• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electronic Engineering
    • Masters Degrees (Electronic Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electronic Engineering
    • Masters Degrees (Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy efficient cooperative spectrum sensing techniques in cognitive radio networks.

    Thumbnail
    View/Open
    Kataka_Matsanza_Edwin_2017.pdf (2.450Mb)
    Date
    2017
    Author
    Kataka, Matsanza Edwin.
    Metadata
    Show full item record
    Abstract
    The demand for spectrum is increasing particularly due to the accelerating growth in wireless data traffic generated by smart phones, tablets and other internet access devices. Most of prime spectrum is already licensed. The licensed spectrum is underutilized or used inefficiently, i.e. spectrum sits idle at any given time and location. Opportunistic Spectrum Access (OSA) is proposed as a solution to provide access to the temporarily unused spectrum commonly known as white spaces to improve spectrum utilization, increase spectrum efficiency and reduce spectrum scarcity. The aim of this research is to investigate potential impact of cooperative spectrum sensing techniques technologies on spectrum management. To fulfill this we focused on two spectrum sensing techniques namely; Firstly energy efficient statistical cooperative spectrum sensing in cognitive radio networks, this work exploits the higher order statistical (HOS) tests to detect the status of PU signal by a group of SUs. Secondly, an optimal energy based cooperative spectrum sensing in cognitive radio networks was investigated. In this work the performance of optimal hard fusion rules are employed in SU’s selection criteria and fusion of the decisions under Gaussian channel and Rayleigh channels. To optimize on the energy a two stage fusion and selection strategy is adopted to minimize the number of collaborating SUs.
    URI
    http://hdl.handle.net/10413/15684
    Collections
    • Masters Degrees (Electronic Engineering) [110]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV