Repository logo
 

Experimental optimization of nanostructured nickel oxide deposited by spray pyrolysis for solar cells application.

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Research India Publications.

Abstract

This study focused on the experimental optimization of nanostructured nickel oxide (NiO) for solar cell applications. The optimization procedure involved the variation of the precursor concentrations of nickel acetate with attendant measurement of the properties of nickel oxide films. The films were spray deposited on glass substrate. Nickel acetate precursor was used at a substrate temperature of 350 oC. Precursor concentrations were: 0.025 M, 0.05 M, 0.075 M and 0.1 M respectively. The surface morphology revealed nanostructured film with particles densely distributed across the substrate’s surface. The films are homogeneous, smooth, well adherent and devoid of pinholes and cracks. The morphology became grainier as the precursor solution increased. Elemental composition exposes the presence of Ni and O elements in NiO film. Oxygen concentration decreases as precursor solution increases. The film structural property reveals that deposited NiO film has an amorphous structure at 0.025 M while the other concentrations are polycrystalline in nature with cubic structure. X-ray diffractometry (XRD) further reveals that the intensity of NiO films increases with increased molarity. Preferred orientation was along the (1 1 1) peak with minor intensity along the (2 0 0) peak. XRD patterns have peak diffraction at (2θ = 37 o and 43 o) for the (1 1 1) and (2 0 0) planes respectively, and 64 o for the (2 2 0) plane for 0.1 M. Crystallite size was obtained at 63.77 nm maximum. Film thickness increased with increasing precursor concentration from 6.277 μm to 11.57 μm. Film micro strain was observed to have compression for all precursor solutions. Optical studies showed that transmittance decreased with increasing concentration from 80 % to 71 %. Optical band gap energy was between 3.94 eV to 3.38 eV as precursor concentration increased, revealing the effect of varied concentrations on NiO film properties. Optimized results obtained are precursors in the development of low cost, efficient, durable solar cell fabrication for developing countries.

Description

Research articles.

Keywords

Citation

DOI