## Iterative algorithms for approximating solutions of variational inequality problems and monotone inclusion problems.

##### Abstract

In this work, we introduce and study an iterative algorithm independent of the operator
norm for approximating a common solution of split equality variational inequality prob-
lem and split equality xed point problem. Using our algorithm, we state and prove a
strong convergence theorem for approximating an element in the intersection of the set
of solutions of a split equality variational inequality problem and the set of solutions of
a split equality xed point problem for demicontractive mappings in real Hilbert spaces.
We then considered nite families of split equality variational inequality problems and
proposed an iterative algorithm for approximating a common solution of this problem and
the multiple-sets split equality xed point problem for countable families of multivalued
type-one demicontractive-type mappings in real Hilbert spaces. A strong convergence re-
sult of the sequence generated by our proposed algorithm to a solution of this problem was
also established. We further extend our study from the frame work of real Hilbert spaces
to more general p-uniformly convex Banach spaces which are also uniformly smooth. In
this space, we introduce an iterative algorithm and prove a strong convergence theorem for
approximating a common solution of split equality monotone inclusion problem and split
equality xed point problem for right Bregman strongly nonexpansive mappings. Finally,
we presented numerical examples of our theorems and applied our results to study the
convex minimization problems and equilibrium problems.