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Abstract

In this thesis we studied convection and cross-diffusion effects in porous media.

Fluid flow in different flow geometries was investigated and the equations for mo-

mentum, heat and mass transfer transformed into a system of ordinary differential

equations using suitable dimensionless variables. The equations were solved using a

recent successive linearization method. The accuracy, validity and convergence of the

solutions obtained using this method were tested by comparing the calculated results

with those in the published literature, and results obtained using other numerical

methods such as the Runge-Kutta and shooting methods, the inbuilt Matlab bvp4c

numerical routine and a local non-similarity method.

We investigated the effects of different fluid and physical parameters. These

include the Soret, Dufour, magnetic field, viscous dissipation and thermal radiation

parameters on the fluid properties and heat and mass transfer characteristics.

The study sought to (i) investigate cross-diffusion effects on momentum, heat and

mass transport from a vertical flat plate immersed in a non-Darcy porous medium

saturated with a non-Newtonian power-law fluid with viscous dissipation and thermal

radiation effects, (ii) study cross-diffusion effects on vertical an exponentially stretch-

ing surface in porous medium and (iii) apply a recent hybrid linearization-spectral

technique to solve the highly nonlinear and coupled governing equations. We further

sought to show that this method is accurate, efficient and robust by comparing it
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with established methods in the literature.

In this study the non-Newtonian behaviour of the fluid is characterized using the

Ostwald-de Waele power-law model. Cross-diffusion effects arise in a broad range

of fluid flow situations in many areas of science and engineering. We showed that

cross-diffusion has a significant effect on heat and mass-transfer processes and cannot

be neglected.
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Chapter 1

Introduction

1.1 Background and motivation

The transfer of heat and mass through porous media plays an important role in

fluid mechanics and arises in many areas of natural and applied sciences. This includes

such areas as petroleum engineering, geosciences (hydrogeology and geophysics), me-

chanics (acoustics, soil and rock mechanics) and biology, Chen and Ewing (2002).

A porous medium is defined as a material containing interconnected voids (pores),

Bear and Bachmat (1972) and Ingham and Pop (1998). The material is usually called

the matrix and the pores are typically filled by a fluid. In single-phase flow, the pores

are saturated by a single fluid while in two-phase flow the void space is often shared

by a liquid and a gas. The interconnectedness of the pores allows fluid flow through

the material. In natural porous medium such as wood, sand, limestone rock and the

human lung, the pores are distributed in an irregular manner with respect to size and

shape and with irregular connections between the pores, Nield and Bejan (1999). A

porous media is characterized by the porosity φ which is defined as the fraction of the
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total volume of the medium that is occupied by void space (Kaviany 1995, Nield and

Bejan 1999, Lehr and Lehr 2000 and Bridge and Demicco 2008). Mathematically,

this is given by the ratio

φ =
VV

VT

, (1.1)

where VV is the volume of void space and VT is the total volume of the material.

Porosity is a fraction between 0 and 1 so that 1−φ is the fraction that is occupied

by a solid. The porosity does not normally exceed 0.6 for natural porous media and

can vary between 0.2595 and 0.4764 for artificial beds of solid spheres of uniform

diameter, Nield and Bejan (1999). The porosity of the soil, sand and coal lies in

the range 0.43 − 0.54, 0.37 − 0.50 and 0.02 − 0.12, respectively, Kaviany (1995). A

porous media is also characterized by its permeability which controls the movement

and storage of fluids in the porous media. Permeability is determined as part of the

proportionality constant in Darcy’s law (Darcy 1856) which relates discharge and fluid

physical properties to the pressure gradient in the porous media. This law further

relates the flow rate and the applied pressure difference in the hydrology of water

supply. This proportionality has been expressed in one-dimension in the form (Bear

1972 and Nield and Bejan 1999)

u = −K

µ

∂P

∂x
, (1.2)

where ∂P/∂x is the pressure gradient in the direction of the flow, µ is the dynamic

viscosity of the fluid and K is the permeability of the porous medium. The value of

K depends on the geometry of the medium and is independent of the nature of the

fluid, Nield and Bejan (1999). Equation (1.2) can be generalized in three-dimensions

as

∇P = − µ

K
v, (1.3)

where the permeability K is a second-order tensor, Bruschke and Advani (1990).
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Darcy’s law has been tested and verified experimentally by, among others, Nakayama

and Koyama (1987b), Singh and Sharma (1990), Lage (1998) and Altevogt et al.

(2003).

Since this law depends on the balance between the pressure gradient and the

viscous force, it breaks down for high velocity, when the effect of flow inertia is no

longer negligible, Nakayama (1995). The fluid inertia effect becomes important when

the flow rate is high. The Darcy model is thus valid under conditions of low velocities

and small porosity, Hong et al. (1987). It is therefore necessary in many real flows to

modify the Darcy model to include non-Darcian effects in the analysis of transport

in a porous medium. The inertia effects can be accounted for through the use of

a Forchheimer model. Forchheimer (1901) added an extra term to equation (1.3)

leading to a new model,

∇P = − µ

K
v − cF√

K
ρf |v|v, (1.4)

where cF is a dimensionless form-drag constant and ρf is the fluid density. In addition,

Forchheimer (1901) found that Darcy’s law was not valid for flows through porous

media with high permeability. Darcy’s law also cannot account for the no-slip bound-

ary condition at the interface between the solid wall and the porous medium, Chen

and Horng (1999). The Darcian model is also only applicable when the Reynolds

number is sufficiently small. For moderate to large Reynolds numbers one has to

consider non-Darcian models. Several non-Darcy flow models have been proposed to

include inertia effects on the pressure drop. Poulikakos and Bejan (1985) and Prasad

and Tuntomo (1987) used the Forchheimer- extended Darcy equation to investigate

the effects of inertia for flow through porous media. Brinkman (1947a,b) modified

Darcy’s law in order to model boundary frictional effects and to incorporate a viscous

shear stress term and the no-slip condition at the wall by adding a Brinkman term
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to equation (1.3). The new equations takes the form

∇P = − µ

K
v + µ̃∇2v, (1.5)

where µ̃ is the effective viscosity. Brinkman assumed µ̃ to be equal to the fluid

viscosity µ.

The Brinkman model reduces to the momentum equation for viscous fluid flows

without porosity as K →∞ and to the Darcy equation as K → 0, Nakayama (1995)

and Nield and Bejan (1999). The studies by Tong and Subramanian (1985), Sen

(1987) and Laurait and Prasad (1987) used the Brinkman Darcy model to investi-

gate the boundary effects on free convection in a vertical cavity. A combination of

Brinkman and Forchheimer models is called the Brinkman-Forchheimer-Darcy model

and has been extensively used by, for example, Marpu and Manipal (1995) who stud-

ied the effects of the Forchheimer inertial term and the Brinkman viscous term on

natural convection and heat transfer in vertical cylindrical annuli filled with a fluid.

They indicated that the Brinkman viscous term has a more significant effect on the

average Nusselt number compared to the Forchheimer inertial terms.

The simplest fluid flow model is the Newtonian flow model. This model however

does not fully describe observed flow characteristics due to deformation, viscosity

time dependence and thinning effects. A non-Newtonian model generally fulfills most

of the observation flow characterstics for real fluids. A fluid in which the shear rate

varies with viscosity is called a non-Newtonian fluid. There are three types of non-

Newtonian fluids, (i) pseudoplastics where the shear rate increases with decreasing

viscosity. Examples of such fluids include real fluids such as glass and polymer melt,

(ii) dilatant fluid where the shear rate increases with increasing viscosity and (iii)

Bingham plastics where the relationship between the shear stress and shear rate is

linear when a certain yield stress is exceeded. In the case of the flow of non-Newtonian

fluids in a porous media, Darcy’s law was modified by Shenoy (1993) who investigated
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the following scenarios:

(1) The effect of replacing the Darcy term by (µ∗/K∗)vn−1v.

(2) The effect of replacing the Brinkman term by (µ∗/ϕn)∇{|[0.5∆ : ∆]1/2|n−1∆} for

an Ostwald-de-Waele fluid.

(3) Retaining the Forchheimer term unchanged since it is independent of the viscosity.

Here µ∗ is the consistency of the fluid, K is a modified permeability, ∆ is the defor-

mation tensor and n is the power-law index.

More extensions of Darcy’s law can be found in Irmay (1958) and Wooding (1957).

Most research in the last few decades has been based on the Brinkman-Forchheimer-

extended Darcy model which is also known as the generalized model, Vafai (2005).

Bhadauria (2007) used Brinkman-Forchheimer extended Darcy model to study the

effect of temperature modulation on double diffusive convection in porous medium by

making linear stability analysis. He found that the critical value of Rayleigh number

decreases with decreases in the Darcy number. A detailed review of convection studies

in a non-Darcy porous medium can be found in Nield and Bejan (1984).

Studies on heat and mass transfer in non-Newtonian fluids in porous media have

been carried out by many researchers since heat and mass transfer plays an important

role in engineering processes such as, for example, in food processing (Cheng 2008)

and oil reservoir engineering (Shenoy 1993). Rastogi and Poulikakos (1995) studied

the problem of double-diffusion from a vertical surface in a fluid saturated porous

medium in a non-Newtonian power law fluid. They showed that for dilatant fluids,

the velocity boundary layer is thinner than the thermal and concentration bound-

ary layers, and that the opposite is true for pseudoplastic fluids. The problem of

free convection heat and mass transfer over a vertical flat plate in a fluid-saturated
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porous medium for non-Newtonian power-law fluids with yield stress has been in-

vestigated numerically by Jumah and Mujumdar (2000). They reported that the

velocity, temperature and concentration distributions are significantly affected by the

fluid rheology. Cheng (2008) investigated free convection over a vertical plate in a

porous medium saturated with a non-Newtonian power-law fluid subject to Soret and

Dufour effects. He concluded that the power-law exponent has the effect of reducing

the temperature and concentration within the boundary layer.

This research is concerned with the convective transport of momentum, heat

and mass in boundary layer flows. Heat is transferred from point to point due to

temperature gradients. Three types or modes of heat transfer processes can be dis-

tinguished, Baehr and Stephan (1998) and Thirumaleshwar (2006). The first mode

of heat transfer is heat conduction which refers to the transfer of energy between

neighbouring molecules due to temperature gradients. The transfer of heat by con-

duction is described by Fourier’s law which states that the rate of heat transfer in

a given direction is linearly proportional to the negative temperature gradient. The

proportionality constant in this relation is the thermal conductivity of the material,

Rudramoorthy and Mayilsamy (2004). Heat conduction in gases is generally a slow

process due to the large mean free path between molecules. Heat transfer due to a

flowing fluid or convection is the second type of mechanism for heat transfer. Heat

is transmitted from one place to another by the fluid’s movement. The heat trans-

port depends only on the fluid properties and is independent of the properties of the

surface material, Kothandaraman (2006). Convection may be classified according to

the nature of the flow as either, (i) natural or free convection, or (ii) forced con-

vection. In natural convection, the movement of molecules is induced by buoyancy

forces which arise from different densities caused by temperature variations in the

fluid. Heat is transferred from the hot fluid to a cooler surface or from a hot surface

to the cold fluid, Jaluria (1980), Kothandaraman (2006) and Rathore and Kapuno

(2010). Forced convection is induced by external forces such as a pump or fan. A
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combination of natural and forced natural convection is known as mixed convection.

The third mode of heat transfer is thermal radiation. In this mode, the mechanism

of heat transfer is electromagnetic waves between two surfaces with different temper-

atures, Kothandaraman (2006). Radiation heat transfer does not require orientation

and colour.

Similar to heat transfer, mass may be transferred from one point to another by the

movement of the fluid. The transfer of mass may take place due to potentials other

than concentration differences, Kothandaraman (2006), or if there is a temperature

gradient between two fluids, Thirumaleshwar (2006). Mass transfer is important in

physical sciences, for example chemical engineering and biology. Mass transfer may

be classified into three modes. The first mode is diffusive mass transfer. Mass transfer

takes place from higher to lower concentration regions when the fluid is at rest. This

mode is similar to conduction in heat transfer, Thirumaleshwar (2006). The second

mode is convective mass transfer. This occurs when two fluids are moving together

over a surface and the mass transfer in this case depends on the nature of the fluid

flow, Sawhney (2010). The third mode of mass transfer is a combination of diffusion

and convection effects known as a change of phase mode, Venkanna (2010). Mass

transfer processes are similar to heat transfer processes in many other aspects. For

example;

(1) Heat is transferred in the direction of lower temperatures and mass is also trans-

ferred in the direction of decreasing concentration.

(2) Both heat and mass transfer rates depend on the driving potentials.

(3) Heat and mass transfer stop when thermal equilibrium and concentration equi-

librium is attained.

Many researchers studying the phenomena of momentum, heat and mass through
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a porous media have investigated the influence of different fluid and physical pa-

rameters such as a chemical reaction, thermal radiation, viscous dissipation, Soret

and Dufour parameters. Free convection through a porous medium using the Darcy

model was first studied by Horton and Roger (1945) and Lapwood (1948). Brinkman

(1947a) gave a calculation of the viscous force exerted by a flowing fluid on a dense

swarm of particles. He used the model of spherical particles embedded in a porous

mass to show that there is a relation between permeability, particle size and density.

Experimental and numerical investigations of convection in porous layers was first pro-

posed by Wooding (1957, 1963). Elder (1966) studied the steady free convection in a

porous medium heated from below. He showed that the heat transferred across the

layer is independent of the thermal conductivity of the medium and is proportional

to the square of the temperature difference across the layer for the Rayleigh-type

flow. McNabb (1965) analyzed boundary layer problem due to the cooling of a cir-

cular plate situated in the bottom plane boundary of a semi-infinite region. Lloyd

and Sparrow (1970) studied natural and forced convection from a vertical flat plate

by using a local similarity method to solve the governing equations. They showed

that the validity of their numerical solutions ranged from pure forced convection to

mixed convection. Cheng and Minkowycz (1977a) presented similarity solutions for

free convective heat transfer about a vertical flat plate embedded in a porous medium

for high Rayleigh numbers. Gupta and Gupta (1977) studied the temperature dis-

tribution for the problem of heat and mass transfer on a stretching sheet subject

to suction and injection. They extended the study by Erickson et al. (1966) to the

case of linear velocity movement of the stretched surface. Cheng (1977b) investigated

combined free and forced convection buoyancy flow past bodies immersed in porous

medium. Rajagopal et al. (1984) studied the flow of an incompressible second-order

fluid past a stretching sheet. They showed that the cross-viscosity coefficient does

not affect the velocity profile of two-dimensional flow and effects only the pressure

distribution. Ranganathan and Viskanta (1984) studied inertial viscous effects in

mixed convection flow along a vertical wall in porous medium They showed that
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the effects of boundary friction and inertia are significant and cannot be neglected.

Nakayama and Pop (1991) gave different similarity solutions for mixed convection in

Darcy and non-Darcy porous media embedded in non-Newtonian fluid. Combined

heat and mass transfer on natural convection in a porous medium was studied by Be-

jan and Khair (1985), Singh and Queeny (1997) and Trevisan and Bejan (1990). Rees

and Pop (1994) discussed the natural convection flow over a vertical wavy surface in

porous media saturated with Newtonian fluids, with a constant wall temperature be-

ing examined. Rees and Pop (1998) studied the free convection boundary layer flow

from a vertical isothermal flat plate immersed in a micropolar fluid. Magyari and

Keller (1999) found similarity solutions to the problem of heat and mass transfer in

the boundary layers due to an exponentially stretching continuous surface. Murthy

et al. (2004) reported on the influence of double stratification on free convection in

a Darcy porous medium. They presented similarity solutions for the case of uniform

wall heat and mass flux conditions by assuming the thermal and solutal stratification

of the medium to vary as x1/3 where x is the stream wise coordinate axis. An inves-

tigation of the effects of surface flexibility on the inviscid instability in fluid flow over

a horizontal flat plate with heat transfer was studied by Motsa and Sibanda (2005).

They considered large fluid buoyancy and showed that the effect of plate flexibility

is important for small wave numbers and that the flow structure is indistinguishable

from that obtained with rigid surfaces in the case of large compliancy parameters.

Jayanthi and Kumari (2007) studied free and mixed convection in a porous medium.

They considered variable viscosity in non-Newtonian fluid. Their results showed that

heat transfer is more significant for liquids with variable viscosity than in the case of

constant viscosity, while the opposite is true for gases. They also showed that variable

viscosity has a significant effect on the velocity and the heat transfer rate. Makinde

(2009) studied mixed convective flow from a vertical porous plate in porous medium

with a constant heat flux and mass transfer with magnetic field effect. He found that

both magnetic field and Eckert numbers have increasing effects on the skin friction

for positive values of the buoyancy parameter. Narayana et al. (2009) studied free
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convective heat and mass transfer in a doubly stratified porous medium saturated

with a power-law fluid. By considering linear stratification for both temperature and

concentration they obtained a series approximation for the stream function, temper-

ature and concentration in terms of the thermal stratification parameter. Magyari

et al. (2006) studied unsteady free convection over an infinite vertical flat plate em-

bedded in a stable, thermally porous medium subject to sudden change in the plate

temperature. Narayana and Murthy (2006) studied combined thermal convection and

mass transfer in a doubly stratified non-Darcy porous medium adjacent to a vertical

plate. They assumed linear stratification in the vertical direction with respect to both

temperature and saute concentration. Laminar free convection from a continuously

moving vertical surface in thermally-stratified, non-Darcy porous media was inves-

tigated by Bég et al. (2008). They extended the work of Takhar et al. (2001) and

considered the effects of Darcy and Forchheimer numbers on the flow dynamics and

heat transfer characteristic.

Heat transfer with thermal radiation has many industrial applications such as in

power generation and in solar power technology. Investigations of thermal radiation

on flow, heat and mass transfer were made by, among others, Raptis (1998) who

investigated thermal radiation and free convection in flow through a porous medium.

Hayat et al. (2007b) studied the effect of thermal radiation on MHD flow of an incom-

pressible second grade fluid. Sajid and Hayat (2008) studied the effect of radiation of

a viscous fluid over an exponentially stretching sheet. They found that the radiation

and the Prandtl parameter have an opposite effect on the temperature and that the

radiation parameter controls the thickness of the thermal boundary layer. This prob-

lem has also been solved numerically by Bidin and Nazar (2009). Mahmoud (2009)

studied the effect of radiation on unsteady MHD flow and heat transfer subject to

viscous dissipation effect and temperature dependent viscosity. He showed that the

thermal boundary thickness decreases with thermal radiation. Recently, radiation

and melting effects on mixed convection from a vertical surface embedded in a porous
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medium for aiding and opposing eternal flows was investigated by Chamkha et al.

(2010). Makinde (2011a)investigated hydromagnetic mixed convection heat and mass

transfer flow of an incompressible Boussinesq fluid with constant heat flux in porous

medium considering radiative heat transfer, viscous dissipation, and an nth order

homogeneous chemical reaction. Anjalidevi and Devi (2011) investigated thermal ra-

diation effects on MHD convective flow over a porous rotating disk with cross-diffusion

effects. They showed that the thermal radiation and the thermo diffusion effects has

significant effects on the thermal boundary layer.

Gebhart (1962) studied natural convection in fluids with viscous dissipation. He

showed that viscous dissipation plays an important role in various devices. The study

by Gebhart (1962) was extended by Gebhart and Mollendorf (1969) who obtained a

similarity solution for exponential variation of the wall temperature. Nakayama and

Pop (1989) studied free convection over a non-isothermal body of arbitrary shape in

a porous medium with viscous dissipation. They showed that that viscous dissipation

lowers the rate of heat transfer. Murthy and Singh (1997) studied the effect of viscous

dissipation on a non-Darcy natural convection regime. They noted that a significant

decrease in heat transfer can be observed with the inclusion of the viscous dissipation

effect. Sibanda and Makinde (2010) investigated the heat transfer characteristics of

steady MHD flow in a viscous electrically conducting incompressible fluid with Hall

current past a rotating disk with ohmic heating and viscous dissipation. They found

that the magnetic field retards the fluid motion due to the opposing Lorentz force

generated by the magnetic field. Bhadauria and Srivastava (2010) discussed ther-

mal instability in an electrically conducting two component fluid in porous medium

consider the effect of modulation of the boundaries temperature on the onset of sta-

tionary convection. The magnetic field has been applied has been applied to a solute

gradient between the boundaries. They showed that the effect of modulation may

be zero when modulation frequency is zero and modulation disappears altogether at

modulation frequency tends to infinity. Kairi and Murthy (2011b) studied the effect
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of viscous dissipation on natural convection heat and mass transfer in a non-Darcy

porous media. The study investigated free convection flow and chemical reaction with

variable thermal conductivity and viscosity. They showed that there is a significant

difference between the results pertaining to variable and constant fluid properties.

Recent advances in heat and mass transfer technology have allowed for the de-

velopment of a new category of fluids called nanofluids, Choi (1995). Nanofluids are

fluids created by dispersing solid nanoparticles in traditional heat transfer fluids. The

average size of the particles may lie in the range 1-100 nm, Choi (2009). One of the

important nanofluid features is its stability because the particles are low weight, small

and have less chance of sedimentation, Das et al. (2006). Compared to the base fluids

like oil or water, nanofluids have been shown to enhance thermophysical properties

such as the heat transfer rate, thermal conductivity, thermal diffusivity and viscosity.

Nanofluids therefore can be considered to be the next generation of heat transfer

fluids, Lee et al. (1999) and Wang and Mujumdar (2007). Many experimental stud-

ies have been carried out to investigate heat and mass transfer in nanofluids in the

last decade by, among others, Putra et al. (2003). Wen and Ding (2006) discussed

uncertainties about using nanofluids in practical applications. Wang and Majumdar

(2007) presented an overview of the recent developments on convection heat transfer

characteristics in nanofluids. They showed that researchers have given more impor-

tance to the thermal conductivity, than the heat transfer characteristics, and there

is a general lack of of physical understanding of convection in nanofluids. Singh et

al. (2011) investigated the heat transfer behaviour of nanofluids in microchannels.

They also showed that better heat transfer characteristics can be obtained with high

concentration and low viscous base fluids of nanofluids.
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1.2 The cross-diffusion effect

The relation between fluxes and the driving potentials is complex when heat and

mass transfer occur together in a fluid, Pop and Ingham (2001). The energy flux

induced by the temperature gradient is called the thermal-diffusion or Soret effect.

On the other hand, the energy flux created by the concentration gradient is called

the diffusion-thermo or Dufour effect. The effects of Soret and Dufour are known as

cross-diffusion effects.

The cross-diffusion effects are often considered as second order phenomena al-

though it is now known that they may become significant in porous media flows

such as in geosciences, petrology, hydrology, etc. Indeed in many studies of heat

and mass transfer processes, thermal-diffusion and the diffusion thermo effects are

often neglected on the basis that they are of a smaller order of magnitude than the

effects produced by Fourier and Fick laws, Mojtabi and Charrier-Mojtabi (2005).

The diffusion-thermo effect has been found to be of considerable magnitude in some

flows such that it cannot always be neglected, Eckert and Drake (1972). Dursunkaya

and Worek (1992) analyzed the effects of Soret and Dufour numbers in transient

and steady natural convection from a vertical surface while Kafoussias and Williams

(1995) investigated the effects of Soret and Dufour numbers on mixed free-forced

convective heat and mass transfer on steady laminar boundary layer flow along a

heated vertical plate surface. They assumed that the viscosity of the fluid varied

with temperature and showed that the Soret and Dufour effects have to be taken into

consideration in heat and mass transfer studies. The Soret effect has been used for iso-

tope separation and mixtures of gases with light and medium molecular weights such

as hydrogen, hellium, nitrogen and air, Postelnicu (2004). Postelnicu (2004) studied

the influence of a magnetic field on natural convection from vertical surfaces in porous

media taking into account the Soret and Dufour effects. Alam and Rahman (2006b)

investigated the problem of mixed convection flow past a vertical porous flat plate
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for a hydrogen-air mixture with Soret and Dufour effects and variable suction. They

used the Nachtsheim-Swigert shooting iteration technique together with a sixth order

Runge-Kutta integration scheme to solve the problem. They reported that the Soret

and Dufour effects should not be neglected for fluids with medium molecular weight

(such as H2, air). Li et al. (2006) studied the Soret and Dufour effects on heat and

mass transfer in fluid flow with a strongly endothermic chemical reaction in a porous

medium. Their results indicated that Soret and Dufour effects can not be ignored

when the convectional velocity is lower or when the initial temperature of the feeding

gas is high. Postelnicu (2007) investigated the effects of cross-diffusion on heat and

mass transfer characteristics of natural convection from a vertical surface in a porous

medium with chemical reaction. Abreu et al. (2007) studied both forced and natural

heat and mass transfer in laminar boundary layer flows with Soret and Dufour effects.

Kim et al. (2007) investigated cross-diffusion effects on the convective instabilities in

nanofluids. They showed that Soret and Dufour effects make nanofluids unstable and

heat transfer increases by the Soret effect in the binary nanofluids, is more significant

than that in the normal nanofluids. Narayana and Murthy (2008) analyzed the effect

of Soret and Dufour parameters on free convection from a horizontal flat plate in a

Darcian fluid saturated porous medium. Motsa (2008) investigated Soret and Dufour

effects on the onset of convection in a fluid-saturated porous medium. He showed that

the Soret effect had a stabilizing effect in the case of stationary instability whereas

the Dufour effect was destabilizing. Afify (2009) carried out an analysis of the ef-

fects of Soret and Dufour numbers on free convective heat and mass transfer over a

stretching surface in the presence of suction and injection. His study showed that

for fluids with medium molecular weight (H2, air), thermal diffusion and diffusion-

thermo effects should not be neglected. This study thus confirmed the earlier findings

by Alam and Rahman (2006b). Kairi and Murthy (2009b) discussed the melting phe-

nomena and the effect of Soret numbers on natural convection heat and mass transfer

from a vertical flat plate with constant wall temperature and concentration in a non-

Newtonian fluid saturated non-Darcy porous medium. They considered aiding and
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opposing buoyancies in the study and found that the Soret number has a significant

effect on the temperature and concentration profiles as well as the heat and mass

transfer rates.

Recently, cross-diffusion effects on heat and mass transfer along a vertical wavy

surface in a Newtonian fluid saturated Darcy porous medium have been investigated

by Narayana and Sibanda (2010). They showed that increasing the Soret parameter

leads to an increase in the axial mass transfer coefficient. They also showed that the

heat transfer rate increases at the surface when a diffusion-thermo effect increases.

Awad and Sibanda (2010a) investigated Soret and Dufour effects on heat and mass

transfer in a micropolar fluid in a horizontal channel. They reported that Soret and

Dufour effects have a significant influence on the thermal and concentration bound-

ary layer profiles. Shateyi et al. (2010b) considered the influence of cross-diffusion on

mixed convection over vertical surfaces in the presence of radiation and Hall effects.

They showed that the Soret number has a decreasing effect on the temperature pro-

file and an increasing effect on the concentration profile, while the effect of Soret and

Dufour on the concentration and temperature distributions is opposite. They also

noted that thermal-diffusion and diffusion-thermo effects have a significant influence

on the velocity, temperature and concentration and thus have to be considered in

the study of heat and mass transfer problems. The work of Parand et al. (2010a)

has been extended by Awad et al. (2011a) to include the effects of the Soret mass

flux and Dufour energy flux. They used a linearization technique to find solutions

to the governing equations and assumed the thermal-diffusion and diffusion-thermo

effects to be significant. Huang et al. (2011) studied the natural convection along an

inclined stretching surface in a porous medium with thermal-diffusion and diffusion-

thermo effects in the presence of a chemical reaction. They reported that the flow,

thermal, and diffusion fields are influenced appreciably by the effects of Soret and

Dufour numbers. They also observed for large Dufour numbers and small Soret num-

bers coincide with increasing concentration differences and decreasing temperature
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differences. Awad et al. (2011b) studied the Soret and Dufour effects in flow over

a wavy smooth cone. They noted that the thermal thickness decreases as the Du-

four number increases. Pal and Mondal (2011) investigated the combined effects of

Soret and Dufour numbers on unsteady MHD non-Darcy mixed convection over a

stretching sheet embedded in a saturated porous medium in the presence of viscous

dissipation, thermal radiation and a chemical reaction of first-order. They noted

that the temperature profiles are strongly influenced by the Dufour effect. Makinde

(2011b) analyzed the mixed convection flow of an incompressible Boussinesq fluid

under the simultaneous action of buoyancy and transverse magnetic field with Soret

and Dufour effects over a vertical porous plate with constant heat flux embedded

in a porous medium. Makinde and Olanrewaju (2011c) studied the unsteady mixed

convection flow past a vertical porous flat plate moving through a binary mixture in

the presence of radiative heat transfer and nth-order Arrhenius type of irreversible

chemical reaction by taking into account Dufour and Soret effects. Olanrewaju and

Makinde (2011) carried out to study free convective of an incompressible, electrically

conducting fluid past a moving vertical plate in the presence of suction and injection

with cross-diffusion effects. they noted that Dufour and Soret effects should not be

neglected for fluids with medium molecular weight (H2, air).

From previous studies it is clear that, (i) cross-diffusion has a significant effect

on heat and mass transfer processes, and (ii) the Soret and Dufour numbers have

opposite effects on the temperature and concentration profiles. The present study

investigated the effects of cross-diffusion on heat and mass transfer in porous media

1.3 Analytical and numerical studies

A wide variety of problems in science and engineering can be described by coupled

linear or non-linear systems of partial or ordinary differential equations. Compared to
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nonlinear equations, linear equations can easily be solved. Finding analytical solutions

to nonlinear problems on finite or infinite domains is one of the most challenging

problems. Such problems do not usually admit closed from analytic solutions and in

most cases we resort to finding approximate solutions using numerical approximation

techniques. Common numerical methods used for solving nonlinear boundary value

problems include Runge-Kutta methods, Keller-box method, finite difference method,

finite element method and shooting method.

These methods have been used to solve many types of fluid flow models by many

researchers. Rees and Pop (1998) used the Keller-box method to solve the problem

of free convection from a vertical flat plate for a range of values of micropolar fluid

parameters. The finite difference method has been used by Jumah and Mujumdar

(2001) to study the Darcy-Forchheimer mixed convection from a vertical flat plate in

a porous medium, under the coupled effects of thermal and mass diffusion. Using a

Runge-Kutta scheme with the shooting method, Afify (2004) studied free convective

flow and mass transfer over a stretching sheet with chemical reaction and magnetic

field effects. Alam et al. (2006a) used a sixth order Runge-Kutta method, together

with the shooting technique, to solve the problem of free convection in a fluid with

temperature dependent viscosity along an inclined plate. The flow past a semi-infinite

vertical plate with MHD with heat and mass transfer was investigated by Palani and

Srikanth (2009) and the dimensionless governing equations were solved by an im-

plicit finite difference scheme of Crank-Nicolson type. The Keller-box method has

been used by Srinivasacharya and RamReddy (2010) to solve natural convection heat

and mass transfer along a vertical plate embedded in a doubly stratified micropolar

fluid in a non-Darcy porous medium. The finite element method has been used by

Reddy and Reddy (2010) to investigate unsteady magnetohydrodynamic convective

and dissipative fluid flow from a vertical porous plate with radiation effect. Su-

lochana et al. (2011) analyzed the Soret effect on convective heat and mass transfer

through a porous medium in circular annulus using Galerkin finite element analysis
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with quadratic polynomials.

A recent numerical technique, the fitted operator finite difference method (FOFDM),

was proposed by Patidar (2005). He showed that the FOFDM is second order accu-

rate for very small values of the perturbation parameter ε and fourth order accurate

for moderate values of this parameter. He also showed this method is advantageous

over the conventional methods such as finite difference methods and finite element

methods. The technique has been used to find solutions of a class of self-adjoint sin-

gularly perturbed two-point boundary value problems, Lubuma and Patidar (2006)

and Bashier and Patidar (2011a,b,c). Munyakazi and Patidar (2008) extended the

work of Patidar (2005) and Lubuma and Patidar (2006) to the investigation of the

performance of the Richardson extrapolation on some fitted operator finite difference

methods. The studies by Bashier and Patidar (2011a,b) used the method to solve

a singularly perturbed delay parabolic partial differential equation and a system of

partial delay differential equations. The FOFDM has been extended by Munyakazi

and Patidar (2010) to elliptic singular perturbation problems.

The main disadvantage of numerical methods in general however is that they

often give very little insight into the structure of the solutions or the effects of the

various parameters embedded in the governing equations.

Non-numerical approaches include the classical power-series method and its vari-

ants for systems of nonlinear differential equations with small or large embedded

parameters such as the homotopy perturbation method, He (1999, 2003a,b, 2004,

2005, 2006) and the Hermite-Pade approximations, Guttamann (1989) and Tourigny

and Drazin (2000). Other common non-perturbation methods in general use are

Adomian decomposition method (ADM), Adomian (1989, 1990, 1992, 1994), and the

δ-expansion method, Lyapunov (1992) and Awrejcewicz et al. (1998). However, it

is well-known that most of these perturbation solutions are not valid in the whole

physical region. These methods do not guarantee the convergence of the series solu-
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tion, and the perturbation approximations may be only valid for weakly non-linear

problems, Liao (2007).

Further disadvantages of perturbation methods are that, (i) they require the

presence of a large or small parameter in the problem while non-perturbation methods

require a careful selection of initial approximations and linear operators, and (ii)

linearization usually leads to difficulties in the integration of higher order deformation

equations.

A recent analytical method that has been used with great success is the homotopy

analysis method (HAM) proposed by Liao (1992) in his PhD research. This method

provides us with greater freedom in the selection of the initial guess and auxiliary

linear operators than the other non-perturbation methods, Liao (2007, 2009). The

method transforms the nonlinear differential equation to a system of ordinary differen-

tial equations that can easily be solved. The HAM contains a convergence-controlling

parameter ~ which controls both the region of convergence and the convergence rate,

and this is the most important innovation of this method. The HAM is thus a more

general non-perturbation method and overcomes the restrictions of other methods

because it suggests a way of ensuring the convergence of the solution. The HAM has

been used to solve different types of non-linear heat and mass transfer problems. Ab-

basbandy (2006, 2007) used the HAM to solve heat transfer problems with high non-

linearity order. He compared his results with the homotopy perturbation method and

showed that the homotopy perturbation method is valid only for small parameters.

Hayat and Sajid (2007a) solved the MHD boundary layer flow of an upper-convected

Maxwell fluid problem. Domairry et al. (2009) used the HAM to solve the nonlinear

differential equation governing Jeffery-Hamel flow. Dinarvand and Rashidi (2010)

used the HAM to solve the problem of laminar, isothermal, incompressible, and vis-

cous flow in a rectangular domain bounded by two moving porous walls. Shateyi et

al. (2010c) used the HAM in their investigation of natural convection and heat and
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mass transfer when considering chemical reaction and heat generation. Awad and

Sibanda (2010b) studying the cross-diffusion effects on free convection of heat and

mass in micropolar fluid, found approximate analytical series solutions for the system

of nonlinear differential equations. The HAM has also been successfully used to find

solutions of several other types of nonlinear problems by, among others, Yang and

Liao (2006), Liao (2006), Lipscombe (2010) and Liu (2010). In the HAM, an auxil-

iary function is used to avoid the appearance of secular terms in the solution. This

is called the rule of coefficient ergodicity. The HAM represents the required solution

of a differential equation as a sum of predetermined base functions that provide the

so-called rule of solution expression.

The HAM does, however, suffer from a number of restrictive limitations as ad-

mitted by Liao (2003) and explained by Motsa et al. (2010b,c). Included in some of

these restrictions are that:

(1) The HAM may not work, or its accuracy may be impaired for large values of the

governing parameters.

(2) One has to carefully select an initial approximation and linear operator that will

make the integration of the higher order deformation equations possible. That

is because a complicated initial approximation and linear operator may result in

higher order deformation equations that are difficult to integrate.

(3) The HAM solution must conform to the rule of solution expression and rule of

coefficient ergodicity.

The spectral homotopy analysis method (SHAM) was proposed by Motsa et al.

(2010b,c) in order to address these restrictions. In the SHAM the auxiliary linear

operator and the higher order deformation equations are defined in terms of the

Chebyshev spectral collocation differentiation matrix, Don and Solomonoff (1995).
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Some advantages of this approach as pointed out by Motsa et al. (2010b) are that:

(i) We can use any initial guess as long as it satisfies the boundary conditions, while

with the HAM one is restricted to selecting an initial guess that would allow for

the easy integration of the higher order deformation equations.

(ii) The SHAM is more flexible than the HAM as one is not restricted to using the

method of higher order deformation.

(iii) The SHAM leads to faster convergence in comparison with the standard HAM.

Comparisons between the HAM and the SHAM have been made by Motsa et

al. (2010b). They solved the Darcy-Brinkman-Forchheimer equation for steady fully

developed channel flow in a porous medium. They found among other things that:

(i) The SHAM converges much faster than the HAM. For example, they showed

that the fourth order SHAM approximation gave good agreement with the nu-

merical results.

(ii) The range of the auxiliary parameter ~ values is much wider in the SHAM than

in HAM.

(iii) The optimal value of ~ in the SHAM is the maximum of the second order ~

curves. This finding is in line with the findings in Sibanda and Motsa (2012).

Motsa and Shateyi (2010d) used the SHAM to solve the problem of MHD rotating

flow over a shrinking sheet. They showed that the SHAM rapidly converges to the

numerical results. Motsa and Sibanda (2011b) solved the Falkner-Skan equation using

the SHAM and compared the results with the HAM. They concluded that the SHAM

required only two or three terms to achieve the accuracy of the numerical method.

Makukula et al. (2010d) used the SHAM for the problem of fluid flow between two
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moving porous walls. Sibanda et al. (2012) solved the problem of heat transfer in a

third grade fluid between parallel plates. The SHAM has been improved and modified

by, among others, Motsa et al. (2011a) who proposed an improved spectral homo-

topy analysis method (ISHAM). They applied the method to the Falkner-Skan and

MHD boundary layer problems. Sibanda et al. (2012) proposed a modified spectral

homotopy analysis method (MSHAM). They applied the method to the problem of

the steady laminar flow of a pressure driven third-grade fluid with heat transfer. The

main difference between the MSHAM and SHAM is that the MSHAM is applied to a

transformed version of the governing equations, while the SHAM algorithm is applied

to the original governing equations. They also showed that the MSHAM is more ef-

ficient than the SHAM. The use of spectral methods also provided greater flexibility

in the choice of basis functions.

The challenge of finding more accurate, robust and computationally efficient so-

lution techniques for nonlinear problems in engineering and science still remains. The

method used in this study that remains to be generalized and whose robustness re-

mains to be tested in the case of highly nonlinear equations with a strong coupling, is

the successive linearisation method (SLM), Makukula et al. (2010b) and Motsa and

Sibanda (2010a). This technique has been successfully used in a limited number of

studies. Makukula et al. (2010c) solved the classical Von Karman equations for the

boundary layer flow induced by a rotating disk using both the spectral homotopy

analysis method and the SLM. They showed that the SLM gives better accuracy at

lower orders than the spectral homotopy analysis method. Other studies such as

Makukula et al. (2010a,d), Shateyi and Motsa (2010a) and Awad et al. (2011b) used

the SLM to solve different boundary value problems in heat and mass transfer studies

and showed by comparison with numerical techniques that the SLM is accurate, gives

rapid convergence and is thus superior to some existing semi-analytical methods such

as the Adomian decomposition method, the Laplace transform decomposition tech-

nique, the variational iteration method and the homotopy perturbation method. The
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SLM is a non-perturbation method requiring neither the presence of an embedded

perturbation parameter nor the addition of an artificial parameter. The method is

therefore free of the major limitations associated with other perturbation methods.

However since this method is a linearization method, it is worth first discussing

the earlier method of quasilinearization.

1.4 Method of quasilinearization

The quasilinearization method (QLM) was proposed by Bellman and Kalaba (1965) as

a generalization of the Newton-Raphson method, Conte and Boor (1981) and Ralston

and Rabinowitz (1988). The QLM method approximates the solution by treating the

nonlinear terms as a perturbation about the linear ones and does not require the

existence of a small parameter, Mandelzweig (1999). The method was developed and

applied to a wide range of problems in different fields of science. Mandelzweig and

Tabakin (2001) used the method to solve nonlinear ordinary differential equations

such as the Duffing and Blasius equations. They showed that this method gives

excellent results. Parand et al. (2010b) solved Volterra’s model for the growth of a

species population within a closed system using the QLM technique.

The convergence of this technique has been proven in the original works of Bell-

man and Kalaba (1965). They proved the convergence only under rather restrictive

conditions of small intervals. Mandelzweig (1999) removed some unnecessary re-

strictive conditions by reformulating the proof of convergence of the method to be

applicable to real physical applications.

To demonstrate the general idea of the QLM method, we consider the following

second order nonlinear ordinary differential equation in one variable defined on the
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interval [a, b];
d2u(x)

dx2
= F (u(x), u′(x), x), (1.6)

with boundary conditions

u(a) = a0, u(b) = b0, (1.7)

where F is an unknown nonlinear function of u(x) and its derivatives and x ∈ [a, b].

The QLM method determines the solution of (1.6) after transforming this equation

as follows (Bellman and Kalaba 1965 , Mandelzweig 1999 and Parand et al. 2010b);

d2ui+1

dx2
= F (ui(x), u′i(x), x) + (ui+1(x)− ui(x))

∂F

∂u
(ui(x), u′i(x), x)

+(u′i+1(x)− u′i(x))
∂F

∂u′
(ui(x), u′i(x), x), (1.8)

with boundary conditions

ui+1(a) = a0, ui+1(b) = b0, i = 0, 1, 2, ...m. (1.9)

The initial guess u0(x) is chosen to satisfy boundary conditions at zero and ui(x) is

known from the previous iteration. Starting from the initial guess we can calculate

the mth order approximations successively using the formula (1.8).

1.5 The SLM technique

The SLM procedure linearizes the governing nonlinear equations which are then solved

using spectral methods. To fully describe the SLM algorithm, let us consider the

following boundary value problem of order n in the form

L[u(x), u′(x), u′′(x), ..., u(n)] +N [u(x), u′(x), u′′(x), ..., u(n)] = g(x), (1.10)
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where L and N are linear and nonlinear operators, u(x) is an unknown function to

be determined and g(x) is a known function. We assume that equation (1.10) is to

be solved for x ∈ [a, b] subject to the boundary conditions

u(a) = a0, u(b) = b0. (1.11)

We represent the vertical difference between the function u(x) and the initial guess

u0(x) by a function U1(x) as (see Figure 1.1)

U1(x) = u(x)− u0(x), (1.12)

Figure 1.1: Geometric representation of the function U1(x)

where U1(x) is an unknown functions and u0(x) is the initial guess which is chosen

to satisfy boundary conditions (1.11). It is reasonable to assume, for example, that

the initial approximation u0(x) is a linear function in case of second order problems

defined on a finite domain and an exponential function for problems defined on an
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infinite or a semi-infinite domain. Substituting (1.12) into (1.10), yields

L[U1(x), U ′
1(x), U ′′

1 (x), ..., U
(n)
1 ] + L[u0(x), u′0(x), u′′0(x), ..., u

(n)
0 ]

+N [U1(x) + u0(x), U ′
1(x) + u′0(x), U ′′

1 (x) + u′′0(x), ..., U
(n)
1 (x) + u

(n
0 )(x)]

= g(x) , (1.13)

This equation is non-linear in U1(x), so it may not be possible to find an exact solution.

We therefore look for a solution which is obtained by solving the linear part of the

equation and neglecting the non-linear terms containing U1(x) and its derivatives. We

further assume that U1(x) and its derivatives are very small, and denote the solution

of the linearized equation (1.13) by U1(x), that is U1(x) ≈ u1(x). Equation (1.13)

can be written as

L[u1(x), u′1(x), u′′1(x), · · · , u
(n)
1 (x)] + f0,0u1(x) + f1,0u

′
1(x) + f2,0u

′′
1(x)

+ · · ·+ fn,0u
(n)
1 (x) = R1(x), (1.14)

where

f0,0 =
∂N

∂u1(x)

(
u0(x), u′0(x), u′′0(x), · · · , u

(n)
0 (x)

)
,

f1,0 =
∂N

∂u′1(x)

(
u0(x), u′0(x), u′′0(x), · · · , u

(n)
0 (x)

)
,

f2,0 =
∂N

∂u′′1(x)

(
u0(x), u′0(x), u′′0(x), · · · , u

(n)
0 (x)

)
,

...

fn,0 =
∂N

∂u
(n)
1 (x)

(
u0(x), u′0(x), u′′0(x), · · · , u

(n)
0 (x)

)
,

and

R1(x) = g(x)−L[u0(x), u′0(x), u′′0(x), · · · , u
(n)
0 (x)]−N [u0(x), u′0(x), u′′0(x), · · · , uo(x)(n)].
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Since the left hand side of equation (1.14) is linear and the right hand side is known,

the equation can be solved for u1(x) subject to the boundary conditions

u(a) = 0, u(b) = 0. (1.15)

Assuming that the solution of the linear equation (1.14) is close to the solution of the

nonlinear equation (1.13), then the first approximation of the solution (order 1) is

u(x) ≈ u0(x) + u1(x) (1.16)

To improve this solution, we define the vertical difference between the functions U1(x)

and u1(x) by a function U2(x) as (see Figure 1.2)

Figure 1.2: Geometric representation of the function U2(x)

U2(x) = U1(x)− u1(x), (1.17)
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Substitute (1.17) into equation (1.13) to give

L[U2(x), U ′
2(x), U ′′

2 (x), ..., U
(n)
2 ]

+L[u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), ..., u
(n)
0 + u

(n)
1 (x)]

+N [U2(x) + u0(x) + u1(x), U ′
2(x) + u′0(x) + u′1(x), U ′′

2 (x) + u′′0(x) + u′′1(x)

, ..., U
(n)
2 (x) + u

(n
0 )(x) + u

(n)
1 (x)] = g(x), (1.18)

Since u0(x) and u1(x) are known and this equation is non-linear in U2(x), we solve

the linearized equation after neglecting the non-linear terms containing U2(x) and

its derivatives. We further assume that U2(x) and its derivatives are very small and

denote the solution of the linearized equation (1.18) by U2(x), that is U2(x) ≈ u2(x).

Equation (1.18) can be written as

L[u2(x), u′2(x), u′′2(x), · · · , u
(n)
2 (x)] + f0,0u2(x) + f1,0u

′
2(x) + f2,0u

′′
2(x)

+ · · ·+ fn,0u
(n)
2 (x) = R2(x), (1.19)

where

f0,0 =
∂N

∂u2(x)

(
u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), · · · , u

(n)
0 (x) + u

(n)
1 (x)

)
,

f1,0 =
∂N

∂u′2(x)

(
u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), · · · , u

(n)
0 (x) + u

(n)
1 (x)

)
,

f2,0 =
∂N

∂u′′1(x)

(
u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), · · · , u

(n)
0 (x) + u

(n)
1 (x)

)
,

...

fn,0 =
∂N

∂u
(n)
1 (x)

(
u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), · · · , u

(n)
0 (x) + u

(n)
1 (x)

)
,
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and

R2(x) = g(x)− L[u0(x) + u1(x), u′0(x) + u′1(x), · · · , u
(n)
0 (x) + u

(n)
1 (x)]

−N [u0(x) + u1(x), u′0(x) + u′1(x), · · · , u
(n)
0 (x) + u

(n)
1 (x)].

After solving the equation (1.19), the second order approximation of u(x) is given by

u(x) ≈ u0(x) + u1(x) + u2(x). (1.20)

This process is repeated for m = 2, 3, · · · , i. Thus, u(x) is given by

u(x) = U1(x) + u0(x),

= U2(x) + u0(x) + u1(x),

= U3(x) + u0(x) + u1(x) + u2(x),

...

= Ui+1(x) + u0(x) + u1(x) + u2(x) + · · ·+ ui(x),

= Ui+1(x) +
i∑

m=0

um(x).

Thus, for large i, we can approximate the ith order solution u(x) by

u(x) =
i∑

m=0

um(x). (1.21)

The solution ui(x) can be determined from the linearized original equation (1.10)

starting from the initial guess u0(x) and solving the linear equations for ui(x). In

general, the form of the linearized equation for ui(x) is given by

L[ui(x), u′i(x), u′′i (x), · · · , u
(n)
i ] + f0,i−1ui(x) + f1,i−1u

′
i(x) + f2,i−1u

′′
i (x)

+ · · ·+ fn,i−1u
(n)
i (x) = Ri−1(x), i = 1, 2, · · · ,M, (1.22)

29



subject to the boundary conditions

ui(a) = 0, ui(b) = 0, (1.23)

where M is termed the order of the SLM.

f0,i−1 =
∂N

∂ui(x)

(
i−1∑
m=0

um,

i−1∑
m=0

u′m,

i−1∑
m=0

u′′m, ...,

i−1∑
m=0

u(n)
m

)
,

,

f1,i−1 =
∂N

∂u′i(x)

(
i−1∑
m=0

um,

i−1∑
m=0

u′m,

i−1∑
m=0

u′′m, ...,

i−1∑
m=0

u(n)
m

)
,

f2,i−1 =
∂N

∂u′′i (x)

(
i−1∑
m=0

um,

i−1∑
m=0

u′m,

i−1∑
m=0

u′′m, ...,

i−1∑
m=0

u(n)
m

)
,

...

fn,i−1 =
∂N

∂u
(n)
i (x)

(
i−1∑
m=0

um,

i−1∑
m=0

u′m,

i−1∑
m=0

u′′m, ...,

i−1∑
m=0

u(n)
m

)
,

and

Ri−1(x) = g(x)− L
(

i−1∑
m=0

um,

i−1∑
m=0

u′m,

i−1∑
m=0

u′′m, ...,

i−1∑
m=0

u(n)
m

)

−N
(

i−1∑
m=0

um,

i−1∑
m=0

u′m,

i−1∑
m=0

u′′m, ...,

i−1∑
m=0

u(n)
m

)
.

The ordinary differential equation(1.22) is linear and can easily be solved using any

analytical or numerical method. In this study we used the Chebyshev spectral col-

location method ( Canuto 1988, Don and Solomonoff 1995, Trefethen 2000) to solve

equation (1.22). The method is based on the Chebyshev polynomials defined on the

interval [−1, 1]. We first transform the domain [a, b] to the domain [−1, 1] where the
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Chebyshev spectral collocation method can be applied by using the transformation

(b− a)ξ = 2x− (a + b), − 1 ≤ ξ ≤ 1. (1.24)

Most problems in fluid mechanics are defined on the domain [0,∞). For this case we

can use the domain truncation technique where the problem is solved in the interval

[0, L] instead of [0,∞) where L is the scaling parameter used to invoke the boundary

condition at infinity. By using the mapping

ξ + 1

2
=

x

L
, − 1 ≤ ξ ≤ 1, (1.25)

the problem is solved in the spectral domain [−1, 1]. We discretize the domain [−1, 1]

using the Gauss-Lobatto collocation points given by

ξ = cos
πj

N
, j = 0, 1, 2, . . . , N, (1.26)

where N is the number of collocation points used. The function ui is approximated

at the collocation points as follows

ui(ξ) ≈
N∑

k=0

ui(ξk)Tk(ξj) (1.27)

where Tk is the kth Chebyshev polynomial given by

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (1.28)

The derivatives of the variables at the collocation points are represented as

d(r)ui

dx(r)
=

N∑

k=0

[
2

b− a
Dkj

]r

ui(ξk) (1.29)

where r is the order of differentiation and D being the Chebyshev spectral differen-
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tiation matrix whose entries are defined as (Canuto 1988, Don and Solomonoff 1995,

Trefethen 2000)

D00 =
2N2 + 1

6
,

Djk =
cj

ck

(−1)j+k

ξj − ξk

, j 6= k; j, k = 0, 1, . . . , N,

Dkk = − ξk

2(1− ξ2
k)

, k = 1, 2, . . . , N − 1,

DNN = −2N2 + 1

6
.





(1.30)

Substituting equations (1.25)-(1.31) into equation (1.22) leads to the following system

of matrix equation

Ai−1Xi = Ri−1, (1.31)

in which Ai−1 is a (N +1)× (N +1) square matrix while Xi and Ri−1 are (N +1)×1.

After modifying the matrix system (1.31) to incorporate the modified the boundary

conditions, the solution of (1.10) is obtained by

Xi = A−1
i−1Ri−1 (1.32)

1.6 Comparison of the QLM and SLM

In this section, we illustrate the use of the QLM and the SLM by solving a nonlinear

second order differential equation. To demonstrate the convergence rates of the QLM

and the SLM, the solutions of the problem are compared with the numerical solu-

tion at different orders of approximation. Consider the following nonlinear Bratu’s

boundary value problem, (Aris 1975, Boyd 2003, Wazwaz 2005)

u′′(x) + λeu(x) = 0, (1.33)

32



with boundary conditions

u(0) = 0 and u(1) = 0, (1.34)

where λ > 0. The exact solution of (1.33) and (1.34) is given by

u(x) = −2 ln

[
cosh

[
(x− 1

2
) θ

2

]

cosh
(

θ
4

)
]

, (1.35)

where θ satisfies θ =
√

2λ cosh(θ/4). To apply the QLM to this test problem, we first

linearize the equation using the form (1.8) to get the following mth approximation

linear differential equation

u′′i+1(x) + λeui(x)ui+1(x) = λ(ui(x)− 1)eui(x), i = 0, 1, 2, .., m = 0, (1.36)

subject to boundary conditions

ui+1(0) = 0, ui+1(1) = 0. (1.37)

The initial guess u0(t) must be chosen in such a way that it satisfies the conditions

(1.34). To apply the SLM technique to find a solution to equation (1.33), we start by

assuming that the solution may be obtained in the form

u = u0(t) +
M∑

m=1

um(t), (1.38)

where M is the order of the method and u0 is an initial approximation. Substituting

(1.38) into equation (1.33) we get the linearized form

u′′i+1(x) + λeui(x)ui+1(x) = − (
u′′i (x) + λeui(x)

)
, (1.39)
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subject to initial conditions

ui+1(0) = 0, ui+1(1) = 0. (1.40)

Equations (1.36) and (1.39) were linearized and can be easily solved using any numer-

ical methods. We observe from the linearized equations (1.36) and (1.39), that the

boundary condition is not changed even for higher approximations for QLM solution

but in the SLM solution the initial guess must be chosen to satisfy the boundary

conditions (1.34) and for higher approximations to be zero. For the QLM and SLM

solutions we selected the initial guess u0(x) = 0. Tables 1.1 and 1.2 give a comparison

of the convergence rates of the QLM and SLM solution at different orders of approx-

imation with the exact solution at selected nodes when λ = 1 and λ = 2 for same

initial approximation. A striking feature of the SLM is that a high level of accuracy

is achieved at very low orders of approximation. For example, from Tables 1.1 and

1.2, convergence of the SLM is achieved at the second order and the third order of

the solution when λ = 1 and λ = 2, respectively, while convergence of the QLM is

not achieved even at the higher order of approximations. We can conclude that the

SLM appears to be more efficient and converges more rapidly than the QLM for this

particular problem. We note some similarities and differences between the QLM and

SLM as follows:

(i) In the QLM the linearized equation is constructed as a generalization of the

Newton-Raphson method whereas in the SLM this is constructed by first as-

suming that the solution may be obtained in the form u = ui +
∑

um and

neglecting the non-linear terms after substituting this into the given equation.

(ii) The QLM method treats only the nonlinear terms as a perturbation about the

linear ones, Parand et al. (2010b).

(iii) The initial guess is chosen to satisfy the boundary conditions in both methods.
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Table 1.1: Comparison of the absolute convergence rates of the QLM and SLM ap-
proximate solutions with the exact solution u(x) for when λ = 1.

x Order QLM SLM |QLM−u(x)| |SLM−u(x)|

0.1

1st order 0.049555 0.049543 0.000292 0.000304

2nd orer 0.049859 0.049847 0.000012 0.000000

3rd order 0.049859 0.049847 0.000012 0.00000

0.2

1st order 0.088621 0.088600 0.000569 0.000590

2nd orer 0.089212 0.089190 0.000022 0.000000

3rd order 0.089212 0.089190 0.000022 0.000000

0.3

1st order 0.116807 0.116780 0.000802 0.000829

2nd orer 0.117638 0.117609 0.000029 0.000000

3rd order 0.117638 0.117609 0.000029 0.000000

0.4

1st order 0.133832 0.133801 0.000958 0.000989

2nd orer 0.134824 0.134790 0.000034 0.000000

3rd order 0.134824 0.134790 0.000034 0.000000

0.5

1st order 0.139526 0.139494 0.001013 0.001045

2nd orer 0.140575 0.140539 0.000036 0.000000

3rd order 0.140575 0.140539 0.000036 0.000000

(iv) The linearized equations by the SLM and QLM have the same linear terms and

different source terms.

(v) The SLM converges more rapidly than the QLM.

The SLM is a recent method that remains to be generalized and whose robustness

remains to be tested in the case of highly nonlinear equations with a strong coupling.

We can summarize some of advantages of the SLM as follows;

(1) It is efficient for most non-linear equations and rapidly converges to the exact

solution.
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Table 1.2: Comparison of the convergence rates of the QLM and SLM approximate
solutions with the exact solution u(x) for when λ = 2.

x Order QLM SLM |QLM−u(x)| |SLM−u(x)|

0.1

2nd order 0.114471 0.114402 0.000060 0.000009

3rd order 0.114480 0.114411 0.000069 0.000000

4th order 0.114480 0.114411 0.000069 0.000000

0.2

2nd order 0.206534 0.206403 0.000115 0.000016

3rd order 0.206550 0.206419 0.000131 0.000000

4th order 0.206550 0.206419 0.000131 0.000000

0.3

2nd order 0.274036 0.273856 0.000157 0.000023

3rd order 0.274059 0.273879 0.000180 0.000000

4th order 0.274059 0.273879 0.000180 0.000000

0.4

2nd order 0.315274 0.315061 0.000186 0.000027

3rd order 0.315301 0.315088 0.000213 0.000000

4th order 0.315301 0.315088 0.000213 0.000000

0.5

2nd order 0.329146 0.328924 0.000194 0.000010

3rd order 0.329175 0.328952 0.000223 0.000000

4th order 0.329175 0.328952 0.000223 0.000000

(2) It does not require any parameter to control the convergence rate of the solution.

(3) It gives high accuracy with only a few iterations.

(4) It requires shorter times to run the code compared with some non-perturbation

techniques.

The SLM is a very useful tool for solving strongly nonlinear equations arising from any

area of science and engineering. It can be used in place of the traditional numerical

methods such as finite differences, Runge-Kutta shooting methods, finite elements in

solving non-linear boundary value problems.
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1.7 Research objectives

The objectives of this study are:

(1) To investigate the Soret and viscous dissipation effects on natural convection from

a vertical plate in a non-Darcy porous medium.

(2) To characterize the Soret effect on natural convection from a vertical plate in

stratified porous medium saturated with a non-Newtonian fluid.

(3) To investigate mixed convection from a vertical plate in a non-Darcy porous

medium in the presence of thermal radiation and viscous dissipation effects

(4) To investigate MHD and cross-diffusion effects on fluid flow over a vertical flat

plate.

(5) To study cross-diffusion and radiation effects on the flow along an exponentially

stretching sheet in porous media.

1.8 Structure of the thesis

The main body of the thesis consists of five chapters and the conclusion. In each

chapter a specific problem is investigated. The chapters focus firstly on the effect of

cross-diffusion on fluid flow in porous media, and secondly on the application of the

linearization method to the solution of systems of differential equations. The chapters

are;

• Chapter 2:

In this chapter we investigated natural convection from a vertical plate in a
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non-Darcy porous medium. We transformed the governing equations into a

system of ordinary differential equations using a local non-similar method. The

equations were solved using the SLM technique and the shooting method. The

effects of Soret and viscous dissipation were determined and discussed.

• Chapter 3:

The effect of the Soret parameter on flow, due to a vertical plate in a porous

medium with variable viscosity was investigated. The Ostwald -de Waele power-

law model was used to characterize the non-Newtonian behaviour of the fluid.

The effect of various physical parameters such as power-law index, variable

viscosity and thermal stratification parameters on the dynamics of the fluid are

analyzed through computed results.

• Chapter 4:

In this chapter we presented an investigation of mixed convective flow due to

a vertical plate immersed in a non-Darcy porous medium saturated with a

non-Newtonian power-law fluid with variable viscosity. The Rosseland approx-

imation was used to describe the radiative heat flux accounted in the energy

equation. The effects of thermal radiation and viscous dissipation were deter-

mined and discussed.

• Chapter 5:

In this chapter we used a non-perturbation linearisation method to solve a

coupled highly nonlinear boundary value problem, due to flow over a vertical

surface in the presence of cross-diffusion effects subject to a magnetic field. The

accuracy of the solutions has been tested using a local nonsimilarity method.

• Chapter 6:

This chapter considered the cross-diffusion effect on convection from an expo-

nentially stretching surface in a porous medium subject to viscous dissipation

and radiation effects. The transformed ordinary differential equations were
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solved using a linearization method. The accuracy and rate of convergence of

the solution was tested using the Matlab bvp4c solver.
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Chapter 2

Natural convection from a vertical

plate immersed in a power-law

fluid saturated non-Darcy porous

medium with viscous dissipation

and Soret effects∗

Abstract

We investigate viscous dissipation and thermal-diffusion effects on natural convection

from a vertical plate embedded in a fluid saturated non-Darcy porous medium. The

non-Newtonian behavior of fluid is characterized by the Ostwald -de Waele power-law

model. The governing partial differential equations are transformed into a system of

0∗ Submitted to the Journal of Fluid mechanics Research, (July 2011).
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ordinary differential equations using a local non-similar method and the resulting

boundary value problem is solved using a novel SLM. The accuracy of the SLM

has been established by comparing the results with the shooting technique. The

effects of physical parameters for the convective motion of the power-law liquid are

presented both qualitatively and quantitatively. Heat and mass transfer coefficients

are presented qualitatively for different values of the said parameters.

2.1 Introduction

Recent years have seen a spike in the number of studies devoted to the study of natural

convection in fluid flows through porous media. This is an interesting and important

subject in the area of heat transfer with wide applications in various fields such as

geophysics, aerodynamic extrusion of polymer sheets, food processing and the manu-

facture of plastic films. The problem of natural convection and heat transfer in porous

media have been carried out on vertical, inclined and horizontal surfaces by, among

others, Chamkha and Khaled (1999) who investigated the heat and mass transfer

through mixed convection from a vertical plate embedded in a porous medium.

The problem of natural convection in a non-Newtonian fluid over a vertical surface

in porous media was studied by Chen and Chen (1988b). This was extended to a

horizontal cylinder and a sphere in Chen and Chen (1988a). Cheng (2006) studied

heat and mass transfer from a vertical plate with variable wall heat and mass fluxes

in a porous medium saturated with a non-Newtonian power-law fluid. El-Hakiem

(2001) investigated the problem of mixed convective heat transfer from a horizontal

surface with variable wall heat flux. The horizontal surface was embedded in a porous

medium saturated with an Ostwald-de-Waele type non-Newtonian fluid. Grosan et

al. (2001) investigated free convection from a vertical flat plate saturated with a

power-low Newtonian fluid. Nakayama et al. (1991) discussed the problem of natural
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convection over a non-isothermal body of arbitrary shape embedded in a porous

medium filled with a non-Newtonian fluid. Similarity and integral solutions were

obtained by Nakayama and Koyama (1987a,b) for free convection along a vertical

plate which was immersed in a thermally stratified, fluid-saturated porous medium

with variable wall temperature. Review of the extensive work in this area is available

in books by Nield and Bejan (1999), Ingham and Pop (1998), Pop and Igham (2001).

The effect of Soret and/or Dufour numbers on heat and mass transfer in porous

medium with variable properties has been investigated by many researchers. Tsai

and Huang (2009) obtained the solutions for heat and mass transfer coefficients for

natural convection along a vertical surface with variable heat fluxes embedded in a

porous medium. Thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects were

assumed to be significant. The effect of Soret and Dufour on free convection from a

vertical plate with variable wall heat and mass fluxes in a porous medium saturated

with a non-Newtonian power-law fluid was investigated by Ching (2011). Partha et al.

(2006) studied the Soret and Dufour effects in a non-Darcy porous medium. Narayana

and Murthy (2007, 2008) investigated the Soret and Dufour effects on free convection

from a horizontal flat plate in doubly stratified Darcy porous media. Cheng (2009)

investigated the effect of Soret and Dufour on heat and mass transfer from a vertical

cone in a porous medium with a constant wall temperature and concentration. Cheng

(2008) investigated the effect of Soret and Dufour on free convection boundary layer

flow over a vertical cylinder in a porous medium with constant wall temperature and

concentration.

In this chapter we investigate viscous dissipation and the Soret effect on natural

convection from a vertical plate immersed in a non-Darcy porous medium saturated

with a non-Newtonian power-law fluid. The viscosity variation is modelled using

Reynolds’ law, (Massoudi and Phuoc 2004 and Seddeek 2007), which assumes that

the viscosity decreases exponentially with temperature. The governing equations were
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solved using a novel SLM.

2.2 Mathematical formulation

Consider two-dimensional steady boundary layer flow over a vertical plate embedded

in a non-Darcy porous medium saturated with a non-Newtonian power-law fluid with

variable viscosity. The x-coordinate is measured along the plate from its leading edge

and the y-coordinate normal to the plate. The plate is maintained at a constant

temperature Tw and concentration Cw. The ambient fluid temperature is T∞ and

the concentration is C∞. Figure 2.1 shows the physical configuration of the problem

under consideration. The governing equations of continuity, momentum, energy and

Figure 2.1: Physical model and coordinate system.

concentration under the Boussinesq approximations may be written as (see Shenoy
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1993)

∂u

∂x
+

∂v

∂y
= 0, (2.1)

∂un

∂y
+

∂

∂y

(
ρ∞bK∗

µ
u2

)
=

∂

∂y

(
ρ∞K∗g

µ
[βT (T − T∞) + βC(C − C∞)]

)
, (2.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

µ

ρ∞K∗cp

u

(
un +

bρ∞K∗

µ
u2

)
, (2.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ D1

∂2T

∂y2
, (2.4)

where u and v are the velocity components along the x and y-directions respectively,

n is the power-law index such that n < 1 describes a pseudoplastic, n = 1 represents

a Newtonian fluid and n > 1 is dilatant fluid, T and C are the fluid temperature and

the concentration respectively, ρ∞ is the reference density, g is the acceleration due

to gravity, α is the effective thermal diffusivity, D is the effective solutal diffusivity,

βT and βC are the thermal and concentration expansion coefficients, respectively, cp

is the specific heat at constant pressure, D1 quantifies the contribution to the mass

flux due to temperature gradient, b is the empirical constant associated with the

Forchheimer porous inertia term, µ is the consistency index of power-law fluid and

K∗ is the modified permeability of the flow of the non-Newtonian power-law fluid.

The modified permeability K∗ is defined (see Christopher and Middleman 1965 and

Dharmadhikari and Kale 1985) as;

K∗ =
1

ct

(
nϕ

3n + 1

)n (
50K

3ϕ

)n+1
2

with K =
ϕ3d2

150(1− ϕ)2

where ϕ is the porosity of the medium, d is the particle size and the constant ct is

given by

ct =





25
12

(for n = 1) Christopher and Middleman (1965)

3

2

(
8n

9n + 3

)n (
10n− 3

6n + 1

)(
75

16

) 3(10n−3)
10n+11

Dharmadhikari and Kale (1985)
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for n = 1, ct =
25

12
. The boundary conditions are

v = 0, T = Tw, C = Cw at y = 0,

u → 0, T → T∞, C → C∞ as y →∞.



 (2.5)

The system of non-similar partial differential equations can be simplified by using the

stream function ψ where

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (2.6)

together with the following transformations

η =
y

x
Ra1/2

x , ψ(Vd, η) = αRa1/2
x f(Vd, η),

θ(Vd, η) =
T − T∞
Tw − T∞

, φ(Vd, η) =
C − C∞
Cw − C∞

,





(2.7)

where Rax =
(x

α

) [
ρ∞K∗gβT (Tw − T∞)

µ∞

]1/n

is the local Rayleigh number and Vd =

gβT x

cp

is the viscous dissipation parameter. The variation of viscosity with the di-

mensionless temperature is written in the form (see Elbashbeshy 2000 and Massoudi

2004):

µ(θ) = µ∞e−γθ, (2.8)

where γ is a non-dimensional viscosity parameter that depends on the nature of the

fluid, and µ∞ is the ambient viscosity of the fluid. Using (2.7), the momentum, energy

and concentration equations (2.2) - (2.4) reduce to the following system of equations;

nf ′n−1f ′′ + Greγθ
(
2f ′f ′′ + γθ′f ′2

)
= eγθ [θ′(γθ + 1) + Λ(γθ′φ + φ′)] , (2.9)

θ′′ +
1

2
fθ′ + Vde

−γθf ′
(
f ′n + Greγθf ′2

)
= Vd

(
f ′

∂θ

∂Vd

− θ′
∂f

∂Vd

)
, (2.10)

Le−1φ′′ +
1

2
fφ′ + Srθ′′ = Vd

(
f ′

∂φ

∂Vd

− φ′
∂f

∂Vd

)
. (2.11)
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The transformed boundary conditions are

f(Vd, η) + 2Vd
∂f(Vd, η)

∂Vd

= 0, θ(Vd, η) = 1, φ(Vd, η) = 1 at η = 0

f ′(Vd, η) → 0, θ(Vd, η) → 0, φ(Vd, η) → 0 as η →∞





(2.12)

where Gr∗ = b

(
K∗2ρ2

∞[gβT (Tw − T∞)]2−n

µ2∞

)1/n

is the modified Grashof number,

Le =
α

D
is the Lewis number, Sr =

D1(Tw − T∞)

α(Cw − C∞)
is the Soret number and Λ =

βC(Cw − C∞)

βT (Tw − T∞)
is the buoyancy term (where Λ > 0 represents aiding buoyancy and

Λ < 0 represents opposing buoyancy). The primes in equations (2.9) - (2.11) rep-

resent differentiation with respect to the variable η. Integrating equation (2.9) once

and using the boundary conditions (2.12) gives

f ′n + Greγθf ′2 = (θ + Λφ)eγθ. (2.13)

Substituting (2.13) in (2.9) and (2.10) we obtain

(
nf ′n−1 + 2Gr∗eγθf ′

)
f ′′ = (θ′ + Λφ′) eγθ + γθ′f ′n, (2.14)

θ′′ +
1

2
fθ′ + Vdf

′(θ + Λφ) = Vd

(
f ′

∂θ

∂Vd

− θ′
∂f

∂Vd

)
. (2.15)

The local skin-friction, heat and mass transfer coefficients can be respectively obtained

from

CfPe2
x = 2PrRa3/2

x f ′′(Vd, 0)

Nux/Ra1/2
x = −θ′(Vd, 0)

Shx/Ra1/2
x = −φ′(Vd, 0)





. (2.16)

where Pr =
ν∞
α

and Pex =
U∞x

α
.
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2.3 Method of solution

Equations (2.11), (2.14) and (2.15) are solved subject to the boundary conditions

(2.12). We first apply a local similarity and local non-similarity method (see Minkowycz

and Sparrow 1974 and Sparrow and Yu 1971) and for the first level of truncation, we

neglect the terms multiplied by Vd
∂

∂Vd

. This is particularly appropriate when Vd ¿ 1.

Thus the system of equations obtained is given by:

(
nf ′n−1 + 2Gr∗eγθf ′

)
f ′′ = (θ′ + Λφ′) eγθ + γθ′f ′n, (2.17)

θ′′ +
1

2
fθ′ + Vdf

′(θ + Λφ) = 0, (2.18)

Le−1φ′′ +
1

2
fφ′ + Srθ′′ = 0. (2.19)

The corresponding boundary conditions are

f(Vd, η) = 0, θ(Vd, η) = 1, φ(Vd, η) = 1 at η = 0,

f ′(Vd, η) → 0, θ(Vd, η) → 0, φ(Vd, η) → 0 as η →∞,



 (2.20)

For the second level of truncations, we introduce the following auxiliary variables

g =
∂f

∂Vd

, h =
∂θ

∂Vd

and k =
∂φ

∂Vd

and recover the neglected terms at the first level of

truncation. Thus, the governing equations at the second level are given by

(
nf ′n−1 + 2Gr∗eγθf ′

)
f ′′ = (θ′ + Λφ′) eγθ + γθ′f ′n, (2.21)

θ′′ +
1

2
fθ′ + Vdf

′(θ + Λφ) = Vd(f
′h− θ′g), (2.22)

Le−1φ′′ +
1

2
fφ′ + Srθ′′ = Vd(f

′k − φ′g), (2.23)

and the corresponding boundary conditions are

f(Vd, η) + 2Vd
∂f(Vd, η)

∂Vd

= 0, θ(Vd, η) = 1, φ(Vd, η) = 1 at η = 0

f ′(Vd, η) → 0, θ(Vd, η) → 0, φ(Vd, η) → 0 as η →∞





. (2.24)
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The third level can be obtained by differentiating equations (2.21)-(2.23) with respect

to Vd and neglecting the terms
∂g

∂Vd

,
∂h

∂Vd

and
∂k

∂Vd

to get the set of equations

(
nf ′n−1 + 2Gr∗eγθf ′

)
g′′ +

[
n(n− 1)f ′n−2g′ + 2Gr∗eγθ(g′ + γhf ′)

]
f ′′

− [γh(θ′ + Λφ′) + h′ + Λk′] eγθ − γ
(
nθ′g′f ′n−1 + f ′nh′

)
= 0, (2.25)

h′′ +
1

2
(fh′ + 3gθ′)− f ′h + Vdf

′(h + Λk) + (θ + Λφ)(Vdg
′ + f ′)

+Vd(h
′g − g′h) = 0, (2.26)

Le−1k′′ +
1

2
(fk′ + 3gφ′)− f ′k + Srh′′ + Vd(k

′g − g′k) = 0, (2.27)

The corresponding boundary conditions are

g(Vd, η) = 0, h(Vd, η) = 0, k(Vd, η) = 0 at η = 0

g′(Vd, η) → 0, h(Vd, η) → 0, k(Vd, η) → 0 as η →∞



 . (2.28)

The set of differential equations (2.21)-(2.23) and (2.25)-(2.27) together with the

boundary conditions (2.24) and (2.28) were solved by means of the SLM. The SLM

algorithm starts with the assumption that the variables f(η), θ(η), φ(η), g(η), h(η) and

k(η) can be expressed as

f(η) = fi(η) +
i−1∑
m=0

Fm(η), θ(η) = θi(η) +
i−1∑
m=0

Θm(η),

φ(η) = φi(η) +
i−1∑
m=0

Φm(η), g(η) = gi(η) +
i−1∑
m=0

Gm(η),

h(η) = hi(η) +
i−1∑
m=0

Hm(η), k(η) = ki(η) +
i−1∑
m=0

Km(η)





(2.29)

where fi, θi, φi, gi, hi and ki are unknown functions and Fm, Θm, Φm, Gm, Hm and Km,

(m ≥ 1) are successive approximations which are obtained by recursively solving

the linear part of the equation system that results from substituting firstly equation

(2.29) in equations (2.21)-(2.23) and (2.25)-(2.27). The main assumption of the SLM

is that fi, θi, φi, gi, hi and ki become increasingly smaller when i becomes large, that
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is

lim
i→∞

fi = lim
i→∞

θi = lim
i→∞

φi = lim
i→∞

gi = lim
i→∞

hi = lim
i→∞

ki = 0. (2.30)

The initial guesses F0(η), Θ0(η), Φ0(η), G0(η), H0(η) and K0(η) which are chosen to

satisfy the boundary conditions (2.24) and (2.28) which are taken to be

F0(η) = 1− e−η, Θ0(η) = e−η, Φ0(η) = e−η

G0(η) = 1− e−η, H0(η) = ηe−η, K0(η) = ηe−η



 . (2.31)

Thus, starting from the initial guesses, the subsequent solutions Fi, Θi, Φi, Gi, Hi and

Ki (i ≥ 1) are obtained by successively solving the linearised form of the equations

which are obtained by substituting equation (2.29) in the governing equations (2.21)-

(2.23) and (2.25)-(2.27). The linearized equations to be solved are

a1,i−1F
′′
i + a2,i−1F

′
i + a3,i−1Θ

′
i + a4,i−1Θi + a5,i−1Φ

′
i = r1,i−1, (2.32)

b1,i−1Θ
′′
i +b2,i−1Θ

′
i + b3,i−1Θi + b4,i−1F

′
i + b5,i−1Fi + b6,i−1Φi + b7,i−1Gi

+b8,i−1Hi = r2,i−1, (2.33)

c1,i−1Φ
′′
i +c2,i−1Φ

′
i + c3,i−1F

′
i + c4,i−1Fi + c5,i−1Θ

′′
i + c6,i−1Gi + c7,i−1Ki

= r3,i−1, (2.34)

d1,i−1G
′′
i +d2,i−1G

′
i + d3,i−1F

′′
i + d4,i−1F

′
i + d6,i−1Θ

′
i + d7,i−1Θi + d8,i−1Φi

+d9,i−1H
′
i +d10,i−1Hi + d11,i−1K

′
i = r4,i−1, (2.35)

e1,i−1H
′′
i +e2,i−1H

′
i + e3,i−1Hi + e4,i−1F

′
i + e6,i−1Fi + e7,i−1Θ

′
i + e8,i−1Θi

+e9,i−1Φi +e10,i−1G
′
i + e11,i−1Gi + e11,i−1Ki = r5,i−1, (2.36)

q1,i−1K
′′
i +q2,i−1K

′
i + q3,i−1Ki + q4,i−1F

′
i + q6,i−1Fi + q7,i−1Φ

′
i + q8,i−1G

′
i

+q9,i−1Gi +q10,i−1H
′′
i = r6,i−1, (2.37)
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subject to the boundary conditions

Fi(0) = F ′
i (∞) = Θi(0) = Θi(∞) = Φi(0) = Φi(∞)

Gi(0) = G′
i(∞) = Hi(0) = Hi(∞) = Ki(0) = Ki(∞) = 0

,



 . (2.38)

where the coefficients parameters ak,i−1, bk,i−1, ck,i−1, dk,i−1, ek,i−1, qk,i−1 and rk,i−1 de-

pend on F0(η), Θ0(η), Φ0(η), G0(η), H0(η) and K0(η) and on their derivatives. The

solution for Fi, Θi,Φi, Gi, Hi and Ki for i ≥ 1 has been found by iteratively solving

equations (2.32)-(2.38) and finally after M iterations the solutions f(η), θ(η), g(η)

and h(η) can be written as

f(η) ≈
M∑

m=0

Fm(η), θ(η) ≈
M∑

m=0

Θm(η), φ(η) ≈
M∑

m=0

Φm(η)

g(η) ≈
M∑

m=0

Gm(η), h(η) ≈
M∑

m=0

Hm(η), k(η) ≈
M∑

m=0

Km(η)





, (2.39)

where M is termed the order of SLM approximations. Now we apply the Chebyshev

spectral collocation method to equations (2.32)-(2.38). We apply the mapping

η

L
=

ξ + 1

2
, − 1 ≤ ξ ≤ 1, (2.40)

to transform the domain [0,∞) to [−1, 1] where L is used to invoke the boundary

condition at infinity. We discretize the domain [−1, 1] using the Gauss-Lobatto col-

location points defined by

ξ = cos
πj

N
, j = 0, 1, 2, . . . , N, (2.41)
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where N is the number of collocation points. The functions Fi, Θi, Gi and Hi for

i ≥ 1 are approximated at the collocation points as follows

Fi(ξ) ≈
N∑

k=0

Fi(ξk)Tk(ξj), Θi(ξ) ≈
N∑

k=0

Θi(ξk)Tk(ξj),

Φi(ξ) ≈
N∑

k=0

Φi(ξk)Tk(ξj), Gi(ξ) ≈
N∑

k=0

Gi(ξk)Tk(ξj),

Hi(ξ) ≈
N∑

k=0

Hi(ξk)Tk(ξj), Ki(ξ) ≈
N∑

k=0

Ki(ξk)Tk(ξj)





j = 0, 1, ..., N, (2.42)

where Tk is the kth Chebyshev polynomial given by

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (2.43)

The derivatives of the variables at the collocation points are

drFi

dηr
=

N∑

k=0

Dr
kjFi(ξk),

drΘi

dηr
=

N∑

k=0

Dr
kjΘi(ξk),

drΦi

dηr
=

N∑

k=0

Dr
kjΦi(ξk),

drGi

dηr
=

N∑

k=0

Dr
kjGi(ξk)

drHi

dηr
=

N∑

k=0

Dr
kjHi(ξk),

drKi

dηr
=

N∑

k=0

Dr
kjKi(ξk)





j = 0, 1, . . . , N, (2.44)

where r is the order of differentiation and D is the Chebyshev spectral differentiation

matrix whose entries are defined in (1.30). After applying the Chebyshev spectral

method to (2.32)-(2.37) we get the matrix system of equations

Ai−1Xi = Ri−1. (2.45)
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subject to

Fi(ξN) =
∑N

k=0 D0kFi(ξk) = 0 , Θi(ξN) = Θi(ξ0) = 0,

Φi(ξN) = Φi(ξ0) = 0, Gi(ξN) =
∑N

k=0 D0kGi(ξk) = 0,

Hi(ξN) = Hi(ξ0) = 0, Ki(ξN) = Ki(ξ0) = 0





(2.46)

In equation (2.45), Ai−1 is a (6N +6)× (6N +6) square matrix and Xi and Ri−1 are

(6N + 6)× 1 column vectors and D = 2
L
D. Finally the solution is obtained as

Xi = A−1
i−1Ri−1. (2.47)

2.4 Results and discussion

The non-linear differential equations (2.11), (2.14) and (2.15) with the boundary

conditions (2.12) were solved by means of SLM together with local non-similarity

method. The value of L was suitably chosen so that the boundary conditions at the

outer edge of the boundary layer are satisfied. The results obtained here are accurate

up to the 5th decimal place. In order to assess the accuracy of the solution, we made a

comparison between the present results and the shooting technique. The comparison

is given in Tables. 2.1 - 2.2 for aiding and opposing buoyancy respectively. The results

are in good agreement. In addition, a comparison between the present results and

Cheng (2000) for various buoyancy values Λ and the Lewis number Le is given in Table

2.3. The comparison shows that the present results are in excellent agreement with

the similarity solutions reported by Cheng (2000). The effect of selected parameters

on the temperature, concentration, heat and mass transfer coefficients is given in

Figures 2.3 - 2.15.
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Table 2.1: A comparison of f ′(η), θ(η) and φ(η) using the SLM and the shooting
method for different values of n with Gr∗ = 1, γ = 1, Sr = 0.1, Le = 1, Vd = 0.2 and
Λ = 0.1

Profile η
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

f ′(η)

0.0 0.873428 0.873428 0.880874 0.880874 0.889552 0.889552

0.1 0.849364 0.849364 0.857830 0.857830 0.867668 0.867668

0.5 0.737032 0.737031 0.753227 0.753226 0.769738 0.769737

1.0 0.571454 0.571452 0.607662 0.607660 0.636666 0.636664

3.0 0.060470 0.060467 0.163331 0.163329 0.228299 0.228296

5.0 0.003483 0.003478 0.031220 0.031216 0.069212 0.069207

θ(η)

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.968618 0.968618 0.966471 0.966471 0.965157 0.965157

0.5 0.830564 0.830563 0.820001 0.820000 0.813463 0.813462

1.0 0.651715 0.651713 0.631992 0.631990 0.619698 0.619696

3.0 0.182389 0.182386 0.151355 0.151352 0.133811 0.133808

5.0 0.044543 0.044538 0.028006 0.028002 0.020251 0.020246

φ(η)

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.959835 0.959835 0.957614 0.957614 0.956246 0.956246

0.5 0.803541 0.803540 0.792688 0.792687 0.786026 0.786025

1.0 0.625532 0.625530 0.605186 0.605184 0.592815 0.592813

3.0 0.190722 0.190719 0.157410 0.157407 0.139087 0.139084

5.0 0.052304 0.052299 0.033314 0.033310 0.024326 0.024321

2.4.1 Aiding buoyancy

Non-dimensional velocity profile in the non-Darcy medium is plotted for fixed value

of γ, Gr∗, Le and Λ for various values of power-law index n, viscous dissipation pa-

rameter Vd and Soret number Sr in Fig. 2.2. It is interesting to note that the value of

velocity f ′(η) increases with the viscous dissipation parameter. And at the same time,
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Table 2.2: A comparison of f ′(η), θ(η) and φ(η) using the SLM and shooting method
for different values of n with Gr∗ = 1, γ = 1, Sr = 0.1, Le = 1, Vd = 0.2 and
Λ = −0.1

Profile η
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

f ′(η)

0.0 0.764833 0.764833 0.782413 0.782413 0.798435 0.798435

0.1 0.743531 0.743531 0.762209 0.762209 0.779301 0.779301

0.5 0.645119 0.645120 0.671441 0.671442 0.694426 0.694427

1.0 0.501380 0.501382 0.546064 0.546065 0.579579 0.579581

3.0 0.059274 0.059277 0.156714 0.156717 0.218972 0.218975

5.0 0.004132 0.004137 0.032827 0.032831 0.070303 0.070308

θ(η)

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.969520 0.969520 0.966868 0.966868 0.965272 0.965272

0.5 0.838804 0.838805 0.825639 0.825640 0.817649 0.817650

1.0 0.672016 0.672018 0.647144 0.647146 0.632019 0.632021

3.0 0.215386 0.215389 0.174526 0.174529 0.152120 0.152124

5.0 0.060882 0.060888 0.037109 0.037114 0.026308 0.026314

φ(η)

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.963281 0.963281 0.960520 0.960520 0.958848 0.958848

0.5 0.819788 0.819789 0.806293 0.806294 0.798146 0.798147

1.0 0.654319 0.654321 0.628954 0.628956 0.613793 0.613795

3.0 0.226430 0.226434 0.183431 0.183435 0.160206 0.160210

5.0 0.070796 0.070802 0.044052 0.044056 0.031686 0.031693

an increase in the value of Soret number increases the velocity distribution inside the

boundary layer for all values of power-law index n. Figures 2.3(a)-2.3(b) show the

variation of the non-dimensional temperature θ(η) and concentration φ(η) distribu-

tions for n = 0.5, n = 1 and n = 1.5 and two different values of viscous dissipation

Vd and for fixed values of γ, Gr∗, Sr, Le and Λ. We observed that the increasing in

viscous dissipation and power-low index decrease the dimensionless temperature and

concentration distributions. This is because there would be a decrease of the thermal
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Table 2.3: Comparison of the local Nusselt and Sherwood numbers between the cur-
rent results and Cheng (2000) for various values of Λ and Le when n = 1,Gr∗ = 0,
γ = 0, Sr = 0, and Vd = 0.

θ′(0) φ′(0)

Λ Le Cheng (2000) Present Cheng (2000) Present

4 1 0.9923 0.9923 0.9923 0.9923

4 4 0.7976 0.7976 2.055 2.0549

4 10 0.6811 0.681 3.2899 3.2897

4 100 0.5209 0.521 10.521 10.5222

1 4 0.5585 0.5585 1.3575 1.3575

2 4 0.6494 0.6495 1.6243 1.6244

3 4 0.7278 0.7277 1.8525 1.8524

and concentration boundary layer thicknesses with the decrease of values of viscous

dissipation and n. The effect of Soret parameter Sr on temperature and concentra-

tion profiles is shown in Figure 2.4. It is noted that the Soret parameter reduces

the temperature distribution while enhancing the concentration distribution. This is

because there would be a decrease in the thermal and increase in the concentration

boundary layer thicknesses with the increase of values of Sr. In Fig. 2.5 variation

of the skin-friction coefficient as a function of power-law index n is shown for differ-

ent values of Sr, Vd and γ with fixed value of Gr∗, Le and Λ. From this figure, a

decrease in f ′′(0) is evident with increasing values of Sr and Vd for all values n. In

other hand the skin-friction coefficient increases with increasing the non-dimensional

viscosity parameter γ. The effect of the viscous dissipation parameter Vd on the Nus-

selt and Sherwood numbers varying n for different values of Sr and γ are shown in

Figure 2.6 and Figure 2.7 respectively. An increasing of the viscous dissipation and

the power-law index enhancing the heat and mass transfer coefficients for all Sr and

γ.
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Figure 2.2: Variation of (a) Vd and (b) Sr on f ′(η) against η varying n when γ =
1, Gr∗ = 1, Le = 1 and Λ = 0.1.
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Figure 2.3: Variation of (a) θ(η) and (b) φ(η) against η varying Vd and n when
γ = 1, Gr∗ = 1, Sr = 0.1, Le = 1 and Λ = 0.1.

The variation of the Nusselt and Sherwood numbers as a function of Sr are given

in Figure 2.8 for different values of n and viscous dissipation parameter Vd. Increasing

the Soret number increases the heat transfer rate for all power-law indices while

reducing the mass transfer rate. This is because, either a decrease in concentration

difference or an increases in temperature difference leads to an increase in the value
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Figure 2.4: Variation of (a) θ(η) and (b) φ(η) against η varying Sr and n when
γ = 1, Gr∗ = 1, Vd = 0.2, Le = 1 and Λ = 0.1.
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Figure 2.5: Variation of f ′′(0) against n varying (a) Vd and (b) Sr when γ = 1, Gr∗ =
1, Le = 1 and Λ = 0.1.

of the Soret parameter

Figure 2.9 shows the variation of the Nusselt and Sherwood numbers with the

viscosity parameter γ. Increasing the viscosity parameter increases the rates of heat

and mass transfer for all values of Vd and power-low index n. Similar results were

obtained by Jayanthi et al. (2007) and Kairi et al. (2011b).
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Figure 2.6: Variation of (a) heat transfer and (b) mass transfer coefficients against
Vd varying Sr and n when γ = 1, Gr∗ = 1, Le = 1 and Λ = 0.1
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Figure 2.7: Variation of (a) heat transfer and (b) mass transfer coefficients against
Vd varying γ and n when Sr = 1, Gr∗ = 1, Le = 1 and Λ = 0.1

2.4.2 Opposing buoyancy

Figure 2.10 shows the temperature and concentration distributions when n = 0.5,

n = 1 and n = 1.5 for Vd = 0 and 0.2. We observed that, the increasing of Vd reduced

the thermal and concentration disruptions for all values of n. The reason for this,
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Figure 2.8: Variation of (a) heat transfer and (b) mass transfer coefficients against
Sr varying Vd and n when γ = 0.5, Gr∗ = 1, Le = 1 and Λ = 0.2
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Figure 2.9: Variation of (a) heat transfer and (b) mass transfer coefficients against γ
varying Vd and n when Sr = 0.1, Gr∗ = 1, Le = 1 and Λ = 0.1
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because there would be a decrease of the thermal and concentration boundary layer

thicknesses with the decrease of values of viscous dissipation.
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Figure 2.10: Variation of (a) θ(η) and (b) φ(η) against η varying Vd and n when
γ = 1, Gr∗ = 1, Sr = 0.1, Le = 1 and Λ = −0.1.

The effect of the Soret parameter on the temperature and concentration distribu-

tions in Figures 2.11(a) - 2.11(b) for different values on the power-law index n. Soret

number has increasing effects on the temperature and concentration distributions.

This is because there would be a decrease of the thermal and concentration boundary

layer thicknesses with the increase of values of Sr.

In Figure 2.12 - 2.13, the variation of Nux/Ra
1/2
x and Shx/Ra

1/2
x (respectively) as

a function of Vd are shown for different types of power-law fluids and two values of Sr

and γ while the other parameters are fixed. We note that an increasing Vd increases

Nux/Ra
1/2
x and Shx/Ra

1/2
x in the presence or absence of Sr or γ.

The variation of the Nusselt and Sherwood numbers as a functions of Sr is dis-

played in Figure 2.14 for different values of n and Vd. We observed that both Nusselt

and Sherwood numbers decreased with increasing in the Soret number.

Increasing the viscosity parameter γ enhances the rates of heat and mass transfer
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Figure 2.11: Variation of (a) θ(η) and (b) φ(η) against η varying Sr and n when
γ = 1, Gr∗ = 1, Vd = 0.2, Le = 1 and Λ = −0.1.
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Figure 2.12: Variation of (a) heat transfer and (b) mass transfer coefficients against
Vd varying Sr and n when γ = 1, Gr∗ = 1, Le = 1 and Λ = −0.1

61



0.5 1 1.5
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

n

N
u

x
/
R

a
1
/
2

x

 

 

γ = 0.0, V
d
 = 0.0

γ = 0.0, V
d
 = 0.2

γ = 0.2, V
d
 = 0.0

γ = 0.2, V
d
 = 0.2

(a)

0.5 1 1.5
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

n

S
h

x
/
R

a
1
/
2

x

 

 

γ = 0.0, V
d
 = 0.0

γ = 0.0, V
d
 = 0.2

γ = 0.2, V
d
 = 0.0

γ = 0.2, V
d
 = 0.2

(b)

Figure 2.13: Variation of (a) heat transfer and (b) mass transfer coefficients against
Vd varying γ and n when Sr = 1, Gr∗ = 1, Le = 1 and Λ = −0.1
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Figure 2.14: Variation of (a) heat transfer and (b) mass transfer coefficients against
Sr varying Vd and n when γ = 0.5, Gr∗ = 1, Le = 1 and Λ = −0.2
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coefficients for two values of Vd and all types of power-law fluids n as shown in Figure

2.15. This is also in line with the findings by Jayanthi et al. (2007) and Kairi et al.

(2011b).
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Figure 2.15: Variation of (a) heat transfer and (b) mass transfer coefficients against
γ varying Vd and n when Sr = 0.1, Gr∗ = 1, Le = 1 and Λ = −0.1

2.5 Conclusions

We have investigated viscous dissipation and the Soret effects on natural convec-

tion from a vertical plate immersed in a power-law fluid saturated non-Darcy porous

medium. The governing equations are transformed into ordinary differential equations

and solved using the SLM. Qualitative results were presented showing the effects of

various physical parameters on the fluid properties and the rates of heat and mass

transfer. Velocity and temperature profiles are significantly affected by viscous dissi-

pation, Soret number and variable viscosity parameters. The Nusselt and Sherwood

numbers are enhanced by viscous dissipation for both cases Λ > 0 and Λ < 0. The

Nusselt number increased by Soret number for aiding buoyancy case and decreased for

opposing buoyancy case. The Sherwood number decreased by Soret number for Λ > 0
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and Λ < 0. The viscosity parameter γ enhances heat and mass transfer coefficients

in both cases of aiding buoyancy and opposing buoyancy.
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Chapter 3

Soret effect on the natural

convection from a vertical plate in

a thermally stratified porous

medium saturated with

non-Newtonian liquid∗

Abstract

The chapter analyzes the Soret effect on the free convection flow due to a vertical

plate embedded in a non-Darcy thermally stratified porous medium saturated with a

non-Newtonian power-law with variable viscosity. The Ostwald -de Waele power-law

model is used to characterize the non-Newtonian behavior of the fluid. The governing

0∗ Under review; Journal of Heat Transfer-Transactions of ASME (March 2012).
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partial differential equations are transformed into a system of ordinary differential

equations and solved numerically using the SLM. The accuracy of the SLM has been

tested by comparing the results with those obtained using the shooting technique.

The effect of various physical parameters such as power-law index, Soret number,

variable viscosity parameter and thermal stratification parameter on the dynamics of

the fluid are analyzed through computed results. Heat and mass transfer coefficients

are also shown graphically for different values of the parameters.

3.1 Introduction

The problem of natural convection heat and mass transfer from bodies immersed in

thermally stratified fluid saturated porous medium arises in many important applica-

tions. Free convection in an enclosed rectangular cell filled with some fluid saturated

porous medium with one wall heated and the other cooled gives rise to an important

engineering application of thermal stratification. In such an application a stratified

environment is created inside the cell by the heated fluid rising from the hot wall and

the cool fluid falling from the cold wall. This process repeats and the hot fluid layer

at the top of the cell always overlay the cold one at the bottom creating a stable

stratified environment. A stratified environment can also be observed in nature in

the form of atmospheric and lake stratification where different layers exhibit different

temperatures. Other applications include thermal insulation, the enhanced recovery

of petroleum resource, power production from geothermal resources and the design

of nuclear reactors.

Early studies by Bejan (1984), Nakayama and Koyama (1987b) and Takhar and

Pop (1987) deal with thermal stratification in a Darcian porous medium. The study of

convective heat transfer in a porous medium in non-Newtonian fluids is of particular

relevance as a number of industrially important fluids such as molten plastics, poly-
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mers, pulps and slurries display non-Newtonian fluid behaviour. Tewari and Singh

(1992) and Singh and Tewari (1993) investigated natural convection in a thermally

stratified fluid saturated Darcy/non-Darcy porous media. They used a model pro-

posed by Ergun (1952) in the study to include the inertia effect. They found that

the heat transfer is significantly affected by the modified Grashof number and the

stratification parameter. Shenoy (1994) presented many interesting applications of

non-Newtonian power-law fluids with yield stress on convective heat transport in fluid

saturated porous media such as in geothermal and oil reservoir engineering applica-

tions.

Natural convection from bodies of different geometrical shapes immersed in a

non-Newtonian fluid saturated porous medium have been investigated by Chen and

Chen (1988a,b) and Nakayama and Koyama (1991). Chamka (1997a,b) investigated

hydromagnetic natural convection from a vertical/inclined surface adjacent to a ther-

mally stratified porous medium. Non-Darcy free convection along a non-isothermal

vertical surface in a thermally stratified porous medium with/with out heat flux was

considered by Hung and Chen (1997) and Hung and Chen (1999), they showed in

their studied cases, that the Darcy model always over-predicted the heat transfer

rate with or without consideration of the thermal stratification effects. The non-

Darcy free convection from a vertical cylinder embedded in a thermally stratified

porous medium has been discussed by Chen and Horng (1999). They showed that

the non-Darcy flow phenomena alters the flow and heat transfer characteristics sig-

nificantly and also the thermal dispersion tends to enhance the heat transfer. The

study of natural convection flow on a vertical isothermal thin cylinder embedded in a

thermally stratified high porosity porous medium has been considered by Takhar et

al. (2002). They showed that for certain values of the thermal stratification param-

eter, the wall of the cylinder gets heated instead of being cooled (i.e., the direction

of the heat transfer changes). Ishak et al. (2008) theoretically studied the similarity

solutions of the mixed convection boundary layer flow over a vertical surface embed-
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ded in a thermally stratified porous medium. They assumed the external velocity

and surface temperature to vary as xm and found dual solutions in case of opposing

flow (m = 0) and assisting flow (m = 1) regimes. Heat and mass transfer by natural

convection along a vertical plate in a micropolar fluid saturated non-Darcy porous

medium has been investigated by Srinivasacharya and RamReddy (2010). They ob-

served that higher values of the coupling number result in lower velocity distribution

but higher temperature, concentration distributions in the boundary layer compared

to the Newtonian fluid case.

The problem of double diffusion from a vertical frustum of a wavy cone in porous

media saturated with non-Newtonian power-law fluids with thermal and mass strat-

ification has been discussed by Cheng (2008). His results show that the streamwise

distributions of the local Nusselt number and the local Sherwood number are har-

monic curves with a wave number twice the wave number of the surface of the vertical

wavy truncated cone. Further, a smaller power-law index of the non-Newtonian fluid

leads to a greater fluctuation of the local Nusselt and Sherwood numbers. Unsteady

free convection along an infinite vertical flat plate embedded in a stably stratified

fluid-saturated porous medium has been investigated by Magyari et al. (2006).

They arrived at analytical solutions of the Darcy and energy equations by reducing

the corresponding boundary value problem to a well-known Fourier heat conduction

problem.

Kairi and Murthy (2009a) considered free convection in a thermally stratified non-

Darcy porous medium saturated with a non-Newtonian fluid. They have arrived at

similarity solution of the problem by assuming a specific power function form for the

wall temperature and medium stratification. Free convective heat and mass transfer

in a doubly stratified non-Darcy porous medium has been investigate by Narayana

and Murthy (2006). As an important result of their investigation Narayana and

Murthy (2006) have obtained the values of the governing parameters for which the
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temperature and concentration profiles as well as the nondimensional heat and mass

transfer coefficients behave abnormally. The analysis of the natural convective heat

and mass transfer induced by a constant heat and mass fluxes vertical wavy wall in

a non-Darcy double stratified porous medium has been discussed recently by Maria

(2011). The results show that the greater influence on the natural convection process,

on the temperature, concentration and stream function fields can be attributed to the

thermal and mass stratification coefficients along with the buoyancy ratio.

Fluid properties such as viscosity and diffusivity are prone to vary with temper-

ature, especially in the boundary layer region. So a model that incorporates variable

fluid properties is often superior to one that assumes constant properties. In view of

this many researchers have included variable fluid properties in the governing equa-

tions. Jayanthi and Kumari (2007) and Kairi et al. (2011b) considered the variable

fluid properties to study the non-Newtonian natural convection from vertical sur-

faces embedded in porous medium. Jayanthi and Kumari (2007) used the reciprocal

µ − T relation while Kairi et al. (2011b) used the exponential variation of viscosity

with temperature and they both have showed that variable viscosity enhances the heat

transfer. Effects of variable viscosity on non-Darcy MHD free convection along a non-

isothermal vertical surface in a thermally stratified porous medium has been reported

by Afify (2007). Using a reciprocal model for variable viscosity he showed that vari-

able viscosity increases local Nusselt number. Makinde and Aziz (2010) investigated

the effect of convective boundary condition on hydromagnetic mixed convection with

heat and mass transfer from a vertical plate in a porous medium. They showed that

the convective heat transfer parameter enhances both fluid velocity and temperature

profile.

Though heat and mass transfer happen simultaneously in a moving fluid, the

relations between the fluxes and the driving potentials are generally complicated.

It should be noted that the energy flux can be generated by both temperature and
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composition gradients. The energy flux caused by a composition gradient gives rise to

the Dufour or diffusion-thermo effect. Mass fluxes created by temperature gradient

lead to the Soret or thermal-diffusion effect. These effects are in collective known

as cross-diffusion effects. In liquids the Dufour effect is negligibly small compared

to the Soret effect. Kairi and Murthy (2011b) have investigated the Soret effects on

the natural convection heat and mass transfer from vertical cone in a non-Newtonian

fluid saturated non-Darcy porous medium in the presence of viscous dissipation. Their

results show that in case of aiding buoyancy the Nusselt number is increased with

Soret number up to some value of the dissipation parameter and decreased thereafter

while in case of opposing buoyancy Nusselt number is decreased with Soret number for

all values of dissipation parameter. Also, the Sherwood number is reduced with Soret

number in both aiding and opposing buoyancy cases. Dufour effects on free convection

heat and mass transfer in a doubly stratified Darcy porous medium was considered

by Narayana and Murthy (2007). They reported similarity solutions for the case of

constant heat and mass flux conditions when thermal and solutal stratification of the

medium are assumed to vary in the power function as x1/3. Further, they noted that

for large differences between the values of cross-diffusion and double stratification

parameters may lead to changes in the sign of the temperature and concentration

fields. Mansour et al. (2008) investigated the effects of chemical reaction and thermal

stratification on MHD free convective heat and mass transfer over a vertical stretching

surface embedded in a porous media considering cross-diffusion effects. They observed

reduction in the temperature and concentration distributions with decreases values

of Soret number and increases values of Dufour number.

The present chapter aims to study the Soret effect on the free convection from

a vertical plate in a thermally stratified non-Darcy porous medium saturated with

non-Newtonian fluid possessing variable viscosity property. The viscosity variation is

modeled using Reynolds’ law, which assumes that viscosity decreases exponentially

with temperature. We solve the nonlinear boundary value problem arising from the
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non-dimensionalization and the application of a local non-similarity method using a

novel SLM.

3.2 Governing equations

Consider the steady, laminar, two-dimensional natural convection boundary layer flow

over a finite vertical flat plate embedded in a non-Darcy porous medium saturated

with a non-Newtonian power-law fluid with variable viscosity. Figure 3.1 shows the

physical configuration of the problem under consideration.

Figure 3.1: Physical configuration of the problem under study

The x-coordinate is measured along the plate from its leading edge and the y-
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coordinate normal to the plate. The plate is at uniform temperature Tw and the

ambient temperature T∞ increases linearly with height. It is assumed to be of the

form

T∞(x) = T∞,0 + Ax (3.1)

where A = dT∞/dx is the slope of the ambient temperature profile and T∞,0 is the

ambient temperature at x = 0. We restrict our analysis to only positive values of A

corresponding to a stable, stratified ambient fluid. Assuming that; (i) the temperature

of the plate at any point x exceeds the surrounding temperature, i.e., Tw > T∞, (ii)

the convective fluid and the porous medium are everywhere in local thermodynamic

equilibrium, (iii) the properties of the fluid (except the dynamic viscosity) and the

porous medium are constant and following the usual boundary layer and Boussinesq

approximations the governing equations may be written as (see Shenoy 1994);

∂u

∂x
+

∂v

∂y
= 0, (3.2)

∂

∂y

(
µ

ρ∞K∗u
n

)
+

∂

∂y

(
bu2

)
= g

(
β

∂T

∂y
+ β∗

∂C

∂y

)
, (3.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (3.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ D1

∂2T

∂y2
, (3.5)

where u and v are the average velocity components along the x and y directions,

respectively, µ is the consistency index of the power-law fluid, ρ∞ is the reference

density, b is the empirical constant associated with the Forchheimer porous inertia

term, g is the acceleration due to gravity, T is the fluid temperature, C is the solutal

concentration, β and β∗ are respectively the coefficients of thermal and solutal ex-

pansions, α is the effective thermal diffusivity, D is the solutal diffusivity, D1 is the

Soret coefficient that quantifies the contribution to the mass flux due to temperature

gradient and n is the power-law index with n < 1 representing a pseudoplastic, n = 1

a Newtonian fluid and n > 1 a dilatant fluid respectively. Following Christopher and
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Middleman (1965) and Dharmadhikari and Kale (1985), the modified permeability

K∗ of the non-Newtonian power-law fluid is defined as

K∗ =
1

ct

(
nϕ

3n + 1

)n (
50K

3ϕ

)n+1
2

where K =
ϕ3d2

150(1− ϕ)2

where ϕ is the porosity of the medium, d is the particle size and the constant ct is

given by

ct =





25
12

(for n = 1) Christopher and Middleman (1965)

3
2

(
8n

9n+3

)n (
10n−3
6n+1

) (
75
16

) 3(10n−3)
10n+11 Dharmadhikari and Kale (1985)

The boundary conditions for solving equations (3.2) - (3.5) are taken to be

v = 0, T = Tw, C = Cw at y = 0,

u → 0, T → T∞(x), C → C∞ as y →∞.



 (3.6)

The system of non-similar partial differential equations can be arrived at by using

the stream function formulation where

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (3.7)

together with the transformations

η = Ra1/2
x

y

x
, ψ(ε, η) = αRa1/2

x f(ε, η),

θ(ε, η) =
T − T∞(x)

Tw − T∞,0

and φ(ε, η) =
C − C∞
Cw − C∞





, (3.8)

where, Rax =
(x

α

) [
ρ∞K∗gβ(Tw − T∞,0)

µ∞

]1/n

is the local Rayleigh number and ε =

Ax

Tw − T∞,0

is the local stratification parameter. The fluid viscosity obeying Reynolds

viscosity model is given by

µ(θ) = µ∞e−γθ, (3.9)
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where γ is the non-dimensional viscosity parameter depending on the nature of the

fluid and µ∞ is the ambient viscosity of the fluid. With the introduction of stream

function given in (3.7), the continuity equation (3.2) is automatically satisfied. Now,

using the transformations (3.8) along with viscosity model given in (3.9), the momen-

tum, energy and mass balance equations, (3.3) - (3.5) respectively, are reduced to the

following partial differential equations:

[
n(f ′)n−1 + 2Gr∗eγθf ′

]
f ′′ = (θ′ + Λφ′)eγθ + γ(f ′)nθ′, (3.10)

θ′′ +
1

2
fθ′ − εf ′ = ε

(
f ′

∂θ

∂ε
− θ′

∂f

∂ε

)
, (3.11)

1

Le
φ′′ +

1

2
fφ′ + Srθ′′ = ε

(
f ′

∂φ

∂ε
− φ′

∂f

∂ε

)
, (3.12)

The transformed boundary conditions are

f(ε, η) = 0, θ(ε, η) = 1− ε φ(ε, η) = 1 at η = 0

f ′(ε, η) → 0, θ(ε, η) → 0 φ(ε, η) → 0 as η →∞



 , (3.13)

where Gr∗ = b

[
ρ2
∞K∗2 {gβ(Tw − T∞,0)}2−n

µ2∞

]2/n

is the modified Reynolds number,

Λ =
β∗

β

(
Cw − C∞
Tw − T∞,0

)
is the buoyancy ratio, Le =

α

D
is the Lewis number and

Sr =
D1

α

(
Tw − T∞,0

Cw − C∞

)
is the Soret number. The primes in equations (3.10) - (3.13)

represent the differentiation with respect to the variable η. The skin-friction, heat

and mass transfer coefficients can be respectively obtained from

CfPe2
x = 2PrRa3/2

x f ′′(ε, 0)

NuxRa−1/2
x = −θ′(ε, 0)

ShxRa−1/2
x = −φ′(ε, 0)





. (3.14)

where Pr =
ν∞
α

and Pex =
U∞x

α
.
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3.3 Method of solution

We solve the system of equations (3.10) - (3.12) subject to the boundary conditions

(3.13) by using a local similarity and local non-similarity method which has been

widely used by many investigators (see Minkowycz and Sparrow 1974 and Sparrow

and Yu 1971) to solve various problems possessing non-similar solutions. The bound-

ary value problems resulting from this method are solved by the SLM and shooting

techniques. For the first level of truncation, the terms involving ε
∂

∂ε
are assumed to

be small. This is particularly true when ε ¿ 1. Thus the terms with ε
∂

∂ε
in equations

(3.10) - (3.12) can be neglected to get the following system of equations

[
n(f ′)n−1 + 2Gr∗eγθf ′

]
f ′′ = (θ′ + Λφ′)eγθ + γ(f ′)nθ′, (3.15)

θ′′ +
1

2
fθ′ − εf ′ = 0, (3.16)

1

Le
φ′′ +

1

2
fφ′ + Srθ′′ = 0. (3.17)

The corresponding boundary conditions are

f(ε, η) = 0, θ(ε, η) = 1, φ(ε, η) = 1 at η = 0

f ′(ε, η) → 0, θ(ε, η) → 0, φ(ε, η) → 0 as η →∞



 . (3.18)

For the second level of truncations, we introduce the variables g =
∂f

∂ε
, h =

∂θ

∂ε
and

k =
∂φ

∂ε
and recover the neglected terms at the first level of truncation. Thus, the

governing equations at the second level are given by

[
n(f ′)n−1 + 2Gr∗eγθf ′

]
f ′′ = (θ′ + Λφ′)eγθ + γ(f ′)nθ′, (3.19)

θ′′ +
1

2
fθ′ − εf ′ = ε (f ′h− θ′g) , (3.20)

1

Le
φ′′ +

1

2
fφ′ + Srθ′′ = ε (f ′k − φ′g) . (3.21)
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The corresponding boundary conditions are

f(ε, η) = 0, θ(ε, η) = 1− ε φ(ε, η) = 1 at η = 0

f ′(ε, η) → 0, θ(ε, η) → 0 φ(ε, η) → 0 as η →∞



 , (3.22)

At the third level, we differentiate equations (3.19) - (3.22) with respect to ε and

neglect the terms
∂g

∂ε
,

∂h

∂ε
and

∂k

∂ε
to get the following set of equations

[
n(f ′)n−1 + 2Gr∗eγθf ′

]
g′′ +

[
n(n− 1)(f ′)n−2g′ + 2Gr∗eγθ(g′ + γf ′h)

]
f ′′

− eγθ [h′ + Λk′ + γ(θ′ + Λφ′)h]− γ
[
n(f ′)n−1θ′ g′ + (f ′)nh′

]
= 0, (3.23)

h′′ +
1

2
(fh′ + 3gθ′)− (f ′ + εg′)(1 + h) + εh′g = 0, (3.24)

1

Le
k′′ +

1

2
(fk′ + 3gφ′) + Srh′′ − f ′k + ε(gk′ − kg′) = 0, (3.25)

The corresponding boundary conditions are

g(ε, η) = 0, h(ε, η) = −1, k(ε, η) = 0 at η = 0

g′(ε, η) → 0, h(ε, η) → 0, k(ε, η) → 0 as η →∞



 . (3.26)

The set of differential equations (3.19) - (3.21), (3.23) - (3.25) together with the

boundary conditions (3.22) and (3.26) are solved by means of the SLM. The SLM

algorithm starts with the assumption that the functions f(η), θ(η), g(η) and h(η) can

be expressed as

f(η) = fi(η) +
i−1∑
m=0

Fm(η), θ(η) = θi(η) +
i−1∑
m=0

Θm(η),

φ(η) = φi(η) +
i−1∑
m=0

Φm(η), g(η) = gi(η) +
i−1∑
m=0

Gm(η),

h(η) = hi(η) +
i−1∑
m=0

Hm(η), k(η) = ki(η) +
i−1∑
m=0

Km(η)





, (3.27)
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where fi, θi, φi, gi, hi and ki are unknown functions and Fm, Θm, Φm, Gm, Hm and

Km are successive approximations which are obtained by recursively solving the linear

part of the equation system that results from substituting firstly equation (3.27) in

equations (3.19) - (3.26). The main assumption of the SLM is that fi, θi, φi, gi, hi

and ki become increasingly smaller when i becomes large, that is

lim
i→∞

fi = lim
i→∞

θi = lim
i→∞

φi = lim
i→∞

gi = lim
i→∞

hi = lim
i→∞

ki = 0. (3.28)

The initial guesses F0(η), Θ0(η), Φ0(η), G0(η), H0(η) and K0(η) which are chosen to

satisfy the boundary conditions (3.22) and (3.26) which are taken to be

F0(η) = 1− e−η, Θ0(η) = (1− ε)e−η Φ0(η) = e−η,

G0(η) = 1− e−η, H0(η) = −e−η K0(η) = ηe−η,



 (3.29)

Thus, starting from the initial guesses, the subsequent solutions Fi(η), Θi(η), Φi(η),

Gi(η), Hi(η) and Ki(η) (i ≥ 1) are obtained by successively solving the linearized form

of the equations which are obtained by substituting equation (3.27) in the governing

equations (3.19) - (3.26). The linearized equations to be solved are

a1,i−1F
′′
i +a2,i−1F

′
i + a3,i−1Θ

′
i + a4,i−1Θi + a5,i−1Φ

′
i = r1,i−1, (3.30)

b1,i−1Θ
′′
i +b2,i−1Θ

′
i + b3,i−1F

′
i + b4,i−1Fi + b5,i−1Hi + b6,i−1Gi = r2,i−1, (3.31)

c1,i−1Φ
′′
i +c2,i−1Φ

′
i + c3,i−1F

′
i + c4,i−1Fi + c5,i−1Θ

′′
i + c6,i−1Ki + c7,i−1Gi

= r3,i−1, (3.32)

d1,i−1G
′′
i +d2,i−1G

′
i + d3,i−1F

′′
i + d4,i−1F

′
i + d5,i−1Θ

′
i + d6,i−1Θi + d7,i−1Φ

′
i

+d8,i−1H
′
i +d9,i−1Hi + d10,i−1K

′
i = r4,i−1, (3.33)

e1,i−1H
′′
i +e2,i−1H

′
i + e3,i−1Hi + e4,i−1F

′
i + e5,i−1Fi + e6,i−1Θ

′
i + e7,i−1G

′
i

+e8,i−1Gi = r5,i−1, (3.34)
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l1,i−1K
′′
i +l2,i−1K

′
i + l3,i−1Ki + l4,i−1F

′
i + l5,i−1Fi + l6,i−1H

′′
i + l7,i−1Φ

′
i

+l8,i−1G
′
i +l9,i−1Gi = r6,i−1, (3.35)

subject to the boundary conditions

Fi(0) = F ′
i (∞) = Θi(0) = Θi(∞) = Φi(0) = Φi(∞) = 0,

Gi(0) = G′
i(∞) = Hi(0) = Hi(∞) = Ki(0) = Ki(∞) = 0,



 (3.36)

where coefficients ak,i−1 (k = 1, . . . , 5), bk,i−1 (k = 1, . . . , 6), ck,i−1 (k = 1, . . . , 7),

dk,i−1 (k = 1, . . . , 10), ek,i−1 (k = 1, . . . , 8) , lk,i−1 (k = 1, . . . , 9) and rk,i−1 (k =

1, . . . , 6) depend on Fi−1, Θi−1, Φi−1, Gi−1, Hi−1, Ki−1 and on their derivatives. The

solutions Fi, Θi, Φi, Gi, Hi and Ki for i ≥ 1 has been found by iteratively solving

equations (3.30) - (3.36) and finally after M iterations the solutions f(η), θ(η), g(η)

and h(η) can be written as

f(η) ≈
M∑

m=0

Fm(η), θ(η) ≈
M∑

m=0

Θm(η), φ(η) ≈
M∑

m=0

Φm(η),

g(η) ≈
M∑

m=0

Gm(η), h(η) ≈
M∑

m=0

Hm(η), k(η) ≈
M∑

m=0

Km(η),





(3.37)

where M is the order of SLM approximation. Equations (3.30) - (3.36) are solved using

the Chebyshev spectral collocation method. The method uses Chebyshev polynomials

defined on the interval [−1, 1]. We first transform the domain of solution [0,∞) into

the domain [−1, 1] using the domain truncation technique where the problem is solved

in the interval [0, L] instead of [0,∞) by using the mapping

η

L
=

ξ + 1

2
, − 1 ≤ ξ ≤ 1, (3.38)

where L is the scaling parameter used to invoke the boundary condition at infinity.

We discretize the domain [−1, 1] using the popular Gauss-Lobatto collocation points
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given by

ξ = cos
πj

N
, j = 0, 1, 2, . . . , N, (3.39)

where N is the number of collocation points used. The functions Fi, Θi, Gi and Hi

for i ≥ 1 are approximated at the collocation points as follows

Fi(ξ) ≈
N∑

k=0

Fi(ξk)Tk(ξj), Θi(ξ) ≈
N∑

k=0

Θi(ξk)Tk(ξj),

Φi(ξ) ≈
N∑

k=0

Φi(ξk)Tk(ξj), Gi(ξ) ≈
N∑

k=0

Gi(ξk)Tk(ξj),

Hi(ξ) ≈
N∑

k=0

Hi(ξk)Tk(ξj), Ki(ξ) ≈
N∑

k=0

Ki(ξk)Tk(ξj),





j = 0, 1, ..., N (3.40)

where Tk is the kth Chebyshev polynomial given by

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (3.41)

The derivatives of the variables at the collocation points are represented as

drFi

dηr
=

N∑

k=0

Dr
kjFi(ξk),

drΘi

dηr
=

N∑

k=0

Dr
kjΘi(ξk),

drΦi

dηr
=

N∑

k=0

Dr
kjΦi(ξk),

drGi

dηr
=

N∑

k=0

Dr
kjGi(ξk),

drHi

dηr
=

N∑

k=0

Dr
kjHi(ξk),

drKi

dηr
=

N∑

k=0

Dr
kjKi(ξk),





j = 0, 1, ..., N (3.42)

where r is the order of differentiation and D = 2
L
D with D being the Chebyshev spec-

tral differentiation matrix whose entries are defined in (1.30). Substituting equations

(3.38) - (3.42) into equations (3.30) - (3.36) leads to the matrix equation

Ai−1Xi = Ri−1. (3.43)
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In equation (3.43), Ai−1 is a (6N +6)× (6N +6) square matrix and Xi and Ri−1 are

(6N + 6)× 1 column vectors defined by

Ai−1 =




A11 · · · A16

...
. . .

...

A61 · · · A66


 , Xi =




Fi

Θi

Φi

Gi

Hi

Ki




, Ri−1 =




r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1




(3.44)

where

Fi = [fi(ξ0), fi(ξ1), ..., fi(ξN−1), fi(ξN)]T ,

Θi = [θi(ξ0), θi(ξ1), ..., θi(ξN−1), θi(ξN)]T ,

Φi = [φi(ξ0), φi(ξ1), ..., φi(ξN−1), φi(ξN)]T ,

Gi = [gi(ξ0), gi(ξ1), ..., gi(ξN−1), gi(ξN)]T ,

Hi = [hi(ξ0), hi(ξ1), ..., hi(ξN−1), hi(ξN)]T ,

Ki = [ki(ξ0), ki(ξ1), ..., ki(ξN−1), ki(ξN)]T ,

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), ..., r1,i−1(ξN−1), r1,i−1(ξN)]T ,

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), ..., r2,i−1(ξN−1), r2,i−1(ξN)]T ,

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), ..., r3,i−1(ξN−1), r3,i−1(ξN)]T ,

r4,i−1 = [r4,i−1(ξ0), r4,i−1(ξ1), ..., r4,i−1(ξN−1), r4,i−1(ξN)]T ,

r5,i−1 = [r5,i−1(ξ0), r5,i−1(ξ1), ..., r5,i−1(ξN−1), r5,i−1(ξN)]T ,

r6,i−1 = [r6,i−1(ξ0), r6,i−1(ξ1), ..., r6,i−1(ξN−1), r6,i−1(ξN)]T ,
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A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D + a4,i−1I, A13 = a5,i−1D,

A14 = O, A15 = O, A16 = O, A21 = b4,i−1D + b5,i−1I,

A22 = b1,i−1D
2 + b2,i−1D, A23 = O, A24 = b6,i−1I, A25 = b5,i−1I,

A26 = O, A31 = c3,i−1D + c4,i−1I, A32 = c5,i−1D
2, A33 = c1,i−1D

2 + c2,i−1D,

A34 = c7,i−1I, A35 = 0, A36 = c6,i−1I, A41 = d3,i−1D
2 + d4,i−1D,

A42 = d5,i−1D + d6,i−1I, A43 = d7,i−1D, A44 = d1,i−1D
2 + d2,i−1D,

A45 = d8,i−1D + d9,i−1I, A46 = d10,i−1D, A51 = e4,i−1D + e5,i−1I,

A52 = e6,i−1D, A53 = 0, A54 = e7,i−1D + e8,i−1I,

A55 = e1,i−1D
2 + e2,i−1D + e3,i−1I, A56 = 0, A61 = l4,i−1D + l5,i−1I,

A62 = 0, A63 = l7,i−1D, A64 = l8,i−1D + l9,i−1I, A65 = l6,i−1D
2,

A66 = l1,i−1D
2 + l2,i−1D + l3,i−1I.

In the above definitions T stands for transpose, ak,i−1 (k = 1, . . . , 5), bk,i−1 (k =

1, . . . , 6), ck,i−1 (k = 1, . . . , 7), dk,i−1 (k = 1, . . . , 10), ek,i−1 (k = 1, . . . , 8), lk,i−1 (k =

1, . . . , 9) and rk,i−1 (k = 1, . . . , 6) are diagonal matrices of order (N + 1) × (N + 1),

I is an identity matrix of order (N + 1) × (N + 1) and O is zero matrix of order

(N + 1)× (N + 1). Finally the solution is obtained as

Xi = A−1
i−1Ri−1. (3.45)

3.4 Results and discussion

The problem of natural convection in a thermally stratified variable property power-

law fluid saturated non-Darcy porous media subject to the Soret effect has been

investigated. A local non-similarity method is employed to derive a system of ordinary

differential equations (3.19) - (3.26) from the governing partial differential equations
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(3.10) - (3.13). The SLM was used to generate the solutions of the boundary value

problem defined by equations (3.19) - (3.26). We have taken L = 15 and N = 60

for the implementation of SLM which gave sufficient accuracy. Further, we restrict

ourselves to the following parameter values 0.5 ≤ n ≤ 1.5, 0 ≤ γ ≤ 2, 0 ≤ Sr ≤ 0.5

with the fixed values Gr∗ = 1 and Le = 1. To highlight aiding buoyancy condition

we take Λ > 0 while for opposing buoyancy, Λ < 0.

However, before discussing the results, it is worth noting the following important

result in relation to the stratification parameter. We recall that the definition of local

stratification parameter is given by

ε =
Ax

Tw − T∞,0

The condition Tw > T∞ corresponds to the usual upward boundary layer flow. It can

be shown with the help of equation (3.1) that the inequality Tw > T∞ is equivalent

to ε < 1. However, at some point along the x- axis we may have Tw < T∞ (i.e.,

ε > 1) in which case the fluid starts moving downwards. The line ε = 1 corresponds

to no-motion and can be regarded as a ”stagnation line”. This solution behaviour

is encountered during computation and the results are shown in Figure 3.2 which

shows the axial velocity for different values of the stratification parameter. Clearly,

one observes the ”stagnation line” corresponding to ε = 1, the usual boundary layer

flow for ε < 1 and the reverse flow for ε > 1.

In the following discussion we restrict ourselves to the usual boundary layer be-

haviour observed in the region 0 ≤ ε < 1. In order to validate the solution obtained

using the SLM we compare the results with the numerical solution obtained using

a shooting technique that uses the Runge-Kutta-Fehlberg (RKF45) and Newton-

Raphson schemes. A comparison of axial velocity, temperature and concentration

profiles at some selected valued of η is given in Table 3.1 (for aiding buoyancy i.e,

Λ = 0.1) and Table 3.2 (for opposing buoyancy i.e, Λ = −0.1) and two different values
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Figure 3.2: Variation of axial velocity profile f ′(Y ) with ε with Gr∗ = 0.1, Le = n = 1
and γ = Sr = Λ = 0

of n. It is evident that our results are in excellent agreement with those obtained nu-

merically using the shooting technique. Table 3.3 gives a comparison of the present

results with those reported in (1993) for the limiting cases γ = Sr = Λ = 0, n = 1

and different values of ε and Gr∗. We again observe an excellent agreement between

the two sets of results.

The Non-dimensional velocity profile in the non-Darcy medium is plotted for fixed

value of γ, Gr∗, Le and Λ for various values of power-law index n, viscous dissipation

parameter ε and Soret number Sr in Fig. 3.3. It is interesting to note that the value

of velocity f ′(η) decreases with the viscous dissipation parameter and increases with

Soret number when the power-law index n is increasing. The variation of temperature

and concentration profiles are displayed through Figures 3.4 - 3.9 for selected values of

the parameters in the cases of a pseudoplastic, Newtonian and dilatant fluids. Figures

3.4 and 3.5 show temperature and concentration profiles for different values of n and

ε in the case of aiding buoyancy and opposing buoyancy respectively. We observe
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Table 3.1: A comparison between the SLM and shooting method results of f ′(η), θ(η)
and φ(η) for different values of n with Gr∗ = 1, γ = 1, Sr = 0.1, Le = 1, ε = 0.2 and
Λ = 0.1

Profile η
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

f ′(η)

0.0 0.724114 0.724114 0.750260 0.750260 0.771622 0.771622

0.1 0.712687 0.712685 0.738753 0.738753 0.760430 0.760429

1.0 0.530914 0.530912 0.571733 0.571731 0.603845 0.603843

5.0 0.006263 0.006260 0.039808 0.039804 0.079215 0.079210

θ(η)

0.0 0.800000 0.800000 0.800000 0.800000 0.800000 0.800000

0.1 0.788556 0.788555 0.786239 0.786239 0.784911 0.784910

1.0 0.606654 0.606652 0.583015 0.583013 0.568953 0.568951

5.0 0.060521 0.060516 0.035661 0.035657 0.025002 0.024998

φ(η)

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.963668 0.963667 0.960592 0.960592 0.958738 0.958737

1.0 0.659762 0.659760 0.631556 0.631554 0.614962 0.614960

5.0 0.073136 0.073131 0.043323 0.043320 0.030583 0.030578

that the power-law index n reduces both θ(η) and φ(η). The thermal stratification

reduces the thermal boundary layer while increasing concentration boundary layer

thickness in the case of aiding buoyancy as can be seen from Figure 3.4. Figure 3.5

shows that the effect of ε on θ(η) and φ(η) in the case of opposing buoyancy is the

exact opposite of that observed in the case of aiding buoyancy. The temperature and

concentration profiles are given in Figures 3.6 and 3.7 for different values of n and

γ for aiding and opposing buoyancy cases respectively. One can easily infer that the

variable viscosity parameter γ succeeds in thinning both thermal and concentration

boundary layer thicknesses in the case of a pseudoplastic, Newtonian and dilatant

fluids for both the aiding and opposing buoyancy cases. We note from equation

(3.9) that increasing values of γ tends to reduce the fluid viscosity thereby enhancing

momentum boundary layer thickness. Due to increased velocity there is less time
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Table 3.2: A comparison between the SLM and shooting method results of f ′(η), θ(η)
and φ(η) for different values of n with Gr∗ = 1, γ = 1, Sr = 0.1, Le = 1, ε = 0.2 and
Λ = −0.1

Profile η
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

f ′(η)

0.0 0.599100 0.599100 0.641642 0.641642 0.672453 0.672453

0.1 0.591234 0.591235 0.633358 0.633358 0.664262 0.664263

1.0 0.453852 0.453854 0.504500 0.504501 0.541810 0.541813

5.0 0.008329 0.008333 0.043479 0.043483 0.082115 0.082119

θ(η)

0.0 0.800000 0.800000 0.800000 0.800000 0.800000 0.800000

0.1 0.788980 0.788981 0.786106 0.786106 0.784516 0.784517

1.0 0.628446 0.628448 0.598062 0.598063 0.580798 0.580800

5.0 0.087417 0.087422 0.049218 0.049221 0.033640 0.033645

φ(η)

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.968022 0.968024 0.964078 0.964078 0.961802 0.961803

1.0 0.696962 0.696965 0.660575 0.660576 0.640041 0.640043

5.0 0.104303 0.104307 0.059498 0.059501 0.041139 0.041144

for the heat build-up and this is the reason behind reduced thermal boundary layer

thickness. Obviously, when the temperature in the boundary layer is reduced the

species concentration tends to decrease. This pattern is observed in both aiding and

opposing buoyancy cases. The Soret effect on the temperature and concentration

profiles in case of aiding and opposing buoyancy cases is shown in Figures 3.8 and

3.9. The Soret parameter has only a marginal effect on θ(η) in cases but enhances

φ(η). It is to be noted that the mass flux created by the temperature gradient gives

rise to Soret effect or themophoresis. The thermophoretic force developed due to

temperature gradients drives more particles into the boundary layer region thereby

increasing the concentration boundary layer. Further, these temperature gradients

will not be contributing anything to heat generation leaving the thermal boundary
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Table 3.3: Comparison of f ′(0) and θ′(0) for different values of ε and Gr∗ when
γ = Sr = Λ = 0 and n = 1

ε = 0 ε = 0.1

Singh and Present Singh and Present

Quantity Gr∗ Ewari (1993) Results Ewari (1993) Results

f ′(0)

0.4 0.766 0.765564 0.703 0.702562

1 0.618 0.618034 0.572 0.572381

4 0.390 0.390388 0.366 0.365535

6 0.333 0.333333 0.313 0.312829

10 0.270 0.270156 0.254 0.254138

−θ′(0)

0.4 0.400 0.400144 0.353 0.352629

1 0.366 0.365770 0.325 0.325165

4 0.298 0.297849 0.268 0.268117

6 0.277 0.276813 0.250 0.249921

10 0.251 0.250793 0.227 0.227147

layers almost unaltered. These qualitative results on the effect of Sr are in agreement

with those reported by Kairi and Murthy (2011b).

In figure 3.10 variation of the skin-friction coefficient as a function of Soret number

Sr and viscosity parameter γ are shown for different values of power-law index n and

viscous dissipation parameter ε with fixed value of Gr∗, Le and Λ. From this figure,

a decrease in f ′′(0) is evident with increasing values of n and ε for all values Sr and

γ. In other hand the skin-friction coefficient increases with increasing values Sr and

γ for fixed values of n and ε.

The variation of the Nusselt number NuxRa
−1/2
x and the Sherwood number ShxRa

−1/2
x

are shown in Figures 3.11 - 3.16 for selected values of the parameters and power-law

index n in aiding and opposing buoyancy cases. Figures 3.11 and 3.12 show heat and

mass transfer coefficients as a function of ε for different values of n, Sr and Λ. From
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Figure 3.3: Variation of (a) ε and (b) Sr on f ′(η) against η varying n when γ =
1, Gr∗ = 1, Le = 1 and Λ = 0.1.
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Figure 3.4: Variation of θ(η) and φ(η) with η for varying ε and n when γ = 1.2,
Gr∗ = 1, Sr = 0.1, Le = 1 and Λ = 0.1

Figure 3.11(a) it is clear that in the aiding buoyancy case, as ε increases NuxRa
−1/2
x

starts decreasing steadily and also the presence of the Soret parameter enhances heat

transfer. In the absence of the Soret effect, increasing ε has the effect of reducing

ShxRa
−1/2
x while the opposite is true in the presence of the Soret effect. Overall, the

Soret number Sr results in the lowering of the mass transfer coefficient. In Figures

3.12(a) and (b), one can identify similar patterns with respect to the thermal stratifi-
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Figure 3.5: Variation of θ(η) and φ(η) with η for varying ε and n when γ = 1.2,
Gr∗ = 1, Sr = 0.1, Le = 1 and Λ = −0.1
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Figure 3.6: Variation of θ(η) and φ(η) with η for varying γ and n when ε = 0.1,
Gr∗ = 1, Sr = 0.1, Le = 1 and Λ = 0.1
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Figure 3.7: Variation of θ(η) and φ(η) with η for varying γ and n when ε = 0.1,
Gr∗ = 1, Sr = 0.1, Le = 1 and Λ = −0.1
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Figure 3.8: Variation of θ(η) and φ(η) with η for varying Sr and n when ε = 0.1,
γ = 1.5, Gr∗ = 1, Le = 1 and Λ = 0.1
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Figure 3.9: Variation of θ(η) and φ(η) with η for varying Sr and n when ε = 0.1,
γ = 1.5, Gr∗ = 1, Le = 1 and Λ = −0.1

cation parameter ε. The presence of the Soret effect reduces the heat transfer in this

case.

Figures 3.13 and 3.14 depict variations of NuxRa
−1/2
x and ShxRa

−1/2
x against

Sr for different values of n, ε and Λ. It is clear that NuxRa
−1/2
x is an increasing

function and ShxRa
−1/2
x is a decreasing function of Sr. The heat transfer coefficient

is lowered by increasing the thermal stratification in the two different flow situations

considered. The effect of ε on the mass transfer coefficient subjected to increasing

Sr is quite interesting. The stratification parameter ε reduces ShxRa
−1/2
x until Sr

reaches some value and any further increase in Sr causes ε to enhance ShxRa
−1/2
x .

This situation is true for both aiding and opposing buoyancy cases.

The heat and mass transfer coefficients are shown as a function of variable vis-

cosity parameter γ for different values of n, ε and Λ in Figures 3.15 and 3.16. It is

readily seen that γ enhances both heat and mass transfer coefficients for both aiding

and opposing buoyancy cases with respect to pseudoplastic, Newtonian and dilatant

fluids. Similar behaviour was observed by (2007) and (2011b). The thermal strat-

ification parameter, subjected to a change in the viscosity parameter, reduces heat
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Figure 3.10: Variation of f ′′(0) against (a) Sr and (b) γ varying n and ε when
γ = 1, Gr∗ = 1, Le = 1 and Λ = 0.1.
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Figure 3.11: Variation of heat and mass transfer coefficients against ε for varying n
and Sr when γ = 1.2, Gr∗ = 1, Le = 1 and Λ = 0.2

transfer and enhances mass transfer coefficients.
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Figure 3.12: Variation of heat and mass transfer coefficients against ε for varying n
and Sr when γ = 1.2, Gr∗ = 1, Le = 1 and Λ = −0.2
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Figure 3.13: Variation of heat and mass transfer coefficients against Sr for varying ε
and n when γ = 1, Gr∗ = 1, Le = 1 and Λ = 0.1
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Figure 3.14: Variation of heat and mass transfer coefficients against Sr for varying ε
and n when γ = 1, Gr∗ = 1, Le = 1 and Λ = −0.1
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Figure 3.15: Variation of heat and mass transfer coefficients against γ for varying ε
and n when Sr = 0.5, Gr∗ = 1, Le = 1 and Λ = 0.1
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Figure 3.16: Variation of heat and mass transfer coefficients against γ for varying ε
and n when Sr = 0.5, Gr∗ = 1, Le = 1 and Λ = −0.1

3.5 Conclusion

The chapter highlights the Soret effects on the natural convection flow of a variable

property non-Newtonian power-law fluid due to a vertical flat plate embedded in a

thermally stratified non-Darcy porous medium. The SLM is proven to be an efficient

method in handling highly nonlinear coupled boundary value problems arising due to

local non-similarity. Temperature and concentration profiles are significantly affected

by stratification parameter, Soret number and variable viscosity parameters. The heat

and mass transfer coefficients are reduced by the power-law index n in two different

flow situations considered. The thermal stratification parameter reduces the Nusselt

number but enhances the Sherwood number. The viscosity parameter γ enhances

heat and mass transfer coefficients in both cases of Λ > 0 and Λ < 0. The Soret

number succeeds in enhancing mass transfer coefficient for both Λ > 0 and Λ < 0 but

reduces the heat transfer coefficient for Λ > 0 while increasing in the case Λ < 0.
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Chapter 4

Thermal radiation and viscous

dissipation effects on mixed

convection from a vertical plate in

a non-Darcy porous medium∗

Abstract

The chapter presents an investigation of the influence of thermal radiation and viscous

dissipation on the mixed convective flow due to a vertical plate immersed in a non-

Darcy porous medium saturated with a non-Newtonian power-law fluid that exhibits

variable viscosity. The Ostwald -de Waele power-law model is used to characterize the

non-Newtonian behavior of the fluid. Rosseland approximation is used to describe

the radiative heat flux accounted in the energy equation. The governing partial

0∗ Submitted to Acta Mechanica, (2011).
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differential equations are transformed into a system of ordinary differential equations

and solved numerically using the SLM. The accuracy of the SLM has been tested

by comparing the results with those obtained using the shooting technique and with

previously published work. The results are analyzed for the effect of various physical

parameters such as variable viscosity, thermal radiation, viscous dissipation, mixed

convection parameters on dynamics. Skin-friction and heat transfer coefficients are

also tabulated for different values of the said parameters.

4.1 Introduction

In recent years, a great deal of interest has been generated in the area of convective

heat transfer from a vertical flat plate embedded in a porous medium because of its

wide-range of applications in various fields such as thermal insulation, the enhanced

recovery of petroleum resource and geophysical flows. The disposal of nuclear waste

into the earth’s crust or the sea bed is an area of particular interest in the study of

convection in a porous medium.

The study of convective heat transfer in a porous medium in non-Newtonian

fluids is particularly relevant since a number of industrially important fluids such as

molten plastics, polymers, pulps and slurries display non-Newtonian fluid behaviour.

Shenoy (1994) presented many interesting applications of non-Newtonian power-law

fluids with yield stress on convective heat transport in fluid saturated porous media

considering geothermal and oil reservoir engineering applications. A detailed review

of Darcy and non-Darcy mixed convection studies can be found in Nield and Bejan

(1984).

The natural convection in a non-Newtonian fluid about a horizontal cylinder and

sphere and along a vertical plate embedded in a porous medium have been studied
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by Chen and Chen (1988a) and Chen and chen (1988b), respectively. The problem of

free convection flow of non-Newtonian power-law fluid was studied by Nakayama et al.

(1991) for a non-isothermal body of arbitrary shape. The effect of viscous dissipation

on a non-Darcy natural convection regime has been considered by Murthy et al.

(1997). They observed that a significant decrease in heat transfer can be observed

with the inclusion of the viscous dissipation effect.

The effect of viscous dissipation and radiation on the natural convection and

heat transfer from vertical flat plate in a non-Darcy porous media saturated with

non-Newtonian fluid of variable viscosity has been considered by Kairi et al. (2011a).

El-Amin et al. (2003) investigated the influence of viscous dissipation on buoyancy

induced flow over a horizontal or a vertical flat plate embedded in a non-Newtonian

fluid saturated porous medium. Kumari et al. (2004) studied the non-similar non-

Darcy mixed convection flow over a non-isothermal horizontal surface which covers

the entire regime of mixed convection flow starting from pure forced convection to

pure free convection flow. The effect of variable viscosity on non-Darcy free or mixed

convective heat transfer along a vertical surface embedded in a porous medium satu-

rated with a non-Newtonian fluid has been analyzed by Jayanthi et al. (2007). Shenoy

(1993) studied the Non-Darcy natural, forced and mixed convection heat transfer in

non-Newtonian power-law fluid saturated porous media. Mixed convection flow and

heat transfer about an isothermal vertical wall embedded in a fluid saturated porous

medium with uniform free stream velocity is considered by Murthy (1998). He an-

alyzed the effects of thermal dispersion and viscous dissipation in both aiding and

opposing flows. The problem of mixed convection from a vertical surface embed-

ded in a non-Newtonian power-law fluid saturated non-Darcy porous medium in the

presence of melting, radiation and heat generation/absorption effects for aiding and

opposing external flows was studied by Chamkha et al. (2010).

The purpose of this chapter is to investigate the effect of viscous dissipation and
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the thermal radiation on forced convection from a vertical plate in a non-Darcy porous

medium saturated with non-Newtonian fluid possessing variable viscosity property.

In particular we model the viscosity variation using Reynolds’ law (2004, 2007), which

assumes that viscosity decreases exponentially with temperature. We solve the non-

linear boundary value problem arising from the non-dimensionalization and local

non-similarity method using a novel SLM.

4.2 Basic equations

Consider the steady, laminar, two-dimensional mixed convection boundary layer flow

over a semi-infinite vertical flat plate embedded in a non-Darcy porous medium satu-

rated with a non-Newtonian power-law fluid with variable viscosity. A constant free

stream velocity U∞ is assumed. The plate is maintained at a constant temperature

Tw and let T∞ be the ambient temperature. The x-coordinate is measured along

the plate from its leading edge and the y-coordinate normal to the plate. Figure 4.1

shows the physical configuration of the problem under consideration. With the usual

Figure 4.1: Physical model and coordinate system.
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boundary layer and Boussinesq approximations, the governing equations, namely the

equation of continuity, the non-Darcy flow model and the energy equation for the

isotropic and homogeneous porous medium may be written as (see Shenoy 1993);

∂u

∂x
+

∂v

∂y
= 0, (4.1)

∂

∂y

(
µ

ρ∞K∗u
n

)
+

∂

∂y

(
bu2

)
= gβ

∂T

∂y
, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

µ

ρ∞K∗cp

u

(
un +

bρ∞K∗

µ
u2

)
− 1

ρ∞cp

∂qr

∂y
, (4.3)

subject to the boundary conditions

v = 0, T = Tw at y = 0,

u → U∞, T → T∞ as y →∞.



 (4.4)

In equations (4.1) - (4.4), u and v are the average velocity components along the x and

y directions, respectively, T is the fluid temperature, ρ∞ is the reference density, g is

the acceleration due to gravity, α is the effective thermal diffusivity, β is the coefficient

of thermal expansion, cp is the specific heat at constant pressure, b is the empirical

constant associated with the Forchheimer porous inertia term, µ is the consistency

index of power law fluid and K∗ is the modified permeability of the flow of the non-

Newtonian power-law fluid. Here n is the power-law index with n < 1 representing a

pseudoplastic, n = 1 a Newtonian fluid and n > 1 a dilatant fluid respectively.

The radiative heat flux term qr is written using Rosseland approximation (Raptis

1998 and Sparrow 1978) as

qr = −4σ∗

3k∗
∂T 4

∂y
, (4.5)

where σ∗ and k∗ are the Stefan-Boltzman constant and the mean absorption coef-

ficient, respectively. The system of non-similar partial differential equations can be
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reduced by using the stream function approach

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (4.6)

together with the following transformations

η =
Pe

1/2
x

χ

y

x
, ψ(ε, η) =

αPe
1/2
x

χ
f(ε, η) and θ(ε, η) =

T − T∞
Tw − T∞

, (4.7)

where, χ−1 = 1+

√
Rax

Pex

is mixed convection parameter, Rax =
(x

α

) [
ρ∞K∗gβ(Tw − T∞)

µ∞

]1/n

is the local Rayleigh number and Pex =
U∞x

α
is the local Peclet number. The fluid

viscosity is assumed to obey Reynolds viscosity model (Elbashbeshy 2000 and Mas-

soudi and Phuoc 2004) given by

µ(θ) = µ∞e−γθ,

where γ is the non-dimensional viscosity parameter depending on the nature of the

fluid and µ∞ is the ambient viscosity of the fluid. With the introduction of stream

function given in (4.5), the continuity equation (4.1) is automatically satisfied. Now,

using the transformations (4.7), the momentum and energy equations, (4.2) and (4.3)

respectively, are reduced to the following non-similar equations:

[
n(f ′)n−1 + 2Re∗eγθf ′

]
f ′′ =

[
(1− χ)2neγθ + γ(f ′)n

]
θ′, (4.8)

θ′′ +
1

2
fθ′ + εe−γθ(1− χ)−2n

(
f ′n+1 + Re∗eγθf ′3

)
+

4

3
R

[
(CT + θ)3θ′

]′

= ε

(
f ′

∂θ

∂ε
− θ′

∂f

∂ε

)
. (4.9)

The transformed boundary conditions are

f(ε, η) + 2ε
∂f(ε, η)

∂ε
= 0, θ(ε, η) = 1 at η = 0,

f ′(ε, η) → χ2, θ(ε, η) → 0 as η →∞,



 (4.10)
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where Re∗ =
ρ∞K∗b

µ∞

(
U∞
χ

)2−n

is the modified Reynolds number, R =
4σ∗

kk∗
(Tw−T∞)3

is the radiation parameter, CT =
T∞

Tw − T∞
is the temperature ratio and ε =

gβx

cp

is

the viscous dissipation parameter. The primes in equations (4.8) - (4.10) represent

the differentiation with respect to the variable η. The skin friction and heat transfer

coefficients can be respectively obtained from

χ3Pe1/2
x Cf = −Pre−γf ′′(ε, 0),

χPe−1/2
x Nux = −θ′(ε, 0),





(4.11)

where Pr =
ν∞
α

is the Prandtl number.

4.3 Method of solution

To solve the system of equations (4.8) and (4.9) subject to the boundary conditions

(4.10), we first apply a local similarity and local non-similarity method which has

been applied by many investigators (see Minkowycz and Sparrow 1974 and Sparrow

and Yu 1971) to solve various non-similarity boundary value problems. For the first

level of truncation, the terms accompanied by ε
∂

∂ε
are assumed to be small. This is

particularly true when ε ¿ 1. Thus the terms with ε
∂

∂ε
in equations (4.8) and (4.9)

can be neglected to get the following system of equations

[
n(f ′)n−1 + 2Re∗eγθf ′

]
f ′′ =

[
(1− χ)2neγθ + γ(f ′)n

]
θ′, (4.12)

θ′′ +
1

2
fθ′ + εe−γθ(1− χ)−2n

(
f ′n+1 + Re∗eγθf ′3

)
+

4

3
R

[
(CT + θ)3θ′

]′
= 0 .(4.13)
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The corresponding boundary conditions are

f(ε, η) = 0, θ(ε, η) = 1 at η = 0,

f ′(ε, η) → χ2, θ(ε, η) → 0 as η →∞.



 (4.14)

For the second level of truncations, we introduce the variables g =
∂f

∂ε
and h =

∂θ

∂ε
and recover the neglected terms at the first level of truncation. Thus, the governing

equations at the second level are given by

[
n(f ′)n−1 + 2Re∗eγθf ′

]
f ′′ =

[
(1− χ)2neγθ + γ(f ′)n

]
θ′, (4.15)

θ′′ +
1

2
fθ′ + εe−γθ(1− χ)−2n

(
f ′n+1 + Re∗eγθf ′3

)
+

4

3
R

[
(CT + θ)3θ′

]′

= ε (f ′h− θ′g) . (4.16)

The corresponding boundary conditions are

f(ε, η) + 2εg(ε, η) = 0, θ(ε, η) = 1 at η = 0,

f ′(ε, η) → χ2, θ(ε, η) → 0 as η →∞.



 (4.17)

At the third level, we differentiate equations (4.15) - (4.17) with respect to ε and

neglect the terms
∂g

∂ε
and

∂h

∂ε
to get the following set of equations

[
n(f ′)n−1 + 2Re∗eγθf ′

]
g′′ +

[
n(n− 1)(f ′)n−2g′ + 2Re∗eγθ(g′ + γf ′h)

]
f ′′

−(1− χ)2neγθ(h′ + γθ′h)− γ
[
n(f ′)n−1θ′ g′ + (f ′)nh′

]
= 0, (4.18)

[
1 +

4

3
R(CT + θ)3

]
h′′ + 4R(CT + θ)2hθ′′ + 8R(CT + θ)θ′[(CT + θ)h′ + θ′h]

+(1− χ)−2nεg′
[
3Re∗(f ′)2 + (n + 1)e−γθ(f ′)n)

]
+ ε(h′g − g′h)− f ′h

+(1− χ)−2n
[
Re∗(f ′)3 + (1− γεh)e−γθ(f ′)n+1

]
+

1

2
(fh′ + 3gθ′) = 0. (4.19)
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The corresponding boundary conditions are

g(ε, η) = 0, h(ε, η) = 0 at η = 0,

g′(ε, η) → 0, h(ε, η) → 0 as η →∞.



 (4.20)

The set of differential equations (4.15), (4.16), (4.18) and (4.19) together with the

boundary conditions (4.17) and (4.20) are solved by means of the (SLM). The SLM

algorithm starts with the assumption that the variables f(η), θ(η), g(η) and h(η) can

be expressed as

f(η) = fi(η) +
i−1∑
m=0

Fm(η), θ(η) = θi(η) +
i−1∑
m=0

Θm(η),

g(η) = gi(η) +
i−1∑
m=0

Gm(η), h(η) = hi(η) +
i−1∑
m=0

Hm(η),





(4.21)

where fi, θi, gi and hi are unknown functions and Fm, Θm, Gm and Hm are successive

approximations which are obtained by recursively solving the linear part of the equa-

tion system that results from substituting firstly equation (4.21) in equations (4.15) -

(4.20). The main assumption of the SLM is that fi, θi, gi and hi become increasingly

smaller when i becomes large, that is

lim
i→∞

fi = lim
i→∞

θi = lim
i→∞

gi = lim
i→∞

hi = 0. (4.22)

The initial guesses F0(η), Θ0(η), G0(η) and H0(η) which are chosen to satisfy the

boundary conditions (4.17) and (4.20) which are taken to be

F0(η) = 1 + χ2η − e−η, Θ0(η) = e−η

G0(η) = 1− ηe−η − e−η, H0(η) = ηe−η.



 (4.23)

Thus, starting from the initial guesses, the subsequent solutions Fi, Θi, Gi and Hi

(i ≥ 1) are obtained by successively solving the linearised form of the equations which

are obtained by substituting equation (4.21) in the governing equations (4.17) - (4.20).
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The linearised equations to be solved are

a1,i−1F
′′
i + a2,i−1F

′
i + a3,i−1Θ

′
i + a4,i−1Θi = r1,i−1, (4.24)

b1,i−1Θ
′′
i + b2,i−1Θ

′
i + b3,i−1Θi + b4,i−1F

′
i + b5,i−1Fi + b6,i−1Hi

+b7,i−1Gi = r2,i−1, (4.25)

c1,i−1G
′′
i + c2,i−1G

′
i + c3,i−1F

′′
i + c4,i−1F

′
i + c5,i−1Θ

′
i + c6,i−1Θi

+c7,i−1H
′
i + c8,i−1Hi = r3,i−1, (4.26)

d1,i−1H
′′
i + d2,i−1H

′
i + d3,i−1Hi + d4,i−1F

′
i + d5,i−1Fi + d6,i−1Θ

′′
i

+d7,i−1Θ
′
i + d8,i−1Θi + d9,i−1G

′
i + d10,i−1Gi = r4,i−1, (4.27)

subject to the boundary conditions

Fi(0) = F ′
i (∞) = Θi(0) = Θi(∞) = Gi(0) = G′

i(∞) = Hi(0) = Hi(∞) = 0, (4.28)

where coefficients ak,i−1 (k = 1, . . . , 4), bk,i−1 (k = 1, . . . , 7), ck,i−1 (k = 1, . . . , 8),

dk,i−1 (k = 1, . . . , 10) and rk,i−1 (k = 1, . . . , 4) depend on Fi−1, Θi−1, Gi−1, Hi−1 and

on their derivatives.

The solution for Fi, Θi, Gi and Hi for i ≥ 1 has been found by iteratively solving

equations (4.24) - (4.28) and finally after M iterations the solutions f(η), θ(η), g(η)

and h(η) can be written as

f(η) ≈
M∑

m=0

Fm(η), θ(η) ≈
M∑

m=0

Θm(η),

g(η) ≈
M∑

m=0

Gm(η), h(η) ≈
M∑

m=0

Hm(η),





(4.29)

where M is termed the order of SLM approximation. Equations (4.24) - (4.28) are

solved using the Chebyshev spectral collocation method. The method is based on the

Chebyshev polynomials defined on the interval [−1, 1]. We first transform the domain
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of solution [0,∞) into the domain [−1, 1] using the domain truncation technique where

the problem is solved in the interval [0, L] instead of [0,∞) by using the mapping

η

L
=

ξ + 1

2
, − 1 ≤ ξ ≤ 1, (4.30)

where L is the scaling parameter used to invoke the boundary condition at infinity.

We discretize the domain [−1, 1] using the popular Gauss-Lobatto collocation points

given by

ξ = cos
πj

N
, j = 0, 1, 2, . . . , N, (4.31)

where N is the number of collocation points used. The functions Fi, Θi, Gi and Hi

for i ≥ 1 are approximated at the collocation points as follows

Fi(ξ) ≈
N∑

k=0

Fi(ξk)Tk(ξj), Θi(ξ) ≈
N∑

k=0

Θi(ξk)Tk(ξj),

Gi(ξ) ≈
N∑

k=0

Gi(ξk)Tk(ξj), Hi(ξ) ≈
N∑

k=0

Hi(ξk)Tk(ξj),





j = 0, 1, ..., N, (4.32)

where Tk is the kth Chebyshev polynomial given by

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (4.33)

The derivatives of the variables at the collocation points are represented as

drFi

dηr
=

N∑

k=0

Dr
kjFi(ξk),

drΘi

dηr
=

N∑

k=0

Dr
kjΘi(ξk),

drGi

dηr
=

N∑

k=0

Dr
kjGi(ξk),

drHi

dηr
=

N∑

k=0

Dr
kjHi(ξk),





j = 0, 1, ..., N, (4.34)

where r is the order of differentiation and D = 2
L
D with D being the Chebyshev spec-

tral differentiation matrix whose entries are defined in (1.30) Substituting equations
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(4.24) - (4.28) into equations (4.30) - (4.34) leads to the matrix equation

Ai−1Xi = Ri−1. (4.35)

In equation (4.35), Ai−1 is a (4N +4)× (4N +4) square matrix and Xi and Ri−1 are

(4N + 4)× 1 column vectors defined by

Ai−1 =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




, Xi =




Fi

Θi

Gi

Hi




, Ri−1 =




r1,i−1

r2,i−1

r3,i−1

r4,i−1




, (4.36)

where

Fi = [fi(ξ0), fi(ξ1), ..., fi(ξN−1), fi(ξN)]T ,

Θi = [θi(ξ0), θi(ξ1), ..., θi(ξN−1), θi(ξN)]T ,

Gi = [gi(ξ0), gi(ξ1), ..., gi(ξN−1), gi(ξN)]T ,

Hi = [hi(ξ0), hi(ξ1), ..., hi(ξN−1), hi(ξN)]T ,

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), ..., r1,i−1(ξN−1), r1,i−1(ξN)]T ,

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), ..., r2,i−1(ξN−1), r2,i−1(ξN)]T ,

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), ..., r3,i−1(ξN−1), r3,i−1(ξN)]T ,

r4,i−1 = [r4,i−1(ξ0), r4,i−1(ξ1), ..., r4,i−1(ξN−1), r4,i−1(ξN)]T ,
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A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D + a4,i−1I, A13 = O,

A14 = O, A21 = b4,i−1D + b5,i−1I, A22 = b1,i−1D
2 + b2,i−1D + b3,i−1I,

A23 = b7,i−1I, A24 = b6,i−1I, A31 = c3,i−1D
2 + c4,i−1D,

A32 = c5,i−1D + c6,i−1I, A33 = c1,i−1D
2 + c2,i−1D, A34 = c7,i−1D + c8,i−1I,

A41 = d4,i−1D + d5,i−1I, A42 = d6,i−1D
2 + d7,i−1D + d8,i−1I,

A43 = d9,i−1D + d10,i−1I, A44 = d1,i−1D
2 + d2,i−1D + d3,i−1I.

In the above definitions T stands for transpose, ak,i−1 (k = 1, . . . , 4), bk,i−1 (k =

1, . . . , 7), ck,i−1 (k = 1, . . . , 8), dk,i−1 (k = 1, . . . , 10) and rk,i−1 (k = 1, . . . , 4) are

diagonal matrices of order (N + 1) × (N + 1), I is an identity matrix of order (N +

1) × (N + 1) and O is zero matrix of order (N + 1) × (N + 1). Finally the solution

is obtained as

Xi = A−1
i−1Ri−1. (4.37)

4.4 Results and discussion

In this chapter we discuss the results obtained through the solution of the system

(4.15) - (4.20). We used the SLM in generating the results presented in this study.

We have taken L = 15 and N = 60 for the implementation of SLM. Further, we

restrict ourselves to the following values parameters 0.5 ≤ n ≤ 1.5, 0 ≤ ε ≤ 0.2,

0 ≤ γ ≤ 2, 0 ≤ R ≤ 2 and take fixed values Re∗ = 1, χ = 0.5 and CT = 0.1.

In order to validate the SLM solution procedure we compare the SLM results with

the previous studies by Kairi (2011a) and Murthy (1997) and the numerical solution

obtained by the shooting technique that uses the Runge-Kutta-Fehlberg (RKF45) and

Newton-Raphson schemes. The heat transfer coefficients in the case of a Newtonian

fluid in absence of dispersion is shown in Table 4.1. It is evident that our results are
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in excellent agreement with those of Kairi (2011a) and Murthy (1997).

Table 4.1: Comparison between some previous studies and present results of heat
transfer coefficient −θ′(0) at different values of ε when n = 1, Re∗ = 1, γ = 0, R = 0,
CT = 0, and χ = 0

ε Murthy (1997) Kairi (2011a) 4th order SLM Shooting method

0.0 0.3658 0.3658 0.3658 0.3658

0.01 0.3619 0.3619 0.3619 0.3619

0.1 0.3261 0.3262 0.3262 0.3262

Table 4.2: Effect of dissipation parameter ε on −f ′′(0) and −θ′(0) when R = 0.1,
CT = 0.5, χ = 0.5, γ = 1 and Re∗ = 1 for different values of n

Quantity ε
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

−f ′′(0)

0.00 0.154934 0.154934 0.089516 0.089516 0.049431 0.049431

0.05 0.131315 0.131314 0.074797 0.074797 0.040131 0.040131

0.10 0.106934 0.106933 0.059661 0.059661 0.030597 0.030597

0.20 0.056021 0.056019 0.028059 0.028058 0.010747 0.010747

−θ′(0)

0.00 0.350818 0.350818 0.296413 0.296413 0.265913 0.265913

0.05 0.297337 0.297335 0.247675 0.247674 0.215883 0.215882

0.10 0.242131 0.242129 0.197556 0.197555 0.164595 0.164593

0.20 0.126849 0.126845 0.092913 0.092910 0.057815 0.057811

The skin-friction and heat transfer coefficients are tabulated in Tables 4.2 - 4.4 for

various values of ε, γ and R for the cases of a pseudoplastic, Newtonian and dilatant

fluids. We observe from Tables 4.2 and 4.4 that the heat transfer coefficient decreases

with increasing values of the viscous dissipation parameter ε and radiation parameter

R in the cases of a pseudoplastic, Newtonian and dilatant fluids. These results concur

with those reported by Kairi et al. (2011a) and Murthy et al. (1997). The heat transfer

coefficient increases with an increase in the variable viscosity parameter γ in cases of
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Table 4.3: Effect of variable viscosity parameter γ on −f ′′(0) and −θ′(0) when R =
0.1, CT = 0.5, χ = 0.5, ε = 0.1 and Re∗ = 1 for different values of n

Quantity γ
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

−f ′′(0)

0.0 0.056144 0.056144 0.023605 0.023605 0.011987 0.011987

0.5 0.093851 0.093851 0.046221 0.046221 0.023091 0.023091

1.0 0.106934 0.106933 0.059661 0.059661 0.030597 0.030597

2.0 0.100208 0.100208 0.061748 0.061748 0.033482 0.033482

−θ′(0)

0.0 0.200838 0.200838 0.170218 0.170218 0.148810 0.148810

0.5 0.225418 0.225417 0.185401 0.185400 0.157385 0.157384

1.0 0.242131 0.242130 0.197556 0.197555 0.164595 0.164594

2.0 0.261356 0.261354 0.213539 0.213537 0.174709 0.174707

pseudoplastic, Newtonian and dilatant fluids as can be seen from Table 4.3. Similar

behavior was observed by Jayanthi et al. (2007) and Kairi et al. (2011a).

Table 4.4: Effect radiation parameter R on −f ′′(0) and −θ′(0) when Re∗ = 1, CT =
0.5, γ = 1, ε = 0.1 and χ = 0.5 for different values of n

Quantity R
n = 0.5 n = 1 n = 1.5

SLM Shooting SLM Shooting SLM Shooting

−f ′′(0)

0.0 0.138429 0.138429 0.077319 0.077319 0.039690 0.039690

0.5 0.064052 0.064052 0.035658 0.035657 0.018257 0.018257

1.0 0.047218 0.047218 0.026265 0.026264 0.013446 0.013446

2.0 0.034067 0.034067 0.018951 0.018950 0.009716 0.009716

−θ′(0)

0.0 0.313446 0.313446 0.256026 0.256026 0.213510 0.213510

0.5 0.145034 0.145033 0.118073 0.118072 0.098211 0.098210

1.0 0.106917 0.106916 0.086970 0.086969 0.072333 0.072331

2.0 0.077139 0.077138 0.062751 0.062749 0.052268 0.052265

Table 4.3 shows that the skin-friction coefficient increases with the increase in
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the variable viscosity parameter γ in the cases n = 1 and n > 1 while for n < 1 it

initially increases and then start decreasing. The viscous dissipation parameter ε and

the radiation parameter R have decreasing effect on the skin-friction coefficient for

all three kinds of power-law liquids considered. The same is reiterated in Tables 4.2

and 4.4. The overall effect of power-law index is to reduce both skin-friction and heat

transfer coefficients as can be seen from Tables 4.2 - 4.4.

The variation of velocity and temperature profiles are displayed through Figures

4.2 - 4.7 for selected values of the parameters in the cases of pseudoplastic, Newtonian

and dilatant fluids. Figures 4.2 - 4.3 illustrate the variation of axial velocity f ′(η)

and temperature distribution θ(η) for pseudoplastics, Newtonian and dilatant fluids

for with respect to dissipation parameter ε. It is observed from these figures that

an increasing in the dissipation parameter ε increases the velocity and temperature

distributions for all values of the power-law index n. Similar observations were made

by Kairi et al. (2011a).

The effect of variable viscosity parameter γ on the axial velocity distribution

and the temperature distribution are projected in Figures 4.4 and 4.5 while the other

parameter are fixed. It can be seen that increasing values of γ correspond to increasing

the momentum boundary layer thickness for any value of the power-law index n. But

the opposite is true in case of temperature distribution as shown in Figure 4.5.

Figures 4.6 and 4.7 highlight the effect of the thermal radiation parameter R for

n = 0.5, n = 1 and n = 1.5 on the axial velocity and temperature distributions,

respectively. It is evident from these figures that the thermal radiation parameter R

has an increasing effect on both axial velocity and temperature distributions for any

value of the power-law index n.
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Figure 4.2: Variation of velocity distribution with η varying ε when Re∗ = 1, γ = 0.5,
R = 0.5, CT = 0.1, and χ = 0.5 for (a) n = 0.5 (b) n = 1 and (c) n = 1.5
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Figure 4.3: Variation of temperature distribution with η varying ε when Re∗ = 1,
γ = 0.5, R = 0.5, CT = 0.1, and χ = 0.5 for (a) n = 0.5 (b) n = 1 and (c) n = 1.5
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Figure 4.4: Variation of velocity distribution with η varying γ when Re∗ = 1, R = 0.5,
CT = 0.1, ε = 0.01, and χ = 0.5 for (a) n = 0.5 (b) n = 1 and (c) n = 1.5

113



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ
(η

)

 

 

γ = 0
γ = 0.5
γ = 1
γ = 2

(a)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ
(η

)

 

 

γ = 0
γ = 0.5
γ = 1
γ = 2

(b)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ
(η

)

 

 

γ = 0
γ = 0.5
γ = 1
γ = 2

(c)

Figure 4.5: Variation of temperature distribution with η varying γ when Re∗ = 1,
R = 0.5, CT = 0.1, ε = 0.01, and χ = 0.5 for (a) n = 0.5 (b) n = 1 and (c) n = 1.5
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Figure 4.6: Variation of velocity distribution with η varying R when Re∗ = 1, CT =
0.1, χ = 0.5, ε = 0.01, and γ = 0.5 for (a) n = 0.5 (b) n = 1 and (c) n = 1.5
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Figure 4.7: Variation of temperature distribution with η varying R when Re∗ = 1,
CT = 0.1, χ = 0.5, ε = 0.01, and γ = 0.5 for (a) n = 0.5 (b) n = 1 and (c) n = 1.5
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4.5 Conclusion

In this chapter the effects of viscous dissipation, thermal radiation and variable vis-

cosity on the mixed convective flow of a non-Newtonian power-law fluid from a ver-

tical flat plate embedded in a non-Darcy porous medium are addressed. The SLM

is proven to be an efficient method in handling highly nonlinear coupled boundary

value problems arising due to local non-similarity. Velocity and temperature pro-

files are significantly affected by viscous dissipation, thermal radiation and variable

viscosity parameters. The heat transfer coefficient decreases with increases in the

power-law index n, dissipation parameter ε and thermal radiation parameter R while

the opposite is true in the case of the viscosity parameter γ.
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Chapter 5

On cross-diffusion effects on flow

over a vertical surface using a

linearisation method∗

Abstract

In this chapter we explore the use of a non-perturbation linearisation method to solve

the coupled highly nonlinear system of equations due to flow over a vertical surface

subject to a magnetic field. The linearisation method is used in combination with an

asymptotic expansion technique. The effects of Dufour, Soret and magnetic filed pa-

rameters are investigated. The velocity, temperature and concentration distributions

as well as the skin-friction, heat and mass transfer coefficients have been obtained

and discussed for various physical parametric values. The accuracy of the solutions

has been tested using a local nonsimilarity method. The results show that the non-

perturbation technique is an accurate numerical algorithm that converges rapidly and

0∗ Boundary Value Problems 2012:25, DOI:10.1186/1687-2770-2012-25, (2012), (available online).
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may serve as a viable alternative to finite difference and finite element methods for

solving nonlinear boundary value problems.

5.1 Introduction

Convection driven by density variations caused by two different components which

have different rates of diffusion plays an important role in fluid dynamics since such

flows occur naturally in many physical and engineering processes. Heat and salt in sea

water provide perhaps the best known example of double-diffusive convection, Stern

(1960). Other examples of double diffusive convection are encountered in diverse

applications such as in chemical and petroleum industries, filtration processes, food

processing, geophysics and in the modelling of solar ponds and magma chambers. A

review of the literature in this subject can be found in Nield and Bejan (1999).

One of the earliest studies of double diffusive convection was by Nield (1968).

Baines and Gill (1969) investigated linear stability boundaries while Rudraiah et

al. (1982) used the nonlinear perturbation theory to investigate the onset of double

diffusive convection in a horizontal porous layer. Poulikakos (1986) presented the

linear stability analysis of thermosolutal convection using the Darcy-Brinkman model.

Bejan and Khair (1985) presented a multiple scale analysis of heat and mass transfer

about a vertical plate embedded in a porous medium. They considered concentration

gradients which aid or oppose thermal gradients. Related studies on double diffusive

convection have been undertaken by, among others, Lai (1990), Afify (2004) and

Makinde and Sibanda (2008).

Investigations by, among others, Eckert and Drake (1972) and Mortimer and

Eyring (1980) have provided examples of flows such as in the geosciences, where

diffusion-thermo and thermal-diffusion effects are quite significant. Anjalidevi and

119



Devi (2011) showed that diffusion-thermo and thermal-diffusion effects are significant

when density differences exist in the flow regime. In general, Diffusion-thermo and

thermal-diffusion effects have been found to be particularly important for intermediate

molecular weight gases in binary systems that are often encountered in chemical

engineering processes. Theoretical studies of the Soret and Dufour effects on double

diffusive convection have been made by many researchers, among them, Kafoussias

and Williams (1995), Postelnicu (2004), Mansour et al. (2008), Narayana and Sibanda

(2010) and Awad et al. (2010b).

In this chapter we investigate convective heat and mass transfer along a vertical

flat plate in the presence of diffusion-thermo, thermal diffusion effects and an external

magnetic field. The governing momentum, heat and mass transfer equations are, in

general, strongly coupled and highly nonlinear. In this chapter, the coupled set of

differential equations that describe convective heat and mass transfer flow along a

vertical flat plate in the presence of diffusion-thermo, thermal diffusion effects and

an external magnetic field are solved using the successive linearisation method. A

non-similarity technique is used to validate the linearisation method.

5.2 Equations of motion

We consider the problem of double diffusive convection along a vertical plate with

an external magnetic field imposed along the y-axis. The induced magnetic field

is assumed to be negligible. The fluid temperature and solute concentration in the

ambient fluid are T∞, C∞ and those at the surface are Tw and Cw respectively. The

coordinates system and the flow configuration are shown in Figure 5.1. Under the

usual boundary layer and Boussinesq approximations the governing equations for a
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Figure 5.1: Physical model and coordinate system

viscous incompressible fluid may be written as (Kafoussias and Williams 1995);

∂u

∂x
+

∂v

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

0

ρ
u + gβT (T − T∞) + gβC(C − C∞), (5.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

DmkT

cscp

∂2C

∂y2
, (5.3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+

DmkT

Tm

∂2T

∂y2
, (5.4)

subject to the boundary conditions

u = 0, v = 0, T = Tw, C = Cw on y = 0, (5.5)

u = U∞, T = T∞, C = C∞ when y →∞. (5.6)

where u and v are the velocity components along the x- and y- axes respectively, T

and C are the fluid temperature and solute concentration across the boundary layer,

ν is the kinematic viscosity, ρ is the fluid density, σ is the electrical conductivity, B0

is the uniform magnetic field, βT and βC are the coefficients of thermal and solutal

expansions, Dm is the thermal diffusivity, kT is the thermal diffusion ratio, cs is the

concentration susceptibility, cp is the fluid specific heat capacity, Tm is the mean fluid
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temperature, U∞ is the free stream velocity and g is the gravitational acceleration.

To satisfy the continuity equation (5.1), we define the stream function ψ in terms

of the velocity by

u =
∂ψ

∂y
and v = −∂ψ

∂x
,

and introduce the following dimensionless variables

ξ =
x

`
, η =

(
U∞
νξ

)1/2

y, ψ = (U∞νξ)1/2 f(ξ, η),

θ(ξ, η) =
T − T∞
Tw − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

,





(5.7)

where, without loss of generality, we take the constant length ` to be unity in the

subsequent analysis. Using equations (5.7) in (5.2) - (5.4), we get the transformed

equations

f ′′′ +
1

2
ff ′′ −Haxf

′ + Grxθ + Gcxφ = ξ

(
f ′

∂f ′

∂ξ
− f ′′

∂f

∂ξ

)
, (5.8)

1

Pr
θ′′ +

1

2
fθ′ + Dfφ

′′ = ξ

(
f ′

∂θ

∂ξ
− θ′

∂f

∂ξ

)
, (5.9)

1

Sc
φ′′ +

1

2
fφ′ + Srθ

′′ = ξ

(
f ′

∂φ

∂ξ
− φ′

∂f

∂ξ

)
, (5.10)

with corresponding boundary conditions

f = 0, f ′ = 0, θ = 1, φ = 1, on η = 0,

f ′ = 1, θ = 0, φ = 0, when η →∞.



 (5.11)

The fluid and physical parameters in equations (5.8) - (5.10) are the local thermal and

solutal Grashof numbers Grx and Gcx, the local magnetic field parameter Hax, the

Prandtl number Pr, the Dufour number Df , the Soret number Sr and the Schmidt
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number Sc. These parameters are defined as follows

Grx =
gβT (Tw − T∞)x

ν2
, Gcx =

gβC(Cw − C∞)x

ν2
, Hax =

σB2
0x

ρU∞
, P r =

ν

α
,

Df =
DmKT (Cw − C∞)

αCsCp(Tw − T∞)
, Sr =

KT Dm(Tw − T∞)

αTm(Cw − C∞)
, Sc =

ν

Dm

.

The parameters of engineering interest in heat and mass transport problems are

the skin friction coefficient Cfx, the Nusselt number Nux and the Sherwood number

Shx. These parameters characterize the surface drag, the wall heat and mass transfer

rates respectively, and are defined by

Cfx =
µ

ρU2

(
∂u

∂y

)

y=0

=
f ′′(ξ, 0)√

Rex

, (5.12)

Nux =
−x

Tw − T∞

(
∂T

∂y

)

y=0

= −
√

Rex θ′(ξ, 0), (5.13)

and

Shx =
−x

Cw − C∞

(
∂C

∂y

)

y=0

= −
√

Rex φ′(ξ, 0), (5.14)

where Rex = U∞x/ν.

5.3 Method of solution

The main challenge in using the linearisation method as described in section 1.5 is

how to generalize the method so as to find solutions of partial differential equations

of the form (5.8) - (5.10). It is certainly not clear how the method may be applied

directly to the terms on the right hand side of equations (5.8) - (5.10). For this reason,

equations (5.8) - (5.10) are first simplified and reduced to sets of ordinary differential

equations by assuming regular perturbation expansions for f , θ and φ in powers of ξ
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(which is assumed to be small) as follows

f = fM1(η, ξ) =

M1∑
i=0

ξifi(η), θ = θM1(η, ξ) =

M1∑
i=0

ξiθi(η),

φ = φM1(η, ξ) =
∑M1

i=0 ξiφi(η)





(5.15)

where M1 is the order of the approximate solution. Substituting (5.15) into equations

(5.8)-(5.10) and equating the coefficients of like powers of ξ, we obtain the zeroth

order set of ordinary differential equations

f ′′′0 +
1

2
f0f

′′
0 −Haxf

′
0 + Grxθ0 + Gcxφ0 = 0, (5.16)

1

Pr
θ′′0 +

1

2
f0θ

′
0 + Dfφ

′′
0 = 0, (5.17)

1

Sc
φ′′0 +

1

2
f0φ

′
0 + Srθ

′′
0 = 0, (5.18)

with corresponding boundary conditions

f0 = 0, f ′0 = 0, θ0 = 1, φ0 = 1, at η = 0

f ′0 = 1, θ0 = 0, φ0 = 0, as η = ∞.



 (5.19)

The O(ξ1) equations are

f ′′′1 +
1

2
f0f

′′
1 − (Hax + f ′0)f

′
1 +

3

2
f ′′0 f1 + Grxθ1 + Gcxφ1 = 0, (5.20)

1

Pr
θ′′1 +

1

2
f0θ

′
1 − f ′0θ1 +

3

2
θ′0f1 + Dfφ

′′
1 = 0, (5.21)

1

Sc
φ′′1 +

1

2
f0φ

′
1 − f ′0φ1 +

3

2
φ′0f1 + Srθ′′1 = 0, (5.22)

with boundary conditions

f1 = 0, f ′1 = 0, θ1 = 0, φ1 = 0, at η = 0

f ′1 = 0, θ1 = 0, φ1 = 0, as η = ∞.



 (5.23)
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Finally, the O(ξ2) equations are

f ′′′2 +
1

2
f0f

′′
2 − (Hax + 2f ′0)f

′
2 +

5

2
f ′′0 f2 + Grxθ2 + Gcxφ2 = f ′1f

′
1 −

3

2
f1f

′′
1 , (5.24)

1

Pr
θ′′2 +

1

2
f0θ

′
2 − 2f ′0θ2 +

5

2
θ′0f2 + Dfφ

′′
2 = f ′1θ1 − 3

2
f1θ

′
1, (5.25)

1

Sc
φ′′2 +

1

2
f0φ

′
2 − 2f ′0φ2 +

5

2
φ′0f2 + Srθ′′2 = f ′1φ1 − 3

2
f1φ

′
1. (5.26)

These equations have to be solved subject to boundary conditions

f2 = 0, f ′2 = 0, θ2 = 0, φ2 = 0, at η = 0

f ′2 = 0, θ2 = 0, φ2 = 0, as η = ∞.



 (5.27)

The coupled system of equations (5.16) - (5.18), (5.20) - (5.22) and (5.24) - (5.26)

together with the associated boundary conditions (5.19), (5.23) and (5.27), respec-

tively, may be solved independently pairwise one after another. These equations may

now be solved using the successive linearisation method in the manner described in

(1.5). We begin by solving equations (5.16) - (5.18) with boundary conditions (5.19).

The method is therefore free of the major limitations associated with other per-

turbation methods. In the SLM algorithm assumption is made that the functions

f0(η), θ0(η) and φ0(η) may be expressed as

f0(η) = Fi(η) +
i−1∑
m=0

Fm(η), θ0(η) = Θi(η) +
i−1∑
m=0

Θm(η),

φ0(η) = Φi(η) +
∑i−1

m=0 Φm(η)





. (5.28)

where Fi, Θi and Φi (i ≥ 1) are unknown functions and Fm, Θm and Φm are successive

approximations which are obtained by recursively solving the linear part of the system

that is obtained from substituting equations (5.28) in (5.16) - (5.18). In choosing the

form of the expansions (5.28), prior knowledge of the general nature of the solutions,

as is often the case with perturbation methods, is not necessary. Suitable initial
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guesses F0(η), Θ0(η) and Φ0(η) which are selected to satisfy the boundary conditions

(5.19) are

F0(η) = η + e−η − 1, Θ0(η) = e−η, Φ0(η) = e−η, (5.29)

The subsequent solutions Fi, Θi, and Φi are obtained by iteratively solving the lin-

earised form of the equations that are obtained by substituting equation (5.28) in the

governing equations (5.16) - (5.18). The linearised equations to be solved are

F ′′′
i + a1,i−1F

′′
i −HaxF

′
i + a2,i−1Fi + GrxΘi + GcxΦi = r1,i−1, (5.30)

1

Pr
Θ′′

i + b1,i−1Θ
′
i + b2,i−1Fi + DfΦ

′′
i = r2,i−1, (5.31)

1

Sc
Φ′′

i + c1,i−1Φ
′
i + c2,i−1Fi + SrΘ′′

i = r3,i−1, (5.32)

subject to the boundary conditions

Fi(0) = F ′
i (0) = F ′

i (∞) = Θi(0) = Θi(∞) = Φi(0) = Φi(∞), (5.33)

where the coefficients parameters ak,i−1, bk,i−1, ck,i−1, dk,i−1 and rk,i−1 are defined by

a1,i−1 =
1

2

i−1∑
m=0

Fm, a2,i−1 =
1

2

i−1∑
m=0

F ′′
m, b1,i−1 =

1

2

i−1∑
m=0

Fm

b2,i−1 =
1

2

i−1∑
m=0

Θ′
m, c1,i−1 =

1

2

i−1∑
m=0

Fm c2,i−1 =
1

2

i−1∑
m=0

Φ′
m,

r1,i−1 = Hax

i−1∑
m=0

F ′
m −

1

2

i−1∑
m=0

Fm

i−1∑
m=0

F ′′
m −

i−1∑
m=0

F ′′′
m −Grx

i−1∑
m=0

Θm −Gcx

i−1∑
m=0

Φm,

r2,i−1 = − 1

Pr

i−1∑
m=0

Θ′′
m −

1

2

i−1∑
m=0

Fm

i−1∑
m=0

Θ′
m −Df

i−1∑
m=0

Φ′′
m,

r3,i−1 = − 1

Sc

i−1∑
m=0

Φ′′
m −

1

2

i−1∑
m=0

Fm

i−1∑
m=0

Φ′
m − Sr

i−1∑
m=0

Φ′′
m,

Once each solution Fi, Θi and Φi (i ≥ 1), has been found from iteratively solving

equations (5.30) - (5.32), the approximate solutions for the system (5.16) - (5.18) are
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obtained as

f0(η) ≈
M2∑
i=0

Fi(η), θ0(η) ≈
M2∑
i=0

Θi(η), φ0(η) ≈
M2∑
i=0

Φi(η), (5.34)

where M2 is the order of the SLM approximations. In this work we used the Cheby-

shev spectral collocation method to solve equations (5.30) - (5.32). The physical

region [0,∞) is first transformed into the spectral domain [−1, 1] using the domain

truncation technique in which the problem is solved on the interval [0, L] where L is a

scaling parameter used to invoke the boundary condition at infinity. This is achieved

by using the mapping
η

L
=

ζ + 1

2
, −1 ≤ ζ ≤ 1, (5.35)

We discretise the spectral domain [−1, 1] using the Gauss-Lobatto collocation

points given by

ζj = cos
πj

N
, j = 0, 1, .., N, (5.36)

where N is the number of collocation points used. The unknown functions Fi, Θi and

Φi are approximated at the collocation points defined by

Fi(ζ) ≈
N∑

k=0

Fi(ζk)Tk(ζj),

Θi(ζ) ≈
N∑

k=0

Θi(ζk)Tk(ζj)

Φi(ζ) ≈
N∑

k=0

Φi(ζk)Tk(ζj),





j = 0, 1, ..., N (5.37)

where Tk is the kth Chebyshev polynomial defined as

Tk(ζ) = cos
[
k cos−1(ζ)

]
. (5.38)
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The derivatives of the variables at the collocation points are represented as

F
(r)
i =

N∑

k=0

Dr
kjFi(ζk),

Θ
(r)
i =

N∑

k=0

Dr
kjΘi(ζk),

Φ
(r)
i =

N∑

k=0

Dr
kjΦi(ζk)





j = 0, 1, ..., N (5.39)

where r is the order of differentiation and D = 2
L
D with D being the Chebyshev spec-

tral differentiation matrix whose entries are defined by (1.30). Substituting equations

(5.35)-(5.39) into (5.30)-(5.32) gives the following linear system of equations

Ai−1Xi = Ri−1 (5.40)

subject to the boundary conditions

Fi(ζ0) =
N∑

k=0

D0kFi(ζk) = gi(ζ0) = Θi(ζ0) = Φi(ζ0) = 0

Fi(ζN) = gi(ζN) = Θi(ζN) = Φi(ζN) = 0.





(5.41)

Here Ai−1 is a 3(N +1)×3(N +1) square matrix while Xi and Ri−1 are 3(N +1)×1

column vectors defined by

Ai−1 =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 , Xi =




F̃i

Θ̃i

Φ̃i


 , Ri−1 =




r1,i−1

r2,i−1

r3,i−1


 (5.42)
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where

F̃i = [Fi(ζ0), Fi(ζ1), · · · , Fi(ζN−1), Fi(ζN)]T , (5.43)

Θ̃i = [Θi(ζ0), Θi(ζ1), · · · , Θi(ζN−1), Θi(ζN)]T , (5.44)

Φ̃i = [Φi(ζ0), Φi(ζ1), · · · , Φi(ζN−1), Φi(ζN)]T , (5.45)

r1,i−1 = [r1,i−1(ζ0), r1,i−1(ζ1), · · · , r1,i−1(ζN−1), r1,i−1(ζN)]T (5.46)

r2,i−1 = [r2,i−1(ζ0), r2,i−1(ζ1), · · · , r2,i−1(ζN−1), r2,i−1(ζN)]T (5.47)

r3,i−1 = [r3,i−1(ζ0), r3,i−1(ζ1), · · · , r3,i−1(ζN−1), r3,i−1(ζN)]T (5.48)

and

A11 = D3 + a1,i−1D2 −HaxD + [a3,i−1], A12 = [Grx], A13 = [Gcx],

A21 = [b2,i−1], A22 = Pr−1D2 + b1,i−1D, A23 = DfD2 A31 = [c2,i−1],

A32 = SrD2, A33 = Sc−1D2 + c1,i−1D,





(5.49)

where [·] is a diagonal matrix of size (N + 1) × (N + 1) and ak,i−1, bk,i−1, ck,i−1 are

diagonal matrices of size (N + 1)× (N + 1) and T is the transpose. After modifying

the matrix system (5.40) to incorporate the boundary conditions (5.41), the solution

is obtained as

Xi = A−1
i−1Ri−1 (5.50)

Equation (5.50) gives a solution of (5.16) - (5.18) for f0, θ0 and φ0. The procedure is

repeated to obtain the O(ξ1) and O(ξ2) solutions using equations (5.20) - (5.22) and

(5.24) - (5.26) respectively.
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5.4 Results and discussion

In generating the results in this chapter we determined through numerical experimen-

tation that L = 15, N = 40 and M2 = 5 gave sufficient accuracy for the linearisation

method. The value of the Prandtl number used is Pr = 0.71 which physically corre-

sponds to air. The Schmidt number used Sc = 0.22 is for hydrogen at approximately

25◦ and one atmospheric pressure (see Afify 2009). In concert with previous related

studies, the Dufour and Soret numbers are chosen in such a way that their product

is constant, provided the mean temperature Tm is also kept constant.

To determine the accuracy and validate the linearisation method, equations (5.8)

- (5.10) were further solved using a local nonsimilarity method (LNSM) developed by

Sparrow and his co-workers (1970, 1971). Previous studies have consistently used the

Matlab bvp4c solver to evaluate the accuracy of the successive linearisation method.

However, as with other BVP solvers, the accuracy and convergence of the bvp4c

algorithm depends on a good initial guess and works better for systems involving few

equations (Shampine et al. 2005).

Tables 5.1-5.3 show, firstly the effects of various parameters on the skin-friction

and the local heat and mass transfer coefficients at different values of ξ and, secondly,

give a sense of the accuracy and convergence rate of the linearisation method. The

results from the two methods are in excellent agreement with the second order SLM

series giving accuracy of up to five significant figures.

Table 5.1 shows the effect of increasing the magmatic field parameter Hax on the

local skin friction, heat and mass transfer coefficients. We observe that increasing the

magnetic field parameter reduces the local skin friction as well as the heat and mass

transfer coefficients. In Table 5.2 we present the effect of the Soret parameter on

f ′′(0), −θ′(0) and −φ′(0) which are respectively proportional to the local skin friction
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Table 5.1: The effect of the magnetic field parameter Hax on f ′′(0), θ′(0) and φ′(0)
when Grx = 0.5, Gcx = 2, Df = 0.2 and Sr = 0.3.

ξ = 0.005 ξ = 0.01

SLM results
LNSM

SLM results
LNSM

Profile Hax M2 = 2 M2 = 3 M2 = 2 M2 = 3

f ′′(0)

0.0 3.045324 3.045324 3.045324 3.045324 3.045324 3.045324

0.5 2.299370 2.299370 2.299370 2.299370 2.299370 2.299370

1.0 1.940291 1.940291 1.940291 1.940291 1.940291 1.940291

2.0 1.532041 1.532041 1.532041 1.532041 1.532041 1.532041

2.5 1.404033 1.404033 1.404033 1.404033 1.404033 1.404033

−θ′(0)

0.0 0.513493 0.513493 0.513493 0.513493 0.513493 0.513493

0.5 0.435640 0.435640 0.435640 0.435640 0.435640 0.435640

1.0 0.392869 0.392869 0.392869 0.392869 0.392869 0.392869

2.0 0.335307 0.335307 0.335307 0.335307 0.335307 0.335307

2.5 0.314405 0.314405 0.314405 0.314405 0.314405 0.314405

−φ′(0)

0.0 0.289548 0.289548 0.289548 0.289548 0.289548 0.289548

0.5 0.231673 0.231673 0.231673 0.231673 0.231673 0.231673

1.0 0.202778 0.202778 0.202778 0.202778 0.202778 0.202778

2.0 0.169217 0.169217 0.169217 0.169217 0.169217 0.169217

2.5 0.157771 0.157771 0.157771 0.157771 0.157771 0.157771

coefficient, the local Nusselt number and Sherwood number. We observe that f ′′(0)

and −θ′(0) increase with increases in Sr while −φ′(0) decreases as Sr increases. These

results are confirmed in Table 5.3. Here the Nusselt number increases as the Soret

number increases while the opposite trend occurs as the Dufour number increases.

The recent study by El-Kabeir (2011) shows that these results may be modified by

injection, suction or the presence of a chemical reaction. The influence of the various

fluid and physical parameters on the fluid properties is given qualitatively in Figures

5.2 - 5.5. Figures 5.2 - 5.3 illustrate the effect of the magnetic filed parameter on the
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Table 5.2: The effect of the Soret parameter Sr on f ′′(0), θ′(0) and φ′(0) when
Grx = 0.5, Gcx = 2 and Hax = 1.

ξ = 0.005 ξ = 0.01

SLM results
LNSM

SLM results
LNSM

Profile Sr M2 = 2 M2 = 3 M2 = 2 M2 = 3

f ′′(0)

0.1 1.933303 1.933303 1.933302 1.933303 1.933303 1.933302

0.4 1.946426 1.946426 1.946426 1.946426 1.946426 1.946426

0.6 1.959632 1.959632 1.959632 1.959632 1.959632 1.959632

1.5 2.023004 2.023004 2.023004 2.023004 2.023004 2.023004

2.0 2.059313 2.059313 2.059313 2.059313 2.059313 2.059313

−θ′(0)

0.1 0.368159 0.368159 0.368159 0.368159 0.368159 0.368159

0.4 0.396905 0.396905 0.396905 0.396905 0.396905 0.396905

0.6 0.402187 0.402187 0.402187 0.402187 0.402187 0.402187

1.5 0.416430 0.416430 0.416430 0.416430 0.416430 0.416430

2.0 0.422788 0.422788 0.422788 0.422788 0.422788 0.422788

−φ′(0)

0.1 0.213565 0.213565 0.213565 0.213565 0.213565 0.213565

0.4 0.197708 0.197708 0.197708 0.197708 0.197708 0.197708

0.6 0.187601 0.187601 0.187601 0.187601 0.187601 0.187601

1.5 0.141063 0.141063 0.141063 0.141063 0.141063 0.141063

2.0 0.114262 0.114262 0.114262 0.114262 0.114262 0.114262

velocity f ′(η), temperature θ and concentration φ profiles within the boundary layer.

We observe that, as expected, strengthening the magnetic field slows down the fluid

motion due to an increasing drag force which acts against the flow if the magnetic field

is applied in the normal direction. We also observe that the magnetic field parameter

enhances the temperature and concentration profiles. The effect of broadening both

the temperature and concentration distributions is to reduce the wall temperature

and concentration gradients thereby reducing the heat and mass transfer rates at the

wall.
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Table 5.3: Soret and Dufour effects of the skin friction coefficient Cf , Nusselt number
Nu and Sherwood number Sh when Grx = 0.5, Gcx = 2, Sc = 0.22 and Hax = 0.5

Sr Df Cf Nu Sh

0.1 0.60 1.933303 0.368159 0.213565

0.2 0.30 1.935047 0.386060 0.207941

0.4 0.15 1.946426 0.396905 0.197708

0.6 0.10 1.959632 0.402187 0.187601

1.5 0.04 2.023004 0.416430 0.141063

2.0 0.03 2.059313 0.422788 0.114262
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Figure 5.2: Effect of the magmatic field parameter Hax on f ′(η) when Grx =
0.5, Gcx = 0.1, Df = 0.2, Sr = 0.3 and ξ = 0.01.

Figure 5.4 shows the effect of increasing the Soret parameter (reducing the Dufour

parameter) on the fluid velocity f ′(η). The fluid velocity is found to increase with

the Soret parameter.

The effect of Soret parameter on the temperature within the thermal boundary

layer and the solute concentration is shown in Figures 5.5(a) - 5.5(b), respectively.

An increase in the Soret effect reduces the temperature within the thermal boundary
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Figure 5.3: Effect of the magmatic field parameter Hax on (a) θ(η) and (b) φ(η) when
Grx = 0.5, Gcx = 0.1, Df = 0.2, Sr = 0.3 and ξ = 0.01.

layer leading to an increase in the temperature gradient at the wall and an increase in

heat transfer rate at the wall. On the other hand, increasing the Soret effect increases

the concentration distribution which reduces the concentration gradient at the wall.

These results are similar to the earlier findings by El-Kaberir (2011) and Alam and

Rahman (2006b), although the latter studies were subject to injection/suction.
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Figure 5.4: Effect of the Soret and Dufour parameters on the velocity f ′(η) when
Grx = 0.5, Gcx = 2.5, Hax = 0.1 and ξ = 0.01.
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Figure 5.5: Effect of Soret parameter Sr on (a) θ(η) and (b) φ(η) when Grx =
0.1, Gcx = 2.5, Hax = 0.1 and ξ = 0.01.

5.5 Conclusions

In this chapter we have investigated MHD and cross-diffusion effects on double-

diffusive convection from a vertical flat plate in a viscous incompressible fluid. Nu-

merical approximations for the governing equations were found using a combination

of a regular perturbation expansion and the successive linearisation method. The

solutions were validated by using a local similarity, non-similarity method. We de-

termined the effects of various parameters on the fluid properties as well as on the

skin-friction coefficient, the heat and the mass transfer rates. We have shown that the

magnetic field parameter enhances the temperature and concentration distributions

within the boundary layer. The effect of thermo-diffusion is to reduce the tempera-

ture and enhance the velocity and the concentration profiles. The diffusion-thermo

effect enhances the velocity and temperature profiles while reducing the concentra-

tion distribution. The skin-friction, heat and mass transfer coefficients decrease with

an increase in the magnetic field strength. The skin-friction and heat transfer coeffi-

cients increase whereas the mass transfer coefficient decreases with increasing Soret

135



numbers.
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Chapter 6

Cross-diffusion, viscous dissipation

and radiation effects on an

exponentially stretching surface in

porous media∗

Abstract

In this chapter cross-diffusion convection from an exponentially stretching surface

in a fluid saturated porous medium subject to viscous dissipation and radiation ef-

fects has been investigated. The governing partial differential equations are trans-

formed into nonlinear ordinary differential equations and solved using a linearisation

method. The accuracy and rate of convergence of the solution has been tested using

the Matlab bvp4c solver. The effects of selected fluid and material parameters on the

0∗ Submitted to published in Mass Transfer Book, InTech - Open Access Publisher, (2011).
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velocity, temperature and concentration profiles are determined and discussed. The

skin-friction, heat and mass transfer coefficients have been obtained and analyzed for

various physical parametric values.

6.1 Introduction

In the last few decades, heat and mass transfer problems on a continuously stretching

surface with a given temperature or heat flux distribution, have attracted considerable

attention of researchers because of its many applications in industrial and manufac-

turing processes. Examples of these applications include the drawing of plastic films,

glass-fibre and paper production, hot rolling and continuous casting of metals and

spinning of fibers. The kinematics of stretching and the simultaneous heating or

cooling during such processes play an important role on the structure and quality of

the final product.

Sakiadis (1961a,b) was the first to study the boundary layer flow due to a con-

tinuous moving solid surface. Subsequently, a huge number of studies dealing with

different types of fluids, different forms of stretching velocity and temperature distri-

butions have appeared in the literature. Ali (1995) investigated similarity solutions

of laminar boundary-layer equations in a quiescent fluid driven by a stretched sheet

subject to fluid suction or injection. Elbashbeshy (2001) extended this problem to a

three dimensional exponentially continuous stretching surface. The problem of an ex-

ponentially stretching surface with an exponential temperature distribution has been

discussed by Magyari and Keller (1999). The problem of mixed convection from an

exponentially stretching surface was studied by Partha et al. (2005). They considered

the effect of buoyancy and viscous dissipation in the porous medium. They observed

that these had a significant effect on the skin friction and the rate of heat transfer.

This problem has been extended by Sajid and Hayat (2008) who investigated heat
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transfer over an exponentially stretching sheet in the presence of heat radiation. The

same problem was solved numerically by Bidin and Nazar (2009) using the Keller-box

method. Flow and heat transfer along an exponentially stretching continuous surface

with an exponential temperature distribution and an applied magnetic field has been

investigated numerically by Al-Odat et al. (2006) while Khan (2006) and Sanjayanand

and Khan (2006) investigated heat transfer due to an exponentially stretching sheet

in a viscous-elastic fluid.

Thermal-diffusion and diffusion-thermo effects in boundary layer flow due to a

vertical stretching surface have been studied by, inter alia, Dursunkaya and Worek

(1992) while MHD effects, injection/suction, heat radiation, Soret and Dufour effects

on the heat and mass transfer on a continuously stretching permeable surface was

investigated by El-Aziz (2008). He showed that the Soret and Dufour numbers have

a significant influence on the velocity, temperature and concentration distributions.

Srinivasacharya and RamReddy (2011) analyzed the problem of mixed convection

in a viscous fluid over an exponentially stretching vertical surface subject to Soret and

Dufour effects. Ishak (2011) investigated the effect of radiation on magnetohydrody-

namic boundary layer flow of a viscous fluid over an exponentially stretching sheet.

Pal (2010) analyzed the effects of magnetic field, viscous dissipation and internal heat

generation/absorption on mixed convection heat transfer in the boundary layers on

an exponentially stretching continuous surface with an exponential temperature dis-

tribution. Loganathan et al. (2011) investigated the effect of a chemical reaction on

unsteady free convection flow past a semi-infinite vertical plate with variable viscos-

ity and thermal conductivity. They assumed that the viscosity of the fluid was an

exponential function and that the thermal conductivity was a linear function of the

temperature. They noted that in the case of variable fluid properties, the results ob-

tained differed significantly from those of constant fluid properties. Javed et al. (2011)

investigated the non-similar boundary layer flow over an exponentially stretching con-
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tinuous in rotating flow. They observed a reduction in the boundary layer thickness

and an enhanced drag force at the surface with increasing fluid rotation.

The aim of the present chapter is to investigate the effects of cross-diffusion, chem-

ical reaction, heat radiation and viscous dissipation on an exponentially stretching

surface subject to an external magnetic field. The wall temperature, solute concen-

tration and stretching velocity are assumed to be exponentially increasing functions.

The SLM is used to solve the governing coupled non-linear system of equations and

we compared the results with the Matlab bvp4c numerical routine.

6.2 Problem formulation

Consider a quiescent incompressible conducting fluid of constant ambient temperature

T∞ and concentration C∞ in a porous medium through which an impermeable vertical

sheet is stretched with velocity uw(x) = u0e
x/`, temperature distribution Tw(x) =

T∞ + T0e
2x/` and concentration distribution Cw(x) = C∞ + C0e

2x/` where C0, T0, u0

and ` are positive constants. The x-axis is directed along the continuous stretching

surface and the y-axis is normal to the surface. A variable magnetic field B(x)

is applied in the y-direction. In addition, heat radiation and cross-diffusion effects

are considered to be significant. Figure 6.1 shows the physical configuration of the

problem under consideration. The governing boundary-layer equations subject to the
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Figure 6.1: Physical model and coordinate system.

Boussinesq approximations are

∂u

∂x
+

∂v

∂y
= 0, (6.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβT (T − T∞) + gβC(C − C∞)−

(
ν

K
+

σB2

ρ

)
u,(6.2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

ν

cp

(
∂u

∂y

)2

+
DmKT

cscp

∂2C

∂y2
− 1

ρcp

∂qr

∂y
, (6.3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+

DmKT

Tm

∂2T

∂y2
− γ(C − C∞), (6.4)

The boundary conditions are given by

u = uw(x), v = 0, T = Tw(x), C = Cw(x) at y = 0,

u → 0, T → T∞, C → C∞ as y →∞.



 (6.5)

where u and v are the velocity components along the x and y axis, respectively, T and

C denote the temperature and concentration, respectively, K is the permeability of

the porous medium, ν is the kinematic viscosity, g is the acceleration due to gravity, βT

is the coefficient of thermal expansion, βC is the coefficient of concentration expansion,
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B is the uniform magnetic field, ρ is the liquid density, σ is the electrical conductivity,

Dm is the mass diffusivity, cs is the concentration susceptibility, cp is the specific heat

capacity, Tm is the mean fluid temperature, KT is the thermal diffusion ratio and γ

is the rate of chemical reaction.

The radiative heat flux term qr is given by the Rosseland approximation (see

Raptis 1998 and Sparrow 1971);

qr = −4σ∗

3k∗
∂T 4

∂y
, (6.6)

where σ∗ and k∗ are the Stefan-Boltzman constant and the mean absorption coeffi-

cient, respectively. We assume that the term T 4 may be expanded in a Taylor series

about T∞ and neglecting higher-order terms to get

T 4 ∼= 4T 3
∞T − 3T 4

∞, (6.7)

Substituting equations (6.6) and (6.7) in equation (6.3) gives

u
∂T

∂x
+ v

∂T

∂y
=

(
k

ρcp

+
16σ∗T 3

∞
3ρcpk∗

)
∂2T

∂y2
+

ν

cp

(
∂u

∂y

)2

+
DmKT

cscp

∂2C

∂y2
, (6.8)

A similarity solutions may be obtained by assuming that the magnetic field term

B(x) has the form

B(x) = B0e
x/2` (6.9)

where B0 is the constant magnetic field. The system of partial differential equations

(6.1) - (6.4) and (6.8) can be simplified further by introducing the stream function ψ

where

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (6.10)
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together with transformations

η =
y

L

√
Re

2
ex/2`, ψ =

√
2Reν ex/2`f(η),

T = T∞ + T0e
2x/`θ(η), C = C∞ + C0e

2x/`φ(η)





. (6.11)

Substituting (6.11) into the governing partial differential equations gives

f ′′′ + ff ′′ − 2f ′2 −
(

M +
1

ReD

)
f ′ + 2

Grx

Re2
(θ + N1φ) = 0, (6.12)

1

Pr

(
1 +

4

3
Rd

)
θ′′ + fθ′ − 4f ′θ + Gb(f ′′)2 + Dfφ

′′ = 0, (6.13)

1

Sc
φ′′ + fφ′ − 4f ′φ + Srθ′′ − 2Rφ = 0. (6.14)

The corresponding dimensionless boundary conditions take the form

f(η) = 0, f ′(η) = 1, θ(η) = 1 φ(η) = 1 at η = 0

f ′(η) → 0, θ(η) → 0 φ(η) → 0 as η →∞



 (6.15)

where M is the magnetic parameter, Grx is the Grashof number, Re is the Reynolds

number, N1 is the buoyancy ratio, ReD is the Darcy-Reynolds number, Da is the

Darcy number, Pr is the Prandtl number, Rd is the thermal radiation parameter, Gb

is the viscous dissipation parameter or Gebhart number, Df is the Dufour number,

Sc is the Schmidt number, Sr is the Soret number and R is the chemical reaction rate

parameter. These parameters are defined as

M =
2σB2

0`

ρu0

, Grx =
gβT T0`

3e2x/`

ν2
, Re =

uw`

ν
, N1 =

βcC0

βT T0

, (6.16)

ReD =
2

ReDa
, Da =

K

`2
, P r =

ν

α
, Rd =

4σ∗T 3
∞

kk∗
, Gb =

u2
0

cp T0

, (6.17)

Df =
DmKT C0

cscpνT0

, Sc =
ν

Dm

, Sr =
DmKT T0

TmνC0

, R =
α`

u0

. (6.18)

The ratio Grx/Re2 in equation (6.12) is the mixed convection parameter which rep-
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resents aiding buoyancy if Grx/Re2 > 0 and opposing buoyancy if Grx/Re2 < 0. The

skin friction coefficient Cfx, the Nusselt number Nux and the Sherwood Shx number

are given by

Cfx =
2µ

ρu2
w

∂u

∂y

∣∣∣∣
y=0

=

√
2x

`Rex

f ′′(0), (6.19)

Nux = − x

Tw − T∞

∂T

∂y

∣∣∣∣
y=0

= −
√

xRex

2`
θ′(0) (6.20)

Shx = − x

Cw − C∞

∂C

∂y

∣∣∣∣
y=0

= −
√

xRex

2`
φ′(0) (6.21)

where Rex = xuw(x)/ν is the local Reynolds number.

6.3 Method of solution

The system of equations (6.12)-(6.14) together with the boundary conditions (6.15)

were solved using the SLM which is based on the assumption that the unknown

functions f(η), θ(η) and φ(η) can be expanded as

f(η) = fi(η) +
i−1∑
m=0

Fm(η), θ(η) = θi(η) +
i−1∑
m=0

Θm(η),

φ(η) = φi(η) +
i−1∑
m=0

Φm(η),





(6.22)

where fi, θi and φi are unknown functions and Fm, Θm and Φm (m ≥ 1) are suc-

cessive approximations which are obtained by recursively solving the linear part of

the equation system that results from substituting firstly expansions in the governing

equations. The main assumption of the SLM is that fi, θi and φi are very small

when i becomes large, then nonlinear terms in fi, θi and φi and their derivatives are

considered to be very small and therefore neglected. The initial guesses F0(η), Θ0(η)
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and Φ0(η) which are chosen to satisfy the boundary condition

F0(η) = 0, F ′
0(η) = 1, Θ0(η) = 1 Φ0(η) = 1 at η = 0

F ′
0(η) → 0, Θ0(η) → 0 Φ0(η) → 0 as η →∞



 (6.23)

which are taken to be

F0(η) = 1− e−η, Θ0(η) = e−η, Φ0(η) = e−η. (6.24)

Thus, starting from the initial guesses, the subsequent solutions Fi, Θi and Φi (i ≥ 1)

are obtained by successively solving the linearised form of the equations which are

obtained by substituting equation (6.22) in the governing equations. The linearized

equations to be solved are

F ′′′
i + a1,i−1F

′′
i + a2,i−1F

′
i + a3,i−1Fi + 2

Grx

Re2
Θi + 2

GrxN1

Re2
Φi = r1,i−1, (6.25)

(
3 + 4Rd

3Pr

)
Θ′′

i + b1,i−1Θ
′
i + b2,i−1Θi + b3,i−1F

′′
i + b4,i−1F

′
i + b5,i−1Fi

+DfΦi = r2,i−1, (6.26)

1

Sc
Φ′′

i + c1,i−1Φ
′
i + c2,i−1Φi + c3,i−1F

′
i + c4,i−1Fi + SrΘ′′

i = r3,i−1. (6.27)

subject to the boundary conditions

Fi(0) = F ′
i (0) = F ′

i (∞) = Θi(0) = Θi(∞) = Φi(0) = Φi(∞) = 0, (6.28)
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where the coefficient parameters are defined as

a1,i−1 =
i−1∑
m=0

f ′m, a2,i−1 = −4
i−1∑
m=0

f ′m −M − 1

ReD

, b1,i−1 =
i−1∑
m=0

fm,

b2,i−1 = −4
i−1∑
m=0

f ′m, b3,i−1 =
i−1∑
m=0

2Gbf ′′m, b4,i−1 = −4
i−1∑
m=0

θm,

b5,i−1 =
i−1∑
m=0

θ′m, c1,i−1 =
i−1∑
m=0

fm, c2,i−1 = −2R− 4
i−1∑
m=0

f ′m,

c3,i−1 = −4
i−1∑
m=0

φm c4,i−1 =
i−1∑
m=0

φ′m,

and

r1,i−1 = −
i−1∑
m=0

f ′′′m −
i−1∑
m=0

fm

i−1∑
m=0

f ′′m + 2
i−1∑
m=0

f ′2m +

(
M +

1

ReD

) i−1∑
m=0

f ′m

−2Grx

Re2

i−1∑
m=0

(θm + N1φm)

r2,i−1 = −
i−1∑
m=0

1

Pr
(φ′′m +

4Rd

3Pr
θ′′m)−

i−1∑
m=0

fm

i−1∑
m=0

θ′m + 4
i−1∑
m=0

f ′m

i−1∑
m=0

θm

−Gb

i−1∑
m=0

f ′′2m −Df

i−1∑
m=0

φ′′m

r3,i−1 = − 1

Sc

i−1∑
m=0

φ′′m

i−1∑
m=0

fm

i−1∑
m=0

φ′m + 4
i−1∑
m=0

fm

i−1∑
m=0

θm − Sr

i−1∑
m=0

φ′′m + 2R
i−1∑
m=0

φm

The solution for Fi, Θi and Φi for i ≥ 1 has been found by iteratively solving equations

(6.25)-(6.27) and finally after M iterations the solutions f(η), θ(η) and φ(η) can be

written as

f(η) ≈
M∑

m=0

Fm(η), θ(η) ≈
M∑

m=0

Θm(η), Φ(η) ≈
M∑

m=0

Φm(η). (6.29)
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where M is termed the order of SLM approximation. Equations (6.25)-(6.27) are

solved using the Chebyshev spectral collocation method. The method is based on the

Chebyshev polynomials defined on the interval [−1, 1]. We first transform the domain

of solution [0,∞) into the domain [−1, 1] using the domain truncation technique

where the problem is solved in the interval [0, L] where L is a scaling parameter used

to invoke the boundary condition at infinity. This is achieved by using the mapping

η

L
=

ξ + 1

2
, − 1 ≤ ξ ≤ 1, (6.30)

We discretize the domain [−1, 1] using the Gauss-Lobatto collocation points given by

ξ = cos
πj

N
, j = 0, 1, 2, . . . , N, (6.31)

where N is the number of collocation points used. The functions Fi, Θi and Φi for

i ≥ 1 are approximated at the collocation points as follows

Fi(ξ) ≈
N∑

k=0

Fi(ξk)Tk(ξj), Θi(ξ) ≈
N∑

k=0

Θi(ξk)Tk(ξj),

Φi(ξ) ≈
∑N

k=0 Φi(ξk)Tk(ξj)





j = 0, 1, . . . , N,

(6.32)

where Tk is the kth Chebyshev polynomial given by

Tk(ξ) = cos
[
k cos−1(ξ)

]
. (6.33)

The derivatives of the variables at the collocation points are represented as

drFi

dηr
=

N∑

k=0

Dr
kjFi(ξk),

drΘi

dηr
=

N∑

k=0

Dr
kjΘi(ξk),

drΦi

dηr
=

N∑

k=0

Dr
kjΦi(ξk)





j = 0, 1, . . . , N, (6.34)
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where r is the order of differentiation and D = 2
L
D with D being the Chebyshev spec-

tral differentiation matrix whose entries are defined by (1.30). Substituting equations

(6.30)-(6.34) into equations (6.25)-(6.27) leads to the matrix equation

Ai−1Xi = Ri−1. (6.35)

In equation (6.35), Ai−1 is a (3N +3)× (3N +3) square matrix and Xi and Ri−1 are

(3N + 3)× 1 column vectors defined by

Ai−1 =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 , Xi =




Fi

Θi

Φi


 , Ri−1 =




r1,i−1

r2,i−1

r3,i−1


 , (6.36)

where

Fi = [fi(ξ0), fi(ξ1), ..., fi(ξN−1), fi(ξN)]T ,

Θi = [θi(ξ0), θi(ξ1), ..., θi(ξN−1), θi(ξN)]T ,

Φi = [φi(ξ0), φi(ξ1), ..., φi(ξN−1), φi(ξN)]T ,

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), ..., r1,i−1(ξN−1), r1,i−1(ξN)]T ,

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), ..., r2,i−1(ξN−1), r2,i−1(ξN)]T ,

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), ..., r3,i−1(ξN−1), r3,i−1(ξN)]T ,

A11 = D3 + a1,i−1D
2 + a2,i−1D + a3,i−1I, A12 = 2

Grx

Re2
I, A13 = 2

GrxN1

Re2
I,

A21 = b3,i−1D
2 + b4,i−1D + b5,i−1I, A22 =

(
3 + 4Rd

3Pr

)
D2 + b1,i−1D + b2,i−1I,

A23 = DfD
2, A31 = c3,i−1D + c4,i−1I, A32 = SrD2,

A33 =
1

Sc
D2 + c1,i−1D + c2,i−1I.
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In the above definitions T stands for transpose, ak,i−1 (k = 1, . . . , 6), bk,i−1 (k =

1, . . . , 7), ck,i−1 (k = 1, . . . , 6), and rk,i−1 (k = 1, 2, 3) are diagonal matrices of order

(N + 1) × (N + 1), I is an identity matrix of order (N + 1) × (N + 1). Finally the

solution is obtained as

Xi = A−1
i−1Ri−1. (6.37)

6.4 Results and discussion

In generating the results presented here it was determined through numerical exper-

imentation that L = 15 and N = 60 gave sufficient accuracy for the linearisation

method. In addition, the results in this work were obtained for Prandtl number

used is Pr = 0.71 which physically corresponds to air. The Schmidt number used

Sc = 0.22 is for hydrogen at approximately 25◦ and one atmospheric pressure. The

Darcy-Reynolds number was fixed at ReD = 100.

Tables 6.1 - 6.7 show, firstly the effects of various parameters on the skin-friction,

the local heat and the mass transfer coefficients for different physical parameters

values. Secondly, to confirm the accuracy of the linearisation method, these results

are compared to those obtained using the Matlab bvp4c solver. The results from the

two methods are in excellent agreement with the linearisation method converging at

the four order with accuracy of up to six decimal places.

The effect of increasing the magnetic filed parameter M on the skin-friction coeffi-

cient f ′′(0), the Nusselt number −θ′(0) and the Sherwood number −φ′(0) are given in

Table 6.1. Here we find that increasing the magnetic filed parameter leads to reduces

Nusselt number and Sherwood number as well as skin friction coefficient in case of

aiding buoyancy. These results are to be expected, and are, in fact, similar to those

obtained previously by, among others (Ishak 2011 and Ibrahim and Makinde 2010).
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Table 6.1: The effect of various values of M on skin-friction, heat and mass transfer
coefficients when Gr/Re2 = 1, Gb = 2, Rd = 5, Df = 0.3, Sr = 0.2, R = 2 and
N1 = 0.1

SLM results

M 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -0.4814153 -0.4850253 -0.4849715 -0.4849715 -0.4849715

0.5 -0.6740552 -0.6763684 -0.6763449 -0.6763449 -0.6763449

1.0 -0.8493782 -0.8508257 -0.8508252 -0.8508252 -0.8508252

3.0 -1.4360464 -1.4353137 -1.4353164 -1.4353164 -1.4353165

−θ′(0)

0.0 1.1403075 1.0665625 1.0664508 1.0664507 1.0664506

0.5 0.9901280 0.9608685 0.9608557 0.9608557 0.9608557

1.0 0.8635520 0.8564487 0.8564359 0.8564359 0.8564359

3.0 0.4988671 0.4618122 0.4618155 0.4618155 0.4618155

−φ′(0)

0.0 3.4850628 3.4316981 3.4316040 3.4316040 3.4316040

0.5 3.4646441 3.4269708 3.4269284 3.4269284 3.4269284

1.0 3.4471832 3.4252628 3.4252469 3.4252469 3.4252469

3.0 3.3955048 3.4354074 3.4354027 3.4354027 3.4354027

In Table 6.2 an increase in the mixed convection parameter Gr/Re2 (that is,

aiding buoyancy) enhances the skin friction coefficient. This is explained by the

fact that an increase in the fluid buoyancy leads to an acceleration of the fluid flow,

thus increasing the skin friction coefficient. Similar results were obtained in the past

by Srinivasacharya and RamReddy (2011) and Partha et al. (2005). Also, the non-

dimensional heat and mass transfer coefficients increase when Gr/Re2 increases. This

is because an increasing in mixed convection parameter, increases the momentum

transport in the boundary layer this is leads to carried out more heat and mass

species out of the surface, then reducing the thermal and concentration boundary

layers thickness and hence increasing the heat and mass transfer rates.

Tables 6.3 and 6.4 show the effects of increasing of radiation parameter Rd and
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Table 6.2: The effect of various values of Gr/Re2 on skin-friction, heat and mass
transfer coefficients when M = 0.5, Gb = 0.2, Rd = 5, Df = 0.3, Sr = 0.2, R = 2
and N1 = 0.1

SLM results

Gr/Re2 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -1.4591484 -1.4698210 -1.4698846 -1.4698846 -1.4698846

0.5 -0.9012908 -0.8997233 -0.8997257 -0.8997257 -0.8997257

1.0 -0.4050173 -0.3931112 -0.3932958 -0.3932959 -0.3932959

1.5 0.0553527 0.0821847 0.0812023 0.0811981 0.0811981

−θ′(0)

0.0 0.9642741 0.9380080 0.9372522 0.9372516 0.9372517

0.5 1.1100348 1.1100992 1.1100977 1.1100977 1.1100977

1.0 1.2140010 1.2061822 1.2061407 1.2061406 1.2061406

1.5 1.2971738 1.2750888 1.2748485 1.2748460 1.2748459

−φ′(0)

0.0 3.2852476 3.3276503 3.3277472 3.3277472 3.3277472

0.5 3.3804463 3.3723007 3.3723035 3.3723035 3.3723035

1.0 3.4560434 3.4095381 3.4096350 3.4096350 3.4096350

1.5 3.5209405 3.4435308 3.4438413 3.4438410 3.4438410

chemical reaction parameter R on the skin-friction, the heat and mass transfer rates

respectively. The skin-friction coefficient is enhanced by the radiation parameter. It

is however reduced by the chemical reaction parameter (Loganathan et al. 2011).

Increasing the radiation parameter Rd and chemical reaction parameter R have the

same effect on the heat and mass transfer rates, that is, −θ′(0) decreases while −φ′(0)

is increases. This is because for large values of Rd and R leads to an increased

of conduction over the radiation, this is to decrease the buoyancy force and the

thicknesses of the thermal and the momentum boundary layers (Salem 2006 and

Sajid 2008).

Table 6.5 shows the influence of the viscous dissipation parameter Gb. The skin-

friction coefficient and the Sherwood number increase as Gb increases. When viscous
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Table 6.3: The effect of various values of Rd on skin-friction, heat and mass transfer
coefficients when M = 0.5, Gr/Re2 = 1, Gb = 2, Df = 0.3, Sr = 0.2, R = 2 and
N1 = 0.1

SLM results

Rd 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -0.8321942 -0.8296098 -0.8296126 -0.8296126 -0.8296126

0.1 -0.8265136 -0.8237362 -0.8237399 -0.8237399 -0.8237399

1.0 -0.7847954 -0.7809951 -0.7810165 -0.7810165 -0.7810165

5.0 -0.6740552 -0.6763684 -0.6763449 -0.6763449 -0.6763449

−θ′(0)

0.0 1.6073424 1.5812386 1.5812108 1.5812108 1.5812107

0.1 1.5660595 1.5413761 1.5413484 1.5413484 1.5413483

1.0 1.3427120 1.3213291 1.3212411 1.3212411 1.3212410

5.0 0.9901280 0.9608685 0.9608557 0.9608557 0.9608557

−φ′(0)

0.0 3.3194186 3.3140414 3.3140501 3.3140501 3.3140501

0.1 3.3290532 3.3224223 3.3224330 3.3224330 3.3224330

1.0 3.3799905 3.3652798 3.3653080 3.3653080 3.3653079

5.0 3.4646441 3.4269708 3.4269284 3.4269284 3.4269284

dissipation is considered, the temperature of the liquid will be at higher level than

the viscous dissipation is neglected. So the value of θ′(0) is decreased when Gb is

increased. Then leads to reduction in the Nusselt number, this is showed in Table

6.5.

The effect of the Soret parameter on the skin-friction, the heat and the mass

transfer coefficients is presented in Table 6.6. We observe that f ′′(0) and −θ′(0)

increase with Sr while −φ′(0) decreases as Sr increases. This is because, either an

increase in temperature difference or a decrease in concentration difference leads to

an enhance in the value of the Soret parameter. Hence increasing in this parameter

leads to increase in the heat transfer rate and decreases the mass transfer rate, similar

findings were reported by Partha et. al (2006).
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Table 6.4: The effect of various values of R on skin-friction, heat and mass transfer
coefficients when M = 0.5, Gr/Re2 = 1, Gb = 2, Rd = 5, Df = 0.3, Sr = 0.2 and
N1 = 0.1

SLM results

R 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -0.6731258 -0.6744797 -0.6744636 -0.6744636 -0.6744636

0.5 -0.6734801 -0.6753000 -0.6752798 -0.6752798 -0.6752798

1.0 -0.6737396 -0.6757935 -0.6757718 -0.6757718 -0.6757718

3.0 -0.6742259 -0.6766852 -0.6766608 -0.6766608 -0.6766608

−θ′(0)

0.0 1.1189720 1.0911185 1.0911318 1.0911318 1.0911318

0.5 1.0820871 1.0533659 1.0533660 1.0533660 1.0533660

1.0 1.0488745 1.0198614 1.0198547 1.0198547 1.0198547

3.0 0.9383805 0.9090094 0.9089938 0.9089938 0.9089938

−φ′(0)

0.0 2.3759654 2.3053444 2.3050605 2.3050605 2.3050605

0.5 2.6922827 2.6370931 2.6369476 2.6369476 2.6369476

1.0 2.9735168 2.9263265 2.9262389 2.9262389 2.9262389

3.0 3.8920543 3.8602613 3.8602362 3.8602362 3.8602362

Table 6.7 shows the effect of the Dufour number on the skin-friction, the heat and

the mass transfer coefficients. It seen that as the Dufour parameter increases, the

skin-friction coefficient and mass transfer rate are enhanced while the mass transfer

rate is reduced. We note that the Soret and Dufour numbers have opposite effects on

−θ′(0) and −φ′(0). The reason is either decrease in temperature difference or increase

in concentration difference leads to an increase in the value of Dufour number and

hence to increasing in Df parameter leads to decrees in the heat transfer rate and

increase the mass transfer rate (see Partha et al. 2006).The effect of Soret number

on heat and mass rates is the exact opposite of the effect of Dufour number, this is

shown in Table 6.6 and Table 6.7.

The effects of the various fluid and physical parameters on the fluid properties
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Table 6.5: The effect of various values of Gb on skin-friction, heat and mass transfer
coefficients when M = 0.5, Gr/Re2 = 1, Rd = 5, Df = 0.3, Sr = 0.2, R = 2 and
N1 = 0.1

SLM results

Gb 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -0.7323337 -0.7305116 -0.7305610 -0.7305610 -0.7305611

0.5 -0.7163917 -0.7157877 -0.7158090 -0.7158091 -0.7158091

1.0 -0.7013730 -0.7019055 -0.7019068 -0.7019068 -0.7019068

2.0 -0.6740552 -0.6763684 -0.6763449 -0.6763449 -0.6763449

−θ′(0)

0.0 1.2009406 1.1944030 1.1944165 1.1944165 1.1944165

0.5 1.1392509 1.1296026 1.1296021 1.1296021 1.1296021

1.0 1.0838318 1.0693714 1.0693680 1.0693680 1.0693679

2.0 0.9901280 0.9608685 0.9608557 0.9608557 0.9608557

−φ′(0)

0.0 3.4146264 3.3843228 3.3843345 3.3843345 3.3843345

0.5 3.4291011 3.3962484 3.3962534 3.3962534 3.3962534

1.0 3.4422018 3.4072701 3.4072627 3.4072627 3.4072627

2.0 3.4646441 3.4269708 3.4269284 3.4269284 3.4269284

are displayed qualitatively in Figures 6.2 - 6.8. Figure 6.2 illustrates the effect of the

magnetic parameter M on the velocity, temperature and concentration distributions.

We observe that increasing the magnetic filed parameter reduces the velocity. This

is because the magnetic field creates Lorentz force which acts against the flow if the

magnetic field is applied in the normal direction. We also observe that the magnetic

field parameter enhances the temperature and concentration profiles.

Figure 6.3 shows the dimensionless velocity, temperature and concentration pro-

files for various values of the mixed convection parameter Gr/Re2 in the case of both

aiding flow and opposing flow. We note that when the value of Gr/Re2 increases, the

velocity rise (the velocity is higher for aiding flow and less for opposing flow). The

temperature and concentration are reduced as Gr/Re2 increasing. Same result were
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Table 6.6: The effect of various values of Sr on skin-friction, heat and mass transfer
coefficients when M = 0.5, Gr/Re2 = 1, Gb = 2, Rd = 5, Df = 0.3, R = 2 and
N1 = 0.1

SLM results

Sr 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -0.6742846 -0.6766272 -0.6766046 -0.6766046 -0.6766046

0.5 -0.6737087 -0.6759780 -0.6759533 -0.6759533 -0.6759533

1.0 -0.6731258 -0.6753228 -0.6752957 -0.6752958 -0.6752958

1.5 -0.6725373 -0.6746627 -0.6746334 -0.6746334 -0.6746334

−θ′(0)

0.0 0.9828644 0.9546059 0.9545933 0.9545933 0.9545933

0.5 1.0016528 0.9707871 0.9707741 0.9707740 0.9707740

1.0 1.0228265 0.9889532 0.9889398 0.9889398 0.9889397

1.5 1.0470766 1.0096688 1.0096553 1.0096553 1.0096552

−φ′(0)

0.0 3.5295306 3.4851406 3.4850983 3.4850983 3.4850983

0.5 3.3620504 3.3352671 3.3352239 3.3352239 3.3352239

1.0 3.1747048 3.1686539 3.1686069 3.1686069 3.1686069

1.5 2.9619418 2.9807441 2.9806896 2.9806897 2.9806896

found by Srinivasacharya and RamReddy (2011). Figure 6.4 demonstrates the influ-

ence of the thermal radiation parameter Rd on the fluid velocity, temperature and

concentration distributions. It is clearly shown in this figure that the velocity and the

temperature profiles are increasing with increasing values of Rd but a decreasing in

the concentration profile. The non-dimensional fluid velocity, temperature and con-

centration distributions with effect of the viscous dissipation parameter Gb inside the

boundary layer have been shown in Figure 6.5. The thermal boundary layer thickness

is increased the with the increasing of Gb while concentration decreases.

In Figures 6.6-6.7 we showed the effect of increasing the Soret Sr and the Du-

four Df parameters on the fluid velocity f ′(η), temperature θ(η) and concentration

φ(η), respectively. The fluid velocity is found to increase with both parameters. An
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Table 6.7: The effect of various values of Df on skin-friction, heat and mass transfer
coefficients when M = 0.5, Gr/Re2 = 1, Gb = 2, Rd = 5, Sr = 0.2, R = 2 and
N1 = 0.1

SLM results

Df 1st order 2nd order 3rd order 4th order bvp4c

f ′′(0)

0.0 -0.7127673 -0.7114335 -0.7114262 -0.7114262 -0.7114262

0.1 -0.6935377 -0.6939073 -0.6938903 -0.6938903 -0.6938903

0.3 -0.6543133 -0.6588061 -0.6587812 -0.6587812 -0.6587812

0.7 -0.5726141 -0.5881245 -0.5881708 -0.5881708 -0.5881708

−θ′(0)

0.0 1.2808105 1.2551495 1.2551551 1.2551551 1.2551551

0.1 1.1374017 1.1098984 1.1098988 1.1098988 1.1098988

0.3 0.8388100 0.8078862 0.8078505 0.8078505 0.8078505

0.7 0.1890478 0.1524654 0.1522122 0.1522122 0.1522121

−φ′(0)

0.0 3.3957339 3.3637967 3.3637968 3.3637968 3.3637968

0.1 3.4297171 3.3949274 3.3949086 3.3949086 3.3949086

0.3 3.5005612 3.4599748 3.4599038 3.4599038 3.4599038

0.7 3.6551802 3.6026815 3.6024423 3.6024423 3.6024423

increase in Sr reduces the temperature distribution while Df enhances temperature

distribution. Albeit that the effect is much more pronounced in the case of Dufour

number effect. This may be attributed that the Dufour number is entering directly

into heat equation and Soret number does not appear in the heat equation. Thus the

effect of Soret number on the temperature distribution is very small. It is also noted

that from Figures 6.6 - 6.7, an increase in Sr enhances the concentration distribu-

tion while the concentration distribution reduced by increasing in Df . However, the

effect of Soret parameter on temperature and concentration distribution is the exact

opposite of the effect of Dufour parameter.

It is noticed that the velocity reduces with increase in the value of chemical

reaction parameter R, also as R increasing, the thermal boundary layer thickness
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Figure 6.2: Variation of magnetic parameter M on the (a) velocity (b) temperature (c)
concentration distributions when Gr/Re2 = 1, N1 = 0.5, Gb = 0.2, Rd = 1, Df =
0.3, Sr = 0.2 and R = 1.

enhances while concentration boundary layer thickness which reduces with increase

in the chemical reaction parameter R, these are noticed from Figure 6.8.
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Figure 6.3: Variation of mixed convection parameter Gr/Re2 on the (a) velocity (b)
temperature (c) concentration distributions when M = 1, N1 = 0.1, Gb = 1, Rd =
4, Df = 0.3, Sr = 0.2 and R = 0.1

6.5 Conclusion

In this chapter we have studied the effects of Cross-diffusion and viscous dissipation

on heat and mass transfer convection from an exponentially stretching surface in a

porous media, we considered the magnetic, radiation and chemical reaction effects.

The governing equations were solved using the successive linearisation method. which
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Figure 6.4: Variation of thermal radiation parameter Rd on the (a) velocity (b)
temperature (c) concentration distributions when M = 1, N1 = 0.5, Gb =
0.2, Gr/Re2 = 1, Df = 0.3, Sr = 0.2 and R = 0.1
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Figure 6.5: Variation of viscous dissipation parameter Gb on the (a) velocity (b) tem-
perature (c) concentration distributions when M = 1, N1 = 0.5, Rd = 1, Gr/Re2 =
1, Df = 0.3, Sr = 0.2 and R = 0.1
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Figure 6.6: Variation of Soret number Sr on the (a) velocity (b) temperature (c)
concentration distributions when M = 1, N1 = 5, Rd = 10, Gr/Re2 = 2, Gb = 0.5
and R = 0.1
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Figure 6.7: Variation of Dufour number Df on the (a) velocity (b) temperature (c)
concentration distributions when M = 1, N1 = 5, Rd = 10, Gr/Re2 = 2, Gb = 2
and R = 0.1
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Figure 6.8: Variation of is chemical reaction parameter R on the (a) velocity (b) tem-
perature (c) concentration distributions when M = 1, N1 = 2, Rd = 0.1, Gr/Re2 =
1, Gb = 0.5, Df = 0.3 and Sr = 0.2
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has been suggested from a limited number of studies and it gives accurate results with

few iterations and it requires shorter times to run the code. Tables and graphs were

presented showing the effects of various physical parameters on the fluid properties,

the skin-friction coefficient and the heat and the mass transfer rates. It was found that

the effect of increasing of the magnetic field parameter is to decelerate the fluid motion

while enhancing the temperature and concentration on the dimensionless. It was also

observed that the velocity increase with the mixed convection parameter while the

temperature and concentration profiles decrease. The effect of Soret number is to

reduce the temperature and enhance the velocity and the concentration profiles and

an opposite effects occurred by Dufour number on the temperature and concentration

distributions. An increase in viscous dissipation and radiation parameters enhances

temperature and reduces the concentration distributions.The skin-friction, heat and

mass transfer coefficients decrease with an increase in the magnetic field strength.

The skin-friction and heat transfer coefficients increase whereas the mass transfer

coefficient decreases with increasing Soret number but Dufour number effect is to

decrease Nusselt number and increase Sherwood number.
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Chapter 7

Conclusion

The overall objectives of this study were to investigate convection and cross-

diffusion effects on heat and mass transfer in porous media saturated with Newtonian

and non-Newtonian fluids, and to apply a recent hybrid linearization-spectral tech-

nique to solve the highly nonlinear and coupled governing equations. We modeled

the fluid flows in different flow geometries by systems of partial differential equations.

The resulting governing equations for momentum, energy and concentration have been

transformed into a system of nonlinear ordinary differential equations by introducing

suitable similarity transformations. A successive linearization method has been used

to solve the nonlinear differential equation that governs the flow. The accuracy and

convergence rate of the obtained solution series have been verified by comparing the

results with other numerical methods and with some available results published in

the literature. Tabulated and graphical results were presented and discussed show-

ing the effects of different values of cross-diffusion on the velocity, temperature and

concentration distributions as well as some physical parameters effects entering into

the problem such as the magnetic field, viscous dissipation and thermal radiation

parameters. The corresponding local skin-friction, rate of heat and mass transfer
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coefficients were also calculated and presented in graphs and tabular form showing

the effects of various parameters on them.

The results have shown that the fluid velocity, temperature, and concentration

profiles are appreciably influenced by the Soret and Dufour effects, they also play

a significant role and should not be neglected. We therefore conclude that cross-

diffusion effects have to be considered in the fluid, heat, and mass transfer. We also

showed that the magnetic field, viscous dissipation, and radiation parameters have

greater effects on the fluid velocity, temperature, and concentration boundary layer

thickness. It is also noted that the successive linearization method is valid even for

systems of highly nonlinear differential equations. Furthermore, it has great potential

for being used in many other related studies involving complicated nonlinear problems

in science and engineering, especially in the field of fluid mechanics, which is rich in

nonlinear phenomena. We highlight the main findings that have been made in this

study.

• Chapter 2:

In this chapter the effects of Soret and viscous dissipation parameters on nat-

ural convection from a vertical plate immersed in a power-law fluid saturated

with a non-Darcy porous medium have been investigated. The governing par-

tial differential equations are transformed into a system of ordinary differential

equations using a local non-similar method and the model has been solved by

the SLM. The results were tested by comparison with the shooting technique.

Our discussion showed that:

(i) Increases in the Soret number leads to decreases in the temperature distri-

bution and increases in the concentration distribution for aiding buoyancy

case. Additionally there are increases in both temperature and concentra-

tion distributions for opposing buoyancy case.

(ii) The Nusselt number is enhanced and the Sherwood number is reduced by
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increases in the Soret number for aiding buoyancy, and both the Nusselt

and Sherwood numbers are reduced by the Soret number for opposing

buoyancy.

(iii) Increasing the viscous dissipation parameter increases both heat and mass

transfer rates for aiding buoyancy and opposing buoyancy cases.

• Chapter 3:

The study of the effect of thermal-diffusion on the natural convection from

a vertical plate in a thermally stratified porous medium saturated with a non-

Newtonian fluid has been investigated in this chapter. We considered the aiding

buoyancy and opposing buoyancy flow situations. The following points give an

outline of the chapter:

(i) Temperature and concentration profiles are significantly affected by strat-

ification, Soret and variable viscosity parameters.

(ii) The Soret number succeeds in enhancing the mass transfer rate for the two

different flow situations considered, but reduces the heat transfer rate for

aiding buoyancy while increasing it in the case of opposing buoyancy.

(iii) The heat and mass transfer coefficients are reduced by the power-law index

for both aiding buoyancy and opposing buoyancy cases.

(iv) The Nusselt number reduced the thermal stratification parameter, but

enhanced the Sherwood number.

• Chapter 4:

Discussed in this chapter is the mixed convective flow of a non-Newtonian power-

law fluid from a vertical flat plate embedded in a non-Darcy porous medium

influenced by viscous dissipation and thermal radiation. The governing par-

tial differential equations are transformed into a system of ordinary differential

equations, applying the local similarity and local non-similarity method, with

the model being solved with SLM technique. We discussed the three kinds of

167



power-law fluids (pseudoplastic, Newtonian and dilatant fluids). It was found

that:

(i) The viscous dissipation and thermal radiation parameters have increasing

effects on both velocity and temperature profiles for all values of the power-

law index.

(ii) The skin-friction and heat transfer coefficients are reduced by an increase

in the viscous dissipation and thermal radiation parameters.

(iii) When the viscosity parameter increases, the rate of heat transfer increases.

(iv) The power-law index decreases the heat transfer rate.

• Chapter 5:

In this chapter we have applied the linearization method to the problem of

cross-diffusion, double-diffusion and hydromagnetic effects on convection fluid

flow over a vertical surface. The linearization method is used in combination

with a perturbation expansion method and the accuracy of the solutions has

been tested using a local nonsimilarity method. The key results are as follows:

(i) The comparison between the two methods (SLM and local nonsimilarity

methods) showed that there is excellent agreement, while the second order

of the SLM series is accurate up to five significant figures.

(ii) The effect of increasing the Soret number increases the velocity and con-

centration distributions but decreases the temperature distribution.

(iii) The Soret number has an increasing effect on skin-friction and heat transfer

coefficients and a decreasing effect on the mass transfer coefficient.

(iv) As the Dufour number increases, the skin-friction and heat transfer coeffi-

cients decrease, while the mass transfer coefficient increases.

(v) The Soret and Dufour numbers have opposite effects on thermal and con-

centration distributions.
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(vi) Increases in magnetic field parameter increases both temperature and con-

centration profiles and decreases both heat and mass transfer rates.

• Chapter 6:

We have studied the effects of cross-diffusion on heat and mass transfer con-

vection from an exponentially stretching surface in a porous media. We also

considered the magnetic, viscous dissipation and radiation effects. The results

are summarized as follows:

(i) The effect of the Soret number was to decrease the temperature and en-

hance the velocity and concentration profiles.

(ii) The thermal boundary layer thickness is increased with the increasing of

viscous dissipation parameter while concentration decreases.

(iii) The skin-friction and heat transfer coefficients increased, whereas the mass

transfer coefficient increased with an increasing Soret number. The effect

of the Dufour number is to decrease the heat transfer rate and increase the

mass transfer rate.

(iv) The temperature and concentration are reduced while the heat and mass

transfer coefficients enhanced as mixed convection parameter increasing.
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