Doctoral Degrees (Statistics)
Permanent URI for this collectionhttps://hdl.handle.net/10413/7126
Browse
Browsing Doctoral Degrees (Statistics) by Subject "Analysis of variance."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Analysis of longitudinal binary data : an application to a disease process.(2008) Ramroop, Shaun.; Mwambi, Henry Godwell.The analysis of longitudinal binary data can be undertaken using any of the three families of models namely, marginal, random effects and conditional models. Each family of models has its own respective merits and demerits. The models are applied in the analysis of binary longitudinal data for childhood disease data namely the Respiratory Syncytial Virus (RSV) data collected from a study in Kilifi, coastal Kenya. The marginal model was fitted using generalized estimating equations (GEE). The random effects models were fitted using ‘Proc GLIMMIX’ and ‘NLMIXED’ in SAS and then again in Genstat. Because the data is a state transition type of data with the Markovian property the conditional model was used to capture the dependence of the current response to the previous response which is known as the history. The data set has two main complicating issues. Firstly, there is the question of developing a stochastically based probability model for the disease process. In the current work we use direct likelihood and generalized linear modelling (GLM) approaches to estimate important disease parameters. The force of infection and the recovery rate are the key parameters of interest. The findings of the current work are consistent and in agreement with those in White et al. (2003). The aspect of time dependence on the RSV disease is also highlighted in the thesis by fitting monthly piecewise models for both parameters. Secondly, there is the issue of incomplete data in the analysis of longitudinal data. Commonly used methods to analyze incomplete longitudinal data include the well known available case analysis (AC) and last observation carried forward (LOCF). However, these methods rely on strong assumptions such as missing completely at random (MCAR) for AC analysis and unchanging profile after dropout for LOCF analysis. Such assumptions are too strong to generally hold. In recent years, methods of analyzing incomplete longitudinal data have become available with weaker assumptions, such as missing at random (MAR). Thus we make use of multiple imputation via chained equations that require the MAR assumption and maximum likelihood methods that result in the missing data mechanism becoming ignorable as soon as it is MAR. Thus we are faced with the problem of incomplete repeated non–normal data suggesting the use of at least the Generalized Linear Mixed Model (GLMM) to account for natural individual heterogeneity. The comparison of the parameter estimates using the different methods to handle the dropout is strongly emphasized in order to evaluate the advantages of the different methods and approaches. The survival analysis approach was also utilized to model the data due to the presence of multiple events per subject and the time between these events.Item Covariates and latents in growth modelling.(2014) Melesse, Sileshi Fanta.; Zewotir, Temesgen Tenaw.The growth curve models are the natural models for the increment processes taking place gradually over time. When individuals are observed over time it is often apparent that they grow at different rates, even though they are clones and no differences in treatment or environment are present. Neverthless the classical growth curve model only deals with the average growth and does not account for individual differences, nor does it have room to accommodate covariates. Accordingly we strive to construct and investigate tractable models which incorporate both individual effects and covariates. The study was motivated by plantations of fast growing tree species, and the climatic and genetic factors that influence stem radial growth of juvenile Eucalyptus hybrids grown on the east coast of South Africa. Measurement of stem radius was conducted using dendrometres on eighteen sampled trees of two Eucalyptus hybrid clones (E. grandis χ E.urophylla, GU and E.grandis χ E. Camaldulensis, GC). Information on climatic data (temperature, rainfall, solar radiation, relative humidity and wind speed) was simultaneously collected from the study site. We explored various functional statistical models which are able to handle the growth, individual traits, and covariates. These models include partial least squares approaches, principal component regression, path models, fractional polynomial models, nonlinear mixed models and additive mixed models. Each one of these models has strengths and weaknesses. Application of these models is carried out by analysing the stem radial growth data. The partial least squares and principal component regression methods were used to identify the most important predictor for stem radial growth. Path models approach was then applied mainly to find some indirect effects of climatic factors. We further explored the tree specific effects that are unique to a particular tree under study by fitting a fractional polynomial model in the context of linear mixed effects model. The fitted fractional polynomial model showed that the relationship between stem radius and tree age is nonlinear. The performance of fractional polynomial models was compared with that of nonlinear mixed effects models. Using nonlinear mixed effects models some growth parameters like inflection points were estimated. Moreover, the fractional polynomial model fit was almost as good as the nonlinear growth curves. Consequently, the fractional polynomial model fit was extended to include the effects of all climatic variables. Furthermore, the parametric methods do not allow the data to decide the most suitable form of the functions. In order to capture the main features of the longitudinal profiles in a more flexible way, a semiparametric approach was adopted. Specifically, the additive mixed models were used to model the effect of tree age as well as the effect of each climatic factor.