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Abstract 

Decision-making is a very important aspect of many businesses. There are grievous penalties 

involved in wrong decisions, including financial loss, damage of company reputation and 

reduction in company productivity. Hence, it is of dire importance that managers make the right 

decisions. Machine Learning (ML) simplifies the process of decision making: it helps to discover 

useful patterns from historical data, which can be used for meaningful decision-making. The ability 

to make strategic and meaningful decisions is dependent on the reliability of data. Currently, many 

organizations are overwhelmed with vast amounts of data, and unfortunately, ML algorithms 

cannot effectively handle large datasets. This thesis therefore proposes seven filter-based and five 

wrapper-based intelligent instance selection techniques for optimizing the speed and predictive 

accuracy of ML algorithms, with a particular focus on Support Vector Machine (SVM). Also, this 

thesis proposes a novel fitness function for instance selection. The primary difference between the 

filter-based and wrapper-based technique is in their method of selection. The filter-based 

techniques utilizes the proposed fitness function for selection, while the wrapper-based technique 

utilizes SVM algorithm for selection. 

The proposed techniques are obtained by fusing SVM algorithm with the following Nature 

Inspired algorithms: flower pollination algorithm, social spider algorithm, firefly algorithm, 

cuckoo search algorithm and bat algorithm. Also, two of the filter-based techniques are boundary 

detection algorithms, inspired by edge detection in image processing and edge selection in ant 

colony optimization. Two different sets of experiments were performed in order to evaluate the 

performance of the proposed techniques (wrapper-based and filter-based). All experiments were 

performed on four datasets containing three popular e-fraud types: credit card fraud, email spam 

and phishing email. In addition, experiments were performed on 20 datasets provided by the  

well-known UCI data repository. The results show that the proposed filter-based techniques 

excellently improved SVM training speed in 100% (24 out of 24) of the datasets used for 

evaluation, without significantly affecting SVM classification quality. Moreover, experimental 

results also show that the wrapper-based techniques consistently improved SVM predictive 

accuracy in 78% (18 out of 23) of the datasets used for evaluation and simultaneously improved 

SVM training speed in all cases. Furthermore, two different statistical tests were conducted to 

further validate the credibility of the results: Freidman’s test and Holm’s post-hoc test. The 

statistical test results reveal that the proposed filter-based and wrapper-based techniques are 

significantly faster, compared to standard SVM and some existing instance selection techniques, 

in all cases. Moreover, statistical test results also reveal that Cuckoo Search Instance Selection 

Algorithm outperform all the proposed techniques, in terms of speed.  

Overall, the proposed techniques have proven to be fast and accurate ML-based e-fraud detection 

techniques, with improved training speed, predictive accuracy and storage reduction. In real life 

application, such as video surveillance and intrusion detection systems, that require a classifier to 

be trained very quickly for speedy classification of new target concepts, the filter-based techniques 

provide the best solutions; while the wrapper-based techniques are better suited for applications, 

such as email filters, that are very sensitive to slight changes in predictive accuracy. 
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Chapter 1 

Introduction 

Since the invention of integrated circuits and computer chips, the world has experienced a global 

spread of information. The world is surrounded by large volumes of data produced by different 

sources, including pictures, videos, emails, websites and Internet. Moreover, data contain very 

useful information for decision-making; hence, robust information extraction techniques are 

highly required. Machine Learning (ML) algorithms are very useful techniques for information 

extraction. They can effectively extract relevant patterns from data, analyze the patterns and turn 

them into meaningful information for decision-making. Many ML algorithms exist; however, this 

research focused on Support Vector Machine (SVM). 

SVM is a supervised, statistics-based ML algorithm, that is widely used to solve many real-world 

pattern recognition and data mining problems [1], such as parking space problems [2], hostel 

allocation problems [3] and email classification [4]. However, SVM training complexity increases 

as problem size and number of classes increases [1]. Its training time is 𝑂(𝑛2), where 𝑛 refers to 

number of training instances [5]. This is a major concern, because several real-world applications 

require the fast processing of large datasets. Many SVM speed optimization techniques have been 

proposed in the body of literature, and most of these techniques tackle optimization from different 

approaches, including instance selection, parameter optimization, and feature selection. Instance 

selection techniques aim to optimize speed by removing irrelevant and superfluous instances from 

a dataset. Feature selection techniques aim to optimize speed by removing extraneous features 

from a dataset. Parameter optimization techniques aim to optimize speed by selecting optimal 

parameters from a list of parameter values. Among these three approaches, instance selection is 

one of the most efficient [6].  

Instance selection techniques are used to minimize SVM training time by discarding superfluous 

and harmful instances from a training set. Superfluous instances are instances that contribute 

negligibly to the classification accuracy of a classifier, while harmful instances are instances that 

lead to increased FP and FN rates [7]. Superfluous and harmful instances contribute less to SVM 

prediction process [7], hence discarding them does not have a negative impact on the SVM training 
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result [8]. Some instance selection techniques have been proposed in the literature, and the 

majority of these techniques are based on the k Nearest Neighbour (NN) classifier [6]. Some of 

the techniques are based on k-d trees [9], clustering [10, 11], tabu search [12] and sequential search 

[13]. However, very few techniques have explored Nature Inspired (NI) Algorithms. Some of the 

few existing NI-based instance selection techniques focused on: Evolutionary Algorithm (EA) [14, 

15], Memetic Algorithm [16], Ant Colony Optimization (ACO) [17] and Artificial Immune 

System (AIS) [18]. This research proposes intelligent instance selection techniques for improving 

SVM training speed and predictive accuracy. 

Some sensitive applications requires a classifier to be trained very quickly in order to enable the 

classifier to identify new target concepts [8]. Moreover, this application requires the classifier to 

be trained on large training sets. Examples of such applications include video surveillance and 

intrusion detection. For this kind of applications, SVM training time can be unacceptably high, 

which renders SVM ineffectual. Furthermore, even in applications where training can be 

performed offline (such as email detection systems), if the size of the training data or number of 

classes is large, then SVM computational complexity will be intolerable [8]. Hence, this thesis 

proposes seven filter-based instance selection techniques for improving the training speed of 

SVMs. Five of the techniques are based on recent NI algorithms, including Flower Pollination 

Algorithm (FPA), Cuckoo Search Algorithm (CSA), Firefly Algorithm (FFA), Social Spider 

Algorithm (SSA) and Bat Algorithm (BA). The remaining two techniques are inspired by edge 

detection in image processing and edge selection in ACO, respectively. The proposed filter-based 

techniques are very useful when processing massive datasets with limited storage space. In 

addition, some applications (such as spam or phishing email classifiers) are very sensitive to a 

slight drop in classification accuracy. In these applications, classification accuracy is of greater 

importance, compared to classification speed. For example, misclassification of one important 

email can lead to a colossal loss of money or loss of business opportunities. Therefore, this thesis 

also proposes five wrapper-based instance selection techniques for improving SVM predictive 

accuracy and training speed. 

The proposed techniques have been validated on 24 different datasets. Initially, they were validated 

on datasets containing three popular e-fraud types: credit card fraud, phishing email and spam 

email. Also, they were also validated on 20 datasets that were provided by University of 
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California’s Irvine (UCI) dataset repository [19]. Experimental results produced by the techniques 

show improvement in SVM training speed and predictive accuracy. Moreover, the results show 

that NI algorithms are fast and efficient instance selection techniques. Additionally, the results 

revealed that the proposed techniques are excellent SVM-based e-fraud detection techniques. 

1.1 Background Information 

This section provides general information on some basic concepts that are specific to this study. 

Particularly, this section provides background information on ML and SVM. Moreover, this 

section provides background information on instance selection techniques. 

1.1.1 Machine learning  

Arthur Samuel, in 1959, defined ML as a “field of study that gives computers the ability to learn 

without being explicitly programmed” [20]. ML evolved primarily from computer science and 

artificial intelligence (AI), and also from other fields, including: applied mathematics, pattern 

recognition and computational learning theory [21]. ML algorithms are generally used to solve 

problems involving automatic classification of data (such as e-fraud detection) [22]. They are 

capable of analyzing contents in a dataset and extracting unknown or concealed patterns from the 

dataset. ML-based systems are more reliable than many traditional signature-based systems [23]. 

Signature-based systems are static in nature and also vulnerable to new (or zero day) threats. This 

is because signature-based systems rely on signatures stored in updatable databases. On the 

contrary, ML-based cybersecurity systems have the ability to discover new cyber-attacks in real-

time, and thus produce better prediction accuracy compared to signature-based systems [23]. 

Additionally, ML-based systems are easier to maintain than signature-based systems that use 

complex data structures. This is because, with ML algorithms, compact, simpler and easily 

maintainable models can be constructed [23]. ML is divided into different classes, including 

supervised learning (such as SVM, Naïve Bayes (NB), Random Forest (RF); unsupervised learning 

(such as K-means, Hidden Markov Model (HMM); semi-supervised learning and reinforcement 

learning [24]. This thesis proposes intelligent instance selection techniques for improving the 

training speed and predictive accuracy of ML algorithms, with a particular focus on SVM. SVM 

is one of the well-known ML algorithms used to handle classification and regression problems.  
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1.1.2 Support vector machine 

SVM is one of the prevalent supervised ML algorithms, with a robust theoretical background, 

excellent classification accuracy and good generalization performance [25, 26]. SVM use 

hyperplanes to classify instances into different classes. A hyperplane defines a decision boundary 

on both sides of the plane, and new instances are classified based on the side (left or right) of the 

hyperplane on which they fall. For example, if a new instance falls on the left hand side of the 

hyperplane, it will be assigned the label of the class on the left hand side. SVM can handle both 

linear classification and non-linear classification. Linear classification is applicable to datasets that 

can be separated by linear decision boundaries, and non-linear classification is applicable to 

datasets that cannot be classified by linear decision boundaries [27]. SVM performs non-linear 

classification using kernel functions [27]. Kernel functions transform a feature space into a higher 

dimensional feature space [27] and perform classification on the higher dimensional space. More 

information on SVM is presented in Section 3.1.  

1.1.3 Instance selection 

The ability to effectively manage large datasets is becoming a major problem due to the  

ever-growing rate of data worldwide. Instance selection solutions are effective tools that can be 

used to handle this problem. In this thesis, an instance refers to each element in a dataset. Instance 

selection is an important pre-processing task for data classification; it reduces storage and also 

improves training speed and predictive accuracy in classification problems. Instance selection 

techniques are generally used to remove superfluous or harmful instances from datasets [7]. 

Superfluous (or noisy) instances refer to instances that contribute negligibly to the decision process 

of a classifier, while harmful instances refer to instances that lead to high false classifications [7]. 

Instance selection techniques aim to select the smallest subset that will produce similar or even 

better predictive accuracy, compared to the entire dataset [7]. Removing or retaining too many 

instances can have a negative impact on classification accuracy [7], hence we must have a clear 

picture of the trade-off we are willing to accommodate between classification accuracy and 

training speed. The trade-off should be reasonable. 
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1.2 Problem statement 

SVM is a well-known classification and regression algorithm, with good predictive accuracy and 

generalization capacity [28]. However, applying SVM to massive classification problems is still a 

major challenge [29]. SVM training time is 𝑂(𝑛2), where 𝑛 refers to the number of training 

instances [5]. This indicates that SVM training time increases drastically, as problem size and 

number of classes increase [1]. In addition, an increase in problem size will also affect the model 

size and storage requirements during the training and prediction stages [29]. The presence of noise 

in datasets also affects SVM prediction accuracy, training speed and generalization performance 

[29]. Also, SVM is largely affected by the quality of data used for training. Presence of noise in 

datasets, especially large datasets, can lead to overfitting, which will consequently affect SVM 

classification quality. The presence of noise can also lead to an increase in model size and 

consequently slows down the training and prediction stages. Obviously, these problems are major 

concerns, because several real-world applications require fast processing of large datasets. Hence, 

there is an obvious need for efficient classification algorithms that can train models within a 

sensible time-frame and identify new target concepts very quickly, using minimal storage space. 

This thesis proposes intelligent techniques for improving SVM training speed and predictive 

accuracy. The proposed techniques are designed to remove noisy and superfluous data, and 

consequently reduce 𝑛 to a reasonable size. 

Many classification problems can benefit from the designed techniques; however, this research 

focus on e-fraud detection. Several organizations communicate and perform business transactions 

via electronic platforms, such as emails, Internet or mobile phone calls and e-commerce. Hence, 

there is an obvious need to design fast and efficient systems for electronic transactions. Between 

October 1st, 2013 and December 1st, 2014, some companies lost a total of US$179 million to email 

scams. Also, seven thousand companies in the USA lost approximately US$750 to phishing, in 

August 2015 [30]. Unfortunately, e-fraud is on the increase. Fraudsters are devising novel and 

sophisticated techniques that are capable of bypassing existing e-fraud detection systems. This 

research undertakes to answer the following questions: 

i. Can intelligent instance selection techniques improve the training speed, predictive 

accuracy and computational complexity of SVM? 
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ii. Can optimized SVM-based models improve the classification speed and predictive 

accuracy of e-fraud detection systems? 

1.3 Research aim and objectives 

The aim of this research is to design intelligent instance selection techniques for improving the 

training speed, predictive accuracy and computational complexity of SVM. This work also aims 

to apply the use of nature-inspired algorithms and machine-learning techniques to build efficient 

e-fraud detection techniques. The following specific objectives will be pursued to achieve the 

stated aim: 

i. Investigate the performance of recent NI-based SVM speed optimization and instance 

selection algorithms. 

ii. Design intelligent filter-based instance selection techniques for improving SVM training 

speed and storage reduction. 

iii. Design intelligent wrapper-based instance selection techniques for improving SVM 

predictive accuracy, storage reduction and generalization performance. 

iv. Implement improved SVM-based models for e-fraud detection and classification problems.  

v. Evaluate the results obtained in (iv) and compare them with the standard SVM and state-

of-the-art instance selection techniques. 

vi. Present a statistical validation of the results obtained in (v). 

1.4 Research methodology 

In this research, different instance selection techniques are developed. Experiments are performed 

to validate the performance of these techniques using several popular test problems. Furthermore, 

to demonstrate the superiority of the developed techniques over standard SVM and some existing 

instance selection techniques, the empirical results produced by the techniques are analyzed using 

different statistical techniques. 

1.4.1 Datasets 

The proposed techniques have been validated on 24 datasets containing legitimate emails, spam 

emails, phishing emails, credit card fraud and twenty other problems. The spam and legitimate 
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emails are provided by the well-known UCI ML dataset repository [19] and SpamAssassin [31], 

respectively. The credit card fraud dataset is provided by Kaggle Datasets [32] and the phishing 

emails is provided by Jose Nazario [33]. Regrettably, the phishing emails are not currently 

available Online; interested users are advised to contact the dataset provider. The remaining 

datasets are provided by UCI data repository.   

1.4.2 Tools 

The proposed techniques are implemented in Visual Studio 2015, using C# programming 

language. Different classes and methods are implemented and used in combination with the SVM 

methods and classes implemented in LIBSVM [34]. LIBSVM is a well-known SVM library for 

classification, regression and distribution estimation. Specifically, the Matthew Johnson DotNet 

implementation of LIBSVM is used in this research [35]. Empirical results are analyzed using the 

Statistical Packages for Social Sciences (SPSS).  

1.5 Scope and limitation 

The proposed techniques can be applied to many ML algorithms, however, this thesis focuses on 

SVM. Many SVM speed optimization approaches exist, including parameter optimization, feature 

selection and instance selection. However, instance selection proves to be one of the best [6], hence 

this research focuses on instance selection. While some instance selection techniques exist in the 

body of literature, this research focuses on nature-inspired and boundary detection algorithms. 

Nature-inspired algorithms can efficiently handle classification and optimization tasks [25]. They 

are dynamic and robust, capable of finding optimal solutions to real-world complex problems, 

such as e-fraud detection.   

Due to confidentiality concerns, some datasets used in this research were modified by the 

providers. For example, the original features in the credit card fraud dataset provided by Andreas 

[32], were transformed to numerical features. Moreover, dataset providers did not provide 

sufficient information on the extracted features. Better predictive accuracy would have been 

achieved and better classification models would have been built if features were not transformed 

and if detailed information on features were provided. This would have given this researcher the 

liberty of extracting the desired features and building improved models. 
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1.6 Thesis contribution 

Due to the growing world of information overload and complexities in decision-making, ML-based 

solutions are becoming very useful tools for many businesses. ML algorithms are known for their 

robustness [25], accurate data mining and classification proficiency [25, 26]. They are also known 

for dynamic problem solving [25]. SVM is a well-known ML algorithm that has been widely used 

to tackle many real-world problems, with good success. However, SVM suffers from high 

computational complexity, which is mainly caused by massive datasets. This research has 

therefore proposed and designed intelligent speed optimization techniques for improving SVM 

training speed, predictive accuracy and generalization performance. Specifically, the contributions 

of this thesis are as follows: 

a. Improvement in speed - Some applications like video surveillance and intrusion 

detection require a classifier to be trained very quickly for fast classification of new 

target concepts. This thesis proposes seven filter-based instance selection techniques 

for improving SVM training speed. The filter-based techniques are divided into two 

categories as follows: 

Boundary detection algorithms: Two novel boundary detection algorithms are 

proposed in this thesis. The first algorithm (EDISA) is inspired by edge detection in 

image processing and the second algorithm (ACOISA) is inspired by edge selection in 

ACO. Both algorithms perform two functions: boundary detection and instance 

selection. It is noteworthy to distinguish the difference between ACOISA and other 

existing ACO-based instance selection techniques. In ACOISA, ACO algorithm is 

primarily used to identify boundaries and not to select instances. After boundary 

identification, K-NN is used to select instances close to the boundaries. Another 

novelty of ACOISA is in the heuristic value computation. ACOISA uses a novel 

method to compute the heuristic value for each instance. 

Nature Inspired instance selection algorithms: This thesis proposes five  

filter-based instance selection techniques, namely: Cuckoo Search Instance Selection 

Algorithm (CSISA), Bat Instance Selection Algorithm (BISA), Flower Pollination 

Instance Selection Algorithm (FPISA), Social Spider Instance Selection Algorithm 

(SSISA) and Firefly Instance Selection Algorithm (FFISA). In addition, this thesis 
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proposes a novel fitness function for instance selection. The fitness function is utilized 

by the proposed filter-based techniques. 

b. Improvement in predictive accuracy - Fast classification is often achieved at the 

expense of classification accuracy, and some applications, such as email classifiers, are 

very sensitive to slight drops in classification accuracy. Therefore, this thesis proposes 

five wrapper-based instance selection techniques for improving SVM predictive 

accuracy and training speed. The five techniques are inspired by the following NI 

algorithms: FPA, CSA, FFA, SSA and BA. 

c. E-fraud has affected the global economy in numerous ways, hence designing optimized 

and improved classification models for e-fraud detection is of utmost importance. This 

thesis proposes improved SVM models for three popular e-fraud types: credit card 

fraud, spam email detection and phishing email detection. Experimental result show 

that EDISA (for credit card fraud), FFISA (for phishing email) and EDISA (for spam 

email) outperform the other proposed techniques in terms of predictive accuracy. 

Experimental result also show that CSISA (for credit card fraud), EDISA (for phishing 

email) and CSISA (for spam email) outperform the other proposed techniques in terms 

of speed. In addition, the robustness of the proposed techniques is further validated on 

20 datasets provided by well-known UCI dataset repository. The results further show 

that FFISA is the most suitable for accuracy optimization, while CSISA is most suited 

for speed optimization.  

Further applications of the proposed techniques include: 

i. YouTube suggestions on music and videos, based on user historical search pattern. 

ii. Shopping item suggestions on Amazon, Alibaba, eBay etc. based on user history of 

purchases. 

iii. Real time suggestions on related paper downloads on science direct based on current paper 

downloaded. 

All of the proposed techniques are not limited to SVM; they can be further extended to improve 

the performance of other ML algorithms. 

1.7 Thesis outline 

The remainder of this thesis is organized as follows:  
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Chapter 2 provides background information on different basic concepts related to this research. 

Moreover, Chapter 2 provides information on e-fraud detection and also presents a comprehensive 

survey on some existing ML-based and NI-based e-fraud detection techniques. The chapter 

presents a survey on some existing SVM speed optimization techniques, including feature 

selection techniques, instance selection techniques and parameter optimization techniques. 

Additionally, it highlights the limitations and strength of existing e-fraud detection techniques and 

also provides information on some widely-used datasets for e-fraud detection. 

Chapter 3 provides an overview on SVM, together with a description of the types of SVM. The 

chapter provides background information on instance selection and nature-inspired algorithms. It 

also discusses specific details on the proposed filter-based and wrapper-based instance selection 

techniques. Finally, Chapter 3 describes the fitness function used by the proposed techniques and 

provides information on the extracted features used for classification.  

Chapter 4 discusses the experimental setup and describes the measures used for evaluating the 

performance of the proposed techniques. The chapter also provides information on the datasets 

used to validate the proposed techniques. Moreover, it offers detailed experimental and statistical 

results produced by the proposed techniques, including discussion on the results. It concludes with 

a comparison of the algorithms introduced in this thesis. 

Chapter 5 concludes and summarizes this thesis, and also provides recommendations for further 

research. 
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Chapter 2  

Literature Review 

Typically, ML algorithms can be applied to various domains, such as: text classification, video 

surveillance, intrusion detection, e-fraud detection and medical diagnosis. However, this thesis 

focuses on e-fraud detection. This section presents a comprehensive survey of existing e-fraud 

detection techniques. It also presents a survey of some existing speed optimization techniques.  

2.1 SVM speed optimization 

Some techniques have been proposed in the literature to solve SVM speed optimization problem. 

A sizable number of these techniques focused on speeding up SVM by reducing dataset dimension. 

Some studies focused on feature selection, some focused on parameter optimization and a few 

others focused on instance selection. The section presents a survey of some existing SVM speed 

optimization techniques. 

2.1.1 Feature selection techniques 

Many of the existing SVM optimization techniques focused on feature selection [36]. Uzer et al. 

[37] proposed a novel hybrid data classification technique. The proposed technique has two stages. 

The first stage focused on reducing the dimension of feature vectors. In this stage, Artificial Bee 

Colony (ABC) and clustering algorithm was used to select a subset of optimal features from a 

larger feature set. In the second stage, SVM was used to classify the selected feature subset. Using 

10-fold cross validation, the algorithm was tested on some medical datasets obtained from UCI 

database. The test yielded positive results. 

Laamari and Kamel [38] proposed a hybrid technique for intrusion detection based on BA and 

SVM. In the study, authors used BA in combination with SVM to solve the problem of intrusion 

detection. The authors used BA for feature selection and parameter optimization. The hybrid 

technique was compared to PSO-SVM and standard SVM, and it outperformed both techniques. 

Rajalaxmia [39] solved the problem of feature selection in Type-2 diabetics using binary CSA and 

genetic algorithm (GA). In the study, firstly, Rajalaxmia [39] used clustering for instance selection. 

Next, Rajalaxmia used binary CSA and GA to select important features. Finally, the selected 
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instances and features were used to build a model for Multilayer Perceptron (MLP) classifier. The 

proposed technique was evaluated and it yielded an accuracy of 99.31%.  

Rodrigues et al. [40] proposed a feature selection approach based on BA and Optimum-Path Forest 

(OPF). Rodrigues et al. [40] used BA for feature selection, and OPF for classification. The 

technique was tested and it yielded promising results. 

Taha et al. [41] proposed a feature selection approach based on BA and NB classifier. The authors 

used BA for feature selection and NB for classification. The hybridized approach was tested on 

twelve datasets, and it yielded promising results. 

Emary et al. [42] combined BA and Rough Set Theory (RST) to solve feature selection problem. 

In the study, BA was used to extract relevant features from a feature space. Also, authors used 

RST to design a fitness function, which considered both classification accuracy and feature size. 

The authors evaluated the approach and compared it to two other RST-based techniques, and the 

proposed approach outperformed both techniques. 

Mousavirad and Ebrahimpour-Komleh [43] proposed a CSA-based technique for feature selection. 

In the study, the authors used CSA for feature extraction. Furthermore, they encoded the extracted 

features into a binary strings, and used them to train a K-NN classifier. The proposed approach 

was evaluated on five datasets obtained from the UCI data repository [19], and it yielded good 

results. 

2.1.2 Instance selection techniques 

Schölkopf et al. [44] combined two techniques. The first technique (also called “virtual support 

vector” technique) was used to improve the generalization performance of SVM, and the second 

technique (known as “reduced set” technique) was used to improve the classification speed of 

SVM. The combined technique yielded improved classification speed and generalization 

performance of SVM.  

Guo et al. [45] tackled the SVM speed optimization problem by introducing a new 3-step 

technique. In the first step, SVM was trained to produce a number of support vectors. These 

support vectors were further reduced in the second step by discarding the support vectors that 

contributes less to the decision surface. Finally, in the last stage, SVM was trained again, using the 

reduced dataset. It was reported that the proposed technique yielded improved efficiency.  
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In another study, Lee and Olvi [46] proposed the use of a novel technique called Reduced SVM. 

The aim of the study was to reduce the classification speed of SVM by generating a non-linear 

separating surface that can be used to classify a large dataset. The non-linear separating surface 

was generated by firstly decomposing the entire dataset (to be classified) into smaller linear sub-

problems. Afterwards, one of the sub-problems was randomly selected and used to produce the 

separating surface.   

In a different work, Hansheng and Venu [47] proposed a new method for improving the 

computational speed of SVM. In the proposed method, two techniques were combined together - 

Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE). The first 

technique (i.e. PCA) was used to reduce the dataset dimension, and the second technique (i.e. RFE) 

was used to select relevant features, which in turn, reduced the number of redundant and non-

discriminative features. The proposed technique was tested, and the result revealed that it can make 

the computational speed of SVM faster.  

Panda et al. [8] proposed a boundary detection algorithm for improving the speed of SVM. The 

algorithm was designed to eliminate non-relevant training data instances, that is, instances that are 

far from a decision boundary. In the study, Panda et al. [8] designed a function that assigns high 

weights to instances close to a decision boundary.  The algorithm was tested on five datasets, and 

it produced good reduction rates. Garci et al. [48] proposed an instance selection technique based 

on EA. In the study, EA was to select generalized instances for classification in an imbalanced 

dataset. The technique was tested on some imbalanced datasets, and it performed better than some 

compared techniques. Also, in another study, Cano et al. [49] performed a comparative study 

between EA-based and non-EA based instance selection techniques. Results obtained from the 

study revealed that EA-based instance selection techniques yielded better data reduction rates and 

classification accuracy, compared to their non-EA counterpart. 

Shin and Cho [50] proposed a KNN-based pattern selection technique for optimizing SVM speed. 

Authors designed the algorithm to select relevant training instances, based on their proximity to a 

decision boundary. The algorithm was tested, and it produced promising results. Angiulli and 

Astorino [51] proposed a SVM speed optimization algorithm, based on an existing KNN-based 

data reduction algorithm, previously developed by the author in [52] (called FCNN). In the study, 

FCNN was used in combination with SVM, to produce a faster classifier. The algorithm was tested 
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on three large datasets, and it yielded good speed-up. Tsai and Cheng [53] proposed a clustering-

based instance selection technique for bankruptcy prediction. They combined the algorithm with 

four classifiers: Artificial Neural Networks (ANN), decision trees, logistic regression and SVM. 

The technique was tested on four datasets, and its result was compared to the aforementioned four 

classifiers. SVM produced the best classification accuracy. Similarly, Koggalage and Halgamuge 

[54] proposed a clustering-based technique for improving SVM speed. In the study, the authors 

used K-mean clustering to select “Crisp Clusters” from a large dataset. Crisp clusters are clusters 

containing instances belonging to the same class. Selected crisp cluster was used as reference point 

for removing irrelevant instances from the training dataset. The algorithm was tested on three 

datasets, and it produced good data reduction rates.  

Chen et al. [1] proposed a filter-based instance selection technique for selecting boundary 

instances. In the study, firstly, Chen et al. [1] obtained cluster centres of  positive class instances 

using clustering algorithm. Furthermore, Chen et al. [1] selected boundary instances using the 

cluster centres as point of reference. They designed the algorithm on two postulations. Firstly, 

negative instances near cluster centres of a positive class are close to the boundary, and secondly, 

positive instances far away from cluster centres of a positive class are close to the boundary. This 

implies that, positive instances close to a boundary and negative instances far away from a 

boundary contribute less to the decision surface. Also, positive instances far from a boundary and 

negative instances close to a boundary, contribute more to a decision surface. The authors 

performed some experiments to test the efficacy of the proposed technique, and the technique 

yielded good improvement in SVM classification speed.  

Arreola et al. [55] proposed a decision tree based SVM classification technique. In the technique, 

the dataset to be classified was first disintegrated into smaller linear sub-problems. Each node in 

the decision tree (which consists of linear SVMs) was then used to classify the smaller problems. 

Furthermore, Lee and Olvi [28] extended the study of Arreola et al. [55]. The extended work 

entails decomposing the entire dataset into both linear and non-linear sub-problems. 

 

2.1.3 Parameter optimization techniques 

Temitayo et al. [56] proposed a GA-based technique for optimizing SVM parameters and 

improving SVM classification performance. The authors used GA for feature selection and 
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parameter selection, and used SVM for classification. Authors evaluated the technique and 

compared it to SVM. During evaluation, authors used 4500 emails for training and 1500 emails 

for testing. The proposed technique yielded a classification accuracy of 93.5% within 119.562 

seconds and SVM yielded a classification accuracy of 90% within 149.98 seconds.  

Pereira et al. [57] proposed a SSA-based technique for parameter selection in SVM. Pereira et al. 

[57] used SSA to select optimal parameters suitable for SVM classification. The technique was 

tested, and compared to other parameter selection techniques, and it yielded better results than 

compared techniques. In a different study [58], the same authors proposed an SSA-based technique 

that performs three tasks: feature selection, parameter optimization, and a combination of feature 

selection and parameter optimization. The technique was tested on different public datasets, and 

results revealed that the combined approach yielded the best result. 

Hegazy et al. [59] performed a comparative study on optimization of SVM parameters. In the 

study, Hegazy et al. [59] compared the performance of the following NI algorithms: FPA, BA, 

Modified CSA, ABC algorithm, and Particle Swarm Optimization (PSO). Hegazy et al. [59] tested 

the parameter selection capabilities of all the algorithms on LS-SVM and ANN; and all the 

algorithms produced good results. 

Matthew and Thomas [60] proposed a technique for parameter selection based on simulated 

annealing. In the study, the authors used simulated annealing to improving the grid search 

technique used by standard SVM and consequently improve the generalization performance of 

SVM. The proposed algorithm was tested on two classification related problem and it yielded 

promising results.  

Friedrichs and Igel [61] solved the problem of SVM parameter optimization using evolution 

strategies [62] - a main branch of EA. The authors used evolution strategies to search for the best 

parameter. Some experiments were performed, and results revealed that the proposed technique 

performed better than the exhaustive grid search technique used by SVM. 

Liao and Bai [63] proposed a technique for parameter optimization and feature selection. Prior to 

classification, the authors first used RST to reduce the number of feature vectors to be processed. 

Afterwards, they used GA for parameter optimization and also used GA for feature selection. They 

performed some experiments to test the performance of the proposed technique and it produced 

improved results compared to the grid search technique. 
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Yi et al. [64] proposed a parameter optimization technique for intrusion detection (known as PSO-

BP). PSO algorithm was used for parameter optimization and neural networks were used for 

classification. The optimized parameters were used to train the NN. The performance of PSO-BP 

was evaluated and the results obtained showed that the algorithm can successfully perform 

intrusion detection. 

Saxena [65] proposed a novel method for network intrusion detection solution using the 

combination of PSO, K-Means and SVM. Saxena [65] used PSO for parameter optimization and 

K-Means to generate different training subsets. Finally, the generated training subsets were passed 

to SVM for classification. 

2.1.4 Survey discussion: SVM optimization techniques 

Table 2.1 shows a summary of all the surveyed SVM optimization techniques. As shown in the 

Table, many optimization techniques have been proposed in literature and most of them focused 

on parameter optimization, feature selection and instance selection, although some studies focused 

on both feature selection and parameter optimization or feature selection and instance selection. 

Furthermore, as shown in the Table, many optimization techniques  have been explored in 

literature. Some authors, such as Schölkopf et al. [44], Hansheng and Venu [47] developed 

heuristics for optimizing SVM speed. Some studies used NI algorithms, including PSO, GA, 

simulated annealing, SSA, EA, CSA and ABC. Also, some authors used other algorithms, such as 

decision tree, clustering, KNN, PCA and RFE. As shown in the Table, most of the studies used 

clustering and KNN, and very few techniques used PCA and RFE. Also, most studies used a single 

algorithm for optimization and a few studies used a combination of algorithms. Among the three 

SVM optimization approaches, as aforementioned, instance selection is one of the most efficient 

[6]; however, further improvement is still required, especially in terms of speed-accuracy trade-

off.  
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Table 2.1: Optimization techniques 

Reference Optimization Approach Algorithm 

Saxena [65] Parameter Optimization PSO, K-Means 

Yi et al. [64] Parameter Optimization PSO 

Liao and Bai [63] Parameter Optimization and Feature 

Selection 

GA and RST 

Friedrichs and Igel [61] Parameter optimization Evolution Strategies 

Matthew and Thomas [60] Parameter optimization Simulated Annealing 

Pereira et al. [57] Parameter optimization SSA 

Pereira et al. [58] Parameter Optimization and Feature 

Selection 

SSA 

Arreola et al. [55] Instance Selection Decision Tree 

Chen et al. [1] Instance Selection Clustering 

Halgamuge [54] Instance Selection Clustering 

Tsai and Cheng [53] Instance Selection Clustering 

Angiulli and Astorino [51] Instance Selection KNN 

Shin and Cho [50] Instance Selection KNN 

Cano et al. [49] Instance Selection EA 

Garci et al. [48] Instance Selection EA 

Panda et al. [8] Instance Selection EA 

Hansheng and Venu [47] Instance Selection and Feature 

Selection 

PCA and RFE 

Lee and Olvi [46] Instance Selection Reduced SVM 

Guo et al. [45] Instance Selection LOO 

Schölkopf et al. [44] Instance Selection “virtual support vector” and 

“reduced set” technique 

Mousavirad and Ebrahimpour-

Komleh [43] 

Feature Selection CSA 
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Emary et al. [42] Feature Selection BA and RST 

Taha et al. [41] Feature Selection BA 

Rodrigues et al. [40] Feature Selection BA 

Rajalaxmia [39] Feature Selection and Instance 

Selection 

Binary CSA, GA and Clustering 

Laamari and Kamel [38] Feature Selection BA 

Uzer et al. [37] Feature Selection ABC and Clustering  

 

2.2 E-Fraud detection 

E-fraud is a growing domain that has affected the global economy in measurable ways. Owing to 

e-fraud, millions of US dollars have been lost by numerous individuals and companies; thus, many 

researchers and companies are in search of robust and fast e-fraud detection techniques. For 

example, the loss incurred globally from credit and debit card transactions as at August 2013 add 

up to $11.27 billion [66]. In another example, in [67], the Financial Fraud Action UK (FFA UK) 

revealed that the loss suffered by UK card holders was summed up to £450 million, which is 16 

percent higher than the loss incurred in 2012, which was £388.3 million. This section presents a 

survey of some techniques that have been proposed in literature to solve the problem of phishing.  

2.3 Phishing  

Phishing is an act that attempts to electronically obtain delicate or confidential information from 

users, habitually for the purpose of fraud, by creating replica website of a legitimate organization. 

Phishing is a classification problem and it is often perpetrated by sending deceitful and well 

composed emails to users. These emails usually contain links to cloned websites, and clicking on 

the links may re-direct users to a phishing website or a malware hosting website. Malware hosting 

websites are often infected with malicious codes that can gain access to private information of 

users and also cause damages to users’ computers. Due to vast number of email messages received 

by various users today, separating legitimate emails from phishing emails is a challenging task. 

Hence the need for a quicker, robust and effective filtering technique cannot be overstated. Several 

approaches have been proposed in the literature, including network-based approach, blacklist, 
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whitelist and content-based approach. Content-based approach aims at capturing the content and 

structural properties of a data. Blacklist contains a list of reported phishing websites, and whitelist 

contains a list of target companies.  Network-based approaches are costly to implement, difficult 

to maintain and time-consuming  [68]. Blacklist and whitelist based approaches yield high False 

Positive (FP) and False Negative (FN) rates; their effectiveness is limited to the information stored 

in them. This limitation makes both approaches incapable of dynamically detecting new phishing 

attacks as they occur. The Anti-Phishing Working Group (APWG) noted that the average uptime 

for a phishing website is 44.39 hours (that is, less than 2 days). Blacklist-based approaches are the 

most widely used approach [69]. However, content-based approaches are the most accurate and 

secured [70], because of their ability to discover evolving fraudulent patterns in large datasets.  

Phishing can be tackled and eliminated at different levels. It can be tackled at email level [71], and 

at website level [72]. Dhamija et al. [72] proposed the use of security toolbars for web browsers. 

Furthermore, phishing can be tackled using visual hash. Dhamija and Tygar [73] used visual hash 

to identify websites that have been successfully authenticated by a browser.  Buntine [74] proposed 

a phishing detection technique called Cryptographic identity verification. Furthermore, phishing 

can be reduced by training users on how to identify spoofed websites and emails. 

Generally, phishing detection can be tackled from two angles: phishing website detection and 

phishing email detection [75]. Table 2.2 shows a summary of the phishing detection techniques 

reviewed in this paper. As shown in the Table, NI algorithms and Model-based techniques have 

not been fully explored. Many studies focused on heuristic, rule-based techniques and ML-based 

techniques. As shown in the review, ML-based techniques yielded better results. Some authors 

combined NI and ML algorithms. NI algorithms were mostly used for feature selection. Also, some 

studies introduced classifier ensemble techniques, which involved combining outputs of different 

classifier. Additionally, some authors proposed new features for phishing detection based on 

Uniform Resource Locator (URL) properties, structure of email, content of email, heuristics and 

external sources. Additionally, as shown in Table 2.2, some studies used blacklist and whitelist. 

However, the blacklist-based detection technique requires regular update; hence it is static [75]. 

These techniques cannot effectively detect zero hour phishing attacks [76], and require more 

human resources [77]. These limitations stimulated the need for an improved and dynamic 

phishing detection technique.  
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Table 2.2: Summary of phishing detection techniques 

Technique Category Name of Technique Reference(s) 

NI ACO [78] 

AIS [79] 

PSO [78] 

Neuro-Fuzzy Logic [80] 

ML SVM [81-84] 

ANN [85] 

Naïve Bayesian theorem [86] 

BN [87] 

RF [86, 88-91] 

logistic regression [92] 

C4.5, Ripper, PART, PRISM and CBA [93, 94] 

Decision tree  [86, 95] 

LDA [91] 

Blacklist-based and Whitelist based Blacklistbased and Whitelist Based [96-98] 

Heuristic and Rule Based Heuristic and Rule Based  [77, 99-104] 

Ensemble Based Ensemble Based [105-107] 

Model-Based Dynamic Markov chain and Latent Class-Topic [75] 

 

Several techniques have been proposed in literature to tackle the phishing problem. Some of the 

techniques are based on ML algorithms, while some are designed using an ensemble of different 

classifiers. Moreover, some of the techniques are based on heuristics and rules, while some are 

based on NI algorithms. This section provides a survey of some existing phishing email detection 

techniques.  
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2.3.1 Machine learning based phishing email detection technique 

Chandrasekaran et al. [83] developed a SVM-based technique for phishing email detection. The 

authors extracted 25 features and used them to build a SVM model. They evaluated the technique 

on a dataset consisting of 200 phishing emails and 200 legitimate emails (obtained from news 

groups, bulletin boards and personal inbox of users). During evaluation, they extracted 23 style 

marker features and two structural features. The style marker features consists of the following: 

total number of characters, total number of unique words, vocabulary richness, frequency 

distribution of 18 keywords and total number of functional words. The structural feature includes 

structure of email subject line and structure of greeting provided in email body. The results of the 

evaluation revealed that the technique produced a classification accuracy of 88% over five runs. 

Fette et al. [89] developed a RF-based classifier for phishing email detection (called PILFER). In 

the study, the authors proposed 10 features. Eight were extracted from emails, and two were 

extracted from external sources (SpamAssassin, an existing anti-spam filter) and WHOIS server). 

The authors evaluated the technique on a dataset containing 860 phishing emails and 6950 non-

phishing email and it yielded a classification accuracy of 99.5% and an FP rate of 0.0013%. 

Bergholz et al. [75] introduced two model-based features based on Dynamic Markov chain and 

Latent Class-Topic for phishing email detection. The authors developed the one Dynamic Markov 

chain model for phishing and spam email and the one Latent Class-Topic model for phishing email. 

Furthermore, they trained the Dynamic Markov chain model and used its output to generate four 

features. Two of the features are based on email class likelihood, and the other two are based on 

email membership. Moreover, the authors extracted words that appear together in emails and used 

them to train the Latent Class-Topic Model. Afterwards, they combined the outputs from the 

model-based features with 27 other basic features, and used them to train a SVM classifier. Finally, 

they evaluated the performance of the technique on four different datasets and it yielded an overall 

classification accuracy of 99.85%, FP rate of 0.01% and FN rate of 1.30%.  

Amin et al. [90] designed a RF-based solution for classification of phishing email targeted at single 

users or small group of users. The authors referred to such emails as Targeted Malicious Email 

(TME). Current conventional techniques are designed to detect emails sent to vast volume of users 

[90]. In the study, the authors developed a specialized filtering technique for TMEs by firstly 

extracting word-based features from emails. Afterwards, they assigned weights to each extracted 
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feature (using TF-IDF algorithm) and selected features whose weights is above a pre-defined 

threshold. Selected features were then used for classification. The authors evaluated the 

performance of the proposed technique on three datasets collected from an unnamed company. 

The first, second and third datasets respectively contained 2,315 TMEs, 20,894 Non Targeted 

Malicious Emails (NTME) and a combination of TME and NTME. The technique yielded positive 

results. 

Liping et al. [95] designed a decision tree parser (or a decision tree translation system) for 

converting decision trees into an implementable program language. The translation system consists 

of four components: feature generator, learner, inductor and a classifier. During classification, the 

feature generator converts extracted features into vectors and passes them to the learner module 

for training. Afterwards, Information Gain (IG) for all the features was generated and passed to 

the inductor. Furthermore, features with high IG were selected and used re-train the classifier. The 

training cycle continues until the best set of features is identified. The best features are used to 

construct the final classifier. The authors evaluated the system on a dataset containing 613,048 

legitimate emails and 46,525 phishing emails and it yielded a classification accuracy of 99.5%.  

Sanchez et al. [84] developed a SVM-based classifier for classification of banking-based emails. 

In the study, the authors developed three rules. The first rule handles emails containing account 

for email service provider. The second rule detects inconsistencies in senders’ geographical 

locations. This rule is triggered if origin of message is not consistent with the bank’s location. The 

third rule checks whether the mail server (i.e. where the message originates from) is an authorized 

server for the bank. A message is considered to be legitimate if it passes all the three rules. The 

authors evaluated the performance of the technique and it yielded a classification accuracy of 

98.7%. 

Toolan and Carthy [94] ptheroposed a feature selection technique for phishing and spam email 

detection. The authors’ primary aim was to show the effectiveness of IG for feature selection and 

to provide a feature set for building an effective classifier. In the study, they extracted 40 features 

and computed their IG and entropy. Thereafter, they selected features with high IG and evaluated 

them using C4.5 algorithm. They tested the technique on three datasets. The first dataset 

(containing 4202 ham and 1895 spam email) was used to evaluate importance of features in spam 

detection. The second dataset (containing 4563 phishing email) was used to evaluate feature 
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importance in phishing detection. The third dataset (containing the ham, spam and phishing 

corpora) was used to evaluate importance of features in a real life system. A real life system 

typically contains a combination of spam, ham and phishing emails. Results from the experiments 

revealed that classifiers trained with features having high IG will perform better compared to 

classifiers trained with lowly ranked IG features. 

Xing et al. [79] proposed an AIS based solution for phishing email detection. During 

implementation, the authors extracted features from emails and used them to generate memory 

detectors for email classification. A memory detector contains the email address of phisher, a set 

of phishing tokens and number of links in an email.  Furthermore, the authors saved a copy of the 

memory detectors and performed mutation on the original copies to form immature detectors. 

Afterwards, they converted the immature detectors to matured detectors using the process of 

negative selection. During mutation, new factors were reproduced and used to replace old values 

in the memory detectors. The mutated matured detectors were then combined with memory 

detectors and used to classify new emails. Thereafter, the authors assigned weight to each detector 

and computed a final score using a formula defined in [79]. If the score is greater than a user 

defined threshold, the detector is treated as fired. An alarm is raised if number of fired detectors is 

greater than a user defined value (called fire alarm range). A fired detector will be saved as memory 

detector for future classification. Additionally, matured detectors that do not fire will be eliminated 

after a period of time. The authors performed some experiments on a dataset containing 100 

phishing emails and 400 ham emails, and it yielded promising results. 

Debarr et al. [91] proposed a phishing email detection technique capable of providing solution to 

spear phishing (phishing email sent to known email contacts). In the study, the authors used 

spectral clustering, Latent Dirichlet Allocation (LDA) and RF for classification. Furthermore, they 

extracted tokens from subject and body section of each email and used LDA to randomly select 

tokens for removal. They then extracted URLs from emails and passed them to Spectral Clustering 

for reduction. Afterwards, the authors used the reduced emails to build a RF-based classifier. They 

evaluated the proposed technique on a dataset consisting of 4150 ham emails and 4559 phishing 

emails. During experiments, the authors constructed RF classifier for both LDA and Spectral 

clustering. Results revealed that Spectral clustering and LDA are good phishing detection 

techniques. 
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Marchal et al. [108] proposed a phishing URL detection technique called PhishStorm. The primary 

aim of the study was to identify registered domain names different from targeted brands. The 

authors extracted 12 features based on intra-URL relatedness and URL popularity. Intra-URL 

relatedness refers to similarities between components of a URL, and it was obtained by using 

Bloom Filter [109] – a statistical data structure tool. During classification, the authors extracted 

URLs from email, removed words from the URL and passed them to a search engine (Google and 

Yahoo). Afterwards, they used the results obtained from search engine to compose a word set, 

based on inter-URL relatedness and URL popularity. They then computed IG for each word set 

and passed the word sets with high IG to seven ML algorithm for classification. They evaluated 

the technique and a classification accuracy of 94.91% was obtained. 

2.3.2 Ensemble based phishing email detection technique 

Toolan and Carthy [106] proposed a phishing email detection technique based on classifier 

ensemble of four classifiers: KNN, SVM, NB and Linear regression. The classification stage was 

divided into two. C5.0 was used to perform the first classification. Thereafter, emails classified as 

legitimate were passed to the classifier ensemble for re-classification. The authors evaluated the 

technique on a dataset containing 4116 phishing emails and 4202 non-phishing emails. During 

evaluation, the authors firstly evaluated the performances of the individual classifiers (i.e. C5.0, 

KNN, SVM, NB and Linear Regression). Afterwards, they used the best four performing 

classifiers to build four different classifier ensembles, consisting of three classifiers each. After 

evaluation of the ensembles, C5.0 and SVM performed better in terms of classification accuracy. 

However, the ensemble classifier performed better in terms of recall. Consequently, the authors 

combined the best individual classifier (i.e. C5.0) with the best ensemble classifier. The goal of 

combining both classifiers was to produce a robust classifier with good recall and high 

classification accuracy. The combined technique yielded an average classification accuracy of 

99.31%. 

Saberi et al. [107] proposed an ensemble based solution for phishing email detection. In the study, 

the authors worked with three classifiers: KNN, Poisson probabilistic theory and Bayesian 

probability theory. The authors trained the three classifiers and combined their results using 

ensemble approach (majority voting). The approach was evaluated on a dataset containing 4500 
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scams, 1500 legitimate emails and 529 phishing emails and a classification accuracy of 94.4% and 

FP rate of 0.08% was achieved. 

2.3.3 Nature inspired-based phishing email detection techniques 

Radha and Valarmathi [78] developed an hybridized fuzzy-based phishing solution for phishing 

e-banking website. The solution consists of three algorithms: Association and classification data 

mining algorithm, ACO and PSO. During implementation, the authors extracted features and 

assigned a fuzzy membership value to each of them. Afterwards, they generated “if then” rules 

with the data mining algorithm and performed aggregation on all the rules that exceeded a 

minimum confidence value. Moreover, the authors de-fuzzified the fuzzy set and optimized the 

rules using ACO and PSO. Finally, they used the optimized rules to classify new websites. They 

performed a series of experiments on a dataset containing 1052 URLs and reported that the 

technique yielded an accuracy of 91%. 

2.3.4 Survey discussion: Phishing detection techniques 

Based on the surveyed studies, it is apparent that various techniques have been proposed to solve 

the problem of phishing website and phishing email detection. Most authors focused on phishing 

website detection. Most studies focused on URL-based features. Garera et al. [96] introduced 

seven URL-based phishing features. Also, techniques proposed by authors in [81], [77] and [88] 

are URL based. Yearwood et al. [82] noted that URLs are the most important features used by 

phishers, because it is URLs that redirect users to spoofed website. If spoofed URLs can be 

detected and prevented from re-directing to spoofed websites, phishing attacks will be reduced 

drastically. Furthermore, Bergholz et al. [75] introduced a novel phishing email detection 

technique based on two models: Dynamic Marcov Chain and Latent Class-topic models. The 

technique yielded excellent results; however, it is time-consuming. Extra time is required for 

training the two models. Additionally, authors noted that headers and attachment were removed 

from emails before classification was performed. Meanwhile, headers and attachments are good 

phishing indicators [75].   

Other studies proposed heuristics-based solutions. Garera et al. [96] proposed a heuristic, based 

on Google index infrastructure. Also, Zhang et al. [77] proposed a heuristic, based on TF-IDF and 

Robust Hyperlink Algorithm. However, heuristics are not reliable phishing indicators and their 

effectiveness is limited. Network failure, slow network speed, late response and wrong feedback 
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from external source can drastically affect classification performance of heuristic-based classifiers. 

Additionally, heuristic-based techniques are not very efficient, because phishers can design attacks 

that can bypass heuristics [77]. Some authors proposed blacklist and whitelist based approaches. 

Garera et al. [96]  created a blacklist and whitelist of phishing and non-phishing URLs 

respectively. Likarish et al. [110] also used whitelist. Blacklist- and whitelist-based techniques are 

not reliable; they cannot effectively detect zero-day attacks.  

Some studies worked on word-based features, such as [106] and [83]. Unlike external features that 

depends on extra resources (such as network connectivity, bandwidth, external source availability), 

word-based features are good phishing indicators: they can be easily extracted from emails and 

web pages. Furthermore, some authors proposed rule-based solutions. Authors in [85], [99], [111], 

[84], [104] and [78] used such techniques. However, rule-based systems require regular update; 

hence, they cannot effectively detect zero-day attacks. They can be easily bypassed by phishers. 

Aggarwal et al. [86] developed a phishing detection technique for Tweeter. In the study, authors 

used a combination of different features including features extracted from tweeter. Authors also 

designed an extension for Chrome browser. In other studies, authors in [102] and [103] proposed 

feature selection techniques for phishing detection. Authors in [102] focused on URL-based 

features, and authors in [103] focused on content and behaviour-based features. Different ML and 

NI techniques have been proposed. Authors in [75], [81] and [83] applied such techniques.  

Many of the proposed ML-based techniques focused on the SVM algorithm. Authors in [75], [84] 

and [83] used SVM for phishing email classification. Huang et al. [81] developed an improved 

SVM-based technique for phishing URL detection. However, one of the major drawbacks of SVM 

is speed. The training time for SVM is estimated to be 𝑂(𝑛)2 [8, 112]. Other ML and NI based 

algorithms explored in the literature include logistic regression, NN, Bayesian algorithm, RF, PSO, 

ensemble classifiers. Authors in [96] and [92] developed a logistic regression based model for 

phishing URL detection. Both models were tested on millions of URLs and they yielded positive 

results. Furthermore, Martin et al. [85] developed a NN-based framework for phishing website 

detection. Likarish et al. [110] developed a phishing detection solution based on Bayesian 

algorithm. The authors noted that the solution is the first Bayesian based phishing website 

detection technique. However, the technique was evaluated on few data instances (120 websites); 

hence its effectiveness is not guaranteed. The effectiveness of a Bayesian-based classifier depends 
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on the number of instances used to train it [110]. Moreover, authors noted that there is little delay 

during page load, implying that the technique can be slow if large volume of dataset is processed. 

Fette et al. [89] developed a RF-based phishing email classification technique, which yielded good 

results. In the study, the authors introduced a robust set of internal and external features extracted 

from email content and from external sources (WHOIS servers). However, the technique’s 

performance depends on network speed and correctness of information received from external 

source. Slow network leads to delayed classification, and incorrect information leads to increased 

FP rates and reduced classification accuracy. The authors reported that WHOIS servers may return 

result in non-standardized format, making it difficult to process. Also, not all domain names will 

be present in the server, especially domain names that have been blacklisted and removed.  

Deshmukh et al. [113] proposed a specialized phishing email detection technique for classification 

of emails targeted at single users or small groups of users. Although the technique yielded 

promising results,  authors did not provide details of dataset used for evaluation. In a different 

study, Toolan and Carthy [106] developed a phishing email classification technique based on 

classifier ensembles. In the study, the authors introduced a robust technique (called R-Boost) that 

combines the classification strength of C5.0 and high recall of the classifier ensemble. The 

technique yielded good results; however, it is time- consuming and complex. It involves 

classification in two folds: classification for C5.0 and classification for the ensemble. Similarly, 

authors in [105, 106, 114] proposed ensemble based phishing detection solutions. However, 

ensemble classification is time-consuming, because it involves running three classifiers for 

classification of one data instance. Xing et al. [79] proposed an AIS based solution for phishing 

email detection. Although the solution yielded promising result, the threshold value assigned to 

the system is static. The authors noted that the system can be improved by introducing dynamic 

fire-threshold value and Fire-Alarm-Range value to the system.  AIS have not been fully explored 

in the domain of phishing detection.  

2.3.5 Limitations of phishing email detection techniques 

Many phishing email detection techniques have been proposed in literature. Some of these 

techniques achieved remarkable results, while some produced poor results. Some techniques 

require installation of infrastructure, which some email clients do not have [115]. For example, 

S/MIME and PGP (standards for signing email digitally) require the installation of an 
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infrastructure that supports digital signing and verification [115].  Some of the existing techniques 

are static [75], hence they cannot effectively handle new or emerging attacks [76]. Additionally, 

some of the existing techniques, such as rule-based techniques, can be easily bypassed by phishers. 

Some of the proposed techniques are slow, due to inputs from external sources or processing of 

large features, such as images. Future work should focus on designing simple, fast and dynamic 

classification models, capable of accurately tacking existing and emerging phishing attacks. 

2.4 Spam email 

Spam refers to unwanted emails received by users having no current relationship with the sender. 

Spam is a worldwide problem that has affected the globe enormously. Generally, spam email 

messages aims to advertise pornographic websites, products, or perpetrate fraud [116]. Email 

addresses used for spamming are collected from different sources including websites, chat rooms, 

newsgroups etc. [117]. Since the emergence of information and communication technology, 

communication via email became prevalent [118]. Good percentage of organizations and 

individuals worldwide utilize email as a major means of communication. In 2016, email accounts 

worldwide were estimated to be over 4.3 billion [119]. Undoubtedly, email is one of the fastest, 

cheapest and most convenient means of communication [120]. However, approximately 92% of 

received emails are spam [121]. Billions of emails received by ISPs in recent times are spam [122]. 

In 2006, about 12.4 billion of 31 billion emails sent per day were considered to be spam [123]. On  

average, an email owner receives between 10-50 spam emails daily [124]. In 2006, Message Labs 

[125]  reported that spam accounted for about 58% of network traffic. Network traffic in turn 

caused a delay in email delivery. Moreover, spam cost different service providers and organization 

a bandwidth loss of millions and billions of dollars [116]. It also cost them loss in employee 

productivity. Spam emails leads to wastage of bandwidth, wastage of time, wastage of resources, 

wastage of storage space, and wastage of money [120]. Additionally, it exposes users to unpleasant 

content, and provides means for phishing attacks and distribution of malicious software like Trojan 

and worms [126].  

This section presents a survey on some existing spam email detection techniques. Specifically, this 

survey is centred on NI and ML based spam email detection techniques. Table 2.3 presents a list 

of all the spam email detection techniques surveyed in this research. The Table reveals that GA is 

one of the most popular NI techniques that has been used in literature. Although, GA requires more 
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parameter tuning [127], it is a good optimization technique suitable for optimal subset selection 

[56]. AIS is another NI technique that has been used to handle spam email detection in literature; 

however, as shown in Table 2.3, it has not been fully explored. Other NI techniques that have been 

used to tackle spam email detection include ACO, EA, PSO, FFA, BPSO, SAIS.  ML techniques 

have also been used to tackle spam email detection. Table 2.3 shows that NB is the one of the most 

popular ML techniques that has been used in literature. NB algorithm is easy to implement; it is a 

good algorithm that can used in combination with other algorithms to build an improved spam 

email system [128].  However, NB must be trained on a large volume of dataset for better 

performance [129]. Other ML techniques that have been explored include SVM, ANN, RVM, 

RST, decision tree and C4.5. Additionally, some authors developed hybridized spam email 

detection techniques. This section presents a survey of some existing spam email detection 

techniques, and also outlines their various limitations and strength. 

2.4.1 Machine learning based spam email detection techniques 

Spam email has been a major problem for many decades, hence different techniques have been 

developed in literature to handle this problem. This section presents a survey of some ML-based 

spam email detection techniques. 

2.4.1.1 SVM based techniques 

Tseng and Ming-Syan [130] designed an improved spam detection system (called MailNet), 

capable of adjusting to different networks. In the study, the authors constructed an email network 

consisting of different users, represented as nodes. They extracted features from pure nodes. Pure 

nodes refer to nodes that have sent out either spam email or legitimate email, but not both. The 

authors noted that if the number of nodes is above a specified threshold, it will be reduced further.   
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Table 2.3: Summary of existing spam email detection techniques 

Technique Category Name of Technique Reference(s) 

NI ACO [126, 131] 

GA [122, 129, 132-134] 

EA [135, 136] 

AIS [137] 

PSO [138, 139] 

ML SVM [118, 140] 

ANN [116, 141, 142] 

Naïve Bayesian theorem [120, 124, 128, 143, 

144] 

Hybridized Techniques GA and SVM [56] 

Taguchi method and Staelin method [127] 

NB, Relevance Vector Machine, SVM and Neural 

Network. 

[118] 

ANN And GA [145] 

ACO and SVM [117] 

Bayesian and NN [146] 

LDA and ACO [147] 

ACO, rough set and GA [148] 

GA, NN, AIS [149] 

Firefly and NB [150] 

Binary PSO (BPSO), decision tree, C4.5 

algorithm 

[121] 

Rough Sets and PSO [151] 

Simple AIS and PSO [152] 
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Additionally, after feature extraction, the authors normalized the extracted feature vectors, and 

used them to train SVM. The trained SVM was then used to classify incoming emails. The system 

performs incremental update periodically. During updates, when new emails enters the network, 

the corresponding node is updated. The updated nodes, alongside support vectors from previous 

stages, are used to re-train the model. The authors performed some experiments to evaluate the 

performance of the proposed technique. During the experiment, the authors extracted seven 

features from a dataset consisting of 2,136,329 ham emails and 729,304 spam emails. MailNet 

yielded a True Positive (TP) rate between the ranges of 94.06% to 95.38%, and FP rate between 

the ranges of 1.21% and 1.75%. 

Xiao-li et al. [153] proposed a spam email detection technique capable of reducing SVM 

misclassification rate. The authors noted that the technique is biased towards legitimate emails. 

They introduced a slack variable (Si > 0) that shows the importance of each class, and to reduce 

misclassification rate of a given class. Slack variables for all samples in dataset were multiplied 

by weight of the sample (sample weight) and weight of class (class weight). Legitimate emails are 

assigned higher weights, hence their misclassification rate is reduced. The authors evaluated 

performance of the proposed techniques by performing different set of experiments using different 

class weights. RBF kernel was used in all the experiments. The results obtained from the 

experiments indicated that weighted SVM approach can control classification performance of 

SVM. The first group of experiments (containing a class weight of c+ = 2 and c- = 1) yielded a 

recall, precision and classification accuracy of 96.5%, 97.47% and 97.00% respectively. The 

second group of experiments (containing a class weight of c+ = 5 and c- = 1) yielded a recall, 

precision and classification accuracy of 93.00%, 98.41% and 95.45% respectively. The third group 

of experiments (containing a class weight of c+ = 10 and c- = 1) yielded a recall, precision and 

classification accuracy of 85.50%, 99.44% and 94.50% respectively. 

2.4.1.2 ANN based techniques 

Nosseir et al. [141] proposed a novel spam email detection approach based on characters and 

words. In the study, the authors extracted email from dataset, and pre-processed the emails. During 

pre-processing, they removed stop words and other form of noise (such as misspelt words) from 

the extracted emails. Also, they stemmed the email content and divided them into three groups, 

based on length of words. Words with three, four and five characters respectively were placed in 
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three different groups. The authors divided the words into two classes (bad and good), based on 

their meaning. Additionally, they classified the words into different categories, such as 

advertisement, financial, etc. Each category was assigned a given weight, which can be adjusted 

by the user. Moreover, the words in each category were then passed to three different networks for 

training. The first, second and third NN have three layers with three, four and five input neurons 

respectively and two output neurons. Finally, the authors tested the trained network on incoming 

emails. If an email does not contain any of the ‘bad’ words, it is automatically classified as ham; 

otherwise, it will be classified based on the number of bad words identified in the email. The 

authors calculated the number of each bad word and multiplied the number by the weight of its 

category. The calculated weight is used by a decision function to classify the email as ham or spam. 

The authors designed three networks, each designed to handle three, four and five characters 

respectively. Each network was trained and tested. The test was based on three different datasets, 

containing three, four and five character words respectively. Each dataset contains 20 good words 

and 20 bad words. The technique yielded the following Types I and Type II FP rate for the three, 

four and five character NN: 0.131364 and 0.999962, 0.0003 and 0.7953, 0.0015 and 0.9990.  

Wu and Tsai [142] proposed a behaviour-based spam email detection technique. The authors 

extracted the behaviour-based features from email header and email syslogs, unlike keyword-

based features that are extracted from body of emails. Syslogs refer to record files that are added 

to auditing files when a Mail Transfer agent delivers an email [142]. Syslogs contain a description 

of the email delivery [142]. The authors collected over 10,000 spam emails and 20,000 ham emails 

and extracted features from their email headers and syslogs. During the feature extraction, they 

analyzed the email headers and selected the fields that most frequently occur. Also, they analyzed 

some email syslogs and selected fields that occurred most frequently. They then selected six header 

feature and four syslog feature for training. They noted that some fields in syslogs and email 

headers are related and should be the same for each email. Based on this assertion, they extracted 

sixteen more features. Finally, the authors combined all the extracted features (referred to as 

behaviour-based feature), assigned values to them (based on some heuristics explained in [142]) 

and used them to train an NN, consisting of 26 input nodes, two hidden layer and one output layer. 

The trained network was then tested and modified if the output is not satisfactory. Afterwards, the 

final model was used to classify incoming emails. The authors performed several experiments to 

test the robustness of proposed technique. The technique was evaluated on a dataset containing 
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43,890 emails. 21, 945 spam and 21,956 ham emails. The best classification accuracy obtained 

from the experiments is 99.75%.  

2.4.1.3 Naïve bayesian based techniques 

Kufandirimbwa and Gotora [116] designed a spam filtering technique based on ANN and 

Perceptron Learning Rule (PLR). The authors extracted features from header and body part of 

emails and used them for training. They used the gradient method for training. During training, 

true gradient was evaluated on a single data instance, and gradient weight was adjusted gradually 

until a pre-defined stopping condition was reached. For each iteration, the authors computed an 

error and weight adjustment value, and used the values to adjust the actual weight value of email. 

After adjustment, emails with the adjusted weight were selected and parsed as input to the neural 

network, which then computes an output. If the computed and expected output are not equal, the 

weight will be re-adjusted, and a message will be parsed again to the network. This process is 

repeated until the network generates an output that is equal to the expected output or until the 

maximum number of iterations is met. The authors performed different experiments using a dataset 

consisting of 140 emails. The proposed technique produced a FP rate of 97.14%. 

Savita and Santoshkumar [120] proposed a spam email detection technique based on naïve 

Bayesian theorem. The authors extracted keywords from emails in dataset, and calculated spam 

scores for each of them. Afterwards, each keyword, and their corresponding spam score were saved 

in a database and used for classification of incoming emails. An incoming email is classified as 

spam or ham based on its spam score. If its spam score matches a predefined spam probability, it 

is classified as spam; otherwise, it is classified as ham. The authors performed some experiments 

on a dataset consisting of 12600 emails, and the technique produced a classification accuracy of 

95%. 

Bhagyashri et al. [124] developed a spam email filtering system based on BN. In the study, the 

authors calculated TF for words in each email, and trained Bayesian classifier with words having 

high TF. The trained network was then used to classify incoming emails. During classification, 

incoming emails were split into tokens and spam score for each token was calculated and summed. 

If the total probability is greater than 0.5, the email is labeled as spam; otherwise, it is labeled as 

ham. The authors evaluated the technique on a dataset containing 50 ham emails and 50 spam 

emails, and it yielded a classification accuracy of 90%.  
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Vira et al. [143] proposed a spam email classification technique based on Bayesian theorem. The 

authors trained classifiers on word-based features extracted from emails. Prior to training, they 

extracted features from dataset, grouped them into categories and saved them in a database. 

Classification of incoming emails is performed based on their conditional probability and pre-

defined threshold saved in database. The authors evaluated the technique on 5175 emails and it 

produced a classification accuracy of 96.7%. 

Issac et al. [154] designed a keyword-based BN technique for spam email detection. The authors 

designed three techniques using single keywords, multiple keywords and context matching 

keywords. In the first technique, they extracted single and multiple keywords from email and 

assigned weights to the keywords. Afterwards, a Bayesian score for all the keywords were 

calculated (using a formula described in [154]) and totalled. The total score gives the score for an 

email. The second technique is similar to the first technique. However, in the second technique, 

weights are assigned to multiple keywords. A spam score for each email was calculated using a 

formula described in [154]. In the third technique, a context score for keywords was added. For 

every keyword in the dataset, a matching context score was calculated. The score is calculated 

based on number of times each keyword appears in a dataset. The authors evaluated the three 

proposed techniques on a dataset containing 2412 ham emails and 481 spam emails. It yielded an 

average FP rate of 7.86%, 5.03% and 4.83% respectively, and an average False Negative (FN) rate 

of 21.50%, 14.94% and 12.78% respectively. 

2.4.2 Nature inspired spam email detection techniques 

Table 2.3 shows a summary of some existing spam email detection techniques. As shown in the 

table, NI-based techniques are valuable techniques suitable for improving the performance of spam 

email filtering systems. They are mostly used in combination with other techniques. This section 

presents a literature review of some recent NI-based techniques proposed in the literature. 

2.4.2.1 Ant colony optimization based techniques 

El-Alfy [126] proposed an ACO-based anti-spam system. Prior to training, the authors extracted 

features from emails, pre-processed and saved them in a database. Furthermore, they extracted 

capitalized words, special characters and punctuations, and saved them in a database. Additionally, 

they calculated IG for all the saved features and used ACO to generate classification rules (for 
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incoming emails) with features having high IG. Authors evaluated the system on three datasets, 

each containing 4601 instances. Evaluation yielded a classification accuracy of 90.29%. 

Liu et al. [131] proposed an ACO-based approach for feature selection. In the study, the authors 

designed two fuzzy-based controllers for regulating ACO parameters adaptively, namely, 

pheromone evaporation rate and number of ants. The authors noted that the proposed fuzzy 

controllers can improve the performance of a spam filter by balancing between search space 

exploration and exploitation. During the experiment, they initialized the parameters of ACO, and 

set number of ants and number of iteration to specific values. Furthermore, they randomly 

generated an ant population according to the number of ants specified. They randomly selected 

and initialized feature subsets for each ant, and used IG to select relevance of each feature. The 

authors used ACO to further optimize the feature subset. During ACO optimization, for each 

iteration, the authors passed the optimized feature subset to SVM for evaluation. At the end of 

each iteration, the pheromones, number of ants and pheromone evaporation rate was updated using 

a fuzzy controller. The process is repeated until a pre-defined number of iteration is reached. The 

authors evaluated the proposed algorithm on ten datasets and compared it to standard ACO 

algorithm, standard PSO algorithm and standard GA. Results from the evaluation showed that the 

proposed technique outperformed the other methods and produced a classification accuracy of 

98.2%. 

2.4.2.2 Genetic algorithm based techniques 

Shrivastava and Bindu [132] proposed a GA-based spam email detection technique. The authors 

extracted features from body section of emails and used GA to generate classification rules for 

incoming emails. The proposed technique was evaluated on 500 emails (300 hams and 200 spams) 

and it yielded a classification accuracy of 82%. The same authors in [134] proposed another email 

detection technique using GA and a Heuristic based function. In the study, they extracted word-

based features and matched them to a database of spam words. Furthermore, spam scores were 

calculated for words that exist in the database, and encoded into binary chromosomes. Afterwards, 

the authors used GA to perform classification. During classification, incoming emails were 

processed, and encoded as chromosomes. Moreover, crossover and mutation were also performed. 

The technique was evaluated and it yielded a classification accuracy of 82%. 
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Behjat et al. [133] proposed a GA-based technique for spam email detection. Firstly, the authors 

extracted features from dataset and calculated their respective TF. Based on the calculated term 

frequencies, they used GA to select optimal features. They passed the selected features to a 

Multiple Layer Perceptron (MLP) NN for training. Finally, they tested the trained network on new 

emails from test set. The incoming emails were first pre-processed and then passed to the network 

for testing. The test produced a classification accuracy of 99.68%. Performance of technique was 

compared to other ML techniques and it performed better. 

In an Honours thesis, James [129] investigated the performance of GA, Memetic algorithm and 

Multi-objective GA in solving problem of assigning correct weights to various tests performed by 

spam filters. The thesis objective was to optimize the performance of spam filters. Specifically, 

the author focused on optimizing the performance of SpamAssasin [155], a popular spam email 

filter. In the study, the author designed and implemented three NI-based techniques using GA, MA 

and multi-objective GA. In the GA-based technique, firstly, he initialized GA parameters and also 

set a selection level, which was used to determine the total number of selected solution. Moreover, 

he randomly generated a score for each test performed by SpamAssassin. He performed 

recombination and mutation, and calculated the fitness value for each population, then selected 

population with the best fitness function and passed it to the next level. He repeated the process 

until selection level was reached. He noted that all parameters used in the study are the same, with 

the exception of fitness function and ranking method. Multi-objective GA has two fitness 

functions. The first measures classification accuracy of the classifier, and the second measures 

misclassification rates. Also, to rank solutions, the multi-objective GA used a method introduced 

in NSGAII algorithm (discussed in [129]). James [129] noted that the proposed MA is similar to 

GA. The major difference is local search. He used Hill-climbing local search. In the local search, 

firstly, a local optimum for each score (assigned to each test) was set. The score was increased and 

a new solution was determined. If the new score improves the solution performance, then the score 

is retained, else it is discarded. This process is repeated until no improvement in performance is 

observed.  The author performed several experiments on datasets obtained from TREC 2005 

dataset and the three algorithms produced promising results. 

Sorayya and Seyed [122] proposed a GA-based feature selection technique (called GAFS). The 

authors used GA for feature selection. During feature selection, they converted extracted email 
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words into a string of chromosomes, where each string in the chromosome is a binary number 

representing each feature. Afterwards, they randomly generated the initial population and selected 

all string entries that are equal to 1 for classification. Furthermore, they performed crossover and 

mutation on each of the selected chromosomes and calculated their respective fitness value using 

F-Score. Chromosomes with F-Score greater than a pre-defined threshold was selected. Finally, 

the selected chromosomes were passed to KNN and BN for classification. Some experiments were 

performed to investigate the performance of the proposed technique. During experiments, the 

authors evaluated KNN and BN using GAFS feature selection technique, and it yielded promising 

results.  

2.4.2.3 Evolutionary algorithm based techniques 

James et al. [135] proposed an EA based technique to improve the performance of SpamAssassin. 

In the study, the authors used EA for weight optimization. They used EA to optimize some set of 

weights used by SpamAssassin for classification. They performed some experiments using a 

population size of 200 and a dataset containing 52,790 spam emails and 39,399 ham emails. In the 

experiments, 90% of the dataset was used for training, and 10% was used for testing. The 

experiments yielded a classification accuracy of 94%. 

Cortez et al. [136] proposed an EA-based feature selection technique for spam email filtering. In 

the study, the authors extracted features from dataset and pre-processed them. During pre-

processing, they removed non-numeric characters and HTML tags. They also removed words less 

than, or equal to two characters, and further reduced the dimensionality of feature space, by 

removing words with low TF. Furthermore, they calculated IG for the remaining words and 

selected words with high IG. Finally, they used EA to train NB classifier. The authors evaluated 

the technique on a dataset containing 19,196 emails and it yielded an accuracy of 97%. 

2.4.2.4 AIS based techniques 

Abi-Haidar and Rocha [137] presented a solution for spam email detection based on cross-

regulation model of AIS, called ICRM. In the study, the authors trained AIS with features extracted 

and randomly selected from dataset. They tested the solution on six datasets, each containing 1000 

ham and spam emails. They also compared the performance to NB and VTT (a binary classification 

algorithm). The proposed technique yielded an average classification accuracy of 89%. 
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2.4.2.5 PSO based techniques 

Prilepok et al. [138] proposed two algorithms for spam email detection, based on PSO and NB. 

The authors hybridized the Bayesian based filter with a data compression algorithm. Afterwards, 

they used PSO for feature selection and NB for classification. They noted that feature selection 

was performed using Graphical Processing Unit (GPU) units. In GPU units, tasks are executed in 

parallel, to improve processing speed. The authors tested the algorithms on a dataset containing 

48,360 spam emails and 36,450 ham emails obtained from TREC. The PSO-based filter produced 

a precision of over 60% for ham emails and 50% for spam emails. Also, the Bayesian based filter, 

yielded a precision of 99% for ham mails and 90% for spam mail was achieved. 

 

2.4.3 Hybridized spam email detection techniques 

Hsu and Yu [127] used the Taguchi method in combination with Staelin method to develop an 

SVM-based solution for spam email classification. The authors used the Staelin method for 

parameter optimization and SVM for classification. They performed some experiments to evaluate 

the performance of the hybridized technique. During the experiments, they randomly selected 500 

ham emails and 500 spam emails from six different datasets, and used them for training, and the 

proposed system yielded a classification accuracy of 99.60%. 

Yu and Xu [118] performed a comparative study of the performance of four ML algorithms on 

spam email classification, namely, NB, RVM, SVM and NN. The authors trained different 

classifiers on features extracted from email. They performed some experiments to evaluate the 

performance of the four algorithms. The results from experiments revealed the following: 

i. NN is not a suitable stand-alone spam email filter. This is because NN is sensitive to 

changes in training set and NN can be over-fitted by training set. 

ii. Performance of SVM and RVM is better than NB. Furthermore, performance of RVM and 

SVM is not influenced by the entire data; it is influenced by the support vectors or relevance 

vectors (in the case of RVM). 

iii. Number of features used has slight effect on RVM and SVM but not on NB and NN. 

Moreover, RVM and SVM perform better when trained with larger number of features. 

iv. RVM and SVM yielded similar classification accuracy, but RVM performs better than 

SVM in terms of classification speed. This is because RVM generates smaller number of 
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relevant vectors compared to the number of support vectors generated by SVM for the 

same dataset size. 

Goweder et al. [145] designed a hybridized anti-spam system based on MLP and GA. In the study, 

the authors considered emails containing English and Arabic words. They developed a classifier 

using extracted words with high TF-IDF value and trained the network using GA. They performed 

different experiments using three datasets  obtained from SpamAssassin and TREC 2005 [156]. 

Two of the dataset contained 1000 emails. The third dataset contained 72 Arabic emails. The 

classifier was evaluated and it yielded an average classification accuracy of 94% (for spam emails) 

and 89% (for legitimate emails). Results revealed that Subject and Body section of emails is 

sufficient to design good spam detection system. Results also revealed that the following GA 

parameters are significant to the performance of NN classifier: population pool size, mutation 

method, crossover and mutation probabilities. 

Manjusha and Kumar [146] designed a spam filtering system based on a combination of BN, ANN 

and GA, called BNNC. The authors used BN to classify email header information, ANN to process 

subject and body information. Furthermore, they used GA for feature selection and training. 

During training, they represented each email as chromosomes. Authors represented gene of each 

chromosome with different unique words extracted from header and body section of emails. These 

words are represented as 1 in the chromosome if they are in a blacklist and 0 otherwise. The authors 

calculated the fitness function for GA using conditional probability as explained in [146]. BNNC 

is composed of a network of Centred BN (CBN) and NNs. Each network is responsible for 

handling different parts of an email. Each CBN layer in the network represents the following parts 

in the header section of an email: From Address, From Name, attachment and CC. Also, each NN 

represent the subject and body section of an email. Each layer represents an external node. Each 

layer also has its Conditional Probabilistic Distributions, which defines update rules. Output for 

each CPD is binary. The binary output is sent to a priority based decision box, responsible for 

email classification. Each external node of CBN takes two values, either 0 or 1. Each node has 

internal nodes whose values are changed according to input from their respective external nodes 

and CPDs. The binary output from all layers in the network is sent to the priority decision box 

which classifies the email. The number of nodes in the network is equal to the number of vectors 

values extracted from data. Therefore, node corresponds to a unique word. BNNC also has one 

output layer, which displays either 0 or 1. The authors evaluated the technique on a dataset 
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consisting of 2000 emails. During evaluation, they used 100 spam emails and 100 ham emails. The 

technique produced a TP rate of 1, FP rate of 1 and precision of 0.99. 

Karthika and Visalakshi [117] used ACO in combination with SVM to provide solution to spam 

email detection problems. ACO was used for feature selection and SVM was used for email 

classification. The authors extracted email content from the dataset, tokenized the content and pre-

processed them. They used ACO to select the best set of features. Finally, they passed the selected 

features to SVM for classification. They then compared the performance of the proposed 

hybridized technique (called ACO-SVM) to SVM, KNN and NB. ACO-SVM yielded best result. 

KNN, NB, SVM and ACO-SVM yielded a classification accuracy of 75.25%, 76.24%, 79.5% and 

81.25% respectively. 

Yin et al. [147] used Linear Discriminant Analysis and ACO to solve the problem posed by spam 

emails. LDA was used for feature selection and ACO was used to design classification rules based 

on selected features. The authors evaluated the technique on a dataset consisting of 2412 ham 

emails and 481 spam emails, and compared its performance to SVM and NB. LDA-ACO, SVM 

and NB yielded a precision of 96.83%, 94.76% and 89.48%. 

Yang [148] used a combination of ACO, rough set and GA (called RCGF) to provide solution to 

spam email detection. The authors used ACO, RST and GA for feature selection. In the study, they 

proposed an algorithm (called AF algorithm) for feature selection. Classification was performed 

in three stages. In the first stage, AF algorithm combined with ACO and roughest theory was used 

to select a subset of features. Roughest was used to handle local search for ACO. The combined 

technique was used to produce a feature subset. In the second stage, GA was used to further 

optimize the selected features. In the final stage, the selected features were passed to SVM, KNN, 

ANN and NB for classification. The authors performed some experiments using two datasets 

obtained from PUI and Ling-Spam (combination of LING and SpamAssassin) respectively. The 

first dataset contained 481 spam messages and 618 legitimate messages. The LING dataset 

contained 481 spam messages and 2412 legitimate messages. SpamAssassin contained 1897 spam 

emails and 4150 legitimate emails. The authors compared the performance of ACO, PSO, GA and 

RCGF to each other. RCGF (combined with SVM) outperformed the other algorithms, producing 

the highest precision of 97.34%. 
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Zitar and Hamdan [149] used GA and NN to develop an anti-spam solution called Continuous 

Learning Approach ANN (CLA_ANN). In the study, the authors used NN for classification and 

GA to optimize the spam email classifier. Prior to classification, they extracted features from 

datasets, calculated their weight, and used selected features to train the network. Afterward, they 

tested the trained network. During testing, each email in the test dataset was tokenized, pre-

processed and weighted. The weight of each email was then compared to a user-defined threshold. 

An email is considered to be spam if its weight is greater than the user-defined threshold, 

otherwise, it is considered to be ham. If the email is spam, all new tokens in the email will be added 

to a database, and used for future classification. Additionally, the authors used GA to periodically 

check whether an email status has changed from legitimate to spam. To achieve this, they firstly 

used GA to randomly generate a threshold value, which specifies the number of emails to be 

accommodated in an inbox. The threshold value is increased to accommodate new emails if the 

inbox is full. The authors trained the network on a dataset containing 1075 spam emails and 710 

ham emails obtained from SpamAssassin. They also tested the network on a dataset containing 

682 spam emails and 3435 ham emails obtained from SpamAssassin. The performance of the 

proposed technique was evaluated, and it yielded a classification accuracy of 98.86%. 

Dhanaraj and Palaniswami [150] proposed an improved FFA-based spam email classification 

approach with an objective of improving computation time and feature space dimensionality of 

spam email filters. Computational time was improved by implementing the algorithm in a 

distributed environment, called Hadoop distributed environment. During classification, the authors 

used FFA for feature selection and NB for classification. They performed some experiments on 

two datasets, obtained from spambase and CSDMC2010 SPAM corpus. Spambase consists of 

1794 spam emails and 2806 ham emails. CSDMC2010 SPAM corpus consists of 2949 ham emails 

and 1378 spam emails. 3601 emails were used for training and 920 emails were used for testing. 

During the experiments, the authors noted that the feature selection process and the classification 

process were distributed using Map-Reduce framework [157]. The proposed technique yielded an 

accuracy of about 80%. The authors compared the proposed technique to PSO and NN, and it 

performed better. 

Zhang et al. [121] proposed a spam email classification technique based on BPSO and decision 

tree. In the study, the authors used Modified BPSO (MBPSO) for feature selection and decision 
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tree for classification. Also, they used C4.5 algorithm to train the decision tree. During training, 

they performed cross validation and recorded the out-of-sample cost for each iteration. Finally, the 

out-of-sample cost for each iteration was summed, averaged and displayed to users. In the study, 

the authors introduced a cost matrix to assign different weights to errors from FP and FN. They 

evaluated the performance of the proposed technique on a dataset containing 6000 emails obtained 

from UCI ML repository. They also compared the performance of MBPSO to two existing feature 

selection techniques and, as reported, MBPSO performed better. MBPSO produced a classification 

accuracy of 94.27%. 

Wu et al. [139] introduced a novel spam filtering framework based on PSO, SVM, F-Score and 

fuzzy logic. In the framework, SVM was used for classification, F-score and PSO was used for 

feature selection. The authors used F-score to calculate the importance of each feature, and used 

PSO along with some fuzzy controllers to further optimize the feature space. They tested the 

technique on three datasets obtained from PUI and Ling-Spam collection respectively. The first 

dataset (PUI) consisted of 481 spam emails and 618 legitimate emails. The second dataset (Ling-

Spam) contained 481 spam emails and 2412 legitimate emails and the last dataset (SpamAssassin) 

consisted of 1897 spam emails and 4150 legitimate emails. The test produced a precision of 

96.91% (on PUI), 97.83% (on Ling-Spam) and 94.21% (on SpamAssassin). 

Wang et al. [151] developed a feature selection solution based on PSO and RST. In the solution, 

the authors used rough set to decompose a feature space into smaller subsets, and PSO to select 

optimal subset. Afterwards, the subset with fewer features and high classification accuracy was 

selected and used for training. During experiments, the authors divided the features space into 2N 

feature subsets, where N is number of features. They implemented the proposed technique along 

with four other feature selection algorithm, and compared their performance. They represented 

each feature as a binary number, where 0 indicates that the feature is selected and 1 indicates 

otherwise. Classification accuracy obtained from implementation ranged from 59.9% - 100%. 

Salehi and Selamat [158] used SAIS in combination with PSO to determine solutions for spam 

email filtering. PSO was used for feature selection and SIAS was used for classification. The 

authors calculated TF of extracted features, normalized and saved them in a dataset. Afterwards, 

they selected 70% of the dataset for training and 30% for testing. Additionally, they divided the 

dataset, containing spam emails, into two: exemplar and training. Five percent of the dataset was 
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used as exemplar, and 95 percent was used for training. The exemplar dataset was used to create 

an initial classifier system. Mutation was applied to the exemplar, and PSO was used to select 30% 

of the mutated classes. The process was repeated until all data in the training dataset, and classes 

in the exemplar, is considered. The authors performed experiments, and they produced a 

classification accuracy of 88.33%. 

2.4.4 Survey discussion: Spam email detection techniques 

This section presented some NI-based and ML-based techniques proposed by different authors 

seeking to improve the performance of spam email detection systems. Figure 2.1 reveals that GA 

and AIS are the most popular NI algorithms used for spam email detection. Also, results obtained 

in [56] revealed that GA is a good optimization technique suitable for optimal dimension reduction.  

GA is also a good algorithm suitable for optimizing SVM parameters, and improving SVM 

classification speed and accuracy [56]. GA can be used in combination with ML technique to 

design a robust spam email detection solution. For example, GA was used in [56] and [132] to 

optimize SVM parameters, and consequently improve SVM classification speed and accuracy.  

However, GA is time-consuming [121]; it requires more parameter tuning [127]; it cannot 

effectively search for a perfect solution [129], and it is not suitable for local optimization [129]. 

MA is an improved algorithm that has not been fully explored. It is a better algorithm (compared 

to GA) that can handle local optimization [129]. MA combines GA and a local search technique 

to comb for solutions [129]. Another effective feature selection technique is PSO. PSO is a better 

feature selection technique compared to GA [139]. It has fewer parameters compared to GA and 

it also does not have complex time-consuming operators like GA, such as crossover and mutation 

[139, 151]. In PSO, time is mainly consumed during fitness function evaluation [151]. Also, PSO 

is quicker in locating optimal solution compared to GA [151]. However, execution time of PSO is 

affected by data size and feature size [151]. As mentioned, AIS is one of the widely used NI 

algorithms for spam email detection. SAIS can be used in combination with other techniques to 

obtain better performance [149]. Authors in [149] and [158] used AIS in combination with NN 

and PSO respectively, and obtained promising results. Zitar and Hamdan [149] pointed out that 

the number of lymphocytes used in AIS-based techniques, affects system performance. Hence, to 

obtain good classification results, the number of lymphocytes used should be carefully chosen. 
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Figure 2.2 shows the Google Scholar report for the top six algorithms that has been used in 

literature, to handle spam email, between year 2010 and 2015. As shown in Figures 2.1 and 2.2, 

NB algorithm is the most widely used ML algorithm. Figure 2.2 reveals that NB has been widely 

and co consistently used since 2010. NB can be used in combination with other technique or 

heuristics to build an improved spam email detection system [144, 154]. However, Bayesian based 

techniques are vulnerable to Bayesian poisoning – a method used by spammers to bypass Bayesian 

based filters [124]. Also, performance of NB is affected by feature space of high dimensionality 

[118, 144] and change in class ratio (e.g. spam to ham ratio) [137]. In the survey, SVM-based 

techniques also yielded promising results. Figures 2.1 and 2.2 reveal the wide usage of SVM. 

Tseng and Ming-Syan [130] proposed an incremental update technique for SVM. The proposed 

technique is dynamic, and applicable to real world environment. However, the authors noted that 

the proposed technique is time-consuming. Classification speed and accuracy of SVM can be 

improved by using NI algorithms. Experiments performed by Yu and Xu [118] revealed that SVM 

is a better classification algorithm compared to NN and NB. It also revealed that performance of 

SVM is not affected by number of features; it is mainly affected by number of support vectors.  

RVM is another ML classification algorithm that yielded promising results in literature. However, 

as shown in Figure 2.1, RVM has not been fully explored. RVM is an effective classification 

technique, it is faster than SVM and its performance is not significantly affected by feature space 

dimensionality [118].  RVM also consumes more time for training compared to SVM [118]. 

Another algorithm, proposed in literature for feature selection, is RST. Wang et al. [151] noted 

that Rough set hill-climbing approach cannot adequately find perfectly reduced subset. They are 

efficient when applied on dataset with little noise and few features. Rough set stochastic techniques 

are more robust, but they are time-consuming [151]. Speed of Rough set based system can be 

improved by parallelizing computations of reducts [151]. 

NN is another popular ML technique that has been proposed in literature for spam email 

classification. However, NN is not a good stand-alone spam email detection technique [116, 145, 

146, 149]. Also, training time for NN is high, and its accuracy is affected by dataset and feature 

size [145]. Speed of NN can be improved if it is combined with other optimization techniques, 

such as ACO. ACO is a good optimization and feature selection technique. El-Alfy [126] noted 

that increase in number of ants and other ACO parameters will increase computational time of 

ACO. Another promising feature selection technique that has not been fully explored in the 
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literature is LDA. Yin et al. [147] are a few of the authors who  have used this technique. The 

authors used LDA in combination with ACO to design an improved spam email filter.  As obtained 

from Google scholar, Figure 2.1 reveals that EA and FFA has not been widely used to design spam 

email filters. The authors in [135] and [150] are some of the very few who worked on EA and 

FFA. Results obtained by Dudley et al. [135] revealed that heuristic-based systems that perform 

many tests consume time. Hence, classification speed of these systems can be improved by 

reducing the number of tests performed. Furthermore, results obtained by Dhanaraj and 

Palaniswami [150] revealed that FFA is a good speed optimization technique. It also revealed that 

computation time of spam filters can be reduced by using distributed systems. 

Some of the proposed email filtering techniques are rule-based. Rule-based filtering systems, such 

as Ripper [159] and decision tree [160], can be easily bypassed by spammers, because they are 

dependent on specific terms (i.e. rules); hence, non-existence of the specified terms will lead to 

filtering failure [126, 127]. Furthermore, some of the proposed techniques are biased towards a 

particular email class. For example, the technique proposed by Xiao-li [153] is biased towards ham 

emails. Also, the technique proposed by Nosseir et al. [141] is biased towards classes with higher 

weights. Incoming email belonging to a category with higher weight is given higher priority than 

incoming emails with lower weight. A robust spam email classification technique should have 

negligible misclassification rate; it should be capable of effectively detecting both spam and ham 

emails. Most of the proposed techniques are keyword-based. However, behaviour-based feature 

proposed by Wu and Tsai [142] yielded the best result, in terms of classification accuracy. The 

authors noted that behaviour-based spam email filter is more effective than keyword-based filter, 

because the rate of change of keywords is higher compared to rate of change of spam behaviour. 

Furthermore, most of the proposed techniques did not consider attachments or images as part of 

features used for classification. Adding both features in spam email filters will undoubtedly 

improve classification accuracy of spam detection systems. 

Some of the surveyed studies performed feature selection. Feature selection is essential: it saves 

computational resources and storage space [144]. Also, feature selection is better than feature 

extraction, because feature selection selects fewer features and consequently reduces 

computational complexity [121]. Feature selection also preserves useful rules [121]. Zhang et al. 

[121] noted that wrapper-based feature selection techniques are faster than filter feature selection 
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techniques. Results obtained by the authors revealed that wrapper-based technique yield high 

classification accuracy. However, wrapper-based feature selection techniques are slow in 

execution and they lack generality [121]. The speed can be improved by using global optimization 

techniques and N-fold cross validation [121]. Some of the proposed techniques yielded poor results 

because they were trained on few data instances. Classifiers trained on large datasets would 

improve classification accuracy [120, 133, 143]. However, it may degrade classification speed. 

Classification speed can be improved by using distributed systems, feature selection and instance 

selection techniques. Many of the surveyed studies did not explore the use of distributed systems 

and instance selection. Studies in [150] and [138] is some of the very few studies that  implemented 

distributed systems. Prilepok et al. [138] performed feature selection using GPU units – a 

distributed system.  

 

Figure 2.1: Spam email detection techniques between 2010 and 2015 
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Figure 2.2: Top six spam email classifiers between 2010 and 2015 

 

2.4.5 Limitation of spam email detection techniques 

A sizable number of the reviewed spam email classification techniques did not achieve high 

classification accuracy, precision or recall. Also, some of the proposed techniques used traditional 

techniques (such as Term Frequency (TF) or IG) for feature selection. Sorayya and Seyed [122] 

pointed out that parameter optimization and feature selection are two effective techniques that have 

been proposed in literature to improve spam filters.  Among all the reviewed techniques, to the 

best of the authors’ knowledge, no proposed model used NI algorithms for both feature selection 

and parameter optimization. NI algorithms can be used to improve the performance of ML-based 

classifiers by reducing the feature space and parameter space dimensionality. Future work should 

focus on designing NI-based ML models with both feature selection and parameter selection 

techniques.  

2.5  Credit card fraud 

Credit card fraud can be defined as illegal use of credit card information for online purchase. Credit 

card transactions are done physically or virtually [161]. Physical transactions refer to transactions 

involving physical interaction with seller. Users are required to present a physical card at the point 

of purchase [161]. Virtual transactions refer to transactions performed over the internet or 

telephone [161]. They require users to provide certain card information (such as Card Verification 

Value or CVV number, password, security question, etc.) for online purchases [161]. The 

invention of credit cards has not only made online transactions seamless, easier, comfortable and 
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convenient, it has also provided new fraud opportunities for criminals, and increased the rate of 

fraud [162, 163]. The effect of credit card fraud is alarming, and has affected the global economy 

in measurable ways. Millions of US dollars have been lost by many individuals and companies. In 

2009, the total value of online order (for goods and services only) was approximately US$15 

billion [163]. 84% of these orders were paid online [163]. In 2013, fraud was estimated to cost US 

retailers about $23 billion, and in 2014, the cost of fraud rose to approximately $32 billion [164]. 

Weak security of credit and debit card is one of the major causes of credit card fraud. In the UK, 

card-not-present fraud was estimated to cost £183.2 million in year 2011 [165]. Also, VISA 

processes  are worth in transactions approximately US$3 trillion   every year, and for every $100, 

seven cents go to irregular transactions [166]. Every credit card user stands the risk of falling 

victim to card-not-present fraud and retailers bear the cost of irregular transactions [167].  

Credit card fraud detection is a classification problem [165]. Credit card numbers are generated 

using Luhn algorithm [165]. The algorithm does not categorically protect users from online fraud; 

it essentially helps in authenticating data input from users [165]. Some small scale companies use 

manual authentication methods, including validation of phone numbers, physical address, secret 

question and answer [165]. However, these methods may not be feasible for large scale companies, 

and they are expensive and inefficient [165]. Most online merchants now use CVV2 as an 

additional security measure for approval of card-not-present transactions [165]. Although this 

additional security measure has reduced card-not-present fraud to a reasonable minimum, it does 

not prevent fraud that occurs due to lost or stolen card [165]. Address Verification Service can be 

used to combat card-not-present fraud. It is an electronic service that verifies transactions by using 

shipping address details of card owners [165]. This method reduces fraud; however, it can lead to 

loss in sales, because not all customers are willing to ship purchased items to their billing address 

[165].  MasterCard and VISA card has introduced a 3-D secured protocol for online banking: 

MasterCard Secure Code and Verified by VISA [165]. These protocols use a digital certificate to 

authenticate online merchants and password to authenticate customers [165].  

Fraudsters mostly use internet to commit fraud, because their identity and location can be easily 

concealed [168]. Loss incurred from credit card fraud affects both customers and merchants. 

Although, merchants bear most of the loss, customers are made to pay higher interest rates and 

higher fees for membership [162]. Merchants also reduce their promos and incentives [162]. Fraud 
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detection is absolutely essential in reducing losses incurred by financial institutions and 

individuals. The primary objective of fraud detection systems is to identify fraud promptly [163]. 

In a credit card transaction, four parties are typically involved: the card holder, merchant, financial 

institution and the VISA centre [169]. All these parties require security. Most of the existing fraud 

detection systems are rule-based system [170]. Rules are developed based on known patterns, 

hence these systems are only capable of detecting known fraudulent patterns; they are not capable 

of detecting unknown or emerging patterns. On average, it takes approximately 72 hours for a 

fraudulent transaction to be discovered [171]. Duman and Ozcelik [170] note that rule-based 

systems are only useful for counterfeit card fraud detection; they are not useful for lost/stolen card 

fraud detection. To address this issue, fraud detection system developers should take into 

cognizance fraudster behaviour and card user behaviour [170].  

Some common types of fraud include credit card fraud, computer intrusion, money laundering 

[168]. This section presents a survey of some recent credit card fraud detection techniques 

proposed in the literature. Popular NI and ML credit card fraud detection techniques used in the 

literature include HMM, NN, SVM, AIS and GA. Other techniques include meta-learning, 

frequent pattern learning, ontology and decision support system. These techniques are used alone 

or hybridized with other techniques to construct robust classifiers. In some studies, NI algorithms 

were hybridized with ML algorithms, and in other studies, two or more ML algorithms are 

combined (called ensemble). Generally, hybridized techniques perform better than stand-alone 

techniques. Stand-alone ML-based credit card fraud detection techniques used in the literature 

include NN, HMM, Meta-learning, SVM, Frequent itemset mining, ontology, decision support 

system and Fisher Discriminant Analysis. Stand-alone NI-based credit card fraud detection 

techniques used in the literature include AIS and GA. Furthermore, hybridized techniques used in 

the literature include HMM and KNN, ANN and simulated annealing, decision tree and SVM, BN 

and NN, transaction aggregation and logistic regression. Few studies used Fisher Discriminant 

Analysis, simulated annealing, ontology and frequent itemset mining. Table 2.4 gives a summary 

of the surveyed techniques. This section presents a survey of some these techniques. It also outlines 

the contributions and limitations of the proposed techniques. 
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2.5.1  Machine learning based credit card fraud detection techniques 

Some credit card fraud detection techniques have been proposed in the literature. However, most 

of the proposed techniques are based on supervised learning and few are based on semi-supervised 

learning. This section presents a survey of some existing ML-based credit card fraud detection 

techniques. 

2.5.1.1 Hidden Markov Model 

Khan et al. [172] proposed a technique based on HMM and K-clustering. In the study, the authors 

used HMM to model a sequence of credit card transactions and used K-clustering algorithm to 

divide the transactions into three clusters: high, low and medium. Afterwards, incoming 

transactions were compared to past ten transactions performed by card user and authorized if there 

was a match. Otherwise, the transaction will be terminated and IP address of the merchant to be 

defrauded will be traced using HMM. A notification will be sent to both the merchant system’s 

administrator and mobile number of card owner. The authors noted that HMM was trained with 

Baum-Welch algorithm. They did not provide details about results obtained from the proposed 

solution. 

Ashphak et al. [173] proposed a solution to credit card fraud detection system based on HMM. 

The system performs detection using spending patterns of cardholders. During classification, 

system request for card information of user and compares the information to information stored in 

a database. If there is a match, the system will request for PIN number of user. If the PIN is correct, 

and account balance is less than transaction amount, the system will ask user to provide answers 

to some secret questions. If the answers are correct, then an initial sequence of the users' 10 

previous spending pattern will be extracted and passed to HMM for processing. Thereafter, HMM 

will calculate probability of acceptance for the new transaction. If the probability of acceptance 

revealed that there are no observed abnormalities, the transaction will be authorized. Else, if system 

observes some irregularities or if the number of transactions performed by the user is less than 10 

transactions, then the user will be asked to provide answers to some security questions. If the 

answer provided is correct, the transaction will be performed in a secured mode; otherwise, the 

transaction will be terminated and referred back to the merchant's website. When a new transaction 

arrives, it is used to replace one of the old transactions in the sequence. The authors evaluated the 

performance of the proposed technique and it produced an accuracy of 92%.  
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Table 2.4: Summary of surveyed credit card fraud detection techniques 

Technique Category Name of Technique Reference(s) 

NI AI [165, 174, 175] 

GA [176, 177] 

ML NN [178, 179] 

HMM [180-182] 

Meta-Learning [183, 184] 

SVM [185] 

Frequent Itemset Mining [186] 

Ontology [187] 

Decision Support System [188] 

Modified Fisher Discriminant Analysis [189] 

 

Hybridized - NI and ML  HMM and K-Clustering [172]  

ANN and Simulated Annealing [190]  

Observation Probability and HMM  [173] 

BN and Neural Network [162] 

Decision tree and SVM [168] 

KNN + Decision tree + NB [163] 

ANN and Logistic Regression [191] 

Recency-Frequency-Monetary and time-

dependent score  

[179] 

Bagging and Ensemble [192] 

Transaction Aggregation + Logistic 

Regression 

[193] 
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Mhamane and Lobo [180] proposed a HMM-based fraud detection system. The system consists of 

10 different modules. The first module allows users to interact with the system. In this module, 

users are allowed to login. The second module provides interaction between client and server. The 

third module allows a client to gain access to all items on the internet. The fourth module is 

responsible for authenticating transaction credentials entered by users. The module also generates 

a report if authentication is successful or not. The fifth module provides communication to servers 

via servlets. The sixth module is responsible for maintaining database of all account information 

of users. The seventh module maintains a database of past transactions already performed by users. 

The eighth module is responsible for performing classification of transaction. HMM is used to 

scan and classify transactions. The ninth module is for system administrators. It provides a Graphic 

User Interphase that allows admin users to login and view account information of clients. New 

clients can also be added. The tenth module allows admin users to see accounts that are blocked. 

Admin users can also reactivate blocked account and change credentials of users. The authors did 

not report on results obtained from study. 

Bhusari and Patil [181] designed a fraud detection model based on the HMM and K-clustering. 

The authors used HMM to monitor spending patterns of users. When a user initiates a payment 

request, firstly, it will be submitted to merchant’s system for processing. If the PIN entered by the 

user is correct, then the transaction amount will be compared to account balance of card holder. If 

the transaction amount is greater than the account balance, then the transaction will be denied and 

passed to a module responsible for fraud detection; otherwise, the transaction will be passed to the 

next stage for processing. Furthermore, with the aid of K-clustering algorithm, the authors divided 

the amount of previous transactions (stored in the dataset) into three price ranges (low, medium 

and high). HMM was used to check the last ten transactions (performed by the card holder) for 

abnormalities in spending patterns. HMM uses transition probabilistic calculation. If any 

abnormality is observed, the user will be asked some security questions. If wrong answers are 

provided, the transaction will be denied and HMM will raise an alarm to the issuing bank. The 

authors noted that if the number of transactions performed by the card holder is less than ten, then 

user will be asked some security questions. If provided answers are correct, user will be allowed 

to proceed with transaction. Some experiments were performed and it was reported that the 

proposed technique yielded an accuracy of 84% and a false alarm rate of 7%. 
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Mhamane and Lobo [182] proposed a HMM-based fraud detection technique. System architecture 

of the technique consists of the following component: legitimate user, fraudulent user, bank server 

and bank database. Bank database is used to store information about bank account holders. It is 

also used to store previous transactions of users. During training, the system extracts sequence of 

transaction details about users from dataset and builds a HMM-based classification model using 

the extracted details. The authors used trained models to classify incoming transactions. If there is 

a violation in the sequence of transactions, an One Time Password (OTP) will be sent to the mobile 

number of user. The authors evaluated the performance of technique and it yielded a classification 

accuracy of 72%. 

2.5.1.2 Support vector machines based techniques 

Sahin and Duman [168] performed a comparative study between SVM-based and decision tree 

based credit card fraud detection system. The authors used four kernels for SVM. During 

implementation, firstly, they divided datasets used into three groups. In the first, second and third 

group, the ratio of fraudulent transaction to legitimate transaction was 1:1, 1:4 and 1:9 respectively. 

In each group, 70% of the dataset was used for training and 30% was used for testing. The authors 

developed seven SVM-based and decision tree based models and tested each of them. Results from 

experiments revealed that decision tree based model outperformed the SVM model. The models 

produced classification accuracy between the range of 83.02% and 94.76%. 

Lu and Ju [185] used PCA and Imbalanced Class Weight SVM (ICW-SVM) to develop a credit 

card fraud detection model. The authors used PCA for feature selection and used ICW-SVM for 

classification. Feature selection was achieved by calculating the principal components of all 

features and selecting features with the highest contribution rate. Selected features were then 

passed to ICW-SVM for classification. The authors noted that ICW-SVM handles data imbalance. 

Some experiments were performed and a classification accuracy of 91.28% was achieved. 

Furthermore, they compared the result to results of three other algorithms: BN, C-SVM and 

Decision tree (C5.0). ICW-SVM outperformed the three algorithms. 

2.5.1.3 Meta-learning based techniques 

Pun [163] designed a credit card fraud detection model. The author’s objective was to develop a 

classifier capable of filtering transactions for an existing Fraud detection system (called Falcon 
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Fraud Manager) used by major banks in Canada. The model consists of three base classifiers, 

constructed using k-NN, Decision tree and NB algorithm respectively. The author combined the 

output obtained from decision tree and K-Clustering and passed it to NB for classification. 

Classification is divided into four stages. In the first stage, authors trained the base classifier on 

50% fraudulent transactions and 50% legitimate transactions. Afterwards, the author tested the 

trained base classifier on a validation dataset and generated some predictions. In the third stage, 

the author combined the generated predictions with validation dataset and used the combined 

dataset to construct a NB based meta-classifier. In the last stage, he tested the base classifier 

obtained in the first stage and combined the result with the test dataset. Furthermore, he used the 

combined dataset to re-train the meta-classifier. Results obtained from the re-trained meta-

classifier are displayed as final output. The author performed some experiments to evaluate the 

performance of the designed meta-classifier and it yielded positive results. Additionally, the author 

compared the performance to performance of an existing bank’s system, and it was reported that 

an improvement of 24% to 34% (resulting to a savings of $1.8 million to $2.6 million) was 

achieved. 

Stolfo et al. [183] proposed a meta-learning based fraud detection system. The aim of study was 

to develop a distributed fraud detection system for financial institutions in a network. The 

distributed system will enable financial institutions share fraudulent models in a secured manner. 

The shared model will be combined by a meta-learner into a single robust meta-classifier. The 

technique consists of two main components. The first component (called local fraud detection 

agents) consists of four classifiers: ID3, CART, BAYES and RIPPER. The second component (a 

meta-learning system) combines outputs obtained from the individual classifiers to make a 

decision. In the study, the authors developed different classification models using ID3, CART, 

RIPPER and Bayes. The models were trained and tested using different datasets, and outputs from 

the best N classifiers were combined by a meta-learner to generate a meta-classifier. Bayes, 

RIPPER, CART and ID3 yielded a FP rate of 13%, 16%, 16% and 23% respectively. 

Sen and Dash [184] investigated the performance of five meta learning algorithms in providing 

solution to credit card fraud detection. The algorithms include Classification and Regression tTree 

(CART), Adaboost, Bagging, Logitboost and Grading. Results revealed that the Bagging 

algorithm performed best (in terms of classification accuracy and misclassification rate) compared 
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to the other four algorithms, while the grading algorithm performed worst. Bagging, Logitboost, 

Adaboost, CART and grading produced a classification accuracy of 87.7%, 85.5%, 84.7%, 83.4% 

and 53.6% respectively. 

2.5.1.4 Frequent itemset mining 

Seeja and Zareapoor [186] proposed a fraud detection technique capable of handling transactions 

in an imbalanced dataset. The authors also proposed a matching algorithm for classification of 

incoming transactions. During training, they extracted legal and fraudulent transaction pattern of 

all customers. Afterwards, they used the extracted patterns to construct a classification model. 

During testing, if an incoming pattern matches more with a legal pattern, then the transaction will 

be classified as legitimate, otherwise, it will be classified as illegal. The authors constructed two 

patterns for each customer - a fraud and legitimate pattern. Furthermore, they applied frequent 

itemset mining on transactions extracted from dataset. Frequent itemset mining evaluates 

transactions and returns different group of attributes. The group with the largest number of 

attributes is said to be the customer's legal pattern. During classification, the customer's details are 

extracted from database. Afterwards, legal and fraud transactions for each customer are separated. 

Frequent itemset mining algorithm is applied to the legal transactions of each customer, and the 

algorithm returns a set containing different group of attributes. Thereafter, the group with highest 

number of attributes are selected and stored in a database. Frequent itemset mining algorithm is 

applied to fraud transactions of each customer and the algorithm returns a set containing different 

group of attributes. Thereafter, the group with the highest number of attributes are selected and 

stored in a database. For an incoming transaction, a matching algorithm is used to scan the legal 

and fraud database. If an incoming pattern matches more with legal pattern, then the algorithm will 

classify the transaction as legitimate; otherwise, the algorithm will classify the transaction as 

illegal. The authors performed experiments and compared its performance to four other classifiers, 

SVM, RF, NB and KNN. Results revealed that the proposed technique yielded the best fraud 

detection rate. 

2.5.1.5 Transaction aggregation 

Jha et al. [193] proposed a credit card fraud detection technique based on transaction aggregation. 

The authors combined fraud and legitimate transactions of different time periods. Afterwards, they 

used aggregated transactions to create variables, which were in turn used to train a logistic 
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regression model. They performed a series of experiments and a classification accuracy of 99% 

was achieved. 

2.5.1.6 Ensemble based technique 

Zareapoor and Shamsolmoali [192] proposed a credit card fraud detection model based on bagging 

ensemble classifier. The primary objective of study was to compare the performance of SVM, NB 

and KNN to the Bagging ensemble classifier based on Decision tree. The authors evaluated the 

performance of SVM, NB and KNN. They compared the result obtained to the Bagging ensemble 

classifier. Results revealed that the Bagging ensemble classifier yielded better fraud catching rate 

and false alarm rate. Result also revealed that the Bagging ensemble classifier is capable of 

handling data imbalance.  

2.5.1.7 Ontology-based technique 

Potamitis [187] in a Masters thesis, designed an ontology-based expert system for conceptualizing 

characteristics of existing fraud detection techniques and characteristics of fraud attacks. 

Specifically, the author designed the expert system to handle credit card fraud, bankruptcy fraud, 

credit card application fraud and 25 detection techniques. To achieve this, he first identified 

different fraud detection techniques from the literature. Furthermore, he analyzed the 

characteristics of the identified techniques and conceptualized the information into mathematical 

representations. Afterwards, he used the mathematical representations to build the ontology 

knowledge base system. He used the knowledge based system to design an expert system, 

andnoted that the expert system can assist software developers to choose techniques to implement 

for specific kind of fraud. He performed different tests on the expert system and it yielded excellent 

results. 

2.5.1.8 Decision support system 

Carminati et al. [188] developed an online fraud detection system called BANKSEALER. The 

system is based on a combination of semi-supervised and unsupervised technique. It builds models 

for different customer behaviour based on transactions stored in a database. During classification, 

BANKSEALER first weighs anomaly of each user transaction and then search for other users with 

comparable spending patterns. Lastly, the system measures the abnormality of current spending 
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pattern of user relating to past spending pattern of user. BANKSEALER is currently deployed as 

a pilot project in a renowned Italian bank. 

2.5.1.9 Modified fisher discriminant analysis based technique 

Mahmoudi and Duman [189] proposed a novel credit card fraud detection technique based on 

Fisher Discriminant Function. The authors developed a modified version of the function. The 

modified version contains a weight function responsible for classifying transactions with higher 

financial cost implication. The authors developed five weight functions. The weight function 

compares available limit on a card to average limits on other cards, and assigns higher weights to 

cards with higher limit. They used Decision tree for feature selection. They evaluated the 

performance of the proposed technique and it yielded positive results. 

2.5.2 Nature inspired based credit card detection techniques 

NI algorithms has been used in combination with ML algorithms to provide solutions to credit card 

fraud detection. As shown in the survey, different NI and ML techniques has been used in 

literature, including: HMM, NN, SVM, AIS and GA. Among these techniques, survey reveal that 

GA are the most popularly used algorithms for credit card fraud detection. This section presents a 

survey of some existing NI-based credit card fraud detection techniques. 

2.5.2.1 Artificial immune system based techniques 

Wong et al. [165] proposed an AIS-based credit card fraud detection technique. The AIS system 

consists of six components: user interface, detector set, transaction processor, detector generator, 

database and automated testing machine. The user interface is responsible for accepting inputs (in 

form of transactions). It can also be used to check system status. The automated testing engine is 

responsible for sending transactions to system from a pool of transactions stored in a database. It 

is also used to save statistics-related data about the system’s performance in the database. A 

detector generator is used to produce mature detectors (using negative selection) and memory 

detectors. It is also used for evolution of memory detector. A transaction processor is used to 

process and classify transactions. During implementation, the authors extracted data from datasets 

and mapped them into a bit pattern using a matching algorithm. Afterwards, they used the matching 

algorithm to classify transactions. The AIS system consist of the following: a representation and 

matching algorithm, negative selection algorithm, vaccination algorithm and an algorithm for 
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memory cell evolution. Representation and matching algorithms were used to classify transactions; 

vaccination algorithm was used to reinforce the system’s learning ability to adapt to evolving 

patterns. Negative selection algorithm was used to generate mature detectors – which were used 

to classify transactions. Matching algorithm consists of rules created for different transactions 

extracted from the database. During classification, output for each rule was combined and mutated. 

The authors designed the mutation function using GA. Furthermore, the mutated rules were 

compared to incoming transactions. If there was no match, the rules were destroyed and new set 

of rules were created. Otherwise, the rules were passed through negative selection process to 

ensure that they are self-tolerant. If they are self-tolerant, then they are kept; otherwise, they are 

destroyed and a new set of rules is generated. The authors tested the performance of the proposed 

technique and it produced a classification accuracy of 71.3%. 

Soltani et al. [174] proposed an AIS-based fraud detection algorithm. Algorithm used clonal 

selection to create detectors. In the study, the authors generated fraud and normal detectors for all 

classes and used KNN algorithm for classification. Furthermore, they calculated Euclidean 

distance for all records in the database and selected records with the lowest distance as the k 

neighbors. They performed some experiments and a promising result was achieved.  

Soltani and Akbari [175] proposed an improved credit card fraud detection model based on AIS. 

During memory cell generation, distance between each training records and their corresponding 

ARB (Artificial Recognition Ball) is calculated. Afterwards, records with low distance are selected 

for mutation. If the selected record belongs to the same class, it is selected for mutation. Otherwise, 

records with large distances in the same class are selected. At the end of memory cell generation, 

each cell is ranked based on its distance between each record it matches. If a memory cells 

performs wrong classification, it will be rated based on its distance between the wrongly classified 

records. Rating is performed using KNN algorithm. Authors explained that rank will be positive 

if memory cell and matched records belong to the same class; otherwise, rank will be negative. 

The authors tested the model and it yielded a detection rate and FP rate of 0.518 and 0.017 

respectively. 

2.5.2.2 Genetic algorithm based techniques 

Patel et al. [176] proposed a GA-based credit card fraud detection system with the aim of reducing 

the amount of credit accessible to fraudsters. The authors defined an objective function with 
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variable misclassification cost. The objective function aims at reducing the number of transactions 

with high classification cost. During classification, they extracted credit card transactions from 

dataset and stored them in a database. Afterwards, they calculated critical values for each 

transaction. They also extracted the following from each transaction: frequency count for credit 

card usage, credit card overdraft, location where the credit card was used, balance on account 

linked to credit card, average spending pattern of the credit card owner. Furthermore, the authors 

used the GA to generate new critical values. Finally, the new critical values were then used for 

classification. The authors did not report results obtained from study. 

Duman and Ozcelik [170] introduced a hybridized credit card fraud detection system capable of 

handling misclassification cost. GA and Scatter Search algorithms were combined and used to 

build a robust credit card fraud detection algorithm called GASS. The authors worked with 43 

parameters and a population size of 50. Forty seven of the 50 solutions were determined by 

generating 47 random numbers for 43 parameters. The remaining 3 solutions were solutions for 

generating maximum number of alerts (MAX), minimum number of alerts (MIN) and solution 

used for production (PRD). In the reproduction stage, the authors combined parameter values of 

two parent solutions to obtain a child solution. They noted that the reproduction process is different 

from the reproduction process of GA but similar to SSA. They also noted that the classification 

steps of GASS is similar to standard GA, but with some element of the SS algorithm. They carried 

out several experiments to evaluate the performance of the proposed technique, and results showed 

that GASS algorithm improved the performance of an existing fraud detection system by 200%. 

RamaKalyani and UmaDevi [177] proposed a GA-based credit card fraud detection technique with 

varied misclassification cost. The objective of study was to limit the total amount of credit 

accessible by fraudsters. During classification, the authors extracted the following information 

from dataset: frequency of credit card usage, the location of usage the credit card overdraft, the 

available balance in the credit card and the average amount spent per day. Afterwards, authors 

used GA to generate critical values and also generate fraud transactions. Thereafter, new 

transactions are compared to the generated critical values and classified accordingly. They 

repeated the process until a user-defined threshold was reached.They tested the performance of 

technique and it yielded positive results. 
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2.5.2.3 Artificial neural network based techniques 

Khan et al. [194] used simulated annealing and NN to develop a credit card fraud detection 

technique. The authors used simulated annealing to control parameters in the NN. They generated 

a random weight for all connections in the NN, and normalized them using TANH activation 

function. Afterwards, the authors created a weight matrix and randomized the matrix using 

simulated annealing. Furthermore, they generated new weights from output obtained from 

previous circle. They compared the weights to previous weights and updated them if there was an 

improvement. They also reduced the temperature after each iteration and compared it to a user-

defined temperature. If the temperature is lower, the process will be repeated again. The authors 

evaluated the performance of technique and it yielded a classification accuracy of 89.6%. 

Maes et al. [162] performed a comparative study between ANN and BN for credit card fraud 

detection. In the study, the authors extracted features from dataset, pre-processed and normalized 

them. Afterwards, they used the features to construct a BN and ANN-based models. They used 

STAGE algorithm to select the optimal configuration for ANN, and conducted different 

experiments. Results revealed that BN outperformed ANN in both classification speed and 

accuracy. However, the authors pointed out that fraud detection process of ANNs is faster. 

Modi et al. [178] constructed a NN rule-based fraud detection system capable of providing solution 

to credit card fraud. The authors used a single layer feed forward NN algorithm. In the study, they 

divided fraudulent transactions into four groups, namely, low, high, risky and high risk. 

Transactions are classified based on defined rules. If a processed transaction is fraudulent, it will 

be assigned to any of the four groups. The authors evaluated the performance of the algorithm. 

However, much detail about the results was not reported. 

Kumar and Vasanth [191]  developed a credit card fraud detection model based on ANN and 

logistic regression. The authors considered a classification problem with variable misclassification 

cost. Also, they used GA to optimize classifier parameters. During classification, they identified 

spending pattern of cardholder, computed some set of probability and constructed some sequence. 

Finally, they used the sequence to construct a NN-based and logistic regression based model. 

Van et al. [179] proposed a novel credit card fraud detection technique called APATE. The 

technique combined two features. The first feature is based on characteristics of incoming 

transactions and spending history of customers. The authors used Recency-Frequency-Monetary 
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(RCF) fundamentals to derive this feature. The second feature is a time-dependent score based on 

network used by card holders and merchants. Incoming transactions are classified based on the 

following features: average number of past transactions over a time period, average time interval 

between incoming and previous transaction, and the value of the transaction. Incoming 

transactions are also classified based on a score indicating merchants frequently linked to fraud. 

Incoming transactions are also classified based on credit card holders with stolen cards or card 

holders that seldom perform transactions. The authors combined all the features and designed 78 

variables which were used to construct three classification models based on logistic regression, RF 

and NN. They performed some experiments and reported that an AUC score higher than 0.98 was 

obtained. RF, NN and logistic regression yielded a classification accuracy of 98.7%, 93.84% and 

95.92% respectively. 

2.5.3 Survey discussion: Credit card fraud detection 

The surveyed techniques reveal that various ML and NI algorithms have been used to handle credit 

card fraud detection. As shown in Figure 2.3, google scholar reveals that HMM, NN, SVM, AIS 

and GA are the most popularly used algorithms in the domain of credit card fraud detection. 

Furthermore, among these algorithms, as shown in Figures 2.3 and 2.4, google scholar reveals that 

HMM and NN have gained more attention and they have been used consistently for the past four 

years. These algorithms are used alone or in combination with other techniques, such as meta-

learning or ensemble techniques. HMM is simple to implement; it removes classification 

complexity and it can be used to produce simple classification models [173, 181]. The training 

time of ANN takes several hours [162], sometimes days [194]. NN-based algorithms require 

parameter tuning algorithm (such as GA) and an effective algorithm for good network 

configuration [194]. Furthermore, some authors used Meta-classifiers, which yielded good results 

[163, 183]; however their classification speed is slow because they involve combination of several 

classifier. Moreover, Fisher Discriminant Analysis is one technique that has not been fully 

explored in the domain of credit card fraud detection. Technique proposed by Mahmoudi and 

Duman [189] is one of the few techniques that used Fisher Discriminant Analysis. The technique 

was designed to maximize high value transactions and FNs. Experiments performed in the study 

yielded good results, implying that Fisher Discriminant Analysis is a promising algorithm to 

explore. Another area that has not been explored is ontology. Potamitis [187] is one of the few that 

designed an ontology-based technique. Potamitis [187] introduced an ontology-based expert 
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system for conceptualizing characteristics of existing fraud detection techniques. However, the 

technique is static; it requires regular update of knowledge base.  

As mentioned, NI techniques have been used to provide solution to credit card fraud detection 

problems. NI techniques are capable of improving classification speed and accuracy of ML 

algorithms. Authors in [165], [174] and [175] proposed AIS-based credit fraud detection 

techniques. AIS-based systems aim to model a representation of detector and antigen relationship 

[165]. Afterwards, a matching algorithm is required to determine the strength of affinity between 

the antigen and detector. However, unlike AIS, matching algorithms are not capable of detecting 

non-self-organisms [165]. AIS is commonly used to model negative selection [165]. Wong et al. 

[165] noted that AIS-based techniques are not dynamic. Authors handled this limitation by 

designing a dynamic AIS-based system that models fraudulent patterns in e-commerce systems. 

Also, Soltani and Akbari [175] introduced an improved credit card fraud detection model with a 

modified method for performing negative selection. However, the memory generation phase and 

calculation of affinity are time-consuming. Additionally, Soltani et al. [174] proposed a novel 

credit card fraud detection model capable of handling misuse and anomaly detection. However, 

FP rate of the model is too high and generating detectors for all transactions can affect the 

classification speed. 

As mentioned, the GA is one of the popular NI algorithms that have been used to handle credit 

card fraud. Authors in [176, 177]  used GA to improve credit card fraud detection. Rinky and 

Dheeraj [176] used GA to generate nodes and hidden layer for NN. Duman and Ozcelik [170] used 

GA in combination with SSA to design a fraud detection technique with new classification cost 

function. Authors in [177] and [191] used GA for parameter tuning. However, experiments 

performed by Duman and Ozcelik [170] revealed that GA’s convergence rate is slow, especially 

when applied to large datasets. Furthermore, authors in [170, 176] and [177] proposed techniques 

for handling misclassification cost. Duman and Ozcelik [170] noted that data mining algorithms 

cannot effectively handle classifications with misclassification costs. Although high value 

transactions has more impact, low value transactions should not be underestimated. This is because 

a system can be compromised if multiple low value transactions are performed.  

Moreover, many ML techniques have been used to handle credit card fraud. Authors in [172], 

[173], [180], [181] and [182] used HMM. Khan et al. [172] used HMM in combination with K-
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clustering. Authors used HMM to model sequence of credit card transactions. Authors trained 

HMM with Baum-Welch algorithm. Additionally, Mhamane and Lobo [182] proposed a ML-

based technique for handling internet banking transactions. Authors used OTP as an additional 

security feature. ANN and BNN are two other ML techniques that have been explored in the 

literature. As mentioned above, NN-based techniques are generally slow. Maes et al. [162] 

performed a comparative study between BNN-based and ANN-based credit card fraud detection 

techniques and results revealed that BNN has higher classification speed compared to ANN. 

Authors suggested that ANN can be improved by removing connections and perceptron that are 

not used in training and performing weight updates. Radial basis networks and SVMs are good 

algorithms that can be used for weight updates [162]. ANN also requires effective algorithms for 

performing parameter selection [162, 194]. SVM is another ML algorithm that has been used to 

solve credit card fraud detection.  The performance of SVM improves as the number of data size 

increases [168]. Lu and Ju [185] designed a SVM-based technique capable of handling 

classification that requires assigning variable weights to different classes. The authors noted that 

adjusting class weights can improve the classification speed and accuracy of a classifier.  

Decision trees is one of the ML algorithms that has not been fully explored in the domain of credit 

card fraud. One of the few authors that have used decision tree is Sahin and Duman [168]. Authors 

performed a comparative study between SVM-based and Decision trees based credit card fraud 

detection systems, and results revealed that Decision tree outperformed SVM. Meta-learning 

technique is another approach that has been used to tackle credit card fraud. Pun et al. [163] 

proposed a technique based on meta-classifier model consisting of three classifiers, KNN, 

Decision tree and Bayesian algorithm. The authors noted that the technique was deployed in series 

with an existing bank's system and it yielded an improvement of between 28% and 34% 

performance. Stolfo et al. [183] also proposed a meta-learning technique. The technique consists 

of two main component. The first component (called local fraud detection agents) consists of four 

classifiers: ID3, CART, BAYES and RIPPER. The second component is a meta-learning system 

that combines the outputs obtained from the individual classifiers to make a decision. Results 

obtained from many of the proposed meta-classifier models are good; however, as mentioned 

above, classification speed of meta-classifiers is slow because it involves combination of outputs 

from two or more classifiers. Also, experiments performed by Stolfo et al. [183] revealed that TP 

and FP rate of meta-classifiers increases as labelled fraud data samples increases. Experiments 
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revealed that a balanced dataset will yield an improved classification accuracy [183]. Additionally, 

experiments revealed that the best meta-classifier is BAYES [183]. 

Most of the existing studies focused on the classification of customer spending profile analysis 

and derived attributes [186]. However, few studies focused on classification of anonymous dataset. 

Two of the few authors who worked on this are Seeja and Zareapoor [186]. The authors proposed 

a credit card detection technique capable of handling transactions in an imbalanced and anonymous 

dataset. The technique has a good and balanced classification rate; however, fraudulent and legal 

patterns formed for customers and stored in a database requires regular updates. Furthermore, the 

authors noted that proposed technique cannot detect transactions with similar fraud and legal 

patterns. Another unique technique proposed in literature is Jha et al. [193]. The authors proposed 

a technique based on aggregation of transactions. In the study, they combined legal and fraudulent 

transactions and used the combined dataset to construct a classifier. They explained that both 

patterns were combined to capture the difference between buying behaviour of customers. They 

also noted that fraud detection involving large dataset requires dataset grouping and creating new 

attributes. In another work, Van Vlasselaer et al. [179] introduced a technique that combines two 

group of features. The first group of features (called intrinsic features) was obtained from incoming 

transactions and spending history of customers. The authors used Recency-Frequency-Monetary 

(RFM) fundamentals to obtain this group of features. The second group of features was obtained 

by calculating a time-dependent score based on the network of credit card holders and credit card 

merchants. The authors used NN, logistic regression and RF to test model and RF yielded the best 

result. 

To summarise, most of the proposed techniques yielded promising results. However, most of the 

datasets used are very imbalanced. Most datasets contained higher percentage of legal transactions 

compared to fraudulent transactions. Furthermore, most of the proposed techniques were not tested 

on real-world dataset; they were tested on artificially generated dataset. This is because most 

financial institutions do not release datasets due to confidentiality agreements they sign with their 

customers. Additionally, classification speed and accuracy of most of the techniques were low. 

Most authors did not explore the use of NI techniques.  
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Figure 2.3: Existing credit card fraud techniques between years 2010 – 2015 

 

 

Figure 2.4: Number of proposed techniques for top six algorithms per year 

 

2.5.4 Limitations of credit card fraud detection  

Credit card detection is a fascinating domain. However, much work has not been done. The few 

authors that have worked in this domain provided little or no details on dataset used, features used 

and results obtained in their studies, making it very difficult to develop new techniques. 

Furthermore, many authors made use of imbalanced dataset [168, 170], and many of the credit 
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card detection techniques surveyed in this paper used ML algorithms [162]. Many of them yielded 

low classification accuracy, FP rates and False Negative rates [165, 173, 190]. This is likely 

because the techniques were not combined with good and effective feature selection and parameter 

optimization technique. NI algorithms can be used to improve the classification speed and 

accuracy of credit card fraud detection system. Future work should focus on designing 

classification models capable of handling variables with different misclassification cost, and 

should consider focusing on constructing accurate classification models based on NI-techniques. 

This will likely increase the performance of credit card detection solutions.  

2.6 General recommendations 

As shown in the literature survey, many e-fraud detection and SVM speed optimization techniques 

has been proposed in literature. Some studies used NI algorithms, including AIS, PSO, GA, SSA, 

BA and FFA. Others studies used ML algorithms such as ACO, KNN, Clustering, BN, Decision 

tree, SVM, ANN and RF. Additionally, some studies combined different algorithms. Some studies 

utilized static approach and others utilized dynamic approach. Static approaches, such as blacklist, 

whitelist and rule-based systems, should not be used as standalone techniques, because of their 

inefficiency in handling emerging attacks. Static approaches can be used in combination with other 

techniques. Furthermore, some techniques produced good results, but they could perform better if 

some factors (such as dataset size, feature size and parameters), were properly considered. Based 

on the literature survey, the following are some helpful recommendations that can be considered 

when designing SVM optimization and e-fraud detection techniques. 

1. Some of the proposed techniques yielded poor results because they were trained on few 

data instances. Dataset size used for training and testing in some studies is insufficient, for 

example, [195], [110], [195] and [78]. Email servers in real world scenarios store large 

volume of emails, hence email classifiers should be trained on sufficient number of data 

instances. Classifiers trained on large dataset would improve classification accuracy [120, 

133, 143].  

2. Feature size used in some studies is large. Generally, the performance of a classifier is 

determined by the quality (not quantity) of features used in training the classifier. Hence, 

instead of using large number of features for training, it is highly recommended that a 

reduced set of features is used. Feature selection techniques can be used to select relevant 
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features from a large feature set, which will consequently improve the overall performance 

of classifiers.  

3. Most authors did not explore instance selection. Instance selection techniques are designed 

to reduce number of training instances by removing redundant instances from a training 

dataset. Instance selection is particularly useful for instance-based classifiers, where 

classification of one instance involves the use of an entire training set [6].  NI-based 

algorithms can be used to design effective instance selection techniques. 

4. Speed optimization should be one of the main focus areas when designing email classifiers. 

Toolan and Carthy [106] designed an ensemble method for phishing detection (called R-

boost). The authors noted that ensemble methods are not effective phishing detection 

techniques compared to some classifiers, such as SVM.  Although R-boost outperformed 

almost all other techniques in literature, it is computationally expensive. This is because 

R-Boost requires at least four classifiers in the ensemble for the classification of just one 

sample. 

5. Classifiers that require input from external sources should be avoided. Slow network 

communication from external sources can significantly affect classification speed. Also, 

inaccurate result from external sources can affect the accuracy of the overall classifier. 

6. GA is not a fast algorithm for email classification. GA is time consuming [121]; it requires 

more parameter tuning [127]; it cannot effectively search for a perfect solution [129] and 

it is  not a good candidate for local optimization [129]. Memetic algorithm is an improved 

and better algorithm (compared to GA) that can handle local optimization [129]. However, 

local search of memetic algorithm is affected by the random order used by scores in 

genome when performing optimization [129]. 

7. PSO is a better feature selection technique compared to GA [139]. It has fewer parameters 

compared to GA and it also does not have complex time-consuming operators like GA, 

such as crossover and mutation [139, 151]. PSO is quicker in locating optimal solution 

compared to GA [151]. However, data size and feature size affect the execution time of 

PSO [151]. PSO is quicker in locating optimal solution compared to GA [151].  

8. Email classifiers should not be too complex. Algorithms used for designing email 

classifiers should be carefully chosen. For example, classifiers like Bayesian Classifier is 
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not mostly suitable for spam email classification [196]. Bayesian based techniques are 

vulnerable to Bayesian poisoning – a method used by spammers to bypass Bayesian based 

filters [124].  

9. Performance of NB is affected by large feature space [118, 144] and change in class ratio 

(e.g. spam to ham ratio) [137]. Hence, number of features used to train NB should be taken 

into proper consideration. A feature selection technique is  highly recommended. 

10. RVM is a good classification technique; it is faster than SVM and feature space 

dimensionality does not significantly affect its performance [118]. However, RVM 

consumes more time during training compared to SVM [118]. 

11. NN is not a good stand-alone spam email detection technique [116, 145, 146, 149]. 

Furthermore, NN requires more training time, and its accuracy is affected by number of 

instances and input features [145]. Hence for better performance, NN can be used in 

combination with NI optimization techniques. 

12. Rule-based systems are not capable of effectively handling emerging attacks. They require 

regular updates and can be easily bypassed by sophisticated attacks, because they are 

dependent on specific terms (i.e. rules). Hence, rule-based systems should be used as a 

supplement to dynamic techniques, such as NI-based and ML-based techniques. 

13. Some of the proposed techniques are biased towards a particular email class. A robust email 

classification technique should be capable of effectively handling both classes. 

14. Most of the existing spam email techniques are keyword-based. Wu and Tsai [142] noted 

that rate of keyword change is high, hence key-word based filters can be easily bypassed 

if not updated regularly. Behaviour-based features may be a better alternative to keyword-

based features. Rate of change of behaviour-based features is lower compared to keyword-

based features [142]. 

15. Most of the surveyed studies did not explore distributed systems. Computational speed of 

email classification can be greatly improved by implementing email filtering systems in 

distributed environments. In a distributed environment, different tasks are shared among 

different system in the environment, and the implementation of each task executes in 

parallel (or runs simultaneously). This approach is highly recommended, especially for 

huge data processing. 
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16. Static classification techniques, such as blacklist and whitelist, should not be used as  

stand-alone techniques. Blacklist and whitelist require regular update [75], and they are 

known to yield high FP rates. Moreover, both techniques cannot effectively detect zero 

hour phishing attacks [76], and they require more human resources [77]. 

17. Classification accuracy of spam email filtering systems depends on the number of 

overlapping words in different classes [143]. If two classes has too many overlapping 

words, the accuracy will be negatively affected [143]. Hence, prior to training, overlapping 

words should be reduced to the barest minimum. 

18. Some of the proposed technique did not perform cross validation. Cross validation is very 

important, because it will correct the statistical dependency of all individual instances in 

the dataset [75], and it will also lead to a good and accurate estimate of evaluation.  

19. Tradeoff between speed and accuracy should be taken into proper consideration when 

designing an email classifier. A good email classifier should be capable of efficiently 

classifying emails without significant degradation in classification accuracy.  

20. Credit card fraud detection systems usually process millions of transactions. Hence, to 

improve the classification performance of fraud detection systems, there is a need for 

robust data dimension reduction technique and feature selection technique. NI algorithms 

are good data reduction techniques. 

21. System developers can consider using HMM. It is simple to implement; it removes 

classification complexity and it can be used to produce simple classification models [173, 

181]. 

22. Misclassification cost should be handled with care. Although high value transactions have 

more impact, low value transactions should not be underestimated. This is because a system 

can be compromised if multiple low value transactions are done. Researchers should focus 

on designing algorithms that can handle classification tasks with variable misclassification 

cost.  

2.7 Chapter summary 

This section present a comprehensive literature survey of existing e-fraud detection techniques and 

also provide detailed information on the current-state-of-the-art on e-fraud detection. The 
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techniques reviewed in this section are divided into three categories: credit card fraud detection 

techniques, spam email detection techniques and phishing email detection techniques.  As shown 

in the review, many e-fraud detection techniques has been proposed in literature, however,  

ML-based techniques produced the best result. ML algorithms are very good classification tools, 

nevertheless, their performance is significantly affected by large increase in dataset size.  

Section 2.1 provide a review of some existing speed optimization techniques that has been 

proposed in literature. As shown in the review, three major speed optimization approaches has 

been adopted in literature, namely: feature selection, parameter optimization and instance 

selection. Among the three approaches, instance selection methods produced one of the best results 

[6]. Moreover, as shown in Table 2.1, most of the existing instance selection techniques focused 

on clustering algorithm, KNN and EA  [1, 53, 54]. Very few studies explored nature-inspired 

algorithms, and nature-inspired algorithms has the ability to efficiently find optimal solution to 

optimization problems. Therefore, this research propose NI ML-based models for e-fraud detection 

and classification problems. The design of the proposed techniques are discussed in Chapter 3. 
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Chapter 3  

Proposed Techniques 

This thesis proposes seven filter-based and five wrapper-based intelligent instance selection 

techniques for improving SVM training speed and predictive accuracy. This thesis also proposes 

a novel fitness function for instance selection. The filter-based techniques are designed for 

applications that require fast processing of large datasets, and the wrapper-based techniques are 

designed for applications that are very sensitive to a slight drop in classification accuracy. The 

main difference between the filter-based and wrapper-based techniques is in their method of 

selection. The filter-based techniques utilizes the proposed fitness function for instance selection, 

while the wrapper-based techniques utilizes SVM algorithm for instance selection. The primary 

objective of the filter-based techniques is to improve the training speed and consequently the 

computational complexity of SVM. The primary objective of the wrapper-based techniques is to 

improve the predictive accuracy and training speed of SVM. The filter-based techniques consist 

of seven instance selection techniques. The first two techniques are boundary detection algorithms, 

and they perform two major actions: boundary detection and instance selection. The two 

techniques are inspired by edge detection in image processing and edge selection in ACO. The 

remaining five filter-based techniques are inspired by the following NI algorithms: FPA, FFA, 

CSA, SSA and BA. The wrapper-based techniques consist of five instance selection techniques, 

inspired by FPA, FFA, CSA, SSA and BA. A brief introduction to SVM is presented next. 

3.1 Support Vector Machines preliminaries 

SVMs [197] are well-known classification and regression algorithms with a strong theoretical 

background. They can be used to handle both linear and non-linear classification problems. SVM 

performs linear classification using linear hyperplanes, and performs non-linear classifications 

using kernel functions. This section provides a brief introduction to SVM. 

3.1.1 Linear support vector machine  

As shown in Figure 3.1, Linear SVM (or hard margin SVM) can be used to classify instances that 

are linearly separable. Also, linear SVM can be used to classify instances that are not separable 

(soft margin SVM). Both cases are presented next. 
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3.1.1.1 Separable case 

Given a training dataset, T = [(𝑥𝑖, 𝑦𝑖), … … , (𝑥𝑛, 𝑦𝑛)], where 𝑥𝑖 represent the vector values for each 

feature in the dataset, 𝑦𝑖 represent the class labels. 𝑥 ∈  𝑅𝑛, 𝑦 ∈ [±1]. SVM aims to find a 

hyperplane with the widest possible margin. That is, the hyperplane that separates the positive 

class from the negative class. A hyperplane margin is computed by computing the distance 

between the closest positive class to the hyperplane and the closet negative class to the hyperplane. 

Hyperplanes with large distance (i.e. wide margin) are more resistant to noise compared to 

hyperplanes with smaller margins [29]. It is assumed that all data satisfy the following constraints: 

𝜔 . 𝑥𝑖 + 𝑏 ≥  +1   𝑦𝑖 =  +1            (3.1) 

 

𝜔 . 𝑥𝑖 + 𝑏 ≤  −1   𝑦𝑖 =  −1               (3.2) 

where 𝜔 is the vector values in the higher dimensional plane and 𝑏 is the bias (i.e. the offset value 

of the hyperplane). The two constraints (equations (3.1) and (3.2)) can be combined to yield the 

following [198]: 

𝑦𝑖(𝜔 . 𝑥𝑖 + 𝑏)  ≥ 1  ∀𝑖               (3.3) 

Furthermore, the margin 𝑚 for each hyperplane can be computed using equation (3.4). 

𝑚 =
|1−𝑏|

‖𝜔‖
 −  

|−1−𝑏|

‖𝜔‖
=  

2

‖𝜔‖
              (3.4) 

The best margin can be computed by finding a solution to the following primal optimization 

problem [198]:  

𝑚𝑖𝑛𝜔 ∈ ℋ  𝜏(𝜔) =  
1

2
  ‖𝜔‖2             (3.5) 

Subject to:  𝑦𝑖(𝜔 . 𝑥𝑖 + 𝑏)  ≥ 1  ∀𝑖 

For easier computation, the optimization problem can be re-formulated using the Lagrangian. The 

new optimization problem is given in equation (3.6). 

𝑚𝑖𝑛𝜔,𝑏𝐿(𝜔, 𝑏, 𝛼) ≡  
1

2
 ‖𝜔‖2 − ∑ 𝛼𝑖𝑦𝑖(𝑥𝑖𝜔 + 𝑏)𝐿

𝑖=1 +  ∑ 𝛼𝑖
𝑙
𝑖=1             (3.6) 

where 𝛼 is the Lagrangian multiplier. Generally, some compulsory conditions must be satisfied 

for a non-linear programming solution to be optimal. This conditions are referred to as Karush-

Kuhn-Tucker (KKT) conditions [199]. 
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3.1.1.2 Non-separable Case 

As aforementioned, some classification tasks cannot be effectively handled by linear classifiers, 

especially classification involving non-separable datasets. Soft margin SVM [200] was introduced 

to handle this type of classification. Soft margin SVM permits some mislabeled instances and then 

pays the cost for each mislabeled instance by adding slack variables, ξi to the re-formulated 

optimization problem defined in equation (3.6). This leads to the following equation [198]: 

∀𝑖  {

𝜔 . 𝑥𝑖 + 𝑏 ≥ 1 −  𝜉𝑖           𝑦𝑖 =  +1         
𝜔 . 𝑥𝑖 + 𝑏 ≤ −1 − 𝜉𝑖     𝑦𝑖 =  −1            
𝜉𝑖  ≥ 0                                                            

          (3.7) 

The addition of slack variables (as shown in equation (3.7)) causes some instances to fall within 

the decision boundary. Although, this makes SVM more robust to outliers, large slack variables 

can affect the optimality of a solution. Therefore, the original objective function (defined in 

equation (3.5)) can be modified to cater for slack variables. This leads to the following 

optimization problem [198]: 

𝑚𝑖𝑛𝜔 𝜖 ℋ,𝜉 𝜖 ℝ𝑚  𝜏(𝜔, 𝜉) =  
1

2
 ‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1           (3.8) 

Subject to:           ∀𝑖  {

𝜔 . 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖          𝑦𝑖 =  +1         
𝜔 . 𝑥𝑖 + 𝑏 ≤ −1 − 𝜉𝑖    𝑦𝑖 =  −1            
𝜉𝑖  ≥ 0                                                            

 

where 𝐶 is a user-defined cost parameter that states the penalty that should be assigned to instances 

that are misclassified. The parameter 𝐶 must be a positive value. Similar to the linearly separable 

case, the optimization problem defined in equation (3.8) can be transformed to form the following 

dual optimization problem: 

𝑚𝑎𝑥𝛼𝐿𝐷 =  ∑ 𝛼𝑖𝑖 −  
1

2
 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗𝑖,𝑗           (3.9) 

Subject to:            ∀𝑖 {
∑ 𝛼𝑖𝑦𝑖 = 0𝑖

𝐶 ≤ 𝛼𝑖  ≤ 0
 

3.1.1.3 Karush-Kuhn-Tucker (KKT) conditions 

The SVM optimization problem is a convex problem, hence, given the optimization problem 

defined in equation (3.6), the following KKT conditions are the necessary and sufficient conditions 

that must be satisfied for 𝜔∗, 𝑏∗ and 𝛼∗ to be a solution [201]. 

𝜕𝐿(𝜔∗,𝑏∗,𝛼∗)

𝜕𝜔
=  𝜔𝑣 − ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑣 = 0    𝑣 = 1, … , 𝑑𝑖        (3.10) 
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𝜕𝐿(𝜔∗,𝑏∗,𝛼∗)

𝜕𝜔
=  − ∑ 𝛼𝑖𝑦𝑖𝑖 = 0          (3.11) 

𝑦𝑖(𝑥𝑖 . 𝜔 + 𝑏) − 1 ≥ 0, ∀𝑖          (3.12) 

𝛼𝑖  ≥ 0       ∀𝑖              (3.13) 

𝛼𝑖(𝑦𝑖(𝜔 . 𝑥𝑖 + 𝑏) − 1) = 0, ∀𝑖          (3.14) 

 

3.1.1.4 Dual optimization problem 

Solving the primal optimization problem (over 𝛼𝑖), leads to the following SVM formulation, called 

the dual optimization problem [202]: 

𝑚𝑎𝑥𝛼𝐿𝐷 =  ∑ 𝛼𝑖𝑖 −  
1

2
 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗𝑖,𝑗         (3.15) 

Subject to:  ∀𝑖 {
∑ 𝛼𝑖𝑦𝑖 = 0𝑖

𝛼𝑖  ≥ 0
 

Solving the above dual problem produces some bunch of alpha (𝛼𝑖) coefficients. Positive alpha 

coefficients are the most important points for classification, hence they are called support vectors. 

To save computational time, only instances with positive alpha values are normally used for 

classification. 

3.1.2 Non-linear support vector machine 

SVM is not only useful for linear decision boundaries, it can also be extended to handle non-linear 

decision boundaries. This is achieved by using kernel functions, which map or transform the non-

linear data space to a higher dimensional feature space [27]. For non-linear cases, the following 

optimization problem is solved [29]:  

𝑚𝑎𝑥𝛼𝐿𝐷 =  ∑ 𝛼𝑖𝑖 −  
1

2
 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑖,𝑗         (3.16) 

Subject to:         ∀𝑖 {
∑ 𝛼𝑖𝑦𝑖 = 0𝑖

𝐶 ≤ 𝛼𝑖  ≤ 0
 

The optimization problem defined in equation (3.15) is similar to the problem defined in equation 

(3.16). The major difference is in the dot product (i.e. 𝐾(𝑥𝑖, 𝑥𝑗)), which is the dot product in the 

mapped or higher dimensional space. Kernel functions could be valid or invalid. Kernel functions 

are said to be valid if they satisfy the Mercer condition. The optimization problem for invalid 

kernel functions may be unsolvable [202]. Some popular kernel functions include [27]: 

i. Linear Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗  
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ii. Polynomial Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, 𝛾 > 0 

iii. Radial Basis Function (RBF) Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2),   𝛾 > 0 

iv. Sigmoid Function kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) =  tanh(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

where 𝛾, 𝑟 𝑎𝑛𝑑 𝑑 are the kernel parameters. 

3.1.3 Support Vector Machine quadratic programming solvers  

Optimization problems can be solved using Quadratic Programming (QP) solvers. Solving the 

optimization problem produces different hyperplanes and the hyperplane with the best margin is 

usually selected and used for classification. Some SVM training methods utilizes sequential QP 

solvers while others uses a faster and improved QP solver, called Sequential Minimal Optimization 

(SMO).  

3.1.3.1 Sequential quadratic programming 

Sequential QP is a popular QP technique used for solving numerical QP nonlinear optimization 

problems. Consider the following nonlinear optimization problem: 

𝑚𝑖𝑛𝑥 𝑓(𝑥)            (3.17)  

Subject to: 𝑑(𝑥) ≥ 0 

𝑒(𝑥) = 0            (3.18) 

where 𝑥 ∈  ℝ𝑛 

The Langrangian formulation for the above nonlinear optimization problem is given as follows 

[203]: 

ℒ(𝑥, 𝜆, 𝜎) = 𝑓(𝑥) −  𝜆𝑇𝑑(𝑥) − 𝜎𝑇𝑒(𝑥)         (3.19) 

where 𝜆 𝑎𝑛𝑑 𝜎 represent Lagrange multipliers. Solving equation (3.19) using sequential QP, a 

suitable search direction can be defined as a solution to the following QP sub-problem: 

𝑚𝑖𝑛𝑔𝑓(𝑥𝑖) +  𝛻𝑓(𝑥𝑖)𝑇𝑔 +  
1

2
 𝑔𝑇 𝛻𝑥𝑥

2  ℒ(𝑥𝑖, 𝜆𝑖, 𝜎𝑖)𝑔       (3.20) 

  Subject to:  𝑑(𝑥𝑖) +  𝛻𝑒(𝑥𝑖)𝑇𝑔 ≥ 0  

𝑒(𝑥𝑖) +  ∇𝑒(𝑥𝑖)
𝑇𝑔 = 0  
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3.1.1.2 Sequential minimal optimization 

SMO, proposed by Platt [204], is an improvement over the existing SVM algorithms, which uses 

numerical QP. The algorithm was proposed to produce faster solutions to SVM. SMO was 

designed to solve the minutest optimization problem, which in standard SVM, involves two 

Lagrange multipliers. At each iteration, SMO selects and optimizes two Lagrange multipliers, and 

immediately update SVM to show the newly-optimized values. Platt [204] noted that two Lagrange 

multipliers can be solved using analytical methods, hence, SMO totally avoided the use of 

numerical QP, which is time consuming. To solve for the two Lagrange multipliers, firstly, SMO 

computes their constraints and finally computes their minimum. For more information on SMO, 

the interested reader is directed to [204].  

3.1.4 Support vector machine computational complexity 

Time complexity for an algorithm measures the total execution time for the algorithm. Time 

complexity is commonly expressed in terms of Big O notation. Given a matrix 𝑋 ∈ ℝ𝑛∗𝑑 where 

𝑛 denotes the number of matrix points and 𝑑 represent the matrix dimension. Computational 

complexity for the SVM primal optimization problem is 𝑂(𝑛𝑑2 +  𝑑3) [205]. Also, computational 

complexity for the SVM dual optimization problem is 𝑂(𝑑𝑛2 +  𝑛3) [205]. Chapelle [205] noted 

that either the primal or dual optimization problem could be solved depending on whether the size 

of 𝑛 is less or greater than 𝑑. This results in a computational complexity of 

𝑂(max(𝑛, 𝑑) min(𝑛, 𝑑)2). Obviously, the computational complexity of SVM is high, making it 

unrealistic to handle applications that process vast volumes of data. Hence, this thesis proposes 

different instance selection techniques that reduce the number of training instances (i.e. 𝑛), and 

consequently the computational complexity, without significantly affecting the classification 

quality.  
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Figure 3.1: Linearly separable vs. non-linearly separable data [202] 

3.2 Instance selection preliminaries 

Instance-Based Learning (IBL) algorithms make use of the NN classifier for classification. The 

nearest neighbour algorithm performs classification by searching for nearby instances that have 

been detected beforehand. Instance-based classifiers comprehensively store training instances [7]. 

This leads to indiscriminate storage of irrelevant instances [7], which enormously affect their 

computational complexity. Class structure formed by different instances varies between problems, 

hence a single instance selection technique cannot be used to effectively handle different problems 

[7]. This implies that class structure is an important factor that must be considered when 

developing instance selection techniques [7]. IBL algorithms typically face the challenge of 

selecting relevant instances that are  suitable for classification [206]. Processing a large volume of 

instances requires large memory space and leads to poor classification speed and noise 

oversensitivity [206]. 

Instance selection is performed by using different approaches: competence enhancement and 

competence preservation [7]. Competence enhancement aims to remove noisy instances from a 

dataset and consequently increases the accuracy of a classifier [7]. Competence preservation aims 

to remove superfluous instances. Typically, competence enhancement has a higher probability of 

improving the classification accuracy since only low number of instances are removed. 

Competence preservation has a low probability of improving the classification accuracy, since 

many instances are removed [7]. However, in competence preservation the classification accuracy 

is preserved. 
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A typical training set consists of different instances, where each instance consists of input vectors 

and a predicted output value. Typically, a ML algorithm is trained on a set of instances (called 

training dataset) and tested on a completely different set of instances (called test dataset). Machine-

learning algorithms are expected to predict the output values of the instances in the test dataset. 

Many ML algorithms perform prediction by using a distance function which computes the distance 

between learned patterns and incoming instances [206]. Learned patterns could be from the 

training instances, hyperrectangles, prototypes or rules [206]. The number of instances to store and 

the size of the instance space are two major challenges faced by IBL algorithms.  

IBL algorithms is a subclass of exemplar-based learning algorithms [206]. Other sub-classes 

include [206]: memory-based learning [207], exemplar-based generalization [208] and case-based 

reasoning [209]. IBL algorithms use training instances as exemplars [206]. The NN is an example 

of an IBL algorithm. During classification, IBL algorithms utilize a distance function to compute 

the proximity of each stored instance to each input instance, and predict the class of the input 

instance based on its proximity to the stored instances [206]. It is essential to only store relevant 

instances during classification. Irrelevant instances will negatively affect generalization 

performance, classification accuracy and speed [206]. 

3.2.1 Instance space structure 

The manner in which classification algorithms detect relevant instances in an instance space is 

presumed to be similar [7]. Designing a single technique that can solve any classification problem 

would be the perfect situation. However, this may not be possible because, there are two wide 

groups of instance space structures, and each of these structures requires different classification 

approaches [7]. The structures include: homogenous and non-homogenous class structure [7].  

3.2.2 Homogenous class structure  

Homogenous class structure refers to class structures containing a group of instances with similar 

neighbourhood [7]. Most of the existing classification problems in ML have a homogeneous class 

structure [7]. If we have a class with homogeneous instance collection, relevant instances can be 

recognized by identifying prototype instances or top quality instance. Instances that are on the 

class borders are always very important to the prediction process. Additionally, instances that are 

far from the borders (called interior instances) are not relevant to the classification process, hence 

their removal does not affect the classification accuracy of a NN classifier [7]. Although high 
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utility instances may also be on the class borders, it is not certain that these instances are relevant 

to the classification process [7]. This is because, identification of high quality instances requires a 

feedback that shows instances that have been previously used for classification [7]. Instances that 

have been previously used will likely have an accurate utility value and instances that have not 

been previously used will likely have an incorrect utility value [7].   

3.2.3 Non-homogenous class structure 

A non-homogeneous class refers to class structures with different neighbourhood. Instance 

selection from an instance space with non-homogeneous class structure is not reasonable, because 

every instance in a non-homogeneous class is a critical instance, since they all belong to the same 

neighbourhood [7]. Hence, the best way to remove instances from an instance space with non-

homogenous class structure is by identifying prototype instances [7]. 

3.2.4 Instance selection design and search techniques 

Instance selection algorithms are generally designed to select a reduced set from a training dataset. 

They can also be designed to transform instances using different representation techniques such as 

prototypes [208] and hyperrectangles [210]. Regarding instance selection algorithms that aim to 

select a reduced set, data points may be absent from the exact points where accurate classification 

accuracy can be achieved; unlike prototypes and hyperrectangles, which can be designed to be in 

regions where classification accuracy can be precisely achieved  [206]. There are three search 

methods utilized by instance selection techniques: incremental, decremental and batch search 

techniques.  

3.2.4.1 Incremental search technique 

Incremental search technique starts with an empty subset (𝑆), and adds relevant instances into 𝑆 

during the process of selection. The added instances are based on whether they fulfil some user-

defined conditions. The order in which the instances are presented matters, because some instances 

will likely not be included in 𝑆 if they were visited at a later time. Also, some incremental 

algorithms do not retain all training instances during the learning phase. Hence, in incremental 

technique, the presentation order is very important [206]. In an incremental search, more relevant 

instances can be added to the subset (using the same defined conditions), even after the training 

phase. Also, an incremental search is faster than non-incremental techniques and some training 
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instances can be discarded during the learning phase. Incremental search requires 𝑂(𝑛𝑠) for time 

and 𝑂(𝑠) for storage, instead of 𝑂(𝑛)2 for time and 𝑂(𝑛) for storage, where 𝑛 is the number of 

instances in the training dataset and 𝑠 is the number of retained instances. One of the main 

drawbacks of incremental techniques, is their sensitivity to the order of presentation of instances 

[206]. Also, in the incremental technique, the first few instances are prone to be misclassified, 

since their classification is based on few presented instances  [206]. 

3.2.4.2 Decremental search technique 

The decremental search technique starts with the entire training set (𝑆 = 𝑇), and removes instances 

from 𝑆 based on some conditions [6]. The order of presentation of instances is also important in 

the decremental search technique [6]. However, during the learning phase, all the training instances 

are not discarded and they are available throughout the phase. Hence, this search technique requires 

more space, and it is slower than the incremental search technique.  

3.2.4.3 Batch search technique 

In the batch search technique, the entire dataset is processed at once and irrelevant instances are 

discarded. Hence, instead of constantly updating a subset, instances that meet a pre-defined 

condition are removed from the training set at once, and the others are retained for classification. 

Batch removal may be detrimental, especially if the removal condition is not well defined. The 

batch search technique also has high computational complexity compared to the incremental  

technique  [206]. 

3.2.4.4 Instance selection techniques selection criteria 

Some instance selection techniques aim to store border instances, because border instances 

contribute more to the decision surface compared to non-border instances (called interior 

instances). Removal of non-border instances does not significantly affect a decision surface, hence 

their removal has a negligible effect on classification accuracy [206]. However, some instance 

selection techniques remove border instances. That is, noisy instances or instances that disagrees 

with their neighbours [206]. Removal of these instances result in a better decision surface, but may 

also affect the decision process, since some irrelevant instances are retained  [206]. 

Selecting the suitable number of nearest neighbours (i.e. 𝑘) is a challenging task in instance 

selection [206]. It is important that the value of 𝑘 is set to an odd integer number, so that the votes 
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for the majority class will always be greater than the votes for the minority class. This will also 

ensure that an input vector does not have two predicted classes. Additionally, it is important that 

the value of 𝑘 is always greater than one, to ensure that new instances are not always assigned to 

one class. Leave-One-Out cross-validation is one of the popular methods that can be used to select 

the value of 𝑘 [206]. In Leave-One-Out cross validation, each value of 𝑘 is evaluated by classifying 

each instance by its 𝑘 nearest neighbours, leaving out the instance itself [206]. Afterwards, the 𝑘 

value that yields the best classification accuracy is selected [206]. Some algorithms, such as RBF, 

use a weighting scheme that permits every instance in the dataset to vote.  

3.2.5 Types of instance selection 

Similar to feature selection, instance selection techniques can be grouped into two areas: wrapper 

and filter. The major difference between wrapper and filter instance selection techniques is in their 

method of selection. Wrapper-based instance selection techniques utilize a classifier to evaluate 

the accuracy of each subset during the selection phase [6]. As shown in Figure 3.2, instances that 

contribute less to classification accuracy are removed from the dataset [6]. Filter-based instance 

selection techniques do not depend on the accuracy of a classifier; instances are selected based on 

a fitness function [6]. Instances with low fitness value are removed from the training dataset and 

instances with high fitness value are retained in the dataset. Filter-based instance selection 

techniques are generally faster than wrapper-based instance techniques, especially, when a large 

volume of data processing is involved [6]. 

 

Figure 3.2: Instance selection process 

Source: [6] 
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3.3 Boundary detection algorithms 

As aforementioned, two of the proposed filter-based techniques perform two main actions: 

boundary detection and instance selection. Firstly, they detect a boundary, and then select instances 

close to the boundary. The two boundary detection techniques are discussed next. 

3.3.1 Edge Detection instance selection algorithm 

This thesis proposes an instance selection technique called Edge Detection Instance Selection 

Algorithm (EDISA). EDISA is a boundary detection algorithm, inspired by edge detection in 

image processing. A brief introduction to edge detection is presented next, followed by details on 

the proposed edge detection algorithm. 

3.3.1.1 Edge detection overview 

Edge detection in image processing is a technique used to identify object boundaries in images 

[211]. Object boundaries are points in images with sharp changes in image brightness [211]. 

Generally, images contain some quantity of redundant data that requires pruning for effective 

classification. Hence, to reduce computational complexity, edge detection is a highly essential pre-

processing step [212]. Edge detection is applied to images with the aim of identifying important 

features, removing less-relevant information and consequently reducing the image size. Generally, 

edge detection is used for segmentation of images, feature extraction, and feature detection in 

image processing, computer vision and machine vision [211-213]. Edge detection conserves 

essential structural properties of images and computer space [212]. Some edge detection 

algorithms include: Canny algorithm, Sobel algorithm, Roberts algorithm, etc. Figure 3.3 shows 

an example of an image and its detected edges.  

The concept of Edge detection in image processing is similar to the concept of boundary detection 

in SVM classification. Edge detection aims to select objects located at boundary positions, and 

boundary detection algorithms aims to select instances (also called support vectors) close to a 

decision boundary. In this research, an instance selection technique that is inspired by edge 

detection is proposed. 
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Figure 3.3: Example of edge detection [211] 

3.3.1.2 Edge detection instance selection algorithm 

As aforementioned, EDISA is inspired by edge detection in image processing. Given a set of 

training instances, EDISA identifies an edge instance and selects 𝑁 instances close to it. As shown 

in Algorithm 3.1, the algorithm begins by initializing the vote count for all instances in the dataset 

(line 1). The vote count shows the number of times each instance is voted (as an edge instance) by 

other instances. To enhance speed, the filter-based techniques are designed to utilize just a fraction 

of the entire dataset, hence, in line 3, the algorithm randomly select M instances from the training 

dataset (line 3). Furthermore, for each instancej in the dataset, EDISA computes their individual 

neighbourhood list by computing the squared Euclidian distance between instancej and other 

instances in the dataset (line 6). In addition, for each 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑗 , based on the proximity of other 

instances in the neighbourhood list of instancej, EDISA votes a corresponding edge instance, 

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘 (line 8). Instancek is the edge instance for instancej, if it is the farthest instance from 

instancej. That is, instancek is the edge instance of instancej, if it has the highest euclidean 

distance compared to other instances in the neighbourhood list of instancej. Furthermore, in line 

12, EDISA increases the vote count for the current voted edge instance (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘). The process 

is repeated until the neighbourhood list of all the instances in the dataset has been processed. 

Afterwards, EDISA selects the instance with the majority (or highest) vote (line 14), and computes 

the 𝑘 nearest neighbours to the selected instance (i.e. the selected edge). Finally, the identified 𝑘 

nearest neighbours are used to train SVM. Some experiments were performed to test the efficiency 

of EDISA, and the result reveals that EDISA significantly improved the SVM classification speed. 

Experimental results are presented in Section 4.4. 
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Algorithm 3.1: Edge Instance Selection Algorithm 

Input: 𝑁, 𝑁𝑠𝑢𝑏, 𝐾 

Output: EI[] /* output array of edge instances for training */ 

1 Initialize 𝑉𝑜𝑡𝑒[𝑁] /* Initialize vote count for each instance */ 

2  𝐷𝐸𝐶𝐿𝐴𝑅𝐸 𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡, 𝑑𝑖𝑠𝑡[, ], 𝑖𝑛𝑑𝑒𝑥  

3 Randomly select M instances from dataset, where M = Nsub 

4 For 𝑗 = 1 to 𝑁  

5 For 𝑘 = 1 to 𝑁 

6  𝑑𝑖𝑠𝑡[𝑗, 𝑘] = 𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑗 , 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘), 𝑤ℎ𝑒𝑟𝑒 𝑗 ≠ 𝑘 

7  if 𝑑𝑖𝑠𝑡[𝑗, 𝑘] > 𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 

8   𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 ←  𝑑𝑖𝑠𝑡[𝑗, 𝑘] /*get the farthest 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘 from 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑗*/ 

9   𝑖𝑛𝑑𝑒𝑥 ← 𝑘 /*save the index of the farthest 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘 */ 

10  end if 

11 End 𝑘 

12 𝑉𝑜𝑡𝑒[𝑖𝑛𝑑𝑒𝑥]+= 1 /*Increase vote count for the farthest 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘*/ 

13 End 𝑗 

14 𝐸 ← 𝑉𝑜𝑡𝑒. 𝑀𝑎𝑥() /*Select the edge, i.e. instance with the majority vote */ 

15 EI ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐾𝑁𝑁(𝐸) /*Get edge instances, i.e. k nearest neighbors from E*/ 

16 Return EI 

3.3.2 ACO inspired boundary detection and instance selection technique 

This thesis proposes a boundary detection and instance selection technique, called Ant Colony 

Optimization Instance Selection Algorithm (ACOISA). As shown in Figure 3.4, ants move 

randomly in search for food, and immediately an ant locates a food source, it deposits pheromone 

trails on its way back to its nest. The deposited pheromone trails leads other ants to the same food 

source, thereby minimizing the total time taken for a food search. Trails with the highest 

pheromone concentration lead to the best food source. Inspired by the same concept, ACOISA 

searches a dataset for boundary instances, and selects the instance with the highest pheromone 

value. The instance with the highest pheromone value is the best boundary instance. Subsequently, 

𝑛 instances close to the selected boundary instance are selected and used for training, where 𝑛 is 
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user defined. It is worth mentioning that in ACOISA, ACO algorithm was primarily used for 

boundary identification and not instance selection. A full description of ACOISA is presented in 

Section 3.3.2.2.  

3.3.2.1 Ant Colony Optimization overview 

ACO is a swarm intelligence-based algorithm, inspired by the foraging behaviour of ant colonies. 

The initial algorithm, originally proposed by Marco Dorigo [214], seeks to find the best path in a 

graph. The idea was motivated by ant behaviours, which seek to search for the best path between 

their colony and a food source. In their search for food sources, ants randomly move around the 

region surrounding their colony [215]. Upon locating a food source (as shown in Figure 3.4), ants 

take some of the food back to their nest, and simultaneously deposit pheromones on the ground 

while returning [215]. This deposited pheromones, forms a trail and guides other colony members 

to the food source. Other colony members also deposit pheromones on the ground, when returning 

to their colony. Hence, paths frequently walked upon by ants form the shortest path and thus 

influence an ant’s choice of path [216]. Generally, ants use pheromones as a means of 

communication. Ant movements are controlled by a probabilistic action rule. Movement of a given 

ant, from one node (node a) to another node (node b), is determined by equation (3.21) [217]. 

 

𝑝𝑖,𝑗
(𝑛)

=  
(𝜏𝑎,𝑏

𝑛−1)
𝛼

 (𝜂𝑎,𝑏)
𝛽

 

∑ (𝜏𝑎,𝑏
𝑛−1)

𝛼
 (𝜂𝑎,𝑏)

𝛽
𝑗 𝜖 𝛺𝑎

, 𝑖𝑓 𝑏 ∈ 𝛺𝑎          (3.21) 

     

where 𝜏𝑎,𝑏
𝑛−1 is the pheromone deposited on the arc connecting 𝑛𝑜𝑑𝑒 𝑎 to 𝑛𝑜𝑑𝑒 𝑏, Ω𝑎 is the set of 

possible nodes an ant can visit, given that the ant is on node a; 𝛼 controls the impact of pheromone 

information, 𝛽 controls the heuristic information. 𝛼 𝑎𝑛𝑑 𝛽 are constants. 𝜂𝑎,𝑏 is the heuristic 

information for an ant moving from node a to node b, and it is a fixed value for each iteration. In 

ACO, pheromone matrix is updated twice. The first update is performed after movement of each 

ant within each construction step, and the second update is performed after all the ants have moved 

within each construction step [217]. The first and second updates are represented by equations 

(3.22) and (3.23), respectively [217].  
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𝜏𝑎,𝑏
𝑛−1 =  {

(1 −  𝜌) ∗  𝜏𝑎,𝑏
𝑛−1 +  𝜌 ∗  ∆𝑎,𝑏

(𝑘)
,                𝑖𝑓 (𝑎, 𝑏) 𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

 
𝜏𝑎,𝑏

𝑛−1,                                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (3.22) 

where 𝜌 is the evaporation rate.  

𝜏(𝑛) = (1 −  𝜓) ∗ 𝜏(𝑛−1) +  𝜓 ∗ 𝜏(0),              (3.23) 

where 𝜓 is the pheromone decay coefficient.  

 

Figure 3.4: Description of ant colony optimization [218] 

3.3.2.2 Ant Colony Instance Selection Algorithm 

ACOISA is inspired by edge selection in ACO, and it uses ACO to construct a pheromone matrix, 

where each entry in the matrix represent the boundary information for each instance in the dataset. 

As shown in Algorithm 3.2, ACOISA begins by randomly selecting M subset of instances from 

the dataset, where M is user-defined (line 8). Furthermore, N ants are randomly assigned to all the 

instances in the subset, where each instance represents a node (line 9). Further, ACOISA computes 

the heuristic value for all instances in the dataset (line 10 – 21). As aforementioned, ACOISA aims 

to select the boundary instance with the highest pheromone value. Hence, the heuristic value for 

each instance is designed to reflect the boundary information of each instance. ACOISA computes 

the heuristic value for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 by first computing the Euclidean distance between 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 

and other instances in the data subset (line 11-14). Afterwards, based on the computed distances, 

ACOISA selects the k nearest neighbours to 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 (line 15). Furthermore, ACOISA selects 
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all the instances of the opposite class in the neighbourhood list of 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 and sum their 

individual distances (line 16-20). For example, if there are two classes (class a and class b), and 

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 belongs to class a, the computed Euclidean distances between  𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖 and other 

instances in its neighbourhood list, belonging to class b, will be summed and used as the heuristic 

value for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖. This process is repeated until the heuristic value for all the instances in the 

dataset are computed. At the end of the heuristic value computation stage, the instance with the 

highest heuristic value, will be the instance with the largest number of selected boundary instances, 

and the instance that contain boundary instances that are far away from their respective boundaries. 

The farther they are from the boundary, the wider the margin. And, recall that the goal of SVM is 

to select the boundary with the largest margin. Hence, the instance with the highest heuristic value 

will be the instance with the widest margin.  

After the heuristic value for all instances has been computed, 𝑁 ants are moved around the dataset 

(line 22-31). Initially, an ant is randomly selected and moved for a pre-defined number of steps 

(line 24-27). This ant moves from one node (𝑛𝑜𝑑𝑒 𝑥) to another node (𝑛𝑜𝑑𝑒 𝑦) in its neighborhood 

list, according to a probability defined in equation (3.24). 

𝑝𝑥,𝑦
(𝑛)

=  
(𝜏𝑦 

𝑛−1)
𝛼

 (𝜂𝑦)
𝛽

 

∑ (𝜏𝑦 
𝑛−1)

𝛼
 (𝜂𝑦)

𝛽
𝑦 𝜖 𝛺𝑥

,           (3.24) 

where 𝜏𝑦 
𝑛−1 refers to the pheromone value of 𝑛𝑜𝑑𝑒 𝑦, Ωx is the neighbourhood list of 𝑛𝑜𝑑𝑒 𝑥, 𝜂𝑦 

represent the heuristic information at node y. 𝛼 𝑎𝑛𝑑 𝛽 are user-defined constants. 𝛼 controls the 

pheromone matrix and 𝛽 controls the heuristic matrix. Each node has five values: initial 

pheromone value, current pheromone value, heuristic value, position and neighbourhood nodes. 

Initial pheromone value is set to a constant value, heuristic value is computed using 𝑘-NN, as 

explained above. The position for each ant is defined by equation (3.24), and neighbourhood nodes 

for each node contain the list of possible nodes that a given ant can move to. The current 

pheromone value is updated twice. The first update is performed in line 26, according to equation 

(3.25). This update is performed every time an ant is moved. The second update is performed after 

all ants have been moved, according to equation (3.25) (line 29). 

𝜏𝑦
𝑛−1 =  {

(1 −  𝜌) ∗  𝜏𝑦
𝑛−1 +  𝜌 ∗ ∆𝑦

(𝑧)
, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑦 𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑣𝑖𝑠𝑡𝑒𝑑

 
𝜏𝑦

𝑛−1,                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3.25) 
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where 𝜌 is the evaporation rate, ∆𝑦
(𝑧)

represent the heuristic information at the zth node. Finally, the 

best node (node with the highest pheromone value) is selected in line 32, and 𝑘-NN algorithm is 

used to select boundary instances (line 33). Boundary instances refer to instances close to the 

selected best node. Finally, the selected boundary instances are used to train SVM (line 35) and 

the average predictive accuracy is computed. This process is repeated until N runs have been 

reached, where N is user defined. 
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Algorithm 3.2: Ant Colony Optimization Instance Selection Algorithm 

Input: 𝐷, 𝑁𝐹, 𝑀𝑎𝑥𝐺, 𝑁, 𝑁𝑆𝑢𝑏, 𝑁𝑅, 𝑁𝑅𝑢𝑛𝑠, 𝐾 

Output: 𝐴𝐶𝐴 

1 Start SVM /* main method /* 

2 for 𝑖 = 1 to NRuns 

3     for 𝑗 = 1 to 𝑁𝐹 

4  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ← 9/10 𝑜𝑓 𝐷 /*Get the training dataset for the current fold */ 

5  𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ← 1/10 𝑜𝑓 𝐷 /* Get the test dataset for the current fold */ 

6  𝐴𝐶𝑂𝐼𝑆𝐴(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡) /*Pass training subset to ACOISA for boundary and instance selection*/ 

7   Randomly select M training instances from TrainingDataset, where M = size of training subset   

8   Randomly assign ants to instances and initialize pheromone value for all ants 

9   for 𝑎 = 1 to 𝑁 /* Compute heuristic value for all instances in dataset */ 

10    for 𝑏 = 1 to 𝑁 

11     Compute distance between instancea  and instanceb, where a ≠ b 

12     dist[a, b] = distance 

13    end b 

14   NL[a] ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐾𝑁𝑁(𝑑𝑖𝑠𝑡[𝑎])  /*Compute k nearest neighbours for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑎  */ 

15    for 𝑏 = 1 to 𝐾  /* Compute heuristic value for each instance */ 

16     if Class of instancea ≠ Class of NL[a, b] 
17           𝐻𝑉[𝑎]+=  dist[a, b] /*compute the heuristic value for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑎*/ 

18     end if 

19    end b 

20   end a 

21   while (p < 𝑀𝑎𝑥𝐺) /* Start moving ants */ 

22    for 𝑘 = 1 to 𝑁 

23     for 𝑚 = 1 to 𝑁𝑅 

24      Move 𝑘𝑡ℎ ant to 𝑚𝑡ℎ neighbouring node using equation (3.24) 

25      Perform update using equation (3.25) 

26     end 𝑚 

27    end 𝑘 

28    Perform update using equation (3.23) 

29    p++ 

30   end while 

31   E ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝐻𝑉, 𝐷) /*Select instance with the highest heuristic value*/  

32   𝐸𝐼 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐾𝑁𝑁(𝐸) /*Select k nearest neighbours to the Boundary Instance*/ 

33  end ACOISA  

34  TrainSVM(EI) /*Train SVM on the selected Edge instances*/ 

35  𝑛𝑒𝑤𝐶𝐴 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡) 

36  𝐶𝐴+= 𝑛𝑒𝑤𝐶𝐴 

37     end j  

38     𝐴𝐶𝐴+=  𝐶𝐴 / 𝑁𝐹 

39 end i 

40 Output 𝐴𝐶𝐴/𝑁𝑅𝑢𝑛𝑠 

41 end SVM 

__________________________________________________________________________________________ 
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3.4 Nature inspired instance selection algorithms 

Nature solves complex problems of varying difficulties. Interestingly, nature solves these complex 

problems in simple ways. This has inspired many researchers to design algorithms that are useful 

for solving real-world complex problems, such as e-fraud detection [219], travelling salesman 

problem [220], parking lot problem [2] and hostel allocation problems [3]. These algorithms are 

called NI algorithms. In simple terms, NI techniques refer to algorithms that are inspired by the 

problem-solving ability of nature. 

Examples of NI algorithms include: river formation dynamics algorithm [221], simulated 

annealing [222], FPA [223] and SSA [224]. River formation dynamics is inspired by the manner 

in which water drops form a river bed; simulated annealing is inspired by the annealing process of 

metals; FPA is inspired by the pollination process of flowers and SSA is inspired by the foraging 

behaviour of social spiders. NI algorithms can be used to handle problems without relying on 

existing domain knowledge [25]. They can also be used to handle problems in the presence of 

noise or outliers [25]. Moreover, unlike many AI techniques, NI algorithms are robust and 

dynamic, they can easily adjust to a fluctuating environment [25], such as e-fraud detection. NI 

algorithms are designed to handle continuous problems, nevertheless, since instance selection is a 

binary problem, as shown by Jordehi and Jasni [225], the sigmoid function or the rounding off 

approach can be used to convert each agent position from continuous to binary values (0 or 1), 

where 1 indicates that an instance is selected, and 0 indicate that an instance is not selected. In this 

research, some experiments were performed to check the effectiveness of the Rounding off 

approach and the sigmoid function. Experimental results show that, for FPA and FFA, the values 

from the sigmoid function are mostly skewed towards 1, while the values from the rounding off 

approach are uniformly distributed. Moreover, for SSA, CSA and BA, the values from the sigmoid 

function are uniformly distributed. Hence, in this study, the rounding off approach is used to 

convert each flower and firefly position from continuous to binary values (0 or 1). Also, the 

sigmoid function is used to convert each spider, cuckoo and bat position from continuous to binary 

values. The sigmoid function used in this research is given in equation (3.41). Also, the rounding 

function used in this research is given in equation (3.43). 

Given 𝑁 training instances, utilizing the entire training set for training is time consuming. Brighton 

and Mellish [7] noted that training a classifier on a reduced subset (void of superfluous or harmful 
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instances) will not significantly affect the classification accuracy of the classifier. Rather, it can 

lead to similar or improved classification accuracy. On this basis, all the proposed filter-based 

techniques were designed to use only a subset of the entire training set for instance selection. That 

is, for all experiments, 𝑛 instances were passed to the instance selection techniques for processing, 

where 𝑛 < 𝑁. This implies that each technique searches an instance space consisting of 𝑛 

instances, instead of an instance space consisting of 𝑁 instances (i.e. the entire training dataset). 

Also, for all the experiments, different sets of parameters were evaluated, with the aim of 

determining the best parameters that are suitable for all the proposed techniques and also 

demonstrating the robustness of the proposed techniques. Unlike the filter-based techniques, the 

wrapper-based techniques are designed to explore the entire training set. That is, the proposed 

wrapper-based techniques are designed to search through the entire N training instances for 

relevant solutions. 

This thesis proposes five filter-based and wrapper-based instance selection techniques. The 

proposed techniques are called: CSISA, BISA, FPISA, SSISA and FFISA. The major difference 

between the filter and wrapper based techniques is in their method of selection. The filter-based 

techniques rely on a fitness function for instance selection, while the wrapper-based techniques 

rely on SVM algorithm for instance selection. The filter-based techniques aims to improve the 

training speed of SVM, and the wrapper-based techniques aims to improve the predictive accuracy 

of SVM. Pseudocode for the filter and wrapper based techniques is shown in Algorithms 3.1 – 3.7. 

The flowchart for the wrapper and filter based algorithms is shown in Figure 3.5. 

The filter-based techniques are designed with the objective of maximizing percentage reduction 

and boundary instances used for training. The wrapper-based techniques are designed with the 

objective of maximizing the training speed and predictive accuracy of SVM. Both techniques use 

different agents to search for relevant instances, where each agent consists of a binary array of 𝑁 

instances, called an instance mask. Given a set of training instances, each algorithm starts by 

randomly initializing the instance mask for each agent to 0 and 1, where 1 indicates that an instance 

is selected, and 0 indicates otherwise. Afterwards, the fitness value for each agent is computed and 

the global best is saved. Fitness function for the filter-based and wrapper-based techniques are 

reported in Sections 3.5.1 and 3.5.2, respectively.  Furthermore, new solutions are generated at 

different iterations and the global best solution is selected at the end of the final iteration. Finally, 
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the agent with the best solution is selected and used to train SVM. A constraint is added to ensure 

that at least 𝑁 instances are selected for training, where 𝑁 is user-defined. Hence, if the total 

number of selected instances (𝑆) is less than 𝑁, 𝑃 additional instances are randomly selected, where 

𝑃 =  𝑁 –  𝑆. This constraint is added to eliminate the possibility of having zero selected instances. 

More details on the five algorithms are presented next.  

3.4.1 Cuckoo search-inspired technique 

This thesis proposes a NI-based instance selection technique called CSISA. Two different variants 

of this technique are proposed in this thesis. The first variant (filter-based) is designed to improve 

the training speed of SVM and the second variant (wrapper-based) is designed to improve the 

predictive accuracy of SVM. More details on CSISA are reported in this section. 

3.4.1.1 Cuckoo search algorithm overview 

The CSA, proposed by Yang [226], is inspired by the parasitic behaviour of some species of 

cuckoo birds, and the levy flight behaviour of some fruit flies and birds species. The reproduction 

strategy of cuckoo birds is violent. Some species rely on other birds to hatch eggs and feed their 

young. These species (called brood parasites) lay their eggs in nests of other birds [226]. Mostly, 

they target nests of birds that have newly laid their eggs. 

Generally, cuckoo eggs hatch earlier than their host eggs, hence, by instinct, the newly hatched 

cuckoo throws the host eggs out their nest, to increase the share of food provided by the host bird 

[226]. CSA was developed based on this parasitic behaviour of cuckoos. The following idealized 

rules were used to develop CSA: 

i. Each cuckoo lays one egg at a time, and randomly distributes its egg to different nests 

ii. The best nest, containing high quality eggs, will survive to the next generation 

iii. The number of host nests is fixed. Also, eggs laid by a cuckoo are discovered by the host 

bird by a probability of 𝑝𝑎  ∈ [0, 1]. If eggs are discovered, the host bird can either abandon 

its nest and build a new nest, or tip the discovered eggs out of the nest. 
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New positions for each cuckoo are generated by performing a levy flight, given in equation (3.26). 

𝑋𝑖
(𝑡−1)

=  𝑋𝑖
(𝑡)

+ 𝛼 ⨁ 𝐿𝑒𝑣𝑦 (⋋),         (3.26) 

Yang [226] noted that 𝛼 = 1 is mostly used. 𝛼 > 0 refers to step size, and it is related to the scales 

of problem solved. ⨁ refers to entrywise multiplication. Levy flight provides random walks, drawn 

from a levy distribution given in equation (3.27). The levy distribution has an infinite variance and 

infinite mean. 

𝐿𝑒𝑣𝑦 ∼ 𝑢 =  𝑡−⋋,              (1 < ⋋ ≤ 3)         (3.27) 

The CSA was originally designed for the continuous problem. However, in this study, the sigmoid 

function (shown in equation (3.28)) is used to convert each cuckoo position to a binary value (0 or 

1). One indicates that an instance is selected, and zero indicates otherwise.  

𝑆(𝑉𝑖
𝑡) =  

1

1+ 𝑒−𝑉𝑖
𝑡,           (3.28) 

Hence, in place of equation (3.26), the position of each cuckoo is updated by equation (3.29): 

𝑋𝑖
𝑡 =  {

1 𝑖𝑓 𝑟𝑎𝑛𝑑() ≤ 𝑆(𝑉𝑖
𝑡),

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,             
                       (3.29) 

where 𝑟𝑎𝑛𝑑() is a random number uniformly drawn from the range [0, 1]. This study proposes an 

instance selection algorithm based on standard CSA [226]. 

3.4.1.2 Cuckoo Search Instance Selection Algorithm 

CSISA is a NI-based instance selection algorithm, inspired by CSA. As shown in Algorithm 3.3, 

the algorithm starts by randomly selecting M instances from the training dataset for training, where 

M is the size of the training subset to be explored by CSISA (line 6). The algorithm proceeds by 

initializing the positions for each nest, and also setting other parameters, including 𝑀𝑖𝑛, where 

𝑀𝑖𝑛 is the minimum number of instances to be selected for training (line 10). Each nest position 

is initialized to 0 or 1, where 1 indicates that an instance is selected and 0 indicates that an instance 

is not selected. Furthermore, the fitness values for the initialized solutions are calculated and the 

current best solution is retained (line 14-15). Fitness function for the filter-based and wrapper-

based CSISA are described in Sections 3.5.1 and 3.5.2, respectively. Furthermore, new solutions 

are constructed by randomly selecting different cuckoos through levy flight (line 17-20). The value 

of each new solution is continuous, hence, they are converted back to binary values using the 
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sigmoid function (line 19). In the real world, if the egg of a cuckoo bird is similar to the eggs of 

its host, then the egg will unlikely be discovered by the host bird. Otherwise, if the egg is not 

similar to the host eggs, the discovery rate is higher; the nest will either be abandoned by the host 

bird, or the egg will be tipped out of the nest. Therefore, the fitness of each nest is related to the 

solutions they produce. To handle this scenario, new solutions are generated and low quality nests 

are replaced (line 21-24). Low quality nests are discovered with a user-defined probability (or 

discovery rate). Furthermore, the quality (or fitness) of the new solutions are evaluated and the 

global best solution is retained (line 25-26). This process is repeated until it reaches a user-defined 

number of iterations (line 31) or a user-defined fitness threshold (line 27-29). After the algorithm 

terminates, the instances selected by the global best solution are used to train SVM. Prior to 

training, if N instances, selected by the global best solution, is less than a user-defined threshold 

(Min), then 𝐽 additional instances are randomly selected from the training dataset and added to the 

solution space of the global best cuckoo, where 𝐽 =  𝑁 –  𝑀𝑖𝑛 (line 33-35). Finally, the instances 

selected by the global best solution are used to train SVM.  

 

3.4.2 Bat-inspired technique 

In this thesis, two different variant of BISA are introduced. Both variants are designed to remove 

irrelevant instances from datasets and consequently improve the training speed and predictive 

accuracy of SVM. Experiments were performed to evaluate the efficacy of the two variants and 

the results show that the first variant (filter-based) produces very fast classification models and the 

second variant (wrapper-based) produces fast and accurate classification models. More details on 

BISA are provided in Section 3.4.2.2. A brief introduction to the BA is presented next. 

3.4.2.1 Bat Algorithm overview  

The BA is inspired by the echolocation behaviour of bats. Most bats uses echolocation to locate 

food (or preys), avoid obstacles and locate their roost in the dark [227]. Bats emits loud sounds in 

patterns, and they pay attention to the echo that may reflect back from objects in the surroundings 

[227]. During hunting, bats emit pulses at a very high rate. However, the rate reduces as they fly 

closer to a prey [227]. Some bats have good vision, and some have very good smelling ability 

[227]. This enhances their ability to efficiently detect prey and avoid obstacles [227]. This study 

proposes an instance-selection algorithm based on the standard BA proposed by Yang [227]. 
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BA was formulated using the following rules [227]: 

i. All bats use echolocation to detect distance, and they can differentiate between prey and 

obstacles 

ii. Bats randomly fly, with velocity 𝑣𝑖 at position 𝑥𝑖 with a fixed frequency 𝑓𝑚𝑖𝑛, varying 

wavelength ⋋ and loudness 𝐴𝑜 to search for prey. Depending on their target proximity, 

bats can regulate their rate of pulse emission, and the wavelength of their emitted pulses. 

iii. Loudness varies from a large positive value, 𝐴𝑜, to a minimum value, 𝐴𝑚𝑖𝑛. 

iv. The position 𝑥𝑖, velocity 𝑣𝑖 and frequency 𝑓𝑖 for each virtual bat are, firstly, initialized. 

Furthermore, they are updated as follows [227]: 

 

𝑓𝑖 =  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛) 𝛽,             (3.30) 

        

𝑉𝑖
𝑡 =  𝑉𝑖

𝑡−1 + (𝑋𝑖
𝑡 − 𝑋∗) 𝑓𝑖,             (3.31)  

 

𝑋𝑖
𝑡 =  𝑋𝑖

𝑡−1 +  𝑉𝑖
𝑡           (3.32) 

         

where 𝛽 is a randomly generated number between [0,1], and 𝑋∗ is the current global best solution. 

𝑓𝑖 is used to control speed and range of bat movements. Initially, each bat is assigned a random 

frequency, randomly selected from [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]. Yang [227] noted that, as soon as a solution is 

selected from the current best solutions, a new solution is generated locally for each virtual bat in 

the population, using random walks: 

 𝑋𝑛𝑒𝑤 =  𝑋𝑜𝑙𝑑+ ∈ 𝐴𝑡           (3.33) 

where ∈ is a random number generated between [-1, 1], and 𝐴𝑡 is the loudness of all the bats at 

every time interval. 

 

Furthermore, per iteration, the loudness and pulse rate emission are regulated as follows: 

𝐴𝑖
𝑡+1 = ∝ 𝐴𝑖

𝑡 ,            (3.34) 

      

𝑟𝑖
𝑡+1 =  𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)]          (3.35) 
       

where ∝ 𝑎𝑛𝑑 𝛾 are BA parameters. Yang [228] noted that ∝ can be equal to 𝛾. 

 

Yang [228] also noted that each bat should be randomly assigned a varied pulse emission rate and 

loudness. Additionally, Yang [227] suggested that Initial loudness 𝐴𝑖
0 can be randomly selected 
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from the range [1, 2], and initial emission 𝑟𝑖
0 rate can be drawn from the range [0, 1]. The original 

BA was proposed for continuous problems. Each virtual bat moves in continuous space. However, 

in instance selection, each bat moves in a binary search space, where 1 indicates that an instance 

is selected and 0 indicates otherwise. In this study, the sigmoid function defined in equation (3.36) 

is used to convert bat positions to binary values. 

𝑆(𝑉𝑖
𝑡) =  

1

1+ 𝑒−𝑉𝑖
𝑡 ,                    (3.36) 

   

Hence, in place of equation (3.32), the position of each bat is updated by equation (3.37): 

𝑋𝑖
𝑡 =  {

1 𝑖𝑓 𝑟𝑎𝑛𝑑() ≤  𝑆(𝑉𝑖
𝑡),

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,              
 ,          (3.37) 

where 𝑟𝑎𝑛𝑑() is a random number selected from the range, [0, 1], 𝑥𝑖
𝑘 and 𝑣𝑖

𝑘 refers to different 

bat positiond and velocity at different iterations, 𝐾 refers to dimension.  
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Algorithm 3.3: Cuckoo Search Instance Selection Algorithm 

Input: 𝑁𝐹, 𝑁𝐼, 𝑀𝑎𝑥𝐺, 𝑁, 𝑁𝑆𝑢𝑏 𝑀𝑖𝑛, 𝐹𝑇 

Output: ACA 

1 Start SVM /* main method */ 

2 for i = 1 to NRuns 

3  for j = 1 to NF 

4  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  9/10 𝑜𝑓 𝐷ataset /*Get the training dataset for the current fold */ 
5   𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  1/10 𝑜𝑓 𝐷ataset /*Get the test dataset for the current fold*/ 

6  TrainingSubset ← RandomSelect(TrainingDataset) /*randomly select training subset*/ 

7   CSISA(TrainingSubset) /*Start instance selection*/ 

8       Define 𝐺(𝑥) for cuckoo nests /*define objective function for filter and wrapper-based CSISA*/ 

9       Initialize Parameters /*initialize all parameter values*/ 
10       for 𝑎 = 1 to 𝑁 

11    Initialize solution for 𝑛𝑒𝑠𝑡𝑎 /*initialize solution for all the cuckoo nests*/ 

12      end for 

13       Evaluate 𝐺(𝑥) and select 𝐶𝐵 /*Evaluate the objective function for all cuckoos and select the current best*/ 

14       𝐺𝐵 ←  𝐶𝐵 /*Save the current best solution*/  

15       while (𝑝 <  𝑀𝑎𝑥𝐺) /*start searching for relevant instances*/ 

16    for 𝑘 =  1 𝑡𝑜 𝑁 

17     Construct new solutions by randomly selecting cuckoos using equation (3.26) 

18     Convert new solutions to binary using equation (3.41) 

19    end 𝑘 

20    for 𝑎 = 1 to 𝑁 

21     Replace low quality nest by generating new solutions using a user-defined probability 

22     Convert new solutions to binary using equation (3.41) 

23    end 𝑎 

24    Evaluate 𝐺(𝑥) for all new solutions /*Evaluate objective function for the current solutions*/ 

25   𝐺𝐵 ←  𝐶𝐵 /*Update the global best with the current best solution*/ 

26    if 𝐺𝐵 >  𝐹𝑇 

27     end while /*Stop algorithm if global best is greater than a pre-defined fitness threshold*/ 

28   end if 

29   p++ 

30       end while 

31       𝑁𝑆 ← 𝐺𝐵 

32       if 𝑁𝑆 <  𝑀𝑖𝑛 /*Add more instances if the selected instances are less than a user-defined threshold*/ 

33    AddInstances(GB) /*Add (Min-NS) instances to the instances selected by the global best*/ 

34       end if  

35       Output 𝐺𝐵 /*Output the global best solution*/ 

36   end CSISA  

37     TrainSVM(GB) /*Train SVM on the solution selected by CSISA*/     

38     𝐶𝐴+= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡) /*Test the trained model on the current test dataset*/ 

39  end j  

40  𝐴𝐶𝐴+=  𝐶𝐴 / 𝑁𝐹 /*Add the predictive accuracy produced by the current fold*/ 

41 end i   

42 Output 𝐴𝐶𝐴/𝑁𝑅𝑢𝑛𝑠 /*Output the overall predictive accuracy after all the runs*/ 

43 end SVM 

________________________________________________________________________________________________________ 

 

3.4.2.2 Bat Instance Selection Algorithm 

Similar to BA, BISA is inspired by the echolocation of bats. The algorithm is shown in Algorithm 

3.4. BISA begins by randomly selecting the subset of training instances to be processed (line 7). 

Plus, the algorithm continues by initializing the parameter values, the pulse rate and loudness for 

each artificial bat and also initializing each bat solution to a binary value, where 1 indicate that an 
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instance is selected and 0 indicate otherwise (line 10 to 15). Furthermore, the fitness value for the 

initialized solution is calculated and the best solution is retained (line 16). The filter-based BISA 

uses the fitness function described in Section 3.5 and the wrapper-based BISA uses the fitness 

function described in Section 3.5.2. Furthermore, the algorithm enters a while-loop to search the 

dataset for new solutions (line 18 to 39). Within the loop, BISA searches for new solutions by 

randomly moving within the solution space with velocity and frequency as defined in equations 

(3.31) and (3.30), respectively (lines 18 to 27). Also, a random number is generated and new 

solutions are randomly constructed if the random number is greater than a pre-defined pulse rate 

(line 23 to 26). Furthermore, a bat randomly moves within the solution space and generates new 

solutions. The new solutions are evaluated and retained if they are better than the previous solution 

and if a randomly-generated number is less than the user-defined loudness. Further, each of the 

new solutions is evaluated and the global best solution is updated if a better solution is found. This 

process is repeated until a user-defined threshold is reached or until solutions converge. Finally, 

the instances selected by the best solution are used to train SVM (line 46). If the selected instances 

are less than a user-defined threshold, more instances are added to the selected instances before 

training SVM. This is to ensure that the algorithm always selects a minimum amount of instances 

for training. The BA works in a continuous space, hence BISA uses he sigmoid function to convert 

continuous values to binary values. 
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Algorithm 3.4: Bat Instance Selection Algorithm 

Input: 𝑁𝐹, 𝑁𝐼, 𝑀𝑎𝑥𝐺, 𝑁, NRuns, 𝑀𝑖𝑛, 𝐷, 𝐹𝑇 

Output: 𝐴𝐶𝐴 

1 Start SVM 

2 for i = 1 to NRuns 

3      for j = 1 to 𝑁𝐹 

4  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  9/10 𝑜𝑓 𝐷ataset /*Get the training dataset for the current fold */ 

5  𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  1/10 𝑜𝑓 𝐷ataset /*Get the test dataset for the current fold*/ 

6 TrainingSubset ← RandomSelect(TrainingDataset) /*randomly select training subset from TrainingDataset*/ 

7  BISA(TrainingSubset) /*/*Start instance selection*/ 

8   Define 𝐺(𝑥) for bats /*define objective function for filter and wrapper-based BISA*/ 

9   Initialize Parameters /*initialize all parameter values*/ 

10  for 𝑎 = 1 to 𝑁 

11   Initialize solution for 𝑏𝑎𝑡𝑎 /*initialize the solution for each bat*/ 

12    Define 𝑝𝑟𝑎 for 𝑏𝑎𝑡𝑎  /*specify pulse rate for each bat*/ 

13   Define 𝑙𝑎 for 𝑏𝑎𝑡𝑎 /*specify loudness for each bat*/ 

14   end for 

15   Evaluate 𝐺(𝑥) and select 𝐶𝐵 /*Evaluate the objective function for all solutions and select the current best*/ 

16   𝐺𝐵 ← 𝐶𝐵 /*Save the current best solution*/ 

17   while (p < 𝑀𝑎𝑥𝐺) /*start searching for improved solutions*/ 

18    for k = 1 to N 

19     Construct new frequency for 𝑏𝑎𝑡𝑘 by using  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 𝛽  

20    Construct new velocity for 𝑏𝑎𝑡𝑘 using  𝑉𝑘
𝑡 =  𝑉𝑘

𝑡−1 + (𝑋𝑘
𝑡 −  𝑋∗) 𝑓𝑘  

21     R ← RandomNumber() /*generate random number between 0 and 1*/ 

22     if R > 𝑝𝑟𝑘 /*generate a local solution using random walks*/ 

23      Construct a solution around 𝐺𝐵  

24     end if 

25    Convert 𝑏𝑎𝑡𝑘 to binary using sigmoid function 

26    end k 

27    for 𝑎 = 1 to 𝑁 

28    R ← RandomNumber() /*generate random number between 0 and 1*/ 

29    Evaluate 𝐺(𝑥𝑎) for new solution /*evaluate the new solutions*/ 

30     Replace 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎 if new solution it is better, & if 𝑅  <  𝑙𝑎 

31    end 𝑎 

32    Evaluate 𝐺(𝑥) for all new solutions /*Evaluate objective function for the current solutions*/ 

33   𝐺𝐵 ←  𝐶𝐵 /*Update the global best with the current best solution*/ 

34    if 𝐺𝐵 >  𝐹𝑇 

35          end while /*Stop algorithm if global best is greater than a pre-defined fitness threshold*/ 

36    end if  

37    p++ 

38   end while 

39   𝑁𝑆 ← 𝐺𝐵  

40   if 𝑁𝑆 <  𝑀𝑖𝑛 /*Add more instances if the selected instances are less than a user-defined threshold*/ 

41    AddInstances(GB) /*Add (Min-NS) instances to the instances selected by the global best*/ 

42   end if  

43   Output 𝐺𝐵 /*Output the global best solution*/ 

44  end BISA  

45  TrainSVM(GB) /*Train SVM on the solution selected by BISA*/    

46  𝐶𝐴+= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡) /*Test the trained model on the current test dataset*/ 

47      end j  

48      𝐴𝐶𝐴+=  𝐶𝐴 / 𝑁𝐹 /*Add the predictive accuracy produced by the current fold*/ 

49 end i 

50 𝐴𝐶𝐴 ←  𝐶𝐴 / 𝑁𝐹 

51 Output ACA / NRuns 

52 end SVM 

__________________________________________________________________________________________________ 
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3.4.3 Flower pollination-inspired technique 

The fascinating pollinating process of flowering plants has attracted the attention of researchers 

and subsequently inspired them to develop intelligent solutions for optimization problems. This 

thesis proposes a speed optimization technique based on FPA. More details on the standard FPA 

and the proposed technique are provided in this section. 

3.4.3.1 Flower Pollination Algorithm overview 

The FPA is inspired by the pollination process of flowering plants. Pollination is the transfer of 

pollen grain from the anther of a flowering plant to the stigma of another flowering plant. Flower 

pollination aims to maximize the number of reproduced plants, and also increase the number of 

fittest plants [223]. Some flower pollinators include: insects, honeybees, birds, water, wind and 

bats. Some of these pollinators (such as honeybees) have a tendency of pollinating only flowers of 

specific species, and ignoring other accessible flower species. This is referred to as flower 

constancy [229]. There are two forms of pollination: biotic and abiotic pollination [229]. In biotic 

pollination, pollinators are responsible for the transfer of pollen grains [223]. However, in abiotic 

pollination, the transfer of pollens does not require pollinators; wind and water serve as pollinators 

[223]. Pollinators, such as birds and bats, can transfer pollen between flowers that are far away 

from each other. They are referred to as global pollinators, because, they can fly over long 

distances [229]. Global pollination guarantees pollination and reproduction of flowers that are 

typically fit in the population [223]. There are two types of pollination: cross-pollination and self-

pollination [223]. Cross pollination involves transfer of pollen grains from the anther of a flower 

to the stigma of another flower belonging to a different plant. However, self-pollination is the 

transfer of pollen grain from the anther of a flower to the stigma of the same flower [223]. Based 

on these pollination attributes, Yang [223] formulated FPA on four rules, as follows: 

i. Processes involved in biotic and cross-pollination is taken as global pollination process, 

with global pollinators performing levy flight. 

 

ii. Abiotic and self-pollination are taken as local pollination. 

 

iii. Flower constancy is also called reproduction probability. It is proportional to the similarity 

between two flowers that are involved.  
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iv. A switch probability p ∈ [0, 1] is used to control global and local pollination. In the 

pollination process, local pollination can be assigned a significant fraction of p, due to the 

closeness of some factors, such as wind. 

Rule 1 and flower constancy are represented by equation (3.38).  

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝐿(𝑥𝑖
𝑡 −  𝑔∗),          (3.38) 

where 𝑋𝑖
𝑡 refers to vector 𝑥𝑖 at different iteration t, and 𝑔∗ refers to the current best solution in 

iteration t. Also, L refers to Levy flight, which can be drawn from a levy distribution given in 

equation (3.39). 

𝐿 ~ 
𝜆𝛤(𝜆) 𝑠𝑖𝑛(𝜋𝜆

2⁄ ) 

𝜋
 

1

𝑆1+𝜆 , (𝑠 ≫  𝑠0  > 0),        (3.39) 

Γ(𝜆) is a standard gamma function, valid for huge steps, 𝑠 > 0. 

Furthermore, rule 2 and flower constancy are represented by equation (3.40). 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡  + ∈ (𝑥𝑗
𝑡 −  𝑥𝑘

𝑡 ),          (3.40) 

where 𝑥𝑗
𝑡 refers to pollen j at iteration t, 𝑥𝑘

𝑡  refers to pollen k at iteration t. They refer to pollen 

grains from different flowers. ∈ is a constant, drawn from the range [0, 1]. FPA was designed to 

handle continuous problem, however, in this research, the rounding-off approach, shown in 

equation (3.43) is used to convert each flower position to a binary value.  

𝑆(𝑉𝑖
𝑡) =  

1

1+ 𝑒−𝑉𝑖
𝑡 ,           (3.41) 

Therefore, each position is updated by equation (3.42): 

𝑋𝑖
𝑡 =  {

1 𝑖𝑓 𝑟𝑎𝑛𝑑() ≤  𝑆(𝑉𝑖
𝑡),

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,              
 ,          (3.42)  

where 𝑟𝑎𝑛𝑑() is a random number selected from the range, [0, 1]. 

Xi
t =  {

1 if Vi
t >  0.5,                

0    otherwise,              
          (3.43) 

where 𝑥𝑖
𝑡 and 𝑣𝑖

𝑡 refers to different flower position and velocity at different iterations. 𝑡 refers to 

dimension. 

3.4.3.2 Flower Pollination Instance Selection Algorithm 

FPISA is inspired by the pollinating process of flowering plants. Each flower (or solution) consists 

of 𝑁 number of instances, where 𝑁 is user-defined. FPISA begins by initializing each pollen 
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solution (line 9) and also defining a probability that controls the switch between global and local 

pollination (line 11). Moreover, all the initialized solutions are evaluated and the best solution is 

retained (line 15). Furthermore, FPISA continues searching the solution space by performing 

global or local pollination. Local pollen solutions are generated (using equation (3.40)), if a user-

defined probability switch is less than a randomly-generated number (lines 25 to 29). Otherwise, 

global pollen solutions are generated using equation (3.38). Furthermore, the new solutions are 

evaluated and the global best solution is updated if a better solution is found. This process is 

repeated until a user-defined maximum is reached. The algorithm is also terminated if it converges 

on a solution (lines 34 to 36). After termination, the solution selected by the best flower is used to 

build SVM model (line 45). Prior to training, if the solution size is less than a user-defined 

threshold, more instances are selected from the training subset and added to the solution space. 

This is to ensure that the total number of training instances is not less than the minimum pre-

defined value (lines 40 to 42). Pseudocode for FPISA is shown in Algorithm 3.5. For FPISA, the 

rounding function is used to convert continuous values to binary values.  

3.4.4 Social spider-inspired technique 

The SSA is a recent NI-based swarm intelligence algorithm proposed by James and Victor [224]. 

In this thesis, a social spider-based instance selection technique (called SSISA) was designed for 

improving SVM predictive accuracy and training speed. The section presents an overview of SSA, 

followed by a description of the proposed social spider-based technique. 

3.4.4.1 Social Spider Algorithm overview 

The majority of spider species do not relate with each other – they are solitary [224, 230]. Unlike 

solitary spiders, some spider species exhibit social behaviour [224]. These species reside in groups 

and relate with each other within the same group [224]. SSA is inspired by the foraging behaviour 

of social spider species [224].  

Spiders are located worldwide [224]. They utilize different methods to scout for food [224]. 

Spiders are hypersensitive to vibrations, and most of them identify prey by detecting vibrations on 

their web [224]. Typically, spiders capture prey by analyzing propagated vibrations, and by 

attacking in the direction of their prey (or source of vibration), if vibration is within a defined 

frequency range [224, 231]. Moreover, social spiders can differentiate between vibrations 

stimulated by prey and vibrations stimulated by fellow spiders [224, 232]. One of the reasons 
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animals reside with each other is to increase their chance of capturing prey, and to reduce the cost 

of energy expended during foraging [233]. There are two types of social foraging models, namely: 

information-sharing model [234] and producer-scrounger model [235]. In the information-sharing 

model, food search is performed by foragers, independently, but observes the behaviour of other 

colony members, to ensure that non-group members do not capture prey that was discovered by 

fellow colony members [236]. In the producer-scrounger model, foragers in the population are 

grouped into leaders and followers. The searching method of SSA was formulated based on the 

information-sharing model, since social spiders have no leader [224]. Also, the problem search 

space was formulated as a spider web with more than three dimensions. Each web position is a 

potential solution to the problem solved. All solutions to the problem have their individual position 

on the spider web [224]. Moreover, spiders are located on individual web positions, and the fitness 

of each spider is defined by a fitness function [224]. The fitness of each spider represents the 

probability of obtaining a food source at the spider position [224]. In addition, spiders are free to 

move around their webs, however, they cannot move out of the web. 

Positions out of the web are infeasible solutions [224]. In SSA, each artificial spider holds the 

following information [224]: 

i. Spider position on the web 

ii. Current fitness value of spider 

iii. Target spider vibration in previous iteration 

iv. Number of iterations, after spider vibration was last changed 

v. Spider movement in a previous iteration 

vi. Dimension mask used by a spider to control movement in a previous iteration 

Vibrations are generated at new positions. Vibration intensity is proportional to current spider 

fitness. In SSA, James and Victor [237] defined vibration using two properties: source position 

and source intensity of the vibration. The source position is defined by the problem search space, 

and the source intensity is selected from the range [0, +∞). Vibration intensity is defined 

mathematically by equation (3.44) [224]. 

𝐼(𝑃𝑠, 𝑃𝑠, 𝑡) = 𝑙𝑜𝑔 (
1

𝑓(𝑃𝑠)−𝐶
+ 1),          (3.44)  
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where 𝑃𝑠 , refers to spider position at time t, 𝐼(𝑃𝑠, 𝑃𝑠, 𝑡) refers to intensity of vibration generated by 

spider at source position, 𝑓(𝑃𝑠) refers to fitness of spider at time t, and C is a constant value, where 

all 𝑓(𝑃𝑠) > 𝐶. Equation (3.44) considers the following [224]: 

i. All vibration intensities are positive 

ii. Web positions with high fitness value have higher vibration intensities compared to 

positions with worse fitness value. 

iii. Vibration intensity will not increase comprehensively, if a solution reaches the global 

optimum. An excessive increase can lead to the malfunctioning of the vibration attenuation 

scheme. 

The distance between two spiders is defined in equation (3.45).  

𝐷(𝑃𝑎 , 𝑃𝑏) =  ‖𝑃𝑎 −  𝑃𝑏‖1,          (3.45) 

where 𝐷(𝑃𝑎 , 𝑃𝑏) refers to distance between spider a and spider b. Vibration reduction over a 

distance is given by equation (3.46). 

𝐼(𝑃𝑎 , 𝑃𝑏 , 𝑡) =  𝐼(𝑃𝑎 , 𝑃𝑏 , 𝑡) ∗ 𝑒𝑥𝑝 (−
𝐷(𝑃𝑎,𝑃𝑏)

𝜎∗𝑟𝑎 ̅̅ ̅̅ ̅̅ ̅
),        (3.46) 

where 𝜎 refers to standard deviation, and 𝑟𝑎 controls the vibration reduction rate over a distance. 

It is drawn from the range (0, ∞). In SSA, each spider is composed of a dimension mask, of length 

D, where each bit contains 0 or 1. The dimension mask is used to guide the movement of each 

spider. Each bit in the dimension mask contains 0 or 1, and they are generated independently using 

equation (3.47). 

𝑃𝑠,𝑖
𝑓𝑜

= {
𝑃𝑠,𝑖

𝑡𝑎𝑟     𝑚𝑠,𝑖 = 0

𝑃𝑠,𝑖
𝑟          𝑚𝑠,𝑖 = 1 

,          (3.47) 
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Algorithm 3.5: Flower Pollination Instance Selection Algorithm 

Input: 𝑁𝐹, 𝑁𝐼, 𝑀𝑎𝑥𝐺, 𝑁, 𝑁𝑅𝑢𝑛𝑠, 𝑀𝑖𝑛, 𝐷, 𝐹𝑇 

Output: ACA 

1 Start SVM 

2 for i = 1 to NRuns 

3      for j = 1 to 𝑁𝐹 

4  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  9/10 𝑜𝑓 𝐷ataset /*Get the training dataset for the current fold */ 

5  𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  1/10 𝑜𝑓 𝐷ataset /*Get the test dataset for the current fold*/ 

6  TrainingSubset ← RandomSelect(TrainingDataset) /*randomly select training subset from TrainingDataset*/ 

7 FPISA(TrainingSubset) /*Start instance selection*/ 

8  Initialize Parameters /*initialize all the algorithm parameters*/ 

9  Define 𝐺(𝑥) for flowers /*define fitness function for both filter and wrapper-based FPISA*/ 

10   Define 𝑃𝑆, 𝑃𝑆 ∈  [0, 1] /*define probability switch for flowers*/ 

11   for 𝑎 = 1 to 𝑁 

12    Initialize solution for 𝑠𝑝𝑖𝑑𝑒𝑟𝑎 /*initialize the solution for all flowers in the solution space*/  

13   end for 

14   Evaluate 𝐺(𝑥), and select 𝐶𝐵 /*Evaluate the objective function for all solutions & select the current best*/ 

15   𝐺𝐵 ←  𝐶𝐵 /*Retain the current best solution*/ 

16   while (𝑝 <  𝑀𝑎𝑥𝐺) /*Start searching for new pollen solutions */ 

17    for 𝑘 = 1 to 𝑁 

18     R ← RandomNumber() /*generate random number R, where 𝑅 ∈  [0,1]*/ 

19     if 𝑅 >  𝑃𝑆 /*if this is true, perform global pollination*/ 

20      for 𝑙 =  1 𝑡𝑜 𝐷𝑖𝑚 /*define levy flight factor for global pollinators*/ 

21       Randomly generate 𝐿𝐹 vector for each dimension  

22      end 𝑙 

23      Perform global pollination using 𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝐿𝐹(𝑥𝑖
𝑡 − 𝑔∗), 

24     else /*perform local pollination*/ 

25     R ← RandomNumber() /*generate random number R, where 𝑅 ∈  [0,1]*/ 

26      Randomly select two solutions, 𝑥𝑗
𝑡 , 𝑥𝑘

𝑡  from population 

27      Perform local pollination using 𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡  + ∈ (𝑥𝑗
𝑡 −  𝑥𝑘

𝑡 ) 

28     end if 

29     Convert solutions to binary using equation (3.43) 

30    end k  

31    Evaluate 𝐺(𝑥) /*evaluate the fitness value for all the new solutions*/ 

32    𝐺𝐵 ←  𝐶𝐵 /*Update the global best with the current best solution*/ 

33    if 𝐺𝐵 >  𝐹𝑇 

34        end while /*Stop algorithm if global best is greater than a pre-defined fitness threshold*/ 

35    end if 

36    p++ 

37  end while 

38   𝑁𝑆 ←  𝐺𝐵 

39   if 𝑁𝑆 <  𝑀𝑖𝑛 /*Add more instances if the number of instances is less than a user-defined threshold*/ 

40    AddInstances(GB) /*Add (Min-NS) instances to the instances selected by the global best*/ 

41   end if 

42   Output 𝐺𝐵 /*Output the global best solution*/ 

43  end FPISA 

44  TrainSVM(GB) /*Train SVM on the solution selected by FPISA*/    

45  𝐶𝐴+= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡) 

46      end j 

47      𝐴𝐶𝐴+=  𝐶𝐴 / 𝑁𝐹 /*Add the predictive accuracy produced by the current fold*/ 

48 end i 

49 𝐴𝐶𝐴 ←  𝐶𝐴 / 𝑁𝐹 

50 Output ACA / NRuns 

51 end FPISA 

__________________________________________________________________________________________________ 
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where 𝑃𝑠,𝑖
𝑓𝑜

 refers to i-th dimension of spider s at position i, r is a random value from the range 

[1, |𝑝𝑜𝑝|]. 𝑝𝑜𝑝 refers to spider population and |𝑝𝑜𝑝| refers to the number of vibrations generated 

by spiders in the population. Also, 𝑚𝑠,𝑖 represent i-th dimension of dimension mask 𝑚 of spider 

𝑠, 𝑃𝑠,𝑖
𝑡𝑎𝑟 is the i-th source position of the target vibration of spider s. After the dimension mask for 

each spider has been generated, each spider performs a random walk, using equation (3.48). 

𝑃𝑠(𝑡 + 1) =  𝑃𝑠 +  (𝑃𝑠 −  𝑃𝑠(𝑡 − 1)) ∗ 𝑟 + (𝑃𝑠
𝑓𝑜

− 𝑃𝑠)  ⊙  𝑅,      (3.48) 

where ⊙ represents element-wise multiplication, and R is a random number, uniformly generated 

in the range [0, 1]. During movement, there is a possibility of a spider moving out of the web, 

which will violate the constraints of the optimization problem at hand. Hence, in SSA, each spider 

position is controlled by equation (3.49), which handles the boundary constraints. 

𝑃𝑠,𝑖(𝑡 + 1) =  {
(𝑥𝑖̅ − 𝑃𝑠,𝑖) ∗ 𝑟    𝑖𝑓 𝑃𝑠,𝑖(𝑡 + 1) >  𝑥𝑖̅

(𝑃𝑠,𝑖 −  𝑥𝑖) ∗ 𝑟   𝑖𝑓 𝑃𝑠,𝑖(𝑡 + 1) <  𝑥𝑖

        (3.49) 

where 𝑥𝑖̅the upper bound of the problem search space in dimension i, and 𝑥𝑖 is the lower bound of 

the problem search space of the i-th dimension. r represent a random number generated between 0 

and 1. In this paper, standard SSA, proposed by James and Victor [224], was used. It was designed 

to handle problems in continuous space, however, since instance selection is a binary problem, the 

sigmoid function (defined in equation (3.41)) is used to convert each spider position to a binary 

value. In addition, each spider position is updated by equation (3.42). 

3.4.4.2 Social Spider Instance Selection Algorithm 

SSISA is inspired by the foraging behaviour of social spiders. SSISA begins by initializing all 

parameters and generating an initial solution of 𝑁 spiders, where each spider consists of 𝑑 

instances (line 10 and 12). The vibration intensity for each spider is also initialized (line 13). In 

addition, the fitness score for each spider is calculated and the spider with the best fitness value is 

stored (line 16). Moreover, new solutions are generated by moving each spider to different 

positions on the web (lines 17 to 41). Each spider movement causes a vibration, as calculated in 

equation (3.44). Typically, spiders capture prey based on propagated vibrations, and they attack 

the prey direction (or source of vibration) if the vibration is within a defined frequency range [224, 

231]. In SSISA, if the vibration generated by the current solution is greater than a pre-defined 

target vibration, then the target vibration is updated with the best vibration. Furthermore, a random 
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number is generated and the instance mask is updated if the random number is greater than a pre-

defined threshold (line 26 to 28). Further, the position of each spider is generated (line 30) and the 

fitness value for the newly generated solutions are computed and the current best solution is 

compared to the global best solution (line 34). If it is better, it is retained, otherwise it is discarded. 

The process is performed repeatedly until a stop criteria is reached. Furthermore, after the 

algorithm terminates, the instances selected by the best spider solution is used to train SVM and 

the predictive accuracy is outputted. Before training, the number of instances selected by the best 

solution are checked to ensure that they are not less than the minimum threshold (lines 42 to 44). 

Pseudocode for SSISA is shown in Algorithm 3.6. SSA is designed to work in a continuous space, 

hence SSISA uses sigmoid function to convert continuous value to binary.  

3.4.5 Firefly-inspired technique 

This thesis proposes a firefly-based instance selection solution for improving the training speed 

and predictive accuracy of SVM. The section begins with an introduction to the standard FFA, 

followed by a description of the proposed firefly-based technique. 

3.4.5.1 Firefly Algorithm overview 

FFA is inspired by a distinctive attribute of fireflies – their flashing light. About 2,000 firefly 

species exist, and most of these species produce short flashes at consistent time intervals [238]. 

Flashlights are produced to entice mating partners and prey and also to warn possible predators 

away from attacks. FFA is suitable for handling challenging NP-hard and optimization problems 

[239]. The light intensity of the firefly flashlight decreases with every increase in distance, that is, 

light intensity is inversely proportional to the distance squared, as shown in equation (3.50). 

𝐼 ∝  1
𝑟2⁄            (3.50) 

Also, the flashlight is absorbed into the atmosphere as the distance increases, which consequently 

leads to a decrease in the light intensity. As pointed out by Yang [238], the flashlight can be 

formulated in a manner that will be proportional to the fitness function. Some variants of FFA exist 

in the body of literature, however, this research utilized the original version of the firefly proposed 

by Yang [238]. FFA was designed using three rules: 

i. All firefly species are of the same sex. 
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ii. Fireflies’ attractiveness is proportional to the intensity of light they produce. This implies 

that fireflies with high light intensity will attract fireflies with lower light intensity. 

iii. Fireflies’ light intensity is determined by the landscape of the fitness function to be 

improved. 

Light intensity and attractiveness are two vital issues that need to be clearly defined when utilizing 

FFA. Generally, for maximization problems, firefly light intensity (I) produced at a given location 

(y), is directly proportional to the fitness value of the objective function. That is, 𝐼(𝑦)  ∝ 𝐹(𝑦). 

Light intensity produced by fireflies changes with changes in firefly distance. It also changes with 

respect to the intensity of light absorbed by the atmosphere, as shown in equation (3.51):     

 𝐼(𝑟) =  𝐼0𝑒−𝛾𝑟2
            (3.51) 

where 𝐼0 is the initial light intensity when r=0, 𝛾 is a constant representing the light absorption 

coefficient, and r represents the distance. In equation (3.51), Yang [238] notes that the singularity 

at r = 0 is avoided in the expression 1 𝑟2⁄ , by merging the effect of the inverse square law and 

absorption. Also, the singularity is avoided by approximating them in Gaussian form as shown in 

equation 3.51. Also, firefly attractiveness (𝛽) is proportional to their light intensities as shown in 

equation (3.52): 

𝛽 =  𝛽0𝑒−𝛾𝑟2
             (3.52) 

where 𝛽0 is the attractiveness at r = 0. 

The distance between two fireflies (𝑥𝑖  and 𝑥𝑗) is calculated by the Euclidian distance, as shown in 

equation (3.53): 

            𝑟𝑖𝑗 = ∥ 𝑥𝑖 − 𝑥𝑗 ∥ =  √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1                   (3.53)                      

where d is the problem dimensionality. A Firefly moves from one point (point i) to another (point 

j) according to equation (3.54): 

𝑥𝑖 =  𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) +  𝛼𝜖𝑖         (3.54) 

𝛼 ∈  [0,1], 𝛾 ∈  [0, ∞). 𝜖𝑖 are two random numbers taken from a Gaussian distribution, 𝜖𝑖 can be 

substituted by 𝑟𝑎𝑛𝑑 −  1
2⁄  where 𝑟𝑎𝑛𝑑 ∈  [0,1]. The second term in equation (3.54) shows the 

movement of a firefly as a result of their attractiveness to fireflies with brighter light  
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Algorithm 3.6: Social Spider Instance Selection Algorithm 

Input: 𝑁𝐹, 𝑁𝐼, 𝑀𝑎𝑥𝐺, 𝑁, NRuns, 𝐷, 𝑃𝑚, 𝐹𝑇 

Output: 𝐴𝐶𝐴 

1 Start SVM 

2 for i = 1 to NRuns 

3      for j = 1 to 𝑁𝐹 

4  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  9/10 of dataset 

5  𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ← 1/10 of dataset  

6 TrainingSubset ← RandomSelect(TrainingDataset) /*randomly select training subset from TrainingDataset*/ 
7  SSISA(TrainingSubset) /*start instance selection*/ 
8   Define 𝐺(𝑥) for spiders /*pass the selected training subset to FPISA for processing*/ 

9  Initialize Parameters /*initialize all the algorithm parameters*/ 
10   for 𝑎 = 1 to 𝑁 

11    Initialize solution for 𝑠𝑝𝑖𝑑𝑒𝑟𝑎  /*initialize the solution for all spiders in the solution space*/  
12   Initialize vibration (𝑇𝑉) for 𝑠𝑝𝑖𝑑𝑒𝑟𝑎 /*generate initial vibration for each spider*/ 

13   end for 

14   Evaluate𝐺(𝑥), /*evaluate the fitness of the initial solution*/ 

15  𝐺𝐵 ←  𝐶𝐵 /*if current best is greater than global best, update the global best solution*/ 

16   while (𝑝 <  𝑀𝑎𝑥𝐺) /*start search for more solution*/ 

17    for 𝑘 = 1 to 𝑁 

18     Calculate 𝑉𝐼 generated by all spiders and select 𝐺𝐵𝑉 /*select the best bat vibration*/ 

19     if 𝐺𝐵𝑉 > 𝑇𝑉𝑘 /*if the best vibration is greater than a user defined target vibration*/ 

20      𝑇𝑉𝑘 =  𝐺BV /*update the target vibration*/ 

21     end if 

22     Update 𝑇𝑜𝑡𝑘 /*keep track of frequency of vibration change*/ 

23     for 𝑎 = 1 to 𝐷 

24      Generate Random Number, 𝑅 where 𝑅 ∈  [0, 1) 

25      If 𝑅1 >  𝑃 

26       Update 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎 for 𝑠𝑝𝑖𝑑𝑒𝑟𝑘 /*update dimension mask */ 

27      end if 

28     end 𝑎 

29     Generate new position for 𝑠𝑝𝑖𝑑𝑒𝑟𝑘 

30     Do Random Walk, and handle violated boundary constraints 

31     Convert 𝑠𝑝𝑖𝑑𝑒𝑟𝑘 to binary using sigmoid 

32    end 𝑘 

33    Evaluate 𝐺(x) for new 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎 and generate vibration for 𝑠𝑝𝑖𝑑𝑒𝑟𝑎 

34    Convert 𝑠𝑝𝑖𝑑𝑒𝑟𝑎 to binary using sigmoid function 

35    Evaluate 𝐺(𝑥) for new solutions, and update 𝐺𝐵 accordingly 

36    if 𝐺𝐵 >  𝐹𝑇 

37     end while /*Stop algorithm if global best is greater than a pre-defined fitness threshold*/ 

38    end if 

39    p++ 

40   end while 

41   if 𝑁𝑆 <  𝑀𝑖𝑛 

42   update 𝐺𝐵 by adding (Min - NS) instances to GB 

43   end if 

44   Output 𝐺𝐵 

45  end SSISA  

46  Train SVM model on instances selected by 𝐺𝐵 

47  𝐶𝐴+= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡) 

48      end j  

49      𝐴𝐶𝐴+=  𝐶𝐴 / 𝑁𝐹 /*Add the predictive accuracy produced by the current fold*/ 
50 end i 

51 𝐴𝐶𝐴 ←  𝐶𝐴 / 𝑁𝐹  

52 Output 𝐴𝐶𝐴 / NRuns /*Output the overall average*/ 

53 end  SVM 

________________________________________________________________________________________________________ 
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intensity. When 𝛽0 = 0, a firefly will move randomly. In this study, the rounding-off approach as 

defined in equation (3.43) is used to convert each firefly position from continuous values to binary 

values. 

3.4.5.2 Firefly Instance Selection Algorithm 

Similar to FFA, FFISA is inspired by the flashing behaviour of fireflies. Given a set of training 

instances, FFISA is used to select the best subset of relevant instances for training. Each firefly 

consists of a binary array of 𝑁 instances (called instance mask), where 1 indicates that an instance 

is selected, and 0 indicates otherwise. As shown in Algorithm 3.7, FFISA begins by initializing 

the firefly parameters and randomly initializing each firefly position to 0 and 1 (lines 9 and 10). 

Furthermore, the objective function for each firefly is evaluated and the global best solution is 

retained (lines 11 and 12). The global best solution is the solution with the brightest light intensity. 

Furthermore, FFISA search for new solutions by moving each firefly to new positions within the 

search domain, based on their attractiveness level (lines 13 to 19). Fireflies with low light 

intensities are moved from their positions to fireflies with higher light intensities using equation 

(3.54). After fireflies have been moved to different positions, the fitness value for each new 

solution is evaluated and the global best solution is updated if a better solution is found (line 22). 

This process is repeated until a pre-defined number of generations is reached (line 26) or until the 

algorithm converges to a desired solution (line 24). Furthermore, after termination, FFISA selects 

the firefly with the highest attractiveness value (i.e. the global best) and extracts the selected 

instances for training. If the number of selected instances is less than a user-defined threshold, then 

more instances are randomly added to the solution. This is to ensure that the data size that is used 

to train SVM is not less than a minimum value. Finally, the selected instances are used to train 

SVM. FFA was designed to work in continuous space, hence, FFISA uses a rounding-off function 

to convert continuous values to binary values.  
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Algorithm 3.7: Firefly Instance Selection Algorithm  

Input:   NR, NRuns 

Output: ACA 

1 Start SVM 

2 for i = 1 to NRuns  

3      for 𝑗 = 1 to 𝑁𝐹    

4  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  9/10 𝑜𝑓 𝐷 /*Select Training dataset – 90% of the entire dataset*/ 

5  𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ←  1/10 𝑜𝑓 𝐷 /*Select Test dataset – 10% of the entire dataset*/ 

6 TrainingSubset ← RandomSelect(TrainingDataset) /*randomly select training subset from TrainingDataset*/ 

7  FFISA(TrainingSubset) /*pass the selected training subset to FPISA for processing*/    

8  Initialize firefly parameters: 𝑁𝐹, 𝑁𝐺, 𝛽𝑜, 𝛼, 𝑎𝑛𝑑 𝛾 /*initialize all the firefly parameters*/ 

9   Generate initial populations of fireflies xi (i = 1,2,…NFF) 

10  Evaluate 𝐺(𝑥) to obtain 𝐿𝑖 for each firefly /*Evaluate initial solutions, to get firefly light intensities*/ 

11   Rank firefly and save 𝐺𝐵 /*rank the current solutions and retain the current best*/ 

12   while (n < MaxGen)  

13   for 𝑝 = 1 to 𝑁𝐹𝐹 /*start searching for better solutions*/ 

14     for 𝑞 = 1 to 𝑁𝐹𝐹 

15      if (𝑙𝑝 <  𝑙𝑞) /*move fireflies based on their individual light intensities*/ 

16       Move 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝑝 towards 𝑓𝑖𝑟𝑒𝑓𝑙𝑦𝑞 using equation (3.54) 

17      end if 

18     end 𝑞 

19    end p  

20    𝑛++ 

21   Evaluate 𝐺(𝑥)  /*evaluate the new solutions*/ 

22   Rank firefly and save 𝐺𝐵 /*rank the current solutions and retain the current best*/ 

23   if 𝐺𝐵 >  𝐹𝑇 

24         end while /*Stop algorithm if global best is greater than a pre-defined fitness threshold*/ 

25   end if 

26   end while 

27   𝑁𝑆 ←  𝐺𝐵 /*Assign the instances selected by the best solution to NS*/ 

28   if 𝑁𝑆 <  𝑀𝑖𝑛 /*if the selected instances is less than a predefined minimum, then add more instances*/ 

29    update GB by adding (𝑀𝑖𝑛 −  𝑁𝑆) instances to 𝐺𝐵 

30   end if 

31   Output 𝐺𝐵 

32  end FFISA 

33  Train SVM on instances selected by GB 

34  𝐶𝐴+= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡) 

35      end 𝑗 

36      𝐴𝐶𝐴+=  𝐶𝐴 / 𝑁𝐹 /*Add the predictive accuracy produced by the current fold*/ 

37 end i 

38 𝐴𝐶𝐴 ←  𝐶𝐴 / 𝑁𝑅𝑢𝑛𝑠 /*Compute the overall predictive accuracy*/ 

39 Output ACA 

40 end SVM 

__________________________________________________________________________ 
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Figure 3.5: Flowchart for the proposed NI-based algorithms 

3.5 Fitness function 

This thesis proposes intelligent filter-based and wrapper-based instance-selection techniques for 

improving SVM performance. The filter-based techniques are designed to improve SVM 

classification speed and the wrapper-based techniques are designed to improve SVM predictive 
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accuracy. The main difference between both techniques is in their selection criterion. The  

filter-based techniques use equation (3.55) to evaluate the fitness for each candidate solution, while 

the wrapper-based techniques use the SVM classifier to evaluate the fitness for each candidate 

solution. More details on the filter-based and wrapper-based fitness functions are provided in 

Sections 3.5.1 and 3.5.2, respectively. 

3.5.1 Fitness function for filter-based techniques 

This section present a description of the novel selection function proposed in this thesis. As shown 

in equation 3.55, the selection function considers both percentage reduction and boundary 

instances. More weight is assigned to agents with high percentage reduction and high number of 

boundary instances. The fitness function evaluation begins by computing the total number of 

instances in each agent (𝛼). Further, the evaluation continues by calculating the number of 

instances selected by each agent (𝛽) and the number of boundary instances selected by each agent 

(𝛾). The number of instances selected by an agent is obtained by adding all the non-zero elements 

in the instance mask of the agent. Also, the number of boundary instances selected by an agent is 

obtained, by firstly passing its selected instances to a boundary detection algorithm for boundary 

instance selection. The number of boundary instances selected by the algorithm is then calculated 

and used for fitness value evaluation. In this research, a clustering-based boundary detection 

algorithm, proposed by Chen et al. [1], is used for boundary instance selection. Finally, 𝛼, 𝛽 and 

𝛾 are used to calculate the fitness value, as shown in equation (3.55).  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = ((100 ∗  
𝛼−𝛽

𝛼
 )  +  (

𝛾

𝛽
∗ 100))

2
⁄

        (3.55) 

      

where 𝛼 = total number of instances in an instance mask, 𝛽 = number of selected instances in an 

instance mask and  𝛾 = number of selected boundary instances 

3.5.2 Fitness function for wrapper-based techniques 

The fitness function utilized by the wrapper-based instance selection techniques is shown in 

equation (3.56). The fitness function evaluation starts by computing the predictive accuracy (𝛼) of 

the candidate solution (i.e. reduced subset) constructed by each agent. That is, for each candidate 

solution, a classification model is constructed by training the generated solution on a classifier. 

Afterwards, the model is evaluated by validating it on a new dataset (test dataset), and the resultant 
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classification accuracy is used as the fitness value for the candidate. The candidate (or subset) with 

the best fitness value is the subset with the highest classification accuracy. Finally, after a user-

defined threshold has been reached, the best subset is selected and used to build the final classifier. 

Take note that the test set is completely different from the training set. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  𝛼𝑖           (3.56) 

where αi is the classification accuracy produced after validating each candidate on the test set 

3.6  Features used for classification 

This section provide details on the features extracted from the spam email and phishing email 

datasets used for evaluation. The credit card fraud dataset used for evaluation was already 

processed by dataset providers [240], hence feature extraction was not necessary. Moreover, 

dataset providers did not provide details on the extracted credit card fraud features, due to 

confidentiality issues.  

3.6.1 Spam email features 

Prior to classification, some set of spam features were extracted from each email in the spam email 

datasets used for evaluation. After extraction, the features are formatted according to the input 

format required by libSVM [34], and saved in a text file for easy processing. LibSVM is the SVM 

library used in this research for all experiments. Details on the extracted spam features are 

described in this section. 

3.6.1.1 Word-Based Features 

For this feature, different words are extracted from all emails in the dataset, using the  extraction 

technique proposed by Paul Graham [241]. Moreover, the spam score for each word is calculated, 

and the words with high spam score are selected and used as a feature. In this study, a total of 𝑁 

word-based features are extracted, where 𝑁 is the number of words with spam score greater than 

or equal to 0.9999. 

3.6.1.2 Term Frequency + Inverse Sentence Frequency 

This feature is a combination of TF and inverse sentence frequency (ISF). For each email, TF for 

each word is calculated using equation (3.57), and ISF for each sentence is calculated using 

equation (3.58). Finally, as shown in equation (3.59), the sum of the product of TF and ISF is 
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calculated and used as a feature. In this study, this feature was converted to binary by assigning 0 

to emails with TF-ISF value less than 100, and 1 to emails with TF-ISF values greater than 100.  

This feature was also used by Shams and Mercer [242]. 

𝑇𝐹𝑡 = 1 + 𝑙𝑜𝑔(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) , 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 > 0, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (3.57) 

    

𝐼𝑆𝐹𝑡 = 𝑙𝑜𝑔
𝑁

𝑆𝐹𝑡
 ,            (3.58) 

           

 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑎𝑛𝑑 𝑆𝐹𝑡 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡  

∑ 𝑇𝐹𝑡𝑡  ×  𝐼𝑆𝐹𝑡               (3.59) 

          

3.6.1.3 Complex Words 

Words with more than two syllables are called complex words. For this feature, emails containing 

less than fifteen complex words are assigned the value of 0, and emails containing more than 

fifteen complex words are assigned the value of 1. This feature was proposed by Shams and Mercer 

[242]. 

3.6.1.4 Simple Words 

The term of simple words refers to words with one or two syllables. A Boolean value of 0 is 

recorded if an email contains less than fifty simple words, and 1 is recorded if an email contains 

more than fifty simple words. This feature is similar to the feature used by Shams and Mercer 

[242]. 

3.6.1.5 Spam Words 

Some list of spam words, provided by Sham and Mercer [242], is extracted and used as features. 

A Boolean value of 1 is recorded if an email contains more than one spam word, otherwise a value 

of 0 is recorded.  

3.6.1.6 Total HTML Tags 

HTML tags are keywords that define how web browsers format and display content [243], such as 

text and images. HTML tags are extracted from each email and a Boolean value of 1 is recorded 

if an email contains more than one HTML tag otherwise a value of 0 is recorded. This feature was 

also used by the authors in [242]. 
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3.6.1.7 Document Length 

Document length refers to the number of sentences in an email document. A Boolean value of 1 is 

recorded if an email contains more than one sentence, otherwise a value of 0 is recorded. This 

feature was proposed by Shams and Mercer [242]. 

3.6.1.8 Non-Anchor Tags 

HTML anchor tags (<a><a/>), are tags used to navigate to other Web pages. All tags that are not 

anchor tags (such as <p> and <h1>), are extracted from each email and a Boolean value is recorded. 

Emails containing more than one non-anchor tag are assigned the value of one, and emails 

containing one or no non-anchor tag are assigned the value of zero. This feature was also used by 

Shams and Mercer [242]. 

3.6.1.9 Stop Words 

Stops words are words frequently used in a specific language. Some list of stop words, provided 

by Shams and Mercer [242], is extracted from each email and a Boolean value is recorded. Emails 

with stop words greater than one hundred in number, are assigned the value of one, and emails 

containing less than one hundred stop words are assigned the value of zero. This feature was 

proposed by Shams and Mercer [242]. 

3.6.1.10 Presence of ‘Link’, ‘Click Here’ in URL Text of a Link 

Most spam or phishing email typically require users to click on a Web link, which re-directs them 

to a spam or phishing Website. Hence, for each email, URLs are extracted, and a Boolean value 

of 1 is recorded based on whether the URL text contains the following words: “Click Here” or 

“Link”. Otherwise, 0 is recorded. A similar feature is used by the authors in [244]. 

3.6.1.11 Domain Name Disparity 

Domain names are used to detect different Web pages. For example, the domain name of 

“https://www.google.com/” is “google.com”. Domain names in the body of legitimate emails, 

should be similar to the sender’s domain name. If there is a disparity, the email is likely a spam 

email. Domain names from the body section of each email are extracted and compared to the 

domain name used to send the email. If there is a disparity, the email is assigned the value of one, 



117 

 

otherwise, the email is assigned the value of zero. This feature was also used by the authors in 

[244] and [245]. 

3.6.1.12 Sum of Distinct Domain 

Domain names are used to detect Web pages. For this feature, domain names are extracted from 

each email and the total number of domain names is recorded and used as a continuous feature. 

Domain names that appear more than once are counted only once. This feature was also used by 

the authors in [89] and [244]. 

3.6.1.13 SpamAssassin Feature  

SpamAssassin is a reliable spam email filter and is currently used by some organizations. In this 

research, SpamAssassin is used to classify each email and a Boolean value of 1 or 0 is assigned to 

an email based on the output of SpamAssassin. An untrained Offline version of SpamAssassin is 

used with the default threshold value and rule weights. Similar features were used by Akinyelu et 

al. [244] and Fette et al. [89]. 

3.6.1.14 HTML Content Type 

Emails are of different formats and content types. These standards and formats are defined by 

MIME standards. Email content type could be “ordinary text”, or “HTML”. Ordinary text content 

type is defined by “text/plain”, and “HTML” content type is defined by “text/html”.  

Fette et al. [89], note that emails with “HTML” content type, are likely scam emails. Hence, in 

this study, emails with “text/html” are assigned the value of one, otherwise, emails are assigned 

the value of zero. Similar feature was also used in [244] and [89]. 

3.6.1.15 Total Email Links 

Zhang and Y. Yuan [246] note that emails containing many URLs are likely spam or phishing 

emails. Hence, email links are extracted from each email and the total number of Web links are 

recorded and used as a continuous feature. This feature was also used by the authors in [244] and 

[246]. 

3.6.2 Phishing e-mail features  

The “Bag-of-words” approach used in spam filtering is not similar to the approach used for 

phishing email classification [70]. This is because techniques used for spamming (such as 
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typographic errors) do not frequently appear in phishing emails. Hence, phishing-specific features 

are most adequate for the filtering of phishing emails. This section presents the details of the 

phishing features used in this study. Six of the features used for phishing emails are similar to the 

spam email features already presented in Sections 3.6.1.10 - 3.6.1.15. Hence, they are not 

presented in this section.  

3.6.2.1 IP-Based URLs 

Generally, Website URLs of legitimate organizations or companies typically contain the name of 

the company or organization. For example, “www.google.com” informs users that the URL 

belongs to Google International. However, phishing URLs typically contain some string of 

numbers, called IP address (for example, “http://145.21.455.12/login.yahoo.com”). Phishers use 

these numbers to hide Website names from users. A Boolean value is recorded for each email, 

based on whether the email contains IP-based URLs. This feature was also used by the authors in 

[6] and [244]. 

3.6.2.2 Disparities between ‘href’ attribute and LINK text 

URLs are used to access Web pages on Internet. URLs can be coded in an email using the HTML 

anchor tags. For example, “<a href=”www.google.com”>Google<a/>”. As shown in the example, 

the “href” attribute is used to define the actual address of the Website (“www.google.com”). A 

user is expected to click on the link text (“Google” in the above example), before the browser is 

directed to the Website. The URL defined by the “href” attribute and the string specified in the 

link text should be the same. Hence, for this feature, a binary value is recorded based on whether 

there is a disparity between the “href” attribute and the link text in an email. This feature was used 

by the authors in [244] and [6]. 

3.6.2.3 Number of Domain Name Dots 

URLs for legitimate organizations or companies should not contain more than three dots [245] (for 

example, www.yahoo.com contains two dots). Hence, for this feature, a binary value of 1 is 

recorded if an email contains more than 3 dots, otherwise a value of 0 is recorded. This feature 

was also used by the authors in [244]. 
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3.6.2.4 Presence of JavaScript 

Phishers typically use the JavaScript programming language to mask information from end users. 

JavaScript can be coded in the body section of an email (using the script (<script>) tag) or in a 

URL (using the anchor (<a>) tag). Therefore, a binary value is recorded based on the presence or 

absence of the word “javascript” in either the body section of an email or in a URL contained in 

the email. This feature was also used by the authors in [89] and [244]. 

3.6.2.5 Word-Based Features 

The following groups of words are extracted, counted, normalized and used as features. These 

groups of words often appear in phishing emails. Prior to extraction, the words were grouped into 

batches of six, and each group were used as a single feature. Hence, a total of six  

word-based features is extracted from each email. This feature is similar to one of the features used 

in [247]. The groups of words include: 

i. Social Security, SSN 

ii. Customer, User, Client 

iii. Confirm, Update 

iv. Account, Verify 

v. Username, Password, Login 

vi. Hold, Restrict, Suspend 

3.7 Chapter summary 

This thesis proposed seven filter-based and five wrapper-based intelligent instance selection 

techniques for improving SVM speed and predictive accuracy. Two of the proposed filter-based 

techniques are boundary detection algorithms that are inspired by edge detection techniques in 

image processing and edge selection techniques in ACO, respectively. The remaining five filter-

based and wrapper-based techniques are based on the following NI algorithms: CSA, FPA, SSA, 

FFA and BA. The primary difference between the filter- and wrapper-based techniques is in their 

method of selection. The fitness function of the filter-based techniques is designed with the 

primary objective of improving SVM training speed, while the fitness function of the  

wrapper-based techniques is designed with the primary objective of improving SVM predictive 

accuracy. This section presents a detailed description of the proposed wrapper-based and filter-
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based techniques.  Different sets of experiments are performed to validate the efficiency of the 

proposed techniques. Moreover, some set of spam and phishing email features (also presented in 

this section) was extracted and used to train and build SVM classification models. The 

experimental results produced by the proposed filter-based techniques reveal excellent 

improvement in SVM training speed. Moreover, the experimental results produced by the wrapper-

based techniques show improvement in SVM predictive accuracy. Detailed information on the 

results are presented and discussed in Chapter 4. 
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Chapter 4  

Experimental Setup, Dataset and Results 
Two sets of experiments are performed to evaluate the performance of the proposed techniques. 

The first set of experiments was performed to evaluate the performance of the proposed  

filter-based techniques and the second set of experiments was performed to evaluate the 

performance of the wrapper-based techniques. This section provides information on the results 

obtained from the experiments. This section also provides information on the experimental setup 

and the datasets used for the experiments. In addition, this section provides details on the methods 

used to evaluate the performance of the proposed technique.  

4.1 Experimental setup  

All experiments are performed on a Core i7 computer, operating on Windows 7, 64 bits and 

3.10GHz with 8GB of RAM. Moreover, for all the experiments, the RBF kernel is used. The RBF 

kernel requires the selection and tuning of two parameters: 𝐶 𝑎𝑛𝑑 𝛾. As recommended by Hsu 

[27], different exponential growing sequences of 𝐶 𝑎𝑛𝑑 𝛾 pairs are tested, and the best 𝐶 𝑎𝑛𝑑 𝛾 

pair is selected and used for training. Table 4.1 shows the sequence of RBF parameters used for 

all experiments in this research. Also, Tables 4.2 and 4.3 report the values for other parameters.  

Prior to training, some set of features (described in Section 3.6) were programmatically extracted 

using C# programming language. Sixteen features was extracted from a dataset consisting of 

phishing and legitimate emails (dataset A), and a set of fifteen features was extracted from a dataset 

consisting of spam and legitimate emails (dataset B). Feature extraction was not necessary for the 

credit card fraud dataset (dataset C) and spambase dataset (dataset D), because the two datasets 

were already processed by their providers. Furthermore, all the extracted features were processed 

and converted to the input format required by libSVM [34] – the SVM library used in this research. 

Specifically, Matthew Johnson DotNet implementation [35] of libSVM is used in this research. 

All features are scaled down using Gaussian transformation. Scaling ensures that all feature vectors 

have a mean of zero and a standard deviation of one [75]. Additionally, for datasets A and B, all 

the extracted features are further reduced using IG. For dataset A, IG for all the sixteen extracted 

features was calculated, and the best nine features were selected and used for training. Also, for 
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dataset B, IG was calculated for all the extracted features, and the best ten features were used to 

train SVM. Dataset C contains fifty-seven features, and all of the features were used for training 

and testing. Also, Dataset D contains 28 features and all the features were used for training and 

testing. All the experiments were performed using the popular, 10-times, 10-fold cross validation. 

Result for different subset sizes and different 𝐾 values are reported for the proposed boundary 

detection algorithms (i.e. EDISA and ACOISA). Subset size refers to the number of instances in 

the training subset processed by EDISA and ACOISA. 𝐾 refers to the number of nearest 

neighbours selected by EDISA and ACOISA, for training. Moreover, the results for different 

subset sizes and different number of particles (NP) are reported for the proposed NI-based 

techniques (i.e. FFISA, FPISA, SSISA, BISA and CSISA).  

4.2 Performance measure 

There are four prevailing possibilities in binary classification-related tasks [248], namely: True 

Positive (TP, illegitimate emails properly classified as legitimate), FP (legitimate emails 

incorrectly classified as illegitimate), True Negative (TN, legitimate emails properly classified as 

legitimate) and FN, illegitimate emails incorrectly classified as legitimate. In all experiments 

performed in this research, the performance measures used are defined in equations (4.1) – (4.7): 

Average Classification Accuracy = 
𝐶𝐴

𝑇𝑁𝑅
           (4.1)  

Storage Reduction = 
𝑇𝑅

𝑇𝑇
∗ 100            (4.2) 

  

FP Rate =          
𝑇𝑃

𝐹𝑃 + 𝑇𝑁 
              (4.3) 

   

FN Rate =           
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
              (4.4) 

     

Precision (Pr) =   
𝑇𝑃

𝑇𝑃+ 𝐹𝑃 
            (4.5) 

    

Recall (R) =        
𝑇𝑃

𝑇𝑃+ 𝐹𝑁 
              (4.6) 

     

F-Measure (FM) =       
2 ∗ 𝑃𝑟  ∗ 𝑅

𝑃𝑟 + 𝑅
             (4.7)            
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where, 𝐶𝐴, 𝑇𝑁𝑅, 𝑇𝑅, 𝑇𝑇 denote Classification Accuracy, Total Number of Runs, Total number of 

Retained Instances, Total number of Training instances, respectively. Additionally, total time 

taken (in seconds) for training and testing is reported. 

4.3 Dataset information 

The proposed techniques have been validated on 24 datasets. The first dataset (dataset A) contain 

3500 ham emails, and 500 spam emails. The second dataset (dataset B) contain 3500 ham emails 

and 500 phishing email. The ham and spam emails in datasets A and B were obtained from 

SpamAssassin [31]. The phishing emails were obtained from monkey.org [33]. The phishing 

emails are no longer available Online. For access to these, interested users should contact the 

dataset provider, Jose Nazario [33]. The third dataset (dataset C) consist of 1813 spam emails and 

2787 ham emails, provided by UCI data repository [249]. The fourth dataset (dataset D) contains 

492 credit card fraud and 4508 legitimate credit card transactions, provided by Andrea [240]. The 

remaining 20 datasets are provided by UCI data repository [249]. Table 4.4 reports a summary of 

the datasets used in this research. 

Table 4.1: SVM parameters used for evaluations 

SVM Parameters [27] C =  2-11 2-9       ………………………… 21 23 25 

γ =  2-5 2-3       ………………………… 27 29 211 

C = regularization constant, γ = Gamma 
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Table 4.2: Parameters used for experiments 

Technique   

FFISA 𝜶 𝜸 𝜷𝟎 𝑵𝒇𝒇 𝑵𝒈 (Filter) 𝑵𝒈 (Wrapper) 

0.2 1 1 20 5 3 

FPISA Probability 

Switch 

𝑵𝒈(Filter) 𝑵𝒈(Wrapper)  

0.8 5 3 

SSISA Attenuation 

Rate 

Probability 

Change 

Assigning 

Probability 

𝑵𝒈(Filter) 𝑵𝒈(Wrapper)  

1 0.7 0.1 5 3 

CSISA Discovery 

Rate 

Tolerance 𝑵𝒈(Filter) 𝑵𝒈(Wrapper) Beta  

0.25 1.0𝑒−5 5 3 1.5 

BISA Loudness Pulse Rate 𝑵𝒈(Filter) 𝑵𝒈(Wrapper) Minimum 

Frequency 

Maximum 

Frequency 

0.5 0.5 5 3 0 2 

Key: 𝛼 = alpha, 𝛾 = Gamma, 𝛽0 = Beta, 𝑁𝑓𝑓 = Number of firefly, 𝑁𝑔 = Number of generations 

Table 4.3: Parameter used for ACOISA 

Alpha Beta Number of 

Neighborhood 

Evaporation 

Rate 

Total Ant 

Movement 

Decay 

Coefficient 

Initial 

Heuristic 

Value 

Iteration 

1 2 8 0.1 40 0.05 0.01 10 
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Table 4.4: Dataset used for experiments 

Dataset Name Size Ham Spam/Phishing 

Dataset A 4000 3500 Spam: 500 (12.5%) 

Dataset B 4000 3500 Phishing: 500 (12.5%) 

Dataset C 4600 2787 Spam: 1813 (39.4%) 

Dataset D 5000 4508 Credit Card: 492 (9.84%) 

Abalone 4177 - - 

Balance Scale 625 - - 

Breast Tissue 106 - - 

Bupa 345 - - 

Credit-g 1000 - - 

Cleaveland 303 - - 

Ecoli 336 - - 

Glass  214 - - 

Hungarian 294 - - 

Iris 150 - - 

Liver 345 - - 

Pima Indians 768 - - 

Post Operative 87 - - 

Transfusion 748 - - 

Vertebral-3c 310 - - 

Voting 435 - - 

Waveform 500 - - 

Wine 178 - - 

Yeast 1484 - - 

Zoo 101 - - 
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4.4 Results and discussion 

This section reports the experimental results produced by the proposed filter and wrapper-based 

instance selection techniques. The results of standard SVM and two existing filter-based instance 

selection techniques, CLUS [1] and KNN [8], are discussed in this section. In Section 4.4.1, the 

results of the proposed filter-based techniques are discussed and compared to the results of the 

standard SVM and seven existing filter-based instance selection techniques. Also, in Section 4.4.2, 

the results obtained by the proposed wrapper-based techniques are presented and compared to the 

standard SVM and a wrapper-based instance selection technique (ADRMiner [250]). Finally, 

statistical test result are reported in Section 4.4.3. The following performance measures are 

reported: Average Classification Accuracy (ACA), Global Best (GB) accuracy, False Positive (FP) 

rates, FN rates, Recall (R), Precision (Pr), F-Measure (FM), Time (T) in seconds and storage 

reduction.  

Tables 4.5 – 4.7 show the experimental results produced by standard SVM, CLUS [1] and KNN 

[8], for credit card fraud, phishing emails and spam emails. Standard SVM refers to SVM without 

data reduction. CLUS [1] and KNN [8] are two existing filter-based instance selection techniques 

adopted in this research for the primary purpose of comparison. As shown in  

Table 4.5, standard SVM obtained good predictive accuracy for credit card fraud, spam email and 

phishing email classification. Also, standard SVM produced better predictive accuracy when 

applied to phishing emails, compared to spam emails and credit card fraud. This is because of the 

quality of the phishing features used for training. Furthermore, as shown in Table 4.5, SVM 

training speed decreases, as dataset size, feature size and number of classes increase. SVM 

performs slower for credit card fraud compared to spam and phishing emails. This is because the 

credit card fraud dataset used for experiments contains more features and instances, compared to 

the spam and phishing email datasets.  

Tables 4.6 and 4.7 show the results for CLUS [1] and KNN [8], respectively. As shown in the 

tables, both techniques produced good classification accuracy for credit card fraud detection, 

phishing and spam email classification. CLUS [1] outperformed KNN [8], in terms of predictive 

accuracy, however, KNN [8] outperformed CLUS [8], in terms of classification speed. This is 

because KNN selected fewer instances for training compared to CLUS [8]. As shown in  
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Table 4.6, CLUS [8] selected over 41% of the training dataset and KNN [8] selected less than 14% 

of the training datasets.  

Table 4.5: Standard SVM results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) 

Credit Card Fraud 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 

Phishing Email 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 

Spam Email 96.66 97.5 3.13 4.8 95.2 81.28 87.62 953.94 

 

Table 4.6: CLUS [1] results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage 

Credit Card Fraud 98.47 99.4 0.46 11.31 88.69 95.48 91.9 684.06 41.67 

Phishing Email 99.53 100 0.23 2.16 97.84 98.47 98.03 337.46 41.67 

Spam Email 96.44 100 2.61 10.28 89.72 84.41 85.35 311.98 41.67 

 

 

Table 4.7: KNN [8] results for e-fraud detection 

Mail Type Subset 

Size 

K APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage  

Credit Card Fraud 400 200 91.67 98.6 8.68 5 95 57.73 70.72 297.84 8.89 

400 300 90.21 99 10.37 4.55 95.45 53.92 67.67 230.85 8.89 

500 200 92.50 97.4 7.54 4.41 95.59 58.83 72.26 259.22 11.11 

500 300 92.04 96.8 8.37 4.12 95.88 57.38 71.18 268.75 11.11 

Phishing Email 400 200 99.59 100 0.25 1.56 98.44 98.34 98.3 244.15 5.56 

400 300 99.55 100 0.27 1.79 98.24 98.21 98.11 219.51 8.33 

500 200 99.40 100 0.48 1.4 98.6 96.9 97.62 269.77 5.56 

500 300 99.44 100 0.53 0.8 99.2 96.64 97.79 260.97 8.33 

Spam Email 400 200 95.56 97.5 4.53 3.8 96.2 75.73 84.56 177.28 11.11 

400 300 95.57 97.5 4.52 3.8 96.2 75.77 84.58 170.38 11.11 

500 200 95.55 97 4.57 3.6 96.4 75.52 84.53 189.40 13.89 

500 300 95.53 97 4.60 3.6 96.4 95.40 84.45 197.53 13.89 
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4.4.1 Experiment 1: filter-based techniques 

Experimental results for the proposed filter-based techniques are presented in this section. 

Specifically, this section reports the results obtained from the experiments performed on spam 

email, phishing email, credit card fraud and UCI datasets. 

4.4.1.1 Results and discussion for spam email detection 

The proposed filter-based techniques are validated on two different spam email datasets. As shown 

in Table 4.4, the first dataset (Dataset A) contains 4000 emails (500 spam email and 3500 

legitimate emails). The second dataset (Dataset C) contains 4600 emails (1813 spam email and 

2787 legitimate emails). As shown in Tables 4.8 – 4.14, the proposed filter-based techniques 

obtained a predictive accuracy of over 95% in less than 70 seconds. Also, the proposed boundary 

detection algorithms (i.e. ACOISA and EDISA) performed slightly slower than the NI-based 

techniques (i.e. FFISA, FPISA, SSISA, CSISA and BISA). The NI-based techniques were 

executed within 43 seconds, while the boundary detection algorithms were executed within 71 

seconds. The difference in training speed is because of the additional tasks the boundary detection 

algorithms perform. The NI-based techniques perform only instance selection, while the boundary 

detection algorithms perform two tasks: boundary detection and instance selection. Furthermore, 

as shown in the result, storage requirement for all the proposed filter-based techniques is 

negligible. The boundary detection algorithms reduced the model size by over 91%, without 

significantly affecting the classification quality. Moreover, the NI-based techniques reduced the 

model size by over 90% and simultaneously improved the classification quality. In other words, 

as shown in Tables 4.8 – 4.14, the boundary detection techniques require a maximum of 8.33% of 

the training dataset, and the NI-based techniques require a maximum of 9.2% of the training dataset 

to produce robust classification models. 

Moreover, the proposed techniques achieved a FP rate of less than 4% and a FN rate of less than 

7%. The FP and FN rate indicate that the proposed techniques correctly classified about 96% 

legitimate emails and 93% spam emails. Although, standard SVM produced slightly better FP and 

FN rate, the proposed techniques obtained better training speed and storage reduction in all cases. 

Obviously, the improved classification speed came at the expense of FP and FN rate.  The FP and 

FN rate can be further improved by training the model on additional features. As shown in Tables 

4.8 and 4.9, the proposed techniques consume a small amount of space during classification. The 
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boundary detection algorithms requires a maximum of 300 boundary instances and a subset size 

of 500 to produce improved classification models. Also, as shown in Tables 4.10 – 4.14, the NI-

based techniques require a maximum of 700 instances to produce good training speed and 

predictive accuracy. 

The best results obtained by the proposed techniques are benchmarked against the best results 

obtained by standard SVM, CLUS [1], KNN [8]. Table 4.17 and Figure 4.3 show the results of the 

comparison. As shown, the proposed techniques reduced the training data size by an average of 

90% and slightly affected the predictive accuracy by a negligible value of 0.004%. However, there 

is a balanced trade-off between the predictive accuracy and training speed. Furthermore, as shown 

in the table, the proposed techniques improved SVM training speed by over 93%. Specifically, 

EDISA, ACOISA, FFISA, FPISA, SSISA, CSISA and BISA improved SVM training speed by 

94.06%, 93.70%, 93.89%, 93.44%, 93.43%, 95.84% and 95.17% respectively. The improvement 

shows that the proposed filter-based techniques are fast and accurate techniques for instance 

selection. 

In addition, the proposed techniques are further validated on another spam email dataset and 

compared to five existing instance selection techniques: PSC [251], DROP 3 [206], DROP 5 [206], 

GCNN [252] and POC-NN [253]. As shown in Table 4.18, the proposed techniques exceed the 

performance of all the compared techniques. The proposed techniques outperformed the compared 

techniques, in terms of classification speed and predictive accuracy. As shown in Table 4.18, the 

proposed filter-based techniques obtained a speed improvement of over 43%, 97%, 95%, 69%, 

85%, when compared to PSC, DROP 3, DROP 5, GCNN and POC-NN, respectively. Moreover, 

the techniques obtained an accuracy improvement of 21.44%, 10.54%, 10.14%, 15.19% and 

13.07%, when compared to PSC, DROP 3, DROP 5, GCNN and POC-NN, respectively. 

Generally, as shown in all the results, the proposed techniques are good instance selection and 

spam email detection techniques. 

4.4.1.2 Results and discussion for phishing email detection 

Table 4.8 – 4.14 shows the phishing email results for the proposed filter-based techniques. As 

shown in the tables, the proposed techniques produced excellent classification speed and accuracy. 

They all correctly classify over 99% phishing emails within a short time period. The NI-based 

techniques were executed in less than 60 seconds and the boundary detection algorithms were 
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executed in less than 72 seconds. Also, the NI-based techniques reduced the training data storage 

space by over 90% and the boundary detection algorithms reduced the training data storage space 

by 91.67%. Furthermore, the proposed techniques produced a FP rate of less than 1% and a FN 

rate of less than 3%. This shows that the proposed filter-based techniques correctly classified 

almost all of the phishing and legitimate emails. Additionally, as shown in Tables 4.8 and 4.9, 

EDISA produced the best results when 𝐾 is 200 and the subset size is 400. Also, ACOISA 

produced its best results when 𝐾 is 200 and the subset size is 500. This implies that both techniques 

require a maximum of 200 boundary instances to produce excellent classification models. As 

shown in Tables 4.10 – 4.14, all the NI-based techniques require a maximum of 700 instances to 

produce excellent results. 

Furthermore, the best result produced by the proposed techniques are compared to standard SVM 

and two existing instance selection algorithms: CLUS [1] and KNN [8]. As shown in Table 4.16 

and Figure 4.2, the proposed techniques outperformed CLUS [1] and KNN [8], and also improved 

SVM classification speed by over 95%. Specifically, EDISA, ACOISA, FFISA, FPISA, SSISA, 

CSISA and BISA improved SVM classification speed by 98.09%, 95.25%, 94.82%, 94.35%, 

95.85%, 96.76%, 95.16%, respectively. The good results produced by the proposed filter-based 

techniques demonstrate their effectiveness in speed optimization and phishing email classification. 

4.4.1.3 Results and discussion for credit card fraud detection 

A different set of experiments was performed in order to test the performance of the proposed 

techniques on credit card fraud. Tables 4.8 – 4.14 report the experimental results produced by the 

techniques. As reported in the tables, the proposed techniques correctly classified over 96% credit 

card transactions in less than 90 seconds. Moreover, the NI-based techniques were executed in less 

than 90 seconds and require a maximum storage space of less than 7.5% of the training dataset. 

Also, the boundary detection algorithms were executed in less than 90 seconds and required a 

storage space of less than 7% of the training dataset. As shown in Tables 4.8 – 4.14, the NI-based 

techniques require a maximum of 700 instances to produce fast classification models. Also, the 

boundary detection algorithms require a maximum of 300 boundary instances to produce fast 

classification models. This implies that the proposed techniques require a small amount of storage 

space for training.  
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Table 4.5 shows the credit card fraud results for standard SVM. As shown in Table 4.15 and Figure 

4.1, the proposed techniques improved SVM classification speed by over 97%, without 

meaningfully affecting SVM classification accuracy. Precisely, EDISA, ACOISA, FFISA, FPISA, 

SSISA, CSISA and BISA improved SVM classification speed by 97.12%, 95.71%, 96.02%, 

96.74%, 97.40%, 98.34%, 95.91% respectively. Also, the results shows that the proposed filter-

based techniques are faster than CLUS [1] and KNN [8]. Overall, the results reveal that the 

proposed techniques are fast and accurate techniques for SVM speed optimization and credit card 

fraud detection. 

4.4.1.4 Results and Discussion for UCI datasets 

The robustness of the proposed filter-based techniques are further demonstrated by validating them 

on 20 datasets provided by UCI dataset repository. UCI ML repository [249] consist of many 

widely used datasets, provided for experimental evaluation of ML algorithms. Table 4.19 shows 

the average predictive accuracy and time (in seconds) produced by the proposed techniques and 

standard SVM. In the table, for each dataset, the best three training speed are underlined. As shown 

in the table, the proposed techniques consistently produced better training speed in 100% of the 

datasets (20 out of 20) used for evaluation, without significantly affecting SVM predictive 

accuracy. Moreover, results shows that the CSISA produced the best training speed in most cases, 

followed by FPISA. Also, the result shows that the proposed techniques outperform standard 

SVM, in terms of speed-accuracy trade-off.  

The proposed techniques are further compared to three existing filter-based instance selection 

techniques: Wilson [254],  RT3 [255] and ICF [256].  Table 4.20 shows the results of the 

comparison. The best predictive accuracy for each of the datasets is underlined. As shown in the 

table, the proposed techniques outperform the three compared techniques in 69% (9 out of 13) of 

the datasets used for evaluation. The results show that the proposed filter-based techniques can 

also be applied to other classification problems, different from e-fraud. 
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Table 4.8: Filter-based EDISA results for e-fraud detection 

Mail Type K Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 200 400 98.11 98.80 0.06 18.8 81.20 99.34 89.3 59.97 4.44 

300 400 97.94 98.80 0.44 17.10 82.90 96.3 88.82 82.95 6.67 

200 500 97.90 98.80 0.39 17.93 82.07 97.15 88.64 65.33 4.44 

300 500 98.10 98.8 0.18 17.82 82.18 98.27 89.37 87.93 6.67 

Phishing Email 200 400 99.41 100 0.42 1.78 98.22 97.22 97.59 18.00 5.56 

300 400 99.38 100 0.46 1.78 98.22 96.99 97.46 24.2 8.33 

200 500 99.40 100 0.40 2.00 98.00 97.35 97.53 19.82 5.56 

300 500 99.40 100 0.40 2.00 98.00 97.35 97.53 19.82 8.33 

Spam Email 200 400 96.51 97.50 3.16 5.84 94.16 81.03 87.07 35.15 5.56 

300 400 96.42 97.50 3.14 6.66 93.34 80.95 86.68 59.59 8.33 

200 500 96.61 97.50 3.29 4.14 95.86 80.70 97.56 35.49 5.56 

300 500 96.63 97.50 3.29 3.96 96.04 80.73 87.66 56.60 8.33 
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Table 4.9: Filter-based ACOISA results for e-fraud detection 

Mail Size K Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 200 400 96 99.2 3.08 12.3 87.7 79.54 82.2 61.19 4.44 

300 400 96.63 99.2 2.55 10.86 89.14 81.96 84.51 88.84 6.67 

200 500 96.52 99.2 2.29 14.45 85.55 84.64 83.9 66.15 4.44 

300 500 96.03 98.8 3.21 10.96 89.04 78.63 82.42 93.43 6.67 

Phishing Email 200 400 99.2 100 0.62 2.08 97.92 96.13 96.81 38.46 5.56 

300 400 99.46 100 0.33 2.04 97.96 97.79 97.75 64.35 8.33 

200 500 99.35 100 0.43 2.18 97.82 97.13 97.36 44.76 5.56 

300 500 99.33 100 0.49 1.92 98.08 96.9 97.32 71.08 8.33 

Spam Email 200 400 96.53 98.75 3.4 3.98 96.02 80.33 87.39 39.81 5.56 

300 400 96.36 97.50 3.53 4.42 96.00 95.58 86.79 57.11 8.33 

200 500 96.56 97.5 3.36 4.04 95.96 80.49 87.46 38.99 5.56 

300 500 96.54 97.5 3.41 3.82 96.18 80.31 87.44 60.08 8.33 
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Table 4.10: Filter-based FFISA results for e-fraud detection 

Mail Type NP Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 5 500 96.94 99.20 2.00 12.85 87.15 85.29 85.40 50.05 5.28 

5 700 97.24 99.20 1.84 11.24 88.76 85.40 86.51 82.52 7.43 

10 500 96.99 99.20 1.91 13.02 86.98 85.47 85.49 49.42 5.17 

10 700 97.08 99.20 1.97 11.64 88.36 84.91 85.98 82.22 7.31 

Phishing Email 5 500 99.32 100 0.45 2.30 97.70 97.22 97.28 34.23 6.61 

5 700 99.47 100 0.29 2.22 97.78 98.08 97.8 45.95 9.34 

10 500 99.31 100 0.46 2.30 97.70 97.24 97.26 31.79 6.50 

10 700 99.37 100 0.41 2.16 97.84 97.42 97.45 42.99 9.17 

Spam Email 5 500 96.25 97.50 3.70 4.08 95.92 79.11 86.56 41.47 6.60 

5 700 96.45 97.50 3.43 4.34 95.66 79.95 86.99 58.26 9.30 

10 500 96.16 97.50 3.81 4.04 95.96 78.64 86.30 43.88 6.49 

10 700 96.31 99.25 3.64 4.02 95.98 79.38 86.76 62.90 9.20 

 

  



135 

 

Table 4.11: Filter-based FPISA results for e-fraud detection 

Mail Type NP Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 5 500 97.18 99.00 1.73 12.69 87.31 86.22 86.12 47.08 5.08 

5 700 97.22 99.20 1.83 11.75 88.25 85.90 86.50 67.61 7.20 

10 500 96.95 99.00 1.95 12.99 87.01 85.09 85.23 53.05 4.98 

10 700 97.14 99.20 1.87 12.04 87.96 85.61 86.16 76.16 7.10 

Phishing Email 5 500 99.34 100 0.42 2.32 97.68 97.29 97.32 28.54 6.34 

5 700 99.45 100 0.32 2.20 97.80 97.91 97.71 48.82 9.01 

10 500 99.16 100 0.65 2.24 97.76 96.18 96.71 28.80 6.25 

10 700 99.33 100 0.49 1.96 98.04 96.98 97.33 42.70 8.86 

Spam Email 5 500 96.27 97.50 3.49 5.48 94.52 80.14 86.10 43.84 6.38 

5 700 96.41 97.50 3.55 3.90 96.10 97.70 87.02 62.57 9.00 

10 500 95.96 97.50 3.93 4.84 95.16 78.11 85.43 45.21 6.21 

10 700 96.21 97.50 3.69 4.48 95.52 79.16 86.26 62.76 8.87 
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Table 4.12: Filter-based SSISA results for e-fraud detection 

Mail Type NP Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 5 500 97.24 99.00 1.68 12.59 87.41 86.65 86.34 53.99 5.24 

5 700 97.16 99.00 1.93 11.23 88.77 84.83 86.21 67.56 7.39 

10 500 97.18 99.20 1.66 13.59 86.41 87.05 86.01 57.52 5.16 

10 700 97.18 99.00 1.89 11.43 88.57 85.42 86.35 67.34 7.30 

Phishing Email 5 500 99.34 100 0.45 2.20 97.80 97.32 97.36 38.33 6.51 

5 700 99.44 100 0.32 2.24 97.76 97.95 97.70 53.27 9.22 

10 500 99.32 100 0.45 2.30 97.70 97.22 97.28 38.73 6.39 

10 700 99.44 100 0.32 2.24 97.76 97.83 97.67 59.51 9.12 

Spam Email 5 500 96.26 97.50 3.67 4.26 95.74 79.27 86.54 45.61 6.53 

5 700 96.39 97.50 3.51 4.32 95.68 80.03 86.84 63.49 9.24 

10 500 96.37 97.50 3.59 3.94 96.06 79.56 86.92 45.75 6.38 

10 700 96.45 97.50 3.51 3.82 96.18 79.90 87.18 70.90 9.11 
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Table 4.13: Filter-based CSISA results for e-fraud detection 

Mail Type NP Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 5 500 96.85 99.00 1.98 13.91 86.09 84.93 84.59 32.85 3.28 

5 700 96.84 98.60 2.09 13.04 86.96 84.48 84.90 45.92 4.65 

10 500 96.94 99.20 1.87 14.04 85.96 85.54 84.97 34.72 3.18 

10 700 96.86 98.80 2.07 12.95 87.05 84.53 84.95 49.48 4.57 

Phishing Email 5 500 99.07 100 0.73 2.36 97.64 95.76 96.40 18.14 4.06 

5 700 99.31 100 0.45 2.34 97.66 97.06 97.22 30.54 5.90 

10 500 99.19 100 0.56 2.54 97.46 96.70 96.84 21.69 3.99 

10 700 99.26 100 0.51 2.30 97.70 96.97 97.11 30.80 5.73 

Spam Email 5 500 96.20 100 3.74 4.24 95.76 78.93 86.38 29.89 4.06 

5 700 96.16 97.50 3.75 4.48 95.52 78.96 86.21 41.74 5.80 

10 500 95.98 99.25 3.88 4.98 95.02 78.44 85.55 30.66 4.02 

10 700 96.31 97.50 3.59 4.40 95.60 79.58 86.60 39.63 5.73 
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Table 4.14: Filter-based BISA results for e-fraud detection 

Mail Type NP Subset Size APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

Credit Card Fraud 5 500 97.13 99.20 1.80 12.78 87.22 86.46 86.11 53.14 5.10 

5 700 97.03 99.20 2.11 10.91 89.09 83.53 85.71 74.30 7.26 

10 500 96.75 99.00 2.30 11.97 88.03 82.65 84.64 52.41 5.02 

10 700 97.40 99.20 1.56 12.14 87.86 87.43 87.07 84.88 7.15 

Phishing Email 5 500 99.29 100 0.49 2.26 97.74 97.01 97.18 30.82 6.43 

5 700 99.39 100 0.38 2.20 97.80 97.57 97.52 43.64 9.05 

10 500 99.42 100 0.37 2.08 97.92 97.70 97.65 30.02 6.27 

10 700 99.43 100 0.33 2.28 97.72 97.79 97.62 45.62 8.92 

Spam Email 5 500 96.15 100 3.80 4.22 95.78 78.75 86.27 44.87 6.38 

5 700 96.29 97.50 3.65 4.08 95.92 79.24 86.66 61.97 9.10 

10 500 96.36 97.50 3.57 4.14 95.86 79.52 86.84 46.03 6.27 

10 700 96.25 97.50 3.71 4.10 95.90 79.11 86.55 61.09 8.95 
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Table 4.15: Filter-based Techniques vs. other techniques for credit card fraud  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 

EDISA 98.11 98.8 0.06 18.8 81.2 99.34 89.3 59.97 4.44 

ACOISA 96.63 99.2 2.55 10.86 89.14 81.96 84.51 88.84 6.67 

FFISA 97.24 99.20 1.84 11.24 88.76 85.40 86.51 82.52 7.43 

FPISA 97.22 99.20 1.83 11.75 88.25 85.90 86.50 67.61 7.20 

SSISA 97.24 99.00 1.68 12.59 87.41 86.65 86.34 53.99 5.24 

CSISA 96.94 99.20 1.87 14.04 85.96 85.54 84.97 34.72 3.18 

BISA 97.40 99.20 1.56 12.14 87.86 87.43 87.07 84.88 7.15 

CLUS [1] 98.47 99.4 0.46 11.31 88.69 95.48 91.9 684.06 41.67 

KNN [8] 92.5 97.4 7.84 4.41 95.59 58.83 72.76 259.22 11.11 

Standard SVM 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 0 

 

Table 4.16: Filter-based techniques vs. other techniques for phishing email  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction (%) 

EDISA 99.41 100 0.42 1.78 98.22 97.22 97.59 18.00 5.56 

ACOISA 99.35 100 0.43 2.18 97.82 97.13 97.36 44.76 5.56 

FFISA 99.47 100 0.29 2.22 97.78 98.08 97.8 45.95 9.34 

FPISA 99.45 100 0.32 2.20 97.80 97.91 97.71 48.82 9.01 

SSISA 99.44 100 0.32 2.24 97.76 97.95 97.70 53.27 9.22 

CSISA 99.31 100 0.45 2.34 97.66 97.06 97.22 30.54 5.90 

BISA 99.43 100 0.33 2.28 97.72 97.79 97.62 45.62 8.92 

CLUS [1] 99.53 100 0.23 2.16 97.84 98.47 98.03 337.46 41.67 

KNN [8] 99.59 100 0.25 1.56 98.44 98.34 98.3 244.15 5.56 

Standard SVM 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 0 
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Table 4.17: Filter-based techniques vs. other techniques for spam email  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction (%) 

EDISA 96.63 97.5 3.29 3.96 96.04 80.73 87.66 56.60 8.33 

ACOISA 96.54 97.5 3.41 3.82 96.18 80.31 87.44 60.08 8.33 

FFISA 96.45 97.50 3.43 4.34 95.66 79.95 86.99 58.26 9.30 

FPISA 96.41 97.50 3.55 3.90 96.10 97.70 87.02 62.57 9.00 

SSISA 96.49 97.50 3.45 3.94 96.06 80.16 87.29 62.67 9.12 

CSISA 96.31 97.50 3.59 4.40 95.60 79.58 86.60 39.63 5.73 

BISA 96.36 97.50 3.57 4.14 95.86 79.52 86.84 46.03 6.27 

CLUS [1] 96.44 100 2.61 10.28 89.72 84.41 85.35 311.98 41.67 

KNN [8] 95.57 97.5 4.52 3.8 96.2 75.77 84.58 170.38 11.11 

Standard SVM 96.66 97.5 3.13 4.8 95.2 81.28 87.62 953.94 0 
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Table 4.18: Filter-based proposed techniques vs other techniques for spambase dataset 

Technique APA(%) T(s) 

EISA 87.92 96.87 

ACOISA 84.38 99.22 

FFISA 88.37 107.88 

FPISA 88.11 98.12 

SSISA 87.96 102.30 

CSISA 86.71 55.32 

BISA 88.15 91.22 

PSC [251] 71.95 189.57 

DROP 3 [206] 78.44 3782.57 

DROP 5 [206] 78.72 2226.42 

GCNN [252] 73.54 348.56 

POC-NN [253] 75.37 735.08 
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Table 4.19: Filter-based proposed techniques vs standard SVM 

Dataset Name FFISA FPISA SSISA CSISA BISA EDISA ACOISA SVM 

Accr Time Accr Time Accr Time Accr Time Accr Time Accr Time Accr Time Accr Time 

Abalone 53.37 65.88 53.27 71.94 53.14 66.24 52.96 42.28 53.21 65.77 51.26 92.54 51.09 126.6 55.71 2010 

Balance Scale 90.82 48.72 90.65 47.18 90.65 50.55 88.71 29.82 90.52 49.64 88.52 36.07 88.23 38.22 93.71 101.1 

Breast Tissue 57.60 7.19 60.70 7.01 58.40 7.21 58.10 7.24 57.70 7.20 57.7 13.32 62.4 12.61 64.6 15.98 

Bupa 66.50 25.64 65.44 25.29 66.21 23.63 62.21 14.89 66.56 25.52 67.79 40.02 65.24 40.61 71.56 64.81 

credit-g 74.34 78.49 74.07 78.03 74.05 86.22 71.63 50.33 73.55 83.14 74.04 69.06 72.31 73.53 75.95 299.9 

Cleaveland 61.10 20.39 60.72 19.60 61.38 21.01 59.59 12.02 60.90 19.56 62.83 31.25 52.03 43.15 63.21 53.55 

Ecoli 86.09 24.05 85.27 25.21 86.27 26.86 84.06 16.41 85.82 24.61 86.64 35.3 84.97 38.38 87.36 62.1 

Glass 64.95 16.38 64.90 15.35 65.14 15.52 61.05 9.42 63.52 14.82 60.14 22.56 64.57 20.56 65.67 33.95 

Hungarian 63.28 23.31 63.83 21.75 62.90 23.60 63.34 14.69 64.03 24.20 65.69 17.88 56.34 40.45 63.86 52.12 

Iris 94.80 10.61 95.60 9.65 95.27 9.83 94.47 6.14 94.73 9.53 95.13 15.92 96.13 17.05 95.5 21.45 

Liver 65.56 28.56 66.00 25.46 65.44 27.03 62.56 15.96 65.24 27.58 68.88 33.89 66.74 35.06 72.47 58.26 

Pima Indians 75.36 74.42 75.18 66.06 75.63 72.54 74.25 42.91 75.03 70.93 74.74 33.57 71.16 33.64 76.92 126.7 

Post Operative 70.88 7.37 71.00 7.13 71.25 7.56 71.63 6.90 71.25 7.04 71.13 6.67 65.25 8.36 71.25 11.87 

Transfusion 78.32 66.17 78.55 46.28 77.91 66.82 77.74 32.06 78.09 53.35 75.99 32.8 70.35 33.47 78.61 135.2 

Vertebral-3c 83.13 24.03 83.00 25.45 82.68 25.35 82.29 14.82 84.16 21.5 78.58 19.85 81.32 21.00 85.61 53.51 

Voting 94.98 34.31 94.79 33.37 95.09 29.98 94.09 18.73 94.93 30.86 88.88 34.24 91.49 42.13 95.77 83.07 

Waveform 84.09 78.46 83.92 76.25 84.13 79.72 82.81 51.03 83.89 79.05 81.81 132.2 85.26 126.9 86.98 2501 

Wine 97.47 8.50 97.06 8.39 96.53 9.04 96.29 5.29 97.59 8.75 95.35 12.11 93.71 13.24 97.47 32.58 

Yeast 57.68 67.77 57.25 67.19 57.14 73.52 55.48 50.06 57.39 80.07 52.48 56.07 52.42 58.25 59.45 306 

Zoo 92.00 7.19 92.50 7.12 92.00 7.24 90.40 7.32 91.40 7.66 94 17.27 91.3 7.16 95 17.74 

Average 75.62 37.02 75.25 31.55 75.17 33.34 73.71 20.64 75.13 32.66 74.58 37.63 73.11 41.52 77.83 302.04 
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Table 4.20: Filter-based techniques vs wilson, RT3 and ICF  

Dataset Name FFISA FPSIA SSISA CSISA BISA EDISA ACOISA Wilson [254] RT3 [255] ICF [256] 

Accr Accr Accr Accr Accr Accr Accr Accr Accr Accr 

Abalone 53.37 53.27 53.14 52.96 53.21 51.26 51.09 22.01 22.11 22.74 

Balance S 90.82 90.65 90.65 88.71 90.52 88.52 88.23 86.04 83.4 81.47 

Bupa 66.50 65.44 66.21 62.21 66.56 67.79 65.24 61.81 61.23 60.75 

Ecoli 86.09 85.27 86.27 84.06 85.82 86.64 84.97 86.27 82.84 81.34 

Glass 64.95 64.90 65.14 61.05 63.52 60.14 64.57 69.05 69.05 69.64 

Hungarian 63.28 63.83 62.90 63.34 64.03 65.69 56.34 79.91 80.17 78.3 

Iris 94.80 95.60 95.27 94.47 94.73 95.13 96.13 95.33 93.61 92.56 

Pima Ind 75.36 75.18 75.63 74.25 75.03 74.74 71.16 71.27 71.08 69.17 

Post Opr 70.88 71.00 71.25 71.63 71.25 71.13 65.25 66.94 69.44 65.28 

Voting 94.98 94.79 95.09 94.09 94.93 88.88 91.49 93.28 93.77 91.19 

Wavefrm 84.09 83.92 84.13 82.81 83.89 81.81 85.26 76.62 76.14 73.93 

Wine 97.47 97.06 96.53 96.29 97.59 95.35 93.71 86.43 86.43 83.81 

Zoo 92.00 92.50 92.00 90.40 91.40 94 91.3 96.25 87.08 92.42 

Average 79.58 79.49 79.55 78.17 79.42 78.54 77.29 76.25 75.10 74.04 
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Figure 4.1: Filter-based Technique vs. CLUS, KNN and Standard SVM - Credit Card Fraud 

 

 

Figure 4.2: Filter-based technique vs. CLUS, KNN and standard SVM - phishing email 
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Figure 4.3: Filter-based technique vs. CLUS, KNN and standard SVM - spam email 

 

 

Figure 4.4: Filter-based technique vs. standard SVM (UCI datasets) 
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4.4.2 Experiment 2: wrapper-based techniques 

This thesis proposes five wrapper-based instance selection techniques for improving SVM 

predictive accuracy. The five techniques are validated on 23 datasets containing spam emails, 

phishing emails, credit card fraud and 20 other problems. As mentioned in Section 4.1, unlike the 

filter-based techniques that searches through a subset of the dataset, the wrapper-based techniques 

are designed to search through the entire training data for relevant instances. Tables 4.21 – 4.25 

report the results for the wrapper-based techniques, while Figures 4.5 – 4.8 show the comparisons 

between standard SVM and the wrapper-based techniques. Table 4.26 shows the results for credit 

card fraud, Table 4.27 shows the results for phishing emails and Table 4.28 shows the results for 

spam emails. For each table, the best three predictive accuracy are underlined. As shown in the 

results, the wrapper-based techniques improved SVM predictive accuracy for most cases. They 

also simultaneously improved SVM training speed, especially for large datasets. 

4.4.2.1 Result and discussion for spam email 

Tables 4.21 – 4.25 reports the average predictive accuracy, global best, FP rate, FN rate, time (in 

seconds) and storage reduction for the experiments performed on spam emails. Global best refers 

to the best predictive accuracy achieved during the cross validation of each dataset. As shown in 

the tables, FFISA obtained the least predictive accuracy of 96.67% and CSISA obtained the best 

predictive accuracy of 96.92%. FPISA, SSISA and BISA obtained predictive accuracies of 

96.75%, 96.80% and 96.80%, respectively. This implies that the five proposed wrapper-based 

techniques correctly classified an average of over 96% of the entire datasets. Moreover, CSISA 

achieved the highest global best solution of 99.25%, followed by FPISA and BISA. This implies 

that CSISA correctly classified over 99% of the dataset during some rounds of cross-validation. 

Moreover, CSISA obtained the best FP rate of 2.89%, followed by FPISA (2.96%) and FFISA 

(3.06%). SSISA and BISA obtained a FP rate of 3.08% and 3.11%, respectively. The FP rate shows 

that CSISA, FPISA, FFISA, SSISA and BISA correctly classified 97.11%, 97.04%, 96.94%, 

96.92% and 96.89% legitimate emails, respectively. Furthermore, BISA obtained the best FN rate 

of 3.86%, followed by SSISA (4.02%) and CSISA (4.40%). The FN rate shows that the proposed 

wrapper-based techniques correctly classified approximately 96% of spam emails. 
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As shown in Table 4.28, CSISA obtained the best storage reduction. It reduced the training dataset 

by over 54%. FFISA obtained the next best storage reduction, followed by FPISA, BISA and 

SSISA. They all reduced the training dataset to approximately half its size. Moreover, BISA 

obtained the best training speed of 442.32 seconds, followed by CSISA (454.91 seconds). SSISA 

obtained the lowest training speed of 611.98 seconds. Although, the training speed of the wrapper-

based techniques is not very high (compared to the filter-based techniques), they still perform at a 

faster rate than the standard SVM. However, as aforementioned, the primary objective of the 

wrapper-based techniques is to improve the predictive accuracy of SVM. Overall, CSISA 

produced the best results, when compared to the other filter-based techniques. 

The performances of the proposed wrapper-based techniques are compared to the performances of 

standard SVM. Table 4.29 shows the results of the comparison for the spam email dataset. As 

shown, the five proposed techniques achieved better predictive accuracy, compared to the standard 

SVM. They also outperform the standard SVM in terms of training speed. Specifically, FFISA, 

FPISA, SSISA, CSISA and BISA improved SVM training speed by 32.03%, 30.22%, 28.27%, 

46.68% and 48.15%, respectively. The speed improvement is particularly obvious for large 

datasets, which underscores the importance of SVM speed optimization. Furthermore, the five 

proposed techniques produced better FP rate, compared to the standard SVM. Also, BISA, CSISA 

and SSISA outperform standard SVM, in terms of FN rate. The improved performance of the 

proposed wrapper-based techniques indicates that the proposed techniques are better instance-

selection techniques, compared to the standard SVM. The improved results also show that NI 

algorithms are good instance-selection techniques. 

4.4.2.2 Result and discussion for phishing email 

Tables 4.21 – 4.25 show the average predictive accuracy, global best predictive accuracy, FP rate, 

FN rate, time (in seconds) and storage reduction for the experiments performed on phishing emails. 

As shown in the table, the proposed techniques correctly classified over 99.6% of the dataset. 

FPISA produced the best predictive accuracy of 99.63%. SSISA, CSISA and BISA produced the 

same predictive accuracy of 99.62%. FFISA produced a predictive accuracy of 99.60%. The high 

predictive accuracy can be attributed to the quality of the extracted features used to train the 

classifier. Furthermore, as shown in the result, the proposed wrapper-based techniques produced a 

global best predictive accuracy of 100%. This shows that the proposed wrapper-based techniques 
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correctly classified 100% of the dataset in some rounds of cross-validation, which demonstrate the 

efficacy of the proposed techniques. Moreover, FPISA produced the best FP rate of 0.11%, 

followed by CSISA (0.13%) and BISA (0.13%). The good FP rate shows that the proposed 

wrapper-based techniques classified virtually all legitimate emails correctly. Furthermore, SSISA 

produced the best FN rate of 2.08%, followed by FFISA (2.10%) and BISA (2.14%). CSISA and 

FPISA produced a FN rate of 2.18% and 2.20%, respectively. The FN rate indicates that the 

proposed techniques classified approximately 98% of phishing emails correctly. Specifically, 

SSISA correctly classified 97.92% phishing emails, while FFISA, BISA, CSISA and FPISA 

correctly classified 97.90%, 97.86%, 97.82% and 97.80% phishing emails, respectively. 

Tables 4.21 – 4.25 show the storage reduction and the training speed produced by the proposed 

wrapper-based techniques. As shown in the tables, the proposed techniques reduced the training 

dataset size by an average of 50% and simultaneously improved SVM training speed by over 56%. 

CSISA produced the best storage reduction percentage of 47.83%, followed by FPISA (49.82%) 

and BISA (50.10%). The storage reduction indicates that the proposed wrapper-based techniques 

require approximately half (that is, 50%) of the training dataset to produce robust classification 

models. Although the primary objective of the proposed wrapper-based techniques is to improve 

SVM classification accuracy, the techniques also simultaneously improved SVM training speed. 

As shown in the tables, FFISA achieved the best training speed of 371.38 seconds and improved 

SVM training speed by 60.62%. Moreover, CSISA and SSISA produced the next best training 

speed and improved SVM training speed by 59.91% and 58.11%, respectively. FPISA and BISA 

improved SVM training speed by 57% and 56.57%, respectively.  

The results produced by the proposed wrapper-based techniques are compared to the results 

produced by standard SVM. As shown in Table 4.30, although the proposed techniques slightly 

reduced SVM predictive accuracy by a non-significant value of 0.06%, they improved SVM 

training speed by over 56% and also reduced the training data size by an average of 50%. The 

excellent predictive accuracy and speed improvement produced by the proposed wrapper-based 

techniques indicate their superiority over the standard SVM, in terms of speed-accuracy trade-off. 

Generally, CSISA produced the best results for phishing emails, compared to the other proposed 

wrapper-based techniques. 
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4.4.2.3 Result and discussion for credit card fraud  

Tables 4.21 – 4.25 show the results produced by the wrapper-based techniques for credit card 

fraud. As shown in the tables, the proposed wrapper-based techniques correctly classified over 

98% of credit card transactions. The tables show that SSSIA produced the best predictive accuracy 

of 98.93%, followed by FPISA (98.86%) and BISA (98.84%). The good predictive accuracy 

underscores the generalization performance of the proposed wrapper-based techniques. Moreover, 

the table shows that the proposed techniques produced a global best predictive accuracy of 99.60%. 

This indicates that the proposed techniques correctly classified 99.6% of credit card transactions 

in at least one round of cross-validation. This shows the robustness of the models produced by the 

proposed wrapper-based techniques. Moreover, the proposed wrapper-based techniques achieved 

a FP rate of less than 0.4%. FPSIA produced the best FP rate of 0.20%, while SSISA and CSISA 

produced the second best FP rate of 0.26%. The improved FP rate indicates that the proposed 

wrapper-based techniques correctly classified nearly all of the legitimate credit card transactions. 

FPISA correctly classified over 99.8% of credit card fraud transactions, while SSISA and CSISA 

correctly classified 99.74% of credit card transactions. BISA and FFISA correctly classified 

99.71% and 99.65% of credit card transactions, respectively.  

Furthermore, Tables 4.21 – 4.25 show the FN rate produced by the proposed wrapper-based 

techniques. As shown in the table, SSISA produced the best FN rate of 8.44%, followed by FPISA 

(9.02%) and BISA (9.07%). The poor FN rates are primarily caused by the dataset quality used for 

evaluation. As mentioned in Section 1.5, the credit card fraud dataset used in this research was 

modified by the dataset owners, and its features were transformed to numerical values. 

Furthermore, FPISA produced the best training speed of 776.25 seconds, followed by BISA 

(828.73 seconds) and FFISA (883.82 seconds). Moreover, as shown in the results, the proposed 

techniques reduced the training dataset size by an average of 50%. CSISA produced the best 

storage reduction of 44.1%, while BISA and FFISA produced the second and third best storage 

reduction of 50.01% and 50.02%. The good storage reduction produced by the proposed wrapper-

based techniques shows their usefulness in applications that process massive datasets with limited 

storage space. 
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Table 4.26 shows the comparison between the proposed techniques and the standard SVM. The 

best three examples of predictive accuracy are underlined. As shown in the table, the wrapper-

based techniques produced better predictive accuracy compared to the standard SVM. Moreover, 

as shown in the result, the proposed techniques require approximately 50% of the training dataset 

to produce fast and accurate classification models for credit card fraud detection. Furthermore, 

Table 4.26 shows that the proposed wrapper-based techniques improved SVM training speed by 

over 54%. Specifically, FFISA, FPISA, SSISA, CSISA and BISA improved SVM training speed 

by 57.36%, 62.55%, 54.41%, 68.65% and 60.02%, respectively. Overall, SSISA produced the best 

result for credit card fraud, when compared to the other proposed wrapper-based techniques. 

4.4.2.4 Results and discussion for UCI datasets 

The wrapper-based techniques are further validated on 20 datasets provided by the UCI dataset 

repository. Table 4.29 shows the predictive accuracy, training speed and storage reduction 

percentage produced by the proposed wrapper-based techniques and standard SVM. For each 

dataset, the best three results are underlined. As shown in the table, the proposed wrapper-based 

techniques consistently outperform the standard SVM in 80% of the datasets (16 out of 20) used 

for evaluation. Moreover, as shown in the table, SSISA produced the best average predictive 

accuracy in most cases, followed by CSISA and FPISA. Moreover, CSISA produced the best 

average training speed, followed by FPISA and SSISA.   

The proposed wrapper-based techniques are compared to an existing state-of-the-art wrapper-

based instance selection technique (ADR-Miner [17]). Table 4.30 shows the result of the 

comparison. ADR-Miner was designed to use two classification algorithms for evaluation. One 

classification algorithm is used to evaluate the quality of each candidate solution and the second 

classification algorithm is used to build the final model. Ismail et al. [17] presented the results for 

different algorithm combinations. To ensure a fair comparison, we compare the wrapper-based 

techniques to the algorithm combination that used SVM at both the instance-selection stage and 

the model-construction stage. This is because the proposed techniques also used SVM at both 

stages. For each dataset, the best three results are underlined. As shown in the table, the five 

proposed wrapper-based outperform ADR-Miner in 90% (9 out of 10) of the dataset.
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Table 4.21: Wrapper-based FFISA results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage 

Credit Card Fraud 98.77 99.60 0.35 9.35 90.65 96.76 93.53 883.82 50.02 

Phishing Email 99.60 100 0.16 2.1 97.9 98.9 98.28 371.38 50.12 

Spam Email 96.67 97.5 3.06 5.24 94.76 81.91 87.4 579.88 49.9 

 

Table 4.22: Wrapper-based FPISA results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage 

Credit Card Fraud 98.86 99.60 0.2 9.02 90.98 97.33 93.96 776.25 50.14 

Phishing Email 99.63 100 0.11 2.2 97.8 99.24 98.4 405.58 49.82 

Spam Email 96.75 98.75 2.96 5.34 94.66 82.39 87.66 595.28 49.97 

 

Table 4.23: Wrapper-based SSISA results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage 

Credit Card Fraud 98.93 99.6 0.26 8.44 91.56 97.78 94.37 945.17 53.64 

Phishing Email 99.62 100 0.14 2.08 97.92 99.05 98.37 395.1 50.42 

Spam Email 96.8 97.50 3.08 4.02 95.98 81.67 88.2 611.98 51.32 

 

Table 4.24: Wrapper-based CSISA results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage 

Credit Card Fraud 98.83 99.60 0.26 9.57 90.43 97.54 93.75 649.95 44.1 

Phishing Email 99.62 100 0.13 2.18 97.82 99.14 98.35 378.12 47.83 

Spam Email 96.92 99.25 2.89 4.4 95.6 82.73 88.56 454.91 46.21 
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Table 4.25: Wrapper-based BISA results for e-fraud detection 

Mail Type APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage 

Credit Card Fraud 98.84 99.60 0.29 9.07 90.93 97.26 93.92 828.73 50.01 

Phishing Email 99.62 100 0.13 2.14 97.86 99.1 98.37 409.69 50.1 

Spam Email 96.8 97.75 3.11 3.86 96.14 81.56 88.21 442.32 50.03 

 

Table 4.26: Wrapper-based techniques vs standard SVM for credit card  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction (%) 

FFISA 98.77 99.60 0.35 9.35 90.65 96.76 93.53 883.82 50.02 

FPISA 98.86 99.60 0.2 9.02 90.98 97.33 93.96 776.25 50.14 

SSISA 98.93 99.6 0.26 8.44 91.56 97.78 94.37 945.17 53.64 

CSISA 98.83 99.60 0.26 9.57 90.43 97.54 93.75 649.95 44.1 

BISA 98.84 99.60 0.29 9.07 90.93 97.26 93.92 828.73 50.01 

Standard SVM 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 0 
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Table 4.27: Wrapper-based techniques vs standard SVM for phishing email  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction (%) 

FFISA 99.60 100 0.16 2.1 97.9 98.9 98.28 371.38 50.12 

FPISA 99.63 100 0.11 2.2 97.8 99.24 98.4 405.58 49.82 

SSISA 99.62 100 0.14 2.08 97.92 99.05 98.37 395.1 50.42 

CSISA 99.62 100 0.13 2.18 97.82 99.14 98.35 378.12 47.83 

BISA 99.62 100 0.13 2.14 97.86 99.1 98.37 409.69 50.1 

Standard SVM 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 0 

 

Table 4.28: Wrapper-based techniques vs standard SVM for spam email  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction (%) 

FFISA 96.67 97.5 3.06 5.24 94.76 81.91 87.4 579.88 49.9 

FPISA 96.75 98.75 2.96 5.34 94.66 82.39 87.66 595.28 49.97 

SSISA 96.80 97.50 3.08 4.02 95.98 81.67 88.2 611.98 51.32 

CSISA 96.92 99.25 2.89 4.4 95.6 82.73 88.56 454.91 46.21 

BISA 96.80 97.75 3.11 3.86 96.14 81.56 88.21 442.32 50.03 

Standard SVM 96.66 97.5 3.15 4.66 95.34 81.25 87.67 853.15 0 
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Table 4.29: Wrapper-based proposed techniques vs standard SVM 

Dataset Name FFISA FPISA SSISA CSISA BISA Standard SVM 

 Accr Stor Time Accr Stor Time Accr Stor Time Accr Stor Time Accr Stor Time Accr Stor Time 

Abalone 56.31 50.08 1176.15 56.73 49.95 974.62 56.76 53.02 1357.68 56.72 37.86 745.95 56.42 50.02 1014.01 55.71 0 2010 

Balance Scale 91.31 50.23 86.01 91.32 50.26 83.03 91.98 53.09 83.73 91.52 42.26 73.98 91.47 50.5 81.91 93.71 0 101.1 

Breast Tissue 68.3 51.09 13.83 69.9 50.88 13.85 71.3 53.26 14.47 69.5 47.41 14.23 67.6 50.66 13.81 64.6 0 15.98 

Bupa 69.5 50.26 46.1 70.24 50.32 45.09 70.82 52.65 49.19 69.85 40.04 39.28 69.79 49.92 44.53 71.56 0 64.81 

credit-g 76.02 50.03 191.3 76.19 49.83 164.2 76.23 52.94 174.7 75.89 39.74 150.2 75.81 49.79 179.6 75.95 0 299.9 

Cleaveland 63.9 50.34 39.87 63.76 49.91 39.02 64.48 53.14 42.83 64.93 38.6 33.52 64.1 49.75 39.97 63.21 0 53.55 

Ecoli 88.03 50.35 46.58 88.79 50.53 44.08 88.48 51.57 43.52 89.27 44.51 41.56 88.06 50.28 46.31 87.36 0 62.1 

Glass 68.9 50.2 28.92 69.05 50.48 28.97 70.9 52.77 29.5 71.05 39.6 24.86 69.71 50.39 29.34 65.67 0 33.95 

Hungarian 65.86 50.38 38.78 66.76 49.4 39.26 66.9 52.18 41.44 67.83 37.21 33.45 66.34 49.81 41.78 63.86 0 52.12 

Iris 96.4 49.84 17.63 97.07 49.92 17.54 97.67 49.93 18.01 97.67 46.72 16.98 96.6 49.73 17.81 95.5 0 21.45 

Liver 69.12 50.55 46.28 70.18 50.19 46.43 70.97 52.77 49.63 71.53 39.31 41.73 70.21 50.59 44.61 72.47 0 58.26 

Pima Indians 76.88 50.02 116 76.57 50.38 138.2 77.71 53.21 130.4 78.37 38.67 102.4 77.22 49.68 111.6 76.92 0 126.7 

Post Operative 71.63 56.58 11.57 71.63 56.37 11.14 72.25 56.58 11.85 71.5 56.37 12.06 72.13 56.65 11.59 71.25 0 11.87 

Transfusion 78.97 50.23 112 79.55 49.71 107 79.51 51.68 107.3 79.18 38.16 84.76 79.51 50.3 95.94 78.61 0 135.2 

vertebral-3c 85.45 50.21 36.24 87.42 50.07 37.22 86.97 51.82 37.88 87.65 42.32 34.97 86.77 49.90 37.76 85.61 0 53.31 

Voting 96.21 50.13 53.17 95.88 49.73 54.23 96.53 51.7 55.04 96.53 43.87 49.15 96.47 50.23 58.05 95.77 0 83.07 

Waveform 86.79 49.97 1563 86.77 49.99 1608 86.59 39.92 1132 86.77 39.83 1300 86.79 50.03 1597 86.98 0 2501 

Wine 97.59 49.94 15.61 97.71 49.66 16.36 98.18 50.69 17.38 97.76 49.11 17.67 97.94 50.19 17.37 97.47 0 32.58 

Yeast 60.2 50.02 216.1 61.04 207 50.1 61.49 52.98 223 60.92 40.73 185.5 60.91 50.02 209.5 59.45 0 306 

Zoo 95.5 51.49 13.08 96.9 50.94 12.78 97.3 51.57 13.41 97 50.26 12.31 96.6 50.44 13.01 95 0 17.74 

Average 78.60 50.57 185.01 79.14 57.91 169.01 79.71 51.91 173.81 79.60 42.49 144.31 78.76 50.02 177.05 78.51 0 288.99 
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Table 4.30: Wrapper-based proposed techniques vs ADR-Miner [17] 

Dataset  FFISA FPISA SSISA CSISA BISA ADR-Miner [17] 

Accur Storg Accur Storg Accur Storg Accur Stor Accur Storg Accur Storg 

Breast T 68.30 51.09 69.90 50.88 71.30 53.26 69.50 47.41 67.60 50.66 60.64 23.98 

Credit-g 76.02 50.03 76.19 49.83 76.23 52.94 75.89 39.74 75.81 49.79 74.1 19.31 

Ecoli 88.03 50.35 88.79 50.53 88.48 51.57 89.27 44.51 88.06 50.28 81.34 21.33 

Glass  68.90 50.2 69.05 50.48 70.90 52.77 71.05 39.60 69.71 50.39 69.64 31.4 

Iris  96.40 49.84 97.07 49.92 97.67 49.93 97.67 46.72 96.60 49.73 92.56 42.08 

Liver 69.12 50.55 70.18 50.19 70.97 52.77 71.53 39.31 70.21 50.59 58.56 17.55 

Transfusion 78.97 50.23 79.55 49.71 79.51 51.68 79.18 38.16 79.51 50.3 72.31 21.88 

Vertebral-3c 85.45 50.21 87.42 50.07 86.97 37.88 87.65 34.97 86.77 37.76 83.55 23.30 

Voting 96.21 50.13 95.88 49.73 96.53 51.7 96.53 43.87 96.47 50.23 95.46 12 

Zoo 95.50 51.49 96.90 50.94 97.30 51.57 97.00 50.26 96.60 50.44 98.75 52.78 

Average 82.29 50.41 83.09 50.23 83.59 50.61 83.53 42.46 82.73 49.02 78.69 26.56 
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Figure 4.5: Wrapper-based techniques vs. standard SVM (credit card fraud) 

 

 

Figure 4.6: Wrapper-based techniques vs. standard SVM (phishing email) 
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Figure 4.7: Wrapper-based techniques vs. standard SVM (spam email) 

 

  

Figure 4.8: Wrapper-based techniques vs. standard svm (UCI datasets) 
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4.4.3 Statistical analysis 

In this section, two different statistical test were conducted on the results obtained by the proposed 

filter-based and wrapper-based instance selection techniques. The tests are performed with the 

primary aim of showing that the proposed instance-selection techniques are statistically 

significantly faster than the standard SVM and two existing instance-selection techniques. Firstly, 

the Friedman’s non-parametric test for multiple comparisons is used to check if there are any 

statistically significant differences between the proposed techniques, standard SVM, CLUS [1] 

and KNN [8]. Tables 4.31 – 4.37 report the mean rank, standard deviation, chi-square and 𝑝-value 

for the statistical analysis. As shown in the tables, for credit card fraud, the resulting Freidman 

statistics for all the filter-based techniques is 300. Taking note that the confidence level is 95%, 

the critical value in a chi-squared distribution with 3% degrees of freedom is 7.815. Since 300 is 

greater than 7.815, it can be concluded, with a 95% confidence level, that there are significant 

differences between the proposed filter-based techniques, standard SVM, CLUS [1] and KNN [8]. 

Similarly, as shown in Tables 4.31 – 4.37, the chi-square value for all the tests conducted on the 

phishing and spam email results is greater than 280. Since 280 is greater than 7.815, it can also be 

concluded with a 95% degree of confidence, that there are significant differences between the 

proposed filter-based techniques, standard SVM, CLUS [1] and KNN [8]. 

Table 4.31: Average rank from Friedman's non-parametric test for EDISA 

Credit Card (χ2 = 300)  Phishing Email (χ2 = 288.25)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.89 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

EDISA 1.00 0.295  EDISA 1.00 1.021  EDISA 1.00 0.487 
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Table 4.32: Average rank from Friedman's non-parametric test for ACOISA 

Credit Card (χ2 = 300)  Phishing Email (χ2 = 300)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.89 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

ACOISA 1.00 0.510  ACOISA 1.00 2.044  ACOISA 1.00 0.621 

 

Table 4.33: Average rank from Friedman's non-parametric test for filter-based FFISA 

Credit Card Fraud (χ2 = 300)  Phishing Email (χ2 = 288.25)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.89 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

FFISA 1.00 0.964  FFISA 1.00 2.090  FFISA 1.00 0.393 

 

Table 4.34: Average rank from Friedman's non-parametric test for filter-based FPISA 

Credit Card Fraud (χ2 = 300)  Phishing Email (χ2 = 288.25)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.89 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

FPISA 1.00 0.580  FPISA 1.00 1.821  FPISA 1.00 0.548 

 

Table 4.35: Average rank from Friedman's non-parametric test for filter-based SSISA 

Credit Card Fraud (χ2 = 300)  Phishing Email (χ2 = 283.76)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.87 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

SSISA 1.00 0.757  SSISA 1.00 2.501  SSISA 1.00 0.861 
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Table 4.36: Average rank from Friedman's non-parametric test for filter-based CSISA 

Credit Card Fraud (χ2 = 300)  Phishing Email (χ2 = 288.25)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.89 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

CSISA 1.00 0.278  CSISA 1.00 1.364  CSISA 1.00 0.279 

 

Table 4.37: Average rank from Friedman's non-parametric test for filter-based BISA 

Credit Card Fraud (χ2 = 300)  Phishing Email (χ2 = 288.25)  Spam Email (χ2 = 300) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 4.00 16.114  SVM 4.00 2.901  SVM 4.00 3.052 

CLUS 3.00 4.174  CLUS 2.89 9.135  CLUS 3.00 2.591 

KNN 2.00 1.651  KNN 2.11 1.810  KNN 2.00 0.658 

BISA 1.00 0.920  BISA 1.00 1.943  BISA 1.00 0.410 

 

Tables 4.38 – 4.42 show the average ranking, standard deviation and chi-square value of the tests 

conducted on the proposed wrapper-based techniques for credit card fraud, phishing emails and 

spam emails. As shown in the tables, the chi-square value for all the Freidman tests conducted on 

the three datasets is 100. Since 100 is greater than 7.815, it can also be concluded with a 95% 

confidence level that there are significant differences between the five proposed wrapper-based 

techniques and the standard SVM. Moreover, since the computed 𝑝-values for the three datasets 

are all < 0.0001, and the number of variables (or number of compared techniques) is two, it can 

be concluded, with a 95% confidence level, that the proposed wrapper-based techniques are 

significantly faster than standard SVM. 

Table 4.38: Average rank from Friedman's non-parametric test for wrapper-based FFISA 

Credit Card  (χ2 = 100)  Phishing Email (χ2 = 100)  Spam Email (χ2 = 100) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 2.00 16.114  SVM 2.00 2.901  SVM 2.00 3.052 

FFISA 1.00 7.194  FFISA 1.00 7.217  EDISA 1.00 3.280 
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Table 4.39: Average rank from Friedman's non-parametric test for wrapper-based FPISA 

Credit Card  (χ2 = 100)  Phishing Email (χ2 = 100)  Spam Email (χ2 = 100) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 2.00 16.114  SVM 2.00 2.901  SVM 2.00 3.052 

FPISA 1.00 7.781  FPISA 1.00 6.430  FPISA 1.00 2.767 

 

Table 4.40: Average rank from Friedman's non-parametric test for wrapper-based SSISA 

Credit Card  (χ2 = 100)  Phishing Email (χ2 = 100)  Spam Email  (χ2 = 100) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 2.00 16.114  SVM 2.00 2.901  SVM 2.00 3.052 

SSISA 1.00 8.770  SSISA 1.00 7.175  SSISA 1.00 3.833 

 

Table 4.41: Average rank from Friedman's non-parametric test for wrapper-based CSISA 

Credit Card  (χ2 = 100)  Phishing Email (χ2 = 100)  Spam Email (χ2 = 100) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 2.00 16.114  SVM 2.00 2.901  SVM 2.00 3.052 

CSISA 1.00 11.298  CSISA 1.00 5.966  CSISA 1.00 5.881 

 

Table 4.42: Average rank from Friedman's non-parametric test for wrapper-based BISA 

Credit Card  (χ2 = 100)  Phishing Email (χ2 = 100)  Spam Email (χ2 = 100) 

Algorithm Ranking   S.Dev Algorithm Ranking S.Dev Algorithm Ranking S.Dev 

SVM 2.00 16.114  SVM 2.00 2.901  SVM 2.00 3.052 

BISA 1.00 6.955  BISA 1.00 5.101  BISA 1.00 4.954 

 

All of the conducted statistical tests showed that there are significant differences between the 

proposed filter-based techniques and the compared techniques. However, the tests did not specify 

the statistical difference between each technique. Hence, to obtain the statistical difference, Holm’s 

post-hoc test was conducted, using each of the proposed filter-based techniques as control 

algorithms and the compared techniques as independent algorithms. The adjusted and unadjusted 

𝑝-values obtained from the post-hoc tests for all the proposed techniques are < 0.0001. This is 

because the significant differences between the proposed filter-based techniques and the compared 

techniques are all very large (𝑝 < 0001). Since 0.0001 is less than 0.05, it can be concluded with 
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a 95% confidence level, that the proposed filter-based instance selection techniques are 

significantly faster than the standard SVM. Holm’s post-hoc test was not conducted for the 

wrapper-based techniques because the wrapper-based techniques are compared to one variable (i.e. 

the standard SVM), and the post-hoc test can only be conducted on results with more than two 

variables. The wrapper-based techniques are not compared to CLUS [1] and KNN [8] because 

both techniques are filter-based techniques, hence the comparison would not be a fair assessment.  

Finally, to identify the best filter-based and wrapper-based technique, Friedman’s test was 

conducted on the results produced by the proposed techniques. Firstly, Friedman’s test was 

conducted on the seven filter-based techniques, then Friedman’s test was also conducted on the 

five wrapper-based techniques. Table 4.43 shows the Freidman’s test result for the filter-based 

techniques. As shown in the table, the resulting Freidman’s statistics for phishing email is 199.40. 

Moreover, the critical value at 95% confidence level and 6% degree of freedom is 12.592. Since 

199.40 is greater than 12.592, for phishing email, it can be concluded that there are significant 

differences among the results produced by the seven proposed filter-based techniques. 

Furthermore, as shown in Table 4.43, the resulting Freidman’s statistics for spam emails and credit 

card fraud is 503.24 and 548.99, respectively. Since both values are greater than 12.592, for spam 

emails and credit card fraud, it can be concluded that there are significant differences among the 

results produced by the seven proposed filter-based techniques. Moreover, as shown in Table 4.43, 

EDISA achieved the best rank for phishing emails, and CSISA achieved the best rank for spam 

emails and credit card fraud. Furthermore, Tables 4.44 shows the Freidman’s test result for the 

wrapper-based techniques. As shown in the table, the chi-square values for credit card fraud, 

phishing emails and spam emails is 300, 63.11 and 328.64, respectively. Moreover, the critical 

value at a 95% confidence level and a 4% degree of freedom is 9.488. Since the three chi-square 

values are greater than 9.488, it can be concluded that there are significant differences among the 

results produced by the five wrapper-based techniques. Moreover, as shown in Table 4.44, FFISA 

achieved the best rank for phishing emails, BISA achieved the best rank for spam emails and 

CSISA achieved the best rank for credit card fraud.   

To select the best performing algorithm among the proposed techniques, Holm’s post-hoc test for 

multiple comparisons was conducted on the results produced by each of the techniques. Initially, 

Holm’s test was conducted on the filter-based techniques, then Holm’s test was conducted on the 
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wrapper-based techniques. Tables 4.45 – 4.50 show the mean, standard deviation and significance 

level for the Holm’s tests. The values underlined indicate that there is a significant difference 

between the underlined algorithm and the compared algorithm. As shown in  

Table 4.43, for phishing emails, EDISA produced the best rank, followed by CSISA. Moreover, 

as shown in Table 4.47, there is a significant difference between EDISA and the following 

algorithms: ACOISA, FFISA, FPISA, SSISA, CSISA and BISA. Therefore, it can be concluded 

with a 95% confidence level that EDISA is significantly faster than the other filter-based 

techniques, when applied to phishing emails. Furthermore, as shown in Table 4.47, there is a 

significant difference between CSISA and ACOISA, FFISA, FPISA, SSISA and BISA, hence it 

can be concluded with a 95% confidence level that CSISA is significantly faster than ACOISA, 

FFISA, FPISA, SSISA and BISA, when applied to spam emails. Overall, it can be concluded that 

EDISA and CSISA, respectively, achieved the first and second best training speeds for phishing 

emails. 

As shown in Table 4.43, for spam emails, CSISA achieved the best rank, followed by BISA. Also, 

as shown in Table 4.46, there is a significant difference between CSISA and EDISA, ACOISA, 

FFISA, FPISA, SSISA and BISA. Hence, for spam emails, it can be concluded with a 95% 

confidence level that CSISA is significantly better than the other filter-based techniques. As shown 

in Table 4.43, BISA produced the second best rank. Also, Table 4.46 indicates that there is a 

significant difference between BISA and EDISA, ACOISA, FFISA, FPISA and SSISA. Hence, 

for spam emails, it can be concluded with a 95% confidence level that BISA is significantly better 

than EDISA, ACOISA, FFISA, FPISA and SSISA. Table 4.43 shows the Friedman’s test result 

for credit card fraud, and as shown in the table, CSISA produced the best rank, followed by SSISA. 

Also, as shown in Table 4.47, there is a significant difference between CSISA and the other six 

filter-based techniques. Moreover, as shown in Table 4.47, there is a significant difference between 

SSISA and EDISA, ACOISA, FFISA and FPISA. Therefore, for credit card fraud it can be 

concluded with a 95% confidence level, that CSISA achieved the best training speed, followed by 

SSISA.  

Table 4.44 shows the average rank, chi-square value, p-value and standard deviation for the 

Freidman’s test conducted on the wrapper-based techniques. As shown in the table, for credit card 

fraud, CSISA produced the best rank, followed by BISA. Moreover, for spam email, BISA 
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produced the best rank, followed by CSISA. Also, for phishing email, FFISA produced the best 

rank, followed by CSISA. Furthermore, as shown in Table 4.50, there is a significant difference 

between CSISA and the other wrapper-based techniques. Also, there is a significant difference 

between BISA and FFISA, FPISA and SSISA. Therefore, it can be concluded, with a 95% 

confidence level that CSISA and FPISA produced the first and second best results for credit card 

fraud, when compared to the other wrapper-based techniques. Moreover, as shown in Table 4.46, 

there is a significant difference between BISA and FFISA, FPISA and SSISA. Table 4.46 also 

shows that there is a significant difference between CSISA and FFISA, FPISA and SSISA. Hence, 

it can be concluded with 95% confidence level, that BISA and CSISA achieved the first and second 

best result for spam email. Furthermore, as shown in Table 4.48, there is a significant difference 

between FFISA and FPISA, BISA. Moreover, Table 4.46 also shows that there is a significant 

difference between CSISA and FPISA. Hence, it can be concluded with 95% confidence level, 

that FFISA and CSISA produced the first and second best training speeds for phishing emails. 

Table 4.43: Friedman's non-parametric test results for filter-based techniques 

Algorithm 

(𝒑 < 0.001) 

Credit Card (χ2 = 548.996)  Phishing Email (χ2 = 199.404)  Spam Email (χ2 = 503.236) 

Ranking S.Dev Ranking S.Dev Ranking S.Dev 

EDISA 2.85 0.295  1.86 1.021  3.73 0.487 

ACOISA 6.44 0.510  4.42 4.476  4.67 0.621 

FFISA 5.41 0.964  4.43 4.595  4.31 0.393 

FPISA 3.96 0.581  4.72 4.882  5.50 0.548 

SSISA 2.26 0.757  5.47 5.327  6.79 0.861 

CSISA 1.00 0.278  2.75 3.054  1.07 0.279 

BISA 6.08 0.920  4.36 4.562  1.94 0.409 

 

Table 4.44: Friedman's non-parametric test results for wrapper-based techniques 

Algorithm 

(𝒑 < 0.001) 

Credit Card (χ2 = 300)  Phishing Email (χ2 = 63.112)  Spam Email (χ2 = 328.64) 

Ranking S.Dev Ranking S.Dev Ranking S.Dev 

FFISA 4.06 7.194  2.26 7.217  3.45 3.280 

FPISA 2.20 7.781  3.74 6.430  3.93 2.767 

SSISA 4.62 8.770  2.96 7.175  4.62 3.833 

CSISA 1.24 11.22  2.53 5.966  1.61 5.881 

BISA 2.88 6.955  3.51 5.101  1.39 4.954 
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Table 4.45: Holm’s post hoc test for filter-based techniques on phishing email 

Compared Algorithm (i) Algorithm (j) Mean Difference (i - j) Significance Level 

EDISA ACOISA -2.6756 0.000 
 

FFISA -2.7952 0.000 
 

FPISA -3.0816 0.000 
 

SSISA -3.5273 0.000 
 

CSISA -1.2543 0.000 
 

BISA -2.7616 0.000 

ACOISA EDISA 2.6756 0.000 
 

FFISA -0.1196 1.000 
 

FPISA -0.4061 1.000 
 

SSISA -0.8518 0.030 
 

CSISA 1.4212 0.000 
 

BISA -0.086 1.000 

FFISA EDISA 2.7952 0.000 
 

ACOISA 0.1196 1.000 
 

FPISA -0.2864 1.000 
 

SSISA -0.7322 0.128 
 

CSISA 1.5409 0.000 
 

BISA 0.0336 1.000 

FPISA EDISA 3.0816 0.000 
 

ACOISA 0.4061 1.000 
 

FFISA 0.2864 1.000 
 

SSISA -0.4457 1.000 
 

CSISA 1.8273 0.000 
 

BISA 0.3201 1.000 

SSISA EDISA 3.5273 0.000 
 

ACOISA 0.8518 0.030 
 

FFISA 0.7322 0.128 
 

FPISA 0.4457 1.000 
 

CSISA 2.273 0.000 
 

BISA 0.7658 0.087 
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CSISA EDISA 1.2543 0.000 
 

ACOISA -1.4212 0.000 
 

FFISA -1.5409 0.000 
 

FPISA -1.8273 0.000 
 

SSISA -2.273 0.000 
 

BISA -1.5072 0.000 

BISA EDISA 2.7616 0.000 
 

ACOISA 0.086 1.000 
 

FFISA -0.0336 1.000 
 

FPISA -0.3201 1.000 
 

SSISA -0.7658 0.087 
 

CSISA 1.5072 0.000 
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Table 4.46: Holm’s post hoc test for filter-based techniques on spam email 

Compared Algorithm (i) Algorithm (j) Mean Difference (i - j) Significance Level 

EDISA ACOISA -0.348 0.000 
 

FFISA -0.1666 0.638 
 

FPISA -0.5976 0.000 
 

SSISA -1.4309 0.000 
 

CSISA 1.6966 0.000 
 

BISA 1.0566 0.000 

ACOISA EDISA .3480 0.000 
 

FFISA 0.1814 0.388 
 

FPISA -0.2496 0.025 
 

SSISA -1.0829 0.000 
 

CSISA 2.0446 0.000 
 

BISA 1.4045 0.000 

FFISA EDISA 0.1666 0.638 
 

ACOISA -0.1814 0.388 
 

FPISA -0.4310 0.000 
 

SSISA -1.2642 0.000 
 

CSISA 1.8633 0.000 
 

BISA 1.2232 0.000 

FPISA EDISA 0.5976 0.000 
 

ACOISA 0.2496 0.025 
 

FFISA 0.4310 0.000 
 

SSISA -0.8333 0.000 
 

CSISA 2.2943 0.000 
 

BISA 1.6542 0.000 

SSISA EDISA 1.4309 0.000 
 

ACOISA 1.0829 0.000 
 

FFISA 1.2642 0.000 
 

FPISA 0.8333 0.000 
 

CSISA 3.1275 0.000 
 

BISA 2.4874 0.000 

CSISA EDISA -1.6966 0.000 
 

ACOISA -2.0446 0.000 
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FFISA -1.8633 0.000 

 
FPISA -2.2943 0.000 

 
SSISA -3.1275 0.000 

 
BISA -0.6401 0.000 

BISA EDISA -1.0566 0.000 
 

ACOISA -1.4045 0.000 
 

FFISA -1.2232 0.000 
 

FPISA -1.6542 0.000 
 

SSISA -2.4874 0.000 
 

CSISA 0.6401 0.000 
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Table 4.47: Holm’s post hoc test for filter-based techniques on credit card email 

Compared Algorithm (i) Algorithm (j) Mean Difference (i - j) Significance Level 

EDISA ACOISA -2.8872 0.000 
 

FFISA -2.2547 0.000 
 

FPISA -0.7640 0.000 
 

SSISA 0.5982 0.000 
 

CSISA 2.5253 0.000 
 

BISA -2.4911 0.000 

ACOISA EDISA 2.8872 0.000 
 

FFISA 0.6325 0.000 
 

FPISA 2.1232 0.000 
 

SSISA 3.4854 0.000 
 

CSISA 5.4125 0.000 
 

BISA 0.3961 0.001 

FFISA EDISA 2.2547 0.000 
 

ACOISA -0.6325 0.000 
 

FPISA 1.4907 0.000 
 

SSISA 2.8529 0.000 
 

CSISA 4.7799 0.000 
 

BISA -0.2364 0.260 

FPISA EDISA 0.7640 0.000 
 

ACOISA -2.1232 0.000 
 

FFISA -1.4907 0.000 
 

SSISA 1.3622 0.000 
 

CSISA 3.2893 0.000 
 

BISA -1.7271 0.000 

SSISA EDISA -0.5982 0.000 
 

ACOISA -3.4854 0.000 
 

FFISA -2.8529 0.000 
 

FPISA -1.3622 0.000 
 

CSISA 1.9271 0.000 
 

BISA -3.0893 0.000 

CSISA EDISA -2.5253 0.000 
 

ACOISA -5.4125 0.000 
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FFISA -4.7799 0.000 

 
FPISA -3.2893 0.000 

 
SSISA -1.9271 0.000 

 
BISA -5.0164 0.000 

BISA EDISA 2.4911 0.000 
 

ACOISA -0.3961 0.001 
 

FFISA 0.2364 0.260 
 

FPISA 1.7271 0.000 
 

SSISA 3.0893 0.000 
 

CSISA 5.0164 0.000 
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Table 4.48: Holm’s post hoc test for wrapper-based techniques on phishing email 

Compared Algorithm (i) Algorithm (j) Mean Difference (i - j) Significance Level 

FFISA FPISA -3.4203 0.002 
 

SSISA -2.3716 0.094 
 

CSISA -0.6736 1.000 
 

BISA -3.8308 0.000 

FPISA FFISA 3.4203 0.002 
 

SSISA 1.0487 1.000 
 

CSISA 2.7467 0.026 
 

BISA -0.4105 1.000 

SSISA FFISA 2.3716 0.094 
 

FPISA -1.0487 1.000 
 

CSISA 1.6980 0.623 
 

BISA -1.4592 1.000 

CSISA FFISA 0.6736 1.000 
 

FPISA -2.7467 0.026 
 

SSISA -1.6980 0.623 
 

BISA -3.1572 0.006 

BISA FFISA 3.8308 0.000 
 

FPISA 0.4105 1.000 
 

SSISA 1.4592 1.000 
 

CSISA 3.1572 0.006 
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Table 4.49: Holm’s post hoc test for wrapper-based techniques on spam email 

Compared Algorithm (i) Algorithm (j) Mean Difference (i - j) Significance Level 

FFISA FPISA -1.5403 0.115 
 

SSISA -3.2102 0.000 
 

CSISA 12.4965 0.000 
 

BISA 13.7551 0.000 

FPISA FFISA 1.5403 0.115 
 

SSISA -1.6699 0.062 
 

CSISA 14.0368 0.000 
 

BISA 15.2954 0.000 

SSISA FFISA 3.2102 0.000 
 

FPISA 1.6699 0.062 
 

CSISA 15.7068 0.000 
 

BISA 16.9653 0.000 

CSISA FFISA -12.4965 0.000 
 

FPISA -14.0368 0.000 
 

SSISA -15.7068 0.000 
 

BISA 1.2586 0.388 

BISA FFISA -13.7551 0.000 
 

FPISA -15.2954 0.000 
 

SSISA -16.9653 0.000 
 

CSISA -1.2586 0.388 
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Table 4.50: Holm’s post hoc test for wrapper-based techniques on credit card fraud 

Compared Algorithm (i) Algorithm (j) Mean Difference (i - j) Significance Level 

FFISA FPISA 10.7571 0.000 
 

SSISA -6.1349 0.000 
 

CSISA 23.3865 0.000 
 

BISA 5.5086 0.000 

FPISA FFISA -10.7571 0.000 
 

SSISA -16.8920 0.000 
 

CSISA 12.6294 0.000 
 

BISA -5.2485 0.000 

SSISA FFISA 6.1349 0.000 
 

FPISA 16.8920 0.000 
 

CSISA 29.5214 0.000 
 

BISA 11.6435 0.000 

CSISA FFISA -23.3865 0.000 
 

FPISA -12.6294 0.000 
 

SSISA -29.5214 0.000 
 

BISA -17.8779 0.000 

BISA FFISA -5.5086 0.000 
 

FPISA 5.2485 0.000 
 

SSISA -11.6435 0.000 
 

CSISA 17.8779 0.000 

 

Overall, based on all of the statistical test results, filter-based CSISA achieved the best results for 

spam emails and credit cards, and also achieved the second best result for phishing emails. In 

addition, the wrapper-based CSISA achieved the best results for credit card fraud, and the second 

best result for spam and phishing emails. Therefore, it can be concluded that CSISA produced the 

best training speed, compared to the other proposed filter-based and wrapper-based techniques.  

4.5  Chapter summary 

This chapter presented the experimental results for the filter and wrapper based techniques 

proposed in this thesis. As shown in Figures 4.1 – 4.3, the proposed filter-based techniques 

improved SVM classification speed by over 93%, without significantly affecting SVM 



174 

 

classification accuracy. Moreover, Tables 4.29 – 4.31 and Figures 4.5 – 4.8 show the comparisons 

between the proposed wrapper-based techniques and standard SVM. For each table, the best three 

examples of predictive accuracy are underlined. As shown in each table, for both credit card fraud 

and spam emails, the proposed wrapper-based technique improved SVM predictive accuracy and 

also reduced the training dataset size by an average of 50%. This indicates that the proposed 

wrapper-based techniques require approximately half (i.e. 50%) of the training dataset to produce 

improved classification models. Although the primary objective of the proposed wrapper-based 

techniques is to improve SVM predictive accuracy, the techniques also simultaneously improved 

SVM classification speed by over 32% for spam emails, 56% for phishing emails and 54% for 

credit card fraud. Generally, the results obtained by the proposed filter-based and wrapper-based 

techniques show that they are fast and accurate e-fraud detection and instance-selection techniques. 

The proposed techniques will be highly suited to applications that process large datasets with 

limited storage space. 
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Chapter 5  

Summary, Conclusion and Future Research Directions 

In many domains today, such as data mining, engineering and science, ML-based solutions are 

highly essential [29]. This thesis proposes intelligent instance-selection techniques for improving 

SVM classification speed and predictive accuracy. Many experiments are performed to validate 

the performance of the techniques and the experimental results show that the proposed techniques 

achieved better results, compared to the standard SVM and some existing instance-selection 

techniques. This section summarizes and concludes this thesis, and also provide directions for 

future research.  

5.1 Summary 

As shown in the results, SVM performs slower when applied to large datasets. Its training time is 

𝑂(𝑛2), where 𝑛 is the number of training instances [257, 258]. This implies that 𝑛 plays a 

significant role in SVM speed. Hence, SVM speed and computational complexity can be 

significantly improved by reducing 𝑛 (i.e. number of instances). As shown in Section 2.1, many 

SVM speed optimization approaches have been used in literature. Some studies introduced feature 

selection techniques, while others introduced parameter optimization and instance selection 

techniques. Among the three class of techniques, instance selection techniques produced one of 

the best results [6]. Moreover, as shown in the comprehensive survey presented in Chapter two, 

most of the existing instance selection techniques focused on clustering. Very few studies explored 

NI algorithms. Therefore, this thesis propose seven filter-based and five wrapper-based intelligent 

techniques for improving SVM training speed and predictive accuracy. The proposed techniques 

can be applied to different data mining problems, however, in this research, the proposed 

techniques are applied to e-fraud detection problems, with a particular focus on three popular e-

fraud types: credit card fraud, spam email and phishing email. Two set of experiments was 

performed to test the efficacy of the proposed techniques. The first set of experiments was 

performed to test the efficacy of the proposed filter-based techniques and the second set of 

experiments was performed to test the efficacy of the proposed wrapper-based techniques. In 

addition, the techniques was compared to standard SVM and some existing instance selection 
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techniques. Experimental result reveal that the proposed techniques significantly improved SVM 

training speed and predictive accuracy. Two different statistical test was performed to further 

validate the efficacy of the proposed techniques and the analysis shows that the proposed 

techniques significantly improved SVM training speed in all cases. Statistical analysis was also 

performed to identify the best wrapper-based and filter-based techniques, and as shown in Section 

4.4.3, CSISA outperform all the proposed techniques. Summarily, as shown in all the results 

presented in Chapter three, the proposed techniques are excellent SVM speed optimizers and ML-

based e-fraud detection techniques. The filter-based techniques are suitable for applications that 

requires real time online training, while the wrapper-based techniques are suitable for applications 

that are very sensitive to slight drop in predictive accuracy, such as email classifiers.  

5.2 Conclusion 

In recent times, the volume of data produced by different sources worldwide is enormously 

increasing [198]. However, data can be useless if significant information cannot be extracted from 

them. Moreover, extracting information from huge datasets is very challenging. Hence, there is an 

obvious need for efficient information extraction tools. ML-based solutions are suitable tools for 

information extraction. They can be used to effectively extract relevant information from datasets. 

However, ML algorithms generally perform poorly when applied to large datasets [257, 258] . 

This is because large datasets typically contain many superfluous and harmful instances, which 

pose problems to the generalization performance of ML algorithms [6]. Hence, this thesis proposes 

intelligent optimization techniques for improving the speed of ML algorithms, with a particular 

focus on SVM. SVM is a well-known ML algorithm that is widely used to handle many real-world 

applications with great success. However, similar to other ML algorithms, SVM computational 

complexity deteriorates significantly when applied to massive datasets, thus making it unfitting 

for real-time applications. 

As stated in the second and third objectives of this thesis (outlined in Section 1.3), this PhD 

research proposes seven intelligent filter-based and five wrapper-based instance-selection 

techniques for improving SVM predictive accuracy, training speed, generalization performance 

and computational complexity. The proposed techniques are inspired by FPA, FFA, SSA, BA and 

CSA. Additionally, two of the proposed techniques are boundary detection algorithms, inspired by 

edge detection in image processing and edge selection in ACO. The proposed techniques can be 
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applied to different problems, however, as stated in the fourth objective of this research, the 

proposed techniques are used to handle three popular e-fraud detection problems: credit card fraud, 

phishing email detection and spam email detection. In addition, the proposed techniques are also 

validated on 21 other classification problems provided by the UCI dataset repository.  

Different sets of experiments are performed to validate the efficiency of the proposed techniques, 

and experimental results show that the filter-based techniques excellently improved SVM training 

speed in 100% of the datasets used for evaluation, without significantly affecting SVM 

classification quality. Also, the results show that the wrapper-based techniques improved SVM 

predictive accuracy in 78% of the datasets (18 out of 23) used for evaluation, and simultaneously 

improved SVM training speed for all cases. Additionally, the experimental results show that the 

proposed techniques produced excellent storage reduction and speed-accuracy trade-off. 

Moreover, the results show that the proposed techniques are good ML-based e-fraud detection 

techniques. All of these clearly address the research questions outlined in Section 1.2. Furthermore, 

as stated in the sixth objective, two different statistical tests were conducted on the results produced 

by the proposed techniques. Firstly, Friedman’s test was conducted, followed by Holm’s test. As 

shown in Tables 4.31 – 4.42, it can be concluded with a 95% confidence level, that the proposed 

techniques are significantly faster than standard SVM and some existing instance-selection 

techniques. Statistical analysis was performed to identify the best technique among the proposed 

filter-based and wrapper-based techniques. As shown in Tables 4.43 – 4.50, the statistical results 

show that CSISA significantly outperforms the other proposed filter-based and wrapper-based 

techniques, in terms of training speed. This implies that CSISA is the fastest instance selection 

technique proposed in this thesis. Conclusively, as shown in all the results, the proposed techniques 

outperform standard SVM in both training speed and predictive accuracy, hence, they can be used 

in combination with standard SVM to produce better and faster classification models. 

5.3 Future research directions 

Big Data analytics is becoming an important tool in decision making for businesses and 

organizations. The rate of data growth is very alarming, and it is already going beyond the Exabyte 

limit. Moreover, the ability to make strategic and meaningful decisions depends on the reliability 

of data. Hence, there is an urgent need for fast and accurate tools for Big Data analytics. ML-based 

solutions are very useful and reliable data analytic tools. ML algorithms are known for their 



178 

 

robustness [25], dynamic problem solving [25], accurate data mining and classification proficiency 

[25, 26]. However, contemporary mathematical models for ML algorithms are complex [205]. 

Further research could explore the development of simple hybrid ML-based algorithms that are 

very fast and highly accurate.  

To improve the speed for classification or instance selection, variants of PSO and GA with the 

proposed NI-based techniques could be considered for better result [259]. In addition, the 

techniques designed in this research can be applied to other ML algorithms like ANN, RF, 

regression, etc.   

In this work, data anonymization has not been considered. Riyazuddin and Balaram [260] propose 

a novel pattern-anonymization technique by using feature-set partitioning in combination with data 

restructuring. The proposed technique was predominantly designed to improve the performance of 

supervised learning algorithms, when applied to anonymized datasets. Data anonymization is an 

interesting domain, and an avenue for further research. 

Furthermore, the methods considered in this research are iterative in structure, future research can 

therefore explore the possible implementation of non-iterative approaches. In addition, alternative 

performance improvement strategies for ML algorithms could be to explore different methods for 

imbalanced datasets and deep learning. 
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