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Abstract 

Through the ages the viruses have plagued mankind claiming the lives of millions, pre-dating 

any advancements in the medicinal sciences.  One such pathogenic virus is influenza A, which 

has been implicated in the 1918-Spanish flu, the 2006-avian flu outbreak and the 2009-swine 

flu pandemic.  It is a highly sophisticated species, alluding efforts to thwart the spread of 

disease and infection.  One of the main reasons influenza has survived this long is simple 

evolution.  Natural mutation within the genome of virions expressed in proteins, enzymes or 

molecular structure render us unable to predict or take preventative measures against possible 

infection.  Thus, research efforts toward the competitive inhibition of biological pathways that 

lead to the spread of disease, have become attractive targets.   

The influenza A virus has a number of chemotherapeutic targets, such as:  

1) The surface antigens, hemagglutinin and neuraminidase,  

2) RNA-dependent RNA polymerase, and 

3) The M2 proton channel. 

Influenza RNA polymerase is composed of three large segments encoding polymerase acidic 

protein (PA), polymerase basic protein 1 (PB1) and polymerase basic protein 2 (PB2).  The  

PA protein is an N-terminal domain subunit which contains the endonuclease activity.  The 

influenza virus is incapable of synthesizing a 5’-mRNA cap, so it has adapted a cap-snatching 

mechanism whereby the PB2 subunit binds to the 5’-end of host mRNA, after which 10-14 

nucleotides downstream the PA-subunit (aka PAN) cleaves the strand forming a primer for viral 

mRNA synthesis which is catalysed by the PB1 subunit.  Influenza target identification is based 

primarily on evidence suggesting sequence conservation of each entity and its selective 

expression in the virus and not the host. 

In this thesis two enzymatic targets were investigated, the PA protein of RNA polymerase and 

neuraminidase.  The studies focussed on using computational tools to: 

1) provide insight into the mechanism of drug-resistance,  

2) describe the conformational structure of the protein in the presence of point mutations 

and in complex with an inhibitor, 

3) determine the essential binding pharmacophoric features to aid the design of new drug 

therapies. 
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An array of computational techniques were employed in the studies, such as: molecular 

dynamics (MD) simulation, structure-based and ligand-based in silico screening, principal 

component analysis, radius of gyration analysis, binding free energy calculations and solvent-

accessible surface area analysis. 

The first study (Chapter 5) determined the mechanism of drug-resistance in influenza A 

neuraminidase as a consequence of antigenic variations.  Two distinct mutations in the enzyme 

sequence that were investigated are H274Y and I222K.  The active site residues of 

neuraminidase are conserved among the subtypes of influenza A.  However, it was discovered 

that the occurrence of resistance to the drug oseltamivir, in the H1N1 species was different to 

the H5N1 virus.  Although both systems shared a loss in hydrophobicity of the active site, the 

conformational distortion of the active site pocket distinguished the enzyme of the two viral 

entities, from one another. 

The discoveries made in the first study laid the foundation for the second study (Chapter 6), 

which was based on the in silico design and screen of potential neuraminidase inhibitors.  As 

a result 10 characteristic molecular scaffolds were suggested as potential inhibitors.  The 

pharmacophore design was constructed with consideration to the new conformational structure 

of the active site pocket. 

Chapter 7 is the third study of this thesis.  The active site pocket enclosing the endonuclease 

activity of the PA subunit was investigated.  Using molecular dynamics simulations and post-

dynamic analyses, a description of the protein conformation was offered.  Subsequently, a 

pharmacophore was proposed as a potential scaffold to which endonuclease inhibitors may be 

modelled upon. 

It is my belief that the impact of the results derived from the above mentioned studies would 

greatly contribute to the development of new and effective anti-influenza drugs. 

 

 

 

 

 

 

 



v 
 

DECLARATION- I PLAGIARISM 

 

I, Ashona Singh, declare that 

 

1. The research reported in this thesis, except where otherwise indicated, is my original 

research. 

 

2. This thesis has not been submitted for any degree or examination at any other 

university. 

 

 

 

3. This thesis does not contain other persons’ data, pictures, graphs or other information, 

unless specifically acknowledged as being sourced from other persons. 

 

 

4. This thesis does not contain other persons’ writing, unless specifically acknowledged 

as being sourced from other researchers.    Where other written sources have been 

quoted, then: 

 

a. Their words have been re-written but the general information attributed to them has 

been referenced. 

b. Where their exact words have been used, then their writing has been placed in italics 

and inside quotation marks, and referenced. 

 

5. This thesis does not contain text, graphics or tables copied and pasted from the internet, 

unless specifically acknowledged, and the source being detailed in the thesis and in the 

References sections. 

 

A detailed contribution to publications that form part and/or include research presented 

in this thesis is stated (include publications submitted, accepted, in press and 

published). 

 

 

 

 

 

Signed: _____________________ 

 

 

 

 



vi 
 

 

DECLARATION- II LIST OF PUBLICATIONS 

 

PUBLISHED 

1. Singh, A., Mhlongo, N. and Soliman, M. E. (2015). Anti-cancer Glycosidase 

Inhibitors from Natural Products: A Computational and Molecular Modelling 

Perspective. Anti-Cancer Agents of Medicinal Chemistry, 15 (8): 933-946. (Impact 

Factor = 2.4) 

 

Contributions: 

a. Singh, A.: Main contributor, contributed by literature search, compilation and 

writing of the manuscript 

b. Mhlongo, N.: contributed to the manuscript as a post-submission editor 

c. Soliman, M.E.: supervisor 

 

2. Singh, A. and Soliman, M.E (2015). Understanding the cross-resistance of 

oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using 

multidimensional computational analyses.  Drug Design, Development and 

Therapy, 9, 4137-4154. (Impact Factor = 3.0) 

 

Contributions: 

a. Singh A.: contributed, to the project by performing experimental work, data 

analysis and interpretation and manuscript preparation and writing 

b. Soliman, M. E.: supervisor 

 

 

 

 

 

 

 

 

 

 



vii 
 

SUBMITTED 

1. Singh, A., Chetty, S. and Soliman, M. E (2015). Per-residue Free Binding Energy 

Profiled Pharmacophore Modelling as an Enhanced Approach in Drug Discovery: 

A Case Study for in silico Screening and Validation of Potential Influenza A 

Neuraminidase Inhibitors. Submitted to the Journal of Molecular Biosystems 

(Impact Factor = 3.2) 

 

Contributions:  

a. Singh, A.: contributed, to the project by performing experimental work, data 

analysis and interpretation and manuscript preparation and writing 

b. Chetty, S.: co-supervisor with academic contribution 

c. Soliman, M. E.: supervisor  

 

 

2. Singh, A., Chetty, S. and Soliman, M. E (2015). A molecular dynamics description 

of the conformational binding of a potential influenza A endonuclease inhibitor. 

Submitted to the European Journal of Medicinal Chemistry (Impact Factor = 3.4) 

 

Contributions:  

 

a. Singh, A.: contributed, to the project by performing experimental work, data 

analysis and interpretation and manuscript preparation and writing 

b. Chetty, S.: co-supervisor with academic contribution 

c. Soliman, M. E.: supervisor  

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

Acknowledgements 
 

“If I have seen further it is by standing on the shoulders of Giants.” 

 

I dedicate this thesis to Jeven, my little scientist.  Thank you for being my companion 

through the good and the bad, and making me believe I could do anything.  I am blessed 

as you constantly inspire me to be and do more.   

 

I wish to give a further thanks to: 

 

 My soulmate, Kyle for his endless love, support and patience.  We have always 

managed to take the road less travelled but having you on the journey with me 

has made it so worth it. 

 

 My children Annabelle and Troy, you came in my darkest hour and brightened 

all my days.   

 

 My supervisor Prof Mahmoud E. S. Soliman for his continued encouragement, 

patience and kindness.  Thank you for lending me your ears, the road was long 

and hard, but I have made it. 

 

 My co-supervisor, colleague and dear friend Dr Sarentha Chetty without whom 

my degree would be meaningless.  In such a short space of time you have added 

value to my life in more ways than I can count.  Thank you for inspiring me and 

being a part of my special moments. 

 

 My family and extended family who have been my constant cheerleaders.  

Especially Gerry, a special thanks to you for having to pain stakingly edit my 

work at all those last minute moments.  

 

 The National Research Foundation of South Africa and the College of Health 

Sciences, UKZN for all the financial support. 

 

 My colleagues Patrick Appiah for your friendship, our luncheons made my day; 

and Soumendranath Bhakat for sharing and assisting me throughout my 

research. 

 

 

 

 

 

 

 

Lord let this be my time! 

 

 



ix 
 

List of Abbreviations 

 

Δ A Change 

HA Hemagglutinin 

LB-VS Ligand-based virtual screening 

MD Molecular dynamics 

MM Molecular Mechanics 

NA Neuraminidase 

NMR Nuclear magnetic resonance 

ns nanosecond 

PA Polymerase acidic protein 

PCA Principal component analysis 

PE Potential energy 

QM Quantum Mechanics 

Rg or ROG Radius of gyration 

RMSD Root mean square deviation 

RMSF Root mean square fluctuation 

RNA Ribonucleic acid 

RNP Ribonucleoprotein 

SASA Solvent accessible surface area 

SB-VS Structure-based virtual screening 

TM Transmembrane 

WT Wild-type 

 

 

 

 

 

 

 

 

 



x 
 

List of Amino Acids 

Amino Acid Three letter code Single letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic Acid Asp D 

Glutamic Acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Lysine Lys K 

Serine Ser S 

Tyrosine Tyr Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

Table of Contents 
 

ABSTRACT           iii 

DECLARATION- I PLAGARISM        v 

DECLARATION- II PUBLICATIONS       vi 

ACKNOWLEDGEMENTS         viii 

LIST OF ABBREVIATIONS         ix 

LIST OF AMINO ACIDS         x 

TABLE OF CONTENTS         xi 

 

Chapter 1- Introduction 

1.1 Background and Rationale of Study      1 

1.2 Aim and objectives        3 

1.3 Novelty and Significance of the Study      4 

1.4 Overview of the Thesis        4 

1.5 References          6 

 

Chapter 2- Background on Influenza A virus 

2.1 History of Influenza A virus       10 

2.2 Life cycle and mechanism of structural components of influenza A virus 11 

2.3 Drug targets, prevention and treatment of infection    14 

2.3.1 M2 ion channel        15 

2.3.2 Hemagglutinin        16 

2.3.3 Neuraminidase        18 

2.3.4 RNA-dependent RNA polymerase     20 

2.4 Current Limitations        22 

2.5 References          22 

 

Chapter 3- Theoretical and Computational Methods 

3.1 Introduction to computational chemistry      29 

3.2 Quantum Mechanics        30 

3.2.1 The Schrödinger equation      31 

3.2.2 Born-Oppenheimer approximation     31 

3.3 Molecular Mechanics        32 

3.3.1 MM Potential Energy function     33 

3.3.2 Force Fields        34 

3.4 Molecular dynamics (MD) simulation      35 

3.4.1 Molecular dynamics solvent parameters    36 

3.4.2 Post-dynamics        37 



xii 
 

3.4.2.1 Convergence       37 

3.4.2.2 Conformational and Structural analysis   38 

3.4.2.3 Binding free energy calculations    39 

3.5 References          40 

 

Chapter 4- Published work 

 Anti-cancer Glycosidase Inhibitors from Natural Products: A Computational 

and Molecular Modelling Perspective 

Abstract          44 

Introduction 

 Natural Products in Drug Discovery      44 

 Cancer and the Role of Glycosylation      47 

 Evolution of Computational Techniques to Present Day    50 

Computational approaches of natural agents against cancer 

 Homology Modelling        51 

 Qualitative Structure Activity Relationship (QSAR)    54 

 Virtual Screening         55 

 Molecular Modelling and Binding Modes     58 

Conclusion          64 

References          66 

 

Chapter 5- Published work 

Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A 

neuraminidase mutations using multidimensional computational analyses 

Abstract           75 

Introduction           76 

Computational method          

 System preparation         79 

 MD simulation         79 

 MD simulation set-up and parameters      80 

 Post-dynamic analysis 

o Thermodynamic calculations       81 

o Principal component analysis       82 



xiii 
 

 

Results and discussion 

 MD simulations and system stability       82 

 Post-dynamic analysis         82 

o Root mean square fluctuation       83 

o Radius of gyration        86 

o Calculation of MM/GBSA binding free energy    89 

o Hydrogen bond formation between amino acid residues   92 

o Principal component analysis       94 

o Solvent accessible surface area      97 

Conclusion           97 

References           98 

 

Chapter 6- Submitted manuscript 

Per-residue Free Binding Energy Profiled Pharmacophore Modelling as an Enhanced 

Approach in Drug Discovery: A Case Study for in silico Screening and Validation of 

Potential Influenza A Neuraminidase Inhibitors  

Abstract           106 

1. Introduction          107 

2. Methods          111 

2.1 System Preparation        112 

2.2 MD simulation         113 

2.3 Pharmacophore model        113 

2.3.1 Per-residue free binding energy profiling     114 

2.3.2 Ligand-based pharmacophore      115 

2.3.3 Structure-based pharmacophore      115 

2.4 Pharmacophore & Docking selectivity and evaluation     

2.4.1 Pharmacophores        115 

2.4.2 Docking system        116 

2.5 In silico virtual screening        116 



xiv 
 

3. Results and Discussion        116 

3.1 Ligand-protein interaction pattern and per-residue free binding energy profile 118 

3.2 Pharmacophore model construction, evaluation and database screening 

3.2.1 Ligand-based pharmacophore model     120 

3.2.2 Structure-based pharmacophore model     123 

3.3 Molecular Docking        125 

3.4 Similarity          134 

4. Conclusion          135 

5. References          136 

 

Chapter 7- Submitted manuscript 

A molecular dynamics description of the conformational binding of a potential 

influenza A endonuclease inhibitor  

 

Abstract           142 

Introduction           143 

Methods 

 Preparation of System         145 

 Molecular Dynamics Simulation       146 

 Binding free energy calculation       147 

 Principal component analysis (PCA)       147 

Results and Discussion         148 

Conclusion           156 

References           156 

 

 

 

 



xv 
 

Chapter 8- General conclusions 

8.1 Conclusion          161 

8.2 Future work         163 

8.3 References          164

  

 



1 

 

Chapter 1 

1. Introduction 
 

1.1 Background and Rationale of Study 

 

The spread of seasonal influenza viral infections causes annual epidemics with more than 

20,000 reported deaths.  Recent outbreaks of the influenza A virus; subtype H5N1 and 

pandemic H1N1, have caused concern because of their higher mortality rates 1-5.  International 

health bodies have invested significant research in effective management strategies for the 

influenza virus which include: prevention strategies i.e. seasonal flu vaccinations 6 and curative 

chemoprophylaxis active against circulating subtypes of influenza- oseltamivir (Tamiflu®) 7, 

zanamivir (Relenza®) 8, laninamivir (Inavir®) 9 and peramivir (Rapivab®) 10.   

 

The influenza virus has demonstrated a remarkable ability to mutate rapidly.  Mutagenesis 

occurs by antigenic drifts and antigenic shifts.  In 2009, an H1N1 virus with a new combination 

of genes emerged with a rapid rate of infection, resulting in a pandemic claiming approximately 

284,500 lives.  The current drug treatments were ineffective against the outbreak.  The increase 

in reported incidences of resistance of H1N1 and H5N1 to current chemotherapies poses a 

threat to the human population, making us vulnerable to genetically divergent influenza A 

viruses 11-13. 

 

An extensive database of approximately 870 crystallised proteins (www.rcsb.org) or protein 

fragments of the influenza A virus 14-16, has assisted in isolating potential targets for the 

inhibition by a chemotherapeutic.  High profile targets include 16, 17:  

1. surface antigens: hemagglutinin (HA) and neuraminidase;  

2. RNA dependent RNA polymerase: polymerase acidic protein (PA), polymerase basic 

protein 1 (PB1) and polymerase basic protein 2 (PB2); and  

3. the M2 ion channel.  Our study focusses on the enzyme neuraminidase of H1N1 and 

H5N1 subtypes and the PA endonuclease fragment of the RNA polymerase of H1N1. 

 

Influenza A neuraminidase and endonuclease have been reported to have a high success rate of 

inhibition when treated with selective chemoprophylaxes.  Both enzymes, according to 

http://www.rcsb.org/
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literature have a largely conserved active site residue profile amongst the influenza A subtypes 

18, 19.  However, recent pandemics i.e. the 2009-pH1N1, expressed a genetic mutation at residue 

position 274 in the glycoprotein, neuraminidase.  The point mutation of histidine (H) to tyrosine 

(Y), observed a more potent and resilient H1N1 strain comparable to the 2006 highly 

pathogenic H5N1 avian flu 20, 21.  Resistance of pH1N1 and pathogenic H5N1 to the available 

drug therapies emphasizes the need for further research for new, innovative and effective drug 

treatments.   

 

Endonuclease, however, has been an untapped focal point.  The influenza virus requires 

transcription and replication mechanistic tools 22-24, by selectively inhibiting the PA subunit we 

prevent the propagation and spread of viral infection.  There are no current FDA-approved drug 

candidates targeting the heterotrimeric polymerase complex 17, 25.  The favourability and 

robustness of the PA subunit against evolutionary mutagenesis enable us to design and develop 

a potential chemotherapy 26.  This study embarks on investigation of the resistance mechanisms 

behind neuraminidase in the presence of evolutionary mutations as well as characterising the 

binding profile of endonuclease.  We propose potential new drug candidates for the inhibition 

of neuraminidase.   

 

This study utilises multidimensional computational techniques, such as: molecular dynamics 

(MD) simulations which is a useful tool in defining the ligand binding affinities and 

characterising the binding landscape, as well as in silico virtual screening methods to identify 

possible inhibitors 27.  Post-dynamic evaluations provide the insight into the mechanism of 

resistance and the specific binding mode of drug candidates.  The techniques combined in this 

thesis incorporate: root mean square deviation (RMSD), potential energy, root mean square 

fluctuation (RMSF), principal component analysis (PCA), residue interaction network (RIN) 

profiling, solvent accessible surface area (SASA), molecular mechanics generalised Born 

surface area (MM-GBSA), quasi-harmonic entropy estimations, estimation of total hydrogen 

bonds, radius of gyration (Rg), secondary structure analysis and average volume estimation of 

the three-dimensional protein.  
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1.2 Aim and Objectives 
 

The primary focus of the thesis is to investigate specific classes of influenza virus glycosidase 

targets.  This includes the surface antigen neuraminidase and RNA dependent endonuclease.  

There are three critical goals: 

1. To determine, differentiate and distinguish the mechanism of resistance of 

neuraminidase in influenza A, 2009-pandemic H1N1 (2009-pH1N1) and H5N1 

subtypes in the presence of mutation/s H274Y and I222K. 

In order to accomplish this the following objectives were outlined: 

1.1 Estimation of the free binding energies of the drug-protein complexed of wild type 

and mutant 2009-pH1N1 and H5N1 enzyme species. 

1.2 Identify, characterise and compare the binding landscape of wild type and mutant 

2009-pH1N1 and H5N1 subtypes. 

2. To propose potential neuraminidase scaffolds for new and innovative prophylactic 

chemotherapies via the aid of in silico technique ligand-based virtual screening (LB-

VS) and structure-based virtual screening (SB-VS). 

The study was performed by focussing on the following objectives: 

2.1 Identify current active drug targets of influenza neuraminidase. 

2.2 Establish an average cumulative scaffold of current actives using just the ligand 

three-dimensional structure for LB-VS. 

2.3 Establish an average cumulative scaffold of current actives using the three-

dimensional spatial orientation of ligands in the protein active site for SB-VS. 

 

3. To identify the binding mode of the polymerase endonuclease of H1N1 and isolate 

potential drug therapies to selectively inhibit enzyme activity, using LB-VS and SB-

VS. 

This was achieved using the following objectives: 

3.1 Characterise the active site i.e. amino acid residues responsible for the 

endonuclease activity. 

3.2 Highlight essential pharmacophoric features for future anti-influenza. 
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1.3 Novelty and Significance of the Study 
 

Contributions have been made in isolating and characterising the protein structure of the 

influenza A neuraminidase 28-30 and the PA subunit 31, 32.  There have been no reported 

computational analyses which comparatively investigate the difference in the binding site of 

H1N1 and H5N1 neuraminidase to explain the contrast in susceptibility to the potent drug, 

oseltamivir.  Computational investigation of influenza A endonuclease is limited and remains 

largely underdeveloped.  There is minimal understanding with regard to the selective inhibition 

of the enzyme, the binding pocket responsible for enzyme activity and whether the presence of 

a single or multiple metal center/s is imperative to enzyme function.   

This study would provide insight into understanding the mechanism of resistance and relative 

susceptibilities of genetically diverse H1N1 and H5N1 neuraminidase to available drug 

therapies.  By characterising the altered active sites’ structural and functional composition, new 

inhibitors may be developed.  With the use of computational tools a refined perspective may 

be offered to highlight the endonuclease active site.  The study will characterise amino acid 

residues implicated in enzyme activity as well as the co-ordination profile of metal centres.  

Defining the binding landscape will offer prospective design of selective and unique inhibitors 

with critical pharmacophores features.   

 

1.4 Overview of the Thesis 
 

The thesis is divided into eight chapters, including this one: 

Chapter 1: Outlines briefly the rationale, aims and objectives of the study, the impact of the 

research and structure of the thesis. 

Chapter 2: Provides insight into the targets of influenza A virus, current drug therapies and 

the limitations due to resistance.  The chapter highlights the structure of neuraminidase and 

endonuclease, and the mode of action and inhibition of the enzymes. 

Chapter 3: This chapter offers a general insight into computational chemistry.  The specific 

molecular modelling tools and simulation techniques utilised in the study are highlighted.   
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Chapter 4: (Published work) 

Has been presented in the format requested by the journal. 

This is a review paper which initiated our investigation into influenza glycosidase enzymes.  

The paper is entitled “Anti-cancer Glycosidase Inhibitors from Natural Products: A 

Computational and Molecular Modelling Perspective”.  Published in the Journal of Anti-

Cancer Agents of Medicinal Chemistry (IF = 2.4).  The journal article specifically addresses 

natural products used in the treatment of glycosidase enzymes implicated in cancer.  During 

the research it was found that many of the enzymes and drugs expressed duality being linked 

to the influenza virus. 

Chapter 5: (Published work) 

Has been presented in the format requested by the journal. 

The research paper entitled “Understanding the cross-resistance of oseltamivir to H1N1 and 

H5N1 influenza A neuraminidase mutations using multidimensional computational analyses” 

addresses the objectives (1.1 and 1.2) outlined in section 1.2.  The journal article was 

submitted to Drug Design, Development and Therapy (IF = 3.0). 

Chapter 6: (Manuscript Submitted and under review) 

Has been presented in the format requested by the journal. 

The manuscript currently under review entitled “Per-residue Free Binding Energy Profiled 

Pharmacophore Modelling as an Enhanced Approach in Drug Discovery: A Case Study for in 

silico Screening and Validation of Potential Influenza A Neuraminidase Inhibitors” has been 

submitted to The Journal of Molecular Biosystems (IF = 3.2).  The paper addresses the 

objectives (2.1 – 2.3) outlined in section 1.2.  

Chapter 7: (Manuscript Submitted and under review) 

Has been presented in the format requested by the journal. 

The manuscript is currently under review entitled “A molecular dynamics description of the 

conformational binding of a potential influenza A endonuclease inhibitor and in silico screen 

of possible drug candidates” has been submitted to the European Journal of Medicinal 

Chemistry (IF = 3.4).  The paper addresses the objectives (3.1 and 3.2) outlined in section 

1.2. 

Chapter 8: Proposes future work, recommendations, and concluding remarks. 
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Chapter 2 

2. Background on Influenza A virus 
 

2.1 History of Influenza A virus  

 

The influenza virus was first isolated scientifically in 1932.  However, the disease has plagued 

mankind for centuries, although 1173 was the first reported case of a pandemic 1.  There are 

two criteria that need to be met in order for an outbreak of influenza to be classed as a pandemic.  

Firstly, the influenza infection should be spread on a worldwide scale.  Secondly, a pandemic 

is caused by a new influenza virus A subtype.  The new virus subtype arises from antigenic 

shifts, resulting in a different glycoprotein, which should be resistant to immunity acquired 

from past seasonal influenza viruses 2. 

There have been several reports of influenza pandemics from the 14th and 15th centuries 3.  The 

1729 influenza outbreak lasted three years starting in Russia and claiming an undisclosed 

number of lives 1, 4-6.  Between 1781 - 1782, a singular strain stemming from China swept 

through Europe 7.  The peak of the pandemic observed a high incidence of infection in young 

adults.  St. Petersburg recorded an infection rate of 30,000 people per day, the disease infected 

approximately two-thirds of Rome’s population.  The greatest “medical holocaust” in history 

was the influenza pandemic of 1918 – 1920, which claimed approximately 39.3 million lives, 

impacting North America, India, Africa, Australia and Europe 8.  The most recent outbreak was 

the 2009-H1N1 influenza pandemic which affected 74 countries.  The novel H1N1 virus 

preferentially infected younger people below the age of 25 years, elderly people and 

immunocompromised individuals.  The estimated number of deaths ranged between 151,700 

and 575,400 in its first year of infection 9.  The spread of infection is eminent and from literature 

the frequency of influenza pandemics has increased.  Thus it is important to understand the 

mechanism for the propagation of disease 10, 11.  In doing so, specific biomolecular targets 

influencing viral maturation can be identified as potential inhibitory sites.  Inhibition of these 

proteins or enzymes could prevent future influenza virus pandemics 10. 
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2.2 Life cycle and mechanism of structural components of influenza A virus 
 

The basic life cycle of the virus occurs by attaching itself to the host cell surface receptors.  It 

then enters the cell with the subsequent uncoating of the viral nucleic acid.  At this point the 

host cellular machinery is “hijacked” into replicating the viral genome.  The new viral 

components synthesized are assembled into progeny virions which are released into the host.  

The sequential cellular functioning of the virus is governed by specialised protein species 

encapsulated within the virus structure 11. 

The influenza A virus is pleomorphic i.e. it is spherical or elongated in shape.    It contains 

three surface glycoproteins, embedded in a lipid bilayer, an artefact of the host cell (Figure 1).  

The glycoproteins are: 1) hemagglutinin (HA); 2) neuraminidase (NA); and 3) the M2 proton 

ion channel.  Virus replication is initiated by the binding of HA protein to sialic acid residue 

receptors contained on the host cell surface (Figure 2).  The binding of the entities mediates 

fusion of the viral envelope forming an endosome after receptor-mediated endocytosis.  The 

NA protein plays an integral role in the latter stages of infection.  Neuraminidase is responsible 

for the release of newly assembled viral progeny from the cell surface.  The enzyme cleaves 

the sialic acid residues from sialyloligosaccharides.  This process prevents self-aggregation of 

the virus particles.   The HA and NA proteins also serve as a characterisation tool for the 

subtypes of the influenza virus.  There are 17 genetically distinct subtypes for HA (i.e. H1 – 

H17) and nine for NA (i.e. N1 – N9), which differentiate influenza viral species (e.g. H1N1, 

H5N1, H3N2 and H7N9).   

 

Figure 1: Structure of influenza virus12 



12 

 

At the interface of the endosomal wall and the inside of the virus, beneath the bilipid layer lies 

a critical structural M1 matrix protein.  A ribonucleoprotein (RNP) complex lies inside the 

virus envelope.  This is typically characterised by eight segmented, negative-strand RNA 

genomes; the RNA-dependent RNA polymerase (PB1, PB2 and PA) and the nucleoprotein 

(NP).  The third glycoprotein, the M2 ion channel, promotes the influx of H+ ions into the virus.  

This lowers the internal pH of the virus which facilitates binding of the virus to the endosomal 

wall and the release of viral ribonucleoproteins into the host cell.  Once the viral RNPs have 

infiltrated the cell, they are immediately transported into the nucleus where viral protein 

synthesis takes place.  Because of the lack of self-checking systems during transcription of 

viral proteins, point mutations are prevalent.  Newly synthesized viral proteins are transported 

from the nucleus to a site in close proximity to the cell membrane for self-assembly.  The 

process of self-assembly has been termed “budding”, resulting in the formation of virions.  

These virions (as previously mentioned), are released into the host and allowed to infect new 

cells 11, 13-15. 



13 

 

 

Figure 2: Influenza A life cycle (adapted from the work of Das et al. 16) 

Figure 2, description (a) Influenza A virus has a lipid bilayer envelope, within which are eight RNA genomic 

segments, each of which is associated with the trimeric viral RNA polymerase (PB1, PB2, PA) and coated with 

multiple nucleoproteins (NPs) to form the vRNPs. The outer layer of the lipid envelope is spiked with multiple 

copies of HA, NA and a small number of M2, whereas the M1 molecules keep vRNPs attached to the inner layer. 

(b) The viral surface glycoprotein HA binds to the host cell-surface sialic acid receptors, and the virus is 

transported into the cell in an endocytic vesicle. The low pH in the endosome triggers a conformational change in 

the HA protein that leads to fusion of the viral and endosomal membranes. The low pH also triggers the flow of 

protons into the virus via the M2 ion channel, thereby dissociating the vRNPs from M1 matrix proteins. The 
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vRNPs that are released into the cytoplasm are transported into the nucleus by recognition of the nuclear 

localization sequences (NLSs) on nucleoproteins17 only when the M1 molecules are dissociated. (c) In the nucleus, 

the viral polymerase initiates viral mRNA synthesis with 5′-capped RNA fragments cleaved from host pre-

mRNAs. The PB2 subunit binds the 5′ cap of host pre-mRNAs18, and the endonuclease domain in PA subunit 

cleaves the pre-mRNA 10–13 nucleotides downstream from the cap19. Viral mRNA transcription is subsequently 

initiated from the cleaved 3′ end of the capped RNA segment19,20. This 'cap snatching' occurs on nascent pre-

mRNAs. (d) Viral mRNAs are transported to the cytoplasm for translation into viral proteins. The surface proteins 

HA, M2 and NA are processed in the endoplasmic reticulum (ER), glycosylated in the Golgi apparatus and 

transported to the cell membrane. (e) The NS1 protein of influenza A virus serves a critical role in suppressing 

the production of host mRNAs by inhibiting the 3′-end processing of host pre-mRNAs 21, 22, consequently blocking 

the production of host mRNAs, including interferon-β mRNAs. Unlike host pre-mRNAs, the viral mRNAs do not 

require 3′-end processing by the host cell machinery. Therefore, the viral mRNAs are transported to the cytoplasm, 

whereas the host mRNA synthesis is predominantly blocked. (f) The viral polymerase is responsible for not only 

capped RNA-primed mRNA synthesis but also unprimed replication of vRNAs in steps (−) vRNA → (+) cRNA 

→ (−) vRNA. The nucleoprotein molecules are required for these two steps of replication and are deposited on 

the cRNA and vRNA during RNA synthesis23. The resulting vRNPs are subsequently transported to the cytoplasm, 

mediated by a M1–NS2 complex that is bound to the vRNPs; NS2 interacts with human CRM1 protein that exports 

the vRNPs from the nucleus24. (g) The vRNPs reach the cell membrane to be incorporated into new viruses 

(reviewed in ref.25) that are budded out. The HA and NA proteins in new viruses contain terminal sialic acids that 

would cause the viruses to clump together and adhere to the cell surface. The NA of newly formed viruses cleaves 

these sialic acid residues, thereby releasing the virus from the host cell. (Adapted from the work of Kaylan et al. 

16) 

 

2.3 Drug targets, prevention and treatment of infection 
 

Seasonal influenza infections occur as a result of antigenic drifts.  An antigenic drift is a small 

change in the genes of influenza viruses.  This occurs continually over time due to viral 

replication.  Thus, as a remedial therapy, vaccinations are used.  Unfortunately, this does not 

prevent infection by pandemic influenza strains and has no effect on those who have contracted 

a pandemic virus.  Influenza pandemics, as mentioned earlier, occur as a result of antigenic 

shifts.  Monitoring of antigenic variation/s in the influenza virus is imperative in preparing for 

an epidemic or a pandemic.  Due to the limitations in preventing potential influenza pandemics, 

anti-viral chemoprophylaxes offers an alternate method of treatment.   
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2.3.1 M2 ion channel 

 

The M2 protein is a small homotetrameric transmembrane (TM) protein (Figure 3).  The 

protein is comprised of three components: 

1) An N-terminal extracellular domain of 24 amino acid residues, 

2) A signal anchor transmembrane domain of approximately 19 residues in length, and 

3) A 54 residue cytoplasmic tail 26. 

The oligo-tetramers are stabilised by disulphide bonds.  Its primary function is to channel 

protons into the virion and host cell, to adjust the pH of intracellular compartments.  Little is 

known about the functional mechanism of the protein.  With the aid of computational 

techniques Sharma et al. 27, suggested that a cluster exists in the heart of the TM domain.  It 

comprises residues His to Trp41, and thought to chaperone the protons through the channel.  

This is achieved by hydrogen bond formation and breaking between the “His-Trp gate”.  

However, it was Wu and Voth 28, who initially suggested an open and closed state of the M2 

proton channel.  This phenomenon may explain the mechanism of conductance of protons.  

Thus, in the TM domain lies the channel pore, which is the site for inhibition by anti-influenza 

virus drugs   

FDA-approved anti-viral drugs amantadine (Figure 3) and rimantadine, function by blocking 

the M2 ion channel pore 29.  Co-workers Sansom and Kerr 30, designed a molecular model of 

the M2 channel.  By virtue of energy interaction profiles, they were able to describe the mode 

of inhibition of amantadine.  Two distinct residues S31 and I42, which are positioned at 

opposite ends of the pore, were implicated in facilitating the inhibition of the protein.  Inhibiting 

the activity of the M2 ion channel, impedes the transport of H+ ions into the endosome.  This 

affects the proteins ability to adjust the pH, required for the release of RNPs into the host cell 

which ultimately inhibits viral replication.  The activity of the modulator is regulated by 

changes in pH.   

Although these drugs have demonstrated their effectiveness, a major drawback is the severe 

side effects.  Because of these side effects, patients do not complete the prescribed dosages, 

leading to the emergence of drug resistant influenza viruses with increased virulence.  

Resistance is acquired by point mutations in the M2 protein.  Huang et al. 31 and Jing et al. 32, 

made significant contribution to the structural basis of drug-resistance of rimantadine and 

amantadine, using high resolution NMR studies.  They characterised the mechanism of action 
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of point mutations: D44N, D44A, N44D and R45A; in the TM domain.  It was elucidated that 

mutation R45A specifically interferes with the binding of rimantadine, whilst mutation D44A 

partially inhibits the binding of amantadine and rimantadine.  The presence of the point 

mutation exerted a conformational stress on the pore preventing either drug from binding inside 

the channel pore 32. 

 

Figure 3: Crystal structure of the transmembrane domain (orange) of the M2 protein 

complexed with amantadine (green) (PDB code: 3C9J) 33 

 

2.3.2 Hemagglutinin 

 

Hemagglutinin (HA), is a trimeric, rod shaped glycoprotein which comprises the envelope 

surrounding the influenza virus 34.  The abundancy of HA on the surface membrane is four 

times that of neuraminidase, thus making HA an appealing therapeutic target.  The glycoprotein 

is synthesised as a single polypeptide chain (HA0), by post-translational modification the 

protein is cleaved into two subunits, HA1 and HA2 (Figure 4).  These subunits are linked 

covalently by a disulphide bridge.  The HA protein facilitates a pH dependent fusion of the 

endosome to the host cell surface and the release of the viral RNPs into the host cell.   

The HA1 protein subunit forms the base of the structure i.e. the globular domain.  It is 

responsible for the binding of the virus to the sialic acid receptors.  HA1 is the primary antigenic 

determinant recognised to elicit an immune response.  The HA2 protein, is characterised by the 

fibrous stem.  The N-terminus of the HA2 subunit anchors the glycoprotein into the bilipid 
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layer.  This feature is distinguished by 20 consecutive, hydrophobic residues and is essential 

for membrane fusion. 

 

Figure 4: Crystal structure of influenza A hemagglutinin (HA0); A) the HA2 protein (fibrous 

stem) and B) the HA1 protein (globular head)  (PDB code: 2VIU) 34 

(Sa site-green); (Sb site-red); (Ca1 site-orange); (Ca2 site-purple) and (Cb site-yellow) 

Viral replication occurs at a high rate, which compromises the accuracy in which proteins are 

transcripted and translated.  The lack of proofreading mechanisms allows antigenic variations 

of HA to emerge.  Therefore unravelling the efforts of vaccinations and antibodies created from 

immune memory.  A variety of HA proteins exists (i.e. H1 – H17), each surface antigen is 

conformationally unique.  However, only H1, H2 and H5 subtypes affect the human population.   

Analysis of HA sequence variations of isolates causing epidemics have resulted in the 

identification of five antigenic sites, categorised as being strain specific (S) or common (C).  

There are two strain specific, the Sa and Sb sites (Figure 4) 35.  These antigenic sites are 

positioned near the tip of HA protein at residues co-ordinates: 128 – 129, 156 – 160, 162 – 167 

and 187-198.  Three common sites have been isolated: Ca1, Ca2 and Cb.  The Ca1 and Ca2 

sites are located between adjacent HA monomers mid-way down the globular base.  The 

residue co-ordinates of the Ca1 are: 169 - 173, 206 - 208 and 238 - 240; whilst the Ca2 sites 

resides within residues 140 - 145 and 224 - 225.  The Cb antigenic site resides in the base of 

the HA1 protein at residue co-ordinate 74 - 79.  The vast combinations of antigenic variants 

imposes great difficulty in the discovery of new drug.   

The FDA have approved the administration of the HA protein vaccine FluBlok, in the 

prevention of infection.  However, there are no clinical therapeutic agents that inhibit HA 

protein activity, in an effort to treat an influenza viral infection.  Despite this much effort has 

B A 
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been dedicated to discovery of potential inhibitors.  A series of serine protease inhibitors have 

been identified as potential HA inhibitors.  Important inhibitors include:  

1. ε-aminocaproic acid 36,  

2. Nafamostat 37,  

3. pulmonary surfactant (lipoprotein complex) 38, and  

4. mucous protease inhibitors 39, have been implicated in inhibiting the cleavage of HA 

precursors.   

Other drug candidates have been identified as promising inhibitors.  However, none have yet 

reached the stage of clinical approval 40-42. 

 

2.3.3 Neuraminidase 

 

Neuraminidase is a tetrameric enzyme (Figure 5).  Each monomer has a molecular mass of 

~60 kDa and comprises three domains: 

1) a cytoplasmic head (resides on the virion surface), 

2) a transmembrane stem, and 

3) a cytoplasmic tail.   

Neuraminidases’ enzyme activity lies in its cytoplasmic head.  The residues implicated in the 

catalytic site include: Arg118, Asp151, Arg152, Arg224, Glu276, Arg292, Arg371 and Tyr406.  

The listed residues of various influenza A virus subtypes is largely conserved.  This feature 

only enhances the attractiveness of neuraminidase as target for the treatment of influenza.  A 

calcium binding site is present near the catalytic domain.  It serves to stabilise the enzyme 

structure at low pH.  The calcium domain is enclosed within residues 293, 347, 111 - 115 and 

139 - 143.  This pocket is held together by the interaction of carbonyl oxygens of the αC 

backbone, specifically residues 297, 345 and 348; as well as the oxygen of Asp324’s carboxyl 

group.  Information regarding the three-dimensional structure of the cytoplasmic tail and 

transmembrane stem is limited.  This is further incentive to investigate neuraminidase as a 

target of influenza 43.   

 



19 

 

       

Figure 5: Crystal structure of neuraminidase N1; (A) tetramer with oseltamivir bound, and 

(B) monomer highlighting active site residues (orange) (PDB code: 2HU4) 44 

As previously mentioned, the catalytic site of influenza A subtypes share a conversed active 

site profile.  As a result, current and potential anti-viral drugs may exert a broader spectrum of 

inhibition.  Inhibition of the NA protein impedes the proliferation of new virions into the host.  

Prominent researcher Mark von Itzstein, made one the first attempts of using molecular 

modelling tools in understanding the binding landscape of neuraminidase 45.  With the aid of 

co-worker, he proposed the rational design of novel anti-influenza drugs 46, 47.  The principles 

outlining the design of inhibitors are still employed in the discovery of new and improved drug 

therapies.  Von Itzstein et al., described the structural and energetic aspects of the substrate and 

potential NA inhibitor binding and mechanism of action of influenza neuraminidase.  It was 

found that the two potential NA inhibitors: 

1) DANA (2-deoxy-2,3-didehydro-N-acetylneuramicnic acid), and  

2) an N-trifluoroacetyl analogue of FANA,  

demonstrated good activity in vitro but lacked clinical efficacy 13, 45.  However, these were 

essential discoveries as they served as leads in the development of FDA-approved drugs: 

oseltamivir (Tamiflu), and zanamivir (Relenza) 15.  During the 2006 virulent strain of H5N1- 

avian influenza, the chemotherapeutic agent, oseltamivir, failed to treat the virus.  A similar 

scenario was observed in 2009, with the pandemic strain of H1N1, a point mutation of H274Y 

was observed to significantly reduce the efficacy of the drug.  The emergence of resistance of 

A 

A 

A 

B 
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viruses of the N1 subtype, placed the human population at risk of future pandemics.  Hence, 

the design of new inhibitors peramivir, which, was made available in the United States by 

Emergency Use Authorisation (EUA) 48, as well as laninamivir. 

There have been accounts of computational investigations performed: 

1) to understand the drug resistance mechanisms 49, 50,  

2) to determine the point mutations inflicting resistance 50, 51, and 

3) investigate the development of enhanced anti-viral agents 52, 53. 

However, none have comparatively and comprehensively identified the structural and 

conformational impact of specific point mutations.  With subsequent proposal of compound 

scaffolds able to bind to the newly evolved active site of neuraminidase. 

 

2.3.4 RNA-dependent RNA polymerase 

 

The viral RNA polymerase enzyme is a heterotrimer of ~250 kDa.  It is characterised by eight 

negative-sense single-stranded RNA segments which encode 10 essential proteins.  The 

enzyme is solely responsible for catalysing RNA replication and viral protein transcription in 

the infected nuclei of host cells 54.  The three largest RNA segments encode the RNA-dependent 

RNA polymerase protein subunits:  

1) polymerase acidic protein (PA);  

2) polymerase basic protein 1 (PB1); and  

3) polymerase basic protein 2 (PB2).   

The three medium sized RNA segments, when translated reveal the nucleoprotein (NP).  The 

NP coupled with the polymerase subunits and viral RNA segments (vRNA), form the 

ribonucleoprotein (RNP).  RNPs are released into the host cytoplasm once fusion of the viral 

and endosomal membranes, occurs.  The two remain short vRNA segments encode: 

1) the matrix protein (M1) that lines the inner membrane surface of the viral bilipid layer, 

2) the NS1 protein which participates in evading the innate immune response of the host, 

and 

3) the NS2 or nuclear export protein responsible for chaperoning RNPs from the nucleus 

into the cytoplasm. 
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There are no proofreading mechanisms available during RNA polymerase activity.  As a result, 

the antigenic variants of the encoded proteins, occurs at a rate nearly equivalent to the rate of 

viral replication.  A statistical evaluation of this process estimated approximately 10,000 

potentially new viral mutants can be produced to infect healthy cells.  Viral RNA polymerase 

is pivotal to viral evolution, inhibition of the enzymes catalytic activity will threaten the 

survival of the influenza virus.  The distinct structure and activity of the enzyme is exclusive 

to the influenza virus composition and cannot be found in the human genome.  The selectivity 

and promise of the complete extinction of the viral infection emphasizes the RNA polymerase 

as a crucial target for new anti-viral drugs 54.  

The PA subunit has been benchmarked as the primary target of inhibition.  This is attributed to 

the N-terminal domain of PA encompassing the endonuclease activity of RNA polymerase.   

The PA and PB2 protein subunits compose the cap-binding domain, which is involved in the 

transcription cap-snatching process. Each subunit projects inwardly toward one another across 

a solvent channel.  The 5’ terminal of the polymerase enzyme folds over to form ‘hook’.  The 

hook-like structure creates a second highly conserved binding pocket between residues PB1 

and PA 55.  The arrangement of the active site and folding of the PA domain resembles the 

architecture of the PD-(D/E)XK family of nucleases 56.   

The endonuclease activity of the PA subunit is responsible for the cleavage of a phosphodiester 

bond 10 – 13 nucleotides downstream of the cap.  The process of cleaving the ‘cap’ is mediated 

by divalent metal centers.  The metal serves as a thermal stabiliser and shields the enzyme 

against fluctuations in pH.  Structure-based mutagenesis studies have been performed to 

determine the impact of induced point mutations in the PA active site, on the endonuclease 

activity.  It was established that the endonuclease-independent RNA replication function 

remained intact, whilst the endonuclease-dependent transcription was inhibited  57.   There have 

been reports of anti-cancer agents demonstrating dual activity by inhibiting the endonuclease 

activity of influenza A virus RNA polymerase 58.  A known inhibitor of the influenza 

endonuclease is 2,4-dioxo-4-phenylbutanoic acid (Figure 6) 59, 60.  However, to date there have 

been no clinically approved chemotherapeutic agents.  Thus the need for new drug therapies is 

imperative 60, 61. 
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Figure 6: Crystal structure of Influenza A PA endonuclease subunit in complex with 2,4-

dioxo-4-phenylbutanoic acid (green) (PDB code: 4AWF) 60 

The active site residues have been highlighted in red and Mn2+ metal centers coloured purple. 

 

2.4 Current Limitations 
 

The first 21st century influenza pandemic originated from a genetically divergent form of the 

H1N1 virus.  Since 2009, there have been an estimated 42 – 86 million cases of infection 

worldwide.  Highly pathogenic avian H5N1 influenza A viruses have become transmissible in 

humans by overcoming species barriers.  There have been reported infections in Asia, Europe 

and Africa, many with fatal outcomes.  Despite the availability of and treatment with current 

drug therapies, the H1N1 virus (including pandemic 2009 H1N1) and H5N1 maintain virulence 

and have developed resistance toward active inhibitors.  This is of growing concern and 

emphasises the need for new antiviral drugs. 
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Chapter 3 

3. Theoretical and Computational Methods 

3.1 Introduction to Computational Chemistry 
 

Computational chemistry (also referred to as molecular modelling), is the amalgamation of 

science and art.  It is a technique that combines computational investigation and design, as well 

as the fundamentals of chemistry from an atomistic and molecular perspective; to generate 

realistic molecular models.  Molecular modelling has been an essential tool in drug design and 

understanding the biology of biomolecules 1.    It investigates methodically: 

1) the three-dimensional molecular structure; 

2) molecular dynamics and flexibility; 

3) physical properties; 

4) biological activities such as protein folding, stability and conformation. 

This is achieved by the using the theoretically principles of physics, mathematics and 

chemistry; to describe the energetics of a three-dimensional biomolecular system. 

There are three basic components of used to describe molecular modelling:  

1) Molecular Mechanics (MM);  

2) Quantum Mechanics (QM); and  

3) Molecular dynamics simulation.   

Quantum mechanics is a technique based on first principles used to describe the behaviour of 

photons, electrons and other particles that compose the universe.  The Born-Oppenheimer 

approximation is used to solve the innate characteristics and mechanistic reactions of 

biomolecular systems.   

Molecular mechanics apply Newtonian mechanics to model molecular systems.  The potential 

energy of the system is estimated by using force fields.  Unlike QM, MM ignores the electrons 

and computes the energy of the system as a function of nuclear positions i.e. an implicit method 

of parameterisation for potential energy approximations.  This serves as a useful tool for 

biochemical and biomedical analyses.  Hybrid QM/MM techniques have been employed to 

reduce computational resources in which biomolecular mechanism models are built. 
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Molecular dynamics (MD) simulations are trajectory-based methods, designed to be less 

computationally expensive.  MD simulations offer a visual aspect to the motions of atoms using 

the classical laws of physics.  

In this thesis MD simulations were primarily used to: 

1) study the conformational changes of proteins,  

2) the impact of point mutations in a protein, and 

3) propose reasonable explanations for drug resistance. 

The three concepts of computational chemistry are further explained, so as to give insight into 

the relatedness of the energy descriptors. 

 

3.2 Quantum Mechanics  

Quantum mechanics is a branch of classical physics.  The first version of quantum mechanics 

was initiated by Werner Heisenberg, Max Born and Pascal Jordan who discovered matrix 

mechanics.  The invention of quantum theory was, however, not single handedly begotten.  It 

was through the great efforts and contributions of principal researchers: Max Planck, Wolfgang 

Pauli, Heisenberg, Born, Jordan, Erwin Schrödinger, Niels Bohr, Paul Dirac and Albert 

Einstein 2. 

The atomic particles (electrons of an atom) are treated as little packets of energy i.e. quantum 

particles.  The energy state of the different atomic particles are associated with unique quantum 

numbers. The assignment of quantum numbers to the atomic particles are governed by particle 

characteristics such as; the spin of particle (i.e. the intrinsic angular momentum) and molecular 

electronic states.  The change in energy either by release or addition, occurs in the form of a 

photon which is computed into a wave. 

Analysis of a biomolecule by QM involves the arrangement of nuclei and corresponding 

electrons, in a three-dimensional space.  The electrons are mapped using the continuous 

electronic density method, and the energetics measured are solved by the Schrödinger equation.  

For larger molecular systems the Born-Oppenheimer approximation coupled with the Hartree-

Fock self-consistent field which maps the electron density of the system. 
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3.2.1 The Schrödinger equation 

In 1925 Erwin Schrödinger described the evolution of wave functions by a differential 

equation3.  There are two derivative of the Schrödinger equation they are: 

1) The time-dependent Schrödinger equation gives a description of a system that evolves 

with time, 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) =  𝐻̂𝜓(𝑟, 𝑡)                   𝑒𝑞𝑛. 1 

Where i is the imaginary unit, ℏ is Planck’s constant divided 2π, 
𝜕

𝜕𝑡
 represents the partial 

derivative with respect to time, Ψ (psi) represents the wave function of the quantum 

system, and 𝐻̂ is the Hamiltonian operator which characterises the total energy and is 

dependent on the wave function and form of the system. 

 

2) The time-independent Schrödinger equation which predicts standing waves which 

translate to atomic and molecular orbitals, 

𝐸Ψ =  ΗΨ̂                    𝑒𝑞𝑛. 2 

 

The term E, represents the energy of state.  The Hamiltonian operator is governed by a 

specific wave function. 

When using either equation the solution remains ambiguous, thus certain assumptions are 

required to obtain an approximate answer.  

 

3.2.2 Born-Oppenheimer approximation 

The Born-Oppenheimer approximation is one of the most important approximations in 

molecular QM.  It was developed in 1927 by Max Born and J. Robert Oppenheimer.  The basis 

of the approximation is built on the assumption that the motion of electrons and nuclei can be 

separated 4. 

The theory is derived from the consideration of the mass of atomic particles and the influence 

they have on one another.  There exists an interaction between the electron and nucleus, this 

interaction constitutes the fundamental character of an atom.  Supposing one component either 

the electron or nucleus, was by mass heavier than the other.  The motion of the lighter particle 

would thus be dominated and steered by the heavier particle 5.  Translating this phenomenon 
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into a wave function, the heavier particle would exert and interaction force on the lighter 

particle causing it to oscillate more rapidly around the heavier particle, in order to stay with the 

sphere of interaction.  This can be a considered a compensatory effect of the lighter particle.  

Electrons naturally have a higher diffusion constant which make them lighter than the nucleus.  

Thus in the Born-Oppenheimer approximation the nuclear positions are fixed.  The 

approximation is as follows 4: 

Ψ(𝑚𝑜𝑙)(𝑥, 𝑅) =  Ψ(𝑒𝑙𝑒𝑐)(𝑥, 𝑅)Ψ(𝑛𝑢𝑐)(𝑅)                  𝑒𝑞𝑛. 3 

R represents the nuclear position, and Ψ(𝑒𝑙𝑒𝑐)(𝑥, 𝑅) the electronic wave function solved by the 

nuclear position. 

The total classical energy of the molecule is calculated as follows: 

𝐾𝑒  + 𝐾𝑛  +  𝑉𝑒𝑒(𝑟) + 𝑉𝑒𝑛(𝑟, 𝑅)  + 𝑉𝑛𝑛(𝑅) = 𝐸                   𝑒𝑞𝑛. 4 

Ke and Kn measure the electronic and nuclear kinetic energies.  The symbol V is representative 

of the potential energy.  It must be noted that the Born-Oppenheimer approximation is 

dependent on the nuclear wave function and not the velocity. 

 

3.3 Molecular Mechanics 

Molecular mechanics (also known as force field calculations), is designed to compute large 

datasets.  It has been the preferred method for the estimation of energies of biomolecules.  As 

a result it used to elucidate structural details of the MD ensembles.  The mathematical model 

analyses the nuclear position of atoms whilst ignoring the electronic contribution.  Based on 

the previous discussion regarding the Born-Oppenheimer approximation, the nuclear position 

is regarded as fixed due to mass differentials.  In order for the electron approximations to be 

ignored, the model has to recognise the electronic component as one unit.  The unit sum of the 

electrons can be compensated for in the potential energy function 6. 

Molecular mechanics is a classical approach to molecular modelling.  The atoms in this 

approach are represented as balls and the bonds elastic sticks.  Structures acquired from x-ray 

crystal data or NMR studies, requires refinement by energy minimisation.  The atoms with a 

molecule are not static, they are in constant motion due to the bond type.  As a result 

biomolecules may adopt a many conformations of differing energies.  In some instances, the 

protein may have an average of its conformations at a local or global energy minimum, which 
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are separated by activation energy barriers.  There are different forces which act upon the 

system when being prepared.  Force fields are used to solve the energy equation 7, 8. 

 

3.3.1 MM Potential energy function 

 

The potential energy (PE) function is a mathematical characterisation of the molecules’ 

geometry by minimisation, and the nuclear probability distribution by solving the nuclear 

Schrodinger equation.  It is capable of determining nuclear dynamics, with the aid of solving 

the time-dependent Schrodinger equation.  A solid understanding of the distribution of 

electrons in molecules is essential.  An additional approximation derived from the PE function, 

involves the treatment of nuclei as classical particles with a potential energy.  Using the 

description of Newton’s Second Law, the nuclei would move as a classic point particle 9. 

The potential energy function is thus described as follows 10: 

𝑈(𝑅⃗ ) =  ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑

𝑏𝑜𝑛𝑑𝑠

(𝑟𝑖 − 𝑟0)
2

⏟              
𝑈𝑏𝑜𝑛𝑑

+ ∑ 𝑘𝑖
𝑎𝑛𝑔𝑙𝑒𝑠

𝑎𝑛𝑔𝑙𝑒𝑠

 (𝜃𝑖 − 𝜃0)
2

⏟                
𝑈𝑎𝑛𝑔𝑙𝑒

+ ∑ 𝑘𝑖
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 [1 + cos(𝑛𝑖𝜙𝑖 + 𝛿𝑖]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠⏟                          
𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

+  ∑∑4𝜖𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑗≠𝑖𝑖

+ ∑∑
𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗
𝑗≠𝑖𝑖⏟                              

𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑

 

Where, Ubond measures the oscillations about the equilibrium, Uangle defines the 

oscillations of three atoms about an equilibrium bond angle, Udihedral expresses the 

torsional rotation of four atoms about a central bond and Unonbond is the descriptor of all 

non-bonding energy terms (i.e. electrostatics and Lenard-Jones interactions). 
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3.3.2 Force Fields 

There are a variety of biomolecular system force fields available.  A few examples include: 

1) AMBER 11, 

2) CHARMM 12, 

3) GROMOS 13, 

4) OPLS-AA 14, 

In each of the aforementioned force fields, the biomolecule is characterised as a collective mass 

interacting with one another through harmonic forces.  The atoms in the molecule are depicted 

as balls of differing sizes joined together by springs i.e. bonds, of variable strength, length and 

angular distances.  In the studies conducted, the AMBER force field was implemented to 

characterise the enzymes, whilst GAFF was used to interpret the ligands.   

This AMBER force field provides a favourable balance in energy between the helical and 

extended regions of the peptide and protein backbones with improved dihedral torsions 15.  

Further to this the parameter set achieves better agreement of the dihedral contributions of the 

conformational model and experimental NMR data.  

 

Figure 7: A diagrammatic representation expressing the summation of total energy in a 

molecule 6 

Bonding terms: (1) bond stretching, (2) bond bending, (3) bond dihedrals.  Non-bonding terms: (4) electrostatic, and (5) van 

der Waals interactions 
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The total energy (Etot), of a molecule is computed from the deviation in energy contributions 

of different bond types (eqn. 1), i.e. bonding and non-bonding interactions (Figure 7) 16, 17.  

The harmonic bond type terms include: 

1) bond stretching energy (Estr)- describes the energy change as bonds stretch and contract 

2) angle-bending energy (Ebend)- describes the energy change of ‘spring-like’ or ‘scissor-

like’ bond harmonic  

3) torsional energy (Etors)- is a measure of the dihedral potential energy 

4) van der Waals energy (Evdw)- is the energetic contributions of van der Waals 

interactions 

5) electrostatic energy (Eelec)- is the energetic characterisation of the Coulombic charges 

E𝑡𝑜𝑡  =  𝐸𝑠𝑡𝑟  + E 𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠  +  𝐸𝑣𝑑𝑤  +  𝐸𝑒𝑙𝑒𝑐…                      𝑒𝑞𝑛. 5      

 

Total energy can be described as “a measure of intramolecular strain” of a three-dimensional 

biomolecular model in equilibrium, which is useful when comparing different conformations.   

 

3.4 Molecular dynamics (MD) simulation 

MD simulations estimate the correlated motions of a protein during a trajectory.  A single 

trajectory is capable of generating three ensembles of which the conformations extracted are 

closer to the x-ray crystal structure.  Molecular dynamics simulations were predominantly used 

in this study due to their excellent approximation of biomolecular systems 7, 18, 19. 

Classical molecular dynamics (MD), is an integrated computed algorithm system which 

incorporates Newton’s equations of motion.  Molecular dynamic simulation can provide high 

probability real-time view of many chemical reactions and/or biological systems.  Based on 

highly-evolved mathematical and physical criteria, the technique proposes possible 

conformations or mechanisms of action of systems on an atomic and molecular scale. 

Unlike other 2D analyses such as NMR and X-ray, MD is not a static technique and the 

resulting data is a snapshot of its motion at that moment.  However, MD simulation has proven 

an accurate and incomparable tool in estimating phenomena or unique occurrences. The 

importance of understanding the three-dimensional nature of a bound and unbound protein 

structures would prove invaluable. 
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MD simulation allows us to study a complex environment to predict the time evolution of a 

system of interacting particles (atoms, molecules, granules, etc.) with the aid of manipulating 

parameters such as temperature, velocity, flexibility of molecule and runtime.  The essence of 

the technique is to solve classical equations in an attempt to understand the energies and 

molecular mechanics of a particular network.  We are able to specify the initial velocity, 

conformation or positioning of our system, as well as we can direct the interaction potential.  

Computing Newton’s equations of motion, MD trajectories of complex biomolecular are 

generated 20: 

𝐹𝑖 = 𝑚𝑖

𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
                    𝑒𝑞𝑛. 6 

Where ri(t) represents the co-ordinate of the particle position vector (i), t = time, mi is the mass 

of the particle and Fi depicts the force acting on (i) particle at a specific t and mi. 

There are advantages of running MD simulations, as all the inputs of a particular model are 

derived from crystal structures or well-constructed homology models which provide a 

description of the interatomic and intermolecular interactions.  Further to this, the results 

derived from the simulation are predominantly unbiased and made to mimic a real-time system 

with no assumptions.  Critical information can be extracted from the MD ensembles generated, 

with regards to the atomic and molecular interactions 21. 

3.4.1 Molecular dynamics solvent parameters 

 

Solvated biomolecular systems are best parameterised using the Particle-Mesh Ewald method 

(PME).  When using this method the protein is embedded in an explicit solvent which leads to 

stable trajectories.  The method has proven to be an accurate and efficient computational tool, 

used to calculate the three-dimensional Coulomb interactions with two-dimensional periodicity 

22-24.  The PME method separates the potential energy into Ewald’s standard direct (Ur) and the 

reciprocal sums (Um).  Conventional Gaussian charge distributions are used to describe the 

electrostatic potential.  The direct evaluation of the sum of point charges i.e. Ur is measured 

explicitly using cut-offs, whilst Um term is calculated using the Fast Fourier Transform (FFT), 

which solves the three-dimensional Coulombic charges into a two-dimensional grid.  This 

process reduces the memory and time required for PME estimation, whereby the differentiation 

in energy can be computed analytically rather than interpolated. 
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3.4.2 Post-dynamics Analysis 

 

The post-dynamics techniques and calculations, discussed in this section have been used to 

describe the protein features in the studies of this thesis.  Post-dynamics analysis of trajectories 

obtained from the MD simulation is imperative in determining the: 

1) relative binding free energies,  

2) three-dimensional conformations and configurations, and  

3) to determine the state of thermodynamic equilibrium of the biomolecular system 25. 

3.4.2.1 Convergence 

 

Convergence is an empirical description of protein dynamics.  It is based on the fluctuations of 

bond type and bond angle vibrations, such that time magnitude and time range (from angstroms 

to a femto second to seconds) during the unfolding of a protein 26.  The point of convergence 

is often regarded as the stage at which the system enters a state of equilibrium such that in a 

graphical representation the curve is reported to plateau.  It is the point at which optimum 

distance from the reference structure is reached exhibiting the most energetically stable 

conformations of our protein-ligand system. 

The root mean square deviation (RMSD), provides invaluable information about the structural 

equilibrium of a simulated system.  Essential information derived from RMSD calculations, 

related to how long the system took to equilibrate can determine the number of conformations 

that exist for the biomolecule 27.  It may highlight biomolecules with ‘open’ and ‘closed’ 

conformations.  RMSD values may also shed light on the type of sampling of a structure 

whether it be extensive or non-convergent.  It can also aid in monitoring the atoms in the 

backbone and identifying the evolution of trajectories.  RMSD of a trajectory is calculated by 

continual measurement of the spatial difference between two static structures, i.e. a reference 

structure and the structure at that point in time of simulation 28. 

The evaluation of a systems potential energy (PE), during an MD simulation, confers 

information about the stability and functional motions of the structure.  Due to potential energy 

being quantised by velocity and time, a biomolecule takes to reach a state of equilibrium, 

different convergence behaviour may be monitored by calculating the ergodicity 29. 
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3.4.2.2 Conformational and structural analysis 

The manner in which a protein folds influences the conformational freedom of that protein.  

Thus it is important to evaluate the secondary structure of protein.  These determinations can 

be achieved by the following approximations:  

1) RMSF  

The root mean square fluctuation (RMSF) captures, for each atom, the fluctuation about its 

average position.  Providing insight into the flexibility of regions of the protein that corresponds 

to the crystallographic β-factors (temperature factors) 27. 

2) PCA  

Principal component analysis (PCA), is a technique which is based on the reduction of size or 

dimensionality of a data set, which originally consists of a large number of interrelated 

variables whilst retaining as much of the variation as possible.  Reduction in the sample size is 

achieved by transforming a new set of variables, i.e. the principal components, which are 

marked as uncorrelated 30, 31.  However, they are ordered in such a way that the first few 

components retain most of the variation present in all original variables.  Thus for the purposes 

of our study a restricted analysis to the first two modes was instituted.  A useful tool in 

acquiring information with regards to the conformational freedom of proteins is covariance.  

Conformational freedom implicates the potential energy in the stability and functional motions 

of proteins.  Equations 7 and 8 below, offer a classical means for the numerical diagnosis of 

flexibility i.e. covariance, within a system. 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑛 − 1
(∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

𝑛

𝑖

)                   (𝑒𝑞𝑛. 7) 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑛 − 1
(∑𝑋𝑖𝑌𝑖 − 𝑛𝑋̅𝑌̅

𝑛

𝑖

)                              (𝑒𝑞𝑛. 8) 

Covariance is denoted as, 𝑐𝑜𝑣(𝑋, 𝑌); and defined by the size of the data set (𝑛), the mean of X 

and Y values (𝑋̅𝑌̅), and the sum product of data values X and Y (∑ 𝑋𝑖𝑌𝑖)
𝑛
𝑖 .  An additional 

feature which allows the identification and fair comparison of protein during a trajectory is 

correlation.  Correlation (eqn. 9), concatenates the strength of linear association between two 

variables, which are quantified as being independent of one another.  Correlation (𝑟𝑋𝑌), is not 

governed by any measure or unit inflicted by the system.  This is accomplished by relating the 

covariance (𝐶𝑜𝑣(𝑋, 𝑌)) and variance of X and Y (𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)) 32, 33. 
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𝑟𝑋𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
                                                        (𝑒𝑞𝑛. 9) 

 

3) Solvent accessible surface area  

The solvent accessible surface area (SASA), is a derivative of the area over which absolute 

contact between the proteins’ Van der Waals surface and the solvent, arises.  This feature 

imparts information relative to the compactness of the structure as well as the extent of 

hydrophobicity in the interior of the folded protein 34. 

4) Radius of gyration   

The radius of gyration (Rg) is defined as the root mean square distance from each atom of the 

protein to their centroid.  It is classed as a qualitative assurance technique of MD simulations 

providing an understanding of the compactness of a biomolecule.  The compactness has been 

defined as the ratio of the accessible surface area of a protein to the surface area of an ideal 

sphere of the same volume 35.  The Rg is independent of the protein size.  The Rg and folding 

rate of a protein, share an inversely proportional relationship, e.g. A high radius of gyration 

value indicates a loosely-packed structure.   

 

3.4.2.3 Binding free energy calculations 

The binding free energy of MD ensembles can be calculated using different algorithmic 

approaches.  Some examples include: 

1) The free energy perturbation estimation, 

2) The Thermodynamic integration, 

3) The Linear interaction energy calculation,  

4) The Molecular Mechanics/Generalised Born Surface Area (MM/GBSA) calculation, 

5) The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculation, 

and 

6) The Molecular docking calculation. 

The MM/GBSA and MM/PBSA free energy calculations infer information based on 

protein structure determinations.  The techniques employ the principles of molecular 

mechanics, by using an implicit solvent model to solve the binding free energy 
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computation.  Evaluation of ligand-protein complexes using MM/GBSA or MM/PBSA, 

provides a quantitative analysis of the binding affinity of the ligand to the protein.  The use 

of MM in these approaches, allows for averaged energy estimations to be made over certain 

frames from the MD trajectory to derive an estimate of the absolute binding free energy.  

The total binding free energy (ΔGbind), in equations 10 and 11, is defined by the collective 

contributions of: 

7) the gas-phase energy (Egas) term,  

8) the solvation free energy (Gsol) term, and 

9) multiple of the temperature (T) in Kelvins and entropy (S) approximation 

∆𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑                    (𝑒𝑞𝑛. 10) 

∆𝐺𝑏𝑖𝑛𝑑 = 𝐸𝑔𝑎𝑠 + 𝐺𝑠𝑜𝑙 − 𝑇𝑆                                              (𝑒𝑞𝑛. 11) 

𝐸𝑔𝑎𝑠 = 𝐸𝑖𝑛𝑡 + 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙𝑒                                               (𝑒𝑞𝑛. 12) 

𝐺𝑠𝑜𝑙 = 𝐺𝐺𝐵/𝑃𝐵 + 𝐺𝑆𝐴                                                               (𝑒𝑞𝑛. 13) 

𝐺𝑆𝐴 = 𝛾𝑆𝐴𝑆𝐴                                                                       (𝑒𝑞𝑛. 14) 

GSA, represents the non-polar solvation energy term and GGB describes the polar solvation 

energy.  Internal potential terms such as bond types, bond angles, torsional stresses and 

dihedral angles, influence the potential energy stability of the protein complex, which 

ultimately affect the binding free energy value.   

From the two methods MM/GBSA has better accuracy and determination capability of the 

ligand-protein binding free energy 36.  Thus it has been the preferred calculation used in the 

studies. 
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Abstract: The implementation of computational tools in pharmaceutics has proven an effectual 

strategy in creating harmony between the physical and chemical aspects of proteins and 

potential inhibitors.  This is achieved by bringing to life the three dimensional retrospect of 

biological systems, which takes into consideration computational approaches such as quantum 

mechanics and molecular dynamics to facilitate drug design and discovery.  In this work, we 

aim to provide a summary of the computational aspects of naturally derived anti-cancer 

inhibitors targeting the enzyme family of glucosidase’s.  Our study offers insight into the 

evolution of drug discovery, molecular modelling and molecular binding modes of natural 

product inhibitors associated with glycosidase enzymes.   

Keywords: Anti-cancer inhibitors, glycosidase, molecular modelling, natural product. 

 

INTRODUCTION 

Natural Products in Drug Discovery 

Since the beginning of time man has exploited the use of plant and animal based products for 

their medicinal application.  Ancient Eastern traditional healers have documented the healing 

properties of roots, bulbs, flowers and other herbs like ginseng, for at least 4,500 years [1].  

European healers dating back to the 10th century used foxglove (Digitalis purpurea L.), which 

was found to contain the active ingredient digitoxin which is effective in the management of 

congestive heart failure, along with its many structure based analogues [2].  The 

pharmacological use of natural products was, however, only established in Western culture by 

the 19th century the most famous being the synthesis of the anti-inflammatory, aspirin, derived 

from salicin, isolated from the bark of the willow tree (Salix alba L.).  By 1803 the alkaloid 

morphine was isolated from opium poppy (Papaver somniferum L.) which had been used by 
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the Sumerians and Ancient Greeks, and dubbed by the Arabs as being addictive.  Later during 

the 1870’s crude morphine treated with acetic anhydride yielded heroin, which was found to 

readily convert to codeine, a painkiller [2, 3].  The track record of nature lending itself as a 

curative, preventative or symptomatic treatment has been our only saving grace in eradicating 

infection and alleviating disease and other syndromes.  The current status of pharmaceutics 

worldwide indicates that approximately 40% of all dispensable medicines are either natural or 

semi-synthetic analogues of natural derivatives [4].  We are only at the precipice in drug 

discovery in terms of natural products and have yet to uncover and explore hidden secrets in 

different species genome using genome sequencing or single molecule real-time methods.  

Such discovery would allow new introspection in our management of disease, how some 

organisms remain immune to certain infections, as well as it would provide a new mechanism 

by which alternate biocatalysts and natural products may be identified.   The bulk of natural 

product derivatives currently in clinical study are dedicated to the treatment of cancer [5].  

There are a multitude of natural products sanctioned as leads in anticancer, there exists four 

main plant based drug classes, these include: 1) vinca alkaloids, 2) epipodophyllotoxins, 3) 

taxanes, and 4) camptothecines.  Each class targets different stages or pathways of the cell 

cycle of cancerous cells.  The alkaloids vinblastine and vincristine (Fig.  1), block mitosis with 

metaphase arrest by binding to tubulin resulting in its depolymerisation.  In combination with 

other cancer chemotherapeutic drugs the alkaloids can be used in the treatment of a variety of 

cancers including leukaemia’s, lymphomas, advanced testicular cancer, breast and lung cancer, 

and Kaposi’s sarcoma.  Podophyllotoxin derivatives etoposide and teniposide (Fig.  2), bind to 

tubulin, leading to DNA strand degradation irreversibly inhibiting topoisomerase II.  These two 

derivatives are used in the treatment of lymphomas, as well as bronchial and testicular cancers.  

The class of taxane, which include paclitaxel (taxol®) and other like derivatives act by 

disrupting the assembly of tubulin, they show specific activity in patients diagnosed with 

breast, ovarian and non-small cell lung cancer.   Camptothecin analogues selectively inhibit 

topoisomerase I.  The more effective and safer analogues being topotecan, an ovarian and small 

cell lung cancer chemotherapy and irinotecan, used in patients with colorectal cancer (Fig.  3).  

There exists many other natural products implicated in the treatment of different cancers, which 

only amplifies the cause for continued research efforts toward investigating natural products 

and their derivatives for their medicinal activity [6-8]. 
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Figure 1: Alkaloid anti-cancer derivatives vinblastine and vincristine [6]
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Figure 2: Podophylltoxins (etoposide and teniposide) and taxane (taxol®) anti-cancer agents [6] 
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Figure 3: Camptothecins; topotecan and irinotecan cancer inhibitors [7] 

 

 

Cancer and the Role of Glycosylation 

Cancer has been deemed one of the world’s major causes of mortality.  Characterised by the 

out-of-growth” cell growth, prohibiting normal bodily functions depending on the type of cell 

infected.  Cancer is a disease instigated by the function or dysfunction of catalytic pathways or 

cellular proteins.  Being a heterogeneous disease there are a number of biological therapies 

available to patients, which target specific genetic markers or enzymes relevant to the 

development and growth of the condition.   Through high through-put screening/dock it has 

been established that carbohydrates play an important role in cancer; and circulating or cell 

surface tumour-associated carbohydrate antigens serve as diagnostic markers [9-11].  Cell 

surface glycosylation is universal to all living cells reflecting their physiological state, and are 

perfectly positioned to mediate adhesion and motility.  A shift from the normal glycosylation 

pathway leads to altered glycan expression due to one or more of the following changes: (1) 

under- or overexpression of glycosyltransferases deregulated at the level of epigenetics [12, 

13], transcription [14-16], post-transcription [17], and/or chaperone [18]; (2) altered 

glycosidase activity [19-21]; (3) altered expression of glycoconjugate acceptor together with 

availability and abundance of the sugar nucleotide donor [22]; (4) modified sugar nucleotide 

transporter activity [23]; and (5) malfunction of the Golgi structure, the warehouse of 
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glycosyltransferases [9, 24, 25].  Abundant literature has suggested aberrant glycosylation 

contributes to various aspects of cancer development and progression, including proliferation, 

invasion, angiogenesis, metastasis and immunity [9, 26, and 27].   Fig.  4, depicts the N-

glycosylation pathway on the surface of the Golgi apparatus.  Overall the biosynthesis of N-

glycan’s have been deemed an expensive process in terms of the number of actively 

participating enzymes in the synthesis and trimming of N-glycan’s.  Structural diversity of N-

glycan’s in mature proteins in the cell surface are introduced by glycosyltransferases in the 

Golgi complex as a terminal step.  The core glycan’s in the endoplasmic reticulum are universal 

from yeast to mammal and are considered intermediates [28].   

 

Figure 4: Diagram of N-glycosylation pathway in human Golgi complex [29] 

 

Glycosidases are a vast class of enzymes designated to cleave glycosidic bonds of 

carbohydrates or polysaccharides to essentially assist in biochemical processes such as protein 

folding in living cells [27, 29].  Vocadlo and Davies provided insight into the mechanistic 

behaviour of glycosidase enzymes by understanding the enzyme reaction co-ordinates, through 

collective works in computational and structural studies [27].  The fundamental function of 

these enzymes is to hydrolyse glucose residues from glucosides.  Their specificity originates at 

a structural level, in terms of their α- and/or β- configurations as well as the configuration of 

its particular substrate.  The inability of a glycosidase to function correctly or expressions of 

the enzyme have been implicated as a cause of cancer.  Related cancers include: breast cancer 
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[30], brain tumours [31], prostate [32], lung, gastric, bone and ovarian [33].  The glycosylation 

pathway is an imperative target in the prevention of development of cancer or further spread 

of the disease [34].  There are an estimated 16 enzymes steam rolling the glycosylation pathway 

within the cellular framework.  These sites include the endoplasmic reticulum, golgi apparatus, 

cytosol and nucleus.  Each of the glycosidase enzymes, based on tissue loci and organism, 

exists in either an α- and/or β-configuration and are governed by the structural feature of the 

bond on which they exert themselves [35].  A prime example of the uniqueness of this class of 

enzyme is glucosidase.  The α-glucosidase depicted in Fig.  5, is derived from sugar beet and 

classified as an endoplasmic reticulum inner membrane bound protein, which is responsible 

for the cleavage of α-(1,2)- linked glucose units from amylose to extended carbohydrate chains 

[36].   

 

Figure 5: Crystal structure of sugar beet α-glucosidase (PDB code: 3WEO) [37] 

 

Fig.  6, highlights the covalent intermediate of human cytosolic β-glucosidase.  This enzyme 

has been associated with essential organs of the human metabolism such as the small intestine, 

kidneys and liver.  It is thought to play a role in the detoxification of xenobiotics (foreign 

chemical compounds which pose a toxic threat to the healthy cells), by hydrolysing β-glucoside 

moiety providing a site for conjugation which would lead to rapid excretion in the bile and 

urine [38, 39].   
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Figure 6: Crystal structure of the covalent intermediate of human cytosolic β-glucosidase (PDB code: 

2ZOX) [40] 

 

A vast array of natural product glycosidase inhibitors have been explored due to their extensive 

ability in the treatment of cancer.  These include but are not limited to: castanospermine and 

deoxynojirimycin (glucosidase I & II and lysosomal α-glucosidase inhibitors), swainsonine 

(lysosomal and aryl-mannosidases inhibitor, and a potent mannosidase II inhibitor), 

kifunensine (potent mannosidase I inhibitor), allosamidin, salacinol, nojirimycin, mannostatin 

A & B, isogaomine, kojibiose, sophorose, nigerose, trehalose and xanthone derivatives. 

 

Evolution of Computational Techniques to Present Day 

By the 1950’s much improvement had been made in the way of instrumental techniques 

developed to analyse chemical reactions and molecular structures.  However, the lack of 

understanding in terms of kinetic models, visualisation of dynamic interactions as well as how 

and what the conformations, transition states and reaction intermediates look like and existence 

in their natural systems, left many an unanswered question.  It was not until 1957 when 

researchers Alder and Wainwright, reported the first successful molecular dynamic (MD) 

simulation.  Even in its infancy the pair brought to life phase transition.  Their investigation 

was based on a solid-fluid system evolution comprised of rigid spheres colliding 

instantaneously.  With limited computing, a 500-particle system was designed, emulating 

collisions between particles with a duration of one hour on an IBM 704 computer [41].  This 

sparked a ripple effect where in 1960, Gibson and colleagues implemented the first continuous 

repulsive Born-Mayer interaction potential in MD simulation.  This attempt may have been the 



51 

 

first recorded MD method in materials science.  Their study was based on the radiation damage 

in a copper (Cu) target.  This was performed by applying a constant force towards each atom 

on the boundary of the crystallite to account for the attractive part of the interatomic interaction 

[42].  In 1964 Aneesur Rahman described the attractive and repulsive forces in an 864 argon 

atom system using the Lennard-Jones potential [43].  The computational methods applied in 

his study, such as pair correlation function, velocity autocorrelation function and mean square 

displacement calculated for liquid Argon, are still relevant in current studies.  Current studies 

have observed the evolution of MD simulation and the vast approaches and information that 

can be derived from such analysis.  MD studies have offered a remarkable platform in the field 

of pharmaceutics; with regards to design and discovery of new and effective drug therapies for 

a multitude of diseases [44].  Nobel prize winner Richard Feynman described the motion of 

atoms being governed by probability functions, where chemical bonds are not formed 

mechanically but rather by the shifting of electron clouds which act as both waves and particles 

[45].  Thus the standard of the ‘lock and key’ theory has been set aside to accommodate the 

new age of binding models which accounts for conformational changes as well as the random 

motions of receptors and ligands.  This seemingly minor difference allows molecular dynamic 

simulations to stand apart from other static two dimensional models, thus playing an important 

role in drug discovery.  With the ability to analyse a three dimensional (3D) crystal structure 

of protein or target, we may gain perspective into the key features that enable such structures 

to function and possibly enhance or inhibit the expression of the protein species.  Such 

techniques which exploit these attributes are molecular dynamics and quantum mechanics, 

homology modelling and virtual screening.  Each of which offers different introspection into 

the specific aim of study [46]. 

 

COMPUTATIONAL APPROACHES ON NATURAL AGENTS AGAINST CANCER 

Homology Modelling 

Homology modelling is a technique applied in the prediction of protein structure based on the 

act that proteins of similar sequences bear similar structures.  The technique has promoted the 

identification of protein function and mechanism, drug binding to specific sites and 

rationalisation of select amino acids in the discovery of pertinent biological function ascribable 

to mutagenesis.  Due to computational methods being economically viable high throughput 

docking is an ideal method to select promissory compounds of appropriate chemical nature 

from extensive virtual chemical libraries, since they incur minor errors.  Lead optimisation 
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is a monotonous process of modifying the chemical structure of a known hit by modifying its 

physico-chemical and pharmacological properties to improve bioavailability, minimize 

unwanted toxicity and obtain the admissible drug profile appropriate for animal model studies 

and clinical trials [47].  Protein-ligand interaction comprehension is crucial in homology-based 

lead optimization, since the character of the structure obtained can steer ligand optimization 

towards enhanced pharmacological profiles.  Homology modelling has a significant 

contribution to structure-based drug discovery through prediction and generation of rational 

3D models for drug targets.  It generates plausible protein structures by presenting a 3D model 

from a protein template sequence subject to previously reported homologous protein structures.  

When building a homology model for proteins, the following typical procedure should be 

adhered to: 1) 3D protein structures with ~30% primary sequence similarity over the protein of 

unknown structure should be used [46, 48]; 2) the alignment of template and target protein 

sequences; 3) identification of variable and structurally conserved regions; 4) generation of 

structurally conserved residues of the unknown structure from template structure(s); 5) 

generation of loop conformations for the unknown structure; 6) generation of side chain 

conformations for the modelled protein; 7) refinement and evaluation of the generated 

unknown structure.  The RMSD (root of mean square deviation distance between Cα atoms) of 

the homology model is compared to that of the experimental structure, which should be ~ 1-2 

Å, to verify the accuracy of the homology model [49].  The accuracy of a homology model is 

defined by the template of choice, alignment accuracy and application of efficient refinement 

methods [47].  Homology models generated with over 50% sequence identity have satisfactory 

accuracy for drug discovery applications; whereas models of sequence identities of 25% to 

50% can be applied in target druggability assessment and design mutagenesis.  Homology 

models have proven invaluable as a rationalising tool of SAR data and the prediction of binding 

modes of experimental compounds [50, 51].  Heparanase is an endo-β-D-glucuronidase, which 

has been reported as a target for antimetastatic agents.  Its unique function in degrading heparin 

sulphate glycosaminoglycans in mammalian tissue has highlighted the enzyme.  Over 

expression would result in invasive normal and malignant cells such as; immune cells, 

lymphoma, melanoma, and carcinoma cells as well as human head and neck tumours.  Ishida 

et al., had proposed the design of selective inhibitors of heparanase by using a homology model 

of the enzyme.  The homology modelled enzyme was based on the sequence alignment of 

human heparanase and 1,4-β-xylanase from Penicillium simplicissimum.  Based on this model 

it was identified that the interaction between inhibitor and heparanase enzyme was stabilised 

by arylalkylation [52].  Glucosidases are last stage carbohydrate digestive enzymes.  They are 
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responsible for hydrolysing the glycosidic bond of oligosachharides.  Park et al., wished to 

design new inhibitors derived from structure based virtual screening.  In order to accomplish 

this they were required to obtain a high quality amino acid sequence of the enzyme.  This was 

achieved by the alignment of sequence from baker’s yeast α-glucosidase and oligo-1,6- 

glucosidase from Bacillus cereus.  Such that these sequences shared an amino acid identity and 

similarity of 38.5% and 58.4% respectively.  The homology model was sufficient to perform 

docking studies.  It was observed that the target and the template displayed highly similar 

folding structures, whereby the catalytic residues were conserved in terms of position in the 

active site when compared to the x-ray crystal structure of oligo-1,6-glucosidase (Figs.  7 & 8) 

[53].   

 

Figure 7: Comparative view of (a) homology modelled structure of α-glucosidase and (b) the x-ray 

crystal structure of oligo-1,6-glucosidase [53] 

 

Figure 8: Comparison of the ProSa energy profiles of the homology modelled structure of α-

glucosidase (red) and the x-ray crystal structure of oligo-1,6-glucosidase (green) [53] 



54 

 

Researchers Moorthy, Ramos and Fernandes conducted homology modelling of an α-

glucosidase enzyme which was later used in a quantitative structure activity relationship study 

of xanthone derivatives.  They had deduced that the active site of the model retained residues 

aspartic acid, histidine and glutamic acid, which contributed to the specific structural features 

of potential inhibitors [54].  Human glycan’s which include N-linked glycan’s, ABO blood 

group and Lewis antigens have prominent structural moieties of α-L-fucose a residue by-

product of reaction catalysed by α-L-fucosidase [55, 56].  Many cancers are associated with 

the high levels of fucosylation which increases with expression of the enzyme [57, 58].  Bueren 

et al., analysed the reaction co-ordinate of α-L-fucosidases by combining structural and 

quantum mechanical approaches.  They were able to interpret inhibitor binding by deriving a 

homology model of enzyme from B.  thetaiotaomicron as the sequence identity was in high 

correlation with that of the human enzyme [59]. 

 

Qualitative Structure Activity Relationship (QSAR) 

QSAR is a technique that has infiltrated the scene of drug design and discovery as an invaluable 

tool.  It has been implemented to identify ligands with high affinities for specific 

macromolecular targets, by screening drugs and providing potential outcomes of synthesis and 

testing.  It has also been applied in extended research in predicting adsorption, distribution, 

metabolism, elimination, toxicity properties as well as bioavailability of compounds.  Such 

studies can be undertaken on different dimensions ranging from 1D-QSAR, where only a single 

property of the ligand is exploited correlating to its activity; to 6D-QSAR which involves the 

ligand being represented as an ensemble of configurations with the explicit representation of 

different induced fit models and the representation of different solvation scenarios [60].  

Glycosidases have evolved finely tuned active site configurations for the specific hydrolysis of 

glycosidic bonds.  The inhibition of glucosidases has offered a noteworthy effect on the glycon 

structure ultimately affecting the maturation, transport, secretion and function of glycoproteins.  

Thus this could potentially have an altered recognition of cell-cell processes.  Moorthy et al., 

attempted QSAR studies on associated xanthone derivatives based on the data set published by 

Yan et al., as inhibitors of α-glucosidase.  Xanthones are natural derivatives extracted from 

different medicinal plant material (Fig.  9) [61, 62].  Due to the limited information presented 

from current literature, they decided to delve into the link of biological activity data and 

physiochemical descriptors of molecules.  By exploring structural features which have a 

determining effect on the binding affinity, mechanism of inhibition, topology and 

hydrophobicity.  It was established that heteroatoms such as; oxygen bonded to carbon, are 
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favourable features for enzyme inhibition.  Using an E-state count descriptor, the most 

favourable framework for inhibition of enzyme activity is a carbon atom linked with three 

aromatic bonds and hydrogen or other atoms [54, 63, and 64].  Moorthy and colleagues 

performed additional studies on the α-glucosidase enzyme of B.  Stearothermophilus and S.  

cerevisiae and their interaction with chlorogenic acid inhibitors [65]. 
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Figure 9: Xanthone and subsequent xanthone derivatives 

 

Virtual Screening 

Virtual screening has offered a cost effective method by which we may search for lead 

structures for further development as therapeutic agents in different biological systems and 

against a multitude of targets.  An advantage of this technique is the resulting computational 

prediction of binding affinity, which contributes to bottlenecking and reduces the number of 

compounds required for testing.  In terms of drug design, a range of computational methods 

are employed at distinctive stages of the procedure.  As previously mentioned, high through-

put screening of large compound libraries focuses on decreasing the number of potential 

ligands.  Post lead optimization, reduction of experimental costs and time is emphasized.  

Molecular dynamic simulations have improved docking procedures in terms of Molecular 

Mechanics Poison-Boltzmann/ Generalised Born Surface Area (MM/PBSA or MM/GBSA), 

Free Energy Perturbation (FEP), Thermodynamic Integration (TI) and Linear Interaction 

Energy (LIE) approaches [66-69].  They add invaluable insight into the dynamic behaviour of 

proteins at various time-frames, from speedy internal motions to steady conformational 

changes or even protein folding processes.  Studying of the explicit solvent molecule effect 

[70] on protein structure and stability to characterise a biomolecular system is plausible.  Such 

system characteristics include density, conductivity, dipolar moment and thermodynamic 

parameters inclusive of interaction energies as well as entropies [71, 72].  Several MD-based 

in silico methods for binding energy predictions have been extensively applied in drug design 

as they provide statistically meaningful conformational ensembles for thermodynamic 

calculations at a reasonable computational cost.  MM/PBSA and MM/GBSA are considered 
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more computationally efficient calculations as opposed to FEP/TI.  This is attributed to the 

former free binding energy calculations having fewer constraint rules to obey, as well as their 

capability to dissect total binding free energy into different interaction terms [73].  MM-

PBSA/GBSA are, however, theoretically more rigorous as such calculations take into 

consideration the conformation of free ligand, receptor and ligand-receptor complex.  The FEP 

theory was initially introduced by Zwanzig in 1954, where he correlated the free energy 

distinction between reference and target state of a system to its average function of energy 

estimated by sampling initial states [74].  Since then much improvement has been made by way 

of calculating free energy differences using this technique.  These include coupling the 

mathematical algorithm with advanced molecular dynamics and Monte Carlo sampling to 

elucidate respective solvation free energies, pKa values, medium-effects on conformational 

equilibria, host-guest binding affinities, organic and biochemical reactions free energy surfaces 

[75].  Alternatively, binding energies can be calculated by scoring functions as they compute 

results faster than the MM-GB/PBSA models.  However, scoring functions lack precision, with 

an average error of ~2.5 kcal/mol [69].  In 2008 Park and colleagues suggested discovering 

novel inhibitors of α-glucosidase through virtual screening encouraged by a homology-

modelled protein structure [53].  The technique allowed the screening of a library estimating 

85,000 compounds, resulting in the reduction of sample size to 200 of the highest scoring 

compounds.  It was later established that only 13 of these suggested agents presented a 50% 

inhibition at a concentration range between 0 μM and 50 μM [53].  Figs.  10, 11, are 

representative inhibitors, their scaffolds now form the templates for further development and 

investigation of structure based de novo synthetic inhibitors. 
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Figure 10: Compounds 1 - 8 of newly identified α-glucosidase inhibitors [53] 
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Figure 11: Chemical structures 9 - 13 of newly identified α-glucosidase inhibitors [53] 

 

Molecular Modelling and Binding Modes 

Molecular modelling is a fusion of structure and function of molecules in the form of proteins, 

ligands and cellular entities.  The manipulation of chemistry and laws of protein folding allows 

scientists to seek understanding of physiology of disease.  The essence of the technology 

utilises molecular biology, x-ray crystallography and quantum mechanics [71, 76, and 77].  The 

allure of molecular modelling techniques lies in the atomistic level description of molecular 

systems.  There are three common stages involved in molecular modelling studies.  The first 

stage is a selection process whereby a model is chosen to best describe the intra- and inter- 

molecular interactions in a system.  The two most frequently used models are quantum 

mechanics and molecular mechanics, both follow the fundamentals of the energy associated 
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with the arrangement of atoms and molecules within the system.  The second stage 

encompasses the actual mathematical calculation of the system, this includes energy 

minimisation, molecular dynamic or Monte Carlo simulations or a conformational search.  This 

leads directly into the final stage of post-analysis of the calculations carried out in stage two.  

It is no small wonder that from these stages computational chemistry or molecular modelling 

is regarded as a classical example of scientific art [78].  From the post-analysis of calculations 

performed a multitude of information may be generated with respect to molecular geometry, 

energies, electronic properties, spectroscopic properties and bulk properties [78, 79].  

Allosamidin has been classified as a pseudo-trisaccharide (Fig.  12), isolated from the mycelia 

of Streptomyces sp.  [80].   

O

HO

HO NH

HO

O

O

OHO

HN O

HO

O

N

O

N

HO

HO

H

H

Allosamidin

 

Figure 12: 2D structure of allosamidin 

Germer and colleagues performed molecular modelling studies on the allosamidin and six 

additional analogues based on the allosamidin framework in an effort to validate 

conformational information extracted from 2D NMR studies.  Of which it was concluded that 

the results of each method were aligned.  Proving once again that computational approaches to 

scientific investigations can act both as a tool of diagnosis and validation [81].  Kara et al., 

proposed a mechanism of action of allosamidin in chitinase, which is regarded as a type of 

glycohydrolase enzyme.  With modelling, Kara and colleagues suggested that mechanism of 

action of the enzyme involves the bending of acetalamido group to oxygen of the substrate ring 

which subsequently neutralises the charge.  Allosamidin mimics the transition state of the 

catalytic reaction and thus perpetuates competitive and selective inhibition of the enzyme [82].  

α-Mannosidase is a class II enzyme partaking in the N-glycosylation reaction, with a function 

to link oligosaccharides to distinct asparagine amino acids in incipient proteins.  Thus 

subsequent inhibitors show radical antitumour and antimetastatic activity.  Such inhibitors 

include kifunensine an alkaloid derived from actinomycete Kitasatosporia kifunense, salacinol 
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extracted from Salacia reticulata and swainsonine [83-85].  Shah et al., compared the binding 

of kifunensine and 1-deoxymannojirimycin to α-mannosidase (Fig.  13).   
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Figure 13: 2D structure of α-mannosidase inhibitors kifunensine, swainsonine and 1-

deoxymannojirimycin [88] 

 

1-Deoxymannojirimycin, once thought only a derivative of the natural inhibitor nojirimycin a 

piperidine alkaloid isolated from Streptomyces sp., was found naturally occurring from the 

extract of mulberry leaves, Bacillus and Streptomyces sp.  as well as Micronesian marine 

sponge [5, 86, 87].  However, both entities proved viable inhibitors of glycosidases and thus 

exerted an effective activity as antitumor and anticancer agents.  Shah and colleagues 

performed energy directed studies which proposed kifunensine inferring moderate inhibition 

to class II mannosidase as compared to being more potent against class I mannosidase.  With 

kifunensine maintaining a 1C4 conformation in each of the different active sites.  1-

Deoxymannojirimycin being a smaller inhibitor observed a 4C1 conformation in the class I 

mannosidase active site but a 1C4 conformation in the class II mannosidase active site [88].  

Wen et al., investigated the binding mode off the previously mentioned inhibitors docked in 

the glycosidase enzyme.  The study revealed that the five membered ring of kifunensine is 

planar.  There exists three distinct binding modes differing by the distance between zinc and 

hydroxyl polar groups.  In mode I the distance was estimated to 2.3 Å, mode II 3.31 Å, whereas 

with mode III the ligand appeared to turn completely within the active site and thus the distance 

was of polar group to zinc was too far.  With respect to salacinol the inflexibility of its five 

membered ring offered pseudo rotation (Fig.  14).  The three distinct binding modes of this 

system reasoned that the relative conformations are independent of the interaction between the 

polar species of the ligand and active site interactive moieties.  In conclusion these findings 

satisfied those observed from x-ray crystallography [89].   
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Figure 14: 2D structure of salacinol 

Mannostatin A and B (Fig.  15), were discovered by Aoyagi and collaborators in 1989 from 

isolates of Streptoverticilliu verticillus variation quantum.  Classed as novel 

aminocylcopentitol structures they were found to be active inhibitors of α-mannosidase and α-

glucosidase [90].  Kawatkar et al., explored the ligand-protein interactions of mannostatin A 

and α-mannosidase II.  Their research team had elucidated that mannostatin A mimicked 

covalently linked mannosyl intermediate which adopts a 1S5 skew boat conformation.  It was 

established that the thiomethyl group is required for high affinity binding, which was reported 

to have good overlay with the C-6 hydroxyl of the covalently linked intermediate [91].  Kuntz 

et al., had performed binding mode studies on a similar system.  Their findings were in cognito 

with corresponding literature, that inhibition sees crucial contribution of zinc interactions, 

interactions with Asp341 and Asp472, as well as hydrophobic interactions with Phe206 of the 

enzyme [92].   
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Figure 15: 2D structure of mannostatin A and B with corresponding inhibition values [92] 

 

Cardona et al., conducted molecular dynamic simulations on glucoamylase II from Aspergillus 

awamori with natural inhibitors 1-deoxynojirimycin and lentiginosine (Fig.  16) in an attempt 

to understand binding for further investigation in the design of new inhibitors in human systems 

as antitumour agents.  It was then determined that lentiginosine observed optimal conformation 
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in the enzyme cavity when hydrogen bonding to residues Arg54 and Arg55.  As well as 

inhibition was dominated by the interaction of hydroxyl groups of the substrate with key 

enzyme residues [93].  Zhou et al., performed similar simulations, however, the system 

involved comprised of 1-deoxynojirimycin and isogaomine.  They showed that 1-

deoxynojirimycin bound to glucosidase in a protonated chair conformation with a binding 

energy value of -46.76 kJ/mol. 

Major thermodynamic contributions implying favourable enthalpy of binding were attributed 

to strong hydrogen bonds and electrostatic interactions between enzyme and ligand [94]. 
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Figure 16: 2D structure if lentiginosine 

 

Pereira et al., performed a conformational and dynamical study on disaccharides in water using 

explicit-solvent molecular dynamic simulations [95, 96].  They analysed eight reducing 

disaccharides of β-anomeric configuration isolated from honey: kojibiose, sophorose and 

nigerose (Fig 17), as well as laminarabiose, maltose, cellobiose, isomaltose and gentiobiose.  

In current literature most of the disaccharides have been characterised and theoretically 

investigated using MD simulations, molecular mechanics calculations or quantum mechanics 

calculations.  In the study a continuous 50 ns run time was performed, during which time it 

was concluded that the preference of dihedral angles which dictates that polar substituents are 

to be orientated away from the ring [97].   
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Figure 17: 2D structure of kojibiose, nigerose and sophorose disaccharides 
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Kräutler et al., explored conformation, dynamic, solvation and respective stabilities of specific 

β-hexopyranoses in water using a molecular dynamic platform.  Four β-D-aldohexopyranoses 

monosaccharides were studied, namely: β-D-glucose, β-D-mannose, β-D-galactose and β-D-

talose; which were simulated in a series of 200 ns timescale.  During the simulation the latter 

three substrates maintained a 4C1 chair conformation, unlike glucose which has evolving boat 

and twisted configurations.  Kräutler et al., described the intramolecular hydrogen-bonding 

pattern with each substrate, and were deemed opportunistic contributors to the relative 

conformation and stability of the structure.  They had ranked the estimated epimerisation 

energies in order of decreasing stability, with talose exhibiting the least stability superseded by 

galactose and mannose in turn, with glucose registered as most stable.  This confirmed results 

obtained from intramolecular effects and hydrophilicity investigations [98].  Trehalose (Fig.  

18), a sugar extract from yeast, exists as a naturally occurring disaccharide in mushrooms and 

other fungi.  This unique combination of α-D-glucopyranosyl-α-D-glucopyranoside has been 

implicated as prominent inhibitor of the glucosidase enzyme [99].  The dysfunction of the 

enzyme has proven a target in the prevention of growth and development of metastatic cancer.  

Trehalose has been shown to form direct hydrogen bonds to proteins which endure the ligand 

requiring occupation of specific active site in a specific orientation [100].  There have been a 

number of reported simulations investigating the structural dynamics of binary sugar/water 

solution in an attempt to elucidate physical properties [101-111].  Sum et al.  [112] and Pereira 

et al.  [113, 114] had conducted a simulation of a lipid membrane in the presence of sugars.  

They discovered that specific hydrogen bonding governed the interaction between sugar and 

lipid molecules.  Lerbret et al.  had decided to simulate a lysozyme in aqueous solution of 

trehalose, sucrose and maltose.  It was suggested that trehalose was the most hydrated of all 

the three sugars as it maintained a greater number of hydrogen bonds with water [115].   
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Park and collaborators, took their study of novel α-glucosidase inhibitors a step further by 

exploiting the binding modes of the 13, then, newly identified molecules in the active site of 

the enzyme during which they noticed that the phenolic oxygen of the select inhibitor was a 

key feature in the migration of a hydrogen bond from His348 to Asp349, essentially translating 

to the phenol moiety playing a pivotal role for binding to the active site.  It was also established 

that the stabilisation of docked ligands can be attained by inducing hydrophobic interactions at 

across from the active site [53]. Pistarà et al., had provided in silico characterisation of 

cyclitols, inosose the ketone structure of inositols found in mammalian tissues and 

Streptomyces griseus.  The inosose molecules were docked in human maltase-glucoamylase 

which has been crystallised with miglitol (Fig.  19).  It was determined that nitrogen that 

engages in a hydrogen bond with Asp443 in the catalytic residue is an essential entity for 

inhibitory activity.  Additional structural components such as benzyl have the ability of filling 

the active site [116].  The binding free energy of compound 1 was calculated to be -6.0 kcal/mol 

and was found to possess the greatest inhibitory effect with an inhibition constant of 36.9 μM. 
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Figure 19: (left) 2D structure of miglitol and (right) 2D structure of compound 1 

CONCLUSION 

From the topics described above, it is evident that there exist considerable gaps in the way of 

computational studies performed on the natural element inhibitors of glycosidase enzymes.  

These include the understanding of kinetic mechanisms of inhibitor enzyme interaction, 

conformational support within active site, effects of mutagenesis, selective and competitive 

inhibition of enzyme species; and many more.  Thus, there is great opportunity for continued 

research toward answering many of these essential components by way of a computational 

approach.  Additional research toward understanding the reaction kinetics and mechanism of 

glycosidase enzymes in their natural biological system, would be imperative in our quest to 

discover and design innovative anticancer inhibitors.  Despite the large array of high resolution 
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crystal structures available within the protein databank, much effort is required in acquiring 

crystal structures of human glycosidase.  Such that accurate study may be performed to 

investigate possible inhibitors.  Intensive molecular dynamic study encompassing molecular 

biology techniques would aid research in determining critical enzyme reactions that perpetuate 

cancerous species.  Thus by isolating specific drug targets, it would allow us to build into the 

inhibitor, selective drug delivery systems exerting a specialised response.  An attractive feature 

of obtaining refined crystal structures of human glycosidase enzymes, offers insight into the 

active site residues.  Thus accurate binding modes may be established as well as chemical 

structuring of potential inhibitors may be designed according to supported conformational and 

steric properties.  Despite limitations of the crystal library with the aid of computational tools 

we may continue studies in this field by accurately constructing best-fit homology models of 

associated enzymes.  Extensive studies based on QSAR and QM/MM of biological systems 

will dramatically improve our understanding of the influence of glycosidase enzymes in cancer 

development.  As well as it could bridge the gap between theoretical and experimental studies, 

by economising on time, cost of study and prioritising higher possibility enzyme structure and 

mechanistic predictions.  The above mentioned attributes contribute to the design and 

development of new drugs as anticancer agents as well as provides pivotal information with 

regards to the specific enzyme pathways implicated in cancer.  Molecular dynamic studies 

present an opportunistic methodology whereby we may unlock and unveil the mystery 

underlying the disease thus unleashing great strides in our fight against cancer.  Computational 

techniques boast an arsenal to unravel and offer a broad introspection into the molecular 

dynamics of glycosidase enzymes.  Thus the study of this family is not exclusive or restricted 

to its effect on cancer but rather a multi-dimensional study on other congenital disorders of 

glycosylation may be investigated.  Armed with computational tools the study of glycosidase 

enzymes remains limitless, and with the limited literature available within this topic much 

research is yet to be done in this field. 
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 Abstract: This study embarks on a comprehensive description of the conformational 

contributions to resistance of neuraminidase (N1) in H1N1 and H5N1 to oseltamivir, using 

comparative multiple molecular dynamic simulations.   The available data with regard to 

elucidation of the mechanism of resistance as a result of mutations in H1N1 and H5N1 

neuraminidases is not well established.   Enhanced post-dynamic analysis, such as principal 

component analysis, solvent accessible surface area, free binding energy calculations, and 

radius of gyration were performed to gain a precise insight into the binding mode and origin of 

resistance of oseltamivir in H1N1 and H5N1 mutants.   Three significant features reflecting 

resistance in the presence of mutations H274Y and I222K, of the protein complexed with the 

inhibitor are: reduced flexibility of the α-carbon backbone; an improved ΔEele of ~15 (kcal/mol) 

for H1N1 coupled with an increase in ΔGsol(~13 kcal/mol) from wild-type to mutation; a low 

binding affinity in comparison with the wild-type of ~2 (kcal/mol) and ~7 (kcal/mol) with 

respect to each mutation for the H5N1 systems; and reduced hydrophobicity of the overall 

surface structure due to an impaired hydrogen bonding network.   We believe the results of this 

study will ultimately provide a useful insight into the structural landscape of neuraminidase-

associated binding of oseltamivir.   Furthermore, the results can be used in the design and 

development of potent inhibitors of neuraminidases. 

Keywords: neuraminidase, molecular dynamics, resistance, mutation, binding free energy 
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 Introduction 

The rapid evolution of highly pathogenic and resistant variants of influenza A viruses, H5N1 

and H1N1, takes us to the precipice of a possible new-age influenza pandemic.   The first 

human influenza pandemic documented in the 20th century was the 1918–1919 “Spanish flu”, 

which claimed the lives of approximately 50 million people worldwide.1–4  Since 1997, the 

highly pathogenic avian influenza A (H5N1) has had a detrimental effect on the socioeconomic 

development in countries across Africa, Asia, and the Middle East.   Pharmacological advances 

in viable influenza chemotherapeutics and vaccines could not have predicted the influenza A 

(H1N1) virus outbreak in 2009–2010, which claimed an estimated 284,500 lives.   The viruses 

H5N1 and H1N1 display similar pathogenesis of respiratory tract infection in humans.   

However, statistically H5N1 has a higher mortality rate.5 

Influenza virus A is highly communicable.   H1N1 is easily transmissible between humans, 

while avian influenza has not yet adapted sufficiently to facilitate human-human spread; the 

spread of H5N1 is largely dependent on close avian-human contact.   Based on the research, 

the H1N1 and H5N1 viruses can both trace their lineage back to pigs as potential intermediate 

hosts.   Both viruses can undergo reassortment in the intermediate host prior to infection in the 

new host.6,7  This raises the concern that more virulent and highly transmissible influenza virus 

strains may infect humans.8 

Both the H1N1 and H5N1 viruses express two main surface antigens, H5/H1 (hemagglutinin 

type 5/1, respectively) and N1 (neuraminidase type 1).9–11  Neuraminidase has been the main 

target for potential pharmacological interventions.12 It plays a vital role in the spread of 

infection through cleavage of the viral receptor, sialic acid, from both viral and host proteins.   

This results in the release of newly replicated virus from an infected cell.12,13  The active site 

residues of the neuraminidase enzyme are highly conserved within all virus types and subtypes, 

ie, designed neuraminidase inhibitors may be effective against types A and B of the influenza 

virus.14–17 

There are four effective neuraminidase inhibitors currently available: zanamivir,18 

laninamivir,19 peramivir,20 and oseltamivir.21  Zanamivir is commercially known as Relenza® 

and is administered as an aerosol into the nasal cavity.   Zanamivir has been approved in many 

countries since 1999/2000.   Laninamivir is administered in the form of an inhaler and was 

made available to the Japanese market in 2010 (under the trade name Inavir®).   Peramivir, 

commercially known as PeramiFlu®, is administered by intravenous drip and is approved in 

Japan, the Republic of Korea, and the People’s Republic of China.   Oseltamivir commercially 

known as Tamiflu® (Figure 1), has long been the “drug of choice” due to ease of oral 
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administration, improved bioavailability, and easy accessibility.   There has been an increase 

in the number of reports describing oseltamivir resistance in H1N1 and H5N1, and the rapid 

development of resistance toward the drug poses a threat in the event of an outbreak.22,23 

 

Figure 1: Structure of drug oseltamivir 

Research directed toward gaining an insight into the mechanism of resistance of influenza 

viruses is imperative in the future design of drugs as well as in the development of pre-emptive 

measures against possible mutations.   The comparative multiple molecular dynamic (MD) 

simulations conducted in this study offer an atomistic perspective into the complex nature of 

protein motions as a function of time.24,25  Due to H5N1 virus sharing a 91.47% sequence 

identity and a conserved binding site with the 2009 H1N1, the results of molecular simulation 

may apply to both viruses.26 

Several computational approaches have been used in an attempt to understand the impact of 

mutations on oseltamivir resistance to neuraminidase.   Karthick et al initiated one of the first 

MD studies, which was based solely on the natural mutation H274Y of H1N1 isolated during 

the 2007–2008 Eurasia influenza season.27,28  Malaisree et al refined the source of oseltamivir 

resistance in avian influenza H5N1 virus with the H274Y mutation using MD simulation.29,30 

Wang and Zheng performed a similar study that incorporated the mutations N294S and 

E119G.31  In the above studies, it was found that although residue 274 is a framework residue 

in the active site,21 the mutation of histidine (His) to tyrosine (Tyr) significantly impaired the 

binding of oseltamivir because the binding pocket could not accommodate the steric bulk of 

the drug.   Further to this, the presence of additional mutations was found to amplify resistance 

of the neuraminidase enzyme to oseltamivir.   A large database of crystallized glycoprotein of 

influenza virus A and B exists, each with a different mutation in the neuraminidase amino acid 

sequence.26,27,32–34  The MD studies for each mutation revealed enhanced surface expression of 

oseltamivir-resistant influenza neuraminidase.35 In many instances, these included zanamivir 

and peramivir resistance.36 

Nguyen et al37 and Huang et al38 identified a mutation at position 222 from isoleucine to lysine 

(Lys) in strains of wild-type (WT) and H274Y mutants of H1N1 and H5N1.   The point 

mutation from isoleucine to Lys exhibited increased resistance toward oseltamivir.   Structural 
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residue I222 of H1N1 and H5N1 neuraminidase offered stability to oseltamivir binding.39,40  

Structure stability was reinforced by the presence of the hydrophobic pocket created by E276 

and R224, which in turn supported a seven hydrogen bond interaction between the active site 

residues and the drug.30,36 

Insufficient information about the origin of resistance of oseltamivir against neuraminidase 

H1N1 and H5N1 mutations, I222K and H274Y (Figure 2) prompted us to perform a 

comprehensive multidimensional analysis using a multiple MD approach.   Multiple MD 

simulations have demonstrated better sampling efficiency.41 Multiple trajectories with different 

initial conditions improved the conformational sampling of MD simulations in proteins.42,43 

Several post-dynamic analyses, such as root mean square fluctuation (RMSF), root mean 

square deviation (RMSD), free binding energy calculations, radius of gyration, solvent 

accessible surface area (SASA), and principal component analysis (PCA) were performed in 

order to gain a comprehensive understanding of the impact of mutations on binding and the 

conformational landscape of the oseltamivir–protein complex.   Our research should contribute 

to understanding the effect of resistance and provide insight into the future development of 

innovative chemotherapeutics. 

 

 

 

 

 

 

 

 

Figure 2: Three dimensional structure of H5N1 and H1N1 neuraminidase, A and B, 

respectively, showing the positions of the studied mutations. 
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Computational methods 

System preparation 

The X-ray crystal structures of H1N1 and H5N1 WT and mutant neuraminidase were extracted 

from Protein Data Bank (PDB) codes 4B7R (WT-H1N1),44 2HU4 (WT-H5N1),15 and 3CL0 

(H274Y mutation-H5N1)45 complexed with oseltamivir, obtained from the Research 

Collaboratory for Structural Bioinformatics.   Neuraminidase is a tetrameric enzyme, using the 

Chimera software package46 a single subunit was selected with the inclusion of an active site 

drug complex to reduce computational cost.   Influenza virus, H1N1 PDB code 4B7R, formed 

the WT sequence with a His274 residue.   Using Chimera, point mutations were introduced at 

positions 222 (from I to K) and 274 (from H to Y).   Table 1 lists the three enzymes with 

relevant mutations resulting in eight simulations. 

Table 1: The crystal structure of the simulated systems, PDB codes and abbreviations 

Simulated system PDB code Abbreviation*  

H1N1 wild-type 4B7R WTH1N1 

H1N1 I222K 4B7R I222KH1N1 

H1N1 H274Y 4B7R H274YH1N1 

H1N1 H274Y-I222K 4B7R H274Y-I222KH1N1 

H5N1 wild-type 2HU4 WTH5N1 

H5N1 I222K 2HU4 I222KH5N1 

H5N1 H274Y 3CL0 H274YH5N1 

H5N1 H274Y-I222K 3CL0 H274Y-I222KH5N1 

* These abbreviations are used throughout the manuscript 

MD simulation 

Multiple MD simulations were performed to establish the impact of mutation I222K on the 

binding of oseltamivir to the WT enzyme and in the presence of mutation H274Y of H1N1 and 

H5N1.   A long continuous MD trajectory may incur greater statistical errors as the protein 

denatures and evolves from one conformation to another during the time of the simulation.47 

Thus, a multiple MD approach was undertaken.   This method in turn reduced the force field 

artefacts, statistical bias, and computational time.   A total simulation time of 100 ns partitioned 

in five distinct 20 ns MD runs was executed, with each trajectory having a different initial 

velocity.   The multiple MD protocol applied in this study is described in Figure 3. 
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Figure 3: Multiple MD trajectory approach adopted in this report 

MD simulation set-up and parameters 

The MD simulation was performed using the graphics processing unit version of the PMEMD 

engine provided with the Amber 12 and 14 package.48,49  The FF99SB variant of the Amber 

force field50 was used to describe the protein.   The LEAP module of Amber 12/14 allowed for 

the addition of hydrogen atoms to the protein and three Na+ counter ions for neutralization.   

The system was suspended within a TIP3P51 water box such that all protein atoms were within  

8 Å of any box edge.   After energy minimization, a 1,000 step restraint gradient minimization 

was performed.   Selective boundary conditions were enforced concurrently with the particle-

mesh Ewald method,52 a component of Amber 12/14, with set parameters of direct space and a 

van der Waals cut-off of 12 Å.   This would be conducive to the treatment of long-range 

electrostatic interactions.   The system passed through an initial energy minimization with 

2,500 steps of steepest descent and a restraint harmonic potential of 500 kcal/mol Å2 being 

applied to the solute.   After this, an additional 1,000 step unrestrained conjugate gradient 

energy minimization was carried out on the complete system, i.e., protein, ligand, solvent 

molecules, and added ions.   Gradual heating of the MD simulation from 0 to 300 K was 
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executed for 50 ps, such that the system maintained a fixed number of atoms and a fixed 

volume, i.e., a canonical (NVT) ensemble.   The solutes within the system were imposed with 

a potential harmonic restraint of 10 kcal/mol Å2 and a collision frequency of 1.0 ps-1.   

Superseding the heating input, a final equilibration estimating 500 ps of the systems was 

required.   The operating temperature was kept constant at 300 K, accompanied by the number 

of atoms and pressure, mimicking an isobaric-isothermal (NPT) ensemble.   The systems 

pressure was maintained at 1 bar using the Berendsen barostat.53  The total time for each MD 

simulation was 20 ns, and five trajectories for each of the eight systems were generated.   In 

each simulation, the SHAKE algorithm54 was employed to constrict the bonds of the hydrogen 

atoms.   The time step of each simulation was 2 fs and a single-precision floating-point 

precision model55 was used.   The simulations coincided with randomized seeding of the NPT 

ensemble.   It was accompanied by constant pressure of 1 bar maintained by the Berendsen 

barostat, a pressure coupling constant of 2 ps, with a temperature of 300 K and Langevin 

thermostat with a collision frequency of 1.0 ps-2.   Co-ordinates were saved every 1 ps and the 

trajectories were analysed every 1 ps using the PTRAJ module implemented in Amber 12.0 

and CPPTRAJ module in Amber 14.0. 

Post-dynamic analysis 

Thermodynamic calculations 

An implicit solvent model was employed to describe the thermodynamic free binding energies 

of oseltamivir bound to WT and mutant H1N1 and H5N1 neuraminidase in this study.   The 

molecular mechanics/generalized Born surface area method was used to evaluate the ligand-

protein complex binding affinities.56–59  To calculate the free binding energy contributions, 

1,000 snapshots were extracted from each of the 20 ns trajectories.   The following set of 

equations describes the calculation of the binding free energy:  

 

∆Gbind = Gcomplex − Greceptor − Gligand                    (1) 

∆Gbind = Egas + Gsol − TS                                              (2) 

Egas = Eint + Evdw + Eele                                               (3) 

Gsol = GGB + GSA                                                               (4) 

GSA = γSASA                                                                       (5) 
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Where Egas represents the gas-phase energy, Eint is the internal energy, Eele is the Coulomb 

energy, and EvdW is the van der Waals energy.   The term Egas is directly measured from the 

FF99SB force field terms.   The solvation energy (Gsol) is the summation of contributions from 

polar and nonpolar states.   The polar solvation energy contribution, GGB, is derived from 

solving the GB equation.   The term GSA corresponds to the non-polar solvation energy 

contribution, which is estimated from the SASA determined using a water probe radius of 1.4 

Å.   The temperature and total solute entropy are represented by T and S, respectively.60 

Principal component analysis 

PCA reveals the structure of atomic fluctuations, and describes the motion of the system in 

terms of eigenvectors (planar of motion) and eigenvalues (magnitude of motion).61  The 

individual MD trajectories were stripped of solvent and ions using the PTRAJ and CPPTRAJ 

modules in Amber 12.0/14.0.   The resulting trajectories were aligned against a fully minimized 

structure.   PCA was performed on a Cα backbone with 1,000 snapshots taken every 20 ps.   

The first two eigenvectors (PC1 and PC2) corresponding to the first two modes of PCA 

covariance matrices were generated using in-house scripts.   An average of the PC1 and PC2 

for the 5×20 ns trajectories of the H1N1 and H5N1 WT and mutant systems was generated.   

The corresponding PCA scatters were plotted using Origin software 

(http://www.originlab.com/) and structural postscript diagrams were created using visual 

MDs.62  Porcupine plots of the first and second modes developed by the normal mode wizard 

using the ProDy interface of visual MDs were sketched for each of the systems.63 

Results and discussion 

MD simulations and system stability 

RMSD and potential energy plots in the Supplementary materials (Figures S1–12 of H5N1 and 

H1N1 neuraminidase, respectively) graphically monitor the convergence of the studied 

systems.64  All the systems of H5N1 and H1N1 influenza viruses converge at approximately 

5,000 ps by both RMSD and potential energy calculations. 

Post-dynamic analysis 

RMSF and radius of gyration analysis was used to relate conformational changes and plasticity 

of the Cα backbone to mutation of each system. 
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Root mean square fluctuation 

The RMSF captured the fluctuation of each residue, providing insight into the flexible regions 

of the protein that correspond to crystallographic β (temperature) factors.65  Figure 4 illustrates 

the fluctuations of systems WTH5N1 and H274YH5N1.   The crystal structure of the WT 

neuraminidase consists of three α-helices and 24 β-strands.   Evidence from the graph 

demonstrates an unfolding of the protein helix at residue 28 in H274YH5N1 in comparison with 

the WT, shortening the cardinal α-helix and β-strand by one and three residues, respectively.   

Closer inspection revealed a distinct change in fluctuation corresponding to region 108–144, 

possibly due to the presence of a hydrogen bond between Lys125 and Thr131.   A similar effect 

was observed through β-strands 156–162 and 170–177 which share a hydrogen bond between 

amino acids Thr161 and Tyr171.   The residue region 260–320 containing the compensatory 

mutation did not demonstrate large variations in fluctuations. 

As depicted in Figure S13, by interacting with residues in the active site, the role of residue 

222 appeared to shift from a structural one to a functional one.   The Lys222 mutation contains 

a second amino group that acts as an electrophile at physiological pH; this prompts an 

interaction with the active site residues.   Mutation I222KH5N1 caused a change in orientation 

of Gly332, promoting a disulphide link between parallel cysteine residues 339 and 364 and 

causing a shift in the β-strand orientation.66 

Analysis of Figure S14 revealed a migration from a system of high flexibility (H274YH5N1) to 

one of low flexibility (H274Y-I222KH5N1).   The change from a hydrophobic residue, His, to 

the aromatic Tyr274, which contains an ionisable phenolic group, introduced instability in a 

previously predominant hydrophobic region.   Therefore, it is plausible to assume that the 

presence of mutation I222K in system H274Y-I222KH5N1 restricts interaction with the external 

solvent, thus minimizing flexibility throughout the protein. 

In the H274YH1N1 system (Figure 5), an increase in fluctuation at positions 58–65, 246–260, 

284, and 301–305 occurred in comparison with WTH1N1.   The H274Y mutation introduced a 

new hydrogen bond, and the aromatic group imposed a steric bulk disrupting previous 

hydrophobic interactions within that region.   A considerable fluctuation was observed in the 

latter regions of the protein.   There is only a single mutation in the I222KH1N1 system (Figure 

S15), which induced an increase in protein flexibility because Lys enhances solvent interaction.   

An overlay of the RMSF plots for systems H274Y-I222KH1N1 and H274YH1N1 (Figure S16) 

revealed no distinct difference between the two systems, indicating that no potential 

compensatory effect occurred to accommodate the double mutant species of protein H274Y-

I222KH1N1.   Thus, the conformation of the protein remains unchanged. 
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Figure 4: RMSF comparison of WTH5N1 and H274YH5N1: T1, T2, T3, T4, T5 and Tavg 

presenting the 5 individual 20 ns MD trajectories and overall average, respectively. 
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Figure 5: RMSF comparison of WTH1N1 and H274YH1N1: T1, T2, T3, T4, T5 and Tavg 

presenting the 5 individual 20 ns MD trajectories and overall average, respectively. 
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Radius of gyration 

Radius of gyration demonstrates the compactness of protein structures, providing insight into 

complex changes in the molecular shape.67,68  It is evident that systems WTH5N1 and H274YH5N1 

(Figure 6) share a similar arrangement of amino acids in secondary and tertiary structures with 

an almost identical initial compactness.   Although both systems share a close resemblance, the 

H274YH5N1 system showed a distinguishable increase in its radius of gyration over time, 

transmutating to a less compact structure. 

System comparison of WTH5N1 and I222KH5N1 (Figure S17) unveiled the I222K mutation as 

the more compact protein complex.   Condensation of the structure created a semipermeable 

complex that prevented unwarranted solvent exposure of interior amino acid residues 

stabilizing the mutation I222KH5N1.   Comparative analysis of systems H274YH5N1 and H274Y-

I222KH5N1 (Figure S18) proposed an increase in flexibility of system H274Y-I222KH5N1.   The 

compactness of system H274Y-I222KH5N1 attempts to preserve the enzymes bioactivity whilst 

inferring resistance against oseltamivir.   Both systems H274YH5N1 and H274Y-I222KH5N1 

share a similar radius of gyration profile, which suggests that both have a similar complex 

compactness. 

System H274YH1N1 showed a larger radius of gyration than the parent protein WTH1N1, 

indicating that H274YH1N1 is less tightly packed (Figure 7).   Solvent interaction within the 

amino acid sequence perpetuated partial protein unfolding, facilitating a less compacted 

structure.   The single mutation I222KH1N1 (Figure S19) shared a similar trend by way of 

possessing a large radius of gyration value as compared with the WTH1N1 system.   However, 

isoleucine expels solvent, and when Lys was introduced, an ionisable species was generated, 

which, much like the Tyr residue at position 274, was capable of interacting with the 

surrounding solvent, relieving steric strain.   The H274Y-I222KH1N1 system has a folding 

profile similar to that of H274YH1N1, which is indicative of an undisturbed compaction of 

structure.   The H274Y-I222KH1N1 system (Figure S20) appeared unaffected by the mutation 

at position 222.   This could be due to the presence of the solvent-interacting amino acid species 

Tyr having previously rendered the inner folding’s of the protein susceptible to solvation.   The 

introduction of an additional ionisable moiety better complemented the structure in this 

conformation. 
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Figure 6: Radius of gyration average comparison across the 20 ns MD simulation of WTH5N1 and 

H274YH5N1: T1, T2, T3, T4, T5 and Tavg presenting the 5 individual 20 ns MD trajectories and overall 

average, respectively. 
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Figure 7: Radius of gyration average comparison across the 20 ns MD simulation of WTH5N1 and 

H274YH1N1: T1, T2, T3, T4, T5 and Tavg presenting the 5 individual 20 ns MD trajectories and overall 

average, respectively. 
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Calculation of MM/GBSA binding free energy 

 

Evaluation of the free binding energies provides a thorough insight into the total energy of each 

of the systems.   Table 2 summarizes the average molecular mechanics/generalized Born 

surface area (MM/GBSA) thermodynamic energy contributions elicited from the structural 

data of the five 20 ns MD simulations for the H5N1 and H1N1 systems. 

The terms ΔEele and ΔEvdW represent the electrostatic and van der Waals intermolecular 

interacting components, respectively, between the protein and inhibitor.69–70 Systems WTH5N1 

and I222KH5N1 showed a difference of -6.1302 kcal/mol (ΔEele) and -2.5055 kcal/mol (ΔEvdW).   

H274YH5N1 and H274Y-I222KH5N1 showed a difference of -21.2395 kcal/mol (ΔEele) and -

4.1821 kcal/mol (ΔEvdW).   The energy differences advocate a more stable protein–ligand 

interaction of WT and H274YH5N1.   This was measured in terms of effective binding distance 

and positioning of amino acid residues for optimum interaction between charged entities.   The 

ΔGsol, difference defined between systems WTH5N1 and I222KH5N1 was estimated to 1.2626 

kcal/mol and for systems H274YH5N1 and H274Y-I222KH5N1 was estimated to be 13.3466 

kcal/mol.   The change to polar amino acids (e.g.  from Ile to Lys and from His to Tyr) in 

systems I222KH5N1 and H274Y-I222KH5N1 contributed to an improved ΔGsol energy difference.   

Closer inspection of the free binding energy, ΔGbind, quantified the interaction between the 

protein and ligand.   The difference in free binding energy between systems WTH5N1 and 

I222KH5N1 was -7.1732 kcal/mol, and that between systems H274YH5N1 and H274Y-I222KH5N1 

was -11.0751 kcal/mol.   The trend in binding free energy difference was observed to be as 

follows: WTH5N1, I222KH5N1~H274YH5N1, H274Y-I222KH5N1, indicating that the protein-ligand 

interaction became progressively thermodynamically unfavourable in the presence of 

mutations. 

Table 3 corresponds to the calculated energies for the H1N1 neuraminidase systems.   The 

amine group of oseltamivir was kept positively charged during the MD simulation.   According 

to the literature, binding of drug in a positively charged state to the active site residues is falsely 

represented by an ameliorated free binding energy when comparing the mutant sequence with 

the WT sequence.71  Based on a study by Le et al it was proposed that a predominantly 

negatively charged column of residues at the binding pocket electrostatically funnels 

oseltamivir to the active site of N1 neuraminidases.1 This greatly impacts the binding pose, 

whereby a positively charged drug is drawn toward the epicentre of the active site.   The energy 

contribution ΔGGB of H274YH1N1 and I222KH1N1 is testament to the proposed binding 
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instruction as both systems highlighted an improved binding, with an energy difference from 

the WT of -4.1784 kcal/mol and -2.4447 kcal/mol, respectively.   Surprisingly, the double 

mutation species H274Y-I222KH1N1 demonstrated a similar energy profile trend to WTH1N1.   

The electrostatic energy of the I222KH1N1 and H274YH1N1 species differed significantly from 

the WTH1N1 system by -8.3000 kcal/mol and –15.9730 kcal/mol, respectively.   However, a 

remarkable drop in electrostatic energy was observed in the H274Y-I222KH1N1 system 

compared with H274YH1N1.   This phenomenon could relate to the conformation of the double 

mutant system, as the residues interacting with the solvent direct themselves inwardly, 

interacting with neighbouring amino acid residues.   The ΔEvdW and ΔGsol differences between 

H274YH1N1 and double mutation H274Y-I222KH1N1 confirm the funnelling mechanism, as both 

shared an improvement in the ΔEvdW value over the WT.   However, a significant decline in 

ΔGsol of 37.4933 kcal/mol indicated a lack of solvent interaction.   The van der Waals 

contributions for I222KH1N1 suggested a slight decline in hydrophobic interaction, with an 

energy difference from WT of -1.0594 kcal/mol.  A ΔGsol difference between the systems of 

4.7960 kcal/mol implied enhanced solvent interaction of the I222KH1N1 complex.  The 

H274YH1N1 offered a similar van der Waals contribution to WTH1N1, as the aromatic group 

replaced a linear hydrocarbon chain.  Despite this structural feature, a solvation energy 

difference of 13.1386 kcal/mol indicated that the hydroxyl group of Tyr imposed an increased 

solvent exposure. 

 

Table 2: Energy contribution derived from MM/GBSA technique corresponding to structural 

entities of H5N1 system 

Complexes Trajectory ΔGbind ΔEele ΔEvdW ΔGgas ΔGsol 

H274 T1 -27.80 ± 6.57 -54.97 ± 15.38 -30.25 ± 3.27 -85.21± 17.19 57.42 ± 12.03 

T2 -28.56 ± 3.63 -57.65 ± 7.07 -33.19 ± 2.43 -90.85 ± 7.05 62.29 ± 6.22 

T3 -38.19 ± 4.36 -71.84 ± 6.42 -36.14 ± 2.87 -107.97 ± 6.83 69.79 ± 7.34 

T4 -29.29 ± 7.13 -60.08 ± 8.79 -31.52 ± 3.71 -91.63 ± 10.82 61.34 ± 6.48 

T5 -31.89 ± 5.17 -62.10 ± 10.66 -33.42 ± 2.90 -95.52 ± 11.96 63.64 ± 7.78 

Tavg -31.14 ± 4.34 -61.33 ± 9.16 -32.91 ± 4.59 -94.24 ± 8.70 62.89 ± 7.45 

I222K T1 -24.22 ± 6.65 -59.82 ± 11.74 -28.20 ± 4.20 -88.03 ± 12.78 63.80 ± 7.97 

T2 -23.98 ± 5.44 -41.06 ± 12.39 -31.92 ± 3.75 -72.98 ± 14.35 48.99 ± 9.56 

T3 -23.08 ± 4.42 -56.77 ± 11.18 -31.16 ± 3.60 -87.93 ± 12.45 64.85 ± 9.48 

T4 -26.51 ± 7.93 -69.03 ± 8.79 -31.44 ± 3.22 -100.47 ± 9.68 73.96 ± 7.84 

T5 -22.05 ± 8.68 -49.31 ± 17.41 -29.29 ± 4.90 -78.60 ± 20.95 56.55 ± 23.77 



91 

 

 

Table 3: Energy contribution derived from MM/GBSA technique corresponding to structural 

entities of H1N1 system 

Tavg -23.97 ± 4.89 -55.20 ± 11.68 -30.40 ± 6.44 -85.60 ± 14.61 61.63 ±8.71 

H274Y T1 -30.80 ± 4.62 -60.00 ± 8.22 -31.74 ± 2.66 -91.75 ± 8.57 60.95 ± 5.98 

T2 -28.53 ±3.97 -56.79 ± 8.77 -29.99 ± 3.23 -86.78 ± 9.48 58.24 ± 7.31 

T3 -30.80 ± 4.62 -60.00 ± 8.22 -31.74 ± 2.66 -91.75 ±8.57 60.95 ±5.98 

T4 -28.53 ± 3.97 -56.79 ± 8.77 -29.99 ± 3.23 -86.78 ± 9.48 58.24 ± 7.31 

T5 -28.53 ± 3.97 -56.79 ± 8.77 -29.99 ± 3.23 -86.78 ± 9.48 58.24 ± 7.31 

Tavg -29.44 ± 3.44 -58.07 ± 6.90 -30.69 ± 4.11 -88.76 ± 8.68 59.33 ± 6.11 

H274Y-

I222K 

T1 -16.86 ± 4.85 -39.61 ± 9.57 -28.15 ± 3.75 -67.76 ± 9.47 50.90 ± 8.06 

T2 -19.70 ± 5.25 -45.19 ± 11.75 -24.53 ± 3.98 -69.72 ± 13.85 50.02 ± 9.90 

T3 -15.41± 6.14 -21.27 ± 8.69 -25.64 ± 7.34 -46.91 ± 13.87 31.50 ± 9.50 

T4 -20.22 ± 3.68 -50.65 ±8.41 -23.39 ± 2.77 -79.04 ± 8.68 58.83 ± 7.00 

T5 -19.63 ± 3.26 -27.45 ± 9.69 -30.82 ± 2.68 -58.27 ± 9.66 38.64 ± 8.05 

Tavg -18.36 ± 3.98 -36.84 ± 9.32 -26.51 ± 5.51 -64.34 ± 10.78 45.98 ± 7.54 

Complexes Trajectory ΔGbind ΔEele ΔEvdW ΔGgas ΔGsol 

H274 T1 -20.30 ± 4.34 -144.88 ± 10.13 -31.31 ± 2.52 -176.19 ± 10.21 155.90 ± 9.36 

T2 -16.48 ± 9.03 -137.06 ± 22.53 -28.17 ± 5.26 -165.22 ± 24.78 148.74 ± 17.50 

T3 -25.81 ± 4.11 -151.45 ± 8.54 -32.68 ± 3.16 -184.14 ± 8.37 158.32 ± 6.69 

T4 -30.52 ± 4.24 -167.85 ± 10.35 -30.61 ± 3.50 -198.46 ± 10.11 167.94 ± 8.49 

T5 -23.27 ± 4.21 -148.70 ± 12.83 -30.35 ± 2.82 -179.04 ± 12.23 155.78 ± 9.73 

Tavg -23.28 ± 5.19 -149.99 ± 12.88 -30.63 ± 3.45 -180.61 ± 13.14 157.34 ± 10.35 

I222K T1 -28.43 ± 4.90 -171.09 ±13.93 -31.26 ± 3.42 -202.34 ± 13.73 173.91 ± 11.24 

T2 -20.18 ± 6.53 -144.76 ± 15.31 -25.08 ± 4.85 -169.84 ± 16.07 149.66 ± 12.94 

T3 -27.13 ±6.00 -156.67 ± 14.22 -31.64 ± 3.28 -188.31 ± 15.30 161.18 ± 11.58 

T4 -26.87 ± 6.57 -165.80 ± 19.73 -31.10 ± 3.41 -196.90 ± 20.91 170.04 ± 16.10 

T5 -26.01 ± 5.15 -153.12 ± 12.22 -28.76 ± 3.28 -181.88 ± 13.21 155.88 ± 10.14 

Tavg -25.72 ± 5.83 -158.29 ± 15.08 -29.57 ± 3.65 -187.85 ± 15.84 162.13 ± 12.40 

H274Y T1 -26.22 ± 3.25 -131.63 ± 16.23 -32.37 ± 2.62 -164.00 ± 15.71 137.78 ± 14.03 

T2 -36.56 ± 4.76 -175.26 ± 15.34 -34.47 ± 3.93 -209.72 ± 14.01 173.16 ± 13.30 

T3 -27.71 ± 3.24 -179.67 ± 11.45 -31.25 ± 2.58 -210.91 ± 11.38 183.21 ± 10.88 

T4 -24.26 ± 5.61 -173.30 ± 16.41 -31.80 ± 2.60 -205.10 ± 16.83 180.84 ± 13.83 

T5 -22.52 ± 5.12 -169.94 ± 22.45 -29.96 ± 2.93 -199.91 ± 21.39 177.39 ± 19.32 

Tavg -27.46 ± 4.40 -165.96 ± 16.37 -31.97 ± 2.93 -197.93 ± 15.87 170.47 ± 14.27 
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Hydrogen bond formation between amino acid residues 

 

The dimensionality of a protein is a vector metric governed by the direction of interaction and 

number of hydrogen bonds.  Comparative analysis of WTH5N1 and H274YH5N1 verified a 

decrease in the overall number of hydrogen bonds in the mutant species (Figure 8).  This 

phenomenon was attributed to a reduction of hydrophobic interactions within the protein, 

evident from the van der Waals energy contribution.  The residues of neuraminidase interact to 

a greater extent with the surrounding solvent, hence a depletion in the number of internal 

protein hydrogen bonds.  System I222KH5N1 showed a similar trend to the H274YH5N1 system 

(Figure S21).  The double mutation H274Y-I222KH5N1 showed an increase in the number of 

hydrogen bonds (Figure S22), offering a more compact structure that is supported by the radius 

of gyration. 

Mutation H274YH1N1 (Figure S23) showed a decline in the overall average of calculated 

hydrogen bonds as compared with the WTH1N1 system.  This finding supports the idea of an 

unfolding of the protein due to depletion of interactions facilitating α-helices or β-strands 

capable of compacting the enzyme.  Similarly, system I222KH1N1 (Figure S24), compared to 

the parent protein, WTH1N1, has a recorded decrease in the number of internal hydrogen bonds.  

A comparison of systems H274YH1N1 and H274Y-I222KH1N1 (Figure S25) revealed a near 

equivalent hydrogen bonding pattern.  This could be due to torsional or steric stress of the 

macromolecule, such that thermodynamically no further unravelling of the protein can be 

accommodated before an irreversible deformation of the protein takes effect. 

H274Y-I222K T1 -20.35 ± 5.40 -139.80 ± 15.52 -27.49 ± 4.01 -167.29 ± 15.07 146.94 ± 12.68 

T2 -24.92 ± 4.13 -126.91 ± 17.15 -32.09 ± 2.96 -158.99 ± 15.94 134.08 ± 13.95 

T3 -25.68 ± 3.55 -112.27 ± 12.68 -33.69 ± 2.87 -145.96 ± 11.80 120.28 ± 10.14 

T4 -26.03 ± 3.60 -115.52 ± 15.64 -32.90 ± 2.48 -148.42 ± 15.24 122.39 ± 13.43 

T5 -20.62 ± 5.29 -132.49 ± 22.51 -29.35 ± 3.11 -161.85 ± 22.20 141.22 ± 19.16 

Tavg -23.52 ± 4.39 -125.40 ± 16.70 -31.10 ± 3.09 -156.50 ± 16.05 132.99 ± 13.88 
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Figure 8: Averaged no. of hydrogen bonds in WTH5N1 and H274YH5N1 across the 20 ns MD 

simulation: T1, T2, T3, T4, T5 and Tavg presenting the 5 individual 20 ns MD trajectories and overall 

average, respectively. 
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Principal component analysis 

 

PCA is used to assess the impact of mutations on the conformational dynamics of 

neuraminidase to solicit an impartial resistance mechanism.72 Collation of systems WTH5N1 and 

H274YH5N1 (Figure 9) associated H274YH5N1 with restricted motion in relation to its α-carbon 

backbone.  The displacements were reduced, minimizing the spatial occupancy of H274YH5N1 

with a covariance of 0.3191.  The magnitude of covariance for WTH5N1 was estimated to be -

3.6367, advocating a more flexible framework with an inversely proportionate motion (Figure 

S26).  System H274YH5N1 has a disproportionate motion of correlation (R2) value of 0.1814 in 

that the vectors commission dynamism in a single cooperative direction (Figure S27).  The R2 

value for WTH1N1 of -0.6526 indicated a more proportionate but antagonistic motion. 

Examination of system I222KH5N1 (Figure S28) suggested that the neuraminidase enzyme 

tolerated an abridged flexibility of its α-carbon backbone in comparison with the WT enzyme.  

This corresponded with the determinations surmised from the RMSF values.  The single 

mutation has a covariance of -3.1127, which is marginally smaller in magnitude than that for 

the WT, with an R2 of -0.3032.  The direction of motion of I222KH5N1 is antiparallel, the 

associations predominate by an antonymous relationship of large and small variables (Figure 

S29).  The double mutation, H274Y-I222KH5N1, has improved flexibility in the α-carbon 

backbone in comparison with H274YH5N1.  This is demonstrated in the PCA scatter and 

covariance value estimated at 0.8148 (Figure S30).  The improvement in flexibility coincided 

with the RMSD values, suggesting a greater number of conformational possibilities of the 

H274Y-I222KH5N1 system.  An improved R2 of 0.2337, in contrast with H274YH5N1, described 

a unified direction of motion of disproportionate magnitude (Figure S31). 

The WTH1N1 enzyme (Figure 10) appeared to have reduced internal motion of its α-carbon 

backbone in comparison with H274YH1N1, a restriction which corresponded to the compactness 

observed from calculation of the radius of gyration.  The covariance and R2 values were 

estimated to be -1.2249 and -0.4616, respectively, suggesting a disproportionate antithetic 

motion of the enzyme (Figure S32).  A similar effect was observed with the double mutation 

system H274Y-I222KH1N1, where the overall flexibility of the protein was rigid in comparison 

with H274YH1N1 (Figure S33).  The covariance and R2 values of -0.4099 and -0.1539 support 

these findings (Figure S34).  System H274YH1N1 demonstrated a more flexible α-carbon 

backbone which moved in a disorganized motion with a covariance of -0.7200 and an R2 value 

of -0.05218 (Figure S35).  System I222KH1N1 exhibited a continuous linear motion along its α-
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carbon backbone, with a covariance of 0.6457 (Figure S36).  This phenomenon was supported 

by an R2 of 0.3271 (Figure S37). 

 

Figure 9: PCA scatter plots of 1000 frames of the distribution along two planes, PC1 and PC2 for; 

WTH5N1 and H274YH5N1 illustrating differences in eigenvectors of T1, T2, T3, T4, T5 and Tavg 

presenting the 5 individual 20 ns MD trajectories and overall average, respectively. 
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Figure 10: PCA scatter plots of 1000 frames of the distribution along two planes, PC1 and PC2 for; 

WTH1N1 and H274YH1N1 illustrating differences in eigenvectors of T1, T2, T3, T4, T5 and Tavg 

presenting the 5 individual 20 ns MD trajectories and overall average, respectively. 
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Solvent accessible surface area 

 

The SASA imparts information relative to the compactness of the structure as well as the extent 

of hydrophobicity in the interior of the folded protein.73  System H274YH5N1 appeared to 

expand over time (Figure S38), whereas WTH5N1 remained unchanged.  Both systems reflected 

a distinct and relatively stable complexed conformation, which is affirmed by the radius of 

gyration estimations.  System I222KH5N1 (Figure S39) and H274Y-I222KH5N1 (Figure S40) 

demonstrated a nominally lower surface area than the WT and H274YH5N1, respectively.  This 

implied that contact between the van der Waals partitions and the solvent was diminished.  A 

dehydron species may be present in systems I222KH5N1 and H274Y-I222KH5N1 due to the 

contributions of ΔEvdW and ΔGsol, resulting in a reduced interaction between the solvent and 

van der Waals region.74  The preservation of the hydrophobic regions results in a loss in volume 

of the active site. 

The WTH1N1 system has a reduced exposed surface area when compared with H274YH1N1 

(Figure S41).  This observation corresponded to the PCA of H274YH1N1, facilitating a structure 

with greater potential for interaction with solvent.  System I222KH1N1 exhibited a slightly 

different trend such that initially both the WT and single mutant shared similar SASA.  Over 

time, at ~10,000 ps onward, a change in conformation occurred, with I222KH1N1 appearing to 

become more accessible to the solvent (Figure S42).  A similar effect was found between 

H274YH1N1 and H274Y-I222KH1N1 (Figure S43).  During the initial 10,000 ps of the simulation, 

there appeared to be a difference in the SASA of the two systems, with H274YH1N1 having 

greater solvent accessibility than the double mutant.  In the later 10,000 ps, both systems begin 

to overlap.  This anomaly suggests a conformational change in the presence of the double muta-

tion H274Y and I222K, whereby these residues pointed outward, encouraging solvent 

interaction and disrupting the three-dimensional compactness. 

Conclusion 

Significant findings emerged in our endeavour to gain insight into the binding mode and origin 

of resistance of oseltamivir in H1N1 and H5N1.  It was noted that the mechanism of resistance 

is entirely dependent on the type of mutation, relative positioning of such occurrences, and the 

repercussions thereof on the active site of the enzyme under analysis.  Our results indicate that 

resistance of neuraminidase was inherited by the expression of H274Y and/or I222K mutations.  

The neuraminidase of H1N1 has known resistance against oseltamivir in the presence of 

mutations H274Y and/or I222K.  Despite originating from the same host by reassortment, 
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H5N1 has proven to be more susceptible to oseltamivir than H1N1 in the presence of mutations.  

Comparatively, neuraminidase of H5N1 appears to experience greater structural fluctuations 

in acquiring resistance against oseltamivir as opposed to the H1N1 system.  H5N1 gains 

resistance by a loss in volume of the active site due to compaction of the neuraminidase, while 

H1N1 develops resistance by solvent exposure of active site residues.  Subsidiary analyses of 

RMSD, RMSF and potential energy confirm the progressive development of resistance from 

WT through to mutants (for both H1N1 and H5N1). 

The free binding energy established from the MM/GBSA algorithm offers the first sign of 

evidence of resistance.  Based on the electrostatic funnel mechanism of neuraminidase (for 

H1N1), an increase in binding energy was observed.  This was an artefact of the active site 

residues and drug interacting with solvent, rather than with one another.  The presence of the 

H274Y mutation has a compensatory effect to ensure the survival of the viral species by 

inhibiting enzyme interaction with the drug, without compromising the integrity of the enzyme.  

Mutation I222K, through distance, transposes a putative constriction in the volume of the active 

site of H5N1, whereas in H1N1 the protein unfolds, promoting solvent interaction.  As a result, 

the active site inherently cannot support the bulky 1-ethylpropoxy hydrophobic moiety of 

oseltamivir.  It is reasonable to suppose that the I222K mutation has a potent effect in 

discriminating between binding of the substrate and binding of the drug oseltamivir.  The 

H274Y-I222K double mutant exhibits even greater drug resistance.  Overall resistance in 

systems H5N1 and H1N1 occurs as a result of loss of hydrophobicity within the binding pocket 

of the active site.  The lack of hydrophobicity leads to structural collapse of the available active 

site, which in turn diminishes the integrity of the binding landscape.  This poses a threat, given 

that H5N1/avian influenza has been found to have an increasing incidence of human 

transmissibility.  The existence of a resistant strain is having a severe negative impact on human 

health.  Therefore, it is imperative to design and identify unique, innovative, and selective 

chemotherapeutic agents to adapt to the newly defined binding pocket. 
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Abstract  

The rapid development of resistance to existing anti-influenza agents has prompted the urgent 

need for the discovery of novel potential neuraminidase inhibitors.    The use of computer-

aided drug design has changed remarkably the perspective on the discovery and development 

of new drug candidates.    In this report, we propose an improved pharmacophore modelling 

based on the binding free energy contributions from the amino acid residues that are critically 

involved in drug binding rather than arbitrary set of amino acid residues as widely adopted in 

literature.   The robustness of this approach lies in the fact that the calculated Molecular 

Mechanics/ Generalised Born Surface Area (MM-GBSA) per-residue binding free energies 

used to map the pharmacophoric features were obtained from molecular dynamics ensembles 

as opposed to docking scores as commonly adopted.   Prototype Influenza A Neuraminidase 

Inhibitors, oseltamivir, zanamivir, laninamivir and peramivir were used to validate our 

approach.   A wide range of simulation and analytical protocols such as, but not limited to, 

mailto:soliman@ukzn.ac.za


107 

 

ligand-based and structure-based pharmacophores, molecular dynamics and per-residue free 

energy footprints were also reported herein to substantiate the proposed approach.    

We believe that the enhanced pharmacophore-modelling approach presented in this report 

would serve as a useful tool in drug discovery workflows.     

 

Keywords 

Virtual screening, neuraminidase, free binding energy, molecular dynamics, influenza virus A, 

ligand-based pharmacophore, structure-based pharmacophore 

 

1.   Introduction 

The natural evolution of the influenza virus presents a continuous challenge to the human 

immune system.    Evolution of the virus occurs primarily via antigenic variations through two 

distinct mechanisms: 1) antigenic shifts, and 2) antigenic drifts.    Antigenic drifts are the result 

of point mutations that occur as the virus replicates and is often the cause of seasonal flu.    

Antigenic shift occurs when two different strains of the influenza virus combine to create a 

novel influenza subtype, which can lead to epidemics and pandemics 1-3. 

Genetic mutations, together with viral compensatory evasion mechanisms in response to 

current therapeutic agents, have led to the rapid build-up of resistance.    Influenza A is a prime 

example of natural selection through an adaptive survival mechanism.    It has been documented 

throughout history as contributing to high fatality rates.    The most significant incidence of 

influenza infection in the past century include the ‘Spanish flu’ pandemic which extended from 

1918 – 1919 with an estimated mortality of 50 million worldwide 4.    In more recent times, the 

2009 pandemic strain of H1N1 claimed the lives of approximately 284,500 people 5.    To date, 

there have been accounts of outbreaks of the newer influenza strains including swine (H1N1) 
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flu and the highly-pathogenic avian (H5N1) flu 6-8.    These strains have already shown 

resistance to current antivirals; oseltamivir (Tamiflu®) 9, zanamivir (Relenza®) 10, peramivir 

(Rapivab®) 11 and laninamivir (Inavir®) 12.    These drugs work by neuraminidase inhibition.     

Figure 1: 2-D Chemical structure of sialic acid (substrate) and active inhibitors (oseltamivir, 

zanamivir, laninamivir and peramivir) 

Neuraminidase is one of three surface antigens which has become the primary target for 

potential pharmacological interventions 13-16.    It is an exosialidase enzyme responsible for the 

cleavage of the α-ketosidic bond between sialic acid and its adjacent sugar residue from the 

viral envelope.    Cleavage occurs during the final stage of infection resulting in the release of 

virus progeny from the host cell 17-18.    It has been suggested that in the early stages of infection, 

neuraminidase may catalyse the removal of “decoy” receptors on mucins, cilia and cellular 

glycocalyx present on human airway epithelium thus promoting access to target cells 19-20.    

There are nine neuraminidase subtypes (N1-N9).    The group 1 neuraminidase enzymes i.e.   
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N1, N4 and N8; are phylogenic subtypes which share a conserved active site 21-24.    The 

appearance of resistance to current neuraminidase inhibitors has emphasized the urgency in the 

discovery, design and development process of alternate chemotherapeutic agents to prevent 

future pandemics 25-30. 

 

Figure 2: 3-D Structure of unbound H1N1 neuraminidase enzyme (PDB ID: 3TI6) 

 

Classical methods of drug development against specified targets estimate a turnaround time 

(i.e.   time from the initiation of work to final registration) of 12 – 15 years 31.   The use of 

computational methodology such as virtual screening (VS) can vastly improve efficiency.    It 

is also more cost-effective by being less resource and labour intensive 32.    Pharmacophores 

can be used as a filtering tool in virtual screening.    The pharmacophore model is generated 

from a three dimensional (3-D) scaffold, mapping critical chemical and functional moieties, 

such as; hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), negatively and 

positively ionisable species, metal chelating groups and hydrophobic areas 33-34.    There are 

two main classes of pharmacophore VS models 1) Ligand-based, and 2) Structure-based 33.     
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Ligand-based pharmacophore modelling is based on known actives.    The bioactive 

conformation allows for library generation of pharmacophore models through similarity 

searches.    A number of 3-D inhibitors are aligned to isolate common pharmacophoric 

descriptors in order to build a pharmacophore model 32.    Structure-based pharmacophore 

modelling exploits a high resolution 3-D structure of a drug-protein complex for the 

assimilation and construction of common interaction patterns of a number of chemically 

diverse and similar functional moieties.    Structural/feature mapping can be used directly to 

conceptualise a pharmacophore ensemble 35.    A disadvantage of ligand-based pharmacophore 

modelling is that the molecules discovered are strictly based on information derived from 

existing ligands (i.e.   templates), which result in limited scaffold diversity in comparison to 

structure-based pharmacophore modelling 32-33, 36-37.    

In this study we wish to propose an additional step to ligand-based pharmacophore VS by using 

information derived from molecular dynamic simulations of actives complexed with their 

respective receptors, to build a conformationally-enhanced pharmacophore model.    The 

design strategy centres on obtaining a binding free energy profile of high contributing active 

site residues and their corresponding interacting ligand chemical features.    Our proof of 

concept implements molecular dynamics (MD), where a thermodynamically favourable 

ensemble (i.e.   energetically optimised drug-protein complex) is used to map pharmacophoric 

regions.    This method proves highly advantageous as the MD ensemble closely mimics a 

biological environment.    MD is a more dependable tool compared to receptor-ligand docking 

as it utilizes improved force fields and scoring functions 38.    The chemo-structural bias of the 

pharmacophore is reduced as the selection criteria of chemical features is governed by common 

interaction patterns of bioactive conformers with active site residues exhibiting a high free 

binding energy contribution.    The free binding energy takes into account more chemical details 

in structural design, such as: local molecular interactions and environmental effects (e.g.   
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Protonation states).    Our ligand-based pharmacophore selection is three-pronged: 1) biological 

activity, 2) structural diversity/similarity and 3) energetically favourable interactions.    There 

have been previous energy based ranking studies to determine the significance of lead 

compounds using the ligand- and structure-based models.    However, the modus operandi 

utilized docking energies 39-43.    Unfortunately, the use of docking energies incurs artefacts, 

which could reflect inflated ligand-protein interactions.    MD would therefore give a more 

accurate depiction. 

The energy mapping of chemical features for the pharmacophore corresponding to critical 

ligand-protein interactions can be used to limit false positives.    Our methodology proposes 

reduced randomisation by the generation of a more focussed library.    Coupled with the 

validation of MM-GBSA results against experimentally active compounds, this technique can 

prove a useful tool in the discovery of potential hits/leads of innovative and unique 

neuraminidase inhibitors.    

 

2.   Methods 

The flow chart in Figure 3, offers a basic overview of the critical steps in this study.    Each 

process is discussed in detail in the subsections below (2.1 to 2.6) and Results section (3.0).    
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Figure 3: Pipeline of processes involves in the in silico screening of the generated MD 

ensemble pharmacophores 

2.1 System preparation 

Crystallographic structures of H1N1 neuraminidase bound with sialic acid (PDB ID: 2BAT) 

44, oseltamivir (PDB ID: 3TI6) 45, zanamivir (PDB ID: 3TI5) 45, laninamivir (PDB ID: 3TI3) 

45 and peramivir (PDB ID: 2HTU) 22, were obtained from the RCSB Protein Data Bank (PDB).    

Using the Chimera 1.8.1 software package 46-47 a monomer was selected followed by the 

correction of protonation states of amino acid residues as well as the removal of water, heavy 

metal atoms, polar hydrogens and non-bonding species.    
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2.2 MD simulation 

Amber 14.0 GPU version of the PMEMD engine was used to perform a 20 ns molecular 

dynamics simulation.    The protein was described with the FF99SB variant force field.    The 

LEaP module embedded within Amber was use for the addition of hydrogen atoms and 

neutralisation of the protein by the addition of Na+ counter ions.    The system was suspended 

within a TIP3P 48484848 water box such that all protein atoms were within 8 Å from the box 

edge.    The drug-protein complex was energetically minimised in three stages; 1) 1000 step 

restraint gradient minimisation with selective boundary conditions of the particle-mesh Ewald 

method which has a parameter of direct space and a van der Waals cut-off of 12 Å.    Stage 2, 

a 2500 of deepest descent step with a solute harmonic potential of 500 kcal/mol.   Å2; and stage 

3, a 1000 step unrestrained conjugate gradient energy minimisation of the complete system.    

The system was heated using a canonical ensemble (NVT) from 0 K to 300 K over 50 ps.    The 

collision frequency of solutes was 1.0 ps-1
 with a harmonic potential of 10 kcal/mol.Å2

.    A final 

equilibration step of 500 ps was performed using the SPFP precision model of the SHAKE 

algorithm to constrict hydrogen bonds at 2 fs intervals.    The simulations were conducted in a 

randomised seeding of an isobaric-isothermal ensemble (NPT).    A constant pressure of 1 bar 

was maintained by the Berendsen barostat with a pressure coupling constant of 2 ps.   A 

temperature of 300 K was set using a Langevin thermostat with collision frequency of 1.0 ps-

2.    Co-ordinates were saved every 1 ps and the trajectories were analysed every 1 ps using a 

CPPTRAJ module in Amber 14.0. 

2.3 Pharmacophore model  

The construction of the models was a multi-step process and encompassed the principles of 

structure-based pharmacophore modelling.    Pharmacophore generation is reliant primarily on 

the quality of 3-D molecules used in the training set.    The choice of complexes was based on 

good crystallographic and activity data.     
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2.3.1 Per-residue free binding energy profiling 

∆𝑮𝒃 = ∆𝑬𝑴𝑴 + ∆𝑮𝒔𝒐𝒍𝒗 + ∆𝑮𝑺𝑨 

The study emphasizes the specific interaction pattern of the ligand complexed with protein, 

highlighting constructive per-residue energy contributions.    The per-residue free binding free 

energy is a post-dynamic calculation estimated from the Molecular Mechanics, Generalised 

Born, Surface Area (MM-GBSA) algorithm embedded within the Amber package.    MM-

GBSA method is capable of accurately ranking inhibitors based on binding free energies.    The 

term ΔEMM is the difference in energy between the protein-ligand complex and the unbound 

receptor and free ligand.    ΔGsolv is the difference in the solvation energies.    ΔGSA is the 

estimated difference in the surface area energies of the unliganded receptor and free ligand.    

The critical binding site amino acid residues corresponding to defined chemical moieties of the 

ligand are profiled in Figure 4 and the Supplementary Information.    

 

Figure 4: High contributing per-residue binding free energy interaction pattern of sialic 

acid, oseltamivir, laninamivir, peramivir and zanamivir complexed with neuraminidase 
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2.3.2 Ligand-based pharmacophore 

The Espresso algorithm of LigandScout 3.12 software was used to generate the pharmacophore 

from the 3-D training set containing oseltamivir, laninamivir, sialic acid, peramivir and 

zanamivir.    The model was predicted from the alignment of the five ligands and the overlap 

of similar chemical features.    A three-feature limit was used for the creation of the model. 

2.3.3 Structure-based pharmacophore 

LigandScout is capable of interpreting critical interactions between the binding site residues 

and ligand.    The predicted model was generated using the automated LigandScout pipeline 

which considers the 3-D macromolecular structure of the complexed ligand.    The 

pharmacophoric ensemble is a culmination of the four active inhibitor complexes: oseltamivir 

(PDB ID: 3TI6), laninamivir (PDB ID: 3TI3), peramivir (PDB ID: 2HTU) and zanamivir (PDB 

ID: 3TI5).    The minimum feature requirement was set at three.    The model was a measure 

of dihedral angles and complementary chemical features with specific distance interaction 

filters as well as exclusion volumes. 

2.4 Pharmacophore & Docking selectivity and evaluation 

2.4.1 Pharmacophores 

The pharmacophore models obtained from the ligand- and structure-based techniques were 

evaluated for the ability to detect actives from inactives (decoys).    A decoy test set of 698 

molecules was extracted from the electronic directory of useful decoys (E-DUD) 49.    The 

molecules exhibit similar physical properties but dissimilar chemical topology to the inhibitors.    

The active set contained 17 compounds, ranging from high (0.1 nM) to moderate activity (20 

nM).    (See Supplementary Information for a list of actives, Table S1).    
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2.4.2 Docking system 

AutoDock Vina version was used to carry out docking.    Validation of the docking software 

was conducted by re-docking of ligands back into their respective binding pockets and cross-

docking of ligands peramivir, laninamivir, sialic acid and zanamivir into the receptor of the 

oseltamivir (PDB ID: 3TI6).    The crystal structure of PDB ID: 3TI6 (resolution: 1.69 Å) was 

selected for the virtual screening as it had the best overall crystallography data.    The docking 

software was further assessed for its ability to pick out actives from inactives using decoy 

molecules. 

2.5 In silico virtual screening  

Two in silico screening methodologies were employed, 1) pharmacophore screening and 2) 

molecular docking.    LigandScout version 3.12 was used for the pharmacophore screen.    The 

predicted ligand- and structure-based pharmacophores models were screened against a library 

of 5189 drug-like compounds obtained from the ZINC database.    A hit list of 23 compounds 

and five compounds was retrieved from the ligand-based and structure-based pharmacophore 

models, respectively.    A combined hit list of these 28 potential inhibitors was further docked 

into the receptor of PDB ID: 3TI6 using Autodock Vina employing an enhanced loop docking 

protocol.    Autodock uses a Lamarckian algorithm to predict docked conformations.    Prior to 

docking, MGL tools were used to define atom types and assign Gasteiger partial charges.    The 

files were then converted to a pdbqt format using the Raccoon version software.    A gridbox 

of dimensions of 34 x 24 x 36 (nm3) was used.    The docking calculations were performed in 

triplicate. 

 3.   Results and Discussion 

The use of CADD strategies proved to be an invaluable tool in the landmark discoveries of 

antiviral neuraminidase inhibitors (zanamivir, oseltamivir and peramivir).    By the construction 
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of a 3-D model using per-residue binding free energies, our work serves to provide an enriched 

perspective on pharmacophore generation. 

Alignment of receptors N1 and N8, confirm a conserved active site with similarity of sequence 

and structure of 0.54 and 56%, respectively.    This allowed the inclusion of peramivir 

complexed with an N8 receptor, in the construction of the pharmacophores.    The catalytic 

cleavage of sialic acid occurs at pH 4.    The system was therefore optimised to mimic the 

slightly acidic biological environment by protonation of the arginine residues.    

Neuraminidase’s mechanism of action occurs in four distinctive steps.     The first step referred 

to as the ‘binding event’ is solvent-mediated.    A charge-charge interaction (i.e.   salt bridge) 

between the pseudo-equatorial carboxylate moiety and Arg 37, 212, 287 ensues.    The 

conformation creates a steric constraint which is accommodated by residue, Tyr 321.    The 

next step is the catalytic reaction, in which hydrogen bond donation from the cationic ligand to 

the solvent and enzymatic residues is facilitated.    A network of interactions with residues Asp 

70, Arg 71 and Glu 196 and Glu197 stabilizes the cationic intermediate 4. 

The active site of N1 neuraminidase can be divided into four critical binding pockets, Figure 

5 50.    Pocket C1 (Figure 5, green residues) encompasses the positively charged guanidino 

groups of Arg 37, Arg 212 and Arg 287 which interact with the carboxylate group of substrate 

and inhibitor.    Residue Arg 71 in the C5 (Figure 5, orange residues) pocket functions as a 

hydrogen bond donor and comprises residues Trp 98, Arg 144 and Ile 142 which create a small 

hydrophobic region.    In the C4 (Figure 5, cyan residues) pocket, a guanidine or amine group 

of the substrate or inhibitor participates in a charge-charge interaction and hydrogen bonds to 

Glu 38, Asp 70 and Glu 147.    Within the C6 pocket (Figure 5, yellow residues), Glu 197, the 

side chain of Arg 71, the amidic carbonyl of Trp 98 and Asp 70 forms a new hydrophobic 

binding pocket.    
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Figure 5: Outlining the residues of the four binding site pockets; (Pocket C1: green), (Pocket 

C4: cyan), (Pocket C5: orange), (Pocket C6: yellow) 

3.1 Ligand-protein interaction pattern and per-residue free binding energy profile 

Post-dynamic analysis of the substrate (sialic acid) and active inhibitors (oseltamivir, 

laninamivir, peramivir and zanamivir) complexed with neuraminidase, revealed that each 

system achieved convergence (see RMSD and potential energy plots in Supplementary 

Information, S1 and S2).    The MM-GBSA algorithm was used to describe the per-residue 

binding free energies.    The ranking of contributions of interacting residues highlighted critical 

pharmacophoric features of each inhibitor used in this study; see Table 1.    A noticeable trend 

in the system energetics of all complexes was observed.    Hydrogen bond donation from 

protonated arginine residues 37, 71, 144, 212 and 287; to the ligand had unfavourable energy 

contributions, whereas the hydrogen bond acceptor residues have an appreciable per-residue 

binding free energy contribution.    A possible explanation for this occurrence is that salt 

bridges have a distinct dual function: participating in both hydrogen bonding and ionic 

interactions.    The energy term for residues engaged in salt bridges, is largely unfavourable 

due to desolvation, as the interaction endures significant entropic loss.    The ubiquitous nature 
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of hydrogen bonds in an aqueous environment sometimes requires desolvation of the donor 

and acceptor prior to formation.    Thus, the per-residue free binding energies of hydrogen bond 

donors of the enzyme, reflected in the MM-GBSA profiles are in a positive scale due to 

enhanced polar solvation properties. 

Table 2: Common active site residues in the binding pattern of each inhibitor 

 Common Residues 

Inhibitor  Arg 

37 

Glu 

38 

Asp 

70 

Arg 

71 

Trp 

98 

Ile 

142 

Arg 

144 

Glu 

147 

Glu 

196 

Glu 

197 

Arg 

212 

Arg 

287 

Tyr 

321 

Oseltamivir √ √ √ √ √ √   √ √ √ √ √ 

Zanamivir  √ √ √ √ √ √ √ √ √ √  √ 

Laninamivir √ √ √  √ √ √ √ √ √ √ √ √ 

Peramivir √ √ √ √ √ √ √ √ √ √ √ √ √ 

 

The interaction pattern of crystallographic structures of the four inhibitors corresponds with 

reported interactions in literature.    Table 1, lists the common interactions observed in the 

inhibitor complexes.    Residues Glu 38, Asp 70, Arg 71, Trp 98, Ile 142, Glu 147, Glu 196, 

Glu 197 and Tyr 321 of Table 1; represent residues with a high binding free energy 

contribution.    The two-dimensional binding of inhibitors and substrate; oseltamivir (Figure 

6), zanamivir (Figure S3), laninamivir (Figure S4), peramivir (Figure S5) and sialic acid 

(Figure S6) highlight the residues with high contributing binding free energies. 
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Figure 6: 2-D interaction profile of oseltamivir with residues of high binding free energies 

3.2 Pharmacophore model construction, evaluation and database screening 

3.2.1 Ligand-based pharmacophore model 

The Espresso algorithm, a built-in heuristics modelling tool of LigandScout was used to predict 

the ten hypothesised models, as shown in Table 2.    The calculation implements a parallel 

Glu 38 Asp 70 Arg 71 Trp 98 Ile 142 Ser 166 Glu 196 Glu 197 Asn 214 Tyr 321

vdW -33,987 -56,585 23,435 -3,195 -0,468 0,277 -16,868 -35,655 -0,198 0,845

Elec. 32,627 53,143 -22,601 3,318 0,492 0,222 17,132 35,713 0,663 -1,155

Polar -0,173 0,017 -1,18 -0,657 -1,201 -0,667 -1 -1,871 -0,664 -1,167
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alignment of pharmacophoric moieties of the training set molecules.    This was done by the 

automatic assignment and overlaying of distinct binding modes of the ligands until a 

geometrically adequate representation of all five training set molecules was achieved.    

Boolean minimisation refined the pattern matching resulting in a near optimal solution of all 

possible conformations.    Each model was evaluated using two screening sets: 1) active set 

and 2) decoy set of molecules, as described in Section 3.4.1.    This methodology properly 

assesses the ability of the pharmacophore models to adequately detect active compounds over 

decoys.    Pharmacophore model 1 expressed the greatest specificity for detecting actives over 

inactives.    The predicted model also aligned well with the profile of the per-residue binding 

free energy pharmacophoric pattern.    The LigandScout package calculates the area under the 

curve (AUC) as well as the enrichment factor (EF), which was estimated at 0.82 and 35.1% 

respectively.    The pharmacophoric model qualities are represented in the receiver operating 

characteristic (ROC) curve, Figure 7.     

Table 3: Hypothesised models 1-10 

Model number Scoring function Pharmacophoric Features 

1 0.8342 5 x HBA, 4 x HBD, NI, PI 

2 0.8301 4 x HBA, 3 x HBD, NI, PI 

3 0.8251 5 x HBA, 3 x HBD, PI 

4 0.8242 5 x HBA, 3 x HBD, PI 

5 0.8224 5 x HBA, 3 x HBD, PI 

6 0.8017 5 x HBA, 4 x HBD, NI, PI 

7 0.7997 6 x HBA, 3 x HBD, NI 

8 0.7996 6 x HBA, 3 x HBD, NI 

9 0.7996 6 x HBA, 3 x HBD, NI 

10 0.7774 6 x HBA, 3 x HBD, PI 

*HBA- hydrogen bond acceptor, HBD- hydrogen bond donor, NI- negative ionisable species, PI- positive 

ionisable species. 
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Specificity (% selected decoys)  

 

 

 

 

 

 

 

 

 

Figure 7: ROC curve of model 1 of the ligand-based pharmacophore 

Validation of pharmacophore model 1 (Figure 8) prompted its use in a ligand based virtual 

screen.    A library of molecules with drug-like properties was extracted from the ZINC 

database for use in the in silico screening against the selected ligand-based pharmacophore 

model.    The minimum feature requirement was set to three and possible hits were detected 

using the best matching conformation method and scored based on their pharmacophore-fit.    

A total of 5879 compounds was screened of which only 23 compounds satisfied the predicted 

pharmacophore model.    These molecules were then subjected to a structure based virtual 

screening which was used as a further filtering tool. 
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Figure 8: 2-D and 3-D representations of Model-1 with; A) sialic acid, B) oseltamivir, C) 

zanamivir, D) peramivir and E) laninamivir overlay. 

3.2.2 Structure-based pharmacophore model 

A dynamic pharmacophore was generated by superimposing four hypothesised models of each 

inhibitor.    With the aid of LigandScout software the interactions between protein and ligand, 

as well as some of the excluded volume spheres corresponding to 3-D protein structures, were 

interpreted.   The protein-ligand complexes of laninamivir, peramivir, zanamivir and 

oseltamivir displayed a significant overlap in their binding patterns.    Common interaction 

patterns were observed with catalytic residues Arg 37, Arg 70, Arg 71, Arg 212 and Arg 286.    

Glu 196 was also highlighted and it is known to facilitate the electrostatic funnelling of ligands 

into the active site 4.    Other important residues included amino acids: Glu 38, Arg 75, Trp 98, 
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Ile 142, Arg 144, Glu 147, Glu 197, Arg 287, Tyr 321; all of which contribute to the 3-D 

integrity of the binding pockets. 

Overlapping the chemical features of the complexed inhibitors resulted in a structure-based 

pharmacophore model with four HBA’s, a PI and NI species as well as exclusion volumes, as 

seen in Figure 9.    The inclusion of exclusion volumes allows the pharmacophore to accurately 

describe the spatial interface of the ligand bound in the binding pocket, such that steric regions 

that are not occupied by the active ligand are mapped.    The model generated was in close 

approximation to the high per-residue contributors of binding free energy described in Section 

3.1.    Enrichment metrics of the model estimated 0.7 (AUC) and 47.1 % (EF), (Figure 10).     

The predicted model was screened against the 5879 drug-like molecules from the ZINC 

database.    The resulting hit-list of five molecules which suitably satisfied the model’s criteria 

was subjected to further study by molecular docking. 

 

Figure 9: 3-D and 2-D representations of the hypothesised model with; A) oseltamivir, B) 

peramivir, C) laninamivir and D) zanamivir overlay 
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Figure 10: ROC curve of the structure-based pharmacophore 

3.3 Molecular Docking 

The crystallographic structure of oseltamivir (PDB ID: 3TI6) complexed with neuraminidase, 

was selected for the molecular docking study.    Validation of the docking system by a re-

docking (see Table S2) and cross-docking (refer to Table S3) procedure established that the 

docking software was capable of placing the ligand in the correct conformation within the 

binding site.    Docking a combined library of known inhibitors with decoy compounds 

established that AutoDock was capable of selecting actives from inactives.    The list of hit 

compounds detected from the screening against the two predicted pharmacophore models was 

docked into the neuraminidase binding site.    A total of 28 molecules was docked and ranked 

according to binding free energy values.    The five highest ranked ligands from each of the hit 

lists of the ligand-based pharmacophore and structure-based pharmacophore, were analysed to 

interpret their significant ligand characteristics and binding interaction patterns with the 

receptor.    Table 3, lists the selected compounds for further analysis.    

 

Specificity (% selected decoys)  
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Table 4: Top five docked ligands of LB and SB pharmacophore hit lists 

Ligand-based 

3-D structure 2-D structure Docking 

Binding free 

energy/ 

(kcal/mol) 

MD Binding 

free energy/ 

(kcal/mol) 

 

 

Ligand 1 

(ZINC 12336793) 

-7.00 -26.68 +/- 

4.21 

 

  

Ligand 2 

(ZINC 43828061) 

-7.20 -19.05 +/- 

2.87 

 

  

Ligand 3 

(ZINC 89224608) 

-6.90 

 

-16.79 +/- 

5.33 
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Ligand 4 

(ZINC 34491253) 

-7.00 -12.62 +/- 

6.60 

 

 

Ligand 5 

(ZINC 37387871) 

-7.20 -8.80 +/- 

8.31 

Structure-based 

  

Ligand 6 

(ZINC 32911334) 

-6.20 -24.08 +/- 

3.31 
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Ligand 7 

(ZINC 36532822) 

-6.70 -23.45 +/- 

3.37 

 

 

Ligand 8 

(ZINC 29753816) 

-6.90 -23.30 +/- 

6.17 

 

 

Ligand 9 

(ZINC 08729923) 

-8.10 -20.00 +/- 

3.46 

 

 

Ligand 10 

(ZINC 00158858) 

-6.40 -17.66 +/- 

2.15 
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These ligands were further subjected to a 20 ns MD simulation.    The root mean square 

deviation (RMSD) and potential energy plots of ligands 1-10 confirmed the convergence of the 

MD protein-ligand complexes at approximately 25 ns.    See supplementary information 

(Figure S7 to S10).    The root mean square fluctuation (RMSF) plots closely resemble the 

residue contribution profile of inhibitor oseltamivir. 

Based on the predicted binding free energy (ΔGbind), ligand 1 is ranked as having the most 

favourable binding interaction with the receptor followed by ligands 6, 7, 8, are comparable to 

the binding free energy of active inhibitor oseltamivir.    Ligands 2, 3, 4, 5, 9 and 10, however, 

exhibit weaker interaction contributions with the receptor.    However, the correlation of the 

docked energies with calculated binding free energies of the ligand-based pharmacophore hits 

are better than the structure-based pharmacophore.    The total binding free energy was further 

decomposed into its components.    The four inhibitors (oseltamivir, zanamivir, laninamivir 

and peramivir), shared a similar energy contribution trend, the electrostatic energy (ΔEele) 

contribution was counter-balanced by the polar solvation energy (ΔGGB) contribution.    A 

significant proportion of the binding free energy comes from the van der Waals energy (ΔEvdW) 

contributor.    The same trend is observed for the ligands extracted from the virtual screen.    

Structurally the ligands are different to the current drug inhibitors and, as previously 

mentioned, the more basic the ligand, the more potent it is in inhibiting the enzyme 50.      

The binding pattern of ligand 1 displayed significant hydrophobic interactions between the 

conjugated ring and residues Arg 71, 144 and Ile 142, Table 3.    The hydrogen bond donation 

from the protein receptor residues Arg 75, 144, 212 with the sulphonyl amide group, was 

similar to the substrate and active inhibitors.    Further to this, Arg 71 expressed a weak π -

cation interaction between the face of the electron rich π-system of the aromatic ring.    The 

total binding free energy of ligand 1 is -26.68 (kcal/mol), Table 4.    The molecule has three 

distinctive structural features surrounding the phenyl anchor.    The cyano group is 
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accommodated in the C4 pocket.    The sulfamoylcarbamate and tert-butyl group extends from 

the C1 to the C6 binding pockets.    Overall, the molecule offers many electron pairs which can 

attribute to the basicity of the ligand.    The quasi-harmonic entropic approximation (ΔS) of 

ligand 1 comprised of three aspects translational, rotational and vibrational contributions.    The 

measure of disorder for each estimated -12.80, -10.10 and -49.54 (kcal/mol), respectively.    

Collectively giving a ΔS of -72.43 (kcal/mol) suggesting an ordered compact three-dimensional 

protein complex.    Hydrophobic interactions of ligand 2 were observed between Asp 70 and 

Arg 144 with the hydroxyl linker and aromatic ring functionalities, respectively.    The ligand 

structure appears to be interlocked and rigid due to the fused ring complement, resulting in a 

restricted hydrogen bond network with residues Glu 197, Arg 212 and Arg 287.    The unique 

ringed structure of 1,3-dioxolane sits in the C1 pocket, decanol occupies the C6 and C4 pockets 

and a chlorophenyl group resides in the C5 pocket with an overall ΔGbind of -19.05 (kcal/mol).    

The estimated ΔS of the system was measured to be -71.84 (kcal/mol).    With a translational 

contribution of -12.87 (kcal/mol), a rotational contribution of -10.14 (kcal/mol) and a 

vibrational contribution of -48.83 (kcal/mol).    This suggests an ordered three-dimensional 

protein complex.    Ligand 2 acts as a weak acid i.e.   a hydrogen bond donor, but has improved 

lipophilicity compared to ligand 1.     

Ligand 3 is an electronegative rich molecule with a hydrophobic interaction between Glu 197 

and the trifluoromethyl moiety.    The hydrogen bond network observes significant hydrogen 

bond donation from residues Ser 166, Arg 212 and Tyr 321, whilst Glu 197 accommodates a 

hydrogen interaction by donation from the amide group.   A bridging water molecule mediates 

an interaction between Arg 287 and the trifluoromethyl group.    The predicted ΔGbind for ligand 

3 estimated -16.79 (kcal/mol).    The compound comprises four substituents extending from a 

central phenyl ring.    There are two oxohydroxylammonium groups that occupy the C1 and 

C5 pockets as hydrogen bond acceptors.    A hydroxyl group sits in the C6 pocket which acts 
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as an HBA and HBD, and a trifluoroacetamido ethyl group which contains a range of HBA and 

HBD moieties, is accommodated in the C4 pocket.    The compound has an overall acidic 

profile.    The entropic contribution estimated -42.00 (kcal/mol) comprising -12.80 

(translational quasi-harmonic approximation (qha)), -10.29 (rotational qha) and -18.91 

(vibrational qha) (kcal/mol), respectively.    The trifluoromethyl moiety of ligand 4 expressed 

an electrostatic interaction with Lewis base residues Arg 71 and Trp 98.    The dipole created 

by opposing side chain group’s i.e.   the trifluoromethyl group and acetohydrazide, is supported 

by Asp 70 via a bridging water and a hydrophobic interaction.    Asp 70 also functions as both 

a HBA and HBD.    Additional hydrogen bond contributions from Arg 212 and Arg 287 were 

established.    Ligand 4 has two defined structural features attached to the phenyl anchor, the 

first being the HBA, trifluoromethyl group which partially occupies the C5 and C6 binding 

pocket, and the HBD, acetohydrazide which is accommodated in the C1 pocket.    The molecule 

is observed to have a weak Lewis acid chemical profile with a predicted ΔGbind of -12.62 

(kcal/mol).    Ligand 4, has a total entopic quasi-harmonic approximation of -65.37 (kcal/mol), 

translational qha of -12.61 (kcal/mol), vibrational qha of -9.87 (kcal/mol) and vibrational qha 

measuring -42.89 (kcal/mol).    Ligand 5 reflected a defined hydrogen bond interaction pattern 

with acetohydrazide functional group and residues: Asp 70, Arg 71, Arg 212, and Arg 287.    

The structure of ligand 5 comprises three identical methyl ethers and are chemically recognised 

as HBA’s that occupy and overlap with the binding pockets C4, C5 and C6.    The molecule 

also contains an acetohydrazide that possesses an HBA and HBD moiety which interacts with 

residues of the C1 binding pocket.    The compound has an overall basicity with a calculated 

binding free energy estimating -8.80 (kcal/mol).    The measured ΔS reflects an ordered protein 

profile of -43.14 (kcal/mol), and a translational, rotational and vibrational qha of -12.52, -9.51 

and -21.10 (kcal/mol), respectively. 
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 Table 5: Calculated binding free energies based on the MM-GBSA method 

System ΔEele ΔEvdW ΔGSA ΔGGB ΔEgas ΔGsol ΔGbind 

Oseltamivir -9.44 +/- 

3.52 

-30.29 +/- 

5.45 

-3.88 

+/- 0.42 

21.22 +/- 

3.63 

-39.73 +/- 

6.30 

17.34 +/- 

3.43 

-22.40 

+/- 5.44 

Laninamivir -169.73 

+/- 17.48 

-32.95 +/- 

3.62 

-5.12 

+/- 0.42 

183.20 

+/- 14.00 

-202.68 

+/- 16.94 

178.08 

+/- 13.95 

-24.60 

+/- 5.70 

Peramivir -153.79 

+/- 12.78 

-35.42 +/- 

2.95 

-5.33 

+/- 0.27 

163.22 

+/- 10.75 

-189.21 

+/- 12.71 

157.89 

+/- 10.70 

-31.32 

+/- 4.26 

Zanamivir -189.20 

+/- 18.38 

-34.62 +/- 

3.24 

-5.52 

+/- 0.32 

198.29 

+/- 13.75 

-223.82 

+/- 18.43 

192.78 

+/- 13.64 

-31.04 

+/- 6.87 

Ligand 1 -4.09 +/- 

5.28 

-32.86 +/- 

4.46 

-4.36 

+/- 0.64 

14.63 +/- 

4.33 

-36.95 +/- 

6.79 

10.27 +/- 

4.26 

-26.68 

+/- 4.21 

Ligand 2 -8.11 +/- 

4.46 

-27.75 +/- 

3.56 

-3.65 

+/- 0.46 

20.45 +/- 

4.42 

-35.85 +/- 

5.22 

16.80 +/- 

4.35 

-19.05 

+/- 2.87 

Ligand 3 -2.79 +/- 

3.39 

-23.67 +/- 

7.10 

-3.21 

+/- 0.97 

12.87 +/- 

5.31 

-26.45 +/- 

8.75 

9.66 +/- 

4.56 

-16.79 

+/- 5.33 

Ligand 4 -13.22 +/- 

10.76 

-19.30 +/- 

5.63 

-2.95 

+/- 1.02 

22.84 +/- 

11.31 

-32.52 +/- 

14.72 

19.89 +/- 

10.58 

-12.63 

+/- 6.60 

Ligand 5 -1.50 +/- 

3.15 

-13.02 +/- 

12.09 

-2.11 

+/- 1.95 

7.83 +/- 

7.69 

-14.52 +/- 

13.75 

5.72 +/- 

5.85 

-8.80 +/- 

8.31 

Ligand 6 -209.42 

+/- 15.96 

-12.48 +/- 

2.93 

-3.13 

+/- 0.21 

200.95 

+/- 13.84 

-221.90 

+/- 15.24 

197.82 

+/- 13.81 

-24.08 

+/- 3.31 

Ligand 7 -5.48 +/- 

2.45 

-30.21 +/- 

3.41 

-3.78 

+/- 0.49 

16.02 +/- 

3.33 

-35.69 +/- 

5.00 

12.24 +/- 

2.98 

-23.45 

+/- 3.37 

Ligand 8 -16.27 +/- 

5.64 

-33.29 +/- 

4.55 

-4.75 

+/- 0.55 

31.01 +/- 

3.96 

-49.56 +/- 

8.31 

26.25 +/- 

3.73 

-23.30 

+/- 6.17 

Ligand 9 -55.34 +/- 

14.05 

-27.31 +/- 

3.22 

-3.74 

+/- 0.39 

66.39 +/- 

13.50 

-82.66 +/- 

13.83 

62.65 +/- 

13.42 

-20.00 

+/- 3.46 

Ligand 10 -0.57 +/- 

2.99 

-24.74 +/- 

1.85 

-3.14 

+/- 0.20 

10.80 +/- 

2.75 

-25.31 +/- 

3.52 

7.65 +/- 

2.71 

-17.66 

+/- 2.15 

*the energy values reported are measured in kcal/mol: ΔGbind = ΔEgas + ΔGsol - TΔS; ΔEgas = ΔEint + ΔEvdW + ΔEele; 

ΔGsol = ΔGGB + ΔGSA. 

An extensive hydrogen bonding network of ligand 6 with HBD’s: Arg 37, Asp 70, Arg 75, Ser 

99, Arg 212, Arg 287 and HBA’s: Glu 38, Trp 98, Glu 147 and Tyr 321 exists.    A water bridge 
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created by Arg 287 supplements an electrostatic interaction.    Ligand 6 was ranked with the 

most favourable ΔGbind measuring -24.08 (kcal/mol).    The ligand has three key structural 

features; 1) the pyridine anchor, 2) the hydroxamic acid, and 3) the hydroxycarbamimidoyl.    

The hydroxamic acid acts as an HBA, residing in the C1 binding pocket.    The 

hydroxycarbamimidoyl group’s interaction is shared with the C4 and C6 pockets.    The 

molecule assumes a very weak acid profile perceiving it to be a potential inhibitor.    Ligand 7 

had a more conserved binding pattern, with a hydrophobic interaction between Ile 142 and tert-

butyl group.    Arg 212 and Tyr 321 are delegated as a hydrogen bond donor and acceptor, 

respectively.    Salt bridges exerted by Arg 37 and Arg 287 allow for the accommodation of 

the carboxylate group.    Ligand 7 comprises a keto-cyclopropanecarboxylic acid which 

interacts with the C1 binding pocket residues.    A piperazine moiety anchors the molecule and 

engages in a charge-charge interaction in the C4 binding pocket.    The C5 pocket 

accommodates the tert-butoxycarbonyl group.    The molecule has an overall ΔGbind of -23.45 

(kcal/mol).    Ligand 8 shared a similar binding profile to ligand 7.    A distinct hydrophobic 

interaction with residue Arg 144 exists.    A hydrogen bond network between residues Glu 38, 

Arg 75 and Arg 287 and the carboxylate group exists.    Salt bridges created by Arg 37, Asp 

70 and Glu 197 provide valuable contributions to electrostatic interactions.    The composites 

of ligand 8, contrast with its counterparts.    It is composed of piperazine with a tert-

butoxycarbonyl group that facilitates an HBA interaction with the C1 pocket.    The C4, C5 

and C6 binding pockets promote an interaction with the carboxylic acid linker, HBA and 

phenyl ring.    The molecule mimics weak acid properties with a total binding free energy of -

23.30 (kcal/mol).    The complexation of ligand 9 offered three distinct salt bridges: Arg 37, 

Arg 212 and Arg 287 to the carboxylate group.    Ligand 9 has an estimated ΔGbind of -20.00 

(kcal/mol).    It has steric bulk attributed by the chain of two phenyl rings and two piperadine 

groups which reside in the C1 and C5 binding pockets.    The carboxylic acid group is a 
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significant HBA contributor that interacts with the C6 pocket residues.    The composition of 

ligand 10 incorporates a pyridine, morpholine and a carboxylic acid which reside in the C6, C4 

and C1 binding pockets, respectively.    The ligand has a strong affinity predicted ΔGbind of -

17.66 (kcal/mol).    The aromatic ring on ligand 10 demonstrated appreciable hydrophobic 

interactions between residues Asp 70, Arg 71, Ile 142 and Arg 144.    Arg 71 formed a π-cation 

interaction with the face of the benzene ring electron cloud.    Hydrogen bond donation from 

residues Arg 212 and 287 with the pyridine rings was observed.     

3.4 Similarity 

The novelty of the ligands identified was confirmed using PubMed.    Ligand 1 and 3 share no 

similarity with any reported inhibitor in literature.    Ligand 2 displayed no biological activity 

in literature, although the 2,4-dinitrophenolate group has become the basis of the design of 

innovative anti-cancer agents (CID 229329).    Ligand 5, has not been previously reported as a 

potential neuraminidase inhibitor.    However, analogues of the 2-phenylacetohydrazide have 

been evaluated for their inhibition of Microbial tyramine oxidase (AID: 215960).    The 2-

(3,4,5-trimethoxyphenyl)acetohydrazide of ligand 4, serves as an important framework for 

active inhibitors against human AChE and human plasma BChE.    Ligand 6 (5-

[amino(hydroxyimino)methyl]-N-hydroxy-2-pyridinecarboxamide), 7 (2-{[4-(tert-

butoxycarbonyl)piperazino]carbonyl}cyclopropanecarboxylic acid) and 8 (3-[4-(tert-

butoxycarbonyl)piperazino]-2-phenylpropanoic acid), share no similarity.    The piperazine of 

ligand 7 and 8, is a heterocycle which influences the biological activity by conferring metabolic 

stability and potentiating interactions with macromolecules 51-53.    The compound, 6-

morpholinonicotinic acid (ligand 10) has previously been tested in six bioassays 

(SID11536988); 1) influenza A RNA, 2) DnaK protein chaperone, 3) homo sapien peptidyl-

prolyl cis-trans isomerase FKBP1A isoform, 4) influenza A virus M2 ion channel, 5) homo 

sapien ubiquitin-conjugating proteasome E2, and 6) the FRB domain of mTOR.    The molecule 
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has demonstrated no activity in each of these systems.    The 1-benzylpiperidine structure of 

ligand 9 serves as a template for human betaine/GABA transporter 1 inhibitor N-(1-benzyl-4-

piperidinyl)-2,4-dichlorobenzamide (BPDBA) 54.    

4.   Conclusion 

The emergence of resistance in neuraminidase of the influenza A virus has encouraged research 

methods incorporating high-throughput screening.    Current methodologies propose that the 

structure-based pharmacophore predicted model as being superior to the ligand-based 

pharmacophore.    Our proof of concept in using per-residue binding free energies obtained 

from an MD ensemble using the MM-GBSA calculation to generate the ligand-based 

pharmacophore, has proven to be an invaluable additional technique for the generation of a 

suitable pharmacophore model.    The structure-based pharmacophore generated in the study 

has six pharmacophoric features, whereas, the ligand-based pharmacophore has 11 

pharmacophoric features that overlap with the interaction pattern mapped by favourable 

contributions of per-residue binding free energy.    The greater number of pharmacophoric 

features expands the screen for similar structured molecules.    It also introduces improved 

selectivity with greater structural diversity.    The five highest ranking molecules of the ligand-

based pharmacophore hit-list demonstrated a better correlation of its docking energies with the 

calculated MM-GBSA binding free energy.    Despite the predicted ΔGbind of the ligand-based 

docked complexes having a reduced affinity, a defined interaction of the chemical specific side-

chains with the specific binding pockets is observed.    The ease of drugability of these 

compounds based on lipophilicity makes them even more attractive as potential inhibitors. 

Introducing MD simulation into the workflow in pharmacophore generation, creates an 

energetically enhanced 3-D profile of the ligand-protein complex.   The interactions are thus 

based on an optimised conformation.    The decomposition of the binding free energy into the 

per-residue contributions using MM-GBSA calculations allows us to organise and rank the 
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interacting residues and subsequent chemical features, by their favourable energetics.    The 

potential inhibitors filtered through LBP virtual screens are more structurally specific for the 

target.    Thus the use of this technique would vastly improve the efficacy of in silico screening 

methods which, in turn expedites the design and development of innovative inhibitors to 

prevent future disease.    The results of this study form a strong basis for further investigation 

of the identified high ranking ligands 1-10 from the ligand- and structure-based virtual screen 

as potential inhibitors of influenza neuraminidase. 

5.   References 

 

1. Shao, T.-j.; Li, J.; Yu, X.-f.; Kou, Y.; Zhou, Y.-y.; Qian, X., Progressive antigenic drift 

and phylogeny of human influenza A(H3N2) virus over five consecutive seasons (2009–2013) 

in Hangzhou, China.   International Journal of Infectious Diseases 2014, 29, 190-193. 

2. Air, G.   M.; West, J.   T., Antigenic Variation☆.   In Reference Module in Biomedical 

Sciences, Elsevier: 2014. 

3. Carrat, F.; Flahault, A., Influenza vaccine: The challenge of antigenic drift.   Vaccine 

2007, 25 (39–40), 6852-6862. 

4. Le, L.; Lee, E.   H.; Hardy, D.   J.; Truong, T.   N.; Schulten, K., Molecular Dynamics 

Simulations Suggest that Electrostatic Funnel Directs Binding of Tamiflu to Influenza N1 

Neuraminidases.   PLoS Comput Biol 2010, 6 (9), e1000939. 

5. Patel, R.   B.; Mathur, M.   B.; Gould, M.; Uyeki, T.   M.; Bhattacharya, J.; Xiao, Y.; 

Khazeni, N., Demographic and clinical predictors of mortality from highly pathogenic avian 

influenza A (H5N1) virus infection: CART analysis of international cases.   PloS one 2014, 9 

(3), e91630. 

6. Organization, W.   H.   Pandemic preparedness.   

http://web.archive.org/web/20030202145905/http://www.who.int/csr/disease/influenza/pande

mic/en/ (accessed 21 April). 

7. Cohen, E.   When a pandemic isn't a pandemic.   

http://edition.cnn.com/2009/HEALTH/05/04/swine.flu.pandemic/index.html (accessed 22 

April). 

8. Doshi, P., The elusive definition of pandemic influenza.   Bull World Health Organ 

2011, 89 (7), 532-8. 

http://web.archive.org/web/20030202145905/http:/www.who.int/csr/disease/influenza/pandemic/en/
http://web.archive.org/web/20030202145905/http:/www.who.int/csr/disease/influenza/pandemic/en/
http://edition.cnn.com/2009/HEALTH/05/04/swine.flu.pandemic/index.html


137 

 

9. Kim, C.   U.; Lew, W.; Williams, M.   A.; Liu, H.; Zhang, L.; Swaminathan, S.; 

Bischofberger, N.; Chen, M.   S.; Mendel, D.   B.; Tai, C.   Y.; Laver, W.   G.; Stevens, R.   C., 

Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme 

active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with 

potent anti-influenza activity.   Journal of the American Chemical Society 1997, 119 (4), 681-

90. 

10. Han, N.; Liu, X.; Mu, Y., Exploring the mechanism of zanamivir resistance in a 

neuraminidase mutant: a molecular dynamics study.   PloS one 2012, 7 (9), e44057. 

11. Takashita, E.; Ejima, M.; Itoh, R.; Miura, M.; Ohnishi, A.; Nishimura, H.; Odagiri, T.; 

Tashiro, M., A community cluster of influenza A(H1N1)pdm09 virus exhibiting cross-

resistance to oseltamivir and peramivir in Japan, November to December 2013.   Euro 

surveillance : bulletin Europeen sur les maladies transmissibles = European communicable 

disease bulletin 2014, 19 (1). 

12. Shobugawa, Y.; Saito, R.; Sato, I.; Kawashima, T.; Dapat, C.; Dapat, I.   C.; Kondo, 

H.; Suzuki, Y.; Saito, K.; Suzuki, H., Clinical effectiveness of neuraminidase inhibitors--

oseltamivir, zanamivir, laninamivir, and peramivir--for treatment of influenza A(H3N2) and 

A(H1N1)pdm09 infection: an observational study in the 2010-2011 influenza season in Japan.   

Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 

2012, 18 (6), 858-64. 

13. Sifferlin, A.   H1N1's Death Toll: 15 Times Higher than Previously Thought.   

http://healthland.time.com/2012/06/26/h1n1s-death-toll-15-times-higher-than-previously-

thought/ (accessed 23 April). 

14. Charles Patrick Davis, M., PhD  Swine Flu (Swine Influenza A [H1N1 and H3N2v] 

Virus.   http://www.medicinenet.com/swine_flu/article.htm (accessed 23 April ). 

15. Baz, M.; Abed, Y.; Papenburg, J.; Bouhy, X.; Hamelin, M.-È.; Boivin, G., Emergence 

of Oseltamivir-Resistant Pandemic H1N1 Virus during Prophylaxis.   New England Journal of 

Medicine 2009, 361 (23), 2296-2297. 

16. Prevention, C.   f.   D.   C.   a.   Influenza A (H3N2) variant virus.   

http://www.cdc.gov/flu/swineflu/h3n2v-cases.htm (accessed 25 April). 

17. Huang, L.; Cao, Y.; Zhou, J.; Qin, K.; Zhu, W.; Zhu, Y.; Yang, L.; Wang, D.; Wei, H.; 

Shu, Y., A conformational restriction in the influenza A virus neuraminidase binding site by 

R152 results in a combinational effect of I222T and H274Y on oseltamivir resistance.   

Antimicrobial agents and chemotherapy 2014, 58 (3), 1639-45. 

http://healthland.time.com/2012/06/26/h1n1s-death-toll-15-times-higher-than-previously-thought/
http://healthland.time.com/2012/06/26/h1n1s-death-toll-15-times-higher-than-previously-thought/
http://www.medicinenet.com/swine_flu/article.htm
http://www.cdc.gov/flu/swineflu/h3n2v-cases.htm


138 

 

18. Adabala, P.   J.; LeGresley, E.   B.; Bance, N.; Niikura, M.; Pinto, B.   M., Exploitation 

of the catalytic site and 150 cavity for design of influenza A neuraminidase inhibitors.   The 

Journal of organic chemistry 2013, 78 (21), 10867-77. 

19. Lu, X.; Liu, F.; Zeng, H.; Sheu, T.; Achenbach, J.   E.; Veguilla, V.; Gubareva, L.   V.; 

Garten, R.; Smith, C.; Yang, H.; Stevens, J.; Xu, X.; Katz, J.   M.; Tumpey, T.   M., Evaluation 

of the antigenic relatedness and cross-protective immunity of the neuraminidase between 

human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus.   

Virology 2014, 454–455, 169-175. 

20. Matrosovich, M.   N.; Matrosovich, T.   Y.; Gray, T.; Roberts, N.   A.; Klenk, H.-D., 

Neuraminidase Is Important for the Initiation of Influenza Virus Infection in Human Airway 

Epithelium.   Journal of Virology 2004, 78 (22), 12665-12667. 

21. Sylte, M.; Suarez, D., Influenza Neuraminidase as a Vaccine Antigen.   In Vaccines for 

Pandemic Influenza, Compans, R.   W.; Orenstein, W.   A., Eds.   Springer Berlin Heidelberg: 

2009; Vol.   333, pp 227-241. 

22. Russell, R.   J.; Haire, L.   F.; Stevens, D.   J.; Collins, P.   J.; Lin, Y.   P.; Blackburn, 

G.   M.; Hay, A.   J.; Gamblin, S.   J.; Skehel, J.   J., The structure of H5N1 avian influenza 

neuraminidase suggests new opportunities for drug design.   Nature 2006, 443 (7107), 45-9. 

23. Li, Q.; Qi, J.; Zhang, W.; Vavricka, C.   J.; Shi, Y.; Wei, J.; Feng, E.; Shen, J.; Chen, 

J.; Liu, D.; He, J.; Yan, J.; Liu, H.; Jiang, H.; Teng, M.; Li, X.; Gao, G.   F., The 2009 pandemic 

H1N1 neuraminidase N1 lacks the 150-cavity in its active site.   Nature structural & molecular 

biology 2010, 17 (10), 1266-8. 

24. Woods, C.   J.; Malaisree, M.; Long, B.; McIntosh-Smith, S.; Mulholland, A.   J., 

Analysis and assay of oseltamivir-resistant mutants of influenza neuraminidase via direct 

observation of drug unbinding and rebinding in simulation.   Biochemistry 2013, 52 (45), 8150-

64. 

25. Global monitoring of antiviral resistance in currently circulating human influenza 

viruses, November 2011.   Releve epidemiologique hebdomadaire / Section d'hygiene du 

Secretariat de la Societe des Nations = Weekly epidemiological record / Health Section of the 

Secretariat of the League of Nations 2011, 86 (45), 497-501. 

26. Meijer, A.; Rebelo-de-Andrade, H.; Correia, V.; Besselaar, T.; Drager-Dayal, R.; Fry, 

A.; Gregory, V.; Gubareva, L.; Kageyama, T.; Lackenby, A.; Lo, J.; Odagiri, T.; Pereyaslov, 

D.; Siqueira, M.   M.; Takashita, E.; Tashiro, M.; Wang, D.; Wong, S.; Zhang, W.; Daniels, R.   

S.; Hurt, A.   C., Global update on the susceptibility of human influenza viruses to 

neuraminidase inhibitors, 2012-2013.   Antiviral research 2014, 110, 31-41. 



139 

 

27. Karthick, V.; Shanthi, V.; Rajasekaran, R.; Ramanathan, K., Exploring the cause of 

oseltamivir resistance against mutant H274Y neuraminidase by molecular simulation 

approach.   Applied biochemistry and biotechnology 2012, 167 (2), 237-49. 

28. Smith, G.   J.   D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.   J.; Worobey, M.; Pybus, O.   

G.; Ma, S.   K.; Cheung, C.   L.; Raghwani, J.; Bhatt, S.; Peiris, J.   S.   M.; Guan, Y.; Rambaut, 

A., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic.   

Nature 2009, 459 (7250), 1122-1125. 

29. Yarris, L., New Biological Route for Swine Flu to Human Infections.   20 October 

2014, 2009. 

30. Mostaço-Guidolin, L.   C.; Bowman, C.   S.; Greer, A.   L.; Fisman, D.   N.; Moghadas, 

S.   M., Transmissibility of the 2009 H1N1 pandemic in remote and isolated Canadian 

communities: a modelling study.   BMJ Open 2012, 2 (5). 

31. Danishuddin, M.; Khan, A.   U., Structure based virtual screening to discover putative 

drug candidates: Necessary considerations and successful case studies.   Methods 2015, 71, 

135-145. 

32. Xia, J.; Tilahun, E.   L.; Reid, T.-E.; Zhang, L.; Wang, X.   S., Benchmarking methods 

and data sets for ligand enrichment assessment in virtual screening.   Methods 2015, 71, 146-

157. 

33. Vuorinen, A.; Schuster, D., Methods for generating and applying pharmacophore 

models as virtual screening filters and for bioactivity profiling.   Methods 2015, 71, 113-134. 

34. Ke, Y.-Y.; Coumar, M.   S.; Shiao, H.-Y.; Wang, W.-C.; Chen, C.-W.; Song, J.-S.; 

Chen, C.-H.; Lin, W.-H.; Wu, S.-H.; Hsu, J.   T.   A.; Chang, C.-M.; Hsieh, H.-P., Ligand 

efficiency based approach for efficient virtual screening of compound libraries.   European 

Journal of Medicinal Chemistry 2014, 83, 226-235. 

35. Du, H.; Brender, J.   R.; Zhang, J.; Zhang, Y., Protein structure prediction provides 

comparable performance to crystallographic structures in docking-based virtual screening.   

Methods 2015, 71, 77-84. 

36. Chen, Y.-C., Beware of docking! Trends in Pharmacological Sciences 2015, 36 (2), 

78-95. 

37. Kumar, A.; Zhang, K.   Y.   J., Hierarchical virtual screening approaches in small 

molecule drug discovery.   Methods 2015, 71, 26-37. 

38. Kurauchi, R.; Watanabe, C.; Fukuzawa, K.; Tanaka, S., Novel type of virtual ligand 

screening on the basis of quantum-chemical calculations for protein–ligand complexes and 



140 

 

extended clustering techniques.   Computational and Theoretical Chemistry 2015, 1061, 12-

22. 

39. Amaro, R.; Baron, R.; McCammon, J.   A., An improved relaxed complex scheme for 

receptor flexibility in computer-aided drug design.   Journal of computer-aided molecular 

design 2008, 22 (9), 693-705. 

40. Rastelli, G., Emerging Topics in Structure-Based Virtual Screening.   Pharm Res 2013, 

30 (5), 1458-1463. 

41. Khanna, M.; Wang, F.; Jo, I.; Knabe, W.   E.; Wilson, S.   M.; Li, L.; Bum-Erdene, K.; 

Li, J.; G, W.   S.; Khanna, R.; Meroueh, S.   O., Targeting multiple conformations leads to 

small molecule inhibitors of the uPAR.uPA protein-protein interaction that block cancer cell 

invasion.   ACS Chem Biol 2011, 6 (11), 1232-43. 

42. Wang, L.; Gu, Q.; Zheng, X.; Ye, J.; Liu, Z.; Li, J.; Hu, X.; Hagler, A.; Xu, J., Discovery 

of New Selective Human Aldose Reductase Inhibitors through Virtual Screening Multiple 

Binding Pocket Conformations.   Journal of chemical information and modeling 2013, 53 (9), 

2409-2422. 

43. Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno, Y.; 

Narumi, T.; Taiji, M., High-performance drug discovery: computational screening by 

combining docking and molecular dynamics simulations.   PLoS Comput Biol 2009, 5 (10), 

e1000528. 

44. Varghese, J.   N.; McKimm-Breschkin, J.   L.; Caldwell, J.   B.; Kortt, A.   A.; Colman, 

P.   M., The structure of the complex between influenza virus neuraminidase and sialic acid, 

the viral receptor.   Proteins 1992, 14 (3), 327-32. 

45. Vavricka, C.   J.; Li, Q.; Wu, Y.; Qi, J.; Wang, M.; Liu, Y.; Gao, F.; Liu, J.; Feng, E.; 

He, J.; Wang, J.; Liu, H.; Jiang, H.; Gao, G.   F., Structural and functional analysis of 

laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA 

inhibition.   PLoS pathogens 2011, 7 (10), e1002249. 

46. Pettersen, E.   F.; Goddard, T.   D.; Huang, C.   C.; Couch, G.   S.; Greenblatt, D.   M.; 

Meng, E.   C.; Ferrin, T.   E., UCSF Chimera—A visualization system for exploratory research 

and analysis.   Journal of Computational Chemistry 2004, 25 (13), 1605-1612. 

47. UCSF Resource for Biocomputing, V.   a.   I.   UCSF Chimera--an Extensible Molecular 

Modeling System, University of California. 

48. Jorgensen, W.   L.; Chandrasekhar, J.; Madura, J.   D.; Impey, R.   W.; Klein, M.   L., 

Comparison of simple potential functions for simulating liquid water.   The Journal of chemical 

physics 1983, 79 (2), 926. 



141 

 

49. Mysinger, M.   M.; Carchia, M.; Irwin, J.   J.; Shoichet, B.   K., Directory of Useful 

Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking.   Journal 

of Medicinal Chemistry 2012, 55 (14), 6582-6594. 

50. Liu, Y.; Jing, F.; Xu, Y.; Xie, Y.; Shi, F.; Fang, H.; Li, M.; Xu, W., Design, synthesis 

and biological activity of thiazolidine-4-carboxylic acid derivatives as novel influenza 

neuraminidase inhibitors.   Bioorganic & Medicinal Chemistry 2011, 19 (7), 2342-2348. 

51. Huang, S.-X.; Li, H.-Y.; Liu, J.-Y.; Morisseau, C.; Hammock, B.   D.; Long, Y.-Q., 

Incorporation of Piperazino Functionality into 1,3-Disubstituted Urea as the Tertiary 

Pharmacophore Affording Potent Inhibitors of Soluble Epoxide Hydrolase with Improved 

Pharmacokinetic Properties.   Journal of Medicinal Chemistry 2010, 53 (23), 8376-8386. 

52. Todorovic, A.; Haskell-Luevano, C., Peptides 2005, 26, 2026. 

53. Kundu, B., Curr.   Opin.   Drug Discovery Dev.   2003, 6, 815. 

54. Kragholm, B.; Kvist, T.; Madsen, K.   K.; Jørgensen, L.; Vogensen, S.   B.; Schousboe, 

A.; Clausen, R.   P.; Jensen, A.   A.; Bräuner-Osborne, H., Discovery of a subtype selective 

inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive 

pharmacological profile.   Biochemical Pharmacology 2013, 86 (4), 521-528. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

Chapter 7 
 

A molecular dynamics description of the conformational binding of a potential 

influenza A endonuclease inhibitor  

Ashona Singhaǂ, Sarentha Chettya and M. E. S. Solimana,b* 

aSchool of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South 

Africa 

bDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig 

University, Zagazig 44519, Egypt 

*Corresponding author: Mahmoud E. S. Soliman, email: soliman@ukzn.ac.za 

Telephone: +27 31 260 8048, Fax: +27 31 260 7872 

ǂMain contributor 

Abstract 

The threat of impending influenza pandemics, due to the rapid development of resistance of 

the influenza virus toward existing chemotherapeutic defences, expedites the need for 

innovative and effective drugs against selective targets.  In this study, we provide a 

comprehensive molecular dynamics perspective of the bonding mode of a designed inhibitor 

in the active site of the 2009 pH1N1 endonuclease.  Using computational techniques we were 

able to decipher the capacity of the active site by comparing the conformations of a bound 

enzyme to an apo-enzyme.  Inhibitors of endonuclease require three features: 

1) a greater number of hydrophilic moieties which are situated on terminal ends of the 

inhibitor, 

2) long, flexible planar side-chains which are anchored to a hydrophobic or neutral base, 

3) steric bulk, to block the binding pocket. 

The structural features outlined will offer tremendous insight when constructing and 

developing future anti-viral agents. 
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Introduction 

The influenza virus is an important human pathogen, being the primary cause of many 

epidemics and pandemics worldwide.  There have been several documented pandemics, such 

as the ‘1918’ Spanish flu which claimed approximately 40 million lives 1, in 1957 and 1968 

the Asian and Hong Kong influenza viruses were reported each claiming about one million 

lives 2.  The most recent pandemic identified by the World Health Organisation (WHO) was 

the 2009 H1N1/swine flu, however, the virus still maintains its pathogenicity across the eastern 

border specifically in India.  The unpredictable nature of H1N1 to gain resistance to current 

chemotherapies through rapid evolution and its ease of human-human transmissibility poses an 

eminent threat of a new pandemic, to which, the human population has no defence3-5.  Thus it 

is crucial to understand the mechanism of resistance of influenza A viruses, as well continually 

research the development and design of new effective anti-viral agents.   

Influenza vaccines are the most widely used prophylactic measure, however, due to the rapid 

spread of infection the need for effective antiviral drugs is imperative 6.  The influenza A virus 

genome is comprised of eight segments each being viable drug targets.  These include: 1) the 

antigen haemagglutinin 7; 2) the M2 ion channel which, has two main active inhibitors that are 

commercially available Symmetrel/amantadine and Flumadine/rimantadine 8; and 3) 

neuraminidase which, has four main active drug candidates; Relenza/zanamivir, 

Tamiflu/oseltamivir, Rapivab/peramivir and laninamivir 9.  However, the rapid development 

of resistance of the influenza A virus toward available prophylaxis is of growing concern.  

Resistance is often acquired by mutation in the target protein, thus making our efforts to try 

and keep up with evolution more difficult.  Therefore it is essential to explore and investigate 

alternate targets.  An example would be to target the viral replication process. 
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The mechanics of viral replication lie in eight negative-stranded RNA segments which encode 

at least 17 viral proteins, a major component of these segments is the RNA-dependent RNA 

polymerase (RdRp) 10.  The crystal structure of the RNA polymerase reveals a large protein 

complex (~250 kDa) composed of three subunits, which are highly conserved among influenza 

A and B viruses; these include polymerase basic protein 1 and 2 (PB1 and PB2), and 

polymerase acidic protein (PA) 11, 12.  During viral transcription, the RdRp cleaves host pre-

mRNA’s at a distance of 10-13 nucleotides from their 5`-capped terminus 13.  The binding of 

the cap is performed by PB2, whilst the endonuclease activity resides in the N-terminal domain 

of PAN (PA-Nter; containing residues 1 to ~195).  After endonuclease cleavage, the short 5`-

capped RNA serves as primer for the initiation of viral mRNA synthesis, performed by the PB1 

unit with viral mRNA’s being subsequently translated by the host cell machinery 14.  The 

process of binding and cleavage of the 5`-cap i.e. ‘cap snatching mechanism’, is not a normal 

cellular function thus it remains an exclusive and essential step in the influenza virus lifecycle 

13, 15. 

There has been further evidence to suggest the existence of an alternate encoded protein, PA-

X, which has an overlapping sequence and similar enzymatic activity as PAN, may contribute 

to the host protein shutdown observed during influenza A infection 16.                                                                          

Thus the acidic component of the polymerase offers a viable strategy to inhibit the influenza 

viral replication.  Over the last 20 years several structurally diverse small molecule PA 

inhibitors have been discovered to have strong activity toward the PA-Nter enzyme.  Such as 

flutimide and its structural analogues, tetrameric acids, green tea catechins, N-hydroxamic acid, 

epigallocatechin gallate, N-hydroxypyridazinones and hydroxypyri(mi)dinones.  (most potent 

antiviral L-742,001) 17-20. 

The catalytic site of endonuclease is similar to the (P)DXN(D/E)XK nuclease motifs formed by 

D108, E119, a proline (influenza A) or alanine (influenza B) at position 107, and K134 or 
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K13721.  It comprises a histidine (H41) and a cluster of three acidic residues (E80, D108, E119), 

which are conserved in all influenza viruses and coordinate (together with I120) to one, two or 

three divalent metal ions (Mg2+ or Mn2+, with Mg2+ being the prominent cofactor in vivo) 22-24.  

There are approximately 35 crystal structures related to the influenza virus PA endonuclease 

deposited in the RCSB Protein Data Bank, with over 20 enzymes in complex with an inhibitor.  

Multiple biochemical studies reveal critical information of the structural composition of the 

enzyme17, 25.  The PAIs identified inhibit the PA endonuclease through chelation of its metal 

cofactor(s) with the active site.  The architectural characterisation of PAN allows the design 

and development of novel and rational PAI chelating structures and enhanced enzyme binding 

properties to improve antiviral activity in cell culture. 

Bauman et al, created a new class of influenza endonuclease inhibitors via structure-based drug 

design26.  It was identified that (compound 7’s) had the greatest antiviral potency amongst the 

endonuclease inhibitors.  In our study we wish to supply a molecular dynamic comparative 

perspective of the apo-enzyme of endonuclease as well as a bound ligand.  This will provide 

significant structural binding markers that will allow us to via in silico screening identify an 

expanded class of endonuclease inhibitor.  In turn, highlight critical features to be considered 

for de novo drug synthesis. 

Methods 

Preparation of System 

Crystallographic structure of H1N1 endonuclease unbound (PDB ID: 4M5Q) and bound with 

inhibitor (compound 7) (PDB ID: 4M4Q), were obtained from the RCSB Protein Data Bank 

(PDB)26.  Using the Chimera 1.8.1 software package a monomer was selected followed by the 

correction of protonation states of amino acid residues as well as the removal of water, polar 
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hydrogens and non-bonding species 27, 28.  The specific van der Waals radius and molecular 

mass of the Mn metal was accommodated for in mol2 format in preparation of the ligand.  

Molecular Dynamics Simulation 

Amber 14.0 GPU version of the PMEMD engine was used to perform a 100 ns molecular 

dynamics simulation.  The protein was described with the FF99SB variant force field 29.  The 

LEaP module embedded within Amber was use for the addition of hydrogen atoms and 

neutralisation of the protein by the addition of Na+ counter ions.  The system was suspended 

within a TIP3P 303029 water box such that all protein atoms were within 8 Å from the box edge.  

The drug-protein complex was energetically minimised in three stages; 1) 1000 step restraint 

gradient minimisation with selective boundary conditions of the particle-mesh Ewald method 

which has a parameter of direct space and a van der Waals cut-off of 12 Å.  Stage 2, a 2500 of 

deepest descent step with a solute harmonic potential of 500 kcal/mol. Å2; and stage 3, a 1000 

step unrestrained conjugate gradient energy minimisation of the complete system.  The system 

was heated using a canonical ensemble (NVT) from 0 K to 300 K over 50 ps.  The collision 

frequency of solutes was 1.0 ps-1
 with a harmonic potential of 10 kcal/mol.Å2

.  A final 

equilibration step of 500 ps was performed using the SPFP precision model of the SHAKE 

algorithm to constrict hydrogen bonds at 2 fs intervals.  The simulations were conducted in a 

randomised seeding of an isobaric-isothermal ensemble (NPT).  A constant pressure of 1 bar 

was maintained by the Berendsen barostat with a pressure coupling constant of 2 ps. A 

temperature of 300 K was set using a Langevin thermostat with collision frequency of 1.0 ps-

2.  Co-ordinates were saved every 1 ps and the trajectories were analysed every 1 ps using a 

CPPTRAJ module in Amber 14.0. 
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Binding free energy calculation 

An implicit solvent model was employed to describe the thermodynamic free binding energies 

of the bound conformation of endonuclease enzyme.  The Molecular Mechanics/Generalised-

Born Surface area method was used to evaluate the ligand-protein complex binding affinities.31-

34  To calculate the free binding energy contributions 10000 snapshots were extracted from the 

100 ns trajectory.  The following set of equations describe the calculation of the binding free 

energy: 

∆Gbind = Gcomplex − Greceptor − Gligand                    (1) 

∆Gbind = Egas + Gsol − TS                                              (2) 

Egas = Eint + Evdw + Eele                                               (3) 

Gsol = GGB + GSA                                                               (4) 

GSA = γSASA                                                                       (5) 

The term Egas represents the gas-phase energy, and is directly estimated from the FF99SB force 

field terms which comprises the energy contributor’s internal energy (Eint), van der Waals 

energy (EvdW) and Coulomb energy (Eele).  The solvation energy, Gsol is estimated by the 

contribution of energies from polar states, GGB and non-polar states, GSA.  The non-polar 

solvation energy is determined from the solvent accessible surface area (SASA) using a water 

probe of 1.4Å.  The temperature and total solute entropy are represented by T and S, 

respectively35.  

Principle Component Analysis (PCA)   

PCA reveals the structure of atomic fluctuations.  PCA describes the motion of the system in 

terms of eigenvectors (planar of motion) and eigenvalue (magnitude of motion) 36.  
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The individual MD trajectories are stripped of solvent and ions using the PTRAJ and CPPTRAJ 

modules in Amber 12.0/14.0.  The resulting trajectories were aligned against a fully minimised 

structure.  PCA was performed on C backbone with 5000 snapshots taken every 20 ps. The 

first two Eigen vectors (PC1 and PC2) corresponding to the first two modes of PCA covariance 

matrices were generated using in-house scripts.  The corresponding PCA scatters were plotted 

using Origin software (http://www.originlab.com/), structural postscript diagrams were created 

using VMD 37.  Porcupine plots of the first and second modes developed by the normal mode 

wizard (NMW) using the ProDy interface of VMD were sketched for each of the systems 38. 

 

Results and Discussion 

The crystal structure of the apo- influenza endonuclease (4M5Q) and ligand-bound (4M4Q) 

enzymes contain a residue complement of 196 and 200 amino acids, respectively.  The 

difference in the amino acid sequence lies in the N-terminus of the enzyme and is dependent 

on the resolution of the crystal structure.  The difference of four amino acids does not alter the 

secondary or tertiary structures of the metalloprotein as is observed from the secondary 

structure analysis of the systems (see Supplementary information S1 to S5).  The root mean 

square deviation (RMSD) and potential energy plots attained convergence in both systems at 

10 ns for the apo-enzyme and 25 ns for the ligand-bound PA.  With a measured average RMSD 

of 1.5 Å and 1.2 Å, respectively.  The energy difference between the systems estimates 10 000 

kcal/mol in favour of the ligand-enzyme complex. 

The intention of this study is to highlight the critical binding features of the unique inhibitor.  

Each PAN, comprises two divalent Mn metal centers which are essential to the binding of the 

inhibitor in the active site.  The binding mode of the highly potent molecule is unlike the 
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binding of other endonuclease inhibitors in the active site.  The metal cofactor exists as +2 

cation, which, governs the architecture of the potential chemotherapeutic.   

According to the online protein-ligand interaction profiler (PLIP) 39, PAN has an alpha-beta 

construction with five-mixed beta-strands forming a twisted plane surrounded by seven alpha-

helices.  A negatively charged cavity surrounded by helices α2-5 and strand β3 house the metal 

ion.  The geometry of metal co-ordination is square planar and square pyramidal.  Metal 

chelation occurs via amino acid interactions: Ile120, acidic residues Glu80, Asp108, three 

water molecules stabilised by residue H41, Glu119 and the carbonyl oxygens of Lys106 and 

Pro107.  The co-ordinating residues have been found to be highly conserved between influenza 

A, B and C viruses. 

The root mean square fluctuation no observable perturbations between the apo-enzyme and the 

ligand-metalloprotein complex of the residues implicated in the binding of the metal (Figure 

1).  Residues 50 to 75 of both systems, which, are assembled in a coil exert a high frequency.  

The ligand of system 4M4Q expresses two prominent hydrophobic interactions of the α-helix.  

The first being between with β-carbon of Ala42 and C10 of the ligand cyclohexyl group at a 

distance of 3.79 Å.  The second non-polar interface occurs between the γ-carbons (i.e. Cγ1 and 

Cγ2) of Ile43 and C9 and C26 of the cycloheyl (3.78 Å) and fluorocyclohexenyl (3.69 Å) groups 

of the ligand, respectively.  A hydrogen bond network exists between the ligand and catalytic 

residues.  These include interactions of hydrogen bond donors of the protein; ε-amino group of 

Lys39 (H-acceptor distance = 3.01  Å, donor-acceptor distance = 3.97 Å) and Lys139 (H-

acceptor distance = 1.80 Å, donor-acceptor distance = 2.58 Å), as well as the δ-guanidino group 

of Arg129 (H-acceptor distance = 2.77 Å, donor-acceptor distance = 3.76 Å) with N14 and N15 

of the aromatic pyran ring and C5 para to the nitrogen of pyridine ring.  The ε-O of the carboxyl 

group of residue Glu85 and the hydroxyl group of Tyr135 accept hydrogens from the ligand 

via C20 of the fluorocyclohexenyl group (H-acceptor distance = 2.27 Å, donor-acceptor 
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distance = 3.01 Å) and C5 of the pyridine ring (H-acceptor distance = 3.06 Å, donor-acceptor 

distance = 3.65 Å). 

 

Figure 1: RMSF of the bound and unbound system of endonuclease enzyme 

An estimation of the number of hydrogen bonds throughout the simulation affirmed that the 

apo-enzyme (4M5Q) and ligand-protein complex (4M4Q) were similar averaging between 90 

– 130 hydrogen bonds (Figure 2).  However, it was observed that the molecular dynamics of 

the apo-enzyme predisposes the enzyme to greater solvent exposure which leads to a 4-5 

hydrogen bond difference of apo-enzyme and complex systems at any given point during the 

simulation.  This is exacerbated in the apo-enzyme due to the high concentration of histidine 

residues which readily interact with adjacent residues in the α-helices and β-strands, as well as 

the metal centers.  Binding of the ligand in the active site pocket is mediated by the divalent 

metal cations and specific hydrophobic interactions.  Thus the number of hydrogen bonds when 

comparing the bound and unbound systems of the PA subunit remain essentially the same. 
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Figure 2: Graphical estimation of the number of hydrogen bonds in systems 4M4Q and 4M5Q 

 

 

 

 

 

 

 

Figure 3: Solvent accessible surface area (left) and volume (right) analysis of the proteins 

bound (4M4Q) and unbound (4M5Q) over 100ns 

Solvent accessible surface area (SASA) refers to the relative area exposed to solvent taking 

into consideration, the composition of van der Waals surface of the protein.  The SASA for the 
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ligand-protein complex, 4M4Q is slightly larger that of the apo-enzyme, 4M5Q (Figure 3).  The 

Mn+2 metal centers in their unbound state are co-ordinated to three waters.  In the bound state 

the waters are extruded to accommodate the ligand.  The structural moieties of the ligand are 

accommodated in the active site, the structure displays a significant number of hydrophilic 

pharmacophoric features.  The metal-ligand interaction co-ordination geometry is by a square 

planar arrangement.  The molecular size of the ligand is much larger than that of the three water 

molecules combined, which causes the binding cavity to expand.  The overall volume of 4M4Q 

the system increases significantly (Figure 3).  This distortion in conformation may be key to 

the inhibition of the endonuclease activity of the PA subunit. 

The radius of gyration describes the dynamic motion of the amino acid residues bound in their 

secondary structure in relation to the α-carbon backbone.  It indirectly quantifies the amount of 

energy required to overcome inertia.  System comparison of 4M5Q and 4M4Q reveal that the 

apo-enzyme is more tightly bound than the ligand-metalloprotein complex (Figure 4).  System 

4M4Q achieves a stabilised conformation only after ~40 ns at which point the protein complex 

is least compact.  This phenomenon is in line with the multiple biological functioning of the 

RNA-dependent enzyme.  PAN has been implicated in cap-binding, endonuclease activity, viral 

RNA binding and replication.  The volume of the ligand-protein complex is considerably larger 

than the apo-enzyme.  This proposes a constricted and relaxed conformation of the enzyme, 

where when selectively bound to the inhibitor the overall structure of the protein is more 

relaxed which increases the volume of the enzyme.   
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Figure 4: Radius of gyration of systems 4M4Q and 4M5Q over 100ns 

Principal component analysis explores the dynamics of protein folding in terms of the diffusive 

properties of the polypeptide chain.  System 4M5Q has a more compact three-dimensional 

structure than the ligand-protein complex, 4M4Q (Figure 5).  With a correlation of -0.011 

which is close to zero indicating that principal component 1 (PC 1) and principal component 2 

(PC2) are independent of one another and the direction of motion is antithetic.  The degree of 

motion although inversely proportional is also disproportionate in either direction.  This is 

supported by a covariance value of -0.62.  The correlation value of the bound complex 4M4Q, 

measured 0.0091 and the covariance value estimated 1.17.  This indicates that the fluctuation 

of the α-carbon backbone of PC1 and PC2 is independent of one another and occurs in a 

uniform disproportionate direction.   
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Figure 5: PCA scatters of systems 4M4Q and 4M5Q averaged over 100 ns 

 

 

 

 

 

 

 

 

 

Figure 6: Normal mode analysis of system 4M5Q (left) and 4M4Q (right) 
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Figure 6, describes the elastic motion of the alpha-carbon backbone of the PA subunit for both 

the 4M4Q and 4M5Q systems.  The normal mode analysis demonstrates a greater disorder in 

the bound conformation of 4M4Q eigenvector to the order ~0.001. 

Using MM/GBSA calculation it was found that the binding free energy of the bound 

conformation revealed significant contribution from the Evdw of -29.64 (kcal/mol) to the total 

ΔG measuring -20.54 (kcal/mol).  Van der Waals interactions are non-bonding entities and 

occur largely by the aggregation of non-polar residues forming hydrophobic pockets.  The 

contribution from electrostatics and solvent are included in table 1. 

 

Table 1: Energy contributions of the binding free energy term (ΔG) 

Energy component Energy contribution/ (kcal/mol) 

Eele -6.70  +/- 8.12 

GGB 19.68 +/- 7.43 

Egas -36.35 +/- 8.46 

GSA -3.88 +/- 0.46 

Gsol 15.81 +/- 7.23 

 

The quasi-harmonic approximation of entropy (ΔS) describes the disorder in the protein 

sequence which impacts the folding of the protein.  The composites of ΔS, include the effects 

of translation, rotation and vibration.  In the bound conformation, system 4M4Q, these were 

estimated to be -12.93, -10.68 and -21.01 (kcal/mol) respectively.  The overall measured 

disorder was -44.62 (kcal/mol). 
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Conclusion 

The molecular dynamics analysis of bound and unbound endonuclease enzyme provided 

insight in the conformational change of the protein.  Subtle changes in the active site are 

amplified in the overall protein folding structure.  Using molecular dynamics simulation we 

were able to observe the effect of the inhibitor binding on the overall PA subunit.  It is clear 

that in order for a molecule to inhibit or bind to the active site components and chelate to metal, 

the inhibitor would have to exhibit an inherently hydrophilic nature.  Hydrophilic features 

would also need to be adaptive, in that the functional moiety would need to be ionisable.  The 

co-ordination of the ligand to the metal centers is required to be resilient against any 

fluctuations in pH.  The molecule should have two adjustable “arms” or side-chains in order to 

chelate to the metal center in a square planar geometry. 

The study offered insight into the expandable limitations of the PA subunit.  Thus future design 

of inhibitors may be constructed by active binding feature as well as steric bulk to block the 

active site. 
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Chapter 8 

8. General conclusions 

8.1 Conclusion 

 

The study had three distinct aims: 

4. To determine, differentiate and distinguish the mechanism of resistance of 

neuraminidase in influenza A; 2009-pandemic H1N1 (2009-pH1N1) and H5N1 

subtypes in the presence of mutation/s H274Y and I222K. 

5. To propose potential neuraminidase scaffolds for new and innovative prophylactic 

chemotherapies via the aid of in silico technique ligand-based virtual screening (LB-

VS) and structure-based virtual screening (SB-VS). 

6. To identify the binding mode of the polymerase endonuclease of H1N1 and isolate 

potential drug therapies to selectively inhibit enzyme activity, using LB-VS and SB-

VS. 

Overall, each aim was achieved.  Molecular dynamics proved an invaluable tool, specifically 

the multiple MD simulations.  The enriched MD simulation offered improved resolution of the 

protein conformation and three-dimensional structure.   

The comparative study of the wild type and mutant species of neuraminidase of the 2009-

pH1N1 and the highly pathogenic H5N1 strains, described a change in the active site of the 

enzyme.  It was found that a single point mutation of H274Y compared to the point mutation 

I222K influenced the structure of the active site to a greater extent by lowering the binding 

affinity of the drug, oseltamivir.  The binding affinity of the drug was further reduced in the 

presence of the double mutation, i.e. H274Y-I222K.  However, the 2009 pandemic swine flu-

H1N1 exhibited greater susceptibility to oseltamivir than the highly pathogenic avian flu-

H5N1.  This urged a closer inspection of the different neuraminidase binding landscapes.  

Evidence suggested a structural collapse of the active site of the wild type influenza A virus in 

the mutant species.  The contributions to the binding free energy term, the solvent accessible 

surface area analyses and radius of gyration analyses proposed a loss in hydrophobicity in the 

systems.  However, the volume ratio of the active site and overall compactness of the ligand-

protein complex of H5N1 mutants and mutants of H1N1 when compared to their wild type 

structures, was significantly altered.  Furthermore, when comparing the H5N1 systems to those 
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of the H1N1, the H5N1 ligand-protein complexes were found to exhibit a greater folding 

capacity which ultimately led to decreased surface solvent exposure. 

The difference in the binding site of the influenza viruses offers an explanation into the 

discrepancy in the mechanism and extent of resistance in the H1N1 and H5N1 systems.  

However, this only reiterates the need for new and innovative anti-viral agents.  Using ligand-

based and structure-based pharmacophore techniques, in the construction of three-dimensional 

models a set of 10 discriminant compound scaffolds was isolated.  These were preferentially 

screened for their ability to bind to the transmutated active site of the H1N1 mutant species.  

The in silico investigation of the H1N1 species containing the mutations H274Y and/or I222K, 

revealed pertinent information about the pharmacophoric features of potential inhibitors.  With 

the binding site volume being larger in the H274YH1N1 and I222KH1N1 systems than in the 

WTH1N1, it could accommodate: 

1) a larger profile inhibitor; 

2) an inhibitor with increased hydrophilic property  

3) structurally the inhibitor should have a longer hydrophobic ‘tail’ to be accommodate in 

the binding region which held the bulky group of oseltamivir.  

The binding mode study of endonuclease revealed that co-ordination of two divalent metal 

centers to a potential inhibitor, is required for the selective impair enzyme activity.  The binding 

of the inhibitor in the active site of endonuclease is indirect.  The interaction profile of the 

ligand-to-protein comprises: 

1) salt bridges; 

2) water bridges;  

3) metal chelation; and 

4) electrostatic interactions predominantly with Arg, Asp and Glu residues. 

The designed drug should exhibit hydrophilic properties and functional moieties capable of 

ionising at a pH range of 5 – 7 whilst retaining its stability.  The binding affinity of the inhibitor 

to the imperative active site residues and metal ions should improve with the drop in pH. 

The therapeutic targets neuraminidase and endonuclease, are exceptional focal points in the 

effort to treat influenza A viral infections.  The evolutionary capability of neuraminidase 

remains a conundrum, which requires constant vigilance and monitoring to prevent future 

pandemics.  Endonuclease inhibition is an ideal target being responsible for initiating the ‘cap-
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snatching’ mechanism in protein synthesis.  Furthermore, the enzyme shares a conserved 

protein sequence identity in the different types and subtypes of influenza viruses.  Thus 

potential inhibitors would have a broad spectrum anti-viral activity. 

8.2 Future work  

 

The World Health Organisation has been on high alert since the 2006 outbreak of the highly 

transmissible and infectious H5N1, avian flu.  The virus stoked the fears of the world as natural 

evolution of the strain overcame cross-species barriers, infecting both birds and humans alike 

with detrimental consequences.  The realisation of the human population being vulnerable to 

such infections heightened the urgency for new chemoprophylaxis 1.   

In order for this pre-emptive effort to be successful, researchers must be able to predict possible 

antigenic variations of influenza strains.  The drawback of this technique lies in the fact that 

not all highly resistant, highly transmissible and highly virulent strains of the influenza virus 

have been expressed.  Drug design relevant to these potential strains seems a never ending 

game of “cat and mouse”.  This study has accentuated the reliability, usefulness and dynamic 

capacity that computational techniques lend to the pharmaceutical, medicinal, biological and 

biochemical industries.   

Molecular dynamics simulations, binding free energy calculations and other post-dynamic 

analyses have demonstrated their ability to provide insurmountable evidence in explaining the 

resistance mechanisms of complex systems 2.  Three-dimensional detail of protein structures, 

such as protein folding can be elucidated.  Further to this, the structural and conformational 

effects mutations have on protein complexes can also be determined 3.  The potential success, 

effectiveness and design of drugs based on prerequisite structure-based or ligand-based 

pharmacophore anomalies, can timeously and easily be interpreted.  Going forward, 

computational studies would be an indispensable tool in reducing resources by: 

1) understanding the mode of action and resistance mechanism of critical enzyme targets; 

2) acting as a preface to screen the design and efficacy of drugs prior to synthesis; 

3) providing an atomistic perspective of the structural and conformational detail of 

proteins bound or unbound; and  

4) being used as a reliable and accurate comparative tool. 
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With regard to the systems evaluated in this thesis, a purely computational perspective was 

used.  Further investigation into the synthesis of the scaffold of compounds isolated from the 

in silico studies of potential drug candidates of neuraminidase can be performed.  Enhancement 

and pharmacophore expansion of the scaffolds into a family of compounds may lead to the 

discovery of more potent chemotherapeutic agents of influenza.    

Endonuclease inhibitors, as mentioned earlier have exhibited duality in their therapeutic 

activity as anti-cancer agents.  Comparative research in: 

1) understanding the mode of action; and 

2) structural similarities, of endonuclease and the therapeutic targets of cancer would offer 

exceptional insight into the behaviour of the proteins and provide possible 

pharmacophoric features in the design and development of new drug candidates 4. 

Further research should be invested in targeting hemagglutinin and the M2 ion channels.  The 

computational software tool, Discovery Studio maybe used to model the glycoprotein structure 

and proton channel 5.  In doing so, the mode of action of each protein may be described and a 

possible mechanism of inhibition may be suggested.  The software is further capable of 

designing and screening potential drug candidates which would adhere to the pharmacophore 

outlined from determining the mechanism of inhibition.  ESI/Q-tof hybrid techniques can be 

employed to test the design of the M2 ion channel inhibitors.  This is achieved by constructing 

a bilipid layer resembling the endosome, with an induced potential difference across the bilayer 

to mimic the M2 ion channel 6. 
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