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Abstract 

This study determined whether an Advanced Manufacturing System could be optimised, more 

effectively than by traditional methods, using new and novel computational intelligence 

techniques. An Advanced Manufacturing System can be described as highly automated and 

highly complex systems that strive for global competitiveness. In the context of this study, these 

systems aim to compete in a Mass Customisation Manufacturing market. Traditional optimisation 

methods refer to methods based on mathematical models, experience, or industry best practice. 

Computational Intelligence refers to computational methods inspired by natural systems and 

processes. This includes, but is not limited to, evolutionary intelligence, Artificial Neural 

Networks, swarm intelligence, and fuzzy systems. 

This study investigated the optimisation of the manufacturing system from both a planning and 

an operations perspective. Research was carried out to identify Computational Intelligence 

paradigms and algorithms for Advanced Manufacturing System planning and operations 

optimisation. Static and dynamic simulation models of an Advanced Manufacturing System, for 

the respective perspectives, have been developed in order to simulate a manufacturing system 

designed to produce a hypothetical range of customisable men’s wristwatches on a mass scale at 

a competitive cost. 

A new Biogeography-Based Optimisation algorithm was developed to optimise an aggregate 

production plan using static simulation models. This algorithm was implemented to find the 

lowest production cost for the wristwatch production system case study. This algorithm produced 

a lower cost plan than a Simulated Annealing algorithm with a lower impact on workforce. A new 

Distributed Dynamic Selection Rule Strategy was developed for optimising production 

scheduling using dynamic simulation models. This new strategy was inspired by the Harmony 

Search principle and was based on traditional selection rules for scheduling. This strategy was 

able to produce statistically significantly lower average order lead times than three out of four 

traditional selection rules tested. 
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   Introduction 
 

This chapter provides research background and introduces the problem spaces and research 

approaches taken in this research study. Research outputs produced during this study are listed, and 

an outline of this thesis is provided. 

1.1 Research background 

A large proportion of the global manufacturing sector is striving to achieve Mass Customisation 

Manufacturing [1]. The driver for this is the demand from the markets for unique custom products 

at affordable prices and reasonable lead times [1]. However, producing custom products at the same 

cost as high volume low variety manufacturing are conflicting objectives. Many researchers have 

devoted their attention to this problem from many perspectives. However, two main research areas 

have been identified as being fundamental and sufficiently different to focus on separately in an 

attempt to improve manufacturing system performance in order to approach full Mass 

Customisation Manufacturing - production planning and production scheduling. Computational 

Intelligence has emerged as a popular instrument to apply in the pursuit of optimising 

manufacturing systems for both maximising profitability as well as achieving Mass Customisation 

Manufacturing for maximum market share. 

An important advantage of the Computational Intelligence paradigm, in this context, is that the 

techniques involved produce sets of optimal and near-optimal solutions, from which the most 

acceptable solution can be selected. This way the decision makers still have make the final decision. 

The nature of most Computational Intelligence algorithms make them robust and adaptable to 

variations in system parameters and characteristics. For this reason they are well suited to 

applications in environments based on paradigms that make use of Computer-Integrated 

Manufacturing infrastructure, and are designed to be flexible. The application of Computational 

Intelligence optimisation techniques will assist modern manufacturing systems to be more 

responsive and adaptable to variations in product design due to changing customer demands. This 

is an important consideration for existing manufacturing enterprises in order to maintain 

competitive production rates. 

1.2 Research overview 

The research question posed was: Can an Advanced Manufacturing System, striving for Mass 

Customisation Manufacturing, be optimised more effectively than by traditional methods, using 

novel Computational Intelligence principles? An Advanced Manufacturing System can be 

described as systems that strive for economic competitiveness in Mass Customisation 
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Manufacturing through high levels of automation. Traditional optimisation methods refer to 

methods based on industry best practice. 

1.2.1 Aim and objectives 

The aim of this study was to research, develop, and test novel Computational Intelligence-based 

optimisation methods built on simulation models for Advanced Manufacturing Systems, at the 

planning and scheduling levels. The objectives identified at the outset of this study were: 

1. Research the state of manufacturing strategies and manufacturing system types for 

compatibility with the research approach and the state of Computational Intelligence as a 

technology. 

2. Develop manufacturing system models for implementation and testing of planning and 

scheduling optimisation techniques. 

3. Research and develop a Computational Intelligence-based optimisation technique for 

optimising production planning activities within the manufacturing system type identified 

in research. 

4. Research and develop a Computational Intelligence-based optimisation technique for 

optimising production scheduling within the manufacturing system type identified in 

research. 

5. Deploy Computational Intelligence optimisation techniques in computer simulations of a 

case study production system to evaluate the performance of the techniques against 

traditional planning and scheduling methods, by analysing and interpreting computer 

simulation results, and draw conclusions. 

1.2.2 Method 

The methods used in this study relied on the use of simulation modelling for testing and 

experimentation. Static and dynamic simulation models were created based on a hypothetical 

product family-based product range designed for Mass Customisation Manufacturing. These 

models were developed using a classical simulation model development process which included 

verification and validation of the model behaviour. Simulation models were used due to the fact 

that no real-world system was available for this study. Two static system models were developed 

for investigating the production planning problem, and a dynamic simulation model was developed 

for investigating the production scheduling problem. 
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Analysis of the results achieved by the implementation of the newly developed optimisation 

methods for the planning and scheduling problems, was carried out by comparison. An additional 

optimisation algorithm was written based on an established Computational Intelligence paradigm 

as found in literature, in order to measure the performance of the newly developed planning 

optimisation algorithm. The performance of the newly developed scheduling strategy was 

compared to the performance of traditional scheduling rules commonly used for the same 

application as found in literature. 

1.2.3 Research contribution 

The contribution of this research study was threefold. The first was the development of a dynamic 

manufacturing system simulation model designed for investigating Mass Customisation 

Manufacturing through single unit order handling. In this study this model was used as the basis for 

the development of a new distributed dynamic scheduling strategy. 

The second contribution made in this study was the development of a new optimisation algorithm 

for Aggregate Production Planning. This algorithm was based on the principles of Biogeography-

Based Optimisation, which has never been used for this specific application. This algorithm was 

able to produce lower cost aggregate production plans than traditional planning methods. 

The third contribution made in this study was the development of a new distributed dynamic 

scheduling strategy to address the scheduling problem caused by the pursuit of Mass Customisation 

Manufacturing through single unit order processing by a flexible flow shop manufacturing system. 

The implementation of this strategy achieved lower average order lead times than traditional 

scheduling methods. 

1.3 Thesis outline 

Chapter 2 gave more detailed research background and reviewed literature relevant to the aims and 

objectives of this research study. Chapter 3 developed three simulation models, two static and one 

dynamic, which formed the basis of further development of the research toward improving system 

performance from the perspectives of production planning and scheduling. Chapter 4 documented 

the development of a new optimisation algorithm for Aggregate Production Planning based on the 

two static simulation models of Chapter 3. Chapter 5 presented the development of a new approach 

for dynamic manufacturing scheduling applied to the dynamic simulation model of Chapter 3. 

Finally, Chapter 6 summarised the findings and conclusions drawn during this research study, 

related these back to the objectives stated here, and offered topics for future work 
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   Research Context and Literature Review 
 

This chapter highlights past research into the facilitation of Mass Customisation Manufacturing 

(MCM), and the application of Computational Intelligence (CI) in manufacturing system 

optimisation research. The purpose of this chapter is to review and interpret the relevant literature 

to set the context and direction of this research study. 

2.1 Mass Customisation Manufacturing 

This section presents background information and literature focussed on the facilitation of MCM 

from an economic and a practical perspective. Economically producing custom products on a 

mass scale is analysed from a holistic perspective and the suitability of manufacturing strategies 

discussed. The evolution of a manufacturing system from the perspective of a product platform is 

also discussed and put into context for the purposes of this study. 

2.1.1 Definition of Mass Customisation 

Mass Customisation (MC) was first defined by Joseph Pine in 1993 [2] as the production of 

individually customised goods through the use of flexible and highly responsive manufacturing 

systems at a cost near that of mass produced goods. This is a broad definition which can take 

many forms at a practical level. 

In the pursuit of MC the most popular approaches have been based on Delayed Product 

Differentiation (DPD), also known as process postponement [3]. Many different implementations 

of DPD exist. Each is characterised by the point in production at which differentiation occurs, 

from engineer-to-order, where each instance of the product is designed to the customer’s 

requirements, to package-to-order, where differentiation only occurs at the packaging stage. 

In the context of this study, mass customisation is viewed as differentiation of the product during 

production, in other words differentiation is restricted to variants in the product family and is 

achieved while the product is in the manufacturing system. This is analogous to the mode of MC 

described as fixed resource design-to-order MC, according to MacCarthy, Brabazon, & Bramham 

[4]. This selection was made because it is believed that this is the best avenue for achieving MCM 

effectively. 

2.1.2 Considerations in the pursuit of Mass Customisation 

Fixed resource design-to-order MC is dependent on the inevitability that there will be a certain 

lead time involved in the transaction, as opposed to selecting a product off the shelf. This is due 

to the fact that the product only comes into being after the customer has set their specifications. 



6 
 

As a matter of opinion, a large proportion of customer satisfaction should be linked to the lead 

time for delivering the product to the customer. The other consequence of this situation is that, 

although the interface between manufacturer and customer can be made more direct through direct 

sales by the manufacturer to the end user, the experience of shopping for, and purchasing a 

product becomes more indirect with the wider implementation of online product configurators as 

has been found by Fogliatto et al. [1]. That is, unless demonstration products have been made 

available for the customer to experience before making a purchase. The value added by 

customisation and short lead time must outweigh the value lost by distancing the customer from 

experiencing the product before making a purchase. 

The fundamental aim for manufacturers in selling their goods is to maximise the value of the 

product as perceived by the end user, irrespective of whether the manufacturer produces parts or 

subassemblies of the end product, or the end product itself. It is vital for the manufacturer to focus 

on the factors that contribute to customer satisfaction. Research has shown that too wide a variety 

of feature options in a product family can have a detrimental effect on the supply chain [5]. It is 

important for a manufacturer to establish an optimal range of product variants and in turn feature 

variety. However, defining the best variety level is still a challenge for many manufacturing 

enterprises [6]. In this study, the assumption is made that the product variety on offer is designed 

in such a way that it effectively addresses the variation in customer requirements. 

Two more factors that traditionally relate to customer satisfaction are perceived added value 

through quality and functionality [7]. Mass Customisation Manufacturing attempts to address the 

latter by tailoring each unit to the preferences of the customer. Quality in the sense of defect 

detection and avoidance has a wide and active field of research associated with it, and as such 

will not be addressed in this study. It is assumed in this research study that product and process 

design are performed such that the quality of the end product is sufficient, and does not affect 

customer satisfaction. 

2.1.3 Systems for achieving Mass Customisation 

Important systems and concepts have been developed in research into achieving MC. 

Fundamentally, these are aimed at increasing the flexibility of the physical manufacturing system, 

and increasing the flexibility of the system governing the organisation of product range 

information. These are discussed in this section. 

2.1.3.1 Product information management 

Primary driving forces for a manufacturing system flexibility, in the pursuit of economic 

competitiveness, include the evolution of product variety and demand levels, along with advances 

in machine technology, which are considered as external forces [8]. It is proposed that the 
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manufacturing system needs to evolve with the products, both in terms of the product variety and 

demand levels within the product variety to maintain optimal operation. The timescale of 

manufacturing system evolution can be coupled to the timescale of product evolution and, for 

maximum competitiveness, changes in the manufacturing system must track changes in product 

demand and variety [6]. This study investigates the preparation for and reaction to this behaviour. 

In order to rationalise and keep track of the changes to the product variety, the concept of product 

family architecture is implemented through the use of product platforms during the development 

of the product range [9]. Product platforms are in turn linked to process platforms in the 

manufacturing system through the development of a Bill of Materials and Operations (BOMO) 

[10]. This approach is also an effective method for developing flexible BOMOs, also referred to 

as Generic Bills of Materials and Operations (GBOMOs), for facilitating scheduling of the same 

operations to be performed by different workstations depending on the load distribution and 

demand, in a Flexible Manufacturing System (FMS). This is a valuable characteristic which has 

been incorporated in this research study, in the case study. 

2.1.3.2 Production system architecture 

Manufacturing system configuration approaches showing the most potential in facilitating MC 

are FMSs, and Reconfigurable Manufacturing Systems (RMSs) [8]. Dedicated Manufacturing 

Systems are not considered due to the fact that they do not meet the requirements for volume as 

well as variety imposed by MC [11]. Flexible Manufacturing Systems possess the necessary 

flexibility and agility to facilitate MCM, but these tend to possess more capability and/or capacity 

than absolutely necessary, which implies that the capital investment may be higher than necessary 

[8]. Proper planning could limit this over-capitalisation. 

Reconfigurable Manufacturing Systems are defined to be tailored to exact processing and capacity 

requirements through modularity and scalability of workstations [8]. This is aimed at cutting cost 

at the setup of the manufacturing facility. However, whenever additional modules for 

functionality or capacity are required these will still need to be purchased, and whenever modules 

are required to be removed for similar reasons these will need to be stored at the manufacturer’s 

cost. There would also be considerable time and cost involved in the physical reconfiguration of 

such a system since workstation modules may be large and cumbersome. 

An early definition of the Flexible Manufacturing System concept was suggested by J.A. 

Collins [12]: “FMS combines the existing technology of NC manufacturing, automated material 

handling, and computer hardware and software to create an integrated system for the automatic 

random processing of palletized parts across various work stations in the system.”. 
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Assuming this definition of FMS, it can be argued that a manufacturing system can have 

characteristics of both FMS and RMS approaches integrated. Workstations can be modular to 

facilitate reconfiguration, while multiple workstations can be configured to perform similar 

operations if product demand requires this. This variation would only be necessary in the case 

where demand for a certain operation becomes inordinately high compared to the demand for the 

other operations involved in production, and can only be facilitated if the necessary base 

workstations are available for reconfiguration. To facilitate this, capabilities for other operations 

based on the same workstation could be reduced to increase the capability for the operation with 

increased demand. In this research study the basic manufacturing system configuration approach 

assumed is FMS, but may include an element of reconfigurability. 

2.2 Computational Intelligence 

Computational Intelligence has an active field of research in many different areas of application 

including medicine, financial analysis, and ecology [13]–[15]. Although traditional CI methods 

such as Genetic Algorithms (GAs), fuzzy systems, and Artificial Neural Networks (ANNs) have 

been applied in manufacturing systems research, they have yet to be fully accepted by industry 

[16]. The definition of CI adopted in this research study can be stated as: Methods of problem 

solving using computational technology incorporating intelligence derived from natural systems 

and phenomena. This definition aligns well with the definition held by researchers in the pure CI 

field [17], [18], as well as researchers and champions of applied CI [19]. The following 

subsections set the context of CI in manufacturing system research and review recent relevant 

developments. 

2.2.1 Computational Intelligence in context 

The concept of CI is viewed as a development and extension of the concept of Artificial 

Intelligence (AI), as such this may include topics that are regarded as AI such as ANNs, 

evolutionary computation, and swarm intelligence [17]. However, in order to avoid limiting the 

scope of the research to the more established CI/AI paradigms, the definition used here also 

included algorithms and methods based on fields such as biology, physics, and chemistry [18]. In 

order to effectively review the literature of CI, the context of CI was investigated first. 

A literature search analysis, carried out in March 2014, showed that the keywords “artificial 

intelligence” along with keywords relating to this study such as “flexible manufacturing systems” 

started receiving attention in the 1980s, with 10 % of the total search results coming from this 

decade. The prevalence climbed steeply from there with 28 % in the 1990s, 35 % in the 2000s, 

and 27 % in the 2010s to date. This analysis also produced on average eight times more results 

when using the keywords “artificial intelligence” versus “computational intelligence”. From this 
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it was clear that much more attention has been given to AI with regard to manufacturing systems 

research over CI, which is an indication that CI is not quite mature as a field of research in 

manufacturing systems. The literature most relevant in the context of this study has been 

reviewed. 

The optimisation of manufacturing systems has an active field of research with as many focus 

areas as there are subsystems. Renzi et al. [20] and Dias Ferreira [21] present exhaustive lists of 

literature of CI methods used in optimising AMSs. From the literature it is clear that some of these 

focus areas have received much attention in research through application of different methods 

that can be described as CI, among other methods. The different areas of application have been 

classified in two broad categories namely, manufacturing planning, and manufacturing 

operations. These two categories have been used as the basis for this study, and will be used as 

basis for the discussion of the relevant literature in the following subsections. In manufacturing 

planning, the emphasis was on Aggregate Production Planning (APP), and in manufacturing 

system operations, the emphasis was on scheduling. This was done to focus the research direction 

as much as possible. 

2.3 Manufacturing planning for Mass Customisation Manufacturing 

Manufacturing planning involves planning the use of resources for optimal production. This 

includes capacity planning and APP for variation in overall demand [3]. In order to focus attention 

on the manufacturing planning alone, the assumption was made that the facility layout is 

determined and fixed, in other words travel times between workstations are known and can be 

modelled by probability distributions. Material Requirements Planning (MRP) represents the link 

between the production plans, and the operational control system. However, it is more closely 

related to operational control and scheduling, and thus will be discussed later in this chapter. 

2.3.1 Capacity planning 

Capacity planning relies on many considerations, most important of which are maintaining system 

balance, frequency of capacity additions or adjustments, and the use of external capacity [3]. The 

capacity planning problem is trivial for a system which is required to produce a constant supply 

of a fixed set of products, but it becomes more complex when overall demand and product variety 

demand varies over time [22]. According to Ceryan & Koren [23], it is critical for long-term 

profitability, for a manufacturing enterprise to invest in the optimum quantities and types of 

capacity at the beginning of a planning horizon. 

In this study, the capacity planning activity represented an initial step towards APP, and was used 

to determine a range of average order arrival rates for the case study manufacturing system, 

described in Section 3.1, that produced acceptable system utilisation levels. According to Stecke 
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[24], the available capacity should be related to the aggregate production requirements as part of 

the solution to the production planning problem. 

2.3.2 Aggregate Production Planning 

Aggregate Production Planning is classified as a medium range planning activity, and is primarily 

used for intermediate time length adjustments to the system. This includes production rates, 

workforce levels, and inventory levels. A formal statement of APP has been suggested by Chase 

et al. [3]: “Given the demand forecast Ft for each period t in the planning horizon that extends 

over T periods, determine the production level Pt, inventory level It, and workforce level Wt for 

periods t = 1, 2, . . . , T that minimize the relevant costs over the planning horizon.”. Production 

planning strategies exist that are based around the variables mentioned in the definition statement 

above. The three standard planning strategies, according to Chase et al. [3], are as follows: 

1. Chase strategy, in which the production rates are matched to the order arrival rate exactly 

by the hiring and laying off of employees as the order arrival rates vary. 

2. Stable workforce – variable work hours, in which production is varied by varying the 

number of production hours worked, by implementing flexible shifts or overtime. 

3. Level strategy, in which the workforce is kept stable with constant output rates allowing 

for inventory build-up or shortages. 

These can be implemented individually as standard strategies, or they can be combined in various 

ways. It is often the case that a combination, or mixed strategy produces the best results, where 

mixed strategies are usually found through a manual charting process known as cut-and-try [3]. 

Emphasis can be placed on a single cost parameter, or the objective can be to minimise the overall 

cost over the planning period. Mathematical techniques such as linear programming, goal 

programming, and mixed integer programming have also been proposed for solving the APP 

problem [25]. One major obstacle to finding optimal plans using analytical models is the inherent 

imprecision and uncertainty in the input data such as demand forecasts [3]. 

Researchers have been occupied with the APP problem since the late 1960s, implementing goal 

programming models in order to account for the divergent objectives of the various system 

variables [26], [27]. A review of production planning models by Mula, et al. [28] revealed that 

fuzzy modelling has been the most popular technique used for addressing uncertainty in demand 

forecasting. Wang and Fang [29] attempted to account for uncertainty and imprecision using a 

fuzzy linear programming model for solving the APP problem with multiple objectives. 

Baykasoglu [25] proposed a model for solving the APP problem using a multiple objective Tabu 

Search (TS) algorithm in order to address a lack of solutions that addressed multiple criteria. 
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These criteria included finding optimal production levels, inventory levels, and overtime and 

subcontracting. Their model also included strict requirements such as satisfying forecasted 

demand in each planning period. Baykasoglu concluded that the multiple objective TS algorithm 

is a promising candidate for the APP problem. However, out of six tests using different parameter 

sets for the TS algorithm, only a single set produced a lower cost plan than the ideal solution 

produced by a pre-emptive goal programming method. This led one to believe that the TS 

algorithm lacks robustness in the setup of its parameters. This may have been due to an 

overcomplicated solution technique. 

Baykasoglu and Gocken [30] suggested a solution method aimed at solving the fuzzy multiple 

objective APP problem, using ranking methods of fuzzy members and TS. The authors found no 

significant improvement between the proposed method and the comparison method used. They 

concluded that the proposed fuzzy solution found was in the vicinity of the crisp solution and did 

not require defuzzification to improve the results. This is further evidence that attempting to match 

the complexity of the problem by adding layers to the already complex solution from [25] was 

not worthwhile. 

Leung and Wu [31] developed a model for stochastic APP optimisation to account for uncertainty 

by considering multiple scenarios and producing options to be made use of by decision makers. 

However, though it accounted for multiple scenarios, it was found to be valid only for the 

parameter values used, and could not be extrapolated. This model matched the complexity of 

Baykasoglu [25] very closely in terms of number of parameter and objectives considered. 

Although this is proposed as a robust model for use by production planners, it still allows for a 

certain level of under-fulfilment of demand, which is a major compromise in the realm of 

production planning. 

An imprecise goal programming model for aggregate planning was developed by Mezghani et al. 

[32]. Special consideration was given to the manager’s preferences in the form of a satisfaction 

function. The model attempted to account for imprecision in input data and technological 

parameters through the use of fuzzy member functions. The model was able to produce improved 

results over a fuzzy linear programming model. However, the results were still dependent on the 

decision maker’s knowledge with regards to the form of the satisfaction function and their own 

preferences. 

The literature reviewed here indicated that most attempts at solving the APP problem have been 

aimed at fitting the problem to the nature of the solution, or attempting to match the complexity 

of the solution to the complexity of the problem. Based on the findings of this literature review, 

it has been hypothesised that a better solution could be found if an approach was taken of tailoring 
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a new algorithm to the nature of the problem, and basing this solution on tried-and-trusted 

methods. This has been addressed here with the implementation of a Biogeography-Based 

Optimisation algorithm. 

2.3.3 A new algorithm for Aggregate Production Planning optimisation 

The Biogeography-Based Optimisation (BBO) algorithm has been identified for the optimisation 

of aggregate production plans. The BBO paradigm was selected because it had not been 

implemented in this application area before. It is also believed that the operation of the BBO 

principle aligns well with the nature of the APP problem. Specifically, the discrete population-

based nature of the algorithm suits the discrete nature of the aggregate production plan structure 

[33]. 

Aggregate Production Planning is a time consuming activity to perform a trial-and-error search 

of possible optimal solutions. A manual search method described by Chase et al. [3] is known as 

the cut-and-try method, which is an approach based on costing various planning alternatives and 

selecting the best one. The BBO algorithm replicates and accelerates this process. Further details 

on the algorithm can be found in Chapter 4. 

2.4 Control for Mass Customisation Manufacturing 

The main objective of research effort in the area of MCM has been in achieving the optimal 

balance between economy of scale and economy of scope [6]. The method suggested for 

approaching economy of scale, while managing the scope on the shop floor is through the 

implementation of an effective operational control strategy. Irrespective of the manufacturing 

strategy implemented for achieving MC, the objectives remain the same: maximising profit 

through minimising cost and maximising sales, with the defining characteristic of providing 

customised products. Several strategies for manufacturing system control exist [34]. However, 

not all strategies meet the requirements imposed by MCM as most were developed before the 

advent of MCM. Manufacturing system control philosophies as well as shop floor scheduling 

strategies have been investigated here. 

2.4.1 Manufacturing system control philosophies 

The collective term for the implementation of a manufacturing system control strategy is 

Manufacturing Execution System (MES).The main task of an MES is scheduling operations on 

the shop floor, in order to maximise throughput, minimise Work-In-Process (WIP), and minimise 

operating expense [3]. Traditional MESs implemented for mass production, characterised by high 

volume and low variety, are linked with Material Requirements Planning (MRP) systems and 

schedule operations based on a Master Production Schedule (MPS) [3]. This is an inflexible 
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system for controlling operations due to the fact that it is dependent on high certainty in product 

demand which enables large order and batch sizes. Large batch sizes are also beneficial in a mass 

production environment, as this reduces the frequency of setups during production. 

In MCM, large batch sizes are infeasible due to the variety in product configuration in consecutive 

orders released into the manufacturing system. Each consecutive order in MCM can be unique 

and different from all previous orders. This may necessitate frequent setups to be performed at 

each workstation. The lean manufacturing philosophy was developed for high volume low variety 

production, and also relies on the link with the MRP system for generating feasible operating 

schedules in a synchronous manner [35]. However, Stump & Badurdeen [36] suggested that some 

lean manufacturing principles can be applied to MCM, depending on the level of customisation. 

The defining characteristics of this strategy are to minimise levels of raw material, WIP, and 

finished goods held, as well as lead time. 

Shorter lead times can be directly linked to customer satisfaction [7]. Lower levels of inventory 

held across the shop floor could effectively improve responsiveness of the system in the sense 

that more variety can be built into raw materials and parts ordering. This can be done due to the 

fact that shorter planning horizons are necessitated by the lower inventory levels, in other words 

orders are only released when the materials or parts are required on the shop floor. This is known 

as a pull system traditionally implemented in the form of Just-In-Time (JIT) or Kanban systems 

[37]. This approach fits the mould of MCM in the sense that customer orders pull the required 

parts and materials into and through the manufacturing system. This does not account for the 

possible variety that can occur in consecutive customer orders, but this can be accounted for in 

other ways. 

Implementation of the agile manufacturing philosophy has been proposed to account for frequent 

fluctuations in product demand and frequent product changeover [38]. According to Yusuf et al. 

[39] the main objectives of agile manufacturing align very well with the requirements of MC. 

These include, among others, highly customised products, mobilisation of core competencies, and 

response to change and uncertainty. Furthermore, Goldman & Nagel, [40] argued that agile 

manufacturing integrates a comprehensive range of flexible manufacturing technologies, and 

includes lessons learned from total quality management (TQM), JIT and lean manufacturing. 

Within the scope of this research study, the applicable concepts of the agile manufacturing 

strategy match those identified in previously discussed strategies. These include limiting the 

inventory on the shop floor, establishing a pull mechanism for material flow, and flexible process 

plans for enabling customisation. 
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The strategy of Synchronous Manufacturing (SM) is based on Eli Goldratt's [41] Theory of 

Constraints (TOC), and more specifically Optimised Production Technology (OPT) [3]. 

Synchronous Manufacturing refers to the manufacturing system as a whole working in unison 

toward the goal of generating profit for the firm. However, according to Chase et al. [3], many 

control strategies focus on maximising the utilisation of all workstations in order to achieve 

maximum throughput. These strategies use resource utilisation as a measure of performance 

which can encourage the overuse of non-bottleneck stations and result in excess inventory. This 

is one of the primary motivations for SM to focus on balancing the flow of a product rather than 

balancing the capacities of workstations, through managing the inevitable bottlenecks in the 

system. 

In SM, shop floor resources are categorised according to their capacity relative to the demand for 

their outputs, if a resource has less capacity than the demand for its output it is classified as a 

bottleneck. The converse of that is classified as a non-bottleneck, and a capacity-constrained 

resource is classified as a resource whose capacity is slightly higher than the demand for its output. 

Chase et al. [3] state that improving the performance of a bottleneck has a direct positive effect 

on the throughput of the system. Thus identifying these categories improves the efficiency of the 

control strategy by focussing control efforts only on those resources, or work stations, which are 

behaving as bottlenecks. This is a universal effect that can be translated to MCM, with a single 

limitation. That is, in MCM there is a probability that bottlenecks may shift during operation of 

the manufacturing system. Although this is also a possibility in mass production environments, 

the frequency at which bottlenecks may shift in MCM would be much higher, which would 

necessitate a level of control for handling these shifts. 

Combinations of the strategies discussed in this section can be formed in order to achieve the 

required flexibility and agility depending on the market demands. Figure 2.1 has been adapted 

from Shell and Hall, Eds. [37] to indicate the area of manufacturing control approaches MCM is 

striving towards. Ultimately, the planning for and operation of manufacturing are governed by 

the product being manufactured in terms of the paradigms to implement, and the specific types of 

workstations to install. The product being manufactured also determines the market to be serviced, 

which influences the paradigms to be implemented in terms of scale, flexibility, and agility. A 

case study has been formulated in this research study that is believed to enable MCM using FMS-

based technology and a pull production system. 
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Figure 2.1. Manufacturing system control approaches. Adapted from [37]. 

2.4.2 Scheduling for Mass Customisation Manufacturing 

From a practical perspective, effecting the control strategies necessary to maintain the desired 

levels of manufacturing lead time variability in response to the production volume characteristics 

requires effective control policies at the shop floor level. Many approaches have been proposed 

for solving shop floor control problem. These have been classified according to the underlying 

technology [42]: 

1. Analytical approaches 

2. Heuristic approaches 

3. Simulation-based approaches 

4. Artificial Intelligence-based approaches 

Sharifnia et al. [43] suggested a control theoretic construct that deconstructed the flow control 

problem into multiple sub-problems. Lan et al. [44] investigated a single server system producing 

multiple products for the effects of setup cost of the performance of the system. Mathematical 

modelling has also been proposed for solving the shop floor control problem. Problem 

formulations for FMS control operation were presented by Stecke [45]. However, these were large 

nonlinear integer problems which were computationally intensive. It is the opinion of the Author 

that the control theoretic and mathematical model approaches require simplifying assumptions 

beyond reasonable practical application. 

Online simulation has been used to select appropriate selection rules for the manufacturing system 

based on the state of the system. This approach has been found to be cumbersome, as the simulator 

needs to run multiple simulations for the state at hand in order to select the appropriate rule [46]. 
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Chiu and Yih [46] also found that the scheduling interval, or rate at which the selections are made 

should be determined at machine level and not at system level. Traditionally, the simulation-based 

approach has been used in conjunction with well-established AI paradigms such as ANNs [42], 

[47]. Machine learning technology suits this application due to the large amount of data produced 

by such simulation-based scheduling systems. According to a review by Negahban and Smith 

[48], AI principles including TS and fuzzy systems have also been applied, in conjunction with 

simulation, to the flow-shop scheduling problem. 

Another approach that has received research attention is the application of heuristics to the 

scheduling problem, in the form of dispatching rules, also referred to as selection rules. Panwalkar 

and Iskander [49] surveyed a large number of selection rules and techniques, and classified these 

according to their complexity and performance targets. They recommended using a combination 

of simple priority rules, or a combination of heuristics with a simple priority rule, in order to avoid 

ambiguity at selection. Scheduling problems with setup times or costs were surveyed by 

Allahverdi et al. [50], in which the problems were categorised according to system type, sequence 

dependence, and whether batching was considered. The authors classified the system under 

investigation in the case study developed in this research study as a flexible flow-shop, non-

batching, sequence-dependent scheduling problem. Although setup times are not one of the 

primary considerations in this study, this is a useful classification. Allahverdi et al. also found 

that GAs and Simulated Annealing (SA) commonly found application to problems in the same 

category as the one at hand. 

2.4.2.1 Dynamic scheduling for Mass Customisation Manufacturing 

Park et al. [51] developed an adaptive scheduling policy for FMSs, that selected an appropriate 

selection rule depending on the state of the system. This application included an inductive learning 

component employed for constructing selection rule selection heuristics at the system level by 

simulating training example scenarios. This policy performed well compared to a single system-

wide selection rule for systems with frequent disruptions such as machine breakdowns. This 

contribution had value in its adaptive nature of the policy. However, this was in the selection for 

system-wide implementation of selection rules only. 

In contrast to Park et al. [51], an analytical process model combined with a multiple criteria 

ranking technique was employed by Reddy et al. [52] to develop a two-stage group heuristic 

selection rule based dynamic scheduling framework for FMSs. This system assigned part families 

to machine groups rather than individual parts to individual machines. A family selection heuristic 

and a selection rule made up the two-stage process. The proposed system was an exhaustive group 

scheduling system, in other words, it exhausted one part family queue before making the decision 
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of which part family to empty next. Although it was dynamic, it was similar to the contribution 

of Park et al. [51] in that it was also a system-wide scheduling framework. 

Kapanoglu and Alikalifa [53] proposed a learning priority rule scheduling system based on a GA 

for job shops. This system built a common state priority rule based on queue length intervals. This 

resulted in condition-action rules for choosing a selection rule, based for different ranges of queue 

lengths at a system level. Selection occurred between two traditional selection rules. The proposed 

system produced lower flow times when compared to nine traditional selection rules implemented 

individually across the system. The simplicity of this approach was an attractive attribute. 

However, as with previous literature, the rules were applied at the system level which could limit 

the effectiveness. 

Subramaniam et al. [54] proposed a system which dynamically chose selection rules based on 

fuzzy logic for a job shop environment. Their system used relative workloads in the system as 

inputs to the fuzzy scheduler to decide on which selection rule to select. The fuzzy scheduler 

showed marginal improvements over traditional selection rules implemented individually across 

the system. An advantage of their fuzzy scheduler cited by the authors was that it was a single 

pass method and required the same amount of computation as one of the traditional selection 

rules. This was also valuable insight which has been taken advantage of in this study. 

Three machine learning algorithms for dynamic scheduling of FMSs were compared by Priore et 

al. [55]. These were an inductive learning algorithm, an ANN algorithm, and a Case-Based 

Reasoning (CBR) algorithm in the form of a nearest neighbour (k-NN) algorithm. Of these three 

the k-NN algorithm produced the lowest makespan. However, these results were in the order of 

5 % better than the best performing traditional selection rules. Multiple monitoring periods were 

tested as it was cited that this period determined the performance of the system. This period 

determined the frequency at which control attributes were tested to decide whether to change the 

selection rules. The authors made the point that although their test FMS was of a generic 

configuration their results could not be generalised to any type of FMS. 

According to Nakasuka and Yoshida [56], a scheduling system attempting to dynamically modify 

selection rules should meet two requirements: 

1. Real-time operations must not be delayed by choosing of selection rules 

2. A variety of system information must be considered in real-time by the selection 

operation 

The purpose of this section has been to obtain a view of both the philosophical and practical 

aspects of manufacturing system scheduling and control theory, in order to bring these two 
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together in a novel way to achieve the objectives of maximising customer satisfaction through 

minimising order lead times for mass produced custom products. The instrument that has been 

identified for this purpose is CI. Literature proved that dynamic scheduling is not a new topic. 

However, the simplicity of selection rules both in their structure and in their implementation made 

them attractive as a starting point for further development of a new dynamic scheduling strategy. 

2.4.2.2 A new scheduling approach 

A relatively newly developed paradigm in CI in the form of the Harmony Search (HS) algorithm 

shows potential for implementation in manufacturing system scheduling. Parallels can be drawn 

between the metaphor on which HS is based and the nature of the manufacturing system 

scheduling problem. The HS paradigm is based on the metaphor of a group of musicians playing 

together by improvising their tune according to what the other musicians are playing [57]. The 

objective of these musicians is to keep a pleasing harmony while playing together. Each musician 

has a memory of musical notes from which to select the one to play at any given time in response 

to changes by the other musicians. The music is played at a specific rate or tempo, but this tempo 

may change while the musicians are playing. Each musician also decides at which rate to change 

their note or pitch, to complement the overall aesthetic of the piece. 

Analogous to the HS metaphor, the flexible flow shop manufacturing system consists of a number 

of workstations working together to produce a certain product range. The objective of the 

manufacturing system is to produce that product in as short a time as possible. Each workstation 

performs a different process to achieve the finished product, and each process possesses different 

characteristics. Most important of which are the time required to complete the process and the 

order in which to process the parts entering the workstation. The tempo of the manufacturing 

system is dictated by the arrival rate of orders to the system, and the rate at which the workstations 

can respond to the changes in this tempo is dictated by their setup and processing times. These 

parallels have inspired the development of a new scheduling strategy based on workstations 

individually responding to the order arrival process, system state, and local state based on their 

own response characteristics. 

The literature review has shown that HS has received limited attention in the area of 

manufacturing scheduling research. Wang et al. [58] offered an HS algorithm for the blocking 

flow shop scheduling problem. The proposed algorithm was a hybrid modified global-best HS 

algorithm used for optimising the processing sequence of jobs to minimise makespan. The 

algorithm performs well in comparison with algorithms such as GA, TS, and a greedy search 

algorithm. The operation of the algorithm was predicated on knowledge of the jobs requiring 

processing at the start, i.e. it was a static optimisation algorithm for a static problem space. 
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Yuan et al. [59] proposed another hybrid HS algorithm for solving the flexible job shop 

scheduling problem. The HS solution vector was converted to a new discrete vector form. The 

algorithm was modified to include a local search component to improve its exploitation ability. 

The goal here was also to minimise makespan. The performance of this algorithm was compared 

to other techniques found in literature on multiple datasets, and it produced lower cost plans. 

These techniques included SA, TS, and Particle Swarm Optimisation (PSO) algorithms. The 

operation of the optimisation algorithm also depended on knowledge of the complete set of jobs 

and their processing requirements to develop an optimised schedule. 

In 2010 the novelty of HS as a nature-inspired optimisation methodology was brought into 

question. Research to this effect has been published by Weyland [60] which proposes that HS 

represents a special case of Evolution Strategies (ES). Geem [61], the original contributor of HS, 

published a rebuttal in response to this paper highlighting the uniqueness of HS compared to ES 

and commenting on the value of a new methodology and from where this value should be derived. 

Geem proposed that the value of a new methodology should be derived from its performance, and 

not purely from its novelty. 

It is the Author’s view that both researchers have valid arguments. Weyland’s evidence that HS 

is a special case of the (μ + 1) ES is convincing. Both algorithms are population-based search 

methods incorporating crossover and mutation operations. Weyland proved from an analytical 

perspective that the operations of the two algorithms were equivalent and that the best ES is at 

least as effective as HS. His advice for caution in blindly accepting allegedly novel optimisation 

algorithms is wise. Geem stated that the HS algorithm was originally developed for discrete 

optimisation problems, whereas ES was originally developed for continuous optimisation 

problems. He also points out that the generation operation of HS uses all known harmonies, or 

candidate solutions, whereas the crossover operation of ES requires two ‘parent’ solutions. 

The Author is of the opinion that research in the field of optimisation algorithms is littered with 

areas where multiple variations of the same theme have been offered in publication. In the book 

by Xing and Gao [18], various themes are described under which multiple algorithms are outlined 

which offer only minor variations on the original concepts. One example is the section on Bees 

Algorithms (BAs). The main principles of the majority of BAs are based on scout bees searching 

for promising sources of nectar, returning to the hive and communicating their exploits to worker 

bees through a sequence of moves known as a waggle dance [18]. Each of the BAs includes these 

principles with minor variations, tailored for a specific type of optimisation problem. 
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Whether HS is called HS or Modified Evolutionary Strategy, it is a contribution none the less, 

and it can give rise to further research building on the same theme. In light of this, the Author 

offers a new application and new adaptation of HS as research contribution in the hope to further 

the field of research into manufacturing systems scheduling optimisation. 

Chapter 5 presents a dynamic scheduling strategy that has been designed based on useful aspects 

of the manufacturing system control philosophies discussed in Section 2.4 and inspired by the 

functionality of HS. This strategy has been built on the structure of scheduling policies based on 

heuristics and selection rules for their tried-and-trusted status. 

2.5 Chapter summary 

This chapter highlighted past research into the facilitation of MCM, and the application of CI in 

manufacturing system optimisation research. Manufacturing has been discussed from a system 

philosophy perspective as well as a practical shop floor control perspective. Past research into 

manufacturing planning and manufacturing scheduling was critically reviewed and interpreted to 

give guidance for the direction of this research study. Important points were highlighted for 

further consideration in this study.
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   Production System Model Development 
 

To investigate the performance of new optimisation paradigms and algorithms, models 

representing a manufacturing system were developed. This was necessary due to lack of access 

to a real-world manufacturing system and its data. This chapter describes a hypothetical custom 

wristwatch product platform from a Mass Customisation Manufacturing perspective. It 

documents the development of two static production planning models and a dynamic system 

model based on a manufacturing system for producing this family of products. 

3.1 Product Family Architecture 

A product family architecture for a range of men’s wristwatches was the basis for the development 

of the hypothetical production system. The range allows customisation both in terms of discrete 

feature selection and continuous feature customisation. The men’s wristwatch is an accessory that 

can be viewed as an expression of one’s personality. It also offers a large scope in terms of 

customisability. For these reasons the men’s wristwatch was selected for the case study. 

3.1.1 Wristwatch product range 

The wristwatch product range was divided into two categories based on the type of movement 

selected by the customer. This selection determined the parts required as well as the assembly of 

the watch. The two options available in the proposed product range were “standard automatic”, 

which only performs the primary function of keeping time, and “chronograph”, which has a 

stopwatch function in addition to the timekeeping function. An additional variant could be 

included in the form of a quartz movement. However, this does not affect the functioning of the 

manufacturing system, as it would require the same processing as the standard automatic 

movement, and so was not considered in this case study. 

Figure 3.1 shows a set of wristwatches to illustrate the level of variations possible in wristwatch 

production and identify the less intuitively named components. A standard movement only 

requires a crown for setting the time, while a chronograph also requires pushers and their 

associated seals for start-stop and reset functions of the stopwatch function. The chronograph 

model also requires assembly of three small hands to the movement for the stopwatch. Apart from 

these differences the same components are required for the final product. Components that are 

customisable include the bracelet, case, bezel, crown, back case, dial, and all hands. 

3.1.2 Bill of Materials 

The product range required the manufacture of a subset of parts, and the purchase of the rest of 

the parts. These parts were then assembled into sub-assemblies and finally into the complete 
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assembly of the wristwatch. The BOM structure can be seen in Figure 3.2. The total number of 

discrete parts in the structure was 23, six of which were manufactured according to customer 

specification in the system. The rest of the parts included in the final assembly were purchased 

from various suppliers based on orders received from customers. The movement, although an 

assembly, is treated as a single purchased part. 

 
Figure 3.1. Variations in men's wristwatches. Images adapted from [62] and [63]. 

3.1.2.1 Assembly 

Starting from the end product, the wristwatch is assembled from the bracelet, two bracelet pins, 

and the body sub-assembly. The body sub-assembly consists of the bezel, glass, glass gasket, case 

sub-assembly, time sub-assembly, crown sub-assembly, spacer, back case gasket, and finally the 

back case. The case sub-assembly is made up of the case, two pusher case tubes, two pusher 

springs, two pusher seals, two pushers, two pusher screws, and a crown case tube. As indicated 

in Figure 3.2 by dashed borders, all parts for the pushers, i.e. case tubes, springs, seals, screws, 

and the pushers themselves are only included if the customer selected a chronograph movement. 

The time sub-assembly consists of the dial, dial holding pin, hour hand, minute hand, second 

hand, three small hands, and the movement. Here, the three small hands are also only included if 

the customer selected a chronograph movement, as shown in Figure 3.2. Lastly, the crown sub-

assembly is made up of the crown, stem, and crown seal. 

The six parts which are fabricated in-house are the bezel, case, crown, dial, spacer, and back case. 

All of these parts are customisable by the customer setting preferences and specifications. Other 

parts which are customisable either depend on the specifications of the fabricated parts, or are 

selected from a range. The case, bezel, and crown may also be coloured, if the customer selects 

this option.



23 
 

 
Figure 3.2. Bill of Materials Structure for generic product of case study manufacturing system. 
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3.1.2.2 Product differentiation 

Product differentiation comes from various sources in the fabrication and assembly of the 

wristwatch. Table 3.1 shows the sources and types of product differentiation available to the 

customer, as well as the effects of selections on other parts of the product. These represent the 

hypothetical wristwatch product range. 

Table 3.1. Product differentiation sources and types. 

Part Family 
Name Variants Customer 

Input Source of variation Type of 
variation 

Component 
Type 

Bezel Y Y Determined by selection 
of dial size 

Discrete 
(Modular) 

Stainless Steel 
Tube Stock 

Glass N N Determined by selection 
of dial size 

Discrete 
(Modular) Purchased 

Glass gasket N N Determined by selection 
of dial size 

Discrete 
(Modular) Purchased 

Pusher N N Determined by selection 
on movement Yes/No Purchased 

Pusher screw N N Determined by selection 
on movement Yes/No Purchased 

Pusher spring N N Determined by selection 
on movement Yes/No Purchased 

Pusher case 
tube N N Determined by selection 

on movement Yes/No Purchased 

Pusher seal N N Determined by selection 
on movement Yes/No Purchased 

Crown case 
tube N N N/A N/A Purchased 

Case Y Y Selection from range 
(design & colour) 

Discrete 
(Modular) 

Stainless Steel 
Billet 

Dial Y Y 

layout determined by 
movement & design & 
colour selection from 
range or own design & 
size selected from range 

Continuous Stainless Steel 
sheet metal 

Dial holding 
pin N N N/A N/A Purchased 

Hour hand N N Determined by selection 
of dial size N/A Purchased 

Minute hand N N Determined by selection 
of dial size N/A Purchased 

Second hand N N Determined by selection 
of dial size N/A Purchased 

Small hand N N Determined by selection 
on movement Yes/No Purchased 

Movement Y Y Selection of type from a 
range 

Discrete 
(Modular) Purchased 

Crown seal N N N/A N/A Purchased 

Stem Y N Determined by selection 
of movement 

Discrete 
(Modular) Purchased 

Crown N N Designed by customer Continuous Stainless Steel 
Bar Stock 

Spacer Y N 
Size determined by dial 
size and height 
determined by case height 

Continuous Purchased 

Back case 
gasket N N Determined by selection 

of dial size 
Discrete 
(Modular) Purchased 
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Part Family 
Name Variants Customer 

Input Source of variation Type of 
variation 

Component 
Type 

Back case Y Y 

Size determined by 
selection of dial size, & 
design input from 
customer 

Continuous Stainless Steel 
Bar Stock 

Bracelet Y Y 

Material selection by 
customer and size 
determined by case 
design 

Discrete 
(Modular) Purchased 

Bracelet pin Y N Size determined by case 
design 

Discrete 
(Modular) Purchased 

 

From the discrete selection type differentiation options in the assembly of the wristwatch alone 

65 536 variants are possible. Including the continuous specifications, such as dial design and 

engraving, there is an infinite number of possible variants. 

3.1.3 Bill of Operations 

The production system has been specified to include metal fabrication processes, 3D printing, 

surface treatment, and discrete part assembly operations. This was done to study a manufacturing 

system that is representative of modern manufacturing technologies. The following subsections 

describe the generic processes required to produce the case study wristwatch. 

3.1.3.1 Fabrication processes 

Five of the parts that are fabricated in-house are machined from metal stock, which is mainly 

stainless steel, and the sixth is 3D printed from ABS plastic. Table 3.2 shows the processing and 

material requirements for each of the in-house fabricated parts. These setup and processing times 

are hypothetical. 

Table 3.2. Processing and material requirements for in-house fabricated parts. 

Case   

Total 
Processing  

Times (min) 

Setup 
Time 

/machine 

Processing 
Time 

/machine 
Raw Material: 60 x 60 x 20 mm Stainless Steel Billet 58.5 25.5 33.0 

Processing Machine 
Type 1: 4-Axis CNC Milling Machine 48.0 21.0 27.0 
Processing Machine 
Type 2: Multi-purpose Grinding Machine 5.5 2.5 3.0 
Processing Machine 
Type 6: 

Physical Vapour Deposition (PVD) 
Machine 5.0 2.0 3.0 

Dial   

Total 
Processing  

Times (min) 

Setup 
Time 

/machine 

Processing 
Time 

/machine 
Raw Material: 0.5 x 50 mm Stainless Steel Sheet 

Metal Roll 19.0 9.5 9.5 
Processing Machine 
Type 3: Piercing and Blanking Machine 3.5 2.5 1.0 
Processing Machine 
Type 4: Pad Printing Machine 12.5 5.0 7.5 
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Processing Machine 
Type 7: Stencil Gluing Machine 3.0 2.0 1.0 

Crown   

Total 
Processing 

Times (min) 

Setup 
Time 

/machine 

Processing 
Time 

/machine 
Raw Material: Dia. 10 mm Stainless Steel Bar Stock 32.0 15.0 17.0 

Processing Machine 
Type 5: Feed-through CNC Lathe 17.0 7.0 10.0 
Processing Machine 
Type 1: 4-Axis CNC Milling Machine 10.0 6.0 4.0 
Processing Machine 
Type 6: PVD Machine 5.0 2.0 3.0 

Back Case   

Total 
Processing 

Times (min) 

Setup 
Time 

/machine 

Processing 
Time 

/machine 
Raw Material: Dia. 60 mm Stainless Steel Bar Stock 33.0 16.0 17.0 

Processing Machine 
Type 5: Feed-through CNC Lathe 20.0 10.0 10.0 
Processing Machine 
Type 1: 4-Axis CNC Milling Machine 9.0 4.0 5.0 
Processing Machine 
Type 2: Multi-purpose Grinding Machine 4.0 2.0 2.0 

Bezel   

Total 
Processing 

Times (min) 

Setup 
Time 

/machine 

Processing 
Time 

/machine 
Raw Material: OD 50 mm x ID 20 mm Stainless Steel 

Tube Stock 36.0 19.5 16.5 
Processing Machine 
Type 5: Feed-through CNC Lathe 20.5 11.0 9.5 
Processing Machine 
Type 1: 4-Axis CNC Milling Machine 6.0 4.0 2.0 
Processing Machine 
Type 2: Multi-purpose Grinding Machine 4.5 2.5 2.0 
Processing Machine 
Type 6: PVD Machine 5.0 2.0 3.0 

Spacer   

Total 
Processing 

Times (min) 

Setup 
Time 

/machine 

Processing 
Time 

/machine 
Raw Material: ABS plastic filament roll 27.0 2.0 25.0 

Processing Machine 
Type 8: 3D Printing Machine 27.0 2.0 25.0 

 

Processing times are nominal times and probability distributions of these times were used in the 

simulation models described later in this chapter. The PVD machine processing steps are only 

included if the customer selects a colour for their watch other than raw stainless steel. 

3.1.3.2 Assembly processes 

Similarly to the processing times, nominal assembly times were used to model the delay incurred 

by the various assembly processes. Table 3.3 shows the nominal setup times and assembly times 

for the five assembly operations performed during the course of the manufacturing process. These 

setup and assembly times are hypothetical. 
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Table 3.3. Setup and assembly times for all assembly operations. 

 

3.1.4 System process flow 

The production system was configured in such a way that once an in-house fabricated part is 

completed, it is transported directly to the workstation where it is required for assembly, instead 

of batch transportation. This placed higher complexity on the scheduling of operations due to the 

fact that there are more parts moving around in the system throughout the production run. 

However, this should be outweighed by the saving in holding of the finished parts waiting for 

assembly at separate locations such as an Automated Storage and Retrieval System (ASRS). This 

also forces each part to be fabricated on-demand from orders placed by customers in line with the 

pull methodology [36]. The process flow of fabricated parts from raw material to final assembly 

can be seen in Figure 3.3. 

 
Figure 3.3. Process flow diagram on in-house fabricated parts. 

The machine type identifiers in Figure 3.3 refer to the machine types mentioned in Table 3.2, i.e. 

M3 in Figure 3.3 refers to Machine Type 3 in Table 3.2. Similarly Assembly station identifiers in 

Assembly Operation 
Work 

Station 
Setup Time 

(min/operation) 
Runtime 

(min/operation) 
Fixture/ 
Setup 

Wristwatch Assembly & Inspection (A5) WS-A5 1.0 3.0 S-A5 
Watch Body Assembly & Inspection (A4) WS-A4 2.0 18.0 S-A4 
Crown Sub-assembly (A3) WS-A3 1.0 3.0 S-A3 
Time Sub-assembly (A2) WS-A2 1.0 7.0 S-A2 
Case Sub-assembly (A1) WS-A1 1.0 8.0 S-A1 
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Figure 3.3 refer to assembly workstations in Table 3.3. All raw materials enter the system on the 

left of the figure, either at M3 or M5, depending on the part being manufactured, and move 

through the system in a general left to right direction, and exits the system as part of a final 

assembly after assembly station A5. 

3.2 Static simulation models 

The initial stage of the simulation modelling approach involved the development of two static 

simulation models of the manufacturing system to characterise the system and to form the 

foundation for the dynamic simulation model. These were a capacity planning model and an 

Aggregate Production Planning (APP) model. 

3.2.1 Capacity planning model 

A capacity planning model was used to determine workstation capacity requirements and 

represented a snapshot of the system under ideal steady state operating conditions. In this context, 

capacity planning was aimed at long-term planning and investigating a range of expected average 

order arrival rates for steady state operation. 

3.2.1.1 Capacity planning modelling methodology 

The capacity planning model calculated workstation capacity requirements based on processing 

and setup times as given in Table 3.2 and Table 3.3, and varying order arrival rates. The goal of 

the capacity planning activity was to maximise the utilisation of all workstations, by addition or 

subtraction of capacity according to the forecasted order arrival rate. The setup and processing 

times of each workstation were calculated by taking the processing requirements of each part 

moving through the workstation and multiplying this by the rate at which the parts were entering 

the system. 

From the processing times and the workstation capacity per shift, the utilisation of each 

workstation was calculated. The capacities were then adjusted to maximise utilisation of all 

workstations but still ensure they did not exceed 100 %. Using this procedure, the workstation 

capacities for any expected order arrival rate could be determined. Equation 3.1 shows this 

calculation as an expression. 

𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =  
(𝑆𝑒𝑡𝑢𝑝 𝑇𝑖𝑚𝑒+𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒)×𝑂𝑟𝑑𝑒𝑟 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑖𝑚𝑒×𝑊𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
   3.1 

The setup and processing times for each processing workstation were calculated by adding the 

times from all the parts requiring processing by the particular machine in question together. The 

setup and processing times for the assembly workstations were simply taken as the single 

individual value, as an assembly process necessarily requires all the parts being assembled 
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together all at the same time. For example, all the setup and processing times for the parts being 

assembled into the watch body were not added together, but the single individual time for the 

parent part, i.e. the case, was taken as the time required to process all the parts at the same time. 

The model was created in Microsoft Excel 2013 and a macro was written for traversing the range 

of order arrival rates automatically. The programming code can be found in Appendix C. 

3.2.1.2 Capacity planning model inputs 

The capacity planning model took as input an average arrival rate of orders into the system. A 

range of average order arrival rates was used to investigate the system’s response to various arrival 

rates. The values for the parameters were based on the processing requirements of the wristwatch 

product range described in Section 3.1. Table 3.4 shows the processing requirements for the ‘dial’ 

component of the wristwatch assembly as an example. A table like this one exists for each part 

that makes up the complete assembly. These tables can be found in Appendix B. 

Table 3.4. Setup and processing time requirements per workstation for ‘dial’ component in 
minutes. 

  
Process 
No. 1 2 3 4 5 6 Total 

Arrival Rate 
(Orders/day) 

Dial Station WS-M3 WS-M4 WS-M7 WS-A2 WS-A4 WS-A5  10.00 
 Setup 2.5 5.0 2.0 1.0 2.0 1.0 13.5  

 Process 1.0 7.5 1.0 7.0 6.0 6.0 28.5  
 Total 3.5 12.5 3.0 8.0 8.0 7.0 42.0  

 

3.2.1.3 Capacity planning model implementation 

The expected utilisations and corresponding workstation capacities were calculated for a range of 

order arrival rates, from one unit order per day up to 200 unit orders per day. This was done by 

adjusting the workstation capacities to achieve the maximum utilisation up to, but not exceeding, 

100 % for each increment of order arrival rate. The data generated was plotted per workstation 

for all arrival rate values, as seen in Appendix B. The workstation capacities calculated in this 

experiment represented the ideal operation of the system across the range of order arrival rates. 

The correctness of the capacity model was verified by using system variables from a known 

dataset published online by the developers of the Simio simulation software, in a worked example 

[64]. The outputs when compared with those produced by this example matched exactly. The 

capacity planning model was also used to verify the correctness and validate the behaviour of the 

dynamic simulation model. 
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3.2.1.4 Capacity planning model outputs 

Table 3.5 shows the calculated capacity requirements of all workstations, including workers 

operating the workstations, based on an order arrival rate of ten orders per day, as an example of 

the format of the capacity planning model output. The utilisations shown in Table 3.5 are the 

actual levels for the calculated capacities as shown and a unit order arrival rate of ten orders per 

day. The numbers of machine and assembly station operators required were calculated from the 

setup times for the processing workstations (WS-M#) and the full assembly times required at the 

assembly stations (WS-A#), respectively. 

It was clear from the calculated utilisations in Table 3.5 that ten unit orders per day was not an 

economically beneficial situation, as most workstation utilisations were well below 100 %. The 

overall median system utilisation for the range of arrival rates, including capacity adjustments, is 

presented in Figure 3.4. In Figure 3.4 an early peak appeared at 64 unit orders/day with a median 

overall utilisation of 90 %, subsequently, a median overall utilisation of 90 % was only reached 

again at 112 orders/day. Beyond 112 orders/day the median overall utilisation seemed to stabilise 

around the 80 – 90 % range. 
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Table 3.5. Workstation capacity requirements based on setup and processing time requirements. 

Minutes/Day: 480   
Workstations Capacity Dial Case Bezel Back Case Crown Spacer Total (mins) Expected Util 
4-Axis CNC Milling Machine (WS-M1) 2  480.0 60.0 90.0 100.0  730.0 76.0% 
Multi-purpose Grinding Machine (WS-M2) 1  55.0 45.0 40.0   140.0 29.2% 
Piercing and Blanking Machine (WS-M3) 1 35.0      35.0 7.3% 
Pad Printing Machine (WS-M4) 1 125.0      125.0 26.0% 
Feed-through CNC Lathe (WS-M5) 2   205.0 200.0 170.0  575.0 59.9% 
PVD Machine (WS-M6) 1  50.0 50.0  50.0  150.0 31.3% 
Stencil Gluing Machine (WS-M7) 1 30.0      30.0 6.3% 
3D Printing Machine (WS-M8) 1      270.0 270.0 56.3% 
Case Sub-assembly (WS-A1) 1  75.0     75.0 15.6% 
Time Sub-assembly (WS-A2) 1 80.0      80.0 16.7% 
Crown Sub-assembly (WS-A3) 1     40.0  40.0 8.3% 
Watch Body Assembly & Inspection (WS-A4) 1 80.0 80.0 80.0 80.0 80.0 80.0 80.0 16.7% 
Wristwatch Assembly & Inspection (WS-A5) 1 70.0 70.0 70.0 70.0 70.0 70.0 70.0 14.6% 
           
Machine Operators 2 95.0 255.0 195.0 160.0 150.0 20.0 875.0 91.1% 
Assembly Station Operators 1       345.0 71.9% 
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Figure 3.4. System median utilisation over a range of order arrival rates. 

3.2.1.5 Capacity planning model discussion 

The response of the system utilisation to the range of order arrival rates could be due to coincident 

drops in individual workstation utilisations in the range between 60 and 110 orders/day. This 

could be specific to the system under investigation. However, it could be conjectured that this 

kind of behaviour may appear in other systems, but at different arrival rate ranges. 

The graph of median overall utilisation could be used by decision makers to determine whether a 

certain arrival rate and corresponding production rate is financially viable or not. This is in line 

with research carried out by Singholi et al. [65] on methods for improvement of FMSs. A 

threshold of minimum overall utilisation can be set under which it is decided to produce more 

stock and hold inventory or allow for stockouts to take advantage of higher overall utilisation by 

under producing for a certain period, and boosting production once a certain level of back orders 

has built up. The production rate used as this threshold can then be used in APP over a planning 

horizon to decide on production and workforce level adjustments, whether it be overtime, 

downtime, or hiring and laying off of workers. 

3.2.2 Aggregate Production Planning model 

In this context, the APP model represented an intermediate-term planning tool for planning the 

overall production of units based on the wristwatch product platform. The APP model was used 

to optimise aggregate production plans such that the cost of production was minimised, by varying 

monthly production, inventory and stockouts, and workforce by implementing a novel 

optimisation algorithm. The development of this optimisation algorithm is documented in Chapter 

4. This section describes the methodology followed in developing the APP model, its inputs and 

the structure of its outputs. 
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The APP model used the demand forecast over a certain planning period to calculate monthly 

production and workforce requirements, as well as the cost of production [3]. The APP model 

was more detailed than the capacity planning model in that it looked at the system on a month-to-

month basis, whereas the capacity planning model represented a snapshot of the system in steady 

state. 

3.2.2.1 Aggregate Production Planning modelling methodology 

The APP model was designed to produce aggregate production plans based on traditional APP 

strategies. This was done to create a foundation for the APP optimisation algorithms described in 

Chapter 4. The three main traditional planning strategies, according to Chase et al. [3], are: 

1. Chase strategy, in which the production rates are matched to the order arrival rate exactly 

by the hiring and laying off of workers as the order arrival rates vary. 

2. Stable workforce – variable work hours, in which production is varied by varying the 

number of production hours worked, by implementing flexible shifts or overtime. 

3. Level strategy, in which the workforce is kept stable with constant output rates allowing 

for inventory build-up or shortages. 

These strategies can be implemented individually as standard strategies, or they can be mixed in 

various ways. Traditionally, mixed strategies are found through a manual charting process known 

as cut-and-try [3]. For example, the order arrival rate could be tracked perfectly for some of the 

planning period, and for the rest of the period production could be varied to allow for a stable 

workforce. Emphasis can be placed on a single cost parameter, or the objective can be to minimise 

the overall cost over the planning period. 

The model carried out the necessary calculations to produce a plan based on each of the strategies 

listed above. It then compared the total cost of these plans to each other and suggested the lowest 

cost plan for the decision makers. Each plan required slight variations of the base calculations. 

However, the plans produced all took the same format, shown in Table 3.9 and described in 

Section 3.2.2.4. This format consisted of the following variables on a per month basis: 

• Starting inventory (based on previous month’s ending inventory) 

• Production requirements (based on demand forecast, safety stock, and inventory 

on hand) 

• Demand forecast 

• Safety stock (based on demand forecast) 

• Actual production 

• Workforce 

• Ending inventory 
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• Monthly cost 

• Total cost up to the planning horizon 

Calculations of the variables within the APP model followed a cascading pattern from one month 

to the next starting with the input starting inventory, demand forecast, and safety stock 

requirement to calculate the required production. From the production requirement the required 

workforce and production cost was calculated. However, the actual production requirements did 

not necessarily need to match the theoretical production requirements as it could be more 

economical to over or under produce and have surplus or stockout situations in some months. For 

this reason the exact calculations varied with the planning strategy adopted. 

3.2.2.2 Aggregate Production Planning model inputs 

This study looked at the overall cost as the objective function, which was calculated as described 

above, using the inputs to the model as listed in Table 3.6, Table 3.7, and Table 3.8. The arrival 

rate range produced by the capacity planning model that gave feasible utilisations was used to 

estimate feasible demand forecasts to use as input to the APP model as shown in Table 3.6. The 

one-off production parameter and cost parameter values of Table 3.7 and Table 3.8, respectively, 

are hypothetical. 

Table 3.6. Monthly production data parameters for Aggregate Production Planning. 

Monthly Production 

Parameter 
Description 

Value 

Jan Feb Mar Apr May Jun 

Working days Days available per month 22 19 21 21 22 20 

Demand forecast Units required per month up to 

the planning horizon 
1400 1150 1260 1240 1380 1280 

 

Table 3.7. One-off production data parameters for Aggregate Production Planning. 

One-off Production 

Parameter 
Description Value 

Production time Minutes per unit manufactured 122 

Planning horizon Number of months for which to plan 6 

Safety stock Percentage of demand forecast required to be held as safety stock 25 

Starting inventory Inventory on hand at the start of the planning period 100 

Initial workforce Number of workers in employment at the start of the planning period 16 
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Table 3.8. Production cost parameters for Aggregate Production Planning. 

Cost Parameter Unit Value 

Cost of holding inventory Dollars per unit held per month 15.00 

Stock-out cost Dollars per unit short per month 20.00 

Worker hiring cost Dollars per worker hired 500.00 

Worker lay-off cost Dollars per worker laid off 750.00 

Manufacturing cost (regular time) Dollars per hour per worker 20.00 

Overtime cost Dollars per hour per worker 30.00 

Downtime cost Dollars per hour 10.00 

 

3.2.2.3 Aggregate Production Planning model implementation 

The APP model was developed to support the development of a novel CI based algorithm for 

optimising the aggregate production plan. The APP model was programmed in C++ for ease of 

incorporating the optimisation algorithm which was also programmed in C++. The programming 

code can be found in Appendix D. Chapter 4 provides further details on the development of the 

novel optimisation algorithm. 

The model read the input data from two separate text files, one containing the production data as 

per Table 3.6 and Table 3.7 and the other containing the cost parameters as per Table 3.8. The 

APP model then calculated the production costs associated with the three standard planning 

strategies discussed in Section 3.2.2.1. The production plan with the lowest associated cost was 

printed out along with the description of the strategies on which it was based. This plan was used 

as the benchmark for the optimisation algorithm of Chapter 4. 

3.2.2.4 Aggregate Production Planning model outputs 

The outputs of the APP model are shown in Table 3.9. These outputs represent the production, 

workforce, and inventory levels that are required each month to achieve the associated cost. The 

model determined that the stable workforce – varying production strategy produced the lowest 

cost plan. 
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Table 3.9. Best standard strategy based aggregate production plan. 

 Jan Feb Mar Apr May Jun 

Starting Inventory [units] 100 85 131 193 275 280 

Demand Forecast [units] 1400 1150 1260 1240 1380 1280 

Safety Stock [units] 350 288 315 310 345 320 

Production Req.’s [units] 1650 1088 1287 1235 1415 1255 

Actual Production [units] 1350 1196 1322 1322 1385 1259 

Ending Inventory [units] 85 131 193 275 280 259 

Workforce [workers] 16 16 16 16 16 16 

Monthly Cost [$] 56 320 48 640 53 760 53 760 56 320 51 200 

Total Cost [$] 320 000      

 

3.2.2.5 Aggregate Production Planning model discussion 

Although the APP model is a relatively coarse tool for calculating monthly production and 

production cost, it is useful for calculating resource requirements on a month-to-month. An APP 

model can also be programmed to account for known production constraints such as the need for 

the workforce to remain stable, or the need for a certain number of units left in stock at the end of 

each planning period. 

Aggregate production plans can be developed on a product platform basis for MCM, as has been 

the case here. However, an APP model is only useful from an MCM perspective if the product 

range is based on a product platform which inherently lends itself to aggregation, i.e. it contains 

parts and sub-assemblies that can be grouped together easily in terms of processing requirements. 

This APP model has been designed for the case study wristwatch product range that consisted of 

a single product platform for producing custom wristwatches. It formed a good foundation for 

optimisation of the production plans for this case study. It has also provided a good foundation 

for development of the dynamic system model. 

3.3 Dynamic system operations model 

The increased complexity of manufacturing systems and the advancements in desktop computing 

technology have increased the popularity of simulation modelling in the field of manufacturing 

systems research [66]. Uses of simulation models in manufacturing systems research can be found 

in development of new manufacturing systems as well as improvements and modifications to 

existing manufacturing systems. The main advantage of simulation modelling over prototyping 

and performing physical pilot studies is the reduction in development cost and capital investments 

[67]. Verification and validation of a simulation model is critical for it to be accepted as a 

sufficiently accurate representation of the system under investigation. This section documents the 
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development of the dynamic simulation model of the wristwatch production system case study, 

in preparation for developing and testing a novel scheduling optimisation strategy. 

3.3.1 Methodology 

The dynamic simulation model has been developed in Simio Simulation Software (version 

7.128.12863) [68]. Simio is a simulation software package which is fundamentally based on 

queuing theory and Discrete Event Systems simulation (DEVS) [69]. Simio is a general purpose 

simulation package, but it is very well suited to manufacturing system simulation due to its DEVS 

foundation.  

A dynamic, discrete-time, stochastic simulation model for the wristwatch product range case 

study was developed. It simulated the lead time associated with the manufacturing activities only, 

thus no supply chain components were modelled. In other words, a perfect supply of materials 

and purchased parts was assumed as well as an immediate dispatch of finished goods. The model 

was made up of objects as listed in Table 3.10. Key functions of these objects and instances in the 

simulation model are also given in the table. 

Table 3.10. Simulation model object types. 

Object Function Instances 

Model 

Entity 

Travel through the simulation 

model 

Parts and sub-assemblies 

Source Create model entities Raw materials, and purchased part supplies 

Server Delay transfer of model entities Processing workstations 

Combiner Delay and combine parent and 

member model entities in a user-

defined configuration 

Assembly workstations 

Sink Destroy model entities Order transfer station and dispatching station 

 

Figure 3.5 shows a screenshot of the visual representation of the model in Simio. The release of 

the order entity into the production system triggered the dispatching of entities representing raw 

materials to the first stages of fabrication of those parts that are fabricated in-house. These entities 

follow paths along the processing sequences for each part to be fabricated according to the order 

specifications. The dispatching of purchased parts into the system was also triggered by the order 

entity release. These purchased parts may have independently varying order delay times. 

However, to maintain focus on the production system itself these delays were not modelled. 

Fabricated and purchased parts converged at assembly stations where intermediate sub-

assemblies were produced. 
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Figure 3.5. Dynamic simulation model visualisation in Simio.
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The final stages of the model included the final assembly station and an order completion station 

where units were dispatched according to their orders. Metadata was linked to each unit and its 

components when they entered the system, including unit number, order number, and 

configuration parameters. This information was used throughout the system for scheduling of 

processing at the individual workstations. By default, parts or sub-assemblies waiting to be 

processed were processed in order of their unit numbers, lowest to highest. 

3.3.2 Input modelling 

Customer orders were modelled as batches of single unit size. The inter-arrival time for customer 

orders was modelled using an exponential distribution as this most closely models actual order 

arrival processes [70]. It is proposed that these orders may be placed online from any location, 

including in-store, using a product configurator as proposed by Picario in [71]. The model 

included an order processing phase which was used to simulate the conversion of product 

specifications into manufacturing requirements. Subsequently, the order was released into the 

flexible flow shop manufacturing system as a new job. The order processing time was modelled 

as a Pert distribution, with a minimum, a mode, and a maximum value specified as required by 

the function. The Pert distribution is a special case of the Beta distribution where the shape 

parameters of the Beta distribution are calculated from the minimum, mode, and maximum 

parameters [72]. 

All setup times, processing times, and travel times were stored in tables in Simio which were 

linked to Microsoft Excel spreadsheets for easy modification of these times. Randomness, due to 

uncertainty in the times required to perform tasks, was modelled using probability distributions 

that approximate common distributions found in practice. According to Law [66], the log-normal 

and Weibull distributions are best suited to this type of application. In Simio the LogNormal 

function takes the normal mean and normal standard deviation as argument, whereas the Weibull 

function takes a shape and scale parameter as argument. Estimates of log-normal mean and 

standard deviation were converted to normal values and used in the LogNormal distribution 

function of Simio. 

Hypothetical estimates of the means and standard deviations for the fabrication technologies in 

use, were transformed for use in the LogNormal distribution function. Let m be the mean and v 

the standard deviation of the log-normal. Then Equations 3.2 and 3.3 describe the transformations 

of the log-normal mean to the normal mean, and log-normal standard deviation to the normal 

standard deviation, respectively, 
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𝜇 = 𝑙𝑛 (
𝑚

√1+
𝑣

𝑚2

)            3.2 

Where: 

µ is the normal mean, 

m is the log-normal mean, and 

v is the log-normal standard deviation. 

𝜎 = √𝑙𝑛 (1 +
𝑣

𝑚2)             3.3 

Where σ is the normal standard deviation. The expected value of the log-normal distribution 

according to [72] is then: 

𝐸(𝑥) =  𝑒
(𝜇+𝜎2

2⁄ )             3.4 

All fabrication processing times and assembly processing times were approximated using this 

distribution function. 

Travel times between workstations were modelled using the Pert probability distribution. The 

travel routes were categorised according to method of transport used between the respective 

workstations and estimated distances between the respective workstations based on the 

approximate layout as depicted in Figure 3.6. The supply department supplied raw materials to 

the fabrication department, and purchased parts to the assembly department. Completed 

assemblies were transferred from the assembly department to the dispatch department for 

packaging and shipping. 

 
Figure 3.6. Production system layout for travel time estimation. 

The following assumptions were made with regard to the method of transport within the 

production system: 

Supply Department 

Assembly Department Fabrication Department 
Dispatch 

Department 
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 Transfers within the fabrication department: Automated Guided Vehicles (AGVs). 

 Transfer within the assembly department: Conveyors. 

 Transfer from supply department to fabrication and assembly departments: AGVs. 

 Transfer from fabrication department to assembly department: AGVs. 

 Transfer from assembly department to dispatch department: Conveyor to an ASRS. 

Relative minimum, mode, and maximum values for travel times were estimated based on these 

assumptions, which were used in the Pert probability distributions. 

3.3.3 Product specification handling 

The various product specifications affected the product configuration and production in different 

ways. For example, the colour of the dial was an important customer-selectable product 

specification. However, this specification did not affect the processes required for the production 

of the wristwatch. In contrast, the selection between a chronograph and a standard automatic 

movement affected the fabrication processes required as well as the assembly of the product. The 

two most influential product specifications were the selection between a chronograph and a 

standard automatic movement, and the option of having the watch body coloured using the PVD 

process or not. 

The option of having the watch coloured required that the bezel, case, and crown parts be treated 

in the PVD process. If this was not selected this process was skipped for these parts. Selecting a 

chronograph movement over a standard automatic movement required additional holes to be 

drilled and tapped in the case for the chronograph pushers. It required the inclusion of pusher 

parts in the assembly of the case, and it also affected the geometry of the spacer used to hold the 

movement in place in the final assembly. The chronograph selection also required additional 

hands to be assembled in the time sub-assembly which included the dial, movement, hands, and 

dial holding pins. 

The model addressed product specifications by making use of the intelligence built into the model 

entities available in Simio. States linked to each entity instance, which were initialised at the time 

of order arrival, were propagated through the model to retain processing requirements in terms of 

processing times as well as process inclusion throughout the production process. These 

configuration states were Boolean and were modelled using discrete probability distributions; 

configurations thought to be more popular having higher probability values. Each unit ordered 

could have its own individual configuration and the sequence of configurations was completely 

unknown. In other words, the production system was required to handle any sequence of 

consecutive configurations. 
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3.3.4 Model verification 

Verification of computer simulation models is an important step in the model development 

process to ensure confidence in the correctness of the programming of the simulation model [73]. 

Verification of the computer simulation model was performed by way of both static and dynamic 

tests. Product configuration specifications were set to constant known values and the outputs were 

recorded in order to determine whether the outputs matched the input specifications and to 

determine the consistency of the outputs. The model itself was also monitored while running in 

order to confirm that the correct product configurations in terms of part requirements were 

adhered to for known product configurations. 

The two product configuration specifications that had the largest effect on the processing 

requirements in the production of the wristwatch were whether the customer selected a 

chronograph movement or a standard movement, and whether the customer selected a coloured 

finish on the complete watch or not. These two specifications were set to constant values in 

combination with each other, giving four different product configurations. The simulation model 

was run under each of these configurations and the outputs were found to be consistent with the 

product configurations in all four combinations. 

The system throughput under the different product configuration specification conditions was also 

recorded and checked for consistency with regard to the processing times required for the 

respective product configuration specifications. Table 3.11 shows the results from simulation 

experiments conducted for the four combinations of product configuration specifications. Fifty 

replications of the model were run for a simulation time of 1000 hrs each, with a warm-up period 

of 200 hrs during which no statistics were collected. The results shown are the average total units 

produced along with the 95 % confidence interval half-widths for each product configuration. 

Table 3.11. System throughputs for constant known product configurations. 

 Chronograph movement Standard movement 

Coloured 1040.78 ± 13.37 1049.54 ± 14.45 

Standard colour 1059.16 ± 12.10 1060.72 ± 13.78 

 

Qualitatively, these results were reasonable in relation to the processing times and processing 

requirements associated with the four different product configurations. Relatively speaking, the 

coloured unit with a chronograph movement would require the longest total processing time, since 

it would include the PVD process for all coloured parts as well as the additional parts required for 

the chronograph movement. In contrast, the standard colour unit with a standard automatic 
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movement would require the shortest total processing time, since the PVD processing times 

reduced to zero and less parts compared to the chronograph variant meant shorter assembly times. 

Dynamically, the animation of the simulation model was monitored while running, to determine 

whether the correct parts were generated for the different product configurations as 

aforementioned. It was observed that the parts associated with the chronograph movement were 

indeed generated when the chronograph specification was set, and vice versa. It was also observed 

that when the colour specification was set, the PVD time delay was evident. In the opposite case 

it was evident that the processing time through the PVD process was zero. The results from the 

experiments discussed here all reinforced the notion that the computer simulation model was 

programmed correctly and was verified. 

3.3.5 Model validation 

Validation of the simulation model is the final step in the model development process, and is 

defined as the confirmation that a model possesses an acceptable range of accuracy, consistent 

with its proposed application [73]. Model validation is a crucial step in the model development 

process, since this step provides credibility to the model in the opinions of the intended users of 

the model. However, it is usually impossible to prove the correctness of a model completely due 

to the fact that some or all of the system under investigation usually does not yet exist. For this 

reason certain techniques are used to prove the correctness of a model to an acceptable level [69]. 

Two independent techniques were employed to prove the validity of the model developed here. 

The output of the simulation model was compared to the output of the static model of the same 

system, under various conditions. Sensitivity analysis was also performed to identify the most 

important variables for the purpose of the model, and to ensure that they were modelled as 

accurately as possible. These techniques were selected due to the fact that the system under 

investigation does not exist, and thus no real-world data were available with which to compare 

the simulation output data. 

3.3.5.1 Model comparison methodology and results 

The dynamic model was compared to the static capacity planning model, as described in 

Section 3.2.1. The same order arrival rate and workstation capacities were used in the comparison. 

Table 3.12 shows the output of the static model compared to that of the dynamic model. Fifty 

replications were run for a total of 1000 hrs, with a warm-up period of 200 hrs during which no 

statistics were collected. In the table above “h” denotes the 95 % confidence interval half-widths 

of the simulation outputs. 
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Table 3.12. Comparison between workstation utilisations for static and dynamic models. 

Workstation utilisation (%) 

Workstations Static Model 
Simulation Model 

Average h 

4-Axis CNC Milling Machine (WS-M1) 76.04 76.15 0.68 

Multi-purpose Grinding Machine (WS-M2) 29.17 29.21 0.26 

Piercing and Blanking Machine (WS-M3) 7.29 7.31 0.07 

Pad Printing Machine (WS-M4) 26.04 26.09 0.23 

Feed-through CNC Lathe (WS-M5) 59.90 60.00 0.54 

PVD Machine (WS-M6) 31.25 31.29 0.28 

Stencil Gluing Machine (WS-M7) 6.25 6.26 0.06 

3D Printing Machine (WS-M8) 56.25 56.35 0.51 

Case Sub-assembly (WS-A1) 15.63 15.65 0.14 

Time Sub-assembly (WS-A2) 16.67 16.71 0.16 

Crown Sub-assembly (WS-A3) 8.33 8.34 0.08 

Body Sub-assembly (WS-A4) 16.67 16.66 0.15 

Final Assembly (WS-A5) 14.58 14.60 0.13 

 

3.3.5.2 Model comparison discussion 

The expected utilisation of the workstations predicted by the static model compared well with the 

scheduled workstation utilisations obtained from the simulation model. For all workstations, the 

expected utilisations fell within the 95 % confidence intervals. These results suggested that the 

simulation model was a good representation of the system under investigation at steady state. 

These results also confirmed that the static model was a useful tool to calculate the workstation 

capacities according to the order arrival rate. 

3.3.5.3 Sensitivity analysis methodology 

When performing a sensitivity analysis, the first step is to identify the most relevant input 

parameters, referred to as control variables in the context of sensitivity analysis [66]. The 

objective was to determine the maximum range of variation of the performance metrics in 

response to the maximum expected range of the input variables. The control variables identified 

were the order arrival rate, average order size, and the two product configuration parameters 

namely, colour and movement type which determined the wristwatch style. Multiple unit orders 

were also included here to investigate the effect on the system. The performance metrics, or 

responses, used in the sensitivity analysis included throughput in units per hour, average time in 

system in hours, and average number of units in the system. 
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To investigate the interaction between these input parameters a k-factorial experiment design was 

adopted, in which the extreme values of each input parameters was tested with the extreme values 

of every other input parameter [66]. Since there were four input variables there were 24 = 16 

scenarios to investigate. The ranges for the input parameters are shown in Table 3.13. 

Table 3.13. Descriptions of maxima and minima of input parameters used in validation experiment. 

Variable Maximum (H) Minimum (L) 

Body colour All units ordered coloured No units ordered coloured 

Movement All units ordered with chronograph movement 
All units ordered with 

standard movement 

Units per order 

Discrete probabilistic distribution with the 

following values: 1,0.85; 2,0.95; 3,0.9575; 4,0.965; 

5,0.9728; 6,0.98; 7,0.985; 8,0.99; 9,0.995; 10,1.0 

One unit per order for all 

orders 

Order inter-

arrival time 

Exponential probabilistic distribution with mean 

value 0.4 hrs 

Exponential probabilistic 

distribution with mean value 

0.75 hrs 

 

For the maximum value of units per order, the first value in each comma-separated pair was the 

number of units per order and the second was the probability of this value occurring, which was 

cumulative. In other words, the probability of the order size being one was 85 %, the probability 

of the order size being two was (0.95 – 0.85) x 100 % = 10 %, etc. In Table 3.13, the mean order 

inter-arrival times may seem to be reversed. However, the minimum and maximum values 

represented expected, and unfavourable states of the parameters, which corresponded to moderate 

mean inter-arrival times and low inter-arrival times, respectively. 

3.3.5.4 Sensitivity analysis results 

Each scenario was simulated using the experiment function in Simio. This function allows 

multiple scenarios of the same model to be run concurrently, without the graphical component. 

Control variables can also be initialised in the model, which can then be modified between 

scenarios. The average number of units in the system, the average time a unit spends in the system, 

and the throughput rate were recorded for each scenario. Fifty replications were run for each 

scenario and each replication ran for a simulation time of 1000 hrs in order to achieve steady state 

conditions. The outputs can be seen in the Table 3.14.  



46 
 

Table 3.14. Summarised simulation model validation experiment results. 

Scenario Colour Chrono 

Units/ 

Order 

Order 

Inter-

arrival 

Time 

Avg 

NumberIn 

System 

[units] 

Avg TimeIn 

System 

[hrs] 

Through-

put rate 

[units/hr] 

1 H H H H 1121.40 330.02 1.16 

2 H H H L 91.90 48.84 1.62 

3 H H L H 530.00 210.93 1.45 

4 H H L L 4.41 2.95 1.33 

5 H L H H 1033.18 307.73 1.28 

6 H L H L 51.55 26.86 1.72 

7 H L L H 486.67 192.45 1.55 

8 H L L L 3.77 2.50 1.33 

9 L H H H 1105.33 325.93 1.16 

10 L H H L 108.73 57.70 1.62 

11 L H L H 530.05 210.48 1.45 

12 L H L L 4.42 2.92 1.34 

13 L L H H 1073.34 313.96 1.26 

14 L L H L 52.30 27.18 1.72 

15 L L L H 470.00 186.42 1.56 

16 L L L L 3.59 2.37 1.33 

 

Figure 3.7 - Figure 3.9 show graphical representations of the output variables from Table 3.14. 

 
Figure 3.7. Average number of units in the system for all scenarios. 
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Figure 3.8. Average time a unit spends in the system for all scenarios. 

 
Figure 3.9. Throughput rates for all scenarios. 

From Table 3.14 it can be seen that the maximum throughput rate occurred in Scenario 6, where 

the input variable combination was closest to the expected combination. The minimum 

throughput rate occurred in Scenario 1, where all variables were at their maximum values. 

Scenario 1 also produced the highest average number of units in the system, and the lowest 

occurred in Scenario 16. The longest average time a unit spent in the system occurred in Scenario 

1, and the shortest occurred in Scenario 16. It could also be noted from Table 3.14 that the ranges 

of the number of units in the system and the time spent in the system per unit were much larger 

than the range of the throughput rate variable. 
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From the patterns observed in Figure 3.7 - Figure 3.9 the following conclusions can be made: 

1. Order inter-arrival time had the most significant effect on the average number of units in 

the system as well as the average time in system. 

2. The second most significant effect on the average number of units in system and average 

time in system was from the units per order variable. 

3. The most significant effect on the throughput rate of the system was from an inverse 

combination of number of units per order and the order inter-arrival time. 

4. The second most significant effect on the throughput rate was from the chronograph 

selection variable. 

5. Irrespective of the levels of the two selection variables, the throughput rate was at its 

lowest when the units per order variable was high and the order inter-arrival time was 

low. 

3.3.5.5 Model validation discussion 

The fact that the highest number of units in the system as well as the longest time in the system 

both occurred in Scenario 1, when all input variables are at their maximum values, and the lowest 

number of units in the system and the shortest time in the system occurred in Scenario 16 when 

all input variables were at their minimum values provided good validation for the operation of the 

system as a whole. 

These results will be used in the design of the algorithm for optimising scheduling of the 

manufacturing system. The average number of units in the system and the average time spent in 

the system were much more sensitive to variations in the input variables than the throughput rate. 

Therefore, these two variables should be the primary performance metrics in the design of the 

optimisation algorithm. 

In the planning stage, the system would be designed from a resource point of view to produce a 

target throughput rate based on the expected arrival rate of orders. So, in theory, as the arrival rate 

increases above the expected value, the throughput should remain relatively stable. However, the 

orders will be blocked more and more causing longer times in-system as well as higher numbers 

of units in the system. This causes the order lead time to increase dramatically. 

From the results achieved in the sensitivity analysis it was decided that the order size variable 

should be maintained at one in the case study to remove the effect of multiple unit orders on the 

system performance. This focussed attention on single unit order processing in terms of setup and 

processing times, which is more in line with the MCM, and simplified the analysis of system 

performance. 
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3.4 Chapter summary 

This chapter described a product platform for a custom wristwatch product range from an MCM 

perspective. It documented the development of a static capacity planning model and a static APP 

model as well as a dynamic system model based on a production facility for producing custom 

wristwatches. The static and dynamic simulation models were successfully verified and validated 

using sound methods to ensure their credibility and successful use for system optimisation. 
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   Aggregate Production Planning Optimisation 
 

Planning for production to meet demand forecasts allows a manufacturer to anticipate and plan 

for variations and is integral to the success of a manufacturing enterprise. This chapter presents 

the development of a novel algorithm for determining an optimal aggregate production plan for a 

wristwatch product range based on a common product platform. The performance of the new 

algorithm is compared with traditional planning strategies as well as with an optimisation 

algorithm based on an established Artificial Intelligence principle to address the research question 

posed at the start of the study. 

4.1 Algorithm selection 

A Biogeography-Based Optimisation (BBO) algorithm was selected for the optimisation of 

aggregate production plans, as explained in Chapter 2. According to Chase et al. [3] the main 

objective of an aggregate production plan is to identify the optimal combination of production 

rate, workforce level, and inventory on hand. The aggregate production planning problem is a 

time consuming exercise which involves a trial-and-error search of possible optimal solutions. A 

manual search method described by Chase et al. [3], known as the cut-and-try method, is based 

on costing various planning alternatives and selecting the best one. The BBO algorithm replicates 

and accelerates this process. 

4.2 Biogeography-Based Optimisation principle 

Biogeography-Based Optimisation is founded on the principle of biogeography, which is the 

study of species, their migration between habitats, and their extinction [33]. Habitats, also referred 

to as islands, are rated for their fitness for supporting life using a term known as the habitat 

suitability index (HSI). A high HSI is associated with a habitat that is fit to support a large number 

of species, whereas a habitat with a low HSI is only fit to support a small number of species. 

Migration is driven by the numbers of species within the habitats of the system, which determines 

the immigration and emigration rates of the species in each habitat from a graph similar to that 

shown in Figure 4.1 [33]. In other words, a habitat with a high HSI will contain a large number 

of species which means it will necessarily have a high emigration rate, μ. In contrast, a habitat 

with a low HSI will contain a small number of species and so will have a high immigration rate, λ. 

As migration occurs, the increasing species diversity of the low HSI habitats will cause their HSIs 

to increase and the reduction in species diversity in the high HSI habitats will cause their HSIs to 

reduce. This will continue until the numbers of species reach an equilibrium, S0. In reality, only 

a small group of individuals migrate between habitats leaving a population behind in their original 
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habitat. However, with BBO entire populations are assumed to migrate. This is necessary because 

with BBO the species represent independent variables of the objective function, which replace 

each other between the set of candidate solutions, or habitats. 

 
Figure 4.1. Single habitat species model. Adapted from [2]. 

With BBO, λi represents the probability that an independent variable, or species, in the i-th habitat 

will be replaced [33]. And the probability, P, of a given species, in habitat xj, emigrating from xj 

to replace the emigrating species in habitat xi is calculated using Equation 4.1. 

𝑃(𝑥𝑗) =
𝜇𝑗

∑ 𝜇𝑘
𝑁
1

            4.1 

Where k = 1, 2, 3, . . . N, and N is the number of habitats in the system. This is based on the 

principle of fitness proportionate selection in which selection pressure is proportional to the 

fitness of the candidates [74]. 

Biogeography-Based Optimisation can also incorporate mutation, which represents the 

introduction of random disturbances to the HSIs of habitats [33]. The method of deciding whether 

a given species, or independent variable, in a certain habitat should be mutated is to compare a 

user-defined mutation probability parameter with a randomly generated number in the same range 

and mutating the variable by randomly adjusting its value within its range. 

4.3 Biogeography-Based Optimisation algorithm development 

A BBO algorithm was developed for optimisation of an aggregate production plan for a case study 

of a wristwatch product range based on a common product platform. This work has been based 

on the static system models documented in Section 3.2 and their associated production data. This 

section documents the development of the BBO algorithm to address the APP problem. It 

describes the implementation of the algorithm as well as its inputs and initialisation. 
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4.3.1 Implementation 

The BBO algorithm developed here consisted of an inner and an outer loop. The outer loop 

repeated for a user-defined number of iterations, and the inner loop stepped through the user-

defined number of habitats, or candidate solutions. The population of possible solutions, i.e. 

aggregate production plans, was generated at the initialisation of the algorithm, based on 

production plan parameters. The parameters were calculated based on randomly generated 

variables. These were an inventory-to-production ratio, and a workforce level parameter. 

The inventory-to-production ratio and workforce level variables were used to vary the inventory 

to production ratio and workforce level from month to month, respectively. Equations 4.2 and 4.3 

show the expressions used for these two variables. The expression for inventory-to-production 

ratio increased or decreased the ratio of inventory to production for each month by up to 17 %, 

while the workforce level variables parameter added or subtracted up to two workers to or from 

the workforce from one month to the next. 

Inventory-to-Production-Ratio = ((float)(rand() % 50 - 25)) / 150  4.2 

Workforce-Variable = round(((rand() % 2) * 2 - 1)*((float)(rand() % 2)))          4.3 

From these two variables all the plan parameters were calculated. The plan parameters included 

production levels, workforce levels, and inventory levels for each month in the planning period. 

In the context of the BBO principle, each plan represented a habitat, and each plan parameter 

represented a species. The algorithm calculated the cost of each plan, then ranked and sorted them 

according to their cost. Immigration and emigration rates for each plan were calculated based on 

the rank of the plan, i.e. the plan with the lowest cost had the highest emigration rate and the plan 

with the highest cost had the lowest emigration rate. The immigration rates were calculated by 

subtracting the emigration rates from one, as shown in Equation 4.4. 

𝜇 = 1 − 𝜆        4.4 

Iterations began by placing the two lowest cost plans into an elitist matrix for replacing the two 

highest cost plans in the next iteration. The inner loop then stepped through the habitats, or plans. 

For each iteration, production plan parameters of each plan were migrated based on a probability 

calculated from the HSI and mutated based on a predefined probability. The production plan cost 

was used as the HSI here. The newly migrated and mutated plan were then sorted from lowest 

cost to highest. 

The validity of the lowest cost plan was checked and if the plan was not valid, that iteration was 

discarded and repeated with new migrations and mutations. If the lowest cost plan was valid the 
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algorithm proceeded with storing the lowest cost plan of that iteration in a matrix of low cost 

plans. The validity requirement set in this instance was for the ending inventory level in the final 

month of the planning period to be greater than zero.  

The algorithm then replaced the two highest cost plans with the two elite plans stored in the 

previous iteration, and placed the lowest cost plan for that iteration into the low cost plans matrix. 

The low cost plans matrix held the lowest cost valid plans from each iteration. Once the maximum 

number of iterations had been completed, the absolute lowest cost valid plan was extracted from 

the low cost plan matrix for outputting. Algorithm 4.1 shows the structure and pseudocode of the 

proposed BBO algorithm. 

Algorithm 4.1. Biogeography-Based Production Planning Optimisation Algorithm. 

 Input:  ProblemSpace; iterationsmax; habitatsmax; elitesmax; mutationProb 

 Output:  Planbest 

1 Create habitatsmax x plans; 

2 Calculate cost of plans; 

3 Sort plans based on cost: Low – High; 

4 Calculate migration rates based on habitatsmax; 

5  for i = 1 to iterationsmax do 

6  elitePlans  <--  plans[elitesmax]; 

7   for j = 1 to habitatsmax do 

8   Migrate plan parameters based on migration rates; 

9   Mutate plan parameters based on mutationProb; 

10   Calculate cost of new plans; 

11   Sort plans based on cost: Low –> High; 

12   Check validity of plans[1]; 

13   if plans[1] is invalid then 

14    Goto Step 8; 

15   else 

16    plansbest  <--  plans[1]; 

17   end 

18  Sort plansbest based on cost: Low – High; 

19  Highest cost plans  <--  elitePlans; 

20  elitePlans  <--  plans[elitesmax]; 

21  Planbest  <--  plansbest[1]; 

22 End 

23 return Planbest 
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4.3.2 Inputs 

As listed in Algorithm 4.1 the BBO algorithm inputs included the problem space, maximum 

number of iteration, maximum number of habitats, maximum number of elite habitats, and the 

mutation probability. The term ‘problem space’ refers to the structure and parameters of the 

aggregate production plan, including parameters as discussed in Section 3.2.2. Before the BBO 

algorithm was initialised, all plan parameters were initialised, and the values were read in from 

two text files. Table 4.1, Table 4.2, and Table 4.3 show the plan parameters and the values for 

which the optimal aggregate production plan was developed. 

Table 4.1. Monthly aggregate production plan parameter values. 

Monthly Production 

Parameter 

Value 

Jan Feb Mar Apr May Jun 

Working days 22 19 21 21 22 20 

Demand forecast [units] 1400 1150 1260 1240 1380 1280 

 

Table 4.2. One-off aggregate production planning parameter values. 

One-off Production 

Parameter 

Value 

Production time 122 minutes/unit 

Planning horizon 6 months 

Safety stock 25 % of monthly demand 

Starting inventory 100 units 

Initial workforce 16 workers 

 

Table 4.3. Aggregate production planning cost parameter values. 

Cost Input Parameter Value 

Cost of holding inventory $15.00/unit 

Stock-out cost $20.00/unit 

Worker hiring cost $500.00/worker 

Worker lay-off cost $750.00/worker 

Manufacturing cost (regular time) $20.00/hr/worker 

Overtime cost $30.00/hr/worker 

Downtime cost $10.00/hr 

 

Table 4.4 gives the descriptions and values used for the BBO algorithm input parameters. 
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Table 4.4. Biogeography-based optimisation algorithm input parameters. 

Input Description Value 

iterationsmax Maximum number of iterations to complete 150 

habitatsmax Number of aggregate production plans to create 100 

elitesmax 
Number of elite aggregate production plans to keep after each 

iteration 
2 

mutationProb Probability to use for mutating aggregate production plan parameters 0.05 

 

The values of the parameters shown in Table 4.4 were found through trial-and-error by comparing 

the results of the BBO algorithm from subsequent runs of the algorithm. The values given were 

found to produce the best results, within a reasonable search space and timeframe. However, 

because they were found by trial-and-error it cannot be categorically stated that this combination 

of parameters produces the optimal plan. 

4.3.3 Initialisation 

Before initialisation of the BBO algorithm, three plans were developed based on the standard 

planning strategies discussed in Section 3.2.2.1. The lowest cost plan out of these was used as the 

starting point for the BBO algorithm to compare its results. For the problem at hand the lowest 

cost plan based on a standard planning strategy was found to be one based on the level workforce 

– varied production strategy, that is, stable workforce with varying levels of inventory. Table 4.5 

shows the calculated plan parameters for this plan, including the total cost of production. 

Table 4.5. Best production plan based on standard planning strategy. 

 Jan Feb Mar Apr May Jun 

Starting Inventory [units] 100 85 131 193 275 280 

Demand Forecast [units] 1400 1150 1260 1240 1380 1280 

Safety Stock [units] 350 288 315 310 345 320 

Production Req.’s [units] 1650 1088 1287 1235 1415 1255 

Actual Production [units] 1350 1196 1322 1322 1385 1259 

Ending Inventory [units] 85 131 193 275 280 259 

Workforce [workers] 16 16 16 16 16 16 

Monthly Cost [$] 56 320 48 640 53 760 53 760 56 320 51 200 

Total Cost [$] 320 000      

 

The BBO algorithm programme was written in C++, using Microsoft Visual Studio Express 2013, 

as a Win32 Console Application. The programming code for the BBO algorithm can be found in 

Appendix D. Solution time for the BBO algorithm was approximately 10 s. 
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4.4 Aggregate Production Planning optimisation benchmark algorithm 

To set a benchmark for assessing the performance of the new BBO algorithm, a Simulated 

Annealing (SA) algorithm was developed and applied to the same case study production system. 

Simulated Annealing was used as a benchmark because it is a well-established Artificial 

Intelligence method and has been widely used in manufacturing systems optimisation research 

[20], [75]. The SA algorithm is based on the principle of annealing in metallurgy, where a metal 

is heated to a high temperature and then cooled, in a slow and controlled manner, in order to 

produce a particular molecular structure in the material [17]. Simulated Annealing is a search 

scheme that incorporates an exploration component and an exploitation component. 

The initial state of the system consists of an initial candidate solution, which is randomly 

generated, the system temperature variable, T, and the temperature schedule parameter. From the 

initial state, the neighbourhood of the candidate solution is explored, by generating new candidate 

solutions through varying the solution parameters based on the current system temperature. This 

is performed for a certain number of iterations before lowering the system temperature based on 

the temperature schedule. At each iteration the new candidate solution is compared to the best 

solution found so far, and if the new solution is better, it gets stored as the new best solution. 

The temperature schedule is a fraction multiplied by the current temperature. The best candidate 

solution at the current temperature is kept as the starting point for the next round of iterations at 

the next system temperature. As the system temperature decreases, the search area around the 

current best candidate solution decreases, which enhances the exploitation component of the 

search. However, to avoid the search becoming trapped at a local optimum, an acceptance 

probability is calculated and compared to a randomly generated fraction. Equation 4.5 shows the 

expression for calculating the acceptance probability, P. 

𝑃 = 𝑒
(𝑆𝑐−𝑆𝑛)

𝑇⁄             4.5 

Where Sc is the current best solution objective function value, Sn is the newly calculated solution 

objective function value, and T is the current system temperature [76]. If the acceptance 

probability is greater than the randomly generated fraction, the new candidate solution replaces 

the current best candidate solution. This step only takes place if the new candidate solution is not 

better than the current best candidate solution. In other words, the acceptance probability 

represents the probability of a worse solution being accepted as a possible optimal solution. 

However, it can be seen from Equation 4.5 that the probability tends to zero as the temperature 

decreases, since the numerator of the exponent will always be negative. 
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4.5 Simulated Annealing algorithm development 

This section documents the development of the SA algorithm to set a benchmark for testing the 

performance of the BBO algorithm. It describes the implementation of the algorithm as well as 

its inputs and initialisation. 

4.5.1 Implementation 

The SA algorithm used in this instance consisted of two nested loops. The outer loop, known as 

the temperature loop, represented the slow cooling of the system under consideration. The inner 

loop, known as the iteration loop, explored the search space at each temperature setting. The 

algorithm started at a user-defined maximum temperature and carried out a set number of 

iterations. The number of iterations per temperature step was user-defined. The amount that the 

temperature was reduced by was determined by the temperature schedule, which was also user-

defined. 

At each iteration, a new plan was generated using randomly generated variables along with the 

parameters of the plan generated in the previous iteration for calculating the parameters of the 

new plan. The variables used here were the same as those discussed in Section 4.3.1, namely, 

inventory-to-production ratio, and workforce level variable. 

The new plan was evaluated for its validity. If the ending inventory of the last month in the 

planning period was positive the plan was valid and could be used. If the plan was valid then the 

cost of the plan was calculated and compared to that of the lowest cost plan for the current 

temperature setting. If the new plan cost was lower than the current lowest cost plan, then it 

replaced the current lowest cost plan. The new plan cost was also compared to the overall lowest 

cost plan, and if it was lower, it replaced the overall lowest cost plan. 

The acceptance probability for accepting a plan that had a higher cost than the lowest cost plan 

for the current temperature setting was calculated using the cost of the new plan, the cost of the 

lowest cost plan for the current temperature setting and the temperature schedule. The acceptance 

probability was then compared to a randomly generated number in the same range as the 

acceptance probability. If the acceptance probability was greater than the random number then 

the new plan replaced the lowest cost plan for the current temperature setting. 

Once the maximum number of iterations were completed, the algorithm stepped down to the next 

temperature setting, according to the temperature schedule, to carry out the next round of 

iterations. Algorithm 4.2 shows the structure of the SA algorithm designed for this specific 

application. 
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Algorithm 4.2. Simulated Annealing Production Planning Optimisation Algorithm 

 Input:  ProblemSpace; iterationsmax; tempmax; tempmin; tempSched 

 Output:  Planbest 

1 Plancurrent  <-- Best Standard Strategy Plan; 

2 Planbest  <--  Plancurrent; 

3 while temp > tempmax do 

4  for i = 1 to iterationsmax do 

5   Create Plannew based on Plancurrent 

6   Check validity of Plannew  

7   Calculate cost(Plannew) 

8   if cost(Plannew) < cost(Plancurrent) then 

9    Plancurrent <-- Plannew 

10    if cost(Plannew) < cost(Planbest) then 

11     Planbest <-- Plannew 

12    End 

13   else if AcceptanceProbability(temp, cost(Plannew), cost(Plancurrent)) > random() then 

14    Plancurrent <-- Plannew 

15   End 

16  temp <-- temp x tempSched 

17 End 

18 return Planbest 

 

4.5.2 Inputs 

As listed in Algorithm 4.2, the algorithm inputs included the problem space, maximum number 

of iteration, maximum temperature, minimum temperature, and temperature schedule. As with 

the BBO algorithm, the term ‘problem space’ refers to the structure and parameters of the 

aggregate production plan, including parameters as discussed in Section 3.2.2. Before the 

algorithm was initialised, all plan parameters were initialised, and the values were read in from 

two text files. The same plan parameter values as shown in Table 4.1, Table 4.2, and Table 4.3 

were used in the development of the SA algorithm. 

The SA algorithm was run for 5 000 iterations at each temperature step from 800 000 down to 

50 000 at a temperature schedule of 0.99. In other words, at each temperature step the system 

temperature was equal to 99 % of the system temperature in the previous temperature step. Table 

4.6 gives the descriptions and values used for the SA algorithm input parameters. 
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Table 4.6. Simulated Annealing optimisation algorithm input parameters. 

Input Description Value 

Iterationsmax Maximum number of iterations to complete per temperature loop 5000 

tempmax Starting temperature for the temperature loop 800 000 

tempmin Ending temperature for the temperature loop 500 000 

tempSched Multiplier for calculating temperature for next iteration of temperature loop 0.99 

 

The values of the parameters shown in Table 4.6 were also found through trial-and-error by 

comparing the SA results of subsequent runs of the algorithm. These values were found to produce 

the best results, within a reasonable search space and timeframe. However, because they were 

found by trial-and-error it cannot be categorically stated that this combination of parameters 

produces the optimal plan. 

4.5.3 Initialisation 

The SA optimisation algorithm also used the best aggregate production plan based on a standard 

planning strategy as a starting point, as discussed in Section 3.2.2.1. This plan is shown in Table 

4.5 along with the total production cost for that particular plan. The SA algorithm was also coded 

in C++, using Microsoft Visual Studio Express 2013, as a Win32 Console Application. The 

programming code for the SA algorithm can be found in Appendix D. Solution time for the SA 

algorithm was approximately 15 s. 

4.6 Results 

The results from the BBO and SA algorithms were compared to measure the performance of the 

new BBO algorithm. The results were compared from a cost convergence perspective as well as 

the final aggregate production plans produced. All programming was carried out and run on a PC 

with 8 GB of RAM and an Intel Core i7-4700QM CPU running at 2.4 GHz. 

4.6.1 Optimal aggregate production plan cost convergence 

Figure 4.2 shows the convergence of the overall best plan cost by the SA algorithm, within the 

first 5 % of the temperature schedule to near optimal plan, and a final drop to the output value at 

approximately 50 % through the temperature schedule. 



61 
 

 
Figure 4.2. Best plan cost convergence using the SA algorithm. 

Figure 4.3 shows the convergence of the lowest plan cost for the BBO algorithm. From this figure 

it can be seen that the algorithm converged to the final value within the first ten iterations, or 

approximately 7 % of the total run length. 

 
Figure 4.3. Best plan cost convergence using BBO algorithm. 

4.6.2 Optimal aggregate production plan comparison 

The SA algorithm produced the production plan as shown in Table 4.7. This production plan 

showed an improvement of 2.37 % of total cost compared to the best standard strategy plan. This 

translated to an average saving of $ 1 263.33 per month, or $ 15 160.00 annually. The SA 

algorithm produced a plan with lower inventory levels and a relatively small workforce turnover, 

while tracking the demand forecasts well compared to the best standard strategy plan. 
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Table 4.7. Optimal production plan generated by way of SA algorithm. 

 Jan Feb Mar Apr May Jun 

Starting Inventory [units] 100 85 131 28 27 32 

Demand Forecast [units] 1400 1150 1260 1240 1380 1280 

Safety Stock [units] 350 288 315 310 345 320 

Production Req.’s [units] 1650 1353 1444 1522 1698 1568 

Actual Production [units] 1385 1196 1157 1239 1385 1259 

Ending Inventory [units] 85 131 28 27 32 11 

Workforce [workers] 16 16 14 15 16 16 

Monthly Cost [$] 56 320 48 640 48 540 50 900 56 820 51 200 

Total Cost [$] 312 420      

 

The BBO algorithm produced the production plan as shown in Table 4.8. This production plan 

showed an improvement of 2.92 % over the best standard strategy based plan. This translated to 

an average saving of $ 1 555.00 per month, or $ 18 660.00 annually. The BBO algorithm was 

able to produce a plan with less disruption to the workforce, with only a single change from one 

month to the next over the entire planning period. It was also able to produce a plan that tracked 

the production requirements more closely than the SA algorithm. 

Table 4.8. Optimal production plan generated by way of BBO algorithm. 

 Jan Feb Mar Apr May Jun 

Starting Inventory [units] 100 85 131 193 192 110 

Demand Forecast [units] 1400 1150 1260 1240 1380 1280 

Safety Stock [units] 350 288 315 310 345 320 

Production Req.’s [units] 1650 1353 1444 1357 1533 1490 

Actual Production [units] 1385 1196 1322 1239 1298 1180 

Ending Inventory [units] 85 131 193 192 110 10 

Workforce [workers] 16 16 16 15 15 15 

Monthly Cost [$] 56 320 48 640 53 760 51 150 52 800 48 000 

Total Cost [$] 310 670      

 

In comparing the total costs of the production plans produced by the SA and BBO algorithms, it 

was found that the BBO algorithm was able to produce a lower cost plan, at $ 310 670.00, than 

the plan produced by the SA algorithm, at $ 312 420.00. The total saving in production cost 

incurred by the BBO algorithm over the SA algorithm was 0.5 %. 
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4.7 Discussion 

Both the SA and BBO algorithms were able to produce production plans that were superior to the 

best standard strategy, which was the stable workforce – varying production strategy as defined 

by Chase et al. [3]. When comparing the plans produced by the two optimisation algorithms, the 

BBO algorithm produced plan had a lower overall cost than the SA algorithm produced plan. The 

differences in cost savings between the stable workforce – varying production plan, SA produced 

plan and BBO produced plan fell well within the results of Baykasoglu [25] in their comparison 

between goal programming and heuristic-based methods. 

Both the SA algorithm and the BBO algorithm produced plans that turned out to be mixed plans, 

i.e. a combination of two or more of the standard strategies as defined by Chase et al. [3]. This 

was expected as the probability of stochastic algorithms such as these producing standard 

strategies would be very low. This also aligned well with the prediction by Chase et al. [3] that 

mixed strategies were usually better than standard strategies. 

It is interesting to note that the best standard strategy plan was based on a constant workforce, 

whereas the SA generated plan has a non-constant workforce. The algorithm was designed to 

alternate between constant and non-constant workforce plans based on parameters, built into the 

algorithm, that vary as the algorithm progressed and thus converged to the optimal selection 

between constant and non-constant. The lower cost plan calculated by the SA algorithm showed 

that there was room for improvement over the standard planning strategies however small this 

may have been. 

When comparing the workforce levels of the plans produced by the SA algorithm and the BBO 

algorithm it was found that the BBO algorithm also produced a production plan that involved a 

non-constant workforce. However, the BBO algorithm was able to produce a plan with less 

disruption to the workforce, with only a single change from one month to the next over the entire 

planning period. This was a good result from a human resources perspective, as disruptions to the 

workforce are not taken lightly from employees’ perspectives. However, it is sometimes the only 

way for a manufacturer to be economically competitive. 

The stable workforce – varying production strategy produced a plan with a fairly high ending 

inventory, whereas both the SA and BBO algorithms produced plans with very low ending 

inventories. One of the main differences between the optimised plans was that the monthly ending 

inventories of the SA algorithm plan dropped drastically in the third month. This seems to indicate 

that the cost of holding inventory played a significant role. However, the BBO plan held the 

monthly ending inventories high until the very last month. The result of the more stable monthly 
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ending inventories of the BBO produced plan was more stable production requirements which led 

to more stable actual production. 

From a programming perspective, the BBO algorithm contained more steps than the SA 

algorithm. However, the BBO algorithm was less computationally intensive than the SA 

algorithm. The SA algorithm performed 5 000 iterations at each step in the temperature schedule, 

which required approximately 1000 loops. In contrast to this the BBO algorithm only performed 

150 iterations, which involved stepping through 100 habitats at each iteration. Furthermore, even 

though the BBO algorithm was less computationally intensive, it converged to its final output 

much quicker than the SA algorithm. 

4.8 Chapter summary 

This chapter presented the development of a novel BBO algorithm for determining an optimal 

aggregate production plan and compared its performance with that of standard APP strategies as 

well as an SA algorithm. The BBO and SA principles were explained. The development processes 

for both algorithms were documented including critical algorithm parameters and structures. 

Results were presented, discussed, and interpreted with reference to relevant literature. 
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   Production System Operation Optimisation 
 

Based on research into production system control and scheduling policies, presented in Section 

2.4, a new distributed dynamic scheduling strategy is proposed here, incorporating existing shop 

floor-level scheduling policies and system-level information for optimising the system 

performance. This chapter documents the development of the strategy. This includes application 

of the strategy to a hypothetical custom wristwatch production system as a case study to validate 

its performance and to address the research question posed at the start of the study. 

5.1 Selection rule approach 

The new scheduling strategy was based on traditional selection rules as defined in Section 2.4, 

due to their wide spread use and relatively low computational demand [49]. Research into 

traditional selection rules showed that these rules are typically based on order due dates, local 

processing times, and overall processing times [49], [77]. Based on these findings, commonly 

used rules were selected and used in the development of the scheduling strategy: 

1. Earliest Due Date (EDD) 

2. Shortest Processing Time (SPT) 

3. Most Processing Time Remaining (MPTR) 

4. Least Processing Time Remaining (LPTR) 

Each of these rules addresses a certain general performance target. Earliest Due Date is aimed at 

minimising order lateness. Shortest Processing Time aims to maximise local throughput. Most 

Processing Time Remaining is aimed at maximising throughput by prioritising entities that are 

early in their processing sequences, while LPTR is aimed at maximising throughput by 

prioritising entities that are later in their processing sequences. In this context, the EDD rule is 

implemented based on the time that the orders were released to the production system. This 

assumption removes uncertainty imposed on delivery by handling and shipping and bases the due 

date on the date on which the order was placed. This also assumes that no priority can be assigned 

to orders placed after others. 

These selection rules formed the basis of the development of the scheduling optimisation strategy 

as documented in the rest of this chapter. Commonly used selection rules were chosen to focus 

attention on the implementation of the strategy itself and to effectively test its performance, in 

conjunction with traditional base rules. In addition to the new strategy, each selection rule was 

implemented individually in Simio [68] and a separate experiment was run for each in order to 
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set a benchmark for the performance of the new scheduling strategy. Further details on the testing 

methodology can be found in Section 5.2.1.5. 

5.2 Distributed Dynamic Selection Rule Strategy development 

From the review of recent literature on production system scheduling it was found that dynamic 

scheduling using Artificial Intelligence (AI) and other heuristics perform better than single 

selection rules applied globally during production [52], [53], [55]. All literature were found to be 

focussed on system-wide application of dynamic scheduling methods. Based on this finding, it 

was hypothesised that the implementation of a scheduling strategy which dynamically switched 

selection of individual workstation rules based on a novel principle may outperform the 

implementation of a single selection rule across the system as a whole. Such a strategy has been 

developed and was modelled on the operation of the Harmony Search (HS) algorithm. 

The HS algorithm is typically used for optimisation of problems with static search spaces by 

modifying decision variables that make up the objective function through consulting what is 

known as the “Harmony Memory” at a specific rate [57]. In addition to the harmony consideration 

operation, it involves a pitch adjustment operation, which is typically designed to act as a 

randomisation operation to avoid local optima in the search space [57]. The structure of the 

scheduling strategy under discussion was inspired by that of HS, except that the strategy was 

designed to automatically adapt to a dynamic search space. 

5.2.1 Methodology 

To test the hypothesis, an environment for testing and analysing various selection rule 

implementations was developed. Chapter 3 described the development of a dynamic simulation 

model for this purpose. The simulation model represented a flexible flow shop manufacturing 

system and was developed based on a hypothetical product range which consisted of a men’s 

wristwatch product platform with a range of customisable parts and features. These simulation 

models were created in Simio [68]. Five instances of the model were created, four of which each 

implemented an individual traditional selection rule, as discussed in Section 5.1, across the entire 

system. The fifth instance implemented the Distributed Dynamic Selection Rule Strategy 

(DDSRS) developed here. The results from these five models were compared, to evaluate the 

performance of the DDSRS. 

5.2.1.1 Selection rule decision tree 

The DDSRS adopted a decision tree approach to determine when to switch between selection 

rules at each processing workstation. A decision tree approach was implemented because this 

approach best suited the nature of the implementation space. In order for the strategy to be 

effective, it needed to align with the operation of the selection rules for which it was designed. 
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The discrete nature of the decision tree suited the discrete time decisions required by a selection 

rule. 

Selection rules function on an event basis and query nominated variables when the next item 

needs to be selected for processing. Implementing the DDSRS in the form of a decision tree allows 

it to be implemented as part of the selection rules, rather than in addition to these rules. The 

decision tree queries certain variables at specific times during the production run, as necessary, at 

workstation level as well as at system level. These variables are discussed in the following 

subsection. 

The strategy was implemented for the processing workstations and not the assembly workstations. 

This was because the assembly workstations needed to combine parts according to their order 

numbers in order to produce units with the correct features and specifications as specified by the 

customer. Simio does not allow for implementation of selection rules at assembly workstation 

objects. The order of processing in the assembly workstations was governed by the order of arrival 

of the parent parts to the assembly workstations. 

5.2.1.2 Scheduling strategy decision variables 

The DDSRS was designed to evaluate the state of the production system and the local buffer at 

discrete intervals by querying system-level performance metrics as well as the behaviour of the 

buffer level of the workstation where it is implemented. The three decision variables that were 

identified for monitoring and querying through the production run were: 

1. Order Arrival Period 

2. Order Work In Process (WIP) 

3. Local Buffer Level 

The Order Arrival Period variable was at the top level of the decision tree, and was used to 

determine the relative trend of the order arrivals as a discretised system variable. The decision 

tree compared the latest arrival period with the most recently stored value of the same variable 

and made a decision to activate the rest of the decision tree or not. The Order Arrival Period was 

defined as the time elapsed between the arrivals of a certain number of orders, which was adjusted 

depending on the desired response time and nature of the order arrival process. 

At the mid-level of the decision tree was the Order WIP variable, which was designed to evaluate 

the state of the queue of orders waiting to be filled at the order completion station at the end of 

the production system. The current order WIP was compared to the moving average order WIP at 

the particular time in the production run. This was used as a further check on the state of the 



68 
 

production system performance, by determining whether the orders waiting was in excess of the 

average up to that point. 

At the lowest level of the decision tree, the local buffer level was evaluated. At this level the aim 

was to determine the most effective course of action for the state of the local buffer level given 

the path followed to that point through the decision tree. The local buffer was evaluated for its 

level relative to its moving average as well as the trajectory of its level. It was proposed that, in 

addition to the buffer level ratio, the trajectory of the local buffer level gave a further indication 

of the effectiveness of the current selection rule in place. 

5.2.1.3 Distributed Dynamic Selection Rule Strategy structure 

Figure 5.1 shows the decision tree implemented for determining when to switch selection rules at 

the individual workstation level of the production system. The upper most decision in the tree 

represents a warm-up period to allow the system to build data history for the decision tree to base 

its decisions on. Before 350 orders have been processed the default selection rule remains in place 

at all processing stations. 

 
Figure 5.1. Distributed Dynamic Selection Rule Strategy decision tree structure. 
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The length of the warm-up period was determined experimentally, by monitoring the 

instantaneous order lead time compared to the moving average order lead time. With no selection 

rule in place, i.e. a First In First Out (FIFO) queue ranking rule in place, the first time the 

instantaneous order lead time went below the moving average was at approximately 350 orders. 

The decision based on the Order Arrival Period variable, i.e. the time elapsed between the arrivals 

of a certain number of orders, was designed to respond to the volatility of the order arrival process. 

If the latest recorded arrival period was smaller than or equal to the previously recorded arrival 

period then the decision tree moved to the Order WIP decision point. If this was not the case then 

it held the current selection rule in place. 

The Order WIP decision point compared the current number of orders waiting to be filled with 

the moving average of this variable up to that point. This was designed to respond to the state of 

the order waiting queue. This level of the decision tree was aimed at responding to the state of the 

system as a function of its ability to fill orders in a timely manner. If the current Order WIP was 

greater than its moving average then the decision tree moved to the next level in the tree. If this 

was not the case then it held the current selection rule in place. 

At the next level down in the decision tree the local buffer was evaluated for its level as well as 

its trajectory. The current local buffer level was compared to its moving average up to that point 

in the production run, and the direction of the trajectory of the buffer level was evaluated. If the 

current buffer level was above a certain upper threshold as a multiple of the moving average then 

the decision was made to change selection rules. If the buffer level was between another, lower, 

threshold and the upper threshold, then the trajectory was queried before the decision was made. 

If the trajectory was positive then the decision to switch selection rules was made. If this was not 

the case then it held the current selection rule in place. 

5.2.1.4 The Harmony Search metaphor 

In line with the HS algorithm structure, the Order Arrival Period and Order WIP decision levels 

were viewed as equivalent to the Harmony Memory Consideration Rate (HMCR), as indicated in 

Figure 5.1. In the traditional HS algorithm, the HMCR governed the rate at which new harmonies 

were generated from the harmony memory [78]. The HMCR represented the tempo at which the 

overall tune was updated. Similarly, the Order Arrival Period and Order WIP decision points were 

governed by the tempo at which the system was running at any given time. 

The rate at which the buffer level variables were queried were equivalent to the Pitch Adjustment 

Rate (PAR) of the HS algorithm, as indicated in Figure 5.1. In the traditional HS algorithm, the 

PAR determined the rate at which pitches within the selected harmony, based on the HMCR, were 

adjusted [78]. Similarly, the local buffer variable decision points were reached subsequent to the 
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Order Arrival Period and Order WIP decision points in the DDSRS decision tree. Although the 

traditional HS algorithm was designed for static problems, the metaphor on which it was based 

has a dynamic foundation which lends itself well to the problem at hand. 

5.2.1.5 Implementation 

To set a benchmark for the performance of the DDSRS, experiments were run in Simio with the 

four traditional selection rules implemented separately. Each experiment consisted of 50 

replications, each of 1000 hrs run time. Testing of the DDSRS was carried out in simulation 

subsequent to testing the traditional selection rules. All testing was carried out on the dynamic 

simulation model which was created in Simio, and represented a hypothetical wristwatch 

production system case study, as described in Chapter 3. 

For buffer queue handling, ranking rules and dynamic selection rules in Simio were implemented 

as part of the process logic of each object instance that represented a processing workstation. By 

default, no selection rule was active and the queue was simply ranked according to the order of 

part arrivals, i.e. FIFO, as shown in Figure 5.2. 

 
Figure 5.2. Default process logic for Workstation M1 of wristwatch production system [68]. 

Bases for common traditional selection rules were built into the process logic. These included 

smallest value first, largest value first, and three campaign-based rules. For each of these, the 

value expression for the rule to use in the selection of the next entity to process was nominated. 

Any dynamic selection rule that was implemented overrode the ranking rule. The standard and 

extension Application Program Interfaces (APIs) incorporated in Simio was used to implement 

the DDSRS. 

Extension API interfaces exist for a number of components of Simio, including interfaces for the 

definition and implementation of selection rules. The Simio APIs were written in the C# 

programming language. The DDSRS was implemented by programming the decision tree in the 

form of a series of cascading if-then statements, which was followed by a switch statement that 

actioned the outcome of the decision tree. The code can be found in Appendix F. 
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The selection rules that were implemented as part of the DDSRS, as discussed in Section 5.1, 

were written as maximum or minimum value searching for-loops that searched through the 

candidate parts for the part that possessed the highest or lowest value of the expression as 

nominated in the simulation model. Default expressions for these for-loops were written into the 

extension API code for all input variables to the DDSRS. Figure 5.3 shows the input variables for 

the DDSRS as implemented in Simio. 

 
Figure 5.3. Dynamic selection rule input variables for the DDSRS for Workstation M1 of the 

wristwatch case study. 

The following applies to Figure 5.3: 

a) Default SVF Expression is the expression used for the EDD selection rule 

b) Secondary SVF Expression is the expression used for the SPT selection rule 

c) LVF Expression is the expression used for the MPTR and LPTR selection rules 

d) Order WIP Ratio Expression takes the order WIP ratio variable as argument 

e) Order WIP Ratio Threshold takes the order WIP ratio threshold property as argument 

f) Arrival Period Expression takes the arrival period property as argument 

g) Buffer Level Expression takes the local buffer level ratio variable as argument 

h) Upper Buffer Threshold takes the upper threshold property for the local buffer level ratio 

as argument 

i) Lower Buffer Threshold takes the lower threshold property for the local buffer level ratio 

as argument 

Expressions d) through i) were used as variables and parameters by the decision tree of the 

DDSRS. Experiments were designed and carried out in Simio to determine the optimal ranges of 

values for these variables. The k-factorial experiment design method was used to investigate the 

effects of the values of these variables on the performance of the production system. The primary 

performance indicator was the average order lead time. The average number of order waiting to 

be filled was also monitored. Table 5.1 shows the values used in the k-factorial experimentation. 



72 
 

Table 5.1. K-Factorial experiment decision variable value ranges. 

Order WIP Ratio 
Units per Arrival 

Period 

Buffer Level Ratio 

Lower Threshold 

Buffer Level Ratio 

Upper Threshold 

0.5 1 0.5 1.0 

1.0 5 1.0 1.75 

1.5 10 1.25 2.5 

 

The k-factorial method produced 34 = 81 scenarios. However, some scenarios were not feasible. 

These were where the Lower Buffer Level Ratio Threshold was equal to or greater than the Upper 

Buffer Level Ratio Threshold. These made up 18 scenarios, which left 63 scenarios to investigate. 

All scenarios were run for 50 replications, concurrently with each other. These ranges were 

determined through trial-and-error by adjusting each variable individually. 

From the results of the k-factorial experiment, the ranges of the decision variables could be refined 

for a subsequent optimisation experiment. The optimisation experiment was run using OptQuest, 

a third-party Simio add-in for optimisation purposes developed by OptTek Systems, Inc. [79]. 

The optimisation experiment was set up with parameter settings as shown in Table 5.2. The 

OptQuest add-in automatically generated scenarios with different values for the control variables. 

The control variables used here were Order WIP ratio, Units per Arrival Period, Upper Buffer 

Level Ratio Threshold, and Lower Buffer Level Ratio Threshold. 

Table 5.2. OptQuest parameter settings for final stage in DDSRS development. 

Parameter Setting 

Minimum Replications 20 

Maximum Replications 50 

Maximum Scenarios 100 

Confidence Level 95 % 

Relative Error 0.1 

Objective Single Objective 

 

With reference to Table 5.2, the Confidence Level parameter represented the level of accuracy to 

be used in the statistical comparison of one objective value to another. The Relative Error 

parameter represented the relative error of the confidence level expressed as a percentage of the 

mean. The objective used in the optimisation experiment was to minimise average order lead time. 

These parameters were used in the selection of the optimal scenario. The reason for running 

50 replications of each scenario in all experiments was to ensure that statistically sound results 
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could be achieved. Running a single random scenario for an increasing number of replications 

showed that this was a sufficient number of replications to generate statistically reliable results. 

5.2.1.6 Production system case study 

The DDSRS was developed in application to a hypothetical wristwatch case study production 

system. This production system was described in Chapter 3 along with the dynamic simulation 

model representing the system. The production system was designed to produce custom 

wristwatches as single unit orders. Based on the production requirements and probability 

distributions used in the setup of the dynamic simulation model in Chapter 3, Table 5.3 shows the 

expected theoretical maximum and minimum order lead times and number of orders waiting. 

Table 5.3. Theoretical order lead time and number of orders waiting ranges (from Chapter 3). 

 Minimum Maximum 

Order Lead Time (hrs) 2.20 4.33 

Number of Orders Waiting 16.50 32.48 

 

The values for the number of orders waiting were calculated based on Little’s Law [80] and the 

order arrival rate. Little’s Law can be stated in expression for as shown in Equation 5.1: 

L = λW       5.1 

Where L is the average number of orders waiting, λ is the average order arrival rate, and W is the 

average order lead time. The average order arrival rate used was 7.5 orders/hr. The minimum 

values represent the time required for a unit to be produced assuming all workstations are already 

set up correctly, and processing times are two standard deviations below their mean values. The 

maximum values represent set up required at all workstations and processing times are two 

standard deviations above their mean values. All the values in Table 5.3 represent ideal steady 

state operation of the system. 

All experiments were run in Simio (version 7.128.12863) installed on a PC with 8 GB of RAM 

and an Intel Core i7-4700MQ CPU running at 2.4 GHz. The k-factorial experiment took 

approximately 12 hrs to complete all 63 scenarios of 50 replications each. The optimisation 

experiment took approximately 20 hrs to complete all 100 scenarios of 50 replications each. 

5.2.1.7 Data analysis 

Analysis of the k-factorial experiment results involved identifying the scenarios that produced the 

lowest average order lead times to determine the ranges of the decision variables to use in the 

optimisation experiment. The results from the optimisation experiment were used to determine 
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the final output in the development of the DDSRS. This produced a set of DDSRS decision 

variable values for use in the production system scheduling to minimise average order lead times. 

To evaluate the final DDSRS results, the statistical distributions of the average order lead times 

and average number of orders waiting to be filled, generated by the individual selection rules and 

DDSRS were compared using a one-way ANOVA. Post-hoc pairwise comparison was carried out 

using the Tukey test, to determine which methods were statistically significantly different from 

one another. 

The relationships between the average order lead times and average number of orders waiting 

were also analysed as a final rationality check for all selection rules and the DDSRS, to ensure 

the system behaviour followed Little’s Law [80], within statistical reason. Statistical analysis was 

carried out using RStudio (version 0.99.489) [81]. 

5.2.2 Results 

This section presents results achieved from the individual implementation of traditional selection 

rules as well as the DDSRS on the custom wristwatch production system case study simulation 

model. These results follow the development methodology as described in Section 5.2.1. 

Table 5.4 shows a summary of the results for the average order lead time distribution of the 

individual selection rule implementations. Table 5.5 shows a summary of the results for the 

average number of orders waiting distribution for the individual selection rule implementations. 

When looking at the medians of Table 5.4 and Table 5.5 it can be seen that the EDD selection 

rule seems to outperform all other rules. 

Table 5.4. Individual selection rule implementation average order lead time distribution 
summaries. 

 Average Order Lead Time (hr) 

EDD SPT MPTR LPTR 

Minimum 3.48 4.62 4.29 3.22 

First Quartile 4.47 5.62 6.41 5.17 

Median 6.20 7.12 8.63 6.95 

Third Quartile 7.55 10.29 11.39 10.41 

Maximum 13.33 21.44 20.29 21.63 

 

  



75 
 

Table 5.5. Individual selection rule implementation average number of orders waiting distribution 
summaries. 

 Average Number of Orders Waiting 

EDD SPT MPTR LPTR 

Minimum 25.56 33.91 31.52 23.65 

First Quartile 33.15 41.50 47.44 38.52 

Median 46.83 53.25 64.73 52.11 

Third Quartile 56.87 78.00 85.37 79.90 

Maximum 101.15 166.70 153.50 166.76 

 

The DDSRS decision variables from the four scenarios in the k-factorial experiment that produced 

the lowest median average order lead times are contained in Table 5.6, along with their median 

average order lead time results. From these results the optimisation experiment was prepared as 

part of the development of the DDSRS. It can be seen from Table 5.6 that the ranges for the 

DDSRS decision variables could be reduced by a third from the k-factorial experiment ranges as 

per Table 5.1. 

Table 5.6. Top four k-factorial experiment scenarios decision variable values. 

Order WIP 

Ratio 

Units per 

Arrival 

Period 

Lower Buffer 

Level Ratio 

Threshold 

Upper Buffer 

Level Ratio 

Threshold 

Average Order 

Lead Time 

Median (hr) 

0.5 5 0.5 2.5 5.63 

1 5 1 1.75 6.05 

1.5 1 0.5 1.75 5.82 

0.5 5 1 2.5 5.97 

 

The ranges used in the optimisation experiment were selected as given in Table 5.7. The intervals 

were selected such that they provide a fine enough resolution to be able to determine the optimal 

solution. 

Table 5.7. OptQuest experiment decision variable value ranges. 

Order WIP Ratio 
Units per Arrival 

Period 

Lower Buffer Level 

Ratio Threshold 

Upper Buffer Level 

Ratio Threshold 

0.5 to 1 in intervals of 

0.025 

1 to 5 in intervals of 

1 

0.5 to 1 in intervals of 

0.0125 

1.5 to 2.5 in intervals of 

0.025 

 

The scenario produced by the optimisation experiment that achieved the lowest median average 

order lead time and number of orders waiting was based on DDSRS decision variable values as 
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shown in Table 5.8. Appendix G contains the average order lead times and numbers of orders 

waiting for all scenarios produced by the optimisation experiment. 

Table 5.8. Optimisation experiment decision variable value results. 

Order WIP Ratio 
Units per Arrival 

Period 

Lower Buffer Level 

Ratio Threshold 

Upper Buffer Level 

Ratio Threshold 

0.5 5 0.5 2.5 

 

The scenario based on the decision variables in Table 5.8 produced an average order lead time 

distribution as summarised in Table 5.9, presented in comparison with the results achieved by the 

EDD selection rule. This scenario represented the optimal DDSRS decision variable combination. 

The median average order lead time produced by the DDSRS was 9.2 % lower than that of the 

EDD rule. 

Table 5.9. Earliest Due Date and DDSRS order lead time distribution summary. 

 Average Order Lead Time (hr) 

EDD DDSRS 

Minimum 3.48 3.57 

First Quartile 4.47 4.84 

Median 6.20 5.63 

Third Quartile 7.55 7.29 

Maximum 13.33 15.25 

 

Table 5.10 shows the distribution summary of the average number of orders waiting for the 

optimal DDSRS scenario based on the decision variable values of Table 5.8, in comparison with 

that of the EDD selection rule implementation. 

Table 5.10. Earliest Due Date and DDSRS average number of orders waiting distribution summary. 

 Average Number of Orders Waiting 

EDD DDSRS 

Minimum 25.56 26.23 

First Quartile 33.15 36.02 

Median 46.83 42.07 

Third Quartile 56.87 54.16 

Maximum 101.15 117.51 

 



77 
 

Average order lead times generated using the individual selection rules and DDSRS are shown 

graphically in Figure 5.4. Corresponding average number of orders waiting are shown in Figure 

5.5. Figure 5.4, Table 5.4, Table 5.5, Table 5.9, and Table 5.10 show distribution summaries of 

these results. From Figure 5.4 and Figure 5.5 it can be seen that the best permutation found by the 

optimisation experiment procedure appears to produce an overall lower average lead time range 

than two of the four individual selection rules. 

 
Figure 5.4. Box and whisker plot of individual selection rules and DDSRS average order lead times. 

 

 
Figure 5.5. Box and whisker plot of individual selection rules and DDSRS average number of 

orders waiting. 
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The effective average order arrival rates were calculated (Table 5.11) from the median values of 

Table 5.4, Table 5.5, Table 5.9, and Table 5.10 using Little’s Law as described in Section 5.2.1.6. 

All results were within 1 % of the actual average order arrival rate of 7.5 orders/hr. These results 

validated the correct functioning of the simulation models in all instances. The consistency of 

these results also meant that a one-way ANOVA and Tukey test were only required to be carried 

out on the average order lead time variable to effectively analyse the performance of the DDSRS. 

Table 5.11. Effective average order arrival rates. 

Selection Rule/ 

Strategy 

Effective Average 

Order Arrival Rate 

(Orders/hr) 

EDD 7.55 

SPT 7.48 

MPTR 7.50 

LPTR 7.50 

DDSRS 7.47 

 

The one-way ANOVA, used to compare the average order lead times of all four selection rule 

implementations and the DDSRS with each other, produced results as shown in Table 5.12. 

Table 5.12. Selection rule comparison one-way ANOVA results for average order lead times. 

 
Degrees of 

Freedom 

Sum of 

Squares 

Mean of 

Squares 
F p 

Individual 4 371.4 92.85 7.51 1.01e-05 

Residuals 245 3029.7 12.37   

 

The null hypothesis here was that all mean values of average lead times achieved by the different 

individual selection rules and the DDSRS were equal. The results of the one-way ANOVA, shown 

in Table 5.12, indicated that this hypothesis could be rejected (one-way ANOVA, F > 1, p < 0.05). 

The Tukey test used to determine whether statistically significant differences existed between 

pairs of methods produced results as shown in Table 5.13. 
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Table 5.13. Results of Tukey test pairwise comparison of selection rule implementations. 

Pairs: 

(1)-(2) 

Average Order Lead Times (hrs) 
p adjusted 

Median of (1) Median of (2) 

EDD-DDSRS 6.20 5.63 0.99998 

LPTR-DDSRS 6.95 5.63 0.07497 

MPTR-DDSRS 8.63 5.63 0.00018 

SPT-DDSRS 7.13 5.63 0.02750 

LPTR-EDD 6.95 6.20 0.06943 

MPTR-EDD 8.63 6.20 0.00016 

SPT-EDD 7.13 6.20 0.02516 

MPTR-LPTR 8.63 6.95 0.38834 

SPT-LPTR 7.13 6.95 0.99598 

SPT-MPTR 7.13 8.63 0.99998 

 

The Tukey test showed that there were statistically significant differences between the following 

pairs of scheduling rules/strategy: 

 Most Processing Time Remaining and Distributed Dynamic Selection Rule Strategy 

 Shortest Processing Time and Distributed Dynamic Selection Rule Strategy 

 Most Processing Time Remaining and Earliest Due Date 

 Shortest Processing Time and Earliest Due Date 

From Figure 5.4 and Table 5.13 it can be established that EDD and DDSRS are most similar to 

each other in terms of their ranges and statistical distributions. Shortest Processing Time, LPTR 

and MPTR are most similar to each other, but not to EDD or DDSRS. The EDD and DDSRS 

results are overall lower than all other results. Statistical similarities exist between LPTR and 

EDD, and LPTR and DDSRS. This is due to the exceptionally wide distribution of the LPTR 

results. This is represented by the fact that the Tukey test was not able to detect a statistically 

significant difference between LPTR and any of the other methods, as seen in Table 5.13. 

5.2.3 Discussion 

According to Subramaniam et al [54] and Shaw et al. [82], it is impossible for a single selection 

rule to be optimally effective at every instance of its implementation over the entire length of time 

the production system is in operation. The DDSRS addressed this shortcoming by starting with a 

set of simple selection rules and enabling each instance of the strategy implementation to 

independently switch between rules. This way the system could adjust dynamically to its local 

and global state. The performance of the DDSRS applied to the hypothetical wristwatch 

production system case study has been discussed here with reference to relevant literature. The 
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methodology of developing the DDSRS has also been discussed here as a general approach to 

solving the dynamic manufacturing scheduling problem. 

The average order lead time and number of orders waiting achieved by the individual selection 

rule implementations showed the range of variation in these metrics possible, simply by 

implementing a different rule to a manufacturing system globally. The EDD selection rule 

produced lower average order lead time and number of orders waiting than all other selection 

rules tested. The Author believed that a contributing factor to these results is the fact that the EDD 

rule managed to keep the flow through the processing workstations relatively close to the flow 

order required by the assembly workstations. This was due to the fact that order due dates were 

directly linked to their arrival dates to the system. However, this did not imply that the most 

effective means of minimising the average order lead time and number of orders waiting was by 

matching the flow order required by the assembly workstations. 

Statistical analysis carried out during this study showed that there was no statistically significant 

difference between the average order lead time produced by the DDSRS and the individual 

implementation of the EDD selection rule. However, the results of the Tukey test did show that 

the DDSRS performed just as well as the best performing globally implemented selection rule of 

those tested, that is the EDD selection rule. These results aligned well with previous work by 

Shaw et al. [82]. Shaw et al. predicted that their globally dynamic scheduling system would 

perform at least as well as the best among the candidate selection rules. Furthermore, the order of 

the improvement in average order lead time over traditional selection rules in this study were 

within the ranges found by other researchers when applying machine learning techniques to the 

dynamic scheduling problem for FMS and job shop manufacturing systems [52], [53], [55]. 

From the perspective of the DDSRS development methodology, identifying the most applicable 

traditional selection rules, as defined by Panwalkar and Iskander in [49], was the first step. In this 

study the most applicable traditional selection rules were aimed at the production time as 

measured by the average order lead time. If the main objective was uncertain or indistinguishable 

from others, testing of individual selection rules would need to be carried out in simulation to 

determine which subset performed well. This set could then be used as the base selection rules to 

switch between by the DDSRS. The goal in this step was to keep to tried-and-trusted selection 

rule implementations. 

In the next step of the DDSRS development methodology, the effects of the decision variables 

were evaluated by way of a k-factorial experimental design method. This step was aimed at 

narrowing down the ranges of the decision variables leading on to the final step in the 

development methodology. The number of scenarios to investigate was calculated by the typical 
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method of kn, where k was the number of levels of each variable and n was the number of variables. 

However, some scenarios were excluded from the set due to the relationship between the two 

buffer level threshold variables. Although these variables were independent from each other in 

the sense that the value of one is not necessary for determining the value of the other, the value 

of one does exclude a certain range of the other. Specifically, the upper threshold logically needed 

to be greater than the lower threshold for the decision tree to function correctly. 

In the final step of the DDSRS development methodology an OptQuest optimisation experiment 

was prepared based on the results of the k-factorial experiment discussed above. This experiment 

did not produce a scenario that showed improved average order lead time over those explored in 

the k-factorial experiment. Thus, it would be possible to forego the k-factorial experiment all 

together and go straight to the optimisation experiment to find the best combination of decision 

variable values. However, this is not advisable as it would necessitate increasing the maximum 

number of scenarios to be created by the optimisation experiment, which would lengthen the 

solution time of the optimisation experiment exponentially. This would be necessary to 

effectively explore the search space represented by the ranges of the decision variables. In this 

instance the ranges of the DDSRS decision variables could effectively be reduced by a third. This 

reduced the number of decision variable value combinations from 1 440 000 to 160 000. 

The DDSRS development methodology has been designed to be followed for any flow shop-type 

production system. As part of the development of new production systems it is recommended to 

incorporate a simulation phase for cost-saving reasons [83]. The implementation of a 

methodology such as this one can assist the manufacturing enterprise in further improving their 

production capacity by reducing average order lead times which can increase throughput. It can 

also be used in a what-if study for order arrival process permutations, by preparing the threshold 

values for the different behaviour patterns expected from the order arrival process. The 

fundamental functionality of the DDSRS makes it adjustable to a range of system configurations 

and product platforms. 

The DDSRS development methodology relies on the development of a simulation model of the 

system under investigation incorporating enough detail for modelling the scheduling of the 

system. In the development of a new production system, the development of a simulation model 

holds many advantages. These include time and cost saving by avoiding physical testing and 

prototyping [83]. Although proprietary simulation software was used in the development of the 

DDSRS, it is believed that the methodology is generic enough that it can be followed using any 

good simulation software if the practitioner was familiar enough with the software they were 

using. 
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5.3 Chapter summary 

This chapter documented the development of a new distributed dynamic scheduling strategy, 

incorporating existing shop floor-level scheduling policies and system-level information for 

optimising the system performance. The strategy was applied to a hypothetical custom wristwatch 

production system as a case study to validate its performance and to answer the research question 

posed at the start of the study. Experimental results were presented, discussed and interpreted in 

relation to relevant literature and research objectives.
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   Conclusion 
 

This chapter restates the aim and objectives of the study as given in Chapter 1 and gives a brief 

summary of the research study with relation to the research question. Conclusions drawn from 

the work of each of the development chapters are discussed, and future research topics are 

identified. 

6.1 Aim and objectives 

The aim of this study was to research, develop, and test novel Computational Intelligence-based 

optimisation methods built on simulation models for Advanced Manufacturing Systems, at the 

planning and scheduling levels. The objectives identified at the outset of this study were: 

1. Research the state of manufacturing strategies and manufacturing system types for 

compatibility with the research approach and the state of Computational Intelligence as a 

technology. 

2. Develop manufacturing system models for implementation and testing of planning and 

scheduling optimisation techniques. 

3. Research and develop a Computational Intelligence based optimisation technique for 

optimising production planning activities within the manufacturing system type identified 

in research. 

4. Research and develop a Computational Intelligence based optimisation technique for 

optimising production scheduling activities within the manufacturing system type 

identified in research. 

5. Deploy Computational Intelligence optimisation techniques in computer simulations of a 

case study production system to evaluate the performance of the techniques against 

traditional planning and scheduling methods, by analysing and interpreting computer 

simulation results, and draw conclusions. 

6.2 Research summary 

This research study investigated the application of novel approaches to the production planning 

and scheduling problems in order to determine whether Advanced Manufacturing Systems 

(AMSs) striving towards Mass Customisation Manufacturing (MCM) can be optimised more 

effectively using Computational Intelligence (CI) principles than by traditional methods. One 

common thread throughout the study was the simulation modelling methodology used in the 
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investigation. Another common thread throughout the study was the concept of exploiting tried-

and-trusted traditional methods using new principles, rather than fitting entirely new principles to 

the problem, as has been the trend in past research. 

To address the question of whether AMSs could be optimised more effectively using new CI 

principles than traditional methods, from a production planning perspective, the previously 

unused Biogeography-Based Optimisation (BBO) principle was applied to the Aggregate 

Production Planning (APP) problem. Static simulation models were developed from the capacity 

planning activity through to Aggregate Production Planning. The BBO algorithm was applied as 

a search method to automate and accelerate the traditional cut-and-try method used for APP. To 

test the effectiveness of the BBO algorithm, results were analysed by comparison with results 

achieved by a Simulated Annealing (SA) algorithm as well as traditional planning strategies. The 

BBO algorithm was able to produce lower cost production plans than three traditional planning 

strategies. It also proved to outperform the SA algorithm by producing a lower cost plan in a 

smaller number of iterations with a smaller impact on workforce levels and closer tracking of 

production requirements. 

To address the question of whether AMSs could be optimised more effectively than traditional 

methods using new CI principles, from a production scheduling perspective, a new Distributed 

Dynamic Selection Rule Strategy (DDSRS) for production scheduling was developed. This 

strategy was inspired by the metaphor on which the Harmony Search (HS) algorithm was based. 

This principle has not been used in this context before. The DDSRS was founded on simple 

traditional selection rules, and the development methodology was presented as a generic 

methodology for application to a range of production scheduling problems. Statistical analysis of 

the results achieved by the DDSRS compared to the traditional selection rules showed no 

statistically significant improvement over the best performing rule. However, some improvement 

was observable in terms of resistance to variation in order arrival rates and marginally lower 

average order lead times and average number of orders waiting to be filled. 

In summary, the research question posed at the start of this study was approached from two 

different perspectives, one a static planning perspective, and the other a dynamic scheduling 

perspective. In doing so, two new approaches were found to be able to optimise an AMS more 

effectively than traditional methods. These were a BBO algorithm for APP and an HS inspired 

distributed dynamic scheduling strategy. This study also made a contribution toward the 

promotion of simulation modelling for production system optimisation. 
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6.3 Simulation modelling 

Simulation modelling has become more than just a what-if scenario testing tool. It can be a 

valuable asset to a manufacturing enterprise if developed with the correct objectives. Different 

models of a manufacturing system can be developed for different purposes. This is advisable to 

avoid attempting to develop a single simulation model that is completely accurate, but too 

complex and computationally demanding to be useful. The simulation model developed for 

production scheduling was useful for investigating scheduling optimisation, but in hindsight could 

have been simpler in its construction and inclusion of components such as order handling and 

processing. This would have reduced run time of the experiments designed into the methodology, 

which would improve the profitability of using simulation modelling for this purpose. 

6.4 Production planning 

Aggregate Production Planning calculates estimates of production requirements based on demand 

forecasts and production costs. Due to the nature of the problem there will always be an element 

of uncertainty. By taking into account worst-case conditions of setup times required for every 

processing and assembly operation in such a production system the BBO algorithm was able to 

calculate a lower cost production plan than traditional strategies as well as a Simulated Annealing 

algorithm. 

The goal in this part of the study was to develop a new algorithm founded on tried-and-trusted 

knowledge of APP as well as newly developed technology. This has produced a planning 

optimisation technique that achieved more cost effective plans than traditional optimisation 

techniques. The results achieved by the BBO algorithm were within ranges achieved by similar 

algorithms found in literature, which reinforced the validity of the approach. A conclusion that 

can be drawn from this is that it is not always necessary to reinvent the wheel, so to speak. 

Extension of existing technologies designed for high volume low variety production is a feasible 

option for optimising systems designed for MCM through single order unit production. 

It was found that both the optimisation algorithms developed for the purpose of optimising the 

aggregate production plan possessed control parameters which greatly affected the performance 

of the algorithms. However, due to the nature of the problem space the task of adjusting these 

parameters was not a time consuming one. It is believed that the time saved by applying 

algorithms such as these would still outweigh the time spent adjusting the algorithm control 

parameters. These algorithms would also allow production planners to explore more scenarios in 

a shorter amount of time once the algorithm parameters were adjusted adequately. 
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6.5 Distributed dynamic production scheduling 

Although no statistically significant improvement was found between the average order lead time 

produced by the DDSRS and that produced by the Earliest Due Date (EDD) selection rule, there 

was an observable improvement in the results achieved by the DDSRS in terms of the median of 

the average order lead time as well as the distribution between the first and third quartiles. This 

supports the conclusion that it can be more beneficial for each processing workstation in such a 

production system to individually switch its selection rule rather than implementing a global 

selection rule across the system. 

The DDSRS allowed each workstation to dynamically and individually respond to its local 

situation as well as the system state, which improved the responsiveness of the system as a whole. 

Furthermore, it can be stated that the extension of tried-and-trusted methods, in this case 

traditional selection rules, was a worthwhile endeavour for improving scheduling of production 

systems processing single unit orders. Especially using principles that were analogous to the 

structure and operation of the fundamental scheduling system. 

Although production systems are typically based on a finite set of system philosophies and 

management systems, every manufacturing system is subtly different in many respects. For this 

reason a generic methodology is proposed for the development of the DDSRS on a case-specific 

basis. It can be stated that such a methodology is much more useful to production scheduling 

practitioners because of the fact that every production system is unique. Despite this fact, the 

instruments for solving the production scheduling problem have converged to computer based 

software such as Simio simulation software. This convergence enhances the usefulness of a 

generic methodology because these instruments tend to possess the same capabilities and 

functionality in terms of experimentation and optimisation. 

6.6 Future research 

The fact that the BBO algorithm parameters require adjustment is its biggest drawback. This is 

the case for most algorithms such as this one, which depend on parameters to determine its exact 

operation under specific circumstances. Although it is never advisable for decision makers to use 

models as “black boxes”, it does put more of a burden on the decision makers to learn how these 

models work, which is usually a deterrent for adopting new technology. Effort into developing a 

simpler more intuitive algorithm would do well for promoting its adoption by production planning 

practitioners. 

The dynamic simulation model and the extension to the simulation software provide a good 

foundation for further work in simulation-based optimisation research. This would be especially 
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useful for continued research into distributed dynamic selection rule switching based on other CI 

paradigms. The addition of limited machine learning or memory capability, without straining the 

computational system too much may also improve results. 

In general, it is believed that it is a worthwhile undertaking to spend further research effort on the 

extension of existing widely used and widely understood planning and scheduling methods. This 

aligns well with the evolution of production systems from high volume low variety to high volume 

high variety production systems for MCM. This strategy will also improve chances of wider 

acceptance of new approaches by industry decision makers and practitioners, if they know that 

the new approaches are based on those that they know and trust. 
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   Wristwatch Product Range Production Data 
 

Table A.1. Wristwatch product range Generic Bill of Materials. 

Item 

No. 

Part Family 

ID 
Part Family Name Parent Item 

No. 

Required 
Material 

1 CHM-BY-BL Bezel CHM-BY 1 Stainless Steel 

2 CHM-BY-GS Glass CHM-BY 1 Mineral crystal 

3 CHM-BY-GG Glass gasket CHM-BY 1 Nylon 

4 CHM-CE-PR Pusher CHM-CE 2/0 Stainless Steel 

5 CHM-CE-PS Pusher Screw CHM-CE 2/0 Stainless Steel 

6 CHM-CE-PG Pusher spring CHM-CE 2/0 Spring Steel 

7 CHM-CE-PT Pusher case tube CHM-CE 2/0 Stainless Steel 

8 CHM-CE-PL Pusher seal CHM-CE 2/0 Rubber 

9 CHM-CE-CT Crown case tube CHM-CE 1 Stainless Steel 

10 CHM-CE-CE Case CHM-CE 1 Stainless Steel 

11 CHM-CE Case sub-assembly CHM-BY 1 Multiple 

12 CHM-TS-DL Dial CHM-TS 1 Stainless Steel 

13 CHM-TS-HP Dial holding pin CHM-TS 2 Stainless Steel 

14 CHM-TS-HH Hour hand CHM-TS 1 Stainless Steel 

15 CHM-TS-MH Minute hand CHM-TS 1 Stainless Steel 

16 CHM-TS-SH Second hand CHM-TS 1 Stainless Steel 

17 CHM-TS-SM Small hand CHM-TS 3/0 Stainless Steel 

18 CHM-TS-MT Movement CHM-TS 1 Multiple 

19 CHM-TS Time sub-assembly CHM-BY 1 Multiple 

20 CHM-CS-CS Crown seal CHM-CS 1 Rubber 

21 CHM-CS-SM Stem CHM-CS 1 Stainless Steel 

22 CHM-CS-CN Crown CHM-CS 1 Stainless Steel 

23 CHM-CS Crown sub-assembly CHM-BY 1 Multiple 

24 CHM-BY-SR Spacer CHM-BY 1 ABS Plastic 

25 CHM-BY-BG Back case gasket CHM-BY 1 Rubber 

26 CHM-BY-BC Back case CHM-BY 1 Stainless Steel 

27 CHM-BY Body sub-assembly CHM 1 Multiple 

28 CHM-BT Bracelet CHM 1 Polyurethane 

29 CHM-BP Bracelet pin CHM 2 Stainless Steel 

30 CHM Wrist watch NONE 1 Multiple 
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Table A.2. Wristwatch product range processing Bill of Operations. 

Seq. 

No.* 
Processing Operation 

Work 

station 

Setup 

Time 

(min/part) 

Runtime 

(min/part) 

Fixture/ 

Setup 

35 Wrist Watch Assembly & Inspection (A5) WS-A5 1.0 6.0 S-A5 

30 Watch Body Assembly & Inspection (A4) WS-A4 2.0 6.0 S-A4 

25 Crown Sub-assembly (A3) WS-A3 1.0 3.0 S-A3 

20 Crown Fabrication Operation 3 (P13) WS-M6 2.0 3.0 S-M6/C 

10 Crown Fabrication Operation 2 (P12) WS-M1 6.0 4.0 S-M1/C 

5 Crown Fabrication Operation 1 (P11) WS-M5 7.0 10.0 S-M5/C 

25 Time Sub-assembly (A2) WS-A2 1.0 7.0 S-A2 

15 Dial Fabrication Operation 3 (P10) WS-M7 2.0 1.0 S-M7 

10 Dial Fabrication Operation 2 (P9) WS-M4 5.0 7.5 S-M4 

5 Dial Fabrication Operation 1 (P8) WS-M3 2.5 1.0 S-M3 

25 Case Sub-assembly (A1) WS-A1 1.0 6.5 S-A1 

20 Case Fabrication Operation 3 (P7) WS-M6 2.0 3.0 S-M6/A 

15 Case Fabrication Operation 2 (P6) WS-M2 2.5 3.0 S-M2/C 

10 Case Fabrication Operation 1 (P5) WS-M1 21.0 27.0 S-M1/B 

15 Back Case Fabrication Operation 3 (P17) WS-M2 2.0 2.0 S-M2/B 

10 Back Case Fabrication Operation 2 (P16) WS-M1 4.0 5.0 S-M1/A 

5 Back Case Fabrication Operation 1 (P15) WS-M5 10.0 10.0 S-M5/B 

20 Bezel Fabrication Operation 4 (P4) WS-M6 2.0 3.0 S-M6/B 

15 Bezel Fabrication Operation 3 (P3) WS-M2 2.5 2.0 S-M2/A 

10 Bezel Fabrication Operation 2 (P2) WS-M1 4.0 2.0 S-M1/D 

5 Bezel Fabrication Operation 1 (P1) WS-M5 11.0 9.5 S-M5/A 

25 Spacer Fabrication Operation 1 (P14) WS-M8 2.0 25.0 S-M8 

* Same sequence numbers indicate processing able to be completed in parallel 

 

Table A.3. Wristwatch product range assembly Bill of Operations. 

Seq. 

No.* 
Assembly Operation 

Work 

station 

Setup 

Time 

(min/ 

operation) 

Runtime 

(min/ 

operation) 

Fixture/ 

Setup 

35 Wrist Watch Assembly & Inspection (A5) WS-A5 1.0 6.0 S-A5 

30 Watch Body Assembly & Inspection (A4) WS-A4 2.0 6.0 S-A4 

25 Crown Sub-assembly (A3) WS-A3 1.0 3.0 S-A3 

25 Time Sub-assembly (A2) WS-A2 1.0 7.0 S-A2 

25 Case Sub-assembly (A1) WS-A1 1.0 6.5 S-A1 

* Same sequence numbers indicate processing able to be completed in parallel.  
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Table A.4. Wristwatch product range detailed processing requirements. 

Case   

Proc. 
Times 
(min) 

Setup 
Time 

/machine 

Proc. 
Time 

/machine 
Raw Material: 60 x 60 x 20 mm Stainless Steel Billet 58.5 25.5 33.0 

Processing Machine 
Type 1: 4-Axis CNC Milling Machine 48.0 21.0 27.0 

Setup  5.0   
Process 1: Rough shape milling - Top 3.0   

Tool change  1.0   
Process 2: Finish milling - Top 5.0   

Refixture & tool change  2.0   
Process 3: Rough shape milling - Bottom 3.0   

Tool change  1.0   
Process 4: Finish milling - Bottom 5.0   

Refixture & tool change  2.0   
Process 5: Drill pin holes 2.0   

Tool change  1.0   
Process 6: Drill crown hole 1.0   

Tool change  1.0   
Process 7: Face crown hole 1.0   

Tool change  1.0   
Process 8: Thread crown hole 1.0   

Refixture & tool change  2.0   
Process 9: Drill upper pusher hole 1.0   

Tool change  1.0   
Process 10: Face upper pusher hole 1.0   

Tool change  1.0   
Process 11: Thread upper pusher hole 1.0   

Tool change  1.0   
Process 12: Drill lower pusher hole 1.0   

Tool change  1.0   
Process 13: Face lower pusher hole 1.0   

Tool change  1.0   
Process 14: Thread lower pusher hole 1.0   

Processing Machine 
Type 2: Multi-purpose Grinding Machine 5.5 2.5 3.0 

Setup  2.5   
Process 15: Surface finishing 3.0   

Processing Machine 
Type 6: 

Physical Vapour Deposition (PVD) 
Machine 5.0 2.0 3.0 

Setup   2.0     
Process 16: PVD case 3.0     

Dial   

Proc. 
Times 
(min) 

Setup 
Time 

/machine 

Proc. 
Time 

/machine 

Raw Material: 
0.5 x 50 mm Stainless Steel Sheet Metal 
Roll 19.0 9.5 9.5 

Processing Machine 
Type 3: Piercing and Blanking Machine 3.5 2.5 1.0 



98 
 

Setup  2.0   
Process 1: Pierce out dial holes 0.5   

Refixture  0.5   
Process 2: Blank out Dial 0.5   

Processing Machine 
Type 4: Pad Printing Machine 12.5 5.0 7.5 

Setup  3.0   
Process 3: Pad printing base colour 4.5   

Tool change  2.0   
Process 4: Pad print accents/small dials 3.0   

Processing Machine 
Type 7: Stencil Gluing Machine 3.0 2.0 1.0 

Setup  2.0   
Process 5: Glue hour/luminous markers 1.0     

Crown   

Proc. 
Times 
(min) 

Setup 
Time 

/machine 

Proc. 
Time 

/machine 
Raw Material: Dia. 10 mm Stainless Steel Bar Stock 32.0 15.0 17.0 

Processing Machine 
Type 5: Feed-through CNC Lathe 17.0 7.0 10.0 

Setup  3.0   
Process 1: Face bar stock 0.5   
Process 2: Rough turn stock down to max dia. 0.5   
Process 3: Finish turn outside dia. 1.0   
Process 4: Turn down step for case tube cavity 2.0   

Tool change  1.0   
Process 5: Drill out centre for stem cavity 1.0   

Tool change  1.0   
Process 6: Bore centre for case tube cavity 1.0   

Tool change  1.0   
Process 7: Thread stem cavity 2.0   

Tool change  1.0   
Process 8: Turn down groove(s) for crown seal 1.0   
Process 9: Part off 1.0   

Processing Machine 
Type 1: 4-Axis CNC Milling Machine 10.0 6.0 4.0 

Setup  5.0   

Process 11: 
Shape end face and machine pattern into 
end face 2.0   

Tool change  1.0   
Process 12: Machine pattern into outer dia. 2.0   

Processing Machine 
Type 6: PVD Machine 5.0 2.0 3.0 

Setup   2.0     
Process 12: PVD Crown 3.0     

Back Case   

Proc. 
Times 
(min) 

Setup 
Time 

/machine 

Proc. 
Time 

/machine 
Raw Material: Dia. 60 mm Stainless Steel Bar Stock 33.0 16.0 17.0 
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Processing Machine 
Type 5: Feed-through CNC Lathe 20.0 10.0 10.0 

Setup  3.0   
Process 1: Face stock 1.0   

Tool change  1.0   
Process 2: Turn down max dia. 1.0   

Tool change  1.0   
Process 3: Turn down minor outside dia.  1.0   

Tool change  1.0   
Process 4: Thread minor outside diameter 2.0   

Tool change  1.0   
Process 5: Bore out inside dia. 2.0   

Tool change  1.0   
Process 6: Part off 1.0   

Refixture & Tool change  2.0   
Process 7: Shape end face 2.0   

Processing Machine 
Type 1: 4-Axis CNC Milling Machine 9.0 4.0 5.0 

Setup  3.0   
Process 8: Mill out tool gripping cavities 2.0   

Tool change  1.0   
Process 9: Engraving 3.0   

Processing Machine 
Type 2: Multi-purpose Grinding Machine 4.0 2.0 2.0 

Setup  2.0   
Process 10: Surface finishing 2.0     

Bezel   

Proc. 
Times 
(min) 

Setup 
Time 

/machine 

Proc. 
Time 

/machine 

Raw Material: 
OD 50 mm x ID 20 mm Stainless Steel 
Tube Stock 36.0 19.5 16.5 

Processing Machine 
Type 5: Feed-through CNC Lathe 20.5 11.0 9.5 

Setup  5.0   
Process 1: Face stock 1.0   

Tool change  1.0   
Process 2: Turn down maximum diameter 1.0   

Tool change  1.0   
Process 3: Drill minimum inner diameter 2.0   

Tool change  1.0   
Process 4: Bore out inner step with lip 2.0   

Tool change  1.0   
Process 5: Part off 1.0   

Refixture & Tool change  2.0   
Process 6: Shape end face 2.5   

Processing Machine 
Type 1: 4-Axis CNC Milling Machine 6.0 4.0 2.0 

Setup  4.0   
Process 7: Shape outer diameter profile 2.0   
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Processing Machine 
Type 2: Multi-purpose Grinding Machine 4.5 2.5 2.0 

Setup  2.5   
Process 8: Surface finishing 2.0   

Processing Machine 
Type 6: PVD Machine 5.0 2.0 3.0 

Setup   2.0     
Process 9: PVD Outer Bezel 3.0     

Spacer   

Proc. 
Times 
(min) 

Setup 
Time 

/machine 

Proc. 
Time 

/machine 
Raw Material: ABS plastic filament roll 27.0 2.0 25.0 

Processing Machine 
Type 8: 3D Printing Machine 27.0 2.0 25.0 

Setup  2.0   
Process 1: Print spacer in ABS plastic 25.0     
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    Capacity Planning Model Data and Results 
 

B.1. Capacity planning model data 

Table B.1. Wristwatch production processing requirement totals. 

    1 2 3 4 5 6 Total 
Arrival Rate 
(Orders/day) 

Dial Station WS-M3 WS-M4 WS-M7 WS-A2 WS-A4 WS-A5  60.00 
 Setup 2.5 5.0 2.0 1.0 2.0 1.0 13.5  
 Process 1.0 7.5 1.0 7.0 6.0 6.0 28.5  
 Total 3.5 12.5 3.0 8.0 8.0 7.0 42.0  
          
Case Station WS-M1 WS-M2 WS-M6 WS-A1 WS-A4 WS-A5  60.00 
 Setup 21.0 2.5 2.0 1.0 2.0 1.0 29.5  
 Process 27.0 3.0 3.0 6.5 6.0 6.0 51.5  
 Total 48.0 5.5 5.0 7.5 8.0 7.0 81.0  
          
Bezel Station WS-M5 WS-M1 WS-M2 WS-M6 WS-A4 WS-A5  60.00 
 Setup 11.0 4.0 2.5 2.0 2.0 1.0 22.5  
 Process 9.5 2.0 2.0 3.0 6.0 6.0 28.5  
 Total 20.5 6.0 4.5 5.0 8.0 7.0 51.0  
          
Back Case Station WS-M5 WS-M1 WS-M2 WS-A4 WS-A5   60.00 
 Setup 10.0 4.0 2.0 2.0 1.0  19.0  
 Process 10.0 5.0 2.0 6.0 6.0  29.0  
 Total 20.0 9.0 4.0 8.0 7.0  48.0  
          
Crown Station WS-M5 WS-M1 WS-M6 WS-A3 WS-A4 WS-A5  60.00 
 Setup 7.0 6.0 2.0 1.0 2.0 1.0 19.0  
 Process 10.0 4.0 3.0 3.0 6.0 6.0 32.0  
 Total 17.0 10.0 5.0 4.0 8.0 7.0 51.0  
          
Spacer Station WS-M8 WS-A4 WS-A5     60.00 
 Setup 2.0 2.0 1.0    5.0  
 Process 25.0 6.0 6.0    37.0  
 Total 27.0 8.0 7.0    42.0  
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Table B.2. Wristwatch production capacity requirements. 

Minutes/Day: 480   
Workstations Capacity Dial Case Bezel Back Case Crown Spacer Total (mins) Expected Util 
4-Axis CNC Milling Machine (WS-M1) 10  2880.0 360.0 540.0 600.0  4380.0 91.3% 
Multi-purpose Grinding Machine (WS-M2) 2  330.0 270.0 240.0   840.0 87.5% 
Piercing and Blanking Machine (WS-M3) 1 210.0      210.0 43.8% 
Pad Printing Machine (WS-M4) 2 750.0      750.0 78.1% 
Feed-through CNC Lathe (WS-M5) 8   1230.0 1200.0 1020.0  3450.0 89.8% 
PVD Machine (WS-M6) 2  300.0 300.0  300.0  900.0 93.8% 
Stencil Gluing Machine (WS-M7) 1 180.0      180.0 37.5% 
3D Printing Machine (WS-M8) 4      1620.0 1620.0 84.4% 
Case Sub-assembly (WS-A1) 1  450.0     450.0 93.8% 
Time Sub-assembly (WS-A2) 1 480.0      480.0 100.0% 
Crown Sub-assembly (WS-A3) 1     240.0  240.0 50.0% 
Watch Body Assembly & Inspection (WS-A4) 1 480.0 480.0 480.0 480.0 480.0 480.0 480.0 100.0% 
Wrist Watch Assembly & Inspection (WS-A5) 1 420.0 420.0 420.0 420.0 420.0 420.0 420.0 87.5% 
           
Machine Operators 11 570.0 1530.0 1170.0 960.0 900.0 120.0 5250.0 99.4% 
Assembly Station Operators 5       2070.0 86.3% 
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B.2. Capacity planning model results 

 
Figure B.1. WS-M1 utilisation versus order arrival rate. 

 

 
Figure B.2. WS-M2 utilisation versus order arrival rate. 
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Figure B.3. WS-M3 utilisation versus order arrival rate. 

 

 
Figure B.4. WS-M4 utilisation versus order arrival rate. 
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Figure B.5. WS-M5 utilisation versus order arrival rate. 

 

 
Figure B.6. WS-M6 utilisation versus order arrival rate. 
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Figure B.7. WS-M7 utilisation versus order arrival rate. 

 

 
Figure B.8. WS-M8 utilisation versus order arrival rate. 
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Figure B.9. WS-A1 utilisation versus order arrival rate. 

 

 
Figure B.10. WS-A2 utilisation versus order arrival rate. 
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Figure B.11. WS-A3 utilisation versus order arrival rate. 

 

 
Figure B.12. WS-A4 utilisation versus order arrival rate. 
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Figure B.13. WS-A5 utilisation versus order arrival rate. 
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   Capacity Planning Macro Code 
 

C.1. Capacity plan generation code 

Sub run() 

MaxArrRate = 200 

temp = setup(1, 1, MaxArrRate) 

temp1 = MedianRange(MaxArrRate) 

Worksheets("Capacity Optimisation").Activate 

End Sub 

 

' ------------------ FUNCTION FOR CALCULATING THE UTILISATION MEDIAN FOR ALL 

WORKSTATIONS ------------------ ' 

Function MedianRange(MaxArrRate As Variant) 

Dim Mdn As Variant 

Dim Avg As Variant 

Worksheets("Capacity Optimisation").Activate 

For i = 0 To MaxArrRate - 1 

Mdn = Application.WorksheetFunction.Median(Cells(2, 3 + 2 * i), Cells(3, 3 + 

2 * i), Cells(4, 3 + 2 * i), Cells(5, 3 + 2 * i), Cells(6, 3 + 2 * i), 

Cells(7, 3 + 2 * i), Cells(8, 3 + 2 * i), Cells(9, 3 + 2 * i), Cells(10, 3 + 

2 * i), Cells(11, 3 + 2 * i), Cells(12, 3 + 2 * i), Cells(13, 3 + 2 * i), 

Cells(14, 3 + 2 * i)) 

Avg = Application.WorksheetFunction.Average(Cells(2, 3 + 2 * i), Cells(3, 3 + 

2 * i), Cells(4, 3 + 2 * i), Cells(5, 3 + 2 * i), Cells(6, 3 + 2 * i), 

Cells(7, 3 + 2 * i), Cells(8, 3 + 2 * i), Cells(9, 3 + 2 * i), Cells(10, 3 + 

2 * i), Cells(11, 3 + 2 * i), Cells(12, 3 + 2 * i), Cells(13, 3 + 2 * i), 

Cells(14, 3 + 2 * i)) 

Cells(21, 2 + 2 * i).Activate 

ActiveCell.Value = Mdn 

Worksheets("Plotting").Cells(3 + i, 28).Value = Mdn 

Worksheets("Plotting").Cells(3 + i, 29).Value = Mdn 

Next i 

End Function 

 

' ---------------------- FUNCTION FOR SETTING UP THE DATA FOR OPTIMISATION 

ALGORITHM ----------------------- ' 

Function setup(StartArrRate As Variant, ArrRateInterval As Variant, 

EndArrRate As Variant) 

'StartArrRate    : Order arrival rate at start of iterations [orders/day] 

'ArrRateInterval : Interval between order arrival rate iterations 

'EndArrRate      : Order arrival rate at end of iterations [orders/day] 

 

' PREPARING OPTIMISATION WORKSHEET 

Worksheets("Capacity Optimisation").Activate 

Range("B2:ZZ14").Clear 

Range("B16:ZZ17").Clear 

Range("B19:ZZ30").Clear 

Worksheets("Plotting").Range("A3:ZZ9999").Clear 

 

' Activate the display worksheet 
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Worksheets("Initial Capacity Model").Activate 

 

' TEST THE ARRIVAL RATE RANGE FOR DIVISION BY THE INTERVAL 

remainder = (EndArrRate - StartArrRate) Mod ArrRateInterval 

If remainder = 0 Then 

' IF THE REMAINDER IS ZERO THEN CARRY ON WITH CALCULATIONS 

Iterations = (EndArrRate - StartArrRate) / ArrRateInterval 

ArrivalRate = StartArrRate 

 

' VARIABLE INITIALISATION 

Dim Dial(1, 5) As Double            ' M3-M4-M7-A2-A4-A5 

Dim WatchCase(1, 5) As Double       ' M1-M2-M6-A1-A4-A5 

Dim Bezel(1, 5) As Double           ' M5-M1-M2-M6-A4-A5 

Dim BackCase(1, 5) As Double        ' M5-M1-M2-A4-A5 

Dim Crown(1, 5) As Double           ' M5-M1-M6-A3-A4-A5 

Dim Spacer(1, 5) As Double          ' M8-A4-A5 

MinutesPerDay = Range("B1").Value   ' Minutes per shift 

Dim WSMCapacities(7) As Double      ' Machining workstation capacities 

Dim WSACapacities(4) As Double      ' Assembly workstation capacities 

 

' INITIAL WORKSTATION AND OPERATOR CAPACITIES 

For i = 0 To 7 

WSMCapacities(i) = 1 

Next i 

For i = 0 To 4 

WSACapacities(i) = 1 

Next i 

WSMOperatorCapacity = 1 

WSAOperatorCapacity = 1 

' WS setup/operator times 

Dim WSMSetupTimes(7) As Double 

Dim WSASetupTimes(4) As Double 

' WS-M1 though 8 processing times and utilisations 

Dim WSMProcessingTimes(7) As Double 

Dim WSAProcessingTimes(4) As Double 

' WS-M1 though 8 processing times and utilisations 

Dim WSMUtil(7) As Double 

Dim WSAUtil(4) As Double 

 

' READ IN DIAL SETUP & PROCESSING TIMES 

Range("C22").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        Dial(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

    Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN CASE SETUP & PROCESSING TIMES 

Range("C27").Activate 

For j = 0 To 1 
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    For i = 0 To 5 

        WatchCase(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

    Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN BEZEL SETUP & PROCESSING TIMES 

Range("C32").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        Bezel(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

    Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN BACK CASE SETUP & PROCESSING TIMES 

Range("C37").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        BackCase(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

    Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN CROWN SETUP & PROCESSING TIMES 

Range("C42").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        Crown(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

    Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN SPACER SETUP & PROCESSING TIMES 

Range("C47").Activate 

For j = 0 To 1 

    For i = 0 To 2 

        Spacer(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

    Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' --------------------------- MAIN LOOP STARTS HERE -------------------------

--- ' 

 

' ITERATION COUNTER FOR MAIN LOOP 

For counter = 0 To (Iterations) 
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ArrivalRate = StartArrRate + (counter * ArrRateInterval) 

Cells(21, 10).Value = ArrivalRate 

' PRINT OUT ARRIVAL RATE VALUES FOR OPTIMISATION CALCULATIONS 

Worksheets("Capacity Optimisation").Cells(19, 2 + (2 * counter)).Value = 

ArrivalRate 

' PRINT OUT ARRIVAL RATE VALUES VALUES FOR PLOTTING 

Worksheets("Plotting").Cells(3 + counter, 1).Value = ArrivalRate 

 

' CALCULATE TOTAL MACHINING WORKSTATION OCCUPIED TIMES 

WSMProcessingTimes(0) = (WatchCase(0, 0) + WatchCase(1, 0) + Bezel(0, 1) + 

Bezel(1, 1) + BackCase(0, 1) + BackCase(1, 1) + Crown(0, 1) + Crown(1, 1)) * 

ArrivalRate 

WSMProcessingTimes(1) = (WatchCase(0, 1) + WatchCase(1, 1) + Bezel(0, 2) + 

Bezel(1, 2) + BackCase(0, 2) + BackCase(1, 2)) * ArrivalRate 

WSMProcessingTimes(2) = (Dial(0, 0) + Dial(1, 0)) * ArrivalRate 

WSMProcessingTimes(3) = (Dial(0, 1) + Dial(1, 1)) * ArrivalRate 

WSMProcessingTimes(4) = (Bezel(0, 0) + Bezel(1, 0) + BackCase(0, 0) + 

BackCase(1, 0) + Crown(0, 0) + Crown(1, 0)) * ArrivalRate 

WSMProcessingTimes(5) = (WatchCase(0, 2) + WatchCase(1, 2) + Bezel(0, 3) + 

Bezel(1, 3) + Crown(0, 2) + Crown(1, 2)) * ArrivalRate 

WSMProcessingTimes(6) = (Dial(0, 2) + Dial(1, 2)) * ArrivalRate 

WSMProcessingTimes(7) = (Spacer(0, 0) + Spacer(1, 0)) * ArrivalRate 

 

' CALCULATE TOTAL ASSEMBLY WORKSTATION OCCUPIED TIMES 

WSAProcessingTimes(0) = (WatchCase(0, 3) + WatchCase(1, 3)) * ArrivalRate 

WSAProcessingTimes(1) = (Dial(0, 3) + Dial(1, 3)) * ArrivalRate 

WSAProcessingTimes(2) = (Crown(0, 3) + Crown(1, 3)) * ArrivalRate 

WSAProcessingTimes(3) = (WatchCase(0, 4) + WatchCase(1, 4)) * ArrivalRate 

WSAProcessingTimes(4) = (WatchCase(0, 5) + WatchCase(1, 5)) * ArrivalRate 

 

' PRINT OUT CALCULATED MACHINING TIME VALUES IN MODEL SHEET 

Cells(3, 9).Activate 

For i = 0 To 7 

    ActiveCell.Value = WSMProcessingTimes(i) 

    Cells(4 + i, 9).Activate 

Next i 

 

' PRINT OUT CALCULATED ASSEMBLY TIME VALUES 

For i = 0 To 4 

    ActiveCell.Value = WSAProcessingTimes(i) 

    Cells(12 + i, 9).Activate 

Next i 

 

' CALCULATE MACHINING WORKSTATION UTILISATION VALUES 

Worksheets("Initial Capacity Model").Activate 

Cells(3, 10).Activate 

For i = 0 To 7 

    WSMUtil(i) = WSMProcessingTimes(i) / (WSMCapacities(i) * MinutesPerDay) 

    Do While WSMUtil(i) > 1 

        WSMCapacities(i) = WSMCapacities(i) + 1 

        WSMUtil(i) = WSMProcessingTimes(i) / (WSMCapacities(i) * 

MinutesPerDay) 
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    Loop 

    ActiveCell.Value = WSMUtil(i) 

' PRINT OUT MACHINING WORKSTATION UTILISATION VALUES FOR OPTIMISATION 

CALCULATIONS 

    Worksheets("Capacity Optimisation").Cells(2 + i, 3 + (2 * counter)).Value 

= WSMUtil(i) 

' PRINT OUT MACHINING WORKSTATION UTILISATION VALUES FOR PLOTTING 

    Worksheets("Plotting").Cells(3 + counter, 3 + (2 * i)).Value = WSMUtil(i) 

    Cells(4 + i, 10).Activate 

Next i 

 

' CALCULATE ASSEMBLY WORKSTATION UTILISATION VALUES 

For i = 0 To 4 

    WSAUtil(i) = WSAProcessingTimes(i) / (WSACapacities(i) * MinutesPerDay) 

    Do While WSAUtil(i) > 1 

        WSACapacities(i) = WSACapacities(i) + 1 

        WSAUtil(i) = WSAProcessingTimes(i) / (WSACapacities(i) * 

MinutesPerDay) 

    Loop 

    ActiveCell.Value = WSAUtil(i) 

' PRINT OUT ASSEMBLY WORKSTATION UTILISATION VALUES FOR OPTIMISATION 

CALCULATIONS 

    Worksheets("Capacity Optimisation").Cells(10 + i, 3 + (2 * 

counter)).Value = WSAUtil(i) 

' PRINT OUT ASSEMBLY WORKSTATION UTILISATION VALUES FOR PLOTTING 

    Worksheets("Plotting").Cells(3 + counter, 19 + (2 * i)).Value = 

WSAUtil(i) 

    Cells(12 + i, 10).Activate 

Next i 

 

' PRINT OUT MACHINING WORKSTATION CAPACITIES 

Cells(3, 2).Activate 

For i = 0 To 7 

    ActiveCell.Value = WSMCapacities(i) 

' -- FOR OPTIMISATION CALCULATIONS 

    Worksheets("Capacity Optimisation").Cells(2 + i, 2 + (2 * counter)).Value 

= WSMCapacities(i) 

' -- FOR PLOTTING 

    Worksheets("Plotting").Cells(3 + counter, 2 + (2 * i)).Value = 

WSMCapacities(i) 

    Cells(4 + i, 2).Activate 

Next i 

 

' PRINT OUT ASSEMBLY WORKSTATION CAPACITIES 

For i = 0 To 4 

    ActiveCell.Value = WSACapacities(i) 

' -- FOR OPTIMISATION CALCULATIONS 

    Worksheets("Capacity Optimisation").Cells(10 + i, 2 + (2 * 

counter)).Value = WSACapacities(i) 

' -- FOR PLOTTING 

    Worksheets("Plotting").Cells(3 + counter, 18 + (2 * i)).Value = 

WSACapacities(i) 
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    Cells(12 + i, 2).Activate 

Next i 

 

' CALCULATE MACHINING WORKSTATION SETUP TIMES 

WSMSetupTimes(0) = (WatchCase(0, 0) + Bezel(0, 1) + BackCase(0, 1) + Crown(0, 

1)) * ArrivalRate 

WSMSetupTimes(1) = (WatchCase(0, 1) + Bezel(0, 2) + BackCase(0, 2)) * 

ArrivalRate 

WSMSetupTimes(2) = (Dial(0, 0)) * ArrivalRate 

WSMSetupTimes(3) = (Dial(0, 1)) * ArrivalRate 

WSMSetupTimes(4) = (Bezel(0, 0) + BackCase(0, 0) + Crown(0, 0)) * ArrivalRate 

WSMSetupTimes(5) = (WatchCase(0, 2) + Bezel(0, 3) + Crown(0, 2)) * 

ArrivalRate 

WSMSetupTimes(6) = (Dial(0, 2)) * ArrivalRate 

WSMSetupTimes(7) = (Spacer(0, 0)) * ArrivalRate 

 

' TOTAL AND PRINT OUT THE SETUP TIME FOR MACHINE OPERATOR UTILISATION 

TotalWSMSetupTime = 0 

For i = 0 To 7 

    TotalWSMSetupTime = TotalWSMSetupTime + WSMSetupTimes(i) 

Next i 

 

Range("I17").Activate 

ActiveCell.Value = TotalWSMSetupTime 

'Worksheets("Capacity Optimisation").Cells(16, 3 + (3 * counter)).Value = 

TotalWSMSetupTime 

 

' CALCULATE AND PRINT OUT MACHINE OPERATOR UTILISATION AND CAPACITY 

WSMOperatorUtil = TotalWSMSetupTime / (WSMOperatorCapacity * MinutesPerDay) 

Do While WSMOperatorUtil > 1 

    WSMOperatorCapacity = WSMOperatorCapacity + 1 

    WSMOperatorUtil = TotalWSMSetupTime / (WSMOperatorCapacity * 

MinutesPerDay) 

Loop 

 

Range("J17").Activate 

ActiveCell.Value = WSMOperatorUtil 

Worksheets("Capacity Optimisation").Cells(16, 3 + (2 * counter)).Value = 

WSMOperatorUtil 

Range("B17").Activate 

ActiveCell.Value = WSMOperatorCapacity 

Worksheets("Capacity Optimisation").Cells(16, 2 + (2 * counter)).Value = 

WSMOperatorCapacity 

 

' CALCULATE TOTAL ASSEMBLY WORKSTATION OCCUPIED TIMES 

WSASetupTimes(0) = (WatchCase(0, 3) + WatchCase(1, 3)) * ArrivalRate 

WSASetupTimes(1) = (Dial(0, 3) + Dial(1, 3)) * ArrivalRate 

WSASetupTimes(2) = (Crown(0, 3) + Crown(1, 3)) * ArrivalRate 

WSASetupTimes(3) = (WatchCase(0, 4) + WatchCase(1, 4)) * ArrivalRate 

WSASetupTimes(4) = (WatchCase(0, 5) + WatchCase(1, 5)) * ArrivalRate 

 

' TOTAL AND PRINT OUT THE ASSEMBLY TIME FOR OPERATOR UTILISATION 
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TotalWSASetupTime = 0 

For i = 0 To 4 

    TotalWSASetupTime = TotalWSASetupTime + WSASetupTimes(i) 

Next i 

 

Range("I18").Activate 

ActiveCell.Value = TotalWSASetupTime 

'Worksheets("Capacity Optimisation").Cells(17, 3 + (3 * counter)).Value = 

TotalWSASetupTime 

 

' CALCULATE AND PRINT OUT ASSEMBLY OPERATOR UTILISATION AND CAPACITY 

WSAOperatorUtil = TotalWSASetupTime / (WSAOperatorCapacity * MinutesPerDay) 

Do While WSAOperatorUtil > 1 

    WSAOperatorCapacity = WSAOperatorCapacity + 1 

    WSAOperatorUtil = TotalWSASetupTime / (WSAOperatorCapacity * 

MinutesPerDay) 

Loop 

 

Range("J18").Activate 

ActiveCell.Value = WSAOperatorUtil 

Worksheets("Capacity Optimisation").Cells(17, 3 + (2 * counter)).Value = 

WSAOperatorUtil 

Range("B18").Activate 

ActiveCell.Value = WSAOperatorCapacity 

Worksheets("Capacity Optimisation").Cells(17, 2 + (2 * counter)).Value = 

WSAOperatorCapacity 

Next counter 

 

' IF THE REMAINDER IS NOT ZERO THEN DISPLAY AN ERROR MESSAGE 

Else 

MsgBox ("ERROR: Your Arrival Rate range must be divisible by the Interval 

without a remainder") 

End If 

 

End Function 
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C.2. Optimal capacity plan search code 

Function optimise() 

 

' VARIABLE INITIALISATION 

Dim Dial(1, 5) As Double            ' M3-M4-M7-A2-A4-A5 

Dim WatchCase(1, 5) As Double       ' M1-M2-M6-A1-A4-A5 

Dim Bezel(1, 5) As Double           ' M5-M1-M2-M6-A4-A5 

Dim BackCase(1, 5) As Double        ' M5-M1-M2-A4-A5 

Dim Crown(1, 5) As Double           ' M5-M1-M6-A3-A4-A5 

Dim Spacer(1, 5) As Double          ' M8-A4-A5 

Dim i As Integer                    ' Iterating counter 1 

Dim j As Integer                    ' Iterating counter 2 

ArrivalRate = Range("J21").Value    ' Order arrival rate [orders/day] 

MinutesPerDay = Range("B1").Value   ' 480 minutes in an 8-hour shift 

Dim WSMCapacities(7) As Double      ' Machining workstation capacities 

Dim WSACapacities(4) As Double      ' Assembly workstation capacities 

 

' INITIAL WORKSTATION AND OPERATOR CAPACITIES 

For i = 0 To 7 

WSMCapacities(i) = 1 

Next i 

For i = 0 To 4 

WSACapacities(i) = 1 

Next i 

WSMOperatorCapacity = 1 

WSAOperatorCapacity = 1 

' WS setup/operator times 

Dim WSMSetupTimes(7) As Double 

Dim WSASetupTimes(4) As Double 

' WS-M1 though 8 processing times and utilisations 

Dim WSMProcessingTimes(7) As Double 

Dim WSAProcessingTimes(4) As Double 

' WS-M1 though 8 processing times and utilisations 

Dim WSMUtil(7) As Double 

Dim WSAUtil(4) As Double 

 

' Activate the correct worksheet 

Worksheets("Initial Capacity Model").Activate 

 

' READ IN DIAL SETUP & PROCESSING TIMES 

Range("C22").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        Dial(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

        Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN CASE SETUP & PROCESSING TIMES 

Range("C27").Activate 
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For j = 0 To 1 

    For i = 0 To 5 

        WatchCase(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

        Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN BEZEL SETUP & PROCESSING TIMES 

Range("C32").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        Bezel(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

        Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN BACK CASE SETUP & PROCESSING TIMES 

Range("C37").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        BackCase(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

        Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN CROWN SETUP & PROCESSING TIMES 

Range("C42").Activate 

For j = 0 To 1 

    For i = 0 To 5 

        Crown(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

        Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' READ IN SPACER SETUP & PROCESSING TIMES 

Range("C47").Activate 

For j = 0 To 1 

    For i = 0 To 2 

        Spacer(j, i) = ActiveCell.Value 

        Cells(ActiveCell.Row, ActiveCell.Column + 1).Activate 

    Next i 

        Cells(ActiveCell.Row + 1, ActiveCell.Column - i).Activate 

Next j 

 

' CALCULATE TOTAL MACHINING WORKSTATION OCCUPIED TIMES 

WSMProcessingTimes(0) = (WatchCase(0, 0) + WatchCase(1, 0) + Bezel(0, 1) + 

Bezel(1, 1) + BackCase(0, 1) + BackCase(1, 1) + Crown(0, 1) + Crown(1, 1)) * 

ArrivalRate 
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WSMProcessingTimes(1) = (WatchCase(0, 1) + WatchCase(1, 1) + Bezel(0, 2) + 

Bezel(1, 2) + BackCase(0, 2) + BackCase(1, 2)) * ArrivalRate 

WSMProcessingTimes(2) = (Dial(0, 0) + Dial(1, 0)) * ArrivalRate 

WSMProcessingTimes(3) = (Dial(0, 1) + Dial(1, 1)) * ArrivalRate 

WSMProcessingTimes(4) = (Bezel(0, 0) + Bezel(1, 0) + BackCase(0, 0) + 

BackCase(1, 0) + Crown(0, 0) + Crown(1, 0)) * ArrivalRate 

WSMProcessingTimes(5) = (WatchCase(0, 2) + WatchCase(1, 2) + Bezel(0, 3) + 

Bezel(1, 3) + Crown(0, 2) + Crown(1, 2)) * ArrivalRate 

WSMProcessingTimes(6) = (Dial(0, 2) + Dial(1, 2)) * ArrivalRate 

WSMProcessingTimes(7) = (Spacer(0, 0) + Spacer(1, 0)) * ArrivalRate 

 

' CALCULATE TOTAL ASSEMBLY WORKSTATION OCCUPIED TIMES 

WSAProcessingTimes(0) = (WatchCase(0, 3) + WatchCase(1, 3)) * ArrivalRate 

WSAProcessingTimes(1) = (Dial(0, 3) + Dial(1, 3)) * ArrivalRate 

WSAProcessingTimes(2) = (Crown(0, 3) + Crown(1, 3)) * ArrivalRate 

WSAProcessingTimes(3) = (WatchCase(0, 4) + WatchCase(1, 4)) * ArrivalRate 

WSAProcessingTimes(4) = (WatchCase(0, 5) + WatchCase(1, 5)) * ArrivalRate 

 

' PRINT OUT CALCULATED MACHINING TIME VALUES 

Cells(3, 9).Activate 

For i = 0 To 7 

    ActiveCell.Value = WSMProcessingTimes(i) 

    Cells(4 + i, 9).Activate 

Next i 

 

' PRINT OUT CALCULATED ASSEMBLY TIME VALUES 

For i = 0 To 4 

    ActiveCell.Value = WSAProcessingTimes(i) 

    Cells(12 + i, 9).Activate 

Next i 

 

' CALCULATE AND PRINT OUT MACHINING WORKSTATION UTILISATION VALUES 

Cells(3, 10).Activate 

For i = 0 To 7 

    WSMUtil(i) = WSMProcessingTimes(i) / (WSMCapacities(i) * MinutesPerDay) 

    Do While WSMUtil(i) > 1 

        WSMCapacities(i) = WSMCapacities(i) + 1 

        WSMUtil(i) = WSMProcessingTimes(i) / (WSMCapacities(i) * 

MinutesPerDay) 

    Loop 

    ActiveCell.Value = WSMUtil(i) 

    Cells(4 + i, 10).Activate 

Next i 

 

' CALCULATE AND PRINT OUT ASSEMBLY WORKSTATION UTILISATION VALUES 

For i = 0 To 4 

    WSAUtil(i) = WSAProcessingTimes(i) / (WSACapacities(i) * MinutesPerDay) 

    Do While WSAUtil(i) > 1 

        WSACapacities(i) = WSACapacities(i) + 1 

        WSAUtil(i) = WSAProcessingTimes(i) / (WSACapacities(i) * 

MinutesPerDay) 

    Loop 
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    ActiveCell.Value = WSAUtil(i) 

    Cells(12 + i, 10).Activate 

Next i 

 

' PRINT OUT MACHINING WORKSTATION CAPACITIES 

Cells(3, 2).Activate 

For i = 0 To 7 

    ActiveCell.Value = WSMCapacities(i) 

    Cells(4 + i, 2).Activate 

Next i 

 

' PRINT OUT ASSEMBLY WORKSTATION CAPACITIES 

For i = 0 To 4 

    ActiveCell.Value = WSACapacities(i) 

    Cells(12 + i, 2).Activate 

Next i 

 

' CALCULATE TOTAL MACHINING WORKSTATION OCCUPIED TIMES 

WSMSetupTimes(0) = (WatchCase(0, 0) + Bezel(0, 1) + BackCase(0, 1) + Crown(0, 

1)) * ArrivalRate 

WSMSetupTimes(1) = (WatchCase(0, 1) + Bezel(0, 2) + BackCase(0, 2)) * 

ArrivalRate 

WSMSetupTimes(2) = (Dial(0, 0)) * ArrivalRate 

WSMSetupTimes(3) = (Dial(0, 1)) * ArrivalRate 

WSMSetupTimes(4) = (Bezel(0, 0) + BackCase(0, 0) + Crown(0, 0)) * ArrivalRate 

WSMSetupTimes(5) = (WatchCase(0, 2) + Bezel(0, 3) + Crown(0, 2)) * 

ArrivalRate 

WSMSetupTimes(6) = (Dial(0, 2)) * ArrivalRate 

WSMSetupTimes(7) = (Spacer(0, 0)) * ArrivalRate 

 

' TOTAL AND PRINT OUT THE SETUP TIME FOR MACHINE OPERATOR UTILISATION 

For i = 0 To 7 

    TotalWSMSetupTime = TotalWSMSetupTime + WSMSetupTimes(i) 

Next i 

Range("I17").Activate 

ActiveCell.Value = TotalWSMSetupTime 

 

' CALCULATE AND PRINT OUT MACHINE OPERATOR UTILISATION AND CAPACITY 

WSMOperatorUtil = TotalWSMSetupTime / (WSMOperatorCapacity * MinutesPerDay) 

Do While WSMOperatorUtil > 1 

    WSMOperatorCapacity = WSMOperatorCapacity + 1 

    WSMOperatorUtil = TotalWSMSetupTime / (WSMOperatorCapacity * 

MinutesPerDay) 

Loop 

Range("J17").Activate 

ActiveCell.Value = WSMOperatorUtil 

Range("B17").Activate 

ActiveCell.Value = WSMOperatorCapacity 

 

' CALCULATE TOTAL ASSEMBLY WORKSTATION OCCUPIED TIMES 

WSASetupTimes(0) = (WatchCase(0, 3) + WatchCase(1, 3)) * ArrivalRate 

WSASetupTimes(1) = (Dial(0, 3) + Dial(1, 3)) * ArrivalRate 
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WSASetupTimes(2) = (Crown(0, 3) + Crown(1, 3)) * ArrivalRate 

WSASetupTimes(3) = (WatchCase(0, 4) + WatchCase(1, 4)) * ArrivalRate 

WSASetupTimes(4) = (WatchCase(0, 5) + WatchCase(1, 5)) * ArrivalRate 

 

' TOTAL AND PRINT OUT THE ASSEMBLY TIME FOR OPERATOR UTILISATION 

For i = 0 To 4 

    TotalWSASetupTime = TotalWSASetupTime + WSASetupTimes(i) 

Next i 

Range("I18").Activate 

ActiveCell.Value = TotalWSASetupTime 

 

' CALCULATE AND PRINT OUT ASSEMBLY OPERATOR UTILISATION AND CAPACITY 

WSAOperatorUtil = TotalWSASetupTime / (WSAOperatorCapacity * MinutesPerDay) 

Do While WSAOperatorUtil > 1 

    WSAOperatorCapacity = WSAOperatorCapacity + 1 

    WSAOperatorUtil = TotalWSASetupTime / (WSAOperatorCapacity * 

MinutesPerDay) 

Loop 

Range("J18").Activate 

ActiveCell.Value = WSAOperatorUtil 

Range("B18").Activate 

ActiveCell.Value = WSAOperatorCapacity 

 

End Function 
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   Aggregate Production Planning Optimisation Algorithm 
Code 

 

D.1. Simulated Annealing algorithm code 

/* 

Main programme source file 

Author:  Louw Butler 

Created: 09/03/2015 

Modified: 27/04/2015 

*/ 

 

/* User-defined header (includes all standard library headers) */ 

#include "sources.h" 

#include <array> 

 

using namespace std; 

using std::cout; 

 

/* MAIN PROGRAMME */ 

int main() { 

 /** Reading and storing production cost input variables from file **/ 

 cout << "Production costs have been recorded as follows:" << endl; 

 ifstream costsFile; 

 costsFile.open("ProductionCostData.txt"); 

 // Material cost [$/unit] 

 string MaterialCostName; 

 readString(MaterialCostName, costsFile); 

 float MaterialCost; 

 readValue(MaterialCost, costsFile, "[$/unit]"); 

 // Holding cost [$/unit] 

 string HoldingCostName; 

 readString(HoldingCostName, costsFile); 

 float HoldingCost; 

 readValue(HoldingCost, costsFile, "[$/unit]"); 

 // Stockout cost [$/unit] 

 string StockoutRateName; 

 readString(StockoutRateName, costsFile); 

 float StockoutRate; 

 readValue(StockoutRate, costsFile, "[$/unit]"); 

 // Worker hiring and training cost [$/worker] 

 string WorkerHiringCostName; 

 readString(WorkerHiringCostName, costsFile); 

 float WorkerHiringCost; 

 readValue(WorkerHiringCost, costsFile, "[$/worker]"); 

 // Worker layoff cost [$/worker] 

 string WorkerLayoffCostName; 

 readString(WorkerLayoffCostName, costsFile); 

 float WorkerLayoffCost; 

 readValue(WorkerLayoffCost, costsFile, "[$/worker]"); 

 // Straight time [$/hr] 
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 string StraightTimeRateName; 

 readString(StraightTimeRateName, costsFile); 

 float StraightTimeRate; 

 readValue(StraightTimeRate, costsFile, "[$/hr]"); 

 // Over time [$/hr] 

 string OverTimeRateName; 

 readString(OverTimeRateName, costsFile); 

 float OverTimeRate; 

 readValue(OverTimeRate, costsFile, "[$/hr]"); 

 // Down time [$/hr] 

 string DownTimeRateName; 

 readString(DownTimeRateName, costsFile); 

 float DownTimeRate; 

 readValue(DownTimeRate, costsFile, "[$/hr]"); 

 // Close cost input file 

 costsFile.close(); 

 cout << endl; 

 

 /** Reading and storing production requirement data from file **/ 

 cout << "Production requirements have been recorded as follows:" << 

endl; 

 ifstream productionFile; 

 productionFile.open("ProductionData.txt"); 

 // Production time [hrs/unit] 

 string ProductionTimeName; 

 readString(ProductionTimeName, productionFile); 

 float ProductionTime; 

 readValue(ProductionTime, productionFile, "[min/unit]"); 

 ProductionTime = ProductionTime / 60;     

 // Convert from minutes to hours 

 // Planning horizon [months] 

 string PlanningHorizonName; 

 productionFile >> PlanningHorizonName; 

 cout << PlanningHorizonName << " "; 

 int PlanningHorizon; 

 productionFile >> PlanningHorizon; 

 cout << PlanningHorizon << " [months]" << endl; 

 

 /* Production data array initialisation based on planning horizon */ 

 float* WorkingDays = new float[PlanningHorizon]; 

 float* DemandForecast = new float[PlanningHorizon]; 

 float* SafetyStock = new float[PlanningHorizon]; 

 float* StartInventory = new float[PlanningHorizon]; 

 float* ProductionReqs = new float[PlanningHorizon]; 

 float* EndInventory = new float[PlanningHorizon]; 

 /*----------------------------------------------------------------*/ 

 

 // Working days per month 

 string WorkingDaysName; 

 productionFile >> WorkingDaysName; 

 cout << WorkingDaysName << " "; 

 for (int i = 0; i < PlanningHorizon; i++) { 
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  productionFile >> WorkingDays[i]; 

  cout << WorkingDays[i] << "\t"; 

 } 

 cout << endl; 

 

 // Calculate total working days 

 float TotalWorkingDays = 0; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  TotalWorkingDays += WorkingDays[i]; 

 } 

 

 // Demand forecasts 

 string DemandForecastName; 

 productionFile >> DemandForecastName; 

 cout << DemandForecastName << "\t   "; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  productionFile >> DemandForecast[i]; 

  cout << DemandForecast[i] << "\t"; 

 } 

 cout << endl; 

 // Calculate total demand for the planning horizon 

 float TotalDemand = 0; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  TotalDemand = TotalDemand + DemandForecast[i]; 

 } 

 

 // Safety stock requirement 

 string SafetyStockName; 

 productionFile >> SafetyStockName; 

 cout << SafetyStockName << "\t "; 

 float SafetyStockPC; 

 productionFile >> SafetyStockPC; 

 cout << SafetyStockPC << "% of Demand" << endl; 

 // Initial inventory 

 string InitialInventoryName; 

 readString(InitialInventoryName, productionFile); 

 float InitialInventory; 

 productionFile >> InitialInventory; 

 cout << InitialInventory << " [units]" << endl; 

 // Starting workforce 

 string InitialWorkforceName; 

 readString(InitialWorkforceName, productionFile); 

 float InitialWorkforce; 

 readValue(InitialWorkforce, productionFile, " Workers"); 

 cout << endl << endl; 

 // Close production inputs file 

 productionFile.close(); 

 

 // Calculate monthly safety stock requirements 

 for (int i = 0; i < PlanningHorizon; i++) { 

  SafetyStock[i] = round((SafetyStockPC / 100)*DemandForecast[i]); 

 } 
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 /* Calculate PRELIMINARY monthly production requirements and ending 

inventories */ 

 for (int i = 0; i < PlanningHorizon; i++) { 

  if (i == 0) { 

   StartInventory[i] = InitialInventory; 

  } 

  else { 

   StartInventory[i] = EndInventory[i - 1]; 

  } 

  ProductionReqs[i] = DemandForecast[i] + SafetyStock[i] - 

StartInventory[i]; 

  EndInventory[i] = StartInventory[i] + ProductionReqs[i] - 

DemandForecast[i]; 

 } 

 

 /* Print out table of production requirement data */ 

 cout << "PRELIMINARY PRODUCTION DATA ARE AS FOLLOWS:" << endl; 

 // Starting inventories 

 display("StartInventory:", PlanningHorizon, StartInventory); 

 // Demand forecast 

 display("DemandForecast:", PlanningHorizon, DemandForecast); 

 // Safety stock 

 display("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement 

 display("ProductionReqs:", PlanningHorizon, ProductionReqs); 

 // Ending inventories 

 display("EndInventory:", PlanningHorizon, EndInventory); 

 cout << endl; 

 

 /* Defining remaining variables required for cost calculations in 

dynamic memory */ 

 float* ProdHrsReq = new float[PlanningHorizon];   // 

Production hours required = ProductionReqs * ProductionTime 

 float* HrsPWorkerPM = new float[PlanningHorizon];  // Hours 

per worker per month = WorkingDays * 8hrs/day 

 float* Workforce = new float[PlanningHorizon];   // 

Workers required = ProdHrsReq / HrsPWorkerPM 

 float* WorkforceChange = new float[PlanningHorizon]; // Changes to 

workforce level month on month 

 float* NewHires = new float[PlanningHorizon];   // New 

workers hired (From initial workforce to first month and onwards) 

 float* HiringCost = new float[PlanningHorizon];   // 

Hiring cost = NewHires * WorkerHiringCost 

 float* Layoffs = new float[PlanningHorizon];   // Workers 

laid off (From initial workforce to first month and onwards) 

 float* LayoffCost = new float[PlanningHorizon];   // 

Laying off cost = Layoffs * WorkerLayoffCost 

 float* StraightTimeHrs = new float[PlanningHorizon]; // Straight time 

worked 

 float* StraightTimeCost = new float[PlanningHorizon]; // Straight 

time cost = StraightTimeHrs * StraightTimeRate 
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 float* ProdHrsAvail = new float[PlanningHorizon];  // 

Production hours available = WorkingDays * 8hrs/day * No. of workers 

 float* ActualProd = new float[PlanningHorizon];   // 

Actual production = ProdHrsAvail / ProductionTime 

 float* UnitsShort = new float[PlanningHorizon];   // 

Stock shortage after regular shift production 

 float* ShortageCost = new float[PlanningHorizon];  // Shortage 

cost = Units short(EndInventory) * StockoutRate (only if EndInventory is -ve, 

else 0) 

 float* UnitsExcess = new float[PlanningHorizon];  // Excess 

stock produced = EndInventory - SafetyStock (only if +ve, else 0) 

 float* InventoryCost = new float[PlanningHorizon];  // 

Inventory cost = UnitsExcess * HoldingCost 

 float* RegularShiftProd = new float[PlanningHorizon]; // Regular 

shift production = ProdHrsAvail / ProductionTime 

 float* UnitsAvail = new float[PlanningHorizon];   // 

Units available after regular shift 

 float* UnitsPreOvertime = new float[PlanningHorizon]; // Units 

available before overtime = StartInventory + RegularShiftProd - 

DemandForecast 

 float* OvertimeProd = new float[PlanningHorizon];  // Units 

produced during overtime = (-)UnitsPreOvertime (0 if UnitsPreOvertime is +ve) 

 float* OvertimeHrs = new float[PlanningHorizon];  // Overtime 

hours = OvertimeProd * ProductionTime 

 float* OvertimeCost = new float[PlanningHorizon];  // Overtime 

cost = OvertimeHrs * OvertimeRate 

 float* DowntimeHrs = new float[PlanningHorizon];  // Downtime 

hours 

 float* DowntimeCost = new float[PlanningHorizon];  // Downtime 

cost = DowntimeHrs * DowntimeRate 

 float* MonthlyCost = new float[PlanningHorizon];  // Sum of 

costs for each month 

 float* MaxStockout = new float[PlanningHorizon];  // Maximum 

allowable stockout per month 

 float* MaxInventory = new float[PlanningHorizon];  // Maimum 

allowable inventory per month 

 float* MaxOvertime = new float[PlanningHorizon];  // Maximum 

allowable overtime per month 

 float* currentStartInv = new float[PlanningHorizon]; // Monthly 

starting inventory of current plan 

 float* currentProdReqs = new float[PlanningHorizon]; // Monthly 

production requiremens for current plan 

 float* currentActualProd = new float[PlanningHorizon]; // Monthly 

production for current plan 

 float* currentEndInv = new float[PlanningHorizon];  // Montly 

ending inventory for current plan 

 float* currentWorkforce = new float[PlanningHorizon]; // Monthly 

workforce for current plan 

 float* currentMonthlyCost = new float[PlanningHorizon]; // Monthly 

cost for current plan 

 float* BestStartInv = new float[PlanningHorizon];  // Monthly 

starting inventory of optimal plan 
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 float* BestProdReqs = new float[PlanningHorizon];  // Monthly 

production requiremens for optimal plan 

 float* BestActualProd = new float[PlanningHorizon];  // Monthly 

production for optimal plan 

 float* BestEndInv = new float[PlanningHorizon];   // 

Montly ending inventory for optimal plan 

 float* BestWorkforce = new float[PlanningHorizon];  // Monthly 

workforce for optimal plan 

 float* BestMonthlyCost = new float[PlanningHorizon]; // Monthly cost 

for optimal plan 

 float* InvtoProdRatio = new float[PlanningHorizon]; // Array of random 

numbers 

 

 // Defining additional variable required for cost calculations 

 float PureLowestCost;   // Lowest plan cost out of the 

pure planning strategies 

 float WorkforceDiff = 0;  // Difference between current 

workforce and proposed workforce 

 float TotalCost = 0;   // Intialisation for total cost 

calculation 

 int PureStratFlag = 1;   // Pure strategy selection flag 

 

 // Calculating the required workforce level for the constant workforce 

with varying inventory and stockout strategy 

 float AvgReqWorkforce = round((TotalDemand * ProductionTime) / 

(TotalWorkingDays * 8 /*hrs/day*/)); 

 // Calculating the lowest required workforce level 

 float LowestProdReq = *min_element(ProductionReqs, ProductionReqs + 

PlanningHorizon); 

 int minIndex = MinElementIndex(ProductionReqs, PlanningHorizon); 

 float LowestReqWorkforce = round(((LowestProdReq*ProductionTime) / 

(WorkingDays[minIndex] * 8 /*hrs/day*/))); 

 // Calculating the highest required workforce level 

 float HighestProdReq = *max_element(ProductionReqs, ProductionReqs + 

PlanningHorizon); 

 int maxIndex = MaxElementIndex(ProductionReqs, PlanningHorizon); 

 float HighestReqWorkforce = round(((HighestProdReq*ProductionTime) / 

(WorkingDays[maxIndex] * 8 /*hrs/day*/))); 

 float InitialWorkforceCost = 0;  // Initialising the initial 

workforce change cost variable 

 

 // Pure Strategy #1: Exact production with varying workforce 

 for (int i = 0; i < PlanningHorizon; i++) {    

  // Run through the months up to the planning horizon 

  ProdHrsReq[i] = ProductionReqs[i] * ProductionTime;  

 // Calculate the required production hours 

  HrsPWorkerPM[i] = WorkingDays[i] * 8 /*hrs/day*/;  

 // Calculate the available hours per worker per month 

  Workforce[i] = round(ProdHrsReq[i] / HrsPWorkerPM[i]); 

 // Calculate the number of workers required 
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  if (i == 0) {        

    // Boundary conditions for monthly required 

workforce calculation 

   WorkforceDiff = Workforce[i] - InitialWorkforce; 

  } 

  else { 

   WorkforceDiff = Workforce[i] - Workforce[i - 1]; 

  } 

  if (WorkforceDiff == 0) {      

   // Workforce changes - hiring and laying off 

   NewHires[i] = 0; 

   Layoffs[i] = 0; 

  } 

  else if (WorkforceDiff < 0) { 

   NewHires[i] = 0; 

   Layoffs[i] = -WorkforceDiff; 

  } 

  else { 

   NewHires[i] = WorkforceDiff; 

   Layoffs[i] = 0; 

  } 

  StraightTimeCost[i] = ProdHrsReq[i] * StraightTimeRate; 

     // Cost calculations 

  HiringCost[i] = NewHires[i] * WorkerHiringCost; 

  LayoffCost[i] = Layoffs[i] * WorkerLayoffCost; 

  MonthlyCost[i] = StraightTimeCost[i] + HiringCost[i] + 

LayoffCost[i]; 

  // Sum total cost 

  TotalCost = TotalCost + MonthlyCost[i]; 

 } 

 cout << "Pure Strategy #1 cost: $" << TotalCost << endl; 

 // Set current plan variables to best plan variables 

 copyArray(StartInventory, BestStartInv, PlanningHorizon); 

 copyArray(ProductionReqs, BestProdReqs, PlanningHorizon); 

 copyArray(ActualProd, BestActualProd, PlanningHorizon); 

 copyArray(EndInventory, BestEndInv, PlanningHorizon); 

 copyArray(Workforce, BestWorkforce, PlanningHorizon); 

 copyArray(MonthlyCost, BestMonthlyCost, PlanningHorizon); 

 // Set current cost to best initial cost 

 PureLowestCost = TotalCost; 

 TotalCost = 0; 

 

 // Pure Strategy #2: Constant workforce with varying work hours 

 if (InitialWorkforce < AvgReqWorkforce) { 

  InitialWorkforceCost = (AvgReqWorkforce - 

InitialWorkforce)*WorkerHiringCost; 

 } 

 else if (InitialWorkforce > AvgReqWorkforce) { 

  InitialWorkforceCost = (InitialWorkforce - 

AvgReqWorkforce)*WorkerLayoffCost; 

 } 

 TotalCost = InitialWorkforceCost; 
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 for (int i = 0; i < PlanningHorizon; i++) { 

  Workforce[i] = AvgReqWorkforce; 

  ProdHrsAvail[i] = WorkingDays[i] * 8 /*hrs/day*/ * 

AvgReqWorkforce; 

  ProdHrsReq[i] = ProductionReqs[i] * ProductionTime; 

  if (ProdHrsAvail[i] < ProdHrsReq[i]) { 

   StraightTimeHrs[i] = ProdHrsAvail[i]; 

   OvertimeHrs[i] = ProdHrsReq[i] - ProdHrsAvail[i]; 

   DowntimeHrs[i] = 0; 

  } 

  else if (ProdHrsAvail[i] > ProdHrsReq[i]) { 

   StraightTimeHrs[i] = ProdHrsAvail[i]; 

   OvertimeHrs[i] = 0; 

   DowntimeHrs[i] = ProdHrsAvail[i] - ProdHrsReq[i]; 

  } 

  else { 

   StraightTimeHrs[i] = ProdHrsReq[i]; 

   OvertimeHrs[i] = 0; 

   DowntimeHrs[i] = 0; 

  } 

  ActualProd[i] = (StraightTimeHrs[i] + OvertimeHrs[i]) / 

ProductionTime; 

  StraightTimeCost[i] = StraightTimeHrs[i] * StraightTimeRate; 

  OvertimeCost[i] = OvertimeHrs[i] * OverTimeRate; 

  DowntimeCost[i] = DowntimeHrs[i] * DownTimeRate; 

  MonthlyCost[i] = StraightTimeCost[i] + OvertimeCost[i] + 

DowntimeCost[i]; 

  TotalCost = TotalCost + MonthlyCost[i]; 

 } 

 cout << "Pure strategy #2 cost: $" << TotalCost << endl; 

 

 if (TotalCost < PureLowestCost) { 

  // Set current plan variables to best plan variables 

  copyArray(StartInventory, BestStartInv, PlanningHorizon); 

  copyArray(ProductionReqs, BestProdReqs, PlanningHorizon); 

  copyArray(ActualProd, BestActualProd, PlanningHorizon); 

  copyArray(EndInventory, BestEndInv, PlanningHorizon); 

  copyArray(Workforce, BestWorkforce, PlanningHorizon); 

  copyArray(MonthlyCost, BestMonthlyCost, PlanningHorizon); 

  // Set current cost to best initial cost 

  PureLowestCost = TotalCost; 

  PureStratFlag = 2; 

 } 

 TotalCost = 0; 

 InitialWorkforceCost = 0; 

 

 // Pure Strategy #3: Constant average workforce with varying inventory 

and stockouts 

 if (InitialWorkforce < AvgReqWorkforce) { 

  InitialWorkforceCost = (AvgReqWorkforce - 

InitialWorkforce)*WorkerHiringCost; 

 } 
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 else if (InitialWorkforce > AvgReqWorkforce) { 

  InitialWorkforceCost = (InitialWorkforce - 

AvgReqWorkforce)*WorkerLayoffCost; 

 } 

 TotalCost = InitialWorkforceCost; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  Workforce[i] = AvgReqWorkforce; 

  if (i == 0) 

   StartInventory[i] = InitialInventory; 

  else 

   StartInventory[i] = EndInventory[i - 1]; 

  ProdHrsAvail[i] = WorkingDays[i] * 8 /*hrs/day*/ * 

AvgReqWorkforce; 

  ActualProd[i] = round(ProdHrsAvail[i] / ProductionTime); 

  EndInventory[i] = StartInventory[i] + ActualProd[i] - 

DemandForecast[i]; 

  if (EndInventory[i] < 0) 

   ShortageCost[i] = (-EndInventory[i])*StockoutRate; 

  else 

   ShortageCost[i] = 0; 

  if ((EndInventory[i] - SafetyStock[i]) <= 0) 

   UnitsExcess[i] = 0; 

  else 

   UnitsExcess[i] = EndInventory[i] - SafetyStock[i]; 

  InventoryCost[i] = UnitsExcess[i] * HoldingCost; 

  StraightTimeCost[i] = ProdHrsAvail[i] * StraightTimeRate; 

  MonthlyCost[i] = ShortageCost[i] + InventoryCost[i] + 

StraightTimeCost[i]; 

  TotalCost = TotalCost + MonthlyCost[i]; 

 } 

 cout << "Pure strategy #3 cost: $" << TotalCost << endl; 

 

 if (TotalCost < PureLowestCost) { 

  // Set current plan variables to best plan variables 

  copyArray(StartInventory, BestStartInv, PlanningHorizon); 

  copyArray(ProductionReqs, BestProdReqs, PlanningHorizon); 

  copyArray(ActualProd, BestActualProd, PlanningHorizon); 

  copyArray(EndInventory, BestEndInv, PlanningHorizon); 

  copyArray(Workforce, BestWorkforce, PlanningHorizon); 

  copyArray(MonthlyCost, BestMonthlyCost, PlanningHorizon); 

  // Set current cost to best initial cost 

  PureLowestCost = TotalCost; 

  PureStratFlag = 3; 

 } 

 

 /* Definition of optimisation algorithm parameters and initial 

solution */ 

 bool ConstWorkforce = 1;    // [0/1] Determines 

whether the workforce will be held constant through the planning horizon 

 float WorkforceParam = 0;    // [0-1] Determines the 

degree to which the workforce will be adjusted for each iteration 
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 //float InvtoProdRatio = 0;    // [0-1] 

Determines the affinity to inventory/stockout as compared to production 

 

 cout << "\nThe pure strategy with the lowest cost is:" << endl; 

 switch (PureStratFlag) { 

 case 1: 

  ConstWorkforce = 0; 

  //InvtoProdRatio = 0; 

  cout << "Exact production with varying workforce." << endl << 

endl; 

  break; 

 case 2: 

  ConstWorkforce = 1; 

  //InvtoProdRatio = 0; 

  cout << "Constant average workforce with varying working hours, 

including downtime and overtime." << endl << endl; 

  break; 

 case 3: 

  ConstWorkforce = 1; 

  //InvtoProdRatio = 1; 

  cout << "Constant average workforce with varying inventory and 

stockout." << endl << endl; 

 default: 

  break; 

 } 

 /* Print out table of production data */ 

 // Starting inventories per month 

 display("StartInventory:", PlanningHorizon, BestStartInv); 

 // Demand forecast per month 

 display("DemandForecast:", PlanningHorizon, DemandForecast); 

 // Safety stock per month 

 display("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement per month 

 display("ProductionReq:", PlanningHorizon, BestProdReqs); 

 // Actual production per month 

 display("ActualProd:", PlanningHorizon, BestActualProd); 

 // Ending inventories per month 

 display("EndInventory:", PlanningHorizon, BestEndInv); 

 // Workforce per month 

 display("Workforce:", PlanningHorizon, BestWorkforce); 

 // Monthly costs 

 display("Monthly Cost:", PlanningHorizon, BestMonthlyCost); 

 cout << endl; 

 cout << "The total cost of this strategy is : $" << PureLowestCost << 

endl << endl; 

 

/********************************** END OF PURE STRATEGY COST CALCULATIONS 

**************************************/ 

 

/********************************* START OF SIMULATED ANNEALING OPTIMISATION 

************************************/ 

 /* Algorithm: 
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  1. Make lowest cost pure plan best solution 

  2. While temperature > min_temperature do: 

  2.1 Make random change to strategy based on temperature 

  2.2 Check that the new plan is valid, otherwise redo step 2.1 

  2.3 Calculate cost of new plan 

  Compare new cost with current best cost 

  if new cost < current best cost 

  set best cost to new cost 

  if new cost >= best cost 

  set best cost to new cost only if acceptance condition is met 

(eg. random number < acceptance probability based on temperature) 

  else discard new plan 

  2.4 Repeat Steps 2.1 to 2.3 for X iterations 

  2.5 Change temperature according to change schedule and repeat 

2.1 to 2.3 with new temperature 

  */ 

 

 // Reset plan variables ahead of optimisation algorithm 

 TotalCost = 0; 

 InitialWorkforceCost = 0; 

 

 float currentCost = PureLowestCost;   // Set current 

best cost to lowest pure strategy plan cost with strategy parameters set in 

switch statement above 

 int maxIteration = 5000;     // Maximum 

iterations per temperature setting 

 float maxTemp = 800000;      // Maximum 

temperature of simulated annealing algorithm 

 float newCost = 500000;      // Cost of 

new plan based on new strategy initialised to $500,000.00 

 float temp = maxTemp;      // 

Temperature for simulated annealing algorithm initialised to maximum 

temperature 

 float minTemp = 500000;      // Minimum 

temperature of simulated annealing algorithm 

 float tempSched = 0.99;      // 

Temperature change schedule of simulated annealing algorithm 

 float NewWorkforce = AvgReqWorkforce;  // Workforce for new 

plan initialised to average workforce required for total production over 

planning horizon 

 float BestCost = currentCost;    // Cost of overall 

best plan initialised to cost of current plan 

 float AccProb = 0;       // 

Probability of simulated annealing algorithm accepting a worse plan than the 

current best plan 

 float random = 0;       // Random 

number regenerated at each iteration for comaprison with AccProb 

 

 ofstream resultsFile;      // Link to 

a results file to be written to at each temperature in the simulated 

annealing algorithm 

 resultsFile.open("SAresults.txt"); 



133 
 

 

 // Temperature loop of simulated annealing algorithm starts here 

 while (temp > minTemp) { 

  // Iteration loop of simulated annealing algorithm starts here 

  for (int iteration = 0; iteration < maxIteration; iteration++) { 

   // Reset new plan variables 

   TotalCost = 0; 

   newCost = 0; 

   for (int i = 0; i < PlanningHorizon; i++) { 

    InvtoProdRatio[i] = ((float)(rand() % 50 - 25)) / 

150; 

   } 

  /* CONSTANT WORKFORCE */ 

   if (ConstWorkforce) { 

    // Calculate the cost of initial workforce changes 

    if (InitialWorkforce < NewWorkforce) { 

     InitialWorkforceCost = (NewWorkforce - 

InitialWorkforce)*WorkerHiringCost; 

    } 

    else if (InitialWorkforce > NewWorkforce) { 

     InitialWorkforceCost = (InitialWorkforce - 

NewWorkforce)*WorkerLayoffCost; 

    } 

    // Run through the months up to the planning 

horizon 

    for (int i = 0; i < PlanningHorizon; i++) { 

     // Workforce remains constant 

     Workforce[i] = NewWorkforce; 

     ProdHrsAvail[i] = WorkingDays[i] * 8 

/*hrs/day*/ * Workforce[i]; 

     // Starting inventory calculated from 

previous month's ending inventory 

     if (i == 0) { 

      StartInventory[i] = InitialInventory; 

      MonthlyCost[i] = InitialWorkforceCost; 

     } 

     else { 

      StartInventory[i] = EndInventory[i - 

1]; 

      MonthlyCost[i] = 0; 

     } 

     // Production calculations 

     // Number of production hours required, 

based on the required production for the month 

     ProductionReqs[i] = (DemandForecast[i] + 

SafetyStock[i] - StartInventory[i]); 

     ProdHrsReq[i] = round((1-

InvtoProdRatio[i])*(ProductionReqs[i] * ProductionTime)); 

     // Production hours calculations 

     if (ProdHrsReq[i] < ProdHrsAvail[i]) { 

       StraightTimeHrs[i] = 

ProdHrsReq[i]; 
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       OvertimeHrs[i] = 0; 

       DowntimeHrs[i] = 

(ProdHrsAvail[i] - ProdHrsReq[i]); 

     } 

     else if (ProdHrsReq[i] > ProdHrsAvail[i]) { 

      StraightTimeHrs[i] = ProdHrsAvail[i]; 

      OvertimeHrs[i] = ProdHrsReq[i] - 

ProdHrsAvail[i]; 

      DowntimeHrs[i] = 0; 

     } 

     else { 

      StraightTimeHrs[i] = ProdHrsAvail[i]; 

      OvertimeHrs[i] = 0; 

      DowntimeHrs[i] = 0; 

     } 

     RegularShiftProd[i] = 

round(StraightTimeHrs[i] / ProductionTime); 

     OvertimeProd[i] = round(OvertimeHrs[i] / 

ProductionTime); 

     ActualProd[i] = RegularShiftProd[i] + 

OvertimeProd[i]; 

     EndInventory[i] = StartInventory[i] + 

ActualProd[i] - DemandForecast[i]; 

     // Inventory/Stockout cost calculations 

     if (EndInventory[i] < 0) 

      ShortageCost[i] = 

abs(EndInventory[i])*StockoutRate; 

     else 

      ShortageCost[i] = 0; 

     if ((EndInventory[i] - SafetyStock[i]) <= 0) 

      UnitsExcess[i] = 0; 

     else 

      UnitsExcess[i] = EndInventory[i] - 

SafetyStock[i]; 

     InventoryCost[i] = UnitsExcess[i] * 

HoldingCost; 

     // Production costs per month 

     StraightTimeCost[i] = StraightTimeHrs[i] * 

StraightTimeRate; 

     OvertimeCost[i] = OvertimeHrs[i] * 

OverTimeRate; 

     DowntimeCost[i] = DowntimeHrs[i] * 

DownTimeRate; 

     // Summation of costs per month 

     MonthlyCost[i] += StraightTimeCost[i] + 

OvertimeCost[i] + DowntimeCost[i] + ShortageCost[i] + InventoryCost[i]; 

     // Summation of monthly costs 

     TotalCost += MonthlyCost[i]; 

    } 

   } 

  /* NON-CONSTANT WORKFORCE */ 

   else { 
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    // Run through the months up to the planning 

horizon 

    for (int i = 0; i < PlanningHorizon; i++) { 

     // Starting inventory boundary condition 

     if (i == 0) 

      StartInventory[i] = InitialInventory; 

     else 

      StartInventory[i] = EndInventory[i - 

1]; 

     // Calculation of production hours required 

     ProductionReqs[i] = DemandForecast[i] + 

SafetyStock[i] - StartInventory[i]; 

     ProdHrsReq[i] = round((1 - 

InvtoProdRatio[i])*(ProductionReqs[i] * ProductionTime)); // Calculate the 

required production hours 

     HrsPWorkerPM[i] = WorkingDays[i] * 8 

/*hrs/day*/;          // 

Calculate the available hours per worker per month 

     Workforce[i] = round(ProdHrsReq[i] / 

HrsPWorkerPM[i]) + WorkforceParam;     // 

Calculate the number of workers required 

     ProdHrsAvail[i] = HrsPWorkerPM[i] * 

Workforce[i]; 

     ActualProd[i] = round(ProdHrsAvail[i] / 

ProductionTime); 

     if (i == 0) { // Boundary conditions for 

monthly required workforce calculation 

      WorkforceDiff = Workforce[i] - 

InitialWorkforce; 

     } 

     else { 

      WorkforceDiff = Workforce[i] - 

Workforce[i - 1]; 

     } 

     if (WorkforceDiff == 0) { // Workforce 

changes - hiring and laying off 

      NewHires[i] = 0; 

      Layoffs[i] = 0; 

     } 

     else if (WorkforceDiff < 0) { 

      NewHires[i] = 0; 

      Layoffs[i] = -WorkforceDiff; 

     } 

     else { 

      NewHires[i] = WorkforceDiff; 

      Layoffs[i] = 0; 

     } 

     EndInventory[i] = StartInventory[i] + 

ActualProd[i] - DemandForecast[i]; 

     if (EndInventory[i] < 0) 

      ShortageCost[i] = (-

EndInventory[i])*StockoutRate; 
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     else 

      ShortageCost[i] = 0; 

     if ((EndInventory[i] - SafetyStock[i]) < 0) 

      UnitsExcess[i] = 0; 

     else 

      UnitsExcess[i] = EndInventory[i] - 

SafetyStock[i]; 

     InventoryCost[i] = UnitsExcess[i] * 

HoldingCost; 

     StraightTimeCost[i] = ProdHrsAvail[i] * 

StraightTimeRate;      // Cost calculations 

     HiringCost[i] = NewHires[i] * 

WorkerHiringCost; 

     LayoffCost[i] = Layoffs[i] * 

WorkerLayoffCost; 

     MonthlyCost[i] = StraightTimeCost[i] + 

HiringCost[i] + LayoffCost[i] + ShortageCost[i] + InventoryCost[i]; 

     // Sum total cost 

     TotalCost += MonthlyCost[i]; 

    } 

   } 

   newCost = TotalCost; 

    

   // Generate new plan startegy parameters 

   WorkforceParam = round(((rand() % 2) * 2 - 

1)*((float)(rand() % 5))); 

   NewWorkforce = NewWorkforce + WorkforceParam; 

 

   // Set new plan variable to current plan variables if new 

plan cost is less than or equal to current plan cost 

   if (EndInventory[PlanningHorizon - 1] > 0) { 

    if (newCost <= currentCost) { 

     currentCost = newCost; 

     copyArray(StartInventory, currentStartInv, 

PlanningHorizon); 

     copyArray(ProductionReqs, currentProdReqs, 

PlanningHorizon); 

     copyArray(ActualProd, currentActualProd, 

PlanningHorizon); 

     copyArray(EndInventory, currentEndInv, 

PlanningHorizon); 

     copyArray(Workforce, currentWorkforce, 

PlanningHorizon); 

     copyArray(MonthlyCost, currentMonthlyCost, 

PlanningHorizon); 

     // Set current plan variables to best plan 

variables if current plan cost is less than or equal to best plan cost 

     if (currentCost <= BestCost) { 

      BestCost = currentCost; 

      copyArray(currentStartInv, 

BestStartInv, PlanningHorizon); 
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      copyArray(currentProdReqs, 

BestProdReqs, PlanningHorizon); 

      copyArray(currentActualProd, 

BestActualProd, PlanningHorizon); 

      copyArray(currentEndInv, BestEndInv, 

PlanningHorizon); 

      copyArray(currentWorkforce, 

BestWorkforce, PlanningHorizon); 

      copyArray(currentMonthlyCost, 

BestMonthlyCost, PlanningHorizon); 

     } 

    } 

    // Set new plan variable to current plan variables 

if new plan cost is more than current plan cost and  

    // acceptance probability is smaller than a 

randomly generated number 

    else if (newCost > currentCost) { 

     AccProb = pow(AcceptProb(newCost, 

currentCost, temp), 1); 

     random = (static_cast <float> (rand()) / 

static_cast <float> (RAND_MAX)); 

     if (AccProb > random) { 

      currentCost = newCost; 

      copyArray(StartInventory, 

currentStartInv, PlanningHorizon); 

      copyArray(ProductionReqs, 

currentProdReqs, PlanningHorizon); 

      copyArray(ActualProd, 

currentActualProd, PlanningHorizon); 

      copyArray(EndInventory, currentEndInv, 

PlanningHorizon); 

      copyArray(Workforce, currentWorkforce, 

PlanningHorizon); 

      copyArray(MonthlyCost, 

currentMonthlyCost, PlanningHorizon); 

      if (ConstWorkforce) 

       ConstWorkforce = 0; 

      else 

       ConstWorkforce = 1; 

     } 

     else { 

      if (ConstWorkforce) 

       ConstWorkforce = 1; 

      else 

       ConstWorkforce = 0; 

     } 

    } 

   } 

   else 

    continue; 

 

   if (iteration % 50 == 0) 
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    resultsFile << ConstWorkforce << "\t" << newCost << 

"\t" << currentCost << "\t" << BestCost << "\t" << temp << endl; 

 

  }/************ END OF INNER LOOP ************/ 

 

  // Set next step in temperture schedule 

  temp = tempSched*temp; 

  cout << ConstWorkforce << '\t' << currentCost << '\t' << 

BestCost << "\t" << temp << endl; 

 

 }/*********** END OF OUTER LOOP ***********/ 

 

 resultsFile.close(); 

 cout << endl; 

 /* Print out table of production data */ 

 // Starting inventories per month 

 display("StartInventory:", PlanningHorizon, currentStartInv); 

 // Demand forecast per month 

 display("DemandForecast:", PlanningHorizon, DemandForecast); 

 // Safety stock per month 

 display("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement per month 

 display("ProductionReq:", PlanningHorizon, currentProdReqs); 

 // Actual production per month 

 display("ActualProd:", PlanningHorizon, currentActualProd); 

 // Ending inventories per month 

 display("EndInventory:", PlanningHorizon, currentEndInv); 

 // Workforce per month 

 display("Workforce:", PlanningHorizon, currentWorkforce); 

 // Monthly costs 

 display("Monthly Cost:", PlanningHorizon, currentMonthlyCost); 

 

 cout << endl; 

 /* Print out table of production data */ 

 cout << "The most optimal plan is configured as follows:\n" << endl; 

 // Starting inventories per month 

 display("StartInventory:", PlanningHorizon, BestStartInv); 

 // Demand forecast per month 

 display("DemandForecast:", PlanningHorizon, DemandForecast); 

 // Safety stock per month 

 display("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement per month 

 display("ProductionReq:", PlanningHorizon, BestProdReqs); 

 // Actual production per month 

 display("ActualProd:", PlanningHorizon, BestActualProd); 

 // Ending inventories per month 

 display("EndInventory:", PlanningHorizon, BestEndInv); 

 // Workforce per month 

 display("Workforce:", PlanningHorizon, BestWorkforce); 

 // Monthly costs 

 display("Monthly Cost:", PlanningHorizon, BestMonthlyCost); 

 cout << "\nThe total cost of this plan is: $" << BestCost << endl; 
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 cout << "\nThat is a saving of " << (((PureLowestCost - BestCost) / 

PureLowestCost) * 100) << "%" << " of $" << PureLowestCost << endl; 

 

/* Delete arrays dynamically allocated in memory */ 

 delete[] WorkingDays, DemandForecast, SafetyStock, StartInventory, 

ProductionReqs, EndInventory; 

 delete[] ProdHrsReq, HrsPWorkerPM, Workforce, WorkforceChange, 

NewHires, HiringCost, Layoffs, LayoffCost, StraightTimeHrs; 

 delete[] StraightTimeCost, ProdHrsAvail, ActualProd, UnitsShort, 

ShortageCost, UnitsExcess, InventoryCost; 

 delete[] RegularShiftProd, UnitsAvail, UnitsPreOvertime, OvertimeProd, 

OvertimeCost, DowntimeHrs, DowntimeCost, MonthlyCost; 

 delete[] MaxStockout, MaxInventory, MaxOvertime, currentActualProd, 

currentEndInv, currentMonthlyCost, currentProdReqs; 

 delete[] currentStartInv, currentWorkforce, BestActualProd, 

BestEndInv, BestMonthlyCost, BestProdReqs, BestStartInv, BestWorkforce; 

 

/** End matter of main programme **/ 

 cout << endl << endl; 

 std::system("PAUSE"); 

 return 0; 

}  
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D.2. Biogeography-Based Optimisation algorithm code 

/* 

Main programme source file 

Author:  Louw Butler 

Created: 09/03/2015 

Modified: 03/06/2015 

*/ 

 

/* User-defined header (includes all standard library headers) */ 

#include "sources.h" 

#include <array> 

 

using namespace std; 

using std::cout; 

 

/* MAIN PROGRAMME */ 

int main() { 

 /** Reading and storing production cost input variables from file **/ 

 cout << "Production costs have been recorded as follows:" << endl; 

 ifstream costsFile; 

 costsFile.open("ProductionCostData.txt"); 

 // Material cost [$/unit] 

 string MaterialCostName; 

 readString(MaterialCostName, costsFile); 

 float MaterialCost; 

 readValue(MaterialCost, costsFile, "[$/unit]"); 

 // Holding cost [$/unit] 

 string HoldingCostName; 

 readString(HoldingCostName, costsFile); 

 float HoldingCost; 

 readValue(HoldingCost, costsFile, "[$/unit]"); 

 // Stockout cost [$/unit] 

 string StockoutRateName; 

 readString(StockoutRateName, costsFile); 

 float StockoutRate; 

 readValue(StockoutRate, costsFile, "[$/unit]"); 

 // Worker hiring and training cost [$/worker] 

 string WorkerHiringCostName; 

 readString(WorkerHiringCostName, costsFile); 

 float WorkerHiringCost; 

 readValue(WorkerHiringCost, costsFile, "[$/worker]"); 

 // Worker layoff cost [$/worker] 

 string WorkerLayoffCostName; 

 readString(WorkerLayoffCostName, costsFile); 

 float WorkerLayoffCost; 

 readValue(WorkerLayoffCost, costsFile, "[$/worker]"); 

 // Straight time [$/hr] 

 string StraightTimeRateName; 

 readString(StraightTimeRateName, costsFile); 

 float StraightTimeRate; 

 readValue(StraightTimeRate, costsFile, "[$/hr]"); 
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 // Over time [$/hr] 

 string OverTimeRateName; 

 readString(OverTimeRateName, costsFile); 

 float OverTimeRate; 

 readValue(OverTimeRate, costsFile, "[$/hr]"); 

 // Down time [$/hr] 

 string DownTimeRateName; 

 readString(DownTimeRateName, costsFile); 

 float DownTimeRate; 

 readValue(DownTimeRate, costsFile, "[$/hr]"); 

 // Close cost input file 

 costsFile.close(); 

 cout << endl; 

 

 /** Reading and storing production requirement data from file **/ 

 cout << "Production requirements have been recorded as follows:" << 

endl; 

 ifstream productionFile; 

 productionFile.open("ProductionData.txt"); 

 // Production time [hrs/unit] 

 string ProductionTimeName; 

 readString(ProductionTimeName, productionFile); 

 float ProductionTime; 

 readValue(ProductionTime, productionFile, "[min/unit]"); 

 ProductionTime = ProductionTime / 60;     

 // Convert from minutes to hours 

 // Planning horizon [months] 

 string PlanningHorizonName; 

 productionFile >> PlanningHorizonName; 

 cout << PlanningHorizonName << " "; 

 int PlanningHorizon; 

 productionFile >> PlanningHorizon; 

 cout << PlanningHorizon << " [months]" << endl; 

 

 /* Production data array initialisation based on planning horizon */ 

 float* WorkingDays = new float[PlanningHorizon]; 

 float* DemandForecast = new float[PlanningHorizon]; 

 float* SafetyStock = new float[PlanningHorizon]; 

 float* StartInventory = new float[PlanningHorizon]; 

 float* ProductionReqs = new float[PlanningHorizon]; 

 float* EndInventory = new float[PlanningHorizon]; 

 /*----------------------------------------------------------------*/ 

 

 // Working days per month 

 string WorkingDaysName; 

 productionFile >> WorkingDaysName; 

 cout << WorkingDaysName << " "; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  productionFile >> WorkingDays[i]; 

  cout << WorkingDays[i] << "\t"; 

 } 

 cout << endl; 
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 // Calculate total working days 

 float TotalWorkingDays = 0; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  TotalWorkingDays += WorkingDays[i]; 

 } 

 

 // Demand forecasts 

 string DemandForecastName; 

 productionFile >> DemandForecastName; 

 cout << DemandForecastName << "\t   "; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  productionFile >> DemandForecast[i]; 

  cout << DemandForecast[i] << "\t"; 

 } 

 cout << endl; 

 // Calculate total demand for the planning horizon 

 float TotalDemand = 0; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  TotalDemand = TotalDemand + DemandForecast[i]; 

 } 

 

 // Safety stock requirement 

 string SafetyStockName; 

 productionFile >> SafetyStockName; 

 cout << SafetyStockName << "\t "; 

 float SafetyStockPC; 

 productionFile >> SafetyStockPC; 

 cout << SafetyStockPC << "% of Demand" << endl; 

 // Initial inventory 

 string InitialInventoryName; 

 readString(InitialInventoryName, productionFile); 

 float InitialInventory; 

 productionFile >> InitialInventory; 

 cout << InitialInventory << " [units]" << endl; 

 // Starting workforce 

 string InitialWorkforceName; 

 readString(InitialWorkforceName, productionFile); 

 float InitialWorkforce; 

 readValue(InitialWorkforce, productionFile, " Workers"); 

 cout << endl << endl; 

 // Close production inputs file 

 productionFile.close(); 

 

 // Calculate monthly safety stock requirements 

 for (int i = 0; i < PlanningHorizon; i++) { 

  SafetyStock[i] = round((SafetyStockPC / 100)*DemandForecast[i]); 

 } 

 

 /* Calculate PRELIMINARY monthly production requirements and ending 

inventories */ 

 for (int i = 0; i < PlanningHorizon; i++) { 
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  if (i == 0) { 

   StartInventory[i] = InitialInventory; 

  } 

  else { 

   StartInventory[i] = EndInventory[i - 1]; 

  } 

  ProductionReqs[i] = DemandForecast[i] + SafetyStock[i] - 

StartInventory[i]; 

  EndInventory[i] = StartInventory[i] + ProductionReqs[i] - 

DemandForecast[i]; 

 } 

 

 /* Print out table of production requirement data */ 

 cout << "PRELIMINARY PRODUCTION DATA ARE AS FOLLOWS:" << endl; 

 // Starting inventories 

 displayArray("StartInventory:", PlanningHorizon, StartInventory); 

 // Demand forecast 

 displayArray("DemandForecast:", PlanningHorizon, DemandForecast); 

 // Safety stock 

 displayArray("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement 

 displayArray("ProductionReqs:", PlanningHorizon, ProductionReqs); 

 // Ending inventories 

 displayArray("EndInventory:", PlanningHorizon, EndInventory); 

 cout << endl; 

 

 /* Define remaining variables required for cost calculations in 

dynamic memory */ 

 float* ProdHrsReq = new float[PlanningHorizon];   // 

Production hours required = ProductionReqs * ProductionTime 

 float* HrsPWorkerPM = new float[PlanningHorizon];  // Hours 

per worker per month = WorkingDays * 8hrs/day 

 float* Workforce = new float[PlanningHorizon];   // 

Workers required = ProdHrsReq / HrsPWorkerPM 

 float* WorkforceChange = new float[PlanningHorizon]; // Changes to 

workforce level month on month 

 float* NewHires = new float[PlanningHorizon];   // New 

workers hired (From initial workforce to first month and onwards) 

 float* HiringCost = new float[PlanningHorizon];   // 

Hiring cost = NewHires * WorkerHiringCost 

 float* Layoffs = new float[PlanningHorizon];   // Workers 

laid off (From initial workforce to first month and onwards) 

 float* LayoffCost = new float[PlanningHorizon];   // 

Laying off cost = Layoffs * WorkerLayoffCost 

 float* StraightTimeHrs = new float[PlanningHorizon]; // Straight time 

worked 

 float* StraightTimeCost = new float[PlanningHorizon]; // Straight 

time cost = StraightTimeHrs * StraightTimeRate 

 float* ProdHrsAvail = new float[PlanningHorizon];  // 

Production hours available = WorkingDays * 8hrs/day * No. of workers 

 float* ActualProd = new float[PlanningHorizon];   // 

Actual production = ProdHrsAvail / ProductionTime 
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 float* UnitsShort = new float[PlanningHorizon];   // 

Stock shortage after regular shift production 

 float* ShortageCost = new float[PlanningHorizon];  // Shortage 

cost = Units short(EndInventory) * StockoutRate (only if EndInventory is -ve, 

else 0) 

 float* UnitsExcess = new float[PlanningHorizon];  // Excess 

stock produced = EndInventory - SafetyStock (only if +ve, else 0) 

 float* InventoryCost = new float[PlanningHorizon];  // 

Inventory cost = UnitsExcess * HoldingCost 

 float* RegularShiftProd = new float[PlanningHorizon]; // Regular 

shift production = ProdHrsAvail / ProductionTime 

 float* UnitsAvail = new float[PlanningHorizon];   // 

Units available after regular shift 

 float* UnitsPreOvertime = new float[PlanningHorizon]; // Units 

available before overtime = StartInventory + RegularShiftProd - 

DemandForecast 

 float* OvertimeProd = new float[PlanningHorizon];  // Units 

produced during overtime = (-)UnitsPreOvertime (0 if UnitsPreOvertime is +ve) 

 float* OvertimeHrs = new float[PlanningHorizon];  // Overtime 

hours = OvertimeProd * ProductionTime 

 float* OvertimeCost = new float[PlanningHorizon];  // Overtime 

cost = OvertimeHrs * OvertimeRate 

 float* DowntimeHrs = new float[PlanningHorizon];  // Downtime 

hours 

 float* DowntimeCost = new float[PlanningHorizon];  // Downtime 

cost = DowntimeHrs * DowntimeRate 

 float* MonthlyCost = new float[PlanningHorizon];  // Sum of 

costs for each month 

 float* MaxStockout = new float[PlanningHorizon];  // Maximum 

allowable stockout per month 

 float* MaxInventory = new float[PlanningHorizon];  // Maimum 

allowable inventory per month 

 float* MaxOvertime = new float[PlanningHorizon];  // Maximum 

allowable overtime per month 

 float* currentStartInv = new float[PlanningHorizon]; // Monthly 

starting inventory of current plan 

 float* currentProdReqs = new float[PlanningHorizon]; // Monthly 

production requiremens for current plan 

 float* currentActualProd = new float[PlanningHorizon]; // Monthly 

production for current plan 

 float* currentEndInv = new float[PlanningHorizon];  // Montly 

ending inventory for current plan 

 float* currentWorkforce = new float[PlanningHorizon]; // Monthly 

workforce for current plan 

 float* currentMonthlyCost = new float[PlanningHorizon]; // Monthly 

cost for current plan 

 float* BestStartInv = new float[PlanningHorizon];  // Monthly 

starting inventory of optimal plan 

 float* BestProdReqs = new float[PlanningHorizon];  // Monthly 

production requiremens for optimal plan 

 float* BestActualProd = new float[PlanningHorizon];  // Monthly 

production for optimal plan 
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 float* BestEndInv = new float[PlanningHorizon];   // 

Montly ending inventory for optimal plan 

 float* BestWorkforce = new float[PlanningHorizon];  // Monthly 

workforce for optimal plan 

 float* BestMonthlyCost = new float[PlanningHorizon]; // Monthly cost 

for optimal plan 

 float* InvtoProdRatio = new float[PlanningHorizon];  // Array of 

random numbers 

 

 // Define additional variables required for cost calculations 

 float PureLowestCost;   // Lowest plan cost out of the 

pure planning strategies 

 float WorkforceDiff = 0;  // Difference between current 

workforce and proposed workforce 

 float TotalCost = 0;   // Intialisation for total cost 

calculation 

 int PureStratFlag = 1;   // Pure strategy selection flag 

 

 // Calculate the required workforce level for the constant workforce 

with varying inventory and stockout strategy 

 float AvgReqWorkforce = round((TotalDemand * ProductionTime) / 

(TotalWorkingDays * 8 /*hrs/day*/)); 

 // Calculating the lowest required workforce level 

 float LowestProdReq = *min_element(ProductionReqs, ProductionReqs + 

PlanningHorizon); 

 int minIndex = MinElementIndex(ProductionReqs, PlanningHorizon); 

 float LowestReqWorkforce = round(((LowestProdReq*ProductionTime) / 

(WorkingDays[minIndex] * 8 /*hrs/day*/))); 

 // Calculating the highest required workforce level 

 float HighestProdReq = *max_element(ProductionReqs, ProductionReqs + 

PlanningHorizon); 

 int maxIndex = MaxElementIndex(ProductionReqs, PlanningHorizon); 

 float HighestReqWorkforce = round(((HighestProdReq*ProductionTime) / 

(WorkingDays[maxIndex] * 8 /*hrs/day*/))); 

 float InitialWorkforceCost = 0;  // Initialising the initial 

workforce change cost variable 

 

 // Pure Strategy #1: Exact production with varying workforce 

 for (int i = 0; i < PlanningHorizon; i++) {    

  // Run through the months up to the planning horizon 

  ProdHrsReq[i] = ProductionReqs[i] * ProductionTime;  

 // Calculate the required production hours 

  HrsPWorkerPM[i] = WorkingDays[i] * 8 /*hrs/day*/;  

 // Calculate the available hours per worker per month 

  Workforce[i] = round(ProdHrsReq[i] / HrsPWorkerPM[i]); 

 // Calculate the number of workers required 

  if (i == 0) {        

    // Boundary conditions for monthly required 

workforce calculation 

   WorkforceDiff = Workforce[i] - InitialWorkforce; 

  } 

  else { 
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   WorkforceDiff = Workforce[i] - Workforce[i - 1]; 

  } 

  if (WorkforceDiff == 0) {      

   // Workforce changes - hiring and laying off 

   NewHires[i] = 0; 

   Layoffs[i] = 0; 

  } 

  else if (WorkforceDiff < 0) { 

   NewHires[i] = 0; 

   Layoffs[i] = -WorkforceDiff; 

  } 

  else { 

   NewHires[i] = WorkforceDiff; 

   Layoffs[i] = 0; 

  } 

  StraightTimeCost[i] = ProdHrsReq[i] * StraightTimeRate; 

     // Cost calculations 

  HiringCost[i] = NewHires[i] * WorkerHiringCost; 

  LayoffCost[i] = Layoffs[i] * WorkerLayoffCost; 

  MonthlyCost[i] = StraightTimeCost[i] + HiringCost[i] + 

LayoffCost[i]; 

  // Sum total cost 

  TotalCost = TotalCost + MonthlyCost[i]; 

 } 

 cout << "Pure Strategy #1 cost: $" << TotalCost << endl; 

 // Set current plan variables to best plan variables 

 copyArray(StartInventory, BestStartInv, PlanningHorizon); 

 copyArray(ProductionReqs, BestProdReqs, PlanningHorizon); 

 copyArray(ActualProd, BestActualProd, PlanningHorizon); 

 copyArray(EndInventory, BestEndInv, PlanningHorizon); 

 copyArray(Workforce, BestWorkforce, PlanningHorizon); 

 copyArray(MonthlyCost, BestMonthlyCost, PlanningHorizon); 

 // Set current cost to best initial cost 

 PureLowestCost = TotalCost; 

 TotalCost = 0; 

 

 // Pure Strategy #2: Constant workforce with varying work hours 

 if (InitialWorkforce < AvgReqWorkforce) { 

  InitialWorkforceCost = (AvgReqWorkforce - 

InitialWorkforce)*WorkerHiringCost; 

 } 

 else if (InitialWorkforce > AvgReqWorkforce) { 

  InitialWorkforceCost = (InitialWorkforce - 

AvgReqWorkforce)*WorkerLayoffCost; 

 } 

 TotalCost = InitialWorkforceCost; 

 for (int i = 0; i < PlanningHorizon; i++) { 

  Workforce[i] = AvgReqWorkforce; 

  ProdHrsAvail[i] = WorkingDays[i] * 8 /*hrs/day*/ * 

AvgReqWorkforce; 

  ProdHrsReq[i] = ProductionReqs[i] * ProductionTime; 

  if (ProdHrsAvail[i] < ProdHrsReq[i]) { 
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   StraightTimeHrs[i] = ProdHrsAvail[i]; 

   OvertimeHrs[i] = ProdHrsReq[i] - ProdHrsAvail[i]; 

   DowntimeHrs[i] = 0; 

  } 

  else if (ProdHrsAvail[i] > ProdHrsReq[i]) { 

   StraightTimeHrs[i] = ProdHrsReq[i]; 

   OvertimeHrs[i] = 0; 

   DowntimeHrs[i] = ProdHrsAvail[i] - ProdHrsReq[i]; 

  } 

  else { 

   StraightTimeHrs[i] = ProdHrsReq[i]; 

   OvertimeHrs[i] = 0; 

   DowntimeHrs[i] = 0; 

  } 

  ActualProd[i] = (StraightTimeHrs[i] + OvertimeHrs[i]) / 

ProductionTime; 

  StraightTimeCost[i] = StraightTimeHrs[i] * StraightTimeRate; 

  OvertimeCost[i] = OvertimeHrs[i] * OverTimeRate; 

  DowntimeCost[i] = DowntimeHrs[i] * DownTimeRate; 

  MonthlyCost[i] = StraightTimeCost[i] + OvertimeCost[i] + 

DowntimeCost[i]; 

  TotalCost = TotalCost + MonthlyCost[i]; 

 } 

 cout << "Pure strategy #2 cost: $" << TotalCost << endl; 

 

 if (TotalCost < PureLowestCost) { 

  // Set current plan variables to best plan variables 

  copyArray(StartInventory, BestStartInv, PlanningHorizon); 

  copyArray(ProductionReqs, BestProdReqs, PlanningHorizon); 

  copyArray(ActualProd, BestActualProd, PlanningHorizon); 

  copyArray(EndInventory, BestEndInv, PlanningHorizon); 

  copyArray(Workforce, BestWorkforce, PlanningHorizon); 

  copyArray(MonthlyCost, BestMonthlyCost, PlanningHorizon); 

  // Set current cost to best initial cost 

  PureLowestCost = TotalCost; 

  PureStratFlag = 2; 

 } 

 TotalCost = 0; 

 InitialWorkforceCost = 0; 

 

 // Pure Strategy #3: Constant average workforce with varying inventory 

and stockouts 

 if (InitialWorkforce < AvgReqWorkforce) { 

  InitialWorkforceCost = (AvgReqWorkforce - 

InitialWorkforce)*WorkerHiringCost; 

 } 

 else if (InitialWorkforce > AvgReqWorkforce) { 

  InitialWorkforceCost = (InitialWorkforce - 

AvgReqWorkforce)*WorkerLayoffCost; 

 } 

 TotalCost = InitialWorkforceCost; 

 for (int i = 0; i < PlanningHorizon; i++) { 
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  Workforce[i] = AvgReqWorkforce; 

  if (i == 0) 

   StartInventory[i] = InitialInventory; 

  else 

   StartInventory[i] = EndInventory[i - 1]; 

  ProdHrsAvail[i] = WorkingDays[i] * 8 /*hrs/day*/ * 

AvgReqWorkforce; 

  ActualProd[i] = round(ProdHrsAvail[i] / ProductionTime); 

  EndInventory[i] = StartInventory[i] + ActualProd[i] - 

DemandForecast[i]; 

  if (EndInventory[i] < 0) 

   ShortageCost[i] = abs(EndInventory[i])*StockoutRate; 

  else 

   ShortageCost[i] = 0; 

  if ((EndInventory[i] - SafetyStock[i]) <= 0) 

   UnitsExcess[i] = 0; 

  else 

   UnitsExcess[i] = EndInventory[i] - SafetyStock[i]; 

  InventoryCost[i] = UnitsExcess[i] * HoldingCost; 

  StraightTimeCost[i] = ProdHrsAvail[i] * StraightTimeRate; 

  MonthlyCost[i] = ShortageCost[i] + InventoryCost[i] + 

StraightTimeCost[i]; 

  TotalCost = TotalCost + MonthlyCost[i]; 

 } 

 cout << "Pure strategy #3 cost: $" << TotalCost << endl; 

 

 if (TotalCost < PureLowestCost) { 

  // Set current plan variables to best plan variables 

  copyArray(StartInventory, BestStartInv, PlanningHorizon); 

  copyArray(ProductionReqs, BestProdReqs, PlanningHorizon); 

  copyArray(ActualProd, BestActualProd, PlanningHorizon); 

  copyArray(EndInventory, BestEndInv, PlanningHorizon); 

  copyArray(Workforce, BestWorkforce, PlanningHorizon); 

  copyArray(MonthlyCost, BestMonthlyCost, PlanningHorizon); 

  // Set current cost to best initial cost 

  PureLowestCost = TotalCost; 

  PureStratFlag = 3; 

 } 

 

 /* Determine benchmark solution */ 

 bool ConstWorkforce = 1;    // [0/1] Determines 

whether the workforce will be held constant through the planning horizon 

 float WorkforceParam = 0;    // [0-1] Determines the 

degree to which the workforce will be adjusted for each iteration 

 

 cout << "\nThe pure strategy with the lowest cost is:" << endl; 

 switch (PureStratFlag) { 

 case 1: 

  cout << "Exact production with varying workforce." << endl << 

endl; 

  break; 

 case 2: 
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  cout << "Constant average workforce with varying working hours, 

including downtime and overtime." << endl << endl; 

  break; 

 case 3: 

  cout << "Constant average workforce with varying inventory and 

stockout." << endl << endl; 

 default: 

  break; 

 } 

 /* Print out table of production data */ 

 // Starting inventories per month 

 displayArray("StartInventory:", PlanningHorizon, BestStartInv); 

 // Demand forecast per month 

 displayArray("DemandForecast:", PlanningHorizon, DemandForecast); 

 // Safety stock per month 

 displayArray("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement per month 

 displayArray("ProductionReq:", PlanningHorizon, BestProdReqs); 

 // Actual production per month 

 displayArray("ActualProd:", PlanningHorizon, BestActualProd); 

 // Ending inventories per month 

 displayArray("EndInventory:", PlanningHorizon, BestEndInv); 

 // Workforce per month 

 displayArray("Workforce:", PlanningHorizon, BestWorkforce); 

 // Monthly costs 

 displayArray("Monthly Cost:", PlanningHorizon, BestMonthlyCost); 

 cout << endl; 

 cout << "The total cost of this strategy is : $" << PureLowestCost << 

endl << endl; 

 

/********************************** END OF PURE STRATEGY COST CALCULATIONS 

**************************************/ 

 

/********************************* START OF BIOGEOGRAPHY-BASED OPTIMISATION 

************************************/ 

 /* Algorithm: 

  1. Set lowest cost pure plan to best solution 

  2.1 Initialise algorithm parameters 

  2.2 Initialise the population of habitats 

  3. For each habitat map its HSI to the number of species, its 

immigrations rate, and its emigration rate 

  4 Probabilistically adjust each non-elite habitat using 

migration operators 

  5.1 For each habitat update the probability of its species count 

through Eq 2 [Simon2008] 

  5.2 Mutate each non-elite habitat according to its probability 

as per Eq 14 [Simon2008] 

  5.3 Recompute HSIs 

  6. Return to Step 3 for next iteration. Stop at predefined 

number of iterations, or after an acceptable problem solution has been 

reached 

 */ 
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 ofstream resultsFile;      // Link to 

a results file to be written to at specific intervals 

 resultsFile.open("BBOresults.txt"); 

 

 // Reset plan variables ahead of optimisation algorithm 

 TotalCost = 0; 

 InitialWorkforceCost = 0; 

 

 // Initialise algorithm parameters 

 float currentCost = PureLowestCost;   // Set current 

best cost to lowest pure strategy plan cost with strategy parameters set in 

switch statement above 

 int maxIteration = 150;      // Maximum 

number of iterations 

 int habitats = 100;       // Number 

of habitats in the population 

 int NoOfElites = 2;       // Number 

of elite plans to keep after each iteration 

 float mutationProbability = 0.05;   // Mutation 

probability per solution per independent variable 

 float random = 0;       // Random 

number regenerated 

 

 // Initialise the plan parameters 

 float planParams[100][14];     // Matrix holding 

all plan parameters; rows = habitats, columns = plan parameters 

  // [0-5] = InvtoProdRatio per month; 

  // [6] = Constant/Non-constant workforce; 

  // [7-12] = WorkforceParam per month; 

  // [13] = Plan cost; 

 float elitePlans[2][14];     // Matrix to keep 

elite plans after each iteration 

 float eliteParam;       // 

Temporary variable for use in elitism operation 

 

 // Initialise an array for holding the minimum cost per iteration 

 float minCostPlans[150][14]; 

 float minCosts[150]; 

 

 // Set initial plan parameters 

 for (int j = 0; j < habitats; j++) { 

  random = (static_cast <float> (rand()) / static_cast <float> 

(RAND_MAX)); 

  for (int i = 0; i < PlanningHorizon; i++) { 

   planParams[j][i] = ((float)(rand() % 50 - 25)) / 150; 

  } 

  if (random < 0.5) { // Constant workforce 

   planParams[j][PlanningHorizon] = 1; 

  } 

  else { // Non-constant workforce 

   planParams[j][PlanningHorizon] = 0; 
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  } 

  for (int i = (PlanningHorizon + 1); i < (2 * PlanningHorizon + 

1); i++) { 

    planParams[j][i] = round(((rand() % 2) * 2 - 

1)*((float)(rand() % 2))); 

  } 

 } 

  

/* CALCULATE PLAN COSTS BASED ON INITIAL POPULATION OF HABITATS */ 

 for (int cnt = 0; cnt < habitats; cnt++) { 

  TotalCost = 0; 

 /* CONSTANT WORKFORCE */ 

  if (planParams[cnt][6]) { 

   // Calculate the cost of initial workforce changes 

   InitialWorkforceCost = 0; 

   if (InitialWorkforce < (AvgReqWorkforce + 

planParams[cnt][7])) { 

    InitialWorkforceCost = ((AvgReqWorkforce + 

planParams[cnt][7]) - InitialWorkforce)*WorkerHiringCost; 

   } 

   else if (InitialWorkforce >(AvgReqWorkforce + 

planParams[cnt][7])) { 

    InitialWorkforceCost = (InitialWorkforce - 

(AvgReqWorkforce + planParams[cnt][7]))*WorkerLayoffCost; 

   } 

   // Run through the months up to the planning horizon 

   for (int i = 0; i < PlanningHorizon; i++) { 

    // Workforce remains constant 

    Workforce[i] = AvgReqWorkforce + 

planParams[cnt][7]; 

    ProdHrsAvail[i] = WorkingDays[i] * 8 /*hrs/day*/ * 

Workforce[i]; 

    // Starting inventory calculated from previous 

month's ending inventory 

    if (i == 0) { 

     StartInventory[i] = InitialInventory; 

     MonthlyCost[i] = InitialWorkforceCost; 

    } 

    else { 

     StartInventory[i] = EndInventory[i - 1]; 

     MonthlyCost[i] = 0; 

    } 

    // Production calculations 

    // Number of production hours required, based on 

the required production for the month 

    ProductionReqs[i] = (DemandForecast[i] + 

SafetyStock[i] - StartInventory[i]); 

    ProdHrsReq[i] = round((1 - 

planParams[cnt][i])*(ProductionReqs[i] * ProductionTime)); 

    // Production hours calculations 

    if (ProdHrsReq[i] < ProdHrsAvail[i]) { 

     StraightTimeHrs[i] = ProdHrsReq[i]; 
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     OvertimeHrs[i] = 0; 

     DowntimeHrs[i] = (ProdHrsAvail[i] - 

ProdHrsReq[i]); 

    } 

    else if (ProdHrsReq[i] > ProdHrsAvail[i]) { 

     StraightTimeHrs[i] = ProdHrsAvail[i]; 

     OvertimeHrs[i] = ProdHrsReq[i] - 

ProdHrsAvail[i]; 

     DowntimeHrs[i] = 0; 

    } 

    else { 

     StraightTimeHrs[i] = ProdHrsAvail[i]; 

     OvertimeHrs[i] = 0; 

     DowntimeHrs[i] = 0; 

    } 

    RegularShiftProd[i] = round(StraightTimeHrs[i] / 

ProductionTime); 

    OvertimeProd[i] = round(OvertimeHrs[i] / 

ProductionTime); 

    ActualProd[i] = RegularShiftProd[i] + 

OvertimeProd[i]; 

    EndInventory[i] = StartInventory[i] + ActualProd[i] 

- DemandForecast[i]; 

    // Inventory/Stockout cost calculations 

    if (EndInventory[i] < 0) 

     ShortageCost[i] = 

abs(EndInventory[i])*StockoutRate; 

    else 

     ShortageCost[i] = 0; 

    if ((EndInventory[i] - SafetyStock[i]) <= 0) 

     UnitsExcess[i] = 0; 

    else 

     UnitsExcess[i] = EndInventory[i] - 

SafetyStock[i]; 

    InventoryCost[i] = UnitsExcess[i] * HoldingCost; 

    // Production costs per month 

    StraightTimeCost[i] = StraightTimeHrs[i] * 

StraightTimeRate; 

    OvertimeCost[i] = OvertimeHrs[i] * OverTimeRate; 

    DowntimeCost[i] = DowntimeHrs[i] * DownTimeRate; 

    // Summation of costs per month 

    MonthlyCost[i] += StraightTimeCost[i] + 

OvertimeCost[i] + DowntimeCost[i] + ShortageCost[i] + InventoryCost[i]; 

    // Summation of monthly costs 

    TotalCost += MonthlyCost[i]; 

   } 

   planParams[cnt][13] = TotalCost; 

  } 

 /* NON-CONSTANT WORKFORCE */ 

  else { 

   // Run through the months up to the planning horizon 

   for (int i = 0; i < PlanningHorizon; i++) { 
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    // Starting inventory boundary condition 

    if (i == 0) 

     StartInventory[i] = InitialInventory; 

    else 

     StartInventory[i] = EndInventory[i - 1]; 

    // Calculation of production hours required 

    ProductionReqs[i] = DemandForecast[i] + 

SafetyStock[i] - StartInventory[i]; 

    ProdHrsReq[i] = round((1 - 

planParams[cnt][i])*(ProductionReqs[i] * ProductionTime)); // Calculate the 

required production hours 

    HrsPWorkerPM[i] = WorkingDays[i] * 8 /*hrs/day*/;

          // 

Calculate the available hours per worker per month 

    Workforce[i] = round(ProdHrsReq[i] / 

HrsPWorkerPM[i]) + planParams[cnt][7 + i];   // Calculate the 

number of workers required 

    ProdHrsAvail[i] = HrsPWorkerPM[i] * Workforce[i]; 

    ActualProd[i] = round(ProdHrsAvail[i] / 

ProductionTime); 

    if (i == 0) { // Boundary conditions for monthly 

required workforce calculation 

     WorkforceDiff = Workforce[i] - 

InitialWorkforce; 

    } 

    else { 

     WorkforceDiff = Workforce[i] - Workforce[i - 

1]; 

    } 

    if (WorkforceDiff == 0) { // Workforce changes - 

hiring and laying off 

     NewHires[i] = 0; 

     Layoffs[i] = 0; 

    } 

    else if (WorkforceDiff < 0) { 

     NewHires[i] = 0; 

     Layoffs[i] = -WorkforceDiff; 

    } 

    else { 

     NewHires[i] = WorkforceDiff; 

     Layoffs[i] = 0; 

    } 

    EndInventory[i] = StartInventory[i] + ActualProd[i] 

- DemandForecast[i]; 

    if (EndInventory[i] < 0) 

     ShortageCost[i] = (-

EndInventory[i])*StockoutRate; 

    else 

     ShortageCost[i] = 0; 

    if ((EndInventory[i] - SafetyStock[i]) < 0) 

     UnitsExcess[i] = 0; 

    else 
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     UnitsExcess[i] = EndInventory[i] - 

SafetyStock[i]; 

    InventoryCost[i] = UnitsExcess[i] * HoldingCost; 

    StraightTimeCost[i] = ProdHrsAvail[i] * 

StraightTimeRate;      // Cost calculations 

    HiringCost[i] = NewHires[i] * WorkerHiringCost; 

    LayoffCost[i] = Layoffs[i] * WorkerLayoffCost; 

    MonthlyCost[i] = StraightTimeCost[i] + 

HiringCost[i] + LayoffCost[i] + ShortageCost[i] + InventoryCost[i]; 

    // Sum total cost 

    TotalCost += MonthlyCost[i]; 

   } 

   planParams[cnt][13] = TotalCost; 

  } 

 } 

/************ End of initial cost calculations *************/ 

 

 // Sort plans according to their calculated cost 

 sortMatrix(planParams, habitats); 

 

 // Initialise migration variables and parameters 

 float mu[100]; 

 float lambda[100]; 

 float muSum = 0; 

 float select; 

 int selectIndex; 

 float randomNum; 

 float migrator; 

 for (int i = 0; i < habitats; i++) { 

  mu[i] = (habitats + 1 - (i + 1)) / ((i + 1) + 1); 

  lambda[i] = 1 - mu[i]; 

  muSum += mu[i]; 

 } 

 

/********************************** MAIN BBO ALGORITHM START HERE 

****************************************/ 

 for (int iter = 0; iter < maxIteration; iter++){ 

  // Save elite plans 

  for (int elites = 0; elites < NoOfElites; elites++) { 

   for (int param = 0; param < 14; param++) { 

    eliteParam = planParams[elites][param]; 

    elitePlans[elites][param] = eliteParam; 

   } 

  } 

 

 // Migration rates used to determine variable exchange 

  for (int it = 0; it < habitats; it++) { 

  retry:   // Re-entry point for when a plan fails the 

feasibility check 

   // Probabilistic migration of plan parameters 

   for (int i = 0; i < (2*PlanningHorizon+1); i++) { 
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    random = (static_cast <float> (rand()) / 

static_cast <float> (RAND_MAX)); 

    if (random < lambda[it]) { 

     randomNum = random*muSum; 

     select = mu[0]; 

     selectIndex = 0; 

     while (randomNum > select && selectIndex < 

habitats) { 

      selectIndex++; 

      select += mu[selectIndex]; 

     } 

     migrator = planParams[selectIndex][i]; 

     planParams[it][i] = migrator; 

    } 

   } 

  // Mutation 

   // Inventory to production ratio mutation 

   for (int paramIndex = 0; paramIndex < PlanningHorizon; 

paramIndex++) { 

    random = (static_cast <float> (rand()) / 

static_cast <float> (RAND_MAX)); 

    if (random < mutationProbability) 

     planParams[it][paramIndex] = ((float)(rand() 

% 50 - 25)) / 150; 

   } 

   // Workforce parameter mutation 

   for (int paramIndex = (PlanningHorizon+1); paramIndex < 

(2*PlanningHorizon+1); paramIndex++) { 

    random = (static_cast <float> (rand()) / 

static_cast <float> (RAND_MAX)); 

    if (random < mutationProbability) 

     planParams[it][paramIndex] = round(((rand() 

% 2) * 2 - 1)*((float)(rand() % 2))); 

   } 

 

 /*************** CALCULATE COST OF NEWLY CONFIGURED PLANS 

****************/ 

   TotalCost = 0; 

  /* CONSTANT WORKFORCE */ 

   if (planParams[it][6]) { 

    // Calculate the cost of initial workforce changes 

    InitialWorkforceCost = 0; 

    if (InitialWorkforce < (AvgReqWorkforce + 

planParams[it][7])) { 

     InitialWorkforceCost = ((AvgReqWorkforce + 

planParams[it][7]) - InitialWorkforce)*WorkerHiringCost; 

    } 

    else if (InitialWorkforce >(AvgReqWorkforce + 

planParams[it][7])) { 

     InitialWorkforceCost = (InitialWorkforce - 

(AvgReqWorkforce + planParams[it][7]))*WorkerLayoffCost; 

    } 
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    // Run through the months up to the planning 

horizon 

    for (int i = 0; i < PlanningHorizon; i++) { 

     // Workforce remains constant 

     Workforce[i] = AvgReqWorkforce + 

planParams[it][7]; 

     ProdHrsAvail[i] = WorkingDays[i] * 8 

/*hrs/day*/ * Workforce[i]; 

     // Starting inventory calculated from 

previous month's ending inventory 

     if (i == 0) { 

      StartInventory[i] = InitialInventory; 

      MonthlyCost[i] = InitialWorkforceCost; 

     } 

     else { 

      StartInventory[i] = EndInventory[i - 

1]; 

      MonthlyCost[i] = 0; 

     } 

     // Production calculations 

     // Number of production hours required, 

based on the required production for the month 

     ProductionReqs[i] = (DemandForecast[i] + 

SafetyStock[i] - StartInventory[i]); 

     ProdHrsReq[i] = round((1 - 

planParams[it][i])*(ProductionReqs[i] * ProductionTime)); 

     // Production hours calculations 

     if (ProdHrsReq[i] < ProdHrsAvail[i]) { 

      StraightTimeHrs[i] = ProdHrsReq[i]; 

      OvertimeHrs[i] = 0; 

      DowntimeHrs[i] = (ProdHrsAvail[i] - 

ProdHrsReq[i]); 

     } 

     else if (ProdHrsReq[i] > ProdHrsAvail[i]) { 

      StraightTimeHrs[i] = ProdHrsAvail[i]; 

      OvertimeHrs[i] = ProdHrsReq[i] - 

ProdHrsAvail[i]; 

      DowntimeHrs[i] = 0; 

     } 

     else { 

      StraightTimeHrs[i] = ProdHrsAvail[i]; 

      OvertimeHrs[i] = 0; 

      DowntimeHrs[i] = 0; 

     } 

     RegularShiftProd[i] = 

round(StraightTimeHrs[i] / ProductionTime); 

     OvertimeProd[i] = round(OvertimeHrs[i] / 

ProductionTime); 

     ActualProd[i] = RegularShiftProd[i] + 

OvertimeProd[i]; 

     EndInventory[i] = StartInventory[i] + 

ActualProd[i] - DemandForecast[i]; 
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     // Inventory/Stockout cost calculations 

     if (EndInventory[i] < 0) 

      ShortageCost[i] = 

abs(EndInventory[i])*StockoutRate; 

     else 

      ShortageCost[i] = 0; 

     if ((EndInventory[i] - SafetyStock[i]) <= 0) 

      UnitsExcess[i] = 0; 

     else 

      UnitsExcess[i] = EndInventory[i] - 

SafetyStock[i]; 

     InventoryCost[i] = UnitsExcess[i] * 

HoldingCost; 

     // Production costs per month 

     StraightTimeCost[i] = StraightTimeHrs[i] * 

StraightTimeRate; 

     OvertimeCost[i] = OvertimeHrs[i] * 

OverTimeRate; 

     DowntimeCost[i] = DowntimeHrs[i] * 

DownTimeRate; 

     // Summation of costs per month 

     MonthlyCost[i] += StraightTimeCost[i] + 

OvertimeCost[i] + DowntimeCost[i] + ShortageCost[i] + InventoryCost[i]; 

     // Summation of monthly costs 

     TotalCost += MonthlyCost[i]; 

    } 

    planParams[it][13] = TotalCost; 

   } 

  /* NON-CONSTANT WORKFORCE */ 

   else { 

    // Run through the months up to the planning 

horizon 

    for (int i = 0; i < PlanningHorizon; i++) { 

     // Starting inventory boundary condition 

     if (i == 0) 

      StartInventory[i] = InitialInventory; 

     else 

      StartInventory[i] = EndInventory[i - 

1]; 

     // Calculation of production hours required 

     ProductionReqs[i] = DemandForecast[i] + 

SafetyStock[i] - StartInventory[i]; 

     ProdHrsReq[i] = round((1 - 

planParams[it][i])*(ProductionReqs[i] * ProductionTime)); // Calculate the 

required production hours 

     HrsPWorkerPM[i] = WorkingDays[i] * 8 

/*hrs/day*/;          // 

Calculate the available hours per worker per month 

     Workforce[i] = round(ProdHrsReq[i] / 

HrsPWorkerPM[i]) + planParams[it][7 + i];   // Calculate the 

number of workers required 
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     ProdHrsAvail[i] = HrsPWorkerPM[i] * 

Workforce[i]; 

     ActualProd[i] = round(ProdHrsAvail[i] / 

ProductionTime); 

     if (i == 0) { // Boundary conditions for 

monthly required workforce calculation 

      WorkforceDiff = Workforce[i] - 

InitialWorkforce; 

     } 

     else { 

      WorkforceDiff = Workforce[i] - 

Workforce[i - 1]; 

     } 

     if (WorkforceDiff == 0) { // Workforce 

changes - hiring and laying off 

      NewHires[i] = 0; 

      Layoffs[i] = 0; 

     } 

     else if (WorkforceDiff < 0) { 

      NewHires[i] = 0; 

      Layoffs[i] = -WorkforceDiff; 

     } 

     else { 

      NewHires[i] = WorkforceDiff; 

      Layoffs[i] = 0; 

     } 

     EndInventory[i] = StartInventory[i] + 

ActualProd[i] - DemandForecast[i]; 

     if (EndInventory[i] < 0) 

      ShortageCost[i] = (-

EndInventory[i])*StockoutRate; 

     else 

      ShortageCost[i] = 0; 

     if ((EndInventory[i] - SafetyStock[i]) < 0) 

      UnitsExcess[i] = 0; 

     else 

      UnitsExcess[i] = EndInventory[i] - 

SafetyStock[i]; 

     InventoryCost[i] = UnitsExcess[i] * 

HoldingCost; 

     StraightTimeCost[i] = ProdHrsAvail[i] * 

StraightTimeRate;      // Cost calculations 

     HiringCost[i] = NewHires[i] * 

WorkerHiringCost; 

     LayoffCost[i] = Layoffs[i] * 

WorkerLayoffCost; 

     MonthlyCost[i] = StraightTimeCost[i] + 

HiringCost[i] + LayoffCost[i] + ShortageCost[i] + InventoryCost[i]; 

     // Sum total cost 

     TotalCost += MonthlyCost[i]; 

    } 

    planParams[it][13] = TotalCost; 
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   } 

   // Plan feasibility check 

   if (EndInventory[PlanningHorizon - 1] < 0) 

    goto retry; 

  } 

/*********************** End of newly configure plan cost calculations 

************************/ 

 

  // Sort plans from lowest to highest cost 

  sortMatrix(planParams, habitats); 

  // Replace worst plans with elite plans from previous iteration 

  for (int elites = 0; elites < NoOfElites; elites++) { 

   for (int param = 0; param < 14; param++) { 

    eliteParam = elitePlans[elites][param]; 

    planParams[(habitats - 1) - elites][param] = 

eliteParam; 

   } 

  } 

  // Sort plans from lowest to highest cost 

  sortMatrix(planParams, habitats); 

  // Record lowest cost plan of current iteration 

  for (int param = 0; param < 14; param++) { 

   minCostPlans[iter][param] = planParams[0][param]; 

  } 

  minCosts[iter] = minCostPlans[iter][13]; 

  for (int i = 0; i < 14; i++) 

   resultsFile << minCostPlans[iter][i] << '\t'; 

  resultsFile << endl; 

 } 

/****************************** END OF BBO ALGORITHM 

************************************/ 

 

 // Sort minimum cost plans matrix from lowest cost to highest cost 

 sortMatrix(minCostPlans, maxIteration); 

 

 for (int i = 0; i < 14; i++) { 

  cout << minCostPlans[0][i] << '\t'; 

 } 

 cout << endl; 

 

/* Calculate best plan variables before printing them out*/ 

 TotalCost = 0; 

/* CONSTANT WORKFORCE */ 

 if (minCostPlans[0][6]) { 

  // Calculate the cost of initial workforce changes 

  InitialWorkforceCost = 0; 

  if (InitialWorkforce < (AvgReqWorkforce + minCostPlans[0][7])) { 

   InitialWorkforceCost = ((AvgReqWorkforce + 

minCostPlans[0][7]) - InitialWorkforce)*WorkerHiringCost; 

  } 

  else if (InitialWorkforce > (AvgReqWorkforce + 

minCostPlans[0][7])) { 
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   InitialWorkforceCost = (InitialWorkforce - 

(AvgReqWorkforce + minCostPlans[0][7]))*WorkerLayoffCost; 

  } 

  // Run through the months up to the planning horizon 

  for (int i = 0; i < PlanningHorizon; i++) { 

   // Workforce remains constant 

   Workforce[i] = AvgReqWorkforce + minCostPlans[0][7]; 

   ProdHrsAvail[i] = WorkingDays[i] * 8 /*hrs/day*/ * 

Workforce[i]; 

   // Starting inventory calculated from previous month's 

ending inventory 

   if (i == 0) { 

    StartInventory[i] = InitialInventory; 

    MonthlyCost[i] = InitialWorkforceCost; 

   } 

   else { 

    StartInventory[i] = EndInventory[i - 1]; 

    MonthlyCost[i] = 0; 

   } 

   // Production calculations 

   // Number of production hours required, based on the 

required production for the month 

   ProductionReqs[i] = (DemandForecast[i] + SafetyStock[i] - 

StartInventory[i]); 

   ProdHrsReq[i] = round((1 - 

minCostPlans[0][i])*(ProductionReqs[i] * ProductionTime)); 

   // Production hours calculations 

   if (ProdHrsReq[i] < ProdHrsAvail[i]) { 

    StraightTimeHrs[i] = ProdHrsReq[i]; 

    OvertimeHrs[i] = 0; 

    DowntimeHrs[i] = (ProdHrsAvail[i] - ProdHrsReq[i]); 

   } 

   else if (ProdHrsReq[i] > ProdHrsAvail[i]) { 

    StraightTimeHrs[i] = ProdHrsAvail[i]; 

    OvertimeHrs[i] = ProdHrsReq[i] - ProdHrsAvail[i]; 

    DowntimeHrs[i] = 0; 

   } 

   else { 

    StraightTimeHrs[i] = ProdHrsAvail[i]; 

    OvertimeHrs[i] = 0; 

    DowntimeHrs[i] = 0; 

   } 

   RegularShiftProd[i] = round(StraightTimeHrs[i] / 

ProductionTime); 

   OvertimeProd[i] = round(OvertimeHrs[i] / ProductionTime); 

   ActualProd[i] = RegularShiftProd[i] + OvertimeProd[i]; 

   EndInventory[i] = StartInventory[i] + ActualProd[i] - 

DemandForecast[i]; 

   // Inventory/Stockout cost calculations 

   if (EndInventory[i] < 0) 

    ShortageCost[i] = 

abs(EndInventory[i])*StockoutRate; 
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   else 

    ShortageCost[i] = 0; 

   if ((EndInventory[i] - SafetyStock[i]) <= 0) 

    UnitsExcess[i] = 0; 

   else 

    UnitsExcess[i] = EndInventory[i] - SafetyStock[i]; 

   InventoryCost[i] = UnitsExcess[i] * HoldingCost; 

   // Production costs per month 

   StraightTimeCost[i] = StraightTimeHrs[i] * 

StraightTimeRate; 

   OvertimeCost[i] = OvertimeHrs[i] * OverTimeRate; 

   DowntimeCost[i] = DowntimeHrs[i] * DownTimeRate; 

   // Summation of costs per month 

   MonthlyCost[i] += StraightTimeCost[i] + OvertimeCost[i] + 

DowntimeCost[i] + ShortageCost[i] + InventoryCost[i]; 

   // Summation of monthly costs 

   TotalCost += MonthlyCost[i]; 

  } 

 

  minCostPlans[0][13] = TotalCost; 

 } 

/* NON-CONSTANT WORKFORCE */ 

 else { 

  // Run through the months up to the planning horizon 

  for (int i = 0; i < PlanningHorizon; i++) { 

   // Starting inventory boundary condition 

   if (i == 0) 

    StartInventory[i] = InitialInventory; 

   else 

    StartInventory[i] = EndInventory[i - 1]; 

   // Calculation of production hours required 

   ProductionReqs[i] = DemandForecast[i] + SafetyStock[i] - 

StartInventory[i]; 

   ProdHrsReq[i] = round((1 - 

minCostPlans[0][i])*(ProductionReqs[i] * ProductionTime)); // Calculate the 

required production hours 

   HrsPWorkerPM[i] = WorkingDays[i] * 8 /*hrs/day*/; 

         // Calculate the 

available hours per worker per month 

   Workforce[i] = round(ProdHrsReq[i] / HrsPWorkerPM[i]) + 

minCostPlans[0][7 + i];     // Calculate the number 

of workers required 

   ProdHrsAvail[i] = HrsPWorkerPM[i] * Workforce[i]; 

   ActualProd[i] = round(ProdHrsAvail[i] / ProductionTime); 

   if (i == 0) { // Boundary conditions for monthly required 

workforce calculation 

    WorkforceDiff = Workforce[i] - InitialWorkforce; 

   } 

   else { 

    WorkforceDiff = Workforce[i] - Workforce[i - 1]; 

   } 
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   if (WorkforceDiff == 0) { // Workforce changes - hiring 

and laying off 

    NewHires[i] = 0; 

    Layoffs[i] = 0; 

   } 

   else if (WorkforceDiff < 0) { 

    NewHires[i] = 0; 

    Layoffs[i] = -WorkforceDiff; 

   } 

   else { 

    NewHires[i] = WorkforceDiff; 

    Layoffs[i] = 0; 

   } 

   EndInventory[i] = StartInventory[i] + ActualProd[i] - 

DemandForecast[i]; 

   if (EndInventory[i] < 0) 

    ShortageCost[i] = (-EndInventory[i])*StockoutRate; 

   else 

    ShortageCost[i] = 0; 

   if ((EndInventory[i] - SafetyStock[i]) < 0) 

    UnitsExcess[i] = 0; 

   else 

    UnitsExcess[i] = EndInventory[i] - SafetyStock[i]; 

   InventoryCost[i] = UnitsExcess[i] * HoldingCost; 

   StraightTimeCost[i] = ProdHrsAvail[i] * StraightTimeRate;

      // Cost calculations 

   HiringCost[i] = NewHires[i] * WorkerHiringCost; 

   LayoffCost[i] = Layoffs[i] * WorkerLayoffCost; 

   MonthlyCost[i] = StraightTimeCost[i] + HiringCost[i] + 

LayoffCost[i] + ShortageCost[i] + InventoryCost[i]; 

   // Sum total cost 

   TotalCost += MonthlyCost[i]; 

  } 

  minCostPlans[0][13] = TotalCost; 

 } 

/******************* End of lowest plan cost calculations 

************************/ 

 

 int LowestBBOCostElement = MinElementIndex(minCosts, maxIteration); 

 float LowestBBOCost; 

 LowestBBOCost = minCosts[LowestBBOCostElement]; 

 cout << "Lowest cost found by BBO is: $" << LowestBBOCost << endl; 

  

 resultsFile.close(); 

 

 cout << endl; 

 /* Print out table of production data for optimal plan */ 

 cout << "The most optimal plan is configured as follows:\n" << endl; 

 // Starting inventories per month 

 displayArray("StartInventory:", PlanningHorizon, StartInventory); 

 // Demand forecast per month 

 displayArray("DemandForecast:", PlanningHorizon, DemandForecast); 
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 // Safety stock per month 

 displayArray("SafetyStock:", PlanningHorizon, SafetyStock); 

 // Production requirement per month 

 displayArray("ProductionReq:", PlanningHorizon, ProductionReqs); 

 // Actual production per month 

 displayArray("ActualProd:", PlanningHorizon, ActualProd); 

 // Ending inventories per month 

 displayArray("EndInventory:", PlanningHorizon, EndInventory); 

 // Workforce per month 

 displayArray("Workforce:", PlanningHorizon, Workforce); 

 // Monthly costs 

 displayArray("Monthly Cost:", PlanningHorizon, MonthlyCost); 

 cout << "\nThe total cost of this plan is: $" << LowestBBOCost << 

endl; 

 

 cout << "\nSaving of " << (((PureLowestCost - LowestBBOCost) / 

PureLowestCost) * 100) << "%" << " of $" << PureLowestCost << endl; 

 

/* Delete arrays dynamically allocated in memory */ 

 delete[] WorkingDays, DemandForecast, SafetyStock, StartInventory, 

ProductionReqs, EndInventory; 

 delete[] ProdHrsReq, HrsPWorkerPM, Workforce, WorkforceChange, 

NewHires, HiringCost, Layoffs, LayoffCost, StraightTimeHrs; 

 delete[] StraightTimeCost, ProdHrsAvail, ActualProd, UnitsShort, 

ShortageCost, UnitsExcess, InventoryCost; 

 delete[] RegularShiftProd, UnitsAvail, UnitsPreOvertime, OvertimeProd, 

OvertimeCost, DowntimeHrs, DowntimeCost, MonthlyCost; 

 delete[] MaxStockout, MaxInventory, MaxOvertime, currentActualProd, 

currentEndInv, currentMonthlyCost, currentProdReqs; 

 delete[] currentStartInv, currentWorkforce, BestActualProd, 

BestEndInv, BestMonthlyCost, BestProdReqs, BestStartInv, BestWorkforce, 

InvtoProdRatio; 

 

/** End matter of main programme **/ 

 cout << endl << endl; 

 std::system("PAUSE"); 

 return 0; 

}
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    Dynamic Simulation Model Data 
 

Table E.1. Simio simulation model travel times table. 

TransferPath TravelTime [mins] 

TP1_CmbA4_CmbA5 Random.Pert(1.8,2.,2.4) 

TP2_CmbA5_CmbOrderCompletion Random.Pert(1.5,2.5,4.) 

TP3_CmbA1_CmbA4 Random.Pert(4.6,5.,5.4) 

TP4_Cmb2_CmbA4 Random.Pert(4.5,5.,5.5) 

TP5_CmbA3_CmbA4 Random.Pert(4.7,5.,5.4) 

TP6_DialMat_WSM3 Random.Pert(1.2,2.5,3.9) 

TP7_WSM3_WSM4 Random.Pert(2.1,2.6,2.9) 

TP8_WSM4_WSM7 Random.Pert(2.4,2.8,3.3) 

TP9_Movement_CmbA2 Random.Pert(6.3,7.5,8.8) 

TP10_SpacerMat_WSM8 Random.Pert(7.,8.1,9.2) 

TP11_WSM8_CmbA4 Random.Pert(6.4,7.,7.9) 

TP12_BezelMat_WSM5 Random.Pert(.6,3.,4.5) 

TP13_WSM5_WSM1 Random.Pert(3.,3.1,3.3) 

TP14_WSM1_WSM2 Random.Pert(3.6,4.,4.5) 

TP15_WSM1_WSM6 Random.Pert(5.8,6.,6.4) 

TP16_WSM2_WSM6 Random.Pert(1.9,2.4,2.9) 

TP17_WSM6_CmbA1 Random.Pert(3.3,4.1,5.) 

TP18_WSM6_CmbA3 Random.Pert(3.4,4.1,5.1) 

TP19_WSM6_CmbA4 Random.Pert(4.3,5.2,6.) 

TP20_WSM7_CmbA2 Random.Pert(1.4,2.2,3.1) 

TP21_CrownMat_WSM5 Random.Pert(1.6,2.9,3.8) 

TP22_BackCaseMat_WSM5 Random.Pert(1.8,2.8,3.9) 

TP23_WSM2_CmbA4 Random.Pert(7.2,8.,9.) 

TP24_CaseMat_WSM1 Random.Pert(4.3,5.5,6.8) 

TP25_BackCaseGasket_CmbA4 Random.Pert(4.6,6.1,7.4) 

TP26_GlassGasket_CmbA4 Random.Pert(6.3,7.6,8.9) 

TP27_Glass_CmbA4 Random.Pert(7.,8.2,9.5) 

TP28_Bracelet_CmbA5 Random.Pert(3.9,5.2,6.6) 

TP29_BraceletPin_CmbA5 Random.Pert(4.,5.3,6.9) 

TP30_CrownCT_CmbA1 Random.Pert(6.8,8.,9.5) 

TP31_PusherScrew_CmbA1 Random.Pert(6.5,7.9,9.4) 

TP32_Pusher_CmbA1 Random.Pert(6.4,7.8,9.3) 

TP33_PusherSeal_CmbA1 Random.Pert(7.,8.1,9.2) 

TP34_PusherSpring_CmbA1 Random.Pert(6.6,8.,9.1) 

TP35_PusherCT_CmbA1 Random.Pert(6.4,7.8,9.3) 
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TP36_Stem_CmbA3 Random.Pert(4.4,5.8,7.3) 

TP37_CrownSeal_CmbA3 Random.Pert(4.3,5.6,7.1) 

TP38_dialHP_CmbA2 Random.Pert(1.4,2.8,4.1) 

TP39_HourHand_CmbA2 Random.Pert(1.3,2.7,4.) 

TP40_MinuteHand_CmbA2 Random.Pert(1.6,2.9,4.4) 

TP41_SecondHand_CmbA2 Random.Pert(1.2,2.7,3.9) 

TP42_SmallHand_CmbA2 Random.Pert(1.5,2.9,4.2) 

TP43_Orders_OrderProcessing Random.Pert(4.7,5.,5.2) 
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Table E.2. Simio simulation model part routing table. 

PartType Sequence SetupTimes [mins] ProcessingTimes [mins] 

Remaining 
Times 
[mins] 

Remaini
ng Steps 

EntOrder 
SvrOrderProcessi
ng 0 

ModelEntity.StaUnitsPerOrder*Random.U
niform(0,1) 0 0 

EntOrder 

ParentInput@Cm
bOrderCompletio
n 0 

ModelEntity.StaUnitsPerOrder*Random.U
niform(10,15) 0 0 

EntBezel SvrBezelMaterial 0 0 0 6 

EntBezel WSM5 Random.LogNormal(2.3978452753,.00999975) 
Random.LogNormal(2.2512418011,.00999
975) 16.5 5 

EntBezel WSM1 
Math.If(ModelEntity.StaChrono!=StaIntChronoM1, 
Random.LogNormal(1.3860944011,.0199980004), 0) 

Random.LogNormal(.6929472205,.019998
0004) 7 4 

EntBezel WSM2 Random.LogNormal(.9162407344,.00999975) 
Random.LogNormal(.6930971831,.009999
75) 5 3 

EntBezel WSM6 
Math.If(ModelEntity.StaPVDd, 
Random.LogNormal(.6918987405,.0499687922), 0) 

Math.If(ModelEntity.StaPVDd, 
Random.LogNormal(1.0973638486,.04996
87922), 0) 3 2 

EntBezel 
MemberInput@C
mbA4 0 0 0 1 

EntCase SvrCaseMaterial 0 0 0 5 

EntCase WSM1 
Math.If(ModelEntity.StaChrono!=StaIntChronoM1, 
Random.LogNormal(3.0443224777,.0199980004), 0) 

Random.LogNormal(3.295636906,.019998
0004) 33 4 

EntCase WSM2 Random.LogNormal(.9162407344,.00999975) 
Random.LogNormal(1.0985622912,.00999
975) 6 3 

EntCase WSM6 
Math.If(ModelEntity.StaPVDd, 
Random.LogNormal(.6918987405,.0499687922), 0) 

Math.If(ModelEntity.StaPVDd, 
Random.LogNormal(1.0973638486,.04996
87922), 0) 3 2 

EntCase 
ParentInput@Cm
bA1 

Math.If(ModelEntity.StaChrono!=StaChronoCaseSAssy
, Random.LogNormal(-.0049751654,.0997513451), 0) 

Random.LogNormal(1.8668270115,.09975
13451) 0 1 
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PartType Sequence SetupTimes [mins] ProcessingTimes [mins] 

Remaining 
Times 
[mins] 

Remaini
ng Steps 

EntCrown 
SvrCrownMateria
l 0 0 0 5 

EntCrown WSM5 Random.LogNormal(1.9458601516,.00999975) 
Random.LogNormal(2.3025350955,.00999
975) 17 4 

EntCrown WSM1 
Math.If(ModelEntity.StaChrono!=StaIntChronoM1, 
Random.LogNormal(1.7915595092,.0199980004), 0) 

Random.LogNormal(1.3860944011,.01999
80004) 7 3 

EntCrown WSM6 
Math.If(ModelEntity.StaPVDd, 
Random.LogNormal(.6918987405,.0499687922), 0) 

Math.If(ModelEntity.StaPVDd, 
Random.LogNormal(1.0973638486,.04996
87922), 0) 3 2 

EntCrown 
ParentInput@Cm
bA3 Random.LogNormal(-.0049751654,.0997513451) 

Random.LogNormal(1.0936371232,.09975
13451) 0 1 

EntBackC
ase 

SvrBackCaseMat
erial 0 0 0 5 

EntBackC
ase WSM5 Random.LogNormal(2.3025350955,.00999975) 

Random.LogNormal(2.3025350955,.00999
975) 17 4 

EntBackC
ase WSM1 

Math.If(ModelEntity.StaChrono!=StaIntChronoM1, 
Random.LogNormal(1.3860944011,.0199980004), 0) 

Random.LogNormal(1.6092379524,.01999
80004) 7 3 

EntBackC
ase WSM2 Random.LogNormal(.6930971831,.00999975) 

Random.LogNormal(.6930971831,.009999
75) 2 2 

EntBackC
ase 

MemberInput@C
mbA4 0 0 0 1 

EntDial SvrDialMaterial 0 0 0 5 

EntDial WSM3 Random.LogNormal(.9160907719,.0199980004) 
Random.LogNormal(-
.00019996,.0199980004) 9.5 4 

EntDial WSM4 
Math.If(ModelEntity.StaChrono!=StaIntChronoM4, 
Random.LogNormal(1.6092379524,.0199980004), 0) 

Random.LogNormal(2.0147030605,.01999
80004) 8.5 3 

EntDial WSM7 
Math.If(ModelEntity.StaChrono!=StaIntChronoM7, 
Random.LogNormal(.6929472205,.0199980004), 0) 

Random.LogNormal(-
.00019996,.0199980004) 1 2 
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PartType Sequence SetupTimes [mins] ProcessingTimes [mins] 

Remaining 
Times 
[mins] 

Remaini
ng Steps 

EntDial 
MemberInput@C
mbA2 0 0 0 1 

EntSpacer 
SvrSpacerMateria
l 0 0 0 3 

EntSpacer WSM8 
Math.If(ModelEntity.StaChrono!=StaIntChronoM8, 
Random.LogNormal(.6907031635,.0699144768), 0) 

Random.LogNormal(3.2164318078,.06991
44768) 25 2 

EntSpacer 
MemberInput@C
mbA4 0 0 0 1 

EntPusher
CaseTube 

SvrPusherCaseTu
be 0 0 0 0 

EntPusher
CaseTube 

MemberInput@C
mbA1 0 0 0 0 

EntPusher
Spring SvrPusherSpring 0 0 0 0 
EntPusher
Spring 

MemberInput@C
mbA1 0 0 0 0 

EntPusher
Seal SvrPusherSeal 0 0 0 0 
EntPusher
Seal 

MemberInput@C
mbA1 0 0 0 0 

EntPusher SvrPusher 0 0 0 0 

EntPusher 
MemberInput@C
mbA1 0 0 0 0 

EntPusher
Screw SvrPusherScrew 0 0 0 0 
EntPusher
Screw 

MemberInput@C
mbA1 0 0 0 0 

EntCrown
CaseTube 

SvrCrownCaseTu
be 0 0 0 0 
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PartType Sequence SetupTimes [mins] ProcessingTimes [mins] 

Remaining 
Times 
[mins] 

Remaini
ng Steps 

EntCrown
CaseTube 

MemberInput@C
mbA1 0 0 0 0 

EntMove
ment SvrMovement 0 0 0 0 
EntMove
ment 

ParentInput@Cm
bA2 

Math.If(ModelEntity.StaChrono!=StaChronoTimeSAss
y, Random.LogNormal(-.0196103566,.1980422004), 0) 

Random.LogNormal(1.9262997925,.19804
22004) 0 0 

EntStem SvrStem 0 0 0 0 

EntStem 
MemberInput@C
mbA3 0 0 0 0 

EntCrown
Seal SvrCrownSeal 0 0 0 0 
EntCrown
Seal 

MemberInput@C
mbA3 0 0 0 0 

EntDialH
oldingPin 

SvrDialHoldingPi
n 0 0 0 0 

EntDialH
oldingPin 

MemberInput@C
mbA2 0 0 0 0 

EntHour
Hand SvrHourHand 0 0 0 0 
EntHour
Hand 

MemberInput@C
mbA2 0 0 0 0 

EntMinut
eHand SvrMinuteHand 0 0 0 0 
EntMinut
eHand 

MemberInput@C
mbA2 0 0 0 0 

EntSecon
dHand SvrSecondHand 0 0 0 0 
EntSecon
dHand 

MemberInput@C
mbA2 0 0 0 0 
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PartType Sequence SetupTimes [mins] ProcessingTimes [mins] 

Remaining 
Times 
[mins] 

Remaini
ng Steps 

EntSmall
Hand SvrSmallHand 0 0 0 0 
EntSmall
Hand 

MemberInput@C
mbA2 0 0 0 0 

EntGlass SvrGlass 0 0 0 0 

EntGlass 
MemberInput@C
mbA4 0 0 0 0 

EntGlass
Gasket SvrGlassGasket 0 0 0 0 
EntGlass
Gasket 

MemberInput@C
mbA4 0 0 0 0 

EntBackC
aseGasket 

SvrBackCaseGas
ket 0 0 0 0 

EntBackC
aseGasket 

MemberInput@C
mbA4 0 0 0 0 

EntBracel
et SvrBracelet 0 0 0 0 
EntBracel
et 

MemberInput@C
mbA5 0 0 0 0 

EntBracel
etPin SvrBraceletPin 0 0 0 0 
EntBracel
etPin 

MemberInput@C
mbA5 0 0 0 0 

EntCaseS
ubAssy 

ParentInput@Cm
bA4 Random.LogNormal(.673536824,.1980422004) 

Random.LogNormal(1.7721491127,.19804
22004) 0 0 

EntBodyS
ubAssy 

ParentInput@Cm
bA5 Random.LogNormal(-.0012484401,.0499687922) 

Random.LogNormal(1.7905110291,.04996
87922) 0 0 
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    Distributed Dynamic Selection Rule Strategy 
Programming Code 

 

Code adapted from Simio user extension example for user defined selction rules [68]. 

using System; 

using System.Collections.Generic; 

using System.Text; 

using SimioAPI; 

using SimioAPI.Extensions; 

 

namespace AdaptiveSelectionRule 

{ 

    public class AdaptiveSelectionRuleDefinition : ISelectionRuleDefinition 

    { 

        #region ISelectionRuleDefinition Members 

 

        /// <summary> 

        /// Property returning the name of the rule. 

        /// </summary> 

        public string Name 

        { 

            get { return "Adaptive Selection Rule"; } 

        } 

 

        /// <summary> 

        /// Property returning a description of the selection rule.   

        /// </summary> 

        public string Description 

        { 

            get { return "Description text for the 'Adaptive Selection 

Rule'."; } 

        } 

 

        /// <summary> 

        /// Property returning an icon to display for the selection. 

        /// </summary> 

        public System.Drawing.Image Icon 

        { 

            get { return null; } 

        } 

 

        /// <summary> 

        /// Property returning a unique static GUID for the selection rule.   

        /// </summary> 

        public Guid UniqueID 

        { 

            get { return MY_ID; } 

        } 
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        static readonly Guid MY_ID = new Guid("33ef8a89-23af-4592-a12f-

697282ce610c"); 

 

        /// <summary> 

        /// Method called that defines the property schema for the selection 

rule. 

        /// </summary> 

        public void DefineSchema(IPropertyDefinitions schema) 

        { 

            IPropertyDefinition pd; 

 

            // Default selection rule expression for Smallest Value First 

rule implementation - EDD 

            pd = schema.AddExpressionProperty("WarmUpPeriodExpression", 

"Candidate.ModelEntity.StaUnitNo"); 

            pd.Description = "The expression used for a Smallest Value First 

dynamic selection rule. " + 

                "In the expression, use the keyword 'Candidate' to reference 

an object in the collection of candidates (e.g., 

Candidate.Entity.Priority)."; 

            pd.Required = true; 

            pd.DisplayName = " Warm-up Period Expression"; 

 

            // Default selection rule expression for Smallest Value First 

rule implementation - EDD 

            pd = schema.AddExpressionProperty("DefaultSVFExpression", 

"Candidate.ModelEntity.StaTimeEntered"); 

            pd.Description = "EDD" + 

                "In the expression, use the keyword 'Candidate' to reference 

an object in the collection of candidates (e.g., 

Candidate.Entity.Priority)."; 

            pd.Required = true; 

            pd.DisplayName = "EDD Expression"; 

 

            // Secondary selection rule expression for Smallest Value First 

rule implementation - SPT 

            pd = schema.AddExpressionProperty("SecondarySVFExpression", 

"PartRouting.ProcessingTimes"); 

            pd.Description = "SPT" + 

                "In the expression, use the keyword 'Candidate' to reference 

an object in the collection of candidates (e.g., 

Candidate.Entity.Priority)."; 

            pd.Required = true; 

            pd.DisplayName = "SPT Expression"; 

 

            // Default selection rule expression for Largest Value First rule 

implementation - MPTR 

            pd = schema.AddExpressionProperty("DefaultLVFExpression", 

"PartRouting.RemainingTimes"); 

            pd.Description = "LPTR/MPTR" + 
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                "In the expression, use the keyword 'Candidate' to reference 

an object in the collection of candidates (e.g., 

Candidate.Entity.Priority)."; 

            pd.Required = true; 

            pd.DisplayName = "LPTR/MPTR Expression"; 

 

            // First system performance indicator variable: Instantaneous 

order WIP vs Average order WIP 

            pd = schema.AddExpressionProperty("OrderWIPExpression", 

"Candidate.ModelEntity.StaOrderWIP / Candidate.ModelEntity.StaAvgOrderWIP"); 

            pd.Description = "None"; 

            pd.Required = true; 

            pd.DisplayName = "Order WIP Ratio Expression"; 

 

            // Instantaneous order WIP vs Average order WIP threshold value 

            pd = schema.AddExpressionProperty("OrderWIPRatioValue", 

"Candidate.ModelEntity.StaOrderWIPRatioValue"); 

            pd.Description = "None"; 

            pd.Required = true; 

            pd.DisplayName = "Order WIP Ratio Threshold"; 

 

            // Order arrival rate over last Harmony Memory Consideration Rate 

Period 

            pd = schema.AddExpressionProperty("OrderArrivalExpression", 

"ArrivalPeriod"); 

            pd.Description = "None"; 

            pd.Required = true; 

            pd.DisplayName = "Arrival Period Expression"; 

 

            // Local buffer level variable 

            pd = schema.AddExpressionProperty("BufferLevelExpression", 

"WSM1.InputBuffer.Contents.NumberWaiting / 

WSM1.InputBuffer.Contents.AverageNumberWaiting"); 

            pd.Description = "None"; 

            pd.Required = true; 

            pd.DisplayName = "Buffer Level Expression"; 

 

            // Upper buffer level threshold variable 

            pd = schema.AddExpressionProperty("TopBufferThresholdValue", 

"Candidate.ModelEntity.StaTopBufferThreshold"); 

            pd.Description = "None"; 

            pd.Required = true; 

            pd.DisplayName = "Upper Buffer Threshold"; 

 

            // Lower buffer level threshold variable 

            pd = schema.AddExpressionProperty("BotBufferThresholdValue", 

"Candidate.ModelEntity.StaBotBufferThreshold"); 

            pd.Description = "None"; 

            pd.Required = true; 

            pd.DisplayName = "Lower Buffer Threshold"; 

 

        } 
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        /// <summary> 

        /// Method called to add a new instance of this selection rule type 

to a model.  

        /// Returns an instance of the class implementing the ISelectionRule 

interface. 

        /// </summary> 

        public ISelectionRule CreateRule(IPropertyReaders properties) 

        { 

            return new AdaptiveSelectionRule(properties); 

        } 

 

        #endregion 

 

    } 

    public class AdaptiveSelectionRule : ISelectionRule 

    { 

        IPropertyReader _warmUpPeriodProperty; 

        IPropertyReader _defaultSVFProperty; 

        IPropertyReader _secondarySVFProperty; 

        IPropertyReader _defaultLVFProperty; 

        IPropertyReader _bufferLevelProperty; 

        IPropertyReader _topBufferThresholdProperty; 

        IPropertyReader _botBufferThresholdProperty; 

        IPropertyReader _orderWIPProperty; 

        IPropertyReader _orderWIPValueProperty; 

        IPropertyReader _orderArrivalProperty; 

 

        public AdaptiveSelectionRule(IPropertyReaders properties) 

        { 

            _warmUpPeriodProperty = 

properties.GetProperty("WarmUpPeriodExpression"); 

            _defaultSVFProperty = 

properties.GetProperty("DefaultSVFExpression"); 

            _secondarySVFProperty = 

properties.GetProperty("SecondarySVFExpression"); 

            _defaultLVFProperty = 

properties.GetProperty("DefaultLVFExpression"); 

            _bufferLevelProperty = 

properties.GetProperty("BufferLevelExpression"); 

            _topBufferThresholdProperty = 

properties.GetProperty("TopBufferThresholdValue"); 

            _botBufferThresholdProperty = 

properties.GetProperty("BotBufferThresholdValue"); 

            _orderWIPProperty = properties.GetProperty("OrderWIPExpression"); 

            _orderWIPValueProperty = 

properties.GetProperty("OrderWIPRatioValue"); 

            _orderArrivalProperty = 

properties.GetProperty("OrderArrivalExpression"); 

        } 

 

        #region ISelectionRule Members 
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        // Rule implementation level variables 

        double oldArrivalPeriod = 0; 

        double newArrivalPeriod = 0; 

        double oldLocalBufferVar = 0; 

 

        /// <summary> 

        /// Method called when the selection rule is being used to select an 

item from a collection of candidates. 

        /// </summary> 

        public IExecutionContext Select(IEnumerable<IExecutionContext> 

candidates) 

        { 

            // Select method level variables 

            bool switchTime = true; 

            string switchOutcome = null; 

            double unitsProcessed = 0; 

            double localBufferVar = 0; 

            IExecutionContext selectedCandidate = null; 

            IExecutionContext chosenOne = null; 

            double largestValue = double.NegativeInfinity; 

            double orderWIPparam = 0; 

            double orderWIPRatioValue = 0; 

            bool consider = false; 

            double topBufferThreshold = 0; 

            double botBufferThreshold = 0; 

 

            // load execution context-specific variables 

            foreach (IExecutionContext candidate in candidates) 

            { 

                //unitsProcessed = 

_defaultSVFProperty.GetDoubleValue(candidate); 

                unitsProcessed = 

_warmUpPeriodProperty.GetDoubleValue(candidate); 

                localBufferVar = 

_bufferLevelProperty.GetDoubleValue(candidate); 

                topBufferThreshold = 

_topBufferThresholdProperty.GetDoubleValue(candidate); 

                botBufferThreshold = 

_botBufferThresholdProperty.GetDoubleValue(candidate); 

                orderWIPparam = _orderWIPProperty.GetDoubleValue(candidate); 

                orderWIPRatioValue = 

_orderWIPValueProperty.GetDoubleValue(candidate); 

                newArrivalPeriod = 

_orderArrivalProperty.GetDoubleValue(candidate); 

            } 

 

            // if the current arrival period, i.e. arrival rate, is different 

from the previous one 

            if (newArrivalPeriod < oldArrivalPeriod) 

            { 

                switchTime = true; 

                oldArrivalPeriod = newArrivalPeriod; 
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            } 

            else 

            { 

                switchTime = false; 

                oldArrivalPeriod = newArrivalPeriod; 

            } 

 

            // Wait for the warm-up period to run through 

            if (unitsProcessed < 350) 

            { 

                consider = false; 

            } 

            // Start the selection rule dynamics after warm-up period has 

elapsed 

            else 

            { 

                // Decide whether to consider switching selection rules based 

on order WIP ratio variable and updated order arrival rate 

                if (orderWIPparam >= orderWIPRatioValue && switchTime) 

                { 

                    consider = true; 

                } 

                else 

                { 

                    consider = false; 

                } 

            } 

 

            // If conditions are met for considering switching rules query 

the value of the local buffer variable 

            if (consider) 

            { 

                if (localBufferVar > botBufferThreshold && localBufferVar < 

topBufferThreshold) 

                { 

                    // Query the trend of the local buffer variable 

                    if (localBufferVar < oldLocalBufferVar) 

                    { 

                        // Hold status quo 

                    } 

                    else 

                    { 

                        // Try one of the other rules 

                        if (switchOutcome == null) 

                            switchOutcome = "fsvf"; 

                        else if (switchOutcome == "fsvf") 

                            switchOutcome = "ssvf"; 

                        else if (switchOutcome == "ssvf") 

                            switchOutcome = "lvf"; 

                        else if (switchOutcome == "lvf") 

                            switchOutcome = null; 

                    } 
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                } 

                else if (localBufferVar > topBufferThreshold) 

                { 

                    // Try one of the other rules 

                    if (switchOutcome == null) 

                        switchOutcome = "fsvf"; 

                    else if (switchOutcome == "fsvf") 

                        switchOutcome = "ssvf"; 

                    else if (switchOutcome == "ssvf") 

                        switchOutcome = "lvf"; 

                    else if (switchOutcome == "lvf") 

                        switchOutcome = null; 

                } 

                else 

                { 

                    // Hold status quo 

                } 

            } 

 

            // Save the value of the current local buffler variable 

            oldLocalBufferVar = localBufferVar; 

 

            switch (switchOutcome) 

            { 

                case "lvf": 

                    // Loop through the collection of candidates to return 

the candidate with the largest value of the default expression. 

                    largestValue = double.NegativeInfinity; 

                    foreach (IExecutionContext candidate in candidates) 

                    { 

                        double thisValue = 

_defaultLVFProperty.GetDoubleValue(candidate); 

                        if (thisValue > largestValue) 

                        { 

                            largestValue = thisValue; 

                            selectedCandidate = candidate; 

                        } 

                    } 

                    chosenOne = selectedCandidate; 

                    break; 

 

                case "fsvf": 

                    // Loop through the collection of candidates to return a 

selected item based on the secondary Smallest Value First selection 

expression 

                    double smallestValue = double.PositiveInfinity; 

 

                    foreach (IExecutionContext candidate in candidates) 

                    { 

                        double thisValue = 

_secondarySVFProperty.GetDoubleValue(candidate); 

                        if (thisValue < smallestValue) 
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                        { 

                            smallestValue = thisValue; 

                            selectedCandidate = candidate; 

                        } 

                    } 

                    chosenOne = selectedCandidate; 

                    break; 

 

                case "ssvf": 

                    // Loop through the collection of candidates to return a 

selected item based on the secondary Smallest Value First selection 

expression 

                    double sSmallestValue = double.PositiveInfinity; 

 

                    foreach (IExecutionContext candidate in candidates) 

                    { 

                        double thisValue = 

_defaultLVFProperty.GetDoubleValue(candidate); 

                        if (thisValue < sSmallestValue) 

                        { 

                            smallestValue = thisValue; 

                            selectedCandidate = candidate; 

                        } 

                    } 

                    chosenOne = selectedCandidate; 

                    break; 

 

                default: 

                    // Loop through the collection of candidates to return a 

selected item based on the default smallest value first selection expression 

                    double DefSmallestValue = double.PositiveInfinity; 

 

                    foreach (IExecutionContext candidate in candidates) 

                    { 

                        double thisValue = 

_defaultSVFProperty.GetDoubleValue(candidate); 

                        if (thisValue < DefSmallestValue) 

                        { 

                            DefSmallestValue = thisValue; 

                            selectedCandidate = candidate; 

                        } 

                    } 

                    chosenOne = selectedCandidate; 

                    break; 

            } 

 

            return chosenOne; 

        } 

 

        #endregion 

    } 

} 
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 Distributed Dynamic Selection Rule Strategy Optimisation Experiment Results 
 

Table G.1. Distributed Dynamic Selection Rule Strategy optimisation experiment results. LeadTime units = hrs. 

Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

1 NumberInSystem 47.18991 21.31053 121.0012 74.53899 34.16343 

1 LeadTime 6.29372 2.89953 16.2276 9.927454 4.59824 

2 NumberInSystem 50.27236 23.91717 152.1539 78.66498 33.66523 

2 LeadTime 6.709231 3.252308 19.96946 10.44169 4.492619 

3 NumberInSystem 54.75185 25.14768 123.7043 68.91233 38.37558 

3 LeadTime 7.359213 3.410178 16.40822 9.177281 5.112283 

4 NumberInSystem 58.20055 23.2403 139.8145 82.01304 38.31949 

4 LeadTime 7.674123 3.172868 18.41095 10.90507 5.154579 

5 NumberInSystem 55.73427 22.96691 155.1809 82.66219 40.02628 

5 LeadTime 7.497569 3.134169 20.49732 10.96186 5.356662 

6 NumberInSystem 48.57383 27.32445 121.2572 70.09397 38.3977 

6 LeadTime 6.498349 3.690238 15.71159 9.326045 5.132793 

7 NumberInSystem 50.80224 24.74704 113.8098 66.43451 36.22615 

7 LeadTime 6.676455 3.404988 14.93614 8.874533 4.891784 

8 NumberInSystem 54.44587 22.31514 126.823 75.99836 38.30738 

8 LeadTime 7.330716 3.096369 16.41343 10.15205 5.145764 

9 NumberInSystem 50.61299 24.09376 141.8291 70.61683 37.88078 

9 LeadTime 6.778188 3.318568 18.59123 9.342828 5.074921 

10 NumberInSystem 41.22279 22.23416 138.5455 56.91087 34.19384 

10 LeadTime 5.561042 3.056578 18.29718 7.527437 4.625499 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

11 NumberInSystem 47.34403 26.01876 129.9241 74.51056 41.48138 

11 LeadTime 6.332349 3.537553 17.07746 9.947056 5.554419 

12 NumberInSystem 51.26031 24.42605 161.0056 74.02337 40.08207 

12 LeadTime 6.844293 3.325869 21.16594 9.848239 5.383057 

13 NumberInSystem 46.27778 24.5841 146.4795 70.25798 35.85971 

13 LeadTime 6.135549 3.361308 19.18207 9.283131 4.852237 

14 NumberInSystem 49.7201 25.68204 165.7341 66.32365 38.73042 

14 LeadTime 6.643765 3.511741 21.57286 8.892695 5.195665 

15 NumberInSystem 46.77977 23.80841 136.0243 67.01679 35.68487 

15 LeadTime 6.229515 3.234449 17.92464 8.674399 4.794589 

16 NumberInSystem 51.30725 23.22187 109.0368 60.23216 32.40555 

16 LeadTime 6.841738 3.172815 14.27803 7.942081 4.370878 

17 NumberInSystem 55.56263 24.18633 145.9068 71.50771 39.26129 

17 LeadTime 7.425856 3.301503 19.25416 9.371295 5.290711 

18 NumberInSystem 47.0257 20.92081 160.7138 70.36309 34.7767 

18 LeadTime 6.295165 2.878408 21.08952 9.413554 4.72285 

19 NumberInSystem 50.29853 27.10589 111.7005 63.67224 33.37516 

19 LeadTime 6.651331 3.67677 14.36949 8.481788 4.486457 

20 NumberInSystem 55.27635 22.54477 153.658 69.43934 38.35355 

20 LeadTime 7.410742 3.112063 19.86891 9.227191 5.176797 

21 NumberInSystem 51.18463 22.35621 108.7889 68.72326 41.16838 

21 LeadTime 6.857968 3.051531 14.32009 9.099076 5.484205 

22 NumberInSystem 49.59716 25.16082 128.7469 78.54713 37.8368 

22 LeadTime 6.604927 3.418297 17.06986 10.30939 5.064498 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

23 NumberInSystem 53.1557 26.49573 133.586 63.70927 40.16259 

23 LeadTime 7.131976 3.639055 17.40354 8.502993 5.435992 

24 NumberInSystem 59.38887 23.87142 145.5534 74.33021 42.6279 

24 LeadTime 7.787031 3.217559 19.13769 10.05104 5.69356 

25 NumberInSystem 40.74247 23.53191 122.7473 61.95701 31.89353 

25 LeadTime 5.514123 3.199266 16.20775 8.054602 4.312269 

26 NumberInSystem 46.68711 28.1486 130.71 71.31524 37.77022 

26 LeadTime 6.198108 3.847671 17.11797 9.466911 5.11679 

27 NumberInSystem 45.45204 19.58775 157.1321 59.72797 33.53636 

27 LeadTime 6.145037 2.683171 20.47421 7.961891 4.50375 

28 NumberInSystem 39.62775 26.55756 163.8102 62.40869 33.86871 

28 LeadTime 5.254407 3.634719 21.30016 8.31608 4.52882 

29 NumberInSystem 58.49901 26.96042 153.4589 90.19759 35.9293 

29 LeadTime 7.84506 3.64614 20.09118 11.89784 4.819732 

30 NumberInSystem 43.24588 22.78444 153.9226 63.51044 36.88661 

30 LeadTime 5.820793 3.109192 20.09415 8.389242 4.963503 

31 NumberInSystem 51.17099 21.80235 80.90089 60.06092 44.5704 

31 LeadTime 6.844094 2.989218 10.70017 7.921221 5.896014 

32 NumberInSystem 54.70226 24.38795 155.4323 65.86062 40.3191 

32 LeadTime 7.290388 3.345899 20.71114 8.700618 5.374443 

33 NumberInSystem 49.15934 21.62882 176.7565 68.256 35.81773 

33 LeadTime 6.615494 2.98789 23.22103 9.108965 4.862683 

34 NumberInSystem 47.39068 23.14294 147.4517 61.32331 36.36838 

34 LeadTime 6.247023 3.164799 19.0647 8.11325 4.929978 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

35 NumberInSystem 51.01886 24.65303 121.2287 63.08266 40.08395 

35 LeadTime 6.69503 3.380405 15.91755 8.396881 5.396053 

36 NumberInSystem 55.69429 22.72155 132.1527 83.27704 37.69361 

36 LeadTime 7.414248 3.138575 17.22436 11.10432 5.044559 

37 NumberInSystem 51.71128 22.16124 142.5349 76.03009 35.79094 

37 LeadTime 6.886525 3.023127 18.65926 10.11219 4.770644 

38 NumberInSystem 50.94247 23.37602 131.7421 69.12074 41.08423 

38 LeadTime 6.832276 3.190964 17.17971 9.206805 5.545241 

39 NumberInSystem 47.52075 22.71472 167.7911 70.94806 35.27117 

39 LeadTime 6.357209 3.102342 21.8092 9.465521 4.737906 

40 NumberInSystem 45.88449 21.76593 127.5372 64.52064 32.38853 

40 LeadTime 6.197203 3.016135 16.84122 8.665391 4.414061 

41 NumberInSystem 51.76807 24.36402 195.1644 68.96151 37.93788 

41 LeadTime 6.889451 3.304107 25.09042 9.092541 5.109981 

42 NumberInSystem 49.61962 25.35996 125.8791 67.39074 39.1831 

42 LeadTime 6.699624 3.435265 16.73603 8.932051 5.258824 

43 NumberInSystem 55.64225 20.38029 157.1234 83.52963 35.66761 

43 LeadTime 7.528106 2.822227 20.74808 11.10631 4.807453 

44 NumberInSystem 51.75636 26.22645 103.4306 69.24423 36.20173 

44 LeadTime 6.875591 3.566295 13.86356 9.042078 4.884017 

45 NumberInSystem 49.83682 23.73026 168.586 83.73004 38.73735 

45 LeadTime 6.634423 3.261743 21.99095 11.14509 5.172153 

46 NumberInSystem 46.94089 23.55925 181.0869 64.68387 36.94655 

46 LeadTime 6.304775 3.251439 23.54808 8.542337 4.985058 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

47 NumberInSystem 49.59131 22.58498 116.7295 74.6539 37.33568 

47 LeadTime 6.590515 3.105406 15.40892 9.831556 5.033078 

48 NumberInSystem 50.5726 21.47285 125.8605 70.70321 38.86532 

48 LeadTime 6.821519 2.939371 16.78228 9.423498 5.169138 

49 NumberInSystem 56.74241 22.47137 129.5858 77.15819 40.45717 

49 LeadTime 7.54213 3.07241 16.92936 10.23705 5.457119 

50 NumberInSystem 55.88337 21.76831 150.8936 77.27105 38.73319 

50 LeadTime 7.38288 2.981769 19.92786 10.19431 5.199516 

51 NumberInSystem 42.50559 26.23452 117.511 54.91071 36.01094 

51 LeadTime 5.634367 3.567032 15.24702 7.390152 4.830545 

52 NumberInSystem 46.0718 28.55602 138.344 61.35481 36.4212 

52 LeadTime 6.331372 3.884544 18.17902 8.088633 4.833361 

53 NumberInSystem 56.6866 26.06138 138.2852 70.27983 42.14286 

53 LeadTime 7.583137 3.592365 17.91597 9.333012 5.652745 

54 NumberInSystem 46.07066 24.74544 140.8155 64.7524 36.221 

54 LeadTime 6.115034 3.358889 18.69009 8.650683 4.871072 

55 NumberInSystem 47.24336 23.00691 144.271 64.53615 35.36985 

55 LeadTime 6.337853 3.153092 18.96297 8.670139 4.849531 

56 NumberInSystem 51.61059 25.57414 156.6455 78.06199 39.77042 

56 LeadTime 6.866954 3.459372 20.47694 10.54573 5.396318 

57 NumberInSystem 54.29631 21.41359 115.536 73.64237 38.0786 

57 LeadTime 7.238358 2.973653 15.40933 9.731887 5.142306 

58 NumberInSystem 52.22529 22.19149 129.1369 75.00442 37.1515 

58 LeadTime 6.991848 3.065159 17.07078 9.817184 5.017483 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

59 NumberInSystem 51.80942 29.38868 147.1306 70.44429 37.13466 

59 LeadTime 7.044588 4.017319 19.44387 9.403573 5.005646 

60 NumberInSystem 51.46061 22.13682 113.3465 65.89276 35.371 

60 LeadTime 6.838271 3.030043 14.8691 8.717653 4.762731 

61 NumberInSystem 46.54967 23.1368 126.5407 64.26127 35.30211 

61 LeadTime 6.22423 3.168098 16.74356 8.426912 4.776001 

62 NumberInSystem 50.0509 20.96385 133.1087 59.88506 35.59922 

62 LeadTime 6.72859 2.904983 17.4264 8.03952 4.820938 

63 NumberInSystem 53.0657 23.50411 156.1355 80.491 39.61521 

63 LeadTime 7.094587 3.209328 20.6677 10.52726 5.326159 

64 NumberInSystem 53.68862 24.51739 136.4015 72.94775 35.14471 

64 LeadTime 7.23141 3.324675 17.92989 9.725597 4.710847 

65 NumberInSystem 49.0728 21.47405 115.5303 76.08948 37.71709 

65 LeadTime 6.591992 2.939659 15.10392 10.07022 5.059545 

66 NumberInSystem 49.24974 21.7215 146.7255 68.13967 34.10182 

66 LeadTime 6.642193 2.982741 19.39939 9.052289 4.585093 

67 NumberInSystem 60.27058 25.80516 145.0079 71.25009 41.18985 

67 LeadTime 8.04442 3.512146 19.02574 9.528668 5.510429 

68 NumberInSystem 56.59973 25.67896 132.9707 74.64153 38.49782 

68 LeadTime 7.477789 3.548682 17.57625 9.911588 5.104295 

69 NumberInSystem 57.38819 23.03283 141.5505 79.68722 34.31647 

69 LeadTime 7.747871 3.15346 18.45057 10.60386 4.634214 

70 NumberInSystem 55.03563 23.82917 140.7608 66.7805 41.25188 

70 LeadTime 7.373092 3.21642 18.65511 8.847848 5.60046 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

71 NumberInSystem 57.03823 26.80359 172.6101 76.22587 40.4898 

71 LeadTime 7.5742 3.620135 22.6813 10.16855 5.408243 

72 NumberInSystem 56.85529 24.00069 165.7555 75.14633 39.41744 

72 LeadTime 7.60384 3.277043 21.67721 10.02291 5.266946 

73 NumberInSystem 47.86218 25.57504 142.2329 66.06162 37.95719 

73 LeadTime 6.431094 3.489787 18.79926 8.735243 5.132715 

74 NumberInSystem 53.60249 26.53314 128.0005 72.61116 38.88171 

74 LeadTime 7.15462 3.593846 17.06175 9.418079 5.214151 

75 NumberInSystem 50.83562 22.92324 127.5411 67.31444 39.29965 

75 LeadTime 6.833163 3.132364 16.92362 8.921906 5.272304 

76 NumberInSystem 50.80926 21.40588 136.865 63.54177 36.86178 

76 LeadTime 6.842555 2.962799 18.13577 8.44064 4.904589 

77 NumberInSystem 51.35332 26.42601 115.8446 65.9796 39.44247 

77 LeadTime 6.881619 3.556083 15.24344 8.76941 5.327706 

78 NumberInSystem 51.62118 23.70787 132.7135 75.55609 35.4873 

78 LeadTime 6.892295 3.230559 17.33787 10.02427 4.754339 

79 NumberInSystem 52.42079 24.08544 148.0176 73.0807 43.5367 

79 LeadTime 6.98597 3.304319 19.35214 9.645512 5.857012 

80 NumberInSystem 46.13544 26.72977 159.8392 66.44176 37.18213 

80 LeadTime 6.253367 3.614063 20.85885 8.86457 5.017627 

81 NumberInSystem 49.74545 25.53109 97.5309 65.13961 38.39926 

81 LeadTime 6.67168 3.468238 12.93976 8.655596 5.163665 

82 NumberInSystem 47.52799 25.10375 133.6586 64.93294 35.07953 

82 LeadTime 6.386401 3.39708 17.10072 8.63449 4.741451 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

83 NumberInSystem 53.87671 26.90604 139.2993 70.72354 39.93253 

83 LeadTime 7.175675 3.647958 18.3331 9.393401 5.399508 

84 NumberInSystem 52.38632 26.56267 168.2412 75.04346 40.02762 

84 LeadTime 6.966034 3.63807 22.17071 9.974429 5.313158 

85 NumberInSystem 43.31438 21.61951 127.6251 64.87861 34.94866 

85 LeadTime 5.785254 2.970497 16.71975 8.724349 4.706744 

86 NumberInSystem 45.90316 24.64828 157.7384 73.13046 38.66895 

86 LeadTime 6.20665 3.37313 20.73357 9.772339 5.226328 

87 NumberInSystem 52.59038 19.23175 166.3072 76.8966 38.90971 

87 LeadTime 7.036777 2.671512 21.79227 10.28741 5.238594 

88 NumberInSystem 56.49366 28.61662 127.1641 79.39168 40.26774 

88 LeadTime 7.487588 3.826007 16.7035 10.49356 5.416465 

89 NumberInSystem 49.34843 23.2231 120.7642 67.36568 36.64799 

89 LeadTime 6.611088 3.173384 16.00249 9.005435 4.916793 

90 NumberInSystem 48.97966 27.54395 120.0883 69.94155 37.59747 

90 LeadTime 6.512474 3.726392 15.88287 9.24579 5.063139 

91 NumberInSystem 53.26292 22.86136 170.8596 80.79378 37.1874 

91 LeadTime 7.116175 3.088866 22.37501 10.72585 5.010111 

92 NumberInSystem 46.14657 24.57777 156.3478 68.57821 35.33321 

92 LeadTime 6.206775 3.35353 20.27477 9.23722 4.810778 

93 NumberInSystem 49.81492 25.25958 122.586 72.83679 37.75356 

93 LeadTime 6.607935 3.462826 16.2772 9.537742 5.072711 

94 NumberInSystem 53.59821 27.30757 157.7579 72.07915 43.06823 

94 LeadTime 7.197414 3.716516 20.63436 9.614192 5.725697 
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Scenario Response Median Minimum Maximum Upper Percentile Lower Percentile 

95 NumberInSystem 45.42331 24.43446 149.3866 67.16217 33.88044 

95 LeadTime 6.122967 3.340827 19.48842 8.880972 4.570091 

96 NumberInSystem 49.24928 25.39032 141.757 81.33433 37.31089 

96 LeadTime 6.610146 3.458988 18.47674 10.77473 5.037488 

97 NumberInSystem 58.12781 25.68783 142.3675 71.39635 38.84109 

97 LeadTime 7.706039 3.502756 18.93661 9.482129 5.258362 

98 NumberInSystem 53.02677 23.31307 146.0057 82.84325 37.97752 

98 LeadTime 7.120324 3.223005 19.20606 10.97294 5.091405 

99 NumberInSystem 45.36269 24.3285 115.8269 62.07102 35.39901 

99 LeadTime 6.00544 3.339075 14.90113 8.151613 4.793197 

100 NumberInSystem 54.25115 22.68398 125.7172 78.0072 38.59037 

100 LeadTime 7.138667 3.113945 16.38166 10.27718 5.153447 

 

 


