Fischer Clifford matrices and character tables of certain groups associated with simple groups O+10(2) [the simple orthogonal group of dimension 10 over GF (2)], HS and Ly.
Abstract
The character table of any finite group provides a considerable amount of information about a group and the use of character tables is of great importance in Mathematics and Physical Sciences. Most of the maximal subgroups of finite simple groups and their automorphisms are extensions of elementary abelian groups. Various techniques have been used to compute character tables, however Bernd Fischer came up with the most powerful and informative technique of calculating character tables of group extensions. This method is known as the FischerClifford Theory and uses FischerClifford matrices, as one of the tools, to compute character tables. This is derived from the Clifford theory. Here G is an extension of a group N by a finite group G, that is G = N.G. We then construct a nonsingular matrix for each conjugacy class of G/N =G. These matrices, together with partial character tables of certain subgroups of G, known as the inertia groups, are used to compute the full character table of G. In this dissertation, we discuss FischerClifford theory and apply it to both split and nonsplit extensions. We first, under the guidance of Dr Mpono, studied the group 27:S8 as a maximal subgroup of 27:SP(6,2), to familiarize ourselves to FischerClifford theory. We then looked at 26:A8 and 28:O+8 (2) as maximal subgroups of 28:O+8 (2) and O+10(2) respectively and these were both split extensions. Split extensions have also been discussed quite extensively, for various groups, by
different researchers in the past. We then turned our attention to nonsplit extensions. We started with 24.S6 and 25.S6 which were maximal subgroups of HS and HS:2 respectively. Except for some negative signs in the first column of the FischerClifford matrices we used the FisherClifford theory as it is. The FischerClifford theory, is also applied to 53.L(3, 5), which is a maximal subgroup of the Lyon's group Ly. To be able to use the FisherClifford theory we had to consider projective representations and characters of inertia factor groups. This is not a simple method and quite some smart computations were needed but we were able to determine the character table of 53.L(3,5).
All character tables computed in this dissertation will be sent to GAP for incorporation.
Collections
Related items
Showing items related by title, author, creator and subject.

Assessment of the needs of the young adults group in the Lutheran Church, Hayfields, Pietermaritzburg : a growth group solution.
Brunke, Karen Monika. (2006)This dissertation aims to explore the needs of the Young Adults Group in the Lutheran Church, Hayfields, Pieterrnaritzburg. Focus groups were conducted with young adults to establish their needs. During the three months ... 
FischerClifford matrices of the generalized symmetric group and some associated groups.
Zimba, Kenneth. (2005)With the classification of finite simple groups having been completed in 1981, recent work in group theory has involved the study of the structures of simple groups. The character tables of maximal subgroups of simple ... 
Banana (Musa AAA; Cavendish subgroup) cultivar/density trials in three bioclimatic groups on the north coast of KwaZuluNatal.
Lagerwall, Gary Brian. (20141223)The North Coast of KwaZuluNatal is a relatively new banana production area, for which there is an absence of local norms, specifically for choice of cultivar and population density. Three cooperative splitplot banana ...