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Abstract

Electron-positron (EP) plasmas have been observed in active galactic nuclei, in the pulsar

magnetosphere, at the center of our galaxy and in solar flares. Such plasmas are usually

characterized as a fully ionized gas consisting of electrons and positrons, both constituent

species possessing the same absolute charge to mass ratio. Because of this high symmetry

it follows that a simple EP plasma cannot support acoustic waves. Hence, in this work we

have investigated acoustic solitons in a symmetric four-species EP plasma, consisting of

equal densities, Nh of hot electrons and positrons at temperature Th, and cold electrons

and positrons (density Nc) at temperature Tc. Such a plasma models the mixing of two,

separately created, EP-pair plasmas, on a timescale short enough that full thermalization

has not yet taken place.

The dynamics of the cold component has been studied using the non-relativistic multi-fluid

approach (momentum and continuity equations). This investigation extends the study of

Verheest et al. (1996), in which the hot species were assumed to be Maxwellian distribu-

tions, by considering the effects of excess superthermal particles.

The linear dispersion relation has been obtained using the usual Fourier methods. The

reductive perturbation technique was used so as to study small amplitude nonlinear waves.

Because of the symmetry of the model, a modified Korteweg-de Vries (mKdV) equation

was obtained, and hence, a standard stationary solution representing a solitary wave was

found.

In order to investigate arbitrary amplitude nonlinear waves we have used the fully nonlinear

Sagdeev pseudopotential approach. Analytical and numerical calculations were employed

to evaluate the upper and lower limits of the Mach number, defining existence domains

for solitary waves in the plasma model under investigation. Based on that information,

individual solitons were plotted. Moreover, the dependence of the soliton amplitude on
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different plasma parameters was investigated both numerically and graphically. It was

found that low kappa plasmas support solitons over a wider range of Nc/Nh parameter

values than in the Maxwellian case. The amplitude at fixed true Mach number are some-

what smaller than found earlier by Verheest et al. (1996) for Maxwellian hot components,

but for fixed absolute soliton speed, low kappa values yield larger amplitudes than found

for higher kappa values, and hence Maxwellians.
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Chapter 1

General introduction

The predominant presence of electron-positron (EP) plasma in the pulsar magnetosphere,

active galactic nuclei and in the early universe (Beskin et al., 1983; Popel et al., 1995;

Moslem et al., 2007; Misner et al., 1973) and the production of EP plasma in the labora-

tory (Greaves et al., 1994; Greaves and Surko, 1995) has attracted the attention of many

authors to study the electrodynamics of this plasma.

A possibility for the co-existence of two types of cold and hot electron–positron popu-

lations in the pulsar magnetosphere has been suggested by Bharuthram (1992). Electro-

static waves in asymmetric unmagnetized electron-positron plasmas comprising hot and

cool components, in which the hot components (hot electrons and positrons) followed

the Maxwellian distribution whereas the cool inertial components (cold electrons and

positrons) were governed by fluid equations have been studied by Pillay and Bharuthram

(1992). In this model they have, however, assumed that the equilibrium number densities

for each of the species in both hot and cool components are not equal, and the temperature

of the cool components is strictly zero. In accordance to the physical conditions of the

electron-positron plasma creation in the pulsar magnetosphere, this model is not a valid

one, because of the asymmetry in number densities.

1
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On the other hand, linear and nonlinear waves in a four component unmagnetized EP

plasma in the pulsar magnetosphere have been investigated by Verheest et al. (1996).

Zank and Greaves (1995) have studied the linear and nonlinear modes in a non-relativistic

magnetized EP plasma. Linear electrostatic waves were considered by Lazarus et al. (2012)

in a symmetric four component magnetized EP plasma. A theory for large amplitude com-

pressional electromagnetic solitary pulses in a magnetized EP plasma have been presented

by Shukla et al. (2011). More recently, Lu et al. (2014) have investigated nonrelativistic

nonlinear wave solutions in a magnetized EP plasma.

Moreover, nonlinear phenomenon such as solitons in a plasma consisting of electrons and

positrons with a component of other species such as ions and dust have been the subject of

theoretical studies by a great number of authors in the recent past. For instance, (Popel

et al., 1995; Alinejad et al., 2006; El-Awady et al., 2010; Baluku and Hellberg, 2011)

have studied ion-acoustic solitary waves in an electron-positron-ion (epi) plasma. Solitary

structures in electron-positron-ion-dust (epid) plasmas have been investigated by (Jehan

et al., 2009; Guo et al., 2012; Wang and Zhang, 2014). Hence, stimulated specifically by

the study of Verheest et al. (1996), we present the linear and nonlinear structures in a

kappa distributed EP plasma in the pulsar magnetosphere in this work; starting with the

investigation of the electrodynamics of a pulsar magnetosphere, and the mechanisms by

which an EP plasma can be generated in the pulsar magnetosphere.

1.1 The magnetosphere of a pulsar

A pulsar is a highly magnetized, rapidly spinning neutron star which is small in size, an in-

credibly dense remnant of a much more massive star, that emits a beam of electromagnetic

radiation with a wider range of energy. That rapidly spinning massive object generates

extremely strong magnetic fields. The beam originates from the rotational energy of the

neutron star, which generates an electrical field from the movement of the very strong
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magnetic field, resulting in the acceleration of protons and electrons on the star surface.

And we see that those accelerating particles emit electromagnetic energies in the form of

gamma rays, x-rays and radio waves.

The magnetosphere of a pulsar is the region around the pulsar where its magnetic field

dominates. The magnetic field strength near the pulsar surface is about B0 ≈ 1012G (Is-

tomin and Sobyanin, 2007). That region consists of an electron-positron plasma (Beskin

et al., 1993). This plasma can affect the radiation produced in the inner region of the

magnetosphere or at the stellar surface. Therefore, Urpin (2011) has stated that “under-

standing the plasma properties of the pulsar magnetosphere is of crucial importance for

the interpretation of the observations”.

Basic physical process By following the discussions of Beskin (2010) for the vacuum

model approximation, i.e, the electrical conductivity of the star is large enough, the mag-

netic field may be assumed to be frozen-in in the neutron star. And the basic parameters

defining the properties of the magnetosphere are the magnetic field Bo, the star radius

R, and the angular rotational velocity Ω. Therefore, in the internal region of the star the

condition

Ein +
Ω× r

c
×Bin = 0, (1.1)

must hold, where c is the speed of light and r is the radius vector from the star center.

Because of the rotational motion of the star there is an electric field E that arises due to

the charge re-distribution inside the pulsar.

Beskin et al. (1993) approximated the component of electric field parallel to the mag-

netic field (E‖ = E ·B/B) in the neighbourhood of the star surface as

E‖ ≈
ΩR

c
B0 ≈ 1010 − 1012V cm−1. (1.2)

It is important to notice that E‖ appears to be of the same order of magnitude as the

magnetic field B0 defined earlier. Therefore, particles which find themselves in such a
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strong electric field experience an enormous force, larger than the gravitational force of the

pulsar, and have to be ejected from the star surface and, accelerated along the curvilinear

magnetic field of the star, emitting hard gamma ray quanta (γ-quanta)(Beskin et al.,

1993). These high energy curvature photons, i.e γ-ray quanta, propagating in the curved

magnetic field reach the particle generation threshold, which occurs when photons in their

motion cross the magnetic field lines (Sturrock, 1971) and, create electron-positron pairs

(see Fig. 1.1 for the schematic representation of this process)

γ +B → e+ + e− +B.

Thus, Beskin et al. (1993) have stated that “the pulsar magnetosphere appears formed by

the electron (e−)-positron (e+) plasma in the strong magnetic field of the neutron star” .

Co-rotation of pulsar The electron-positron plasma, which fills the pulsar magneto-

sphere, screens the component of the electric field parallel to the magnetic field in the

magnetosphere of pulsars. In other words, light electrons and positrons can always be

redistributed so as to screen the longitudinal electric field

E‖ ≈ 0, ϕ = ϕ(rperp) (1.3)

where ϕ and rperp are the electric potential and the coordinate perpendicular to the

magnetic field line, respectively. Because of the screening, the plasma starts to corotate

along with the pulsar neutron star as a solid body. This rotational motion of the plasma

across the magnetic field, is induced by the electric field (Beskin et al., 1993)

Ec(r) = −Ω× r

c
×B, (1.4)

where Ec(r) is the corotation electric field generated by the polarization of plasma that

fills the magnetosphere. The charge density corresponding to the polarization of electric

charge is obtained from

ρc =
1

4π
∇ ·Ec = −ΩB

2πc
, (1.5)

where ρc is the corotation charge density or the Goldreich-Julian density (Goldreich and

Julian, 1969). This density near the neutron star surface is about 1012 particles/cm3 (Is-

tomin, 2008). The corotation charges rotates along with the magnetospheric plasma. This
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rotation of the charge ρc leads to the appearance of electric currents.

Because of these currents, two distinctly different regions are known to be identified in the

magnetosphere of neutron stars according to Istomin and Sobyanin (2007): “the regions

of open and closed field lines. In the region of closed field lines, the particles rotate syn-

chronously with the field because of high plasma and magnetic field freezing-in. However,

along the open lines, the particles can move freely and escape from the neutron star mag-

netosphere. Continuous plasma outflow from the magnetosphere requires the presence of

electron-positron pair generation processes compensating for it”.

1.1.1 Electron-positron plasma generation

Because of the outflow of plasma along the open magnetic field lines, along with it the

co-rotation charge screening the longitudinal electric field in the equatorial region, a sig-

nificant longitudinal potential difference (Beskin et al., 1993), ϕ ≈ 1013− 1015 V, appears

near the polar cap. In this region, the longitudinal electric field

E‖ = −∇‖ϕ, (1.6)

accelerates positively charged particles (say, positrons) in the same direction as the electric

field (away from the star), while negatively charged particles (say, electrons) are acceler-

ated in the direction opposite to the field (towards the star).

Consequently, the charged particles start to move along the curved path because of the

curvature of the strong magnetic field lines over the surface of the pulsar. During this mo-

tion, the particles acquire sufficient energy from the field. This gives rise to the emission

of hard γ-quanta due to the so called curvature radiation (Zheleznyakov, 1996). These

quanta (photons) will be radiated in the direction of the magnetic field lines. Because of

the curvature of the magnetic field, the photons start to cross the magnetic field lines and,

consequently, they reach the electron-positron generation threshold angle (Gurevich and

Istomin, 1985).
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These newly created particles (electron-positron pairs) start to accelerate in opposite di-

rections depending on the signs of the charges. The electrons are accelerated toward the

Figure 1.1: Schematic representation of the creation of electron-positron pairs in the

magnetosphere of a pulsar near its surface. Particles are accelerated by the electric field,

move along the magnetic field lines, and radiate curvature photons which, by crossing the

magnetic field, produce the electron(e−) - positron(e+) pairs (from Beskin et al. (1993),

p. 98).

star surface (opposite to the electric field direction), and produce a photon near the star

surface. This photon now starts to cross the curved field and hence generates the new
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pairs. Now the newly born positrons begin to accelerate away from the star’s surface.

Thus, through the repeated action of these processes, the electron-positron production

will be sustained in the pulsar magnetosphere as shown schematically in Fig. 1.1.

Double layer Because of the accumulation of excess charges with opposite polarities

over the star surface and the magnetosphere, an electric field will be produced. The exis-

tence of the electric field provides the potential difference, about 1013−1015 V, between the

star surface and its magnetosphere. This potential difference is called a “double layer” or

a “vacuum gap”. In this layer the plasma will not exist owing to the escape along the open

magnetic field lines. The potential drop across the double layer will accelerate electrons

and positrons in opposite directions. The magnitude of the potential drop determines the

acceleration of the charged particles and hence particles acquire the high energy necessary

for the radiation of curvature photons capable of generating electron-positron plasmas.

Vacuum breakdown These particles generated near the star surface can be acceler-

ated by the double layer and produce photons. Before reaching the upper limit of the

double layer, the photons create an electron-positron pair plasma. The newly generated

electron will be picked up by the electric field and then it is accelerated towards the star

surface. Near the neutron star surface this electron emits γ-quanta, which in turn pro-

duces electron-positron pairs. Then, the positrons are caught by the field to move away

from the star surface, while the electrons are moving towards the surface. With such re-

peating processes the vacuum gap will break down. This process is known as the vacuum

breakdown.

1.1.2 Primary and secondary plasmas

The plasma particles generated (ejected) from the surface of the star are accelerated by

the strong potential gap. These fast moving plasmas are capable of producing so-called

curvature photons (see Fig. 1.1). Then, these photons are absorbed by the magnetic field

of the star to produce the electron-positron pairs discussed earlier. These pairs of plasmas



8 CHAPTER 1. GENERAL INTRODUCTION

are known as the primary plasma.

Outside the double layer (potential gap) of the polar cap of the star surface the production

of electron-positron (EP) plasma increases. Although this increase in concentration of EP

plasma starts to screen the longitudinal component of electric field, i.e., E‖ = 0, EP pair

production occurs due to synchrotron radiation (see Figure 1).

The EP pairs produced due to the curvature photons find themselves in a non-zero Lan-

dau level for a very short period of time of about 10−19s (Beskin et al. (1993), p. 101).

After this extremely short period of time, the pair plasmas moves down to zero Landau

level. During this transition, from non-zero Landau level to zero Landau level, they emit

synchrophotons (see Fig. 1.1). These photons have very low energy relative to the energy

of the parent curvature photons due to their large mean free path length as compared

to the curvature photons mean free path length (Gurevich and Istomin, 1985). Now, the

synchrophoton has to be absorbed by the magnetic field to produce the EP pair plasma.

These pairs produced by synchrophotons are called the secondary plasmas. It is important

to notice here that the energy of the secondary plasma is less than that of the primary

plasmas. This is because of the fact that the mean energy of curvature photons (respon-

sible for the primary plasmas production) is much less than that of the synchrophoton

radiation (responsible for the secondary plasmas production).

1.2 Justifications of our plasma model

In this work we have considered four-component electron-positron plasmas. In these, we

have hot electrons and positrons at the same temperature Th, and cool positrons and

electrons at another temperature Tc. In an unperturbed state both the hot and cool com-

ponents have the number density Nh and Nc, respectively. Note that the subscripts h and

c, respectively, stands for the hot and cool plasma species.
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The electron and positron pairs which have been created from curvature photons in the

primary plasma production process are assumed to be a hot species with equilibrium num-

ber density Nh and temperature Th. The other pairs of electrons and positrons which were

produced from synchrophotons by the secondary plasma generation process can be taken

as a cold species having the number density Nc and temperature Tc. Because of the high

symmetry between electrons and positrons it is assumed that both species (electrons and

positrons) must have the same number density and temperature in the equilibrium hot

and cold states, respectively.

The relative terms “hot” and “cold” come from the fact that the plasma formed by the

primary process has more energy (thermal) than the plasma generated by the secondary

process as described in Section 1.1.1 above. Therefore, relatively the secondary plasma

is in a cool thermal state compared to the plasma produced by the primary generation

process, which is found in a relatively hot thermal state.

We shall not take into account the influence of the magnetic field, although there is a

strong magnetic field in the pulsar magnetosphere. This is because, the motion of EP

pairs is mainly along the magnetic field lines, therefore, these pairs will not feel the ef-

fect of the magnetic field. In addition, any transverse momentum, that the particles may

have, with respect to the magnetic field of the pulsar will be radiated away because of the

strength of this field. Hence, these assumptions restrict our analysis of plasma dynam-

ics to electrostatic disturbances propagating in an unmagnetized electron-positron plasma.

Although the extreme situations in the pulsar magnetosphere would allow the relativistic

environment for an EP plasma, given the effect of cooling of EP plasmas by cyclotron

emission it is likely that non-relativistic astrophysical EP plasmas may exist (Zank and

Greaves, 1995). With this assumption, we have considered a non-relativistic EP plasma

in the pulsar magnetosphere in this work.



10 CHAPTER 1. GENERAL INTRODUCTION

1.3 Kappa velocity distribution function

Introduction

Livadiotis and McComas (2011) have described that “the Maxwell-Boltzmann (MB) sta-

tistical mechanics describes successfully classical system in thermal equilibrium - a state

where any flow of heat (e.g. thermal conduction, thermal radiation) is in balance. Any

system in thermal equilibrium has its distribution function of velocities stabilized into the

Maxwellian distribution”. However, these distributions are not very common in space and

astrophysical plasmas because there is a lack of thermal equilibrium in general (Hammond

et al., 1995). Instead, most of these plasmas reside in stationary states (that is their statis-

tics do not depend explicitly on time, and thus all the macroscopic thermal observables

have ceased to change with time), that are typically not well described by Maxwell dis-

tributions, and are thus often power law-like, not in thermal equilibrium (Hellberg et al.,

2009; Livadiotis and McComas, 2013).

Different observational outcomes confirmed that the space plasmas from the solar wind

to planetary magnetosphere are largely collisionless systems of particles, with long-range

electromagnetic interactions, in non-thermal equilibrium stationary states. The plasmas in

these states do not follow the usual Maxwellian distribution (Formisano et al., 1973; Scud-

der et al., 1981; Marsch et al., 1982; Leubner, 2004). Instead these have been characterized

by the empirical velocity distributions introduced by Vasyliunas (1968). This function is

known as the generalized Lorentzian or kappa distribution, which is parametrized by the

spectral index kappa (κ) (Hellberg et al., 2009).

Moreover, Livadiotis and McComas (2011) pointed out that such stationary states are

characterized by their values of the superthermality index κ, and that smaller values of

kappa are associated with systems that are further from equilibrium. In other words,

lower kappas have excess superthermal particles compared to a Maxwellian distribution.

That is, low values of κ represent a strong non-Maxwellian tail with more superthermal
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particles in the tail of the distribution function. They also have more slow particles, but

a reduction in the range when the speed of particles v approaches the thermal speed vth.

In contrast, κ → ∞ represents the equilibrium condition (the Maxwellian distribution).

Similarly, Livadiotis and McComas (2010) have categorized the region of space plasmas

into two based on kappa indices: the “near-equilibrium” region with κ ∈ (2.5,∞] and the

“far-equilibrium” region with indices κ ∈ (1.5, 2.5].

Since the introduction of the kappa distribution to fit satellite data by Vasyliunas (1968),

many authors have used it in their studies of waves in space plasmas. To investigate the

effect of Landau damping on various plasma modes (Summers and Thorne, 1991; Mace and

Hellberg, 1993; Hellberg and Mace, 2002) have employed the kappa distribution. More-

over, Formisano et al. (1973) have used the kappa distribution to fit proton data measured

in the Earth’s bow shock. Similarly, the analysis of high resolution HELIOS observations

by Marsch et al. (1982) confirmed the ubiquitous presence of high energy proton popula-

tions that generate non-Maxwellian halos in the distribution.

The evidence of kappa distributions of charged particles (electrons, protons and heavy ions)

which are far away from their thermodynamic equilibrium in space plasmas is clear and un-

ambiguous (Shukla et al., 1986; Ghosh and Bharuthram, 2008). There is much evidence

that the kappa distribution provides a straightforward replacement for the Maxwellian

distribution when dealing with systems in stationary states out of thermal equilibrium,

commonly found in space and astrophysical plasmas. Such kappa functions gives the best

fit to the observed velocity distribution functions (Pierrard and Lazar, 2010).

1.3.1 Overview of the mathematical aspects of the kappa distribution

Conventionally, a three dimensional isotropic kappa velocity distribution function for a

free particle of mass m will be represented by (Vasyliunas, 1968; Summers and Thorne,
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1991)

fκ(v) = Aκ

[
1 +

v2

κθ2

]−(κ+1)

, (1.7)

where Aκ is a normalization parameter, v2 = v2
x + v2

y + v2
z (velocity of the particle in 3D),

κ is the spectral index which measures the deviation of the superthermal particles from

the Maxwellian distribution, and the parameter θ is a characteristic speed. In fact, this

“effective speed” is the most probable speed it is related to the Maxwellian most probable

speed vmp = (2kBTk/m)1/2 through θ = [(κ − 3
2)/κ]1/2vmp (Summers and Thorne, 1991;

Hellberg et al., 2009) , where kB and Tk are the Boltzmann constant and the kinetic tem-

perature of the particles, respectively. Note that this relation is only valid for κ > 3/2 and

thus the κ distribution function can be used to model the superthermal (non-Maxwellian)

plasma. The Maxwellian most probable speed will recovered for κ → ∞. Moreover, the

parameter κ is a free parameter, which mean that it does not depend on a parameter like

temperature (Livadiotis and McComas, 2011), while the parameters Aκ and θ are con-

strained by the lowest (even) moments of the distribution function (Hellberg et al., 2009).

The total equilibrium number density No can be calculated by taking the integral of

Eq. (1.7) over the velocity space v. That is,

No =

∞∫
−∞

fκ(v)d3v = Aκ(πκθ2)3/2 Γ(κ− 1/2)

Γ(κ+ 1)
. (1.8)

That yields

Aκ =
No

(πκθ2)3/2

Γ(κ+ 1)

Γ(κ− 1/2)
, (1.9)

where Γ is the usual gamma function, Γ(a) =
∞∫
0

ta−1e−tdt.

Using Eq. (1.9) into Eq. (1.7), the generalized isotropic three dimensional kappa dis-

tribution (generalized Lorentzian) function take the form

fκ(v) =
No

(πκθ2)3/2

Γ(κ+ 1)

Γ(κ− 1/2)

[
1 +

v2

κθ2

]−(κ+1)

. (1.10)
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By integrating Eq. (1.10) of kappa distribution over the velocity space, Baluku and Hell-

berg (2008) have derived an expression for the number density nj of species j with equilib-

rium density Nj0, charge qj , mass mj and spectral index κj , which moves in an electrostatic

potential difference ϕ as

nj = Nj0

(
1 +

2qjϕ

mjκjθ2
j

)−(κj− 1
2

)

, (1.11)

where θj is the characteristic speed and qj is the particle charge of species j. Using the

relationship between vmp and θ discussed earlier in this subsection, Eq. (1.11) take the

form

nj = Nj0

(
1 +

qjϕ

(κj − 3
2)kBTk

)−(κj− 1
2

)

. (1.12)

1.4 Solitons

General introduction

A soliton is a special form of solitary wave. The solitary wave/soliton represents, not a pe-

riodic wave, but the propagation of a single isolated symmetrical hump/dip-like structure

of unchanged form(Shukla and Mamun, 2002). To sustain a stable nonlinear solitary wave,

dispersive effects are in balance with the steeping effect of nonlinearity, assuming that the

dissipation effects are negligible. Solitons do not interact strongly with other solitons so

that they effectively pass through one another, unchanged and retaining their form. This

means that solitons do not obey the superposition principle and can travel long distances

with little loss of energy or structure. In Fig. 1.2 a typical solitary structure is shown in

terms of its height H and width w. This solitary structure is characterized by a single

hump at the origin.

Historically, John Scott Russell first experimentally observed the solitary wave, or “great

wave of translation” propagating without change in shape, on the Edinburgh-Glasgow

canal in 1834 (Drazin, 1983). Based on his experimental findings, Russell discovered, em-

pirically, one of the most important relations between the speed U of a solitary wave and
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Figure 1.2: A typical solitary structure. The amplitude and width of the solitary structure

are represented by H and w, respectively. The vertical axis represents the amplitude of

the solitary structure while the horizontal axis represents the coordinate in the laboratory

frame.

its maximum amplitude H above the free surface of liquid of finite depth a in the form

U2 = g(H + a),

where g is acceleration due to gravity.

After Russell observed the solitary structure in the canal, series of investigations was

carried out to provide the explanation of the water wave. Among these, the mathematical

model equation which was derived by two Dutch physicists, Korteweg and de Vries (KdV)

in 1895 to provide an explanation of the phenomenon observed by Scott Russell has been

used widely by a great number of authors from other disciplines to study weakly nonlinear

small amplitude solitary structures. In line with this, the new concept of the soliton, a

name intended to signify particle-like qualities, was discovered by Zabusky and Kruskal

(1965) in connection with the numerical integration of KdV equation.

1.4.1 Methods employed in the investigation of solitary structures

To study the propagation of the solitary structure of the electrostatic potential pulse in

our plasma model under the perturbed state, we have employed two approaches. The
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reductive perturbation technique that corresponds to small amplitude (weakly nonlinear

soliton) and Sagdeev pseudopotential approach that corresponds to an arbitrary amplitude

(fully nonlinear soliton).

Reductive perturbation theory

This method is widely applicable to waves that are weakly nonlinear, if their linear coun-

terparts have acoustic like dispersion at low frequencies. The method was employed for

the first time to study the propagation of small amplitude ion acoustic solitary structures

in a plasma of cold ions and hot electrons by Washimi and Taniuti (1966). Since then

this method has been used by a great number of authors in order to investigate small

amplitude solitary structures in different plasma models.

The technique (reductive perturbation method) is commonly employed to derive the non-

linear KdV equation using the stretched coordinates ζ = ε1/2(x − V t) and τ = ε3/2t

(Washimi and Taniuti, 1966; Verheest, 2000; Shukla and Mamun, 2002), where ε is the

smallness parameter (ε < 1) measuring the weakness of perturbation and V is the linear

phase velocity of the wave in the limit where the wave number k → 0. The detail of the

derivation of the KdV equation is presented in Appendix A.

The general form of the KdV equation is given in Swanson (2003) as

∂ϕ1

∂τ
+Aϕ1

∂ϕ1

∂ζ
+B

∂3ϕ1

∂ζ3
= 0, (1.13)

where ϕ1 is the perturbed electrostatic potential pulse, A and B are constants, and τ and

ζ are space-like and time-like variables, respectively. It is a simple and useful model for

describing the long time evolution of dispersive wave phenomena in which the steepen-

ing effect of the nonlinear term (second term in Eq. (1.13)) is counterbalanced by the

dispersion (third term in Eq. (1.13)). It was originally introduced by Korteweg and de

Vries (1895) to describe the propagation of unidirectional shallow water waves. It admits

the exact solution called the soliton. Note that the explicit form of A and B are model
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dependent (see Chapter 3 for detail).

A is the coefficient of the nonlinear term in the middle of Eq. (1.13) and B is the coefficient

of the dispersive term. The trade-off between these terms, the nonlinear (second term)

and the dispersive (third term) in Eq. (1.13), is the condition responsible for sustaining

the solitary structure (soliton) without breakdown. The stationary soliton solution of the

KdV equation (1.13) can be obtained by applying a transformation η(τ, ζ) = ζ − U0τ ,

where U0 is the constant phase speed in the laboratory frame Chen (1983) normalised by

sound speed cs, and imposing the boundary conditions for localized perturbations, namely,

ϕ1, dϕ1/dζ and d2ϕ1/dζ
2 → 0 as ζ →∞ as (Verheest, 2000)

ϕ1 = ϕmsech2(η/w). (1.14)

This function is a so called soliton solution; it describes a stationary bell-shaped soli-

tary wave pulse propagating at velocity U0 without change of form (see Fig. 1.2). Here

ϕm = 3U0/A is the amplitude and w =
√

4B/U0 is the width of the soliton. The station-

ary soliton solution (Eq. 1.14) for the KdV equation is valid for A 6= 0 and B/U0 > 0.

Note that the sign of the potential soliton depends on the sign of A if we assume that

U0 > 0. For a positive soliton (ϕm > 0) the sign of A must be greater than zero, whereas

for the negative soliton (ϕm < 0) the sign of A must be less than zero. We also note that

for a given set of plasma parameter values we can have only a single sign of the nonlinear

coefficient A, and thus of ϕm. Hence, for a given plasma, KdV solitons can only have a

specific polarity, and coexistence of solitons of both polarities can not occur.

However, for some plasma models (like the model in this work) the nonlinear coefficient A

in the KdV equation vanishes (see chapter 3, section 3.1). In such a case, the amplitude of

the potential solitary pulse becomes infinitely large, and this leads to the wave breakdown

because of the absence of trade-off between the nonlinear and dispersive terms in the KdV

equation.

In order to avoid such a scenario it is appropriate to introduce the modified Korteweg
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de-Vries (mKdV) equation, for instance by following Verheest (2000). In this case the

stretched coordinates are considered as ζ = ε(x − V t) and τ = ε3V t (Verheest, 1988) in-

stead of the stretched coordinate used earlier in the derivation of the KdV equation. There-

fore, using this approach, the mKdV equation takes the form (see the detailed derivation

of the mKdV equation in the Appendix B)

∂ϕ1

∂τ
+ C

∂ϕ3
1

∂ζ
+B

∂3ϕ1

∂ζ3
= 0, (1.15)

where the coefficient B in Eq. (1.15) has the same role as in Eq. (1.13), the explicit

form of C is model dependent, and ϕ1 is the perturbed electrostatic potential pulse to the

first order. The mKdV equation is valid only when the nonlinear coefficient in the KdV

equation goes to zero. Details of the stationary soliton solution of Eq. (1.15) are given in

Section (3.3) of Chapter 3.

Sagdeev pseudopotential method

One of the important and widely used methods in the investigation of the nonlinear arbi-

trary amplitude (large) solitary structures in a given plasma model is the Sagdeev pseu-

dopotential approach (Sagdeev, 1966). This method takes advantage of the fact that the

nonlinear wave equations can be reduced to a pseudo-energy conservation equation, which

is similar to the energy equation of a unit mass particle in classical mechanics. Both

electrostatic and electromagnetic waves in collisionless plasmas have been studied by this

method by several authors. For instance, (Verheest and Pillay, 2008; Baluku et al., 2010a;

Baluku and Hellberg, 2011) have used this method in their study of acoustic solitary struc-

tures in different plasma models. The method gives the necessary condition (see subsection

1.4.2) for the existence of solitary structures (McKenzie and Doyle, 2003).

Using the Poisson equation, we can start this approach as

ε0
∂2ϕ

∂x2
+ Σjnjqj = 0, (1.16)

where ϕ, x, nj , and qj are the unnormalized electrostatic potential, coordinate, number

density of species j, and charge of species j, respectively. After multiplication of both
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sides of Eq. (1.16) by dϕ/dx, the second term in this equation can be represented as

the derivative of the Sagdeev pseudopotential, Ψ, which in this case is a function of the

electrostatic potential ϕ. It becomes explicit in the pseudo-energy conservation law

ε0
2

(
dϕ

dx

)2

+ Ψ(ϕ) = 0. (1.17)

In this equation, the Sagdeev pseudopotential Ψ(ϕ) = −
∫
G(ϕ)dϕ, where G(ϕ) = Σjnjqj .

Note that G(ϕ) is not a function of ϕ only through nj = nj(ϕ) (for example see Eq.

(1.12) for nj above), rather it is also a function of different plasma parameters depending

on the plasma model under investigation (see Eq. (3.92) in Section (3.2) of Chapter 3 in

this thesis) and of the soliton speed. It is also important to notice that because the first

term in Eq. (1.17) is a positive quantity, a soliton solution exists only under the condition

that the Sagdeev pseudopotential Ψ forms a well, that is, Ψ is negative, in the region of

electrostatic potential space ϕ < |ϕm|, where ϕm is the amplitude of the solitary pulse of

the electrostatic potential.

Equation (1.17) is analogous to the equation, 1
2

(
dx
dt

)1/2
+ V (x) = 0, that governs the

motion of a classical particle of unit mass which moves along the x-axis in a conserva-

tive potential field V (x). Here, in Eq. (1.17), x, ϕ, and Ψ(ϕ) plays the role of time t,

coordinate x, and the potential field V (x), respectively, for the classical particle.

1.4.2 Existence conditions of solitary structures

From the Sagdeev pseudopotential method, the following conditions must hold in order

that the perturbation will propagate as a solitary structure:

• At the origin (ϕ = 0), from the Sagdeev pseudoenergy conservation law in Eq.(1.17),

we have, Ψ(ϕ = 0) = 0. This can be easily verified from the expression derived for

the pseudopotential Ψ in this work in Eqs. (3.93-94), Section 3.2 of Chapter 3. Note

that, in those equations Eqs. (3.93-94), the electrostatic potential ϕ is written in a

normalized form designated by φ. Moreover, the condition, dΨ(ϕ)
dϕ (ϕ = 0) = 0, must
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hold at the origin in order that Eq. (1.17) has a solitary wave solution (Baboolal

et al., 1988; Mace and Hellberg, 1993; Verheest, 2000). This means that the condition

Ψ(ϕ = 0) =
dΨ(ϕ = 0)

dϕ
= 0,

must hold in order to have a solitary wave solution.

• The origin (ϕ = 0) must be unstable for a soliton solution to Eq. (1.17) to exist

(Verheest et al., 2008). The condition for this is that the Sagdeev potential Ψ(ϕ)

must have a second derivative such that

d2Ψ(ϕ)

dϕ2
(ϕ = 0) < 0. (1.18)

Often this condition is called the soliton condition. It implies that there is an

unstable local maximum at the origin, such that the pseudoparticle comes to rest,

at the origin ϕ = 0 (η = ±∞)(Baboolal et al., 1990). This condition (1.18) is used

to calculate the minimum speed of the solitary structure from

d2Ψ(ϕ)/dϕ2(ϕ = 0) = 0 (Verheest et al., 2008). Below this speed the plasma under

study no longer supports the solitary structures. Therefore, the speed that will be

calculated from this condition can be used as a lower critical speed Ms of the soliton.

Actually, this speed is equal to the corresponding normalized linear phase velocity

or acoustic speed in the limit of large wavelength (see Eq. (2.75) of Chapter 2 in

this thesis), supported by the four-component symmetric electron-positron plasma,

the model this work is mainly concerned with. For such a case, the amplitude of the

solitary structures of the electrostatic potential pulse goes to zero when the speed

of the structure is approaching the critical speed which corresponds to the global

acoustic speed for the model envisaged(Verheest et al., 2008). In general, both

KdV and Sagdeev theories require that solitons be strictly superacoustic (M > Ms).

However, recently it was found that in some plasmas, finite amplitude solitons may

occur at the critical speed Ms, in contradiction to both KdV theory and standard

Sagdeev theory (Baluku et al., 2010a,b; Baluku and Hellberg, 2011). Hence, from

this we conclude that the condition Ψ
′′
(ϕ = 0) ≤ 0 is a better formulation of this

condition.
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• There exists a maximum potential ϕm at which the Sagdeev pseudopotential Ψ(ϕ)

in Eq. (1.17) goes to zero. That is,

Ψ(ϕm) = 0, (1.19)

where ϕm is the value of the electrostatic potential beyond which the density of a

species is either infinite or complex. This condition is used to calculate the maximum

speed (upper limit) of the solitary structures. Beyond this speed, solitons will not

exist in the model under investigation for given values of the plasma parameters.

Therefore, the solitons are expected to exist between the critical speed that will

be derived from Eq. (1.18) and maximum speed which will be calculated from Eq.

(1.19).

• To ensure the real soliton solution in Eq. (1.17), one requires to have

Ψ(ϕ) < 0 for 0 < |ϕ| < |ϕm|. (1.20)

1.4.3 Outline of this thesis

This thesis is organized in the following way. It starts with the brief introduction in Chap-

ter 1 that covers the basic plasma processes in the pulsar magnetosphere and justification

of our plasma model. In this chapter we have also described briefly superthermality effects

through the kappa distribution, what the solitary structure/soliton is, and the methods

that we have used to investigate this structure in our model.

In Chapter 2 we discuss the linear waves in various multi-component electron-positron

plasma, deriving the linear dispersion relations for different models of EP plasmas. We

also present the dispersion relations for different linear EP plasma models in graphical

form. This includes our symmetric four component EP model.

The reductive perturbation method is employed in Chapter 3 to investigate small am-

plitude nonlinear solitary structures in our four component symmetric electron-positron
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plasma. Using this method the mKdV equation is derived, from which the stationary soli-

ton solution is obtained. In order to study the arbitrary amplitude solitary waves in our

plasma model we have used the Sagdeev pseudopotential method, obtaining the Sagdeev

pseudo-energy conservation equation.

The numerical evaluation of the mathematical results obtained from Chapter 3 is dis-

cussed in detail in Chapter 4, including graphical visualizations. In particular, based on

the Sagdeev potential, we consider the dependence of the solitary structure on different

plasma parameters, such as number density ratio α, superthermality parameter κ, and

temperature ratio σ. Finally, the conclusion is given in Chapter 5.
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Chapter 2

Linear waves in multispecies

electron-positron plasmas

In this chapter we will discuss linear electrostatic waves in which the wave propagation

vector k is parallel to the electric field vector E, in multi-species electron-positron plasmas

in the pulsar magnetosphere. The dimensionless basic governing equations will be devel-

oped for both cool and hot components of EP plasma from the multi-fluid equations of

motion and kappa velocity distribution function, respectively. From these equations, the

dispersion relations will be derived for each of the related plasma models using the usual

Fourier mode for small oscillation follows that of Chen (1983).

Introduction

We have considered the electron-positron plasma pairs formed in the pulsar magneto-

sphere. The temperature of both electrons and positrons formed from the curvature pho-

tons by the primary plasma generation process is Th (density Nh). And, the temperature

of the electron-positron pairs formed from synchrophotons in the secondary plasma gen-

eration process is Tc (number density Nc). Since the electrons and positrons are highly

23
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symmetric in absolute charge to mass ratio, both species are assumed to have equal tem-

peratures in the hot and cool states at equilibrium, that is,

Teh = Tph = Th︸ ︷︷ ︸
hot EP plasma (hot state)

and Tec = Tpc = Tc︸ ︷︷ ︸
cool EP plasma (cool state)

,

where Teh, Tph, Tec and Tpc are the temperature of the hot electrons, hot positrons, cool

electrons and cool positrons, respectively. We define the number density of the electrons

and positrons in the hot and cool states as neh (hot electrons), nec (cool electrons), nph

(hot positrons) and npc (cool positrons). At equilibrium, the densities of both hot and

cool species can be defined as

neh0 = nph0 = Nh︸ ︷︷ ︸
hot EP Plasma (hot equilibrium state)

and nec0 = npc0 = Nc︸ ︷︷ ︸
cool EP plasma (cool equilibrium state)

,

where the subscript 0 refers to the equilibrium (unperturbed) state. Thus, neh0 is the

equilibrium number density of the hot electrons, nph0 the equilibrium number density of

the hot positrons, nec0 the equilibrium number density of the cool electrons, and nep0 the

equilibrium number density of the cool positrons. At equilibrium, Nh and Nc refer to

the hot and cool component number densities, respectively. Since the plasma is uniform

and electrically neutral in the unperturbed (equilibrium) state, then the following charge

neutrality condition holds:

ne0 = np0 = n0 = N0 =⇒ neh0 + nec0︸ ︷︷ ︸
ne0

= nph0 + npc0︸ ︷︷ ︸
np0

= Nh +Nc︸ ︷︷ ︸
n0

= N0, (2.1)

where ne0, np0, n0, and N0 are the equilibrium number density of the electrons, the equi-

librium number density of the positrons, the overall number density of the plasma, and

the equilibrium number density of the plasma, respectively.

Or, in general,

Nh +Nc = N0. (2.2)

The particles’ motion in the pulsar magnetosphere is largely in the direction of the mag-

netic field, with a negligible amount of transverse motion as compared to the longitudinal
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motion. It follows that the effect of the magnetic field has not been considered in our

plasma model. We shall also consider only the electrostatic oscillation (the wave propaga-

tion vector k is parallel to the electric field vector E). Moreover, in an unperturbed state

the electrostatic potential φ0 = 0 because of the plasma screening effect of the electrostatic

field in the pulsar magnetosphere at equilibrium. It follows that the drift velocity u0 of

the particles in an unperturbed state is equal to zero. This means that the plasma is

stationary in an equilibrium state.

2.1 Basic equations

We consider a plasma consisting of two pairs of electron-positron species, with the hot

electrons and positrons found at temperature Th with equilibrium number density Nh,

and the cool electrons and positrons found at temperature Tc with the equilibrium num-

ber density Nc. The inertial cool component of the EP plasma has to be governed by

fluid equations of motion (continuity and momentum equations), while the velocity of the

inertialess hot component of the EP plasma will follow the kappa distribution law. It

follows that for the cool species we can write the governing continuity and momentum

equations, respectively, as
∂njc
∂t

+
∂

∂x
(njcujc) = 0 (2.3)

and

mjnjc

[
∂ujc
∂t

+ ujc
∂ujc
∂x

]
+
∂pjc
∂x

= −Zjenjc
∂ϕ

∂x
, (2.4)

where njc is the number density of the cool species, ujc the average speed of the parti-

cles of cool component, pjc the partial pressure of the cool species, mj the mass of the

species, e is the charge on an electron which is equal to the charge carried by a positron

in magnitude but opposite in sign, and ϕ is the electrostatic potential; mj is the mass of

the electron which is equal to the mass of the positron, it follows that mj = m for both

species. The subscript j represents either electrons or positrons, that is, j = e(electrons),

p(positrons).
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In general,

Zj =


+1 , if j=p (positron)

−1 , if j=e (electron)

(2.5)

From the thermodynamic equation of state relating pjc to njc, we shall write

pjcn
−γ
jc = C. (2.6)

From the ideal gas law we know that

pjc0 = njc0kBTc, (2.7)

where C is a constant and γ is the ratio of specific heats Cp/Cv (where Cp and Cv are the

specific heat capacities at constant pressure and volume, respectively), kB is the Boltz-

mann constant, Tc is the temperature of the cool component, and njc0 and pjc0 are the

number density and partial pressure of the cold species at equilibrium, respectively.

Moreover, in an equilibrium state,

pjc = pjc0, (2.8)

hence, using Eq. (2.6) in the equilibrium state relation for pressure in Eq. (2.8) above,

one will have

pjcn
−γ
jc = pjc0n

−γ
jc0. (2.9)

From Eq. (2.7) and Eq. (2.9), we get

pjcn
−γ
jc = njc0kBTcn

−γ
jc0.

This gives

pjc =

(
kBTc

nγ−1
jc0

)
nγjc. (2.10)

Substituting Eq. (2.10) into Eq. (2.4) one obtains

mnjc

[
∂ujc
∂t

+ ujc
∂ujc
∂x

]
+

(
kBTc

nγ−1
jc0

)
γnγ−1

jc

∂njc
∂x

= −Zjenjc
∂ϕ

∂x
. (2.11)
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For the adiabatic case, the value of γ is greater than one. If N is the number of degrees

of freedom, then γ is given by

γ =
N + 2

N
.

Since a one dimensional displacement of the plasma particles about the equilibrium posi-

tion is assumed say, along the x-axis, N = 1. It follows that γ = 3 from the above relation.

Hence, using γ = 3 in Eq. (2.11), the momentum Eq. (2.4) takes the form

mnjc

[
∂ujc
∂t

+ ujc
∂ujc
∂x

]
+ 3kBTc

n2
jc

n2
jc0

∂njc
∂x

= −Zjenjc
∂φ

∂x
. (2.12)

The velocity distribution of the inertialess hot component of EP plasma species is taken

to follow a kappa distribution law. This assumption of an effectively inertialess species is

only justified if the hot species thermal velocity vth is much greater than the speed of the

wave form vφ supported by the plasma, so that vth is considered as infinite compared to

vφ. It follows that the hot component must be isothermal and, assumed to be distributed

according to a kappa distribution law. For such a fluid, the number density from this

distribution function has been derived by Baluku and Hellberg (2008) as

njh = Nh

[
1 +

Zjeϕ

(κ− 3
2)kBTh

]−κ+1/2

, (2.13)

where njh and Th, respectively, are the perturbed number density and the temperature

of the hot species, κ is the spectral kappa index that measures the deviation of particle

velocities from the thermal Maxwellian distribution, kB is the Boltzmann constant, and

Nh = neho = npho is the hot species number density at equilibrium in the absence of any

disturbances.

Finally, the set of equations which are governing the whole system of our plasma dy-

namics can be coupled by Poisson’s equation:

εo
∂2ϕ

∂x2
=
∑
j=e,p

∑
k=c,h

−Zjnjk, (2.14)

where k is either a cool (c) or hot (h) species.
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To make each of the variables in the set of equations (that is, in Eqs. (2.3), (2.12),

(2.13) and Eq. (2.14)) dimensionless, we need to normalize the number density by the to-

tal equilibrium number density N0, cold species velocity by the hot species thermal speed

vth =
(
kBTh
m

)1/2
, the electrostatic potential by eϕ

kBTh
, and temperature by the hot species

temperature Th. The time and space variables will be normalized by the inverse plasma

frequency ωp =
(
N0e2

ε0m

)1/2
and the Debye length λD =

(
ε0kBTh
N0e2

)1/2
, respectively. That is,

we have the normalized variables, marked by a tilde where appropriate,

x̃ =
x

λD
, t̃ = tωp, ñjk =

njk
N0

, ũjc =
ujc
vth

, σ =
Tc
Th
, φ =

eϕ

kBTh
(2.15)

We have already defined the total equilibrium number density of the plasma as

N0 = Nh +Nc.

In dimensionless (the normalization has taken over N0) form this can be written as

Nc +Nh = 1, (2.16)

where here Nc and Nh are now normalized quantities.

Using the respective variables from Eq. (2.15) in Eq. (2.3), Eq. (2.12), Eq. (2.13)

and Eq. (2.14), the following dimensionless set of the governing equations for both hot

and cool components are obtained as :

Normalized continuity equation:

∂njc
∂t

+
∂

∂x
(njcujc) = 0. (2.17)

Normalized momentum equation:

∂ujc
∂t

+ ujc
∂ujc
∂x

+ 3σ
njc
n2
jco

∂njc
∂x

= −Zj
∂φ

∂x
. (2.18)

Normalized number density for kappa distribution:

njh = Nh

[
1 +

Zjφ

(κ− 3
2)

]−κ+1/2

. (2.19)
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Normalized Poisson’s equation:

∂2φ

∂x2
=
∑
j=e,p

∑
k=c,h

−Zjnjk =⇒ ∂2φ

∂x2
= neh + nec − nph − npc, (2.20)

where σ is the cool (Tc) to hot (Th) temperature ratio. Note that we have omitted the

tildes over some of the variables in the above set of equations for convenience. From here

onwards, we will omit the tilde for dimensionless variables.

2.2 Linear waves

Any periodic motion of a fluid can be decomposed by Fourier analysis into a superposition

of sinusoidal oscillations with different frequencies ω and wavenumbers k. A simple wave

is any one of these components. When the oscillation amplitude is small the wave form is

generally sinusoidal; and there is only one component.

Small amplitude oscillations permit the wave fields to be represented by a sinusoidal

wave. A plane wave is defined as a wave whose direction of propagation and amplitude is

the same everywhere. For a monochromatic plane wave disturbance with frequency ω, a

sinusoidal varying quantity in space and time is represented by

s(r, t) = soe
i(k.r−ωt), (2.21)

where so is a constant vector defining the amplitude of the wave, i =
√
−1 is the imaginary

index , k is the wave vector (specifies the direction of wave propagation), and t is time.

The measurable quantity is understood to be the real part of this complex expression.

Phase velocity A point of constant phase (think of wave crests or troughs) is displaced

with a phase velocity, which is obtained by taking the total time derivative of the phase

and setting it equal to zero. Thus d(k.r− ωt)/dt = 0 yields

vφ =
ω

k2
k, (2.22)
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where the phase velocity is a vector with magnitude vφ = ω/k and the vector has the same

orientation as the wave vector k.

Dispersion relation The phase velocity can be calculated if a relation exists between

ω and k. The relation, ω = ω(k), is known as the dispersion relation. The dispersion

relation contains the physical parameters of a given medium in which a wave exists and

propagates. Hence, the dispersion relation contains all relevant information on how the

medium responds to a given wave. One of the main tasks of this chapter is the derivation

of the dispersion relation for our model, as well as for related plasma models.

Small amplitude perturbation equations If plane harmonic wave solutions are as-

sumed for the dynamical variables like velocity u, number density n, electrostatic field E,

and the electrostatic potential φ, we can write a one dimensional sinusoidal Fourier form

for each of the variable as

u = uoe
i(kx−ωt) n = noe

i(kx−ωt) E = Eoe
i(kx−ωt) φ = φoe

i(kx−ωt), (2.23)

where x is a 1D spatial variable. The time and spatial derivatives can be represented by

∂

∂t
→ −iω ∇ → ik ∇· → ik, ∇× → ik×, (2.24)

where ∇ = x̂ ∂
∂x , for one dimensional spatial analysis. When only small amplitude pertur-

bations are considered, the dynamic variables can be expressed in terms of their equilibrium

and perturbed parts, by neglecting the contribution of second and higher order terms. It

follows that

u = u0 + u1 = u1 n = n0 + n1 φ = φ0 + φ1 = φ1 E = E0 + E1 = E1,

(2.25)

where the subscripts 0 and 1 refer to the equilibrium and perturbed parts of the dynamical

dependent quantities, respectively. In equilibrium, u0 = φ0 = E0 = 0. The fluid velocity u,

electrostatic field E, and the electrostatic potential φ arise from perturbing an equilibrium

fluid and, hence, they are first order quantities (higher order terms are regarded as small
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and they are neglected). Our interest in this chapter is to retain quantities only to first

order, ignoring higher order terms.

2.3 Model equations

In this section we will consider the normalized equations that govern our plasma dynam-

ics. As we have already discussed earlier, the dynamics of the cool component of our

plasma model will be governed by the momentum and continuity equations (normalized),

respectively:
∂njc
∂t

+
∂

∂x
(njcujc) = 0 (2.26)

and
∂ujc
∂t

+ ujc
∂ujc
∂x

+ 3σ
njc
N2
c

∂njc
∂x

= −Zj
∂φ

∂x
. (2.27)

Using Eq. (2.23), Eq. (2.24) and Eq. (2.25), that is, assuming sinusoidal small pertur-

bations of dynamical variables to the first order from their equilibrium state, Eq. (2.26)

takes the form

−iωnjc1 +Ncikujc1 = 0,

which implies that,

ujc1 =
ω

k

njc1
Nc

. (2.28)

By using similar reasoning, from Eq. (2.27), we have

−iωujc1 + 3σ
njc1
Nc

= −Zjikφ1. (2.29)

Using Eq. (2.28) in Eq. (2.29), and after some rearrangement, we obtain

njc1 = Zj
φ1Nc

ω2

k2
− 3σ

. (2.30)

For each of the species (cool electrons and positrons), Eq. (2.30) becomes,

nec1 = − φ1Nc

ω2

k2
− 3σ

and npc1 =
φ1Nc

ω2

k2
− 3σ

, (2.31)

where nec1 and npc1, respectively, are the first order perturbed number density for cool

electrons and positrons.
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To model the dynamics of the hot component of our plasma model, we are using a kappa

velocity distribution function. From that, the normalized number density for the species

of hot electrons and positrons, respectively, has been calculated by Baluku and Hellberg

(2008) as

neh = Nh

[
1− φ

(κ− 3
2)

]−κ+1/2

(2.32)

and

nph = Nh

[
1 +

φ

(κ− 3
2)

]−k+1/2

. (2.33)

The above set of density equations (i.e, Eqs. (2.26), (2.27), (2.32) and (2.33)) are coupled

by the normalized Poisson equation:

∂2φ

∂x2
= neh + nec − nph − npc. (2.34)

If we consider a small perturbation of the electrostatic potential φ (that is, φ � 1), one

can employ a Taylor power series expansion, respectively, in Eq. (2.32) and Eq. (2.33).

So that

neh = Nh

[
1 + (

κ− 1
2

κ− 3
2

)φ+
(κ− 1

2)(κ+ 1
2)

2(κ− 3
2)2

φ2 +
(κ− 1

2)(κ+ 1
2)(κ+ 3

2)

6(κ− 3
2)3

φ3 + . . .

]
(2.35)

and

nph = Nh

[
1− (

κ− 1
2

κ− 3
2

)φ+
(κ− 1

2)(κ+ 1
2)

2(κ− 3
2)2

φ2 −
(κ− 1

2)(κ+ 1
2)(κ+ 3

2)

6(κ− 3
2)3

φ3 + . . .

]
. (2.36)

Using the following substitutions;

c1 = (
κ− 1

2

κ− 3
2

), (2.37)

c2 =
(κ− 1

2)(κ+ 1
2)

2(κ− 3
2)2

, (2.38)

c3 =
(κ− 1

2)(κ+ 1
2)(κ+ 3

2)

6(κ− 3
2)3

. (2.39)

Eq. (2.35) and Eq. (2.36), becomes

neh = Nh(1+c1φ+c2φ
2+c3φ

3+...) and nph = Nh(1−c1φ+c2φ
2−c3φ

3+...). (2.40)
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For small perturbations about the equilibrium point, we can apply linearization to the

dynamical variables of number density (neh and nph) and the electrostatic potential φ in

Eq. (2.40). Hence,

Nh + neh1 + neh2 + · · · = Nh[1 + c1φ1 + c2φ
2
1 + c3φ

3
1 + ...] (2.41)

and

Nh + nph1 + nph2 + · · · = Nh[1− c1φ1 + c2φ
2
1 − c3φ

3
1 + ...], (2.42)

where neh1, nph1 and φ1 are the first order perturbed number density for hot electrons,

hot positrons, and the electrostatic potential, respectively, whereas neh2 and nph2 are the

second order perturbed number densities for hot electrons and positrons, respectively.

Here we have used the assumption that in an unperturbed state the electrostatic potential

φ0 = 0, and the hot component number density neho = Nh. By ignoring the second and

all higher order terms in Eq. (2.41) and Eq. (2.42), we have

Nh + neh1 = Nh[1 + c1φ1] and Nh + nph1 = Nh[1− c1φ1],

which implies that,

neh1 = Nhc1φ1 (2.43)

and

nph1 = −Nhc1φ1. (2.44)

2.4 Waves in related plasma models

In this section we will consider related simple electron-positron plasma models, and we

shall derive linear wave dispersion relations for each of them. These studies will enable

us to recognize the model requirements to obtain an acoustic dispersion relation, while

bearing in mind the obvious physical constraint associated with the symmetry of the

electron-positron pair creation process. At the same time, they will lead us naturally to

the model that we have adopted in this study, namely, a symmetric four-species electron-

positron plasma.
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2.4.1 Hot kappa electrons and positrons

In this model we consider a two-species symmetric plasma, for which we have assumed

that the temperature of both electrons and positrons is hot, and both species are assumed

to be distributed according to a kappa velocity distribution law. The thermal speed of

both species is much greater than the phase speed supported by the model. Since the

particles are highly mobile we may ignore their inertia. So, for this particular model, Eq.

(2.34) takes the form
d2φ

dx2
= neh − nph.

After linearization, this equation can be written as

d2φ1

dx2
= neh1 − nph1. (2.45)

Perturbation from equilibrium is assumed to be sinusoidal and, therefore, applying a

Fourier mode sinusoidal plane wave discussed in Eq. (2.23) and Eq. (2.24) to the left

hand side of Eq. (2.45), and using Eq. (2.43) and Eq. (2.44), we get

−k2φ1 = 2c1φ1Nh =⇒ k2 = −2c1Nh.

In this model, Nc = 0 since we are dealing with the hot species only. Hence, from Eq.

(2.16) one obtain that Nh = 1. Therefore,

k2 = −2c1.

Substituting for c1 (see Eq. (2.37)), this equation can be written in terms of the superther-

mal parameter κ as

k2 = −2

(
κ− 1/2

κ− 3/2

)
. (2.46)

We recall that the kappa distribution is valid for κ > 3/2 (Vasyliunas, 1968; Hellberg et al.,

2009) and hence, for any derived physical quantity (e.g., the density), we are restricted to

values of κ that satisfy κ > 3/2 (Baluku et al., 2010a). Hence, the term inside the bracket

in Eq. (2.46) is always positive and, hence, k is indeterminate in the dispersion relation

of the model in Eq. (2.46). This signifies that the wave is not supported by an isothermal

hot electron-positron plasma in the absence of the inertial cool species. Clearly, an inertial

species is required to support oscillatory behaviour, and hence a wave.
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2.4.2 Cool adiabatic electrons and positrons

In this model we will consider a two-species plasma consisting of electrons and positrons

found at a single cool temperature Tc, and with equilibrium number density Nc. The cool

species thermal velocity vtc is much smaller than the phase velocity vφ for the model. The

dynamics of both the electrons and positrons is governed by the normalized continuity,

momentum and Poisson equations (note that normalization for temperature was taken

with respect to Tc because only cold species are involved in this model and, hence, σ = 1

in the normalized fluid equations). Therefore, for this particular model, Eq. (2.34) can be

rewritten as
∂2φ

∂x2
= nec − npc. (2.47)

After linearization and Fourier mode analysis, Eq. (2.47) reads

−k2φ1 = nec1 − npc1. (2.48)

In this equation we have used an assumption neco = npco = Nc in the equilibrium state.

Then substituting Eq. (2.31) into Eq. (2.48), and keeping in mind that the total cool

species equilibrium number density Nc = 1 (see Eq. (2.16)) in normalized form in the

absence of the hot species, the dispersion relation takes the form

ω2 = 2 + 3k2. (2.49)

This shows that the medium may support a plasma-like wave, with phase velocity vφ,

greater than the particle thermal velocity. Importantly, this model cannot support an

acoustic wave, characterized by ω/k → Vo as k → 0.

2.4.3 Kappa electrons and adiabatic positrons

In this model we have considered an electron-positron (EP) plasma consisting of hot

inertialess electrons distributed according to the kappa distribution law and cool inertial

adiabatic positrons governed by the fluid equations of motion (continuity and momentum

equations). The hot electrons are at temperature Th (number density Nc) whereas the
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Figure 2.1: A plot of the dispersion relation shown in Eq. (2.49) for the plasma of adiabatic

cold electrons and positrons. Dashed curve for k → 0, while solid red line for large k.

cool positrons have temperature Tc (number density Nc), and we assume that T h � Tc.

In an unperturbed state the condition,

Nc = Nh

holds. Moreover, it is assumed that the hot species thermal velocity vth is much larger

than the phase velocity vφ supported by the plasma, which in turn is much larger than the

thermal speed of the cool species vtc (i.e., vth >> vφ >> vtc) to reduce Landau damping

in our model following Watanabe and Taniuti (1977) . Hence, for this particular model,

Eq. (2.34) reads

d2φ

dx2
= neh − npc. (2.50)

where neh and npc are the perturbed number densities of hot kappa electrons and adiabatic

cool positrons, respectively.

After linearization, Eq. (2.50) becomes

−k2φ1 = neh1 − npc1. (2.51)
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Using Eq. (2.43) and Eq. (2.31) in Eq. (2.51), we obtain

−k2φ1 = Nhc1φ1 −
Ncφ1

ω2

k2
− 3σ

. (2.52)

Rearranging this gives us the following dispersion relation,

ω2

k2
=

Nc

Nhc1 + k2
+ 3σ. (2.53)

In the limit of very small k (that is, k2 � Nhc1), Eq. (2.53) reduces to

ω =

(
Nc

Nhc1
+ 3σ

)1/2

k. (2.54)

Using the definition of c1, and the neutrality condition in the equilibrium state (Nc = Nh),

Eq. (2.54) becomes

ω =

(
2κ− 3

2κ− 1
+ 3σ

)1/2

k =⇒ ω = V k, (2.55)

where V =
(

2κ−3
2κ−1 + 3σ

)1/2
is the normalized sound speed in such a plasma. Fig. 2.2

shows a plot of the dispersion relation, Eq. (2.53), for the hot kappa distributed electrons

and the cool adiabatic positrons. In the large wavelength (very small k) limit, all the

harmonics travel nearly with the normalized sound speed V when the superthermality

parameter κ = 100 (Maxwellian regime). However, for high superthermality (κ = 2) it is

seen that all the harmonics travel with different speeds for all k as displayed in Fig. 2.2.

Although this two-species model does support an acoustic wave, it is based on the assump-

tion that Te � Tp. In view of the expected symmetry between electrons and positrons

derived from pair creations, this does not appear to be a realistic model.
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Figure 2.2: Solid blue and black curved lines generated from Eq. (2.53), respectively, for

κ = 2 and κ = 100, showing an acoustic mode supported by an electron-positron plasma

of hot kappa electrons and cool adiabatic positrons. The solid blue and black straight lines

generated from Eq. (2.55), respectively, for κ = 2 and κ = 100 in the limit k very small.

For large κ (Maxwellian limit) it is seen that all harmonics travels with the sound speed

V when k is smaller. For κ = 2 it is observed that the harmonics doesn’t travel with the

same speed for all k.

2.4.4 A three component model

Here we will investigate linear electrostatic waves in a three component plasma model con-

sisting of cold inertial electron and positron fluids at a cold temperature Tc = 0 (density

Nc), with a component of a kappa-distributed energetic positrons at hot temperature Th

(density Nh).

In an unperturbed state where φ0 = 0, the charge neutrality condition dictates that

neco = npho + npco,

where nec0, npho and npco are densities of the cold electrons, hot positrons and cool

positrons in the equilibrium state, respectively. For this particular model, Poisson’s equa-



2.4. WAVES IN RELATED PLASMA MODELS 39

tion reads
d2φ

dx2
= nec − npc − nph, (2.56)

where nec, npc, and nph are the number densities of cold electrons, cold positrons and hot

positrons, respectively, in the perturbed state. The linearized Poisson’s equation finally

takes the form
d2φ1

dx2
= nec1 − npc1 − nph1. (2.57)

Employing the Fourier modes and using Eq. (2.31) and Eq. (2.44) in Eq. (2.57), gives

−k2φ1 = −neco
k2

ω2
φ1 − npco

k2

ω2
φ1 + nph0c1φ1. (2.58)

After rearranging, Eq. (2.58) yields

ω2 =

[
neco + npco
k2 + nphoc1

]
k2. (2.59)

Substituting for neco = npco + npho, Eq. (2.59) becomes

ω2 =

[
2npco + npho
k2 + nphoc1

]
k2. (2.60)

This can also be written, using npco = Nc and npho = Nh in an equilibrium state, as

ω2 =

[
1 + 2Nc

Nh

c1 + k2

Nh

]
k2. (2.61)

Replacing c1, the dispersion relation in Eq. (2.61) for a three component model takes the

form

ω =

[
1 + 2Nc

Nh
2κ−1
2κ−3 + k2

Nh

]1/2

k . (2.62)

For large wavelength (small k), that is, k2

Nh
<< c1, this becomes

ω =

[(
2κ− 3

2κ− 1

)(
1 +

2Nc

Nh

)]1/2

k . (2.63)

This is the dispersion relation for the large wavelength limit with the normalized sound

speed (acoustic mode):

V =

[(
2κ− 3

2κ− 1

)(
1 +

2Nc

Nh

)]1/2

.
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With this replacement, one can write Eq. (2.63) as

ω = V k. (2.64)

Again, this model supports an acoustic wave, but is suspect because of its lack of symmetry

between electrons and positrons. The dispersion relation (2.62) is illustrated in Fig. 2.3

for extreme values of κ. For small k, the acoustic speed (Eq. (2.64)) is seen to be larger

for a quasi-Maxwellian plasma (κ = 100) than for a low-κ plasmaΚ= 2

Κ= 100

Nc= 0.2

Nh= 0.8Σ= 0.01
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Figure 2.3: The dispersion relation for a plasma consisting of cold electrons and positrons

at Tc = 0 and, hot kappa positrons at temperature Th, as found from Eq. (2.62), the black

and red curves for κ = 2 and κ = 100, respectively. For small k, the dotted and dashed

lines show that ω ∝ k.
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2.5 The symmetric four component model

Having considered some related plasma models, we now turn to our main area of interest,

the symmetric, four-component electron-positron plasma model.

In this model we have considered an EP pair plasma consisting of hot electrons and

positrons which are generated from the curvature photons by the primary plasma pro-

duction process, and cool electrons and positrons generated from the synchrophotons in

the secondary plasma generation process in the pulsar magnetosphere. Because the two

species have the same absolute charge to mass ratio, both electrons and positrons in the

hot component of the EP plasma will exist at the same temperature Th (number density

Nh), and in the cool component of the EP plasma they will be found at the cool temper-

ature Tc (number density Nc). It is assumed that the thermal speed of the hot species vth

is much greater than the phase speed vφ supported by the model, which in turn is much

greater than the cool species thermal speed vtc, i.e., vth >> vφ >> vtc. This assumption

is justified in the light of the large energy difference between the secondary and primary

plasmas in the pulsar magnetosphere. Furthermore, the inertialess hot species are assumed

to follow a kappa velocity distribution function, and the cool species are governed by the

multi-fluid equations (momentum and continuity equations).

The set of equations governing the whole system in this model are coupled by the normal-

ized Poisson’s equation as

d2φ

dx2
= neh + nec − (nph + npc). (2.65)

Linearizing the dynamical variables to the first order, Eq. (2.65) may be written as

d2φ1

dx2
= Nh + neh1︸ ︷︷ ︸

neh

+Nc + nec1︸ ︷︷ ︸
nec

−(Nh + nph1︸ ︷︷ ︸
nph

+Nc + npc1︸ ︷︷ ︸
npc

). (2.66)

Taking the Fourier transform by assuming small sinusoidal oscillations of the variables

about their equilibrium state in Eq. (2.66), we get

−k2φ1 = neh1 + nec1 − nph1 − npc1. (2.67)
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Using Eq. (2.31), Eq. (2.43) and Eq. (2.44) in Eq. (2.67), one obtains

−k2φ1 = c1Nhφ1 −
φ1

ω2

k2
− 3σ

Nc + c1Nhφ1 −
φ1

ω2

k2
− 3σ

Nc,

which implies that

k2 =
2Nc

ω2

k2
− 3σ

− 2c1Nh. (2.68)

Rearranging of Eq. (2.68) gives us the dispersion relation for a symmetric four-component

EP plasma model as

ω2 =

[
2Nc

2Nhc1 + k2
+ 3σ

]
k2. (2.69)

Using the definition for c1, this dispersion relation in terms of superthermal parameter κ

can take the form

ω =

[
2Nc

2Nh(2κ−1
2κ−3) + k2

+ 3σ

]1/2

k . (2.70)

In unnormalized form, this will take the form

ω2 =
αk2v2

th
αk2λ2Dh

2 + c1

+ 3k2v2
tc,

where α = Nc/Nh, λDh =
(
ε0kBTh
Nhe2

)1/2
, vth =

(
kBTh
m

)1/2
and vtc =

(
kBTc
m

)1/2
.

This is reminiscent of the unnormalized dispersion relation for the electron-acoustic wave

given by Danehkar et al. (2011) in their Eq. (18), although in the unnormalized form of Eq.

(2.70) there is an additional factor 1/2 in the coefficient of k2 in the denominator, related

to the fact that in the present case the total number of particles (electrons + positrons)

providing inertia is 2Nc. Danehkar et al. (2011) had considered a plasma composed of

hot-kappa distributed electrons, cool inertial electrons (density Nc) and immobile ions.

Eq. (2.70) can also be written as

ω2 =

[
2Nc

2Nhc1
(1 +

k2

2Nhc1
)−1 + 3σ

]
k2. (2.71)
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For k2

2Nhc1
<< 1 (very small wave number k), we can employ a Taylor power series expan-

sion in Eq. (2.71) to obtain

ω2 =

[
Nc

Nhc1
(1− k2

2Nhc1
) + 3σ

]
k2. (2.72)

This can also be written as

ω2 = (
Nc

Nhc1
+ 3σ)k2 − Nc

2N2
hc

2
1

k4. (2.73)

This equation is in the form of a general acoustic dispersion relation (Chen, 1983)

ω2 = vsk
2 + γk4,

where γ is some constant, and vs = ω/k is the sound speed of the acoustic wave in the

long wavelength limit k → 0. This form of the dispersion relation is directly related to the

nonlinear Korteweg-de Vries equation which will be discussed in Chapter 3.

For very long wavelengths (small k), the second term on the right hand side of Eq. (2.73)

goes to zero more rapidly than the first term, so that for very long wavelengths (small k)

Eq. (2.73) will be reduced to

ω2 = (
Nc

Nhc1
+ 3σ)k2.

Substituting for c1, we have

ω =

[(
2κ− 3

2κ− 1

)
Nc

Nh
+ 3σ

]1/2

k. (2.74)

This is the dispersion relation of acoustic waves in our four-component symmetric model

in the limit of small k:

V =

[(
2κ− 3

2κ− 1

)
Nc

Nh
+ 3σ

]1/2

, (2.75)

where V = vφ/vth (vφ = ω
k ), is the normalized (with respect to the hot species thermal

speed vth) sound speed. Before considering some aspects of this dispersion relation, we

note that Eq. (2.75) has the same form as the characteristic phase speed for small k of the

electron-acoustic wave as may have been seen by comparing with Eq. (16) of Danehkar

et al. (2011).
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Fig. 2.4 shows a plot of the dispersion relation (Eq. 2.70) for a symmetric four-component

plasma at two different extreme values of κ. It is seen that for large wavelength (small k)

all frequencies travel with the same speed speed, V .Κ= 100 Κ= 2

Nc = 0.2

Nh = 0.8Σ = 0.01

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

Ω
Figure 2.4: Dispersion relation (Eq. 2.70) for different kappa κ values for acoustic waves in

a symmetric-four component electron-positron plasma of hot kappa distributed electrons

and positrons, and cool adiabatic electrons and positrons. For small k, the dotted and

dashed lines show that ω ∝ k.

From Eq. (2.74) it is clear that when the number density of the cold species goes to zero

(Nc = 0), the dispersion relation reduces to

ω2 = 3σk2.

This implies that ω depends on the non-existent parameter σ = Tc/Th through the cold

species temperature Tc. In order to resolve this paradox, we need to refer to Eq. (2.68).

There, if Nc = 0 (Nh = 1) it can take the form,

k2 = −2c1.

This is the same as the dispersion relation in Eq. (2.46) that was derived for the simple

two-species model of hot kappa electrons and positrons. In that case, it was shown that in

the absence of the cool inertial component, the model cannot support waves. Thus, when
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there are no cool particles we get a breakdown of wave formation in the plasma.

Furthermore, in the absence of the hot species, Eq. (2.70) will be reduced to

ω2 = 2 + 3σk2, (2.76)

where the temperature ratio σ = Tc/Th. But, largely, for Nh = 0, the normalization with

non-existent hot species temperature Th is meaningless. Hence, by taking a normalization

for this particular case with respect to Tc, we then have σ = 1. Thus, Eq. (2.76) becomes

ω2 = 2 + 3k2,

which is the same as the dispersion relation in Eq. (2.49) derived for a plasma consisting

of cool adiabatic electrons and positrons. Hence, in the absence of the hot species, the

symmetric four component model will be reduced to the two-species EP plasma model con-

sisting of cool adiabatic electrons and positrons only, yielding an electron plasma-like wave.

Following discussions in Gray (1998), now let us consider the cases when either of the

cold or hot species number densities tends to zero. Fig. 2.5 shows that the plasma purely

supports an acoustic wave as the number density of the cool species are getting low. The

particular value used for the cold species number density was Nc = 0.01 and temperature

Tc = 0.01.

On the other hand, as the hot species number density tends to zero, the plasma starts

to support the plasma-like wave for larger k. However, the plasma supports an acoustic

mode for smaller k. This effect is seen in Fig. 2.6 for the hot species equilibrium number

density Nh = 0.001 and the temperature σ = 0.01.

However, this analysis is not valid in accordance with the assumption imposed by the

model to reduce the Landau damping. That is,

vth >> vφ >> vtc,
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Nc=0.01

Nh=0.99Σ= 0.01 Κ= 2Κ=2 Κ=100Κ=100
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Figure 2.5: Dispersion relation (Eq. (2.70)) evaluated for a plasma with very small cool

component, Nc = 0.01, for κ = 2 (green curve) and κ = 100 (red). The dashed lines are

from the small-k limit, Eq. (2.74).Κ= 100 Κ= 2

Nc =0.999

Nh = 10- 3Σ= 0.01
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Figure 2.6: Black and red curves for κ = 2 and κ = 100, respectively, generated from the

dispersion relation, Eq. (2.70), for plasmas with very small hot components, Nh = 0.001.

The dotted and dashed lines for κ = 2 and κ = 100, respectively, generated from the

dispersion relation for low-k approximation, Eq. (2.74).

where vth, vφ and vtc are the thermal speed of the hot species, the phase velocity and the

thermal speed of the cool species, respectively. This implies a requirement that

1 >> V,
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where V = vφ/vth. Using Eq. (2.75) and the previous relation, we have([
2κ− 3

2κ− 1

]
Nc

Nh
+ 3σ

)1/2

<< 1. (2.77)

In principle, this relation provides an important constraint on valid parameter values for

this model. The values used in Fig. 2.6 lie outside the permitted range.

When σ tends to zero, the above constraint can be written as

α

c1
<< 1, (2.78)

where c1 = 2κ−1
2κ−3 and α = Nc

Nh
. By keeping this designation in mind and using Eq. (2.16)

we can write expressions for Nc and Nh in terms of α as

Nh =
1

α+ 1
and Nc =

α

α+ 1
. (2.79)

For convenience we shall use α as the ratio of cool (Nc) to hot (Nh) normalized equi-

librium number density hereinafter wherever necessary. In the light of Eq. (2.78), we

can determine the parametric values of α for which the model supports an acoustic wave

without appreciable Landau damping for the given values of κ. Fig. 2.7, generated from

Eq. (2.78), shows the dependence of limiting values of α on κ for a chosen ratio of α to c1

in accordance with our model. In the early work of Verheest et al. (1996) that investigated

acoustic nonlinear waves in a symmetric four component EP plasma, the hot components

were assumed to follow the Maxwellian distribution. It was found that the model sup-

ports the waves without Landau damping if the cold species normalized number density

Nc ≤ 0.2 (α ≤ 0.25).

However, in our model, the lower κ (higher superthermality) permits the model to sup-

port acoustic waves over a much wider range of hot to cold number density ratios α. For

example, from Table 2.1 (α/c1 = 0.3 =⇒ (α/c1)1/2 ≈ 0.5� 1), it is seen that the model

allows the cold species number density Nc ≈ 0.76 (α = 3.3) at κ = 1.6. This result is

well beyond the upper limit of Nc obtained by Verheest et al. (1996), that is Nc = 0.2
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Figure 2.7: Figure shows the dependence of α on κ for the chosen values of α to c1 ratios.

(α = 0.25).

For convenience, most of the limiting values of α for the corresponding κ in the forth-

coming discussions will be constrained to those values of α and κ below a black curve in

Fig. 2.7 (i.e., α/c1 = 0.3). Thus, all soliton existence domains are subject to this cut-off.

Moreover, for numerical visualization purposes, the corresponding numerical values of α

for given κ at various chosen α to c1 ratios are displayed in Table (2.1).
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Table 2.1: Parametric limiting values of α for corresponding κ, generated from the various

chosen values of α to c1 ratios (Eq. 2.78) when σ → 0.

α
c1

= 1 α
c1

= 0.5 α
c1

= 0.3 α
c1

= 0.2

κ α κ α κ α κ α

1.6 11 1.6 5.5 1.6 3.3 1.6 2.2

2.6 1.90909 2.6 0.954545 2.6 0.572727 2.6 0.381818

3.6 1.47619 3.6 0.738095 3.6 0.442857 3.6 0.295238

4.6 1.32258 4.6 0.66129 4.6 0.396774 4.6 0.264516

5.6 1.2439 5.6 0.621951 5.6 0.373171 5.6 0.24878

6.6 1.19608 6.6 0.598039 6.6 0.358824 6.6 0.239216

7.6 1.16393 7.6 0.581967 7.6 0.34918 7.6 0.232787

8.6 1.14085 8.6 0.570423 8.6 0.342254 8.6 0.228169

9.6 1.12346 9.6 0.561728 9.6 0.337037 9.6 0.224691

10.6 1.10989 10.6 0.554945 10.6 0.332967 10.6 0.221978

11.6 1.09901 11.6 0.549505 11.6 0.329703 11.6 0.219802

Having studied linear waves in a four component system, as well as in some

related models in this chapter, we next turn to the main aspect of this thesis, namely the

investigation of nonlinear solitary waves.
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Chapter 3

Nonlinear acoustic waves in the

electron-positron plasma

In this chapter we will investigate nonlinear waves in an unmagnetized, collisionless and

non-relativistic four species plasma consisting of hot electrons and positrons at tempera-

ture Th (number density Nh), and cool electrons and positrons at temperature Tc (number

density Nc). To study small amplitude nonlinear waves in the model, we will employ the

reductive perturbation technique to derive a modified Korteweg de Vries (mKdV) equa-

tion which yields a standard soliton solution. To investigate fully nonlinear (arbitrary

amplitude) solitary waves, the Sagdeev pseudopotential approach will be employed.

3.1 Small amplitude analysis

We shall first derive the Kortweg de Vries (KdV) equation using the reductive perturba-

tion expansion. However, because of the symmetry of the problem, the nonlinear term

vanishes in the KdV equation. Hence, we go to the next step to derive the mKdV equation

that allows a higher degree of nonlinearity. From that equation (mKdV), the standard

stationary soliton solution is given in terms of plasma parameters.

51
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3.1.1 Derivation of the Korteweg de Vries (KdV) equation

We assume weak nonlinearity, that is, the amplitude of the electrostatic potential is small

|φ| < 1, and the perturbation in the densities and velocities are all small compared to

unity. So it permits use of the reductive perturbation technique that follows Washimi and

Taniuti (1966) to derive the evolutionary KdV equation describing weakly nonlinear EP

acoustic waves from the system of equations governing a four species symmetric EP plasma.

Coordinate stretching Following the ideas of Washimi and Taniuti (1966) to recover

the specific coordinate stretching to the reductive perturbation expansion for the case of

a symmetric four component electron-positron plasma, we may write the linear dispersion

relation in Eq. (2.71) in the limit σ → 0 as

ω =

(
Nc

Nhc1

)1/2(
1 +

k2

2Nhc1

)−1

k.

Using the binomial expansion, this can be reduced to

ω =

(
Nc

Nhc1

)1/2(
k − k3

2Nhc1

)
.

We consider a plane wave moving from left to right in the positive x-direction with a phase

argument

kx− ωt = kx−
(

Nc

Nhc1

)1/2(
k − k3

4Nhc1

)
,

which implies that

kx− ωt = k

(
x−

(
Nc

Nhc1

)1/2

t

)
+

(
Nc

Nhc1

)1/2 1

4Nhc1
k3t. (3.1)

In unnormalized terms Eq. (3.1) takes the form

kx− ωt = kλDh

(
x

λDh
−
(

Nc

Nhc1

)1/2

tωp

)
+

(
Nc

Nhc1

)1/2 No

4Nhc1
k3λ3

Dhtωp, (3.2)

where the Debye length λDh =
(
kBTh
εoNoe2

)1/2
, and plasma frequency ωp =

(
Noe2

εom

)1/2
. Re-

calling that V =
vφ
vth

=
(

Nc
Nhc1

)1/2
, in the limit σ → 0, we have

kx− ωt = β

(
x

λDh
− V tωp

)
+ β3 No

4Nhc1
V tωp,
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which implies the following coordinate stretching

ξ = β(x− V t), τ = β3V t, (3.3)

where the parameter β = kλDh, a measure of wave dispersion is considered small, β2 �

1. Using the smallness parameter ε < 1 measuring the weakness of perturbation (weak

nonlinearity) of dynamical variables (density, velocity and electrostatic potential) leads to

β2 ≈ O(ε) (here O is an expansion order). This shows the relation between the nonlinearity

and dispersion of the wavepacket, linking the opposing effects so that a balance is attained.

Thus, coordinate stretching in Eq. (3.3) becomes

ξ = ε1/2(x− V t), ζ = ε3/2V t. (3.4)

This coordinate stretching follows that of Verheest (1988). Here ε, ξ and ζ are the param-

eters that measure the smallness of the nonlinearity, space-like and time-like coordinates

in the wave frame, respectively.

Applying the chain rule to the above coordinate stretching, one obtains

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂ζ

∂ζ

∂x
= ε3/2 ∂

∂ξ
(3.5)

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂ζ

∂ζ

∂t
= −V ε1/2 ∂

∂ξ
+ ε3/2 ∂

∂ζ
. (3.6)

Later on we will use these relations in deriving the KdV equation.

Model equations

We consider a homogeneous, collisionless, unmagnetized four-component electron-positron

plasma consisting of superthermal kappa-distributed hot electrons and positrons at equi-

librium temperature Th, and adiabatic cool electrons and positrons at equilibrium tem-

perature Tc governed by fluid equations of motion. The equilibrium number densities for

the hot and cool components are Nh and Nc, respectively.



54 CHAPTER 3. NONLINEAR WAVES

The normalized basic equations governing the dynamics of the cool-component of the

EP plasma are
∂njc
∂t

+
∂

∂x
(njcujc) = 0. (3.7)

∂ujc
∂t

+ ujc
∂ujc
∂x

+ 3σ
njc
N2
c

∂njc
∂x

= −zj
∂φ

∂x
, (3.8)

and the dynamics of the hot component is governed by the kappa distribution law. For

each of the hot species, the number density can take the form following that of Baluku

and Hellberg (2008),

neh = Nh

[
1− φ

κ− 3
2

]−κ+1/2

, (3.9)

nph = Nh

[
1 +

φ

κ− 3
2

]−κ+1/2

. (3.10)

For small φ we can introduce Taylor power series expansions to Eq. (3.9) and Eq. (3.10).

Thus,

neh = Nh(1 + c1φ+ c2φ
2 + c3φ

3 + ...). (3.11)

nph = Nh(1− c1φ+ c2φ
2 − c3φ

3 + ...). (3.12)

Here we have defined c1, c2 and c3 in Eq. (2.37), Eq. (2.38) and Eq. (2.39), respectively.

These sets of equations are closed by Poisson’s equation

∂2φ

∂x2
= neh − nph +

∑
j

−Zjnjc. (3.13)

Using Eq. (3.11) and Eq. (3.12) in Eq. (3.13), Poisson’s equation takes the form

∂2φ

∂x2
= 2Nhc1φ+ 2Nhc3φ

3 + ...+
∑
j

−Zjnjc. (3.14)

Reductive perturbation analysis

Now we can expand the dependent variables njc, ujc and φ near their equilibrium values

in a power series in ε as

njc = Nc + εnjc1 + ε2njc2 + ... (3.15)

ujc = εujc1 + ε2ujc2 + ... (3.16)
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φ = εφ1 + ε2φ2 + .... (3.17)

Note that φo = ujco = 0 and njco = Nc in the equilibrium state.

We obtain for the perturbed number density njc1 and velocity ujc1 to the first order

(see Appendix A for the full derivation)

njc1 =
ZjNc

V 2 − 3σ
φ1, (3.18)

ujc1 =
ZjV

V 2 − 3σ
φ1, (3.19)

where V is the normalized sound speed (acoustic speed), and satisfies the long wavelength

linear dispersion relation 2Nhc1 −
∑
j

Z2
j V

V 2 − 3σ

φ1 = 0. (3.20)

Since φ1 6= 0, Eq. (3.20) becomes

2Nhc1 −
∑
j

Z2
j V

V 2 − 3σ
= 0. (3.21)

In terms of the superthermal parameter κ, this equation yields

V 2 =

(
2κ− 3

2κ− 1

)
Nc

Nh
+ 3σ. (3.22)

From the expansion to order O(ε5/2) of the momentum equation (see A.19 in Appendix

A), we obtain

Nc
∂ujc2
∂ξ

= V
∂njc2
∂ξ

− V ∂njc1
∂ζ

− ∂(ujc1njc1)

∂ξ
. (3.23)

Multiplying both sides of the expansion to order O(ε5/2) of the momentum equation (A.21)

by Nc gives us

− V Nc
∂ujc2
∂ξ

+ NcV
∂ujc1
∂ζ

+ Ncujc1
∂ujc1
∂ζ

+ 3σ
∂njc2
∂ξ

+
3Tσ

Nc
njc1

∂njc1
∂ξ

= −ZjNc
∂φ2

∂ξ
.

(3.24)
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Comparison between Eq. (3.23) and Eq. (3.24) yields

(
V 2 − 3σ

) ∂njc2
∂ξ

= NcV
∂ujc1
∂ξ

+ V 2∂njc1
∂ζ

+ V
∂(njc1ujc1)

∂ζ
+Ncujc1

∂ujc1
∂ξ

+
3σ

Nc
njc1

∂njc1
∂ξ

+ ZjNc
∂φ2

∂ξ
. (3.25)

Using Eq. (3.18) and Eq. (3.19) in Eq. (3.25), one obtains that

∂njc2
∂ξ

=
2ZjNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ
+

3Z2
jNc

(
V 2 + σ

)
(V 2 − 3σ)3 φ1

∂φ1

∂ξ
+

ZjNc

(V 2 − 3σ)

∂φ2

∂ζ
. (3.26)

Taking the derivative of the expansion to order O(ε2) of Poisson’s equation in A.24 (see

Appendix A) by ξ gives

∑
j

Zj
∂njc2
∂ξ

= 2Nhc1
∂φ2

∂ξ
− ∂3φ1

∂ξ3
. (3.27)

Multiplying both sides of Eq. (3.26) by
∑

j Zj , we have

∑
j

Zj
∂njc2
∂ξ

= 2
∑
j

Z2
jNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ
+3
∑
j

Z3Nc

(
V 2 + σ

)
(V 2 − 3σ)3 φ1

∂φ1

∂ξ
+
∑
j

Z2
jNc

(V 2 − 3σ)

∂φ2

∂ξ
.

(3.28)

Comparison between Eq. (3.27) and Eq. (3.28), gives

∂3φ1

∂ξ3
=

2Nhc1 −
∑
j

Z2
jNc

V 2 − 3σ

 ∂φ2

∂ξ

−

2
∑
j

Z2
jNcV

2

(V 2 − 3σ)2

 ∂φ1

∂ζ
−

3
∑
j

Z3
jNc(V

2 + σ)

(V 2 − 3σ)3

φ1
∂φ1

∂ξ
. (3.29)

From Eq. (3.21), the coefficient of ∂φ2
∂ξ in Eq. (3.29) becomes zero. We can write Eq.

(3.29) as a KdV form

∂φ1

∂ζ
+Aφ1

∂φ1

∂ξ
+B

∂3φ1

∂ξ3
= 0 , (3.30)

where

A =

3
∑
j Z

3
jNc(V

2+σ)

(V 2−3σ)

2
∑

j Z
2
jNcV 2

and B =
1

2
∑
j Z

2
jNcV

2

(V 2−3σ)2

. (3.31)
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However, in general,

∑
j

Znj =


2 if n=even

0 if n=odd

(3.32)

With this property, the coefficient of the nonlinear term φ1
∂φ1
∂ξ , that is, A in Eq. (3.30)

vanishes. Therefore, finally, the KdV expression in Eq. (3.30) becomes

∂φ1

∂ζ
+B

∂3φ1

∂ξ3
= 0. (3.33)

This equation is purely a dispersive one without the nonlinear term. The reason for this

loss of nonlinearity is the anti-symmetry in the charge carried by positrons and electrons.

In order to avoid such a scenario we can include a higher order nonlinearity, which results

in the modified KdV equation (Watanabe, 1984).

3.1.2 The modified Korteweg de Vries (mKdV) equation

In order to allow for a higher degree of nonlinearity, we thus need to consider the mod-

ified Korteweg de Vries equation (Watanabe, 1984) with a different stretching, to obtain

quadratic and cubic nonlinear terms on an equal footing. Following the approach of Ver-

heest (1988), we thus have the following stretched coordinates

ξ = ε(x− V t) and ζ = ε3V t,

where V is the phase velocity normalized with respect to the hot species thermal speed.

In this case the nonlinear parameter β2 = k2λ2
D = O(ε2) . The above stretchings allow

for the incorporation of even higher wavenumber harmonics in the wavepackets, kλD ≈ ε,

as opposed to the KdV stretching which has β2 of order ε. The larger wavenumber

allows stronger wave dispersion, which for balance implies a greater degree of nonlinearity

(Baboolal, Bharuthram and Hellberg, 1988). So, from the above stretching, we have

∂

∂x
= ε

∂

∂ξ
and

∂

∂t
= −εV ∂

∂ξ
+ ε3V

∂

∂τ
. (3.34)
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3.1.3 Reductive perturbation method for mKdV analysis

Now we can expand the dependent variables njc, ujc and φ near their equilibrium values

in a power series in ε as

njc = Nc + εnjc1 + ε2njc2 + ε3njc3 + . . . (3.35)

ujc = εujc1 + ε2ujc2 + ε3ujc3 . . . (3.36)

φ = εφ1 + ε2φ2 + ε3φ3 . . . , (3.37)

which in this case are expanded up to O(ε3). We obtain to O(ε2) from B.31 and B.32 (see

Appendix B for the full derivation)

ujc1 =
ZjV

V 2 − 3Tc
φ1, (3.38)

njc1 =
ZjNc

V 2 − 3Tc
φ1, (3.39)

where V , the normalized sound speed, satisfies the long wavelength linear dispersion rela-

tion

2Nhc1 −
∑
j

Z2
jNc

V 2 − 3Tc
= 0. (3.40)

Eq. (3.38) and Eq. (3.39) are expressions for the first order nonlinear perturbations in u

and n.

To O(ε3) we obtain

njc2 =
ZjNc

V 2 − 3σ
φ2 +

3Z2
jNc

2 (V 2 − 3σ)3

(
V 2 + σ

)
φ2

1 (3.41)

ujc2 =
1

2
Z2
j

[
V (V 2 + 9Tc)

(V 2 − 3σ)3

]
φ2

1 +
ZjV

V 2 − 3σ
φ2. (3.42)

At O(ε4) we obtain from the continuity equation in terms of perturbed variables and

stretched coordinates in the wave frame (see B.19 in Appendix B)

V
∂njc2
∂ζ

− V ∂njc3
∂ξ

+ ujc1
∂njc2
∂ξ

+ ujc2
∂njc1
∂ξ

+ Nc
∂ujc3
∂ξ

+ njc1
∂ujc2
∂ξ

+ njc2
∂ujc1
∂ξ

= 0.

(3.43)



3.1. SMALL AMPLITUDE ANALYSIS 59

From the momentum equation at O(ε4)

− V
∂ujc3
∂ξ

+ V
∂ujc1
∂ζ

+
∂(ujc1ujc2)

∂ξ
+

3σ

Nc

∂njc3
∂ξ

+
3σ

N2
c

∂(njc1njc2)

∂ξ
= −Zj

∂φ3

∂ξ
. (3.44)

Eliminating ujc3 from Eq. (3.43), and using Eq. (3.38), Eq. (3.39), Eq. (3.41) and Eq.

(3.42), gives an equation for
∂njc3
∂ξ , which when substituted into O(ε3) of Poisson’s equation

(B.26), after partial differentiation with respect to ξ gives the modified Korteweg de Vries

(mKdV) equation:
∂φ1

∂ζ
+
b

a

∂φ3
1

∂ξ
+

1

a

∂3φ1

∂ξ3
= 0. (3.45)

This may be written as

∂φ1

∂ζ
+B

∂φ3
1

∂ξ
+ C

∂3φ1

∂ξ3
= 0 , (3.46)

where B = b/a and C = 1/a with

b =
2Nc

(V 2 − 3σ)2

(
V 2 + 3σ

(V 2 − 3σ)2
+

9σ(V 2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

)
− 2Nhc3 (3.47)

and

a =
4NcV

2

(V 2 − 3σ)2
. (3.48)

Thus, the dispersive term, coefficient C, in the mKdV equation is defined as

C =
(V 2 − 3σ)2

4NcV 2
.

Using Eq. (2.75), this equation reads

C =
Nc

4N2
h

[
2κ− 3

2κ− 1

]2
 1

Nc
Nh

[
2κ−3
2κ−1

]
+ 3σ

 .
Applying the definition,

Nc

Nh
= α and Nc +Nh = 1 =⇒ Nh =

1

α+ 1
and Nc =

α

α+ 1

the expression for C reads,

C =
α(α+ 1)

4

[
2κ− 3

2κ− 1

]2
 1

α
[

2κ−3
2κ−1

]
+ 3σ

 . (3.49)
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After rearrangement Eq. (3.47), takes the form

b =

[
Nc(5V

4 + 30V 2σ + 9σ2)−Nh(V 2 − 3σ)5c3

(V 2 − 3σ)5

]
. (3.50)

So, using Eq. (3.48) and Eq. (3.50), we then have

B =
b

a
=

[
Nc(5V

4 + 30V 2σ + 9σ2)−Nh(V 2 − 3σ)5c3

(V 2 − 3σ)5

] [
(V 2 − 3σ)2

4NcV 2

]
. (3.51)

Using an expression for normalized sound speed V , that has been obtained in Eq. (2.75),

in Eq. (3.51), we get

B = −
2 c3
c51

(NcNh )4 − 5 1
c21

(NcNh )2 − 60σ( 1
c1

)(NcNh )− 144σ2

4
(
Nc
Nh

1
c1

+ 3σ
)(

Nc
Nh

1
c1

)3 . (3.52)

Since we have already defined Nc/Nh = α, then the coefficient of the nonlinear term in a

mKdV equation becomes

B = −
2 c3
c51
α4 − 5α

2

c21
− 60σ( αc1 )− 144σ2

4
(
α
c1

+ 3σ
)(

α
c1

)3 . (3.53)

In terms of the kappa parameter κ, this equation is finally written as

B = −

(
16κ4−16κ3−48κ2+36κ+27
16κ4−32κ3+24κ2−8κ+1

)
α4 −

(
2κ−3
2κ−1

)2
15α2 −

(
2κ−3
2κ−1

)
180σα− 432σ2

12
[
(2κ−3

2κ−1)α+ 3σ
] [

(2κ−3
2κ−1)α

]3 . (3.54)

Note that the results in Eqs. (3.49) and (3.54) have reduced to Eqs. (3.53) and Eqs.

(3.54) of Gray (1998), respectively, for κ → ∞, in which the hot species was assumed to

follow the Maxwellian distribution.

3.1.4 Stationary solution of the mKdV equation

In order to obtain small amplitude soliton solutions to the mKdV equation

∂φ1

∂ζ
+B

∂φ3
1

∂ξ
+ C

∂3φ1

∂ξ3
= 0,

we define a stationary wave frame following Mace (1991) as

φ(ζ, ξ) = φ(ν) = φ(ξ − Uζ),
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where U is an incremental velocity of the soliton in the frame moving with the phase

speed. So with this,

∂φ

∂ζ
= −U dφ

dν
and

∂φ

∂ξ
=
dφ

dν
. (3.55)

For the sake of mathematical simplicity we have suppressed the subscript “1” in φ. Using

Eq. (3.55) in the mKdV equation above, we obtain that

U
dφ

dν
+B

dφ3

dν
+ C

d3φ

dν3
= 0. (3.56)

Integration can be done directly because Eq. (3.56) is a form of total derivative. It follows

that

−Uφ+Bφ3 + C
d2φ

dν2
= K, (3.57)

where K is the constant of integration. Multiplication of both sides of Eq. (3.57) by dφ

gives

−Uφdφ+Bφ3dφ+ C
d2φ

dν2
dφ = Kdφ. (3.58)

Integrating

−Uφ
2

2
+
Bφ4

4
+

1

2
C

(
dφ

dν

)2

= Kφ+D, (3.59)

where D is another constant of integration. The following boundary conditions must be

satisfied to obtain a satisfactory soliton solution,

φ,
dφ

dν
and

d2φ

dν2
→ 0 as ν →∞.

With this condition, K and D in Eq. (3.59) become zero, so that Eq. (3.59) takes the

form

−Uφ
2

2
+
Bφ4

4
+

1

2
C

(
dφ

dν

)2

= 0. (3.60)

Rearranging this,

dφ

dν
=
U

C
φ2 − B

2C
φ2.

It follows that

dφ

dν
= ±

(
U

C

)1/2

φ

[
1− Bφ2

2U

]1/2

. (3.61)
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By rearranging this one obtains that

dν = ±
(
C

U

)1/2 dφ

φ
[
1− Bφ2

2U

]1/2
. (3.62)

Integrating both sides of this, we have

ν = ±
(
C

U

)1/2 ∫ dφ

φ
[
1− Bφ2

2U

]1/2
. (3.63)

Using the following substitution

φ =

(
2U

B

)1/2

sechx, (3.64)

and using Eq. (3.63), we see that

1− Bφ2

2U
= 1− B

2U

(
2U

B
sech2x

)
= 1− sech2x.

This implies that

1− Bφ2

2U
= tanh2 x. (3.65)

Here we have used the following trigonometric identity,

1− sech2 x = tanh2 x.

Differentiating Eq. (3.64) with respect to x, one obtains

dφ

dx
=

(
2U

B

)1/2 d

dx
(sechx) = −

(
2U

B

)1/2

sechx tanhx. (3.66)

Using Eq. (3.64), Eq. (3.65) and Eq. (3.66) in Eq. (3.63) we find that

ν = ∓
(
C

U

)1/2 ∫
dx.

This implies that

ν = ∓
(
C

U

)1/2

x. (3.67)

From Eq. (3.64), we know that

x = sech−1

[(
B

2U

)1/2

φ

]
. (3.68)
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So, using Eq. (3.68) in Eq. (3.67), gives us

ν = ∓
(
C

U

)1/2

sech−1

[(
B

2U

)1/2

φ

]
.

From this equation we finally have a soliton solution for φ1 as

φ1 =

(
2U

B

)1/2

sech

[
±
(
U

C

)1/2

(ξ − Uζ)

]
. (3.69)

This is a soliton solution to the mKdV equation. Here U , ξ and ζ are velocity, space-like

and time-like coordinates in the wave frame, respectively. We recall that here,

B = −
2 c3
c51
α4 − 5α

2

c21
− 60σ( αc1 )− 144σ2

4
(
α
c1

+ 3σ
)(

α
c1

)3

C =
α(α+ 1)

4c2
1

(
1

α
c1

+ 3σ

)

c1 = (
κ− 1

2

κ− 3
2

)

c3 =
(κ− 1

2)(κ+ 1
2)(κ+ 3

2)

6(κ− 3
2)3

.

3.2 Arbitrary amplitude analysis

Anticipating stationary profile solitary waves moving at a constant speed, all the fluid

variables in the evolution Eq. (2.17), Eq. (2.18) and Eq. (2.20) are assumed to depend

on a single variable η = x−Mt (Verheest and Hellberg, 1999; Roychoudhury and Maitra,

2002), where M is the dimensionless normalized solitary wave propagation velocity scaled

by a fixed hot species speed vth (often referred to as the “Mach number”), x and t are

space and time coordinates of the solitary structure in the laboratory frame, respectively.

With ∂
∂x = d

dη ; ∂
∂t = −M d

dη all the variables depends on η. With these substitutions,

the normalized evolution equations (continuity, momentum and Poisson’s) becomes

−Mdnjc
dη

+
d

dη
(njcujc) = 0 (3.70)
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−Mdujc
dη

+ ujc
dujc
dη

+ 3σ
njc
N2
c

dnjc
dη

= −Zj
dφ

dη
(3.71)

d2φ

dη2
= nec + neh − npc − nph. (3.72)

Integrating Eq. (3.70) by using the boundary conditions njc = Nc; φ,
dφ
dη = 0, and ujc = 0

at η →∞, we get

ujc = M

(
1− Nc

njc

)
. (3.73)

Differentiating Eq. (3.73) with respect to η gives us

dujc
dη

= M
Nc

n2
jc

dnjc
dη

. (3.74)

Using Eq. (3.73) and Eq. (3.74) in Eq. (3.71), we obtain

−M2N
2
c

n3
jc

dnjc
dη

+ 3σ
njc
N2
c

dnjc
dη

= −Zj
dφ

dη
. (3.75)

Upon integration, Eq. (3.75) becomes

M2 N
2
c

2n2
jc

+ 3σ
n2
jc

2N2
c

= −Zjφ+K, (3.76)

where K is the constant of integration and it can be evaluated using the above boundary

conditions to get

K =
M2

2
+

3σ

2
.

With this substitution, Eq. (3.76) takes the form

M2

(
N2
c

n2
jc

− 1

)
+ 3σ

(
n2
jc

N2
c

− 1

)
= −Zj2φ. (3.77)

Rearranging of this gives

3σ

N2
c

n4
jc − (M2 + 3σ − Zj2φ)n2

jc +M2N2
c = 0.

This is a bi-quadratic equation which can be solved in n2
jc to get

n2
jc

N2
c

=
1

6σ

[
(M2 − Zj2φ+ 3σ)±

√
(M2 − Zj2φ+ 3σ)2 − 12M2σ

]
(3.78)

This equation has been obtained previously by many authors (Verheest and Hellberg,

1999; Verheest et al., 1996; Roychoudhury and Bhattacharrya, 1987). Some of them have
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used a numerical integration to obtain the corresponding pseudopotential. However, in

order to obtain an integrable form of njc in deriving the corresponding Sagdeev potential

analytically, we have followed the ideas of Ghosh et al. (1996) and written

njc
Nc

=
√
p±√q. (3.79)

Squaring both sides of Eq. (3.79), we have

n2
jc

N2
c

= p+ q ± 2
√
pq. (3.80)

Comparing Eq. (3.78) with Eq.(3.80), gives

(p+ q)± 2
√
pq =

1

6σ

[
(M2 − Zj2φ+ 3σ)±

√
(M2 − Zj2φ+ 3σ)2 − 12M2σ

]
.

By collecting like terms, the above equation will be split into the following forms

p+ q =

[
M2 − Zj2φ+ 3σ

]
6σ

(3.81)

and

2
√
pq =

√
(M2 − Zj2φ+ 3σ)2 − 12M2σ

6σ
. (3.82)

Squaring both sides of Eq. (3.82) gives us

4pq =
(M2 − Zj2φ+ 3σ)2 − 12M2σ

36σ2
. (3.83)

From Eq. (3.81) and Eq. (3.83), one obtains that

144σ2q2 − 24σ
(
M2 − Zj2φ+ 3σ

)
q +

[
(M2 − Zj2φ+ 3σ)2 − 12M2σ

]
= 0.

This is a quadratic equation in q so that it can be solved, to get

q =
(M2 − Zj2φ+ 3σ)± 2M

√
3σ

12σ
. (3.84)

Using Eq. (3.84) in place of q in Eq. (3.81), we have

p =
(M2 − Zj2φ+ 3σ)∓ 2M

√
3σ

12σ
. (3.85)
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Substituting Eq. (3.84) and Eq. (3.85) in Eq. (3.79), one obtains that

njc =
Nc

2
√

3σ

[√
(M2 − Zj2φ+ 3σ)∓ 2M

√
3σ ±

√
(M2 − Zj2φ+ 3σ)± 2M

√
3σ

]
.

(3.86)

This equation can also be written as

njc =
Nc

2
√

3σ

[√
(M ∓

√
3σ)2 − Zj2φ±

√
(M ±

√
3σ)2 − Zj2φ

]
. (3.87)

The ± sign in this equation indicates that there are two possible roots for each species.

However, the positive root is misleading in the boundary condition that njc → Nc when

the electrostatic potential φ is equal to zero. Therefore, we can reject the positive root

from the above solution so as to get a physically acceptable solution for the number density

at the boundaries. Thus, we can write Eq. (3.87) for each of the species as

nec =
Nc

2
√

3σ

[√
(M +

√
3σ)2 + 2φ−

√
(M −

√
3σ)2 + 2φ

]
(3.88)

and

npc =
Nc

2
√

3σ

[√
(M +

√
3σ)2 − 2φ−

√
(M −

√
3σ)2 − 2φ

]
. (3.89)

3.2.1 The generalized Sagdeev pseudopotential

To obtain fully nonlinear solutions for acoustic soliton, we can use the Sagdeev pseudopo-

tential method (Sagdeev, 1966) by substituting Eq. (3.9), Eq. (3.10), Eq. (3.88) and Eq.

(3.89) into Eq. (3.72). Hence,

d2φ

dη2
=

Nc

2
√

3σ

[√
(M +

√
3σ)2 + 2φ−

√
(M −

√
3σ)2 + 2φ

]
+Nh

[
1− φ

κ− 3
2

]−κ+1/2

− Nc

2
√

3σ

[√
(M +

√
3σ)2 − 2φ−

√
(M −

√
3σ)2 − 2φ

]
−Nh

[
1 +

φ

κ− 3
2

]−κ+1/2

. (3.90)

After multiplying this equation by dφ/dη, we can integrate with respect to η and obtain

an energy type equation for a classical unit mass particle moving in a conservative force

field, if one defines η as a time and φ as a position

1

2

(
dφ

dη

)2

+ Ψ(φ,M) = 0. (3.91)
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This is often called the Sagdeev equation. We have imposed the boundary conditions

φ0 = φ′0 = 0 at η = ±∞ in Eq. (3.90) in order to arrive at Eq. (3.91). The Sagdeev

pseudopotential Ψ(φ, µ) in Eq. (3.91) is given by

Ψ(φ,M) = −
∫ φ

0

Nc

2
√

3σ

[√
(M +

√
3σ)2 + 2φ−

√
(M −

√
3σ)2 + 2φ

]
dφ

+

∫ φ

0

Nc

2
√

3σ

[√
(M +

√
3σ)2 − 2φ−

√
(M −

√
3σ)2 − 2φ

]
dφ

−
∫ φ

0
Nh

[
1− φ

κ− 3
2

]−κ+1/2

dφ+

∫ φ

0
Nh

[
1 +

φ

κ− 3
2

]−κ+1/2

dφ. (3.92)

Note that d2φ
dη2

= −Ψ′(φ, µ), the prime denoting the derivative with respect to φ. After

integration, Eq. (3.92) take the form

Ψ(φ,M) =
Nc

6
√

3σ

[
2(M +

√
3σ)3 − 2(M −

√
3σ)3 +

(
[M −

√
3σ]2 − 2φ

)3/2
]

+
Nc

6
√

3σ

[(
[M −

√
3σ]2 + 2φ

)3/2
−
(

[M +
√

3σ]2 − 2φ
)3/2

−
(

[M +
√

3σ]2 + 2φ
)3/2

]

+Nh

2−

[
1− φ

κ− 3
2

] 3
2
−κ

−

[
1 +

φ

κ− 3
2

] 3
2
−κ
 . (3.93)

Using the definition in Eq. (2.79), and after some algebraic manipulation, Eq. (3.93) will

be written as

Ψ(φ,M) =
α

α+ 1

[
2(M2 + σ) +

1

6
√

3σ

{(
[M −

√
3σ]2 − 2φ

)3/2
+
(

[M −
√

3σ]2 + 2φ
)3/2

}]
− α

(α+ 1)6
√

3σ

[(
[M +

√
3σ]2 − 2φ

)3/2
+
(

[M +
√

3σ]2 + 2φ
)3/2

]

+
1

α+ 1

2−

[
1− φ

κ− 3
2

] 3
2
−κ

−

[
1 +

φ

κ− 3
2

] 3
2
−κ
 . (3.94)

Here we recall that α = Nc/Nh is the ratio of cool to hot species densities in equilibrium,

σ = Tc/Th is the temperature ratio of cool to hot species, M is the normalized solitary

wave speed in the laboratory frame and κ is the superthermal parameter describing the

hot species velocity distributions.
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The Sagdeev pseudopotential in Eq. (3.94) satisfies the soliton condition Ψ(0,M) = 0

and Ψ′(0,M) = 0, where the two terms in that equation are the contributions to the

pseudopotential, of cool adiabatic and hot kappa distributed species, respectively.

In Chapter 4, we will explore numerically the properties and characteristics of solitons

arising from the Sagdeev potential approach, as well as make a comparison with the re-

sults from the small amplitude mKdV theory.



Chapter 4

Results and discussions

In this chapter we will investigate numerically the solutions for both mKdV (Eq. (3.69))

and arbitrary amplitude (Eq. (3.94)) solitary waves which have been derived in Chapter

3.

4.1 Numerical results of the small amplitude analysis

As a first step we consider small amplitude waves. Using the reductive perturbation

method, the mKdV solution for a soliton profile has been obtained in Chapter 3 as

φ1 =

(
2U

B

)1/2

sech

[
±
(
U

C

)1/2

(ξ − Uζ)

]
.

Returning to the laboratory frame, we use the following change of variables

ξ = ε(x− V t) and ζ = ε3V t.

Hence,

φ1 =

(
2U

B

)1/2

sech

[
±
(
U

C

)1/2 (
εx− εV t− Uε3V t

)]
.

After some re-arrangement, this can be written as

φ1 =

(
2U

B

)1/2

sech

[
±
(
Uε2

C

)1/2 (
x− V t(1 + Uε2)

)]
.

69
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Using φ = εφ1, the above equation takes the form

φ =

(
2Uε2

B

)1/2

sech

[
±
(
Uε2

C

)1/2 (
x− V (1 + Uε2)t

)]
. (4.1)

We have assumed that the arbitrary amplitude solitary wave is stationary in the frame

η = x−Mt, so that from Eq. (4.1) we see that

M = V (1 + Uε2), (4.2)

which means
M

V
= 1 + Uε2 =⇒ Uε2 =

M

Ms
− 1, (4.3)

where Ms = V , that is the phase velocity of the wave form scaled by the hot species

thermal velocity (Eq. 2.75). Using Eq. (4.3) in Eq. (4.1), we can write an expression for

a soliton solution of the electrostatic potential pulse as

φ =

(
2(M −Ms)

MsB

)1/2

sech

[
±
(
M −Ms

MsC

)1/2

(x−Mt)

]
, (4.4)

where the dispersive coefficient C and the the nonlinear coefficient B in the mKdV equa-

tions have been defined in Eq. (3.49) and Eq. (3.54), respectively. Since the sech function

is even in x, we can omit ± sign in Eq. (4.4). Hence, we can write Eq. (4.4) finally as

φ =

(
2δM

MsB

)1/2

sech

[(
δM

MsC

)1/2

η

]
, (4.5)

where δM = M−Ms, in which, M and Ms are soliton pulse speed and the acoustic speed,

respectively, normalized to the hot species speed.

For a physically realistic thermal speed, the superthermal parameter κ > 3/2 (Mace

and Hellberg, 1995). With this condition, Ms and C are greater than zero in Eq. (2.75)

and Eq. (3.49), respectively. This implies that δM > 0 in Eq. (4.5) for a real soliton.

Hence, for the real amplitude of the soliton of electrostatic potential pulse, the dispersive

coefficient B > 0 in Eq. (4.5). With all these conditions, therefore, the model under

investigation supports both a positive or negative super-acoustic (M > Ms) mKdV elec-

trostatic potential excitation because of the symmetry of the model. On the other hand,
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from Eq. (4.5) one can also see that at the acoustic point, where M = Ms, the mKdV

soliton amplitude tends to zero, as expected.

Moreover, from Eq. (4.5) it is clear that the maximum amplitude φo =
(

2δM
MsB

)1/2
and the

width of the electrostatic potential pulse (soliton) w =
(
MsC
δM

)1/2
depends on the plasma

parameters (number density ratio α, superthermal parameter κ, temperature ratio σ)

through δM , the nonlinear coefficient B and the dispersive coefficient C which are com-

plicated functions of α, κ and σ and are listed in conjunction with Eq. (3.69). It can be

seen that as δM increases, the soliton amplitude increases with a square root dependence,

while the width w decreases similarly.

Next, we will investigate the mKdV solution (Eq. (4.5)) graphically to see the effect

of variations of various plasma parameters on the electrostatic potential excitation. To

generate different curves which will be represented in Fig. 4.2, for convenience, the limit-

ing values of α for the corresponding κ are determined from the chosen ratio of α/c1 = 0.3

(see the detailed discussions for this at the end of Chapter 2).

Before that, the region of parameters of α and κ which are determining the sign of the

nonlinear coefficient B in the mKdV equation when σ → 0 is represented in Fig. 4.1 along

with the curves for different chosen values of α/c1. The real electrostatic excitations will

exist only in the region (below red line in Fig. 4.1) where B > 0 as evidence from the

mKdV soliton solution in Eq. (4.5). In the region where B < 0 the electrostatic poten-

tial excitation will not propagate because of the imaginary root in the mKdV solution.

Therefore, all the parametric values of α and κ in the upcoming discussions of the mKdV

analysis are restricted to the region (coloured in light gray) below the red curve.

Pictorially, the effect of the variation of the cold-to-hot number density ratio α, the su-

perthermal parameter κ, the “true” Mach number M/Ms and the temperature ratio σ on

the solitary wave amplitude φ and its width w is displayed in Fig. 4.2. From Fig. 4.2 (a) it
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Figure 4.1: The regions of plasma parameters (α and κ) determining the sign of the non-

linear coefficient B in the mKdV equations when σ → 0. The solid red curve corresponds

to singular solution with an infinite amplitude of the electrostatic excitation.

can be seen that increasing α will result in the enhancement of both amplitude and width

of the solitary structure at fixed κ, temperature ratio σ and the true Mach number M/Ms.

On the other hand, the effect of superthermality has a very significant role on the ampli-

tude and width of the solitons. This effect is seen in Fig.4.2 (b), where the wave amplitude

and width of the solitary structures are reduced with the decrease of κ. From this figure

one can also observe that the amplitude of the electrostatic excitation decreases by about

the same amount as κ is reduced from 20 to 6, and 6 to 4, but shows much larger drop as

one goes from κ = 4 to 2. This implies that in the regime of very high superthermality

(lower κ), the amplitude of the excitation is reduced considerably at fixed M/Ms, σ and α.

The dependence of the amplitude and width of a soliton on M/Ms and σ are shown

in Fig. 4.2 (c) and Fig. 4.2 (d), respectively. It is seen that the wave amplitude (width)

increases (shrinks) with the increase of true Mach number, whereas both the amplitude
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and width are increased with the decrease of the temperature ratio σ.
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Figure 4.2: Figure shows the effect of variations of different plasma parameters on the

width w and amplitude φ of the hump-like electrostatic potential excitation found from

mKdV theory, using a fixed true Mach number, M/Ms.

In the above discussions we have considered fixed M/Ms (the true Mach number), that is,

the normalized solitary wave speed measured with respect to the acoustic speed Ms, to

study the effect of variations of different plasma parameters on the electrostatic excitation.

Now, we will turn to the investigation of mKdV solitary wave excitation moving with the

normalized speed M in a laboratory frame, as displayed in Fig. 4.3. From Fig. 4.3 (a)

it can be seen that increasing the number density ratio α will result in the reduction of

amplitude of the electrostatic excitation. This effect is in contrast to that observed in Fig.

4.2 (a), in which the amplitude was increasing with α.
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The dependence of the mKdV electrostatic potential excitation on various values of the

superthermal parameter κ is depicted in Fig. 4.3 (b). It is seen that for fixed M , σ and

α, decreasing κ leads to the enhancement of the amplitude and reduction of the width

of excitation, in contrast to that shown in Fig. 4.2 (b). However, this trend (increasing

of amplitude with decreasing of κ) does not continue as one goes from κ = 4 to κ = 2.

Rather, the amplitudes of the excitation for these two κ’s are close to equal as depicted in

the dashed and green curves of Fig. 4.3 (b). Moreover, we have carried out calculations

for κ = 1.6 as an academic exercise, and can confirm that the amplitude of the excitationΑ= 0.40Α= 0.36Α= 0.32
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Figure 4.3: Figure shows the effect of variations of different plasma parameters on the

width w and amplitude φ of the hump-like electrostatic potential excitation found from

mKdV theory, using a fixed normalized soliton speed, M .

dropped by a significant amount. And, the width of the structure is diminishing as su-

perthermality is increased (lower κ).
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The effect of variation of normalized electrostatic potential excitation speed M and the

temperature ratio σ on the amplitude of the excitation are displayed in Fig. 4.3 (c) and

(d), respectively. From Fig. 4.3(c) it is seen that the amplitude of the excitation increases

with the increase of M while its width shrinks. Similarly, the increasing of σ has a dimin-

ishing effect on the amplitude. These effects are consistent with the result shown in Eq.

(4.8) that will be discussed in the next section.

4.2 Numerical results of the arbitrary amplitude analysis

In this section we will investigate numerically the properties and characteristics of arbitrary

amplitude solitons using the Sagdeev pseudopotential, Eq. (3.94).

4.2.1 The existence domain of the soliton

Conditions for the existence of electrostatic solitary waves: The following condi-

tions have to be satisfied for the occurrence of a solitary wave solution in Eqs. (3.93-94),

(Sagdeev, 1966).

1. Ψ(φ = 0,M) = dΨ(φ,M)
dφ |φ=0 = 0 (at the origin), the overall charge charge neutrality

condition in an undisturbed state at η → ±∞.

2. d2Ψ(φ,M)
dφ2

|φ=0 < 0, so that the fixed point is unstable at the origin (i.e. Ψ(φ,M) has

maximum at the origin) and

3. Ψ(φ,M) < 0 for 0 < |φ| < |φ0|; where φ0 is the soliton amplitude.

The condition for the existence of a soliton can be found from the root of d
2Ψ(φ,M)
dφ2

|φ=0 < 0

(condition 2 above) in terms of the pulse velocity M (Mach number), which is normalized

with respect to the thermal speed vth of the hot species. Taking the second derivative of

Eq. (3.94) with respect to φ, the following equation will be obtained at φ = 0,

fl(M) =
α

M2 − 3σ
−
κ− 1

2

κ− 3
2

< 0. (4.6)



76 CHAPTER 4. RESULTS AND DISCUSSIONS

The lower limit of M will be obtained by solving Eq. (4.6), to get

M > Ms =

(
α

[
2κ− 3

2κ− 1

]
+ 3σ

)1/2

, (4.7)

where Ms is the lower limit of the Mach number (acoustic speed). This is the same as

the linear phase velocity, normalized to the hot component thermal velocity, found earlier

in Eq. (2.75) in the limit that the wavelength is very large (small k), and α = Nc/Nh.

Furthermore, it follows from Eq. (4.7), that the soliton speed M is greater than the

acoustic speed Ms for the existence of an electrostatic potential pulse in the model under

investigation. This implies that only super-acoustic solitons can exist in the model. This

is in agreement with the result obtained earlier from mKdV analysis in this chapter. For

the Maxwellian plasma, i.e, κ→∞, we recover Ms = (α+ 3σ)1/2, which was obtained by

Verheest et al. (1996).

For Eqs. (3.88) and (3.89), it follows that the number densities of the cold electrons

and positrons are only real if

Zj2φ ≤ (M −
√

3σ)2,

where Zj = +1 for positrons and Zj = −1 for electrons. Hence, the upper limit on the

electrostatic excitation potential which depends on the cold to hot temperature ratio σ

and the normalized speed M , will be

|φlm| ≤
(M −

√
3σ)2

2
(4.8)

where φlm is the critical value of the potential up to which the value of njc remains real,

and beyond this value of the electrostatic potential pulse amplitude njc becomes complex.

Further, from Eq. (4.8) it is seen that the maximum electrostatic potential φlm increases

with an increase of the Mach number M and it decreases with σ. Evidence of this effect

is seen in Fig. 4.3 (c) and Fig. 4.3 (d), respectively.

The upper limit Mach number M , can be found from the condition (3) above, that is

Ψ(φlm) ≤ 0, where φlm is the maximum value of φ for which the cold species number



4.2. NUMERICAL RESULTS OF THE ARBITRARY AMPLITUDE ANALYSIS 77

density remains real. It follows that, substituting Eq. (4.8) in place of φ in Eq. (3.94),

one obtains that

ful(M) =
1

1 + α

2−

(
1 +

(M −
√

3σ)2

3− 2κ

) 3
2
−κ

−

(
1 +

(M −
√

3σ)2

2κ− 3

) 3
2
−κ
+

α
[
−4× 33/4(M

√
σ)

3
2 + 6

√
3σ(M2 + σ)−

√
2((M2 + 3σ)3/2 − (M2 −

√
3σ)3)

]
3
√

3σ(1 + α)
≤ 0.

(4.9)

Solving Eq. (4.9) gives us the upper limit Mach number Mul(α, κ, σ). It follows that the

soliton existence domain is confined between the lower Mach number Ms (Eq. (4.7)) and

the upper Mach number Mul (Eq. (4.9)), that is, Ms < M < Mul, for the selected set of

parameter values of α, κ and σ, which satisfy the limit imposed by the model.

The Mach number domain [Ms,Mul] in which the soliton may exist can be depicted in

Fig. 4.4. It shows the existence regions of solitons in the parameter spaces [α,M ] and

[κ,M ] at the fixed temperature ratio σ. In each case, the solitons exist in the regions

that are bounded by the upper and lower curves of the same style/colour. Note that the

lower and upper bounding curves were obtained from the analytically derived Eq. (4.7)

and numerically solved Eq. (4.9), respectively, for various set of plasma parameters.

From the [α,M ] plane in Fig. 4.4 (a) one can see that the region of existence, which

is bounded by the lower and upper curves, has a cut-off at the critical value of α for a

given superthermal parameter κ value. For example, at κ = 1.6 (very high superthermal-

ity) it can be seen that solitons exist only in the narrow region bounded by the upper and

lower red curves. The cut-off for this region occurs at the critical value of the normalized

equilibrium number density ratio of hot to cold species α ≈ 2.42 (Nc ≈ 0.76), where the

upper and lower curves coincide with each other. This ratio provides an upper limit in α

for the existence of a soliton at the chosen values of κ = 1.6 and σ = 0.01.

As confirmation, this effect is shown in Fig. 4.5. It can be seen that at the critical value
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Figure 4.4: Figure shows the existence region of arbitrary amplitude solitons. The upper

figure shows the soliton existence domain in the (α,M) space, whereas the lower figure

shows the (κ,M) space. Solitons may exist between the lower and upper curves of the

same style/color.
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Figure 4.5: Sagdeev pseudopotential confirmation of the existence domain of solitary waves

for chosen parametric values of plasma in accordance with our model.

of α ≈ 2.42, the Sagdeev pseudopotential has a solution, but when α increases slightly to

2.5 we can observe a small hump near the origin on the red curve of Fig. 4.5. This implies

that the Sagdeev potential does not have a soliton solution for those particular values of

α, κ, σ and M . In other words, it means that a soliton cannot exist for those particular

values of the plasma parameters.

On the other hand, the range of α that supports solitons will be reduced when the temper-

ature ratio is increased, as seen in the blue dotted curve of Fig. 4.4 (a). Moreover, from

Fig. 4.4 (a) it is clearly seen that the soliton existence region bounded by the blue dotted

curves is wider than that of the existence region bounded by the red curves for the same

plasma parameter κ. This implies that increasing the temperature ratio will result in a

wider region of existence and reduction of the range of number density ratio over which

solitons are supported.

Interestingly, it shows that the high superthermality (low κ = 1.6) allows a higher number

density of the cold component, Nc = α
1+α ≈ 0.76 for α = 2.42, to support the solitary
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structure in the model. This value (Nc ≈ 0.76) is well beyond the cut-off value of Nc

(≈ 0.2) that was obtained by Verheest et al. (1996) during their investigation which as-

sumed the hot species to be Maxwellian. Although the excess superthermality (κ = 1.6)

permits more cold species to support solitons, it is seen that as the cold species density

goes to zero (via α→ 0), the existence region shrinks down to zero. This is because as the

cold species tends to zero the model will break down and will not support solitary waves

in the absence of the inertial cold species. Moreover, as shown in Fig. 4.4(a), at α → 0,

the cut-off Ms is related to σ, giving lower cutoff in M if σ is smaller.

It is observed that the range of α that supports solitary waves decreases as one moves

from high superthermality to the Maxwellian regime as depicted in Fig. 4.4(a). At fixed

α, increasing κ yields an increase in the limits of both upper and lower curves. This means

that the range of speeds of solitary waves increases when the superthermality decreases

(increasing κ) at fixed equilibrium cold to hot species number density ratio α.

The soliton existence domain is displayed in Fig. 4.4(b) in [κ,M ] space. It is seen that

the existence regions between different curves of the same style/color shrink down to zero

when the superthermality parameter κ is approaching the critical value, κ = 1.5. It can

also be observed that at fixed κ, the limits of both upper and lower curves increases when

the α value increased. This implies that increasing the cold species relative to the hot one

at fixed κ will result in increasing solitary wave speeds in the plasma model.

The solitary wave exists in a narrow region that is bounded by the lower and upper

curves with cut-offs around κ = 2 for a chosen value of α = 0.9. This means that when

the equilibrium number density of the cold component is larger than to that of its hot

counterpart (i.e., α > 1), the plasma can only support solitary waves for very high su-

perthermality (low κ) region, as shown by the red curves in Fig. 4.4 (b). On the other

hand, when κ approaches the Maxwellian regime, that is, κ → ∞, the existence regions

becomes wider before the curves show marked flattening for the lower values of α as dis-
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played in the dashed curves of Fig. 4.4 (b). Moreover, at fixed κ, increasing α yields larger

values of M as seen in Fig. 4.4 (b).

The dependence of the soliton amplitudes φ on α and κ for various values of soliton

speed M and the true Mach number M/Ms is displayed in Fig. 4.6. From Fig. 4.6 (a)
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Figure 4.6: The dependence of amplitude on α and κ for various values of M and M/Ms.

it can be seen that at fixed Mach number M , κ and σ, the amplitude of the electrostatic

potential pulse decreases as the number density ratio α is increased. It can also seen that

the ranges of α over which solitons can be found are fairly similar for each curve although

the cut-offs in soliton amplitude occur at different values of α. Moreover, at fixed α the

amplitude of the soliton increases with increasing Mach number M . For a given ampli-
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tude, the solitons are seen to have increasing Mach number for increasing α. From this

figure one can also see that there is a slight flattening of the curves at lower values of α

before the cold species density cut-off has been reached.

In Fig. 4.6 (b) the dependence of soliton amplitude on the superthermal parameter κ

is displayed for various M for fixed α and σ. It is seen that the amplitude of the soliton

decreases as κ increases. That is, high superthermality (lower κ) enhances the amplitude

of the soliton. For the larger values of M , the soliton exists over a wider range of κ (red

curve on Fig. 4.6 (b)). Conversely, the range of κ over which the soliton will exist decreases

with decreasing M (blue dashed curve on Fig. 4.6 (b)) at fixed α and σ. At constant κ the

amplitude increases as the Mach number M increases. For a given amplitude of solitons,

M increases with κ.

On the above discussion, the soliton speed M was scaled with respect to the hot species

thermal speed vth. Hence, the effects of κ, α and σ on the acoustic speed have not been

taken into account. To correct that, we have also measured the normalized soliton speed

M (Mach number) relative to the true acoustic speed Ms to see the effect of M/Ms (the

true Mach number) on the solitary amplitude, following the ideas of Baluku and Hellberg

(2011).

Using that idea, from Fig. 4.6 (c) one can see that the soliton amplitude increases mono-

tonically with increasing number density ratio α for fixed true Mach number M/Ms and

temperature ratio σ. This is the opposite effect to that observed in Fig. 4.6 (a). Moreover,

from each of the curves it is seen that there are different cut-off points where solitons no

longer exist for given parametric values of α at chosen values of M/Ms (Fig. 4.6 (c)).

At fixed α, the amplitude of the soliton increases with increasing M/Ms. For given φ,

the true Mach number decreases with the increasing of α. From Fig. 4.6 (c) it is also

seen that solitons are found over a smaller range of α as the true Mach number is increased.
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The dependence of φ on κ for a given true Mach number at fixed α and σ is displayed in

Fig. 4.6 (d). It is shown that the amplitude increases with κ before the curves exhibit

marked flattening. At fixed κ the amplitude increases with true Mach number. From the

figure it is also observed that the increased superthermality (lower κ) reduces the ampli-

tude of the soliton at fixed M/Ms and σ. This is contrary to the effect observed in Fig.

4.6 (b) in which the soliton amplitude was decreasing under these circumstances.

The effect of the variation of κ and α on the soliton amplitude φ at fixed Mach num-

ber and temperature ratio σ is displayed in Fig. 4.7. The upper panel of this figure shows

the dependence of φ on α and κ at fixed Mach number M , while the lower panel displays

the same parametric effects at the fixed true Mach number M/Ms. From Fig. 4.7 (a) one

can see that the soliton amplitude has a constant value of about 0.15 for lower values of α

for both κ=2 and 6. However, this amplitude does not remain constant throughout, but

declines with increasing α until the cut-offs occur.

From Fig. 4.7 (a) it is also seen that the range of α over which solitons will be found

decreases as κ goes to Maxwellian regime. On the other hand, it is again seen that soli-

tons are supported over a wider range of α for lower κ (high superthermality) shown by

the dashed curve of Fig. 4.7 (a). This is in agreement with limits imposed by the model

as discussed earlier at the end of Chapter 2. The variation of φ with κ for various values

of α at fixed M and σ is depicted in Fig. 4.7 (b). It is observed that the amplitude de-

creases with increasing κ for a given α. For larger α, soliton are supported over a shorter

range of κ, whereas they may occur over a wider range of κ when α is smaller. Note that,

each of the curves has a different cut-off because of the cold species number density cut-off.

The variations of φ with α and κ, respectively, at the fixed true Mach number M/Ms and

temperature ratio σ are depicted in Fig. 4.7 (c) and Fig. 4.7 (d). It is observed that the

amplitudes of solitons increase sharply with α as shown in Fig. 4.7 (c), but solitons are

supported over a wider range of α for higher superthermality as displayed in the dashed
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Figure 4.7: The dependence of the solitary wave amplitude φ on κ and α for fixed soliton

speed, M (upper panels) and fixed Mach number, M/Ms (lower panels).
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curve of Fig. 4.7 (c). On the other hand, it is seen that for larger κ solitons exist over a

narrower range of α. From Fig. 4.7 (d) it is seen that the amplitudes of solitons increase

initially with κ before the curves marked flattening as the α values are getting smaller.

One can also observe that the range of κ over which solitons will be supported is reduced

with increasing α, as discussed earlier.

Fig. 4.8 shows the dependence of the solitary wave amplitude φ on Mach number M

for various values of the number density ratio α and superthermal parameter κ. Fig. 4.8

(a) displays the effect of variation of α on φ at fixed κ and temperature ratio σ. It shows

that the solitary wave amplitude increases monotonically with the increase of M . However,

the range of M that supports solitons is slightly reduced when α is larger. Similarly, the

dependence of solitary wave amplitude on M for various values of κ is displayed in Fig. 4.8

(b). It is seen that the amplitude of the solitary wave increases when the superthermality

effect increases at the fixed M . Moreover, from the dashed curve of Fig. 4.8 (b) it can be

seen that solitons are supported over a range of M that is slightly wider as the κ value is

getting smaller.Α= 0.4Α= 0.36Α= 0.32 Κ= 4Σ= 0.0001
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(b) The effect of variation in κ on the amplitude

φm of the soliton at fixed α and σ.

Figure 4.8: Figure shows the variation of φm with Mach number M for different values of

α and κ.
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The effect of the true Mach number M/Ms on the solitary amplitude φm is displayed

in Fig. 4.9 for various values of α and κ. It is seen that the solitary wave amplitude is

increasing monotonically with the increase of M/Ms before the cut-offs are reached for

each of the curves. The amplitude increases slightly with the increase of α at the fixed

value of M/Ms (Fig. 4.9 (a)). In the same fashion, the effect of variation of superther-Α= 0.4Α= 0. 36Α= 0.32Κ= 4Σ= 0.0001
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(b) The effect of variation in κ on the amplitude

φm of the soliton at fixed α and σ .

Figure 4.9: Figure shows the variation of the amplitude of soliton of the electrostatic

potential φm with “true“Mach number M
Ms

.

mality parameter κ on the solitary wave amplitude is seen in Fig. 4.9 (b). It is observed

that the amplitude of the wave is decreasing with κ at the fixed M/Ms. However, solitons

exist over the relatively wider range of M/Ms when the effect of superthermality increases

(lower kappa).

The dependence of the soliton amplitude on δM (that is, M −Ms) is displayed in Fig.

4.10. The effect of variation in α on soliton amplitude φ at fixed κ and σ is shown in

Fig. 4.10 (a). It can be seen that the range of δM over which the soliton can be found

increases with α very slightly before the cut-off is reached. Moreover, the amplitude of

the soliton increases with α at the fixed δM . As expected, at M = Ms the amplitude

of the soliton tends to zero. This result is in agreement with the mKdV analysis. So, it
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confirmed that the solitons are superacoustic in our model and they vanish when M = Ms.

From Fig 4.10 (b) it can be seen that the amplitude of the soliton increases slightly

with the increasing of κ at the fixed δM . The range of δM over which the soliton can be

supported increases with κ. Α= 0.30

Α= 0.35
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0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M - Ms

Φ m
(a) The dependence of φ on M −Ms at the fixed

α and σ for various κ.

Κ= 100Κ= 6Κ= 4
Α= 0.3Σ= 0.0001

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M - Ms

Φ m
(b) The dependence of φ on M −Ms at the fixed

κ and σ for various α.

Figure 4.10: The variation of φm with M −Ms for various values of α and κ.

4.2.2 Comparison between mKdV and arbitrary amplitude results

Fig. 4.11 shows the comparison between small amplitude (mKdV) analysis and an arbi-

trary amplitude (Sagdeev) soliton solution in (M −Ms, φm) space. Closer examination

reveals that both mKdV and arbitrary amplitude solutions agreed for small φm, where the

difference between the Mach number M (normalized solitary wave speed) and the acoustic

speed Ms is small. This confirms that the mKdV theory is valid for smaller amplitudes

and where the speed of solitary waves is closer to that of the acoustic speed. On the other

hand, from Fig. 4.11 (b) it can be seen that increased superthermality (through lower κ)

suppresses the amplitude of the solitary waves in both mKdV and Sagdeev solutions at

the fixed δM (M −Ms). Most importantly, the mKdV theory does not incorporate cut-

offs although it shows a good correlation with arbitrary amplitude theory at low soliton

amplitudes and Mach numbers.
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(a) Comparison between mKdV and Sagdeev the-

ory for different α at the fixed κ and σ.
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Figure 4.11: Comparison between the small amplitude and arbitrary amplitude results.



Chapter 5

Conclusion

5.1 Summary

In this thesis we have studied linear and nonlinear electrostatic waves in electron-positron

plasmas consisting of hot electrons and positrons which were created by a primary plasma

production process, and cool electrons and positrons which were created by a secondary

plasma production process in the pulsar magnetosphere. The hot and cool species are

found at the hot temperature Th (number density Nh) and at the cool temperature Tc

(number density Nc), respectively. The dynamics of cool species are governed by non-

relativistic multi-fluid equations of motion, whereas those of the hot species are assumed

to follow a kappa velocity distribution law. This is an extension of the work of Verheest

et al. (1996) in that it considers the effects of excess superthermal particles in the hot

species distributions, as opposed to the Maxwell-Boltzmann distribution used by them.

We initially investigated linear electrostatic waves in related simple plasma models. For

each of these we have derived linear dispersion relations. First, we considered a simple

electron-positron plasma model comprising of isothermal electrons and positrons. As ex-

pected, this model does not support waves. A plasma consisting of inertial cool electrons

and positrons, both at temperature Tc, gave rise to a plasma-like wave for small k, but no
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acoustic wave. Next we considered a plasma comprising of hot kappa electrons found at

Th and cool adiabatic positrons at Tc. Although an acoustic wave was found, this model

is rejected, because of the asymmetry between the electrons and positrons, bearing in

mind the symmetry of the pair creation mechanism. A three-component model, consisting

of cold inertial electrons and positrons, together with a component of energetic kappa-

distributed positrons at temperature Th similarly lead to a to a linear dispersion relation

of acoustic form, but, too, suffer from electron-positron asymmetry.

We finally investigated a plasma model that we are mainly concerned with in this thesis,

consisting of hot electrons and positrons at Th (number density Nh), and cool electrons and

positrons at Tc (number density Nc). An acoustic wave was found, the dispersion relation

being reminiscent of that of the electron-acoustic wave. Moreover, we have found that a

non-Maxwellian plasma has a decreased phase velocity compared to that of a Maxwellian

plasma as found by Verheest et al. (1996). On the other hand, as the hot species num-

ber density tends to zero, the plasma starts to support a plasma-like wave for smaller k.

However, this analysis is not valid as the model assumption (i.e., vtc � vφ � vth) breaks

down. We have set out restrictions of the model on the available range of the density ratio

α = Nc/Nh and represented them graphically.

To study nonlinear solitary wave structures in our four-component symmetric electron-

positron plasma model we have used two approaches. These are small and arbitrary

amplitude analysis, using KdV and Sagdeev potential approaches, respectively. In the

small amplitudes approach, the nonlinearity term in the KdV equation vanishes. To avoid

such a scenario we have employed the mKdV approach which incorporates more nonlin-

earity terms in the reductive perturbation technique, and then found a standard soliton

solution from the mKdV equation that governs small amplitude solitary waves.

To investigate arbitrary amplitude solitary wave structures in our model we have used

the Sagdeev pseudopotential approach. In order to obtain an expression for the number



density of the cool components, that would be easily integrable analytically in finding the

corresponding Sagdeev potential, we have used the Ghosh et al. (1996) approach. Using

numerical analysis for the analytical results of Sagdeev potential, individual solitons were

plotted to observe the effect of variations of different plasma parameters on the solitary

wave amplitude.

Interestingly, it was found that high superthermality (lower kappa) permits solitary struc-

tures to be supported by plasmas with a larger cool species fraction than is the case for

Maxwellian hot species, the range of Nc/Nh going well beyond the upper limit imposed by

Verheest et al. (1996) for the Maxwellian hot species. In other words, solitons exist over

a wider range of cool-to-hot species number density ratio α if the excess of superthermal

particles is increased. Moreover, at fixed “Mach number” M , measured relative to an

arbitrary normalizing speed, superthermality parameter κ and temperature ratio σ, it was

found that the solitary wave amplitude decreases with increasing α. On the other hand,

at fixed “true” Mach number M/Ms, κ and σ, the opposite was observed, that is, the am-

plitude of the structure increases with increasing α. Soliton amplitudes were observed to

decrease as superthermality was decreased (by increasing κ) at fixed α and M . However,

at fixed M/Ms low κ values yield larger amplitudes than found for higher kappa values

and hence, Maxwellian hot species.

We also conducted a comparison between the mKdV and arbitrary amplitude calcula-

tions. We found that, as expected, the two theories agreed for lower amplitude and if

the difference between the Mach number M and the acoustic speed Ms is small. Most

importantly, the mKdV theory does not incorporate cut-offs although it shows a good

correlation with arbitrary amplitude theory at low soliton amplitude and Mach numbers.
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Appendix A

Derivation of KdV equation

The normalized basic equations governing the dynamics of the cool-components of the EP

plasma will be given by
∂njc
∂t

+
∂

∂t
(njcujc) = 0, (A.1)

∂ujc
∂t

+ ujc
∂ujc
∂x

+ 3σ
njc
N2
c

∂njc
∂x

= −zj
∂φ

∂x
. (A.2)

The hot component is governed by the kappa distribution law. For each of the hot species,

the number density can take the form

neh = Nh

[
1− φ

κ− 3
2

]−κ+1/2

(A.3)

nph = Nh

[
1 +

φ

κ− 3
2

]−κ+1/2

. (A.4)

For small φ we can introduce a Taylor power series expansion to (A.3) and (A.4), giving

neh = Nh(1 + c1φ+ c2φ
2 + c3φ

3 + ...) (A.5)

nph = Nh(1− c1φ+ c2φ
2 − c3φ

3 + ...), (A.6)

where c1, c2, and c3 are defined in Eq. (2.37), Eq. (2.38) and Eq. (2.39), respectively.

The above set of equations are coupled by Poisson’s equation:

∂2φ

∂x2
= neh − nph +

∑
j

−Zjnjc (A.7)
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Using (A.5) and (A.6) into (A.7), Poisson’s equation can take the form

∂2φ

∂x2
= 2Nhc1φ+ 2Nhc3φ

3 + ...+
∑
j

−Zjnjc. (A.8)

Coordinate stretching for KdV analysis

Following Verheest (1988) we can have the following coordinate stretching for KdV anal-

ysis:

ξ = ε1/2(x− V t), ζ = ε3/2V t, (A.9)

where ε, ξ and ζ are the parameters that measures the smallness of the non-linearity, space

like and time-like quantities in the wave frame, respectively. Hence from (A.9), we have

∂

∂x
= ε3/2 ∂

∂ξ
(A.10)

∂

∂t
= −V ε1/2 ∂

∂ξ
+ ε3/2 ∂

∂ζ
. (A.11)

Reductive perturbation analysis

Now we can expand the dependent variables njc, ujc and φ near their equilibrium val-

ues in a power series in ε as

njc = Nc + εnjc1 + ε2njc2 + ... (A.12)

ujc = εujc1 + ε2ujc2 + ... (A.13)

φ = εφ1 + ε2φ2 + .... (A.14)

Note that φo = ujco = 0 and njco = Nc in the equilibrium state. So that, using (A.10)

and (A.11) into (A.1), (A.2) and (A.8), we have

−ε1/2V
∂njc
∂ξ

+ ε3/2V
∂njc
∂ζ

+ ε1/2∂(njcujc)

∂ξ
= 0 (A.15)

− ε1/2V
∂ujc
∂ξ

+ ε3/2V
∂ujc
∂ζ

+ ujcε
1/2∂ujc

∂ξ
+

3σ

N2
c

ε1/2njc
∂njc
∂ξ

= −Zjε1/2∂φ

∂ξ
(A.16)
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ε
∂2φ

∂ξ2
= 2Nh(c1φ+ c3φ

3 + ...)−
∑
j

Zjnjc. (A.17)

Using (A.12), (A.13) and (A.14) into (A.15), (A.16) and (A.17), respectively, and after

some algebra, the following set of equations will be obtained:

Continuity equation:

− ε3/2V
∂njc1
∂ξ

− ε5/2V
∂njc2
∂ξ

+ · · ·+ ε5/2V
∂njc1
∂ζ

+ ε7/2V
∂njc2
∂ζ

+ · · ·+ ε3/2NC
∂ujc1
∂ξ

+ε5/2NC
∂ujc2
∂ξ

+ · · ·+ε5/2njc1
∂ujc1
∂ξ

+ε7/2njc1
∂ujc2
∂ξ

+ · · ·+ε7/2njc2
∂ujc1
∂ξ

+ε9/2njc2
∂ujc2
∂ξ

+ · · ·+ ε5/2ujc1
∂njc1
∂ξ

+ ε7/2ujc1
∂njc2
∂ξ

+ · · ·+ ε7/2ujc2
∂njc1
∂ξ

+ ε9/2ujc2
∂njc2
∂ξ

+ · · · = 0

(A.18)

Momentum equation:

− ε3/2V
∂ujc1
∂ξ

− ε5/2V
∂ujc2
∂ξ

+ · · ·+ ε5/2V
∂ujc1
∂ζ

+ ε7/2V
∂ujc2
∂ζ

+ · · ·+ ε5/2ujc1
∂ujc1
∂ξ

+ ε7/2ujc1
∂ujc2
∂ξ

+ · · ·+ ε5/2ujc2
∂ujc1
∂ξ

+ ε9/2ujc2
∂ujc2
∂ξ

+ . . .

+
3TC
Nc

ε3/2∂njc1
∂ξ

+
3σ

Nc
ε5/2∂njc2

∂ξ
+ · · ·+ 3σ

N2
c

[ε5/2njc1
∂njc1
∂ξ

+ ε7/2njc1
∂njc2
∂ξ

+ . . .

+ ε7/2njc2
∂njc1
∂ξ

+ ε9/2njc2
∂njc2
∂ξ

+ . . . ] = −Zjε3/2∂φ1

∂ξ
− Zjε5/2∂φ2

∂ξ
+ . . . (A.19)

Poisson’s equation:

ε2∂
2φ1

∂ξ2
+ ε3∂

2φ2

∂ξ2
+ · · · = 2Nhc1(εφ1 + ε2φ2 + . . . )

+ 2Nhc3(ε3φ3
1 + 3ε4φ2

1φ2 + 3ε5φ1φ
2
2 + ε6φ3

2 + . . . )− ΣjZj(Nc + εnjc1 + ε2njc2 + ...).

(A.20)

Setting the coefficients of like powers of ε equal to zero, the following set of differential

equations are obtained:

Continuity equation (i.e., from (A.18))

O(ε3/2) : −V ∂njc1
∂ξ

+Nc
∂ujc1
∂ξ

= 0 (A.21)

95



O(ε5/2) : −V ∂njc2
∂ξ

+ V
∂njc1
∂ζ

+Nc
∂ujc2
∂ξ

+ njc1
∂ujc1
∂ξ

+ ujc1
∂njc1
∂ξ

= 0 (A.22)

Momentum equation (i.e., from (A.19))

O(ε3/2) : −V ∂ujc1
∂ξ

+
3σ

Nc

∂njc1
∂ξ

= −Zj
∂φ1

∂ξ
(A.23)

O(ε5/2) : −V ∂ujc2
∂ξ

+ V
∂ujc1
∂ζ

+ ujc1
∂ujc1
∂ζ

+
3σ

Nc

∂njc2
∂ξ

+
3σ

N2
c

njc1
∂njc1
∂ξ

= −Zj
∂φ2

∂ξ

(A.24)

Poisson’s equation (i.e., from (A.20))

O(ε0) :
∑
j

ZjNc = 0 (A.25)

O(ε1) : 2Nhc1φ1 − ΣjZjnjc1 = 0 (A.26)

O(ε2) :
∂2φ1

∂ξ2
= 2Nhc1φ2 − ΣjZjnjc2. (A.27)

After integration, (A.21) takes the form

njc1 =
Nc

V
ujc1 =⇒ ujc1 =

V

Nc
njc1. (A.28)

Integrating (A.23), gives

−V ujc1 +
3σ

Nc
njc1 = −Zjφ1. (A.29)

Substituting (A.28) in (A.29), we get

njc1 =
ZjNc

V 2 − 3σ
φ1 (A.30)

ujc1 =
ZjV

V 2 − 3σ
φ1. (A.31)

Using (A.30) in (A.26), we have2Nhc1 −
∑
j

Z2
jNc

V 2 − 3σ

φ1 = 0. (A.32)

Since φ1 6= 0, it follows that its coefficient is equal to zero. Hence,

2Nhc1 −
∑
j

Z2
jNc

V 2 − 3σ
= 0, (A.33)
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which implies that

V 2 =
Nc

Nhc1
+ 3σ. (A.34)

In terms of the superthermal parameter κ, (A.24) can be written as

V 2 =

(
2κ− 3

2κ− 1

)
Nc

Nh
+ 3σ. (A.35)

By re-arranging (A.22), we obtain

Nc
∂ujc2
∂ξ

= V
∂njc2
∂ξ

− V ∂njc1
∂ζ

− ∂(ujc1njc1)

∂ξ
. (A.36)

Multiplying both sides of (A.24) with Nc, we have

− V Nc
∂ujc2
∂ξ

+ NcV
∂ujc1
∂ζ

+ Ncujc1
∂ujc1
∂ζ

+ 3σ
∂njc2
∂ξ

+
3Tσ

Nc
njc1

∂njc1
∂ξ

= −ZjNc
∂φ2

∂ξ
.

(A.37)

Using (A.36) in (A.37), gives

(
V 2 − 3σ

) ∂njc2
∂ξ

= NcV
∂ujc1
∂ξ

+V 2∂njc1
∂ζ

+V
∂(njc1ujc1)

∂ζ
+Ncujc1

∂ujc1
∂ξ

+
3σ

Nc
njc1

∂njc1
∂ξ

+ZjNc
∂φ2

∂ξ
.

(A.38)

Applying (A.30) and (A.31) into (A.38), we obtain

∂njc2
∂ξ

=
2ZjNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ
+

3Z2
jNc

(
V 2 + σ

)
(V 2 − 3σ)3 φ1

∂φ1

∂ξ
+

ZjNc

(V 2 − 3σ)

∂φ2

∂ζ
. (A.39)

By taking the derivative of (A.27) with respect to ξ one will have∑
j

Zj
∂njc2
∂ξ

= 2Nhc1
∂φ2

∂ξ
− ∂3φ1

∂ξ3
. (A.40)

Multiplying both sides of (A.39) by
∑

j Zj , we have

∑
j

Zj
∂njc2
∂ξ

= 2
∑
j

Z2
jNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ
+3
∑
j

Z3Nc

(
V 2 + σ

)
(V 2 − 3σ)3 φ1

∂φ1

∂ξ
+
∑
j

Z2
jNc

(V 2 − 3σ)

∂φ2

∂ξ
.

(A.41)

Comparison between (A.40) and (A.41) gives us

∂3φ1

∂ξ3
=

2Nhc1 −
∑
j

Z2
jNc

V 2 − 3σ

 ∂φ2

∂ξ
−

2
∑
j

Z2
jNcV

2

(V 2 − 3σ)2

 ∂φ1

∂ζ
−

3
∑
j

Z3
jNc(V

2 + σ)

(V 2 − 3σ)3

φ1
∂φ1

∂ξ
.

(A.42)
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From (A.33) we already know that the coefficient of ∂φ2
∂ξ in (A.42) is zero. Therefore,

(A.42) finally takes a KdV form as

∂φ1

∂ζ
+Aφ1

∂φ1

∂ξ
+B

∂3φ1

∂ξ3
= 0 . (A.43)

Here

A =

3
∑
j Z

3
jNc(V

2+σ)

(V 2−3σ)

2
∑

j Z
2
jNcV 2

and B =
1

2
∑
j Z

2
jNcV

2

(V 2−3σ)2

. (A.44)

However, in general, ∑
j

Znj =


2 if n=even

0 if n=odd

(A.45)

With this property, the coefficient of the nonlinear term φ1
∂φ1
∂ξ , that is, A = 0, in (A.43).

Therefore, Eq. (A.43) becomes

∂φ1

∂ζ
+B

∂3φ1

∂ξ3
= 0, (A.46)

and is not a KdV equation.
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Appendix B

Derivation of mKdV equation

The dynamics of the cold components of EP plasma are governed by the fluid equations

(normalized continuity and momentum equations):

Normalized continuity equation

∂njc
∂t

+
∂(njcujc)

∂t
= 0, (B.1)

Normalized momentum equation

∂ujc
∂t

+ ujc
∂ujc
∂x

+ 3σ
njc
N2
c

∂njc
∂x

= −zj
∂φ

∂x
. (B.2)

The hot component is governed by the kappa distribution law. For each of the hot species,

the number density can take the form (normalized)

neh = Nh

[
1− φ

κ− 3
2

]−κ+1/2

nph = Nh

[
1 +

φ

κ− 3
2

]−κ+1/2

.

For small φ these equations can be expanded using a Taylor power series law to get

neh = Nh(1 + c1φ+ c2φ
2 + c3φ

3 + ...) (B.3)

nph = Nh(1− c1φ+ c2φ
2 − c3φ

3 + ...). (B.4)
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These equations are coupled by Poisson’s equation

∂2φ

∂x2
= neh − nph +

∑
j

−Zjnjc. (B.5)

Substituting (B.3) and (B.4) into (B.5), gives

∂2φ

∂x2
= 2Nh(c1φ+ c3φ

3 + . . . ) +
∑
j

−Zjnjc. (B.6)

Coordinate stretching for mKdV analysis

In order to allow for the higher degree of symmetry, we thus need to consider the mod-

ified Korteweg de Vries equation (Watanabe, 1984) with a different stretching to obtain

quadratic and cubic nonlinear terms on an equal footing. Following the approach of Ver-

heest (1988), we thus have the following stretched coordinates

ξ = ε(x− V t) and ζ = ε3V t .

From this stretching, we have

∂

∂x
= ε

∂

∂ξ
and

∂

∂t
= −εV ∂

∂ξ
+ ε3V

∂

∂τ
. (B.7)

Reductive perturbation

Expanding the dependent variables njc, ujc and φ near their equilibrium values in a power

series in ε gives

njc = Nc + εnjc1 + ε2njc2 + ε3njc3 + . . . (B.8)

ujc = εujc1 + ε2ujc2 + ε3ujc3 . . . (B.9)

φ = εφ1 + ε2φ2 + ε3φ3 . . . . (B.10)

Using (B.7) into (B.1), (B.2) and (B.6) we will have the following set of equations in terms

of stretched coordinates:

Continuity equation

−εV ∂njc
∂ξ

+ ε3V
∂njc
∂ζ

+ ujcε
∂njc
∂ξ

+ njcε
∂ujc
∂ξ

= 0 (B.11)
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Momentum equation

−εV ∂ujc
∂ξ

+ ε3V
∂ujc
∂ζ

+ ujcε
∂ujc
∂ξ

+
3σ

N2
C

εnjc
∂njc
∂ξ

= −Zjε
∂φ

∂ξ
(B.12)

Poisson’s equation

ε3∂
2φ

∂ξ2
= 2Nh(c1φ+ c3φ

3 + ...) +
∑
j

−Zjnjc. (B.13)

Using (B.8), (B.9) and (B.10) into (B.11), (B.12) and (B.13), respectively, we will have

the following set of equations in terms of perturbed plasma parameters :

continuity equation

−ε2V
∂njc1
∂ξ
−ε3V

∂njc2
∂ξ
−ε4∂njc3

∂ξ
+· · ·+ε4V

∂njc1
∂ζ

+ε5V
∂njc2
∂ζ

+ε6V
∂njc3
∂ζ

+· · ·+ε3ujc1
∂njc1
∂ξ

+ ε4ujc1
∂njc2
∂ξ

+ ε5ujc1
∂njc3
∂ξ

+ · · ·+ ε4ujc2
∂njc1
∂ξ

+ ε5ujc2
∂njc2
∂ξ

+ ε6ujc2
∂njc3
∂ξ

+ . . .

+ε5ujc3
∂njc1
∂ξ

+ε6ujc3
∂njc2
∂ξ

+ε7ujc3
∂njc3
∂ξ

+· · ·+ε2Nc
∂ujc1
∂ξ

+ε3Nc
∂ujc2
∂ξ

+ε4Nc
∂ujc3
∂ξ

+. . .

+ε3njc1
∂ujc1
∂ξ

+ε4njc
∂ujc2
∂ξ

+ε5njc1
∂ujc3
∂ξ

+· · ·+ε4njc2
∂ujc1
∂ξ

+ε5njc2
∂ujc2
∂ξ

+ε6njc2
∂ujc3
∂ξ

+. . .

+ ε5njc3
∂ujc1
∂ξ

+ ε6njc3
∂ujc2
∂ξ

+ ε7njc3
∂ujc3
∂ξ

+ · · · = 0 (B.14)

momentum equation

− ε2V
∂ujc1
∂ξ

− ε3V
∂ujc2
∂ξ

− ε4∂ujc3
∂ξ

+ · · ·+ ε4V
∂ujc1
∂ζ

+ ε5V
∂ujc2
∂ζ

+ ε6V
∂ujc3
∂ζ

+ . . .

+ ε3ujc1
∂ujc1
∂ξ

+ ε4ujc1
∂ujc2
∂ξ

+ ε5ujc1
∂ujc3
∂ξ

+ · · ·+ ε4ujc2
∂ujc1
∂ξ

+ ε5ujc2
∂ujc2
∂ξ

+ ε6ujc2
∂ujc3
∂ξ

+ · · ·+ ε5ujc3
∂ujc1
∂ξ

+ ε6ujc3
∂ujc2
∂ξ

+ ε7ujc3
∂ujc3
∂ξ

+ . . .

+
3σ

Nc

[
ε2∂njc1

∂ξ
+ ε3∂njc2

∂ξ
+ ε4∂njc3

∂ξ
+ . . .

]
+

3σ

N2
c

[ε3njc1
∂njc1
∂ξ

+ ε4njc1
∂njc2
∂ξ

+ ε5njc1
∂njc3
∂ξ

+ · · ·+ ε4njc2
∂njc1
∂ξ

+ ε5njc2
∂njc2
∂ξ

+ ε6njc2
∂njc3
∂ξ

+ . . .

+ε5njc3
∂njc1
∂ξ

+ε6njc3
∂njc2
∂ξ

+ε6njc3
∂njc3
∂ξ

+. . . ] = −Zjε2∂φ1

∂ξ
−Zjε3∂φ2

∂ξ
−Zjε4∂φ3

∂ξ
+. . .

(B.15)
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Poisson’s equation

ε3∂
2φ1

∂ξ2
+ ε4∂

2φ2

∂ξ2
+ ε5∂

2φ3

∂ξ2
+ · · · = 2Nhc1(εφ1 + ε2φ2 + ε3φ3 + . . . )

+ 2Nhc3[ε3φ3
1 + 3ε4φ2

1φ2 + 3ε5φ2
1φ3 + 3ε5φ1φ

2
2 + 6ε6φ1φ2φ3

+ ε6φ3
2 + 3ε7φ1φ

2
3 + 3ε7φ2

2φ3 + 3ε8φ2φ
2
3 + ε9φ3

3 + . . . ]

+
∑
j

(−Zj)[Nc + εnjc1 + ε2njc2 + ε3njc3 + . . . ]. (B.16)

Rearranging the terms order by order in ε the following set of equations are obtained from:

continuity (i.e., from (B.14))

O(ε2) : − V ∂njc1
∂ξ

+Nc
∂ujc1
∂ξ

= 0 (B.17)

O(ε3) : − V ∂njc2
∂ξ

+ ujc1
∂njc1
∂ξ

+Nc
∂ujc2
∂ξ

+ njc1
∂ujc1
∂ξ

= 0 (B.18)

O(ε4) : V
∂njc2
∂ζ
−V ∂njc3

∂ξ
+ujc1

∂njc2
∂ξ

+ujc2
∂njc1
∂ξ

+Nc
∂ujc3
∂ξ

+njc1
∂ujc2
∂ξ

+njc2
∂ujc1
∂ξ

= 0

(B.19)

momentum (i.e., from (B.15))

O(ε2) : − V ∂ujc1
∂ξ

+
3σ

Nc

∂njc1
∂ξ

= −Zj
∂φ1

∂ξ
(B.20)

O(ε3) : − V
∂ujc2
∂ξ

+ ujc1
∂ujc1
∂ξ

+
3σ

Nc

∂njc2
∂ξ

+
3σ

N2
c

njc1
∂njc1
∂ξ

= −Zj
∂φ2

∂ξ
(B.21)

O(ε4) : −V ∂ujc3
∂ξ

+V
∂ujc1
∂ζ

+
∂(ujc1ujc2)

∂ξ
+

3σ

Nc

∂njc3
∂ξ

+
3σ

N2
c

∂(njc1njc2)

∂ξ
= −Zj

∂φ3

∂ξ

(B.22)

Poisson’s (i.e., from (B.16))

O(ε0) :
∑
j

ZjNc = 0 (B.23)
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O(ε1) : 2Nhc1φ1 −
∑
j

Zjnjc1 = 0 (B.24)

O(ε2) : 2Nhc1φ2 −
∑
j

Zjnjc2 = 0 (B.25)

O(ε3) : 2Nhc1φ3 + 2Nhc3φ
3
1 −

∑
j

Zjnjc3 =
∂2φ1

∂ξ2
. (B.26)

Through integration, (B.17) becomes

V njc1 = Ncujc1,

which implies that

njc1 =
Nc

V
ujc1 and ujc1 =

V

Nc
njc1. (B.27)

After integration, (B.18) can be written as

−V njc2 + ujc1njc1 +Ncujc2 = 0. (B.28)

Applying integration to (B.20) and (B.21), we have, respectively,

3σ

Nc
njc1 − V ujc1 = −Zjφ1 (B.29)

and

−V ujc2 +
u2
jc1

2
+

3σ

Nc
njc2 +

3σ

2N2
c

n2
jc1 = −Zjφ2. (B.30)

Substituting (B.27) into (B.30), we get

ujc1 =
ZjV

V 2 − 3σ
φ1 (B.31)

njc1 =
ZjNc

V 2 − 3σ
φ1. (B.32)

Using (B.32) in (B.33), we have2Nhc1 −
∑
j

Z2
jNc

V 2 − 3σ

φ1 = 0.

Since φ1 6= 0, this equation becomes

2Nhc1 −
∑
j

Z2
jNc

V 2 − 3σ
= 0, (B.33)
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where V is the normalized sound speed which satisfies the long wave equation. Rearranging

(B.28), gives us

Ncujc2 = V njc2 − ujc1njc1. (B.34)

Multiplying both sides of (B.30) with Nc, we obtain that

−V Ncujc2 +Nc

u2
jc1

2
+ 3σnjc2 +

3σ

2Nc
n2
jc1 = −ZjNcφ2. (B.35)

Substituting (B.31), (B.32) and (B.34) into (B.35), gives

(V 2 − 3σ)njc2 = ZjNcφ2 +
Z2
jNcV

2

(V 2 − 3σ)2φ
2
1 +

Z2
jNcV

2

2 (V 2 − 3σ)2φ
2
1 +

3σ

2

Z2
jNcV

2

(V 2 − 3σ)2φ
2
1,

which implies that

njc2 =
ZjNc

V 2 − 3σ
φ2 +

3Z2
jNc

2 (V 2 − 3σ)3

(
V 2 + σ

)
φ2

1. (B.36)

Substituting (B.36) into (B.25), we have

2Nhc1φ2 −
∑
j

Zj

[
ZjNc

V 2 − 3σ
φ2 +

3Z2
jNc

2 (V 2 − 3σ)3

(
V 2 + σ

)
φ2

1

]
= 0. (B.37)

By rearranging, (B.37) takes the form

0︷ ︸︸ ︷[
2Nhc1 −

∑
j Z

2
jNc

V 2 − 3σ

]
φ2 −

3

2

∑
j Z

3
jNc

(V 2 − 3σ)3

(
V 2 + σ

)
φ2

1 = 0, (B.38)

where we have used (B.33) to make the coefficient of φ2 zero in (B.38) above. Hence, by

using the property of Eq. (3.32), the coefficient of φ2
1 in the above equation also becomes

zero. Then,
3

2

∑
j Z

3
jNc

(V 2 − 3σ)3

(
V 2 + σ

)
φ2

1 = 0. (B.39)

Using (B.31), (B.33) and (B.36 ) into (B.35), we obtain

− V ujc2 +
1

2

[
ZjV

V 2 − 3σ
φ1

]2

+
3σ

Nc

[
ZjNc

V 2 − 3σ
φ2 +

3

2

Z2
jNc

(V 2 − 3σ)3
(V 2 + σ)φ2

1

]
+

3σ

2N2
c

[
ZjNc

V 2 − 3σ
φ1

]2

= −Zjφ2.
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After some rearrangement, this can be written as

− V ujc2 +

[
Z2
j V

2

2(V 2 − 3σ)2
+

9TcZ
2
j

2(V 2 − 3σ)3
(V 2 + σ) +

3Z2
j σ

2(V 2 − 3σ)2

]
φ2

1

+ Zj

[
1 +

3σ

V 2 − 3σ

]
φ2 = 0.

By simplifying this equation one obtains that

ujc2 =
1

2
Z2
j

[
V (V 2 + 9Tc)

(V 2 − 3σ)3

]
φ2

1 +
ZjV

V 2 − 3σ
φ2. (B.40)

Rearranging (B.19), gives us

Nc
∂ujc3
∂ξ

= V
∂njc3
∂ξ

− V ∂njc2
∂ζ

− ∂(ujc1njc2)

∂ξ
− ∂(ujc2njc1)

∂ξ
. (B.41)

Multiplying both sides of (B.22) by Nc, one obtain that

− V Nc
∂ujc3
∂ξ

+ V Nc
∂ujc1
∂ζ

+Nc
∂(ujc1ujc2)

∂ξ
+ 3σ

∂njc3
∂ξ

+
3σ

Nc

∂(njc1njc2)

∂ξ
= −ZjNc

∂φ3

∂ξ
. (B.42)

Inserting (B.41) into (B.42), and after some rearrangement, we obtain

(V 2 − 3σ)
∂njc3
∂ξ

= V Nc
∂ujc1
∂ζ

+ V 2∂njc1
∂ζ

+ V
∂

∂ξ
(ujc1njc2 + njc1ujc2)

+Nc
∂

∂ξ
(ujc1ujc2) +

3σ

Nc

∂

∂ξ
(njc1njc2) + ZjNc

∂φ3

∂ξ
. (B.43)

Using (B.31), (B.32), (B.36) and (B.40) into (B.41), we then have

(V 2 − 3σ)
∂njc3
∂ξ

= V Nc
∂

∂ζ

[
ZjV

V 2 − 3σ
φ1

]
+ V 2 ∂

∂ζ

[
ZjNc

V 2 − 3σ
φ1

]
+ V

∂

∂ξ

[
ZjV

V 2 − 3σ
φ1

(
ZjNc

V 2 − 3σ
φ2 +

3Z2
jNc

2 (V 2 − 3σ)3

(
V 2 + σ

)
φ2

1

)]

+ V
∂

∂ξ

[
ZjNc

V 2 − 3σ
φ1

(
1

2
Z2
j

[
V (V 2 + 9σ)

(V 2 − 3σ)3

]
φ2

1 +
ZjV

V 2 − 3σ
φ2

)]
+Nc

∂

∂ξ

[
ZjV

V 2 − 3σ
φ1

(
1

2
Z2
j

[
V (V 2 + 9σ)

(V 2 − 3σ)3

]
φ2

1 +
ZjV

V 2 − 3σ
φ2

)]
+

3σ

Nc

∂

∂ξ

[
ZjNc

V 2 − 3σ
φ1

(
ZjNc

V 2 − 3σ
φ2 +

3Z2
jNc

2 (V 2 − 3σ)3

(
V 2 + σ

)
φ2

1

)]
+ ZjNc

∂φ3

∂ξ
.
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This can be written as

∂njc3
∂ξ

= 2
ZjNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ

+
Z3
jNc

(V 2 − 3σ)2

[
(V 2 + 3σ)

(V 2 − 3σ)2
+

9σ(V 2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

]
∂φ3

1

∂ξ

+
Z2
jNc

(V 2 − 3σ)2

[
3

(V 2 + σ)

V 2 − 3σ

]
∂

∂ξ
(φ1φ2) +

Z2
jNc

V 2 − 3Tc

∂φ3

∂ξ
.

Multiplying both sides of the above equation by
∑

j Zj , we have

∑
j

Zj
∂njc3
∂ξ

= 2

∑
j Z

2
jNcV

2

(V 2 − 3σ)2

∂φ1

∂ξ

+

∑
j Z

4
jNc

(V 2 − 3σ)2

[
(V 2 + 3σ)

(V 2 − 3σ)2
+

9σ(V 2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

]
∂φ3

1

∂ξ

+

∑
j Z

3
jNc

(V 2 − 3σ)2

[
3

(V 2 + σ)

V 2 − 3σ

]
∂

∂ξ
(φ1φ2) +

∑
j Z

3
jNc

(V 2 − 3σ)

∂φ3

∂ξ
. (B.44)

Taking the derivative of (B.26) with respect to ξ, we get

∑
j

Zj
∂njc3
∂ξ

= 2Nhc1
∂φ3

∂ξ
+ 2Nhc3

∂φ3
1

∂ξ
− ∂3φ1

∂ξ3
. (B.45)

Comparison between (B.44) and (B.45), gives us

− ∂3φ1

∂ξ3
+

0︷ ︸︸ ︷[
2Nhc1 −

∑
j Z

2
jNc

(V 2 − 3σ)2

]
∂φ3

∂ξ
− 2

∑
j Z

2
jNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ

+

[
2Nhc3 −

∑
j Z

4
jNc

(V 2 − 3σ)2

(
(V 2 + 3σ)

(V 2 − 3σ)2
+

9σ(V 2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

)]
∂φ3

1

∂ξ

−

0︷ ︸︸ ︷∑
j Z

3
jNc

(V 2 − 3σ)2

[
3

(V 2 + σ)

V 2 − 3σ

]
∂

∂ξ
(φ1φ2)−

0︷ ︸︸ ︷[ ∑
j Z

3
jNc

(V 2 − 3σ)

]
∂φ3

∂ξ
= 0 (B.46)
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Here we have used (B.39) and the property in Eq. (3.32) to make the coefficients of

∂
∂ξ (φ1φ2) and ∂φ3

∂ξ in (B.46) equal to zero, respectively. With this, (B.46) takes the form

− ∂3φ1

∂ξ3
− 2

∑
j Z

2
jNcV

2

(V 2 − 3σ)2

∂φ1

∂ζ

+

[
2Nhc3 −

∑
j Z

4
jNc

(V 2 − 3σ)2

(
(V 2 + 3σ)

(V 2 − 3σ)2
+

9σ(V 2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

)]
∂φ3

1

∂ξ

= 0.

This can also be written as

∂φ1

∂ζ
+


∑
j Z

4
jNc

(V 2−3σ)2

(
(V 2+3σ)
(V 2−3σ)2

+ 9σ(V 2+σ)
(V 2−3σ)3

+ 3(V 2+3σ)(V 2+σ)
2(V 2−3σ)3

)
− 2Nhc3

2
∑
j Z

2
jNcV

2

(V 2−3σ)2

 ∂φ3
1

∂ξ

+
1

2
∑
j Z

2
jNcV

2

(V 2−3σ)2

∂3φ1

∂ξ3
= 0. (B.47)

Let

b =

∑
j Z

4
jNc

(V 2 − 3σ)2

(
(V 2 + 3σ)

(V 2 − 3σ)2
+

9Tc(V
2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

)
− 2Nhc3 (B.48)

and

a = 2

∑
j Z

2
jNcV

2

(V 2 − 3σ)2
. (B.49)

With these substitutions (B.47) can be rewritten as

∂φ1

∂ζ
+
b

a

∂φ3
1

∂ξ
+

1

a

∂3φ1

∂ξ3
= 0. (B.50)

Or
∂φ1

∂ζ
+B

∂φ3
1

∂ξ
+ C

∂3φ1

∂ξ3
= 0 , (B.51)

where B = b
a and C = 1

a . Thus, the modified Korteweg de Vries (mKdV) equation can

take the form expressed in (B.51).

Using the property of Eq. (3.32), (B.48) and (B.49) becomes

b =
2Nc

(V 2 − 3σ)2

(
V 2 + 3σ

(V 2 − 3σ)2
+

9σ(V 2 + σ)

(V 2 − 3σ)3
+

3(V 2 + 3σ)(V 2 + σ)

2(V 2 − 3σ)3

)
− 2Nhc3 (B.52)
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and

a =
4NcV

2

(V 2 − 3σ)2
, (B.53)

respectively. Thus, the dispersive term coefficient C in the mKdV equation is defined as

C =
(V 2 − 3σ)2

4NcV 2
.

Using the definition for c1, we get

C =
Nc

4N2
h

[
2κ− 3

2κ− 1

]2
 1

Nc
Nh

[
2κ−3
2κ−1

]
+ 3σ

 .
Applying the definition,

Nc

Nh
= α and Nc +Nh = 1 =⇒ Nh =

1

α+ 1
and Nc =

α

α+ 1

the expression for C reads,

C =
α(α+ 1)

4

[
2κ− 3

2κ− 1

]2
 1

α
[

2κ−3
2κ−1

]
+ 3σ

 . (B.54)

After rearranging (B.52), we have

b =

[
Nc(5V

4 + 30V 2σ + 9σ2)−Nh(V 2 − 3σ)5c3

(V 2 − 3σ)5

]
. (B.55)

So using (B.53) and (B.55), we then have

B =
b

a
=

[
Nc(5V

4 + 30V 2σ + 9σ2)−Nh(V 2 − 3σ)5c3

(V 2 − 3σ)5

] [
(V 2 − 3σ)2

4NcV 2

]
. (B.56)

Applying an expression for an acoustic mode speed V which is obtained in Eq. (2.75) so

far for four species EP plasma into (B.56), we get

B = −

2 c3
c51

(NcNh )4 − 5 1
c21

(NcNh )2 − 60σ( 1
c1

)(NcNh )− 144σ2

4
(
Nc
Nh

1
c1

+ 3σ
)(

Nc
Nh

1
c1

)3

 . (B.57)

Since we have already defined that α = Nc
Nh

, the coefficient of nonlinear term in a mKdV

equation can take be written as

B = −

2 c3
c51
α4 − 5α

2

c21
− 60σ( αc1 )− 144σ2

4
(
α
c1

+ 3σ
)(

α
c1

)3

 . (B.58)
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In terms of the superthermal parameter, this equation finally takes the form

B = −

[(
16κ4−16κ3−48κ2+36κ+27
16κ4−32κ3+24κ2−8κ+1

)
α4 −

(
2κ−3
2κ−1

)2
15α2 −

(
2κ−3
2κ−1

)
180σα− 432σ2

]
12
[
(2κ−3

2κ−1)α+ 3σ
] [

(2κ−3
2κ−1)α

]3 . (B.59)
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