• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Chemistry
    • Masters Degrees (Chemistry)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Chemistry
    • Masters Degrees (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The destabilising effects of various cations on a surfactant derivative of poly iso-butenyl succinic anhydride.

    Thumbnail
    View/Open
    Thesis (10.14Mb)
    Date
    1990
    Author
    Rutherford, Christine Elizabeth.
    Metadata
    Show full item record
    Abstract
    The interfacial behaviour of two amphiphillic poly iso-butenyl succinic anhydride (PIBSA)-derived surfactants and the effect of their interaction with various nitrate salts on the stability of a water-in-oil type emulsion has been investigated. The adsorption of the esterification product of PIBSA and coco-diethanolamide (PICDEA) and of Experse-70 (E-70) at the equilibrated aqueous-fuel oil interface was investigated via the measurement of interfacial tension using the ring detachment method.The interfacial pressure of PICDEA decreased in the presence of excess unreacted coco-diethanolamide (CDE) and for both PICDEA and E-70 interfacial pressure decreased with an increase in the length of the poly iso-butenyl (PIB) hydrocarbon tail. Interfacial tension-concentration curves and the Gibbs Equation were used to determine surfactant surface excess concentration and the packing efficiency of the surfactant in the interphase. The double hydrocarbon PICDEA molecule was found to occupy a larger interfacial area than the single hydrocarbon E-70 molecule. The pH of the aqueous phase effects the interfacial activity and nature of, PICDEA and E-70 at the interface. PICDEA is protonated at pH values less than 4.6 and deprotonated at higher pH values. E-70 is neutral at low pH and deprotonated at pH values greater than approximately 2.The effect of sodium, calcium and ferric nitrate salts on the interfacial free energy of the surfactant saturated interface was also determined. The interfacial tension at the E-70 aqueous nitrate interface was dependent on ionic strength alone with a general decrease in interfacial free energy as nitrate concentration was increased. In the case of PICDEA, however, a surfactant-cation orientation effect was observed. The divalent Ca2+ cation attracts two adjacent PICDEA anions resulting in the adverse interaction of hydrocarbon tails in the interphase. This produces an interface with a higher than expected interfacial free energy. The Na+ cation produces an interface with a more energetically stable orientation. PICDEA in the presence of a ferric nitrate solution (pH 1 to 2) is protonated and therefore the univalent nitrate anion forms the counterion layer at the positively charged surfactant interface. Stability studies were carried out on aqueous nitrate salt in diesel emulsions using PICDEA as the stabilizing surfactant. Droplet coalescence rates were determined from droplet size distribution data in the presence of varying concentrations of sodium, calcium and ferric nitrate salts. Droplets were sized microscopically at progressive time intervals and the rate of coalescence determined from the change in droplet concentration with time. Coalescence was found to follow two or more consecutive first order reactions. After an initial period of rapid droplet coalescence, involving small droplets with diameters of 5~m and less, a droplet distribution is attained conducive to a more stable emulsion which then undergoes a slower rate of coalescence involving larger droplets. The effect of the nitrate salt type on the initial droplet coalescence rate (in order of increasing rate) is as follows: Ca2+< Na+< Fe3+. The opposite trend was observed for the slower long term rate of coalescence, i.e. Fe3+< Na+< Ca2+. These trends are explained in terms of the surfactant cation orientation effect, the effect of the droplet's radius of curvature on the potential energy barrier against coalescence and the effect of the droplet distribution of the emulsion system.
    URI
    http://hdl.handle.net/10413/7806
    Collections
    • Masters Degrees (Chemistry) [243]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV