Biological control and plant growth promotion by selected trichoderma and Bacillus species.

UKZN ResearchSpace

Show simple item record

dc.contributor.advisor Laing, Mark D.
dc.contributor.advisor Hunter, Charles H.
dc.creator Yobo, Kwasi Sackey.
dc.date.accessioned 2012-05-18T08:00:43Z
dc.date.available 2012-05-18T08:00:43Z
dc.date.created 2005
dc.date.issued 2005
dc.identifier.uri http://hdl.handle.net/10413/5335
dc.description Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2005. en
dc.description.abstract Various Trichoderma and Bacillus spp. have been documented as being antagonistic to a wide range of soilborne plant pathogens, as well as being plant growth stimulants. Successes in biological control and plant growth promotion research has led to the development of various Trichoderma and Bacillus products, which are available commercially. This study was conducted to evaluate the effect of six Trichoderma spp. and three Bacillus spp. and their respective combinations, for the biological control of Rhizoctonia solani damping-off of cucumber and plant growth promotion of dry bean (Phaseolus vulgaris L.). In vivo biological control and growth promotion studies were carried out under greenhouse and shadehouse conditions with the use of seed treatment as the method of application. In vitro and in vivo screening was undertaken to select the best Trichoderma isolates from 20 Trichoderma isolated from composted soil. For in vitro screening, dual culture bioassays were undertaken and assessed for antagonisms/antibiosis using the Bell test ratings and a proposed Invasive Ability rating based on a scale of 1-4 for possible mycoparasitic/hyperparasitic activity. The isolates were further screened in vivo under greenhouse conditions for antagonistic activity against R. solani damping-off of cucumber (Cucumis sativus L.) cv. Ashley seedlings. The data generated from the in vivo greenhouse screening with cucumber plants were analysed and grouped according to performance of isolates using Ward‟s Cluster Analysis based on a four cluster solution to select the best isolates in vivo. Isolates exhibiting marked mycoparasitism of R. solani (during ultrastructural studies) viz, T. atroviride SY3A and T. harzianum SYN, were found to be the best biological control agents in vivo with 62.50 and 60.06% control of R. solani damping-off of cucumber respectively. The in vitro mode of action of the commercial Trichoderma product, Eco-T®, and Bacillus B69 and B81 suggested the production of antimicrobial substances active against R. solani. In vitro interaction studies on V8 tomato juice medium showed that the Trichoderma and Bacillus isolates did not antagonise each other, indicating the possibility of using the two organisms together for biological control and plant growth promotion studies. Greenhouse studies indicated that combined inoculation of T. atroviride SYN6 and Bacillus B69 gave the greatest plant growth promotion (43.0% over the uninoculated control) of bean seedlings in terms of seedling dry biomass. This was confirmed during in vivo rhizotron studies. However, results obtained from two successive bean yield trials in the greenhouse did not correlate with the seedling trials. Moreover, no increase in protein or fat content of bean seed for selected treatments was observed. In the biological control trials with cucumber seedlings, none of the Trichoderma and Bacillus combinations was better than single inoculations of Eco-T®, T. atroviride SY3A and T. harzianum SYN. Under nutrient limiting conditions, dry bean plants treated with single and dual inoculations of Trichoderma and Bacillus isolates exhibited a greater photosynthetic efficiency that the unfertilized control plants. Bacillus B77, under nutrient limiting conditions, caused 126.0% increase in dry biomass of bean seedlings after a 35-day period. Nitrogen concentrations significantly increased in leaves of plants treated with Trichoderma-Bacillus isolates. However, no significant differences in potassium and calcium concentrations were found. Integrated control (i.e. combining chemical and biological treatments) of R. solani damping-off of cucumber seedlings proved successful. In vitro bioassays with three Rizolex® concentrations, viz., 0.01g.l-1, 0.1g.l-1 and 0.25g.l-1 indicated that the selected Trichoderma isolates were partly sensitive to these concentrations whereas the Bacillus isolates were not at all affected. In a greenhouse trial, up to 86% control was achieved by integrating 0.1g.l-1 Rizolex® with T. harzianum SYN, which was comparable to the full strength Rizolex® (1g.l-1) application. Irrespective of either a single or dual inoculations of Trichoderma and/or Bacillus isolates used, improved percentage seedling survival as achieved with the integrated system, indicating a synergistic effect. The results presented in this thesis further reinforce the concept of biological control by Trichoderma and Bacillus spp. as an alternative disease control strategy. Furthermore, this thesis forms a basis for Trichoderma-Bacillus interaction studies and proposes that the two organisms could be used together to enhance biological control and plant growth promotion. en
dc.language.iso en_ZA en
dc.subject Bacillus (Bacteria) en
dc.subject Trichoderma. en
dc.subject Soilborne plant pathogens--Biological control. en
dc.subject Seedlings--Diseases and pests. en
dc.subject Growth (Plants) en
dc.subject Plant growth-promoting rhizobacteria. en
dc.subject Theses--Plant pathology. en
dc.title Biological control and plant growth promotion by selected trichoderma and Bacillus species. en
dc.type Thesis en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UKZN ResearchSpace


Advanced Search

Browse

My Account