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GENERAL ABSTRACT 

Rural sub-Saharan Africa (SSA) faces the challenge of achieving food security under water 
scarcity amplified by climate change and variability. Under these conditions, it is necessary to 
adopt cropping systems that have a potential to improve productivity. The aim of the study 
was to assess the feasibility of a sorghum-cowpea-bottle gourd intercrop systems with a view 
to determine the resource use efficiencies. This was achieved through a series of studies 
which included conducting critical literature reviews, quantifying water use and water use 
efficiency of sorghum-cowpea-bottle gourd, and modelling such systems using Agricultural 
Production Systems Simulator (APSIM). Field trials were conducted at the University of 
KwaZulu–Natal’s, Ukulinga Research Farm over two seasons (2013/14 and 2014/15) under 
varying water regimes [full irrigation (FI), deficit irrigation (DI) and rainfed (RF)]. Intercrop 
combinations considered were sole sorghum, cowpea and bottle gourd as well as intercrops of 
sorghum–cowpea and sorghum–bottle gourd. Data collected included soil water content, plant 
height/vine length, leaf number, tillering/branching, leaf area index, relative leaf water 
content, stomatal conductance and chlorophyll content index as well as biomass accumulation 
and partitioning. Yield and yield components, water use (WU) and WUE were calculated at 
harvest. Extinction coefficient, intercepted photosynthetic active radiation (IPAR) and 
radiation use efficiency (RUE) for biomass and grain were also determined. Land equivalent 
ratio (LER) was used to evaluate intercrop productivity. Growth, yield and water use (ET) of 
the sorghum–cowpea intercrop system were simulated using APSIM. The validated model 
was then used to develop best management practices for intercropping. The review showed 
that aboveground interactions within intercrop systems have thoroughly been investigated 
while belowground interactions were mostly limited. The review showcased the potential of 
bottle gourd as a versatile food crop. The field trials established that sorghum yields were 
stable across different water regimes. This was mainly achieved through facilitative 
interaction within the intercrop systems which allowed for greater eco-physiological 
adaptation resulting in improved water capture and use. Improved water capture and use also 
increased WUE (50.68%) and RUE (8.96%). The APSIM model was simulated growth, yield 
and WU of an intercrop system under varying water regimes satisfactorily. The model over–
estimated biomass (6.25%), yield (14.93%) and WU (7.29%) and under–estimated WUE (-
14.86%). Scenario analyses using APSIM showed that the development of best management 
practices should be agro–ecology specific to ensure dynamic climate change adaptation 
strategies and increase resilience. It was concluded that intercropping results in improved 
productivity, especially under water–limited conditions. As such, it that can be used by 
farmers located in semi-arid and arid regions as an adaptation strategy for increased 
productivity. Dynamic agronomic management practices should be adapted to further increase 
the system’s resilience to predicted climatic uncertainties. Future studies on intercropping 
should consider root interactions and possibly different plant populations and planting 
geometry as factors that might influence resource capture and use. Decision support systems 
should be promoted within farming communities to better manage risks associated with on-
farm decision making  
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CHAPTER 1 

GENERAL INTRODUCTION AND OVERVIEW 

 

Justification and objectives 

Within sub-Saharan Africa, population is projected to increase from 1.1 billion to 2.4 billion 

by 2050 (Dile et al., 2013). To feed the rapidly growing population, food production will have 

to double from current levels (Misra, 2014). Conversely, the amount of water and land 

available for food production continues to decline owing to increased pressure from 

competing uses (Rosegrant et al., 2014). In addition, climate change and variability has 

increased the occurrence and severity of droughts, further constraining the availability of 

water for agriculture (Misra, 2014). As it is, South Africa is a semi-arid country whose water 

profile is rapidly moving from water scarce to water stressed (Singels et al., 2010). Rainfall is 

unevenly distributed, with about 50% of the rain falling on 15% of the land (Crétat et al., 

2012). It is in most of the remaining 85% of the country where rural inhabitants are 

concentrated (Shackleton et al., 2008). They are characterised as practising rainfed agriculture 

and are generally food insecure (Beddington et al., 2011). Increasing agricultural activities 

within rural communities has been identified as a means to improve food security. However, 

due to the aforementioned water situation, productivity is low and will not be able to sustain 

projected population growth. In light of this, the use of drought tolerant crop species such as 

sorghum can result in the most productive use of the dwindling resource.  

Sorghum is the second most important cereal crop in SSA, after maize, and has a 

significant role to play in providing food security within the region (Taylor, 2003). The crop 

can thrive in areas that receive as little as 500 mm rainfall during the growing season (Hadebe 

et al., n.d.). This is attributed to eco-physiological and eco-morphological traits that enable it 

to capture and use water efficiently. Although sorghum possesses several unique drought 

adaptation traits, literature indicates that yields observed throughout the region are far below 

world yield average of 2.5 t ha-1 (Sitii Aishah et al., 2011). This is still attributed to water 

stress associated with poor agronomic and water management strategies (Rockström et al., 

2010). At a plant level, responses to water stress have been shown to be complex (Farooq et 

al., 2014), involving adaptive changes and/or deleterious effects. Likewise, mitigating water 

stress should be multifaceted and employ a combination of strategies (de Ponti et al., 2012). 
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By employing water management strategies such as intercropping, productivity of sorghum 

rainfed production systems of can be improved. This is can be achieved through efficient 

capture and use of water (Ogindo and Walker, 2003; Ouda et al., 2007; Singh and Behari, 

2012; Jun et al., 2014). However, information on the mechanisms behind improved water use 

in intercropping is scanty. 

Understanding water use of a crop is an effective decision making tool in areas prone to 

water stress (Kijima et al., 2011). This, coupled with water saving strategies, has seen an 

increase in crop production in water stressed regions of the world (Yuan et al., 2003). Water 

within the soil is lost primarily through evapotranspiration, deep percolation and runoff 

(Sadras et al., 2012). To minimise and redirect water lost through non-productive processes to 

plant use, traditional cropping systems such as intercropping have been observed to improve 

the availability of soil water. This is achieved through maximising root volume and depth, and 

increasing canopy cover; thus reducing soil evaporation (Carlson, 2008). With the observed 

reduction in arable land in South Africa, intercropping has been shown to increase production 

output per unit area. Intercropping sorghum (Sorghum bicolor (L.) Moench.) with either 

bottle gourd (Lagenaria siceraria (Molina) Standl.) or cowpea Cowpea (Vigna unguiculata L. 

Walp.) could increase water use within a given system through improved resource use 

efficiency (land, water and solar radiation), thus increasing yield and ultimately food 

production. The success of such a cropping system would depend, to a large extent, on the 

complementary use of growth resources such as water, solar radiation and nutrients, 

especially if water is in limited supply. Therefore, research has to be directed at assessing 

feasibility of a range of intercrop combination within the limitations of available resources. 

Measuring productivity and use of water in mixed systems requires a careful balancing of 

possibilities and needs. As a way of generating information that can increase the accuracy of 

recommendations, Ogindo and Walker (2003) suggested the use of crop growth models that 

take into account inter- and intra-specific competition within the root and canopy system of an 

intercrop. According to Miglietta and Bindi (1993), crop modelling is the dynamic simulation 

of crop growth by numerical integration of constituent processes with the help of computers. 

Crop models have facilitated a quantitative understanding of the effects of crop growth and 

agronomic management factors on crop development and productivity (Chipanshi et al., 

1999). Crop modelling offers a cost-effective and fast alternative to exploring cropping 

scenarios and estimating their productivity under a range of management and environmental 

conditions (Raes et al., 2009). The use of crop models in predicting water productivity and 
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crop performance within intercrops could assist in generating useful information for policy 

formulation, especially in environments where water is a scarce resource (Malézieux et al., 

2009). With the adoption of crop simulation techniques presented in this study, there is a 

possibility for developing strategies for smallholder farmers that can reduce risks associated 

with monocropping and rainfall variability. 

The effects of climate change and variability on water availability, and subsequently food 

security, are a reality. To improve rural food security, and ultimately livelihoods, cropping 

systems need to develop resilience to future climate uncertainties. Due to its drought 

tolerance, sorghum is ideal for semi–arid and arid agro–ecological regions. However, large 

yield gaps have been observed due to poor water management practices across farming 

systems within the semi–arid and arid regions. It can be hypothesised that, ecological type 

farming systems like intercropping can increase productivity of sorghum through enhanced 

water capture and utilisation. While several studies have quantified water use and water use 

efficiency of popular intercrop systems such as maize – bean (Miriti et al., 2012; Ogindo and 

Walker, 2005), there is a dearth in knowledge for sorghum intercrop systems especially using 

a modelling approach. Therefore, the aim of the study was to quantify water use and water use 

efficiency of sorghum intercrop systems using field and modelling approaches.  

 

The specific objectives of the study were: 

i. to conduct a critical review of available literature on quantifying and modelling 

resource use in intercrop systems,  

ii. to conduct a critical review of available literature on agronomic potential of bottle 

gourd for use in water management strategies, 

iii. to quantify water and radiation use and determine the water and radiation use 

efficiency of sorghum-cowpea-bottle gourd intercrop systems, and 

iv. to calibrate APSIM for sorghum–cowpea intercrop system and apply it in assessing 

different management scenarios for several rainfed agro-ecologies in KwaZulu–Natal 

climatic conditions for best management practices. 
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2.2 Thesis structure 

To address the objectives of the study, agronomic and modelling experiments were conducted 

over two seasons (2013/14 and 2014/15). This thesis is written in paper format. Where 

manuscripts have already been published, it is stated so, and where such manuscripts have 

been submitted to journals and are under review, information is also provided stating the 

journal name and submission date. The thesis consists of seven interlinked chapters, 

excluding the present chapter. 

Chapter 2 addresses the first objective through a literature review of issues pertaining to 

resource use, namely water and radiation, in intercrop systems. Crop simulation models 

(CSM) as decision support tools for intercrop/multicrop systems and future directions for 

modelling multicrop systems were also reviewed. It also justifies the use of APSIM as a tool 

to model resource use and productivity of intercrop systems. 

Chapter 3 addresses the second objective and clarifies the inclusion of bottle gourd within this 

study. A review of bottle gourd as a food security crop and a crop to be included for use in 

water management strategies was conducted. Seed quality was identified as a major yield 

reducing factor. The latter part of the review uses empirical results to determine the 

relationship between agro-morphological characteristics and seed quality. 

Chapter 4 addresses the third objective through field experiments conducted at Ukulinga 

Research Farm, Pietermaritzburg. The objective of field trials was to determine the eco-

physiological and eco-morphological responses of sorghum when intercropped with either 

cowpea or bottle gourd under varying water regimes. Results of canopy (leaf area index, plant 

height and leaf number), physiological parameters (stomatal conductance, chlorophyll content 

index), yield and yield components are presented. In addition, results of land equivalent ratio 

(LER), water use and water use efficiency are also presented.  

Chapter 5 is intrinsically linked with chapter four in the sense that the same field experiment 

and treatment structures were used. The major differences are the parameters reported. In this 

chapter the main focus is radiation interception and use efficiency of sorghum when 

intercropped with either cowpea or bottle gourd under varying water regimes. Specific leaf 

area, biomass partitioning and radiation interception, and radiation use efficiency, of sorghum 

are reported.  
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Chapter 6 reports on local adaptation and testing of APSIM model for sorghum–cowpea 

intercrop systems in response to different water regimes. It is related to the fourth objective of 

the study. To conduct a local adaptation of APSIM to simulate crop responses of sorghum–

cowpea intercrop system, site specific soil and climate data and crop specific parameters (time 

to emergence, time interval between emergence and end of juvenile stage, time interval 

between end of juvenile stage and flowering, RUE) are used. Data were obtained from field 

trials conducted in the 2013/14 season. To test the model, data from 2014/15 season obtained 

from varying water regimes was used. 

Chapter 7 is written as a sequel to Chapter 6 and uses the model APSIM to establish best 

management practices for improved water management. It also addresses the last objective of 

the study. Using the adapted and tested APSIM sorghum – cowpea model, the response of 

yield and WUE to agronomic practices planting dates, plant population, fertiliser application 

rates and irrigation scheduling were assessed for five agro-ecologies within the KwaZulu–

Natal region. For each agronomic trait, best management practices were identified. 

Chapter 8 is the general discussion, integrating the separate studies to address the main study 

aims and objectives. It highlights the major findings and implications and the conclusion to 

the thesis. Lastly, it also provides future direction. 
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Abstract 

The risk to food security is particularly dire in rural sub-Saharan Africa (SSA) where a third 

of the world’s undernourished people reside. Intercropping has potential to improve rural 

livelihoods through better resource utilization and improved resilience to current and future 

challenges. This paper reviewed concepts in intercropping and outline how resources are 

captured and utilized within the system. Crop simulation models (CSM) as decision support 

tools for intercrop/multicrop systems and future directions for modelling multicrop systems 

are the focus of the review. Through increased crop biodiversity, intercropping improves 

resilience, food security and nutrition. This is achieved through improved resource capture 

and utilisation due to differences in spatial and temporal distribution of component crops. For 

farmers to maximise on these advantages, they need to have full knowledge of species 

combination, arrangements and proportions. A major drawback to intercrop systems is that 

most of the existing agronomic recommendations are tailored on monoculture practices. This 

is also evident in the structure of most CSMs that cannot account for heterogeneous crop 

stands. In conclusion, there is a need to enhance agricultural research on intercrop systems, 

combining conventional and modern research approaches. Moreover, CSMs should be multi-

dimensional in order to simulate system diversity accurately.  

 

Key words: crop simulation models, parameterization, resource use 

 

Introduction  

Food security exists when all people, at all times, have physical and economic access to 

and/or produce sufficient, safe and nutritious food to meet their dietary needs and food 

preferences for an active and healthy life (FAO 2013). While the risk to food security is a 

global one, the issue is particularly dire in rural Sub-Saharan Africa (SSA) where a third of 

the world’s undernourished people are found (Garrity et al. 2012). According to the United 

Nations’ 2014 technical report for post-2015 development agenda ‘Solutions for sustainable 

agriculture and food systems’, food insecurity is projected to increase as the region witnesses 

an increased rate of rural - urban migration, economic and political crises relapse and 

increased incidences of extreme weather conditions. As it stands, access to food by rural 

communities in the region remains largely from agriculture and is small-scale and 

subsistence-focused (FAO 2013). Although in isolation, this has promoted rural livelihoods 
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(Garrity et al. 2010), it remains inadequate for sustainable self-sufficiency at a national and 

regional level (FAO 2013). The region is thus faced with the task of improving current food 

security and at the same time coming up with strategies to ensure future food security in wake 

of worsening climate (Schmidhuber and Tubiello 2007). That being said the case, focus has 

intensified on safe guarding rural food security through improved agricultural innovations so 

that they can shift from being net food consumers to producers that can actually feed 

themselves and growing urban populations (Garrity et al. 2012).  

Rural agriculture is characterized by multiple bio-physical and socio-economic constraints 

that have resulted in low productivity of existing systems (FAO 2013). Moreover, farming 

practices have been modelled around principles of intensive agriculture (Garrity et al. 2012). 

While such practices have brought about localized improved productivity, it is widely 

recognized that these activities are not sustainable for rainfed systems and are poor buffers 

towards extreme weather events and depleting soil fertility. To date, greater yield losses can 

be accounted for by drought than other crop production factors (Sheffield et al. 2014). This 

has resulted in reduction of agricultural activities across SSA and has reduced progress 

towards food security. In light of increasing incidences and severity of drought, growing 

population and food demand, it becomes imperative to remodel current marginalized farming 

systems so that they become resilient and sustainable for improved food security.  

Owing to the shortcomings of pro-green revolution farming and increased demand for 

food, there has been a resurgence of interest in agricultural systems that are founded on the 

basis of sustainable agriculture through increased on-farm biodiversity (Garrity et al. 2010). 

Research has shown that an improvement in on-farm biodiversity, if assembled correctly in 

time and space, can lead to farming systems that can naturally buffer extreme weather events 

(Gurr et al. 2003), regulate resource use and competition and reduce risk of pests and diseases 

through biological or direct control; ultimately ensuring sustainable food security (Altieri 

2002; Scherr and McNeely, 2008) and enhanced resilience. In selected regions of India, South 

America (Ebert 2014) and North Africa (Jalloh 2002), the increase in tree and crop 

biodiversity through intercropping has increased food security. China prides itself for 

increasing rural livelihoods through the reintroduction of biodiversity through intercropping 

and other traditional farming systems (Knorzer et al. 2009). This evidence suggests that 

intercropping could successfully improve farm-biodiversity in marginalized parts of sub-

Saharan Africa. 
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By definition, intercropping is the growing of two or more crops together, in proximity, on 

the same piece of land during a growing season (Ranganathan 1992). The practice is ancient, 

as early records from many human societies all over the world have shown (Willey, 1979). In 

SSA, intercropping is considered as a traditional cropping system with the predominant crop 

combinations being maize, bean/cowpea and pumpkin (Matusso et al. 2014). According to 

Keating and Carberry (1993) and Midmore (1993), the advantage of intercropping over 

monoculture lies mainly in its proficient capture of resources. Reddy and Willey (1981) 

observed higher land, water and radiation use efficiency when pearl millet was intercropped 

with groundnuts. Sani et al. (2011) observed better land and water use in maize-sorghum 

intercrops. Kanton and Dennett (2004) observed better water use efficiency in maize and pea 

intercropping. On the other hand, results similar to those obtained by Gao et al. (2009) where 

no improvement of resource use have also been observed. This goes to show that a winning 

intercrop system combination is yet to be established. 

Due to complexities in interspecies interaction (Malezieux et al. 2009), research in 

intercropping is still lagging behind in comparison to monoculture systems that boast of 

numerous systematic agronomic concepts and various exploratory tools such as crop models. 

Currently, most intercropping studies have focused on issues of yield, economy and food 

value of crops, basing conclusions on measures of final yield (Zhang and Li 2003). Little 

emphasis has been placed on the understanding of interspecific processes leading to these 

benefits. To enhance interest in intercropping research and possible farmer adoption, the 

science and attributes of intercropping need to be well understood. The aim of this paper is to 

review concepts in resource capture in intercropping, highlighting its advantages and possible 

drawbacks. There is a need to generate a large amount of comprehensive data, thus an 

overview of crop modelling for intercropping as a tool used to generate information was 

attempted. Since models in intercrop systems are still in their infancy, selected crop models 

that simulate resource use in multicrop systems are herein reviewed and limitations of the 

models are highlighted. The review is divided into two main parts. The first part addresses 

issues pertaining to intercropping and resource use, with particular attention to water and solar 

radiation, while the second part focuses on modelling intercrops. 

 

Resource use in intercrop systems 

The success of an intercrop has often been attributed to compatibility of component crops in 

resource utilization (Coolman and Hoyt 1993). According to Vandermeer (1989) growing of 
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two individual plant species or two populations together on the same land within the same 

time frame will result in either a positive or negative interaction for growth factors. These 

interactions can be classified as complementary, competitive or non-competitive. 

In cases where resources (solar radiation, water and nutrient) are shared and are non-

limiting, complementary interactions can be observed (Matusso et al. 2014). Growth and yield 

of either component crops is not affected by the presence of the other component crop. When 

intercropped plants compete for the same resources such that the inter-specific competition 

observed is equal to or higher than the intra-specific competition observed in the monocrop 

(Wubs et al. 2005), a negative and/or a competitive interaction will be observed. According to 

Zhang and Li (2003), a competitive system is most advantageous when the yield of the 

intercropped component crop is not as important as the main component crop. On the other 

hand, when competitive interaction is very high and yield penalties for both components are 

too large, Wubs et al. (2005) opined that monocropping would be more profitable than 

intercropping. In the case of a non-competitive system, both complementary and competitive 

interactions exist. For example, early plant growth of crops can be complementary for solar 

radiation but become competitive in a later growth stage.   

Sub-Saharan Africa is significantly disadvantaged as it lacks a balance between natural 

resources and agricultural food productivity. Resources such as suitable land, nutrients and 

more importantly water, remain scarce. Their sustainable use can be achieved through 

intercropping. However, compatibility within existing and newly designed intercrop systems, 

and resource use are not thoroughly understood by researchers and intended beneficiaries 

such that information dissemination and farmer adoption remains low (Wubs et al. 2005). 

Ideally complementary systems are most desirable, however, this interaction is very difficult 

to observe in nature and under sub-optimum conditions present in rural farming areas 

(Matusso et al. 2014). Even if observed, there is always a danger of over-estimating gains. 

Complementary interactions can be achieved but this is often at the expense of increased 

management cost and labour requirements (Zhang and Li 2003). In the sections following, 

water, radiation and nutrients as limiting resources affecting crop production are discussed 

and it is  point out how intercropping can efficiently capture and use them. More emphasis has 

been placed on water as it is the major limiting factor to crop production in SSA. For each of 

the reviewed resources, the influence of other resources is assumed to be non-limiting. 
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Water  

In the last century global water use has been growing more than twice the rate of population 

increase and more regions are reaching the limit at which water services can be sustainably 

expanded and delivered (FAO 2013). According to the FAO’s 2012 report on ‘coping with 

water scarcity’, it is projected that by 2025, absolute water scarcity (< 500 m3 per year per 

capita) will affect 1 800 million people, and two-thirds of the world population could be under 

“stress” conditions (between 500 and 1 000 m3 per year per capita). There is need to establish 

technologies that can produce more food per unit water consumed and intercropping has the 

potential (Willey and Osiru 1972; Ozeir-Lanfontaine et al. 1997) although the extent to which 

there are improvements varies enormously throughout literature (Morris and Garrity 1993; 

Seran and Brintha 2010). For instance, Oluwasemire et al. (2002) observed a 20% reduction 

in water use (WU) in a millet-cowpea intercrop system when compared to sole millet system. 

Jahansooz et al. (2007) observed no significant improvements in WU of wheat and chickpea 

intercrop system in comparison to the sole cropped components. According to Soetedjo et al. 

(1998) WU of late sown intercrop of field pea and canola was significantly higher (489.3 mm) 

than that of early and late sown pure stands of field pea (402.6 and 418.8 mm, respectively) 

and canola (425.8 and 408.1, respectively).  

Crop water use (WU) is associated with the interaction of roots and their ability to 

scavenge water in the soil plus the capacity of the corresponding canopy to transpire the 

captured water efficiently (Morris and Garrity 1993). Water uptake is a function of rooting 

density distribution, soil-root system conductivities and soil available water (Ogindo and 

Walker 2003). Improved soil water uptake in intercropping has been attributed to the initial 

two factors. According to Anil et al. (1998) and Ogindo and Walker (2003), increased root 

density (temporal and spatially) and differences between rooting patterns (depth, width and 

length) in crop mixtures ensures that a larger volume of soil water can be exploited and thus 

improve water use efficiency (WUE). However, difficulties in studying root systems and root 

water extraction dynamics in multicrop systems have led to a few studies actually quantifying 

water uptake in intercropping let alone modelling below ground interactions. As a result, a 

more commonly used approach of quantifying WU and WUE in intercrops is studying canopy 

dynamics and the soil water balance approach which calculates crop water use as a residual 

(Morris and Garrity 1993). 

Canopy dynamics that influence crop water use are related to crop species, plant canopy 

features and evapotranspiration (ET) (Allen et al. 1998). The shape, size and duration of a 
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canopy influence ET and its partitioning into soil evaporation (E) and crop transpiration (T) 

(Ogindo and Walker 2003; Morison et al. 2008). It is estimated that, under sole cropping, as 

much as 40% of rainfall can be lost through unproductive ways such as evaporation (soil and 

leaf) (Kinama et al. 2007) due to a smaller canopy and/or slower rate to attain maximum 

ground cover. The larger the canopy represented by leaf area index (LAI), the greater the 

proportion of water ‘lost’ through transpiration in exchange for carbon dioxide than soil 

evaporation (Seran and Brintha 2010). Morris and Garrity (1993) also articulated enhanced 

WU from extending duration of maximum LAI. Under intercrops, enhanced WUE was 

observed early in canopy development because maximum LAI was attained earlier in 

comparison to corresponding plots of sole crops (Oluwasemire et al. 2002;). When 

intercropped plants have different periods in phenological events, an additional bonus can be 

gained if the critical stages of water demand do not overlap; especially if one of the 

component crops has an extended period of canopy cover. On the other hand, if water stress 

occurs early during the season, increased plant cover can have a negative effect on biomass 

and yield attainment due to high interspecific competition. Morris and Garrity (1993) 

suggested use of small statured plants while Gaballah and Ouda (2008) emphasized that 

reducing plant density of the secondary crop species could lower competition. 

In addition, mixing crop species or varieties with different canopy heights can result in 

alteration of canopy microclimates. Tall plants can act as wind breaks and as a shade for the 

understory and bare soil (Domingo et al. 1996). Reducing wind speed within the canopy 

results in a reduction in vertical momentum transfer of latent heat and boundary layer 

conductance (Grantz and Vaughn 1999; Stokes et al. 2006). In turn, leaf surface temperature 

approaches that of air temperature and relative humidity around the understory canopy are 

elevated (Innis 1997). This will then reduce evaporative demand from the soil surface and the 

immediate atmosphere around the understory canopy; reducing the rate of potential 

transpiration and ultimately limits photosynthesis. The understory is rendered less competitive 

than the dominant over storey for available soil water. Because of these modifications of 

understory microclimate it is expected that C3 plants, whose photosynthetic rate is saturated 

at lower light intensities, will not be adversely affected and should be recommended for use as 

the understory. 

Although the differences in water use of intercrop and monocrop systems are not easily 

quantified, the direct effects of intercropping on yield in limited water conditions are well 

documented as highlighted above. Mechanisms that enhance WUE are strongly related to 

plant species (above-and below ground interactions), improved water uptake and modification 
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of immediate atmospheric characteristics. A multifaceted approach should be considered 

when studying WU in intercrop systems since systems are not one dimensional. 

 

Solar radiation  

Photosynthetically active radiation (PAR) is light in the waveband of between 400 and 700 

nm and a chief determinant for biochemical processes in photosynthesis for the production of 

biomass in plants. As it stands, PAR is a flux of electromagnetic energy that must be used 

instantaneously as it cannot be stored for later use. Consequently, PAR can be limiting and 

competition for this resource between neighbouring plants is often high. Campillo et al. 

(2012) stated that out of 100% of incident on the leaf, only 5% was converted into biomass by 

leaves while 60% is not absorbed, 8% is reflected and transmitted, 8% is lost through heat 

dissipation and 19% is used in other metabolic processes which did not constitute direct 

biomass production. The efficiency with which plants produce dry matter depends, therefore, 

on the fraction of intercepted PAR and mechanisms of carbon fixation (Black and Ong 2000). 

This has been termed radiation use efficiency (RUE). According to Campillo et al. (2012), 

RUE depends largely on several canopy factors such as canopy size and duration, leaf angle, 

properties of leaf surface (leaf hair and waxy layers that affect light reflection), thickness and 

concentration of chlorophyll, size and shape of leaf phyllotaxis (vertical stratification) and 

sum and distribution of direct and diffused solar radiation. In addition, Keating and Carberry 

(1993) stated that canopy diversity can influence radiation interception in terms of spatial and 

temporal dimensions.  

Similar to WUE, intercropping has been shown to improve RUE and its extent is also 

attributed to plant-plant interactions ( Awal et al. 2006; Tsubo et al. 2001). In the first 

instance, Keating and Carberry (1993) acknowledged that the main mechanisms which aid in 

improved RUE were also linked with spatial and temporal arrangements were issues related to 

hastening attainment of adequate LAI and LAI duration gave precedence (Tsubo et al. 2001). 

In addition to these, the effect of discontinuous canopy profiles, that is mixing of crop species 

with different growth habits, on the understory microclimate has been observed to influence 

RUE (Faurie et al. 1996).  

Radiation interception in intercrop systems can further be improved by horizontal and 

vertical canopy variations introduced by species diversity such as maturity date, geometric 

arrangement, height and at times plating dates (Black and Ong 2000). The transmission and 

reflective properties of over storey canopy affects the delivery and quality of light to the 
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understory.  Over storey intercepts direct light while the understory intercepts diffused PAR. 

The downward attenuation of light within a canopy is presented in the form of Beer’s Law 

(Monsi and Saeki, 1953): 

𝐼 =  𝐼0(1 − 𝑒−𝑘𝐿) 

where I is the intercepted light, I0 is the incoming radiation (MJ m-2), L is the LAI and k 

is the extinction coefficient of the canopy. Extinction coefficient is the attenuation of PAR 

through a canopy and small values mean deep penetration of PAR into the canopy while large 

values mean the inverse. According to Breda (2003) k is a function of leaf angle distribution 

and leaf azimuth, stand structure and canopy architecture and varies with variety, species and 

season. In an ideal scenario, the dominant crop should have erectophile leaves, reducing k 

which in turn allows deep penetration of light to the understory. To date, research has shown 

that scientists have successfully manipulated genes controlling an erect leaf pattern in major 

cereals like maize (Kanton and Dennet 2003) and wheat (Reynold et al. 1999). However, 

Reynold et al. (1999) indicates that architectural improvements have been to the demise of 

leaf area index since these improved genotypes were associated with smaller leaves. To 

increase PAR penetration, a lot of plant canopies have evolved into having irregular leaf 

patterns that increase gap fractions within the canopy. Even though the distribution and 

amounts of gap fractions vary between plant species and varieties within species, when 

planted in appropriate proportions and arrangements these plants can allow some amounts of 

direct PAR to reach the understory. Therefore, issues related to genotype selection and 

populations, which are often a grey area to resource poor farmers, are important in 

distribution of PAR within the intercrop canopy.  

The physiological and morphological effect of shading on understory plants in intercrop 

systems has not been extensively investigated. As light penetrates a canopy, the composition 

within the spectrum changes altering the quality of light reaching the understory. Leaves 

intercept more red than far-red light. Hence the ratio of red to far-red light decreases within 

the canopy (Pushnik et al. 1987). Top layers of a canopy intercept red and blue light and 

transmit far-red, orange yellow and green light. Depending on the k, the ratio of red: far-red 

decreases and this can induce stem elongation, reduces branching and can stimulate early 

flowering of the understory (Casal 1988). The response to shading also depends on 

differences in carbon fixation pathways (Sage and McKown 2006). For C3 plants, 

photosynthetic rates increase sharply as PAR increases from deep shade to 50% full exposure 

then it peaks (point of saturation) and remains constant. In contrast, C4 plants only become 
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saturated at full sunlight (Fitter and Hay 2002). Crop mixtures with C4 plants being the 

dominant and C3 as the intercrop understory are guaranteed of improved RUE because 

maximum photosynthesis and biomass is maintained by the C4 and while a proportion can be 

maintained by the C3 growing under low PAR. Within SSA, farmers have been mixing C4 

cereals and C3 legumes for decades (Matusso et al. 2014). That being said, researchers can 

positively influence the rate of adoption of new and improved cereal-legume intercrop 

systems by tapping into existing indigenous knowledge systems.  

 

Crop modelling in multicrop systems 

Research methods in agriculture are now vast and multi-disciplinary, and possess many tools 

for accurate determination of relationships within a production system. As it stands, systemic 

agronomic concepts have been well defined and many continue to be postulated. However, 

many of these concepts have been built on monocrop frameworks and do not fit into the 

current concept of agro-diversity through intercropping. Although intercropping is an ancient 

form of food production, according to Malezieux et al. (2009) research methods are not 

advanced enough to ensure the availability of information for sustainable food production. In 

particular, crop simulation models (CSM) are now widely recognized as useful tools that 

examine cause and effect relationships in crop production. Only a few CSMs are adapted to 

simulate intercrop systems. For those that exist, the majority still ignore spatial heterogeneity 

of plant mixtures, and streamline the system into a single dimension (Nair et al. 2012). To 

effectively introduce intercrop packages as a way of ensuring sustainable food security a lot 

of relevant data need to be generated and synthesized.  

Crop simulation models analyse systems by defining borders and distinguishing major 

components. They describe changes within the components using mathematical equations and 

then link obtained outputs to obtain a representation of the system (van Ittersum et al. 2003). 

By definition, CSMs are computerized representations of crop growth development and yield 

simulated through mathematical equations as functions of soil and environmental conditions, 

crop species and genotype, and management practices (Hoogenboom et al. 2004). In essence, 

CSMs are used to address “what if” and “when” type of questions with regards to yield as the 

main response of interest. They vary, in terms of application, fundamental structure and core 

development (Sinclair and Seligman, 1996). According to the amount of data and knowledge 

that is available within a particular field, models with different levels of complexity have been 
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developed (Cheeroo-Nayamuth 2000). Since early studies started using CSMs, two 

approaches that are mechanistic and empirical have emerged as dominant model types. 

Mechanistic models are built with the intention of describing systems’ bio-physical 

processes in a somewhat complete mathematical description. Mechanistic models 

(explanatory models) consist of large sets of quantitative data of mechanisms and processes 

that guide the behaviour of the system. To explain the system, the models separately quantify 

processes and mechanisms of the system (Miglietta and Bindi 1993). The model will then 

assemble a simulation by integrating these various components. According to Fleisher (2009) 

the nature of mechanistic models is reductionistic as it uses mechanisms from high level 

(canopy) down to low levels (cellular processes). The majority of CSMs use the mechanistic 

approach to model crop systems. For monocrop systems, these models are already considered 

complex but they are vibrant at explaining processes. In order to simulate interactions in 

intercrop systems there is a need for a good understanding of spatial and temporal concepts of 

resource sharing and how these alter mechanisms and processes at plant level. Malezieux et 

al. (2009) suggested that mechanistic models could capture this plasticity. This, however, 

complicates the model further and threatens to introduce large volumes of mathematical error. 

On the other hand, less robust models do exist and these often fall under empirical or 

descriptive models. Empirical models are direct descriptions of observed data used to estimate 

final yield and are generally expressed as regression equations with one or a few factors 

(Thornley and Johnson 1990). These models are said to simulate the behaviour of a system in 

a simple way (Miglietta and Bindi 1993). They do little to attempt to reflect mechanisms that 

cause the observed behaviour in a system. In a highly homogeneous system where variables 

are not allowed to fluctuate (greenhouse production systems) empirical models can be used. 

Under field conditions, large variations in soil environments, weather conditions and crop 

management practices can result in poor simulation of crop growth. That being said, their 

minimal use in multicrop model could be due to the way they inadequately capture plant 

interactions and alterations. However, they still have a place in data exploration and 

extrapolation. 

 

Approaches for modelling resource use in intercropping systems 

Intercrop models can be divided into three groups depending on spatial compartmentalization 

of the simulated scene. The first approach is consistent with de Wit (1978) and de Wit et al. 

(1970) principles and also includes models such as the Agricultural Production Systems 
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sIMulator (APSIM) (Carberry et al. 1996) and Decision Support System for Agrotechnology 

Transfer (DSSAT) (Jones et al. 2003). These models belong to the ‘School of de Wit’ models. 

For this approach, the soil plant atmosphere continuum (SPAC) is often represented as a 

single or two layer systems with emphasis placed on the dynamics of the system rather than 

on the spatial heterogeneity of it. Scale expressions of biophysical exchanges at the leaf level 

are linked with those at the canopy level and models often assume the ‘big leaf’ structure 

(Malezieux et al. 2009). To describe the dynamics of the system, modules are added to the 

core source code (Jones et al. 2001) of the model. Plug in and plug out modules like APSIM 

(McCown et al. 1996) increase functionality of the model and reduce the complexity of the 

actual model. The most appealing feature is the dependence of limited number of variables 

that can be used which often have a linear relationship. Disadvantages to this approach are 

that it often ignores gradients within the canopy and does not consider counter energy 

transfers and partitioned fluxes occurring between the canopy and soil. Another weakness to 

this approach is that both linear and non-linear algorithms used to calibrate and validate do 

not always relate to measurable physiological or physical quantities since the simplified 

algorithm might not capture differences within canopy. Other examples of models that fall 

into this category include Cropping System Simulation Model (CropSyst) (Caldwell and 

Hansen 1993).  

The second approach to modelling resource use is by describing the intercrop as a series 

of discrete crop based points with flow of energy and mass between each component. 

According to Gu et al. (1999), these models can be described as multilayer models where 

vertical canopy structures/layers are considered. For each layer, biophysical exchange rates 

are calculated and canopy scale fluxes are obtained by integrating them over the depth of the 

canopy. Models using this approach can be either incomplete or complete. According to Gu et 

al. (1999), some variables (solar radiation, wind speed) sensitive to canopy features are 

differentiated vertically while less sensitive variables (e.g., carbon dioxide concentration) are 

held constant throughout the depth of the canopy. Sensitivity of complete multilayer models 

makes them robust in accounting for the smallest factors that can have a large effect on the 

system. An advantage of the multilayer method is that spatial discretion within a 

heterogeneous canopy can be accounted for and point variations in the field. However, this 

approach is complex, requiring large quantities of data making it time consuming and costly. 

Examples of such models include the Water Nutrient and Light Capture in Agroforestry 

Systems (WaNulCas) (van Noordwijk and Lusiana 1999). 
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The third approach gives a realistic description of the complex dual species canopy (3D 

structure). Emphasis is placed on canopy and light attenuation since PAR is one of the most 

important environmental factor that is highly competed for in multicrop systems. Also, in 

functional-structural models of plants and plant communities light can be used to simulate key 

biophysical processes involved in plant growth and development, such as photosynthesis, 

evapotranspiration, and photomorphogenesis. An advantage of this approach is that it captures 

variation in the horizontal and vertical and diagonal direction. However, Brisson et al. (2004) 

noted that it was difficult to account for system dynamics due to complex dynamics at organ 

level and their interaction as well as interactions at whole plant level. 

 

Description and parameterization of selected crop models for multicrop systems 

Models that simulate multicrop systems vary in their complexity and approach. The models 

discussed in this review use a daily time step which varies from tree-crop models that use 

monthly and yearly time steps. According to Nair et al. (2012), daily time steps improve the 

accuracy of model calibration. However, this input in simulation can fail to capture precise 

moments when plant processes are altered due to sudden changes in crop responses (e.g., 

effect of intermittent water stress on photosynthesis). On the other hand, CSMs might be 

designed in this manner to reduce intensity of data quantity and cost of experimentation. 

Above ground interactions 

Above ground interactions are modelled using dynamic or mechanistic approaches. With the 

exception of Agricultural Land Management Alternative with Numerical Assessment Criteria 

(ALMANAC) (Kiniry et al. 1992), presented models use mechanistic approaches (Table 1). 

Crop growth or biomass production can be simulated using three modules which are 1) carbon 

driven, 2) water driven, and 3) radiation driven. Models presented here are either water driven 

(AquaCrop) or radiation driven (CERES (Ritchie et al. 1998), Simulateur multidisciplinaire 

pour les Cultures Standard (STICS) (Brisson et al. 2004), APSIM, ALMANAC, WaNulCas 

and Soil Water Balance (SWB) (Annandale et al. 1996). According to Nair et al. (2012), RUE 

is the most straightforward approach for simulating biomass production. It is argued that the 

relationship between radiation and biomass accumulation is inconsistent across crops, 

location and year (Steduto 2006). In addition, the slope of the relation between biomass and 

radiation is sensitive to water and nutrient stress and could over– or under–estimating biomass 

production at the expense of radiation capture. A more suitable way could be using a 
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conservative approach like the one employed by AquaCrop. Biomass production in AquaCrop 

is linearly proportional to transpiration through a water productivity (WP) parameter (Steduto 

et al. 2007). Water use in intercropping remains a complex area of research as it is very 

difficult to partition between components. Multicrop models have not yet advanced to the 

stage where WP can be partitioned between the components. The issue is not in the 

mathematical relationship but the parameters required as inputs for calibration. As it stands, 

AquaCrop does not have the capacity to simulate resource use and growth for intercrop 

systems. Its main role within this article is to use it as a point of comparison for data 

requirement. In this regard, simulating biomass production through radiation remains the 

dominant way canopy growth is simulated in multicrop models. 

That said, in radiation driven models, processes in above ground biomass production and 

partitioning are divided into three levels; firstly, light interception and estimation of radiation 

capture, secondly conversion of light into biomass and thirdly, it’s partitioning. With the 

exception of CERES, light interception for included models is accounted for by a modified 

Beers’ Law which allows for partitioning of intercepted radiation between component crops 

(Spitters and Aerts 1983) (Table 1). Biomass partitioning seems flexible for these models so 

as to capture species diversity. Functionality of a model often detects what environmental 

stress factor can be addressed on various plant growth and developmental stages. In multicrop 

systems, stress can occur incognito due to complex interactions between component crops. 

Models like AquaCrop, STICS, CERES, APSIM, ALMANAC and WaNulCas include stress 

factors for water, radiation and nutrients as factors that can directly affect crop growth. 
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Table 1 A comparison of above ground parameters and process simulation across selected 

multicrop simulation models. 

 APSIM STICS ALMANA

C 

CERES-

models 

AquaCrop WaNulCas SWB 

Approach Mechanistic  Mechanistic  Dynamic  Mechanistic  Mechanistic  Mechanistic  Mechanistic 
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Light 
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Water Light 

Water  
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1 Biomass partitioning. 

Below ground interactions 

As often referred to, below ground interactions in multicrop systems have not evolved far 

enough to adequately partition direct and indirect effects within the system. Methods of 

simulating growth and interactions largely remain one dimensional with many sublevels. In 

the case of presented models, WaNulCas has attempted to go a step above 1D representation 

of root interactions (Table 2). Within this model, below ground system is separated into four 

horizontally distributed spatial zones within which water and nutrient balances between 

components can be explained (van Noordwijk and Lusiana 1999). Overall, the reviewed 

models use biomass partitioning coefficients to regulate above and below ground growth. 

Other inputs used to explain water and nutrient balances include root volume length, which at 

times is corruptible due to errors in sampling and soil characteristics. 

 



 

 

Table 2 A comparison of below ground parameters and process simulation across selected multicrop simulation models. 

 APSIM STICS ALMANAC CERES-models AquaCrop WaNulCas SWB 

Root interaction --------------------------------------1D root interaction with n layers------------------------------------------- 
2D root interaction 
(depth and distance 

from stem) 

1D root 
interaction with n 

layers 

Root growth -----------------------------------------------------Canopy size influences root growth---------------------------------------------------------------------- 

input parameters 

Root length 
volume (RLV) in 
soil with n layers 

and Maximum 
rooting depth, 

- 
Root :shoot ratio 
and maximum 
rooting depth 

Root length 
volume (RLV) in 
soil with n layers 

and Maximum 
rooting depth, 

Root water 
extraction front, 
effective rooting 

depth and 
maximum rooting 

depth 

Root length volume 
(RLV), Maximum 

rooting depth 

 

Root length 
volume (RLV) in 
soil with n layers 

Root interaction 
Separate 

components – no 
direct interaction 

Separate 
components – no 
direct interaction 

Separate 
components – with/ 

without direct 
interaction 

Separate 
components – no 
direct interaction 

- 
16 components with 

direct interaction 

Separate 
components – no 
direct interaction 

Factors affecting 
root growth 

Water and nutrient, 
and biomass 
partitioning 
coefficients 

Species input 
coefficient for the 

temperature 
dependence of root 
growth and water 

status 

Water and nutrient 

Water, nutrients 
biomass 

partitioning 
coefficients 

- Water and nutrient - 



26 

 

Under monoculture, the study of below ground interaction remains challenging although 

numerous empirical and theoretical methods do exist. The extrapolation of such methods in 

intercrop systems remain somewhat redundant because of the uncertainties in root interaction 

that could arise. Rubio et al. (2001) suggested the use of geometric models such as SimRoot 

(Lynch et al. 1997) as an alternative of numerical estimations of depletion volumes and 

depletion overlaps in complex root systems such as those in multicrop systems. That being 

said, incorporating models like SimRoot into the current set of reviewed models could 

improve predictions of below ground interactions. This would, however, further increase the 

complexity of these models. 

 

Soil and climate inputs 

Across the selected models, description of the soil environment is somewhat generic (Table 

3). For the climate parameters, table 4 shows that reference evapotranspiration is calculated 

using different methods. An acceptable and generally agreed upon way of calculating ETo is 

the FAO-Penman–Monteith method (Allen et al. 1998) as it is more transferable across 

locations. Within CSM, crop growth and production is a function of weather and soil 

conditions in relation to cultivar and management practises. Since resource utilization in 

intercrop systems is generally complex to investigate, accurate capture of all input parameters 

of both soil and weather is very important so as to improve model performance and 

prediction.  

 

Table 3 A comparison of soil parameters required for simulation across selected multicrop 

models 

Soil parameters APSIM STICS ALMANAC CERES-models AquaCrop WaNulCas SWB 

Generic parameters 
Soil profile, Soil chemical properties, Soil texture, Field capacity, Saturation point, 

Permanent wilting point, Total available water. 

Bulk density √ √ √ √ √ √ √ 

Hydraulic conductivity (Ksat) √ √ √ √ √ √ √ 

Run-off co-efficient  √ √ √ √   

Slope √     √ √ 

Soil albedo  √ √ √  √  
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Table 4 A comparison of climate parameters required for simulation across selected multicrop 

models 

Climatic parameters APSIM STICS ALMANAC CERES-modules AquaCrop WaNulCas SWB 

Generic parameters Tmax, Tmin, Daily rainfall, Daily radiation 

Wind speed √ √  √ √ √ √ 

Humidity √ √  √ √ √ √ 

ETO1 PT2 PT, EB3 PM34 PT, FAO-PM FAO-PM5 FAO- PM FAO-PM 

1Reference Evapotranspiration, 2Priestly and Taylor equation (Priestly and Taylor, 1972), 3Energy Balance method (Brisson et al., 2003) 
4Penman-Monteith equation (Monteith, 1965), 5FAO Penman-Monteith (Allen et al., 1998). 

 

Current drawbacks and future directions 

Although intercropping has been used traditionally for many years, it is still poorly 

understood from an agronomic perspective. Simultaneous growing of two or more crop 

species results in complex interactions which warrant better and more intimate management 

strategies. This often increases the complexity of management over and above that given to 

monocrops. For instance, issues related to different pest and disease control and harvest time 

can result in additional cost and labor requirements. Rusinamhodzi et al. (2012) stated that it 

was imperative that farmers were given access to improved varieties which are tolerant to 

pests and diseases so as to minimize cost of production in intercropping. Differences in 

harvest time can be overcome by adjusting planting time of component crops such that 

harvest overlaps. Other management decisions that affect the success of intercropping include 

crop proportions and geometric designs.  

It has been highlighted in previous sections that crop proportions have a strong influence 

on resource competition and use within the intercrop. Improving our understanding of crop 

proportions and the static relationships within set boundaries of resource availability, capture 

and partitioning can result in improved system and yield performance. Although work has 

been devoted to simulating abiotic interactions in multicrop systems, more efforts need to be 

focused on better understanding of interactions of resources. This requires good 

understanding of above- and below–ground processes. In addition, the physiological and 

morphological plasticity of above- and below–ground structures should be appreciated and 

well understood since these changes can alter processes of resource capture and use and 

subsequent productivity of the system (Stockle 1999). Crop simulation models should be 

integrated with the option to simulate best component proportions and geometry within a 
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given range of resources as it is clear that this has a strong bearing on resource use and 

competition.  

Modeling resource use in multicrop systems is still in its infancy as only a few models 

exist. Although existing models can simulate interactions, the degree of precision is 

questionable because of the general poor understanding of system dynamics within multicrop 

systems. Presently, the core structure of most multicrop simulation models are based on 

monocrop models, yet these systems are different containing more complex sub-level 

interactions (Codling and Dumbell 2012). This problem is worsened and confounded by 

inaccurate data inputs and rigid parameterization. Therefore, mathematic equations within 

multicrops modeling should be developed alongside multicrop theories to account for these 

errors.  

The desire to re-introduce intercropping in resource poor regions of SSA is aimed at 

intensifying crop production at a point scale and/or promote and expand profitable farming 

enterprise for improved food security. Crop simulation models have been used to great 

satisfaction for farm management at point scale. As it stands, change in spatial scale can affect 

model precision due to increase in data quantity and spatial and temporal distribution of 

resource capture, land and micro-climate. According to de Wit and van Diepen (2007) 

improved soil water balance estimations in WOrld FOod STudies (WOFOST) (Supit et al. 

1994) was made possible by integrating observations from coarse resolution satellite 

microwave sensors. Sehgal and Sastri (2005) observed good simulation of yield variations 

across district scale when remote sensing (RS) and geographic information system (GIS) tools 

were assimilated into wheat growth simulator model (WTGROWS) (Aggarwal et al. 1994). 

Sehgal and Sastri (2005) concluded that RS and GIS can improved the derivation of crop 

phenology and biophysical products such as LAI and intercepted PAR for large catchment 

areas.  

 

Conclusion 

Despite the advantages of intercrop systems in resource utilization and ultimately food 

production and security, conventional agronomic research has largely focused on monocrop 

systems. The science behind intercropping should be shared with farmers so that they 

themselves can manipulate crop management factors. Information of crop arrangements and 

proportion as factors that affect intercropping systems is still lacking as shown by the shallow 

understanding of ecological interactions between species in mixed systems. Multicrop 
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systems can be simulated but this is done by only a handful of models. The relevance, but 

relative limitation of the concepts and existing tools of systemic agronomy in representing 

and simulating intercrop systems and their properties certainly reveal the need to find new 

representations to account for the particular processes brought into play. As shown in this 

review, the numerous mechanisms involved in species mixing highlight the need to deal with 

their complexity by combining concepts from diverse disciplines (agronomy, physiology and 

ecology), although the necessary link with ecology largely remains to be constructed. 
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ABSTRACT  

Bottle gourd (Lagenaria siceraria (Molina) Standl.) is a useful crop to include in climate 

change adaption strategies for agronomy. However, diversity in plant and seed forms makes it 

difficult to predict performance under field management. There is a dearth of knowledge on 

the relationship between seed morphology and seed performance, namely, germination and 

early establishment of seedlings. This led to a need to evaluate seed morphology of different 

bottle gourd landraces and its effect on seed quality as defined by germination and vigour. Six 

mature fruits of different bottle gourd landraces were collected from subsistence farmers and 

seeds from each fruit were morphologically characterised. Standard germination test, root: 

shoot ratio, seedling fresh mass, seedling dry mass, germination velocity index (GVI) and 

electrical conductivity were used to establish seed quality and vigour. Although all traits were 

significantly different, most of them were not good indicators of seed quality. Seed coat 

thickness isolated varieties by provenance and was inversely proportional to root: shoot ratio 

as a measure of seedling establishment. It is concluded that bottle gourd seed morphology 

could be a useful trait for selection of planting material in the context of seed germination as a 

trait.  

 

 

 

 

Key words: bottle gourd (Lagenaria siceraria); landrace selection; seed quality; seed 

morphology 
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INTRODUCTION 

 

Food security has become a crucial issue in rural Africa due to the possible effects of climate 

change, reduction in arable land, as well as increase in human population and poverty. In the 

past, research was mostly undertaken to enhance productivity of selected crops suitable for 

high potential areas, and the so called traditional/orphaned crops that are especially 

appropriate for low potential areas were abandoned (Mayes et al. 2012). However, most rural 

farmers were unable to afford the high input costs associated with such innovations, and 

production was affected by numerous biotic and abiotic constraints (Fader et al. 2013). These 

initiatives were, therefore, unsuitable, and increased the poverty gap for most subsistence-

based rural farmers. Before the turn of the century, the need to find cheaper alternatives to 

green revolutionary farming for subsistence farmers increased (Laswai et al., 2000). Research 

has since refocused its efforts on alleviating poverty in rural communities by using strategies 

relevant and indigenous to these communities. One such strategy employed was the re-

introduction of neglected underutilised crops such as bottle gourd (Schipmman, 2011).  

Bottle gourd is one of the most important crops in the cucurbitaceae family, although it is 

considered as a poor man’s crop due to the socio-economic restrictions governing its 

production and use. It has a pan-tropical distribution with regional economic importance and 

is used as a vegetable, container, musical instrument or float while its seeds are used for oil 

and protein. A lot of information is known on the medicinal aspects of bottle gourd (Milind 

and Satbir, 2011); however, its potential as a possible food security crop has been lowly 

documented. In nature, bottle gourd exhibits great morphological and genetic variability 

(Given, 1987). This alone could indicate its wide environmental adaptation (Koffi et al., 

2009). The plant also demonstrates an indeterminate growth habit when there is enough 

supply of water. This allows farmers to have a constant supply of fresh green leaves for 

consumption and animal fodder. Young immature fruits are consumed in the same manner as 

pumpkin fruits, while the seeds are a rich source of essential amino and fatty acids (Loukou et 

al., 2007; Koffi et al., 2009). Bottle gourd does not require complex field management 

practices. It grows well with small amounts of nitrogen fertiliser and it is a natural weed 

smother (Koffi et al., 2009). It is often intercropped with cereal crops and can act as a live 

mulch (Ouma and Jeruto, 2010). Given such benefits, it is surprising that bottle gourd is the 

cucurbit with the least amount of scientific research directed at enhancing utilisation, let alone 

productivity. One important aspect in crop production that is often overlooked by many 
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resource limited farmers is seed quality. There is limited and diffused information on seed 

technology of bottle gourd (van Molken et al., 2005; Yetiᶊir et al. 2008).  

Seed quality has been described as a multiple concept comprising several components (De 

Geus et al., 2008; Powell et al., 1984; Thompson, 1979). Hampton (2002) described seed 

quality as the standard of excellence in certain characteristics that will determine performance 

when the seed is either stored or sown. Seed germination capacity and vigour are, therefore, 

the key measures of seed quality (Bewley, 1997; ISTA, 2003). When varieties occur in 

variegated seed forms, it is important to determine whether or not such variegation affects 

seed performance in terms of germination and vigor. Many scholarly articles have reported on 

the effect of seed size, colour, seed coat morphology and dimorphism (single plant produces 

two seed types with different morphology) on seed quality in several species (Bewley, 1997; 

Jakobsson and Eriksson, 2000; Iossi et al., 2005; Camelia, 2011). It is difficult, however, to 

conclude that results obtained from these studies can be superimposed on bottle gourd, owing 

to the vast morphological variegation within a single species.  

Practical considerations have shown that large seeds have better germination capacity and 

vigour, and will produce more competitive seedlings than smaller seeds, hence high seed 

quality (Pettigrew and Meredith, 2009). The possible effect of seed size on seed quality 

(germination and vigour) is associated with the longer duration and the rapid provision of 

energy by the large endosperm to the developing seedling (Jakobsson and Eriksson, 2000). 

On the other hand, research has also demonstrated that there is an association between seed 

physical parameters such as seed coat thickness (de Souza and Marcos-Filho, 2001) and 

endosperm size (Chastain et al., 1995) with seed quality. Of interest is the effect of seed coat 

thickness on seed electrical conductivity, which is another measure of seed quality. 

Electrical conductivity test measures the amount of electrolyte leakage from seed during 

imbibition. This leakage of electrolytes is due to reorganization of membrane components and 

conformational changes occurring in cell membranes upon drying and ageing of seeds 

(Shereena and Salim, 2006). Increase in conductivity has been found to be correlated with a 

decrease in seed quality. The seed coat acts as a barrier restricting the diffusion of nutrients 

and electrolytes from the seed into the soil (Beresniewicz et al. 1995). However, this will 

depend on the seed coat integrity.  

Currently, bottle gourd is considered as a neglected underutilised species (NUS) with 

regional importance in Africa. It has immense benefits, but possible widespread adoption is 

restricted by the lack of evidence regarding its morphology, husbandry and nutritional 
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benefits for improving human nutrition. The objective of this study was to review the bottle 

gourd and evaluate possible variation in seed morphology of different landraces in relation to 

seed quality on the basis of germination and vigour.  

 

History of bottle gourd 

Bottle gourd (Lagenaria siceraria (Molina) Standl.), also known as calabash gourd or white 

flowered gourd plant, is a member of the Cucurbitaceae family, Cucurbitoideae sub family, 

and Benincaseae tribe (Richardson, 1972). The family Cucurbitaceae comprises 118 genera 

and 825 species (Schlumbaum and Vandorpe, 2012). The genus Lagenaria consists of five 

other wild species, namely L. brevifilora (Benth) Roberty, L. rufa (Gilg) C Jeffrey, L 

sphaerica E Mey, L. abyssinia (Hook. F.) C Jeffrey and L. guineensis (G Den) C Jeffrey, of 

which L. siceraria is the most cultivated (Erickson et al., 2005). Within the species siceraria, 

two morphologically distinct sub-species of bottle gourd have been recognised viz. L. 

siceraria ssp. siceraria and L. siceraria ssp. asiatica (Heiser 1979). Bottle gourd has a bi-

hemisphere distribution with regional and sub-regional importance (Yetiᶊir et al. 2008). 

Archeological findings have shown that the independent use and possible cultivation of the 

crop started from around 9 000 to 10 000 BP (before present) in the Americas (New world), 6 

000 – 10 000 BP in East Asia and 4 000 – 5 000 BP in Africa. Based on this archeological 

evidence, bottle gourd is said to be one of the first species domesticated by humans (Erickson 

et al., 2005; Clarke et al., 2006; Schlumbaum and Vandorpe, 2012).  

Bottle gourd has long attracted an interesting debate about its centre of origin (Harris, 

1967; Richardson, 1972). In that debate, there is strong evidence, that bottle gourd originated 

from Asia or, despite the lack of early remains but commonly thought, Africa south of the 

equator to be more precise (Whitaker, 1971). The centre of origin of a crop can be described 

as the area containing the highest number of the wild relatives of that crop and its subsequent 

domestication. Both continents contain wild species of bottle gourd; however, the discovery 

of an additional wild indigenous species (L. breviflora) in Zimbabwe in 2004 by Decker-

Walter et al (2004) reinforced the latter hypothesis of Africa as the centre of origin.   

The origins and subsequent dispersal of bottle gourd still perplexes many scientists. The 

crop is said to have reached Asia and the Americas about 10 000 to 8 000 years ago, possibly 

as a wild species whose fruits and seed had floated across the seas and oceans with the aid of 

currents (Decker-Walter et al. 2004; Erickson et al., 2005). Whitaker and Carter (1954) 

demonstrated this hypothesis to be possible through experiments that showed that bottle gourd 
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fruit still contained viable seeds even after floating in sea water for more than 7 months. Upon 

reaching Asia and the Americas, the wild bottle gourd is said to have evolved in to two 

subspecies, L. siceraria ssp. siceraria and L. siceraria ssp, asiatica, respectively (Schlumbaum 

and Vandorpe, 2012). It has been hypothesised that multiple domestications of bottle gourd 

should have occurred. Through DNA analysis and comparison, it is now certain that two 

separate events of domestication occurred (Clarke et al., 2006; Yetiᶊir et al. 2008; 

Schlumbaum and Vandorpe, 2012).The first in Asia around 10 000 BP, then in Africa at 

around 3 000 BP (Richardson, 1972). 

 

Botany  

Bottle gourd is an annual herbaceous plant with a prostrate or branching type growth habit. 

The leaves are alternate and variable, and tendrils (Fig.1) are almost always present. Flowers 

of L. siceraria are monoecious in nature, where solitary male and female flowers are found on 

different plant axis of the same plant, thus cross pollination is highly favorable.  

 

 

Fig. 1. Different bottle gourd plants. Seed shape of fruits displayed: A and D – Calabash; 

B – Cucumber; C – Bean shaped; E – Pumpkin; F and G – Cylindrical; H – Club. 

A B C D 

E F G H 
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Dioecious and andromonoecious sex forms bearing hermaphrodite flowers also exist in wild, 

non–cultivated types. Like most cucurbits, the sex ratio (male: female) for bottle gourd is high 

(Sivaraj and Pandravada, 2005). The proportion of male to female flowers has been shown to 

affect yield significantly. According to Desai (2011), environmental conditions (precipitation, 

temperature and light intensity) and various growth regulators (Auxins, ethylene, gibberellic 

acid etc) can be used to alter this ratio. 

Bottle gourd fruit vary widely in shape and size, and this is within or among cultivars 

(Sillitoe, 1983) (Fig. 1). According to Morimoto et al. (2005), among the six known species, 

L. siceraria exhibits the widest variations in fruit shape; these are either long, cylindrical, 

necked, oblong flat or round, conical pyriform to club shaped, while skin texture varies from 

warted to smooth (Fig. 1). Fruit size varies from 5 to 40 cm wide, and 20 to 90 cm long 

(Sivaraj and Pandravada, 2005). Seed forms also differ according to shape, size, presence or 

absence of frills and seed lines, and seed coat surface texture (Sillitoe, 1983). The large 

genetic variability in bottle gourd is a much desirable trait as it also reflects on its wide 

adaptation it possesses (Sillitoe, 1983).  

 

Uses and opportunities as a food security crop 

Bottle gourd is mainly grown as a vegetable for human consumption. However, hard dry shell 

is often used in utensil and instrument making, hence calabash gourd (Loukou et al., 2011). 

Furthermore, in India different plant parts, especially the fruit juice, can be used as medicine 

to cure stomach elements (Haque et al., 2009). In many parts of the world the young green 

fruit is a popular cooked vegetable (Prasad and Prasad, 1979). In Southern Africa, the leaves 

are commonly consumed as a vegetable relish and at times mixed with other vegetable plants. 

They can also be added fresh to maize porridge (Grubben and Dento, 2004). The leaves can 

also be dried and stored for later use in the off season. In Asia, bottle gourd is used as 

rootstock for watermelon (scientific name) against soil-borne diseases and low soil 

temperature (Yetiᶊir et al. 2008). In West Africa, mature seed of bottle gourd are roasted and 

ground to a paste, which is used to thicken sauces (Loukou et al., 2011). In Botswana, 

Zimbabwe and South Africa, oil is extracted from the seed and used as an alternative to 

vegetable oil (Grubben and Dento, 2004) while the defatted cake can be used as a protein 

supplement. According to Loukou et al. (2011), the untapped potential of bottle gourd lies in 

the use of its seed kernel in the food and livestock feed industry; it is a rich source of oil 

(45%) and protein (35%).  
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In Southern Africa, similar to many developing countries, there is a high incidence of 

protein-energy malnutrition (PEM) in rural and urban populations, with the consumption of a 

predominantly maize based diet. It has been observed that there are approximately 38.6 

percent stunted, 28.4 percent underweight, and 8 percent wasted children under 5 years old, 

all symptoms of kwashiorkor and marasmus. Although modern science has been able to boost 

the proportion of essential amino acids (lysine and tryptophan) in maize, the penetration into 

rural communities is still slow. Due to the inadequacy of maize based diets in supplying much 

needed essential amino acids the use of bottle gourd seed or defatted seed cake could boost 

availability as it contains most if not all of the essential amino acids.  

 According to Axtell and Fairman (1992), oil extracted from bottle gourd seed is rich in 

fatty acids (high in essential fatty acids, chiefly linoleic acid) and sterolic compounds (eg 

spinasterol) and is comparable to semi-siccative oils such as sunflower or grapeseed oil. The 

human body is not able to produce essential fatty acids on its own, so it is necessary that one 

consumes a diet rich in these crucial building blocks in order to maintain a healthy body. The 

use of oil extracted from bottle gourd seed could possibly provide resource limited farmers, 

and more importantly pregnant and lactating women, and children under 5 years old, with 

much needed essential fatty acids. Therefore, bottle gourd has potential to contribute to food 

security and plug dietary gaps. 

Other than the provision of essential fatty and amino acids, the young edible fruits of 

bottle gourd are rich in dietary fiber with very low fat and cholesterol levels and have about 

80% water content in its flesh. It contains some amount of iron content and is rich in vitamin 

B and vitamin C and also contains sodium, potassium and essential minerals as well as trace 

elements. High sodium and potassium content makes bottle gourd an excellent vegetable for 

hypertension and hypertension patients (Axtell and Fairman, 1992). 

Livestock also play a significant role in most small-scale farming systems throughout the 

world. Despite the importance of livestock, poor livestock nutrition is a common problem in 

developing countries, and a major factor affecting the viability of livestock industries in these 

countries (Chikwanha, 2006). Observations in rural communities of Zimbabwe have shown 

that leaves, fruit and seed of bottle gourd are being used to supplement livestock grazing and 

feed resources (Chikwanha, 2006). Cattle have been observed consuming young tender leaves 

of bottle gourd, while goats and pigs prefer the fruit (Chikwanha, 2006). In the wake of 

increased rural malnutrition, rural farmers still have to cope with high cost of livestock feed, 

depleting pasture lands and water resources. Increasing production and use of bottle gourd to 
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compliment and augment feed could assist in increasing availability of nutritious feed to 

livestock, thus increasing food security within these regions.   

On the other hand, bottle gourd, like all cucurbits, produces trace quantities of complex 

substances known as cucurbitacins, which produce a distinctive aroma and help protect the 

plant from insects and animal predators (Chandra, 2010; Puri et al., 2011; Sukhlecha, 2012). 

Cucurbitacins are bitter compounds and have a tetracyclic triterpenoid structure. Bitter bottle 

gourds have abnormally high levels of these cucurbitacins than the less bitter types. The 

amount of bitter juice that is consumed decides the level of toxicity. The ingestion of 50 ml of 

bitter bottle gourd juice can cause complications, while over 200 ml has proved to be fatal 

(Chandra, 2010). Cucurbitacins present in the juice results in gastrointestinal toxicity which 

causes abdominal pain, vomiting, diarrhea, hypotension and upper gastrointestinal bleed. 

Though toxic to animals, the bitter taste is said to deter humans from consuming large 

amounts, thus, prevents poisoning. Higher levels of these cucurbitacins are triggered by 

environmental stress, like wide temperature swings, low pH, high temperature, too little 

water, low soil fertility and improperly stored or over matured fruits (Chandra, 2010; Puri et 

al., 2011; Sukhlecha, 2012). Therefore, it is important to have an appreciation of the ecology 

where bottle gourd is found before introducing it to new locations so as to avoid increasing 

the toxicity 

. 

Ecology and productivity  

As stated earlier, adaptation and distribution of bottle gourd is bi-hemisphere and therefore 

grows well within the tropical and temperate regions of Africa, Indo-Malayasia, the Americas 

and neo-tropics. Sillotoe (1983) and Grubben and Dento (2004) observed good adaptation in 

high elevated sub-tropical, tropical and temperate climates, as well as low-lying semi-arid to 

arid climates. Bottle gourd grows well in areas with rainfall of between 400 – 1 500 mm per 

annum; however, moderate, rather than excessive soil water is desired for good harvest 

(Haque et al., 2009). Therefore, bottle gourd is intolerant of water logging. According to 

Grubben and Dento (2004), bottle gourd grows well under warm temperatures (25 – 35°C). 

Under frost–free, low temperature conditions it will also grow well provided the plants have 

attained sufficient vegetative growth before the onset of cool weather. Optimum germination 

temperature is between 20 and 25°C. Temperatures below 15°C and above 35°C reduce the 

germination rate (Sivaraj and Pandravada, 2005). This cucurbit has been observed to do well 

in a range of soils, which are fertile and well–aerated. Flowering is highly sensitive to 
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photoperiod. Short days, coupled with low night temperatures and high relative humidity, 

promote the development of male flowers, while the reverse promotes female flowers (Haque 

et al., 2009). Agronomic practices that promote the production of more female flowers than 

male flowers could increase yields; however, Haque et al. (2009) observed less seed set due to 

the reduction of pollen. It is, therefore, important to determine the optimum ration of male and 

female flowers to optimise fruit and seed set. 

Not much information is available on the production of bottle gourd, especially in the 

southern African context where women are the main custodians of its husbandry. The FAO 

provides combined production data for pumpkin, squashes and gourds; as such there is 

difficulty in ascertaining the exact amount of global bottle gourd production. In Bangladesh, 

Haque et al. (2009) observed yields of 35 t/ha in sub-tropical to tropical conditions and less 

than 20 t/ha in semi–arid conditions. Hybrid varieties in Asia have recorded yields of more 

than 40 t/ha under optimum conditions, while local landrace varieties produced less than 25 

t/ha. In view of changing climatic conditions, serious poverty and malnutrition, there is a need 

to unlock the potential of neglected underutilised species, through the generation of 

information on general crop husbandry.  

As a way of understanding the amount of diversity for bottle gourd, different landrace 

selections need to be collected and stored in regional seed gene banks. This will allow genetic 

preservation and ease access for researchers. In the context of Africa, research is lacking on 

agronomic management of crop; fertiliser requirements, plant densities, planting dates and 

water requirements over different agro-ecological zones. Other areas of research that could be 

looked into include the efficiency of bottle gourd as live mulch for weed suppression; its 

water utilisation and effect of drought stress on growth, development and yield. It is also clear 

that there is a dearth in information on seed technology of bottle gourd. 

The desire of any farmer is to see the germination and growth of all seeds planted in a 

field. This way the farmer is assured to obtain reasonable yield if all growing conditions are 

optimal. This is not always the case with resource limited farmers practicing agriculture in 

sub-optimum conditions while growing poor quality seed. According to numerous researches, 

the main source of plant material grown by resource limited farmers is seeds that have been 

saved from the previous season or exchanged. These sources of seed are often of inferior 

quality in terms of genetic purity and germination, leading to poor crop stands, lower yield 

and food insecurity. Although bottle gourd is an ancient crop, there is little information on its 
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seed quality. Since seed is important for crop establishment, it is important to study it as a 

major element of an underutilised species.  

 

Seed quality 

Seed quality has been described as a multiple concept comprising several components (De 

Geus et al., 2008; Powell et al., 1984; Thompson, 1979). Hampton (2002) described seed 

quality as the standard of excellence in certain characteristics that will determine seed 

performance when the seed is either stored or sown. According to De Geus et al. (2008) it is 

the physiological (seed germination ability and seed vigor) and genetic quality. Thomson 

(1976) included aspects of genetic purity, analytical purity (the absence of contaminants from 

foreign species and matter), pure seed, healthy seed (the absence of seed borne pathogens), 

correct moisture content and uniformity in mixing and blending of seed size. On the other 

hand, Burgrass and Powell (1984) stated that seeds with poor quality will show symptoms of 

typically aged seed such as low viability, reduced germination, poor emergence and seedling 

growth, and poor tolerance to suboptimum conditions. From all these components of seed 

quality, Odindo (2008) stated that germination capacity and physiological vigour are the two 

most important indicators of seed quality, because they are intrinsic properties of the seed. 

The effect of different seed morphologies on seed quality has been studied; however, the 

main focus was seed poly-morphism (single plant produces two or more seed types with 

different morphology) and seed quality. There is a dearth of information on seed quality for 

different varieties belonging to the same sub-species possessing different seed forms such as 

bottle gourd. Seed morphology is determined both by seed genotype and parental 

environment (Lacey and Herr, 2000). Most quality characteristics of seeds have been 

described as polygenically inherited, and will, therefore, be influenced by the environment, to 

a large extent. For example, Ye et al. (2003) observed a genotype by environment interaction 

on seed quality of cotton, Krishnan and Suryarao (2005) in rice varieties, while Cowling and 

Tarr (2004) observed these differences in lupin. Adebisi and Ajala (2006) observed significant 

seed quality differences between different cultivars of sesame harvested from plants grown in 

diverse populations. 

Seed quality of landraces/populations or open pollinated varieties (OPVs) has been shown 

to be of a lower standard than hybrid seed due to differences in genotype composition. 

Mabhaudhi and Modi (2010) observed better seed quality for hybrid than landrace varieties 

under optimum conditions, while the reverse was observed under sub-optimum conditions. 
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Wongvarodon and Naulkong (2006) observed better germination of Bambara landraces than 

hybrid seed when accelerated aging had been induced. Idikuta et al. (2012) observed better 

germination and vigor for popcorn landrace varieties when compared with hybrid seed under 

salt and high temperature conditions. Therefore, for a cross pollinated crop like L. siceraria, 

differences in seed quality can be expected between plants, fruits within the same plant and 

seeds at different positions within the fruit. While genetic makeup determines the base line 

potential of seed quality, other heritable factors, such as seed size have been found to have an 

equal role to play towards enhanced seed quality. 

Theoretical considerations predict that large seeds will yield better and more competitive 

seedlings than smaller seed, hence high seed quality (Gross, 1984; Marshall, 1986; McGinley 

et al., 1987; Lehtila and Ehrlen, 2005; Pettigrew and Meredith, 2009). According to Soltani et 

al. (2002), the possible effect of seed size on seed quality (germination and vigour) is 

associated with the duration and the rapid provision of energy to the developing seedling. 

That is, there is a higher seed reserve utilisation rate in bigger seeds than small ones.  Chastin 

et al. (1996) suggested that larger seeds produce seedlings with better early growth and 

increased competitive ability against weeds and pests. Amico et al. (1994) concluded that 

higher vigour that occurred in larger seeds was due to the larger food reserves in these seeds. 

They also noted a positive linear relationship between seed mass and emergence in the field. 

Baalbaki and Copeland (1997) reported that in wheat, seed size not only influenced 

emergence and establishment but also affected yield components and ultimately grain yield. A 

similar observation was made by Arunachalam et al. (2003), while working with the tree 

species, and this was attributed to the larger food reserves in the larger seeds. Also, these 

results indicated that seed size had greater effect on percent than index of germination and 

emergence. With increased seed size, higher germination and emergence were determined in 

triticale (Kayden and Yagmur, 2008), but besides higher germination percentage declined 

median germination time were determined in some forage plants (Larsen and Andreasen, 

2004). In another study, Willenborg et al. (2005) stated that germination was increased with 

increasing seed size in oats (Avena sativa L.). In pea (Pisum sativum L.) cultivars with low 

100 seed weight had higher germination percentage than larger seed ones (PekÕen et al., 

2004).  

Seed size is considered as one of the least plastic traits of seed morphology (Gross, 1984), 

and according to Hossain et al (2010) its heritability varies for different species. For example, 

the heritability in Medicago sativa was 0.14, while Hevea brasiliensis had 0.90. Mendez 

(1997) observed variation in seed size and quality between and within plant species, within 
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plants for inflorescences produced at different growth stages, and for seeds developing at 

different positions within the fruit. According to Vaughton and Ramsey (1997), such evidence 

is contrary to the theoretical concept that the mother plant will partition all resources equally 

to developing seed. Causes of variation could be due to the relative position of the fruit 

(Mendez, 1997), differences in nutrient supply by mother plant to developing seeds, often 

related to genetic quality of the seed (PekÕen et al., 2004), parental/sibling conflict and 

sibling rivalry (Benuelos and Obeso, 2003) and parent fitness (Leishman, 2001). Creating 

trade-offs between seed size and seed number (Gross, 1984; Venable, 1992; Jakobsson and 

Eriksson, 2000).  

Seed is a key input in crop production. All cultural practices are designed to exploit the 

full genetic and physical potential of seeds sown. No agricultural practices (for example 

tillage, cultivation, weeding, fertiliser, pest and disease control) can increase crop yields 

beyond the limit set by the seed quality. Seed is therefore the baseline for success or failure of 

the crop planted. To increase available information on bottle gourd and to translate effective 

breeding programs and agronomic practices, it is necessary to obtain information on seed 

morphology as it may affect seed quality (Morimoto et al. 2005; Costa et al. 2011). This 

section sort to address the second half of the objective which was to evaluate the magnitude of 

variation in seed morphology of different bottle gourd landrace selections and its effect on 

seed quality on the basis of germination, vigour and EC.  

 

MATERIAL AND METHODS 

Plant material 

Six mature fruit of bottle gourd landraces were randomly (without any order or design) 

collected from farmers’ fields in Richards Bay (28°19’S; 32°06E; 30 m above sea level 

(masl)), in northern KwaZulu-Natal, South Africa and Chimbwanda East (18°19’S; 31°12’E; 

1484 masl), in Mashonaland East province, Zimbabwe. Before the experiment, seeds were 

extracted from each fruit and surface sterilised by immersing them in a 5% solution of 

sporekill for 5 minutes. Seeds were then dried at room temperature (21 to 28oC) for 24 hours. 

Table 1 gives a brief description of the landrace selections and agro-ecological characteristics 

of where they were collected while Fig. 2 is a picture of seeds for the different landrace 

selections. 
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Table 1 Description of the bottle gourd landraces and agro-ecological characteristics of 

where they were collected 

 

Landrace Fruit shape Shell 

texture 

Fruit 

length (cm) 

Location Climate 

CAL Calabash Smooth 45.6 Richards Bay Sub-tropical 

ZIM 1 Oval Smooth 29.85 Chimbwanda east Semi-arid 

ZIM 2 Spherical Warted 26.96 Chimbwanda east Semi-arid 

S Pumpkin shaped Smooth 9.49 Richards Bay Sub-tropical 

C Club shaped Warted 24.97 Richards Bay Sub-tropical 

R Spherical Smooth 11.55 Richards Bay Sub-tropical 

 

2.2 Experimental design and data collection 

All experiments where laid out in a randomised complete block design with three replicates at 

the University of KwaZulu-Natal’s (UKZN) seed technology laboratory. The number of seeds 

used per replicate varied for each experiment. Details of each experiment are given below. 

 

Seed morphology 

Ten seeds of each landrace selection were randomly selected and the following quantitative 

morphological parameters were determined: seed length (SL), width (SW), size (SZ = SL x 

SW), mass (SM), seed coat mass (SCM), seed coat thickness (SCT), embryo length (EL), 

embryo width (EW), embryo size (EZ = EL x EW), and embryo dry mass (EDM). Seed and 

embryo lengths and widths were measured using a digital vernier calliper (VT Zero (limited), 

while mass was measured using a digital scale. Seed coat thickness was determined using a 

Zeiss EVO scanning electron microscope (SEM) in a vapour pressure mode (Chakrabarti et 

al. 2003).  
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Fig. 2. Pictures of seeds for the different landrace selections (ZIM1, ZIM2, R, S, C and 

CAL).  

 

Lignin was determined using the modified acetyl bromide procedure of Liyama and 

Wallis (1988) except that three replicates of 20 mg samples each were weighed into 4-ml 

brown vials and 2.0 ml of 25% acetyl bromide containing perchloric acid (70%, 0.08 ml) was 

added. After digestion, the samples were dissolved in acetic acid and then transferred to 50 ml 

volumetric flasks containing 2M sodium hydroxide (5 ml) and acetic acid (12 ml). The flasks 

were made to the mark with acetic acid.  

 

Seed quality test 

For the standard germination test, three replications of 20 seeds per replicate were germinated 

between double layered moistened paper towels (ISTA, 2003) in an illuminated germination 

chamber set at 20°C/30°C (16 hours day/ 8 hours night) for 14 days (AOSA, 1992). 

Germination counts were taken daily, with radicle protrusion being the criterion used to 

indicate germination. Final germination count was based on visual observation of normal 

seedlings according AOSA (1992) guidelines. On day 14, root and shoot lengths, root: shoot 

ratio and seedling fresh mass were measured. Fungi infection was visually scored with 1 
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representing no infection and 5 representing heavily infested. Germination velocity index 

(GVI), was calculated based on a formula by Maguire (1962): 

GVI = G1N1 + G2N2 + …… + GnNn 

Where:  Gn is the number of germinated seeds in count n  

  Nn is the number of sowing days at n count. 

Seed electrical conductivity was determined using three replicates of initially weighed 20 

seeds per treatment following imbibition in 100 ml of de-ionized water at 25°C for 24 hours. 

Following this, electrical conductivity (EC) was measured using an EC meter (Hanna H1 

991300).  

Imbibition was done on a seed testing water bath (Grant Instruments, England). Ten seeds 

per landrace selection were placed in a completely randomised design experiment with three 

replicates per selection. Seeds were imbibed for 0, 15, 30, 60, 120, 240, 720, 840, 960, 1440, 

2160, 2880, 4320, 5760 and 7200 minutes and the percentage change in seed mass during 

imbibition was measured at each time interval. 

Data analysis 

All data were subjected to analysis of variance (ANOVA) using GenStat (Version 14, VSN 

International, UK). Means of significantly different variables were separated using least 

significant differences (LSD) at a probability level of 0.05.  Data on morphological traits were 

then subjected to principal component analysis to establish traits that contributed to seed 

variation. Raw data were standardised to give a mean of zero and a standard deviation of +/- 

1. This was followed by computing and construction distance matrix using variance-

covariance coefficients. Eigen values and eigen vectors of the variance-covariance matrix 

were then computed to generate PC1 and PC2 scores. The landrace selections were then 

plotted on a bi-plot using the first two principal component scores (PC1 and PC2). Correlation 

analysis was done on selected variables to establish relationships.  
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RESULTS  

Seed morphology 

 Seed and embryo length 

Significant differences (P<0.001) were observed across the landrace selections for both seed 

and embryo length (Fig. 3). Landrace selection CAL had the longest seed length and this was 

followed by ZIM 2. The shortest landrace selections were R, C and S, respectively. A similar 

trend of length was observed in embryo length (Fig. 3). 

 

Fig. 3. Seed and embryo length of selected bottle gourd landrace selections (ZIM1, 

ZIM2, R, S, C and CAL). Landrace selections significantly different from each other for 

seed and embryo width at P < 0.001; Mean values ± Standard error of means of six 

landrace selections. 

 

3.1.2 Seed and embryo width 

Highly significant (P < .001) and significant (P = .04) differences were observed among the 

landrace selections for seed width and embryo width, respectively (Fig.4).  Landrace selection 

CAL had the widest seeds and this was followed by R, ZIM 1 and ZIM 2; and these were not 

significantly different from each other (Fig.4). The narrowest seeds belonged to landrace 

selection R. Similar to seed width landrace selection CAL had the widest embryo. Landrace 

selection ZIM 1 had the narrowest embryo and its width was not significantly different from 

those of ZIM 2, R, C and S. 
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Fig. 4. Seed and embryo width of selected bottle gourd landrace selections (ZIM1, ZIM2, 

R, S, C and CAL). Landrace selections significantly different from each other for seed 

and embryo width at P < 0.001 and P < 0.05, respectively; Mean values ± Standard error 

of means of six landrace selections. 

 

3.1.3 Seed and embryo size 

There were highly significant (P < .001) and significant (P = .02) differences observed across 

the landrace selections for seed size and embryo size, respectively (Fig.5). High standard 

deviation was also observed for the landrace selection for seed and embryo size (46.23 and 

22.36, respectively). As expected, landrace selection CAL had the largest seed size and it was 

followed by ZIM 2. The landrace selection with the smallest seed size was C (Fig.5). 

Landrace selection CAL also had the largest embryo size and this was also followed by ZIM 

2. There were no significant differences of embryo size between landrace selections C, R, S 

and ZIM 1 (Fig.5) while significant differences were observed for ZIM 2 and CAL. 
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Fig. 5. Seed and embryo size of selected bottle gourd landrace selections (ZIM1, ZIM2, 

R, S, C and CAL). Landrace selections significantly different from each other for seed 

size at P < 0.05; Mean values ± Standard error of means of six landrace selections. 

 

3.1.4 Seed, embryo and seed coat weight 

Significant differences (P = 0.03) were observed among the landrace selections for seed, 

embryo and seed coat weight (Fig.6). Results of the analysis showed that landrace selection 

CAL had the heaviest seeds while there were no significant differences in seed mass for the 

other landrace selections. Similarly, CAL had the heaviest seed coat but it showed no 

significant difference with selections ZIM 1 and C. What was interesting to note was that the 

embryo mass of landrace selection R was similar to that of CAL, although it had the lightest 

seed coat and had the smallest embryo size.  
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Fig. 6. Landrace selections significantly different from each other for seed massat P < 

0.05; Mean values ± Standard error of means of six landrace selections. 

 

The proportion of seed coat mass contributing towards total seed weight differed for some 

landrace selections while it was somewhat constant in others (Fig.7). Seed coat for landrace 

selection R contributed 53% towards total seed mass, while 47% was contributed by the 

embryo. Seed coats of landrace selections C, ZIM 2, CAL and S contributed lightly towards 

the total seed mass with 30%, 33%, 35% and 37%, respectively, while embryos contributed 

70%, 67%, 65% and 63%, respectively (Fig.7). 
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Fig. 7. Percentage contributions of seed coat and embryo mass to total seed mass for six 

bottle gourd landraces (ZIM1, ZIM2, R, S, C and CAL). 

 

3.1.5 Seed coat thickness 

Highly significant differences (P < .001) were observed among the selections for seed coat 

thickness (Fig.8). High standard deviation of 39.88 was also observed for seed coat thickness 

across the landraces. Landraces with the thickest seed coats were Zimbabwean selections ZIM 

1 and ZIM 2 (Fig.8). And these selections were not significantly different from each other. 

Landrace selections with the thinnest seed coats were S and C and these were not significantly 

different from the other South African landrace selections. 
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Fig. 8. Seed coat thickness of selected bottle gourd landrace selections (ZIM1, ZIM2, R, 

S, C and CAL). Landrace selections significantly different from each other for seed coat 

thickness at P < 0.001; Mean values ± Standard error of means of six landrace 

selections. 

 

3.1.6 Total fibre content in seed coat 

Significant differences (P = .03) for total fibre content were observed among landrace 

selections (Fig.9). Results show that landrace selection C had the least amount of fibre in their 

seed coats and selection S had the most (Fig.9). 

  

 

Fig. 9. Total fibre content in seed coats of selected bottle gourd landrace selections 

(ZIM1, ZIM2, R, S, C and CAL). Landrace selections significantly different from each 

other for total fibre content in seed coat at P < 0.05; Mean values ± Standard error of 

means of six landrace selections. 
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3.1.7 Principal component analysis 

Results of the principal component analysis for the 10 morphological traits indicated that the 

first two PCs explained 98.64% (PC 1: 65.68% and PC 2: 34.16) of the variation among the 

landrace selections. Seed size had the largest contribution to PC 1 and this was followed by 

EZ and SCTH. On the other hand, SCTH had the largest contribution to PC 2 and this was 

followed by SZ and EZ (Table 3).  

 

Table 3. The first two principal component scores of 10 measured traits on six landrace 

selections of bottle gourd (ZIM1, ZIM2, R, S, C and CAL).  

TRAIT  PC1 PC1 

EL1 (mm) 0.046 0.013 

EW (mm) 0.008 0.009 

EZ  0.390 0.223 

EDM (g) 0.003 0.004 

SL (mm) 0.056 0.011 

SW (mm) 0.022 0.006 

SZ 0.855 0.263 

SWT (g) 0.008 0.006 

SCTH (μm) 0.333 -0.939 

SCM (g) 0.007 0.001 

1 Embryo length (EL), embryo width (EW), embryo size (EZ = EL x EW),  embryo dry mass 

(EDM), seed length (SL), width (SW), size (SZ = SL x SW), mass (SM), seed coat mass 

(SCM) and seed coat thickness (SCTH). 

 

Fig.10 shows principal component (PC) analysis plot of first two principal components 

depicting relationships among bottle gourd landrace selections. The selections were separated 

into 3 distinct groups. In a clockwise direction, the first cluster was a single landrace selection 

group which consisted of CAL. The following cluster comprised of the two Zimbabwean 
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selections (ZIM 1 and ZIM 2) while the final cluster had the three local landraces (C, R and S) 

(Fig.10). 

 

Fig. 10. Principal component (PC) analysis plot of first two principal components 

depicting relationship among bottle gourd landrace selections (ZIM1, ZIM2, R, S, C and 

CAL). 

 

Looking at the trait that contributed to seed variation, according to PC 1 and PC 2 at a cluster 

level, it is evident that the first cluster had thinner seed coats and had smaller seed and 

embryo (Fig.10). The second cluster comprised of landrace selections with the thickest seed 

coats, but had moderately larger seed and embryos than those in the first cluster (Table 4). 

The landrace selection in the third cluster also had a thinner seed coat, though thicker than the 

first cluster, but had the largest seed and embryo sizes (Table 4). 

 

Table 4. Characteristics of landrace selection cluster groups based on morphological 

traits that contributed much variation to seed.  

Trait  

Clusters 

1 2 3 

SCTH2 (μm) 442.22 521.84 463.53 

SZ (g) 95.11 126.43 213.36 

EZ (g) 60.20 68.04 116.86 

2SCTH – seed coat thickness, SZ – seed size, EZ – embryo size. 
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Seed quality 

Seed germination 

Although data was not subjected to any statistical analysis, germination percentage was 

different across the different landraces. Germination of landrace selections started on the fifth 

day of incubation with large number of seeds germinating for landrace selection C and ZIM 2 

(Fig.11). Seeds continued to germinate steadily until they reached their peak of 84% on day 

12. For R, CAL and ZIM 1, fewer seeds germinated on day 5 and the maximum numbers of 

germinated seeds were recorded on day 10 for landrace selection R, day 11 for S and day 12 

for ZIM 1 and CAL (Fig.11).  

 

Fig. 11. Progress in daily germination percentages of landrace selections (ZIM1, ZIM2, 

R, S, C and CAL). (ZIM1, ZIM2, R, S, C and CAL) during the first 14 days. 

 

3.2.2 Electrical conductivity 

There were significant differences (P = .03) observed for EC across the landrace selections. 

High EC values were observed for landrace selection R and this was followed by ZIM 2. CAL 

had the least EC and this was not significantly different from those of ZIM 1, S and C 

(Fig.12).  
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3.2.3 Fungi scores 

There were significant differences (P = .05) observed for fungi score across the landrace 

selections. High fungi scores were observed for CAL, ZIM 1 and R while ZIM 2, S and C had 

low fungi scores (Fig.12). 

 

3.2.4 Germination velocity index 

There were significant differences (P = .03) observed for GVI across the landrace selections. 

Results showed that CAL and ZIM 1 had the lowest GVI. The rest of the landrace selections 

had higher GVI and these were not significantly different from each other (Fig.12). 

 

3.2.5 Seedling dry mass 

There were significant differences (P = .05) observed for seedling dry mass across the 

landrace selections. Results showed that landrace selection CAL had the heaviest seedling dry 

mass. Landrace selection C had the lowest seedling dry mass and it was not significantly 

different from R and S. 
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Fig. 12. Electrical conductivity, seedling mass, germination velocity index and fungi 

scores of different landrace selections (ZIM1, ZIM2, R, S, C and CAL).  Mean 

values ± Standard error of means of means of six landrace selections. 

 

3.2.6 Seed imbibition 

Results of the imbibition experiment showed that the rate of imbibition differed across 

landrace selections and at different times measured (Fig.13). The rate of imbibition for 

landrace selections R and S was higher than the other varieties as explained by the largest 

seed mass increment at the shortest time. Landrace selections S, ZIM 1, ZIM 2, and CAL had 

somewhat the same imbibition rates from the beginning of the experiment till 7200 minutes 

(Fig.13). What was interesting to note was that landrace selection C actually lost mass at two 

time intervals (15 and 60 minutes of imbibition). Similarly, CAL lost seed mass 960 minutes 

into the experiment of which it there afterwards (Fig.13). 



66 

 

 

Fig. 13. Percentage change in seed mass of imbibed landrace selections (ZIM1, ZIM2, R, 

S, C and CAL). Percentage change of seed mass was recorded at 15, 30, 60, 120, 240, 

720, 840, 960, 1440, 2160, 2880, 4320, 5760 and 7200 minutes after incubation on a water 

bath table. 

 

Correlations among morphological traits and seed quality indices 

Positive and significant correlations were observed for most seed morphological traits. 

Embryo length (EL) was positive and significant correlations with embryo width (EW) (r = 

0.872, P = .02), embryo size (EZ) (r = 0.980, P = .001), seedling mass (r = 0.920, P = .012), 

seed length (SL) (r = 0.993, P < .001), seed width (SW) (r = 0.914, P = .013), seed size (SZ) 

(r = 0.990, P < .001). Embryo width had positive and significant correlations with EZ (r = 

0.951, P = .011), SL (r = 0.818, P = .012), SW (r = 0.844, P = .011), seed mass (SWT) (r = 

0.834, P = .012) and SZ (r = 0.880, P = .012). Embryo size had significant and positive 

correlations with SL (r = 0.955, P < .001), SW (r = 0.915, P < .001) and SZ (r = 0.978, P < 

.001).  

A negative but significant correlation was observed between embryo mass and root length 

(r = -0.850, P = .04). Embryo size had a positive and significant correlation with seedling 

mean mass (SDLWT). Although fungal infection was not an experimental treatment, 

observations showed that it had a negative and significant effect on germination (GERM %) (r 
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= -0.819, P = .04), germination velocity index (GVI) (r = -0.953, P = .012), SWT (r = -0.811, 

P = .013) and shoot length (r = -0.877, P = .02). Seed mass was positive and significantly 

correlated with GERM% (r = 0.939, P < .013) but was negatively correlated with GVI (r = -

0.863, P = .03). On the other hand, GVI had a negative and significant correlation with seed 

coat mean mass (SCWT) (r = -0.875, P = .014) and a positive and significant correlation with 

shoot length (r = 0.881, P < .001). Shoot length was positive and significantly correlated to 

root length (r = 0.0.842, P = .012); but it was negatively correlated to seed mass (r = -0.990, P 

< .001). Seed size was positive and significantly correlated with SDLWT (r = 0.948, P = 

.013). Imbibition was significant and negatively correlated to seed coat thickness (r = -0.650, 

P = .04) and seed germination (r = -0.500, P = .05). On the other hand, imbibition had a 

significant positive correlation to total fibre content of seed coats (r = 0.63, P < .04) and EC (r 

= 0.643, P = .04). 

 

DISCUSSION 

Morphological characterisation has been used by many scientists as a method of 

distinguishing differences among plant species populations. Knowledge of existing variation 

and associations between various morphological traits is vital for many evaluation 

experiments as it allows the identification of superior performing genotypes (Morimoto et al. 

2005; Costa et al. 2011). Based on results obtained in this study, seed for landrace bottle 

gourd selections portrayed a wide range of diversity in terms of the quantitative traits 

measured. These results are similar to those obtained by Decker-Walters (2001), Yetiᶊir et al. 

(2008) and Morimito et al. (2005) who observed large variation in seed morphology across 

different bottle gourd landrace selections.  

Based on traits contributing most to seed variation, the observed results for standard 

deviation corresponded well with those of principal component analysis, which lead to the 

clustering of the landrace selections by provenance and seed size. The observed results on 

seed coat thickness are similar to those observed by Nooden et al. (1985) in soybean, who 

associated seed coat thickening with adaptation strategies to stress conditions such as 

moisture and heat. Seeds obtained from Zimbabwe were produced in semi-arid conditions 

whereas those obtained in Richards Bay were from a more sub-tropical climate. On the other 

hand, it was observed that thicker seed coat had negative effect on root: shoot ratio. 

According to Bewley (1997) thick seed coats can act as a barrier against radicle protrusion. 

Radicles will therefore, take longer to emerge from the seed coat thence appearing shorter and 
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reducing root: shoot ratio. During periods of low soil moisture, reduced root: shoot ratio can 

have a negative effect on seedling establishment since few roots occupy a smaller volume of 

soil, thus extracting less water. Such landrace selections can succumb more to the negative 

effect of drought and produce poor quality seedlings. This would suggest that thinner seed 

coats are more desirable for farmers practicing agriculture in water limited environments 

wanting faster and more uniform germination since seeds can quickly develop radicles that 

will absorb water faster before it is lost through negative water fluxes (drainage and 

evaporation).  

Still on seed coat, the observed relationship between this trait and EC was similar to that 

observed by Borji et al. (2007) who showed the positive interaction between the two 

variables. Borji et al. (2007) demonstrated that an increase in seed coat thickness resulted in 

an increase in the availability of physiochemicals (water soluble compounds) within the seed 

coat that play an important role in the seed and its integrity when soaked in water. Therefore, 

seeds with thicker seed coats exude more physiochemicals thus giving off a high EC value. 

However, contrary to norm, EC was not a good indicator of seed quality. This could suggest 

that, for seed with thick seed coats, EC should always be accompanied by other seed quality 

tests to determine overall quality. 

The observed differences in imbibition rates is similar to results obtained by Asiedu et al. 

(2000) who observed different rates in different soybean selections. According to Borji et al, 

(2007) the rate of water uptake is proportional to the diffusivity of water, which is determined 

by factors such as chemical composition, microstructure, moisture and temperature of the 

seed. Seed coat fibre, namely lignin has been found to affect permeability of seed; therefore, 

acting as a physical barrier affecting imbibition rate. The observed interactions between 

imbibition rate and seed coat fibre were also observed by Asiedu et al. (2000) and Sousa and 

Fihlo (2002). This could imply that seed treatments such as scarification with acid or abrasion 

could assist in increasing water absorption. On the other hand, other factors that should also 

be considered as factors that could have had an effect on imbibition are temperature of seed 

and water, pore size, density and distribution, seed coat colour, solute concentration and initial 

moisture content of the seed, which have all been found to be positively correlated with 

imbibition.  

The observed changes in seed mass during imbibition are similar to those observed by 

Alencar et al. (2012) who observed its decline in Cereus jamacaru D.C. ssp. jamacaru 

(Cactaceae). According to Doman et al. (1982), cotyledons of most epigeic seedlings 
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differentiate into photosynthetic organs after the hydrolysis and mobilisation of stored 

reserves. During this time of hydrolysis and mobilisation the seed still gets its energy. This 

has been shown to result in a reduction of total embryo mass but not necessarily size. If seed 

reserves in the cotyledons are utilised at a faster rate than the rate of differentiation into 

photosynthetic organs, seeds could die before germination. With regards to bottle gourd, its 

embryo is rich in lipids and nitrogenous compounds. According to Alencar et al. (2012), 

lipids were the main reserve mobilised during germination because their levels were strongly 

reduced after seed germination, while proteins were the second most utilised reserve in this 

process. It would be interesting to establish the changes of biochemical composition of bottle 

gourd embryo in relation to the developing embryo in the seed axis.   

Similar to observations by Nik et al. (2011), obtained results in this study showed that 

large seeds had large embryos. According to Gracia et al. (2003) seed size is primarily 

controlled by embryo size. On the other hand, the large contribution of seed coat mass 

towards the final seed mass of landrace selection R was similar to results obtained by Nazirul 

et al. (2009) who observed differences in embryo mass for different varieties of coconut seeds 

with the same size. Seeds of landrace selections like R could be very misleading for resource 

poor farmers that extract oil and use the defatted seed cake as a protein supplement. This is 

because embryo mass and seed oil content have been found to be significantly positively 

correlated (Marinkovic, 1992). Therefore, landrace selections like R could produce less oil 

and protein supplement per kilogram harvested.  

Similar to results obtained by Akita et al. (1986) heavy seeds did not always mean high 

plant growth rates (root length). Nevertheless, the observed relationship between seed size 

and seedling dry mass could be due to the longer duration and the rapid provision of energy to 

the developing seedling provided by larger seeds (Soltani et al., 2002). Maree (1998) stated 

that the potential of seedling growth is a function of genetics since seed size is genetically 

controlled.  

The obtained results between seed mass and GVI are contrary to those obtained by 

Kanmegne et al. (2010) who observed a positive correlation between the two traits. The lower 

GVI could be attributed to the high fungal infection observed on seed at day 14 of the 

experiment. This could be substantiated further with the observed interaction between 

germination percentage and fungal infection. According to Nik et al. (2011), fungi can inhibit 

seed germination and cause death of emerged seedlings by suffocating seed nutrients required 

for seed germination and growth. 
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CONCLUSIONS  

Seed morphology of the different landrace selections was indeed different. Seed and embryo 

size and seed coat thickness contributed most to seed diversity. The local landrace selections 

had either large or small seeds, and all had thin seed coats. On the other hand, seeds of 

landrace selections from Zimbabwe were medium in size and had thicker seed coats when 

compared to the local selections. The germination percentage and EC of bottle gourd varieties 

were different and there were no correlations with most seed morphological traits. Seed size 

was correlated with seed quality as determined by seed germination rate and seedling quality.  

Therefore, in this study most measured traits were not good indicators of seed quality.  

Although, fungus was not a treatment, it had a negative effect on seed germination and 

vigour. Seed coat thickness may be used as a parameter for recommending varieties into 

different agro-ecological areas which warrants further investigation. Furthermore, aspects of 

seed dormancy and seed physiology and their effect on seed quality need to be established. It 

should be noted that, weaknesses to the study were the number of landrace selections and 

seeds used per landrace selection. As a future direction, more landrace selections and seeds 

should be used to increase the accuracy of the study. 
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ABSTRACT 

Water is the main factor affecting crop production in sub-Saharan Africa. It was hypothesized 

that intercropping sorghum (S) with either cowpea (C) or bottle gourd (B) would result in 

better productivity and water use efficiency (WUE). This was evaluated using a split–plot 

arrangement with sub–plots nested in a randomised complete block design within the main 

plot, replicated thrice. Water regimes [full irrigation (FI), deficit irrigation (DI) and rainfed 

(RF)] were allocated to the main plots. Sub–plots comprised intercrop combinations, SS 

(sole), C (sole), B (sole), SC (intercrop) and SB (intercrop). Data collected included soil water 

content (SWC), plant height (PH) / vine length, leaf number (LN), tillering (T) / branching, 

leaf area index (LAI), relative leaf water content (RWC), stomatal conductance (gs) and 

chlorophyll content index (CCI) as well as biomass accumulation and partitioning. Yield and 

yield components, water use (WU) and grain water use efficiency (WUEg)were calculated at 

harvest. Land equivalent ratio (LER) was used to evaluate productivity of the intercrop. 

Sorghum canopy size decreased (P < 0.05) (-6.7%, -10.6%, -89% and -79% for PH, LN, T 

and LAI, respectively) with decreasing water availability. Sorghum growth and development 

were unaffected by intercropping. Intercropping sorghum with cowpea improved gs (23%) 

and CCI (6.56%) of sorghum under low water availability. Productivity of sorghum across 

varying water regimes and cropping systems was stable with final biomass, yield and HI of 

2.4 t ha-1, 0.98 t ha-1 and 35%, respectively. Overall, LER showed a 46% increase in 

productivity across all intercrop systems. Intercropping marginally increased WU (5.64%). 

Improvements of WUE were observed under SC and SB (54.65% and 46.98%, respectively) 

relative to SS. Intercropping sorghum with cowpea is recommended for semi– and arid 

environments since it promoted efficient use of water.  

 

Keywords: land equivalent ratio; resource use; water use efficiency; yield 
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Introduction 

Sub-Saharan Africa (SSA) is characterised by both physical and economic water scarcity with 

the latter affecting more than 75% of the region (Hanjra and Qureshi, 2010). The greater 

proportion of agriculture (≈ 90%) is resource constrained, subsistence based and done under 

rainfed conditions (van Duivenbooden et al., 2000). Under these conditions, reports of yield 

losses associated with water stress are common (Rockström et al., 2003). This increases the 

risk to food production in a region already plagued with food insecurity and a variety of 

socio-economic and bio–physical production constraints (Ortmann and King, 2010). 

Increasing crop productivity with the available water is a major priority given the necessity to 

improve food security. There is need, therefore, to institute technologies modelled on the 

concept of “more crop per drop” (Tuong and Bouman, 2003) if agricultural production is to 

increase. 

Passioura (2006) suggested that growing crops that have traits that confer plant level water 

management could help lessen the effects of water scarcity. The use of crop species whose 

genetic makeup allows for enhanced capture of available soil water for transpiration and 

efficiently exchange transpired water for CO2 for sustained biomass production could improve 

yield production under water scarcity (Deng et al., 2006; Zegada-Lizarazu et al., 2011). For 

instance, Kizito et al. (2007) pointed out that growing crops with deep and prolific root 

systems ensured extraction of water deep in the soil profile and hence minimized water lost 

through drainage thus increasing evapotranspiration. In addition, plants that exhibit high 

levels of osmotic adjustment have been shown to maintain high rates of stomatal conductance 

thus sustaining the exchange of transpired water and CO2 for longer under water–limited 

conditions (Ahmadi Mousavi et al., 2009; Loutfy and El-Tayeb, 2012; Asina and Herralde, 

2015). Therefore, it is recommended that, for water scarce agricultural systems, crops that are 

efficient at the capture and use of water must be used to improve productivity. Based on the 

above description an exemplar crop is sorghum (Allen et al., 2011; Farré and Faci, 2006; Sani 

et al., 2011).  

Sorghum is the second most important cereal crop in SSA after maize and has a 

significant role to play in providing food security within the region (Taylor, 2003). Although 

praised for its ability to thrive in areas that receive as little as 300 mm annual rainfall, 

literature indicates that observed yields are far below potential (Aishah et al., 2011). This has 

mainly been attributed to water stress associated with poor agronomic and water management 
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strategies (Rockström et al., 2010). By employing water management strategies like 

intercropping, rainfed production systems of sorghum can be improved (Walker and Ogindo, 

2003; Ouda et al., 2007; Singh and Behari, 2012; Jun et al., 2014).  

Intercropping is defined as growing two or more crops together, that is, in proximity and 

on the same piece of land during the same growing season (Willey, 1979). Intercropping 

increases spatial and temporal exploitation of water through increased root density and 

differences in rooting patterns of species (depth, width and length), but only if complimentary 

interaction between the component crops is exhibited. Under intercrop systems there is also 

early attainment of full canopy cover and this reduces soil evaporation earlier in the growing 

season (Coll et al., 2012; Ofori et al., 2014; Walker and Ogindo, 2003). Zougmore et al. 

(2000) observed a 30% reduction in runoff when sorghum was intercropped with cowpea. It is 

possible that intercropping sorghum with either cowpea or bottle gourd can improve water 

management in rainfed cropping systems. However, these assumptions still need to be tested 

rigorously to make meaningful recommendations.  

Intercropping and using crops that are efficient at capturing water and exchanging it for 

CO2 for biomass production can be a suitable water management strategy for resource poor 

farmers practicing agriculture under rainfed conditions. It was hypothesized that sorghum, 

cowpea, bottle gourd intercrop systems use water more efficiently and are suited to rainfed 

cropping systems. Therefore, the aim of the study was to evaluate growth, yield, productivity 

and water use as well as water use efficiency of sorghum, cowpea and bottle gourd intercrop 

systems under varying water regimes. 

 

Material and methods  

Plant material  

Three crop species namely; sorghum, cowpea and bottle gourd were used in the study. A 

sorghum hybrid (PAN8816) was sourced from Pannar Seeds®. PAN8816 is a medium to late 

maturing hybrid variety with yields ranging between 2 – 5 t ha-1 under optimum conditions. It 

is a large seeded variety with high aboveground biomass and good threshability. It is 

classified in the GM (good malting, no condensed tannins) category. For cowpea, brown mix 

variety (Capstone Seeds) was used for the study based on previous reports that suggested that 

it had fairly good drought tolerance (Modi and Mabhaudhi, 2013). According to (Ntombela, 
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2013), brown mix variety has a semi–erect growth habit, making it ideal for intercropping. 

Lastly, a bottle gourd landrace selection was collected from farmers’ fields in Mereense, 

Richards Bay, South Africa [28°19’ S; 32°06’ E; 30 meters above sea level (m a.s.l.)], in 

2012. Seeds were then multiplied at the University of KwaZulu–Natal, South Africa during 

2012/13.  

Experimental site 

Field trials were conducted at the University of KwaZulu–Natal’s Ukulinga Research Farm 

(29°37’S; 30°16’E; 775 m a.s.l.) over two seasons (2012/13 and 2013/14). Ukulinga Research 

Farm is classified as semi–arid with mean annual rainfall of 790 mm received mostly between 

the months of October and April. The summer months are warm to hot with an average 

temperature of 26.5°C.  

Land form at Ukulinga is colluvial fan and soils are derived from marine shales. Based on 

the FAO soil classification system, chromic luvisols are the dominant soils at Ukulinga and 

these are generally characterised as shallow brown acidic soils with low to moderate fertility. 

Based on profile pit description, soil texture is clay to clay–loam with an effective rooting 

depth of 0.6 m (Table 1). Soil physical properties have been shown to affect movement and 

availability of soil water for plants. The soil water characteristics (texture, bulk density (g m-

3), hygroscopic water content (mm m-1), permanent wilting point (mm m-1), field capacity 

(mm m-1) total available water (mm m-1), saturation (mm m-1) hydraulic conductivity (mm hr-

1) were determined using hydraulic properties calculator 

(http://hydrolab.arsusda.gov/soilwater/Index.htm) for each depth (Table 1). Results of soil 

chemical properties showed that the carbon (%) for the top 0.2 m layer was 2.3% while N was 

0.3%. From these the initial C:N ratio was calculated as 7.67.  

  

http://hydrolab.arsusda.gov/soilwater/Index.htm
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Table 1: Soil water properties at different depths for soil at the experimental site.  

Depth (m) Texture BD1 HC2 PWP3 FC4 TAW5 SAT6 KSAT
7 

Units  (g m-3) ----------------------------(mm m-1)----------------------------- 

0 – 0.10 Clay loam 1,29 0,34 21,04 33,54 12,5 48,66 20,9 

0.10 – 0.30 Clay loam 1,47 0,69 47,61 69,94 24,63 97,89 18,18 

0.30 – 0.60 Clay 1,4 2,39 79,23 110,42 34,13 149,83 13,92 

Average*/Total 1.39* 3,42 147,88 213,9 71,26 296,38 17.67* 
1 Bulk density;  
2 Hydroscopic moisture content;  
3 Permanent wilting point;  
4 Field capacity;  
5 Total available water;  
6 Saturation;  
7 Hydraulic conductivity. 

 

Experimental design and layout 

The experimental design was a split–plot design arrangement with sub–plots arranged nested 

in a randomised complete block manner design within the main plot and replicated three 

times. The main plot was water regime with three levels (full irrigation, deficit irrigation and 

rainfed). Sub–plots comprised intercrop combinations, with five intercrop combinations.  

Water regimes: Full irrigation involved watering crops up to 100% of crop water 

requirement for the duration of the trials. For deficit irrigation, irrigation was only scheduled 

during periods when crop development was sensitive to water stress and thus controlling 

reproductive growth and development, vegetative growth with the aim of improving water use 

efficiency. Grain sorghum is most sensitive to water stress at initial establishment up to floral 

initiation and at flag leaf stage all through to yield formation (Farahani and Chaichi, 2012). 

Irrigation was therefore withdrawn between floral initiations and reinstated upon appearance 

of the flag leaf. Before planting and up to crop establishment, soil were irrigated to maintain 

80% field capacity so as to create a conducive environment for even crop stand. During this 

time, a total of 123.50 and 68.00 mm was applied across all water regimes for 2013/14 and 

2014/15 growing season. Therefore, rainfed treatments were established with irrigation to 

allow for maximum plant stand. Following that, no supplementary irrigation was applied. 

Irrigation scheduling was based on daily crop water requirement calculated from the product 

of sorghum crop factors (Kc) as published in FAO No. 56 (Allen et al., 1998) and Priestley-

Taylor (PT) reference evapotranspiration (ETo) values obtained from an automatic weather 

station (AWS) located 1 km away from the experimental field. The Kc values for grain 

sorghum were Kc initial = 0.30 (33 days), Kc mid = 1.10 (64 days), and Kc end = 0.55 (44 
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days). The durations in brackets indicate the corresponding periods in days for which the crop 

factors were applied. 

Crop water requirement (ETc) was determined as described by (Allen et al., 1998): 

ETc = ETo * Kc       Equation 1 

where: ETc = crop water requirement in mm, 

 ETo = reference evapotranspiration in mm, and 

 Kc = crop factor. 

In the event of rainfall, irrigation scheduling was adjusted accordingly using crop water 

requirement for that developmental stage and rainfall information. 

Intercrop: The component crops were sorghum, cowpea and bottle gourd. The intercropping 

treatments were: sorghum (sole), cowpea (sole), bottle gourd (sole), sorghum + cowpea 

(intercrop) and sorghum + bottle gourd (intercrop). According to Chaves et al. (2013), grain 

cereals remain important fore-drivers of food security in Africa’s research agenda; for this 

reason, the intercropping system was designed as an additive intercrop. Briefly, additive 

intercropping is when a component crop is added into another (main component crop) such 

that the additional crop increases final plant population relative to the main crop. Sorghum 

was considered as the main crop and was sown at 100% of its recommended plant population 

in pure and intercrop stands. Cowpea and bottle gourd were then “added” to the sorghum by 

planting additional rows between rows of sorghum.   

Individual plot sizes for each treatment measured an area of 24.75 m2. All rows were 5.5 

m long and inter-row spacing for sorghum (sole and intercrop treatment) and sole cowpea and 

sole bottle gourd was 0.75 m. For the intercrop treatments, rows for intercrops were made in 

the middle (0.375 m) of sorghum rows. Under semi-arid conditions, du Plessis (2008) 

recommended a plant population of 26 666 plants ha-1 for sorghum. This ensures low 

competition for resources such as solar radiation, water and nutrients. To attain this 

population, an in-row spacing of 0.50 m was used for sorghum. A similar plant population 

was also used for sole cowpea; however, under intercropping the in-row spacing was 

increased to 1 m. For sole and intercropped bottle gourd, the in-row spacing was 1.86 and 

2.75 m, respectively. This gave a population of 7168.5 and 4848.5 plants ha-1. 
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Data collection 

Climate data: Daily weather data were obtained from an AWS located less than 1 km from 

the experimental field and within Ukulinga Research Farm. The AWS is part of the 

Agricultural Research Council – Institute for Soil, Climate and Water (ARC–ISCW) network 

of automatic weather stations. Daily weather parameters that were considered included; 

maximum (Tmax) and minimum (Tmin) air temperature (°C), solar radiation (Rad, MJ m-2), 

rainfall (mm) and PT- (ETo, mm).  

Plant growth and development: Data collection included emergence measured up to crop 

establishment (90% emergence) in sorghum as the main crop of interest. Thereafter, 

measurements of plant height (PH), leaf number (LN), leaf area index (LAI), stomatal 

conductance (gs), chlorophyll content index (CCI), relative water content (RWC) and biomass 

accumulation were collected on a weekly basis for all component crops. Stomatal 

conductance was measured using a steady state leaf porometer (Model SC–1, Model SC-1, 

Decagon Devices, USA) on the abaxial surface of the top most fully expanded leaf. Due to 

unavailability of equipment in the first season, second season results of stomatal conductance 

were only presented. Chlorophyll content index was measured with a SPAD502-Plus 

chlorophyll meter (Konica Minolta, USA) on the adaxial surface of the top most fully 

expanded leaf.  

Relative water content was determined weekly from flowering up to the end of grain 

filling using the method outlined by Muchow and Carberry (1990). One leaf was sampled 

from each component crop plot-1. Immediately after excising the leaf blade, leaves were 

wrapped in aluminium foil and placed in a plastic zip–lock bag and kept in a cool place for 

two hours. Thereafter, three disks each measuring 0.5 cm in diameter were cut out and 

immediately weighed so as to determine fresh mass (FM). To obtain turgid mass (TM), leaf 

disks were placed in petri dishes containing 25 mℓ of distilled water and left to imbibe for 16 

hours at room temperature before being weighed. Following this, leaf disks were than dried at 

80°C for 72 hours to obtain dry mass (DM). Relative water content was then calculated as: 

𝑅𝑊𝐶% =  
𝐹𝑀−𝐷𝑀

𝑇𝑀−𝐷𝑀
 𝑋 100%       Equation 2 

where: RWC = relative water content (%),  

FM = fresh mass (g),  
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DM = the dry mass (g), and  

TM = the turgid mass (g). 

Leaf area index, which is the one–sided green leaf area per unit ground surface area 

occupied by the plant, was also determined from measurements of leaf area. Leaf area index 

was determined as follows: 

𝐿𝐴𝐼 =  
𝐿𝐴

𝐴
 (𝑚2𝑚−2)        Equation 3 

where: LAI = leaf area index (m2 m-2), 

LA = leaf area (m2), and  

A = the land area (m2) occupied by the plant. 

Sorghum crop development was monitored based on phenological stages described by 

Rao et al. (2007). Observed phenological stages were end of juvenile stage, floral initiation, 

flag leaf appearance, flowering, start and end of grain filling as well as times to physiological 

and harvest maturity. A phenological stage was deemed to have occurred when it was 

observed in at least 50% of experimental plants. Observations of crop phenology were 

recorded in calendar days and later converted to thermal time using method 2 as described by 

(McMaster and Wilhelm, 1997): 

𝑮𝑫𝑫 =  [
𝑻𝒎𝒂𝒙+𝑻𝒎𝒊𝒏

𝟐
] − 𝑻𝒃𝒂𝒔𝒆       Equation 4 

where: GDD = growing degree days (°Cd),  

Tmax and Tmin = maximum and minimum temperatures, respectively, and  

Tbase = base temperature. If Tmax < Tbase then Tmax = T base and if Tmin < Tbase then Tmin = 

Tbase, Tbase = 8 °C (Clerget et al 2008). 

Productivity of cropping systems: Productivity of the intercrop systems was evaluated using 

Land Equivalent Ratio (LER) as described by Willey (1979): 

𝐿𝐸𝑅 =  𝐿𝑎 + 𝐿𝑏 =
𝑌𝑎

𝑆𝑎
+  

𝑌𝑏

𝑆𝑏
        Equation 5 

where: LER = land equivalent ration, 

La and Lb = LERs of component crop a (sorghum), and b (cowpea or bottle gourd), 

respectively, and  
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Ya and Yb represent intercrop yield component crop a (sorghum), and b (cowpea or 

bottle gourd), respectively, while Sa and Sb are their respective sole. 

Yield determination: Harvesting of each component crop across the different treatments was 

done at harvest maturity. Since cowpea variety brown mix is a semi–determinant crop, 

sequential harvesting of pods began when there was first sign of pod drying. However, during 

the 2014/15 season, pods where repeatedly eaten by monkeys, therefore, results do not show 

pod and grain yield. During 2013/14 sorghum was harvested at harvest maturity, however 

similar to cowpea, repeated monkey and bird attacks during 2014/15 resulted in harvesting it 

at soft dough stage. At harvest for sorghum, above ground plant matter of six representative 

plants of sorghum were taken for determination of yield parameters (harvest index) and yield. 

Similarly, cowpea was also harvested for determination of yield parameters (harvest index) 

and overall yield. Panicles and pods were separated from the whole plant and dried in a glass 

house until seeds shuttered from panicle and pods. Thereafter grain was shelled and, mass and 

grain moisture were determined. At harvest maturity of bottle gourd, fruits were separated 

from mother plant. Similarly, harvesting of bottle gourd was early due to monkey attacks. 

Fruits and mother plant were also placed in a glass house for drying and to hasten drying 

process of fruits they were cracked open. Fruit were weighed every second day and when 

there was no loss in mass at two consecutive weightings, fruits were considered dry and final 

biomass mass was determined. Thereafter harvest index (HI) was determined as: 

𝐻𝐼 =  
𝑌𝑔

𝐵
        Equation 6 

where: HI = harvest index (%), 

 Yg = economic yield based on grain yield (kg), and 

 B = aboveground biomass (kg). 

Harvest index of each cropping system across the water regimes was estimated as the average 

of the sum total of each component HI. 

Water use: Water use (WU) for each treatment was calculated as the residual of a soil water 

balance:  

WU = P + I – D – R – ΔSWC        Equation 7 

where: WU = water use = evapotranspiration (mm),  

P = precipitation/rainfall (mm),  



89 

 

I = irrigation (mm),  

D = drainage (mm),  

R = runoff (mm), and  

ΔSWC = changes in soil water content (mm).  

Runoff (R) was assumed to be zero since erosion was negligible in the plots as it had a slope 

of less than 5%. Drainage was also considered as negligible since the observed impeding layer 

at 0.6 m restricted downward movement of water beyond the root zone. 

Changes in soil water content (SWC) were measured using a PR2/6 profile probe 

connected to an HH2 handheld moisture meter (Delta–T, UK). The soil profile at Ukulinga is 

shallow with an effective rooting depth of 0.60 m (Table 1). The PR2/6 profile probe has 

sensors positioned at 0.10, 0.20, 0.30, 0.40, 0.60 and 1.00 m along the probe. Sensors used in 

the analysis of SWC where the first six (0.10 – 0.60). Due to nominal variations occurring at 

depths of 0.20 and 0.30 m and 0.40 and 0.60 m, respectively, results for SWC were only 

presented for depths of 0.10, 0.30 and 0.60 m. Weekly rainfall (R) was obtained from data 

obtained from the AWS. After each irrigation event, amount of water added (I) was 

determined from rain gauges randomly placed across the experimental plots. It should be 

noted that, during 2013/14 around the time of grain filling, a water pipe, which directly 

supplies irrigation water from the local municipality to the farm, burst such that there was no 

water for irrigation until harvest of experiment. 

To determine whether intercropping resulted in changes in water use, the following 

equations suggested by Morris and Garrity (1993) were used: 

∆𝑊𝑈 (%) = [(
𝑊𝑈𝑖𝑐

𝑃𝑎𝑊𝑈𝑠𝑎+ 𝑃𝑏𝑊𝑈𝑠𝑏
) − 1] ∗ 100%     Equation 8 

where: WUic, WUsa and WUsb = the water use in intercropping, sole cropping species A and 

sole cropping species B, respectively, and 

Pa and Pb are the proportions of species A and B in the intercrop, given by Pa = 

Da/(Da + Db) with Da and Db being the density in intercropping relative to sole 

cropping of species A and B, respectively. 

Water use efficiency: Water use efficiency was only calculated for the sole treatments since 

it was not possible to separate water use for each component crop in the intercrop systems. 

Water use efficiency of sole cropping system was therefore calculated as follows: 
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𝑊𝑈𝐸𝑌 𝑜𝑟 𝐵 =  
𝑌 𝑜𝑟 𝐵

𝑊𝑈
(𝑘𝑔 𝑚𝑚−1 ℎ𝑎−1)      Equation 9 

where: WUE = water use efficiency (kg mm-1 ha-1),  

Y = the economic yield (kg ha-1),  

B = final biomass (kg ha-1) and 

ET = the water use (mm). 

To determine whether intercropping resulted in changes in water use efficiency the 

following equation suggested by Morris and Garrity (1993a) was used:  

∆𝑊𝑈𝐸 (%) = (

𝑌𝑖𝑐
𝑊𝑈𝑖𝑐

(
𝑃𝑎𝑌𝑠𝑎
𝑊𝑈𝑠𝑎

)+(
𝑃𝑏𝑌𝑠𝑏
𝑊𝑈𝑠𝑏

)
− 1) ∗ 100%     Equation 10 

where: Yic, Ysa and Ysb = the yields in intercropping and sole cropping of species A and B, 

respectively. 

For interpretation, when ∆WU and ∆WUE are greater than zero, WU and WUE are assumed 

to be higher in the intercrop system relative to the sole crop. 

 

Agronomic practices 

Prior to planting, soil samples were obtained from the field trial site and submitted for soil 

fertility and textural analyses. Based on results of soil fertility analyses, an organic fertiliser, 

Gromor Accelerator® (30 g N kg-1, 15 g P kg-1 and 15 g K kg-1) was applied to supply 52 kg N 

ha-1. Fertiliser application was designed to meet the nutritional requirements for sorghum, the 

main crop, and applied six weeks after emergence.  

Land preparation involved ploughing, disking and rotovating to achieve fine tilth. Planting 

was done by hand; planting depth for all crops ranged from 2–3 cm. For sorghum, rows were 

opened and seed sown within the rows. Upon full establishment (90% emergence), sorghum 

was thinned to the required spacing; excess seedlings were used for gap–filling. Routine 

weeding was done using hand hoes. Insect pests and animal attacks were scouted for at each 

visit to the field.  
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Statistical analyses 

Data was combined after a homogeneity test of variance using the Bartlett’s test. The test 

showed heterogeneity of variance for crop growth and physiology across the seasons, thus 

combined analysis was not done. Combined analysis was done for yield and yield components 

as they showed homogeneity. Data collected was subjected to analysis of variance (ANOVA) 

using GenStat® (Version 16, VSN International, UK) and means of significantly different 

variables separated using Duncan’s test in GenStat® at the 5% level of significance. 

Results  

Weather data 

Weather data for the two growing periods was consistent with long term weather data for 

Ukulinga (Section 2.2). Comparing the two growing periods (2013/14 and 2014/15), weather 

conditions were different by virtue of crop establishment occurring at different times within 

the growing season (Fig 1). Although maximum temperatures for both growing seasons were 

similar (25.4 and 26.0°C for 2013/14 and 2014/15, respectively), minimum temperature in 

2014/15 (16.6°C) was 2.4°C higher than the observed temperature during 2013/14 (19.0°C). 

Maximum and minimum temperatures were consistent with long term temperature averages 

of 25.63 and 16.89°C during the growing seasons. This resulted in a high rate for GDD (°Cd ) 

(1965.09 in 2013/14 and 2412.03 in 2014/15). High accumulation rate of GDD would 

insinuate hastened crop development. Solar radiation received in 2014/15 (2543.46 MJ m-2) 

was slightly higher than 2013/14 (2433.42 MJ m-2) (data not shown). 

Rainfall in 2014/15 was 26.31% higher than in 2013/14 and based on skewness it was 

more normally distributed (4.33) than rainfall received during 2013/14 season (7.00). There 

were more incidences of days where no rain was recorded in 2013/14 (105 days) than 2014/15 

(49 days) (Fig 1). The observed results suggest that the possibility of intermittent water stress 

was higher in 2013/14 than 2014/15. Cumulative reference evapotranspiration was 502.61 and 

493.75 mm during 2013/14 and 2014/15, respectively. This resulted in a deficit of 184.14 and 

91.49 mm during 2013/14 and 2014/15, respectively (Fig 1). Observed results are consistent 

with long term water deficits (135.26 mm, standard deviation = 65.56 mm) experienced at 

Ukulinga. During 2013/14 irrigation applied in the FI treatment was 286.50 mm giving an 

excess of 102.36 mm. Under deficit irrigation, water applied was 208.05. During 2014/15 

irrigation applied in the FI treatment was 208.05 mm giving an excess of 44.51 mm. Under 

deficit irrigation, 136.00 mm of water was applied giving an excess of 23.86 mm. Based on 
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observed weather; the 2014/15 was more conducive for plant growth. Incidences of hail 

storms were more frequent during 2014/15 (6th and 13th February, 2015) season than during 

2013/14 (21st February, 2014) (Fig 1). During 2014/15, hail storms coincided with the late 

vegetative stage hence making plants more susceptible to defoliation compared to during 

2013/14 when plants were at the early vegetative stage and suffered relatively less defoliation. 

With each incident there was substantial loss in plant canopy size. 

 

 

 

Figure 1: Daily temperature (maximum and minimum) and reference evapotranspiration 

(REF –Evapotranspiration), and a comparison between cumulative rainfall, REF -

evapotranspiration for Ukulinga, KwaZulu–Natal South Africa. 
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Soil water content 

Soil water content was different across seasons, soil layers, water regimes and intercropping 

treatments (Fig 2). Based on mean values, during 2013/14 SWC was more evenly distributed 

(standard deviation = 8.34 mm) across soil layers, water regimes and intercropping treatments 

when compared with 2014/15 (standard deviation = 10.57 mm) and this was attributed to less 

rain and irrigation events (Fig 2). It was observed that SWC during 2013/14 started off high 

and gradually decreased after boot stage. This coincided with the time when there was no 

supply of water to the experiment and an increase in the demand of water by crops. 

Conversely, the reverse was observed in 2014/15, and this was attributed to increased 

frequency of rainfall and irrigation. Overall, average SWC during 2014/15 was higher (195.27 

mm) than during 2013/14 (181.59 mm). The observed differences were associated with 

variation in amounts in total rainfall and irrigation received during the two growing seasons. 

During the 2013/14 and 2014/15 growing seasons, the trend for SWC across the water 

regimes was such that DI (213.00 and 204.69 mm) > RF (170.97 and 203.80 mm) > FI 

(160.81 and 177.81 mm, respectively). Intercropped plots had marginal differences in average 

SWC relative to sole sorghum plots (SS) during 2013/14 and 2014/15 (SB – 0.05 and 2.05%, 

SC – 0.04 and 8.71%, respectively). Soil water content of SB was consistently stable as 

highlighted by the low standard deviation (20.96) across water regimes and growing seasons. 

During both growing seasons, SWC in the first layer (0.00 – 0.10 m) was consistently 

below PWP and there were no variations across the treatments. In the second layer, variations 

were observed across growing seasons and water regime and cropping system. During 

2013/14, SWC range between 19.10 - 77.55 mm with a mean value of 36.15 mm. Within the 

same growing season, plots grown under DI had highest average SWC of 54.78 mm within 

this depth while low SWC was observed under FI (28.65 mm) at the same depth. In the 

second layer, intercropping resulted in a reduction in SWC [SB (-99.43%) and SC (-26.42%)] 

relative to SS. During 2014/15 growing season, range for SWC within the 0.1 – 0.3 m was 

between 26.84 – 87.75 mm. The mean value was 21.87% higher than what was observed in 

2013/14. Within the same year, DI plots had an average SWC of 54.93 mm within in the 

second layer while low SWC was observed under FI (36.06 mm) at similar depth. 

Intercropping resulted in an increase in SWC (SB – 14.57% and SC – 26.67%) in the second 

layer relative to SS. Observed results would suggest water extraction by intercrop plots in the 

second layer was more predominant in the drier year. It was interesting to note that SWC at 
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depths of 0.30 to 0.60 m was consistently around FC (110.42 mm) for 2013/14 

(129.17±18.89) and around saturation (149.83 mm) for 2014/15 (147.83±15.56) (Figure 2). 

 

Crop physiology 

Interaction of water regime and cropping system significantly (P<0.05) influenced sorghum 

CCI in each growing seasons (Fig 3). During 2013/14, CCI was significantly (P < 0.05) 

higher under FI (43.80) relative to DI (41.01) and RF (40.18). Observed results are in line 

with improvements in water availability (FI > DI> RF) (Section 3.1). Under FI and RF 

conditions, intercropping had no significant effect on sorghum CCI. Under DI, intercropping 

sorghum with cowpea (SC) showed higher (6.56%) CCI while intercropping it with bottle 

gourd (SB) resulted in low (-6.34%) CCI, relative to sorghum under SS (Fig. 3). During 

2014/15, CCI was significantly (P < 0.05) higher under RF (47.42) relative to DI (45.32) and 

FI (45.23) conditions. Under DI and RF conditions, CCI was significantly (P <0.05) lower for 

SC (-6.78%) and SB (-3.24%), relative to SS (Fig 3). Under FI, intercropping sorghum with 

cowpea improved CCI of sorghum by 3.31% relative to SS.  

The interaction of water regime and cropping system significantly (P < 0.05) influenced 

RWC during both growing seasons (Fig 3). During 2013/14 growing season, results showed 

that the trend for sorghum RWC across water regime was FI (83.33%) > DI (81.75%) > RF 

(78.13%). Sorghum intercropped with cowpea had low RWC (-2.78%) under FI and RF 

conditions relative to SS. Under FI, intercropping sorghum with bottle gourd improved 

(+2.11%) RWC for sorghum, relative to SS (Fig 3). During 2014/15, the trend for sorghum 

RWC was FI (82.23%) was significantly lower than DI (85.23%) and RF (86.27%). 

Regardless of water regime sorghum grown in SC had the least RWC (-3.51%) relative to that 

of SS (Fig 3). Under FI and RF, leaf RWC of sorghum grown in SB was not significantly 

different to sorghum grown in SS. 
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 Figure 2: Soil water content (mm) at depths 0 – 0.10 m, 0.10 – 0.30 m and 0.30 – 0.60 m for the different cropping systems (sole sorghum (S), 

sole cowpea (C), sole bottle gourd (B), sorghum – cowpea (SC) and sorghum - bottle gourd (SB) grown under different water management 

regimes (full irrigation (FI) deficit irrigation (DI) rainfed conditions (RF)) for 2013/14 and 2014/15 planting season. 
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Significant variations (P < 0.05) were observed for gs of sorghum in response to the 

interaction of water regime and cropping system (Fig 3). Increasing levels of SWC resulted in 

an overall increase in gs [FI (359.85 mmol m-2 s-1) < DI (375.85 mmol m-2 s-1) < RF (460.85 

mmol m m-2 s-1)]. Stomatal conductance of sorghum in SC was significantly higher (15.94%) 

while SB was lower (-2.20%) in comparison to that which was grown as SS (381.39 mmol m-

2 s-1) and (Fig 3). Under RF, gs of sorghum intercropped with cowpea was statistically similar 

to that of SS. However, under DI and FI intercropping sorghum with cowpea improved 

(23.9%) gs of sorghum relative to SS. The observed fluctuations of stomatal conductance over 

time across water regime were in response to varying weather conditions (relative humidity 

and air temperature) and differences in available SWC caused by rainfall and irrigation events 

prior to sampling. 

Water regime also significantly (P < 0.05) affected stomatal conductance for both cowpea 

[FI (345.76) < DI (376.64) < RF (389.67 mmol m-2 s-1)] and bottle [FI (376.98) < DI 

(386.64) < RF (456.75 mmol m-2 s-1)] .Canopy characteristics 

Significant differences (P < 0.05) in sorghum crop growth were observed in response to 

season, intercropping and water regime, as well as interactions of water regime and cropping 

system (Fig. 4). During the 2013/14 growing season, interaction of water regime and cropping 

system resulted in significant (P < 0.05) differences in sorghum plant height and leaf number. 

Across water regimes, the observed trend was FI > DI > RF for plant height (65.76, 58.81, 

56.54 cm, respectively) and leaf number (6.17, 5.97 and 5.90, respectively) (Fig. 4). Under DI 

and RF conditions, sorghum intercropped with cowpea was significantly taller (7.89%) 

relative to sorghum grown in SS while the reverse was observed under SB (-8.14%). Results 

showed that leaf number for sorghum intercropped with either cowpea or bottled  responded 

differently under different water regimes and across the seasons. In 2013/14 intercropping 

sorghum with cowpea or bottle gourd significantly improved leaf number by an average of 

2.3% under FI. In 2014/15, intercropping sorghum with cowpea or bottle gourd significantly 

reduced leaf number by an average of 6.3% under FI. .  
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Figure 3: Comparison of sorghum chlorophyll content index (CCI), relative leaf water 

content (RWC) and stomatal conductance in response to season (2013/14 and 2014/15), 

cropping system (SS – sole sorghum, SC – sorghum cowpea, SB – sorghum bottle gourd) and 

water regime (FI – full irrigation, DI – deficit irrigation and RF – rainfed). 

 

The trend of results for the 2014/15 growing season was inconsistent with observations of 

the 2013/14 season. During 2014/15 growing season, water regime had a significant (P < 

0.05) effect on sorghum plant height (P < 0.05) and leaf number (P < 0.05) while cropping 

system was only observed to significantly influence (P < 0.05) leaf number (Fig 4). The trend 

for sorghum plant height was RF > DI > FI (69.33, 67.34 and 66.34 cm, respectively) (Fig 4) 

while for leaf number it was RF > FI > DI (7.75, 7.37 and 6.67). Overall, intercropping 

sorghum with cowpea resulted in fewer leaves (10.00%) when compared with SS while SB 

improved sorghum leaf number by 5%. 
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Tillering in sorghum was less pronounced during 2013/14 than 2014/15. This was 

associated with improved water availability during 2014/15 relative to 2013/14 (Fig. 4). 

Significant differences (P < 0.05) were observed for tillering in response to water regime 

during 2013/14. Although nominal, tillering was higher under FI (0.2 tillers) followed by DI 

(0.1 tillers) while no tillers were observed under RF conditions (Fig 4). During 2014/15, the 

interaction of water regime and cropping system had a significant effect (P < 0.05) on 

tillering. Overall, the trend for tillering across water regimes was sorghum grown under RF 

conditions was significantly higher (1.17) than under DI (1.02) and FI (1.06). Sorghum grown 

in SB had 24% and 7% more tillers relative to SS when grown under DI and RF, respectively. 

Sorghum grown in SC had 12% and 5% less tillers relative to SS when grown under DI and 

RF, respectively. 

Although the seasonal effect of LAI was not statistically analysed, it was observed that it 

was 56.23% higher in 2014/15 than 2013/14. The higher LAI observed could be attributed to 

time of planting and improved water availability. In the second season, the trial was 

established earlier and this must have coincided with optimum climatic conditions for 

vegetative growth. In addition, there was improved water availability due to high and more 

frequent rainfall. Leaf area index for sorghum was significantly (P < 0.05) affected by water 

regime (Fig 4). This was more evident during 2014/15 compared with 2013/14 season. During 

2013/14 growing season, although differences were nominal but statistically significant, the 

trend for average LAI was FI (0.43) > DI (0.40) > RF (0.39). During 2014/15 season, the 

trend for LAI was RF (1.43) > DI (0.90) > FI (0.89). Within 2013/14, growing sorghum with 

either cowpea or bottle gourd significantly (P < 0.05) improved (35.87 and 23.78%, 

respectively) overall system LAI relative to SS.  

Results of LAI during the two growing seasons were consistent with observations of plant 

physiology and PH, LN and tillers/plant. The observed fluctuations in LAI during 2014/15 

corresponded with vegetative loss due to hail damage (Fig 4). Conversely, in 2014/15, overall 

LAI calculated from measurements of total LA of both the sorghum and the intercrop (either 

cowpea or bottle gourd) was substantially (P < 0.05) improved (86.96% and 115.13%) when 

intercropped with cowpea (SC) and bottle gourd (SB), respectively. Based of slope value of 

regressed LAI and GDD, rate of increase of LAI under intercropping was higher when 

sorghum was intercropped with either cowpea (slope = 0.007 and r2 = 0.84) or bottle gourd 

(slope = 0.006 and r2 = 0.72) relative to sole sorghum (slope = 0.002 and r2 = 0.74).  
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Figure 4: Comparison of sorghum growth parameters and chlorophyll content index 

measurements in response to intercropping and different water regimes. 

Crop phenology 

Intercropping and water regime did not have a significant effect on sorghum phenology. 

During 2013/14 growing season, emergence, end of juvenile stage and floral initiation of 

sorghum occurred at 266.31, 514.04 and 983.78 °Cd, respectively. Time from floral initiation 

to flag leaf appearance was 205.89 °Cd and from flag leaf appearance to boot stage was 

165.37 °Cd. Time between boot stage and 50% flowering was 131.45 °Cd while time between 

50% flowering and soft dough stage was 98.45 °Cd. Harvesting occurred at 1889.02 °Cd 

During 2014/15 growing season, emergence, end of juvenile stage and floral initiation of 

sorghum occurred at 75.86, 280, 69 and 666.79 °Cd, respectively. Time from floral initiation 

to flag leaf appearance was 207.22 °Cd 2014/15 and from flag leaf appearance to boot stage it 

was 162.72 °Cd. Time between boot stage and 50% flowering was197.78 °Cd while time 

between 50% flowering and soft dough stage was 137.78 °Cd. Harvesting occurred at 1599.16 

°Cd 
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The delay in emergence, end of juvenile stage and floral initiation during 2013/14 relative 

to 2014/15 was associated with low soil water availability in the 0 – 0.10 m layer at planting 

and subsequent seed establishment. The hastened development observed during 2013/14 

relative to 2014/15 could be associated with observed reduction in SWC towards the end of 

the growing season. Early harvesting for 2014/15 was due to persistent animal attack. 

Yield and yield components 

Final biomass yield for sorghum was significantly (P < 0.05) influenced by the interaction of 

season and water regime (Table 3). Sorghum biomass was significantly (P < 0.05) higher 

(10.21%) during 2013/14 in comparison to 2014/15. For the 2013/14 growing season, 

observed trend was FI (3.09 t ha-1) > DI (2.92 t ha-1) > RF (2.36 t ha-1) (Table 3). On the other 

hand the trend for biomass during 2014/15 was RF (2.66 t ha-1) > DI (2.48 t ha-1) > FI (2.31 t 

ha-1). Observed final biomass for both seasons was consistent with observed growth patterns 

within each growing period (Table 3). Final biomass for sorghum grown under DI did not 

vary significantly across the two growing seasonsYield was about 16% higher (P < 0.05) in 

2013/14 relative to 2014/15 and this could be attributed to high final biomass attained (Table 

3). 

Final biomass of cowpea was significantly (P < 0.05) affected by the interaction of season 

and cropping system (Table 3). Final biomass was 500% higher during 2014/15 in contrast to 

2013/14. This was attributed to increased growth, and increased canopy size experienced 

during 2014/15. No yield was recorded for cowpea during 2014/15 but during the 2013/14 

season yield under FI and DI was 50% lower (P < 0.05) when intercropped relative to the sole 

crop. Low yields were associated with lower growth and suppressed physiology in the 

intercrop relative to the sole crop (Appendix 1). 

Final biomass for bottle gourd was significantly (P < 0.05) affected by season and 

cropping system interaction and (P < 0.05) affected water regime. Bottle gourd biomass was 

9.16% higher during 2014/15 relative to 2013/14 (Table 3). Intercropping bottle gourd 

resulted in 55.83% and 45.63% less biomass during 2013/14 and 2014/15, respectively, 

relative to its sole crop (Table 3). Mean values of final biomass for water regimes showed that 

final biomass under DI (4.00 t ha-1) was significantly higher than under FI (2.67 t ha-1); final 

biomass under RF conditions (2.28 t ha-1) was statistically similar to FI. Fruit yield for bottle 

gourd was significantly (P < 0.05) higher (73.89%) during 2013/14 in comparison to 2014/15.   
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Table 2 Comparison of sorghum, cowpea and bottle gourd final biomass yield, yield and harvest index 
in response to season (2013/14 and 2014/15), cropping system (SS – sole sorghum, SC – sorghum 
cowpea, SB – sorghum bottle gourd) and water regime (FI – full irrigation, DI – deficit irrigation and 
RF – rainfed) 

Water 

regime 
Season Cropping system 

Sorghum Cowpea Bottle gourd 

B4 Y5 HI6 B Y HI B Y HI 

(t ha-1) % (t ha-1) % (t ha-1) % 

FI1 

2013/14 Sole crops 3,24 1,1 34 0,99ab 0,24b 19 3,98c 2,78d 71b 

 Intercrop:  Sorghum - Cowpea 3,23 1,39 43 0,69a 0,09a 10    

 
Intercrop:   Sorghum-Bottle 

gourd 
2,82 1,23 44    1,53a 0,92b 59b 

 Means 3,09c 1,24b 40 0,84 0,17 15 2,76 1,85 65 

2014/15 Sole crops 2,36 0,8 34 4,19d - - 3,28c 0,39a 12a 

 Intercrop:  Sorghum - Cowpea 2,34 0,86 37 1,94bc - -    

 
Intercrop:   Sorghum-Bottle 

gourd 
2,21 1,08 49    1,88ab 0,29a 15a 

 Means 2,31a 0,91ab 40 3,07 - - 2,58 0,34 14 

DI 

2013/14 Sole crops 3,16 1,19 38 0,51a 0,17b 12 6,36e 4e 62b 

 Intercrop:  Sorghum – Cowpea 3,02 1,11 37 0,46a 0,05a 13    

 
Intercrop:   Sorghum-Bottle 

gourd 
2,58 0,86 34    2,29b 1,27c 55b 

 Means 2,92c2 1,05b 36 0,49 0,11 13 4,33 2,64 59 

2014/15 Sole crops 2,4 0,84 36 4,78d - - 5,07d 0,64a 12a 

 Intercrop:  Sorghum – Cowpea 2,51 0,98 39 2,13c - -    

 
Intercrop:   Sorghum-Bottle 

gourd 
2,52 0,8 33    2,25b 0,31a 14a 

 Means 2,48b 0,87a 36 3,46 - - 3,67 0,48 14 

RF 

2013/14 Sole crops 2,34 0,94 41 0,59a 0,07a 14 1,67ab 0,78b 48ab 

 Intercrop:  Sorghum - Cowpea 2,36 0,83 35 0,22a 0,07a 21    

 
Intercrop:   Sorghum-Bottle 

gourd 
2,39 0,91 37    1,17a 0,49a 41a 

 Means 2,36ab 0,89a 38 0,41 0,07 18 1,43 0,64 45 

2014/15 Sole crops 2,81 1,06 38 5,05d - - 3,94c 0,62a 17a 

 Intercrop:  Sorghum - Cowpea 2,43 0,75 31 2,75c - - - - - 

 
Intercrop:   Sorghum-Bottle 

gourd 
2,74 1,03 38    2,3b 0,41a 18a 

 Means 2,66 0,95a 36 3,91 - - 3,13 0,52 17 

Overall mean 2,64 0,98 32 2,02 0,12 15 2,82 1,08 38 

Season 0,05 0.14*3 4 0,96 - - 0,54 0.34* 31* 

Water 0,06 0,19 6 0,98 0,11 12 0.61* 0,25 21 

Intercropping 0,06 0,18 6 0,98 0.08* 21 0,62 0,25 26 

Year x water 0.13** 0,21 8 1,24 0,15 19 0,79 0,49 21 

Year x intercropping 0,12 0,19 21 1.03** 0,16 11 0.70** 0,42 39 

Year x Water x Intercropping 0,13 0,25 32 1,09 0,45 12 0,89 0,35 53 

CV% 14,8 25,8 23,4 22,3 13,5 ns 37,6 13,8 13,6 

1 Full irrigation (FI) Deficit irrigation (DI) Rainfed (RF) 2. Means followed by the same letter indicate that they were not significantly 
different (p < 0.05) from each other;3 *, ** and *** significant difference  at P < 0.001 P < 0.01 and P < 0.05 4 Final biomass; 5 Yield6 
Harvest index  
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Land equivalent ratio 

The productivity of the intercrop systems was evaluated using land equivalent ratio (LER) 

(Fig 5). Statistically, there were no significant differences observed for the different intercrop 

systems between the two growing seasons and even when grown under different water 

regimes. Average LER across water regimes and cropping systems was 1.45 indicating a 45% 

increase in productivity. Based on mean values of cropping systems alone, the sorghum - 

cowpea intercrop had the highest LER (1.54) in comparison to SB (1.44); this was related to 

the complimentary responses observed between sorghum and cowpea. Across water regimes, 

the trend in LER was such that RF (1.61) > FI (1.51) > DI (1.28) (Fig. 5). Observed LER 

under RF conditions was associated with low but stable yields of both bottle gourd and 

cowpea relative to sole and intercrop systems. During 2013/14 growing season, intercrop 

systems grown under DI resulted in lower LER (38%) relative to 2014/15. Comparing LER of 

SB across the two growing periods, results showed that average LER was lower (7.68%) in 

2013/14 when compared to 2014/15. This was related to increased water availability in 

2014/15. In 2013/14, intercropping sorghum with cowpea under FI and RF was more 

productive (10.757%) than intercropping it with bottle gourd.  

 

Figure 5: Comparison of land equivalent ratio of different of the different intercrop system in 

response to the different water regimes. 

 



103 

 

Water use and water use efficiency 

Although not statistically significant, differences in water use were observed across the 

growing seasons, water regimes and cropping systems. Results showed that mean WU during 

2014/15 was higher (50.30%) than during 2013/14 (Table 4). This was consistent with water 

added under each water regime (FI > DI > RF) and larger canopy size of all cropping systems 

during the 2014/15 growing season (Fig 4 and Table 2).  

During 2013/14, the trend for WU across water regimes was such that FI (285.91 mm) > 

DI (210.35 mm) > RF (174.39 mm). Intercropping sorghum with cowpea (SC) and bottle 

gourd (SB) increased WU (11.45 and 4.42%, respectively) relative to sole sorghum (SS) 

(Table 4). Under FI and DI, intercropping sorghum with cowpea increased WU (12.22 and 

25.30%, respectively) relative to SS while a reduction (-1.82 and -14.08%, respectively) was 

observed under SB relative to SS. Under RF conditions, SB was observed to have the highest 

overall improvements of WU (29.17%) during 2013/14, in contrast to SS and SC (Table 4). 

This was associated with observed high HI of intercropped bottle gourd relative to 

intercropped cowpea and sole sorghum under RF conditions  During 2014/15, similar to 

2013/14 the trend in WU across water regimes was such that FI (388.57 mm) > DI (319.12 

mm) > RF (290.31 mm). Values of WU were consistent with amount of water added to each 

water regime (FI > DI > RF). On average, intercropping resulted in a marginal improvement 

(2.13%) in WU relative to sole sorghum (SS). Under FI and DI, SB increased WU (1.27 and 

22.86%, respectively) relative to SS. On the other hand, intercropping sorghum with cowpea 

resulted in a reduction in WU across all water regimes [DI (-7.89) > FI (-1.09) > RF (-0.59%)] 

relative to SS (Table 4).  

Although not statistically significant, WUE calculated on the basis of total biomass 

(WUEb) varied across seasons, water regimes and cropping systems. During 2013/14, WUEb 

for sorghum was 3.03% lower than what was observed during 2014/15 growing season. The 

observed trend for sorghum WUEb across both growing seasons was RF > DI > FI and this 

was inverse to measured WU across the water regimes (Table 4). Increasing the WU (the 

denominator) with a fixed biomass (the numerator) reduced WUEb.  

Overall, intercropping (with cowpea and bottle gourd) increased WUEb of sorghum by an 

overall 51.63% and 72.2%, for 2013/14 and 2014/15, respectively. This was attributed to 

improved canopy size (Fig. 4) and similarities in WU (Table 4) of the systems relative to SS. 

Highest (105.56%) ΔWUEb was observed under DI conditions relative to RI and FI (Table 4) 
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for both growing seasons. This is consistent with either high biomass or low water use by the 

intercrops (cowpea and bottle gourd) relative to their sole cropping systems.   

Though not statistically significant, WUE calculated on the basis of yield (WUEg) also 

varied across seasons, water regimes and cropping systems. During the 2013/14 growing 

season, WUEg was 35.79% higher than 2014/15 (Table 4). During the 2013/14 growing 

season, the trend observed for sorghum WUEg across water regimes, was RF (5.89 kg mm-1 

ha-1) > DI (4.60 kg mm-1 ha-1) > FI (3.75 kg mm-1 ha-1) while during 2014/15 it was RF (4.72 

kg mm-1 ha-1) > FI (2.42 kg mm-1 ha-1) > DI (2.07 kg mm-1 ha-1). It should be noted that under 

RF conditions, WUEg was consistently high across the growing seasons. This was attributed 

to low WU observed under RF conditions relative to DI and FI. Similar to WUEb, the 

observed trend for WUEg for 2013/14 was consistent with WU of sorghum across water 

regimes.  

Overall, intercropping improved WUEg of sorghum by 62.45% relative to sorghum sole 

crop (Table 4). This was attributed to improved productivity of intercrop systems relative to 

SS (Fig. 4). During 2014/15, overall ΔWUEg by intercropping was 41.46% and this was lower 

(-27.48%) than what was observed in 2013/14. This was also associated with low WU during 

2013/14 relative to 2014/15. Highest ΔWUEg by intercropping were observed under FI during 

2013/14 (73.25%) and under DI during 2014/15 (83.25%) (Table 4). 

Generally, bottle gourd had high WUEb (32.23% and 82.16%) and WUEg (64.52% and 

94.37%) relative to sorghum and cowpea, respectively (Table 4). This was associated with 

higher biomass production and yield. 
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Table 3: Comparison of water use and water use efficiency across the different cropping 

system in response to full irrigation, deficit irrigation and rainfed conditions during 2013/14 

and 2014/15 growing season. 

 

Water 
regime 

Croppi
ng 

system 

2013/14 2014/15 

Water 
use 

(mm) 

WU3 
improv
ements 

(%) 

WUEb4 
kg ha-1 
mm-1 

WUEg5 
kg ha-1 
mm-1 

Water 
use 

(mm) 

WU 
improv
ements 

(%) 

WU
Eb 
kg 

ha-1 
mm-1 

WUEg kg 
ha-1 mm-1 

FI1 

S2 293.22  11.05 3.75 331.18  7.56 2.42 
C 251.17  3.94 0.96 418.13  5.60 - 
B 297.17  13.39 10.76 331.18  5.95 7.18 
SC 296.82 12.22 52.146 76.85 391.73 -1.09 59.77 - 
SB 291.17 -1.82 30.93 60.05 404.88 1.27 50.25 12.04 

DI 

S 258.62  12.22 4.6 405.59  12.50 2.07 
C 185.32  2.75 0.91 359.28  6.15 - 
B 199.22  31.92 24.35 405.59  17.65 2.72 
SC 229.57 25.3 67.26 51.08 323.43 -7.89 70.36 - 

SB 179.02 -14.08 78.38 55.75 319.93 22.86 142.6
7 84.04 

RF 

S 159.67  14.66 5.89 224.49  19.18 4.72 
C 177.62  3.32 0.39 295.73  8.12 - 
B 154.57  10.80 5.04 224.49  10.01 1.89 
SC 179.42 -3.18 42.74 31.91 306.28 -0.59 57.10 - 
SB 200.67 29.17 47.35 21.18 297.48 -1.75 32.66 -11.65 

1 Full irrigation (FI) Deficit irrigation (DI) Rainfed (RF) 
2 Sole sorghum (S), cowpea (C) and bottle gourd (B), sorghum – cowpea (SC) and sorghum – bottle gourd (SB)  
3 Water use 
4 Water use efficiency for biomass production 
5 Water use efficiency for economic yield production 
6 Figures in bold represent improvements (%) of WUE by the intercrop systems 

 

 

Discussion 

Observed results of SWC (DI>RF>FI) suggest that storage capacity of water of the field was 

heterogeneous, especially at depths between 0.2 and 0.6 m. Observed results of SWC for the 

top 0.10 m layer suggest that water was lost primarily through evaporation while plant 

extraction was predominant at the 0.10 – 0.30 m depths. The high SWC observed at depths of 

0.30 – 0.60 m under RF relative to FI could be associated with slope position (5% depression 

from FI (top) to RF (bottom)) and depth of water table relative to soil surface was closer 

under FI. Water table of a soil is defined as the boundary layer between unsaturated and 

saturated soil zone caused by ground water within a soil profile. Under RF, SWC between 

0.30 and 0.60 m was consistently approaching saturation in 2013/14 and at saturation in 

2014/15. Under FI the same layer was consistently above FC during 2013/14 and approaching 
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saturation during 2014/15. Observed results are consistent with reports by Perazzolo et al. 

(2004) who observed high SWC and high water table at the foot of a gentle slope. In terms of 

water table, it could be that the impermeable soil layer observed at depths around 0.60 m 

restricted water movement down the soil profile resulting in saturated soils and a temporary 

water table. Conversely, the higher SWC observed at depths of 0.30 – 0.60 m under DI 

relative to both FI and RF could suggest the impermeable layer was higher resulting in a 

higher temporary water table. A thin soil layer relative to water table is beneficial under low 

rainfall areas and can substantially improve WUE especially for shallow rooted crops 

(Mueller et al., 2005). However, during seasons of above normal rainfall such conditions are 

disadvantageous to crop species sensitive to waterlogging. In such instances, crops like 

sorghum are ideal as they are more tolerant to waterlogging. Observed measurements of SWC 

in response to intercropping during 2013/14 were associated with an increase in demand for 

water owing to increased plant population (additive intercrop) relative to sole sorghum (SS). 

Greater water extraction in the 0.1 – 0.3 m was due to increased root volume resulting in 

increased effective use of water. On the other hand, under optimum conditions (2014/15 

season), intercropping improved SWC relative to SS. It is assumed that the crops (cowpea or 

bottle gourd) added into sorghum were able to minimize unproductive losses of water 

(primarily soil evaporation) and improve its soil water availability. Cowpea and bottle gourd 

may have modified the micro–climate within the canopy such that air movement was 

minimized resulting in increased humidity and a drop in canopy temperature (Ogindo and 

Walker, 2005). This would have resulted in a reduction in the demand for water by the 

immediate atmosphere in and around the canopy thus resulting in low soil evaporation. 

Similar observations have been made by Ogindo and Walker (2003) and Walker and Ogindo 

(2003) for maize intercropped with cowpea. In the current study, cowpea and bottle gourd 

acted as live mulch and aided in conserving soil water content. This could also explain why 

during 2013/14 improved availability of water under DI and FI conditions was observed 

within the 0.10 – 0.30 cm layer. Improvement in water availability conferred by intercropping 

is an ideal trait for regions with low and variable rainfall patterns.  

The observed association of leaf physiological traits (CCI and gs) is intrinsically linked 

with photosynthetic potential of sorghum and its ability to acclimatize. Under limited water, 

reduction of gs was aimed at minimizing transpirational losses (Chaves et al., 2003); however, 

this also reduces CO2 absorption. Under limited water conditions, the observed physiological 

response (CCI and gs) of sorghum intercropped with cowpea highlights one of the benefits of 



107 

 

cereal-legume intercrop systems. Leguminous crop species fix atmospheric nitrogen in to the 

soil and, when grown together with nitrogen scavengers like cereals, improve availability of 

soil nitrogen (Eskandari and Ghanbari, 2009). Improved nutrient availability is associated 

with enhanced root function through increased root growth which resulted in enhanced soil 

water capture. As a result, gs was improved and CCI maintained. These results are consistent 

with findings by Nielsen and Halvorson (1991) who observed an increase in root function 

with improved soil nitrogen, improving transpiration and ultimately WUE. Intercropping 

sorghum with cowpea helped improve its physiological response through effective use of 

water (Blum, 2009). This is advantageous in low rainfall areas with deep soil profiles.  

In the current study, the inconsistent results of RWC for sorghum when intercropped with 

either bottle gourd or cowpea would suggest facilitative and competitive interactions for water 

between respective component crops. The observed high RWC when sorghum intercropped 

with bottle gourd can be associated with an increase in soil water availability conferred by the 

intercrop bottle gourd which acted as mulch, reducing soil evaporation. Lower RWC observed 

when sorghum was intercropped with cowpea could be that sorghum and cowpea roots were 

extracting water in the same horizon. As such, to a limited extent, bottle gourd and cowpea 

have facilitative and competitive roles, respectively, when intercropped with sorghum. This 

could have caused a reduction in the availability of soil water for sorghum relative to 

sorghum-bottle gourd and sole sorghum causing a reduction in plant water status as reflected 

by low RWC. Under limited water availability, sorghum is generally able to maintain high 

RWC primarily through osmotic adjustment (OA) (Dias et al., 2014) (accumulation of 

osmolytes in response to decreasing SWC). The cost of osmotic adjustment on subsequent 

growth and productivity is not clearly understood. It is associated with stomata sensitivity and 

reduced transpirational loss. In non-stressed sorghum plants, RWC ranges between 75 – 92% 

(Jones and Turner, 1978; Stuart et al., 1985; Netondo et al., 2004), depending on genotype. 

The fact that RWC for intercropped sorghum observed in the current study fits within this 

range. In addition, observed RWC was this is in line with observed SWC would also suggest 

that sorghum was not severely stressed. Nevertheless, to minimize the competitive interaction 

between sorghum and cowpea, the plant population of cowpea can be reduced so as to 

improve RWC of sorghum. 

The observed response of sorghum canopy characteristics suggests that sorghum canopy 

growth was sensitive to water availability. Under limited water supply, reduction in canopy 

size allows the plant to use water ‘sparingly’ until it completes its life cycle, thus ensuring 
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water use efficiency (Kirkham, 2014). The challenge of this eco-morphological response is 

that a smaller canopy can lead to increased soil evaporation. In addition, since water losses 

through transpiration are directly related to exchanges of CO2, there can be concomitant 

decreases in CO2 due to a reduction in canopy size. Photosynthesis becomes substrate limited 

resulting in less C fixed thus, limiting biomass production. Intercropping sorghum with either 

bottle gourd or cowpea under limited water supply improved canopy size of sorghum through 

regulating tillering, plant height, leaf number and LAI. Intercropping sorghum with cowpea 

improved plant height, reduced tiller number but increased overall LAI of sorghum.  

The eco-physiological basis of tillering suggests that it will occur under optimum water 

and nutrient conditions as well as the ratio of red to far red light (R/FR) (Lafarge, 2002). 

Intercropping sorghum with cowpea resulted in a reduction R/FR down the sorghum canopy. 

This supressed growth and development of meristems responsible for tillering and encouraged 

stem etiolation (Yang et al., 2014). Due to improved water availability, and as a means of 

compensating for suppressed tillers, sorghum responded by increasing LAI. Observations of 

tillering and improved LAI are consistent with those observed by Krishnareddy et al. (2006) 

and Kim et al. (2010). Conversely, when sorghum was intercropped with bottle gourd, the 

observed improvements of tillering and subsequently leaf number and LAI were mainly due 

to low plant population of bottle gourd in the intercrop. The low plant population ensured that 

the R/FR was always high while at the same time increased availability of soil water. 

Improved canopy size under intercropping was in response to improved water availability. 

This resulted in an increasein transpirational surface of sorghum, therefore increase water use 

efficiency. For additive intercropping, plant population for the added crop can influence 

canopy size of the main crop. If morphological similarities exist between crop components, 

replacement intercropping would be more appropriate under limited water availability. 

Results of measured final biomass and yield for the two growing seasons were 

inconsistent with observations of growth and physiology for the corresponding growing 

seasons. This was mainly attributed to time of harvest where during 2013/14 harvesting 

occurred at harvest maturity and at soft dough stage during 2014/15. Early harvesting during 

the 2014/15 growing season was because of persistent bird and monkey attacks on sorghum 

panicles. According to Vanderlip (1993), under optimum conditions and at soft dough stage, 

sorghum seed would be two fifths of final seed mass. If this stands true, yield during 2014/15 

could have been 60% higher than what was observed and also higher than yield from 2013/14 

growing season. This deduction would be consistent with observed results of sorghum growth 
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and physiology. Due to early harvesting in 2014/15, observed grain yield was low resulting in 

low HI as well as WU and WUE, relative to 2013/14. Sorghum grain is very vulnerable to 

animal, bird and insect attack. Intercropping with either cowpea or bottle gourd marginally 

improved WU relative to sole sorghum. Improved WU was due to improved canopy 

expansion rate, attainment of maximum canopy size and increased root density under 

intercropping relative to sole sorghum. This increased the proportion of transpiration relative 

to soil evaporation hence reducing unproductive water losses (Mabhaudhi et al., 2013). These 

results are consistent with several reports in the literature (Morris and Garrity, 1993; Yang et 

al., 2011; Fan et al., 2013). Intercropping therefore, increases the effective use of water 

(Blum, 2009); an advantageous trait under water limited environments.  

Water use efficiency is an important yield determinant under water stress (Molden et al., 

2010). Water use efficiency can be increased either by increasing output with a fixed water 

input or reducing water input with a fixed output. Observed results of increase in WUE for 

sorghum biomass (WUEb) and yield (WUEg) across water regimes were associated with 

reduced WU. Under water limited conditions, traits that conferred high WUE were reductions 

in canopy size which allowed sorghum to maintain transpiration and RWC as well as biomass 

and yield production. These results are consistent with those observed by Deng et al. (2006) 

and Mabhaudhi et al. (2013) who observed 18 and 40% improvements in WUE under water 

stress conditions. Without the additional cost of irrigation, sorghum can be productive in 

semi-arid and arid areas of the region. 

Although intercropping resulted in overall improvements in water use (ΔWUE), observed 

improvements were inconsistent across growing seasons and water regimes. During 2014/15, 

ΔWUE was inconsistent with what was observed during 2013/14 growing season and this was 

mainly attributed to the premature harvesting of the trial. During the 2013/14 growing season, 

ΔWUE for both biomass and yield were associated with observed HI and WU. Increasing 

availability of water increased average HI for both intercrop systems. Improved HI can be 

associated with increased biomass production coupled with increased translocation efficiency 

which is often observed under optimum growing conditions (Passioura, 2006). The 

association of HI, WUEg and WUEb was described by Pereira (1996) who stated that WUEg 

was the product of HI and WUEb. Therefore, agronomic practices that can increase HI would 

also translate to high WUE in intercrop systems. In water scarce environments where 

irrigation may not be feasible, farmers can conserve soil water during the fallow period so as 

to improve soil water availability during the subsequent growing season. 
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Conclusion 

Intercropping sorghum with cowpea and bottle gourd did not have any negative effect on 

growth and yield of sorghum. Under limited water availability, intercropping sorghum with 

either cowpea or bottle gourd resulted in more of a facilitative than competitive interaction 

with respect to water availability from a physiological, growth and productivity perspective. 

Cowpea and bottle gourd were able to improve soil water availability by minimizing soil 

evaporation. In addition, cowpea could have been able to improve nutrient availability for 

sorghum and hence improving root function. This allowed for enhanced soil water capture 

from the soil profile and hence effective use of water. Physiological parameters (gs and CCI) 

proved to be useful indices for evaluating sorghum response to intercropping under limited 

water availability. However, gs was only evaluated in one season hence further research is 

necessary to substantiate its usefulness. Under RF conditions, intercropping improved overall 

productivity of sorghum. Intercropping sorghum with cowpea resulted in improvement in 

WU. Overall, productivity (LER), WU and WUE (biomass and yield) for sorghum –cowpea 

intercrop system were more stable across both growing seasons. Results for sorghum –

cowpea intercrop productivity still need to be substantiated since these are primarily based on 

the first season’s data only. Under low water availability, intercropping should be 

recommended as a viable water management strategy. Sorghum–cowpea intercrop system 

should be recommended to semi–arid regions as it showed both yield stability and high WUE. 

There is need for future research on the root-shoot responses of intercropped sorghum to 

varying levels of water availability, focusing more on root interactions. Then again, results are 

largely inconclusive due to poor experimental control over unexpected hazards. 

 

Acknowledgements 

The Water Research Commission of South Africa is acknowledged for initiating, funding and 

directing the study through WRC Project No. K5/2274//4 ‘Determining water use of 

indigenous grain and legume food crops’ (WRC, 2014). 

 



111 

 

References  

Ahmadi Mousavi, E., Manochehri Kalantari, K., Jafari, S.R., 2009. Change of some 

osmolytes accumulation in water-stressed Colza (Brassica napus L.) as affected by 24-

epibrassinolide. Iran. J. Sci. Technol. Trans. A Sci. 33, 1-11. 

Aishah, H.S., Saberi, a. R., Halim, R. a., Zaharah, a. R., 2011. Photosynthetic responses of 

forage sorghums to salinity and irrigation frequency. J. Food, Agric. Environ. 9, 566–

569. doi:10.5897/AJB10.2368 

Allen, L.H., Kakani, V.G., Vu, J.C. V, Boote, K.J., 2011. Elevated CO2 increases water use 

efficiency by sustaining photosynthesis of water-limited maize and sorghum. J. Plant 

Physiol. 168, 1909–18. doi:10.1016/j.jplph.2011.05.005 

Allen, R., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: Guidelines for 

computing crop requirements, Irrigation and Drainage Paper No. 56, FAO. Irrigation and 

Drainage Paper No. 56, FAO. 

Asina, M., Herralde, F. De, 2007. Water relations and vulnerability to embolism are not 

related: experiments with eight grapevine cultivars. Vitis - J. Grapevine Res. 46, 1 – 6. 

Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought—

from genes to the whole plant. Funct. Plant Biol. 30, 239–264. 

Chaves, M.S., Martinelli, J.A., Wesp-Guterres, C., Graichen, F.A.S., Brammer, S.P., 

Scagliusi, S.M., da Silva, P.R., Wiethölter, P., Torres, G.A.M., Lau, E.Y., Consoli, L., 

Chaves, A.L.S., 2013. The importance for food security of maintaining rust resistance in 

wheat. Food Secur. 5, 157–176. doi:10.1007/s12571-013-0248-x 

Coll, L., Cerrudo, A., Rizzalli, R., Monzon, J.P., Andrade, F.H., 2012. Capture and use of 

water and radiation in summer intercrops in the south-east Pampas of Argentina. Field 

Crops. Res. 134, 105–113. doi:http://dx.doi.org/10.1016/j.fcr.2012.05.005 

Deng, X.-P.X., Shan, L., Zhang, H., Turner, N.C.N., 2006. Improving agricultural water use 

efficiency in arid and semiarid areas of China. Agric. Water Manag. 80, 23-40. 

doi:10.1016/j.agwat.2005.07.021 



112 

 

Dias, M.C., Oliveira, H., Costa, A., Santos, C., 2014. Improving elms performance under 

drought stress: The pretreatment with abscisic acid. Environ. Exp. Bot. 100, 64–73. 

doi:10.1016/j.envexpbot.2013.12.013 

Du Plessis, J., 2008. Sorghum production manual. Department of Agriculture, ARC - Grain 

Crops Institute, Pretoria, South Africa. 

http://www.nda.agric.za/docs/Infopaks/FieldCrops_Sorghum.pdf 

Eskandari, H., Ghanbari, A., 2009. Intercropping of Maize (Zea mays L) and Cowpea (Vigna 

sinensis) as Whole-Crop Forage: Effect of Different Planting Pattern on Total Dry 

Matter Production and Maize Forage Quality 37, 152-155. 

Fan, Z., Chai, Q., Huang, G., Yu, A., Huang, P., Yang, C., Tao, Z., Liu, H., 2013. Yield and 

water consumption characteristics of wheat/maize intercropping with reduced tillage in 

an Oasis region. Eur. J. Agron. 45, 52–58. 

doi:http://dx.doi.org/10.1016/j.eja.2012.10.010 

Farahani, S.M., Chaichi, M.R., 2012. Effects of Field Treatments on Barley Seed Sensitivity 

to Organic Seed Sanitation (Hot Water). Res. J. Seed Sci. 5, 96 - 105. 

doi:10.3923/rjss.2012.96.105 

Farré, I., Faci, J.M., 2006. Comparative response of maize (Zea mays L.) and sorghum 

(Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. 

Agric. Water Manag. 83, 135-143. 

Hanjra, M.A., Qureshi, M.E., 2010. Global water crisis and future food security in an era of 

climate change. Food Policy 35, 365–377. doi:10.1016/j.foodpol.2010.05.006 

Jones, M.M., 1978. Osmotic adjustment in leaves of sorghum in response to water deficits. 

Plant Physiol. 61, 122–126. 

Jun, F., Yu, G., Quanjiu, W., Malhi, S.S., Yangyang, L., 2014. Mulching effects on water 

storage in soil and its depletion by alfalfa in the Loess Plateau of northwestern China. 

Agric. Water Manag. 138, 10–16. doi:10.1016/j.agwat.2014.02.018 

Kim, H.K., Luquet, D., van Oosterom, E., Dingkuhn, M., Hammer, G., 2010. Regulation of 

tillering in sorghum: genotypic effects. Ann. Bot. 106, 69–78. doi:10.1093/aob/mcq080 



113 

 

Kirkham, M.B., 2014. Principles of Soil and Plant Water Relations, Principles of Soil and 

Plant Water Relations. Elsevier. doi:10.1016/B978-0-12-420022-7.00027-6 

Kizito, F., Sène, M., Dragila, M.I., Lufafa, A., Diedhiou, I., Dossa, E., Cuenca, R., Selker, J., 

Dick, R.P., 2007. Soil water balance of annual crop–native shrub systems in Senegal’s 

Peanut Basin: The missing link. Agric. Water Manag. 90, 137-148. 

doi:10.1016/j.agwat.2007.02.015 

Krishnareddy, S.R., Stewart, B.A., Payne, W.A., Robinson, C.A., Thomason, R.C., 2006. 

Tillering in dryland grain sorghum clumps as influenced by light, plant density and 

geometry. Growth (Lakeland) 162-170. 

Lafarge, T.A., 2002. Tillering in Grain Sorghum over a Wide Range of Population Densities: 

Identification of a Common Hierarchy for Tiller Emergence, Leaf Area Development 

and Fertility. Ann. Bot. 90, 87–98. doi:10.1093/aob/mcf152 

Loutfy, N., El-Tayeb, M., 2012. Changes in the water status and osmotic solute contents in 

response to drought and salicylic acid treatments in four different cultivars of wheat 

(Triticum aestivum). J. Plant Res. 125, 173 - 184. 

Mabhaudhi, T., Modi, A.T., Beletse, Y.G., 2013. Response of taro (Colocasia esculenta L. 

Schott) landraces to varying water regimes under a rainshelter. Agric. Water Manag. 

121, 102–112. doi:10.1016/j.agwat.2013.01.009 

McMaster, G., Wilhelm, W., 1997. Growing degree-days: one equation, two interpretations. 

Agric. For. Meteorol. 87, 291-– 300. 

Modi, A.T., Mabhaudhi, T., 2013. Water use and drought tolerance of selected traditional and 

indigenous crops. Final Report of Water Research Commission Project K5/1771//4. 

WRC Report No. 1771/1/13, ISBN 978-1-4312-0434-2. Water Research Commission. 

Pretoria, South Africa. 

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M.A., Kijne, J., 2010. Improving 

agricultural water productivity: Between optimism and caution. Agric. Water Manag. 97, 

528–535. doi:10.1016/j.agwat.2009.03.023 



114 

 

Morris, R.A., Garrity, D.P., 1993. Resource capture and utilization in intercropping: water. 

Field Crops. Res. 34, 303-317. 

Muchow, R., Carberry, P., 1990. Phenology and leaf-area development in a tropical grain 

sorghum. Field Crops. Res. 23, 221 - 237. 

Netondo, G., Onyango, J., Beck, E., 2004. Sorghum and salinity: I. Response of growth, water 

relations, and ion accumulation to NaCl salinity. Crop Sci. 44, 795 – 805. 

Nielsen, D., Halvorson, A., 1991. Nitrogen fertility influence on water stress and yield of 

winter wheat. Agron. J. 83, 1065- 1070. 

Ntombela, Z., 2013. Growth and yield responses of cowpeas (Vigna unguiculata L) to water 

stress, MSc Thesis,. University of KwaZulu–Natal, Pietermaritzburg, South Africa. 

Ofori, E., Berchie, J.N., Nimako, F.O., 2014. Original Research Article Monitoring of soil 

moisture regime and water use efficiency under maize cowpea cropping system. Int. J. 

Curr. Microbiol. Appl. Sci. 3, 837–848 

Ogindo, H.O., Walker, S., 2005. Comparison of measured changes in seasonal soil water 

content by rainfed maize-bean intercrop and component cropping systems in a semi-arid 

region of southern Africa. Phys. Chem. Earth, Parts A/B/C 30, 799-808. 

doi:10.1016/j.pce.2005.08.023 

Ogindo, H. O., & Walker, S. 2003. The estimation of soil water extraction by maize-bean 

intercrop and its sole crop components in a semi-arid region. Afri Crop Sci. Con. Proc., 

6, 430 – 435. Retrieved from http://www.acss.ws/Upload/XML/Research/107.pdf 

Ortmann, G.F., King, R.P., 2010. Research on agri-food supply chains in Southern Africa 

involving small-scale farmers: Current status and future possibilities. Agrekon 49, 397–

417. doi:10.1080/03031853.2010.526428 

Ouda, S. a, El Mesiry, T., Abdallah, E.F., Gaballah, M.S., 2007. Effect of Water Stress on the 

yield of Soybean and Maize Grown under Different Intercropping Patterns. Aust. J. 

Basic Appl. Sci. 1, 578–585. 

http://www.acss.ws/Upload/XML/Research/107.pdf


115 

 

Passioura, J., 2006. Increasing crop productivity when water is scarce—from breeding to field 

management. Agric. Water Manag. 80, 176 -196. 

Pereira, L.S., 1996. Sustainability of Irrigated Agriculture. Springer Netherlands, Dordrecht. 

doi:10.1007/978-94-015-8700-6 

Rockström, J., Barron, J., Fox, P., 2003. Water Productivity in Rain-fed Agriculture: 

Challenges and Opportunities for Smallholder Farmers in Drought-prone Tropical 

Agroecosystems*, in: Water Productivity in Agriculture: Limits and Opportunities for 

Improvement. pp. 145-162. 

Rockström, J., Karlberg, L., Wani, S.P.S., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., 

Farahani, J., Qiang, Z., 2010. Managing water in rainfed agriculture—The need for a 

paradigm shift. Agric. Water Manag. 97, 543–550. doi:10.1016/j.agwat.2009.09.009 

Sani, B.M., Danmowa, N.M., Sani, Y.A., Jaliya, M.M., 2011. Growth , Yield and Water Use 

Efficiency of Maize-Sorghum Intercrop at Samaru , Northern Guinea Savannah , 

Nigeria. Eng. Agric. Program. Irrig. 19, 253–259. 

Singh, J., Behari, P., 2012. Evapotranspiration and water use efficiency of hybrid napier plus 

berseem intercropping system under organic and inorganic nutrition. J. Agrometeorol. 

14, 130 - 133. 

Stuart, B.L., Krieg, D.R., Abernathy, J.R., 1985. Photosynthesis and Stomatal-Conductance 

Responses of Johnsongrass (Sorghum halepense) to Water Stress. Weed Sci. 33, 635 -

639. 

Taylor, J.R.N., 2003. Overview: Importance of sorghum in Africa, in: Proceedings of 

AFRIPRO Workshop on the Proteins of Sorghum And Millets: Enhancing Nutritional 

and Functional Properties for Africa, Pretoria, South Africa. 

Tuong, T.P., Bouman, B. a. M., 2003. Water productivity in agriculture: limits and 

opportunities for improvement. Water Product. Agric. limits Oppor. Improv. 44, 53–67. 

doi:10.2136/vzj2007.0085br 

Van Duivenbooden, N., Pala, M., Studer, C., Bielders, C.L., Beukes, D.J., 2000. Cropping 

systems and crop complementarity in dryland agriculture to increase soil water use 



116 

 

efficiency: a review. NJAS - Wageningen J. Life Sci. 48, 213-236. doi:10.1016/S1573-

5214(00)80015-9 

Vanderlip, R.L., 1993. How a Sorghum Plant Develops [WWW Document]. Kansas State 

Univ. URL http://www.ksre.k-state.edu/bookstore/pubs/s3.pdf (accessed 6.30.15). 

Walker, S., Ogindo, H.O., 2003. The water budget of rainfed maize and bean intercrop. Phys. 

Chem. Earth, Parts A/B/C 28, 919-926. doi:10.1016/j.pce.2003.08.018. 

Water Research Commission (WRC), 2014. Knowledge Review 2013/14. Water Research 

Commission of South Africa, Gezina, Pretoria. 

Willey, R., 1979. Intercropping-Its importance and research needs.1.Competition and yield 

advantages. Field. Crops Abstr. 32, 1-10. 

Yang, C., Huang, G., Chai, Q., Luo, Z., 2011. Water use and yield of wheat/maize 

intercropping under alternate irrigation in the oasis field of northwest China. Field. 

Crops. Res. 124, 426–432. doi:10.1016/j.fcr.2011.07.013 

Yang, F., Huang, S., Gao, R., Liu, W., Yong, T., Wang, X., Wu, X., Yang, W., 2014. Growth 

of soybean seedlings in relay strip intercropping systems in relation to light quantity and 

red: Far-red ratio. Field . Crops. Res. 155, 245-253. 

Zegada-Lizarazu, W., Zatta, A., Monti, A., 2011. Water uptake efficiency and above- and 

belowground biomass development of sweet sorghum and maize under different water 

regimes. Plant Soil 351, 47–60. doi:10.1007/s11104-011-0928-2 

Zougmore, R., Kambou, F.N., Ouattara, K., Guillobez, S., 2000. Sorghum-cowpea 

Intercropping: An Effective Technique Against Runoff and Soil Erosion in the Sahel 

(Saria, Burkina Faso). Arid Soil Res. Rehabil. 14, 329-342. 

doi:10.1080/08903060050136441 

  



117 

 

CHAPTER 5 

SORGHUM RADIATION USE EFFICIENCY AND BIOMASS 

PARTITIONING IN A SORGHUM-COWPEA-BOTTLE GOURD 

INTERCROP SYSTEM 

 

Running title: Radiation use efficiency of sorghum intercrop systems 

 

V.G.P. Chimonyo*, A.T. Modi and T. Mabhaudhi 

Crop Science, School of Agricultural, Earth and Environmental Sciences, University of 

KwaZulu-Natal, P. Bag X01, Scottsville 3209, Pietermaritzburg, South Africa. 

*Author of correspondence: vimbayic@gmail.com  

 

 

 

 

 

 

 

 

[Summited to Annals of Applied Biology on the 20th October, 2015] 

  

mailto:vimbayic@gmail.com*


118 

 

Abstract  

Water stress affects radiation use efficiency (RUE) of cropping systems. It was hypothesized 

that intercropping sorghum (S) with either cowpea (C) or bottle gourd (B) would improve 

productivity and RUE. This was assessed using a split–plot arrangement with sub–plots 

[intercrop combinations: SS (sole), C (sole), B (sole), SC (intercrop) and SB (intercrop)] 

nested in a randomised complete block arrangement within main plots [water regimes: full 

irrigation (FI), deficit irrigation (DI) and rainfed (RF)]. Data collected included specific leaf 

area (SLA), leaf area index (LAI) as well as biomass accumulation and partitioning. 

Extinction coefficient (K), intercepted photosynthetic active radiation (IPAR) and RUE for 

biomass and grain were also determined. Across water regimes, mean SLA was FI (145) > DI 

(143) > RF (142 m2 g-1). A significant (P < 0.05) reduction in SLA was observed when 

sorghum was intercropped with either C (-19.68%) and SB (18.56%) relative to sole sorghum 

(SS). Under RF conditions, intercropping S with either C (25.92%) or B (62.36%) 

significantly (P < 0.05) increased LAI relative to sole sorghum (SS). Under FI, sorghum 

stems constituted a larger proportion (62%) of final biomass in comparison to DI (52%) and 

RF (50%). At sorghum flowering, the K value for S (0.59), C (0.61) and B (0.59) were 

similar. Overall, intercropping S with either C or B improved IPAR (38.26%) and RUE 

(8.96%) under RF conditions. From a cropping systems point of view intercropping should be 

recommended for semi – and arid environments since it improves RUE. 

 

Keywords: deficit irrigation, intercepted photosynthetic active radiation, intercropping, 

specific leaf area 
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Introduction  

Within semi-arid and arid regions of sub-Saharan Africa (SSA) rainfed agricultural systems 

are affected by numerous constraints and chief among them is water scarcity (Rockström et 

al., 2003). It is also in these regions where population growth rates and food insecurity 

remains significantly high (Hanjra & Qureshi, 2010). Conversely, infrastructural and financial 

resources remain inadequate to invest in irrigation technologies to supplement rainfed systems 

(Drechsel & Dongus, 2010). To increase food production, crops adapted to low water 

availability, such as, sorghum should be promoted. Due to traits such as deep prolific root 

systems, stay green characteristics, leaf rolling and osmotic adjustment, sorghum is able to 

efficiently use available water, and thus confer high tolerance to water stress. Although 

sorghum is ideal for low rainfall areas, field experiments have observed that yield and 

biomass production is still compromised by water stress. It could be that, under water stress, 

sorghum traits that confer its drought tolerance could inadvertently reduce amount of 

radiation intercepted – an essential resource for biomass and yield production. 

Under optimum water and nutrient conditions crop biomass accumulation is primarily 

influenced by the amount of intercepted photosynthetically active radiation (IPAR) 

(wavelength in the range of 0.4 – 0.9 um) by the green leaf canopy and the photosynthetic 

efficiency of its conversion (Curt et al., 1998). Under water–limited conditions, plants reduce 

canopy size so as to minimise transpirational water loss, resulting in a reduction in total IPAR 

(Collino et al., 2001). In addition, stomatal conductance is lowered in response to decreasing 

plant water potential resulting in a reduction in net assimilation rate of carbon for biomass 

production (Reddy et al., 2014). Therefore, RUE will vary considerably with water 

availability (Collino et al., 2001; Sekhon et al., 2010; and Bat-Oyun et al., 2012). This has 

been attributed more to its effect on the use of assimilates for biomass production than canopy 

size. As a way of improving productivity in rainfed cropping systems, there is need to 

introduce strategies that improve resilience to water stress while at the same time not 

compromising the efficient use of readily available resources such as solar radiation. 

To increase the efficient use of plant resources, intercropping is fast becoming an 

approach of choice across diverse agro–ecologies (Keating and Carberry, 1993; Tsubo et al., 

2003; Gao et al., 2010; Yang et al., 2011). By definition, intercropping is the practice of 

growing more than one crop on the same piece of land at the same time. When 

complementarity of crop species is realized, intercropping has been observed to improve 
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productivity through spatial and temporal use of resources relative to sole cropping. This is 

achieved through crop morpho– and eco–physiological modifications (Mabhaudhi and Modi, 

2014; Chimonyo et al., 2015). The additional crop introduced into the main crop hastens time 

to full canopy cover thus reducing amount of water lost through soil evaporation. Increased 

root density increases access to water that would have also been lost through drainage. The 

hastened time to full canopy cover would suggest that IPAR is also increased. Conversely, 

improved water availability and its access implies that stomatal conductivity is maintained 

resulting in high net assimilation rates and biomass production. This would insinuate that, 

under water–limited conditions, intercropping could stabilise the derivatives of RUE therefore 

improving biomass production and yield.  

The association between water, radiation interception and plant growth rate has been 

studied thoroughly in monocropping systems. Information on the improved water and 

radiation use by intercrop systems is widely available; however these aspects are often 

investigated separately. Assessing the relationship between water availability and RUE 

creates an opportunity to improve productivity of intercrop systems. Furthermore, it increases 

our understanding of symbiotic resource use within the intercrop system. The aim of the study 

was to determine RUE for sorghum intercropped with either cowpea (Vigna unguiculata L. 

Walp) or bottle gourd (Lagenaria siceraria) under varying water regimes. Therefore we 

investigated effects of intercropping and varying water regimes on the eco-physiological 

responses of sorghum and its subsequent effect on RUE 

Materials and methods 

Data collection 

Experiment overview 

Field experiments were conducted at the University of KwaZulu–Natal’s Ukulinga Research 

Farm (29°37ꞌS; 30°16ꞌE; 775 m a.s.l.) in Pietermaritzburg, South Africa, over two summer 

seasons (2012/13 and 2013/14). For full description of experimental site refer to Chimonyo et 

al. (under review).  

The field experiment was set up as a split–plot arrangement with sub–plots nested in a 

randomised complete block design within the main plot, and replicated three times. The main 

plot was water regime with three levels (full irrigation, deficit irrigation and rainfed). Sub–

plots comprised intercrop combinations, sole sorghum (SS), sole cowpea (C), sole bottle 
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gourd (B), sorghum – cowpea (SC) and sorghum – bottle gourd (SB). For full detail on 

treatments and plot layout, refer to Chimonyo et al (under review). All cultural practices such 

as weeding, fertilizer application rates and pest management were done according to best 

management practices for the site. 

Overall, more rainfall (26.31%) was received in 2014/15 than in 2013/14 (Table 1). 

Cumulative reference evapotranspiration was marginally higher (2.93%) in 2013/14 

(502.61mm) than in 2014/15. A deficit of 184.14 and 91.49 mm for 2013/14 and 2014/15, 

respectively was, therefore, recorded (Table 1). During 2013/14 irrigation applied in the FI 

and DI treatment was 286.50 and 208.0 5mm, respectively. During 2014/15 irrigation applied 

in the FI treatment was 208.05 and 136.00 mm, respectively. During the 2013/14 and 2014/15 

growing seasons, the trend for SWC across the water regimes was such that DI (213.00 and 

204.69 mm) > RF (170.97 and 203.80 mm) > FI (160.81 and 177.81 mm, respectively). 

Table 1: A comparison of water applied across the water regimes (Full irrigation, deficit 

irrigation and rainfed conditions) and observed Reference evapotranspiration (ETO). Values in 

bold represent total water added (irrigation and rainfall) into the system. 

 Full irrigation Deficit irrigation Rainfed 

conditions 

Reference 

evapotranspiration 

2013/14 286.50  608.97 208.05  530.52 322.47 502.61 

2014/15 208.05  610.31 136.00  538.26 402.26 493.75 

 

Crop growth parameters 

Specific leaf area (SLA) (cm2 g-1) was defined as the one-sided area of a fresh leaf divided by 

its oven dried mass. Specific leaf area was determined from plant samples that were 

destructively taken on a weekly basis. Immediately after sampling, leaf area was measured 

using an LI-3100C leaf area meter (LI-COR, USA). Thereafter, leaves were oven dried at a 

constant temperature of 85°C until a constant mass was attained. Specific leaf area was 

calculated as: 

SLA =  
LA 

LM
(m2g−1)          Equation 2  
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where SLA = specific leaf area (m2 g-1), LA (m2) is the one-sided area of a fresh leaf, and LM 

is the oven dried mass of leaves. 

The remaining plant parts were separated into stalk/stems and reproductive organs and were 

also dried. Mass of leaves, stems and reproductive organ was used to determine biomass 

accumulation (total mass) and partitioning. 

Leaf area index (LAI) measurements were taken during midday (1200–1400 hrs.) on days 

with clear skies using the AccuPAR-LP80 ceptometer (Decagon Devices, USA). In addition, 

LAI was also determined from measurements of leaf area as described in chapter 4.The 

AccuPAR–LP80 also provided measurements of incident photosynthetic active radiation (Ii) 

and below canopy measurements of PAR (Io). Due to unavailability of equipment in the 

beginning of the 2013/14 season, results for Ii, Io and LAI from flowering of sorghum to its 

soft dough stage were presented. On the other hand, data on Ii, Io and LAI from end of 

juvenile stage upto soft dough stage of sorghum for 2014/15 growing season were available. 

However, for the sake of comparison, data at flowering of sorghum to its soft dough stage for 

2014/15 growing season were presented.  

Radiation interception and RUE:  

Radiation interception by a multiple layer canopy such as those of intercrop systems has been 

outlined by Tsubo et al. (2005). The transmission of radiation through the canopy and canopy 

layers is determined by the extinction coefficient (K). Although K value for any given crop is 

often assumed to be constant across different ecosystems, under limited water availability it 

can change due to changes in leaf orientation. Using K values of sorghum, cowpea and bottle 

gourd were estimated from sole stands for the three water regimes using the Beer–Lambert 

law:  

𝐾 = (−𝐼𝑛 
𝐼𝑖

𝐼𝑜
)/𝐿𝐴𝐼          Equation 3 

where K is the extinction coefficient, Ii is radiation under the canopy, Io is radiation above the 

canopy and LAI is the leaf area index (m2m-2) In is natural log. Please note LAI was 

determined from measurements of leaf area as described in chapter 4.  

Depending on the number of component crops, radiation will travel down different layers 

of an intercrop canopy. Each layer is determined as the canopy height of component crop and 
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it is assumed that the each layer is horizontally homogeneous. In this study, the first layer was 

represented by the sorghum canopy less the height for either cowpea or bottle gourd canopy 

(Equation 3). The second layer was represented by cowpea or bottle gourd in interaction with 

sorghum (Equation 4) at the same corresponding heights. The two layers for sorghum 

represented by the following equations: 

𝐿𝐴𝐼𝐶1 = (1 − 𝑛)𝐿𝐴𝐼𝐶         Equation 4 

𝐿𝐴𝐼𝐶2 = 𝑛𝐿𝐴𝐼𝐶          Equation 5 

where LAIC1 is sorghum LAI in the over storey, LAIC2 is sorghum LAI in the understory, 

LAIC is sorghum LAI in the sole crop and n is the ratio of plant/canopy heights of sorghum 

and cowpea or bottle gourd,. Equation 1 and 2 assume that the distribution of leaves in 

canopies LAIC1 and LAIC2 is random. 

The amount or fraction of radiation intercepted by sorghum in the first layer (over storey) 

was given as 

𝐹𝐶1 =   1 − exp(−𝐾𝐶  ×  𝐿𝐴𝐼𝐶1)           Equation 6 

where FC1 is the fraction of radiation intercepted by sorghum in the first layer, LAIC1 is LAI 

for sorghum less the height of cowpea or bottle gourd and KC is sorghum canopy extinction 

coefficient. To determine the fraction of radiation intercepted by the sorghum and cowpea or 

bottle gourd understory, the equation described by Keating and Carberry (1993) was used: 

𝐹𝐶2 =  
𝐾𝐶 × 𝐿𝐴𝐼𝐶2

𝐾𝐶 × 𝐿𝐴𝐼𝐶2+ 𝐾𝐿/𝐵 × 𝐿𝐴𝐼𝐿/𝐵
 × [1 − exp (−𝐾𝐶  ×  𝐿𝐴𝐼𝐶2 − 𝐾𝐿

𝐵

× 𝐿𝐴𝐼𝐿

𝐵

)]   Equation 7 

𝐹𝐿/𝐵 =  
𝐾𝐿/𝐵 × 𝐿𝐴𝐼𝐿/𝐵

𝐾𝐶 × 𝐿𝐴𝐼𝐶2+ 𝐾𝐿/𝐵 × 𝐿𝐴𝐼𝐿/𝐵
 × [1 − exp(−𝐾𝐶  ×  𝐿𝐴𝐼𝐶2 −  𝐾𝐿/𝐵 ×  𝐿𝐴𝐼𝐿/𝐵)] Equation 8 

where FC2 is the fraction of radiation intercepted in the second layer, FL/B is the fraction of 

radiation intercepted by either cowpea (L) or bottle gourd (B). LAIC2 is LAI for sorghum at 

the same height as cowpea or bottle gourd, LAIL/B is LAI for either cowpea (L) or bottle 

gourd (B). KL/B is crop canopy extinction coefficient for cowpea or bottle gourd. 

Thereafter, radiation use efficiency for the sole (Equation 8) and intercrop (Equation 9 and 

10) systems was calculated as follows: 
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𝑅𝑈𝐸 =  
𝑌/𝐵𝑀

𝐼𝑃𝐴𝑅
(𝑀𝐽 𝑃𝐴𝑅 )      Equation 9 

𝑅𝑈𝐸𝑆𝐶 =  
𝑌/𝐵𝑀𝑆

𝐼𝑃𝐴𝑅𝑆
+

𝑌/𝐵𝑀𝐶

𝐼𝑃𝐴𝑅𝐶
(𝑀𝐽 𝑃𝐴𝑅 )    Equation 10 

𝑅𝑈𝐸𝑆𝐵 =  
𝑌/𝐵𝑀𝑆

𝐼𝑃𝐴𝑅𝑆
+

𝑌/𝐵𝑀𝐵

𝐼𝑃𝐴𝑅𝐵
( 𝑀𝐽 𝑃𝐴𝑅)       Equation 11 

where RUE = Radiation use efficiency (MJ PAR-1),  biomass (BM) yield (kg ha-1), Y/BMS/C/B  

is the economic (Y) (kg ha-1) or final biomass (BM) yield (kg ha-1) for sorghum, cowpea or 

bottle gourd in the intercrop system, IPAR is Intercepted PAR, and IPARS/C/B is PAR 

intercepted by sorghum, cowpea or bottle gourd in the intercrop system.  

Statistical analyses 

Bartlett’s test was done to determine homogeneity of variances for all measured variables 

before combining data across the seasons. The test did not show homogeneity of variances for 

the data collected therefore data were analysed separately. Data collected was subjected to 

analysis of variance (ANOVA) using GenStat® (Version 16, VSN International, UK) and 

means of significantly different variables separated using Fisher’s (unprotected) least 

significant differences (LSDs) in GenStat® at the 5% level of significance. Standard errors of 

means (SEs), and corresponding degrees of freedom (d.f.) were presented in tables and 

figures. 

 

Results  

Leaf area index 

Although seasonal effects on LAI for the cropping systems were not statistically analysed, 

results showed that it was higher (99.35%) during the 2014/15 growing season in comparison 

to 2013/14 at sorghum flowering to its soft dough stage. Interaction of water regime and 

cropping system significantly (P < 0.05) influenced sorghum LAI for each growing season 

(Fig 1). During the 2013/14 growing season, intercropping sorghum with either cowpea or 

bottle gourd improved cropping systems’ LAI by 26.35% and 29.52 %, respectively, relative 

to sole sorghum. Overall, water regime had no significant effect on sorghum LAI. Under FI, 

intercropping sorghum with bottle gourd resulted in an increase (47.85%) in the systems’ LAI 
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relative to sorghum – bottle gourd grown under DI (28.36%) and RF (15.26%) (Fig 1). During 

the 2014/15 growing season, similar to the observed trend during the 2013/14 season growing 

season, water regime did not have a significant effect on sorghum LAI. However, 

intercropping sorghum with either cowpea or bottle gourd improved the systems’ LAI by 

112.24 and 65.26%, respectively. Under RF conditions, intercropping sorghum with either 

cowpea or bottle gourd resulted in a high (3.35 and 3.21 m2m-2) LAI relative to when the 

same cropping systems were grown under DI (2.89 and 2.25 m2m-2) and FI (2.51 and 1.35 

m2m-2) conditions. This was consistent with observed results of biomass production and 

accumulation (Fig 1). 

 

Fig 1: Comparison of sorghum leaf area index in response to season (2013/14 and 2014/15), 

cropping system (SS – sole sorghum, SC – sorghum cowpea, SB – sorghum bottle gourd) and 

water regime (FI – full irrigation, DI – deficit irrigation and RF – rainfed). Error bars 

represent mean ± SE (n = 13). SEs for 2013/14 LAI = 0.14; d.f. = 118; P < 0.05. SEs for 

2014/15 LAI = 0.18; d.f. = 178; P < 0.05. 

 

Specific leaf area 

Significant (P < 0.05) interactions between water regime and cropping system were observed 

for sorghum SLA during each growing season (Fig 2). The overall trend for sorghum SLA 

across water regimes and cropping systems was closely associated with phenological 

development. There was a sharp increase in SLA from end of juvenile stage (495 and 213 

GDD for 2013/14 and 2014/15, respectively) up to the point of floral initiation (987 and 639 
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GDD) (slope = 0.54 and 2.13 and r2 = 0.72 and 1.00 for 2013/14 and 2014/15, respectively). 

These results are consistent with low leaf dry mass relative to leaf area observed during this 

time period and low stomatal (Chimonyo et al., under review). From floral initiation to boot 

stage (1235 and 789 GDD for 2013/14 and 2014/15, respectively) there was an observed 

sharp decreased of SLA (slope = -0.53 and -0.82 and r2 = -0.76 and 0.82 for 2013/14 and 

2014/15, respectively) (Fig 2). The sharp decrease could be associated with increase in leaf 

dry mass relative to leaf expansion. Thereafter, SLA gradually declined (slope = -0.11 and -

0.09 and r2 = 0.89 and 0.85 for 2013/14 and 2014/15, respectively) until soft dough stage. 

During 2013/14, the observed trend across water regimes, was FI (139.34 m2 g-1) < DI 

(148.72 m2 g-1) < RF (160.31 m2 g-1). The opposite was true during 2014/15 such that FI 

(145.34 m2 g-1) > DI (138.72 m2 g-1) > RF (130.31 m2 g-1). For both seasons and across water 

regimes, SLA was negatively associated with chlorophyll content index (CCI). However these 

results were inconsistent to observed results of SWC for the water regimes (Chimonyo et al., 

under review). While the trend observed during 2014/15 was consistent with results of 

stomatal conductance (gs) (Chimonyo et al., under review). Under RF conditions, 

intercropping resulted in sorghum with low SLA [SC (-16.98 and -22.56%) and SB (-20.79 

and -16.47%) for 2013/14/ and 2014/15, respectively] relative to sole sorghum (SS). This was 

consistent with increased CCI and gs for the intercropped sorghum also relative to SS 

(Chimonyo et al., under review). The reduced SLA could also be associated with overall 

improvements in (Chimonyo et al., under review). Under FI, intercropping sorghum with 

cowpea increased SLA of sorghum relative to SS by 17.81 and 2.46% during 2013/14 and 

2014/15, respectively (Fig 2).  
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Fig 2: Comparison of sorghum specific leaf area in response to season (2013/14 and 2014/15), 

cropping system [(a) – sole sorghum, (b) – sorghum cowpea, (c) – sorghum bottle gourd] and 

water regime (FI – full irrigation, DI – deficit irrigation and RF – rainfed). The error bar 

represents mean ± SE (n = 13). SEs for 2013/14 SLA = 48.61; d.f. = 232; P < 0.05. SEs for 

2014/15 SLA = 32.12; d.f. = 196; P < 0.05 

Extinction coefficient 

For both seasons, water regime did not have a significant effect on K values for sorghum, 

cowpea and bottle gourd. It was observed that K values for the crop species were significantly 

(P < 0.05) different across the different developmental stages of sorghum (Table 2). For 

sorghum, the trend was such that there was a 31% increase in the K value between end of 

juvenile and floral initiation stage. Thereafter, there was a gradual increase of 11% between 

floral initiation and the appearance of the flag leaf stage. Similar to sorghum, the trend for K 
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value for cowpea and bottle gourd was such that there was a sharp increase in the K value 

(19.23 and 47.9%, respectively) between end of juvenile and floral initiation. Thereafter, there 

was a gradual increase (16.13 and 28.81%, respectively) in the K value between floral 

initiation and flowering (Table 2). The increase in K value could be attributed to an increase 

in LAI brought about by increase in leaf number, tillering of sorghum and branching of 

cowpea and bottle gourd (Chimonyo et al., under review). 

Table 2: A comparison of extinction coefficient for sorghum, cowpea and bottle gourd 

calculated at different sorghum phenological stages. 

Developmental stage of sorghum Sorghum  Cowpea  Bottle gourd 
End of juvenile  0.32a3 0.42a 0.22a 
Floral initiation 0.52b 0.52b 0.42b 
Appearance of flag leaf 0.59c 0.61c 0.58c 
Flowering  0.59c 0.62c 0.59c 
Grain filling 0.61c 0.62c 0.59c 
P(value) 0.05 0.05 0.05 
SEs1 0.02 0.01 0.03 
d.f.2 4 4 4 
1SEs Standard error of means between developmental stage for sorghum; 2d.f. = Degrees of 

freedom of the error. 3Numbers followed by a different letter are significantly different at P < 

0.05. 

Biomass production and partitioning for sorghum 

Although seasonal effects on biomass accumulation for sorghum were not statistically 

analysed, results showed that overall biomass was higher (62.35%) during 2014/15 in 

comparison to sorghum grown during 2013/14. This was consistent with improved rainfall 

received during 2014/15 relative to 2013/14 (Table 1). For both seasons, water regime had a 

significant (P < 0.05) effect on total biomass and biomass partitioning of sorghum (Fig 3) 

while no differences were observed due to cropping system. During 2013/14 the trend was 

such that, before floral initiation, biomass partitioned to leaves relative to stem was high 

(61%- leaves / 39 %- stems). It was observed that the ratio was higher under FI (67% / 33%) 

compared to DI and RF (57% / 43% and 58 / 42%, respectively) (Fig 3). At boot stage, 

biomass partitioned to leaves relative to stems reduced and this reduction was more 

pronounced when sorghum was grown under FI (31% - leaves / 69% - stems) vs DI and RF 

(38% / 62% and 36% / 64%, respectively). At harvest, the trend for grand mean for biomass 
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partitioning was stem (50%) > leaves (30%) > panicle (20%). Panicle mass did not vary 

significantly across the water regimes [FI (20), DI (20) and RF (25%) of final mass]. Under 

FI, stems constituted a larger proportion (62%) of final biomass in comparison to stem 

biomass of sorghum grown under DI and RF (52 and 50%). On the other hand, leaves 

produced under FI had the least contribution (18%) to final total biomass while under DI and 

RF they contributed consubstantially (28 and 25%, respectively) (Fig 3). 

During 2014/15, it was observed that the trend for leaf and stem biomass partitioning was 

DI (72% / 26%) > RF (68 / 32%) > FI (67 / 33 %). At boot stage, biomass partitioned to 

leaves relative to stems was low (Fig 3). This reduction was more pronounced when sorghum 

was grown under RF (31% / 69%) vs DI and FI (37% / 63% and 42% / 58%, respectively). 

Similarly, at harvest, the trend for biomass partitioning was stem (56%) > leaves (24%) > 

panicle (20%). Based on mean values of water regimes during 2013/14, sorghum panicle mass 

was similar [FI (21), DI (20) and RF (19%) of final mass] (Fig 3). It was observed that under 

RF conditions, stems still constituted a larger proportion (58%) of the final biomass in 

comparison with stem biomass of sorghum grown under DI and FI (50 and 52 %, 

respectively). These observations were consistent with the results of SWC which showed high 

SWC in RF plots relative to FI plots during the 2014/15 growing season (Chimonyo et al., 

under review). On the other hand, leaves produced under RF had the least contribution (23%) 

to final total biomass relative to DI and FI (29 and 27%, respectively). 
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Fig 3: Comparison of sorghum biomass partitioning in to leaf, stem and panicle and biomass, in response to season (2013/14 and 2014/15) 

and water regime [(a) FI – full irrigation, (b) DI – deficit irrigation and (c) RF – rainfed]. SEs for 2013/14 Total biomass = 3.39; d.f. = 250; P 

< 0.05. SEs for 2014/15 Total biomass = 9.01; d.f. = 196; P < 0.05. SEs for 2013/14 Leaf biomass = 0.72; d.f. = 250; P < 0.05. SEs for 

2014/15 Leaf biomass = 4.15; d.f. = 196; P < 0.05. SEs for 2013/14 Stem biomass= 1.62; d.f. = 250; P < 0.05. SEs for 2014/15 Stem 

biomass = 1.65; d.f. = 196; P < 0.05. SEs for 2013/14 Panicle biomass = 0.61; d.f. = 250; P < 0.05. SEs for 2014/15 Total biomass = 5.62; 

d.f. = 196; P < 0.05. 
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Radiation interception and RUE 

During the 2014/15 growing season the trend for IPAR for sole sorghum was DI (367 MJ) < 

FI (384 MJ) < RF (389.00 MJ). This was consistent with LAI observed for each water regime 

(DI < FI < RF) (Fig 1). Results show that intercropped sorghum had lower (-31%) IPAR 

relative to SS for all the water regimes (Table 3 and 4). Intercropping sorghum with either 

cowpea or bottle gourd increased (52.87 and 35.87%, respectively) mean the systems’ IPAR 

relative to SS (Table 3 and 4). When sorghum was intercropped with cowpea, improvements 

in the systems’ IPAR were such that FI (61.25%) > DI (55.26%) > RF (47.56%) relative to 

SS. When sorghum was intercropped with bottle gourd, improvements in the systems’ IPAR 

were such that FI (17.56%) < DI (44.56%) < RF (45.56%) relative to SS (Table 4). 

Although not statistically significant, radiation use efficiency calculated on the basis of 

biomass (RUEb) was different across phenological stage, water regime and cropping system. 

Overall, RUEb for sorghum increased with each consecutive phenological stage (Table 3 and 

4). The trend was such that end of juvenile stage (0.37) < floral initiation (1.58) < appearance 

of flag leaf (6.20) < flowering (9.42) grain filling (13.70). The observed increase was 

consistent with observed higher rate of increase in biomass (r2 = 0.89, slope = 0.56) relative 

to rate of IPAR (r2 = 0.62, slope = 0.25). Intercropping sorghum with either cowpea or bottle 

gourd improved RUEb by 88.56% and 95.35%, respectively, relative to SS (Table 3 and 4). 

This was consistent with increased LAI for SC and SB intercrop systems relative to SS. 

Intercropping sorghum with either cowpea or bottle gourd resulted in large improvements 

(136.25%) for RUEb during early canopy development (end of juvenile stage and floral 

initiation). For sorghum intercropped with cowpea improvements in RUEb were RF 

(142.81%) > FI (88.56%) > DI (36.22%) (Table 3). For sorghum intercropped with bottle 

gourd improvements in RUEb were FI (165.94 %) > RF (67.61%) > DI (53.95%) (Table 4). 
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Table 3: A comparison of intercepted photosynthetic active radiation (IPAR), radiation use efficiency (RUE) and % changes in RUE for 
sorghum by sorghum – cowpea intercrop system in response to different water regimes (full irrigation, deficit irrigation and rainfed conditions) 
and sorghum phenological stage (i = End of juvenile, ii = Floral initiation, iii = Appearance of flag leaf, iv = Flowering and v = Grain filling). 

Water regime 
Phenological 

stage 
PAR1 
(MJ) 

IPAR (MJ) RUE (kg MJ ha-1) ∆ RUE 
(%) Sorghum 

(sole) 
Sorghum (FC1

2
 + 

FC2
3) 

Cowpea 
(FL

4) 
Sorghum 

(sole) 
Sorghum (FC1 + 

FC2) 
Cowpea 

(FL) 
Total (FC1 + 

FC2 + FL) 

Full irrigation 

i 1043.9 56.7 36.1 328.6 0.3 0.5 0.1 0.6 106.67 
ii 1067.2 158.3 96.1 383.4 1.4 1.8 1.7 3.5 152.56 
iii 1058.3 382.8 290.8 543.3 4.8 4.8 1.4 6.6 37.37 
iv 1028.3 402.8 361.1 688.0 5.4 5.8 4.5 10.3 91.64 
v 1063.3 458.3 358.4 680.8 8.1 9.3 3.3 12.5 54.20 

Deficit 
irrigation 

i 1022.2 103.3 90.9 260.4 0.3 0.2 0.0 0.2 33.33 
ii 1055.6 315.0 318.3 288.5 0.9 0.8 0.8 1.6 73.08 
iii 1053.9 395.6 375.0 509.9 4.2 4.1 0.8 4.9 16.81 
iv 968.9 471.1 469.3 549.7 5.4 4.4 1.7 6.0 11.30 
v 1063.3 506.7 460.3 568.7 5.8 5.2 3.3 8.5 46.58 

Rainfed 

i 1062.2 111.7 69.0 270.6 0.2 0.3 0.0 1.1 408.33 
ii 1096.1 292.2 268.1 294.6 1.9 2.0 1.4 3.4 78.10 
iii 1056.1 475.6 327.6 662.6 3.6 3.9 1.4 5.3 47.26 
iv 1050.6 570.0 434.4 664.6 4.6 6.7 2.4 9.1 97.27 
v 1061.7 531.1 436.0 685.8 8.7 11.1 4.9 16.0 83.09 

1 Photosynthetic active radiation; 2 Radiation intercepted by sorghum first layer derived from the fraction of radiation intercepted by the first 
layer; 3 Radiation intercepted by sorghum second layer derived from the fraction of radiation intercepted by the second layer; 4 Radiation 
intercepted by cowpea  
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Table 4: A comparison of intercepted photosynthetic active radiation (IPAR), radiation use efficiency (RUE) and % improvements in RUE for 
sorghum by sorghum – bottle gourd intercrop system in response to different water regimes (Full irrigation, Deficit irrigation and Rainfed 
conditions) and sorghum phenological stage (i = End of juvenile, ii = Floral initiation, iii = Appearance of flag leaf, iv = Flowering and v = 
Grain filling). 

Water 
regime 

Phenological 
stage 

PAR 
(MJ) 

IPAR (MJ) RUE (kg MJ ha-1) RUE 
Improve (%) Sorghum 

(Sole) 
Sorghum (FC2 

+ FC1) 
Bottle 

gourd (FL) 
Sorghum 

(Sole) 
Sorghum (FC2 

+ FC1) 
Bottle 

gourd (FL) 
Total (FC1 + 

FC2 + FL) 

Full 
irrigation 

i 1044.0 56.7 59.6 217.5 0.3 0.3 0.1 1.6 506.67 
ii 1067.2 158.3 96.1 383.4 1.4 3.4 1.2 4.6 228.21 

iii 1058.7 382.8 357.5 598.9 4.8 4.5 1.5 5.9 24.53 
iv 1028.5 402.8 291.7 632.5 5.4 5.4 2.2 7.6 41.13 
v 1063.3 458.3 342.3 705.1 8.1 7.5 3.0 10.5 29.20 

Deficit 
irrigation 

i 1022.4 103.3 68.7 269.7 0.3 0.2 0.2 0.4 46.67 
ii 1055.7 315.0 278.8 255.2 0.9 1.2 0.6 1.8 96.15 
iii 1053.9 395.6 355.7 464.5 4.2 4.5 1.0 5.5 32.33 
iv 969.2 471.1 325.8 660.9 5.4 4.6 2.0 6.6 21.92 
v 1063.7 506.7 363.9 558.5 5.8 7.5 2.5 10.0 72.67 

Rainfed 

i 1062.4 111.7 73.5 176.1 0.2 0.3 0.2 0.4 108.33 
ii 1096.1 292.2 268.1 252.0 1.9 1.4 1.2 2.6 38.10 
iii 1056.5 475.6 327.6 547.6 3.6 4.4 1.7 6.1 67.66 
iv 1050.6 570.0 434.4 658.8 4.6 5.7 2.0 7.6 66.01 
v 1061.9 531.1 436.0 671.8 8.7 9.6 4.2 13.8 57.93 

1 Photosynthetic active radiation; 2 Radiation intercepted by sorghum first layer derived from the fraction of radiation intercepted by the first 
layer; 3 Radiation intercepted by sorghum second layer derived from the fraction of radiation intercepted by the second layer; 4 Radiation 
intercepted by cowpea. 
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Radiation use efficiency calculated on the basis of yield was influenced by growing 

season, water regime and cropping system. Although not statistically significant, RUEg for 

sorghum was high during 2013/14 growing season relative to the 2014/15 season. Overall, 

intercropping sorghum with bottle gourd resulted in the highest (26.09 %) improvements of 

RUEg relative SS and SC (Table 5). During the 2013/14 growing season, the trend for 

sorghum RUEg across the water regimes was DI (2.84 kg MJ ha-1) > FI (2.52 kg MJ ha-1) > 

RF (2.26 kg MJ ha-1). Under DI, intercropping sorghum with cowpea resulted in a reduction 

(-31.69%) in RUEg while intercropping with bottle gourd resulted in the highest (39.78%) 

improvements in RUEg (Table 5). During the 2014/15 growing season, the trend for sorghum 

RUEg across the water regimes was RF (2.01 kg MJ ha-1) > DI (1.95 kg MJ ha-1) > FI (1.99 

kg MJ ha-1). Under RF conditions, intercropping sorghum with bottle gourd resulted in 

highest improvements in RUEg while the least improvements were observed under F1 

(4.10%). 

Table 5: Comparison of radiation use efficiency derived from grain yield of sorghum, cowpea 

and fruit dry mass of bottle gourd for the different cropping systems in response to full 

irrigation (FI), deficit irrigation (DI) and rainfed (RF) conditions during 2013/14 and 2014/15 

growing season. 

Growing 
season 

Water 
regime 

Radiation use efficiency (kg MJ ha-1) RUE improvements 
(%) 

Sorghum 
(S) 

Cowpea 
(C) 

Bottle 
gourd (B) 

SC SB SC SB 

2013/14 FI 2.52 1.88 5.10 2.71 3.20 7.54 26.98 
DI 2.84 0.98 10.27 1.94 3.97 -31.69 39.78 
RF 2.26 1.59 2.76 2.49 2.52 10.1 11.50 

Mean  2.54 1.48 6.04 2.38 3.23 -4.68 26.09 
2014/15 FI 1.95 - 4.53 - 2.03 - 4.10 

DI 1.99 - 3.69 - 2.15 - 8.04 
RF 2.01 - 4.12 - 2.35 - 16.91 

Mean  1.98 - 4.11 - 2.17 - 9.68 
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Discussion 

The observed response for sorghum LAI would suggest that sorghum canopy 

development was not sensitive to changes in water availability. Under water stress, plants 

often respond by reducing canopy size so as to reduce transpiring leaf surface (Razzaghi et 

al., 2012). This then allows the plant to reduce its demand of water. For crop species like 

sorghum, water stress triggers morphogenesis so as to adapt. In the event of water stress, 

sorghum has been observed to increase root sink strength relative to shoot strength so as to 

increase root volume for efficient water capture. It could be that this drought adaptation 

strategy allowed for sorghum to maintain its canopy size. On the other hand, intercropping 

sorghum with either cowpea or bottle gourd increased overall LAI although its sensitivity to 

water was also increased. One of the advantages of intercropping is that it improves canopy 

size which allows for use of more resources such as water and radiation (Chimonyo et al., 

2015; Tsubo et al., 2003; Keating & Carberry, 1993). Reducing water availability reduced 

LAI of the intercrop system. This suggests that, even though intercropping increased overall 

LAI, it could have increased the demand and competition for water, especially under limited 

availability. Plants therefore responded by reducing canopy size. These results are consistent 

with Matusso, et al. (2014) and  Fan et al. (2013) who also observed a reduction in LAI for 

intercrop systems in response to reduction in water availability. To reduce the demand and 

competition for water, relay cropping of cowpea can be done. 

The observed changes in SLA over time could be attributed to changes in leaf mass due to 

changes in source – sink strength in association with leaf expansion rates at different 

phenological stages. For instance, the low SLA observed during early vegetative 

development of sorghum could be that the leaves were not actively expanding thus leaf area 

(LA) was low relative to leaf mass. At this stage source – sink relationship of the young 

leaves would be at equilibrium since leaves produce assimilates and directly utilizing them 

for structural development. On the other hand, the sharp increase in SLA at floral initiation 

could be that LA increased at a faster rate than accumulation of leaf mass. To allow for 

canopy expansion, there was active translocation of assimilates from older leaves to younger 

leaves (Schnyder, 1993). Photosynthetic rate of young expanding leaves is generally low and 

energy consumption due to the construction of structural components is high (Marchi et al., 
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2005). At this stage the leaf is a sink as it is a net importer of photosynthates (Schnyder, 

1993) and SLA is generally low. As the photosynthetic system matures and the leaf expands, 

requirement of respiratory energy decreases and SLA increases. At this stage the amount of 

assimilation increases beyond that of respiration and leaf becomes a net exporter (Marchi et 

al., 2005). The transition between sink and source of a leaf in relation to crop management 

should be assessed as a way of optimising carbon assimilation and translocation.. 

It was observed that increasing water availability and intercropping sorghum with cowpea 

had a similar effect on sorghum SLA. This was because intercropping with cowpea improved 

soil water availability by mulching and reducing soil water loss through bare soil evaporation 

(Bodner et al., 2007). Sorghum SLA decrease with either increasing water availability or 

intercropping with cowpea, particularly during 2014/15 growing season. This was attributed 

to increased photosynthetic capacity per unit area of the leaf relative to sole sorghum and 

sorghum grown under low water availability. Overall, increasing water availability increased 

stomatal conductance (gs) and chlorophyll content index (CCI) (Chimonyo et al., under 

review). Stomatal conductance is proportional to rate of CO2 fixation while an increased CCI 

would indicate higher energy absorption thus allowing for increased CO2 assimilation (Yang 

et al., 2004). This subsequently results in heavier leaves per unit leaf area, and lower SLA. 

The relationship between CCI and SLA was also established by Marenco et al. (2009) and 

Songsri et al. (2009) in Amazonian tree species and peanuts, respectively. It could be that 

both traits can be used as a cheap alternative to establish photosynthetic capacity of plant 

leaves. 

The observed changes in biomass partitioning between leaves and stems were associated with 

sorghum’s efficiency to produce, translocate and store assimilates. Under well-watered 

conditions, sorghum has been observed to store assimilates in the stem. This was attributed to 

high stomatal conductance which allows for enhanced production of assimilates relative to 

when sorghum was grown under low water availability (Chimonyo et al., under review). 

Storing assimilates in the stem is a survival strategy which enables sorghum to mitigate 

unexpected perturbations as the plant can translocate the reserves to the reproductive organs 

so as to complete their life cycle. On the other hand, the high biomass ratio in panicles of 

sorghum grown under low water availability would suggest that biomass partitioning from 
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leaves to reproductive organs was favoured more than storage organs. Also, there could have 

been reallocation of stored assimilates from stems to panicle. This meant that the panicle 

became a stronger sink than the stem allowing for more assimilates to be partitioned to the 

panicle. Under water stress, hormones like abscisic acid (ABA), gibberellic acid (GA), and 

cytokines (CK) have been found to moderate sink strength (Albacete et al., 2008). For 

instance GA and CK increase sink strength by promoting cell division, especially at auxiliary 

meristems, and also paradoxically reducing plant growth rate during reproductive phase 

(Albacete et al., 2014). Abscisic acid was observed to optimize remobilization of assimilates 

from stems to the roots and panicles and retarding source strength of the canopy (Reguera et 

al., 2013). Phytohormones, therefore, ensure survival while at the same time conferring 

drought adaptation (Yang et al., 2008).  

Differences observed for K values at different phenological stages of sorghum were 

related to LAI and the fraction of radiation intercepted. During early crop development, both 

LAI and fraction of radiation intercepted were low thus resulting in low K values. As the 

canopy expanded, LAI increased resulting in an increase in the fraction of intercepted 

radiation. This in turn increased the K value. Nominal differences observed for K value for 

the different crop species at flag leaf appearance stage of sorghum would suggest that species 

specific architectural components, that is, LAI, leaf angle distribution, leaf dispersion and 

branch orientation, balanced out the value. Change in one of the mentioned factor(s) resulted 

in an inversely proportional change in another factor(s). The similarities are, however, 

misleading because K value were derived from an empirical equation used to represent a trait 

that is complex in nature. The three crop species have their own morphology and 

morphogenesis and differ for spatial distribution of LAI and leaf geometrical features. Also, 

they differ in terms of leaf dispersion. Therefore, one of the assumptions used with the Beer–

Lambert law is that leaf distribution within the layers is homogenous (Wind & Szymanski, 

2002) might not be met.  

The differences observed for IPAR between sole sorghum and sorghum intercropped with 

either cowpea or bottle gourd could be attributed to underestimation of IPAR for intercropped 

sorghum by the modified Beer–Lambert equation. The equation assumes that leaf area is 

distributed evenly along the height of the sorghum stem. This might have resulted in an over 
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estimation of the K value and an underestimation of intercepted radiation. Leaf geometry 

within sorghum is such that more leaves are clumped in the top half of the plant in a conical 

manner to increase radiation interception (Van Gardingen et al., 1999). To improve 

estimations of IPAR, clumping factor can be considered in the calculation (Breda, 2003). 

There was good association between water availability and IPAR. For sorghum grown under 

deficit irrigation, high IPAR was observed in comparison to that which was grown under FI 

and RF conditions. The trend was consistent with observed results of soil water content 

(DI>RF>FI) but were inconsistent to results of LAI. Under DI, withdrawal of water at 

vegetative stage is supposed to supress canopy expansion resulting in a reduction in IPAR 

(Farré & Faci, 2006). This would insinuate a reduction in canopy size also means that less 

radiation is intercepted (Samperio et al., 2015). Since IPAR for sorghum intercropped with 

either cowpea or bottle gourd was consistently high, especially under limited water 

conditions, results suggest that IPAR can be improved with intercropping without added cost 

of irrigation. These results are consistent with those observed by Tsubo et al. (2001) and 

Zhang et al. (2008) who also observed an increase in radiation interception with maize/bean 

and wheat/cotton intercrop systems under low water availability. 

Radiation use efficiency (RUE) is an important biomass determinant that has been used to 

develop simple crop models such as those employed by Monteith and Moss (1977) and also 

in mechanistic models such as APSIM (McCown et al., 1996). Radiation use efficiency can 

be increased by enhancing yield or biomass output with a fixed IPAR or reducing IPAR with 

a fixed output. Radiation use efficiency derived from biomass (RUEb) increased with each 

consecutive phenological stage and with increase in water availability. The improvements 

were due to high rate of biomass accumulation relative to the rate of increase in IPAR. 

Although intercropping resulted in an overall improvement in RUEg, these were inconsistent 

across the growing season and water regimes. The high RUE observed during 2013/14 

relative to 2014/15 growing season could be due to the low IPAR observed. During 2013/14 

growing season, LAI was low and this resulted in a reduction in the amount of IPAR. 

Increasing availability of water increased LAI under intercropping, however, this did not 

always result in improved RUEg. It could be that under DI, the observed decrease in RUEg 

for sorghum – cowpea intercrop system was attributed to the low yield for cowpea and high 

IPAR for the intercrop system. 
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Conclusions and recommendations 

Intercropping sorghum with either cowpea or bottle gourd did not have any negative effect on 

SLA, LAI and biomass production and partitioning of sorghum. Under limited water 

availability, intercropping sorghum with either cowpea or bottle gourd resulted in more of a 

facilitative interaction with respect to water and radiation from a leaf physiological basis. 

Cowpea and bottle gourd were able to improve soil water availability by minimizing soil 

evaporation. Intercropping this cowpea allowed for enhanced soil water capture from the soil 

profile which resulted in improvements in SLA. In this study, LAI was a useful trait in 

assessing IPAR in that they were closely associated. To improve the estimation of IPAR for 

intercropped sorghum, a clumping factor must be considered in the calculation. Under RF 

conditions, intercropping improved overall radiation capture and RUE of a sorghum cropping 

system. Overall, RUE (biomass and yield) for sorghum – bottle gourd intercrop system was 

more stable across both growing seasons. Results for sorghum – cowpea intercrop 

productivity still need to be substantiated since these are primarily based on the first season’s 

data only. From a cropping systems standpoint, intercropping should be recommended for 

semi – and arid environments since it enhances soil water availability resulting in improved 

RUE 
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Abstract 

Crop simulation models such as APSIM can be used to increase available information OM 

intercropping with regards to management under water scarcity. However its practical use in 

managing intercrop systems is very limited. Growth, yield and crop water use (ET) of a 

sorghum–cowpea intercrop system were evaluated using APSIM and data from field 

experiments conducted at Ukulinga Research Farm, South Africa over two seasons (2013/14 

and 2014/15). Weather and soil data were observed in situ and input into APSIM. Data from 

optimum experiments (2013/14) was used for local adaptation of APSIM. Thereafter, the 

model was tested using data obtained from 2014/15 under various water management 

strategies [rainfed (RF), deficit (DI) and full irrigation (FI)]. Model simulations were 

evaluated using observed data for phenology, leaf number, leaf area index (LAI), biomass, 

yield, ET and water use efficiency (WUE). Model performance was assessed using R2, root 

mean squared error (RMSE) and its components (RMSEs and RMSEu) and the d-index. The 

model simulated phenology satisfactorily for sorghum (R2 = 0.98, RMSE = 6.62 days, d – 

index = 0.99) and cowpea (R2 = 0.86, RMSE = 13.67 days, d – index = 0.99) across different 

water regimes. The model underestimated LAI (36.98%); this was associated with defoliation 

of crop canopy due to hail damage. Satisfactory simulations (RMSE RF = 145.38 kg ha-1 < 

DI = 37.38 kg ha-1 < FI = 35.99 kg ha-1) of sorghum yield (RF = 953.63 kg ha-1 < DI = 

1079.32 kg ha-1 < FI = 1082.52 kg ha-1) with improvements of water availability were 

observed. The model also gave satisfactory (RMSE RF = 3.06 kg mm-1 ha-1 >DI = 1.97 kg 

mm-1 ha-1 >FI = 1.66 kg mm-1 ha-1) simulations of system WUE across the water regimes [RF 

= 17.54 kg mm-1 ha-1 >DI = 16.43 kg mm-1 ha-1 >FI = 16.75 kg mm-1 ha-1]. The APSIM 

model was able to simulate growth, yield and WU of an intercrop system under varying water 

regimes, However, it is still limited with regards to rainfed conditions since it overestimated 

biomass (6.25%), yield (14.93%) and WU (7.29%) and under estimated WUEb (-14.86%). 

APSIM can still be used to determine best management practise for intercropping under 

water scarce environments. 

 

Keywords: biomass; crop model; leaf area index; water use efficiency   
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Introduction 

In rural sub-Saharan Africa (SSA), rainfed agriculture is the most important sector for 

providing food security (Gowing and Palmer, 2008). However, the region is characterized by 

low yields owing to low and variable rainfall, degraded soils and inherently infertile soils 

(Chikowo et al., 2010, 2014). In addition, rural farmers lack access to capital, technical 

knowhow and inputs (Nkonya et al., 2015). Low levels of investment in infrastructure in the 

region also make farming challenging especially for resource–poor farmers. In addition, 

climate change and variability simulations indicate an increase in the occurrence and severity 

of weather extremes such as drought and flooding within the region (Connolly-Boutin and 

Smit, 2015). This will increase the vulnerability of an already weak agricultural system 

(Connolly-Boutin and Smit, 2015). Production uncertainty remains a fundamental constraint 

to many stakeholders who often over- or under-estimate the impacts of climate change and 

variability (Cooper et al., 2008). Notwithstanding this, these uncertainties have increased 

pressure on current rainfed systems to improve productivity in an efficient and sustainable 

manner so as to meet current and future food requirements. In this regard, intercropping has 

emerged as a suitable approach for sustainable intensification of agriculture, especially under 

water limited conditions (Cooper et al., 2008). However, due to past research emphasis on 

monocrop systems, information that can assist in formulation of policy for promotion of 

intercropping in rainfed cropping systems is scant. Therefore, there is need to generate 

relevant information that can be used to enhance promotion of intercropping within rainfed 

cropping systems. 

Intercropping is defined as the growing of two or more crops (species or varieties) within 

the same spatial and temporal resolution (Willey, 1979). Under limited water availability, 

intercropping has been observed to improve productivity per unit area through increased 

water use efficiency (Rezig et al., 2010; Tsubo et al., 2003; Yang et al., 2011). Conversely, 

the advantages of intercropping across SSA can easily be confounded by variegated agro-

ecological characteristics within existing rainfed cropping systems (Cooper et al., 2008). To 

come up with suitable recommendations across diverse agro-ecologies, multi-location studies 

are often necessary. However, time, cost and technical skill required to studying spatial and 

temporal production of intercropping systems using field experiments make multi-location 
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trials less desirable to implement (Lobell et al., 2009). To address these limitations, crop 

simulation models (CSM) have since been employed (Boote et al., 1996) as tools for 

generating useful data for assessing current and future productivity. Crop simulation models 

were developed to improve understanding of crop responses to environment and management 

practices (Basso et al., 2013) at different hierarchical levels (cellular – farm system levels). 

They have been used extensively to aid formulation of national and regional policies for 

production and risk management of major crops across different cropping systems, including 

rainfed systems (Lambin et al., 2000). Therefore, CSM can also be used to increase available 

information for intercropping with regards to management and environment.  

Agricultural Production Systems Simulator APSIM (Carberry et al., 1996) was primarily 

developed to address short and long-term consequences of crop management, quantify crop 

response to management and environment interactions, and to provide synergistic 

representation of various disciplines involved within farming systems (Wang et al., 2002). It 

has been used extensively to evaluate crop production under a wide range of management 

systems and environmental conditions (Grenz et al., 2006; Carberry et al., 2009; Dimes et al., 

2011; Nape, 2011; Mohanty et al., 2012; Luo et al., 2014). Robertson et al. (2004) evaluated 

lucerne – wheat/canola intercrop systems with APSIM and concluded that competition for 

water and solar radiation was well–simulated. Dimes et al. (2011) used APSIM for assessing 

maize and bean intercrop systems in southern Africa and indicated that better growth 

descriptors were still required for low yielding bean varieties. Harris et al. (2008) observed 

satisfactory model performance for APSIM for lucerne – cereal intercrop and concluded that 

it could be used for management intervention on companion crop performance, thus 

identifying the circumstances under which the practice might be feasible. Poor performance 

of APSIM in predicting growth of wheat - field pea intercrop systems was attributed to 

different sowing dates but conformed to the competition ‘canopy’ module that partitioned 

more resources to the established component crop (Knörzer and Lawes, 2011). Despite the 

evidence that APSIM can simulate intercrop systems, its practical use in managing intercrop 

systems is very limited. This is mainly attributed to inadequate literature that support the use 

of APSIM as a decision support tool for resource use of intercrop systems. 
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To date, the APSIM model has been used to simulate an array of cropping systems across 

all continents as it has the ability to simulate the response of a range of crops to different 

climates and soils under alternative management options (Carberry et al., 1999). Its efficiency 

to simulate crop responses to climatic and management variations has been derived from 

rigorous testing. Therefore, the efficiency of APSIM to simulate intercrop system also 

requires such rigour so as to improve its performance as a tool used in generating relevant 

and accurate data, especially under water scarcity. In this study, it was hypothesized that 

APSIM can be used to simulate performance of sorghum–cowpea intercrop grown under 

rainfed conditions. Therefore, the aim of the study was to evaluate the performance of a 

locally adapted APSIM sorghum–cowpea model. 

 

Materials and methods 

Description of study area 

Field experiments were conducted at the University of KwaZulu–Natal’s Ukulinga Research 

Farm (29°37ꞌS; 30°16ꞌE; 775 m a.s.l.) in Pietermaritzburg, South Africa, over two summer 

seasons (2012/13 and 2013/14). For full description of experimental site refer to Chimonyo et 

al. (in press).  

 

Experimental design 

The field experiment was set up as a split–plot arrangement with sub–plots nested in a 

randomised complete block design within the main plot, and replicated three times. The main 

plot was water regime with three levels [full irrigation (FI), deficit irrigation (DI) and rainfed 

(RF)]. Sub–plots comprised intercrop combinations; sole sorghum, sole cowpea and 

sorghum–cowpea intercrop system. For full detail on treatments and plot layout, refer to 

Chimonyo et al (in press). All cultural practices (weeding, fertilizer application rates and pest 

management) were done in line with best management practices. 
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Model description 

The Agriculture Production systems SIMulator (APSIM) is a crop simulation model created 

in response to the need to improve planning and forecasts for crop production under different 

climatic, soil and management conditions (Carberry et al., 1996). It is a point scale model and 

simulates production outputs of the management of a single homogenous field over a 

specified time period (McCown et al., 1996). The model comprises ten components/modules 

that can be sub-divided into biological (crop, pasture, surface residue), environmental (water 

balance and movement of solutes in the soil, soil organic matter and N, residue, phosphorus, 

soil pH, erosion) and management (tillage, irrigation, fertilization). Communication between 

the modules is via the APSIM engine. The engine transmits information between the modules 

following a standard protocol that allows modules to be plugged in or pulled out, all 

dependent on the specifications of the task required. The APSIM model is able to simulate 

resource use in intercrop systems and according to Keating et al. (2003), the absence of any 

direct communication among the crop modules allows this to happen.  

APSIM – Canopy The canopy module within APSIM is the main reason why resource 

competition between two crop species can be simulated. When a simulation is conducted 

involving solar radiation and water competition between crop species, the canopy module or 

the arbitrator is plugged in. The arbitrator determines the amount of solar radiation 

intercepted each component of the intercrop using LAI extinction coefficient and height for 

each crop. On a daily basis, the module finds the number of crops in the simulation and their 

canopy heights (Keating et al., 2003). Thus, there are as many layers as canopies. Each layer 

in turn is taken from the top, in the combined canopy, to get the combined value (green + 

dead) of the canopies present in that layer. The fraction of solar radiation transmitted out of 

the bottom of that layer can be calculated, and this translates to the fraction entering the layer 

below. The total radiation intercepted in a layer is divided amongst the canopies occupying 

the layer, being done on the basis of each canopy. This approach ignores the possibility of 

different LAI distributions within a layer. Leaf area index is distributed with height in the 

canopy using normalized height and integration of a function to the power of 5. This results 

in 47% of the leaf area in the top 10% of height, 27% in the next 10%, 15% in the next 10%, 

and so on (Keating et al., 2003). Arbitration for water and nitrogen uptake is done on the 
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basis of APSIM changing the order each day (on a rotational basis) in which the competing 

species are given the opportunity to capture soil resources. A maximum of ten crops can be 

specified for intercropping. 

 

Simulation 

Simulating water use and productivity of sorghum–cowpea intercrop system was done using 

APSIM version 7.7. To simulate the intercrop system, weather (MET), crop (modified 

sorghum and cowpea), soilWAT and canopy modules were linked to the APSIM model 

engine. Modules also included were management, surface residue, irrigation and fertilizer. To 

improve the accuracy of model simulation, local adaptation of the model modules was done 

first using weather, soil and crop parameters measured in situ during 2013/14 growing 

season. Where necessary and to improve model performance, fine tuning of parameters was 

done by adjusting observed input parameters within the range of a calculated standard 

deviation (±SD) of observed data. Thereafter, the model was tested against observed data 

obtained from field experiments established during 2014/15 growing season 

APSIM – MET: To create the MET file, daily weather data were obtained from an automatic 

weather station (AWS) located less than 1 km from the experimental field and within 

Ukulinga Research Farm. The AWS is part of the Agricultural Research Council – Institute 

for Soil, Climate and Water (ARC–ISCW) network of automatic weather stations. Daily 

weather parameters obtained and used to develop the MET file were maximum (Tmax) and 

minimum (Tmin) air temperature (°C), solar radiation (Rad, MJ m-2), rainfall (mm) and 

Priestley Taylor reference evapotranspiration – (PT ETo, mm). Obtained weather data from 

the period between 1st October 2013 and 31st May 2015 was converted to .xml format. 

Thereafter, values of average ambient temperature (TAV) and the annual amplitude in 

monthly temperature (AMP) were calculated and input into the MET.files via “tav_amp”. It 

should be noted that there were several incidences of hail storms during the 2013/14 and 

2014/15 growing season.  

APSIM soil: The soil module within APSIM contains generic soil profiles for Africa (Koo 

and Dimes, 2013). Each soil file is described by soil texture [clay, loam or sand], fertility 
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[low (LF) - < 0.7% soil organic carbon content (SOC); medium (MF) – between 0.7 – 1.2% 

SOC; high (HF) – > 1.2% SOC] and rooting depth [shallow (< 90 cm), medium (90 – 150 

cm) and deep (> 150 cm)]. To determine a suitable generic soil file for the simulation, soil 

physical properties (soil texture and SOC) as well as effective rooting depth were determined 

in situ using a soil profile pit. The soil was described as clayey (49% clay) with high soil 

fertility (SOC = 7.3%) and shallow rooting depth (60 cm). Based on this soil profile 

description, the soil file within the generic African soil profile that best fit this description 

was selected as Clay_Shallow_HF_101mm. 

The SoilWAT model was used to describe movement of water and solutes within the soil 

system. The SoilWAT module is a cascading water balance model that simulates daily runoff, 

drainage, ETO, soil evaporation saturated and unsaturated flow of water and associated 

influxes and out fluxes of solutes. To improve the model’s accuracy for simulating soil water 

dynamics within the intercrop system, values of soil water properties derived using the 

hydraulic properties calculator (http://hydrolab.arsusda.gov/soilwater/Index.htm) were used 

to describe soil water properties within SoilWAT for each horizon (Table 1). 

The soil/root water extraction coefficient and root penetration parameter (XF, 0 – 1 

multiplier on the rate of root growth) for sorghum and cowpea were set to default values of 

0.08 (KL, d – 1) and 0.08 and 1.00, respectively, as there were no observed values. The soil 

evaporation coefficient, U (6 mm) was calculated from long term average of PT-ETo while 

the second stage soil evaporative coefficient CONA (3 mm d –0.5) was estimated from soil 

texture (Littleboy et al., 1999). Values of CONA and U were input in to the model so as to 

improve simulation of water lost through bare soil evaporation. The rate at which water 

drains from, that is the soil water conductivity (SWCON, d–1) 0.23, was obtained from 

Kiniry et al. (1989). For unsaturated water flow we used the default values for APSIM 

coefficients (diffus_const and diffuse_slope). Based on observed soil texture and colour soil 

albedo (0.13) was obtained from Jones and Kiniry (1986)  

Table 4: Soil water properties at different depths for soil at the experimental site at UKZN–

Ukulinga Research farm. 

http://hydrolab.arsusda.gov/soilwater/Index.htm
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Depth (m) TX8 

BD1 Airdry2 LL153 DUL4 TAW5 SAT6 KS7 OM9 

(g m-3) (mm m-1) % 

0 – 0.10 Clay 1.29 0.34 21.04 33.54 12.5 48.66 20.9 7.3 

0.10 – 0.30 Clay 1.47 0.69 47.61 69.94 24.63 97.89 18.18 2.6 

0.30 – 0.60 Clay 1.4 2.39 79.23 110.42 34.13 149.83 13.92 0.8 

Average*/Total 1.39* 3.42 147.88 213.9 71.26 296.38 17.67*  

1 Bulk density; 2 Airdry -Hydroscopic water content; 3. LL15 -Permanent wilting point; 4 DUL -Field capacity; 

5 Total available water; 6 SAT – Saturation; 7 KS - Hydraulic conductivity 8 TX – soil texture; 9 OM% – 

Percentage composition of ogarnic matter  

 

APSIM-Crop modules: To adapt sorghum and cowpea files, crop coefficients were 

developed based on observed data on crop traits collected from plots of sole sorghum and 

cowpea grown under full irrigation. The observed traits included phenology, leaf number and 

leaf appearance rate, as well as, radiation use efficiency. Data on biomass accumulation, final 

yield, and cumulative WU and WUE were also collected for the purpose of evaluating model 

performance. 

Phenological data observed for sorghum and cowpea included end of juvenile stage, floral 

initiation, flowering, length of grain filling as well as times to physiological and harvest 

maturity. A phenological stage was deemed to have occurred when it was observed in at least 

50% of experimental plants. Observations of crop phenology were recorded in calendar days 

and later converted to thermal time using method 2 as described by (McMaster and Wilhelm, 

1997): 

𝐺𝐷𝐷 =  [
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
] − 𝑇𝑏𝑎𝑠𝑒      Equation 12 

where: GDD = growing degree days (°Cd), Tmax and Tmin = maximum and minimum  



155 

 

 

temperatures, respectively, and Tbase = base temperature. If Tmax < Tbase then Tmax = 

T 

base and if Tmin < Tbase then Tmin = Tbase. 

End of juvenile stage was marked by the formation of the first true leaf/trifoliate (fully 

expanded and exposed), with a leaf collar in the case of sorghum. End of juvenile stage was 

observed from sowing to when more than 50% of plants in the experimental plots had formed 

the first true leaf. Time to end of juvenile stage for sorghum and cowpea was observed as 120 

°Cd and this was used as an input for coefficient tt_emerg_to_endjuv within phenology 

description of the sorghum and cowpea cultivar in the respective crop files (Table 2). Floral 

initiation is a period when reproductive structures of the plants start developing. Time to 

floral initiation for sorghum was observed as the time from emergence to the appearance of a 

bulge/swelling at the base of the stem for sorghum. Time to floral initiation for sorghum 

cultivars was observed as 260 °Cd. Time to end of juvenile stage (tt_emerg_to_endjuv) and 

time to floral initiation were then used to calculate sorghum crop coefficient tt_endjuv_to_init 

(time between end of juvenile stage to floral initiation) within the sorghum crop files (Table 

2). Coefficient tt_endjuv_to_init was calculated as 140 °Cd and this was input in the 

phenology description of the sorghum cultivar within the crop file (Table 2). For cowpea, 

time to floral initiation was taken as the time from appearance of peduncles from leaf axils. 

For cowpea, the observed coefficient endjuv_to_init was similar to model default, therefore 

this coefficient was not changed. Flag leaf is the last leaf that appears within the whorl of the 

sorghum plant. Time to appearance of the flag leaf was observed as the time between sowing 

and the appearance of the last leaf that appears within the whorl of the sorghum plant. 

Flowering for sorghum and cowpea was defined as when 50% or more of florets on the 

panicle and peduncles, respectively, start releasing pollen (anthesis). Time to flowering was 

observed as the time between planting and flowering. Time to flowering (965 °Cd) and time 

to appearance of flag leaf (786 °Cd) was used to calculate sorghum crop coefficient 

flag_to_flower The sorghum coefficient tt_flag_to_flower (179 °Cd) was calculated as the 

time interval between time to appearance of flag leaf and flowering (Table 2). Similarly, for 

cowpea, the observed coefficient tt_init_to_flower was similar to model default, therefore the 

default values were used. Physiological maturity is attained when the dark layer forms at the 

point of attachment of the grain to panicle or pod. For both sorghum and cowpea, the time 
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interval between flowering and maturation was similar to model default values, therefore the 

default values were used.  

For sorghum, a leaf was defined as one that is fully expanded, fully exposed, and had a 

collar. A fully expanded and exposed trifoliate was considered as a leaf for cowpea. Leaf 

number for sorghum and cowpea were counted on a weekly basis from emergence up to 

physiological maturity. Within each respective crop file in APSIM, minimum and maximum 

leaf numbers for sorghum and cowpea were adjusted accordingly (Table 2). 

Leaf appearance rate (°Cd leaf-1) in sorghum was the intervening period between sequential 

emergences of leaves on the main stem of a plant and is also rendered as phyllochron. Leaf 

appearance rate was calculated by regressing number of leaves that were visible on thermal 

time (base 8°C) from emergence. Phyllochron (°Cd leaf-1) is the reciprocal of leaf appearance 

rate (Clerget et al., 2008). Thermal time required to develop the most leaf ligule – Rate 1 (leaf 

appearance rate between emergence and floral initiation), thermal time required for the 

appearance of the last leaf ligule – Rate 2 (leaf appearance rate between floral initiation and 

appearance of flag leaf ligule) and leaf number below flag leaf above which leaf appearance 

rate changes from rate 1 to rate 2 were changed within APSIM sorghum file according to 

observed data (Table 2).  
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Table 5: Modification of crop coefficients based on observed results from 2013/14 growing 

season. 

Parameter description Coefficient name Value  

Base temperature for sorghum and cowpea Tbase 8** 

Leaf number at emergence leaf_no_at_emerg  1* 

Minimum leaf number leaf_no_min  8 

Maximum leaf number leaf_no_max  14 

Thermal time required to develop the most leaf ligule leaf_app_rate1 (oCd)  55 

Thermal time required to develop last leaf ligule leaf_app_rate2 (oCd)  42 

Leaf number below flag leaf above which leaf 
appearance rate changes from rate 1 to rate 2 leaf_no_rate_change  2.5 

Radiation use efficiency (g (biomass) MJ-1) (Sorghum) RUE  1.15 

Radiation use efficiency (g (biomass) MJ-1) (Cowpea) RUE 1.19 

Thermal time between emergence and end of juvenile 
stage tt_emerg_to_endjuv 120 

Thermal time between end of juvenile stage to floral 
initiation tt_endjuv_to_init 140 

Thermal time between appearance of flag leaf to 
flowering tt_flag_to_flower 179 

Thermal time between flowering to start of grain filling tt_flower_to_start_grain 85 

Thermal time between flowering to physiological 
maturity tt_flower_to_maturity 865 

*traits with asterisk represent default values used in APSIM – sorghum module while those without were 

observed values.** value obtained from Hodges (1990) 
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Solar radiation is the basis for biomass production within APSIM and this is achieved 

through a crop specific coefficient that describes the relationship between biomass and 

intercepted photosynthetically active radiation – radiation use efficiency (RUE) (g MJ -1). 

Routine measurements of intercepted photosynthetically active radiation (IPAR) were taken 

for sole crops of sorghum and cowpea at midday using the AccuPAR LP80 (Decagon 

Devices, USA). Thereafter, destructive sampling of sorghum and cowpea plants was done to 

determine biomass accumulation (kg ha-1). Sampled plants were oven dried at 85°C until 

constant mass was attained. Radiation use efficiency at each sampling interval was then 

calculated as 

𝑅𝑈𝐸 =  
𝐵

𝐼𝑃𝐴𝑅
(𝑘𝑔 𝑀𝐽 𝑃𝐴𝑅 ℎ𝑎−1)      Equation 2 

where: RUE = Radiation use efficiency (kg MJ PAR-1 ha-1),  

Y = the economic yield (kg ha-1), B = biomass (kg ha-1) and IPAR = Intercepted PAR. 

Observed RUE values for sorghum (1.25 g MJ -1) and cowpea (1.65 g MJ -1) were input 

within the APSIM sorghum and cowpea files. During model iterations, it was observed that 

biomass production was over-estimated. To improve model simulation of biomass, RUE of 

cowpea and sorghum were adjusted within the range of calculated S.E. (±0.45 and 0.23, 

respectively). Radiation use efficiency of 1.15 and 1.19 g MJ -1were used as input values for 

RUE of sorghum and cowpea, respectively (Table 2). 

At harvest maturity each component crop across the different treatments was harvested 

for yield determination. At harvest, above ground plant matter of six representative plants of 

sorghum and cowpea were taken and reproductive organs processed for yield (kg ha-1).   

For the field experiments, crop water use (WU) for sorghum-cowpea intercrop system 

was calculated as the residual of a soil water balance:  

WU = P + I – D – R – ΔSWC       Equation 3 

where: WU = evapotranspiration (mm), P = precipitation/rainfall (mm), I = irrigation 

(mm), 

D = drainage (mm), R = runoff (mm), and ΔSWC = changes in soil water content (mm).  
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Runoff (R) was assumed to be zero since erosion was negligible in the plots as it had a slope 

of less than 3% (Seelig and Alfonso, 2007). Drainage was also considered as negligible since 

the observed impeding layer at 0.6 m restricted downward movement of water beyond the 

root zone. Within the model, WU was determined as the sum of crop water uptake from the 

whole profile (sorghum Ep + cowpea Ep) and soil evaporation (Es). 

Changes in soil water content (SWC) were measured using a PR2/6 profile probe 

connected to an HH2 handheld moisture meter (Delta–T, UK). Soil water content was 

measured at depths corresponding to observed soil layers (Table 1) (0.10, 0.30 and 0.60 m). 

After each irrigation event, amount of water added (I) was determined from rain gauges 

randomly placed across the experimental plots.  

APSIM – Irrigation: To simulate irrigation, irrigation events within the model were set to 

corresponded to dates of actual irrigation events that occurred within field experiments. 

Observed irrigation applied per event for the field experiment was calculated to be on average 

12 mm ± 5.5 mm (SD). Irrigation amount within the irrigation node was set to 12 mm per 

event with an irrigation efficiency of 90%. Weekly rainfall (R) data was obtained from the 

AWS. Measurements of initial values of SWC for model adaption were not available. 

Therefore, the simulation period was set to start on the 1st of December, 2013 and 1st of 

October, 2014 to allow the model to calculate a soil water balance and initial soil water 

content at planting. For the 2013/14 planting season, experiment was established under 

rainfed conditions. Initial soil water within the SoilWAT module was obtained by running a 

fallow simulation with two year historic data prior to and upto 15 days after 2013/14 crop 

establishment. Soil water content at planting was modelled to be 31% and this value was 

inputted in to the local adaptation simulation as initial soil water content. During 2014/15 

planting season, before planting irrigation was applied so as to recharge the soil back to field 

capacity (DUL). Within the initial soil water node of SoilWAT module, initial soil water was 

set at DUL and “filled from the top”.  

APSIM – Management: Within the management module, sowing using variable date for 

intercropping node was used to represent management options within the simulation. Within 

the node, sowing date was set to fall in between 13 – 20 January, 2014 for model adaptation 
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and 13 – 20 November, 2015 for model testing. For both runs, sorghum and cowpea were 

sown when at least 20 mm of rainfall had been received within a 10 day period, and water 

content in the topsoil (5 – 20 cm depth) was at least 50%. The planting criteria set for 

simulation was not always in line with actual conditions observed during planting of field 

experiments. Sowing depth was set at 0.05 m for both sorghum and cowpea. Sowing density 

for sorghum and cowpea were set to reflect densities in the experiment which were 2.6 and 

1.3 plants m-2. Similarly, row spacing was set at 0.75 m to reflect actual crop management 

practise. An application of 52 kg ha–1 N fertilizer 60 days after planting was used for 

sorghum while no fertilizer was not added in cowpea sowing node.  

Model evaluation 

Data collected during the 2013/14 growing season was used for local adaptation of APSIM 

sorghum–cowpea model. Data collected during the 2014/15 growing season was used to test 

the performance of the model. 

At harvest, water use efficiency was calculated for yield (were possible) and biomass for 

the whole system (sorghum + cowpea). Observed WUE was calculated using measured 

values of the systems’ water use (WU), and biomass and yield values for sorghum and 

cowpea. APSIM does not calculate WUE directly; however, it is able to simulate inputs (WU, 

yield and biomass) used in its calculation. Water use efficiency was calculated as follows: 

𝑊𝑈𝐸𝑦/𝑏 =  
𝑌/𝐵

𝑊𝑈
(𝑘𝑔 𝑚𝑚−1 ℎ𝑎−1)      Equation 4 

where: WUE = water use efficiency (kg mm-1 ha-1), Y = total economic yield (sorghum + 

cowpea) (kg ha-1), B = total biomass (sorghum + cowpea) (kg ha-1) and WU = the crop water 

use (WU) (mm). 

To evaluate model performance, simulated outputs (S) were statistically analysed against 

observed (O) data. Simulated and observed time to phenological stages, leaf number, 

biomass, yield, WU and WUE were compared using the following statistical indicators: 

Correlation of determination R2: Correlation of determination, R2, describes goodness of fit 

between O and S. Values of R2 range between 0 and 1 with high values indicating less error 
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variance. The interpretation of R2 is n dependent. Low values are only acceptable if n is huge. 

Where is n is low (e.g. n < 10), high values (R2 > 0.85) would be acceptable and vice versa. 

The disadvantage to using R2 values is that they are over sensitive to outliers and insensitive 

to additive and proportional differences between S and O. 

To indicate how much a fitted linear regression between simulated and observed deviated 

from the ideal S = O, the bias correction factor was visually depicted by plotting a line (x = y) 

that passed through the origin (0, 0). 

Systematic and unsystematic components of the root mean squared error (RMSEs and 

RMSEu, respectively) as well as the total root mean squared error (RMSE): Root mean 

squared error is a commonly used error index for statistics (Willmott, 1981). The use of 

RMSE and its systematic (RMSEs) and unsystematic (RMSEu) derivatives was proposed by 

Willmott (1981) to measure model performance. For interpretation of results, RMSEs should 

approach zero, while RMSEu should approach RMSE in order for a model’s performance to 

be considered as good. The relationship between RMSEu and RMSE (RSMEu/RSME) was 

also expressed as a percentage. Calculations of RMSE, RMSEs and RMSEu are as follows: 

𝑹𝑴𝑺𝑬𝑺 =  [𝒏−𝟏 ∑ (Ŝ𝒊 − 𝑶𝒊)
𝟐𝒏

𝒊=𝟏 ]
𝟎.𝟓

      Equation 5 

𝑹𝑴𝑺𝑬𝑼 =  [𝒏−𝟏 ∑ (Ŝ𝒊 − 𝑺𝒊)
𝟐𝒏

𝒊=𝟏 ]
𝟎.𝟓

       Equation 6 

𝑹𝑴𝑺𝑬 =  (𝑹𝑴𝑺𝑬𝑺 +  𝑹𝑴𝑺𝑬𝑼)𝟎.𝟓       Equation 7 

where, n is the number of observations, Ŝi is derived from Ŝi = a + b.Oi where a and b are 

the intercept and slope respectively, of a least regression between the simulated (dependent 

variable) and observed (independent variable) values.  

According to Willmott (1981), information obtained for RMSE, RMSEs and RMSEu is 

often complimented by the d-index. 

Index of agreement (D – index): Index of agreement is a standardized measure of the degree 

of model simulation error and varies between 0 (no agreement) and 1 (perfect agreement). It 

is computed as follows: 
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𝒅 = 𝟏 −
∑ (𝑺𝒊 −𝑶𝒊)𝟐𝒏

𝒊=𝟏

∑[|𝑺′𝒊|+|𝑶′
𝒊|]

𝟐 , 𝟎 ≤ 𝒅 ≤ 𝟏     Equation 8 

where, S’ =Si – Ō and Ōi = Oi – Ō whereby Ō is the observed mean. 

The index of agreement represents the ratio between the mean square error (MSE) and 

potential error (Willmott, 1981). In this instance the potential error is the sum of the squared 

absolute values to the mean observed value. The index can detect additive and proportional 

differences in the observed and simulated means of variance although it too is sensitive to 

extreme values due to the squared differences (Legates and Jr, 1999).  

Local adaptation 

Phenology 

The dataset used to determine genetic coefficients for sorghum and cowpea gave good 

agreement between simulated and observed values for phenology. Model simulations for 

phenology in sorghum were satisfactory (R2 = 1.00; RMSE = 4.43 °Cd, d – index = 1.00). 

The RMSEu (4.09 °Cd) was shown to approach RMSE, although there was a 7.67% 

difference (Fig. 1). The RMSEs (1.71 °Cd) approached zero, therefore model performance 

was deemed as good. Model simulations for phenology for cowpea were also satisfactory (R2 

= 1.00; RMSE = 7.38 °Cd, d – index = 1.00) (Fig. 1). The RMSEu (6.86 °Cd) was shown to 

approach RMSE, although there was a 7.04% difference. The RMSEs (2.73 °Cd) approached 

zero, therefore, model performance was deemed good.  

Plant phenology is a critical component for adaptation especially under resource 

limitation. After the adjustments of crop specific coefficients, the model’s ability to 

accurately simulate phenology for both cowpea and sorghum was improved. APSIM crop 

files has its own default cultivars for different maturity classes. However, cultivars described 

within the crop files do not always represent accurately the wide genetic diversity that exists 

for sorghum and cowpea. These results are contrary to those by Ncube et al. (2009) who 

observed good simulations of phenology from existing crop cultivars of sorghum and cowpea 

within APSIM. On the other hand, results of the current study are similar to those observed 

by Potgieter et al. (2005) and Msongaleli et al. (2014) who observed improvements in model 

simulation of phenology after local adaptation of crop coefficients. In cases were new 
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cultivars are being modelled, local adaptation should always be considered so as to improve 

model simulation. 

 

 

Figure 1. Local adaptation of APSIM model for sorghum and cowpea showing observed and 

simulated values for phenology and statistical output for its evaluation.  

 

Leaf number 

Model simulation for leaf number for sorghum was satisfactory (R2 = 0.99; RMSE = 5.84, d – 

index = 0.99) although the model over estimated by one leaf. The RMSEu (5.77) was shown 

to approach RMSE and the difference was 1.19% (Fig. 2). The RMSEs (0.88) approached 

zero, therefore the model performance was deemed as good. Model simulations for leaf 

number for cowpea were also satisfactory (R2 = 0.99; RMSE = 3.89, d – index = 1.00) (Fig. 

2) though the model over estimated by an average of three leaves. The RMSEu (3.40) was 

shown to approach RMSE with a 12.59% difference. The RMSEs (1.88) approached zero, 

therefore, model performance was deemed good.  
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Adjustments of leaf development rates (rate 1 and 2) (Table 1) for sorghum ensured that 

the model was able to capture the relatively small number of leaves for the cultivar simulated. 

Final leaves developed and rate of leaf development in sorghum are strongly related with 

phenology i.e. floral initiation and rate of leaf primordia development. The good simulation 

of floral initiation and adjustments of leaf development rates, therefore, improved accuracy of 

simulation of leaf number by the model. The good fit between observed and simulated leaf 

number indicates that the default crop coefficients for cowpea leaf development within the 

model adequately described cowpea cultivar used. On the other hand, the low observed leaf 

number for both sorghum and cowpea could be that during data collection the cotyledon 

leaves were not included; however, these are considered as leaves by the model.  

 

Figure 2. Local adaptation of APSIM model for sorghum and cowpea showing observed and 

simulated values for leaf number and statistical output for its evaluation. Vertical bars on 

observed data represent standard error (±). 

 

Leaf area index 

There was poor agreement between simulated and observed results of LAI for both sorghum 

and cowpea. For sorghum and cowpea, R2 was low (0.56 and 0.22, respectively) while RMSE 

(0.12 and 0.24, respectively) was observed to be high (Fig. 3). Although RMSEs was 

approaching zero (0.07 and 0.17, respectively) it was considered high (RMSEs > 0.5 RMSE) 
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and the model’s performance with respect to simulation of LAI was deemed poor (Fig. 3). 

Contrary to results of R2 and RMSE and its components, d-index for both sorghum (0.99) and 

cowpea (0.99) was high. However, the d-index is not reliable in this case since the relation of 

observed and simulated data was asymmetric; that is, the rate of increase for observed LAI 

was not proportional to that of simulated LAI. The observed low agreement between 

observed and simulated LAI could be attributed to the model’s inability to capture defoliation 

of leaves by hail storm that occurred earlier in the season which reduced observed LAI 

relative to simulated. On the other hand, the APSIM model has been observed to perform 

poorly for predications of LAI. For instance, Asseng et al. (1998) observed R2 = 0.59 for 

wheat while Hammer et al. (2010) observed an R2 = 0.86 for sorghum with a sample size of 

less than 10. The interpretation of R2 is highly dependent on the number of observations (n). 

When n is low (e.g. n < 10), high values (R2 > 0.85) would be acceptable and vice versa.  

 

 

Figure 3. Local adaptation of APSIM model for sorghum and cowpea showing observed and 

simulated values for leaf area index (m2 m-2) and statistical output for its evaluation. Vertical 

bars on observed data represent standard error (±). 
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Biomass, yield, WU and WUE 

The model simulated sorghum biomass (3188.15 kg ha-1) reasonably well (R2 = 0.96; RMSE 

= 428.36 kg ha-1; d – index = 0.99). The RMSEu (376.59 kg ha -1) was shown to be 

approaching RMSE with a 11.26% difference. The RMSEs (204.26 kg ha-1) was approaching 

zero, therefore the model fit could be deemed good. For cowpea, the model simulation for 

biomass (848.63 kg ha-1) was also a good (R2 = 0.95; RMSE = 163.28 kg ha-1while d – index 

= also 0.99). The RMSEu (144.88 kg ha-1) was shown to approach RMSE while the RMSEs 

(75.30 kg ha-1) approached zero (Fig. 4). This was despite the poor simulation of LAI. The 

good model performance could be attributed to the fact that biomass is calculated as a 

derivative of RUE. The use of calculated RUE values for both cowpea and sorghum 

increased the accuracy and stability of biomass. Therefore, the crop coefficient RUE is an 

important parameter in accurately simulating biomass production. 

 

Figure 4. Local adaptation of APSIM model for sorghum and cowpea showing observed and 

simulated values for biomass (kg ha-1) and statistical output for its evaluation. Vertical bars 

on observed data represent standard error (±). 

 

Model simulation for yield for sorghum was satisfactory as indicative of the low RMSE 

value of 82.73 kg ha-1 and a difference of 7.17% from observed yield (Table 3). This was in 
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line with results of simulated phenology and biomass. On the other hand, model simulation 

for cowpea yield was poor (RMSE = 44.80 kg ha-1) with an overestimation of 31.03% (Table 

3). The overestimation of cowpea yield by the model could be attributed to the carry over 

error brought about by overestimation of LAI and biomass such that more biomass was 

produced and partitioned to yield. The model’s response of yield to LAI, biomass and yield 

are similar to those observed by Cheeroo-Nayamuth et al., (2000) and Moeller et al. (2014). 

Conversely, the model was able to explain 68.97% of yield observed under field conditions 

(Table 3). This would suggest that other than intercropping and its possible effect on resource 

availability, cowpea succumbed to other yield reducing factor(s), such as poor rhizobium 

activity, that could not be captured by the model. With regards to this, the model can be used 

to assess yield gaps could have affected sorghum–cowpea intercrop system.  

Good simulations of crop water use (ET) by the model were also observed with a RMSE 

value of 33.31 mm; however, there was an over-estimation by 7.31% (Table 3). Similar to 

biomass simulation, overestimation of ET could also be attributed to over estimations of LAI 

(Table 3). In addition the role of cowpea as a live mulch could have reduced estimations of 

(soil evaporation) Es relative to (crop water uptake) Ep fraction. These results are similar to 

those observed by Balwinder-Singh et al. (2011) who observed an overestimation of ET when 

the effect of mulching on crop water use was simulated in APSIM. The observed results 

suggest that APSIM was unable to fully capture the role played by cowpea to reduced soil 

surface evaporation within the intercrop system. 

The WUE calculated on the basis of model simulated yield and biomass of the system 

showed very good fit (0.34 and 2.11 kg mm-1 ha-1, respectively) for simulated and observed 

results (Table 3). The WUEy difference (2.08%) between the observed and simulated for 

yield was within a reasonable margin (Table 3). The large differences (14.80%) observed for 

WUEb can be attributed to overestimation of both sorghum and cowpea biomass yield 

relative to crop water use. Simulations of ET and WUE can still be considered acceptable 

since they are in line with observed values. 
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Table 3: Local adaptation of APSIM model for sorghum and cowpea showing observed and 

simulated values for Crop water use (mm), yield (kg ha-1) and water use efficiency, and 

statistical output for its evaluation. 

 Observed Simulated RMSE % Difference 

Crop water use (mm) 307.37 329.86 22.49 7.31 

Yield (kg ha-1) 
Sorghum 1156.63 1239.36 82.73 7.17 

Cowpea 145.00 189.80 44.80 31.0 

WUEy1 (kg mm-1 ha-1) 4.23 4.33 0.34 2.08 

WUEb2 (kg mm-1 ha-1)  14.25 16.36 2.11 14.80 

1WUEy – Grain water use efficiency; 2WUEb – Biomass water use efficiency.  

 

Model testing 

Phenology 

Similar to observed results from field experiment where water regime did not affect time to 

phenological event for sorghum and cowpea, model simulated phenological events were not 

affect by differences in water availability. Conversely, model simulations for phenology for 

sorghum and cowpea under different water regimes were very good (R2 = 1.00 and 1.00; 

RMSE = 2.46 and 5.24 °Cd, d – index = 1.00 and 1.00, respectively) (Fig. 5). The RMSEu 

(2.12 and 4.77 °Cd) was shown to approach RMSE, although there was a 13.82 and 8.96% 

difference. The RMSEs (1.23 and 2.16 °Cd, respectively) was approaching zero (Fig. 5). The 

observed RMSE for the different water regimes was consistent with observed results of local 

adaptation evaluation indicating model stability and robustness.  

The ability to accurately simulate phenology is critical for crop production as it has huge 

consequences to crop management practices and crop cultivar choices. The importance of 

phenology also stems from its direct influence on canopy development (Baker and Reddy, 

2001), biomass production and partitioning (Reynolds et al., 2008) and yield production (Tao 

et al., 2006). Phenological stability of sorghum and cowpea ensures that crop development 
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cycle is maintained even under limiting conditions and is considered as an important drought 

tolerance trait (Fuad-Hassan et al., 2008). The model was therefore able to mimic low 

sensitivity of crop responses to varying water management strategies.  

 

Figure 5. Comparison of observed and simulated values for sorghum and cowpea phenology 

and statistical output for its evaluation. 

 

Leaf number 

Model simulations for leaf number for sorghum under FI were poor (R2 = 0.71; RMSE = 

2.94, d – index = 0.99). The RMSEu (2.23) was shown to approach RMSE, although there 

was a 24.23% difference (Fig. 6). Simulation of leaf number of sorghum under DI was 

satisfactory (R2 = 0.81; RMSE = 2.79, d – index = 0.99). The RMSEu under DI (2.34) was 

shown to approach RMSE, although there was a 16.12 % difference while RMSEs (1.92) was 

high (RMSEs = 0.5 RMSE) (Fig. 6). Under RF conditions, model simulation for leaf number 
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was also poor (R2 = 0.61; RMSE = 2.80, d – index = 0.99). Although the RMSEu under RF 

(2.06) was shown to approach RMSE, there was a 26.12 % difference while RMSEs (1.53) 

was high (RMSEs = 0.5 RMSE) (Fig.6). For cowpea, model simulation for leaf number under 

FI was very good (R2 = 0.97; RMSE = 6.53, d – index = 1.00). The RMSEu (5.59) was 

shown to approach RMSE, although there was a 16.81% difference while RMSEs (1.90) was 

approaching zero (Fig. 6). Similarly, simulations of leaf number for cowpea under DI and RF 

conditions were also satisfactory (R2 = 0.86 and 0.86; RMSE = 12.02 and 10.62, d – index = 

0.99 and 0.99, respectively). The RMSEu under DI (11.94) and RF (9.97) was shown to 

approach RMSE, although there was a 0.6 and 6.51% difference, respectively; while RMSEs 

(1.45 and 3.67, respectively) was approaching zero (Fig. 6).  

The model did not show a good fit for sorghum for leaf number across the water regimes 

(Fig. 5). The model over-estimated leaf number for sorghum for the three water regimes. In 

this study substantial defoliation of plants in the field experiment occurred due to hail damage 

at 79 DAP (718.87 °Cd) resulting in significant loss in leaves. Before the storm, there was 

generally good agreement between observed and simulated results. The model was unable to 

capture hail damage thus resulting in overestimation of leaves for sorghum. Although APSIM 

was able to recognise the hail storm event as heavy rainfall, effect of high rainfall intensity 

and hail storm could not be translated onto sorghum canopy, the over-story. Therefore, leaf 

number simulated represents the potential leaf number of sorghum. On the other hand, the 

good performance of the model under FI conditions could be because model adaptation was 

done using dataset obtained under full irrigation. This would suggest that there is still need to 

improve model adaptation so as to improve response across different water regimes. 

Although leaf number of cowpea plants within the field experiment were also affected by 

hail, they managed to regrow most of their leaves due to the presence of secondary branch 

nodes on primary branches. With the absence of the hail storm, model output would suggest 

that there was an underestimation of leaf number for cowpea. With the increase in occurrence 

of extreme weather events such as hail storms, the weather subroutines that can be used to 

highlight observed extreme weather events that are not easily captured during model runs can 

improve model simulations and use as tools in risk management.  
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Figure 6. Comparison of observed and simulated values for sorghum and cowpea leaf 

number (kg ha-1) under different water regimes and statistical output for its evaluation. 

Vertical bars on observed data represent standard error (±). 

 

Leaf area index 

Model simulations of LAI for sorghum under FI were poor (R2 = 0.68; RMSE = 0.19 m2 m-2, 

d – index = 1.00). Although the RMSEu (0.15 m2 m-2) was shown to approach RMSE, there 

was a 21.05% difference while RMSEs (0.11 m2 m-2) was high (RMSEs > 0.5RMSE) (Fig. 

7). Simulation of LAI of sorghum under DI was satisfactory (R2 = 0.71; RMSE = 0.19 m2 m-

2, d – index = 1.00). The RMSEu under DI (0.17 m2 m-2) was shown to approach RMSE, 

although there was a 10.52% difference while RMSEs (0.09 m2 m-2) was approaching zero 

(Fig. 7). Under RF conditions, model simulation for LAI was satisfactory (R2 = 0.75; RMSE 

= 0.39 m2 m-2, d – index = 1.00). The RMSEu under RF (0.38 m2 m-2) was shown to approach 

RMSE, although there was a 2.56% difference while RMSEs (0.09 m2 m-2) was approaching 

zero (Fig. 7).For cowpea, model simulations for LAI under FI were satisfactory (R2 = 0.76; 

RMSE = 0.21 m2 m-2, d – index = 0.99). The RMSEu (0.29 m2 m-2) was shown to approach 
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RMSE, although there was a 38.09% difference while RMSEs (0.07 m2 m-2) was approaching 

zero (Fig. 7). Simulation of LAI of cowpea under DI was satisfactory (R2 = 0.61; RMSE = 

0.25 m2 m-2, d – index = 0.99). The RMSEu under DI (0.25 m2 m-2) was equal to RMSE (Fig. 

7) while RMSEs (0.03 m2 m-2) was approaching zero. Under RF conditions, model simulation 

for LAI was also good (R2 = 0.75; RMSE = 0.39 m2 m-2, d – index = 1.00). The RMSEu 

under RF (0.38 m2 m-2) was shown to approach RMSE, although there was a 2.56% 

difference while RMSEs (0.06 m2 m-2) was approaching zero (Fig. 7). 

Similar to leaf number, the model did not always show a good fit for sorghum for leaf 

area index (LAI) across the water regimes (Fig. 7). Unlike leaf number, the model under-

estimated LAI for sorghum for all the three water regimes from floral initiation (Fig. 7). 

During local adaptation of the model, tillering, which often precedes after floral initiation, 

was not observed in the field experiment and this was in agreement with simulated results. 

Under field conditions, tillering is a sensitive parameter, affected by soil moisture and 

photoperiod (Kim et al., 2010). Late planting for experiment established during the 2013/14 

resulted in photoperiods of less than 12hrs and this could have suppressed tillering. Early 

planting (photoperiod > 13 hrs) during the 2014/15 experiment resulted in tillering which in 

turn resulted in high observations of LAI. Canopy development is simulated on a whole plant 

basis through a relationship between total plant leaf area (TPLA) and thermal time. TPLA 

integrates the number of fully expanded leaves, their individual size, and tiller number, and 

includes an adjustment for the area of expanding leaves (Keating et al., 2003). This could 

have resulted in the model underestimating LAI.   

Similarly, model performance for cowpea LAI did not always show a good fit across 

water regimes. However, the margin of error between the observed and simulated results 

could be deemed satisfactory since RMSE were generally low, RMSEs were approaching 0 

and d - index were high. Within the model, leaf area development per plant is simulated as a 

sigmoidal function of thermal time since emergence (Brown et al., 2014); however 

development of observed LAI did not follow that pattern of development but was more of a 

power function type of graph. This resulted in the initial under-simulation of cowpea LAI. 

These results are consistent to results observed by Garrido et al. (2013) and Brown et al. 

(2014) who also observe an initial under-estimation of wheat LAI simulations in APSIM. 
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This would suggest that for improved model simulations, additional routines which allow 

switching from sigmoid to other functions should be incorporated into plant modules. 

 

Figure 7. Comparison of observed and simulated values for sorghum and cowpea leaf area 

index (m2 m-2) under different water regimes and statistical output for its evaluation. Vertical 

bars on observed data represent standard error (±). 

 

Biomass  

Model simulation of biomass for sorghum gave an overall mean of 3952.15 kg ha-1 ± 451.08 

kg ha-1 SD. Model simulations of biomass for sorghum under FI were very good (R2 = 0.95; 

RMSE = 330.60 kg ha-1, d – index = 1.00). The RMSEu (318.36 kg ha-1) was shown to 

approach RMSE, although there was a 3.70% difference while RMSEs (89.14 kg ha-1) was 

approaching zero (Fig. 8). Simulation of biomass for sorghum under DI was also very good 

(R2 = 0.96; RMSE = 246.62 kg ha-1, d – index = 1.00). The RMSEu under DI (246.42 kg ha-1) 

was shown to approach RMSE (negligible difference of 0.008%) while RMSEs (13.70 kg ha-

1) was approaching zero (Fig. 8). Under RF conditions, model simulation for biomass was 
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good (R2 = 0.96; RMSE = 494.54 kg ha-1, d – index = 1.00). The RMSEu under RF (451.43 

kg ha-1) was shown to approach RMSE with an 8.71% difference. On the other hand RMSEs 

(293.24 kg ha-1) was high and approaching RSME (RMSEs > 0.5 RMSE) (Fig. 8). In spite of 

this, model performance can be deemed as satisfactory based on R2, RMSE and d – index. 

For cowpea, model simulation of biomass gave an overall mean of 2102.63 kg ha-1 ± 131.51 

kg ha-1. Model simulations for biomass under FI were satisfactory (R2 = 0.95; RMSE = 

182.36 kg ha-1, d – index = 0.99). The RMSEu (167.23 kg ha-1) was shown to approach 

RMSE, although there was an 8.29% difference while RMSEs (72.93 kg ha-1) was 

approaching zero (Fig. 8). Simulation of biomass for cowpea under DI was also good (R2 = 

0.95; RMSE = 256.36 kg ha-1, d – index = 0.99). The RMSEu under DI (225.56 kg ha-1) was 

approaching RMSE (Fig. 8). The RMSEs (122.36 kg ha-1) was high (RMSEs > 0.5 RMSE). 

However, model performance can still be deemed satisfactory as indicated by R2, RMSE and 

d – index. Under RF conditions, model simulation for biomass was also good (R2 = 0.92; 

RMSE = 336.73 kg ha-1, d – index = 0.99). The RMSEu under RF (285.47 kg ha-1) was 

shown to approach RMSE, although there was a 15.22% difference while RMSEs (168.97 kg 

ha-1) was approaching zero (Fig. 8).  

Model performance for sorghum and cowpea biomass was good and this was attributed to 

its conservative behaviour with RUE. These results confirmed results of local adaptation. 

Therefore, with regards to biomass simulation, the model was robust especially if the 

coefficient RUE is accurately calculated. The model was able to capture differences in 

biomass production under different water regimes. Under RF conditions, the low biomass for 

sorghum and cowpea were observed could be attributed to increase in root to shoot ratio. 

Under limited water supply, sorghum and cowpea are known to increased root to shoot ratio 

so as to increase root volume for enhanced water extraction; a drought tolerance mechanism. 

Estimation of root to shoot ratio calculated from model simulation of root and above ground 

biomass showed that it increased with reduction in water availability (FI (0.20) < DI (0.22) < 

RF (0.28). This shows that the model was able to capture response of biomass partitioning 

between roots and above ground in relation to water availability. Therefore, the model can be 

used to quantify the trade-offs of resource limitation such as reduced water availability. 
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Figure 8 Comparison of observed and simulated values for sorghum and cowpea biomass (kg 

ha-1) under different water regimes and statistical output for its evaluation. Vertical bars on 

observed data represent standard error (±). 

Yield, water use and water use efficiency 

Model simulations of yield for sorghum under DI and RF were very good (RMSE = 37.88 

and 35.99 kg ha-1, respectively) while simulation under FI was relatively good (145.38 kg ha-

1). Under DI and FI conditions, simulated yield was 3.46 and 3.34% higher while under RF 

conditions a larger difference of 14.93% was observed (Table 4). The large difference 

between simulated and observed yield for sorghum under rainfed conditions could be that the 

model overestimated biomass (6.5%) resulting in a successive overestimation of yield. Under 

field conditions, low availability of water results in a reduction in canopy size so as to 

minimize loss of water through transpiration. Reduction in canopy size results in reduction in 

the amount of radiation intercepted resulting in a reduction in biomass RUE relative to well 

water conditions. The use of RUE coefficient parameterized under optimum conditions may 

have resulted in a poor simulation of biomass under water limited conditions, which in turn 
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result in an overestimation of yield. Also, the over estimation of biomass and yield under RF 

conditions suggest that the APSIM model might not be sensitive to water. To improve 

simulations of biomass and yield, there is need to improve calibrations for soil–water indices 

and water stress indices so as to improve sensitivity of the model to low water availability. 

Model simulations of crop water use (WU) showed that it increased with increase in 

water availability (RF = 306.28 > DI = 361.54 > FI = 383.55 mm). Model simulations for 

WU for sorghum–cowpea intercrop system under FI and DI were very good (RMSE = 8.18 

and 8.11 mm, respectively) while simulation under RF were relatively good (RMSE = 24.11 

mm) (Table 4). Under RF and DI conditions, simulated was overestimated (7.29 and 2.29%, 

respectively) while under FI it was underestimated (2.08%) (Table 4). Since WU is calculated 

from crop transpiration and soil evaporation and due to underestimation of LA by the model 

larger proportion could have been utilised through soil evaporation  A close look at model 

output showed that increase in water availability did not have an effect on crop water uptake 

(Ep) [FI = 113.27, DI = 112.97, RF = 111.45 mm (mean = 112.56 mm ± 0.97 SD)]. Based on 

this output, it suggests that transpiration was unaffected by reduction in water availability. In 

nature, low availability of water results in a reduction in transpiration due reduction in 

stomatal conductivity. This confirms early statement on the low sensitivity of APSIMs to 

water. On the other hand, increasing water availability increased soil evaporation (Es) [FI = 

269.07, DI = 254.98, RF = 224.10 mm (mean = 249.38 mm ± 23 mm SD)]. Increased 

frequency of soil surface wetting resulted in more soil evaporation. In this regards, the model 

was able to proportionate further crop water use as influenced by water availability.  

Results of WUEb calculated from simulated biomass and WU showed a good fit with 

WUEb calculated from observed biomass and WU (RMSE = 1.66, 1.97 and 3.06 kg mm-1 ha-

1 for FI, DI and RF conditions, respectively) (Table 4). The calculated WUEb from model 

simulated biomass and WU showed that there was an underestimation of WUEb under RF 

conditions (14.89%) and deficit irrigation (10.75%). The model was able to simulate biomass 

within an acceptable range; but it overestimated WU under RF conditions and DI relative to 

its biomass production. However, this was considered acceptable due to observed low RMSE 

(3.06 and 1.97 kg mm-1ha-1) relative to mean values of calculated WUEb (8.75 and 8.23 kg 

mm-1ha-1) for model simulation. The calculated WUEb from model simulated biomass and 
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WU showed the model under simulated (-10.99%) WUEb of the sorghum cowpea intercrop 

system under FI conditions; similarly this was also considered as acceptable due to the low 

RMSE (1.66 kg mm-1 ha-1). Overestimation of WUEb was attributed to underestimation of 

WU relative to biomass produced. The sensitivity of WUE to biomass production highlights 

the importance of accurate its simulation as it has downstream effect on calculation of water 

related indices. 

Table 4: Test output of APSIM model for sorghum and cowpea showing observed and 

simulated values for water use (mm) and yield (kg ha-1) and water use efficiency, and 

statistical output for its evaluation. 

Water regime Parameter Observed Simulated RMSE 
% 

Difference1 

Rainfed 

Crop water use (mm) 306.28 330.39 24.11 7.29 

Sorghum yield (kg ha-

1) 
953.63 1096.01 145.38 14.93 

WUEb (kg mm-1 ha-1) 20.60 17.54 3.06 -14.86 

Deficit 

irrigation 

Crop water use (mm) 353.43 361.54 8.11 2.29 

Sorghum yield (kg ha-

1) 
1079.23 1116.61 37.38 3.46 

WUEb (kg mm-1 ha-1) 18.41 16.43 1.97 -10.75 

Full irrigation 

Crop water use (mm) 391.73 383.55 8.18 -2.08 

Sorghum yield (kg ha-

1) 
1082.52 1118.51 35.99 3.34 

WUEb (kg mm-1 ha-1) 15.09 16.75 1.66 10.99 

1% Difference is relative to observed value. 
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Conclusions 

The APSIM model was able to simulate sorghum–cowpea intercrop system under different 

water regimes. The model gave reliable simulations of phenology, biomass, yield and crop 

water use for both sorghum and cowpea under the different water regimes. Local adaptation 

of phenology and RUE coefficients proved to be useful in improving model simulations 

under the different water regimes. Simulations of biomass, yield and WU for sorghum–

cowpea under rainfed conditions were overestimated and this resulted in a reduction of 

calculated WUEb. APSIM was limited in its ability to simulate under rainfed conditions. The 

model should use a dual approach of both RUE and transpiration efficiency to calculate 

biomass so as to improve simulations under water scarce areas. The model gave poor 

simulations of canopy development parameters leaf number and LAI. Improvements in model 

performance can be enhanced if it is able to capture extreme weather events. This will 

increase its applicability as a tool in risk management. APSIM can be used to come up with 

viable irrigation management strategies for sorghum–cowpea intercrop systems.  
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Abstract 

Climate change and variability has a multiplier effect on water scarcity in relation to crop 

production in southern Africa. With the majority of crop production being rainfed, there is 

need to explore strategies to improve rainfed crop productivity. Intercropping can be used to 

improve crop productivity through increased water use efficiency (WUE). However, limited 

information exists to support its adoption and subsequent management. In such instances, 

crop models can be used as decision support tools to complement data from field trials. The 

Agricultural Production Systems Simulator (APSIM) model was used to develop best 

management practices for improved yield and WUE for a sorghum–cowpea intercrop system 

for 10 years across five agro-ecologies in South Africa, namely; Richards Bay, Umbumbulu, 

Deepdale, Wartburg and Ukulinga. Planting dates, fertilizer rates, plant population and 

irrigation were considered. For Richards Bay and Deepdale ideal planting dates for high and 

stable yields were generated by the model. Adding fertilizer improved both yield and WUE 

of the intercrop by 16% in high rainfall environments. Across all environments, sorghum and 

cowpea plant populations of 39 000 and 13 000 plants ha-1, respectively, increased yield 

(26.11%) and WUE (15.54%) of the intercrop system. Irrigation based on weekly rainfall 

events improved yield of sorghum (16.22%) and cowpea (5.36%) but reduced WUE of the 

system by 9.63%. Deficit irrigation was more effective resulting in yield (12.84%) and WUE 

(11.09%) improvements. It is concluded that APSIM can be used to develop best 

management practices to assist in developing guidelines for improving productivity of 

sorghum-cowpea intercrop systems under water scarce conditions. 

 

Keywords: best management practices, yield, water use efficiency 
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Introduction  

The principles of food security dictate that, in order to ensure an active and healthy life, a 

person must always have total access to sufficient, safe and nutritious food of their 

preferences to meet dietary needs (Thrupp, 2013). Rural sub-Saharan Africa (SSA) faces the 

challenge of achieving food security under endemic poverty, high dependence on scarce 

natural resources, weak institutions, poor infrastructure, and more importantly climate change 

and variability (Misra, 2014). Within the region, agriculture is recognised as one of many 

important activities for achieving food security (Cooper et al., 2008). It is small-scale and 

subsistence-focused; rainfed farming systems are predominant while soils are degraded 

(Flora, 2010). Despite moderate progress in yield improvements, crop productivity remains 

low and cannot provide food security for current and future demands (Dile et al., 2013; 

Vanlauwe et al., 2014).  

Besides socio-economic and bio-physical conditions, it has been observed that climate 

change and variability has resulted in a shift and change in duration of growing seasons, 

increased incidences of seasonal dry spells and drought (Rosegrant et al., 2014). This has 

directly reduced agricultural water resources with an increase in water scarce areas with 

formerly water scarce regions becoming water stressed (Schilling et al., 2012). Given this 

scenario, farmers may not be equipped with necessary risk management skills to adapt to the 

effects of climate change and variability (Venkateswarlu and Shanker, 2009). This is 

highlighted by continued water stress related production losses. Researchers have, therefore, 

been tasked with coming up with relevant, innovative and practical adaptation strategies that 

are sustainable and offer resilience under water scarcity and stress. 

In view of the above mentioned constraints, there is renewed focus on restoration of 

sustainable and productive farming systems that are modelled on natural ecosystems (Mbow 

et al., 2014), and that can produce more from the available water – ‘more crop per drop’ 

(Molden et al., 2010). According to Fan et al. (2013), traditional cropping systems like 

intercropping are ideal. As it stands, research has shown that intercropping has the potential 

to improve overall productivity through efficient and complimentary use of water ( Tsubo et 

al., 2003; Kour et al., 2013). The practice of intercropping is not new, but its advantages have 

not been fully exploited by rural farmers as a means to improve productivity, especially under 
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water–limited conditions (Ouda et al., 2007). According to Li et al. (2011) and Chimonyo et 

al. (2015), this could be attributed to poor management options.  

Due to limited financial resources, poor infrastructure and technical knowledge, rural 

farmers are generally restricted in their capacity to articulate relevant management decisions 

resulting in them succumbing to stress, particularly water stress (Vermeulen et al., 2012). 

When faced with low resource availability, Morris and Garrity (1993) pointed out that the 

potential of intercropping, or any other farming system, can be realised under proper 

agronomic management. Moreover, extension services tend to have old and standardised 

management plans adapted to average climatic conditions (Ripoche et al., 2011) and across 

variegated agro-ecologies. Thus, recommendations by extension services can be somewhat 

misleading, given ongoing climate change and variability, further exasperating crop loss and 

failure. To improve productivity and further adoption of intercropping, there is need to 

recalibrate current agronomic practices and also to particularise a decision support system 

(DSS) tool that is geared towards mitigating the risk to water scarcity and stress. 

Decision making is core in farm management and has been the focus of numerous studies 

dealing with risk aversion and adaptation in resource limited rainfed farming systems 

(Twomlow et al., 2008; Li et al., 2009; Cavatassi et al., 2011; Jat and Satyanarayana, 2013; 

Lehmann et al., 2013; Mbow et al., 2014). Like any business, management of farming 

enterprises must be guided by strategic, tactical and operational (STOP) decisions to 

minimise exposure to risk (Ripoche et al., 2011). Strategic management decisions often align 

themselves to holistic farm goals and these tend to be long term; for instance adoption of 

intercropping (Stone and Meinke, 2005). Tactical management options focus on 

implementation and determine course of action for strategic decisions (Singels et al., 2010). 

Emphasis is placed on farm specific information and these tend to be agronomic in nature; for 

instance, planting dates and fertilizer rates based on soil fertility results. Operational 

management options are decisions made on a day to day basis and are often in response to or 

impeding risk (Singels et al., 2010). For example, irrigation and weeding are management 

decisions often taken on a day to day basis. According to Graeff et al. (2012), information to 

guide best management practices is widely available. However, the challenge for a farmer is 

to determine how to use information with respect to the type of management decisions to be 
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made. Therefore, farmers need an efficient, relevant and accurate way to evaluate data for 

specific management decisions. To improve farmers’ capacity to make best management 

decisions, robust management tools such as crop simulation models (CSM) are now being 

employed to generate quick and relevant information to aid in decision making (Holzworth et 

al., 2014).  

Crop simulation models are computerised mathematical representations of crop growth, 

development and production, all as a function of weather and soil conditions, and 

management practises that can reliably determine “what if” and “when” scenarios across 

diverse cropping system. Crop simulation models like APSIM can assist in determining best 

management options at an operational and tactical level in response to low water availability. 

The objective of the study was, therefore, to apply a locally adapted model of APSIM for a 

sorghum–cowpea intercrop to assess different management scenarios for several rainfed agro-

ecologies in KwaZulu–Natal climatic conditions for best management practices. Secondary to 

this, to use the model to identify best management practises for improve water use efficiency 

for sorghum–cowpea intercrop systems that are better adapted to subsistence smallholder 

sorghum farming in the region. The latter is achieved through scenario analyses based on 

long term (10 years) simulations. Planting dates, fertilizer rates, plant population and 

irrigation were factors considered for the scenario analyses. 

 

Material and methods 

Description of Selected Environment 

KwaZulu–Natal has a diverse agro-ecology with 590 bio–resource units (BRUs) (Camp, 

1999). It has a warm, sub-tropical, maritime climate, with temperatures moderated by the 

expanse of the Indian Ocean. Summers are hot and humid, averaging 28°C and experience 

the majority of the annual rainfall, while winters, with average temperatures of 23°C, are 

warm and dry with occasional frost in the interior. Generally, the coast is subtropical with 

inland regions becoming progressively colder. To the south (along the coat) the annual 

rainfall average is 1009 mm, with daytime maxima of 28°C from January to March. 

Temperature drops towards the inland regions, with similar summer maxima, but much 
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cooler in the winter (15°C). The northern regions are very warm 30 – 32°C in the summer, 

but may drop below freezing point on winter evenings.  

Five sites located in different BRUs in KwaZulu–Natal (Deepdale, Richards Bay, 

Umbumbulu, Ukulinga and Wartburg) (Table 1) were used for model scenario analyses. 

Climate data for each site was sourced from the SASRI weather portal 

(http://sasex.sasa.org.za/irricane/tables/Ash_tables_AR.pl) using the nearest station to the 

location with the exception of Ukulinga where there is a weather station on site. Richards Bay 

was considered as a low potential environment even though there is considerably high annual 

rainfall (Table 1). The location is characterised by sandy soils which are generally considered 

as having low agricultural potential. Sandy soils, because of the particle size and large pore 

spaces between the particles do not hold nutrients and water. Ukulinga and Deepdale were 

considered as moderate potential environments based on the annual rainfall received (Table 

1). Umbumbulu and Wartburg were considered as high potential environments since they 

received high annual rainfall and have clayey soils. In contrast to sandy soils, clayey soil 

retain more water and nutrients (Table 1).  

A three-step procedure was used for scenario analyses of sorghum –cowpea intercrop. These 

were:- 

i. Model parameterisation and validation for the growth of sorghum-cowpea intercrop 

under local conditions;  

ii. Sensitivity analyses to determine the variables requiring most careful definition and; 

iii. Scenario analyses which involved the assessment of model output when using climate 

and soil data run from selected environments under variable management options. 

 

Local adaptation and model testing 

Local adaptation and testing of the APSIM sorghum–cowpea model were done using data 

obtained from two year field experiments of a sorghum–cowpea intercrop established at the 

University of KwaZulu–Natal’s Ukulinga Research Farm. For details of field experimental 

output and model performance, refer to Chimonyo et al. (in review). 
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Sensitivity Analyses 

Prior to running the scenario analyses, sensitivity analyses was conducted to determine 

parameters which had a pronounced effect on model output. The sensitivity analysis involved 

changing one parameter at a time to values of ±10% for default input parameters and running 

the model. The percentage change in simulated yields, over the range of values of the 

parameter, was compared with the variability of observed yield using relative sensitivity. 

Relative sensitivity is the relative change of the variable in relation to a change in the 

parameter. The index is dimensionless and gives a good point for comparing multi-factors. 

Relative sensitivity =  
∆Yi(Xj)

∆Xi
 .

1

Yi
       Equation 13 

where the relative sensitivity shows the relative change, ΔYi/ Yi of variable Yi in relation to 

change of ΔXi of parameter Xj. 

Sensitivity analysis is an analytical tool used to quantify magnitude of influence for 

parameters on predicted output (Wang et al., 2013). Results of sensitivity analysis showed 

that the most sensitive parameters were management level parameters and these were 

planting dates, amount of fertilizer applied, soil pH and initial soil water content (results not 

shown). Developers of CSMs have recognised the important effect of crop management in 

managing environmental risks. It could be that these parameters have been made sensitive so 

as to provide a broad response to large and variable agro-ecological zones. Sensitivity 

analyses confirmed the need for continual research into best management practises for 

improved productivity. It also formed the basis of scenario analyses were planting dates, 

fertilizer application rates, plant population combinations and irrigation were then considered. 

 

Simulation  

Simulations were performed using APSIM version 7.7. Details of model simulations are 

described below. 
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Climate  

For each agro-ecology, 10 year (2004 – 2014) weather data that contained daily estimates of 

rainfall, minimum and maximum temperatures, solar radiation and reference 

evapotranspiration was sourced from SASRI weather site 

(http://sasex.sasa.org.za/irricane/tables/Ash_tables_AR.pl) using the nearest station to the 

location except for Ukulinga where there was a weather station on site (Table 1). Average 

ambient temperature (TAV) and the annual amplitude in monthly temperature (AMP) were 

calculated using long-term daily minimum and maximum temperatures. The calculated 

values of TAV and AMP were inserted in the met files by the software program named 

“tav_amp”.  

Soil 

The soil modules in APSIM are based on the international and African classification format. 

The APSIM soil module required soil properties such as bulk density (BD), total porosity, 

saturation (SAT), drained upper limit (DUL), crop lower limit (LL), plant available water 

capacity (PAWC) and pH to simulate yields and soil water related processes. For each agro-

ecology, available soil information was matched to pre-existing soils in the APSIM soil 

module.  

Soils at Ukulinga were described as shallow clayey to clayey loam with medium fertility 

(Mabhaudhi et al., 2013). The soil file selected in APSIM to best represent this description 

was Clay_Shallow_MF_101mm (Table 2). Soils from Richards Bay were described as 

relatively deep and sandy with low fertility (Motsa et al., 2015). The soil file selected in 

APSIM to best represent soils in Richards Bay was Sandy_Medium_LF_111mm (Table 3). 

Soils in Umbumbulu and Deepdale were similar and were described as relatively deep and 

clayey with medium fertility (Motsa, 2015; Table 4). The soil file selected to best represent 

these environments was Clay_Medium_MF_171mm. Soils in Wartburg were described as 

relatively deep and clay loam - loamy with medium (Chibarabada, 2015; Table 5). The soil 

file selected in APSIM to best represent was Loam_Medium_MF_125mm. 
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Table 1: Climate and soil description of sites to be included in the simulation. 

 *Deepdale *Richards Bay Umbumbulu **Ukulinga **Wartburg 

Geographical location 28o01’S; 28o99’E 28°19’S; 32°06E 29o98’S;  30o70’E 29o37’S; 30o16’E 29.42° S, 30.57° E 

Altitude (m a.s.l.)z 998 30 632 775 880 

Bio-resource group/ agro-

ecological zone 

Coast hinterland 

thornveld 

Moist coast forest, 

thorn and palmveld 

Dry coast hinterland 

and ngongoni veld 

Coast hinterland 

thornveld 

Moist midlands 

mistbelt 

Annual rainfall 750 – 850 mm 820 – 1 423 mm 800 – 1 160 mm 644 – 838 mm 900 – 1 200  mm 

Average temperature 18.4°C 22°C 17.9°C 18.4°C 20°C 

Frost occurrence Moderate None Light and occasional 
Moderate 

occasional 

Light and 

occasional 

*Soil texture class Clay Sand Clay Clay Clay Loam 

Clay content 53% ˂ 5% > 60% < 29% < 33% 

*Soil type Jonkersberg (Jb) Inhoek (Ik) Hutton (Hu) Chromic luvisols Chromic luvisols 

Field capacity (%) 45.22 10.91 45.13 46.32 39.36 

Permanent wilting point (%) 34.71 6.22 34.53 23.03 23.36 

Saturation (%) 50.36 47.11 51.20 46.73 50.36 

Adapted from *Motsa et al. (2015) and ** Modi et al. (2014; K5/2274//4 Del No.4). 
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Table 2: Properties of the African (generic) soil series available in APSIM’s soil module with 

best describes soil water properties in Ukulinga (the effective root zone for crops was 

considered to be 0-60 cm). 

Depth Bulk density Air Dry1 LL152 DUL3 SAT4 

(cm) (g cm-3) ––––––––––––––––(mm mm-1)–––––––––––––––– 

0–10 1.200 0.210 0.210 0.390 0.440 

10–30 1.200 0.230 0.230 0.410 0.467 

30–60 1.200 0.260 0.260 0.415 0.467 
1Air Dry – Hygroscopic soil water content.  
2Crop lower limit (LL15) – Permanent wilting point (PWP) lower limit of the available soil water range and is a 
point when plants have removed all of the available water from a given soil, they wilt and will not recover. 
3Drained upper limit (DUL) - Field capacity (FC) amount of water remaining in a soil after the soil has been 
saturated and allowed to drain for approximately 24 hours. 
4Saturation (SAT) - Saturation is when all pores in a soil are filled with water. 

 

Table 3: Properties of the African (generic) soil series available in APSIM’s soil module with 

best describes soil water properties in Richards Bay (the effective root zone for crops was 

considered to be 0–120 cm). 

Depth Bulk density Air Dry1 LL152 DUL3 SAT4 

(cm) (g cm-3) ––––––––––––––––(mm mm-1)–––––––––––––––– 

0–10 1.600 0.060 0.060 0.165 0.360 

10–30 1.600 0.070 0.070 0.170 0.365 

30–60 1.600 0.090 0.090 0.172 0.370 

60–90 1.600 0.110 0.110 0.175 0.370 

90–120 1.600 0.130 0.130 0.180 0.370 
1Air Dry – Hygroscopic soil water content.  
2Crop lower limit (LL15) – Permanent wilting point (PWP) lower limit of the available soil water range and is a 
point when plants have removed all of the available water from a given soil, they wilt and will not recover. 
3Drained upper limit (DUL) - Field capacity (FC) amount of water remaining in a soil after the soil has been 
saturated and allowed to drain for approximately 24 hours. 
4Saturation (SAT) - Saturation is when all pores in a soil are filled with water. 
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Table 4: Properties of the African (generic) soil series available in APSIM’s soil module with 

best describes soil water properties in Umbumbulu and Deepdale (the effective root zone for 

crops was considered to be 0–120 cm).  

Depth Bulk density Air Dry LL15 DUL SAT 

(cm) (g cm-3) ––––––––––––––––(mm mm-1)–––––––––––––––– 

0–10 1.200 0.210 0.210 0.390 0.440 

10–30 1.200 0.230 0.230 0.410 0.467 

30–60 1.200 0.260 0.260 0.415 0.467 

60–90 1.200 0.290 0.290 0.420 0.470 

90–120 1.200 0.320 0.320 0.425 0.475 
1Air Dry – Hygroscopic soil water content.  
2Crop lower limit (LL15) – Permanent wilting point (PWP) lower limit of the available soil water range and is a 
point when plants have removed all of the available water from a given soil, they wilt and will not recover. 
3Drained upper limit (DUL) - Field capacity (FC) amount of water remaining in a soil after the soil has been 
saturated and allowed to drain for approximately 24 hours. 
4Saturation (SAT) - Saturation is when all pores in a soil are filled with water. 

 

Table 5: Properties of the African (generic) soil series available in APSIM’s soil module with 

best describes soil water properties in Wartburg (the effective root zone for crops was 

considered to be 0-120 cm).  

Depth Bulk density Air Dry LL15 DUL SAT 

(cm) (g cm-3) ––––––––––––––––(mm mm-1)–––––––––––––––– 

0–10 1.400 0.170 0.170 0.301 0.400 

10–30 1.400 0.180 0.180 0.310 0.410 

30–60 1.400 0.190 0.190 0.310 0.420 

60–90 1.400 0.215 0.215 0.315 0.430 

90–120 1.400 0.250 0.250 0.317 0.440 
1Air Dry – Hygroscopic soil water content.  
2Crop lower limit (LL15) – Permanent wilting point (PWP) lower limit of the available soil water range and is a 
point when plants have removed all of the available water from a given soil, they wilt and will not recover. 
3Drained upper limit (DUL) - Field capacity (FC) amount of water remaining in a soil after the soil has been 
saturated and allowed to drain for approximately 24 hours. 
4Saturation (SAT) - Saturation is when all pores in a soil are filled with water. 
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Scenario analyses 

Four management options were used to develop scenarios used as a guide to develop 

recommendations for best management practises. The scenarios were:- 

Scenario 1: Planting dates 

Three approaches were used to establish planting dates and these were, trigger season climate 

method, modelling and fixed date approach. The trigger season method is used to determine 

the onset and length of a growing season from long term weather data and thus can be used to 

determine planting dates (White et al., 2001). For this method, the onset of the season is 

assumed to be when the ratio of sum total of monthly rainfall and reference 

evapotranspiration (ETo) becomes greater than 0.5.  

Rainfall

Reference Evapotranspiration
 ≥ 0.5      Equation 14 

By plotting long term monthly averages of rainfall, ETo and 0.5 ETo, the onset of a growing 

season can be determined by observing were rainfall exceeds 0.5 ETo. 

Rainfall ≥ 0.5 Reference Evapotranspiration    Equation 15 

An advantage to this approach is that it is site specific if weather data is available. On the 

other hand, a major limitation towards practical application of this method would be that 

farmers and extension service providers may not always have access to long term weather 

data, specifically ETo, from weather stations. For this exercise, planting dates, as defined by 

the onset of the growing season, were established based on 10 year monthly averages of 

rainfall, ETo and 0.5 ETo. For Ukulinga, Deepdale and Richards’s Bay, trigger season 

occurred on the 1st of October while it occurred on the 1st and 15th of September for 

Umbumbulu and Wartburg, respectively (Fig. 1). 
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Figure 1: Determination of start and end of growing season for Deepdale, Richards Bay, 

Umbumbulu, Ukulinga and Wartburg using monthly average data over 10 years for rainfall, 

reference evapotranspiration (ETo) and 0.5 ETo. The onset of a growing season (a) is when 

rainfall exceeds 0.5 ETo. The period between a and b, is the length of the growing season. 

The end of the growing season (b) is marked by the decline of the rainfall to values below 0.5 

ETo. 

The current planting dates in use by most subsistence farmers are those recommended by 

agricultural agencies and extension service providers (van Averbeke, 2002). These tend to be 

broad and do not accommodate large variation in agro-ecologies and their constantly shifting 

boundaries within SSA (Muzari et al., 2012). For instance, sorghum production guidelines 

published in 2010 by the Department of Agriculture, Forestry and Fisheries: Agricultural 

Research Commission suggest that sorghum should be planted between the 1st of October and 

mid-December throughout South Africa. As it is, South Africa exhibits a wide variation of 

agro-ecologies, both at micro and macro level. Due to climate change and variability this 

variation has increased and there is an observed increase in land area occupied by semi-arid 
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and arid agro–ecologies since 2000 (Cairns et al., 2013). There was need to redefine planting 

dates, in terms of fixed dates as this approach is much easier for farmers to work with. 

However, a major weakness of this approach is the need to redefine the dates because of 

continuously shifting agro-ecological zone boundaries. Five planting dates covering a period 

from 15 September to 15 January were then used for the simulation. Corresponding planting 

dates were 15th of September, October, November, December and January, respectively; 

these dates were thought to be representative of early to late planting. 

As a management tool, most crop simulation models are able to generate planting dates 

from climate and soil data. This is done based on a predefined criteria that takes into account 

amount of rainfall and days taken to achieve that quantity and soil water content within the 

seedling zone. The main advantage of using CSMs is that they are fast and reliable for a 

trained personal. They are also site-specific thus improving the accuracy of 

recommendations. However, one of the drawbacks to CSMs is that without the necessary 

technical skills and parameter inputs information generated may be misleading. For each site, 

APSIM was used to generate planting dates using a user defined criteria of ‘sum of rainfall in 

a 10 day period where at least a cumulative amount of 20 mm is received’ (Raes et al., 2004). 

In addition, a fixed soil water content of 80% of field capacity of the top 15 cm was 

considered. The criteria set reflected planting conditions often used by farmers in semi-arid 

regions where planting is often done after the onset of the rainy season. Across the years, 

frequencies of planting dates falling in similar months were observed and mean planting date 

for that month was calculated. For evaluating yield and WUE, planting dates with the highest 

frequency of appearance within the 10 year weather data set was used for scenario analysis 

(Table 6). 
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Table 6: Model generated planting dates for the agro-ecological zones (Wartburg, Deepdale, 

Richard Bay, Umbumbulu, and Ukulinga) used in this study. 

Site 

Mean planting date 

(Julian day) 

Frequency (out of 

10 years) 

Standard deviation 

(+/-)1 

Wartburg 21 January 10 8.12 

Umbumbulu 16 January 7 7.00 

Ukulinga 15 January 6 7.18 

Richards Bay 18 November 10 5.7 

Deepdale 21 November 6 5.1 
1Standard deviation (days) of mean planting date generated by model. 

 

Scenario 2: Fertilizer application rates and time of application 

Sorghum requires about 85 kg N ha-1 to achieve a tonnage of 2 – 3.5 tonnes per hectare 

(Wylie, 2004). Grain sorghum yields in SSA average ≈ 900 kg ha-1 as compared to the world 

average of 1 500 kg ha-1 (Olembo et al., 2010). Increasing the yield to meet and/or surpass 

world averages would be desirable to improve access and availability of food. However, a 

major limiting factor is fertilizer use and accurate recommendations (Bationo, 2007). Based 

on recommendations by Wylie (2004), fertilizer levels representative of 0, 50 and 100% of 

the recommended N for optimum sorghum production were used for model scenario 

analyses. The range provided a scenario whereby farmers do not have access to fertilizers 

(0%), have some fertilizer (50%) or have 100% of the recommended N requirements. 

Scenario 3: Plant populations 

To determine optimum plant population for the component crops for each site, simulations 

were done using plant populations that were 50% less and 50% more of the recommended 

plant population. Under semi-arid conditions, a plant population of 26 666 plants ha-1 is 

recommended for sorghum (du Plessis, 2008). For cowpea, with a crawling growth habit, 

optimum plant populations of 13 000 plants ha-1 were used. These have been observed to give 

the best productivity in terms of land equivalent ratio of intercrop systems (Oseni, 2010). The 

populations used in the analyses assumed that populations less than the recommended will 

reduce resource competition and improve productivity for either component crop.  It was also 
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assumed that higher populations would improve resource utilisation of the system. 

Simulations were carried out by maintaining the recommended plant population of one 

component and changing the other resulting in a number of simulations: 

 sorghum with a fixed population of 26 000 plants ha-1 intercropped with cowpea 

with populations of 6 500 (A1), and 19 500 (A2) plants ha-1; 

 sorghum with varying populations of 13 000 (B1), and 39 000 (B2) plants ha-1 

intercropped with cowpea with a fixed population of 13 000 plants ha-1; and 

 the baseline population (C1) used to compare changes in yield and WUE was 

sorghum and cowpea plant population of 26 000 and 13 000 respectively. 

Scenario 4: Irrigation  

To reduce the yield gap that often occurs in rainfed farming systems due to water stress, 

supplementary irrigation was included as a management option. Two approaches were used, 

namely, deficit irrigation and rainfall based approaches. Deficit irrigation (DI) is a method 

whereby irrigation is applied below full crop water requirement in such a way that there is 

little yield reduction and water is saved (Upchurch et al., 2005). Types of DI include (i) 

withholding irrigation until a predefined allowable soil water depletion of plant available 

water (PAW) before refilling the soil back to a predefined PAW, (ii) PAW is maintained at a 

predetermined level below full crop water requirement, and (iii) irrigation is only applied at 

full crop water requirements at critical growth stages (Fereres and Soriano, 2006). For this 

scenario, the first method for DI was used and allowable soil water depletion of 40% of plant 

available water (PAW) was defined before irrigation refilled it back to 80% of PAW. This 

ensured that soil water content never reached levels that could cause water or aeration stress 

to the plant.  

In semi-arid conditions, rainfall distribution is an important factor affecting crop productivity. 

Rainfall is often unevenly distributed resulting in intermittent water stress and hence causing 

considerable yield losses (Nouri-Ganbalani et al., 2009). It is assumed that the introduction of 

irrigation in areas under physical water scarcity can significantly increase agricultural 

productivity. To manage this, supplementary irrigation during periods of low or no rainfall 

can reduce crop water stress and improve productivity. Irrigation scheduling was based on 
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weekly rainfall where the conditions were that if rainfall received over 7 days was less than 

recorded ETo for the same period, the difference would be applied as supplementary 

irrigation. This ensured that crop water requirement was met and that the crop did not suffer 

from water stress. 

Data analyses and evaluation 

Within the model, WU was determined as the sum of crop water uptake (Ep) from the whole 

profile (sorghum Ep + cowpea Ep) and soil evaporation (Es). Each scenario was run 

independent from each other to minimise interactive effects of the scenarios.  

Since APSIM does not calculate WUE directly, simulated outputs (WU, yield and 

biomass) were used to determine WUE as follows: 

𝑊𝑈𝐸𝑦 =  
𝑌

𝑊𝑈
(𝑘𝑔 𝑚𝑚−1 ℎ𝑎−1)       Equation 

3 

where: WUE = water use efficiency (kg mm-1 ha-1), Y = total grain yield (sorghum + cowpea) 

(kg ha-1), (kg ha-1) and WU = the crop water use (WU) (mm). 

Descriptive statistics such as means, standard deviations, and box and whisker plots were 

used to analyse outputs. Box and whisker plots can show stability and general distribution of 

the sets of data.  

Results and discussion 

Rainfall 

Rainfall varied across all sites and across months within each year (Table 7). In general, high 

mean rainfall was observed at Umbumbulu (900.1 mm) while low rainfall was observed in 

Deepdale with 647.63 mm per year (Table 7). On average, high (822.06 mm) but variable 

rainfall was observed at Ukulinga (± SD19.60 – 98.71) while least variation was observed at 

Deepdale (± SD 11.18 – 37.82). The observed variations for Ukulinga rainfall would suggest 

that the risk of water related crop failures was high (Table 7). On the other hand, rainfall 
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received at Deepdale was stable but low, suggesting that if an ideal cropping system was 

adopted, the risk to crop failure would be low and stable yields could be observed. 

Table 7: Comparison of mean rainfall and its variability across different environments 

(Richards Bay, Umbumbulu, Deepdale, Wartburg and Ukulinga). 

Month Richards Bay Umbumbulu Deepdale Wartburg Ukulinga 

Jan 102.99 ±93.48* 132.50 ±54.22 98.35 ±35.73 105.00 ±35.89 133.46 ±98.71 

Feb 82.65 ±55.51 76.32 ±46.40 70.41 ±31.86 77.43 ±57.91 87.00 ±55.19 

Mar 83.77 ±46.04 91.67 ±44.11 72.08 ±28.28 83.86 ±34.98 111.36 ±46.06 

Apr 73.79 ±48.28
 62.35 ±36.23 50.52 ±31.25 73.85 ±36.23 56.26 ±48.28 

May 24.87 ±18.70 21.07 ±19.28 17.03 ±19.80 24.94 ±18.82 23.16 ±19.60 

Jun 50.95 ±70.01 22.49 ±22.41 13.70 ±11.18 46.76 ±67.89 7.43 
±61.76 

Jul 26.87 ±33.27 29.83 ±61.76 14.49 ±24.90 24.62 ±33.77 13.46 ±35.10 

Aug 36.15 ±59.34 35.38 ±35.10 24.77 ±25.03 33.17 ±59.34 10.00 ±50.54 

Sep 57.64 ±43.64 66.41 ±50.54 37.65 ±37.37 52.87 ±43.64 35.63 ±38.48 

Oct 91.56 ±41.37 108.67 ±38.48 64.39 ±22.07 83.96 ±41.37 25.76 ±45.91 

Nov 98.00 ±43.50 133.59 ±43.55 84.70 ±29.32 89.87 ±42.87 95.27 ±43.55 

Dec 81.57 ±33.70 119.85 ±47.54 99.54 ±37.82 74.83 ±7.98 103.27 ±67.87 

Mean monthly  67.56 75.01 53.96 64.26 68.55 

Mean yearly total  810.81 900.13 647.63 771.16 822.06 

*Mean yield for 10 year simulation and SD – Standard deviations within the 10 year simulation showing rainfall 
variability. 

 

Scenario 1: Planting Dates 

Different scenarios for planting date gave different mean yields and mean yield distribution 

for sorghum and cowpea across the five environments over the simulated years. Based on the 

observed results, simulated average yields for sorghum at Richards Bay, Umbumbulu, 

Deepdale, Wartburg and Ukulinga were 952.7 (± SD 185.42), 987.5 (± SD 149.37), 820.5 (± 

SD 122.99), 879.6 (± SD 231.97) and 935.8 kg ha-1 (± SD 122.19), respectively. Yield 

averages for cowpea were 281.0 (± SD 86.39), 355.9 (± SD 153.24), 139.6 (± SD 55.69), 

260.1 (± SD 153.36) and 321.7 kg ha-1 (± SD 110.58), respectively. The observed yields for 
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sorghum and cowpea were attributed to rainfall observed for each environment. Low yields 

observed for Deepdale for both sorghum and cowpeas could be due to the overall low rainfall 

at this site (see Table 7) while high yields observed for Umbumbulu, Richards Bay and 

Ukulinga were attributed to high rainfall received at the sites. Observed yields of sorghum 

were consistent with regional yield averages of 900 kg ha-1 (Olembo et al., 2010). On the 

other hand, yields of cowpea were lower than those by Ajeigbe et al. (2010) and Oseni (2010) 

who obtained yields between 400 and 900 kg ha-1 under sorghum–cowpea intercropping. It 

should be noted that the differences in cowpea yield could be attributed to plant populations 

that were higher relative to current simulation studies. This would suggest that yield of 

cowpea within the intercrop system are influenced by population density.  

The ideal planting date is a scenario where overall yields are high and there is less 

variation over time (Kucharik, 2008). The ideal planting date for sorghum and cowpea at 

Richards Bay was that which was generated by the model (18-Novermber) and this yielded 

an average of 1050.65 kg ha-1 (±SD 45.57) for sorghum and 355.57 kg ha-1 (± SD 50.57) for 

cowpea. Similarly, the model generated planting date for Deepdale (21 November) simulated 

high yields for both sorghum [959.79 kg ha-1 (± SD 88.81)] and cowpea [160.57 kg ha-1 (+/- 

SD 38.57)] (Fig. 2). For Umbumbulu, Wartburg and Ukulinga, ideal planting dates that gave 

high and stable yields for sorghum [970.83 kg ha-1 (± SD 106.32), 1037.24 kg ha-1 (± SD 

68.78), 995.87 kg ha-1 (± SD 88.81), respectively] were observed by using a fixed planting 

date (15-October, 15-October and 15-Novermber, respectively). The fixed planting dates did 

not always give high yields for cowpea, but results show yield stability as observed by low 

standard deviation relative to other planting dates [426.22 kg ha-1 (± SD 134.94), 332.78 kg 

ha-1 (±SD 115.08), 347.43 kg ha-1 (± SD 97.76), respectively].  

 



 

 

 

Figure 2: Simulated yield response of sorghum-cowpea intercrop system across the five environments (Richards Bay, Umbumbulu, Deepdale, 

Wartburg and Ukulinga) for different planting date scenarios (A- site specific planting date defined by trigger season method; B – fixed planting 

dates starting from B1 – 15 Sept, B2 – 15 Oct, B3 – 15 Nov, B4 – 15 Dec, B5 – Jan; C – planting dates generated by APSIM. 



 

 

Sandy soils at Richards Bay are characterized as having low water holding capacity due to 

large pore spaces between soil particles such that water easily succumbs to drainage. Sandy 

soils require frequent wetting interval so as to maintain desired SWC for seed germination 

especially at the root zone. On the other hand, clayey soils like those at Deepdale require high 

amounts of rainfall to make water available for plants. Therefore, low rainfall during the early 

months of the official growing season may not be adequate for desired SWC at planting. For 

low potential environments like Richards bay and Deepdale, using model generated planting 

dates can avoid false starts to planting, that is planting dates that do not have all the 

requirements to for an ideal planting conditions. Fixed planting dates for Umbumbulu, 

Ukulinga and Wartburg were within the official planting window (15 Oct – 15 Dec) for 

sorghum within the KwaZulu Natal region (Directorate Plant Production/Agriculture 

Research Council, 2010). During this period rainfall amount was observed to be high and 

stable. SWC is sufficient for seed germination and thereafter to sustain growth of developing 

seeding.  

In low rainfall areas (Deepdale and Wartburg), early planting date (15 September) 

improved WUE (8.29% and 14.52%, respectively) for the intercrop system relative to 

planting dates that produced high yield. Under low rainfall conditions, it could be that 

temporal use of radiation by the cropping system was increased resulting in an increase in 

biomass production and yield. Conversely, in high rainfall areas (Ukulinga, Richards Bay and 

Umbumbulu), late planting dates (15 January) resulted in improvements of WUE (19.11, 

15.15 and 10.82%, respectively) relative to planting dates where high yields were observed. 

Improvements in WUE at high rainfall environments was associated with low water use 

while yield remained unchanged (Table 8). Based on the model output, less water was lost 

through unproductive means (soil evaporation, runoff and drainage) relative to planting dates 

where high yields were observed. Although late planting was observed to improve WUE 

based on rainfall received during the growth period, including the whole season’s rainfall in 

the calculation substantially reduced WUE. Where seed and fertiliser are more readily 

available, double cropping with early maturing cultivars of sorghum and cowpea can be 

employed to increase temporal use of water. In the context of sorghum-cowpea intercrop 

system, double cropping would be growing the cropping system twice in the same season in a 

relay manner. 
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Table 8: Comparison of simulated sorghum and cowpea yield, water losses, total water used 

and water use efficiency in response to different environments and planting dates.  

Environment 
Planting 

date 

Sorghum 

yield 

Cowpea 

yield 
1Rainfall 

2Water 

lost 

3Cowpea 

water 

uptake 

4Sorghum 

water 

uptake 

5WU 6WUE 
7WUE 

impr. 

–––kg ha-1–– ––––––––––––––––––––––mm––––––––––––– 
kg ha-1 

mm-1 
% 

R. Bay8 15 Jan 983.64 296.37 278.22 232.66 31.97 27.15 291.79 4.42 15.15 

Umbumbulu 16 Jan 951.15 251.71 314.14 286.26 33.98 21.68 343.11 3.56 10.82 

Deepdale 15 Sep 811.52 104.01 246.57 199.47 23.15 32.08 254.71 3.86 8.29 

Wartburg 15 Sep 928.23 249.92 259.91 229.15 38.44 25.03 322.62 3.91 14.52 

Ukulinga 15 Jan 904.73 196.02 309.17 276.57 29.84 23.58 330.00 3.51 19.11 

1Ten year average rainfall received during the growing period. 
2Water lost through unproductive ways such as runoff, drainage and soil evaporation. 
3Water taken up and transpired by cowpea. 
4Water taken up and transpired by sorghum. 
5Amount of water used through productive (crop water uptake) and unproductive means (runoff, drainage and 
soil evaporation). 
6Ratio of yield (kg ha-1) or crop output per water used to produce the yield. 
7WUE improvements relative to WUE obtained from ideal planting dates (21 Nov, 18 Nov, 15 Oct, 15 Oct and 
15 Nov for Richards bay, Umbumbulu, Deepdale, Wartburg and Ukulinga, respectively). 
8Richards Bay. 

 

Scenario 2: Fertilizer Application Rate 

Long term simulation showed that overall yields were improved with the use of fertilizer 

(Table 9). The observed results were attributed more to an increase in sorghum yields than 

cowpea. Overall, adding 85 kg N ha-1 had a more positive effect (12.7%) on sorghum yield 

than when 42.5 kg N ha-1 was applied (5.7%). Results of simulations show that sorghum 

yields at Wartburg, Umbumbulu and Ukulinga were more responsive to fertilizer application 

(Table 9) when compared to Richards Bay and Deepdale. This was attributed to high rainfall 

amounts received at Wartburg, Umbumbulu and Ukulinga. The observed low responses to 

fertilization at Richards bay and Deepdale were due to the fact that plants absorb less 

nitrogen when soil water content is low (Gaydon et al., 2011). Adding high levels of fertilizer 

at Deepdale without improving water availability would not necessarily improve yields but 

rather could reduce the system’s N use efficiency. On the other hand, the low improvements 

of sorghum yield in Richards Bay could also be attributed to leaching during rainfall events. 
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Richards Bay is characterised by sandy soils which are generally associated with leaching 

(Drechsel et al., 2015). To improve fertilizer response of sorghum in environments with 

sandy soils, split applications and timing of application to coincide with specific growth 

stages should be considered. Then again, the returns on fertiliser application in sites like 

Ukulinga and Deepdale can still be increased by increasing fertiliser rates up to an optimum 

rate where monetary value of yield obtained is high that the cost of fertiliser used to obtain it.  

Overall, adding fertilizer improved WUE for the different environments. Overall, adding 

85 kg N ha-1 had a more positive (5.08%) effect on WUE for the intercrop system than when 

42.5 kg N ha-1 was applied (3.43%). Overall improvements of WUE could have been 

attributed to increase in yield in response to fertilizer application. Improving soil fertility 

improves water use by increasing photosynthetic capacity of leaf through improved enzyme 

function and enhanced carbon dioxide assimilation (Deng et al., 2006). Observed results for 

the interaction between WUE and N fertilizer agree with results by Li et al. (2015) and Gan et 

al. (2010) who observed an improvement of WUE with additions of different rates of N 

fertilizer. Under rainfed cropping systems application of fertilizer should always be 

considered as it has been observed to improve WUE. 
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Table 9: Yield simulations of sorghum in sorghum-cowpea intercrop system, yield and water 

use efficiency improvements of the system for the different environments in response to 

fertilizer and. 

Fertilizer Environment Sorghum Cowpea Water 

use 

WUE1 ∆Yield2  ∆WUE3 

–––––kg ha-1––– mm kg ha-1 mm-1 ––––––%–––––– 

0 kg N ha-1 Umbumbulu 951.15 251.71 286.26 4.87 - - 

Ukulinga 904.73 196.02 363.11 3.12 - - 

Richards Bay 913.64 226.37 258.66 4.45 - - 

Deepdale 811.52 104.01 282.63 3.24 - - 

Wartburg 928.23 249.92 308.93 3.82 - - 

42.5 kg N ha-1 Umbumbulu 1002.36 296.98 301.79 4.64 5.12 5.14 

Ukulinga 915.43 197.51 363.11 3.06 4.56 0.62 

Richards Bay 952.53 232.62 259.71 4.63 5.13 4.92 

Deepdale 923.53 104.36 312.86 3.28 2.97 2.33 

Wartburg 1023.91 249.42 331.90 3.96 7.91 3.73 

85 kg N ha-1 Umbumbulu 1060.36 295.34 306.79 4.69 12.51 6.97 

Ukulinga 988.79 196.82 360.11 3.29 15.65 2.74 

Richards Bay 1006.72 295.48 253.71 4.71 7.63 3.52 

Deepdale 992.46 103.28 312.86 3.50 3.23 4.26 

Wartburg 1126.82 238.96 321.76 4.24 23.12 7.91 

1Water use efficiency 
2∆Yield –Change in yield 
3Water use efficiency changes relative to calculated WUE simulated from simulated crop water use [crop water 
uptake unproductive, water loss (soil evaporation, drainage and runoff)] under 0 kg N ha-1. 

 

Scenario 3: Plant populations 

Results of plant populations showed that different plant combinations resulted in different 

crop yield responses for both sorghum and cowpea. In general, changing the plant population 

of cowpea did not have a pronounced effect on sorghum [952.63 kg ha-1 (± SD 125.36)]. It 

could be that cowpea did not compete with sorghum for resources such as radiation and 
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water. It would suggest that plant population of cowpea can still be increased further. 

Contrary to this, cowpea yield was affected by the change in sorghum population (Fig. 3). 

Throughout all the environments, reducing sorghum plant population improved cowpea yield 

by between 5.6 – 35.1% (results not shown). Although, increasing sorghum population 

increased its overall yield, results showed that this had a negative effect (12.63 – 16.38 % 

reduction) on simulated cowpea yield (Table 10). It could be that sorghum was a stronger 

competitor for resources (radiation and water) than cowpea. Reducing or increasing plant 

population of one component crop has been shown to affect the availability of resources to 

another component crop in an intercrop system (Gharineh and Moosavi, 2010). Increasing 

sorghum population might have increased the extinction coefficient of the top layer canopy 

and reduced the amount of solar radiation received by cowpea, the understory. To improve 

yield of cowpea under high sorghum population, changing row orientations and arrangements 

can reduce competition for resources between sorghum and cowpea. Currently nutrition 

within the SSA context is poor because diets are mostly starch based and area under cereal 

cultivation is high relative to legumes. Increasing legume populations within intercrop 

systems will not affect cereal output but will improve availability of protein rich food 

alternatives for marginalized communities. 

Under B2 scenario (sorghum and cowpea plant populations of 39 000 and 13 000 plants 

ha-1, respectively), WUE was improved by an overall 10.39% relative to the baseline plant 

population. Improvements of WUE could be related to an increase in sorghum yield due to 

increased plant population. It was also observed that WU was somewhat unchanged for each 

environment relative to the baseline (results not shown). Increased yield output and 

unchanged WU thus resulted in an increase in WUE. Increasing plant population increases 

canopy size per unit area. This in turn increases water uptake and loss through transpiration 

relative to that which would have been lost through soil evaporation. Under water scarcity, 

sorghum populations can be increased above the baseline population used in this study; 

however, this would not improve nutritional water productivity of the system. Maintaining 

sorghum populations and increasing cowpea populations could improve nutritional water 

productivity of sorghum–cowpea intercrop systems. 
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Figure 3: Simulated mean yield response of sorghum-cowpea intercrop system across the 

five environments (Richards Bay, Umbumbulu, Deepdale, Wartburg and Ukulinga) in 

response to different plant populations (A1 – Sorghum 26 000 plants ha-1 and cowpea 6 500 

plants ha-1; A2 - Sorghum 26 000 plants ha-1 and cowpea 19 500 plants ha-1; B1 - Sorghum 13 

000 plants ha-1 and cowpea 13 000 plants ha-1; B2 - Sorghum 26 000 plants ha-1 and cowpea 

19 500 plants ha-1 and C1 - Sorghum 39 000 plants ha-1 and cowpea 13 000 plants ha-1). 
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Table 10: Comparison of simulated sorghum and cowpea yield, water losses, total water used 

and water use efficiency in response to different environments and plant population.  

Environ. 

Cowpea 

yield 

Sorghum 

yield 

Average 

rainfall 

1Water 

lost 

2Cowpea 

water 

uptake 

3Sorghum 

water 

uptake 5WU 6WUE 

7∆WUE4  

–––kg ha-1––– ––––––––––––––––mm–––––––––––––––– 

kg ha-1 

mm-1 

% 

R. Bay8 228.10 1271.04 302.00 260.40 39.96 39.96 340.32 4.79 7.84 

Umbumbulu 318.36 1390.88 456.97 391.02 45.89 33.55 470.47 3.75 3.10 

Deepdale 144.46 1203.22 284.14 225.88 34.52 49.49 309.89 4.45 13.29 

Wartburg 375.28 1323.18 569.95 475.31 64.83 39.01 579.15 3.41 4.68 

Ukulinga 1453.75 360.27 421.03 322.92 37.83 37.83 404.78 4.61 23.81 
1Ten year average rainfall received during the growing period. 
2Water lost through unproductive ways such as runoff, drainage and soil evaporation. 
3Water taken up and transpired by cowpea. 
4Water taken up and transpired by sorghum. 
5Amount of water used through productive (crop water uptake) and unproductive means (runoff, drainage and 
soil evaporation). 
6Ratio of yield (kg ha-1) or crop output per water used to produce the yield. 
7WUE changes observed WUE relative to WUE obtained from baseline plant populations of 26 000 and 13 000 
plants ha-1 for sorghum and cowpea, respectively. 
8Richards Bay. 

 

Scenario 4: Irrigation 

Irrigation improved productivity and WUE of the sorghum–cowpea intercrop system (Table 

11). Irrigating at weekly intervals based on rainfall analysis (WIR) simulated higher yields 

(5.63%) relative to irrigation scheduling based on allowable soil water depletion (ASWD) 

across all the environments (Table 11). This could be because irrigating based on weekly 

rainfall events increased availability of water and the crop was not exposed to intermittent 

water stress. Across all environments, it was observed that irrigation had a large and positive 

effect on yield for both cowpea and sorghum at Richards Bay while the least effects were 

observed at Wartburg. Soils for Wartburg are clay-loam and according to Kirkham (2005), 

clay-loam soils are good for irrigation since the clay component ensures good water holding 
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properties and also good aeration and drainage. In contrast, soils at Richards Bay are deep 

and sandy and these soils are inherently well–drained, well–aerated and have poor–water 

holding capacity; this often translates to significant drainage losses as opposed to the water 

being taken up by the plant. Contrary to this, results of simulation showed that water lost 

through unproductive means, namely drainage, was low. This could have been because 

rainfall was low but evenly distributed during the growth period. This meant that soil water 

was more available within the root zone and less was lost through unproductive means (Table 

11). Scheduling irrigation based on weekly rainfall events can result in wasteful use of water 

by over application of water relative to crop water requirements (Jumman, 2008). This was 

quite evident with high amounts of water lost were through unproductive means (Table 11).  

Overall irrigation reduced WUE of the intercrop system relative to under rainfed 

conditions. This could be attributed to high amounts of water lost through unproductive 

means under irrigation relative to rainfed conditions. This confirms early observations were, 

although yield improved, high amounts of water were lost through unproductive use. 

Conversely, results of WUE show that irrigating based on ASWD resulted in high (18.88%) 

WUE of the intercrop system relative to WIR. Similarly, the observed results could be 

attributed to large amount of applied water being lost through unproductive use. In this 

regards, ASWD can be suitable to improve yield of the intercrop system; however, to further 

increase WUE, more irrigation water management options are required. 
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Table 11: Comparison of simulated sorghum and cowpea yield, water losses, total water used 

and water use efficiency in response to different irrigation scenarios and environments.  

Irrigation 

scheduling Environment 

Cowpea 

yield 

Sorghum 

yield 

Average 

rainfall 

Water 

lost1 

Cowpea 

water 

uptake2 

Sorghum 

water 

uptake3 Irrigation 

Total 

water 

added4 WU5 WUE6 

–––kg ha-1––– –––––––––––––––––––––––mm–––––––––––––––––––––––––– 

kg ha-

1 mm-

1 

Deficit 

irrigation 

Umbumbulu 
296.34 926.52 298.90 276.16 48.24 25.70 33.60 332.50 383.70 3.18 

Ukulinga 
384.04 996.56 456.97 392.79 54.32 23.79 7.27 464.25 478.17 2.88 

R. Bay7 

429.71 1209.31 284.14 244.09 35.39 49.85 36.36 320.50 365.69 4.48 

Deepdale 
142.85 896.67 567.34 499.90 74.78 26.35 26.04 593.37 627.07 1.65 

Wartburg 
406.88 999.99 360.10 330.39 68.34 26.18 50.00 410.10 474.91 2.96 

Rainfall 

Umbumbulu 
315.75 972.81 298.90 332.97 51.35 26.31 109.09 407.99 519.72 2.48 

Ukulinga 
384.33 996.72 456.97 428.84 54.40 23.72 45.45 502.43 552.41 2.50 

R. Bay 
429.33 1346.69 284.14 316.30 33.94 53.61 95.45 379.59 499.31 3.55 

Deepdale 
143.65  935.56 567.34 673.60 74.72 27.09 200.97 768.31 976.38 1.10 

Wartburg 
395.92 1009.27 360.10 371.23 64.94 26.39 64.00 424.10 526.56 2.66 

1Ten year average rainfall received during the growing period. 
2 Water lost through unproductive ways such as runoff, drainage and soil evaporation. 
3 Water taken up and transpired by cowpea. 
4 Water taken up and transpired by sorghum. 
5 Amount of water used through productive (crop water uptake) and unproductive means (runoff, drainage and 
soil evaporation) 
6 Ratio of yield (kg ha-1) or crop output per water used to produce the yield. 
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Recommendations for best management practices 

Based on model scenario analyses, the following recommendations could be made for 

sorghum–cowpea intercrop system.  

a) To achieve high and sustainable yields, environments that receive low potential areas 

similar to Deepdale and Wartburg (low annual rainfall) and Richards Bay (deep sandy 

soils) should plant intercrop of sorghum-cowpea around the 15th of November. 

b) Environments that receive high rainfall and are characterised by shallow clay soils 

like Ukulinga need to plant sorghum–cowpea intercrop system around the 15th of 

December. On the other hand, in high rainfall areas with deep clay soils similar to 

Umbumbulu and Wartburg, planting should be done on the 15th of October  

c) To achieve high WUE, early planting (15 September) in low rainfall areas is most 

desirable while in high rainfall areas, late planting (15 January) is recommended. 

d) Farmers in environment similar to Deepdale are recommended to add 42.5 kg N ha-1 

since adding high quantities fertilizer will not always improve yield and WUE. 

e) Fertilizer levels of 85 kg N ha-1 is recommended for use in high rainfall environments 

such as Ukulinga, Richards Bay and Wartburg since it was evident that it improved 

both yield and WUE.  

f) Across all the environments, and where increasing sorghum yield and overall WUE is 

most desired the ideal plant, population of sorghum should be 39 000 plants ha-1 in 

combination with 13 000 plants ha-1 of cowpea.  

g) When yields of both crop species are desired aincreasing cowpea plant population to 

19 500 plants ha-1 while sorghum can be maintained at 26 000 is recommended. There 

is still need to research into alternative combinations of plant populations still needs 

to be research so as give environment specific recommendations. 

h) For all the environments, weekly scheduling of irrigation based on weekly rainfall 

amount resulted in high yields; however this also produced low levels of WUE. It can 

be recommended that, for all environments, using soil water deficit is more ideal since 

yield and WUE did show some improvements relative to weekly scheduling of 

irrigation based on weekly rainfall amount. 
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Conclusions  

The model APSIM was efficient at assessing yield responses for sorghum–cowpea under 

different management scenarios for five rainfed agro-ecologies in KwaZulu–Natal. In 

addition, the model was able to identify best management practices for improved water use 

efficiency for sorghum–cowpea intercrop under rainfed conditions. For environments 

included in this study, sorghum–cowpea intercrop system was most responsive to changes in 

planting dates and plant populations while moderate changes were observed in response to 

fertilization and irrigation. Overall, the model can be used as a tool to develop best 

management options for increased yield and WUE for intercropping under water scarce agro-

ecologies. To improve the assessment of yield response for sorghum–cowpea intercrop to N 

fertilizer, site specific N recommendations should be used in scenario analysis. There is still 

need to apply APSIM to assess the effects of the combinations of these management options 

on yield and WUE for sorghum–cowpea intercrop system. 
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CHAPTER 8 

GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

 

Introduction 

Global population is expected to reach 9 billion by 2050 (Bremner et al., 2010). This will be 

coupled with an increase in the demand for food (Ye et al., 2013). In addition, improving 

incomes also mean that people are now able to demand more food. Food production will have 

to increase to meet the increased demand (Rosegrant et al., 2014). Within sub-Saharan 

Africa, food production is primarily governed by water resources (Rosegrant et al., 2014). 

Agriculture remains the major user of water, although there are limits to this since pressure 

from competing users is increasing (Ye et al., 2013). Water for agriculture has further been 

constrained due to the increased occurrence and severity of drought resulting from climate 

change and variability (Bollig and Feller, 2014). To increase resilience to current and future 

water uncertainties, integrated approaches that allow improved water productivity and 

sustainability are required (De Schutter, 2012). Sorghum is drought tolerant and has long 

since been considered as an ideal crop under water scarce environments (Blum, 2009; 

Cavatassi et al., 2011). Including sorghum in intercrop systems could increase resilience 

against observed and predicted water scarcity. In this study, it was hypothesised that 

intercropping sorghum with either cowpea or bottle gourd improves resource use and 

resilience. To test this hypothesis, field and modeling approaches were used to determine the 

productivity and resource use efficiency of a sorghum–cowpea–bottle gourd intercrop system 

under different water regimes.  

 



226 

 

 

General discussion 

Resource use in intercrop systems 

A review of literature was initially undertaken (Chapter 2). The objective of the review was 

to elaborate on concepts in intercropping and outline how resources are captured and utilised 

within the system. It was observed that the key to success in intercropping was 

complimentary or non–competitive use of resources, over a spatial and temporal scale. This 

could be achieved when intercropped plants captured resources at different depths within the 

soil profile. In addition, through relay cropping, crop growth cycle at a locality could be 

extended beyond that of a monocrop system thus extending resource capture. The review also 

showed that aboveground interactions within intercrop systems have thoroughly been 

investigated while belowground interactions were mostly limited to extrapolations from 

biomass partitioning. This posed as a major limitation to accurate quantification of capture 

and use of resources such as water and nutrients. Inclusion of roots from another species may 

result in eco-morphological and eco-physiological changes in roots hence altering the 

efficiency of root function (Hauggaard-Nielsen and Jensen, 2005). Failure to adequately 

capture adaptive strategies for roots could result in inaccurate estimates of resource use. A 

major outcome of this was that, in order to improve current understanding of resource 

partitioning and use in intercrops, there is need to increase research on belowground 

interaction of intercrop systems. 

The second objective of the review was to evaluate the extent of knowledge and gaps on 

modelling resource use in intercrop systems. It was evident that there are a limited number of 

models that can be used to simulate growth and resource use in intercrop systems. Most 

models were mechanistic and therefore, reductionist and complex. In the case of the former, 

crop models would explain the cropping system in terms of its individual constituent parts 

and their interaction and combine these to produce an output. Since individual constituent 

parts have to be defined, models, thus became complex since a large number of input 

parameters are required (Malézieux et al., 2009). It should be noted, however, increasing 

model complexity does not always increase accuracy of model prediction (Graves et al., 

2002). This is considering that simpler empirical models have demonstrated high level of 

accuracy in simulating crop responses (Sinclair and Seligman, 2000). However, it has been 
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observed that complex models are more robust, that is, can simulate well over wide range of 

environmental conditions (Yin and Struik, 2010). This also explains why most intercrop 

models are mechanistic. That being said, model development for intercrop systems should 

also be as rigorous as development and model functionality of monocrops. Models for 

intercrop systems do not adequately capture below and aboveground canopy interactions as 

well as models used in monocrop simulations. For instance, most monocrop models can map 

our root water extraction pattern while reviewed model are to a large extent limited at doing 

this. Considering that current debate for sustainable farming systems is directed towards 

intercropping and other similar cropping systems, more investments are required in regard to 

intercrop modelling. 

For the models reviewed, it was apparent that simulations of intercrop systems were 

governed by rationalism and assumptions. For instance, most models will rationalise by using 

conservative parameters such as RUE and WUE to describe biomass production. On the other 

hand, these very same models would assume that processes occurring at the organelle level, 

such as gs or transpiration efficiency, are homogenous within leaf canopy; thus assume the 

big leaf approach (Friend, 2001). Rationalising and assuming parameters can give raise to 

inaccurate estimation of model responses thus leading to poor model performance. 

Nevertheless it was apparent that such assumptions within crop models were inevitable as 

assist in simplifying model parameterisation. In instances were multicrop models rationalism 

and assume a lot, performing sensitivity analysis could assist in identifying parameters 

sensitive to change. After which parameter calibration can done so as to improve accuracy of 

model simulation. 

 

Use of bottle gourd within sorghum intercrop systems 

Since the main objective of the study was to improve water use in sorghum systems, the 

agronomic potential for the inclusion of bottle gourd as another live mulch was determined 

through a review of literature. Bottle gourd is a versatile food crop and its growth habit 

makes it ideal to incorporate it as a live mulch for cover cropping (Chapter 3 and 4). 

Morphologically, bottle gourd has spreading veins with large broad leaves that enables it to 
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be an effective mulch as a cover crop.  That being said, bottle gourd can be used to improve 

water use in intercropping systems. It was, however, revealed that seed quality is a major 

limiting factor to crop establishment. The significance of good seed quality stems from the 

advantages brought about by early establishment of an even crop stand. Good seed quality 

allows for good root growth and early attainment of canopy cover (Mabhaudhi et al., 2013; 

Chibarabada et al., 2015). Although, bottle gourd has agronomic potential as cover-crop it is 

underutilised. Few improved cultivars are available on the market and majority of rural 

farmers grow bottle gourd from retained seed of local landraces. The poor seed quality can 

result in poor establishment and a delay in canopy growth. This may result in a reduction in 

soil cover, thus resulting in an increase in soil evaporation; an unproductive use of water. It 

was observed that seed quality in bottle gourd was more of a function of provenance which 

also had a large effect on seed morphology. 

 To promote bottle gourd from its current status as an underutilised crop species to a 

commercially recognised crop, research needs to develop improved cultivars with good seed 

quality. This will aid in its acceptability as a cover crop within intercrop systems. 

Resource use of sorghum intercrop systems 

Considering that water applied was closely monitored, the inconsistency observed between 

water applied and soil water content across the water treatments could be due to differences 

in heights of water table relative to the soil surface. It could be that plots under rainfed were 

located in an area where there was a higher water table than plots under full irrigation. This 

resulted in higher soil water availability even with the application of less water. During site 

characterisation differences in the height of the water table were undetected and it was 

assumed that soil properties were heterogeneous within a reasonable limit to assume 

homogeneity for field management practices. Large experiments are often confounded by 

heterogeneity of land that cannot easily be dealt with by blocking and randomising. To 

improve management of water within water use studies, it is suggested that rigorous 

characterisation of a site must be carried out so as to avoid such discrepancies. 

Photosynthetic capacity of a plant is governed by the ability to absorb and assimilate CO2 

into biomass (Lawlor, 2002). The observed response of physiological parameters, CCI and 
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gs, for sorghum under limited water availability showed that, even though the crop is drought 

tolerant, the photosynthetic capacity was down regulated so as to reduce accumulation of free 

radicles. In large amounts, these free radicles can impair many biochemical processes 

resulting in impaired photosynthetic activity due to damages rendered on thylakoid 

membranes, the site of PSII (Silva et al., 2015). While such down regulation occurs under 

normal conditions during peak transpiration demand, prolonged down regulation can lead to 

observations of reduced plant biomass and expansive growth. Down regulation of 

photosynthesis was also confirmed by the increase in specific leaf area (Chapter 4) under 

water limited conditions. Increase in SLA was attribute to reduction of leaf mass relative to 

its leaf area. Under water limitations, gs is often the first sign of stress while responses of 

CCI usually occur after prolonged exposure. With regards to sorghum, results of the study 

showed that gs was sensitive to changes in water fluxes. However, fluctuations were not as 

pronounced suggesting that sorghum was able to maintain a high gs (standard deviation ±85 

mmol m-2 m-1) under different water availability. Sensitivity is not as pronounced as other 

cereal crops (Allen et al., 2011). For instance under water potential of -0.13 bars maize and 

sorghum gs was 63% and 38% lower as compared to under well water conditions (Niu et al., 

2012). On the other hand, the known sensitivity of gs to sudden changes in environmental 

conditions, especially diurnal, make it a less reliable parameter to use on its own in 

concluding on water stress. This is especially true for crops grown under irrigated conditions 

where periodic wetting and drying cycles are common. As such, measurements of gs should 

be done during periods of soil drying (Mabhaudhi and Modi, 2013). It is suggested that 

parameters like CCI and SLA should be used together with gs since their changes are more 

definitive responses to stress.  

Intercropping sorghum with bottle resulted in reduction in photosynthetic capacity of 

sorghum relative to sole sorghum and sorghum intercropped with cowpea. It could be that, 

intercropping sorghum with bottle gourd resulted in a competitive interaction for N. This was 

consistent with low CCI and SLA observed (Chapter 3 and 4). Chlorophyll content index and 

SLA are both positively correlated with N concentration in the plant (An and Shangguan, 

2008; Zhou et al., 2011). This suggests that, adding more than the recommended N for 

sorghum could minimise competition for the resource thus improve photosynthetic capacity 

of sorghum intercropped with bottle gourd. These results are largely speculative and need to 



230 

 

 

be validated in future studies. Then again, since results did not show any significant reduction 

on final yield, sorghum – bottle gourd systems can still be promoted in areas where soils are 

largely fertile.  

The study showed that intercropping sorghum with either cowpea or bottle gourd 

increased resource use on a spatial scale. This follows through with literature evidence of 

increased resource use (Chimonyo et al., 2015). The observed results of LER, and increase in 

WUE and RUE suggest an overall facilitative interaction of sorghum with either cowpea or 

bottle gourd Jagatheeswaran and Walker (2014). Sorghum productivity was generally 

unaffected by intercropping while the added crop increased overall output per unit area. 

Therefore, intercrop system productivity was higher than sorghum sole crop system (Chapter 

3). The observed response for sorghum was attributed to eco-physiological and eco-

morphological responses which allowed the sorghum plant to accommodate the added crop. 

Therefore, we fail to reject the hypothesis that intercropping sorghum improves resource use 

and productivity especially in water limited conditions. In this regard, intercropping sorghum 

in semi-arid and arid regions should be promoted to improve productivity and water use.  

Modelling resource use of sorghum intercrop systems 

It was hypothesised that APSIM can be used to simulate performance of sorghum intercrops 

grown under rainfed conditions. For this study, the model APSIM was adapted for sorghum–

cowpea intercrop system using soil and weather obtained from the field data while crop 

parameters were obtained from stress free sorghum and cowpea plots. Model performance 

was assessed using R2, root mean squared error (RMSE) and its components (RMSEs and 

RMSEu) and the d-index. The model APSIM does not have a cucurbit crop file therefore only 

sorghum-cowpea intercrop system was modelled. 

Overall, the model was able to simulate yield and water use of the intercrop system, 

however, it was limited in its ability to mimic canopy development. During model adaptation, 

there was over-estimation of LAI for both sorghum and cowpea while good simulations of 

biomass, yield and water use was observed. During model adaption, with the exception of 

RUE, default values of leaf parameters that affect leaf expansion and development such as 

SLA were assumed. In nature, the size of the canopy governs the use of resources, namely 
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radiation and water (Zhang et al., 2008; Picón-Toro et al., 2013). Canopy size is positively 

correlated to transpiration and radiation interception (Mabhaudhi et al., 2014). This was 

explicitly outlined and demonstrated in Chapters 2, 3 and 4. Failure to clearly define the 

canopy may result in incorrect estimations of resource use. This was shown by the over 

estimations of LAI but good simulation of biomass and yield. To improve the coherency for 

outputs of LAI, biomass and yield, a finer calibration of canopy parameters should be done.  

During model testing, it was observed that the model showed good predictions for both 

sorghum and cowpea under DI and RF conditions for all traits simulated. Simulations were, 

however, not accurate under rainfed conditions. Model performance under rainfed conditions 

was negatively affected by intermittent wetting and drying that occurred especially during 

early vegetative development. This could have resulted in slight impairment of growth and 

productivity. These results are consistent with observed CCI and RWC reported in Chapter 2. 

To improve simulations under rainfed conditions, model sensitivity for simulating crop 

responses to water should be increased. 

The objective of the scenario analysis was to use APSIM as a decision support tool for 

aiding the development of best management strategies for sorghum–cowpea intercrop system. 

I was hypothesised that APSIM was able to predict changes of yield and water use under 

different management scenarios. Based on this, we fail to reject the hypothesis, and state that 

indeed APSIM can be used as a tool to determine best management practices. It was observed 

that, while the categories of agronomic factors to be considered within the context of rainfed 

systems, there are a combination of best management options that could be prescribed to 

farmers across different climatic zones. Therefore, these findings suggest an agro-ecological 

based approach for managing intercropping and other cropping systems as well. Diversity in 

management practices insures flexibility towards climate uncertainty and increases resilience 

of the intercrop system. It was concluded that intercropping is an adaptive strategy that can be 

used to increase productivity. However, to further increase the system’s resilience to climatic 

uncertainties, dynamic agronomic management practices should be adapted. 
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Conclusions 

Despite the advantages of intercrop systems in resource utilisation and ultimately food 

production and security, conventional agronomic research has largely focused on monocrop 

systems. Our understanding of root interactions within intercrop systems is still limited and 

this has implications on interpretations of results on resource use. Representation of crop 

mixtures by models is also still restricted to a handful. There is need to increase the number 

of mechanistic models and enhance functionality of existing ones. However, this should not 

be at the expense of increasing model complexity since the utility and power of a model 

originates from its ability to simplify crop systems.  

Bottle gourd is an ideal crop to include in improving water productivity under water 

limited conditions. However, there is still a dearth in knowledge pertaining to its agronomy 

within the context of semi-arid and arid regions. Seed quality is an important agronomic trait 

that can affect its use as a live mulch in intercrop systems. With the exception of seed size, 

morphological traits were not good indicators of seed quality. Larger seeds had better seed 

quality than small seeds. However, these results still need to be verified under sub-optimum 

conditions. 

Under limited water availability, intercropping sorghum with either cowpea or bottle 

gourd resulted in more of a facilitative interaction with respect to water and radiation from 

physiological, growth and productivity perspective. Intercropping sorghum with cowpea and 

bottle gourd did not have any negative effect on growth, biomass production and partitioning 

and yield of sorghum. Cowpea and bottle gourd were able to improve soil water availability 

by minimising soil evaporation. Physiological parameters (gs and CCI) proved to be useful 

indices for evaluating sorghum response to intercropping under limited water availability. On 

the other hand, LAI was a useful trait in assessing IPAR in that they were closely associated. 

Under RF conditions, intercropping improved overall productivity (LER), WU, WUE 

(biomass), radiation capture and RUE of sorghum cropping systems. There is need for future 

research on the root-shoot responses of intercropped sorghum to varying levels of water 

availability, focusing more on root interactions. 

The APSIM model was able to simulate sorghum–cowpea intercrop system under 

different water regimes using a minimal set of inputs. Local adaptation of phenology and 
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RUE coefficients proved to be useful in improving model simulations under the different 

water regimes. The model gave reliable simulations of phenology, biomass, yield and crop 

water use for both sorghum and cowpea under DI and FI. The model was, however, limited in 

its ability to simulate under rainfed conditions. Simulations of biomass, yield and WU for 

sorghum–cowpea under rainfed conditions were overestimated and this resulted in a 

reduction of calculated WUEb. APSIM can be used to come up with viable irrigation 

management strategies for sorghum–cowpea intercrop systems and other intercropping 

systems alike. Therefore, the ability to model sorghum–cowpea intercrop system makes it a 

useful tool in assessing other intercrop systems. Furthermore, the study’s’ first attempt to 

model water use of sorghum - cowpea intercrop systems should also encourage modelling of 

ecologically based farming systems. 

The model APSIM was efficient at assessing yield responses for sorghum–cowpea under 

different management scenarios for five rainfed agro-ecologies in KwaZulu–Natal. In 

addition, the model was able to identify best management practices for improved water use 

efficiency for sorghum–cowpea intercrop under rainfed conditions. For environments 

included in this study, sorghum–cowpea intercrop system was most responsive to changes in 

planting dates and plant populations while moderate changes were observed in response to 

fertilisation and irrigation. Overall, the model can be used as a tool to develop best 

management options for increased yield and WUE for intercropping under water scarce agro-

ecologies.  
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Recommendations  

Based on the observations made in this study, the following recommendations are given 

i. Genetic assessment of bottle gourd should be carried within the region so as to 

establish diversity. 

ii. Seed coat thickness of bottle gourd may be used as a parameter for recommending 

varieties into different agro-ecological areas. However, aspects of seed dormancy in 

conjunction with seed physiology as factors affecting seed quality warrants further 

investigation.  

iii. Under low water availability, intercropping of sorghum, with particular reference to 

sorghum–cowpea intercrop system, should be recommended as a viable water 

management strategy as it has been shown to improve resource use on spatial scale. 

iv. Agronomic recommendations for sorghum – bottle gourd intercrop system should be 

improved so as to include it as a food security strategy under water scarce conditions.  

 

v. Any future studies of sorghum intercropping should include assessments of root 

interactions and possibly different plant populations and planting geometry as factors 

that might influence resource capture and use. 

vi. To improve the estimation of IPAR for intercropped sorghum, a clumping factor must 

be considered in the calculation of intercepted radiation. 

vii. The model should use a dual approach of both RUE and transpiration efficiency to 

calculate biomass so as to improve simulations under water scarce areas.  

viii. Improvements in model performance can be enhanced if the number of parameter 

inputs are increased. This increase its reliability and sensitivity, especially to sudden 

and extreme weather events. 

ix.  There is still need to apply APSIM to assess the effects of the combinations of these 

management options on yield and WUE for sorghum–cowpea intercrop system. 
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