
THE DEVELOPMENT AND ASSESSMENT OF TECHNIQUES FOR

DAILY RAINFALL DISAGGREGATION IN SOUTH AFRICA

Darryn Marc Knoesen

DISSERTATION

Submitted in partial fulfilment of the

requirements for the degree of MSc

School of Bioresources Engineering and Environmental Hydrology

University of KwaZulu-Natal

Pietennaritzburg

June 2005



ABSTRACT

The temporal distribution of rainfall , viz. the distribution of rainfall intensity during a storm, is

an important factor affecting the timing and magnitude of peak flow from a catchment and

hence the flood-generating potential of rainfall events. It is also one of the primary inputs into

hydrological models used for hydraulic design purposes. The use of short duration rainfall data

inherently accounts for the temporal distribution of rainfall, however, there is a relative

paucity of short duration data when compared to the more abundantly available daily data.

One method of overcoming this is to disaggregate courser-scale data to a finer resolution, e.g.

daily to hourly.

A daily to hourly rainfall disaggregation model developed by Boughton (2000b) in Australia

has been modified and applied in South Africa. The primary part of the model is the

.distribution of R, which is the fraction of the daily total that occurs in the hour of maximum

rainfall. A random number is used to sample from the distribution of R at the site of interest.

The sample value of R determines the other 23 values, which then undergo a clustering

procedure. This clustered sequence is then arranged into 1 of 24 possible temporal

arrangements, depending when the hour the maximum rainfall occurs. The structure of the

model allows for the production of 480 different temporal distributions with variation between

uniform and non-uniform rainfall. The model was then regionalised to allow for application at

sites where daily rainfall data, but no short duration data, were available.

The model was evaluated at 15 different locations in differing climatic regions in South

Africa. At each location, observed hourly rainfall data were aggregated to yield 24-hour values

and these were then disaggregated using the methodology. Results show that the model is able

to retain the daily total and most of the characteristics of the hourly rainfall at the site, for

when both at-site and regional information are used. The model, however, is less capable of

simulating statistics related to the sequencing of hourly rainfalls, e.g. autocorrelations. The

model also tends to over-estimate design rainfalls, particularly for the shorter durations .
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1. INTRODUCTION

Engineers and hydrologists involved in the design of hydraulic structures, such as dams,

bridges and culverts, need to accurately assess the frequency and magnitude of extreme

hydrological events. Current techniques for design flood estimation in South Africa need to be

updated, regional approaches need to be evaluated and new techniques have to be developed

and applied (Smithers and Schulze, 200I). One input that would improve the estimation of

design floods is to account for the temporaLdistribution of rainfall.

The temporal distribution of rainfall, viz. the distribution of rainfall intensity during a storm, is

an important factor affecting the timing and magnitude of peak flow from a catchment and

hence the flood-generating potential of rainfall events (Weddepohl, 1988). It is also one of the

primary inputs into hydrological models used for the design of hydraulic structures. The

temporal distribution of rainfall events may be influenced by many factors that need to be

reflected in design temporal distributions. These factors include, inter alia, location, storm

duration, storm depth, and season of storm occurrence (Hoang et a!., 1999).

The intensity distribution of a storm may be estimated by the use of a temporal distribution

curve, which may be synthetically derived or obtained from observed hyetographs (Chow et

al., 1988). The use of temporal distributions is usually applicable to event-based models, such

as the SCS-SA (Schulze et al., 1992). However, they can also be used in rainfall

disaggregation approaches (Boughton, 2000b).

Rainfall disaggregation refers to producing high-resolution data that can be aggregated to give

values equal to known courser-scale totals. The use of high-resolution rainfall data inherently

accounts for the temporal distribution of rainfall intensity. This is because the incremental

time-steps are small enough, i.e. hourly or sub-hourly, so as to represent different intensities.

High-resolution rainfall data are often required as input into continuous simulation

hydrological models. It is important to note that disaggregation is not synonymous with

downscaling. Downscaling aims at producing fmer scale time-series with the required

statistics, like disaggregation, but do not necessarily add up to any courser-scale totals

(Koutsoyiannis, 2003). Downscaling is, in particular, used for hydrological applications of

general circulation models.
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Continuous simulation hydrological models are important tools when analysing complex

hydrologic or hydraulic problems where detrimental effects may occur at different timesca1es ,

for example in flood prediction and the assessment of water quality (Mikke1sen et al., 1998).

These models require detailed rainfall data, viz. hourly or sub-hourly. The advantage of such a

time-series is that they reflect all relevant rainfall characteristics from peak intensities with

short duration to variations in annual rainfall (Mikkelsen et al., 1998). However, data are

generally only widely available at more aggregated levels of the model time-step, such as

daily. Koutsoyiannis and Onof (2001) note that in many countries, the number of raingauges

providing hourly or sub-hourly resolution data is smaller than the number of daily gauges by

about an order of magnitude. This situation reflects a general relative paucity of rainfall data

for timescales of one hour or less, both in numbers of gauges and length of the recorded series

(Koutsoyiannis and Onof, 2001). This, too, is the case in South Africa where it is reported that

there are 172 recording gauges with at least 10 years of breakpoint data (Smithers and

Schulze, 2000a), compared to 1806 daily rainfall stations with at least 40 years of data

(Smithers and Schu1ze, 2000b). The need for a model to disaggregate daily rainfall into a

sequence of individual storms of finer timescale cannot be overemphasised (Gyasi-Agyei,

1999).

The objectives of this study are:

• to identify techniques for the disaggregation of daily rainfall to produce hourly

increments which aggregate to equal the observed daily values; and

• to select and apply one of the abovementioned techniques and assess the applicability

of the method in South Africa.

In order to identify techniques for the disaggregation of daily rainfall a literature review is

conducted in Chapter 2. After the selection of an appropriate methodology, the selection of

various locations to test the methodology is made, and is detailed in Chapter 3. An in-depth

description of the employed methodology is given in Chapter 4. This, however, enables the

disaggregation of only those sites for which short duration rainfall data are available. In order

to apply the methodology at locations where no short duration data are available, but daily

rainfall records exist, it becomes necessary to regionalise the methodology. Chapter 5

provides a detailed description of the techniques used to regionalise the disaggregation model.

Chapter 6 is a presentation and discussion of the various results obtained during the

2



application of the disaggregation model for when at-site short duration are available, as well

as when regionalised input is used. Finally, conclusions drawn from the study and

recommendations for future research are presented in Chapter 7.
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2. METHODS TO ESTIMATE THE TEMPORAL
DISTRIBUTION OF RAINFALL

There are a number of methods for estimating the temporal distribution of rainfall. This

chapter is divided into two parts , the first of which is a review of techniques for the

development of temporal rainfall distributions and the second part is a review of various

approaches for disaggregating course scale rainfall.

From the literature, there are two broad categories into which a methodology for deriving

temporal rainfall distributions may be classed, shown in Figure 2-1. As discussed in Section

2.1, one method is to develop the distributions with the use of Intensity-Duration-Frequency

(IDF) curves, while methodologies based on observed hyetographs are reviewed in Section

2.2.

TEMPORAL DISTRIBUTION OF RAINFALL

Mass Curves Disaggregation Models
I

Synthetic ) [ Observed Hyetographs I
Figure 2-1 Schematic diagram depicting two broad categories into which the methodology

for deriving temporal rainfall distributions may be classed

Several different types of models for disaggregating course scale rainfall and their

applications are described in Section 2.3. This includes an alternative modelling methodology

for rainfall disaggregation known as artificial neural networks (ANNs), which have been

described as "elegant and powerful tools for solving problems" (Burian et aI., 2000).

2.1 Design Hyetographs Derived from Intensity-Duration-Frequency Relationships

The determination of the intensities or depths for selected return periods, which are inversely

related to the exceedance probability, of extreme storm events for a variety of storm durations
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are necessary for design flood estimation in South Africa. Weddepoh1 (1988), Smithers and

Schu1ze (2000a) and Gorgens (2002) cite several rainfall IDF studies in southern Africa,

which include the widely applied Midg1ey and Pitman (1978) co-axial regional Depth­

Duration-Frequency-diagram and the more recently developed regional approach, developed

by Smithers and Schu1ze (2003) , which utilises the scaling characteristics of rainfall.

In order to develop a temporal distribution for design rainfall, methods based on design IDF

curves have been proposed and applied (Hoang, 2001). These methods include, inter alia , the

alternating block method and the instantaneous intensity method (Chow et al. , 1988), a

slightly modified alternating block method used by Boughton (2000a) and the South African

version of the Soil Conservation Service (SCS-SA) method (Schu1ze et al., 1992).

2.1.1 Temporal storm distributions

A simple means of developing a design hyetograph from an IDF curve is by way of the

alternating block method (Chow et al., 1988). In this method, the storm duration (Td) is

divided into n equal time increments of M over a total duration Td = rust, For a selected return

period, the rainfall intensity is obtained from the IDF curve for each of the durations I1t, 211t,

3M, ... , nM, and the corresponding rainfall depth computed (Chow et aI., 1988). By taking

differences between successive rainfall depths, the amount of rainfall to be added for each

additional unit of time I1t is found. These incremental rainfall depths are subsequently

reordered such that the maximum depth occurs at the centre of the storm duration Td• Finally,

the remaining incremental rainfall depths are arranged in descending order alternately on

either side of the maximum depth to form the design hyetograph (Chow et al., 1988).

A variation of the alternating block method is the instantaneous intensity method. The

instantaneous intensity method employs a similar principle to that employed in the alternating

block method, in that the rainfall depth for a time interval around the storm peak is equal to

the depth given by the IDF curves (Chow et al. , 1988). The only difference is that the rainfall

intensity is considered to vary continuously throughout the storm (Chow et al., 1988).

In the development of a model to disaggregate daily rainfall to hourly rainfall, Boughton

(2000a) also modified the alternating block method to construct temporal distributions. Prior
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to the development of the methodology, Boughton (2000a) analysed data from recording

gauges at the site of interest and identified the main characteristics of the temporal patterns,

which formed the basis for modifications to the alternating block method.

2.1.2 SCS-SA temporal storm distributions

To adequately design hydraulic structures, long periods of observed streamflow data are

required to estimate design peak discharges and volumes. When observed streamflow data are

not available or are inadequate at the site of interest, rainfall/runoff models may be employed

to estimate the streamflow. One such event-based model that has become accepted and

established for use on small catchments in South Africa is the SCS method (Schulze et al.,

1992). The distribution of rainfall intensities is one of the primary inputs into such a model.

The temporal distribution types used in the SCS model have evolved somewhat over the

years. Originally, two 24-hour storm distributions (Type I and Type II) were developed in the

USA (Chow et al., 1988). These were subsequently re-evaluated by Cronshey (1982) and

more intense rainfall distributions were identified. The two original SCS distributions were

provisionally adopted for use in South Africa (Schulze and Amold, 1979). Schulze (1984)

made revisions to the adopted distributions used in southern Africa, which gave rise to four

revised synthetic distributions, termed Types 1, 2, 3 and 4, and were regionalised for South

Africa. As shown in Figure 2-2, the Type I distribution contains the lowest design intensities,

typifying frontal or general rainfall, while the Type 4 distribution contains the highest design

intensities, typifying convective thunderstorms (Schulze et al., 1992). The regionalised maps

of the distributions were subsequently revised (Figure 2-3) by Weddepohl (1988) with the use

of a database of digitised rainfall data for 40 rainfall stations located throughout South Africa

(Schmidt and Schulze, 1987).

This methodology is considered to be a conservative approach (Gorgens, 2002) in that the

distributions are made up of extreme rainfall depths for each sub-duration centred on the

middle of 24 hours. This is because it is unlikely that, for different durations, individual

rainfall intensities will correspond to the design intensities (Schulze et al., 1992).
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Although methods for developing design temporal distributions from IDF curves are simple,

there are disadvantages to this approach. Firstly, the patterns are derived from a series of

unrelated intensities from a variety of storms and are, therefore, unrealistic of an actual storm

(Pilgrim and Cordery, 1975; Cordery et al., 1984; Hoang, 2001). Secondly, these methods fail

to represent the variability of rainfall intensity within real storms (Boughton, 2000b; Hoang,

2001). Connolly et al. (1998) state that, while useful for estimating design runoff, methods

based on rainfall IDF relationships are not appropriate for disaggregating long daily records.

Since the abovementioned methods have been criticised as being unrepresentative of actual

storms, a solution may be to base the methodology for deriving temporal rainfall distributions

on analyses of observed rainfall events. Methods that are based on analyses of observed

hyetographs are reviewed in Section 2.2.

2.2 Hyetographs Derived from Observed Rainfall Data

By analysing observed storm events, the temporal distribution of typical storms can be

determined (Chow et aI., 1988). Using this approach, patterns of complete storms rather than

intense bursts of rainfall have been derived (Pilgrim and Cordery, 1975; Cordery et al. , 1984).

Pilgrim and Cordery (1975) cite many researchers who have adopted this approach. The

methods discussed in this chapter include a triangular rainfall distribution (Yen and Chow,

1980), Huff curves (Huff, 1967), the average variability method (Pilgrim and Cordery, 1975)

and the sampling of historical records.

2.2.1 Triangular rainfall distribution

Although many variations of this methodology exist (Lambourne and Stephenson, 1986), Yen

and Chow (1980) were the first to propose the triangular distribution for storm rainfall, as

shown in Figure 2-4. Yen and Chow (1980) analysed 9869 storms at four locations in the

USA and found the triangular rainfall distributions for most heavy storms to be nearly

identical in shape. The method was based on the principle that any distribution can be

determined once the precipitation depth and duration are known. In order to determine the

location of the peak intensity, a storm advancement coefficient r, defined as the ratio of the

8



time before the peak to the total storm duration, is used. A suitable value of r is determined as

the mean of the observed values of r computed for a series of storms of various durations,

weighted according to the duration of each storm event (Yen and Chow, 1980).

Lamboume and Stephenson (1986) analysed a series of synthetic rainfall distributions, which

included the uniform synthetic rainfall distribution, the Chicago synthetic hyetograph (Keifer

and Chu, 1957) and the triangular rainfall distribution and concluded that the triangular

distribution tends to represent actual storms more correctly than either the uniform synthetic

rainfall distribution or the Chicago synthetic hyetograph.

7
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Figure 2-4 The triangular rainfall distribution (after Lamboume and Stephenson, 1986)

The main advantages of this method are the simplicity of use and relatively few parameters

are required to establish the distribution (Lamboume and Stephenson, 1986). Hoang (2001),

however, states that despite the simplicity of the method, simple hyetograph shapes are

inadequate to represent the actual variation of rainfall intensity in typical rainfall events.
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2.2.2 Huff curves

Huff (1967) analysed storm precipitation data using a dense network of raingauges in East

Central Illinois in the USA from which 261 storms ranging in duration from 3 to 48 hours

were studied. This study was undertaken primarily to provide information applicable to

existing urban design problems (Huff, 1990). The resulting time distribution models were

presented as probability distributions, as shown in Figure 2-5, to provide measures of both

inter-storm variability and the general time pattern of rainfall. Huff (1967) found that of the

total rainfall event, the major portion of rainfall occurs in a relatively small time increment of

the total event time, regardless of duration, area or the number of identifiable separate bursts

of rain. Measured storm hyetographs were separated into four groups based on the occurrence

of the maximum storm intensity in one of four quartiles. These curves became known as

"Huff curves". Huff (1967) found that short duration storms of less than 24 hours duration

were generally of the first or second quartile type, while storms ofthe duration greater than 24

hours were generally of the fourth quartile type.

100
c
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'u
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0

E
~

~ 40&
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20:;
E
:;:,
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Figure 2-5

Cumulative percent of storm time

An example of first quartile Huff curves (Chow et al., 1988)

Bonta and Rao (1987) investigated the effects of different methods of storm identification,
sampling interval of precipitation data and season of year on the development of Huff curves.

In general, it was found that Huff curves show little response to both changes in sampling

interval and the critical duration between storms (Bonta and Rao, 1987). This is important
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because it implies that the Huff curves can be developed from more widely available courser­

scale rainfall data. However, individual Huff curves can show moderate influence of temporal

pattern due to sampling interval, especially for less frequent (e.g. 10%) patterns (Bonta and

Rao, 1987). It was also found that, as the probability associated with individual Huff curves

within a quartile decreases, the differences between seasonal mass curves increase, with

seasons having higher intensity rainfall displaying more variability within storms. However,

after investigating the effects of seasonality on the development of Huff curves, Walker and

Tsubo (2003) found that although there were some differences between the rainy and non­

rainy seasons, statistical tests showed these differences were not statistically significant.

Bonta and Rao (1988) evaluated several mass curve approaches, viz. triangular, two

superimposed triangles , three superimposed trapezoids, and Huff curves, in terms of their

ability to represent the wide variability in measured hyetographs. Their results showed Huff

curves to be the most flexible of the four hyetograph representations investigated. This can be

attributed to their multiple-peaked nature and the manner in which the curves were developed

(Bonta and Rao, 1988). A disadvantage of Huff curves, however, is that a curve associated

with a selected probability must be selected.

Bonta and Rao (1989) investigated the possibility of regionalising Huff curves in the USA.

Their findings showed that, despite the use of different methods to develop Huff curves for

Ohio, Illinois and Texas, Huff curves from these three states showed remarkable similarity.

These findings are supported by Walker and Tsubo (2003), who investigated the distribution

of rainfall intensities within rainfall events using Huff curves, and made comparisons based

on two different locations in South Africa (Bloemfontein and Pretoria) . Results from this

study indicated that one set of Huff curves could be used to represent a large portion of the

South African Highveld (Walker and Tsubo, 2003).

2.2.3 The average variability method

In most studies where the development of temporal distributions is based on observed

raingauge records, it appears that considerable smoothing of the derived distribution occurs

due to the averaging of rainfall intensities when considering an entire storm (Pilgrim and
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Cordery, 1975). However, average patterns of rainfall are unlike those of most individual

storms.

Pilgrim and Cordery (1975) thus derived a method for determining design temporal

distributions based on the analysis of intense bursts of various durations, instead of

considering complete storms. They developed a hyetograph analysis method which is based

on ranking the time intervals in a storm by the amount of rainfall occurring in each interval,

and repeating this procedure for many storms in the study area. By summing the ranks for

each interval, a typical hyetograph can be derived. The design temporal patterns obtained in

this manner represents the average variability of intense bursts of rain (Pilgrim and Cordery,

1975). The average variability method is the basis on which design temporal patterns

currently used in Australia are derived (Hoang, 200I).

Regardless of its conceptual simplicity, the average variability method does not represent the

variability of observed temporal patterns (Hoang, 200I) . Furthermore, the method only

accounts for intense bursts of rainfall and not for complete storms (Pilgrim and Cordery,

1975).

2.2.4 Sampling from historical records

To generate a design temporal distribution for a given design storm depth and duration, a very

simple method is to sample temporal distributions from historical records (Hoang, 2001). This

requires data with adequate lengths of record and at the required temporal resolution so that a

large sample of all observed temporal distributions for the specified duration can be

determined. It is then possible to randomly select the design temporal distribution for the

defined event from the sample of dimensionless temporal patterns for the corresponding

duration (Hoang, 2001).

Rahman et al. (2001) applied this method in an attempt to determine flood frequency curves

resulting from events defined as storm cores, which are the period of maximum intensity

within a storm. This project characterised the temporal time distribution by dimensionless

mass curves divided into 10 equal time increments. The results showed that temporal patterns

of rainfall depth for storm cores are not dependent on the season or total storm depth. Thus
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dimensionless temporal patterns from different seasons and for different rainfall depths could

be grouped. However, the patterns were found to be dependant on storm duration, yielding

two groups: (1) up to 12 hours duration, and (2) greater than 12 hours duration (Rahman et

al., 2001).

The sampling of temporal distributions from historical records is a promising method because

it is simple and it can model the variation of temporal patterns from event to event. However,

one problem with this method is that it can only characterise patterns that are actually

observed, but not the patterns that could have equally likely occurred (Hoang, 2001).

In this section various techniques for deriving temporal distributions through the analysis of

observed rainfall events have been discussed. However, as mentioned, each of these methods

has their inherent disadvantages. Most of these disadvantages can be overcome by applying

rainfall disaggregation models, which have the ability to generate long sequences of short

duration synthetic rainfall data while preserving important statistics pertaining to the observed

courser-scale rainfall data for the respective site. Many different types of rainfall

disaggregation models have been developed, some of which are reviewed in Section 2.3.

2.3 Rainfall Disaggregation Models

When the main aim of hydrological modelling was to supplement design of various

engineering structures, simple approximations such as the design storm approach proved to be

sufficient (Arnbjerg Nielsen et aI., 1998). However, the recent shift of focus to sustainability

and environmental protection requires that larger and more complex systems are analysed and

thus long and accurate rainfall records are required. The use of single design storms are too

simplistic as the detrimental effects in question may occur on many different time-scales

(Arnbjerg Nielsen et al., 1998).

Compared to the number of raingauges for recording daily rainfall, there is a relative paucity

of rainfall data at sub-daily time-scales (Koutsoyiannis and Onof, 2001). The need for sub­

daily rainfall data suggests the use of a disaggregation model to utilise available daily

information and provide the user with possible realisations of sub-daily rainfall information,

which aggregate up to the given daily data (Koutsoyiannis and Onof, 2001). Such a model
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would be useful in continuous simulation applications, which in turn is important in design

flood estimation (Hingray et aI., 2002).

Due to the limited success in deterministic rainfall modelling, stochastic point representations

of rainfall have become more established in hydrology (Heneker et al., 2001). The modelling

of rainfall using stochastic techniques has a wide range of potential for hydrological

applications which vary from hydrological design to the disaggregation of large time interval

data into shorter durations (Onof and Wheater, 1993; Onof and Wheater, 1994). Many

methodologies have been developed for disaggregating rainfall data temporally, some of

which are discussed in the subsequent subsections.

2.3.1 Stochastic models based on dimensionless hyetographs

Boughton (2000b) describes a stochastic model that disaggregates daily rainfall to hourly

rainfall, while retaining the daily total and contains the statistical characteristics of hourly

rainfalls at the gauge site. The primary part of the model is the distribution R, which is the

fraction of the daily total that occurs in the hour of maximum rainfall. A random number is

used to sample from the distribution of R. The sample value of R determines the other 23

values, which then undergo a clustering procedure, together with the value for R, in order to

best maintain the statistics for 2, 3, 6 and 12 hour durations. This clustered sequence is then

arranged into 1 of 24 possible temporal arrangements, depending on when the hour the

maximum rainfall occurs. The structure of the model allows for the production of 480

different temporal distributions with variation between uniform and non-uniform rainfall.

Boughton (2000b) states that the model does not attempt to reproduce the hourly rainfalls that

formed an actual daily total of rain, but rather is intended to be used in design flood

estimation procedures, particularly in combination with a daily rainfall generation model.

Tests of the model performance showed the methodology to be adequate in reproducing IFD

statistics at each of the stations tested (Boughton, 2000b).

Woolhiser and Osbom (1985) presented a stochastic model for the disaggregation of an

individual storm's depth into fractional depths, each corresponding to one tenth of the storm's

duration. Their scheme was based on a dimensionless Markov process, resulting from
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successive transformations of the real rainfall process (Koutsoyiannis, 2003). Garcia-Guzman

and Aranda-Oliver (1993) proposed a model to disaggregate the total depth of a rainfall event

of a specified duration into hourly rainfall depths. The temporal distribution was characterised

by a dimensionless storm mass curve, whose ordinates were assumed to be ordered samples

from a beta distribution, the parameters of which were estimated from observed storm data.

Similar techniques using dimensionless hyetographs were also applied by Hershenhom and

Woolhiser (1987), Heneker et at. (2001), Loukas (2002) and Walker and Tsubo (2003).

2.3.2 Rectangular pulse cluster based stochastic rainfall models

.Stochastic rainfall models based on point processes have been one of the most widespread and

useful tools in the analysis and modelling of rainfall (Koutsoyiannis and Mamassis, 2001).

Among them are cluster based models such as the Neyman-Scott rectangular pulse (NSRP)

model and the Bartlett-Lewis rectangular pulse (BLRP) model, on which considerable

research on cluster based modelling has been focussed (Rodriguez-Iturbe et al., 1987;

Cowpertwait, 1991; Onof and Wheater, 1993; Smithers and Schulze, 2000a; Gyasi-Agyei,

2005). Cluster based models have proved to be an elegant and physically realistic way to

describe temporal rainfall (Olsson and Burlando, 2002). In cluster based models, storms are

modelled as clusters of rain cells and each cell is a pulse with a random duration and random

intensity, which is constant for the duration of the pulse (Smithers and Schulze, 2000a; Frost

et al., 2004). In these models, both storms and the origin of cells for each storm arrive follow

a Poisson process (Koutsoyiannis and Mamassis, 2001; Koutsoyiannis, 2003). The two

abovementioned cluster based models have slight differences (Entekhabi et al., 1989). Frostez

al. (2004) cited (Cowpertwait, 1998) who showed analytically that that the two models were

equivalent up to second order statistics. Smithers and Schulze (2000a) found that the

modifications of the BLRP · model were able to reproduce the characteristics of shorter

duration rainfall in South Africa, even when the model was calibrated using only daily rainfall

data.

Glasbey et al. (1995) developed a system based on the BLRP model to estimate realistic

hourly increments using daily rainfall. They achieved this by stochastically generating rainfall

values at an hourly time-step and then choosing a three-day time-series, from the generated

series, that best matched the measured daily rainfall prior to, on and following the day to be
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disaggregated. Although this method produced satisfactory results, it has been pointed out that

it is not theoretically justified as three-day periods of rainfall are not independent, which

raises the issue of the applicability of the method to other data (Koutsoyiannis, 2003).

Koutsoyiannis and Onof (2000) developed a rainfall disaggregation model (HYETOS) , which

is a combination of the BLRP model, repetition techniques and adjusting procedures

developed by Koutsoyiannis and Manetas (1996), the purpose of which was to generate and

adjust hourly values of rainfall so as to sum to daily values. To validate the model

Koutsoyiannis and Onof (2001) performed two case studies for two raingauges with

extremely different climatic conditions, viz. a wet region (MAP> 600 mm) and a semi-arid

region (MAP < 300 mm). The results of the case studies indicate a good performance of the

methodology in preserving the most important statistical characteristics of the rainfall process,

including intermittency (Koutsoyiannis and Onof, 2001; Koutsoyiannis, 2003).

Gyasi-Agyei (2005) developed a disaggregation model which incorporates the

abovementioned repetition techniques and adjusting procedures (Koutsoyiannis and Onof,

2000; Koutsoyiannis and Onof, 200 I) into a regionalised hybrid model. A case study at one

location showed that the model was capable of reproducing near perfect dry probability,

variance, autocorrelation, and IFD curves for all months. The author notes that some of the

techniques may be seen as ad hoc and more consistent techniques need to be explored.

Furthermore, the model needs to be tested in different climatic regions for general

applicability (Gyasi-Agyei, 2005).

2.3.3 Multiple site rainfall disaggregation models

The spatial distribution of rainfall is important for agricultural purposes, in the evaluation of

regional hydrological behaviour and estimation of catchment flows, and in the assessment and

simulation of flood events (Kottegoda et al., 2003). Multiple site rainfall disaggregation, as a

means of spatial and temporal disaggregation, is a relatively new approach to rainfall

disaggregation. It presents significant differences from that of single-site disaggregation,

including increased mathematical complexity (Koutsoyiannis, 2003).
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Socolofsky et al. (2001) presented a simple method to disaggregate daily rainfall for use in

continuous simulation modelling. The disaggregation model makes use of the 8000 hourly

gauges and 25000 daily gauges in the Charles River catchment, Massachusetts, USA. This

method relies on measured hourly data from the same climatological regime as the daily data

to be disaggregated and samples the measured hourly data directly, as opposed to sampling

analytically derived statistical distributions. Despite its simplicity, the method is shown to

perform well in reproducing intermittency and in preserving the characteristics of the seasonal

rainfall process (Socolofsky et al., 2001). Using the disaggregation technique, the efficiency

of the runoff model (ranging from -00 to 1, where 1 is perfect agreement and -00 is very poor

agreement) for annual runoff volume improved from 0.36, obtained when using hourly data

outside the catchment, to 0.81 when using disaggregated daily rainfall data from inside the

catchment (Socolofsky et al., 2001).

Jennings et al. (2002) modified the point rainfall model DRIP (Disaggregated Rainfall

Intensity Pulse), developed by Heneker et al. (2001). The resultant model is capable of

simulating long-term synthetic high-resolution rainfall data at numerous sites using short-term

historical data (Jennings et al., 2002).

Kottegoda et al. (2003) set out to develop a parsimonious model to simulate daily rainfall data

and disaggregate these values to hourly values. Using a multiple site approach, the authors

disaggregated daily rainfall values into hourly values through dimensionless accumulated

hourly amounts generated by a beta distribution. Application of the model to the Tiber River

catchment in central Italy showed this approach to satisfactorily reproduce extremes and other

statistical properties of daily and hourly rainfall (Kottegoda et al., 2003).

Koutsoyiannis et al. (2001) developed a model called MuDRain (Multivariate Disaggregation

of Rainfall) for spatial-temporal disaggregation of rainfall. MuDRain involves the

combination of several univariate and multivariate rainfall models operating at different time­

scales in a disaggregation framework that can appropriately modify outputs of finer time-scale

models so as to become consistent with given coarser time-scale series. Application of this

model showed good preservation of important properties of the rainfall process, including

good reproduction of actual hyetographs (Koutsoyiannis, 2003).
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2.3.4 Artificial neural networks

Another approach to rainfall disaggregation modelling is to use Artificial Neural Networks

(ANNs). These models have become frequently used in solving complex non-linear problems

in many professions. ANNs are elegant and powerful tools for solving difficult problems

(Burian et al., 2000). They are massive parallel distributed processors made up of simple

processing units (artificial neurons), shown in Figure 2-6, which have a natural propensity for

storing experimental knowledge (Nagesh Kumar, 2003; Walker and Tsubo, 2003). In the past,

a persistent criticism of ANNs has been that they are black boxes whose inner mechanisms

are not well understood. However, properly constructed ANNs are no more mysterious than

the countless other regression and optimisation tools commonly used in everyday engineering

practice (Burian et aI., 2000).

Before neural networks can be applied to a specific problem, certain decisions need to be

made. Firstly, an appropriate neural network type must be chosen; and secondly, an

appropriate training algorithm, suitable training periods and an appropriate network structure

must be determined (Dawson and Wilby, 2001).

Artificial Neuron

ConOuence
Function

Activation

Function

To other
neurons

Figure 2-6 Artificial neuron or processing unit (after Burian et aI., 2000), where X,

denotes the inputs and W j denotes the weights

ANNs may be described as a network of interconnected neurons, each consisting of inputs

and outputs. Each processing unit finds a weighted sum of the inputs using a confluence
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function and evaluates an activation function to compute its output (Burian et a!., 2000). The

network is trained by adjusting the weights that link its neurons (Dawson and Wilby, 2001).

The training is applied with a training set of data, where the network is presented with a set of

inputs and corresponding outputs, and reduces the error in its output for a given input and

target output (Walker and Tsubo, 2003). For more information on hydrological modelling

using ANNs, the reader is referred to Dawson and Wilby (2001).

2.3.4.1 Advantages and Disadvantages of ANNs

ANNs offer the following advantages:

• They are flexible mathematical structures that are capable of identifying a complex

non-linear relationship between input and output data sets (Walker and Tsubo, 2003).

• They can handle incomplete and ambiguous data (Maier and Dandy, 1996).

• All the existing complex relationships between various aspects of the process under

investigation need not be known (Nagesh Kumar and Srinivasa Raju, 2000).

• They are often cheaper and simpler to implement than their physically based

counterparts (Campolo et a!., 1999).

• They are well suited to dynamic problems and are parsimonious III terms of

information storage within the trained model (Thirumalaiah and Deo, 1998).

• It has been shown that they can be trained using data from a source that is a

considerable distance from the station of interest (Burian et al., 2001).

Although ANNs have proven to be potentially useful tools in hydrology , their disadvantages

should not be ignored. A major limitation of ANNs is the lack of physical concepts and

relations (Nagesh Kumar, 2003). Most ANN applications are unable to explain the way they

arrive at a decision. Another issue is that there is no standardised way of selecting network

architecture. The choice of network architecture, training algorithm, and definition of error are

usually determined by the user's past experience and preference, rather than the physical

aspects of the problem (Nagesh Kumar, 2003). Koutsoyiannis (2003) states that, because

ANNs are not based on probability and stochastic processes , they may not be appropriate for

large length simulations, as they do not perform well in extrapolation. For example they may

result in poor estimation of extreme events, where long periods of record are required.
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2.3.4.2 Neural network applications

Neural networks have been applied to solve many problems over the last decade. Specific

applications to hydrology and water resources engineering include rainfall-runoff modelling,

precipitation estimation based on remotely sensed data, river stage forecasting and water

demand forecasting (Burian et aI., 2000).

Burian et al. (2000) developed two ANN models for disaggregating long-term hourly rainfall

records into IS-minute increments. One was a feed-forward model trained by back­

propagation. The other model used a similar network, but based on the idea of competitive

learning, which uses feedback among the hidden layer (Burian et aI., 2000). The performance

of the trained ANN models were compared to a linear disaggregation method and the

continuous-deterministic rainfall disaggregation model proposed by Ormsbee (1989). The

performance evaluation showed the ANNs to perform consistently on the same level as the

linear and Ormsbee approaches. However, the ANN models were more accurate in predicting

specific characteristics of the individual rainfall hyetographs, these being the maximum 15­

minute rainfall depth and the time when this rainfall occurred. This is important as the

maximum incremental rainfall depth and the time the depth occurs in a storm event has a

significant effect on the resulting hydrograph (Burian et al., 2000).

Burian and Durrans (2002) showed how the abovementioned feed-forward model trained by

back-propagation (Burian et al., 2000) can improve rainfall-runoff modelling. The runoff

hydrographs produced by the ANN model rainfall patterns were compared to the runoff

hydrographs produced by the observed IS-minute rainfall patterns, the observed hourly­

increment rainfall patterns, and the rainfall patterns from a geometric similarity

disaggregation technique. The peak discharges produced by the ANN model rainfall patterns

proved to be more accurate than when using the observed hourly increment rainfall and the

pattern produced by the geometric similarity rainfall disaggregation model (Burian and

Durrans, 2002).

Nagesh Kumar and Srinivasa Raju (2000) used ANNs to disaggregate predicted monsoon

(seasonal) rainfall to monthly rainfall for Orissa state, India. The correlation coefficient

between the observed and the disaggregated value was 0.703. It was further stated that the

ability to disaggregate seasonal rainfall to monthly rainfall could be used for short term
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planning and operation of river basin projects, which will enhance the planning for

sustainable development.

Walker and Tsubo (2003) applied ANNs to estimate rainfall intensities at IS-minute

increments. Meteorological data, which included specific humidity, temperature, wind

velocity and direction, were used as an input to estimate the rainfall intensity. After a trial and

error process, the best ANN model consisted of one hidden layer, which in turn had 288

artificial neurons. Results from the modelling process reflected some negative values, which

were then adjusted to give zero values, which agreed with the actual measured values.

However, these adjustments posed a further problem in that the actual daily rainfall was no

longer consistent with the daily rainfall sums from the generated rainfall intensities. Walker

and Tsubo (2003) found that, more often than not, the simulated daily value was greater than

the actual daily value because each simulated rainfall that was originally a negative value had

been increased by its absolute value to zero. It was decided that the ANN model was not

acceptable as a short-duration rainfall intensity generator at the present time, but showed

potential for future modelling of rainfall intensity if the current problems could be overcome

(Walker and Tsubo, 2003).

2.4 Discussion and Conclusions

Four methods for developing synthetic temporal rainfall distributions were reviewed, viz., the

alternating block method, the instantaneous intensity method, a variation of the alternating

block method developed by Boughton (2000a) and the SCS-SA (Schulze et al., 1992). These

methods are based on IDF data. Although these methods for developing temporal rainfall

distributions are simple, they fail to characterise actual storms. This is because they are

derived from a series of unrelated design events and fail to represent the variability of rainfall

intensity within real storms. However, these methods do not attempt to represent actual

storms, but are rather to be used as a tool for design purposes (Schulze et al., 1992; Boughton,

2000a).

Methodologies for deriving temporal rainfall distributions based on observed hyetographs

were considered to counter the shortfalls of the abovementioned methodologies. The methods

reviewed were the triangular distribution (Yen and Chow, 1980), Huff curves (Huff, 1967),

the average variability method (Pilgrim and Cordery, 1975) and the sampling of historical
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records. The triangular distribution, although simple to use, is unable to represent the actual

variation of rainfall intensity in rainfall events. Huff curves are better in this regard as they are

divided into quartiles, depending on when the major burst of rainfall occurs, and are presented

as a set of probability curves. They have been shown to be flexible and studies in both North

America and South Africa indicate that they can be regionalised. One disadvantage in the use

of Huff curves is that a choice needs to be made from a range of curves (Bonta and Rao,

1988), and hence their use is not clear.

The average variability method, by only accounting for intense bursts of rainfall, cannot be

representative of entire storms. As the name suggests, this method does not represent the

variability of possible distributions, but rather an average variability of many storms (Pilgrim

and Cordery, 1975). These deficiencies are well accounted for if distributions are derived

from historical records. This methodology results in distributions for entire rainfall events,

and accounts for the natural variability over time. However, one possible problem with the

average variability method is that it can only characterise patterns that are actually observed,

but not the patterns that could have equally likely occurred (Hoang, 2001).

Most of the disadvantages inherent in the abovementioned methods can be overcome by

applying rainfall disaggregation models, which have the ability to generate long sequences of

synthetic rainfall data for short durations, while preserving important statistics pertaining to

the observed longer duration rainfall data for the respective site. Of the rainfall disaggregation

techniques discussed, the multiple site models seem to have the most potential in hydrological

applications. This is because they can be applied to derive spatially consistent high-resolution

rainfall series at sites where only daily data are available.

ANNs are powerful tools with the potential for solving complex problems in hydrology, such

as rainfall disaggregation. ANNs have been shown to successfully disaggregate seasonal

rainfall to monthly rainfall and hourly rainfall to IS-minute rainfall. Although ANNs have

disadvantages, they have the potential to be useful tools in hydrology.

Of the techniques reviewed, Boughton's (2000b) methodology showed promising results

when estimating extreme values in Australia. It is also a simple approach and lends itself to

the possibility of being utilised as a multiple site model. Boughton's (2000b) methodology for

disaggregating daily rainfall to hourly values was selected in this study for use in South
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Africa. However, Boughton's (2000b) methodology only accounts for all rainfalls where the

daily total is greater than or equal to 15 mm. Hence, the methodology will need to be

modified to account for all days on which rainfall occurred.
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3. DATA UTILISED IN THE STUDY

Smithers and Schulze (2000a) compiled a short duration (S24h) rainfall database from several

different organisations, viz., the University of KwaZulu-Natal (UKZN); the Council for

Scientific Research and Industrial Research (CSIR); the South African Sugar Research

Institute (SASRI); the South African Weather Service (SAWS); the Cape Town City

Engineer's Department (CTCE); Rhodes University (RU) and the University of Zululand

(UZ). These data were made available by Smithers and Schulze (2003) as daily blocks of

either 24 hourly values, or 96 quarter-hourly values, extracted for 0:00 to 0:00 periods.

3.1 Selection of Hidden Stations for Model Testing

Hourly data from 172 stations, all of which had record lengths greater than 10 years, were

available for use . It was necessary to exclude some stations from the model development

process in order to independently evaluate the model. One station from each of the 15

relatively homogeneous extreme rainfall clusters, identified and described by Smithers and

Schulze (2000a), was removed from the dataset and not used in the development of the

disaggregation model. The 172 stations were divided into their respective homogeneous

clusters and the station with the median record length in each cluster was removed. This

resulted in 15 test stations, the details of which are listed in Table 3-1 and the locality shown

in Figure 3-1.

Thus 157 stations remained to be used for model development, and details of these gauges are

listed in Appendix A. The locations of the 157 stations used for model development are

shown in Figure 3-2 and the distribution of their length of record is shown in Figure 3-3.
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Table 3-1 Details of the 15 "hidden" stations used for model testing

Station Years Latitude Longitude Altitude
Mean Annual

Organisation Location Precipitation
No. Record

Deg Min Sec Deg Min Sec (m) (mm)

SAWS 0435019 OTIOSDAL 20 26 49 0 26 1 0 1498 559

SAWS 0552581 OUDESTAD 18 25 11 0 29 20 0 953 609

UKZN C173 CEDARA 20 29 33 50 30 15 0 1143 &66

SAWS 0317474 UPlNGTON 25 2& 24 0 21 16 0 836 176

SAWS 0719370 MARNITZ 27 23 10 0 28 13 0 932 391

SAWS 0023710 ROBERTSO N 25 33 50 0 19 54 0 159 272

UZ 304474 KWA-DLANGZWA 12 2& 54 0 31 46 0 32 1292

SASRI S acfs UMHLANGA 20 29 43 0 31 3 0 76 915

SAWS 0028748 GEORGE 1& 33 58 0 22 25 0 221 606

SAWS 009228& BEAUFORT WEST 23 32 18 0 22 40 0 893 188

SAWS 0474680 CARLETONVILLE 19 26 20 0 27 23 0 1500 660

SAWS 0261516 BLOEMFONTEIN 31 29 6 0 26 18 0 1351 514

SAWS 0127272 UMTATAWO 21 31 32 0 28 40 0 742 608

SAWS 025&213 DRIEPLOTIE 29 29 3 0 24 38 0 1120 404

SAWS 0106880 VREDENDAL 35 31 40 0 18 30 0 37 141
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Figure 3-1 Locations of the 15 "hidden" stations used for model testing

25



22" 0 Provincial & International Boundaries

23"

24"

25"

26"

27"

26'

29"

30"

31"

32"

33'

34"

35'

22"

23"

24"

25"

26"

27"

26'

29"

n23 30'

31"..
32"

33'

34'

35"

17' 18 ' 19" 20' 21' 22' 23" 2'" 25' 26" 27" 28" 29" 30" 31" 32" 33"

Figure 3-2 Locations of stations used for model development

90

80

11l 70c
0.. 60
ctl-en 50-0 40~

Q)
.c 30E
::::l

20Z

10

0

(49%)

(2.5%)

10-19 Years 20-29 Years 30-39 Years

Record Length

40-49 Years 50+ Years

Figure 3-3 Distribution of record lengths for the data used in model development

26



3.2 Data Selection

Unlike the work done by Boughton (2000b), which was to disaggregate only the larger daily

rainfalls considered important in flood studies , the purpose of this study was to disaggregate

all daily rainf alls. In Boughton's (2000b) study only rainfall data greater than, or equal to, 15

mm were used to develop his model. However, Boughton (2005) states that the methodology

can be applied to all daily non-zero rainfalls.

For the purpose of this study it was decided to develop the model in order to disaggregate all

daily non-zero rainfalls. All hourly data, from the remaining 157 stations, for which the daily

rainfall total was greater than or equal to 1 mm were used in the development of the

disaggregation model, i.e. distributions calculated using all data for which the daily rainfall

total was greater than or equal to 1 mm will be used to disaggregate all daily non-zero values.

The choice of using all data for which the daily rainfall total was greater than or equal to 1

mm to develop the model is justified in Section 6.1. Furthermore, only data where all 24 hours

of the day were successfully recorded were used, i.e. all days that contained missing hours or

infilled data were discarded. Boughton (2000b) states that the model treats each day as an

independent event for disaggregation, so the selection of days for analysis does not require

whole months or whole years of data. Details of the model developed by Boughton (2000b)

are contained in the following chapter.
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4. THE DISAGGREGATION MODEL

The daily to hourly disaggregation model used and modified in this study is based largely on

the work done by Boughton (2000b). The details of the model developed by Boughton

(2000b) are described in this chapter and changes to the methodology developed by Boughton

(2000b) are highlighted.

4.1 Structure of the Model

The model is comprised of 4 main parts:

a) The distribution of the fraction of the daily total, R, that occurs in the hour of maximum

rainfall.

b) For each value of R there is an average set of values for the other 23 hourly fractions of

the daily total.

c) Given the 24 fractions from above, the values are clustered to maintain the observed

average highest 2-hour, 3-hour, 6-hour and 12-hour fractions.

d) These clusters are then arranged into random patterns so as to reproduce the variations

in daily temporal patterns while retaining the abovementioned statistics.

4.2 Distribution of R

The primary part of the disaggregation model is the fraction, R, of the daily total that occurs

in the hour of maximum rainfall. A value ofR = 1.0 indicates that all of the rainfall on the day

fell in a single hour. This is the upper limit of R and is the boundary of non-uniformity.

Completely uniform rainfall throughout a day would yield R = 0.04167 (i.e. 1/24 of the daily

total). This is the lower limit ofR.

A single day's rainfall in hourly increments at Raingauge N23 at Ntabamhlope in the

KwaZulu-Natal (KZN) midlands is shown in Figure 4-1. The daily total was 84.4 mm and the

hour in which the most rainfall fell contained 40.9 mm. This yields a ratio of R = 40.9/84.4 =
0.48 for the day.
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Figure 4-1 Example of a single day's hourly rainfall at Ntabamhlope

If the ratio R is determined for all days with 1 mm of rainfall or more, the distribution of R

has a pattern that is a major characteristic of hourly rainfall at the site. The distribution of R

for a particular site is created by extracting all the values of R at the site for days where the

rainfall was greater than or equal to 1 mm, for the entire length of record. The computed R

values are then collated into 20 ranges, which were chosen by Boughton (2000b) and are

shown in Table 4-:1. The distribution of R thus shows the proportion of all values of R in each

of the ranges.

Table 4-1 Ranges used when collating R values

No. Range No. Range No. Range No. Range

1 [0.0417-0.075) 6 [0.275-0.325) 11 [0.525-0.575) 16 [0.775-0.825)

2 [0.075-0.125) 7 [0.325-0.375) 12 [0.575-0.625) 17 [0.825-0.875)

3 [0.125-0.175) 8 [0.375-0.425) 13 [0.625-0.675) 18 [0.875-0.925)

4 [0.175-0.225) 9 [0.425-0.475) 14 [0.675-0.725) 19 [0.925-0.975)

5 [0.225-0.275) 10 [0.475-0.525) 15 [0.725-0.775) 20 [0.975-1.000]

The distributions of R for two sites in differing climates are shown in Figure 4-2. Jonkershoek

(Station Jnk19a), in the Western Cape, is located in a winter rainfall region whereas

Ntabamhlope (Station N23), which lies inland in KZN, is located in a summer rainfall region.

The locations of these stations are highlighted in Figure 3-2.
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Distribution of R
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Figure 4-2 Frequency distributions of R at Stations Jnkl9a (in the W. Cape) and N23 (in

K.ZN), using the ranges of R shown in Table 4-1

From Figure 4-2 it is evident that the majority of the days at Jonkershoek fall into Range 6 in

Table 4-1 and have many low values of R (mean R = 0.385) indicating that there is a tendency

for more uniform rainfall. The distribution of Rat Ntabamhlope (mean R = 0.537) shows a

larger proportion of the days having larger values for R. This indicates that at Ntabamhlope

large portions of the daily rain fall in a single hour, which is typical of the convective storms

in the summer rainfall region.

4.3 Calculating the Other 23 Hourly Fractions

IfR = 1.0 then all of the rainfall fell in a single hour, hence the other 23 hourly fractions must

be O. IfR = 0.04167 then the other 23 hourly fractions must equal 0.04167. If, however, R is

slightly less than 1.0 it is probable that the rest of the day's rainfall fell in 1 or 2 other hours,

resulting in the remaining 21 or 22 hours having zero rainfall. Conversely, if R is slightly

greater than 0.04167 then the other 23 values will be slightly less than, but close to, 0.04167 .

This is important to note as it indicates that the value of R has a strong influence in

determining the other 23 hourly fractions of rainfall.

In order to determine the other 23 hourly fractions, the 24 hourly fractions for every day on

record were ranked in order of magnitude, with R being the largest value on each day. This

was done for each of the 157 stations. These ranked series, from all 157 sites, were then
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pooled together and averaged in each of the 20 ranges of R shown in Table 4-1. This resulted

in 20 averaged ranked series of hourly fractions, one for each range of R, examples of which

are shown in Figure 4-3. The averaged ranked series for all 20 ranges are listed in Appendix

B. The procedure followed when calculating the 20 averaged ranked series is detailed in

Equations 4.1 to 4.6.

Let P(h,k) = rainfall that occurred in hour h on day k, .. .4.1

24

P(k) = the daily total rainfall on day k = LP(h,k) •• .4.2
h=1

Therefore, the hourly fraction of the daily total for hour h on day k =j(h,k) = P(h,k) .. .4.3
~k)

The 24 hourly fractions of the daily total for a particular day can therefore be represented by

the following matrix:

The elements ofJ(k) are then ranked in order of magnitude to give:

r (k) = descending ranked series ofJ(k), i.e. rO ,k) = MAX(j(k)), r (24,k) = MIN(j(k))

where

r(j,k) = ranked hourly fraction of the daily total rainfall for rank}, day k.

.. .4.4

. . .4.5

These ranked series are then separated into 20 different groups of data. This is achieved using

the value of R on the respective day and the 20 ranges shown in Table 4-1.

- 1 N(i>

r (i, j) =N L r U ,k )
(i) k=1

where

.. .4.6

'( i,})

r(I ,}) =

average hourly fraction of the daily total rainfall for range i and rank},

average maximum l-hour fraction (AM(W ), Le. R, for range i, and

total number of days in range i.
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Once all 24 averaged hourly fractions have been determined for each range of R they can be

used to create daily temporal patterns of rainfall. The following two sections contain a

description of how these 24 hourly fractions are arranged to recreate possible realisations of

the temporal distribution of daily rainfall.

Averaged Ranked Series of HcurlyFractlons for Each Range of R
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Figure 4-3 Averaged ranked series of hourly fractions for selected ranges ofR, calculated

using all 157 stations

4.4 Clustering of Hourly Rainfalls

In order to cluster the 24 hourly fractions, the data from all stations were again processed to

calculate the highest 2-hour fraction of the daily total (r;i~»), the highest 3-hour fraction

(r;~»), the highest 6-hour fraction (r;i~») and the highest 12-hour fraction (r;~)2») on each day.

As for the ranked series in Section 4.3, all of these fractions were then averaged within the

range of R in which they occurred. This resulted in an average maximum 2-hour fraction

(AMti~»)' 3-hour fraction (AM(~»), 6-hour fraction (AM(~~») and 12-hourfraction (AMS)2») of

the daily total for each of the 20 ranges of R (Table 4-2). Example equations demonstrating
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how the average maximum 3-hour fraction was calculated are shown in Equations 4.7 to 4.10.

. AM(2) AM(6) dAM (12)Similar equations were used when calculatmg (i) , (i) an (i)'

Let the matrix t (3) represent the sequence of 3-hour rainfall for day k,
(x,k)

t<3) = [t (3) • t (3 ) • t (3). • t(3) • /3) . t(3) ]
(x .k) ('''> , (2 •• >' (3") , .. . , (20")' (21. ')' (22")

where

...4.7

x = 1 represents the first 3-hour value, and x = 22 represents the last 3-hour value on

day k,

h+ 2

tf~~k ) =If(x ,k ) , for h = 1-22
x =h

r (3 ) - MAX(t(3) )
(i,k) - (x,k)

AM(3 ) __l_~ r (3)
(i) - N LJ (i,k)

(i) k=l

where

. . .4.8

. . .4.9

.. .4.10

AM (3)
(i)

r (3 )
(i,k)

=

=

=

average maximum 3-hour fraction ofthe daily total for range i,

maximum value of(t ~~~k » )' and

total number of days in range i.

Using the averaged ranked sequences computed using Equation 4.6, a computer program was

written to check the sum of the first value in the ranked series with each of the other 23 hourly

fractions in order to find which of the 23 values, when added to the first value, gave the best

match to the average 2-hour fraction for the respective range of R. After fixing that value as

the value to accompany the first value for the highest 2-hour fraction, the program then

checks the remaining 22 hourly values to find which value should accompany the 2-hour

fraction to form the average highest 3-hour fraction. The program then searches for the next 3

values to form the average highest 6-hour fraction, and then searches for the next 6 values to

form the average highest l2-hour fraction. Performing this for each range of R resulted in 20

clustered sequences, shown in Appendix C. This process is detailed in Equations 4.11 to 4.14.
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Table 4-2 Average highest I-hour, 2-hour, 3-hour, 6-hour, and 12-hour fraction for each

range ofR, calculated using alllS7 stations

AMg; (R) AM(2) AM(3) AM(6) AM(l2)
(i) (i) (i) (i)

Range 1 0.057 0.114 0.170 0.335 0.648

Range 2 0.108 0.195 0.271 00466 0.726

Range 3 0.154 0.266 0.357 0.564 0.783

Range 4 0.202 0.338 0.442 0.660 0.846

Range 5 0.251 00408 0.520 0.733 0.885

Range 6 0.300 0.475 0.592 0.789 0.909

Range 7 0.350 0.539 0.657 0.826 0.923

Range 8 00400 0.600 0.711 0.852 0.933

Range 9 0.450 0.662 0.761 0.877 0.944

Range 10 0.500 0.727 0.807 0.900 0.955

Range 11 0.549 0.768 0.837 0.913 0.960

Range 12 0.599 0.797 0.855 0.922 0.965

Range 13 0.649 0.827 0.877 0.934 0.969

Range 14 0.699 0.852 0.894 0.941 0.974

Range 15 0.749 0.877 0.910 0.950 0.977
Range 16 0.800 0.900 0.926 0.958 0.981
Range 17 0.850 0.924 0.942 0.966 0.985
Range 18 0.901 0.947 0.958 0.975 0.989
Range 19 0.950 0.971 0.977 0.987 0.995
Range 20 0.993 0.996 0.997 0.998 1.000

AM
(I) -­

. (i) = r(i,jl)

where

j1 = 1

AM
(2) ~-- -­
(i) ~ r(i,jl) + r(i,j2)

where

.. .4.11

.. .4.12

j 1 :f. j2, and r(i,j2) is the fraction which, when added to r(i,jl)' closest approximates

AM
(2)
(i) •

(3) -- -- --
AM(i) ;::; l(i,jl) + r(i,j2) + r(i,j3)

where
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j 1*j2 7': j3, and r(i,j3) is the fraction which, when added to rU,jI) and r(i,j2) , closest

approximates AMg) .

The AM(6) and AM(I2) were approximated in the same way, resulting in a clustered
(i) (i)

sequence, es([) , for each range of R whereby the average maximum 2-hour, 3-hour, 6-hour

and 12-hour fractions of the daily total are approximated.

...4.14

The next step was to arrange these clustered sequences into temporal patterns.

4.5 Daily Temporal Patterns of Hourly Rainfalls

Schmidt and Schulze (1987) derived four design rainfall distributions to be used for different

regions in South Africa. This suggests that a single distribution can be used to represent the

temporal distribution of rainfall for a particular region. This, however, is not realistic and

analysis of the rainfall data shows that there are several temporal patterns ranging from nearly

uniform rainfall to highly variable rainfall. Furthermore, the peak intensity can occur during

any hour of the day, adding to the variability of temporal rainfall patterns. In order to account

for the variability of temporal patterns of rainfall, several temporal distributions should be

employed.

The hour of day when the highest intensity rainfall occurred was determined for each day that

rainfall occurred at each of the 157 stations. The results show a definitive distribution for the

timing of peak rainfall occurrence for a particular location. As shown in Figure 4-4 for Station

Jnkl9a, the hour of maximum rainfall has a somewhat uniform distribution, indicating that the

hour of maximum rainfall has a reasonably equal probability of occurring in any hour of a

particular day. Station N23, however, has a sinusoidal-like distribution with the majority of

days having the peak rainfall falling during the late afternoon and evening.
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Distribution of Hour of Maximum Rainfall
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Figure 4-4 Frequency distributions of the hour of maximum rainfall at Station Jnk19a

(Jonkershoek, in the W. Cape) and Station N23 (Ntabarnhlope, in K.ZN)

In application, a random number is used to select the hour of maximum rainfall from the

distribution of the hour of maximum rain for the site of interest. This differs from the work

done by Boughton (2000b) as in that study no distinct distribution was found for the time of

maximum rainfall and hence the hour of maximum rainfall was selected at random.

Using the clustered sequences established above and assigning the numerals "1" for the

highest fraction ( r(i,j l) ), "2" for the fraction that accompanies"1" to formt he 2-hour fraction

(rU,j 2) ) , "3" for the fraction that accompanies " 1" and "2" to form the 3-hour fraction (r
U

,j 3) ),

etc., and then accounting for all permutations when the hour of maximum rainfall can occur,

24 arrangements of the clustered sequences can be created, as shown in Table 4-3.

The combination of these 24 arrangements with the 20 possible ranges of R results in 480

different temporal patterns, as opposed to one averaged distribution. These range from

uniform to non-uniform with the possibility of the hour of maximum rainfall occurring in any

hour of the day. Figure 4-5 contains a sample of the different temporal distributions that the

disaggregation model produces.
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Table 4-3 24 samples of temporal arrangements of the hourly rainfalls (after Boughton,

2000b)

Sample Sequence

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

2 2 1 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

3 3 2 1 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

4 6 5 4 I 2 3 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

5 6 5 4 2 1 3 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

6 6 5 4 3 2 1 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

7 9 8 7 6 5 4 I 2 3 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

8 9 8 7 6 5 4 2 1 3 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

9 9 8 7 6 5 4 3 2 1 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

10 12 11 10 9 8 7 6 5 4 1 2 3 13 14 IS 16 17 18 19 20 21 22 23 24

11 12 11 10 9 8 7 6 5 4 2 I 3 13 14 IS 16 17 18 19 20 21 22 23 24

12 12 11 10 9 8 7 6 5 4 3 2 1 13 14 IS 16 17 18 19 20 21 22 23 24

13 IS 14 13 12 11 10 9 8 7 6 5 4 I 2 3 16 17 18 19 20 21 22 23 24

14 IS 14 13 12 11 10 9 8 7 6 5 4 2 1 3 16 17 18 19 20 21 22 23 24

15 IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 17 18 19 20 21 22 23 24

16 18 17 16 IS 14 13 12 11 10 9 8 7 6 5 4 1 2 3 19 20 21 22 23 24

17 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 I 3 19 20 21 22 23 24

18 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 19 20 21 22 23 24

19 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 5 4 1 2 3 22 23 24

20 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 5 4 2 1 3 22 23 24

21 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 5 4 3 2 I 22 23 24

22 24 23 22 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 '6 5 4 I 2 3

23 24 23 22 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 5 4 2 I 3

24 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I
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Figure 4-5 Samples of the different temporal distributions that are generated by the

disaggregation model
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4.6 Chapter Conclusions

The disaggregation model developed by Boughton (2000b) was developed only for design

flood purposes, and was thus modified in order to achieve the objectives of this study. The

modifications made to Boughton's (2000b) methodology in this study are related the

disaggregation of all daily rainfalls, as opposed to only disaggregating the larger events, and

the distribution of the time when the hour of maximum rainfall occurred. It was evident that

the rainfall data at different stations displayed different distributions for the hour maximum

rainfall. The distribution of the hour of maximum rainfall at each station was computed,and

random sampling along the respective distributions was performed. This differs from the

original Boughton (2000b) model, where the hour of maximum rainfall was determined by

random sampling from a uniform distribution.

The resulting model uses the distribution of R and the distribution of the hour of maximum

rainfall for each station in the selection of a temporal pattern. There are 20 ranges of the ratio

R and these are combined with 24 patterns that allow the hour of maximum rainfall to occur

during any of the 24 hours of the day. This combination gives 20 x 24 =480 different

temporal patterns, which allows for variation between uniform and non-uniform rainfall.

This methodology, however, is designed to be applied at locations where short duration

rainfall data are available. As mentioned in Chapter I, there is relative paucity of short

duration rainfall data compared to the more abundant daily rainfall data, both in the number of

gauges and in length of the recorded series. This highlights the need for regionalisation. A

regional approach attempts to supplement the limited information available with regional

information from surrounding stations (Smithers and Schulze, 2000a). The following chapter

is a description of the process of regionalising the disaggregation methodology described in

this chapter.
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5. REGIONALISATION

In order for the methodology, developed in the previous chapter, to be applied at a national

scale, particularly at sites where only daily rainfall data are available, the need for

regionalisation of the distributions of R becomes apparent. The following is a description of

how the distributions ofR were regionalised in South Africa and how the methodology can be

applied at sites where only daily rainfall data are available.

As shown in Figure 4-2 it was found that the mean value of R for a particular site had a strong

influence on the distribution of R for that site. It was thus decided that instead of creating one

average distribution of R for the entire country, several distributions should be created to

account for the variation in temporal rainfall distribution in South Africa.

It was found that the mean values of R (Rmean) for each of the 157 stations used in this study

fell between 0.385 at Jonkershoek (Station lnk19a) and 0.639 at Pilanesberg (Station

0548290). Collating these 157 values and using the same ranges of R shown in Table 4-1, it

was found that all but twelve stations had values of Rmean that fell within Ranges 9 to 12.

Stations lnkl9a, MokoIa, Cp6 and C172 located as shown in Figure 5-1 with Rmean = 0.385,

0.406, 0.422 and 0.423 respectively, all fell into Range 8, but were included with the stations

in Range 9 as there were no other stations with Rmean in Range 8. Before including these 4

stations in Range 9, the distributions of R for these stations were compared to the average

distribution of all those stations that had an Rmean that fell in Range 9. Similar trends were

observed, as shown in Figure 5-2, thus justifying their inclusion in Range 9.

Eight stations, viz., 0317476, 0092229, 0508047, 0631791, 0593489, 0809706, 0677802 and

0548290, located as shown in Figure 5-3, had Rmean values slightly larger than those in Range

12. As before, the distributions of R for these stations were compared with the average

distribution of R for all the stations with an Rmean in Range 12 and are shown in Figure 5-4.

Owing to the similarity it was decided that these stations could be included with the stations

in Range 12 rather than creating another average distribution based on significantly fewer

stations. Therefore, the ranges used for collating the Rmean values in South Africa needed to be

changed accordingly and are shown in Table 5-1.
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Table 5-1 Revised ranges used when collating Rrnean values

No. Range No. Range No. Range No. Range

I 0.375-0.475 II 0.475-0.525 III 0.525-0.575 IV 0.575-0.675

Once all 157 stations had been divided according to their respective R rnean values using Table

5-1, an average distribution of R was calculated using all the stations in each R rnean range . This

resulted in 4 average distributions of R, which are shown in Figure 5-5. Similarly, 4 average

distributions for the hour of maximum rainfall were calculated and are shown in Figure 5-6 .
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Figure 5-5 Regionalised distributions of R

In order to establish which distribution of R to use for a site of interest anywhere within South

Africa, it was necessary to develop a regionalised map of the mean value of R. The mean

values of R from the 157 used stations were regionalised using inverse distance weighting.

The resulting spatial pattern is displayed in Figure 5-7, and shows that the smallest R
rnean

values, 0.325-0.375, occur in the south western part of South Africa as well as on the east

coast, while the highest values occur in the northern and north eastern parts of South Africa.
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In application, the range in which the mean value of R for the site of interest needs to be

established in order to select the appropriate distribution of R. This is achieved with the use of

Figure 5-7. Once the mean value of R has been determined for the site of interest, the

disaggregation model operates as presented in Chapter 4. In this study the approach differs

from the method developed by Boughton (2000b) by the use of regionalised distributions for

R, and the distributions of the hour of maximum rainfall. However, a shortfall of the

technique used to regionalise the methodology is that certain distributions of when the hour of

maximum rainfall occurs are lost during regionalisation, which can be seen when comparing

the regionalised distributions in Figure 5-6 to that of Station Jnk19a in Figure 4-4. It is yet to

be discovered as what effect this will have on the resulting output from the model, which is

presented and discussed in the following chapter.
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6. MODEL TESTING AND RESULTS

In order to quantify the simulated performance of the disaggregation model, a similar

approach to that used by Smithers and Schulze (2000a) is employed. Moments .and other

event characteristics computed from the disaggregated rainfall series are compared to the

equivalent values computed from the observed data in Section 6.2. Similarly, design rainfall

depths computed from the disaggregated rainfall series are compared to the equivalent values

computed from the observed data in Section 6.3. The same analyses are performed using the

output obtained from the model when regionalised input is used in Sections 6.4 and 6.5.

For each of the 15 test stations shown in Table 3-1, the observed hourly data are aggregated to

give 24-hourly values. The disaggregation methodology is then applied to these data in order

to attempt to simulate the hourly data for the respective sites. The performance of the model is

assessed using two measures. Firstly, seventeen moments and statistics of the disaggregated

series, viz., mean, standard deviation, autocorrelations (lag1 - laglO), dry probability,

skewness, inter-event duration, event duration and number of events, are compared to the

corresponding characteristics of the observed data. The second measure of model

performance is aimed at extreme values, where design rainfalls computed from the

disaggregated series are compared to the design rainfalls computed from the historical data.

However, before performing the abovementioned analyses at all 15 test locations, five

variations of the model were developed and tested at 5 of the test locations, shown in Figure

6-1, using the first measure of model performance mentioned above. The difference between

the models lay in the selection of data used to:

• develop the 20 averaged ranked series, as described in Section 4.3, and

• calculate the average I-hour, 2-hour, 3-hour and 6-hour fractions used III the

clustering process, as described in Section 4.4.

The results from these analyses are shown in the following section.
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Figure 6-1 Locations of stations used for analysis of the 5 variations of the disaggregation

model

6.1 Selecting Data Threshold for Model Development

When developing the model various data thresholds were tested to identify which would yield

the best results. The five variations of the model that were analysed are based on clustered

sequences developed using:

(i) all days that rainfall occurred,

(ii) all days for which the aggregated 24-hour total was greater than or equal to 1 mm,

(iii) all days for which the aggregated 24-hour total was greater than or equal to 5 mm,

(iv) all days for which the aggregated 24-hour total was greater than or equal to 10 mm, and

Cv) all days for which the aggregated 24-hour total was greater than or equal to 15 mm.
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In order to objectively assess the overall performance of the models, the Mean Absolute

Relative Error of hourly rainfall (MARE), calculated as shown in Equation 6.1, are

contained in Table 6-1.

100 ~~ (IS(i,j)-O(i,j)IJ
MARE = x LJLJ

N s x N M j=l i=l 0U,j )

where

, .. 6.1

MARE mean absolute relative error of hourly rainfall (%)

j-th statistic computed from hourly values, mean (j=1), standard

deviation (j=2), lag-I autocorrelation (j=3), lag-2 autocorrelation

(j=4), lag-3 auto correlation (j=5), lag-4 autocorrelation (j=6) , lag-5

autocorrelation (j=7), lag-6 autocorrelation (j=8), lag-7 autocorrelation

(j=9), lag-S autocorrelation (j=1O), lag-9 autocorrelation (j=11), lag-10

autocorrelation (j=12), dry probability (j=13), duration of wet periods

(j=14), duration of dry periods (j=15), number of wet periods (j=16)

and skewness (j=17), computed from the 100 disaggregated rainfall

series for month i ,

O (i j ) j-th statistic computed from observed hourly data for month i,

NM number of months of the year available for statistical analysis, and

Ns = number of statistics and event characteristics calculated (=17).

Table 6-1 Mean absolute relative error computed for hourly rainfall values for the 5

variations of the disaggregation model tested at 5 different locations

Station #
MARE(%)

>0 ~1 ~5 ~10 > 15
0435019 593.0 ~a:~ 313.3 363.2 499.8
C173 56.7 56.9 53.1 52.3 ~jJ~
0092288 101.2 109.9 126.7 157.0
0258213 104.6 87.0 121.7 163.7
0106880 54.1 70.4 97.8 128.7

The relatively high MARE for all versions of the model at Station 0435019 can be attributed

to long periods of missing data , and the way the statistics program used operates when

missing data is encountered. When the various statistics are computed, months containing

even a single missing hour of data are omitted from analysis. Then, a monthly statistical

analysis is carried out on all the remaining months, yielding statistics for each month of the

year. Thus , for a complete 20 year record, the statistics program would output the mean,
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standard deviation, 25th percentile of non-exceedance, the so" percentile of non-exceedance

and 75th percentile of non-exceedance for each statistic for each month of the year, based on

all 20 years of data. If, however, there is a particular month of the year that has less than 3

years of complete data, the statistics for that month of the year will not be calculated. This is

the case with regard to Station 0435019. Although this station has a record length of 20 years,

the record has much missing data, resulting in only nine months of the year available for

analysis. Furthermore, the nine months of the year that were analysed are also plagued with

missing data. The problem of missing data, particularly within the digitised SAWS data, was

also identified by Smithers and Schulze (2000a) . An example of the poor quality data is

shown in Table 6-2, where the month of the year with the highest frequency of complete data

for the twenty year record at Station 0435019 is April, where only seven months, out of a

possible 20, had complete data .

Table 6-2 Number of months with complete data in a 20 year record at Station 0435019

Month of Number of Month of Number of

the Year Complete Months the Year Complete Months

January 4 July I
February 3 August 3
March 5 September 2
April 7 October 3
May 5 November 5
June 2 December 3

As can be seen in Table 6-1, with the exception of Station C173, the model based on all days

for which the aggregated 24-hour total was greater than or equal to 1 mm yielded the lowest

MARE. Hence, this version of the model was selected to be used for the rest of the study.
I

6.2 Moments and Statistics Using At-site Short Duration Data

The two random processes that occur within the disaggregation model, viz., the selection of

the value of R and the timing of the hour of maximum rainfall, introduce stochastic

variability. At each of the selected test stations the stochastic variability was simulated by

generating one hundred disaggregated series. A frequency analysis was performed on the 100

sets of disaggregated values for each statistic and duration. High-Low bar graphs depicting

the observed moments and the 25th and 75th non-exceedance percentiles of the 100 sets of

disaggregated values are used to graphically depict the performance of the model.
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In order to objectively assess the performance of the model at the 15 test stations, located as

shown in Figure 3-1, the MARE of hourly rainfall, as calculated in Equation 6.1, and the

Mean Absolute Relative Error for all durations (MARE_AD), as calculated in Equation 6.2,

are calculated. The number of aggregation levels in Equation 6.2 (NL) was set to 11 and the

durations used were 1,2,3,4,5,6,9, 12, 15, 18, and 24-hour.

100 NL N
s

N
M [IS -° IJMARE _ AD = .x L LL (i,j,k) (i,j ,k)

N s x N M X N L k=l j=l i=l 0(i,j.k)

where

... 6.2

MARE AD=

S(i.j,k)

O(i.j,k)

Ns

mean absolute relative rainfall error for all durations (%),

mean j-th statistic for aggregation level k computed from the 100

disaggregated rainfall series for month i,

j -th statistic computed from observed data for aggregation level k for

month i,

number of months of the year available for statistical analysis,

number of aggregation levels used (=11, for 1,2,3,4, 5, 6, 9, 12, 15,

18, and 24-hour durations), and

number of statistics and event characteristics calculated (=17, for

mean, standard deviation, lag-I autocorrelation, lag-2 autocorrelation,

lag-3 autocorrelation, lag-4 autocorrelation, lag-5 autocorrelation, lag­

6 autocorrelation, lag-7 autocorrelation, lag-8 autocorrelation, lag-9

autocorrelation, lag-lO autocorrelation, dry probability, duration of

wet periods, duration of dry periods, number of wet periods and

skewness)

The poorest results, i.e. the highest MARE and MARE AD, were achieved at Station 0435019- ,
which had a MARE of 258.3% and a MARE_AD of 138.9%. The best results, i.e. the lowest

MARE and MARE_AD, were achieved at Station Sacfs, which had a MARE of 37.8% and a

MARE_AD of 67.2%. The results from disaggregating the 24-hour data at Stations 0435019

and Sacfs are shown in Figure 6-2 and 6-3 respectively. The MARE and MARE_AD for the 15

test station are presented in Table 6-3.
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Table 6-3 MARE and MARE_AD for the 15 test stations

Station Number MARE(%) MARE AD(%)

0435019 258.3 138.9
0552581 83.1 105.1
C173 56.9 137.5
0317474 55.8 96.5
0719370 237.7 135.4
0023710 45.0 76.8
304474 43.7 100.1
Sacfs 37.8 67.2
0028748 48.2 111.5
0092288 86.6 87.9
0474680 165.8 116.7
0261516 52.9 97.2
0127272 118.2 145.7
0258213 79.3 148.1
0106880 46.8 87.0

It can be seen in Figure 6-2 and Figure 6-3 that the disaggregation model performs similarly

well in simulating the mean, standard deviation and skewness at Station 0435019 and Station

Sacfs. The inter-quartile range for the mean cannot be seen owing to the near perfect

simulation of the mean. It is expected that the mean rainfall for all levels of aggregation is

simulated extremely well owing to the method of disaggregation, as explained in Chapter 4.

The model tends to be less capable of simulating certain event characteristics and statistics

such as event duration and dry probability. This is a weakness in the disaggregation model

and suggests that more work needs to be done on refining the sequencing of the hourly

rainfalls. The distinguishing factors between the best and worst simulations, according to the

MARE and MARE_AD, seem to be the autocorrelation lags 1 - 10. This can be verified by

calculating the mean absolute relative error for each autocorrelation for all levels of

aggregation (MARE_LA G). The MARE_LAG for the two stations, as calculated in Equation

6.3, are shown in Table 6-4.

where

... 6.3

MARE LAG

=

mean absolute relative error lag autocorrelation for all

durations (%),

lag autocorrelation for aggregation level j computed from the

100 disaggregated rainfall series for month i ,
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lag autocorrelation computed from observed data for

aggregation levelj for month i,

number of months of the year available for statistical analysis,

and

number of aggregation levels used (=11).

Table 6-4 MARE_LAG for autocorrelation lags 1-10 at Station 0435019 and Station Sacfs

MARE_LAG (%)

Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag

1 2 3 4 5 6 7 8 9 10

Station
171.8 339.6 157.3 280.1 535.0 169.4 207.7 112.7 170.7 96.3

0435019

Station
29.9 138.9 93.7 92.4 114.6 117.9 95.7 131.2 103.3 76.7

Sacfs

It is clear from Table 6-4 that the autocorrelations for lags 1 - 10 are simulated with

significantly higher accuracy at Station Sacfs than at Station 0435019. This can be attributed

the quality of the available data, as mentioned in Section 6.1. When comparing the number of

months with complete data for Station Sacfs (Table 6-5), also with a 20 year record, with that

shown in Table 6-2 for Station 0435019, the importance of good quality data becomes

apparent.

Table 6-5 Number of months with complete data in a 20 year record at Station Sacfs

Month of Number of Month of Number of

the Year Complete Months the Year Complete Months

January 12 July 17

February 15 August 17
March 15 September 16
April 15 October 14
May 16 November 11
June 16 December 14

Furthermore, it becomes apparent, from Figure 6-2 and Figure 6-3, that the dry probabilities,

and hence the event durations, are better simulated at Station 0435019 than Station Sacfs. It is

postulated that this may be attributed to the distribution ofR at Station 0435019, which has a

mean value ofR (Rmean) of 0.607, whereas Station Sacfs has an Rmean of 0.499. This appears to
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be a shortcoming of using a single distribution of R to represent rainfall of all magnitudes.

Although the disaggregated data will have the correct overall distribution of R, it is likely that

the tails of the rainfall distribution will not receive the correct values of R. It is yet to be

shown how this will effect the estimation of design rainfalls.

With the focus of this study not only being the disaggregation of 24-hour data to yield day to

day short-duration rainfall values, but also on the estimation of design rainfall values, the

second measure of assessing the performance of the model is an assessment of how well

extreme events are modelled when using the disaggregated data.

6.3 Extreme Rainfall Events Using At-site Short Duration Data

Similar to the procedures used by Smithers and Schulze (2000a), design rainfall depths were

calculated using the General Extreme Value (GEV) distribution fitted to the Annual

Maximum Series (AMS) by L-moments, for the observed data and for each of the 100

disaggregated series generated from the disaggregation model. Design values for the 2, 5, 10,

20, 50, and 100-year return periods were computed for durations of 1, 2, 3, 4, 6, 8, 10, 12, 16,

20, and 24-hour. For each duration and return period, a frequency analysis was performed on

the 100 values computed from the disaggregated rainfall series generated by the

disaggregation model. High-Low bar graphs depicting the observed design rainfall computed

from the observed data and the 25th and 75th non-exceedance percentiles of the design rainfall

computed from the 100 disaggregated rainfall series were used to evaluate the performance of

the model.

In order to objectively assess the performance of the model at the 15 test stations, with respect

to the estimation of design rainfalls, the Mean Absolute Relative Error for the l-hour duration

(MARE), as calculated in Equation 6.4, and the Mean Absolute Relative Error for all durat ions

(MARE_AD), as calculated in Equation 6.5, are calculated.

where

.. .6.4

MARE = mean absolute relative error for l-hour design rainfall (%),
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= mean i-th return period, I-hour design rainfall computed from the 100

disaggregated rainfall series,

i-th return period, l-hour design rainfall computed from observed

data, and

number of return periods (= 6 for 2,5, 10,20,50, and lOO-year return

periods).

MARE AD = 100 xt I(!So,n -Oo,nl]
N L X N RP ;=1 j=! 0u,n

where

... 6.5

MARE AD=

=

=

=

mean absolute relative error of design rainfall of all durations (%),

mean j-th return period, i-th hour design rainfall computed from the

100 disaggregated rainfall series,

j-th return period, i-th hour design rainfall computed from observed

data, and

number of aggregation levels (= 11)

number of return periods (= 6 for 2,5, 10,20,50, and lOO-year return

periods).

Examples of model performance, with respect to design rainfall estimation, are shown in

Figure 6-4, which depict the worst (Station 0028748) and best (Station 0474680) simulations

according to the MARE_AD values. Station 0028748 has an MARE of 163.1% and an

MARE_AD of39.1%, whereas Station 0474680 has an MARE of 14.4% and an MARE_AD of

4.2%. The MARE and MARE_AD for all test stations are shown in Table 6-6.

When comparing Table 6-6 with Table 6-3, there appears to be a direct contradiction. Sites

that performed well in the statistical measures of model performance generally perform

relatively poorer when estimating design floods and vice versa. The reason for some stations

yielding poor results in the statistical measures of model performance, however, is postulated

to be a consequence of poor data quality. The poor performances observed when estimating

design floods seem to be related to the distribution R, i.e. those stations with higher Rmean

values had the best results, and those with the lower Rmean values had the worst results (as

shown in Table 6-7). This is because on those days when smaller rainfall events (± 1 mm)
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occurred it is likely that the all the day's rainfall fell within a few hours, thus unduly

influencing the distribution of R. Although this will affect all the stations used, it appears that

the error is exacerbated for those stations with lower mean R values. It is postulated that the

use of different distributions of R to represent rainfalls of differing magnitudes will improve

the performance of the rainfall disaggregation model.

Table 6-6 MARE and MARE_AD for design rainfalls at the 15 test stations

Station Number MARE(%) MARE AD(%)

0435019 18.4 7.4

0552581 21.6 6.1

C173 27.2 11.5

0317474 27.2 14.6

0719370 31.5 7.4

0023710 57.3 26.8
304474 55.8 24.0

Sacfs 74.3 24.2
0028748 163.1 39.1
0092288 31.9 9.1
0474680 14.4 4.2
0261516 38.9 11.8
0127272 11.2 8.3
0258213 30.3 11.6
0106880 53.7 14.8

Table 6-7 Mean values of R and MARE for the 15 test stations

Station MARE MeanR Station MARE MeanR Station MARE MeanR

Number (%) Number (%) Number (%)

0435019 18.4 ·0.607 0023710 57.3 0.479 0474680 14.4 0.596
0552581 21.6 0.631 304474 55.8 0.458 0261516 38.9 0.571
C173 27.2 0.468 Sacfs 74.3 0.499 0127272 11.2 0.503
0317474 27.2 0.654 0028748 163.1 0.447 0258213 30.3 0.599
0719370 31.5 0.626 0092288 31.9 0.551 0106880 53.7 0.505

All of the above results are from applying the disaggregation model at locations where there

are some hourly data available in order to calculate the distributions of R, and the hour of

maximum rainfall, for the respective location. In order to estimate hourly rainfalls at a

location where no hourly data are available, but daily rainfall data are available, it is necessary

to utilise regionalised information in the disaggregation model. The following sections assess

the performance of the disaggregation model when regionalised input is used.
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6.4 Moments and Statistics When Using Regionalised Information

It should be noted that the results from the disaggregation model shown in Section 6.2 and

Section 6.3 used distributions of R, and distributions of the hour of maximum rainfall that

were calculated from the hourly data at the location of interest. The results contained in

Sections 6.4 and 6.5 were achieved using regionalised distributions, as detailed in Chapter 5,

which do not include any of the data from the 15 test stations.

The performance of the model at the "ungauged" test stations was assessed in exactly the

same manner as outlined in Section 6.2. The values of the Mean Absolute Relative Error for

hourly rainfall (MARE) and the Mean Absolute Relative Error for all durations (MARE_AD) ,

as calculated in Equation 6.1 and Equation 6.2 respectively, are shown in Table 6-8.

Table 6-8 MARE and MARE_AD for the 15 test stations using the regionalised methodology

Station Number MARE(%) MARE AD(%)

0435019 243.4 129.7

0552581 85.1 105.7

C173 61.7 151.9

0317474 63.9 99.8

0719370 254.7 135.0
0023710 44.2 73.4
304474 42.7 99.7
Sacfs 40.5 67.1
0028748 45.8 114.7
0092288 89.5 89.2
0474680 159.7 111.5
0261516 55.1 101.0
0127272 104.8 131.9
0258213 163.7 204.6
0106880 128.7 132.7

Assessing the values in Table 6-8 and comparing these to the values in Table 6-3, it can be

seen that when regionalised input is used, the model is able to produce results that are very

similar to those produced by the model when at-site short duration information are available.

This is depicted graphically in Figure 6-5 and Figure 6-6, where the results from the same

stations analysed in Section 6.2, i.e. Station 0435019 and Station Sacfs respectively, are

presented.
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Figure 6-5 Simulated performance of the disaggregation model at Station 0435019, when

regionalised input is used
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Figure 6-6 Simulated performance of the disaggregation model at Station Sacfs, when

regionalised input is used
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In the case of Station 0106880, however, the use of regionalised input results in a poorer

simulation compared to when at-site information is used. This is due to the methodology used

in the regionalisation. Although the actual distribution of R for this site seems to be well

represented by the appropriate regionalised distribution of R, the regionalised distribution of

the hour of maximum rainfall is not representative to that observed at the site, as shown in

Figure 6-7.
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Figure 6-7 Single-site and regionalised distributions for the hour of maximum rainfall applied

at Station 0106880

The very poor MARE and MARE_AD values for Stations 0435019 and 0719370 are attributed

to the poor observed records at these sites. Although the methodology would normally be

used to disaggregate observed daily rainfall data, which are observed at 08:00 every day in

South Africa, for the purpose of this investigation the same daily rainfall totals aggregated

from the hourly data as used in Section 6.2 were disaggregated back to hourly values. This

facilitated the comparison of the results from the disaggregation model when at-site short

duration information was available and when regionalised input was used. As a result of the

way the statistics are calculated (explained in Section 6.2), the large errors indicated by the

MARE and MARE_AD were to be expected for the abovementioned stations owing to the
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large percentage of missing data within the rainfall records. The following section assesses

the performance of the regionalised methodology when estimating extreme events.

6.5 Extreme Rainfall Events When Using Regionalised Information

The performance of the regionalised methodology with respect to design rainfall was assessed

using the same methodology detailed in Section 6.3. The values of the Mean Absolute

Relative Error for the l-hour duration (MARE) and the Mean Absolute Relative Error for all

durations (MARE_AD), as calculated in Equation 6.4 and Equation 6.5 respectively, are

summarised in Table 6-9.

Table 6-9 MARE and MARE AD for design rainfalls at the 15 test stations using the

regionalised methodology

Station Number MARE(%) MARE_AD(%)

0435019 18.4 7.1
0552581 19.8 5.6

C173 23.6 11.3
0317474 21.8 13.7
0719370 25.9 6.6
0023710 69.4 27.8
304474 55.2 23.1
Sacfs 77.3 25.4
0028748 195.4 42.8
0092288 35.7 9.5
0474680 13.9 4.0
0261516 40.5 11.7
0127272 13.7 9.0
0258213 32.8 12.0
0106880 60.8 15.3

From the results for the MARE_AD values presented in Table 6-9, it is evident that the

disaggregating procedure performed the most poorly at Station 0028748 and the best results

were obtained at Station 0474680, as was the case when short duration data obtained from the

site of interest were used as input into the disaggregation model. As was observed in Section

6.4, the design rainfall MARE and the MARE_AD values when using regionalised input into

the disaggregation model are very similar to the values calculated when site-specific data

were used. As noted in Section 6.3, it is postulated that the simulated performance of design

rainfall is related to the Rmean value, and hence the distribution R that is used.
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Station 0474680, when regionalised input is used
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6.6 Chapter Conclusions

The performance of the disaggregation model was analysed firstly by comparing moments

.and event characteristics computed for the observed and disaggregated data, and secondly by

comparing design rainfall values computed from the observed and disaggregated data. This

was done for sites where short duration data were available, as well as for simulations where

it was assumed that no short duration data were available, in order to assess the performance

of the rainfall disaggregation model.

From the results obtained at the 15 independent test sites located in differing climatic regions

of South Africa, it is evident that when short duration data are available, the disaggregation

model is able to produce short duration rainfall where the mean, standard deviation and

skewness are very similar to that of the observed data. However, statistics and event

characteristics related to the structure of the rainfall are not simulated as well, and it is

postulated that this is the result of the methodology used to sequence the disaggregated hourly

rainfall values. Furthermore, it is postulated that the use of different distributions to represent

rainfalls of different magnitudes will improve the simulation of dry probabilities and design

rainfall depths .

Comparing the MARE and MARE_AD values from the disaggregation model when at-site

information is available to those yielded when regionalised input is used, it can be seen that

the results for a particular location are very similar. This indicates that, with the exception of

the distribution of the hour of maximum rainfall and other event characteristics related to the

sequencing of the hourly rainfalls, the disaggregation model, when using regionalised

information, is able to produce short duration rainfall with similar characteristics to the actual

rainfall observed at the respective location.

64



7. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

The temporal distribution of rainfall is an important factor affecting the timing and magnitude

of peak discharge from a catchment. The ability to represent the temporal distribution of

rainfall is thus an essential prerequisite for the design of hydraulic structures and other water

resource studies. The methods reviewed in Chapter 2 were developed to fulfil a common

function, which is to account for the variability of rainfall intensities within a given event.

The objectives of this study were:

• to identify techniques for the disaggregation of daily rainfall to produce hourly

increments which aggregate to equal the observed daily values; and

• to select and apply a disaggregation technique and assess the applicability of the

method in South Africa.

A comprehensive description of techniques to account for varying rainfall intensities within

rainfall events, as an aid for design flood estimation, has been provided in Chapter 2. These

included methods for developing temporal rainfall distribution curves and methods for the

disaggregation of courser-scale rainfall data.

Of the techniques reviewed, Boughton's (2000b) methodology for disaggregating daily

rainfall to hourly values was selected for use and assessment in this study. The selection was

largely based on the promising results reported by Boughton (2000b) when estimating design

storms, and the simplicity of the method. However, the methodology developed by Boughton

(2000b) was to disaggregate only those daily rainfalls that were greater than or equal to 15

mm, .as these events were viewed to be the most important when considering flood studies

(Boughton, 2000b). Hence, it was decided that the methodology developed by Boughton

(2000b) would need to be modified in order to fulfil the objectives of this study.

7.1 Short Duration Data Used

The short duration rainfall database compiled by Smithers and Schulze (2000a) was used in

this study. Only stations with record lengths greater than 10 years were used. Of the 172

stations identified, 15 stations were excluded from model development in order to
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independently evaluate the model. All the data were made available as 24 hourly blocks ,

extracted for 0:00 to 0:00 periods.

7.2 Methodology

The disaggregation model developed by Boughton (2000b) was developed only for design

flood purposes, and hence only focussed on disaggregating larger rainfalls. In order to achieve

the objectives of this study, the methodology was modified. An analysis of the Mean Absolute

Relative Error (MARE) for various data thresholds revealed that using all days for which the

aggregated 24-hour rainfall total was greater than or equal to 1 mm yielded the best results

when disaggregating all non-zero 24-hour rainfalls.

Further modifications were made to the methodology regarding the distribution of the time

when the hour of maximum rainfall occurred. It was evident that the rainfall data at different

stations displayed different distributions for the hour maximum rainfall. The distribution of

the hour of maximum rainfall at each station was computed, and random sampling along the

respective distributions was performed. This differs from the original Boughton (2000b)

model where the hour of maximum rainfall was determined by random sampling along a

uniform distribution.

The resulting model is capable of producing 480 different temporal patterns with ranging

levels of uniformity. The distribution of R and the distribution of the hour of maximum

rainfall for each station determine which of the 480 possible temporal patterns to select for a

particular day's rainfall.

7.3 Regionalising the Methodology

Owing to the relative paucity of available short duration rainfall data in South Africa, and

relative abundance of daily rainfall data compared to continuously recorded rainfall data it. ,
was necessary to regionalise the methodology. This enables the disaggregation of daily

rainfall for a particular location where daily rainfall data are available and where short

duration rainfall data are not available . A regionalised map of the mean value of R (Rmean) was

developed for South Africa. This enables a user to identify the range of the Rmean value for the

site of interest, hence determining which regionalised distributions to use in the
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disaggregation process. The spatial pattern displayed by the regionalised map shows that the

smallest Rmean values, indicative of less intense, frontal or general rainfall, occur in the south

western part of South Africa as well as on the east coast, while the highest values, indicative

of higher intensity convective rainfall, occur in the northern and north eastern parts of South

Africa.

7.4 Application of the Disaggregation Model

Two measures were employed in order to quantify the performance of the disaggregation

model. Firstly, moments and other event characteristics were computed from the

disaggregated data and compared to the equivalent values computed from the observed data.

Secondly, design rainfall depths were computed from the disaggregated data and compared to

the equivalent values computed from the observed data. These two measures were applied to

the disaggregation model for when both single-site and regionalised information was used.

Owing to the stochastic nature of the disaggregation models, 100 disaggregated series were

generated for each test location and a frequency analysis performed. High-Low bar graphs

depicting the observed moments and the 25th and 75th non-exceedance percentiles of the 100

sets of disaggregated data were used to graphically depict the adequacy of the disaggregation

model.

7.4.1 Application of the Model Using At-Site Short Duration Data

The results from the model where at-site short duration data are available indicate that the

model is able to produce synthetic hourly data which resembles the general distribution of the

observed hourly data for a particular site. However, the results also indicate that the model is

less capable of simulating some of the statistics considered i.e. the probability of dry periods

and design rainfalls for selected return periods. It was shown in Chapter 4, that the Rmean value

is directly related to the shape of the distribution of R. In Section 6.3, it was noted that there

appeared to be a correlation between the Rmean values and the ability to simulate extreme

design rainfalls, which were presented in Table 6-7. Station 0028748 had an Rmean of 0.447

and a MARE of 163.08%, compared to the MARE of 14.36% observed at Station 0474680
. ,

which had an Rmean of 0.596. Hence, it is postulated that this is owing to the manner in which

the distributions of R are derived.
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The relatively poor results obtained for the various lag autocorrelations from the

disaggregated rainfall is postulated to be the result of the way that the hourly rainfalls are

sequenced. Although it was shown that the lag autocorrelations were better simulated for

longer and better quality data, it is suggested that a different method of sequencing the

disaggregated hourly rainfalls may improve the model in this area.

7.4.2 Application of the Model Using Regionalised Input

The results obtained when using the regionalised input in the model tended to be similar to

those obtained when at-site information were available, for both statistical and extreme value

measures of model performance. This is a positive result as it implies that the model can be

used to reasonably disaggregate daily rainfall at locations where no short duration data are

available.

Although the use of regionalised input is able to adequately represent the distribution of R at

the various test sites, the method of regionalisation fails to adequately capture the distribution

of the hour of maximum rainfall. This was observed for Station 0106880, shown in Figure 6­

5, where the use of at-site information in the disaggregation model produced a MARE, for the

l-hourly duration, over 2.5 times less than that produced by the disaggregation model when

regionalised input was used.

7.5 Summary

. From this study it can be concluded that:

• The temporal distribution of rainfall is an important factor affecting the timing and

magnitude of peak discharge from a catchment.

• Owing to the relative paucity of short duration rainfall data, a methodology for the

disaggregation of daily rainfall to produce hourly increments which aggregate to equal

the observed daily values has been identified and applied in South Africa.

• The methodology is shown to reproduce the general distribution of rainfall relatively

well, both when observed short duration data are available as well as in the absence of

such information.
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• Refmements need to be made to the methodology in order to improve upon the

shortfalls which have been highlighted.

7.6 Recommendations for Future Research

Owing to the model being developed using data extracted for 0:00 to 0:00 24-hour periods, as

opposed to 8:00 to 8:00 periods, it is recommended that the model should be tested on daily

rainfall before being applied in practice. This is because totals of 24-hour rainfall, i.e. any 24­

hour period, are not necessarily the same as the daily rainfall, which conventionally in South

Africa is recorded for the 24-hour period ranging from 8:00 to 8:00. Hence, the direct

application of the model developed in this study may not yield satisfactory results when

applied to daily rainfall totals for 08:00 to 08:00 periods. If testing shows the direct

application of the model to be unsatisfactory, it is recommended that the model be

redeveloped using 8:00 to 8:00 periods.

It is postulated that the weakness of the model in simulating both extremes of the rainfall

spectrum (dry probabilities and design rainfall) is a result of the use of a single distribution of

R to represent an entire range of magnitudes within a rainfall record. It is recommended that,

for a particular rainfall record, the data be collated according to the daily rainfall total, using

pre-determined ranges, and a distribution of R be calculated for each of these ranges. It is

further recommended that more research be done on how to sequence the disaggregated

hourly rainfalls, in order to improve the simulation of the structure of the rainfall, as measured

by the lag autocorrelations, number of events and event durations.

As noted in Chapter 5, the ranges used when regionalising the Rmean values were the same as

the ranges used to collate the values of R in Chapter 4. It is recommended that this not be

done in the future as it becomes confusing when trying to differentiate between the collation

R and the collation of Rmean. Furthermore, it was noted in Section 7.4.2, that the distribution of

the hour of maximum rainfall for certain stations is lost using this method of regionalisation.

In this study it was assumed that the distribution was related to the Rmean value. In hindsight, it

is now postulated that this distribution is probably more related to geographic location than to

the mean value of R. It is thus suggested that a different approach to regionalising the

methodology should be attempted. A possible starting point could be to regionalise the
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distributions of R and the hour of maximum rainfall according to the 15 relatively

homogeneous short duration rainfall clusters identified by Smithers and Schulze (2000a).

It is further recommended that the disaggregation model be linked with a reliable daily

rainfall generator. This would facilitate the generation of long sequences of hourly data for

any location in South Africa in an attempt to improve water resources modelling and design

flood estimation.
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APPENDIX A

SITE CHARACTERISTICS OF STATIONS USED IN MODEL DEVELOPMENT

Years Latitude Longitude ALTITUDE MAP
Organisation Station No. Location

Record Deg Min Sec Deg Min Sec (m) (mm)

SAWS 0010425 RIVERSDALE 12 34 5 0 21 15 0 137 377

SAWS 0010456 RIVERSDALE 27 34 6 0 21 16 0 116 416

SAWS 0021054 CAPE TOWN- WINGFIELD 19 33 54 0 18 32 0 17 440

SAWS 0021 178 CAPE TOWN D F MALAN 28 33 58 0 18 36 0 46 535

SAWS 0021179 CAPE TOWN D.F.MALAN II 33 59 0 18 36 0 42 556

SAWS 0021591 ELSENBERG - AGR 32 33 51 0 18 50 0 181 658

SAWS 0023708 ROBERTSON 11 33 48 0 19 54 0 209 345

SAWS 0028428 ROOIHEUWEL - AGR 12 33 38 0 22 15 0 301 348

SAWS 0028690 GEORGE - P.W. BOTHA 15 34 0 0 22 23 0 193 581

SAWS 0034767 UITENHAGE - PUR 40 33 47 0 25 26 0 32 400

SAWS 0035179 PORT ELIZABETH - WK 55 33 59 0 25 36 0 60 611

SAWS 0037541 BATHURST - AGR 31 33 31 0 26 49 0 259 669

SAWS 0043566 MATROOSBURG 37 33 26 0 19 49 0 967 263

SAWS 0044081 TOUWSRIVIER 14 33 21 0 20 3 0 778 256

SAWS 0050887 WILLOWMORE - MUN 37 33 17 0 23 30 0 840 233

SAWS 0059572 EAST LONDON - WK 51 33 2 0 27 50 0 125 874

SAWS 0061298 LANGEBAANWEG WO 20 32 58 0 18 10 0 31 263

SAWS 0074296 JANSENVILLE 26 32 56 0 24 40 0 417 268

SAWS 0076134 SOMERSET EAST - HOSP 35 32 44 0 25 35 0 717 580

SAWS 0079712 KING WILLIAMS TOWN 17 32 52 0 27 24 0 400 594
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Years Latitude Longitude ALTITUDE MAP
Organisation Station No. Location

Record Deg Min Sec Deg Min Sec (m) (mm)

SAWS 0079811 DOHNE-AGR 33 32 31 0 27 28 0 899 752

SAWS 0088293 SUTHERLAND 38 32 23 0 20 40 0 1459 339

SAWS 0092141 BEAUFORT WEST - TNK 16 32 21 0 22 35 0 857 238

SAWS 0092229 BEAUFORT WEST - WK I I 32 19 0 22 38 0 869 190

SAWS 0096045 · GRAAFF-REINET - TNK 25 32 15 0 24 32 0 741 326

SAWS 0098190 CRADOCK-MUN 12 32 10 0 25 37 0 927 312

SAWS 0113025 FRASERBURG - POW 40 31 55 0 21 31 0 1264 181

SAWS 0123654 QUEENS TOWN - TNK 22 31 54 0 26 52 0 1066 520

SAWS 0125409 NCORAFLATS 19 31 49 0 27 44 0 990 648

SAWS 0127485 UMTATA 17 31 35 0 28 47 0 685 595

SAWS 0134478 CALVINIA - TNK 26 31 28 0 19 46 0 980 210

SAWS 0145059 GROOTFONTEIN - AGR 34 31 29 0 25 2 0 1263 354

SAWS 01 65898 CARNARVON -AGR 24 30 58 0 22 0 0 1280 204

SAWS 0170009 DEAAR- WK 32 30 39 0 24 I 0 1243 303

SAWS 0175371 ALlWAL NORTH - TNK 14 30 41 0 26 43 0 1310 524

SAWS 0175373 ALIWAL NORTH WELVERD 16 30 43 0 26 43 0 1348 511

SAWS 0178689 SHEEP RUN 22 30 59 0 28 23 0 1213 813

SAWS 0180722 KOKSTAD - WILLOWS 21 30 32 0 29 25 0 1304 756

SAWS 0193561 VANWYKSVLEI 35 30 21 0 21 49 0 962 175

SAWS 0207531 MATATIELE \I 30 21 0 28 48 0 1490 838

SAWS 0214636 OKIEP 26 29 36 0 17 52 0 921 173

SAWS 0224430 PRIESKA 31 29 40 0 22 45 0 932 228

SAWS 0229556 FAURESMITH 32 29 46 0 25 19 0 1363 422

SAWS 0233044 WEPENER 36 29 44 0 27 2 0 1438 503
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Organisation
Years Latitude Longitude ALTITUDE MAP

StationNo. Location
Record Deg Min Sec Deg Min Sec (m) (mm)

SAWS 0237591 WATERFORD 20 29 51 0 29 20 0 1643 975

SAWS 0237618 SHALEBURN 16 29 48 0 29 21 0 1614 977

SAWS 0239482 CEDARA 46 29 32 0 30 17 0 1076 876

SAWS 0239577 PlETERMARITZBURG·PUR 14 29 37 0 30 20 0 765 949

SAWS 0239756 PlETERMARITZBURG·PUR 19 29 36 0 30 26 0 613 817

SAWS 0240808 LOUIS BOTHA• WK 36 29 58 0 30 57 0 8 986

SAWS 0247668 POFADDER 34 29 8 0 19 23 0 989 130

SAWS 0256424 DOUGLAS 14 29 4 0 23 45 0 994 316

SAWS 0258157 RlETRlVlER· AGR 15 29 7 0 24 36 0 1140 385

SAWS 0261307 BLOEMFONTEIN· WK 24 29 7 0 26 11 0 1422 537

SAWS 0268631 ESTCOURT- AGR 15 29 1 0 29 52 0 1181 700

SAWS 0274034 ALEXANDERBAY - WK 38 28 34 0 16 32 0 21 43

SAWS 0290468 KIMBERLEY - WK 43 28 48 0 24 46 0 1198 414

SAWS 0296005 UINTJIESHOEK 11 28 35 0 27 31 0 1584 639

SAWS 0296583 GLEN MORGAN 11 28 43 0 27 50 0 1676 685

SAWS 0300423 LADYSMITH- MUN 13 28 33 0 29 45 0 1034 768

SAWS 0300454 LADYSMITH - WK 21 28 34 0 29 46 0 1079 734

SAWS 0300690 ESTCOURT· TNK 24 29 0 0 29 53 0 1148 731

UZ 304320 Kwa-Dlangzwa 12 28 50 0 31 41 0 378 1201

UZ 304353 Kwa-Dlangzwa 12 28 53 0 31 42 0 173 1325

UZ 304410 Kwa-DIangzwa 12 28 50 0 31 44 0 331 1269

UZ 304412 Kwa-Dlangzwa 12 28 52 0 31 44 0 142 131 0

UZ 304470 Kwa-Dlangzwa 11 28 50 0 31 46 0 252 1314

UZ 304473 Kwa-Dlangzwa 12 28 53 0 31 46 0 63 1310
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Years Latitude Longitude ALTITIJDE MAP
Organisation Station No. Location

Record Deg Min Sec Deg Min Sec (m) (mm)

UZ 304501 Kwa-Dlangzwa 12 28 51 0 31 47 0 142 1320

UZ 304530 Kwa-Dlangzwa 12 28 50 0 31 48 0 142 1243

UZ 304562 Kwa-D1angzwa 12 28 52 0 31 49 0 95 1384

UZ 304593 Kwa-Dlan gzwa 12 28 53 0 31 50 0 95 1476

UZ 304622 Kwa-Dla ngzwa 12 28 52 0 31 51 0 95 1390

SAWS 0305168 RICHARDSBAY 13 28 47 30 32 6 0 47 1226

SAWS 0317476 UPtNGTON - WK 18 28 26 0 21 16 0 814 180

SAWS 0323102 KOOPMANSFONTE tN II 39 28 12 0 24 4 0 1341 419

SAWS 0330421 ROODEPOORT 11 28 1 0 27 45 0 1569 672

SAWS 0330843 CHICAGO 11 28 3 0 27 59 0 1615 616

SAWS 0331520 LOCH LOMOND - AGR 27 28 10 0 28 18 0 163 1 662

SAWS 0331585 BETHLEHEM - WO 13 28 15 0 28 20 0 1680 670

SAWS 0337143 BAB ANANGO 15 28 23 0 31 5 0 1288 883

SAWS 0360453 TAUNG 11 27 33 0 24 46 0 1124 453

SAWS 0362710 HOOPSTAD - TNK 13 27 50 0 25 54 0 1239 446

SAWS 0363239 PLESSISDRAAI 19 27 59 0 26 8 0 1249 479

SAWS 0365430 KROONSTAD - MUN 26 27 40 0 27 15 0 1348 593

SAWS 0370734 NEWCASTLE 11 27 44 0 29 55 0 1235 846

SAWS 0370765 NEWCASTLE - TNK 13 27 45 0 29 56 0 1197 818

SAWS 0393778 KURUMAN 26 27 28 0 23 26 0 1312 480

SAWS 0403537 CILLIERSRUS II 27 27 0 28 18 0 1630 617

SAWS 0403886 FRANKFORT-TNK 37 27 16 0 28 30 0 1500 647

SAWS 0411323 MAKATtNI 15 27 23 0 32 11 0 63 558

SAWS 0411324 MAKATtNI - AGR 16 27 24 0 32 11 0 73 571
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Years Latitude Longitude ALTITUDE MAP
Organisation Station No. Location

Record Deg Min Sec Deg Min Sec (m) (mm)

SAWS 0432237 ARMOEDSVLAKTE 36 26 57 0 24 38 0 1234 437

SAWS 0435157 DOORNLAAGTE 16 26 37 0 26 6 0 1473 574

SAWS 0437 104 POTCHEFSTROOM 15 26 44 0 27 4 0 1350 618

SAWS 0437134 POTCHEFSTROOM - AGR 31 26 44 0 27 5 0 1345 . 618

SAWS 0438553 VANDERBYLPARK - PUR 12 26 43 0 27 49 0 1496 674

SAWS 0441416 STANDERTON- SKL 15 26 56 0 29 14 0 1570 610

SAWS 0442811 NOOITGEDACHT - AGR 28 26 31 0 29 58 0 1694 722

SAWS 0444540 PIET RETIEF - TNK 21 27 0 0 30 48 0 1235 887

SAWS 0475456 KRUGERSDORP KRONINGS 40 26 6 0 27 46 0 1699 798

SAWS 0476042 JHB - BURGERSDORP 16 26 12 0 28 2 0 1719 701

SAWS 0476131 IHB - BEWIDENHOUT V 17 26 11 0 28 5 0 1700 784

SAWS 0476398 IAN SMUTS - WK 33 26 8 0 28 14 0 1692 696

SAWS 0478867 BETHAL 25 26 27 0 29 29 0 1663 689

SAWS 04801 84 CAROLINA 32 26 4 0 30 7 0 1696 749

SAWS 0508047 MMABATHO - AER 13 25 47 0 25 32 0 1281 503

SAWS 0508261 MAFIKENG - TNK 11 25 51 0 25 39 0 1278 585

SAWS 051 1523 RUSTENBERG- AGR 45 25 43 0 27 18 0 1157 639

SAWS 0513314 PRETORIA- FORUM 29 25 44 0 28 11 0 1330 674

SAWS 0513385 IRENE-WK 19 25 55 0 28 13 0 1524 667

SAWS 0513405 PRETORIA- BROOKLYN 37 25 45 0 28 14 0 1372 765

SAWS 0513465 PRETORIA- UNIV PROE 31 25 45 0 28 16 0 1372 687

SAWS 0513531 RIETVLEI - AGR 20 25 51 0 28 18 0 1524 743

SAWS 0513605 ROODEPLAAT - AGR 25 25 35 0 28 21 0 1164 653

SAWS 0548290 PILANESBERG 12 25 20 0 27 10 0 1043 611
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Years Latitude Longitude ALTITUDE MAP
Organisation StationNo. Location

Record Deg Min Sec Deg Min Sec (m) (mm)

SAWS 0554816 LYDENBERG - VIS 31 25 6 0 30 28 0 1439 670

SAWS 0555837 NELSPRUlT - AGR 14 25 27 0 30 58 0 660 750

SAWS 0555866 NELSPRUIT-FRIEDENHEI 20 25 26 0 30 59 0 671 752

SAWS 0589594 WARMBAD -TOWOOMBA- 51 24 54 0 28 20 0 1143 629

SAWS 0593489 TSWELOPELE 11 24 39 0 30 17 0 700 566

SAWS 0596179 SKUKUZA 38 24 59 0 31 36 0 263 526

SAWS 0631791 GROENDRAAI 11 24 11 0 27 57 0 1025 546

SAWS 063401 1 POTGIETERUS·TABAK CO 33 24 11 0 29 1 0 1116 624

SAWS 0674311 ELLISRAS 11 23 41 0 27 41 0 849 471

SAWS 0677802 PIETERSBURG - WK 39 23 52 0 29 27 0 1230 458

SAWS 0677866 PIETERSBURG - WK 14 23 56 0 29 29 0 1294 446

SAWS 0679260 TZANEEN 13 23 50 0 30 9 0 716 972

SAWS 0679289 PUSELLA- GSH 14 23 49 0 30 10 0 749 1015

SAWS 0681266 PHALABORWA 24 23 56 0 31 9 0 407 531

SAWS 0719369 MARNITZ 14 23 9 0 28 13 0 946 388

SAWS 0722099 MARA 36 23 9 0 29 34 0 897 438

SAWS 0723485 LEVUBU 32 23 5 0 30 17 0 706 882

SAWS 0766898 THOHOYANDOU 15 22 58 0 30 30 0 600 812

SAWS 0767046 TSHANDAMA 12 22 46 0 30 32 0 600 555

SAWS 0809706 MESSINA - MACUVILLE 32 22 16 0 29 54 0 525 345

CTCE athlone Athlone 40 33 57 11 18 30 55 14 638

UKZN cl 61 CEDARA 15 29 35 13 30 13 38 1340 974

UKZN cl62 CEDARA 20 29 34 40 30 13 53 1207 913

UKZN c165 CEDARA 20 29 33 0 30 14 45 1130 848
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Organisation
Years Latitude Longitude ALTITUDE MAP

StationNo. Location
Record Deg Min Sec Deg Min Sec (m) (mm)

UKZN cl 72 CEDARA 20 29 34 10 30 15 50 1175 883

UKZN cl81 CEDARA 11 29 35 43 30 15 43 1445 906

UKZN cl 82 CEDARA 20 29 35 18 30 14 50 1261 957

UKZN c191 CEDARA 20 29 32 37 30 16 34 1058 873

UKZN c201 CEDARA 20 29 32 40 30 16 57 1121 873

CSIR cp6br CathPeak CP6 32 28 59 IS 29 IS 7 1920 1046

UKZN dl DE HOEK 11 29 0 7 29 39 55 1201 925

CSIR jnkl9a InkBiesievlei 52 33 58 21 18 56 56 282 1095

CSIR moko3a Mokobulaan 29 25 16 IS 30 34 0 1359 1004

UKZN nll NTABAMHLOPE 19 29 0 44 29 37 38 1529 851

UKZN nl8 NTABAMHLOPE 20 29 2 26 29 39 43 1448 1103

UKZN n20 NTABAMHLOPE I1 29 I 10 29 40 21 1473 859

. UKZN n23 NTABAMHLOPE 31 29 3 29 29 39 23 1456 900

CTCE newlands Newlands 20 33 58 1 18 27 3 140 973

SASRI sallO La Mercy 20 29 36 0 31 I 0 81 937

SASRI samte Mt_Edgecombe 19 29 42 0 31 2 0 96 951

SASRI samtz Mtunzini 14 28 56 0 31 42 0 36 1338
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APPENDIXB

AVERAGE RANKED SERIES OF HOURLY FRACTIONS

The following shows the average ranked series of hourly fractions from 157 stations for each

of the 20 ranges of R. For a given value of R, the following series give the fractions of the

daily total for the other 23 hours ranked in order of magnitude.

The results are displayed in the following format:

Range ofR

Ranked values for 12 highest hours in order 1 to 12

Ranked values for other 12 hours in order 13 to 24

Range 1: 0.0417 - 0.075

0.066 0.064 0.063 0.062 0.061 0.060 0.058 0.056 0.054 0.051 0.049 0.048

0.047 0.044 0.042 0.038 0.027 0.024 0.021 0.019 0.016 0.014 0.011 0.007

Range 2: 0.075 - 0.125

0.107 0.097 0.089 0.082 0.076 0.069 0.064 0.058 0.053 0.048 0.043 0.038

0.033 0.028 0.024 0.021 0.017 0.014 0.011 0.009 0.007 0.005 0.003 0.002

Range 3: 0.125 -0.175

0.153 0.131 0.114 0.100 0.087 0.075 0.064 0.055 0.046 0.037 0.031 0.025

0.020 0.016 0.012 0.010 0.007 0.006 0.004 0.003 0.002 0.002 0.001 0.001

Range 4: 0.175 - 0.225

0.201 0.164 0.135 0.111 0.091 0.072 0.056 0.043 0.032 0.024 0.018 0.013
0.010 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.000 0.000

Range 5: 0.225 - 0.275

0.250 0.194 0.151 0.115 0.084 0.060 0.042 0.030 0.021 0.015 0.011 0.008
0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000
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Range 6: 0.275 - 0.325

0.300 0.221 0.161 0.110 0.071 0.045 0.030 0.020 0.013 0.009 0.006 0.004

0.003 0.002 0.002 . 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Range 7: 0.325 - 0.375

0.350 0.244 0.159 0.095 0.056 0.034 0.021 0.013 0.009 0.006 0.004 0.003

0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 8: 0.375 - 0.425

0.399 0.259 0.149 0.080 0.044 0.025 0.015 0.009 0.006 0.004 0.003 0.002

0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 9: 0.425 - 0.475

0.449 0.272 0.131 0.064 0.034 0.018 0.010 0.006 0.004 0.003 0.002 0.001

0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 10: 0.475 - 0.525

0.499 0.280 0.108 0.050 0.025 0.014 0.008 0.005 0.003 0.002 0.001 0.001

0.001 0.001 0.00 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 11: 0.525 - 0.575

0.549 0.267 0.093 0.041 0.020 0.011 0.006 0.004 0.003 0.002 0.001 0.001

0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 12: 0.575 - 0.625

0.599 0.240 0.082 0.036 0.017 0.009 0.005 0.003 0.002 0.001 0.001 0.001

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 13: 0.625 - 0.675

0.649 0.222 0.068 0.028 0.013 0.007 0.004 0.002 0.002 0.001 0.001 0.001
0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Range 14: 0.675 - 0.725

0.699 0.192 0.057 0.023 0.011 0.006 0.003 0.002 0.001 0.001 0.001 0.001

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 15: 0.725 - 0.775

0.749 0.159 0.048 0.019 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 16: 0.775 - 0.825

0.800 0.132 0.036 0.014 0.006 0.003 0.002 0.001 0.001 0.001 0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 17: 0.825 -0.875

0.849 0.102 0.027 0.010 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 18: 0.875 - 0.925

0.900 0:069 0.016 0.006 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 19: 0.925 - 0.975

0.952 0.031 0.008 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 20: 0.975 - 1.000

0.989 0.006 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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APPENDIXC

CLUSTERED SEQUENCES OF HOURLY FRACTIONS

Using all days where the 24-hour total was ~ 1 mm from all 157 stations, the fractions of the

daily totals in the maximum 2, 3, 6, and l2 -hours were averaged in each range ofR. The

average ranked series, shown in Appendix B, were then rearranged such that the maximum 2,

3,6, and 12-hour totals matched the average values calculated from the observed data.

The following clustered sequences are displayed in the following format:

Range ofR

The maximum hourly fraction R is the first value on the first string of values, followed by the

fraction which combines with R to form the maximum 2-hour total , then the value which

forms the maximum 3-hour total with the first two values, etc.

Range 1: 0.0417 - 0.075

0.066 0.063 0.060 0.062 0.061 0.047 0.058 0.056 0.051 0.049 0.038 0.024

0.064 0.054 0.048 0.044 0.042 0.027 0.021 0.019 0.016 0.014 0.011 0.007

Range 2: 0.075 - 0.125

0.107 0.082 0.076 0.069 0.058 0.053 0.097 0.048 0.038 0.033 0.024 0.021

0.089 0.064 0.043 0.028 0.017 0.014 0.011 0.009 0.007 0.005 0.003 0.002

Range 3: 0.125-0.175

0.153 0.114 0.087 0.131 0.055 0.012 0.075 0.064 0.046 0.037 0.007 0.006

0.100 0.031 0.025 0.020 0.016 0.010 0.004 0.003 0.002 0.002 0.001 0.001

Range 4: 0.175 - 0.225

0.201 0.135 0.091 0.164 0.056 0.003 0.111 0.043 0.032 0.008 0.004 0.002
0.072 0.024 0.018 0.013 0.010 0.006 0.002 0.001 0.001 0.001 0.000 0.000
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Range 5: 0.225 - 0.275

0.250 0.151 0.115 0.194 0.015 0.005 0.084 0.060 0.008 0.004 0.003 0.000

0.042 0.030 0.021 0.011 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000

Range 6: 0.275 - 0.325

0.300 0.161 0.110 0.221 · 0.000 0.000 0.045 0.030 0.020 0.013 0.009 0.004

0.071 0.006 0.003 0.002 0.002 0.00 1 0.001 0.001 0.000 0.000 0.000 0.000

Range 7: 0.325 - 0.375

0.350 0.159 0.095 0.244 0.000 0.000 0.056 0.021 0.002 0.000 0.000 0.000

0.034 0.013 0.009 0.006 0.004 0.003 0.001 0.001 0.001 0.001 0.000 0.000

Range 8: 0.375 - 0.425

0.399 0.149 0.080 0.259 0.000 0.000 0.025 0.015 0.004 0.002 0.001 0.000

0.044 0.009 0.006 0.003 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

Range 9: 0.425 - 0.475

0.449 0.272 0.034 0.131 0.000 0.000 0.064 0.000 0.000 0.000 0.000 0.000

0.018 0.010 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000

Range 10: 0.475 - 0.525

0.499 0.280 0.025 0.108 0.000 0.000 0.050 0.000 0.000 0.000 0.000 0.000

0.014 0.008 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000

Range 11: 0.525 - 0.575

0.549 0.267 0.020 0.093 0.000 0.000 0.011 0.006 0.004 0.003 0.002 0.001

0.041 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 12: 0.575 - 0.625

0.599 0.240 0.017 0.082 0.000 0.000 0.009 0.005 0.003 0.002 0.001 0.001
0.036 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Range 13: 0.625 - 0.675

0.649 0.222 0.013 0.068 0.000 0.000 0.007 0.004 0.002 0.002 0.001 0.001

0.028 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 14: 0.675 - 0.725

0.699 0.192 0.006 0.057 0.000 0.000 0.023 0.001 0.000 0.000 0.000 0.000

0.011 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

Range 15: 0.725 -0.775

0.749 0.159 0.009 0.048 0.000 0.000 0.005 0.003 0.002 0.001 0.001 0.001

0.019 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 16: 0.775 - 0.825

0.800 0.132 0.006 0.036 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 17:0.825 - 0.875

0.849 0.102 0.001 0.010 0.004 0.002 0.027 0.000 0.000 0.000 0.000 0.000

0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 18: 0.87 5 - 0.925

0.900 0.069 0.001 0.006 0.003 0.001 0.016 0.000 0.000 0.000 0.000 0.000

0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 19: 0.925 - 0.975

0.952 0.031 0.001 0.003 0.002 0.000 0.008 0.000 0.000 0.000 0.000 0.000

0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Range 20: 0.975 -1.000

0.989 0.006 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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