Evaluation of methods and approaches for surveying savanna invertebrates.

UKZN ResearchSpace

Show simple item record

dc.contributor.advisor Hamer, Michelle Luane.
dc.contributor.advisor Slotow, Robert H.
dc.creator Lovell, Saskie Joanne.
dc.date.accessioned 2012-06-19T08:53:39Z
dc.date.available 2012-06-19T08:53:39Z
dc.date.created 2006
dc.date.issued 2006
dc.identifier.uri http://hdl.handle.net/10413/5505
dc.description Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006. en
dc.description.abstract The savanna is an important biome, which is under threat from land transformation, and it is therefore a focus for conservation planning. Yet, the invertebrate fauna of this biome is poorly documented and hence there is a need to provide baseline data for this component of biodiversity. This project aimed to provide relevant information that can be used by conservation planners and ecologists, by recommending a sampling strategy for the collection of specific taxa for savanna invertebrate surveys. The effectiveness and efficiency of a sampling strategy using passive and active sampling methods was assessed to provide recommendations for a multi-taxa approach to sampling invertebrates in a savanna ecosystem. In the collection of data, volunteers assisted and they were evaluated in comparison with experienced researchers to assess the effectiveness, efficiency and benefits of using volunteers to carry out multi-taxa invertebrate surveys. In addition, cross-taxon congruency and congruency across taxonomic levels were assessed between nine invertebrate taxa, to select potential surrogates to reduce biodiversity survey costs for conservation planning. Fieldwork was carried out in the Mkhuze Game Reserve (27.67°S:32.27°E, 400km2 ), Phinda Private Game Reserve (27.78°S:32.35°E, 140km2 ) and False Bay Park (27.94°S:32.38°E, 25km2 ) in north-eastern Kwazulu-Natal, South Africa. Forty-three different sites were sampled between November 2002 and March 2005 (summer months). Twenty of these sites were re-sampled across years and in different months during the summer season, giving 77 sampling events. Fifty-four volunteers recruited by the Earthwatch Institute assisted in the collection of data. Lepidoptera, Hymenoptera (Apoidea), Diptera (Asilidae, Bombyliidae), Neuroptera, Odonata, Hemiptera (Cicadellidae), Coleoptera (Cetoniinae, Scarabaeinae), Orthoptera, Blattodea, Isoptera, Araneae (Araneidae, Thomisidae, Oxyopidae), Scorpionida, Myriapoda (Diplopoda, Chilopoda), Mollusca and Annelida were sampled using four active searching methods (transects, tree beating, leaf litter and sweep sampling) and two passive methods (pan traps and baited traps). In its entirety, this project sampled 50 558 individuals from 797 invertebrate species and an extensive database consisting of 33 257 records now exists. A standardised sampling protocol is described for the effective sampling of multiple invertebrate taxa in a savanna biome and recommendations are made for improving the efficacy and completeness of invertebrate surveys based on the application of species accumulation models. Restrictive active searching methods (quadrats) were found to be more effective for sampling epigaeic invertebrates and should be used in conjunction with leaf litter samples. Flying and plant-dwelling invertebrates should be sampled using a range of sampling methods which include baited, malaise and pan traps, active searching along transects and vacuum sampling. I suggest over 75% of the Lovel/, s.1. - MSc. Thesis i ii total estimated fauna to be a satisfactory and realistic level of inventory completeness for making valid comparisons between regions and across sites. Volunteers sampled lower rates of species accumulation, species richness and unique species when using timed, active search methods. Nevertheless, volunteers and researchers were shown to perform equally well when using un-timed, active searching methods. Previous experience or knowledge of scientific method was beneficial when researchers assessed the perceived usefulness of volunteers to researchers for carrying out fieldwork. The project experience raised the volunteers' environmental awareness, knowledge about biodiversity, invertebrates and conservation research, and enabled volunteers to participate in or design locally relevant conservation based projects on their return home. Cross-taxon congruencies were observed. However, relationships were weak and potential surrogates could not be selected. The use of higher taxonomic levels to represent species shows good potential as a surrogate but only in species-poor genera or families. The use of species density to determine congruency and select surrogates is likely to produce different results to those produced by community similarity. Furthermore, when selecting surrogates from congruency assessments an optimal p-value greater than 0.75 should be required. Below this value, the relationship is likely to be weak and if used as a surrogate misinterpretation may occur. en
dc.language.iso en_ZA en
dc.subject Invertebrates--KwaZulu-Natal. en
dc.subject Savanna ecology. en
dc.subject Invertebrate populations--Research--Methodology. en
dc.subject Habitat conservation--Planning. en
dc.subject Biodiversity conservation. en
dc.subject Surveys--Methodology. en
dc.subject Volunteers. en
dc.subject Sampling. en
dc.subject Invertebrates--Conservation. en
dc.subject Savannas. en
dc.subject Indicators (Biology). en
dc.subject Theses--Zoology. en
dc.title Evaluation of methods and approaches for surveying savanna invertebrates. en
dc.type Thesis en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UKZN ResearchSpace


Advanced Search

Browse

My Account