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Abstract

This thesis explores the quantum analogues of algorithms used in mathematical opti-
mization. The thesis focuses primarily on the iterative gradient search algorithm (al-
gorithm for finding the minimum or maximum of a function) and the Newton-Raphson
algorithm. The thesis introduces a new quantum gradient algorithm suggested by Pro-
fessor Thomas Konrad and colleagues and a quantum analogue of the Newton-Raphson
Method, a method for finding approximations to the roots or zeroes of a real-valued func-
tion. The quantum gradient algorithm and the quantum Newton-Raphson are shown to
give a polynomial speed up over their classical analogues.
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Chapter 1

Introduction and Overview

Quantum computation and quantum information are the study of the implementation of information
processing and computing tasks that can be accomplished using quantum mechanical systems [1].
A quantum mechanical system is a system whose features are dictated by the rules of quantum
mechanics which in itself is a mathematical framework or set of rules for the construction of physical
theories that govern the behaviour of objects so small that they lie within or below the nanometre
range. Examples of such objects are photons (particles of light) and atoms (building blocks of
matter).

Modern quantum mechanics has become an indispensable part of science and engineering and the
ideas behind the field of quantum mechanics surfaced during the early 20th century when problems
in physical theories now referred to as the classical physics began to surface as the physics theories
began predicting absurdities such as the existence of an ultraviolet catastrophe involving infinite
energies and electrons spiralling inexorably into the atomic nucleus. In the context of computing
one can view the relationship of quantum mechanics to specific physical theories as being similar to
the relationship between a computer’s operating system with specific applications software. Where
we have that the operating system sets certain basic parameters and modes of operation, but leaves
open how specific tasks are accomplished by the applications.

In 1982 the renowned physicist Richard Feynman pointed out that there were essential difficulties
in simulating quantum mechanical systems on classical computers. He went onto suggest that
we could build computers based on the principles of quantum mechanics in order to avoid those
difficulties. This was the birth of the idea of quantum computing. In 1985 the physicist David
Deutsch motivated by the question as to whether the laws of physics could be used to derive an
even stronger version of the Church-Turing thesis, which states that any model of computation can
be simulated on a Turing machine with a polynomial increase in number of elementary operations
required [7], devised the first quantum algorithm bearing his name, the ”Deutsch algorithm” for this
quantum computing device proposed by Richard Feynman.

In the early 1990s researchers began investigating quantum algorithms a bit more, motivated by
the fact that it was possible to use quantum computers to efficiently simulate systems that have
no known efficient simulation on a classical computer. A major breakthrough came in 1994 when
the mathematician Peter Shor demonstrated that two extremely important problems intractable
on a classical computer could be solved on a quantum computer using an algorithm which now
bears his name, “Shor’s algorithm” [2]. Shor’s algorithm solves the problem of finding the prime
factors of an integer and the discrete logarithm problem. This discovery drove a lot of attention
towards quantum computers as it further evidenced the capacity of a quantum computer over a
probabilistic Turing machine by displaying an exponential speed-up. In 1995 computer scientist
Lov Grover provided further evidence of the importance of quantum computers through his search
algorithm, “Grover’s search algorithm” [3]. The algorithm solves the problem of conducting a search
through some unstructured search space(database) which he showed could be sped up on a quantum
computer.

Looking at all computational devices beginning with Babbage’s analytical machine all the way

9



upto to the CRAY supercomputers we find that they work on the same fundamental principles.
Some of these fundamentals extend to quantum computing even though the operations in quantum
computing may be different from those in classical computing. As research in quantum computing
grows people have begun trying to construct quantum algorithms which solve everyday practical
problems. These include problems in numerical analysis, machine learning, artificial intelligence and
mathematical optimization [4]. Some examples of these algorithms will be presented in chapter 3.

Mathematical optimization is a branch of mathematics which offers a wide range of algorithms
designed to find the optimal solution to a problem. Due to the fact that optimization problems come
in a wide variety there is no one universal optimization algorithm. Some problems can be solved using
more than a single algorithm. Typically we determine the complexity of the algorithm and choose
to use the one which offers the most efficient implementation. A few quantum algorithms which
solve some of the problems in the category of mathematical optimization have been constructed, a
short summary of these will be given in chapter 4 with quantum optimization algorithms.

Many researchers in quantum optimization try to find quantum algorithms that can take the
place of classical machine optimization algorithms to solve a problem and show an improvement in
complexity. This is the case for the gradient search algorithm proposed in this thesis.

The research described in this dissertation leads to potential quantum algorithms for solving
optimization problems. The goal of the thesis is to provide a useful review of the literature on
quantum optimisation which can serve as an introduction to the field and also to investigate in
selected topics, how one could extend the literature by an original contribution. It also serves as
a register of working principles of investigated implementations whose preliminary tests failed. It
must be noted that efforts will continue to be made to improve these implementations.

1.1 Overview of the dissertation

Though the dissertation is aimed at being an introduction to the field of quantum computation
especially quantum optimization it starts original research in quantum algorithm design. After
offering an introduction to quantum optimization the dissertation also shows older ideas in the field
of quantum optimization and goes on to propose new algorithms and some working principle whose
preliminary implementation failed. The failed attempts will prove useful for the researcher who may
wish to attempt a similar procedure and have been added to the appendix. They may be more
useful for more advanced researchers in the field of quantum optimization looking for new ideas or
simply looking at techniques which do not work. Chapter 2 introduces concepts related to the field
of quantum computation including complexity, qubits, quantum Fourier transform and the Grover
algorithm. Chapters 5 and 6 include the main research work as these are the proposed optimization
algorithms that is the quantum gradient algorithm and quantum Newton-Raphson method .

Outline of the dissertation

In chapter 2 we introduce quantum computation as a field of study. We look at some core ideas and
terminology of quantum computation. We also look at the most important algorithms in quantum
computation , i.e, Quantum Fourier transform and the Grover algorithm. We look at these in detail
and discuss applications.

In chapter 3 we introduce classical optimization algorithms as they provide the backbone of the
field of quantum optimization algorithms. It is important to have an idea of the principles of classical
optimization before going into quantum optimization.

Chapter 4 summarizes known quantum optimization algorithms. It must be noted that the
quantum optimization algorithms proposed in this dissertation are not the first attempts at the
specific problems which is why the thesis presents summaries of other known algorithms.

Chapters 5 and 6 contain our newly proposed ideas for quantum optimization algorithms.
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How to read this dissertation

Due to the diverse nature of the dissertation we will give a guide to the reader so that he/she
can read in the order they prefer depending on what their expectations are from the thesis. This
section attempts to guide the readers in such a way that they can be more selective about reading
the dissertation. If the reader requires some introductory reference to quantum computation then
he/she should consider reading chapter 2.

Chapter 3 is quite vital if the reader needs an introduction to classical mathematical optimization,
this section will give the reader a good impression of the type of problems solved in mathematical
optimization. It should be noted that this section is not a complete review of the topic.

Chapter 4 is quite useful to read for gaining summarized knowledge about other quantum opti-
mization algorithms which have been developed by other researchers.

Chapters 5 and 6 are for readers interested in the research work done as they contain the proposed
quantum optimization algorithms. The appendices includes concepts which may be of interest to
the reader if they want more information about optimization algorithms and quantum computation
including a proposal for a quantum analogue of the particle swarm optimization algorithm.
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Chapter 2

Quantum computation

Though there are many models used for quantum computing, for example, the adiabatic computing
model (see Appendix E), quantum Turing machines and the circuit model. The more popular model
is the circuit model. In this model algorithms are built from a quantum circuit of elementary quantum
gates which are used to manipulate the quantum state. This is somewhat similar to the way a classical
computer (processor) is built from an electrical circuit containing logic gates. This section examines
the fundamental principles of quantum computation. These principles include quantum circuits
and the basic building blocks for quantum circuits known as quantum gates. Quantum circuits are
collections of quantum gates, for example the Hadamard gate, which are arranged so that they can
perform some computational operation. The circuit model used to describe quantum algorithms
is regarded as a universal language for describing more complicated quantum computations. The
circuit model of computation uses universal quantum gates. Universal meaning that any quantum
computation whatsoever can be expressed in terms of those gates. The language of quantum circuits
provides an efficient and powerful language for describing quantum algorithms as it enables us to
quantify the cost of an algorithm in terms of things like the total number of gates required and/or
the circuit depth.

2.1 Qubit

A qubit is defined as the fundamental unit of information storage in quantum computation [1].
Though we typically treat qubits as mathematical objects to make generalization of theories a bit
easier, it must be noted that qubits are actually physical objects. A qubit is a two state quantum-
mechanical system, examples of qubit systems are the polarization states of a photon (H (horizontally
polarized light) and V(vertically polarized light)) or the spin states of electrons (spin up and spin
down) amongst others. In the atom model an electron can be found in either of two states, either
the ground state or the excited state and by interacting with the system ( light on the atom) we
can move the electron in-between the states hence such a system can be thought of as being a qubit
system.

In classical computation the fundamental unit for storing information is known as a bit, for
example in an electronic system we can use current flow as a bit of information, eg, we can set the
system to be in a “0” state if no current flows through the system and “1” if a current is detected.
By doing this we can encode large amounts of information as a series of zero’s and ones, this is how
modern day computers encode information for processing. One can think of the qubit as being an
analogous quantum unit for storing information which mathematically can be expressed as vectors
in the Hilbert space, |0〉 or |1〉.

In a quantum mechanical system, for example the previous mentioned atom model, it is possible
to have a state which is a combination of the two vectors which describe the system. This is known
as a superposition and we say that the electron is in a superposition of the ground and excited
state. Mathematically we express this state as α |0〉+β |1〉 where α and β are defined as amplitudes,

α, β ∈ C. The amplitudes are such that they satisfy the condition |α|2 + |β|2 = 1. The superposition
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Figure 2.1: Branches of quantum search and quantum Fourier algorithms [1].

property is not present in classical computing and can be regarded as one of the main differences
between bits and qubits.

2.2 Quantum algorithms

An algorithm can be defined as an ordered sequence of procedural operations for solving a problem
within a finite number of steps. A quantum algorithm is a technique of problem solving which
uses quantum resources for its implementation. These resources are quantum gates and quantum
states. The algorithm is usually built using a quantum circuit model for easier reading. The field of
quantum computation has become one of major interest in particular due to promises of a speed up
compared to classical computers. These promises in speed-up become clearer when we consider two
classes of quantum algorithms in particular, i.e, Shor’s algorithm and Grover’s algorithm. Shor’s
algorithm implements a quantum Fourier transform in solving the factoring and discrete logarithm
problems providing an exponential speed up over the best known classical algorithms. Grover’s
search algorithm also provides a speed up in searching problem however only a quadratic speed up
over known classical algorithms. This is still very impressive and gives much hope in the direction
of quantum computation. Figure 2.1 extracted from Nielson and Chang’s, “Quantum Computation
and Quantum Information” textbook shows the importance of these two algorithms and how they
extend to solving many other problems of interest [1]. The red arrows show extensions of the
quantum Fourier transform algorithm and the black lines point towards extensions of the quantum
search algorithms (Grover’s algorithm in particular). The extensions are applications of the quantum
search and quantum Fourier transform algorithm.

2.3 Complexity

Though there is some evidence that quantum computers are more computationally efficient com-
pared to classical computers, the question as to whether quantum computers are conclusively more
computationally efficient compared to classical computers is still an open one. This is because there
are no known quantum and /or classical algorithms which solve NP complete problems efficiently.
This should become clearer later. Computational complexity theory can be defined as the subject
of classifying the difficulty of performing different computational tasks. It can better be described
as the process of quantifying the amount of time memory expended by a computer when performing
steps in an algorithm. Two variables are usually used to measure algorithmic complexity, i.e, time
complexity T and space complexity S where, if the input has some size n bits then T and S are
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functions of n. The time complexity is measured in terms of T (n) which is the number of basic
operations required to implement or execute an algorithm. The advantage of measuring the time
complexity by counting the number of operations T (n) that it has to perform versus the actual
execution time it has to take on the computer is that T (n) is system independent, meaning it is in-
dependent of the speed of the computer used to implement it hence the measure is fixed irrespective
of whether you use a computer with greater processing capabilities or not. The space complexity is
measured in terms of the number S (n) which is a measure of the amount of memory necessary to
store the value of an integer.

For many algorithms it is difficult to quantify exactly the exact amount of memory or the exact
number of operations required during execution as these are often dependant on input type, recursive
nature of the algorithm and conditional structures such as “if then” and “while” statements. So
typically computer scientists resort to evaluating what is referred to as the worst-case complexity
of an algorithm. This means we look at the largest T (n) and S (n) which an algorithm can attain
for any n. Exact upper bounds are usually abandoned in preference of asymptotic upper bounds
(bounds describing worst case behaviour of the functions T (n) and S (n) as n → ∞). This leads
us to the ”Big O” notation.

In computer science we write f(n) = O(g(n)) if there exists constants c such that c ∈ R+ and
n0 ∈ N such that

0 ≤ f(n) ≤ c.g(n) ∀ n ≥ no. (2.1)

The function g(n) is called the asymptotic upper bound for the function f(n) as n → ∞. A
complexity class is a collection of computational problems with some common feature with respect
to the computational resources needed to solve problems. The two important complexity classes are
P and NP where P is the class of problems which can be solved in polynomial time (thus efficiently)
on a classical computer whereas NP problems are a class of problems which can be checked quickly
on a classical computer but there is no known efficient way to locate a solution in polynomial time
or even polynomial resources. P ⊆ NP since the ability to solve a problem implies the ability to
check potential solutions however it is not clear that there are problems in NP which are not in P
[1].

A traditional example used to distinguish between P and NP classes is the problem of finding
prime factors for some integer n. There is no known efficient method of solving this problem on a
classical computer and hence the problem is not in P however if one were told that some number
p is a factor of n it would be very easy to verify hence the problem is in NP . It is known that
P ⊆ NP , however it is not so clear as to whether NP ⊆ P which creates a problem in determining
if the two classes are different. It should be noted however that most researchers believe that NP
contains problems which are not in P. This subclass of NP problems is known as NP complete (A
problem is NP complete if it solution in a given time, t, allows us to solve all other NP problems in
polynomial time) [1]. P space is a complexity class which consists of those problems which can be
solved using resources which are few in spatial size but not necessarily in time.

Though P space is believed to be larger than NP and P, it has not yet been proven. NP class
thus can be solved using randomized algorithms in polynomial time if a bound probability error
is allowed to the solution. The theory of quantum computation poses interesting and significant
challenges to the traditional notions of computation, however it is only until we have a functional
quantum computer that we can make any conclusions.

2.4 Introduction to the quantum Fourier transform

At present finding the prime factorization of an n-bit integer using the best classical algorithm
(number field sieve) is thought to require exp (θn

1
3 log( 2

3n)) operations. There are three values of
θ relevant to different variations of the method [128], for the case when the algorithm is applied
to numbers near a large power we take the value of θ ≈ 1.52, for the case where we apply the
method to any odd positive number which is not a power θ ≈ 1.92 and for a version using many
polynomials [129] θ ≈ 1.90. Because the number of steps required to compute such a problem
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Figure 2.2: Quantum circuit for the implementation of a quantum Fourier transform. The picture
however does not show the swap gates which are added at the end which reverse the order of the
qubit[1]

.

increases exponentially with the size of the input the computation quickly becomes intractable on
a classical computer, even for relatively small numbers. A similar problem computed on a quantum
computer would require a number of operations of the order O(n2)logn log logn [1]. Thus a quantum
computer can factor an n-bit integer exponentially faster than the best known classical algorithms.
This section looks at the quantum Fourier Transform which is a quantum algorithm for performing
a Fourier transform of quantum mechanical amplitudes [1]. It is at the heart of many key algorithms
such as factoring, order finding and phase estimation. It is worth noting that the quantum Fourier
transform does not speed up the classical task of computing Fourier transforms of classical data but
rather enables phase estimation which allows us to solve order-finding problem and the factoring
problem [1].

2.4.1 Quantum Fourier transform

In mathematical notation, the Fourier transform (discrete in this case) takes a vector of complex
numbers a0, a2, . . . , aN−1, where N is the number of components of the vector and outputs another
vector of complex numbers b0, b1, . . . , bN−1, which is defined as below

bk =
1√
N

N−1∑
j=0

aje
2πijk
N . (2.2)

The quantum version of the Fourier transform essentially behaves in the same manner as the classical
Fourier transform however it is different in that it operates on states. The quantum Fourier transform
on an orthonormal basis |0〉 , |1〉 , . . . , |N − 1〉 is defined to be a linear operator with the following
action on the basis states [1]

|j〉 QFT−−−→ 1√
N

N−1∑
k=0

e
2πijk
N |k〉 (2.3)

The action of the quantum Fourier transform on an arbitrary state may be written as

N−1∑
j=0

xj |j〉
QFT−−−→

N−1∑
k=0

yk |k〉 (2.4)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It should be noted
that the Quantum Fourier Transform is a unitary operation.

Fig 2.2 shows a picture of the implementation of the quantum Fourier transform where Rθ
are controlled phase gates in quantum computation. Though the Quantum Fourier transform is a

15



Figure 2.3: Quantum circuit for the implementation of a quantum Phase estimation algorithm[1]

pivotal tool, our main interest is in the algorithms within which it is used. These include the phase
estimation algorithm and other algorithms which depend on the phase estimation algorithm.

2.4.2 Phase estimation algorithm

The algorithm uses a black box which performs a controlled-U j operation (which applies the unitary
operator U on the second register only if its corresponding control bit is |1〉) for integer j where
1 ≤ j ≤ 2t−1. Input qubits are initialized to zero and in order to successfully obtain ψ (the phase)
accurate to n bits with probability of success at least 1− ε we initialize t = n+ [log(2 + 1

2ε )] of these
qubits. The algorithm requires that an eigenstate state |u〉 of the above unitary operator U j to be
prepared. The eigenvalue equation of the operator U and it’s eigenstate |u〉 is given by

U |u〉 = e2πiψ |u〉 . (2.5)

After O(t2) operations and a single call to the unitary operation U , the algorithm produces an
n-bit approximation ψ̄ to the phase ψ. The initial states are |0〉⊗t|u〉⊗m, where m is the number of
auxiliary qubits. A Hadamard operation is then performed which produces a superposition of states
represented as

H⊗t⊗1⊗m−−−−−−−→ (
1√
2

)
t

(|0〉+ |1〉)⊗t|u〉⊗m (2.6)

For easier reading we can set |u〉⊗m = |u〉. The next step is to apply the above mentioned unitary

controlled-U2t operator C−U2t to the state in expression 2.6. We thus have

C−U2t−1

(
1√
2

)(|0〉+ |1〉)|u〉⊗C−U2t−2

(
1√
2

)(|0〉+ |1〉)|u〉⊗ . . .⊗C−U20

(
1√
2

)(|0〉+ |1〉)|u〉. (2.7)

This reduces to

(
1√
2

)(|0〉 |u〉+ |1〉U2t−1

|u〉)⊗ (
1√
2

)(|0〉 |u〉+ |1〉U2t−2

|u〉)⊗ . . .⊗ (
1√
2

)(|0〉 |u〉+ |1〉U20

|u〉). (2.8)

From the eigenvalue equation (equation 2.5), the above equation becomes

(
1√
2

)(|0〉 |u〉+ |1〉 e2t−1(2πiψn)|u〉)⊗(
1√
2

)(|0〉 |u〉+ |1〉 e2t−2(2πiψn)|u〉)⊗. . .⊗(
1√
2

)(|0〉 |u〉+ |1〉 e20(2πiψn)|u〉).

(2.9)
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After applying all the t controlled operations and adding kicking back phases to the control bits in
the first register, equation 2.8 can be generalized to

(
1√
2t

)

2t−1∑
k=0

e(2πiψ)k |k〉 |u〉 . (2.10)

where |k〉 is a binary. The next step is to apply the quantum inverse Fourier transform on the first
register from which we get

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e(2πiψ)ke2πik l
2t |l〉 |u〉 . (2.11)

Collecting the terms in the exponents together and performing a bit of algebraic manipulation we
get

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l−2tψ) |l〉 |u〉 . (2.12)

We can approximate the phase ψ by rounding off the value 2tψ to the nearest integer, i.e, we can
approximate 2tψ = ψ̄ + 2tδ where ψ̄ is the nearest integer approximation to 2tψ and 2tδ is an error
term defined such that 0 ≤ δ ≤ 1

2t+1 . We can thus substitute the approximated terms in for the
phase and we find the following

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l−ψ̄−2tδ) |l〉 |u〉 . (2.13)

It is clear with a bit of algebraic manipulation that the above equation reduces to

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l−ψ̄)e2πik l
2t
δ |l〉 |u〉 . (2.14)

The next step is to take a measurement on the first register in the basis ¯|ψ〉

( ¯|ψ〉 ¯〈ψ|)( 1√
2

)
t 2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l−ψ̄)e2πik l
2t
δ |l〉 |u〉 (2.15)

which gives us the state ¯|ψ〉 ⊗ |u〉. Measurement in the computational basis on the first register
yields the desired result with probability

Pr( ¯|ψ〉) = | ¯〈ψ|( 1√
2

)
t 2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l−ψ̄)e2πik l
2t
δ |l〉 |

2

, (2.16)

This reduces to

Pr( ¯|ψ〉) =
1

22t
|e2πik l

2t
δ|

2
, (2.17)

Pr( ¯|ψ〉) =

{
1, for δ = 0,

1
22t | 1−e

2πi2nδ

1−e2πiδ |, for δ 6= 0.

When the error δ is zero, we will get a very good approximation with a probability of 1 and even
if the error is not zero, then we will get a good approximation with a relatively high probability.
In depth analysis of the complexity of the phase estimation algorithm can be found in Nielsen and
Chang’s book [1]. Fig 2.3 shows the quantum circuit for the phase estimation algorithm.
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2.4.3 Applications of the phase estimation algorithm and QFT: Order
finding and factoring

The fast quantum algorithms for order-finding and factoring are interesting because they provide
evidence for the idea that quantum computers may be inherently more powerful than classical
computers. The order-finding and factoring algorithms thus provide a credible challenge to the
strong Church-Turing thesis, which states that any model of computation can be translated into
an equivalent computation involving a probabilistic Turing machine with at most a polynomial
increase in the number of elementary operations required [1]. Efficient algorithms for order-finding
and factoring can be used to break the RSA public-key cryptosystem which justifies interest in the
algorithms. It is also true that both problems are of sufficient intrinsic worth to justify interest in
any novel algorithm, be it classical or quantum.

2.4.4 Order-finding

For some positive integers x and N , where x < N and where x and N have no common factors, we
define the order of x modulo N to be the least positive integer, r, such that xr = 1(modN) and the
order-finding problem is the one to determine the order for some specified x and N .

The algorithm takes uses a black box which performs a controlled-Ux,N operation for x co-prime
(two numbers m and p are said to be co-prime if the only positive integer (factor) that divides both
of them is 1) to the L-bit number N . The unitary Ux,N is given by the operation

|j〉 |k〉 −→ |j〉
∣∣xjk modN

〉
. (2.18)

We initialize t = n + [log(2 + 1
2ε )] qubits to |0〉 and L qubits to |1〉. After O(L3) operations the

algorithm outputs the least integer r > 0 such that xr = 1(modN) with a probability of order of

magnitude, O(1). The initial states are |0〉⊗t|1〉⊗L. A Hadamard operation is performed on the first
register which produces a superposition of states represented as

H⊗t⊗1⊗L−−−−−−→ (
1√
2

)
t

(|0〉+ |1〉)⊗t|1〉⊗L. (2.19)

For easier reading we set |1〉⊗L = |1〉. The next step is to apply the above mentioned unitary

controlled-U2t

x,N operator. We thus have

C−U2t−1

x,N (
1√
2

)(|0〉+ |1〉)|1〉 ⊗ C−U2t−2

x,N (
1√
2

)(|0〉+ |1〉)|1〉 ⊗ . . .⊗ C−U20

x,N (
1√
2

)(|0〉+ |1〉)|1〉.

(2.20)
This reduces to

(
1√
2

)(|0〉 |1〉+ |1〉U2t−1

x,N |1〉)⊗ (
1√
2

)(|0〉 |1〉+ |1〉U2t−2

x,N |1〉)⊗ . . .⊗ (
1√
2

)(|0〉 |1〉+ |1〉U20

x,N |1〉), (2.21)

it follows from equation 2.18 that

(
1√
2

)(|0〉 |1〉+ |1〉
∣∣∣x2t−1

modN
〉

)⊗(
1√
2

)(|0〉 |1〉+ |1〉
∣∣∣x2t−2

modN
〉

)⊗. . .⊗(
1√
2

)(|0〉 |1〉+ |1〉
∣∣(x0mod)N

〉
.

(2.22)
This above equation reduces to

1√
2t

2t−1∑
j=0

|j〉
∣∣xjmodN

〉
. (2.23)

It can be shown that the eigenstates of Ux,N are |us〉 which is defined as
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|us〉 =
1√
r

r−1∑
k=0

e2π sr k
∣∣xkmodN

〉
. (2.24)

Ux,N |us〉 = e2πis jr |us〉 and |us〉 is an eigenstate of the unitary Ux,N . We thus substitute in the
eigenstate |us〉 into equation 2.21 and get

1√
2t

2t−1∑
j=0

|j〉
∣∣xjmodN

〉
=

1√
r2t

r−1∑
s=0

2t−1∑
j=0

e2πisj/r |j〉 |us〉 . (2.25)

The ratio s
r is the equivalent of the phase in the phase estimation algorithm. Applying the inverse

quantum Fourier transform on the first register we get

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e(2πi sr )ke2πik l
2t |l〉 |us〉 . (2.26)

Collecting the terms in the exponents together and performing a bit of algebraic manipulation we
get

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l−2t sr ) |l〉 |us〉 . (2.27)

We can approximate the phase s/r by rounding off the value 2ts/r to the nearest integer, i.e, we
can approximate 2ts/r = ¯s/r+ 2tδ where ¯s/r is the nearest integer approximation to 2tψ and 2tδ is
an error term defined such that 0 ≤ δ ≤ 1

2t+1 . The approximations thus give us

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l− s̄r−2tδ) |l〉 |us〉 . (2.28)

It is clear that the above equation reduces to

(
1√
2t

)

2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l− s̄r )e2πik l
2t
δ |l〉 |us〉 (2.29)

The next step is to take a measurement on the first register in the basis ¯∣∣ s
r

〉
,

(
¯∣∣∣s
r

〉 ¯〈s
r

∣∣∣)( 1√
2

)
t 2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l− s̄r )e2πik l
2t
δ |l〉 |us〉 , (2.30)

which gives us the state ¯∣∣ s
r

〉
⊗ |u〉. Measurement in the computational basis on the first register

yields the desired result with probability

Pr(
¯∣∣∣s
r

〉
) = |

¯〈s
r

∣∣∣( 1√
2

)
t 2t−1∑
k=0

2t−1∑
l=0

e−2πik l
2t

(l− s̄r )e2πik l
2t
δ |l〉 |

2

(2.31)

This reduces to

Pr(
¯∣∣∣s
r

〉
) =

1

22t
|e2πik l

2t
δ|

2
(2.32)

Pr(
¯∣∣∣s
r

〉
) =

{
1, for δ = 0,

1
22t | 1−e

2πi2nδ

1−e2πiδ |, for δ 6= 0.

This means that when the error δ is zero we will get a very good approximation with a probability
of 1 and even if the error is not zero then we will get a good approximation with a relatively high
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probability. Indepth analysis of the complexity of the phase estimation algorithm can be found in
Nielsen and Chang’s book [1]. Another prominent application of the quantum Fourier transform
is factoring. The factoring problem can be reduced to the order-finding problem and hence relies
on the algorithm above. The factoring algorithm otherwise known as Shor’s algorithm will not be
discussed in this thesis despite it’s great value [1].

2.4.5 Period-finding

Problem description: let the function f be a periodic function which produces a single bit as output
and is defined such that f(x+ r) = f(x) for some unknown 0 < r < 2L, where x, r ∈ 0, 1, 2, ... . The
problem is to find r. Period finding is used in Shor’s algorithm.

The algorithm uses a black box which performs the operation U |x〉 |y〉 = |x〉 |y ⊕ f(x)〉. It
also needs an extra register initialized to |0〉 which stores the functional value. We initialize t =
O(L + log( 1

ε )) qubits to |0〉. After O(L2) operations and a single application of the unitary U the
algorithm outputs the least integer r > 0 such that f(x+ r) = f(x) with a probability of O(1) [1].

The initial states is |0〉⊗t |0〉. The procedure is identical to that of implementing the phase
estimation and order finding algorithms discussed in the preceding sections and hence details will
be left out. A Hadamard operation is performed on the initial state which produces a superposition
of states represented as

H⊗t⊗1−−−−→ 1√
2t

2t−1∑
x=0

|x〉 |0〉 . (2.33)

The next step is to apply the above mentioned unitary operator U on the state in equation 2.31
which results in the following

1⊗t⊗U−−−−→ 1√
2t

2t−1∑
x=0

|x〉 |f(x)〉 . (2.34)

It can be shown that the eigenstate of the unitary U is the state
∣∣∣ ˆf(l)

〉
which is defined such that

it satisfies |f(x)〉 = 1√
r

∑r−1
t=0 e

2πil xr

∣∣∣ ˆf(l)
〉

. From this it follows that

1√
2t

2t−1∑
x=0

|x〉 |f(x)〉 =
1√
r2t

r−1∑
l=0

2t−1∑
x=0

e2πilx/r |x〉
∣∣∣ ˆf(l)

〉
. (2.35)

Applying the inverse quantum Fourier transform on the first register, the exact same procedure
is followed as from the phase estimation and order finding algorithms where we approximate the

value of the ratio l̄
r . Once we have a value l̄

r we can apply the continued fractions algorithm
to get the value of r. The period finding algorithm is based on phase estimation and is nearly
identical to the algorithm for quantum order-finding with the exception of the introduction of the∣∣∣ ˆf(l)

〉
= 1√

r

∑r−1
l=0 e

2πilx/r |f(x)〉 which is just a Fourier transform.

2.4.6 Discrete logarithms

Problem description: Let function f(x1, x2) be a periodic function which produces a single bit as
output and is defined such that f(x1, x2) = asx1+x2modN where all the variables are integers. r is
taken to be the smallest positive integer such that armodN = 1. f(x1 + l, x2 − ls) = f(x1, x2) and
hence the period is a 2-tuple, (l − ls), for integer l. The problem is to find r. The algorithm uses a
black box (Unitary) which performs the operation

U |x1〉 |x2〉 |y〉 = |x1〉 |x2〉 |y + f(x1, x2)mod 2〉 (2.36)

For the function f(x1, x2) = bx1ax2 we need an extra register initialized to |0〉 which stores the

functional value. We initialize t = O(logr+log( 1
ε )) qubit registers to |0〉. After O([logr]

2
)) operations
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and a single application of the unitary U the algorithm outputs the least integer s such that as = b
with a probability of O(1). Applying the algorithm known as the generalized continued fractions
algorithm [1], the value of r can be calculated. The initial states look as follows |0〉 |0〉 |0〉. The
algorithm uses the exact same ideas as the previous algorithms and hence will not be discussed to
any detail. It is included merely to demonstrate the capacity of the quantum Fourier transform.

2.5 Grover search algorithm

Given an oracle with N allowed inputs which can be for example cities on a map we may wish to
find a certain feature or one city with a certain property. We can make it such that the target city
is marked with a “1” whereas all other cities are marked with a “0”. Thus given a list of N inputs
the task is to find the input with the required feature. With a classical algorithm this requires
O(N) queries. The quantum search algorithm of Lov Grover otherwise known as Grover’s algorithm
achieves this task using O(

√
N) queries which is substantially less than the classical algorithms

[3]. Grover’s algorithm has been generalized to search in the presence of multiple solutions [12].
Grover’s algorithm has many applications including finding the global minimum of an arbitrary
function [13, 14, 15], evaluating the sum of an arbitrary function [12, 16, 17], finding approximate
definite integrals [18] and converge to a fixed-point [20, 21]. This has algorithm has subsequently
been generalized to take advantage of alternative initial states [22], i.e, nonuniform probabilistic
states [23]. Grovers algorithm has aswell been used in amplitude estimation [24], which forms the
core of most known quantum algorithms related to collision finding and graph properties. Other
applications of Grover’s algorithm include the speeding up the solution to NP-complete problems
such as 3-SAT [25], speedup of other constraint satisfaction problems [26, 27, 28] amongst others.
Spatial search is a problem closely related to the Grover’s algorithm but is harder. In the spatial
search problem the database queries are limited by some graph structure. It has been shown though
that for sufficiently well-connected graphs, O(

√
N)) quantum query complexity is possible [29, 30].

2.5.1 Grover search algorithm description

The algorithm uses a black box oracle O which performs the transformation O |x〉 |q〉 = |x〉 |q ⊕ x〉,
where f(x) = 0 for all 0 ≤ x < 2n except x0 for which f(x0) = 1. After an O(

√
N) operations the

algorithm succeeds with probability of order of magnitude, O(1). We initialize n + 1 qubits in the
state |0〉.

The initial states look as follows |0〉⊗n |0〉. A H⊗n operation is performed on the first n qubits
which produces a superposition of states and HX is applied to the second qubit as shown

H⊗n⊗HX−−−−−−→ 1√
2n

2n−1∑
x=0

|x〉 [ |0〉 − |1〉√
2

]. (2.37)

The next step is to apply the apply the Grover iteration π
√

2n

4 times, details are in Nielson and

Chang’s textbook [1]. For easier reading we set 1√
2n

∑2n−1
x=0 |x〉 = |x〉. Hence the above equation

becomes |x〉 |0〉 − |x〉 |1〉 . We begin by applying the oracle, O

−→ O
1√
2
|x〉 |0〉 −O 1√

2
|x〉 |1〉 . (2.38)

By the definition of the oracle it follows

−→ 1√
2
|x〉 |f(x)〉 − 1√

2
|x〉 |1⊕ f(x)〉 , (2.39)

=

{
1√
2
(|x〉 |1〉+ |x〉 |0〉) = − |x〉 ⊗ |−〉 , if f(x) = 1,

1√
2
(|x〉 |0〉+ |x〉 |1〉) = |x〉 ⊗ |−〉 , if f(x) = 0.
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We can relabel the state for the case where f(x) = 1 as − |t〉 ⊗ |−〉, this is called the target state
and the relabelling is meant for clarity. We will ignore the |−〉 since it does not change during the
implementation of the Grover algorithm. The next step is to apply the diffusion operator to the first
register. Setting H⊗n|0〉⊗n = |φ〉 it can be shown that the output state after the implementation of
the oracle can be written as |φ〉 − 2√

N
|t〉. We then apply the diffusion operator on this state, some

trivial conditions are added to make the understanding of the calculation easier, i.e,

〈t|φ〉 = 〈φ|t〉 =
1√
N
, (2.40)

〈φ|φ〉 = 1. (2.41)

The application of the diffusion operator is shown below

((2 |φ〉 〈φ| − 1)⊗ 1))(|φ〉 − 2√
N
|t〉) =

N − 4

N
|φ〉+

2√
N
|t〉 . (2.42)

We can see that the amplitude of measuring the target state has gone up from 1√
N

to after applying

the oracle, O and the diffusion operator which can be labelled, D. It can be shown that after a
number of operations O(

√
N), the algorithm succeeds to find the target state with probability of

order of magnitude, O(1). Finally we measure in the computational basis to get the target state with
a high probability. Indepth analysis of the complexity of the Grover algorithm and it’s applications
can be found in Nielsen and Chang’s book [1].

2.5.2 Geometric explanation

If we consider a 2 dimensional plane through the 2n dimensional Hilbert space of the n qubits, we can
define a plane containing the target state |t〉 and one containing the superposition

∑1
φ1,...,φn=0 |φ〉 ,

these are nearly orthogonal but never quite so as their scalar product is 1√
N

. We then define a state

which is orthogonal to |t〉 and call it |α〉. Let us then consider a family of states which lie in this
plane which can be expressed as cos θ |t〉+sin θ |α〉 (θ is a real parameter) and hence the state we are
looking for, |t〉, is within this parametrised plane. When we perform the first subroutine namely the

Hadamard operation we create a superposition state
∑1
ψ1,...,ψn=0 |ψ〉, where θ = sin−1( 1√

N
). For a

general state of the form cosθ |t〉+ sinθ |α〉 the effect of a Grover iteration can be summarised into
two subroutines, the first being the marking subroutine which changes the sign of the coefficient of
the target state |β〉, the coefficient in this case being sinθ whilst all other computation basis states
are not changed. This operation geometrically is the equivalent of reflecting the state about the
horizontal axis which in this case will be the axis with the |α〉 state. After the marking subroutine
we have the diffusion operation which has the effect of reflecting the state about the superposition
state

∑1
φ1,...,ψn=0 |φ〉. The product of these two reflections can be shown to be a rotation through

an angle 2sin−1( 1√
N

) in the anticlockwise direction, that is towards |t〉. Each iteration takes us a

step closer towards |t〉 until we go past it and hence it is of essence to choose the right number of
iterations. A geometric picture of the the functioning of the Grover algorithm can be seen in figure
2.4 .

2.5.3 Grover summary

Suppose you have a database (for example a phonebook) where the entries of this database have
been randomly captured and hence it is unstructured and we wish to search for a particular entry
in this database then on a classical computer one would need O(N)operations to find an entry
in the database. The solution in this case is easy to recognise however very difficult to find, a
common feature of problems in the NP computational class (typically these problems are resolved
best through an exhaustive search as typically no more efficient classical algorithm can be found)[1].

There exists a quantum algorithm which can solve this particular problem with a quadratic
speed up and this algorithm is known as the Grover Search Algorithm which only requires O(

√
N)
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Figure 2.4: The Grover operator, G, rotates the superposition state |ψ〉 by an angle θ towards the
target state |t〉. The Grover operator is composed of two operators, i.e, the oracle operation O
which reflects the state about the state |α〉 (which is a state orthogonal to the target state) and a
Diffusion operation, D, which rotates about the superposition. After repeated Grover iterations, the
state vector gets close to the target state |t〉, in this case [1]

operations. To get a numerical idea of the efficiency of the Grover algorithm over its classical
counterparts, consider that if one had a budget of a million operations, a classical algorithm is limited
to searching through about a million (unsorted, unstructured) possibilities whereas the Grover search
algorithm can use those million operations to search through a trillion possibilities [46]. The Grover
search algorithm has many applications outside of unstructured database searches including quantum
counting and speed up in solution of other NP problems like the travelling salesman problem[45].
Beginning the description for the Grover algorithm we say, for N = 2n we are given an arbitrary

xj ∈ {0, 1}⊗n (2.43)

for which we want to find a j ∈ 1, 2, ..., N such that xj = 1 and to return “nothing” or “no solution”
if xj is anything else.

It must be noted however that Grover’s algorithm doesn’t search through lists but rather it
searches through function inputs, i.e, Grover’s algorithm takes a function, searches through the
implicit list of possible inputs to that function, and returns the single input that causes the function
to return true with high probability. There are different cases in which we can consider one true
input and one satisfying more than one true input, in which case we need a variant of Grover’s
algorithm [1].
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Chapter 3

Classical optimization methods

A large number of problems can be referred to as optimization problems and this chapter aims at
classifying these. This chapter attempts to give a very brief scope of the field of mathematical opti-
mization. Instead of a comprehensive description of this vast research field this chapter merely aims
to give a light flavour of the kind of topics one may encounter when studying classical optimization
methods.

3.1 Applications of mathematical optimization

The branch of mathematics and computer science known as optimization has an abundance of prac-
tical applications. For this reason amongst others there has been and continues to be a considerable
amount of research in this area. In electrical engineering, mathematical optimization techniques are
used in space mapping design of microwave structures,[53], active filter design[54], electromagnetics-
based design, stray field reduction in superconducting magnetic energy storage systems and handset
antennas [55]. In solving rigid body mechanics problems physicists and engineers resort to mathe-
matical programming techniques founded in mathematical optimization.

Mathematical optimization techniques as well surface in microeconomics when solving problems
such as the utility maximization problem and its dual problem, the expenditure minimization prob-
lem. In macroeconomics dynamic stochastic general equilibrium (dsge) models that describe the
dynamics of the whole economy and which which rely heavily on mathematical optimization are
frequently used [106]. Other popular fields which rely on mathematical optimization are operations
research, civil engineering, agriculture, geophysics, molecular modelling and control engineering.

3.2 Branches of mathematical optimization

The topic of mathematical optimization is a very large and well researched one. The primary reason
being that it is a very practical and very applied topic. It surfaces in about every subject known
primarily in mathematics, physics, computer science and engineering amongst many other fields.
This is because each of these fields at some point or the other require a selection of the best element
with regard to some conditions from a set of alternatives. This selection usually is of a minimum or
maximum of a function.

There are different types of problems with different conditions which need to be solved. This
results in many sub fields of the topic. This chapter will list as many of the major sub fields as
possible as it is important that we classify which problems exist and which methods can be used to
rectify them. The first sub field of mathematical optimization is convex programming which studies
the problem of minimizing convex functions over convex sets.

Convex programming can be viewed as a case of nonlinear programming or as a generalization
of linear programming or convex quadratic programming [32]. A convex minimization problem is
thus written as
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minimize f(x) (3.1)

subject to gi(x) ≤ 0

where the functions gi(x) are convex

and hi(x) = 0

where the functions hi(x) are affine. A detailed outline of convex functions is given in the Appendix
A.

Conic programming: A sub-field of convex optimization which studies a class of structured con-
vex optimization problems called conic optimization problems. These problems involve minimizing
a convex function over the intersection of an affine subspace and a convex one [37]. Geometric
programming: A method used to achieve the best outcome (for example maximum profit) in a
mathematical model in which the objective and inequality constraints expressed as polynomial and
equality constraints as monomials can be transformed into a convex problem. Geometric programs
are in general not convex optimization problems but can be transformed into such [36].

The problem can be expressed mathematically as

minimize fTx (3.2)

subject to
||Aix+ bi||2 ≤ ci

T + di, i = 1, . . . ,m

Fx = g

where the problem parameters are f ∈ Rn , Ai ∈ Rni×n , bi ∈ Rni , ci ∈ Rn , di ∈ R , F ∈ Rp×n
and g ∈ Rp. x is the optimization variable.

Linear programming: It is a type of convex programming which studies the specific cases where
the objective function is linear and the constraints specified using only linear equalities and inequal-
ities [40]. The sets are polyhedrons or polytopes they are bounded.

Linear programs are problems that can be expressed in canonical form as

maximize cTx, (3.3)

subject to Ax ≤ b,

and x ≥ 0,

where x represents the vector of variables, c and b are vectors of coefficients, A is a matrix of
coefficients.

Second order cone programming: A type of programming which studies non-linear convex prob-
lems which also include linear and (convex) quadratic programs as special cases but are less general
than semi-definite programs where a linear function is minimized over the section of an affine set
and the product of the second order (quadratic) cones [56].

Semi-definite programming: A branch of convex optimization where a linear objective function
defined over the intersection of the cone of positive semi -definite matrices with affine space is
optimized [33].

There is a multitude of optimization problems which are not necessarily convex problems. The
list of problems is summarized here. Integer Programming: A mathematical optimization problem
in which decision variables are integers, it is called a mixed integer program if some of the variables
are allowed to be fraction and a pure integer program if all of the values are allowed. They are
notoriously difficult to solve as there is in general no efficient algorithm for their solution [57].
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Quadratic programming: A mathematical method for optimizing a quadratic objective function
of several variables subject to bounds, linear equality and inequality constraints [58]. It is a subclass
of non-linear programming.

Fractional programming: A generalization of linear fractional programming in which the objective
function is a ratio of two functions which are generally non-linear. Recent developments have been
made to this method [59].

Non-linear programming: A method of solving optimization problems with equality and inequal-
ity constraints and in which the objective function is non linear [38]. The problem can be convex or
non-convex.

Stochastic programming: A framework for modelling optimization problems which involve uncer-
tainty in the coefficients (parameters). This means that for instance in deterministic programming
the coefficients are known numbers whereas in stochastic programming these coefficients are un-
known and instead have a probabilistic distribution present [39].

Robust programming: Methodology for handling optimization problems with uncertain data
which is represented with deterministic variability in the values of the parameters of the problem or
it’s solution [61].

Combinatorial optimization: A framework for finding an optimal object from a finite set of
objects, it works in the domain of discrete feasible solutions or can be reduced to discrete. The
problems involved typically can not be solved by exhaustive methods for example the travelling
salesman problem and or the minimum spanning tree problem [66].

Stochastic optimization: A collection of methods for minimizing or maximizing an objective
function in the presence of randomness [60].

Infinite-dimensional optimization: Optimization problem in which the optimal solution is not a
number or a vector but rather a function or some other continuous structure [118].

Heuristics and meta heuristics: A technique in mathematics and computer science for solving a
search optimization problem when classical methods are too slow or cannot detect a solution [35].

Constraint satisfaction: A technique of finding an optimal solution to a set of constraints which
impose the conditions which the variables of the problem should satisfy and the bijective function
f is a constant [63].

Space mapping: A technique intended for optimization of engineering models which involve
expensive function evaluations, it is used to model and optimize an engineering system to high
fidelity by exploiting a surrogate model [62].

The techniques of the following subfields are designed primarily for decision making over time
meaning they perform optimization in dynamic contexts.

Calculus of variations: Branch of mathematics which deals with optimizing functionals [34].
Optimal control: Is a technique of mathematical optimization for deriving control policies, it is

an extension of calculus of variations [64].
Dynamic programming: A method for solving complex optimization problems by breaking them

down into simpler sub-problems [65].
Mathematical programming with equilibrium constraints: Study of constrained optimization

problems in which the constraints include variational inequalities or complementaries [67].

3.3 Computational optimization techniques

We have looked at the classes of optimization problems so in this section we will look at the algorithms
which are used to solve these problems. The algorithms used in computation are typically divided
into two major categories, i.e, iterative algorithms and heuristic algorithms. Iterative methods are
mathematically derived methods of search whereas heuristics are described as methods of learning
which employ a practical method, for example the ant colony optimization technique.

The use of iterative algorithms is quite common in solving optimization problems. Iterative
methods converge to a solution after a finite number of steps. Convergence of iterative methods
is not always guaranteed, so we use heuristics to provide approximate solutions to some of these
problems. The best algorithm to solve a problem usually depends on the function itself.
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Iterative algorithms can be categorised into those which evaluate or approximate Hessians for
example Newtons method [41], sequential quadratic programming [120] and interior point methods
[121]. Those which evaluate or approximate gradients for example gradient descent [122], ellipsoid
method [123] and simultaneous perturbation stochastic approximation [124]. The other group of it-
erative methods includes methods that evaluate function values which include interpolation methods
and patterns search methods.

Apart from the iterative methods we also have heuristic methods. Heuristics are defined as
techniques designed for solving a problem more quickly when classic methods are too slow and or
for finding an approximate solution when classic methods fail to find any exact solution. These is
a large number of such algorithm, e.g, particle swarm optimization algorithm [125], gravitational
search algorithm [126] and artificial bee colony algorithm [131].
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Chapter 4

Quantum optimization algorithms

This section summarises currently known quantum algorithms which are used in quantum optimiza-
tion. It lists algorithms which are used in different branches of quantum optimization. Due to
the difficulty of constructing quantum algorithms there aren’t as many available for solving all our
optimization problems.

4.1 Quantum optimization algorithms

There are many quantum algorithms which offer speedups ranging from polynomial through su-
perpolynomial to exponential. These algorithms can be classified as being oracular, simulation
(approximation) based algorithms or algebraic (number theoretic)algorithms.

Amongst oracular algorithms there exist searching (optimizing) algorithms which offer a poly-
nomial speed-up. Examples of these algorithms are included in the references [91, 88, 89], in which
single query quantum algorithms for finding the minima of basins based on Hamming distance are
given. Another example of an oracle based quantum algorithm is Stephen Jordan’s quantum nu-
merical gradient search algorithm which can extract all d2 matrix elements of the quadratic form
using O(d) queries [85]. The same algorithm presented in [85] can extract all dn nth derivatives of
a smooth function of d variables in O(dn−1) queries which is a considerable leap from the classical
algorithm. In the papers [90] and [91] we find quantum algorithms which extract quadratic forms
and multilinear polynomials in d variables over a finite field. This is achieved with factor of d fewer
quantum queries than are required classically. We include a summary of optimization algorithms
which we list in the following section below.

4.2 Summary of quantum optimization algorithms

Algorithm 1: Ordered Search
Problem: Given an oracle which has access to a list of N sorted numbers in an order from least

value to greatest value you may want to find out where in the list a number x would fit.
Classically the best known algorithm for solving this problem is the “binary search” algorithm

which takes log2N queries. In the paper [75] it is shown that a quantum computer solves the problem
using 0.53log2N thus giving a constant speed-up from the classical algorithm [75]. [76] presents the
best known deterministic quantum algorithm for this problem which uses 0.433log2N queries. A
randomized quantum algorithm is given whose expected query complexity is less than 1

3 log2N [77].

Andrew Childs and Troy Lee showed that there is a lower bound of ln2
π log2N quantum queries for

this problem [78].
Algorithm 2: Quantum Approximate Optimization Algorithm

Problem: We want to find the exact optimal solution to a combinatorial optimization problem
as well as approximating it with a sufficiently small error.
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Finding the exact optimal solution to a a combinatorial optimization problem is NP-complete,
approximation with sufficiently small error bound is also NP-complete so this is clearly a challenging
problem to solve classically. An algorithm known as Quantum Approximate Optimization Algorithm
(QAOA) was proposed for finding approximate solutions to combinatorial optimization problems and
offers a super-polynomial speedup to polynomial-time classical approximation algorithms [79]. The
power of QAOA relative to classical computing is still a field of active research[80, 81, 82].
Algorithm 3: Gradient finding

Problem: Given a smooth function f : Rd → R we want to estimate ∇f at some specified point
f(x0) ∈ Rd.

A classical computer requires at least d+1 queries to solve the above mentioned problem whereas
Stephen Jordan provides in [95], a quantum algorithm which can solve the problem in 1 step. In
appendix D of his thesis [85] Stephen Jordan also shows that a quantum computer can use the
gradient algorithm to find the minimum of a quadratic form in d dimensions using O(d) queries,
a problem for which a classical algorithm requires at least O(d2) queries [86]. These algorithms in
general provide a polynomial speed-up over classical algorithms.
Algorithm 4: Semi-definite Programming

Problem: Given a list of m+ 1 Hermitian (n× n) matrices (C,A1, A2, . . . , Am) and m numbers
b1, . . . , bm, we may want to find the positive semi-definite (n× n) matrix X that maximizes tr(CX)
subject to the constraints (tr(AjX) ≤ bj) for (j = 1, 2, . . . ,m) [92].

Quantum algorithms have been proposed which give polynomial and in special cases exponential
speed-up. The paper [93] gives a quantum algorithm which approximately solves semi-definite

problems to within (±δ) in time (Õ(n1/2m1/2R10/δ10)), where R is an upper bound on the trace of
the solution which is a quadratic speed-up over the fastest classical algorithms. In the case where
the input matrices have a sufficiently low rank a variant of the algorithm in [93] based on amplitude
amplification and quantum Gibbs sampling can give an exponential speed-up.
Algorithm 5: Graph Properties in the Adjacency Matrix Model

Problem: Given a graph G with n vertices we wish to find out whether corresponding vertices
are connected by an edge. These are problems in combinatorial optimization.

Quantum algorithms have been proposed which give a polynomial speed up in solving this prob-
lem. Given access to an oracle, which given a pair of integers in 1, 2, ..., n tells us whether the
corresponding vertices are connected by an edge, the quantum query complexity of finding a mini-
mum spanning tree of weighted graphs and deciding connectivity for directed and undirected graphs
have Θ(n

3
2 ) quantum query complexity and finding lowest weight paths has O(n

3
2 log2n) quantum

query complexity [19]. The paper [102] shows that deciding whether a graph is bipartite, detecting
cycles and deciding whether a given vertex can be reached from another (st-connectivity) can all be

achieved using a number of queries and quantum gates that both scale as O(n
3
2 ) and only logarith-

mically many qubits. Other interesting computational problems include detecting trees of a given
size [103] and finding a subgraph H in a given graph G [104].

Mathematical optimization is also considered an important subdivision of machine learning and
some information has been included in the appendix on machine learning and quantum machine
learning, see Appendix D.
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Chapter 5

Proposed quantum gradient
algorithm

The task of the algorithm is to find the global minimum of a discrete convex function representing
the optimal solution of a problem. The basic idea of the optimization algorithm is to combine a
quantum version of the gradient search method with the Grover search algorithm. This can be seen
as generating a new quantum search algorithm of a structured database given by the graph of the
function. The resulting algorithm is faster than a pure Grover search and faster than a classical
brute force search.

5.1 Working principle

We are searching for the minimum of a differentiable scalar field f(x) with discrete values of x. We
assume f(x) to be a convex function. We begin by assuming that we can encode the f(x) and x in
quantum states. The algorithm then takes a position x encoded in a state vector as |x〉 and evolves
the position state |xk〉 into a different position state |xk+1〉 defined on the search space, where k is
an iteration number and 0 ≤ k ≤ 2n. This is accomplished by comparing the functional values in
the neighbourhood of argument x and shifting/evolving the position state in the opposite direction
of the gradient of the function f . If the iterative process is carried out using unitary operations, this
will require additional registers. After a finite number of steps those states |x〉, where x being in
the neighbourhood of local extrema are populated, such that the probability to detect local extrema
upon measurement of the input register is increased. A further amplification of the amplitudes is
achieved by carrying out a Grover search for states with gradient equal to the zero vector.

While we want to find local the minima of continuous functions f : Rd → R, we assume here a
discretized function f : Xd → X on a discrete d-dimensional grid Xd, where X = {1, 2, . . . N}. We
define the components gi(x) of a discrete gradient g(x) by comparing the functional values of the
arguments x and x + ei where ei is the ith normalized basis vector:

gi(x) =

 1, for f(x) < f(x + ei) and f(x) > f(x− ei),
0, for f(x) < f(x + ei) and f(x) < f(x− ei),
−1, for f(x) > f(x + ei) and f(x) < f(x− ei) ,

(5.1)

and translate the state |x〉 in direction of the negative discrete gradient:

|x〉 → |x− g(x)〉 . (5.2)

In order to represent the purpose of the discrete gradient g(x) we denote it by ∇f(x). For simplicity
one can interpret this problem as a graph search problem. A discrete problem is defined on a discrete
state space O. We can define a set of edges xi ∈ O on the state space thus inducing a graph where
i=(0,1,2...). A step by step search can then be implemented using functional values and the defined
discrete gradient to find the state that minimizes a function taken over the graph.
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5.2 Steps of the quantum gradient algorithm

The algorithm requires d input registers of length n and k output registers. Here d is the dimension
of the convex function to be optimized and k the number of iterations needed for this purpose.
An extra register is included in between the input registers and the auxiliary qubit, this is for the
implementation of the Grover which will require the extra qubit. The first step in the quantum
gradient descent estimation is to perform a Hadamard transform on the qubits in the input registers
which creates a uniform superposition of states representing all points in the domain of the function.

|0〉I |0〉 |0〉01
. . . |0〉0k

H⊗n⊗1⊗11⊗...⊗1k−−−−−−−−−−−−−→ 1√
2n

2n−1∑
i=0

∣∣∣x0
(i)
〉
I
|0〉 |0〉01

. . . |0〉0k , (5.3)

where the summation (superposition) is taken over all components of the vector x0, i.e, over the ith

positions (particles or nodes) 1 ≤ i ≤ 2n. The subscript k on xk is an iteration number. Next, a
gradient is taken over the superposition state |x〉 by applying a unitary gate U∇f which takes the
discrete gradient of the function and puts it in the auxiliary qubits. We also have an extra |0〉 for
the later implementation of the Grover algorithm.

1√
2n

2n−1∑
i=0

∣∣∣x0
(i)
〉
I
|0〉 |0〉01

. . . |0〉0k

1I⊗1⊗U∇f⊗12⊗...⊗1k−−−−−−−−−−−−−−−→ 1√
2n

2n−1∑
i=0

∣∣∣x0
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
|0〉02

... |0〉0k . (5.4)

The gradient is used to translate the state in the direction of the negative gradient using a unitary
gate Ustep

1√
2n

2n−1∑
i=0

∣∣∣x0
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
|0〉02

... |0〉0k
(Ustep)I⊗1⊗11⊗...⊗1k−−−−−−−−−−−−−−−→

1√
2n

2n−1∑
i=0

∣∣∣x0
(i) −∇f(x0

(i))
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
|0〉02

... |0〉0k . (5.5)

The notation is simplified by setting x1
(i) = x0

(i)−∇f(x0
(i)). We proceed as in the gradient descent

search algorithm to determine the gradient at the new position x1
(i) after the first iteration.

...

after k iterations we get

c1
∑
i/∈Min

∣∣∣xk−1
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk−1

(i))
〉

+ c2
∑
i∈Min

∣∣∣xk−1
(i)
〉
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk−1

(i))
〉

(Ustep)−−−−→

c1
∑
i/∈Min

∣∣∣xk
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk

(i))
〉

+ c2
∑
i∈Min

∣∣∣xk
(i)
〉
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk−1

(i))
〉

(5.6)

where c1 and c2 are normalized coefficients where c1 = c2 = 1√
2n

. Min is a set containing all points

which are at most k steps away from the minimum value of the function. Here i /∈ Min refers to all
points which are more than k steps away from the minimum, whereas i ∈ Min refers to all points
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which are less than k steps away from the minimum. The unitary implementation which takes the
gradient produces one of three outcomes which can be used to decide how to shift the vector towards
a minimum.

The strength of the algorithm as is of many quantum algorithms is the use of the quantum
superposition which allows these processes to be done in parallel. Taking the trace (calculate the
reduced density matrix of the input) over the output registers we find that probability of measuring
the input minimum state is ( 2k+1

2n )d. In the above calculations, this amplitude amplification arises
from normalization factors which arise in the converging towards the minimum. Intuitively one can
think of all x positions which are within k steps of the minimum as converging at the minimum and
hence boosting it’s amplitude.

A subsequent application of the Grover search algorithm boosts the amplitude of the state
corresponding to a vanishing gradient. In the below description operations on the auxiliary qubit
during the Grover search are ignored without loss of generality for easier reading.

The first step in implementing the Grover algorithm is to implement a unitary operator called
the oracle. The oracle marks the state corresponding to the minimum of the function with a “-1”

c1
∑
i/∈Min

∣∣∣xk
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk

(i))
〉

+ c2
∑
i∈Min

∣∣∣xk
(i)
〉
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk−1

(i))
〉

Oracle−−−−→ c1
∑
i/∈Min

∣∣∣xk
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk

(i))
〉
− c2

∑
i∈Min

∣∣∣xk
(i)
〉
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk−1

(i))
〉

(5.7)

The next step is do do an un-computing operation which reverses the U∇f and Ustep, the reason
for doing this is so that we can implement the diffusion operation in the next step which requires
the original input states.

c1
∑
i/∈Min

∣∣∣xk
(i)
〉
I
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk

(i))
〉
− c2

∑
i∈Min

∣∣∣xk
(i)
〉
|0〉
∣∣∣∇f(x0

(i))
〉
...
∣∣∣∇f(xk−1

(i))
〉

Uncompute−−−−−−−→ c1
∑
i/∈Min

∣∣∣x0
(i)
〉
I
|0〉01

|0〉02
... |0〉0k − c2

∑
i∈Min

∣∣∣x0
(i)
〉
|0〉01

|0〉02
. . . |0〉0k

(5.8)

The next step in the Grover algorithm is to implement the diffusion operation which negates
everything but the target states in the set, Min. This operation has been referred to in literature as
an inversion about the mean, it has been detailed in chapter 2 of this thesis

c1
∑
i/∈Min

∣∣∣x0
(i)
〉
I
|0〉01

|0〉02
... |0〉0k − c2

∑
i∈Min

∣∣∣x0
(i)
〉
|0〉01

|0〉02
. . . |0〉0k

Diffusion−−−−−→ c1
∑
i/∈min

∣∣∣x0
(i)
〉
I
|0〉01

|0〉02
... |0〉0k − c2

∑
i∈Min

∣∣∣x0
(i)
〉
|0〉01

|0〉02
. . . |0〉0k ,

(5.9)

We iteratively repeat the application of the Grover algorithm till we maximize the amplitudes in the
range of Min, i.e, till we obtain the state which is approximately (See figure 5.1)

∑
i∈Min

∣∣∣xk
(i)
〉
|0〉01

|0〉02
. . . |0〉0k .

(5.10)

However, in order to detect the position of the minimum, x(min), one more run of the gradient
search is needed. Lastly the minimum input state,

∣∣xk
(min)

〉
, is measured in the computational
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Table 5.1: Table showing order of average number of repetitions for classical, Grover and quantum
gradient search algorithms to find the minimum of a function.

Dimensions (d) Grover plus Opt Steps (Classical) Grover

1 O(N ∗ k)1/2) O(N) O(N1/2)
2 O(N) O(N2/k) O(N)
3 O(N3/2/k1/2) O(N3/k2) O(N3/2)
4 O(N2/k) O(N4/k3) O(N2)
5 O(N5/2/k3/2) O(N5/k4) O(N5/2)

basis, i.e, on the input registers only. Taking the trace over the output gives us the probability of
measuring the outcome of the input register. We calculate the number iterations to be of order,
O(
√
N/(2k + 1)), see number of iterations required for the Grover algorithm in chapter 2.

The analysis goes as follows, consider an ensemble of N points which are all set as initial points,
where N is the size of the search space. If we allow all the points to move iteratively towards the
minimum point, we find that after k iterations only the points which were within k steps of the
minimum point actually converge to it. Hence the probability of finding a point at the maximum
or the zero gradient after k steps through the set is of of order, O(k/N). We can extend this to
the d dimensional case where the probability of finding an optimal value in d dimensional space is
given by order O((k/N)d) and hence the number of steps required has an upper bound of O(N/k)d

steps for each iteration. For k iterations we have Nd/kd−1. The Grover search algorithm has an
upper bound of order, O(N1/2) steps in searching an unstructured database. The upper bound for
finding an optimal value in d dimensional space using only the Grover is O(Nd/2) steps. If we take
the average number of repetitions to detect the minimum in the classical case to be of the order,
O(N/k) in the one dimensional case then combining this with the Grover would give an algorithm
with an upper bound of order O(N1/2k−1/2) repetitions. We can generalize this to d dimensions to
get O(Nd/2/kd/2−1) average number of repetitions. Table 5.1 shows some analysis the upper bounds
of three algorithms in increasing dimensions of the search function.

Table 5.1 shows that the quantum gradient search algorithm is always faster than its classical
counterpart however in lower dimensions it is slower than a Grover algorithm. In higher dimensions
the quantum gradient algorithm becomes faster than the Grover, from the table above we see
that the quantum gradient search algorithm becomes faster when d ≥ 3. A simple example of
an implementation of the quantum gradient search algorithm is given below.

5.3 Example of an implementation of the the quantum gradi-
ent search algorithm on a basic one dimensional function

Consider a one dimensional function with 4 points such that f(2) < f(1) and f(2) < f(3) and
f(3) < f(4) making f(2) the minimum. First we take the discrete gradient

1√
4

(|1〉+ |2〉+ |3〉+ |4〉) |0〉 grad−−−→ 1√
4

(|1〉 |−1〉1 + |2〉 |0〉1 + |3〉 |1〉1 + |4〉 |1〉1). (5.11)

We then take a step in search space

1√
4

(|1〉 |−1〉1 + |2〉 |0〉1 + |3〉 |1〉1 + |4〉 |1〉1
step−−→ 1√

4
(|2〉 |−1〉1 + |2〉 |0〉1 + |2〉 |1〉1 + |3〉 |1〉1). (5.12)

We can simplify this to

1√
4

(|2〉 |−1〉1 + |2〉 |0〉1 + |2〉 |1〉1 + |3〉 |1〉1) =
1√
4
|2〉 (|−1〉1 + |0〉1 + |1〉1) +

1√
4
|3〉 |1〉1 . (5.13)

33



Figure 5.1: Flow diagram showing the working principle of the quantum gradient search algorithm.
Here the number of Grover iterations, m, is of the order O(

√
N/(2k + 1)).

Figure 5.2: Quantum circuit showing the working principle of the quantum gradient search algorithm.
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1√
4
|2〉 (|−1〉1 + |0〉1 + |1〉1) +

1√
4
|3〉 |1〉1

grad−−−→ 1√
4
|2〉 (|−1〉1 + |0〉1 + |1〉1) |0〉2) +

1√
4
|3〉 |1〉1 |1〉2 .

(5.14)
we take another step

1√
4
|2〉 (|−1〉1+|0〉1+|1〉1) |0〉2+

1√
4
|3〉 |1〉1 |1〉2

step−−→ 1√
4
|2〉 (|−1〉1+|0〉1+|1〉1) |0〉2+

1√
4
|2〉 |1〉1 |1〉2 .

(5.15)
we can reduce this to

1√
4
|2〉 (|−1〉1 + |0〉1 + |1〉1) |0〉2 +

1√
4
|2〉 |1〉1 |1〉2 =

1√
4
|2〉 ((|−1〉1 + |0〉1 + |1〉1) |0〉2 + |1〉1 |1〉2).

(5.16)
Oracle action marks the right state with a “ - ” so we have.

1√
4
|2〉 ((|−1〉1 + |0〉1 + |1〉1) |0〉2 + |1〉1 |1〉2)

oracle−−−−→ − 1√
4

(|2〉 ((|−1〉1 + |0〉1 + |1〉1) |0〉2 + |1〉1 |1〉2),

(5.17)

− 1√
4
|2〉 ((|−1〉1+|0〉1+|1〉1) |0〉2+|1〉1 |1〉2)

uncomputing−−−−−−−−→ 1√
4
|2〉 ((|0〉1+|0〉1+|0〉1) |0〉2+|0〉1 |0〉2),

(5.18)

− 1√
4
|2〉 ((|0〉1 + |0〉1 + |0〉1) |0〉2 + |0〉1 |0〉2)

diffusion−−−−−→ 1√
4
|2〉 ((|0〉1 + |0〉1 + |0〉1) |0〉2 + |0〉1 |0〉2).

(5.19)
The action of the diffusion operation is to mark everything but the target state. Lastly the state
1√
4
|2〉 (|0〉1 + |0〉1 + |0〉1) |0〉2 + |0〉1 |0〉2) is measured in the computational basis, i.e, on the input

registers only. Taking the trace over the output gives us the probability of measuring the outcome of
the input register. It is clear that tracing over the output in the state in eqaution 5.14 we measure
the outcome of the input register with probability 3

4 .
The above example is a very simplistic example to give proof of concept. In the above description

operations on the auxiliary qubit during the grover search are ignored for the sake of clarity. In this
exaggerated example we only do one grover iteration which wasn’t even necessary here however this
is not in general true.
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Chapter 6

Proposed quantum
Newton-Raphson algorithm to find
the roots of a function

The task here is to find the roots of a scalar function h : R→ R. The basic idea of the root finding
algorithm is to combine a quantum version of the Newton-Raphson method with the Grover search
algorithm. This can be seen as generating a new quantum search algorithm of a structured database
given by the graph of the function.

The resulting algorithm is faster than a pure Grover search and faster than the classical Newton-
Raphson algorithm and its quantum version. The classical Newton-Raphson algorithm works by

iterating in the direction of the ratio of the function with it’s gradient that is xi+1 = xi − h(x)
h′(x)

where i is the ith iteration and h(x) is the function whose roots we are searching for. Though the
problem in this case is not necessarily an optimization problem the ideas used in this algorithm are
quite similar to the ideas in the previous chapter.

6.1 Working principle

The proposed algorithm evolves a position state |x〉 to a different position state |x′〉 by comparing
the functional values in the neighbourhood of argument x and shifting it into the direction of the

ratio of the discrete function f with the discrete gradient of f given by f(x)
g(x) where f(x) and g(x) are

defined below. For this process to be carried out in a unitary manner it requires additional registers.
The amplitude of the state |xroot〉 which correspond to the to the roots of the function increases
with each step k.

After a finite number k of iterations we will have an increase in amplitude of the states associated
with the roots of the function |xroot〉. As in the previous algorithm a further amplification of the
amplitudes is achieved by carrying out a Grover search for states which correspond to the roots of
the function. In this algorithm both the gradient and the function are discretized as shown below.

The gradient is defined as,

g(x) =

 1, forh(x) < h(x + e) and h(x) > h(x− e),
0, for h(x) ≥ h(x + e) and h(x) ≥ h(x− e),
−1, forh(x) > h(x + e) and h(x) < h(x− ei) .

(6.1)

The function is defined as,

f(x) =

 1, forh(x) > 0,
0, for h(x) = 0,
−1, forh(x) < 0 .

(6.2)
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We condition the algorithm such that when g(x) = 0, then the point is not translated in either
direction.

6.2 Steps of the root finding algorithm

As with the previous algorithm this algorithm requires d input registers of length n and k output
registers. Here d is the number of the degree’s of freedom of the function and k the number of
iterations necessary to run the algorithm. The algorithm has 2 sets of k qubit auxiliary registers,
one to store gradient values and another set for storing function values. An extra register is included
in between the input registers and the auxiliary qubit registers, this is for the implementation of the
Grover which will require the extra qubit.

The first step in this quantum version of the Newton-Raphson method is to perform a Hadamard
transform over the input register creating a superposition over the x values of the function.

|0〉I |0〉01
. . . |0〉0k |0〉01

. . . |0〉0k |0〉
H⊗n⊗11⊗...⊗1k⊗11⊗...⊗1k⊗1−−−−−−−−−−−−−−−−−−−−→∑

i

ai
∣∣x0

i
〉
I
|0〉01

. . . |0〉0k |0〉01
. . . |0〉0k |0〉 . (6.3)

where ai = 1√
2n

. The next step in the algorithm is to implement a unitary Uf which takes the

function value at a point xk
i.

∑
i

ai
∣∣x0

i
〉
I
|0〉01

. . . |0〉0k |0〉01
. . . |0〉0k |0〉

1I
⊗i⊗11⊗12⊗...⊗1k⊗Uf⊗12⊗...⊗1k−−−−−−−−−−−−−−−−−−−−−−−−→∑

i

ai
∣∣x0

i
〉
I
|0〉01

. . . |0〉0k
∣∣f(x0

i)
〉
|0〉02

... |0〉0k |0〉 . (6.4)

We then calculate the ratio of the function f with the gradient of f using a unitary gate Ug∑
i

ai
∣∣x0

i
〉
I
|0〉01

. . . |0〉0k |0〉01
. . . |0〉0k |0〉

1I
⊗i⊗Ug⊗12⊗...⊗1k⊗11⊗12⊗...⊗1k−−−−−−−−−−−−−−−−−−−−−−−−→

∑
i

ai
∣∣x0

i
〉
I

∣∣∣∣f(x0
i)

g(x0
i)

〉
01

. . . |0〉0k
∣∣f(x0

i)
〉
|0〉02

... |0〉0k |0〉 . (6.5)

We have that root is a set containing all points which are k steps away from the root values of the
function. Here i /∈ root refers to all points which are more than k steps away from the roots of the
functions, whereas i ∈ root refers to all points which are less than k steps within the range of the
roots. For ease of notation we let 1kk = 11 ⊗ 12 ⊗ . . .⊗ 1k,

∑
i

ai
∣∣x0

i
〉
I

∣∣∣∣f(x0
i)

g(x0
i)

〉
01

. . . |0〉0k
∣∣f(x0

i)
〉
|0〉02

... |0〉0k |0〉
(Ustep⊗12⊗...⊗1i)I⊗1kk⊗1kk−−−−−−−−−−−−−−−−−−−→

∑
i

ai

∣∣∣∣x0
i − f(x0

i)

g(x0
i)

〉
I

∣∣∣∣f(x0
i)

g(x0
i)

〉
01

. . . |0〉0k
∣∣f(x0

i)
〉
|0〉02

... |0〉0k |0〉 . (6.6)

We simplify notation by setting x1
i = x0

i − f(x0
i)

g(x0
i) . After k iterations we have

∑
i/∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉

+
∑

i∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉 . (6.7)
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(Ustep⊗12⊗...⊗1i)I⊗1kk⊗1kk−−−−−−−−−−−−−−−−−−−→
(6.8)

∑
i/∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉

+
∑

i∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉 . (6.9)

As with the previous algorithm the next step is to implement the Grover search algorithm to
maximize the amplitudes in the range of root. The next step after the iterative evolution of the
position states inside the Grover algorithm is to mark the target root state. This is done using the
unitary operator called the oracle

∑
i/∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉

+
∑

i∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉 (6.10)

Oracle−−−−→
(6.11)

∑
i/∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉

−
∑

i∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉 . (6.12)

Then we perform the un-computing operation

∑
i/∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉

−
∑

i∈roots

ai
∣∣xki〉 ∣∣∣∣f(x0

i)

g(x0
i)

〉
01

. . .

∣∣∣∣f(xk−1
i)

g(xk−1
i)

〉
0k

∣∣f(x0
i)
〉
...
∣∣f(xk−1

i)
〉

0k
|0〉 (6.13)

un−computing−−−−−−−−−→
(6.14)

∑
i/∈roots

ai
∣∣x0

i
〉
|0〉01

. . . |0〉0k |0〉... |0〉0k |0〉

−
∑

i∈roots

ai
∣∣x0

i
〉
|0〉01

. . . |0〉0k |0〉... |0〉0k |0〉 . (6.15)
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Table 6.1: Table showing order of number of steps for each algorithm
Dimensions (d) Grover plus Opt Steps (Classical) Grover

1 O(N ∗ k)1/2 O(N) O(N1/2)
2 O(N) O(N2/k) O(N)
3 O(N3/2/k1/2) O(N3/k2) O(N3/2)
4 O(N2/k) O(N4/k3) O(N2)
5 O(N5/2/k3/2) O(N5/k4) O(N5/2)

Then the next step is to perform the diffusion operation

∑
i/∈roots

ai
∣∣x0

i
〉
|0〉01

. . . |0〉0k |0〉... |0〉0k |0〉

−
∑

i∈roots

ai
∣∣x0

i
〉
|0〉01

. . . |0〉0k |0〉... |0〉0k |0〉
Diffusion−−−−−→ (6.16)

−
∑

i/∈roots

ai
∣∣x0

i
〉
|0〉01

. . . |0〉0k |0〉... |0〉0k |0〉

+
∑

i∈roots

ai
∣∣x0

i
〉
|0〉01

. . . |0〉0k |0〉... |0〉0k |0〉 . (6.17)

After some iterations we expect to measure any one of the root states with probability by tracing over
the output,similar to what we do in the previous algorithm, i.e, the quantum gradient algorithm. It
will be necessary to repeat measurement to get the other root states. Any one state associated with
the roots can be written as being approximately equal to∑

i∈roots

∣∣xki〉 |0〉01
. . . |0〉0k |0〉... |0〉0k |0〉 . (6.18)

As with the previous gradient search algorithm it is necessary to repeat the number of Grover
iterations as necessary to maximize the amplitude. The amplitude of the root states is bumped up
by the grover iterations. Afterwards, one more iteration of the Newton-Raphson method is needed
followed by a measurement in the computational basis of the first register. The complexity analysis
is similar to that of the quantum gradient search algorithm. Consider the one dimensional case where
we have N functional values and we allow k steps to be taken towards the root value by individual
points representing all functional values then we will find that at most O(k/N) of these points reach
the roots hence the probability of finding a point at the roots or after k steps through the set is of
order, O(k/N). We can extend this to the d dimensional case such that the probability of finding a
root value in d dimensional space is given by O(k/N)d and hence the number of steps required is has
an upper bound of O(N/k)d steps for each iteration. For k iterations we need O(Nd/kd−1) steps.
The Grover search algorithm is said to have an upper bound of order O(N1/2) steps in searching an
unstructured database. The number of steps of finding root values in d dimensional space using only
the Grover has an upper bound of O(Nd/2) steps. If we take the number of iterations in the classical
case to be O(N/k) in the one dimensional case then combining this with the Grover would give and
algorithm with an upper bound given by O(N1/2/k1/2−1) steps. This follows from the fact that each
iteration has an upper bound of O(N1/2/k1/2) and there are k steps hence we have an overall upper
bound O(N1/2/k1/2−1) steps in one dimension. The upper bound for finding an optimal value in d
dimensional space using the Grover and quantum optimisation algorithm is O(Nd/2/kd/2−1)

The analysis is the same as in the previous algorithm, we see that the quantum Newton-Raphson
search algorithm is always faster than its classical counterpart however in lower dimensions it is
slower than a Grover algorithm. In higher dimensions (d ≥ 3) the quantum gradient algorithm
becomes faster than the Grover however it should be noted that this comes at an expense in term
of the amount of resources used. A simplified example is provided below to add clarity to how the
algorithm actually works in practice.
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Figure 6.1: Flow diagram showing the working principle of the quantum Newton-Raphson algorithm.
Here the number of Grover iterations, m, is of the order O(

√
N/(2k + 1)).

6.3 Example of an implementation of the the quantum Newton-
Raphson search algorithm on a basic one dimensional
function

Consider a one dimensional function with 5 points such that f(1) < 0 and f(2) = 0 and 0 < f(3)
and f(4) = 0 making f(5) < 0 where f(2) = f(4) = 0 are the roots of the function f . Implementing
the quantum Newton-Raphson algorithm we find

1√
5

(|1〉+ |2〉+ |3〉+ |4〉+ |5〉) |0〉 |0〉

Uf−−→ 1√
5

(|1〉 |0〉 |−1〉+ |2〉 |0〉 |0〉+ |3〉 |0〉 |1〉+ |4〉 |0〉 |0〉+ |5〉 |0〉 |1〉). (6.19)

1√
5

(|1〉 |0〉 |−1〉+ |2〉 |0〉 |0〉+ |3〉 |0〉 |1〉+ |4〉 |0〉 |0〉+ |5〉 |0〉 |1〉)

U∇f−−−→ 1√
5

(|1〉 |−1〉 |−1〉+ |2〉 |0〉 |0〉+ |3〉 |−1〉 |1〉+ |4〉 |0〉 |0〉+ |5〉 |1〉 |1〉). (6.20)

We then take a step in search space

1√
5

(|1〉 |−1〉 |−1〉+ |2〉 |0〉 |0〉+ |3〉 |−1〉 |1〉+ |4〉 |0〉 |0〉+ |5〉 |−1〉 |1〉)

Ustep−−−→ 1√
5

(|2〉 |−1〉 |−1〉+ |2〉 |0〉 |0〉+ |4〉 |−1〉 |1〉+ |4〉 |0〉 |0〉+ |4〉 |1〉 |1〉). (6.21)
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We can simplify this to

1√
5

(|2〉 |−1〉 |−1〉+ |2〉 |0〉 |0〉+ |4〉 |−1〉 |1〉+ |4〉 |0〉 |0〉+ |4〉 |−1〉 |1〉) =

1√
5
|2〉 (|−1〉 |−1〉+ |0〉 |0〉) +

1√
5
|4〉 (|−1〉 |1〉+ |0〉 |0〉+ |1〉 |1〉). (6.22)

In general we take k iterations but in this oversimplified example a single iteration was sufficient
to get an observable increase in the the amplitudes of the states which correspond to roots of the
function. In a more realistic data set which will have many more components we will remain with
many points in the superposition which will have probabilities of being measured so we try to
interfere then out so that we remain with high probability the correct states. In this example we
leave out the extra grover register because it was not necessary to show the idea. In order to achieve
this we implement the Grover search algorithm. The oracle of the Grover algorithm marks the right
state with a “-” so we have.

1√
5
|2〉 (|−1〉 |−1〉+ |0〉 |0〉) +

1√
5
|4〉 (|−1〉 |1〉+ |0〉 |0〉+ |1〉 |1〉)

oracle−−−−→ − 1√
5
|2〉 (|−1〉 |−1〉+ |0〉 |0〉)− 1√

5
|4〉 (|−1〉 |1〉+ |0〉 |0〉+ |1〉 |1〉). (6.23)

We then un-compute the action of the Newton-Raphson algorithm algorithm to get

− 1√
5
|2〉 (|0〉 |0〉+ |0〉 |0〉)− 1√

5
|4〉 (|0〉 |0〉+ |0〉 |0〉+ |0〉 |0〉). (6.24)

The next step is too perform the diffusion operation

− 1√
5
|2〉 (|0〉 |0〉+ |0〉 |0〉)− 1√

5
|4〉 (|0〉 |0〉+ |0〉 |0〉+ |0〉 |0〉) Diffusion−−−−−→

− 1√
5
|2〉 (|0〉 |0〉+ |0〉 |0〉)− 1√

5
|4〉 (|0〉 |0〉+ |0〉 |0〉+ |0〉 |0〉). (6.25)

The last step is to perform measurement in the measurement basis and get approximations to the
states associated with the roots of the function. The state − 1√

5
|2〉 (|0〉 |0〉+|0〉 |0〉)− 1√

5
|4〉 (|0〉 |0〉+

|0〉 |0〉+ |0〉 |0〉) is measured in the computational basis, i.e, on the input registers only. Taking the
trace over the output gives us the probability of measuring the outcome of the input register. It is
clear that tracing over the output in the state in eqaution 6.22 we measure the outcome of the input
register with probability 2

5 for the root state |2〉 and with probability 3
5 for the root state |4〉. In

this example we only do one Grover iteration however this is not in general true.
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Chapter 7

Conclusion and remarks

Quantum computation is very much still in it’s early development phase despite the fact that people
have been working on problems in the field for over 20 years. Quantum algorithms have been
proposed which appear to be computationally faster than known classical algorithms. This has
drawn much interest to the field. At present a major challenge comes in actually implementing some
of these algorithms in the lab and scaling the implementations for high dimensionality calculations.

With the promise of quantum computers becoming a reality researchers have begun to design
algorithms which solve a wide range of problems in numerical analysis and mathematical optimiza-
tion. The problems solved using mathematical optimization are typically very important problems
in everyday life.

Designing quantum algorithms is generally a difficult task. This is evident from the fact that
there are so few viable quantum algorithms available despite the fact that the field of quantum
computation has been growing for years. The goals of this thesis were to introduce previously
proposed quantum optimization algorithms as well as new ones.

The second chapter of the thesis introduces some of the theory in quantum computation and
goes in-depth about some of the most popular and more important results in the theory of quantum
algorithms that is the Grover algorithm and the quantum factoring algorithm. These algorithms
inspire the pursuit of quantum computation as a field of research with their promise of quadratic
and exponential speed-up respectively over classical algorithms. In the third chapter an introduction
of classical algorithms is made and the different techniques i.e iterative and heuristic methods used
in solving mathematical optimization problems.

Examples of quantum algorithms used to solve mathematical optimization problems are presented
in chapter 4. Chapter 4 summer details of the ordered search and quantum approximate algorithms
amongst other optimization algorithms.

In the later chapters, i.e, chapters 5 and 6, I introduce the proposed algorithms, a quantum ana-
logue of the gradient search algorithm, and a quantum analogue of the Newton-Raphson algorithm.
The proposed quantum analogue of the gradient search algorithm and Newton-Raphson algorithm
gives a quadratic speed-up over their classical counterparts.
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Appendix A

Entanglement

Entangled states are combined states of qubits which exhibit correlations which are not observed in
classical systems [127]. An example of these phenomenon is entanglement. The qubits are said to
be entangled if their combined pure state is not separable. This means that their product cannot
be written as a product of each of the individual qubits. Performing a measurement in one qubit of
the entangled state instantaneously results in the state of the other qubit becoming defined (This
happens even though each qubit does not have a definite state before measurement).

An example of an entangled system is the bipartite system given by∣∣φ+
〉

=
1

2
[|0〉1|0〉2 + |1〉1|1〉2] (A.1)

where the subscripts refer to the individual qubits, the state is known as a Bell state. |0〉 and |1〉
are basis states of your Hilbert space. We can see that the state is entangled because it cannot be
factorised or reduced into such a form as∣∣φ+

〉
= |0〉1 ⊗ |0〉2 (A.2)

This means we can no longer describe the system in terms of it’s individual components but rather
collective. Until a measurement is performed we cannot have information about each individual
qubit. It is worth noting that by measuring the state of one qubit we can obtain the state of the other
instantaneously. Another feature of entanglement is that it can occur between qubits/particles which
are arbitrarily separated in space. In quantum optics a spontaneous parametric down conversion is
used to create entangled photon pairs. Further reading on entanglement can be found in [115].
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Appendix B

Adiabatic computing

There are many computationally interesting problems can be recast into an equivalent problem of
finding a variable assignment that minimizes an “energy function[112]. Adiabatic quantum com-
putation was first proposed by Farhi et al. as a method for solving NP-complete combinatorial
optimization problems [112]. Adiabatic computing can be described as a form of quantum com-
puting which relies on the adiabatic theorem to do calculations [112], it is a general approach to
combinatorial search (study of search algorithms for solving instances of problems that are believed
to be hard in general). It is a universal approach meaning that any computational problem can be
expressed as an adiabatic algorithm. It is a contesting approach for quantum computer building and
design. D-wave uses adiabatic algorithms for it’s architecture. In adiabatic quantum computation
one starts with an initial Hamiltonian, Hp(problem Hamiltonian), whose ground state describes the
solution to the problem of interest, then a simple system, with Hamiltonian, H(t), whose ground
state is easy to prepare is prepared. The simple is (adiabatically) slowly varied to the Hamiltonian
to one whose ground state encodes the solution to some computational problem. By the adiabatic
theorem described here,

Assume you have a time dependant Hamiltonian H(t) which has eigenvalues which vary in time
as the Hamiltonian changes. One of them is the ground state energy Eg(t). At any time there is a
state known as the instantaneous ground state, i.e, the eigenstate of the Hamiltonian with eigenvalue
Eg(t).

If you imagine you have a a quantum mechanical system which you start at time t=0. The
instantaneous ground state is given by

H(t) |Eg(t)〉 = Eg(t) |Eg(t)〉 . (B.1)

Take the instantaneous ground state of the Hamiltonian and evolve with the Schrodinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (B.2)

where

|ψ(0)〉 = |Eg(t)〉 . (B.3)

The adiabatic theorem states that the state |ψ(t)〉 stays near Eg(t) if H changes slowly enough. If
I have a time independent Hamiltonian and I put the quantum system in the ground state then all
that happens is that the phase changes and the system stays in the ground state. If the Hamiltonian
changes slowly enough then you sweep the state along with the Hamiltonian. Slowness is determined
by the spacing between the minimum excited state and the ground state.
Procedure for Implementing the Adiabatic algorithm :
Problem definition: Find the ground state of Hp which holds the solution to the problem

Hp |ψ〉 = E(t) |ψ〉 . (B.4)
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where |ψ〉 are eigenstates of the Hamiltonian. Inputs: Construct a Hamiltonian H(t) with an easy
to construct ground state |g〉 and which in some basis which has the cost function in the diagonal.
Steps: Initialize the Hamiltonian H(t) = Hp. Consider the H(t) = (1− t/T )H + (t/T )Hp where, T
is the evolution time. We begin at t=0, so Hamiltonian evolves from H(0) → Hp by applying the
Schrodinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (B.5)

By the adiabatic theorem |ψ(T )〉 will be near the ground state of Hp if the evolution time, T, is
big enough. Hence by the adiabatic theorem, the system will track the instantaneous ground state
provided the variation of the Hamiltonian is sufficiently slow. It’s runtime scales at worst as 1

γ3

where γ is defined as the minimum eigenvalue gap between the ground state and the first excited
state [113]. A detailed analysis of the adiabatic computing can be found in [112].
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Appendix C

Quantum annealing

Is defined as a meta-heuristic for finding the global minimum of an objective function given a set
of candidate states (in which the solution exists)through using quantum fluctuations. Quantum
fluctuations also known as quantum vacuum fluctuations or vacuum fluctuations are a temporary
change in the energy content in a point space. This can be understood mathematically through the
Werner Heisenberg principle given below

∆E∆t ≥ ~
4π

(C.1)

where E is energy, t is time and ~ is the planck constant. Quantum annealing is an optimization
techniques which employs quantum effects to escape the local minima of the objective function by
tunneling through barriers separating local minima [69]. In the case where the cost function is really
tall and has narrow barriers the quantum annealing algorithm can be more efficient than classical
annealing which climbs over barriers.

Much of the popularity of the method stems from the fact that quantum annealing has been
commercialized by D-wave (a Canadian company) in their devices. Their devices are analogue
computation devices which are designed to use quantum annealing to solve an NP hard binary
quadratic optimization problem with cost function

∑
i,jai,jxixj +

∑
ibixi , where the variables xi

can take the values 0 or 1.
While the quantum devices may not be able to solve NP-complete problems in polynomial time,

they may have an advantage over classical algorithms which is yet to be explored. Hence the question
as to whether quantum annealing is better than classical computing is still an open one.

Figure C.1: Visual interpretation of quantum annealing [100]
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Appendix D

Machine learning and quantum
machine learning

The strong link between optimization problems and machine learning problems necessitate that
a section on machine learning and quantum machine learning be included. Machine learning is
a sub-field of machine learning which evolved from topic in Artificial Intelligence which include
pattern recognition and computational learning theory. Peter Wittek defines machine learning more
quantitatively as a field of Artificial intelligence that seeks patterns in empirical data without forcing
models on the data [71]. A feature space which can be defined as a mathematical representation of
the data instances under study, is at the heart of learning algorithms [71]. Learning models can be
either statistical methods or they can be methods from algorithmic learning theory.

We employ machine learning in a range of computing tasks where designing and programming
explicit algorithms with good performance is difficult for example in email filtering, detection of net-
work intruders or malicious insiders working towards a data breach [72], optical character recognition
(OCR)[73], learning to rank and computer vision amongst many other applications.

Machine learning encompasses a wide variety of computational problems and can be attacked
by a wide variety of algorithmic techniques. The problems in machine learning for which quantum
algorithms have been devised include but are not limited to least squares fitting, binary classifica-
tion, regression and cluster finding. Machine learning tasks are typically classified into three broad
categories which are
Supervised Learning: These are learning tasks in which the algorithm is given example inputs and
their desired outputs and the goal is for the machine learning algorithm to learn/devise a general
rule which maps inputs to outputs.
Unsupervised Learning: These are learning tasks in which no labels are given to the learning algo-
rithm.The machine learning algorithm is on its own in finding structure in its input. The goals of
Unsupervised learning are discovering hidden patterns in data and feature learning.
Reinforcement Learning: These are learning tasks in which the machine learning algorithm interacts
with a dynamic environment in which it must perform a certain goal. Examples of tasks performed
include driving a vehicle or playing a game against an opponent. The learning algorithm is provided
feedback in terms of rewards and punishments as it navigates its problem space.

These three categories typically cover all of the problems in machine learning. Machine learn-
ing tasks can further be classified depending on their desired output, i.e, as either classification
tasks [114], regression tasks [116], clustering tasks [117], density estimation tasks or dimensionality
reduction tasks [119].

There is such a great number of algorithmic techniques for solving a wide array of machine learn-
ing problems hence this section does not go into great detail but rather summarizes the techniques.
A key algorithm in quantum machine learning is the HHL algorithm proposed by Seth Lloyd and
colleagues [?]. The HHL algorithm has sparked much hope in quantum machine learning with it’s
promise for an exponential speed-up in certain cases. An example amongst many of an algorithm
which uses a the HHL algorithm is quantum least squares fit algorithm which in certain conditions
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can give an exponential speed-up over the best classical algorithm was proposed [70].
Quantum machine learning (QML) is a new growing topic in machine learning. In some scholarly

texts QML is defined as an intersection between quantum physics and machine learning. There are
generally 4 ways to combine the two disciplines as shown in Figure D.1.

Figure D.1: Four different approaches to combine the disciplines of quantum computing and machine
learning. Where the first letter refers to whether the system under study is classical or quantum,
i.e, CC means the algorithm is classical and the data is also classical, while the second letter defines
whether a classical or quantum information processing device is used [98].

Machine learning encompasses a wide variety of computational problems and quantum machine
learning tries to extend the algorithms used here (classical algorithms) to quantum algorithms. The
algorithms in quantum machine learning include quantum algorithms for solving linear systems
[110] are applied to speed up cluster-finding, principal component analysis, binary classification and
various forms of regression, provided the data satisfies certain conditions. In [111], these quantum
algorithms for linear systems are applied to speed up the characterization of persistent homology
from data sets.
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Appendix E

Proposed quantum particle swarm
optimization algorithm

In this chapter we present a preliminary result for an attempt at producing a quantum optimization
algorithm which tries to find the minimum of a function f(x) where x ∈ R. The algorithm takes
from the particle swarm optimization algorithm and is a quantum analogue of it. We attempted to
use multiple qubits in our search algorithm with the idea that having multiple qubits may enhance
the searching capacity of the algorithm. In our pursuit toward a quantum particle swarm algorithm
i.e an algorithm using quantum computation operations on a multiqubit system in order to resolve
optimization problems, it became clear that a non-unitary operation was required to translate our
system towards the state of the minimum of the function. We attempted to use a non-unitary
operation known as the ”Self Fulfilling Prophecy” [130].

E.1 Working principle

The proposed strategy performing operations required goes as follows. We begin with a multiqubit
system of k qubits where 2 ≤ k ≤ N system which can be written as

|x1〉 ⊗ |x2〉 ⊗ |x3〉 . . . |xk〉 . (E.1)

The second step is to perform a Hadamard operation on each qubit and thus generate a a super-

position of the position values xi where 1 ≤ i ≤ 2n associated with function i.e 1√
N

∑2n−1
i=1,i6=t |xi〉 +

1√
N
|xt〉 where t is the target state. Here we explicitly write out the target state for emphasis. This

can be generalized for each individual particle and we can write

(
1√
N

∑2n−1

i=1,i6=t
|xi〉+

1√
N
|xt〉)

1

⊗ (
1√
N

∑2n−1

i=1,i6=t
|xi〉+

1√
N
|xt〉)

2

. . . (E.2)

⊗ (
1√
N

∑2n−1

i=1,i6=t
|xi〉+

1√
N
|xt〉)

k

.

In this case the target state is the state of the minimum of the function.
The third step in implementing the algorithm would be to introduce a unitary operation, U∇f ,

which would take the gradient of each position. Thus we would generate another register to hold
the gradient values |∇f(x)〉 which will contain a value |1〉 everywhere except at the state associated
with the minimum of the function (the target state), where the gradient register will have be given
by |0〉. The new state |Ψ〉 is written as
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|Ψ〉 = (
1√
N

2n−1∑
i=1,i6=t

|xi〉 |∇f(xi)〉) +
1√
N
|xt〉 |∇f(xt)〉)

1

⊗ (E.3)

(
1√
N

2n−1∑
i=1,i6=t

|xi〉 |∇f(xi)〉) +
1√
N
|xt〉 |∇f(xt)〉)

2

. . .

⊗ (
1√
N

2n−1∑
i=1,i6=t

|xi〉 |∇f(xi)〉) +
1√
N
|xt〉 |∇f(xt)〉)

k

. (E.4)

Since we can discretize our gradient such that ∇f(xi) = 1 for all states which are not the target
state and ∇f(xi) = 0 for the target state we can rewrite |Ψ〉 as

|Ψ〉 = (
1√
N

2n−1∑
i=1 and i 6=t

|xi〉 |1〉) +
1√
N
|xt〉 |0〉)

1

⊗ (E.5)

(
1√
N

2n−1∑
i=1 and i 6=t

|xi〉 |1〉) +
1√
N
|xt〉 |0〉)

2

. . .⊗ (
1√
N

2n−1∑
i=1 and i 6=t

|xi〉 |1〉) +
1√
N
|xt〉 |0〉)

k

.

The method is quite similar to using an oracle. We can further generalize |Ψ〉 to β |xi〉 |1〉+α |xt〉 |0〉
where β is the probability of measuring any other state but the target state and α is the probability
of measuring the target state and thus the above state |Ψ〉 can again be written as

|Ψ〉 = (β |xi〉 |1〉+ α |xt〉 |0〉)1 ⊗ (β |xi〉 |1〉+ α |xt〉 |0〉)2 . . .⊗ (β |xi〉 |1〉+ α |xt〉 |0〉)k (E.6)

In the above expression β > α, this is because β is the probability of measuring any one of N − 1
states out of N possible whereas α is only the probability of measuring one state of the N possible.
Since the goal of the algorithm is to measure the target state with high probability, i.e, measure
|xt〉 with high probability, we introduce a non-unitary approach to translate the entire system to
the target state.

The fourth step in the algorithm is to introduce the non-unitary and evolve the system towards
the target state. The proposed non-unitary operation is known as the Self-fulfilling prophecy [130].
The aim in introducing this method can be shown as follows

|Ψ〉 SFP−−−→ (β |xt〉 |1〉+ α |xt〉 |0〉)1 ⊗ (β |xt〉 |1〉+ α |xt〉 |0〉)2 . . .⊗ (β |xt〉 |1〉+ α |xt〉 |0〉)k (E.7)

Hence the final state is

((β + α) |xt〉 (|1〉+ |0〉))1 ⊗ ((β + α) |xt〉 (|1〉+ |0〉))2 . . .⊗ ((β + α) |xt〉 (|1〉+ |0〉))n (E.8)

We would thus be able to measure the target states |xt〉1⊗|xt〉2 . . . |xt〉n with a very high probability

of |(β + α)|2. We ran some simulations to confirm the viability of the method claimed here and some
preliminary results are presented below.

E.2 Simple case test for the proposed method

Since 〈xi|xt〉 = 0, i.e, the states are orthogonal we can generalize the above expression as |ΨG〉 =
β |1〉 |1〉+α |0〉 |0〉 where α and β are amplitudes of the target state and all other states respectively.
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Now having the state in this form one can imagine that it is possible to evolve the above state |ΨG〉
in such a way that the amplitude associated with the target state can be amplified as in the Grover
search. A unitary approach cannot achieve this as it would lead to a hard measurement of the states.

This is not ideal because the probability of measuring any other state is N−1
N hence measuring

the actual target state is very unlikely, rendering the algorithm inefficient. A non-unitary approach
known as the Self-fulfilling prophecy (SFP) is introduced to overcome the problem. The SFP is
conditioned not to change the state associated with the zero gradient.

The Self-fulfilling prophecy is a mechanism of preparing finite-dimensional quantum systems into
target states. The mechanism works by means of unsharp measurements combined with feedback
which aims to restore a presumed pre-measurement quantum state. This combination of measure-
ments and feedback deterministically drives any state to a common state. Details of the SFP can
be found in [130]. The SFP can only be applied to the first register. Beginning with the state ΨG ,
the protocol for SFP is as follows.

SFP |ΨG〉 = α((SFP⊗ 1) |0〉 ⊗ |0〉) + β((SFP⊗ 1) |1〉 ⊗ |1〉) (E.9)

The goal in doing this was that we could let the state β((SFP⊗ 1) |1〉 ⊗ |1〉) evolve to β(|0〉 ⊗ |1〉).

E.2.1 Implementing the working principle

The matlab code in the Appendix H was used to implement the proposed algorithm. It measures
the fidelity of the outcome state after performing the SFP with the target state. The goal was to
get a fidelity as close to 1 as possible. The outcome is shown in the Figure E.1 below

Figure E.1: Picture showing the fidelity of the state α 1√
2
|0〉 |0〉+β 1√

2
|0x〉 |1〉 against the |0〉 |0〉 state

under the SFP principle

Clearly the proposed method does not lead to the desired result as the fidelity of the outcome
state with the target state is a very low value, much lower than 1.

E.3 Results and conclusion

Simulations were conducted in Matlab, the code which is given in Appendix F. We found that using
SFP did not lead us to the desired state and inevitably we could get a gain in amplitude. The reason
for this was could be because the SFP was not the most appropriate non-unitary technique to evolve
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our state towards the target state. The amplitudes may also play a pivotal role, for example the
very small α value could easily be approximated as 0 in the matlab code thus destroying information
about the vector associated with it. Though the method did not lead to the desired result more
work is still being conducted in search of alternative methods.
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Appendix F

Matlab code used in QPSO

F.0.1 Implementing SFP

In order to implement the SFP we had to generate the measurement matrices M+ and M− and the
unitary matrices U+ and U−

M+ =

[ √
po 0
0

√
1− po

]
(F.1)

M− =

[ √
1− po 0

0
√
po

]
(F.2)

and

U+ =

[ √
po+
√

1−po√
2

√
1−po+

√
po√

2

−
√

1−po+
√
po√

2

√
po+
√

1−po√
2

]
(F.3)

U− =

[ √
po+
√

1−po√
2

−
√

1−po+
√
po√

2√
1−po+

√
po√

2

√
po+
√

1−po√
2

]
(F.4)

The code used to run the simulations presented in Appendix E has been added here
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Figure F.1: Matlab code for QPSO pg 1
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Figure F.2: Matlab code for QPSO pg 2
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Figure F.3: Matlab code for QPSO pg 3
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Appendix G

Quantum numerical gradient
estimation algorithm

There is a grave number of applications for quantum algorithms [84]. A nice example of a quantum
algorithm which can be used for optimization purposes is given in the paper by Stephen Jordan [95].
This algorithm is a generalization of the Bernstein-Vazirani algorithm [99].

In his paper Stephen Jordan tries to use the methods of the Bernstein-Vazirani algorithm to
approximate the numerical gradient of a real valued function. In the quantum algorithm it suffices
to show how to perform a quantum gradient estimation at x = 0, since the gradient at other points
can be obtained by trivially redefining f [95]. The algorithm uses a black box which performs
a controlled-U operation given by C − U : |x〉 |a〉 = |x〉 |a⊕ g(x)〉. The algorithm is designed to
estimate the gradient ∇f(x) at a given point (x = x1, x2, . . . , xd) with n bits of precision.

Figure G.1: Quantum circuit for the implementation of a numerical gradient estimation algorithm.

Applying the unitary performs the operation C − U : |x〉 |a〉 = |x〉
∣∣a⊕ (NN0

ml )g(x)mod N0

〉
. It can be shown that the eigenstate of the state |g(x)〉 is

∣∣∣ ˆg(f(x))
〉

under the transformation

|g(x)〉 =
∑2n−1
f(x)=0 e

2πi(
NN0
ml )xf(x)

∣∣∣ ˆg(f(x))
〉

. This is similar to the period finding algorithm where we
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approximate ŝ
l as some function f(x). The function f(x) can be approximated as f( l

N (x − N
2 )),

where N is the d-dimensional vector (N1, N2, . . . , Nd), and l is the size of the region over which the
function f is approximately linear, m is the size of the interval which bounds the components of
∇f which ensure proper scaling of the final result into a fixed point representation (A fixed point
number has a specific number of bits (or digits) reserved for the integer part (the part to the left of
the decimal point) and a specific number of bits reserved for the fractional part (the part to the right
of the decimal point). It is unlike a floating point point number which allows for a varying number
of digits after the decimal point), that is, as an integer from 0 to 2n [95] and 0 ≤ N0 ≤ 2n0−1. The
algorithm provides a polynomial speed-up in gradient search over it’s classical counterparts. The
algorithm uses a black box which computes f and initializes d qubits of length n (where d is the
dimension (degrees of freedom) of the function) and n0 auxiliary qubits.

The initial states are |0〉⊗d|0〉⊗n0 . A Hadamard operation is then performed which produces a
superposition of states represented as

H⊗d⊗1⊗n0

−−−−−−−→ (
1√
2

)
d

(|0〉+ |1〉)⊗d|0〉⊗n0 (G.1)

1⊗d⊗QFT−−−−−−−→ (
1√
2

)
d

(|0〉+ |1〉)⊗d
N0−1∑
a=0

e2πia/N0 |a〉 (G.2)

We can simply ( 1√
2
)
d
(|0〉+ |1〉)⊗d =

∑2d−1
x=0 |x〉 where x = (x1, x2, . . . , xd), a = 0, and it follows that

after applying the quantum Fourier transform on the second register that we get

1√
2dN0

2d−1∑
x=0

|x〉
N0−1∑
a=0

e2πia/N0 |a〉 (G.3)

The next step is to apply above mentioned unitary operator C−U on the second register which
gives the new phase shown below

1⊗d⊗U⊗n0

−−−−−−−→ 1√
2dN0

2d−1∑
x=0

|x〉
N0−1∑
a=0

e2πia/N0 |g(x)〉 (G.4)

substituting |g(x)〉 with it’s eigenvalue approximation we get

1√
2dN0

2d−1∑
x=0

|x〉
2n−1∑
f(x)=0

e2πi(
NN0
ml )xf(x)

∣∣∣ ˆg(f(x))
〉

(G.5)

We then substitute in the above mentioned approximation to f , f(x) ≈ f( l
N (x− N

2 )), we get

1√
2dN0

2d−1∑
x=0

2n−1∑
f(x)=0

e2πi Nmlxf( lN (δ−N2 ))/N0 |x〉
∣∣∣ ˆg(f(x))

〉
(G.6)

If l is the diameter of the neighbourhood around which the function f is approximately linear then
f can be we can approximated by means of a first derivative as shown below

≈ 1√
2dN0

2d−1∑
x=0

2n−1∑
f(x)=0

ei2π
N
ml (f(0)+(x−N2 ).∇f) |x〉

∣∣∣ ˆg(f(x))
〉

(G.7)

Ignoring the global phase we can approximate the states to

≈ 1√
2d

2d−1∑
x=0

2n−1∑
f(x)=0

e
i2π N

ml (δ1
∂f
∂x1

+x2
∂f
∂x2

...+xd
∂f
∂xd

) |x1〉 |x2〉 . . . |xd〉
∣∣∣ ˆg(f(x))

〉
(G.8)
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This can be expressed in the product state as

=
1√
2d

2n−1∑
f(x)=0

(

2d−1∑
δ=0

ei2π
N
ml (x1

∂f
∂x1

) |x〉) . . . (
∑
x

e
i2π N

ml (xd
∂f
∂xd

) |xd〉)
∣∣∣ ˆg(f(x))

〉
(G.9)

Taking a single component of the above equation,

1√
2d

2n−1∑
f(x)=0

2d−1∑
δ=0

e2πi Nml (x1
∂f
∂x1

) |x1〉
∣∣∣ ˆg(f(x1))

〉
(G.10)

Thinking back to the order-finding algorithm we can see that one can look at N
ml (

∂f
∂x1

) as equivalent

to ŝ
r . The next step in the algorithm is to implement the inverse QFT, and it becomes clear that

using the exact same order-finding techniques as in chapter 2 we can find an approximation to each
component of the derivatives of the function in the state

=

∣∣∣∣Nm ∂̄f

∂x1

〉 ∣∣∣∣Nm ∂̄f

∂x2

〉
. . .

∣∣∣∣Nm ∂̄f

∂xd

〉
(G.11)

The final step is to take a measurement in the computational basis to obtain the components of ∇f
with n bits of precision. On a classical computer approximating the numerical gradient of a function
requires a minimum of d + 1 black-box queries, whereas on a quantum computer it requires only a
single query regardless of d where d is the dimension of the function. Further analysis can be found
in Stephen Jordan’s paper [95].
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Appendix H

Quantum heuristics: Quantum
particle swarm optimization
algorithm

H.0.1 Introduction to quantum algorithmic particle swarm optimization

Qubit representation and Operations

Although the Grover algorithm is currently the best algorithm for solving heuristic problems, propo-
sitions have been made for quantum versions of heuristic algorithms like the particle swarm. The
reason for interest here is the fact that some of these algorithms actually present a speed-up over
their classical counterparts. So in this section we will look at a quantum algorithmic version of the
particle swarm optimization.

Before going into the quantum version of the particle swarm optimization algorithms proposed
in [97] we will look at some mathematical properties of a quantum particle beginning with their
representation as a qubit as shown below

|φ〉 = cosθ |0〉+ sinθ |1〉 = [cosθ sinθ]T . (H.1)

Now we can perform transformations on our quantum particle with operations such as R(∆θ)
given below

R(∆θ) =

[
cos∆θ −sin∆θ
sin∆θ cos∆θ

]
. (H.2)

Taking

|φ〉 =

[
cosθ
sinθ

]
. (H.3)

it can be transformed by R as shown

R |φ〉 =

[
cos(θ + ∆θ)
sin(θ + ∆θ)

]
. (H.4)

Letting

|φi〉 = cosθi |0〉+ sinθi |1〉 . (H.5)

it follows that |φ1φ2 . . . φn〉 can be written as

|φ1φ2 . . . φn〉 = |φ1〉 ⊗ |φ2〉 . . .⊗ |φn〉 . (H.6)
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which can be written in vector form as

[
cosθ1

sinθ1

]
⊗ . . .⊗

[
cosθn

sinθn

]
=


cosθ1× cosθ2× . . . ×cosθn

cosθ1× cosθ2× . . . ×sinθn

...
...

...
sinθ1× sinθ2× . . . ×sinθn

 . (H.7)

In an n qubit system of the ground state probability amplitudes is a function of an n qubit phase
(φ1, φ2, . . . , φn) i.e adjustments of φi update all 2n probability amplitudes. Therefore the operation
R(∆θi) also updates the probability amplitudes. The operation R(∆θ1∆θ1 . . .∆θn) on all qubits
can be written more clearly as

R(∆θ1∆θ1 . . .∆θn) = R(∆θ1)⊗R(∆θ2)⊗ . . .⊗R(∆θn). (H.8)

where

R(∆θi) =

[
cos(∆θi) −sin(∆θi)
sin(∆θi) cos(∆θi)

]
. (H.9)

It follows that when n = 2 then

R(∆θ1,∆θ2) =


cos∆θ1cos∆θ2 −cos∆θ1sin∆θ2 −sin∆θ1cos∆θ2 sin∆θ1sin∆θ2

cos∆θ1sin∆θ2 cos∆θ1cos∆θ2 −sin∆θ1sin∆θ2 sin∆θ1cos∆θ2

sin∆θ1cos∆θ2 −sin∆θ1sin∆θ2 −cos∆θ1sin∆θ2 cos∆θ1cos∆θ2

sin∆θ1sin∆θ2 sin∆θ1cos∆θ2 cos∆θ1sin∆θ2 cos∆θ1cos∆θ2

 . (H.10)

We can write

R(∆θ1∆θ1 . . .∆θn) |φ1φ2 . . . φn〉 =
∣∣∣φ̂1

〉
⊗
∣∣∣φ̂1

〉
⊗ . . .⊗

∣∣∣φ̂n〉 . (H.11)

where
∣∣∣φ̂i〉 = cos (θi + ∆θi) |0〉+ sin (θi + ∆θi) |1〉

Encoding Method Based on Multiqubits Phases

Since we now know how to perform operation on qubit states we are interested now in formulating
a method for encoding the particle information. We begin by randomly generating N (number of
particles), n dimensional phase vectors θi where i = 1, 2, . . . , N and

θij = [θi1, θi2, . . . , θin]. (H.12)

where θij = 2πr, for 0 ≤ r ≤ 1, where j = 1, 2, . . . , n. Let |θij〉 = cosθij |0〉+ sinθij |1〉, we can thus
generate the N , n-qubit vectors as |θ11, θ12, . . . , θ1n〉 ; |θ21, θ22, . . . , θ2n〉 ; . . . ; |θN1, θN2, . . . , θNn〉.

Phase Updating

Multi-qubit rotation gates are employed to update particles. Let the phase vector of the global
optimal particle be θg = [θg1, θg2, . . . , θgn] and let the phase vectors of the ith particle be θi =
[θi1, θi2, . . . , θin] and the personal best phase vector be θbi = [θib1, θ

i
b2, . . . , θ

i
bn]. It follows that if θi

is updated then it’s corresponding amplitude is also updated. Improving search capability requires
that all phases θi be updated, which allows all particles to be updated N times. Let ∆θ0 denote
an initial non-zero step size. The quantum particle swarm algorithm can be given by the following
steps,

Step 1: Prepare your state such that the probability amplitudes of the states are given as
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Ai(θ) =

[
cosθi1

sinθi1

]
⊗ . . .⊗

[
cosθin

sinθin

]
=


cosθi1 cosθi2 . . . cosθi1

cosθi1 cosθi2 . . . sinθi2

...
...

...
sinθi1 sinθi2 . . . sinθin

 . (H.13)

Step 2: Set the update rotation angles to 0 i.e ∆θi1 = ∆θi2=. . .= ∆θin =0
Step 3: Determine the value of the rotation angle where sgn denotes the symbolic function. If

|θibj − θij | ≤ π (H.14)

then
∆θibj = sgn(θibj − θij)∆θ0 (H.15)

If
|θibj − θij | ≥ π (H.16)

then
∆θibj = −sgn(θibj − θij)∆θ0 (H.17)

If
|θigj − θij | ≥ π (H.18)

then

∆θigj = −sgn(θigj − θij)∆θ0 (H.19)

If
|θigj − θij | ≤ π (H.20)

then

∆θigj = sgn(θigj − θij)∆θ0 (H.21)

Step 4: Calculate the rotation angles and update the rotation angle using the equation

∆θij = r1×∆θbij + r2×∆θgij (H.22)

where r1 and r2 are random numbers, then

Ai+1(θ) = Rn(∆θi1,∆θi2, . . . ,∆θin)Ai(θ) (H.23)

Step 5: If j < n then take another iteration j + 1 i.e return to step 3
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