false-positive rate increases, is unwise. The best 

cut-off point is where the ROC curve "turns the corner" (Hulley et al., 1988). 
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An important advantage of ROC curves is that the curves for different diagnostic 

tests can be compared; the better a test, the closer its curve is to the upper left corner and 

consequently the closer the area under the curve is to one (Altman et al., 1994). Figures 17 

to 226 show the ROC curves for the absolute, heated LDF and LDF VR calculations in 

relation to the TcpO2 indices of 0.5; 0.53; 0.55; 0.57; 0.6. The absolute heated LDF value or 

LDF VR which is closest to the top left hand corner for each graph was chosen as the most 

useful value for that set of data. The sensitivity, specificity, PPV, NPV, and accuracy for 

each of these most useful points is displayed in Table X. 

The linear regression equations obtained from the LDF / TcpO2 index correlation and 

the LDF VR / index correlation were also used to calculate LDF and LDF VR values that 

corresponded with the TcpO2 index of 0.55. The sensitivity and specificity as well as the 

positive and negative predictive percentages and the accuracy for these values were 

calculated and are also displayed in Table X. The site specific absolute, heated LDF data and 

LDF VR data was also compared to the Gold Standard TcpO2 index at each lower limb site 

(Table IX). 

The absolute, heated LDF or VR value (with respect to the various TcpO2 indices) 

that was closest to the top left hand corner of the ROC curve and was part of a curve which 

had an area closest to one, was interpreted as being the most useful and accurate cut-off 

point for preoperatively evaluating wound healing potential in patients with PVD. 



4.0 RESULTS 

4.1 LDF Validation 

4.1.1 Repeatability 
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CHAPTER FOUR 

Repeatability was defined as expressing the LDF measurements over a short time 

period with the same operator, and an identical sample under the same conditions. Table III 

shows the mean and standard deviation for the heated and unheated resting cutaneous blood 

flow value, biological zero, peak flux value, as well as the temporal variation over the 2 hour 

period for the 10 subjects tested. The results show the significantly different (p<0.0001) 

magnitude in the mean signal between the unheated and heated LDF probe for both resting 

flux and peak flux. There was no significant difference between the biological zero values. 

The mean heated resting LDF value was 88.9% higher than the unheated flux value while the 

heated peak flux was 69.8% higher than the unheated peak flux. The heated peak flux was 

19.4% higher than the heated resting flux while the unheated peak flux was 70.38% higher 

than the unheated peak flux. 

The repeatability coefficient (RC) indicates the value within which 96% (two standard 

deviations) of the differences between repeated measurements over a two hour period will 

fall. The closer the RC to zero the smaller the difference between repeated measurements. 

In other words the RC gives an indication of the normal temporal variation in cutaneous 

blood flow over a two hour measurement period. 
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Subtracting and adding the RC to the average difference indicates the range within 

which 96% of the differences (representing normal variation due to biological and 

instrumental variables) over a two hour measurement period are expected to fall and within 

which 96% of normal LDF flux values will fall. The RC range for the heated resting absolute 

LDF values was - 3.37 to+ 2.51, while for the unheated absolute resting values it was - 0.67 

to+ 0.69. The biological zero ranges were low being - 0.17 to+ 0.16 and - 0.22 to+ 0.22 

for heated and unheated measurements respectively. The peak flux RC range for the heated 

LDF 

Table ill: Heated and unheated LDF data from Repeatability Study using 

standard POHR test 

REPEATABILITY [Data are reported as mean (SD)] 

HEATED (a.u.) UNHEATED (a.u.) 

Resting B-Zero P-Flux Resting B-Zero P-Flux

Test 1 16.52 (7.93) 0.49 (0.099) 21.6-t(ll.59) 1.945 (0.87) 0.474 (0. 16) 6.32 (3.50) 

Test 2 16.82 (9. 18) 0.44 (0.066) 21.08 (11.33) 1.93 (0.63) 0.501 (0.143) 6.56 (3.56) 

Test 3 17.67 (9.32) 0.�(0.H) 21.12 (11.32) 1.94 (0.7) 0.465 (0.081) 6.27 (3.360 

Test 4 18.18 (10.04) 0.48 (0.10) 22.31 (11.45) 2.01 (0.70) 0.49 (0.17) 6.42 (4.03) 

Test 5 18.25 (9.89) 0.51 (0.10) 22.41 (10.61) 1.89 (0.53) 0.46 (0.13) 7.18 (4.08) 

Average 17.49 (0. 79) OA9(0.037) 21.71 (0.63) 1.94 (0.04) 0.➔8 (0.0 I 7) 6.55 (0.37) 

Tl-T2 -0.296 ( 1.9) 0.053 (0.094) 0.558 (5.43) 0.014 (0.69) -0.027 (0.216) -0.25 (1.59) 

T2-T3 -0.85 (1.36) -0.106(0.091) -0.039 ( 1.74) -0.01 (0.475) 0.036 (0.141) 0.298 (1.22) 

T3-T4 -0.51 (1.41) 0.063 (0.09) -1.19 (2.15) -0.068 (0.44) -0.023 (0.17) -0.153 (0.79) 

T4-T5 -0.067 ( 1.68) -0.028 (0.09) -0.092 (2.22) 0.118 (OA7➔) 0.027 (0. I 8) -0.76 (1.163) 

Ave Difference -OA32 (0.33) -0.0045 (0.079) -0.19 (0.73) 0.0135 (0.078) 0.0033 (0.033) -0.216 (0.43) 

Repeatability 1.96*UOI 1.96 • 0.083 1.96 • 2.618 1.96 • 0.349 1.96 • 0.112 1.96 • 1.024 

• 2.94 •0.163 • 5.131 • 0.684 • 0.2195 •2.007 

Coefficient (RC)

Coefficient of 4.5 7.5 2.9 1.7 3.5 5.6 
Variation% 
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(- 5.32 to + 4.94) was higher compared to the unheated LDF (- 2.22 to + 1.79) peak flux 

range. From Table III it can be seen that the coefficient of variation was low ranging from 

I. 7% for the resting unheated flux to 7.5% for the heated biological zero.

4.1.2 Reproducibility 

Reproducibility was defined as expressing the LDF measurements under different 

conditions, specifically in the present study, over different days. Table IV shows the mean 

and SD for the heated and unheated resting cutaneous blood flow value, biological zero, and 

the peak flux value for the test conducted once daily over five consecutive days for the ten 

subjects tested. The results show the significantly different (p<0.0001) magnitude in the 

signal between the unheated and heated flux for both resting and peak flux. There was no 

significant difference between the biological zero values. The mean heated resting flux value 

was 88.4% higher than the unheated LDF value while the heated peak flux was 67.9% higher 

than the unheated peak flux value. The heated peak flux was 35.8% higher than the heated 

resting flux while the unheated peak flux was 76.85% higher than the unheated resting value. 

The RC indicates the value below which 96% of the differences between repeated 

measurements over five day period will fall. The closer the RC to zero the smaller the 

difference between repeated measurements. In other words the RC gives an indication of the 

normal temporal variation in cutaneous blood flow over a 5 day measurement period. 

Subtracting and adding the RC to the average difference indicates the range within 

which 96% of the differences (representing normal variation due to biological and 

instrumental variables) over a 5 day period are expected to fall and within which 96% (two 

standard deviations) of normal LDF flux values will fall. The RC range for the heated resting 

LDF values was - 9. 72 to + 8.04, while for the unheated resting values it was - 1.65 to + 

1.51. The biological zero ranges were low being - 0.24 to+ 0.27 and - 0.198 to+ 0.184 for 
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heated and unheated measurements respectively. The peak flux RC range for the heated LDF 

(- 14 . 05 to + 11.19) was higher than the unheated LDF (- 4. 82 to + 5. 46) peak flux range. 

Table IV: Heated and unheated LDF data from Reproducibility Study using 

standard POHR test 

REPRODUCIBILITY [Data are reported as mean (SD)] 

HEATED (a.u.) UNHEATED (a.u.) 

Resting B-Zero P-Flux Resting B-Zero P-Flux

Day 1 12.32 (6.05) 0.47 (0. 196) 17.09 (7.04) 1.44(0.54) 0.44(0.15) 7.87 (3.01) 

Day2 17.09 (7.04) 0.53 (0.15) 26.51 (10.56) U6 (1.19) 0.41 (0.14) 8.15 (3.31} 

Day3 16.45 (9.26) 0.59 (0.17) 26.59 (8.93) 2.05 (1.39) 0.46 (0.11) 7.67 (3.11) 

Day4 12.95 (4.12) 0.48 (0.085) 22.99 (6.81) 1.81 (0.84) 0.47 (0.15) 6.85 (2.25) 

Day 5 15.66 (7.65) 0.41 (0.1.5) 22.81 (7. 72) 1.74 (0.88) 0.47(0.16) 6.59 (1.67) 

Average 14.89 (2.14) 0.49 (0.068) 23.2 (3.87) 1.72 (0 .. 24) 0.448 (0.025) 7.43 (0.67) 

Dl-D2 -4.78 (4.44) -0.06 (0.21) -9.42 (6.92) -0.12 (1.32) 0.025 (0.173) -0.29 (5.63) 

D2-D3 0.65 (5.23) -0.058 (0.195) -0.077 (6.05) -0.49 (1.46) -0.047 (0.12) 0.47 (2.66) 

D3-D4 3.51 (8.21) 0.11 (0.129) 3.59 (7.43) 0.24 (0.97} -0.005 (0.15) 0.83 (3.34) 

D4-D5 -2. 72 (5.35) 0.065 (0.14) 0.185 (5.73) 0.o7(0.39) -0.001 (0.14) 0.26 (2.92) 

Ave Difference -0.84 (3.66) 0.015 (0.087) -1.43 (5.58) -0. 76 (0.31) -0.007 (0.03) 0.32 (0.41) 

Repeatability 1.96 • 4.53 1.96 • 0.1278 1.96 • 6.44 1.96 • 0.809 1.96 • 0.0976 1.96 • 2.62 

s8.88 -0.250 -12.62 -U86 -0.191 -5.135 

Coefficient (RC)

Coefficient of 14.4 13.9 16 .7 14 5.6 9 .0
Variation% 

The repeatability coefficients for the resting and peak flux data for the reproducibility 

study, using the heated and the unheated LDF probe, were considerably higher than the 

respective values in the repeatability study. The RC for the resting heated flux in the 

repeatability study was 2.94 while for the reproducibility study it was 8.88 (Tables III and 
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IV). The repeatability coefficients for the peak flux data were 5.131 and 12.62 respectively. 

The RC for the resting unheated flux in the repeatability study was 0.684 while for the 

reproducibility study it was 1.586. The unheated peak flux in the repeatability study was 

2.007 while for the reproducibility study it was 5.135. 

The coefficient of variation was high ranging from 5.6% in the unheated biological 

zero to 16.7% in the heated peak flux. The coefficient of variation results, together with the 

RC results indicate large temporal variations between day-to-day measurements of cutaneous 

blood flux compared to repeated measurements on the same day. 

4.2 LDF Amputee Results 

4.2.1 Unheated LDF Compared to Tcp02 

The absolute LDF and TcpO2 measurements, and the LDF index and the TcpO2 index 

at the different sites are expressed as means and one standard deviation and are shown in 

Table V . The ranges of the readings were, LDF O - 12.0 arbitrary units, TcpO2 0 - 77 

mmHg, the LDF index O - 3.0 and the TcpO2 index O - 1.43. The highest mean readings for 

LDF and TcpO2 were measured at the chest. On the leg the highest values were obtained at 

the foot with the LDF while the TcpO2 values were lowest at the foot. Significant 

correlation was found between LDF and TcpO2 at the foot, and between the TcpO2 and LDF 

index at the below knee site and at the foot. 

Pooling the data for the various sites there was a significant correlation between LDF 

and TcpO2, (n= 178), r = 0.34, (p<0.0001), and between the LDF index and the TcpO2

index, (n= 118), r = 0.17, (p = 0.062). There was poor correlation between LDF and the 

TcpO2 index (n = 118), r = 0.13, (p = 0.17). 
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Unheated Laser Doppler fluxmetry, Tcp02, laser Doppler index and the 

Tcp02 index expressed as means and one standard deviation are shown 
for the different measurement sites. The indices are the limb to chest 

ratios. Correlation of the results at each site was by Spearman's rank 

correlation which was considered significant when p < 0.05. 

Laser (au) Tc�(mmHg) p= Laser Index Tcp()2 Index p= 
Chest (n=60) 3.94 + 2.07 51.12 +12.09 0.46 

AK (n=24) 1.74 + 1.11 36.08 + 18.15 0.66 0.61 + 0.41 0.72 + 0.22 0.35 

BK (n=61) 1.6 + 0.9 33.57 +18.04 0.39 0.52 + 0.41 0.63 + 0.28 0.09 

Foot (n=33) 1.93 + 1.33 15.24 +12.81 0.0009 0.53 + 0.63 0.29 + 0.23 0.0014 

For the correlation to be of clinical use it should be analysed with respect to the 

present criteria for amputation site selection. In the Durban Metropolitan Vascular Service 

this is based on the TcpO2 index of 0.55. Sixty - five pairs of readings were above 0.55 and 

53 pairs of readings below 0.55. The breakdown at each level was the following: Above -

knee level, 21 pairs above 0.55, 3 pairs below 0.55; below - knee level, 41 pairs above 0.55, 

20 pairs below 0.55; foot, 3 pairs above 0.55, 30 pairs below 0.55. The LDF values relative 

to the TcpO2 index are shown in Figure 9 and the LDF index values relative to the TcpO2

index are shown in Figure 10. The range of the scatter of LDF readings is such that there is 

no absolute LDF value or LDF index which has a high predictive power when compared to 

the TcpO2 index of 0.55. 

Various absolute TcpO2 values have been suggested as predictive of amputation 

wound healing. These range from 0 to 20 and 40 mmHg (Malone et al., 1987; Wagner et al., 

1988; Sarin et al., 1991). Despite a significant correlation between absolute LDF and TcpO2

readings there is no LDF level which has a high predictive power. This is shown in Figures 9 

and 10 which shows the laser Doppler absolute flux with respect to the TcpO2 index of 0.55 

(indicated by the solid line), and in Figure 11 by the random scatter of the data. 
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coefficient is r = -0.001, (p = 0.99). No amputation site with a 

TcpO2 index of less than 0.55 would be expected to heal. The linear 
regression equation is y = 1.42 + 0.55x 
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Unheated LDF's ability to identify the presence and characteristics 
ofPVD 
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From Table VI it can be seen that the absolute unheated LDF found significant 

differences between flux at the three different levels. For the above-knee / below-knee 

analysis the below-knee flux was significantly (p<0.05) lower than the above-knee flux. The 

table shows an interesting result at the foot. There was a difference between the flux of the 

below-knee and the foot in the below-knee / foot combination, however the foot flux was 

significantly (p<0.05) higher than the below-knee value. This finding will be discussed in 

detail in Chapter Five. The table shows that while unheated LDF was unable to display 

clearly the presence of PVD both the absolute TcpO2 values and the TcpO2 index were able 

to do so, measuring significantly (p<0.05) lower flux values at each lower amputation level. 



Table VI: 

Combination 

A-Kl B-K

(n=l8) 

B-KI

Foot (n=34) 

4.2.3 

Intra-group difference at the different levels (above-knee 

compared to below-knee, below-knee compared to foot). Unheated 

Laser Doppler, TcpO2 and the TcpO2 index expressed as means 

and one standard deviation are shown. Statistical analysis by a 

Paired t-test, which was considered significant when p < 0.05. 

Laser (au) p= Tcp02 (mmHo) o= TcpOzlndex p = 
1.91 (1.17) 38.88 (15.95) 0.75 (0.22) 

1.17 (0.98) 0.027 16.5 (12.49) <0.0001 0.31 (0.22) <0.0001 

1.56 (0.75) 39.32 (14.44) 0.74 (0.28) 

2.03 (1.32) 0.023 16.0 (12.48) <0.0001 0.33 (0.25) <0.0001 

Heated LDF Compared to TcpO2
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The absolute LDF and T cpO2 measurements, and the LDF index compared to T cpO2

index, YR compared to TcpO2 index, and the YR index compared to TcpO2 index at the 

different sites are expressed as means and one standard deviation and are shown in Tables 

VII and VIII. The ranges of the readings were, LDF O - 27.8 arbitrary units, TcpO2 0 - 77 

mmHg, LDF index O - 1.4, TcpO2 index O - 1.43, YR O - 18.38 and YR index O - 1.81. The 

highest mean readings for absolute LDF, LDF YR and TcpO2 were measured at the chest. 

On the leg the highest values were obtained at the above knee site, while the lowest values 

were at the foot for absolute resting laser Doppler flux, LDF VR, TcpO2 absolute and index 

values. Significant correlations were found between LDF and TcpO2 absolute and index 

values, and LDF YR (absolute and index) and TcpO2 (index) at the foot and below knee. 

Pooling the data for the various sites there was a significant correlation between LDF 

and TcpO2, (n= 105), r = 0.63, (p<0.0001), and between the LDF index and the TcpO2

index, (n= 70), r = 0.68, (p<0.0001 ). There was a significant correlation between LDF and 

the TcpO2 index, (n=70), r = 0.72, (p<0.0001). There was a significant correlation between 
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LDF VR index and the TcpO2 index (n= 70), r = 0.64, (p<0.0001). The highest correlation 

was between the LDF VR and TcpO2 index, (n=70), r=0.74, (p<0.0001). 

Table VII: Heated Laser Doppler fluxmetry, Tcp02, laser Doppler index and 

the Tcp02 index expressed as means and one standard deviation 

are shown for the different measurement sites. The indices are the 

limb to chest ratios. Correlation of the results at each site was by 

Spearman's rank correlation which was considered significant 

when p < 0.05. 

Laser (au) TcoO,( mmHg) p= Laser Index TCP<:>i Index p= 
Chest (n=35) 18.06 + 4.13 55.71 + 11.23 0.12 

AK (n=17) 9.98 + 4.84 39.17 + 18.98 0.71 0.58 +o.33 0.73 + 0.37 0.71 

BK (n=36) 7.9 + 4.96 36.25 + 20.25 <0.0001 0.46 + 0.33 0.62 + 0.31 <0.0001 

Foot (n= l7) 5.19+5.16 17.29 + 13.32 0.0001 0.29 + 0.30 0.31 + 0.23 0.0004 

Table Vlll: Laser Doppler VR, Tcp02 index and VR index expressed as means 

and one standard deviation are shown for the different 

measurement sites. Correlation of the results at each site was by 

Spearman's rank correlation which was considered significant 

when p < 0.05. 

VR Tco02 Index p= VR Index/ TCJ)()i Index o = 

Chest (n=35) 14.2 (4.54) 

AK (n= l7) 7.24 (4.48) 0.73 (0.37) 0.34 0.51 (0.32) 0.32 

BK (n=36) 6.45 (4. 7) 0.62 (0.31) <0.0001 0.53 (0.42) 0.0003 

Foot (n=17) 3.47 (4.3) 0.31 (0.23) 0.0029 0.29 (0.4) 0.028 

The LDF values relative to the TcpO2 index are shown in Figure 12, the LDF index 

values relative to the TcpO2 index are shown in Figure 13, and the LDF absolute values 

relative to the TcpO2 absolute values are shown in Figure 14. The LDF VR absolute values 

relative to the TcpO2 index are shown in Figure 15 while the LDF VR index values relative to 

the TcpO2 index values are shown in Figure 16. 
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Heated LDF's Ability to Distinguish Severity of PVD 
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From Table IX it can be seen that when using a heated LDF probe the results reflect 

the existence of PVD. The table shows that there were significant differences for the 

absolute heated LDF and LDF VR values between the different amputations sites, with the 

values decreasing the more distal the measurement. 



Table IX: 

Combination 
A-K/B-K

(n=12) 

8-K/

Foot (n=17) 

4.3 

Intra-group difference at the different levels (above-knee 

compared to below-knee, below-knee compared to foot). Heated 

Laser Doppler, LDF VR, Tcp02 and the Tcp02 index expressed as 

means and one standard deviation are shown. Statistical analysis 
by a Paired t-test, which was considered significant when p < 0.05. 

Laser (au) o= LDFVR(au) o = TcpO,(mmHg) Po= TcpO1 Index D = 
10.9 (4.4) 7.85 (4.23) 44.8 (13.2) 0.8 (0.3) 

4.9 (5.5) 0.003 3.95 (4.99) 0.01 16.4 (13.8) <0.0001 0.3 (0.3) <0.0001 

9.3 (4.4) 8.01 (4.26) 43.8 (13) 0.8 (0.2) 

5.2 (5.2) 0.007 3.47 (4.29) 0.002 17.3 (13.3) <0.0001 0.4 (0.3) 0.0009• 

Receiver Operator Characteristic Curves 
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Figures 17 to 26 show the ROC curves which resulted from determining the 

sensitivity and specificity of the absolute heated LDF and LDF VR values with respect to the 

five TcpO2 indices. The points on each curve represent an absolute heated LDF or LDF VR 

value. Each figure has two text boxes. The left hand box indicates the absolute, heated LDF 

or LDF VR value plotted that was nearest to the top left hand corner of the graph. The right 

hand box indicates the area under the curve. 
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4.4 The most useful LDF value 

Table X shows the sensitivity, specificity, positive predictive value, negative 

predictive value and accuracy of the most useful absolute heated LDF or LDF VR cut-off 

point as determined by the ROC curves. 

Table X: 

ROC Curve 

LDF /0.5 

LDF / 0.53 

LDF /0.55 

LDF /0.57 

LDF0.6 

LDF /0.55 

LDFVR/0.5 

LDF VR/0.53 

LDF VR/0.55 

LDFVR/0.57 

LDFVR/0.6 

LDFVR/0.55 

4.4.1 

Area under the curve (AUC), absolute LDF or LDF VR value 

(LDF), Sensitivity, Specificity, Positive Predictive Value 

(PPV), Negative Predictive Value (NPV), and accuracy of the 

most useful absolute LDF or LDF VR cut-off point as determined 

by the ROC curve. 

AUC LDF Sen% Soe¾ PPV¾ NPV¾ Ace% 

0.9458 4.4 86.96 95.74 90.9 93.75 92.85 

0.940 4.9 91.6 93.48 88 95.55 92.85 

0.918 4.9 82.76 97.56 88.88 96 91.43 

0.9045 5.5 80 97.5 96 86.66 90 

0.894 5.5 78 97.4 96 84 88.57 

- 7.55 89.66 68.29 90.32 66.66 77.14 

0.8937 3.3 86 94 86.36 93.75 91.43 

0.948 3.3 86 98 94.74 94.1 94.29 

0.918 3.5 82.76 97.56 88.88 96 91.43 

0.912 3.3 77 100 100 85.1 90 

0.876 3.3 71 100 100 81.25 87.14 

- 5.88 93 71 94 69 80 

Absolute Heated LDF 

The results from Table X indicate that for the absolute heated LDF data a value of 

4.4 a.u. would be the most useful value for pre-operatively predicting wound healing 

potential if the TcpO2 index was 0.5 This is due to the area under the ROC curve from 

which this value was obtained being closest to one (0.9458) compared to the other absolute 

heated LDF ROC curves. 
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For the Tcp02 index of 0.55 (The Gold Standard) an absolute heated LDF value of 

4.9 a.u. is shown as a possible predictive level (Figure 12 and Table X). Below this level, 

one amputation would be expected to heal. Twenty - four readings fall below LDF = 4.9 a.u. 

and all have a Tcp02 index less than 0.55. Of the remaining 45 readings above LDF = 4.9 

a.u., 40 are above Tcp02 index = 0.55 and would be expected to heal. Five readings are

above LDF = 4.9 a.u., but below Tcp02 index = 0.55 and would therefore be expected to 

fail. The predictive value of a positive test (LDF < 4.9 a.u.) is 88.88% and of a negative test 

(LDF > 4.9 a.u.) is 96%. From Table X it can be seen that this value produces a sensitivity 

of 82. 76%, specificity of 97.56% and an overall accuracy for pre-operatively predicting 

wound healing or failure of 91.43%. 

Based on the linear regression equation for the data in Figure 12, the Tcp02 index of 

0.55 corresponds to a heated LDF value of 7.55 a.u .. At this level the predictive value of a 

positive test (LDF < 7.55 a.u.) is 90.32% and of a negative test (LDF > 7.55 a.u.) is 66.66%. 

From Table X it can be seen that this value produces a sensitivity of 89.66%, specificity of 

68.29% and an overall accuracy for pre-operatively predicting wound healing or failure of 

77.14%. 

4.4.2 LDF VR 

Table X shows that for the LDF VR, a value of 3.3 a.u. would be the most useful 

value for pre-operatively predicting wound healing potential if the Tcp02 index was 0.53. 

The area under the ROC curve from which this value was obtained was closest to one 

(0.948) when compared to the other absolute LDF VR ROC curves. 

For the Tcp02 index of 0.55 (The Gold Standard) a LDF VR value of 3.5 a.u. is 

shown as a possible predictive level(Figure 15 and Table X). Below this level, one 

amputation would be expected to heal. Twenty - four readings fall below LDF VR = 3.5 a.u. 
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and all have a TcpO2 index less than 0.55. Of the remaining 45 readings above LDF VR = 

3.5 a.u., 40 are above TcpO2 index = 0.55 and would be expected to heal. Five readings are 

above LDF = 3.5 a.u. but below TcpO2 index = 0.55 and would therefore be expected to fail. 

The predictive value of a positive test (LDF VR< 3.5 a.u.) is 88.88% and of a negative test 

(LDF VR > 3. a.u.) is 96%. From Table X it can be seen that this value produces a 

sensitivity of 82. 76%, a specificity of 97.56% and an overall accuracy for pre-operatively 

predicting wound healing or failure of 91.43%. 

Based on the linear regression equation, the TcpO2 index of 0.55 corresponds to a 

LDF VR value of 5. 8 a. u.. At this level the predictive value of a positive test (LDF VR < 5. 8 

a.u.) is 94% and of a negative test (LDF VR > 5.8 a.u.) is 69%. From Table X it can be seen

that this value produces a sensitivity of 93% and a specificity of 71 % and an overall accuracy 

for pre-operatively predicting wound healing or failure of 80%. 

4.4.3 Low Perfusion compared to High Perfusion 

The heated absolute LDF values and the LDF VR values were divided into healing 

and non-healing groups according to the TcpO2 index value of 0.55. The two groups were 

correlated independently of each other with the TcpO2 index. From Table XI it can be seen 

that there were significant (p<0.05) positive correlations, for both the LDF values (r = 0. 7) 

and the LDF VR values (r = 0.59), in the non-healing sub group, while in the healing group 

there were poor correlations (r = 0.07 and 0.16 respectively) The reason for this may be due 

to the fact that the LDF is sensitive to low perfusion states. This factor will be discussed 

further in Chapter 5. 



Table XI: Laser Doppler fluxmetry compared to TcpO2 index, and LDF VR 

compared to TcpO2 index divided into healing and non-healing 

groups by TcpO2 cut-off index of 0.55. Correlation of the results at 

each site was by Spearman's rank correlation which was 

considered significant when p < 0.05. 

LDF / TcpO2 Index r = p= Linear Regression Equation 

Heal (n=41) 0.07 0.66 y = 11.6 + -1.2x 

Non-heal (n=29) 0.7 <0.0001 y = 1.34 + 9.lx 

LDF VAR I TcpO2 Index 

Heal (n=41) 0.16 0.33 y = 8.23 + 0.46x 

Non-heal (n=29) 0.59 0.0007 y = 0.54 + 7.02x 
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CHAPTER FIVE 

5.0 DISCUSSION 

Fagrell (1994) has stated that the LDF technique has been used extensively in clinical 

practice for evaluating physiological and pathophysiological conditions in the cutaneous 

microcirculation of humans. Inadequate blood flow of the skin microcirculation, not meeting the 

requirements for tissue nutrition is the final cause of the failure of wounds to heal. Hence, the 

LDF technique has been proposed as being useful for pre-operative evaluation of wound healing 

potential (Holloway et al., 1983, Lantsberg et al., 1991; Padberg et al., 1992). 

Fagrell, (1994) and Hoffmann et al., (1994) have argued that at times the interpretations 

of the LDF results have been uncritical and that for meaningful interpretations, there are a 

number of inherent methodological problems that have to be taken into account. This applies 

especially when measurements are performed on the skin (Fagrell, 1994). 

5.1 Validation Study 

If a method for blood flow monitoring has any place in the laboratory or in clinical 

practice, it is necessary to ensure that the results are reproducible (Petersen et al., 1994) and 

repeatable (Bircher et al., 1994). The methodological error of a LDF was reported by Tenland 

et al., (1983) to be lower than 6%. This value represented the coefficient of variation for 

repeated measurements of the Brownian mobility of a stable emulsion, and indicated the 

instrumental reproducibility. 
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The skin has a complex vascular geometry and furthermore, blood flow is not a static 

phenomenon, but represents both spatial and temporal variations. Consequently the validity of 

the LDF method for clinical use depends on in vivo studies within the specific environment, and 

under the same conditions, in which clinical application will be taking place. The validation 

process in the present study therefore took place in the King Edward VIII Vascular Laboratory. 

The repeatability of a LDF (using an unheated probe) when measuring cutaneous blood 

flow, was analysed by Tenland et al., (1983). These authors measured resting cutaneous blood 

flow continuously on the forehead and forearm for 20 minutes. They reported that temporal 

coefficients of variation (standard deviation divided by the mean) varied from 4% to 11 % in low 

blood flow areas and between 8% and 19% in high blood flow areas respectively (Tenland et al., 

1983). The coefficient of variation for resting cutaneous unheated laser Doppler flux in the 

present study was considerably lower at I. 7%. The coefficient of variation for resting cutaneous 

flux using the heated probe, in the present study, was only slightly higher at 4.5%. The reason 

for the reduced variation when using the unheated probe, and the low variation for the heated 

probe, compared to the findings ofTenland et al., (1983), may be due to the fact that the present 

LDF is made by a different manufacturer and is also a more technologically advanced model. It 

must noted however, that the measurements for the present study were obtained from the mid­

dorsum of the foot, while Tenland et al., ( 1983) used the forearm and forehead. The vascular 

geometry beneath the probe at each of these sites is different and may have played a role in 

influencing the results. 

Tenland et al., (1983) found that the reproducibility of their unheated LDF was poor. 

They found tenfold differences, during four days of repeated measurements, in all skin areas, 

including locations with A-V shunts. Similarly, in another study which assessed the 

reproducibility of a LDF, Tuominen et al., (1992) found day to day LDF level coefficients of 
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variation of between 20-30%. Compared to the above findings, the LDF in the present study 

showed lower coefficients of variation for resting heated (14.4%) and unheated (14%) cutaneous 

laser Doppler flux, indicating slightly better reproducibility. These two values are also within the 

repeatability range reported by Tenland et al., (1983). The reason for the reduced percentage 

may again be due to difference between the manufacturer as well as instrumental technological 

advances and the different methods used in the two studies (for instance positioning of the 

probe.) 

Interpretation and comparison of the Repeatability Coefficient (RC), used to assess the 

repeatability and reproducibility of the LDF in the present study, is difficult. The reason being 

that no LDF studies, to the best of the author's knowledge, have used this method to evaluate 

the repeatability and reproducibility of LDF for measuring cutaneous blood flow. Chapter Three 

discussed the reason why this method is preferred to the coefficient of variation which has been 

used by other researchers. The data from the present study shows firstly, that the repeatability of 

the LDF (comparison of continuous measurements over a time period on a single day) is better 

than the reproducibility (comparison of day to day measurements). The results indicated that 

differences between continuous measurements on a single day (repeatability study) were small 

(Table III}, with the RC being 2.94 and 0.684 for the resting heated and unheated values 

respectively. The RC's for the reproducibility study (day to day measurements) (Table IV) were 

comparatively higher, being 8.88 and 1.56 respectively. The interpretation of these results has 

been given in Chapters Three and Four and will not be discussed in this chapter. The results 

from the present validation study therefore suggest that the repeatability of the LDF cutaneous 

blood flux signal is better than the reproducibility. In other words the flux variation over two 

hour time period is small while over day to day measurements it is large. 
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Various validation studies have contradicted the findings of Tenland et al, (1983), and to 

some extent the reproducibility findings of the present study. Sundberg et al., (1984) found a 

very modest hour-to-hour and day to day variation. An excellent temporal correlation was also 

reproduced by other groups (Ninet and Fronek, 1985; Muller et al, 1987). These two groups 

found that baseline reproducibility as well as responses to various skin vasomotor reflexes and 

relative blood flow changes during cooling and heating were satisfying. It is important to realise 

however, that the present validation study was performed in a working environment in order to 

ascertain whether the LDF gave readings which were reproducible in a clinical setting. Previous 

validation research was performed in rigorously controlled settings where confounding variables 

were kept at a minimum. Various environmental variables within the King Edward Vlll 

Vascular Laboratory may have affected the validation study results (in particular the day-to-day 

results). 

Spatial variation may also have influenced the results in the present validation study. 

Tenland et al., (1983) found that repeated measurements at the same probe position yielded a 

coefficient of variation of 25 %. Petersen et al., (1994) suggested that regional changes in the 

vascular arrangement may influence variation. Therefore, in relation to spatial variation, LDF 

probe placement may have played an important role in influencing the results of the validation 

study and may have been responsible for the high variation in the reproducibility study in 

comparison to the results from the repeatability study. This may have been overcome through 

marking the exact area with a permanent marker so that the probe was placed in the identical 

position each day. 

Petersen et al., (1994) discusses a further issue which may explain the results found in 

the present validation study. They state that blood flow not only differs in closely located skin 

areas, but that inter-individual variation is very pronounced. Tenland et al., (1983) 
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demonstrated up to IO-fold differences in normal subjects, while Kvemebo et al., (1988) 

concluded that reproducibility was good in a given population, but not in individual subjects. 

The fact that blood flow readings can be so variable at the same anatomical site in a particular 

individual and that only 10 subjects were used in the present validation study may explain the 

high day-to-day variation in the reproducibility study. 

The rather great variations in blood flow value recorded might be a result of 

inhomogeneities in the microvasculature within the measuring volumes. More specifically the 

spatial variation in the LDF values may be explained by the different number of capillary loops 

per defined surface area or changes in venule-capillary density under the probe (Ryan, 1973). 

Landis, ( 193 8) reported that estimations of the number of capillaries show more than a six-fold 

variation within an area of l mm2
. 

Lukkari-Rautiarinen et al., (1989) sum up the issues which may have influenced the 

present validation study. They suggest that the intra-individual changes detected during 

continuous monitoring over a day without detachment of measuring devices indicated 

physiological fluctuations in peripheral microcirculation. The day-to-day variation was wider 

because of problems related to the re-attachment of the measuring devices and also problems 

related to biological variations. These were most probably the variables which influenced the 

present study, despite using provocative testing (Postocclusive Reactive Hyperaemia Test and 

LDF heating), controlling the room temperature, as well as relaxing the patient as much as 

possible in order to minimise the cutaneous blood flow variation caused by internal and external 

factors. The large fluctuations in cutaneous blood flow over the five day test indicated the great 

difficulties in performing microcirculatory blood flow studies where effects over days or months 

are of interest. 
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5.2 Laser Doppler Comparison With Non-Invasive Methods 

Chapter Two has discussed numerous methods which have been developed to measure 

lower limb perfusion. The washout of Xenon133 reflects blood flow, vital capillaroscopy 

monitors blood flow velocity in the outer capillaries, and venous occlusion plethysmography 

estimates total blood volume flow to the extremity (Petersen et al., 1994). It is common 

practice to evaluate a new technique, such as LDF, by comparing it with established methods. 

Petersen et al., (1994) points out however, that the researcher must keep in mind that different 

methods may measure different parameters. For example, Fagrell (1986) found high LDF values 

in skin, which was emptied of erythrocytes, as observed by vital capillaroscopy. Petersen et al., 

(1994) states that LDF is the only technique that estimates the flux of moving particles in the 

range of laser light penetration. 

Therefore it is critical to understand that there is no "gold standard" against which to 

compare the LDF skin blood flow measurements. Direct correlation to venous outflow of the 

skin is impossible, and the Xenon133 washout technique, although displaying a good correlation 

with LDF measurements in a few studies (Stern et al., 1977; Bisgaard and Kritensen, 1984), has 

subsequently been shown to display a poor correlation with LDF blood flow measurements, 

during steady state conditions and a standardised vasodilatation. (Klemp and Staberg, 1985). 

Although the TcpO2 index has been used as the "Gold Standard" in the present study, the fact 

that it has been used, was a major limitation to the study especially when using the unheated 

LDF probe. This issue is discussed in the following section. 
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5.3 Unheated LDF Comparison with Tcp02 

The microvascular bed of the skin is composed of the nutritional capillaries and the 

thermoregulatory vessels. The nutritional capillaries are the most superficial ones ( depth of 10-

50 um) and normally contains a very low volume of blood (approximately 5-10% of the 

cutaneous bloodflow). In the subpapillary, thermoregulatory, vascular bed, which is located 

0.05-2.0mm from the skin surface, the dominating vessels are venules, and only a small portion 

are arterioles. The volume of blood in this vascular compartment has been estimated to be at 

least 95% of all blood in the skin (Ostergren, 1984) and consequently the blood flow in the 

nutritional capillaries will only be a small percentage of the total skin blood flow. 

The nature of the TcpO2 and the measuring depth is defined by Beinder et al., (1994) as, 

the measurement of the reduction current produced by surplus oxygen molecules, which are 

available under the condition of maximal hyperaemia, and which diffuse from the cutaneous 

nutritional capillary loops to the skin surface. On the other hand the measuring depth of the 

LDF in the skin is at least 1-2mm using a standard probe (Vasamedics, 1991). Hence the 

predominating part of the signal will be coming from the subpapillary vessels, and only a minute 

part from the nutritional capillaries. It is for this reason that the LDF technique cannot be used 

for evaluating skin capillary nutritional circulation, but only the total skin microcirculation in 

humans. 

From the above discussion it follows that a companson between unheated LDF 

cutaneous blood flow and TcpO2 measurements is technically an evaluation between two 

different instruments measuring different variables, at different depths and under different 

conditions in the skin microcirculation. The LDF measures red blood cell concentration essentially 

in the thermoregulatory layer, while the skin is in a baseline state, whereas oxygen pressure is 
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monitored under the condition of maximal hyperaemia in the nutritional capillary loops. To add 

to the dilemma, both instruments have various methodological limitations which have already 

been discussed in Chapter 2. 

The findings from the present study showed a significant but poor correlation between 

unheated LDF and TcpO2 (r = 0.34); and LDF Index and TcpO2 index (r = 0.17) Belcaro et al.,

(1988c) reported similar results with the correlation of TcpO2 to resting LDF being r = 0.4. 

These findings contradict those of Matsen et al., (1984) who found that non-heated LDF 

measurements did not correlate with local skin perfusion. However, it must be noted that the 

present study sample size was much larger than the Matsen et al., (1984) study. How sample 

size is related to correlation outcomes is discussed in the following paragraph. 

Bland et al., ( 1986) state that sample size is a critical factor when calculating the 

correlation between two variables. These authors state that the correlation coefficient measures 

the strength of a relation between two variables and not the agreement between them. They 

argue that two tests will have perfect agreement only if the points lie along the line of equality, 

while they will have perfect correlation if the points lie along any straight line. They state that 

correlation depends on the range of the true quantity in the sample, and since researchers usually 

try to compare two methods over the whole range of values typically encountered ( as in the 

present study), a high correlation is almost guaranteed. These points are critical when 

interpreting the results from the unheated LDF probe study as well from the heated LDF probe 

study. 

For the unheated study, although a significant correlation was found, there was no 

agreement between the two variables. This was indicated by the fact that the range of scatter of 

the unheated LDF readings was such that there was no absolute LDF value or LDF index which 
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had a high predictive power for evaluating wound healing potential, when compared to the 

Tcp02 index of 0.55. The results from the present study therefore contradict those of 

Karanfilian et al., (1986); Castronuovo et al., (1987) Kram et al., (1989); and Kvemebo et al., 

(1989) who reported useful unheated values for evaluating wound healing potential. 

5.4 Unheated and heated LDF Ability to Distinguish Severity of PVD 

The symptoms of PVD, intermittent claudication, rest pam, ulceration and finally 

gangrene are all manifestations of insufficient oxygen and nutrient delivery at a cellular level, 

secondary to relative degrees of arterial occlusion. It is therefore expected that tests of 

perfusion of both the macro and microcirculation should reflect a fall in perfusion as the tests are 

performed more distally in the atherosclerotic patient. The magnitude of the segmental fall in 

perfusion parameters is dependent on the site and severity of the disease process. With respect 

to this characteristic of PVD, Wyss et al., (1988) have argued that because there is a 

continuously increasing probability of failure as the degree of ischaemia at the site of amputation 

increases, it is impossible to calculate a predictive threshold. They see the level of ischaemia, 

however it is measured, as a risk factor rather than the sole cause of failure of healing of an 

amputation. Their argument is valid, however the objective of any predictive or diagnostic study 

is to determine a threshold value which is the most useful in clinical practice. The characteristic 

of lower limb perfusion in the PVD patients in the present study will now be discussed in relation 

to the unheated and heated LDF results. 

Tables V, VI, and VII, Vlll show that for the unheated and heated LDF study, while the 

absolute, heated LDF, heated LDF index, LDF VR, absolute Tcp02 measurements and the 

Tcp02 index reflected a fall in mean values as the site of measurement moves distally, the highest 

mean unheated absolute LDF value on the lower limb occurred at the foot. The unheated LDF 
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probe does not seem useful for distinguishing PVD characteristics. However, this may not be 

due to instrumental limitations as shown by the following discussion. 

Belcaro et al., (1989) have shown that unheated resting cutaneous LDF readings may be 

high around the margin of diabetic ulcers. They have attributed the rise in LDF, in these patients 

with microangiopathy, to shunting of blood to the thermoregulatory plexus and the dennal 

capillary loops. The very wide range of unheated LDF readings obtained at the foot, 0 - 4.9 a.u. 

may be due to a similar phenomenon. Similarly, ischaemia is associated with increasing 

peripheral vasodilatation in an attempt to improve oxygen and nutrient supply to the tissues. In 

the severely ischaemic foot the LDF value may be very high when compensation is successful -

maximal vasodilatation in the presence of an adequate inflow, or it may very low if the inflow is 

insufficient despite maximal vasodilatory compensation. 

5.5 Heated LDF Comparison with Tcp02 

Human skin contains many thermoreceptors and is thus very sensitive to changes in 

temperature. Cochrane (1986) argued that since the major function of the skin is to maintain 

body temperature, temperature variation should be used to evaluate its response. The author 

concluded that there are several reasons why evaluating the response of skin blood flow to local 

heating is the most clinically useful. Firstly, it is very simple to perform and only requires the 

subject to remain still during the 5 to 10 min needed to complete the test. Secondly, 

reproducible patterns of behaviour are observed in normal controls. The reason being that 

heating causes a maximal constant flow (hyperaemic stabilisation) in venules and arteriovenous 

shunts in the sampled area (Wahlberg et al., 1994). Thirdly, human skin contains many 

thermoreceptors and is thus very sensitive to changes in temperature. 
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The microvascular structure was discussed briefly when evaluating the Validation Study 

results. Further detail is required in this section to provide an understanding of the effect that 

skin heating has on the microcirculatory blood flow. Tseng et al., (1995) stated that the dermal 

arteries branch off to form metarterioles and then precapillary sphincters before giving rise to the 

true capillaries that form the nutritive vessels. Direct communication between the arterioles and 

venules, the arteriovenous anastosmoses, can be found at the fingertips, palms of the hands, toes, 

soles of the feet, ears, nose and lips where they function in thermoregulation. Smooth muscle 

fibres are found surrounding the vessel walls of the arteriovenous anastosmosis, the metarterioles 

and the precapillary sphincters. These smooth muscle fibres are controlled mainly by the 

sympathetic nervous system, which causes vasoconstriction (Witzleb, 1989). There are no 

known vasodilatory nerve fibres to the cutaneous vessels, and vasodilation is brought about by a 

decrease in constrictor tone as well as by local production of bradykinin in sweat glands and by 

vasodilator metabolites (Ganong, 1991 ). It is the large venous plexus that is involved in 

temperature regulation. Blood flow in response to thermoregulatory stimuli can vary from 1 to 

as much as 1 S0ml/1 00g of skin per minute by shunting blood flow through the anastomoses 

(Ganong, 1991). Local heating suppresses the sympathetic tone and induces increased blood 

flow by opening up many of the arteriovenous anastomoses (Witzleb, 1989). Heating of the skin 

"arterializes" the capillary bed by local vasodilation (Karanfilian et al., 1986) causing maximal 

hyperaemia. Guyton, ( 1986) states that with excessive heating, the increased activity of the 

sweat glands causes them to release the enzyme kallikinin, which in turn splits the polypeptide 

bradykinin from globulin in the interstitial fluids. Bradykinin in turn is a powerful vasodilator, 

that could account for the greatly increased blood flow when sweating begins to occur. 

Cutaneous blood flow is determined by one of the following factors: vascular tone, 

vascular lumen size and vascular number (Guyton, 1986). The vascular tone is controlled by a 

complex neurohumoral system (West, 1990). Taylor et al., (1984) proposed that the maximal 
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flow obtained after a thermal stress test by raising the skin temperature to 45
°
C is due to the 

abolition of the cutaneous vascular smooth muscle tone. 

Various researchers (Holloway et al., 1983; Matsen et al., 1984; Allen et al., 1987; Fairs 

et al., 1987; Gebur et al., 1989; Lantsberg et al., 1991; Padberg et al., 1992).) support the 

notion that the addition of cutaneous heating to LDF measurements improves the prediction 

potential when evaluating wound healing. In particular Matsen et al., ( 1984) stated that LDF 

and TcpO2 measurements reflect changes in arteriovenous gradient when made over areas of 

heated skin ( 44
°
C). 

The results from the present study support these past studies, indicating that using a 

heated LDF probe ( 45°
C) improves the pre-operative prediction potential for evaluating wound 

healing in PVD patients. Significant correlations were found between LDF and TcpO2; LDF 

index and TcpO2 index; LDF and TcpO2 index (r = 0.72) and LDF VR index and TcpO2 index. 

The strongest correlation was found between LDF VR and TcpO2 index (r = 0.74). All of these 

correlations except for LDF VR Index/ TcpO2 index had 'p' values of p<0.0001. The reason 

for this strong correlation was discussed earlier with the unheated data. Simply put though, the 

strong significance was probably due to the comparison being made over the whole range of 

heated LDF values obtained. 

The LDF VR / TcpO2 correlation is slightly higher than that of Fairs et al., (1987), who 

found that the correlation between TcpO2 and the relative increase in LDF flux (LDF VR) was 

r = 0.7 (p<0.001). These authors also found that the correlations were very similar although 

marginally poorer for the absolute heated flux/ TcpO2 characteristic. Cheatle et al., (1991) also 

found a significant correlation between TcpO2 Index and LDF VR of r = 0.524, p <0.001). 
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Holloway et al., (1983); Fairs et al., (1987); and Gebuhr et al., (1989) have all indicated 

that vascular reactivity is likely to be a better indicator of potential for healing than absolute flux 

level. Gebuhr et al., (1989) reported very similar findings to the present study. They found that 

their sternal LDF measurements always showed a higher basic flux than those of the leg and the 

unheated, baseline flux, before heating, showed no correlation with the amputation level. They 

suggested that sternal recordings would appear to be unnecessary in the normal clinical situation. 

The fact that the LDF index values and the LDF VR Index values, from the present study, did 

not show a stronger correlation to Tcp02 than the absolute LDF values, support this argument. 

5.6 Possible LDF Predictive Levels for pre-operatively Evaluating Wound 

Healing Potential 

In the present study, both the heated LDF value of 4.9 a.u. and the LDF VR value of 3.5 

relative units were found to be possible predictive levels. It is at this point that the limitation of 

this study must be noted. In studies which have reported the sensitivity, specificity etc. of LDF 

cut-off points they have calculated these values in relation to the actual outcome of wound 

healing post-operatively (Karanfilian et al., 1986; Padberg et al., 1992). The present study used 

the Tcp02 index of 0.55 as the Gold Standard with the assumption that the index is 100% 

accurate. It is a fact that no diagnostic test is 100% accurate and hence in reality the predictive 

ability of the LDF has been calculated according to a "Gold Standard" which has its own 

measurement error. The result is that the predictive percentages of the LDF a.u. and the LDF 

VR and hence the predictive accuracy of the LDF are elevated. 

Karanfilian et al., ( 1986) reported that the accuracy of LDF for predicting wound healing 

was 87%, the sensitivity was 79% and the specificity was 96%. Their definition of sensitivity is 
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opposite to the definition of sensitivity in the present study and that given by Hulley et al., 

{1988). Karanfilian et al., (1986) define sensitivity as the ability of the LDF to reflect adequate 

blood flow when it is present. In other words the ability of the LDF to predict healing. Their 

results show that out of 29 patients whose wounds healed the LDF predicted that 23 would heal. 

Accepting that there has been a mistake when defining the parameter in the text these authors 

have shown that their LDF had a specificity of 79% (according to the present studies definition 

of specificity), and a sensitivity of 96%. This sensitivity value is considerably better than that of 

the present study, whilst the ability to predict healing (specificity) is low compared to the present 

study. 

The accuracy of the LDF and LDF VR in the present study was 91.43%. Karanfilian et 

al., (1986) concluded that LDF was less useful than Tcp02 for evaluating wound healing due to 

the high incidence of false negative predictions (23%). False negatives are values which predict 

healing however the wound fails to heal. The false negative (FN) percentage for the present 

study was 17.24%. This value explains why the accuracy of the LDF in the present study was 

higher than in the study by Karanfilian et al., (1986). This value was calculated by subtracting 

the sensitivity (True negatives) value of 82.76% from 100% (which represents the total number 

of wounds that the Tcp02 index of 0.55 predicted to fail). 

The positive predictive value in the present study for both criteria was higher than that of 

Padberg et al., (1992) who found a positive predictive value of 83% and the overall accuracy of 

their most useful LDF cut-off value to be 85%. The outcome of the study by Padberg et al., 

(1992) is more relevant to the results from the present study. This is due to the fact that these 

authors also used an LDF probe that was heated to 45
°
C while Karanfilian et al., (1986). 
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5.7 Reasons for Low Sensitivity 

Various researchers have suggested factors which may have caused the low sensitivity of 

the threshold criteria calculated for the LDF. Franzeck et al., 1982; Haiward et al., 1985; Allen 

et al., 1987; and Wyss et al., (1988), found that the TcpO2 measurement may be zero when 

some nutritive flow of the blood to the skin is still present. These authors found that wounds 

healed even with low TcpO2 values. The blood flow is compromised and as a result the oxygen 

delivered to the cutaneous microvasculature is reduced. There comes a time when the bloodflow 

is so compromised (but still present) that there is only enough oxygen being delivered for the 

metabolic needs of the local skin. The result is that no extra oxygen is available to diffuse to the 

surface of the skin (Wyss et al., 1981). Therefore no oxygen diffuses across into the TcpO2 

probe, and consequently a reading of zero is obtained. This is the reason why laser Doppler flux 

reading value may be obtained even when TcpO2 is zero. 

Such readings as those discussed above have been reported in past research (Haiward et 

al., 1985; Ratliff et al., 1984). These authors have argued that a TcpO2 measurement of zero at 

the site of an amputation does not always indicate a degree of ischaemia that precludes healing 

after an amputation. According to Matsen et al., ( 1984) these results may be due to the fact that 

a non-linear relationship exists between TcpO2 and local cutaneous blood flow. Padberg et al., 

(1992) clarifies this by stating that TcpO2 excels in the prediction of wound healing, but is less 

precise at low values while LDF excels in the prediction of wound failure. The results of the 

study by Karanfilian et al., (1986) also support this LDF argument. 

In the present study the two prediction criteria that were calculated were obtained from 

the sets of data which displayed the strongest correlation, absolute heated LDF / TcpO2 index and 

LDF VR and TcpO2 index. The calculations were based on the theory that a linear relationship 
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existed between the two variables. This non-linear relationship may therefore explain why the 

correlations for each set of data were not as strong as they could have been if a linear 

relationship existed. This relationship may also explain why the sensitivity of the absolute heated 

LDF and LDF VR was low. 

Table XI however, shows results which may provide data in opposition to the non-linear 

relationship argument at low perfusion states. Through dividing the data (absolute heated LDF, 

LDF VR and Tcp02) into healing and non-healing groups (according to the Tcp02 index of 

0.55), there was only a significant correlation between the non-healing data. This result suggests 

seems to indicate that the Tcp02 data was still following a linear relationship with laser Doppler 

flux at low perfusion states. However, this result requires further research. 

5.8 Effect of the Clinical Setting on Research 

Due to the need to use the Tcp02 monitors, which were already positioned in the 

Vascular Laboratory at King Edward VITT Hospital, data collection took place during consulting 

hours in the Vascular Laboratory. This meant that the data collection may have been influenced 

by numerous environmental variables which were impossible to control for in a working 

environment. 

Due to the fact that there are only two vascular technicians in the Vascular Laboratory, 

and that there is usually a backlog of patients, obtained from a number of hospitals around 

KwaZulu Natal (King Edward VTII, Addington, Wentworth, R.K. Khan), it was crucial that the 

LDF measurement protocol used did not affect the normal timing and flow of activity within the 

laboratory. Although the LDF provides rapid almost immediate data and is easy to use in a 

controlled measurement setting, the rushed atmosphere of the vascular laboratory was not 
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conducive to rigorous research. Cutaneous blood flow is extremely sensitive to environmental 

conditions and the LDF is extremely sensitive to blood flow changes. This meant that in many 

cases measurements could not be used due to abnormal blood flow values caused by 

environmental influences in the laboratory. 

Although variables such as ambient temperature and excessive movement of the patient's 

limbs were monitored, the atmosphere of the laboratory was on occasions far from relaxed, with 

many patients, nurses, and doctors, as well as the researcher, being in the laboratory at one time. 

This meant that there was continuous noise and mental stimulation for the patient. This 

situation often caused patients to move and fidget and any such mental or physical activity may 

have influenced the blood flow readings. 

5.9 The Effect of Biological Zero 

The effect that physiological, anatomical, instrumental, methodological, environmental, 

temporal, and spatial variables may have had on the LDF blood flow measurements in this 

present study have already been discussed in detail. The effect of biological zero has also been 

mentioned. What is important to note is that the interpretation of LDF readings may have been 

improved in the present study by subtraction of the biological zero from the unheated or heated 

LDF value, or perhaps by the evaluation of biological zero itself However, this was not done in 

the study due to the following reason. In a pilot study, attempts at measuring biological zero in 

patients with severe peripheral vascular disease resulted in pain and the movement artefacts 

which affected the readings obtained in most patients, prolonging measurement duration. Due to 

the difficulty already present in trying to maintain a relaxed, motionless patient such 

measurements were not feasible. 
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6.0 CONCLUSION 

The primary amputation revision rate (excluding guillotine amputations) for lower limb 

amputations, at King Edward VIII Hospital, is around 23% (Chapter Two). This percentage 

indicates the effect that the Tcp02 index had over seven years (1989 - 1995). This was a 

considerable reduction in the primary revision rate of 3 5% which existed before the T cp02 index 

was introduced by Mars et al., (1993). The failure rate in those patients undergoing Tcp02

assessment is less than 5% (Mars et al., 199 3). Not all patients are assessed because of the time 

required to perform the Tcp02 test. 

The present study found that the LDF had an overall accuracy of 91.43% when pre­

operatively predicting the outcome of amputations in PVD patients. The measurement error was 

therefore around l 0% which suggests that by using the LDF on all patients, the primary revision 

rate may be reduced further. However, it must be remembered that this LDF value is based on 

the Tcp02 Gold Standard, which has its own measurement error. Despite this limitation, the 

result from this present study suggests that through the use of provocative testing (heating and 

by measuring LDF VR), the widespread implementation ofLDF is just as useful as limited use of 

Tcp02 measurement for pre-operatively evaluating wound healing potential in PVD patients. 
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high incidence of diabetes; air, water and food contamination; physical inactivity; poor diet; 

and tobacco-smoking. 

Figure 1: Total number of patients undergoing lower limb amputation for PVD and 

Diabetes combined, trauma and other (1984 - 1995). 

In 1993, Mars et al., addressed the problem of amputation revision surgery at King 

Edward VIII Hospital and outlined a programme involving pre-operative assessment of 

amputation wound healing potential that would save the hospital Rl,07 million annually. In 

this study the authors reviewed the Natal Provincial Administration's centralised computer 

records of all patients admitted to King Edward VIII Hospital between 1984 and 1988. They 

found that during the 5-year period, 965 patients required 1563 lower limb amputations for PVD, 

222 of these patients died in hospital. The primary revision rate, in other words, the number of 

first-time amputations that required revision, was 51 %. The in-hospital mortality rate was 23, 1 % 
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