Show simple item record

dc.contributor.advisorVan Staden, Johannes.
dc.contributor.advisorJager, Anna K.
dc.creatorLight, Marnie Elizabeth.
dc.date.accessioned2013-12-09T10:37:47Z
dc.date.available2013-12-09T10:37:47Z
dc.date.created2002
dc.date.issued2013-12-09
dc.identifier.urihttp://hdl.handle.net/10413/10184
dc.descriptionThesis (M.Sc.)-University of Natal, Pietermaritzburg, 2002.en
dc.description.abstractSiphonochilus aethiopicus (Schweinf.) B.L. Burtt (Zingiberaceae), commonly known as wild ginger, is a highly sought after plant for use in traditional medicine in South Africa. Over-exploitation of this medicinal plant has resulted in regional extinction in the wild. As a result, there is great interest in the medicinal properties of S. aethiopicus, and as a plant for small scale cultivation to increase the supply for use in traditional medicine. Water, ethanol and ethyl acetate extracts were prepared from the leaves, rhizomes and roots of S. aethiopicus. These extracts were tested for in vitro anti-inflammatory activity in the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) assays, and in the microdilution antibacterial assay. The aqueous extracts showed no significant prostaglandin synthesis inhibition in the COX-1 and COX-2 assays. The ethanol and ethyl acetate extracts of the leaves showed the highest levels of activity at a concentration of 250 µg ml¯¹ per test solution, in both the COX-1 and COX-2 assays. The ethanol and ethyl acetate extracts of the rhizomes and roots also had moderate levels of activity in the COX-1 assay. These results provide some evidence for the rational use of S. aethiopicus in traditional medicine for anti-inflammatory purposes. In the microdilution antibacterial assay, no inhibitory activity against the test bacteria was detected with the aqueous extracts. The ethanol and ethyl acetate extracts tested showed greater antibacterial activity at minimal inhibitory concentrations ranging from 0.78 to 3.13 mg ml¯¹ against the gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) than the Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae). No distinct differences were observed between the ethanol and ethyl acetate extracts, or between the different plant parts. A serial extraction of S. aethiopicus rhizome material was conducted and the extracts were tested in the COX-1 assay and the microdilution assay as a preliminary investigation for a bulk extraction. The hexane and ethyl acetate extracts gave slightly higher COX-1 inhibition than the ethanol extract. No distinct differences were observed in the microdilution assay. A bulk ethyl acetate extract of S. aethiopicus rhizome material was prepared, yielding 6.3 g of a thin orange oil. Vacuum liquid chromatography (VLC) was used to fractionate ≈4 g of the extract. The VLC fractions were evaluated using thin layer chromatography (TLC) and a bioautographic assay, using S. aureus as a test organism. The fractions were also tested in the COX-1 assay. The bioautography revealed a number of compounds which exhibited antibacterial activity. Fraction C was purified further using preparative TLC, and 24.9 mg of a pure compound from R,0.54 (toluene:ethyl acetate 93:7) was isolated. The structure of the compound was elucidated from nuclear magnetic resonance (NMR) spectra, and mass spectroscopy of the compound was also recorded. The compound was identified as the sesquiterpenoid furanoeremophil-2-en-1-one, which is structurally identical to the recently reported compound 4aαH-3,5α,8aβ-trimethyl-4,4a,9-tetrahydro-naphtho[2,3-b]-furan-8-one. The compound showed only a very minimal bacteriostatic effect in the microdilution assay. S. aethiopicus plants were harvested before and after seasonal senescence. Ethanol extracts were prepared from fresh or dried material of the leaves, rhizomes and roots, and tested in the COX-1 assay and the microdilution assay TLC fingerprints of the various extracts were also prepared. No noteworthy changes in COX-1 inhibition, due to senescence, were observed with extracts prepared from fresh material, although there did appear to be a slight decrease in activity in the α-roots and an increase in the β-roots after senescence (fresh and dry). A decrease in the antibacterial activity of the leaves and an increase in the antibacterial activity of the α-roots was observed after senescence. These results suggest that the time of harvest may only have a minimal influence on the degree of anti-inflammatory and antibacterial activity.en
dc.language.isoen_ZAen
dc.subjectMedicinal plants.en
dc.subjectMedicinal plants--Africa.en
dc.subjectEthnobotany.en
dc.subjectBotany, Medical--Africa.en
dc.subjectZingiberaceae.en
dc.subjectTheses--Botany.en
dc.titleAn investigation of the medicinal properties of Siphonochilus aethiopicus.en
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record