• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Physics
    • Masters Degrees (Physics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Physics
    • Masters Degrees (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transverse modes in porro prism resonators

    Thumbnail
    View/Open
    Dissertation - Porro Laser Beams _L Burger_ ver 3.0.2.lib.dbl.pdf (3.336Mb)
    Date
    2008
    Author
    Burger, Liesl
    Metadata
    Show full item record
    Abstract
    This dissertation consists of two main sections. The first is a review of laser resonators using spherical mirrors, and incorporates a physical optics numerical model of a Fabry-Perot laser resonator without gain. The output of this model, which includes spot sizes, loss, and transverse mode formation, is compared to the parameters calculated using published analytical results. This comparison serves as a verification of the numerical methods used, as well as a frame of reference for the model of a Porro prism resonator which follows in the second section. The second section proposes a new method for analysing Porro prism resonators. The analysis incorporates both geometric as well as physical optics concepts, with the prisms modelled as rotating elements with amplitude and phase distortions. This yields expressions for the orientation of the loss at the apex of each prism, and as well as the number of petals in the “petal-pattern” beam structure commonly observed from Porro prism lasers. These expressions are included in a numerical model, which is first used to verify the development of the characteristic petal-pattern. Next, the numerical model is used to investigate the development of the beam structure, in both time and space, in crossed Porro resonators with a range of Fresnel numbers and stability parameters. This leads to some new insight into the transverse modes of these lasers.
    URI
    http://hdl.handle.net/10413/437
    Collections
    • Masters Degrees (Physics) [119]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV