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Abstract 

The impact of global change is expected to result in changes in the distribution and 

composition of species. Coastal swamp and mangrove forests are some of the most 

threatened forest types in the world. Remote sensing is a suitable tool for monitoring 

species distribution and varying condition because of its spatial extent and repeatability. The 

ability of remote sensing to separate between species can be attributed primarily to its 

capability to quantify the absorption features in the electromagnetic spectrum which relate 

to plant biochemical and biophysical properties such as pigments, nutrients (proteins and 

starch), leaf water content, leaf angle distribution, leaf area index and foliage biomass. For 

some species, these phenological variations are extreme, as in the case of deciduous tree 

species, thus enhancing the ability to differentiate between species, whereas others are less 

pronounced, such as with evergreen tree species, making spectral distinction between 

species much more challenging.  

Few studies have assessed the pigment and nutrient phenology of evergreen tree species in 

subtropical forested wetlands, let alone their spectral differences. This study assesses 

whether multi-season data across a number of phenological phases of evergreen wetland 

tree species will improve their classification accuracy when compared to a single season and 

single phenological event. The objectives were to (i) assess whether tree species had unique 

seasonal profiles of foliar biochemicals; (ii) ascertain the spectral bands of plant properties 

which remain important across phenological phases for species classification; (iii) determine 

whether leaf reflectance spectra from multiple seasons would improve species classification 

when compared to a single season; and (iv) whether multi-season imagery would improve 

species discrimination when compared to a single season. Thus, the study made use of leaf 

level and canopy level spectra collected using a handheld spectrometer and spaceborne 

RapidEye imagery, respectively. 

Six dominant evergreen tree species from forested wetlands in the subtropical region of 

KwaZulu-Natal, South Africa, were sampled across four seasons (winter, spring, summer and 

autumn). Differences in foliar biochemical concentration were assessed for two pigments, 

including carotenoids and chlorophylls, as well as two nutrients, nitrogen and phosphorous. 

The results showed that the majority of species had no significant changes in foliar pigments 

across the four seasons. Foliar nitrogen showed a significantly higher variability in the spring, 

summer and autumn seasons compared to the winter, whereas foliar phosphorus also varied 

across the seasons but to a lesser degree. The highest percentage of species pairs was 

separable using foliar nitrogen, compared to the pigments and phosphorus, emphasizing the 

importance of nutrients such as leaf proteins for species discrimination. 

The study found a changing relationship between leaf spectra and foliar nutrient 

concentration across the four seasons for the six evergreen tree species. Twenty-two 

spectral bands which are related to known absorption features of plant properties were 
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identified across the four seasons as important for tree species discrimination. The 

relationship between leaf spectra and foliar nitrogen was highest during the spring, summer 

and autumn seasons for narrow bands associated with absorption features of proteins 

compared to the red-edge region. The spectra band combination 2130 nm and 2240 nm 

yielded the highest coefficient of determination between leaf spectra and foliar nitrogen 

across three of the four seasons. Season-specific prediction models were found to be more 

accurate in predicting foliar nitrogen than prediction models from across all seasons. The 

twenty-two bands were effective for the data reduction of the hyperspectral data and 

yielded a similar overall accuracy compared to 421 bands. 

Multi-seasonal data improved tree species classification for multispectral sensors with a few 

bands. The classification, in which multi-season leaf spectra or canopy data from RapidEye 

imagery was used, resulted in higher overall and user’s accuracies when compared to the 

single-season classifications. In contrast, the use of multi-season data for the classification of 

leaf spectra with 22 narrow bands, showed no statistical significance of differences 

compared to the classification results of the single season in which the highest overall 

accuracy of all single seasons had been obtained. The value of an increased classification 

accuracy should however be measured against the increase of cost when using images from 

multiple seasons. The study concludes that although seasonal profiles of foliar biochemicals 

overlap, multi-season information do improve species discrimination at foliar biochemical, 

leaf-spectra and canopy-spectra levels. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1. Monitoring the impact of global change on forested wetlands at 

individual tree species level 

The impacts of global change, particularly a rise in temperature and sea-levels as well as 

changes in rainfall patterns, are expected to cause a shift in species distribution, composition 

and functioning (Kirschbaum, 2000; Sardans and Peñuelas, 2012). Many experts ask whether 

vegetation will be able to adapt to climate changes or face extinction (Intergovernmental 

Panel on Climate Change (IPCC), 2007; Booth et al., 2012; Richardson et al., 2013). To detect 

changes in vegetation distribution and condition, a monitoring system should be able to map 

species distribution and detect significant deviations from natural variations in plant 

properties across phenological1 phases per species (Richardson et al., 2013).  

Coastal swamp and mangrove forests are some of the most threatened forest types in the 

world (Valiela et al., 2001; Posa et al., 2011; Crooks et al., 2011). Losses of mangrove forest 

over the past 50 years have been estimated at between 25 % and 50 % (Alongi, 2002; 

Spalding et al., 2010). The losses of swamp forest are less known across the globe, although 

it is estimated that only 36 % of the original extent of swamp forest remain in Southeast Asia 

(Posa et al., 2011). The decline in these forested wetlands2 is primarily attributed to the 

clearance of forests for aquaculture and agriculture, although the impact of global change 

through sea-level rise and erosion, nitrification and drought as a result of water extraction 

within the catchment are also known to cause serious degradation (Alongi, 2002; Mucina 

and Rutherford, 2006; Posa et al., 2011). Where these forested wetlands are intact, they 

offer a number of ecosystem services, such as the sequestration of carbon, particularly 

swamp forest, which occurs on floodplains where peat soils accumulate from the woody 

plant debris (Posa et al., 2011; Crooks et al., 2011). Forested wetlands also provide flood 

control and protection against storm surges which minimize coastal erosion. Swamp and 

mangrove forests are unique habitats which host some rare and endangered species, and 

are also considered as refugia for a number of fauna (Alongi, 2002; Posa et al., 2011). These 

forests are also sources of food, construction material, fuel and medicine for communities 

                                                      

 

1
 Lieth (1974:4) defines phenology as “… the study of the timing of recurring biological events, the causes of their timing 

with regard to biotic and abiotic forces, and the interrelation among phases of the same or different species” (Lieth, 1974). 
2
 Where the South African National Wetland Classification System (Ollis et al., 2013) recognises swamp forests as 

freshwater ecosystems and mangroves as estuarine ecosystems, for ease of reading these two forest types are referred to 
as ‘forested wetland’, and the associated tree species of this work are collectively referred to as ‘wetland trees’ as per the 
Ramsar definition of wetlands at https://www.environment.gov.au/water/wetlands/ramsar. 

https://www.environment.gov.au/water/wetlands/ramsar
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(Alongi, 2002; Mucina and Rutherford, 2006; Crooks et al., 2011). The impacts of global 

change, however, compromise their functioning and reduce the quality and quantity of 

ecosystem services offered by these forests. Increased population demands for water and 

food production increase water extraction leading to drought. Drought and a reduction in 

precipitation can also lead to the loss of mangrove forests resulting in an increase of coastal 

erosion (Bate et al., 2010; Van Heerden, 2011). When the peat substrates of swamp forests 

dry out, it can result in fires that can burn both above and underground biomass, destroy the 

seed banks and ultimately releases carbon dioxide into the atmosphere (Posa et al., 2011; 

Crooks et al., 2011). Owing to the multitude of stressors to these already fragmented 

forests, mangrove and swamp forests, like tropical and subtropical forests, are considered to 

be some of the most vulnerable ecosystems to climate change (Seppälä et al., 2009).  

Mangrove and swamp forests in South Africa are both critically endangered forest types with 

conservation targets listed as 100 % (Mucina and Rutherford, 2006). The South African 

swamp and mangrove forests, located at the southern-most extent of the subtropical 

climate region of Africa, are small and occupy areas of 3 803 and 3 340 ha respectively 

(Mucina and Rutherford, 2006). A large proportion of the swamp and mangrove forests are 

located in the iSimangaliso Wetland Park, 66 % and 56 % respectively as estimated from 

Mucina and Rutherford (2006). Threats to the swamp forests situated on the uMfolozi River 

floodplain date back to 1911 where land had been cleared for sugarcane farming and 

commercial forestry (Taylor, 2011). More recently, the continual slash and burn practice to 

open land for the subsistence farming of bananas and Colocasia esculenta (locally known as 

‘madumbe’) contribute to the reduction of the swamp forest and its condition (Mucina and 

Rutherford, 2006). In many of the South African estuaries where swamp and mangrove 

forests occur, water extraction in the upper catchments for agricultural and residential 

purposes, along with droughts, contributed to lower water levels in the estuarine systems 

and an increase in salinity levels, risking the intactness of both the mangrove and swamp 

forests (Van Heerden, 2011; Van Niekerk and Turpie, 2012). 

Regardless of the small extent of these forested wetland types in South Africa, their value 

and importance necessitate a better understanding of their distribution and condition in 

space and time. Such knowledge will assist in the understanding of the impacts of global 

change on these systems. Mapping the distribution of individual tree species can contribute 

to the protection of tree species listed under the South African National Forest Act (Act 84 of 

1998; RSA, 1998). Six wetland tree species occur in the coastal mangrove and swamp forests 

which are listed in the South African National Forest Act including four mangrove (Bruguiera 

gymnorrhiza, Ceriops tagal, Lumnitzera racemosa var. racemosa and Rhizophora mucronata) 

and two swamp species (Barringtonia racemosa and Ficus trichopoda) (RSA, 1998; Boon, 

2010). Knowing the extent of the swamp and mangrove forests will also improve the 

implementation of setback lines where no development will be allowed, regulated under the 

National Environmental Management: Integrated Coastal Management Act (Act No. 24 of 

2008, ICM Act) (Republic of South Africa (RSA), 2008).  
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1.2. Remote sensing of species classification across phenological phases 

Remote sensing has been proven to be a suitable tool for vegetation species discrimination 

based on the premise that plant properties can be quantified. Absorption features in the 

electromagnetic spectrum between the visible (400 nm) and Shortwave Infrared (SWIR, 

2500 nm) showed strong correlation to variation in pigments, nutrients (proteins and 

starch), leaf water content and foliage biomass, (Elvidge, 1990; Curran et al., 2001; Curran, 

2001). Hyperspectral data is effective in the quantification of these plant properties with the 

use of narrow sequential bands of < 10 nm between the visible and SWIR. Variations in foliar 

biochemical and biophysical properties occur over phenological phases and remote sensing 

was able to quantify seasonal changes in plant properties (Garcia-Plazaola et al., 1997; Gond 

et al., 1999; Cooke and Weih, 2005; Dillen et al., 2012). Various spectral bands associated 

with a number of plant properties were successfully used in separating wetland tree species, 

graminoids and macrophytes at leaf-level scale with hyperspectral data (Vaiphasa et al., 

2005; Artigas and Yang, 2006; Adam and Mutanga, 2009). Although the hyperspectral 

studies offer a greater range in representation of plant properties, the properties that are 

essential for species discrimination vary across climatic regions and seasons. To date no 

robust selection of spectral bands has been determined (Martin et al., 1998; Fung et al., 

2003). In addition, hyperspectral studies remain costly and limited in regional extent 

compared to space-borne multispectral images, limiting their use thereof in monitoring 

species distribution over time. 

Multispectral sensors such as Landsat, SPOT, IKONOS and Quickbird were considered less 

suitable for species discrimination, on the one hand owing to the spatial resolution being 

larger than individual tree canopies (e.g. Landsat missions have a spatial resolution of 

>15 m), and on the other hand owing to the number and range of bands which can detect 

only a few of the plant properties (Belluco et al., 2006; Adam et al., 2010). IKONOS and 

Quickbird images have however been successfully used to discriminate between three 

species of mangroves in closed-canopy forests in Panama, relying on texture analysis and 

large window sizes (Wang et al., 2004). The improved spatial resolution of these sensors as 

well as an increase in a more diverse set of plant properties is expected to further improve 

the possibility of mapping and monitoring tree species composition. 

The past six years witnessed tremendous improvements in the mapping of tree species at 

regional scale. Space-borne sensors, such as RapidEye (RE) and WorldView-2 (WV2) (both 

launched in 2009), have an additional band in the red-edge region, which has  been shown 

to benefit the quantification of biophysical and biochemical parameters and enhancing 

species classification (Mutanga and Skidmore, 2004; Cho et al., 2008; Mutanga et al., 2012; 

Adelabu et al., 2013). The spatial resolution of these sensors range between 2 and 10 m, in 

line with individual tree canopy sizes, which offer more spectral bands compared to IKONOS 
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and Quickbird. The inclusion of bands from the SWIR region, although proven valuable for 

improved tree species discrimination, remains costly (Martin et al., 1998; Huber et al., 2008; 

Immitzer et al., 2012). WorldView-2 has particularly advanced the capability of mapping tree 

species at individual crown level and increasing classification accuracies in comparison to 

traditional multispectral sensors (Kanniah, 2011), having a spatial resolution of 2 m and 8 

bands between the visible and near-infrared (DigitalGlobe Pty Ltd, 

http://www.digitalglobe.com/). Additional benefits were shown in the past two years when 

these new multispectral sensors were successfully used in mapping nutrients for broad 

vegetation groups at regional level (Ramoelo et al., 2012; Ramoelo et al., 2013; Cho et al., 

2013). Mapping and monitoring tree species at individual crown level over a broad region 

has an advantage compared to hyperspectral studies or field assessments. It offers a regional 

perspective particularly for areas that are inaccessible owing to dense overgrowth, flooding 

or dangerous animals (United States Department of Energy (US DOE), 2012). Multispectral 

imagery is also considered comparatively more affordable compared to field and laboratory 

measurements of plant properties over broad regional levels at regular time intervals 

(Mumby et al., 1999).  

Multispectral space-borne sensors also offer the advantage of regular temporal imagery 

which is ideal for long-term monitoring of tree species. Time-series data is bound to increase 

the representation of the natural variation of plant properties across phenological phases, 

and with better representation, the optimisation of species discrimination is expected. For 

example, two species may vary more in foliage biomass or nitrogen levels over a longer 

period of time compared to a single snapshot in time. A number of studies related the 

optimization of species classification to particular phenological events such as flowering or 

seeding, although the majority found the spring season optimal for species discrimination 

(Bartlett and Klemas, 1980; Laba et al., 2005; Sobhan, 2007), yet these events may differ 

from one region to another based on the different species occurring in such regions. 

Multiple seasons may therefore offer more phenological events for optimising species 

discrimination compared to a single season. A study in China showed that the separability 

between 25 subtropical trees vary over four seasons (winter, spring, summer and autumn) 

with classification accuracies ranging from the lowest in spring (80 %) to the highest in 

winter (91 %) using seasonally-important hyperspectral bands (Fung et al., 2003). The study 

did not however, assess whether the aggregation of the seasons improve the species 

discrimination when compared to a single season. The classification of deciduous tree 

species in the United States of America achieved maximum classification accuracy when a 

number of aerial images between the spring and autumn seasons were used (Key et al., 

2001). Similarly, the separability of seven, predominantly grassland habitats in Berlin 

Germany, showed that RapidEye time-series imagery over 8 seasons achieved an overall 

classification accuracy of >90 % (Shuster et al., 2015). These studies allude to the potential of 

using multiple-seasons data for improved species discrimination. The hypothesis is therefore 

formulated that multi-season data could improve species discrimination when compared to 

http://www.digitalglobe.com/
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a single season, since it includes a variety of differences in the variation of plant properties. 

This hypothesis remains to be tested for evergreen wetland tree species in a subtropical 

forest. 

Although multi-season data can contribute to the optimisation of tree species 

discrimination, a number of challenges should be addressed in the assessment of the data. 

First, time-series data normally comprises of a superfluous amount of information which 

results in unnecessary cost and redundancy. It may be that only a few seasons carry essential 

information for species classification, and as such, can optimize classification to the essential 

time-range across a phenological phase. Second, spectral bands are also highly correlated 

and therefore appropriate methods should be used to remove both redundancy or 

correlation. Lastly, the classification of forested wetlands also pose some challenges for 

remote sensing considering the presence and fluctuation of water levels (Schmidt and 

Skidmore, 2003; Rebelo et al., 2009; Adam and Mutanga, 2009; Adam et al., 2010). 

Background water and wet soil reduce the reflection from vegetation particularly those with 

narrow leaves (e.g. sedges) or where background influences the reflectance of a pixel value 

not fully covered by a closed-canopy tree species. The fluctuation of water levels causes 

difficulties in classification for change-detection assessments in grassland or water over 

some seasons (Lück-Vogel et al., Submitted). In such cases, it remains to be assessed 

whether the classification of species from multi-season data improves the classification 

accuracy and turns to an advantage for monitoring and change detection. 

 

1.3. Research Objective and Aims 

Considering that space-borne multispectral imagery offer time-series data across 

phenological phases, and that representation of plant properties across phenological phases 

is expected to improve the representation and uniqueness of species, this study investigated 

whether multi-season data from leaf to image scales would improve the species 

discrimination of wetland tree species when compared to a single season’s data. 

A number of sub hypotheses were made during the investigation: 

 The variability of foliar biochemical and biophysical properties within species and 

between species in one season would be similar. 

 Foliar biochemical and biophysical properties of a species may show an increase in 

variation over a number of seasons compared to a single season and therefore multi-

season information may enhance species discrimination. 

 Multi-season data can improve representation of biochemical and biophysical 

properties in a seasonal profile that may be unique to species and enhance 

differences between species. 
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A number of research questions were formulated from the literature and assumptions: 

 Are tree species unique in foliar chemical concentration over phenological phases? 

 If so, which spectral bands would capture the variability of a species across 

phenological phases? 

 Would the leaf spectra of species over multiple seasons improve the separability 

between species compared to a single season?  

 Would multi-season imagery data be used to improve species discrimination when 

compared to a single season? 

The aim of this study was to assess whether multi-seasonal information of plant properties 

of six evergreen wetland tree species from a subtropical forest in KwaZulu-Natal, South 

Africa were detectable, unique and effective for optimizing species discrimination. The 

hypothesis was formulated as follow: 

H0: multi-season information of evergreen wetland tree species is not unique and do 

not improve species discrimination when compared to a single season’s information 

Ha: multi-season information of evergreen wetland tree species is unique and 

improves species discrimination when compared to a single season’s information 

The four objectives resulting from the research questions include: 

 Assess whether tree species are unique in foliar biochemical concentration over 

multiple seasons. 

 Ascertain the most important bands across phenological phases for species 

discrimination. 

 Determine whether leaf reflectance spectra of multiple seasons will improve the 

species classification compared to a single season. 

 Assess whether image stacks of multiple seasons will improve species discrimination 

when compared to a single season. 

 

1.4. Study area 

The iSimangaliso Wetland Park (28°S, 32°30’E) is located on the east coast of South Africa in 

the KwaZulu-Natal Province (Figure 1.1). The Park extends over ±218 000 ha of land along 

190 km of coastline, with vegetation and land cover categories (Figure 1.1; Inset B) 

comprising mostly of natural thicket and grassland (± 42 %), coastal and dune forests 

(± 17 %), wetland (± 18 %) and estuarine (± 17 %) systems as well as transformed land (± 6 %) 

(GeoTerraImage (GTI), 2010; Ezemvelo KZN Wildlife, 2011). The Park is listed as both a 

Ramsar and World Heritage Site (WHS) on grounds of the high biodiversity in the region and 

the number of diverse wetland types (Cowan, 1999).  
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Sub-tropical climatic conditions prevail along a narrow ±6 km wide zone on the east coast of 

South Africa. The Mean Annual Precipitation (MAP) ranges from 1 000 to 1 500 mm in this 

coastal corridor, although decreases to below 1 000 mm inland (Middleton and Bailey, 

2008). In the Park, mean temperatures during summer range from 23 – 30°C, and can 

decrease to approximately 10°C and lower during the winter periods (Sokolic, 2006). Coastal 

swamp and mangrove tree species occur in the coastal forested wetlands along the 

uMsunduzi, uMfolozi and St Lucia Rivers and estuaries. Owing to the large extent of 

wetlands and presence of dangerous animals such as hippopotami, crocodiles and the big 

five (The iSimangaliso Wetland Park, 2014), safe access is limited for monitoring vegetation 

through fieldwork. Consequently, the Park will benefit greatly in using earth observation for 

vegetation assessments such as tree species monitoring at regional scale. A section of the 

Park has been assessed in this study, located between Catalina Bay in the north and the 

Maphelane node in the south, and from the coast in the east to the DukuDuku Forest in the 

west (Figure 1.1). 
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Table 1.1: Number of tree species sampled across four seasons in the iSimangaliso Wetland Park, South 
Africa*. 

Tree species Common name Acronym 

Trees 

Winter 

(n = ) 

Trees 

Spring 

(n = ) 

Trees 

Summer 

(n = ) 

Trees 

Autumn 

(n = ) 

Total 

number of 

trees per 

species 

(n = ) 

Avicennia marina White mangrove AM 23 (21) 23 (21) 22 (21) 22 (21) 90 (84) 

Bruguiera gymnorrhiza Black mangrove BG 20 (19) 19 20 (19) 20 (19) 79 (76) 

Ficus sycomorus Sycamore fig FSYC 15 15 15 15 60 

Ficus trichopoda Swamp fig FT 12 (11) 11 11 11 45 (44) 

Hibiscus tilliaceus Lagoon hibiscus HT  31 (30) 31 (30) 30 30 122 (120) 

Syzygium cordatum Waterberry SC 17 17 17 17 68 (68) 

Total per season 
118 

(113) 

116 

(113) 

115 

(113) 

115 

(113) 

464 

(452) 

 

 

Figure 1. 1: The study area is located in the iSimangaliso Wetland in the KwaZulu-Natal Province of South Africa (Inset A). 
The Park stretches along the coast with broad vegetation and land cover comprising natural thicket and grassland, 
forests and wetlands (Inset B). Six tree species were sampled along the Msunduzi, Mfolozi and St Lucia estuarine systems 
(Inset C). 
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1.5. Thesis outline 

Field surveys were undertaken and images obtained over four seasons (winter, spring, 

summer and autumn) over two years (2011-2). The hypotheses were tested using a number 

of plant properties at three structural scales in five Chapters: 

(i) At foliar biochemical level, to assess whether differences between the foliar 

concentration of two pigments (carotenoids and chlorophyll) and two nutrients 

(nitrogen and phosphorus) are statistically significant across winter, spring, 

summer and autumn of the six species – Chapter 2. 

(ii) At leaf-level spectral scale: 

First, spectral bands which relate to nutrients (nitrogen and phosphorus) were 

determined over the four seasons. The relationship between foliar nutrient 

concentration and leaf reflectance was assessed over the four seasons to 

determine whether significant changes occur. Bands which were proven to relate 

to plant properties were selected where high coefficients of determination 

existed between the nutrient concentration and leaf reflectance across the four 

seasons – Chapter 3. 

Second, the effective reduction of redundancy in the leaf-level hyperspectral data 

was assessed through using selected bands, relating to plant properties, for 

species classification. In addition, two data transformation methods which reduce 

correlation between the bands were compared. The Principal Component 

Analysis (PCA) and the Partial Least Square (PLS) decomposition methods were 

combined with a Random Forest (RF) classification algorithm for species 

classification to assess the best method for data transformation and classification 

– Chapter 4. 

Third, it was assessed whether the aggregation of all four seasons into a multi-

season data set improves the classification of the six tree species when compared 

to any one of the four seasons (winter, spring, summer and autumn). Multi-

season data sets were also created from aggregating every combination of two 

and three seasons as means of optimising the multi-season classifications – 

Chapter 5. 

(iii) At image-level scale, it was assessed whether multi-season imagery would improve 

the classification accuracies of evergreen tree species, or associated vegetation 

types, compared to four single seasons (autumn, winter, spring and summer 

season). Various combinations of seasons were also assessed to ensure 

optimisation of multi-season data for classification – Chapter 6. 
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In the synthesis chapter, Chapter 7, the implications of the results are discussed for the 

classification of tree species using bands that related to plant properties, the advantage of 

phenological representation of plant properties for species discrimination and the potential 

for the newer space-borne sensors to use multi-season data for monitoring species 

distribution and condition under the threats of global change. 
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CHAPTER 2: DO TREE SPECIES HAVE UNIQUE SEASONAL PROFILES? 

 

This chapter is based on the findings of two conference publications: 

Van Deventer H, Cho MA, Mutanga O, Mutanga O. 2013. Do seasonal profiles of foliar pigments improve 

species discrimination of evergreen coastal tree species in KwaZulu-Natal, South Africa? In: Conference 

proceedings of the 35th International Symposium on Remote Sensing of Environment (ISRSE). ISRSE, Beijing, 

China, pp. 1-12. 

Van Deventer H, Cho MA & Mutanga O. 2015. Using remote sensing for tree species discrimination in the 

narrow coastal forests of KwaZulu-Natal, South Africa. XIV World Forest Congress. WFC, Durban, South Africa, 7 

- 11 September 2015. 

 

Abstract 

A number of ecophysiological studies has shown the potential of the seasonal profiles of 

foliar pigments and nutrients for improving species discrimination. Remote sensing 

vegetation indices have been used to optimise absorption features presented by foliar 

pigments and nutrients, as well as improve species discrimination. This study investigated 

the potential of the seasonal profiles of pigments and nutrients in improving species 

discrimination for trees using leaf spectral data. The aims were to (i) determine whether 

evergreen tree species show significant changes in foliar pigments or nutrients across four 

seasons; (ii) assess whether foliar pigments and nutrients can be used to separate between 

species over four (winter, spring, summer and autumn) seasons; and (iii) whether the 

aggregation of foliar pigments and nutrients for four seasons could improve the separability 

of species when compared to a single season. Five sunlit leaves were sampled from the 

canopies of seven evergreen tree species in a sub-tropical region of South Africa, over four 

seasons during 2011-12. A one-way ANalysis Of Variance (ANOVA) and post-hoc Tukey 

Honest Significant Difference (HSD) multiple comparisons test were used to assess whether 

differences between species over four seasons were statistically significant. Most of the 

species showed no distinct variation in foliar carotenoids, chlorophyll, nitrogen and 

phosphorus across the four seasons, except for the water berry (Syzygium cordatum). Of the 

four foliar biochemicals, nitrogen concentration resulted in the highest number of 

significantly different inter-species pairs across the spring, summer and autumn seasons. The 

aggregation of the four season’s data into a single multi-seasonal data set increased the 

separability between the six evergreen wetland tree species particularly for foliar 

carotenoids and phosphorus concentration.  
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2.1. Introduction 

Phytosynthetic pigments (carotenoids and chlorophylls) and nutrients (nitrogen and 

phosphorus) respond to environmental and climate conditions and hence reflect 

corresponding phenological changes in vegetation (Garcia-Plazaola et al., 1997; Gond et al., 

1999; Asner et al., 2009). In deciduous trees, the leaf expansion phase is marked by the 

increase in concentrations of leaf pigments, nitrogen, phosphorus and biomass (Sharma, 

1983; Gond et al., 1999; Lal et al., 2001; Nakaji et al., 2006; Hilker et al., 2011). A decrease in 

leaf water content has been noted from spring to summer (Gond et al., 1999). The highest 

concentration of N and P has been noted in newly matured leaves in deciduous trees (Franco 

et al., 2005). Following leaf maturity, a gradual decline in leaf pigments and nutrients has 

been observed, whereas a sharp decline in pigments, nutrients and biomass has been 

observed prior to abscission (Chapin and Kedrowski, 1983; Gond et al., 1999). During the 

spring and summer seasons, nutrients are allocated to leaf and woody growth, although 

prior to leaf abscission, while proteins and starch are produced and translocated for storage 

in stems and bark of the roots or trunk during the dormant period (Niinements and Tamm, 

2005; Millard and Grelet, 2010).  

In evergreen trees, similar increases in leaf chlorophyll, nutrients and biomass are noted in 

spring, however, a more gradual decline towards the dormant season is observed, with leaf 

drop occurring in both summer and winter (Lewandowska and Jarvis, 1977; Sharma, 1983; 

Bell and Ward, 1984; Garcia-Plazaola et al., 1997; Gamon and Surfus, 1999; Fife et al., 2008; 

Cai et al., 2009). Leaf carotenoid concentration, in contrast, showed high concentrations in 

winter and declined towards spring for evergreen spruce (Lewandowska and Jarvis, 1977). 

The modelling of carotenoid content of evergreen conifers in Canada from canopy spectra 

also showed the highest concentration of this pigment in the winter season (Hilker et al., 

2011). Contrary to deciduous vegetation, evergreen vegetation show less extreme seasonal 

variation in pigments, biomass and leaf water content over four seasons (Cai et al., 2009; 

Flores-de-Santiago et al., 2012). Furthermore, a slight increase in leaf water was observed in 

spring for evergreen Quercus followed by a gradual decline over the growth season (Gond et 

al., 1999). In a region of Australia with a Mediterranean climate and savannah region of 

Brazil, evergreen trees generally show lower concentrations of foliar nitrogen and 

phosphorus compared to deciduous species, measured over a period of one and three years 

respectively (Bell and Ward, 1984; Franco et al., 2005). Proteins and starches are also stored 

primarily in older leaves from where translocation to new leaf growth takes place in spring 

(Cherbuy et al., 2001; Millard and Grelet, 2010). Many studies on seasonal variation of foliar 

characteristics are species and location specific, and few provide bioregional oversight of the 

phenology of foliar nutrients (Reich and Oleksyn, 2004; De Weirdt et al., 2012; Richardson et 

al., 2013). According to De Weirdt et al. (2012), the seasonality of evergreen tropical forests 

is not well understood and highly simplified in global ecosystem models. 
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While a number of studies have investigated seasonal changes in foliar pigments and 

nutrients, few have assessed whether multi-season data will improve the separability of 

species compared to a single season. Understanding the seasonal variation of pigment and 

nutrient concentrations for each species can contribute to the choice of these foliar 

biochemicals and season(s) to use in species discrimination, as well as identifying regions of 

the electromagnetic spectrum to target for sensor development (Blackburn, 1998a). In this 

chapter the seasonality of foliar pigments and nutrients was investigated, in particular (i) 

whether species show significant changes in foliar pigments and nutrients across four 

seasons; (ii) whether foliar pigments and nutrients can be used to separate between species 

in over four (winter, spring, summer and autumn) seasons; and (iii) whether the aggregation 

of foliar pigments and nutrients concentrations into a multi-season data set would improve 

the separability of species when compared to a single season. 

 

2.2. Methods 

2.2.1. Study area 

The iSimangaliso Wetland Park (28°S, 32°30’E) is a Ramsar and World Heritage Site located 

on the east coast of South Africa in the KwaZulu-Natal Province (Figure 2.1). The Park is 

situated in a sub-tropical coastal region with mean annual precipitation ranging from 1000 

to 1500 mm on the coast, to below 1000 mm inland (Middleton and Bailey, 2008). Mean 

temperatures during summer range from 23 – 30°C, and can decrease to approximately 10°C 

during winter periods (Sokolic, 2006). A section of the park has been assessed in this part of 

the study, located between Catalina Bay in the north and the Maphelane node in the south, 

and from the coast in the east to the DukuDuku Forest in the west (Figure 2.1). 

The iSimangaliso Wetland Park hosts the highest number of wetland habitat types (thirteen 

listed for Ramsar) in Southern Africa (Cowan, 1999). Six evergreen wetland tree species were 

sampled along the uMsunduzi, uMfolozi and St Lucia Rivers over four seasons (winter, 

spring, summer and autumn) between 2011 and 2012 (Table 2.1). The tree species were 

associated with a number of freshwater and estuarine ecosystem types including estuarine, 

swamp, riverine and groundwater-fed depression systems. 
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Figure 2.1: The study area is located in the iSimangaliso Wetland in the KwaZulu-Natal Province of South 
Africa (Inset A). The Park stretches along the coast with broad vegetation and land cover comprising natural 
thicket and grassland, forests and wetlands (Inset B). Six tree species were sampled along the uMsunduzi, 
uMfolozi and St Lucia River and estuarine systems (Inset C). 

Table 2.1: Number of tree species sampled across four seasons in the iSimangaliso Wetland Park, South 
Africa*. 

Tree species Common name Acronym 
Trees 

Winter 
(n = ) 

Trees 
Spring 
(n = ) 

Trees 
Summer 

(n = ) 

Trees 
Autumn 

(n = ) 

Total 
number 
of trees 

per 
species 
(n = ) 

Avicennia marina White mangrove AM 23 (21) 23 (21) 22 (21) 22 (21) 90 (84) 
Bruguiera 
gymnorrhiza 

Black mangrove BG 20 (19) 19 20 (19) 20 (19) 79 (76) 

Ficus sycomorus Sycamore fig FSYC 15 15 15 15 60 
Ficus trichopoda Swamp fig FT 12 (11) 11 11 11 45 (44) 
Hibiscus tilliaceus Lagoon hibiscus HT  31 (30) 31 (30) 30 30 122 (120) 
Syzygium cordatum Waterberry SC 17 17 17 17 68 (68) 

Total per season 118 (113) 116 (113) 
115  

(113) 
115 

 (113) 
464  

(452) 

* Species and number of trees were equalised for regression and classification purposes to the number shown in 

brackets. 
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2.2.2. Sampling protocol and nutrient analysis  

Five leaves were sampled from the sun-exposed canopy of 113 mature trees which were 

more than 2x2 m in size (Table 2.1). Leaf spectral reflectance measurements of the adaxial 

surface of each leaf were made using the Analytical Spectral Device (ASD) plant probe 

accessory connected to an ASD spectroradiometer (FieldSpec Pro FR, Analytical Spectral 

Device, Inc., USA), with the average scan time set at 10 seconds. The ASD covers the spectral 

range between 350 and 2500 nm with a 1.4 nm sampling interval between 350 and 1050 nm 

range, and ±2 nm between 1050 and 2500 nm. The plant probe provides a direct-contact 

probe which limits ambient light. The radiance measurements were converted to reflectance 

against scans of a white spectralon reference panel. The five leaf specimens per tree were 

combined for nutrient analysis (N and P). The leaves were oven-dried at 65°C until constant 

weight was reached. Bemlab Pty Ltd analysed nitrogen concentration using a Leco FP528 

nitrogen analyser (Horneck and Miller, 1998) and phosphorus through Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES) analysis (Isaac and Johnson, 1998). 

2.2.3. Predicting pigment concentrations from leaf spectra 

Fresh leaves from the canopies of 17 evergreen wetland trees were sampled in the spring 

season for pigment analysis. Leaves from tree species Avicennia marina, Barringtonia 

racemosa, Bruguiera gymnorrhiza, Ficus sur, Ficus sycomorus, Ficus trichopoda, Hibiscus 

tilliaceus and Syzygium cordatum were sampled for laboratory analysis. For these discussed 

tree canopies, carotenoids and chlorophylls were extracted using 100 % acetone and 

absorbance measured at 470 nm for carotenoids, 661.2 nm for chlorophyll a and 644.8 nm 

for chlorophyll b. Total chlorophyll content was computed using equations from 

Lichtenthaler and Buschmann (Lichtenthaler and Buschmann, 2001).  

Predictive equations for the carotenoid and chlorophyll concentrations for each tree were 

derived from laboratory chemical analysis and leaf spectral measurements. Vegetation 

indices, which have previously been proven to be robust across species (Blackburn, 1998b; 

Main et al., 2011), were calculated using the collected leaf spectra (Table 2.2). An iterative 

bootstrap process (1 000 iterations) using R software divided the data randomly into a 

training (2/3) and test (1/3) data set. A linear model was fit to the training data set between 

pigment concentration and each vegetation index, and then applied to the test data set as 

well. The root mean square error (RMSE) was then calculated for both the training and test 

data set and recorded, before each new reiteration. The vegetation index with the lowest 

RMSE was considered the best predictive index and was then used to predict the pigment 

concentrations from the spectral data. 
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Table 2.2: Vegetation indices used in predicting foliar pigment concentration from leaf spectra (Blackburn, 
1998b; Main et al., 2011). 

Carotenoid Index Chlorophyll index 

Carotenoid red edge (Gitelson et al., 2002; Gitelson et al., 2003)  Carter4 (Carter, 1994) 

Carotenoid Reflectance Index using reflectance at 550 nm (CRI_550)  

(Gitelson et al., 2002)  
Datt1 (Datt, 1999) 

Carotenoid Reflectance Index using reflectance at 700 nm (CRI_700)  

(Gitelson et al., 2002)  
Maccioni (Maccioni et al., 2001)  

Datt1998U (Datt, 1998) Modified Normalised Difference Vegetation Index 

(NDVI) -  (mND705) (Sims and Gamon, 2002) Datt1998SA (Datt, 1998) 

Photochemical Reflectance Index (PRI) (Gamon et al., 1997)  Modified Ref-Edge Inflection Point (mREIP) or 

Inverted Gaussian fit on reflectance (IG_REP) 

(Miller et al., 1990)  

Photochemical Reflectance Index x  Chlorophyll Index (PRI_CI) (Garrity 

et al., 2011)  

Pigment Specific Simple Ratio using the reflectance at 470 nm 

(PSSR_470) (Blackburn, 1998b) MERIS Terrestrial chlorophyll index (MTCI) (Dash 

and Curran, 2004) Pigment Specific Simple Ratio using the reflectance at 500 nm 

(PSSR_500) (Blackburn, 1998b) 

Pigment Specific Normalised Difference using the reflectance at 

470 nm (PSND_470) (Blackburn, 1998b) Normalised Difference Vegetation Index (NDVI2) 

(Gitelson and Merzlyak, 1994) Pigment Specific Normalised Difference using the reflectance at 

500 nm (PSND_500) (Blackburn, 1998b) 

Reflectance at 470 nm (R470)  (Blackburn, 1998a) 
Optimised Soil-Adjusted Vegetation Index (OSAVI2) 

(Wu et al., 2008)  

Reflectance at 500 nm, adjusted from Blackburn 1998b (R500)  

(Blackburn, 1998a) adjusted 
Red-edge Inflection Point (REIP) (Collins, 1978) 

Ratio analysis of reflectance spectra for carotenoids (RARS_c) 

(Chappelle et al., 1992)   

Red-edge Position Linear Extrapolation (REP_Le1) 

(Cho and Skidmore, 2006) 

Structure Insensitive Pigment Index (SIPI)  (Penuelas et al., 1995)  Vogelman1 (Vogelmann et al., 1993)  

Yellowness Index (YI) (Adams et al., 1999)  Vogelman3 (Vogelmann et al., 1993)  

 

2.2.4. Analysing seasonal variance of foliar pigments and nutrients per species 

The seasonal variation and mean seasonal profile of foliar pigments (carotenoids and 

chlorophyll) and nutrients (nitrogen and phosphorous) for each tree species were assessed 

using the predicted pigment and laboratory nutrient results. The statistical significance of 

differences in the foliar pigment and nutrients between the species as well as for each 

species across the four seasons was assessed using a one-way ANalysis Of Variance (ANOVA) 

followed by a post-hoc Tukey Honest Significant Difference (HSD) multiple comparisons test. 

The alpha level at 95 % confidence interval (p = 0.05) were corrected for the Bonferroni 

effect by dividing the alpha level by the number of comparable pairs: p < 0.05 / 6 

comparable pairs = p < 0.008. Thereafter the statistical significant of differences between 

species were assessed for each season and foliar biochemical, with an adjusted alpha level to 

15 comparable pairs = p < 0.003. Lastly the foliar carotenoids, chlorophyll, nitrogen or 

phosphorous of all four individual seasons were aggregated into a multiseasonal data set, 

and the statistical significance of differences between species assessed for each foliar 

chemical using the ANOVA and Tukey HSD tests. 
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2.3. Results 

2.3.1. Vegetation indices used to predict foliar pigments concentration 

The Datt1998 index for untransformed spectra (Datt1998U; Table 2.2) had the lowest RMSE 

for carotenoids while the Vogelman3 index had the lowest RMSE for chlorophyll (Tables 2.3 

and 2.4). These indices were therefore used to predict pigment concentration for the 

wetland trees used in the study. 

2.3.2. General variation of foliar pigment and nutrient across season 

In general, carotenoids and chlorophyll showed little variation across the four seasons for 

the six evergreen subtropical tree species (Table 2.5; Figure 2.2). Chlorophyll showed a slight 

increase in the coefficient of variation (COV) in spring, compared to the winter, summer and 

autumn seasons (Table 2.5). Nitrogen, in contrast, showed a higher variability of foliar 

concentration across the four seasons with the winter season having the highest mean and 

lowest COV, and the growth seasons (spring, summer and autumn) showing a decrease in 

the mean foliar nutrient concentration but showed an increase in the COV (Table 2.5; 

Figure 2.2). Foliar phosphorous concentration showed no variation from winter to spring, 

but an increase in the variability was noticed for summer and a decrease in the variability in 

autumn. 
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Table 2.3: Results of the bootstrap process of the best predictive vegetation index for carotenoids. Values are sorted for the test set by increasing mean RMSE. 

Carotenoid vegetation index 
Training data set Test data set 

Min 1st Qu Median Mean 3rd Qu Max SD Min 1st Qu Median Mean 3rd Qu Max SD 

Car_rededge 29.21 34.91 36.55 36.38 38.03 41.92 2.15 10.93 16.51 18.03 18.03 19.57 23.26 2.07 
CRI_550 39.80 48.10 50.19 50.00 52.21 56.47 2.90 17.11 22.64 24.80 24.71 26.64 32.82 2.79 
CRI_700 41.22 49.48 51.35 51.17 53.21 58.51 2.85 16.31 23.31 25.05 25.10 26.84 33.85 2.77 
Datt1998U 29.66 34.07 35.51 35.33 36.61 40.03 1.82 11.75 16.16 17.35 17.41 18.71 22.08 1.79 
PRI (Gamon) 40.31 48.20 49.96 49.85 51.63 56.13 2.57 17.14 22.99 24.70 24.61 26.31 32.19 2.55 
PRI_CI 34.44 43.64 45.52 45.30 47.09 52.35 2.57 13.54 20.96 22.62 22.66 24.29 31.86 2.56 
PSSR_470 43.24 50.18 51.94 51.90 53.81 58.65 2.72 17.86 24.07 25.99 25.82 27.59 33.57 2.65 
PSSR_500 40.22 46.81 48.84 48.59 50.46 55.03 2.53 16.07 22.16 23.81 23.81 25.65 30.66 2.48 
PSND_470 40.73 49.2 51.31 51.09 52.99 58.34 2.69 17.21 23.46 25.29 25.29 27.08 33.47 2.59 
PSND_500 38.65 45.96 47.6 47.52 49.35 53.24 2.51 17.04 21.70 23.39 23.34 24.97 31.22 2.42 
R470 40.96 50.4 52.26 52.12 54.05 58.90 2.65 17.27 23.70 25.55 25.51 27.27 33.93 2.59 
R500 40 47.38 49.14 49.03 50.82 54.99 2.47 17.33 22.54 24.22 24.17 25.85 32.17 2.41 
RARS_c 39.34 47.51 49.14 49.01 50.74 55.80 2.49 15.53 22.38 23.97 23.97 25.55 32.01 2.44 
SIPI 37.36 44.65 46.5 46.36 48.18 52.60 2.60 15.19 21.39 23.04 23.10 24.96 31.65 2.68 
YI 40.29 47.11 49.05 48.92 50.79 55.00 2.50 16.55 22.27 24.01 23.96 25.69 31.24 2.51 

Table 2. 4: Results of the bootstrap process of the best predictive vegetation index for chlorophyll. Values are sorted for the test data set by increasing mean RMSE. 

Chlorophyll 
vegetation 
index 

Training data set Test data set 
Min 1st Qu Median Mean 3rd Qu Max SD Min 1st Qu Median Mean 3rd Qu Max SD 

Vogelman3 38.41 51.15 54.95 54.19 57.81 63.60 4.76 29.54 48.91 55.49 55.87 62.89 84.18 9.75 
REP_Le1 38.77 51.78 56.46 55.35 59.37 64.40 4.94 31.59 48.37 55.10 56.27 64.60 82.43 9.80 
Vogelman1 40.81 54.21 57.78 57.17 60.68 66.72 4.67 33.53 52.98 59.62 60.07 67.00 89.62 9.68 
NDVI2 38.59 54.96 59.32 58.76 62.67 68.66 5.07 33.28 52.89 60.40 60.31 68.73 88.29 10.23 
mND705 42.65 54.91 60.35 59.21 63.69 68.90 5.44 34.57 51.95 59.69 60.65 70.14 87.17 10.80 
Carter4 45.56 56.96 61.46 60.85 64.99 71.36 5.13 34.93 55.58 63.77 63.69 72.18 87.42 10.29 
Maccioni 48.22 59.94 63.98 63.33 67.18 74.52 4.97 33.44 57.63 64.79 65.09 72.93 90.97 10.08 
Datt1 46.70 60.63 64.67 64.00 67.81 75.26 4.93 34.29 58.77 65.94 66.16 73.57 96.36 9.98 
mREIP/IG_REP 97.89 133 142.64 141.56 151.93 167.81 13.14 34.94 60.85 70.44 69.89 78.86 99.90 12.42 
OSAVI2 49.1 67.45 71.22 70.96 74.92 83.19 5.29 41.03 66.56 74.79 74.27 82.37 107.92 10.90 
REIP 113.1 141.8 149.30 148.80 156.50 173.20 10.33 45.80 67.43 74.88 74.42 81.44 102.95 9.92 
MTCI 40.46 61.47 66.72 65.42 70.98 78.35 7.25 38.52 62.53 72.28 75.02 82.34 131.30 16.91 
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Table 2. 5: Descriptive statistics of foliar pigments and nutrient concentrations over four seasons. 

Foliar chemical Statistic Winter Spring Summer Autumn 

Cars 

Min 55.13 55.04 55.17 55.96 

Mean 85.58 83.14 82.29 81.38 

Max 137.61 127.32 134.57 127.62 

Stdev 18.38 18.10 15.65 15.99 

COV 21.48 21.78 19.02 19.65 

Chl 

Min 124.81 102.81 84.24 116.92 

Mean 359.01 362.19 353.87 363.20 

Max 705.03 687.89 684.41 656.11 

Stdev 118.37 140.19 115.01 118.14 

COV 32.97 38.71 32.50 32.53 

N 

Min 1.47 0.69 0.57 0.55 

Mean 2.16 1.89 1.75 1.71 

Max 2.51 3.33 3.37 3.37 

Stdev 0.17 0.67 0.63 0.67 

COV 8.01 35.45 36.08 38.90 

P 

Min 0.05 0.05 0.03 0.04 

Mean 0.17 0.17 0.17 0.14 

Max 0.59 0.93 1.14 0.41 

Stdev 0.13 0.14 0.17 0.08 

COV 72.89 77.91 100.71 58.73 

 

 

Figure 2. 2: Seasonal variation in foliar concentration per species for foliar (A) pigments and (B) nutrients. 
Mean foliar N was significantly (p < 0.008, Bonferroni corrected for six comparable seasonal pairs) higher in 
winter compared to spring, summer and autumn.  
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2.3.3. Variation of foliar pigment and nutrient across seasons per species 

The average carotenoids and chlorophyll concentration increased between winter and spring 

for the two species AM and HT only (Table 2.6; Figure 2.4). For all other species, both 

carotenoids and chlorophyll decreased over the same time, except for species FSYC, which 

showed an increase in chlorophyll while carotenoids remained the same. Average carotenoid 

and chlorophyll values dropped between spring and summer for species AM, FSYC and HT; 

increased for SC; whereas species BG’s carotenoids remained the same while its chlorophyll 

decreased. For species FT, the average carotenoid values increased between spring and 

summer while chlorophyll decreased. With the changeover from summer to autumn, 

average carotenoid levels remained the same for the species, except for an increase in FSYC 

and decrease in HT. For the same time period, average chlorophyll levels increased for all 

species, except HT and SC.  

Average carotenoid and chlorophyll levels peaked in winter for species BG, FT and SC, while 

species HT had the highest average carotenoid and chlorophyll levels in spring. Average 

carotenoid and chlorophyll levels for species AM peaked in spring. For FSYC the average 

carotenoid levels peaked in winter and chlorophyll peaked in spring. Species BG showed low 

levels of carotenoids (maximum values for each season was lower than the average of all 

species) and chlorophyll (average values below the average of all species) compared to all 

the other species. 

The average foliar nitrogen concentration showed an increase from winter to spring for 

species AM, FSYC and HT, whereas the other species decreased during the same period. All 

species showed a decrease in average foliar nitrogen concentration with the change over 

from spring to summer, except for BG which remained the same. The average nitrogen levels 

also remained the same for BG and HT from summer to autumn, while the other species 

showed a decrease in this period and FSYC an increase. 

The average foliar nitrogen concentration peaked in winter for BG, FT and SC; in spring for 

AM and HT whereas values remained equally high for FSYC over spring, summer and 

autumn. AM, and HT showed higher than average values across all four seasons, and FSYC 

higher than average nitrogen values for spring, summer and autumn. BG showed lower 

average nitrogen levels in the spring, summer and autumn seasons compared to the average 

of all species. 

The six species showed little variability in the average foliar phosphorus concentration across 

seasons, particularly BG and HT. AM decreased from summer to autumn in average foliar 

phosphorus concentration whereas FT and SC peaked in average phosphorus concentration 

in spring with a decrease from spring to summer and autumn. FSYC showed a decrease in 

the average phosphorus concentration from winter to spring, and increase from spring to 

summer and then a decrease from summer to autumn again. 



 

21 
 

Table 2. 6: Descriptive statistics for foliar biochemical of each species over four seasons. 

  
Carotenoids (mg/m

2
) Chlorophyll (mg/m

2
) Nitrogen (%) Phosphorus (%) 

Species Statistic Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn 

AM 

Min 70.7 69.5 68.8 69.4 254.5 224.2 230.6 259.9 2.08 1.72 1.53 1.67 0.15 0.12 0.03 0.10 

Mean 80.2 85.0 79.1 79.0 351.7 363.7 342.3 361.8 2.29 2.52 2.36 2.23 0.33 0.31 0.32 0.21 

Max 89.8 110.9 94.8 94.2 482.1 510.4 475.2 475.3 2.50 3.33 3.37 3.28 0.59 0.93 1.14 0.41 

Stdev 5.6 10.0 7.3 6.6 60.0 75.8 67.9 64.6 0.10 0.47 0.54 0.42 0.16 0.25 0.34 0.10 

COV 6.9 11.7 9.2 8.3 17.1 20.8 19.8 17.9 4.42 18.62 23.01 18.66 47.01 79.71 107.15 47.25 

BG 

Min 55.1 55.0 55.2 56.0 124.8 124.3 84.2 116.9 1.91 0.69 0.57 0.55 0.05 0.05 0.06 0.05 

Mean 62.7 60.5 60.1 59.1 237.4 235.7 209.8 228.3 2.06 0.87 0.88 0.87 0.07 0.07 0.08 0.07 

Max 78.5 72.9 67.4 65.7 486.7 378.0 363.6 360.7 2.20 1.24 1.16 1.27 0.09 0.09 0.09 0.08 

Stdev 6.8 4.7 3.3 3.1 95.9 70.5 66.4 69.3 0.07 0.17 0.17 0.21 0.01 0.01 0.01 0.01 

COV 10.8 7.7 5.5 5.2 40.4 29.9 31.6 30.4 3.57 19.79 19.88 23.96 15.63 13.97 9.75 12.94 

FSYC 

Min 76.5 79.3 76.7 73.8 276.7 306.0 347.7 307.2 1.47 1.87 1.63 1.79 0.10 0.13 0.14 0.09 

Mean 103.8 102.8 92.8 94.5 404.6 480.0 415.2 450.1 1.97 2.31 2.25 2.34 0.22 0.16 0.20 0.16 

Max 123.6 125.2 111.3 127.6 552.0 629.5 526.8 636.1 2.29 2.73 2.68 3.37 0.55 0.23 0.30 0.32 

Stdev 16.4 12.2 9.7 16.1 90.3 89.6 52.1 100.9 0.21 0.22 0.31 0.46 0.13 0.03 0.04 0.06 

COV 15.8 11.8 10.4 17.0 22.3 18.7 12.5 22.4 10.65 9.41 13.71 19.73 58.03 21.17 19.78 38.28 

FT 

Min 66.8 68.1 69.7 69.9 255.2 298.9 269.5 296.7 1.98 1.40 1.23 1.13 0.05 0.11 0.08 0.07 

Mean 91.9 82.4 85.7 86.9 427.4 420.5 403.1 413.0 2.09 1.67 1.48 1.37 0.12 0.15 0.12 0.09 

Max 116.1 94.4 115.7 110.3 584.0 489.6 615.7 584.7 2.19 1.84 1.80 1.57 0.21 0.27 0.17 0.12 

Stdev 15.3 6.6 11.9 13.5 100.7 54.4 90.7 96.7 0.07 0.14 0.18 0.15 0.05 0.05 0.03 0.02 

COV 16.7 8.0 13.9 15.5 23.6 12.9 22.5 23.4 3.26 8.31 11.87 10.70 37.29 30.15 26.94 17.40 

HT 

Min 65.1 71.5 70.9 69.4 149.1 278.2 227.4 261.1 1.79 1.62 1.43 1.39 0.07 0.09 0.08 0.08 

Mean 93.4 95.8 92.6 89.6 422.8 464.7 439.3 434.8 2.20 2.27 2.03 2.04 0.18 0.19 0.19 0.19 

Max 137.6 127.3 134.6 123.7 705.0 687.9 684.4 656.1 2.51 3.10 2.76 3.13 0.27 0.34 0.27 0.34 

Stdev 19.1 15.1 16.8 15.5 132.5 115.1 116.5 113.8 0.18 0.37 0.30 0.45 0.05 0.06 0.05 0.06 

COV 20.4 15.8 18.1 17.3 31.3 24.8 26.5 26.2 7.99 16.22 14.97 21.91 26.84 29.61 25.73 32.47 

SC 

Min 71.9 58.7 73.1 66.7 183.5 102.8 217.1 208.3 1.99 0.98 0.97 0.91 0.05 0.07 0.06 0.04 

Mean 83.9 67.0 81.3 79.6 306.9 179.1 292.4 280.5 2.24 1.38 1.23 1.10 0.07 0.11 0.07 0.06 

Max 118.4 77.0 100.7 90.2 454.9 300.6 395.1 337.3 2.45 1.70 1.54 1.29 0.09 0.16 0.09 0.10 

Stdev 10.9 4.6 6.4 6.1 68.0 47.8 45.5 39.4 0.11 0.21 0.15 0.13 0.01 0.03 0.01 0.02 

COV 12.9 6.9 7.9 7.7 22.2 26.7 15.6 14.1 4.94 15.32 11.86 11.79 20.93 25.32 13.48 25.30 

Abbreviations for species: AM = Avicennia marina; BG = Bruguiera gymnorrhiza; FSYC = Ficus sycomorus; FT = Ficus trichopoda; HT = Hibiscus tilliaceus; SC = Syzygium cordatum. 
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(A) (B)  
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 (C)  (D)  
Figure 2.3: Seasonal variation in foliar concentration per species for foliar (A) carotenoids, (B) chlorophyll, (C) nitrogen and (D) phosphorus. 
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2.3.4. Seasonal profile analysis: mean profiles, variance and similarity measures 

2.3.4.1. Mean seasonal profiles.  

Mean seasonal profiles for carotenoids and chlorophylls are visually unique seasonal profiles 

per species (Figure 2.4). Species BG showed a low concentration of pigments over the four 

seasons compared to the other species. The mean seasonal profiles of other species overlap 

in variance. 
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Figure 2.4: Mean seasonal profiles per species over four seasons for (A) carotenoids, (B) chlorophyll, (C) 
nitrogen and (D) phosphorous. Abbreviations of tree species: AM = Avicennia marina; BG = Bruguiera 
gymnorrhiza; FSYC = Ficus sycomorus; FT = Ficus trichopoda; HT = Hibiscus tilliaceus; SC = Syzygium cordatum.  

 

2.3.4.2. Intra-species variation in foliar pigments and nutrients across four seasons  

Intra-species comparisons showed that five of the six species had no significantly different 

variation in foliar pigments across the four seasons (Tables 2.7, 2.8 and 2.9). SC was the only 

species which showed significant lower foliar pigment concentration in the spring seasons 

compared to the winter, summer and autumn seasons. Three species (BG, FT and SC) 
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showed significantly higher foliar nitrogen concentration in the winter compared to the 

other three seasons. FT and SC also showed significantly lower nitrogen concentration in 

autumn compared to spring. The foliar phosphorus concentration of these two species was 

also significantly lower in autumn compared to spring whereas SC showed significantly high 

values in spring compared to the other seasons. The other four tree species showed no 

statistically significant differences in foliar phosphorus between seasons. 

 

SC was therefore the only species which showed significantly variation in foliar biochemicals: 

lower pigments in spring, higher nitrogen concentration in winter, and low phosphorus 

concentration in spring. Seasonal profiles in foliar pigments and nutrients were also visible, 

but less distinct for BG and FT with significantly higher foliar nitrogen in winter, with FT 

showing additional seasonal differences in nutrients between autumn and spring. 

 

Table 2.7: Differences in foliar pigments for each species over four seasons. 

  Carotenoids Chlorophyll 

Species Season Winter Spring Summer Winter Spring Summer 

AM 

Spring 0.173   0.939   

Summer 0.964 0.060  0.968 0.732  

Autumn 0.952 0.054 1.000 0.963 1.000 0.785 

BG 

Spring 0.462   1.000   

Summer 0.322 0.995  0.683 0.725  

Autumn 0.092 0.804 0.914 0.983 0.991 0.879 

FSYC 

Spring 0.998   0.085   

Summer 0.146 0.209  0.986 0.172  

Autumn 0.269 0.362 0.987 0.467 0.773 0.678 

FT 

Spring 0.283   0.998   

Summer 0.638 0.924  0.914 0.966  

Autumn 0.791 0.813 0.994 0.987 0.999 0.989 

HT 

Spring 0.945   0.530   

Summer 0.998 0.882  0.953 0.841  

Autumn 0.817 0.482 0.898 0.980 0.768 0.999 

SC 

Spring 0.000
s
   0.000

s
   

Summer 0.747 0.000
s
  0.847 0.000

s
  

Autumn 0.336 0.000
s
 0.902 0.450 0.000

s
 0.907 

s
 – significant, Bonferroni corrected p = 0.008 for 6 comparable pairs; values rounded to 3 decimals. 
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Table 2.8: Differences in foliar nutrients for each species over four seasons. 

  Nitrogen Phosphorus 

Species Season Winter Spring Summer Winter Spring Summer 

AM 

Spring 0.284   0.991   

Summer 0.953 0.585  0.998 0.999  

Autumn 0.968 0.118 0.760 0.319 0.487 0.414 

BG 

Spring 0.000
s
   0.900   

Summer 0.000
s
 0.999  0.316 0.082  

Autumn 0.000
s
 1.000 0.996 0.513 0.900 0.014 

FSYC 

Spring 0.025   0.141   

Summer 0.079 0.963  0.862 0.505  

Autumn 0.011 0.992 0.871 0.141 1.000 0.505 

FT 

Spring 0.000
s
   0.246   

Summer 0.000
s
 0.012  0.954 0.091  

Autumn 0.000
s
 0.000

s
 0.225 0.246 0.003

s
 0.519 

HT 

Spring 0.845   0.748   

Summer 0.204 0.031  0.987 0.909  

Autumn 0.257 0.043 0.999 0.947 0.969 0.996 

SC 

Spring 0.000
s
   0.000

s
   

Summer 0.000
s
 0.033  0.992 0.000

s
  

Autumn 0.000
s
 0.000

s
 0.070 0.963 0.000

s
 0.869 

s
 – significant, Bonferroni corrected p = 0.008 for 6 comparable pairs; values rounded to 3 decimals. 

 

Table 2.9: The percentage of seasons (of four) where a species show statistically significant differences (p < 
0.008 Bonferroni corrected for 6 comparable pairs) in the foliar biochemical concentrations of six tree 
species. 

Season Carotenoids Chlorophyll Nitrogen Phosphorous 

AM 0 0 0 0 

BG 0 0 50 0 

FSYC 0 0 0 0 

FT 0 0 67 17 

HT 0 0 0 0 

SC 50 50 67 50 

 

2.3.4.3. Inter-species differences per foliar pigment and nutrient for each single season 
and multi-season data set  

The inter-species comparisons (Tables 2.10, 2.11, 2.12 and 2.13) showed that species are 
mostly separable in spring (> 67 % of all 15 comparable pairs) using foliar carotenoids, 
chlorophyll and nitrogen (Table 2.14). Winter showed the lowest separability of all four 
seasons of < 53 %. Most species were separable (maximum of 73 %) using nitrogen in spring. 
Foliar nitrogen showed the highest percentage of separability (> 60 %) of all four foliar 
biochemicals in the spring, summer and autumn seasons (others < 67 %). The pigments 
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showed poor separability in winter, summer and spring (< 50 %), whereas phosphorus 
showed relative separability in winter and autumn (53 %). 
 

Table 2.10: Differences between species for foliar carotenoids over four seasons. 

Season Species AM BG FSYC FT HT 

Winter 

BG 0.001     

FSYC 0.000
s
 0.000

s
    

FT 0.203 0.000
s
 0.255   

HT 0.012 0.000
s
 0.166 1.000  

SC 0.962 0.000
s
 0.001 0.655 0.208 

Spring 

BG 0.000
s
     

FSYC 0.000
s
 0.000

s
    

FT 0.986 0.000
s
 0.000

s
   

HT 0.006 0.000
s
 0.287 0.006  

SC 0.000
s
 0.428 0.000

s
 0.003

s
 0.000

s
 

Summer 

BG 0.000
s
     

FSYC 0.004 0.000
s
    

FT 0.585 0.000
s
 0.575   

HT 0.000
s
 0.000

s
 1.000 0.475  

SC 0.988 0.000
s
 0.043 0.907 0.012 

Autumn 

BG 0.000
s
     

FSYC 0.002
s
 0.000

s
    

FT 0.411 0.000
s
 0.579   

HT 0.018 0.000
s
 0.758 0.988  

SC 1.000 0.000
s
 0.005 0.546 0.053 

Multi-

season 

BG 0.000
s
     

FSYC 0.000
s
 0.000

s
    

FT 0.086 0.000
s
 0.000

s
   

HT 0.000
s
 0.000

s
 0.039 0.050  

SC 0.694 0.000
s
 0.000

s
 0.002

s
 0.000

s
 

s
 – significant, Bonferroni corrected p = 0.003 for 15 comparable pairs; values rounded to 3 decimals. 

 

 

Table 2.11: Differences between species for foliar chlorophyll over four seasons. 

Season Species AM BG FSYC FT HT 

Winter 

BG 0.005     

FSYC 0.608 0.000
s
    

FT 0.313 0.000
s
 0.992   

HT 0.123 0.000
s
 0.992 1.000  

SC 0.728 0.288 0.065 0.024 0.002
s
 

Spring 

BG 0.000
s
     

FSYC 0.001
s
 0.000

s
    

FT 0.470 0.000
s
 0.491   

HT 0.001
s
 0.000

s
 0.993 0.679  

SC 0.000
s
 0.312 0.000

s
 0.000

s
 0.000

s
 

Summer 
BG 0.000

s
     

FSYC 0.099 0.000
s
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FT 0.353 0.000
s
 0.999   

HT 0.001
s
 0.000

s
 0.940 0.814  

SC 0.429 0.036 0.001
s
 0.009 0.000

s
 

Autumn 

BG 0.000
s
     

FSYC 0.037 0.000
s
    

FT 0.569 0.000
s
 0.911   

HT 0.043 0.000
s
 0.993 0.987  

SC 0.054 0.468 0.000
s
 0.002

s
 0.000

s
 

Multi-

season 

BG 0.000
s
     

FSYC 0.000
s
 0.000

s
    

FT 0.004 0.000
s
 0.849   

HT 0.000
s
 0.000

s
 1.000 0.663  

SC 0.000
s
 0.149 0.000

s
 0.000

s
 0.000

s
 

s
 – significant, Bonferroni corrected p = 0.003 for 15 comparable pairs; values rounded to 3 decimals. 

 

 

Table 2.12: Differences between species for foliar nitrogen over four seasons. 

Season Species AM BG FSYC FT HT 

Winter 

BG 0.000
s
     

FSYC 0.000
s
 0.409    

FT 0.003
s
 0.990 0.229   

HT 0.195 0.011 0.000
s
 0.249  

SC 0.832 0.003
s
 0.000

s
 0.086 0.951 

Spring 

BG 0.000
s
     

FSYC 0.328 0.000
s
    

FT 0.000
s
 0.000

s
 0.000

s
   

HT 0.061 0.000
s
 0.999 0.000

s
  

SC 0.000
s
 0.000

s
 0.000

s
 0.155 0.000

s
 

Summer 

BG 0.000
s
     

FSYC 0.923 0.000
s
    

FT 0.000
s
 0.000

s
 0.000

s
   

HT 0.006 0.000
s
 0.243 0.000

s
  

SC 0.000
s
 0.018 0.000

s
 0.343 0.000

s
 

Autumn 

BG 0.000
s
     

FSYC 0.946 0.000
s
    

FT 0.000
s
 0.004 0.000

s
   

HT 0.397 0.000
s
 0.086 0.000

s
  

SC 0.000
s
 0.380 0.000

s
 0.378 0.000

s
 

Multi-

season 

BG 0.000
s
     

FSYC 0.403 0.000
s
    

FT 0.000
s
 0.000

s
 0.000

s
   

HT 0.004 0.000
s
 0.807 0.000

s
  

SC 0.000
s
 0.000

s
 0.000

s
 0.305 0.000

s
 

s
 – significant, Bonferroni corrected p = 0.003 for 15 comparable pairs; values rounded to 3 decimals. 
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Table 2.13: Differences between species for foliar phosphorous over four seasons and for multiple seasons. 

Season Species AM BG FSYC FT HT 

Winter 

BG 0.000
s
     

FSYC 0.007 0.000
s
    

FT 0.000
s
 0.617 0.048   

HT 0.000
s
 0.001

s
 0.604 0.436  

SC 0.000
s
 1.000 0.000

s
 0.550 0.001

s
 

Spring 

BG 0.000
s
     

FSYC 0.003
s
 0.162    

FT 0.004 0.367 1.000   

HT 0.007 0.003
s
 0.951 0.906  

SC 0.000
s
 0.918 0.722 0.893 0.117 

Summer 

BG 0.000
s
     

FSYC 0.219 0.157    

FT 0.006 0.984 0.689   

HT 0.030 0.145 0.999 0.774  

SC 0.000
s
 1.000 0.129 0.967 0.118 

Autumn 

BG 0.000
s
     

FSYC 0.216 0.000
s
    

FT 0.000
s
 0.842 0.038   

HT 0.841 0.000
s
 0.754 0.000

s
  

SC 0.000
s
 1.000 0.000

s
 0.781 0.000

s
 

Multi-

season 

BG 0.000
s
     

FSYC 0.000
s
 0.000

s
    

FT 0.000
s
 0.142 0.024   

HT 0.000
s
 0.000

s
 1.000 0.008  

SC 0.000
s
 1.000 0.000

s
 0.270 0.000

s
 

s
 – significant, Bonferroni corrected p = 0.003 for 15 comparable pairs; values rounded to 3 decimals. 

 

When aggregating the data of all four seasons into a single multi-season data set, the 

percentage of significantly different comparable pairs were highest for carotenoids and 

nitrogen (73 %), followed by chlorophyll (67 %) and phosphorus (60 %) (Table 2.14). 

 

Table 2.14: Percentage of comparable pairs that are significantly different (p < 0.003 Bonferroni corrected for 
15 comparable pairs) between the foliar chemical concentrations of six tree species across the single and 
multi-season data. 

Season Carotenoids Chlorophyll Nitrogen Phosphorous 

Winter 33 27 40 53 

Spring 67 67 73 27 

Summer 40 47 67 13 

Autumn 40 47 60 53 

Multi-season 73 67 73 60 
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2.4. Discussion 

Seasonal variation in foliar biochemicals of evergreen wetland trees in subtropical regions is 

not well understood. This study assessed the seasonal variation of foliar carotenoids, 

chlorophyll, nitrogen and phosphorous across four seasons (winter, spring, summer and 

autumn) for six evergreen wetland tree species in the iSimangaliso Wetland Park of South 

Africa. This is the first study reporting seasonal variation in foliar pigments and nutrients for 

evergreen trees of South Africa. 

In general, foliar carotenoids and chlorophyll showed no significant variation across the four 

seasons. Our results are supported by other studies on evergreen tree species where no 

significant changes in the mean pigment concentrations were observed over seasons 

(Lewandowska and Jarvis, 1977; Cai et al., 2009; Flores-de-Santiago et al., 2012). Statistically 

significant differences in mean foliar pigment concentrations were however reported for 

evergreen tree species in Northeastern Mexico (Sauceda et al., 2008). The mean foliar 

nitrogen varied across seasons with a significantly higher mean foliar N concentration (% of 

dry weight) in winter compared to the spring, summer and autumn seasons. Foliar N was 

also highest in the winter for evergreen eucalypts in Australia, a mangrove species in China 

and oak in Spain and Japan (Bell and Ward, 1984; Sabaté et al., 1995; Lin et al., 2010; 

Yasamura and Ishida, 2011). In evergreen trees, leaves serve as storage of foliar N during 

winter from where foliar N is translocated to new growth during the spring season (Sabaté et 

al., 1995; Yasamura and Ishida, 2011). Statistically significant differences between foliar P 

between four seasons (autumn, winter, spring and summer) were reported for the 

mangrove species of China (Lin et al., 2010), although no significant changes in mean foliar P 

were reported for the eucalypts over a five month period between August and December 

from 1981-2, as well as evergreen tropical trees in Nigeria (Sharma, 1983; Bell and Ward, 

1984). Our results showed no significant changes in mean foliar P across the four seasons, 

but the variability increased in summer and decreased in autumn. A decrease in both mean 

foliar N and P was noted for evergreen eucalypts, acacias and pine trees in Australia 

decreased from summer to winter (Fife et al., 2008).  Our study was limited to six species 

and four seasons in a subtropical forest of South Africa. Further research can contribute to 

assess whether the seasonal trends observed persist for other evergreen tree species in 

other climatic regions. 

Although tree species varied in foliar pigments and nutrients over seasons, few showed 

significant changes across seasons. Five of the six wetland tree species showed no significant 

variation in foliar pigments and three of the six species no significant variation in foliar 

nutrients across the four seasons. The water berry (Syzygium cordatum) was the only species 

which showed significant variation across seasons for all four foliar biochemicals, with 

significantly lower mean pigments in spring, higher mean foliar N in winter, and low mean 

foliar P in spring. Other species with significant variation in foliar nitrogen was the black 

mangrove (Bruguiera gymnorrhiza) and the swamp fig (Ficus trichopoda). The evergreen 
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wetland tree species from this subtropical forest was therefore mostly similar in seasonal 

variation of foliar carotenoid, chlorophyll, nitrogen and phosphorus concentration. 

Differences in the seasonal variation of foliar biochemicals have also been reported for 

evergreen trees elsewhere (Sharma, 1983; Lu et al., 2007; Cai et al., 2009). 

The separability between the six wetland tree species was highest for foliar nitrogen across 

the spring, summer and autumn seasons (≥ 60 % of the comparable pairs were separable). 

Foliar carotenoids and chlorophyll were also able to separate between species during the 

spring season (67 % of the comparable pairs were separable). Of all the foliar biochemicals, 

foliar phosphorus showed the lowest capability to discriminate between the species across 

the four seasons. The spring season showed the highest number of statistically significant 

differences between species (≥ 67 % comparable pairs were separable) for foliar pigments 

and nitrogen. Foliar pigments showed a low separability (< 47 % of the comparable pairs 

were separable), however in winter, summer and autumn. Using multiple season for species 

discrimination, foliar carotenoids and nitrogen showed the highest number of significant 

different comparable pairs (73 %), followed by chlorophyll (67 %) and phosphorus (60 %). 

Foliar nitrogen concentrations from the spring seasons are therefore expected to yield the 

highest classification results for species discrimination between these six evergreen tree 

species. In addition, the increasing separability of species with multiple seasons foliar 

carotenoid concentration, may offer additional increased separability between the 

evergreen tree species. 

 

2.5. Conclusion 

The influence of phenology on tree species classification has thus far been limited. This study 

assessed how the variation of plant properties across four seasons influenced the 

classification of six evergreen tree species for a subtropical region in the KwaZulu-Natal 

Province of South Africa. Most of the species showed no distinct variation in foliar 

carotenoids, chlorophyll, nitrogen and phosphorus across the four seasons, except for the 

water berry. Of the four foliar biochemicals, nitrogen concentration resulted in the highest 

number of significant different inter-species pairs across the spring, summer and autumn 

seasons. The aggregation of the four season’s data into a single multi-season data set 

increased the separability between species for carotenoids and phosphorus.  

The results emphasized the importance of foliar nitrogen concentration for the 

discrimination of six evergreen tree species in the iSimangaliso Wetland Park of South Africa. 

At a spectral level, however, foliar nitrogen is associated with a multitude of narrow 

absorption regions in hyperspectral data. The most important absorption features in leaf 

spectra that relate to nitrogen across the four seasons remains to be identified in order to 

assess the separability of the six evergreen wetland trees. In addition the statistically 

significant differences noted for foliar nitrogen concentration across seasons may indicate 
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that the relationship between leaf spectra and foliar nitrogen could also differ between 

seasons. 
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CHAPTER 3: REMOTE SENSING MODELS FOR PREDICTING LEAF 

NITROGEN AND PHOSPHOROUS ACROSS FOUR SEASONS FOR SIX 

SUBTROPICAL FOREST EVERGREEN TREE SPECIES 

 

This chapter is based on the journal publication: 

Van Deventer, H, Cho, MA, Mutanga, O & Ramoelo, A. 2015. Capability of models to predict leaf N and P across 

four seasons for six subtropical forest evergreen trees. ISPRS Journal of Photogrammetry and Remote Sensing, 

101: 209-220. 

Abstract 

Nutrient phenology of evergreen subtropical forests of southern Africa is poorly understood. 

Foliar nitrogen (N) and phosphorous (P) forms key components of photosynthesis and are 

vulnerable to global change stressors. Remote sensing techniques can potentially map and 

monitor nutrient phenology, yet models to predict foliar nutrients across species, seasons 

and climatic regions are deficient. This study evaluated the capability of various models, 

developed from leaf spectra of selected spectral regions and seasons, to predict leaf nutrient 

concentration across seasons and species. Seasonal differences in foliar N and P were 

assessed using a one-way ANalysis Of VAriance (ANOVA). The relationship between leaf 

spectra and nutrients was assessed using linear regression between the foliar nutrients and 

spectral indices. The predictive capability of three models was compared using root mean 

square error (RMSE) values. Amongst the four seasons, winter leaves showed the highest 

mean N (2.16 %, p < 0.01). However, winter showed the lowest variability of foliar N 

(coefficient of variation = 8 %) compared to the variability of the other three seasons 

(coefficient of variance > 35 %). In fact, between winter and spring, the variability in foliar N 

increased by 294 %. Foliar P did not significantly differ between the four seasons. Predictive 

models for leaf N concentration developed for each season showed a higher level of 

accuracy compared to predictive models from across seasons, whereas predictive models for 

leaf P showed low accuracies. Models developed from a single season showed a slight 

increase in error for the summer and autumn, however a larger increase in error for the 

winter season for the evergreen trees. The results suggest that spectral measurements can 

potentially be used to quantify nutrient phenology at regional scale and monitor the impacts 

of global change on nutrient phenology and photosynthesis. 
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3.1. Introduction 

Global change has shown significant impacts on the periodic behaviour of plants or 

phenology since the 1970s (Richardson et al., 2013). Most noticeably, the onset and duration 

of the active growth season has been affected across climatic zones, but the impact on the 

autumnal season is not well established (Zhou et al., 2003; Richardson et al., 2013). Several 

authors have argued that global increase in carbon dioxide and temperature may speed up 

the rates of photosynthesis and respiration in vegetation, although the increased rates are 

dependent on water and nutrient availability (Evans, 1989; Penuelas et al., 1995; Drake and 

Gonzalez-Meler, 1997; Kirschbaum, 2000). Predicting the impact of global change on these 

processes remains difficult, owing to the limitations of simulating regional scale ecosystem 

responses either in laboratories or in situ, particularly for forests (Seppälä et al., 2009; Lukac 

et al., 2010; Millard and Grelet, 2010; Booth et al., 2012; United States Department of 

Energy (US DOE), 2012; FAO and JRC, 2012; Sardans and Peñuelas, 2012; Richardson et al., 

2013). It is, however, generally recognised that global change is causing changes to 

vegetation physiology, condition, composition and distribution, and therefore to vegetation 

phenology, at local to regional scales (Campoy et al., 2011; Sardans and Peñuelas, 2012). 

Phenological expression is however unique to species and climate regions, therefore, to 

address uncertainties in vegetation response to global change, our understanding of the 

unique phenology of vegetation types needs to be improved (Reich and Oleksyn, 2004; Lukac 

et al., 2010; Richardson et al., 2013).    

Tropical and subtropical forests are considered to be some of the most vulnerable systems 

to global warming because of their exposure to multiple stressors (Seppälä et al., 2009). 

Tropical forests are nutrient poor (Reef et al., 2010) and with limited availability of 

phosphorus (Jordan, 1985), hence may have limitations in adapting to increased 

temperatures and photosynthesis. In addition, humid subtropical forest areas are highly 

fragmented and have been extensively converted into commercial plantations (Seppälä et 

al., 2009). Their resilience and adaptive capacity to global change is therefore considered 

reduced (Seppälä et al., 2009). Despite the sensitivity of these forests to global change, 

seasonal variation of leaf chemicals and translocation in evergreen tropical forests are not 

well understood and often highly simplified in global ecosystem models (De Weirdt et al., 

2012). Furthermore, global change impacts on tropical and subtropical forests vary greatly 

from regional to continental scales (United States Department of Energy (US DOE), 2012).A 

systematic approach to monitor global changes in a comparable way at regional scale is 

deficient.  

Monitoring foliar nutrients in tropical and subtropical forests using traditional methods of 

leaf harvesting and transportation to laboratories for analysis implies a number of 

difficulties. These forests are sometimes inaccessible, because of dense overgrowth or 
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located in swamp wetlands (United States Department of Energy (US DOE), 2012). 

Laboratories are often not close enough to the collection site which risks the loss of 

nutrients from leaves during the transportation period. The cost of human resources and 

laboratory analysis for a high number of foliar chemicals and repetitive time periods can 

increase beyond affordability. More cost-effective methods would be required to monitor 

global change impacts at the physiological leaf level and at the regional scale in the long 

term. Remote sensing, using air- or spaceborne imagery has been utilised as a cheaper 

alternative for assessing foliar nutrients of forest canopies at the broad landscape scale. 

Furthermore, spaceborne sensors offer continuous repetitive coverage of areas across the 

globe and are ideal for monitoring nutrients across a number of ecosystems. Various regions 

of the leaf or canopy electromagnetic spectrum have been associated with leaf water, 

pigments, nutrients and leaf biomass absorption or scattering of electromagnetic energy 

(Curran, 1989) (Figure 9). High spectral (hyperspectral) resolution sensors on airborne and 

spaceborne platforms have enabled the mapping of foliar nutrients since the late 1990s 

(Smith et al., 2002; Townsend et al., 2003; Huang et al., 2004; Mutanga and Kumar, 2007; 

Huber et al., 2008; Kokaly et al., 2009; Schlerf et al., 2010; Skidmore et al., 2010; Knox et al., 

2011). However, the high cost of hyperspectral sensors has restricted their routine utilisation 

for forest nutrient analysis. New spaceborne multispectral sensors such as WorldView-2 and 

RapidEye with fewer bands adapted for foliar pigment assessment also offer promise for 

assessing canopy nutrients such as leaf N. These multispectral sensors have proved 

successful in mapping foliar nutrients at regional scale (Ramoelo et al., 2012; Ullah et al., 

2012; Clevers and Gitelson, 2013; Ramoelo et al., 2013; Cho et al., 2013).  

The successful employment of remote sensing in monitoring the impact of global change 

across phenologically-unique climate regions requires; (a) the ability to detect and 

characterise the unique patterns of nutrient phenology of various climate regions and (b) 

capable models that can be used to predict nutrients across species, seasons and regions. 

Regardless of the advances made in mapping foliar nutrients with remote sensing at small 

scales, a few challenges remain. First, the relationship between foliar nutrient concentration 

and spectral reflectance across species, season and ecosystems remains poorly understood. 

Foliar nutrients are known to vary over seasons, yet it is not well established how the 

empirical relationship between foliar nutrients and spectral information reflects seasonal 

variation. Variations in foliar nitrogen, chlorophyll and carotenoids were positively related to 

seasonal variation of the photochemical reflectance index (PRI) for deciduous Japanese larch 

over two seasons in Japan (Nakaji et al., 2006). The relationship between foliar chlorophyll a 

and leaf spectral vegetation indices varied between the wet and dry season for evergreen 

mangrove tree species in Mexico (Flores-de-Santiago et al., 2013). Similarly, a changing 

relationship between foliar nitrogen and leaf reflectance in the red-edge was also found to 

vary with carboxylation rates for two deciduous species in the growth season of the United 

States of America (Dillen et al., 2012). In Canada, the relationship between chlorophyll 

predicted from vegetation indices and observed chlorophyll for deciduous maple leaves 
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varied over the spring, summer and autumn seasons (Zhang et al., 2007). The relationship 

between foliar nutrient and leaf spectral data across different seasons has therefore not 

been well established for evergreen trees or subtropical forests. Secondly, models for 

predicting nitrogen and phosphorus remain difficult as they co-vary with related biochemical 

and biophysical parameters such as chlorophyll, leaf structure, foliage biomass and leaf 

water content (Elvidge, 1990; Yoder and Pettigrew-Crosby, 1995). The relationship between 

the nutrients and co-varying parameters are however known to change over seasons and 

time (Yoder and Pettigrew-Crosby, 1995; Zhang et al., 2007). The chlorophyll red-edge 

position, for example, has often been used as a reliable co-variant in the mapping of 

nitrogen (Cho and Skidmore, 2006; Mutanga and Skidmore, 2007; Ramoelo et al., 2012), yet 

if the varying relationship between chlorophyll and nitrogen across seasons is poorly 

understood, the mapping and monitoring of nutrient phenology will potentially be 

erroneous. The ability to use the Near Infrared (NIR) and Shortwave Infrared (SWIR) bands to 

decouple nutrients from other co-variants across seasons, remains to be tested. A changing 

relationship between chlorophyll content estimated from leaf spectra and foliar chlorophyll 

content, for example, was observed for the maple species in Canada, where the relationship 

was highest in the spring season for the maple species in Canada, but decreased in 

correlation and accuracy towards summer and autumn (Zhang et al., 2007). The ability of 

nutrient models developed from single-season data to predict across phenological phases 

should be evaluated in model development. Currently, models to predict nutrients across 

species, seasons and climatic zones are deficient (Ferwerda et al., 2005; Ollinger et al., 2008; 

Knyazikhin et al., 2012; Ollinger et al., 2013). 

This study compared the capability of predictive nutrient models, developed from single-

season and multiple-seasons leaf spectra, to predict nutrient concentration across seasons 

and species. Six evergreen tree species, in a subtropical environment in South Africa, were 

sampled over four seasons (winter, spring, summer and autumn) to assess how the nutrient-

spectral relationship changes over seasons. Thereafter, predictive models were developed 

using the linear regression between leaf spectra and nutrient concentration of the season 

with the highest coefficient of determination (R²) as well as those of a combined-seasons 

data set, and compared to the predictive model of each individual season, to assess the 

capability of the various models to predict nutrients across the seasons. 
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Figure 3.1: Regions of the electromagnetic spectrum known to relate to leaf pigments, foliage biomass, leaf water 
content, proteins, starches and structural components of leaf reflectance data. 

3.2. Methods 

3.2.1. Study area 

The iSimangaliso Wetland Park (28°S, 32°30’E) is located on the east coast of the KwaZulu-

Natal province in South Africa. The area has a humid sub-tropical climate with strong 

seasonal variation in rainfall and temperature (Figure 3.2). Mean Annual Precipitation (MAP) 

ranges between 1 000 – 1 500 mm (Middleton and Bailey, 2008) and the mean temperatures 

in summer ranges from 23 – 30°C, with winter temperatures decreasing to approximately 

10°C (Sokolic, 2006). The Park is situated on a coastal plain (Partridge et al., 2010) with sandy 

undulating hills between 10 m to 20 m above mean sea level (a.m.s.l.). The vegetation types 

include wooded grassland, dune vegetation and dune forests, to swamp forests and critically 

endangered mangrove forests (Mucina and Rutherford, 2006). A number of evergreen tree 

species are found in the St. Lucia and Maphelane nodes of the iSimangaliso Wetland Park 

(Table 3.2; Figure 3.3).  

 

Table 3.1: Number of trees sampled per species and season in St. Lucia, KwaZulu-Natal, South Africa. 

Tree species Common name 

Trees 

Winter 

(n) 

Trees 

Spring 

(n) 

Trees 

Summer 

(n) 

Trees 

Autumn 

(n) 

Total number of 

trees per species 

(n) 

Avicennia marina White mangrove 21 21 21 21 84 

Bruguiera gymnorrhiza Black mangrove 19 19 19 19 76 

Ficus sycomorus Sycamore fig 15 15 15 15 60 

Ficus trichopoda Swamp fig 11 11 11 11 44 

Hibiscus tilliaceus Lagoon hibiscus 30 30 30 30 120 

Syzygium cordatum Waterberry 17 17 17 17 68 

Total per season: 113 113 113 113 452 
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Figure 3.2: Mean monthly temperature and rainfall between January 2011 and December 2012 for the St. Lucia study 
area, KwaZulu-Natal, South Africa (Harris et al., 2013). 

 

 

 
Figure 3.3: The St. Lucia study area is located northeast of the city of Durban in the KwaZulu-Natal Province of South 
Africa. Six wetland and estuarine tree species were sampled in the study area along the uMfolozi River, as well as the St. 
Lucia, uMfolozi and uMsunduzi estuaries.  
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3.2.2. Leaf sampling, spectral measurements and laboratory analysis of foliar N and 

P 

Field campaigns were conducted for four seasons (winter, spring, summer and autumn) 

across 2011 and 2012. Sample sites were selected along wetlands and estuaries where tree 

canopies were accessible, mature and sun exposed. Five sunlit leaves were randomly 

sampled across the canopy of each tree (n trees = 452, Table 3.2). Leaf spectral reflectance 

measurements of the adaxial surface of each leaf were made using the Analytical Spectral 

Device (ASD) plant probe accessory connected to an ASD spectroradiometer (FieldSpec Pro 

FR, Analytical Spectral Device, Inc, USA), with the average scan time set at 10. The ASD 

covers the spectral range between 350 and 2500 nm with a 1.4 nm sampling interval 

between 350 and 1050 nm range, and ±2 nm between 1050 and 2500 nm. The plant probe 

provides a direct-contact probe which limits ambient light. The radiance measurements 

were converted to reflectance against scans of a white spectralon reference panel. The five 

leaf specimens per tree were combined for nutrient analysis (N and P). The leaves were 

oven-dried at 65°C until constant weight was reached. Bemlab Pty Ltd analysed nitrogen 

concentration using a Leco FP528 nitrogen analyser (Horneck and Miller, 1998) and 

phosphorus through Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

analysis (Isaac and Johnson, 1998). 

 

3.2.3. Data analysis  

Differences in leaf N or P concentration between seasons were assessed using one-way 

ANalysis Of VAriance (ANOVA). The alpha levels were corrected for Bonferroni effects to 

decrease the likelihood of committing type 1 error as a result of multiple comparable pairs 

(McDonald, 2008). The adjustment is made to ensure that the alpha level (p = 0.05) is not 

merely a reflection of the differences between the dependent (nutrient concentrations) and 

independent variables (combined seasons), but adjusted downwards to assess the 

differences between each combination of individual seasons. The comparison of four 

seasons to one another results in six comparable pairs and therefore the alpha level 

(p < 0.05) is adjusted by dividing 0.05 by the six comparable pairs = p < 0.01. Thereafter, the 

linear relationship between foliar nutrients and leaf spectral reflectance was assessed using 

a spectral vegetation index (VI), based on the normalised difference vegetation index (NDVI). 

NDVI is one of the most commonly used vegetation indices where two bands are combined 

and normalized through their difference (Rouse et al., 1973; Tucker, 1979). One band is 

traditionally located at the absorption feature of the vegetation parameter in question and 

the other band is used to normalize the absorption band. VI values were computed for all 

possible band combinations (Cho et al., 2009) (Eq. 1). First, the 1 nm spectral reflectance 

ASD data were resampled using a Gaussian model (full-width half-maximum equal to every 

10 nm band spacing between 400 and 2 500 nm) in the Environment for Visualizing Images 
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(ENVI) software (v.4.8, ITT Visual Information Systems, 2012-2014) to reduce complexity and 

redundancy in the data. Subsequently, the 10 nm data were used to compute VIs for all 

possible band combinations (210!  = 210!/[(210-2)!*2!]) from the visible (400 nm) to the 

SWIR (2500 nm). This was done to assess the behaviour of the relationship between leaf N 

or P and VIs for various spectral regions associated with pigments, foliage biomass, leaf 

water content, proteins, starch as well as lignin across seasons. A simple linear regression 

was used to determine the strength of the relationship (coefficient of determination (R²)) 

between each foliar nutrient and the VIs. For each nutrient, the season which attained the 

highest R² between the VI and nutrient concentration, was selected as one of the predictive 

models for evaluation. 
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Where R(i,n) and R(j,n) are the reflectance of any two bands for each sample n.  

 

Foliar N or P was predicted from known absorption regions of the electromagnetic spectrum 

which yielded the highest coefficient of determination (R²) for each nutrient. Absorption 

regions were selected for pigments (500, 510, 670, 680, 700 and 760 nm), foliage biomass 

(740 and 780 nm), leaf water content (860 and 1240 nm), as well as for starch, lignin, 

tannins, pectin, protein and cellulose (1630, 1690, 1900, 2000, 2050, 2060, 2130, 2180, 

2200, 2210, 2240, 2250, 2300 and 2380 nm).  

The model with the best predictive capability for each nutrient was selected through 

comparing the root mean square error (RMSE) and percentage error of prediction or relative 

RMSE per season. Model comparison was done to assess the capability of models to predict 

across seasons. RMSE values were calculated for three different predictive models for each 

nutrient across seasons: (a) a model using predicted values for each season (individual-

season model); (b) a model developed from the season providing the highest R² for the 

particular nutrient and applied to all four seasons; and (c) a model developed combining 

data from all four seasons for each nutrient (multiple- or combined-seasons model). The 

RMSE (Eq. 2) was calculated for each model, season and nutrient to compare accuracies.   
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Where ŷi is the predicted nutrient concentration, yi is the observed nutrient concentration, and n is the number 

of samples. 

 

For the combined-seasons model, a third of the data for each season was retained as an 

independent data set, whereas the remaining 2/3 of each season was combined into a single 

data set. An iterative bootstrap process (1 000 iterations) using R software (RStudio v. 

0.98.507, © 2009-2013 RStudio, Inc.) divided the combined data set randomly into a training 
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(2/3) and test (1/3) data set. A linear model was fit to the training data set between the 

observed nutrient concentration and the vegetation index, and then applied to the test data 

set. The RMSE was then calculated for both the training and test data set and recorded with 

the model coefficients, before each new reiteration. The mean coefficients were thereafter 

applied to the independent data sets of each season and the RMSE calculated and reported 

per season. The percentage of error was calculated using the mean observed nutrient 

concentration per season for model comparison. The change in percentage error between 

the models was compared to evaluate the capability of each model to predict across 

seasons. 

 

 

 

 

3.3. Results 

3.3.1. Foliar nutrient variations per season  

Amongst the four seasons, winter leaves showed the highest mean N (p < 0.01, Bonferroni 

corrected p = 0.008) (Table 3.2; Table 3.3). However, winter showed the lowest variability of 

foliar N (standard deviation = 0.17) when compared to the other three seasons (standard 

deviation > 0.6). In fact, between winter and spring, the variability increased by 294 % 

whereas the variability over the active growth season showed little difference. 

Contrary to what was observed with foliar N, foliar P showed no statistically significant 

differences between the four seasons. The transition from winter to spring showed a slight 

increase in variability (8 %) for foliar P compared to 294 % observed for foliar N. The 

variability of foliar P actually declined by 71.5 % between summer and autumn, whereas the 

variability of foliar N showed very little change between these two seasons. 

 

Table 3.2: Descriptive statistics for laboratory-analysed foliar nitrogen (N) and phosphorus (P) concentration (%) over 
four seasons. 

Foliar nutrient (%) Statistic Winter Spring Summer Autumn 

N 

Min 1.47 0.69 0.57 0.55 

Mean 2.16 1.89 1.75 1.71 

Max 2.51 3.33 3.37 3.37 

Stdev 0.17 0.67 0.63 0.67 

P 

Min 0.05 0.05 0.03 0.04 

Mean 0.17 0.17 0.17 0.14 

Max 0.59 0.93 1.14 0.41 

Stdev 0.13 0.14 0.17 0.08 
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Table 3.3: Intra-season ANalysis Of VAriance (ANOVA) for foliar N and P concentration (%). 

Nutrient Seasons Winter Spring Summer Autumn 

N 

Winter     

Spring 0.003293 
*
    

Summer 0.000008 
*
 0.246426   

Autumn 0.000008 
*
 0.075883 0.947032  

P 

Winter     

Spring 0.999999    

Summer 0.996919 0.996201   

Autumn 0.244360 0.237694 0.346901  
*
 –significant (p < 0.01), Bonferroni corrected p = 0.008 

 

 

3.3.2. Assessing the seasonal relationship between foliar nutrient concentration 

and leaf spectra  

The relationship between foliar N and leaf spectra varied across seasons (Figure 3.4; 

Table 3.4). Winter showed the lowest correlations between foliar N and leaf spectra 

compared to the other three seasons. The highest R² for winter was recorded in the SWIR 

with a two-band combination associated with protein and starch (R² = 0.22, p < 0.01) 

(Table 3.4). In contrast, spring showed an increase in correlation between foliar N and leaf 

spectra across spectral regions associated with foliar pigments, foliage biomass, leaf water 

content, protein, starches, cellulose and lignin (Figure 3.4; Table 3.4). The region with the 

highest average R² across seasons (0.59) was recorded in the SWIR associated with protein 

absorption bands (2130, 2240), yielding the highest R² in spring (R² = 0.80, p < 0.01), 

followed by summer (R² = 0.77, p < 0.01) and autumn (R² = 0.71, p < 0.01) (Table 3.4). The 

second highest region was also located in the SWIR associated with protein and cellulose 

(2180, 2210), followed by foliage biomass in the red-edge region (740, 780), lignin, tannins, 

pectin and protein in the SWIR (1630, 1690), and then the chlorophyll bands in the red-edge 

region (700, 760). The relationship in the carotenoid pigment region remained relatively 

constant from spring to summer and autumn (R² = 0.37, 0.37, 0.34, p < 0.01), although the 

relationship between foliar N and spectra showed a slight increase (30 %) in the bands 

associated with chlorophyll from spring to autumn, as well as for lignin, waxes, protein and 

nitrogen (16 %). The relationship showed a decrease from spring to autumn in the region 

associated with foliage biomass (-21 %), leaf water content (-57 %) and the region of lignin, 

tannins, pectin and protein (-50 %). Bands associated with protein or protein bond 

absorption features showed an average decrease from spring to autumn of < 22 %), whereas 

bands associated with starch showed a decrease by > -90 % from spring to autumn. 

Compared to leaf N, the relationship between foliar P and leaf spectra also varied over the 

four seasons, but with lower R² values over all four seasons (Figure 3.4; Table 3.4). High R² 

values (R² > 0.25) between foliar P and leaf spectra were recorded for all four seasons in the 

SWIR, compared to the high diversity of regions noted for N. In the winter, the highest 
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average coefficient of determination (R²) across the four seasons (R² = 0.25, p < 0.01) was 

recorded in the SWIR region associated with lignin, waxes, protein and nitrogen (2050, 

2380), followed by protein, nitrogen and lignin (2060, 2380). Other high average R² regions 

were mainly associated with protein (2130, 2240), protein and cellulose (2180, 2210) and 

lignin, tannins, pectin and protein (1650, 1690). The SWIR region with the highest average R² 

across all four seasons (2050, 2380), also showed the highest R² in autumn (R² = 0.38, 

p < 0.01).  The pigment region showed a marked increase from winter to spring and spring to 

summer (> 110 %). An increase in the relationship was observed from winter to spring 

(> 150 %), in the regions associated with chlorophyll, foliage biomass and starch, although a 

decrease was noted from spring to summer (> -66 %) for these regions. The band 

combinations protein, protein bonds with cellulose, nitrogen and starch, in general, showed 

a decrease from winter to spring (by > -27 %) and spring to summer (by > 6 %), but increased 

between summer and autumn between 13 – 93 %. 

Spring showed the highest R² between foliar N and leaf spectra and winter the lowest. In 

contrast, the highest relationship between foliar P and leaf spectra was recorded in the 

winter, summer and autumn, and the lowest in spring. Foliar nitrogen and phosphorus 

showed higher R² values with the SWIR region, except for nitrogen in the red-edge regions 

associated with chlorophyll and foliar biomass (Table 3.4). 

 

 

Figure 3.4: Contour plots showing the regression (R²) between selected vegetation indices calculated from all possible 
waveband combinations (vertical and horizontal axes) in the 400 – 2500 nm range (at 10 nm intervals) and leaf N or P 
concentrations (%).  
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Table 3.4: Maximum linear regression coefficient of determination (R²), extracted from a matrix showing the relationship 
between nutrient concentrations and spectra, for band regions known to relate to leaf features, given per season and 
nutrient.  

Foliar 
nutrient 

VI Band 
combination 

●
 

Associated parameter Winter Spring Summer Autumn Average 

N 

510, 680 Carotenoids  0.00 0.37
*
 0.37

*
 0.34

*
 0.27 

700, 760 Chlorophyll 0.09
*
 0.40

*
 0.44

*
 0.52

*
 0.36 

740, 780 Foliage biomass 0.08
*
 0.62

*
 0.49

*
 0.49

*
 0.42 

860, 1240 Leaf water content  0.00 0.37
*
 0.15

*
 0.16

*
 0.17 

1630, 1690 
Lignin, tannins, pectin & 
protein 

0.06
*
 0.66

*
 0.47

*
 0.33

*
 0.38 

1900, 2250 Starch 0.01 0.33
*
 0.13

*
 0.01 0.12 

2000, 2250 Starch 0.01 0.40
*
 0.13

*
 0.03 0.14 

2050, 2380 
Lignin, waxes, protein & 
nitrogen 

0.02 0.38
*
 0.48

*
 0.44

*
 0.33 

2060, 2300 Protein & nitrogen 0.02 0.22
*
 0.00 0.01 0.06 

2060, 2380 Protein, nitrogen & lignin 0.00 0.47
*
 0.47

*
 0.37

*
 0.33 

2130, 2240 Protein  0.09
*
 0.80

*
 0.77

*
 0.71

*
 0.59 

2180, 2210 Protein & cellulose 0.06
*
 0.60

*
 0.63

*
 0.59

*
 0.47 

2180, 2240 Protein & nitrogen 0.21
*
 0.42

*
 0.41

*
 0.27

*
 0.33 

2200, 2240 Protein & starch 0.22
*
 0.31

*
 0.30

*
 0.18

*
 0.25 

P 

500, 670 Carotenoids 0.06
*
 0.17

*
 0.37

*
 0.10

*
 0.18 

700, 760 Chlorophyll 0.02
*
 0.05

*
 0.00

*
 0.14

*
 0.05 

740, 780 Foliage biomass 0.02 0.06
*
 0.02 0.13

*
 0.06 

860, 1240 Leaf water content 0.01 0.01 0.00 0.04 0.02 

1650, 1690 
Lignin, tannins, pectin & 
protein 

0.17
*
 0.19

*
 0.30

*
 0.19

*
 0.21 

1900, 2250 Starch 0.04
*
 0.18

*
 0.06

*
 0.06

*
 0.09 

2000, 2250 Starch 0.01 0.13
*
 0.03 0.05 0.06 

2050, 2380 
Lignin, waxes, protein & 
nitrogen 

0.28
*
 0.24

*
 0.09

*
 0.38

*
 0.25 

2060, 2300 Protein & nitrogen 0.02 0.02 0.00 0.00 0.01 

2060, 2380 Protein, nitrogen & lignin 0.20
*
 0.25

*
 0.13

*
 0.36

*
 0.24 

2130, 2240 Protein  0.23
*
 0.16

*
 0.15

*
 0.29

*
 0.21 

2180, 2210 Protein & cellulose 0.29
*
 0.15

*
 0.14

*
 0.25

*
 0.21 

2180, 2240 Protein & nitrogen 0.31
*
 0.20

*
 0.17

*
 0.21

*
 0.22 

2200, 2240 Protein & starch 0.26
*
 0.19

*
 0.15

*
 0.17

*
 0.19 

● Two-band combinations yielding high correlations were extracted from regions known to be related to pigments (Gitelson 
et al., 2002; Gitelson and Merzlyak, 2004; Gitelson et al., 2006); foliage biomass (Mutanga and Skidmore, 2004; Cho et al., 
2007); leaf water content (Gao, 1996); proteins & starches (Curran, 1989); waxes & protein/enzyme D-ribulose 1-5-
diphosphate carboxylase@2050, tannic acid@1660, lignin, pectins & protein/enzyme D-ribulose 1-5-diphosphate 
carboxylase@1680, lignin@2380 (Elvidge, 1990). 
*
 –significant (p < 0.01)  

 



 

45 
 

3.3.4. Comparison of predictive models across seasons  

The individual-seasons model showed the lowest prediction error of leaf N for the winter 

season for the indices developed in the red-edge (chlorophyll and foliage biomass) and SWIR 

regions (protein) of the spectrum (Table 3.5). For the spring, summer and autumn seasons, 

the individual-seasons model of N showed lower error of prediction (%) in the SWIR, 

compared to the red-edge region. When the spring-season model (the spring season 

recorded the highest R² between the VI and N concentration) was used to predict N for the 

other three seasons, the error of prediction (%) increased by 1 – 5 % for the summer and 

autumn seasons for the VIs in both the red-edge and SWIR regions. Applying the spring-

season model to the winter leaf spectra resulted in an increase of the error of prediction by 

11 – 18 %. The combined-seasons model for N, compared to the individual-seasons model, 

showed an increase in error of between 4 – 7 % for the three VIs in winter, a slight decrease 

in error (≤ 4 %) for the spring season, but showed no major changes for the summer and 

autumn seasons.  

The accuracy of the predictive models for leaf P when compared to the leaf N models was 

very low (Error > 46 %; Table 3.6). The VI for the lignin, waxes, protein and nitrogen bands in 

the SWIR showed the lowest error of prediction (46 %). The combined-season model, on the 

other hand, decreased the error in prediction by 12 – 28 %, but for the SWIR region in 

autumn, only by 3 %. 
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Table 3.5: Assessing the capability of the three different predictive models for nitrogen across four seasons. The capability of the spring-season model and combined-seasons 
model is evaluated in the change of percentage error from the individual-seasons model. 

  
Winter Spring 

 
Summer Autumn 

 

VI-band 
combination 

700, 760 740, 780 2130, 2240 700, 760 740, 780 2130, 2240 700, 760 740, 780 2130, 2240 700, 760 740, 780 2130, 2240 

Model: 
Associated 
parameter 

Chlorophyll 
region 

Foliage 
biomass 

Protein 
Chlorophyll 

region 
Foliage 

biomass 
Protein 

Chlorophyll 
region 

Foliage 
biomass 

Protein 
Chlorophyll 

region 
Foliage 

biomass 
Protein 

Individual-
seasons 

Linear 
regression: 

y = 0.6229x  
+1.7924 

y = 
3.7848x  
+2.0208 

y =   
-1.7299x  
+2.2936 

y = 3.9682x  
-0.41 

y =  
34.17x  

+0.7901 

y =  
-19.06x  
+3.4246 

y = 5.0957x  
-1.2398 

y = 
39.447x  
+0.5076 

y =  
-22.107x  
+3.9439 

y = 5.6791x  
-1.659 

y = 
40.194x  
+0.4004 

y =  
-26.185x  
+4.3275 

RMSE  0.16 0.17 0.17 0.51 0.41 0.30 0.46 0.44 0.30 0.45 0.48 0.35 

% Error 7.61 7.66 7.68 26.94 21.45 15.92 26.45 25.08 16.90 26.25 27.80 20.67 

Spring-
season 
model 

Linear 
regression: 

y = 3.9682x  
-0.41 

y =  
34.17x  

+0.7901 

y =  
-19.06x  
+3.4246 

y = 3.9682x  
-0.41 

y =  
34.17x  

+0.7901 

y =  
-19.06x  
+3.4246 

y = 3.9682x  
-0.41 

y =  
34.17x  

+0.7901 

y =  
-19.06x  
+3.4246 

y = 3.9682x  
-0.41 

y =  
34.17x  

+0.7901 

y =  
-19.06x  
+3.4246 

RMSE 0.40 0.44 0.55 0.51 0.41 0.30 0.50 0.46 0.38 0.53 0.52 0.43 

% Error 18.69 20.39 25.42 26.94 21.45 15.92 28.64 26.17 21.41 30.82 30.28 25.39 

Combined-
seasons 

Mean linear 
regression: 

y =  
3.767x 
-0.3291 

y =  
29.29x 

+0.9075 

y =  
-16.04x 
+3.318 

y =  
3.767x 
-0.3291 

y =  
29.29x 

+0.9075 

y =  
-16.04x 
+3.318 

y =  
3.767x 
-0.3291 

y =  
29.29x 

+0.9075 

y =  
-16.04x 
+3.318 

y =  
3.767x 
-0.3291 

y =  
29.29x 

+0.9075 

y =  
-16.04x 
+3.318 

Mean RMSE 
training data 
 

0.47 0.44 0.39 0.47 0.44 0.39 0.47 0.44 0.39 0.47 0.44 0.39 

Mean SD 
training data 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Mean SEP 0.48 0.45 0.39 0.48 0.45 0.39 0.48 0.45 0.39 0.48 0.45 0.39 

Mean SD SEP 
 

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Mean SEP 
Independent 
dataset 

0.26 0.27 0.32 0.43 0.34 0.25 0.47 0.42 0.28 0.49 0.47 0.34 

SD SEP 
Independent 
dataset 

0.17 0.18 0.23 0.34 0.28 0.18 0.33 0.30 0.23 0.31 0.32 0.27 

             Training % 
error 21.79 20.40 18.08 24.81 23.23 20.59 26.83 25.11 22.26 27.49 25.73 22.81 

Test % error 22.25 20.86 18.08 25.34 23.76 20.59 27.40 25.69 22.26 28.07 26.32 22.81 
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Independent % 
error 12.05 12.52 14.83 22.70 17.95 13.20 26.83 23.97 15.98 28.65 27.49 19.88 

Difference 
in % error 
between 
models: 

Spring-season 
model 
compared to 
Individual  

-11.08 -12.73 -17.74 0.00 0.00 0.00 -2.19 -1.09 -4.51 -4.57 -2.48 -4.72 

Combined 
compared to 
Individual 

-4.44 -4.86 -7.15 4.24 3.50 2.72 -0.38 1.11 0.92 -2.40 0.31 0.79 

Combined 
compared to 
Spring-season 
model 

6.64 7.87 10.59 4.24 3.50 2.72 1.81 2.20 5.43 2.17 2.79 5.51 

SD, standard deviation 

SEP, standard error of prediction 
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Table 3.6: Assessing the capability of the three different predictive models for phosphorus across four seasons. The capability of the autumn-season model and combined-
seasons model is evaluated in the change of percentage error from the individual-seasons model. 

 
Winter Spring Summer Autumn 

 
VI-band combination 500, 670 1650, 1690 500, 670 1650, 1690 500, 670 1650, 1690 500, 670 1650, 1690 

Model: 

Associated parameter 

Carotenoids 

Lignin, 
waxes, 

protein & 
nitrogen 

Carotenoids 

Lignin, 
waxes, 

protein & 
nitrogen 

Carotenoids 

Lignin, 
waxes, 

protein & 
nitrogen 

Carotenoids 

Lignin, 
waxes, 

protein & 
nitrogen 

Individual-
seasons 

Linear regression: 
y = 0.9929x 

+0.1932 
y = 3.7752x 

+0.3748 
y = 1.6711x 

+0.2559 
y = 3.726x 
+0.2359 

y = 3.5344x 
+0.2985 

y = 3.701x 
+0.3398 

y = 1.0447x 
+0.1865 

y = 3.0753x 
+0.2738 

RMSE  0.12 0.11 0.12 0.12 0.13 0.16 0.08 0.06 

% Error 69.90 60.68 68.79 67.80 77.17 94.15 54.37 45.95 

Autumn-
season  
model 

Linear regression: 
y = 1.0447x 

+0.1865 
y = 3.0753x 

+0.2738 
y = 1.0447x 

+0.1865 
y = 3.0753x 

+0.2738 
y = 1.0447x 

+0.1865 
y = 3.0753x 

+0.2738 
y = 1.0447x 

+0.1865 
y = 3.0753x 

+0.2738 

RMSE 0.12 0.12 0.13 0.14 0.15 0.16 0.08 0.06 

% Error 70.05 71.32 73.53 79.74 90.25 96.85 54.37 45.95 

Combined-
seasons 

Mean linear regression: 
y = 1.3777x 

+0.2077 
y = 2.837x 
+0.3004 

y = 1.3777x 
+0.2077 

y = 2.837x 
+0.3004 

y = 1.3777x 
+0.2077 

y = 2.837x 
+0.3004 

y = 1.3777x 
+0.2077 

y = 2.837x 
+0.3004 

Mean RMSE training data 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Mean SD training data 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Mean SEP 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Mean SD SEP 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Mean SEP Independent dataset 0.08 0.08 0.08 0.07 0.09 0.09 0.06 0.06 

SD SEP Independent dataset 0.08 0.08 0.13 0.14 0.15 0.17 0.06 0.04 

         Training % error 63.48 63.48 63.39 63.39 64.84 64.84 78.32 78.32 

Test % error 63.48 63.48 63.39 63.39 64.84 64.84 78.32 78.32 

Independent % error 46.17 46.17 46.10 40.34 53.05 53.05 42.72 42.72 

Difference 
in % error 
between 
models: 

Autumn-season model compared to Individual  -0.15 -10.64 -4.74 -11.94 -13.08 -2.70 0.00 0.00 

Combined compared to Individual 23.73 14.51 22.69 27.46 24.12 41.10 11.65 3.23 

Combined compared to Autumn-season model 23.88 25.15 27.43 39.40 37.20 43.80 11.65 3.23 

SD, standard deviation. SEP, standard error of prediction,  
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3.4. Discussion 

3.4.1. Foliar nutrient variation compared to other evergreen subtropical trees 

Our results of high foliar nitrogen concentration in winter concurred with other evergreen 

tropical and subtropical trees (Cai et al., 2009; Lin et al., 2010). Evergreen Quercus and 

spruce trees in other climatic zones showed similar trends (Chapin and Kedrowski, 1983; 

Sabaté et al., 1995; Yasamura and Ishida, 2011). These findings support the notion that 

older leaves of evergreen trees are used for N storage during the dormant season, and 

remobilised in spring for leaf growth (Cherbuy et al., 2001; Millard and Grelet, 2010). Other 

studies showed, however, a lower concentration and variability of foliar nitrogen in winter, 

compared to the other seasons, for evergreen tropical dry and savannah forests (Franco et 

al., 2005; Chaturvedi et al., 2011). Few studies reported detailed observations of variability 

with mean nitrogen concentrations over four seasons or a full phenological cycle. Contrary 

to our findings, Bell and Ward (1984) reported low variability and concentration of foliar 

nitrogen in winter for evergreen trees in a Mediterranean climate, and a high variability and 

concentration in spring (Bell and Ward, 1984). 

In this study, foliar phosphorus showed relatively similar mean concentrations over the four 

seasons, however the variability was highest in all seasons except autumn. Bell and Ward 

(1984) also found very little variability in mean foliar phosphorus concentration of mature 

evergreen leaves of Eucalyptus wandoo over the seasons, with a high variability in summer 

(Bell and Ward, 1984). Other tropical evergreen trees also showed high mean concentration 

and higher variability of foliar phosphorus for the summer season compared to the other 

seasons (Cai et al., 2009; Lin et al., 2010). In evergreen savanna trees, however, foliar 

phosphorus showed a slight decrease from winter to spring, and a significant increase 

towards summer (Franco et al., 2005). In the study of the two evergreen Eucalyptus spp., 

the lowest variability of foliar phosphorus was recorded for winter (Bell and Ward, 1984), 

compared to our findings of the lowest variability in autumn. In a tropical forest of Nigeria, 

foliar phosphorus concentrations showed no seasonal variation (Sharma, 1983). 

 

3.4.2. Seasonally varying nutrient-spectral relationship  

The relationship between leaf spectra and foliar nutrients varied over seasons and spectral 

regions. The highest correlation between leaf N and spectra was recorded in spring and the 

lowest in winter, whereas the highest correlation between leaf P and spectra was recorded 

in winter, summer and autumn. Co-variants of foliar N, chlorophyll and foliage biomass did 

not follow similar patterns of change between spring and autumn, confirming the varying 

relationship over seasons. The variations recorded in the relationship concur with the 

variations noted in the seasonal foliar N patterns, associated with the photosynthesis 

process. Seasonal patterns of N, derived through VIs from leaf spectra, can therefore 

potentially indicate seasonal changes in photosynthetic activity of subtropical evergreen 
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trees. All spectral regions used in this study were consistent with other studies for regions 

associated with foliar N, i.e., the red-edge and SWIR, as well as with foliar P, i.e., the SWIR 

region (Curran, 1989; Elvidge, 1990; Kokaly and Clark, 1999; Johnson, 2001; Kumar et al., 

2001; Kokaly, 2001; Cho and Skidmore, 2006; Cho et al., 2010b; Ramoelo et al., 2011). 

The other high correlation (R² = 0.37, p < 0.01) between foliar P and leaf spectra was found 

between the carotenoid spectral region (500 – 520 nm) and the red-edge region (680 – 

760 nm) which may be indicative of a possible relationship between foliar carotenoids, foliar 

chlorophyll and foliar P occurring at peak productivity in summer. The methyl-erythritol 

phosphate pathway, which is responsible for the production of both carotenoids and foliar 

abscisic acid, controls stomatal opening which is also associated with foliar P (Barta and 

Loreto, 2006). The correlation between foliar P and this spectral band combination is, 

however, only high in summer and not in any of the other three seasons.  

To our knowledge, our work is the first study noting the variance in the seasonal 

relationship between foliar nutrients and related leaf spectral absorption features. Changing 

relationships between foliar chlorophyll a and related leaf spectra was also observed for 

evergreen mangrove species in a subtropical environment between the wet and dry seasons 

(Flores-de-Santiago et al., 2013). Zhang et al (2007) also noted a changing relationship 

between estimated and observed chlorophyll for a deciduous maple species, showing a 

decline in the correlation and accuracy from spring to summer, and an increase in 

correlation and accuracy from summer to autumn. 

 

3.4.3. Monitoring foliar nutrient phenology using remote sensing models 

A number of models, developed from leaf-level spectra, were assessed for their capability to 

predict foliar nutrient concentration across species and seasons. The RMSE values and error 

of prediction (%) of two models were compared to those of the model developed for each 

individual season: a predictive model of the season in which the highest R² values were 

recorded between a VI and nutrient concentrations, as well as a predictive model combining 

all the seasons. To minimise the influence of individual species on the development of a 

regression model, a 1000-times iterative bootstrap procedure was used in the evaluation of 

the combined-seasons predictive model. The maximum error ranges of the various 

predictive models for leaf N concentration of the evergreen subtropical trees were below 

31 % and offered relative capable models to predict across species and season. The 

individual-season leaf N model showed the lowest range of error for leaf N with an error 

range between 7 – 28 %. The combined-season leaf N model increased in the prediction 

error range of between 12 – 29 %, while the spring-season model for leaf N showed an 

increase in prediction error of between 15 – 31 %. The predictive models for foliar P were 

mostly > 40 % and therefore considered inaccurate in predicting P for these evergreen 

subtropical trees. 
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The seasons with the lowest error of prediction was mainly the spring, summer and autumn 

seasons. The error of prediction for these three seasons deviated by < 5.5 % from the error 

of prediction of the individual-seasons model. However, the error of prediction increased by 

4 – 7 % when the combined-seasons model was applied to winter, and by > 10 % when the 

spring-season model was applied to the winter season. The winter season showed 

significantly higher (p < 0.08) mean observed N concentration, and lower variance, 

compared to the other three seasons. The phenology of these evergreen trees therefore 

had a definite influence on the error of predicting leaf N concentration when a model 

developed in spring was applied to the leaf spectra collected in winter.  

The bands with the lowest error of prediction for leaf N concentration was found in the 

SWIR region for the spring, summer and autumn seasons, compared to the bands used in 

the red-edge region (related to chlorophyll and foliage biomass). The reverse was observed 

for winter, where the error of prediction was lower in the red-edge region, compared to the 

SWIR region bands. 

The various models and bands were assessed as an initial step to assess the potential of 

remote sensing techniques to monitor nutrient phenology across regions and species. A 

number of multispectral spaceborne sensors, such as RapidEye (RE) launched in 2008, and 

WorldView-2 (WV2) launched in 2009, is expected to improve vegetation health and foliar 

nitrogen monitoring through the incorporation of a band in the red-edge region. A number 

of multispectral sensors are also planned for deployment, including WorldView-3 (WV3; 

2014), and Sentinel-2 (2015), which will improve the spatial resolution of current sensors, 

and add to the number of red-edge and SWIR bands at higher spectral resolution. These 

sensors are expected to improve nutrient mapping at the landscape level (Clevers and 

Gitelson, 2013). The improved spatial resolution of these sensors, will further allow single-

canopy species identification and monitoring, overcoming most of the current limitations of 

multispectral imagery. In support of these developments, further research is required to 

improve our understanding of whether the relationship between foliar N and P and spectra 

reflectance features will change annually, under different climatic conditions, at canopy 

scale or for other species. 

 

3.4.4. Implications for monitoring global change impact on vegetation  

The impact of global change on the seasonal dynamics of nutrients can be potentially 

monitored through the changing relationship of foliar nutrients to spectra, at canopy 

(satellite image) scale. Seasonal patterns of nutrients are expected to differ across climatic 

zones. Remote sensing can contribute to the characterization of foliar nutrient phenology at 

the bioregional scale, and secondly, monitor the impact of global change on these patterns. 

The quantification of foliar nutrients could potentially provide more information on subtle 

changes in magnitude of foliar nutrients, in addition to impacts already noted in 
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phenophases. Considering the low photosynthetic activity currently observed in the 

dormant season, and that temperature increases may increase photosynthetic activity, an 

increase in the variability of foliar nutrients, particularly nitrogen, may be expected in 

future.  

 

3.5. Conclusion 

This study found a seasonally changing relationship in foliar nutrients (nitrogen and 

phosphorus) for evergreen subtropical tree species in St. Lucia, South Africa. The 

relationships between foliar nutrients and leaf spectra also varied over the seasons and 

across regions associated with known biochemical and biophysical parameters. The high 

variability in foliar N in spring for example possibly reflects the high mobilisation of N during 

the actively growing season, whereas the higher mean concentration of foliar N in winter 

may indicate storage of N during this dormant season. Predictive models for leaf N 

concentration developed for each season showed a higher level of accuracy, particularly for 

winter, whereas predictive models for leaf P showed low accuracies. Models developed 

from a single season showed a slight increase in error for the summer and autumn, however 

a larger increase in error for the winter season for the evergreen trees. Global 

biogeographic patterns of foliar N and P of tropical and subtropical forests are limited. Many 

studies focus on nutrient dynamics of a few species and locations, yet monitoring the 

impact of global change at species level may be difficult and time consuming. Remote 

sensing offers the potential to monitor N and P at canopy level to establish biogeographical 

patterns at the regional scale. Furthermore, the subtle initial changes of an increased 

temperature on photosynthetic activity, is possible through the quantification of nutrient 

variability over seasons. We recommend further studies on the phenology of foliar nutrients 

at regional scale for a number of species and climatic zones, using remote sensing. 

At biochemical level, foliar nitrogen showed the highest potential of discrimination between 

six evergreen tree species in a subtropical forest, when compared to two foliar pigments 

and foliar phosphorus.  It remains to be established whether the spectral features related to 

leaf N and other biochemicals could yield accurate results for classification of evergreen tree 

species.  
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CHAPTER 4: REDUCING LEAF-LEVEL HYPERSPECTRAL DATA TO 22 

COMPONENTS OF BIOCHEMICAL AND BIOPHYSICAL BANDS 

OPTIMISES TREE SPECIES DISCRIMINATION  

 

This chapter is based on the journal publication: 

Van Deventer, H, Cho, MA, Mutanga, O, Naidoo, L & Dudeni-Tlhone, N 2015. Reducing leaf-

level hyperspectral data to 22 components of biochemical and biophysical bands optimises 

tree species discrimination. IEEE-JSTARS, January. DOI: 10.1109/JSTARS.2015.2424594. 

Abstract 

The high dimensionality of hyperspectral data constitutes a challenge for species 

classification. This study assessed (i) whether tree species classification can be optimized 

with the selection of bands related to known plant properties, and (ii) whether a Partial 

Least Square (PLS) transformation of the spectral bands improves species classification in 

comparison to Principal Component Analysis (PCA). Leaf spectra between 400 – 2 500 nm 

were measured for six evergreen tree species in the spring of 2011, in the KwaZulu-Natal 

Province of South Africa. Twenty-two bands known to be related to pigments, nutrients, 

foliage biomass, and leaf structural components were selected from the hyperspectral data 

set. The 2 100 bands of 1 nm were resampled to 421 bands at 5 nm spectral resolution, 

ensuring the number of variables are less than the number of samples. The Random Forest 

classification algorithm was used to assess the accuracy for both PCA and PLS 

transformations on the 421 and 22 bands. The accuracy of individual species classes were 

calculated as the average of ten iterations, for each data reduction option. The three 22-

band models resulted in comparable accuracies to the 421-band classifications (OA of 

84±4.9 % for untransformed, 78±5 % for PCA and 84±4 % for PLS) and no statistically 

significant differences between the 421 and 22-band models (p > 0.4). The optimised PLS 

model (22 bands, 8 components) showed a 6 % (p < 0.01) increase in accuracy compared to 

the optimised PCA model (22 bands, 3 components). Reducing hyperspectral data to bands 

which relate to plant properties, and the use of PLS for data transformation, optimises 

species classification.  
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4.1. Introduction 

Vegetation species discrimination is important for understanding and monitoring complex 

spatial patterns of biodiversity (Heywood and Watson, 1996; Gaston, 2000; Turner et al., 

2003; Carlson et al., 2007). Hyperspectral remote sensing has been successfully used for 

species discrimination compared to multispectral data which are more suitably applied to 

the mapping of broad vegetation categories or plant functional groups (Asner, 1998; 

Cochrane, 2000; Van Aardt and Wynne, 2001; Wang et al., 2004; Clark et al., 2005; Sobhan, 

2007; Adam and Mutanga, 2009; Adam et al., 2010; Dalponte et al., 2012). Even though the 

spatial resolution of more recent multispectral sensors have increased, the primary 

limitation in the use of multispectral sensors for vegetation species mapping, is the low 

spectral resolution. Multispectral data often have less than 10 spectral bands, recording 

limited regions of the electromagnetic spectrum with spectral resolutions which are too 

wide to detect the subtle absorption features related to individual plant properties (Carlson 

et al., 2007). In contrast, hyperspectral sensors record more than fifty narrow contiguous 

spectral bands from the visible to shortwave infrared regions (350 to 2 500 nm). The narrow 

spectral bands allow for the measurement of the depth of absorption features associated 

with plant biochemical and biophysical parameters, such as pigments, nutrients, biomass, 

lignin, and cellulose (Elvidge, 1990; Chappelle et al., 1992; Vogelmann et al., 1993; 

Jacquemoud et al., 1996; Blackburn, 1998b; Kokaly and Clark, 1999; Blackburn, 1999; 

Lichtenthaler and Buschmann, 2001; Kokaly, 2001; Gitelson et al., 2002; Gitelson and 

Merzlyak, 2004; Kokaly et al., 2009). As a result, hyperspectral data are capable of not only 

capturing the complexity of plant properties for species discrimination, but offer a range of 

additional information on the variation in expression of species across time and space. 

Regardless of the abundance of information provided through hyperspectral data, data 

redundancy remains one of the key problems (Clark et al., 2005; Adam et al., 2010). Of the 

2150 bands that could potentially be recorded by current-day spectrometers, less than 50 

spectral bands relate to biochemical and biophysical characteristics of plant properties 

(Elvidge, 1990; Chappelle et al., 1992; Vogelmann et al., 1993; Jacquemoud et al., 1996; 

Blackburn, 1998b; Kokaly and Clark, 1999; Blackburn, 1999; Lichtenthaler and Buschmann, 

2001; Kokaly, 2001; Gitelson et al., 2002; Gitelson and Merzlyak, 2004; Kokaly et al., 2009). 

Ideally, the optimisation of a classification model should remove redundant information and 

use only key, relevant components to assess true class separability. Using redundant 

information in classification modelling results in the overfitting of independent variables and 

poor classification accuracies (Saeys et al., 2007). Optimised models, on the other hand, are 

more cost-effective, as fewer variables are required for classification with the benefit of 

increased performance and a decrease in the number of samples to be collected in the field 

to ensure true pattern recognition (Hughes, 1968; Landgrebe, 1997). The selection of 

spectral bands should, however, be followed with decomposition to avoid overfitting the 
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model with bands which are highly correlated (Tu et al., 2005; Clark et al., 2005; Saeys et al., 

2007). Consideration of data dimensionality, relevant components and intra-band 

correlation is essential in the pre-processing of hyperspectral data prior to the classification 

of vegetation species. 

A number of methods have been developed for feature selection and decorrelation of 

hyperspectral data. Various selection methods have been developed and used in species 

classification studies to reduce data dimensionality, including filter and wrapper methods 

(Saeys et al., 2007). In many instances, filter and wrapper methods are combined, for 

example the use of the Mann–Whitney U-test or an Analysis Of Variance, which determine 

the most significant bands from the spectrum relating to the species classes, combined with 

selection algorithms and discriminant analyses (Van Aardt and Wynne, 2001; Schmidt and 

Skidmore, 2003; Clark et al., 2005; Artigas and Yang, 2006; Sobhan, 2007; Dudeni et al., 

2009; Jones et al., 2010; Manevski et al., 2011; Dalponte et al., 2012). Despite the advantage 

of these methods (Saeys et al., 2007), the inclusion of spectral bands unrelated to plant 

properties introduces “noise” into the classification of vegetation species i.e. fitting the 

classification with irrelevant information. A number of studies have however, considered 

only bands which relate to plant biochemical and biophysical parameters (Martin et al., 

1998; Cho et al., 2010a). One of the earliest studies reporting the importance of selecting 

plant-related bands, was that of Martin, Newman, Aber, and Congalton (Martin et al., 1998). 

A number of forest stands in America, with dominant conifer and deciduous species, were 

found highly separable using AVIRIS sensor bands. The selection of bands was based on the 

differences in variation in nitrogen and lignin concentrations between species, resulting in 

an overall classification accuracy of 75 %. In a species classification study in Africa (Cho et 

al., 2010a), canopy spectra were extracted from an airborne image to compare the 

classification performance of multiple-endmember spectral angle mapper (SAM) to the 

traditional SAM approach. A Band-Add on were used for feature selection, followed by the 

refinement of bands relating to plant properties from the visible to near-infrared regions. It 

remains to be assessed, however, whether the selection of bands which encompasses a 

multitude of plant properties such as pigments, leaf foliage biomass, leaf water, nutrients, 

and leaf structural components such as cellulose and lignin, will optimise species 

classification when compared to the use of unrelated bands.  

Data transformation methods, in addition to feature selection methods, also offer a 

reduction in data dimensionality, with the additional benefit of transforming highly 

correlated bands into latent components (Pearson, 1901; Hotelling, 1933). A number of 

transformation or band decomposition methods have been used in species classification 

studies, including the Minimum Noise Fraction transformation (Green et al., 1988; Belluco et 

al., 2006), Partial Least Squares (PLS) method (Peerbhay et al., 2014) and the commonly-

used Principal Component Analysis (PCA) (Fung et al., 2003; Thenkabail et al., 2004). Both 

PCA and PLS are often combined with discriminant analysis or Random Forest (RF) for 

classification purposes (Boulesteix et al., 2008; Peerbhay et al., 2014). 
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In the case of PCA, latent variables are modelled from the variability of the whole data set, 

irrespective of the unique variation of individual classes. The optimum number of latent 

variables is selected based on the first two to five components which explain up to 95 % of 

the variability in the full data set. Therefore, while reducing the data by > 90 %, 

decorrelation and band selection can be achieved (Thenkabail et al., 2004; Sobhan, 2007). 

As a result, less than five components are usually used in species classification (Thenkabail 

et al., 2004; Belluco et al., 2006; Sobhan, 2007; Barnard et al., 2010). However, Barnard et 

al. (Barnard et al., 2010) showed that further PCs which explain only a small percentage of 

the variability in the data significantly contributed to improving the classification accuracies 

of savanna tree species, raising the challenge of selecting the appropriate PCs for classifying 

species. PLS, similar to PCA, transform the data to latent variables, however, contrary to 

PCA, PLS, considers the variability of the independent variables during the regression phase 

(Wold, 1966; Wold et al., 2001). As a result, PLS are considered more appropriate in the 

extraction of features from hyperspectral data, and particularly for vegetation species 

classification, compared to PCA (Cheriyadat and Bruce, 2003; Tsai et al., 2007). Contrary to 

PCA, the optimum number of components in a PLS classification is selected where the 

percentage cross-validation (CV) error reduces the standard error of prediction by > 2 % 

(Kooistra et al., 2004; Cho et al., 2007).  

This study investigated (i) whether tree species classification can be optimised for leaf-level 

hyperspectral data through selecting bands which relate to plant properties, and (ii) 

whether a PLS transformation procedure will improve species classification compared to a 

PCA. A number of bands, which relate to plant biochemical and biophysical properties, was 

selected followed by data transformation, the selection of the ideal number of latent 

variables and then species classification. Six evergreen tree species were sampled in the 

KwaZulu-Natal Province of South Africa in the spring of 2011. The dimensionality of 2 100 

bands of leaf-level hyperspectral data was reduced first, through the targeted feature 

selection of 22 bands which are known to be related to biochemical and biophysical 

properties of plants. Secondly, a PCA was applied to a large selection of bands (2 100 bands 

sampled at 1 nm, which were resampled to 421 bands at 5 nm spectral resolution) as well as 

to the selected 22 spectral bands. The first three components, which described > 95 % of 

the variation, were used in the species classification using the Random Forest (RF) 

algorithm. A RF species classification was also done using the full number of principal 

components of the 22 bands to assess whether smaller components also contributed to 

improved accuracy. Thereafter a PLS data transformation and RF classification was done 

using the 421 and 22 bands.  Finally, the average overall accuracies of ten iterations of each 

species classification models and each reduced data set were compared to assess which 

data reduction option provided the best results. 
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4.2. Methods 

4.2.1. Study area 

The study area is located in the iSimangaliso Wetland Park (28°S, 32°30’E) on the east coast 

of the KwaZulu-Natal province in South Africa (Figure 4.1). The climate is humid and sub-

tropical with mean temperatures in summer ranging from 23 to 30°C and winter 

temperatures decreasing to approximately 10°C (Sokolic, 2006). Mean Annual Precipitation 

(MAP) ranges from 1 000 to 1 500 mm (Middleton and Bailey, 2008). The vegetation is 

comprised of wooded grassland, dune vegetation and dune forests, as well as coastal 

wetlands, swamp and mangrove forests on an undulating coastal plain, elevated 10 to 20 m 

above mean sea level (Partridge et al., 2010). Six evergreen tree species were sampled in 

the spring season of 2011, at the St Lucia and Maphelane nodes of the iSimangaliso Wetland 

Park, as well as along the uMfolozi and uMsunduzi Rivers (Figure 4.1; Table 4.1). 

 

Figure 4.1:  Study area showing the locations of the sample sites for six evergreen species in the KwaZulu-
Natal province. 
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Table 4.1: Number of leaves sampled per tree species in the spring season of 2011. 

Tree species Common name Acronym n trees n leaves 

Avicennia marina White mangrove AM 21 104* 
Bruguiera gymnorrhiza Black mangrove BG 19 94* 
Ficus sycomorus Sycamore fig FSYC 15 75 
Ficus trichopoda Swamp fig FT 11 55 
Hibiscus tilliaceus Lagoon hibiscus HT 30 150 
Syzygium cordatum Waterberry SC 17 85 

Total:   113 563 
* The reflectance spectra of one leaf were omitted because of low quality. 

 

4.2.2. Leaf spectral measurements 

Sample sites were selected where mature and sun-exposed tree canopies were accessible 

along the wetland and estuarine systems in the spring of 2011. Five sunlit leaves were 

randomly sampled with a telescopic pruner across the canopy of each tree (n leaves = 563, 

Table 4.1). Single leaf spectral reflectance measurements on the adaxial surface of each leaf 

were collected using the leaf-clip device of the Analytical Spectral Device (ASD) 

spectroradiometer (FieldSpec Pro FR, Analytical Spectral Device, Inc, USA), with the average 

scan time set at 10 (averaged to reduce scanner noise). The ASD covers the spectral range 

between 350 and 2 500 nm with a 1.4 nm sampling interval between 350 and 1 050 nm 

range, and ±2 nm between 1 050 and 2 500 nm. The leaf-clip device provides a direct-

contact probe which limits ambient light. The radiance measurements were calibrated using 

a white spectralon reference panel prior to scanning a set of 5 leaves, and converted to 

reflectance accordingly. Spectral bands between 400 and 2 500 nm (2 100 bands) were 

selected for analysis and resampled to 1 nm. 

 

4.2.3. Data analysis  

We reduced the high dimensionality of the leaf-level hyperspectral data (2 100 bands), first, 

through the selection of twenty-two bands (Figure 4.2) which are known to relate to 

biochemical and biophysical plant properties (Table 4.2). The plant properties considered 

include pigments, nutrients, water content, biomass and other leaf structure components 

such as lignin, which ranged from the visible to shortwave infrared regions (Table 4.2). 

Previously published literature were used in the selection of band centers of carotenoid and 

chlorophyll absorption regions (Gitelson et al., 2002; Gitelson and Merzlyak, 2004; Gitelson 

et al., 2006) as well as bands used in vegetation indices for foliage biomass and leaf water 

content (Gao, 1996; Mutanga and Skidmore, 2004; Cho et al., 2007). Bands of known 

absorption features relating to leaf structural components were selected from previously 

published literature (Curran, 1989; Elvidge, 1990) which showed the highest coefficient of 

determination between leaf spectra and nutrients for the six tree species (Van Deventer et 

al., 2015b). The selected band centers of leaf structural components included starch, lignin, 

tannins, pectin, protein and cellulose located in the Shortwave Infrared (SWIR) region. The 



 

59 
 

correlation between these 22 bands was assessed for intra-band correlation and to 

determine whether the use of bands will result in overfitting of a species classification 

model. 

 
Table 4.2: Spectral bands associated with plant biochemical and biophysical parameters selected for species 
classification. 

Spectral bands Spectral region 
Associated plant biochemical or biophysical 

parameter 

510, 680 Visible (VIS) 
Carotenoids (Gitelson et al., 2002; Gitelson and 
Merzlyak, 2004; Gitelson et al., 2006) 

700, 760 
VIS – chlorophyll red 
edge (RE) 

Chlorophyll (Gitelson et al., 2002; Gitelson and 
Merzlyak, 2004; Gitelson et al., 2006) 

740, 780 RE 
Foliage biomass (Mutanga and Skidmore, 2004; 
Cho et al., 2007) 

860, 1240 Mid-Infrared (MIR) Leaf water content (Gao, 1996) 
1630, 1690, 1900, 2000, 2050, 
2060, 2130, 2180, 2200, 2210, 
2240, 2250, 2300, 2380 

Shortwave Infrared 
(SWIR) 

Leaf structure, proteins, starches & nutrients 
(Elvidge, 1990), (Curran, 1989) 

 
 

Secondly, a PCA was performed on the original data and feature-selected data in R (RStudio 

Inc. v. 0.98.507, 2009-2013). The 2 100 spectral bands of 1 nm resolution were resampled to 

421 spectral bands of 5 nm using a Gaussian model (full-width half-maximum equal to every 

5-nm band spacing between 400 to 2 500 nm) in the Environment for Visualizing Images 

(ENVI) software (v.4.8, ITT Visual Information Systems, 2012-2014), to ensure that the 

variables are less than the number of samples (563 leaves) evaluated. In the third step 

(Figure 4.2), the optimum number of principal components of each data set (421 and 22 

bands), which explained the majority of the variability, were selected for species 

classification. The full number of components of the 22-band data set and the first 100 

components (default of princomp in R) of the 421-band data set were also assessed to 

determine if smaller components would increase the accuracy.  
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Figure 4.2:  Tree species classification workflow to reduce data dimensionality (Step 1), data transformation (Step 2), 
selecting the optimal number of components (Step 3), equalising samples per species (Step 4) and iteration of the 
accuracy assessment of the classification models (Step 5). 

 
Sample numbers from the tree species were equalised through extracting 11 trees of each 

species in a random stratified sampling process (Tillé and Matei, 2014), resulting in a total of 

66 trees for the evaluation data set (Step 4 of Figure 4.2). This was done to avoid bias 

towards species classes with more samples (Chen et al., 2004). Thereafter the 66 trees were 

repetitively divided into ten evaluation data sets through a random sampling procedure 

whereby, in each iteration, 7 trees from each species were selected for the training data set 

(total 42 trees) and 4 trees for the test data set (24 trees). The leaf-level hyperspectral data 

was divided according to the trees listed in each of the ten training and test data sets. 

Tree species classification of the PCA-transformed data was done using the leaf-level spectra 

in the Random Forest (hereafter PCA-RF) decision tree classifier (Breiman, 2001) (Step 5 of 

Figure 4.2). Random Forest, similar to machine learning classifiers such as Artificial Neural 

Networks (ANN) and Support Vector Machine (SVM) algorithms, are capable of processing a 

large number of predictor variables and has proven to outperform traditional classifiers in 

statistical performance and accuracy for a number of species classification studies (Strobl et 

al., 2009; Sluiter and Pebesma, 2010; Dalponte et al., 2012; Naidoo et al., 2012; Adelabu et 

al., 2013; Adelabu and Dube, 2014). The defaults of the randomForest script in R of 500 
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trees to be grown, and the square root of the number of variables to be randomly sampled 

at each split, were maintained (Liaw and Weiner, 2008).  

A PLS data transformation, combined with a Random Forest classifier (Boulesteix et al., 

2008), was also applied to the 421-band and 22-band data sets in R (hereafter PLS-RF). In 

this instance the defaults of 200 trees and the square root of the number of variables were 

maintained. The percentage of the cross-validation (CV) error (or out-of-bag-error) was 

calculated for each species across the sequential increase of the first 22 latent variables. 

Redundancy was further minimised through the selection of the optimum number of latent 

variables where the percentage CV error reduces the standard error of prediction by > 2 % 

for all species (Step 3 of Figure 4.2). The data sets were also equalized per species and 

divided into training and test data sets similar to the PCA-RF data sets (Steps 4 of Figure 

4.2).  

Finally, the user, producer and overall accuracy were calculated as the average of the ten 

iterations for each data reduction option (Step 5, Figure 4.2). Differences in overall accuracy 

between the 421-band and 22-band data reduction options were assessed through a Welch 

two sample t-test of the overall accuracies of the 10 iterations. 

 

4.3. Results 

4.3.1. Intra-band correlation of 22 bands related to plant properties 

Intra-band correlation between the 22 selected bands was highest within various spectral 

regions, for example within the visible or within the shortwave infrared region (Figure 4.3). 

The combination of different regions resulted in a reduction in the correlation. 
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Figure 4.3:  Correlation matrix showing the level of correlation between the 22 selected spectral bands (1 nm). The scale 
bar shows the correlation coefficient values (R) between 0 and 1. 

 

4.3.2. Results of the Principal Component Analysis 

The PCA of the 421 resampled and 22 selected bands showed that the first three 

components explained 95 % and 97 % of the variance of the data, respectively (Figure 4.4). 

The first five components of both data sets explained 99 % of the variance. 

 
 
 



 

63 
 

 
 

Figure 4.4:  Scree plot showing the variance of the first ten components of a PCA of 421 spectral bands (black column 
with bold labels) and 22 selected spectral bands (grey column with grey labels). 

 

4.3.3. Comparing tree species classification accuracy results 

The classification of the untransformed 421 bands showed an overall accuracy of 86±4.7 %, 

compared to the overall accuracy of 84±4.9 % of the selected 22 bands (Table 4.3). The 

reduction of the untransformed bands to 22 bands showed no significant difference 

compared to the 421 resampled bands (p > 0.44; Table 4.6).  

Table 4.3: Comparison of the prediction accuracies of 421 bands of untransformed leaf-level hyperspectral data and 22 
bands relating to plant properties used in species classification (average and standard deviation of 10 iterations). 

 Untransformed 421 bands Untransformed 22 bands 

OA (%) 86±4.7 84±4.9 

ACCURACY (%) PRODUCER USER PRODUCER USER 

Avicennia marina 85±8.9 87±12.4 86±11.1 87±12.7 
Bruguiera gymnorrhiza 93±4.1 90±4.8 93±5.4 92±4.4 
Ficus sycomorus 96±4.4 88±6.9 96±5.0 89±6.1 
Ficus trichopoda 80±12.0 79±11.0 74±17.8 73±7.4 
Hibiscus tilliaceus 71±18.0 87±6.2 69±13.3 83±8.0 
Syzygium cordatum 90±6.0 88±10.0 87±6.7 83±8.5 
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The results of the PCA-RF species classification, where the first three principal components 

of 421 bands were used, showed an overall classification accuracy (average of ten iterations) 

of 79±4.2 % (Table 4.4). The classification of the first three components of the PCA-RF of 22 

bands was similar, resulted in an overall accuracy of 78±5 % (Table 4.4), and was not 

significantly different from the 421-band PCA-RF classification where the first three 

components were used (p > 0.72; Table 4.4).  

Table 4.4: Comparison of the prediction accuracies of the principal components of 421 bands and 22 bands relating to 
plant properties used in species classification (average and standard deviation of 10 iterations). 

 

PCA-RF of 421 
bands, 
100 components  

PCA-RF of 421 
bands, 
first 3 
components of 
100 components  

PCA-RF of 22 
bands, 
22 components 
 

PCA-RF of 22 
bands, 
first 3 
components of 22 
components 

OA (%) 92±1.7 79±4.2 91±4.0 78±5.0 

ACCURACY (%) PRODUCER USER PRODUCER USER PRODUCER USER PRODUCER USER 

Avicennia marina 95±5.0 93±7.3 62±17.6 
66±10.
0 

96±7.0 93±8.0 73±15.2 
71±12.
1 

Bruguiera gymnorrhiza 96±3.2 95±4.6 91±8.5 94±6.2 98±3.5 97±4.0 92±7.1 92±5.3 
Ficus sycomorus 96±3.2 90±6.4 94±4.6 92±6.7 95±5.8 93±5.4 92±8.2 89±2.7 

Ficus trichopoda 90±5.3 92±6.2 73±16.5 70±8.7 85±7.1 87±8.8 66±16.1 
69±12.
2 

Hibiscus tilliaceus 81±9.0 95±5.1 71±12.9 82±6.7 79±16.3 91±8.0 69±15.6 79±7.1 
Syzygium cordatum 95±3.3 91±3.3 83±8.2 77±9.6 96±4.6 90±8.4 80±12.1 77±9.4 

 
 

An increase in accuracy of the PCA-RF classifications was observed when a larger number of 

components were included in the classification (Table 4.4). The 421-band PCA-RF resulted in 

the highest overall accuracy (92±1.7 %), followed by the use of 22 principal components of 

the 22-band PCA-RF (91±4 %) (Table 4.4). Using all the components showed a significant 

increase (t=-9.1, df=11.7, p < 0.01 for the 421 bands; t=-6.5, df=17.2, p < 0.01 for the 22 

bands) of overall accuracy by 13 % compared to using only the first three components of the 

PCA-RF for both the 421 and 22-band models (Table 4.4). 

The CV error of both the 421 and 22 bands reduced by > 2 % for all species when 8 

components were used in the PLS-RF classification (Figure 4.5). The PLS-RF classification of 8 

components of 421 bands resulted in an overall accuracy of 83±4 %, whereas the PLS-RF 

classification of the 8 components of 22 bands resulted in an overall accuracy of 84±3.6 % 

(Table 4.5). No statistically significant differences were noted between the 421-band and 

22-band PLS-RF classifications (p > 0.5; Table 4.6). The overall accuracy of the PLS-RF 

classification of 8 components of the 22 bands was significantly higher compared to the 

PCA-RF of 22 bands where the first three components were used (t=-3.0, df=16.4, p < 0.01). 
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Figure 4.5: Assessing the optimum number of components for species classification using PLS-RF. The average cross-
validation error (%) for ten iterations was calculated for each component for the 421 bands (A) and 22 bands (B). The 
optimal component was selected where the cross-validation error reduced by > 2 % for all species. Species include (AM) 
Avicennia marina, (BG) Bruguiera gymnorrhiza, (FS) Ficus sycomorus, (FT) Ficus trichopoda, (HT) Hibiscus tilliaceus, and 
(SC) Syzygium cordatum. 

 

The producer’s accuracies of individual tree species for the untransformed 421-band data 

ranged from 71 % to 96 % whereas the user’s accuracies ranged from 79 % to 90 %. When 

reducing the data to 22 selected bands, the producer’s and user’s accuracies show a slightly 

lower minimum, ranging from 69 % to 96 %, and 73 % to 92 %, respectively. The accuracies 

of individual species of the PCA-RF classification, where only the first 3 components of both 

the 421 and 22 bands were used, showed comparable ranges in producer’s and user’s 

accuracies of approximately 62 % to 94 % for the producer’s accuracy and 73 % to 92 %. The 

accuracies of the individual species of the 421-band PLS-RF models, where 8 components 

were used for classification, showed similar ranges in producer’s accuracy compared to the 

PCA-RF classifications (producer’s = 61 % to 93 %; user’s = 76 % to 93 %). The accuracies of 

the PLS-RF using the 22 selected bands were comparable to the other models (producer’s 

accuracy = 67 % to 91 %), although the user’s accuracies were slightly higher in minimum 

and maximum, ranging from 79 % to 96 %. 

Of all the species, Bruguiera gymnorrhiza showed the highest user’s and producer’s 

accuracies for all the data reduction options (Table 4.3, 4.4 and 4.5). Three species, including 

Avicennia marina, Ficus trichopoda and Hibiscus tilliaceus, attained some of the lowest 

user’s accuracies (< 75 %) in the untransformed 22-band classification, as well as the PCA-RF 

classification, using 22 bands and 3 components. An increase in user’s accuracies for these 

three species were observed in the PLS-RF classification of the selected 22 bands, using 8 

components, resulting in 89 %, 79 % and 85 % respectively. 
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Table 4.5: Comparison of the prediction accuracies of partial least square components of 421 bands and 22 bands 
relating to plant properties used in species classification (average and standard deviations of 10 iterations). 

 
PLS-RF of 421 bands, 
22 components 

PLS-RF of 421 bands, 
8 components 

PLS-RF of 22 bands, 
22 components 

PLS-RF of 22 bands, 8 
components 

OA (%) 88±4.8 83±4.0 87±4.4 84±3.6 

ACCURACY (%) PRODUCER USER PRODUCER USER PRODUCER USER PRODUCER USER 

Avicennia marina 93±4.9 89±11.5 90±7.1 87±9.4 90±14.3 89±8.2 88±13.1 89±8.0 
Bruguiera 
gymnorrhiza 

90±6.4 92±3.7 93±5.9 93±5.6 90±11.6 95±4.8 91±7.8 96±4.7 

Ficus sycomorus 93±10.6 90±6.3 91±11.0 83±7.6 92±7.9 87±6.2 90±9.3 84±7.2 
Ficus trichopoda 84±8.1 86±7.6 77±7.1 76±9.7 83±6.8 83±9.7 82±7.1 79±11.2 
Hibiscus tilliaceus 77±10.1 89±6.7 61±13.7 81±10.5 76±11.2 88±10.5 67±12.7 85±5.3 
Syzygium cordatum 90±6.9 86±13.4 87±6.7 84±12.1 90±5.0 84±13.0 89±3.4 80±11.8 

 

Table 4.6: Differences in overall accuracy for each combination of the data reduction options, using a two-sample t-test 
between the results of ten classification iterations. 

Compared data reduction options t df p 

Untransformed 421b to 22b -0.7822 17.979 0.4443 
PCA+RF 421b3c to 22b 0.3647 17.49 0.7197 
PLS+RF 421b8c to 22b -0.6769 17.847 0.5071 
** significant at 99 % confidence interval (p < 0.01); * significant at 95 % confidence interval (p < 0.05) 

 

4.3. Discussion 

This study investigated whether the reduction of leaf-level hyperspectral data to 22 bands, 

which related to plant biochemical and biophysical properties, will optimise the 

classification of six evergreen trees of KwaZulu-Natal, South Africa. The selected 22 

untransformed bands achieved similar overall accuracies to a larger number of 

untransformed bands (421 bands) which included redundant bands unrelated to plant 

properties. Eight of the selected 22 bands were located in the visible, red edge and Mid-

Infrared, whereas 14 bands were located in the SWIR. Most of the bands, particularly those 

in the SWIR, show a high intra-band correlation and as a result, the untransformed 22 band 

model is over-fitted (Figure 4.3).  

The performance of PCA and PLS as data transformation methods for species classification 

was also compared. The average accuracies of ten iterations of the original and reduced 

data sets, for both the untransformed and transformed bands, were assessed in the 

Random Forest classification algorithm. The classification of all the 22-band models 

achieved similar overall accuracies compared to the original data sets. In the 22-band 

reduced models, however, redundancy and ‘noise’ were removed, the data were 

decorrelated and the number of components optimized. The reduced data sets are 

therefore for cost-effective, using only 22 bands to achieve similar accuracies, thereby 

optimising the classification models. 

The PCA-RF classification model, where all 22 principal components were used, resulted in 

the highest overall accuracy of the band-reduced models (91±4 %). This was a significant 

increase (p < 0.01) of 13 % compared to the 3-component PCA-RF model. Smaller 
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components therefore still contributed to the classification, with the risk of overfitting the 

model with redundant components. The comparison of the PCA-RF and PLS-RF classification 

models, where 22 bands were used and the number of components optimised, showed that 

the PLS-RF model outperformed the PCA-RF model by 6 % (p < 0.01). We recommend that 

PLS should be used for individual species classification rather than PCA. PCA previously also 

showed poor performance in classification (Cheriyadat and Bruce, 2003; Tsai et al., 2007). 

 The classification accuracies of the untransformed and optimised PCA-RF models, using the 

22 selected bands, showed lower user’s accuracies (< 75 %) for Avicennia marina, Ficus 

trichopoda and Hibiscus tilliaceus. These species achieved user’s accuracies > 79 % however, 

in the optimized PLS-RF model (22 bands and 8 components). The high separability of 

Bruguiera gymnorrhiza from all the other species throughout the various data reduction 

options and classification models can partly be attributed to its lower concentration in plant 

pigments over all four seasons (Van Deventer et al., 2013).   

Our study was limited to leaf-level spectra of six evergreen trees, sampled in the spring 

season of a sub-tropical environment. The selection of the band centers for leaf structural 

components were based on known absorption regions which showed a high coefficient of 

determination of leaf spectra and nutrients for these trees (Van Deventer et al., 2015b). In 

another species classification study, the importance of narrow spectral bands was assessed 

through the canopy spectra of shrubs, grasses, weeds and crop species from African 

savannas (Thenkabail et al., 2004).  The African savanna study reports an optimal number of 

22 bands to achieve overall classification accuracies of > 90 %. Six of the 22 bands of the 

African savanna study were comparable to the 22 bands listed in our study, including those 

in the red edge region (700 and 760), a band related to leaf water (1245) and three bands in 

the SWIR (2000, 2240 and 2300). The differences for the remaining 16 bands between the 

two studies can be attributed to the differences in the selection approaches followed. We 

pre-selected band centers of known absorption features in the visible whereas bands 

between 800-2500 nm were selected if they showed a high coefficient of determination 

with foliar nutrients. In contrast, the African savanna study assessed band importance 

through a combined and automated selection approach, which resulted in bands from 

within an absorption trough to be selected, as well as band centers. In a European study of 

temperate tree species classification with hyperspectral image data (Fassnacht et al., 2014), 

nine 50 nm regions were identified as important through feature selection approaches. 

Seven of the 22 selected bands of our work fall within the regions of the European study. 

Further work will be required to assess the relevance of the 22 selected bands of our study 

to other vegetation types and climatic regions. 

In the classification of various tree species in the European study, the optimum number of 

bands was identified as between 15 and 20 (Fassnacht et al., 2014). The classification of 

weeds in the African savanna study (Thenkabail et al., 2004), attained overall accuracies 

above 90 % using between 13 and 22 bands, with marginal increase of the accuracy towards 
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30 bands, and reaching asymptote beyond 30 bands. Our study showed that the pre-

selection of 22 bands, related to plant properties, effectively reduce hyperspectral data 

while optimising tree species discrimination for six evergreen trees. The importance of the 

22 selected bands should be further explored to identify the plant components which 

contribute most to the discrimination power, and determine the optimum number of bands. 

We recommend the extension of the two-step data reduction procedure, with the selection 

of bands which relate to plant biochemical and biophysical properties followed by a PLS-RF 

classification, to other deciduous and evergreen tree species, and for various seasons.  

4.4. Conclusion 

The most important conclusions from this Chapter include: 

 Twenty-two narrow bands, which relate to known absorption regions or indices 

associated with biochemical and biophysical properties of plants have shown a high 

coefficient of determination between leaf spectra and nitrogen (Chapter 3). These 

bands were found to be an effective data reduction method of hyperspectral data 

for the classification of six evergreen tree species of a subtropical forest in South 

Africa. 

 The transformation of highly correlated spectral bands and the classification of the 

species were achieved through a two-step algorithm which combines the Partial 

Least Square and Random Forest algorithms (PLS-RF). PLS-RF outperformed the 

Principal Component Analysis and Random Forest algorithm combination in species 

classification resulting in a significantly higher overall classification accuracy (6 %; 

p < 0.01) and increases in user accuracies. 

Following the effective data reduction and classification of the six evergreen tree species for 

the spring season in this Chapter, the separability of the tree species remains to be assessed 

for the winter, summer and autumn seasons using hyperspectral data at leaf level. In 

addition, the hypothesis should be tested to see whether multi-seasonal information would 

improve the classification above a single season at hyperspectral level, as well as for 

multispectral sensors. 
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CHAPTER 5: COMPARING THE CLASSIFICATION ACCURACIES OF SIX 

EVERGREEN TREE SPECIES ACROSS SINGLE and MULTIPLE SEASONS 

FOR HYPERSPECTRAL, WORLDVIEW-2 AND RAPIDEYE SENSORS 

USING LEAF-LEVEL SPECTRA 

 

This chapter is the first revision of the journal paper submitted: 

Van Deventer H, Cho O, Mutanga O. Revision of first submission. Improving tree species 

classification across four phenological phases with multi-seasonal data and band 

combinations: six subtropical evergreen trees as case study. Submitted to the International 

Journal of Remote Sensing. 

 

Abstract 

Remote sensing offers a feasible means to monitor tree species at a regional level where 

species distribution and composition is affected by the impacts of global change. 

Furthermore, the temporal resolution of space-borne multispectral sensors offers the ability 

to combine phenologically important events for the optimisation of tree species 

classification. In this study, we determined whether multi-seasonal spectral data (winter 

(dormancy), spring (flowering), summer (flowering) and autumn) improved the classification 

of six evergreen tree species in the subtropical forest region of South Africa when compared 

to a single season, for hyperspectral data, WV2 and RE. Classification accuracies of the test 

data were assessed using a Partial Least Square Random Forest algorithm (PLS-RF). The 

accuracies were compared between single seasons and multi-season classification and 

across seasons using ANOVA and post-hoc THSD tests. The average OA of the hyperspectral 

data ranged from a minimum of 90±3.5 % in winter to a maximum of 92±2.7 % in summer, 

outperforming the WV2 and RE sensors with an average OA of between 8 and 10 % (p < 

0.02, Bonferroni corrected). The classification of multiple seasons increased the average OA 

and decreased the number of species pair confusions for the multispectral classifications. 

The producer’s and user’s accuracies of the hyperspectral classification were > 82 % and 

showed no significant change using multi-season data. Multiple seasons may therefore be 

beneficial to multispectral sensors with ≤ 8 bands, yet remains to be tested for other species 

and climatic regions. 
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5.1. Introduction 

Globally, more than 67 % of the 9 500 tree species are considered to be threatened by the 

International Union for Conservation of Nature’s Species Survival Commission (IUCN/SCC) 

(IUCN, 2001; IUCN/SSC Global Tree Specialist Group, 2015). While it is estimated that 

approximately 13 % of forests are formally protected (FAO, 2010), an alarming rate of 

deforestation was observed for South America (3.3 million ha per annum) and Africa (1.6 

million ha per annum) between 1990 and 2005 (FAO and JRC, 2012). The impacts of global 

change, particularly a rise in temperature and sea-levels as well as changes in rainfall 

patterns, are expected to cause a shift in species distribution, composition and functioning 

(Kirschbaum, 2000; Sardans and Peñuelas, 2012). A rise in temperature and decline in 

precipitation can, for example, result in the decline of a tree species and change in 

vegetation type altogether. Threatened tree species and some threatened forest types, such 

as mangroves, often occur in narrow range habitats which are highly fragmented (Oldfield et 

al., 1998; Valiela et al., 2001) and are therefore more difficult to map and monitor 

compared to general forest growth and deforestation (FAO and JRC, 2012). In order to 

detect losses and changes in tree species distribution and condition, tools are required to 

assess the status and changes across time and space in a consistent manner and at an 

appropriate scale.  

Remote sensing is an ideal tool for the monitoring of tree species. A number of studies 

demonstrated that airborne hyperspectral sensors are successful in separating between tree 

species in mixed forest and savanna landscapes with overall accuracies above 69 % 

(Holmgren et al., 2008; Naidoo et al., 2012; Dalponte et al., 2012; Fassnacht et al., 2014). 

Hyperspectral sensors remain costly to acquire however, and offer only a limited regional 

extent. Space-borne multispectral sensors, in contrast, provide multitemporal regional 

overviews but have fewer spectral bands than the hyperspectral sensors. Very high spatial 

resolution multispectral sensors, such as SPOT, IKONOS and Quickbird, were found to be 

suitable for tree species classification because the spatial resolution matches canopy sizes 

(≤ 5 m) of trees, even though these sensors are limited to the four traditional bands in the 

blue, green, red and near-infrared (NIR) regions of the electromagnetic spectrum (Wang et 

al., 2004). The accuracies of tree species classification using IKONOS, for example, ranged 

between 57 – 86 %, with producer’s or user’s accuracies below 50 % for some species (Wang 

et al., 2004; Carleer and Wolff, 2004; Pu and Landry, 2012).  

In 2009 two multispectral sensors, WorldView-2 (WV2) and RapidEye (RE) were launched. 

Both sensors match spatial resolution to tree canopy level (≤ 5 m). The sensors utilised 

additional bands, such as the red-edge band considered beneficial for the estimation of 

vegetation parameters and species classification (Mutanga and Skidmore, 2004; Cho et al., 

2008; Mutanga et al., 2012; Adelabu et al., 2013). The additional bands of these sensors 

resulted in an increase in the overall classification accuracy of tree species compared to 

using only the four traditional bands (Pu and Landry, 2012; Immitzer et al., 2012; Omer et 
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al., 2015). Pu and Landry (2012), for instance, reported a 6 % increase in the overall 

accuracy for the sunlit canopies of seven species in the United States of America; Omer et 

al. (2015) reported an increase of 11 - 12 % for six tree species in a mixed forest in South 

Africa; and Immitzer et al. (2012) reported a 5 – 7 % increase in overall accuracy for ten tree 

species in Austria. The overall classification accuracy of tree species classification using WV2 

exceeded 77 % (Kanniah, 2011; Cho et al., 2015; Omer et al., 2015). For the RapidEye 

sensor, the overall classification of tree species in a savanna landscape of Botswana 

achieved accuracies above 85 % (Adelabu et al., 2013). Compared to the very high spatial 

resolution sensors, the WV2 and RE do appear to increase the accuracies of tree species 

classification. Regardless of the improvement, a number of tree species remain poorly 

separable (< 50 %) in the classification when using multispectral data whereas hyperspectral 

data appears to overcome this limitation with a wider range of spectral bands, potentially 

increasing the producer’s and user’s accuracies to above 50 % in some studies (Holmgren et 

al., 2008; Immitzer et al., 2012). The variation in classification accuracy of tree species needs 

to be assessed across hyperspectral and the new multispectral sensors to understand the 

pros and cons of using the sensors for tree species classification. 

Space-borne sensors also offer the additional benefit of multitemporal data for tree species 

classification and monitoring. A number of studies assessed the single season in which the 

overall accuracy for tree species were the highest. In a temperate forest of the United States 

of America, a maximum overall accuracy of 76 % was attained in October (autumn) for 

deciduous species at the time of leaf colour changes (Key et al., 2001). Similarly the overall 

accuracy was highest in autumn (91 %) for a mixed conifer and broadleaf forest in Sweden 

(Holmgren et al., 2008). For 25 subtropical trees in Hong Kong, the winter seasons achieved 

the highest overall accuracy of 91 % with the change in leaf colour (Fung et al., 2003). These 

studies were undertaken in temperate and subtropical climatic regions with tree species 

including coniferous, evergreen and deciduous species in a mixed forest, where the 

phenological event of leaf fall enhanced species discrimination. For evergreen tree species, 

leaf fall occur throughout the year and may therefore be less suitable as a phenological 

event for separation. Other phenological events such as seeding or flowering may offer 

alternative means of discrimination for evergreen tree species (Sobhan, 2007). Key et al. 

(2001) also argued that the timing of phenological events could be important in optimising 

tree species discrimination and that multitemporal data could optimise species 

classification. In separating tree species in a mixed forest, Key et al. (2001) combined aerial 

photography images from five dates between May and October using between three and 

four bands, achieving an overall classification accuracy of 74 % (lower than the 76 % for the 

autumn season) and a maximum KHAT accuracy of 0.51. A study in Germany demonstrated 

that the separability of seven graminoid species improved between 4 % and 7 % when 

multitemporal RE images, between March and October over three years, were used in a 

support vector machine classifier. The optimum dates were however not linked to specific 

phenological events, nor optimised for the least number of dates which optimise the species 
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classification. Changes in plant properties across phenological events or seasons result in 

changes of the absorption features of pigments, foliage biomass, water content and 

nutrients, as well as the relationship between spectra and foliar pigment or nutrient 

concentration (Gond et al., 1999; Kokaly and Clark, 1999; Stylinski et al., 2002; Nakaji et al., 

2006; Sobhan, 2007; Sauceda et al., 2008; Panigraphy et al., 2012; Dillen et al., 2012; De 

Weirdt et al., 2012; Van Deventer et al., 2015b). The increased representation of these 

variations in plant properties through multi-season data is therefore expected to improve 

species discrimination when compared to a single season. For evergreen tree species, the 

optimal phenological event remains to be assessed, and in addition, whether multi-season 

data with greater representation of phenological events would improve species 

discrimination when compared to a single season.  

The optimisation of multiple seasons for tree species classification may have a number of 

benefits. In regions with a high annual percentage of cloud cover (NASA, 2015), multi-season 

classifications may be a reasonable alternative. The tropics for instance, are known for a 

high diversity of tree species (Mutke and Barthlott, 2005), yet the high percentage of cloud 

cover during wet seasons limits species classification assessments (Asner, 2001; Ju and Roy, 

2008). Despite the improvements of light detection and ranging (LiDAR) and synthetic 

aperture radar (SAR) in contributing to feature recognition and penetrating clouds 

respectively, optical data remains an important source for the classification of most features 

(Green et al., 1998; Holmgren et al., 2008; Dalponte et al., 2012).  

In an attempt to address some of the knowledge gaps, such as the best sensor and 

phenological event for optimising evergreen tree species classification, the variation in 

accuracy across sensors and seasons were evaluated for evergreen tree species in a 

subtropical environment. Six evergreen tree species were sampled in the subtropical coastal 

forest of the KwaZulu-Natal Province of South Africa. The classification accuracies were 

assessed using leaf-level data at hyperspectral scale and simulated WV2 and RE sensor 

scales. Accuracies were calculated for four single seasons (winter, spring, summer and 

autumn) and an aggregated multi-season data set. The objectives of this study were to: 

(1) Investigate how leaf reflectance spectra of tree species vary across seasons for each 

sensor. 

(2) Determine how the accuracies of the tree species classification vary between 

hyperspectral and multispectral sensor across the four single seasons (winter, spring, 

summer and autumn). 

(3) Assess whether multiple seasons (the aggregation of the four single seasons into a 

single data set) will improve the classification of the six evergreen tree species when 

compared to a single season for both hyperspectral and multispectral sensors. 
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5.2. Methods 

5.2.1. Study Area 

The iSimangaliso Wetland Park (28°S, 32°30’E) is located in the KwaZulu-Natal Province of 

South Africa, approximately 200 km north of Durban (Figure 1; Inset a). The Park extends 

over ±218 000 Ha of land along 190 km of coastline, with vegetation and land cover 

categories (Figure 1; Inset b) consisting of natural shrubs and grassland (± 42 %), coastal and 

dune forests (± 17 %), wetland (± 18 %) and estuarine (± 17 %) systems as well as 

transformed (± 6 %) land (GeoTerraImage (GTI), 2010; Ezemvelo KZN Wildlife, 2011). The 

Park is listed as both a Ramsar and World Heritage Site (WHS) on grounds of the high 

biodiversity of fauna and flora in the region (Cowan, 1999). Owing to the large extent of 

wetlands and presence of dangerous animals such as hippopotami, crocodiles, rhinoceroses 

and the Cape buffalo (The iSimangaliso Wetland Park, 2014), safe access is limited for 

monitoring vegetation through fieldwork. Consequently, the Park will benefit greatly in 

using earth observation for vegetation assessments such as tree species monitoring at a 

regional scale.  

Sub-tropical climate conditions prevail along a narrow ±6 km wide zone on the east coast of 

South Africa, with the most southern tip of mangroves recorded at about 31° south 

(Spalding et al., 2010). The Mean Annual Precipitation (MAP) ranges from 1000 mm to 

1500 mm in this coastal corridor, but decreases to below 1000 mm inland (Middleton and 

Bailey, 2008). In the Park, mean temperatures during summer range from 23 – 30°C, and 

can decrease to approximately 10°C during the winter periods (Sokolic, 2006). As a result of 

the climatic conditions and wetlands, critically endangered mangrove and swamp forests 

occur in this corridor. Other evergreen and deciduous tree species, associated with sub-

tropical climate conditions, are found in the dune and coastal sandy forests in the Park. 
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Figure 5.1: The study area is within the iSimangaliso Wetland approximately 200 km north of Durban in the KwaZulu-
Natal Province of South Africa (Inset a). Vegetation and land cover comprises mostly of natural shrubs, grassland, forests 
and wetlands (Inset b). Six tree species were sampled along the uMsunduzi, uMfolozi and St Lucia estuarine systems 
(Inset c). 

5.2.2. Sampling protocol 

Six evergreen tree species (Table 5.1; Figure 5.1 Inset c) were sampled over four seasons 

(winter, spring, summer and autumn) between 2011 and 2012. The six evergreen tree 

species had distinctly different leaf shapes from one another (Table 5.2). Four of the six 

trees were in flower in both the spring and summer sampling campaigns, although the 

flowers of the mangroves (Avicennia marina and Bruguiera gymnorrhiza) were tiny 

compared to the large flowers of Hibiscus tilliaceus and the fluffy flowers of Syzygium 

cordatum. The fruits of the mangroves blend in with the leaves, the fruits of the figs were 

not large compared to the canopy sizes and were mostly carried below the leaves, but the 

purple fruit of Syzygium cordatum stood out in stark contrast to the green leaves. 

Five green and fully expanded leaves were collected from across sun-exposed canopies of 

mature trees using a telescopic pruner, extending the reach to approximately 3.2 m. The 

leaves were placed in zip-lock bags in a cooled container and transported back to the 

laboratory.  
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Table 5.1: Number of tree species sampled across four seasons (number of leaves is indicated in brackets for the winter 
season only). 

Tree species Common name Acronym 

Trees 
Winter 

(n =) 

Trees 
Spring 
(n =) 

Trees 
Summer 

(n =) 

Trees 
Autumn 

(n =) 

Total 
number 
of trees 

per 
species 

(n=) 

Avicennia marina White mangrove AM 
2
 21(105) 21 21 21 84 

Bruguiera gymnorrhiza Black mangrove BG 
1, 2

 19(95) 19 19 19 76 
Ficus sycomorus Sycamore fig FSYC 

3
 15(75) 15 15 15 60 

Ficus trichopoda Swamp fig FT 
1, 3

 11(55) 11 11 11 44 
Hibiscus tilliaceus Lagoon hibiscus HT 

3
 30(150) 30 30 30 120 

Syzygium cordatum Waterberry SC 
3
 17(85) 17 17 17 68 

Total per season: 113(564) 113 113 113 452 

1 - Protected tree species considered critically endangered (RSA, 1998; Mucina and Rutherford, 2006; Boon, 2010) 
2 - Internationally, population decreasing (Oldfield et al., 1998; FAO, 2011) 
c - IUCN status not assessed (Oldfield et al., 1998) 
 

 

5.2.3. Protocol for spectral collection 

The leaf-clip device of an Analytical Spectral Device (ASD) spectroradiometer (FieldSpec Pro 

FR, Analytical Spectral Device, Inc, USA) was used to record a spectral measurement of the 

adiaxal surface of each of the five leaves within 3 to 5 hours after collection. The device is an 

accessory that ensures the exclusion of light interference when reflectance is recorded.  The 

ASD covers the spectral range between 350 nm to 2500 nm with a 1.4 nm sampling interval 

between 350 - 1050 nm range, and a ± 2 nm between 1 050 – 2 500 nm. A white reference 

was taken with the white panel of the leaf clip, prior to the measurements of each tree with 

the black panel. Radiance was converted to reflectance against the scans of the white 

reference panel.  
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Table 5. 2: Description of leaf, flower and fruit characteristics of the six evergreen tree species (Boon, 2010). The 
flowering and fruit periods are indicated in brackets. 

Tree species Leaf  Flower Fruit 

Avicennia marina 
Olive-green, about 12 – 40 
mm in length 

Small yellow-orange  
(Oct-Jan/May) 

Grey-green, 25 mm 
diameter  

(Dec-Apr, ripe in Mar) 

Bruguiera gymnorrhiza 

Shiny dark to yellowish 
green, ± 120 mm length x 
60 mm width (leaf drop is 
continuous) 

Creamy white, 40 mm 
diameter  

(±All year) 

Green leathery  
(not specified) 

Ficus sycomorus 
Green and hairy, 150 mm 
length x 110 mm width 

- 
Reddish-orange when ripe, 

30 mm diameter 
(not specified) 

Ficus trichopoda 
Shiny dark green, leathery, 
heart-shaped, 300 mm 
length x 230 mm width  

- 
Red, 10 – 20 mm diameter  

(Sept – Apr) 

Hibiscus tilliaceus 
Olive-green heart-shaped, 
150 mm diameter 

Large yellow with deep 
reddish-purple centre 

which later turns coppery-
apricot, 80 mm diameter 

(Aug - May) 

Round capsule, 25 mm 
diameter (Sep – Jun) 

Syzygium cordatum 
Bluish to dark green, 
elliptic 100 length x 80 
 mm width,  

Creamy-white  
(Aug – Mar) 

Deep purple, oval  ±18 x 
9 mm (Oct-Jun) 

 

 

5.2.4. Data preparation 

For the hyperspectral data analysis, the dimensionality of the leaf reflectance data was 

reduced to band centers of absorption features related to plant properties. The 22 bands 

selected had shown a high coefficient of determination between foliar pigment or nutrient 

concentrations and leaf reflectance across four seasons, and were found effective in 

reducing and optimising the data for classification (Van Deventer et al., 2015a; Van 

Deventer et al., 2015b). The bands cover the visible to SWIR regions of the spectrum and 

relate to pigments (510, 680, 700, 760 nm), foliage biomass (740, 780 nm), leaf water 

content (860, 1240 nm) as well as proteins, starches and other nutrients (1630, 1690, 1900, 

2000, 2050, 2060, 2130, 2180, 2200, 2210, 2240, 2250, 2300, 2380 nm) (Curran, 1989; 

Elvidge, 1990; Gao, 1996; Gitelson et al., 2002; Gitelson and Merzlyak, 2004; Mutanga and 

Skidmore, 2004; Gitelson et al., 2006; Cho et al., 2007). The 22 bands proved to optimise the 

classification of the six tree species for the spring season compared to a large number of 

hyperspectral bands (Van Deventer et al., 2015a). One data set was compiled for each of the 

four single seasons (winter, spring, summer and autumn) with each 22 variables and then 

aggregated into a multi-season data set with 88 variables for a multi-season classification. 

The 1 nm leaf-level data were resampled to the bands of the two multispectral sensors WV2 

and RE (Table 5.3), using the Gaussian model (full-width half-maximum) and default spectral 

library information files  in the Environment for Visualizing Images (ENVI) software (v.5.2, 

ITT Visual Information Systems, 2012-2014). The reflectance data for single seasons, with 8 
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variables for WV2 and 5 variables for RE, was also aggregated into multi-season data sets of 

32 and 20 variables respectively. 

Table 5. 3: Descriptive information of the WorldView-2 and RapidEye multispectral space-borne sensors. 

Details: WV2 RapidEye 

Spatial resolution (pixel size) 2 m 5 m 

Temporal resolution: 1.1 – 3.7 days 5.5 days 

Bands 

Coastal 400 – 450 nm - 

Blue 450 – 510 nm Blue 440 – 510 nm 

Green 510 – 580 nm Green 520 – 590 nm 

Yellow 585 – 625 nm - 

Red 630 – 690 nm Red 630 – 685 nm 

Red-edge 705 – 745 nm Red-edge 690 – 730 nm 

NIR1 770 -895 nm NIR 760 – 850 nm 

NIR2 860 – 1040 nm - 

Panchromatic Yes, 0.46 m spatial resolution No 

 

5.2.5. Data analysis of leaf-level data 

The variation of the leaf spectra of the six tree species was compared for each sensor within 

a single season, listing the number of statistically significant differences per band as 

percentage of the total number of comparable species pairs.  A parametric one-way 

ANalysis Of Variance (ANOVA) was used to assess differences between species for each 

band and each season in the R software (RStudio Inc. v. 0.98.507, 2009-2013). To account 

for the multiple comparisons between the six species, a post-hoc Tukey Honest Significant 

Difference (HSD) test was done and the alpha levels corrected for the Bonferroni effect 

(McDonald, 2008). The alpha level was adjusted for the 15 comparable species pairs in each 

band and season, resulting in an alpha level (p = 0.05/15) of p < 0.03 considered significant 

at a 95 % confidence interval. 

The separability of the six tree species was subsequently assessed using an algorithm which 

combines the Random Forest (RF) decision-tree algorithm (Breiman, 2001) with the Partial 

Least Square (PLS) algorithm. RF is a non-parametric decision-tree classifier which is 

considered appropriate for the classification of tree species when using hyperspectral data 

(Naidoo et al., 2012; Clark and Roberts, 2012; Dalponte et al., 2012; Adelabu and Dube, 

2014). Hyperspectral data are often highly correlated and not normally distributed, and 

requires a non-parametric classifier for optimisation in classification (Fassnacht et al., 2014; 

Van Deventer et al., 2015a). RF is furthermore effective for processing both small and large 

amounts of variables, because of the sampling and bootstrapping procedure at various 

nodes within the decision ‘forest’ (Prasad et al., 2006; Grossmann et al., 2010). Ideally, the 

highly correlated bands required decomposition to avoid redundancy and overfitting of the 

model (Pearson, 1901; Hotelling, 1933; Saeys et al., 2007). The PLS method showed superior 

performance in transforming data for classification because the distribution of both the 

explanatory and response variables is considered (Wold, 1966; Wold et al., 2001; Cheriyadat 
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and Bruce, 2003; Tsai et al., 2007). The PLS-RF algorithm in the R software (RStudio Inc. v. 

0.98.507, 2009-2013) combines the benefits of both PLS and RF algorithms (Boulesteix et al., 

2008), through first decomposing and scaling the predictor variables prior to classification. 

Owing to the benefits of the transformation and non-parametric classification for spectral 

data, the PLS-RF algorithm has been used for tree species classification in this study.  

An iterative bootstrap (100 times) was used to evaluate both the optimum ntree per season, 

calculate the overall accuracy (OA) and the producer’s and user’s accuracies. The bootstrap 

included the following sequential steps: 

 First the data were split into training and test data sets ensuring an equal number of 

leaves of each tree species are selected. The data were split into 2/3rd for the 

training and 1/3rd for the test data, guided by the smallest number of leaves 

recorded for a species in a single season (Ficus trichopoda = 55 leaves). This resulted 

in the extraction of 36 leaves of each species (totalling 216 leaves) for the training 

and 19 leaves of each species (totalling 114 leaves) to the test data set of single 

seasons (winter, spring, summer and autumn).  

 Second the training data were used to build a PLS-RF decision forest and predict the 

species using the test data set (Boulesteix et al., 2008). For the PLS regression, the 

maximum number of components were used for each classification, equal to the 

number of variables available. The mtry variable was left as the default (for 

classification it defaults to the square root of the number of variables), the minsplit 

variable was set at four, accounting for the small number of observations per species 

(Boulesteix et al., 2008) and the number of ‘trees’ to build in the decision forest 

(ntree) kept at 500 to compare between the various classifications. The average of a 

100 overall, producer’s and user’s accuracies of every ntree option per season was 

calculated.   

The final results of the OA, producer’s and user’s accuracies of each tree species is 

compared between the sensors for the single seasons and multi-season classifications. The 

overall accuracy calculates the percentage of correctly classified trees by the total number 

of trees evaluated (Congalton, 1991). The producer’s accuracy calculates the total number 

of trees that was correctly classified as a percentage of the total number of reference trees 

for that species, in this case 114 leaves. The producer’s accuracy measures of the probability 

of being able to correctly classify a particular tree species (omission error). The user’s 

accuracy, on the other hand, calculates the number of trees as a percentage of the total 

number of trees that were classified as a particular species (commission error), and 

indicates the reliability of the classification of a tree truly belonging to a particular species 

(Story and Congalton, 1986).  

Differences between sensors were assessed using a one-way ANalysis Of Variance (ANOVA) 

in the R software (RStudio Inc. v. 0.98.507, 2009-2013) using the 100 recorded values of the 
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bootstrap. The significance of differences between sensors was assessed for both the overall 

accuracy as well as the producer’s and user’s accuracies. To account for the multiple 

comparisons, a post-hoc Tukey Honest Significant Difference (HSD) test was done and the 

alpha levels corrected for the Bonferroni effect (McDonald, 2008). Comparison between the 

three sensors set resulted in three comparable pairs, and therefore an adjusted alpha level 

(p = 0.05/3) of p < 0.02 was considered significant at a 95 % confidence interval. The 

differences between the accuracies of the single and multi-season classifications were also 

assessed using a one-way ANOVA and the 100 recorded values of the bootstrap. The post-

hoc Tukey Honest Significant Difference (HSD) test accounted for ten comparable pairs with 

an adjusted alpha level (p = 0.05/10) of p < 0.005 to be considered significant at a 95 % 

confidence interval.  

5.3. Results 

5.3.1. Variation of spectral reflectance of tree species across seasons 

The average leaf reflectance of each tree species, between 400 and 2 500 nm, was typical of 

vegetation across all four seasons (Figure 5.2). Across the four seasons, Bruguiera 

gymnorrhiza showed the highest reflection of all species between the visible (400 nm) and 

early mid-infrared (MIR; 1500 nm) region, except for the spring season where the 

reflectance of Syzygium cordatum were highest in the visible region. Between the early MIR 

(1500 nm) to the far MIR (2500 nm) region, Ficus sycomorus and Hibiscus tilliaceus showed 

higher reflectance curves of all species across the four seasons.  Most of the species were 

highly separable (> 70 % of comparable pairs were significantly different) in the red-edge 

region as well as the MIR to SWIR regions for winter, spring, summer and autumn. 

Interestingly the bands 2130, 2180, 2200, 2210, 2240, 2250 and 2300 nm showed a 100 % 

separability between the six species in the summer season as well as 2240 nm in the spring 

season. Only five of the 22 bands had statistically significant differences between the 

species < 70 %, including 510 nm (winter and summer), 680 and 700 nm (all single seasons), 

860 nm (spring) and 1240 nm in winter, spring and summer. 
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Figure 5.2: Average leaf spectra reflectance between 400 and 2 500 nm of six tree species for (A) Winter; (B) Spring; (C) 
Summer; (D) Autumn. The number of significant different species pairs (p < 0.03, Bonferroni corrected) is indicated as a 
percentage of the total number of comparable species pairs (15) for each of the 22 selected spectral bands related to 
plant properties. Tree species include AM: Avicennia marina; BG: Bruguiera gymnorrhiza; FSYC: Ficus sycomorus; FT: 
Ficus trichopoda; HT: Hibiscus tilliaceus; and SC: Syzygium cordatum. 

The reflectance data showed a high variability in the green (band 3), red-edge (band 6), NIR1 

(band 7) and NIR2 (band 8) regions for all seasons (Figure 5.3). Similar to the hyperspectral 

data, reflectance data for Bruguiera gymnorrhiza showed the highest reflection of all 

species in bands 3 and 6-8 across the seasons. Syzygium cordatum also showed an increase 

in reflection in the green (band 3), yellow (band 4) and red-edge (band 6) regions in spring 

compared to the other species. The highest percentage of separable species pairs (> 70 %) 

was attained in the two NIR bands (bands 7 and 8) across all seasons, as well as the coastal 

(band 1), blue (bands 2) and red-edge bands (band 6) in spring and autumn. The coastal 

band (band 1) showed a high number of separable species pairs (80 %) in the spring, 

summer and autumns seasons. The spring season attained the highest number of separable 

pairs for all the RE bands based on the parametric ANOVA analysis (> 67 % across all bands). 
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Figure 5. 3: Reflectance values of the six tree species for each band of WorldView-2 across four single seasons. The 
number of significant different species pairs (p < 0.03, Bonferroni corrected) is indicated as a percentage of the total 
number of comparable species pairs (15) for each of the bands. 

 

For the RE sensor, the variation of species also varied more in the green (bands 2), red-edge 

(band 4) and NIR (band 5) regions similar to the hyperspectral and WV2 sensors (Figure 5.4). 

Bruguiera gymnorrhiza again showed the highest reflection of all species in these bands 

across the seasons and Syzygium cordatum also showed an increase in reflection in the 

green band in spring. The NIR band attained the highest percentage of separable species 

pairs across the single seasons (80 %), whereas the blue bands (band 1) in spring and 

autumn, and the red-edge band (band 4) in autumn also showed high separability between 

the species (73 %). Of all the seasons, the spring season showed the highest number of 

separable pairs (> 67 %) for all the RE bands based on the parametric ANOVA analysis. 
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Figure 5. 4: Reflectance values of the six tree species for each band of RapidEye across four single seasons. The number 
of significant different species pairs (p < 0.03, Bonferroni corrected) is indicated as a percentage of the total number of 
comparable species pairs (15) for each of the bands. 

5.3.2. Variation of accuracies across sensors for single seasons 

The highest average OA across single seasons was attained in the summer season for the 

hyperspectral data classification (92,4 %) whereas the average OA of the multispectral 

sensors peaked in the spring season (WV2: 76 %; RE 70 %) (Table 5.4). The average OA of 

the hyperspectral data classification was between 90 % (winter) and 92 % (summer), 

compared to a range of 68 % (winter) to 76 % (spring) for WV2 and 63 (winter and summer) 

to 70 % (spring and autumn) for RE (Figure 5.5; Table 5.4). The hyperspectral data resulted 

in a significant increase in the OA classification of between 15 % (spring) to 21 % (summer) 

compared to the WV2 sensor, and a significant (p < 0.02, Bonferroni corrected) increase of 

21 % (spring) to 30 % (summer) increase compared to the RE sensor (Table 5.5). The average 

OA of the two multispectral sensors differed between 4 % and 8.4 % across the single 

seasons (Table 5.5). 
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When comparing the average (of 100 iterations) producer’s and user’s accuracies across 

sensors, a variation in the accuracies is observed for the six tree species (Figure 5.6). The 

black mangrove (Bruguiera gymnorrhiza), for instance, showed a high separability across all 

sensors and seasons of above 85 % (Table 5.4). In contrast, the swamp fig (Ficus trichopoda) 

were poorly separable in winter, summer and autumn for both the multispectral sensors 

(ranges for WV2: 41 - 59 %; RE 36 - 50 %), however attained user’s and producer’s 

accuracies > 82 % for the hyperspectral data. The average producer’s and user’s accuracies 

for the swamp fig therefore increased significantly (p < 0.02, Bonferroni corrected) by 

between 19 - 50 % when the hyperspectral leaf-level data is used in the classification 

(Table 5.4; Figure 5.6; Table 5.5). An increase in average producer’s and user’s accuracies of 

more than 9 % (significant, p < 0.02, Bonferroni corrected) is observed for all species across 

all single seasons for the hyperspectral classification compared to the multispectral sensors, 

except the black mangrove (Bruguiera gymnorrhiza) and the water berry (Syzygium 

cordatum) in spring (Table 5.5; Figure 5.6). 

In comparing the two multispectral sensors, WV2 showed significant (p < 0.02, Bonferroni 

corrected) higher producer’s and user’s accuracies for certain species (Figure 5.6; Table 5.5). 

The two fig species, for example, showed a significant (p < 0.02, Bonferroni corrected) 

increase of > 13 % in the producer’s and user’s accuracy attained from RE to WV2 (Table 5.5; 

Figure 5.6). The WV2 sensor also showed a significant increase in the producer’s accuracies 

for the white mangrove (Avicennia marina) in spring by 23 % (Table 5.5). Other significant 

increases in both the producer’s and user’s accuracies are noted for three species, including 

between 6 % and 22 % for the sycamore fig (Ficus sycomorus) in winter, spring and summer; 

between 6 % and 19 % for the lagoon hybiscus (Hibiscus tilliaceus) in winter and summer; 

and between 6 % and 8 % for the water berry (Syzygium cordatum) in the winter season 

(Table 5.5; Figure 5.6).  

The confusion between species in the hyperspectral classification was generally low (< 7 %), 

whereas the multispectral-sensor classifications resulted in confusion between species of 

above 10 % (Table 5.6). Between two and four species pairs showed spectral overlap for the 

WV2 sensor, primarily in the winter and autumn season, with a maximum percentage of 

confusion recorded (20 %) in the summer season. The RE classification showed confusion 

between two to six species pairs, mostly in winter, summer and autumn, with a maximum 

confusion of 23 % in the summer.  
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Table 5.4: Results of the classification accuracies (average of 100 iterations) of the six evergreen tree species across the 
four single and multi-season classifications for the (A) hyperspectral data; (B) WV2 and (C) RE sensors.  

(A) Winter Spring Summer Autumn Multi-season  

OA 
(%) 

89.5 90.8 92.4 92.0 92.2 

STDEV ±3.5 ±2.8 ±2.7 ±2.7 ±2.9 

 PA UA PA UA PA UA PA UA PA UA 

AM 95.1±5.5 94.5±5.5 94.7±5.5 92.7±6.3 97.6±3.8 94.4±5.7 95.5±4.5 96.8±4.2 95.9±5.69 94.7±6.0 

BG 90.4±7.2 95.0±5.1 92.3±7.1 95.9±4.5 96.1±5.1 96.0±4.5 95.4±5.2 96.4±4.4 95.3±5.4 98.3±3.1 

FSYC 93.8±6.7 86.6±8.0 93.4±6.1 92.2±5.6 92.0±6.8 92.6±5.6 95.0±5.5 92.1±5.8 92.6±5.3 93.5±5.5 

FT 82.7±10.8 86.2±9.2 89.7±6.6 85.5±6.3 85.7±9.3 89.5±7.1 87.3±7.4 85.1±7.6 86.3±7.8 89.0±6.6 

HT 85.8±8.7 89.0±7.6 85.8±8.6 90.4±7.8 89.2±7.3 94.0±5.8 91.3±7.1 92.9±5.8 91.7±7.2 92.6±5.8 

SC 89.4±8.4 86.4±7.2 88.7±7.1 88.4±5.9 93.6±5.9 88.0±7.5 87.7±8.7 89.1±6.6 91.5±7.4 85.8±8.5 

 

(B)  Winter Spring Summer Autumn Multi-season  

OA 
(%) 

68.2 75.9 71.0 73.6 84.4 

STDEV ±4.7 ±3.7 ±4.2 ±4.4 ±3.5 

 PA UA PA UA PA UA PA UA PA UA 

AM 74.8±11.7 69.1±10.0 66.8±11.7 79.6±9.3 88.6±8.7 75.3±9.5 79.4±9.8 80.1±8.3 91.1±6.8 89.7±6.5 

BG 85.5±9.1 90.0±6.6 89.9±7.1 89.4±6.5 88.6±9.1 92.3±6.7 92.7±6.6 97.8±3.8 95.9±4.5 96.7±4.2 

FSYC  78.1±11.9 72.8±10.8 67.8±10.7 76.9±10.2 65.5±12.3 71.2±11.6 64.7±11.4 68.8±10.2 77.6±10.5 88.1±8.1 

FT  41.0±11.8 53.8±12.8 78.8±9.1 68.5±8.3 44.9±10.6 57.6±12.6 58.7±12.3 63.5±11.2 75.7±11.0 73.3±9.7 

HT 63.3±12.8 60.9±10.8 66.5±12.1 70.5±10.2 69.3±12.3 69.7±9.6 66.9±11.5 71.8±9.8 77.3±10.4 81.5±8.3 

SC 66.8±10.7 61.2±10.8 85.7±8.7 72.7±7.2 69.2±11.1 59.1±8.6 78.9±9.7 62.4±8.2 88.7±8.5 78.5±7.5 

 

(C)  Winter Spring Summer Autumn Multi-season  

OA 
(%) 

62.6 70.0 62.6 69.8 79.7 

STDEV ±4.4 ±4.1 ±4.3 ±4.2 ±4.2 

 PA UA PA UA PA UA PA UA PA UA 

AM 70.4±10.4 65.6±10.0 43.5±11.4 68.2±13.1 81.9±10.0 71.7±10.0 78.3±8.8 74.9±10.1 83.4±10.2 84.8±8.8 

BG 85.1±9.0 86.8±8.5 92.8±7.2 88.5±7.1 87.6±7.3 90.5±6.9 92.4±7.1 96.4±5.0 94.2±5.4 96.2±4.5 

FSYC  70.0±11.6 66.2±9.1 60.9±11.4 64.8±10.2 46.7±11.9 49.1±9.6 60.7±12.8 65.0±12.0 62.2±13.0 82.1±9.4 

FT  45.7±13.0 48.2±10.5 70.9±12.3 63.1±10.2 35.5±10.6 43.7±15.1 40.2±12.5 50.2±13.5 78.1±9.9 67.6±8.6 

HT 44.2±12.5 55.3±11.8 66.2±11.0 63.6±10.4 57.4±11.4 61.6±10.7 68.5±10.6 68.0±9.8 72.0±11.4 77.9±9.4 

SC 60.5±11.2 53.0±7.9 85.7±8.7 71.0±8.8 66.7±12.3 55.9±7.9 78.6±10.3 62.7±8.0 88.1±7.8 73.4±7.3 

Abbreviations of species: AM = Avicennia marina; BG = Bruguiera gymnorrhiza; FSYC = Ficus sycomorus; FT = Ficus 
trichopoda; HT = Hibiscus tilliaceus; SC = Syzygium cordatum. OA = Overall Accuracy, STDEV = Standard deviation of the 
overall accuracy, PA = producer’s accuracy; UA = user’s accuracy. 
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Figure 5.5: Variation of the average (of 100 iterations) overall accuracies for each sensor across single and the 
aggregated multi-season classification. Letters indicate statistically significant differences between seasons for each 
sensor (p < 0.005, Bonferroni corrected for ten comparable pairs).  
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(C) 

 

Figure 5.6: Variation of the average (of 100 iterations) producer’s and user’s accuracies of each of the six tree species in 
the winter, spring, summer, autumn and aggregated multi-season classification for (A) the hyperspectral data, (B) WV2 
and (C) RE. Letters indicate statistically significant differences between seasons for each species (p < 0.005, Bonferroni 
corrected for ten comparable pairs).  
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Table 5. 5: Comparison of overall, producer’s and user’s accuracies (average of 100 iterations) attained by the 
hyperspectral, WV2 and RE multispectral sensors across the four single and multi-season classifications. Differences are 
calculated as from the first-mentioned to the second-mentioned sensor listed. 

Seasons 
 

Hyper-
spectral 
 to  WV2 

Hyper-
spectral  

to RE 

WV2 
 to RE  

Hyper-
spectral  
to WV2 

Hyper-
spectral 

to RE 

WV2 
 to RE 

Winter 

OA -21.3 
s
 -26.9

 s
 -5.6

 s
         

AM (PA) -20.3 
s
 -24.7

 s
 -4.4

 s
 AM (UA) -25.4

 s
 -28.9

 s
 -3.5 

BG (PA) -4.9
 s
 -5.3

 s
 -0.4 BG (UA) -5

 s
 -8.2

 s
 -3.2

 s
 

FSYC (PA) -15.7
 s
 -23.8

 s
 -8.1

 s
 FSYC (UA) -13.8

 s
 -20.4

 s
 -6.6

 s
 

FT (PA) -41.7
 s
 -37

 s
 -4.7

 s
 FT (UA) -32.4

 s
 -38

 s
 -5.6

 s
 

HT (PA) -22.5
 s
 -41.6

 s
 -19.1

 s
 HT (UA) -28.1

 s
 -33.7

 s
 -5.6

 s
 

SC (PA) -22.6
 s
 -28.9

 s
 -6.3

 s
 SC (UA) -25.2

 s
 -33.4

 s
 -8.2

 s
 

Spring 

OA -14.9
 s
 -20.8

 s
 -5.9

 s
         

AM (PA) -27.9
 s
 -51.2

 s
 -23.3

 s
 AM (UA) -13.1

 s
 -24.5

 s
 -11.4

 s
 

BG (PA) -2.4 0.5 2.9
 s
 BG (UA) -6.5

 s
 -7.4

 s
 -0.9 

FSYC (PA) -25.6
 s
 -32.5

 s
 -6.9

 s
 FSYC (UA) -15.3

 s
 -27.4

 s
 -12.1

 s
 

FT (PA) -10.9
 s
 -18.8

 s
 -7.9

 s
 FT (UA) -17

 s
 -22.4

 s
 -5.4

 s
 

HT (PA) -19.3
 s
 -19.6

 s
 -0.3 HT (UA) -19.9

 s
 -26.8

 s
 -6.9

 s
 

SC (PA) -3 -3 0 SC (UA) -15.7
 s
 -17.4

 s
 -1.7

 s
 

Summer 

OA -21.4
 s
 -29.8

 s
 -8.4

 s
         

AM (PA) -9
 s
 -15.7

 s
 -6.7

 s
 AM (UA) -19.1

 s
 -22.7

 s
 -3.6 

BG (PA) -7.5
 s
 -8.5

 s
 -1 BG (UA) -3.7

 s
 -5.5

 s
 -1.8 

FSYC (PA) -26.5
 s
 -45.3

 s
 -18.8

 s
 FSYC (UA) -21.4

 s
 -43.5

 s
 -22.1

 s
 

FT (PA) -40.8
 s
 -50.2

 s
 -9.4

 s
 FT (UA) -31.9

 s
 -45.8

 s
 -13.9

 s
 

HT (PA) -19.9
 s
 -31.8

 s
 -11.9

 s
 HT (UA) -24.3

 s
 -32.4

 s
 -8.1

 s
 

SC (PA) -24.4
 s
 -26.9

 s
 -2.5 SC (UA) -28.9

 s
 -32.1

 s
 -3.2

 s
 

Autumn 

OA -18.4
 s
 -22.2

 s
 -3.8

 s
         

AM (PA) -16.1
 s
 -17.2

 s
 -1.1 AM (UA) -16.7

 s
 -21.9

 s
 -5.2

 s
 

BG (PA) -2.7
 s
 -3

 s
 -0.3 BG (UA) 1.4 0 -1.4 

FSYC (PA) -30.3
 s
 -34.3

 s
 -4 FSYC (UA) -23.3

 s
 -27.1

 s
 -3.8 

FT (PA) -28.6
 s
 -47.1

 s
 -18.5

 s
 FT (UA) -21.6

 s
 -34.9

 s
 -13.3

 s
 

HT (PA) -24.4
 s
 -22.8

 s
 1.6 HT (UA) -21.1

 s
 -24.9

 s
 -3.8

 s
 

SC (PA) -8.8
 s
 -9.1

 s
 -0.3 SC (UA) -26.7

 s
 -26.4

 s
 0.3 

Multi-
season 

OA -7.8
 s
 -12.5

 s
 -4.7

 s
         

AM (PA) -4.9
 s
 -12.5

 s
 -7.6 AM (UA) -5.0

 s
 -9.8

 s
 -4.9

 s
 

BG (PA) 0.6 -1.1 -1.7 BG (UA) -1.6
 s
 -2.1 -0.5 

FSYC (PA) -15.0
 s
 -30.4

 s
 -15.4 FSYC (UA) -5.4

 s
 -11.3

 s
 -6.0

 s
 

FT (PA) -10.6
 s
 -8.2

 s
 2.4

 s
 FT (UA) -15.8

 s
 -21.5

 s
 -5.7

 s
 

HT (PA) -14.4
 s
 -19.7

 s
 -5.3 HT (UA) -11.1

 s
 -14.6

 s
 -3.5

 s
 

SC (PA) -2.7
 s
 -3.4 -0.6 SC (UA) -7.3

 s
 -12.4

 s
 -5.1

 s
 

Abbreviations of tree species: AM = Avicennia marina; BG = Bruguiera gymnorrhiza; FSYC = Ficus sycomorus; FT = Ficus 
trichopoda; HT = Hibiscus tilliaceus; SC = Syzygium cordatum. OA = overall accuracy; PA = producer’s accuracy; UA = user’s 
accuracy. 
s
 – significant, Bonferroni corrected p = 0.02 for 3 comparable pairs; values rounded to 1 decimal. 
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Table 5. 6: Number of comparable species pairs of a total of 15 that result in classification confusion of more than 10 % 
for the producer’s and user’s accuracies (average of 100 iterations) per season and sensor. For each pair the range in 
confusion is given as a percentage of the total number of leaves of the producer’s or user’s accuracies. 

 Winter Spring Summer Autumn Multi-season 

 PA UA PA UA PA UA PA UA PA UA 

Hyper-
spectral 

(<6 ) (<7) (<5) (<5) (<7) (<4) (<6) (<7) (<5) (<5) 

WV2 
3 pairs 
(10–15) 

4 pairs 
(12–19) 

4 pairs 
(10–13) 

(<9) 
3 pairs 
(10–15) 

2 pairs 
(13, 20) 

4 pairs 
(10–18) 

3 pairs 
(10–15) 

1 pair 
(11) 

1 pair 
(11) 

RE 
5 pairs  
(10–25) 

5 pairs 
(10–19) 

4 pairs 
(14–18) 

2 pairs 
(10, 14) 

5 pairs 
(13–19) 

6 pairs 
(11–23) 

5 pairs 
(13–15) 

3 pairs 
(13–20) 

2 pairs 
(14, 16) 

2 pairs 
(10, 11) 

PA = producer’s accuracy; UA = user’s accuracy. 

 

5.3.2. Comparison of accuracies between single seasons and multi-season 

classifications 

The use of the multi-season data for tree species classification resulted in a significant 

(p < 0.005, Bonferroni corrected) higher average OA of the multispectral sensors (Table 5.4; 

Figure 5.5). For WV2 the multi-season data resulted in an increase of 8.5 % and for RE an 

increase of 9.7 % compared to the highest average OA attained in a single season. The multi-

season classification of the hyperspectral data, however, resulted in no significant increase 

in average OA. Similarly, the multi-season classification using the hyperspectral data showed 

no significant increase in producer’s or user’s accuracies of any of the tree species 

(Table 5.4; Figure 5.6). Multi-season data of WV2 however, showed a significant (p < 0.005, 

Bonferroni corrected) increase of between 5 – 11 % in the user’s accuracies of four species 

(Avicennia marina, Ficus sycomorus, Hibiscus tilliaceus and Syzygium cordatum) compared 

to the highest user’s accuracies achieved in a single season (Table 5.4; Figure 5.6). The 

producer’s accuracy of Hibiscus tilliaceus also increased by 8 % (significant at p < 0.005, 

Bonferroni corrected) when multi-season WV2 data are used in the classification. Multi-

season RE data resulted in a significant increase of the producer’s accuracy of Ficus 

trichopoda of 7.2 %, and the user’s accuracies of three species, Avicennia marina, Ficus 

sycomorus, Hibiscus tilliaceus, by 3, 16 and 10 % respectively (Table 5.4; Figure 5.6). The 

number of species pairs that were confused in the classification has reduced from the single 

seasons of more than two species pairs to one species pair in the multi-season classification 

of WV2.  The classification of RE showed a decrease in spectrally overlapping species pairs 

from between two and six in the single seasons to two species pairs in the multi-season 

classification.  
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5.3. Discussion 

This study demonstrated that the selection of 22 narrow hyperspectral bands, which are 

related to plant properties, achieved the highest classification accuracies (OA > 90 %; user’s 

accuracies > 86 %) for six evergreen tree species in a subtropical forest of the KwaZulu-Natal 

Province, South Africa over four seasons (winter, spring, summer and autumn) compared to 

multispectral WV2 and RE sensors. The hyperspectral data showed a significant increase in 

accuracy of between 15 – 21 % compared to the WV2 sensor, and 21 % to 30 % compared to 

the RE for the OA of the tree species classification. The OAs of the multispectral sensors in 

this study were therefore lower than reported where WV2 was used for tree species 

classification of five mangroves in Malaysia (OA > 80 %) but comparable to six, mostly 

evergreen dryland tree species (OA 75 – 77 %) of the DukuDuku Forest in the west of the 

study area (Kanniah, 2011; Omer et al., 2015). The OA for tree species classification in 

Botswana with RE were also higher than attained in this study (Adelabu et al., 2013). The 

differences between the OA accuracies attained between the sensors were limited to leaf-

level data analysis and to the simulation of the reflectance at multispectral sensor level. 

Further work is required to assess the accuracies at canopy scales and for other species and 

climatic regions too.   

To our knowledge, this study is the first to report the classification accuracies between 

hyperspectral to multispectral, particularly for evergreen tree species only. The spectral 

variation of species was sampled across a number of phenological events including the 

dormant (winter) and flowering periods (spring and summer) for evergreen tree species. For 

evergreen tree species, the flowering period seems to be the ideal phenological event for 

species separability, compared to the leaf fall in mixed and deciduous forests (Key et al., 

2001; Fung et al., 2003; Holmgren et al., 2008). Sobhan (2007) also found the flowering 

period ideal for the separation of shrub species in Italy, however it has not yet been 

confirmed for evergreen tree species as an ideal phenological event for classification to our 

knowledge. 

The results showed that the average OA of the hyperspectral data ranged from a minimum 

of 90 % (winter) to a maximum of 92 % (summer) whereas the multispectral WV2 sensor 

resulted in average OA from 68 % (winter) to 75 % (spring) and RE from 63 % 

(winter/summer) to 70 % (spring) for single seasons.  The classification results showed 

different trends in a comparative study of subtropical tree species across four seasons in 

Hong Kong, China (Fung et al., 2003), where the autumn season recorded the highest OA (81 

%) and the summer season showed the lowest OA (69 %). Interestingly, sampling for both 

studies was done on the same months (April, July, October and January) with corresponding 

average annual rainfall and temperature ranges (Hong Kong Observatory, 2003; Van 

Deventer et al., 2015b) and some comparable tree species (Ficus spp. and Hibiscus 

tilliaceus). Even though the studies show a high level of similarities, distinct differences can 

be seen in phenological patterns of the tree species. The variation in accuracies of tree 
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species classification across phenological phases for these two subtropical studies, highlight 

the paucity of knowledge on season-specific models for tree species classification for other 

subtropical and different climatic regions.  

Interestingly, the tree species with the highest number of spectral overlap with other 

species and the lowest producer’s and user’s accuracies was the swamp fig (Ficus 

trichopoda), a species with no flowers and inconspicuous fruits under the canopy. In 

contrast, the black mangrove (Bruguiera gymnorrhiza) remained highly separable from all 

species across all three sensors, probably owing to the significantly lower amounts of foliar 

carotenoids and chlorophyll concentrations (Van Deventer et al., 2013). In this study the 

separability of six evergreen wetland trees only was assessed, whereas a large number of 

evergreen and deciduous dryland species also occur within close proximity (10 – 15 km) 

which may increase the spectral overlap when combined at a regional level (Omer et al., 

2015; Cho et al., 2015). 

Using multi-season data for tree species classification significantly improved the overall 

accuracy attained by the multispectral sensors by between 8 % and 10 % compared to the 

single seasons, however no statistically significant differences were found between the 

multi-season and single season classification of the hyperspectral data. The species 

classification also resulted in fewer cases of confusion between tree species, when multi-

season data from WV2 and RE were used. The results suggest, as in the case with the four-

band aerial photography data of Key et al. (2001), that multispectral sensor with ≤ 8 bands 

may benefit from multi-season data, however, hyperspectral sensors with a bands 

representing a diverse number of plant properties, may require only a single optimal season 

for tree species classification. In this regard, the choice is dependent on cost and extent of 

the region. For this study, as an example, the use of WV2 data across four single seasons 

would have resulted in more than double the cost compared to RE imagery across four 

single seasons, whereas the OA of WV2 was ± 5 % more than that of RE. A scaled approach 

for regional monitoring of tree species may therefore start with the assessment of 

vegetation types at regional scale with RE, and WV2 or hyperspectral data for particular 

areas of interest or concern.  

This study contributes to the knowledge of multitemporal and multi-season classification of 

individual tree species, although further work is required to assess whether the optimal 

temporal scale can be achieved through fewer seasons to reduce the cost of imagery and 

field campaigns. The hyperspectral data were optimised for species classification through 

reducing the bands to 22 related to plant properties (Van Deventer et al., 2015a). A robust 

selection of spectral bands for the optimisation of tree species classification across climatic 

zones, remains to be determined (Martin et al., 1998; Fung et al., 2003). The PLS-RF 

classification in this study considered all components and an ntree of 500, although further 

optimisation could be done using fewer components and ntree’s in the PLS-RF classification 

algorithm. The PLS-RF method was found well suited for the classification of the tree species 
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as it transform the correlated bands with a PLS regression, prior to the classification in RF. 

This thesis is the first to apply this method from the medical field to tree species 

classification (Boulesteix et al., 2008). 

 

5.5. Conclusion 

Understanding the impact of phenological variation on tree species classification is essential 

for the monitoring of evergreen tree species and narrow-range forest types. This study 

demonstrates the advantage of an optimised hyperspectral data set in comparison to that of 

multispectral WV2 and RE for the classification of six evergreen tree species over four 

seasons for a subtropical forest in the KwaZulu-Natal Province in South Africa.  

The key results of this chapter include: 

 The selection of twenty-two narrow bands from leaf-reflectance data resulted in the 

highest classification accuracies for the six evergreen tree species, compared to leaf-

level spectra resampled to multispectral sensors RapidEye and WorldView-2. 

 The multispectral sensors showed a significant increase (8 – 10 %) in the OA and less 

confusion between tree species when multi-seasonal data is used. No significant 

increase in accuracies was noted for the hyperspectral leaf-level classification when 

multi-season data were used in the classification. More research is required on the 

temporal optimisation of tree species classification for other species and climatic 

regions. 

 The flowering period were found to be the ideal phenological event for species 

classification of the evergreen tree species. 

The separability between the six tree species remains to be assessed at image level. A 

number of factors influence the ability of remote sensing at image level to discriminate 

between tree species, including where multitude of influences affect the classification 

accuracy, including wetland environment and canopy architecture and size of canopy. 
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CHAPTER 6: MULTI-SEASON RAPIDEYE IMAGERY IMPROVE THE 

CLASSIFICATION OF WETLAND VEGETATION TYPES AS COMPARED 

TO A SINGLE SEASON IMAGERY FOR EVERGREEN FORESTED 

WETLANDS IN KWAZULU-NATAL, SOUTH AFRICA 

 

 

Abstract 

Remote sensing is considered a valuable tool for monitoring the impacts of global change on 

tree species composition, condition and distribution. The ability to separate tree species in 

wetland environments, remains challenging though, and therefore the multispectral sensor 

RapidEye was evaluated for its capability in (i) mapping isolated tree canopies and closed-

canopy forests in wetland environments; and (ii) whether multiple phenological events 

across four seasons would increase the classification accuracy of wetland tree species as 

compared to a single season imagery. RapidEye images were obtained for four seasons 

(winter, spring, summer and autumn) between 2011 and 2012 for a subtropical forest 

region of South Africa. The separability of the canopy spectra of nine tree species and 

associated vegetation types was assessed for each season using the Partial Least Square 

Random Forest algorithm (PLS-RF). The classification accuracies of a number of multi-

seasonal stacked images were also calculated and compared to the single seasons, using 

ANOVA and post-hoc THSD tests. The optimum single and multi-season classifications were 

used to predict the tree species and associated vegetation maps for the study area using the 

random forest model. 

 

RapidEye showed successful classifications for tree species with larger canopies, dense 

leaves, and broad vegetation type class but was unsuccessful for smaller canopies or less 

densely leaved or smaller canopies of isolated wetlands trees. The classification accuracies 

were highest in spring (overall accuracy of 80±2.9 %) and summer (overall accuracy of 

80±3.1 %), compared to the winter (overall accuracy of 66±3.1 %). The classification 

accuracies using multiple seasons increased the overall and user’s accuracies significantly 

and reduced the number and percentage of overlap between species. The summer season 

and an aggregation of the autumn, winter and spring seasons resulted in the two optimum 

classifications (multi-season overall accuracy = 86±3.1 %) and was therefore used to predict 

the tree species and vegetation types of the study area.  
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6.1. Introduction 

Global change is expected to cause changes in the species distribution of vegetation 

(Walther et al., 2002; Campoy et al., 2011; Sardans and Peñuelas, 2012). Remote sensing 

has been proven a successful tool for tree species discrimination at space-borne level, 

particularly since the launch of the WorldView-2 (WV2) and RapidEye (RE) multispectral 

sensors in 2009. These sensors offer a spatial resolution matching tree canopy sizes (≤ 5 m) 

with additional bands in addition to the traditional spectral bands (blue, green, red and NIR). 

As a result, both sensors have been used successfully in mapping dominant tree species in 

mixed forests and discriminating between coniferous, evergreen and deciduous tree species 

with overall accuracies > 63 % (Immitzer et al., 2012; Pu and Landry, 2012; Adelabu et al., 

2013; Cho et al., 2015; Omer et al., 2015). Although the additional bands of these sensors 

showed improvements in comparison to very high spatial multispectral sensors for tree 

species classification, some authors still report confusion in user’s accuracies between 

certain tree species (Immitzer et al., 2012). It remains to be assessed whether such overlaps 

are limited to certain species or geographic regions. 

The ability to classify tree species using multispectral images is influenced by, amongst other 

factors, the canopy size and architecture of tree species. Densely foliated and closed-canopy 

forests are easier to detect and classify compared to isolated canopies since a large portion 

of background reflection from water, soil or other vegetation types is reduced (Gao, 2010; 

Adelabu and Dube, 2014). Isolated canopies, on the other hand, can be easily detected if the 

canopy diameter exceeds the size of an image pixel to ensure that background reflection of 

other objects is excluded. Yet canopy sizes of isolated trees vary between growth phases 

and species and therefore the suitability of a sensor should be assessed for a study area 

according to the size of canopies of the tree species. The reflectance measured at canopy 

level may include reflectance from exposed foliage and branches, inflorescences and the 

shadow of the upper leaves (Cho et al., 2008). The background influence from below the 

canopy also contributes to the reflectance in less densely foliated canopies. Although many 

of the factors mentioned above impact tree species classification in dryland areas, the 

background influence of water in wetlands area is particularly problematic, as it reduces the 

reflectance from other objects (Hardisky et al., 1986; Adam et al., 2010). Closed-canopy 

forests, mostly mangrove tree species, in wetland environments were successfully classified 

with multispectral imagery (Kanniah, 2011), however the ability of multispectral imagery to 

separate between a diverse number and sizes of isolated and closed-canopy forests, 

remains to be assessed in wetland environments.  

The identification of multiple key phenological events for optimising species discrimination 

was proposed by Key et al. (2001) as a means of maximising classification accuracies. In the 

previous chapter the average overall and user’s accuracies of six evergreen tree species 

increased when leaf-level data, resampled to the bands of multispectral WorldView-2 (WV2) 

and RapidEye (RE) band centres, from multiple seasons were used in the classification. The 
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validity of the hypothesis remains to be assessed at image scale where spectral signatures 

are less pure as a result of atmospheric conditions, environmental background and 

fluctuating water levels.  

This chapter therefore aims to assess the capability of RapidEye imagery in (i) mapping 

isolated tree canopies and closed-canopy forests in wetlands; and (ii) whether multiple 

phenological events across four seasons increase the classification accuracy of wetland tree 

species as compared to a single season.  

 

6.2. Methods 

6.2.1. Study area  

 

The study area is located within the iSimangaliso Wetland Park (28°S, 32°30’E), a formal 

protected area, in the KwaZulu-Natal Province of South Africa (Figure 6.1). The study area 

extends from the Maphelane node in the south to Catalina Bay in the north, and from the 

DukuDuku Forest in the west to the coastline in the east. The Park is listed as both a Ramsar 

and World Heritage Site (WHS) on grounds of its unique faunal and floral diversity as well as 

the unique number of wetland types in the Park (Cowan, 1999). The climate is subtropical 

with seasonal variation in rainfall of between a low of 45 mm (10-year average minimum in 

April) to a high of 155 mm (10-year average maximum in December) (Figure 6.2).  
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Figure 6.1: The study area is located in the KwaZulu-Natal Province of South Africa (A). Vegetation types in the 
iSimangaliso Wetland Park range from forest, estuarine, wetland and other natural ecosystem types (B). Sampling 
locations of six evergreen wetland tree species in study area ranged from the uMsunduzi River in the south, to the 
wetlands east of St Lucia town and Catalina Bay in the north (C). 

The location of six evergreen trees species, including Avicennia marina (White Mangrove), 

Bruguiera gymnorrhiza (Black Mangrove), Ficus sycomorus subspecies sycomorus (Sycamore 

fig), Ficus trichopoda (Swamp fig), Hibiscus tilliaceus (Lagoon hibiscus) and Syzygium 

cordatum (Water berry) were identified during fieldwork campaigns between 2011 and 

2012 (Table 6.1). Additional tree species and associated vegetation types in the vicinity of 

the wetland and estuarine ecosystems were also identified, including Acrostichum aureum L. 

(Mangrove fern), Phragmites australis / mauritanus (Reeds) and seasonal wetlands 

dominated by graminoids. A number of dryland vegetation types were also included to 

assess separability with the wetland tree species, including Acacia kosiensis (Dune sweet 

thorn), the coastal lowland and East Coast Dune and Lowland Forests (Table 6.1). 
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Figure 6.2: Average annual rainfall between January 2011 and December 2012 for the study area (Harris et al., 2013). 

 

Table 6.1: Wetland tree species and associated vegetation type in the St Lucia and Maphelane nodes of the iSimangaliso 
Wetland Park, KwaZulu-Natal. 

Indicator tree 

species, (common 

name), & acronymn 

Associated vegetation type and 

community 

Description of vegetation 

community 

Number of 

ROIs (and 

pixels) per 

season 

Acacia kosiensis 

(Dune sweet thorn) 

AK 

 

Terrestrial ecosystems: pioneering 

coastal dune forests 

Vegetation type FOz 7 Northern 

coastal forest* 

Occurs as a pioneer tree on sandy 

coastal soils in the coastal corridor of 

KwaZulu-Natal, South Africa either as 

isolated trees or dense closed canopy 

stands (Boon, 2010; Van Wyk and Van 

Wyk, 2013). Individual tree canopies 

measured ±15 m in diameter and 

stands ±50 m**. 

The South African species has been 

renamed to Senegalia kosiensis in 

2013. 

60 (240) 

Acrostichum aureum L.   

(Mangrove fern) 

AA 

Estuarine ecosystems. Mangrove 

wetlands dominated by fern 

Acrostichum aureum L.   

Vegetation type FOa 3 Mangrove 

Forest* 

The mangrove fern was found 

predominantly with Bruguiera 

gymnorrhiza in the Mfabeni wetland 

located north of the estuary mouth. 

The closed canopy fern wetland 

measured approximately 50 m in 

latitudinal diameter**. 

50 (200) 

Avicennia marina 

(White Mangrove) and 

Bruguiera gymnorrhiza 

Estuarine ecosystems: Mangrove 

forests community.  

Vegetation type FOa 3 Mangrove 

Predominantly closed canopy with 

forest diameter up to 10 m in 

latitudinal cross-section**. 

90 (360) 



 

99 
 

(Black Mangrove)  

MF (Mangrove forests) 

Forest* 

Coastal lowland forest 

LF (Lowland forest) 

Terrestrial ecosystems.  

Vegetation type Northern Coastal 

Forest (FOz 7): KwaZulu-Natal 

Coastal Forests : DukuDuku Moist 

Coastal Lowlands Forest* 

Closed-canopy forest including i.a. 

Albizia adianthifolia and Strychnos spp. 

(Cho et al., 2015) 

 

50 (69 434) 

East Coast Dune Forest 

 

DF (Dune forest) 

Terrestrial ecosystems.  

Vegetation type Northern Coastal 

Forest (FOz 7): KwaZulu-Natal 

Coastal Forests : East Coast Dune 

Forest 

Closed-canopy forest with species 

similar to the coastal lowland forest.  

50 (57 363) 

Ficus sycomorus 

subspecies sycomorus  

(Sycamore fig) 

FSYC 

Freshwater ecosystems.  

Vegetation type FOa 1 Lowveld 

Riverine Forest* 

Trees along the sugarcane farm roads 

were approximately 20 – 30 m in 

diameter.  

11***  

Ficus trichopoda  

(Swamp fig)  

FT 

Freshwater ecosystems. Swamp 

forests community. 

Vegetation type FOa 2 Swamp 

Forest* 

Individual canopies measured >7 m in 

diameter whereas the closed-canopy 

stands were > 300 m in diameter in the 

study area**. 

50 (3 775) 

Hibiscus tilliaceus  

(Lagoon hibiscus) 

HT 

Estuarine ecosystems. 

Vegetation type FOa 3 Mangrove 

Forest* 

Isolated canopies measured ± 10 m in 

diameter and clumps >10 m in 

diameter**. 

50 (200) 

Phragmites australis / 

mauritanus  

(Reeds) 

PA 

Estuarine and freshwater 

ecosystems. Macrophyte 

community.  

Vegetation type AZa 7 Subtropical 

Alluvial Vegetation: Alluvial 

Wetlands: Subtropical Alluvial 

Vegetation: Lowveld Floodplain 

Grasslands: Tall Reed Wetland*  

Closed, through spectral background 

reflectance remains a problem 

between circular arrangements of 

leaves on canopy. The latitudinal 

diameter ranged between 5 and 

200 m** along the Narrows. 

70 (280) 

Seasonal wetlands  

SW 

Freshwater ecosystems. 

Vegetation type AZa 7 Subtropical 

Alluvial Vegetation: Alluvial 

Wetlands: Subtropical Alluvial 

Vegetation: Lowveld Floodplain 

Grasslands: Short Grass/ Sedge 

Wetlands* 

Seasonal wetlands with predominant 

species including Imperata cylindrica, 

Juncus kraussii and Schoenoplectus 

scirpoides (Rautenbach, 2015) 

50 (7 692) 

Syzygium cordatum  

(Water berry) 

SC 

Freshwater ecosystems. Savanna-

grassland community. 

Vegetation type CB 1 Maputaland 

Coastal Belt* 

The vegetation type consists of 

‘irregular dunes with generally open 

vegetation and Syzygium cordatum 

dotted predominantly on the dunes’ 

(Scott-Shaw and Escott, 2011:15). 

Canopies measured on average ≤ 

15 m**. 

0 – unable to 

find pure 

pixels on 

RapidEye 

images 

* Vegetation types were identified from (Scott-Shaw and Escott, 2011). 

** Average canopy diameter was measured for at least 10 canopies in the study area from 20 cm colour orthophotography 

provided by (DRDLR NGI, 2014). 

*** an insufficient number of samples were identified on RapidEye and therefore the species was omitted from the 

analyses. 
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6.2.2. Image acquisition and preprocessing  

RapidEye images covering the study area were obtained from Blackbridge Pty Ltd 

(http://www.blackbridge.com/) for the autumn, winter and spring of 2011 and the summer 

of 2012 (Table 6.2). RapidEye provides five spectral bands between 440 and 850 nm, 

including the blue (440-510 nm), green (520-590 nm), red (630-685 nm), red-edge (690-

730 nm) and near-infrared (760-850 nm) bands. ATCOR 2 software (ReSe applications Pty 

Ltd, http://www.rese.ch) was used to calibrate to top-of-atmosphere reflectance using 

sensor and solar inclination and azimuth angles (Table 6.2) (Richter and Schläpfer, 2015). 

Spectra for water, vegetation and soil were used as input parameters and related to 

reference spectra in ATCOR. The images were provided as Level 3A which include 

radiometric, sensor and geometric corrections, with 5 m spatial resolution, in the Universal 

Transverse Mercator Zone 36 South coordinate system. The World Geodetic System 1984 

was used for the spheroid and datum. 

 

A minimum of 50 regions of interests (ROIs) per species or vegetation type were captured in 

ENVI 5.2 (Exelis Visual Information Solutions Pty Ltd, 2014; http://www.exelisvis.com), 

ensuring representation across all four seasons. Each ROI consists of a minimum of 4 pixels 

(Table 6.1). An insufficient number of ROIs for Ficus sycomorus sycomorus (Sycamore fig) 

and a lack of pure pixels of the canopies of Syzygium cordatum (Water berry) resulted in 

these two species being omitted from further analysis. A total number of n = 520 ROIs was 

captured for the study area for each season and the average spectra extracted for each ROI. 

A fifth data set was created through aggregating the individual seasons into one multi-

season data set where the bands were separated per season, e.g. Band 1 autumn and Band 

1 winter were listed as separate variables. 

http://www.blackbridge.com/
http://www.rese.ch/
http://www.exelisvis.com/
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Table 6.2: Sensor and solar angle and azimuth as well as visibility for the RapidEye images across the four seasons 

Section of study 

area 
Northern Southern 

RE date of 

acquisition (and 

season).  

Sensor Solar 

V
is

ib
ili

ty
 

Sensor Solar 

V
is

ib
ili

ty
 

in
cl

in
at

io
n

  

az
im

u
th

 

ze
n

it
h

 

az
im

u
th

 

in
cl

in
at

io
n

  

az
im

u
th

 

ze
n

it
h

 

az
im

u
th

 

21 March 2011 
(Autumn) 
Maritime 
fall/spring* 

5.4° 99.0° 32.3° 31.5° 40.0 km 4.9° 99.0° 32.5° 31.3° 54.0 km 

 
18 July 2011 
(Winter) 
Midlat winter* 

11.2° 99.5° 51.7° 19.5° 47.5 km 10.7° 99.4° 51.9° 19.4° 50.0 km 

 
22 October 2011 
(Spring) 
Maritime 
fall/spring* 

16.8° 279.7° 18.6° 24.2° 100 km 17.3° 279.6° 18.8° 23.9° 40.0 km 

 
13 January 2012 
(Summer) 
Midlat summer* 

16.6° 277.7° 13.3° 63.1° 100 km 17.0° 277.6° 13.4° 62.2° 36.8 km 

* Atmospheric condition algorithm selected in ATCOR2. 

 

6.2.3. Analysis of variation of spectral reflectance data across seasons 

The variation of the average canopy spectra of the tree species and associated vegetation 

types species was compared across the single seasons, listing the number of statistically 

significant differences per band as percentage of the total number of comparable pairs.  A 

parametric one-way ANalysis Of Variance (ANOVA) was used to assess differences between 

species or vegetation types for each band and each season in the R software (RStudio Inc. v. 

0.98.507, 2009-2013). To account for the multiple comparisons between the species or 

types, a post-hoc Tukey Honest Significant Difference (HSD) test was done and the alpha 

levels corrected for the Bonferroni effect (McDonald, 2008). The alpha level was adjusted 

for the 36 comparable pairs in each band and season, resulting in an alpha level (p = 

0.05/36) of p < 0.001 considered significant at a 95 % confidence interval. 

 

6.2.4. Accuracy assessment of species and vegetation type classification 

The ability to separate the six wetland tree species and the associated vegetation types 

from the other species and vegetation types was assessed through an algorithm which 

combines a Partial Least Square (PLS) dimension reduction algorithm with a non-parametric 

decision-tree algorithm, Random Forest (RF) (Breiman, 2001; Boulesteix et al., 2008). PLS 

regression has shown to yield high performance accuracy for classification (Wold, 1966; 
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Wold et al., 2001; Cheriyadat and Bruce, 2003; Tsai et al., 2007). In the PLS-RF script, a PLS 

regression scales the predictor variables prior to a bootstrap RF classification (Boulesteix et 

al., 2008). The PLS-RF algorithm in the R software (RStudio Inc. v. 0.98.507, 2009-2013) was 

used to assess the classification accuracies between the nine vegetation types for the single 

season and for every combination of multi-season imagery. The classification results were 

therefore assessed for ten sets of every two-seasonal pairs, four sets of three-seasonal pairs 

and a set in which all four seasons were aggregated. The settings of the PLS-RF script were 

set to calculate as ntree = 500, the mtry variable was left as the default (single seasons: √5 = 

2; multi-season: √20 = 4;), the number of components was set to maximum, while the 

minsplit variable was set at four, accounting for the small number of observations per 

species (Boulesteix et al., 2008).  

 

The average spectra of the ROIs were repetitively split into training and test data followed 

by classification in a 100-iteration bootstrap of the PLS-RF algorithm. In every iteration, the 

average spectra of 33 ROIs (2/3rd) was randomly sampled from each class (total n = 297) for 

the training data set and 17 (1/3rd) for the test data set (total n = 153). The overall accuracy 

(OA) and individual producer’s and user’s accuracies were recorded for the 100 iterations of 

the test data. The average OA and individual accuracies of the test data are reported for 

each individual season and the multi-season classifications.  

 

Statistically significant differences between the OA and user’s class accuracies of the test 

data of the single seasons were assessed using a one-way ANOVA in the R software (RStudio 

Inc. v. 0.98.507, 2009-2013). The post-hoc Tukey HSD test was used to assess difference 

between the four single seasons classifications, which comprised of ten comparable pairs, 

resulting in an adjusted alpha level (p = 0.05/10) of p < 0.005 considered significant at a 

95 % confidence interval for single seasons. Thereafter, an ANOVA was used to assess 

differences between four of the classification results, one from the single, two-seasons, 

three-seasons and the multi-season classifications, where the average OA reached the 

maximum, the user’s accuracies achieved a maximum for the majority of the tree species, 

and the number of species pairs confused was minimal. The alpha level of the six pairs of 

seasonal classifications was adjusted in a Tukey HSD test (p = 0.05/6) to p < 0.008 

considered significant at a 95 % confidence interval. 

 

6.2.5. Classification of nine vegetation types using the RapidEye image(s) 

 

Two classifications, one from the single seasons and one from the multiple seasons, were 

selected for the classification of the RapidEye images. The classifications were selected 

where the average overall and user’s accuracy was the highest and a minimal number of 

species pairs overlapped. The tree species and associated vegetation types for the study 

area were predicted using the random forest algorithm from the ModelMap package in R 



 

103 
 

Studio with a training data set of 33 ROIs per class (n = 297). The average spectra of the 

selected ROIs of the training data were used for model prediction in ModelMap, while the 

default values of ntree = 500 and the optimisation of the mtry variable, based on the Out-of-

bag (OOB) error, were used. The accuracy of the predicted map was assessed in ENVI v.5.2 

using an equal number (four) of pixels of each of the 17 ROIs per class of the test data set (n 

= 612 pixels, 68 per class). The OA, producer’s and user’s accuracies reported for each 

classification and the maps were investigated to compare the results for the whole of and 

selected sites in the study area.  

 

6.3. Results 

6.3.1. Variation of spectral reflectance data of vegetation types across seasons 

The nine vegetation types showed a large variation in reflectance data for the NIR band of 

RapidEye across autumn, winter, spring and summer (Figure 6.3). The classes showed a high 

percentage of separability (> 69 %) across all seasons. Band 3 in autumn resulted in the 

highest number of separable pairs (89 %) in autumn. 

 

Figure 6.3: Reflectance values of the nine vegetation types for each band of RapidEye across four single seasons. The 
number of significant different species pairs (p < 0.001, Bonferroni corrected) is indicated as a percentage of the total 
number of comparable species pairs (36) for each of the bands. 

 

6.3.2. Classification accuracies for the four and multiple seasons 

The average OA accuracy (of 100 iterations) of the nine vegetation types was ± 80 % in the 

autumn, spring and summer, and 14 % higher (significantly p < 0.008, Bonferroni corrected) 

compared to winter (Table 6.3). The tree species and vegetation types were poorly 

separable in winter, with three classes (AK, DF and MF) resulting in average producer’s and 

user’s accuracies below 60 %. HT also had a low average producer’s accuracy of 38 % in 
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winter. The average producer’s and user’s accuracies of these classes showed a significant (p 

< 0.008, Bonferroni corrected) increase of ≥ 10 % from winter to the autumn, spring and 

summer seasons. The minimum average producer’s and user’s accuracies peaked in the 

summer to 64±11.7 % (MF) and 69±10.9 % (DF) respectively. The classification results of the 

summer also showed the smallest number of intra-class confusion of > 10 %. 

Table 6.3. Results of the classification accuracies of the 9 vegetation types across (A) the four single seasons and (B) the 
two, three and four multi-seasonal classifications.  

(A) Autumn Winter Spring Summer 

Overall 

accuracy 

(%) 

78.8 66.2 80.0 79.5 

OA 

standard 

deviation 

±3.4 ±3.1 ±2.9 ±3.1 

Accuracy 

(%) 

PA UA PA UA PA UA PA UA 

AA 78.8±3.4 68.6±8.2 84.5±8.6 71.0±8.4 86.9±7.7 86.9±7.9 88.6±8.6 85.7±7.3 

AK 78.6±13.0 94.9±6.1 48.3±12.1 59.9±11.0 86.1±7.5 80.6±7.9 76.9±10.8 84.9±8.8 

DF 73.8±10.2 82.5±10.5 51.2±11.2 43.9±8.8 68.7±12.6 69.0±9.3 65.6±11.9 69.4±10.9 

FT 72.5±10.9 72.4±9.0 82.8±7.8 68.7±9.4 95.0±6.1 93.2±6.5 96.5±5.1 83.9±8.5 

HT 86.4±11.0 76.4±10.4 38.3±10.6 75.7±14.9 66.1±10.4 73.5±9.6 69.6±11.7 77.6±9.4 

LF 78.8±9.0 82.8±9.5 78.9±9.4 66.8±9.0 72.4±10.2 71.1±10.2 76.9±9.4 71.1±10.7 

MF 50.9±11.2 63.8±12.2 34.5±13.7 41.4±13.2 52.4±11.7 67.9±12.3 63.8±11.7 76.9±9.6 

PA 92.3±7.2 86.4±8.3 85.3±8.9 84.2±8.7 93.3±5.8 85.7±8.0 85.5±10.0 84.5±8.3 

SW 97.1±4.2 91.6±6.6 91.6±6.9 93.9±5.9 99.2±2.0 94.6±5.2 91.8±6.7 88.5±7.4 

Confusion 1 3 7 5 3 2 1 2 

PA = producer’s accuracy; UA = user’s accuracy. Abbreviations: AA = Acrostichum aureum L. (Mangrove fern); AK = Acacia 
kosiensis (Dune sweet thorn); DF = East Coast Dune Forest; FT = Ficus trichopoda (Swamp fig); HT = Hibiscus tilliaceus 
(Lagoon hibiscus); LF = Coastal lowland forest; MF = Mangrove forests; PA = Phragmites australis / mauritanus (Reeds); SW 
= seasonal wetlands. Confusion = number of species pairs showing > 10 % confusion in the error matrix. 
 

 

Across the autumn, spring and summer seasons, the mangrove forests (MF) showed the 

lowest separability of all the classes, with average producer’s accuracies between 51 % and 

64 %, average producer’s accuracies < 70 % in autumn (Table 6.3) and class confusion of 

±13.6 with the mangrove fern (AA) (Table 6.4). The mangrove forest (MF) and fern classes 

(AA) also showed a high percentage of overlap (> 10 %) in the autumn and spring season 

(results not shown here). The average producer’s accuracies of other tree species in the 

autumn, spring and summer seasons ranged from 66 % to 92 % and average user’s 

accuracies between 69 % and 95 %. The macrophyte (PA) and seasonal wetlands (SW) were 

highly separable from the tree classes with average producer’s and user’s accuracies > 85 % 

over autumn, spring and summer and the seasonal wetlands could be particularly well 

classified (> 92 %) in autumn and spring (Table 6.3). Tree species showed confusion between 

classes of > 10 % in all the single seasons, although the macrophytes (PA) and seasonal 

wetlands (SW) also showed a class confusion of > 10 % in the summer season that was not 

observed in the autumn, winter and spring seasons (Table 6.4). 
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Table 6.4: Confusion matrix showing the producer and user’s accuracies of nine vegetation types for the summer season 
(average of 100 iterations). 

 
AA AK DF FT HT LF MF PA SW 

AA 88.6 0.0 0.0 0.0 0.7 0.0 13.6 0.0 0.0 

AK 0.1 76.9 5.8 0.0 7.3 0.0 1.9 0.0 0.0 

DF 0.0 7.5 65.6 2.9 7.1 9.0 4.3 0.0 0.0 

FT 0.9 0.0 1.5 96.5 1.5 6.2 5.1 1.4 0.0 

HT 0.0 4.8 5.2 0.6 69.6 6.5 3.4 1.4 0.0 

LF 0.0 5.9 19.9 0.0 4.9 76.9 2.4 0.0 0.0 

MF 6.8 4.6 1.7 0.1 6.2 0.4 63.8 0.0 0.0 

PA 3.6 0.2 0.4 0.0 1.4 0.1 2.8 85.5 7.6 

SW 0.0 0.0 0.0 0.0 1.5 0.0 0.0 11.3 91.8 

OA = overall accuracy (%); Stdev = standard deviation. Abbreviations: AA = Acrostichum aureum L. (Mangrove fern); AK = 
Acacia kosiensis (Dune sweet thorn); DF = East Coast Dune Forest; FT = Ficus trichopoda (Swamp fig); HT = Hibiscus 
tilleaceus (Lagoon hibiscus); LF = Coastal lowland forest; MF = Mangrove forests; PA = Phragmites australis / mauritanus 
(Reeds); SW = seasonal wetlands. 

 

The results of the classification using multiple seasons showed a general increase in average 
OA of between 0 % (winter-summer) and 6 % (autumn-winter-spring) compared to the 
maximum average OA achieved in the single seasons (Table 6.4). The aggregation of the 
autumn and spring seasons showed a maximum average OA (85±2.6 %) of the two-season 
combinations, whereas the autumn, winter and spring season combination achieved a 
maximum average OA (86±3.1 %) of all the three-season classifications. The classification 
accuracy of the aggregation of all four seasons resulted in an average OA of 86±2.8 %, 
similar to the OA of the multi-season classification of autumn-winter-spring. The lowest 
user’s accuracy recorded for the four-seasons classification was 80±8.8 % for DF, whereas 
the autumn-winter-spring classification’s lowest user’s accuracy was 81±92 % for LF 
(Table 6.5). The autumn-winter-spring classification also showed less classes from the user’s 
accuracy with a confusion of > 10 % compared to the four-season classification, and 
therefore the autumn-winter-spring classification was selected as the optimum classification 
model from all the multi-season classifications (Table 6.6). 
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Table 6. 5: Average overall, producer’s and user’s accuracies (of 100 iterations) for multi-season classifications of four seasons for the nine vegetation types. 

 

Autumn 

Winter 

Autumn 

Spring 

Autumn 

Summer 

Winter 

Spring 

Winter 

Summer 

Spring 

Summer 

Autumn 

Winter 

Spring 

Autumn 

Winter 

Summer 

Autumn 

Spring 

Summer 

Winter 

Spring 

Summer 

Autumn, 
Winter, 
Spring, 

Summer 

Overall accuracy 
(%) ± Standard 
deviation 

83.7±3.2 85.3±2.6 84.6±2.7 83.6±3.2 79.9±3.6 81.7±2.8 86.4±3.1 85.4±3.1 86.4±2.9 83.1±3.1 86.0±2.8 

P
ro

d
u

ce
r’

s 
ac

cu
ra

ci
es

 (
%

) 

AA 84.1±9.6 89.9±6.7 89.5±10.0 91.7±6.4 84.6±9.9 93.2±6.0 91.6±6.8 88.8±8.3 87.9±8.9 87.9±8.8 86.2±9.1 

AK 86.8±8.5 80.1±9.4 87.6±8.0 78.8±11.4 73.6±12.3 77.4±10.8 80.8±8.8 82.8±10.1 91.4±7.3 78.6±10.8 85.5±8.6 

DF 75.8±11.3 83.1±10.3 82.9±11.5 76.0±10.6 50.6±13.2 64.9±13.1 83.2±10.6 75.8±10.4 84.7±8.4 69.2±13.8 79.4±12.1 

FT 85.1±9.4 92.8±7.8 97.4±3.5 97.4±4.1 98.8±3.0 94.3±6.8 95.0±7.0 98.4±3.4 96.6±5.3 96.5±6.0 97.6±4.1 

HT 71.0±11.1 82.5±8.9 72.2±11.5 67.9±10.9 71.5±9.5 67.5±10.0 75.9±11.4 70.6±11.9 70.6±10.7 68.1±10.6 69.1±11.5 

LF 85.3±8.0 81.8±11.0 86.2±9.4 79.9±9.0 80.4±7.6 79.6±8.0 82.2±9.6 89.7±9.1 85.7±9.9 83.6±8.5 88.1±7.7 

MF 78.5±10.2 64.0±12.0 57.8±12.7 71.6±11.9 73.8±11.5 67.2±10.7 78.6±11.0 77.6±10.0 68.8±11.4 76.8±10.7 79.5±10.3 

PA 90.1±9.7 93.9±5.8 91.6±9.2 89.1±7.5 91.8±9.5 93.4±6.8 90.1±9.1 88.1±9.6 92.8±7.5 88.1±9.2 89.1±7.8 

SW 96.6±4.4 100.0±0.0 96.4±4.7 100.0±0.0 94.0±6.7 97.9±3.1 100.0±0.0 96.8±4.9 99.3±2.1 99.5±2.2 99.9±0.8 

Confusion 2 2 1 1 2 3 2 2 2 1 1 

U
se

r’
s 

ac
cu

ra
ci

es
 (

%
) 

AA 81.8±7.6 84.1±7.9 78.8±8.0 81.4±8.8 82.2±8.2 87.3±5.9 84.1±8.2 83.2±7.7 85.4±8.8 88.0±7.5 89.1±7.3 

AK 90.5±6.6 95.2±5.7 89.9±6.7 85.2±9.2 75.9±10.1 83.1±9.6 89.2±7.4 87.0±9.5 90.1±6.8 83.5±10.3 88.4±8.0 

DF 76.0±8.3 77.1±9.2 78.0±9.5 76.4±8.8 69.7±13.9 66.6±9.9 82.4±8.2 79.9±10.3 77.1±10.3 73.9±10.6 80.4±8.8 

FT 74.9±9.2 77.1±9.2 83.8±7.5 91.0±6.9 74.8±8.2 92.3±6.4 87.5±7.7 81.8±8.2 90.2±6.7 91.8±5.6 86.2±9.0 

HT 82.8±9.1 78.7±8.7 88.3±8.8 84.0±9.2 84.1±8.8 78.4±10.6 83.5±9.8 90.3±8.0 86.8±9.7 84.5±9.1 88.9±8.0 

LF 86.7±7.2 86.8±8.9 85.9±8.6 77.2±9.7 76.4±9.6 70.3±9.6 81.1±9.2 87.0±7.9 86.5±7.3 73.9±8.7 82.5±9.3 

MF 83.8±9.0 88.9±8.5 84.8±11.3 79.6±9.1 80.3±11.3 82.0±9.3 89.3±7.6 86.3±8.5 84.4±8.8 83.1±9.9 83.5±9.5 

PA 89.2±7.1 88.2±7.7 88.2±7.3 92.1±7.2 88.5±7.8 89.2±6.4 90.8±6.7 89.9±6.5 89.2±8.2 86.1±9.1 88.2±8.3 

SW 94.4±7.1 93.5±5.8 92.7±7.4 91.6±6.1 94.2±7.1 92.8±6.7 95.7±5.5 91.0±7.2 94.2±6.2 90.2±6.5 94.1±6.1 

Confusion 2 0 0 2 4 1 1 3 2 1 2 
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Abbreviations: AA = Acrostichum aureum L. (Mangrove fern); AK = Acacia kosiensis (Dune sweet thorn); DF = East Coast Dune Forest; FT = Ficus trichopoda (Swamp fig); HT = Hibiscus tilliaceus 
(Lagoon hibiscus); LF = Coastal lowland forest; MF = Mangrove forests; PA = Phragmites australis / mauritanus (Reeds); SW = seasonal wetlands. Confusion = number of species pairs showing 
> 10 % confusion in the error matrix. 
 

Table 6.6: Confusion matrix showing the producer and user’s accuracies of nine vegetation types for the optimum multi-season classification (average of 100 iterations), including the 
autumn, winter and spring seasons. 

 

AA AK DF FT HT LF MF PA SW 

AA 91.6 4.9 0.4 0.2 0.5 0.1 9.7 0.1 0.0 

AK 0.2 80.8 0.6 0.0 9.1 0.9 0.0 0.0 0.0 

DF 0.0 2.4 83.2 1.2 0.6 12.4 1.2 0.0 0.0 

FT 0.2 2.4 0.8 95.0 5.3 0.0 2.9 1.4 0.0 

HT 0.0 2.3 2.1 2.6 75.9 3.8 2.7 2.7 0.0 

LF 0.0 4.3 12.3 0.9 2.0 82.2 0.3 0.4 0.0 

MF 7.7 0.5 0.5 0.1 0.9 0.0 78.6 0.2 0.0 

PA 0.4 1.7 0.0 0.0 5.0 0.0 2.5 90.1 0.0 

SW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 100.0 
Abbreviations: AA = Acrostichum aureum L. (Mangrove fern); AK = Acacia kosiensis (Dune sweet thorn); DF = East Coast Dune Forest; FT = Ficus trichopoda (Swamp fig); HT = Hibiscus tilleaceus 
(Lagoon hibiscus); LF = Coastal lowland forest; MF = Mangrove forests; PA = Phragmites australis / mauritanus (Reeds); SW = seasonal wetlands. 
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In comparing the average OA of the classification results of the optimum classification from 
the single, two-season, three-season and four-season classifications, the summer 
classification was significantly lower (p < 0.05, Bonferroni corrected) compared to the multi-
optimum season classifications (Figure 6.4). 

 

Figure 6. 4: Variation of the average OA (of 100 iterations) of four classification options. Letters above the boxplots 
indicate statistically significant differences (p < 0.008, Bonferroni corrected). 

Six of the nine tree species or associated vegetation types showed a significant (p < 0.05, 

Bonferroni corrected) increase in user’s accuracies when multi-season classifications were 

used, including AK (4 – 10 %), DF (8 - 13 %), LF (10 - 16 %), MF (7 – 12 %), PA (4 – 6 %) and 

SW (5 – 7 %) (Figure 6.5). In contrast, AA and FT showed no significant increase when 

multiple seasons were used for classification, except for an increase of 3 % for AA 

(significant, p < 0.05, Bonferroni corrected) when all four seasons are aggregated. HT 

showed a significant increase in user’s accuracy of 6 % and 11 % when three and four 

seasons were aggregated, respectively. 
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Figure 6. 5: Variation of the average user’s accuracies (of 100 iterations) of four classification options. Letters above the 
boxplots indicate statistically significant differences (p < 0.008, Bonferroni corrected). 

 

6.3.3. Predicting vegetation types for the study area 

 

The OA of the predicted map for the multi-season was 11 % higher compared to the OA of 

the predicted map for summer (Table 6.7). The summer map was able to predict AA, FT, PA 

and SW with user’s accuracies > 86 %. Five of the nine classes resulted in poor predictions in 

summer with user’s accuracies below 70 %, including AK, DF, HT, LF and MF. These classes 

show a classification confusion of up to 40 % with one another (Table 6.8). The multi-season 

prediction resulted in fewer classes with a user’s accuracy < 70 %. The lowest user’s 

accuracies of the multi-season predicted map were recorded for DF (59 %) and HT (56 %). 

The user’s accuracies increased in the multi-season predicted map, compared to the 

summer map, for a number of tree species or associated vegetation types when the multi-

season were used in the prediction, including 7 % for FT and between 15 % and 30 % for AK, 

DF, LF and MF (Table 6.7). Fewer class pairs were also confused with the multi-season 

classification with the class pair HT and LF peaking at 29 % (Table 6.8). 
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Table 6. 7: Overall, producer’s and user’s accuracies for the best classification results of the (A) single season and (B) 
multiple seasons. 

Classification: Summer Autumn-Winter-Spring 

Overall accuracy (%) 69.8±26.6 78.8±23.4 

 PA UA PA UA 

AA 79.4 85.7 95.6 82.3 
AK 66.2 64.3 92.6 79.7 
DF 41.2 38.9 58.8 58.8 
FT 75.0 86.4 79.4 93.1 
HT 75.0 55.4 83.8 56.4 
LF 11.8 30.8 25.0 70.8 
MF 70.6 50.5 82.4 80.0 
PA 95.6 95.6 95.6 95.6 
SW 95.6 97.0 95.6 100.0 

Confusion 7 5 2 3 
PA = producer’s accuracy; UA = user’s accuracy. Abbreviations: AA = Acrostichum aureum L. (Mangrove fern); AK = Acacia 
kosiensis (Dune sweet thorn); DF = East Coast Dune Forest; FT = Ficus trichopoda (Swamp fig); HT = Hibiscus tilliaceus 
(Lagoon hibiscus); LF = Coastal lowland forest; MF = Mangrove forests; PA = Phragmites australis / mauritanus (Reeds); SW 
= seasonal wetlands. Confusion = number of species pairs showing > 10 % confusion in the error matrix. 

Table 6. 8: Confusion matrix showing in percentage the producer and user’s accuracies of nine vegetation types for the 
(A) summer and (B) multi-season classifications. 

(A) AA AK DF FT HT LF MF PA SW 

AA 79.4 0.0 0.0 0.0 0.0 0.0 20.6 0.0 0.0 

AK 0.0 66.2 11.8 0.0 16.2 1.5 4.4 0.0 0.0 

DF 0.0 29.4 41.2 1.5 4.4 11.8 11.8 0.0 0.0 

FT 0.0 0.0 0.0 75.0 4.4 5.9 14.7 0.0 0.0 

HT 2.9 1.5 13.2 2.9 75.0 4.4 0.0 0.0 0.0 

LF 0.0 4.4 38.2 5.9 22.1 11.8 17.7 0.0 0.0 

MF 8.8 1.5 1.5 1.5 13.2 2.9 70.6 0.0 0.0 

PA 1.5 0.0 0.0 0.0 0.0 0.0 0.0 95.6 2.9 

SW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 95.6 

          (B) AA AK DF FT HT LF MF PA SW 

AA 95.6 0.0 0.0 0.0 0.0 0.0 4.4 0.0 0.0 

AK 0.0 92.7 7.4 0.0 0.0 0.0 0.0 0.0 0.0 

DF 1.5 11.8 58.8 0.0 8.8 7.4 11.8 0.0 0.0 

FT 2.9 0.0 0.0 79.4 17.7 0.0 0.0 0.0 0.0 

HT 0.0 4.4 4.4 4.4 83.8 2.9 0.0 0.0 0.0 

LF 5.9 7.4 26.5 1.5 29.4 25.0 4.4 0.0 0.0 

MF 5.9 0.0 2.9 0.0 8.8 0.0 82.4 0.0 0.0 

PA 4.4 0.0 0.0 0.0 0.0 0.0 0.0 95.6 0.0 

SW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 95.6 
Abbreviations: AA = Acrostichum aureum L. (Mangrove fern); AK = Acacia kosiensis (Dune sweet thorn); DF = East Coast 
Dune Forest; FT = Ficus trichopoda (Swamp fig); HT = Hibiscus tilleaceus (Lagoon hibiscus); LF = Coastal lowland forest; MF = 
Mangrove forests; PA = Phragmites australis / mauritanus (Reeds); SW = seasonal wetlands. 

 

The mangrove ferns (AA) and wetlands (MF) are found to be closely associated with one 

another on the predicted map of the vegetation types using the summer RapidEye image 

along the estuarine systems as well as in the DukuDuku Forest, the eucalypt plantations and 
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the sugarcane farms (Figure 6.7A). The location of Acacia kosiensis (AK), dune (DF) and 

lowland (LF) forests were predicted on the dunes as well as in the DukuDuku Forest. In the 

area north and south of the St Lucia Estuary clusters of AK occur as closed-canopy 

pioneering stands. A large cluster of Ficus trichpoda (FT) was predicted in the summer image 

to be located in the uMfolozi River Swamp, with a smaller number of pixels distributed in 

the dune and lowland forests. The prediction of Lagoon hibiscus (HT) resulted in areas on 

the river floodplain north of the uMfolozi River Swamp, and areas between the sugarcane 

and eucalypt plantations to be classified as HT. Macrophyte vegetation fringes the estuarine 

systems as well as the uMfolozi River Swamp and both sides of the Narrows.  

 

In comparison to the map predicted from the summer RapidEye images, the prediction from 

the multi-season images resulted in a reduction of the extent of mangrove wetlands, while 

the user’s accuracy increased by 29 % for the mangroves (MF) and a reduction in class 

confusion with other forest types (Figure 6.7B). The clusters of Acacia kosiensis (AK) appear 

denser on the multi-season image, compared to the summer image, although the species 

are also interspersed in the dune (DF) and lowland (LF) forests. The dune forest (DF) 

dominates the coastal dunes north and south of the estuary mouths, although also occur in 

smaller patches on the coastal plain and in the DukuDuku Forest. The DukuDuku Forest 

consists of predicted classes AK, DF, LF and MF, but with less dominance of the DF 

compared to the predicted map of summer. The multi-season prediction further shows a 

larger extent of Ficus trichpoda (FT) in the uMfolozi River swamp, extending westward into 

the DukuDuku village and as far west as Lake Futululu, south-west of the DukuDuku Forest. 

In the multi-season prediction the Lagoon hibiscus (HT) is less prevalent across the study 

area, compared to the summer image prediction. A larger extent of the study areas was 

predicted as macrophytes (PA) and seasonal wetlands (SW) in the multi-season image, 

compared to the summer prediction, dominating the coastal plain.
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Figure 6.6: Predicted tree species or associated vegetation types using the (A) summer image of RE and (B) the multi-season RE images (autumn-winter-spring). The black outline show the 
boundary of the iSimangaliso Wetland Park; the blue lines the 1:500 000 rivers. 
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6.4. Discussion 

RapidEye imagery was successful in the classification of broad vegetation types and closed-

canopy forest wetlands in the St Lucia and Maphelane nodes of the iSimangaliso Wetland 

Park in KwaZulu-Natal, South Africa. The average overall accuracy (average of 100 random 

forest classifications) for four single seasons (autumn, winter, spring and summer) ranged 

from the lowest in winter (66±3.1 %) to the highest in spring (80±2.9 %). The summer 

season optimised the separability of classes with the producer’s accuracies between 

64±11.7 % and 97±5.1 % and user’s accuracies ranging from 69±10.9 % to 89±7.4 %. The 

resultant accuracies were comparable to other dryland tree species classification studies 

using RapidEye and WorldView-2, even though the tree species in this study occur in 

wetland and estuarine environments (Immitzer et al., 2012; Pu and Landry, 2012; Adelabu 

et al., 2013; Cho et al., 2015; Omer et al., 2015). Regardless of the success with the closed-

canopy classes, pure isolated canopies of tree species were difficult to identify on the 

RapidEye images. Canopies of Ficus sycomorus (FSYC), Hibiscus tilliaceus (HT) and Syzygium 

cordatum (SC) were difficult to separate visually from adjacent vegetation reflectance on 

the RapidEye imagery. HT and SC were also too small in diameter to obtain pure pixels not 

influenced by adjacent cover. FSYC and HT had canopy architecture that was not densely 

leaved, and hence the influence of background reflectance from other vegetation reduces 

the ability to obtain pure signatures. Obtaining regions of interest for individual canopies 

consistently across seasons was further compromised by parallax errors resulting from 

different sensor angles across the four seasons. Although the user’s accuracies were high, 

the extent of certain classes predicted from the summer image, appeared to be over 

predicted in parts of the study area (Appendix 1). RapidEye imagery with a 5 m spatial 

resolution was therefore found unsuitable for mapping isolated tree canopies, but is 

suitable for broader vegetation groups and closed-canopy forests. WorldView-2 imagery 

with a higher spatial resolution of 2 m would likely improve the mapping of FSYC, HT and SC 

for this area. 

 

Three of the four single seasons resulted in significantly higher overall classification 

accuracies > 79 % (autumn, spring and summer), compared to the winter season of 

66±3.1 %. The use of multi-season data, however, resulted in significantly higher accuracies 

compared to the single season data for the nine vegetation types in the study area. The 

aggregation of autumn and spring showed an increase of 5.8 % compared to the highest 

overall accuracy of the single seasons (summer OA = 79.5 %), whereas the aggregation of 

autumn, winter and spring showed a significant increase of 6 % compared to the summer 

classification. The aggregation of all four seasons showed no significant difference 

compared to the aggregation of two or three seasons. Multiple seasons also resulted in 

significant increases of user accuracies of classes for the majority of the vegetation types 

and a reduction in the percentage of class overlaps when compared to the single seasons, 

however the improvement was mostly noticed for the four forest types which showed a 
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high overlap, including AK, DF, LF and MF, and to a lesser degree for the macrophytes (PA) 

and seasonal wetlands (SW). The predicted map resulting from the multi-season RE imagery 

seemed closer to the true extent of the vegetation distribution (evaluated for known areas – 

Appendix 1). Further validation of the prediction will be required across the area to 

determine true accuracy. The benefit of using multi-season data and the improvement in 

accuracies should be compared to the increase in cost of using multiple images, and may 

likely vary with species and across geographic regions. 

 

Class confusion between dryland forest types was expected, such as Acacia kosiensis (AK) 

with the dune (DF) and lowland forests (LF) as both dune and lowland forests is host to AK 

and many other similar tree species (Scott-Shaw and Escott, 2011). It is likely that elevation 

could be used to separate the two classes, although further work is required to assess 

whether the dominant tree species of the dune forest significantly differ from those 

identified for the DukuDuku Forest. The dominant Albizia adiathifolia and Strychnos species 

of the DukuDuku Forest (Cho et al., 2015) were predicted in this study primarily as dune and 

lowland forest, but also mangroves (MF) and Lagoon hibiscus (HT), the latter owing to the 

spectral influence of grass in the Lagoon hibiscus class. The canopy reflectance of the 

mangrove forests appeared to overlap with a number of species in the dune and lowland 

forest, possibly the Strychnos species, as well as known clusters of Casuarina equisetifolia, 

the eucalypt plantations (Eucalyptus grandis) and even areas dominated by sedges and 

other wetland plants around Honeymoon Bend and the Mfabeni wetland. The extent of the 

incorrect prediction is reduced in the predicted map of the multi-season classification, 

compared to the prediction of the summer RE image, and although the results compare well 

with previous work (Nondoda, 2012; Lück-Vogel et al., Submitted), further refinement will 

be required to reduce areas of incorrect predictions. Similarly the prediction of the swamp 

forests compared well to the work of Nondoda (2012) and Lück-Vogel et al. (submitted), 

although confusion with other Ficus species may be prevalent across the study area. The 

macrophyte (PA) and seasonal wetland (SW) classes were highly separable from the tree 

species classes and appeared to be well predicted across the study area, however further 

validation will be required around the Mfolozi River Swamp and along the Narrows where 

access is difficult. The vegetation classification offers improved understanding of the 

distribution of vegetation types compared to the land cover classification of the province 

(Ezemvelo KZN Wildlife, 2011). Further description of selected areas is provided in Appendix 

1. 

 
The improvement of the tree species of this study, based on the classification accuracies and 

extent in the predicted maps, can be expected with the increase in spatial resolution and 

number of bands. WorldView-2 data at 2 m spatial resolution with a coastal and yellow 

band should be tested to assess the capability of multispectral data to classify tree species 

using spectral reflectance values. In addition LiDAR data and expert knowledge can 

contribute to an improved prediction of the location of species. Mangroves and hibiscus, for 
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instance, have a limited range and are mostly associated with the estuarine systems, and 

the prediction can therefore be limited to known habitat ranges. Further improvements to 

our work may also include the optimisation of the ntree and mtry variables where the PLS-

RF classification assessed the separability of the canopy spectra, as well as the comparison 

of the PLS-RF and random forest algorithms with one another. Although it was the original 

intent of this study to do so, the PLS-RF was not optimised for image classification and a 

memory limit of 80 Gb was insufficient for the script to run. The results of the study are 

lastly limited to the selected tree species and vegetation types of the study area and remain 

to be assessed for other species and climatic regions too. 

 

6.5. Conclusion 

The ability of RapidEye imagery was evaluated for the classification of tree species in 

wetland and estuarine environments in the iSimangaliso Wetland Park, KwaZulu-Natal, 

South Africa. RapidEye imagery at 5 m spatial resolution with 5 bands was successful in 

separating broad vegetation types or tree species with closed-canopy forest structures 

although the classification of species with canopies < 10 m diameter or sparse leaves was 

unsuccessful. The use of multiple seasons increased the classification accuracy significantly 

compared the single season with the highest classification accuracies. 
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CHAPTER 7: DISCUSSION 

 

7.1. Introduction 

Remote sensing is a valuable tool for monitoring the changes in forest species composition 

and tree species distribution at frequent intervals and regional scale. The multiple threats to 

coastal swamp and mangrove forests make it imperative that particular attention should be 

paid to these areas. Quite often ground surveys in these areas are difficult owing to 

inundation and in some instances access is impeded due to the presence of dangerous 

animals. Remote sensing offers an alternative to ground survey, particularly in swamp and 

mangrove forests, as well as other forested wetlands where it is necessary to predict and 

monitor species composition and distribution. 

The separability of tree species is based on the premise that one or more of the foliar 

biochemical or biophysical parameters are different and that differences vary across 

phenological phases. Leaf fall has, for example, been identified as an important phenological 

event to discriminate between a number of deciduous species (Key et al., 2001). For 

evergreen tree species, phenological events may be less pronounced or inconspicuous 

compared to deciduous species. Therefore a larger number of plant properties would be 

needed to enhance differences between evergreen tree species in remote sensing, and 

most likely more bands than those in the visible range where leaf colour is observed.  

Hyperspectral remote sensing makes it possible to quantify a number of plant properties 

through narrow absorption features located between 350 nm and 2 500 nm of the 

electromagnetic spectrum. The cost of hyperspectral images is however too high for 

monitoring tree species over time and at regional extent. Multispectral sensors, on the 

other hand, offer more affordable images which make it possible to revisit areas at regional 

scale more frequently. Several of the multispectral sensors (i.e. SPOT, IKONOS and 

Quickbird) offer spatial resolutions matching the extents of tree canopy diameters. The 

number of and spectral resolution of the bands of multispectral sensors are not conducive 

to the detection and monitoring of multiple plant properties since they are spectrally too 

broad for the quantification of the narrow absorption features, and cover predominantly 

the visible and near-infrared spectra. A large number of narrow absorption features in the 

short-wave infrared, related to plant nutrients, are therefore not covered by these sensors.  

The introduction of the red-edge band in the multispectral sensors RapidEye and WV2 

offered new possibilities for improved tree species classification. The red-edge band was 

found to be effective for predicting plant nitrogen, foliage biomass while also improving 

species discrimination (Mutanga and Skidmore, 2004; Cho et al., 2008; Mutanga et al., 2012; 

Adelabu et al., 2013). A number of studies showed promising results when using these 

sensors in nutrient prediction at broad regional level (Ramoelo et al., 2012; Ullah et al., 
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2012; Clevers and Gitelson, 2013; Ramoelo et al., 2013; Cho et al., 2013), as well as 

distinguishing between a number of deciduous and evergreen tree species (Immitzer et al., 

2012; Pu and Landry, 2012; Adelabu et al., 2013; Cho et al., 2015; Omer et al., 2015). Class 

overlap remains a problem where multispectral sensors were used to classify tree species, 

and to a lesser degree the same problem was found with the use of hyperspectral sensors. 

The use of images from multiple dates has shown an improvement of species discrimination 

and a reduction of error for deciduous tree species in America (Key et al., 2001) and 

grassland habitats in Germany (Shuster et al., 2015). Key et al. (2001) postulated that 

images from multiple phenological phases could improve species discrimination when 

compared to a single snapshot in time. The variation in plant properties may be more 

pronounced across a variety of phenological phases compared to a single phenological 

event. The hypothesis remains to be assessed across a number of phenological phases, 

including dormancy, leaf development, flowering and the end of the growth season, 

particularly for evergreen tree species.  

There are still a number of challenges associated with the use of remote sensing for tree 

species discrimination. While hyperspectral data may offer a better representation of plant 

properties in narrow absorption bands, the multitude of correlated bands requires effective 

data reduction and transformation methods to extract the most important bands for species 

discrimination. The influence of atmospheric conditions, the background reflectance from 

soil and other vegetation, and the reduction of reflectance from vegetation in wetland 

environments influence the ability to separate species using images from multispectral 

space-borne sensors. Pixels are often not a pure reflection of the reflectance of tree species 

but a mixture of reflectance from twigs, shadows cast by upper leaves and adjacent land 

cover where the tree canopy is not densely leaved or match the spatial resolution of the 

image.  

The primary aim of this thesis was to assess whether multiple seasons, with representation 

of multiple phenological events, would improve the separability of tree species when 

compared to a single phenological event. At the same time, some of the limitations to 

remote sensing of hyperspectral and multispectral sensor are also addressed in this study. 

The hypothesis has therefore been formulated as follows: 

H0: multi-season information of evergreen wetland tree species is not unique and 

does not improve species discrimination when compared to a single season’s 

information 

Ha: multi-season information of evergreen wetland tree species is unique and 

improves species discrimination when compared to a single season’s information 
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Four objectives have been formulated in testing the hypothesis: 

 Assess whether tree species are unique in foliar biochemical concentrations over 

multiple seasons. 

 Ascertain which bands are the most important across phenological phases for 

species discrimination. 

 Determine whether leaf reflectance spectra of multiple seasons will improve the 

species classification compared to a single season. 

 Assess whether image stacks of multiple seasons will improve species discrimination 

when compared to a single season. 

 

7.2. Are the seasonal profiles of tree species unique in terms of their foliar 

biochemical concentrations over multiple seasons? 

In general, the foliar biochemical results showed that the foliar pigments (carotenoids and 

chlorophyll) of the six evergreen tree species varied little over winter, spring, summer and 

autumn. For five of the six tree species the variation in foliar pigments was not different 

across the four seasons, except for Syzygium cordatum, which showed significantly (p < 

0.05, Bonferroni corrected) lower pigment concentrations in spring compared to the other 

three seasons. In contrast to the foliar pigments, a high variability was observed for foliar 

nitrogen across the four seasons. In winter the highest mean and lowest variability were 

observed for foliar nitrogen, while a decrease in mean foliar nitrogen was observed during 

the growth seasons (spring, summer and autumn) while the coefficient of variance 

increased. Three species, Bruguiera gymnorrhiza, Ficus trichopoda and Syzygium cordatum, 

contributed to the significantly (p < 0.05, Bonferroni corrected) higher mean nitrogen 

concentration in winter, compared to the other three seasons. The latter two species also 

showed a significant reduction in foliar nitrogen from spring to autumn. Foliar phosphorus 

concentrations showed little variation over the four seasons but it increased slightly from 

spring to summer, while it decreased from summer to autumn. Ficus trichopoda showed 

significantly higher foliar phosphorus concentration in spring compared to summer, while 

the average concentration in spring for Syzygium cordatum was significantly higher 

compared to winter, summer and autumn. The results contribute to a better understanding 

of the seasonal variation in foliar biochemicals of evergreen tree species in subtropical 

regions globally and are the first reported for South Africa.  

The fact that foliar pigments vary little across seasons for most of these evergreen tree 

species, support the notion that the basic processing mechanism of photosynthesis is similar 

at foliar biochemical level for most of the species. On the other hand, the high variability of 

foliar nitrogen in the growth season suggests that there are differences between species in 

nitrogen remobilisation and partitioning for different plant parts during these seasons.  
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The six evergreen tree species had more significantly (p < 0.05, Bonferroni corrected) 

different comparable pairs for foliar pigments (67 %) and nitrogen (73 %) in the spring 

season, compared to the other three seasons. A higher number of significantly different 

pairs was observed for foliar nitrogen in summer (67 %) and autumn (60 %), compared to 

the foliar pigments and phosphorus. Species were in fact poorly separable using foliar 

phosphorus only, where < 53 % was significantly different across all four seasons. It is 

therefore more likely that species will be more separable by means of their foliar proteins 

and starches related to nitrogen rather than their foliar pigments. The findings support the 

importance of the SWIR bands for tree species classification (Martin et al., 1998; Huber et 

al., 2008; Immitzer et al., 2012). 

 

7.3. Most important bands for tree species classification across seasons  

The most important spectral bands for the classification of the six evergreen tree species 

were determined through the relationship between leaf reflectance spectra and foliar 

nutrient (nitrogen and phosphorus) concentration across the four seasons. Twenty-four 

spectral bands, which are associated with known absorption features of plant properties, 

were initially selected where the coefficient of determination (R²) between leaf spectra and 

nutrient concentration were high across all four seasons for both foliar nitrogen and 

phosphorus. These include absorption regions for pigments (500, 510, 670, 680, 700 and 

760 nm), foliage biomass (740 nm and 780 nm), leaf water content (860 nm and 1240 nm), 

as well as for starch, lignin, tannins, pectin, protein and cellulose (1630, 1690, 1900, 2000, 

2050, 2060, 2130, 2180, 2200, 2210, 2240, 2250, 2300 and 2380 nm). 

The relationship between foliar nutrients and leaf spectra varied for both nitrogen and 

phosphorus, contributing to an improved understanding of this relationship for evergreen 

tree species in subtropical forests. Foliar nitrogen showed a higher coefficient of 

determination across the selected bands and four seasons (maximum average R² = 0.8), 

compared to foliar phosphorus (maximum average R² = 0.38). The most important bands for 

predicting foliar nitrogen were associated with protein, cellulose, lignins, tannins and pectin 

bands in the SWIR and to a lesser degree, the foliage biomass in the red-edge region 

(Figure 7.1). The spectral bands which resulted in the highest coefficients of determination 

for phosphorus were also located in the SWIR and associated with lignin, waxes, protein and 

nitrogen. The spectral band combination 2130 nm and 2240 nm yielded the highest 

coefficient of determination between leaf spectra and foliar nitrogen across all four seasons, 

followed by 2180 nm and 2210 nm, then 1630 nm and 1690 nm and lastly foliage biomass 

bands 740 nm and 780 nm (Figure 7.1). 

The poor relationship between leaf spectra and foliar nutrient concentration during winter 

can be ascribed to the fact that nutrients are stored in older leaves of evergreen tree 

species during the dormancy period. The increased relationship between leaf reflectance 
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and nutrient concentration during the spring, summer and autumn seasons, on the other 

hand, reflects the dynamic nature of nutrient partitioning and relocation to other plant 

parts during the growth season. The error in predicting nutrients from leaf spectra is lowest 

for individual seasons, however increase when models from one season is applied to 

another. The red-edge region, often used as a surrogate for predicting leaf nitrogen, was 

found to be accurate in predicting leaf nitrogen only in the winter, whereas the SWIR bands 

outperformed the red-edge band during the spring, summer and autumn seasons. The SWIR 

bands are therefore crucial to the decoupling of chlorophyll and other co-variants of 

nitrogen from foliar nitrogen. Considering that the foliar biochemical analysis also indicated 

less significantly different species pairs for foliar pigments than for foliar nitrogen, it 

therefore becomes less likely that the red-edge band in RapidEye and WorldView-2 would 

be sufficient in decoupling pigments and nutrients for the improvement of tree species 

classification. 

Table 7. 1: Maximum linear regression coefficient of determination (R²), extracted from a matrix showing the 
relationship between selected nutrient concentrations and spectra for band regions known to relate to leaf features, 
listed per season and nutrient.  

Foliar 
nutrient 

VI Band 
combination 

●
 

Associated parameter Winter Spring Summer Autumn Average 

N 

2130, 2240 Protein  0.09
*
 0.80

*
 0.77

*
 0.71

*
 0.59 

2180, 2210 Protein & cellulose 0.06
*
 0.60

*
 0.63

*
 0.59

*
 0.47 

1630, 1690 
Lignin, tannins, pectin & 
protein 

0.06
*
 0.66

*
 0.47

*
 0.33

*
 0.38 

740, 780 Foliage biomass 0.08
*
 0.62

*
 0.49

*
 0.49

*
 0.42 

P 
2050, 2380 

Lignin, waxes, protein & 
nitrogen 

0.28
*
 0.24

*
 0.09

*
 0.38

*
 0.25 

2060, 2380 Protein, nitrogen & lignin 0.20
*
 0.25

*
 0.13

*
 0.36

*
 0.24 

● Two-band combinations yielding high correlations were extracted from regions known to be related to pigments 
(Gitelson et al., 2002; Gitelson and Merzlyak, 2004; Gitelson et al., 2006); foliage biomass (Mutanga and Skidmore, 2004; 
Cho et al., 2007); leaf water content (Gao, 1996); proteins & starches (Curran, 1989); waxes & protein/enzyme D-ribulose 
1-5-diphosphate carboxylase@2050, tannic acid@1660, lignin, pectins & protein/enzyme D-ribulose 1-5-diphosphate 
carboxylase@1680, lignin@2380 (Elvidge, 1990). 
*
 –significant (p < 0.01)  

 
The twenty-two spectral bands, associated with plant properties and which showed a high 

coefficient of determination between leaf spectra and foliar nitrogen, were found to be an 

effective method for data reduction of the hyperspectral data of the six evergreen tree 

species. The classification of the six tree species showed optimum results where the 

hyperspectral data were reduced to the 22 bands followed by PLS transformation, which 

removes the correlation between the bands, the reduction of the number of components 

used and a RF decision-tree algorithm for the classification. The average overall accuracy of 

ten iterations of the classification for spring was 84±3.6 % with the lowest user accuracy at 

79±11.2 % for Ficus trichopoda. In comparison an optimised PCA-RF classification had an 

overall accuracy of 78±5 % with the lowest user’s accuracy at 69±12.2 % for Ficus 

sycomorus.   
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The classification of the six evergreen tree species using 1 nm leaf spectra reduced to 22 

selected bands and a 100 iteration of the PLS-RF in R Studio, resulted in average overall 

accuracies > 90 % (Table 7.2). In comparison, the classification of the leaf reflectance data, 

resampled to the bands of the multispectral sensors WorldView-2 and RapidEye, showed 

lower overall and user’s accuracies. Using the most important spectral bands at 

hyperspectral scale therefore result in a significant higher overall accuracy of between 15 % 

and 29 % across the four seasons compared to the bands of the multispectral sensors. 

Table 7. 2: Classification results of leaf and canopy reflectance data across four seasons using the PLS-RF algorithm. The 
average overall accuracy and standard deviation of 100 iterations are showed with the lowest user’s accuracy of the tree 
species for leaf-level data and vegetation types for canopy-level data.  

 Winter Spring Summer Autumn 

Leaf reflectance for 
22 bands at  
hyperspectral scale. 

90±3.5 
(FT 86±9.2) 

91±2.8 
(FT 86±6.3) 

92±2.7 
(SC 88±7.5) 

92±2.7 
(FT 85±7.6) 

 
Leaf reflectance 
resampled to WV2 
bands. 

68±4.7 
(FT 54±12.8) 

76±3.7 
(FT 69±8.3) 

71±4.2 
(FT 58±12.6) 

74±4.4 
(SC 62±8.2) 

 
Leaf reflectance 
resampled to RE 
bands. 

63±4.4 
(FT 48±10.5) 

70±4.1 
(FT 63±10.2) 

63±4.3 
(FT 44±15.1) 

70±4.2 
(FT 50±13.5) 

Acronyms: FT = Ficus trichopoda; SC = Syzygium cordatum. 

The robustness of the 22 most important hyperspectral bands identified for the 

classification of the six evergreen tree species should however be assessed for other tree 

species and climatic zones. In the Introduction it was postulated that the red-edge band of 

RapidEye and WorldView-2 would possibly contribute to improved condition monitoring and 

classification of tree species. Yet the results of this study indicate that an increase of the 

number of bands, particularly those in the SWIR, as well as narrow spectral band ranges are 

likely to contribute to significant increases in classification accuracies of tree species. 

 

7.4. Would multiple seasons improve tree species classification?  

The aggregation of foliar biochemical data from all four seasons increased the number of 

significantly different species pairs for foliar carotenoids (from 67 % to 73 %) and 

phosphorus (from 53 % to 60 %), it did not increase the maximum significant different 

species pairs attained for chlorophyll and nitrogen in spring (67 % and 73 % respectively). 

The analysis emphasized the importance of nitrogen for species discrimination, but provided 

only a narrow view on the widely complex molecules associated with nitrogen and which 

may vary between species more than the total foliar nitrogen concentration. Using leaf 

spectra from multiple seasons to predict foliar nitrogen also showed a slight decrease in the 

error of prediction for spring, although no major changes were seen for summer and 

autumn, while the error increased between 4 % and 7 % for the winter season. The 
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prediction of foliar phosphorus decreased in prediction error when data from multiple 

seasons were used similar to the foliar biochemical results. 

The overall, producer’s and user’s accuracy of the classification results using the most 

important 22 hyperspectral bands for six tree species showed no statistically significant 

differences between the multi-season data and accuracies attained in summer and autumn. 

The use of the multi-season data for the two multispectral sensors resulted in a significant 

(p < 0.005, Bonferroni corrected) increases in the average overall accuracies of 8.5 % for 

WorldView-2 and 9.7 % for RapidEye. The increase in producer’s and user’s accuracies from 

the single seasons with the highest accuracies to the multi-season classification varied 

according to species. The multi-season classifications also decreased the number of species 

pairs which overlapped as well as the percentage of overlap between species pairs. This 

study is the first to compare the classification accuracies of six evergreen tree species using 

leaf-level data from single and multiple seasons at both hyperspectral and multispectral 

sensor scales. The improvements found in the classification for multispectral sensors 

remains to be assessed for other species and climatic zones to assess the validity of these 

findings.  

The identification of three of the six tree species was problematic on RapidEye images. 

Bruguiera gymnorrhiza has narrow canopies of about 2 m in diameter and often grows 

underneath closed-canopy stands of Avicennia marina. Pixel impurity prohibited the 

identification of canopies of Syzygium cordatum while an insufficient number of known 

locations of Ficus sycomorus limited the classification of this species at image level. The 

remaining tree species Avicennia marina, Ficus trichopoda and Hibiscus tilliaceus were 

therefore mapped at image level, as well as a number of predominant vegetation types in 

the study area. Closed-canopy stands of Avicennia marina were mapped, although with the 

likeliness of hosting Bruguiera gymnorrhiza underneath the forest canopy. Ficus trichopoda 

often occur as large canopies forming dense swamp forests, leaving Hibiscus tilliaceus as the 

only species occurring as isolated canopies or clusters of trees. In the end nine vegetation 

types were used for classification, of which three were predominantly associated with the 

original six evergreen tree species, with the addition of Bruguiera gymnorrhiza co-occurring 

with Avicennia marina. 

The average overall accuracy (of 100 iterations) increased in general when canopy 

reflectance data from multiple seasons were used for the classification of the nine 

vegetation types compared to the single season with optimal performance (summer 

average OA = 80±3.1 %). The aggregation of the autumn and spring seasons showed a 

significant (p < 0.05, Bonferroni corrected) increase of 5 % whereas the aggregation of 

autumn, winter and spring seasons, as well as all four seasons separately, increased the 

average overall accuracy significantly by 6 %. An increase in the user’s accuracies of some 

vegetation types was observed, as well as a reduction in the number of and percentage of 

class overlaps, which is similar to what was observed when multiple season data for the 



 

123 
 

classification of the leaf reflectance data of the six tree species using were used. The 

prediction of the nine vegetation types (using the randomForest algorithm in ModelMap of 

R Studio) for the RapidEye image stack of autumn, winter and spring also resulted in higher 

overall accuracies and the user’s accuracies of species which showed class overlaps, such as 

Acacia kosiensis clusters as well as dune, lowland and mangrove forests. The extent of the 

classes on the predicted map was also closer to the true extent compared to the prediction 

of the vegetation types using the summer RapidEye image. 

Class confusion between certain species and vegetation types remains a problem in the 

multi-season classifications. Further refinement of the models may reduce this overlap. For 

example, the PLS-RF algorithm was not optimised for image classification and was unable to 

run the prediction on a single image, regardless of extending the memory size limit to 80 Gb. 

The randomForest algorithm was therefore used to predict the vegetation types for the 

study. The randomForest algorithm does not remove the correlation between bands 

through a transformation process, as is the case with the PLS-RF algorithm. Further 

optimisation of the algorithm can be done through assessing optimal values of ntree and 

mtry. It is however possible that further increases in classification accuracies with 

multispectral sensors may only be possible where the number of bands across the 

electromagnetic spectrum is increased and the range of the bands reduced and the spatial 

resolution increased. WorldView-2 with eight bands and 2 m spatial resolution would 

therefore be a suitable sensor to further assess for improved classification accuracies using 

multiple seasons. The benefit of the increase in overall and user’s accuracies, as well as the 

accuracy of the prediction, should be weighed against the increase cost of using multi-

season imagery.  

 

7.5. Conclusion 

The study provides new understanding of the seasonal variation of foliar biochemicals of six 

evergreen tree species in the subtropical forests in the KwaZulu-Natal Province of South 

Africa. The majority of the species showed no significant seasonal variation in foliar 

pigments across the four seasons (winter, spring, summer and autumn), however, more 

statistically significant differences were seen in foliar nitrogen and less in foliar phosphorus. 

Differences were species specific. The null hypothesis was therefore only partly true for 

foliar pigments, at the same time the alternative hypothesis was partly true, in that these six 

evergreen tree species showed some statistically significant differences across the four 

seasons. Seasonally unique profiles of foliar chemicals are therefore species specific. The 

number of foliar chemicals was however limited to two pigments and two nutrients. Should 

more foliar biochemical have been analysed, particularly compounds of foliar nitrogen, 

more subtle differences between species may have been emphasized. 
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In addition, the study contributes to our knowledge of the varying relationship between leaf 

spectra and foliar nutrients across seasons for these evergreen tree species in subtropical 

forests. The coefficient of determination was highest between foliar nitrogen and leaf 

spectra during spring, summer and autumn, although low in winter. The seasons associated 

with flowering for the six tree species, were therefore more useful for the prediction of 

foliar nitrogen, compared to the dormant season, even though evergreen tree species are 

known to store nutrients in older leaves. The coefficient of determination was inadequate to 

predict foliar phosphorus. Foliar nitrogen showed a high coefficient of determination (R2 > 

0.71) between leaf spectra and foliar concentration during the spring, summer and autumn 

seasons for narrow bands associated with absorption features of proteins compared to the 

red-edge region. Season-specific prediction models were found to be more accurate in 

predicting foliar nitrogen than prediction models where data from all seasons were used. 

The SWIR region is important for the improved prediction of foliar nitrogen of these tree 

species and the decoupling of foliar nitrogen from the chlorophyll red-edge. The results 

support the previous evidence that the SWIR region is important for species discrimination. 

Twenty-two narrow bands, known to be associated with plant properties, were found to be 

effective for data reduction of the hyperspectral data. The PLS-RF algorithm effectively 

removed correlation and classified the tree species with an increase in the average overall 

and user’s accuracies compared to the PCA-RF algorithm. The PLS-RF algorithm was useful 

for the classification of leaf and canopy spectra, however was unable to predict species for 

an image, as it is not yet optimised for image classification. 

Multi-seasonal data improved tree species classification for multispectral sensors with a few 

bands. The classification, in which multi-season leaf spectra or canopy data from RadpiEye 

was used, resulted in higher overall and user’s accuracies when compared to the single-

season classifications. In contrast, the use of multi-season data for the classification of leaf 

spectra with 22 narrow bands, showed no statistically significant differences compared to 

the classification results of the single season in which the highest overall accuracy of all 

single seasons had been obtained. It remains to be determined whether multi-seasonal data 

will also increase the overall and user’s accuracies of tree species classification if other 

multispectral sensors with more spectral bands than RapidEye (5 bands), such as 

WorldView-2 with eight bands, are used. The value of an increased classification accuracy 

should however be measured against the increase of cost when using images from multiple 

seasons. In this regard, the alternative hypothesis was proved true in part in that multi-

season information improve species discrimination. 
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APPENDIX 1: COMPARISONS BETWEEN PREDICTED VEGETATION TYPE MAPS 

FOR SUMMER AND THE MULTI-SEASON CLASSIFICATIONS. 

This Appendix offers a more detailed discussion on the prediction of vegetation types 

resulting from Chapter 6. The predicted vegetation types from the summer and multi-

season RapidEye imagery are considered for various locations in the study area and in some 

instances compared to the KZN land cover classification of 2008. A number of images are 

shown for each location in the subsections below, including (A) an RGB composite (Bands 3-

2-1) of the RapidEye image for the summer of (January) 2012; (B) an RGB composite (Bands 

3-2-1) of the WorldView-2 image for the summer of (December) 2010; (C) an RGB composite 

of the 20 cm colour orthophotos taken during a LiDAR campaign of autumn 2013; (D) the 

KZN land cover classification with classes listed in Figure A1.1; (E) the predicted vegetation 

types from the summer RapidEye images and (F) the predicted vegetation type classes from 

the selected multiple seasons of RapidEye images. 

 

Figure A1. 1: Land cover categories of the KwaZulu-Natal land cover data set (Ezemvelo KZN Wildlife, 2011). 

 

1. Bridge over the Narrows on the way to St Lucia 

The vegetation types located at point 1 in Figure A1.2(A) consist mainly of macrophytes 

Juncus kraussi and Phragmites australis in the channel (Narrows), with predominantly 

Hibiscus tilliaceus and Avicennia marina west of the macrophytes. Figure A1.2 shows a 

section of the vegetation south of point 1. All three satellite images, including RapidEye (A), 

WorldView-2 (B) and the 20 cm colour orthophotography (C), show that the macrophytes 

and trees are clearly discernible, increasing in separability from A to C. The KZN classification 

(D) correctly indicates the mangrove forest at point 1, though identifies the macrophytes as 

degraded bushland or degraded forest. The predictions from RapidEye images better 

identifies the macrophyte vegetation zone and the Hibiscus tilliaceus along the channel. The 

predicted vegetation types from the summer RapidEye image (E) shows the mangrove forest 

to the west of point 1 as a mixture of dryland, lowland, Acacia kosiensis and Hibiscus 
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tilleaceus, whereas the multi-season image resulted in a pure-mangrove forest stand. 

Further validation of this cluster is required to assess the accuracy of the prediction. The 

patch in the forest may be a degraded path or where Bruguiera gymnorrhiza forms the top 

canopy rather than Avicennia marina as is the case in Figure A1.4. 

Point 2 (Figure A1.2-A) is a marsh consisting predominantly of Phragmites australis. In the 

KZN land cover data (Figure A1.2 D) it is mainly classified as grassland, while the predicted 

vegetation types (E – F) showed it as a mixture of Phragmites australis and mangrove fern 

wetland (AA – associated with Acrostichum auereum). The predicted vegetation types of the 

multi-season RapidEye (F) better identifies this area as being dominated by Phragmites 

australis while the remaining patches of mangrove fern wetland may have resulted from the 

spectral overlap with muddy areas, yet should be validated with field surveys. 

The extent of Phragmites australis and Hibiscus tilleaceus at the entrance to the boat yard at 

point 3 (Figure A1.5-A) is better predicted with the multi-season RapidEye images (F) 

compared to the summer image (E), and improves on the vegetation types of the KZN land 

cover data (D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. 2: Maps of the St Lucia bridge over the narrows showing RGB composites of satellite imagery of (A) RapidEye 
January 2012, (B) WorldView-2 imagery December 2010 and (C) 20 cm colour orthophotos taken in the autumn of 2013; 
(D) the KZN 2008 land cover classes; (E) the predicted vegetation types from the summer RapidEye images and (F) the 
predicted vegetation types of the multi-season RapidEye images. 



 

146 
 

 

 

Figure A1. 3: Photograph taken in April 2011, facing in a westerly direction near point 1. Photo by H. van Deventer 

 

Figure A1. 4: Mangrove forests consisting of Avicennia marina dominating the canopy and Bruguiera gymnorrhiza in the 
undercanopy. Photo taken April 2011 by H. van Deventer. 

 

 

Figure A1. 5: View of the boatyard, facing an easterly direction. Photo taken April 2011 by H. van Deventer.  
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2. Honeymoon Bend 

Expert knowledge would be required to verify the vegetation types of points 1 and 2, for the 

example of Honeymoon bend (Figure A1.6-A). These areas were not accessible through 

commercial boat trips, and therefore it is unclear whether the vegetation at point 1 is truly 

macrophytes, or Potamogeton perfoliatus. The prediction from the multi-season RapidEye 

incorrectly predicts the vegetation at point 1 as mangrove forests, while the prediction from 

the summer RapidEye image are more correct as it classifies them as seasonal wetlands, 

which include a range of graminoids. The vegetation on the island at point 2 is classified as 

predominantly mangrove forests, similar to the visual interpretation of Rautenbach (2015) 

and the classified WorldView-2 image of Lück-Vogel et al. (Submitted). The predicted extent 

of the mangroves and reeds appear close to the true extent of these vegetation types at 

point 3, where a number of sites were visited during field surveys. 

 

Figure A1. 6: Maps of Honeymoon bend showing RGB composites of satellite imagery of (A) RapidEye January 2012, (B) 
WorldView-2 imagery December 2010 and (C) 20 cm colour orthophotos taken in the autumn of 2013; (D) the KZN 2008 
land cover classes; (E) the predicted vegetation types from the summer RapidEye images and (F) the predicted 
vegetation types of the multi-season RapidEye images. 
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3. Estuary Mouth 

The vegetation types of the wetland at point 1 in Figure A1.7(B) should be verified through 

field surveys. In the predicted map of vegetation types using the summer RapidEye image 

(E), the area is predicted to be dominated by Hibiscus tilliaceus, while Ficus trichopoda 

appears to dominate the area in the predicted map where the multi-season RapidEye 

images were used (F). 

RapidEye (E and F) were able to detect the patch of Phragmites australis at point 2 as well as 

the mangrove forest at 3. The shallow muddy water at 4 was however incorrectly classified 

as mangrove wetland in the prediction where multi-season images were used (F). 

 

Figure A1. 7: Maps of the St Lucia estuary mouth showing RGB composites of satellite imagery of (A) RapidEye January 
2012, (B) WorldView-2 imagery December 2010 and (C) 20 cm colour orthophotos taken in the autumn of 2013; (D) the 
KZN 2008 land cover classes; (E) the predicted vegetation types from the summer RapidEye images and (F) the predicted 
vegetation types of the multi-season RapidEye images. 
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4. Maphelane node 

As discussed in Chapter 6 of the main thesis, the prediction of Hibiscus tilliaceus from 

RapidEye is suspected to overlap spectrally with another vegetation type and hence its full 

extent appears to be over predicted. The predictions of the summer and multi-season 

RapidEye images, for example, show a large extent of Hibiscus tilliaceus at point 1 as well as 

south of the uMfolozi River (northly channel in Figure A1.8-B) and along the sand dunes on 

the coast side. The multi-season image resulted in a larger extent of Ficus trichopoda at 

point 1 (F), compared to the prediction of the summer RapidEye image (E). 

 

Figure A1. 8: Maps of the Maphelane node showing RGB composites of satellite imagery of (A) RapidEye January 2012, 
(B) WorldView-2 imagery December 2010 and (C) 20 cm colour orthophoto’s taken in the autumn of 2013; (D) the KZN 
2008 land cover classes; (E) the predicted vegetation types from the summer RapidEye images and (F) the predicted 
vegetation types of the multi-season RapidEye images. 
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For the wetland at point 2, the summer RapidEye image (E) predicted the occurrence of 

mangrove forests for parts of the wetland while the multi-season RapidEye image predicted 

Ficus trichopoda on the edges of the wetland. The wetland is dominated primarily by 

Phragmites australis / mauritanus and Cyperus papyrus with a more diverse number of 

shrub and tree species on the fringe (Figure A1.9). In this case the prediction from the multi-

season RapidEye images appears closer to the true extent of the vegetation, though the 

fringe vegetation requires further refinement. 

The prediction of the dune vegetation at point 3 requires further validation. Both the 

predictions from the summer and multi-season RapidEye images resulted in the expected 

mixture of dune forests (DF) and Acacia kosiensis (AK), though spectral confusion of 

mangrove forests with another species is suspected, as well as an over prediction of Hibiscus 

tilliaceus. 

 

 

Figure A1. 9: View over the wetland at the Maphelane node of the iSimangaliso Wetland Park. The photo was taken in 
October 2011 by H. van Deventer facing a southerly direction. The wetland is appears to be predominantly Phragmites 
australis/mauritanus and Cyperus papyrus. The dune forests (DF) are visible in the background. 
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5. Lake Futululu and the DukuDuku Forest 

Three wetlands are shown to the west, north-east and south-east of the DukuDuku Forest in 

Figure A1.10(B). The Futululu wetland at point 1 has a longitudinal extent of ± 7 km from 

north to south and is located to the west of the DukuDuku Forest. The wetland is dominated 

by Cyperus papyrus. The summer image of RapidEye (E) incorrectly predicted a dominance 

of Hibiscus tilliaceus and mangrove forests for the wetland, whereas the prediction of the 

multi-season RapidEye images resulted in the prediction of Ficus trichopoda in the north and 

south, with mangrove fern wetlands (AA – associated with Acrostichum auereum) predicted 

for the centre. Further refinement of the spectral overlap between the Acrostichum 

auereum and Cyperus papyrus will be required, while validation of the vegetation type and 

biomass at the northern and southern tips will resolve uncertainty. 

 

Figure A1. 10: Maps of the wetlands surrounding the DukuDuku Forest showing RGB composites of satellite imagery of 
(A) RapidEye January 2012, (B) WorldView-2 imagery December 2010 and (C) 20 cm colour orthophoto’s taken in the 
autumn of 2013; (D) the KZN 2008 land cover classes; (E) the predicted vegetation types from the summer RapidEye 
images and (F) the predicted vegetation types of the multi-season RapidEye images. 
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The wetland at point 2, north-east of the DukuDuku Forest, consists predominantly of 

grasses. The vegetation types from the multi-season RapidEye images (F) were closest in 

predicting the vegetation types of the wetland compared to the types predicted from the 

summer RapidEye images (E). 

The wetland to the south-east of the DukuDuku Forest at point 3, similar to the Futululu 

wetland, showed a spectral overlap with mangrove fern wetlands (AA – associated with 

Acrostichum auereum) when the multi-season RapidEye images were used for predicting the 

vegetation types. The predicted mangrove forests resulting from the summer RapidEye 

images (E) are clearly incorrect, though the vegetation type should be verified through field 

surveying.  

 

6. East of the Narrows 

A variety of seasonal wetlands occurs to the east of the Narrows (Figure A1.11), and consists 

mainly of graminoid species (Figures A1.12 and A1.13). In general the vegetation types 

predicted from the RapidEye images (E – F) aptly show macrophyte (PA - Phragmites 

australis) or graminoid (SW – seasonal wetlands) for these areas. Mangrove forests are 

however incorrectly predicted to occur between these wetlands which may be a result of 

spectral overlap with other tree species. At point 1 (Figure A1.11-C) the prevalence of 

mangrove forest should be validated. At point 2 the prediction of Hibiscus tilliaceus is more 

likely to be a variety of species forming the swamp forest along the Mfabeni stream. 
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Figure A1. 11: Maps of the wetlands to the east of the Narrows showing RGB composites of satellite imagery of (A) 
RapidEye January 2012, (B) WorldView-2 imagery December 2010 and (C) 20 cm colour orthophoto’s taken in the 
autumn of 2013; (D) the KZN 2008 land cover classes; (E) the predicted vegetation types from the summer RapidEye 
images and (F) the predicted vegetation types of the multi-season RapidEye images. 
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Figure A1. 12: Photo of a seasonal wetland dominated by ferns. The wetland is situated to the east of the Narrows en 
route from the Benghazi gate to Cape Vidal. Photo taken by H. van Deventer April 2011.  

 

Figure A1. 13: Photo of a seasonal wetland dominated by water and Juncus kraussi. The wetland is situated to the east 
of the Narrows en route from the Benghazi gate to Cape Vidal. Photo taken by H. van Deventer April 2011. 


