Repository logo
 

A semi-passive thermal management system for terrestrial and space applications.

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this study a semi-passive pulse thermal loop (PTL) was designed and experimentally validated. It provides improved heat transfer over passive systems such as the loop heat pipe in the moderate to high heat flux range and can be a sustainable alternative to active systems as it does not require an electric pump. This work details the components of the engineering prototype and characterizes their performance through the application of compressible and two-phase flow theory. A custom LabVIEW application was utilized for data acquisition and control. During operation with refrigerant R-134a the system was shown to be robust under a range of heat loads from 100 W to 800 W. Operation was achieved with driving pressure differentials ranging from 3 bar to 12 bar and pulse frequencies ranging from 0.42 Hz to 0.08 Hz. A smaller pressure differential and an increased pulse frequency results in improved heat transfer at the boilers. An evolution of the PTL is proposed that incorporates a novel, ejector-based pump-free refrigeration system. The design of the pulse refrigeration system (PRS) features valves at the outlet of two PTL-like boilers that are alternately actuated to direct pulses of refrigerant through an ejector. This is intended to entrain and raise the pressure of a secondary stream of refrigerant from the cooling loop, thereby replacing the compressor in a conventional vapor-compression cycle. The PRS is therefore characterized by transient flow through the ejector. An experimental prototype has been constructed which is able to operate as a conventional PTL when the cooling section is bypassed, although full operation of the refrigeration loop remains to be demonstrated. The design of the ejector is carried out using a one-dimensional model implemented in MATLAB that accounts for compressibility effects with NIST REFPROP vapor data sub-routines. The model enables the analysis of ejector performance in response to a transient pressure wave at the primary inlet. The high driving pressures provided by the PTL permit operation in a micro-gravity environment with minimal power consumption. Like the PTL, the proposed PRS is therefore well suited to terrestrial and aerospace applications where it could be driven by waste heat from electronics or solar thermal energy. As a novel semi-passive thermal management system, it will require complex control of the valves. Further analysis of the transient thermodynamic cycle is necessary in order to characterize and effect successful operation of the PRS.

Description

Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2013.

Keywords

MATLAB., Refrigeration and refrigerating machinery., Space vehicles--Thermodynamics., Space vehicles--Cooling., Ejector pumps., Theses--Mechanical engineering.

Citation

DOI