Repository logo
 

Exploring the use of robotics in the learning of programming.

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Computer Programming is seen as a valuable skill in the digital era that we presently live in. However, for the novice programmer, it is often accompanied with difficulties resulting in negative reactions. The dawning of the Fourth Industrial Revolution has catapulted many initiatives local and global to promote Computer Programming and Robotics. A major initiative by the South African government is the planning and implementing of a new subject in school to raise the awareness of coding at an early age. The lack of coding exposure and awareness leads to little or no interest in Computer Programming related courses after schooling years. This study focuses on exploring the learning of coding through the use of Robotics among computer registered students with no prior coding knowledge at a University in South Africa. Unlike the traditional use of block-based programming to introduce Computer Programming, which is limited to screen output, the study opted to use a physical manipulative by using a robotic element through prototype building using text-based programming, resulting in live autonomous output of code. The Arduino kit was used as the robot element to acquire knowledge development to the fundamental concepts of Computer Programming using the Python programming language. Participants' coding knowledge was assessed through a series of hands-on online activities. Design Based Research was adopted with the integration of Kolb’s Experiential Learning Cycle, framed within the second-generation Activity Theory. Mix methods were supported as it is in accordance with the pragmatic paradigm favoured by Design Based Research. All data collection took place online through workshops, surveys, questionnaires and a focus group interview. The sample size was 75 achieving a significant partial least squares structural equation model as a minimum of 50 participants was needed based on the ten times rule. The results show that students acquiring a direct learning experience with text-based code with the aid of the robotic element proved to be successful. The robot coding simplified the assimilation of text-based coding as participants could see the execution of their code on the prototype in reality. The eradication of the abstract nature of Computer Programming through Robotics as a physical manipulative solidified the understanding of coding structures. Furthermore, students' belief, interest, motivation, confidence, and Mathematics skill set were found to contribute success in Computer Programming. It was revealed that learning to code in a text-based environment can be made fun. In addition, learning programming with the use of the robot is effective for first time learning of text-based code. The researcher proposes that the introduction of learning programming integrated through the building of prototypes and coding resulting in autonomous robots enhances the learning experience of text-based code.

Description

Doctoral Degree. University of KwaZulu-Natal, Durban.

Keywords

Citation

DOI