THE STRATIGRAPHY OF
THE NATAL GROUP

by

C.G.A. MARSHALL

Submitted in fulfilment of the academic requirements for the degree of Master of Science in the Department of Geology, University of Natal

Pietermaritzburg

1994
ABSTRACT

Research for this project involved the first systematic field and laboratory investigation over the entire known portion of the Natal Group depositional basin, from just north of Hlabisa in the north, to Hibberdene in the south, and, on a reconnaissance basis, as far south as the Mtamvuna River near Port Edward.

The development of a stratigraphy for the Natal Group is traced through the work of previous researchers, who worked in specific areas. The SACS compilation was inadequate, and this unsatisfactory situation was addressed in presenting the first workable stratigraphic subdivision of the Natal Group for the whole of the basin. There are two proposed formations, each representing a cycle of sedimentation - a lower Durban Formation and an upper Mariannhill Formation. These are subdivided into the Ulundi, Eshowe, Kranskloof, Situndu and Dassenhock Members, and the Tulini, Newspaper and Westville Members, respectively. They are generally greyish red in colour, and consist of conglomerates, sandstones, siltstones and shales. The generally accepted correlation between the Natal Group in KwaZulu-Natal and what was hitherto considered as its time-equivalent in Pondoland has been disproved. Consequently, the supposed interdigitation/transition between these two assemblages, along with the hypothesis that the Kranskloof and Dassenhock quartz arenite Members were littoral deposits formed during a marine transgression/regression cycle, is no longer accepted.

A provenance to the northeast is proposed, based on palaeocurrent data. Pan-African mountain-building in what is now Mozambique provided molasse sediments which were laid down in an elongate (NE - SW) foreland graben basin. The age of this was determined as 490 Ma, from \(^{40}\text{Ar}/^{39}\text{Ar}\) step-heating on micas extracted from argillaceous samples. Contemporaneous volcanism, as reflected in the presence of volcanic glass (sericitised) shards, is reported. The Natal Group is a molasse deposit, derived some 490 Ma ago from a Pan African orogenic event in southern Mozambique, and deposited in a foreland graben, the Natal Trough, during continued subsidence. Activity of this trough is seen to have continued from Pan African to Permian times. This assemblage rests on the basement, and is overlain by the Dwyka Group. Only part of the basin survives on the
African continent, the unknown portion being removed during the fragmentation of Gondwana. The southern limit of the Natal Group is at the Dweshula High, near Port Shepstone, which, together with basin tilting, is seen to have been instrumental in causing the deposition of this assemblage.

It is suggested that fluvial activity and debris flow processes led to the deposition of the conglomerates of the Ulundi, Tulini and Westville Members, whereas braided rivers of the Platte and Bijou Creek types deposited the arenaceous and argillaceous sediments which now constitute the other members. The climate was probably semi arid, with ephemeral streams. Shape parameters of the conglomerate clasts point to a fluvial environment.

The dividing-line between monomict (quartz) Facies A to the south, and polymict Facies B to the north, of the Tulini Member, was found to coincide with the edge of the craton in this area.

The common occurrence of pressure solution phenomena is described. The tensile strength of fractured quartzite clasts in the Ulundi Member is used to estimate a minimum thickness for the Natal Group of 1300 to 2600 m - considerably greater than the present thickness. This estimate supports the hypothesis that much of the Natal Group was removed by erosion during the 200 million year period between the cessation of Natal Group deposition and the onset of Dwyka glaciation, and indeed, by the glaciation itself. The Westville Member is thus seen as the basal unit of a third cycle of sedimentation, all of which, except the remnants of the Westville Member, have been eroded away.
I, CHARLES GERALD ANTHONY MARSHALL, hereby declare that the research described in this dissertation was carried out in the field and at the Geological Survey, Pietermaritzburg, under the auspices of the Department of Geology, University of Natal, Pietermaritzburg, from October 1986 to July, 1994, under the supervision of Professor V. von Brunn.

This dissertation and accompanying maps represent original work by the author, and have not been submitted, in whole or in part, to any other university for the purpose of a higher degree. Where reference has been made to the work of others, it has been duly acknowledged in the text.

C.G.A. MARSHALL
ACKNOWLEDGEMENTS

The author is indebted to the Department of Mineral and Energy Affairs for a bursary loan which partially financed the first year's fees, and to the Executive Officer of the Council for Geoscience for allowing the author to use the data, time and facilities to complete the project. Mr Eric Filmalter determined the U.C.S. of some quartzite boulders. Mrs Helena Alexander helped with the compilation of tables and with the intricacies of word-processing. Dr Doug. Cole is thanked for his ready help and advice concerning the statistics of directional data. Dr C.J. van Vuuren is thanked for proposing that the Natal Group project be directed towards obtaining a post-graduate degree. Dr John Dunlevy of the University of Durban Westville is thanked for his willing help in preparing the ternary diagrams. Discussions with colleagues Drs Dave Roberts, Bob Thomas, Greg Botha, and Albert Thamm were immensely helpful, and the author wishes to express his gratitude. The constant help, supervision and provision of relevant references to the literature by Professor Vic. von Brunn are much appreciated. The South African Police Services at Kranskop, Harburg, Mid Illovo and Sawot, Mr James of Hazelmere Dam and Mr Upfold of Shongweni Dam are thanked for allowing the author to camp on their premises. The author is also grateful for the support, help and companionship of Enock Mkhize, Petros Silamulela, Misron Ngcobo and Isaac Ndlovu who at various times accompanied him in the field. Without the patience, understanding and support of the author's wife and family, this project would not have been possible. The willing help of Ena Rhind, Trina and Tanja Marshall and Ronald Munro, who coloured in some of the maps, and Olive Anderson who drew several diagrams, is gratefully acknowledged. Lastly, but by no means least, the author is conscious of, and deeply grateful for the guidance and protection given him by the Lord Jesus (Who created all things) and who said, "Lo, I am with you alway, even unto the end of the world."
CONTENTS

ABSTRACT ii
PREFACE iv
ACKNOWLEDGMENTS v
LIST OF FIGURES xi
LIST OF TABLES

1. INTRODUCTION 1

1.1 OBJECTIVES 1

1.2 SCOPE 3

1.2.1 GEOLOGICAL MAPPING 3
1.2.2 VERTICAL SECTIONS 6
1.2.3 SAMPLING PROGRAMME 6

1.3 PREVIOUS WORK 7

1.3.1 STRATIGRAPHY 7
1.3.2 THICKNESS 8
1.3.3 PALAEONTOLOGY 8

2. STRATIGRAPHY 10

2.1 EARLY STRATIGRAPHIC SUBDIVISIONS 10
2.2 RHODES AND LEITH (1967) 12
2.3 KINGSLEY (1975) 12
2.4 THE SOUTH AFRICAN COMMITTEE FOR STRATIGRAPHY (SACS), 1980 13
2.5 ROBERTS, 1981. 15
2.6 PRESENT WORK

2.6.1 DURBAN FORMATION

2.6.2 MARIANNHILL FORMATION

2.6.3 GENERAL CONSIDERATIONS

3. DESCRIPTION OF THE NATAL GROUP UNITS

3.1 DURBAN FORMATION

3.1.1 ULUNDI MEMBER

3.1.2 ESHOWE MEMBER

3.1.3 KRANSKLOOF MEMBER

3.1.4 SITUNDU MEMBER

3.1.5 DASSENHOEK MEMBER

3.2 MARIANNHILL FORMATION

3.2.1 TULINI MEMBER

3.2.2 NEWSPAPER MEMBER

3.2.3 WESTVILLE MEMBER

4. CLAST MODIFICATION: NATAL GROUP THICKNESS

4.1 PRESSURE SOLUTION

4.2 PRESSURE-FRACTURING

4.2.1 INTERPRETATION

4.2.2 CONCLUSION

5. BASIN TECTONICS

5.1 INTRODUCTION

5.2 BASIN LIMITS

5.3 BASIN MORPHOLOGY
REFERENCES

APPENDICES

APPENDIX 1. MEASURED SECTIONS

APPENDIX 2. GEOLOGICAL MAPS

APPENDIX 3. GRAIN-SIZE ANALYSIS AND COMPOSITION

APP-3.1 COMPOSITION

APP-3.2 GRAIN-SIZE

APP-3.3 STATISTICAL PARAMETERS

APP-3.3.1 FIRST MOMENT

APP-3.3.2 SECOND MOMENT

APP-3.3.3 THIRD MOMENT

APP-3.3.4 FOURTH MOMENT

LIST OF REFERENCES: APPENDIX 3.

APPENDIX 4. PALAEOCURRENT ANALYSIS

APP-4.1 INTRODUCTION

APP-4.2 PREVIOUS WORK

APP-4.3 METHODS

APP-4.3.1 SAMPLING PROCEDURES

APP-4.3.2 ANALYSIS OF DATA

APP-4.3.3 DISCUSSION OF RESULTS

LIST OF REFERENCES: APPENDIX 4

APPENDIX 5. CLAST SHAPE PARAMETERS
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map of localities mentioned in text</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Distribution of Natal Group and Msikaba Formation</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Stratigraphic comparison</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Ulundi Member conglomerate resting on ferruginous Pongola Supergroup argillite</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Stratified Ulundi Member overlying basement and overlain by Dwyka Group</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Imbricated, well-rounded clasts in monomict Ulundi Member conglomerate</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Shape parameters and flatness vs sphericity, Ulundi Member</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Clast-supported Ulundi Member conglomerate with flat-lying clasts, transported by hyperconcentrated flood flow</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Base of Ulundi Member. Note debris-flow with flat-lying clasts</td>
<td>34</td>
</tr>
<tr>
<td>3.7</td>
<td>Base of Ulundi Member, southeast of Babanango, showing angular, tabular clasts with horizontal orientation.</td>
<td>35</td>
</tr>
<tr>
<td>3.8</td>
<td>Ulundi Member conglomerate with angular clasts northeast of Nkandla</td>
<td>35</td>
</tr>
<tr>
<td>3.9</td>
<td>Orientation of Ulundi Member clasts</td>
<td>37</td>
</tr>
<tr>
<td>3.10</td>
<td>Composition of Ulundi Member sandstones</td>
<td>39</td>
</tr>
<tr>
<td>3.11</td>
<td>Ulundi Member conglomerate with interbedded shale</td>
<td>40</td>
</tr>
<tr>
<td>3.12</td>
<td>Geological map of Loliwe palaeotalus deposit</td>
<td>41</td>
</tr>
<tr>
<td>3.13a</td>
<td>Loliwe palaeotalus deposit</td>
<td>43</td>
</tr>
<tr>
<td>3.13b</td>
<td>Exhumed palaeokrans of Pongola Supergroup with modern talus</td>
<td>43</td>
</tr>
<tr>
<td>3.14</td>
<td>Ulundi Member conglomerate from near southern limit of basin</td>
<td>45</td>
</tr>
<tr>
<td>3.15</td>
<td>Isopach map of Eshowe Member, showing limit of Ulundi Member</td>
<td>47</td>
</tr>
<tr>
<td>3.16</td>
<td>Eshowe Member overlying basement granite unconformably, and conformably overlain by Kranskloof Member</td>
<td>48</td>
</tr>
<tr>
<td>3.17</td>
<td>Small-pebble conglomerate lens near base of Eshowe Member</td>
<td>50</td>
</tr>
<tr>
<td>3.18</td>
<td>Rip-up clasts of purple mudrock in Eshowe Member sandstone</td>
<td>50</td>
</tr>
<tr>
<td>3.19</td>
<td>Composition of Eshowe Member sandstones</td>
<td>52</td>
</tr>
<tr>
<td>3.20</td>
<td>Very coarse-grained sandstone with orthoclase imparting red colour</td>
<td>53</td>
</tr>
<tr>
<td>3.21</td>
<td>Thin beds of shale in Eshowe Member</td>
<td>53</td>
</tr>
<tr>
<td>3.22</td>
<td>Eshowe Member sandstone with interbedded shale and siltstone</td>
<td>55</td>
</tr>
<tr>
<td>3.23</td>
<td>Eshowe Member resting on basement granite and overlain by resistant Kranskloof Member</td>
<td>57</td>
</tr>
<tr>
<td>3.24</td>
<td>Set of planar cross-beds in excess of 2 m thickness</td>
<td>59</td>
</tr>
<tr>
<td>3.25</td>
<td>Trough cross-bedding in Eshowe Member, NW of Eshowe</td>
<td>59</td>
</tr>
<tr>
<td>3.26</td>
<td>Scour channel filled with coarse sandstone and rip-up clasts</td>
<td>60</td>
</tr>
<tr>
<td>3.27</td>
<td>Slump structure in Eshowe Member, a few metres above base</td>
<td>60</td>
</tr>
<tr>
<td>3.28</td>
<td>Convolute bedding in Eshowe Member</td>
<td>61</td>
</tr>
<tr>
<td>3.29</td>
<td>Internal structure of a sand volcano (water escape structure)</td>
<td>62</td>
</tr>
<tr>
<td>3.30</td>
<td>Isopach map of the Kranskloof Member</td>
<td>64</td>
</tr>
<tr>
<td>3.31</td>
<td>Typical Natal Group krans formed by Kranskloof Member overlying Eshowe Member, in turn overlying basement granite. Note vertical cleft</td>
<td>65</td>
</tr>
</tbody>
</table>
3.32 Composition of Kranskloof Member sandstones
3.33 Photomicrographs showing dust rim on original quartz grains
3.34 Thin, lenticular shale lenses in Kranskloof Member quartz-arenite
3.35 Roof of Noodsberg cave at contact between Tulini and Kranskloof Members
3.36 Isopach map of Situndu Member
3.37 Composition of Situndu Member sandstones
3.38 Shale lining (30 cm thick) to scour channel filled with sandstone
3.39 Situndu Member with rip-up clasts probably derived from shale lining in Fig. 3.38
3.40 White clay drapes on bedding and on foresets, Situndu Member
3.41 Isopach and palaeocurrent map of the Dassenhoek Member
3.42 Composition of Dassenhoek Member sandstones
3.43 Isopach map of Tulini Member, showing sampling positions (B to M), distribution of Facies A and B, and Tugela Thrust Front
3.44 Tulini Member clast- to matrix-supported conglomerate
3.45 Facies B conglomerate, Tulini Member
3.46 Pale grey Newspaper Member sandstone at Nhlavini
3.47 Composition of Newspaper Member sandstones
3.48 Large scour channel in Newspaper Member filled by plane cross-bedded sandstone
3.49 Matrix-supported, polymict, pebble conglomerate, Westville Member
3.50 Shape parameters and flatness vs sphericity - Mntamnanto
4.1 Ulundi Member quartzite clast modified by pressure solution
4.2 Monomict nature, close-packing, pressure solution and fracturing
4.3 Ulundi Member conglomerate with abundant matrix and no pressure solution
4.4 Pressure solution followed by pressure fracturing of quartzite clast
5.1 Ndindindi Ridge of Archaean quartzite in background, south of Nkandla, showing high palaeorelief. Krans in middle foreground is Ulundi Member conglomerate
5.2 Glaciated pavement on Kranskloof Member at Ifume, Natal South Coast. Ice flow direction coincides with trough cross-bedding axis (Photo V. von Brunn)
6.1 Sequence of events in the Natal Group depositional basin
6.2 Clasts consisting of Natal Group in Dwyka Group diamictite, resting on Natal Group (Photo V. von Brunn)
6.3 Patchy iron-staining of Msikaba Formation quartzite, derived from surface weathering of ferruginous minerals in the quartzite
6.4 Longitudinal section through Rock of Gibraltar, Oribi Gorge and Mtamvuna Nature reserve, showing Msikaba Formation overlapping Natal Group

APPENDIX 1
App-1.1 Localities of vertical sections measured during investigation
App-1.2 Symbols and abbreviations used in measured sections
App-1.3 Measured Section 6 - Assegai Toll
APPENDIX 2.

App-2.1 Localities of geological maps presented 236

THE FOLLOWING MAPS ARE IN THE POCKET AT THE BACK

App-2.2 Geological Map of some Natal Group occurrences in the Cato Ridge/Shongweni Area
App-2.3 Geological Map of some Natal Group occurrences in the area north of Eshowe
App-2.4 Geological Map of some Natal Group occurrences in the area east of Mapumulo and south of Eshowe
App-2.5 Geological Map of some Natal Group occurrences in the areas near Nkandla and Babanango
App-2.6 Geological Map of some Natal Group occurrences in the Hlabisa Area
App-2.7 Geological Map of some Natal Group occurrences in the Melmoth and Ulundi areas
App-2.8 Geological Map of some Natal Group occurrences in the Noodsberg Area
App-2.9 Geological Map of some Natal Group occurrences in the Table Mountain (Natal) Area
App-2.10 Geological Map of some Natal Group occurrences in the area north of Kranskop
App-2.11 Geological Map of some Natal Group occurrences in the Dolwana Area
App-2.12 Geological Map of some Natal Group occurrences in the area northeast of Ixopo.
App-2.13 Geological Map of some Natal Group occurrences in the area south of
APPENDIX 3.

App-3.1 Grain-size moments graphs 251
 a. Skewness vs Standard error (dividing line after Friedman, 1961)
 b. Kurtosis vs mean largest diameter
 c. Skewness vs mean largest diameter
 d. Standard error vs mean largest diameter
 e. Kurtosis vs standard error
 f. Kurtosis vs skewness

APPENDIX 4.

App-4.1 Palaeocurrent map of the Eshowe Member 263
App-4.2 Moving average map of the palaeocurrent directions in the
 Eshowe Member 264
App-4.3 Palaeocurrent map of the Kranskloof Member 269
App-4.4 Palaeocurrent map of the Situndu Member and
 Msikaba Formation 271
App-4.5 Palaeocurrent map of the Tulini (Tu), Newspaper (Np)
 and Westville (We) Members 273
App-4.6 Map of the mean and moving averages of the palaeocurrent
 directions in the Kranskloof Member 274
App-4.7 Palaeocurrent map of the Newspaper Member, showing the
 limits of the Tulini Member 275

APPENDIX 5.

App-5.1 Shape parameter and flatness vs. sphericity - Honeygrove 278
App-5.2 Shape parameter and flatness vs. sphericity - Killiekrankie 279
App-5.3 Shape parameter and flatness vs. sphericity - Montebello 280
App-5.4 Shape parameter and flatness vs. sphericity - Mkabela 281
App-5.5 Shape parameter and flatness vs. sphericity - Baviaanskraans 282
App-5.6 Shape parameter and flatness vs. sphericity - Burleigh 283
App-5.7 Shape parameter and flatness vs. sphericity - Bulwana 284
App-5.8 Shape parameter and flatness vs. sphericity - Kwa Mbula 285
App-5.9 Shape parameter and flatness vs. sphericity - Moopiplaats 286
App-5.10 Shape parameter and flatness vs. sphericity - Carney Hill 287
App-5.11 Shape parameter and flatness vs. sphericity - Clantrock 288
App-5.12 Shape parameter and flatness vs. sphericity - Ekamanzi 289
App-5.13 Graphs of clast-shape statistics 290
LIST OF TABLES

1.1 Summary of areas mapped and vertical sections measured
1.2 Previously-recorded thicknesses of the Natal Group
2.1 Proposed stratigraphic subdivision of the Natal Group
2.2 Historical recognition of disparities between north and south
2.3 Lithological and interpretative differences between northern and southern assemblages
3.1 Thickness of the Ulundi Member
3.2 Thickness of Eshowe Member
3.3 Thickness of Kranskloof Member
3.4 Thickness of Situndu Member
3.5 Thickness of Dassenhoek Member
3.6 Thickness of Tulini Member
4.1 Uniaxial Compressive Strength (UCS) of Ulundi Member clasts
5.1 Previously-recorded palaeorelief of the Natal Group basin floor
6.1 Lithological differences between quartz arenites north and south of Dweshula High
App-1.1 List of vertical sections measured during study (8 sheets)
App-1.2 Measured stratigraphic sections included in dissertation, indicating thicknesses reported
App-1.3 Lithofacies and sedimentary structures, modified after Miall (1977)
App-3.1 Accuracy of point counting
App-3.2 Grain-size and composition statistics (3 sheets)
App-3.3 Grain-size distribution statistics
App-3.4 Verbal grain-size and sorting of the Natal Group
App-4.1 Natal Group palaeocurrent statistics (3 sheets)
App-5.1 Summary of Clast-shape statistics of Ulundi, Tulini and Westville Members
1. INTRODUCTION

The early Palaeozoic Natal Group (South African Committee for Stratigraphy [SACS], 1980), previously known as the Table Mountain Sandstone (Anderson, 1904) or Table Mountain Series (Krige, 1933), and informally as the TMS, comprises the conglomerates, sandstones, siltstones and shales which constitute the post-Kibaran, pre-Dwyka sedimentary rocks of KwaZulu-Natal and Pondoland (SACS, 1980). Because it is composed predominantly of resistant sandstone, the Natal Group forms the kranses that provide much of the rugged scenery along the eastern portion of KwaZulu-Natal and Pondoland, between Hlabisa in the North and Port St Johns in the south (Fig. 1.1). The resultant dissected nature of the terrain has provided excellent exposure of much of the Natal Group. It overlies the granitic and supracrustal Precambrian basement unconformably and is disconformably overlain by the Late Carboniferous / Early Permian Dwyka Group.

1.1 OBJECTIVES

Since Sutherland (1868) first described rocks from this succession, numerous researchers have been involved in studies on the geology of the Natal Group, but to date there has been no overall synthesis of the stratigraphy of these rocks for the whole of the region. The stratigraphic synthesis produced by SACS (1980), based as it was on the work of researchers working independently, at different times and in different areas of the basin, was not workable. The aim of this study, then, was to:

1.1.1 Establish a sound, workable stratigraphy for the Natal Group, and to provide a description and definition of the constituent units;
A Durban Area
B Stanger - Eshowe Area
C Melmoth Area
D Kranskop Area
E Southern KwaZulu-Natal

Map of localities mentioned in the text, showing study areas, A to E.
1. INTRODUCTION

1.1.2 Distinguish and define various facies and trends within the Natal Group;

1.1.3 Consider the provenance and depositional environment of the Natal Group and its various components;

1.1.4 Test the validity of the accepted correlation of the Natal Group rocks in KwaZulu-Natal with those in Pondoland (Fig. 1.2), and hence with the Witteberg Group - the correlative equivalent of the Cape Supergroup in the Cape Provinces; and

1.1.5 Attempt to ascertain the absolute age of the Natal Group.

1.2 SCOPE

The research involved systematic field and laboratory investigations over the entire known Natal Group depositional basin, from just north of Hlabisa in the north, to Hibberdene in the south, and on a reconnaissance basis as far south as the Mtamvuna River near Port Edward (Fig. 1.1).

1.2.1 GEOLOGICAL MAPPING

The author mapped selected portions within the basin, based on the position within the basin and the stratigraphic position of the rocks to be mapped. Aerial photograph interpretation played an important role in the understanding and recording of the geology in the field. The details were later transferred to 1:50 000 topographic maps. The mapping, which covered an area of 2477 km² (Table 1.1) was presented in internal reports of the Geological Survey of South Africa (Marshall 1987; 1988; 1991a; 1991b; 1991c). Selected portions are presented in Appendix 2 (Figs. App-2.1 and App-2.2 - App-2.14).
Fig. 1.2 Distribution of Natal Group and Msikaba Formation
Table 1.1: Summary of area mapped and sections measured

<table>
<thead>
<tr>
<th>REGION</th>
<th>AREA MAPPED in km²</th>
<th>SECTIONS MEASURED</th>
<th>TOTAL THICKNESS in metres</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inanda</td>
<td>700</td>
<td>39</td>
<td>2573</td>
<td>1986</td>
</tr>
<tr>
<td>Stanger-Eshowe</td>
<td>320</td>
<td>29</td>
<td>2137</td>
<td>1987</td>
</tr>
<tr>
<td>Melmoth</td>
<td>223</td>
<td>20</td>
<td>803</td>
<td>1988</td>
</tr>
<tr>
<td>Kranskop</td>
<td>934</td>
<td>38</td>
<td>1922</td>
<td>1989</td>
</tr>
<tr>
<td>S. Natal</td>
<td>300</td>
<td>31</td>
<td>1717</td>
<td>1990</td>
</tr>
</tbody>
</table>
1.2.2 VERTICAL SECTIONS

Vertical stratigraphic sections were measured in all of the units identified (Table 1.1; App­1.2; Fig. App-1.1). The sections were measured using an Abney level and a 1,5 m staff. Data were later transferred to log sheets devised and recommended by Johnson (1987; 1992). The measured vertical sections were presented in internal reports of the Geological Survey of South Africa (Marshall 1987; 1988; 1991a; 1991b; 1991c). Selected portions of these sections are presented in Appendix 1 (Figs. App-1.3 to App-1.27; Table App-1.2).

1.2.3 SAMPLING PROGRAMME

Some 600 samples were taken throughout the basin for petrographic study. The following samples for specialised study were also taken: Two samples of mudstone and sandstone, N1 and N2, were sent to FM Consultants at Oxford, Britain for K-Ar and \(^{40}\text{Ar/}^{39}\text{Ar\)} dating. A selection of pebbles and cobbles was tested for compressive strength by the Geological Survey laboratory in Silverton. Sixteen samples, totalling 1708 individual clasts from the Ulundi and Tulini Members were taken for shape parameter determinations. The three major diametrical axes were measured, using a micrometer. The use of computer spread-sheet software aided the treatment of the clast shape data, and a programme by Cole and Basson (1986) was used for rotation of tilted-bed data and the statistical treatment of palaeocurrent measurements.
1.3 PREVIOUS WORK

1.3.1 STRATIGRAPHY

The first recorded reference to the rocks now known as the Natal Group was by Sutherland (1867), who called them the Palaeozoic Sandstone Formation. Other names applied to this succession were Palaeozoic Sandstone (Anderson, 1901), Table Mountain Sandstone (Anderson, 1904), Clairwood Sandstone (Schwarz, 1917), and Table Mountain Series (Krige, 1933). Various workers (Sutherland, 1868; Anderson, 1904; du Toit, 1920, 1931, 1946, 1954; Krige, 1933; Gevers, 1963; Hobday and Mathew, 1974; Visser, 1974; Kingsley, 1975; Hobday and von Brunn 1979; SACS, 1980; and Roberts, 1981, 1990;) have correlated the early Palaeozoic sandstones in Pondoland with those in KwaZulu-Natal (Fig. 1.2), but Schwarz (1917) firmly asserted that these same rocks were very different from the Table Mountain Sandstones of the then Cape Province, which included Transkei and Pondoland. This topic will be addressed Chapter 2 (stratigraphy).

Van Straten (1953) was the first to attempt a stratigraphic subdivision of these rocks, followed by Rhodes and Leith (1967), Visser (1974), Kingsley (1975), and Roberts (1981). SACS (1980) synthesised the work of the previous workers, and produced an overall stratigraphy for the Natal Group.

Hardie (1958), Du Toit (1931) and Rhodes and Leith (1967) discussed the derivation of the fine and coarse sediments laid down to form the Natal Group.
1.3.2 THICKNESS

The thickness of the Natal Group has also attracted some attention, and has been variously recorded, as shown in Table 1.2.

Table 1.2 Previously-recorded thicknesses of the Natal Group

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>THICKNESS (m)</th>
<th>LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutherland, 1868</td>
<td>120-150</td>
<td>KwaZulu-Natal</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Pondoland</td>
</tr>
<tr>
<td>Anderson, 1904</td>
<td>330</td>
<td>East of Melmoth</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>North of Hlabisa</td>
</tr>
<tr>
<td>du Toit, 1931</td>
<td>450-600</td>
<td>Umhlatuzi Trough</td>
</tr>
<tr>
<td>Krige, 1933</td>
<td>450-600</td>
<td>Near Durban</td>
</tr>
<tr>
<td>Kent, 1938</td>
<td>426</td>
<td>North of Durban</td>
</tr>
<tr>
<td>du Toit, 1954</td>
<td>430</td>
<td>Near Port Edward</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>Eastern Pondoland</td>
</tr>
<tr>
<td>Gevers, 1963</td>
<td>150</td>
<td>Lilani Hot Springs</td>
</tr>
<tr>
<td>King and Maud, 1964</td>
<td>400</td>
<td>Near Durban</td>
</tr>
<tr>
<td>Rhodes & Leith, 1967</td>
<td>460</td>
<td>North of Durban</td>
</tr>
<tr>
<td>Kingsley, 1975</td>
<td>330</td>
<td>South of Durban</td>
</tr>
<tr>
<td>Roberts, 1981</td>
<td>500-600</td>
<td>Near Durban</td>
</tr>
</tbody>
</table>

The relative thicknesses of the subdivisions are represented in Fig. 2.1.

1.3.3 PALAEONTOLOGY

Had the Natal Group contained diagnostic fossils, the stratigraphy and correlation with other units would have been facilitated much earlier. Sutherland (1868) stated that the rocks now known as the Natal Group are barren of any fossils, but Griesbach (1871), while
recognising the lithological similarity of the rocks in KwaZulu-Natal and Pondoland to the Table Mountain Sandstone of the Cape Colony, also recorded the presence of some bivalves and a Patella in a thin shale band within the Natal Group near Kranskop. Anderson (1901) reported failure in attempts to locate this fossiliferous shale band, and thus confirmed the complete lack of fossils in the Natal Group. He was consequently unable to estimate the age of these rocks. Rilett (1969) identified the locality, but failed to find any fossil remains. He reasoned that the presence of a Patella, a degenerate rather than a primitive gastropod, would imply a late Devonian age, and was therefore highly unlikely at the reported discovery site.

Lock (1973) discovered and identified protolycopods in what has hitherto been generally regarded as Natal Group sandstone 5 km west of Port St. Johns. Because lycopsids were rare in early Devonian times, and became abundant only in the late Devonian, he suggested that it is highly unlikely that any rock containing lycopsids (the so-called Natal Group at Port St. Johns included) could be correlated with the pre-Devonian Table Mountain Group of the Eastern and Western Cape Provinces. He therefore suggested that the Natal Group rocks in KwaZulu-Natal and Pondoland are the equivalent of the Witteberg Group of the Eastern and Western Cape Provinces. Hobday and Mathew (1974) recorded the occurrence of the trace fossils Scolicia and Planolites in sandstones of the Cape Supergroup of Pondoland. This was taken as evidence of a shallow marine shelf environment of deposition for the rocks in Pondoland. It has since become evident that the rocks in the Transkei are not continuous or isochronous with their supposed equivalents in KwaZulu-Natal. This is discussed further in Chapters 2 (Stratigraphy) and 6 (Deposition).

All further attempts to find fossils in the Natal Group have proved fruitless.
2. STRATIGRAPHY

2.1 EARLY STRATIGRAPHIC SUBDIVISIONS

The recognition of a persistent conglomerate zone by Kent (1938), the description of five distinguishable units including a "resistant quartzite (fall-marker)" band near Shongweni by Dodson (1951, p.6), and the identification of four distinct zones, including a "quartzite zone" near Umlazi by van Straten (1953, p.18), were the first attempts to subdivide the Natal Group. With the limited number of units present in the Natal Group, there can be little doubt that the names "resistant quartzite (fall-marker)" and "quartzite zone" refer to the same stratigraphic unit, as the respective authors place them second in succession, and some 50 m above the granitic basement. Added to this, the lithology and thickness of these two units agree in essence.

The author has attempted to relate the various stratigraphic subdivisions produced previously (Fig. 2.1), but the task has been made difficult by the lack of any clear commitment by previous authors to correlate their units with those of other authors. This situation came about largely because the various workers have investigated different areas at different times, and there are local variations in the development of the various stratigraphic units which had not been recognised previously, but which are now recorded in this dissertation. Disparities in thickness are not important at this level, as there is a considerable regional variation in the thicknesses of the various units.
2.2 RHODES AND LEITH (1967)

Rhodes and Leith (1967) were the first to formally publish a full stratigraphic subdivision of the Natal Group (Fig. 2.1), with two stages, three zones, and the "Orthoquartzite Marker", this last being the "resistant quartzite (fall-marker)" identified by Dodson (1951) and the "quartzite zone" of van Straten (1953). The Upper Quartzite of Rhodes and Leith presents a problem in that it is not represented in any of their measured sections, and the author could not locate such a unit anywhere in the basin.

2.3 KINGSLEY (1975)

Kingsley (1975) recognised the lithological disparity between the Natal Group in KwaZulu-Natal (Hibberdene facies) and its correlate in southern KwaZulu-Natal and Pondoland (Margate facies), and published a stratigraphic subdivision of each.

Kingsley's (1975) Mtwalume Arkose Formation and Rhodes and Leith's (1967) Basal Zone are clearly the same unit, as they both lie at the base of the sequence, in direct contact with the Precambrian basement, and are overlain by quartzitic sandstone. In Kingsley's (1975) Mkunya Orthosandstone Formation there are two quartzitic units, the lower of which is presumably the equivalent of Rhodes and Leith's (1967) Orthoquartzite Marker, the upper one being the equivalent of Rhodes and Leith's quartzitic and gritty sandstone lenses which they place some 30 m above their Orthoquartzite Marker. In both cases the two quartzitic sandstone units are separated by coarse, gritty, arkosic sandstones, which were not named.
From the above it should follow that Kingsley's (1975) Wood Grange Arkose Formation would seem to be the equivalent of the portion of the Arkosic Zone above the quartzitic and gritty sandstone lenses of Rhodes and Leith (1967), although Kingsley, in his Fig. 2, appears to correlate the Wood Grange Arkose Formation with the whole of the Arkosic Zone of Rhodes and Leith (1967). This is highly improbable, as shown by the author in the discussion on the Mariannhill Formation and the Tulini Member below. The Micaceous Sandstone Formation would be the unit named Micaceous Zone by Rhodes and Leith (1967).

The Hibberdene Sandstone Formation is taken by SACS (1980) to be the equivalent of the Upper Quartzite of Rhodes and Leith (1967), but the existence of this Upper Quartzite is in question, as discussed in paragraph 3.2 above. Further, the writer does not agree with Kingsley's (1975) placing of this stratigraphic unit in the Hibberdene facies, as Kingsley himself stated that the presence of this unit at Hibberdene is due to a northward transgression of the sea in which the Margate facies was deposited. It should therefore, lithostratigraphically, be placed in the Margate facies and not in the Hibberdene facies.

2.4 THE SOUTH AFRICAN COMMITTEE FOR STRATIGRAPHY (SACS), 1980

Lock (1973) discovered Devonian Lycopsid fossils in what had hitherto been regarded as Ordovician/Silurian Table Mountain Series rocks near Port St. Johns in Pondoland. The Working Group for the Cape System then suggested to the Central Committee of SACS, that these rocks in Pondoland and KwaZulu Natal be called "The Natal Group", to distinguish them from the older rocks of the western Cape Province. This was recorded in the minutes of the 10th meeting of SACS Central Committee, September, 1975.
SACS (1980), in an attempt to produce a formal and standardised stratigraphy for the Natal Group, referred to the work of Rhodes and Leith (1967) and Kingsley (1975), and compiled a stratigraphic column accordingly. SACS (1980) also called upon the personal experience of P.E. Matthews and D.L. Roberts in naming the units already identified, and such additional units as were deemed necessary.

The Eshowe Formation is clearly the same unit as the Mtwalume Arkose Formation of Kingsley (1975). The name was suggested by P.E. Matthews in a personal communication. The succeeding Mkunya Formation is the same as Kingsley's (1975) Mkunya Orthosandstone Formation, although SACS (1980) gives no indication of any further subdivision of their Mkunya Formation, in spite of the fact that this is clear (but unnamed) from the work of Rhodes and Leith (1967) and Kingsley (1975). In this context, Gevers (1963) noted that there are two stratigraphically specified quartzitic bands, separated by softer sedimentary rocks with a less-pronounced outcrop expression, in the Lilani hot springs area southeast of Greytown.

The Mlazi and Inanda Formations are, respectively, the equivalents of the Wood Grange Arkose Formation and the Micaceous Sandstone Formation of Kingsley (1975).

The Hibberdene Sandstone Formation was adopted directly from Kingsley (1975) and has been discussed under that heading.

The name for the Ulundi Member was suggested by P.E. Matthews in a personal communication to SACS, and refers to the coarse conglomerate at the base of the Natal
Group in the Ulundi area.

The rocks in Pondoland, which were correlated with the Natal Group, but were considered (by SACS, 1980) to be stratigraphically indivisible, were named the Msikaba Formation. This was also proposed by P.E. Matthews in a personal communication to SACS.

2.5 ROBERTS, 1981.

The Eshowe Formation was retained from SACS (1980), as was the Mkunya Formation, although Roberts subdivided this unit into the Kranskloof (silicified quartz arenite), Situndu (arkosic, gritty sandstone) and Dassenhoek (silicified quartz arenite) Members, thus formalising the situation described by Kingsley (1975), and hinted at by Gevers (1963).

The name "uMlazi Formation" was suggested to SACS (1980) by Roberts in a personal communication.

Roberts (1981) introduced the Mariannhill Formation, which is largely the same as the Inanda Formation of SACS (1980).

He also recognised a sporadically-developed conglomeratic unit above the Mariannhill Formation, which he named the Westville Formation.
2.6 PRESENT WORK

There were several problems in the existing stratigraphic subdivisions of the Natal Group, and the present study was initiated largely as an attempt to rectify this. At the commencement of the present study there was no overall synthesis of the stratigraphy of the Natal Group. Rhodes and Leith (1967) had discussed the area north of Durban and Kingsley (1975) attended to the area south of Durban. SACS (1980) presented a compilation of previous work. Roberts (1981) produced a workable stratigraphy for the Natal Group in the Durban area. The current investigation has revealed that none of the existing stratigraphic subdivisions was workable for the whole of the Natal Group occurrence, and the author has attempted to rectify this unsatisfactory situation by proposing a workable stratigraphic subdivision of the Natal Group as a whole. This is summarised in Table 2.1.

<table>
<thead>
<tr>
<th>FORMATION</th>
<th>MEMBER</th>
<th>DOMINANT LITHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARIANNHILL</td>
<td>Westville</td>
<td>matrix-supported conglomerate</td>
</tr>
<tr>
<td></td>
<td>Newspaper</td>
<td>arkosic sandstone</td>
</tr>
<tr>
<td></td>
<td>Tulini</td>
<td>small-pebble conglomerate</td>
</tr>
<tr>
<td>DURBAN</td>
<td>Dassenhoek</td>
<td>silicified quartz-arenite</td>
</tr>
<tr>
<td></td>
<td>Situndu</td>
<td>coarse arkosic sandstone</td>
</tr>
<tr>
<td></td>
<td>Kranskloof</td>
<td>silicified quartz-arenite</td>
</tr>
<tr>
<td></td>
<td>Eshowe</td>
<td>arkosic sandstone and shale</td>
</tr>
<tr>
<td></td>
<td>Ulundi</td>
<td>coarse clast-supported conglomerate</td>
</tr>
</tbody>
</table>
2.6.1 DURBAN FORMATION

The name **Durban Formation** was chosen by the author to encompass the five lower members of the Natal Group, as it is well developed in the Durban area. It commences with a basal conglomerate, passes up into arkosic sandstones, and ends with quartz-arenite, succeeded by the basal conglomerate of the overlying Mariannhill Formation, it was seen to represent a sedimentary cycle.

2.6.1.1 **The Ulundi Member:** This member was identified (SACS, 1980) as a conglomeratic unit at the base of the Natal Group in the north of the basin. Mapping within the basin confirmed this, with the addition of several minor occurrences in the south of the basin (Fig. 3.15; and geological maps Fig. App-2.3, App-2.5; App-2.6, App-2.10, App-2.11; App-2.13). The type area is taken as the north bank of the White Mfolozi River south of Ulundi (Fig. 1.1).

2.6.1.2 **The Eshowe Member:** The name Eshowe is retained in this unit, which is that portion of the former (SACS, 1980) Eshowe Formation which occurs between either the Kranskloof Member or Mariannhill Formation above, and either the Ulundi Member or the granitic basement below. The reason for this change of nomenclature of SACS and Roberts is as follows. The Kranskloof Member lenses out northwards in the vicinity of Eshowe (Fig. 1.1). Rhodes and Leith (1967) did not recognise it in the vicinity of Eshowe, but the present investigation revealed that it does occur as far north as the Mhlatuze River (Figs. 1.1; App-2.3). North of the Mhlatuze River, the Situndu Member rests directly on rocks of the Eshowe Member (Fig. App-2.15). The small lithological differences between the Eshowe and Situndu Members (Roberts, 1981) are not sufficient to make them separately
mappable in the absence of an intervening marker, as equally significant local variations occur within these members. The Eshowe and Situndu Members therefore merge into one unit, a clearly untenable situation if the two units do not belong to the same formation. The author has thus retained the name "Eshowe Member" for the portion of the succession which includes the mutually indistinguishable Eshowe and Situndu Members. The same procedure was followed by the compilers of the 1:250 000 Geological Survey map of area 3220 in the W. Cape (Sutherland). Here the Skoorsteenberg Formation lenses out, and the overlying Koedoesberg Formation merges with the underlying Tierberg Formation, and the name Tierberg Formation is retained.

The main reason for the separate existence of the Mkunya Formation (SACS, 1980; Roberts, 1981), as distinct from the preceding Eshowe Formation and the succeeding Mariannhill Formation above, is the presence of the two quartz-arenite units (Kranskloof and Dassenhoek Members). As discussed in more detail later in this and Chapter 6, these two units were thought to be littoral deposits laid down during a regression following a marine transgression from the south. They are separated by the coarse, arkosic sandstones of the Situndu Member which resulted from a temporary progradational event (Rhodes and Leith, 1967; Visser, 1974; Hobday and von Brunn, 1979; Roberts, 1981; Roberts, 1990). The presence of quartz arenites does not necessarily imply a marine environment of deposition (Kingsley, 1975; Chandler, 1988; Aspler et al. 1994). The non-marine origin of the Kranskloof and Dassenhoek Members is discussed in Chapter 6. Further, it has been shown (Marshall, 1991; Thomas et al. 1992) that the Natal Group rocks are much older than the marine sedimentary rocks of the Devonian Msikaba Formation of Pondoland (Lock, 1973) which were formerly believed to be part of the Table Mountain Group. The Natal Group and the Msikaba Formation are no longer correlated with each other, and it
is not justified to retain a separate formation to accommodate the two quartz arenite members which were hitherto thought to have been of marine origin.

The Eshowe and Mkunya Formations (SACS, 1980; Roberts, 1981) have been discontinued whereas the Ulundi, Eshowe, Kranskloof, Situndu and Dassenhoek Members have been included in the new Durban Formation.

2.6.1.3 Kranskloof Member This name was introduced by Roberts (1981), and is retained to identify the lower of the two quartz-arenite units in the Durban Formation. The type area is the Kranskloof Nature Reserve in Kloof, northwest of Durban. Du Toit and Leith (1974) correlated the quartzitic sandstone intersected in borehole JC-1 30 km off the KwaZulu-Natal coast near Stanger, with the Upper Quartzite of Rhodes and Leith (1967). They also correlated the overlying greenish grey diamictite, with which the quartzite has a gradational contact, with the "Dwyka Tillite of the Southern Cape Province" (p. 249, 250). The author has not seen the borehole core, but feels that the quartzite could be the Kranskloof Member, and the diamictite could be the Tulini Member. Doubts as to the existence of the Upper Quartzite are discussed under 3.2 above, and the gradational contact with the overlying "diamictite" seems unlikely if the diamictite belongs to the Dwyka Group, considering the difference in age. The Natal Group is now known to be 490 Ma, (Thomas et al. 1992) and the age of the base of the Dwyka Group indicated as approximately 290 Ma (Visser, 1990).

2.6.1.4 Situndu Member The name Situndu Member was introduced by Roberts (1981) to identify the coarse arkosic argillites occurring between the Kranskloof and Dassenhoek
2. STRATIGRAPHY

Members. The type area is to the southwest of Durban.

2.6.1.5 Dassenhoek Member Roberts (1981) proposed the name Dassenhoek Member for the upper of the two quartz-arenite units of what is now the Durban Formation. The type area is to the southwest of Durban.

2.6.2 MARIANHILL FORMATION

This Formation, named by Roberts (1981), has been extended by the present author to include Roberts' uMlazi and Westville Formations, as well as the new Tulini Member.

2.6.2.1 The Tulini Member The Tulini Member, named by the author after the Tulini area east of Greytown, is probably the same as a) the persistent conglomeratic zone mentioned by Kent (1938), b) the thin pebble beds of Kri ge (1933), c) the monomict small-pebble conglomerates of Gevers (1963) and d) the pebbly grits recorded by Rhodes and Leith (1967) at the base of their Micaceous Zone. It is the lowest unit of the Mariannhill Formation and the basal contact is paraconformable. In the north it overlies the Eshowe Member directly, and southwards it progressively oversteps onto the Kranskloof, Situndu and Dassenhoek Members of the Durban Formation. It forms a useful marker (Fig. App-2.15).

2.6.2.2 The Newspaper Member The present study revealed that the uMlazi Formation (SACS, 1980; Roberts, 1981) is not a mappable unit over the whole basin, and although the arenaceous and argillaceous rocks above the Dassenhoek Member might be locally
slightly more micaceous than the rocks higher up in the succession, there is no mappable horizon at which the boundary can be taken, and it is not possible to differentiate, on a regional scale, any unit which is more micaceous than any other. The author has therefore included these rocks as an integral part of the Newspaper Member, and has not considered perpetuating the name uMlazi.

Because the Mariannhill Formation is subdivided into three distinct units, it is necessary to name at least two of these units, and to accord them member status. The naming of the two conglomeratic members (Tulini and Westville) has met with no opposition, but there appears to be some doubt as to the necessity of formally naming the central, arkosic sequence of arenites which lies between the two conglomeratic units. If this central unit is not formally named, then reference to it would entail using one of the following unsatisfactory informal names: a) the rest of the Mariannhill Formation, b) the balance of the Mariannhill Formation, c) the major portion of the Mariannhill Formation or d) the non-conglomeratic portion of the Mariannhill Formation.

None of these terms is satisfactory. Alternatives a) and b) imply minor status to an ill-defined succession of rocks which, in fact, constitutes between 90 and 100% of the Mariannhill Formation. Alternative c) indicates anything more than 50% of the formation, and would not necessarily exclude either of the conglomeratic members. Also, by using c), there is no necessary implication of a continuous succession, but merely sufficient beds to constitute more than 50% of the formation. The use of d) would also be ambiguous, as it could include the non-conglomeratic beds within the Tulini and Westville Members. The author's initial choice of Ngcongangcondeunga Member, after the locality in which the unit is
very well developed, was discarded because of anticipated difficulty in spelling and pronunciation.

The author has therefore decided to name the portion in question the "Newspaper Member" after the area (Fig. 1.1) in the Umvoti Location, northeast of Appelsbosch Mission, and near where the unit is particularly well developed (Ngcongangconga). The distribution is shown in Fig. App-4.7). The area between Appelsbosch and Newspaper is the type area.

2.6.2.3 The Westville Member The Westville Formation, identified and named by Roberts (1981) is a sporadically-developed conglomeratic unit occurring at, or near the top of the Natal Group stratigraphic pile. The writer contends that it is too sparsely developed, to be a formation, and is thus given member status. The type area is Westville, to the northwest of Durban (Fig. 1.1).

2.6.3 GENERAL CONSIDERATIONS

In their generalised section of their Table Mountain Series in the northern coastal regions of KwaZulu-Natal, Rhodes and Leith (1967, p.17) placed the "pebbly grit" some 25 m above the quartzitic lenses which are taken to be what is now known as the Dassenhoek Member. However, none of their sections I to VII (Rhodes and Leith, 1967, Fig.3, facing p.20) display either the pebbly grits or quartzitic sandstone lenses. Their Section V is to the north of the northern limit of the Dassenhoek Member, and their Section III is to the south of the southern limit of the Tulini Member (See Chapter 3, Dassenhoek and Tulini Members). distribution of Tulini Member). The Tulini Member does not rest on rocks any
younger than the Dassenhoek Member (Marshall, 1988; 1991a; 1991b). Therefore, the 25 m of Arkosic Zone which Rhodes and Leith (1967) place between the quartzitic lenses below, and the pebbly grit above, does not exist, and Rhodes and Leith (1967) should have placed the pebbly grits immediately above the quartzitic lenses. It is apparent that these inconsistencies are the result of insufficient data on which to base their stratigraphic column. The upper portion of the Arkosic Zone thus falls away, and is not to be correlated with the Arkose Formation as suggested in Kingsley's (1975) Figure 2.

2.6.3.1 Correlation of Early to Middle Palaeozoic rocks in Pondoland with those in KwaZulu-Natal: Previously, the Natal Group, commonly referred to as the Table Mountain Series, was believed by most workers (du Toit, 1946, 1954; Rhodes and Leith, 1967; Hobday and Mathew, 1974; Visser, 1974; Kingsley, 1975; Hobday and von Brunn, 1979; Roberts, 1981; and Roberts, 1990) to extend as far south as Port St. Johns (Geological Survey of South Africa, 1:1 000 000 Geological map of South Africa, 1984). Schwarz (1917), however, recognised two differing lithologies to the north and south, respectively, of Port Shepstone. The rocks to the north were described as reddish, arkosic sandstones, while the rocks to the south consist of clean, pale grey quartz arenites. Schwarz proposed that the rocks to the north of Port Shepstone are much older than those to the south, and postulated that it was inconceivable that the Table Mountain sandstone of Pondoland and southern KwaZulu-Natal could change to what he named the Clairwood Sandstone of KwaZulu-Natal over a distance of only 8 km. Du Toit (1920), possibly referring to Schwarz (1917) drew attention to the fact that the correlation of the Table Mountain sandstones in KwaZulu-Natal with that in the Cape Province, had been questioned. Du Toit reiterated categorically that the two are lithologically identical,
2. STRATIGRAPHY

including the presence of a brick-red shale at the base. Du Toit (1920) was probably comparing the southern assemblage of Pondoland (and not the northern assemblage of KwaZulu-Natal) with the Table Mountain Sandstone of the Western Cape Province, as he recognised the differences between the lithologies of the rocks to the north and south, respectively, of Port Shepstone. Du Toit (1954) stated, without further reference, that Schwarz's (1917) lithological and chronological separation of the rocks to the north and south, respectively, of Port Shepstone, was controverted without difficulty. So that there is no confusion, the present author, in referring to the lithologies in KwaZulu-Natal and Pondoland, uses the word "assemblage" rather than "Facies", which has been used by other authors. To substantiate the equivalence of these two assemblages, du Toit reported that the white quartz arenites of the southern assemblage pass laterally northwards near Highflats into red feldspathic sandstones of the northern assemblage, possibly inferring a lateral facies change from marine to terrestrial deposits.

Other workers have also recognised this lithological disparity, as in Table 2.2 below.

Table 2.2 Historical recognition of lithological disparities

<table>
<thead>
<tr>
<th></th>
<th>NORTHERN ASSEMBLAGE</th>
<th>SOUTHERN ASSEMBLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwarz (1917)</td>
<td>Clairwood Sandstone</td>
<td>Table Mountain Sandstone</td>
</tr>
<tr>
<td>du Toit (1954)</td>
<td>red feldspathic sandstones (informal)</td>
<td>white sandstone (informal)</td>
</tr>
<tr>
<td>Hardie (1958)</td>
<td>Red Facies</td>
<td>Grey Facies</td>
</tr>
<tr>
<td>Kingsley (1975)</td>
<td>Hibberdene facies</td>
<td>Margate facies</td>
</tr>
</tbody>
</table>

Hardie (1958), Visser (1974) and Kingsley (1975) introduced the concept of two facies, to the north and south, respectively, of Hibberdene on the KwaZulu-Natal South Coast (Table
2.2) to accommodate the lithological disparity between the two assemblages which were, at that time, regarded as mutual equivalents.

Scant cognisance of the differences between the northern and southern assemblages (Table 2.3) was taken in correlating the northern and southern assemblages.

Table 2.3 Lithological and interpretative differences of the northern and southern assemblages.

<table>
<thead>
<tr>
<th>NORTHERN ASSEMBLAGE</th>
<th>SOUTHERN ASSEMBLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfossiliferous</td>
<td>Fossiliferous</td>
</tr>
<tr>
<td></td>
<td>(Lock, 1973; Hobday and Mathew, 1974; Hobday et al. 1971; Kingsley, 1975)</td>
</tr>
<tr>
<td>Ordovician 490 Ma (40Ar/39Ar, Thomas et al. 1992)</td>
<td>Devonian, 350 Ma, (Lock, 1973)</td>
</tr>
<tr>
<td>Braided fluvial</td>
<td>Shallow marine</td>
</tr>
<tr>
<td>Immature</td>
<td>Mature</td>
</tr>
<tr>
<td>Arkosic sandstone</td>
<td>Clean quartz arenite</td>
</tr>
<tr>
<td>Sandstone and shale interbedded</td>
<td>Quartz arenites predominant</td>
</tr>
<tr>
<td>Colour is red</td>
<td>Colour is pale grey</td>
</tr>
</tbody>
</table>

It is important to note that, on the beach at Wood Grange, at the correct stratigraphic position within the northern assemblage red beds, there are two greyish-red quartz arenites - the Kranskloof and Dassenhoek Members respectively - which are stratigraphically far below the pale grey quartz arenites which Kingsley (1975) called the "Hibberdene Sandstone Formation".

The author has thus decided to restrict the term "Natal Group" to the red-bed sequence north of Hibberdene, and to call the quartz-arenite sequence which extends southwards from
2. STRATIGRAPHY

Port Shepstone into Pondoland, the "Msikaba Formation". This name was suggested by P.E. Matthews, from the Msikaba River northeast of Port St. Johns (SACS, 1980). The Msikaba Formation is not divisible into distinct mappable lithostratigraphic units (SACS, 1980), as confirmed during the current study (Fig. App-1.27 - measured vertical section at Port Edward).
3. DESCRIPTION OF THE NATAL GROUP UNITS

Mutual relationships of the various stratigraphic units of the Natal Group, comprising the Durban and Mariannhill Formations, are shown in selected geological maps (Figs. App-2.2 - App-2.14), and measured sections (Figs. App-1.3 - App-1.27) produced during this study. The key to the vertical sections is in Fig. App-1.2. The various stratigraphic units represented in the sections presented in this dissertation, are shown in Table App-1.2. Particle sizes are based on the Wentworth particle size classification (Krumbein and Sloss, 1963). All rock colours referred to in this chapter are according to the Munsell scale (Goddard et al. 1948).

The sandstone classification used in this dissertation is that proposed by Mc Bride (1963). The composition plots shown on the Mc Bride (1963) diagrams for each unit are derived from the determined composition statistics in Table App-3.2. The cement is included as a component of the rocks investigated, but in plotting the Mc Bride ternary diagrams, the percentage of quartz and chert, feldspar and lithics have been normalised after removal of the cement, as the cement content is not a factor in sandstone classification.
3. DESCRIPTION OF NATAL GROUP UNITS

3.1 DURBAN FORMATION

The Durban Formation is the older of the two formations proposed for the Natal Group, and occurs throughout the Natal Group depositional basin. The name was proposed by the author, as the unit is well developed in the vicinity of Durban. This formation is capped by resistant lithologies and is consequently more conspicuous than the younger Mariannhill Formation. The Durban Formation begins with a basal conglomerate which is followed by a succession of arkosic sandstones and shale, and ends with two quartz-arenite units separated by arkosic sandstone.

3.1.1 ULUNDI MEMBER

3.1.1.1 General The name Ulundi was proposed by Matthews (in SACS, 1980), who also identified the type area as the north bank of the White Mfolozi River, 1.5 km downstream from the bridge over the river on the old road between Melmoth and Ulundi. This member is distinguished by boulder- to pebble-conglomerates and subordinate interbedded sandstones and shales.

Occurrence of the Ulundi Member is limited to lenticular bodies in the northern and northwestern portions of the Natal Group depositional basin with some minor occurrences in the southwest (Figs. 3.15; App-2.15). This, the oldest unit in the Natal Group, rests unconformably on the Precambrian basement rocks (Fig. 3.1) and is usually overlain by rocks of the Eshowe Member except in certain localities near the western margin of the basin where it is overlain by rocks of the Dwyka Group (Figs. 3.2, App-2.15).
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.1 Ulundi Member conglomerate resting on ferruginous Pongola Supergroup argillite, west of Ulundi.

Fig. 3.2 Stratified Ulundi Member overlying basement and overlain by Dwyka Group, south of Babanango. Contacts shown by arrows.
3. DESCRIPTION OF NATAL GROUP UNITS

3.1.1.2 Thickness: The large range in the thickness of the Ulundi Member (from 1 to 59 m), as summarised in Table 3.1, is a reflection of both bedrock topography, and the deposition within intermontane valleys and on associated alluvial fans. The first column, Area, refers to the areas of study as outlined in Figure 1.1. The maximum thickness was measured in the type area (Stratigraphic section, Fig. App-1.8).

<table>
<thead>
<tr>
<th>AREA</th>
<th>NUMBER OF SECTIONS MEASURED</th>
<th>MEAN THICKNESS</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELMOTH</td>
<td>7</td>
<td>15,7</td>
<td>1,5</td>
<td>59,4</td>
</tr>
<tr>
<td>ESHOWE</td>
<td>2</td>
<td>1,25</td>
<td>1,0</td>
<td>1,5</td>
</tr>
<tr>
<td>KRANSKOP</td>
<td>4</td>
<td>29,6</td>
<td>2,0</td>
<td>47,0</td>
</tr>
<tr>
<td>DURBAN</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SOUTHERN K'-NATAL</td>
<td>4</td>
<td>16,7</td>
<td>2,9</td>
<td>31,5</td>
</tr>
<tr>
<td>OVERALL</td>
<td>17</td>
<td>17,6</td>
<td>1,0</td>
<td>59,4</td>
</tr>
</tbody>
</table>

3.1.1.2 Lithology

The Ulundi Member consists of greyish red, usually matrix-poor, clast-supported, conglomerate with minor lenticular beds of sub-arkosic sandstone and shale.

Conglomerate: The conglomerates are monomict, consisting of greyish red to dusky red, very well-rounded quartzite clasts (Fig. 3.3) and minor jasper which is less well-rounded. The matrix comprises poorly-sorted, clayey sandstone which is very ferruginous. The largest clast observed has a long axis diameter of 0,5 m, but larger clasts have been reported (du Toit, 1931: 1 m; Matthews, 1961: 2 m; Hobday and von Brunn, 1979: 2 m).
Fig. 3.3 Imbricated, well-rounded clasts in monomict Ulundi Member conglomerate, south of Ulundi.
An estimated mean long axis diameter, for the type area, is 150 mm. Normally, in the Ulundi Member, there is no marked relationship between clast size and the vertical position within the unit, but at Nsuze (Marshall, 1991c) there is a general grading from a mean long axis diameter at the base of 0.26 m, through 0.78 m some 15 m above the base, to 0.1 m at the top - some 42 m above the base. The maximum clast size is 0.605 m at the base and 0.41 m at the top.

The clasts are predominantly equant with a high degree of sphericity. Some scatter into the prolate, bladed and oblate fields (Zingg, 1935; Boggs, 1987; Barrett, 1980) (Fig. 3.4) occurs. Scatter in the sample taken from the Nsuze area is more pronounced than in those taken from the type area at Ulundi and from Dolwana (Fig. 1.1). The clasts of the Ulundi Member conglomerate exhibit pressure solution hollows and fracturing at most occurrences. Locally, deposits with flat-lying angular clasts are developed. In Fig. 3.5 the clasts are well rounded, but are clearly aligned horizontally. The conglomerate is clast supported, but the matrix is not sparse. It would thus seem to be a cohesive debris-flow, as described by Lowe (1982), with a clast-supported fabric and a variable, but generally small, proportion of fine-grained matrix. The outcrop illustrated in Fig. 3.6 has a similar deposit at the base, immediately overlying the basement, with a matrix-supported conglomerate containing angular, horizontally-aligned clasts, overlying it. This is also seen to be a debris-flow deposit. It would seem that the order of deposition seen in Fig. 3.6 can be reversed, as seen in Fig. 3.7, indicating that these two types of conglomerate occur as pulses, and the nature depends on the type of clast and amount of sand-clay slurry available. Other deposits with unsorted, unoriented, very angular clasts also occur (Fig. 3.8). These are also
NSUZE SHAPE PARAMETERS

a) Nsuze River valley (sampling locality P)

ULUNDI SHAPE PARAMETERS

b) Ulundi (sampling locality O)

DOLWANA SHAPE PARAMETERS
c) Dolwana (sampling locality N)

Fig. 3.4 Shape Parameters and Flatness vs Sphericity, ULUNDI MEMBER.

Ob = oblate; Eq = equant; Bl = bladed; Pr = prolate
Fl = fluvial; Be = beach; \(n = \) number of clasts measured
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.5 Clast-supported Ulundi Member conglomerate with flat-lying clasts, transported by hyperconcentrated flood flow, south of Ulundi, south bank of White Mfolozi River.

Fig. 3.6 Base of Ulundi Member. Note debris-flow (see Collinson and Thompson, 1982, p. 110) with flat lying, angular clasts, and underlying clast-supported to matrix-supported conglomerate with flat-lying clasts, south of Babanango.
Fig. 3.7 Base of Ulundi Member, southeast of Babanango showing angular, tabular clasts with horizontal orientation, overlain by conglomerate with typical rounded clasts and high matrix content.

Fig. 3.8 Ulundi Member conglomerate with angular clasts northeast of Nkandla.
3. DESCRIPTION OF NATAL GROUP UNITS

interpreted as debris flow deposits. At the top of measured section in the type area (Fig. App-1.8), there are two atypical beds of conglomerate, each 1 m thick and lying in direct vertical juxtaposition. They are tabular, polymict and matrix-supported. The clasts are well rounded and consist of white quartz, grey and green quartzite and black chert. The clast-packing-density (Kahn, 1956) is 50%. The mean long axis diameter is 68 mm, and the maximum is 200 mm. The matrix is silicified, coarse-grained to very coarse-grained sub-arkosic sandstone which is pale red.

In comparison with the conglomerates of the Tulini Member, it is seen that the mean nominal diameter is much larger in the Ulundi conglomerates, and the oblate/prolate index is much smaller. The elongation, apart from the sample from Nsuze, is greater. Also, the sample from Nsuze shows lower sphericities and coefficients of flatness than samples from the Tulini Member.

At two localities, respectively at the base and near the top of the stratigraphic section measured in the type area (Fig. App-1.8), the azimuths of the longest horizontal axes of 402 clasts, as seen on the bedding surfaces, were measured and plotted as a rose diagram (Fig. 3.9). It is clear that there is no preferred orientation of the clasts at these positions, indicating a lack of pronounced imbrication. Reddering (pers. comm.)\(^1\) has explained the shape of this diagram as follows: a) The largely equant clasts would not be expected to produce imbrication, as a short to intermediate axis ratio of less than 1/3 is required for clear imbrication to develop; and b) The maltese cross configuration of this rose diagram (Fig. 3.9) is typical of fluvial environments, where the ellipsoidal clasts roll and are aligned

\(^1\) J.S.V. Reddering, Council For Geoscience, Port Elizabeth
Fig. 3.9 Orientation of Ulundi Member clasts.
transverse to the current during normal flow. Under reduced flow conditions, the clasts become aligned parallel to the current direction, and move by sliding, under low-flow conditions. Typically, the Ulundi Member conglomerate is well stratified (Fig. 3.2), but individual associated beds are massive and unsorted (Fig. 3.3), with sparse matrix.

Sandstone: The associated sandstone occurs as lenticular beds within the conglomerate, constituting 10-15% of the whole, with a tendency to be isolated. The reddish-grey beds are between 0.1 and 0.4 m thick, with a lateral extent of about 20 to 25 m, and are conglomeratic in part. The arkosic sandstone (Fig. 3.10, Table App-3.4) is poorly sorted, with planar cross bedding indicating a palaeocurrent direction from northeast to southwest.

Shale: The reddish-grey shale also occurs as lenticular beds 0.1 to 0.4 m in thickness and 5 to 15 m in lateral extent, and constitutes approximately 5% of the Ulundi Member. Apart from shaly lamination, the beds are structureless, but are seen to be draped over the larger clasts protruding from the conglomerate bed beneath (Fig. 3.11).

3.1.1.3 Other Occurrences of the Ulundi Member

Situated immediately west of Loliwe Station on the Vryheid-Richards Bay railway line, 700 m east of the 1987 tunnel, 5 km west of Ulundi, is an erosional window in the Dwyka Group rocks, in which are exposed rocks of the Pongola Supergroup. A railway cutting excavated within this window, along a realignment of the railway line, has revealed the presence of a palaeotalus deposit which was formed immediately prior to the onset of the Natal Group deposition. The relationships between the various lithologies (metavolcanic floor, palaeotalus, argillaceous rocks, arenaceous rocks, Dwyka Group cover) in this cutting are illustrated in Fig. 3.12.
Fig. 3.10 Composition of Ulundi Member sandstones
Fig. 3.11 Ulundi Member conglomerate with interbedded shale band draped over boulder protruding from lower bed, south bank of White Mfolozi River, south of Ulundi.
Fig. 3.12 Geological map of Loliwe palaeotalus deposit
Morphology: The palaeotalus occurs on the steep (18° to 27°), south-facing slope beneath a krans of Pongola Supergroup quartzite which is now partly obscured by rocks of the Dwyka Group. The exposed portion of the palaeotalus measures 180 m from east-west, and is estimated to be approximately 200 m from north to south. The maximum thickness is estimated to be 15 m (Marshall, 1991a) It should be understood that the thickness of an irregular body such as this palaeotalus deposit will have a considerable lateral variation.

Lithology: The palaeotalus consists of a haphazard accumulation of very angular blocks and fragments of pale, greyish yellow green quartzite which range in size from a few centimetres to more than 7 m (Fig. 3.13a). There is a concentration of larger blocks in the central portion of the occurrence. The interstices have been filled by horizontally-layered, greyish red to dusky red, micaceous, silty to sandy mudstone. This same mudstone fills some of the hollows in the irregular surface (Fig. 3.13a). A modern talus deposit, formed by a rock avalanche as defined by Blair and Mc Pherson (1994) is illustrated in Fig. 3.13b for comparison.

The argillaceous unit overlying the palaeotalus is seen to be the oldest unit of the fluvial rocks of the Eshowe Member, and consists of a ferruginous, greyish red to dusky red, micaceous silty to sandy shale which has crude stratification (Fig. 3.13a). It occurs in depressions in the irregular upper surface of the palaeotalus, and as the matrix of the palaeotalus. The maximum thickness is 2 m. The floor of the major depression slopes at 16° in a direction of 200° (Fig. 3.12).

The arenaceous unit, which stratigraphically overlies the argillaceous unit, is a greyish pink, coarse- to very coarse-grained, poorly-sorted, immature, arkosic sandstone. In parts it is
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.13a Loliwe palaeotalus deposit (Ulundi Member) showing haphazard accumulation of angular, poorly-sorted blocks of quartzite, and an overlying deposit of stratified shale (Eshowe Member), west of Ulundi (Photo: V. von Brunn, human figure for scale)

Fig. 3.13b Exhumed palaeokrans of Pongola Supergroup with modern avalanche talus deposit, west of Ulundi.
3. DESCRIPTION OF NATAL GROUP UNITS

a polymict, small-pebble clast-supported conglomerate, with clasts up to 10 mm in diameter. The clasts are well-rounded and consist of quartz, chert and jasper. The accessible portion (not obscured by Dwyka Group cover) is 14 m thick. The dominant primary sedimentary structure is planar cross-bedding which indicates a palaeocurrent direction from northeast to southwest, roughly parallel to the present strike of the floor, which slopes to the southeast at 14°. The bedding is of the order of 30 cm thick, and is horizontal, the latter, in conjunction with the steep slope of the palaeofloor, indicates that this occurrence represents valley-fill. Soft-sediment deformation of the beds indicates slumping of the sediments, initiated, possibly, by instability of the sediments on the relatively steep slope of the palaeofloor, as discussed in Chapter 6. Deposition.

It is argued that the Loliwe palaeotalus deposit is one of many similar contemporaneous deposits which were the source of the well-rounded quartzite clasts which make up the typical Ulundi conglomerate, and the Loliwe deposit has thus been included stratigraphically in the Ulundi Member of the Durban Formation. The greyish red colour of some of the Ulundi Member clasts would have been derived during the transport from the source to the depositional site, while other clasts are coloured red throughout, and were derived from a red quartzite. The arenaceous and argillaceous units have been included in the Eshowe Member, as there is no lithological or stratigraphic reason to do otherwise.

In the far south of the basin, at the positions indicated (Fig. 3.15), there is a conglomerate, usually matrix supported, polymict (quartz, quartzite and chert), with moderately-rounded clasts (Fig. 3.15). The clast packing density is estimated at 45%. The author has included this in the Ulundi Member.
Fig. 3.14 Ulundi Member conglomerate from near the southern limit of the basin, near Ntabakucasha.
3. DESCRIPTION OF NATAL GROUP UNITS

3.1.2 ESHOWE MEMBER

3.1.2.1 General The Eshowe Member is the most widely-distributed unit of the Natal Group, and is present everywhere in the basin (Figs. 3.15; App-2.15). The name of this member was introduced by P.E. Matthews (in SACS, 1980), who identified the type area as the vicinity of Eshowe. The Eshowe Member consists essentially of sandstone with subordinate interbedded shales and siltstones. Over most of the basin it lies unconformably on the granitic and supracrustal Precambrian basement rocks (Fig. 3.16), except where it rests on the Ulundi Member (Fig. App-2.15).

3.1.2.2 Thickness: The thickness ranges from 0.7 to 142 m (Table 3.2). The isopach map of the Eshowe Member (Fig. 3.15) reveals a deep trough which, because of a lack of data, appears to be open-ended to the northeast. It also shows that the deepening of the basin from the lateral margin towards the central axis is much more rapid in the north than in the south. Of interest is a basement ridge - trending NE-SW - in the vicinity of Pietermaritzburg. Along this Pietermaritzburg Ridge the Dwyka Group rests directly on the basement rocks.

The thickness variation is attributed, in part, to the highly irregular palaeorelief of the basin-floor. However, the main factor determining the variation in thickness would seem to be the position within the basin. Both the mean and maximum thicknesses increase southwards from the northern limit of the basin to a maximum in the Eshowe area, and then decrease southwards to a minimum at the southern limit of the basin. The apparently anomalous decrease in thickness in the Kranskop area merely reflects the thinning of the
Fig. 3.15 Isopach map of Eshowe Member, showing limit of Ulundi Member occurrences.

Isopach values in metres

LEGEND

COLOUR

THICKNESS

> 140 m

120 - 140 m

100 - 120 m

80 - 100 m

60 - 80 m

40 - 60 m

20 - 40 m

< 20 m

-25 measured thickness

Boundary of Ulundi Member occurrences.
Fig. 3.16 Eshowe Member overlying basement granite unconformably, and conformably overlain by Kranskloof Member at Shongweni Falls. Contacts marked by arrows.
3. DESCRIPTION OF NATAL GROUP UNITS

Table 3.2 Thickness of Eshowe Member (metres)

<table>
<thead>
<tr>
<th>AREA</th>
<th>NUMBER OF SECTIONS MEASURED</th>
<th>MEAN THICKNESS</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELMOTH</td>
<td>6</td>
<td>57,75</td>
<td>16,0</td>
<td>96,0</td>
</tr>
<tr>
<td>ESOWE</td>
<td>7</td>
<td>89,7</td>
<td>35,5</td>
<td>142,5</td>
</tr>
<tr>
<td>KRANSKOP</td>
<td>24</td>
<td>32,8</td>
<td>4,0</td>
<td>67,5</td>
</tr>
<tr>
<td>DURBAN</td>
<td>19</td>
<td>47,9</td>
<td>15,0</td>
<td>79,5</td>
</tr>
<tr>
<td>SOUTHERN K'-NATAL</td>
<td>16</td>
<td>24,2</td>
<td>0,7</td>
<td>48,5</td>
</tr>
<tr>
<td>OVERALL</td>
<td>75</td>
<td>44,0</td>
<td>0,7</td>
<td>142,5</td>
</tr>
</tbody>
</table>

unit towards the western margin of the basin. Thicknesses of less than 10 m for the Eshowe Member are revealed in several sections measured near its southern periphery, and thus reflect thinning of the unit at its extremities.

3.1.2.3 Lithology The Eshowe Member consists of interbedded quartz arenites, sub-arkosic to arkosic sandstones, siltstones and shales. The finer rocks are usually micaceous and darker in colour than the coarser varieties. The Eshowe Member consists of 85-95% coarse- to very coarse-grained, immature, poorly-sorted, sandstones, with subordinate interbedded shales and siltstones. The colour ranges from greyish red to dusky red. Moderately rounded clasts of quartz, quartzite and jasper, 5-30 mm in diameter, are widely dispersed within the sandstone. The clasts also occur commonly as single-layer lag conglomerates throughout the unit, whereas pebbly lenses, approximately 15 cm thick, occur near the base of the Eshowe Member (Fig. 3.17). Rip-up clasts of reddish micaceous shale are common in the sandstones (Fig. 3.18).
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.17 Small-pebble conglomerate lens near base of Eshowe Member, near Ulundi

Fig. 3.18 Rip-up clast of purple mudrock in Eshowe Member sandstone, SE of Greytown
3. DESCRIPTION OF NATAL GROUP UNITS

The arenaceous rocks constituting the Eshowe Member fall mainly into the sub-arkose and quartz-arenite fields of the Mc Bride (1963) sandstone classification, with minor occurrences within the arkose and sub-litharenite fields (Fig. 3.19). A lithology encountered commonly in the Eshowe Member, is a silicified, very coarse-grained arkose, whose reddish colour is due largely to red orthoclase present in the rock (Fig. 3.20). At Wood Grange near Hibberdene and Mahlabatshane south of Highflats, the basal beds of the Eshowe Member are extremely coarse, with large, angular fragments of quartz and unweathered feldspar.

Interbedded in the sandstones are beds of greyish red to dusky red shale and siltstone with an estimated 10-15% fine white muscovite - both authigenic and allochthonous (Thomas et al. 1992). The shale beds are of the order of 5-30 cm thick and up to 30 m in lateral extent (Fig. 3.21 and see measured sections, Figs. App-1.3 to App-1.27).

A very common structure noted in the Natal Group is reminiscent of a reactivation surface, except that the cross-bedding set below the discontinuity - marked by a clay drape a few centimetres thick - is not bevelled according to the description of a reactivation surface by Klein (1970) and Collinson and Thompson (1982). The author suggests that under some circumstances, such as protective armouring by clay drapes deposited during periods of reduced flow and quiescence, and exposure to the air enhancing the cohesive strength of the clay, the underlying cross-beds would be protected against the erosive effects of the subsequent moderate flow regime event (as evidenced by the tabular cross beds - see Harms and Fahnstock, 1965) No bevelling would take place, and the cross-bedded set would be extended downstream. It is thus proposed to include this feature, which in effect
Fig. 3.19 Composition of Eshowe Member sandstones
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.20 Very coarse-grained sandstone to granule-conglomerate with orthoclase imparting red colour to the rock, south of Mid Illovo.

Fig. 3.21 Thin beds of shale in Eshowe Member. Stick is 1.5m in length, south of Ulundi.
marks an interruption and reactivation in the formation of a bed, under the term "reactivation surface". On occasions, when the erosive effect of the river exceeded the cohesive strength of the clay layer, these argillaceous deposits appear to have served as a source for rip-up clasts occurring in succeeding sandstone beds (Fig. 3.18).

Although the Eshowe Member consists predominantly of arenaceous sediments with subordinate interbedded greyish red to dusky red micaceous shale with a lenticular habit (Fig. 3.22), there are also localities where the argillaceous sediments are dominant. While the shale beds in the Eshowe Member are usually of the order of 5 to 30 cm thick and 15 to 30 m in lateral extent, and usually occurring individually, there are occurrences where a shale unit exceeds 3 m in thickness. The base of the Eshowe Member usually comprises coarse-grained, arkosic sandstone, but there are several localities where shale several metres thick is developed at the base.

A sample of siltstone taken from near the top of the Eshowe Member, a few hundred metres upstream from the bridge on the old South Coast road, over the Mtwalume River, contained clastic particles now consisting of illite. These have been identified by Fitch (Thomas et al. 1992), from their typical shape, and from the fact that the feldspars in the sample are all unaltered, as originally having been glass shards. This is the first recorded evidence of volcanic activity contemporaneous with the deposition of the Natal Group.

K-Ar and $^{40}\text{Ar}/^{39}\text{Ar}$ isotopic data from the same samples reveal a complex history of isotopic resetting. Pan-African K-Ar ages of \sim580 Ma were obtained from detrital muscovites, whereas secondary clay fractions suggest major K-Ar components at \sim400,
Fig. 3.22 Eshowe Member sandstone with interbedded purple shale and siltstone. Note lenticular habit of beds, south of Kranskop. Stick is 1.5 m in length.
3. DESCRIPTION OF NATAL GROUP UNITS

~350, and ~260 Ma. The last event reflects partial overprinting during the Cape orogeny, but the significance of the older dates is less certain. 40Ar/39Ar spectrum analyses of the two samples suggest that the Natal Group was deposited at ~490 Ma (See Thomas et al. 1992).

3.1.2.4 Primary Sedimentary Structures Sandstone beds are the dominant feature in the Eshowe Member, and constitute some 75-90% of the whole, but interbedded shale is common, occurring as beds or very thin (one or two centimetres thick) drapes separating the sandstone beds. A typical situation is illustrated in Fig. 3.22 where both tabular and lenticular beds of sandstone and shale occur. Bed thicknesses vary between 15 cm and 1,0 m for the arenaceous rocks, with an estimated average bed thickness of approximately 30 cm. The very coarse sandstone beds vary in thickness between 30 cm and 2,0 m, with an estimated average of 45 cm, thus confirming the observation by Roberts (1981). The argillaceous beds are 5 to 30 cm thick, with an average of approximately 20 cm. The thicker argillaceous beds are rare, especially in the lower portion of the member south of Eshowe. Lateral extent of the beds is from a few metres to 50 m, the thicker beds usually being the more persistent. A typical overall view of the outcrop pattern of the Eshowe Member overlying granite is seen at Tsheni, where it is capped by the more resistant Kranskloof quartz-arenites. (Fig. 3.23).

The majority of the sandstone beds are either structureless or have horizontal lamination, with laminae of the order of 10 mm thick. Parting lineation has been observed on bedding surfaces. Current ripples are rare. Where internal sedimentary structures are developed, they occur as planar and trough cross-beds. Lenticular bedding, wavy bedding, scour
Fig. 3.23 Eshowe Member resting on basement granite, and overlain by resistant Kranskloof Member, near Tsheni. Contacts marked by arrows.
surfaces, graded foresets and reactivation surfaces have also been noted.

Planar cross-bedding usually occurs as solitary sets, or sets alternating with massive or horizontally-laminated beds, but there are occurrences of co-sets of two or more stacked sets. Planar cross-bedding sets are of the order of 30 cm thick, with foreset beds approximately 5 to 15 mm thick. However, there are several occurrences of planar cross-bedded sets 2 m thick (Fig. 3.24). Locally, in the northern portion of the basin, trough cross-bedding (Fig. 3.25) is more prevalent than planar cross-bedding.

Erosion channels, 15 to 30 cm deep and 1 to 2 m wide, which have been filled with very coarse sand and rip-up clasts of shale (Fig. 3.26), or with sandstone occur commonly.

In the northern portion of the basin, soft-sediment deformation occurs throughout the Natal Group sedimentary pile, from within a few metres of the base (Fig. 3.27, slump structure). Other common soft-sediment deformation structures are convolute bedding (Fig. 3.28) and water escape structures (sand volcanoes) (Fig. 3.29). Southward, it becomes progressively restricted to the higher stratigraphic levels of the succession until, south of Durban, it is noted only within the Newspaper Member of the Mariannhill Formation (Matthews, 1961, confirmed by the author).
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.24 Set of planar cross-beds in excess of 2 m thickness, south of Eshowe. Stick is 1.2 m long.

Fig. 3.25 Trough cross-bedding in Eshowe Member, NW of Eshowe
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.26 Scour channel filled with coarse sandstone and rip-up clasts of shale, WSW of Eshowe.

Fig. 3.27 Slump structure in Eshowe Member, a few metres above the base, north bank of White Mfolozi River, south of Ulundi.
Fig. 3.28 Convolute bedding in Eshowe Member, SSE of Melmoth. Stick is 1.5 m long.
Fig. 3.29 Internal structure of a sand volcano (water escape structure) near Tulini.
3. DESCRIPTION OF NATAL GROUP UNITS

3.1.3 KRANSKLOOF MEMBER

3.1.3.1 General The Kranskloof Member occurs from just south of the Mhlatuze River in the north to Hibberdene at the southern limit of the basin, and from the present KwaZulu-Natal coastline in the east to very close to the western boundary of the basin (Fig. 3.30; App-2.15). North of the Tugela River its occurrence becomes sporadic. Brauteseth (1970) suggested that the southernmost occurrence of this unit is near Umzinto, but Kingsley (1975), confirmed by the author, identified this unit, albeit much reduced in thickness, as far south as Wood Grange near Hibberdene. It is possible that the quartzitic sandstone intersected in the borehole JC-1 (du Toit and Leith, 1974), some 24 km east of Stanger, is actually the Kranskloof Member. The name was suggested by Roberts (1981) from the Kranskloof Nature Reserve at Kloof west of Durban. The type area is taken as the vicinity of Durban.

The Kranskloof Member is possibly the most conspicuous unit of the Natal Group as, due to its resistant lithology, it almost invariably crops out as kranses, forming the scenery that typifies the Natal Group (Fig. 3.31). Care should be taken, however, not to necessarily equate krans with Kranskloof, as there are other units within the Natal Group which form kranses locally.

This member consists predominantly of silicified quartz-arenites with subordinate shale bands, overlies the Eshowe Member conformably, and is in turn overlain conformably by the Situndu Member, or paraconformably (Chapter 2.) by either the Tulini Member or the Newspaper Member of the Mariannhill Formation. The relationship to younger units
Fig. 3.30 Isopach map of the Kranskloof Member
Fig. 3.31 Typical Natal Group krans (near Noodsberg cave) formed by Kranskloof Member (40 m thick) overlying Eshowe Member, in turn resting on basement granite. Note the vertical cleft on the left. Arrows mark contacts.
depends on the geographical position within the basin (Fig. App-2.15).

3.1.3.2 **Thickness:** Previous workers have reported a remarkably constant thickness of about 20 m for the Kranskloof Member (Rhodes and Leith 1967; Roberts 1981), but the present investigation has revealed an extremely variable thickness. Thicknesses range from 1.5-51 m (Table 3.3). The mean thickness (22.4 m) is very close to the thickness reported by both Rhodes and Leith (1967) and Roberts (1981). Both the mean and maximum thicknesses determined for the above areas of research increase from north to south (Table 3.3; Isopach map, Fig. 3.30). There is a rapid decrease in thickness, not reflected in Table 3.3, at the southern limit. The thickness at Wood Grange reported by Kingsley (1975) is 3 m. The isopach map shows a normal deepening towards the centre of the basin, with a deep trough just south of Pietermaritzburg. The basement ridge east of Pietermaritzburg, discussed in the section on the Eshowe Member (Fig. 3.15), is also evident on the isopach map of the Kranskloof Member.

<table>
<thead>
<tr>
<th>AREA</th>
<th>NUMBER OF MEASURED SECTIONS</th>
<th>MEAN THICKNESS</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELMOTH</td>
<td>1</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
</tr>
<tr>
<td>ESHOWE</td>
<td>16</td>
<td>15.9</td>
<td>1.5</td>
<td>39.0</td>
</tr>
<tr>
<td>KRANSKOP</td>
<td>22</td>
<td>20.4</td>
<td>2.2</td>
<td>45.5</td>
</tr>
<tr>
<td>DURBAN</td>
<td>26</td>
<td>24.4</td>
<td>11.0</td>
<td>42.0</td>
</tr>
<tr>
<td>SOUTHERN K'-NATAL</td>
<td>17</td>
<td>26.8</td>
<td>9.5</td>
<td>50.7</td>
</tr>
<tr>
<td>OVERALL</td>
<td>76</td>
<td>22.4</td>
<td>1.5</td>
<td>50.7</td>
</tr>
</tbody>
</table>
3. DESCRIPTION OF NATAL GROUP UNITS

3.1.3.3 Lithology

Arenaceous Rocks: The Kranskloof Member consists mainly of silicified sandstones which plot in the quartz arenite and sub-arkose fields of Mc Bride (1963) (Fig. 3.32). The colour of the sedimentary rocks of the Kranskloof Member varies from dusky red and very dark red through greyish pink to greenish grey, with a preponderance of greyish red to pale red. Liesegang bands occur commonly in the quartz-arenites of the Kranskloof Member. The Kranskloof arenaceous rocks consist of quartz and chert, feldspar (mainly microcline), sericite and accessories including zircon, muscovite, haematite, hornblende and garnet. The quartz content varies from 66% to 98% (Table App-3.2), figures lower than the quartz content given by Roberts (1981). However, it seems that Roberts included the secondary quartz (cement) in his ternary diagrams, with the result that the rocks appear to be quartz-arenites rather than sub-arkoses. The composition of the Kranskloof sandstones are thus not as consistently pure as has been suggested by Roberts (1981).

Quartz cement is very common, occurring as overgrowths in optical continuity with the detrital quartz grains (Fig. 3.33). The red colour of the rocks is caused by haematite staining of the quartz grains, present as a 'dust rim' on the original surfaces. The microcline grains are unweathered. Roberts (1981) reported on the presence of secondary potash feldspar, and during the current study. The occurrence of secondary overgrowths of microcline on microcline was noted. North of Stanger, the Kranskloof Member is not as well silicified or as mature as south of Stanger, with a resultant northward decrease in the prominence of topographic expression.

Argillaceous Rocks: Interbedded with the sandstones are subordinate lenticular bodies of
Fig. 3.32 Composition of Kranskloof Member sandstones
a) Plane-polarized light

b. Crossed polarizers

Fig. 3.33 Photomicrographs showing dust rim on original quartz grains.

Magnification 76,5x
shale and siltstone (Fig. 3.34). The even reddish colour of the argillaceous material has been modified diagenetically to produce pale bleach spots (Roberts, 1981). At the base of the Kranskloof Member in the vicinity of Durban and Pietermaritzburg is a sequence of interbedded quartz-arenites, arkosic sandstones, siltstones and shales. Roberts (1981) interpreted them as intertidalites, but the author would prefer the term "transition beds", as this describes the transition from the Eshowe Member to the Kranskloof Member without any environmental implication. Sparsely distributed rip-up clasts of greyish-red shale, occur within the quartz-arenites.

At several localities, the normal, well-silicified quartz arenites are interrupted by a zone in the stratigraphic centre where the rocks are sub-arkosic and poorly silicified (Stratigraphic section Fig. App-1.19). This central zone has a less-pronounced outcrop expression.

3.1.3.3 Primary Sedimentary Structures: Bed thicknesses vary between 0.1 and 1.5 m, with a predominance in the region of 0.3-0.5 m. Lateral extent of beds varies between 5 m and 20 m. Lenticular bedding is a common feature. The relatively rare argillaceous material ranges in thicknesses from a few centimetres to 15 cm, and is invariably lenticular (Fig. 3.34).

The quartz arenites of the Kranskloof Member are either massive, or have horizontal stratification as the most common sedimentary structure. Laminae and very thin beds are of the order of 5-20 mm thick. Current ripples and planar cross-bedding also occur, but are scarce. Reactivation surfaces occur in the transition beds at the base of the Kranskloof Member. Planar cross-bedding (rarely low-angle) occurs, but not abundantly. Rhodes and
Fig. 3.34 Thin, lenticular shale lenses (arrow) in Kranskloof Member quartz-arenite, near Appelbosch.
Leith (1967) reported the occurrence of rill and swash marks on the bedding planes, but these were not observed during the current study. Channel scours up to 1.5 m deep by 20 m wide are fairly common.

3.1.3.4 Imposed Features

A. Cleft Features: A common feature of the Kranskloof Member is the presence of vertical to near-vertical clefts thought to have been formed by the removal of material from fracture zones or weathered dolerite dykes. These clefts are of the order of 1-5 m wide, up to 40 m deep and 100 m long (Fig. 3.31). There is evidence of either fracturing or dolerite intrusion. Very little, if any, vertical movement took place along the fracture planes. The presence of colluvium derived from the Natal Group, and partially infilling the gaps, hinders the investigation of the floor.

B. Karst Features: A further characteristic feature of the silicified quartz arenites of the Kranskloof Member is the surprising occurrence of karst phenomena such as sink-holes and dolines, invariably marked, at surface, by the presence of trees and shrubs taking advantage of the protection and the provision of water afforded by the depressions.

An example of this occurs near Noodsberg (Fig. 1.1), where access is gained to a solution cave via a sink-hole. Several tunnels, totalling approximately 100 m in length, lead off the sink-hole. The roof of the cave consists largely of small-pebble conglomerate of the Tulini Member, and the sidewalls of the cave comprise friable quartz arenite of the Kranskloof Member (Fig. 3.35). About 1 km further south, near the farm homestead, there is a doline some 30 m in diameter, and with a depression of about 3 to 4 m. Dolines and sink-holes
Fig. 3.35 Roof of Noodsberg cave (Fig. 1.1) at contact between Tulini Member above and Kranskloof Member below. (Bat for scale)
are common features where the present land surface lies at or just above the top of the Kranskloof Member.

The quartz-arenite, which elsewhere is well-silicified and indurated, is seen, in the side-walls of the cave, to be extremely friable. This has resulted from the dissolution of the silica cement from between the framework grains, and the gradual collapse of the side-walls. The resulting clean white sand was removed by the flow of underground water. Martini (1979) referred to well-documented karst features in Table Mountain sandstone northwest of Kalk Bay in the Western Cape, as well as in sandstones of the Waterberg Group and quartzites of the Pretoria Group and Black Reef Formation of the eastern Transvaal, reporting in particular on the Kaapsehoop caves. There is no carbonate cement in any of these occurrences or in the Kranskloof quartz-arenite at Noodsberg.

It is necessary to explain the solution of large amounts of silica to form these caves. Millot et al. (1959) found that silica in true solution in natural waters occurs as ions of monosilicic acid (Si(OH)₄). The solubility is practically independent of pH, where the pH is less than 9, but at pH values of greater than 9, the solubility of silica increases as a result of the dissociation of Si(OH)₄. They also suggested that pH values of greater than 9 are unlikely in the natural environment. This would imply that it is very unlikely for quartz to be dissolved to any extent in nature. Bennett and Siegel (1987) however, have suggested that organic acids in groundwater can form complexes with silica at nearly neutral pH and near-surface conditions. This could explain the anomalous increased solubility of quartz where the pH of the groundwater is seen to be approximately neutral, and allow for the removal of large quantities of quartz cement from the quartz arenites.
where karst features occur.

The restriction of karst phenomena to the quartz-arenites of the Natal Group, is explained as follows: The presence of even trace amounts of aluminium can cause the precipitation of colloidal silica. Precipitation of silica from true solution requires the presence of slightly greater amounts of aluminium (Okamoto et al. 1957). The presence of aluminium in a sandstone would thus inhibit the solution and removal of silica, and the solution caves within quartz arenites would thus seem to depend, to a large extent, on the absence of aluminium-bearing minerals such as feldspar or clay.

3.1.4. SITUNDU MEMBER

3.1.4.1 General: The Situndu Member can be identified from just south of the Mhlatuze River in the north, to Hibberdene in the south, and from the coast in the east to the western margin of the basin (Fig. 1.1; 3.36; App-2.15). The name was proposed by Roberts (1981), and the type area is to the southeast of Durban. The main distinguishing feature is that it occurs between the Kranskloof and Dassenhoek Members, from which it is distinguished by the differing lithologies. As the Situndu Member is lithologically indistinguishable, on a regional scale, from the Eshowe and Newspaper Members, its mappability depends on the presence of the Kranskloof Member beneath, and the Dassenhoek or Tulini Member above. Any observable lithological difference between the Situndu Member and the Eshowe or succeeding Newspaper Member, cannot be used for mapping, as similar variations also occur within these other members. Although the unit might well have been developed beyond where it has been recognised, it cannot be
Fig. 3.36 Isopach map of the Situndu Member
Isopach values in metres
identified because of the lack of markers which can be used to demarcate its limits. Ideally, the Situndu Member rests on the Kranskloof Member, and is overlain by the Dassenhoek Member. It is also overlain by the Tulini Member where the Dassenhoek Member is absent.

3.1.4.2 Thickness

The thickness of the Situndu Member ranges from 5-84 m with a mean of 25 m (Table 3.4).

<table>
<thead>
<tr>
<th>AREA</th>
<th>NUMBER OF SECTIONS MEASURED</th>
<th>MEAN THICKNESS</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELMOTH</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ESHOWE</td>
<td>5</td>
<td>41,6</td>
<td>5,0</td>
<td>83,5</td>
</tr>
<tr>
<td>KRANSKOP</td>
<td>9</td>
<td>11,3</td>
<td>5,0</td>
<td>33,0</td>
</tr>
<tr>
<td>DURBAN</td>
<td>15</td>
<td>29,5</td>
<td>11,5</td>
<td>57,5</td>
</tr>
<tr>
<td>SOUTHERN K'-NATAL</td>
<td>3</td>
<td>13,8</td>
<td>7,0</td>
<td>21,0</td>
</tr>
<tr>
<td>OVERALL</td>
<td>32</td>
<td>24,8</td>
<td>5,0</td>
<td>83,5</td>
</tr>
</tbody>
</table>

Thicknesses of this unit in the Melmoth area are not reflected, as the member could not be differentiated because of the absence of the Kranskloof Member. There is a progressive decrease in thickness from north to south. The decrease in thickness in the Kranskop area is related to the proximity to the western margin of the basin. On the isopach map of the Situndu Member (Fig.3.36) there is the suggestion of a deeper trough approximately parallel to the present KwaZulu-Natal coastline, and in much the same position as that in
the Eshowe Member (Fig. 3.15). Further, Fig. 3.36 shows that the deepening of the basin from a lateral margin towards the central axis is much more rapid in the north than in the south.

3.1.4.3 Lithology

Arenaceous Deposits: The Situndu Member consists predominantly of coarse, immature, poorly-sorted, pebbly sandstone and subordinate shale. The composition of the sandstone falls within the sub-arkose field of Mc Bride (1963), with one small component in the arkose field and another in the quartz-arenite field (Fig. 3.37). The feldspar grains, both plagioclase and microcline, are unweathered. The greyish-red colour of the sandstones is a result of haematite-staining of individual quartz grains. This haematite is present as a 'dust rim' on the original grain boundaries, many of which display quartz overgrowths. The haematite also occurs as concentrations along the contacts between the overgrowths. The feldspar grains do not seem to have been subjected to this iron staining, or to the quartz overgrowth. Pressure solution sutures along the contacts between quartz grains are common.

The pebbles, ranging in size from 4-10 mm, are moderately rounded to well rounded, found scattered throughout the member, and consist largely of quartz, chert, quartzite, jasper and shale rip-up clasts. These pebbles are commonly concentrated in single-layer stringers in the sandstone.

Argillaceous Deposits: Interbedded in the sandstones, and forming up to 30% of the assemblage locally, are beds of dark reddish grey, micaceous shale and siltstone up to 40
Fig. 3.37 Composition of Situndu Member sandstones
cm thick. One such bed, at the base of the Situndu Member near Mapumulo (Fig. 3.38), appears to have served as a source of rip-up clasts occurring a few metres away (Fig. 3.39).

3.1.4.4 Primary Sedimentary Structures: Bedding thickness generally varies between 0.3 and 1 m, but commonly exceeds 1 m. Where there is a rapid alternation of arenaceous and argillaceous beds, the bedding thickness is of the order of 10-30 cm. The beds are tabular, and planar cross-bedding is common. In the Kranskop area, trough cross-bedding is also common. In the planar cross-beds, the foresets are usually graded. Near Mapumulo, the bedding thickness can exceed 2 m, and there are tangential foresets marked by 5 cm-thick, white, mudstone drapes (Fig. 3.40).

3.1.5. DASSENHOEK MEMBER

3.1.5.1 General: The Dassenhoek Member is the youngest unit in the Durban Formation. It occurs from just north of Verulam and Wartburg in the north, to Hibberdene in the south, and from the coast in the east to the western margin of the basin. The name was proposed by Roberts (1981), from a locality to the southwest of Durban, which is also the type area. The Dassenhoek Member is the uppermost of the two resistant quartz-arenite units in the Durban Formation, and resembles the Kranskloof Member in colour, composition, sedimentary structures and outcrop expression, but is not as well developed in either thickness or distribution (Figs. 3.41; App-2.15). This member rests conformably on the Situndu Member and is conformably overlain by the Tulini Member. Where the Tulini Member is absent, the Dassenhoek Member is overlain paraconformably by the Newspaper Member of the Mariannhill Formation. (Fig. App-2.15).
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.38 Shale lining (30 cm thick) to scour channel filled with sandstone, near Mapumulo

Fig. 3.39 Situndu Member with rip-up clasts probably derived from shale lining shown in Fig. 3.38, near Mapumulo
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.40 White clay drapes on bedding and on foresets, Situndu Member, east of Mapumulo
Fig. 3.41 Isopach and palaeocurrent map of the Dassenhoek Member.
3. DESCRIPTION OF NATAL GROUP UNITS

3.1.5.2 Thickness: The thickness varies from 3-42 m, with an overall mean of 11 m. The mean thickness of the Dassenhock Member increases from north to south, whereas the maximum thickness is developed in the vicinity of Durban (Table 3.5). The thickness at Tulini, Wood Grange, at the very southern extremity, is about 7 m (Kingsley, 1975, Fig. 3).

Table 3.5 Thickness of the Dassenhock Member (metres)

<table>
<thead>
<tr>
<th>AREA</th>
<th>NUMBER</th>
<th>MEAN THICKNESS</th>
<th>MINIMUM</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELMOTH</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ESHOWE</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KRANSKOP</td>
<td>3</td>
<td>5.3</td>
<td>3.0</td>
<td>8.0</td>
</tr>
<tr>
<td>DURBAN</td>
<td>8</td>
<td>12.5</td>
<td>5.0</td>
<td>42.0</td>
</tr>
<tr>
<td>SOUTHERN K'-NATAL</td>
<td>5</td>
<td>13.6</td>
<td>4.5</td>
<td>28.0</td>
</tr>
<tr>
<td>OVERALL</td>
<td>16</td>
<td>11.5</td>
<td>3.0</td>
<td>42.0</td>
</tr>
</tbody>
</table>

The isopach map (Fig. 3.41) indicates that the Dassenhock Member sediments were deposited in a low relief depression, the known portion of which was roughly symmetrical about a WNW-ESE axis. The parallel tendency of the isopachs is due to the linear nature of the basin margin.

3.1.5.3 Lithology: The Dassenhock Member consists very predominantly of sandstone, with subordinate interbedded shales and siltstones (Fig. App-1.26). The sandstone is silicified, medium- to coarse-grained, moderately-sorted and reddish grey. The silicification of the Dassenhock Member is less well developed than in the Kranskloof Member, and consequently does not have as strong an outcrop expression as that unit. The composition
of the sandstones is largely quartz-arenite, but sub-arkoses also occur commonly (Fig. 3.42). Laminae with up to 4% heavy minerals, mainly opaque ores were reported by Roberts (1981).

3.1.5.3 Primary Sedimentary Structures

The dominant, though sparsely-developed, primary sedimentary structure in the basin north of Durban is planar cross-bedding, whereas south of Durban it is horizontal stratification.

3.2 MARIANNHILL FORMATION

The Mariannhill Formation, is the younger of the two formations in the Natal Group. At the base is a conglomeratic unit. This is followed by a thick unit of arkosic sandstones and subordinate shales. The uppermost unit is a sporadically-developed conglomerate. The name Mariannhill was first suggested by Roberts (1981) from the area to the southwest of Durban where the Formation is well developed. It occurs throughout the Natal Group depositional basin.

3.2.1 TULINI MEMBER

3.2.1.1 General: The Tulini Member, which is the basal unit of the Mariannhill Formation, occurs over most of the northern portion of the basin as indicated in Fig. 3.43. The name Tulini was suggested by Marshall (1991a), and the type area lies between Kranskop and Wartburg (Fig. 3.43). This member is conglomeratic, and occurs as two geographically distinct facies, A and B respectively (Figs. 3.43; App-2.15). The basal contact of the Tulini
Fig. 3.42 Composition of Dassenhoek Member sandstones
Fig. 3.43 Isopach map of Tulini Member, showing sampling positions (B to M), the distribution of Facies A and Facies B, and the Tugela Thrust Front.
3. DESCRIPTION OF NATAL GROUP UNITS

Member is paraconformable. In the north it overlies the Eshowe Member directly, and southwards it progressively oversteps onto the Kranskloof, Situndu and Dassenhoek Members of the Durban Formation. This contact is sharp and erosional, and taken at the base of the lowest conglomerate. The upper boundary, with the Newspaper Member, is conformable, gradational to sharp, and defined as the horizon above which the conglomerate layers are either absent or constitute less than 5% of the rock.

3.2.1.2 Thickness

The thickness of this unit varies between 0,90 and 27,5 m, with a mean of 11,9 m (Table 3.6).

<table>
<thead>
<tr>
<th>AREA</th>
<th>NUMBER OF SECTIONS MEASURED</th>
<th>MEAN THICKNESS</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELMOTH</td>
<td>1</td>
<td>12,8</td>
<td>12,8</td>
<td>12,8</td>
</tr>
<tr>
<td>ESHOWE</td>
<td>4</td>
<td>7,9</td>
<td>2,0</td>
<td>10,5</td>
</tr>
<tr>
<td>KRANSKOP</td>
<td>15</td>
<td>13,1</td>
<td>0,9</td>
<td>27,5</td>
</tr>
<tr>
<td>DURBAN</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SOUTHERN K'-NATAL</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>OVERALL</td>
<td>20</td>
<td>13,1</td>
<td>0,9</td>
<td>27,5</td>
</tr>
</tbody>
</table>

The isopach map (Fig. 3.43) reveals that there is a strong linearity to the isopach pattern, parallel to the present KwaZulu-Natal coastline, with the thickest portion close to the western margin.

3.2.1.3 Lithology - Facies A: This facies occurs in the type area, and consists of monomict (vein quartz), bimodal, clast-supported to matrix-supported, small-pebble
conglomerate with interbedded coarse-grained to very coarse-grained sandstone and granule-conglomerate, all sub-arkosic to arkosic. Visser (1974) claimed that vein quartz clasts are absent from the sandstones and conglomerates of the Natal Group in the Kranskop area, which is in the type area for Facies A, but the present study has proved otherwise. Dark reddish-grey micaceous shale also occurs. The conglomerate beds constitute approximately 50-55% of the unit, the arenaceous beds approximately 40-45%, and the argillaceous beds less than 5%. The colour of the rocks varies between pale red (5R 6/2) and greyish red (5R 4/2). Sorting is extremely poor. The matrix of the conglomerates is arenaceous, and consists of material virtually identical to the interbedded sandstone and granule-conglomerate.

Conglomerates: The mean bedding thickness of the conglomerates is 40 cm, with a maximum of 1 m. The beds are usually lenticular, with a lateral extent of between 5 and 25 m. The conglomerates are clast-supported to matrix-supported and are poorly sorted (Fig. 3.44).

Samples of at least 100 pebbles were taken at 12 different localities, and the long, intermediate and short axes measured. The results are summarised in Table App-5.1 and plotted in Figs. App-5.1 to App-5.13, falling predominantly in the fluvial field of Stratten (1974).

Clast Packing Density (CPD) (Kahn, 1956) varies between 50 and 70%. Clast Packing Proximity (CPP) (Kahn, 1956) varies between 40 and 60%. Mean maximum clast size (long axis dimension) is 66 mm, with a mean clast size (long axis dimension) of 25 mm.
Fig. 3.44 Tulini Member clast- to matrix-supported pebble-conglomerate, south of Appelbosch
3. DESCRIPTION OF NATAL GROUP UNITS

The means of the Flatness Coefficient, maximum projection sphericity, elongation coefficient, and the oblate/prolate index, are all remarkably constant (Fig. App-5.13; Table App-5.1).

Arenaceous Rocks: The mean thickness of the arenaceous beds is 40 cm, with a maximum of 1 m. The beds are commonly lenticular, and grade laterally and vertically into conglomerate. The arenaceous rocks are coarse-grained to very coarse-grained, sub-arkosic to arkosic, and locally micaceous. They are poorly sorted, with a granule content ranging between 10 and 60%. Dispersed throughout the arenaceous beds are phenoclasts of quartz, chert, quartzite and jasper. The colour of the arenaceous rocks is the same as that of the conglomerates, i.e. pale red (5R 6/2) to greyish red (5R 4/2), and the size range of the phenoclasts is the same as that of the clasts in the conglomerates.

Argillaceous Rocks: The beds of shale and siltstone are lenticular, with a mean thickness of 10 cm and a maximum of 50 cm. The lateral extent of the beds is of the order of 10 m. The shales are fissile, micaceous and greyish red (5R 4/2). They occur interbedded with the conglomerates and arenaceous beds.

3.2.1.4 Lithology - Facies B: Facies B occurs in the area indicated in Fig. 3.43, to the north of Facies A.

Conglomerate: The bed-thickness in Facies B is generally less than in Facies A, and the clasts are less well rounded and polymict (quartz, quartzite, chert, jasper and granite) (Fig. 3.45). The maximum clast size (long axis) determined was 30 cm, and the mean was 6 cm. The conglomerates are matrix supported, with a CPD of the order of 30%. The matrix is
Fig. 3.45 Facies B conglomerate, Tulini Member, north of Hlabisa.
3. DESCRIPTION OF NATAL GROUP UNITS

an immature, poorly sorted, reddish grey (5R 4/2), coarse- to very coarse-grained, arkosic sandstone. Due to their greater hardness and banded nature, the jasper clasts are less well-rounded, and have a greater flatness coefficient than the other lithologies.

Arenaceous Rocks: The sandstones in Facies B are very similar to those in Facies A.

Argillaceous Rocks: There are no argillaceous rocks developed in Facies B.

3.2.1.5 Primary Sedimentary Structures: Scouring and planar cross-bedding are common features, the latter formed by currents directed to the south. Bedding is predominantly lenticular with a subordinate tabular component.

3.2.2 NEWSPAPER MEMBER

3.2.2.1 Introduction The Newspaper Member occurs from Hlabisa in the north to Hibberdene in the south, and from the KwaZulu-Natal coastline in the east to the western basin margin. As it is not resistant to weathering, and does not have a protective capping, erosion has caused the almost complete removal of this member from large areas of the basin. The name was suggested by the author (Chapter 2), and the type area is the area to the northeast of Appelsbosch. This unit, which consists of arkosic to sub-arkosic sandstones and interbedded argillites, is by far the thickest unit of the Natal Group, and forms the major portion of the Mariannhill Formation. It is everywhere characterised by the occurrence of calcite concretions, and south of Durban it is distinguished from the Durban Formation by the presence of soft-sediment deformation. The Newspaper Member rests conformably on the Tulini Member, and is overlain conformably by the Westville Member. At Nhlavini (Fig. 3.46) and downstream from the bridge over the Mtwalume
3. DESCRIPTION OF NATAL GROUP UNITS

Fig. 3.46 Pale grey Newspaper Member sandstone at Nhlavini, NE of Ixopo. Note the horizontal stratification and soft-sediment deformation.
3. DESCRIPTION OF NATAL GROUP UNITS

River on the old South Coast road the Newspaper Member lacks the ferruginous colouration, and the rocks are a dull grey in colour.

3.2.2.2 Thickness Only three complete sections were measured through this unit. These are situated near the edge of the depositional basin. The thicknesses recorded were 17.5 m, 22.5 m and 14.5 m. Nowhere else within the body of the depositional basin was it possible to measure a complete section of this unit. A borehole drilled at Kloof passed through 430 m of Newspaper Member, but this is an incomplete section, with no stratigraphic top or base. The factors which make it virtually impossible to determine the thickness with any certainty are:

a. weak outcrop expression,

b. the prevalence of faulting,

c. an indeterminable degree of erosion during the Dwyka glaciation as well as subaerial erosion during the long time interval between the cessation of deposition in the Ordovician, and the onset of Dwyka glaciation, and

d. the lack of internal marker beds.

3.2.2.3 Lithology The Newspaper Member consists predominantly of greyish red (5R 4/2) to pale cream-coloured, medium-grained to very coarse-grained, poorly-sorted sandstones and granule-conglomerates.

Arenaceous Rocks: Compositions fall in the arkose and sub-arkose fields with up to 10% lithic content (Fig. 3.47). Scattered pebbles of chert, jasper, quartz and quartzite, up to 15 mm in diameter occur scattered throughout the arenaceous rocks, and are commonly
Fig. 3.47 Composition of Newspaper Member sandstones
concentrated as single-layer conglomerates. The grains are moderately rounded to sub-angular. A very common lithology in certain areas is a silicified, very coarse-grained arkose with a dark reddish colour derived from the red feldspars (See Fig. 3.20). Calcite concretions are commonly developed locally within the arenaceous sediments.

Argillaceous Rocks: Interbedded in the arenaceous rocks are siltstones and shales which are darker in colour than the arenaceous rocks, and invariably micaceous. The shales and siltstones are commonly lenticular in form, with thicknesses of the order of a few centimetres to 30 cm, and lateral extent of some tens of metres.

3.2.2.4 Primary Sedimentary Structures Bedding thicknesses are of the order of 30 cm to 100 cm. The most prevalent primary sedimentary structure is planar cross-bedding, commonly with graded foresets. This tends to occur in solitary sets, often with the sets exceeding 1 m in thickness. In the northern areas of the basin, trough cross-bedding is also very common. Ripple marks are very scarce. Horizontal stratification, with plane beds of approximately 10 mm to 20 mm occur. Scour channels are common throughout the basin (Fig. 3.48). Soft-sediment deformation is recognisable from the deformation it causes to primary sedimentary structures such as horizontal lamination and cross-bedding. Lourens (1979) identified a) slump structures (prelithification folds caused by horizontal mass movement of one or more beds), b) convolute lamination (crumpling or convolution of the laminae in a bed, recognised by remarkably continuous laminae which have sharp crests separated by broad troughs), c) overturned (recumbent) foresets (foreset laminae of ripples or megaripples which have been overturned in a down-current direction by drag caused by the sediment-laden currents flowing across the top of an unconsolidated cross-
Fig. 3.48 Large scour channel in Newspaper Member filled by planar cross-bedded sandstone, north of Hlabisa. Note small conglomerate lens marked by arrow. Stick is 1.5 m long.
bedded unit), d) air-heave and water-escape structures (see Fig. 3.29) - (small-scale, mainly vertical, structures which penetrate the otherwise undisturbed strata above), and e) mud diapirs (larger-scale structures in which the over-lying strata have been distorted by the mud layer which yields plastically under gravity differential adjustment). Soft-sediment deformation will be discussed further in the section on the deposition of the Natal Group. Water-escape structures are common in the Newspaper Member.

3.2.3 WESTVILLE MEMBER

3.2.3.1 Introduction The Westville Member occurs very sporadically throughout the basin, but, south of Durban, was identified at only two localities. The name Westville was introduced by Roberts (1981) who first identified this conglomeratic unit at the top of the Natal Group succession. The type area is at Westville west of Durban. This member is characterised by being conglomeratic and at the top of the Mariannhill Formation. It rests conformably on the Newspaper Member, and is disconformably overlain by rocks of the Dwyka Group.

3.2.3.2 Thickness Because of the sporadic occurrence of this unit, and some uncertainty as to its boundaries, the writer was able, south of Durban, to determine the thickness (15 m) of the unit at only one locality, with any confidence. This was at Mgwahumbe, near Mid Illovo. However, three vertical sections were measured in the Melmoth/Hlabisa area, and thicknesses of 17 m, 9 m and 9 m were obtained. Roberts (1981) estimated the thickness of this unit to be of the order of 100 m, but, with the advantage of observations in the field, it is now felt that this is excessive, and that a thickness of between 10 m and
3. DESCRIPTION OF NATAL GROUP UNITS

30 m is more realistic.

3.2.3.3 Lithology

Rudaceous and Arenaceous rocks: The Westville Member consists of reddish-grey to pale reddish grey, medium-grained to coarse-grained, lithic arenite (Roberts, 1981) to sub-arkosic and arkosic, sandstone to granule-conglomerate with scattered, well-rounded, clasts of quartz, chert, jasper and quartzite up to 5 cm in diameter, occurring throughout (Fig. 3.49). These clasts are commonly concentrated to form polymict, bimodal, matrix-supported to clast supported, small-pebble conglomerate. At Mgwahumbe, near Mid Illovo, the CPD was determined as 2%, with a maximum clast diameter (long axis) of 90 mm. At Mntamntongayo, the maximum clast diameter (long axis) is 93 mm with a mean nominal diameter of 29 mm, mean sphericity of 70.3, and mean coefficient of flatness of 0.84. Single-layer pebble conglomerates are very common in this unit. Shape parameters determined on 202 pebbles from Mntamntanto, east of Eston, fall in the fluvial field of Stratten (1974) (Fig. 3.50). Rip-up clasts of dark greyish red shale (5R 4/2) are common.

Argillaceous Rocks Silty mudstone partings up to 5 cm in thickness, and interbedded shale beds, from 10-70 cm thick occur within the arenaceous rocks.

3.2.3.3 Primary Sedimentary Structures Arenaceous and conglomerate beds often attain a thickness of 1 m. Dominant planar and subsidiary trough cross-bedding are developed commonly. Soft-sediment deformation, predominantly slumping, is very common.
Fig. 3.49 Matrix-supported, polymict, pebble conglomerate, Westville Member, northeast of Melmoth.
Sampling Locality A

MNTAMNTO SHAPE PARAMETERS

MNTAMNTO Sphericity & Flatness

Westville Member
n = 202

Intermediate/Long Axis

Short/Intermediate Axis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate Fl = Fluvial Be = Beach n = number of clasts counted

Fig. 3.63 Shape parameters and flatness vs sphericity, Mntamntanto
Westville Member
4. CLAST MODIFICATION: NATAL GROUP THICKNESS

4.1 PRESSURE SOLUTION

One of the most remarkable features of the conglomerates of the Ulundi Member of the Durban Formation, is the presence of pressure solution pits and hollows on the surfaces of the clasts (Fig. 4.1). Tankard et al. (1982, p. 350) refer to these hollows as "abundant percussion marks". Trurnit (1968) asserted that pressure solution contacts originate below the groundwater table. The Thomson-Sorly-Riecke Principle operates between indurated clasts subjected to non-uniform or directed pressure in an environment of saturated solution. Under conditions of relatively high pressure, certain minerals are more subject to solution than others. He also determined that, in partners of equivalent relative-pressure solubility, the clast with the greater radius of curvature at the point of contact would be preferentially dissolved, and the clast with the smaller radius of curvature at the point of contact would thus penetrate some way into the other. This observation has been confirmed during the present investigation.

In most of the conglomerates of the Ulundi member, by far the greater majority of the contacts are smooth, with one clast being dissolved to form a hollow. The impinging clasts, which invariably had smaller radii of curvature at the points of contact, filled the hollows exactly and fully, and remained virtually unchanged (Fig. 4.1). In the type locality along the White Mfolozi River south of Ulundi, the conglomerates are monomict (quartzite), and matrix is scarce. It is thought that the pressure of the overlying Natal Group sediments was transmitted through clast-to-clast contact, as there would have been
Fig. 4.1 Ulundi Member quartzite clast (15 cm long) modified by pressure solution.
very little support from matrix. Because of the highly monomict nature of the conglomerates (Fig. 4.2), there was no compositional contrast and hence no relative pressure solubility gradient (see Trurnit, 1968) to determine which clasts would be preferentially dissolved, and which would remain virtually unaltered.

Thin-section investigation of the contacts between two clasts has revealed that none of the solution residue reported by Trurnit (1968) occurs in the Ulundi clasts. This is undoubtedly due simply to the fact that the quartzites are very pure, and there is virtually no feldspar or sericite to accumulate as the quartz is removed in solution. In areas of abundant matrix, where the pressure resulting from the load of the overlying rocks is thus more evenly distributed (such as Macala, just north of the Tugela River on the road between Jameson's Drift and Nkandla, Fig. 4.3), there has been no obvious pressure solution.

4.2 PRESSURE-FRACTURING

The initial result of directed pressure in areas of sparse matrix is the formation of pressure solution pits or hollows at the contacts between the clasts concerned. Where the pressure became extreme, because of very sparse matrix or a minimum of contact points to share the load, the clasts responded by fracturing. Also, where the strength of the clast was sufficiently reduced by the advanced development of pressure-solution hollows, fracturing of the so affected clasts resulted. The fragments have stayed largely in place, being confined by surrounding clasts, and have, in most cases, been welded together again by later silicification. Invariably, there is a pressure-solution pit at the focus of the pressure-induced fracturing (Fig. 4.4).
4. CLAST MODIFICATION

Fig. 4.2 Monomict nature, close-packing, pressure solution and fracturing, Ulundi Member conglomerate, south of Ulundi.

Fig. 4.3 Ulundi Member conglomerate with abundant matrix and no pressure solution phenomena. Macala, southeast of Dolwana
Fig. 4.4 Pressure solution followed by pressure fracturing of quartzite clast. Ulundi Member. South of Ulundi
4.2.1 INTERPRETATION

As the pressure which caused the fracturing in the clasts was the result of the burial by the overlying sediments, it was reasoned that an approximate minimum thickness of the overlying sediments could be ascertained from a knowledge of the strength of the fractured clasts. It is further submitted that once the overlying Natal Group sediments were indurated and consolidated, they would have borne the weight of the overlying Karoo Supergroup rocks, and their mass would not have been brought directly to bear on any irregularity such as the Ulundi Member conglomerate clasts. The glacial striae on the contact between the Natal Group rocks and the overlying Dwyka Group diamictites, and indurated clasts of Natal Group entrained within the Dwyka Group diamictites provide evidence of the induration of the Natal Group rocks prior to the commencement of the Dwyka glaciation. This latter observation was also reported by Roberts (1981) who further proposed that this provided evidence that the Natal Group was initially much thicker than measured at the present time. There is no evidence to substantiate or dispute Roberts' (1981) suggestion that strata equivalent to the upper Cape Supergroup were deposited over the Natal Group, and subsequently removed by erosion. Therefore it was reasoned that the mass of the Karoo Supergroup played no role in the pressure solution and fracturing of the Ulundi Member clasts.

The uniaxial compressive strength, in MPa, of sixteen clasts, all unweathered and unjointed, was determined (Table 4.1).
Table 4.1: Uniaxial Compressive Strength (UCS) in Mpa, derived from quartzite clasts of the Ulundi Member conglomerates.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>GAUGE READING</th>
<th>U.C.S. (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-1 a</td>
<td>13,0</td>
<td>312,0</td>
</tr>
<tr>
<td>US-1 b</td>
<td>10,0</td>
<td>240,0</td>
</tr>
<tr>
<td>US-1 c</td>
<td>10,8</td>
<td>259,2</td>
</tr>
<tr>
<td>US-1 d</td>
<td>7,1</td>
<td>170,4</td>
</tr>
<tr>
<td>US-2 a</td>
<td>21,6</td>
<td>518,4</td>
</tr>
<tr>
<td>US-2 b</td>
<td>21,6</td>
<td>302,4</td>
</tr>
<tr>
<td>US-2 c</td>
<td>23,0</td>
<td>552,0</td>
</tr>
<tr>
<td>US-3 a</td>
<td>14,4</td>
<td>345,6</td>
</tr>
<tr>
<td>US-3 b</td>
<td>28,8</td>
<td>691,2</td>
</tr>
<tr>
<td>US-3 c</td>
<td>28,6</td>
<td>686,4</td>
</tr>
<tr>
<td>US-3 d</td>
<td>10,0</td>
<td>240,0</td>
</tr>
<tr>
<td>US-3 e</td>
<td>13,1</td>
<td>314,4</td>
</tr>
<tr>
<td>US-4 a</td>
<td>11,9</td>
<td>285,6</td>
</tr>
<tr>
<td>US-4 b</td>
<td>9,1</td>
<td>218,4</td>
</tr>
<tr>
<td>US-4 c</td>
<td>12,3</td>
<td>295,2</td>
</tr>
<tr>
<td>US-4 d</td>
<td>26,3</td>
<td>631,2</td>
</tr>
<tr>
<td>MEAN</td>
<td>15,78</td>
<td>378,9</td>
</tr>
<tr>
<td>STANDARD DEVIATION</td>
<td></td>
<td>174,8</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
<td>691,2</td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
<td>170,4</td>
</tr>
</tbody>
</table>

Dr. N. Richards of the Department of Geology, University of Natal, Durban has determined a point load strength (IS 50 values) of 9,6 MPa on one clast, which is equivalent to 9,6/0,8
4. CLAST MODIFICATION

= 12 MPa tensile strength, or 250 to 300 MPa UCS (N. Richards, pers. comm.²), which is similar to the value derived by the Silverton laboratory of the Geological Survey.

The strength of all but one of the quartzite clasts is "extremely strong", and that one clast fell into the "very strong" class (Bell, 1983, p. 508). It is maintained that the estimated thickness - as derived from the measured strength of clasts - would be a minimum thickness, as there is no means of determining the margin by which the mass of the overlying sediments exceeded the strength of the fractured clasts. Matthews (1988) derived a formula for estimating thickness of overburden from the strength of clasts. The formula is:

\[Z = \frac{T \times (m-1)}{(m-2) \times d \times g} \]

where

\[Z = \text{thickness of overburden in metres} \]
\[T = \text{tensile strength in pascals (Pa)} \]
\[m = \text{poisson number, suggested value of 4.85} \]
\[d = \text{density of overburden suggested value of 2500 Kg/m}^3 \]
\[g = \text{gravitational constant, suggested value of 9.81 m/sec}^2 \]

Substituting in this formula we get:

\[378.9 \times 10^6 \times 3.85 / 8 / 2.85 / 2500 / 9.81 = 2608.8 \text{ say 2600 m overburden.} \]

The figure 8 is a suggested possible conversion factor for UCS to tensile strength (F.G. Bell, pers. comm.³). Various authors use factors ranging between 8 and 24. If a mean factor of 16 were to be used, the calculated thickness would be 1304.4, say 1300 m. Some

² Dr N. Richards, Dept. of Geology, University of Natal, King George V Ave., Durban

³ Prof. F.G. Bell, Dept. of Geology, University of Natal, King George V Ave., Durban
caution should be used in applying this derivation (Matthews, pers. comm.4; Reddering, pers. comm.5) as the influence of the size and orientation of the point contacts is an almost indeterminable factor. Another factor is the sedimentary history (Reddering, pers. comm.). Where the matrix sand grains at Robberg (near Pletterberg Bay in the Western Cape Province) were deposited contemporaneously with the clasts, they lent support to the framework clasts, but where they were deposited later as a filter deposit, there was no added support, and the clasts were more easily fractured by the overlying mass.

4.2.2 CONCLUSION

The probable thickness of the Natal Group derived from the mass of the overburden which caused the fracturing of the clasts at the base of the Natal Group is of the order of 1300 to 2600 m. This is far in excess of the present occurrence, and would suggest that the upper limit of Natal Group sedimentation, prior to subaerial and possible glacial erosion, was considerably higher than the present top at the contact with the overlying Dwyka Group. This is discussed further, in the chapter on basin tectonics.

4 Prof. P.E. Matthews, Dept. of geology, University of Natal, Durban

5 Dr. J.S.V. Reddering, Council for Geoscience, Port Elizabeth
5. BASIN TECTONICS

5.1 INTRODUCTION

It would seem that the deposition of the Natal Group was tectonically controlled. The areas adjacent to, and outside of, this depositional basin do not have rocks of the same age. To the west, the Dwyka Group rocks rest directly on the basement, and to the south, rocks of the Cape Supergroup rest on the basement, with no evidence of Natal Group sedimentation in these areas. This chapter is devoted to the description of the Natal Group repository - its known and inferred limits and morphology, and the tectonics associated with the formation of the basin.

5.2 BASIN LIMITS

The known occurrence of the Natal Group deposits extends from Hlabisa in the north (Marshali, 1991a) to just south of Hibberdene in the south (Marshall et al. 1991; Thomas et al. 1992) (Figs. 1.1; App-2.15). Mapping during the present study has ascertained the western margin of the basin to be roughly parallel to, and some 60 to 70 km inland from, the present KwaZulu-Natal coastline, with reasonable confidence. Where the western margin is not faulted, the Natal Group is seen to thin very rapidly to the west (Fig. App-2.10). The eastern margin of the basin is unknown as the eastern portion of the basin was removed during the fragmentation of Gondwana. It is thought that the Mesozoic break-up of Gondwana occurred along the central axis of a trough which had an axial gradient to the south-southwest, leaving only the western flanks of the original basin on the southern
African sub-continent (Hobday and von Brunn, 1979). The known basin is truncated by the offshore Falkland-Agulhas fracture zone which runs very close to, and roughly parallel to, the present KwaZulu-Natal coastline. The Natal Group is known to occur below the seafloor, some 30 km offshore opposite Stanger, where borehole JC-1 was reported by du Toit and Leith (1974) to have intersected some 18 m of what they interpreted as Kranskloof Member. Corroborative evidence is provided by the trough - indicated on the isopach map of the Eshowe Member (Fig. 3.15) - the axis of which lies some 50 km from the western margin of the basin. If the Natal Group basin was symmetrical, and this trough lies at the centre, then the eastern edge of the basin would be approximately 40 to 50 km to the east of the present shoreline of KwaZulu-Natal.

The southern margin corresponds with the basement high of Kingsley (1975) and the Dweshula High (Thomas et al. 1992) (Fig. 1.1), over which the Dwyka Group lies directly on the granitic basement. The Dweshula High is coincident with a major Proterozoic basement suture - the Melville Shear (Thomas et al. 1991). The surface expression of this feature is approximately 60 km in length (E-W) by some 10 km in width (Fig 1.1). To the south of the Dweshula High, the Devonian (Lock, 1973) quartz arenites of the Msikaba Formation separate the basement from the overlying Dwyka Formation. At only two known localities do the Natal Group and Msikaba Formation rocks occur in juxtaposition.

Confidence in delimiting the northwestern and northern boundary of the Natal Group basin is afforded by the occurrence of coarse conglomerates of the Ulundi Member. These were deposited in intermontane river valleys (Matthews, 1961, 1970; Hobday and von Brunn, 1979; Marshall 1991a) and on associated fans, which are indicative of elevated basin
margins. This proposal is reinforced by the southeastward decrease in clast diameter and thickness of the unit from south of Babanango to northwest of Eshowe. Matthews (1970) suggested that the present north-western limit of the Natal Group represents the original basin margin. He based this assumption on a postulation that the Precambrian rocks with an elevated paleorelief to the north-west of this boundary probably represent the glacially modified north-western flank of the Natal Group depositional basin. He concluded that the contact between the Natal Group and the overlying Dwyka Group is more or less coincident with the upper limit of Natal Group sedimentation. The estimated minimum thickness for the Natal Group, before consolidation, of 2600 m (see Chap. 7) would argue against these conclusions. Even a thickness of 1300 m (half the estimate) would indicate a considerable amount of subaerial and possibly glacial erosion before deposition of the Dwyka Group.

As the Natal Group is seen to have been deposited in a fault-bounded basin (foreland graben or half-graben) the western lateral boundary was probably approximately where the present edge of the Natal Group is observed.

At the extreme northeastern limit of its known occurrence, 15 km north of Hlabisa (Figs. 1.1; 3.15; App-2.15), the Natal Group is approximately 200 m thick (Marshall, 1991a). Because the provenance of the Natal Group rocks is taken to be the Pan African mountains in southern Mozambique (discussed below), it is not unreasonable to assume that the northern margin of the Natal Group deposits could be considerably further to the north than the present outcrop. However, some caution should be exercised, as rapid thinning at the edge of the basin is known to occur. For example, in the Kranskop area near the known
western margin, the Natal Group thins from approximately 140 m to zero over a distance of only 8 km (Fig. App-2.10).

5.3 BASIN MORPHOLOGY

The palaeorelief of the floor of the Natal Group depositional basin varies quite considerably from rugged to subdued. It has been variously reported as summarised in Table 5.1.

<table>
<thead>
<tr>
<th>NAME</th>
<th>PALAEORELIEF</th>
<th>LOCALITY AND DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Du Toit, 1931</td>
<td>240</td>
<td>Near Melmoth, with much subdued palaeotopography south of Melmoth</td>
</tr>
<tr>
<td>Gevers, 1963</td>
<td>30</td>
<td>Near Lilani Hot Springs</td>
</tr>
<tr>
<td>Rhodes and Leith, 1967</td>
<td>33 - 60</td>
<td>In the Mapumulo area, and a smooth undulating plain between Melmoth and Port St Johns</td>
</tr>
<tr>
<td>Tankard et al. 1982</td>
<td>300</td>
<td>Not specific as to locality</td>
</tr>
</tbody>
</table>

The prevalence of post-Natal Group tensional faulting in the basin makes an accurate regional assessment of the palaeotopography, using elevation above sea level, difficult, but the variation in thickness of the basal unit - the Eshowe Member - would give some indication of the order of the palaeorelief.

In comparison with the previously-reported palaeorelief figures (Table 5.1), there is an implied palaeorelief of the Precambrian floor of the basin, at the time of deposition of the Natal Group, of at least 500 m to 600 m in the Nkandla area. Near Ndindindi and Nomanci Ridges south of Nkandla, the Natal Group was deposited in pockets or local depressions in the irregular palaeosurface. The base of the Natal Group in this locality lies
at an elevation of 740 m a.m.s.l., whereas the tops of the neighbouring Nondweni Group quartzites lie at elevations of 1236 m, 1250 m and 1318 m, with no intervening faults (Fig. 5.1). The ruggedness of the topography in this area is probably due to its proximity to the western margin of the basin.

It would thus seem that the floor of the northern portion of the basin was characterised by rugged topography, whereas the southern portion, i.e. south of the Tugela Thrust Front (Matthews, 1972) and the Tugela Fault, the palaeofloor of the basin was gently undulating. The distinction between two palaeorelief patterns on the floor of the basin appears to be reflected in the distribution of several of the stratigraphic units of the Natal Group. Further, the distribution of the two facies of the Tulini Member also appears to be related to the boundary between the two regions (Fig. 3.43). The conglomeratic Ulundi Member is restricted to the high-relief northern portion of the basin, while the quartz-arenites of the Kranskloof and Dassenhoek Members are found only in the southern portion, where the palaeorelief was subdued.

The palaeosurface of the basin in which the Natal Group was deposited has a locally-preserved palaeoregolith which Hardie (1958, pages 16, 90) called "fossil soil", and which was overlain by a graded unconformity at the contact between the granitic basement and the overlying arenaceous rock of the Natal Group. This caused difficulty in determining the exact contact. He cited this as evidence of local derivation of the sediments which formed the Natal Group. The term "fossil soil" might be taken to imply an organic component, for which there is no evidence in the Natal Group, but the definitions of soil by Retallack et al. (1984) and Lakvulich (1969) would validate Hardie's use of the term,
Fig. 5.1 Ndindindi Ridge (Archaean quartzite) in background, south of Nkandla, showing high palacorelief. Krans in middle foreground (centre of photograph) is Ulundi Member conglomerate overlain by Eshowe Member.
as allowance is made for the absence of land plants (Martini and Chesworth, 1992). Du Toit (1931) described deeply-weathered, tilted banded gneisses beneath the unconformable basal contact of the Natal Group in the Melmoth area. Rhodes and Leith (1967) reported that over the major part of the basin, there is no evidence of pre-Natal Group weathering of the palaeofloor rocks close to the contact with the Natal Group, and suggested that the weathered products would have been removed by erosion and deposited elsewhere during the initial stages of the deposition of the Natal Group. This was confirmed during the present study.

The isopach maps of the Eshowe and Situndu Members (Figs. 3.14, 3.36) reveal that there was a deep trough, open-ended to the northeast, and that the axis of the basin is approximately parallel to the present eastern seaboard of Zululand. Deepening of the basin from the lateral margin towards the central axis is much more rapid and pronounced in the north than it is in the south. This is taken as evidence that the northern portion of the basin was bounded by highlands to the northwest, whereas the southern portion, with its lower gradients, was a relatively slight depression on an open plain. There is no evidence as to the nature of the region neighbouring the eastern margin of the northern portion of the basin. However, the overwhelmingly northeast-to-southwest palaeocurrent direction within the Eshowe Member (See Fig. App-4.1 discussed in Appendix 4), would indicate a highland in that area.
5.4 TECTONICS

5.4.1 REPOSITORY

5.4.1.1 Names, Shape, Boundaries, Origin: The presently-known occurrences of the Natal Group, the Msikaba Formation, and the position of Mozambique, are shown on Fig. 1.2. For the sediments which now form the Natal Group to accumulate, a repository was necessary. Ryan (1967, p.155) identified a "Natal Trough" which had an axis trending approximately parallel to the present KwaZulu-Natal coastline, and plunging to the south-southwest. He suggested that the western margin of the Natal Trough is approximately the same as the western margin of the present occurrences of the Natal Group (see new map of Natal Group occurrence). He also proposed that this Natal Trough was bounded on the east by a strongly positive tectonic element which was expressed as eastern highlands and which extended southwards from southeastern Mozambique for a distance of some 800 km, and was probably situated about 160 km to the east of the present KwaZulu-Natal coastline.

Ryan further contended that the linear downwarp (the Natal Trough) conformed to the structural and sedimentological constraints of a yoked basin, which he defined (p. 155) as "a subsiding linear basin on the cratonic platform and lying adjacent to a complimentary uplift which supplies the sedimentary detritus". This definition agrees essentially with that of a zeugogeosyncline (synonym of yoked basin) of Gary et al. (1972).

The existence of the Natal Trough prior to Karoo times was assumed by Winter and Venter (1970). They described the extension, into KwaZulu-Natal, of the Table Mountain Series, and suggested that this provided evidence for the position of a depositional trough - the
Natal Trough, much of which now lies beneath the Indian Ocean. Stratten (1974) submitted that the western margin of the Natal Trough was situated along a hinge-line located near the western edge of the Dwyka outcrop belt in KwaZulu-Natal. All the isopach maps prepared during the present study indicate an elongate (NE-SW) trough, and the palaeocurrent direction (NE-SW) would substantiate the proposal a trough with an axial gradient to the south-southwest as a receptacle for the Natal Group sediments (see Matthews, 1970). Visser (1974) divided the Table Mountain Group into three facies, viz. the Cape, Pondoland and Natal Facies. The last of these was deposited in the "Natal Embayment", and differed from the Pondoland Facies in being a red-bed facies, grading southwards into the pale grey Pondoland quartz arenite facies. He invoked the Natal Embayment as the northeastern extremity of the Cape Basin, and cited the change in lithology of the Table Mountain Group towards the northeast as substantiating evidence.

Hobday and von Brunn (1979) described the Natal Embayment as having an axial gradient from a rugged provenance area in the northeast towards the open ocean in the southwest. In attributing the Natal Embayment to a failed rift, Hobday and von Brunn (1979) implied a zone of structural weakness that underwent early Palaeozoic crustal attenuation and rift subsidence which aborted prior to the Mesozoic fragmentation of Gondwana. P.E. Matthews (pers. comm. ⁶) rejected the idea of a failed rift on the grounds that there are none of the expected growth faults that normally accompany failed rifts, and preferred to consider the existence of a half-graben. The rugged palaeotopography in the north ceased at approximately the locality of the Tugela Fault (du Toit, 1931). The rapid thinning of the Natal Group along the western margin of the basin (Marshall, 1991b; 1991c), the

⁶Prof. P.E. Matthews, University of Natal, King George V Ave., Durban.
evidence of the trough shape as deduced from the isopachs (Fig. 3.15), the existence of pre-Natal Group palaeokranses at, e.g. Loliwe (Fig. 3.13b), and the prevalence of faulting in the vicinity of the western margin of the basin (Marshall, 1991b; 1991c) would thus reinforce the contention that the Natal Group depositional basin was a foreland graben. Tankard et al. (1982) held that the rift proposed by Hobday and von Brunn (1979) was reactivated in Dwyka times and again in Ecca times, thus proposing continued activity which culminated in the disruption of Gondwana.

5.4.1.2 Basins and Terrains: Rust (1975), in discussing the tectonic and sedimentary framework of Gondwana basins in southern Africa, suggested that the Palaeozoic to Mesozoic rocks were deposited in separate basins which he termed the Karoo and Zambezian tectono-sedimentary terrains respectively. The Zambezian Terrain is a series of individual yoked fault basins which seem to have come into existence as partly interconnected downwarp basins, whereas the Karoo Terrain is a cratonic area of basins and swells on a stable shelf area. He showed the southwestern boundary of the Zambezian Terrain skirting the northern boundaries of South Africa and Swaziland and passing into the Indian Ocean in northern KwaZulu-Natal (Rust, 1975, Fig. 38.1), with the qualification that it is ill-defined. The main distinguishing feature of the Zambezian Terrain is its tensional fault tectonics, which is also a feature of the Natal Group depositional basin. The western margin of the Natal Group depositional basin, which is marked by a zone of faulting (Marshall, 1991b, 1991c) coincides approximately with the boundary between Karoo and Zambezian Terrains as modified by Thomas et al. (1993).

5.4.1.3 Provenance: If the Natal Group sedimentary rocks were derived from an eastern
5. BASIN TECTONICS

orogenic belt, as suggested by Ryan (1967), then they should be molasse deposits. Whitten and Brooks (1972, p. 296) defined molasse deposits as: "sediments produced by the erosion of mountain ranges at the final phase of an orogeny. these post-tectonic sediments include arkoses, polymict conglomerates and breccias and reddish-brown shales. They appear to have developed in intermontane areas, which are commonly non-marine."

Pettijohn (1975) drew attention to the fact that some molasse deposits have conspicuous sequences of red sandstone and mudstone, and that the red colour indicates oxidation and desiccation, and hence deposition under subaerial conditions. Both of these descriptions are compatible with the rocks of the Natal Group. Thomas et al. (1993) have identified the Natal Group depositional basin (Natal Trough of Ryan 1967, Natal Embayment of Visser, 1974)) as a foreland graben, into which the Natal Group sediments, now recognised as molasse (Thomas et al. 1992, 1993), were deposited. The molasse was shed off a Pan African orogenic belt to the north and northeast - possibly in what is now Mozambique (Thomas et al. 1993). The palaeocurrent directions (see chapter 6) indicate very strongly that the provenance of most of the Natal Group sediments was to the north and northeast of the exposed portion of the depositional basin. For deposition to have taken place in the early Ordovician (490 Ma, Thomas et al. 1992), there must have been prior uplift in the provenance area, probably in Pan African times. The presence of an uplifted area to the northeast, which could have provided the sediments deposited in the foreland graben of the Natal Group depositional basin, as suggested by Ryan (1967), is supported by Thomas et al. (1992, 1993; Pinna et al. 1993).

Tankard et al. (1982) stated that the Mozambique Structural Province underwent Pan
African basement reworking in the late Proterozoic and early Palaeozoic, but that there are no syntectonic deposits, implying that there was no mountain-building during this event. However, Pinna et al. (1993) claimed that there was a Pan African mountain-building event in Mozambique. Recent Gondwana reconstructions (e.g. Martin and Hartnady, 1986) show that Western Dronning Maud Land in Antarctica was situated close to KwaZulu-Natal. In this area, a deformation and cooling age of ~500 Ma has been widely reported (e.g. Jacobs, 1991), implying a major early Palaeozoic orogenic episode in this region. This could have provided a source for the largely molasse deposits of the Natal Group. Thomas et al. (1992) reported on detrital muscovites with an age of ~580 Ma and secondary clay fractions with an extrapolated age of ~490 Ma in samples taken from the Natal Group in southern KwaZulu-Natal. There is no evidence of a high-temperature Pan African overprint recorded for the basement rocks of KwaZulu-Natal (Thomas et al. 1992), and therefore the ~580 Ma detrital muscovite must have been derived from a source outside the basin - ideally an elevated area with a Pan African signature - situated probably in southern Mozambique as indicated by the palaeocurrent data (see Appendix 4.).

5.4.1.4 Contemporaneous and Continued Downwarping: Turner and Whateley (1983) maintained that the forces which caused the fragmentation of Gondwana were initiated some 450 million years ago, coinciding with the tectono-thermal event of the Mozambique Mobile Belt, and suggested that narrow, linear pre-fragmentation grabens were active in pre-Karoo times. These structures, one of which was the Nongoma Graben, significantly influenced the sedimentation in the area. Bott (1976) stated that passive continental margins are often occupied by narrow, linear, graben-like sedimentary basins just prior to fragmentation. The prolonged activity of the Natal Trough, at least into Permo-
Carboniferous times, is implied by Matthews (1970) who pointed out that the ice-flow directions within the basin were governed by the subsidence of the Natal Trough. In Fig. 5.2 the ice-flow direction is clearly the same as the palaeocurrent direction as shown by the trough cross-bedding. This continued activity of the Natal Trough is also attested to by von Brunn (1994), who demonstrated that continued subsidence of the trough influenced the style of the Dwyka sedimentation. Also, Cairncross (1989) referred to subsidence in the eastern Natal coalfield. Van Vuuren and Cole (1979) appealed to continued activity of the Natal Trough as an influence on the deposition of the Vryheid Formation in the eastern KwaZulu-Natal coalfield. Further, Turner and Whateley (1983) inferred that the thickening of the coal measures in the Nongoma Graben was due to further activity within the Natal Trough. The deep trough indicated on the Eshowe Member isopach map (Fig. 3.15) could possibly represent a further graben structure within the depositional basin, similar to the Nongoma Graben.

The minimum sediment cover, calculated from the strength of the quartzite clasts, is of the order of 2600 m (see Appendix 3.). This thickness of sediments must thus have been deposited rapidly, and made possible by rapid subsidence of the basin floor. Once the Natal Group sediments were consolidated, they would have attained strength, and the mass of any overlying rocks, such as the Karoo Supergroup, would not have been transmitted directly onto the clasts to fracture them. Therefore the fracturing was not caused by the added burden of the Karoo cover, but by the mass of the unconsolidated Natal Group sediments themselves.

5.4.1.5 Contemporaneous Volcanism: Tankard et al. (1982) submitted that the
Fig. 5.2 Glaciated pavement on Kranskloof Member at Ifume, Natal South Coast. Ice-flow direction coincides with trough cross-bedding axis in foreground. (Photo by V. von Brunn)
contemporaneous downwarping of the Natal Embayment was accompanied by seismic
tremors which triggered the slump structures in the Natal Group sediments reported by
Matthews (1961), by causing instantaneous liquefaction. The abundant dewatering
structures are consistent with contemporaneous earthquake activity, as is the evidence of
contemporaneous volcanism found in the lower part of the Natal Group (Marshall et al.
1991; Thomas et al. 1992). This would argue against the contention of P.E. Matthews
(pers. comm.\(^7\)) that there were no growth faults formed during the deposition of the Natal
Group.

At 571 ± 57 Ma (R.J. Thomas, 1994, pers. comm.\(^8\)), the basement on which the Natal
Group sediments were deposited lay at a depth of ~8 km (~250°C) below the surface, as
shown by sphene fission track data (Jacobs and Thomas, 1994). This thickness may have
been caused by the presence of westward-directed overriding nappes which resulted from
the Pan African orogenic event which took place to the east, in present-day Mozambique,
the Falklands, or Western Dronning Maud Land in Antarctica. During subsequent uplift
and erosion between ~570 and 490 Ma, the ~8 km of material which was removed, must
have been deposited elsewhere, probably to the south and southeast, along with the material
from the Mozambique Pan African mountains which would have been eroded
contemporaneously with the ~8 km of basement, as no depositional basin existed where
KwaZulu-Natal is now situated.

Shortly before the commencement of the Natal Group deposition, the depositional basin

\(^7\) Prof. P.E. Matthews, University of Natal, King George V Ave., Durban

\(^8\) Dr R.J. Thomas, Council for Geoscience, P.O. Box 900, Pietermaritzburg
was initiated by the formation of a foreland graben, probably related to the Pan African collisional event, and it was into this receptacle that the molasse was deposited. The formation of the foreland graben was apparently accompanied by volcanic activity, as evidenced by the tuffaceous beds within the Natal Group (Thomas et al. 1992). Subsidence of the Natal Group basin continued, to accommodate the large amount of material being shed off the Pan African mountains in Mozambique, until the estimated total thickness was ~2600 m. In the interim period of probably 100 Ma or more, between cessation of Natal Group sedimentation and commencement of Dwyka Group sedimentation, subaerial erosion took place to reduce the thickness of Natal Group sediments to approximately the present situation.
6. DEPOSITION

6.1 INTRODUCTION

Without a suitable receptacle, appreciable amounts of sediments will not be preserved in the stratigraphic record. It has been established that the repository for the Natal Group was a foreland graben, parallel to the present coastline of KwaZulu-Natal, and with an axial gradient to the south-southwest (Chapter 5; Matthews, 1970; Thomas et al. 1993). Hardie (1958), Mathew (1971), Hobday and von Brunn (1979), Rhodes and Leith (1967), Kingsley (1975) and others stated that the rocks of the Natal Group, apart from the quartz arenites, were deposited in a fluvial environment. Modern fluvial environments cannot be directly compared with vegetation-free pre-Devonian fluvial sedimentation (Fuller, 1985). However, the remarkably consistent palaeocurrent direction, the common occurrence of scour-channels and the marked lateral and vertical variation in lithofacies, would strongly suggest that depositional environment for the Natal Group was fluvial. Of the nine alluvial basin-fill models defined by Miall (1981a), his model 6, with longitudinal trunk drainage, transverse proximal fan/river and a medial longitudinal river, most closely complies with the requirements for the Natal Group. Miall (1981a) identified four parts to an alluvial drainage system. These comprise a) headwaters in upland source areas, b) proximal environment immediately below the fall line, c) medial environment and d) distal environment where the rivers interact with some terminating environment such as a lake or the sea. From the current study, it would appear that the distal portion is missing from the known basin, as no evidence of any such terminating environment has been identified. This is presumably because the distal part was situated to the southeast of the present...
KwaZulu-Natal coastline. The basin-fill material now accessible would thus represent the proximal and medial zones, with some from the headwaters zone.

An alluvial fan is a "low, outspread, relatively flat to gently sloping mass of loose rock material, shaped like an open fan or a segment of a cone, deposited by a stream (esp. in a semi-arid region) where it issues from a narrow mountain valley upon a plain or broad valley...." (Gary et al. 1972). It was reasoned, therefore, that the identification of fan deposits could be used as an indicator of sharp basin-margin relief, probably fault-controlled. From the presence of rock-avalanches and debris-flows (Chapter 3; Blair and Mc Pherson, 1994), it can be postulated that alluvial fans were common along the fault-line-scarp bounded western margin of the basin.

Rhodes and Leith (1967) attributed the origin of the Natal Group to fluvial deposition on coalescing floodplains and alluvial fans with marshy lakes. As there was no terrestrial vegetation present in the early Palaeozoic (Fuller, 1985), these inferred marshy lakes would better be termed partially inundated mud-flats. Rhodes and Leith (1967) further proposed that the Natal Group rocks are a purely terrestrial, red-bed succession, the deposition of which was interrupted by periods of marine inundation as a southern sea transgressed northwards from what is now Pondoland as far as where the Tugela River is situated today. Roberts (1981), Visser (1974), Kingsley (1975), Hobday and von Brunn (1979), and others, have ascribed the Natal Group to a fluvial environment, braided or unspecified.

Miall (1978) described six braided river types, two of which appear to be of particular relevance in the discussion of the deposition of the Natal Group arenaceous rocks.
The first is the Platte Type, whose characteristics are:

a) broad and shallow;

b) no defined topographic difference between active and inactive areas;

c) dominant linguoid or transverse sandy foreset bars, giving rise to superimposed sets of lithofacies Sp (The lithofacies listed are explained in Table App-1.3);

d) Lithofacies St is scarce, reflecting the rarity of deep channels;

e) lithofacies Sr, Sh, Fl, Fm may occur; and

f) few cycles are developed.

The second is the Bijou Creek Type, whose characteristics are:

g) Upper flow regime conditions sand moulded into plane-beds (Sh lithofacies);

h) Parting or streaming lineation often developed in the Sh lithofacies;

i) This exceptionally high flow energy is rare in perennial streams, but common in ephemeral rivers which are characterised by infrequent, violent flash-floods in which the flow may be channelised or occur as sheet flood;

j) Facies models for ephemeral rivers all emphasise the importance of Sh lithofacies in the sedimentary assemblage (Miall, 1977);

k) Lithofacies Sp, Sr, Fl, and Fm may be produced during waning flood stages.

l) Thicknesses of more than 1,5 m may be deposited during one flood event, because of the high energy and competence; and

m) Erosional surfaces with intraclasts (lithofacies Se) and low-angle cross-beds filling scours (Sl) may also be important.

Roberts (1981) has suggested that the rivers which deposited the Natal Group (apart from
the supposedly shallow marine quartz-arenites) were transitional between the Platte and Saskatchewan Types of Miall (1978). From the current basin-wide investigation of the Natal Group, it would seem, however, that rivers of both Platte and Bijou Creek Types, as well as transitional between them, were dominant, as the features described by Miall (1978) above were commonly encountered. Smith (1970) maintained that superimposed transverse bars - as evidenced by planar cross-bedding common in the Natal Group rocks - is evidence of a rapid increase in the depth of the stream depositing the sediments, concomitant with flash-flooding.

6.2 SEQUENCE OF EVENTS

6.2.1 DEVELOPMENT OF BASIN

The initial stage in the late Proterozoic or early Palaeozoic establishment of the repository for the Natal Group sediments commenced with the formation of a foreland graben or half-graben in the foreland which consisted of craton and Natal Metamorphic Belt. This was divided by a plane of weakness which would later manifest as the Tugela Fault (Fig. 6.1a; Chapter 5). As the eastern portion of the basin is missing (see Chapter 5), only a half-graben is illustrated. Subaerial erosion reduced the sharp relief (Fig. 6.1b). The axial gradient of the Natal Trough was to the south-southwest (Matthews, 1970), and was presumably fairly steep with a prevalent erosional regime, as there is no record of any sedimentation having taken place at this stage. The next step was the development of the Tugela Fault, which relatively elevated the northern, cratonic block (Fig. 6.1c). This elevation of the cratonic section would have caused rejuvenation of the drainage, and
Fig. 6.1 Sequence of events in the Natal Group depositional basin
consequent accelerated fluvial erosion of the floor of the graben portion and its flanks (Fig. 6.1d). The pronounced palaeorelief of the basin floor to the north of the Tugela Fault is corroborative evidence of this.

Alluvial fans are almost certain to have formed at the foot of the Tugela Fault scarp, but no evidence of such has been observed. It can only be presumed that any such conglomeratic deposits have been removed by erosion, and transported southwards to be deposited beyond the presently known portion of the basin. The elevation of the cratonic section of the basin would have assisted in the removal of some 8 km of basement material as discussed in Chapter 5. The formation of an elevated highland - the Pan African orogenic event - in southern Mozambique (see Chapter 5.) at about the same time would have provided much sediment for the high energy rivers to transport into the Natal Group depositional basin. None of this is evident, however, and it would seem that the present basin, at that stage, was still in an entirely erosional regime, and all the sediment, derived from both the Pan African mountains, and the Natal Trough itself, was transported beyond the position of the present coastline of KwaZulu-Natal to be deposited elsewhere. It is possible that these sediments were laid down in the Cape Supergroup basin to the south.

6.2.2 EARLIEST DEPOSITS

The formation of fault-line scarps along the western margin of the Natal Trough, would have allowed the generation of talus deposits such as observed at Loliwe (see Chapter 3.). It is suggested that the Loliwe palaeotalus resulted largely from a catastrophic collapse of a Mozaan Group quartzite krans, rather than from gradual accumulation as a result of
toppling of blocks during gradual retreat of the krans. The deposit would thus be classified as a rock avalanche, as defined by Blair and Mc Pherson (1994). The interstitial material appears to be identical to the Eshowe Member shale which overlies the deposit (description of Loliwe deposit, Marshall, 1991a), but with the addition of sand-sized particles and granules. The matrix probably infiltrated the palaeotalus, filling the voids, as the Eshowe Member sediments were deposited. Tanner and Hubert (1991) stated that the presence of horizontal or inclined gravel layers within the matrix of a conglomerate is consistent with progressive infiltration of sediment into spaces around the boulders. No gravel layers were observed within the matrix of the Loliwe palaeotalus deposit, but sedimentary layering, in places draped over larger clasts, does occur, and it is not unreasonable to contend that this evidence would be equally supportive of infiltration which occurred after the accumulation of the talus. The Loliwe palaeotalus has been preserved in situ, and it is suggested that deposits similar to this were very common along the fault-line-scarp bounded northwestern margin of the basin. The talus from the quartzite kranses provided the material which was transported downstream to be laid down as gravels which now form the Ulundi Member conglomerates deposited as intermontane and alluvial fan conglomerates along the western boundary of the northern portion of the basin (Fig. 6.1d and e). The palaeotalus deposits, exemplified by the deposit at Loliwe, are thus seen to be proto-Natal Group deposits - the initial deposits preserved within the basin.

6.2.3 DEPOSITION OF DURBAN FORMATION

6.2.3.1 Introduction: There must have been a change in conditions in the basin, from the erosional environment which had prevailed and allowed ~8 km of basement to be removed
6. DEPOSITION (see Chapter 5), to an environment allowing the deposition of molasse sediments derived from the Pan-African mountains in southern Mozambique (see Ryan, 1967). This was effected by the activation of the already-existing Melville Thrust to form the moderately-elevated Dweshula High and the basement ridge near Pietermaritzburg (Fig. 6.1e). Although no rocks resulting from sediments shed off the Pietermaritzburg Ridge have been identified, there are Ulundi Member conglomerates in the southwestern corner of the basin which are thought to have been derived from the Dweshula High. It is also highly probable that some tilting of the basin in a northward direction occurred, in effect reducing the axial gradient, and thus terminating the erosional regime and initiating the depositional phase during which the Natal Group was deposited (Fig. 6.1f).

6.2.3.2 Ulundi Member: Blair and Mc Pherson (1994) list the optimal conditions for the formation of alluvial fans. The present study has provided evidence that all these conditions were present in the northern portion of the basin where the Ulundi Member was deposited. It is therefore not unreasonable to presume that alluvial fans were formed. Firstly there was the juxtaposition of a relatively uplifted mountain block, and a valley - along the western margin of the Natal Trough graben. Secondly, there was the presence of feeder channels which drained the upland catchment area transversely across the scarp into the valley. Thirdly, much coarse sediment produced by mechanical weathering was available for transport into the basin, as seen at Loliwe. The unweathered feldspars in the arenaceous deposits provide substantiating evidence for this. The debris flows and "hyperconcentrated flood flow" (see Smith, 1986, p.2) bear witness to the presence of the fourth element, namely infrequent but intense rainfall which caused flash-flood discharge. Fifthly, the common occurrence of faulting near, and approximately parallel to, the western
margin of the Natal Group basin is concomitant to the postulation of a fault-bounded basin, or graben.

The several types of conglomerate observed can be used to interpret: a) in which of the four parts of the drainage system (Miall, 1981a) they were deposited; and b) which mechanism or combination of mechanisms was instrumental in transporting and depositing the gravels.

The shape of the Ulundi conglomerate clasts suggests that the conglomerates are of fluvial origin (See Chap. 4 - Description of Ulundi Member). The size of the clasts - up to 2 m diameter - (Matthews 1961; Hobday and von Brunn, 1979) and the generally matrix-poor character of the conglomerates, testify to the high energy of the transporting streams, consequent upon the high relief of the area, caused by the formation of the foreland graben. In this connection, the conglomerates of the van Horn Sandstone, in the U.S.A., provide evidence of extremely high transporting stream competence related to the confinement of water flow to narrow canyons (Mc Gowen and Groat, 1971). It is postulated that some of the conglomerates of the Ulundi Member - those with sparse matrix and elongate valley morphology - were laid down under much the same conditions. This would have been largely in the headwater zone (see Miall, 1981a) as valley fill fluvial deposits in intermontane valleys (Hobday and von Brunn, 1979; Matthews, pers.comm.), and in the proximal zone (see Miall, 1981a) as alluvial fans. The Ulundi Member deposit along the White Mfolozi River (Marshall, 1991a) with its tabular geometry, sparse matrix and interbedded shales and sandstones, commonly cross-bedded, is part of an alluvial fan.

9 Prof. P.E. Matthews, Dept. of Geology, University of Natal, Durban
whereas the deposit in the valley of the Nsuze River (Marshall, 1991b), with its elongate valley geometry and greater matrix content than at Ulundi, was deposited as valley fill.

It is proposed by the author that some gravels moved as high density dispersions along the bottoms of the river valleys (headwater zone of Miall, 1981a) during floods of high magnitude, as "high density bedload carpets" (Todd, 1989, p. 517), being moved by "hyperconcentrated flood flow" (Smith, 1986, p.2). Some matrix-supported conglomerates, with relatively angular clasts which are commonly aligned horizontally were deposited as debris-flows. The valley-fill deposits, with abundant matrix, such as seen in the valley of the Insuze River, are interpreted as the m 2 facies of Ghibaudo (1992), and resulted from the frictional freezing of a highly-concentrated clast dispersion which had moved as a high density turbidity current (see Lowe, 1982). Where the gravels were dispersed onto the proximal portion of the depositional basin, and deposited as a fan, the intensity of the processes within the environment was diminished, and the transport of the clasts would have been by traction of normal stream flow (Smith, 1986) along the floor, with individual particles being transported as part of the normal stream bedload. It is in this type of environment that imbrication and stratification within the beds was produced. The high density dispersions which were deposited within the fluvial valleys would have had more finer-grained material which was deposited at the same time as the matrix than the gravels deposited by normal traction flow. In the fan deposits, where the gravel was not transported as a cohesive mass, the finer-grained material was, to a greater degree than the valley deposits, removed and transported further into the basin, to be deposited as arenaceous and argillaceous beds. At this stage, the matrix material was flushed out by the stream, resulting in a clast-supported conglomerate with little or no matrix. Thus, the
conglomerates with abundant matrix are interpreted as more proximal than those with little matrix. Any matrix in the more distal conglomerates was probably the result of infiltration of later arenaceous sediments, and provided no additional strength to the framework clasts (Reddering, pers. comm.10). Matrix-supported conglomerates, and clast-supported conglomerates with abundant matrix, which occur in the proximal zone (see Miall, 1981a) are seen to be debris-flow deposits. Rodine and Johnson (1976) have described debris-flows which have flowed on gentle slopes.

\textbf{6.2.3.3 Eshowe Member:} As the erosional regime was replaced by conditions conducive to deposition of the molasse sediments derived from the Pan African mountains in southern Mozambique, the arkosic to sub-arkosic sandstones and interbedded shales and siltstones of the Eshowe Member were formed, penecontemporaneously with the conglomerates and interbedded arenites of the Ulundi Member.

Miall (1981b), in describing the Platte River type of depositional environment, and the resultant facies assemblage for low-sinuosity, multiple-channel rivers, stated that the sediments are dominated by linguoid or transverse sandy foreset bars, or by sand waves, giving rise to a dominance of planar cross-bedding. The sparse occurrence of trough cross-bedding is attributed to the rarity of deep channels. In this light, the Eshowe Member south of Eshowe was deposited by exceptionally broad, shallow rivers with no well-defined topographic differentiation between active and inactive areas. The increase in the incidence of trough cross-bedding northwards is to be expected, as deeper channels would be present near the points of discharge from the intermontane drainage channels.

10 J.S.V. Reddering, Council for Geoscience, Port Elizabeth.
The predominance, in the Eshowe Member, of lithofacies Sh and Sp (Table App-1.3) would suggest that the Eshowe Member was laid down from a river of the Bijou Creek Type (see Miall, 1978). The common occurrence of lithofacies Fl - indicating overbank or waning flood deposits (see Miall, 1978) - and St - indicating dunes and lower flow regime, would suggest that the Bijou Creek Type rivers tended towards rivers of the Platte Type (see Miall, 1978). In other words, the rocks of the Eshowe Member have characteristics of sediments deposited by both the Bijou Creek and Platte River types.

In the proximal zone, the Eshowe Member sediments were deposited on top of the Ulundi Member fan conglomerates. More distally, the arenaceous sediments with interbedded argillaceous sediments were deposited directly onto the basement floor of the basin. This member was deposited by superimposed transverse bars (as shown by stacked planar cross-beded units) topped by smaller bedforms such as sandwaves and megaripples (as shown by trough cross-bedding). Current velocities ranged from low velocity as reflected in tabular foresets, through high velocity, to upper flow regime preserved as plane beds (see Harms and Fahnestock, 1965). As there was no vegetation present during the Pre-Devonian Natal Group times (see Fuller, 1985), the rivers were not confined by well-defined banks protected by vegetation, and the lateral limits of rivers were determined by a) the topography and b) the amount of water present. As suggested by Hobday and von Brunn (1979), the common occurrence of siltstones and shales overlying coarser sandstones, would suggest overbank deposition on areas of the braided stream which were inactive.

As flow was reduced from the high and moderate velocity described above, and the competence of the river was diminished, the finer grained sand and silt was deposited as
lithofacies Fl. As flow was reduced still further, the width of the rivers would have decreased, and overbank pools (backswamp, Miall 1978, or interchannel areas) would have been left on the braidplain. The fine sediment in suspension would then have been deposited as clay drapes (lithofacies Fsc), to become more cohesive during subsequent exposure to the atmosphere. Some of the rivers would cease flowing completely, and the resulting pools would deposit clay drapes in a manner identical to that described for overbank or waning flood deposits initially, and then for the deposits in the interchannel areas. The thickness of lithofacies Fsc or Fl deposits would give some indication of the depth of the backswamp or central stream pools during reduced flow and quiescent conditions. Where the initial flow of a flood event was strong enough, scouring and removal of the armouring layer of argillaceous material would be removed, and the underlying sand would also suffer erosion, and the resulting channels would be filled by coarse sand, commonly with lag deposits at the base. Argillaceous beds are more common in the southern (medial) portion of the basin than in the northern (proximal) portion, which is to be expected.

During the deposition of the Eshowe Member, there was apparently much more water present in the north than in the south, as shown by the prevalence of soft-sediment deformation in the north, and its complete absence in the south (Matthews, 1961). The evidence of contemporaneous volcanism (Marshall et al. 1991; Thomas et al. 1992) would suggest that there was some earthquake activity at this time, which could have helped to trigger the unstable sediments into movement resulting in the soft-sediment deformation. The undulatory floor of the basin would have been filled by playa lakes in which relatively thick argillaceous deposits were formed (Roberts, 1981).
6.2.3.4 Kranskloof, Situndu and Dassenhoek Members: As the provenance area to the northeast became lowered by continued erosion, the Eshowe Member became progressively finer upwards, and the sediment supply also diminished. The Kranskloof and Dassenhoek Members resulted from the reworking and winnowing of Eshowe Member sediments during this period of very little or no sediment influx from the mature provenance area which had little or no relief. The immediate provenance of the Kranskloof Member was, therefore, in the northern portion of the Natal Group basin, and the absence of quartz arenites to the north of the Mhlatuze River would be explained by this, rather than resorting to a northern limit of marine transgressions as proposed by Roberts (1981), Visser (1974) and others. Wind-winnowing would have also played an important role in removing the finer particles to produce the quartz arenites of the Kranskloof Member (see Fuller, 1985). The unweathered nature of the feldspars, and the winnowed nature of the quartz arenites in which they occur sparsely, would imply a semi-arid climate at the time of deposition of the Kranskloof Member (see Visser, 1974; Roberts, 1981; Fuller, 1985). It is contended that the Dassenhoek Member was deposited under conditions very similar to those of the Kranskloof Member, and it is thus envisaged as a sedimentary continuation of the Kranskloof Member. The presence of the coarse, arkosic to sub-arkosic sandstones of the Situndu Member, with very sparse argillaceous material, between the Kranskloof and Dassenhoek Members, is interpreted as follows: There was a short-lived rejuvenation of the drainage, consequent upon uplift in the provenance area in Mozambique. This was possibly a precursor to the major uplift which allowed the transport and deposition of the small-pebble conglomerates of the Tulini Member at the base of the Mariannhill Formation, and resulted in the influx of coarse sediments. Some of the finer material would have been deposited as the interbedded, relatively scarce, shale beds, and the rest transported beyond
the known portion of the basin.

At the base of the Kranskloof Member are what Roberts (1981) termed intertidalites. He envisaged these as being transitional between the fluvial Eshowe Member and the shallow marine Kranskloof Member. As discussed later in this chapter, the quartz-arenitic rocks of the Kranskloof Member, are regarded as fluvial deposits, and the term "intertidalite" is therefore inappropriate. The interbedded sub-arkoses, argillites and quartz-arenites, with cross-bedding and reactivation surfaces, indicate a transition from the deposition of the first-cycle, immature, arkosic sediments of the Eshowe Member to the more mature, reworked quartz-arenites of the Kranskloof Member.

At the cessation of the deposition of the Situndu Member, the conditions prevalent in Kranskloof times resumed, and the Dassenhoek Member was deposited. This marked the culmination of the Durban Formation, which commenced with coarse conglomerates of the Ulundi Member, followed by coarse- to finer-grained arkosic sediments of the Eshowe Member, which were winnowed and reworked to provide the material for the quartz-arenites of the Kranskloof and Dassenhoek Members during a period of sparse sediment supply from the reduced Pan-African provenance in Mozambique. There was a temporary interruption of this last environment to produce the coarse, arkosic sediments of the Situndu Member, as described above.

6.2.4 DEPOSITION OF MARIANNHILL FORMATION

6.2.4.1 Introduction: The deposition of the five members of the Durban Formation formed
6. DEPOSITION

6.2.4.2 Tulini Member: Dobkins and Folk (1970) stated that a figure greater than 0.65 for the maximum projection sphericity indicates a fluvial depositional environment. Also, they maintained that if the oblate/prolate index falls between -1 and +5, it is 69% certain to be fluvial. Stratten (1974) stated that a coefficient of flatness of more than 45 indicates a fluvial origin. Table 3.6 lists the results of the analyses of the pebble measurements. Plots of maximum projection sphericity vs. coefficient of flatness (Figs. 3.45 to 3.56), as proposed by Stratten (1974) point conclusively to a fluvial environment of deposition.

The Mariannhill Formation was initiated by deposition of the Tulini Member which is seen to have occurred in response to rejuvenated drainage reflecting either uplift in the provenance areas, or accelerated subsidence of the foreland graben of Thomas et al. (1993). Either of these processes would have increased the competency of the streams, and resulted in the widespread development of the small-pebble conglomerates. North of the Tugela Thrust Front (Fig. 3.43) the matrix-supported nature of the polymict conglomerates of Facies B, occurring in elongate fan deposits, are seen to have been deposited by debris-flows. South of the Tugela Thrust Front, the monomict (quartz) and clast- to matrix-supported conglomerates of Facies A are interpreted as having been deposited on an alluvial braid-plain in the medial zone (see Miall, 1981a) by rivers of the Scott Type (see Miall, 1978). This braid-plain extended from the Tugela Thrust Front in the north to Verulam in the south. Ferricrete (10 cm thick) in a conglomerate at Clantrock northeast of Wartburg (Marshall, 1991b) would indicate prolonged exposure to the atmosphere during relatively dry conditions. The difference between the composition of the clasts of Facies
A and B points to the two facies being derived from two independent provenances. Facies B, with polymict supracrustal clasts, was probably derived from the craton to the north, whereas Facies A, with monomict (quartz) clasts, was probably derived from quartz veins in the Tugela Thrust Front. The remarkable uniformity of the means of: a) elongation, b) oblate/prolate index, c) ratio of short axis to intermediate axis, d) ratio of intermediate axis to long axis, e) coefficient of flatness, f) maximum projection sphericity, g) bladedness and h) nominal diameter (Fig. 3.57) for 12 localities in the Type Area, indicates to the author that the deposits of Facies A shared a common provenance, transport and depositional history, thus confirming a similar idea suggested by the monomict nature of the conglomerates.

6.2.4.3 Newspaper Member: As the Natal Group basin continued to subside, the braided rivers of both Platte and Bijou Creek Types continued to supply the sub-arkosic to arkosic sands and muds which are now represented by sandstones and interbedded silts and shales of the Newspaper Member. As the lithologies, palaeocurrent directions and sedimentary structures of the Eshowe and Newspaper Members are essentially the same, the author suggests that the provenance, and conditions of transport and deposition were also essentially the same as for the both members.

There are, however, several differences which need to be addressed.

The first is the presence, in certain zones within the Newspaper Member, of calcitic concretions of varying sizes, but with a maximum of approximately 3 cm. These are diagnostic of the Newspaper Member, and were not encountered in any other unit of the
Natal Group (see also Roberts, 1981). The author also identified calcite cement in some of the samples taken from the Newspaper Member rocks. It is suggested that the calcite was deposited as a diagenetic cement, possibly from fluvial water that was left in the pore spaces, and later concentrated as small concretions during diagenesis.

The second difference is the very common occurrence of soft sediment deformation. Matthews (1961) reported on this phenomenon, pointing out that south of Durban it is restricted to the Newspaper Member, whereas northwards from Durban the deformation occurs progressively lower down in the succession, until just south of Ulundi it was observed to occur from the base of the Eshowe Member to the top of the Newspaper Member. He proposed that the slumping was caused by sliding on the depositional slope, resulting from either overloading or removal of the toe of the deposit by scouring, thus producing instability. He also suggested that one of the possible causes of the slumping was an increase of the slope on which the sediments were deposited, as a result of regional tilting, which apparently affected only the eastern part of the known depositional basin. He attributed the dearth of slumping evidence in the western portion of the basin to this.

Matthews reasoned that this hypothesis leads to some speculation regarding the deposition of the Natal Group rocks. He suggested that if the lowermost slumped beds were formed during the earliest phase of tilting, then the apparent distribution of these slumped beds indicates that this movement occurred when a greater thickness of sediments had been deposited in the southern part of the area than in the north. He wrote at a time when there was no stratigraphic subdivision of the Natal Group at all. The present stratigraphic subdivision of the Natal Group makes it inconceivable for slumping in the Newspaper
Member south of Durban to have been contemporaneous with slumping at the base of the Eshowe Member near Ulundi, taking into account the occurrence of widespread marker layers (Kranskloof and Tulini Members) which occur between the Eshowe and Newspaper Members.

If basin-floor tilting was a cause, it would have had to have occurred progressively, commencing in the northern portion of the basin, and extending to the south as the basin filled. This mechanism is necessary to explain the occurrence of soft-sediment deformation near the base of the Eshowe Member in the Melmoth/Ulundi area, and its restriction to the Newspaper Member south of Durban. Lourens (1979) added that gravity was the underlying mechanism which operated in all situations. Roberts (1981) cited liquefaction of saturated sediments - possibly triggered by seismic activity - as a possible cause of slumping. Another mechanism suggested by Roberts is current turbulence which could have caused both slumping and recumbent foresets. Water-release structures were probably caused by fluidization - a common process in braided-stream and alluvial fan environments (Roberts, 1981).

6.2.4.4 Westville Member: Deposition resulted from rejuvenation of the drainage caused, possibly, by uplift in the provenance area, or, alternatively, by renewed subsidence of the foreland graben proposed by Thomas et al. (1993) or the failed rift of Hobday and von Brunn (1979). The conglomeratic sandstones of the Westville Member provide evidence of further rejuvenation of the drainage. These deposits are sporadically developed over most of the basin as far south as Mid Illovo, southwest of Durban. The generally well-rounded, polymict clasts are usually matrix supported, and are thought to have been derived
from a relatively distant source, and provide evidence of a fluvial origin (Roberts, 1981). The clast shape parameters (Fig. 3.63; Table 3.6) would support the fluvial hypothesis.

This unit is perceived to represent the distal phase of fan conglomerates, and the braided rivers which flowed southwards beyond the fans. Roberts (1981) analysed the depositional environment of the Westville Member as follows: In a braided river environment, channel scours with pebble lags produced conglomerate lenses within the planar cross-bedded sandstone deposited by transverse bars. Turbulence caused by increased flow, as indicated by the greater number of pebbles - the pebbles being larger than the random phenoclasts in the underlying Newspaper Member, and thus showing greater competence - mobilised the water-saturated sediments, causing soft-sediment deformation.

6.3 DISCUSSION

6.3.1 MAXIMUM THICKNESS OF THE NATAL GROUP.

It remains uncertain just how thick the Natal Group was at its maximum development. The fracturing of the Ulundi Member clasts indicates a thickness of 1300 m to 2600 m, prior to consolidation (Chap. 4). The removal of the upper portions of the Natal Group is suggested to have been caused partially by subaerial erosion and partially by the Dwyka glacial activity. The erosive activity of the Permo-Carboniferous Dwyka glaciation is clearly shown by a) glaciated pavements on the upper surface of the Natal Group (Fig. 5.2; von Brunn and Marshall, 1989), b) the presence of clasts of indurated Natal Group within the Dwyka diamictite (Fig. 6.2), and c) by the difficulty, locally, in identifying the contact
Fig. 6.2 Clasts consisting of Natal Group in Dwyka Group diamictite, resting on Natal Group, south of Cato Ridge. (Photo by V. von Brunn)
between the basal Dwyka Group rocks and the Natal Group rocks. Du Toit (1946) reported on a similar phenomenon. This difficulty is the result of the erosion and entrainment of large quantities of Natal Group arenaceous material by the eroding Dwyka ice sheet from which the sandy debris was subsequently deposited. In the south, however, for example at Wood Grange (Fig. App-2.15), the Devonian Msikaba Formation lies between the underlying Newspaper Member and the overlying Dwyka Group, with the implication that, at this locality, the removal of the upper portion of the Natal Group was effected prior to the Dwyka glaciation.

From the above, it is contended that the Westville Member marks the initiation of a third cycle of sedimentation, in which case it would be the basal conglomerate. There is, however, at this stage, insufficient evidence for the establishment of a third formation in the Natal Group.

6.3.2 SOUTHERN LIMIT OF THE NATAL GROUP SEDIMENTATION.

Quite conceivably, some of the Natal Group sediments spilled over the Dweshula High, and were deposited in the basin of the Msikaba Formation to the south. No lithological evidence of this is found, but the persistence of the N-S palaeocurrent pattern right down to the southern margin of the Natal Group basin would suggest that the southern limit of this unit was further south than is now observed.
6. DEPOSITION

6.3.3 NORTHWARD EXTENSION OF MSIKABA FORMATION.

After cessation of deposition of the Natal Group, there was a long period (~140 Ma) of erosion. During this period (from the Ordovician to the Devonian) an erosional regime is presumed to have prevailed, as there is no evidence of any sedimentation, and the upper portions of the Natal Group, and the basement rocks to the south, were eroded. In the Devonian, the quartz-arenites of the Msikaba Formation were deposited in the basin situated where southern KwaZulu-Natal and Pondoland are now located. What is now known as the Msikaba Formation was assumed by Rhodes and Leith (1967), Kingsley (1975), Visser (1974), Hobday and von Brunn (1979), and other workers, to have been deposited in shallow marine conditions. A cursory survey of the palaeocurrent directions recorded by other workers - confirmed by the few measurements taken by the author - reveals what appears to be a consistent northeast to southwest direction, which, under certain circumstances can occur in marine deposition (Reddering, pers. comm.11). The Msikaba Formation beds overlapped onto the Natal Group in the vicinity of Port Shepstone (Fig. 6.1g; App-2.15), but may have extended much further north (Roberts, 1981). There is, however, no evidence of any such northward extension.

6.3.4 PALAEOCLIMATE

The original detrital grain boundaries in virtually all the arenaceous rocks of the Natal Group are marked, in the majority of cases, by haematite dust rims (Fig. 3.33 a & b). This thin haematite coating on the majority of the quartz grains was probably deposited on the

11 J.S.V. Reddering, Council For Geoscience, Port Elizabeth.
quartz grains shortly after deposition. Eriksson (1983) has stated that ferruginous cuticles are unlikely to survive the depositional process of the high-energy environment. However, the iron oxide coating must have been deposited on the quartz grains prior to the formation of the quartz overgrowths. The iron oxide was probably derived by the action of intrastratal fluids on the iron-bearing silicate detrital grains (see Walker, 1967) and on iron-bearing clays (see Folk, 1976). This iron oxide coating was presumably deposited as amorphous hydrous iron oxide (limonite), and subsequently altered diagenetically to haematite (see Eriksson, 1983). This last process probably occurred during the silicification of the sandstones. In some instances the iron oxide occurs as intergranular blebs, and it appears as if the iron oxide has been concentrated during the diagenesis. The unweathered nature of the feldspar grains and the iron-staining of the sand grains making up the rocks are taken as evidence that the climate was semi-arid, with intermittent flow of the drainage allowing exposure of the unconsolidated sediments, during which the sand grains would have become iron-stained.

Hobday and von Brunn (1979) stated that the monomict nature of the conglomerates, with almost exclusively quartzite clasts, indicates a humid climate of deposition, as non-resistant clasts would have been broken down during transport and storage. The author, however, feels that the environment was semi-arid with ephemeral streams being fed by flash floods of high energy, interspersed by periods of exposure of the sediments to the atmosphere, during which the sand grains would have been stained by the iron oxide present. Walker (1967) indicated that debris flows suggest ephemeral drainage, as debris-flows do not form on wet fans formed by perennial drainage, but are common on the dry fans formed by ephemeral drainage. Roberts (1981) was of the opinion that the climate, at least in early
Natal Group times, was hot and arid. Had a humid climate, concomitant with perennial rivers and abundant water supply, been prevalent, the very fine-grained clay and iron oxide content would have been winnowed out, to be deposited further downstream in the basin, as shale layers. The author's contention that the streams were ephemeral is supported by the presence, in the Eshowe Member sandstones, of ferruginous clay drapes - on reactivation surfaces - that are presumed to have been deposited during conditions of reduced flow. Only exposure to the atmosphere would have allowed the clay drapes to become somewhat dehydrated and more cohesive, and hence preserved during the subsequent highly-erosive flow event, and therefore able to protect the underlying, otherwise vulnerable, sand bed from erosion. The abundance of water necessary for the saturation of the sediments leading to soft-sediment deformation, would have been provided by the sporadic and yet intense rainfall of the semi-arid climate.

The northern assemblage is a red-bed sequence insofar as the maroon colour of the rocks is an intrinsic property of the rocks, and not a present-day surface weathering effect (see Walker, 1967). The association of arenites and argillites is also typical of such deposits. This fits Pettijohn's (1975) concept of red-beds as being oxidised molasse deposits. Borehole core from Kloof (400 m deep and drilled for the Geological Survey) and Hlabisa (476 m deep and logged by the author) exhibit the typical reddish to maroon-red colours seen at surface. The patchy occurrence of red colour in the southern assemblage (Fig. 6.3) is, on the other hand, purely a surface weathering phenomenon, and is the result of the break-down of ferruginous minerals, the products of which have stained the surrounding rock. This phenomenon was also recorded by Schwarz (1917).
Fig. 6.3 Patchy iron-staining of Msikaba Formation quartzite, derived from surface weathering of ferruginous minerals in the quartzite, Woodgrange.
The lack of a Kibaran date component in the sample dated (Thomas et al. 1992) indicates that the climate was semi-arid, and that there was virtually no admixture of sediments from the nearby Kibaran terrain, after the initial basal rudaceous sediments were deposited. The immaturity of the sediments, the unweathered nature of the feldspars, and the iron-staining of the sand grains prior to silicification, testify to fairly arid conditions in the provenance area, where flash-floods would have periodically removed the accumulated products of mechanical weathering, as well as in the basin of deposition. Prolonged flow conditions sometimes produced thick (in excess of 1.5 m) sets of cross-bedding (Fig. 3.24).

6.3.5 CLAST SHAPE PARAMETERS

In Figs. 3.4 (Ulundi Member); 3.45-3.56 (Tulini Member) and 3.67 (Westville Member), the coefficient of flatness of clasts, plotted against maximum projection sphericity, shows a marked concentration in the field representing a fluvial depositional environment (see Stratten, 1974). However, Reddering and Illenberger (1988) pointed out that the method of Stratten (1974) is flawed in that it is based on observations by Dobkins and Folk (1970) who ignored the more equant clasts in the deposits on Tahiti-Nui (Reddering, pers. comm.12). Thamm (1988b), however, contended that this type of shape-sorting has a negligible effect on the hypothesis that a fluvial environment can be detected by plotting sphericity against flatness. Reddering also pointed out (pers. comm.) that the linear pattern revealed in the figures indicates that the two parameters being plotted are essentially the same. The author, however, would suggest that, if there is any credibility in the Stratten assumption, then the presence of the plots within a field is significant, even if there is a

12 J.S.V. Reddering, Council for Geoscience, Port Elizabeth.
certain linearity.

The sphericities of the Ulundi Member clasts at Nsuze are lower than in the Tulini Member, and it is considered that the difference is due, not to the depositional environments, but rather to the length of time the clasts were being transported. The Ulundi Member clasts are also considerably larger than those of the Tulini Member, which is suggestive of shorter transport distances. However, the size of the material available at source would have had a strong influence on the size of the clasts ultimately deposited.

6.3.6 TERRESTRIAL / MARINE ORIGIN OF KRANSKLOOF AND DASSENHOEK MEMBERS

Kingsley (1975) was the first, apart from Schwarz (1917) to recognise that the quartz arenites of what is now known as the Kranskloof Member of the Durban Formation, were laid down in fluvial rather than shallow marine conditions. All other workers (du Toit 1931, 1954; Mathew 1971; Hobday et al. 1971; Visser 1974; Hobday and von Brunn 1979; Tankard et al. 1982; and Roberts 1981, 1990) suggested that the Kranskloof Member quartz arenites were laid down in a marine environment during marine a transgression (or transgressions) of the sea which deposited the Pondoland deposits of what is now known as the Msikaba Formation.

If the rocks of the Kranskloof and Dassenhoek Members were laid down under tidal conditions, as is implied by the authors who advocate a (shallow) marine origin for these rocks, then they should exhibit certain characteristics typical of tidalites, and which would reflect the tidal conditions of deposition.
Klein (1977) compiled a list of features diagnostic of rocks deposited in tidal conditions. Of those felt to be critical to the distinction between tidalites and fluvial deposits, the following were not observed during the present investigation.

A. The evidence of the bipolar reversal of flow direction:
 a) bimodal-bipolar distribution of the maximum dip direction of the cross-bedding / herringbone cross-bedding;
 b) complex internal organization of dunes and sand waves;
 c) supermature rounding of the quartz grains;

B. The evidence of late-stage emergence ebb outflow and emergence with rapid changes in palaeoflow directions at very shallow depth:
 d) multimodal distribution of maximum dip direction of the cross-beds;
 e) small current ripples superimposed at right angles to larger current ripples;
 f) interference ripples;
 g) double-crested or flat-topped ripples; and
 h) symmetrical ripples.

It is therefore suggested that it is highly unlikely that the Kranskloof and Dassenhoek Members are the result of deposition under tidal conditions. They were deposited fluvially.

The thickness of the Kranskloof Member varies quite considerably, but thins rapidly northwards from Stanger and southwards from Hibberdene (Marshall 1987, 1988, 1991a, 1991b, 1991c). This thinning to the south in the southern portion of KwaZulu-Natal is the
reverse of what would be expected had the northern assemblage quartz arenites been deposited during a marine incursion from the south.

Furthermore, Rhodes and Leith (1967), Hobday and Mathew (1974), Visser (1974), Hobday and von Brunn (1979) and Roberts (1990) asserted that the orthoquartzite (now identified as the Kranskloof and Dassenhoek Members) represent a northward extension of the southern assemblage into the northern part of the depositional basin, as the result of a marine transgression. It must be noted that Kingsley (1975) did not subscribe to this theory, and offered an alternative explanation whereby wind-blown sand accumulated in a shallow lake and was reworked subaqueously. The coarser-grained intercalations were assumed to represent river channel deposits.

Significantly, Kingsley (1975) recognised that, in addition to the marked changes in the lithology between Hibberdene and Southport, south of Margate, both sequences thinned against a basement ridge which trends east-west. Thomas et al. (1990) also noted a basement high - the Dweshula High (Fig. 1.1; App-2.15) - over which there is no representation of either the northern or southern assemblages, and where the Dwyka Group sediments rest directly on the Kibaran basement rocks. This basement ridge is likely to have formed the southern margin of the red bed deposits of the northern assemblage, and the northern margin of the quartz arenite assemblage to the south. The two assemblages are thus probably separate entities.

Tankard et al. (1982) in discussing the accumulation of great thicknesses of quartz arenites in the shallow marine environment of Pondoland, suggested an accelerated subsidence of the Natal Trough as the cause of two or three episodes of marine transgression during
which the multi-cycle deposits of the quartz arenites of the Natal Group were deposited. Chandler (1988) stated that fluvial quartz arenites can result from the fluvial redistribution of wind-winnowed, chemically-weathered, quartz-rich rocks, with the weathering occurring during a relatively humid climatic cycle, and the wind-winnowing during a subsequent relatively arid climatic cycle. The redistribution of the products of the chemical weathering and wind-winnowing would have occurred during intermittently-activated drainage (flash-floods). Chandler (1988) also suggested that the quartz grains of the quartz arenite could be derived from the diagenetic destruction of labile framework grains of immature sandstone. The author suggests that this is the mechanism whereby the Kranskloof (and Dassenhoek) Members were formed.

Kingsley (1975) listed several reasons why the quartz arenites of the Kranskloof Member were not of marine origin, and proposed an alternative depositional mechanism whereby wind-blown sand accumulated in shallow lakes and were reworked subaqueously. Pettijohn et al. (1987); Selley (1982) and Suttner et al. (1981) have stated that quartz arenites are polycyclic deposits, basing this statement on the mineralogical and textural maturity. However, Dutta (1987) stated that first cycle, fluvial quartz arenites are common in the geological record. Lewis (1984) suggested that quartz arenites were derived from older quartz-bearing sediments. Chandler (1988) stated that Early Palaeozoic fluvial quartz arenites are abundant. He also suggested that there appears to be a strong relationship between intense chemical weathering of rocks containing granular quartz and kaolinite, and the formation of quartz-rich alluvium. Evidence provided, and which is at least partially applicable to the Kranskloof Member, includes poor sorting, kaolinitic matrix, angular quartz grains, and overbank argillites. Chandler (1988) then stated that the Pass Lake...
Formation contains 20-80 m of plane-bedded (sheet flood) and cross-bedded (fluvial) quartz arenite. He also stated that some quartz arenites may be deposited under arid climatic conditions. Pettijohn et al. (1987) and Mc Bride (1989) stated that quartz arenites formed in stable tectonic environments, but Chandler (1988) cited evidence that they can also form in less stable tectonic environments. Rust and Jones (1987) referred to basin-wide unidirectional palaeocurrent distribution and the abundance of clay intraclasts up to large boulder size, as two of three major objections to the Hawkesbury Sandstone being of marine origin. These objections would apply equally well to the Kranskloof and Dassenhoek Members of the Natal Group. The common occurrence of horizontal stratification (upper plane bed lamination, of Cheel, 1990), taken together with the unidirectional palaeocurrent direction, is a strong indication of the fluvial origin of the Kranskloof Member.

In this regard, the author encountered several occurrences of locally-developed quartz arenites within the sub-arkosic to arkosic sandstones of the Eshowe Member. If all of these are of necessity to be interpreted as the result of marine incursions, there would have been many marine transgressions in the Natal Group. The author suggests that they resulted from the reworking, and winnowing of Eshowe Member sediments during local sediment-starvation.

Aspler et al. (1994) have shown that large expanses of quartz arenite in the Proterozoic Hurwitz Group of Canada's Northwest Territories were laid down in a shallow, fresh-water lake. This is, in essence, what Kingsley proposed for the deposition of the Kranskloof and Dassenhoek Members. This could also be used to explain the local development of quartz
arenites within the Eshowe Member. It is an alternative to the semi-arid, sediment-starved environment suggested by the author, but it is felt that the massive or horizontally-laminated character of much of the Kranskloof and Dassenhoek quartz arenites would indicate high energy conditions incompatible with lacustrine deposition.

6.3.7 INTERDIGITATION / TRANSITION

Du Toit (1946), Hobday and Mathew (1974), Visser (1974), Kingsley (1975), Hobday and von Brunn (1979) and Roberts (1990), regarded the southern rocks as marine and the northern rocks - apart from the quartz-arenites - as fluvial, and considered the boundary between the southern quartz arenites and the northern red beds to be transitional or interdigitary. Kingsley (1975) suggested that the rocks of his Hibberdene Facies were laid down in a braided river environment whereas rocks of the Margate Facies to the south, which he regarded as contemporaneous, were deposited in a shallow marine setting. He further proposed that the original strand line between the two environments was situated near Margate, but later migrated northwards to where Hibberdene is now situated. It is across this suggested strand line (the interface between marine and fluvial depositional environments) that the interdigitation between the northern and southern assemblages, described by Kingsley (1975), occurred. Marshall et al. (1991) and Thomas et al. (1992) have shown that there is no evidence for the interdigitation invoked by Kingsley (1975) or the transition of du Toit (1946), and the two occur in juxtaposition at only two localities (Marshall, 1991c). The first of these is on the northern side of the Dweshula High, on the beach just south of Wood Grange where about 20 m of pebbly, grey quartz arenite (called Hibberdene Sandstone Formation by Kingsley, 1975) occurs overlying the red beds of the
northern assemblage, with an apparently conformable contact. This unit is in turn overlain by rocks of the Dwyka Group. The actual contacts are obscured by beach sand. Kingsley, while recognising the lithological similarity between the quartz *arenites* of his Margate Facies, and the Hibberdene Sandstone Formation, failed to place the latter where it belongs - in the southern assemblage (Kingsley's Margate Facies).

The other locality where the northern and southern assemblages are in vertical juxtaposition is at Rock of Gibraltar, on the southern side of the Dweshula High, some 20 km northwest of Port Shepstone. Here a thickness of some 50 m of northern assemblage red beds underlies the body of southern assemblage quartz arenites, apparently conformably. The red-beds at this occurrence thin rapidly southwards until they are completely absent on the road between Port Shepstone and Izingolweni, and the pale grey quartz arenites of the southern assemblage rest directly on the Kibaran Basement rocks (Fig. 6.4).

Thomas *et al.* (1992), using \(^{40}\text{Ar}/^{39}\text{Ar}\) step-heating, have shown that the northern assemblage rocks have an age of \(\sim 490\) Ma. This Ordovician age is considerably older than the Devonian age ascribed to the southern assemblage by Lock (1973) on palaeontological evidence. The disparity in ages between the two assemblages makes the suggested transition or interdigitation between the northern and southern assemblages impossible.

The suggestion of interdigitation between the northern and southern assemblages, or transition from one to the other, are only possible because of the failure of workers to recognise a) the break in sedimentation over what is now known as the Dweshula High (Thomas 1988), b) the actual observed southward thinning of the quartz arenites in the
Fig. 6.4 Longitudinal section through Rock of Gibraltar, Oribi Gorge and Mtamvuna Nature Reserve, showing Msikaba Formation overlapping Natal Group.
6. DEPOSITION

southern portion of the basin, and the ~140 million years age difference. It is perhaps important to note here that some writers stress the similarity between the rocks of KwaZulu-Natal and those of the Cape Province, while others stress the marked difference. This disparity is considered to be partially the result of the failure to recognise the gap in sedimentation north of Port Shepstone, and the lithological contrast across this gap.

To account for the lithological disparity between what were assumed to be correlates, various authors have proposed tectonically-controlled conditions of deposition (See Chapter 5., Basin Tectonics). They claimed that there was a marine environment of deposition for the southern assemblage in a downwarped trough which deepened to the south and southwest, and a fluvial depositional environment for the northern assemblage.

The two quartz arenites of the northern assemblage (Kranskloof and Dassenhoek Members) are lithologically very different from those of the southern assemblage (Msikaba Formation), and the following table, Table 6.1 illustrates the lithological differences.

Kingsley (1975) questioned the probability of the occurrence of such a large transgression - of the magnitude of 220 to 250 km - in the light of contemporaneous thought. He also drew attention to the presence, in the northern assemblage, of red mudstone with associated large-scale ripple-marks - an indication of a terrestrial environment rather than marine. Therefore, the quartz arenites of the northern assemblage cannot be considered as a northward extension of any part of the southern assemblage of Pondoland marine deposits.
Table 6.1 Lithological differences between the quartz arenites north and south of the Dweshula High.

<table>
<thead>
<tr>
<th>NORTHERN QTZ. ARENITE</th>
<th>SOUTHERN QTZ. ARENITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The rocks are fine-grained to medium-grained</td>
<td>The rocks are mainly coarse-grained</td>
</tr>
<tr>
<td>The rocks are moderately even-grained</td>
<td>The rocks are pebbly</td>
</tr>
<tr>
<td>The colour is maroon</td>
<td>The colour is pale grey</td>
</tr>
<tr>
<td>Interbedded maroon-coloured, micaceous shales are common</td>
<td>Argillites are extremely rare, and not maroon in colour</td>
</tr>
<tr>
<td>Cross-bedding is rare</td>
<td>Cross-bedding is very common</td>
</tr>
</tbody>
</table>

6.3.8 HAEMATITE

Roberts (1981) noted that the intensity of occurrence of haematite dust rims is directly related to the occurrence of heavy minerals in adjacent laminae, particularly in the Kranskloof Member, and suggested that the haematite coating of the quartz grains resulted from a post-depositional release of iron from the iron-bearing heavy minerals, and a redeposition on the quartz grains. He referred to Walker (1967) who proposed an authigenic origin for the haematite which stains the late Palaeozoic red-beds of Colorado. It is uncertain what caused the bleach spots, but Rowsell (1969) reported on the presence of possible carbon in the centres these leach spots near Verulam, implying that the bleach spots were the result of reduction of the haematite by the carbon.

The Liesegang banding, which occurs commonly in the Natal Group, is secondary colour banding which almost invariably transects the sedimentary structures in the rock. It is extremely common in the silicified sandstones of the entire Natal Group, and can be mistaken for contorted laminae as produced by soft-sediment deformation, or the foresets in cross-bedded units. It is the result of rhythmic precipitation of iron oxide within a fluid-
saturated rock (Lourens, 1979). The author suggests that Liesegang banding is possibly the result of progressive solution of uniformly distributed iron, and the rhythmic precipitation as haematite. As such, the pH and oxidation potential of the saturating fluid would play important roles. Lourens (1967) and Roberts (1981) both proposed that the haematite which gives the Natal Group rocks their characteristic colour, was positioned subsequent to deposition, and prior to final lithification. The fact that Liesegang banding and leach spots occur at depths of 400 m from surface, in boreholes drilled at Kloof and Hlabisa, provides strong evidence that these are not present-day, surface effects.

6.3.9 PROVENANCE

Sutherland (1868) envisaged the rocks of what is now known as the Natal Group as having been laid down in shallow water, and derived from the granitic basement upon which it rests. The latter portion of this conclusion is probably true for the basal beds of the Eshowe Member where the rocks are particularly coarse and the clasts angular and consisting largely of unweathered feldspar such as encountered at Rock of Gibraltar and Ntabakucasha and on the beach at Wood Grange (Marshall, 1991c). Du Toit (1931) described deeply-weathered, tilted, banded gneiss beneath the unconformity in the Melmoth area, and suggested that the Natal Group sediments were derived from deeply-weathered rocks very similar to those underlying the Natal Group, without actually proposing that the provenance lay within the depositional basin.

Hardie (1958) further warned against the assumption that the presence of feldspar in a sediment indicates local derivation, and cited feldspar which was not eliminated from the
sediments of the Mississippi River after being transported for a distance of 1760 km. He stated that a high percentage of the quartz grains studied under the microscope exhibited undulose extinction, which indicated that the rocks were deposited as second cycle sediments derived chiefly from pre-existing ortho-quartzite series. It should be noted that Hardie wrote at a time when the Natal Group was undivided stratigraphically, and he was therefore forced to generalise, thus recording orthoquartzites as having high feldspar content. The author finds difficulty in reconciling an orthoquartzite source for sedimentary rocks which have such a common occurrence of feldspar. It is also difficult to understand why the presence of rounded chert grains (Hardie, 1958) should indicate second-cycle sediments, unless he is implying that the first cycle was the chemical sedimentary process by which the chert was formed.

Roberts (1990) appealed to an upward-fining trend and higher palaeocurrent variance at the top of the Eshowe Formation (now Member), to suggest that source denudation and a decline in the palaeoslope had resulted in a lower rate of sediment supply. He also stated that the quartz arenites are first-cycle sediments, which appears to be in contradiction to Hardie (1958). Kent (1938), basing his ideas on measured palaeocurrent directions in the Verulam area, proposed that the provenance of the Natal Group rocks was to the northeast.

The presence of clasts of quartzite, chert and jasper within the largely quartzo-feldspathic lithology of the arenaceous rocks of the Natal Group (Marshall, 1987, 1988, 1991a, 1991b, 1991c) suggests that supracrustal rocks were present within the largely granitic terrain of the provenance.
The section on Basin Tectonics (Chapter 5) provides more information on the probable location of the provenance to the northeast, where the Pan African event had resulted in mountain building. It should be noted that Tankard et al. (1982) advocated basement reworking of the Mozambique Province during the Late Proterozoic, but pointed out that no syntectonic deposits have been recognised.
7. CONCLUSIONS

7.1 STRATIGRAPHY

A sound, workable stratigraphic subdivision of the Natal Group, applicable to the entire known portion of the depositional basin, from Hlabisa in the north, to Hibberdene in the south, has been developed and tested in the field. The various units constituting the Natal Group have been defined and described. The Natal Group has been subdivided into the lower Durban and upper Mariannhill Formations, in turn subdivided into the Ulundi (conglomerate), Eshowe (arkosic sandstone and shale), Kranskloof (quartz arenite), Situndu (arkosic sandstone) and Dassenhoek (quartz arenite) Members, and the Tulini (pebble conglomerate), Newspaper (arkosic sandstone and shale) and Westville (matrix-supported conglomerate) Members, respectively.

7.2 FACIES AND TRENDS

The Ulundi Member was found to occur only in the far north and far south of the basin, whereas the Eshowe Member was found to extend to the basin limits, and to have its maximum thickness developed as a trough parallel, and central to, the axis of the basin. The Kranskloof Member occurs as far north as the Mhlatuze River, but only sporadically north of the Tugela River. The Dassenhoek Member occurs from Verulam in the north to the southern limit of the basin. The Tulini Member conglomerates are widespread north of Verulam, and fall into two facies: Facies A which is monomict and clast- to matrix-supported with a high CPD, and Facies B which is polymict and matrix-supported with a
low CPD. The dividing line between the occurrence of these two facies coincides approximately with the Tugela Fault, or the southern margin of the craton.

7.3 PROVENANCE AND ENVIRONMENT

The climate is considered to have been semi-arid, with ephemeral streams of high energy fed by intermittent, yet intense, rainfall. The Ulundi Member conglomerates were deposited by fluvial and debris-flow activity as valley fill and alluvial fan deposits along the fault-line scarp of the northwestern margin of the Natal Trough, and along the northern flanks of the Dweshula High in the south. The Eshowe, Situndu and Newspaper Members were deposited by braided rivers of the Platte River and Bijou Creek types, as subsidence of the Natal Trough basin continued. The quartz-arenites of the Kranskloof and Dassenhoek Members mark the end of the depositional cycle initiated by the Ulundi Member, and were deposited as reworked and winnowed sands from the Eshowe Member, as sediment starvation resulted from the diminishing relief in the provenance area, reasoned to be the Pan African orogenic belt in southern Mozambique. The Tulini Member conglomerates mark the initiation of a second cycle of sedimentation, reflecting rejuvenation of the drainage caused by uplift in the provenance area. As the basin continued to subside, the Newspaper Member was deposited under conditions very similar to, but more prolonged than, those of the Eshowe Member. With some 500 m of sediment present, a third cycle of sedimentation appears to have been initiated, and the Westville Member conglomerates were deposited. Because of the possibility that the Natal Group attained a maximum thickness of 2600 m, as determined from the strength of fractured clasts in the Ulundi Member, it is suggested that much of the Natal Group was removed
7. Conclusions

by erosion, both sub-aerial and glacial.

7.4 KWAZULU-NATAL / PONDOLAND CORRELATION

The validity of the hitherto generally-accepted lithostratigraphic correlation of the Natal Group rocks north of Port Shepstone with those to the south, has been disproved. The rocks in Pondoland are of Devonian age, as shown by palaeontological evidence, whereas the rocks to the north of Port Shepstone have an age of 490 Ma (Ordovician). This latter age was determined by means of 40Ar/39Ar age dating. The use of the term "Natal Group" is henceforth to be restricted to the post-Kibaran, pre-Dwyka sedimentary rocks north of Port Shepstone, and the previously correlated rocks in southern KwaZulu-Natal and Pondoland are to be called the "Msikaba Formation".

The aims and goals of the project have thus been achieved.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

APPENDICES

The selected measured sections in Appendix 1, the geological maps in Appendix 2, and the shape parameter graphs in Appendix 5, are presented as additional reference data. The contents of Appendices 3 (grain-size and composition data and analysis) and 4 (palaeocurrent data and analysis) are considered essential to the interpretation of the Natal Group and the erection of a stratigraphic subdivision, but they would interrupt the flow of the text, and are thus placed in the appendix also.
APPENDIX 1. MEASURED SECTIONS

Some 151 vertical sections were measured through the Natal Group, covering every stratigraphic unit. The localities are shown in Fig. App-1.1, and listed in Table App-1.1. The sections used in this dissertation (Figs. App-1.3 to App-1.27) follow this page, and are listed in Table App-1.2. The legend for the measured sections is in Fig. App-1.2, while the legend for the lithofacies used is in Table App-1.3.
Fig. App-1.1 Localities of vertical sections measured during investigation.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Georef</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elev. (m)</th>
<th>Length (m)</th>
<th>Stratigraphy Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ofudu</td>
<td>29300D</td>
<td>29 53 00</td>
<td>30 46 35</td>
<td>466</td>
<td>35</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>Kwa Ndengesi</td>
<td>29300D</td>
<td>29 51 30</td>
<td>30 46 50</td>
<td>366</td>
<td>21</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>Khwela</td>
<td>29300C</td>
<td>29 52 30</td>
<td>30 43 50</td>
<td>390</td>
<td>85</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>Shongweni Ponds</td>
<td>29300C</td>
<td>29 51 50</td>
<td>30 43 20</td>
<td>390</td>
<td>58</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>Rusticana Nthongweni</td>
<td>29300C</td>
<td>29 50 25</td>
<td>30 42 45</td>
<td>540</td>
<td>84</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>Assagai Toll</td>
<td>29300D</td>
<td>29 48 30</td>
<td>30 45 30</td>
<td>549</td>
<td>30</td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td>Clifton Canyon</td>
<td>29300D</td>
<td>29 48 40</td>
<td>30 46 30</td>
<td>610</td>
<td>99</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>Inanda Mountain Road</td>
<td>29300B</td>
<td>29 37 38</td>
<td>30 51 42</td>
<td>594</td>
<td>119</td>
<td>*</td>
</tr>
<tr>
<td>9</td>
<td>Mdlozi S. Bank</td>
<td>29300B</td>
<td>29 36 35</td>
<td>30 54 20</td>
<td>502</td>
<td>128</td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>Molweni A.</td>
<td>29300B</td>
<td>29 43 38</td>
<td>30 53 09</td>
<td>228</td>
<td>53</td>
<td>*</td>
</tr>
<tr>
<td>11</td>
<td>Molweni B.</td>
<td>29300B</td>
<td>29 43 45</td>
<td>30 52 55</td>
<td>381</td>
<td>172</td>
<td>*</td>
</tr>
<tr>
<td>12</td>
<td>Monteseel</td>
<td>29300A</td>
<td>29 44 25</td>
<td>30 41 08</td>
<td>822</td>
<td>70</td>
<td>*</td>
</tr>
<tr>
<td>13</td>
<td>Inanda Mt., NE</td>
<td>29300B</td>
<td>29 36 57</td>
<td>30 53 02</td>
<td>633</td>
<td>39</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>Emolweni Kranskloof</td>
<td>29300D</td>
<td>29 45 45</td>
<td>30 52 30</td>
<td>366</td>
<td>142</td>
<td>*</td>
</tr>
<tr>
<td>15</td>
<td>Ndowdwe</td>
<td>29300B</td>
<td>29 32 05</td>
<td>30 54 30</td>
<td>655</td>
<td>77</td>
<td>*</td>
</tr>
<tr>
<td>16</td>
<td>Nchanga I</td>
<td>29300C</td>
<td>29 45 10</td>
<td>30 39 55</td>
<td>620</td>
<td>15</td>
<td>*</td>
</tr>
<tr>
<td>17</td>
<td>Nchanga II</td>
<td>29300A</td>
<td>29 44 50</td>
<td>30 39 55</td>
<td>630</td>
<td>25</td>
<td>*</td>
</tr>
<tr>
<td>18</td>
<td>Nagle Dam Road</td>
<td>29300A</td>
<td>29 41 08</td>
<td>30 38 07</td>
<td>777</td>
<td>53</td>
<td>*</td>
</tr>
<tr>
<td>19</td>
<td>Monteseel W</td>
<td>29300A</td>
<td>29 44 25</td>
<td>30 41 08</td>
<td>762</td>
<td>64</td>
<td>*</td>
</tr>
<tr>
<td>20</td>
<td>Georgedale N</td>
<td>29300C</td>
<td>29 46 14</td>
<td>30 36 38</td>
<td>500</td>
<td>42</td>
<td>*</td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study
(Sheet 1 of 8)
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>GEOREF</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEV. (m)</th>
<th>LENGTH (m)</th>
<th>S</th>
<th>T</th>
<th>RATI</th>
<th>GRAPHY</th>
<th>COVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Hannardsdale Rainbow</td>
<td>2930DC</td>
<td>29 48 48</td>
<td>30 39 27</td>
<td>500</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Mpumalanga Top</td>
<td>2930DC</td>
<td>29 48 16</td>
<td>30 37 09</td>
<td>800</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Mpumalanga A</td>
<td>2910DC</td>
<td>29 48 40</td>
<td>30 36 15</td>
<td>525</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Mpumalanga B</td>
<td>2930DC</td>
<td>29 48 40</td>
<td>30 36 13</td>
<td>525</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Mpumalanga Woodglen</td>
<td>2930DC</td>
<td>29 49 55</td>
<td>30 36 26</td>
<td>640</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Surprise</td>
<td>2930DC</td>
<td>29 47 00</td>
<td>30 34 45</td>
<td>780</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Ogunjini</td>
<td>2930DC</td>
<td>29 35 10</td>
<td>30 58 00</td>
<td>396</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Kwa Nombhede</td>
<td>2930DB</td>
<td>29 30 18</td>
<td>30 56 58</td>
<td>640</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Ndwea II</td>
<td>2930DB</td>
<td>29 32 00</td>
<td>30 55 40</td>
<td>597</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Enkwazini</td>
<td>2930DB</td>
<td>29 32 35</td>
<td>30 56 10</td>
<td>494</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Nhlosane</td>
<td>2930DB</td>
<td>29 34 50</td>
<td>30 54 30</td>
<td>503</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Madunsula</td>
<td>2930DB</td>
<td>29 35 40</td>
<td>30 54 30</td>
<td>442</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Mdoloti Gateway</td>
<td>2930DB</td>
<td>29 36 45</td>
<td>30 55 05</td>
<td>533</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Mtata</td>
<td>2930DB</td>
<td>29 36 45</td>
<td>30 50 50</td>
<td>625</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Magadini</td>
<td>2930DB</td>
<td>29 38 20</td>
<td>30 51 55</td>
<td>579</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Miami Quarry</td>
<td>2930DC</td>
<td>29 48 40</td>
<td>30 35 30</td>
<td>576</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Highway Medical Centre</td>
<td>2930DD</td>
<td>29 50 50</td>
<td>30 55 55</td>
<td>183</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Freeway - Westville</td>
<td>2930DD</td>
<td>29 50 40</td>
<td>30 55 45</td>
<td>198</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Glenmill</td>
<td>2931AC</td>
<td>29 18 50</td>
<td>31 8 50</td>
<td>340</td>
<td>165,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study
(Sheet 2 of 8)
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Georef</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elev.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>St. Martins</td>
<td>2931AC</td>
<td>29 21 15</td>
<td>31 4 20</td>
<td>625</td>
<td>33.0</td>
</tr>
<tr>
<td>42</td>
<td>Eplangweni</td>
<td>2931AA</td>
<td>29 10 20</td>
<td>31 8 15</td>
<td>600</td>
<td>19.0</td>
</tr>
<tr>
<td>43</td>
<td>Otomati</td>
<td>2931AA</td>
<td>29 11 20</td>
<td>31 9 05</td>
<td>620</td>
<td>15.0</td>
</tr>
<tr>
<td>44</td>
<td>Nwumase</td>
<td>2931AA</td>
<td>29 08 15</td>
<td>31 14 40</td>
<td>230</td>
<td>100.0</td>
</tr>
<tr>
<td>45</td>
<td>Mpisi</td>
<td>2931AA</td>
<td>29 04 28</td>
<td>31 03 20</td>
<td>700</td>
<td>18.0</td>
</tr>
<tr>
<td>46</td>
<td>Vuma</td>
<td>2931AA</td>
<td>29 07 40</td>
<td>31 00 10</td>
<td>820</td>
<td>67.5</td>
</tr>
<tr>
<td>47</td>
<td>Sabuyaze</td>
<td>2931AA</td>
<td>29 08 00</td>
<td>31 03 15</td>
<td>861</td>
<td>102.0</td>
</tr>
<tr>
<td>48</td>
<td>Kenfus Gate</td>
<td>2931AC</td>
<td>29 24 20</td>
<td>31 00 15</td>
<td>670</td>
<td>39.0</td>
</tr>
<tr>
<td>49</td>
<td>Tsidumbeni</td>
<td>2931AC</td>
<td>29 21 50</td>
<td>31 01 50</td>
<td>701</td>
<td>67.5</td>
</tr>
<tr>
<td>50</td>
<td>Impumulo</td>
<td>2931AA</td>
<td>29 08 05</td>
<td>31 00 40</td>
<td>950</td>
<td>115.5</td>
</tr>
<tr>
<td>51</td>
<td>Nhlangwini</td>
<td>2931AC</td>
<td>29 16 10</td>
<td>31 08 20</td>
<td>560</td>
<td>87.0</td>
</tr>
<tr>
<td>52</td>
<td>Royden</td>
<td>2931AC</td>
<td>29 16 40</td>
<td>31 12 15</td>
<td>427</td>
<td>15.0</td>
</tr>
<tr>
<td>53</td>
<td>Mt. Albert</td>
<td>2931AC</td>
<td>29 15 43</td>
<td>31 11 12</td>
<td>688</td>
<td>20.0</td>
</tr>
<tr>
<td>54</td>
<td>Sabuyaze II</td>
<td>2831CD</td>
<td>28 49 10</td>
<td>31 19 30</td>
<td>540</td>
<td>136.5</td>
</tr>
<tr>
<td>55</td>
<td>Windy Ridge</td>
<td>2831CD</td>
<td>28 53 40</td>
<td>31 22 45</td>
<td>680</td>
<td>26.0</td>
</tr>
<tr>
<td>56</td>
<td>Sizabantu</td>
<td>2831CD</td>
<td>28 51 05</td>
<td>31 21 05</td>
<td>750</td>
<td>10.5</td>
</tr>
<tr>
<td>57</td>
<td>Mbongolwane</td>
<td>2831CC</td>
<td>28 57 40</td>
<td>31 13 50</td>
<td>808</td>
<td>25.5</td>
</tr>
<tr>
<td>58</td>
<td>KudIbusulu</td>
<td>2831CD</td>
<td>28 59 05</td>
<td>31 17 30</td>
<td>690</td>
<td>60.0</td>
</tr>
<tr>
<td>59</td>
<td>Kuhagula</td>
<td>2831CD</td>
<td>28 58 58</td>
<td>31 24 25</td>
<td>487</td>
<td>153.0</td>
</tr>
<tr>
<td>60</td>
<td>Mehlwane</td>
<td>2831CD</td>
<td>28 55 13</td>
<td>31 24 40</td>
<td>610</td>
<td>96.0</td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study
(Sheet 3 of 8)
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>GEOREF</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEV. (m)</th>
<th>LENGTH (M)</th>
<th>STRATIGRAPHY COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DURBAN FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MARIANNHILL FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ULONDI</td>
</tr>
<tr>
<td>61</td>
<td>Ekhuphilini</td>
<td>2931AB</td>
<td>29 01 52</td>
<td>31 20 07</td>
<td>533</td>
<td>75,0</td>
<td>*</td>
</tr>
<tr>
<td>62</td>
<td>Endulindle</td>
<td>2931AB</td>
<td>29 02 06</td>
<td>31 21 28</td>
<td>472</td>
<td>70,5</td>
<td>*</td>
</tr>
<tr>
<td>63</td>
<td>Ngudwini</td>
<td>2931AB</td>
<td>29 01 51</td>
<td>31 15 16</td>
<td>622</td>
<td>63,0</td>
<td>*</td>
</tr>
<tr>
<td>64</td>
<td>Cloud Hill</td>
<td>2831CD</td>
<td>28 52 50</td>
<td>31 22 56</td>
<td>690</td>
<td>37,5</td>
<td>*</td>
</tr>
<tr>
<td>65</td>
<td>Mlalazi</td>
<td>2831CD</td>
<td>28 52 50</td>
<td>31 29 51</td>
<td>520</td>
<td>143,5</td>
<td>*</td>
</tr>
<tr>
<td>66</td>
<td>Natahenhlope</td>
<td>2931AB</td>
<td>29 00 14</td>
<td>31 26 08</td>
<td>396</td>
<td>105,0</td>
<td>*</td>
</tr>
<tr>
<td>67</td>
<td>Vuma Reform</td>
<td>2831CD</td>
<td>28 40 30</td>
<td>31 23 05</td>
<td>500</td>
<td>143,0</td>
<td>*</td>
</tr>
<tr>
<td>68</td>
<td>Nobagoni</td>
<td>2831CD</td>
<td>28 50 50</td>
<td>31 29 21</td>
<td>450</td>
<td>30,0</td>
<td>*</td>
</tr>
<tr>
<td>69</td>
<td>Boechhoek</td>
<td>2831CB</td>
<td>28 30 10</td>
<td>31 24 41</td>
<td>840</td>
<td>37</td>
<td>*</td>
</tr>
<tr>
<td>70</td>
<td>Tevreden</td>
<td>2831AD</td>
<td>28 29 22</td>
<td>31 22 55</td>
<td>940</td>
<td>9</td>
<td>*</td>
</tr>
<tr>
<td>71</td>
<td>Vlakpoort</td>
<td>2831AD</td>
<td>28 27 30</td>
<td>31 20 11</td>
<td>1040</td>
<td>27</td>
<td>*</td>
</tr>
<tr>
<td>72</td>
<td>Tevreden II</td>
<td>2831AD</td>
<td>28 28 28</td>
<td>31 22 00</td>
<td>1020</td>
<td>9</td>
<td>*</td>
</tr>
<tr>
<td>73</td>
<td>Boechhoek II</td>
<td>2831AD</td>
<td>28 30 00</td>
<td>31 24 40</td>
<td>860</td>
<td>17</td>
<td>*</td>
</tr>
<tr>
<td>74</td>
<td>Tevreden III</td>
<td>2831AD</td>
<td>28 28 04</td>
<td>31 22 08</td>
<td>1000</td>
<td>35</td>
<td>*</td>
</tr>
<tr>
<td>75</td>
<td>Molovana</td>
<td>2831AD</td>
<td>28 19 43</td>
<td>31 23 20</td>
<td>460</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>76</td>
<td>White Mfolori</td>
<td>2831AD</td>
<td>28 20 18</td>
<td>31 23 00</td>
<td>480</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>77</td>
<td>Tevreden IV</td>
<td>2831AD</td>
<td>28 28 40</td>
<td>31 22 00</td>
<td>1020</td>
<td>9</td>
<td>*</td>
</tr>
<tr>
<td>78</td>
<td>Mfolori East</td>
<td>2831AD</td>
<td>28 20 18</td>
<td>31 23 54</td>
<td>460</td>
<td>20</td>
<td>*</td>
</tr>
<tr>
<td>79</td>
<td>Makaasanei</td>
<td>2831DA</td>
<td>28 37 12</td>
<td>31 30 43</td>
<td>660</td>
<td>96</td>
<td>*</td>
</tr>
<tr>
<td>80</td>
<td>Matehemesimpleise</td>
<td>2831CA</td>
<td>28 35 15</td>
<td>31 08 45</td>
<td>1060</td>
<td>74</td>
<td>*</td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study (Sheet 4 of 8)
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>GEOREF</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEV. (M)</th>
<th>LENGTH (G)</th>
<th>STRATIGRAPHY COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DURBAN FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MANIAMBILL FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UMLUDI</td>
</tr>
<tr>
<td>81</td>
<td>Vinqu</td>
<td>2831CA</td>
<td>28 36 57</td>
<td>31 13 05</td>
<td>920</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>82</td>
<td>Loliwe</td>
<td>2831AD</td>
<td>28 17 10</td>
<td>31 22 40</td>
<td>605</td>
<td>33</td>
<td>*</td>
</tr>
<tr>
<td>83</td>
<td>Ndindinde</td>
<td>2831CA</td>
<td>28 40 50</td>
<td>31 02 40</td>
<td>805</td>
<td>46</td>
<td>*</td>
</tr>
<tr>
<td>84</td>
<td>Nungwini</td>
<td>2831DA</td>
<td>28 33 30</td>
<td>31 31 40</td>
<td>555</td>
<td>92</td>
<td>*</td>
</tr>
<tr>
<td>85</td>
<td>Horganzon</td>
<td>2831AD</td>
<td>28 29 10</td>
<td>31 29 30</td>
<td>860</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Kwasene</td>
<td>2831BB</td>
<td>28 08 21</td>
<td>31 54 30</td>
<td>580</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Dumayo</td>
<td>2931AB</td>
<td>29 02 20</td>
<td>31 19 05</td>
<td>565</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Znimane</td>
<td>2831BB</td>
<td>28 04 45</td>
<td>31 52 40</td>
<td>590</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Neuse</td>
<td>2830DB</td>
<td>28 38 46</td>
<td>39 57 45</td>
<td>823</td>
<td>42</td>
<td>*</td>
</tr>
<tr>
<td>90</td>
<td>Nfongosi</td>
<td>2830DB</td>
<td>28 41 10</td>
<td>30 51 55</td>
<td>812</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Dolwana</td>
<td>2830DB</td>
<td>28 41 54</td>
<td>39 56 07</td>
<td>884</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Dolwana East</td>
<td>2839DB</td>
<td>28 42 04</td>
<td>30 57 53</td>
<td>869</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Ka-Gonitehe</td>
<td>2830OC</td>
<td>28 52 42</td>
<td>30 54 21</td>
<td>996</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Klein Doornhoek</td>
<td>2830OC</td>
<td>28 55 10</td>
<td>30 48 29</td>
<td>1113</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Spekfontein</td>
<td>2830DD</td>
<td>28 55 16</td>
<td>30 51 20</td>
<td>945</td>
<td>61</td>
<td>*</td>
</tr>
<tr>
<td>96</td>
<td>Silverstream</td>
<td>2930BB</td>
<td>29 05 45</td>
<td>30 58 23</td>
<td>945</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Tulini II</td>
<td>2930BB</td>
<td>29 05 05</td>
<td>30 52 52</td>
<td>1051</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Tulini</td>
<td>2930BB</td>
<td>29 06 12</td>
<td>30 50 00</td>
<td>920</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Hlimbitwa</td>
<td>2930BB</td>
<td>29 03 20</td>
<td>30 50 50</td>
<td>1128</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Lilane</td>
<td>2930BB</td>
<td>29 05 20</td>
<td>30 51 20</td>
<td>1021</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study
(Sheet 5 of 8)
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>GEOREF</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEV. (m)</th>
<th>LENGTH (m)</th>
<th>STRATIGRAPHY COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ULUNDI</td>
</tr>
<tr>
<td>101</td>
<td>Matimatolo</td>
<td>2930BB</td>
<td>29 08 58</td>
<td>30 50 40</td>
<td>1097</td>
<td>51</td>
<td>*</td>
</tr>
<tr>
<td>102</td>
<td>Mhayonyoni</td>
<td>2930BB</td>
<td>29 11 21</td>
<td>30 56 03</td>
<td>930</td>
<td>60</td>
<td>*</td>
</tr>
<tr>
<td>103</td>
<td>Kwa Abula</td>
<td>2930BB</td>
<td>29 10 47</td>
<td>30 46 01</td>
<td>1113</td>
<td>74</td>
<td>*</td>
</tr>
<tr>
<td>104</td>
<td>Mabovini</td>
<td>2930BB</td>
<td>29 09 50</td>
<td>30 46 38</td>
<td>1143</td>
<td>55</td>
<td>*</td>
</tr>
<tr>
<td>105</td>
<td>Baviaanskrans</td>
<td>2930BA</td>
<td>29 09 38</td>
<td>30 42 07</td>
<td>1051</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>106</td>
<td>Carney Hill</td>
<td>2939BB</td>
<td>29 13 12</td>
<td>30 45 02</td>
<td>965</td>
<td>82</td>
<td>*</td>
</tr>
<tr>
<td>107</td>
<td>Tweefontein</td>
<td>2930BB</td>
<td>29 15 00</td>
<td>30 46 37</td>
<td>780</td>
<td>59</td>
<td>*</td>
</tr>
<tr>
<td>108</td>
<td>Theni</td>
<td>2930BD</td>
<td>29 16 15</td>
<td>30 54 18</td>
<td>950</td>
<td>100</td>
<td>*</td>
</tr>
<tr>
<td>109</td>
<td>Kingscliffe</td>
<td>2930BB</td>
<td>29 24 13</td>
<td>30 51 12</td>
<td>1000</td>
<td>80</td>
<td>*</td>
</tr>
<tr>
<td>110</td>
<td>Clantrock</td>
<td>2930BD</td>
<td>29 25 09</td>
<td>30 47 17</td>
<td>1000</td>
<td>5,5</td>
<td>*</td>
</tr>
<tr>
<td>111</td>
<td>Ntabaiskobho</td>
<td>2930BD</td>
<td>29 26 96</td>
<td>30 55 18</td>
<td>700</td>
<td>5,5</td>
<td>*</td>
</tr>
<tr>
<td>112</td>
<td>Killiekrankie</td>
<td>2930BC</td>
<td>29 26 58</td>
<td>30 44 37</td>
<td>880</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>113</td>
<td>Ekamzili</td>
<td>2930BC</td>
<td>29 16 48</td>
<td>30 37 55</td>
<td>960</td>
<td>11,5</td>
<td>*</td>
</tr>
<tr>
<td>114</td>
<td>Nainizini</td>
<td>2930BD</td>
<td>29 27 53</td>
<td>30 48 05</td>
<td>900</td>
<td>67</td>
<td>*</td>
</tr>
<tr>
<td>115</td>
<td>Ngcongangoanga</td>
<td>2930BD</td>
<td>29 20 56</td>
<td>30 56 37</td>
<td>780</td>
<td>139</td>
<td>*</td>
</tr>
<tr>
<td>116</td>
<td>Nomasberg</td>
<td>2930BD</td>
<td>29 25 12</td>
<td>30 51 00</td>
<td>1000</td>
<td>88,5</td>
<td>*</td>
</tr>
<tr>
<td>117</td>
<td>Camelhoek</td>
<td>2930BC</td>
<td>29 24 20</td>
<td>30 30 10</td>
<td>720</td>
<td>45</td>
<td>*</td>
</tr>
<tr>
<td>118</td>
<td>Camelhoek North</td>
<td>2930BC</td>
<td>29 23 38</td>
<td>30 30 40</td>
<td>720</td>
<td>13,5</td>
<td>*</td>
</tr>
<tr>
<td>119</td>
<td>Sherbrook</td>
<td>2930BC</td>
<td>29 24 08</td>
<td>30 31 08</td>
<td>760</td>
<td>52,5</td>
<td>*</td>
</tr>
<tr>
<td>120</td>
<td>Kwa Gomagomona</td>
<td>2930BC</td>
<td>29 27 52</td>
<td>39 43 45</td>
<td>940</td>
<td>32</td>
<td>*</td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study (Sheet 6 of 8)
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>GEOREF</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEV. (m)</th>
<th>LENGTH (m)</th>
<th>STRATIGRAPHY COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DURBAN FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MARIAHILL FORMATION</td>
</tr>
<tr>
<td>121</td>
<td>Odlameni</td>
<td>2930DA</td>
<td>29 32 55</td>
<td>30 41 05</td>
<td>877</td>
<td>77</td>
<td>*</td>
</tr>
<tr>
<td>122</td>
<td>Boekenhoutfontein</td>
<td>2930BC</td>
<td>29 17 12</td>
<td>30 42 50</td>
<td>880</td>
<td>72</td>
<td>*</td>
</tr>
<tr>
<td>123</td>
<td>M'kabela</td>
<td>2930DA</td>
<td>29 32 26</td>
<td>30 36 22</td>
<td>840</td>
<td>35</td>
<td>*</td>
</tr>
<tr>
<td>124</td>
<td>Goedverwachting</td>
<td>2930DA</td>
<td>29 35 11</td>
<td>30 33 19</td>
<td>730</td>
<td>7.5</td>
<td>*</td>
</tr>
<tr>
<td>125</td>
<td>Table Mountain</td>
<td>2930DA</td>
<td>29 35 50</td>
<td>30 35 42</td>
<td>945</td>
<td>68.5</td>
<td>*</td>
</tr>
<tr>
<td>126</td>
<td>Misty Vale</td>
<td>2930CD</td>
<td>29 48 20</td>
<td>30 25 53</td>
<td>870</td>
<td>54</td>
<td>*</td>
</tr>
<tr>
<td>127</td>
<td>Strathfieldays</td>
<td>2930CD</td>
<td>29 54 59</td>
<td>30 27 52</td>
<td>880</td>
<td>30</td>
<td>*</td>
</tr>
<tr>
<td>128</td>
<td>Ngilanyoni</td>
<td>3030BA</td>
<td>30 03 53</td>
<td>30 35 10</td>
<td>609</td>
<td>15</td>
<td>*</td>
</tr>
<tr>
<td>129</td>
<td>Mount Langford</td>
<td>3030BA</td>
<td>30 01 05</td>
<td>30 34 26</td>
<td>762</td>
<td>46</td>
<td>*</td>
</tr>
<tr>
<td>130</td>
<td>Nhlaruza</td>
<td>3030AB</td>
<td>30 02 29</td>
<td>30 26 53</td>
<td>963</td>
<td>48</td>
<td>*</td>
</tr>
<tr>
<td>131</td>
<td>Likumele</td>
<td>3030AB</td>
<td>30 00 40</td>
<td>30 25 42</td>
<td>670</td>
<td>59</td>
<td>*</td>
</tr>
<tr>
<td>132</td>
<td>Ngwahunube</td>
<td>2930DC</td>
<td>29 55 27</td>
<td>30 32 46</td>
<td>635</td>
<td>15</td>
<td>*</td>
</tr>
<tr>
<td>133</td>
<td>Nkumane</td>
<td>3050AB</td>
<td>30 02 20</td>
<td>30 24 25</td>
<td>853</td>
<td>19.5</td>
<td>*</td>
</tr>
<tr>
<td>134</td>
<td>Mkongoma</td>
<td>3030BA</td>
<td>30 02 40</td>
<td>30 35 42</td>
<td>701</td>
<td>36</td>
<td>*</td>
</tr>
<tr>
<td>135</td>
<td>Mahlabatshane</td>
<td>3030AC</td>
<td>30 27 13</td>
<td>30 12 14</td>
<td>610</td>
<td>39</td>
<td>*</td>
</tr>
<tr>
<td>136</td>
<td>Inkwari</td>
<td>3030AC</td>
<td>30 27 04</td>
<td>30 10 39</td>
<td>640</td>
<td>31</td>
<td>*</td>
</tr>
<tr>
<td>137</td>
<td>Ntabekucasha</td>
<td>3030AC</td>
<td>30 26 36</td>
<td>30 11 46</td>
<td>686</td>
<td>30</td>
<td>*</td>
</tr>
<tr>
<td>138</td>
<td>Blutankungu</td>
<td>3030AD</td>
<td>30 17 33</td>
<td>30 18 16</td>
<td>1021</td>
<td>28</td>
<td>*</td>
</tr>
<tr>
<td>139</td>
<td>Mtwalume</td>
<td>3030AD</td>
<td>30 18 21</td>
<td>30 17 56</td>
<td>920</td>
<td>61.5</td>
<td>*</td>
</tr>
<tr>
<td>140</td>
<td>Mzimkulu</td>
<td>3030AC</td>
<td>30 26 09</td>
<td>30 05 24</td>
<td>625</td>
<td>39</td>
<td>*</td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study
(Sheet 7 of 8)
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>GEOREF</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEV. (m)</th>
<th>LENGTH (m)</th>
<th>STRATIGRAPHY COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DURBAN FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MARIANNHILL FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ULUNDI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EBROKE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K'KLOOF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SITWUDU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D'HOEK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOLINI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W'PAPER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WESTVILLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DWEKA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPE S' GRP</td>
</tr>
<tr>
<td>141</td>
<td>Black's Store</td>
<td>3030AC</td>
<td>30 20 16</td>
<td>30 08 27</td>
<td>777</td>
<td>21</td>
<td>*</td>
</tr>
<tr>
<td>142</td>
<td>Mkunya</td>
<td>3030AB</td>
<td>30 07 45</td>
<td>30 25 25</td>
<td>853</td>
<td>82,5</td>
<td>*</td>
</tr>
<tr>
<td>143</td>
<td>Mtwalume East</td>
<td>3030BC</td>
<td>30 28 15</td>
<td>30 35 50</td>
<td>30</td>
<td>120</td>
<td>*</td>
</tr>
<tr>
<td>144</td>
<td>Ngobeni</td>
<td>3030AD</td>
<td>30 18 44</td>
<td>30 16 30</td>
<td>914</td>
<td>56</td>
<td>*</td>
</tr>
<tr>
<td>145</td>
<td>Igoxa</td>
<td>3030AD</td>
<td>30 19 35</td>
<td>30 17 40</td>
<td>945</td>
<td>65</td>
<td>*</td>
</tr>
<tr>
<td>146</td>
<td>Gibraltar</td>
<td>3030CH</td>
<td>30 38 25</td>
<td>30 15 42</td>
<td>480</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>147</td>
<td>Mbiyane</td>
<td>3030AD</td>
<td>30 21 55</td>
<td>30 29 12</td>
<td>488</td>
<td>105</td>
<td>*</td>
</tr>
<tr>
<td>148</td>
<td>Odeke</td>
<td>3030AD</td>
<td>30 29 45</td>
<td>30 22 30</td>
<td>640</td>
<td>37,5</td>
<td>*</td>
</tr>
<tr>
<td>149</td>
<td>Pulunjani</td>
<td>3030AD</td>
<td>30 25 19</td>
<td>30 26 37</td>
<td>557</td>
<td>72,5</td>
<td>*</td>
</tr>
<tr>
<td>150</td>
<td>Mkambela</td>
<td>3030AD</td>
<td>30 22 52</td>
<td>30 21 50</td>
<td>732</td>
<td>28,5</td>
<td>*</td>
</tr>
<tr>
<td>151</td>
<td>Mtamunye Nat. Res.</td>
<td>3130AA</td>
<td>31 00 42</td>
<td>30 08 46</td>
<td>381</td>
<td>305</td>
<td>*</td>
</tr>
<tr>
<td>152</td>
<td>Macala</td>
<td>2830DB</td>
<td>28 44 25</td>
<td>30 36 50</td>
<td>914</td>
<td>12,0</td>
<td>*</td>
</tr>
<tr>
<td>153</td>
<td>Nhlovini</td>
<td>3030AA</td>
<td>30 06 32</td>
<td>30 13 53</td>
<td>732</td>
<td>153</td>
<td>*</td>
</tr>
</tbody>
</table>

Table App-1.1 List of vertical sections measured during study
(Sheet 8 of 8)
Symbols and Abbreviations

Lithology and Contacts

- **Diamictite**
- **Dolerite**
- **Shale, mudstone**
- **Siltstone**
- **Sandstone; * = conglomeratic**
- **Granulestone**
- **Conglomerate**
 - Clast-supported
 - Matrix-supported
 - Alternating lithologies
 - No outcrop
 - Gradational contact
 - Sharp contact
 - Erosional contact
 - Faulted contact

Colour

<table>
<thead>
<tr>
<th>Colour Code</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very pale</td>
<td>1 = weathered</td>
<td></td>
</tr>
<tr>
<td>Pale</td>
<td>2 = unweathered</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>r = right-hand column</td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>l = left-hand column</td>
<td></td>
</tr>
</tbody>
</table>

COLOURS

- SR 4/2 = Munsell colour code

Additional Data

- Maximum clast diameter, mm
- Rounded
- Sub-angular to sub-rounded
- Angular
- Silicified
- Ferruginous cement
- Muddy, silty

ABBREVIATIONS

- Mean (clast diam. in mm, azimuth in degrees etc.)
- Population size
- Standard deviation
- Clast Packing Density, %
- Well, very (e.g. Srt = well-sorted, g = very coarse)
- Very well, very highly etc.
- Slight, poor
- Very slight, very poor
- Feldspathic
- Micaceous
- Siliceous, silicified
- Ferruginous
- Fine
- Coarse
- Medium
- Quartz
- Quartzite
- Sandstone
- Siltstone
- Shale
- Conglomerate, conglomeratic
- Argillaceous
- Less than...
- Greater than...
- Sorted

Structures

- Planar cross-bedding
- Trough cross-bedding
- Foreset dip of 15° in direction 275°
- Horizontal lamination
- Crude stratification
- No visible structures
- Current ripple-marks
- Lenticular litho-unit
- Lenticular bed
- Lenticular bedding
- Concretion, carbonate, iron, etc.
- Rip-up (intraformational) clast
- Soft-sediment deformation
- Reactivation surface
- Graded foresets
- Bedding dips 8° in direction 95°
- Varves

Bed Thickness

- Appropriate column filled in
- 1 = left column lithology
- c = centre column lithology
- r = right column lithology

Grain Sizes

- Average grain-size indicated by right hand margin
 - Two fractions of bimodal sediment
 - Two fractions of closely-alternating grain-sizes
 - Three fractions of closely-alternating grain-sizes
 - Three fractions in which one fraction rapidly alternates with a bimodal lithology

Fig. App-1.2 Symbols and abbreviations used in measured sections.
Fig. App-1.3 Measured Section 6 - Assegai Toll
Measured Section 51 - Nhlangwini

Units

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>NATAL GROUP</th>
<th>LOGGED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nhlangwini</td>
<td>1: 200 P.1 of 2</td>
<td>C.G.A. Marshall</td>
</tr>
<tr>
<td>HGT</td>
<td>560 m</td>
<td></td>
</tr>
<tr>
<td>27-03-1987</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

- **Mineralogy, texture, colour, fossils, etc.**
- **Modifiers (ign., met.), structures**
- **Grain-size** (e.g.*=1−5/2−4 mm)
- **Lithologies**

Beds

<table>
<thead>
<tr>
<th>CM</th>
<th>100</th>
<th>10</th>
<th>0</th>
<th>3,36</th>
<th>2,36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- As for 2m to 23.7 m.
- *Sr*6/2. C-<e>(Sr)<
- *Sp*. *SS* with scattered clasts *D*<10 mm.
- *SS* is Δ+10°.

Measured Section

- **Regional dip = 6°→120°**

Fig. App-1.4
Remarks

Additional data (Mineralogy, texture, colour, fossils, etc.)

Lithofacies

- **Gravel**
- **Sand**
- **Mud**
- **Silt**
- **Clay**

Grain-size

- **Sand (e.g. 1-5/2-4 mm)**

Beds

- **5R6/2, c-6 (s.et), fsp, ss + granulestone, A-D-A, \(\leq 10 \text{ mm} \). Larger clasts 0.**
- **5R4/2, m-c, srt, ss with lenses of granulestone, S, Scose channels, lag conglomerate.**
- **Clasts on scour-floors.**
- **5R4/2, c-6 (s.et), fsp, A-D-A 55. \(\leq 10 \text{ mm} \). Larger clasts 0.**
- **Numerous small pockets of pebbles and rib-up clasts \(\leq 20 \text{ mm} \).**
- **Troughs commonly pick-a-back on planar cross-beds in dunes.**

Units

- **DURBAN FORMATION**
- **Vuma Member**
- **Base, Vuma beds**

Notes

Fig. App-1.5 Measured Section 67 - Vuma reform
Notes

Eshowe M. Kransloof Member.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>m Scale</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Localities

LOGGED BY

C.G.A. Marshall

Natal Group

V.l.m. B - 7 - 1987.1

HGT

B - 7 - 1987.1

Natal

Gravel (e.g. 1-5/2-4 mm)

Sand

Grain-size

Modifiers (e.g., met.), structures

Synopsis

Clay

- 0.06
- 0.25
- 0.5
- 2
- 4
- 16
- 64
- 256
- 256
- 1

Gravel

- 0.06
- 0.25
- 0.5
- 2
- 4
- 16
- 64
- 256
- 256
- 1

Remarks

Grain-size

- 0.06
- 0.25
- 0.5
- 2
- 4
- 16
- 64
- 256
- 256
- 1

Modifers (e.g., met.), structures

- Additional data (Mineralogy, texture, colour, fossils, etc.)

Lithofacies

- m Thickness

Summary

- **Purple**
- **Brown**
- **Orange**
- **Yellow**
- **Grey, White, Black**

Gravel, 1-5/2-4 mm
Measured Section 72 - Tevreden II

|-----------|-------------|-------|----------|-------------|------------|-----------------|------------|

UNITS	**LOCALITY**	**LOGGED BY**	**Remarks.**
			Modifiers (ign., met.), structures
			Grain-size
			Sand
			Gravel
			Bed thickness cm
			Lithologies
			Thickness m

<table>
<thead>
<tr>
<th>Units</th>
<th>Cycles</th>
<th>Clay</th>
<th>Mud</th>
<th>Silt</th>
<th>Sand</th>
<th>Gravel</th>
<th>Bed</th>
<th>Additional data (Mineralogy, texture, colour, fossils, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
<td>SR4/2 C-E (Set), fsp, ∆ SS supporting scattered clasts ≤ 5 mm.</td>
</tr>
<tr>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>1.50</td>
<td>lag conglomerate at 63 m.</td>
</tr>
<tr>
<td>2.00</td>
<td>2.10</td>
<td>2.20</td>
<td>2.30</td>
<td>2.40</td>
<td>2.50</td>
<td>2.60</td>
<td>2.70</td>
<td>SR4/2. m. mic. shales. Fm 0.1</td>
</tr>
<tr>
<td>2.80</td>
<td>2.90</td>
<td>3.00</td>
<td>3.10</td>
<td>3.20</td>
<td>3.30</td>
<td>3.40</td>
<td>3.50</td>
<td>SR4/2. m. mic. shales. Fm 0.2</td>
</tr>
<tr>
<td>3.70</td>
<td>3.80</td>
<td>3.90</td>
<td>4.00</td>
<td>4.10</td>
<td>4.20</td>
<td>4.30</td>
<td>4.40</td>
<td>SR4/2. m. fsp, S, S, to granulestone, ≤ 4 mm.</td>
</tr>
<tr>
<td>4.60</td>
<td>4.70</td>
<td>4.80</td>
<td>4.90</td>
<td>5.00</td>
<td>5.10</td>
<td>5.20</td>
<td>5.30</td>
<td>SR4/2. m. mic. shales. Fm 0.4</td>
</tr>
<tr>
<td>5.50</td>
<td>5.60</td>
<td>5.70</td>
<td>5.80</td>
<td>5.90</td>
<td>6.00</td>
<td>6.10</td>
<td>6.20</td>
<td>SR4/2. C-E (Set), fsp, S, S, to granulestone, ≤ 5 mm.</td>
</tr>
</tbody>
</table>

Fig. App-1.6
<table>
<thead>
<tr>
<th>Units</th>
<th>Cycles</th>
<th>Sand</th>
<th>Gravel</th>
<th>Bed</th>
<th>Additional data (Mineralogy, texture, colour, fossils, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Clay</td>
<td>Mud</td>
<td>Silt</td>
<td></td>
<td>Grey, White, Black, Blue, Grey, White, Yellow, Brown, Orange, COLOURS</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.05</td>
<td>0.25</td>
<td>0.5</td>
<td>Grey, White, Black</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>Blue, Grey, White</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>6.4</td>
<td>16</td>
<td>26</td>
<td>Grey, White, Yellow</td>
</tr>
<tr>
<td></td>
<td>26.4</td>
<td>26.6</td>
<td>256</td>
<td>256</td>
<td>Brown, Orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red, Purple</td>
</tr>
</tbody>
</table>

Modifiers (ign., met.), structures (e.g. *=1-5/2-4 mm)

<table>
<thead>
<tr>
<th>Grain-size</th>
<th>(e.g. *=1-5/2-4 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
</tr>
</tbody>
</table>

Notice

Remarks

Lithologies

Fig. App-1.7 Measured Section 75 - Ndlovana
Fig. App-1.8 Measured Section 76+78 - White Mfolozi

Notes

Dip is 15° in direction 140°
Overall Clast Sizes Ss = 75 mm
SD = 56 mm
n = 520
L = 500 mm
Sk = 3900
Ulund Member

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
</tbody>
</table>

Modifiers (ign. met., structures)

Grain-size

Modifiers (ign., met., structures)

Grain-size (e.g. 1-0.2-4 mm)

Colours

Grey, White, Black

Grn, (Blk), Gry, Gry-gry

Olive, Yellow

Brown, Orange

Red, Purple

Additional data (Mineralogy, texture, colour, fossils, etc.)

Notes

LOGGED BY

C.G.A. Marshall

UNITS

LOCATIY

White Mt. 0.21

Natal Group

Date

17-05-1986

HGT

-1.10 B2.0 3, 4 0.0 m

Scale

1:100
DURBAN FORMATION

Ulundi Member

Locality Logged: I Natal Group, Marshall C.G.A.

Units

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Clay</th>
<th>Mud</th>
<th>Silt</th>
<th>Grain-size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>256 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>256 ± 0.25</td>
</tr>
</tbody>
</table>

Modifiers (ign., met.), structures

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Modifiers (ign., met.)

- Grey, White, Black
- Gry (Blu), Gry (gr-"

Grain-size

<table>
<thead>
<tr>
<th>Modifier (ign., met.), structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed</td>
</tr>
<tr>
<td>10.0 cm</td>
</tr>
<tr>
<td>5.0 cm</td>
</tr>
<tr>
<td>3.0 cm</td>
</tr>
<tr>
<td>2.0 cm</td>
</tr>
<tr>
<td>1.0 cm</td>
</tr>
</tbody>
</table>

Additional data

- Mineralogy, texture, colour, fossils, etc.
 - Additional data

Lithofacies

- Sedimentary rocks
- Volcanic rocks
- Metamorphic rocks

Remarks

- Additional notes
- Observations
- Stratigraphic notes

Thickness

- Measured thickness
- Estimated thickness

NATURAL GROUP

- White M.T.(0,2u)

LOGGED BY

- C.G.A. Marshall

DATE

- HGT - 05/1988

- 17 - M.T. 05/1988

Notes

- Field notes
- Observations
- Stratigraphic analysis

Units

- Measured units
- Estimated units

Scale

- Linear scale
- Logarithmic scale

4.0 m

- Distance
- Measurement

Fm.

- Formation
- Member

Gms.

- Grams
- Milligrams

Remarks

- Additional remarks
- Observations
- Notes

Lithofacies

- Sedimentary rocks
- Volcanic rocks
- Metamorphic rocks

Thickness

- Measured thickness
- Estimated thickness

Cycles

- Cycles
- Layers
- Bedding

Modifiers (ign., met.)

- Grey, White, Black
- Gry (Blu), Gry (gr-"

Grain-size

- 0.06 ± 0.25
- 0.25 ± 0.25
- 0.5 ± 0.25
- 2 ± 0.25
- 4 ± 0.25
- 8 ± 0.25
- 16 ± 0.25
- 64 ± 0.25
- 256 ± 0.25
- 256 ± 0.25

Modifiers (ign., met.), structures

- Bed
- 10.0 cm
- 5.0 cm
- 3.0 cm
- 2.0 cm
- 1.0 cm
Fig. App-1.9 Measured Section 77 - Tevreden IV
Gravel

(e.g. 1-5/2-4 mm)
- Size: 1-5/2-4 mm
- Colour: Black, Grey, White
- Texture: Massive

Sand

- Size: 0.06-0.05
- Colour: Grey, White, Black
- Texture: Massive

Mud

- Size: 0.05
- Colour: Black
- Texture: Massive

Silt

Additional data

(Mineralogy, texture, colour, fossils, etc.)

Remarks.

numeuros scour channels.

Lithofacies

- **Sp. 10**: SR6/2, c-E, (Set), fsp, SS with granulestone,
 fossils ≤ 4 mm.
- **Sp. 2.5**: SR6/2, m-E, (Set), fsp, SS.
- **Sp. 10**: SR7/2, matrix-sub, conglomerate, CPD ≤ 6 mm,
 ≤ 40 mm, O. 96.
 Matrix: fsp, c-E, (Set) SS.
- **Sp. 10**: SR6/2, - SR7/2, c-E,
 (Set), fsp, SS with clasts ≤ 10 mm,
 sparse clasts ≤ 40 mm.
- **Sp. 10**: SR6/2, c-E, (Set), fsp, SS
 3 sparse clasts ≤ 10 mm.
- **Sp. 10**: SR6/2, c-E, (Set), fsp, SS
 3 sparse clasts ≤ 35 mm ≤ 0.5

As for 0-2 m.

Fig. App-1.10 Measured Section 86 - Kwaseme
Remarks.

Additional data
(Mineralogy, texture, colour, fossils, etc.)

- **COLOURS:**
 - Grey, White, Black
 - Green, Blue, Grey, Pink
 - Olive, Yellow
 - Brown, Orange
 - Red, Purple

Notes

Fig. App-1.11 Measured Section 88 - Nzimane
Remarks. Additional data (Mineralogy, texture, colour, fossils, etc.)

- Conglom. as for 60-64 m.
- 5R4/2, m- c, mic. Scl, sp. SS. with
 Sparse pebbles ≤20 mm with
 interbedded granulestone.

- Conglom. as for 60-64 m.

- Thin beds of small-pebble conglom. and
 c-c (5t), spb. 5R6/2 SS

- Small pebble, matrix-
 Sub. conglom.
 ≤300 mm, mean = 30 mm.
 Clast-subb. in part.
 Pressure solution
 Hollows common.
 Matrix is ≤ 5R6/2.
 SS - granulestone.
 Clasts: 5R2a, 5R2b,
 Chert, Jasper.

- 5R4/2, (5t), (≤20 mm D), spb.
 SS with granule-
 stone foresets.

- mic. Shale
 Partings (≤10 mm)
 above 58 m.

- 5R4/2, mic. Silstone
 FM 0.5
 As below.
 Sp
Fig. App-1.12 Measured Section 93 - Ka-Gonitshe
<table>
<thead>
<tr>
<th>Units</th>
<th>Scale</th>
<th>Modifiers (ign., met.), structures</th>
<th>Grain-size (e.g. * = 1–5/2–4 mm)</th>
<th>Beds</th>
<th>Additional data (Mineralogy, texture, colour, fossils, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td>Cycles</td>
<td>Clay</td>
<td>Mud</td>
<td>Silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>286</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Remarks

- **DUNIA GROUP**
 - 0.0 cm
 - 0.0 cm

- **GRAPE FORMATION**
 - 295°
 - 255°
 - 10.5 cm

- **Newspaper Member**
 - 255°
 - 255°
 - 265°

- **As below**
- SR4/2, mic. Shale, Fm 0.0
- SR4/2, mic. Siltstone, Fm 0.0

Notes

- **Lithofacies**
 - dm, silty, siltstone, dark grey, medium grey, light grey, white, black, grey, brown, orange, red, purple

UNITS

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>NATAL GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ka-Gonitshe</td>
<td>1: 100 P.2612</td>
</tr>
</tbody>
</table>

LOGGED BY

<table>
<thead>
<tr>
<th>C.G.A. Marshall</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGT 996 m</td>
</tr>
<tr>
<td>25-5-1989</td>
</tr>
</tbody>
</table>
Fig. App.1.13 Measured Section 95 - Spekfontein
<table>
<thead>
<tr>
<th>Notes</th>
<th>MARIANHILL FORMATION</th>
<th>DWIPA GROUP</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Newspaper Member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td>Scale</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td>Cycles</td>
</tr>
</tbody>
</table>

- **Modifiers (ign., met., structures)**
 - Clay
 - Mud
 - Silt
 - Sand
 - Gravel

- **Grain-size**
 - (e.g. 1-5/2-4 mm)

- **Modifiers (ign., met., structures)**
 - Grey, White, Black
 - Grn,(Blu), Gry, grn
 - Olive, Yellow
 - Brown, Orange
 - Red, Purple

- **COLOURS**
 - Remarks
 - Additional data (Mineralogy, texture, colour, fossils, etc.)

- **Lithofacies**
 - m
 - Thickness

- **LOGGED BY**
 - C.G.A. Marshall

- **HGT**
 - 94.5 m

- **LOCALITY**
 - NATAL GROUP

- **UNITS**
 - NINA GROUP

- **LOCALITY**
 - Speeton
<table>
<thead>
<tr>
<th>Units</th>
<th>NATAL GROUP</th>
<th>LOCALITY</th>
<th>LOGGED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hlimbitwa</td>
<td></td>
<td>C.G.A. Marshall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-06 1989</td>
</tr>
</tbody>
</table>

Measured Section 99 - Hlimbitwa

Colours
- Grey, White, Black, Green, Yellow, Olive, Orange

Remarks
- As above

Lithofacies
- Sm

Additional data
- Mineralogy, texture, colour, fossils, etc.

Grain-size (e.g. = 1-5/2-4 mm)

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- Fig. App-1.14 Measured Section 99 - Hlimbitwa
NATAL GROUP
Locality: Hlimbitwa
Logged by: C.G.A. Marshall
HGT: 112B m
Logged on: 13-06-1989

UNITS

<table>
<thead>
<tr>
<th>Units</th>
<th>Scale</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modifiers (ign., met.), structures

<table>
<thead>
<tr>
<th>Grain-size (e.g. = 1-5/2-4 mm)</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

(Mineralogy, texture, colour, fossils, etc.)

Lithofacies

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

SR6/2, matrix-sandy, monomict conglomerate. Stabilized. CPD ~ 30%. CPD ~ 30%.
0-0.30 mm. 0-0.30 mm.

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

SR4/2, f, i, s. mic., s, f, s. S. Sh 3.0

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

SR4/2, c=- (s, e), s, f, i, s. S. St

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

SR4/2, c=- (s, e), s, f, i, s. S. Sh 10.5

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data

Notes

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remarks.
Additional data (Mineralogy, texture, colour, fossils, etc.)

Gravel (e.g. 1-5/2-4 mm)

NATAL GROUP

Gravel

Grain-size

Modifiers (ign., met.), structures

(e.g. = 1-5/2-4 mm)

Clay

Mud

Silt

Sand

Gravel

100 cm

Beds

Description

Sand, White, Black

Grey, Blue, Grey-green

Olive, Orange

Brown, Purple

COLOURS

Remarks

Lithofacies

Thickness

m

Fig. App-1.15 Measured Section 110 - Clantrock

Notes

a) Basal contact obscured.
NATAL GROUP

Locality: Ngcongangeonga

Logged By: C.G.A. Marshall

Units | **Grain-size (e.g. = 1-5/2-4 mm)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modifiers (ign., met.), structures</td>
<td>Bed</td>
</tr>
<tr>
<td>Clay</td>
<td>Mud</td>
</tr>
<tr>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>cm</td>
<td>m</td>
</tr>
</tbody>
</table>

Beds | **Additional data** (Mineralogy, texture, colour, fossils, etc.)

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>As above</td>
</tr>
<tr>
<td>F-M, Silt, sgr4/2, Sct.</td>
</tr>
<tr>
<td>S5m 0.5</td>
</tr>
<tr>
<td>Planar cross-bedding.</td>
</tr>
<tr>
<td>Ft = 50 cm.</td>
</tr>
<tr>
<td>C-E, Sgr4/2, fsp.(Sct.),</td>
</tr>
<tr>
<td>Δ=0.55 to granulestone,</td>
</tr>
<tr>
<td>≤10 mm.</td>
</tr>
<tr>
<td>Planar cross-bedding.</td>
</tr>
<tr>
<td>Ft = 80 cm.</td>
</tr>
<tr>
<td>Sgr4/2, m., fsp., mic. siltly</td>
</tr>
<tr>
<td>S5m 0.5</td>
</tr>
<tr>
<td>Sgr4/2, c-E, fsp,</td>
</tr>
<tr>
<td>(Sct) Δ=Δ, ≤55</td>
</tr>
<tr>
<td>to granulestone,</td>
</tr>
<tr>
<td>≤10 mm.</td>
</tr>
<tr>
<td>Planar cross-bedding.</td>
</tr>
<tr>
<td>Sets 25 cm.</td>
</tr>
</tbody>
</table>

Notes

Fig. App-1.16 Measured Section 115 - Ngcongangeonga
Remarks.
Additional data (Mineralogy, texture, colour, fossils, etc.)

Clay - 0
Mud - 0.06
Silt - 0.25
Sand - 0.5
Gravel - 2

Grain-size (e.g. 1-5/2-4 mm)

Beds

Remarks.

SR4/2, C-E, f3p, (Srt), ss interbedded with 30% SR4/2, mic. siltstone.
Planar cross-bed sets 30 cm.

SR4/2, mic siltstone.

SR4/2, C-E, f3p (Srt) A-Δ.
Granulestone ≤ 12 mm.
Cross.
Planar cross-bed sets 30 cm.

SR4/2, C-E, f3p (Srt) SS. A-Δ.
Poor outcrop.

SR4/2, f3p, (Srt) C-Δ. SS. Granulestone.
Δ-Δ. ≤ 12 mm
Planar cross-bed sets = 100 cm.
UNITS
LOCALITY
LOGGED BY
NATAL GROUP
Marshall
1:100
12
30
40
50
60
70
80
90
100

HGT 1780 m

Remarks
Additional data (Mineralogy, texture, colour, fossils, etc.)

Grey, White, Black
Grn. (Blu), Gry, gry-grn
Olive, Yellow
Brown, Orange
Red, Purple

COLOURS

Notes

Units

Cycles

Clay
Mud
Silt
Sand
Gravel

Modifiers (lign. mat., structures)

Gravel
Sand

Grain-size modifiers (mm)

-0.06
0.25
0.5
2
4
16
64
256

-0.5
-0.25
-0.1

-0.05
-0.02

100 cm

1.25
1
0.5
0.25

0.125
0.0625

0.03125

m Scale

Beds

Grey, White, Black
Grn. (Blu), Gry, gry-grn
Olive, Yellow
Brown, Orange
Red, Purple

COLOURS

Remarks

Additional data (Mineralogy, texture, colour, fossils, etc.)
Natal Group

<table>
<thead>
<tr>
<th>UNITS</th>
<th>LOCALITY</th>
<th>LOGGED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>N. CONG.</td>
<td>C.G.A. Marshall</td>
</tr>
</tbody>
</table>

Modifiers (ign., met.), Structures

<table>
<thead>
<tr>
<th>Grain-size (e.g. 1=1-5/2-4 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
</tr>
<tr>
<td>Mud</td>
</tr>
<tr>
<td>Silt</td>
</tr>
<tr>
<td>Sand</td>
</tr>
<tr>
<td>Gravel</td>
</tr>
</tbody>
</table>

Beds

<table>
<thead>
<tr>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>1 P</td>
</tr>
<tr>
<td>1 P</td>
</tr>
</tbody>
</table>

COLOURS

<table>
<thead>
<tr>
<th>Grey, White, Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bla, Blu, Gry, Gry-gm</td>
</tr>
<tr>
<td>Olive, Yellow</td>
</tr>
<tr>
<td>Brown, Orange</td>
</tr>
</tbody>
</table>

Additional data

- Mineralogy, texture, colour, fossils, etc.

Remarks

- SR4/2, C-G, Fsp, (Snt) 55+granulast.
- Interbedded with 30% mic. siltst. units up to 40cm thick.

Lithofacies

<table>
<thead>
<tr>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
</tr>
</tbody>
</table>

Notes

- TOP OF HILL
- 6.5
Remarks.

Additional data (Mineralogy, texture, colour, fossils, etc.)

Fig. App-1.17 Measured Section 119 - Sherbrook
UNITS | NATAL GROUP | 1:100 | P.1 of 1

LOCALITY | KWAGQUMQAGUMA | HGT | 940 m

LOGGED BY | C.G.A. Marshall | 31.08.1989.

Modifiers (ign., met.), structures

<table>
<thead>
<tr>
<th>Grain-size (e.g. 1-5/2-4 mm)</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>4-16</td>
<td>64-266</td>
</tr>
</tbody>
</table>

Additional data

(Additional data: Mineralogy, texture, colour, fossils, etc.)

Remarks

- 5R4/2, matrix-clast Sub. conglomer.
- 0-2mm, 5R=20mm, matrix is 5R4/2, C'E fsp.(sct) SS, strong lateral variation.

Notes

- Fig. App-1.18 Measured Section 120 - Kwagqumqaguma
Fig. App-1.19 Measured Section 125 - Table Mountain
<table>
<thead>
<tr>
<th>Notes</th>
<th>DURBAN FORMATION</th>
<th>Dwyka Group</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transkloof Member</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNITS

LOCALITY Ntabakucasha

LOGGED BY C.G.A. Marshall

NATAL GROUP

Modifiers (ign., met.), structures

Grain-size (e.g.*=1-5/2-4 mm)

<table>
<thead>
<tr>
<th>Clay</th>
<th>Mud</th>
<th>Silt</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Beds

<table>
<thead>
<tr>
<th>cm</th>
<th>100</th>
<th>50</th>
<th>30</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Colours

Grey, White, Black

Grain-size

- 5-10 mm
- 2-5 mm
- 1-2 mm
- 0.5-1 mm
- 0.25-0.5 mm

Modifiers (ign., met.), structures

Remarks.

Additional data (Mineralogy, texture, colour, fossils, etc.)

- 5R6/4, f, quartz-arenite.
- 5R4/2, m, fsp, friable, matrix supported conglomerate. Clasts = 15-12 cm.

Notes:

There is a thin lens of Dassenhoek quartz-arenite just north of this locality.
Fig. App-1.23 Measured Section 138 - Hlutankungu
NATAL GROUP

LOCALITY 190 X 9

LOGGED BY C.G.A. Marshall

UNITS

<table>
<thead>
<tr>
<th>Units</th>
<th>Scale</th>
<th>Cycles</th>
<th>Clay</th>
<th>Mud</th>
<th>Silt</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.25</td>
<td>0.5</td>
<td>4</td>
<td>0 - 64</td>
</tr>
</tbody>
</table>

Modifiers (ign., met.), structures

- Grain-size (e.g.*=1-5/2-4 mm)
- Beds

<table>
<thead>
<tr>
<th>Beds</th>
<th>Grey, White, Black</th>
<th>Grey, Blue, Grey, Green</th>
<th>Olive, Yellow</th>
<th>Red, Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data (Mineralogy, texture, colour, fossils, etc.)

- Remarks

Lithofacies

- **Sm:** 8.5

Thickness

- **Sp:** 12.0

Locality

- **NG:** 98

Notes

- Fig. App-1.25 Measured Section 145 - Igoxa
Natal Group

Locality: Gibraltar

Logged by: C.G.A. Marshall

Date: 23-10-1990

<table>
<thead>
<tr>
<th>UNITS</th>
<th>NataL Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCALITY</td>
<td>SIBRRALTAR</td>
</tr>
<tr>
<td>LOGGED BY</td>
<td>C.G.A. Marshall</td>
</tr>
<tr>
<td>HGT</td>
<td>480 m</td>
</tr>
</tbody>
</table>

Additional data

(Mineralogy, texture, colour, fossils, etc.)

<table>
<thead>
<tr>
<th>Beds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Modifiers (ign., met.), structures

- Grain-size (e.g. = 1–5/2–4 mm)
- Sand
- Gravel
- Grey, White, Black
- Olive, Yellow, Orange
- Red, Purple

Remarks

- NB. F–C alternating (Sp), Ss (Sr) with SRA/2 clay packings (5%).
- In this unit, there are several channels with coarse granite at the base, fining upwards.

Fig. App-1.26 Measured Section 146 - Gibraltar
Natal Group

Locality: Gibraltar

Logged By: C.G.A. Marshall
Logged: 23-10-1990
HGT: 480m

<table>
<thead>
<tr>
<th>Units</th>
<th>Scale</th>
<th>Cycles</th>
<th>Clay</th>
<th>Mud</th>
<th>Silt</th>
<th>Sand</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

Additional Data

- **Mineralogy:**
- **Texture:**
- **Colour:**
- **Fossils:**

Remarks

- **Lithofacies Data**
- **Thickness**

Lithofacies

- **SR6/2, C-E, fsp, granoelastic with common clasts of white pebble 25mm.**
- **SR7/2, fsp, f-m, 300 (mic), SS with N3 spherical CO2 cones, 20mm.**

Notes

- **Gravel:** (e.g., 1-5/2-4 mm)
- **Sand:**
- **Grain-size:** (e.g., 1-5/2-4 mm)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assegai Toll</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>133.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Nklangwini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Vuma Reform</td>
<td>0.5</td>
<td></td>
<td>37.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Teveden II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Ndlovana</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>White Mfolozi</td>
<td>64.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76+78</td>
</tr>
<tr>
<td>Teveden IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Kwa Sene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.2</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Nkizane</td>
<td>1.5</td>
<td>58.5</td>
<td></td>
<td>12.8</td>
<td></td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Ka-Gonitshie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.9</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>Spekfontein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Hlimbiwa</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Clintrock</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Ngongangacenga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>Sherbrook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>Kweugumagauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Table Mountain</td>
<td></td>
<td></td>
<td></td>
<td>42.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Mgوانارى</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>Nkazi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Ntukaza</td>
<td>2.9</td>
<td>1.4</td>
<td>30.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>Hitawakungu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>Mwabane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>Igoza</td>
<td>9.5</td>
<td>33.0</td>
<td>19.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>Gibraltar</td>
<td>10.0</td>
<td>0.25</td>
<td>4.75</td>
<td>10.5</td>
<td></td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>Mtwalume Nat. Reserve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305.0</td>
<td>151</td>
</tr>
</tbody>
</table>

K'K'f = Kranskloof Member
D'h'k = Dassenhoek member
Tul = Tulini Member
N'pap = Newspaper Member
W'vill = Westville Member
Msik = Msikaba Formation
No. = Consecutive numbering of measured sections

Figures in the member columns indicate thicknesses reported in metres.

Table App-1.2 Measured stratigraphic sections included in dissertation, indicating thicknesses reported.
Table App-1.3
Lithofacies and sedimentary structures, modified after Miall (1977)

<table>
<thead>
<tr>
<th>Facies Code</th>
<th>Lithofacies Code</th>
<th>Lithofacies</th>
<th>Sedimentary Structure</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gms</td>
<td>massive, matrix-supported gravel</td>
<td>none</td>
<td>debris flow deposits</td>
<td></td>
</tr>
<tr>
<td>Gm</td>
<td>massive or crudely-bedded gravel</td>
<td>horizontal bedding, imbrication</td>
<td>longitudinal bars, lag deposits, sieve deposits</td>
<td></td>
</tr>
<tr>
<td>Gt</td>
<td>gravel, stratified</td>
<td>trough cross-beds</td>
<td>minor channel fills</td>
<td></td>
</tr>
<tr>
<td>Gp</td>
<td>gravel, stratified</td>
<td>planar cross-beds</td>
<td>linguoid bars or deltaic growths from older bar remnants</td>
<td></td>
</tr>
<tr>
<td>St</td>
<td>sand, medium to v. coarse, may be pebbly</td>
<td>solitary (theta) or grouped (pi) trough cross-beds</td>
<td>dunes (lower flow regime)</td>
<td></td>
</tr>
<tr>
<td>Sp</td>
<td>sand, medium to v. coarse, may be pebbly</td>
<td>solitary (alpha) or grouped (omicron) planar cross-beds</td>
<td>linguoid, transverse bars, sand waves (lower flow regime)</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>sand, very fine to coarse</td>
<td>ripple marks of all types</td>
<td>ripples (lower flow regime)</td>
<td></td>
</tr>
<tr>
<td>Sh</td>
<td>sand, very fine to very coarse</td>
<td>horizontal lamination, parting or streaming lamination</td>
<td>planar bed flow (l. and u. flow regime)</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>sand, medium to v. coarse, may be pebbly</td>
<td>massive or horizontal lamination</td>
<td>planar bed flow (upper flow regime)</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>erosional scour with intraclasts</td>
<td>crude cross bedding</td>
<td>scour fills</td>
<td></td>
</tr>
<tr>
<td>Ss</td>
<td>sand, fine to coarse</td>
<td>broad, shallow scour including eta cross-bedding</td>
<td>scour fills</td>
<td></td>
</tr>
<tr>
<td>Ssc, Shc, Sp</td>
<td>sand</td>
<td>analogous to Ss, Sh, Sp</td>
<td>aeolian deposits</td>
<td></td>
</tr>
<tr>
<td>Fl</td>
<td>silt, mud</td>
<td>fine lamination, very small ripples</td>
<td>overbank or waning flood deposits</td>
<td></td>
</tr>
<tr>
<td>Fsc</td>
<td>silt, mud</td>
<td>laminated to massive</td>
<td>backswamp deposits</td>
<td></td>
</tr>
<tr>
<td>Fcf</td>
<td>mud</td>
<td>massive, with freshwater molluscs</td>
<td>backswamp pond deposits</td>
<td></td>
</tr>
<tr>
<td>Fm</td>
<td>mud, silt</td>
<td>massive, dessication cracks</td>
<td>overbank or drape deposits</td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td>silt, mud</td>
<td>rootlets</td>
<td>scatearth</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>coal, carbonaceous mud</td>
<td>plants, mud films</td>
<td>swamp deposits</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>carbonate</td>
<td>pedogenic features</td>
<td>soil</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 2. GEOLOGICAL MAPS

Locality map (Fig. App-2.1) shows the areas covered by the 1:50 000 geological maps (Figs. App-2.2 to App-2.14) included in a pocket at the back of this dissertation.
Fig. App-2.1 Locality map of geological maps presented here.
APPENDIX 3. GRAIN-SIZE ANALYSIS AND COMPOSITION

The determination of the composition of the mineral grains, and their longest visible diameter, are laborious and time-consuming tasks, but are necessary for the understanding of the sedimentary rocks which the samples represent. Assembling the data, and the scientific analysis thereof, provided some insight into the provenance rocks and the conditions under which the particles were transported and deposited, as well as the post-depositional history.

A total of 600 samples of Natal Group rocks was collected. These were taken from selected localities over the entire known basin of deposition, and represent every unit within the Natal Group. Because of the indurated nature of the Natal Group rocks, the samples could not be disaggregated for sieving and accurate determination of grain-size distribution, and grain-size measurements were thus carried out under the microscope.

APP-3.1 COMPOSITION

The modal compositions of the rocks were determined using, initially, a Swift Model C Point Counter, with a mechanical stage mounted on a Leitz Ortholux II Pol-BK microscope. The following minerals were identified: monocrystalline quartz (including coarsely-crystalline composite grains); polycrystalline quartz (including chert and jasper); feldspar (including potash and plagioclase feldspar); clay (usually now sericite, but interpreted as detrital clay); sericite (usually as wisps along grain boundaries); zircon; garnet; amphibole; detrital iron oxide; detrital calcite; detrital muscovite; detrital biotite; and cement (usually quartz, but also sparse calcite).
The distance chosen between the count points is less critical for composition than for grain-size measurements. If two, or more, observation points fall within one grain, this does not affect the modal composition. However, if the interval chosen is too large, many of the smaller grains - such as zircon, which commonly occurs as very small grains in sedimentary rocks - might be missed, and a compositional bias introduced, regardless of how many observations are made. When the measuring point fell on cement or some other non-detrital material, only the composition was recorded. The size of a further grain was measured during an extended survey to ensure that a minimum of 400 grains per sample was measured for maximum diameter.

Holmes (1930) stated that, in determining mineral composition using the linear method, the length of the measured line must be at least 100 times the average diameter of the constituents measured. Relating this to the point-counting method employed by the author, it is clear that 400 grain counts would exceed this minimum requirement by a factor of approximately four. It was determined, using the chart of van der Plas and Tobi (1965), that it was unnecessary to count more than 400 grains per thin-section, as set out in the Table App-3.1. Johnson (1994) opined that 50 to 100 grains would be sufficient.

Table App-3.1 Accuracy of point counts (from van der Plas and Tobi, 1965)

<table>
<thead>
<tr>
<th>Hypothetical Case</th>
<th>Count Level</th>
<th>Confidence Level</th>
<th>Mineral Content</th>
<th>Accuracy Limit</th>
<th>Increased Count</th>
<th>Increased Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>400</td>
<td>95%</td>
<td>90%</td>
<td>3%</td>
<td>500</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>95%</td>
<td>90%</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>400</td>
<td>95%</td>
<td>60%</td>
<td>5%</td>
<td>200</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>95%</td>
<td>60%</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of grains for each mineral was converted to volume percentage of the whole
sample. As the point-counting method determines, directly, only the areal percentages of the various minerals present, it is necessary to relate this to the volume percentage. It was assumed that the Delesse relation applies (Chayes, 1956), and that the areal percentage of a mineral in the thin-sections measured is a direct indication of its volume percent in the rock (Holmes, 1930). However, as it is necessary to represent the mineral composition of the rocks as mass percentage, the relative densities of each mineral were used to do this further calculation (Holmes 1930). The formula used was:

\[
\text{Mass percent of mineral in sample} = \frac{\text{Number of grains} \times \text{Relative density} \times 100}{\sum (\text{Number of grains} \times \text{relative density})}
\]

The compositions of the various samples and the units they represent, are discussed under the relevant headings in Chapter 3. The compositions are listed in Table App-3.2.

APP-3.2 GRAIN-SIZE

The mineral grains were measured using a graduated eyepiece on the Leitz Ortholux microscope. Care was taken to ensure that no grain diameter was measured twice, as this would introduce a bias towards the larger grain-sizes, although it would not have introduced any bias as far as mineral composition is concerned. Where two or more consecutive measuring points did indeed occur within one grain, the composition of the grain was recorded for each step, but the diameter was recorded for only the first measuring point. After 400 positions were recorded, the survey was extended to record diameters only, until a total of 400 diameters was also recorded for that thin section.

Where there was obvious overgrowth, usually discernible from the dust line of haematite showing the original grain boundary, the original grain diameter was measured. In a closely
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>MEAN DIA</th>
<th>STD DIA</th>
<th>SKEW</th>
<th>KURT</th>
<th>n</th>
<th>Qtz</th>
<th>Fsp</th>
<th>Chrt</th>
<th>Jasp</th>
<th>Clay</th>
<th>Ser</th>
<th>Biot</th>
<th>Cent</th>
<th>Zirc</th>
<th>Garn</th>
<th>Amph</th>
<th>FeO</th>
<th>Calc</th>
<th>Musk</th>
<th>Lithic</th>
<th>Other</th>
<th>Total</th>
<th>STRAT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>491</td>
<td>1.61</td>
<td>1.49</td>
<td>0.35</td>
<td>2.57</td>
<td>536</td>
<td>64</td>
<td>28.5</td>
<td>2.2</td>
<td>3.3</td>
<td>1.8</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>1.55</td>
<td>0.51</td>
<td>1.2</td>
<td>7.75</td>
<td>373</td>
<td>96.5</td>
<td>2.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>1.24</td>
<td>0.85</td>
<td>-0.1</td>
<td>2.27</td>
<td>426</td>
<td>85.6</td>
<td>5.3</td>
<td>8.7</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>2.02</td>
<td>1.24</td>
<td>3.99</td>
<td>81.1</td>
<td>76.2</td>
<td>6</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>1.74</td>
<td>0.88</td>
<td>0.37</td>
<td>2.87</td>
<td>591</td>
<td>92.8</td>
<td>4.8</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>2.2</td>
<td>1.35</td>
<td>7.98</td>
<td>400</td>
<td>59.3</td>
<td>53.4</td>
<td>2.2</td>
<td>4.1</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>3.58</td>
<td>1.09</td>
<td>0.34</td>
<td>4.31</td>
<td>403</td>
<td>17.6</td>
<td>4.23</td>
<td>37.2</td>
<td>14.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>2.48</td>
<td>1.74</td>
<td>6.04</td>
<td>402</td>
<td>50.8</td>
<td>25.8</td>
<td>6.1</td>
<td>3.3</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>2.18</td>
<td>1.84</td>
<td>2.62</td>
<td>464</td>
<td>82</td>
<td>2.37</td>
<td>2.2</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>2.04</td>
<td>1.14</td>
<td>2.94</td>
<td>13.7</td>
<td>412</td>
<td>89.5</td>
<td>0.48</td>
<td>5.15</td>
<td>1.63</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>2.27</td>
<td>1.93</td>
<td>6.7</td>
<td>400</td>
<td>50.7</td>
<td>9.93</td>
<td>4.99</td>
<td>1.63</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>2.53</td>
<td>0.59</td>
<td>2.01</td>
<td>11.9</td>
<td>416</td>
<td>84.5</td>
<td>7.04</td>
<td>2.42</td>
<td>5.87</td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>2.02</td>
<td>1.72</td>
<td>5.88</td>
<td>407</td>
<td>72.7</td>
<td>10.7</td>
<td>3.55</td>
<td>8.2</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>1.84</td>
<td>0.94</td>
<td>2.69</td>
<td>14.8</td>
<td>414</td>
<td>89.3</td>
<td>0.24</td>
<td>2.16</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>1.71</td>
<td>0.82</td>
<td>3.08</td>
<td>21.4</td>
<td>405</td>
<td>91.5</td>
<td>2.59</td>
<td>1.06</td>
<td>3.79</td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>1.79</td>
<td>0.9</td>
<td>3.2</td>
<td>18.4</td>
<td>401</td>
<td>84.5</td>
<td>6.94</td>
<td>4.94</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>1.58</td>
<td>0.76</td>
<td>2.13</td>
<td>50.9</td>
<td>405</td>
<td>91.8</td>
<td>2.22</td>
<td>0.5</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>1.99</td>
<td>0.72</td>
<td>4.62</td>
<td>403</td>
<td>80.1</td>
<td>45.5</td>
<td>5.57</td>
<td>0.51</td>
<td>7.94</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>1.93</td>
<td>0.75</td>
<td>1.28</td>
<td>5.28</td>
<td>402</td>
<td>93.7</td>
<td>3.24</td>
<td>1.93</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>1.93</td>
<td>0.8</td>
<td>2.57</td>
<td>14.7</td>
<td>402</td>
<td>90.2</td>
<td>5.24</td>
<td>4.71</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td>513b</td>
<td>1.22</td>
<td>0.77</td>
<td>0.85</td>
<td>5.44</td>
<td>402</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>1.85</td>
<td>0.99</td>
<td>2.15</td>
<td>11.7</td>
<td>417</td>
<td>80.4</td>
<td>3.8</td>
<td>4.72</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>2.47</td>
<td>1.2</td>
<td>1.43</td>
<td>7.74</td>
<td>440</td>
<td>84.4</td>
<td>6.36</td>
<td>5.47</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>1.65</td>
<td>0.7</td>
<td>1.74</td>
<td>14.5</td>
<td>418</td>
<td>93.5</td>
<td>5.44</td>
<td>0.27</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>1.67</td>
<td>0.56</td>
<td>2.92</td>
<td>29.7</td>
<td>417</td>
<td>91.6</td>
<td>7.08</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>1.91</td>
<td>0.85</td>
<td>2.42</td>
<td>15.5</td>
<td>435</td>
<td>93.1</td>
<td>4.46</td>
<td>2.46</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>1.86</td>
<td>0.92</td>
<td>1.54</td>
<td>9.37</td>
<td>408</td>
<td>74.3</td>
<td>7.51</td>
<td>0.73</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>1.53</td>
<td>0.72</td>
<td>2.11</td>
<td>16.0</td>
<td>410</td>
<td>92.8</td>
<td>5.78</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>2.28</td>
<td>1.09</td>
<td>2.06</td>
<td>9.87</td>
<td>409</td>
<td>87.2</td>
<td>4.34</td>
<td>0.75</td>
<td>6.04</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>5.77</td>
<td>2.11</td>
<td>-0.5</td>
<td>1.43</td>
<td>408</td>
<td>34</td>
<td>0.48</td>
<td>63.5</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>2.15</td>
<td>1.75</td>
<td>14.9</td>
<td>402</td>
<td>85</td>
<td>3.54</td>
<td>2.35</td>
<td>2.69</td>
<td>7.03</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>1.18</td>
<td>0.89</td>
<td>0.32</td>
<td>2.56</td>
<td>408</td>
<td>72.5</td>
<td>4.8</td>
<td>4.7</td>
<td>0.82</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>3.5</td>
<td>1.02</td>
<td>2.07</td>
<td>9.06</td>
<td>403</td>
<td>74.4</td>
<td>2.22</td>
<td>2.06</td>
<td>6.07</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>1.98</td>
<td>0.87</td>
<td>0.72</td>
<td>4.36</td>
<td>404</td>
<td>80</td>
<td>3.82</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>2.2</td>
<td>2.18</td>
<td>3.89</td>
<td>410</td>
<td>58.6</td>
<td>21.7</td>
<td>1.07</td>
<td>0.81</td>
<td>17</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>669</td>
<td>3.14</td>
<td>2.13</td>
<td>0.75</td>
<td>3.02</td>
<td>406</td>
<td>54.8</td>
<td>10.5</td>
<td>2.54</td>
<td>9.72</td>
<td>4.6</td>
<td>9.25</td>
<td>7.81</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>2.51</td>
<td>1.07</td>
<td>0.7</td>
<td>2.84</td>
<td>398</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table App-3.2 Grain-size and composition statistics
Sheet 1 of 3
SAMPLE MEAN
DIAM

STD.

5KEW KURT

n

Otz

Fsp

Chrt

63.1
86.7
74.8

20.5

4.17

2.38
11.1
12.1

4.75
9.35
2.48
2.5

Josp

Cloy

Ser

Biot

Cemt

Zire

Corn

0.49

0.43

Amph

FeO

Cole

Muse

2.92

0.25

1.36
0.55
1.36
0.27
0.83

UTHIC

Other

Total

STRAT.

DEVN

PHI

680
693
705
711

1.33
1.86

1.18

0.84

2.54

397

0.69
0.81
0.8

0.53
0.7

4.06

400

5.96
5.77
3.28

400
400
400

4.09
6.2

401
400

5.45
3.57

400
400

80
85.6
90.8
72.4

400
400
400

82
62.5
85.7

400
400
400
400

85
61.4
58.6
79.3

16.5
5.27
3.64

400
400
400
400

89.2
75
62.5
87

11.3
11.9
0.48

400
400
400

83.9
76.7
87

400
400
400
400
400
400
394

87.8
79.8
82.2
82.3
81.7
79.3
84.8

3.33
6.79

98
66.5
72.6
72.7

0.48
17.6
12.6
12.5

712

2.53
1.35
1.02

715
717
718
720

2.48
1.62
0.85
-0.3

725
728
736

2.69
0.85
1.81

0.58
0.8

753
781
788
792

1.51
0.85
2.23
2.02

0.73
0.8
0.79
0.72

806
810
811
813

1.6
1.56
0.9
1.81

0.93
1.08
0.97
0.44

818
818
819
821

1.68
1.16
1.42

0.69
0.72
0.54

1.5
1.13
1.89
2.3
2.29
2.29
0.88
2.41

0.55
0.45
0.64
0.66
0.6
0.6
0.94
0.61

1.08
0.52
0.63
0.43
0.9

1.2
0.78
0.55
1.21
0.64
0.7

77.5
77.1

1.66
2.61

0.98

4.06

6

1

5
5.51
4.01

1.2

0.28
0.28
0.28

Q.97

1.17

0.37

2.73

200
400
400
400

875
877

2.88
2.08

0.83
0.59

2
1.93

0.52
0.4

4.79
4.3
6.78
5.17

400
400
400
400

73.9
86.1
89.6
87

3.99

881
882
894
896

0.62
0.57
1.38
0.69

2.07

0.75

0.29

3.44

801
400
407
400

78.3
80.1

9.6
6.72
31.9
35.8

0.72

0.99

-0.1

2.58

11.1
1.62

5.87
5.61

0.99

65.3
59.8

0.54
0

16.8

1.58

908
909

0.55

0.27
7.69
4.14

2.4
12

855
857
870

827
832
835A
8358
845
849
853

0.58

0.24

0.75
6.93
0.99
0.97
3.25
6.2
5.2
1.25
1.25
2.24
3.48
4.43
5.93
2.45
2
1
2.26
0.72
6.45

0

1.3

1.95
0.49

2.94
4.16

0.43
1.3
0.44

1.46
2.91
1.96
0.5

1.89
0.54

2.43
0.51

0.81

2.45
14.3

0.59

0.86

15.4

0.28
0.26
0.28

7
8.5
14
0.71
16

0.82
8.49
14.9
0.28

0.99
1.24
4.34
9

0.87

1.1
0

0.88

1.92
1.91

7
16.1
11.5
11
17.2
10.9
8.38

3.55
11.9
2.21

4.94
0.25
4.25

0.44
0.43

7.21
2.67
6.04
18.5
3.07

1
3.62
0.75

0.44
0.85

2.49
6.7
0.99

1.28

1.92
0.5

0.25

1.74

0.28

0.55

0.42

0

0

0.5
7.5

0

0.98
0.49
4.79

1.31

0

1.37
0.53

0.3
1.97

0.55

0.3

0.49
0.49
2.45

0.89
0.3

0.98
0.97

0.27
0.81

0.44

0.25

4.99
5.75

0.25
0.25

1.93
0.28
5.75
10.1

3.28
3.49
6.75

0.28

0.5

0.83
0.27
0.55

1

100 KR
100 51
100 51
100 51
100 DA
100 DA
100 DA
100 KR
100 KR
100 KR
100 KR
100 NP
100 NP
100 DA
100 KR
100 51
100 51
100 DA
100 KR
100 KR
100 KR
100
100
100
100
100
100

KR
E5
E5
E5
E5

E5
100 E5
100 DA

100
100
100
100

NP
E5
E5

0.27

KR
100 E5
100 KR
100 KR
100 E5

1.91
0.28

100 E5
100 UL
100 UL

0.25
0.44

1.01

1.54

1.23
1.98

100 NP
100 KR

1.82
6.54

0.55

0.48
6.82

4.83
0.5
0.49
1.26

0.3

8.12
0.5
2.75

0.99
8.83

0.25
0.74
0.25

0

7.49

1.22
3.46
6.31

OS 3.53
4.02
3.44
0.93 3.71
0.82 4.02
0.6 2.82
0 2.98
0.92 3.37
-0.5 3.65
1.25 4.87
0.85 5.09
0.4 2.71
0.91 4.23
0.51 5.54
-0.0 3.85
1.03 6.67
0.75 3.76
1.72 12.5
0.92 4.48
0.92 4.48
0.7 4.49
0.32 3.62
0.24 3.48
0.82
0.55

6.79
0.25
0.49

~

~


| SAMPLE | MEAN | STD | SKEW | KURT | n | Fsp | Chrt | Jasp | Clay | Ser | Biot | Zirc | Garn | Amph | FeO | Calc | Musc | ITMC | Other | Total | STRAT |
|--------|------|-----|------|------|----|-----|------|------|------|-----|-----|------|------|-----|-----|-----|-----|-------|-------|-------|
| | | | | | | | | | | | | | | | | | | | | |
| 911 | 2.11 | 0.57| 0.68 | 4.08 | 400| 75.9| 18.5 | 3.02 | 0.56 | 2.01| | | | | | | | | | |
| 942 | 0.03 | 1.22 | 0.66 | 4.24 | 180| 82.5| 13.3 | 2.19 | 0.55 | 0.61| 0.61| | | | | | | | | |
| 950 | 0.99 | 0.9 | -0.3 | 4.03 | 401| 82.8| 8.47 | 3.99 | 0 | 0 | 4.41| | | | | | | | | |
| 951 | 1.76 | 0.74 | 0.67 | 0.63 | 398| 91.6| 1.24 | 5.47 | 0.74 | 0.98| | | | | | | | | |
| 959 | 1.85 | 0.46 | 0.75 | 0.88 | 400| 82.4| 6.49 | 1 | 1.1 | 8.99| | | | | | | | | |
| 961 | 1.92 | 0.39 | 0.45 | 3.39 | 400| 92.7| 2 | 0.28 | 4.75 | 0.3 | | | | | | | | | |
| 966 | 2 | 0.52 | 0.72 | 5.15 | 400| 90.1| 2.64 | 3.47 | 0.5 | 8.43| 0.61 | | | | | | | | |
| 971 | 2.38 | 0.51 | 0.62 | 4.06 | 400| 82.4| 4.3 | 0.28 | 2.21 | 6.99| 0.3 | | | | | | | | | |
| 977 | 1.64 | 0.72 | -0.5 | 3.58 | 400| 77.1| 13.6 | 1.51 | 7.78 | | | | | | | | | | |
| 982 | 1.91 | 1.23 | -0.4 | 2.67 | 201| 86.9| 8.72 | 0.5 | 1.1 | 0.74| | | | | | | | | |
| 988 | 1.72 | 0.82 | 0.93 | 3.29 | 400| 64.9| 21.8 | 4.04 | 4.19 | | 5.03 | | | | | | | | |
| 989 | 0.86 | 1.11 | 0.34 | 2.63 | 398| 75.5| 13.7 | 2.23 | 4.92 | 1.24 | 0.44 | 1.47 | 0.55 | | | | | | | |
| 990 | 1.74 | 0.78 | -0.5 | 4.06 | 400| 82.2| 3.67 | 0.25 | 5.77 | 0.57 | 0.49 | | | | | | | | |
| 992 | 1.99 | 0.6 | 1.14 | 5.14 | 400| 86.6| 0.96 | 2.24 | 5.77 | 3.98 | | | | | | | | | |
| 995 | 1.76 | 0.66 | 0.55 | 3.18 | 400| 87.8| 4.7 | 4.65 | 1.48 | 0.87 | 0.49 | | | | | | | | |
| 996 | 1.51 | 0.8 | 0.15 | 4.62 | 384| 75.1| 16.3 | 1.98 | 0.55 | 0.99 | 2.94 | 3.04 | 1.09 | | | | | | | |
| 1004 | 1.92 | 0.52 | 0.67 | 4.47 | 400| 76.3| 9.36 | 3.22 | 9.31 | 0.25 | 0.49 | 1.1 | | | | | | | |
| 1005a | 1.74 | 0.53 | 0.02 | 4.45 | 400| 88.1| 0.75 | 10.7 | 0.44 | | | | | | | | | | | |
| 1005 | 1.29 | 0.7 | 0.72 | 5.19 | 400| 97.4| 1.24 | | 1.32 | | | | | | | | | | | |
| 1016 | 1.94 | 0.55 | 0.31 | 3.37 | 400| 76.9| 8.9 | 2.74 | 1.65 | 8.46 | 0.88 | 0.49 | | | | | | | |
| 1024 | 1.17 | 1.43 | -0.1 | 2.44 | 403| 65.1| 19.5 | 3.23 | 15.5 | 0.25 | 0.49 | | | | | | | | |
| 1027 | 2.26 | 0.69 | 0.71 | 3.96 | 400| 80.5| 10.1 | 1.49 | 0.25 | 6.3 | | 0.44 | 0.98 | | | | | | | |
| 1028 | 2.05 | 0.53 | 0.76 | 4.8 | 400| 83.8| 1.93 | 5.48 | 0.55 | 6.73 | 0.49 | | | | | | | | |
| 1030 | 2.24 | 0.61 | 0.88 | 3.94 | 400| 54.6| 19.2 | 5.96 | 6.59 | 3.82 | 0.55 | 9.18 | | | | | | | |
| 1041 | 2.12 | 0.62 | 1.14 | 4.62 | 400| 83.2| 1.66 | 2.97 | 7.67 | 3.96 | 0.49 | | | | | | | | |
| 1043 | 1.79 | 0.65 | 0.58 | 4.83 | 400| 92.6| 3 | 1.38 | 5 | | | | | | | | | | | |
| 1044 | 1.24 | 0.93 | 0.53 | 2.9 | 400| 71.2| 13.8 | 1.5 | 0.25 | 0.09 | | | | | | | | | | |

Table App-3.2 Grain-size and composition statistics
Sheet 3 of 3
packed sediment, such as is the case with virtually all the Natal Group rocks, overgrowth would not significantly change the diameter of the grains, and therefore the author did not consider this a matter of major concern, especially as the number of samples in which original grain boundaries were not discernible, was minimal. As the Natal Group is essentially unmetamorphosed, there has been no recrystallization, and hence no increase in grain-size apart from that caused by overgrowth during silicification (cementation by quartz).

Inaccuracies can occur when this method is adopted, as any diameter measured in thin-section can be either equal to or, as is usually the case, less than the original diameter of the grain, but never greater. Orientation of the grain relative to the plane of the thin-section, and the position of the plane of the thin-section within the original grain, both play significant roles in determining how close the measured maximum thin-section diameter approaches the maximum diameter of the original grain. Computations using the data derived in this way must, of necessity, have a bias towards results which would indicate that the rock has a finer grain-size than is actually the case. This problem was addressed by Friedman (1958) who has prepared a chart (his Fig.4) whereby microscope measurements can be related to sieve sizes for sediment grains. There is some doubt as to the validity of Friedman's conversion. His formula is as follows: \[\phi_{\text{sieve}} = (\phi_{\text{th}} \times 0.90909) + 0.3636 \]. In this regard, the constant addition of 0.3636 would have a different effect depending on the grain-size, as \(\phi \) is logarithmic (Reddering, pers. comm.\(^1\)), but no better conversion factor could be found. Johnson (1994) has further refined the conversion of grain-sized measured in thin-section to sieve-sizes. He proposed obtaining the true nominal diameter - to within 5% or 0.07\(\phi \) (phi) - by multiplying the long axes (in mm) observed in thin-section by 0.95, or by adding 0.05 to the

\(^1\) J.S.V. Reddering, Council for Geoscience, Port Elizabeth
corresponding \(\phi \) values. However, as nominal diameters were not used in the interpretation of results, this technique was not employed in the current investigation.

The observed largest diameter of each grain was converted to sieve size dimensions on the \(\phi \) scale, using the method of Friedman (1958). The grain measurements were then grouped in 1/2\(\phi \) classes (Folk 1966) and treated statistically on a Quattro Pro 4 spreadsheet, using standard statistical parameters.

Dunlevy and Mitchell (1993), involved the present author in developing a point-counting computer programme which enabled the mechanical stage of the point-counter to be coupled to a computer, and activated by the computer keyboard. Using this facility, up to 30 different mineral species or variants can be accommodated, and up to three other parameters such as maximum grain length, recorded. Each grain composition and maximum grain diameter, in micrometer eyepiece graduation marks were fed into the computer. The software automatically converted the graduations into millimetres, using a factor supplied by the operator and depending upon calibration of the objective lens in use, and kept a running tally of the number of each mineral type recorded. The raw data file was then imported into Quattro-Pro 4 (a spread sheet programme), parsed and sorted according to grain-size. The grain diameters were converted into phi units, and, using Friedman's (1958) data, converted from thin-section sizes, into sieve sizes. The grains were grouped into 1/2 \(\phi \) classes, and the totals of these classes fed into a spreadsheet where the four moments were calculated (See below). This technique obviated much monotonous and time-consuming hand recording and conversion of data. The formula used to convert millimetres to Phi-units is:
APPENDIX III: GRAIN-SIZE AND COMPOSITION

\[\phi = -\log_2 \text{Size in mm} \quad (\text{Dunlevy and Mitchell, pers. comm.}^2) \]

APP-3.3 STATISTICAL PARAMETERS

Grain-size is a fundamental descriptive element of a sedimentary rock, and should therefore be measured and analysed with reasonable precision (Roberts, 1981). It is also useful in interpreting source rocks, transport and depositional processes and environments. The intention was to be able, with reasonable confidence, to corroborate the hypothesis - formulated on the grounds of palaeocurrent consistency, and on pebble shape parameters - that the Natal Group rocks were deposited in fluvial rather than marine conditions. Of the two main approaches available, the moments method (Friedman, 1961), which utilises the whole of the distribution to analyze the weight frequency distribution data derived from granulometric analysis (Folk, 1966; Mc Manus, 1992), was favoured. There is the proviso that the moments method requires complete fine and coarse tails (Reddering, pers. comm.\(^3\)), but it was considered preferable to the graphic method in the light of the finite number of grains measured under the microscope. The graphic approach uses only five quartile points on the cumulative grain-size distribution curve plotted on probability paper (Blatt et al. 1972), and is therefore not as representative. The moments method is ideal for microscopic determinations because of the discrete number of grains measured. Folk (1966) expressed some degree of doubt as to the validity of the moments method, whereas Friedman (1961, 1962), Folk and Ward (1957) and Swan et al. (1979) have favoured this method. Swan et al. (1978) suggested that the difference between the graphic and calculated ungrouped

\(^2\) J.N. Dunlevy and A.D. Mitchell, Dept. of Geology, University of Durban Westville

\(^3\) J.S.V. Reddering, Council for Geoscience, Port Elizabeth
moment means are so small that, in most cases, they can be ignored. It is clear that the parameters derived by the graphic method differ slightly from those derived by the method of moments (Folk 1966, Friedman 1962 and Middleton 1967). However, Folk (1966) considered that this is not a serious problem, and stressed that the same geologic conclusions would be reached no matter which method is used, because sample-to-sample variation in most geologic suites is so large that it would outweigh precise hair-splitting over details of statistical orthodoxy.

Many authors in the field (e.g. Krumbein and Pettijohn 1938, Inman 1952, Folk and Ward 1957, Mason and Folk 1958, Folk 1959, 1966, Friedman 1961, 1962, Swan et al. 1978, 1979, McLaren 1981, Friedman and Johnson 1982, and Pettijohn et al. 1987) have utilized the mean diameter, sorting, skewness and kurtosis to aid in the understanding of the provenance, transport and deposition of the sediments concerned. The author has determined the same parameters. The maximum grain-size, although considered useful in interpreting transport and deposition conditions, was not determined. This property, measured in thin-section, might bear no relation at all to the maximum grain-size of the rock, especially if the rock is poorly sorted, as is usually the case with the Natal Group sedimentary rocks. Friedman's (1958) conversion does not apply to maximum grain-size conversions, as the number of grains is too small, and the possibility of measuring the actual maximum diameter extremely remote.

McLaren (1981) emphasized that, in the absence of supporting data, grain-size analyses of sediments from unknown sources, cannot enable the interpreter to be very specific as to environment of deposition. No definite, widely-applicable correlation between grain-size distribution and the depositional environment has yet been formulated (Mc Manus, 1992).
The author has adopted the following moments, as defined by Friedman and Johnson (1982).

The symbols used are: \(x_\phi\) = mean diameter (\(\phi\)); \(m_\phi\) = midpoint of size class (\(\phi\)); \(f\) = mass percentage of grain-size class in sample; \(\Sigma\) = the sum; \(\delta\) = standard deviation; \(\beta_3\) = third moment, or skewness; \(\beta_4\) = fourth moment, or kurtosis.

APP-3.3.1 FIRST MOMENT
Mean Size \((x_\phi) = \Sigma f m_\phi / 100\)

This is the arithmetic mean of the largest observed diameters of the grains measured (Friedman and Johnson, 1982), and reflects the overall average size of the sediment as influenced by the source of supply and the environment of deposition (Folk, 1966).

APP-3.3.1.1 Mean Grain Size

Mean grain-size classes used below are according to Pettijohn et al. (1987). The data are listed in Table App-3.2 and summarised in Tables App-3.3 and App-3.4.

APP-3.3.2 SECOND MOMENT

This is a measure of the dispersion of particle sizes about the mean, and is actually the standard deviation, and thereby defines the degree of sorting of the sample. It is process-sensitive, and therefore useful in distinguishing different source environments (Friedman and Johnson, 1982).

\[\delta = (\Sigma f (m_\phi - x_\phi)^2 / 100)^{1/2}\]

APP-3.3.2.1 Sorting

The verbal classification is according to both Folk and Ward (1957) and Friedman (1962) unless otherwise stated. The results are summarised in Tables App-3.3; App-3.4.
Table App-3.3: Grain-size distribution statistics

<table>
<thead>
<tr>
<th>UNIT</th>
<th>n</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulundi</td>
<td>1</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>-0.10</td>
<td>-0.10</td>
<td>-0.10</td>
<td>2.58</td>
<td>2.58</td>
<td>2.58</td>
</tr>
<tr>
<td>Eshowe</td>
<td>37</td>
<td>0.03</td>
<td>5.7</td>
<td>2.01</td>
<td>0.45</td>
<td>2.20</td>
<td>1.03</td>
<td>-0.50</td>
<td>3.20</td>
<td>1.34</td>
<td>1.43</td>
<td>21.9</td>
<td>7.45</td>
</tr>
<tr>
<td>Kranskloof</td>
<td>33</td>
<td>0.85</td>
<td>2.88</td>
<td>1.74</td>
<td>0.39</td>
<td>1.49</td>
<td>0.74</td>
<td>-0.54</td>
<td>2.92</td>
<td>0.83</td>
<td>2.27</td>
<td>29.7</td>
<td>6.44</td>
</tr>
<tr>
<td>Situndu</td>
<td>8</td>
<td>0.90</td>
<td>2.48</td>
<td>1.47</td>
<td>0.52</td>
<td>1.08</td>
<td>0.86</td>
<td>-0.50</td>
<td>1.25</td>
<td>0.49</td>
<td>3.28</td>
<td>5.77</td>
<td>4.32</td>
</tr>
<tr>
<td>Dassenhoek</td>
<td>9</td>
<td>-0.30</td>
<td>2.41</td>
<td>1.57</td>
<td>0.43</td>
<td>0.90</td>
<td>0.61</td>
<td>0.00</td>
<td>1.21</td>
<td>0.69</td>
<td>2.98</td>
<td>6.20</td>
<td>4.45</td>
</tr>
<tr>
<td>Newspaper</td>
<td>13</td>
<td>0.85</td>
<td>3.58</td>
<td>2.07</td>
<td>0.52</td>
<td>2.13</td>
<td>0.96</td>
<td>0.16</td>
<td>1.56</td>
<td>0.74</td>
<td>2.54</td>
<td>7.98</td>
<td>3.97</td>
</tr>
</tbody>
</table>

Table App-3.4 Verbal Grain-size and Sorting of the Natal Group

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspaper Member</td>
<td>Fine-grained sandstone</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
</tr>
<tr>
<td>Dassenhoek Member</td>
<td>Medium-grained sandstone</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
</tr>
<tr>
<td>Situndu Member</td>
<td>Medium-grained sandstone</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
</tr>
<tr>
<td>Kranskloof Member</td>
<td>Medium-grained sandstone</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
<td>Moderately-to-well sorted</td>
</tr>
<tr>
<td>Eshowe Member</td>
<td>Fine- to medium-grained sandstone</td>
<td>Poorly sorted</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
</tr>
<tr>
<td>Ulundi Member</td>
<td>Coarse-grained sandstone</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
<td>Moderately sorted</td>
</tr>
</tbody>
</table>
APPENDIX III: GRAIN-SIZE AND COMPOSITION

APP-3.3.3 THIRD MOMENT

This moment, known as skewness, is a measure of the symmetry of the distribution frequency about the mean (Friedman and Johnson, 1982), or can be expressed as the non-normality of the distribution (Folk, 1966).

\[\beta_3 = \frac{\left(\sum f (m - x)^3 \right)}{(100 \times \delta^3)} \]

There is some confusion regarding the interpretation of skewness, and few workers use this parameter. Grain-size characteristics owe their origin to their source rather than to the depositional environment (McLaren, 1981). Therefore, he further pointed out, a negative or a positive skew is not diagnostic, but a positive or negative trend in the change of the skewness relative to its source identifies the sedimentary process. Skewness values are strongly affected by the presence or absence of coarse and fine fractions in a population. Positively skewed samples have mean grain-size values which are finer than the median, while negatively-skewed samples have mean grain-size values which are coarser than the median (Friedman, 1961).

APP-3.3.3.1 Skewness The results are summarised in Table App-3.3.

The verbal classification is after Folk and Ward (1957) who classified between the limits of -1.0 and +1.0. Friedman (1962) allowed a much wider range. Where the calculated values fall outside the range of Folk and Ward (1957) the author has added the qualifier "extremely".
The only sample analysed from the Ulundi Member had a nearly symmetrical to negative skewness. In the Eshowe Member, the skewness ranged from very negative to extremely positive, with the majority falling in the extremely positive classification and only two samples showing negative skewness. The skewness of the Kranskloof and Situndu Members ranged from very negative to extremely positive, with a very positive mean. In the Dassenhoek Member, the skewness ranged from symmetrical to extremely positive, with a very positive mean, and no negative skewnesses calculated. The Skewness of the Newspaper Member was largely very positive with a spread to positive and extremely positive.

The Natal Group sandstones are very strongly positively skewed, as is well-illustrated in Fig. App-3.1. Of the 104 samples studied, only 11 (10.5%) were negatively skewed. This is an indication of fluvial deposition (McLaren, 1981). Friedman (1961) plotted skewness of samples against standard deviation (sorting), and produced a figure in which beach and fluvial deposits were easily distinguished. The author plotted the same parameters derived from the Natal Group samples (Fig. App-3.1a) and all the plotted points fell within the fluvial field defined by Friedman (1961). During the study, the following relationships were also plotted, with no clear patterns emerging: kurtosis vs mean largest diameter measured (Fig. App-3.1b); skewness vs mean largest diameter measured (Fig. App-3.1c); standard error (syn. standard deviation) vs mean largest diameter measured (Fig. App-3.1d); kurtosis vs standard error (Fig. App-3.1e) and kurtosis vs skewness (Fig. App-3.1f).

APP-3.3.4 FOURTH MOMENT

This moment, known as kurtosis, measures the normality of a distribution by comparing the sorting in the central part of the distribution with that at the extremes. The third and fourth
Fig. App-3.1 Grain-size moments graphs
moments are designed to measure the character of the tails of the distribution, and should therefore be very useful. However, they are seldom used diagnostically. Kurtosis is actually derived by dividing the fourth moment by the standard deviation raised to the fourth power (Friedman and Johnson, 1982).

\[B_4 = \frac{\left(\sum f (m_x - x) \right)^4}{(100 \times \delta^4)} \]

It would seem that the kurtosis of a sample provides no useful information for the interpretation of grain-size interpretation (McLaren, 1981; Blatt et al. 1972). Mc Manus (1992) stated that this parameter is frequently calculated but not widely used, and is related to the dispersion and normality of the distribution.

APP-3.3.4.1 Kurtosis The results are summarised in Table App-3.3.

The verbal classification of Folk and Ward (1957) is used.

Only 16 (15%) of the 104 samples studied fell below the kurtosis figure of 3 (the lower limit of extreme leptokurtosis) and only one below the 1.5 figure (the lower limit of the "very leptokurtic" class). The extreme peakedness (leptokurtosis) indicates exceptionally good sorting of the central part of the distribution (Mc Manus, 1992).
APPENDIX III: GRAIN-SIZE AND COMPOSITION

LIST OF REFERENCES: APPENDIX 3.

APPENDIX 4. PALAEOCURRENT ANALYSIS

APPENDIX 4. PALAEOCURRENT ANALYSIS

APP-4.1 INTRODUCTION

The flow direction of the palaeocurrents which contributed to the deposition of each stratigraphic unit within the Natal Group depositional basin is a prime indicator of the palaeoslope of the basin and the provenance of the sediments, and an indicator of the depositional environment. An analysis of the palaeocurrent patterns also provides a better understanding of the depositional environment, and at least corroborate or modifies, previously-proposed basin margins. Palaeocurrent directions were obtained by measuring the orientation of current-produced, primary sedimentary structures such as planar and trough current-bedding, ripple marks, clast imbrication (only one occurrence) and parting lineation. Further light was thrown on the regional basin-fill patterns by data relating to changes in lithofacies and the basin geometry.

APP-4.2 PREVIOUS WORK

Matthews (1961) stated that the measurement of current bedding orientations within the Natal Group suggested that the source area for these rocks lay to the northeast. Rhodes and Leith (1967) measured some 350 palaeocurrent directions between Durban and Kranskop. The predominant direction in their Basal Zone (now Eshowe Member) was to the SW and SSW, with a component to the SSE near Mapumulo. They found difficulty in obtaining suitable cross-bedding in the highly-weathered Arkosic and Micaceous Zones.

Mathew (1971), in his study of what is now known as the Eshowe Member of the Durban
Formation in the Kloof Gorge near Durban, showed that the direction of sediment transport preserved within these rocks was from northeast to southwest.

Kingsley, (1975, Fig. 9) measured trough current-bedding directions in the area between Scottburgh and Port Shepstone, where he described sediment provenance to the north and northeast, parallel to the axis of the probably elongated basin. He showed, also, a secondary component towards the west and southwest.

Hobday and von Brunn (1979) recorded both trough and planar cross bedding orientations at Umdoni Park on the KwaZulu-Natal South Coast, which revealed a polymodal palaeocurrent pattern which nevertheless indicated a provenance to the northeast.

Roberts, (1981) determined palaeocurrent directions in the general vicinity of Durban, and suggested a provenance for the Eshowe Member, Situndu Member, Umlazi Formation and the Newspaper Member to the north and northeast. Palaeocurrent directions within the Kranskloof Member were generally to the southeast. Within the Dassenhoek Member, there were two palaeocurrent components, implying flow to the east and northeast, and to the southwest respectively. Roberts (1981) suggested that although the limited data showed a tendency towards polymodality, there was a strong indication of a southeastward direction of transport, with a relatively high mean angular deviation.

It is interesting to note that Hobday et al. (1971) recorded a northeast-to-southwest palaeocurrent direction for the Msikaba Formation of Pondoland. This is essentially the same as for the Natal Group, and it would be expected to be different, especially in the light of the marine origin postulated for the Msikaba Formation by virtually all who have written about this unit.
APPENDIX 4. PALAEOCURRENT ANALYSIS

APP-4.3 METHODS

APP-4.3.1 SAMPLING PROCEDURES

The palaeocurrent directions used in this study were determined by the author, primarily during the measurement of stratigraphic sections and outcrop mapping of selected areas. The orientation of a) foresets of planar and trough cross-beds, b) asymmetric ripple-marks, and c) clast imbrication in coarse conglomerates were recorded. Care was taken to ensure that apparent dip angles and azimuths, as exposed on vertical rock faces, were not measured. At many localities, it was impossible to obtain a meaningful palaeocurrent measurement on the vertical rock-face, and it was considered preferable to present a few accurate measurements, rather than a multitude of readings of questionable validity. A further reason for the paucity of data in some areas is that erosion has removed large portions of the Natal Group, especially the Newspaper Member which is susceptible to erosion as it is not overlain by a resistant unit, and this has militated against obtaining a complete picture of the palaeocurrent domain. There are therefore insufficient palaeocurrent readings for a rigorous statistical analysis.

APP-4.3.2 ANALYSIS OF DATA

The measurements were recorded on an electronic spreadsheet, and the various parameters derived by applying formulae as discussed below. Rose diagrams were plotted on an HP 7475A plotter, using a programme devised by L.G. Wolmarans4. In this programme, the

4 Council for Geoscience, Silverton
compass is divided into 10° segments. These were then drawn onto the palaeocurrent maps of the various stratigraphic units. The advantages of using a non-linear frequency scale (Nemec, 1988) could not be achieved, as the available software could not be adapted to produce rose diagrams with a logarithmic frequency scale.

Moving averages (Lindholm, 1987) were calculated, where sufficient data were available, and plotted on the same maps as the rose diagrams, except for the Eshowe Member, where, because of the data density, a separate map was drawn to avoid congestion. These maps are presented as figures accompanying the discussion of results for each stratigraphic unit.

Where the Natal Group rocks have been tilted more than 3° by later tectonic activity, the affected measurements were corrected to zero bed-dip and the original orientation of the structure obtained, using a computer programme devised by Cole and Basson (1986) on a computer diskette provided by D. Cole. Pettijohn et al. (1987) advocated the plotting of an average palaeocurrent direction (preferably the vector mean) rather than a rose diagram, for each locality, except in the case of markedly bimodal or polymodal distribution. Graham (1988), on the other hand, advocated the drawing of rose diagrams. Rose diagrams (with vector mean azimuth) were prepared for each significant locality, as these project a visual image of the distribution, which, in the author's opinion, is far preferable to any statistical treatment.

5 Council for Geoscience, Belville
From a large number of statistical parameters proposed by previous workers, the following vector statistics were considered important and hence calculated, using a spreadsheet programme, and are presented in Table App-4.1.

APP-4.3.2.1 Vector Mean (Sanderson, 1973, Tucker, 1988; Lindholm, 1987)

\[\Theta = \text{Arctan} \left(\frac{\Sigma i=1 \text{Sin} \Theta}{\Sigma \text{Cos} \Theta} \right) \]

Curray (1956) called this the azimuth of the resultant vector, whereas Cole and Basson (1986) called it the mean azimuth. It reflects the preferred orientation, and the vector mean of a population of palaeocurrent directions is a satisfactory average for all except markedly bimodal distributions, in which case the midpoints of the two modes should be plotted (Pettijohn et al. 1987). Curray (1956,) further stated that vector direction is a measure of the central tendency of the distribution, whereas the mean is very sensitive to the choice of origin. It is comparable to the mean but has the advantage of being independent of the reference direction and origin.

APP-4.3.2.2 Vector Strength, Vector Magnitude, Consistency ratio

Curray (1956, p. 119) and Graham (1988, p. 43) described the "magnitude of the resultant vector",

\[R = \left[(\Sigma \text{Sin} \Theta)^2 + (\Sigma \text{Cos} \Theta)^2 \right]^{\frac{1}{2}} \]

Cole and Basson (1986, p. 81) termed this parameter the "magnitude of the mean azimuth", while Lindholm (1987, p. 47) referred to it as the "Vector Magnitude", and stated that this should be expressed as a percentage (also known as the "Consistency Ratio") to facilitate comparison between samples. Sanderson (1973, p. 1096) stated that the "Vector Strength" (his term for "Vector Magnitude" after normalising for sample size) indicated the dispersion
about the vector mean in terms of the length (or magnitude) of the resultant vector. Roberts (1981) also referred to vector strength, but applied a factor of $1/n$ to the formula so that it would be less than 1 - an important consideration in calculating the Mean Angular Deviation where the square root of $2(1 - \text{vector strength})$ is a key to the calculation. Curray (1956) expressed this parameter as a percentage, $L = (R/\Sigma n) \times 100$, and stated that it is a sensitive measure of dispersion, comparable to standard deviation or variance, as it is independent of choice of origin. It can thus be used to estimate the degree of preferred orientation, and hence gauge the environment of deposition of the palaeocurrents measured. Cole and Basson (1986, p. 81) also referred to this as the "Consistency Ratio". Thamm (1988) stressed the importance of the consistency ratio in interpreting the palaeoenvironment.

Lindholm (1987, p. 47) stated that high consistency ratio values indicate a clustering of readings about the vector mean (i.e. a low dispersion), and are produced by individual measurements trending generally in the same direction. Scatter is indicated by low values.

APP-4.3.2.3 Mean Angular Deviation, Standard Deviation Roberts (1981, p. 62) and Graham (1988, p. 45) gave the formula for the mean angular deviation.

Roberts: $S^\circ = [2(1-R)]^{1/2} \times 180/\pi$ in degrees

Graham: $S = [2(1-R)]^{1/2}$ in radians

In both cases, R must be less than 1, or $1-R$ will be negative, and it will be impossible to derive the square root.

It will be noticed that the consistency ratio in Table App-4.1 is 100x the vector strength, because it is expressed as a percentage. Roberts' vector strength formula, utilising $1/n$,
ensures that the value of R remains less than 1, and was therefore used by the present author. Graham (1988) indicated that the consistency ratio behaves mostly in the same way as the standard deviation of a normal distribution, but is not its circular analogue.

Cole and Basson (1986, p. 81) gave the formula for Standard Deviation, and pointed out that it is useful because it indicates whether the deposit under study is proximal or distal. However, they do not indicate how the results may be interpreted. Pettijohn et al. (1987) noted that the Standard Deviation is a convenient measure of dispersion, and that the value decreases with an increasing number of observations.

The author calculated both Mean Angular Deviation (Roberts, 1981) and Standard Deviation (Cole and Basson, 1986). The results are included in Table App-4.1.

APP-4.3.2.4 Rayleigh Test: Curray (1956, Fig. 4) and Lindholm (1987, Fig. 2.7) discussed the Rayleigh Test for preferred orientation of circular data. The vector magnitude as a percentage (or the consistency ratio) is plotted against the number of observations for the sample. If the result plots above the 0.05 level of significance line, the sample is considered to be from a population with a preferred orientation.

Only population No. 28, to the northeast of Wartburg, has any suggestion of opposed palaeocurrent directions which could conceivably be used to invoke a tidal environment. However, considering a braided stream environment, with a fairly wide area of reference for the rose diagrams, it is not thought to be strange that such a palaeocurrent direction pattern was recorded.
APP-4.3.2.5 Picard and High Test: Graham (1988), referring to Picard and High (1968), stated that, for polymodal distributions, where vector statistics are not appropriate, a simpler, semi-quantitative technique may be used to express preferred orientation. Using this technique, a compass is divided into 12 x 30° segments, and the mean number of occurrences per interval, as well as the arithmetic standard deviation, calculated. Those intervals which contain a number of palaeocurrent measurements in excess of one standard deviation above or below the mean, represent prominent modes or nodes, respectively. Intervals within one standard deviation are considered to be quantitatively indistinguishable from random distribution. The present author applied this method to each palaeocurrent population, using a Casio FX 82-B pocket calculator, and the results are presented in Table App-4.1 under the Picard and High column.

APP-4.3.3 DISCUSSION OF RESULTS

APP-4.3.3.1 Eshowe and Ulundi Members: The palaeocurrents in the Eshowe and Ulundi Members are very strongly oriented from the northeast to the southwest, as illustrated in Fig. APP-4.1. Both the rose diagrams and the accompanying vector means illustrate this. In the vicinities of Pietermaritzburg and Greytown, and the area in between, there is a fairly strong northwest to southeast component, which is probably due to the basement highs extending northeastwards from Pietermaritzburg and Greytown respectively (Fig. 3.15). The northwesterly component is also reflected in the moving average map (Fig. APP-4.2). The consistency ratio (Table App-4.1) is generally high to medium, indicating a generally preferred orientation, with some dispersion of currents which one would expect in an environment of a braided river in an elongate trough. Populations 7, 8 and 9 (Table App-4.1)
Fig. App-4.1 Palaeocurrent map of the Eshowe Member

Rose Diagram Scale

18 = Palaeocurrent population, Table
1 = Azimuth vector mean

--- = Limit of Eshowe Member
----- = Limit of Ulundi Member

Key:
- = Palaeocurrent population, Table
1 = Azimuth vector mean
--- = Limit of Eshowe Member
----- = Limit of Ulundi Member
Moving average palaeocurrent direction of 220°, 56 readings around intersection of co ordinate lines.

Fig. App-4.2 Moving average map of the palaeocurrent directions in the Eshowe Member.
<table>
<thead>
<tr>
<th>POPULATION REFERENCE</th>
<th>GEOREFERENCE</th>
<th>READINGS</th>
<th>VECTOR MEAN</th>
<th>VECTOR STRENGTH</th>
<th>CONSISTENCY RATIO %</th>
<th>STD. DEVN. *</th>
<th>MEAN ANGULAR DEVIATION</th>
<th>RAYLEIGH TEST</th>
<th>PICARD & HIGH 1960</th>
<th>STRATIGRAPHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2830DB</td>
<td>25</td>
<td>182</td>
<td>0.697</td>
<td>69.7</td>
<td>36.9</td>
<td>44.6</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe & Ulund1</td>
</tr>
<tr>
<td>2</td>
<td>2831CA, CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>3</td>
<td>2831AD</td>
<td>77</td>
<td>211</td>
<td>0.75</td>
<td>75</td>
<td>31</td>
<td>40.2</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>4</td>
<td>2831BB</td>
<td>21</td>
<td>214</td>
<td>0.78</td>
<td>76</td>
<td>36</td>
<td>39.2</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>5</td>
<td>2831BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>6</td>
<td>2831CD</td>
<td>81</td>
<td>217</td>
<td>0.69</td>
<td>69</td>
<td>40</td>
<td>45.3</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>7</td>
<td>2930DA</td>
<td>52</td>
<td>194</td>
<td>0.83</td>
<td>83</td>
<td>22</td>
<td>33</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>8</td>
<td>2930BB</td>
<td>79</td>
<td>139</td>
<td>0.64</td>
<td>64</td>
<td>44</td>
<td>48.3</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>9</td>
<td>2930BC</td>
<td>55</td>
<td>152</td>
<td>0.62</td>
<td>62</td>
<td>45</td>
<td>50</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>10</td>
<td>2930BD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poly</td>
</tr>
<tr>
<td>11</td>
<td>2930DA</td>
<td>30</td>
<td>121</td>
<td>0.57</td>
<td>57</td>
<td>42</td>
<td>53.3</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>12</td>
<td>2930DB</td>
<td>77</td>
<td>185</td>
<td>0.73</td>
<td>73</td>
<td>29</td>
<td>41.8</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>13</td>
<td>2930DC</td>
<td>19</td>
<td>192</td>
<td>0.66</td>
<td>66</td>
<td>25</td>
<td>47.3</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>14</td>
<td>2930DD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poly</td>
</tr>
<tr>
<td>15</td>
<td>3030BA</td>
<td>32</td>
<td>177</td>
<td>0.86</td>
<td>86</td>
<td>16</td>
<td>30.1</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>16</td>
<td>3030BB</td>
<td>28</td>
<td>187</td>
<td>0.77</td>
<td>77</td>
<td>32</td>
<td>39.2</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>17</td>
<td>3030BC</td>
<td>50</td>
<td>194</td>
<td>0.77</td>
<td>77</td>
<td>28</td>
<td>39.1</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>18</td>
<td>3030BD</td>
<td>14</td>
<td>242</td>
<td>0.89</td>
<td>89</td>
<td>71</td>
<td>26.7</td>
<td>+</td>
<td>Pref</td>
<td>Eshowe</td>
</tr>
<tr>
<td>19</td>
<td>3030DC</td>
<td>16</td>
<td>181</td>
<td>0.98</td>
<td>98</td>
<td>3</td>
<td>12.4</td>
<td>+</td>
<td>Random</td>
<td>Eshowe</td>
</tr>
<tr>
<td>20</td>
<td>3030DD</td>
<td>31</td>
<td>187</td>
<td>0.32</td>
<td>32</td>
<td>60</td>
<td>67</td>
<td>+</td>
<td>Bim</td>
<td>Eshowe</td>
</tr>
<tr>
<td>21</td>
<td>3030BC</td>
<td>16</td>
<td>189</td>
<td>0.53</td>
<td>53</td>
<td>50</td>
<td>55.8</td>
<td>+</td>
<td>Bim</td>
<td>Eshowe</td>
</tr>
</tbody>
</table>

Table App-4.1 Natal Group Palaeocurrent statistics (Sheet 1 of 3)
<table>
<thead>
<tr>
<th>POPULATION REFERENCE</th>
<th>GEOREFERENCE</th>
<th>READINGS</th>
<th>VECTOR MEAN</th>
<th>VECTOR STRENGTH</th>
<th>CONSISTENCY RATIO</th>
<th>STD. DEVN</th>
<th>MEAN ANGULAR DEVIATION</th>
<th>RAYLEIGH TEST</th>
<th>PICARD & HIGH 1968</th>
<th>STRATIGRAPHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>2831AD</td>
<td>34</td>
<td>192</td>
<td>0.83</td>
<td>83</td>
<td>20</td>
<td>33.17</td>
<td>+</td>
<td>Pref Newspaper</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2831CD</td>
<td>44</td>
<td>202</td>
<td>0.74</td>
<td>74</td>
<td>25</td>
<td>41.0</td>
<td>+</td>
<td>Pref Newspaper</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2930BD</td>
<td>27</td>
<td>179</td>
<td>0.73</td>
<td>73</td>
<td>31</td>
<td>42.2</td>
<td>+</td>
<td>Pref Newspaper</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2930CD</td>
<td>38</td>
<td>171</td>
<td>0.51</td>
<td>51</td>
<td>51</td>
<td>56.5</td>
<td>+</td>
<td>Bin Newspaper</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3030AA</td>
<td>34</td>
<td>213</td>
<td>0.58</td>
<td>58</td>
<td>39</td>
<td>52.3</td>
<td>+</td>
<td>Random Newspaper</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3030CB</td>
<td>13</td>
<td>245</td>
<td>0.77</td>
<td>77</td>
<td>69</td>
<td>38.7</td>
<td>+</td>
<td>Pref Newspaper</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2930BB</td>
<td>9</td>
<td>214</td>
<td>0.86</td>
<td>86</td>
<td>34</td>
<td>30.4</td>
<td>+</td>
<td>Random Tulini</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2930BB</td>
<td>46</td>
<td>197</td>
<td>0.73</td>
<td>73</td>
<td>28</td>
<td>42.4</td>
<td>+</td>
<td>Pref Situndu</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2830DD</td>
<td>25</td>
<td>188</td>
<td>0.62</td>
<td>62</td>
<td>26</td>
<td>50.1</td>
<td>+</td>
<td>Pref Kranskloof</td>
<td></td>
</tr>
</tbody>
</table>

Table App-4.1 Natal Group Palaeocurrent statistics (Sheet 2 of 3)
<table>
<thead>
<tr>
<th>POPULATION</th>
<th>GEOREFERENCE</th>
<th>READINGS</th>
<th>VECTOR MEAN</th>
<th>VECTOR STRENGTH</th>
<th>CONSISTENCY RATIO</th>
<th>STD. DEVN.</th>
<th>MEAN ANGULAR DEVIATION</th>
<th>RAYLEIGH TEST</th>
<th>PICARD & HIGH, 1968</th>
<th>STRATIGRAPHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2831CD</td>
<td></td>
</tr>
<tr>
<td>2930BB</td>
<td></td>
</tr>
<tr>
<td>2931AA</td>
<td></td>
</tr>
<tr>
<td>2931AB</td>
<td></td>
</tr>
<tr>
<td>28300D</td>
<td></td>
</tr>
</tbody>
</table>

28
- 2930BD 20 188 0.30 29 53 68.1 + Poly Kranskloof
- 2931AC

29
- 2930DA 25 157 0.56 56 32 54 + Pref Kranskloof
- 2930DB

30
- 2930CD, DD 17 182 0.41 41 56 62.1 + Pref Kranskloof
- 3030BA, BC

31
- 3030AC 24 206 0.67 67 46 46.5 + Pref Kranskloof
- 3030AD

32
- 2631AD 10 194 0.86 86 11 30.3 + Pref Westville
- 2930DD 3 115 0.83 83 46 33.4 Random Westville
- 3030CB 1 277

33
- 3030DA 6 125 0.95 95 63 17.7 + Pref Msikaba
- 3130AA 7 203 0.90 90 21 26.0 + Pref Msikaba
- 2930DC 6 145 0.98 98 23 11.1 + Pref Dassenhoek

34
- 3030CB 1 281

35
- 2831BB 16 180 0.89 89 14 26.5 + Pref Newspaper
- 2830DD 1 180

36
- 2930DC 1 200
- 2930BC 1 230

Table App-4.1 Natal Group Palacocurrent statistics (Sheet 3 of 3)
have a greater dispersion that the others in the area north of the line between Durban and Pietermaritzburg, which can be seen in the rose diagrams in Fig. APP-4.1. Population 17, in the far south of the area (Fig. APP-4.1, Table App-4.1) has a random distribution, and possibly indicates interference of the Dweshula High (Fig. 1.1).

The Rayleigh Test for preferred orientation of circular data (Curray, 1956) was positive for all populations sampled. The Picard and High (1968) test also indicated that all samples display a preferred orientation.

APP-4.3.3.2 Kranskloof Member: Orientation of the palaeocurrent directions measured in the Kranskloof Member is strongly from north to south, but the dispersion is somewhat higher than that of the Eshowe Member, as indicated by a lower consistency ratio (Table App-4.1) and illustrated in Fig. APP-4.3. The moving averages of the palaeocurrent directions are also less consistent, indicating a greater variation (Fig. APP-4.3). If the environment of deposition was, as is suggested in Chapter 6., a braidplain on which the Eshowe Member sediments were reworked during southward redistribution, then the palaeocurrent directions would not be expected to be as strongly preferentially oriented, as the influence of the elongate basin would be reduced. The isopach map (Fig. 3.32) shows no strong patterns which might influence the palaeocurrent directions, apart, of course, from the basin margins and the generally elongate shape from northeast to southwest. The consistency ratios (Table App-4.1) are low, reflecting the dispersion around the vector means.

The Rayleigh Test for preferred orientation of circular data (Curray, 1956) was positive for all but one of the populations sampled. This population, No. 28, indicated a random
Fig. App-4.3 Palaeocurrent map of the Kranskloof Member
distribution. The Picard and High (1968) test also indicated that all samples except for population No. 28 (which is polymodal) have a preferred orientation.

APP-4.3.3.3 Situndu Member: Palaeocurrent data for this unit was scarce, and therefore all the recorded readings were plotted as one rose diagram (Fig. APP-4.4). This is suggestive of a fairly strong north-to-south palaeocurrent direction with a low spread around the vector mean (Table App-4.1), which is borne out by the fairly high consistency ratio (Table App-4.1). The moving averages (Fig. APP-4.4) reveal a northwest-to-southeast palaeoflow direction in the north, changing to a northeast to southwest direction in the south. The isopach map of the Situndu Member (Fig. 3.36) reveals a northeast to southwest trough in the north and isolated deepened portions near Durban, which could have influenced the flow of palaeocurrents in the region. The Rayleigh Test was positive, as was the Picard and High test.

APP-4.3.3.4 Dassenhoek Member: The very sparse palaeocurrent directions derived from the measurement of primary sedimentary structures in the Dassenhoek Member, give an indication of palaeoflow generally from northwest to southeast near Durban, and from east to west in the far south of the basin (Fig. 3.44, Table App-4.1). The isopach map of the Dassenhoek Member (Fig. 3.41) shows a generally centripetal thickening of the member. The palaeocurrents measured, although too sparse for any measure of statistical treatment, do at least show a palaeocurrent flow from north to south. Of the measurements taken, the consistency ratio is high (Table App-4.1) indicating a small spread around the vector mean. The Rayleigh Test for preferred orientation of circular data (Curray, 1956) was positive, and the Picard and High (1968) test indicated a preferred orientation (Table App-4.1).
Fig. App-4.4 Palaeocurrent map of the Situndu Member and Msikaba Formation.

Moving average palaeocurrent direction of 235° 40 measurements

Limit of Situndu Member

26 = Palaeocurrent population, Table

→ Azimuth vector mean

Rose Diagram Scale

26 1 2 3 4 5 6 7 8

0 20 40 60 80 100
Kilometres
APP-4.3.3.5 Tulini Member: Only in the region between Wartburg and Greytown was it possible to obtain significant numbers of palaeocurrent measurements. The prevailing palaeocurrent direction, as indicated by the sparse observations made, was from the northeast to the southwest (Fig. APP-4.5, Table App-4.1), which parallels the axis of the basin as reflected by the isopach map of this unit (Fig. 3.43).

The vector mean of the nine measurements is 214°, and the spread of readings around the vector mean is low, as reflected by the high consistency ratio. The Rayleigh Test for preferred orientation of circular data (Curray, 1956) indicated a preferred orientation, but the Picard and High (1968) test suggested random orientation of the palaeocurrent directions. The rose diagram has a general northeast to southwest direction, but there is a fairly wide spread around the vector mean. The anomalous situation is undoubtedly due to the sparsity of observations.

APP-4.3.3.6 Newspaper Member: The observations in this unit were too sparse for the preparation of rose diagrams, and so the author plotted the vector means (Fig. APP-4.6). There is a general north-northeast to south-southwest palaeocurrent direction, with a northwest to southeast component as individual measurements locally. The moving averages calculated indicate a north-northeast to south-southwest palaeocurrent direction.

APP-4.3.3.7 Conclusion: Every unit of the Natal Group has a strong, overall north-to-south palaeocurrent direction orientation. This is corroborative evidence for a fluvial deposition of the Natal Group (see Fuller, 1985).
Palaeocurrent map of the Tulini (Tu), Newspaper (Np) and Westville (We) Members.

- Rose Diagram Scale: 24 = Palaeocurrent population, Table
- Azimuth vector mean
- Limit of Newspaper Member
- Southern limit of Tulini Member
- Moving average palaeocurrent direction of 235°, 40 measurements
- Newspaper Member only

Fig. App-4.5
Fig. App-4.6 Map of the mean and moving averages of the palaeocurrent directions in the Kranskloof Member.

Limit of Kranskloof Member

225° is mean palaeocurrent direction of 15 readings

Moving average palaeocurrent direction of 225°

40 measurements around intersection of co-ordinate lines.
Moving average palaeocurrent direction of 200°, 40 measurements around intersection of co-ordinate lines.

200° is mean palaeocurrent direction of 35 readings.

Palaeocurrent map of the Newspaper Member, showing the limits of the Tulini Member.

Limit of Mariannah Formation
Southern limit of Tulini Member
APPENDIX 4. PALAEOCURRENT ANALYSIS

LIST OF REFERENCES: APPENDIX 4

APPENDIX 5 CLAST SHAPE PARAMETER GRAPHS
Sampling Locality B

HONEYGROVE SHAPE PARAMETERS

![Graph showing shape parameters and flatness vs sphericity for Tulini Member with n = 100.]

HONEYGROVE Sphericity & Flatness

![Graph showing sphericity and flatness vs maximum projection sphericity for Tulini Member with n = 100.]

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.1 Shape parameter and flatness vs sphericity - Honeygrove
Sampling Locality C

KILLIEKRANKIE SHAPE PARAMETERS

KILLIEKRANKIE Sphericity & Flatness

Fig. App-5.2 Shape parameter and flatness vs sphericity - Killiekrankie

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted
Sampling Locality D

MTONTEBELLO SHAPE PARAMETERS

MONTEBELLO Sphericity & Flatness

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.3 Shape parameter and flatness vs sphericity - Montebello
Sampling Locality E

MKABELA SHAPE PARAMETERS

![Graph showing shape parameters with axes for short/intermediate axis and intermediate/long axis.]

MKABELA Sphericity & Flatness

![Graph showing sphericity and flatness versus sphericity with data points for Tulini Member.]

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.4 Shape parameter and flatness vs sphericity - Mkabela
Sampling Locality F

BAVIAANSKRANS SHAPE PARAMETERS

![Graph showing shape parameters vs intermediate/long axis](image)

BAVIAANSKRANS Sphericity & Flatness

![Graph showing sphericity vs maximum projection flatness](image)

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.5 Shape parameter and flatness vs sphericity - Baviaanskrans
Sampling Locality G

BURLEIGH SHAPE PARAMETERS

![Graph showing shape parameters](image)

BURLEIGH Sphericity & Flatness

![Graph showing sphericity and flatness](image)

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.6 Shape parameter and flatness vs sphericity - Burleigh

283
BULWANA SHAPE PARAMETERS

Sampling Locality H

BULWANA Sphericity & Flatness

Fig. App-5.7 Shape parameter and flatness vs sphericity - Bulwana

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted
Sampling Locality I

KWA MBULA SHAPE PARAMETERS

KWA MBULA Sphericity & Flatness

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.8 Shape parameter and flatness vs sphericity - Kwa Mbula
Sampling Locality J

MOOIPLAATS SHAPE PARAMETERS

MOOIPLAATS Sphericity & Flatness

Tulini Member

n = 100

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.9 Shape parameter and flatness vs sphericity - Mooiplaats
CARNEY HILL SHAPE PARAMETERS

Sampling Locality K

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.10 Shape parameter and flatness vs sphericity - Carney Hill
CLANTROCK SHAPE PARAMETERS

Sampling Locality L

CLANTROCK Sphericity & Flatness

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach n = number of clasts counted

Fig. App-5.11 Shape parameter and flatness vs sphericity - Clantrock
Sampling Locality M

EKAMANZI SHAPE PARAMETERS

EKAMANZI Sphericity & Flatness

n = 133

Tulini Member

n = number of clasts counted

Ob = Oblate Eq = Equant Bl = Bladed Pr = Prolate
Fl = Fluvial Be = Beach

Fig. App-5.12 Shape parameter and flatness vs sphericity - Ekamanzi
Fig. 3.57 Graphs of clast-shape statistics
<table>
<thead>
<tr>
<th>SITE NAME</th>
<th>Stratigraphic Unit</th>
<th>Sample Size</th>
<th>Flatness</th>
<th>Bladedness</th>
<th>Oblate/Prolate Index</th>
<th>Max.Proj. Sphericity</th>
<th>Elongation</th>
<th>Nominal Diam. mm</th>
<th>Intern/Long Axis</th>
<th>Short/Interm Axis</th>
<th>SYMBOL</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matamanto</td>
<td>Westville</td>
<td>202</td>
<td>0.52</td>
<td>0.58</td>
<td>-0.36</td>
<td>0.7</td>
<td>76.84</td>
<td>28.94</td>
<td>0.77</td>
<td>0.68</td>
<td>A</td>
<td>29°52′40″</td>
<td>30°37′35″</td>
</tr>
<tr>
<td>Honeygrove</td>
<td>Tulini</td>
<td>100</td>
<td>0.57</td>
<td>0.6</td>
<td>1.83</td>
<td>0.76</td>
<td>74.06</td>
<td>25.23</td>
<td>0.74</td>
<td>0.77</td>
<td>B</td>
<td>29°25′56″</td>
<td>30°45′08″</td>
</tr>
<tr>
<td>Kiliekrankie</td>
<td>Tulini</td>
<td>100</td>
<td>0.56</td>
<td>0.56</td>
<td>1.25</td>
<td>0.74</td>
<td>74.64</td>
<td>26.48</td>
<td>0.75</td>
<td>0.75</td>
<td>C</td>
<td>29°26′58″</td>
<td>30°44′37″</td>
</tr>
<tr>
<td>Montebello</td>
<td>Tulini</td>
<td>102</td>
<td>0.54</td>
<td>0.59</td>
<td>1.93</td>
<td>0.73</td>
<td>71.62</td>
<td>23.18</td>
<td>0.72</td>
<td>0.75</td>
<td>D</td>
<td>29°27′12″</td>
<td>30°49′38″</td>
</tr>
<tr>
<td>Mkabela</td>
<td>Tulini</td>
<td>100</td>
<td>0.56</td>
<td>0.61</td>
<td>2.06</td>
<td>0.75</td>
<td>72.82</td>
<td>27.3</td>
<td>0.73</td>
<td>0.78</td>
<td>E</td>
<td>29°24′28″</td>
<td>30°38′25″</td>
</tr>
<tr>
<td>Baviaanskraans</td>
<td>Tulini</td>
<td>129</td>
<td>0.54</td>
<td>0.6</td>
<td>1.88</td>
<td>0.74</td>
<td>72.54</td>
<td>23.38</td>
<td>0.73</td>
<td>0.75</td>
<td>F</td>
<td>29°09′38″</td>
<td>30°42′07″</td>
</tr>
<tr>
<td>Burleigh</td>
<td>Tulini</td>
<td>100</td>
<td>0.57</td>
<td>0.66</td>
<td>2.96</td>
<td>0.77</td>
<td>71.44</td>
<td>24.83</td>
<td>0.71</td>
<td>0.8</td>
<td>G</td>
<td>29°09′00″</td>
<td>30°40′30″</td>
</tr>
<tr>
<td>Bulwana</td>
<td>Tulini</td>
<td>100</td>
<td>0.57</td>
<td>0.67</td>
<td>3</td>
<td>0.77</td>
<td>71.42</td>
<td>24.55</td>
<td>0.71</td>
<td>0.81</td>
<td>H</td>
<td>29°12′28″</td>
<td>30°52′00″</td>
</tr>
<tr>
<td>Kwa Mbula</td>
<td>Tulini</td>
<td>112</td>
<td>0.54</td>
<td>0.59</td>
<td>1.78</td>
<td>0.74</td>
<td>72.87</td>
<td>25.99</td>
<td>0.73</td>
<td>0.75</td>
<td>I</td>
<td>29°10′47″</td>
<td>30°46′01″</td>
</tr>
<tr>
<td>Mooiplaars</td>
<td>Tulini</td>
<td>100</td>
<td>0.56</td>
<td>0.56</td>
<td>1.17</td>
<td>0.74</td>
<td>75.15</td>
<td>26.68</td>
<td>0.75</td>
<td>0.75</td>
<td>J</td>
<td>29°21′05″</td>
<td>30°35′22″</td>
</tr>
<tr>
<td>Carney Hill</td>
<td>Tulini</td>
<td>140</td>
<td>0.57</td>
<td>0.59</td>
<td>1.6</td>
<td>0.75</td>
<td>74.39</td>
<td>24.5</td>
<td>0.74</td>
<td>0.76</td>
<td>K</td>
<td>29°13′12″</td>
<td>30°45′02″</td>
</tr>
<tr>
<td>Clantrock</td>
<td>Tulini</td>
<td>100</td>
<td>0.57</td>
<td>0.57</td>
<td>1.31</td>
<td>0.75</td>
<td>75.31</td>
<td>25.09</td>
<td>0.75</td>
<td>0.76</td>
<td>L</td>
<td>29°25′09″</td>
<td>30°47′17″</td>
</tr>
<tr>
<td>Ekamaazi</td>
<td>Tulini</td>
<td>133</td>
<td>0.51</td>
<td>0.53</td>
<td>0.61</td>
<td>0.7</td>
<td>73.78</td>
<td>29.41</td>
<td>0.74</td>
<td>0.7</td>
<td>M</td>
<td>29°16′48″</td>
<td>30°37′45″</td>
</tr>
<tr>
<td>Dolwana</td>
<td>Ulundi</td>
<td>50</td>
<td>0.55</td>
<td>0.48</td>
<td>-0.14</td>
<td>0.73</td>
<td>77.69</td>
<td>103.37</td>
<td>0.78</td>
<td>0.71</td>
<td>N</td>
<td>28°42′04″</td>
<td>30°56′52″</td>
</tr>
<tr>
<td>Ulundi</td>
<td>Ulundi</td>
<td>100</td>
<td>0.6</td>
<td>0.57</td>
<td>1.05</td>
<td>0.77</td>
<td>77.84</td>
<td>94.94</td>
<td>0.78</td>
<td>0.77</td>
<td>O</td>
<td>28°19′27″</td>
<td>31°23′26″</td>
</tr>
<tr>
<td>Nsuzi</td>
<td>Ulundi</td>
<td>40</td>
<td>0.48</td>
<td>0.48</td>
<td>-0.39</td>
<td>0.66</td>
<td>73.91</td>
<td>102.47</td>
<td>0.74</td>
<td>0.63</td>
<td>P</td>
<td>31°38′45″</td>
<td>30°57′45″</td>
</tr>
</tbody>
</table>
Fig. App-2.1 Locality map of geological maps presented here.
Fig. 1.2 Distribution of Natal Group and Msikaba Formation
Fig. 1.1 Map of localities mentioned in the text, showing study areas, A to E.