Repository logo
 

Gladiolus scabridus - the road to conservation and commercialisation.

Loading...
Thumbnail Image

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

There is at present a growing concern and awareness of the endangered status of many indigenous South African plants in the wild, a number of which have potential for commercial production. One such example is Gladiolus scabridus, a vulnerable species endemic to the mountains of northern KwaZulu-Natal and southern Swaziland. It has considerable potential due to its floral characteristics. However, little is known about its horticultural requirements. Thus propagation and cultural practices were investigated with the aim of both conservation and commercialisation of the species. The ideal conditions for G. scabridus seed germination were determined. The presence or absence of light had no significant effect. Optimum germination was achieved at 20 QC of both winged and dewinged seeds. Higher temperatures appear to have a negative effect on germination and none of the winged seeds germinated at 30 QC. Under ideal conditions, fresh seed showed significantly higher vigour and viability than stored seed although the germination of stored seed was hampered by a higher internal fungal content. Successful tissue culture protocol was established for G. scabridus axillary bud and cormel halve explants. During the initial shoot initiation and proliferation stages (stage I and 11), the significantly higher shoot numbers occurred in the absence of growth regulators in both explant types. However, shoots with 1.0 mg 1 -1 6-benzyl-amino-purine (BAP) and 0.5 mg 1 -1 1-naphthalene-acetic-acid (NAA) were healthier in appearance. Higher levels of 5.0 mg 1 -1 NAA inhibited shoot production and encouraged root development in cormel halve explants. During stage 11, axillary bud explants showed root and cormlet development. More roots were initiated without growth regulators, whilst 5.0 mg 1 -1 NAA resulted in significantly better cormlet development. Shoot and cormlet growth of cormel halve explants during stage II was not significantly affected by the presence or absence of NAA and BAP. Significantly more roots were produced with 5.0 mg 1 -1 NAA. During stage III (rooting), the presence of activated charcoal (AC) was essential for the initiation and development of roots in vitro. Root and cormlet development in all explant types was significantly affected by the interaction between the previous treatments from stages I and 11 and the new treatments. During stage IV (hardening off) , most explants died down in the hardening off media leaving resting cormlets. There was a significant interaction between 1.0 mg 1 -1 NAA and 0.3 % AC from stage III, resulting in significantly more cormlets in both axillary bud and cormel halve explants. There was successful cormlet growth after cold storage which is advantageous in reducing the need for acclimatization. G. scabridus corms were successfully forced out of their normal flowering period. Temperatures of 10,5.5 and 2 QC showed successful corm initiation although the corms need to be stored for longer at warmer temperatures. It is suggested that a treatment of 2 QC for 6 weeks is the optimal condition for forcing G. scabridus corms. Although originating from a stressful environment, G. scabridus appears to show capacities for improved growth under controlled conditions. Fertilizer applications enhanced growth and reduced the time to flowering. Nitrogen (N) was found to be important for vegetative growth, flowering and daughter corm development, whereas potassium (K) influenced cormel production. Fertilizer with higher N and lower K is appropriate for the beginning and middle of the growing season and then adjusted to a lower N and higher K fertilizer to promote cormel formation. G. scabridus was found to produce prolific numbers of cormels which is an important source of plant material. Mineral leaf analysis showed that optimum levels for wild species are lower than those for hybrid gladioli with the optimum levels affected by physiological corm maturity and subsequent plant growth. Norms for postharvest handling of cut G. scabridus spikes have been developed. Spikes held in 2 % sucrose had a longer vase life and better floret opening and quality than those kept in distilled water, Prolong, Chrysal, 2 % sucrose and 2 % ethanol, 1 % sucrose, 4 % sucrose, 1 % sucrose and 0.5 % JIK, 2 % sucrose and 0.5 % JIK and 4 % sucrose and 0.5 % JIK, 2 % fructose and 2 % glucose. The use of commercially available solutions should be used with caution. Florets produced a climacteric-like CO2 peak, but levels of ethylene were unmeasurable. Cold storage and the use of polypropylene sleeves delays senescence. G. scabridus spikes secrete droplets of a sticky substance which was confirmed to be extra floral nectar through HPLC analysis. Market research revealed a positive response to the species from consumers and retailers alike with potential for cultivation as a cut flower and bedding plant. However, the cost will determine supply and demand. A field study conducted at Bivane Dam, northern KwaZulu-Natal, confirmed that G. scabridus colonies prevail in rocky, quartzite outcrops where they become wedged between the rocks. Plants were found at different stages of development with populations of not more than 108 plants per colony. Soil data of G. scabridus sites was compared to that of two sites nearby. It was found that G. scabridus soils are higher in phosphorus (P), zinc (Zn) and organic carbon. Leaf analysis confirmed that they have adapted their growth to low nutrient levels. The G. scabridus studies have clearly shown that the species can be successfully moved from a wild plant to a commercially viable one and in so doing its conservation status can also be improved.

Description

Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.

Keywords

Gladiolus--KwaZulu-Natal., Gladiolus--South Africa., Gladiolus--KwaZulu-Natal--Growth., Gladiolus--Physiology--KwaZulu-Natal., Gladiolus--Conservation--KwaZulu-Natal., Gladiolus--Propagation--KwaZulu-Natal., Gladiolus--Postharvest physiology--KwaZulu-Natal., Gladiolus--Postharvest technology--KwaZulu-Natal., Cut flowers--KwaZulu-Natal--Marketing., Endemic plants--KwaZulu-Natal., Theses--Horticultural science.

Citation

DOI