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Thesis abstract 

 

Understanding direct and indirect defense mechanisms that enhance host plant resistance 

(HPR) and biological control is critical for successful development of an integrated pest 

management (IPM) approach. Cassava green mite (CGM) (Mononychellus tanajoa Bondar 

(Acari: Tetranychidae)) is a major arthropod pest of cassava (Manihot esculenta Crantz) in 

Africa. Strategies to control CGM include HPR and biological control by use of exotic natural 

enemies particularly the predatory mite Typhlodromalus aripo DeLeon (Acari: Phytoseiidae). 

The success of the latter depends on continuous survival of the natural enemy which requires 

suitable host plants and weather conditions. Various plant morphological traits have been 

recognized as indirect defense mechanisms that enhance HPR to CGM, and/or attract T. aripo 

in cassava. It was envisaged that integration of HPR and classical biological control approaches 

through manipulation of such indirect defense traits would lead to a more sustainable 

management of CGM in view of anticipated climate change. Lack of information on farmers’ 

perception of CGM and preferred varietal attributes, and gene action controlling the inheritance 

of CGM resistance also limits success of resistance breeding and adoption of varieties. This 

research was undertaken to gather information on farmers’ perceptions of cassava varietal 

attributes and cultural practices in relation to CGM resistance, identify suitable sources of 

resistance and environments for future breeding; and to determine the nature of gene action 

controlling CGM resistance and the inheritance of plant morphological traits that enhance the 

ability of cassava to host and support continuous survival of natural enemies.  

High fresh storage root yield (FSRY), high storage root dry mass percentage (SRDM%), 

earliness combined with extended underground storability, and resistance to foliar pests and 

diseases are the major factors that influence adoption and retention of genotypes by farmers. 

Moles, termites and CGM are the most widespread and most damaging pests. However, due to 

the non-conspicuous nature of CGM, its effects are under-estimated and are given limited 

attention by farmers. The majority of the farmers are familiar with CGM leaf damage symptoms 

but they cannot associate them with the actual pest. Participation of farmers in field training and 

field research activities helps them to know CGM. Crop rotation, intercropping, removal of shoot 

tips, selective pruning of infested shoots, and burning of cassava fields are some of the ways 

used by farmers to manage CGM. Farmers associate hairy broad-leaved, tall cassava 

genotypes and pink leaf pigmentation (anthocyanin) with low CGM damage.  

There is substantial genetic variability in the Zambian cassava germplasm for CGM resistance 

and associated plant morphological traits such as leaf pubescence (Pbs), leaf retention (LR), 

stay green (SG), tip size (TS), tip compactness, and plant height (PH), stem diameter (StD), 
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SRDM% and FSRY. Genotypes with wide or specific adaptability for these traits have been 

identified, and should be recommended for general or localized production and for use as 

sources of desired genes in crop improvement. Genotypes L9.304/147, 92/000, TME2, 

4(2)1425, I60/42 and L9.304/175 combine wide adaptability with high levels of resistance to 

CGM. Genotypes Kapeza, L9.304/147 and 4(2)1425 are able to produce 13-15 t ha-1 at 

9 months after planting suggesting their potential for early bulking. 

This study has shown that both additive and non-additive gene effects play a role in the 

expression of CGM resistance and associated plant morphological traits. The best combinations 

of parents for resistance against CGM were 4(2)1425 x L9.304/147 and Mweru x L9.304/147, 

while L9.304/147 x I92/000 displayed combined resistance to CGM and cassava mosaic 

disease (CMD). The resistance of cassava to CGM is positively correlated with Pbs, LR, and 

TS, SG, PH, StD. Overall, the study has shown that there is wide diversity in the expression of 

valuable indirect defense traits among genotypes, indicating that there is scope for integration of 

biological control and host plant resistance for CGM in Zambia. The release of genotypes that 

exhibit high level of intra-season and inter-season stability for enhanced expression of LR, SG, 

and Pbs will minimize the impact of CGM on FSRY and SRDM% that results from seasonal 

effects. Such genotypes should also provide habitat for and thus help to ensure the survival of 

T. aripo in cassava fields. The study has contributed to the promotion of food security through 

identification of early-bulking genotypes which also have good potential for extended 

underground storability of roots. Early-bulking, high FSRY and SRDM% and SRR resistance are 

farmer-preferred traits. Therefore, enhancement of such traits through plant breeding is likely to 

increase the adoption of new genotypes by farmers.  
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Introduction to thesis 

1. Importance of cassava 

Cassava is an important tropical root crop widely grown for its storage roots that are mainly 

used for human consumption and industrial applications. Cassava is used in several industries 

because of the high quality starch that is extracted from its storage roots (Scott et al., 2000). 

Cassava offers the advantage of flexible harvesting date, allowing farmers to keep the storage 

roots underground until needed. This, coupled with the ability of the crop to grow and give 

reasonable yields in marginal, low fertility acidic soils under variable rain-fed conditions ranging 

from less than 600 mm to more than 1000 mm per year (El-Sharkawy, 2003), makes cassava a 

highly dependable crop. The annual production of cassava in the world is estimated at 230 

million tons, of which 53% is produced in Africa (FAOSTAT, 2012), where cassava is consumed 

by more than 200 million people as the second major starchy staple crop after maize.  

Traditionally, cassava is grown in areas between 30° N and 30° S of the equator, where annual 

mean temperatures range from 18 to 20°C (Hillocks, 2002). However, unlike other crops, 

cassava has no critical growth period, when stress may cause major crop failure (Lenis et al., 

2006). The lack of such critical growth stage is linked with the simultaneous development and 

growth of leaves and storage roots which occur in cassava (El-Sharkawy, 2003). The 

robustness of cassava partly lies in its tendency to close its stomata, and maintain high 

concentrations of carbon dioxide as well as to fold leaves and reduce leaf area growth, in 

response to moisture stress and extremely high temperatures, which enables it to minimize 

transpiration and resource use to conserve carbohydrates (Alves and Setter, 2004). 

2. Origin, production, and consumption of cassava in Zambia 

Cassava was first brought by Portuguese navigators from Brazil to Fernando Po where it was 

grown in the Gulf of Benin and around the Congo River in the 16th century (Hillocks, 2002). It is 

believed that cassava probably arrived in Zambia via the Congo Basin following the migration of 

the Bemba people from the west in the early 1700s, into the northern part of Zambia, from 

where it has continued to spread to the Central, Copperbelt, North-Western, and Western 

Provinces (Haggblade and Nyembe, 2007).  

Cassava serves as a strategic hunger relief crop in times of drought. Farmers in Zambia 

normally respond to drought by expanding their cassava field and reducing the area under 

cultivation of maize (FAOSTAT, 2012). The ability of cassava to grow on marginal soils and its 

low fertilizer requirement make it suitable for small-scale farmers (Nweke et al., 2002). 

Furthermore, lower adult labor supply, caused by HIV/AIDS infection and related mortalities, 
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induces farm households to move out of maize into cassava which has low external input and 

low labour requirement (Haggblade and Nyembe, 2007).  

Currently cassava is second to maize in its importance as a staple crop in Zambia. Most of the 

cassava produced in Zambia is used for human consumption (Figure 1). Farmers market about 

8% of total cassava production, or roughly 800 000 t of cassava per year, 350,000 t as fresh 

cassava with the remaining 450 000 t dried into approximately 150 000 t of cassava chips which 

is supplied, through informal cross-border trading, to markets in the Democratic Republic of 

Congo and Angola for urban consumption (Haggblade and Nyembe, 2007). Cassava leaves are 

also consumed as a vegetable by many people throughout the country. The sale of cassava 

leaves provides an important source of income for women in urban markets. 

 

 

Figure 1: Production and consumption levels of cassava in Zambia, 2000-

2009 (Data obtained from FAOSTAT http://faostat.fao.org/site/291) 

 

3. History of cassava research programme in Zambia 

The Root and Tuber Improvement Programme (RTIP) in Zambia was initiated in 1979 following 

occurrence of drought in 1978 (RTIP, 1989). Two years after the inception of RTIP, cassava 

mealybug (CM), Phenucoccus manihoti Mat.-Ferr. (Homoptera: Pseudococcidae) was reported 

in Luapula Province, where it caused yield losses ranging from 60 to 100% in 1981/82 

(Chakupurakal et al., 1994). The seriousness of CM in Zambia, forced the government to seek 

external support from the International Institute of Tropical Agriculture (IITA)-led consortium. 

Starting in 1984, the Government of Zambia together with IITA’s biological control programme 
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instituted trial releases of Apoanagyrus (Epidinocarsis) lopezi De Santis (Hymenoptera: 

Encyrtidae), a predator wasp which had effectively controlled outbreaks of CM in other regions 

of Africa (Zeddies et al., 2001). In 1986, with financial support from the International Fund for 

Agricultural Development, the Zambian team launched a country-wide programme of mass 

rearing followed by aerial and ground releases of A. lopezi (Yaninek and Herren, 1988; Alene et 

al., 2005). The RTIP also initiated a breeding programme for cassava, and managed to collect 

500 landraces and 200 exotic cassava genotypes. Following this, the Swedish International 

Development Agency launched a ten-year programme of funding for RTIP to conduct a series of 

mass selection cassava trials from 1987 onwards. Subsequently, 700 accessions were 

systematically evaluated for yield, earliness, and resistance to cassava mosaic disease (CMD). 

Alongside the field screening of cassava germplasm, the releases of natural enemies also 

continued for four years (Alene et al., 2005).  

Appreciable achievements were recorded from 1990, when the CM population had declined 

significantly and a pest-predator equilibrium had been established (Chakupurakal et al., 1994; 

Malambo et al., 1998). Furthermore, three local genotypes, namely Bangweulu, Kapumba and 

Nalumino were released in 1993/94, following systematic evaluation by the RTIP. These 

genotypes yielded 20 to 30 t ha-1, compared to an average of 7 t ha-1 obtained from local 

landraces, and provided superior resistance to CMD and major pests (Chitundu and Soenarjo, 

1997). 

Soon after the successful containment of CM, another arthropod herbivore commonly known as 

cassava green mite (CGM), Mononychellus tanajoa Bondar (Acari: Tetranychidae), became a 

serious pest in Zambia and its infestation resulted in as much as 30% losses in fresh storage 

roots and 60% losses in dry mass (Chakupurakal et al., 1994). Consequently, collaborative 

efforts between IITA and the National Biological Control Unit shifted to CGM because serious 

outbreaks were reported from several provinces from time to time. The initial attempts to control 

of CGM in Zambia involved experimental releases of two species of Colombian exotic 

phytoseiid namely Neoseiulus idaeus Denmark and Muma (Acari: Phytoseiidae) and N. 

anonymous Chant and Baker (Acari: Phytoseiidae) in 1984 (Chakupurakal et al., 1997; Yaninek 

et al., 1993). These species of natural enemies failed to establish. An exotic predatory mite, 

namelyTyphlodromalus aripo DeLeon (Acari: Phytoseiidae), was subsequently imported from 

South America (Bellotti et al., 1994), where it had proved to be a successful predator to CGM 

among other pests, and was released in Zambia in 1991 (Chakupurakal et al., 1997; Yaninek 

and Hanna, 2003; Alene et al., 2005).  

Breeding work under RTIP also continued at Mutanda and Mansa research stations, resulting in 

the development of four new cultivars which were released in the 2001/2002 season, following 

the hybridization which commenced in 1989. The four cultivars namely Mweru, Chila, 
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Tanganyika and Kampolombo, combine high fresh storage root yield (FSRY), with early bulking 

and moderate resistance to CMD and CM. Collaboration between IITA and RTIP was 

strengthened following the inception of the Southern Africa Root crops Research Network 

(SARRNET), which has a regional mandate to facilitate exchange of cassava germplasm 

among network member countries. Through these efforts several elite genotypes of cassava 

which included CGM-resistant genotypes such as TME 4(2)1425 and TME 60142 were 

introduced into Zambia from IITA Hahn et al., 1989; Mahungu et al., 1994). The introduced 

genotypes have been evaluated for local adaptation and as gene sources for CGM resistance. 

Despite the efforts, CGM and CMD still remain two serious problems in much of Zambia 

(SARRNET, 2008). 

4. Need for cassava green mite resistance breeding in north-western Zambia 

Strategies to control CGM in Zambia have included host-plant resistance (HPR) and mainly 

biological control by use of exotic natural enemies particularly the predatory mite T. aripo. These 

two strategies unfortunately have always been implemented separately as two parallel 

complementary programmes. However, post-release investigations show that T. aripo is failing 

to establish, particularly in north-western Zambia. No matter which predator strain is used, T. 

aripo tends to disappear from cassava apices during the dry season (Mebelo et al., 2003). 

Similar results have been reported from some parts of Cameroon, and Uganda, where T. aripo 

seems to establish well only during the rainy season, and disappears from cassava plants 

during the dry and cold seasons (Onzo et al., 2003; Hanna et al., 2005), resulting in increased 

populations of CGM and associated damage in cassava fields in the dry season (Yaninek et al., 

1989). Consequently, considerably high incidences of CGM of 10-100% were recorded in 

cassava fields in Northern and North-Western Provinces of Zambia, causing 50-75% leaf 

damage early in the rainy season (SARRNET, 2008). 

Plant morphological traits, which attract the predatory mite to the host plant and provide them 

shelter or enhance the ability of the predator to find the prey, should receive more attention in 

cassava breeding programmes which are aimed at controlling CGM. Plant breeders need to 

source such traits and improve them by breeding, while the selection of traits potentially 

detrimental to natural enemies should be avoided whenever possible (Cortesero et al., 2000). 

Research has shown that T. aripo resides in the growing point of the plant during the day and 

forages on the young leaves during the night hours, while CGM prefers young leaves (Onzo et 

al., 2003). Therefore loss of shoot apices in the dry season induced by drought adversely 

affects the natural enemy, contributing to the buildup of CGM on the remaining fewer leaves. It 

is proposed that cassava genotypes which are tolerant to drought may also be resistant to CGM 

and that enhanced leaf retention and stay green in cassava may be a major factor of resistance 

to CGM (Nukenine et al., 1999, 2002). Genotypes which combine large compact shoot apices 
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with high pubescence (Pbs), especially of immature and apical leaves have been shown to 

protect T. aripo, against harsh weather conditions, supporting its continuous survival in cassava 

fields (Malambo et al., 1998; Mebelo et al., 2003; Zundel et al., 2009). 

Recent studies have further shown that pubescent cassava genotypes tend to release volatiles 

that attract T. aripo (Onzo et al., 2012). Work by Agrawal et al. (2000) has demonstrated that 

the absence of leaf hairs can severely reduce abundance, distribution, reproduction, and prey 

consumption of predator, while presence of leaf hairs can significantly increase populations of 

predatory arthropods and decrease populations of phytophagous arthropods. Even in the 

absence of the natural enemy cassava genotypes exhibiting high Pbs tend to be more resistant 

to CGM and produce higher FSRY than glabrous genotypes (Byrne et al., 1982; Hahn et al., 

1989; Raji et al., 2008), suggesting that Pbs could be a primary character responsible for 

resistance to CGM. Howvever, there is very little information on the stability cassava genotypes 

for such morphological traits. There is a need to know how such important traits are influenced 

by environment so that stable genotypes can be identified which could be used as sources of 

stable genes for CGM resistance breeding. Furthermore information pertaining to farmers’ 

perceptions and knowledge of CGM needs to be captured and considered in breeding in order 

to accelerate adoption of new cultivars by farmers, 

5. Research objectives 

The main objective of the study was to develop cassava genotypes that combine resistance to 

CGM with enhanced expression of plant morphological traits that attract and support continued 

inhabitance of T. aripo in cassava and with farmer preferred traits. 

The specific objectives were to: 

1. gather traditional knowledge on desirable and non-desirable varietal attributes, as well 

as on plant morphological traits and cultural practices that are associated with reduced 

pest population and leaf damage in cassava fields; 

2. gather information about farmers’ perception of major cassava pests and traditional 

coping strategies thereof; 

3. understand stability of various parental genotypes in different locations and seasons  so 

as to identify stable sources of resistance to CGM; 

4. establish the nature of gene action controlling inheritance of CGM resistance traits and 

associated plant morphological traits; and 

5. develop new cultivars that combine resistance to CGM with other farmer-preferred 

traits. 
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The thesis is structured as follows: 

Chapter 1:  A review of pertinent literature  

Chapter 2:  Farmers’ perception of cassava green mite in north-western Zambia 

Chapter 3:  Genotype by environment interaction effect on resistance to cassava green 

mite Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) and other 

agronomic traits of cassava grown in north-western Zambia 

Chapter 4:  Intra-season and inter-season stability of resistance to cassava green mite 

Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) and associated plant 

shoot morphological traits of cassava grown in north-western Zambia 

Chapter 5: Inheritance of resistance to cassava green mite Mononychellus tanajoa 

(Bondar) (Acari: Tetranychidae) and other important agronomic traits in 

cassava grown in north-western Zambia 

Chapter 6: General overview 

Chapters 2-5 are written as discrete publication-ready papers, and consequently there will be 

some overlap of content and references. 
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CHAPTER 1 

Literature review 

1.1 Introduction 

Cassava (Manihot esculenta Crantz) is a staple food root crop for more than 600 million 

inhabitants in the tropics and subtropics. It is cultivated as an annual and biennial crop for its 

starchy roots that can be harvested at 8 to 18 months after planting (El-Sharkawy, 1993, 2004). 

The storage roots are mainly consumed as human food in various forms, for animal feed, as 

well as for starch extractions and various industrial uses (Scott, 2000; El-Sharkawy, 2004; 

Lebot, 2009). World annual current production exceeds 230 million tons of fresh storage roots 

(about 50% being produced in sub-Saharan Africa), with an average yield of 10 t ha–1 

(FAOSTAT, 2012). It is the second most important staple crop after maize in Zambia and the 

rest of Africa. Cassava is a low input crop which is able to grow under marginal soil fertility in 

acidic soils where other crops such as maize, which demand application of purchased fertilizer 

and other agro-chemicals, fail (El-Sharkawy and De Tafur, 2010). For this reason most of the 

cassava in Africa is produced by small scale resource-limited farmers and mainly women, who 

may not afford purchased agro-chemicals and irrigation (Borlaug, 1983). Furthermore, cassava 

has the ability to tolerate a range of climatic conditions and soil types, and to grow under varying 

rainfall ranging from as low as 500 mm to over 1000 mm per annum. This coupled with the 

flexibility of cassava to be harvested at any time of the year when a farmer needs food, make it 

a strategic food crop which serves as a hunger relief during periods of drought for most families 

in Africa (Nweke et al., 2002). 

However, in regions that experience mono-modal rainfall pattern, cassava takes long to mature. 

This long growth cycle, coupled with the frequent farmer-to-farmer exchange of stem cuttings 

which are used as propagation materials, expose cassava to pests and diseases. The major 

pests and diseases that affect cassava in many parts of Africa include cassava mosaic disease 

(CMD), cassava mealybug (CM), and cassava green mite (CGM). Both CGM and CM are 

reported to have been introduced into Africa accidentally through movement of planting 

materials from South America (Chakupurakal et al., 1994), and have since spread throughout 

the cassava-belt of Africa (Yaninek, 1988). These two pests have contributed to great losses in 

the yields of cassava storage roots and planting stakes. Considerable efforts and resources 

have been committed to the biological control of these arthropod pests in Africa through the 

release of exotic natural enemies, which have resulted in successful control of CM 

(Chakupurakal et al., 1994). Sources of resistance to CGM have been found and distributed to 

national cassava programmes in Africa, with technical support from the International Centre for 
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Tropical Agriculture (CIAT) and the International Institute of Tropical Agriculture (IITA) 

(Mahungu et al., 1994; Bellotti et al., 2012). Despite these efforts, CGM and CMD are 

continuously reported to cause serious damage in cassava fields in some countries of Africa 

including Zambia (SARRNET, 2008).  

The literature review therefore considers CGM as a major herbivorous arthropod pest 

contributing to low yields of fresh storage roots (FSRY) and cassava leaves which are used as 

vegetable in some parts of sub-Saharan Africa. It has highlighted on some progress made so far 

in breeding for resistance, and biological control against CGM, and the possibility of integrating 

these two complementary strategies. 

1.2 The origin and diffusion of cassava into Zambia 

For a long time, the origin of cassava (Manihot esculenta Crantz subspecies esculenta) 

remained unclear, and the ancestry of cassava was not known. However, in 1982, a wild 

species, Manihot flabellifolia (Pohl), in central Brazil, was reported as the closest wild relative to 

cassava (Allem, 1987, 1994). Though diverse results have been obtained concerning the 

phylogeny of cassava (Burger et al., 2008), all the results appear to support the view that M. 

flabellifolia was the progenitor of the crop (Olsen and Schaal, 1999). Based on DNA sequence 

variation from a portion of the gene encoding glyceraldehyde 3-phosphate dehydrogenase 

(G3pdh), Olsen and Schaal (2001) confirmed that the crop was derived from populations of the 

subspecies flabellifolia along the southern border of the Amazon basin. Moreover, these authors 

have stated that “the pattern and degree of variation in the crop versus the wild relative 

populations indicate that subspecies flabellifolia alone can account for the genetic variation 

observed in cassava”. Therefore the southern border of the Amazon basin stands as the centre 

of origin for M. esculenta (Olsen and Schaal, 2001).  

1.3 Taxonomy of cassava 

Cassava belongs to the botanical species M. esculenta of the family Euphorbiaceae, sub-family 

crotonoideae, and tribe Manihotae. The genus Manihot contains about 100 species of herbs, 

shrubs and trees among which the production of latex and cyanogenic glucosides is common 

(Ng and Ng, 2002). Although most of the species so far studied contain 36 chromosomes 

(diploid genome 2n=36), which show irregular pairing at meiosis, spontaneous polyploidy such 

as triploids (3n) and tetraploids (4n) of some genotypes have been reported in both wild 

relatives and domesticated cassava (Hahn et al., 1980). However, three nucleolar 

chromosomes have also been reported, which is high for true diploids, indicating that Manihot 

species are probably segmental allotetraploids, with a basic chromosome number x=9 

(Jennings and Iglesias, 2002).  

 



13 
 

1.4 Major pests and diseases of cassava in Zambia 

In spite of the importance of cassava as a famine and food security crop, it is constantly 

threatened by production constraints such as diseases and pests, lack of improved genotypes, 

lack of good quality planting material, frost, and severe drought stress. Diseases and pests tend 

to have great influence on stability of production and can cause total yield loss in some cases 

(Bellotti et al., 1994). Diseases that particularly affect cassava in Zambia include CMD caused 

by viruses of the family Geminiviridae (Legg et al., 2011), cassava brown streak disease caused 

by viruses of the family Potyviridae (Ogwok et al., 2012), cassava anthracnose disease (CAD) 

caused by Colletotrichum gloesporioides f.sp. manihotis (Williams et al., 2012), brown leaf spot, 

and cassava root rot disease caused by Cercospora henningsii Allesch (Ayesu-Offei, 1996). 

The most important pests include CGM, CM, termites (Microtermes sp.) and rodents. From the 

early 80s CM was recognized as the most serious pest that almost wiped out the crop in 

Zambia. Concerted efforts were devoted to its management through biological control. Through 

collaborative efforts between IITA and CIAT, and the national biological control programme, the 

pest was controlled in the mid-90s (Chakupurakal et al., 1994). Soon thereafter, CGM appeared 

and became another serious arthropod pest that has spread throughout the country (Malambo 

et al., 1998).  

1.4.1 Biology, origin, and ecology of cassava green mite 

Cassava green mite belongs to the different taxa of spiders and ticks. The pest has a rapid 

multiplication potential. It completes its five-stage life cycle within 12-14 days. Though the life 

span of an adult CGM does not exceed 30 days, within this short period a single female can lay 

up to 70 eggs depending mainly on temperature and relative humidity (RH). Maximum 

oviposition has been recorded at 27ºC with RH ranging 50 to 70% (Hahn et al., 1989; Yaninek 

et al., 1989). Cassava green mite is of Neotropical origin and was first reported in Uganda in 

1972, where it was accidentally introduced on cassava cuttings imported from South America. 

The centre of origin of CGM in South America and most of Africa share similarities in 

temperature and RH. This, coupled with abundance and high frequency of cassava fields in 

Africa, promoted rapid spread of CGM throughout the entire cassava-belt of the continent 

(Yaninek and Herren, 1988). 

The influence of temperature and rainfall on the abundance of CGM has been comprehensively 

studied (Yaninek et al. 1989; Hahn et al., 1989). The populations of CGM are reported to reduce 

with increase in rainfall on a seasonal calendar, but peaks in mite populations are observed in 

the dry season and at the beginning of the wet season. Generally, CGM is a dry season pest 

that causes severe damage on host plants subjected to prolonged drought stress (Yaninek et 

al., 1989).  
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1.4.2 Dispersal of cassava green mite 

Dispersal of CGM is generally achieved by walking, drifting passively through the air or moving 

involuntarily with infested plant materials (Yaninek, 1988). For as long as the suitable foliage is 

available on the host plant, mites often will remain on the same leaf for several generations. 

However, changes in leaf quality such as hardness of leaves, loss of chlorophyll due to 

senescence, or disease infection, and general leaf loss that result with crop age cause mites to 

crowd on a few healthy and active leaves (Yaninek et al., 1989). The increased competition 

resulting from such increasing population densities prompt the mites to disperse in search of 

more favourable habitats (Kennedy and Smitley, 1985; Yaninek, 1988). It is suspected that 

CGM dispersal from the lower mature leave towards preferred young leaves near the top is 

probably a positive response to light (Yaninek, 1988). Similarly the colour or shape of leaf 

(Hanna et al., 1997) and ultra-violet radiation (Onzo et al., 2010) have also been reported to 

influence abundance of mites in cassava. However, to avoid the risks associated with dispersal, 

some mites may remain and survive on the buds of heavily defoliated stem shoots, until new 

leaf buds grow. According to Yaninek (1988), the ability of CGM to survive for up to 60 day in 

the absence of water and nutrients on stem cuttings, and detached cassava leaves which are 

sold locally as vegetable, enables another mode of dispersal for the pest. 

Temperature is a dominant factor affecting the growth rate and development of many arthropod 

populations including tetranychids. Temperatures below 14.4oC result in high CGM mortality, 

because CGM is a specifically adapted to tropical or subtropical conditions (Yaninek et al., 

1986). The mites easily get washed off from cassava leaves in heavy rains which is another 

cause of mortality for CGM.  

1.4.3 Alternative hosts of cassava green mites 

As the common name suggests, CGM is generally known to occur specifically on cassava, but it 

has also been reported to occur on several other plant species such as Curcurbita pepo L. 

(Cucurbitaceae), Lycoperscum esculenta Mill (Solonaceae) and Sechium edule Jacq. 

(Curcubitaceae) in north-eastern Brazil (Tuttle et al., 1977). De Moraes et al. (1995) also 

reported the presence of M. tanajoa on Passiflora cincinnata Matt (Passifloraceae), Manihot 

pseudoglaziovii Pax. et K.Hoffm. (Euphorbiaceae), Pavonia cancellatta Cav. (Malvaceae), 

Solanum erianthum D. Don. (Solanaceae), Bauhinia forficate Link. (Casalpiniaceae), Borreria 

verticillata G.F.W. Meyer (Rubiaceae), Macroptilium mortii Bench. (Fabaceae). However it is not 

known as to whether CGM feeds on such plant species, but the frequent occurrence of all 

stages of CGM observed on P. cincinnata and M. pseudoglaziovii, even when the mite was not 

abundant on cassava, indicates that these plants serve as alternative hosts, while other plants 

could just be random temporary hosts. 
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1.4.4 Cassava green mite damage on cassava plants 

Cassava green mites prefer to feed on the underside of young emerging tender leaves of 

cassava. The damage on these leaves results from the injury caused by the needle-like stylet 

which CGM uses to pierce and suck leaf cell contents, causing chlorophyll depletion on cassava 

leaves (Bellotti, 2002). The damage symptoms resulting from heavy infestations appear in the 

form of defoliation starting from the growing tip of the plant and progressing downward, killing 

apical and lateral buds, resulting in severe dieback and candle-stick appearance of stem shoots 

(Bellotti, 2002). On the leaves, damage by CGM appears as stippling on the basal half of the 

leaf and along the veins, which later appear as “pin-pricks”. Young leaves emerge deformed 

and reduced in size, with a mosaic pattern resembling CMD symptoms (Nukenine et al., 2002). 

Environmental stress associated with drought and excessive soil fertility depletion tends to 

augment the level of CGM leaf damage (CGM LD). Omorusi and Ayanru (2011) observed 

significant reduction in CGM LD symptoms with increase in nitrogen, phosphorus and potassium 

element supply to CGM infested cassava plants. According to Okeke (1990) this reduction in 

CGM LD is attributed to the improvement in plant vigour arising from improved nutrient supply, 

which also translates into improved FSRY. Similarly, Agboton et al. (2006) have indicated a 

positive association between weed density and CGM population density (CGM PD) in Southern-

Benin, suggesting that cassava genotypes which express enhanced ability to outperform weeds 

are likely to sustain less CGM LD.  

1.4.5 Yield losses caused by cassava green mite 

Cassava storage root yield losses due to CGM have been estimated to be in the range of 30 to 

50% (Yaninek and Herren, 1988; Yaninek et al., 1993). Byrne et al. (1982a) reported 73% 

reduction in FSRY and 67% reduction in stake yield of a CGM-susceptible genotype. From this 

study it was also observed that harvest index (HI) is not affected by CGM infestation, suggesting 

that harvest index (HI) can be used with damage ratings for selecting CGM resistant and high 

yielding cassava genotypes. According to Cock (1978), genotypes with leaf area index (LAI) 

exceeding 3.0-3.5 can sustain a greater CGM LD per leaf, but their FSRY may not be affected, 

while higher losses in FSRY are more likely to result from CGM LD on genotypes which have 

LAI less than 3.0. A strong negative association has been reported between plant height and 

CGM LD (Egesi et al., 2007). Therefore, in order to produce genotypes that combine good 

FSRY and resistance to CGM, Byrne et al. (1982a) recommend use of a mixture of tolerance 

and other resistance components in HPR breeding. 

1.5 Cassava green mite control through host plant resistance breeding 

Host plant resistance has been defined as the property that enables a plant to avoid, tolerate, or 

recover from injury by insect populations that would cause greater damage to other plants of the 

same species under similar environmental conditions (Kogan, 1994). It represents the inherent 
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ability of crop plants to restrict, retard or overcome pest infestation and thereby improve yield 

and/or quality of the harvestable product (Dent, 1991). The concept of HPR has been broadly 

interpreted, and may not always refer to resistance properties of the plant itself. Thus a form of 

resistance might arise if a plant is protected from insects by having a particular phenology. 

Horber (1980) referred to this type of resistance as non-functional resistance. Also another form 

of resistance might arise if a plant is protected by natural enemies of the insect pest, which 

according to Price (1986) is called extrinsic resistance. 

1.5.1 Breeding methods to incorporate insect resistance 

There are several conventional breeding methods used to develop insect resistance including 

mass selection, pure-line selection, recurrent selection, pedigree breeding, bulk breeding, 

single-seed descent and backcross breeding (Thomas and Waage, 1996). Many programmes 

utilize more than one of these techniques during the development of a resistant genotype. 

Cassava breeding programmes mainly use mass selection and backcrossing for insect 

resistance (Hahn et al., 1989; Bellotti and Arias, 2001). The breeding programme at the 

International Crop Research Institute for the Semi-Arid Tropics has utilized mass selection, 

recurrent selection, and pedigree breeding techniques to develop resistance to stem borer in 

sorghum (Sorghum bicolor L.) (Nwanze et al., 1991). Pedigree breeding has been used for 

resistance development in rice for green leafhopper(Nephotettix virescens Distant), brown 

anthopper (Nilaparvata lugens Stål) and the Asian rice gall midge (Orseolia oryzae Wood-

Mason) and in sorghum for resistance to shoot fly (Atherigona soccata Rondani), greenbug 

(Schizaphis graminum Rondani) and sorghum midge (Stenodiplosis sorghicola Coquillett) (Dent, 

1991). 

Mass selection: Phenotypic mass selection for insect resistance has been the major selection 

strategy in cassava breeding both at CIAT and IITA (Hahn et al., 1989; Mahungu et al., 1994; 

Jennings and Iglesias, 2002; Kawano, 2003; Ceballos et al., 2004; Cach et al., 2005). Mass 

selection involves selecting individual plants on the basis of superior qualities, such as 

resistance, after each cycle of breeding (Smith, 1989). Mass selection has also been used to 

increase potato resistance to the potato leafhopper (Empoasca fabae Harris) (Sanford and 

Ladd, 1983). 

Backcross breeding: This method provides an effective means for improving genotypes that 

are deficient in one or a few characters. The method involves a recurring backcross to one of 

the parents (recurrent parent) of a hybrid to incorporate the desirable trait. The non-recurrent 

parent is the source of resistance with a higher level of resistance than that used in the previous 

backcross. This method is better suited for introgression of highly heritable traits (Dent, 1991). 
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At CIAT, backcrossing has been used to incorporate resistance to whitefly and mites into 

cassava (Bellotti and Arias, 2001; Bellotti and Kawano, 1980). 

1.5.2 Mechanisms of resistance 

According to Bynum et al. (2004), resistance can be classified by a mite’s response to plant 

defense as antibiosis and antixenosis or by the plant’s ability to withstand mite damage as 

tolerance. Both antixenosis and antibiosis have been observed for CGM. Byrne et al. (1982b) 

have reported on the ability of CGM to discriminate between susceptible and resistant 

genotypes and show preference for the former in its oviposition, suggesting that antixenosis is 

the main mechanism of resistance to CGM. Antibiosis is usually reflected through reduced 

fecundity, a longer development time, a shorter adult lifespan of the mite, and higher larval and 

nymphal mortality when CGM is feeding on resistant versus susceptible genotypes (Byrne et al., 

1982b). Research by Hahn et al. (1989) at IITA indicates strong involvement of tolerance in the 

resistance of cassava genotypes to CGM. Plants are able to recover from mite feeding damage, 

without affecting the CGM population dynamics. 

1.6 Cassava green mite control through biological control 

Initial efforts to combat CGM in Africa involved a search for indigenous natural enemies for the 

pest. A complex of indigenous natural enemies was found on cassava, but it was not considered 

sufficiently effective to control the pest (Nyira and Mutinga, 1977). Therefore, exotic phytoseiid 

predators were imported from South America, where the first effective phytoseiid predators had 

been found (Belloti et al., 1987), which included Neoseiulus idaeus Denmark and Muma (Acari: 

Phytoseiidae) (Yaninek et al., 1991), Typhlodromalus manihoti Moraes (Acari: Phytoseiidae) 

(Yaninek et al., 1998), and later T. aripo DeLeon (Acari: Phytoseiidae) (Hanna et al., 2005; 

Yaninek and Hanna, 2003). These predators were released in the cassava belt of Africa, 

including Zambia (Malambo et al., 1998), but only T. aripo proved to be a success, and 

therefore, efforts to control CGM have concentrated on the use of T. aripo (Yaninek and Hanna, 

2003). Research has shown that high population densities of T. aripo in cassava fields have 

also been associated with low severity of cassava bacterial blight (CBB), CAD and CMD 

(Amusa and Ojo, 2005; Onzo et al., 2005), suggesting that T. aripo also could be a natural 

enemy to other insects that act as vectors for these diseases. However, post-release studies in 

some parts of Zambia, Cameroon, and Uganda have shown that T. aripo seems to establish 

well during the rainy season, but disappears from cassava plants during the dry and cold 

seasons (Mebelo et al., 2003; Onzo et al., 2003; Hanna et al., 2005).  

Post-release surveys of all the fields in Luapula and North-Western Provinces of Zambia, where 

the phytoseiids were released since 1992, were carried out in 1995. Observations indicated that 

none of the species released in previous years had established, except T. aripo which was 
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released in March 1995 at one location in Luapula Province. Typhlodromalus aripo were not 

recovered at the release sites after the cold season in June 1995. Further follow-up surveys 

made from January to June 1996 revealed, however, that recovery of T. aripo in increasing 

numbers from January to June in three release fields in Luapula Province and three release 

fields in Mwinilunga and Zambezi districts of North-Western Province. Typhlodromalus aripo 

was recovered only from the fields that received releases in October and December 1995. No 

recovery was made from fields that received releases just before, during or soon after the dry 

season between April and September. This suggests that phytoseiids should not be released 

during the colder period to avoid mortality. It was found that establishment was faster in fields 

cultivated with pubescent cassava genotypes and in genotypes with larger shoot tips 

(Anonymous, 1990; Malambo et al., 1998).  

The rate of spread of T. aripo to other fields was however slow (1km y-1) as compared to 

12.3 km y-1 reported in West Africa (Yaninek et al., 1989). This slow rate of spread was probably 

due to wide isolation (low frequency) of fields particularly in Luapula, and due to unknown 

reasons in North-Western Province, which has large cassava fields. Although T. aripo dispersal 

was slow in both provinces, their increasing densities gradually reduced CGM populations in 

established fields within a short period (December to May) (Toko, 1996). Unfortunately, T. aripo 

disappeared again in July 1996 from all the initially established fields in Luapula and North-

Western Provinces.  

The disappearance is possibly attributed to the cold conditions prevailing during the cool months 

of the dry season between May and July and also to changes in host plant conditions such as 

defoliation and hardening of cassava leaves that result from the low temperatures and RH 

(Toko, 1996). Temperatures fall below 18°C from May to July and sometimes frost is 

experienced during these months, conditions that kill T. aripo, and any other phytoseiids, as well 

as the cassava plant. A high survival rate of T. aripo in Zambia has been observed at 

temperatures of around 27°C with RH slightly less than 70% from October to April.  

The disappearance of T. aripo allowed CGM PD to increase again. Cassava green mite is still a 

serious pest causing considerable damage to cassava in Zambia and the need to collect 

Typhlodromalus species and other phytoseiids, as well as integration of HPR and bio-control of 

CGM should be emphasized.       

1.7 Integration of biological control and host plant resistance breeding 

Studies have revealed substantial interaction between plant traits conferring herbivore 

resistance and predators (Panda and Khush, 1995; Thomas and Waage, 1996). Plant breeders 

and biological control workers often seem to be working independently. Plant breeders have 

focused on selecting genotypes with enhanced defense against pests, while biological control 
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workers have concentrated on improving natural enemy traits, such as reproduction and host 

finding efficacy. There is need for integrating these two pest management practices (Cortesero 

et al., 2000).  

1.7.1 Manipulating plant morphological traits 

Plant breeders have paid little attention to indirect defense traits that influence survival of natural 

enemies of plant pests (Panda and Khush, 1995). Plant traits that render the plants attractive to 

the natural enemies of plant pests or that facilitate smooth movement and enhance the 

efficiency of natural enemies to search and discover the pest should be looked for in wild 

species and selected crop genotypes, and their expression should be improved through 

breeding (Cortesero et al., 2000). On the other hand, traits potentially detrimental to natural 

enemies should be selected against whenever possible. Agrawal et al. (2000) have 

demonstrated the existence of negative relationship between the presence of leaf domatia on 

the undersides of perennial plant species and abundance, distribution, reproduction, and prey 

consumption of predatory arthropods, showing how manipulation of plant traits can contribute to 

the reduction of phytophagous arthropod population, which would consequently result in 

increased crop yield.  

Genotypes with large and compact shoot apices are preferred for sustenance of T. aripo as they 

protect the predatory mite from harsh weather conditions. Typhlodromalus aripo resides in the 

growing point of the plant during the day and forages on the young leaves during the night 

hours, while CGM prefers young leaves (Onzo et al., 2003). Therefore loss of shoot apices in 

the dry season induced by drought adversely affects the natural enemy, contributing to the 

buildup of CGM on the remaining fewer leaves. According to Nukenine et al. (1999), breeding 

cassava genotypes for enhanced stay green (SG) and leaf retention (LR) can improve both 

CGM resistance and tolerance of cassava to drought. 

Even in the absence of natural enemies, cassava genotypes exhibiting high leaf pubescence 

(Pbs) tend to be more resistant to CGM than glabrous genotypes (Hahn et al., 1980, 1989). 

Research conducted at IITA in Nigeria, and in Tanzania has shown that nearly all cassava 

genotypes showing some degree of resistance had trichomes on the young top leaves, and that 

the number of trichomes per square millimeter is clearly different in the susceptible and resistant 

types (Hahn et al., 1989), suggesting that Pbs could be the primary character responsible for 

resistance to CGM.  

1.7.2 Manipulating plant chemical traits 

Research has shown that plants emit volatiles which can attract predators against arthropod 

pests. Manipulation of such plant chemical signals offers the most promising perspective for 
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enhancing the effectiveness of predators in the field. However, the role of such signals in the 

recruitment of natural enemies appears to be complex and dynamic. For this reason, Cortesero 

et al. (2000) recommend having a good understanding of the biology of natural enemy species 

so that plant attributes can be manipulated for a sustainable and balanced control of insect 

pests in agro-ecosystems. Recently, Onzo et al. (2012) reported that pubescent genotypes of 

cassava tend to emit certain volatiles that attract T. aripo to the apices of such genotypes.  

1.8 Methodologies for mass rearing of arthropods 

Methodologies have been developed for mass rearing of pests in greenhouses. At CIAT, 

colonies of whitefly (Aleurotrachelus socialis Bondar) are maintained on the susceptible 

genotype CMC 40 (Bellotti and Arias, 2001). Potted cassava plants containing high populations 

of A. socialis pupae and emerging adults are maintained in a fine-mesh screened chamber in a 

greenhouse at 28-29ºC and 70-75% RH. Twice a week, five week old potted cassava plants are 

exposed to whitefly adults by placing them in the infestation chamber. Adults are allowed to 

oviposit for 72 h after which they are removed from the plants. The plants are then removed 

from the chamber and placed in a separate greenhouse unit, where the immature mites are 

allowed to develop. Similarly, greenhouse rearing of adults of M. tanajoa females collected from 

a culture-initiated, field-collected mites has been reported (Gnanvossou et al., 2003; Onzo et al., 

2005). The mites are maintained on potted cassava in a greenhouse at 26±1oC and 65-85% RH 

for at least one month before they are used in the screening experiments.  

Other than cassava leaves, maize pollen, and kidney bean (Phaseolus vulgaris. L.) have also 

been used for maintenance of phytoseiid colonies of mites such as T. aripo, T. manihoti and 

Euseius fustis Pritchard and Baker (Acari: Phytoseiidae)(Onzo et al., 2005). Edelstein et al. 

(2000) maintained spider mite stock culture on kidney bean plants in controlled-climate room at 

25-27ºC, 60±5% RH and 16 h light. 

Megevand et al. (1993) describe the cassava “tree”, which is used as a rearing unit for 

predatory mites. It consists of a suspended plastic sleeve filled with rockwool. Cassava cuttings 

are planted through the sleeve into the rockwool and a standard nutrient solution is distributed 

by a flexible pipe inserted in the top. When plants have reached the 15-leaf stage, the cassava 

“trees” are infested with CGM and covered with a screen to prevent contamination by 

undesirable arthropods. The infestation is done by distributing CGM-infested cassava leaf lobes 

containing both active stages and eggs, to all cuttings.        

1.9 Screening and evaluation methods 

Screening and evaluation of germplasm requires continuous maintenance of uniform pest 

pressure in all experimental plots. The pest pressure needs to be high enough to determine the 
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presence or absence of a resistance character to enable the breeder to distinguish between 

susceptible and resistant genotypes. This may demand repeated infestation of test materials 

(Gutierrez et al., 1987). Large-scale free choice evaluations are often conducted either in field 

plots or greenhouses to enable the breeder to eliminate susceptible plant material early in the 

breeding programme (Smith, 1989).  

1.9.1 Laboratory screening 

Laboratory experiments are normally conducted in a controlled environment in insect growth 

chambers to monitor the rate of fecundity of mites on plant tissues, determine the mechanism of 

resistance, and to investigate interaction among predator species (Gnanvossou et al., 2003). 

Onzo et al. (2005) investigated the interactions between predator species T. manihoti and E. 

fustis and their impact on CGM, in the presence or absence of maize pollen as alternative food 

source. The reproductive success of mites is determined by measuring oviposition rate under 

laboratory conditions on detached cassava leaf discs (Braun et al., 1987). Prey mite species 

suitability studies aimed at determining the most preferred target prey for T. aripo and T. 

manihoti amongM. tanajoa, Oligonychus gossypii (Zacher) and Tetranychus urticae (Koch) 

(Acari: Tetranychidae) have been conducted in no-choice experiments using leaf discs 

(Gnanvossou et al., 2003). Similar population growth estimates have been reported on leaf disc 

and in the field (Yaninek et al., 1989), confirming the high convenience and efficiency attributed 

to the use of leaf discs in studying tetranychid biology (Helle and Overmeer, 1985). 

1.9.2 Screenhouse evaluation 

Screenhouse experiments have been conducted at IITA-Cotonou, Benin to screen cassava 

genotypes for resistance to M. tanajoa (Onzo et al., 2005). Cassava cuttings of test plants are 

planted in plastic pots filled with top soil usually collected from a fallowed field. The inoculation 

of plants is done by placing at least ten adult female CGM on the youngest leaves, four weeks 

after planting. Each plant is then caged in a cylindrical organdy bag, and regularly monitored for 

the development of CGM (Onzo et al., 2005).  Each plant is evaluated by removing the leaves 

and growing point and counting all stages of mites with a stereoscope (Braun et al., 1987) 

Bellotti and Arias (2001) describe a procedure for evaluation of vertical resistance of cassava to 

whiteflies. Selected resistant genotypes and susceptible controls are grown from stem cuttings 

in pots for five weeks and infested with whiteflies from the colony. Infestations are made by 

attaching small clip cages to cassava leaves, held in place with a rigid rod embedded in the soil. 

Ten whiteflies are introduced into each cage and left to oviposit for 24 h, after which the cages 

and adults are removed. The whiteflies infested plants are maintained in a growth chamber, 

where temperature (average 27oC), RH (68±1%), and photoperiod (12:12h day:night) are 

regulated.   
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1.9.3 Open field evaluation 

Field screening of cassava germplasm for resistance to arthropod pest is done at sites where 

natural populations are high and damage levels are significant so as to distinguish susceptible 

genotypes (Bellotti and Arias, 2001). Evaluations are done periodically throughout the growing 

cycle. One of the major impediments to field screening of insect pest resistance is the difficulty 

associated with maintenance of a uniform distribution of inoculum pressure (Gutierrez et al., 

1987). Patchy and uneven distributions of arthropod pests are commonly observed in the field, 

which can result into wrong selections. Some of the genotypes that show little or no CGM LD 

under patches of low CGM populations and, therefore, low-selection pressure may actually be 

“escapes” (Bellotti and Arias, 2001). To avoid this problem, Bellotti and Arias recommend that, a 

common susceptible genotype be planted strategically throughout a screening block to measure 

the mite population levels, distribution and damage. The susceptible genotype also serves as a 

source of inoculum (spreader rows) from which mites can disperse to the test plants. Habekub 

et al. (2000) suggests a simpler and relatively cheaper method, which was used in infesting 

apple trees (Malus domestica Borkh.) with spider mites. The method involves collecting mite 

infested leaves or small twigs and weaving or fixing them end-to-end at the lowest one-third of 

the test plants.  

1.10 Rating scale for resistance to cassava green mite 

Assessment of CGM LD is normally conducted on the top five fully expanded leaves following a 

1-5 scoring scale based on injury done on each genotype by a pest (Hahn et al., 1989; Yaninek 

et al., 1989). According to this five-point scoring scale, plants or genotypes falling in classes 1 

and 2 are considered to be resistant, plants in class 3 are moderately resistant, while those in 

classes 4 and 5 are susceptible to CGM. Bellotti and Kawano (1980) proposed a rating system 

which utilizes a 0-5 and 0-10 scoring scales. The former is used as an initial screening scale to 

discard susceptible plants (up to 85%), while the latter is used for further evaluation of selected 

lines. In both scales, plants falling in classes above 3 are rejected. The scoring is made, at 3, 6, 

9, and 12 months after planting, which coincides with the various seasons (Akparobi et al., 

1998).  

1.11 Genetic variation and genotype x environment interaction studies in 

cassava 

Genotype by environment interaction (GEI) refers to the variation in response among 

genotypes, when evaluated in different environments (Fox et al., 1997). Multi-location trials help 

to reveal GEI, which enables plant breeders to identify superior genotypes and locations that 

best represent production environments. According to Crossa (1990), multi-location trials have 

three main objectives as:i) accurate estimation and prediction of yield based on limited data; ii) 
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determination and prediction of yield stability and the pattern of response of genotypes or 

agronomic treatments across environment; and iii) providing reliable guidelines for selecting the 

best genotypes for planting in future years and at new sites.  

Cassava varieties often demonstrate specific adaptation due to their high sensitivity to the GEI 

that occurs in both short-term and long-term crop performance trials, and is a major concern in 

plant breeding because it reduces progress from selection (Eberhart and Russell, 1966). This 

makes cultivar recommendation difficult because the choice of superior cultivars changes with 

locations. It is possible to have little relation between a breeder’s selection environments in one 

year and those experienced in the next, suggesting a need to test for many crop cycles, and or 

many locations. This kind of diversity in environments permits identification of extreme 

environmental conditions that guarantee selection pressure from important stresses (Fox et al., 

1997). Therefore the importance of GEI lies in guiding the breeder in deciding whether to aim for 

wide or specific adaptation, whether to conduct early generation selection in stressed or stress-

free environments, and whether to test a large number or fewer genotypes in multi-location 

trials.  

In conducting GEI studies it is important that a breeder understands the optimal requirements 

for field experimentation. Dixon and Nukenine (2000) determined the optimal number of 

replications, locations, or years for GEI studies in cassava. The authors suggest that the best 

option therefore, is to use a minimum number of replication, or locations that will not jeopardize 

precision. Depending on the combination of number of replications and years, the critical point is 

generally attained when the number of location is between three and five for all the yield trials, 

representing the optimum number of locations required in cassava yield trials. Fewer than three 

locations will result in inaccurate selection for any of the yield traits, whereas more than five 

locations will only increase costs without any significant gain in precision. Having very few 

replications generally is not advisable. Therefore, three to four replications in each of three to 

four locations and two to three years should suffice for cassava yield evaluation (Dixon and 

Nukenine, 2000).  

1.11.1 Statistics for analysis of stability of cassava genotypes 

Various statistics have been used to assess stability of genotypes of crops. These statistics 

include use of variance component of a genotype x location interactions, estimated for each of 

the possible pairs of genotypes tested, as proposed by Plaisted and Peterson (1959). This 

method takes into account the average of the estimates for all combinations using a common 

genotype. Other statistics involve the use of the “ecovalence” stability index which is the 

contribution of a genotype to the GEI sum of squares (Lin et al., 1986), and an unbiased 

estimate of stability, developed by Shukla (1972), which partitions the GEI sum of squares into 
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components attributable to variance. Unlike other early methods, Shukla’s method allows for the 

removal of the linear effects of a covariate from the GEI (Lin et al., 1986). 

Until the development of the additive main effects and multiplicative interaction (AMMI), the 

regression-based stability index of Finlay and Wilkinson (1963) was the most widely used 

method of stability analysis. In this method, genotypes with low regression coefficient (b value) 

are considered stable and absolute phenotypic stability is expressed b = 0. Unstable genotypes 

are those with high b value. The approach was refined by Eberhart and Russel (1966) who 

regressed mean yield on an environmental index. Eberhart and Russel define a stable genotype 

as one with a high mean yield, b = 1.0 and sd
2 = 0.  

Comparison of various stability indices has been done for cassava stability assessment by 

Ngeve (1994), who reported similarities in stability results following use of Eberhart and Russell 

(1966), Perkins and Jinks (1968), Shukla (1972), and Francis and Kennenberg (1978). The 

AMMI model which combines regular analysis of variance for additive main effects with principal 

component analysis for multiplicative structure within the interaction (Crossa et al., 2002), has 

been widely used in cassava to study the pattern of response of genotype, environment, and 

GEI, and to identify genotypes with broad or specific adaptation to target agro-ecologies or 

environments for various traits (Benesi et al., 2004; Dixon et al., 2002; Ntawuruhunga, 2001). A 

significant feature of AMMI analysis like many other multiplicative models is that they account 

for a large proportion of the pattern related to the treatment design in the first few dimensions. 

Based on AMMI, Purchase et al. (2000) also proposed a stability statistic termed AMMI stability 

value (ASV), which is commonly being used to study stability in cassava. Considering that 

genotypes which combine stability with high yields are preferred by farmers, Farshadfar (2008) 

therefore proposed the genotype selection index (GSI) which integrates both stability value and 

yield into single selection criterion.     

1.12 Summary 

This review has shown that more research is needed in-spite of the important progress made so 

far in breeding cassava for resistance to mites or insects. Many publications currently available 

in this area of cassava research have focused on biological control. Literally no breeding work 

has been down in Zambia to incorporate heritable host plant resistance in cassava to green 

mite. There is need to source for resistance from both local and introduced genotypes of 

cassava in Zambia in order to develop CGM-resistant genotypes which are locally adapted and 

stable. The fact that T. aripo was recovered on certain cultivars in Zambezi and Nchelenge 

districts suggests the need to study the effect of GEI on the abundance of CGM, as well as the 

survival and establishment of T. aripo in Zambia. 
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Progress in genetic improvement of cassava has been considerably hindered due to the 

heterozygous genetic nature of the crop. Cassava scientific research is still in its infancy and 

there is limited knowledge on the inheritance of traits of agronomic relevance in cassava. Most 

of the important traits in cassava are polygenic. Detection of polygenes for a trait requires 

evaluation of breeding materials over a range of environmental conditions in order to cater for 

differences due to genotype by environment interaction. Breeding for resistance to arthropod 

pests requires presence and even distribution of the target pest, which may not be always the 

case under field conditions. The research becomes expensive in that screening has to be done 

over a large number of environments, and seasons, also making investment in controlled 

environment equipment inevitable for rearing of insects and screening of crop plants. 
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CHAPTER 2 

Farmers’ awareness of cassava green mite and preferred traits of 
cassava cultivars in north-western Zambia 

Abstract 

Farmers are the custodians of valuable indigenous knowledge concerning wild and 

domesticated plants and over the years farmers have discovered various means of coping with 

plant pests in their farm lands. To obtain information on farmer’s perception of the distribution 

and importance of major cassava pests and traditional coping strategies thereof, a farmer 

participatory study was undertaken. Through individual interviews and focus group discussions 

the study helped to gather traditional knowledge on plant attributes that are associated with 

reduced pest population and/or damage in cassava fields, with a view to identify traits that can 

be promoted through breeding. Termites, moles and cassava green mites (CGM) were 

recognized as the most prevalent pests that contribute to low yields and abandonment of certain 

cassava cultivars by farmers. Apparently farmers depend on traditional cultural practices such 

as de-topping, selective pruning, intercropping, and burning of cassava fields to reduce CGM, 

mealybug and termites in their fields. These methods interfer with the survival of natural 

enemies of CGM. For successful development of an integrated pest management aimed at 

controlling CGM, farmers need to be sensitized about the importance of CGM and the benefit of 

natural enemies, as well as the role of plant morphological traits serving as direct or indirect 

defense against CGM.Plant canopy size and other related attributes such as number of 

branches, and leaf retention, were perceived to have a negative relationship with CGM damage. 

Farmers desire cultivars which combined the following traits: earliness, high storage root yield 

and storage root dry mass percentage, resistance to CGM, moles, termites and storage root 

rots. Cultivars which lack in most of these traits have been abandoned by farmers. Therefore, 

there is a need to look for genetic sources for these farmer-desired traits and incorporate them 

into new cultivars through plant breeding 
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2.1 Introduction 

Cassava is a robust and reliable crop which tolerates a wide range of climatic conditions and is 

able to grow under marginal soil fertility. Its production is largely concentrated among the small 

scale, resource-limited farmers who have no access to credit facilities, and cannot afford 

expensive agro-chemicals to control pests and diseases. Normally there is no break in the 

production cycle of cassava; farmers have to plant a new field of cassava every rainy season to 

have a continuous supply of food. This continuous production coupled with the long growth 

cycle of cassava creates a continuum of cassava pests and diseases. Under such farming 

conditions cassava green mite (CGM) (Mononychellus tanajoa Bondar (Acari: Tetranychidae)) 

becomes the key herbivorous arthropod pest (Omorusi et al., 2011), causing significant yield 

losses (Byrne et al., 1982; Yaninek and Herren, 1988). National activities aimed at controlling 

CGM through resistance breeding and biological control have been carried out as independent 

units and without active participation of farmers. Impact assessment studies have shown that 

most of the integrated pest management (IPM) programmes in which scientists have controlled 

the development and use of knowledge are not sustainable and often have impacted negatively 

on agricultural communities, including farmers (Dlott et al., 1994). Consequently, despite the 

release (Malambo et al., 1998; Mebelo et al., 2003), the pest has continued to devastate 

cassava production in Zambia (SARRNET, 2008). It is suggested that agricultural research and 

development programmes which target the poor become more effective when they take farmers’ 

indigenous knowledge-based systems into account (Friis-Hansen and Sthapit, 2000). 

Participation of farmers in IPM research is thought to empower local farmers by enhancing local 

management capacity, increasing confidence in their own abilities (Van Den Berg and Jiggins, 

2007). This kind of empowerment increases the sense of ownership among farmers for the 

developed technology and the likelihood of that technology being embraced (Dlott et al., 1994). 

Knowledge and perception of farmers is necessary for the development of appropriate pest 

control management strategies in line with farmers’ needs (Ojwang et al., 2009). 

Farmers are continuously innovating in order to cope with the ever-changing environmental, 

ecological, policy, and market situations, and over the years they have become the custodians 

of traditional knowledge on many aspects of crop production including pests and coping 

strategies (Sleper and Poehlman, 2006). In the longer term this will be translated into increased 

rates of adoption and retention of new technologies, and ultimately into a greater and more 

accelerated reduction in food insecurity and poverty (Weltzien et al., 2000).  

Use of participatory approaches in host plant resistance breeding has enabled researchers to 

respond more precisely and efficiently to the needs and preferences of resource-poor farmers 

(Ojwang et al., 2009). In Nigeria, participatory rural appraisal (PRA) was carried out to identify 

farmers’ preferences, which included enhanced shelf life, high storage root yield, low level of 
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hydrogen cyanide in cassava processed products, pests and disease resistance, and early 

maturity (Agwu and Anyaeche, 2007). Manu-Aduening et al. (2007) used PRA to describe the 

characteristics needed for cassava varieties in Ghana and reported that farmers preferred 

cassava varieties that had early growth and vigour to suppress weeds, early maturity, high yield, 

good cooking quality and suitability for intercropping. Kamau et al. (2011) used focus group 

discussions in the semi-arid region of eastern Kenya to identify farmers’ preferences for 

cassava varieties, which included early maturity, high dry mass content and long, straight, round 

and sweet roots. Using PRA as an integral part of conventional breeding is likely to speed up 

the rate of development and adoption of cassava varieties (Kapinga et al., 1997; Fukuda and 

Saad, 2001). 

Against this background, the current study was conducted in north-western Zambia to achieve 

the following objectives: i) gather information on farmers’ perception of the distribution and 

importance of major cassava pests and traditional coping strategies thereof; ii) gather traditional 

knowledge on plant attributes that are associated with reduced pest population and or damage 

in cassava fields, with a view to identifying traits that can be improved through conventional 

breeding; and iii) gather information on desirable and non-desirable cassava varietal attributes 

in relation to various uses of cassava. 

2.2 Materials and methods 

2.2.1 Study sites 

Individual and focus group interviews were conducted with 120 farmers in two districts namely 

Solwezi (60 farmers) and Mwinilunga (60 farmers) in Zambia (Figure 2.1). The farmers in 

Mwinilunga have a long history of growing cassava as a staple crop. Consequently large 

cassava fields with a wide diversity of cassava cultivars, and highly experienced cassava 

growers are prevalent in Mwinilunga (Chakupurakal et al., 1994). The district has a long history 

of on-farm research activities which has over the years afforded a good number of local farmers 

exposure to improved technologies and cultural practices. There is a long history of releases of 

exotic biological predatory mites and parasitoidsto control CGM and cassava mealybug (CM) 

(Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae)), respectively in 

Mwinilunga (Malambo et al., 1998). However the natural enemies for CGM have not established 

well in the district (Mebelo et al., 2003).  

Sorghum (Sorghum bicolor (L.) Moench) is traditionally grown in Solwezi district, where people 

have recently migrated from areas where cassava is grown. Therefore, cassava is a relatively 

new crop in Solwezi where farmers grow cassava mainly for the sale of storage roots and 

leaves.  
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A PRA study was conducted in six agricultural camps in each of the two districts. In Mwinilunga 

farmers were interviewed in Sailunga, Nyangombi, Kawiko, Kanyama, Kampemba, and Lwau 

agricultural camps (Figure 2.1). In Solwezi, the camps included Mutoma, Lamba, Kisasa, 

Kayonge, Meheba, and Manyama. The survey team included a plant breeder, a social 

economist, one agricultural extension officer, and one field research assistant from the Root and 

Tuber Improvement Programme.  

2.2.2 Individual interviews 

A loosely structured questionnaire was used to obtain the required information. From each of 

the above named agricultural camps, an extension officer who was familiar with the local 

language was trained on the techniques of administering the questionnaire. The questionnaire 

was administered to about 10 farmers who were randomly selected along a transect in each 

camp (King, 2000). Cross-checking was done in the field by the researcher to ensure that 

information collected was accurate. An inventory of abandoned cultivars was compiled in each 

locality, and information about desirable and non-desirable traits attributed to each cultivar was 

collected and reasons for abandonment of certain cultivars were also obtained. 

 

Figure 2.1 Agricultural camps sampled in the Mwinilunga and Solwezi districts for 

the participatory survey 

2.2.3 Focus group discussion 

A sub-sample consisting of 60 farmers, of which 30 were women and 30 men, was randomly 

selected from the 120 previously interviewed cassava growers and they were gathered together 
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for focus group discussions. These farmers were then sub-divided into 10 groups of six 

members each. Women were allowed to form their own groups to allow free expression of ideas 

between gender groups. Each group was assigned one trained extension officer who served as 

a guide. Farmers were asked to describe symptoms of damage caused by pests affecting 

cassava, and to provide a list of plant attributes that were considered to confer some level of 

plant resistance, as well as the traditional cultural practices that are used to manage such pests 

in their respective localities. Well-labelled live infested plants or plant parts as well as 

photographs of major pests and associated damage symptoms were provided as a guide to 

assist farmers in matching their descriptions with names of pests. Using preference scoring, 

farmers were asked to rank the pests in their order of importance (Figure 2.2). Similarly the 

effectiveness of various plant attributes and traditional cultural practices used in minimizing pest 

population and crop damage were also ranked by farmers.  

 

 

Figure 2.2 Farmers conducting preference scoring and ranking of desirable attributes of cultivars and 

uses of cassava at Mutanda research station, Zambia. 
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2.2.4 Data analysis 

Data collected were subjected to descriptive statistics analysis using SPSS version 10, 

statistical software. 

2.3 Results 

Over a period of 20 years, all the farmers interviewed (100%) have abandoned the landrace 

Kundamanga (Table 2.1). Ninety percent of the farmers said they have abandoned the cultivar 

Chamala. The cultivars Bunganabutu and Kapumba, though still planted by some farmers, 

have been abandoned by 80% of the farmers. The cultivar Bangwele has been abandoned by 

50% of the respondents in Mwinilunga (Table 2.1). Reasons for abandonment of cultivars 

included poor fresh storage root yield (FSRY), low storage root dry mass (SRDM) and high 

storage root fibre content (SRF), susceptibility to moles, insect damage, and storage root rot 

(SRR) or poor underground storability (UGS), and susceptibility to frost and hail storm damage 

among others (Table 2.1).  

Table 2.1 Cassava cultivars abandoned by farmers in Mwinilunga and Solwezi districts, Zambia  

District Abandoned 
cultivars 

% farmers 
abandoning 

 Reasons for Abandonment 

Mwinilunga Neti,  90  Attracts insects and easily damaged by frost and hail 
storm 

Bunguta 60  Few and small storage roots 

Loja 45  Prone to theft and monkey damage 

Kapumba 80  Prone to moles damage, and root rots 

Nyauseya 50  Prone to root rots 

    

Solwezi  Bunganabutu 80  Very prone to mole damage, plus low storage root yield 

Kapumba 80  Highly prone to mole damage, storage roots highly 
fibrous, and prone to frost damage and theft 

Tangala 75  Prone to frost and insect damage 

Chamala 90  Very poor growth and storage root yield 

Kundamanga 100  Few leaves and prone to insect damage  

 Bangwele 50  Too bitter, susceptible to diseases,  yellow flour 

2.3.1 Ranking the uses of cassava 

Cassava is mostly consumed in the form of flour which is used to make nshima (thick porridge 

which is eaten with sauce). Leaves are also consumed as a green vegetable both in Mwinilunga 

and Solwezi (Figures 2.3 and 2.4). Cassava is considered a good source of income for local 

farmers. Fresh and dry cassava storage roots as well as cassava flour are sold for money or 

exchanged with farm labour which is used to either maintain or expand fields planted to cassava 

or other crops such as maize. Cassava was said to have some medicinal properties and is used 

as a natural remedy for diarrhoea and skin diseases. The other use for cassava which was 

mentioned by male farmers only was for brewing local beer called Kachasu, and soft drink 

called Munkoyo. This use was ranked fifth by farmers in Mwinilunga and Solwezi.  
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Score 1 = most important, 10 = least important 

Figure 2.3 Ranking of uses of cassava by farmers in Mwinilunga district, Zambia 

 

Score 1 = most important, 9 = least important 

Figure 2.4 Ranking of uses of cassava by farmers in Solwezi district, Zambia 

 

2.3.2 Ranking the uses of cassava and desirable varietal attributes 

The process of extracting cassava flour involves soaking of cassava storage roots in water, 

drying and milling. The soaking and fermentation help to get rid of the bitter taste and cyanide. 

Therefore, for the purpose of extracting cassava flour, farmers do not bother about the taste of 
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storage roots as both bitter and sweet cassava can be used. However, cultivars which combine 

high FSRY with high SRDM and resistance to SRR are most preferred for nshima. Cassava 

flour is sometimes mixed with clay and water to plaster mud brick houses in villages. For this 

purpose SRDM/starch content is the most important. Therefore cultivars which combine high 

FSRY with high SRDM are most preferred. For use of cassava in brewing, farmers like cultivars 

with high SRDM, high FSRY and extended UGS.  

The SRDM is the most important attribute of cassava cultivars preferred by farmers for most 

uses of cassava. Cultivars which are tolerant to frost, pests and diseases are preferred as a 

leafy vegetable which is another source of income for farmers in the North-Western Province of 

Zambia (Tables 2.2 and 2.3). 

 

Table 2.2 Ranking of uses of cassava and associated varietal attributes by farmers in Mwinilunga, 

Zambia 

Uses 

Desirable varietal attribute 

High 
FSRY 

High 
SRDM 

Good 
UGS  

Early 
bulking 

Sweet 
roots 

High yield 
of 
planting 
material 

Frost/hail 
storm 
tolerance 

Pest/ 
disease 
resistance 

Nshima 2 1 4 3 ns 9 7 8 

Baking 5 1 2 5 3 ns ns Ns 

Glue/plaster 9 3 ns ns ns ns 7 4 

Brewing 4 2 5 ns ns ns ns Ns 

Source of 
income  

1 2 3 3 ns 2 ns 2 

Starch for 
ironing 

7 1 9 6 ns ns ns 8 

Making glue 3 1 2 ns ns ns ns Ns 

Vegetable ns ns ns ns ns 1 2 3 

Medicine ns 8 9 7 ns ns ns Ns 

SRDM = storage root dry mass; FSRY = fresh storage root yield; UGS = underground storability;Score = ranking of 

the strength of association between varietal attribute and uses scored on 1-9 scale, where 1 = highest positive 

association, and 9 = lowest positive association; ns = no association; Source of income = income generated 

through selling of fresh and dry storage roots, planting materials and exchange for labour. 
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Table 2.3 Ranking by farmers of uses of cassava and associated varietal attributes in Solwezi, Zambia 

 
 
Uses 

 
Desirable attributes 

 

 
High 
FSRY 

 
High 
SRDM 

 
Early 

bulking 

Purple 
inner 

root skin 

 
Sweet 
roots 

High yield of 
planting 
material 

 
Pest/disease 

resistance 

Nshima 
 1 2 3 ns ns ns Ns 

Baking  3 2 ns    4   1 ns Ns 

Brewing   1 3 2 ns ns ns Ns 

Source of 
income  

 5 5 ns 5 5 ns Ns 

Livestock 
feed 

 5 ns 2 ns 5 8 5 

Snack   5 5 3 2 10 ns Ns 

Vegetable  ns ns 4 ns ns 15 6 

Medicine  12 8 5 ns ns ns Ns 

FSRY = fresh storage root yield, SRDM = storage root dry mass; Score = ranking of the strength of association 

between varietal attribute and uses scored on 1-9 scale, where 1 = highest positive association, and 9 = lowest 

positive association, while  ns = no association; Source of income =  income generated through selling of fresh and dry 

storage roots, planting materials, and exchange for labour. 

 

2.3.3 Ranking of negative varietal attributes 

In Mwinilunga, farmers scored susceptibility to SRR, low FSRY, and susceptibility to hail storm, 

moles, frost and insect damage in that order as the major negative attributes of cassava 

cultivars (Figure 2.4). In Solwezi, farmers scored the tendency of certain cultivars to yield few or 

only small roots even after two years as the most undesirable attribute which was responsible 

for abandonment of most cultivars. Susceptibility of a cultivar to insect damage was scored as 

the second most undesirable attribute (Figure 2.4). The third negative attribute and cause for 

cultivar abandonment is bitterness of storage roots, while susceptibility of a cultivar to foliar 

diseases, and poor UGS followed as the fourth and fifth most undesirable attributes, 

respectively.  
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Score 1 = least non-desirable, 10 = most non-desirable 

Figure 2.4 Ranking of reasons for abandonment of some cassava cultivars by farmers in 

Mwinilunga and Solwezi districts, Zambia 

 

2.3.4 Ranking of desirable varietal attributes 

Eight prominent positive attributes were listed for the different cultivars by farmers in Mwinilunga 

(Figure 2.5) and Solwezi (Figure2.6). In Mwinilunga, high FSRYwas considered the most 

important positive attribute (25.0%), followed by high SRDM (20.2%) prolonged UGS (17.0%), 

resistance to pests and diseases (15.5%), early maturity (10.4%), fast growing and more 

planting material (7.2%) tolerance to frost and hail storm (3.7%), and sweet taste of storage 

roots (1.0%). In Solwezi, high FSRYwas also considered the most important positive attribute 

(35.0%), followed by high SRDM (25.3%), sweetness (12.0%), early maturity (9.8%), resistance 

to pests and diseases (7.0%), more planting material (5.2%), purple storage root inner skin 

colour (3.5%), and tolerance to frost (2.5%).  
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Score 1 = most important, 8 = least important 

Figure 2.5 Ranking of positive varietal attributes by farmers in Mwinilunga district, Zambia 

 

Score 1 = most important, 8 = least important 

Figure 2.6 Ranking of positive varietal attributes by farmers in Solwezi district, Zambia 
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Most of the farmers had no knowledge about CGM and were not able to describe or identify its 

damage symptoms. Nevertheless, Mutanda, Kampemba, and Kawiko camps recorded the 
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Lwau where 30 and 35% of the farmers, respectively, were knowledgeable about CGM, (Figure 
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2.7). None of the farmers interviewed in Lamba and Manyama camps of Solwezi district had 

knowledge about CGM. The farmers who had some knowledge about CGM had attained at 

least junior secondary level of education and had interacted with researchers either during on-

farm research or farmer training. These farmers were able to recognize and describe symptoms 

of the pest and were even able to distinguish CGM from cassava mosaic disease (CMD) 

symptoms. The majority of such farmers were found in Mutanda, Kampemba, and Kawiko 

camps where research trials are usually conducted (Figure 2.7). However, all the farmers 

realized that they had seen CGM in their fields after looking at the photographs and live plant 

samples, based on which they were then able to estimate the extent of CGM spread and 

damage in their own fields. 

 

 

Figure 2.7 Farmers awareness about cassava green mite 

 

2.3.6 Farmers’ level of education 

Most of farmers interviewed had attained primary education up to grade seven. In Mwinilunga, 

45.8% of the farmers had attained primary school education, 44.2% had attained secondary 

school education, and 4.7% had post-secondary school formal education, while 5.3% of the 

farmers interviewed had no formal education at all. In Mwinilunga 54.2% of the farmers 

interviewed said they had attended some field training on root and tuber crops in the past, while 

in Solwezi only 19.2% of the farmers had attended such training (Table 2.4).  In Solwezi, 67.5% 
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of the farmers had only attained primary school education, 17% had attained secondary school 

education, and 8.3% had post-secondary school formal education, while 7.2% of the farmers 

interviewed never had any formal education (Table 2.4).  

 

Table 2.4 Percentage distributions of farmers according to the levels of education and field 

training in 12 agricultural camps in Solwezi and Mwinilunga districts of Zambia    

District Camp 

% Farmers by levels of formal education attained 

 Training in root 

crops 

No formal 

education 

Primary 

school 

Secondary 

school 

Post- 

secondary 

 No field 

training Trained 

Solwezi Mutanda 0 50 20 30  30 70 

  Lamba 2 75 23 0  95 5 

  kisasa 10 70 5 15  80 20 

  Kayonge 10 80 10 0  100 0 

  Meheba 20 50 25 5  80 20 

  Manyama 1 80 19 0  100 0 

 Mean 7.2 67.5 17.0 8.3  80.8 19.2 

Mwinilunga Sailunga 0 20 80 0  25 75 

  Nyangombi 2 70 20 8  50 50 

  Kawiko 5 30 65 0  30 70 

  Kanyama 10 70 15 5  80 20 

  Kampemba 15 35 45 5  15 85 

  Lwau 0 50 40 10  75 25 

 Mean 5.3 45.8 44.2 4.7  45.8 54.2 

 

2.3.7 Distribution and importance of cassava pests in farmers’ fields 

Farmers were able to estimate the importance of pests experienced in their own fields. Major 

pests of cassava included moles, termites, CGM, scale insects (Aonidomytilus albus Ckll), and 

CM. Data obtained from focus group discussions indicate that CGM and termites (Microtermes 

sp)are the most widely distributed pests. Farmers attributed most losses in planting materials 

and leaves to termites and CGM, respectively (Figure 2.8). These pest were said to be most 

serious in the dry season, while moles were also reported to be found in all cassava fields 

mostly early in the rainy season. According to the farmers, moles cause about 45% crop 
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damage, while termites and CGM cause 25 and 20% crop damage in cassava fields, 

respectively (Figure 2.9). 

 

 
 

Figure 2.8 Distribution of major cassava 
pests in farmers’ field as estimated by 
farmers 
CGM = cassava green mite;  
CM = cassava mealybug 

Figure 2.9 Extent of damage caused by 
major cassava pests in farmers’ fields as 
estimated by farmers 
CGM = cassava green mite;  
CM = cassava mealybug 

 

2.3.8 Plant attributes associated with reduced pest damage in cassava 

Among the plant attributes that were mentioned by farmers as being associated with reduced 

pest damage, large heads (shoot apices), leaf hairiness, and extended leaf retention (LR) and 

stay green were highly associated with reduced damage caused by foliar pests such as CGM 

and CM. Canopy size and other related attributes such as number of branches, and LR, were 

also said to have a negative relationship with pest damage. A direct positive relationship was, 

however, reported between glabrous leaves and CGM leaf damage. Canopy size and LR were 

also said to be highly associated with reduced damage due to termites and scale insects in 

cassava fields. Farmers were aware of variations in response to pest damage among cultivars. 

Cassava cultivars that had pink or purple leaves, petiole and stems which farmers called “purple 

or pink cassava” was said to be not attacked by CGM, but such leaf type was not considered as 

a good vegetable. Bitter cassava cultivars were less preferred by termites and moles as 

compared to sweet ones, when grown in a mixture.  
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Table 2.6 Ranking of cassava plant attributes associated with reduced damage of cassava by 

green mite, mealybug, termites, and scale insects as ranked by farmers  

 
Plant attribute 

Pests 

 
CGM 

 
CM 

 
Termites 

Scale 
insects 

Highly dense canopy 7 8 2 1 
Highly branching 8 4 3 2 
High retention of green leaves 2 1 3 3 
Big and hairy shoot tips 1 2 9 7 
Hairy leaves 3 3 8 7 
Glabrous leaves 9 10 7 9 
Leaf folding trait 4 5 5 10 
Broad hairy leaves 5 9 6 5 
Purple or pink cassava 6 6 10 4 
Bitter roots 10 7 1 6 

CGM = cassava green mite; CM = cassava mealybug; Purple or pink cassava = cassava varieties with purple or 

pink leaves, petioles and stems; Rank 1= highest rank, 10 = lowest rank 

2.3.9 Cultural practices associated with reduced pest damage in cassava 

Through a participatory process and by consensus by farmers, focus groups listed cultural 

practices that are associated with reduced pest population and/or damage thereof in cassava 

fields (Figure 2.10). De-topping of cassava tips of all plants in a field, just after the rainy 

season, is the most widely used traditional strategy to escape insect and frost damage in 

cassava fields. A total of 15.8% of the farmers interviewed said they practice selective pruning 

of infested plant shoots, while 13.4% intercrop cassava mainly with cereals such as maize and 

sorghum, and withte phrosia (Tephrosia vogelii Hook f.) to reduce the population of pests. A 

total of 11.2% of the farmers affirmed the observation that keeping cassava fields free of 

weeds helps to reduce pest infestation and damage, while 10.2% of the farmers also 

mentioned that ratooning of cassava shoots just before the on-set of the cold season helps to 

reduce the population of insect pests and loss of planting materials through cold injury.  

Apart from use of barriers of T.vogellii, and milk bush (Euphorbia tirucalli L. (Euphorbiaceae)) 

planted as edge rows around the field of cassava as mentioned by 8.6% of the farmers, 2.5% 

of the farmers said they manage moles by setting traps underground along the tunnels, while 

2.0% depende on flooding and digging out the tunnels. However, 5.3% of the farmers cited the 

use of fire which is primarily meant to clear weeds in cassava fields as an indirect way of 

destroying insect pests. They elaborated that fire is only used in old fields of cassava with the 

intention to completely uproot the crop shortly after burning, while 4.0% of the farmers said 

they do not practice any control measures against any pest in cassava fields. 
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Figure 2.10 Traditional cultural practices to reduce pest damage in cassava fields as 

identified by farmers in Mwinilunga and Solwezi districts in Zambia 

2.3.10 Ranking of the effectiveness of cultural pest management practices 

Farmers believe that the effectiveness of the aforementioned cultural practices varies with the 

pest. Removal of cassava shoot tips and selective pruning of infested shoots were cited to be 

the most effective in reducing the population of both CGM and CM (Table 2.7). Crop rotation 

was also cited as an effective measure against CGM and termites. Selective pruning was 

considered to be the most effective measure against white scale insects, while low infestations 

of termites were normally encountered in frequently weeded fields. In this regard, farmers also 

said that land preparations which involve burying grass and planting cassava before trash 

decomposition tend to predispose cassava to termite attack which chew and girdle through 

planted cuttings from underground resulting in poor establishment of the crop. However, 

farmers clearly mentioned that the intensity of termite damage varies with location and soil 

type. The abundance of termite hills was said to be a direct indicator of the potential termite 

problem in a given area as is commonly the case in the North-Western Province. However, 

farmers pointed out the observation that plants that survive near a termite hill grow with vigour 

and give higher yields.  

Burning the fields of cassava before harvest was said to be the second most effective 

traditional measure for reducing termites and scale insects especially for the succeeding 

cassava crop. The use of underground root barriers and trenches were cited as the most 

effective measure against moles followed by intercropping with T. vogellii and milk bush. Half 

of the farmers interviewed were knowledgeable about the negative consequences of burning 
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cassava fields, and said it is only used as a last resort where there is a fear of further pest 

population build-up in situations where the infestation is alarmingly high.  

Table 2.7 Ranking of traditional cultural practices associated with reduced damage of cassava by 

CGM, CM, termites, scale, and moles by farmers. 

Cultural practice 

Pests 

CGM CM Termites Scale 
insects 

Moles 

De-topping 1 1 9 7 8 
Selective pruning 2 2 8 1 8 

Leaf harvesting 4 4 9 8 8 
Frequent weeding 5 6 1 5 8 
Burning 6 5 2 2 7 
Stem rationing 7 2 11 3 8 
Use of barriers 8 8 5 8 1 
Intercropping 3 7 3 4 2 
Crop rotation 4 6 3 5 6 
Trapping 9 9 11 9 4 
Flooding 9 9 7 9 3 
Digging 9 9 6 9 5 

CGM = cassava green mite, CM = cassava mealybug, Scale = white scale insects; Rank = ranking of the 

effectiveness of cultural practices for control of cassava pests scored on 1-12 scale, where 1 = most effective, 

and 12 = lease effective 

 

2.4 Discussion and conclusions 

The study has shown that FSRY, SRDM, earliness and resistance of cultivar to pests and 

diseases are the most important attributes that determine adoption and retention of new 

cassava cultivars by farmers in Mwinilunga and Solwezi districts. However slight variations were 

observed in the ranking of varietal attributes between farmers in the two districts. Farmers in 

Solwezi put more emphasis on factors affecting the quality of both the leaves and storage roots, 

while farmers in Mwinilunga are more concerned with factors affecting the physical quantity of 

storage roots and planting materials. The former group of farmers is interested in sweet roots 

which are preferred for eating as raw snacks, while the latter group of farmers normally 

processed cassava into flour for nshima. Farmers in Solwezi are not familiar with the processing 

of cassava, and because of readily available market for unprocessed cassava in the locality, 

farmers cannot afford to leave the storage roots in the ground beyond 16 months as is normally 

the case in Mwinilunga. This could explain why farmers in Mwinilunga are more concerned 

about SRR (poor UGS) and SRF than their counter-part in Solwezi. High incidences of SRR and 

SRF are mostly associated with delayed harvesting of cassava (Mskita et al., 1997). Foliar 

diseases and insects are a major concern to the farmers, because of their detrimental effect on 

the quality and quantity of planting materials and cassava leaves, which are a valuable source 

of income for women especially in Solwezi. The differences in ranking of varietal attributes 

between farmers indicate that farmers’ knowledge and needs are mainly location specific and 

end-use dependent (Nkunika, 2002). The weights attached to various production constraints 
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vary with production conditions, and the cultural, and socio-economic values of the participating 

farmers. Therefore in order to obtain proper representation of farmers’ perception of constraints, 

a large the sample size of participants is required (Were et al., 2012). 

This study has revealed that many farmers are aware that pests and diseases are the major 

contributing factors to low yields of cassava in Zambia. It is also evident from the study that in 

Mwinilunga and to a lesser extent in Solwezi, farmers are very observant of the influence of 

various cultural practices on pests. However, they pay attention to larger pests which are easily 

seen with the naked eye, and much more attention is paid to pests that cause direct damage 

and thus negatively affect the quality of edible parts of the plant (Barnett and Rice, 1989). The 

non-conspicuous nature of CGM, however, makes it difficult for traditional farmers to clearly 

identify and define it. Consequently, its effect is under-estimated and limited attention is given to 

it by farmers. Good understanding of pest damage symptoms by farmers is crucial for an 

effective study of indigenous knowledge about traditional coping strategies. Supervised field 

tours conducted with individual farmers revealed that the co-existence of CGM and cassava 

mosaic disease on the same plant makes it difficult for some farmers and inexperienced 

extension officers to isolate symptoms of especially CGM and, therefore, the two are usually 

considered as one. This complication has earlier been reported by Gutierrez (1987) who stated 

that “for someone who is not an expert, symptoms produced by the CGM in cassava (chlorosis 

of young leaves followed by defoliation of young shoots) can be confused in the field with those 

produced by the cassava mealybug, Phenacoccus manihoti Matt-Ferrero, or by the African 

cassava mosaic virus (ACMV)”. 

Normally women prefer young and tender cassava leaves which are found in the top third of the 

plant shoot, as leaf vegetable (Ngudi et al., 2003). The competition between human and CGM 

for such leaves is increasing the urgency to contain CGM in Zambia. Protecting younger and 

tender leaves not only increases the vegetable supply but also enhances photosynthesis and 

hence increase production of planting materials, FSRY, SRDM (Byrne et al., 1982;Yaninek and 

Herren, 1988, Yaninek et al., 1993), and starch quality (Defloor et al., 1998). However, for the 

lack of better alternatives, farmers have resorted to de-topping, selective pruning, harvesting of 

tender leaves, and burning of cassava fields as ways of reducing pest populations.  

One controversial issue concerning such practices lies in their interference with the survival of 

predatory mites and other beneficial herbivores which are natural enemies of CGM. In the 

Congo, the findings of the collaborative cassava study in Africa (COSCA) indicated that frequent 

harvesting of cassava leaves and de-topping of cassava plants is likely to lead to loss of shelter 

and even loss of the natural enemies (Nweke et al., 2002). Though a harvesting interval of 60 

days in cassava has been suggested (Tata-Hangy, 2000), to allow for the maintenance of 

populations of predatory mites, farmers have reduced the harvesting interval due to increased 
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demand for leafy vegetables. These coping strategies are destructive in nature and have 

retarding effects on plant growth, leading to loss of valuable planting materials and may not help 

so much in controlling CGM. Though the new leaves which emerge after de-topping and burning 

of cassava plants in the field, look healthier and are apparently free of CGM damage, it does not 

take long before they become re-infested with CGM. Yaninek (1988) reports that CGM has the 

ability to survive on detached cuttings, and buds for up to two months, which contributes to the 

rapid colonization of the newly emerging young leaves. Therefore the tendency of farmers to 

plant tender sections of cassava stems with leaves still attached could also be responsible for 

transferring CGM from one planting to the next. Similarly, CGM has been reported to survive on 

bundles of cassava leaves that are displayed for sale as a leaf vegetable (Yaninek, 1988). 

On the other hand, farmers are aware about the potential of pubescent cassava cultivars to 

reduce CGM damage. Leaf pubescence has also been reported to limit the movement of 

whiteflies (Bemisia tabacci) which translates to limited spread of CMD (Hahn et al., 1989). 

Farmers also observed that this protective effect of pubescence was more pronounced in broad-

leaved cultivars which exhibited high density of hairs per unit leaf area. Similar results have 

been reported by Byrne et al. (1982) who observed that cultivars with leafy habit (high leaf area 

index) seem to sustain lower CGM leaf damage, resulting into higher FSRY for such cultivars 

when compared to their glabrous counterparts. Highly pubescent cultivars of cassava tended to 

have more tender leaves, and are considered to be more palatable and therefore preferred for 

vegetables by women. Enhancement of leaf pubescence in cassava will not only reduce CGM, 

but will improve the quality of cassava as a leaf vegetable for Zambian consumers. However 

there is urgent need to inform farmers about indirect and direct plant defense mechanisms and 

biological control initiatives for the fight against CGM to be successful.  

Intercropping cassava with cereals and legumes is a popular practice among local farmers in 

North-Western Province. Since cassava takes more than one season to yield reasonable 

marketable storage roots in Zambia (RTIP, 1992), intercropping is only practicable in the first 

season of cassava cropping. Maize is normally provided with inorganic fertilizer which enables it 

to grow much faster than cassava and within four months provides some kind of a barrier to the 

movement of many small pests and insect vectors, the movement of which is highly influenced 

by wind (SARRNET, 1996). In the case of mites, pollen produced from maize for instance could 

provide an alternative diet on which CGM might spend much of its time consuming, sparing the 

cassava in the process (Edelstein et al., 2000; Gnanvossou et al., 2003). However, once maize 

is harvested, CGM can easily move to cassava. This could probably partly explain why there is 

a rapid rise in the population of CGM in cassava fields shortly following the harvest of maize, 

which also coincides with the beginning of the dry season (Toko, 1996).  
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Farmers complained that early-branching cassava varieties do not fit well in the traditional 

cropping pattern, which commonly involve intercropping cassava with many other crops 

including cereals and legumes. Early branching cultivars not only make weeding very difficult in 

intercropped fields, but also suffer more damage from CGM as compared to tall varieties (Egesi 

et al., 2007). The short distances between branching levels in short cultivars facilitate easy 

movement of CGM between branches and leaves within the cassava plant, in search of suitable 

leaves. This high branching habit also provides better protection for CGM against wind and rain 

effects, enabling it to continue colonizing the same host plants for a long period of time as long 

as suitable leaves are available, and consequently causing more leaf damage, and low FSRY 

(Cock et al., 1978). 

Agreeing with this observation, farmers added that CGM damage tends to be worse when short 

cultivars were grown in weed infested fields. The reason for this could be that, the weeds tend 

to provide a bridge for the CGM to walk from one cassava plant to the other in search for tender 

leaves. This facilitates easy establishment of contacts between male and female mites, hence 

increasing the reproductive capacity and rate of spread of CGM (Yaninek, 1988). Research by 

Agboton et al. (2006) have shown a positive association between weed density and CGM 

population in Southern-Benin, which seems to agree with the Zambian farmers’ observations. 

These authors have also reported reduced frequency of the natural enemy Typhlodromalus 

aripo in weedy cassava fields. 

The current study therefore presents a challenge to breeders to develop fast-growing cassava 

cultivars that rapidly outgrow and suppress weed populations, supporting farmers’ preference 

for cultivars that have a wider canopy and extended leaf longevity. 

This study has shown that any research work towards combatting CGM in cassava will be very 

challenging and requires a multi-dimensional consideration of cultural, socio-economic and 

environmental factors. Once successful this work will go a long way to increasing the supply of a 

cheaper source of protein, vitamins and minerals to rural communities, as well increasing the 

yield of cassava, and raising the living standards of rural communities. Farmers have valuable 

knowledge about the biotic constraints to cassava production and they are doing a great deal 

within their own means to solve pest problems. However, for lack of better alternatives, farmers 

are using destructive methods which are potentially detrimental to beneficial predators in 

cassava fields and to the agro-ecosystems in general. De-topping of cassava shoots, burning 

cassava fields, selective pruning, intercropping, frequent weeding and right choice of cultivar are 

some of the key methods used by farmers to manage cassava pests including CGM in North-

Western Province of Zambia. There is urgent need to sensitize farmers about CGM and the 

associated damage this pest causes, the importance of which has been underestimated, due to 

its non-conspicuous nature. Emphasis should be placed on farmer training and sensitization 
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about the benefits of natural enemies to CGM and the requirements for their effective presence 

in cassava fields. Active involvement of both educated and uneducated farmers at the planning, 

implementation and evaluation stages of an IPM programme for CGM is likely to contribute to its 

effectiveness and sustainability. 
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CHAPTER 3 

Genotype by environment interaction effects on resistance to cassava 
green mite (Mononychellus tanajoa Bondar (Acari: Tetranychidae)) 
and other agronomic traits of cassava grown in north-western Zambia 

Abstract 

Cassava is a food security crop that is becoming increasingly important for its potential industrial 

uses in Zambia. Despite the ability of cassava to grow in marginal areas, large differential 

genotypic responses have been reported under varying environmental conditions. Differences in 

pest and disease pressure contribute significantly to inconsistencies in performance of 

genotypes in various environments. Using a randomized complete block design, 19 cassava 

genotypes were evaluated in three locations for two years. The objectives of the study were to 

identify best genotypes that combine stability with high resistance to cassava green mite (CGM) 

within and across environments; identify stable genotypes with enhanced expression of plant 

traits that promote continuous survival of predators of CGM on cassava, and to identify locations 

that best represent target environment for low to no CGM damage and high expression of such 

traits. The expression of plant morphological traits favorable for continuous inhabitance of the 

phytoseiid predatory mite Typhlodromalus aripo on cassava, such as retention, and pubescence 

and stay green of leaves, were assessed. Data were also collected on the population density of 

CGM and associated leaf damage, storage root mass and fresh storage root yield. The additive 

main effects and multiplicative interaction (AMMI) analysis was used to study the genotype by 

environment interactions. Significant genotype by environment interaction was observed for 

most of the traits. The magnitude of genotype effect was greater than environment and 

interaction effects for all the traits. Genotypes L9.304/147, 92/000, TME2, 4(2)1425, and 

L9.304/175 were the most stable and most resistant to CGM across environments.   
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3.1 Introduction 

Cassava suffers yield loss caused by pests and diseases of which cassava green mite (CGM) 

((Mononychellus tanjoa (Bondar) (Acari: Tetranychidae)) and cassava mosaic disease (CMD) 

caused by viruses of the family Geminiviridae are the major ones (Akparobi et al., 1998). Large 

differential genotypic responses to these constraints have been reported under varying 

environmental conditions (Bokanga et al., 1994; Mkumbira et al., 2003; Aina et al., 2007; 

Ssemakula and Dixon, 2007). This variation in response among genotypes when evaluated in 

different environments is referred to as genotype x environment interaction (GEI), which 

commonly occurs in plant breeding programmes (Kang, 1998). The GEI are important in plant 

breeding and variety release (Crossa, 1990; Singh et al., 2006), as they enable plant breeders 

to identify superior genotypes and locations that best represent production environments (Yan 

et al., 2000). Most of the GEI studies conducted on cassava have focused on storage root yield 

(FSRY) (Dixon and Nukenine, 2000; Aina et al., 2007; Egesi et al., 2007). Only few experiments 

have aimed at studying the GEI effect on CGM (Bellotti et al., 2012). The major impediment to 

multi-location field screening of cassava genotypes for resistance to CGM has been the difficulty 

associated with maintenance of uniform infestation (selection pressure) throughout the 

experimental plots in different locations and/or years (Skovgard et al., 1993). Field screening of 

cassava germplasm for resistance to arthropod pests has to be done at several sites where 

natural populations are high and damage levels are significant so as to distinguish susceptible 

cultivars (Bellotti and Arias, 2001).  

 

Work by Yaninek et al. (1989) focused on the effects of CGM on cassava yields in relation to 

different planting dates. Zundel et al. (2009) showed that the presence of predatory mite 

Typhlodromalusaripo in cassava was affected by habitat type effect and host plant genotype 

effect. Cassava apex traits such as tip size (TS) and compactness (TC), and pubescence (Pbs), 

matter to the abundance of T. aripo, as this predator is more frequently and more abundantly 

found on cassava genotypes with pubescent compared to genotypes with glabrous apices 

(Zundel et al., 2009). Even in the absence of the natural enemy, leaf retention (LR) and stay 

green (SG), leaf hardness, leaf folding, and increased Pbs, have been reported to promote host 

plant resistance against CGM (Hahn et al., 1989; Nukenine et al., 1999; Lam and Pedigo, 2001; 

Bynum et al., 2004; Raji et al., 2008; Onzo et al., 2010). Selecting genotypes for stability and 

enhanced expression of such traits would enhance the durability of host plant resistance (Belloti 

et al., 1994), and at the same time promote biological control of CGM in cassava fields (Zundel 

et al., 2009; Pratt et al., 2002), and subsequently improve FSRY (Byrne et al., 1982a; El-

Sharkawy, 1992, 1993, 2003;Aina et al., 2007). Furthermore, studies of GEI for such traits might 

provide an explanation and a corrective measure for the reported failure of T. aripo to establish 
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well in some countries in Africa including north-western parts of Zambia and Cameroun (Mebelo 

et al., 2003; Onzo et al., 2003; Hanna et al., 2005).  

 

Ultimately, farmers are interested in genotypes that combine stability with high FSRY and 

therefore, breeders should look for such genotypes (Farshadfar, 2008). Several stability 

assessment methods have been developed (Wricke, 1962; Eberhart and Russell, 1966; Perkins 

and Jinks, 1968; Shukla, 1972; Francis and Kannenberg, 1978; Lin and Binns, 1988), but they 

have not been as widely used for cassava as they have for cereals. The additive main effect 

and multiplicative interaction (AMMI) model which combines regular analysis of variance for 

additive main effects with principal component analysis for the multiplicative structure of pattern 

within the interaction is currently the most commonly used method for studying GEI and for 

grouping cassava genotypes or sites with statistically negligible cross-over interaction (Ngeve, 

1994; Ntawuruhunga et al., 2001; Crossa et al., 2002; Dixon et al., 2002; Benesi et al., 2004). 

Against this background, multi-location trials were conducted and AMMI was used to study GEI 

for CGM resistance traits and other useful agronomic traits. The study was designed to achieve 

the following objectives: (i) to identify best genotypes that exhibit stably high resistance to CGM 

within and across environments; (ii) identify stable genotypes with enhanced expression of plant 

traits that promote continuous survival of the predatory mite T. aripo on cassava; (iii) identify 

locations that best represent target environment for low to no CGM damage and high 

expression of such traits; and (iv) identify stable traits across environments.  

3.2 Materials and methods 

3.2.1 Experimental sites and genotypes 

The study was conducted in 2010 and 2011 at three sites namely Mutanda located 12°11'E and 

26°24'S, at 1386 m above sea level (masl), Mwinilunga located 11°45'E and 24°23'S at 1363 

masl, and Zambezi located 13o30’E and 22°45’S at 914 masl (Table 3.1). At each location, the 

trial was planted on 15th December each year, corresponding with the begining of the rainy 

season which marks the traditional planting date in the area (Figure 3.1). Planting cassava at 

this time gives the crop four months of growth before the cold and dry season (Figure 3.2). Soil 

fertility status of the sites is provided in Appendix 3.1. These sites represent the major cassava 

growing areas of north-western Zambia.  
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Figure 3.1 Average monthly distribution of ranfall in Solwezi, Zambia 2012. 

 

 

Figure 3.2 Average monthly minimum and maximum temperatures experienced in Solwezi 
district of Zambia, 2012. 
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Table 3.1 Geographical position, soil types and climatic conditions of trial locations and years 

Location Lat. Long. 

 
Altitude 
(masl) Soil type 

 Rainfall (mm) 
Nov - Mar 

 Temp range (
o
C) 

Min - Max  Mean RH (%) 

 
2010 2011 

 
2010 2011  2010 2011 

Mutanda 12
o
 11’ 26

o 
24’ 1386 Ferrasols  1200 1250  18-28 16-30  64 42 

Mwinilunga 11
o 
45’ 24

o 
23’ 1363 Ferrasols  1100 1374  10-32 12-27  78 79 

Zambezi 13
o 
30’ 22

o 
45’ 914 Acrisols  1400 1300  18-34 16-37  82 85 

Lat.= latitude, Long. = longitude, masl = metres above sea level, Min = minimum, Max = maximum, RH= relative 
humidity measured as a percentage. 

Nineteen cassava genotypes (described in Appendix 3.2) were evaluated. Of these genotypes, 

five were landraces, five were locally improved genotypes at an advanced stage of breeding, 

and five were introductions from the International Institute of Tropical Agriculture (IITA) in 

Nigeria. The remaining four were released genotypes commonly grown in Zambia and because 

of their outstanding agronomic performance and moderate resistance to major pests and 

diseases they were used as checks.  

3.2.2 Experimental design and layout 

The trial was laid out in a randomized complete block design with three replications. Each plot 

consisted of 36 plants in six-plant rows on ridges. Spacing between ridges was spaced at 1 m 

and also between plants within the row providing a total population of 10 000 plants ha-1. No 

supplemental irrigation was provided to the trials. 

3.2.3 Inoculation of experimental materials 

The borders of each plot were planted with a CGM susceptible genotype which served as 

spreader rows. Two months after planting (in February each year), the borders were artificially 

infested with CGM obtained from a screenhouse-raised colony. Two infested leaves which had 

at least 20 adult mites were placed onto the intact leaves of each of the border row plants. The 

petiole of one infested leaf was lightly tied with a small string to the petiole of the first and 

second fully expanded intact leaves from the top of each of the border plants. These two leaves 

were then arranged in an abaxial-to-abaxial orientation and their main lobes were lightly clipped 

together with a plastic-insulated paper clip leaving the other leaf lobes freely open. The infester 

leaf and the paper clip were removed after three days. Inoculation was repeated twice during 

the experimental period namely soon after the cold season and at the on-set of the rainy season 

in August and November respectively. No fertilizers or herbicides were applied, but the trial was 

kept weed-free through frequent hand-weeding. 

3.2.4 Data collection 

The CGM population density (CGM PD) and associated leaf damage (CGM LD) were recorded 

as suggested by Hahn et al. (1989), using a rating system which involved estimating the 

proportion of leaf area covered by chlorotic spots, and the counting of adult mites on the third 
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fully expanded leaf from the top on each of six randomly selected plants in each plot. The 

damage rating was summarized based on a 1-5 score, where: 1 = no obvious symptoms; 2 = 

moderate damage, no reduction in leaf size, scattered chlorotic spots on young leaves, 1-2 

spots cm-2; 3 = severe chlorotic symptoms, light reduction in leaf size, stunted shoot, 5-10 spots 

cm-2; 4 = severe chlorotic symptoms and leaf size of young leaves severely reduced; and 5 = 

tips of affected plants defoliated, resulting in a candle stick appearance of shoot tips. According 

to this five-point scoring scale, plants or genotypes falling within classes 1 and 2 were 

considered to be resistant whereas, plants in classes 3, 4, and 5 were considered to be 

susceptible to CGM.  

Each clone was characterized visually for the degree of hairiness of apical leaves. Leaf Pbs was 

scored based on a 1-3 scale where 1 = glabrous; 2 = moderately pubescent; and 3 = highly 

pubescent. Similarly, the compactness of shoot apices (TC) was classified visually using a 1-3 

scoring scale where 1 = loose; 2 = moderately compact; and 3 = compact. The size of shoot 

apices (TS) was also assessed visually and categorized according to a 1-3 scoring scale where: 

1 = small; 2 = medium; and 3 = large. Leaf longevity was assessed by scoring for LR and SG. 

The LR was assessed by counting and expressing the number of nodes bearing leaves as a 

percentage of the total number of nodes on plant stems and branches, from 45 cm above 

ground level. The SG was scored visually based on a1-3 scoring scale where: 1 = poor (<50% 

of the leaves are live and green); 2 = moderately good (50-74% of the leaves are live and 

green); 3 = very good (≥75% of the leaves are live and green).  

Sequential harvesting was done to identify early bulking cultivars and identify cultivars with 

extended underground storability. At each of the three dates of harvesting, a total of six plants 

were harvested from the each plot for assessment of FSRY. A sub-sample was then obtained 

from the bulk for storage root dry mass percentage (SRDM%) determination. The SRDM% was 

determined using the specific gravity method of Kawano (1980); by recording the mass of a 3 kg 

(air) sample of fresh storage roots in water. The SRDM% was then estimated using following 

formula: 

SRDM (%) =158.3 x(
  

     
)– 143  

where Ma is the mass of storage  roots in air and Mw is the mass of storage roots in water.  

3.2.5 Data analysis 

Data were analyzed using Genstat version 14 statistical software package (Payne et al., 2011). 

The additive main effect and multiplicative interaction (AMMI) analysis was performed using the 

model suggested by Gauch and Zobel (1996) as follows: 
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 Yger = µ + αg +βe + ∑ʎn ygn δen + ρge + Eger 

where Yger = yield of genotype g in environment e for replicate r, µ = grand mean, αg = genotype 

mean deviation (genotype means minus grand mean), βe = environment mean deviation, n = 

number of principal component analysis (PCA) axes retained in the model, ʎn = singular value 

for PCA axis n, ygn = genotype eigenvector values for PCA axis n, δen = environment eigenvector 

values for PCA axis n, ρge = residuals, Eger = error term.   

3.2.6 Stability analysis 

The AMMI stability value (ASV) proposed by Purchase et al. (2000) was used to quantify and 

rank genotypes according to the yield stability. There are other statistics such as Eberhardt and 

Russell (1966) which are widely used to measure stability, but the ASV statistic is the most 

suitable for AMMI which was used in this study. The ASV has been defined as the distance from 

the coordinate point to the origin in a two dimensional scatterplot of first interaction principal 

component axis (IPCA1) scores against the second interaction principal component axis 

(IPCA2) (Farshadfar et al., 2012). Since IPCA1 accounts for most of the GE variation, the 

IPCA1 scores are weighted by the ratio of IPCA1SS (from AMMI ANOVA) to IPCA2 SS in the 

ASV formula as follows: 

ASV =√[
       

       
(           )]

   
 (           )  

The lower the ASV, the more stable a genotype is. The ASV as a measure of stability was also 

compared with other stability statistics which included the following: 

Shukla’s stability variance ( δi
2) (Shukla, 1972): 

δi
2= [

 

(   )(   )(   )
]    [ (   )∑ (        )

     ∑ ∑ (        )
   ], 

Where:           ̅  ;   = observed trait value of the ith genotype in jth environment;   ̅   = mean of 

all genotypes in the jth environment;   = 
     

 
  E= number of environments; and G= number of 

genotypes.  

Cultivar superiority measure (Pi) (Lin and Binns, 1988): 

Pi =∑ [
(       )

 

  
] 

     

Where: E = number of environments,      = yield of the ith genotype in the jth environment,    = 

maximum response (check or otherwise) among all genotypes in the jth environment. 
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Ecovalence (Wi) (Wricke, 1962): 

Wi = Σ (Xij – Xi. – X.j + X..)2 

 

Where: Wi = ecovalence of the ith genotype, Xij = the observed phenotypic trait value of the ith 

genotype in the jth environment, Xi. = mean of ith genotype across the entire environments, X. j = 

mean of jth environment, X.= grand mean.  

 

Environment variance (Sx
2) (Becker and Leon, 1988): 

Sx
2 = 

∑ (        )
 

 

   
 

Where:    = yield of the ith genotype in the jthenvironment,    = mean of ith cultivar across all the 

environments, E = number of environments.  For each of the above stability indices, the 

genotype or environment with lowest value was considered the most stable for a given trait.  

3.2.7 Genotype stability index 

A stability index was calculated for each genotype based on summing the ranking of overall 

mean performances for each trait and the ranking for ASV for each trait. This stability index 

which is normally applied to yield data and is referred to as yield stability index (YSI) (Farshafar, 

2008; Farshadfar et al., 2012), was also applied in this study to the mean performances of 

genotypes for other traits and referred to as genotype stability index (GSI). The GSI was 

calculated as follows:  

GSIi = RASVi + RYi,  

Where: GSIi = genotype stability index for the ith genotype across environments for each trait; 

RASVj = rank of the ith genotype across environments based on ASV; RYi = rank of the ith 

genotype based on mean performance across environments. The genotype with the lowest GSI 

was considered the best for a particular trait across environments. To identify superior 

genotypes across traits, the GSI ranks of each genotype were summed for all the traits, and the 

genotype with smallest rank sum  (∑rank) was considered the best across traits.  

3.3 Results 

3.3.1 AMMI analysis 

In the AMMI ANOVA the three sampling dates were also treated like addtonal environments 

within the locations which contributed to the large number of degrees of freedom (6 locations x 3 

sampling dates x 19 genotypes x 3 replications -1 = 1025). The genotype mean squares (MS) 

and environment MS were highly significant (P<0.01) for CGM PD, CGM LD (Table 3.2), TC, 

LR, FSRY and SRDM%. For Pbs (Table 3.2), TS (Table 3.3) and SG (Table 3.4), only the 
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genotype MS were significant (P<0.001). For all the traits studied, the genotype sum of squares 

(SS) accounted for the largest proportion of both the total and treatment SS, as compared to 

environment and GEI SS. The GEI MS were highly significant (P<0.001) for TC, LR, SG, and 

SRDM% and the contributions of their respective SS to the total SS were 26.0, 10.1, 15.1, and 

11.5% (Tables 3.3 and 3.4). The IPCA1 was highly significant for all the traits studied, and it 

explained the interaction pattern better than IPCA2 which was only significant for LR (Table 3.3) 

and SG (Tables 3.4). As none of the IPCAs beyond IPCA2 were significant for all the traits only 

the first two were considered in modeling GEI for the traits. 

For CGM PD, genotype SS accounted for 44.3 and 81.3% of the total and treatment SS, 

respectively (Table 3.2), while environment SS had marginal respective contributions of 1.7 and 

3.2% to the total and treatment SS. The GEI MS was also highly significant for CGM PD, but the 

GEI SS only accounted for 8.5% of the total SS. For CGM PD, IPCA1 was highly significant 

(P<0.001), and accounted for 70.6% of the total GEI, while IPCA 2 explained 16.2% of the GEI 

SS and was not significant. The residuals accounted for the remaining 13.1% of the GEI SS. 

On the other hand, the environment MS were not significant for CGM LD, while genotype MS 

and GEI MS were significant for this trait (Table 3.2). The environment SS accounted for 24.9 

and 69.0% of the total and treatment SS, respectively for CGM LD, while GEI SS contributed 

8.5 and 7.4% to the total and treatment SS respectively for the trait. The IPCA1 explained 

48.5% of the GEI SS, while 22.1% of GEI SS was explained by IPCA2. For this trait a 

comparatively larger proportion (32.0%) of GEI SS was accounted for by the residual SS.  

Table 3.2 Summary of AMMI analyses for cassava green mite population density and associated leaf damage, 

and leaf pubescence of 19 cassava genotypes grown in six environments (three locations x two years) in Zambia  

Source of 
variation 

df 
CGM PD  CGM LD (1-5)  Pbs (1-3) 

MS %TSS  %GEI SS  MS %TSS  %GEI SS  MS %TSS  %GEI SS 

Total 1025 534.0      0.6     
 0.6     

Treatment   113 2643.0*** 54.6    1.8*** 36.2   
 1.7 37.7   

Genotype      18 13460.0*** 44.3    7.9*** 24.9   
 9.7*** 31.0   

Environment       5 1920.0*** 1.7    3.0 2.7    0.5 0.4   

GEI     90 519.0***  8.5    0.5** 8.5   
 0.4 6.3   

IPCA 1     22 1500.0***  70.6  1.0***  48.5  0.9***  54.8 

IPCA 2     20 380.0  16.2   0.5  22.1  0.4  23.6 

Residuals     48 128.0  13.1  0.3  32.2  0.2  21.6 

Error    900 271.0     0.4    
 0.4    

df = degrees of freedom; SS = sums of squares; MS = mean square; GEI = genotype by environment interaction; %TSS = 

percentage of total SS; %GEI SS = percentage of genotype by environment interaction SS; CGM = cassava green mite; 

CGM PD = population counts of cassava green mites per leaf; CGM LD = level of leaf injury caused by cassava green mite 

scored on a 1–5 scale, where 1 = no damage, 5 = very severe damage; Pbs = pubescence which is the degree of hairiness 

of leaves scored on a 1–3 scale, where 1 = glabrous, and 3 = highly pubescent;  IPCA = interaction principal component 

axis; ***significant at P<0.001; **significant at P<0.01; *significant at P<0.05 
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Table 3.3 Summary of AMMI analyses for shoot tip compactness and tip size, and leaf retention of 19 cassava 

genotypes grown in six environments (three locations x two years) in Zambia 

Source of 
variation 

df 
TC (1-3)  TS (1-3)  LR (%) 

     MS %TSS  %GEISS  MS %TSS  %GEISS  MS %TSS  %GEISS 

Total 1025 0.5      0.5      236.7     
Treatment 113 3.4*** 78.0    1.9*** 40.5    615.4*** 28.7   
Genotype 18 14.0*** 51.0    10.5*** 34.9    2167.1*** 16.1   
Environment 5  0.3**   0.3    0.3  0.3    1204.9** 2.5   
GEI 90 1.4*** 26.0    0.3 5.3    272.3** 10.1   
IPCA1 22 5.7***  98.3  0.6*  44.2  595.0***  53.4 
IPCA2 20 0.1    1.7  0.4  30.5  366.9**  29.9 
Residuals 48 0.0    0.0  0.1  24.9  85.1  16.7 
Error  900 0.1     0.3     187.2    

 df = degrees of freedom; MS = mean square;GEI = genotype by environment interaction;%TSS = percentage of total sum of 

squares; %GEI SS = percentage of genotype by environment interaction sum of squares; TC = shoot tip compactness scored 

on a 1–3 scale, where 1 = loose, and 3 = compact; TS = size of shoot apices scored on a 1–3 scale, where 1 = small, and 3 = 

large;  LR = leaf retention, which is the proportion of leaves retained on a plant expressed as a percentage, IPCA = interaction 

principal component axis, ***significant at P<0.001, **significant at P<0.01, *significant at P<0.05 

The AMMI model analysis indicated that MS due to GEI was not significant for FSRY (Table 

3.4). However, MS due to the main effects were significant. Genotype SS accounted for 27.2 

and 28.4% of the total and treatment SS, respectively for the trait. The SS due to the 

environment main effects on FSRY accounted for 14.2 and 52.2% of the total and treatment SS, 

respectively.  

Table 3.4 Summary of AMMI analyses for stay green, storage root dry mass percentage, and fresh storage root 

yield of 19 cassava genotypes grown in six environments (three locations x two years) in Zambia 

Source of 
variation 

df 
SG  SRDM%  FSRY 

MS %TSS  %GEI SS  MS %TSS  %GEI SS  MS %TSS %GEI SS 

Total 1025 0.7     34.7    35.6   

Treatment 113 2.7*** 44.5       86.7*** 27.6   88.0*** 27.3  
Genotype 18 10.9*** 28.5     284.2*** 14.4   156.7*** 7.7  
Environment 5 1.3   1.0     20.3***   1.7   1037.6*** 14.2  
GEI 90 1.2*** 15.1    45.4*** 11.5   21.5 5.3  
IPCA1 22 3.4***  71.1  126.6***  68.2  54.2**  61.6 
IPCA2 20 0.8**  16.1  28.5  14.0  19.8  20.4 
Residuals 48 0.3  12.7  15.2  17.8  7.2  17.9 

Error  900 0.4    28.4   28.8  

df = degrees of freedom; MS = mean square; %TSS = percentage of total sum of squares; %GEISS = percentage of genotype 

by environment interaction sum of squares; SG = stay green scored on a 1-3 scale, where 1= lowest, and 3 = highest’;  

SRDM% = storage root dry mass expressed as a percentage; FSRY= fresh storage root yield (t ha
-1

); IPCA = interaction 

principal component axis; ***significant at P<0.001, **significant at P<0.01, *significant at P<0.05 

 

3.3.2 Adaptability of genotypes 

The performance of the genotypes was determined at each environment. Genotypes with the 

lowest mean CGM PD and CGM LD scores were considered the most resistant at a specific 

environment. For other traits genotypes with highest trait means in one or two environments 

were considered to be the best performers for a particular trait in specific environments. 

Genotypes which performed consistently superior in more than two out of six environments 

were considered to exhibit wide adaptability.  
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CGM density: The genotypes L9.304/147, 4(2)1425, TME2, Kapeza, and Kaleleki  were ranked 

in that order as the top five most resistant genotypes which harboured the lowest population of 

mites per leaf in 2010/11 at Mutanda  (Table 3.5). In the 2011/12 season, 4(2)1425, L9.304/36, 

L9.304/175, and I60/42 sustained the lowest CGM PD at Mutanda. The genotype 4(2)1425 also 

had the lowest CGM PD in both seasons at Mwinilunga (Table 3.5). At Zambezi, L9.304/175, 

4(2)1425, L9.304/147, I92/000 and Kaleleki were ranked among the top five most resistant 

genotypes for the two seasons.   

 

Table 3.5 Ranked means of cassava green mite population densities in 19 cassava genotypes evaluated at 
Mutanda, Mwinilunga and Zambezi in Zambia in 2010/11 and 2011/12 seasons. 

Genotype 

Mutanda  Mwinilunga  Zambezi 

 2010/11  2011/12  2010/11       2011/12        2010/11      2011/12 

Mean Rank  Mean Rank   Mean Rank  Mean Rank   Mean Rank  Mean Rank 

Kapeza 11.8 4  35.4 12  8.0 2  35.3 12  24.1 8  23.2 7 
Mweru 64.1 18  74.7 19  80.7 19  73.7 18  61.6 19  64.6 19 
M86/0016 69.4 19  60.9 18  70.3 18  56.0 17  60.6 18  60.5 18 
L9.304/147 8.6 1  20.0 3  11.8 3  18.3 3  11.1 3  11.5 2 
Bangweulu 22.1 9  30.5 7  16.9 6  27.9 6  25.6 11  24.4 8 
Chila 31.2 14  42.9 15  40.8 15  41.6 15  31.7 15  33.4 15 
Lelanyana 52.5 17  49.0 16  70.1 17  45.8 16  41.1 16  44.3 16 
I60/42 37.4 15  25.3 5  50.5 16  20.5 4  22.3 7  24.5 9 
Lufunda 21.9 8  39.4 14  24.4 9  38.7 14  28.3 13  28.7 13 
I30040 14.8 6  36.3 13  12.4 5  35.9 13  25.3 10  24.7 10 
L9.304/175 16.0 7  23.7 4  40.7 14  22.6 5  9.0 1  13.6 3 
4(2)1425 9.5 2  16.1 1  7.2 1  13.3 1  10.9 2  10.2 1 
Manyopola 28.8 12  33.5 10  29.1 11  30.6 8  28.2 12  28.1 12 
Kampolombo 26.0 11  32.9 8  31.2 13  30.6 8  25.1 9  25.9 11 
92/000 22.8 10  19.2 2  20.0 8  14.9 2  18.2 5  17.4 4 
L9.304/36 30.4 13  35.4 11  30.4 12  32.5 10  30.0 14  29.8 14 
Kariba 46.3 16  54.1 17  25.8 10  50.4 16  54.5 17  50.4 17 
TME 2 10.5 3  33.1 9  12.0 4  33.0 11  20.3 6  20.5 6 
Kaleleki 12.1 5  29.9 6  19.2 7  29.4 7  17.2 4  18.4 5 

Mean 28.2   36.4     31.7   34.3   28.7   29.2  
LSD(0.05) 8.2   15.0       8.3   19.4   13.9   16.0  
F-prob. ***   ***   ***   ***   ***   ***  

F-prob = F-probability measure of significance; LSD = least significant difference; *P<0.05; **P<0.01; ***P<0.001; Rank = 
ranking of genotypes according to their respective mean performances, with 1 = best and 19 = worst. 

 

CGM leaf damage: The genotypes L9.304/147, 4(2)1425, L9.304/175, Kapeza, and I30040 

were among the most resistant genotypes which had the least CGM LD at Mutanda in 2010/11 

season (Table 3.6). In the 2011/12 season, L9.304/175, 4(2)1425, 92/000, I60/42, and 

L9.304/147 were the most resistant genotypes at Mutanda. Of these genotypes, 4(2)1425 was 

the most resistant at Mwinilunga in both seasons, and was the second most resistant genotype 

at Zambezi in both seasons. The genotype L9.304/175 was ranked as the second best in both 

seasons at Zambezi and was the second most resistant genotypes at Mwinilunga in 2011/12 

season. 
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Table 3.6 Ranked means of leaf damage caused by cassava green mite in 19 cassava genotypes evaluated 

at Mutanda, Mwinilunga and Zambezi in Zambia in 2010/11 and 2011/12 seasons 

Genotype 

Mutanda  Mwinilunga  Zambezi 

2010/11   2011/12  2010/11  
2011/12 

 
2010/11 

 
2011/12 

Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank 

Kapeza 1.8 3 
 

2.8 8 
 

1.9 1 
 

2.9 13 
 

2.4 4 
 

2.4 4 

Mweru 3.2 18 
 

3.7 18 
 

4.0 19 
 

3.8 19 
 

3.4 18 
 

3.4 18 

M86/0016 3.3 19 
 

3.4 17 
 

3.3 17 
 

3.4 18 
 

3.4 18 
 

3.4 18 

L9.304/147 1.7 1 
 

2.5 2 
 

2.3 3 
 

2.9 13 
 

2.0 2 
 

2.1 2 

Bangweulu 2.3 7 
 

2.6 5 
 

2.4 4 
 

2.6 5 
 

2.4 4 
 

2.5 6 

Chila 2.6 10 
 

2.8 8 
 

3.0 13 
 

2.9 13 
 

2.7 13 
 

2.8 13 

Lelanyana 2.9 15 
 

2.9 15 
 

3.6 18 
 

3.0 16 
 

2.8 16 
 

2.9 16 

I60/42 2.6 10 
 

2.5 2 
 

3.0 13 
 

2.5 4 
 

2.4 4 
 

2.6 10 

Lufunda 2.3 7 
 

2.6 5 
 

2.4 4 
 

2.7 6 
 

2.5 8 
 

2.5 6 

I30040 2.1 5 
 

2.7 8 
 

2.4 4 
 

2.8 10 
 

2.4 4 
 

2.4 4 

L9.304/175 1.8 3 
 

2.3 1 
 

3.0 13 
 

2.3 1 
 

1.9 1 
 

2.0 1 

4(2)1425 1.7 1 
 

2.3 8 
 

1.9 1 
 

2.3 1 
 

2.0 2 
 

2.1 2 

Manyopola 2.8 14 
 

2.7 8 
 

2.6 9 
 

2.7 7 
 

2.7 13 
 

2.8 13 

Kampolombo 2.9 15 
 

2.7 2 
 

3.1 16 
 

2.8 10 
 

2.6 12 
 

2.7 12 

92/000 2.7 12 
 

2.5 8 
 

2.6 9 
 

2.4 3 
 

2.5 8 
 

2.6 10 

L9.304/36 2.7 12 
 

2.7 8 
 

2.8 12 
 

2.7 7 
 

2.7 13 
 

2.8 13 

Kariba 2.9 15 
 

3.2 16 
 

2.6 9 
 

3.2 17 
 

3.1 17 
 

3.2 17 

TME 2 2.2 6 
 

2.7 8 
 

2.5 8 
 

2.8 10 
 

2.5 8 
 

2.5 6 

Kaleleki 2.3 7 
 

2.6 5 
 

2.4 4 
 

2.7 7 
 

2.5 8 
 

2.5 6 

Mean 2.4   2.8   2.7   2.8   2.7   2.6  

LSD(0.05) 0.5   0.5   0.5   0.6   0.6   0.5  

F-prob. ***   ***   ***   ***   ***   ***  

F-prob. = F-probability as a measure of level of significance; LSD = least significant difference, *P<0.05;, **P<0.01; 
***P<0.001; NS = means are not significantly different at 5% level of significance; Rank = ranking of genotypes 
according to their respective mean performances, with 1 = best and 19 = worst. 

 

Storage root dry mass percentage: The genotype L9.304/175 had the highest SRDM% at 

Mutanda and Zambezi in the 2010/11 and 2011/12 seasons respectively, while Bangweulu had 

highest SRDM% in the 2011/12 season both at Mutanda and Mwinilunga. Manyopola and 

Kapeza were ranked as best performers for SRDM% at Mwinilunga and Zambezi respectively in 

the 2010/11 season. The genotype L9.304/175 was ranked the second best for SRDM% in the 

2011/12 season both at Mutanda and Mwinilunga. The same genotype was also ranked best for 

SRDM% at Zambezi in the 2010/11 season, while L9.304/147 and Bangweulu were identified as 

second best genotypes for SRDM% at Mutanda and Zambezi in the 2010/11 and 2011/12 

seasons, respectively (Table 3.7).  
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Table 3.7 Ranked means of storage root dry mass percentage of 19 cassava genotypes evaluated at 

Mutanda, Mwinilunga and Zambezi in Zambia in 2010/11 and 2011/12 season. 

 Genotype 

Mutanda  Mwinilunga  Zambezi 

2010/11   2011/12   2010/11   2011/12   2010/11   2011/12 

Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank 

Kapeza 32.4 12   33.2 7   32.0 13   32.6 8   34.9 1   35.3 3 
Mweru 33.0 9   32.4 11   33.8 7   32.0 11   33.4 6   34.3 7 
M86/0016 33.0 9   28.5 14   36.9 3   28.6 14   27.6 16   29.9 16 
L9.304/147 34.7 2   33.8 4   35.1 5   33.4 4   33.7 4   35.1 4 

Bangweulu 34.6 3   37.6 1   27.5 19   36.8 1   32.7 8   35.4 2 
Chila 33.7 7   34.1 3   31.6 15   33.6 3   32.2 9   34.1 8 
Lelanyana 30.0 16   26.7 18   32.9 10   26.6 18   26.6 19   28.4 18 
I60/42 30.6 15   29.2 13   32.5 12   28.9 13   30.5 14   31.4 14 

Lufunda 33.9 6   33.0 8   34.5 6   32.2 7   33.4 5   34.6 6 

I30040 32.8 11   33.5 6   32.0 14   32.9 6   34.2 3   35.0 5 
L9.304/175 35.1 1   35.8 2   32.8 11   35.5 2   34.3 2   36.0 1 

4(2)1425 26.9 19   27.3 16   27.8 18   26.7 17   30.5 15   30.3 15 

Manyopola 34.6 3   31.1 12   37.9 1   31.1 12   31.0 13   32.8 12 

Kampolombo 32.3 13   27.1 17   37.4 2   27.3 16   27.0 17   29.0 17 

92/000 33.4 8   32.5 10   33.1 9   32.2 10   31.5 12   33.1 11 
L9.304/36 34.5 5   32.8 9   35.2 4   32.6 9   31.8 11   33.6 9 

Kariba 27.0 18   24.0 19   31.4 16   23.9 19   26.8 18   27.2 19 

TME 2 32.2 14   33.7 5   28.8 17   33.1 5   31.9 10   33.6 10 
Kaleleki 29.7 17   28.4 15   33.5 8   28.0 15   32.9 7   32.5 13 

Mean 32.3   31.3   33.0   31.0   31.4   32.7  
LSD(0.05)  5.7   3.6   5.1    3.6    5.8   4.9  
F-prob.  NS   ***   ***   ***    NS   ***  

F-prob. = F-probability as a measure of level of significance; LSD = least significant difference; *P<0.05, **P<0.01, 
***P<0.001; NS = means are not significantly different at 5% level of significance; Rank = ranking of genotypes 
according to their respective mean performances, with 1 = best and 19 = worst. 

 

Fresh storage root yield: Genotypes exhibited differential responses to the environments in 

terms of FSRY (Table 3.8). The genotypes Kapeza, 4(2)1425, Kampolombo and TME2 were the 

top performers for this trait. A landrace Kapeza was the highest yielder in 2010/11 at Mutanda 

and Zambezi. Likewise, TME2 had the highest yield genotype in 2011/12 at Mutanda and 

Mwinilunga, while Kampolombo and 4(2)1425 were the best performers at Mwinilunga and 

Zambezi in 2010/11 and 2011/12, respectively.  
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Table 3.8 Ranked means fresh root yield (t ha
-1

) of 19 cassava genotypes evaluated at Mutanda, Mwinilunga 

and Zambezi in Zambia in 2010/11 and 2011/12. 

Genotype 

Mutanda  Mwinilunga  Zambezi 

2010/11   2011/12   2010/11   2011/12   2010/11   2011/12 

Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank 

Kapeza 18.7 1  14.8 4  13.1 16  13.5 8  22.7 1  22.9 2 
Mweru 15.2 8  12.0 11  11.4 19  11.2 18  19.4 6  19.5 5 
M86/0016 13.7 11  11.0 16  11.5 18  10.7 19  17.3 12  16.8 11 
L9.304/147 17.5 4  14.9 3  15.5 6  14.6 3  20.4 5  19.5 6 
Bangweulu 16.4 6  13.6 7  14.2 10  13.4 9  18.2 10  16.6 12 
Chila 12.0 18  11.5 15  15.1 8  12.8 11  18.6 8  19.0 7 
Lelanyana 12.5 17  11.0 16  13.4 14  11.7 15  16.3 16  15.5 15 
I60/42 16.7 5  13.8 6  13.5 13  13.1 10  22.2 3  22.8 3 
Lufunda 17.7 2  15.3 2  16.6 3  15.4 2  18.9 7  17.0 9 
I30040 16.4 6  14.1 5  15.4 7  14.2 6  18.4 9  16.9 10 
L9.304/175 13.3 13  11.7 13  14.0 12  12.3 14  16.7 14  15.7 14 
4(2)1425 14.6 9  13.6 8  16.0 4  14.3 4  22.7 2  24.2 1 
Manyopola 13.0 15  11.0 16  12.7 17  11.3 16  16.2 17  15.2 18 
Kampolombo 13.0 16  12.6 10  16.9 1  14.2 5  16.9 13  15.8 13 
92/000 14.3 10  13.0 9  15.7 5  13.8 7  18.0 11  17.2 8 
L9.304/36 13.4 12  11.9 12  14.3 9  12.3 12  16.6 15  15.4 16 
Kariba 11.1 19  10.7 19  13.3 15  11.2 17  15.8 19  15.3 17 
TME 2 17.6 3  15.5 1  16.8 2  15.6 1  22.2 4  22.0 4 
Kaleleki 13.0 14  11.6 14  14.2 11  12.3 13  16.0 18  14.7 19 

Mean 14.7   12.8   14.4   13.1   18.6   18.0  
LSD(0.05) 4.5    3.7    4.0    4.2    7.3     5.3  
F-prob.  **     **   ***     NS     NS     ***  

F-prob. = F-probability as a measure of level of significance; LSD = least significant difference; *P<0.05; **P<0.01, 
***P<0.001; NS = means are not significantly different at 5% level of significance; Rank = ranking of genotypes according 
to their respective mean performances, with 1 = best and 19 = worst. 

 

Leaf retention: The genotype L9.304/147 was ranked best for LR in three environments namely 

Mutanda in 2010/11 and 2011/12, and Mwinilunga in 2011/12, while Kapeza was ranked best 

for the trait at Zambezi in both seasons. I30040 was the best performer at Mwinilunga in 

2010/11. Kapeza was also ranked the second best performer at Mutanda in 2010/11 and 

2011/12 and at Mwinilunga in 2011/12. Bangweulu, Manyopola, and L9.304/175 were ranked 

equally second in 2010/11at Mwinilunga, and in both seasons at Zambezi (Table 3.9).  
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Table 3.9 Ranked means of leaf retention percentage of 19 cassava genotypes evaluated at Mutanda, 

Mwinilunga and Zambezi in Zambia in 2010/11 and 2011/12  

Genotype 

Mutanda  Mwinilunga  Zambezi 

2010/11 
 

2011/12 
 

2010/11 
 

2011/12 
 

2010/11 
 

2011/12 

Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank 

Kapeza 66.7 2 
 

69.3 2 
 

52.2 13 
 

73.5 2 
 

71.3 1 
 

76.5 1 
Mweru 55.9 9 

 
55.6 9 

 
58.8 5 

 
60.5 10 

 
64.3 4 

 
61.6 9 

M86/0016 42.6 19 
 

41.4 19 
 

52.2 12 
 

47.4 19 
 

47.4 19 
 

44.0 19 

L9.304/147 67.0 1 
 

69.6 1 
 

57.9 6 
 

77.8 1 
 

52.4 14 
 

64.8 4 
Bangweulu 53.4 11 

 
54.3 11 

 
47.5 18 

 
57.6 11 

 
66.1 2 

 
64.4 5 

Chila 48.3 16 
 

46.3 17 
 

60.8 3 
 

51.0 17 
 

61.6 5 
 

53.1 14 
Lelanyana 49.0 15 

 
49.3 14 

 
48.9 15 

 
54.6 15 

 
53.4 12 

 
53.6 13 

I60/42 50.1 12 
 

49.6 13 
 

54.6 9 
 

54.8 14 
 

57.1 11 
 

54.4 12 
Lufunda 49.3 14 

 
48.9 15 

 
55.2 7 

 
55.3 13 

 
50.6 16 

 
50.2 17 

I30040 56.5 8 
 

55.4 10 
 

70.4 1 
 

64.3 8 
 

47.5 18 
 

49.2 18 

L9.304/175 64.8 3 
 

67.3 3 
 

53.6 11 
 

73.3 3 
 

61.2 6 
 

69.2 2 

4(2)1425 61.3 4 
 

62.0 4 
 

59.2 4 
 

67.2 4 
 

65.5 3 
 

66.5 3 

Manyopola 58.5 6 
 

58.1 7 
 

64.3 2 
 

64.4 7 
 

60.2 9 
 

59.6 10 
Kampolombo 50.0 13 

 
49.8 12 

 
54.7 8 

 
56.5 12 

 
49.3 17 

 
50.2 16 

92/000 55.7 10 
 

57.0 8 
 

49.0 14 
 

61.7 9 
 

61.0 7 
 

63.1 8 
L9.304/36 47.3 17 

 
47.4 16 

 
48.7 16 

 
52.6 16 

 
52.7 13 

 
51.9 15 

Kariba 44.3 18 
 

46.1 18 
 

34.0 19 
 

50.0 18 
 

52.4 15 
 

54.4 11 

TME 2 59.6 5 
 

60.9 5 
 

54.2 10 
 

66.4 5 
 

60.7 8 
 

64.3 6 

Kaleleki 57.6 7 
 

59.5 6 
 

47.9 17 
 

64.7 6 
 

58.7 10 
 

63.8 7 

Mean 54.6   55.2   53.9   60.7   57.5   58.7  

LSD(0.05)  12.9   10.2   10.8    8.5   15.6   14.0  

F-prob. ***   ***   ***   ***     NS   ***  

F-prob. = F-probability as a measure of level of significance; LSD = least significant difference; *P<0.05, **P<0.01; 
***P<0.001; NS = means are not significantly different at 5% level of significance; Rank = ranking of genotypes according 
to their respective mean performances, with 1 = best and 19 = worst. 

Leaf pubescence: The genotype 4(2)1425 was ranked as the best performer for Pbs in both 

seasons at Mutanda and Mwinilunga and second best in the other two environments (Table 

3.10). Kaleleki and L9.304/147 were also ranked as best performers for Pbs but specifically at 

Zambezi in 2010/11 and 2011/12, respectively. Besides 4(2)1425, the genotype L9.304/147 was 

also consistently ranked as the second best performer for Pbs at Mutanda in both seasons, and 

at Mwinilunga in 2011/12. Kapeza was also ranked second at Mwinilunga in 2010/12.  
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Table 3.10 Ranked means of leaf pubescence scores of 19 cassava genotypes evaluated at Mutanda, 

Mwinilunga and Zambezi in Zambia in 2010 and 2011 

Genotype 

Mutanda  Mwinilunga  Zambezi 

2010/11 
 

2011/12 
 

2010/11 
 

2011/12 
 

2010/11 
 

2011/12 

Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank 

Kapeza 2.7 3 
 

2.6 2 
 

2.8 2 
 

2.4 3 
 

2.3 5 
 

2.2 8 

Mweru 1.5 16 
 

1.4 18 
 

1.5 18 
 

1.4 18 
 

1.0 19 
 

1.8 14 

M86/0016 1.3 19 
 

1.3 19 
 

1.3 19 
 

1.3 19 
 

1.2 18 
 

1.7 15 

L9.304/147 2.8 1 
 

2.6 2 
 

2.8 2 
 

2.5 2 
 

2.1 9 
 

2.8 1 

Bangweulu 1.6 14 
 

1.8 13 
 

1.6 15 
 

1.8 11 
 

2.2 8 
 

2.0 11 

Chila 2.1 10 
 

2.0 10 
 

2.2 10 
 

1.9 10 
 

1.8 12 
 

1.9 13 

Lelanyana 1.5 16 
 

1.6 16 
 

1.6 15 
 

1.5 16 
 

1.8 12 
 

1.5 17 
I60/42 1.8 12 

 
1.9 11 

 
1.9 12 

 
1.8 11 

 
2.3       5 

 
1.5 17 

Lufunda 2.2 8 
 

2.1 9 
 

2.3 8 
 

2.0 9 
 

1.8 12 
 

2.0 11 

I30040 2.4 4 
 

2.3 7 
 

2.5 4 
 

2.2 6 
 

2.0 10 
 

2.5 4 

L9.304/175 2.4 4 
 

2.5 4 
 

2.4 5 
 

2.4 3 
 

2.7 3 
 

2.6 3 

4(2)1425 2.8 1 
 

2.8 1 
 

2.9 1 
 

2.7 1 
 

2.8 2 
 

2.7 2 
Manyopola 1.6 14 

 
1.6 16 

 
1.7 14 

 
1.5 16 

 
1.8 12 

 
1.4 19 

Kampolombo 1.5 16 
 

1.7 15 
 

1.6 15 
 

1.6 15 
 

2.0 10 
 

1.7 15 

92/000 2.3 6 
 

2.4 6 
 

2.4 5 
 

2.2 6 
 

2.5 4 
 

2.2 8 

L9.304/36 1.9 11 
 

1.9 11 
 

2.0 11 
 

1.8 11 
 

1.8 12 
 

2.1 10 

Kariba 1.8 12 
 

1.8 13 
 

1.9 12 
 

1.8 11 
 

1.5 17 
 

2.3 6 

TME 2 2.2 8 
 

2.3 7 
 

2.3 8 
 

2.2 6 
 

2.3 5 
 

2.5 4 

Kaleleki 2.3 6 
 

2.5 4 
 

2.4 5 
 

2.4 3 
 

2.9 1 
 

2.3 6 

Mean 2.0   2.0   2.1   2.0   2.0   2.1  
LSD(0.05) 0.6   0.5   0.6   0.6   0.5   0.6  
F-prob. ***   ***   ***   ***   ***   ***  

F-prob. = F-probability as a measure of level of significance; LSD = least significant difference; *P<0.05; **P<0.01; 
***P<0.001; NS = means are not significantly different at 5% level of significance;Pubescence assessed on 1-3 scale, 
where 1= glabrous, and 3 = highly pubescent;Rank = ranking of genotypes according to their respective mean 
performances, with 1 = best and 19 = worst. 

 

Stay green: Genotypes responded differently to six different environments in their ability to stay 

green (Table 3.11). The genotype I30040 was the best performing genotype in both seasons at 

Mutanda, and in 2012 at Mwinilunga. Also Kapeza was identified as the best performing 

genotype in both seasons at Zambezi, while genotype I30040 was the best performing genotype 

at Mwinilunga in 2010/11 season. In 2010/11 and 201/12 seasons, TME 2 was the second best 

performer at Mutanda and Mwinilunga, while Kapeza, Mweru, L9.304/175 and Kaleleki were 

identified as the second best performing genotypes at Mutanda in 2011/12, Mwinilunga in 

2010/11, and at Zambezi in 2010/11, and Zambezi in 2011/12, respectively.   

To identify superior genotypes across the six environments, the ranks of each genotype were 

summed across environments for each trait. The genotype with the lowest rank sum (∑rank) 

was the best for that particular trait across environments (Table 3.12). Accordingly, at 25% 

selection intensity, the best five genotypes, that had good level of resistance based on recording 

lowest CGM PD were Kapeza, 4(2)1425, L9.304/147, 92/000, and L9.304/175 in that order. On 

the basis of the extent of CGM LD, the most resistant genotypes were in that order of 

resistance: 4(2)1425, L9.304/175, L9.304/147, Kapeza, and I30040.  
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Genotypes with the highest mean FSRY across environments were Kapeza, Mweru, TME2, 

Lufunda, and L9.304/147, while those with the lowest FSRY were Kariba, Manyopola, 

M86/0016, Lelanyana, and Kaleleki. The best performers for mean SRDM% across 

environments were L9.304/175, Bangweulu, L9.304/147, Kapeza, and I30040, while Kariba, 

Lelanyana, Kampolombo, 4(2)1425 and Mweru were the worst.  The best performers for mean 

LR across environments were Kapeza, L9.304/147 and L9.304/175, 4(2)1425, and TME2 in that 

order. The most pubescent genotypes across environments were 4(2)1425, L9.304/147, 

Kapeza, I30040, and Kaleleki. Genotypes, L9.304/175, TME2, Kapeza, combined best 

performance for mean LR with best performance for mean SG across environments. On the 

other hand, genotypes M86/0016, Kariba, L9.304/36 were the worst performers for SG (Table 

3.12).  

Table 3.11 Ranked means of stay green scores* of 19 cassava genotypes evaluated at Mutanda, Mwinilunga 
and Zambezi in Zambia in 2010/11 and 2011/12. 

Genotype 

Mutanda  Mwinilunga  Zambezi 

2010/11 
 

2011/12 
 

2010/11 
 

2011/12 
 

2010/11 
 

2011/12 

Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank  Mean Rank 

Kapeza 2.4 2 
 

2.9 2 
 

1.1 18 
 

2.5 4 
 

2.8 1 
 

3.0 1 

Mweru 1.9 10 
 

1.8 12 
 

2.6 2 
 

2.0 9 
 

2.0 10 
 

2.1 10 

M86/0016 1.1 19 
 

1.3 18 
 

1.5 16 
 

1.6 17 
 

1.0 19 
 

1.0 19 

L9.304/147 2.0 7 
 

2.3 7 
 

2.3 5 
 

2.6 3 
 

1.9 11 
 

1.9 12 

Bangweulu 2.0 7 
 

2.0 9 
 

1.7 12 
 

1.9 13 
 

2.2 7 
 

2.4 6 

Chila 1.7 13 
 

1.9 11 
 

1.6 14 
 

2.0 9 
 

1.8 13 
 

1.8 13 

Lelanyana 1.9 10 
 

2.0 10 
 

2.0 9 
 

2.0 9 
 

2.1 9 
 

2.2 9 

I60/42 1.4 15 
 

1.3 17 
 

2.1 6 
 

1.6 17 
 

1.3 16 
 

1.4 16 

Lufunda 1.4 15 
 

1.5 15 
 

2.0 9 
 

1.8 15 
 

1.2 18 
 

1.2 18 

I30040 1.7 13 
 

1.6 13 
 

2.9 1 
 

2.2 8 
 

1.5 14 
 

1.5 15 

L9.304/175 2.7 1 
 

3.3 1 
 

1.6 14 
 

3.1 1 
 

2.8 1 
 

2.8 3 
4(2)1425 2.0 7 

 
2.1 8 

 
1.7 12 

 
2.0 9 

 
2.2 7 

 
2.4 6 

Manyopola 1.8 12 
 

1.6 13 
 

2.6 2 
 

1.9 13 
 

1.9 11 
 

2.1 10 

Kampolombo 2.3 6 
 

2.5 4 
 

1.8 11 
 

2.3 6 
 

2.6 4 
 

2.8 4 

92/000 2.4 2 
 

2.5 4 
 

2.1 6 
 

2.4 5 
 

2.6 4 
 

2.8 4 

L9.304/36 1.2 17 
 

1.5 15 
 

1.2 17 
 

1.7 16 
 

1.3 16 
 

1.3 17 

Kariba 1.2 17 
 

1.3 18 
 

1.0 19 
 

1.2 19 
 

1.5 14 
 

1.7 14 

TME 2 2.4 2 
 

2.8 3 
 

2.4 4 
 

2.9 2 
 

2.4 6 
 

2.4 6 

Kaleleki 2.4 2 
 

2.4 6 
 

2.1 6 
 

2.3 6 
 

2.7 3 
 

2.9 2 

Mean 1.9   2.0   1.9   2.1   2.0   2.1  

LSD(0.05) 0.6   0.5   0.7   0.6   0.6   0.6  

F-prob. ***   ***   ***   ***   ***   ***  

F-prob. = F-probability as a measure of level of significance; LSD = least significant difference; *P<0.05; **P<0.01; 
***P<0.001; NS = means are not significantly different at 5% level of significance; Stay green* assessed on 1-3 scale, 
where 1 = lowest, 3 = highest; Rank = ranking of genotypes according to the mean trait yields with 1 = best and 19 = 
worst. 
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The 2010/11 season at Mutanda and both seasons at Zambezi had significantly (P<0.001) 

below-average CGM PD and were consequently regarded as low pest pressure environments. 

On the other hand, the 2011/12 season at Mutanda had significantly (P<0.001) the highest 

CGM PD and was therefore regarded as a high pest pressure environment. The 2010/11 and 

2011/12 seasons at Mwinilunga were respectively characterized as moderate pest pressure 

environment with average CGM PD and a moderately high pest pressure environment with 

above-average CGM PD. However, there was no significant (P>0.05) difference between the 

mean CGM PD recorded in the 2010/11 and 2011/12 season at Mwinilunga. A similar trend was 

observed for CGM LD among the environments. The 2010/11 season both at Mwinilunga and 

Zambezi had below-average CGM LD and were characterized as low pest pressure 

environments, while Mutanda in both seasons and Zambezi particularly in the 2011/12 season, 

were characterized as high pest pressure environment with above-average CGM LD. 

There were no significant differences among genotypes in their expression of Pbs across 

environments. However, both seasons at Zambezi and the 2011/12 season at Mwinilunga had 

above-average mean LR and were consequently regarded as most favourable environments for 

expression of LR. The 2011/12 season at Mwinilunga and Zambezi also had above-average 

mean SG and was equally regarded as the most favorable environment for SG expression. 

Significantly (P<0.001) the highest FSRY were recorded in both seasons at Zambezi (Table 

3.12), which was therefore regarded as the highest yielding environment.   
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Table 3.12 Overall ranked means of traits for 19 cassava genotypes evaluated in three locations in 2010/11 and 2011/12 in Zambia 
 

Genotype 
CGM PD   CGM LD   Pbs   LR   SG   FSRY   SRDM   

Mean Rank   Mean Rank   Mean Rank   Mean Rank   Mean Rank   Mean Rank   Mean Rank  Rank sum 

Kapeza 23.0 7 
 

2.4 4 
 

2.5 3 
 

68.2 1 
 

2.5 3 
 

22.7 1 
 

34.0 4 23 

Mweru 69.9 19 
 

3.6 19 
 

1.4 18 
 

59.4 7 
 

2.1 8 
 

19.4 2 
 

33.2 8 81 

M86/0016 62.9 18 
 

3.4 18 
 

1.4 19 
 

45.8 19 
 

1.3 19 
 

13.0 17 
 

29.2 15 125 

L9.304/147 13.5 2 
 

2.2 2 
 

2.6 2 
 

64.9 2 
 

2.2 7 
 

16.7 5 
 

34.2 3 23 

Bangweulu 24.5 9 
 

2.5 6 
 

1.8 14 
 

57.2 10 
 

2.1 9 
 

15.2 9 
 

34.8 2 59 

Chila 37.0 15 
 

2.8 15 
 

2.0 10 
 

53.5 12 
 

1.8 14 
 

14.2 12 
 

33.3 7 85 

Lelanyana 50.5 17 
 

3.0 16 
 

1.6 17 
 

51.6 16 
 

2.0 11 
 

13.0 16 
 

27.5 18 111 

I60/42 30.1 12 
 

2.6 11 
 

1.9 12 
 

53.4 13 
 

1.5 15 
 

16.1 7 
 

30.3 14 84 

Lufunda 30.2 13 
 

2.5 8 
 

2.1 9 
 

51.6 15 
 

1.5 15 
 

16.8 4 
 

33.6 6 70 

I30040 24.9 8 
 

2.5 5 
 

2.3 6 
 

57.2 10 
 

1.9 13 
 

15.7 8 
 

33.9 5 55 

L9.304/175 21.0 4 
 

2.2 2 
 

2.5 4 
 

64.9 2 
 

2.7 1 
 

13.7 14 
 

35.1 1 28 

4(2)1425 11.2 1 
 

2.1 1 
 

2.8 1 
 

63.6 4 
 

2.1 9 
 

16.4 6 
 

29.0 16 38 

Manyopola 29.7 11 
 

2.7 12 
 

1.6 16 
 

60.8 6 
 

2.0 12 
 

12.9 18 
 

32.0 12 87 

Kampolombo 28.6 10 
 

2.7 14 
 

1.7 15 
 

51.8 14 
 

2.4 6 
 

14.8 11 
 

28.3 17 87 

92/000 18.8 3 
 

2.6 10 
 

2.3 6 
 

57.9 9 
 

2.5 4 
 

15.0 10 
 

32.4 11 53 

L9.304/36 31.4 14 
 

2.7 13 
 

1.9 11 
 

50.1 17 
 

1.4 17 
 

13.8 13 
 

32.8 9 94 

Kariba 46.9 16 
 

3.0 17 
 

1.8 13 
 

46.8 18 
 

1.3 18 
 

12.4 19 
 

26.1 19 120 

TME 2 21.6 6 
 

2.5 8 
 

2.3 8 
 

61.0 5 
 

2.6 2 
 

17.6 3 
 

32.7 10 42 

Kaleleki 21.0 5 
 

2.5 6 
 

2.5 5 
 

58.7 8 
 

2.5 4 
 

13.5 15 
 

31.1 13 56 

Mean 31.4 
  

2.6 
  

2.0 
  

56.8 
  

2.0  
 

15.4  
 

31.8  
 

a
LSD(0.05) 6.2   0.2   0.2   5.18   0.2   2.03   2.0   

F-prob. ***   ***   ***   ***   ***   ***   ***   

Environment Mean Rank   Mean Rank   Mean Rank   Mean Rank   Mean Rank   Mean Rank   Mean Rank  Rank sum 

Mutanda  2010/11 28.2 1  2.4 1  2.0 3  54.6 5  1.9 6  14.7 3  32.3 3 22 

 
2011/12 36.4 6  2.8 5  2.0 3  55.1 4  2.0 3  12.8 6  31.3 5 32 

Mwinilunga 2010/11 31.7 4  2.7 4  2.1 1  53.9 6  2.0 5  14.4 4  33.0 1 25 

 
2011/12 34.3 5  2.8 6  2.0 6  60.7 1  2.1 1  13.1 5  31.0 6 30 

Zambezi 2010/11 28.7 2  2.6 2  2.0 3  57.5 3  2.0 4  18.6 1  31.4 4 19 

 
2011/12 29.2 3  2.6 3  2.1 2  58.7 2  2.1 2  18.0 2  32.7 2 16 

Mean 31.4 
  

2.6 
  

2.1 
  

56.8 
  

2.0  
 

15.3  
 

32.0  
 

b
LSD(0.05) 3.6   0.1   0.1   2.9   0.1   1.1   1.1   

F-prob. ***   ***   NS   ***   **   ***   ***   

CGM PD= population counts of cassava green mites per leaf; CGM LD = level of leaf injury caused by cassava green mite scored on a 1–5 scale, where 1 = no damage symptoms, and 5 = very severe damage;  
Pbs = pubescence which is the degree of hairiness of leaves scored on a 1–3 scale,where 1 = glabrous, and 3 = highly pubescent; LR = proportion of leaves retained on a plant measured as a percentage; SG = 
stay green scored on a 1-3 scale,  where 1 = lowest, and 3 = highest; FSRY= fresh storage root yield ( t ha

-1
); SRDM% = storage root dry mass expressed as a percentage; F-prob. = F-probability, LSD = least 

significant difference; *P<0.05; **P<0.01; ***P<0.001; NS = means are not significantly different at 5% level of significance; Rank sum = sum of ranks of environmental means across traits;
a
LSD(0.05) = for comparison 

of genotype means;
b
LSD(0.05) = for comparison of environmental means.  
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3.3.3 AMMI stability analysis 

Stability of genotypes: The genotypes with the lowest ASV score were considered to be the 

most stable (Table 3.13). Therefore, at 25% selection intensity, the genotypes L9.304/36, 

Manyopola, Chila, Kampolombo, and L9.304/147 were the most stable for CGM PD, while 

genotypes I60/42, Lelanyana, Kapeza, Kariba, and L9.304/175 were least stable. The most 

stable genotypes for CGM LD were identified as Bangweulu, M86/0016, L9.304/36, Chila, and 

Kaleleki in that order, while genotypes L9.304/175, Kapeza, Lelanyana, Kariba, and I60/42 were 

the least stable for the trait (Table 3.13). Genotypes L9.304/175, TME2, Manyopola, L9.304/36, 

and Lelanyana were the most stable for FSRY, while Lufunda, L9.304/147, Mweru, 92/000, and 

L9.304/36 were the most stable genotypes for SRDM% (Table 3.13). The most stable 

genotypes for LR were Lelanyana, Kariba, L9.304/36, Mweru, and TME2. The most stable for 

SG were Lelanyana, Chila, L9.304/36, TME2, and 4(2)1425, while Kapeza, I30040, L9.304/175, 

Lufunda, and Manyopola were identified as the least stable genotypes for the trait.  

Stability of traits: Of the seven traits studied, CGM LD, FSRY and Pbs had low ASV scores, 

while CGM PD gave the highest ASV score (Table 3.13).  
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Table 3.13 AMMI stability values and ranks for 19 cassava genotypes evaluated in three locations in 2010/11 and 2011/12 in Zambia 
 

Genotype 
CGM PD   CGM LD   Pbs  LR   SG   FSRY   SRDM Rank 

sum 
ASV Rank   ASV Rank   ASV Rank   ASV Rank   ASV Rank   ASV Rank   ASV Rank 

Kapeza 11.80 17 
 

1.27 18 
 

0.53 9  4.36 18 
 

3.80 19  0.91 17  3.49 10 108 

Mweru 5.42 10 
 

0.59 13 
 

0.98 17  1.20 4 
 

1.70 13  0.56 11  0.66 3 71 

M86/0016 7.89 12 
 

0.23 2 
 

0.62 10  3.00 13 
 

1.26 11  0.37 8  7.23 17 73 

L9.304/147 1.84 5 
 

0.44 9 
 

1.10 18  3.46 15 
 

1.10 9  0.50 10  0.38 2 68 

Bangweulu 4.46 9 
 

0.21 1 
 

0.81 14  3.10 14 
 

0.96 6  0.79 15  10.5 19 78 

Chila 1.53 3 
 

0.28 4 
 

0.37 4  3.65 17 
 

0.25 2  1.19 18  3.66 11 59 
Lelanyana 13.20 18 

 
1.05 17 

 
0.52 8  0.30 1 

 
0.18 1  0.23 5  4.72 13 63 

I60/42 15.60 19 
 

0.84 15 
 

1.10 18  1.44 6 
 

1.88 14  0.47 9  1.28 6 87 

Lufunda 5.48 11 
 

0.31 6 
 

0.50 7  2.17 10 
 

1.95 16  0.81 16  0.27 1 67 

I30040 9.97 14 
 

0.39 8 
 

0.63 12  5.97 19 
 

3.30 18  0.59 12  3.45 9 92 

L9.304/175 10.90 15 
 

1.13 19 
 

0.39 5  2.89 12 
 

2.75 17  0.16 1  4.31 12 81 

4(2)1425 2.07 6 
 

0.54 12 
 

0.21 1  0.57 2 
 

0.94 5  1.36 19  2.50 7 52 

Manyopola 0.75 2 
 

0.45 10 
 

0.62 10  2.10 8 
 

1.90 15  0.20 3  5.30 15 63 

Kampolombo 1.55 4 
 

0.59 13 
 

0.71 13  2.11 9 
 

1.58 12  0.75 14  8.86 18 83 

92/000 3.68 8 
 

0.48 11 
 

0.36 3  2.07 7 
 

1.04 7  0.28 7  0.87 4 47 

L9.304/36 0.66 1 
 

0.24 3 
 

0.39 5  0.63 3 
 

0.30 3  0.21 4  1.19 5 24 

Kariba 11.80 16 
 

0.92 16 
 

0.93 15  3.53 16 
 

1.05 8  0.61 13  5.04 14 98 

TME 2 8.67 13 
 

0.36 7 
 

0.22 2  1.30 5 
 

0.34 4  0.18 2  6.12 16 49 
Kaleleki 3.56 7 

 
0.29 5 

 
0.93 15  2.57 11 

 
1.12 10  0.25 6  2.53 8 62 

Mean 6.36     0.56     0.63     2.44     1.44    0.55     3.81     

Rank 7   2   3   5   4   1   6   

CGM  PD = population counts of cassava green mites per leaf; CGM LD = level of leaf injury caused by cassava green mite scored on a 1–5 scale, where 1 = no leaf damage 
symptoms, and 5 = very severe damage symptoms; Pbs = pubescence which is the degree of hairiness of leaves scored on a 1–3 scale,where 1 = glabrous, and 3 = highly 
pubescent;  LR = proportion of leaves retained on a plant measured as a percentage; SG = stay green scored on a 1-3 scale, with 1 = lowest, and 3 = highest; FSRY= fresh storage 

root yield (t ha
-1
); SRDM% = storage root dry mass percentage, Rank sum = sum of ASV ranks across traits, with lowest = most stable, and highest = least stable across environments. 
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3.3.4 Comparison of stability statistics 

There were similarities and dissimilarities in the ranking of the stability of the genotypes for the 

various traits based on the five stability indices used.  

CGM Density: Stability variance and environmental variance ranked the genotype Manyopola 

as the most stable for CGM PD. Mweru and Kampolombo were ranked as most stable for the 

trait by cultivar superiority (Pi) and Wi-ecovalence (Wi), respectively (Table 3.14). L9.304/36 

was ranked as the most stable genotype for CGM PD by ASV and overall across the indices 

(Table3.14). The stability ranking of 47.4% of the genotypes based on ASV was identical to the 

overall ranking across the five indices for CGM PD. Stability variance (δi2) and environmental 

variance (Sx
2) each ranked 26.3% of the genotypes similarly to overall ranking. Ranking by Wi 

matched the overall ranking for 10.5% of the genotypes, while Pi ranked all the genotype 

differently from the overall ranking.  

Table 3.14 Comparative ranking of 19 cassava genotypes by five different stability statistics for cassava green 

mite population density across six environments in Zambia 

δi
2
 = stability variance; Pi = cultivar superiority; Wi = ecovalence; AMMI = additive main effects and multiplicative interaction 

analysis; ASV=AMMI stability value; Sx
2
 = environmental variance stability index; Rank = ranking of genotypes according to 

the stability values, with 1 = best and 19 = worst; Rank sum = sum of ranks across the stability indices, where smallest rank 
sum =most stable, largest rank sum= least stable; %overall rank = percentage of genotypes ranked exactly the same as their 
respective overall ranks 

 

CGM leaf damage: Both ASV and Wi ranked genotype Bangweulu as the most stable, while 

stability variance and cultivar superiority ranked L9.304/36 and Mweru respectively as the most 

stable genotypes for CGM LD. Wi-ecovalence ranked 15.8% of the genotypes’ stability the 

same as the overall rank, while ranking by ASV, Sx2, and mean CGM LD across environment 

Genotype 

Stability 
variance 

 
Cultivar 

superiority 
 

Wi-
ecovalence  AMMI 

 Environmental 
variance 

 
Overall 

δi
2
 Rank 

 
Pi Rank 

 
Wi Rank  ASV Rank 

 
Sx

2
 Rank 

 Rank 
sum 

Rank 

Kapeza 25.2 15  1.2 14  0.5 15  11.8 17  1.3 18  79 17 
Mweru 4.7 12  0.1 1  0.2 11  5.4 10  0.6 12  46 7 

M86/0016 1.6 9  0.1 2  0.3 13  7.9 12  0.3 9  45 9 

L9.304/147 0.6 6  1.6 18  0.0 3  1.8 5  0.2 6  38 5 

Bangweulu 1.1 8  1.0 11  0.1 7  4.5 9  0.2 7  42 8 

Chila 0.9 7  0.5 5  0.0 6  1.5 3  0.3 8  29 4 
Lelanyana 35.5 16  0.2 3  0.6 17  13.2 18  1.1 15  69 13 

I60/42 42.6 18  0.8 7  0.8 19  15.6 19  1.4 19  82 19 

Lufunda 4.1 11  0.8 9  0.1 9  5.5 11  0.5 11  51 11 
I30040 14.8 14  1.1 12  0.3 14  10.0 14  1.0 14  68 15 

L9.304/175 39.4 17  1.2 13  0.5 16  10.9 15  1.2 17  78 17 

4(2)1425 0.2 3  1.7 19  0.0 5  2.1 6  0.1 4  37 6 

Manyopola 0.1 1  0.8 8  0.0 4  0.8 2  0.0 1  16 2 

Kampolombo 0.2 5  0.8 10  0.0 1  1.6 4  0.1 5  25 3 

92/000 0.1 4  1.3 17  0.1 10  3.7 8  0.1 3  42 10 

L9.304/36 0.1 2  0.7 6  0.0 2  0.7 1  0.0 2  13 1 

Kariba 45.8 19  0.4 4  0.6 18  11.8 16  1.2 16  73 16 

TME 2 12.9 13  1.2 16  0.3 12  8.7 13  
1.0 13 

 67 13 

Kaleleki 4.0 10  1.2 15  0.1 8  3.6 7  0.5 10  50 11 
% overall 
rank 

26.3  
 

0.0  
 

10.5  
 

47.4  
 

26.3 
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matched the overall ranking for 5.3% of the genotypes. The ranking by δi
2 and,Pi were all 

different from the overall ranks of genotypes (Table 3.15). 

Table 3.15 Comparative ranking of 19 cassava genotypes by five different stability indices for leaf damage due 
to cassava green mite across six environments in Zambia 

δi
2
 = stability variance; Pi = cultivar superiority; Wi = ecovalence; AMMI = additive main effects and multiplicative interaction 

analysis; ASV = AMMI stability value; Sx
2
 = environmental variance stability index; Rank = ranking of genotypes according to 

the stability values, with 1 = best and 19 = worst;Ranksum = sum of ranks across the stability indices, where smallest rank 
sum = most stable, largest rank sum= least stable; %overall rank =percentage of genotypes ranked exactly the same as their 
respective overall ranks 

Fresh storage root yield: Based onto the stability variance, the most stable genotype was 

Lufunda, while cultivar superiority ranked TME 2 as the most stable genotype. Wi-ecovalence 

and ASV ranked Manyopola and L9.304/175 as most stable genotypes, respectively. The Pi 

ranked 10.5% of the genotypes the same as the overall ranking. Stability of variance and 

ASVeach ranked 15.8% of the genotypes the same as the overall ranking, while 10.5% of the 

genotypes were ranked the same by Pi and the overall ranking. On the other hand, the ranking 

of the genotypes based on Wi were different to the overall ranking (Table 3.16).  

 

 

 

 

 

 

 

Genotype 

Stability 
variance 

 
Cultivar 

superiority 
 

Wi-
ecovalence 

 AMMI 
 Environmental 

variance 
 

Overall 

δi
2
 Rank  Pi Rank  Wi Rank  ASV Rank  Sx

2
 Rank  Ranksum Rank 

Kapeza 0.05 18  0.01 16  0.66 19  1.27 18  0.19 19  90 17 

Mweru 0.02 15  0.00 1  0.21 13  0.59 13  0.10 16  58 10 

M86/0016 0.00 2  0.00 2  0.04 5  0.23 2  0.01 2  13 1 

L9.304/147 0.02 16  0.01 18  0.19 11  0.44 9  0.10 17  71 15 

Bangweulu 0.00 5  0.01 13  0.02 1  0.21 1  0.02 5  25 4 

Chila 0.00 7  0.00 5  0.03 2  0.28 4  0.02 7  25 2 

Lelanyana 0.03 17  0.00 3  0.40 17  1.05 17  0.09 15  69 15 

I60/42 0.01 13  0.01 9  0.27 15  0.84 15  0.05 11  63 14 

Lufunda 0.00 8  0.01 12  0.03 4  0.31 6  0.02 8  38 5 

I30040 0.01 12  0.01 15  0.08 8  0.39 8  0.06 13  56 11 
L9.304/175 0.07 19  0.01 17  0.57 18  1.13 19  0.17 18  91 18 
4(2)1425 0.00 11  0.01 19  0.11 9  0.54 12  0.05 12  63 13 

Manyopola 0.00 4  0.00 8  0.20 12  0.45 10  0.01 3  37 7 
Kampolombo 0.00 10  0.00 6  0.13 10  0.59 13  0.04 9  48 9 

92/000 0.00 3  0.01 10  0.21 14  0.48 11  0.01 4  42 8 

L9.304/36 0.00 1  0.00 7  0.06 7  0.24 3  0.00 1  19 2 
Kariba 0.01 14  0.00 4  0.37 16  0.92 16  0.06 14  64 12 
TME 2 0.00 9  0.01 11  0.05 6  0.36 7  0.04 10  43 6 
Kaleleki 0.00 6  0.01 14  0.03 3  0.29 5  0.02 6  34 5 

%Overall 
rank 

0.0  
 

0.0  
 

15.8  
 

5.3  
  

5.3 
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Table 3.16 Comparative ranking of 19 cassava genotypes by four different stability indices for fresh 

storage root yield in six environments in Zambia 

CGM = cassava green mite, AMMI = additive main effects and multiplicative interaction analysis, ASV=AMMI stability 

value, Pi = cultivar superiority, δi
2
 = stability variance no covariate, Wi = ecovalence,  ̅   = mean yield or mean trait 

value,  Ranksum = sum of rank across the stability indices,  where smallest rank sum = best, %overall rank = percentage 
of genotypes ranked exactly the same as their respective overall ranks, Rank = ranking of genotypes according to the 
stability values with 1 = best and 19 = worst 

 

Storage root dry mass percentage: The genotype L9.304/147 was ranked as the most stable 

by the Sx
2, Pi, and Wi, and it was ranked second most stable by ASV. This genotype also had 

best overall rank (Table 3.17). However, ASV ranked genotype Lufunda as the most stable 

which was also ranked second by Wi and the overall ranking. Ranking of the genotypes’ stability 

for SRDM% by Wi matched that of the overall ranking for 31.6% of the genotype. The ASV and 

δi
2 respectively ranked 21.0% and 26.3% of the genotypes’ stability respectively the same as the 

overall ranking, while ranking by mean SRDM% matched with the overall rank for 10.5% of the 

genotypes (Table 3.17). 

 

 

 

 

 

 

Genotype 

Stability 
variance 

 
Cultivar 

superiority 
 Wi-ecovalence  AMMI 

 
Overall 

δi
2
 Rank 

 
Pi Rank  Wi Rank  ASV Rank 

 Rank 
Sum 

Rank 

Kapeza 0.50 17  0.00 2  0.03 19  0.91 17  55 17 

Mweru 0.29 16  0.01 10  0.02 15  0.56 11  52 16 
M86/0016 0.10 13  0.02 15  0.00 6  0.37 8  42 12 
L9.304/147 0.05 12  0.00 5  0.00 2  0.50 10  29 3 

Bangweulu 0.02 6  0.01 8  0.01 10  0.79 15  39 11 

Chila 0.15 15  0.01 11  0.01 13  1.19 18  57 18 

Lelanyana 0.03 10  0.02 17  0.00 3  0.23 5  35 8 

I60/42 0.52 18  0.00 4  0.02 17  0.47 9  48 14 

Lufunda 0.01 1  0.01 6  0.01 14  0.81 16  37 10 

I30040 0.01 3  0.01 7  0.01 11  0.59 12  33 7 

L9.304/175 0.02 7  0.01 13  0.00 5  0.16 1  26 2 

4(2)1425 0.68 19  0.00 3  0.03 18  1.36 19  59 19 

Manyopola 0.03 9  0.02 18  0.00 1  0.20 3  31 4 

Kampolombo 0.02 4  0.01 12  0.02 16  0.75 14  46 13 

92/000 0.02 8  0.01 9  0.00 7  0.28 7  31 4 

L9.304/36 0.02 5  0.01 14  0.00 9  0.21 4  32 6 

Kariba 0.04 11  0.02 19  0.00 8  0.61 13  51 15 

TME 2 0.12 14  0.00 1  0.00 4  0.18 2  21 1 

Kaleleki 0.01 2  0.02 16  0.00 12  0.25 6  36 9 

%Overall rank 15.8  
 

10.5   0.0   15.8     



85 
 

Table 3.17 Comparative ranking of nineteen cassava genotypes by four different stability indices for 

storage root dry mass across six environments in Zambia 

δi
2
 = stability variance; Pi = cultivar superiority; Wi = ecovalence; AMMI = additive main effects and multiplicative 

interaction analysis; ASV = AMMI stability value; Sx
2
 = environmental variance stability index; Rank = ranking of 

genotypes according to the stability values, with 1 = best and 19 = worst; Ranksum = sum of ranks across the 
stability indices, where smallest rank sum = most stable, largest rank sum= least stable; %overall rank = 
percentage of genotypes ranked exactly the same as their respective overall ranks 

Leaf retention: Lelanyana was ranked as the most stable genotype for LR by Wi and ASV but 

ranked second most stable according to the overall ranking. The second most stable genotype 

4(2)1425 as ranked by all stability statistics exceptδi
2, was ranked as the most stable genotype 

for LR according to the overall ranking (Table 3.18). Ranking by ASV had the highest proportion 

of genotypes (31.6%) ranked the same as the overall ranking, followed by Wi and Pi which, 

respectively had 21.0 and 10.5% of the genotype’s ranking, matching the overall ranking (Table 

3.18). 

 

 

 

 

 

 

 

 

Genotype 

 
Stability 
variance 

 Cultivar 
superiority 

 Wi-
ecovalence 

 
AMMI 

 

Overall 

   Rank     Rank 
 

   Rank  ASV Rank 
 Ranksu

m 
Rank 

Kapeza 0.01 9  0.01 8  0.01 9  3.49 10  36 9 

Mweru 0.00 4  0.01 5  0.00 3  0.66 3  15 3 
M86/0016 0.36 17  0.02 15  0.04 17  7.23 17  66 16 
L9.304/147 0.00 1  0.00 1  0.00 1  0.38 2    5 1 
Bangweulu 0.46 18  0.01 11  0.09 19  10.48 19  67 17 
Chila 0.00 5  0.01 7  0.01 8  3.66 11  31 7 
Lelanyana 0.09 14  0.03 17  0.02 12  4.72 13  56 13 
I60/42 0.01 10  0.02 13  0.00 5  1.28 6  34 9 
Lufunda 0.00 3  0.00 3  0.00 2  0.27 1  9 2 
I30040 0.00 6  0.01 6  0.01 7  3.45 9  28 6 
L9.304/175 0.00 8  0.00 2  0.01 10  4.31 12  32 8 
4(2)1425 0.01 11  0.03 18  0.02 11  2.50 7  47 10 
Manyopola 0.13 15  0.01 10  0.02 15  5.30 15  55 12 
Kampolombo 0.70 19  0.02 16  0.06 18  8.86 18  71 18 
92/000 0.00 2  0.01 9  0.00 4  0.87 4  19 4 
L9.304/36 0.00 7  0.00 4  0.00 6  1.19 5  22 5 
Kariba 0.13 16  0.05 19  0.02 14  5.04 14  63 15 
TME 2 0.03 12  0.01 12  0.03 16  6.12 16  56 13 
Kaleleki 0.04 13  0.02 14  0.02 13  2.53 8  48 11 

%Overall rank⇞ 21.0   15.8   31.6   26.30     
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Table 3.18 Comparative ranking of nineteen cassava genotypes by four different stability indices for 

leaf retention across six environments in Zambia  

δi
2
 = stability variance; Pi = cultivar superiority; Wi = ecovalence; AMMI = additive main effects and multiplicative 

interaction analysis; ASV=AMMI stability value; Rank = ranking of genotypes according to the stability values, with 1 
= best and 19 = worst; Ranksum = sum of ranks across the stability indices, where smallest rank sum = most stable, 
largest rank sum= least stable; %overall rank = percentage of genotypes ranked exactly the same as their respective 
overall ranks 

Leaf pubescence: The four statistics including mean trait yield ranked genotype 4(2)1425 as 

the most stable genotype for Pbs (Table 3.19). Stability variance, Wi, and ASV ranked 92/000 

as the second most stable genotype but it was not ranked so by the overall ranking. Both Pi and 

overall ranking ranked L9.304/147 as the second most stable genotype. Stability of variance 

and the overall ranking ranked 36.8% of the genotypes the same, while Pi and ASV, 

respectively ranked 21.0 and 15.8% of the genotypes the same as the overall ranking. Wi-

ecovalence and the overall ranking ranked 10.5% of the genotypes the same, while only 5.3% 

of the genotypes ranked on the basis of mean Pbs across environments had the same rank as 

the overall ranking.  

 

 

 

 

 

 

Genotype 

Stability 
variance  

Cultivar 
superiority  Wi-ecovalence  AMMI 

 
Overall 

δi
2
 Rank 

 
Pi Rank 

 
Wi Rank 

 
ASV Rank 

 Rank 
sum 

Rank 

Kapeza 16.03 19  0.03 1  0.23 16  4.36 18  54 15 

Mweru 0.21 8  0.09 7  0.04 5  1.20 4  24 3 

M86/0016 0.48 9  0.36 19  0.12 12  3.00 13  53 13 

L9.304/147 12.28 18  0.05 4  0.34 18  3.46 15  55 16 

Bangweulu 4.10 14  0.13 10  0.16 15  3.10 14  
53 13 

Chila 2.33 12  0.20 13  0.24 17  3.65 17  59 17 

Lelanyana 0.05 2  0.21 15  0.00 1  0.30 1  19 2 

I60/42 0.12 5  0.18 12  0.04 6  1.44 6  29 7 
Lufunda 0.10 4  0.22 16  0.06 9  2.17 10  39 9 

I30040 10.10 17  0.15 11  0.48 19  5.97 19  66 19 

L9.304/175 4.87 15  0.04 3  0.14 13  2.89 12  43 11 

4(2)1425 0.14 7  0.04 2  0.00 2  0.57 2  13 1 
Manyopola 0.09 3  0.07 6  0.05 8  2.10 8  25 6 
Kampolombo 0.14 6  0.21 14  0.06 10  2.11 9  39 9 
92/000 1.63 11  0.11 9  0.05 7  2.07 7  34 8 
L9.304/36 0.05 1  0.24 17  0.01 3  0.63 3  24 3 
Kariba 7.13 16  0.33 18  0.16 14  3.53 16  64 18 

TME 2 0.70 10  0.06 5  0.02 4  1.30 5  
24 3 

Kaleleki 3.47 13  0.10 8  0.08 11  2.57 11  43 11 

%Overall rank 5.2   10.5   21.0   31.6     



87 
 

Table 3.19 Comparative ranking of nineteen cassava genotypes by four different stability statistics for 

leaf pubescence across six environments in Zambia 

δi
2
 = stability variance; Pi = cultivar superiority; Wi = ecovalence; AMMI = additive main effects and multiplicative 

interaction analysis; ASV=AMMI stability value; Rank = ranking of genotypes according to the stability values, with 1 
= best and 19 = worst; Ranksum = sum of ranks across the stability indices, where smallest rank sum = most stable, 
largest rank sum= least stable; %overall rank = percentage of genotypes ranked exactly the same as their respective 
overall ranks 

Stay green: Equivalence in ranking the most stable genotype for SG were only apparent for δi
2 

and ASV, both of which ranked Kariba as the most stable genotype. The rest of the statistics 

ranked different genotypes as the most stable. Cultivar superiority and Wi ranked Kaleleki and 

I60/42 respectively as the most stable genotypes for SG, while on the basis of mean SG across 

environments, L9.304/147 was ranked as the most stable genotype. The Wi ranking matched 

the overall ranking for 21.0% of the genotypes, while 15.8% of the genotypes ranked by δi
2 

matched the overall ranking. Ranking by Pi, AMMI, and mean SG across environments matched 

the overall ranking for 5.3% of the genotypes (Table 3.20).  

 

 

 

 

 

 

Genotype 

 
Stability 
variance  

Cultivar 
superiority  Wi-ecovalence  AMMI 

 

Overall 

δi
2
 Rank 

 
Pi Rank 

 
Wi Rank 

 
ASV Rank 

 Ranksu
m Rank 

Kapeza 0.00 12  0.07 4  0.26 14  0.53 9  39 10 

Mweru 0.01 14  1.00 18  0.28 15  0.98 17  64 18 

M86/0016 0.00 13  1.09 19  0.15 11  0.62 10  53 14 

L9.304/147 0.02 19  0.05 2  0.33 18  1.10 18  
57 15 

Bangweulu 0.01 16  0.51 14  0.29 17  0.81 14  61 16 

Chila 0.00 6  0.38 10  0.08 7  0.37 4  27 6 

Lelanyana 0.00 7  0.76 17  0.08 6  0.52 8  38 9 

I60/42 0.01 17  0.46 12  0.35 19  1.10 18  
66 19 

Lufunda 0.00 10  0.29 9  0.15 10  0.50 7  36 7 

I30040 0.00 9  0.13 7  0.11 8  0.63 12  36 7 

L9.304/175 0.00 3  0.06 3  0.07 5  0.39 5  
16 3 

4(2)1425 0.00 1  0.00 1  0.02 1  0.21 1  4 1 
Manyopola 0.00 8  0.74 16  0.12 9  0.62 10  43 11 

Kampolombo 0.00 11  0.65 15  0.15 12  0.71 13  51 13 

92/000 0.00 2  0.12 6  0.04 2  0.36 3  13 2 

L9.304/36 0.00 5  0.40 11  0.05 4  0.39 5  25 5 

Kariba 0.01 18  0.50 13  0.028 16  0.93 15  62 17 

TME 2 0.00 4  0.14 8  0.04 3  0.22 2  17 4 

Kaleleki 0.01 15  0.08 5  0.24 13  0.93 15  48 12 

%Overall rank 36.8   21.0   10.5   15.8     
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Table 3.20 Comparative ranking nineteen cassava genotypes by four different stabilitystatistics for 

stay green across six environments in Zambia 

δi
2
 = stability variance; Pi = cultivar superiority; Wi = ecovalence; AMMI = additive main effects and multiplicative 

interaction analysis; ASV = AMMI stability value; Rank = ranking of genotypes according to the stability values, with 
1 = best and 19 = worst; Ranksum = sum of ranks across the stability indices, where smallest rank sum = most 
stable, largest rank sum= least stable; %overall rank =percentage of genotypes ranked exactly the same as their 
respective overall ranks 

 

3.3.5 Correlation of stability statistics 

Spearman’s correlation of the rank orders indicated that ASV ranking was significantly 

(P<0.001) and positively correlated to the other stability statistics except Pi and the overall 

mean for CGM PD, CGM LD, LR, Pbs, and SG (Table 3.21). For SRDM%, ASV ranking was 

also slightly correlated with Pi (r=0.540), but highly correlated with δi
2 (r= 0.863), and Wi (r = 

0.944). There was highly significant (P<0.001) correlation between ASV and overall ranking for 

all the seven traits that were studied. The Pi was also highly correlated to the mean trait value 

(trait mean) for each of the seven traits (Table 3.21).  

 

 

 

 

 

Genotype 

Stability 
variance  

Cultivar 
superiority  Wi-ecovalence  AMMI 

 
Overall 

δi
2
 Rank  Pi Rank  Wi Rank  ASV Rank 

 Rank 
sum 

Rank 

Kapeza 0.75 19  0.27 6  2.11 19  3.80 19  63 18 

Mweru 0.02 12  0.43 11  0.50 13  1.70 13  49 13 
M86/0016 0.00 5  1.43 10  0.31 10  1.26 11  36 9 

L9.304/147 0.01 10  0.32 7  0.36 11  1.10 9  37 10 

Bangweulu 0.01 7  0.42 9  0.22 7  0.96 6  29 7 

Chila 0.00 2  0.67 14  0.03 1  0.25 2  19 3 

Lelanyana 0.00 1  0.43 12  0.04 2  0.18 1  16 2 

I60/42 0.02 14  1.06 16  0.53 14  1.88 14  58 15 

Lufunda 0.02 13  1.06 17  0.64 15  1.95 16  61 17 

I30040 0.21 18  0.70 15  1.60 18  3.30 18  69 19 

L9.304/175 0.36 17  0.14 3  1.44 17  2.75 17  54 14 

4(2)1425 0.01 6  0.41 8  0.17 5  0.94 5  24 4 

Manyopola 0.04 16  0.53 13  0.71 16  1.90 15  60 16 

Kampolombo 0.03 15  0.20 5  0.40 12  1.58 12  44 11 

92/000 0.01 8  0.14 4  0.21 6  1.04 7  25 5 

L9.304/36 0.00 3  1.23 18  0.11 3  0.30 3  27 6 

Kariba 0.01 9  1.34 19  0.27 8  1.05 8  44 11 

TME 2 0.00 4  0.08 2  0.14 4  0.34 4  14 1 

Kaleleki 0.01 11  0.15 1  0.29 9  1.12 10  31 8 

%Overall rank 15.8   5.3   21.0   5.3     
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Table 3.21 Spearman’s rank correlation coefficients for five statistics used to measure stability of 19 
cassava genotypes for resistance to cassava green mite, leaf pubescence, leaf retention, storage root 
dry mass, and fresh storage root yield across six environments in Zambia   

Trait 
 ------------------------------------Stability statistics------------------------------------ 

  ASV Pi δi
2
 Wi  ̅   Overall rank 

CGM  PD  Pi -0.15      

 δi
2
  0.92*** -0.24     

 Wi  0.95*** -0.26    0.91***    

  ̅    0.15 -0.98***    0.23  0.23   

 OR  0.96*** -0.05    0.95***  0.93*** 0.04  

 Sx
2
  0.91*** -0.19    0.98***  0.88*** 0.18  0.96*** 

CGM LD  Pi  0.07      
 δi

2
  0.80***  0.24     

 Wi  0.93***  0.01    0.68**    
  ̅   -0.06  -0.99***   -0.25  0.01   

 OR  0.89***  0.34    0.94***  0.82*** 0.93  
  Sx

2
  0.75***  0.31    0.98***  0.64** -0.31 -0.34*** 

Pbs  Pi  0.31      
 δi

2
  0.93***  0.27     

 Wi  0.92***  0.26    0.97***    
  ̅    0.30  0.99***    0.26  0.25   

 OR  0.93***  0.54*    0.93***  0.93*** 0.53*  

LR  Pi -0.01      
 δi

2
  0.80*** -0.40     

 Wi  0.98*** -0.06    0.81***    
  ̅   -0.10  0.99***   -0.47 -0.17   

 OR  0.98***  0.12    0.78***  0.96*** 0.02*  

SG  Pi -0.02      
 δi

2
  0.95*** -0.10     

 Wi  0.99*** -0.02    0.95***    
  ̅   -0.13  0.89***  -0.28 -0.15   
 OR  0.95***  0.26    0.91***  0.95*** 0.10  

FSRY  Pi -0.37      
 δi

2
  0.22 -0.38     

 Wi  0.71*** -0.43   0.21    
  ̅   -0.39  0.91***  -0.31 -0.49*   
 OR  0.80*** -0.09   0.47*  .786*** -0.15  

SRDM  Pi  0.54*      
 δi

2
  0.86***  0.77***     

 Wi  0.94***  0.67**   0.94***    
  ̅    0.24  0.85***    0.53*  0.37   

 OR  0.92***  0.78***    0.98***  0.96*** 0.50*  

CGM = cassava green mite;CGM PD = population counts of cassava green mites per leaf;CGM PD= population 

counts of cassava green mites per leaf; CGM LD = level of leaf injury caused by cassava green mite scored on a 1–

5 scale, where 1 = no leaf damage symptoms, and 5 = very severe damage symptoms; Pbs = pubescence which is 

the degree of hairiness of leaves scored on a 1–3 scale,  where 1 = glabrous, and 3 = highly pubescent;  LR = 

proportion of leaves retained on a plant measured as a percentage; SG = stay green scored on a 1-3 scale, with 1 = 

lowest, and 3 = highest; SRDM% = percentage storage root dry mass; FSRY= fresh storage root yield (t ha
-1

); 

ASV=AMMI stability value; Pi = cultivar superiority; δi
2
 = Stability variance no covariate; Wi = ecovalence;  ̅   = mean 

yield or mean trait value; Overall rank = overall rank of four or five stability indices; Sx
2
 = environment variance. 

Significant, positive correlations were also recorded between cultivar superiority and overall 

rank for Pbs and SRDM%. In the case of SRDM%, Pi was positively correlated with all the other 

statistics. Stability variance was also highly correlated with Wi and overall ranking for all the 

seven traits. Highly significant (P<0.001) correlations was also evident between δi
2 and Sx

2for 

CGM PD and CGM LD (r =0.979 and r =0.984, respectively). The ASV, δi
2, and Wi had strong 

positive correlations with the overall rank for all seven traits (Table 3.21). In addition, a 
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significantly positive high correlation was observed between Sx
2 and overall ranking for CGM PD 

and CGM LD. 

3.3.6 Selection indices for genotypes 

The genotype stability index (GSI), which incorporates both the rank of ASV (as an indication of 

stability) and the rank of the overall trait mean (as an indication of performance) of genotypes in 

a single selection criterion, was employed to identify such desirable genotypes for each trait 

(Table 3.22). A genotype with the lowest GSI is considered the most stable with the best overall 

performance for a given trait. Accordingly, genotypes L9.304/147, 4(2)1425, 92/000, Kaleleki, 

and Manyopola combined high stability with reduced attractiveness to CGM. Bangweulu, 

L9.304/147 and Kaleleki, I30040 and 4(2)1425 were the most stable and most resistant with 

regard to CGM LD. In terms of SRDM% (Table 3.22), genotypes L9.304/147, Lufunda, Mweru, 

L9.304/175, and L9.304/36 had lowest GSI scores. Genotypes TME2, Mweru, L9.304/147 and 

L9.304/175 had lowest GSI scores for FSRY. Smallest GSI scores for LR were recorded for 

genotypes 4(2)1425, TME2, Mweru, L9.304/1751 and Manyopola. Genotypes TME2, 92/000, 

Lelanyana, 4(2)1425 and Kaleleki had lowest GSI scores for SG, while 4(2)1425, L9.304/175 

and 92/000, TME2, and Kapeza had smallest GSI scores for Pbs. 

Genotypes with least overall GSI rank were most stable and best performers across traits. 

Accordingly, genotypes L9.304/147, 92/000, 4(2)1425 and TME2 and L9.304/175 were the most 

stable and best performers in all the traits across environments. 
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Table 3.22 Genotype and environment selection indices for 19 cassava genotypes evaluated in three locations in 2010/11 and 2011/12 in Zambia 

Genotype 
 CGM PD 

 
CGM LD 

 
Pbs 

 
LR 

 
SG 

 
FSRY 

 
SRDM%  Overall 

 
GSI Rank   GSI Rank   GSI Rank   GSI Rank   GSI Rank 

 
GSI Rank   GSI Rank 

 Rank 
sum 

I 
Rank 

Kapeza  24 13 
 

22 13 
 

12 5 
 

19 9 
 

22 13 
 

18 8 
 

14 5  66 8 

Mweru  29 15 
 

32 17 
 

36 19 
 

11 3 
 

21 12 
 

13 2 
 

11 3  71 11 

M86/0016  30 16 
 

20 10 
 

29 17 
 

32 18 
 

30 17 
 

25 15 
 

32 17  110 18 

L9.304/147  7 1 
 

11 2 
 

21 11 
 

17 7 
 

16 7 
 

15 3 
 

5 1  32 1 
Bangweulu  18 8 

 
7 1 

 
28 14 

 
24 14 

 
15 5 

 
24 14 

 
21 11  67 9 

Chila  18 8 
 

19 9 
 

14 6 
 

29 16 
 

16 7 
 

30 18 
 

18 9  73 12 
Lelanyana  35 19 

 
33 18 

 
25 12 

 
17 7 

 
12 3 

 
21 11 

 
31 16  86 15 

I60/42  31 17 
 

26 15 
 

31 18 
 

19 9 
 

29 16 
 

16 5 
 

20 10  90 16 

Lufunda  24 13 
 

14 6 
 

16 7 
 

25 15 
 

31 18 
 

20 9 
 

7 2  70 10 
I30040  22 12 

 
13 4 

 
18 9 

 
29 16 

 
31 18 

 
20 9 

 
14 5  73 12 

L9.304/175  19 10 
 

21 11 
 

9 2 
 

14 4 
 

18 9 
 

15 3 
 

13 4  43 5 

4(2)1425  7 1 
 

13 4 
 

2 1 
 

6 1 
 

14 4 
 

25 15 
 

23 13  39 3 

Manyopola  13 5 
 

22 13 
 

26 13 
 

14 4 
 

27 15 
 

21 11 
 

27 15  76 14 

Kampolombo  14 6 
 

27 16 
 

28 14 
 

23 13 
 

18 9 
 

25 15 
 

35 19  92 17 

92/000  11 3 
 

21 11 
 

9 2 
 

16 6 
 

11 2 
 

17 6 
 

15 8  38 2 
L9.304/36  15 7 

 
16 8 

 
16 7 

 
20 12 

 
20 11 

 
17 6 

 
14 5  56 7 

Kariba  32 18 
 

33 18 
 

28 14 
 

34 19 
 

26 14 
 

32 19 
 

33 18  120 19 
TME 2  19 10 

 
15 7 

 
10 4 

 
10 2 

 
6 1 

 
5 1 

 
26 14  39 3 

Kaleleki  12 4   11 2   20 10   19 9   14 4   21 11   21 11  51 6 

CGM PD= population counts of cassava green mites per leaf; CGM LD = level of leaf injury caused by cassava green mite scored on a 1–5 scale, where 1 = no leaf damage 
symptoms, and 5 = very severe damage symptoms; Pbs = pubescence which is the degree of hairiness of leaves scored on a 1–3 scale,  where 1 = glabrous, and 3 = highly 
pubescent;  LR = proportion of leaves retained on a plant measured as a percentage; SG = stay green scored on a 1-3 scale, with 1 = lowest, and 3 = highest; FSRY= fresh 
storage root yield ( t ha

-1
); SRDM% = storage root dry mass expressed as a percentage; GSI = genotype stability index; Ranksum = sum of ranks of genotype stability indices 

across traits, where genotype with smallest rank sum = best, and genotype with largest rank sum= worst 
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3.4 Discussion and conclusions 

The AMMI analysis indicated that the large differences among genotypes caused most of the 

variations in CGM PD, CGM LD, TS, TC, LR, SG, FSRY, and SRDM%. The magnitude of GEI 

SS for each of these traits was smaller than that of genotypes, indicating that there were minor 

differences in the genotype responses across environments for all the traits studied. The IPCA 1 

and IPCA 2 were significant for the model, while further IPCAs were not significant (P>0.05) and 

captured mostly noise, thus being less helpful. These findings are in agreement with Gauch 

(2006) who reported that the IPCA 1 and higher components in AMMI capture interaction 

exclusively in a monotonic sequence that decreases from the first and largest component to the 

last and smallest component. Therefore, according to Fikere et al. (2009), the interaction of 

genotypes in the field is best explained by the first two interaction principal component axes. 

However, sometimes the first two IPCAs tend to rank genotypes differently giving negative and 

positive values. The use of ASV is therefore, advocated (Farshadfar, 2008; Fikere et al., 2009), 

as it gives a balanced measure between the first two IPCAs. However, success has also been 

reported even with the use of a larger number of IPCAs (Sivapalan et al., 2000), signifying the 

need for prior predictive assessment of the model to determine the number of useful IPCAs to 

be retained in the model (Yan and Rajan, 2002).    

The Spearman’s rank correlation calculated between pairs of computed stability parameter 

ASV, δ2,Wi, Sx
2, Pi, and the overall mean of each trait indicated that the ASV is highly correlated 

with δ2, Wi, and Sx
2 for CGM PD, CGM LD,LR, Pbs, SG, SRDM%, and FSRY. This indicates 

that there would be no advantage in using more than one of these indices at the same time 

(Benesi et al., 2004). The current study has indicated existence of a strong relationship between 

ASV and other stability indices in detecting the stable cassava genotypes for the seven traits 

that were studied. However, these results show that the ranking of genotypes’ stability by each 

of the six stability parameters varies with traits. Based on the equivalence of ranking of 

genotypes’ stability, the higher the proportion of genotypes ranked the same as the overall rank, 

the more suitable the index is for a particular trait. According to this criterion, the ASV was best 

suited to ranking of stability for CGM PD, FSRY, SRDM%, and LR. Stability variance was best 

suited for FSRY, SRDM%, and Pbs. The Wi-ecovalence was found to be best suited for CGM 

LD, SG and SRDM%, while cultivar superiority was suitable for Pbs. The CGM PD was sensitive 

to environmental fluctuations, and therefore could be less amenable to selection. The 

environmental variance statistic measured CGM PD better than CGM LD. The environmental 

variance statistic is a static stability measure which is recommended for pest or disease 

resistance-related traits, for which constantly low resistance levels are desired despite changes 

in the environment (Becker and Leon, 1988).  



93 
 

Farmers are more interested in genotypes that perform consistently better across seasons 

(Fikere et al., 2009), indicating preference for widely adapted genotypes (Zhang et al., 2006; 

Singh et al., 2007), and likewise, breeders would like to consider both yield and stability of 

performance simultaneously to reduce the effect of GEI and to make selection of genotypes 

more precise and refined (Farshadfar, 2008). Though more resources may be required in 

breeding for specific environments, the merits of genotypes with local adaptation should also be 

recognized (Annicchiarico, 2002; Fikere et al., 2009). In the current study, none of the 

genotypes investigated was ranked best for stability in all the seven traits studied, but widely 

adapted genotypes for specific traits were identified. A number of other genotypes with high trait 

mean value, but specifically adapted to particular environments for specific traits were also 

identified.  

Genotypes having wide adaptation are defined as those that in representative multi-locational 

trials produce yields substantially above the environmental means and then are among a few 

top-ranking ones at a majority of locations across the production area which is characterized by 

substantial variation in environmental conditions (Braun et al., 1996; Rodriguez et al., 2008). 

Such genotypes produce relatively high and stable yields within the area (Singh et al., 2007; 

Yang et al, 2009). Genotypes having specific adaptation are defined as these that produced 

yields substantially above the environmental means and then are among a few top-ranking ones 

in a range of a sub-region (macro-environment) within the target region, usually of limited 

environmental variation (Gauch and Zobel, 1997) or in at least one environment within the target 

area (Annicchiarico et al., 2010). Usually, genotypes with wide adaptation have fairly high yield 

potential and stress tolerance, whereas specifically-adapted ones have top levels of either yield 

potential or stress tolerance (Singh et al., 2007; Trethowan and Crossa, 2007).  

In this study, a genotype that ranked among the top five in one or two environments was 

considered to be specifically adapted to either or both environments, while a genotype ranked 

among the top five in more than two out of six environments, was considered to be widely 

adapted. Environments were characterized based on the differences between the respective 

environmental means, which were detected based on the least significant difference. For CGM 

PD four categories of environments were established as high pest pressure environments, 

moderately low pest pressure environments, moderately high and low pest pressure 

environments. In terms of specific adaptability, genotypes Kapeza, M86/0016, I60/42, 

Manyopola, and TME2 had very small IPCA1 scores and ASV scores and were therefore 

considered to be adapted to moderately high pest pressure environments. Kapeza and TME2 

also presented specific adaptability to low pest pressure environments, suggesting that these 

genotypes be recommended for both low and moderately high pest pressure environments.  



94 
 

Similarly I60/42 was specifically adapted to both high and moderately high pest pressure 

environments. M86/0016 and Manyopola were specifically adapted to Mwinilunga in the 

2010/11 season which was characterized as a moderately high pest pressure environment, but 

not to Mwinilunga in 2011/12 season. It may appear that four of the six environments were 

similar in their pest pressure and could effectively be grouped as one, thereby establishing three 

categories: high, moderately high and low pest pressure environments. However, the 

inconsistencies of certain genotypes in their specific adaptability between seasons for the same 

location are an indication of important dissimilarities between such locations across seasons. 

Mutanda displayed greatest inter-season instability for CGM PD and therefore cannot be relied 

upon for evaluation of germplasm over seasons. Zambezi site displayed best inter-season 

stability for moderately low CGM PD and CGM LD, and high FSRY. 

For CGM LD, environments were grouped into three categories as moderately high pest 

pressure, moderately low pest pressure, and low pest pressure environments. The genotypes 

I60/42 and 92/000 exhibited specific adaptability to the 2011/12 season at both Mutanda and 

Mwinilunga, which were associated with moderately high CGM LD. A landrace Kaleleki also 

presented specific adaptability to the 2010/11 season at Mwinilunga which like the 2011/12 

season at Mutanda and Mwinilunga, was associated with moderately high levels of CGM LD, 

but it was not specifically adapted to either of the latter two environments. These results seem 

to indicate that I60/42, 92/000 and Kaleleki might have some resistance mechanisms that limit 

CGM population growth once infested or makes them less attractive to CGM. Further research 

is required to determine the nature of the mechanism underlying the resistance, an 

understanding of which will inform future breeding for resistance to CGM. The few earlier 

studies on mite resistance mechanisms indicated that CGM is able to discriminate and exhibit 

preference for susceptible against resistant genotypes for oviposition (example Byrne et al., 

1982b), suggesting that CGM-resistant genotypes present antixenosis as the major mechanism 

of resistance. 

None of the genotypes had a mean score of four or five which is a high to very high CGM leaf 

damage. Similarly, none of the genotypes exhibited total immunity to CGM. This may suggest 

narrow genetic differences between the genotypes for CGM resistance or simply that the 

particular set of genotypes evaluated in the study had generally high levels of tolerance to CGM, 

a possible existence of quantitative resistance mechanism. This in turn indicates the availability 

of relatively good sources of tolerance to CGM within the existing cassava germplasm in 

Zambia. These results seem to agree with Bellotti et al. (2012) who indicated non-availability of 

immunity in Manihot esculenta germplasm.   

These findings seem to be consistent with those by Kawano et al. (1987) who reported 

significant GEI for SRDM%, which, however, was of smaller magnitude than that of the 
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genotype main effect, suggesting that the final selection of genotype for SRDM% should be 

done at each location for maximization of potential gain. Furthermore, Benesi et al. (2004) 

reported lack of significance of GEI effect, but higher contribution of genotype than environment 

main effect to the total variation in SRDM% of cassava genotypes, while Chavez et al. (2005) 

consistently observed more rapid deterioration in some genotypes than others under different 

environments. Taken together, these observations suggest that the larger part of total 

phenotypic variation observed in SRDM% is attributed to the genetic difference, and only to a 

lesser extent, due to environmental conditions.  

For FSRY, environments were grouped into four categories as high yielding environments (both 

seasons at Zambezi), moderately high yielding environments (2010/11 season at Mutanda and 

Mwinilunga), moderately low yielding environment (2011/12 season at Mwinilunga), and low 

yielding environment (2011/12 season at Mutanda). Two genotypes namely Kapeza and 

Kampolombo exhibited specific adaptability for FSRY; the former to high and moderately high 

yielding environments, and the latter to both moderately high and low yielding environments, 

Mutanda but two different seasons. This suggests that since Kampolombo was insensitive to 

seasonal effects, it could be recommended for production in both or either of the environments. 

Three major environments were identified as high LR environment (2011/12 season at 

Mwinilunga), moderately high LR environments (both seasons at Zambezi, and 2011/12 season 

at Mutanda), and moderately low LR environments (2010/11 season at Mutanda and 

Mwinilunga). Genotypes Mweru and Chila were adapted to moderately high and moderately low 

LR environments which actually represent different locations but same season. These results 

imply that Mweru and Chila are insensitive to locational effects for LR, but are likely to be more 

responsive to seasonal effects. Genotypes I30040 and Manyopola are specifically adapted to 

moderately low LR environments. Although leaf shedding is reported to be a survival 

mechanism for cassava in times of drought (El-Sharkawy 1993), genetic variations have been 

reported in this trait among cassava genotypes in reaction to moisture stress (Lenis et al., 

2006). Genotypes that respond to drought by folding or rolling their leaves instead of shedding 

off their leaves exhibit prolonged photosynthetic activity even in times of drought in addition to 

reducing leaf conductance and rate of transpiration (El-Sharkawy 1993).  

Genotypes which combine extended LR with extended photosynthetic activity of the leaves are 

desirable because leaf longevity is an important character determining storage root yield in 

cassava (Methews and Hunt, 1994). Cassava genotypes that respond to drought by folding or 

rolling instead of shedding off their leaves are likely to exhibit extended photosynthetic activity 

even in times of drought. Research by El-Sharkawy et al. (1992) has shown that, during water 

stress, cassava leaves retain as much as 50% of their original photosynthetic activity. Also, 

depending on the genotype, after recovering from stress, the mature leaves can recuperate their 
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photosynthetic activity to levels comparable with those of unstressed leaves (El-Sharkawy, 

1993). 

 It is also proposed that the genetic potential of cassava to retain as many green leaves as 

possible may be a major factor in tolerance to CGM (Nukenine et al., 1999). Therefore, 

environments were also categorized for SG as low SG environment (2010/11 season at 

Mutanda), moderately low SG environment (2011/12 season at Mutanda), and moderately high 

SG environments (both seasons at Mwinilunga and Zambezi). Four genotypes Mweru, 

L9.304/147, I30040, and Manyopola exhibited specific adaptability to moderately high SG 

environment (2010/11 season at Mwinilunga). In addition, L9.304/147 also exhibited specific 

adaptability to the 2011/12 season at Mwinilunga which was another moderately high SG 

environment, suggesting that warm and relatively more humid environments, are favorable 

conditions for expression of this trait. 

The lack of significance of environment and the GEIMS for Pbs indicates that the phenotypic 

variations that were observed in the expression of this trait were mainly due to genetic 

differences among the genotypes. Since the GEI MS was non-significant, each of the genotypes 

is expected to respond similarly to the environments, but the fact that genotype MS were 

significant, implies that the genotypes’ performances for Pbs were not the same. None of the 

genotypes evaluated could be characterized as highly pubescent or glabrous, but all of them 

had moderately hairy leaves, suggesting the need for further improvement of the trait. Increased 

Pbs especially of apical leaves of cassava tend to provide better shelter and hence promote 

continuous inhabitance of the phytoseiid predatory mite T. aripo, which has proved to be the 

most powerful natural enemy of CGM so far in Africa (Zundel et al., 2009). Even in the absence 

of natural enemies, highly pubescent genotypes resist CGM better than glabrous cassava 

genotype (Byrne et al., 1982b; Hahn et al., 1989). Considering the high heritability estimates 

reported for this trait (Hahn et al., 1989), it should therefore be easy to incorporate the trait into 

high yielding cultivars to improve resistance of cassava to CGM and enhance sustenance of T, 

aripo.  

There is need to source for highly pubescent parents that should be included in the hybridization 

programme for Zambia. The observed high environmental stability for SG and LR qualifies 

Zambezi as the best site for future releases of T. aripo in North-Western Province. The 

genotypes will be evaluated in the presence of T. aripo in the 2012/13 and 2013/14 seasons, in 

order to confirm their suitability for integrated management of CGM. 
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Appendix 3.1: Soil nutrient analysis of three sites used for G x E trials 

Location Year pH 

P Al Ca Mg K Na CEC  Zn Cu N C 

Meq 100g
-1

 soil  Ppm ppm % % 

Mutanda 2010 4.2 12 2.5 0.32 0.20 0.17 0.02 3.8  18.0 5.0 0.8 0.89 

 2011 4.3 8 1.9 0.68 0.19 0.21 0.02 2.5  15.0 0.9 0.9 1.17 

Mwinilunga 2010 4.2 6 1.8 0.32 0.83 0.38 0.03 11.2  18.7 5.0 0.1 1.70 

 2011 4.1 3 2.6 0.26 0.85 0.32 0.02 11.0  16.2 3.0 0.2 0.64 

Zambezi 2010 5.8 4 - 0.25 0.22 0.50 0.03 9.5  20.0 1.5 0.9 1.50 

 2011 5.6 3 - 0.31 0.25 0.42 0.03 8.9  24.0 1.9 1.0 2.00 

 

Appendix 3.2: Description of the nineteen cultivars used in the study 

Genotype   
Source 

 
 Code Name  

G1 Kapeza  Landrace  
G2 Mweru  RTIP Zambia  
G3 M86/0016  RTIP Zambia  
G4 L9.304/147  RTIP Zambia  
G5 Bangweulu  RTIP Zambia  
G6 Chila  RTIP Zambia  
G7 Lelanyana  Landrace  
G8 I60/42  IITA Nigeria  
G9 Lufunda  Landrace  
G10 I30040  IITA Nigeria  
G11 L9.304/175  RTIP Zambia  
G12 14(2)1425  IITA, Nigeria  
G13 Manyopola  Landrace  
G14 Kampolombo  RTIP Zambia  
G15 92/000  IITA   
G16 L9.304/36  RTIP Zambia  
G17 Kariba  RTIP Zambia  
G18 TME 2  IITA  
G19 Kaleleki  Landrace  

CGM = cassava green mite, CMD = cassava mosaic disease, RTIP = Root and Tuber Improvement 
Programme; IITA =International Institute of Tropical Agriculture 
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Appendix 3.3: Scores of the first and second Interaction principal component axes for 19 cassava genotypes 
. 

Genotypes 
CGM density   CGM damage   FSRY (t ha

-1
)   SRDM%   Pbs (1-3)   LR (%)   

  

SG (1-3) 

IPCA 1 IPCA 2   IPCA 1 IPCA 2   IPCA 1 IPCA 2   IPCA 1 IPCA 2   IPCA 1 IPCA 2   IPCA 1 IPCA 2 IPCA 1 IPCA 2 

Kapeza 2.71 0.75 
 

0.59 -0.3 
 

-1.5 -0.76 
 

0.7 -0.76 
 

0.07 -0.51 
 

2.44 -0.10 
 

0.86 -0.08 

Mweru -1.19 1.59 
 

-0.23 -0.34 
 

-1.09 -0.43 
 

0.12 -0.36 
 

0.42 0.15 
 

-0.29 1.08 
 

-0.38 0.26 

M86/0016 -1.76 -1.88 
 

0.06 0.19 
 

-0.41 -0.34 
 

-1.5 0.79 
 

0.24 0.26 
 

-1.64 0.65 
 

-0.28 -0.26 

L9.304/147 0.42 0.28 
 

0.10 -0.40 
 

-0.07 -0.50 
 

0.08 0.04 
 

0.47 -0.11 
 

0.36 -3.41 
 

-0.23 -0.39 

Bangweulu 1.01 -0.86 
 

0.10 0.04 
 

0.34 -0.78 
 

2.14 1.11 
 

-0.30 0.41 
 

1.48 1.62 
 

0.21 0.26 

Chila -0.28 0.96 
 

-0.13 -0.01 
 

-0.13 1.19 
 

0.74 0.46 
 

0.12 -0.25 
 

-1.62 2.25 
 

0.05 -0.12 

Lelanyana -3.04 0.33 
 

-0.51 0.03 
 

0.37 0.19 
 

-0.96 0.37 
 

-0.22 0.04 
 

-0.01 0.30 
 

-0.02 0.16 

I60/42 -3.59 -0.98 
 

-0.4 0.18 
 

-1.42 -0.04 
 

-0.25 -0.34 
 

-0.47 -0.18 
 

-0.64 0.89 
 

-0.42 0.06 

Lufunda 1.25 0.81 
 

0.15 0.01 
 

0.83 -0.76 
 

0.05 -0.13 
 

0.15 -0.35 
 

-1.22 -0.11 
 

-0.44 -0.24 

I30040 2.29 0.68 
 

0.16 -0.19 
 

0.55 -0.56 
 

0.70 -0.41 
 

0.27 -0.05 
 

-3.20 -1.75 
 

-0.74 -0.09 

L9.304/175 -2.47 2.13 
 

-0.51 -0.37 
 

0.47 0.04 
 

0.88 0.29 
 

-0.14 0.19 
 

1.39 -1.48 
 

0.61 -0.53 

14(2)1425 0.44 -0.74 
 

0.26 -0.08 
 

-1.21 1.30 
 

0.45 -1.19 
 

-0.08 -0.10 
 

0.30 0.20 
 

0.21 0.19 

Manyopola -0.08 -0.67 
 

0.08 0.41 
 

0.29 -0.17 
 

-1.08 0.39 
 

-0.26 -0.18 
 

-1.18 -0.03 
 

-0.42 0.39 

Kampolombo -0.36 0.05 
 

-0.28 0.02 
 

1.14 0.65 
 

-1.81 0.64 
 

-0.30 0.15 
 

-1.15 -0.49 
 

0.35 0.17 

92/000 -0.74 -1.79 
 

-0.12 0.41 
 

0.51 0.22 
 

0.16 0.34 
 

-0.15 -0.07 
 

1.15 0.26 
 

0.23 0.21 

L9.304/36 -0.01 -0.66 
 

-0.04 0.22 
 

0.62 0.03 
 

-0.22 0.47 
 

0.16 0.12 
 

-0.21 0.51 
 

-0.02 -0.28 

Kariba 2.65 -2.50 
 

0.43 0.27 
 

0.38 0.60 
 

-1.03 -0.56 
 

0.38 0.25 
 

1.95 0.65 
 

0.23 0.30 

TME 2 1.98 1.19 
 

0.16 -0.12 
 

-0.43 0.11 
 

1.25 0.27 
 

0.04 0.2 
 

0.68 -0.45 
 

-0.03 -0.31 
Kaleleki 0.76 1.31   0.14 0.03   0.76 -0.01   -0.4 -1.4   -0.4 0.03   1.41 -0.58   0.25 0.29 

-----Environment--                     

Mutanda  2010/11 -2.06 -3.22 
 

-0.17 0.7 
 

-0.1 -1.95 
 

-0.62 1.26 
 

0.27 -0.41 
 

0.21 -1.2 
 

0.1 0.001 

 
2011/12 2.31 1.60 

 
0.37 -0.37 

 
0.55 -0.65 

 
1.53 0.8 

 
-0.06 -0.13 

 
1.01 -1.76 

 
0.44 -0.52 

Mwinilunga 2010/11 -6.17 2.00 
 

-1.07 -0.32 
 

1.83 1.18 
 

-3.52 -0.08 
 

0.21 -0.46 
 

-5.37 0.66 
 

-1.45 0.27 

 
2011/12 2.75 2.64 

 
0.39 -0.49 

 
1.19 0.28 

 
1.27 0.91 

 
0.001 0.07 

 
0.43 -2.58 

 
-0.14 -0.71 

Zambezi 2010/11 1.97 -2.03 
 

0.28 0.18 
 

-1.28 0.19 
 

0.66 -2.05 
 

-1.00 0.22 
 

1.09 4.02 
 

0.46 0.33 

 
2011/12 1.20 -1.00   0.20 0.30   -2.19 0.95   0.67 -0.83   0.58 0.71   2.63 0.87   0.59 0.63 

IPCA = interaction principal component; CGM = cassava green mite; CGM density = population counts of cassava green mites per leaf; CGM damage = level of leaf injury cause by 
cassava green mite scored on a 1–5 scale; FSRY = fresh storage root yield (t ha

-1
); SRDM% = storage root dry mass expressed as a percentage;  Pbs = pubescence which is the degree 

of hairiness of leaves scored on a 1–3 scale; LR = proportion of leaves retained on a plant expressed as a percentage; SG = stay green scored on a 1-3 scale 



105 
 

CHAPTER 4 

Intra-season and inter-season stability of resistance against 
green mite Mononychellus tanajoa (Bondar) (Acari: 
Tetranychidae), and associated plant shoot morphological 
traits of cassava 

Abstract 

Cassava genotypes that combine earliness with prolonged underground storability are 

most preferred for food security under subsistence farming. However, the long growth 

cycle of cassava coupled with the delayed harvesting by local farmers in Zambia 

exposes the crop to cassava green mite (CGM) attack which contributes to instability 

in yield performances of cassava. Various plant morphological traits have been 

recognized as direct or indirect defense mechanisms that enhance host plant 

resistance (HPR) to CGM. However, little research has been done to understand the 

stability of such traits despite their potential impact on the durability of HPR. With this 

background, field trials, involving sequential harvesting of cassava at 9, 12, and 15 

months after planting (MAP) were conducted for two seasons. The objectives of the 

study were to establish the intra-season and inter-season stability of genotypes for 

resistance to CGM, and to understand the optimal bulking period of different cassava 

genotypes in order to identify early-bulking CGM-resistant genotypes, as well as to 

identify clones with good underground storability. The genotype stability index was 

computed for each genotype for CGM population density and leaf damage, fresh 

storage root yield  (FSRY) and storage root dry mass percentage (SRDM%), storage 

root rot (SRR), and plant shoot morphological traits related to CGM resistance, across 

sampling dates and seasons. There were highly significant differences among 

genotypes at different sampling dates for all the traits studied. Genotypes Mweru and 

L9.304/175 exhibited high intra-season and inter-season stability for low incidence of 

SRR combined with high SRDM%. The level of injury caused by CGM on Mweru did 

not affect its FSRY, SRDM%, and resistance to SRR. Genotypes L9.304/147, 

L9.304/175, 4(2)1425, I60/42 exhibited the highest levels of intra-season and inter-

season stability for high CGM resistance. The most stable genotypes for earliness 

were Kapeza, L9.304/147, and 4(2)1425 which consistently yielded above 13 t ha-1 at 

9 MAP across seasons.  
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4.0 Introduction 

Cassava (Manihot esculenta Crantz) is the second major staple after maize (Zea mays 

L)in Zambia and it serves as a source of livelihood for more than 6 million people. 

Cassava offers the advantage of flexible harvesting, allowing farmers to keep the 

storage roots underground until needed (Nweke et al., 2002). However, the long 

growth cycle of many cassava genotypes is one of the constraints hampering the 

adoption of the crop by young farmers who would otherwise engage in cassava 

production as a business. In turn this indicates a clear need for early bulking cassava 

genotypes. Existing improved cultivars in Zambia take 14-16 months to provide 

reasonable yields, while most landraces take a minimum of 24 months (RTIP, 2004). 

However, most of the relatively early bulking improved genotypes exhibit poor 

underground storability; they are prone to rotting if harvesting is delayed beyond 24 

months (Chalwe et al., 1998). Cassava breeders in Zambia are being challenged by 

the demands by the farming community for genotypes that combine earliness with 

acceptable underground storability. For food security, farmers normally want 

genotypes that bulk early but are able to remain in the ground for a long period of time 

without rotting. Long growing season requirements of cassava and the varying 

agronomic conditions in which cassava is cultivated expose the crop to numerous 

biotic and abiotic stresses (Bellotti et al., 1994), a combination of which can result in 

devastating effects on storage root yield (Aina et al., 2007). Seasonal variability of 

cassava pests and/or disease pressure has been widely reported (Yaninek et al., 

1989; Akparobi et al., 1998; Zundel et al., 2009). During the dry season, combined 

attack of cassava green mite (CGM) and termites (Microtermes sp)coupled with lack of 

moisture aggravate yield losses (Yaninek and Herren, 1988; Yaninek et al., 

1993;Chakupurakal et al., 1994; Toko, 1996; Nkunika, 1998; Aina et al., 2007). It is 

also documented that the impact of pest or disease attack varies with the genotype 

and growth stage at which the injury or damage is caused (Hahn and Theberge, 1985; 

Ogbe et al., 2003; Raji et al., 2008).  

Few studies are available on how CGM is influenced by phenotypic traits such as leaf 

pubescence (Pbs) (Hahn et al., 1989), colour or shape of leaf (Hanna et al., 1997), 

size and compactness (TC) of shoot apices (TS) (Zundel et al., 2009), leaf retention 

(LR) and stay green (SG) (Nukenine et al., 1999), and environmental factors such as 

rainfall, temperature, relative humidity (Yaninek et al., 1989; Zundel et al., 2009), and 

ultra-violate radiation (Onzo et al., 2010). Research has shown that high Pbs protects 

natural enemies of CGM, particularly the phytoseiid predatory mite Typhlodromalus 

aripo, against harsh weather conditions, supporting its continuous survival in cassava 

fields (Mebelo et al., 2003; Zundel et al., 2009). Recent studies have shown that 
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pubescent cassava genotypes tend to release volatiles that attract T. aripo (Onzo et 

al., 2012). However, due to the fact that pubescent genotypes may also differ in other 

traits that confer resistance to mites, further study is required to determine if leaf hair 

density is the primary mechanism of resistance of cassava to CGM (Miyazaki et al., 

2012). Moreover, little research has been done to understand the variability of the 

aforementioned traits, and how the interactions of genetic factors with crop age and 

season influence the expression of these vital indirect plant defense mechanisms 

(Cortesero et al., 2000; Zundel et al., 2009). 

It is envisaged that selecting genotypes for high intra- and inter-season stability of 

enhanced CGM resistance-conferring traits (Farshadfar, 2008), would in turn enhance 

the durability of host plant resistance (HPR) (Belloti et al., 1994), and promote 

biological control by supporting continuous survival of natural enemies in cassava 

fields planted to improved cultivars (Pratt et al., 2002; Zundel et al., 2009). Knowledge 

of the stability of desirable traits across different selection stages or stages of plant 

growth would also enable a breeder to more accurately predict the performance of 

genotypes at later stages in the breeding programme and for release purposes. 

Therefore the breeder can make decisions at an early stage of breeding and/or without 

waiting for the crop to reach full maturity (Kamau et al., 2009). Against this 

background, genotype by environment interaction (GEI) trials were conducted in order 

to achieve the following objectives: i) establish the within year (season) and between 

years stability of genotypes for traits that enhance the resistance of cassava to CGM 

and the ability of cassava to host T. aripo; ii) understand the optimal bulking period of 

different cassava genotypes in order to identify early-bulking CGM-resistant cultivars; 

and iii) identify genotypes with good underground storability. 

4.2 Materials and methods 

4.2.1 Study site 

The study was conducted at Kawiko which is located 11º45'E and 24º23'S at 1363 m 

above sea level in the Mwinilunga district of Zambia. Details of the weather conditions 

during the 2010/11 and 2011/12 seasons the study was conducted in, and soil nutrient 

analyses are presented in Table 4.1. 
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Table 4.1 Climatic data and soil nutrient analysis for Kawiko agricultural camp, Mwinilunga, Zambia 

(2010/11 and 2011/12 seasons) 

Year 

Climatic parameters  Soil chemical elements 

Rainfall 
(mm) 

Temp 
(ºC) 

RH 
(%) 

pH 
P Al Ca Mg K Na CEC 

 
Zn Cu N C 

Nov-
Mar 

Min-
Max 

(mean) Meq 100g
-1
 soil 

 
ppm ppm % % 

2010 1374 10 - 24 72 4.2 6 1.8 0.32 0.83 0.38 0.03 11.2  18.7 5.0 0.1 1.7 

2011 1200 12 - 27 75 4.1 3 2.6 0.26 0.85 0.32 0.02 11.0  16.2 3.0 0.2 0.64 

Temp = temperature measured in degree Celsius (ºC); Min = minimum temperature; Max = maximum temperature; RH 
= average relative humidity measured as a percentage; pH = potential of hydrogen ions as a measure of soil acidity 
based on calcium chloride; ppm = parts per million; Meq = milli-equivalent 

 

4.2.2 Experimental materials 

Nineteen cassava genotypes (Table 4.2), which included five landraces, eight locally 

improved, and six introductions from the International Institute of Tropical Agriculture 

(IITA) in Nigeria, were evaluated. 

Table 4.2 Description of the nineteen cultivars used in the study 

Genotype   
Source Code Name  

G1 Kapeza  Landrace 
G2 Mweru  RTIP Zambia 
G3 M86/0016  RTIP Zambia 
G4 L9.304/147  RTIP Zambia 
G5 Bangweulu  RTIP Zambia 
G6 Chila  RTIP Zambia 
G7 Lelanyana  Landrace 
G8 I60/42  IITA Nigeria 
G9 Lufunda  Landrace 
G10 I30040  IITA Nigeria 
G11 L9.304/175  RTIP Zambia 
G12 14(2)1425  IITA, Nigeria 
G13 Manyopola  Landrace 
G14 Kampolombo  RTIP Zambia 
G15 92/000  IITA  
G16 L9.304/36  RTIP Zambia 
G17 Kariba  RTIP Zambia 
G18 TME 2  IITA 
G19 Kaleleki  Landrace 

CGM = cassava green mite; RTIP = Root and Tuber Improvement Programme; IITA =International 
Institute of Tropical Agriculture 

 

4.2.3 Experimental design and layout 

The experiment was laid out in a randomized complete block design with three 

replications. The materials were grown and evaluated over two growing seasons under 

rain-fed conditions. The first trial was planted on 15th December 2009 and evaluated 

from January 2010 to March 2011. The same genotypes were planted in the second 

trial on 15th December 2010 and evaluated from January 2011 to March 2012. Each 
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plot consisted of 36 plants spaced at 1 m between rows and 1 m within rows, 

equivalent to 10,000 plants ha-1.  

4.2.4 Inoculation of experimental materials 

The borders of each plot were planted with a CGM susceptible genotype. Two months 

after planting (in February each year), the borders were artificially infested with CGM 

from a screenhouse-raised colony by attaching two infested leaves, which had at least 

20 adult mites each, onto each of the border plants in every replication (Habekub et 

al., 2000). The petiole of each infested leaf was lightly tied with string to the petiole of 

the first and second fully expanded leaf from the top of each of the two plants per 

clone (Figure 4.1). The detached infested leaf and the attached uninfested leaf were 

placed with their abaxial surfaces in contact with each other. The main lobes were 

lightly held together with a plastic coated paper clip leaving the other leaf lobes free. 

The infester leaves and paper clips were removed after three days. Inoculation was 

repeated soon after the cold season in August. No fertilizers or herbicides were 

applied, but the trial was kept weed-free by frequent hand weeding. 

 

Figure 4.1 Inoculation by attachment of CGM-infested leaves onto a test plant 

 

4.2.5 Data collection 

The CGM population density (CGM PD) and CGM leaf damage (CGM LD) were 

recorded as suggested by Hahn et al. (1989), using a rating system which involved 

estimating the proportion of leaf area covered by chlorotic spots, and the counting of 

adult mites on the third fully expanded leaf from the top on each of six randomly 

selected plants in each plot. The CGM LD was based on a 1-5 scale, where: 1 = no 

obvious symptoms; 2 = moderate damage, no reduction in leaf size, scattered chlorotic 

spots on young leaves, 1-2 spots cm-2; 3 = severe chlorotic symptoms, light reduction 

in leaf size, stunted shoot, 5-10 spots cm-2; 4 = severe chlorotic symptoms and leaf 
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size of young leaves severely reduced; and 5 = tips of affected plants defoliated, 

resulting in a candle stick appearance of shoot tips. Plants with scores of 1 and 2 were 

considered to be resistant, whereas plants with scores of 3 to 5 were considered to be 

susceptible to CGM. 

Each genotype was scored for the following traits on a 1 to 3 scale: (i) Pbs; where: 1 = 

glabrous, 2 = moderately pubescent, and 3 = highly pubescent; (ii) TC, where: 1 = 

loose, 2 = moderately compact, and 3 = compact; (iii) TS, where: 1 = small, 2 = 

medium, and 3 = large; (iv) leaf longevity assessed by scoring for LRand SG, where 

for LR: 1 = poor (<50% of the leaves are retained), 2 = moderately good (50-74% of 

the leaves are retained), and 3 = very good (≥75% of the leaves are retained); and for 

SG: 1 = poor (<50% of the leaves live and green), 2 = moderately good (50-74% of the 

leaves are live and green), and 3 = very good (≥75% of the leaves live and green) 

Three sampling (harvesting) dates were chosen, namely 9, 12, and 15 months after 

planting (MAP). At each sampling date, a total of six plants, one from each row, were 

randomly selected for data collection. These plants were then up-rooted for collection 

of storage root yield-related data and were inspected for storage root rot (SRR). The 

incidence of SRR was used as an indicator for underground storability (UGS), and was 

estimated as a proportion of the number of rotten storage roots out of the total number 

of storage roots harvested per plot (six plants) expressed as a percentage. The mass 

of storage roots was taken to estimate FSRY per plot, and expressed on a per hectare 

basis. The numbers of storage roots were also recorded. Storage root dry mass 

percentage (SRDM%) was determined by submerging a 3 kg sample of fresh storage 

roots in water and recording its mass. The SRDM% was then estimated based on the 

specific gravity method of Kawano (1980) using the following formula: 

SRDM (%) =158.3 x (
  

     
)– 143  

where Ma is the mass of storage roots in air and Mw is the mass of storage roots in 

water.  

4.2.6 Statistical analyses 

 

Analysis of variance: Separate analyses of variance (ANOVA) were conducted using 

Genstat 14 (Payne et al., 2011) for each season, and sampling date with each season 

for the eight traits. Hartley’s F-max test (Hartley, 1950) based on the ratio of the largest 

error MS to the smallest error MS was performed for each trait to test the homogeneity 

of variances across environments. The test indicated that the variance of the two 



111 
 

seasons and three sampling dates within seasons were homogeneous for all the traits, 

and therefore there was no need for standardization of sampling date, and a combined 

ANOVA was carried out.   

 

Combined general analyses of variance were performed for all genotypes for each of 

the eight traits across seasons and sampling dates within seasons using Genstat 14. 

The F-tests and significance of the main effects and interactions were determined 

using the appropriate error term and degrees of freedom.  

Genotype stability: Stability assessment was performed using Wricke (1962) 

ecovalence stability measure (Wi) using the formula: 

Wii = Σ(Xij – Xi. – X.j + X..)2 

 

Where: Wii = ecovalence of the ith genotype, Xij = the observed phenotypic value of the 

ith genotype in the jthseason (or sampling date), Xi. = mean of ith genotype across the 

the seaons (or sampling dates), X. j = mean of jthseason (or sampling date), X..= grand 

mean. Genotypes with the lowest Wii value were regarded as the most stable across 

sampling dates and/or seasons.  

 

Genotype stability index: A stability index was calculated for each genotype based 

on combining the ranking of overall mean performances for each trait and the ranking 

for Wi stability score for each trait. This stability index which is normally applied to yield 

data and is referred to as yield stability index (YSI) (Farshadfar et al., 2012) was also 

applied in this study to mean performances of genotypes for other traits and referred to 

as genotype stability index (GSI). Instead of using the AMMI stability value as is 

normally the case for YSI, the GSI was calculated as the sum of ranks for Wi-

ecovalence stability index and trait overall mean using the modified formula (after 

Farshadfar, 2008):  

GSIi = ∑RWii + ∑RYi, 

Where: GSIi = genotype stability index for the ith genotype across sampling dates or 

seasons for each trait; ∑RWij = sum of ranks of the ith genotype across sampling dates 

within a season or across seasons based on Wi; ∑RYi = sum of ranks of the ith 

genotype based on mean performance across sampling dates (S-date) within a 

season or across seasons. The genotype with the lowest GSI was considered the best 

for a particular trait across sampling dates, and a genotype with lowest GSI rank sum 

over the two seasons was considered the best for a trait across seasons. The Wi was 
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choosen because it is very easy to compute and has no restrictions pertaining to the 

number of environments as is the case with AMMI stability variance. 

4.3 Results 

The ANOVA were performed for each season separately and only combined for 

sampling dates within each season (Table 4.3). The mean squares (MS) for genotype 

(G) main effects were significant (P<0.05) for all the traits measured across sampling 

dates (S-date) and seasons (Table 4.3). The S-date MS were significant for all the 

traits measured in the 2010/11 season, and only for LR, SRR, and FSRY in the 

2011/12 season. The G x S-date MS were also significant for CGM LD, SG, FSRY, 

and SRDM% in the 2010/11 season. However, the G x S-date MS were not significant 

for any of the traits measured in the 2011/12 season.   

 
Table 4.3 Analysis of 19 cassava genotypes evaluated for resistance to green mite density and associated 
leaf damage, leaf retention, stay green, leaf pubescence, fresh storage root yield, storage root rots, and 

storage root dry mass percentage at three sampling dates in Zambia 
 

Source of  
Variation 

Df 
Mean squares   

CGM PD CGM LD LR SG Pbs FSRY SRR SRDM% 

2010/11          

Genotype (G) 18 2101.9*** 1.4*** 433.7*** 3.0*** 2.2*** 56.0*** 500.6*** 61.4* 

Sampling date  (S) 2 1472.4** 1.0* 2993.4*** 2.0*** 1.1* 3598.8*** 1296.6*** 75.2 

G x S 36 173.1 0.5* 501.6*** 0.6* 0.2 24.4*** 146.7*** 62.3** 

Residual 112 215.8 0.3 163.1 0.4 0.3 10.9 63.9 29.5 

2011/12          

Genotype (G) 18 2227.9*** 1.5*** 709.0*** 3.4*** 1.7*** 81.2*** 645.6*** 85.9*** 

Sampling date (S) 2 499.1 0.1 856.6* 0.6 0.2 534.7*** 461.5* 49.8 

G x S 36 120.6 0.2 106.6 0.2 0.2 17.1 43.4 15.2 

Residual 112 349.4 0.4 252.0 0.4 0.5 28.1 109.6 31.2 

CGM PD = population counts of cassava green mites per leaf; CGM LD = level of leaf injury caused by cassava green 
mite scored on a 1–5 scale, where 1 = no leaf damage symptoms, and 5 = very severe damage symptoms; LR = 
proportion of leaves retained on a plant measured as a percentage; SG = stay green scored on a 1-3 scale, with 1 = 
lowest, and 3 = highest; Pbs = pubescence which is the degree of hairiness of leaves scored on a 1–3 scale,  where 1 = 
glabrous, and 3 = highly pubescent;  FSRY = fresh storage root yield in t ha

-1
; SRR = storage root rot disease incidence 

expressed as a percentage, SRDM% = percentage storage root dry mass; *P≤0.05; **P≤0.01; ***P≤0.001 

 

4.3.1 Cassava green mite population density 

The G and S-date main effects were significant for CGM PD in 2010/2011 season, but 

their interaction was not (Table 4.3). Significantly (P<0.01) the highest CGM PD were 

recorded at 9 MAP as compared to later sampling dates. At 9 MAP, the genotype 

TME2 had the lowest CGM PD, followed by 4(2)1425, I60/42, L9.304/175 and Kaleleki. 

Genotype 4(2)1425 had the lowest CGM PD at 12 MAP followed by L9.304/147, 

Bangweulu, L9.304/175, and Kaleleki. Genotype 4(2)1425 also had the lowest CGM 

PD at 15 MAP followed by Kaleleki, Bangweulu, L9.304/175, and Kapeza. Across 
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sampling dates, the lowest CGM PD was recorded by 4(2)1425, Kaleleki, L9.304/175, 

L9.304/147 and TME2.  

In 2011/2012 season, the G MS were significant for CGM PD, but the S-date MS and 

the G x S-date MS were not significant for the trait (Table 4.4). At 9 MAP, L9.304/147 

had the lowest CGM PD followed by L9.304/175, 4(2)1425 and Kaleleki. The genotype 

L9.304/147 also had the lowest CGM PD at 12 MAP, followed by Kaleleki, Lelanyana, 

L9.304/175 and 4(2)1425. The same genotype L9.304/147 was ranked best for the 

CGM PD at 15 MAP, followed by 4(2)1425, I60/42, 92/000 and L9.304/36. Genotypes 

with lowest rank sum were the best across the seasons. Accordingly 4(2)1425, 

L9.304/147, L9.304/175, and Kalelek had lowest CGM PD and were regarded as the 

most resistant across seasons. 
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Table 4.4 Ranked mean performances of 19 cassava genotypes evaluated for population densities of cassava green mite at three sampling dates at Kawiko in Mwinilunga, 
Zambia in 2010/11 and 2011/12 seasons 
 

Genotype 

2010/11     2011/12 
 

Rank 
sum 

across 
seasons 

9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall  9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 28.3 10  25.0 14  21.7 5  25.0 9  33.3 14  13.3 6  33.3 13  26.7 11 20 
Mweru 65.0 18  56.7 19  53.3 17  58.3 18  73.3 19  51.7 18  73.3 19  66.1 19 37 
M86/0016 76.7 19  50.0 18  61.7 19  62.8 19  61.7 18  61.7 19  58.3 18  60.6 18 37 
L9.304/147 20.0 8  10.0 2  11.7 3  13.9 4  10.0 1  6.7 1  10.0 1  8.9 1 5 
Bangweulu 31.7 11  11.7 3  36.7 15  26.7 10  16.7 3  21.7 10  23.3 9  20.6 6 16 
Chila 45.0 14  23.3 10  30.0 12  32.8 14  30.0 10  30.0 15  30.0 12  30.0 14 28 
Lelanyana 48.3 15  31.7 16  36.7 15  38.9 16  43.3 16  10.0 3  50.0 16  44.4 16 32 

I60/42 10.0 2  21.7 8  26.7 8  19.4 6  30.0 10  28.3 14  15.0 3  24.4 9 15 
Lufunda 18.3 6  23.3 11  23.3 6  31.7 13  25.0 7  30.0 15  20.0 7  25.0 10 23 
I30040 33.3 12  23.3 12  30.0 13  28.9 11  30.0 10  26.7 12  23.3 9  26.7 11 22 
L9.304/175 11.7 4  11.7 4  15.0 4  12.8 3  10.0 2  11.7 4  23.3 9  15.0 3 6 
4(2)1425 10.0 2  5.0 1  8.30 1  7.80 1  16.7 3  11.7 4  13.3 2  13.9 2 3 
Manyopola 33.3 12  25.0 15  28.3 9  28.9 11  35.0 15  21.7 10  46.7 15  34.4 15 26 
Kampolombo 25.0 9  21.7 9  25.0 7  23.9 8  30.0 13  19.7 9  38.3 14  29.3 13 21 
92/000 18.3 6  13.3 6  31.7 14  21.1 7  18.3 6  18.0 7  16.7 4  17.7 5 12 
L9.304/36 48.3 15  23.3 13  28.3 10  33.3 15  25.0 7  26.7 12  16.7 4  22.8 8 23 
Kariba 58.3 17  35.0 17  58.3 18  50.6 17  55.0 17  43.3 17  53.3 17  50.6 17 34 
TME 2 6.7 1  16.7 7  28.3 10  17.2 5  28.3 9  18.3 8  18.3 6  21.7 7 12 
Kaleleki 11.7 4  11.7 5  10.0 2  11.1 2  16.7 3  8.3 2  21.7 8  15.6 4 6 
Mean 33.2   23.2   29.7   28.7   31.0   25.8   30.8   29.2   
CV (%) 49.7   61.8   47.7   51.2   63.7   62.9   66.6   64.1   
SEM  16.5   14.3   14.8    14.7   19.7   16.2   20.5    18.7   

SED 

Genotype    11.7   11.4   6.9   16.7   16.1   16.7   8.8   

S-date  2.8  3.5  

G x S-date 6.9  15.3  

F-prob. 

Genotype <0.001           0.009 <0.001 <0.001   0.019   0.01   0.019   <0.001   

S-date  0.002  0.244  

G x S-date 0.773  1.000  

MAP = months after planting; G = genotype; S-date = sampling date set at 9, 12, and 15 months after planting; G x S-date = genotype by sampling date interaction; CV = coefficient of variation 
measured as a percentage; SEM = standard error of means; SED = standard error of difference of means; F-prob. = level of significance for F-test 
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4.3.2 Leaf damage due to cassava green mite 

The G and S-date main effects and the G x S-dateinteraction effects were significant (P<0.05) 

for CGM LD during the 2010/11 season (Table 4.5). Significantly (P<0.05) the lowest CGM LD 

was recorded at 9 MAP compared to later sampling dates. However, there were no significant 

differences in CGM LD among genotypes at 9 MAP, but highly significant differences were 

observed at 12 MAP (P<0.01) and 15 MAP (P<0.001). Genotypes L9.304/147, 4(2)1425 and 

Kaleleki recorded the lowest CGM LD (mean score 2.0) and therefore sustained theleast CGM 

LD at 12 MAP. Genotype 4(2)1425 together with I60/42, L9.304/175, and TME2 had the lowest 

CGM LD at 15 MAP. Overall, 4(2)1425 had the CGM LD across sampling dates in the 2010/11 

season, followed by I60/42, Mweru and Kaleleki.  

In the 2011/12 season, the S-date main effects were not significant for CGM LD. Similarly, the G 

x S-date interaction effects were not significant for the trait (Table 4.5). However, the G main 

effects were significant for the trait, but only at 9 MAP (P<0.05). Kapeza sustained the least 

injury due to CGM with a mean score of 1.0 at 9 MAP, followed by Bangweulu and 4(2)1425. 

Across sampling dates, genotypes L9.304/147 and L9.304/175 were the most resistant followed 

by 4(2)1425 and Kaleleki. Overall, 4(2)1425, L9.304/175, Kaleleki, L9.304/147, and Kapeza 

were the most resistant genotypes across seasons. 
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Table 4.5 Ranked mean performances of 19 cassava genotypes evaluated for leaf damage due to cassava green mite at three sampling dates at Kawiko in Mwinilunga, 
Zambia in 2010/11 and 2011/12 seasons 

 

Genotype 

2010/11  2011/12 
Rank 
sum 

across 
seasons 

9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall  9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 2.0 1  2.3 4  2.3 5  2.2 3  1.0 1  2.0 1  3.0 14  2.4 5 8 
Mweru 3.3 19  3.0 15  3.0 13  3.1 17  2.3 4  2.7 6  2.3 4  3.6 19 36 
M86/0016 2.7 13  3.7 19  4.3 19  3.6 19  3.7 19  3.7 18  3.3 18  3.3 18 37 
L9.304/147 2.0 1  2.0 1  3.0 13  2.3 6  3.0 13  3.7 19  3.3 18  2.0 1 7 
Bangweulu 2.0 1  2.7 10  2.7 9  2.4 8  2.0 2  2.0 1  2.0 1  2.6 7 15 
Chila 2.7 13  2.7 10  2.7 9  2.7 13  2.3 4  2.3 4  3.0 14  2.7 11 24 
Lelanyana 2.3 6  2.7 10  3.0 13  2.7 13  2.7 11  2.7 6  2.7 6  2.8 13 26 

I60/42 2.0 1  2.3 4  2.0 1  2.1 2  3.0 13  2.7 6  2.7 6  2.7 11 13 
Lufunda 2.3 6  2.3 4  3.0 13  2.6 9  2.7 11  2.7 6  2.7 6  2.6 7 16 
I30040 2.3 6  3.0 15  2.3 5  2.6 9  2.3 4  2.7 6  2.7 6  2.4 5 14 
L9.304/175 2.3 6  2.3 4  2.0 1  2.2 3  2.3 4  2.7 6  2.3 4  2.0 1 4 
4(2)1425 2.0 1  2.0 1  2.0 1  2.0 1  2.0 2  2.0 1  2.0 1  2.2 3 4 
Manyopola 2.7 13  2.7 10  3.0 13  2.8 15  2.3 4  2.3 4  2.0 1  2.8 13 28 
Kampolombo 2.7 13  2.3 4  2.7 9  2.6 9  3.0 13  2.7 6  2.7 6  2.8 13 22 
92/000 2.3 6  3.0 15  2.3 5  2.6 9  3.0 13  2.7 6  2.7 6  2.9 16 25 
L9.304/36 3.0 18  2.7 10  3.0 13  2.9 16  3.0 13  2.7 6  3.0 14  2.6 7 23 
Kariba 2.3 6  2.3 4  2.7 9  3.1 17  2.3 4  2.7 6  2.7 6  3.2 17 34 
TME 2 2.7 13  3.0 15  1.3 1  2.3 6  3.3 18  3.3 17  3.0 14  2.6 7 13 
Kaleleki 2.3 6  2.0 1  2.3 5  2.2 3  2.3 4  2.7 6  2.7 6  2.2 3 6 

Mean  2.4   2.6   2.7   2.6   2.7   2.3   1.7   2.6   
CV (%) 24.1   18.7   21.7   21.6   21.6   24.2   22.2   22.4   
SEM  0.6   0.5   0.6   0.6   0.6   0.6   0.6   0.6   

SED 

Genotype 0.5   0.4   0.5   0.3   0.5   0.5   0.5   0.3   

S-date  0.1  0.1  

G x S-date 0.5  0.5  

F-prob. 

Genotype 0.33   0.008   <.001   <0.001   0.05   0.171   0.06   <0.001   

S-date 0.04  0.73  

G x S-date 0.03  0.99  

 

MAP = months after planting; G = genotype; S-date = sampling date set at 9, 12, and 15 months after planting; G x S-date = genotype by sampling date interaction; CV = coefficient of variation 
measured as a percentage; SEM = standard error of means; SED = standard error of difference of means; F-prob. = level of significance for F-test 
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4.3.3 Leaf retention 

There were significant (P<0.01) differences in LR among genotypes at 8 and 12 MAP in the 

2010/11 season (Table 4.6). Significantly (P<0.001) the highest LR was recorded at 4 MAP 

(77.4%) while the lowest LR was recorded at 8 MAP (49.2%). The genotype means for LR at 4 

MAP ranged between 56.0% and 94.0%, and there were no significant differences among 

genotypes at this stage. Genotype 4(2)1425 had the highest LR (83.3%) while Kampolombo, 

L9.304/36, and 92/000 had the lowest LR (30.0%) at 8 MAP. At 12 MAP, 92/000 maintained 

80.0% of its leaves and had the best LR. Across sampling dates, landrace Kapeza recorded the 

highest LR, with a mean of 76.7%, while M86/0016, had the lowest LR (47.8%) across sampling 

dates in this season (Table 4.6).   

In the 2011/12 season, the highest significant (P<0.05) LR was recorded at 4 MAP (76.1%), 

while the lowest and non-significant LR was recorded at 8 MAP (54.2%). Genotype L9.304/175 

and Kaleleki maintained the largest proportion (90.0%) of their leaves at 4 MAP, while Lufunda 

only retained 61.7% of its leaves. At 8 MAP Kapeza had the highest LR (80.0%) while 

Kampolombo had the lowest LR (33.3%). Kapeza and Kampolombo were ranked the same for 

LR at 12 MAP. Kapeza had the smallest overall rank sum for LR across the seasons and 

therefore was the best genotype for LR as it retained 81.7% of its leaves, while Lufunda had the 

least LR with a mean of 48.9% across the seasons (Table 4.6).  
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Table 4.6 Ranked mean leaf retention (%) of 19 cassava genotypes evaluated at three sampling dates at Kawiko in Mwinilunga, Zambia in 2010/11 and 2011/12 seasons 

Genotype 

2010/11     2011/12 Rank 
sum 

across 
seasons 

4 MAP 
 

8 MAP 
 

12 MAP 
 

Overall  4 MAP 
 

8 MAP 
 

12 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 88.3 2  76.7 2  61.7 10  75.6 1  81.7 6  80.0 1  83.3 1  81.7  1 2 
Mweru 86.7 3  63.3 5  60.0 12  70.0 3  65.0 16  60.0 5  68.3 4  64.4 10 13 
M86/0016 61.7 18  41.7 11  46.7 17  50.0 19  63.3 18  45.0 14  50.0 18  52.8 17 36 
L9.304/147 85.0 4  36.7 15  46.7 17  56.1 16  81.7 6  61.7 4  71.7 2  71.7 4 20 
Bangweulu 85.0 4  66.7 4  63.3 7  71.7 2  88.3 3  58.3 7  60.0 9  68.9 6 8 
Chila 83.3 6  56.7 6  61.7 10  67.2 7  73.3 10  48.3 12  51.7 16  57.8 14 21 
Lelanyana 73.3 14  41.7 11  58.3 13  57.8 13  73.3 10  48.3 12  55.0 14  58.9 13 26 

I60/42 65.0 16  71.7 3  48.3 15  61.7 11  68.3 15  51.7 11  60.0 9  60.0 12 23 
Lufunda 65.0 16  50.0 7  63.3 7  59.4 12  61.7 19  33.3 17  51.7 16  48.9 19 31 
I30040 56.7 19  50.0 7  50.0 14  52.2 18  65.0 16  41.7 16  56.7 12  54.5 16 34 
L9.304/175 81.7 7  46.7 9  78.3 2  68.9 4  90.0 1  60.0 5  61.7 7  70.6 5 9 
4(2)1425 71.7 15  83.3 1  50.0 14  68.3 5  86.7 4  66.7 3  70.0 3  74.5 2 7 
Manyopola 80.0 10  41.7 11  65.0 6  62.2 10  85.0 5  61.7 4  60.0 9  68.9 6 16 
Kampolombo 75.0 12  30.0 17  66.7 5  57.2 15  70.0 13  33.3 17  50.0 18  51.1 18 33 
92/000 93.3 1  30.0 17  80.0 1  67.8 6  81.7 6  56.7 8  61.7 7  66.7 9 15 
L9.304/36 80.0 10  30.0 17  63.3 7  57.8 13  70.0 13  45.0 14  56.7 12  57.2 15 28 
Kariba 75.0 12  45.0 10  48.3 15  56.1 16  73.3 10  53.3 9  55.0 14  60.5 11 28 
TME 2 81.7 7  41.7 11  70.0 4  64.5 8  76.7 9  71.7 2  68.3 4  72.2 3 11 
Kaleleki 81.7 7  31.7 16  78.3 2  63.9 9  90.0 1  53.3 9  63.3 6  68.9 6 15 
Mean  77.4   49.2   61.1   57.5   76.1   54.2   60.8   63.7   
CV (%) 20.4   33.0   14.9   22.2   19.1   29.4   27.5   27.0   
SEM  12.7   16.2   9.1   12.8   11.7   15.9   16.7   15.9   

SED 

Genotype 10.4   13.2   7.4   6.0   9.5   13.0   13.7   7.5   

S-date  2.4  3.0  

G x S-date 10.4  13.0  

F-prob. 

Genotype 0.07  0.002  <0.001  <0.001   0.04 0.08        0.69 <0.001   

S-date <0.001  0.037  

G x S-date <0.001  0.998  

MAP = months after planting; G = genotype; S-date = sampling date or dates of harvest set at 9, 12, and 15 months after planting; G x S-date = genotype by sampling date interaction; SEM 
= standard error of means; SED = standard error of difference; CV = coefficient of variation measured as a percentage; F-prob. = F-probability showing the level of significance. 



119 
 

4.3.4 Stay green 

In the 2010/11 season, genotypes Kampolombo and 92/000 had the highest mean SG score of 

3.0 at 4 MAP, while M86/0016 had the lowest mean SG score of 1.0 at 4 MAP (Table 4.7). 

Highest mean SG score of 3.0 was recorded by L9.304/175 and Kaleleki at 8 MAP (Table 4.7), 

while L9.304/147 had the lowest score of 1.0. Kapeza, Bangweulu, L9.304/175, Kampolombo 

and 92/000, had the highest score of 3.0 for SG at 12 MAP, while M86/0016 and L9.304/36 had 

the lowest score of 1.0 for the trait at 12 MAP. The genotype L9.304/175 had the highest SG 

score of 2.9 across sampling dates in 2010/11 season, while M86/0016 had the lowest SG 

score of 1.1 across sampling dates in the season.  

In the 2011/12 season, the highest scoring genotypes with score 3.0 for SG at 4 MAP were 

Kapeza, Bangweulu, Kampolombo, 92/000 and Kaleleki, while the lowest SG score of 1.0 was 

recorded by M86/0016. Kapeza, L9.304/175, and Kaleleki were the best genotypes for SG at 8 

and 12 MAP (Table 4.7). Overall, L9.304/175, Kapeza, and Kaleleki had the lowest rank sum 

and were therefore the best genotypes for SG across the seasons. 

4.3.5 Leaf pubescence 

In 2010/11 the season, the highest mean score for Pbs of 2.2 was obtained at 9 MAP as 

compared to the later dates (Table 4.8). Genotype 4(2)1425 and 92/000 had the highest score 

for Pbs at 9 MAP in 2010/11 season of 3.0. Kaleleki had the highest mean Pbs score of 3.0 both 

at 12 and 15 MAP. Genotypes 4(2)1425, L9.304/175, and I30040 had the highest for Pbs 

scores at 9, 12, and 15 MAP, respectively in 2011/12 season. The most pubescent genotype 

across sampling dates in the 2011/12 season was L9.304/147, while Manyopola was the least 

pubescent genotype across sampling dates in the season. Overall, 4(2)1425, L9.304/175, and 

Kaleleki had the lowest rank sums and, therefore, were the best genotypes for Pbs across the 

seasons (Table 4.8). 
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Table 4.7 Ranked mean stay green scores of 19 cassava genotypes evaluated at three sampling dates at Kawiko in Mwinilunga, Zambia in 2010/11 and 2011/12 seasons 
 

Genotype 

2010/11     2011/12 
Rank sum 

across 
seasons 

4 MAP 
 

8 MAP 
 

12 MAP 
 

Overall  4 MAP 
 

8 MAP 
 

12 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 2.7 3  2.3 8  3.0 1  2.7 5  3.0 1  3.0 1  2.7 1  3.1 1 6 
Mweru 2.0 11  1.3 14  2.7 6  2.0 10  2.0 10  2.3 5  2.3 6  2.2 9 19 
M86/0016 1.0 19  1.3 14  1.0 18  1.1 19  1.0 19  1.3 14  1.0 18  1.1 19 38 
L9.304/147 2.0 11  1.0 19  2.7 6  1.9 11  2.0 10  1.7 12  2.0 10  1.9 12 23 
Bangweulu 2.3 7  1.3 14  3.0 1  2.2 7  3.0 1  2.0 10  2.3 6  2.4 6 13 
Chila 2.0 11  1.0 19  2.0 9  1.8 13  2.0 10  1.7 12  1.7 14  1.8 13 26 
Lelanyana 2.0 11  2.3 8  2.0 12  2.1 9  2.3 8  2.3 5  2.0 10  2.2 9 18 

I60/42 1.0 19  2.0 10  1.3 16  1.4 16  1.3 17  1.3 14  1.3 15  1.3 16 32 

Lufunda 1.3 17  1.0 19  1.3 16  1.2 18  1.3 17  1.0 19  1.3 15  1.2 18 36 
I30040 1.7 14  1.0 19  1.7 13  1.4 16  1.7 14  1.3 14  1.3 15  1.4 15 31 
L9.304/175 2.3 7  3.0 1  3.0 1  2.9 1  2.7 6  3.0 1  2.7 1  2.8 3 4 
14(2)1425 1.7 14  2.3 8  2.3 9  2.1 9  2.7 6  2.3 5  2.3 6  2.4 6 15 
Manyopola 1.3 17  2.3 8  1.7 13  1.8 13  2.0 10  2.0 10  2.0 10  2.0 11 24 
Kampolombo 3.0 1  2.0 10  3.0 1  2.7 5  3.0 1  2.3 5  2.7 1  2.7 5 10 
92/000 3.0 1  2.3 8  3.0 1  2.8 2  3.0 1  2.7 4  2.7 1  2.8 3 5 
L9.304/36 1.7 14  1.0 19  1.0 18  1.2 18  1.7 14  1.3 14  1.0 18  1.3 16 34 
Kariba 1.3 17  1.7 11  1.7 13  1.6 14  1.7 14  1.3 14  2.0 10  1.7 14 28 
TME 2 2.3 7  2.7 3  2.3 9  2.4 6  2.3 8  2.3 5  2.3 6  2.3 8 14 
Kaleleki 2.3 7  3.0 1  2.7 6  2.7 5  3.0 1  3.0 1  2.7 1  2.9 2 7 
Mean  2.0   1.8   2.2   2.0   2.2   2.0   2.0   2.1   
CV (%) 25.8   29.5   30.2   29.9   28.9   31.1   33.6   30.9   
SEM  0.6   0.5   0.7   0.6   0.6   0.6   0.7   0.6   

SED 

Genotype 0.5   0.4   0.5   0.3   0.5   0.5   0.6   0.3   

S-date 0.11  0.12  

G x S-date 0.49  0.55  

F-
prob. 

Genotype 0.003   <0.001   <0.001  <0.001  <0.001  <0.001  0.021  <0.001   

S-date  0.004  0.214  

G x S-date 0.014  0.999  

MAP = months after planting; G= genotype; S-date = sampling dates set at 9, 12, and 15 months after planting; G x S-date = genotype by sampling date interaction; SEM = standard error of 
means; SED = standard error of difference; F-prob. = F-probability showing the level of significance; CV = coefficient of variation measured as a percentage. 
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Table 4.8 Ranked mean leaf pubescence of 19 cassava genotypes evaluated at three sampling dates at Kawiko in Mwinilunga, Zambia in 2010/11 and 2011/12  

seasons 
 

Genotype 

2010/11  2011/12 

Rank sum 
4 MAP 

 
8 MAP 

 
12 MAP 

 
Overall  4 MAP 

 
8 MAP 

 
12 MAP 

 
Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
across 

seasons 

Kapeza 2.3 6  2.3 4  2.3 6  2.3 5  2.3 5  2.0 10  2.3 5  2.2 17 22 
Mweru 1.0 18  1.0 18  1.0 18  1.0 19  2.0 10  1.7 16  1.7 13  1.8 13 32 
M86/0016 1.0 18  1.3 16  1.0 18  1.1 18  1.3 18  2.0 10  1.7 13  1.7 14 32 
L9.304/147 2.3 6  2.0 5  2.0 8  2.1 9  3.0 1  2.7 1  3.0 1  2.9 1 10 
Bangweulu 2.7 3  2.0 5  2.0 8  2.2 8  2.0 10  2.0 10  2.0 9  2.0 10 18 
Chila 2.0 12  1.7 14  1.7 12  1.8 14  2.0 10  1.7 16  2.0 9  1.9 12 26 
Lelanyana 2.3 6  1.7 5  1.7 12  1.9 12  1.7 15  1.7 16  1.3 16  1.6 16 28 

I60/42 2.3 6  2.0 5  2.7 2  2.3 5  1.7 15  2.0 10  1.0 19  1.6 16 21 
Lufunda 2.0 12  2.0 5  1.7 12  1.9 13  2.0 10  2.3 4  1.7 13  2.0 10 23 
I30040 2.3 6  2.0 5  2.0 8  2.1 9  2.3 5  2.3 4  3.0 1  2.6 3 12 
L9.304/175 2.7 3  2.7 2  2.7 2  2.7 3  2.7 3  2.7 1  2.3 5  2.6 3 6 
14(2)1425 3.0 1  2.7 2  2.7 2  2.8 2  3.0 1  2.3 4  2.7 3  2.7 2 4 
Manyopola 2.0 12  1.7 14  1.7 12  1.8 14  1.3 18  1.3 19  1.3 16  1.3 18 32 
Kampolombo 2.0 12  2.0 5  2.0 8  2.0 11  1.7 15  2.0 10  1.3 16  1.7 14 25 
92/000 3.0 1  2.0 5  2.3 6  2.4 4  2.3 5  2.3 4  2.0 9  2.2 8 12 
L9.304/36 2.0 12  2.0 5  1.3 16  1.8 16  2.0 10  2.0 10  2.3 5  2.1 9 25 
Kariba 2.0 12  1.3 16  1.3 16  1.6 14  2.3 5  2.7 1  2.0 9  2.3 6 20 
TME 2 2.3 6  2.0 5  2.7 2  2.3 5  2.7 3  2.3 4  2.7 3  2.6 3 8 
Kaleleki 2.7 3  3.0 1  3.0 1  2.9 1  2.3 5  2.3 4  2.3 5  2.3 6 7 
Mean 2.2   2.0   2.0   2.5   2.4   2.1   2.4   2.1   
CV (%) 31.3   28.5   31.4   28.1   32.2   36.5   30.6   32.8   
SEM  0.6   0.6   0.6   0.8   0.7   0.8   0.6   0.7   

SED 

Genotype 0.5   0.5   0.5   0.3   0.6   0.6   0.5   0.3   

S-date 0.11   0.10 

G x S-date 0.47   0.60 

F-prob. 

Genotype 0.006   0.020   0.005   <0.001   0.150   0.800   0.008   <0.001   

S-date 0.04   0.64 

G x S-date 0.99   1.00 

MAP = months after planting; G = genotype, S-date = sampling date or dates of harvest set at 9, 12, and 15 months after planting; G x S = genotype by sampling date interaction; SEM = standard 
error of means; SED = standard error of difference; CV = coefficient of variation measured as a percentage; F-prob. = F-probability showing the level of significance; 
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4.3.6 Fresh storage root yield 

The G and S-date main effects and G x S-date interaction effects were highly significant 

(P<0.001) for FSRY in the 2010/11 season (Table 4.9). Significantly (P<0.001) the highest 

FSRY of 27.4 t ha-1 was obtained at 15 MAP as compared to 16.2 and 12.1 t ha-1 at 12 and 

9 MAP, respectively. At 9 MAP, FSRY ranged from 9.6 to 15.7 t ha-1 with a mean of 12.1 t ha-1. 

The highest FSRY at 9 MAP was recorded by landrace Kapeza (15.7 t ha-1), which proved to be 

a good early bulking genotype. Other early bulking genotypes which had above-average FSRY 

at 9 MAP were Chila (15.5 t ha-1), Lufunda (14.9 t ha-1), L9.304/147 (13.8 t ha-1) and 4(2)1425 

(13.8 t ha-1). Yields in the range of 12 to 19 t ha-1, with a mean of 16.2 t ha-1, were obtained at 

12 MAP. Kapeza also had the highest FSRY at 12 MAP, followed by M86/0016 and 4(2)1425, 

which yielded 19.1 t ha-1 each, while lowest FSRY was recorded by Manyopola (12.1 t ha-1). At 

15 MAP, the FSRY ranged from 21 to 38 t ha-1, with a mean of 27.0 t ha-1. Generally all the 

genotypes had FSRY above 20 t ha-1, and the significantly (P<0.001), highest FSRY (38.2 t ha-

1) was obtained for the genotype TME 2. The genotype Kariba had the lowest FSRY of 

22.1 t ha-1 at 15 MAP. Overall, 4(2)1425, TME 2, Kapeza, I60/42 and L9.304/147 yielded above 

20.0 t ha-1 and were the best across the sampling dates in 2010/11. 

In 2011/12 the G and S-date main effects were highly significant (P<0.001), while the MS due to 

G x S-date interaction effects were not significant for FSRY (Table 4.9). However, significant 

mean differences in FSRY among genotypes were only evident at 9 MAP and for the means 

across sampling dates. At 9 MAP FSRY ranged from 11.0 to 21.7 t ha-1, with a mean of 13.6 t 

ha-1. Genotypes 4(2)1425 and TME 2 had the highest FSRY of 21.7 and 20.9 t ha-1, respectively 

(good early bulking genotypes), while Kariba and L9.304/36 recorded the lowest FSRYof 

11.6 t ha-1 each at 9 MAP. The genotype 4(2)1425 which had 24.2 t ha-1 was the best across 

sampling dates. Overall, 4(2)1425, Kapeza, TME 2, and I60/42 had the lowest rank sums and 

were the best genotypes across the seasons (Table 4.9). 
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Table 4.9 Ranked mean fresh storage root yield of 19 cassava genotypes evaluated at three sampling dates at Kawiko in Mwinilunga, Zambia in 2010/11 and 2011/12 season 
 

Genotype 

2010/11  2011/12 Rank  
sum 

across 
season 

 

9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall  9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 15.7 1  19.2 1  31.8 4  22.3 3  18.7 4  24.7 1  26.4 4  23.3 2 5 
Mweru 12.8 6  16.6 8  27.3 9  18.9 8  15.5 8  22.8 2  21.2 8  19.8 5 13 
M86/0016 12.2 8  19.1 2  22.5 16  17.9 12  13.5 15  18.6 5  16.9 19  16.3 12 24 
L9.304/147 13.8 4  19.0 4  31.0 5  21.3 5  18.8 3  15.5 13  22.5 7  18.9 6 11 
Bangweulu 10.3 17  16.5 9  27.8 7  18.2 10  14.8 11  15.4 14  19.5 11  16.6 11 21 
Chila 15.5 2  14.0 14  28.2 6  19.3 6  13.8 12  17.7 7  24.1 5  18.5 7 13 
Lelanyana 12.8 6  13.3 16  21.1 18  15.7 17  12.9 16  16.9 8  17.7 15  15.8 15 33 

I60/42 10.8 14  18.6 5  36.8 2  22.1 4  18.0 5  21.5 4  29.2 1  22.9 3 7 
Lufunda 14.9 3  14.8 12  27.6 8  19.1 7  13.6 13  16.6 11  20.6 10  16.9 10 17 
I30040 11.4 10  18.3 6  25.1 12  18.3 9  15.3 9  16.2 12  19.4 12  17.0 9 18 
L9.304/175 11.5 9  14.4 13  22.5 16  16.1 16  12.9 16  14.1 15  21.1 9  16.0 13 31 
14(2)1425 13.8 4  19.1 2  35.2 3  22.7 1  21.7 1  22.7 3  28.1 2  24.2 1 2 
Manyopola 9.8 18  12.1 18  26.8 10  16.2 14  15.2 10  12.9 17  17.1 18  15.1 18 34 
Kampolombo 9.6 19  15.6 10  24.3 13  16.5 13  16.4 6  13.3 16  18.2 14  16.0 13 28 
92/000 10.8 14  16.6 8  26.3 11  17.9 11  15.6 7  12.4 18  23.8 6  17.2 8 20 
L9.304/36 11.4 10  13.8 15  23.4 14  16.2 14  11.6 18  16.9 8  18.5 13  15.7 16 32 
Kariba 10.5 16  13.3 16  22.1 19  15.3 18  11.6 18  17.9 6  17.2 17  15.6 17 36 
TME 2 10.9 13  18.5 6  38.2 1  22.5 2  20.9 2  16.9 8  27.7 3  21.8 4 6 
Kaleleki 11.2 12  15.5 11  23.2 15  16.6 12  13.6 13  11.9 19  17.3 16  14.3 19 32 
Mean 12.1   16.2   27.4   18.6   15.5    17.1   21.4   18.0   
CV (%) 17.4   18.1   17.2   17.7   26.4    15.0   27.4   29.4   
SEM  1.7   2.9   4.7   0.3   4.1    2.6   5.8   5.3   

SED 

Genotype 1.4   2.4   3.9   1.6   3.3   2.1   4.8  2.5   

S-date  0.62  0.99  

G x S-date 2.69  4.32
NS

  

F-prob. 

Genotype <0.001   0.04  <0.001  <0.001  0.13  <0.001   0.17  <0.001   

S-date <0.001  <0.001  

G x S-date <0.001  0.955  

MAP = months after planting; G = genotype; S-date = sampling date or dates of harvest set at 9, 12,and 15 months after planting; G x S-date = genotype by sampling date interaction; SEM = 
standard error of means; SED = standard error of difference; CV = coefficient of variation measured as a percentage; F-prob. = F-probability showing the level of significance. 
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4.3.7 Storage root rots 

The incidence of SRR was generally low in both seasons (Table 4.10). The incidence of SRR 

ranged from 0.0 to 37.2% with a mean of 6.7%, and from 0.0 to 29.4% with a mean of 7.4% in 

the 2010/11 and 2011/12 seasons, respectively. In the 2010/11 season, significantly (P<0.001) 

the highest incidence (11.9%) of SRR was recorded at 15 MAP as compared to 2.5 and 5.7% 

which was recorded at 9 and 12 MAP, respectively. However, genotypes reacted differentially to 

SRR at different sampling dates within seasons. The genotype Kariba recorded significantly 

(P<0.001) the highest incidence of SRR (10.8%), but no symptoms of SRR were found in 12 out 

of the 19 genotypes that were evaluated at 9 MAP. At 12 MAP in 2010/11 season, seven of the 

genotypes had significantly (P<0.001) high incidence of SRR, with the genotypes M86/0016 and 

Kariba being the most susceptible with incidences of 22.0 and 22.7%, respectively. At 15 MAP, 

SRR were present in 11 of the 19 genotypes evaluated with incidence ranging from 0.0 to 

37.0%. Genotypes M86/0016, L9.304/147, and Kariba, were the most susceptible with 

respective SRR incidences of 37.2, 30.5 and 30.0%. No SRR were recorded by Mweru, 

Lelanyana, Kampolombo, 92/000, and Kaleleki in the 2010/11 season. Genotypes M86/0016 

and Kariba were the most susceptible with 22.7 and 20.9% disease incidence, respectively 

across sampling dates in the season (Table 4.10). 

In 2011/12 season, the G and S-date main effects were significant for SRR, but unlike the 

previous season, the MS due to G x S-date interaction effect was not significant for the trait. The 

incidence of SRR ranged from 0.0 to 29.4% with a mean of 7.4% across the season. 

Significantly the highest SRR incidence of 10.8% was recorded at 15 MAP compared to 5.5 and 

5.8% which were recorded at 9 and 12 MAP, respectively. At 9 MAP differences between 

genotypes for SRR were not significant, but 11 genotypes recorded no SRR. However, highly 

significant differences were observed between genotypes for SRR at 12 MAP (P<0.001) and 

15 MAP (P<0.01). At 12 MAP, 10 of the genotypes presented no SRR, but a 25.0% incidence of 

SRR was recorded by M86/0016. The same genotype had the highest incidence of SRR 

(29.4%) at 15 MAP, and it was considered to be the most susceptible to SRR, with an overall 

mean incidence of 23.0% across the season. Kapeza, Mweru, and Bangweulu had no SRR 

across the season (Table 4.9). Overall, genotypes Mweru, 92/000, Kaleleki, Kampolombo and 

Lelanyana had the lowest rank sum for SRR and were therefore considered to be the most 

resistant across the seasons (Table 4.9). 
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Table 4.10 Ranked mean incidence of root rots (%) of 19 cassava cultivars evaluated at three sampling dates at Kawiko in Mwinilunga, Zambia in 2010/11 and 2011/12 
seasons 
 

Genotype 

2010/11  2011/12 
Rank  
sum 

across 
seasons 

 

4 MAP 
 

8 MAP 
 

12 MAP 
 

Overall  4 MAP 
 

8 MAP 
 

12 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 8.3 16  0.0 1  0.0 1  2.8 8  0.0 1  0.0 1  0.0 1  0. 0 1 9 
Mweru 0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  0.0 1 2 
M86/0016 3.3 13  27.7 19  37.2 19  22.7 19  14.4 16  25.0 19  29.4 19  23.0 19 38 
L9.304/147 0.0 1  4.2 13  30.5 18  11.6 14  11.1 15  4.2 14  14.4 13  9.9 13 27 
Bangweulu 8.3 16  0.0 1  0.0 1  2.8 8  0.0 1  0.0 1  0.0 1  0.0 1 9 
Chila 0.0 1  0.0 1  11.1 10  3.7 10  0.0 1  0.0 1  8.5 10  2.8 10 20 
Lelanyana 0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  1.7 12  0.0 1  0.6 5 6 

I60/42 0.0 1  0.0 1  22.2 14  7.4 13  15.0 17  0.0 1  18.3 15  11.1 14 27 
Lufunda 8.3 16  16.7 15  22.2 14  15.7 17  20.8 19  16.7 15  28.3 18  21.9 17 34 
I30040 0.0 1  16.7 15  27.8 16  14.8 16  8.3 14  16.7 15  22.5 16  15.8 16 32 
L9.304/175 0.0 1  0.0 1  4.2 9  1.4 6  0.0 1  0.0 1  1.7 6  0.6 5 11 
4(2)1425 4.2 14  0.0 1  0.0 1  1.4 6  0.0 1  0.0 1  3.3 9  1.1 9 15 
Manyopola 0.0 1  4.2 13  11.7 12  5.3 12  4.2 12  1.7 12  12.7 12  6.2 12 24 
Kampolombo 0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  1.7 6  0.6 5 6 
92/000 0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  0.8 11  0.0 1  0.3 4 5 
L9.304/36 4.2 14  16.7 15  17.8 13  12.9 15  7.5 13  16.7 15  15.8 14  13.3 15 30 
Kariba 10.8 19  22.0 18  30.0 17  20.9 18  18.3 18  22.0 18  27.7 17  22.7 18 36 
TME 2 0.0 1  0.0 1  11.1 10  3.7 10  0.0 1  0.0 1  10.0 11  3.3 11 21 
Kaleleki 0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  0.0 1  1.7 6  0.6 5 6 

Mean    2.5   5.7    11.9    6.7   5.5    5.8   10.8   7.4   
CV (%) 162.2   117.4    98.8    119.5   197.6    119.5   108.7   148.8   

SEM  4.0   6.7    11.7    8.0   10.4    8.0   11.2   10.4   

SED 

Genotype 3.3   5.4   9.6    3.8   8.5   3.8   9.2   4.9   

S-date 1.5  2.0 

G x S-date 6.5  5.8 

F-prob. 
Genotype 0.008  <0.001  <0.001  <0.001  0.160  <0.001 0.005 <0.001   

 

S-date  <0.001   0.017 

G x S-date <0.001   0.999 

MAP = months after planting;G = genotype; S-date = sampling date or dates of harvest set at 9, 12, and 15 months after planting; G x S-date = genotype by sampling date interaction; SEM = 
standard error of means; SED = standard error of difference; CV = coefficient of variation measured as a percentage; F-prob. = F-probability for significance of F-test 
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4.3.8 Storage root dry mass percentage 

The G main effects were significant (P<0.05) for SRDM%, while S-date main effects were not 

significant for the trait. The G x S-date interaction effects were highly significant (P<0.01) for 

SRDM%. In 2010/11 season, the difference between the genotypes were significant (P<0.05) 

for SRDM% at 9 and 12 MAP, but the difference between genotypes were not significant at 15 

MAPfor the trait (Table 4.11). The SRDM% ranged from 21.0 to 39.0% with a mean of 31.4%. 

Genotypes Kapeza, L9.304/175, I30040, Lufunda, and Bangweulu had the highest SRDM% 

with respective means of 34.4, 34.2, 34.2, and 33.6% across sampling dates in the 2010/11 

season (Table 4.11).   

In 2011/12 season, only the G main effects were significant (P<0.001) for SRDM%. Across      

sampling dates, SRDM% ranged from 23.3 to 38.7% with a mean of 32.7%.  The genotypes 

L9.304/147 and Kapeza had the highest SRDM% with respective means of 36.7 and 36.4%, 

followed by L9.304/175 (35.7%) and I30040 (35.0%), while the lowest SRDM% (25.8%) was 

recorded by Lelanyana.  
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Table 4.11 Ranked mean storage root dry mass percentageof 19 cassava cultivars evaluated at three sampling dates at Kawiko in Mwinilunga, Zambia in 2010/11 and 
2011/12 seasons 
 

Genotype 

2010/11  2011/12 
Rank 
sum 

across 
seasons 

9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall  9 MAP 
 

12 MAP 
 

15 MAP 
 

Overall 

Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean₴ Rank  Mean Rank 
 

Mean Rank 
 

Mean Rank 
 

Mean Rank 

Kapeza 35.0 6  36.7 3  31.7 10  34.4 1  34.7 9  38.0 3  36.7 2  36.4 2 3 
Mweru 35.3 5  32.7 8  31.5 12  33.2 6  36.0 5  34.3 8  33.7 7  34.7 6 12 
M86/0016 30.3 15  23.7 17  26.7 17  26.9 17  32.7 12  29.9 16  30.0 13  30.8 14 31 
L9.304/147 38.3 1  28.3 13  30.3 13  32.3 7  36.3 3  38.7 1  35.0 4  36.7 1 5 
Bangweulu 34.7 7  34.3 6  31.7 10  33.6 4  37.3 2  33.0 10  31.7 11  34.0 10 14 
Chila 36.0 4  29.0 12  32.0 8  32.3 7  35.3 7  34.7 7  32.3 10  34.1 8 15 
Lelanyana 26.0 17  31.6 9  26.8 16  28.1 15  30.0 17  23.5 19  24.0 19  25.8 19 34 

I60/42 24.3 19  37.9 2  31.7 9  31.3 11  27.7 19  32.3 11  29.0 15  29.7 16 27 
Lufunda 32.7 11  30.8 10  38.0 1  33.8 4  38.0 1  32.0 13  31.6 12  33.9 11 15 
I30040 34.7 7  34.7 5  33.3 6  34.2 3  34.0 11  35.3 6  35.7 3  35.0 4 7 
L9.304/175 36.3 3  33.9 7  33.0 7  34.4 1  36.0 4  36.8 4  34.3 5  35.7 3 4 
14(2)1425 24.7 18  39.4 1  26.7 17  30.2 14  28.7 18  32.3 11  28.3 17  29.8 15 29 
Manyopola 34.0 10  29.8 11  27.0 15  30.3 13  32.0 14  35.4 5  34.2 6  33.9 11 24 
Kampolombo 32.0 14  23.4 18  27.3 14  27.2 16  30.7 16  25.7 18  28.7 16  28.3 17 33 
92/000 38.3 1  21.0 19  35.7 3  31.7 9  35.7 6  34.3 8  32.3 10  34.1 8 17 
L9.304/36 34.7 7  23.9 16  36.7 2  31.7 9  34.7 9  31.2 14  36.8 1  34.2 7 16 
Kariba 28.0 16  25.9 15  25.7 19  26.4 18  31.3 15  26.9 16  26.5 18  28.2 18 36 
TME 2 32.0 13  26.2 14  35.0 5  31.1 12  32.7 12  38.3 2  33.6 8  34.8 5 17 

Kaleleki 32.7 11  34.8 4  35.3 4  33.6 4  35.3 7  30.4 15  29.1 14  31.6 13 17 
Mean 32.6   30.4   31.2   31.4   33.6   32.8   31.8   32.7   
CV(%) 15.8   19.7   17.4   17.3   13.6   19.5   18.6   17.1   
SEM  5.1   6.0   5.4   5.4   4.6   6.4   5.9   5.6   

SED 

Genotype 4.2   4.9   4.4  2.4   3.8   5.2   4.8   2.6   

S-date  2.6  1.0  

G x S-date 4.4  4.6  

F-prob. 

Genotype 0.04  0.008  0.18 0.011 0.29  0.24  0.43  <0.001   

S-date  0.082  0.207  

G x S-date 0.002  0.992  

MAP = months after planting;G = genotype; S-date = sampling date or dates of harvest set at 9, 12, and 15 months after planting; G x S-date = genotype by sampling date interaction; SEM 
= standard error of means; SED = standard error of difference of means; CV(%) = coefficient of variation measured as a percentage; F-prob. = F-probability showing the level of significance. 
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4.3.9 Stability analysis 

Genotypes which had lowest rank sum for Wi across the sampling dates for a particular trait 

were considered to exhibit high intra-season stability, while genotypes which had lowest rank 

sum for Wi across season were considered to exhibit high inter-season stability (Appendix 4.1). 

Genotypes with lowest GSI scores combine high stability with desirable trait means and were 

therefore considered to be the most stable and superior for the trait, while genotypes with high 

GSI scores are undesirable.   

Cassava green mite population density: Genotypes 4(2)1425 and L9.304/147 had the lowest 

GSI overall for CGM PD and so were the most resistant and most stable across sampling dates 

in each of the seasons and across seasons (Table 4.12).  

Cassava green mite leaf damage: Genotypes Kapeza and Bangweulu had lowest GSI for 

CGM LD across sampling dates in the 2010/11 season. Genotypes 4(2)1425, Bangweulu and 

L9.304/175 had lowest GSI for CGM LD across sampling dates in 2011/12. Overall, genotypes 

4(2)1425, Bangweulu, and I60/42 were the most stable and most resistant across seasons, 

while Mweru and Kariba were the most susceptible and least stable genotypes across seasons 

(Table 4.12).  

Table 4.12 Ranked genotype stability indices for cassava green mite population density and associated 
leaf damage of 19 cassava genotypes evaluated across three sampling dates in 2010/11 and 2011/12 
seasons at Kawiko in Mwinilunga district, Zambia  

  
 Genotype 

CGM PD   CGM LD 

2010/11   2011/12   Overall   2010/11   2011/12   Overall 

GSI Rank   GSI Rank   GSI Rank   GSI Rank   GSI Rank   GSI Rank 

Kapeza 18 8   28 15   46 14   7 1   24 15   31 5 

Mweru 25 14   37 19   62 18   36 19   35 19   71 19 

M86/0016 32 18   20 12   52 16   20 12   24 15   44 13 

L9.304/147 7 2   6 1   13 1   13 5   18 9   31 5 

Bangweulu 23 11   16 7   39 7   10 2   14 2   24 2 
Chila 25 14   22 13   47 15   24 14   22 14   46 15 

Lelanyana 22 10   35 18   57 17   16 8   18 9   34 9 
I60/42 24 12   16 7   40 9   11 3   15 4   26 3 

Lufunda 30 16   11 3   41 10   16 8   15 4   31 5 
I30040 12 4   17 9   29 5   14 6   20 11   34 9 

L9.304/175 10 3   19 10   29 5   16 8   14 2   30 4 
4(2)1425 4 1   11 3   15 2   12 4   6 1   18 1 

Manyopola 13 6   30 16   43 12   24 14   25 17   49 17 
Kampolombo 13 6   26 14   39 7   25 16   15 4   40 12 

92/000 19 9   9 2   28 4   14 6   17 7   31 5 

L9.304/36 30 16   11 3   41 10   29 17   17 7   46 15 
Kariba 33 19   31 17   64 19   34 18   26 18   60 18 

TME 2 24 12   19 10   43 12   23 13   21 12   44 13 
Kaleleki 12 4   15 6   27 3   16 8   21 12   37 11 

CGM PD = cassava green mite population density per leaf; CGM LD = cassava green mite leaf damage scored on 
1-5 scale, where 1 = no damage, and 5 = very severe damage; GSI = genotype stability index 
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Leaf retention: In the 2010/11 season, Bangweulu, Kapeza and Mweru combined high stability 

with highest LR while Kampolombo, L9.304/36, and L9.304/147 combined low stability with low 

LR across sampling dates (Table 4.13). In the 2011/12 season, smallest GSI scores for LR were 

recorded for genotypes 4(2)1425, L9.304/147, and Kariba. Genotypes 4(2)1425 and Kapeza 

exhibited high stability for LR combined with high mean for the trait across the two seasons, 

while Kampolombo and L9.304/36 combined low stability with low LR.  

Stay green: Kampolombo, 92/000 and Bangweulu had lowest GSI scores for SG, while 

Manyopola, I60/42 and Kariba combined low stability with low SG in the 2010/11 season (Table 

4.12). In the 2011/12 season, 92/000 and Bangweulu had the lowest GSI for SG, while 

M86/0016, Lufunda and I60/42 combined low stability with lowest means for SG across 

sampling dates in the season. Overall, 92/000 and Kampolombo had the lowest GSI scores and 

were therefore the most stable with high SG across seasons. 

Leaf pubescence: Genotypes Kaleleki, L9.304/175, and 92/000 had the lowest GSI for Pbs 

and were therefore considered to be the most stable and the most pubescent across sampling 

dates in 2010/11 season, while Chila, Kariba and Bangweulu had the highest GSI scores and 

were considered to be the least stable and least pubescent genotypes across sampling dates in 

the season (Table 4.13). Genotypes 4(2)1425, l9.304/147 and L9.304/175 were the most stable 

and the most pubescent across sampling dates in 2011/12 season. Overall, L9.304 and 

4(2)1425 had lowest GSI scores and were therefore the most stable and the most pubescent 

genotypes across the two seasons, while largest GSI scores were recorded for I60/42, 

Kampolombo, and M86/0016 which were therefore considered to be the least stable and the 

least pubescent genotypes across the seasons. 
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Table 4.13 Ranked genotype stability indices for leaf retention, stay green, and leaf pubescence of 19 cassava genotypes evaluated across three 

sampling dates in 2010/11 and 2011/12 seasons at Kawiko in Mwinilunga district, Zambia  

 
Genotype 

LR (%) 
 

SG (1-3) 
 

Pbs (1-3) 

2010/11 
 

2011/12 
 

Overall 
 

2010/11 
 

2011/12 
 

Overall 
 

2010/11 
 

2011/12 
 

Overall 

GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank 
 

GSI Rank  GSI Rank  GSI Rank 

Kapeza  6 2 
 

19 8 
 

25 1 
 

17 4 
 

13 5 
 

30 4 
 

10 4 
 

26 14 
 

36 7 

Mweru  7 3 
 

26 16 
 

33 5 
 

22 12 
 

28 15 
 

50 14 
 

24 15 
 

15 6 
 

39 9 
M86/0016 20 7 

 
20 10 

 
40 11 

 
28 16 

 
36 19 

 
64 19 

 
22 12 

 
31 18 

 
53 18 

L9.304/147 29 17 
 

11 2 
 

40 11 
 

18 6 
 

22 12 
 

40 9 
 

20 11 
 

  5 2 
 

25 5 

Bangweulu  4 1 
 

22 13 
 

26 3 
 

14 3 
 

 7 1 
 

21 3 
 

27 17 
 

22 12 
 

49 16 

Chila 10 4 
 

19 8 
 

29 4 
 

18 6 
 

15 7 
 

33 5 
 

32 19 
 

16 7 
 

48 15 

Lelanyana 20 7 
 

21 11 
 

41 13 
 

18 6 
 

17 8 
 

35 7 
 

25 16 
 

20 11 
 

45 11 

I60/42 25 13 
 

21 11 
 

46 15 
 

31 19 
 

29 17 
 

60 18 
 

22 12 
 

34 19 
 

56 19 

Lufunda 20 7 
 

35 18 
 

55 17 
 

23 14 
 

29 17 
 

52 15 
 

18 7 
 

24 13 
 

42 10 

I30040 25 13 
 

28 17 
 

53 16 
 

20 10 
 

21 10 
 

41 12 
 

19 9 
 

19 9 
 

38  8 

L9.304/175 15 5 
 

18 7 
 

33 5 
 

20 10 
 

20 9 
 

40 9 
 

  6 2 
 

  7 3 
 

13  1 

4(2)1425 21 11 
 

4 1 
 

25 1 
 

26 15 
 

13 5 
 

39 8 
 

15 5 
 

  3 1 
 

18 2 

Manyopola 20 7 
 

14 6 
 

34 7 
 

29 18 
 

25 14 
 

54 16 
 

19 9 
 

28 15 
 

47 14 

Kampolombo 30 18 
 

36 19 
 

66 19 
 

 7 2 
 

8 3 
 

15 2 
 

22 12 
 

29 17 
 

51 17 

92/000 25 13 
 

13 4 
 

38 9 
 

5 1 
 

7 1 
 

12 1 
 

  9 3 
 

11 4 
 

20 4 

L9.304/36 31 19 
 

25 15 
 

56 18 
 

19 9 
 

21 10 
 

40 9 
 

17 6 
 

28 15 
 

45 11 

Kariba 26 16 
 

12 3 
 

38 9 
 

28 16 
 

28 15 
 

56 17 
 

27 17 
 

19 9 
 

46 13 

TME 2 21 11 
 

13 4 
 

34 7 
 

17 4 
 

24 13 
 

41 12 
 

18 7 
 

11 4 
 

29 6 

Kaleleki 18 6 
 

23 14 
 

41 13 
 

22 12 
 

11 4 
 

33 5 
 

  3 1 
 

16 7 
 

19 3 

LR = leaf retention expressed as a percentage; SG= stay green scored on 1-3 scale, where 1 = lowest, and 3 = highest; Pbs = leaf pubescence score on 1-3 scale, where 
1 = glabrous, and 3 = highly pubescent; GSI = genotype stability index  
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Fresh storage root yield: The genotypes M86/0016, I30040, Kapeza, Mweru and Kaleleki, had 

lowest GSI scores for FSRY and therefore were considered the most stable and most high 

yielding in the 2010/11 season. For the 2011/12 season, Bangweulu, Kapeza, Mweru, 

Lelanyana, 92/000 and L9.304/36 recorded lowest GSI scores and were considered most stable 

and most high yielding, while Kampolombo, Kariba, and I30040 had highest GSI scores and 

were therefore least stable and lowest yielding genotypes for the season. Overall, M86/0016, 

Mweru, Kapeza and I30040 recorded lowest GSI scores and were the most stable and most 

high yielding across seasons (Table 4.14).  

Storage root rot: In 2010/11 season genotypes 92/000, Kaleleki, Kampolombo, Lelanyana, and 

Mweru had lowest GSI scores for cassava SRR incidence, and were therefore considered the 

most stable genotypes with the most extended underground storability. In 2011/12 season, 

L9.304/175, Kampolombo, and Kaleleki had lowest GSI scores for SRR, and were the most 

stable genotypes with good underground storability, while M86/0016, I60/42, and I30040 

werethe least stable genotypes with poor underground storability (Table 14). 

Storage root dry mass percentage: The genotype L9.304/175 had the lowest GSI score for 

SRDM% across sampling dates in 2010/11, followed by I30040, Bangweulu, and Mweru. The 

lowest GSI score for SRDM% in 2011/12 season was recorded by L9.304/175, followed by 

L9.304/147, and Mweru, which were considered the most stable genotypes with highest 

SRDM%, while M86/0016, Kariba, and 4(2)1425 were the least stable genotypes with the lowest 

SRDM%. Genotypes, L9.304/175, L9.304/147, and Mweru had the least GSI and therefore were 

ranked the best for SRDM% across the seasons (Table 4.14).   
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Table 4.14 Ranked genotype stability indices for fresh storage root yield, storage root dry mass percentage and the incidence of root rots of 19 cassava 

genotypes evaluated across three sampling dates in 2010/11 and 2011/12 seasons at Kawiko in Mwinilunga district, Zambia.  

  
 Genotype 

FSRY    SRR (%)   SRDM (%) 

2010/11   2011/12   Overall   2010/11   2011/12   Overall   2010/11   2011/12   Overall 

GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank  GSI Rank 

Kapeza 17 3  19 2  36 2  21 11  11 5  32 9 
 

12 5  18 8  30 6 

Mweru 17 3  19 2  36 2  6 1  11 5  17 4 
 

10 4  11 3  21 2 

M86/0016 13 1  21 14  34 1  36 19  37 19  73 19 
 

23 12  31 17  54 18 

L9.304/147 20 10  21 14  41 11  31 17  26 15  57 16 
 

22 11  9 2  31 7 

Bangweulu 23 16  18 1  41 11  21 11  11 5  32 9 
 

 8 3  21 11  29 4 

Chila 18 6  20 7  38 6  13 7  15 8  28 8 
 

14 7  15 5  29 4 

Lelanyana 21 11  19 2  40 10  6 1  20 10  26 5 
 

28 18  22 12  50 15 

I60/42 22 14  21 14  43 16  28 15  33 17  61 17 
 

27 16  23 13  50 15 

Lufunda 18 6  20 7  38 6  21 11  25 14  46 13 
 

17 8  27 15  44 11 

I30040 15 2  21 17  36 2  32 18  33 17  65 18 
 

 6 2  16 6  22 3 

L9.304/175 19 9  20 7  39 9  8 6  7 1  15 3 
 

 3 1  7 1  10 1 

4(2)1425 18 6  20 7  38 6  16 10  10 4  26 5 
 

32 19  28 16  60 19 

Manyopola 32 19  20 7  52 19  13 7  19 9  32 9 
 

21 10  14 4  35 8 

Kampolombo 21 11  22 18  43 16  6 1  7 1  13 1 
 

25 14  18 8  43 9 

92/000 22 14  19 2  41 11  6 1  20 10  26 5 
 

27 16  18 8  45 13 

L9.304/36 23 16  19 2  42 15  25 14  28 16  53 14 
 

26 15  17 7  43 9 

Kariba 24 18  22 18  46 18  30 16  24 13  54 15 
 

19 9  32 19  51 17 

TME 2 21 11  20 7  41 11  13 7  20 10  33 12 
 

24 13  23 13  47 14 
Kaleleki 17 3  20 7  37 5  6 1  7 1  13 1 

 
13 6  31 17  44 11 

FSRY = fresh storage root yield (t ha
-1

); SRR = storage root rot disease incidence (%); SRDM% = percentage storage root dry mass; GSI = genotype stability index  
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4.4 Discussion and conclusions 

The study has clearly indicated effects of seasonal variations on the performance and stability of 

cassava genotypes. The average daily temperatures of 28ºC and relative humidity of 72-75% 

experienced during the seasons seem to coincide with the optimum temperature of 27oC and 

RH of 50-70% reported for maximum oviposition of CGM (Yaninek et al., 1986; Hahn et al., 

1989; Yaninek et al., 1989). This is a probable reason for the highest CGM PD recorded at 9 

MAP. Heavy rains are normally experienced in December (second sampling) while March (third 

sampling) coincides with the end of the rainy season. Consistent with this observation, Yaninek 

et al. (1989) attributed increased CGM mortality to the mites being washed of the leaves during 

the wet season. The minimum temperature of 10oC experienced in June and July, which 

happened to be lower than the estimated thermal threshold for CGM of14.4ºC (Yaninek et al., 

1986), is another source of mite mortality (Mebelo et al., 2003).  

Locally improved genotype L9.304/147 exhibited better levels of stability for low CGM PD as 

compared to 4(2)1425 and I60/42, which are widely used as sources of resistance to CGM in 

Africa (Hahn et al., 1989; Mahungu et al., 1994). Similarly, the high stability for low CGM PD as 

displayed by landrace Kaleleki indicates that locally adapted sources of resistance are available. 

Having been grown in the locality for several years, landraces are more likely to cope with 

environmental stresses including crop pests and diseases common to a given locality, making 

them suitable candidates for inclusion as parents in a breeding programme (Raji et al., 2008).  

Genotypes Kapeza and I60/42 were better ranked for CGM LD than they were for CGM PD, 

which suggests that, these genotypes exhibit a tolerance mechanism towards CGM. 

Consequently, genotypes which combine low CGM PD with low CGM LD, such as 4(2)1425, 

L9.304/147, and L9.304/175, are the most desirable and can be recommended for wider 

production, or as sources of resistance for breeding programmes.  

The study revealed the presence of genetic variability in the germplasm for LR in Zambia. Six 

genotypes that combined high stability with high mean LR had one characteristic in common, 

namely a tendency to either fold or roll their leaves downward away from the sun during hot 

periods. According to El-Sharkawy (2003), the action of leaf folding may be a mechanism for 

water stress avoidance. It is also suggested that genotypes which exhibit high LR combined 

with enhanced SG are likely to be resistant to both CGM and drought (Nukenine et al., 1999).  

In cassava, Pbs is said to be the primary trait responsible for resistance to CGM (Hahn et al., 

1989; Raji et al., 2008). The Pbs, especially of immature leaves and shoot apices, has been 

reported to provide suitable habitat for T. aripo which has proved to be the most successful 
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natural enemy against M. tanajoa and whitefly (Bemisia tabacci Gennadius) in Africa (Yaninek 

and Hanna, 2003; Amusa and Ojo, 2005; Onzo et al., 2005; Onzo et al., 2010). The current 

study was conducted in the absence of the natural enemy, and therefore, it was not possible to 

confirm or otherwise these reports, but this study indicated that the trait is little influenced by 

seasonal effects and that there is genetic variability for this in the local Zambian germplasm. 

The results of the current study coupled with other reports of heritability estimates as high as 

93% for this trait (Hahn et al., 1989), imply that the expression of Pbs is highly predictable and 

therefore it should be relatively easy to incorporate into new genotypes. Three genotypes which 

exhibited the highest stability combined with high level of Pbs were L9.304/175, 4(2)1425, and 

Kaleleki. These genotypes had high inter-season stability for low CGM PD and CGM LD, and 

could be used as sources of genes for CGM resistance.  

In Northern, Muchinga, Luapula, and North-Western Provinces, which constitute the cassava-

belt in Zambia, cassava is considered a food security crop. Farmers are interested in cassava 

genotypes that bulk early, but can stay in the ground for a long time without rotting. It is rare that 

farmers harvest the entire field of cassava at one time. This is necessitated by the fact that 

subsistence farmers have no means of storing freshly harvested storage roots, which normally 

deteriorate within 24 hours after harvest (Ceballos et al., 2006). This flexibility in harvesting 

cassava, as and when required for consumption is an important attribute that has made cassava 

one of the most important food security crops in Africa (Nweke et al., 2002). However, as 

environments keep changing, root rots are becoming increasingly important in many parts of 

Africa (Makambila, 1994; Mskita et al., 1997a; Chalwe et al., 1998), where they are reported to 

cause yield losses of up to 80% (Msikita et al., 2005).    

 

Storage roots were harvested at 9, 12, and 15 MAP to identify early-bulking CGM-resistant 

genotypes that can be harvested earlier than 12 months, as well as to identify genotypes with 

good underground storability. Three genotypes, namely Kapeza, L9.304/147 and 4(2)1425 

consistently yielded above 13 t ha-1 as early as 9 MAP in both seasons, suggesting their 

potential as early bulking genotypes. Though SRR were encountered at all three sampling 

dates, the incidence varied with genotype, implying that there is genetic variability in the 

cassava germplasm available in Zambia (Onyeka et al., 2005a; Onyeka et al., 2005b). However, 

the highest incidence of SRR symptoms both in terms of number of genotypes and number of 

infected plants per genotype was recorded at 15 MAP corroborating earlier reports that delayed 

harvesting contributes to high incidence of SRR (Mskita et al., 1997b; Chalwe et al., 1998). The 

current study was conducted under natural field conditions, where the infection was highly 

random as evidenced by high CV% for all sampling dates in both seasons. However, this study 
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identified at least two genotypes that combined FSRY stability and performance with stability for 

low or no incidence of SRR within and across the seasons, namely landrace Kaleleki and a 

locally improved genotype Mweru. At least two genotypes, Mweru and L9.304/175 combined 

stability with lowest means for SRR and SRDM%. Three genotypes M86/0016, Mweru, I30040 

and Kapeza, combined stability with high mean performances for both SRDM% and FSRY. 

These results therefore suggest that Mweru is a strong and dependable genotype. The level of 

injury caused by CGM on this genotype does not seem to affect its stability for FSRY, SRDM%, 

and resistance to SRR.  

 

Inconsistencies in ranking between mean FSRY and stability scores as was commonly 

displayed by genotypes such as 4(2)1425, TME2, I60/42, and L9.304/147 which were among 

the most high yielding but least stable, and Kaleleki, Lelanyana, L9.304/175, L9.304/36, which 

were most stable but among the lowest yielding, suggest the need to consider the overall mean 

performance and stability simultaneously when evaluating genotypes in multi-environment trials 

(Farshadfar, 2008). Mohammadi et al. (2007) have cautioned that stability on its own should not 

be the criterion for selection, because the most stable genotypes would not necessarily give the 

best trait performance. For this reason, incorporation of both stability and overall trait mean 

performance into a single stability index (GSI) is a recommended approach (Kang, 1991; 1993; 

Farshadfar, 2012). Moreover, since farmers are interested in genotypes that perform 

consistently better in every environment (Mohammedi and Amri, 2009), FSRY and stability 

should be considered simultaneously.  

 

Though slight differences were observed in SRDM% between seasons and genotypes 

responded differently at each sampling date within the first season, this study indicates that 

genetic differences among genotypes were responsible for the variation observed in SRDM% 

within seasons. Genotypes L9.304/175, Mweru, and I30040 were least affected by the seasonal 

effects, as compared to 4(2)1425, and M86/0016. According to Ramanujam and Biradar (1987), 

genotypes which branch profusely like M86/0016 and 4(2)1425 have a tendency to partition 

most of their dry mass to the above-ground biomass (leaves and branches) at the expense of 

SRDM%. Although the harvest index was not determined in the study, the results at least for 

SRDM%, tend to corroborate those of Manrique (1990) who reported that dry mass partitioning 

to storage roots had little seasonal variation and increased with plant age.  

 

Overall, the study has shown that there is wide diversity in the expression of valuable indirect 

defense traits among genotype, indicating that there is scope for integration of biological control 

and host plant resistance for CGM in Zambia. Release of genotypes that exhibit high levels of 
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intra-season and inter-season stability for enhanced expression of LR, SG, and Pbs will 

minimize the impact of CGM on FSRY and SRDM% that results from seasonal effects. Such 

genotypes will also provide the required habitat for T. aripo in cassava fields. The study has 

identified genotypes which have good stability across seasons within a year and across years. 

However, the study contributed to the promotion of food security in Zambia and elsewhere 

where cassava is grown through the identification of early-bulking genotypes which also have 

good potential for extended underground storability. Early-bulking, high FSRY and SRDM% and 

SRR resistance are farmer-preferred traits. Therefore, enhancement of such traits through plant 

breeding is likely to increase the adoption of new genotypes by farmers. However, in future 

research the evaluation of genotypes must extend over 36 months, which is the longest period 

that farmers keep the crop in the field.  
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CHAPTER 5 

Inheritance of resistance to cassava green mite (Mononychellus 
tanajoa) (Bondar) (Acari: Tetranychidae) and other useful agronomic 
traits in cassava grown in north-western Zambia 

 

Abstract 

Cassava green mite (CGM) (Mononychellus tanajoa) is a major arthropod pest causing 

significant loss in the yields of storage roots and planting materials of cassava in Zambia. Its 

control has been mainly based on the use of exotic predatory mites as biological control agents, 

which unfortunately, have not established well in Zambia due to the lack of suitable host 

genotypes and harsh weather conditions. The current study was aimed at breeding cassava for 

improvement of morphological traits that are associated with resistance to CGM, which at the 

same time can enable cassava genotypes to provide shelter and ensure continuous survival of 

natural enemies of CGM, and to determine the inheritance of these traits by assessing 

combining ability and therefore the type of gene action involved in their expression. Using a 5 x 

5 half diallel mating design, full-sib cassava genotypes were generated out of which 300 were 

selected and evaluated in the field. Data were collected for CGM density (CGM PD), CGM leaf 

damage (CGM LD) and cassava mosaic disease severity, plant growth habit, leaf morphological 

traits, storage root yield and storage root dry mass percentage. Both general combining ability 

and specific combining ability effects were significant (P<0.01) for the reaction of the F1 progeny 

to CGM, and for the various plant morphological traits that were measured, suggesting that both 

additive and non-additive gene effects play a role in the expression of the traits. High narrow-

sense heritability estimates were obtained for CGM PD, CGM LD, leaf retention, and size and 

compactness of shoot apices. Using the farmer participatory-formulated selection index, 30 F1 

progeny which combined various farmer desired traits were identified. 
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5.1 Introduction 

Cassava (Manihot esculenta Crantz) is a very important crop especially in tropical and sub-

tropical Africa, Asia and Latin America where more than 500 million people depend on it for their 

livelihood. Cassava occupies a high position as a food security crop particularly because of its 

ability to withstand adverse environmental conditions such as drought and low soil fertility 

conditions under which other crops fail to survive (Lenis et al., 2006). However, the yields for 

cassava are very unstable mainly due to pests and diseases, particularly cassava green mite 

(CGM), cassava mosaic disease (CMD), and cassava brown streak disease, and there are very 

few cultivars that combine resistance to pests and diseases with good agronomic characteristics 

(Mahungu et al., 1994; Dixon et al., 2001).  

In Zambia specifically, CGM is reported to cause a 30 to 50% reduction in fresh storage root 

yield (FSRY) (Chakupurakal et al., 1994). Strategies to control CGM include host-plant 

resistance (HPR) and biological control using exotic natural enemies (Byrne et al., 1982; Hahn 

et al., 1989; Yaninek and Hanna, 2003; Zundel et al., 2009; Onzo et al., 2012). Particularly in 

Zambia, the management of CGM has not been effective probably because HPR and biological 

control have been utilised separately as two parallel or complementary pest management 

strategies. However, the failure of the natural enemies of CGM to establish well in north-western 

Zambia (Mebelo et al., 2003), and some parts of Africa (Onzo et al., 2003; Hanna et al., 2005) 

probably due to unsuitable climate and/or lack of suitable host cassava cultivars (Malambo et 

al., 1998; Zundel et al., 2009), necessitates the integration of the two approaches in order to 

achieve more sustainable and effective management of CGM.   

There is inadequate information about the inheritance of host-based genetic resistance to CGM 

and associated indirect defense mechanisms despite the importance of cassava as a food crop. 

Compared to cereal crops, there are very few published articles regarding the inheritance of 

agronomic traits in cassava (Calle et al., 2005; Jaramillo et al., 2005; Perez et al., 2005; Kamau 

et al., 2010; Were et al., 2012), which makes attempts to improve these traits through breeding 

difficult and consequently slows progress. 

This study was therefore conducted to achieve the following objectives: i) evaluate and select 

for those plant morphological traits that confer resistance to CGM and those which may not be 

mutually exclusive, that support continuous inhabitance of natural enemies, particularly 

Typhlodromalus aripo, on cassava; and ii) study the combining abilities and therefore gene 

action controlling inheritance of CGM resistance and associated indirect defense traits. 
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5.2 Materials and methods 

5.2.1 Site description 

Crosses were made in the field (2009/10), and the seedling stage (2010/11) and clonal stage 

trials (2011/12) were conducted at Mutanda research station, situated at latitude 12º11'S and 

longitude 26º24'E with an elevation of 1386 m above sea level. Zambia is divided into three 

agro-ecological zones or regions which are differentiated based on the length of growing season 

at 70% probability, mean monthly temperature, amount of sunshine in the rainy season, and 

occurrence of frost in the dry season (SCRB, 2001). Mutanda experiences a mono-modal 

pattern of rainfall that normally exceeds 1000 mm per annum within a growing season of 120-

150 days. Mean monthly temperature ranges from 18-26ºC. The site has red to brown clay to 

loamy soils that are predominantly highly weathered and leached ferralsols with very strong 

acidity (pH 4.5), low reserves of primary minerals, and high levels of aluminum and manganese.   

5.2.2 Mating design and field trial design 

Botanical seeds of cassava were generated in 2009/10 season through hand pollination using a 

5x5 half diallel mating design, where each parent was crossed with each of the other four 

parents. No selfing of clones was allowed to avoid inbreeding (Calle et al., 2005; Jaramillo et al., 

2005). The crosses were made in one direction only without reciprocals. It was intended that the 

diallel would be based on 10 parents, which were selected jointly by farmers and scientists 

following a farmer-participatory germplasm evaluation. However, only five of the parents 

flowered within the first 12 months and could therefore be used as parents in the crossing block. 

The 10 families of seedlings from the 5 x 5 half diallel mating were raised in a field nursery at 

Mutanda research station over a period of 12 months. A minimum of 30 full-sibs was selected 

from each of the families (solely on the basis of those that produced at least six cuttings, each 

15 cm in length) and planted in the seedling stage trial in 2010/11 season from which no data 

was collected. Cuttings from each of the 30 full-sibs of the 10 families were planted 15th 

December 2011 at Mutanda in a 30 x 2, row-column design with three replications to constitute 

the clonal evaluation trial. Each replication was planted to the 10 families, each of which 

consisted of 30 full-sibs that were planted on two ridges. Each full-sib clone was represented by 

two cuttings in each replication planted at a spacing of 1 x 1 m, equivalent to 10 000 plants ha-1. 

Cuttings of parent clones (male and female) pertaining to each family were planted between 

families (Appendix 5.1). Unfortunately one of the replications was tampered with by unknown 

people who harvested cassava leaves and cut the tips of the plants, rendering the replication 

useless. Therefore, only two replications were considered for data collection. The F1 progeny 

and their parents were harvested in September 2012 at 9 MAP months after planting. The trial 
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was harvested this early to assess the early bulking potential of the progeny. Earliness was one 

of the desirable attributes strongly identified by farmers in the PRA study. 

5.2.3 Inoculation technique 

The clones were artificially infested with CGM from a screenhouse-raised colony by attaching 

two infested leaves, which had at least twenty adult mites each, onto each of the two plants per 

clone in every replication (Habekub et al., 2000). The petiole of each detached infested leaf was 

lightly tied with a string to the petiole of the attached first and second fully expanded leaf from 

the top of each of the two plants per clone. The infested and uninfested leaves were placed with 

their abaxial surfaces in contact with each other. The main lobes were lightly held together with 

a plastic coated paper clip leaving the other leaf lobes freely open (Figure 5.1). The infester 

leaves and paper clips were removed after three days. Inoculation was repeated soon after the 

cold season in August. No fertilizers or herbicides were applied, but the trial was kept weed-free 

by frequent hand weeding. 

 

 

Figure 5.1 Inoculation by attachment of CGM-infested leaves onto a test plant 

5.2.4 Data collection 

The cassava green mite population density (CGM PD) was estimated as suggested by Hahn et 

al. (1989), by counting adult mites on the third fully expanded leaf from the top on each plant. 

Leaf damage caused by CGM (CGM LD) was also assessed by estimating the proportion of leaf 

area (cm2) covered by chlorotic spots on the same leaf. The CGM LD was scored in the warm 

dry season at 9 MAP and the scoring was based on a scale of 1-5, where: 1 = no obvious 

symptoms; 2 = moderate damage, no reduction in leaf size, scattered chlorotic spots on young 

leaves, 1-2 spots cm-2; 3 = severe chlorotic symptoms, light reduction in leaf size, stunted shoot, 

5-10 spots cm-2; 4 = severe chlorotic symptoms and leaf size of young leaves severely reduced; 
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and 5 = tips of affected plants defoliated, resulting in a candle stick appearance of shoot tips. 

Plants with scores of 1 and 2 were considered to be resistant, whereas plants with scores of 3 

to 5 were considered to be susceptible to CGM. 

Each clone was scored for the following traits on a 1 to 3 scale: (i) the pubescence (Pbs) of the 

apical leaves; where: 1 = glabrous, 2 = moderately pubescent, and 3 = highly pubescent; (ii) 

size of shoot apices (TS), where: 1 = small, 2 = medium, and 3 = large; (iii) compactness of 

shoot apices (TC), where: 1 = loose, 2 = moderately compact, and 3 = compact; (iv) leaf 

longevity assessed by scoring for leaf retention (LR) and stay green (SG), where for LR: 1 = 

poor (<50% of the leaves retained), 2 = moderately good (50-74% of the leaves are retained), 

and 3 = very good (≥75% of the leaves retained); and for SG: 1 = poor (<50% of the leaves are 

live and green), 2 = moderately good (50-74% of the leaves are live and green), and 3 = very 

good (≥75% of the leaves are live and green). 

The severity of CMD symptoms was scored based on a 1 to 5 scale as described by Banito et 

al. (2007), where: 1 = no symptoms of CMD; 2 = mild chlorotic pattern and slight distortion of 

only the base leaves; 3 = mosaic pattern on all leaves, leaf distortion; 4 = mosaic pattern on all 

leaves, leaf distortion and general reduction in leaf size; and 5 = leaves twisted/misshapen, and 

stunting of the whole plant. 

Two plants per clone in each of the replications were uprooted for determination of (FSRY) and 

storage root dry mass percentage (SRDM%). Fresh mass of all the developed storage roots 

was recorded to estimate FSRY. The SRDM% was determined from a 150 g sub-sample of 

thinly sliced fresh chips, obtained from the bulk of storage roots of two plants per clone in each 

replication, which was then dried to a constant mass in a forced draught electric oven at 72°C. 

Using the formula indicated below, dry mass was then calculated and expressed as a 

percentage (Ceballos et al., 2012).  

SRDM % = (
                        

                      
)       

The size of leaves was determined by measuring the length and width of the middle lobe 

according to Fukuda et al. (2010). Lobe length (LL) was measured from the point of intersection 

of leaf lobes to the apex of the middle lobe (Figure 5. 2). Leaf width (LW) was measured at the 

widest part of the middle lobe (Figure 5.3). The measurements of leaf size were taken on the 

fourth and fifth fully expanded leaves from the top on each of the two plants per clone in each 

replication. Plant growth habit was assessed by measuring plant height (PH) and stem diameter 

(StD), height to the first branching level (FBH), and number of branches (NBr). The PH was 
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measured on each of the two plants per clone using a graduated 3 m measuring stick, while StD 

at about 15 cm above soil level was recorded using digital vernier calipers. The FBH was 

measured from soil level to the topmost growing point of the main shoot. For branching type, the 

NBr were counted per plant, while a zero was recorded for non-branching clones     

  

Figure 5.2 Measuring the length of the middle 
leaf lobe 

Figure 5.3 Measuring the width of the middle 
leaf lobe 

 

Harvest index (HI) was determined as the proportion of FSRY to whole-plant biomass yield. This 

was done by taking the mass of the stems, branches and leaves of harvested plants together in 

each plot. Storage roots were then weighed separately and HI was then calculated as: 

HI = [
                     

                                           
] 

 

5.2.5 Data analysis 

Data from the clonal evaluation trial were analysed using residual maximum likelihood (REML) 

in Genstat 14 (Payne et al., 2011) at both family and individual progeny within family level. 

Families were considered to be fixed while replications were considered as random effects in 

the REML model. The general combining ability (GCA) effects and specific combining ability 

(SCA) effects were generated using the statistical software package DIAL 98 developed by Ukai 

Yasuo (Ahmad and Aurangzeb, 2003) specifically for the analysis of a full and half diallel tables. 

The relative importance of additive to non-additive gene action in the expression of the traits 

was determined from the ratio of the GCA SS to SCA SS (Shattuck et al., 1993). Pearson’s 

phenotypic correlations between traits were also performed using Genstat 14 for the family 

means.  
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Estimating heterosis  

Best-parent heterosis H(BP) was calculated for all the traits: 

H(BP) (%) = ⌊
( ̅       ̅  )

 ̅  
⌋        

where  ̅    = trait mean for the ith F1 progeny,  ̅   = trait mean for the best parent in the entire 

trial. 

To identify high yielding F1 progeny with good heterotic performances for FSRY and CGM 

resistance, genotypes that combined large positive H(BP) for FSRY with large negative H(BP) for 

CGM PD and CGM LD were identified (Tables 5.4). The identification was a four step process 

as follows: 

i) Firstly, all F1 progeny that had positive H(BP) for FSRY, regardless of its magnitude, 

were identified from the entire population of 300 F1 progeny, and set aside to 

constitute the first subset.  

ii) Secondly, F1 progeny that had negative H(BP) for CGM LD were also identified from 

first subset and set aside to constitute the second subset.  

iii) Thirdly, F1 progeny with negative H(BP) for CGM PD were identified from the second 

subset and set aside to constitute the third subset.  

iv) Finally, F1 progeny with highest FSRY were selected from the third subset.   

Estimating narrow-sense heritability 

Narrow-sense heritability was estimated through the regression of the family mean of F1 

progeny on the mean of each pair of respective parents. The regression coefficient was taken to 

represent heritability in the narrow-sense for a given trait. 

Participatory formulation of selection criteria 

A total of 30 farmers were involved in the formulation of selection criteria for cassava. Using 

preference scoring farmers ranked cassava varietal attributes in their order of importance 

(Figure 5.3).  
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Figure 5.3 Farmers ranking desirable varietal attributes for formulation of a selection index for 
cassava clones at Mutanda research station, Zambia 

 

A selection index (SI) was then formulated by assigning weights (ranks) to respective variables, 

(Becker, 1967; Ceballos et al., 2004) as follows:  

SI: (X1. x W1) + (X2. x W2) + (X3. x W3) + …+ (Xn. x Wn) 

Where: W1, W2, W3,… Wn are the respective weights for each variable.  To avoid the problems 

associated with differences in units among variables, the variables were standardized as 

follows: 

Xi'  = (
     

  
) 

where Xi'  is the standardized value, Xi is the original value, µ is the mean of the population, and 

SD is the standard deviation for the variable analysed. Finally a selection index was formulated 

as follows: 

PSI = (FSRY*8) + (SRDM*7) + ⌊
(      )  (      )

 
⌋ + (LR*3) + (SG*3), 

Where: PSI = participatory selection index, FSRY = mean for fresh storage root yield; SRDM% 

= mean for storage root dry mass percentage; CMD = score for cassava mosaic disease 

severity; CGM = score for cassava green mite leaf damage; LR = score for leaf retention; SG = 

score for stay green. The index was used for selection of F1 genotypes. 

5.3  Results 

Insufficient cuttings were obtained from the seedling stage plants in this study, despite having 

applied irrigation, to carry out multi-locational testing at the clonal stage. Therefore the study 
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was only conducted at one site. In some plots, plants died due to termite damage, leaving less 

than 30 full sibs per family in a replication. To get deal with this problem, harmonic mean 

instead of arithmetic mean for the families was used (Becker, 1967; Cach et al., 2005). 

5.3.1 Combining ability mean squares 

The GCA and SCA mean squares (MS) were significant (P<0.01) for CGM PD, CGM LD, TC, 

Pbs and LR (Table 5.1). The GCA and SCA MS were not significant for CMD severity, SGA, 

LLL, LLW, NBr, NSR, SRDM%, and FSRY (Table 5.1 and 5.2)  

Ratios of GCA SS to SCA SS greater than unity were obtained for CGM PD, CGM LD, CMD 

severity, Pbs, LR, and NBr, while other traits had ratios less than unity (Table 5.1). The lowest 

ratio of 0.31 was obtained for NBr, followed by SRDM% and FSRY both of which had a ratio of 

0.44. 
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Table 5.1 General combining ability and specific combining ability mean squares for cassava green mite 
density and associated leaf damage, cassava mosaic diseases severity, and leaf morphological traits of 
five cassava parents and their ten F1 families evaluated in a 5 x 5 half diallel 

Source of 
variation 

Df CGM PD  CGM LD  

SS MS F  SS MS F  

Rep 1    3.00 3.00 21.91  0.02 0.22 12.31  
  GCA 4 229.71 57.43 420.13**  1.04 0.26 142.30**  
  SCA 5 108.99 21.80 159.47**  0.72 0.14 79.49**  
Error 9 1.23 0.14 21.93  0.72 0.00 47.79  
Total 19 342.93 48.94 8.46  1.80 0.30 7.95  
          

 Df CMD Severity  TS 

SS MS F  SS MS F  

Rep 1 0.05 0.05 5.57  0.02 0.02 9.59  
GCA 4 2.75 0.69 75.06  0.31 0.08 34.93**  
SCA 5 2.01 0.40 43.87  0.59 0.12 53.26  
Error 9 0.08 0.01 12.52  0.02 0.00 4.15  
Total 19 4.89 0.41 3.52  0.94 1.01 26.34  

 Df TC  Pbs  

SS MS F  SS MS F  

Rep 1 0.012 0.012 48.15  0.06 0.06 7.01  
GCA 4 0.278 0.070 278.65**  0.72 0.18 20.77**  
SCA 5 0.395 0.079 317.01**  0.78 0.16 18.14**  
Error 9 0.002 0.000 23.98  0.08 0.01 5.33  
Total 19 0.688 0.760 10.57  1.64 0.07 2.34  

 Df LR  SG  

SS    MS F  SS MS F  

Rep 1 0.0001 0.0001 0.89  0.073 0.073 0.67  
GCA 4 0.6471 0.1618 1775.63**  0.272 0.068 0.62  
SCA 5 0.6351 0.1270 1394.04**  0.447 0.089 0.82  
Error 9 0.0008 0.0001 86.44  0.981 0.109 4.16  
Total 19 1.2831 0.2763 32.12  1.773 0.075 0.79  

          
CGM PD= cassava green mite population density; CGM LD = leaf damage due to CGM scored on a 1-5 scale where 
1 = no symptoms, and 5 = very severe symptoms; CMD severity = the severity of cassava mosaic disease symptoms 
scored on a 1-5 scale, where 1 = no apparent symptoms, and 5 = very severe symptoms, TS = tip size scored on a 1-
3 scale, where 1 = small, and 3 = large; TC = tip compactness scored on 1-3 scale, where 1 = loose, and 3 = 
compact; Pbs = leaf pubescence scored on a 1-3 scale, where 1 = glabrous, and 3 = highly pubescent; LR = leaf 
retention scored on a 1-3 scale, where 1 = lowest, and 3 = highest; SG = stay green; GCA = general combining 
ability; SCA = specific combining ability; SS = sum of squares; MS = mean square; F = F-probability for test of 
significance; *P<0.05;  **P<0.01; ***P<0.001. 
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Table 5.2 General combining ability and specific combining ability mean squares for leaf lobe length 
and width, number of branches, number of storage roots, and storage root dry mass and fresh root 
yield of five cassava parents and their ten F1 families evaluated in a 5 x 5 half-diallel 

 

Source of 
variation 

Df LLL  LLW  

SS MS F SS MS F  

Rep 1 0.090 0.090 0.34  33.592 33.592 1712.15  
GCA 4 0.918 0.229 0.86  0.052 0.052 0.66  
SCA 5 4.150 0.830 3.11  0.125 0.125 1.27  
Error 9 2.401 0.267 20.91  0.177 0.177 1.58  
Total 19 7.558 3.154 6.20  33.945 33.945 1.00  

  NBr  NSR 

 Df SS       MS F  SS MS F  

Rep 1 1.389 1.389 0.33  0.634 0.634 0.57  
GCA 4 11.842 2.961 0.71  2.169 0.542 0.48  
SCA 5 6.868 1.374 0.33  6.935 1.387 1.24  
Error 9 37.360 4.151 0.02  10.071 1.119 8.51  
Total 19 57.459 5.871 2.02  19.808 2.272 2.17  

  SRDM (%)  FSRY  

 Df SS MS F  SS MS F  

Rep 1 0.42 0.42 0.06  5.481 5.481 0.86  
GCA 4 40.79 10.20 1.49  42.638 10.660 1.67  
SCA 5 92.91 18.58 2.72  54.461 10.892 1.71  
Error 9 61.45 6.83   57.487 6.387 5.23  
Total 19 195.57    160.067 4.159 0.90  

LLL = leaf lobe length (cm) measured from the intersection of the middle lobe; LLW = leaf lobe width (cm) 

measured from the widest part of the middle lobe; NBr = number of branches; NSR = total number of storage roots 

per plant; SRDM% = storage root dry mass expressed as a percentage; FSRY = fresh storage root yield (t ha
-1

); Df 

= degrees of freedom; SS = sums of squares; MS = mean square; F = level of significance of F-test; GCA = 

general combining ability; SCA = specific combining ability 

5.3.2 General combining ability effects 

Cassava green mite population density and leaf damage: Negative GCA effects for CGM LD 

were recorded for parents 4(2)1425, and I92/000. Although Mweru’s GCA effect for CGM PD 

was positive, its GCA effect for CGM LD was desirably negative and small. Parents L9.304/147 

and I92/0061 recorded high, but undesirably positive, GCA effects for CGM PD. Parents 

L9.304/147 and I92/0061 also had positive GCA effects for CGM LD. 

Cassava mosaic disease severity: Positive GCA effects for CMD severity were obtained for 

parents L9.304/147 and I92/0061, while the other three parents namely Mweru, 4(2)1425, and 

I92/000 had negative GCA effects (Table 5.3). 
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Table 5.3 Means and estimates of general combining ability effects for cassava green mite density and 
leaf damage, and cassava mosaic disease severity of five cassava parents evaluated in a 5 x 5 half-
diallel 

Character Genotype       Mean        GCA       GCA SE 

CGM PD Mweru  11.28  0.19  0.16 
 4(2)1425  7.78  -4.86  0.16 

L9.304/147  15.50  2.90  0.16 
I92/0061  11.92  2.40  0.16 
I92/000  10.67  -0.63  0.16 

 LSD(0.05)  0.88     

CGM LD Mweru  1.94  -0.04  0.02 
4(2)1425  1.81  -0.24  0.02 
L9.304/147  2.30  0.11  0.02 
I92/0061  1.98  0.30  0.02 
I92/000  1.90  -0.10  0.02 

 LSD(0.05)  0.10     

CMD severity Mweru  1.82  -0.28  0.16 
4(2)1425  1.80  -0.04  0.16 
L9.304/147  2.10  0.17  0.16 
I92/0061  2.39  0.49  0.16 
I92/000  1.77  -0.35  0.16 

 LSD(0.05)  0.09     

CGM PD = population counts of cassava green mites per leaf; CGM LD = cassava green mite leaf damage scored 
on a 1–5 scale, where 1= no damage, and 5 = very severe damage; CMD severity = score for the degree of 
cassava mosaic disease infection scored on a 1-5 scale, where 1 = no symptoms, and 5 = very severe; GCA = 
general combining ability effects; SE = standard error; LSD(0.05) = least significant difference, P<0.05.  

Tip size: Parents I92/0061 and I92/000 had positive GCA effects for TS, while parents Mweru, 

4(2)1425, and L9.304/147 had negative GCA effects for TS (Table 5.4). The smallest TS was 

recorded by L9.304/147 with a mean of 1.51 (P<0.01), while I92/0061 had significantly (P<0.01) 

the largest TS with a mean score of 1.92.  

Tip compactness: As for TS, parents I92/0061 and I92/000 had positive GCA effects for TC, 

while Mweru, 4(2)1425, and L9.304/147 had negative GCA effects for the trait. The parent 

Mweru had significantly (P<0.05) the smallest TC of 1.65.  

Leaf pubescence: Positive but small GCA effects for Pbs were recorded for parents Mweru, 

4(2)1425, and I92/000. On the other hand, parents L9.304/147 and I92/000 had negative GCA 

effects for the trait (Table 5.4). The most pubescent parent was 4(2)1425 (2.33) followed by 

Mweru (2.01).  

Leaf retention: Mweru, 4(2)1425, and I92/0061 had positive GCA effects for LR while negative 

GCA effects were recorded for L9.304/147 and I92/000 (Table 5.4). 
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Table 5.4 Means and estimates of general combining ability effects for leaf retention and plant shoot tip 

characteristics of five cassava parents evaluated in a 5 x 5 half-diallel   

Character Genotype Mean     GCA GCA SE 

TS Mweru 1.74 -0.003 0.018 
4(2)1425 1.62 -0.060 0.018 
L9.304/147 1.51 -0.137 0.018 
I92/0061 1.92 0.173 0.018 
I92/000 1.76 0.023 0.018 

 LSD(0.05) 0.04   

TC Mweru 1.65 -0.056 0.006 
4(2)1425 1.69 -0.006 0.006 
L9.304/147 1.75 -0.123 0.006 
I92/0061 1.72 0.167 0.006 
I92/000 1.70 0.017 0.006 

 LSD(0.05) 0.03   

Pbs Mweru 2.01 0.190 0.032 
4(2)1425 2.33 0.130 0.032 
L9.304/147 1.74 -0.230 0.032 
I92/0061 1.88 0.010 0.032 
I92/000 1.78 0.100 0.032 

 LSD(0.05) 0.07   
LR Mweru 1.94 0.177 0.003 

4(2)1425 2.15 0.134 0.003 
L9.304/147 1.74 -0.203 0.003 
I92/0061 1.87 0.027 0.003 
I92/000 1.71 0.126 0.003 

 
 

LSD(0.05) 0.02   

TS = tip size scored on a 1-3 scale, where 1 = small, and 3 = large; TC = tip compactness scored on a 1-3 scale, 
where 1 = loose, and  3 = compact; Pbs = leaf pubescence scored on a 1-3 scale, where 1 = glabrous, and 3 = 
highly pubescent; LR = leaf retention scored on a 1-3 scale, where 1 = lowest, and 3 = highest; GCA = general 
combining ability; SE = standard error; LSD(0.05) = least significant difference, P<0.05.  

5.3.3 Specific combining ability effects 

Cassava green mite population density: Among the 10 families, Mweru x L9.304/147, 

4(2)1425 x L9.304/147, and 4(2)1425 x I92/000 had the lowest mean CGM PD of 6.60, 4.58, 

and 8.58, respectively (Table 5.5). Families which had negative SCA effects for the trait were 

Mweru x I92/0061, Mweru x I92/000, 4(2)01425 x l9.304/147, L9.304/147 x I92/000, and 

I92/0061 x I92/000. All the families which had negative SCA effects also recorded significantly 

lower number of mites relative to the family L9.304/147 x I92/0061 which recorded the highest 

number (20.1) of mites per leaf (Table 5.5). 

Cassava green mite leaf damage: Five families namely 4(2)1425 x L9.304/147, Mweru x 

L9.304/147, 4(2)1425 x I92/0061, Mweru x I92/0061, and L9.304/147 x I92/000 scored 

significantly (P<0.05) lower levels of CGM LD than L9.304/147 x I92/0061 which had the highest 

CGM LD with a mean of 2.73 (Table 5.5). Six families had negative SCA effects for the trait, 

namely Mweru x I92/0061, Mweru x I92/000, 4(2)1425 x L9.304/147, L9.304/147 x I92/000, and 

I92/0061 x I92/000. 

Cassava mosaic disease severity: Four of the families, namely Mweru x I92/000, Mweru x 

4(2)1425, 4(2)1425 x L9.304/147, and L9.304/147 x I92/000 had negative SCA effects for CMD 

severity. All the families that had negative SCA effects, correspondingly expressed low 
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symptoms of the disease as indicated by the lower mean severity scores (Table 5.5). The 

families Mweru x I92/000, 4(2)1425 x L9.304/147, and L9.304/147 x I92/000 exhibited combined 

resistance to CMD and CGM with negative SCA effects for CGM PD, CGM LD, and CMD 

severity. 

Table 5.5 Specific combining ability effects for cassava green mite density and leaf damage, cassava 

mosaic disease severity, of ten F1 cassava families from a 5 x 5 half-diallel 

 
Family 

CGM PD  CGM LD  CMD severity 

 
Mean 

SCA 
effects 

  
Mean 

SCA 
effects 

  
Mean 

SCA  
Effects 

Mweru x L9.304/147 6.60 0.16  1.75 0.07  1.80 0.09 
Mweru x I92/0061 12.10 -2.15  1.82 -0.22  2.48 0.51 
Mweru x I92/000 11.20 -2.56  2.05 -0.18  1.64 -0.39 
Mweru x 4(2)1425 15.20 4.55  2.15 0.33  1.35 -0.54 
4(2)1425 x I92/0061 10.20 1.00  1.80 -0.03  1.77 0.08 
4(2)1425 x I92/000 8.58 -0.09  2.03 0.01  2.55 0.25 
4(2)1425 x L9.304/147 4.58 -1.06  1.58 -0.04  1.87 -0.06 
L9.304/147 x I92/0061 20.10 3.65  2.73 0.35  2.93 0.22 
L9.304/147 x I92/000 10.90 -2.50  1.87 -0.11  1.48 -0.37 
I92/0061 x  I92/000 11.90 -0.99  1.98 -0.18  2.37 0.20 
Mean 11.10   1.98   2.02  
SED  0.37   0.01   0.10  
SCA SE  0.30   0.02   0.04 

CGM PD = population counts of cassava green mites per leaf; CGM LD = cassava green mite leaf damage scored 
on a 1–5 scale, where 1 = no damage, and 5 = very severe damage; CMD severity = score for the degree of 
cassava mosaic disease infection scored on a scale of 1-5, where 1 = no symptoms, and 5 = very severe; SCA = 
specific combining ability; SE = standard error; SED = standard error of difference. 

Tip size: Four of the families, Mweru x I92/0061, Mweru x I92/000, L9.304/147 x I92/000, and 

4(2)1425 x L9.304/147 had positive SCA effects for TS. Of these families, Mweru x I92/000 

recorded the largest mean scores for the trait (Table 5.6). However, negative SCA effects were 

recorded for 4(2)1425 x I92/0061, which also had the smallest mean TS score.  

Tip compactness: All the families except Mweru x 4(2)1425, L9.304/147 x I92/000, and 

I92/0061 x I92/000, had positive SCA effects for TC. The family 4(2)1425 x I92/0061 had the 

largest TS mean score with a positive SCA effect, while Mweru x 4(2)1425 had the smallest TS 

mean score with a negative SCA effect for the trait (Table 5.6).  

Leaf pubescence: Both positive and negative SCA effects were recorded for Pbs by the 

families. Positive SCA effects were recorded for families Mweru x L9.304/147, Mweru x 

4(2)1425, and 4(2)1425 x I92/000, L9.304/147 x I92/000, and I92/0061 x and I92/000. Mweru x 

L9.304/147 had the largest mean Pbs score, followed by 4(2)1425 x I92/000, and Mweru x 

4(2)1425, while lowest Pbs was scored by two of the families namely 4(2)1425 x L9.304/147 

(Table 5.6). 

Leaf retention: Four families, namely Mweru x L9.304/147, Mweru x 4(2)1425, 4(2)1425 x 

I92/000, and L9.304/147 x I92/000 had positive SCA effects for LR. The first three of these 

families also had correspondingly large mean scores for LR (Table 5.6). 
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Table 5.6 Mean and estimates of specific combining ability for tip size and compactness, leaf pubescence 

and leaf retention of ten F1 cassava families evaluated in a 5 x 5 half-diallel 

 
Family 

TS   TC  Pbs  LR 

 
Mean 

SCA  
Effects 

  
Mean 

SCA 
effects 

  
Mean 

SCA 
effects 

  
Mean 

    SCA   
effects 

Mweru x L9.304/147 1.62 -0.07  1.67 0.04  2.33 0.11  2.15 0.04 
Mweru x I92/0061 1.67 0.06  1.56 0.04  1.74 -0.08  1.74 -0.04 
Mweru x I92/000 2.12 0.20  1.89 0.09  1.87 -0.18  1.86 -0.14 
Mweru x 4(2)1425 1.57 -0.20  1.48 -0.17  2.10 0.15  2.00 0.15 
4(2)1425 x I92/0061 1.34 -0.21  1.32 0.23  1.74 -0.01  1.73 -0.01 
4(2)1425 x I92/000 1.97 0.11  1.97 0.11  2.29 0.30  2.27 0.30 
4(2)1425 x L9.304/147 1.88   0.17  1.78 0.08  1.49 -0.40  1.47 -0.34 
L9.304/147 x I92/0061 1.69 -0.10  1.68 0.05  1.49 -0.14  1.47 -0.16 
L9.304/147 x I92/000 1.88 0.25  1.82 -0.24  1.74 0.23  1.67 0.20 
I92/0061 x  I92/000 1.72 -0.22  1.72 -0.15  1.78 0.02  1.70 -0.01 
SED 0.05   0.02   0.08   0.01  
SCA SE  1.75   1.69   1.85      0.01 

TS = tip size scored on a 1-3 scale, where 1 = small, and 3 = large;TC = tip compactness scored on a 1-3 scale, 
where 1 = loose, and 3 = compact; Pbs = leaf pubescence scored on a 1-3 scale, where 1 = glabrous, and 3 = highly 
pubescent; LR = leaf retention scored on a 1-3 scale, where 1 = low, and 3 = high; Mean = trait mean for respective 
families; SCA = specific combining ability; SE = standard error; SED = standard error of difference. 

 

5.3.4 Phenotypic correlation between cassava green mite resistance traits and shoot 

morphological and storage root yield traits 

A significant, negative correlation was recorded between CGM PD and LR (r =-0.790, P<0.01) 

and a significant, negative correlation between CGM LD and LR (r = -0.806, P<0.01) (Table 

5.7). There was a significant (P<0.05), negative correlation (r = -0.717) between CMD severity 

and LR. However, a significant (P<0.05) but positive correlation (r = 0.714) was recorded 

between NBr and CGM LD. Similarly, NBr was positively but non-significantly correlated with 

CGM PD and CMD severity (r = 0.558 and r = 0.502, respectively). A negative but non-

significant correlation (r = -0.502) was recorded between CGM LD and FSRY. CGM PD was 

significantly and negatively correlated with FSRY (r = -0.657, StD (r =-0.625), TS (r =-0.625), 

and Pbs (r =-0.735).  

The CGM LD was significantly, negatively correlated with a number of other traits such as 

LW (r = -0.677, P<0.05), LL (r = -0.742, P<0.05), StD (-0.853, P<0.01), PH (r = -0.650, P<0.05), 

TC (r = -0.846, P<0.01), SGA (r = -0.764, P<0.05), and TS (r = -0.843, P<0.01) in addition to 

LR(r = -0.806, P<0.01). The CGM LD also had a negative, though non-significant, correlation 

with FSRY (r = -0.502, P>0.05) and Pbs (r = -0.437, P>0.05). A significant (P<0.05) negative 

correlation (r = -0.625) was recorded between CMD severity and FSRY (Table 5.7). 
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Table 5.7 Phenotypic correlation coefficients for cassava green mite population density and associated 

leaf damage, cassava mosaic disease severity, leaf morphological, and other agronomic traits 

 
Trait CGM PD 

 
CGM LD 

 CMD severity 
 

 TS -0.625*  -0.843***  -0.523 
 TC -0.596  -0.846**  -0.729* 
 Pbs -0.735*  -0.437  -0.736* 
 LL -0.551  -0.742*  -0.526 
 LW -0.545  -0.677*  -0.678* 
 LR -0.790**  -0.806**  -0.717* 
 SG -0.311  -0.764*  -0.681* 
 NBr 0.558  0.714*  0.502 
 FBH -0.779**  -0.454  -0.542 
 PH -0.410  -0.650*  -0.250 
 StD -0.751*  -0.853**  -0.752* 
 NSR 0.338  0.480  0.198 
 FSRY -0.657*  -0.502  -0.623* 

CGM PD = population density of cassava green mite; CGM LD = leaf damage due to cassava green mite scored on a 
1-5 scale, where 1 = no symptoms, and 5 = very severe symptoms; CMD severity = the severity of cassava mosaic 
disease symptoms scored on a 1-5 scale, where 1 = no apparent symptoms, and 5 = very severe symptoms; TS = tip 
size scored on a 1-3 scale, where 1 = small, and 3 = large; TC = tip compactness scored on a 1-3 scale, where 1 = 
loose, and 3 = compact; Pbs = leaf pubescence scored on a 1-3 scale, where 1 = glabrous, and 3 = highly pubescent; 
LL = leaf lobe length (cm) measured from the intersection of the middle lobe; LW = leaf lobe width (cm) measured 
from the widest part of the middle lobe; LR = leaf retention scored on a 1-3 scale, where 1 = lowest, and 3 = highest; 
SG = ability of leaves to stay green scored on a 1-3 scale, where 1 = lowest, and 3 = highest; NBr = number of 
branches; FBH = height to first branching level (cm); PH = total plant height (m); StD = stem diameter; NSR = total 
number of storage roots per plant; FSRY = fresh storage root yield (t ha

-1
) 

 

5.3.5 Estimates of heterosis 

All the families exhibited negative H(BP) for CGM PD and CGM LD, but none of the families had 

positive H(BP) for FSRY, StD, NBr, and PH (Appendix 5.2). However, 24 high yielding F1 progeny 

which combined desirable heterotic performance for FSRY and CGM resistance were identified. 

Seven of such progeny combined negative H(BP) for CGM PD, CGM LD, and CMD severity, with 

positive H(BP) for FSRY and SRDM% (Table 5.8). These were progeny No. 4 from Mweru x 

4(2)1425, progeny No. 9 from Mweru x L.304/147, progeny No. 12 and progeny No. 14 both 

from Mweru x I92/000, progeny No. 17 from 4(2)1425 x L9.304/147, progeny No. 18 from 

4(2)01425 x I92/0061, and progeny No. 24 from L9.304/147 x I92/000. Apart from progeny 

No.17 and progeny No. 18 which had positive H(BP) for LR and LL, respectively, all the F1 

progeny had negative H(BP) for shoot morphological traits and NBr (Table 5.8). Only five out of 

24 high yield F1 progeny had positive H(BP) for Pbs, but all of them had positive H(BP) for CMD. 
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Table 5.8 Twenty four top performing F1 progeny combining positive heterosis for storage root yield with negative heterosis for leaf damage due to cassava green mite 
based on the best parent in the trial 
 

  Best parent heterosis  

Progeny 
No. 

Pedigree 
CGM 
PD 

CGM  
LD 

CMD 
Severity 

TS TC Pbs LL LW LR SG NBr FBH PH StD NSR FSRY SRDM% 

1 Mweru x 4(2)1425 -37.6 -69.0 23.5 -20.0 -16.7 7.1 21.1 -13.3 -13.0 8.7 -30.0 -35.0 -11.6 10.1 -21.4 16.3 6.3 

2 Mweru x 4(2)1425 -12.6 -31.7 -40.5 -60.0 -54.5 -64.3 -5.3 -6.7 8.7 1.4 5.0 -66.3 -27.9 -21.3 -64.3 7.9 -10.9 

3 Mweru x 4(2)1425 -56.3 -93.6 25.7 -60.0 -54.5 -28.6 -15.8 -26.7  -5.8 23.2 -75.0 -10.0 -5.6 -20.9 7.1 9.3 14.1 
4 Mweru x 4(2)1425 -50.1 -75.4 -0.8 -60.0 -54.5 -64.3 -10.5 -13.3 -20.3 -42.0 -70.0 -45.6 -25.2 -9.0 -21.4 3.7 10.9 

5 Mweru x 4(2)1425 -50.1 -86.3 32.3 -20.0 -9.1 7.1 -10.5 -26.7 8.7 8.7 -70.0 -18.8 -21.9 -17.0 -14.3 7.0 -9.4 

6 Mweru x L9.304/147 -62.5 -100.0 58.7 -20.0 -9.1 -28.6   -15.8 -23.3 -5.8 1.4 -50.0 -56.3 -40.3 -22.8 14.3 17.2 26.0 
7 Mweru x L9.304/147 -37.6 -49.9 19.0 20.0 36.4 7.1 -5.3 -3.3 1.4 8.7 40.0 -17.5 -5.1 -26.0 -57.1 11.2 1.6 
8 Mweru x L9.304/147 -37.6 -70.9 71.9 -20.0 -9.1 -28.6 -10.5 -3.3 -13.0 -5.8 -55.0 -56.9 -29.5 -11.6 28.6 16.3 26.6 
9 Mweru x L9.304/147 -18.9 -40.8 -40.5 -60.0 -54.5 -28.6 -15.8 -26.7 -27.5 8.7 -30.0 -45.0 -2.9 -33.2 -64.3 14.4 18.8 

10 Mweru x I92/0061 -50.1 -86.3 45.5 -20.0 -9.1 -64.3 10.5 -16.7 1.4 8.7 -30.0 -19.4 -4.6 -11.4 0.0 23.3 20.3 

11 Mweru x I92/0061 -43.8 -72.7 32.3 20.0 36.4 -64.3 31.6 6.7 -27.5 1.4 -35.0 -21.9 -10.0 -17.6 -42.9 13.5 -17.2 

12 Mweru x I92/000 -31.3 -29.9 -14.0 -20.0 -9.1 -28.6 -10.5 -11.7 -13.0 8.7 -40.0 -36.3 8.5 -4.6 -64.3 7.0 12.5 

13 Mweru x I92/000 -12.6 -54.5 25.7 -60.0 -54.5 -28.6 -5.3 -23.3 1.4 16.0 -30.0 -58.8 -4.0 10.1 7.1 7.9 -10.9 
14 Mweru x I92/000 -43.8 -71.8 -33.8 -60.0 -54.5 -64.3 -5.3 0.0  -5.8 1.4 -35.0 -28.1 -12.1 -8.5 -57.1 7.4 9.4 
15 4(2)1425 x  L9.304/147 -37.6 -63.6 12.4 -20.0 -9.1 7.1 21.1 -1.7 23.2 8.7 -70.0 -44.4 -15.9 -12.3 -35.7 20.0 -21.9 
16 4(2)1425 x  L9.304/147 -62.5 -100.0 -14.0 -60.0 -54.5 -64.3 -10.5 -6.7 8.7 8.7 -55.0 -28.1 5.7 -17.7 -35.7 15.3 -3.1 
17 4(2)1425 x  L9.304/147 -62.5 -100.0 -25.0 -60.0 -47.0 -28.6 -5.3 -13.3 23.2 8.7 -50.0 -50.6 -1.3 -8.0 -50.0 15.7 7.8 
18 4(2)1425 x I92/0061   -0.1 -39.9 -27.3 -20.0 -9.1 -28.6 15.8 0.0 -5.8 23.2 -60.0 -40.6 -7.8 -19.0 -78.6 48.0 18.7 
19 4(2)1425 x I92/000 -56.3 -96.4 19.0 20.0 36.4 -64.3 5.3 3.3 23.2 23.2 -35.0 -42.5 -25.2 1.7 -57.1 10.7 20.1 

20 4(2)1425 x I92/000 -56.3 -81.8 52.1 -20.0 -9.1 -64.3 15.8 0.0 1.4 8.7 70.0 -43.8 -37.6 8.4 7.1 10.7 -0.8 

21 4(2)1425 x I92/000 -18.9 -45.4 14.6 -60.0 -47.0 -64.3 0.0 8.3 1.4 16.0 -65.0    7.5 11.7 -19.6 -7.1 19.1 9.4 

22 L9.304/147 x I92/000 -62.5 -100.0 34.5 -60.0 -1.5 -64.3 -10.5 -50.0 -13.0 -13.0 15.0 -11.3 -8.9 -15.7 0.0 9.8 2.1 

23 L9.304/147 x I92/000 -37.6 -72.7 14.6 -20.0 -1.5 7.1 0.0 -33.3 -20.3 8.7 -55.0 -30.0 -10.0 -28.5 -35.7 15.3 10.4 
24 L9.304/147 x I92/000 -62.5 -95.4 -11.8 -60.0 -1.5 -64.3 0.0 -25.0 -20.3 -20.3 -60.0 -36.3 -5.6 -18.6 -50.0 9.3 21.3 

CGM PD = population counts of cassava green mites per leaf;  CGM LD = leaf damage due to cassava green mite scored on 1-5 scale where 1 = no symptoms, and 5 = very severe 
symptoms; CMD severity = the severity of cassava mosaic disease symptoms scored on 1-5 scale, where 1 = no apparent symptoms, and 5 = very severe symptom; TS = tip size scored 
on 1-3 scale, where 1 = small, and 3 = large; TC = tip compactness scored on 1-3 scale, where 1 = loose, and 3 = compact; Pbs = leaf pubescence scored on 1-3 scale, where 1 = 
glabrous, and 3 = highly pubescent;LL = leaf lobe length (cm) measured from the intersection of the middle lobe; LW = leaf lobe width (cm) measured from the widest part of the middle 
lobe; LR = leaf retention scored on 1-3 scale, where 1 = lowest, and 3 = highest; SG = ability of leaves to stay green scored on 1-3 scale, where 1= lowest, and 3 = highest; NBr = number 
of branches; FBH = height to first branching level (cm); PH = total plant height (cm); StD = stem diameter; NSR = total number of storage roots per plant; FSRY = fresh storage root yield 
(t ha

-1
); SRDM% = storage root dry mass expressed as a percentage. 
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5.3.6 Heritability estimates 

Large heritability estimates were obtained for CGM PD (h2 = 71%), CGM LD (h2 = 86%),      

LR (h2 = 80%) and TC (h2 = 88%). Of all the traits, TS had the largest narrow sense heritability 

of 91%, while low heritability estimates were obtained for FSRY and SRDM% (Figure 5.4). 

 

Figure 5.4 Narrow sense heritability estimates for cassava green mite and cassava 

mosaic disease resistance and other plant morphological traits 

 

5.3.7 Selection of F1 progeny based on farmer preferred traits 

A total of 30 F1 progeny were selected using the PSI (Table 5.9) at the predetermined 10% 

selection intensity. Of these progeny (Table 5.9), progeny No. 3 and progeny No. 6 both of 

which resulted from 4(2)1425 x L9.304/147 had no CGM LD. Similarly, no CMD LD was 

recorded by progeny No. 10 from Mweru x L9.304/147. This high resistance was also combined 

with high FSRY and SRDM% in the three genotypes. Progeny No. 5 from Mweru x I92/0061 had 

the highest yield of 26.5 t ha-1 with SRDM of 38.5%. Progeny No. 22 from L9.304/147 x I92/000, 

recorded the highest SRDM% (49.7%) but it had just slightly above average FSRY (17.6 t ha-1). 

Similarly, progeny No 18 from L9.304 x I92/000, had second highest SRDM% (47.3%), but 

recorded the least FSRY (16.8 t ha-1) among the selected genotypes. All the selected genotypes 

were early-bulking. They all recorded greater than 16 t ha-1 FSRY at 9 MAP, with progeny No. 2 

from 4(2)1425 x L9.304/147 producing the highest FSRY of 31.8 t ha-1, which is equivalent to 

the average yields currently obtained from improved genotypes at 24 MAP in Zambia.  
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Table 5.9 Overall mean performances of the 30 best F1 progeny selected by the farmer participatory-formulated 
selection index, with respect to cassava green mite population density and associated leaf damage, cassava mosaic 
disease severity, shoot morphological traits, fresh storage root yield and storage root dry mass percentage 

Progeny No 

 
Progenitor 

CGM 
PD 

CGM 
LD 

CMD 
severity 

Pbs 
 
TS 
 

TC LR SG 
 
FSRY 
 

SRDM% 

1 4(2)1425 x L9.304/147 26.5 3.2 1.9 2.2 1.0 1.2 2.5 2.7 17.3 34.5 

2 4(2)1425 x I92/0061 11.0 2.7 1.8 2.0 2.0 2.0 2.2 2.8 31.8 38.0 
3 4(2)1425 x L9.304/147 0.0 1.0 2.2 2.2 1.0 1.0 2.5 2.5 24.8 31.0 
4 I92/0061 x L9.304/147 8.3 2.3 2.7 1.4 3.0 3.0 2.8 2.5 21.4 40.3 
5 Mweru x I92/0061 2.5 1.3 3.7 2.0 2.0 2.0 2.3 2.5 26.5 38.5 
6 4(2)1425 x L9.304/147 0.0 1.0 1.9 1.8 1.0 1.2 2.8 2.5 24.9 34.5 
7 4(2)1425 x I92/000 3.3 1.2 3.8 1.8 2.0 2.0 2.3 2.5 23.8 31.8 
8 4(2)1425 x I92/000 10.0 2.2 2.9 1.8 1.0 1.2 2.3 2.7 25.6 35.0 
9 4(2)1425 x L9.304/147 2.5 1.3 4.3 1.5 2.0 2.0 2.3 2.3 21.0 40.0 
10 Mweru x L9.304/147 0.0 1.0 4.0 1.6 2.0 2.0 2.2 2.3 25.2 40.3 

11 Mweru x I92/000 5.2 1.5 1.7 1.3 1.0 1.0 2.2 2.3 23.1 35.0 

12 L9.304/147 x I92/000 12.5 1.8 2.8 1.7 2.0 2.0 2.2 1.7 18.9 42.3 

13 Mweru x L9.304/147 15.2 2.5 3.2 2.2 1.0 1.0 2.2 2.3 19.4 36.0 
14 Mweru x L9.304/147 5.3 1.7 4.3 1.7 2.0 2.0 2.0 2.2 25.0 40.5 
15 Mweru x4(2)1425 1.2 1.2 3.2 2.0 1.0 1.0 2.2 2.8 23.5 36.5 
16 Mweru x L9.304/147 10.8 2.2 1.5 2.0 1.0 1.0 1.7 2.5 24.6 38.0 
17 I92/0061 x L9.304/147 9.7 2.0 1.2 2.3 1.0 1.2 2.5 2.0 19.2 41.0 

18 L9.304/147 x I92/000 13.7 2.3 3.5 1.8 2.0 1.0 2.2 2.2 16.8 47.3 

19 Mweru x4(2)1425 5.7 1.7 3.1 1.4 2.0 1.8 2.0 2.5 25.0 34.0 

20 4(2)1425 x L9.304/147 9.5 2.0 4.2 1.5 2.0 2.0 2.7 2.8 19.4 34.5 

21 L9.304/147 x I92/000 8.2 1.7 2.7 1.7 2.0 3.0 2.5 2.2 19.6 37.3 
22 L9.304/147 x I92/000 6.7 1.5 2.7 1.6 1.0 1.0 2.2 2.2 17.6 49.7 

23 4(2)1425 x L9.304/147 5.0 1.7 2.9 1.9 2.0 2.2 1.8 2.5 24.8 35.3 

24 4(2)1425 x L9.304/147 6.5 1.5 3.6 1.7 1.0 1.2 2.3 2.5 19.4 32.0 
25 I92/0061 x L9.304/147 16.7 2.7 3.3 2.0 3.0 3.0 2.5 2.7 19.4 38.2 
26 4(2)1425 x I92/0061 13.3 2.3 2.0 1.6 2.0 2.0 2.5 2.3 19.9 38.3 

27 4(2)1425 x L9.304/147 6.7 1.7 2.8 2.0 2.0 2.0 2.8 2.5 25.8 25.0 

28 L9.304/147 x I92/000 2.5 1.3 4.7 1.8 3.0 3.0 2.0 2.2 20.6 38.0 
29 Mweru x I92/000 14.3  2.2 2.2 1.8 2.0 2.0 2.3 2.7 21.3 30.0 
30  4(2)1425 x I92/000 0.7 1.2 3.0 1.9 3.0 3.0 2.8 2.8 23.8 38.4 
Checks            
Mweru  11.3 1.9 1.8 2.0 1.7 1.6 1.7 2.0 15.5 28.0 
4(2)1425  7.8 1.8 1.8 2.3 1.6 1.7 2.2 2.0 21.7 19.0 
L9.304/147  15.5 2.3 2.1 1.7 1.5 1.8 1.7 2.3 15.2 23.0 
I92/0061  11.9 2.0 2.4 1.9 1.9 1.7 1.9 1.4 15.6 28.0 
I92/000  10.6 1.9 1.8 1.8 1.8 1.7 1.7 1.8 18.8 26.0 

Maximum  37.5 3.7 6.2 121.0 3.0 3.0 2.8   2.8 31.8  49.7 
Minimum   0.0 1.0 1.0 10.5 1.0 1.0 1.0   1.2   9.0  22.0 
Average  8.5 1.9 2.8 52.4 1.7 1.7 1.9   2.1  16.6  34.2 

LSD(0.05)  1.3 0.1 0.1 0.1  0.1 0.1 0.4   0.5   3.9  3.3 

CV(%)  18.8  9.9 21.8 3.6 7.9 10.2 36.4  38.6  73.3  15.6 

CGM PD = population counts of cassava green mites per leaf; CGM LD = leaf damage due to cassava green mite scored on 1-5 scale 
where 1 = no symptoms, and 5 = very severe symptoms; CMD severity = the severity of cassava mosaic disease symptoms scored on 
1-5 scale, where 1 = no apparent symptoms, and 5 = very severe symptoms, TS = tip size scored on 1-3 scale, where 1 = small, and 3 
= large; TC = tip compactness scored on 1-3 scale, where 1 = loose, and 3 = compact; Pbs = leaf pubescence scored on 1-3 scale, 
where 1 = glabrous, and 3 = highly pubescent; LR = leaf retention scored on 1-3 scale, where 1 = lowest, and 3 = highest; SG = ability 
of leaves to stay green scored on 1-3 scale, where 1= lowest, and 3 = highest; FSRY = fresh storage root yield (t ha

-1
); SRDM% = 

storage root dry mass expressed as a percentage; LSD(0.05) = least significant difference, P<0.05; CV% = Coefficient of variation 
percentage. 
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5.4 Discussion and conclusions 

The current study provides important information about the role of various plant morphological 

traits as indirect defense mechanisms against CGM and the potential for improving them 

through plant breeding is evident. The study indicated that both GCA and SCA effects were 

significant for CGM PD and CGM LD, and for the various plant morphological traits that were 

measured, suggesting that both additive and non-additive genetic effects play a role in the 

expression of these traits. The predominance of GCA SS over SCA SS for CGM LD, CGM PD, 

TS, TC, Pbs, and LR indicated that additive gene action is the major determinant of the 

expression of these traits. These findings are consistent with those of Calle et al. (2005), 

Jaramillo et al. (2005), and Perez et al. (2005) who reported on the greater importance of GCA 

effects relative to SCA effects for CGM and whiteflies (Aleurotrachelus socialis Bondar) 

resistance. The predominance of GCA effects i.e. additive gene action improves the inheritance 

of these traits in the sexual generation of a breeding programme (Ceballos et al., 2004; Perez et 

al., 2005; Mhike et al., 2011). 

In breeding to improve the resistance of cassava to CGM, breeders select genotypes that are 

least attractive to mites (lowest CMD PD) and exhibit low level of damage (lowest CGM LD). 

Therefore, for traits that are measured with low scores in this manner, negative SCA effects in 

the families are desirable. The best families for resistance against CGM were identified as 

4(2)1425 x L9.304/147 and Mweru x L9.304/147. These families had negative SCA effects for 

CGM PD and CGM LD, and had one parent L9.304/147 in common which had positive but large 

GCA for CGM PD, while the other parents, 4(2)1425 and Mweru, in the respective families had 

negative GCA effects for the two traits. This indicates that it is possible to obtain families with 

high negative SCA effects for CGM PD from crossing any combination of parents with large 

positive and negative GCA effects for the trait. The current results indicate that it is possible to 

select parents for CGM resistance breeding based on their per se performances (Banziger and 

Paterson, 1992).  

Identification of F1 progeny which have good level of resistance to insect pests and mites 

requires the imposition of high selection pressures under field conditions. The ‘leaf attachment’ 

method for artificial infestation used in this study proved to be not only cost-effective but also 

technically efficient. The method boosted natural population pest levels and maintained 

adequate selection pressure that revealed differences among genotypes. Unlike the use of clip 

cages (Crafts-Brandner and Chu, 1999), the ‘leaf attachment’ method does not seem to affect 

the microenvironment of the leaf and consequently its physiology. Crafts-Brandner and Chu 

(1999) observed a significant rapid increase in chlorophyll content and temperature, and 

decreased incident radiation on leaves in clip cages within 24 hrs. 
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Progeny Nos 3, 6, and 10, exhibited high resistance to CGM which was also combined with high 

FSRY and SRDM% suggesting that improving resistance to CGM would result in increased 

yield and dry mass of cassava storage roots. However, the study also shows that breeding 

efforts to improve SRDM% has a limit which varies with genotypes. All the selected genotypes 

were early-bulking, indicating the positive contribution of the study to improvement of cassava 

genotypes for farmer desired traits. 

Previous studies have shown that Pbs is a desirable trait that helps to reduce CGM populations 

in cassava (Hahn et al., 1980, 1989; Raji et al., 2008). Corroborating these reports, the current 

study recorded negative correlations of CGM PD and CMD with Pbs. This has been attributed to 

the leaf hairs limiting the movement of CGM and whitefly on leaves, which in turn results in 

reduced reproductive capacity of these pests and the associated leaf damage. On the other 

hand, Pbs, especially of immature leaves and shoot apices, has been reported to provide 

suitable habitat for T. aripo, a phytoseiid predatory mite. In two experiments, Onzo et al. (2012) 

recorded 480 predatory mites (T. aripo) on pubescent apices of cassava plants as opposed to 

280 mites on glabrous apices, confirming that T. aripo is attracted mainly to apices of the 

pubescent cultivars in presence of the prey. These authors have also reported that pubescent 

cultivars produce a certain odour that attracts T. aripo to the shoot apices of cassava. This 

predatory mite has proved to be the most successful natural enemy against CGM, whiteflies and 

thrips in Africa (Yaninek and Hanna, 2003) and South America (Amusa and Ojo, 2005; Onzo et 

al., 2005), where it is also reported to contribute to low severity of insect-vectored diseases such 

cassava anthracnose disease and CMD. 

In this study, the best families for CGM resistance, namely Mweru x L9.304/147 and 4(2)1425 x 

L9.304/147 combined high Pbs with high LR. According to Hahn et al. (1989), Pbs is a heritable 

character and resistance to CGM can be improved by incorporating Pbs into high-yielding but 

CGM susceptible varieties. However, in the present study there were apparent inconsistencies 

in at least one family, 4(2)1425 x L9.304/147, which despite having the lowest mean for Pbs, 

recorded the highest level of resistance to CGM in terms of CGM PD and CGM LD. These 

inconsistencies, however, corroborate the observations made by workers at CIAT that some 

glabrous genotypes have been observed to be very resistant to CGM (Antony Bellotti1, personal 

communication), confirming that Pbs is not always the only mechanism (direct or indirect) for 

resistance of cassava to CGM.  

According to Zundel et al. (2009), cassava genotypes that have large and compact shoot apices 

plus prolonged LR and SG support T. aripo better than genotypes with small, loose tips. In the 

                                                           
1
Antony Bellotti (PhD) is an emeritus scientist currently a consultant in entomology, agro-biodiversity and integrated pest 

management (Present address: International Centre for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Email: 

a.bellotti@cgiar.org) 

mailto:a.bellotti@cgiar.org
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current study, CGM PD and CGM LD were negatively correlated with TS and TC. Though the 

genotypes in this study were evaluated in the absence of T.aripo, the significant negative 

correlations of LR and SG with CGM PD, CGM LD and CMD severity are indicative that 

genotypes with prolonged leaf longevity have greater potential to resist CGM and CMD. This 

implies that large and compact shoot apices, LR and SG should be selected for and improved 

through breeding for resistance to CGM and CMD.  

The positive correlation of TS with LR, PH, StD, TC, and SG, implies that these traits can be 

selected concurrently and can effectively be improved through breeding, with the assumption 

that the traits do not compete for plant assimilates. A significant positive correlation also existed 

between LR and Pbs. Plant vigour as represented by PH and StD, plant canopy and foliar 

density has been reported to play a significant role in supporting the continuous survival of T. 

aripo (Zundel et al., 2009) and other phytoseiid predatory mites (Pratt et al., 2002) during both 

the rainy and dry seasons. Since these traits were found to be largely determined by additive 

gene action in this study, time and resources may be saved in a breeding programme because 

selection may be practiced as early as the sexual stage i.e. the parental and F1 seedling 

generations. Lenis et al. (2006) advocate for early selection of cassava genotypes based on 

SG, which is achievable even at the seedling stage as an alternative to selecting for high 

harvest index. 

The family Mweru x I92/0061, despite having significantly the highest mean for CGM PD with a 

positive SCA effect for the trait, sustained very low leaf damage with a negative SCA effect for 

CGM LD. This indicates that although the family allowed or supported a high CGM PD, it was 

able to resist the associated damage to the leaves. This could imply that the family was 

exhibiting tolerance for CGM as a mechanism of resistance. According to Bynum et al. (2004), 

tolerance enables a plant to repair the damage caused by the mites feeding on the leaves, 

without affecting mite population dynamics. On the other hand, two families Mweru x L9.304/147 

and 4(2)1425 x L9.304/147 had significantly the lowest CGM PD with negative SCA effects for 

the trait which corresponded with significantly the lowest CGM LD, probably suggesting that 

either non-preference or antixenosis may be the mechanism of resistance exhibited by these 

two families. Consistent with this observation Byrne et al. (1982) have reported antixenosis as 

the main mechanism of resistance of cassava to CGM. Thomas and Waage (1996) outline three 

possible effects of antixenosis. Firstly, antixenosis can parallel antibiosis by affecting oviposition 

of adults through non-preference for oviposition sites, which is equivalent to reducing fecundity. 

Antixenosis can affect the number of adults ovipositing by increasing emigration of pests from 

the crop. Secondly, it can increase larval/nymphal movements, thus slowing down development 

time, or it can increase juvenile mortality by increasing pest fall-off. Thirdly, antixenosis can 

affect the number of colonizing adults from outside the crop. However, regardless of the 
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underlying mechanism, stability of resistance needs to be ascertained under field conditions 

through multi-locational testing in target production environments.  

This study generated transgressive segregates which outperformed the best parents across all 

the families in terms of CGM PD, CGM LD and CMD. Thirty percent of the F1 progeny had 

significant positive H(BP) in LR, SG, FSRY, and SRDM%. These genotypes were able to 

maintain more than 70% of their leaves throughout the cold season. The prolonged leaf life 

cycle of these genotypes signifies their potential for cold tolerance, and is an indirect way of 

increasing FSRY (Ojulong et al., 2009). Genotypes with extended leaf longevity may also be 

drought tolerant and resistant to CGM (Nukenine et al., 1999). 

None of the families had positive H(BP) for FSRY, StD, NBr, and PH. Cassava breeders should 

exercise care when choosing cuttings from seedling plants to make sure that uniformity, in 

terms of length and diameter, is maintained as much as possible for both the progeny and 

parents so as to avoid bias and unnecessary error. As reported from earlier studies, length, 

thickness, and mass of cuttings per unit volume have a significant impact on subsequent 

establishment, growth and FSRY. Cuttings taken from the lower portion of the main stem, which 

normally have high mass per unit volume, have been reported to give better sprouting and 

survival rate in both dry and wet seasons (Oka et al., 1987), while lower yields of stakes and 

storage roots were recorded from plants that were established from thin cuttings taken from 

upper portion of the main stem (Keating et al., 1988). This partly explains why the Root and 

Tuber Improvement Programme in Zambia maintains and evaluates cassava seedlings for a 

minimum of 24 months before advancing them to the clonal evaluation stage. 

Low multiplication rates for cassava as compared to cereal crops, is a major challenge which 

retards progress in breeding cassava in southern Africa. Zambia experiences a mono-modal 

type of rainfall that lasts for four months and is followed by a three-month cold season during 

which frost is experienced in some parts of North-Western Province (SCRB, 2001). Due to the 

low temperatures in the cold season, growth of cassava is very much checked and severe shoot 

die-backs are normally encountered. Worse still, a sharp rise in CGM PD is encountered on the 

new, young leaves that emerge after the cold season, causing damage which worsens as the 

weather gets warmer and drier. This generally contributed to insufficient production quality 

cuttings in the study. 

Though early branching and increased NBr could help in overcoming shortage of planting 

materials, these attributes have been shown to facilitate rapid spread of M. tanajoa, which 

results in increased CGM PD and CGM LD in cassava fields (Egesi et al., 2007). Branches may 

serve as bridges between and within plants that facilitate the migration of mites in search of 

suitable leaves and, in the process, increases the chances for mating and reproduction. This 
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provides an explanation for the positive correlation of NBr and negative correlation for FBH with 

CGM PD and CGM LD, respectively. Traditional cassava genotypes in Zambia take at least 24 

months to mature, while existing improved genotypes take 14–16 months. Therefore in the first 

six months of cultivation, various crops are intercropped with cassava. For this practice, early 

branching genotypes are normally not preferred by farmers because they interfere with weeding 

and harvesting of the intercrops (Calle et al., 2005). Moreover, in confirmation of this study’s 

findings, other studies have reported that FBH is positively correlated with FSRY (example Calle 

et al., 2005).  

Findings from this study are consistent with those by Ntawuruhunga and Dixon (2010) who 

reported generally low and moderate heritability estimates for FSRY, storage root diameter, 

NSR and PH. However, inconsistencies among reported heritability estimates are not 

uncommon, simply because heritability estimates are highly dependent on the environment and 

source of germplasm used (Falconer and Mackay, 1996). Different heritability estimates have 

been reported for most traits at different stages of cassava evaluation, namely seedling or 

single-plant, single-row, advanced replicated trials (Kawano et al., 1987). High heritability 

indicates that traits have high genetic variance (Zacharias and Labuschagne, 2010). Generally 

low heritability estimates are expected for polygenically controlled traits such as FSRY, 

SRDM%, and PH (Aina et al., 2007). According to Ntawuruhunga et al. (2001), it would take 

more time to improve traits with moderate heritability because of their low genetic variance. 

Traits with high heritability such as CGM PD and CGM LD, LR, TS, and TC can be easily 

improved through phenotypic mass selection (Cach et al., 2005). 

Though it was difficult to find one progeny which was best for all the traits, as is usually the case 

(Calle et al., 2005), the wide variability in H(BP) among F1 progeny for various traits studied, 

signifies the contribution of breeding to improving the frequency of favourable genetic 

combinations in new cassava genotypes which should ultimately provide farmers in Zambia and 

perhaps elsewhere with a broader choice of genotypes. Bellotti et al. (2012) rightfully state: “An 

important objective of an HPR strategy is to develop cultivars that are not susceptible to CGM 

and that hopefully combine low-to-moderate levels of resistance.” The new genotypes 

generated in the current study include at least eight most promising early-bulking genotypes that 

combine good levels of resistance to CGM and CMD with higher FSRY and SRDM% than any 

of the currently released cultivars.  
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30 Progeny + 2 Parents = Family plot          F1 clone = 2 plants 

     

 

 

Appendix 5.1: Layout of the first replication of the cassava clonal evaluation trial used for evaluation of 300 F1 cassava progeny 

and parents at Mutanda research station, Zambia 
 
-----------------------------------------------------------------------------------------------------------REPLICATION I ----------------------------------------------------------------------------- 
 

1 30 P1 1 30 P3 1 30 P1 1 30 P4 1 30 P1 1 30 P2 1 30 P4 1 30 P2 1 30 P3 1 30 P5 1 30 P4 

1 30 P1 1 30 P3 1 30 P1 1 30 P4 1 30 P1 1 30 P2 1 30 P4 1 30 P2 1 30 P3 1 30 P5 1 30 P4 

2 29 P1 2 29 P3 2 29 P1 2 29 P4 2 29 P1 2 29 P2 2 29 P4 2 29 P2 2 29 P3 2 29 P5 2 29 P4 

2 29 P1 2 29 P3 2 29 P1 2 29 P4 2 29 P1 2 29 P2 2 29 P4 2 29 P2 2 29 P3 2 29 P5 2 29 P4 

3 28 P1 3 28 P3 3 28 P1 3 28 P4 3 28 P1 3 28 P2 3 28 P4 3 28 P2 3 28 P3 3 28 P5 3 28 P4 

3 28 P1 3 28 P3 3 28 P1 3 28 P4 3 28 P1 3 28 P2 3 28 P4 3 28 P2 3 28 P3 3 28 P5 3 28 P4 

4 27 P1 4 27 P3 4 27 P1 4 27 P4 4 27 P1 4 27 P2 4 27 P4 4 27 P2 4 27 P3 4 27 P5 4 27 P4 

4 27 P1 4 27 P3 4 27 P1 4 27 P4 4 27 P1 4 27 P2 4 27 P4 4 27 P2 4 27 P3 4 27 P5 4 27 P4 

5 26 P1 5 26 P3 5 26 P1 5 26 P4 5 26 P1 5 26 P2 5 26 P4 5 26 P2 5 26 P3 5 26 P5 5 26 P4 

5 26 P1 5 26 P3 5 26 P1 5 26 P4 5 26 P1 5 26 P2 5 26 P4 5 26 P2 5 26 P3 5 26 P5 5 26 P4 

6 25 P1 6 25 P3 6 25 P1 6 25 P4 6 25 P1 6 25 P2 6 25 P4 6 25 P2 6 25 P3 6 25 P5 6 25 P4 

6 25 P1 6 25 P3 6 25 P1 6 25 P4 6 25 P1 6 25 P2 6 25 P4 6 25 P2 6 25 P3 6 25 P5 6 25 P4 

7 24 P1 7 24 P3 7 24 P1 7 24 P4 7 24 P1 7 24 P2 7 24 P4 7 24 P2 7 24 P3 7 24 P5 7 24 P4 

7 24 P1 7 24 P3 7 24 P1 7 24 P4 7 24 P1 7 24 P2 7 24 P4 7 24 P2 7 24 P3 7 24 P5 7 24 P4 

8 23 P1 8 23 P3 8 23 P1 8 23 P4 8 23 P1 8 23 P2 8 23 P4 8 23 P2 8 23 P3 8 23 P5 8 23 P4 

8 23 P2 8 23 P1 8 23 P3 8 23 P1 8 23 P5 8 23 P3 8 23 P2 8 23 P5 8 23 P4 8 23 P3 8 23 P5 

9 22 P2 9 22 P1 9 22 P3 9 22 P1 9 22 P5 9 22 P3 9 22 P2 9 22 P5 9 22 P4 9 22 P3 9 22 P5 

9 22 P2 9 22 P1 9 22 P3 9 22 P1 9 22 P5 9 22 P3 9 22 P2 9 22 P5 9 22 P4 9 22 P3 9 22 P5 

10 21 P2 10 21 P1 10 21 P3 10 21 P1 10 21 P5 10 21 P3 10 21 P2 10 21 P5 10 21 P4 10 21 P3 10 21 P5 

10 21 P2 10 21 P1 10 21 P3 10 21 P1 10 21 P5 10 21 P3 10 21 P2 10 21 P5 10 21 P4 10 21 P3 10 21 P5 

11 20 P2 11 20 P1 11 20 P3 11 20 P1 11 20 P5 11 20 P3 11 20 P2 11 20 P5 11 20 P4 11 20 P3 11 20 P5 

11 20 P2 11 20 P1 11 20 P3 11 20 P1 11 20 P5 11 20 P3 11 20 P2 11 20 P5 11 20 P4 11 20 P3 11 20 P5 

12 19 P2 12 19 P1 12 19 P3 12 19 P1 12 19 P5 12 19 P3 12 19 P2 12 19 P5 12 19 P4 12 19 P3 12 19 P5 

12 19 P2 12 19 P1 12 19 P3 12 19 P1 12 19 P5 12 19 P3 12 19 P2 12 19 P5 12 19 P4 12 19 P3 12 19 P5 

13 18 P2 13 18 P1 13 18 P3 13 18 P1 13 18 P5 13 18 P3 13 18 P2 13 18 P5 13 18 P4 13 18 P3 13 18 P5 

13 18 P2 13 18 P1 13 18 P3 13 18 P1 13 18 P5 13 18 P3 13 18 P2 13 18 P5 13 18 P4 13 18 P3 13 18 P5 

14 17 P2 14 17 P1 14 17 P3 14 17 P1 14 17 P5 14 17 P3 14 17 P2 14 17 P5 14 17 P4 14 17 P3 14 17 P5 

14 17 P2 14 17 P1 14 17 P3 14 17 P1 14 17 P5 14 17 P3 14 17 P2 14 17 P5 14 17 P4 14 17 P3 14 17 P5 

15 16 P2 15 16 P1 15 16 P3 15 16 P1 15 16 P5 15 16 P3 15 16 P2 15 16 P5 15 16 P4 15 16 P3 15 16 P5 

15 16 P2 15 16 P1 15 16 P3 15 16 P1 15 16 P5 15 16 P3 15 16 P2 15 16 P5 15 16 P4 15 16 P3 15 16 P5 
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Appendix 5.2: Best parent heterosis of families of cassava genotypes for cassava green mite density and leaf damage, cassava mosaic 

disease severity, shoot morphological traits, storage root yield and storage root dry mass percentage 

Family 

 

Best parent heterosis 
 

CGM 
PD 

CGM 
LD 

CMD 
severity 

TS TC Pbs LL LW LR SG NBr FBH PH StD NSR FSRY SRDM% 

Mweru x L9.304/147 -67.9 -35.0 16.5 -40.0 -25.5 -28.6 -4.8 -11.1 0.2 -8.8 -45.4 -35.7 -10.8 -9.5 -19.0 -21.2 1.8 

Mweru x I92/0061 -54.1 -32.6 12.7 -33.3 -28.8 -38.1 -5.3 -17.7 -13.0 -5.6 -27.2 -39.5 -15.5 -19.4 -24.5 -19.2 4.2 

Mweru x I92/000 -57.1 -31.3 29.6 -20.0 -14.6 -33.3 8.4 -7.8 -11.8 -4.8 -50.7 -25.9 -2.4 -15.8 -15.5 -22.4 1.6 

Mweru x 4(2)1425 -41.6 -24.9 2.2 -38.7 -32.1 -28.6 -2.5 -15.8 -15.7 -8.2 -18.5 -38.6 -14.0 -3.9 -32.9 -16.3 2.4 

4(2)1425 x I92/0061 -55.7 -35.7 12.4 -46.7 -37.1 -38.1 7.9 -2.1 -10.9 -0.7 -29.7 -28.9 -9.2 -16.6 -17.4 -20.2 -0.9 

4(2)1425 x I92/000 -58.6 -30.1 7.2 -22.7 -9.6 -19.0 -1.8 -8.7 -15.9 -17.4 -38.5 -40.3 -12.8 -10.2 -40.2 -27.0 8.2 

4(2)1425 x L9.304/147 -74.9 -41.3 2.1 -26.7 -18.2 -41.7 7.7 -13.9 -15.2 -15.9 -39.3 -27.1 -11.2 -7.1 -41.7 -27.6 11.1 

L9.304/147 x I92/0061 -19.9 -6.2 -0.1 -33.3 -21.0 -39.3 -6.5 -23.4 -22.5 -14.3 -28.3 -38.4 -12.8 -14.5 -40.7 -29.6 15.5 

L9.304/147 x I92/000 -55.6 -35.9 18.8 -25.3 -15.4 -32.1 -0.7 -17.7 -20.3 -13.3 -22.5 -36.8 -18.2 -21.6 -25.0 -23.3 17.2 

I92/0061 x  I92/000 -51.1 -27.8 12.5 -32.0 -21.0 -39.3 -0.7 -20.8 -18.6 -16.9 -40.8 -36.2 -10.5 -5.4 -23.3 -29.8 8.0 

CGM PD = population counts of cassava green mites per leaf;  CGM LD = score for the level of leaf injury caused by cassava green mite scored on a 1–5 scale; 
CMD severity = score for the severity of symptoms of cassava mosaic disease; TS = size of shoot apices scored on a 1-3 scale;  TC = compactness of shoot 
apices scored on a 1-3 scale; Pbs = pubescence which is the degree of hairiness of leaves scored on a 1–3 scale;  LL = leaf lobe length (cm) measured on the 
middle lobe from the intersection of lobes;  LW = leaf lobe width (cm) measured from the widest part of the middle lobe; LR = proportion of leaves retained on a 
plant scored on a 1-3 scale; SG = stay green scored on a 1-3 scale;  NBr = number of branches;  FBH = height  the first branching level (cm; PH = plant height 
(m); StD = stem diameter (cm); NSR = number of storage roots per plant; FSRY= fresh storage root yield in t ha

-1
; SRDM%= storage root dry mass percentage. 
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CHAPTER 6 

General overview 

 

Cassava is the second most important food crop with potential for industrial use in Zambia 

after maize. However, its productivity is low due to widespread use of landraces, most of 

which are susceptible to cassava green mite (CGM) and cassava mosaic disease (CMD). 

The control of major pests of cassava in Zambia has mainly been based on biological control 

through the use of exotic parasitoids and phytoseiid predatory mites. However, lack of 

suitable cassava clones to support continuous inhabitance of natural enemies limits the 

success of biological control in Zambia. Understanding direct and indirect defense 

mechanisms that enhance host plant resistance (HPR) and biological control is critical for 

successful development of an integrated pest management approach. Lack of information on 

gene action and farmers’ perception of CGM and preferred varietal attributes also limits 

success of resistance breeding and adoption of cultivars. It was envisaged that integration of 

HPR and classical biological control approaches would lead to a more sustainable pest 

management of CGM in view of anticipated climate change. This research was therefore 

undertaken with a view to contributing to the broadening of genetic diversity of cassava as 

well as to generate information that would be useful for enhancement of HPR and biological 

control of CGM in Zambia. The study was divided into three main parts. The first part was a 

participatory rural appraisal (PRA) study which was conducted in two major cassava growing 

areas of North-Western Province in Zambia, in order to obtain information on farmers’ 

perceptions of the distribution and importance of major cassava pests and traditional coping 

strategies thereof. The second part involved screening of germplasm for new sources of 

resistance. The last part involved a genetic study to determine the nature of gene action 

controlling the inheritance of resistance to CGM and other relevant plant morphological traits 

in cassava. 

The PRA study which made use of individual and focus group interviews was conducted with 

farmers in Solwezi and Mwinilunga districts. The study was aimed at gathering traditional 

knowledge on desirable and non-desirable varietal attributes, and cultural practices and 

plant attributes that are associated with reduced CGM population density (CGM PD) and leaf 

damage (CGM LD) in cassava fields, with a view to identify traits that can be promoted 

through conventional breeding. The findings were as listed below: 

 Fresh storage root yield (FSRY), storage root dry mass percentage (SRDM %), 

earliness and resistance of cultivars to pests and diseases are the most important 
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attributes that determine adoption and retention of new cassava cultivars by farmers 

in Mwinilunga and Solwezi districts. 

 Farmers are familiar with the symptoms of damage caused by CGM but most of them 

do not know the actual pest responsible for such damage. Farmers are able to 

estimate the distribution and extent of pest damage in their own fields, with minimal 

guidance on pest and symptom identification. Use of photographs and live infested 

plant samples can give farmers good guidance in this regard. 

 Major pests of cassava in North-Western Province include moles, termites, CGM, 

scale insects, and cassava mealybug (CM). Termites, CGM and moles are the most 

widely distributed and most damaging. 

 Generally farmers prefer cassava genotypes that combine FSRY with high SRDM%, 

earliness and extended underground storability or resistance to storage root rot 

(SRR). However, the choice of genotypes by farmers is location specific and end-use 

dependent. Farmers growing cassava for sale of unprocessed storage roots and 

leaves, are more concerned with quality traits such as sweetness, increased leaf 

retention (LR) and stay green (SG) for continuous supply of pest-free leaves for 

vegetable, while farmers who grow cassava mainly for own consumption in the form 

of flour are more concerned about earliness combined with extended underground 

storability of storage roots.  

 According to the farmers, ‘big heads’ (large shoot apices), and hairy leaves are highly 

associated with reduced CGM LD. Leaf pubescence (Pbs) is associated with tender 

leaves, which is an indication of high palatability for cassava leaf vegetable preferred 

by women. 

 The intensity of anthocyanin in the leaves, petioles and stems of cassava plants is 

also associated with increased resistance to CGM. The “purple or pink cassava” 

(cassava plants which combine purple or pink mature and immature leave and purple 

or pink petioles with purple or pink stems) is not attacked by CGM. However such 

cultivars are rare and their leaves are not preferred for consumption as a leaf 

vegetable. 

 Canopy size and LR were also considered by the farmers to be highly associated 

with reduced damage due to termites and scales in cassava fields. Bitter cassava 

varieties are less preferred by termites and moles as compared to sweet ones, when 

grown in a mixture.  

 Removal of cassava shoot tips and selective pruning of infested shoots are the most 

effective traditional cultural practices in reducing the population of both CGM and 

CM. According to the farmers, these practices help to escape insect and frost 

damage in cassava fields if applied just after the rainy season but before the onset of 

the cold season. 
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Multi-location trials were conducted using 19 cultivars which include landraces, locally 

improved, and introduced genotypes from international institute of tropical agriculture to 

identify the best performing genotypes in each environment; identify locations that best 

represent target environment for low to no CGM LD and high FSRY performances, as well 

as to study inter-season and intra-annual stability of genotypes for CGM resistance-related 

traits. The additive main effects and multiplicative interaction (AMMI) stability value (ASV) 

(Purchase et al., 2000) was used to study the stability of genotypes, environments, and 

traits. The genotype selection index which integrates stability and trait mean performance 

was used to categorize genotypes and environments into groups of adaptability (Farshadfar 

2008). The findings were: 

 Most of the traits studied are less influenced by the environmental effects, implying 

that the genetic differences among genotypes caused most of the variations in the 

resistance to CGM, FSRY, SRDM%, LR, Pbs, SG, as well as in the size and 

compactness of shoot apices of cassava. 

 The Spearman’s correlation of rank order calculated between pairs of stability indices 

indicate that the ASV is highly correlated with four other stability indices including 

stability variance, ecovalance stability index, and the environmental variance. 

 The CGM LD and Pbs are among the most stable traits across the environments. 

 Widely adapted genotypes for specific traits have been identified, with genotypes 

L9.304/147, 92/000, TME2, 4(2)1425, and L9.304/175 combining wide adaptability 

with best overall mean performance across traits.  

 Genotypes Kapeza, M86/0016, I60/42, Manyopola, and TME2 were found to be 

adapted to moderately high pest pressure environments. 

 The study showed that at least three genotypes, namely Kapeza, L9.304/147 and 

4(2)1425 were able to consistently yield above 13 t ha-1 at 9 months after planting 

both in the 2010/11 and 2011/12 seasons, suggesting their potential as early bulking 

genotypes. 

 Though storage root rots can be encountered at all stages of plant growth, the study 

indicated that the incidence of root rots varies with genotype, implying that there is 

genetic variability in the cassava germplasm available in Zambia. 

 Stable high yielding genotypes were identified such as Kaleleki, Mweru and 

L9.304/175 which also combine stability with very high SRDM% and resistance to 

SRR, suggesting that it is possible to combine earliness with prolonged underground 

storability in cassava as desired by farmers. However, in future research the 

evaluation of the genotypes must extend over 36 months which is the longest period 

that farmers keep the crop in the field. 
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Overall the study indicated that there is sufficient genetic variability in the Zambian 

germplasm to enable breeders to improve cassava for resistance against CGM, and to 

select for genotypes that provide suitable habitat for the natural enemies of CGM enabling 

biological control of the pest. Stable sources of genes for farmer-preferred traits were 

identified, which should speed up the progress in breeding improved cassava cultivars. 

Diallel analysis was performed for 300 F1 cassava genotypes that were obtained from 10 

families. The study was aimed at investigating the combining abilities of the parents and 

progeny, and to establish the nature of the gene action controlling inheritance of CGM 

resistance traits and associated plant morphological traits in cassava. The F1 genotypes and 

their respective parents were evaluated in the field for a period of nine months. The findings 

were:  

 Both general combining ability (GCA) and specific combining ability (SCA) effects 

were significant for the reaction of cassava genotypes to CGM, and for the various 

plant morphological traits that were measured, which suggested that both additive 

and non-additive gene effects are important in the expression of these traits.  

 However, the predominance of GCA sums of squares over SCA sums of squares for 

all the traits indicated that additive gene action is the major determinant in the 

expression of these traits.  

 The best parent for CGM resistance was 4(2)1425 which had a mean score of 2.0 for 

CGM LD, and its combination with Mweru gave the best mean of 1.75 for CGM LD. 

 The best parent for CMD resistance was 92/000 with a mean score of 1.4, and in 

combination with 92/0061 had the best mean of 1.6 for CMD severity. 

 The best parent for FSRY was 4(2)1425 which had a mean yield of 20.3 t ha-1, and in 

combination with genotype 92/000 gave the best mean of 21.7 t ha-1. 

 Large narrow sense heritability(h2) estimates were obtained for CGM PD (71%), CGM 

LD (86%), LR (80%), TC (88%) and TS (91%), while low heritability estimates were 

obtained for FSRY and SRDM%. These results indicate that CGM resistance and LR 

are highly heritable traits, and it should be relatively easy to improve them through 

breeding, suggesting that there is scope to integrate HPR with biological control for 

sustainable pest management that is both farmer- and environmentally-friendly. 

Overall implications of the study for cassava breeding 

The current study presents a challenge to breeders to develop fast-growing and high yielding 

cassava genotypes that can easily suppress weeds, bulk early, and resist SRR. The 

increasing importance of cassava leaves as a cheap source of protein emphasises the need 

for breeders to improve LR and SG in cassava in association with FSRY and SRDM% (Lenis 

et al., 2006). Farmers should be trained and sensitized about the benefits of natural enemies 

of CGM and the requirements for their existence in cassava fields. Active involvement of 
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both educated and uneducated farmers at all stages of an integrated pest management 

programme to control CGM is likely to contribute to its effectiveness and sustainability. 

Farmers desire cultivars that are consistently high yielders, and therefore, breeders should 

evaluate genotypes in a range of environments and select for both high yield and stability of 

performance to mitigate the effects of genotype by environment interaction and to make the 

selection of genotypes more precise and refined. For this reason the AMMI-based genotype 

selection index which proved to be very suitable for selection of both high yielding and stable 

genotypes for all the seven traits of cassava is recommended. In this study, genotypes that 

were highly stable and high yielding are widely adapted and can, therefore, be 

recommended for production in any of the six environments, while genotypes that exhibited 

specific adaptability to certain environments should be recommended for production in those 

particular environments. 

Among all the genotypes, L9.304/147, L9.304/175, 4(2)1425, I60/42 exhibited the highest 

levels of intra-season and inter-season stability combined with high CGM resistance. These 

genotypes should be used as sources of resistance and high FSRY in future breeding 

programmes.  

One of the major impediments to breeding for resistance against CGM has been the lack of 

an efficient technique for maintaining constant and effective levels of infestation pressure in 

the field. The seasonal changes in temperature and rainfall cause fluctuations in natural 

populations of mites resulting in patchy and uneven distribution of mites in cassava field 

trials. In this study a simple technique for generating optimal CGM PD that should reveal 

differences in the resistance of genotypes in the field throughout the experimental period 

was described. The method, however, requires the continuous maintenance of a live colony 

of mites in a screenhouse for artificial infection purposes. 

It is clear from the diallel analysis that both additive and non-additive gene actions were 

involved in the expression of the traits evaluated. The implication of the predominance of 

GCA effects over SCA effects for CGM resistance and associated traits is that for such traits, 

a hybridization scheme followed by phenotypic mass selection with appropriate selection 

pressures applied should be effective in identifying desirable recombinants. Similarly the 

high heritability estimates obtained for CGM resistance, LR, and TS, imply that such traits 

can be easily improved through phenotypic mass selection, while different selection 

strategies such as phenotypic recurrent selection should be recommended for low heritability 

traits (Cach et al., 2005). The significant negative correlations of Pbs, LR and SG to CGM 

PD, CGM LD, and CMD severity recorded in this study are also indicative that cultivars with 

enhanced LR, and Pbs have the potential to resist CGM and CMD, and that these traits can 

be jointly improved. Ultimately, with proper selection of parents, considerable resources are 
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likely to be saved since, as has been demonstrated in this study, a single breeding 

programme can lead to the genetic improvement of CGM and CMD resistance, Pbs, LR, and 

SG. 

The current study has identified stable, low pest pressure sites which can be used for the 

multiplication of planting materials and moderately high to high pest pressure zones that can 

be used for screening of germplasm for CGM resistance. The current study has also 

contributed to broadening the genetic base of cassava germplasm in Zambia through the 

generation of genetic diversity. The products of the current study include at least eight most 

promising genotypes that combine earliness and good levels of resistance to CGM and CMD 

with higher FSRY and SRDM% than any of the existing released cassava cultivars in 

Zambia. 

The most promising genotypes that combine CGM resistance, high FSRY, with various 

farmer-preferred traits need to be further tested in the presence of T.aripo in different 

locations, so as to confirm their suitability for integrated pest management, as well as the 

general stability of their performance. 
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