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Abstract

Twenty flavonoids II-XXI were successfully synthesized using the Claisen-Schmidt
condensation reaction between 2-hydroxy and 3-hydroxyacetophenone with various substituted
fluorobenzaldehydes. The twenty flavonoids consisted of sixteen chalcones, eight of which were
new novel prenyl chalcones (XIV-XXI), and four flavanones (X-XIII). The compounds were
produced in yields of between 54-90%. It was shown in II-XIII that the rate of reaction is
influenced electronically by the substitution patterns of the fluorine atom on the B-ring, in the
order; 2'.4'-difluoro > 2'-fluoro> 4'-fluoro > 3'-fluoro. All compounds were characterized by
NMR, IR, UV and mass spectral analyses. Compounds II-IX bearing hydroxyl groups were
subjected to antioxidant screening using the DPPH free radical scavenging assay. Antioxidant
activities of these compounds were established as moderate to low in comparison to the standard,
ascorbic acid. The difluoro compounds V and IX with fluorine on the ortho and para positions in
the B-ring showed the highest activities, possibly due to both the position and number of fluorine

atoms in the molecule.
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Chapter 1. Introduction

1.1 Introduction to flavonoids

Flavonoids are a large class of compounds known to contain the presence of hydroxyl groups.
They are considered secondary metabolites; which are compounds that are not directly involved
in the growth and/or development of organisms, but rather known for their pharmacological
nature in plants. Flavonoids show an absorption in the yellow region of the visible spectrum.
They are found in almost all plants and mainly concentrated in the leaves and flowers of plants.
To date over four thousand different types of flavonoid derivatives have been identified (Cook
and Samman, 1996). There are a wide variety of flavonoids, but common to all is the presence of
a phenylbenzopyrone structure, (Figure 1) that links two aromatic rings together through three
carbons atoms. In most cases, the three carbon atoms that link the two rings together can either
exist in the form of an oxygenated pyran ring or in an open chain structure (Grotewold, 2006).
The major classes of flavonoids include flavonols, flavanones, catechins, anthocyanidins,
flavones, isoflavones, dihydroflavonols and chalcones (Cook and Samman, 1996; Rodriguez et

al., 2001).
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Figure 1 Structures of the major classes of flavonoids species

The pharmacological activity of flavonoids is dependent on their physical properties as well as
the relative positions of various moieties and atoms in the molecule. As a result, many
derivatives and analogs of flavonoids are produced synthetically (Grotewold, 2006). In this
study, two major classes of flavonoids were synthesised; these are the chalcones and flavanones

as highlighted in Figure 1.



1.1.1 The structure and numbering system of chalcones

Chalcones are a group of organic molecules which are known to be effective lead compounds in
drug synthesis (Anto et al., 1995; Won et al., 2005; Go et al., 2005). They possess a 1, 3-
diphenyl-2-propen-1-one structural framework linking both ring A and B, hence they exist
chemically as open chain flavonoids (Figure 2). The three carbon atoms that join the two
aromatic rings together are in the form of an a, f—unsaturated carbonyl system (Nowakowska,

2007).

Figure 2 Basic structure and numbering of a chalcone

Chalcones occur naturally in many different polyhdroxylated forms. The radical quenching
properties of the hydroxyl groups and aromatic rings are said to be the main active sites during

biological treatment (Nowakowska, 2007).

1.1.2 The structure of flavanones

Flavanones are known as direct derivatives of chalcones (Cortes-Concepcion et al., 2010).Unlike
chalcones, flavanones have a three-ring skeleton structure, and each ring is referred to as either
an A-, B- or C-ring (Scheme 1) (Grotewold, 2006). In nature, plants use enzymes such as
chalconeisomerase to chemically convert chalcones into their corresponding flavanone products,

provided there is a hydroxyl moiety attached on the 2-position of the A ring of the chalcone



(Hintermann and Dittmer, 2012).The mechanism of isomerization occurs under basic conditions,
whereby a base removes a proton from the hydroxyl group located at the 2-position.
(1).Cyclisation takes place with the lone pair of electrons on the oxygen atom attacking C-3
producing intermediate (i). A second proton is abstracted from the hydroxyl group at C-4,
followed by the abstraction of a proton from water, which leads to the flavanone (2). A typical

example can be seen by the formation of the anti-cancer drug, Naringenin (Scheme 1) (Ahmad et

al., 2013).
B /\H OH
O \\‘\\\\
OH O OH O
H_
<y
1 2
2',4',6'-trihydroxychalcone Naringenin

Scheme 1 The mechanism for the conversion of 2',4',6'-trihydroxyacetophenone to its
flavanone, Naringenin where B= Base, H-A= Acid and A = conjugate base (Ahmad et al.,

2010)



1.1.3 Synthesis of chalcones

1.1.3.1 The base catalyzed Claisen-Schmidt condensation

The most useful and practical method for chalcone synthesis is the use of the Claisen-Schmidt
condensation reaction (Sebti er al., 2002; Clayden et al., 2007).The Claisen-Schmidt
condensation reaction is referred to as the ester analogue to the Aldol condensation reaction
between two ketones possessing alpha hydrogens. This process usually involves the reaction
between aldehydes and ketones normally with ethanol as a solvent and under basic conditions
(10-50% m/m base). Strong bases such as potassium hydroxide and sodium hydroxide are strong
enough to pull off the weakly acidic alpha protons of a ketone, thereby forming an enolate ion

capable of nucleophillic attack (Scheme 2) (Claydenet al., 2007).

O 0
10-50% XOH

—_—

EtOH
where X= Na, K etc

Acetophenone Enolate

Scheme 2 The formation of an enolate ion under basic conditions

The mechanism for using the Claisen condensation reaction has been studied for decades and is
well understood. The reaction is often carried out using a phenyl ketone such as an acetophenone
with that of an aldehyde such as benzaldehyde. In solution, a base pulls of the weakly acidic
alpha hydrogen from acetophenone to form an enolate anion. The enolate anion, which acts as a
base, rapidly attacks the carbonyl carbon of the benzaldehyde to form a B-hydoxyketone,

intermediate. Subsequently, a conjugate base pulls off the remaining alpha hydrogen by means of

5



a process called enolization which is followed by dehydration to remove water. This produces a

conjugated enone product, in this case a chalcone (3) as seen in Scheme 3 (Clayden et al., 2007).

R o g

Enolate formation Adol formation

3

1 Enolization
1 Dehydrati é) 05'
t
- ehydration R
® O —C ®
3 3

Scheme 3 Mechanism showing the formation of a simple chalcone

Reports show that yields between 55-90% can be expected using the Claisen-Schmidt
condensation, however the yields may be influenced by the various substituents and their
positions on both the A and B rings (Batovska et al., 2009). Electron withdrawing (EW) groups
often tend to withdraw electron density away from the carbonyl carbon making it more
susceptible to nucleophillic attack. The opposite is true for electron donating (ED) groups,

making the carbonyl carbon less electrophilic and un-reactive.

Benzaldehyde and acetophenone reactants contain many difference functional groups and
moieties and hence it is possible to synthesise a variety of chalcones by varying the functional

groups and moieties as well as varying their substitution pattern before carrying out the

6



condensation reaction. Hydroxyl groups are the common functional group in flavonoids(Cook
and Samman, 1996; Agati et al., 2012; Heim et al., 2002).The conversion of the chalcone (3) in
Scheme 3 to its corresponding flavanone derivative requires a hydroxyl group at the 2-position of
the A ring. The details for this mechanism are explained in Scheme 1. The major disadvantage of
having functional groups is the possibility of side reactions. Under basic conditions a base is
capable of pulling off a proton from a hydroxyl group on either the benzaldehyde or
acetophenone starting materials. Taking 4-hydroxyacetophonenone as an example, the lone pair
of electrons on the oxygen are delocalized onto the carbonyl oxygen, deactivating the carbonyl
carbon whose ability to act as an enolate ion is lost in the delocalisation. Moreover, by removing
a proton from the molecule, a negative charge is rendered on the entire molecule and hence this
can no longer act as an electrophile. The mechanism of this process was first discovered in the
earlyl1900s (Scheme 4) (Petrov et al., 2008).The yields of polyhydroxy acetophenones are as a

result very poor.

¢
-

4-hydroxyacetophenone deactivated acetophenone

PO =
B

Scheme 4 Mechanism showing the deactivation of 4-hydroxyacetophenone under basic

conditions



Another disadvantage of the Claisen-Schimdt condensation is the possibility of self condensation
occurring between the benzaldehyde starting material. Under basic conditions, instead of
abstracting the alpha acidic proton on acetophenone, the base can attack the carbonyl carbon of
the benzaldehyde molecule. This subsequently forms hydrate anions and hydrate dianions. These
hydrate anions and dianions further react with benzaldehyde to form carboxylic acids and
alcohols respectively (Clayden et al., 2007). As a result, there is an overall loss of chalcone

product. This process is well known as the Cannizaro reaction (Scheme 5).

HOo©
Q Q» ~ O 9 o
1) HCO 0O o 0
HO©
Benzaldehyde Hydrate anion Hydrate dianion

0 (0]
&) OH
(0)

H (0]
/\v » H,0
i — > + — > Carboxylic Acid

o° OH
H H

H H

Alcohol

Scheme 5 The mechanism of the Cannizaro reaction



Protecting groups are often used for the sole purpose of preventing side reactions and at the same
time improving yields. There are numerous protecting groups that are available to
protectalcohols. These include benzyl bromide, dioxolane, trimethylsilyl chloride and
dihydropyran (Clayden et al., 2007). Dihydropyran can be used to protect the free hydroxyl
group of acetopheone because of its stability in alkaline media. It has a built in trigger
mechanism that makes it easy to remove by hydrolysis using a weak acid. The mechanism below
shows that under acidic catalytic conditions the double bond of dihydropyran abstracts a proton
from solution and subsequently the lone pair of electrons form a new double with the adjacent
carbon and oxygen atoms. This results in an electrophillic intermediate resonance structure. The
lone pairs on the hydroxyl group of the molecule that is being protected then attacks this
intermediate which forms a tetrahydropyranyl protecting group (THP) as seen in Scheme 6

(Clayden et al., 2007; Green et al., 1999).

The disadvantage of using protecting groups means that an additional reaction step is required
and this generally results in contamination or decrease in yield. However in contrast, protecting
groups can be very useful in preventing the isomerization of a chalcone containing a hydroxyl

group in the 2-position into its corresponding flavanone derivative.



_R

@) @)

Tetrahydropyranyl
ether
THP

Scheme 6 The mechanism for dihydropyran protection of alcohols

1.1.3.2 The use of organic and inorganic catalysts for flavonoid synthesis

The conventional methods of using bases such as NaOH, KOH and Ba(OH), has often shifted at
times due to their respective limitations. Organo-catalysts have been employed for the purpose of
maximizing yields and reaction efficiency of flavonoid synthesis. The use of L-proline (structure
has been inserted in scheme 7) as an organo-catalyst has been recently explored by
Chandrasekhar er al. (2005). L-proline acts as a strong base which pulls off weakly acidic
protons from acetophenone molecules. An enolate ion is formed (Scheme 7) and the usual work

up and mechanism that takes place is as described in Scheme 3.
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- where R, R' and R" = various substituents

Scheme 7 The synthesis of flavanones using L-proline as an organo-catalyst

The reaction takes place in dimethyl formide (DMF) as a solvent which is reacted for eighteen
hours at 80°C.Various flavanones and chalcones have been previously synthesized in yields as
high as 67-93% using L-proline, indicating its popularity as a catalyst in the synthesis of

chalcones (Chandrasekhar et al., 2005).

The use of lithium layered double hydroxides, [LiAl,(OH)s](CO3)0.5-nH,0O, have been
previously investigated in the inorganic synthesis of flavanones. Selectivity and reaction rates
were increased up to 68% after 20minutes of reaction time with different weight loadings of
lithium and oxide as compared to normal basic conditions using the Claisen-Schmidt

condensation reaction (Eddarir et al., 2003).
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1.1.3.3 The use of heterogeneous catalysts for flavonoid synthesis.

The use of hydroxyapatite as a heterogeneous solid catalyst for Claisen-Schmidt condensation
reactions has proven very useful in flavonoid synthesis. Several chalcones with yields as high as
87% were synthesized using various weight loadings of sodium nitrate and hydroxyapatite
(NaNO3s/HAP). The addition of a quaternary ammonium salt (benzyltriethylammonium chloride,
BTEAC) was reported to increase the rate (>25%) and overall yields of the reaction. A major
environmental benefit of using this method is the fact that the catalyst is recyclable and reusable,
making it environmentally beneficial as the need for greener chemistry increases (Sebti et al.,

2002).

Table 1 Comparison of the efficiency of using BTEAC on the rate and yields of 4-

methoxychalcone
Structure of product Yield (% (time, h)) Yield (% (time, h))
NaNO3/HAP without NaNO3;/HAP with
BTEAC BTEAC
OCHs 80 (16) 87(12)
9oue
O
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1.1.34 The use of ionic liquids for flavonoid synthesis

A new approach in flavonoid synthesis is the use of ionic liquids. Ionic liquids, like that of
certain heterogeneous catalysts, represent an alternative to the traditional use of volatile and
hazardous solvents. The use of acyclic SOsH-functionalized ionic liquids has been employed as
catalysts for the synthesis of several variously substituted chalcones with yields between 89 to
93%. Synonymous to hydroxyapatite solid catalysts, the following ionic liquids which have been
used for chalcone synthesis, are considered recyclable and reusable (Figure 3) (Dong et al.,

2008a).

N SO;H

HSO,
R = Me, Et, n-Bu; n=2, 4

Figure 3 The structures of a few Ionic liquids used in the Claisen-Schmidt condensation

The major drawbacks experienced with the use of exotic catalysts such as ionic liquids and
heterogeneous catalysts are the fact that they require a commendable amount of energy, time and

effort to synthesize.
1.1.3.5 The use of metal catalysts in flavonoid synthesis.

Palladium (Pd) is just one of many transition metals which play an important role in flavonoid
syntheses. It has the ability to catalyze the formation of new carbon-carbon bonds which proves

essential in organic synthesis.
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The Heck reaction is a palladium catalyzed reaction which couples unsaturated double bonds
with aryl groups or vinyl halides. It allows these groups to react and can be carried out in organic
solvents, ionic liquids or solvent free conditions (Scheme 8) (Clayden et al., 2007; Bianco et al.,

2003; Marvaniya et al., 2011).

B—HX
reductive PdL, Oxidative
elimination addition \
(14e)
B
Ph——x
X X
~
(16e)  LoPd L,Pd - (16¢) .
Ph ™~ Ph Starting
& materials
X
\
Ph PdL,
Hydride Carbometallation
elimination H 0 /
I . /\)(J)\
16e AN
Ph \ Ph (16e) H Ph

Scheme 8 Diagram displaying the synthesis of a chalcone using Palladium as a catalyst in

the Heck reaction, where B= base, L= ligand and X = halide (Clayden et al., 2007)

The use of the Heck reaction between an aryl vinylic ketone and an aryl iodide was carried out
using triethlylamine, triphenyl phosphine, acetonitrile and Pd(OAc), as a palladium catalyst. The
intermediate product (ii), in 94% yield, was used to produce 2,4'-dihydroxy-4-methoxyychalcone
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(4) and its flavanone derivative, 4'-hydroxy-7-methoxyflavanone (§), in satisfactory yields

following a series of follow up reactions (Figure 4) (Bianco et al., 2003).

OAc
OMe l OMe ‘

)

(i)

OH OH
OMe l OH ‘ OMe I ) ‘

Figure 4 The structure of 2, 4'-dihydroxy 4-methoxyychalcone (4) and its flavanone

derivative, 4'-hydroxy-7-methoxyflavanone (5) produced via the Hecks reaction.

Another example of using palladium as metal catalyst in flavonoid synthesis is the Suzuki cross
coupling reaction between acyl halides with boronic esters. This technique has emerged over the
past two decades as a powerful tool of introducing acyl functionalities to natural products and is
more preferred over the traditional approach of the Friedels-Crafts acylation reaction (Blangetti
et al., 2013). The process involves three stages: oxidative addition, transmetallation and,

reductive elimination (Scheme 9).
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HO.
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NaX + EtO-B(OH), HO Ph + NaOEt

Scheme 9 The Suzuki cross coupling reaction for the synthesis of a chalcone with palladium

as a catalyst, where X= halide (Clayden ef al., 2007)

Although both the Heck and Suzuki cross coupling reactions are very selective and produce

exceptional yields, the starting materials used during their synthesis are not commercially

available and needs to be synthesised. Furthermore the use of a palladium catalyst can be costly.

1.1.3.6 Other types of catalysts and catalytic supports.

Ultrasound accelerated Claisen condensation reactions have been previously used to synthesize

several antibacterial chalcones. The use of a carbon catalyst (Na-Norit and Cs-Norit), when

subjected to sonochemical irradiation, enhanced the effect of the yields of the afforded

chalcones. Sonic activation is considered to exert a positive effect on the activation of carbon
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doped catalysts as opposed to non-sonic activated catalysts. This particular reaction thrives in the
absence of solvents. Yields as high as 75% have been reported after 4 hours of reaction. The use
of cesium doped alkaline carbons (Cs-Norit), with the absence of solvent, produced chalcones

without side reactions such as the Cannizzaro reaction (Calvino et al., 2006).

1.1.4 Biological activity of flavonoids

Chalcones are known to have a range of bioactivities including anti-oxidant, anti-inflammatory,

anti-cancer and antibacterial activities.

1.1.4.1 Anti-oxidant activity

Superoxide and peroxide radicals are known to participate in promoting tumor production.
Several chalcones and flavanones have been found to promote antioxidant activities and
scavenge free radicals. Investigation of two separate cytotoxic studies showed that, 2,5-
dihydroxychalcone (6) exhibited potency towards superoxide production when compared to
several un-substituted chalcones. Similarly, the 2,2'-dihydroxychalcone analogue (7) reported the
highest potency for the inhibition of lipid peroxidation (Figure 5) (Anto et al., 1995; Hsieh et al.,

1998).
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OH
OH
OH © 0
2,5-dihydroxychalcone 2, 2'-dihydroxychalcone
6 7

Figure 5 Dihydroxychalcones with known potential anti-oxidant activities

The presence of hydroxyl groups on chalcones increase antioxidant and free radical scavenging

activities when compared to un-substituted chalcones (Hsieh et al., 1998).

1.1.4.2Anti-inflammatory activity

Inflammatory cells are capable of releasing numerous chemical mediators which are responsible
for activation of mast cells, marcrophages, neutrophils and microligial cells. These cells are
believed to be responsible for inflammatory responses and can affect the central nervous system
(CNS). Chalcones such as2-hydroxy-2'-thienylchalcone (8) and 2-hydroxy-3'-thienylchalcone (9)
(Figure 6) have shown good activity against the inhibition of superoxide anions generation in rat
neutrophil cells (Won et al., 2005). These chalcones also showed moderate to high inhibitory
activities against glucuronidase and lysozyme production in rat neutrophils stimulated with

formyl-Met-Leu-Phe cytochalasin B (Won et al., 2005).
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OH 0 OH Q

Figure 6 Hydroxy chalcones showing potential anti-inflammatory activities

1.1.4.3Anti-cancer activity

The flavanone, naringenin (2) is considered a mild anti-cancer agent. Recently, Yoon et al.
(2013) investigated a set of new novel derivatives of Naringenin and their effects on human
colon cancer cells. Modification atthe 7-poisition on the A ring of the flavanone with bulky
moieties (Table 2) improved the overall anti-cancer activity of the chalcones in an invitro cyclin

dependent kinase assay (CDK?2) targeting human colon cancer cells (Yoon et al., 2013).

OH

HO 0]

OH @)

Figure 7 The structure of Naringenin (2)
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Table 2 The anti-cancer flavanone, Naringenin and its derivatives by modification on the 7-

position.
Derivative R-groups
Naringenin OH
N-1
N-2
@)
‘)Vl
A
N-3
@)
/\/ O
=
N-4
@) (@)
N-5 O
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1.1.4.4 Anti-bacterial activity

The derivatives licochalcone A (10) and C (11) are reported to possess antibacterial activities
against Gram negative bacteria. The bacteriostatic effect of the chalcones is dependent on the
presence of the free hydroxyl groups located in the 4'-position on ring A. When the moiety was
placed on the Bring, no change in bacterial activity was observed (Figure 8) (Nowakowska,

2007).

The presences of a-f unsaturated carbonyl systems in chalcones are highly reactive. In the case
of bacteria, thiol groups are an essential part of bacteria’s protein coat structure. It was found that
these carbonyl systems undergo conjugate addition with these thiol groups, which serve as
binding sites. Once bound, the chalcones may inactivate these sites. This process often results in

cell apoptosis and premature cell death. The antimicrobial efficiency can be varied with

modifications in the chalcone structure (Srinath, 2012).

10 11

Figure 8 The structures of licochalcone A (10) and licochalcone C (11)
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1.2 Introduction to prenylated flavonoids
The concept of prenylation involves the addition of hydrophobic moieties such as prenyl or
isoprenoid groups to a molecule. These groups can be of varying length and in particular provide
an added feature in terms of their biological properties. Their ability to interact with biological
membranes and proteins of target molecules are associated with an increase in bioactivity, in
particular antibacterial activities (Reddy et al., 2010; Sugamoto et al., 2011; Chi et al., 2001).
Typically, the two major prenylating agents used in organic synthesis are 3-methyl-2-butene
bromide and 3-methyl-2-butenal (Figure 9). The use of the former is known as prenylation
whereas the latter, which forms a benzyopyran system, is termed chromenylation (Narender and

Reddy, 2007).

Br H

3-methyl-2-butene bromide 3-methyl-2-butenal

Figure 9 The prenylating agents, 3-methyl-2-butene bromide and 3-methyl-2-butenal

In this study, focus is centered on the prenylation of chalcones using 3-methyl-2-butene bromide
as the prenylating agent. Prenylation with this reagent can only occur if there is a free hydroxyl
group available on a flavonoid species. The mechanism takes the form of a Sx1 process whereby
a mild base pulls off a proton from the hydroxyl group of the chalcone. The charged oxygen
atom then attacks the electrophilic carbon of the C-Br bond thereby forming the prenylated

product (Scheme 10).
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Scheme 10 The mechanistic pathway of prenylation, using3-methyl-2-butene bromide

under basic conditions. R= aromatic ring.

1.2.1 Synthesis of prenylated flavonoids

Prenylated flavonoids occur naturally and can be isolated from various medicinal plants.
However, many synthetic analogues have been made (Vogel et al., 2008).An example is
Xanthohumol (12), a prenylated chalcone considered to be an effective chemopreventive agent
(Stevens and Page, 2004).In the synthesis of Xanthohumol (Scheme 11) trihydroxyacetophenone
is protected with methoxymethylene bromide followed by the addition of the prenyl group
with3-methyl-2-butene bromide. The prenylated acetophenone undergoes a Claisen-
rearrangement forming compound. This is followed by methylation to form the methoxylated
intermediate (iii), which is then condensed with 4'-hydroxybenzaldehyde producing the protected
chalcone, which is deprotected under acidic conditions to produce Xanthohumol (Vogel et al.,

2008).
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Scheme 11 The synthesis of Xanthohumol (12)

24



Similarly, the prenylated flavanone, Exiguaflavanone K (13), known to exhibit mild vasodilator
effects, has been synthesized with the omission of the methylation step seen above and the use of
3'-methoxy-4'-hydroxybenzaldheyde instead of4'-hydroxybenzaldheyde during the condensation

step (Figure 10) (Dong et al., 2008b).

OH

HO @)
OCHj;

OH O

13

Figure 10 The structure of Exiguaflavanone K (13)

Alternately, flavonoids have been synthesized first followed by prenylation reactions.Neves et al
(2012) demonstrated the use of the base-catalyzed reaction between 2-hydroxy-4,6-
dimethoxyacetophenoneand 3,4,5-trimethoxybenzaldehydeto afford the intermediate compound
14. Compound 14 was used as a precursor to produce the synthetic chalcone analogue, to which
prenyl bromide was added in the presence of tetrabutylammonium hydroxide (TBAOH,;
BusNOH) and dichloromethane at room temperature to produce 15 in satisfactory yields(Scheme

12) (Neves et al., 2012).
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Scheme 12 Scheme showing the prenylation of chalcone (14) to form the anti-tumour

compound (15)

Other conventional methods include the use of boron trifluoride etherate in dioxane treated with
2-methyl-3-buten-2-ol, the Heck reaction using 2-iodophenol, 3-methyl-1-butene, palladium
acetate and triethylamine and the Stille reaction of a doubly protected 2,4-bis-
(methoxymethoxy)-3-iodoacetophenone with prenyltributylstannane in DMF using [Pd(PPhs)4].

Yields as high as 76 % have been reported (Grealis et al., 2013).
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1.2.2 Biological activity of prenylated flavonoids

Some of the most common reported bioactivities of prenylated flavonoids are anti-inflammatory
(Chi et al., 2001),anticancer (Neves et al., 2012), anti-allergic (Chi et al., 2001), antimicrobial
(Sohn et al., 2004), antioxidant(Rodriguez et al., 2001), and antibacterial (Sugamoto et al.,

2011).

1.2.2.1 Anti-inflammatory

Several naturally occurring flavonoids isolated from various medicinal plants have shown anti-
inflammatory activities. Enzymes such as arachadonic acid-metabolizing enzymes are mediators
in the growth of epithelial cells that may result in inflammation and possibly cancer. The
isolation and biological evaluation of the prenylated flavonoids, Kurarinone (16),
sophoraflavanone G (17) and Kurarudin (18), showed potent activity against the AA-
metabolizing enzymes in a bioactive study as compared to their non-prenyl analogues (Chi et al.,

2001).
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Figure 11 The anti-inflammatory flavonoids, Kurarinone (16), Sophoraflavanone G (17)

and Kurarudin (18)

1.2.2.2 Antimicrobial

Studies performed on 18 different prenylated flavonoids obtained from five different plants
showed promise as antibacterial agents against both fungal and bacterial microorganisms. Of
these, the sophoraflavanone D (19) (Figure 12) exhibited good antifungal and strong antibacterial
activity against Staphylococcus aureus and Escherichia coli respectively. Similarly, its analogue
sophoraflavanone G (17) known to possess antioxidant activity, showed strong antibacterial

activity at concentrations as low as Sug mL" (Sohn ez al., 2004).

28



Figure 12 The structure of sophoraflavanone D (19)

1.2.2.3 Anticancer

Prenyl chalcones showed in vitro activity on cancerous MCF-7 cells. In comparison to non-
prenyl chalcones, the presence of a prenyl moiety at C-2 or C-3 on the chalcone skeleton showed
an overall increase in the inhibitory effect in theMCF-7 anticancer assay. The chalcone with a
prenyl moiety on the 2-position proved to be the most active derivative against the human tumor

cell lines (Neves et al., 2012).
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1.3 Fluorinated chalcones and flavanones

The use of halogens in medicinal chemistry is widely applied in pharmaceuticals. In particular,
fluorine’F tends to provide favourable properties such as lipophillic and hydrophobic
characteristics required for certain biological activities (Srinath, 2012). Complementary to this,
the replacement of a C-H with a C-F bond allows for an increase in metabolic stability and also
prevents metabolic degradation (Kirk, 2006). Indeed, fluorinated molecules are amongst the most
important of drugs in the pharmaceutical industry. Therefore in this study the synthesis of
fluorine based flavonoids was also investigated with the aim of adding to the plethora of

fluorinated drugs already on the market.

1.3.1 Synthesis of fluorinated flavonoids

The synthesis of fluorinated flavonoids is often carried out by various conventional methods. The
Claisen-Schmidt condensation reaction is the simplest method employed as there is no difference
between the synthesis of normal flavonoids with those having fluorine substituents. Most
fluorine groups, either in the form of single or trifluoro, have been previously attached on their
respective precursors. The synthesis of the anti-inflammatory chalcone, 4'-fluoro-4-
hydroxychalcone (20) was carried out under acidic conditions using thionyl chloride and ethanol

between 4-hydroxyacetophenone and 4-fluorobenzaldehyde (Scheme 13) (Hasanet al., 2012).
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Scheme 13 The acid catalyzed synthesis of 4'-fluoro-4-hydroxychalcone (20)

A yield of 92% was obtained possibly due to the prevention of self condensation between the
fluorobenzaldehydes which would have occurred had it been under normal basic conditions as

explained in chapter 1.

Apart from basic and acidic conditions, there are several instances where phase catalysts and
exotic solvent systems have been employed for the synthesis of fluorinated chalcones and

flavanones (Chen et al., 2011; Kavala et al., 2012).

1.3.2 Biological properties of fluorinated flavonoids

Several flavonoid analogues containing fluorine have been synthesized and tested for their
antioxidant and anti-inflammatory activities. The development of derivatives with2,4-dihydroxy-
3'.4'-dimethoxychalconeas the skeleton structure containing various substituted fluorine atoms
was carried out (Nakamura et al., 2002). All derivatives showed anti peroxidation and 5-
lipoxygenase inhibitory activity using rat basophilic leukemia cells, better than their non-
fluorinated derivatives. 5-Lipoxygenase enzymes are chemical mediators for the production of
leukotrienes which cause inflammation and hypersensitivity. The fluorinated derivative6-fluoro-
3'.4'-dihydroxy-2,4-dimethoxychalcone (21)showed the most potent activity in these assays

(Figure 13).
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Figure 13 The anti-inflammatory chalcone (21) and its non-fluorinated derivative (22)

Studies show that poly-fluorinated flavonoids are more active than their mono fluorinated
derivatives and may be better lead compounds in drug synthesis. = The difluoro chalcone
derivatives proved to be more effective against human pancreatic cancer cells and breast cancer
cells than their monosubstituted and hydroxylated derivatives in a biological comparative study

(Padhye et al., 2010).

The trifluoromethyl methoxy chalcone (23) synthesized by Liu et al. (2001), showed excellent
promise as an antimalarial compound. The trifluoromethyl species alters the structure

biosterically and provides different bioactivities (Figure 14).

OCH; O

HaCO yZ

HsCO CFs
23

Figure 14 The structure of the antimalarial chalcone, 4'-trifluoromethyl-2,3,4-

trimethoxychalcone (23)
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1.3.3 Prenylated and fluorine based flavonoids
The benefits of prenylation have been mentioned in the previous chapter (Chapter 1). The

replacement of C-H and C-O bonds with C-F bonds allow for biosteric enhancements and in
particular improved metabolic stability (Kirk, 2006). Hence, an increase in lipophillicity and

interaction with biological membranes as provided by the prenyl group in conjunction with the
metabolic stability of fluorine can render molecules quite active in biological systems. New types
of hybrid drug molecules with multiple properties and characteristics can be synthesized and

tested in biological assay with a view to identifying lead compounds for drug development.

In this proposed study, focus is centered on the synthesis of prenylated and fluorine based

flavonoids, in particular, chalcones and flavanones.

1.3.4 Characterization of flavonoids

The principal tool used for the characterization of flavonoids is Nuclear Magnetic Resonance
(NMR) Spectroscopy. In conjunction with other techniques which include Infra-red spectroscopy
(IR), Ultraviolet-visible spectroscopy (UV -vis), and Gas Chromatography coupled with Mass

spectrometry (GC-MS), flavonoids can be structurally identified.

1.3.4.1 Identification using NMR spectroscopy

Chalcones consist of ana-B-unsaturated carbonyl chain which bridges both phenyl rings, the
phenyl ring closest to the carbonyl group being acetophenone derived and that next to the double
bond being benzaldehyde derived. Typical in all chalcones is the presence of a pair of doublets
assigned to these olefinic protons which couple with each other. Most chalcones tend to adopt a

trans geometry, usually to minimize steric effects and therefore characteristic J coupling values
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between 15-17Hz for these doublets are evident (Go et al, 2005; Clayden et al, 2007,
Srinath, 2012). This distinctive feature is used as a primary means of identification. If these
protons are situated cis to each other, they would have the same splitting pattern but a different J
value (8-10 Hz), which is rather more difficult to identify the chalcones as ortho coupling in
aromatic rings have the same coupling constant. Resonance structures show that the beta carbon
should appear more deshielded than the alpha carbon due to the pi pair of electrons being

delocalized between the three atoms, leaving the a-carbon more deshielded than the alpha carbon

(Scheme 14) (Clayden et al, 2007).

9
(beta

(O H )
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—»
H alpha)
8

Scheme 14 The delocalized resonance structure of the olefinic bond in chalcones

Depending also on the type of substituents present, the chemical shifts of both the alpha and beta

protons can also vary when compared to un-substituted chalcones.

F tends to have the ability to couple with proton nuclei due to its 99% natural abundance
(Gerig, 2001). Similarly, fluorine has the ability to couple with carbon and this feature can be
seen in the carbon spectrum, despite Be having a relatively low abundance of 1%. Fluorine
couples to carbon differently when placed in the ipso, ortho, meta and para positions of the
aromatic ring resulting in the carbon resonances being split with different coupling constants
(Table 3). This can help in the assignment of the protons as if the carbon resonances are

identified by their coupling constants, the HSQC spectrum can aid with the assignment of the
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corresponding protons. A direct carbon-fluorine bond (C-F) has a characteristic large J coupling
value of approximately 246 Hz. The respective signal making up the doublet could easily be
mistaken for two separate carbon resonances. This can be clarified in the HMBC spectrum
where several correlations, typically to the aromatic protons are evident for both these signals

making up the doublet.

The ability of fluorine to donate a lone pair of electrons toward the aromatic ring results in the
ortho and para carbonsand protons being more shielded than the mera carbons and protons

(Scheme 15) (Kavala et al., 2012).

Table 3 °C NMR chemical shift and coupling constant data for the B-ring of 2'-fluoro

flavanone.

Position of fluorine 3C NMR
Ortho 116 (d, J =21Hz)
Meta 130 (d, J = 8Hz)
Para 123 (d, J =4Hz)

ipso(C-F) 160 (d, J = 246Hz)
p B ° ]
—_— e e g
T ©
f) F F
L ® ® _

Scheme 15 Resonance structures that result when a fluorine atom is substituted on an

aromatic ring
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1.3.4.2 Identification using Infra-Red (IR) spectroscopy

The carbonyl group is the most predominant feature in the IR spectrum for the identification of
most flavonoids. In the case of flavanones, the presence of the C=0O group resonates as a sharp
peak usually at around 1680 to 1720 cm™ .Chalcones on the other hand contain an a,p unsaturated
carbonyl group, which resonates at a lower frequency as a result of the conjugative effect of the
double bond. Resonance structures as that shown in Scheme 13 result in the carbonyl group
having more single bond character than a pure ketone and hence the carbonyl stretching band in
chalcones can be found between 1650-1680 cm™ (Sherman, 1992).

The frequencies at which other bands absorb may depend on conjugation, ring size and
electronic effects of substituents present on the flavonoid structure. A variation in the C-F
stretching frequency can be observed between4'-fluoro-4-hydroxychalcone (24) and 4'-fluoro-2-
hydroxychalcone (25) illustrating the effect the position of the hydroxyl group has on the C-F

stretching band (Figure 15) (Hasan et al., 2012; Ivkovic et al., 2013).

0O O

T, T C
HO F OH F
/ /

1031 cm™ 1153 cm’!

24 25

Figure 15 The variation in C-F stretching between 4'-fluoro-4-hydroxychalcone (24) and -
4'-fluoro-2-hydroxychalcone (25)
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1.3.4.3 Identification using ultraviolet spectroscopy

Chalcones tend to have two absorption bands, one minor and one major for each of rings A and
B. The major bands reported for a series of non-substituted 2-hydroxychalcones appeared in the
upper region of the UV spectrum (316 nm). Electron donating groups tend to cause a red shift
between these bands whereas the opposite is observed for electron withdrawing groups. The
minor bands often absorbin the lower regions (<300 nm) of the visible spectrum and are
sometimes neglected due to their relatively small peak intensities. Similarly, flavanones may
have an additional absorption band in addition to their major band at 303-304nm and minor
band between 240 to 285 nm. The absorption values may also depend largely on the solvent

systems used (Matsushima and Kageyama, 1985;Pinheiro and Justino, 2012).

UV also proves very useful in differentiating between 2-hydroxychalcones and their flavanone
derivatives due to differences which are observed in band intensity. Flavanones tend to have
three strong predominant absorption bands as opposed to the two of chalcones due to the
presence of the closed benzopyran ring system which increases conjugation (Matsushima and

Kageyama, 1985; Srinath, 2012).

1.3.4.4 Identification by Mass spectrometry

Since fluorine is not as distinctive as chlorine and bromine, it is imperative to understand the
fragmentation patterns of the structure as a whole rather than its abundance with a comparable
isotope. Generally, chalcones undergo alpha cleavage which occurs on both sides of the carbonyl
carbon and as a result a distinctive pattern is observed. A typical example of a-cleavage can be
seen in the fragmentation pattern of 4'4-difluoro-2-hydroxychalcone (Scheme 16) resulting in

the characteristic fragmentation masses at m/z = 121 and m/z = 149 (Hasan et al., 2007).
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Scheme 16 The fragmentation pattern of 4',4-difluoro-2-hydroxychalcone

The stable fragments can be used to identify the location of the fluorine atom. In the case of
hydroxyl substituents present in the 2-position, thermal isomerization can take place converting
the chalcone to its corresponding flavanone derivative. Unlike the chalcone, flavanones undergo
retro Diels Alder cleavage. A characteristic peak can be observed at m/z=120 in the mass

spectrum (Scheme 17) (Itagak et al., 1966).
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Scheme 17 The fragmentation pathway of 2-hydroxychalcone where R = F
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1.3.5 Aim and objectives of this study

Since the physical and biological properties of flavonoids depend on the different types of
substituents in its structure, the aim of this project was to synthesize a small library of flavonoid
compounds, each with different modifications on both the A and B ring with regard to
prenylation and fluorination and explore their physical and biological properties. With regard to
the latter, the antioxidant properties of selected molecules were determined to investigate the

effect different fluorine substitution has on hydroxylated chalcones.
Specific objectives of this study

1. To synthesize various substituted fluorine and prenylated flavonoids using the
conventional Claisen-Schmidt condensation reaction from the precursors, 2-hydroxy and
3-hydroxyacetophenone.

2. To fully characterize these compounds using a wide range of spectroscopic techniques
including 1D and 2D NMR, IR, UV, GCMS and HRMS.

3. To investigate and compare the effects that the fluorine and prenyl moieties may have on

the physical and antioxidant properties of these compounds.
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Chapter 2. Experimental

2.1 General Procedure

Melting point determinations were carried out using a Stuart Smart scientific melting point
apparatus. UV analyses were performed using a UV-vis Shimadzu series 200
spectrophotometer. 'H and BC NMR, gradient heteronuclear single quantum coherence (HSQC),
gradient heteronuclear multiple-bond correlation (HMBC), and nuclear overhauser effect
spectroscopy (NOESY) spectra were all recorded using a Bruker Advance III 400 MHz
spectrometer. All spectra were recorded at room temperature with chemical shifts recorded in
deuterated chloroform (CDCI;) against the internal standard, tetramethylsilane (TMS). IR
spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer with universal ATR
sampling accessory. GC-MS data were gathered using an Agilent Technologies GC-MSD
apparatus equipped with a DB-5SIL MS (30 m x 0.25 mm i.d., 0.25 pm film thickness) fused
silica capillary column. Helium (2 mL min™) was used as a carrier gas and methanol was used to
dissolve the samples. Polarization angle values were obtained using a Bellingham and Stanley

ADP 410 Polarimeter.
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2.2 Flavonoid synthesis

2.2.1 Preparation of fluorine substituted 2-hydroxychalcones

In a 100 mL round bottom flask, four equivalents (0.200 mol; 17.0 mL) dihydropyran in 60 mL
of dichloromethane was added dropwise to a stirring mixture of 2-hydroxyacetophenone (0.0500
mol; 6.80 g) and pyridinium p-toulenesulfonate (0.00250 mol; 630 mg) in 40 mL of
dichloromethane. The solution was stirred for 15 min at room temperature (25 °C) and
completion of the reaction monitored by Thin-Layer Chromatography (TLC). The resultant

crude oil product, intermediate (I), was stored in a cool dry place (Scheme 18).

For the synthesis of the chalcones, an equimolar mixture of Intermediate (I) (0.00500 mol; 1.10
g) and substituted fluorobenzaldehydes (1-4) (0.00500 mol) were added to a 100 mL round
bottom flask, after which, one equivalent of barium hydroxide octahydrate (0.00500 mol; 1.58 g)
in 25 mL absolute methanol, was added with constant stirring. The mixture was refluxed for a
24 hr period at room temperature (25 °C) and monitored using TLC. The remaining methanol
was evaporated off under reduced pressure to provide a protected chalcone precipitate, which
were dissolved in 20 mL methanol, treated with toluene sulfonic acid (0.00125 mol; 215 mg) and
refluxed for 3hrs until deprotection was confirmed by TLC. Remaining methanol was
evaporated and the precipitates that formed were filtered, washed with 2 x 25 mL de-ionised

water and under vacuum.
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The crude solids were purified by column chromatography with hexane: ethyl acetate (8:2) as the

mobile phase. In all cases, the product eluted in the first three fractions to afford pure yellow

solid compounds (II-V) (Scheme 18)

O
O
pyridinium p-toulenesulfonate
+ > o]
CH,Cl,
OH @) 15min

0 R,
Ro

¢
OH Rs

II R,=F,R,=H,R;=H
Il R, =H,R,=F,R;=H
IV R, =H,R,=H,R;=F
V R, =F,R,=H,R;=F

Intermediate (I)

o R
H Ra Ba(OH,).8H,0
MeOH
R3
O R
R
toluene sulfonic acid O 7 O
-—
MCOH (0] R3
3hrs
(0]

Scheme 18 Synthesis of 2-hydroxychalcones I1-V
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2.2.2 Preparation of fluorine substituted 3-hydroxychalcones

An equimolar mixture of 3-hydroxyacetophenone (0.00500 mol, 680 mg) and substituted
fluorobenzaldehydes (0.00500 mol) were added to separate 50 mL round bottom flasks. To each
flask, 10% (m/m) NaOH (10 mL) in absolute ethanol was added with continuous stirring. The
solutions were refluxed at room temperature until the reaction had completed in each case. This
was monitored by TLC. The resultant mixtures were neutralized using 10 mL of 0.1 M HCI and
then extracted using 3 x 20 mL dichloromethane (DCM). The combined extracts were
concentrated and then purified using column chromatography with hexane: ethyl acetate (7:3) as
the mobile phase. In all cases, the first four fractions afforded deep yellow solid compounds

(VI-IX) (Scheme 19).

R
H Rz 10% NaOH Z 2
—
+ EtOH

R3 R3

OH OH

VI R,=F,R,=H,R;=H
VII R, =H,R,=F,Ry=H
VIII R,=H,R,=H,R;=F
IX R,=F,R,=H,R;=F

Scheme 19 Synthesis of 3-hydroxychalcones VI-IX
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2.2.3 Preparation of fluorine substituted flavanones

An equimolar mixture of 2-hydroxyacetophenone (0.0100 mol, 1.36 g) and fluorobenzaldehydes
(0.0100 mol) were added to separate 50 mL round bottom flasks. To each flask, 10 % (m/m)
sodium hydroxide in absolute ethanol (10 mL) was added dropwise with continuous stirring. The
solutions were refluxed at room temperature until the reaction had completed in each case. This
was monitored by TLC. The resultant precipitates were filtered, washed with 3 x 30 mL de-
ionised water and purified using column chromatography with hexane:ethyl acetate (7:3) as the
mobile phase. Compounds X-XIII eluted in fractions 3-5 as pale green and yellow crystalline

solids (Scheme 20).

Rs
o 0 Ri
R

+ 2 10% NaOH o

H R
—_—
EtOH Ry
OH Rs
o)

X R,=F,R,=H,R;=H
XI R,=H,R,=F,Ry=H
XII R,=H,R,=H,R;=F
XIII R, =F,R,=H,R;=F

Scheme 20 Synthesis of fluorine substituted flavanones X-XIII
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2.2.4 Prenylation of hydroxychalcones

In separate round bottom flasks, 2.5 equivalents of ignited potassium carbonate (0.00500 mol,
700 mg) were added to stirring solutions containing chalcones II-IX (0.00200 mol) with prenyl
bromide (0.00200 mol, 300 mg). Each mixture was stirred on a magnetic stirrer for a period of
24hrs. Completion of the reaction was confirmed using TLC. Each flask was then treated with
10 mL of deionised water and the organic components extracted with 3 x 10 mL ethyl acetate.
The extracts were combined and purified using column chromatography with hexane:ethyl

acetate (8:2). Pure prenyl compounds (XIV-XXI) eluted in fractions 2-3 (Scheme 21).

0 Ry

/

CLTCC O - O
OH Rs KZCO%

acetone
24hrs

O

XIV R,=F,R,=H,R;=H
XV R;=H,R,=F,R;=H
XVI R=H,R,=H,R;=F
XVII R=F,R,=H,R;=F

0 Ry 0
= Br
F Ra2 F
(L =
K,CO;4

acetone

OH 24hrs \(\/O

XVIII R;=F,R,=H,R;=H
XIX R,=H,R,=F,R;=H
XX R1:H,R2:H,R3:F
XXI R,=F,R,=H,R;=F

Scheme 21 The prenylation of 2-hydroxy and 3-hydroxychalones
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2.3 Spectroscopic data

I) 2-tetrahydropyranoacetophenone; C;3H;403 (220.11 g mol™)

Physical description: Brown oil
UV Data: Apax (nm) (log €): 252 (5.38), 326 (4.84).
IR Data: vy (cm™): 2941 (-CH), 1638 (C=0), 1217 (Ar-F), 1023 (C-0).

'"H NMR Data: (400 MHz, CDCl3): 5 7.68 (dd, J = 7.5 Hz, 1.5 Hz, 1H, H-6), 7.44 (td, J = 8.5
Hz, 1.5 Hz, 1H, H-4), 6.93 (d, J = 8.5 Hz, H-3), 6.85 (td, / = 8.0 Hz, 1.0 Hz, 1H, H-5), 4.90-4.72
(m, 1H, H-1'), 3.90-3.38, (m, 2H, H-5a/5b), 2.56 (s, 3H, H-8), 1.90-1.40 (m, 6H, H-
2'ab/3'ab/4'ab).

3C NMR Data: (100 MHz, CDCl3):5 204.6 (C-7), 162.3 (C-2), 136.4 (C-1), 130.9 (C-6), 119.7
(C-4), 119.0 (C-5), 118.3 (C-3),94.5 (C-1"), 62.9 (C-5"), 30.8 (C-8), 26.6 (C-2"), 25.6 (C-4"), 19.7
(C-3").

MS Data: m/z (rel.int.): 136 (48) [M*-THP], 121 (100), 93 (18), 85 (100), 57 (15).
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II) 2'-fluoro-2-hydroxychalcone; C;sH;;OF (242.25 g mol'l)

Physical description: Dark yellow solid

Yield: 80 % (0.968 g)

Melting point: 81-82 °C

UV Data: Apax (nm) (log £): 312 (5.39)

IR Data viax (em™): 3691 (OH), 2957 (-CH), 1635 (C=0), 1567 (C=C), 1056 (C-O)

'"H NMR Data: (400 MHz, CDCl;): 58.01 (d, J = 15.6 Hz, 1H, H-9), 7.94 (dd, J = 8.04 Hz, 1.0
Hz, 1H, H-6), 7.80 (d, J = 15.6 Hz, 1H, H-8), 7.67 (td, J = 8.5 Hz, 1.5 Hz, 1H, H-6'), 7.54 (td, J
= 8.6 Hz, 1.5 Hz, 1H, H-4), 7.48-7.43 (m, 1H, H-4"), 7.24 (t, J = 7.6 Hz, 1H, H-5'), 7.17 (dd, J =
10.5 Hz, 8.0 Hz, 1H, H-3"), 7.05 (d, J = 8.0 Hz, 1H, H-3), 6.98 (t, /= 7.5 Hz, 1H, H-5)

3C NMR Data: (100 MHz, CDCls): § 193.9 (C-7), 163.7 (C-2), 162.8 (d, J = 255.3 Hz, C-2"),
138.3 (C-9), 136.6, (C-4), 132.2 (d, J = 8.8 Hz, C-4'), 130.2 (d, J = 2.9 Hz, C-6'), 129.8 (C-6),
124.6 (d, J = 3.7 Hz, C-5'), 123.0 (C-8) 122.7 (d, J = 8.1 Hz, C-1"), 120.0 (C-1), 118.8 (C-5),
118.5(C-3),116.4 (d, J = 22.0 Hz, C-3)

MS Data: m/z (rel. int.): 242 (93) [M*], 222 (52), 147 (33), 120 (89), 92 (100).
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III) 3'-fluoro-2-hydroxychalcone; C;sH;1O5F (242.25 ¢ mol'l)

Physical Data: Light yellow solid

Yield: 56 % (0.677 g)

Melting point: 107-108 °C

UV Data: Apax (nm) (log €): 311 (5.47)

IR Data: vy (cm™): 3692 (OH), 2949 (-CH), 1637 (C=0), 1577 (C=C), 1217 (Ar-F), 1057 (C-
0)

'"H NMR Data: (400 MHz, CDCl;): 37.84 (dd, J = 8.0 Hz, 1.5 Hz, 1H, H-6), 7.79 (d, J = 15.6
Hz, 1H, H-9), 7.57 (d, J = 15.6 Hz, 1H, H-8), 7.45 (td, J = 8.5 Hz, 1.5 Hz, 1H, H-4), 7.35 (m,
2H, H-2' and H-5'), 7.38-7.25 (m, 1H, H-6'), 7.10-7.00 (m, 1H, H-4"), 6.97 (d, J = 7.5 Hz, 1H, H-
3),6.89 (d, /=8.0 Hz, 1H, H-5)

3C NMR Data: (100 MHz, CDCls): § 193.4 (C-7), 163.7 (C-2), 163.7 (d, J = 247.9 Hz, C-3"),
144.2 (d, J = 2.9 Hz, C-9), 1369 (d, J = 8.1 Hz, C-1"), 136.7 (C-4), 130.7 (d, J = 8.1 Hz, C-5"),
129.7 (C-6), 124.9 (d, J = 2.9 Hz, C-6'), 121.6 (C-8) 120.1 (C-1), 119.1 (C-5), 118.7 (C-3), 117.7
(d,J =21.3Hz, C-4"), 114.7 (d, J =22.0 Hz, C-2")

MS Data: m/z (rel. int.): 242 (100) [M*], 147 (41), 120 (70), 92 (88).
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IV) 4'-fluoro-2-hydroxychalcone; C;sH;OoF (242.25 ¢ mol'l)

Physical description: Yellow fine crystals

Yield: 73 % (0.883 g)

Melting point: 118-120 °C

UV Data: hn,x (nm) (log €): 319 (5.68)

IR Data: Vi, (cm™): 3710 (OH), 2888 (-CH), 1636 (C=0), 1572 (C=C), 1202 (Ar-F)

'"H NMR Data: (400 MHz, CDCly): §7.84 (d, J = 5.5 Hz, 1H, H-6), 7.81 (d, J = 15.6 Hz, 1H,
H-9), 7.60 (dd, J = 8.5 Hz, 5.0 Hz, 2H, H-2'/6"), 7.52 (d, J = 15.6 Hz, 1H, H-8), 7.44 (td, J = 8.5
Hz, 1.5 Hz, 1H, H-4), 7.06 (t, J/ = 8.5 Hz, 2H, H-3'/5"), 6.97 (d, J = 8.5 Hz, 1H, H-3), 6.88 (t, J =
8.0 Hz, 1H, H-5)

3C NMR Data: (100 MHz, CDCls): § 193.5 (C-7), 163.6 (C-2), 162.7 (d, J = 248.7 Hz, C-4"),
144.3 (C-9), 136.6, (C-4), 130.9 (C-1"), 130.6 (d, J = 8.8 Hz, C-2'/6"), 129.6 (C-6), 119.9 (C-1),
119.8 (d, J = 2.9 Hz, C-8), 118.9 (C-5), 118.6 (C-3), 116.2 (d, J = 22.0 Hz, C-3'/5')

MS Data: m/z (rel. int.): 242 (100) [M'], 225 (14), 147 (22), 120 (63), 92 (81).
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V) 2'4'-difluoro-2-hydroxychalcone; C;sH;oO,F, (260.24 g mol'l)

Physical description: Bright yellow solid

Yield: 84 % (1.098 g)

Melting point: 115-116 °C

UV Data: Apax (nm) (log £): 315 (5.07)

IR Data: v (cm™): 3693 (OH), 2956 (-CH), 1635 (C=0), 1571 (C=C), 1057 (C-O)

'"H NMR Data: (400 MHz, CDCl3): 57.95 (d, J = 15.6 Hz,, 1H, H-9), 7.91 (dd, J = 8.0 Hz, 1.5
Hz, 1H, H-6), 7.74 (d, J = 15.6 Hz, 1H, H-8), 7.66 (dt, J = 8.5 Hz, 6.5 Hz, 1H, H-6'), 7.53 (td, J
=8.5 Hz, 1.5 Hz, 1H, H-4), 7.05 (d, J = 8.5 Hz, 1H, H-6'), 7.02-6.90 (m, 3H, H-3', H-5' and H-5)

13C NMR Data: (100 MHz, CDCl3): 5 193.8 (C-7), 165.2 (dd, J = 242.8 Hz, J = 12.5 Hz, C-2),
163.6 (C-2), 160.5 (dd, J = 245.8 Hz, 12.5 Hz, C-4'), 137.3 (C-9), 136.6 (C-4), 131.5 (dd, J = 9.5
Hz, 4.4 Hz, C-6'), 129.7 (C-6), 122.5 (dd, J = 8.1 Hz, 2.2 Hz, C-8), 119.9 (C-1) 119.3 (dd, J =
10.9 Hz, 3.7 Hz, C-1"), 119.0 (C-5), 118.7 (C-3), 112.3 (dd, J = 22.1 Hz, 3.7 Hz, C-5"), 105.0 (t,
J=25.7Hz, C-3"

MS Data: m/z (rel. int.): 260 (100) [M*], 240 (66), 147 (22), 120 (85), 92 (100).
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VI) 2'-fluoro-3-hydroxychalcone; C;sH;O.F (242.25 ¢ mol'l)

Physical description: Dark orange solid

Yield: 90 % (1.089 g)

Melting point: 118-120 °C

UV Data: Apay (nm) (log £): 301 (5.53)

IR Data: vpayx (cm'l): 3388 (OH), 1655 (C=0), 1573 (C=C), 1220 (Ar-F)

'H NMR Data: (400 MHz, CDCls): 57.92 (d, J = 15.8 Hz, 1H, H-9), 7.64 (d, J = 15.8 Hz, 1H,
H-8), 7.66-7.62 (m, 2H, H-6' and H-6), 7.60 (d, J = 7.8 Hz, 1H, H-4), 7.40 (t, J = 7.8 Hz, 1H, H-
5),7.35 -7.45 (m, 1H, H-4"), 7.20 (t, J = 7.27 Hz, 1H, H-5'), 7.18-7.10 (m, 2H, H-2 and H-3")

3C NMR Data: (100 MHz, CDCls): § 191.1 (C-7), 162.0 (d, J = 255.3 Hz, C-2'), 156.6 (C-3),
139.3 (C-1), 138.4 (d, J =2.2 Hz, C-9), 132.2 (d, J = 8.8 Hz, C-4"), 129.9 (C-5), 1299 (d, J = 2.9
Hz, C-6'), 124.6 (d, J = 3.7 Hz, C-5"), 124.5 (d, J = 3.7 Hz, C-8), 123.0, (d, J = 11.0 Hz, C-1),
121.0 (C-4), 120.7 (C-2), 116.4 (d, J = 22.7 Hz, C-3"), 115.2 (C-6)

MS Data: m/z (rel. int.): 242 (100) [M*], 223 (30), 149 (33), 121 (37), 93 (11).
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VII) 3'-fluoro-3-hydroxychalcone; CsH;;0,F (242.25 g mol'l)

Physical description: Pale yellow solid

Yield: 54 % (0.656 g)

Melting point: 91-93 °C

UV Data: Apax (nm) (log €): 301 (5.12)

IR Data: vy, (cm™): 3398 (OH), 2970 (-CH), 1662 (C=0), 1577 (C=C), 1213 (Ar-F)

'"H NMR Data: (400 MHz, CDCls): §7.77 (d, J = 15.8 Hz, 1H, H-9), 7.60 (d, J = 7.8 Hz, 1H,
H-4), 7.60-7.52 (m, 1H, H-6), 7.50 (d, J = 15.8 Hz, 1H, H-8), 7.43-7.38 (m, 3H, H-5, H-6" and
H-5"),7.35 (d, J=9.03 Hz, 1H, H-2"), 7.20-7.15 (m, 2H, H-2 and H-4")

3C NMR Data: (100 MHz, CDCls): & 190.9 (C-7), 162.9 (d, J = 246.5 Hz, C-3"), 156.8 (C-3),
144.0 (d, J = 2.9 Hz, C-9), 139.2 (C-1), 137.2 (d, J = 7.3 Hz, C-1"), 130.6 (d, J = 8.1 Hz, C-5"),
130.0 (C-5), 124.9 (d, J = 2.9 Hz, C-6'), 123.2 (C-8) 121.1 (C-4), 120.8 (C-2), 117.5(d, J =213
Hz, C-4"), 115.4 (C-6), 114.6 (d, J = 21.3 Hz, C-2)

MS Data: m/z (rel. int.): 242 (100) [M*], 149 (26), 121 (33), 93 (15).
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VIII) 4'-fluoro-3-hydroxychalcone; C;sH;O5F (242.25 ¢ mol'l)

Physical Data: Dark yellow solid

Yield: 81 % (0.986 g)

Melting point: 127-128 °C

UV Data: Apax (nm) (log €): 309 (5.51)

IR Data: vy (cm™): 3333 (-OH), 2579 (-CH), 1652 (C=0), 1223 (Ar-F)

'"H NMR Data: (400 MHz, CDCl;): 37.80 (d, J = 15.8 Hz, 1H, H-9), 7.65 (dd, J = 9.0 Hz, 5.0
Hz, 2H, H-2'/6"), 7.64-7.55 (m, 2H, H-4 and H-6), 7.44 (d, J = 15.55 Hz, 1H, H-8), 7.40 (t, J =
8.03 Hz, 1H, H-5), 7.13 (t, J = 8.03 Hz, 2H, H-3'/5"), 7.15-7.10 (m, 1H, H-2)

3C NMR Data: (100 MHz, CDCls): & 190.6 (C-7), 164.1 (d, J = 252.4 Hz, C-4"), 156.6 (C-3),
144.3 (C-9), 139.5 (C-1), 131.0 (d, /= 2.9 Hz, C-1"), 130.5 (d, J = 8.8 Hz, 2C, C-2'6"), 129.9 (C-
5), 121.7 (d, J = 2.9 Hz, C-8), 121.0 (C-4), 120.5 (C-2), 116.2 (d, J = 22.0 Hz, 2C, C-3'/5"),
115.1 (C-6)

MS Data: m/z (rel. int.): 242 (100) [M*], 225 (15), 149 (22), 121 (33), 93 (7).
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IX) 2'.4'-fluoro-3-hydroxychalcone; CsH0O,F; (260.24 g mol'l)

Physical description: Bright yellow solid

Yield: 86 % (1.12 g)

Melting point: 112-113 °C

UV Data: Apax (nm) (log €): 307 (5.06)

IR Data: via, (cm™): 3377 (OH), 2962 (-CH), 1654 (C=0), 1573 (C=C), 1264 (Ar-F), 1053 (C-
0)

'"H NMR Data: (400 MHz, CDCl3): 57.86 (d, J = 16.0 Hz, 1H, H-9), 7.64 (dt, J = 8.5 Hz, 6.27
Hz, 1H, H-6"), 7.62-7.55 (m, 3H, H-8, H-4 and H-6), 7.40 (t, J = 8.0 Hz, 1H, H-5), 7.12 (dd, J =
10.6 Hz, 8.0 Hz, 1H, H-2), 7.00-6.85 (m, 2H, H-5' and H-3")

3C NMR Data: (100 MHz, CDCl3): & 190.8 (C-7), 164.4 (dd, J = 255.3 Hz, 12.5 Hz, C-4"),
162.0 (dd, J = 257.5 Hz, 11.7 Hz, C-2'), 156.6 (C-3), 139.3 (C-1), 136.9 (C-9), 131.3 (dd, J =
10.3 Hz, 4.4 Hz, C-6"), 129.8 (C-5), 124.2 (dd, J = 7.3 Hz, 2.2 Hz, C-8), 121.0 (C-4) 120.8 (C-2),
119.4 (dd, J = 11.7 Hz, 3.7 Hz, C-1"), 115.2 (C-6), 112.3 (dd, J = 21.3 Hz, 3.7 Hz, C-5'), 104.8
(t,J=25.7Hz, C-3")

MS Data: m/z (rel. int.): 260 (100) [M*], 241 (26), 167 (33), 139 (22).
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X) 2'-fluoroflavanone; C;sH;OoF (242.25 ¢ mol'l)

Physical description: Yellow-green crystalline powder
Yield: 64 % (0.772 g)

Melting point: 79-82 °C

op=(+) 0.03 (¢ =0.1, MeOH)

UV Data: Apax (nm) (log €): 256 (5.64), 333 (5.19)

IR Data: Vyux (em™):1629 (C=0), 1219 (Ar-F), 1037 (C-O)

'"H NMR Data: (400 MHz, CDCls): §7.73 (dd, J = 8.0 Hz, 1.25 Hz, 1H, H-5), 7.63 (td, J = 7.5
Hz, 1.5 Hz, 1H, H-6"), 7.51 (td, J = 8.53 Hz, 1.6 Hz, 1H, H-7), 7.38-7.32 (m, 1H, H-4"), 7.22 (t, J
= 7.5 Hz, 1H, H-5"), 7.07 (t, J = 8.5 Hz, 1H, H-3"), 7.02 (d, J = 9.5 Hz, 1H, H-8), 6.90 (t, J = 8.0
Hz, 1H, H-6), 5.65 (d, J =9.3 Hz, 1H, H-2), 3.50 (dd, J = 17.6 Hz, 3.7 Hz, 1H, H-3a), 3.41 (dd, J
=17.6 Hz, 9.3 Hz, 1H, H-3b)

3C NMR Data: (100 MHz, CDCl3): 3 205.6 (C-4), 162.8 (C-8a), 159.2 (d, J = 245.8 Hz, C-2",
137.3 (C-7), 130.3 (C-5), 129.7 (d, J = 13.2 Hz, C-1"), 129.2 (d, J = 8.8 Hz, C-4'), 1274 (d, J =
5.9 Hz, C-6'), 124.5 (d, J = 3.7 Hz, C-5"), 119.3 (C-4a), 119.2 (C-6), 118.7 (C-8), 1153 (d, J =
21.3 Hz, C-3'),64.2 (d, J = 2.9 Hz, C-2),45.7 (C-3)

MS Data: m/z (rel. int.): 242 (30) [M*], 222 (16), 147 (33), 120 (100), 92 (89).
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XI) 3'-fluoroflavanone; CisH;;O0,F (242.25 g mol'l)

Physical description: Yellow-green crystalline powder

Yield: 72 % (0.864 g)

Melting point: 92-93 °C

op=(-) 0.03 (c =0.1, MeOH)

UV Data: hmax (nm) (log €): 257 (5.48), 330 (5.02)

IR Data: via, (cm™):1688 (C=0), 1600 (C=C), 1225 (Ar-F)

'"H NMR Data: (400 MHz, CDCls): §7.71 (dd, J = 8.0 Hz, 1.5 Hz, 1H, H-5), 7.51 (td, J = 8.5
Hz, 1.5 Hz, 1H, H-7), 7.40-7.30 (m, 1H, H-5"), 7.05-6.95 (m, 2H, H-2' and H-6"), 7.05-7.00 (m,
2H, H-4' and H-8), 6.91 (t, J/ = 8.0 Hz, 1H, H-6), 5.38 (dd, J = 9.0 Hz, 1H, H-2) 3.44 (dd, J =
17.6 Hz, 9.0 Hz, 1H, H-3a), 3.37 (dd, J = 17.6 Hz, 3.5 Hz, 1H, H-3b)

3C NMR Data: (100 MHz, CDCl3):  205.3 (C-4), 163.6 (d, J = 246.5 Hz, C-3'), 162.6 (C-8a),
145.4 (d, J = 6.6 Hz, C-1'), 137.1 (C-7), 130.2 (d, J = 8.1 Hz, C-5'), 130.0 (C-5), 121.3 (d, J=2.9
Hz, C-6'), 119.3 (C-4a), 119.2 (C-6), 118.7 (C-8), 114.7 (d, J =21.3 Hz, C-4"), 112.8 (d, J = 22.7
Hz, C-2"),69.2 (d, J = 1.5 Hz, C-2), 47.1 (C-3)

MS Data: m/z (rel.int.): 242 (100) [M], 147 (44), 120 (74), 92 (70).
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XII) 4'-fluoroflavanone; C;sH;OoF (242.25 ¢ mol'l)

Physical description: Yellow-green crystalline powder

Yield: 86 % (1.03 g)

Melting point: 108-110 °C

op = (+) 0.03 (¢ =0.1, MeOH)

UV Data: Apax (nm) (log €): 257 (5.44), 333 (5.02)

IR Data: Vi, (cm™): 2906 (-CH), 1631 (C=0), 1211 (Ar-F)

'"H NMR Data: (400 MHz, CDCls): 57.71 (dd, J = 8.5 Hz, 1.5 Hz, 1H, H-5), 7.51 (td, J = 8.5
Hz, 1.5 Hz, 1H, H-7), 7.42 (dd, J = 8.5 Hz, 5.1 Hz, 2H, H-2'/6"), 7.10 (t, J = 8.5 Hz, 2H, H-3'/5"),
7.02 (d, J = 8.5 Hz, 1H, H-8), 6.91 (t, J = 8.0 Hz, 1H, H-6), 5.36 (dd, J = 9.0 Hz, 3.0 Hz, 1H, H-
2),3.45(dd, J=17.6 Hz, 9.0 Hz, 1H, H-3a), 3.38 (dd, J = 17.6 Hz, 3.0 Hz, 1H, H-3b)

3C NMR Data: (100 MHz, CDCls):  205.4 (C-4), 162.6 (C-8a), 162.1 (d, J = 245.8 Hz, C-4"),
138.6 (d, J=2.9 Hz, C-1"), 137.2 (C-7), 130.1 (C-5), 127.6 (d, J = 8.8 Hz, 2C, C-26'), 119.3 (C-
4a), 119.2 (C-6), 118.7 (C-8), 115.5 (d, J = 21.3 Hz, 2C, C-3'/5"), 69.3 (C-2), 47.2 (C-3)

MS Data: m/z (rel. int.): 242 (100) [M], 147 (26), 120 (67), 92 (85).

57



XIII) 2'4'-difluoroflavanone; C;sH;10,F; (260.24 g mol'l)

Physical description: Yellow-green crystalline powder

Yield: 70% (0.903 g)

Melting point: 97-98 °C

ap=(+) 0.02 (¢ =0.1, MeOH)

UV Data: Apax (nm) (log €): 257 (5.56), 334 (5.11)

IR Data: vy (cm™): 3694 (OH),2963 (-CH), 1608 (C=0), 1242 (Ar-F), 1054 (C-O)

'"H NMR Data: (400 MHz, CDCls): 57.71 (dd, J = 8.1 Hz, 1.0 Hz, 1H, H-5), 7.61 (dt, J = 8.6
Hz, 6.5 Hz, 1H, H-6"), 7.52 (td, J = 8.5 Hz, 1.4 Hz, 1H, H-7), 7.03 (d, J = 8.0 Hz, 1H, H-8),7.00-
6.92 (m, 1H, H-5"), 6.91-6.88 (m, 1H, H-6), 6.83 (td, / = 11.0 Hz, 2.5 Hz 1H, H-3'), 5.61 (dd, J =
9.0 Hz, 2.5 Hz, 1H, H-2), 3.48 (dd, J = 17.6 Hz, 2.5 Hz, 1H, H-3b), 3.37 (dd, J = 17.6 Hz, 9.0
Hz, 1H, H-3a)

3C NMR Data: (100 MHz, CDCls): § 205.6 (C-4), 162.8 (C-8a), 162.8 (dd, J = 248.7 Hz, 12.5
Hz, C-4"), 159.7 (dd, J = 248.0 Hz, 11.7 Hz, C-2"), 137.4 (C-7), 130.1 (C-5), 128.6 (dd, J =9.3
Hz, 5.9 Hz, C-6), 125.7 (dd, J = 13.9 Hz, 3.7 Hz, C-1"), 119.3 (C-4a), 119.2 (C-6), 118.8 (C-8),
111.7 (dd, J = 20.5 Hz, 3.7 Hz, C-5'), 103.8 (t, J = 25.7 Hz, C-3"), 63.7 (d, / = 2.2 Hz, C-2),45.4
(C-3)

MS Data: m/z (rel. int.): 260 (93) [M'], 240 (100), 147 (26), 140 (56), 120 (93), 92 (100).
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XIV) 2'-fluoro-2-oxyprenylchalcone; Cy0H19O,F (310.36 g mol'l)

Physical description: Yellow gummy oil

Yield: 82 % (0.510 g)

UV Data: Amax (nm) (log €): 253 (5.13), 300 (5.42)

IR Data: vy, (cm™): 2922 (-CH), 1658 (C=0), 1599 (C=C), 1227 (Ar-F)

'H NMR Data: (400 MHz, CDCly): §7.79 (d, J = 16.0 Hz, 1H, H-9), 7.73 (dd, J = 7.6 Hz, 1.5
Hz, 1H, H-6), 7.62 (d, J = 16.0 Hz, 1H, H-8), 7.61 (td, J = 8.5 Hz, 1.5 Hz, 1H, H-6"), 7.48 (td, J
= 8.6 Hz, 1.5 Hz, 1H, H-4), 7.40-7.32 (m, 1H, H-4"), 7.17 (t, J = 7.5 Hz, 1H, H-5'), 7.14-7.04 (m,
2H, H-5 and H-3'), 7.02 (d, J = 8.5 Hz, 1H, H-3), 5.50 (t, J = 6.5 Hz, 1H, H-2"), 4.63 (d, 7.0 Hz,
2H, H-1"), 1.75 (s, 1H, H-5"), 1.73 (s, 1H, H-4")

3C NMR Data: (100 MHz, CDCls): § 192.3 (C-7), 161.9 (d, J = 254.6 Hz, C-2"), 157.9 (C-2),
138.8 (C-3"), 134.6 (d, J = 3.1 Hz, C-9), 133.2 (C-4), 131.4 (d, J = 8.8 Hz, C-4"), 131.0 (C-6),
129.7 (d, J = 5.9 Hz, C-6'), 129.2 (C-1), 129.1 (d, J = 2.9 Hz, C-8), 124.3 (d, J = 3.7 Hz, C-5"),
123.4 (d, J=11.7 Hz, C-1"), 120.8 (C-5), 119.3 (C-2"), 116.1 (d, J = 22.0 Hz, C-3"), 113.1 (C-3),
65.6 (C-1"), 25.8 (C-5"), 18.3 (C-4")

MS Data: m/z (rel. int.): 310 (7) [M'], 242 (89), 222 (28), 147 (30), 120 (74), 92 (22), 69 (100)
HRMS (m/z): 333.1268 (calcd for Cy0H;9O,FNa, 333.1267)
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XYV) 3'-fluoro-2-oxyprenylchalcone; C,0H;9OoF (310.36 g mol'l)

Physical description: Orange gummy oil

Yield: 60 % (0.372 g)

UV Data: Apax (nm) (log €): 228 (5.43), 299 (5.53)

IR Data: vy (cm™): 2923 (-CH), 1657 (C=0), 1597 (C=C), 1229 (Ar-F)

'H NMR Data: (400 MHz, CDCls): 7.76 (dd, J = 7.8 Hz, 1.8 Hz, 1H, H-6), 7.61 (d, J = 15.8
Hz, 1H, H-9), 7.57 (d, J = 15.8 Hz, 1H, H-8), 7.49 (td, J = 8.7 Hz, 2.0 Hz, 1H, H-4), 7.40-7.32
(m, 2H, H-5' and H-6"), 7.32-7.30 (m, 1H, H-2'), 7.12-7.06(m, 1H, H-4"), 7.03 (t, J = 7.8 Hz, 1H,
H-3), 7.05-7.03 (m, 1H, H-5), 5.53 (t, J = 6.8 Hz, 1H, H-2"), 4.64 (d, J = 6.8 Hz, 2H, H-1"), 1.78
(s, 1H, H-5"), 1.75 (s, 1H, H-4")

3C NMR Data: (100 MHz, CDCls): § 192.0 (C-7), 162.9 (d, J = 246.5 Hz, C-3"), 158.2 (C-2),
140.5 (d, J = 2.9 Hz, C-9), 138.9 (C-3"), 137.8 (d, J = 7.3 Hz, C-1"), 133.6 (C-4), 130.9 (C-6),
130.3 (d, J = 8.1 Hz, C-5'), 128.9 (C-1), 128.6 (C-8), 124.6 (d, J = 2.9 Hz, C-6'), 120.9 (C-5),
119.1 (C-2"), 116.8 (d, J =22.0 Hz, C-4"), 114.1 (d, J = 22.3 Hz, C-2'), 113.0 (C-3), 65.6 (C-1"),
25.8 (C-5"), 18.3 (C-4")

MS Data: m/z (rel. int.): 310 (15) [M'], 241 (100), 225 (19), 147 (52), 121 (26), 69 (19)
HRMS (m/z): 333.1269 (calcd. for Co0H;9O,FNa 333.1267)
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XVI) 4'-fluoro-2-oxyprenylchalcone; Cy0H19O,F (310.36 g mol'l)

Physical description: Orange gummy oil

Yield: 63 % (0.390 g)

UV Data: Apax (nm) (log €): 228 (5.56), 307 (5.63)

IR Data: Vi, (cm™): 2924 (-CH), 1656 (C=0), 1594 (C=C)

'H NMR Data: (400 MHz, CDCly): §7.72 (dd, J = 7.8 Hz, 1.8 Hz, 1H, H-6), 7.61 (d, J = 15.8
Hz, 1H, H-9), 7.57 (dd, J = 10.2 Hz, 8.5 Hz, 2H, H-2Y6"), 7.48 (d, J = 15.8 Hz, 1H, H-8), 7.46
(td, J = 8.8 Hz, 2.1 Hz, 1H, H-4), 7.09 (t, J = 8.5 Hz, 2H, H-3/5"), 7.08-7.02 (m, 2H, H-3 and H-
5),5.51 (t, J = 6.8 Hz, 1H, H-2"), 4.63 (d, J = 6.5 Hz, 2H, H-1"), 1.76 (s, 1H, H-5"), 1.74 (s, 1H,
H-4")

3C NMR Data: (100 MHz, CDCl3): § 192.2 (C-7), 163.9 (d, J = 250.9 Hz, C-4"), 158.0 (C-2),
141.1 (C-9), 138.6 (C-3"), 133.2 (C-4), 131.8 (d, J = 3.7 Hz, C-1"), 130.8 (C-6), 130.1 (d, J = 8.8
Hz, 2C, C-2'/6"), 129.1 (C-1), 127.3 (d, J = 2.2 Hz, C-8), 120.7 (C-5), 119.4 (C-2"), 116.2 (d, J =
22.0 Hz, 2C, C-3'/5"), 113.4 (C-3), 65.5 (C-1"), 25.7 (C-5"), 18.6 (C-4")

MS Data: m/z (rel. int.): 310 (19) [M*], 241 (100), 147 (26), 120 (33), 69 (19)
HRMS (m/z): 333.1274 (calcd. for CyoH;90,FNa, 333.1267)
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XVII) 2'4'-difluoro-2-oxyprenylchalcone; Co0H;30,F, (328.36 g mol'l)

Physical description: Yellow solid

Yield: 74 % (0.484 g)

Melting point: 54-55 °C

UV Data: Apax (nm) (log €): 228 (5.36), 307 (549)

IR Data: Vi, (cm™): 2927 (-CH), 1649 (C=0), 1594 (C=C), 1267 (Ar-F)

'"H NMR Data: (400 MHz, CDCl3): § 7.78-7.70 (m, 1H, H-6 ), 7.72 (d, J = 15.6 Hz, 1H, H-9),
7.60-7.56 (m, 1H, H-6"), 7.58 (d, J = 15.6 Hz, 1H, H-8), 7.48 (td, J = 8.5 Hz, 1.5 Hz, 1H, H-4),
7.05 (t, J = 7.5 Hz, 1H, H-5), 7.01 (d, J = 8.6 Hz, 1H, H-3), 6.95-6.84 (m, 2H, H-3' and H-5"),
549 (t,J = 6.5 Hz, 1H, H-2"), 4.64 (d, J = 6.5 Hz, 2H, H-1"), 1.75 (s, 1H, H-5"), 1.73 (s, 1H, H-
4"

3C NMR Data: (100 MHz, CDCl3):5 192.3 (C-7), 163.1 (dd, J = 243.7 Hz, 12.5 Hz, C-2),
160.1 (dd, J = 240.4 Hz, 12.0 Hz, C-4"), 138.4 (C-3"), 133.6, (C-9), 133.3 (C-4), 131.9 (C-6),
130.2 (dd, J = 9.5 Hz, 4.4 Hz, C-6"), 129.2 (dd, J = 5.7 Hz, 2.9 Hz, C-8), 129.1 (C-1), 121.0 (C-
5), 119.50 (C-2"), 119.48 (dd, J = 12.4 Hz, 3.8 Hz, C-1"), 113.0 (C-3), 111.7 (dd, J = 21.3 Hz, 3.7
Hz, C-5'), 104.6 (t, J = 25.7 Hz, C-3'), 66.2 (C-1"), 25.5 (C-5"), 18.7 (C-4")

MS Data: m/z (rel. int.): 328 (7) [M'], 260 (100), 240 (56), 147 (30), 69 (15)
HRMS (m/z): 351.1177 (calcd. for CyoH;9O,F>Na 351.1173)
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XVIII) 2'-fluoro-3-oxyprenylchalcone; CooH19O-F (310.36 g mol'l)

Physical description: Pale yellow-green solid

Yield: 66 % (0.408 g)

Melting point: 56-57 °C

UV Data: hnax (nm) (log €): 294 (5.52)

IR Data: via, (cm™): 2933 (-CH), 1657 (C=0), 1574 (C=C), 1246 (Ar-F), 1009 (C-O)

'H NMR Data: (400 MHz, CDCLy): 57.93 (d, J = 15.6 Hz, 1H, H-9), 7.65 (td, J = 8.5 Hz, 1.5
Hz, 1H, H-6)), 7.63 (d, J = 15.6 Hz, 1H, H-8), 7.61-7.59 (m, 2H, H-4 and H-6), 7.42 (t, J = 8.0
Hz, 1H, H-5), 7.42-38 (m, 1H, H-4"), 7.21 (t, J = 7.2 Hz, 1H, H-5'), 7.17-7.14 (m, 2H, H-2 and
H-3'), 5.53 (t, J = 6.5 Hz, 1H, H-2"), 4.62 (d, J = 6.5 Hz, 2H, H-1"), 1.82 (s, 1H, H-5"), 1.79 (s,
1H, H-4")

3C NMR Data: (100 MHz, CDCls): § 190.4 (C-7), 161.5 (d, J = 254.6 Hz, C-2"), 159.5 (C-3),
139.3 (C-1), 138.7 (C-3"), 137.6 (d, J = 5.2 Hz, C-9), 131.8 (d, J = 8.8 Hz, C-4'), 129.8 (d, J =
5.7 Hz, C-6'), 129.6 (C-5), 124.7 (d, J/ = 7.3 Hz, C-5'), 124.5 (d, J/ = 3.7 Hz, C-8), 123.0 (d, J =
11.7 Hz, C-1"), 121.1 (C-4), 120.2 (C-2), 119.0 (C-2"), 116.2 (d, J = 22.0 Hz, C-3"), 113.6 (C-6),
64.8 (C-1"), 25.9 (C-5"), 18.1 (C-4")

MS Data: m/z (rel. int.): 310 (19) [M*], 242 (100), 223 (33), 121 (22), 69 (19)
HRMS Data: 333.1261 (calcd. for C0H;9O,FNa 333.1267)
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XIX) 3'-fluoro-3-oxyprenylchalcone; Cy0H19O,F (310.36 g mol'l)

Physical description: Pale yellow solid

Yield: 68 % (0.419 g)

Melting point: 51-52 °C

UV Data: Apax (nm) (log €): 295 (5.53)

IR Data: vy (cm™): 2907 (-CH), 1662 (C=0), 1577 (C=C), 1018 (C-0)

'"H NMR Data: (400 MHz, CDCls): §7.76 (d, J = 16.2 Hz, 1H, H-9), 7.60 (d, J = 8.0 Hz, 1H,
H-4), 7.59-7.55 (m, 1H, H-6), 7.51 (d, J = 15.6 Hz, 1H, H-8), 7.42-7.38 (m, 3H, H-5, H-5' and
H-6"), 7.35 (d, J/ = 9.5 Hz, 1H, H-2"), 7.16 (dd, J = 8.5 Hz, 3.0 Hz, 1H, H-2), 7.14-7.10 (m, 1H,
H-4"), 5.52 (t, J = 7.0 Hz, 1H, H-2"), 4.60 (d, J = 7.0 Hz, 2H, H-1"), 1.82 (s, 1H, H-5"), 1.78 (s,
1H, H-4")

3C NMR Data: (100 MHz, CDCls): § 190.0 (C-7), 163.1 (d, J = 246.5 Hz, C-3"), 159.4 (C-3),
143.1 (d, J = 2.2 Hz, C-9), 139.3 (C-1), 138.8 (C-3"), 137.4 (d, J = 8.1 Hz, C-1'), 130.8 (d, J =
8.1 Hz, C-5'), 129.5 (C-5), 124.4 (d, J = 2.9 Hz, C-6"), 123.1 (C-8), 121.0 (C-4), 120.2 (C-2),
119.2 (C-2"), 117.0 (d, J = 21.3 Hz, C-4'), 114.5 (d, J = 22.7 Hz, C-2"), 113.8 (C-6), 64.1 (C-1"),
25.7 (C-5"), 18.3 (C-4")

MS Data:m/z (rel. int.): 310 (7) [M"], 242 (100), 223 (7), 149 (15), 121 (7), 69 (26)
HRMS (m/z): 333.1252 (calcd. for Co0H9O,FNa 333.1267)
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XX) 4'-fluoro-3-oxyprenylchalcone; C,0H9OoF (310.36 g mol'l)

Physical description: Yellow crystalline powder

Yield: 75 % (0.462 g)

Melting point: 69-71 °C

UV Data: Apax (nm) (log €): 303 (5.50)

IR Data: via, (cm™): 2935 (-CH), 1656 (C=0), 1579 (C=C), 1228 (Ar-F), 1011 (C-0)

'H Data: NMR (400 MHz, CDCls): 57.78 (d, J = 15.6 Hz, 1H, H-9), 7.65 (dd, J = 11.6 Hz, 9.0
Hz, 2H, H-2'/6"), 7.60 (d, J = 7.5 Hz, 1H, H-4), 7.58-7.56 (m, 1H, H-6), 7.46 (d, J = 15.6 Hz, 1H,
H-8), 7.41 (t, J = 7.5 Hz, 1H, H-5), 7.15 (dd, J = 8.5 Hz, 3.1 Hz, 1H, H-2), 7.12 (t, J = 8.5 Hz,
2H, H-3'/5"), 5.53 (t, J = 6.5 Hz, 1H, H-2"), 4.60 (d, J = 6.5 Hz, 2H, H-1"), 1.82 (s, 1H, H-5"),
1.79 (s, 1H, H-4")

3C NMR Data: (100 MHz, CDCls): § 190.6 (C-7), 164.5 (d, J = 252.4 Hz, C-4"), 159.3 (C-3),
143.7 (C-9), 139.7 (C-1), 138.8 (C-3"), 131.1 (d, J = 2.9 Hz, C-1"), 130.3 (d, J/ = 8.1 Hz, 2C, C-
2'/6", 129.6 (C-5), 121.9 (d, J = 2.2 Hz, C-8), 121.0 (C-4), 120.0 (C-2), 119.2 (C-2"), 116.1 (d, J
=21.0 Hz, 2C, C-3'/5"), 113.8 (C-6), 65.1 (C-1"), 25.9 (C-5"), 18.2 (C-4")

MS Data: m/z (rel. int.): 310 (14) [M*], 242 (89), 149 (40), 121 (63) 69 (100).
HRMS (m/z): 333.1257 (calcd. for Co0H9O,FNa, 333.1267)
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XXI) 2'4'-difluoro-3-oxyprenylchalcone; C,0H30,F; (328.36 g mol'l)

Physical description: Yellow solid

Yield: 71 % (0.467 g)

Melting point: 76-77 °C

UV Data: Apax (nm) (log £): 300 (5.32)

IR Data: v (cm™): 2895 (-CH), 1659 (C=0), 1583 (C=C), 1247 (Ar-F), 1098 (C-0)

'"H NMR Data: (400 MHz, CDCls): 57.85 (d, J = 15.6 Hz, 1H, H-9), 7.65 (dt, J = 8.5 Hz, 6.5
Hz, 1H, H-6'), 7.57 (d, J = 15.6 Hz, 1H, H-8), 7.58-7.55 (m, 2H, H-2 and H-6), 7.42 (t, J = 7.5
Hz, 1H, H-5), 7.16 (dd, J = 8.5 Hz, 2.5 Hz, 1H, H-4), 7.00-6.94 (m, 1H, H-5'), 6.92-6.85 (m, 1H,
H-3"), 5.33 (t, J = 6.5 Hz, 1H, H-2"), 4.60 (d, J = 6.5 Hz, 2H, H-1"), 1.83 (s, 1H, H-5"), 1.79 (s,
1H, H-4")

3C NMR Data: (100 MHz, CDCl3): § 190.3 (C-7), 164.2 (dd, J = 253.8 Hz, 12.5 Hz, C-4"),
161.3 (dd, J =254.5 Hz, 11.7 Hz, C-2"), 159.3 (C-3) 139.3 (C-1), 138.8 (C-3"), 136.5 (C-9) 130.9
(dd, J = 10.3 Hz, 5.1 Hz, C-6'), 129.7 (C-5), 124.2 (dd, J = 2.9 Hz, 2.2 Hz, C-8), 121.02 (C-4),
120.2 (C-2), 119.6 (dd, J = 11.7 Hz, 3.7 Hz, C-1"), 119.2 (C-2"), 113.8 (C-6), 112.2 (dd, J =21.3
Hz, 3.7 Hz, C-5'), 104.8 (t, J = 25.67 Hz, C-3"), 65.3 (C-1"), 25.9 (C-5"), 18.4 (C-4").

MS Data: m/z (rel. int.): 328 (7) [M'], 260 (100), 240 (56), 147 (30), 69 (15).
HRMS (m/z): 351.1174 (calcd. for Co0H;30,F,Na 351.1173)
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2.4 Anti-oxidant activity

In this study, the comparison in anti-oxidant activity of variously substituted fluorine containing
2-hydroxy and 3-hydroxychalcones was examined using the 1,1-diphenyl-2-picrylhydrazyl

(DPPH) method.

The DPPH scavenging activity of compounds II-IX were determined spectrophotometrically
using the stable free radical DPPH. Stock solutions of each compound were prepared by
dissolving 10 mg of the compound in 10 mL of methanol (1.00 mg mL™). The stock solutions
were used to prepare a series of eight concentrations (500, 250, 100, 50 and 10 pug mL™). A
solution of DPPH was prepared by dissolving 1.97 mg of DPPH in 50 mL of methanol (0.1 mM)
and protected from light by covering the volumetric flask with aluminum foil. An aliquot of each
dilution of the compound (200 pL) was mixed with methanolic solution of DPPH (2.00 mL) in
glass test tubes. The mixtures were shaken vigorously and set in a dark cupboard at ambient
temperature for 30 min. The absorbance was then measured at 517 nm against methanol as a
blank. The percent scavenging activity of the compounds were calculated using the following

formula:

Abs(control)—Abs (sample)
Abs (control)

Scavenging activity (%) = 100 x
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Chapter 3. Results and Discussion

Twenty-one compounds of which include one intermediate (compound I) and eight novel prenyl
chalcones (XIV-XXI)were successfully synthesized using both the Claisen-Schmidt
condensation reaction and prenylation. All chalcones have fluorine substituted at the 2', 3', 4' and
2'4" positions on the B ring, in combination with a hydroxyl group at the 2-position (II-V) and
the 3-position (VI-IX) as well as an oxyprenyl group at the 2-position (XIV-XVII) and the 3-
position (XVIII-XXI). In addition, four flavanones with the same fluorine substitution pattern on

the B-ring were synthesized (X-XIII).
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I Ry=F,R,=H,R;=H VI R,=F,R,=H,R;=H X R;=F,R,=H,

R3:H
I Ry =H,R,=F,R;=H VII R;=H,R,=F,R;=H XI R,=H,R,=F,Ry;=H
IV Ry =H,R;=H,R;=F VIII R,=H,R,=H,R;=F XII R,=H,R,=H,R;=F
V R =F,Ry=H,R3=F IX R,=F,R,=H,R;=F XIII R, =F,R,=H,R;=F

XIV R,=F,

R,=H,R;=H XVII R,=F,R,=H,Ry;=H
XV R;=H,R,=F,R;=H XIX R;=H,R,=F,Ry;=H
XVI R;=H,R,=H,R;=F XX R;=HR,=H R;=F
XVII RIZF,RZZHR F XXI RIZF,RZZH,R3:F

Figure 16 The molecular structures of all 20 compounds and one intermediate (I)

synthesized in this study

69



3.1 Chemistry

The synthesis of the chalcones were carried out using the Claisen-Schmidt condensation reaction
between substituted hydroxyl acetophenones and various susbstituted fluorobenzaldehydes. The
mechanism for this reaction is explained in detail in chapter 1. The reaction involves four steps;
firstly the formation of an enolate ion using aqueous sodium hydroxide [10% (m/m) NaOH] in
ethanol, secondly the nucleophillic attack on the carbonyl group of fluorobenzaldehyde by the
enolate ion (also known as Aldol formation), thirdly the process of enolization and lastly the

dehydration step which subsequently forms the chalcone (II).

II

Enolate formtion Adol formation
/ Enolization

I Dehydration

Scheme 22 The mechanistic pathway for the formation of compound II

70



3.1.1 The hydroxyfluorinated chalcones

The yields obtained for the hydroxyl fluorinated chalcones II-IX were between 70-90 % (Table
4), with the exception of the two meta positioned fluoro derivatives whose yields were lower at
56 % and 54 % for III and VII respectively. In addition, VII took five days to complete. Thus,
weakly deactivating substituents on the aromatic aldehydes render the carbonyl carbon of the
aldehyde less reactive than substitution at the ortho and para positions. The best yield was
obtained by 2'-fluoro-3-hydroxychalcone (VI) of 90 % although taking twice as long to achieve
it, and 2'-fluoro-2-hydroxychalcone (II) also had a high yield (80 %) in half the time. This may
be due to the inductive effects of fluorine, withdrawing electron density from the aldehydic
carbon and increasing its reactivity. Compounds V and IX, with two fluorine atoms also showed
high yields of 84 % and 81 % respectively. The fact that the meta positioned fluorine atoms
diminished reactivity of the benzaldehydes indicates that there must be some electronic factor
associated with it, since the para fluoro derivatives were also synthesized in good yields of 73 %

and 81 %.

In general, the 3-hydroxyfluorinated derivatives took longer to reach completion (48-120 hrs)
than the 2-hydroxyfluorinated chalcones, which all reacted in 24 hrs. An exception was the
difluorinated 3-hydroxychalcone which reached completion in 24 hrs. This suggests that
hydroxy substitution at the 2-position of the acetophenone renders it a better nucleophile than

substitution at the 3-position.

In general, the rate of reaction decreased in the order of 2',4'-difluoro > 2'-fluoro > 4'-fluoro > 3'-
fluoro substitution with regard to fluorine substitution on the phenyl ring B and 2-OH > 3-OH

with regard to hydroxyl substitution on the phenyl ring A. This relationship is consistent with
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previous investigations on rate studies between analogues of variously substituted chalcones

(Clayden et al., 2007; Gasull et al., 2000).

Table 4 The percentage yields and melting points of the compounds synthesised

No. Reaction time % Yield M.p. (°C) Literature m.p. (°C)
(hrs)

(II) 24 80 81-82 82-83 (Ivkovic et al.,
2013)

(IID) 24 56 107-108 109-110 (Dias et al.,
2013)

av) 24 73 118-120 84-88 (Ivkovic et al.,
2013)

(V) 24 84 115-116 46-48 (Singh

etal,2011)

(VD 48 90 118-120 -

(VII) 120 54 91-93 -

(VIII) 72 81 127-128 135-136 (Butcher et al.,
2007)

(IX) 24 81 112-113 -

X) 72 64 78-82 147-148(Kavala et al.,
2012)

(XI) 48 72 92-93 -

(X1II) 3 86 108-110 79-80 (Chen et al., 2011)

(XIII) 24 70 97-98 -

(XIV) 24 82 - *

(XV) 24 60 - *

(XVI) 24 63 - *

(XVII) 24 74 54-55 *

(XVIII) 24 66 56-57 *

(XX) 24 68 51-52 *
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(XIX) 24 75 69-72 *
(XXI) 24 71 76-77 *

*Eight Novel compounds.

In order to make the 2-hydroxychalcones, an extra protection step was needed as attempts to
make the 2-hydroxychalcones under the same basic conditions as that used for the synthesis of
the 3-hydroxychalcones resulted in the flavanones being formed (discussed below). In order to
prevent cyclisation from occurring, the 2-hydroxy group was protected using dihydropyran as a
protecting agent. The protection was carried out using pyridinium p-toluene sulfonate as a mild

base in methylene chloride with refluxing at room temperature for 15 minutes.

The protected acetophenone product that formed was reacted with various substituted
fluorobenzaldehydes using barium hydroxide octahydrate in methanol [Ba(OH),.8H,O/MeOH]
as opposed to sodium hydroxide in ethanol used previously. The protected chalcones were de-
protected using toluene sulfonic acid producing chalcones II-V. The completion of the
condensation reaction between the protected acetophenone and various fluorobenzaldehydes
needed just 24 hrs for all compounds. This reaction time was significantly shorter than the
synthesis of the 3-hydroxychalcones using sodium hydroxide in ethanol (NaOH/EtOH). The use
of barium hydroxide octahydrate in methanol [Ba(OH),.8H,O/MeOH] may be a more efficient
base in the synthesis of chalcones and protection of the free hydroxyl groups may also add to the

increase in the rate of reaction.

The melting points of all the fluorinated hydroxyl chalcones ranged between 80-130 °C, with the
majority melting between 105-120 °C. The melting points of IV, V and VIII did not compare

well with literature (Ivkovik et al., 2013, Singh et al., 2011, Butcher et al., 2007). We have
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checked the melting point twice and proved the structure by means of NMR analysis below and

are confident in our findings.

3.1.2 The fluorinated flavanones

The starting material 2-hydroxyacetophenone was treated in the same manner as 3-
hydroxacetophenone in an attempt to synthesize various fluorine substituted 2-
hydroxychalcones. However under the same basic conditions cyclization took place and instead
the flavanone derivatives, compounds X to XIII were produced. The process of cyclization is
common for chalcones containing a hydroxyl moiety on the 2-position of the A-ring. The
mechanism of this process is explained in detail in chapter 1. The base responsible for removing
the alpha proton of acetophenone also abstracts the proton of the hydroxyl group. The negatively
charged oxygen atom acts as a nucleophile and reacts with the neighboring double bond of the
o, unsaturated carbonyl system of the chalcone. As a result, cyclization occurs to produce a
racemic mixture of both R- and S- flavanones which was confirmed by optical rotation studies.

Cyclization of compound II into the flavanone derivative X is shown below.
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Scheme 23 The cyclization of compound II into its flavanone derivative X

Previous investigations show under similar conditions chalcones have been obtained without the
process of cyclization. Furthermore, the process of cyclization is generally carried out with an
additional reaction step (French et al., 2010; Akcok and Cag™ir, 2010; Safavi et al., 2012). In this
work, cyclization occurs simultaneously in a concerted mechanism. The percentage yields which
were as high as 86 % corresponded with those reported in literature. Reaction times and yields
were influenced by the variation in the position of the fluorine atom on the B-ring. The para
fluoro flavanone formed in just 3 hrs whereby the ortho fluoro derivative formed in 3 days. The
o,p-difluoro flavanone formed in 24 hrs. Thus, substitution of fluorine at the para position seems
to increase the rate of reaction probably due to conjugation through the three ring system and its

ability to form several stable resonance structures compared to the other substitution patterns.
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The melting points of the flavanones X-XIII were all lower than their corresponding chalcones,
possibly due to less intermolecular interaction since the three carbon chain, which was present in
chalcones is now cyclized in the flavanones. This indicates that the chalcone skeleton allows for
greater intermolecular interactions than the flavanones, the melting points of which range

between 78-110 °C.

3.1.3 Prenylation

Chalcones II to IX were prenylated with prenylbromide and ignited potassium carbonate as base
in acetone for 24hours. Prenylation occurred at the oxygen atom of the hydroxyl groups for both
2- and 3-hydroxychalcones. All prenyl chalcones were synthesized in yields between 60-82 %
(Table 4).The rate of prenylation was not affected by the position of the hydroxyl groups on the
A-ring nor the electronic influence of the fluorine atoms on the B-ring since there was no

significant difference in yields between the 2-oxyprenyl and 3-oxyprenylfluorinated chalcones.

The melting points of the prenyl chalcones were significantly lower than either the free hydroxy
chalcones or the flavanones synthesized thereof. Compounds XIV-XVI, the two oxyprenyl
chalcones with a mono substituted fluorine at either the ortho, meta or para position were all
obtained as oils. The remainder of the chalcones melted between 50-77 °C. This is because there
are more intermolecular hydrogen bonds with the hydroxy derivatives than with the prenyl

derivatives.

76



3.1.4 Physical appearance

Overall all chalcones appeared as different shades of yellow. The 2-hydroxychalcones appeared
more deeply colored as opposed to the 3-hydroxychalcones probably due to the increased
conjugation with the hydroxyl group in the ortho position. The prenylated derivatives appeared
in the form of yellow oils with the exception of the difluoro derivative, which was a yellow solid.

The flavanones appeared as green colored crystalline solids..

3.2 Characterization

3.2.1 Ultra-violet (UV) spectroscopy

All the chalcones (II-V) showed major absorptions in the range of 305-320 nm. This absorbance
was a result of conjugation ofthe a,B-unsaturated carbonyl system with the aromatic B-ring.
These values corresponded with those of literature as well as with other structural analogues
(Matsushima and Kageyama, 1985; Pinheiro and Justino, 2012). The prenylated chalcones (XIV-
XXI) showed major absorption bands at slightly lower values (approximately 300 nm)at a
similar peak intensity to the non-prenylated chalcones. The flavanones (X-XIII) had their first
absorption band at the lower end of the UV spectrum between 240-260 nm. Their absorbance
values were within the expected range of 240-285 nm (Pinheiro and Justino, 2012). Their
respective peaks appeared sharp in nature with relatively high intensities as compared to the
prenyl and non-prenyl chalcones. Their second bands appeared much shorter and broader at
around 330 to 340 nm.Based on this observation, it was possible to differentiate and distinguish
the flavanones from the prenyl and non-prenyl chalcones. This can be seen in Figure 17 using
compounds II, X, and XIV as examples. The various substitution patterns of the fluorine atom

had no significant effect on the nature of absorbance in all compounds.
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Figure 17 Comparison in peak absorbance between compounds II, X and XIV

3.2.2 Infra-Red (IR) spectroscopy

Infra-red spectroscopy was used to identify the presence of different functional groups in all the
compounds. The infrared spectra of chalcones VI to IX showed broad peaks with small
intensities between 3300 to 3400 cm™'. This was typical for the presence of free hydroxyl groups

(-OH). However, the 2-hydroxychalcones (II-V) did not show this as distinctly as the 3-
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hydroxychalcones, possibly because of hydrogen bonding to the carbonyl group. In the
flavanones (X-XIII) and the prenyl chalcones (XIV-XXI), the disappearance of the O-H

stretching band confirmed their successful formation.

The carbonyl stretching bands in the chalcones occur in the range of 1665 to 1650 cm™ which is
indicative of a conjugated unsaturated ketone system resulting in more single bond character and
lower wavenumbers (Scheme 24). The carbonyl stretching frequency of the flavanones (with the
exception of the 3'-fluoro derivative) occurred at an even lower frequency range at
approximately1630 cm™ for three of the compounds probably due to an increase in single bond
character in the benzopyran system. The 3-fluoro flavanone derivative showed a C=0 stretching

band at 1688 cm’".

Scheme 24 The electron distribution between the double bond and carbonyl carbon

3.2.3 Mass spectrometry (MS)

The mass spectra of all compounds showed similar fragmentation patterns. The molecular ion
peak was observed for all molecules and the fragmentation pattern followed one of two
pathways, either alpha cleavage or a Retro Diels Alder fragmentation. In the case of the 3-
hydroxychalcones and their prenyl derivatives, VI-IX and XVIII-XXI, these compounds
underwent alpha cleavage on both sides of the carbonyl carbon to produce characteristic peaks at

m/z = 149 and m/z = 121. In the case of the 2-hydroxychalcones and their prenyl derivatives, I1-
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V and XIV-XVII, alpha cleavage did not occur as expected; instead thermal isomerization took
place in the GC converting these compounds into their respective flavanones before undergoing
Retro Diels Alder cleavages to give characteristic peaks at m/z = 120 and m/z = 92. The only
difference the prenyl chalcones have in comparison to their non-prenyl derivatives is the
presence of a mass peak at m/z = 69, which accounts for the fragmentation mass of the prenyl
moiety. However, common to all mass spectra is the loss of 19 mass units which is a result of the

loss of a fluorine atom implying that the fluorine atom is very labile (Scheme 25).
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Scheme 25 The general fragmentation pathway for chalcones (values refer to R = F)
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3.3 Nuclear-Magnetic Resonance (NMR) spectroscopy

3.3.1 Characterization of compounds II to IX (chalcones)
Identification of intermediate 1

The Claisen-Schmidt condensation of 2-hydroxyacetopheone with fluorobenzaldehyde required

the protection of the 2-hydroxy group to prevent cyclization to the flavanone. The intermediate I,
was identified by the overlap of methylene protons (-CH>) in the 'H NMR spectrum at dH1.90-
1.40 (m, 6H, H-2'/3'/4"). These protons indicate the attachment of the THP moiety on the oxygen
atom to C-2, appearing in the °C NMR spectrum at 8¢ 162.3. In the carbon spectrum, the carbon
resonance C-5"at O¢ 62.9 is typical of a C-O bond and the C-1' resonance at 8¢ 94.5 typical of an
acetal carbon resonance. There are five carbon resonances in the °C NMR spectrum assigned to
the aromatic ring as well as a deshielded carbon resonance at Oc 204.6 indicative of a ketone

group at C-7. This information was sufficient to confirm the protection of 2-

hydroxyacetophenone with a THP group.
Identification of the a,f-unsaturated carbonyl system in I1

The two olefinic trans protons of compound II are characterized by the presence of a large

coupling constant of 15.6 Hz which is seen at both 0y 8.01 and 0y 7.80. A carbonyl resonance is

also seen at O¢c 193.9 (C-7) in the BC NMR spectrum. HMBC correlations between both H-8 and
H-9 with that of the carbonyl resonance C-7, indicate the presence of an o,B-unsaturated
carbonyl system. Delocalisation of electrons amongst the three carbon atoms of C-7, C-8 and C-
9, resulted in the C-9 carbon resonance being more dieshielded than C-8. Hence C-9 was
allocated to 8¢ 138.3 and C-8 to 8¢ 122.9 in the *C NMR spectrum. The H-8 and H-9 proton
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resonances were then identified by HSQC correlations with the respective doublets andJ values

of 15.6 Hz.
Structural elucidation of the A-ring in Il

There are two aromatic rings present in the structure of compound II. The first one being
adjacent to the carbonyl group of C-7 and the other which is a fluorinated aromatic ring, adjacent

to the unsaturated double bond at A® (the C-8/9 double bond). The ring closest to the carbonyl
group (ring A) shows four aromatic resonances at O0n6.98 (t, J = 7.5 Hz, 1H), 8y 7.05 (d, J = 8.0
Hz, 1H), 0y 7.54 (td, J = 8.6 Hz, 1.5 Hz, 1H) and Oy 7.94 (dd, J = 8.0 Hz, 1.0 Hz). The electron
donating effect of the lone pairs on the oxygen atom of the hydroxyl group at C-2 result in the
ortho and para positions being more shielded than the meta position. Hence, the doublet at Oy
7.05 was attributed to H-3 and the triplet at Oy 6.98 to H-5. Furthermore, the triplet of H-5 arises

due to adjacent coupling with both H-4 and H-6.

The meta protons at both Oy 7.94 (H-6) and 7.54 (H-4) are more deshielded. The triplet of

doublets observed for H-4 is as a result of adjacent coupling to both the protons of H-5 and H-3
as well as the meta coupling to the proton at H-6 (J = 1.5 Hz). Similarly, the double doublets of
H-6 are as a result of adjacent coupling to H-5 and meta coupling to H-4. HMBC correlations
between C-7 and H-6, and between C-2and H-4, were used to confirm the assignment of H-6 and

H-4 respectively.
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Structural elucidation of the B-ring in Il

The second aromatic ring (ring B), which is closest to the double bond, shows four aromatic

protons resonances. The ortho and para positioned protons appeared more shielded with respect
to the fluorine atom at C-2 due to electron donation. The proton at Oy 7.24 appeared as a triplet (J
=7.6 Hz) and is assigned to H-5' due largely to coupling with the adjacent protons H-4' and H-6'".
The double doublet on the other handseen at 0y 7.17 (J = 10.5 Hz, J = 8.0 Hz, 1H) was assigned

to H-3' due to coupling with the neighbouring H-4' (J= 8.0 Hz) and also with the fluorine atom (J

= 10.5 Hz). The protons meta to the fluorine atom,H-6' and H-4" appeared more downfield as a
triplet of doublets at Ou7.67 (J = 8.5 Hz, 1.5 Hz, 1H) and multiplet at Oy 7.48-7.43 respectively

with the triplet of H-6' arising as a result of ortho coupling to H-5', and meta coupling to the F
atom and H-4', the ortho coupling and the meta coupling to F having the same coupling constant,

resulting in the triplet as coalescence of the double doublet resonance.

The fluorinated and oxygenated aromatic carbon resonances appeared at Oc 163.7 for C-2 and as

a doublet at dc162.8 with a large coupling constant value of J = 255.3 Hz for C-2'. The ortho
positioned C-3' carbon resonance relative to the fluorine atom appeared as a doublet with a

coupling constant of J = 22.0 Hz; the meta positioned resonances C-4' and C-6' occur at 0c132.2
(d, J = 8.8 Hz) and at d¢c 130.2 (d, J = 2.9 Hz) respectively; and the carbon para to fluorine

occured at Oc 124.6 (d, J = 3.7 Hz).
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Identification of quaternary carbons, C-1 and C-1'"in Il

TheH-5' and H-8 proton resonances show HMBC correlations to a tertiary carbon at d¢ 122.7
which seems to overlap with the carbon resonance assigned to C-8. This resonance was therefore
assigned to C-1' with the remaining tertiary carbon resonance at 8c120.0 assigned to C-1. The 'H

and °C NMR resonances of compound II matched those reported from literature (Ivkovic et al.,

2013).

Comparison of compound Il with IV (the para substituted fluoro derivative)

In compound IV the fluorine atom in this case is in the para position on the B-ring. In the
absence of an NMR active atom, there should be a pair doublets for the protons, H-2'/6" and H-
3'/5'. However since fluorine is NMR active, H-3'/5' is split by both the fluorine atom and the

protons H-2'/6" with similar coupling constants appearing as a triplet, which is actually a
coalesced double doublet at Oy 7.06 (J = 8.5 Hz). The H-2'/6' resonance is also coupled to
fluorine in addition to H-3'/5'". The signal appears as an expected double doublet at Oy 7.60 (J =
8.5 Hz, 5.0 Hz). The coupling constant values of J = 8.8 Hz and J = 22.0 Hz for the carbon
resonances of C-2/6" at O¢ 130.6 and C-3'/5" at 0¢ 116.2 respectively, confirmed the assignment

of these particular resonances. Furthermore, HMBC correlations showed coupling between the
protons H-2'/6" with the olefinic carbon C-9, which further confirmed the assignment of these

resonances.
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Comparison of compound II with V (the o,p-difluorinated derivative)

In the difluorinated compound V, the H-3' and H-5' proton resonances overlaped with H-5 as a
multiplet at Oy 6.90 to 7.00. The H-6' resonance however appeared as a doublet of triplets since it

couples with the adjacent H-5' proton as well as with both the fluorine atoms, (J/ = 8.5 Hz, 6.5
Hz). The doublet of triplets can be difficult to see as both resonances overlaped and to
distinguish the two triplets the first, third and fifth peaks resemble the first triplet and the second,

fourth and sixth peaks resemble the other doublet.

Both the C-2" and C-4' carbon resonances occurred as double doublets with J = 242.8 Hz and J =
12.5 Hz for C-2', and J = 245.8 and 12.5 Hz for C-4' at Oc 165.2 and 160.5 respectively. The C-3'
carbon resonance appeared as a triplet at Oc 105.0 with a J value of 25.7 Hz as it couples with
both fluorine atoms equivalently. However, since carbons C-5' and C-6' couple with each

fluorine atom non-equivalently, each of these signals appear as pairs of double doublets at d¢
131.5 (J/ = 9.5 Hz, 4.4 Hz) and at Oc 112.3 (J = 22.1, 3.7 Hz). The remaining C-1' carbon

resonance appeared at 0c119.3 (J=10.9 Hz, 3.7 Hz).

Comparison of the A-rings of compound II with VI (the 3-hydroxychalcone)

When comparing the A-ring of the 2-hydroxychalcones for e.g. compound II against the 3-

hydroxychalcones e.g. compound VI, it can be seen that the ortho/para carbon resonances of C-
2, C-4 and C-6at O¢ 121.0, 120.7 and 115.2 respectively all appear more shielded than the meta
carbon resonances of C-5 at O¢ 129.9 and C-1 at d¢ 139.3. This is due to electronic effects of the
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3-hydroxy group which were consistent with compound II that was discussed earlier; where C-3

and C-5 were more deshielded than their merta positioned C-4 and C-6 carbon resonances.
Further to this, the meta positioned C-1 of compound VI occurs at Oc 139.3 also due to the
electronic effects discussed earlier as opposed to C-1 in compound II which resonated at d¢c

120.0 and was also ortho positioned to the hydroxyl group.

Cross correlations in the HSQC spectrum indicate that the protons H-4 and H-6 are more
deshielded than H-5. This pattern is unusual as these resonances were expected to appear more
shielded than H-5 due to their ortho/para nature. This could probably be due to through space
interactions between the oxygen atom of the 3-hydroxy group with the carbonyl oxygen of at C-

7. However there is no conclusive evidence for this type of relationship. On the contrary, the H-2
proton resonance as expected appeared more shielded at 8y 7.10-7.18 in the 'H NMR spectrum.

These values were consistent with those reported from literature (See Table 1).

3.3.2 Characterization of compounds X to XIII (flavanones)

Formation of the flavanone derivative, compound X in this particular case, was indicated by the
resonances of the deshielded H-2 proton doublet at Oy 5.65 (J = 9.28 Hz, 1H, H-2). The protons
H-3a and H-3b appeared at 0y 3.50 (dd, J = 17.56 Hz, 3.76 Hz, 1H, H-3a) and Oy 3.41 (dd, J =

17.56 Hz, 9.28 Hz, 1H, H-3b). Furthermore, the J3, 3, coupling constant values were established
as J = 17.56Hz being the largest, the J,3, = 9.28 Hz and the smallest J, 3,= 3.76 Hz. In the case

of J1 3., this splitting pattern was not seen for H-2. However, in compound XII, this pattern was

87



evident where H-2 was observed as a double doublet at Oy 5.36 (J = 9.03 Hz, 3.01 Hz, 1H, H-2)

(Figure 18).
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Figure 18 Expanded'H NMR spectrum of 2-fluoroflavanone (X)

Looking at the BC NMR spectrum, C-2 resonates at Oc 64.2, C-3 at O¢ 45.7 and lastly the

carbonyl carbon at Oc 205.6. In general comparison to the chalcones, the carbonyl group of the

flavanones appeared more deshielded much like that of a ketone. HMBC correlations between H-

3a/3b and both C-2 and C-4 confirmed these assignments.
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3.3.3 Characterization of compounds XIV to XXI (prenyl chalcones)

The formation of the prenyl chalcone, compound XIV, was indicated by the presence of the

deshielded triplet of H-2" at 0y 5.50 (J = 6.52 Hz, 1H), the doublet of H-1" at Oy 4.63 (J = 7.0
Hz, 2H) and the presence of two singlet methyl peaks at Oy 1.76 and 1.74 (Figure 19). The

olefinic carbons, C-2" and C-3", at ¢ 119.3 and O¢ 138.8 respectively, which overlap with the
aromatic carbon resonances in the C NMR spectrum. The resonances of the oxygenated
methylene carbon resonance and of both methyl carbons are more distinct at d¢c 65.6 (C-1"), 25.8

(C-5") and 18.3 (C-4"). The assignments of the above were supported by HMBC correlations
seen between both the methyl proton resonances with C-2" and C-3". The methylene resonance,
H-1" also showed HMBC correlations to C-2" and C-3" in addition to the oxygenated aromatic

carbon resonance of C-2 at Oc 157.9. Hence this relationship confirmed that prenylation had

occurred at the oxygen atom. Moreso, NOESY correlations between H-2" and 3H-5" were used
to distinguish the methyl resonance3H-5"from 3H-4". In addition, the methyl resonance 3H-4"
also showed a NOESYcorrelations to the methylene protons 2H-1" to further support this

argument.
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Figure 19 Expanded'H NMR spectrum of 2'-fluoro-2-oxyprenylchalcone (XIV)
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Chapter 4. Antioxidant study

4.1 Methodology for bioassays
There are several methods used for establishing the anti-oxidant activity of a compound. The
most widely used include; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric

reducing anti-oxidant power (FRAP) and the nitric oxide radical assay.

4.1.1 DPPH radical scavenging assay

The simplest and most popular of the above mentioned methods is the use of the stable free
radical (DPPH). DPPH is a stable free radical that is characterized by virtue of the delocalization
of an extra electron over the entire molecule, which prevents dimerisation that occurs in most
other free radicals (Molyneux, 2004). It is deep violet in color and as a result has a characteristic
absorption band at approximately 517 nm in alcoholic solution. When DPPH is mixed in solution
with a compound showing anti-oxidant potential, the DPPH molecule is reduced by accepting a
hydrogen radical to form a stable DPPHH molecule. As a consequence a color change from deep
violet to yellow is usually observed resulting in a decrease in absorbance and hence an increase

in reducing ability (Patel and Patel, 2011). The reaction of this process is illustrated below:
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Scheme 26 The reaction of DPPH with a hydrogen radical to form DPPHH

Compounds containing hydroxyl groups are often considered most effective against oxidants and
scavenging of free radicals. They are capable of donating hydrogen radicals that can react with
DPPH. The donor molecules themselves are stabilized based on the resonance structures formed.

This stability depends vastly on the surrounding substituents and moieties.

4.1.2 Ferric reducing anti-oxidant power assay

The FRAP assay is a robust, colorimetric method which uses antioxidants as reductants. The
process is based on a redox reaction which measures the ability of a compound to reduce Fe’* to
Fe*. In the case of ferric chloride, a color change from dark green to blue is observed when
mixed with a compound possessing anti-oxidant potential. The solution is measured at a
wavelength of 700 nm where a strong anti-oxidant is indicated by a high absorbance value

whereas the opposite is true for weak anti-oxidants (Selvakumar et al., 2011).
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4.1.3 Nitric oxide radical assay

The free radical of nitric oxide is a constituent known to cause inflammation. It acts as a
chromophore by reacting with oxygen containing compounds to produce nitrite ions which can
be measured using a solution known as Griess reagent (Kankate et al., 2010). The radicals are
generated from sodium nitroprusside in buffer saline solution at a pH of approximately 7.4 which
reacts with a sample. The solution is measured at 546 nm where a decrease in absorbance
accounts for compounds containing good anti-oxidant activity compared to that of a control

sample (Umamaheswari and Chatterjee, 2000).

4.2 Antioxidant activity of chalcones II-IX using the DPPH assay

Research shows that the presence of hydroxy groups on molecules is responsible for anti-oxidant
activity. Chalcones II to IX which possess hydroxy groups at either the 2-position or the 3-
position were tested for their potential anti-oxidant activities using the stable free radical DPPH.
A comparison in anti-oxidant activity of the various substituted fluorine containing 2-hydroxy
and 3-hydroxychalcones was made to ascertain whether the fluoro groups substituted at different
positions on the B ring would have an impact on the anti-oxidant activity. Ascorbic was used as a

reference point since it is a good anti-oxidant and measurements were taken in triplicate.
Scavenging ability of compounds II to IX in comparison to ascorbic acid

The scavenging ability of compounds II to IX at donating a hydrogen to react which DPPH are
shown in Table 5 and Figure 20. As expected, ascorbic acid shows excellent anti-oxidant activity
over a wide concentration range. Moreso, it has good scavenging activity even at low

concentrations (97.4% at 10 ug mL™"). Hence, ascorbic acid served as an appropriate reference
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material for comparison. Compounds II to IX showed moderate to low anti-oxidant activities
compared to ascorbic acid even at high concentrations (500 pg mL™"). The difference in activity
can be rationalized by the fact that ascorbic acid has two hydroxyl groups present in its structure
in the form of a catechol moiety unlike chalcones II to IX which only contain one hydroxyl

group. Compounds with a catechol moiety are known to possess potent antioxidant activity.

The efficiency of the DPPH assay is dependent on the donation of a hydrogen (H) radical by a
compound together with its reactivity with DPPH to form the DPPHH molecule. Thus, the more
hydrogens a compound can donate, the greater the extent of the reaction with DPPH. The
constraint is that the radical must be able to be stabilized by delocalization on the aromatic ring.

The catechol moiety is the ideal structure that is capable of losing a hydrogen atom and at the

same time being able to stabilize the resultant radical (Murti, et al., 2013).

Table 5 DPPH free radical scavenging activities of compounds I1-XI

Scavenging activity (%)
Compound | 500 pg mL" | 250 ug mL"' | 100 pgmL”' | 50 pgmL*! 10 pg mL™*
Ascorbic acid | 97.6+0.12 97.8+0.19 97.6+0.09 97.5+0.2 97.4+0.18
11 36.0 £0.03 34.740.2 3740.12 36.6++0.03 37.6£0.14
I 27.5+£0.06 28.9+0.1 29.5+0.15 28.8+0.06 27.0 £0.16
1V 43.7+£0.09 44.1+£0.05 44.940.05 44.7+£0.09 43.7 £0.01
\ 45.1£0.03 44.8+0.02 44.1+£0.05 44.6+0.03 44.0 £0.11
VI 29.2+0.13 30.6+0.12 29.3+0.09 24.0 £0.03 29.0 £0.12
VII 39.3+0.25 37.840.18 40.0 £0.01 38.0 £0.13 38.0 £0.08
VIII 45.2+0.01 45.4+0.2 45.3+0.08 44.7+0.12 45.0 £0.12
IX 45.1+0.05 45.8+0.14 45.2+0.21 44.7+0.14 45.1+0.21
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Figure 20 The scavenging ability of compounds II to IX in comparison to ascorbic acid at

various concentrations

Comparison of scavenging ability between compounds II to IX

The difluoro-compounds V and IX both showed the highest anti-oxidant activities amongst all
compounds tested, with an average absorbance of 43.7% and 45.1% respectively at 500 pug mL".
These compounds contain fluorine atoms on the both ortho and para positions of the B-ring.
This is followed by the 4-fluoro substituted compounds IV and VIII, which has approximately
the same activity as V and IX. The lowest anti-oxidant activity was shown by the 2-hydroxy

meta substituted fluoro derivative III and the 3-hydroxy ortho substituted derivative VI. The
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ortho fluoro-2-hydroxychalcone (II) and the meta fluoro-3-hydroxychalcone (VII) showed

activity in between that of IV/V/VIII/IX and ITI/VI.

This is indicative that the 2',4'-difluoro and the 4'-fluoro chalcones are best able to stabilize the
radical that results upon loss of a proton. The 2'-fluoro and the 3'-fluoro chalcones are not

capable of stabilizing the radical as much and hence has the weakest anti-oxidant potential.

Comparison of scavenging ability between compounds II to IX with analogues from literature

Structural analogues of chalcones II-IX have been synthesized previously and structure activity
studies carried out to determine which substitution patterns provide the best anti-oxidant activity.
Previous studies show that having a hydroxyl group in the ortho position of the A-ring is more
favorable in terms of anti-oxidant activity as opposed to a hydroxyl group in the meta position

(Xue et al., 2013).

The 2-hydroxy-2'-methoxychalcone (26) (Figure 21), did not show DPPH activity at 50 pg mL"
even after 60 minutes of reaction (Detsi et al., 2009). However, 2'-fluoro-2-hydroxychalcone (II)
in this study showed 36.6 % scavenging ability at the same concentration in half the amount of
reaction time, indicating that fluorine is somehow able to stabilize the resultant radical when loss
of a hydrogen atom occurs better than the methoxy group. This could also be due to the
electronegative properties of the fluorine atom compared to the electon donating methoxy group.

In comparing 4'-chloro-2-hydroxychalcone (27) with 4'-fluoro-2-hydroxychalcone (IV), the
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activity of the two compounds were similar with 27 showing 40.8% as opposed to 44.9% for IV

(Detsi et al., 2009).

OH R’

26.R=0CH; R'=H
27.R=H R'=Cl

Figure 21 The molecular structures of compounds (26) and (27)

The potential of the difluoro chalcones V and IX as promising antioxidants can be further
investigated as possible lead compounds in antioxidant activity even though they are not as
potent as ascorbic acid. In particular, V and IX may have other beneficial uses as
pharmaceuticals, for example as anti-inflammatory drugs and therefore combining the two
effects in one drug can be very beneficial. Substitution of di, tri and polyhdroxy groups on the A-
ring may enhance activity as previous investigations of similar compounds suggest hydroxyl

groups are the main components responsible for antioxidant activity, particularly on the A-ring.
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Chapter 5. Conclusion

A series of twenty flavonoid compounds II-XXI were synthesized using the Claisen-Schmidt
condensation reaction. The base-catalyzed (NaOH/EtOH) reaction between  3-
hydroxyacetophonone and various substituted fluorobenzaldehydes led to the formation of
chalcones VI-IX, however under the same conditions, the 2-hydroxyacetophenone precursors
resulted in flavanones X-XIII, which were also characterised. In order to synthesize the 2-
hydroxy fluorinated chalcones, dihydropyran was shown to be a good protecting agent for 2-
hydroxyacetophenone to protect the 2-hydroxy group and prevent a nucleophilic ring closure
catalyzed by abstraction of the proton from the hydroxy group. It was also shown that the base-
catalyzed Ba(OH), reaction in methanol with fluorobenzadehyde(s) led to the successful
formation of chalcones II-V. All chalcones were subjected to prenylation (XIV-XXI) under
basic conditions using prenyl bromide and the reaction worked well with the chalcones and
subsequent to chalcone formation rather than reacting the acetophenone with prenyl bromide

prior to the condensation reaction.

The yields of all compounds were recorded between 54 to 90 % and reaction times were reported
to have occurred as fast as 3 hours with the majority of reactions occurring in 24 hrs with some
reactions taking 3-5 days. The reaction times for II-XIII were shown to be dependent on the
substitution patterns of fluorine in the B-ring. The rate of reaction was highest with the presence
of two fluorine atoms, at the 2" and 4' positions of the B-ring, followed by the 2'-fluoro, 4'-fluoro

and 3' fluoro substitutions. Similarly, percentage yields were affected in the same manner.
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All compounds were successfully characterized by 1D and 2D NMR, IR, UV spectroscopy and
GC-MS. The structures of the eight novel compounds, XIV to XXI, were further characterized
by HRMS to determine their exact masses. All known compounds and their values corresponded

well with those reported in literature.

Anti-oxidant activities of chalcones II to IX was carried out using the DPPH radical scavenging
assay and the compounds showed moderate to low anti-oxidant activities in comparison to the
standard, ascorbic acid. In comparison to each other, both difluoro chalcones, V and XI, showed
the highest activities largely due to the electronic nature of the fluorine atom which is strongest
at the ortho and para positions of the B-ring. The anti-oxidant activity was shown to decrease in
the order ortho and para >para>ortho >meta. Structural analogues reported in literature confirm

a similar pattern.

Future screening of the remaining compounds as well as chalcones II-IX is required to ascertain
whether or not that these compounds may possess any potential antibacterial, anticancer or anti-

inflammatory activities.
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Instrument : 5973n
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Operator : neal

Instrument : 5973n

Acquired : 5 Jul 2013 19:22 using AcgMethod NATPRODUCTS AUTCMATED SPLITLESS.M
Sample Name: 2fla-3f
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Operator : neal

Instrument : 5873n

Required : 5 Jul 2013 20:05 using AcgMethcd NATPRODUCTS AUTOMATED SPLITLESS.M
Sample WName: 2fla-4f
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:C:\msdchem\i\data\Wesley\3preo-3£.D

using AcgMethod NATPRODUCTS AUTOMATED SPLITLESS.M

Scan 2065 (19.187 min}: 3preo-3f.0\data.ms
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