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Abstract 

Artificial neural networks (ANN) can detect complex non-linear relationships between independent 

and dependent variables. Properly trained ANNs have repeatedly demonstrated superior predictive 

accuracy to other predictive technologies when applied to non-linear systems. Currently there are no 

studies that have been carried out on predicting survival of leukaemia patients at all. The neural 

network prediction method adopted in this study aims to provide a robust and accurate method for 

predicting survival of leukaemia patients for both censored and uncensored patient data. The aim of 

this research was also to find out the effectiveness of neural networks in modelling leukaemia 

prognosis and to determine the factors that have the most influence. There is ongoing research into 

finding ways and means of extending the life span of diseased patients. There is great interest in 

identifying factors that will yield better predictions of survival for terminally ill leukaemia patients. 

Prognostic factors generally differ with the treatment of leukaemia. Clinicians face the problem of 

how to choose the appropriate treatment regime, therefore an analysis of prognostic factors that 

predict success or failure may identify patients who require an alternative approach of specialist or 

targeted treatment. Being able to predict an individual patient’s prognosis will enable clinicians to 

categorise them into the relevant high and low risk treatment groups for conventional treatment or 

allow for the patients to be incorporated into specialised treatment schedules and clinical trials if 

available. In this study there is believed to be relationship that exists between the results gained on 

diagnosis and the period of survival. A patient’s health status is dependent on various symptoms 

and the complexity of the medical condition is dependent on an individual’s biological system. This 

complexity allows for the application of artificial neural networks (ANN) in predicting outcomes in 

medical application, especially in prognosis prediction and survival rate. This thesis contains 

contributions to the development of neural network models for survival analysis of leukaemia 

patients. The feed forward back propagation algorithm (BPA) modified to the gradient descent BPA 

was identified for the training and building of the neural network for predicting survival of 

leukaemia patients. The prognostic factors that affect survival have also been determined by the 

neural networks. The comparisons of models were based on using combined groups of leukaemia 

patients and comparing them with individual groups of the sub-types of leukaemia, i.e. acute 

lymphoid leukaemia (ALL), acute myeloid leukaemia (AML), chronic myeloid leukaemia (CLL) 

and chronic myeloid leukaemia (CML). A combination of 38 variables was used in the development 

of the neural networks. The variables were age, race, sex, gender, and results of full blood counts, 

differential tests and flow cytometry. The survival period of patients was based on the diagnosis 

date and the date of treatment. Those patients who status of mortality was known as of October 

2008 were considered to be uncensored and were used for the 2-year and 3-year case studies. The 
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patients with unknown mortality were considered as censored patients and used for the censored 

case study. The patient data was processed into a coded system and used to build the neural 

networks for each data set. The choice of patient groups used for the model building was prompted 

by the availability of uncensored data for analysis. For the group of combined leukaemia patients 

and the sub-group CML-CLL, it is recommended that the 2-year neural network model be used. The 

main prognostic factors affecting leukaemia survival were found to be the patient’s age, the mean 

haemoglobin concentration, % neutrophils and the markers CD13, CD20 and CD56. The race 

group, platelet count, % monocytes and the markers CD3, CD4, CD34 and LC lambda were found 

to significantly affect the CML-CLL group of patients. For the ALL and AML groups the 3-year 

neural network models were favoured. Prognostic factors for the survival of ALL patients were 

their age, the mean corpuscular haemoglobin concentration, % blasts and the markers CD8 and 

CD22. For the AML group the important prognostic factors were the patient’s age, the mean 

corpuscular haemoglobin concentration, the % neutrophils, % lymphocytes, and the markers CD7 

and CD34. 
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Definitions 

 

Albumin: The major plasma protein responsible for much of the plasma colloidal 

osmotic pressure and serving as a transport protein for large organic anions 

(e.g. fatty acids, bilirubin, some drugs) and for some hormones when their 

specific binding globulins are saturated.  

 

Allogeneic: Denoting individuals (or tissues) that are of the same species but 

antigenically distinct. 

 

Allografting:  Tissue that is taken from one person's body and grafted to another person. 

 

Ameboid: Having an irregular or asymmetric outline with peripheral projections as 

the outline of a group of cells growing in a nutrient culture and resembling 

a one cell protozoan. 

 

Anaemia: Reduced number of erythrocytes, quantity of haemoglobin, or the volume 

of packed red cells in the blood.  

 

Aneuploid:  An abnormal number of chromosomes in a cell. 

 

Annexin:  A common name for a family of cellular proteins that bind calcium-

dependents to phospho-lipid membranes.  

  

Antibodies: These are specialised cells or proteins of the immune system which can 

recognise organisms or antigens that invade the body (such as bacteria, 

viruses, and fungi) and set off a complex chain of events designed to kill 

these foreign invaders.   

 

Antigen: It is any substance that is capable of inducing a specific immune response 

and reacting with the products of that response.  
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Apoptosis: A pattern of cell death affecting single cells, marked by shrinkage of the 

cell, condensation of chromatin and fragmentation of the cell into 

membrane-bound bodies that are eliminated by phagocytosis.  

 

Assay: Determination of the amount of a particular constituent of a mixture, purity 

or potency of a drug.  

 

Autoimmune: Any deviation from or interruption of the normal structure or function of 

any body part, organ, or system that is manifested by a characteristic set of 

symptoms and signs and whose etiology, pathology, and prognosis may be 

known or unknown.  

 

Basophils: A granular leukocyte with an irregularly shaped, relatively pale-staining 

nucleus that is partially constricted into two lobes and with cytoplasm 

containing coarse bluish-black granules of variable size. 

 

B-cell:  Type of white blood cell that produces antibodies. 

 

Carboxy: Nitrogen organic compound containing the carboxy group (-COOH), which 

is weakly ionized in solution forming a carboxylate ion (-COO-). 

 

Chimerical: An organism with different cell populations derived from different zygotes 

of the same or different species, occurring spontaneously or produced 

artificially. 

 

Chromatin: The substance of chromosomes, i.e. the portion of the cell nucleus that 

stains with basic dyes. 

 

Cyanmethaemoglobin: A compound formed by combination of hydrocyanic acid with 

methemoglobin.  

 

Cyclin dependent kinase: A group of protein kinases originally discovered as being involved in the 

regulation of the cell cycle.  
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Cytochemical: The identification and localisation of the different chemical compounds and 

their activities within the cell.  

 

Cytogenetic:  Originating from the development of the cell. 

 

Cytokines: Chemicals made by the cells that act on other cells to stimulate or inhibit 

their function.  

 

dehydrogenase:  An enzyme that catalyzes the transfer of hydrogen or electrons from a 

donor by oxidizing it or reducing it.  

 

Ectopic: It is located away from normal position and arises from an abnormal site or 

tissue. 

 

Eosinophils:  A leukocyte with coarse, round granules present. 

 

Erythrocytes:  Red blood cells. 

 

Erthroleukaemia: A malignant disorder characterised by the proliferation of erythroblastic 

and leukoblastic tissues. 

 

Erthyroid: These are red blood cells whose principal function is delivering oxygen 

from the lungs to body tissues via the blood. 

 

Extramedullary: Situated or occurring outside any of the medullas, including the medulla 

oblongata and the medullary cavities of the bones. 

 

Fibrinogen:  A protein in the blood plasma that is essential for the coagulation of blood 

 and is converted to fibrin by thrombin and ionized calcium.  

 

Flourochromes:  A fluorescent compound used as a dye to mark or stain proteins for 

examination by fluorescence microscopy. 
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Fludarabine: An adenine analogue and purine antimetabolite used as the phosphate salt 

and as an anti-neoplastic in the treatment of chronic lymphocytic 

leukaemia. 

 

Gene: The biologic unit of heredity, self-reproducing and located at a definite 

position (locus) on a particular chromosome.  

 

Globulins: A group of proteins in blood plasma whose levels can be measured by 

electrophoresis in order to diagnose or monitor a variety of serious 

illnesses. 

 

Granulocytes:  White blood cells. 

 

Haematocrit: The hematocrit measures how much space in the blood is occupied by red 

blood cells which is useful when evaluating a person for anemia. 

 

Haematologic: The branch of medical science that studies the morphology of the blood 

and blood-forming tissues. 

 

Haematopoiesis:  The formation and development of blood cells, usually taking place in the 

bone marrow. 

 

Haematopoietic:  Pertaining to the formation of blood or blood cells.  

 

Haemoglobin: The red respiratory protein of red blood cells that transports oxygen as oxy-

haemoglobin from the lungs to the tissues where the oxygen is readily 

released and the oxy-haemoglobin becomes haemoglobin. 

 

Haemolysis: The breakdown of red blood cells and the release of haemoglobin that 

occurs normally at the end of the life span of a red blood cell. 

 

Haemolytic: The liberation of haemoglobin, consisting of separation of the haemoglobin 

from the red cells and its appearance in the plasma.  
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Haemolytic: The rupture of erythrocytes liberates haemoglobin, i.e. separation of the 

haemoglobin from the red cells and its appearance in the plasma.  

 

Haemostasis:  The stoppage of bleeding or blood flow through a blood vessel or body part 

or haemorrhage. 

 

Histopathological:  The science concerned with the cytologic and histologic structure of 

abnormal or diseased tissue. 

 

HLA-DR: It is a major histocompatibility complex, MHC class II, cell surface 

receptor encoded by the human leukocyte antigen complex on chromosome 

6 region 6p21.31.  

 

Homeostasis: The ability or tendency of an organism or a cell to maintain internal 

equilibrium by adjusting its physiological processes. 

 

Homozygous:   Identical genes controlling a specified inherited trait. 

 

Humoral:   Relating to body fluids, especially serum. 

Hypergranular:  It refers to a type of leukaemia: hypergranular promyelocytic leukemia. 

Hyperphosphorylation: This occurs when a biochemical with multiple phosphorylation sites is fully 

saturated and it is also one of the signalling mechanisms used by the cell to 

regulate mitosis.  

 

Hyperplasia: An abnormal increase in the number of normal cells in normal arrangement 

in an organ or tissue which increases its volume.  

 

Hypoxia: Reduction of oxygen supply to a tissue below physiological levels despite 

adequate perfusion of the tissue by blood.  

 

Immunoglobulin:  A protein of animal origin with known antibody activity, synthesised by 

lymphocytes and plasma cells which is found in serum and in other body 

fluids and tissues.  
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Immunophenotype:  A phenotype of cells of haematopoietic neoplasms defined according to 

their resemblance to normal T-cells and B-cells.  

 

Karyotype: The characterization of the chromosomal complement of an individual or a 

species including number, form, and size of the chromosomes. 

 

Lactic: A compound formed in the body during metabolism of carbohydrate, by 

fermentation of carbohydrates in the rumen and by bacterial action on milk.  

 

leukocytes: These are white blood cells that protect the body from disease-causing 

viruses, bacteria, toxins, parasites, and tumor cells. 

 

Lymphadenopathy:  A chronic, abnormal enlargement of the lymph nodes usually associated 

with disease. 

 

Lymphoblastic:  Pertaining to a lymphoblast or producing lymphocytes. 

 

Lymphocytes: These are white blood cells of the agranulocyte type, originally from stem 

cells that produce antibodies which attack harmful cells. 

 

Lymphocytosis: A condition in which the number of lymphocytes increases above normal 

levels. 

 

Lymphoid: Tissues relating to the lymphatic system which has a thin, yellowish fluid 

called lymph fluid that travels throughout the body, thus the lymphatic 

system helps control fluids in the body. 

 

Lymphoma:  This is any neoplastic disorder of lymphoid tissue.  

 

Lysosomes: The self-contained organelles found inside most cells, which contain 

hydrolytic enzymes that aid in intracellular digestion.  
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Macrophages : White blood cells (activated monocytes) that protect the body against 

infection and foreign substances by breaking them down into antigenic 

peptides recognised by circulating T-cells.  

 

Megakaryocytic:  Characterised by the presence of large numbers of megakaryocytes. 

 

Neth-haemoglobin:  A haemoprotein composed of globin and haeme that gives red blood cells 

their characteristic colour and whose function is to primarily transport 

oxygen from the lungs to the body tissues.  

 

Microblasts:   A small nucleated red blood cell. 

 

Mitosis: A method of indirect cell division in which the two daughter nuclei 

normally receive identical complements of the number of chromosomes 

characteristic of the somatic cells of the species.  

 

Monoclonal:  Derived from a single cell. 

 

Monocyte: A large, circulating, phagocytic white blood cell that has a single well-

defined nucleus and very fine granulation in the cytoplasm and that 

constitutes from 3 to 8 percent of the white blood cells in humans. 

 

Monomorphic: Having one or the same genotype, form or structure through a series of 

developmental changes. 

 

Mononucleosis: An abnormally large number of mononuclear white blood cells in the 

blood, especially forms that are not normal. 

 

Mucosal: Refers to tissues that produce mucus, such as the digestive, genital and 

urinary tracts. 

 

Myeloblasts: An immature cell found in the bone marrow and not normally in the 

peripheral blood; it is the most primitive precursor in the granulocytic 
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series which matures to develop into the promyelocyte and eventually the 

granular leukocyte.  

 

Myelodysplasia:  A neural tube defect causing defective development of any part of the 

spinal cord. 

 

Myelogenous:   Produced by or originating in the bone marrow.  

 

Myeloperoxidase:  A haemoprotein having peroxidase activity, occurring in the primary 

granules of promyelocytes, myelocytes and neutrophils and which exhibits 

bactericidal, fungicidal and virucidal properties. 

 

Neoplastic:  Pertaining to a neoplasm. 

 

Neutrophils: White blood cells with cytoplasmic granules that consume harmful 

bacteria, fungi and other foreign material. 

 

Nucleoside: One of the compounds into which a nucleotide is split by the action of 

nucleotidase or by chemical means and which consists of a sugar (a 

pentose) with a purine or pyrimidine base.  

 

Nucleotide: One of the compounds into which nucleic acid is split by action of 

nuclease; nucleotides are composed of a base (purine or pyrimidine), a 

sugar (ribose or deoxyribose) and a phosphate group. 

 

Null cell: A lymphocyte that develops in the bone marrow and lacks the 

characteristic surface markers of the B and T lymphocytes.  

 

Oncogenes: Genes carried by tumor viruses that are directly and solely responsible for 

the neoplastic transformation of host cells or any genetic element linked to 

cancer. 

 

Oncoproteins:  A protein encoded by an oncogene.  
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Oxy-haemoglobin:  The red respiratory protein of red blood cells that transports oxygen as oxy-

haemoglobin from the lungs to the tissues, where the oxygen is readily 

released and the oxy-haemoglobin becomes haemoglobin. 

 

Para-immunoblasts:  A lymphocyte that has been activated by an antigen and which will further 

undergo clonal expansion to increase the number of lymphocytes capable 

of binding to that antigen.  

 

Phagocytes: A phagocyte is a cell that ingests and destroys foreign matter such as 

micro-organisms or debris by a process known as phagocytosis.  

 

Phosphatidyl serine:  A phospholipid found in mammalian cells. 

 

Phosphatise: To change into phosphates or a phosphate, or to treat with phosphate or 

phosphoric acid. 

 

Plasma: The fluid portion of the blood in which the particulate components are 

suspended.  

 

Pleomorphic:  Refers to a variable appearance or morphology. 

 

Pluripotent:   Capable of affecting more than one organ or tissue. 

 

PML-RAR:   Progressive multifocal leukoencephalopathy. 

 

Polymorphonuclear:  Having a nucleus so deeply lobed or so divided as to appear to be multiple. 

 

Polymorphs:  A colloquial term for a polymorphonuclear leukocyte. 

 

Progenitor:   A direct ancestor or an originator of a line of descent. 

 

Prolymphocytes:  A cell of the lymphocytic series intermediate between the lymphoblast and 

lymphocyte. 
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Proto-oncogene c-ABL: A normal gene that with slight alteration by mutation or other mechanism 

becomes an oncogene which is mostly believed to normally function in cell 

growth and differentiation.  

 

Pseudopods:  A temporary projection of the cytoplasm of certain cells or of certain 

unicellular organisms, especially amoebas, that aids in locomotion and 

phagocytosis. 

 

Purine:  A colorless crystalline organic base that is the parent compound of various 

biologically important derivatives, e.g. uric acid, caffeine, adenine and 

guanine. 

 

Reticuloendothelial:  Of or relating to or being the widely diffused bodily system constituting all 

phagocytic cells except certain white blood cells. 

 

Retinoblast:  Development of this tumour is initiated by mutations that inactivate both 

copies of the gene that codes for the retinoblastoma protein. 

 

Splenomegaly:  Is an enlargement of the spleen which usually lies in the left upper quadrant 

of the human abdomen and can be caused by leukaemia.  

 

T-cell:  Type of white blood cell produced in the thymus gland that regulates the 

immune system's response to diseased or malignant cells.  

 

Thrombocytopenia:  Is an abnormal drop in the number of blood cells (or platelets) involved in 

forming blood clots.  

 

Thymus:  A lymphoid organ that is located in the superior mediastinum and lower 

part of the neck and is necessary in early life for the normal development of 

immunological function. 

 

Transcriptional:  The process by which mRNA is synthesized from a DNA template 

resulting in the transfer of genetic information from the DNA molecule to 

mRNA. 
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Trisomy:  An additional chromosome in the normal complement to ensure that in 

each nucleus a chromosome is represented three times rather than twice. 

 

Ubiquitination:  A polypeptide found in all eukaryotic cells including plant cells that 

participates in a variety of cellular functions including protein degradation. 

 

Vacuoles:  A small cavity in the cytoplasm of a cell, bound by a single membrane and 

containing water, food, or metabolic waste. 
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Nomenclature 

Symbols 

d   output vector 

E   energy function 

e   error 

f   femto 

f   function 

g   gram 

g   logistic function 

L   log likelihood 

L   litre 

M   past samples 

n   discrete time 

o   overall output vector 

o   outer scaling vector 

p   pico 

Pr   probability function 

s   inner scaling factor 

u   sum function 

v   internal activity level of neuron 

w   weight 

x   input 

y   function 

z-1   unit delay operator 

α   momentum 

γ   control step-size parameter 

δ   local gradient of neuron 

Δ   small change 

ε   sum of errors 

η   learning rate parameter 

θ   threshold 
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φ   activation function 

Є   symbol for “belongs to” 

 

Subscripts 

av   average 

i   neuron left of j neuron 

j   neuron 

k   index of perceptron  

N   number of samples 

p   number of inputs to neuron 
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CHAPTER 1 

INTRODUCTION 

 

Cancer is a major cause of disease related to human deaths in many developed countries. It has been 

observed frequently that the prognosis of cancer patients with the same clinical diagnosis can be 

different. Survival analysis used to define prognostic indices for survival or recurrence of a disease, 

and treatment outcome. These methods are commonly used in oncology. Clinicians wish to avoid 

using these further treatments unless the risk of recurrence is high; as the side effects may be 

unpleasant or dangerous. Cost is another consideration as some treatments are very expensive. The 

risk of recurrence must be estimated using information available at the time of diagnosis and initial 

treatment. There is no consensus amongst clinicians as to the best way of integrating the different 

data. Since prediction is not always easy new variables may be suggested frequently. It becomes 

quite an expensive exercise if one has to collect all the possible information for each patient.  It has 

been recognised in the medical literature that neural networks have much to contribute to the model 

of cancer survival. It is therefore vital that the prognosis of cancer patients be accurately determined 

to ensure that adequate treatment is proposed. Accuracy in survival prediction would ensure that 

clinicians would immediately, on diagnosis, be able to direct a patient into the appropriate treatment 

protocol and group. For those patients where the survival period predicted is short, preparations can 

be made by both the clinicians and the families for a palliative care program, to ensure that the 

needs of the patients are met during their remaining days. If the model predicts a long survival 

period then the patients will be directed to a low risk treatment group or regime. For shorter survival 

predictions the patients will be placed into a high risk group. Low risk patients will receive standard 

or conventional therapy, and high risk patients will have their treatment targeted to a specific 

abnormality. Alternately there may be clinical and drug trials that the high risk patients can be 

exposed to. Since their prediction of survival is low anyway, the possibility of extended mortality 

will always be quite encouraging to a terminally ill patient who is willing to be part of new research 

methods and procedures. Cancer patients are sensitive to radiotherapy and chemotherapy. This is 

caused by multiple factors because the mechanisms of cancer development (or malignancy) are 

quite complex (Takahashi et al, 2007). 

 

Leukaemia is a cancer of the blood and on diagnosis a series of blood and marrow samples are 

taken from the patient for analysis which aids in the diagnosis of the sub-type of leukaemia, thus 

indicating to the clinicians the treatment protocol to be adopted for the patient. Clinical data of both 

censored and uncensored leukaemia patients were used to build neural network models to predict 
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their survival. There are currently no studies that have been carried out for the prediction of survival 

of leukaemia patients. The purpose of this study was to find out if neural network modelling can be 

a reliable method for prediction of survival and prognostic factors for leukaemia. A neural network 

model has the ability to find hidden patterns in complex data having multiple variables. This is 

highlighted when the variables are related to one another in non-linear relationships, as is the case 

with the data used in this research. Results available from patient‟s medical records were used to 

develop a database of possible variables that could be used to predict a patient‟s survival and 

prognosis. The final variables adopted for the neural network modelling in this study comprised a 

range of 38 variables. Only patients with all known information were initially eligible for the study. 

In order to obtain sufficient numbers for credibility of the research, only patients who had a 

maximum of 3 missing variables were incorporated into the study. Average values calculated with 

all patient data (censored and uncensored) were used as replacement for the missing values. 

Patient‟s demographics: age, gender and race, type of leukaemia, full blood count, differential, flow 

cytometry and chromosome analysis were used to develop the neural network models.  In a clinical 

setting, patients may enter and leave a treatment program or institution at any point from diagnosis 

till remission or death. The data for these types of patients may not be reliable as their current status 

of life or death would be unknown. In order to maintain large patient numbers and thus retain 

credibility of an analysis method, this censored (unknown mortality status) data is usually 

incorporated into the model building process. A 2-year case study and a 3-year case study were 

carried out on uncensored patients. A case study comprising both the censored and uncensored 

patients was also investigated. The neural network models were developed for each of the above 

mentioned groups for the prediction of survival. Each of the above groups was divided into the 

leukaemia sub-types, i.e. acute lymphoid leukaemia (ALL), acute myeloid leukaemia (AML), 

chronic lymphocytic leukaemia (CLL) and chronic myeloid leukaemia (CML). A feed forward back 

propagation algorithm (FFBPA) was used in the development of the neural network models. This 

robust and complex algorithm has successfully been used in some difficult problems in all fields of 

research. The patients‟ data from the medical files were processed into a coded system and used as 

an input for the building of the neural network models. A final combination of 38 variables was 

used in the development of the neural networks. The variables were age, race, sex, gender, and 

results of full blood counts, differential tests and flow cytometry. The prognostic factors were 

determined by the combined groups and the individual sub-types based on the statistics of the 

model building process. Prognostic factors generally differ with treatment of leukaemia. Clinicians 

face the problem of how to choose the appropriate treatment regime, therefore an analysis of 

prognostic factors that predict for success or failure may identify patients who require an alternative 
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approach of specialised or targeted treatment. Being able to predict an individual patient‟s prognosis 

will enable clinicians to categorise them into the relevant high and low risk treatment groups for 

conventional treatment or allow for the patients to be incorporated into specialised treatment 

schedules and clinical trials if available. Reliability and high accuracy of models will dictate the 

type of treatment to be administered to the patient and if the prediction does not improve the 

patient‟s health then other pharmacological or behavioural therapies can be adopted.   
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CHAPTER 2 

REVIEW OF ARTIFICIAL NEURAL NETWORKS 

 

2.1 Introduction 

“Neural networks are computational methodologies that perform multi-factorial analyses with 

emphasis on high parallelism and high interconnectivity. Neural networks are also called artificial 

neural networks (ANNs) to distinguish them from real biological neural networks. They are also 

called connectionist systems and parallel distributed processing systems (PDP)” (Venkataraman, 

2004). ANNs have emerged as a viable tool for non-linear modelling technique. ANNs are complex 

electronic models based on the brain‟s neural network structure. The brain is trained from birth and 

basically over time learns from experience. This modelling of the brain is a less technical way of 

developing machine solutions. These biologically inspired computing methods are currently being 

revered as the next breakthrough in the computer industry. The “simple” brains of animals can 

perform functions which modern high speed computers cannot replicate. Advances in biological 

research have enabled a better understanding of the mechanism of the natural thinking process. 

Research shows that the brain stores patterns as information. Some are very complicated, e.g. being 

able to recognise individual faces from different angles. Pattern recognition usage is used widely in 

the computer field to solve problems. Traditional programming is not favoured but involves the 

development of complex parallel networks for the training of these networks to solve a particular 

problem. Non-traditional computing words like behave, react, self-organize, learn, generalize and 

forget are used in this field. 

 

 ANNs are self learning mechanisms that do not require the traditional skills of programmers. 

Researchers claim that these neuron-inspired processors have limitless capabilities, but potential 

users have tried and failed to solve their problems for neural networks. But this confusion has come 

from the industry itself. Numerous articles have been published with unique claims and specific 

examples all promising a large assortment of neural networks. Currently only a few are being used 

commercially, with the feed forward back propagation network being widely used. Neural network 

structures represent models for “thinking” that are continuously being developed. These networks 

are just tools to be used by the network architecture for the learning of patterns. One of the 

prominent features of ANNs is their ability to approximate any non-linear mapping. Hornick et al 

(1989) showed that multi-layer propagation networks with continuously differential activation 

functions are capable of modelling any continuous non-linear function to an arbitrary degree of 
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accuracy. This attribute of ANNs is most attractive from an engineering viewpoint. Additionally, 

the nature of this non-linearity differs greatly from one system to another (Narotram, 1999). A 

traditional method for solving problems of non-linear systems was to use some linearisation 

technique to solve the model. 

 

2.2 Development of artificial neural networks 

Artificial neural networks replicate the neural activity of the brain which consists of densely 

connected networks of neurons that are the building blocks of the central nervous system. The 

human brain consists of 1014 neurons of which there are over 100 types in the human nervous 

system. Each of these neurons can connect with up to 200 000 other neurons, although 1000 to 

10000 connections is typical of a network. The power of the mind is based on these multiple 

connections. The neurons and their connections form a process that is not binary, not stable and not 

synchronous. This basic working structure of the brain has been used to develop artificial neural 

networks that can help solve complex problems like pattern recognition, information processing and 

adaptation. People are always looking to create mechanical devices that can mimic human 

behaviour. Practically the human brain behaves like a computer. The human brain is capable of 

generalizing from abstract ideas, recognising patterns, recalling memories, understanding, 

interpreting, acting on possible events (such as “maybe it will rain tomorrow”), making inferences 

and judgements, and relating them to situations that have never been encountered before. Even 

when a person has a brain injury they can still function. In numerical computations the computer is 

faster than the human brain, but the brain‟s capabilities outperforms the fastest of computers. This 

ability has researchers motivated to constantly model the human brain” (Warner et al, 1996). 

Therefore, it is nothing like the current available computers or even artificial neural networks. ANN 

can only replicate the most fundamental elements of this complicated but versatile and powerful 

organism. For the software engineer who is trying to solve complex problems, neural computing is 

never about replicating the brain, but about using machines and a new way of solving problems. 

 

The neuron is similar to a chemical processing plant. Chemicals are transported through the 

dendritic tree to the synaptic bulb until it is fully charged, henceforth releasing the chemicals across 

the synaptic gap to the body of the neuron. The neuron receives inputs from various sources, 

combines them in a particular way, performs nonlinear operations on the result and then outputs the 

final result. The relationship between the four parts is illustrated in Figure 2-1.  
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Figure 2-1 A single biological neuron 

 

Neurons are comprised of four basic components, dendrites, soma (cell), axon and synapses. 

Dendrites have extensions of the soma which are used as input channels. Inputs received through 

the synapses of other neurons are processed in the soma over time. The soma then outputs the 

processed value to other neurons through the axon and the synapses. The nature of the synaptic gap 

increases or decreases the activity of the neuron and the size determines the magnitude of the 

influence. When the neuron is sufficiently charged it releases the chemicals through the axon into 

the dendritic tree. The mixture of chemicals governs the strength of the signal passed from the axon 

to the dendrite of the new cell. Local interaction of the synapses occurs non-linearly. The frequency 

and arrival time of pulses affects neuron activity. Learning is achieved by chemically adjusting the 

strength of the synaptic connections between neurons. This can be explained mathematically as 

“weighting” factors which are used as inputs to the processing unit. The final state of the brain is a 
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set of chemical “weights”. Similarly, fully trained networks store “knowledge” in the form of 

weight matrices. 

 

Individual biological neurons have minimal computational ability. Remarkable computational 

properties arise when neurons are interconnected. Individually neurons are slow but when 

connected in parallel it gives the brain remarkable speed. Current research into the biological 

nervous system focuses on understanding how networks of biological neurons collectively learn and 

compute thereby resulting in certain phenomena and behaviours.  

 

2.3 Neural network modelling  

 
Artificial neural networks are classified as “black box” mathematical non-linear regression tools. 

They learn and identify correlative patterns between sets of input data and corresponding outputs. 

As in the human brain, learning starts with known data and eventually the brain is trained to adapt 

to changing environments but the basis is always what was learnt during the training period. As the 

saying goes “good judgment comes from experience, experience comes from bad judgment,” so the 

neural network needs “experience” to learn to make “good judgments”. This experience comes from 

training it with rich characteristic data of the system under consideration. Data from new input sets 

can then be used to predict corresponding outputs. The training of these neural networks is a form 

of non-linear regression and has developed into a tried and tested technique. For the neural network 

to be successfully implemented in any form, the data used has to be an accurate representation of 

the system under consideration. The model used for the system must be trained on data that reveals 

the full range of the expected parameters. The model will then be better equipped to deal with 

variations in the system outputs (Dunwoodie, 2001). 

 

Artificial neural networks exploit the concept of densely connected networks of simple processing 

units that are used as powerful tools for practical computations. Engineers and analysts use neural 

networks as compact ways of discovering complex formulae which have very little to do with 

simulating intelligence. The following factors have allowed neural network technology to be used 

as a useful tool for data analysis: technological advances and understandings in neural network 

algorithms, recognition of commercial potential, advances in desk-top computer speed and price 

reductions. 
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 Mathematical modelling of the neuron is based on neurophysiology of biological neurons. An 

artificial neural net is a network of artificial neurons (also referred to as “processing elements 

(PEs)”, “neurons” or “nodes”) having several input paths and one output path. The basic unit of 

neural network, the artificial neuron, simulates the four basic functions of natural neurons. The 

mathematics of a typical artificial neuron may be represented by Figure 2-2 (Haykin, 1994). 

Comparing this with Figure 2-1, pulses are converted to pulse rates or frequencies (xp). The effects 

of the synaptic gap on activation of the neuron are modelled by weights (wkp) which are multiplied 

by frequencies (xp). The “weighted” neurons are then summed up as shown in equation (2.1) to 

form the internal activity (uk) of the neuron. The result is processed by a transfer function to 

produce the outputs.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-2 Non-linear model of a neuron  

 

The output of the neuron may be calculated using a combination of equation (2.1) and (2.2) 

 
p

j
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        (2.1) 

 

where p is the number of inputs to the neuron. The output of the neuron is given by  
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uk is the total level of voltage excitation to a neuron, and yk is the intensity of the resulting output 

from the neuron (Werbos, 1990b) also referred to as the activation level of the neuron. A constant 

input called a “bias” is used to simulate thresholds and to simplify the mathematics. Weight zero is 

associated with the “bias” and the input zero is always equal to 1. 

 

The pre-requisites for a transfer function are that they should have bounded derivatives. Easily 

differentiated non-linear functions are usually used. The commonly used sigmoidal function is 

shown below in equation (2.3). The sigmoid function was used for the input and output layers in 

this study, and is illustrated in Figure 2-3. A similar sigmoidal function has been observed in the 

human nervous system (Morris et al, 1994). 
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The differentiated form of (2.3) is (2.4)  
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The first derivative of equation (2.3) is convenient when using the back propagation training 

algorithm. Outputs of the summing function are sent to a transfer function. This function turns the 

number into a real output via some algorithm. This algorithm takes the input and turns it into a zero 

or one, a minus one or a one, or some other number. In addition to the sigmoid function (Figure 2-

3), the transfer functions that are commonly supported in neural network modelling are: the 

hyperbolic tangent (2.5) and the bipolar sigmoidal (2.6) functions (Zhu et al, 1994). 
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Figure 2-3 Sigmoid function (Haykin, 1994) 

 

Transfer functions can also scale the output or control its value via threshold functions. When the 

slope parameter approaches infinity, the sigmoid function is reduced to a threshold function. On the 

other hand when a threshold function takes on the value 0 or 1, the sigmoid transfer function 

assumes a continuous range of values between zero and one. The result of the transfer function 

output from the processing element is used as an input into other processing elements or to an 

external connection which is dependent on the network architecture. ANNs are then constructed 

from these building blocks, i.e. the processing element or the artificial neuron. In a linear transfer 

function, a single neuron represents a linear equation. The weights in the neuron are equivalent to 

the parameters in the linear equation thus allowing standard linear regression techniques to be used 

to solve for the weights. In neural network literature the weights refer to coefficients and for 

observations they use terms. The functional relationship is dependent on the data being used to find 

the values for the weights. The advantage of this method is that the network is able to approximate 

any continuous function and the functional term is a reflection of real data (Warner et al, 1996). 

Conventional modelling involves hypothesising using some algebraic expression that describes the 

system thereafter using data to fit the model. In linear regression functions, the coefficients can be 

interpreted in relation to the problem. With neural networks it is difficult to interpret the network. 

Various functions that are used in conventional modelling and many others can be built into the 

summation and transfer functions of a neural network. Some networks need to work on problems 

with multiple responses. These applications are used widely in the robotic industry. The 

“intelligence” processes are used as inputs to a device which in turn results in the performance of an 

action or output. These inputs to the network which may come in bursts of 30 seconds, due to 

limitations of sensors would have to be smoothed. To achieve this, inputs are accepted, data 

summed and an output produced, e.g. applying a hyperbolic tangent as a transfer function. Output 
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values from this type of network are continuous, while other applications use summation of data 

with comparisons to a threshold that produces one of two possible outputs, a 0 and a 1. Some 

functions can integrate the input data over time to create time-independent networks. 

 

2.4 Artificial network operations 

 
The “art” of using neural networks is based on the interconnected nature of the neurons. In the 

human mind the information is processed in a dynamic, interactive and self-organizing way. 

Biological neural networks are made up of complex three-dimensional microscopic components 

that form infinite interconnections. For existing man-made networks there are always restrictions. 

With current technology, integrated circuits developed are made up of two-dimensional devices that 

have multiple layers which are interconnected. Silicon is used for circuit building and the physical 

constraints impacts on the software capabilities of neural networks (DACS, 1992), i.e. there is a 

limit to the computing time and the amount of data that can be processed by the software and 

hardware. Neural networks consist of simple clusters of primitive artificial neurons which form 

sections connecting them. The connection of these layers is based on learning the “art” of 

engineering networks find solutions. All artificial neural networks have a similar structure or 

topology as shown in Figure 2-4. 

  

Figure 2-4 Artificial neural network topology (DACS, 1992) 

 

A neural network consists of neurons that are connected in a structured manner like the brain. The 

functioning of a neural network is dependent on how the neurons are grouped into layers of 

elements, the connections between these layers, the summation and the transfer functions. Generally 

three layers form the basis of the network, i.e. the input, hidden and output layer. The input layer 

receives data from files or from electronic sensors in real-time applications. The information from 

the output layer is relayed to a secondary computer process or to other process such as mechanical 

 
Input layer 
 
 
Hidden layer (may be 
several hidden layers) 
 
 
Output layer 
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control systems. The hidden layer which is between the input and output layer can contain many 

hidden layers which may have various interconnected structures. The signals from the input layer 

are transmitted to the neurons in the hidden layer. When the neuron performs its function it 

transmits its output to all the neurons in the layer below it. This process creates a feed forward path 

to the output. The communication links between the neurons are essential for neural networks as 

they are the “glue” that keeps the neural network structure in place. They also influence the 

changing strength to an input. There is a summing mechanism addition by neurons, while the other 

is used to subtract. In some networks the neuron is used for inhibition within the same layer. This 

phenomenon is used in the output layer and is referred to as “lateral inhibition”. For example, in 

identifying a character “P” the probability is 0.85, but as “F” is 0.65, the choice of highest 

probability could be adopted while the others are inhibited. This is also referred to as competition. 

The architecture is based on the connections between neurons and determines the operation of the 

network. Some professional software development packages allow the user to prescribe the type of 

architecture. The range of parameters can be manipulated to excite or inhibit the connections 

between neurons (DACS, 1992). Another type is a feedback network, where the output layer routes 

one layer back to a previous layer. An example is shown in Figure 2-5. 

 

 
 
 

Figure 2-5 Simple network with feedback and competition (DACS, 1992) 

 

Feed forward neural networks are widely applied in the domain of classification, pattern 

recognition, approximation, forecasting and control. The most prominent models with this 

Feedback 

Feedback 

Outputs 
 

Competition  
(or inhibition) 
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architecture are multilayer perceptrons (MLP) shown in Figure 2-4, radial basis functions (RBFN) 

and competitive learning models employing “winner-take-all”. Extensions and variations of these 

models exist as: shortcut connections between non-adjacent layers in MLPs, variations in back 

propagation learning (usually seen as the learning method of choice for MLPs), variations in the 

basis function for RBFNs (usually seen as the weight setting method of choice for those networks), 

etc. (DACS, 1992). MLPs are the common name for layered feed forward neural networks. The 

neurons provide the outputs and there are “hidden units” which form one or more layers of 

processing units, which link the inputs to the outputs. Classic architectures have one or more layers 

of “hidden units” and total connectivity between the layers. A standard learning algorithm uses 

continuously varying transfer functions of which sigmoid transfer functions are most commonly 

adopted. MLPs are one of the most generally used applied learning models, e.g. used as general 

classifiers and universal function approximators. For a given problem, the network architecture 

(number of neurons and number of layers) proposed cannot guarantee that it can perform the task 

for which it was trained for. Also the objective which is to obtain an accurate generalisation of the 

new data based on the model is derived from the training data.  The network applied depends either 

on rough guesses as to which might be more appropriate, or an experimental comparison of several 

types used side by side. Even if the architecture adopted is able to solve the problem, there is no 

guarantee that it learnt the correct generalisation of the particular data set. Appropriate and optimal 

application of neural networks for given data sets can only come from adopting a more generalised 

view which opens up a larger number of variations (viz. larger than two or three) and permits a 

more dedicated use of network solutions (Venkataraman, 2004). 

 

2.5 Properties of artificial neural networks 

 
In order to justify the usefulness of ANNs in the medical field it is necessary to list the general 

characteristics of ANNs. The role of ANNs may be determined by comparing the characteristics to 

the needs of predicting survival of diseased patients. ANNs can be used to approximate any non-

linear mapping. Hornik et al (1989) showed that multi-layer back propagation networks with 

continuously differentiable activation functions are capable of modelling any continuous non-linear 

function to an arbitrary degree of accuracy. The degree of non-linearity differs greatly from one 

system to another; consequently there exists no generally applicable theory or methodology to 

design non-linear systems. Even though processing elements are connected in many ways, the most 

popular architecture is the MLP as shown in Figure 2-4. Most ANNs are conceptualised in the 

layered form (Figure 2-6.) which consists of 3 layers: the input, hidden layer and the output layer. 
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This graphical representation of a neural net could also be written as a formula involving many 

summations and transfer functions. This formula maps vectors received at the input layer (must be 

buffered) and transforms them into vectors in the output values. A MLP can synthesise any function 

to a desired level of accuracy if given a sufficient number of hidden layers and processing elements.  

 

 

 

 

 

 

 

 

 
 

Figure 2-6 Fully connected feed forward network  

 

Normally a single hidden layer is used but the use of more than one layer has been reported by 

various authors, e.g. Haykin (1994) and Hassoun (1995). By using an appropriate connectionist 

structure an arbitrary number of hidden layers can be represented by a single layer. The number of 

neurons in the input and output layers is fixed and based on the nature of the problem under 

investigation. There is no fixed “rule” for specifying the number of hidden neurons. Most authors 

will increase the number of hidden neurons until the error of the fully trained network remains 

constant even when more hidden neurons are added. As the number of hidden neurons increases the 

computational load is increased since there are more “weights” to be determined. One has to be 

conservative when specifying the number of hidden neurons, but too few hidden neurons may result 

in an incomplete mapping by the FFNN of the system under investigation. 

 

There are practical limitations to achieving a high level of accuracy since real world data is 

typically incomplete and noisy. There would have to be a trade-off between accuracy and the 

generalization ability of the formula. Like regression, solving for the parameters or weights requires 

data. This data must consist of a set of input records that have corresponding “target” output 

records. This relationship between the input and output data provides historical examples which the 

neural net training algorithm uses to determine and learn the mapping. This combination of PEs, 



15 
 

connections, weights and transfer functions form the network architecture. This architecture then 

represents a complex mathematical formula that has been derived from historical data. 

 

2.6 Artificial neural network architecture 

 
A vast array of ANNs has been developed for a variety of purposes. Although they differ in 

structure, implementation and principle of operation, they all share common features. ANNs are 

computing systems that consist of a number of interconnected signal or information processing 

units (artificial neurons) which have the following similar features (Venayagamoorthy, 1998). 

Hardware cannot be separated from the software in the structure because the processing of 

information and memory is distributed throughout the whole structure. ANNs are trained, rather 

than programmed to perform particular tasks. Complex interconnections of neurons imply that the 

state of one neuron affects the potential of the large number of neurons to which it is connected 

according to the weights (or strengths) of connection. Connection weights (synaptic strengths) are 

usually adaptive and can take place anywhere in the structure thus allowing for a distribution of 

memory in ANNs. Processing units (neurons) typically contain non-linear activation functions, i.e. 

the new state of a neuron is a non-linear function of the signals produced by the firing activity of the 

other neurons. Networks often use imprecise and unreliable elements but they are characterised by a 

high degree of robustness (insensitivity) to noisy input data and element failure by the use of a 

highly redundant distributed structure (DACS, 1992). ANNs demonstrate remarkable robustness 

since their functionality is not affected by parameter variations over a wide range. The manner in 

which the neurons of a neural network are interconnected is closely linked with the learning 

algorithm used to train the network. Learning rules used in the design of neural networks are 

therefore referred to as being structured (Haykin, 1994). The different architectures of ANNs can be 

divided into four large categories: single-layer feed forward networks, feed forward (multilayer) 

networks, feedback (recurrent) networks, and cellular (lattice) networks. 

 

2.6.1. Single-layer feed forward network 

 
A layered neural network is a network of neurons organized in layers. The simplest form is an input 

layer of source nodes that project onto an output layer of neurons (computation nodes) but not vice 

versa. This is purely a feed forward type. The case of four nodes in both the input and output layer 

is illustrated in Figure 2-7 (Haykin, 1994). 
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Figure 2-7 Feed forward network with a single layer of neurons 

 

This is called a single-layer network where “single layer” refers to the output layer of computation 

nodes (neurons). The input layer is not counted because no computation is performed in that layer. 

In a single-layer neural network the output pattern (vector) is associated with an input pattern 

(vector) and the results are stored in the network according to the adjustments made to the synaptic 

weights of the network (Haykin,1994). 

 

2.6.2 Multilayer feed forward networks 

 
“The second type of feed forward neural has one or more hidden layers whose computation nodes 

are called hidden neurons or units. These hidden neurons or units form one or more hidden layers. 

Even though the network acquires a global perspective, it is able to obtain high order statistics 

locally because of its extra synaptic connections and its neural interconnectivity” (Churchland, 

1992). “This becomes quite significant when the input layer is large. The source nodes in the input 

layer of the network transmits elements of the activation pattern (input vector), which constitute the 

input signals applied to the neurons (computation nodes) in the second layer (i.e. the first hidden 

layer).  The output signal from each layer is used as inputs to the next layer, this cascading effect 

prevails for the remainder of the network. The output signals of the neurons in the output (final) 
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layer of the network results from the input vectors first layer. The architectural graph of Figure 2-6 

illustrates the layout of a multilayer feed forward neural network for the case of a single hidden 

layer. The network architecture is referred to as a 10-4-2 network, i.e. it has 10 source nodes, 4 

hidden neurons and 2 output neurons. A feed forward network with p source codes, h1 neurons in 

the first hidden layer, h2 neurons in the second layer and q neurons in the output layer will be called 

a p-h1-h2-q network. The network in Figure 2-6 is said to be fully connected since every node in 

each layer is connected to every other node in the adjacent forward layer. If any of the links 

(synaptic connections) are removed from the network, then the network is partially connected as 

illustrated in Figure 2-8” (Haykin, 1994). In a partially connected network each neuron in the 

hidden layer is connected to a local (partial) set of source codes that surrounds it and is most likely 

to have some interaction with them. Similarly the output layer is connected to a local set of hidden 

neurons. The number of source codes, hidden neurons and output neurons are the same in both 

Figures 2-6 and Figure 2-8. When comparing the two networks the locally connected network of 

Figure 2-8 has displays a specialized structure. This characterises the classification of the activation 

pattern. To illustrate this, an activation pattern of a time series (i.e. the sequence of uniformly 

sampled values of time-varying signal) has been included in Figure 2-8. This shows a spatial pattern 

over the input layer. Each hidden neuron responds to local changes of the source signal. A feed 

forward network (FFNN) computes an output pattern in response to an input pattern. Once the 

network is trained the output response to a given input pattern will be the same regardless of any 

previous network activity. This network type with fixed connection weights are also known as 

offline trained ANNs. This implies that the FFNNs do not demonstrate any real dynamics and they 

do not display any stability problems. Offline trained FFNNs are simplified to a single 

instantaneous nonlinear mapping. The same applies to online FFNNs where the connection weights 

are altered to suit the intention. 
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Figure 2-8 Partially connected feed forward networks (Haykin, 1994) 

 

2.6.3. Feedback networks 

 
A recurrent neural network differs from a FFNN in that it has one feedback loop. Recurrent 

networks may comprise a single layer of neurons with each neuron transmitting its output signal 

back to the neurons in the input layer  as illustrated in Figure 2- 9. There is no self feedback loops in 

the network, i.e. no output from a neuron is fed back to its own input. The recurrent network in 

Figure 2-9 has no hidden neurons. Another type of recurrent network with hidden neurons is 

illustrated in Figure 2-10. Feedback is a result of both the hidden neurons as well as the output 

neurons. The learning ability of the network and its performance is largely affected by the feedback 

loop. The feedback loops require specific connectors composed of unit-delay elements(denoted by 

z-1) which result in a non-linear dynamical behaviour because of the non-linear nature of the 

neurons. Non-linear dynamics has an effect on the storage function of a recurrent network. 
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Figure 2-9 Recurrent network with no feedback loops and no hidden neurons (Haykin, 1994)        
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Figure 2-10 Recurrent network with neurons (Haykin, 1994) 

 
2.6.4 Cellular networks 

 
A cellular or lattice network consists of a one-dimensional, two-dimensional or higher-dimensional 

array of neurons with a corresponding set of source codes that supply the input signals to the array. 

The dimension of the array refers to the number of dimensions of space in which the graph lies. The 

architectural graph of Figure 2-11a depicts a one-dimensional lattice of 3 neurons fed from a layer 

of 3 source codes, Figure 2-11b depicts a two-dimensional lattice of 3-by-3 neurons fed from a 

layer of 3 source codes. Every neuron is connected to each other in the lattice. A lattice network is 

really a feed forward network with the output neurons arranged in rows and columns. In this form 

of local connectivity every cell is excited by its own signals and by signals flowing from its 

adjacent cells. Due to mutual interactions the processed signals propagate in time within the whole 

array of the lattice neural network. 
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Figure 2-11 (a) One-dimensional lattice of 3 neurons. (b) Two-dimensional lattice of 3-by-3 neurons (Haykin, 

1994) 

 

Generally an ANN is characterised not only by its architecture but also by the type of the neurons 

used, i.e. by the learning (offline or online training) procedure and by the form (principle) of 

operation. ANNs can operate either as deterministic (signals have deterministic nature) or stochastic 

systems (signals and parameters or connection weights are changed randomly from time to time 

with same probability by some random amount). The artificial models (paradigms) of real 

biological neural networks developed so far are only simple and rather crude approximations of real 

biological structures. It is not very clear whether it is essential to model exact biological structures 

or whether only desired properties are sought using models which do not fully correspond to a real 

biological nervous system. 

 

The following aspects have to be considered when selecting a neural network model: which 

network type can be applied to what kind of data, which network type does correspond to an 

algorithm traditionally known from statistics (in order to make use of research results in statistical 

literature), what do known neural network types have in common and what separates them, and 

what are the range and limits of the applicability of each network type. The characteristics of a 

general ANN that need to be specified are the network topology (structure), direction of information 

flow, computational characteristics of the individual processing elements or nodes and the training 

rule and methods used to adapt the network (DACS, 1992).   

 

2.7. Feed forward multilayer artificial neural networks  

 
This section describes the type of feed forward ANN which is of interest to the analyses in this 

thesis. The approach of treating the ANN as a “black box” technique, paying little attention to the 

mathematical details could lead to poor results. In this section, the architecture, notation and 

training of feed forward neural networks (FFNNs) will be discussed. FFNNs are a modern form of 

non-linear statistics. Many FFNNs can be equated with or directly compared to more classical 

methods like linear regression, logistic regression, nearest neighbour classification, etc. Neural 

networks must be analyzed in the same way classical statistical algorithms are analysed and 

compared (Dorffner, 1994). This type of network has an input layer, and one or more hidden layers 

of computation nodes. The input signal is transmitted through the network on a layer-by-layer basis. 
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Multilayer perceptrons have been applied successfully to solve a diverse range of problems by 

training them in a supervised manner with the use of the popular algorithm known as the error back 

propagation algorithm which is based on the error-correction learning rule. It is a generalisation of 

an equally popular adaptive filtering algorithm: the ubiquitous (ever-present or omnipresent) least-

mean-square algorithm for the special case of a single neuron model. A multilayer perceptron 

trained with the back propagation algorithm can be used generally for non-linear input-output 

mapping. If p denotes the number of input (source) nodes of a multilayer perceptron, and q denotes 

the number of neurons in the output layer of the network, then the input-output relationship of the 

network defines a mapping from a p-dimensional Euclidean input space to a q-dimensional 

Euclidean output space, which is infinitely continuously differentiable. The capability of the 

multilayer perceptron from the perspective of input-output mapping is determined by the minimum 

number of hidden layers that provides an approximate realization of any continuous mapping. “The 

universal approximation theorem is an existence theorem in the sense that it provides the 

mathematical justification for the approximation of an arbitrary continuous function as opposed to 

exact representation. The theorem states that a single hidden layer is sufficient for a multilayer 

perceptron to compute a uniform approximation to a given training set represented by the set of 

inputs x1, ……, xp and a desired (target) output f(x1, ……., xp). However the theorem does not say 

that a single layer is optimum in the sense of learning time on ease of implementation” (Haykin, 

1994). 

 

The error back-propagation process consists of two passes through the different layers of the 

network: a backward and a forward pass. An activity pattern (input) vector is applied to the sensory 

nodes of the network resulting in a signal moving through the network, layer by layer. The resulting 

outputs are the actual response of the network. The synaptic weights of the network are fixed during 

the forward pass. The error-correction rule adjusts this during the backward pass. The difference 

between the actual response of the network and the desired (target) response produces an error 

signal which is in turn propagated backward through the network against the direction of synaptic 

connections – hence the name “error back-propagation”. Adjustments are made to the synaptic 

weights so that the actual response of the network approaches the desired response. The error back-

propagation algorithm is also called the back propagation algorithm or simply, back-prop. 

Henceforth, it will be referred to as the back-propagation algorithm. The learning process associated 

with the algorithm is called back-propagation learning. This concept is illustrated in Figure 2-12. 
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Figure 2-12 Forward propagation of function signals and back-propagation of error signals 

 

A multilayer perceptron has the following three distinctive characteristics. The model of each 

neuron in the network includes a smooth (i.e. differentiable everywhere) non-linearity at the output 

end. The commonly used form of the non-linearity that satisfies this requirement is a sigmoidal non-

linearity defined by the logistic function: 

jzj e
zf

1
1)(       (2.7) 

where z is the net internal activity level of neuron j and f(zj) is the output of the neuron. In the 

absence of non-linearities the input-output relation of the network can be reduced to that of a single-

layer perceptron. One or more layers of hidden neurons are independent of the input or output of the 

network (Pineda, 1994). “These neurons in the hidden layer are tasked separately to learn complex 

patterns by looking for progressively more meaningful characteristics of the input patterns 

(vectors). The synapses of the network are responsible for the high degree of connectivity. If a 

change in connectivity occurs, the synaptic weights will correspondingly adjust.  The above features 

and its ability to learn from known data during the training procedure, makes the multilayer 

perceptron gain its computing power. The above features also contribute to the lack of 

understanding of the network behaviour. Firstly, the theoretical analysis of the non-linearity and the 

number of interconnections is quite complex. Secondly, the learning process cannot be “seen” 

because of the neurons being within the hidden layers. In the learning process the important features 

of the input pattern have to be represented by the hidden neurons. This continues to become more 

complex as the learning process uses a much larger space of possible functions and decisions have 

to be made on how the input pattern will be represented” (Hinton, 1989).  
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“The development of the back-propagation algorithm represents a “landmark” in neural networks in 

that it provides a computationally efficient method for the training of multilayer perceptrons. It 

cannot be claimed that the back-propagation algorithm can provide solutions for all solvable 

problems, but it is fair to say that it has put to rest the pessimism expressed about learning in 

multilayer machines that may have been inferred” Minsky et al (1969).   

 

2.8 Learning process or training 

 

A neural network is able to learn from a known environment and through a series of learning steps 

is able to improve its performance. There is a measured variable which is used to compare new data 

continuously in order to improve performance. Learning comprises the use of iterative methods for 

adjustments which are applied to synaptic weights and thresholds. At the end of each iteration, the 

network becomes more knowledgeable. Haykin (1994) defines learning in the context of neural 

networks as follows: “learning is a process by which free parameters of a neural network are 

adapted through a continuing process of stimulation by the environment in which the network is 

embedded”. Changes in parameter influence the type of learning.  

 

The learning process is a sequential event that starts with stimulation by the environment which 

results in changes in the neural network and this leads to a new response by the neural network 

because of the changes that have occurred in its internal structure. A learning algorithm uses a set of 

well-defined rules for the solution of a learning problem. There is no specific learning algorithm for 

building neural networks but a “kit of tools” are available in the form of learning algorithms, each 

of which has its own set of guidelines. They differ from each other in the way in which the synaptic 

weight is formulated. Also important is the manner in which a neural network relates to its 

environment. A learning paradigm refers to the model of the environment in which the neural 

network operates. There are three basic classes of learning paradigms: supervised learning, 

reinforcement learning and self-organized learning. Supervised learning is performed under the 

supervision of an external “teacher”. The teacher has information and knowledge of the 

environment that is represented by a set of input-output examples. “If both the teacher and the 

neural network are exposed to a training vector by virtue of the built-in knowledge of the 

environment, the teacher is able to provide the neural network with a desired or target response” 

(Hassoun, 1995). “Reinforcement learning uses a “critic” to advance through a trial and error 

process. Unsupervised learning is performed in a self-organised manner with no teacher or critic 

required for instructing synaptic adjustments in the network. 
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The environment is unknown to the ANN of interest. Network parameters are adjusted under the 

influence of the training vector and the error signal. The error signal is defined as the difference 

between the actual response of the network and the desired response” (Haykin, 1994). This 

adjustment is iteratively done step-by-step so that the neural network will ultimately “emulate” the 

teacher. The emulation is statistically presumed to be an optimum. The teacher transfers the 

knowledge of the environment to the ANN as best it can. When this condition is reached, the 

teacher can be dispensed with thereafter letting the ANN deal with the environment completely by 

itself, i.e. in an unsupervised fashion. This form of unsupervised learning is a form of error-

correction learning which behaves like a closed feedback system with the unknown environment 

being external to the loop. Any function performed under the teacher‟s supervision is highlighted as 

a point on the error surface. The operating point has to move down successively towards a 

minimum point of the error surface as it improves performance. The minimum point may be local 

or global” (Haykin, 1994). A supervised learning system uses the gradient of the error surface. A 

vector that points in the direction of steepest descent is represented by the gradient of the error 

surface. This system uses an instantaneous value of the gradient vector, with the example indices 

being time. Examples of supervised learning algorithms include the least mean square (LMS) 

algorithm and the generalization known as the back propagation algorithm (BPA). The LMS 

algorithm uses a single neuron, whereas the BP algorithm uses a multi-layered interconnection of 

neurons. In the BPA the error terms in the algorithm are back-propagated through the network on a 

layer-by-layer basis. The BPA is more powerful in application than the LMS algorithm. Indeed, the 

BPA includes the LMS algorithm as a special case. A disadvantage of supervised learning is that 

without a teacher, a neural network cannot find solutions if the examples from the problem were not 

used to train the network. The BPA uses supervised learning and is currently the most commonly 

used algorithm for the design of multi-layer feed forward networks. 

 

There are two distinct phases to the operation of back propagation learning (BPL): the forward 

phase and the backward phase. Signals are transmitted from the input layer through the network 

layer-by-layer, resulting in some response at the output of the network. The difference between the 

actual response and the desired target response is compared; error signals are then generated and 

accordingly propagated backwards through the network, hence the name “error back propagation”. 

The aim of the backward phase is to allow the free parameters of the network to be adjusted so as to 

minimize the sum of squared errors. The synaptic weights (adjusted using the error correction rule) 

are adjusted to make the actual response of the network move closer to the desired response. The 



26 
 

BPA has a stochastic tendency to zigzag its way about the true direction to a minimum on the error 

surface. The learning algorithm is called the back propagation learning. The „back propagation‟ 

appears to have evolved after 1985. The basic idea was first described by Werbos (1974a) in his 

PhD thesis in the context of generated networks with neural networks representing a special case. 

 

Back propagation learning (BPL) has been applied successfully to solve some difficult problems 

such as speech recognition from text, handwritten digit recognition and adaptive control. 

Unfortunately, BPL may be limited by its poor scaling behaviour. To understand this limitation, 

consider the example of a multi-layered feed-forward network consisting of L computation layers. 

The effect of the synaptic weight in the first layer on the output depends on its interactions with 

approximately fi
L other synaptic weights, where Fi is the fan-in, defined as the average number of 

incoming links of neurons in the network. Fi or L, or both will increase as the size of the network 

increases. The network becomes computationally intensive and the time taken to train the network 

grows exponentially resulting in a learning process becoming unacceptably slow (Haykin, 1994). 

 

A learning procedure is governed by the learning tasks which a neural network is required to 

perform. The following has been identified as learning tasks that befit a neural network in one form 

or another: 

 Approximation: A non-linear input-output mapping can be described by the functional 

relationship d = f(x) where the vector x is the input and the scalar d is the output. The 

function f(·) is assumed to be unknown. The aim is to design a neural network that 

approximates the nonlinear function f(·), given a set of examples denoted by the input-

output pairs (x1, d1), (x2, d2), (xN,dN). This approximation is an example of supervised 

learning with xi serving as the input vector and di serving the role of desired response, 

where i = 1, 2, 3… N. 

 Association: The two forms are auto-association and hetero-association. In auto-association 

a set of patterns (vectors) stored by the neural network has to be repeatedly presented to the 

network. Subsequently, the network is presented with a partial description or distorted 

(noisy) version of the original pattern stored in it, and the task is to retrieve (recall) that 

particular pattern. Hetero-association differs from auto-association in that an arbitrary set of 

input patterns (vectors) are paired with another arbitrary set of output patterns (vectors). 

Auto-association involves the use of unsupervised learning, while in hetero-association 

supervised learning occurs. 
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 Pattern classification: In this task there are a fixed number of categories into which 

activations are to be classified. During the training session the set of input patterns are 

categorized according to its pattern. When a new pattern is presented to the network, it is an 

unseen pattern, but it belongs to the same population of patterns used to train the network. 

The task for the neural network is to classify the new pattern correctly. Pattern 

classification as described here is a supervised learning task. Pattern classification allows 

neural networks to construct nonlinear decision boundaries between the different classes in 

a nonparametric fashion, thereby offering a practical method for solving highly complex 

pattern classification problems. 

 Prediction: Predicting is one of the most basic learning tasks. Given a set of M past samples 

x(n-1), x(n-2)… x(n-M) which are uniformly spaced in time, the requirement is to predict 

the present sample x(n). Prediction may be solved using error-correction learning in an 

unsupervised manner in the sense that the training examples are drawn directly from the 

time series itself. Specifically, the sample x(n) serves the purpose of the desired response; 

hence, given the corresponding prediction x̂ (n) produced by the network on the basis of the 

previous samples x(n-1), x(n-2),…., x(n-M), the prediction error can be computed by the 

term Mnnnxnxne ,...,1ˆ)()(    and the error-correction learning can be used to 

modify the free parameters of the network. Prediction can be viewed as a form of model 

building where the smaller the prediction error in a statistical sense, the better the network 

will serve as a physical model of the underlying stochastic process responsible for the 

generation of the time series. 

 Control: Process control is a learning task of a neural network that is similar to the actions 

performed by the human brain. The human brain is a computer (i.e. information processor), 

and the outputs of this whole system are actions. In the context of control, the brain is living 

proof that a generalized controller can take full advantage of parallel distributed hardware 

that can handle many thousands of actuators (muscle fibres) in parallel, non-linearity and 

noise, and that can optimize over a long-range planning horizon. 

 Beam-forming: Beam-forming is a form of spatial filtering, the purpose of which is to 

locate a target signal embedded in a background of additive interference. The adaptive 

beam-forming task operates in an unsupervised manner to “clean-up” background noise.  

 

The learning task used in this study is prediction where the aim is to minimise the prediction error. 

As in the human brain, a neural network needs to be trained before it can be used. Training is 

achieved via the back propagation algorithm. The back propagation algorithm suffers from a slow 
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convergence property. The derivative of the error surface with respect to the weight is small in 

magnitude therefore the adjustment applied to the weight is small. A large number of iterations of 

the algorithm have to be computed to get a significant reduction in the error performance of the 

network. Also, the direction of the negative gradient vector (i.e. the negative derivative of the cost 

function with respect to the vector of weights) may point away from the minimum of the error 

surface, hence the adjustments applied to the weights may induce the algorithm to move in the 

wrong direction. Any procedures introduced to increase the rate of convergence must maintain the 

locality constraint that is an inherent characteristic of back-propagation learning.  

 

2.9 Mathematical derivation of the back propagation algorithm  

 
The derivation of the back-propagation algorithm is rather involved; therefore to ease the 

mathematical burden involved in this derivation, a summary of the notation is presented: 

 “The indices i, j and k refer to different neurons in the network; with signals propagating 

through the network from left to right. Neuron j lies in a layer to the right of neuron i, and 

neuron k lies in a layer to the right of neuron j when neuron j is a hidden unit. 

 The iteration n refers to the nth training pattern (example) presented to the network. 

 The symbol ε(n) refers to the instantaneous sum of error squares at iteration n. The average 

of ε(n) over all values of n (i.e. the entire training set) yields the average squared error εav. 

 The symbol ej(n) refers to the error signal at the output of neuron j for iteration n. 

 The symbol dj(n) refers to the desired response for neuron j and is used to compute ej(n). 

 The symbol yi(n) refers to the signal appearing at the output of neuron j at iteration n. 

 The symbol wji(n) denotes the synaptic weight connecting the output of neuron i to the input 

of neuron j at iteration n. The correction applied to this weight at iteration n is denoted by 

Δwji(n). 

 The net internal activity level of neuron j at iteration n is denoted by vj(n); it constitutes the 

signal applied to the non-linearity associated with neuron j. 

 The activation function describing the input-output functional relationship of the non-

linearity associated with neuron j is denoted by φj(·). 

 The threshold applied to neuron j is denoted by θj; its effect is represented by a synapse of 

weight wjo = θj connected to a fixed input equal to –1. 

 The ith element of the input vector (pattern) is denoted by xi(n). 

 The kth element of the overall output vector(pattern) is denoted by ok(n) 

 The learning rate parameter is denoted by η” (Haykin, 1994 and Hassoun, 1995). 
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A perceptron (neuron) is an information processing unit that is fundamental to the operation of a 

neural network. The perceptron is the building block in the neural net and has a number of inputs, 

x1, x2, …, xp, and one output yk, where k indexes the associated perceptron. A basic element of a 

neuron model is a set of synapses or connecting links, each of which is characterized by a weight or 

strength of its own. Specifically a signal xj at the input of synapse j connected to a neuron k is 

multiplied by the synaptic weight. In mathematical terms, a neuron k can be described by the 

following pair of equations: 
p

j
jkjk xwu

1

        (2.8) 

and 

kkk uy        (2.9) 

 

where wk1, wk2, wkp are the synaptic weights of the neuron; uk is the linear combiner output; θk is the 

threshold; φ(·) is the activation function; and yk is the output signal of the neuron. The use of 

threshold θk has the effect of applying an affine transformation to the output uk of the linear 

combiner of Figure 2.2 as shown by 

kkk uv         (2.10) 

The threshold θk is an external parameter of artificial neuron k. From 
p

j
jkjk xwv

0

        (2.11) 

and 

kk vy         (2.12) 

a new synapse has been added to equation (2.11), whose input is 

10x         (2.13) 

and whose weight is 

kkw 0         (2.14) 

The model of neuron k can now be reformulated as in Figure 2-13 (Haykin, 1994). The effect of the 

threshold is represented by doing two things: (1) adding a new input signal fixed at –1, and (2) 

adding a new synaptic weight equal to the threshold θk. Alternately x0 = +1 and weight wk0 = bk 

accounts for the bias bk. Both models are different in appearance, but they are mathematically 
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equivalent. The back propagation algorithm with supervised learning technique is used in this 

derivation. (David Black, 2005). 

 

Consider one neuron j, where dj(n) denotes some desired response at time n. The corresponding 

value of the actual response of this neuron is denoted by yj(n) (David Black, 2005). The response 

yj(n) is produced by a stimulus (vector) x(n) applied to the input of the network in which j is buried. 

The input vector x(n) and the desired response dj(n) for neuron j constitute a particular example 

presented to the network at time n. The actual response yj(n) of neuron j is different from the desired 

response dj(n). The error signal is therefore defined as the difference between the target response 

dj(n) and the actual response yj(n) as defined by 

)()()( nyndne jjj        (2.15) 
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Figure 2-13 Non-linear model of a neuron with bias 

 

The ultimate purpose of the error-correction learning is to minimize a cost function based on the 

error signal ej(n). The instantaneous value of the squared error for neuron j is defined as ½ ej
2 (n). 

Correspondingly, the instantaneous value ε(n) of the sum of squared errors is obtained by summing 

½ ej
2 (n) over all neurons in the output layer. These are the only “visible” neurons for which error 

signals can be calculated. The instantaneous sum of squared errors of the network is thus written as 

)(
2
1)( 2 nen

j
j        (2.16) 

Consider Figure 2-14 (Haykin, 1994) which depicts neuron j being fed by a set of function signals 

produced by a layer of neurons to its left. The net internal activity level vj(n) produced at the input 

of the non-linearity associated with neuron j is therefore 
p

i
ijij nynwnv

0
)()()(       (2.17) 



32 
 

where p is the total number of inputs (excluding the threshold) applied to neuron j. The synaptic 

weight wj0 (corresponding to the fixed input y0 = -1) equals the threshold θj applied to neuron j. 

Hence the function signal yj(n) appearing at the output of neuron j at iteration n is 

)()( nvny jj        (2.18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-14 Signal flow graph highlighting the details of neuron j 

 

The back propagation algorithm applies a correction Δwji(n) to the synaptic weight wji(n), which is 

proportional to the instantaneous gradient  
)(

)(
nw

n

ji

. Applying the chain rule, the gradient becomes 
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    (2.19) 

Differentiating both sides of equation (2.16) with respect to ej(n) 

ne
ne
n

j
j

       (2.20) 

Differentiating both sides of equation (2.17) with respect to yj(n) 

1
ny
ne

j

j         (2.21) 

Next differentiating equation (2.18) with respect to vj(n) 
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where the use of prime (on the right hand side) signifies differentiation with respect to the 

argument. Finally differentiating equation (2.17) with respect to wji(n) yields 

ny
nw
nv

i
ji

j        (2.23) 

Hence, the use of equations (2.20) to (2.23) in (2.19) yields 

nynvne
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n
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     (2.24) 

 

The correction Δwji(n) applied to wji(n) is defined by the delta rule 

)(
)()(
nw

nnw
ji

ji        (2.25) 

where η is a constant that determines the rate of learning it is called the learning rate parameter of 

the back propagation algorithm. The use of the minus sign accounts for the gradient descent in 

weight space. 

 

The above algorithm is modified to accommodate a new cost function E(n) which is mathematically 

similar to ε(n), but the parameter space pertaining to the new cost function E(n) is assumed to 

consist of different learning rates. The cost function is defined as the instantaneous value of the sum 

of squared errors, 
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Let ηji(n) denote the learning rate parameter assigned to synaptic weight wji(n) at iteration number n. 

Applying the chain rule to E(n), 
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     (2.27) 

Substituting equation (2.25) into (2.17)  

i ji
jijiij nw
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)1()()1()()(    (2.28) 

Hence differentiating equation (2.28) with respect to ηji(n) and rewriting equation (2.18)  



34 
 

1
)1)(

)(
)(

nw
nny

n
nv

ji
i

ji

j       (2.29) 

nv
nv
ny

jj
j

j

)(
)(

       (2.30) 

The partial derivative 
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 is evaluated. For the case when the neuron j lies in the output layer 

of the network, the desired response dj(n) is supplied externally. Differentiating equation (2.26) with 

respect to yj(n) results in  
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where ej(n) is the error signal. Thus, using the partial derivatives of equations (2.29), (2.30) and 

(2.31) in (2.27), and then rearranging terms  
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The partial derivative 
1

1
nw

n

ji

 on the right hand side of equation (2.32) refers to the cost 

function ε(n-1) describing the error surface at time n-1; the differentiation is with respect to synaptic 

weight wji(n-1). From equation (2.24) the factor nynvne jjjj  equals the partial 

derivative 
nw

n

ji

. Using this relation in equation (2.32), 
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 is redefined simply as  
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Equation (2.33) defines the derivative of the error surface with respect to the learning-rate 

parameter ηji(n), assuming that neuron j lies in the output layer of the network. It can be shown that 

this same formula also applies to a neuron j that lies in a hidden layer of the network. This implies 

that equation (2.33) applies to all neurons in the network. A learning-rate update rule can now be 

formulated to perform steepest descent on the error surface over the parameter space, where the 

parameter of interest is the learning-rate parameter ηji(n) as 
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where  is a positive constant, called the control step-size parameter for the learning-rate 

adaptation procedure. The partial derivatives 
1

1
nw

n

ji

 and 
nw

n

ji

 refer to the derivative 

(negative gradient) of the error surface with respect to the synaptic weight wji(n) (connecting neuron 

i to neuron j), evaluated at iterations n-1 and n, respectively. There are two important observations 

regarding the learning rate. The first is when the derivative of the error surface with respect to the 

weight wji has the same algebraic sign on two consecutive iterations and the adjustment Δηji (n+1) 

has a positive value. The adaptation procedure therefore increases the learning-rate parameter for 

the weight wji. Correspondingly, the back propagation learning along the direction will be fast. The 

second is when the derivative of the error surface with respect to the weight wji alternates on two 

consecutive iterations, the adjustment Δηji (n+1) assumes a negative value. The adaptation 

procedure decreases the learning-rate parameter for the weight wji and correspondingly, the back 

propagation learning along that direction will be slow. The back propagation algorithm gives an 

“approximation” to the trajectory in weight space computed by the method of steepest descent. For 

small values of the learning-rate parameter η, there is a small change to the synaptic weights in the 

network for each iteration as it proceeds to the next. This will result in a smooth trajectory through 

space. For larger learning-rates the large changes in the synaptic weights lead to an unstable 

network (i.e. oscillatory). The learning rate can be increased without causing instability, by 

modifying the delta rule. A momentum term can be added to control the feedback loop around 

Δwji(n). A value between 0 and 1 is normally chosen. “It can also be viewed as a way of increasing 

the effective learning rate in almost-flat regions of the error surface while maintaining a specified 

learning rate in regions of high fluctuations. One complete representation of the entire training set 

during the learning process is called an epoch. The learning process proceeds on an epoch-by-epoch 

basis until the synaptic weights and the threshold levels of the network stabilize and the average 

squared error over the entire training set converges to some minimum value” (Hassoun, 1995). The 

back propagation algorithm cannot, in general be shown to converge, nor are there well-defined 

criteria for determining the stopping point. A few considerations can be taken into account to 

terminate the weight adjustments. The following three criteria can be used to determine the 

convergence of the back propagation learning (Haykin, 1994). The Euclidean norm of the gradient 

vector reaches a sufficiently small gradient threshold, the absolute rate of change in the average 

squared error per epoch is sufficiently small or the algorithm is terminated at the weight vector wfinal 

when ||g(wfinal)|| ≤ ε, where ε is a sufficiently small gradient threshold, or εav(wfinal) ≤ τ, where τ is a 

sufficiently small error energy threshold. The architecture for the back propagation learning for both 



36 
 

the feed forward and backward phases of the computations involved in the learning process is 

presented in Figure 2-15. 

 
 

 
Figure 2-15 Architectural graph of a three-layered feed forward network and associated sensitivity network 

(back propagating error signals) (Haykin, 1994) 

 

The multilayer network that is shown in the top part of Figure 2-15 accounts for the forward phase. 

The notations used in Figure 2-15 are as follows: 

w(l) = synaptic weight vector of a neuron in layer l 

θ(l) = threshold of a neuron in layer l 

v(l) = vector of net internal activity levels of neurons in layer l 

y(l) = vector of function signals of neurons in layer l 

δ(l) = vector of local gradients of neurons in layer l 

e = error vector represented by e1, e2, …, en as elements 
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The layer index l extends form the input layer (l = 0) to the output layer (l = L). L = 3 and is referred 

to as the depth of the network. The bottom part of the figure accounts for the backward phase, 

which is referred to as the sensitivity network for computing the local gradients in the back 

propagation algorithm. The pattern-by-pattern method of updating the weights is the preferred 

method for the on-line implementation of the back propagation algorithm. For this mode of 

operation, the algorithm cycles through the training data {[x(n),d(n)]; n = 1, 2, …, N} as follows: 

 “Initialisation: Starting with a reasonable network configuration, all the synaptic, weights 

and threshold levels of the network are set to small random numbers that are uniformly 

distributed. 

 Presentations of training examples: The network is presented with an epoch of training 

examples. For each example in the set the following two sequences of forward and 

backward computations are performed. 

 Forward computation: A training example in the epoch denoted by [x(n), d(n)] with  an 

input vector x(n) is applied to the input layer of sensory nodes, and the desired response 

vector d(n) presented to the output layer of computation nodes. The activation potentials 

and function signals of the network is computed by proceeding forward through the 

network, layer by layer. The net internal activity level vj
(l) for neuron j in layer l is 
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where yi
(l-1)(n) is the function signal of neuron i in the previous layer l-1 at iteration n and 

wji
(l)(n) is the synaptic weight of neuron j in layer l that is fed from neuron i in layer l-1. For 

i = 0, y0
(l-1)(n) = -1 and wj0

(l)(n) = θj
(l)(n), where θj

(l)(n) is the threshold applied to neuron j in 

layer l” (Haykin, 1994). A logistic function is used for the sigmoidal nonlinearity, where 

the function (output) signal of neuron j in layer l is  
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If neuron j is in the hidden layer (i.e., l = 1) then the following is set 

nxny jj
0      (2.37) 

where xj(n) is the jth element of the output vector x(n). If neuron j is in the output layer (i.e., 

l = L), then the following is set 

nony j
L

j       (2.38) 

The error signal is computed 
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nondne jjj       (2.39) 

where dj(n) is the jth element of the desired response vector d(n). 

 Backward computation: The δs (i.e. the local gradients) of the network are computed by 

proceeding backward, layer by layer. For neuron j  in output layer L 
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 For neuron j in hidden layer l 
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The synaptic weights of the network are adjusted in layer l according to the generalized 

delta rule: 
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where η is the learning rate parameter and α is the momentum constant. 

 “Iteration: The computation is iterated by presenting new epochs of training examples to 

the network until the free parameters of the network stabilize their values and the average 

squared εav computed over the entire training set is at a minimum or acceptably small. The 

order of presentation of training examples should be randomised from epoch to epoch. The 

learning rate parameter and the momentum are adjusted (and usually decreased) as the 

number of training iterations increase (Haykin, 1994). 

 

2.10 Generalization and overtraining 

 
In back propagation learning, the synaptic weights are computed by loading (encoding) as many of 

the training examples as possible into the network. The goal is to get the network to generalize, i.e. 

when the input-output relationship computed by the network is correct (or nearly so) for the 

input/output patterns (test data) never used in creating or training the network. The term 

“generalisation” is adopted from psychology. In this model it is assumed that the test data are drawn 

from the same population used to generate the training data. The learning process, i.e. the training 

of the network may be viewed as a “curve fitting” problem. The network itself will be measured 

simply as a nonlinear input-output mapping. Generalisation then becomes the result of a good 

nonlinear interpolation of the input data. As the network is trained it uses interpolation because 

multilayer perceptrons with continuous activation functions generate output functions that are also 

continuous.  
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Figure 2-16 (a) Properly fitted data (good generalization) (b) Over-fitted data (poor generalization (Haykin, 

1994) 

 

Figure 2-16 illustrates how generalization may occur in a hypothetical network. The curve 

represents the nonlinear mapping of points learnt during the “training period.” The points marked 

generalization are the result of the network interpolation. A neural network designed to generalise 

well will adapt accordingly even if the data is slightly different from the examples as illustrated in 

Figure 2-16 (a). When, however, a neural network learns too many specific input-output relations 

(i.e. it is over-trained), the network may memorise training data and therefore be less able to 

generalise between similar input-output patterns. Normally more than the required hidden neurons 

are loaded into a multilayer perceptron, resulting in unintended curves being stored in the synaptic 

weights of the network. This poor generalization due to memorisation is depicted in Figure 2-16 (b). 

“Memorisation” is essentially a “look-up table” which implies that the neural network is not 

“smooth,” i.e. the input-output mapping computes a non-realistic view of the population being 

studied. There is the danger that the NN model will not learn the „general‟ behaviour of the system. 
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It may learn to mimic only the actual data set that is used for training. Instead of creating a model to 

predict outputs for new sets of inputs it learns to associate actual outputs with a specific set of input 

data (Haykin, 1994). When a new data set is presented to the model it incorrectly tries to apply the 

same associations from the training set resulting in inaccurate predictions for the outputs. This may 

occur if the data for the training does not have many records or if there is very little variation in the 

variables over the training period. This may also occur if there are too many hidden nodes in the 

proposed NN model. The model is created from the training set of data where too many weights are 

calculated to approximate the system and the „fit‟ of the model ends up being too tight.  

 

Overtraining can be overcome using commercially available software which has built-in functions. 

Guidelines are presented for sensible predictions on the number of hidden nodes to use and the 

number of training iterations to perform. Overtraining can be monitored by observing the model 

error (MSE).  

 

2.11 Size of training set 

 

The size and efficiency of the training set, the architecture of the network, and the physical 

complexity of the problem influences the generalisation of a network. The latter cannot be 

controlled but the first two factors can be optimised for good generalisation by looking at two 

different perspectives. The architecture of the network (to be set by the system constraints) is fixed 

and the determination of the size of the training set is considered or the training size is set, and the 

best architecture configuration is sought to achieve good generalisation of the system. 

 

Consider a pair {x,d} with the input vector xЄRp, and the desired output dЄ[-1,1]. The network will 

act as a binary classifier. An epoch is defined as a sequence of examples drawn independently at 

random from some distribution D. Let f be a function from the space Rp into [-1,1], with d = f(x).  

An error of the function f, with respect to the distribution D, is defined as the probability that the 

output y ≠ d for a pair (x,d) picked at random. Let M denote the total number of hidden computation 

nodes. Let W be the total number of synaptic weights in the network. Let N denote the number of 

random samples used to train the network. Let έ denote the fraction of errors permitted on test. The 

network will almost certainly provide generalisation, provided that the following conditions are 

met. The fraction of errors made on the training set is less than έ/2 and the number of examples, N, 

used in training is 
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MWN 32ln32
       (2.43) 

 

Equation (2.43) provides a distribution free, worst case formula for estimating the training set size 

for a single layer network for good generalization. The term “worst case” is used because in 

practice there can be a huge numerical gap between the actual size of the training set required and 

that predicted by the criterion of equation (2.43).  If the logarithmic factor is ignored, the number of 

training examples is, to a first order approximation, directly proportional to the number of weights 

in the network and inversely proportional to the accuracy parameter έ. In practice all that is needed 

for a good generalization is to satisfy the condition 

WN         (2.44) 

Thus, for an error of 10 %, the number of training examples should be approximately 10 times the 

synaptic weights in the network (Haykin, 1994). 

 

2.12 Cross validation 

 

The essence of back propagation learning is to encode an input-output relation represented by a set 

of examples {x,d} with a multilayer perceptron well trained in the sense that it learns enough about 

the past to generalise about the future. The MLP selection problem chooses from within a set of 

candidate model structures (parameterisations), the “best” one according to a certain criterion. A 

standard tool in statistics, known as cross validation, provides a guiding principle for the selection 

and analysis of the data. Firstly, the data set is randomly partitioned into a training set and a test set. 

The training set is further portioned into two subsets (Haykin, 1994), i.e. a subset used for the 

estimation of the model (i.e. training the network) and a subset used for evaluation of the 

performance of the model (i.e. the validation); the validation is typically 10 to 20 percent of the 

training set. The motivation in using this method is to validate the model on a data set different 

from the one used for the training or parameter estimation. The training set is used to evaluate the 

performance of a range of potential model structures, thereby choose the “best” fit. The model 

which displays the most efficient performing parameter values is then trained on the full training 

set. The generalization performance of the resulting network is measured on the test data. The 

training data set is partitioned into training and test subsets, in which case “overtraining” will show 

up as poorer performance on the validation set. Certain criteria have to be met to reach the stopping 

point when training of a network. The error performance can be used to determine the size of the 
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data set used in the training. Good generalisation can be achieved even if the neural network is 

designed to have too many parameters. This is possible if the training set is stopped at the point 

when the number of epochs is equal to the minimum point of the error performance curve on cross 

validation. The size of the learning rate parameter of a multilayer perceptron can be adjusted by the 

use of cross validation techniques. When the classification performance of the network on the cross 

validation is not reduced (typically, 0.5 %), the learning rate parameter has to be adjusted. 

Normally, a factor of 2 is used for the parameter reduction. The learning rate parameter needs to be 

adjusted until there is no change in classification performance on the cross validation set. The 

training of the network is stopped when that point is reached (Ripley, 1998). Some commercially 

available software like PREDICT, used in this study, have built-in cross validation techniques. 

 

2.13. Limitations of the back propagation algorithm 

 

The back propagation algorithm has emerged as the most popular supervised training of MLPs. It 

has two distinct properties: i.e. it is simple to compute locally, and it performs stochastic gradient 

descent in weight space (viz. pattern-by-pattern updating of the synaptic weights). Computations 

performed by a neuron are influenced solely by those neurons that are in physical contact with it. It 

is a first-order approximation of the steepest descent technique because it uses the gradient of the 

instantaneous error surface in weight space. The algorithm adjusts until it gets the true direction to a 

minimum on the error surface. This technique accounts for the slow convergence for the following 

reasons. The error surface is fairly flat along a weight dimension, resulting in a derivative of the 

error surface with respect to that weight being small in magnitude. Multiple iterations of the 

algorithm are essential to ensure a small change in the error performance. Alternatively, in a curved 

weight dimension, the derivative of the error surface with respect to that weight is large in 

magnitude. The adjustment applied to this weight is large and may cause the algorithm to overshoot 

the minimum of the error surface. The direction of the negative gradient (i.e. the negative derivative 

of the cost function with respect to the vector of weights) may point away from the minimum of the 

error surface; hence applied adjustments to the weights will induce the algorithm to move in the 

wrong direction. The above phenomenon causes the rate of convergence in back propagation 

learning to be relatively slow, thereby making it computationally expensive. The local convergence 

rates of the back propagation algorithm are linear, which is justified on the grounds that it uses the 

Jacobian matrix of the objective function (matrix of first order partial derivatives) which is almost 

rank deficient. This leads to local minima (i.e. isolated valleys) in addition to global minima. Since 
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back propagation is a hill-climbing technique, and may get trapped in a local minimum. An 

infinitesimal change in synaptic weights significantly increases the cost function. 

 

The following “guidelines” should be considered for accelerating the convergence of back 

propagation learning through learning rate adaptation. “Every adjustable network parameter of the 

cost function should have its own individual learning rate parameter and each learning parameter 

should be allowed to vary from one iteration to the next. When the derivative of the cost function 

with respect to a synaptic weight has the same algebraic sign for several consecutive iterations of 

the algorithm, the learning-rate parameter for that particular weight should be increased. When the 

algebraic sign of the derivative cost function with respect to a particular synaptic weight alternates 

for several consecutive iterations of the algorithm, the learning-rate parameter for that weight 

should be decreased” Zhu et al (1994). Zhu et al (1994) suggest increasing the hidden neurons, 

lowering the learning rate and starting the training with different sets of random weights. To 

improve the performance, the learning rate must be as large as possible without leading to 

oscillations. However, the choice of learning rate may be limited by the nature of the error surface. 

If the error surface contains high frequency variations the learning rate must be reduced to prevent 

instability. Rumelhart et al (1986) recognised this predicament and suggested the use of a 

momentum term in the convergence term which is the same as equation (2.42).  The momentum 

term effectively filters out the high frequency variations in the error surface. One of the less 

significant problems is that of symmetry breaking. Rumelhart et al (1986) noted that if all the 

weights start out at the same value and if unequal weights are necessary to obtain a solution, the 

network will never learn as it is used in proportion to the significance of the weights. Subsequently, 

identical error signals are propagated back, resulting in the updated set of weights having equal 

value. They concluded that the system is in fact starting out from a local minimum and will 

ultimately find a second local minimum. Also, that by starting the training with a set of small 

random weights, this problem does not surface. 
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2.14 Summary  

 

The derivation of the BPA represents a “landmark” in neural networks in that it provides a 

computationally efficient method for the training of MLPs. BPL has been successfully applied to 

solving some difficult problems such as speech recognition from text, handwritten digit recognition 

and adaptive control. The adaptive gradient descent learning rule described above has been used by 

the software PREDICT in the building of the neural network models in this study. The applications 

of artificial neural networks are presented in the next chapter. 
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CHAPTER 3 

REVIEW OF ARTIFICIAL NEURAL NETWORK APPLICATIONS 

 

3.1 Introduction 

 

“Neural networks provide a fundamentally different approach to material modelling and 

material processing control techniques in comparison to the statistical or numerical methods. 

This technique is applicable in many areas of engineering and has produced promising 

preliminary results in the areas of material modelling and processing. The main advantage of 

this approach is that there is no need to make priori assumptions about material behaviour even 

though in more complex neural networks modelling schemes one may take advantage of the 

knowledge of the process in network design. Although multi-layered neural network models 

cannot ensure a global minimum solution for any given problem, it is a reasonable assumption 

that if the network is trained on a comprehensive database with an appropriate representation 

scheme, the resulting model will approximate the entire mechanical laws which the actual 

material or process obeys.  Well trained neural network models provide fast, accurate and 

consistent results, making them superior to all other techniques” (Forouzan et al, 2007). Aided 

by the continuous development in the field of computers and related equipment, artificial 

intelligence has been widely used to support decision-making. Theoretical and practical 

problems have contributed significantly to developments in statistics and computer science, but 

it is only recently that clinicians are using these methods in their day to day practice on a 

significant scale. Sometimes it includes the usage of neural networks. In the early stages 

computer models were used for clinical consultation only, with the aim of classifying the 

research into a range of possible focus areas. There is an enormous complexity that arises from 

the various clinical conditions, thus making any form of comprehensive analysis a monumental 

task (Lisboa, 2002b).  

 

3.2 Use of ANN in engineering applications 

 
The derivation of a mathematical model is dictated by the experimental system of interest and 

the types of experiments that will be used by the model for analysis. Only through comparisons 

between the model and the experimental data, can the interactions and correlations be found, 

tested and revised if necessary. A system has to be understood so that questions, previously 

unknown, can be now asked about the system, answers analysed and a precise description given 

on the proposed system (Goldstein, 2001). The outputs of a neural network correspond to the 

variables required for prediction and the inputs to the variables on which the prediction is based. 
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The partial derivatives of the error function with respect to the weights may be back-calculated 

from output to input throughout the network, a process called back propagation. A (local) 

minimum is found by updating the weights after every iteration by a small enough multiple of 

the derivatives. The system has to be well analysed to ensure that all inputs and interactions are 

taken into account.  

 

When it comes to predictions statistical results seem to favour feed forward back propagation 

networks more than other types of neural networks, and non-linear models. Singh (2007) found 

that correlative coefficient, which is considered as a measure of accuracy, favoured the back 

propagation network. A statistical study was carried out on a ferrochrome production process to 

predict the effect of raw materials on the overall performance of the plant. In the initial stages of 

the study, the non-linear relationship between the raw material inputs and production capability 

index was used to predict by multivariate linear regression. Three different learning algorithms 

were developed using feed forward back propagation neural networks to improve the prediction 

accuracy (conjugate gradient descent, Levenberg-Marquardt optimisation and resilient back 

propagation). Trials were done with radial basis neural networks but there was no significant 

improvement in the performance prediction. The correlation between the predicted and actual 

values were 0.64 for multivariable linear regression, 0.70 for Radial Basis and 0.71 for feed 

forward neural networks with resilient back propagation. Comparisons were made between the 

use of statistical analysis, neural network structures and the results of production capability 

index calculations. In order to significantly affect the performance of the proposed model, the 

parameters affecting the production process and combination modelling was necessary. This 

multivariable problem is highly non-linear and becomes more complicated when the size of the 

network increases, thus reducing the performance. Resilient BPLA is especially used in pattern 

recognition problems to obtain data from multi-dimensional space.  

 

The Levenberg-Marquardt algorithm is used to solve least squares method problems that are 

almost linear. In these cases as the number of process parameters increases the performance of 

the model is reduced. Zhu et al (2007) constructed a multi-layered feed forward back 

propagation artificial neural network (BPANN) using two training algorithms: the Levenberg-

Marquardt algorithm and gradient descent to predict combustion efficiency of chicken litter in a 

swirling fluidised bed combustor (SFBC). BPANN is a generalisation of the Widrow-Hoff 

learning rule, or least mean squared errors (MSE) to multiple-layer networks and non-linear 

differentiable transfer functions. Application of the ANN was comprised of “data collection and 

preparation (including statistical experimental design and experiments), neural network training 

(including selection of ANN, structure, training and algorithm) and neural network evaluation, 

simulation, prediction and validation. The neural network consisted of one input layer, several 
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hidden layers and one output layer. The transfer function used for the hidden layers was a 

differentiable tan-sigmoid function and a linear function for the output” Zhu et al (2007).  The 

combustion efficiency is the target value of the neuron in the output layer. Model building of the 

various ANNs was done with the aid of the neural network toolbox of Matlab. The results from 

the models, i.e. the network training and the prediction processes can be monitored both 

quantitatively and graphically. Two training functions, viz., traingd (gradient descent) and 

trainlm can be used in the training of BPANN. Trainlm is based on the Levenberg-Marquardt 

optimisation procedure. The updating of weights and biases in the direction of the negative 

gradient of (least mean squares errors) MSE results in the training of the model. This algorithm 

can be used to optimise the model by increasing the speed and its reliability. The two training 

functions were applied to the data with an equal learning rate of 0.05 and an equivalent ANN 

structure of 5 + 16 + 1. The results indicate that the Levenberg-Marquardt algorithm 

outperformed the gradient descent method. The training epoch (iterations) for the trainlm was 9 

and 550 for the traingd. The ANN predicted line was within the 95 % confidence bounds, thus 

proving it to be a reliable model. To improve the reliability further, the model was used to test 

and verify data from similar experiments reported elsewhere. Convergence speed, number of 

hidden layers and number of neurons were finally chosen as the design parameters for the 

process. A trial-and-error method was adopted for selection of the final design values. For a 

mean squared error (0.2204) the Levenberg-Marquardt training algorithm outperformed the 

gradient descent method. When a model is developed new data has to be used to validate it. On 

validation the ANN approach was found to be most accurate and reliable for the prediction of 

combustion operation performance and for the overall optimisation of the combustion process. 

The development of this model has proved to be vital for the design and scaling up of SFBC.  

 

Sterjovski et al (2007) built and validated a back propagation ANN “to predict the level of 

diffusible hydrogen deposited into weld material as a function of the welding process, 

atmospheric conditions and moisture already present in the consumables”. A probabilistic ANN 

approach was adopted to investigate whether hydrogen was responsible for weld cracking. The 

software Neural Nets Prof II/Plus was used to build a back-propagation neural network model. 

As the model building progressed new parameters were introduced like the learning rule 

(algorithm used to relate all the neurons in the layers), learning coefficients (value that affects 

rate of learning) and transfer mode (prediction of output using the weighted sum). The delta 

learning rule was used in the model building and the error was calculated using the root mean 

square method. The derivative of the transfer function transforms the error which is then “back-

propagated‟ to the previous layers where it is stored. The stored value gives an indication of the 

current error value for that layer. This back-propagating of the errors is progressive method 

which is stopped when the input layer is reached. The delta learning rule and sigmoid transfer 
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function formed part of Model 1‟s back propagation neural network. The model was used to 

predict the relationship between the levels of diffusible hydrogen with respect to a multitude of 

input parameters. Some of the variables were wire type (or classification), welding current and 

contact tip to work-piece distance. Model 1 was able to predict the diffusible hydrogen with a 

large amount of accuracy. Model 2 used a probabilistic ANN to solve the pattern classification 

problem.  The neural network used a classification technique on the input data to separate the 

“crack” from the “no crack” groups. The levels of agreement for both sets of data were high. 

The prediction errors were not significant, with the root mean square error for all the data being 

0.5 ml per 100g of deposited weld metal. Statistical analysis was used to further validate the 

models. ANNs were successful in predicting hydrogen diffusible content and hydrogen cracking 

susceptibility. The trends predicted by the models were consistent with actual experimental data 

(Sterjovski et al, 2007). NN tend to be flexible in nature in comparison to conventional 

regression analysis. One reason could be the ability of NN to perform interpolations using data 

in the same range of variables as that of the training (Dutta et al, 2007). 

 

3.3 Current predictor methods used in medicine 

 

The mortality due to various cancers can be significantly reduced when detected early. Any 

effective screening program that is available for the most common diseases, such as cervical or 

lung cancer, requires imaging of sampled cellular populations or radiographs for correct 

diagnosis. Various computer aided visualisation systems have been developed but clinical 

acceptance requires that the system be as good as or preferably better than the trained expert. 

The development of an automated diagnostic algorithm in the form of an expert system would 

have required the generation of an extensive rule base. This approach was thought to be too 

cumbersome and was discarded in favour of ANNs. Using the same data previously generated 

and analysed by other means, a set of hierarchical ANNs were assembled to create a system 

with a predictive accuracy almost equal to that of a human expert. The gradient descent method 

was used as it provides the most efficient weight changes for encoding the particular input-

output mapping desired. The hypothesis that supervised ANN‟s (MLP using BPL) could 

classify cervical cells in to 4 categories with a precision comparable to that of a skilled 

cytotechnician was demonstrated. This approach successfully removed the crucial problem of 

classifying abnormal cells as normal (false negative). Implementation of neural networks for 

clinical use must first be optimised with respect to factors such as the composition of the 

training set, the network architecture, and the hierarchical assembly of separate neural networks 

specialised in specific sub-tasks. The advantage of separate neural networks allows for quicker 

convergence during training because the complexity for each sub-task was reduced. The most 
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important outcome was that the overall accuracy of the classification was increased (Mehdi et 

al, 1994). 

 

A comparison of neural network and logistic regression models were done by Venkataraman 

(2004) to predict a medical outcome. The objective of the research was to prove that there are 

more accurate methods for pattern classification than conventional statistical models. The new 

technique to be tested for classification was the feed forward neural network model. In the 

medical field a reliable prediction of an outcome is vital for clinicians as it impacts on their 

diagnosis, treatment and overall care of a patient. A model was developed to predict the 

outcome of stress urinary incontinence surgery so that clinicians could gauge which of the 

patients benefited the most from the surgery (Venkataraman, 2004). “The artificial neural 

network was trained using 225 clinical sets with error back propagation and validated through 

independent testing of 200 records. 21 records were used to predict the categorical output value. 

Stepwise forward logistic regression was applied to the dependent variable. Stepwise forward 

selection starts with the best single regressor and then finds the best one to add to what exists. 

The next best set where all variables in each equation are checked to see if they remain 

significant after the new variable is then added” (Venkataraman, 2004). The same development 

and validation datasets were used for the logistic regression analysis to provide a comparison. 

The neural network model allows for flexibility as it allows the user to change the parameters 

within a model to increase accuracy. With conventional statistical methods specific correlations 

have to be used. “The neural network model had a higher sensitivity (78.3% versus 62.5%), 

specificity (75% versus 54.2%), area under the receiver operating curve (0.74 versus 0.72) and 

less error rate (22.5% versus 39.5%) compared to the logistic regression model. Both the 

positive (0.9084 versus 39.5%) and the negative predictive value (0.5217 versus 0.3138) for the 

neural network model was higher than the logistic regression model suggesting that the neural 

network model better fits the data” (Venkataraman, 2004). Neural networks are considered to be 

superior to logistic regression methods because they can find a multitude of relationships 

between variables which display characteristics of multi-dimensional non-linear functions. The 

parallel architecture of neural networks, a principal difference with the statistical method allows 

for this result. Overtraining may account for best results in a neural network but statistical 

methods are also prone to over fitting. The research has shown that the building of artificial 

neural networks for prediction of outcome for incontinence symptoms severity is advantageous 

to both clinicians and patients over time. Neural networks somewhat outperform logistic 

regression analysis and prove to be useful when adopting classification techniques for 

predictions. 
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Lately predictive analysis has been used in decision making for the allocation of relevant 

resources, quality assurance and improvement, research into health care delivery and 

comparison of health care centres. Logistic regression (LR) models can successfully be used to 

determine the relationship between multiple predictor variables and a dual outcome variable. LR 

models are unable to handle complex multivariable systems. ANN models are able to “learn” 

the variations in non-linear patterns when comparing the predictor variables to outcomes. This 

is done by adaptation, like humans do, when making decisions. Han et al (2000) used neural 

networks to predict the biochemical recurrence after surgery for prostrate cancer patients using 

pathologic and clinical data. The significance of Gleason scores with respect to biochemical 

recurrence was also studied. For 20 years the Gleason system has been used by pathologists to 

classify prostrate cancer into various groups. The system has helped in aiding clinicians to make 

a decision either individually, or combined with other parameters when choosing the adopted 

treatment regimes. The system is also used to predict the outcome after the prescribed therapy 

for prostrate cancer (Han et al, 2000). The data were randomly selected to obtain 50 % training, 

20 % for testing and 30 % for validation. The ANN was an MLP because of its resilience and 

ability not to over-fit. The conjugate descent method was used in the training of known data. An 

optimised MLP structure was chosen to maximise the accuracy of the prediction and restrict 

large networks from over-fitting. A combination of 1000 architectures was investigated. The 

univariate Cox regression model found the surgical margin to be the parameter that most 

influenced a recurrence of the cancer. Overall, the accuracy of ANN was greater that the LR 

modelling when used in 3- and 5-year predictions for biochemical recurrence of radical retro-

pubic prostatectomy (RRP). Previously, either traditional statistical methods were used to 

predict tumour recurrence after RRP, or a clinical diagnosis was carried out by specialists.  LR 

is traditionally used to find a relationship between a response (output) variable and a set of input 

variables. ANN models have proved to be superior to LR, since the ANN is able to learn the 

complex relationships between independent and dependent variables. The development of 

ANNs is the result of the age old race to try and duplicate the fault-tolerance and infinite 

learning ability of biological systems. ANNs have repeatedly shown their high degree of 

accuracy when compared to other predictive systems, including LR, and particularly when there 

is non-linearity. Some ANNs can rank the variables to the extent that each influences the output. 

Han et al (2000). The ANN was chosen in this application because if its resilience and ability 

not to over fit. The accuracy of ANNs has led to its adoption in predicting a recurrence-free 

outcome for the patient population over LR. The Kaplan-Meier analysis and the Cox 

proportional hazards model, together with the ANN confirmed that the Gleason score should be 

maintained as an outcome predictor for patients after RRP. The adoption of ANN in the clinical 

decision making process for prostrate cancer is a fairly development. Clinicians can now use 

this model to determine the recurrence rate of cancer over a long-term period. In the treatment 
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of cancer a 5-year period is normally adopted to determine if a patient is in remission. Also for 

general application of the ANN there has to be inter-institutional validation. ANN models can 

also find use in increasing the accuracy of clinical outcomes when both pathologic and clinical 

data is available. 

 

3.4 Neural networks in medicine 

 

Increasing processor speeds and computer power have moved neural networks from an obscure 

topic to one where they offer practical uses in a wide range of fields. At their most basic they 

can be used as cheap, small programs (essentially as add-ins to commercial spreadsheets). 

Successful medical uses of neural networks include their use in pharmacokinetic or 

pharmocodynamic prediction (antibiotic peak and trough levels) and enhancement of diagnostic 

skills. In the clinical arena, the emergency room diagnosis of myocardial infarction and the 

radiologists‟ diagnosis of pulmonary embolism have been studied with favourable results.  

Neural network based prognostication in critical care has been shown to be superior to a 

conventional statistical approach. It has been found that enhanced performance by neural 

networks relative to humans is related to more appropriate weighting given by the network to 

common diagnostic factors, and also the empirical use by networks of diagnostic rules of thumb 

that have not been previously utilised. Neural networks have several limitations and the „black 

box‟ nature of their output is of major theoretical concern, i.e. the conclusions are generated 

without explanations. This criticism implies that conclusions should follow from hypotheses 

supported by data and rejects the role of pattern recognition in decision-making.  The success of 

neural networks in medical decision-making, including a performance equal to that of 

radiologists in the diagnosis of pulmonary embolism and superior to that of emergency 

physicians in the diagnosis of myocardial infarction suggests that they are competent at the very 

least. Black box concerns may be overcome by sensitivity analyses where the effects of 

variables are assessed by their inclusion or exclusion. 

 

In the past ten years clinicians and health institutions have been adopting artificial intelligence 

(AI) methods for use in medical diagnosis, treatment and related applications. Evidence is 

clearly shown by the availability of numerous medical devices with built-in AI algorithms on 

the market, together with a simultaneous flood of publications in medical journals. Superiority 

of neural networks has been proven by optimisation techniques which gives rise to cost-

effective and flexible non-linear modelling of large data sets. Further, high accuracy which is 

vital in the medical field favours its adoption as additional support in clinical decision making. 

These models also enlighten the user by giving valid explanations, for example, use of rule 

extraction or sensitivity analysis (Lisboa, 2006b).  
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3.5 General survival studies 

  

Numerous case studies in medical literature have highlighted that neural networks can 

significantly influence the modelling of cancer survival where previous research related the 

MLP with the Tumour, Nodes and Metastasis (TNM) clinical staging system prescribed by the 

World Health Organisation. A distinguishing feature of survival modelling when compared with 

conventional class discrimination is the unique factor of patient censorship. Censorship is 

defined as a follow-up loss without the event occurring. In survival studies of cancer patients, 

the event that the clinician finds important might be death due to breast cancer with a follow-up 

study done over a period of 5 years of recruitment. Patients lost during the 5 year period, from 

an address change or an event as serious as death from an unrelated course will be taken as 

censored. A patient may die from a natural, an unfortunate cause or it could be related to a 

weakened condition caused by the treatment, e.g. cardiac arrest, thus the original cancer was the 

real cause of the patient‟s death. All patients that survive the maximum follow up period are 

considered to be censored. Censorship is adopted because there is no precise method of 

determining what the health status of the patient would be like if they were still part of the study 

(Xin, 2006). Since the information is unavailable it is treated as missing, thereby removing 

censored patients from the case study. Also if ad-hoc techniques are employed, then the 

information is said to be biased.  The element of bias occurs when simulated data is used in 

survival studies. MLP have been modified to include censorship. The reason for this is that 

assumptions are made when using traditional survival models that are linear in their parameters.  

The proportional hazards method, also called Cox regression, is traditionally adopted for use in 

medical statistical studies. MLPs have been used as extended versions of proportional hazards. 

They uphold the separation between the dependence on time and on patient specific vector of 

covariates, resulting in non-linear proportional hazard models. Time can be expressed as a 

covariate which serves as an input index to conditional hazard estimates from a single output 

unit. Neural network models of this type that are used for survival studies have proven to be 

stable when used for monthly studies where patients have follow-up periods of several years. As 

a consequence the proportionality of the hazards assumption is relinquished and ensures the 

fitting of non-linear effects. These models have been highlighted in case studies on patient 

mortality and disease recurrence consequent to surgery for breast cancer. The results were 

useful in that it could be practically applied by informing clinicians and patients when making 

decisions on types of treatment (Xin, 2006). Research carried out on breast cancer patients by 

Ripley (1998) indicated that the accuracy of relapse prediction did not change within staggered 
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time periods even though it was fixed. In the study of breast cancer there is no indication that 

neural networks have outperformed the proportional hazards model as in other forms of cancer. 

Both traditional and modern neural network models are tools to be used jointly to solve real 

world problems, especially in the study of survival rates of patients. It is recommended that 

neural networks be used to support clinicians in trying to facilitate patient performance rather 

than seeking a full recovery. It is better to reduce a patient‟s suffering with treatment than try to 

make radical changes which would be detrimental to the patient‟s health (Ripley, 1998). For 

neural network models to gain credibility by clinicians for patient evaluation and treatment, it is 

necessary to use data and systems from multiple units and centres that adhere to the gold 

standard of clinical evaluation, namely multi-centre Randomised Clinical Trials. This integrated 

method is globally considered as a key milestone for the acceptance of any medical decision 

support system. The reason being that it takes into consideration multiple factors that can 

influence patient outcome, i.e. it guards against inter-patient and inter-centre variability. It is 

more reliable to run patient trials rather than trials with a clinician. Patient trials ensure 

variations which can be analysed to give a true reflection of the prevalence and behaviour of a 

disease under study. The principles guiding survival modelling in comparison to other studies is 

largely challenged by the concept of censorship when dealing with patient trials. The term 

censorship is responsible for the validity of the outcome of the patients who have remained in 

the clinical trial (Lisboa, 2002b). This can be readily demonstrated by using simulated data to 

estimate survival, i.e., electronically generated data used to mimic actual results from tests done 

on patients. This can be used as an initial step to modelling survival, but ultimately real world 

data from actual patients have to be used to verify any mathematical models that are proposed.   

 

Neural networks and traditional regression models are used extensively in the literature to aid 

with predictions of health status, e.g. of the outcome of injured adult patients.  In contradiction, 

prediction of in-patient survival of injured children and teenagers have not been investigated or 

developed. The readily available predictive models for adult patients are logistic regression 

statistical models which are incapable of handling multivariable systems that are interdependent 

(DiRusso et al, 2001). DiRusso et al (2001) have proposed the use of ANN to predict the health 

status of paediatric trauma patients. An ANN was developed with the aid of an existing database 

of the National Paediatric Trauma Registry (NPTR) in the United States of America (USA). The 

data was used to develop and test a reliable model for evaluating the survival of injured children 

and adolescents. A standard feed forward back propagating neural network was chosen since its 

architecture was constantly used for predictive models. The architecture was chosen for its 

reliability and accuracy in pattern recognition of multivariable data where the interdependency 

is limited biological networks. It has also been proven to have a high accuracy for determining 

the outcome of treatment on adult trauma patients. The model consisted of 3 layers: an input 
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layer (with input variables), a single layer of hidden nodes, which are the algorithms that 

analyse the input data and the third layer which is the output variable. In this case study, it is the 

probability of death that lies in the range: range (0, 1). “The learning occurred rapidly with a 

computation time of approximately 8 minutes. The second ANN model was generated using a 

data search engine (Statistical Neural Networks, Statsoft, Tulsa OK). The search engine tested a 

large number of possible ANN structures and chose the models that performed the best based on 

any particular set of data. The choices of architecture included ANN type, number of hidden 

nodes, and activation function for each layer. In this way a tremendous number of possible 

outcomes were examined. This would have been prohibited if done singularly. However, 

computation time was extensive (approximately 155 hours of continuous computation time). 

Once the data was generated, testing new data took little computer time (usually less than 1 

second)” (DiRusso et al, 2001). Interestingly, the search engine chose a feed-forward back-

propagating network as suggested by the authors in the previous NN model. A standard logistic 

regression model was used for comparison. Missing data for both the randomly selected sample 

of 27 385 cases and the 8000 test cases were allocated the corresponding mode value as 

determined from the original 27585 cases. Some of the input variables “included age, sex, 

systolic blood pressure, heart rate, respiratory rate, intubation status, individual components of 

the Glasgow Coma Score (GCS), the New Injury Severity Score (NISS) or the Injury Severity 

Score (ISS), the Revised Trauma Score (RTS), and the Paediatric Trauma Score (PTS)” 

(DiRusso et al, 2001). The probability of death was the expected output. Discrimination and 

calibration was measured from the existing data. Since censorship is an issue the discriminatory 

power of the model is adopted to correctly classify survivors. The values were determined from 

the area under the receiver operator curves (ROC). The ROC curves are developed by plotting 

true-positive fraction versus the false-positive fraction. A ROC of 1 implies perfect 

discrimination, while a discrimination value of 0.5 is equated to a random model. Calibration is 

an indication of the reliability of the model to predict with a high degree of accuracy over the 

entire range of severity of injury. Of the 35 385 patients evaluated in the analysis, there were 

1047 deaths (3% mortality rate). The numbers indicate that the model was trained with data 

predominantly from the survivors‟ data set, thus implying that the model will favour higher 

accuracy with these patients (DiRusso et al, 2001). In order for a model to be more reliable for 

future predictions, ideally the training data should be within the range of expected data for that 

system. This ensures that the proposed model can accommodate any new data, and that the 

prediction can be instantly validated. There were approximately 425 000 data points (12 input 

variables) from the database with 10% missing data. It can be expected that this model would 

not be too reliable in predicting the probability of death, which in turn affects the output for 

survival. Conversely, if there is a higher survival rate for paediatric trauma patients statistically 

then the model is a true indication of reality. The authors claimed that the proposed models 
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displayed excellent discrimination, i.e., the classification of survivors and non-survivors was 

considered to be reliable. From the figures above it can be noted that a bias does exist because 

the model would favour the survivors. A realistic prediction model should place all survivors in 

the lowest decile and all non-survivors in the highest. The two models ordered and predicted the 

surviving patients with a high degree of accuracy; however, both models were unreliable in the 

predictions where the patients had died. NISS, motor score of the GCS, and systolic blood 

pressure were the parameters that had the greatest impact on the developed models. The NPTR 

database collates data from most major trauma centres treating children in the USA, thus 

making it truly representative of the paediatric trauma population in general. The outputs from 

the proposed models can reliably be taken as a true reflection of the health status of the 

paediatric trauma population (Di Russo et al, 2001). 

 

Most models use logistic regression for survival predictions. The use of LRs is widely accepted 

as a statistical tool thus making them reliable models, but there are limitations. Artificial neural 

networks are more robust modelling systems constructed of multi-layered equations that form 

algorithms. A patient‟s health status is dependent on various symptoms and the complexity of 

the medical condition is dependent on a patient‟s biological system, and this varies between 

patients. This complexity allows for the application of ANN in predicting outcomes in medical 

application, e.g. survival rate after liver transplantation, diagnosis of pulmonary emboli, 

myocardial infarction, breast cancer, etc. Statistics on cancer survival can be used if the length 

of the terminal period is known. It can be used to determine the period when the last stages of 

cancer occur thus allowing the clinicians and family to design and prepare for the palliative care 

stage. The terminal period is defined as: “the moment in the natural history of the cancer in 

which there is little likelihood that specialised oncological treatment will extend survival time, 

induce an objective response, or halt the progress of the disease; continuous use of health 

resources is required to alleviate the patient‟s symptoms; and any treatment is administered 

solely for palliative purposes (Llobera et al, 2000). “Terminal period” is generally defined as a 

survival of less than 6 months. Mean survival time is dependent on the definition of the terminal 

period. It is vital to know the exact period when the patient will be in the advanced stages of 

cancer. It is necessary as it impacts on the treatment plans and psychological well being of the 

patient and the family. The use of health and social resources also has to be adequately arranged 

for terminally ill patients. If the survival rate is incorrectly predicted then the patient may not 

get access to palliative care programmes.  The survival time is usually overestimated, the reason 

being that clinicians and doctors give the patient and family hope for a longer survival period 

because it does have psychological implications (Llobera et al, 2000). But this can have a 

negative impact on the patient, where inappropriate treatment regimes are followed and the 

onset of palliative care is delayed. Various studies have been done to try and accurately identify 
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the factors that influence the calculation of the terminal period for cancer patients. A study was 

done by Llobera et al (2000) “to determine the duration of the terminal period of cancer, to 

assess the ability of clinicians to predict survival and to identify the indicators that might 

improve prognostic accuracy”. Some of the key factors studied were demography, tumour site, 

dates of diagnosis, onset of the terminal period and death. The difference between the onset of 

the terminal period and date of death gives an indication of the terminal period. Clinicians have 

to be involved in the decision making of the terminal period. It needs to be reinforced that the 

model cannot be used in isolation. The human element, in this case the trained clinician, will 

always be the most reliable predictor, no matter the numbers that indicate the perfect fit of a 

model. The health professional‟s inability to predict survival accurately has an effect on the 

patient both mentally and physically. Their decision will affect treatment stopping time and the 

onset of palliative care. The tendency has in the past been to overestimate. Only 5 % of the 

oncologists were accurate in determining the actual period correctly. Sensitivity and accuracy 

was greater. Despite the lack of accuracy the clinical decision of survival cannot be super ceded 

by a model. The following factors did not influence survival significantly, i.e., age, sex, marital 

status or tumour site. Parameters such as bed sores, deficient care; asthenia and anorexia; 

confusion and drowsiness; are all indications of the onset of the terminal period. It is more 

reliable to do prospective studies instead retrospective studies, because the information would 

be current and tangible in comparison to looking for past data which may contain missing 

points. Reliability on past data can also be another issue (Llobera et al, 2000). 

 

The performance of neural network methods and Cox regression for censored survival data was 

carried out by Xiang et al (2000). If censorship is built into ANNs, then the outcomes (outputs) 

are dependent on whether an event occurred or not. If an outcome is dependent on time to an 

event, a method has to be developed for dealing with the effect of time on disease progression. 

If an event does not take place, then the output is considered to be (right) censored (e.g. patient 

has not returned for treatment, it is not known whether he is dead or alive). In the medical 

domain patient numbers and clinical data is usually limited. In order for mathematical 

modelling to be reliable there needs to be sufficient data for the model to be developed. Ideally 

if censored data is excluded from the model building it could lead to significant biases in 

predicting events or outcomes. Methods can be adopted to accommodate right-censored data in 

the model development and building. Cox regression analysis is a universal technique used to 

analyse censored data. The results of Cox regressions need to be related to the outcomes of 

ANNs. The study by Xiang et al (2000) does not indicate the data and type that was used to do 

the above analysis, it was only stated that simulated data and not actual clinical data was used. 

Their recommendations are that further research be carried out to evaluate calibration measures 

and that the recommended model uses actual clinical data from the risk groups. The effect of 
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data base size was also studied. Initially 200 cases were simulated. A random division of 100 

training and 100 testing cases were used to build the first models.  In the second phase of the 

model building 400 cases were simulated. This time a division of 200 training and 200 testing 

cases was used in the testing.  Censoring was varied for the neural network model with an initial 

censoring rate of 20%.  For the training data a 30%, 50% and 70% censoring rate was adopted. 

For the censored data, the neural networks outperformed the Cox regression models. This 

outcome implies that neural networks are adaptable in that they can deal with multiple 

parameters that are interdependent. For Cox regression analyses the user has to have the 

expertise to use the data in an appropriate manner and be able to make meaningful conclusions 

from the analyses. For a Cox regression the coefficients determine the probabilities of an 

outcome for some value(s) of the risk factor (e.g. odds ratios or relative risks). NN weights 

usually do not lend themselves to such interpretation. The models presented in the above 

research highlight a few models developed for patient survival. Overall the research showed that 

NN can reliably and effectively be used as methods for modelling right-censored data. The issue 

of performance does vary but it should be noted that the models are based on known data for a 

given system and is only applicable in the same system. 

 

3.6 Health benefit from ANN in medical intervention 

 
Clinical diagnosis is quite complicated because symptoms of unrelated diseases can surface thus 

complicating the clinician‟s diagnosis. The patient may display all the symptoms and clinical 

tests point to obvious and known diseases, but sometimes the diagnosis is poor or incorrect. 

Since diagnosis is related to the type of treatment that is dispensed to the patient, ultimately it 

affects the physician‟s prediction of prognosis. Feed forward multilayer neural networks with 

back propagation seem to give better diagnoses than the clinicians and traditional expert 

systems. Early diagnosis is very important in biomedical applications because of the benefits of 

immediate and correct treatment. Acute myocardial infarction (coronary occlusion) is one type 

of disease that physicians find difficultly diagnosing. The diagnosis can be difficult and 

different diagnostic methods have been studied.  Together with patient history and clinical 

findings, the 12-lead ECG is still considered to be the traditional method. It is commonly 

available and is still considered to be the best method for the early diagnosis of myocardial 

infarction. 25% of the patients discharged from the hospital display ST elevations that were not 

detected. Over 80% of the patients admitted for acute myocardial infarction are sent home 

without having the ECG done or the diagnosis confirmed. Two separate case studies using 

neural networks for the diagnosis of acute myocardial infarction are presented. The first case 

study uses neural networks to predict acute myocardial infarction in the 12-lead ECG at a 

sensitivity greater than two sets of diagnostic protocols, and even better than an experienced 
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cardiologist. For the neural networks the sensitivity was 18.3% higher than a rule based 

diagnosis method with respect to a specificity of 95.2% (P<0.00001), and 10.5% between   

neural networks and cardiologist at a specificity of 86.3% (P<0.00001). A false classification as 

definite acute myocardial infarction was made in only 0.2% and 0.4% in the control group by 

the cardiologist and the rule based diagnosis method (Heden et al, 1997).  

 

Attempts have been made to automate the diagnosis procedure but success rates have not been 

too different from the physician‟s conclusions. The second case study on diagnosis of 

myocardial infarction, using neural networks, show that the most successful attempt at finding 

an automated solution has been a detection rate of 88%. This value is close to the accuracy rate 

of practicing physicians. The incorrect diagnosis rate was 26%. This is an improvement on the 

29% rate of physicians. A feed forward fully interconnected neural network with two hidden 

layers and a single output was trained to diagnose coronary occlusion. Each hidden layer had 

ten neurons. All neurons used a unipolar, sigmoidal activation. A back propagation algorithm 

was used in the training of data for the model building. 356 patients‟ was used in the training of 

the network. Of the 356, 236 were not diagnosed with a coronary disease and 120 did have the 

disease. Patients were randomly selected for training from subsets of half those considered to 

have the disease and the half that did not. The data for each patient was comprised of twenty 

variables that are normally predictive of acute myocardial infarction. These characteristics are 

age, sex, nausea and vomiting, shortness of breath, diabetes, hypertension, and angina. This is 

part of a series of 41 variables that is collected on all patients admitted to the emergency 

coronary care unit. Subsequently a method was followed to diagnose the infarction. The 

proposed network (model) was tested on the remaining 178 patients (118 non-infarctions, 60 

infarctions) which was the unknown data. The network predicted a 92 % correct identification 

of the disease. The result was 96% for the correct prediction of the absence of the disease. 

Routine data was used to develop the models. The NN outperformed the clinicians, but the 

human element has to take precedence in the treatment centre. It should be noted that models 

are there as support for decision making (Hassoun, 1995). 

 

 A review of the health benefits of artificial neural networks in clinical diagnose was carried out. 

Initial studies in computer modelling were carried out to give clinicians some guidelines on 

possible diagnoses. Recent advances in computing power allows clinicians to be at the patient‟s 

bedside, while expert systems predict an outcome so that appropriate treatment regimes are 

adopted (Lisboa, 2002b).  Support of decision making systems must be in line with medical 

problems. This is due to a clinician‟s reluctance to use electronic means to decide on the fate of 

a human being. Only if all patients can benefit with the aid of a generic category of clinical 

conditions, will the clinicians have faith in the model. In the real world some diseases are quite 
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rare and the general models that are developed for assessment and prediction are invalid for use. 

Clinicians are bound to treat every patient on an individual basis, which would make it unethical 

for them to follow a treatment regime based on the majority outcome of a predictive statistical 

model. Conventional numerical methods and Bayes profiling are unable to deal with the 

multiple combinations of disease presentation. The range of presentations with respect to a 

single disease and the extent of disease progression present a challenge. They are also unable to 

deal with the manner in which the disease progresses, i.e. if the same treatment is given to 2 

patients, the results differ in outcome and the fact that it can also influence another ailment. It 

could also not explain the pathological and physiological states. If new data was introduced the 

model was unable to adapt to accommodate the deviations. Neural network modelling also has 

to take into account new data, but as long as the conditions are strictly followed then the results 

can be confidently applied to aid clinicians in medical decision making (Lisboa, 2002b). 

 

Neural networks can be used in various ways to aid in medical decision support. Patient data 

from hospital-based database or clinical laboratory systems are used in models to check for 

abnormalities. Each disease presents a set of symptoms used for diagnosis, but if there is a rare 

disorder it will not be easily picked up, therefore numerical methods can make a significant 

contribution by finding the abnormality. This early diagnosis technique can allow for specific 

treatment regimes to target the disorder. Neural networks are also being used in clinical 

environments for assessments and planning. The reason for using ANNs to model the 

complexity of disease presentations is to try and replicate inter-related memory functions. This 

is common when replicating events, even though it requires some rational judgement when 

complex tasks are presented. Technologically ANNs fall under the subject of non-linear 

statistical analysis. The introduction of NNs was to broaden the usage of an adaptable tool to 

accommodate non-specialist statisticians. If a methodology is based on information from data-

bases, it is expected that reliable statistical methods will be applied to the system, in order for 

the results to have credibility. This also extends to the analysis and interpretation of the data, 

more so if it is to be applied in a clinical environment. 

 

Several sectors of the medical domain have been proposed as ideal systems for the application 

of neural networks for diagnostic support. A typical example was applied to patients entering an 

emergency unit displaying symptoms of chest pains. By pre-screening the patients, those that 

were prone to Acute Myocardial Infarction (AMI) were identified and monitored, thus 

preventing a major AMI if the patient was sent home. Sensitivities and specificities from 80 % 

to 96 % were compared to a large study done on clinicians‟ performance, which gave an overall 

sensitivity and specificity of 88 and 71%, respectively. Most studies use current ANN 

methodologies, of which the multi-layer perceptron is the most widely used because of its „early 
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stopping‟ ability to prevent over-fitting. Computational methods are becoming popular for 

usage in clinical environments. These applications have been widely reported in the literature to 

be most suitable for drug dosing and preventive care. They are able to predict the harmful 

effects of prescription drugs, or be used to ensure that protocol is followed when vaccinations 

are dispensed and mammography tests are done. Computer aided evaluation of mammograms 

are currently being used to reduce the number of missed lesions by 50 %. This is currently being 

achieved without an increase in costs with respect to time, training and equipment. 

 

3.7 Methodology for neural networks in medical applications 

 

With regard to the methodological issues, clarification should be given on the framework and 

steps taken to ensure the robustness of the conclusions. Regularisation of the objective function 

with weight decay is a simple method than can be used to prevent over-fitting of the data. When 

performing statistical analyses the degree to which the model responds to changes in the value 

of the predictor variables is of interest. A review of neural network applications in oncology in 

the literature has highlighted the importance of accuracy. Frequently made mistakes have been 

identified in the application of ANNs, which includes conclusions of generalisation with respect 

to performance, insufficient data points for the training of large networks, inappropriate 

statistical guidelines and insufficient justification for the use of ANNs as an alternative for 

statistical rule-based models. In some studies the proposed survival models have not considered 

censorship thus introducing a bias into the outcome. In some studies irrelevant clinical factors 

which have minimal effect on treatment decisions have been used. In others tried and tested 

clinical principles cannot be validated by models that disregard the cause and effect relationship 

of treatment regimes. The literature is flooded with theoretical models which need to be 

investigated further, and especially with real clinical data before it can be adopted in a clinical 

trial. If sound clinical and mathematical principles are followed then the proposed models 

would have greater credibility and acceptance by clinicians (Schwartzer et al, 2000). 

 Clarification of aim of study: Pragmatic studies provide suggestions for adoption of 

treatment strategies, thus the importance of pre-specifying the performance levels.  

Exploratory studies are aimed at formulating a new perspective on an existing 

condition. One way is to formulate a hypothesis about the relationships between 

covariates which can then be tested with conventional medical statistical methods. 

Another approach is to determine how the significant variables from the model output 

compares to the initial information obtained from the clinical setting (Schwartzer et al, 

2000). 
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 Model design: The use of too few hidden nodes affects the variance of the predictions 

and introduces a bias because the model becomes too simple. A solution is to choose 

many hidden nodes while imposing a direct regularisation of the objective function, the 

easiest of which is in the form of the weight decay function. The selection of variables 

has to be well formulated, with a clear understanding of the covariates in relation to the 

predicted outcomes of the model. For exploratory studies the number of observations 

should be five times the existing (instead of selected) covariates. This method is 

adopted to prevent random variables from correlating with any given sequence of 

labels. The number of degrees of freedom is not easily determined for neural network 

models, but can be achieved by evidence approximation using factors related to the 

regularisation hyper-parameters (Schwartzer et a, 2000). 

 

 

 Validation: Clinicians can only adopt and apply a procedure or system if it is well 

defined and clearly understood because they are liable for the results when used. In 

exploratory studies the improvement in diagnostic or prognostic accuracy by an adopted 

methodology is not as important as the reason for it being so (Schwartzer et al, 2000). 

No matter what the accuracy of the model is in statistical terms, doctors will be 

reluctant to use it without a clear demonstration of its capabilities.  Relevant or real 

world clinical data is vital for training a model. The data used must be routinely 

acquired, readily available and most important reliable.   

 

 Benchmarking: It is standard procedure to compare any new technology with an 

alternate method and it must be reasonably equivalent to a tried and tested method 

that it is replacing. In the case of MLP the obvious benchmarks are the multi-linear 

regression for regression. For classification it is the logarithmic regression (LogR) and 

the proportional hazards model is used for survival studies. 

 

 Robustness:  There are numerous factors and variations thereof that raise doubts about 

maintaining performance abilities from patient to patient. This includes within-patient 

variation, between-patient variation and instrumentation and protocol variations 

between clinical institutions. There has to be a clear distinction of the validation of data. 

Internal validation will use selected data to train and test the model (test sample), while 

new or unseen data (validation sample) will be used to determine the suitability or fit 

for a given system. Temporal validation uses data from the same clinical centre but at a 

later period than the testing and validation period. Data from other clinical centres are 



62 
 

considered for external validation, with the condition that it was not used in the model 

design. Retrospective data is normally used for modelling, while phase II exploratory 

studies use prospective data. Phase III clinical trials have to be applied across multiple 

centres or institutions with prospective data (Schwartzer et al, 2000). 

 

 Comparative trials:  Comparative trial design is necessary for the analysis of 

interventions but it is still lacking in success upon implementation. A controlled 

prognostic trial was carried out on 558 patients with acute abdominal pain. Results 

indicated that the clinician‟s personal diagnostic abilities changed extensively over a 

specific time period. Specifically, the number of appendices that perforated before 

operating was reduced form 36% to 4%. In another study 295 patients were monitored 

and the model was more accurate in its diagnoses than clinicians after a 2 month 

training period. Within 5 months of testing the model, the clinician‟s performance 

increased from 73% to 84%. Implementation of an ANN based decision support system 

in the UK has seen a reduction of 42% in survival rates from cervical cancer between 

1987 and 1997. It should ne noted that understanding the clinical scenario is vital before 

implementation of new computer based methods for supporting medical decision 

making (Lisboa, 2002b).  

 

3.8 Medical prognosis using artificial neural networks 

 

In the field of medicine the establishment of prognoses and survival studies for individual 

patients are factors in the medical domain.  Where diseases prevail for extended periods over 

several years, precise assessment of survival rates is vital. ANNs models have recently been 

adopted for predicting the various stages of a disease (Ohno-Machado, 1997a). The definition of 

medical prognosis revolves around predicting cure, complication, recurrence of disease, level of 

function, length of stay in health care facilities, or survival for a patient or group of patients. 

Hence, prognosis is a vital component of suitable patient care, treatment regimes and resource 

allocation (Ohno-Machado, 2001b). Once a diagnosis is confirmed, the clinician will indicate to 

the patient a probable survival scenario and map out a treatment strategy. Clinicians may find 

deviations from normal disease behaviour and coach patients to try alternate but aggressive 

treatments or a new clinical trial. The probability of survival can influence the patient‟s duration 

of stay in an intensive care unit (ICU). Usually there is a misunderstanding about whether the 

prediction of disease progression patterns can determine a patient‟s prognosis without treatment. 

This is almost always never the case, as any patient seen by a clinician will be treated 

accordingly unless the patient refuses therapy which is very rare and may occur if it is the final 

stages of a disease, where any palliative therapy is not going to lessen the end period. Any 
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prediction will be based on standard treatment for a particular disease or illness. Data collection 

for prognostic studies is quite a complex exercise and most reliable collections are obtained 

form randomised trials, usually carried out in multiple academic centres. In order for a model to 

gain credibility, analysis done by multiple centres and over a wide demographic area will be 

acceptable for implementation into a routine trial.  Computers are now widely available and can 

do multiple tasks simultaneously at quite high speeds, saving time, thereby allowing an action 

based on an output from a model to be implemented as soon as possible. In the medical domain 

where time is vital, the earlier a diagnosis is made and the earlier treatment can start impacts on 

a higher survival rate and a shorter period for a patient to be healed, if possible. The onset of 

collecting structured data in electronic format (increasing availability in private practices, 

clinics and hospitals) and the ongoing improvement of computer methods (learning models), has 

given recognition to specific prognostic systems. Both general information about a patient‟s 

diagnosis and “patient specific information: demographics, past medical history, current 

treatments, clinic-related information such as personnel skills and available facilities, and, more 

recently, gene expression levels at the tissue level can be used in the model building (Ohno-

Machado, 2001b). Amongst the many models available, there is a subset that uses data to 

“learn” and create a model that can be applied to new cases. Those related to “survival analysis” 

are gaining a wide recognition in the medical field. The models learn from actual cases, i.e. data 

collected over the duration of diagnosis and treatment to a curable stage or death. The proposed 

model is based on a real trend in the interactions between variables and gives a real output that 

can be expected in similar cases. There are no assumptions made in building the model, only 

relationships between the various parameters are determined. In essence they mimic reality. If 

there is a large enough set of data, the model becomes credible and can be justified in its 

implementation into a clinical trial for new patient‟s prognosis. This will not be a stand alone 

solution as the appropriately trained clinician is there to ensure that a reasonable prognosis 

according to his diagnostic abilities is obtained from the model. The clinician can then decide 

whether to use the output of the model to treat the patient or use his judgement from his 

classical training.  Some current applications in the prognostic categories that have been 

implemented are the APACHE scores for estimating death in ICUs. The risk associated with 

heart disease can be determined by the Framingham risk model which uses logistic regression 

methods. There are also other type of models like the Glasgow scores for coma and the clinical 

stagings of cancer where the methods are evaluated manually and then compared with 

prognostic data obtained experimentally (Ohno-Machado, 2001b).  

 

The different methods used for predicting survival have been limited in its use in real data sets 

from actual clinical trials. Artificial data sets are ideal for preliminary model building where 

control of data is possible. Real world clinical data when applied to a model will allow for 
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easier adoption. In real data sets, censoring of observations, noise, and missing data are 

normally present and hard to control. Any survival predictor model adopted has to be able to 

deal with these variations (Ohno-Macahdo, 1997a). ANN models have been used successfully 

for building prognostic systems and provide alternatives to the traditional survival analysis 

tools, such as the Kaplan-Meier estimate and the Cox proportional hazards methods. These 

traditional methods have been widely used in the medical field to identify markers of disease 

progression by selecting significant variables, rather than predicting survival for populations or 

individual patients. This method relies on the researcher‟s ability to select the appropriate 

variables thus lending a bias to the proposed model, whereas in the NN model the training of the 

model with real world data ensures that the given outcome portrays a realistic picture of the 

variables that affect the prognosis of the disease. In ANN there are no assumptions made on the 

distribution of the data. Outcome prediction is a complicated process in medicine, especially if 

independent estimations for the various time periods are merged in a meaningful survival curve. 

The AIDS epidemic has influenced communities with financial, psychological, sociological, and 

medical dilemmas. The results of a reliable model for the prognosis of AIDS progression will 

impact on patient‟s informed decisions, the clinician‟s treatment plan, the administrator‟s 

allocation of resources and the design of clinical trials by researchers. For specific diseases real 

data is not readily available in large numbers for use in neural network modelling. Simulations 

with artificial data sets can be used in developing relationships between variables, but gaining 

the trust amongst the readers of the study takes some convincing. (Ohno-Macahdo, 1997a) had 

obtained permission to use data from the AIDS Time-oriented Health Outcome Study 

(ATHOS). Patient information was collected from clinics and private practises in the Los 

Angeles and San Francisco Bay area. 588 records were selected with a range of variables, e.g. 

age, gender, race, laboratory results weight loss, medications, blood counts, etc. Because of the 

large number of variables, a grouping system was used with a combination to represent patients 

with similar characteristics. The data was used to relate the accuracy of the Cox proportional 

hazards model and a neural network with respect to prognosis of death resulting from AIDS. 

The leave-n-out technique was adopted for analysis, since the observation set was not large. The 

data was divided into 10 training sets and 10 different models were built for each of the two 

methods, viz. Cox regression and NNs. For the NN the output contained 4 binary variables with 

death in a particular year, i.e. death in year 1, death in year 2, death in year 3, and death after 3 

years.  The survival records from the database were used to categorise the patients into intervals. 

The output of the network estimated whether a patient died in a given interval. Of the 588 cases 

selected, 200 of them had various missing data.  Results that represented the mean value or 

mode were substituted for missing data. The neural network had fewer data points because the 

Cox model was divided into four discrete categories. The areas under the receiver operating 

curves (ROC) for both the methods were not significantly different (Ohno-Macahdo, 1997a). 
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This cannot be considered to be a true comparison between the models as the information and 

format presented was not identical. For statistical purposes, it can be accepted for comparison. 

The Cox model was used to explain which variables were most important for the prognosis of 

AIDS. There are no guidelines as to what constitutes a good predictive model. Ideally the 

models outputs have to be compared to the performances of a clinician. Each of the methods 

have their advantages and disadvantages, therefore a combination of different models may be a 

more accurate tool, for example, the Cox model can be used to determine the significant 

variables which can then be applied to a neural network to provide prognostic distinctions.  

 

Postoperative residual cicatrisation (PORC) after surgery is common and its detection has a high 

error rate. Laffey et al (2003) have hypothesised that a neural network would enhance 

prediction of PORC. Residual neuromuscular block after surgery may be a significant problem, 

even after the use of medium-or-short-acting agents. There is still insufficient proof that a 

peripheral nerve stimulator (PNS) can be used for the reduction of incidence in clinically 

significant postoperative residual cicatrisation (PORC). Human error in assessing PNS data is 

very common, possibly stemming from perceptual limitations. Errors of judgement in 

anaesthetic practice may also result from pressure of work. A train-of-four value that is greater 

than 0.7 has been suggested as a minimum criterion for safe tracheal estuation, as lower values 

may be associated with impaired airway protection. Higher train-of-four threshold values have 

been proposed, although they cannot be reliably assessed by the naked eye. Transducer or 

electromyography monitoring systems are unlikely to enter the clinical practice in the 

immediate future, suggesting that neuromuscular block will remain semi-quantitative. Several 

variables can predict successful reversal of neuromuscular block. However, the failure rate 

observed suggests that these are imperfect and insensitive in practice. Laffey et al (2003) tested 

the hypothesis that a neural network-based model would enhance the prediction of PORC when 

compared with human decision-making. To construct the predictive model, a feed forward, back 

propagation NN model was developed using a commercial NN software package Neuralyst 1.4 

integrated with a spreadsheet program (Microsoft excel 98). A training algorithm an input layer, 

an output layer and a hidden layer with four nodes was used. The number of training cycles, and 

the learning rate (viz. the degree of weighting adjustment between cycles) was preset by the 

investigators. Two input variables that were indicative of successful recovery of neuromuscular 

block, i.e. degree of spontaneous neuromuscular recovery before antagonism and the time 

elapsed since administration of pharmacological antagonism was chosen. To ensure validity 

(specifically to prevent over learning) the network was trained a total of 40 times using these 

variables. The „leave out k‟ or jack-knife method which trained the neural network on all data 

except for a group (in this case 1 out of 40 patients was left out, i.e. for each run one patient at a 

time was left out). A pass through the data set using every individual in turn as a single test case 
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allowed comparison of the predictive powers of the training and test phases. The performances 

of the training and test phases of the artificial neural network were essentially identical, the 

network correctly classifying 38 of 40 during testing ( 2=0.3, P=0.57). The test phase of the 

neural network performed with a sensitivity of 0.96 (25/26; ( 2=44, P<0.001), relative to 

clinical performance and a specificity of 0.93 (13/14; P=0.54. Fisher‟s test). In this small test 

group, with a high incidence of residual neuromuscular block, a simple neural network model 

was able to predict the likelihood of normal or abnormal neuromuscular function at the time of 

decision to perform tracheal extubation more accurately when compared to a clinician. This 

implies that even with restrictions and uncertain data, artificial neural network-based predictions 

of drug pharmcodynamic relations is the same, but sometimes it may outperform human 

assessment in this setting. In the above study the diagnostic variables used by the software were 

deliberately limited to two of the commonest ones used in clinical practice, instead of allowing 

all possible information to be used. The use of simple routinely measured variables for a neural 

network-based prediction is useful in estimating the likelihood of clinically significant residual 

neuromuscular block at the time of tracheal extubation with a significant performance 

improvement over that of the anaesthetic trainees from whose practice the data were derived. 

 

If the predictions of multiple models are combined, then the overall accuracy will be greater 

than any of the individual models (Hayashi et al, 2002). The authors used a series of neural 

networks for predictions. Instead of taking the average of the predictions of individual networks, 

a more sophisticated model that combines the predictions from the first level of networks as 

inputs for a second level of neural networks. A second level has 16 input units which 

correspond to the outputs of the four groups of the first level of networks. Using a first level of 

neural networks, an accuracy of 79.75% was achieved compared to 83.47% for the addition of a 

second level of neural networks. 

 

3.9 Previous neural network studies on survival of cancer patients 

 

Statisticians have developed non-linear approaches such as splines, trees and local methods for 

survival analyses. NN models provide an alternative to these methods and offer an economical 

framework compared to that of splines. There has been a recent growth in interest in the use of 

NNs in the survival analysis from two sources: prognosis problems have reached NN 

researchers who work in the medical field and some medical statisticians have become 

interested in NN techniques. 
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Ripley (1998) presented a study on the applications of NN methods for the prognosis of breast 

cancer. The basis of the comparisons of the models is prediction of whether or not relapse 

occurred within 5 years of diagnosis. The initial treatment was to remove the tumour and this 

was followed by one or more of chemotherapy, radiotherapy or hormone treatment. The primary 

task that was investigated was the development of techniques to extract the maximum benefit 

from a minimal subset of possible patient information and to provide a quantitative method for 

use by clinicians. The task was essentially one of using data on prognostic factors (such as age, 

histology, size of tumour, types of treatment, etc.) at the time of tumour removal to predict the 

risk of recurrence. While the proposed treatment would not be used when making a prediction 

of risk for a patient, the treatments given to past patients had to be included in the models. This 

allowed for the identification of groups of patients who had received the same treatment - within 

such groups the effects of prognostic factors should not be confused with the effects of 

treatment. Access to treatment by patients was not allocated randomly thus therefore the effects 

from the analysis cannot be compared. There are two types of prognostic factors: those that give 

information about the patient such as age, and those giving information about the tumour and its 

growth rate, such as the size of the number of affected auxiliary lymph nodes. Predictions from 

available information can be limiting as patients with similar values on all factors had greatly 

varying times to relapse. This problem has been identified by analysis but it cannot be addressed 

by it. The reason for it may be that the risk of relapse depends on some unmeasured factor or is 

simply subject to great random variation. The other factor is the complexity of the human 

biological system which makes people unique in their own way, thus displaying a variance in 

effects of a particular disease even though both patients exhibit the same symptoms and 

physiological features. From a statistical point of view, censoring is the main factor. The time to 

relapse is unknown, only a minimum value can be deduced.  This method is adopted since the 

patient did not return for treatment or was no longer available for some reason. The patient 

could have died from an unrelated cause, or it just means that there is no relapse.   

 

Statistical modelling of the time of a specific event (survival time) has various applications in 

numerous fields of research. Regression models for determining survival time in biomedicine 

are used to determine the effect of treatment on patient outcome. Research on prognostic factors 

for any disease is to discover what risk each patient is exposed to and treat accordingly. In the 

past twenty years only certain basic qualitative variables were measured in cancer related 

studies. The complex nature of the biology of cancer has encouraged research into the various 

tumour features. Standard prognostic factors have been combined with biological parameters for 

quantitative analyses of blood or tissue tumour. Flexible regression tools which are based on 

feed forward artificial neural networks (FFANNs) have now been widely adopted for 
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predictions because of their non-linear nature and the sheer number of prognostic factors 

(Biganzoli et al, 2002b).  

 

Survival studies are essential in the clinical environment as it gives clinicians opportunities to 

critique their method of diagnosis and plan treatment regimes accordingly.   From a patient 

point of view it is vital as it gives them an indication of time available to do the things they need 

to do and to plan their remaining time with family members and dependents. Conventionally, 

the Kaplan-Meier (KM) non-parametric technique has been used for preliminary analyses of 

survival data. For each variable, e.g. males or females, a separate survival curve can be plotted 

to find the significance of the variable on the predicted outcome.  

 

3.10 Model selection 

 

Mathieson (1998) used classical models of survival in which linear predictors were replaced by 

non-linear predictors to model using neural networks. Seven models were compared, including 

log-logistic and log normal distributions, non-linear Cox regression, the fourth is an extension 

of the third varying over time, while the other three grouped survival time as a discrete variable. 

If hidden units are included in the network then a local maxima is obtained instead of a global 

one. The outputs from the neural networks were used to compute the probabilities for each of 

the models. The chosen networks were trained using different random starting weights and 

average results. Mathieson (1998) has shown that this method is advantageous when dealing 

with local maxima when fitting neural networks. The aim was to find the best number of hidden 

units and amount of weight decay for a particular model. The possible models were then trained 

several times on the same training data using different starting points and the probability (or 

density) which occurred in the likelihood was averaged for each patient individually (before 

taking the logs and summing). Once a model was chosen, multiple estimates of relapse before 

five years were averaged for every patient in the test data set to give a single result for each 

patient. 

 

Ripley (1998) used different model types which were related to predictions of relapse within 5 

years. The available data set was small, therefore it could not be divided into two sets (one for 

training and one for testing), so that a five-fold cross validation was adopted to ensure that all 

data points from the sets would be used at some given point, i.e. each set was used as a test set. 

The models were chosen to fit four-fifths of the data, while each fifth was kept back. The fifth 

kept back was used to predict the probability of relapse within five years. A cross validation 

technique was adopted to determine the hidden layer and amount of weight decay for each of 

the proposed models, as illustrated in Figure 3.1. 
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Figure 3.1 Nested cross-validation schema: ten-fold within five-fold 

 

The second level of cross validation used ten divisions of data instead of five. The sum of the 

log probabilities on the validation data summed over the ten partitions was used to compare the 

models by. A scaling of variables was done to fall within the range 0 to 1: this is essential to 

equalise the effect of weight decay on each variable. Networks were fitted with the number of 

hidden units varying over 0 (a linear fit), 2, 6 and 10 or 20, depending on the number of output 

units in the model (10 for the multiple output models, 20 for the models with a single output). 

Weight decay parameters were varied according to the number of hidden units in the model, 

usually over the range 0.001 to 1, with reduction by a factor of 25 for the weights from the bias 

units in each case. The weight decay parameters were chosen so that in general the test statistic 

(-log probability) had a minimum within the range of values tested, for a fixed number of 

hidden units. As the weight decay was increased all the weights to the hidden units became very 

small and the fit (using the skip-layer units) was effectively linear. “Probabilities were 

calculated from the predicted values of the network for the patient in the current validation set. 

The probabilities were averaged over five fits from different random starting weights (with the 

same combination of size of hidden layer and amount of weight decay) and the sum of the logs 

of averages accumulated. The combination of the number of hidden units and weight decay 

which achieved the highest log probability sum over all the patients in the current training set 

was selected (viewed as the combination of ten validation sets). The corresponding model was 

fitted to the whole of the current training set which is 4/5 of the data. The fitting was repeated 

25 times and the average probability of relapse within five years was found for each patient in 

Train 

Validation 

Test 
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the current test set (1/5 of the data). There were 5 starting weights. For each weight there were 

five batches of the 4/5 data set for training therefore a total of 25 times in total” (Ripley, 1998).  

 

3.11 Missing values 

 

Ripley (1998) had many patients for whom information was missing. Excluding all those 

patients would have seriously reduced the size of the dataset, thus reducing the credibility of the 

results as a non-representation of the system under analysis. Two methods were used to cope 

with this problem: exclusion of the variable Chalkley vessel count (CVC) completely and use of 

the dataset of the patients with the known values for the above variable. The second approach 

was to fill in the missing values and retain all the patients. Two simple methods were used to fill 

in the missing values: regression on the known covariates and copying a value from the „nearest 

neighbour‟. The regressions were performed in sequence. The variable with the least missing 

values were regressed as a first pass. The fitted values were in turn used to regress to the second 

variable with the least missing values. The remaining missing values were then filled in by 

regressing on all available variables for each patient. An alternate set of data was produced 

using the nearest neighbour method, i.e. simply copying the value of the nearest neighbour for 

whom the value was available. Distance was defined as the square root of the average squared 

distance between available variables, after standardising all variables to have mean zero and 

variance 1. Only one neighbour was used for simplicity. From Ripley‟s (1998) analysis it was 

found that the regression method was not particularly successful, but was better than the nearest 

neighbour technique. A small dataset with all patient information was analysed and compared to 

a full dataset where missing values were filled in. Both sets of data were then analysed 

separately using the proposed models. There was little difference between the results on the full 

dataset and those achieved on the small one. Sensitivity was found to be lower than specificity 

for all models. 

 

3.12 Classification of data 

 

Studies concerned with survival do not always have data in which time features at all. 

Sometimes the time interval of interest is so short that the analysis can be done, by simply 

classifying the data into two classes: event or no event. In this case standard classification 

techniques can be used as the question of censoring does not usually arise. Studies of survival 

have been classified in many ways but most commonly as: primary classification of studies 

whose methods predict probabilities of events occurring during one or more fixed time intervals 

(a „classification‟ problem), and those that predict a continuous quantity such as the distribution 
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of survival time or the mean survival time (a „regression‟ framework). Consider the example of 

a 5-year study of survival after a diagnosis or an operation, since the mortality rate is high in the 

post-operative phase. An assumption is that patients were monitored up to a period of 3 years 

with a few up to five years. Another assumption is that all censored patients are still alive up to 

the five year period, resulting in a downward bias. In exploratory studies the bias is used to 

justify any variations in outcomes and trends. In most studies the target is prediction of an event 

or outcome, not the explanation. Ravdin et al (1992) gave an example based on their research: 

268 patients were monitored for 60 months and of these 213 had died. The Kaplan-Meier 

estimate of the survival probability at sixty months was 50 %, even though the status of 

censored patients is unknown.  

 

3.13 Fitting networks 

 

A bias due to patient-censoring and over-fitting of data are some of the problems associated 

with survival studies using neural networks. In a phrase borrowed from psychology, the aim is 

to achieve good generalisation. In comparison to classical statistics it is more difficult with 

NNs. In classical statistics model building starts from a simple model, which starts with fitting a 

linear model and then progressing to a quadratic or an interaction term. Testing occurs at each 

stage to check if there is an improvement between the models chosen. There is no analogue with 

NNs, since varying the number of hidden units can lead to some complicated models. Weight 

decay leads to good generalisation and ensures that the fitted function is smooth. This feature is 

only available in limited standard software for fitting NNs. Over-fitting of data can be overcome 

by using regularisation techniques, i.e. by penalising the minimand by a multiple of the sum of 

the squares of the weight. 

Minimand = -log likelihood + wij
2     (3.1) 

This process is known as weight decay. By changing the number of hidden layers and/or nodes, 

and , the degree of over-fitting can be controlled. Cross validation allows for a combination of 

data sets, with each being used for training and testing at a given time. A bias leads to a simple 

model, while the variance is a result of a flexible model. This trade-off has to be evaluated 

based on the raw data that is used in the modelling (Ripley, 1998).  

 

There are various ways to use more than two intervals, based on three possible predictions, with 

three possible architectures for each case: 

 Absolute probabilities: These are the probabilities for an event to occur in each of several 

non-overlapping classes, e.g. „death in year 1‟, „death in year 2,‟ „death in year 3‟ and 

„survive 3 or more years‟. Three different network architectures can be used to model the 
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above system: a single network with multiple outputs, a single network having a single 

output (with the addition of a time period to the input variables), or multiple networks 

where there is one output per network. Censored patients could be ignored (with potentially 

substantial bias) or a death period imputed for those censored patients. Lapuerta et al (1995) 

used a network with four outputs for their final predictions which corresponded to death in 

one of three 40-month periods or survival for ten years. During training patients lost to 

follow-up were used in censored data by imputing a death period. Two separate networks 

were trained for death in periods 2 and 3. Variables of patients who did not return in period 

1 (who were assumed to survive period 1) “were used as the input to the period 2 network, 

if that predicted death, death in period 2 was assigned, but if not, then the period 3 network 

was used to impute either death in period 3, or survival for three years” Lapuerta et al 

(1995). For multiple networks having a single output, the censored patients can be ignored 

or event times have to be imputed. Censored patients could be dealt with more correctly by 

altering the likelihood function used for training:  

 

Log {Pr (death in year 3  x) + Pr (survive 3 or more years  x)}   (3.2) 

 

It is possible, but rather computer intensive with standard software, to fit a network with 

time as an input variable and a single output (no study is known to have used this 

method). If a patient was used for the time interval during which they were observed, 

the practical size of the training set would grow. The predictions may differ from those 

obtained by a multiple output model since the smooth functions that can be fitted are 

different.  

 

 Conditional probabilities: “The conditional probabilities are modelled as 

 

Pr (die in the ith interval  survive first I – 1 intervals, x) = g ( i  )  (3.3) 

 

where g is usually the logistic function. Then a patient dying in the ith interval contributes 

log{ g( i  )[1-g( 1i )] [1-g( i )]} to the log likelihood, and a patient lost to follow-up in 

that interval log{[1- g( 1i )] [1- g( i  )]}, and from this the log likelihood L can be 

computed. The „scores‟ 1,…. k is given by the output of a neural network with k linear 

outputs. This type of model is referred to as a „life-table‟ or discrete-time survival model. It 

is also known as a „chain-binomial‟ model” Lapuerta et al (1995). For one output the 

likelihood is undistinguishable from the absolute probability model, so standard software 

can be used to fit the model with time as the input variable and a single output unit. This 
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method was used by Biganzoli et al (1998) with neural networks. Censored patients 

introduce little bias as long as the training data contains multiple copies of the each patient. 

Standard software can be used if multiple networks with a single output are used, but here 

censored patients must be ignored or death times imputed. Standard software has been used 

with multiple outputs to fit this model. Some outputs were coded as „not-defined‟ and not 

allowed to affect the error function (Lapuerta et al, 1995). 

 

 Cumulative probabilities: These are the probabilities that an event will occur in 

overlapping intervals (e.g. „death in year 1‟, „death in year 1 or 2‟ and „death in years 1, 

2 and 3‟. Here multiple networks each with one output can be used. Standard software 

may be used but a bias will be introduced due to censoring. Theewun et al (1995)  

imputed death probabilities for censored patients using the proportion who had died out 

of those that were at risk at the time of censoring (this was done recursively from the 

longest survivors). Another approach is a single network with one output and time as an 

input variable, which allows for the use of standard software. But this is at the expense 

of an even larger dataset than the other two such models. Here the patients who have an 

event recorded must be entered for each time period considered, whereas in the other 

two cases they were not entered after the event had occurred. This technique was used 

by Ravdin et al, (1992 and 1994b).  

 

One of the problems of assessing survival is the lack of good statistics for prediction. In 

traditional models the emphasis is usually to identify the deviation from the assumptions of the 

underlying model and selecting the best model with respect to the experimental data rather than 

evaluating prediction accuracy. The analysis of predictive ability is only commonly found in 

studies which compare neural networks to other techniques. Predictions are usually compared 

on the basis of sensitivity, the proportion of relapses correctly predicted, specificity, the 

proportion of survivors correctly predicted, and accuracy, the overall proportion correct. All of 

these are considered as estimates of the underlying population probabilities. The R test statistic 

can also be used as it is an indication of the accuracy of the fitting of the data to the model. This 

is a common statistical variable that is a standard output of most statistical and modelling 

software. 

 

3.14 Problems with comparisons of NN models 

 

Several studies cited above have claimed that their NN model outperformed a Cox regression 

and/or clinicians, but such conclusions need to be critically assessed. It is often claimed that 

Cox models cannot provide individual predictions or predictions of time of recurrence. The 
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production of survivor curve estimates requires some extra knowledge of standard of-the-shelf 

statistical software as it is provided with most packages. An estimate of the time to recurrence is 

most probably intended to represent a median (or mean) value: median survival times can be 

found from individual survivor curves. Statistical models used in comparisons are often not as 

effective as it could be. Comparisons are generally performed on small sets, or sets with small 

numbers of events, where greater accuracy can often be achieved by simply predicting no events 

at all (Ripley, 1998). For example, Bottaci et al (1997) validated their model by the use of a test 

set containing 92 patients, but only six events. The accuracy achieved by the network was 90%, 

whereas simply predicting no events would have achieved an accuracy of 92%. When a study is 

carried out there will always be limitations depending on the availability of the type and amount 

of data, censoring, missing values and other factors that may be beyond control. The focus and 

field of interest will also influence the assumptions made and the methods followed in the 

analysis. There will always be an amount of bias that will favour the researcher‟s hypothesis. 

The literature should therefore be used with caution and applied appropriately with justifications 

of choice. 

 

3.15 Summary 

 

Proposed factor(s) are investigated, usually using retrospective data to establish whether they 

are able to identify high and low risk groups for recurrence or survival. There is often 

appreciable disagreement between the conclusions of different studies of the same factor. There 

are several possible reasons for these discrepancies, apart from pure chance (Ripley, 1998). The 

method of assessing may not be sufficiently reproducible between laboratories and different 

methods may be used for the same factor. Once values are established, the analysis is done on 

the basis of a categorisation of a continuous variable, usually in groupings, e.g. low, medium 

and high. This can lead to loss of information and confusion where the definitions of groups 

differ between studies. With traditional models linear relationships are frequently assumed, but 

this may not be appropriate for all continuous variables (Altman et al, 1992). Statistical models 

may fit badly as it is unusual to find the model validated on a test set, or explicit checks of the 

assumptions to be made. The sample populations may vary and since the different factors are 

often highly correlated, their prevalence may influence the result. Adjuvant therapy may mask 

the effect of prognostic factors on recurrence. Patients that are perceived to be at high risk of 

recurrence may be given the most aggressive therapy. If the treatment is successful, the factors 

will appear to affect their rate of recurrence less. Some studies are performed on small datasets 

as the aim may have been to assess whether the factor is useful enough for routine 

measurement. For stepwise regression techniques, there are often several models that fit the data 

equally well. Such models are also often unstable. If the dataset is changed slightly the selection 
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procedure may yield quite different results. Different studies use different sets of „standard‟ 

factors against which to compare the new one. 

 

Models which can be used to fit very flexible models would automatically improve the 

effectiveness of prognostic factor studies. The multilayered perceptron has established itself 

firmly as one of the most powerful and versatile general purpose classifiers in use today. The 

neural network classifiers also score well against human experts which underlines what is 

perhaps one of the most significant findings, namely, the widespread potential for application of 

pattern recognition  techniques to problems which might appear at first sight to be completely 

unrelated (Lisboa, 1992). Intelligent decision systems need to be designed to fit real world data 

so that the outcomes can reliably be applied to a clinical trial. For the process to work the 

proposed application has to fit into the institutional management of data so that it can be readily 

available. Regular updating and validation of the models have to be carried out. Data 

management in the midst of censorship is a major issue when dealing with reliability. This is 

still quite challenging for the few neural network applications that have been applied to routine 

clinical use. 

 

The introduction of computers into the medical domain has extended the reach of the 

physician‟s intellect with regards to diagnosis and treatment. While this current scenario exists, 

artificial intelligence tools have not and will not replace general clinical consultation. Neural 

network models will act as a support for the clinician‟s decision making. There have been 

extensive applications in the domain of medical instrumentation. Inference based decision 

support systems are being used on a large scale for routine clinical use like gene expression 

analysis and for prognosis of MFI. Some of them are based purely on statistical methods.  

 

NNs may be considered as tools in the hand of the user. They do not work by themselves but 

will only perform as well as they are applied. Knowledge of the field of application is therefore 

as important as familiarity with the networks themselves. One way of including this knowledge 

is by data conditioning. Wherever prior knowledge is scarce, neural networks provide new 

techniques for analysing the raw data. These procedures are robust against noise, adaptive to 

non-linearities and potentially fast. Generally a single additional item of patient data such as age 

or a smoking record can aid clinicians when making complicated decisions. Very few of these 

models are adopted routinely to inform complex clinical decisions. Doctors never prognosticate, 

since they work in the present based on current symptoms but research on medical decision 

making show this to be untrue. Sometimes models are developed to publish journal articles that 

have no clinical relevance. The main reasons for rejecting prognostic models are reliability and 

absolute proof that support decisions about patient care, i.e. evidence of accuracy, generality 
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and effectiveness. Models need to be developed together with clinicians. They need to be 

involved in all aspects of the model building process. Statisticians working closely with doctors 

will have more credibility than those done in isolation as a solution to a mathematical or 

statistical problem. This example of teamwork and adherence to principles of accuracy and 

effectiveness will ensure that the proposed models can be easily implemented in a routine 

clinical trial, to support the clinician‟s diagnosis and treatment regime (Wyatt et al, 1995). 
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CHAPTER 4 

REVIEW OF BLOOD AND HAEMATOLOGICAL 

MALIGNANCIES 

 

4.1 Introduction 

 

Fundamental to all biological sciences is the understanding of the molecular biology of cells. 

Research is this area is beneficial to basic science but also to the practical applications in 

agriculture, biotechnology and medicine. The ongoing research in the understanding of the 

cellular and molecular basis of human diseases has lent itself to being applied to various 

medical case studies. The similarities and variations between cells is the key factor to 

understanding cellular biology. Animal and plant cells have basic features that have been 

preserved over time. For example, all cells have DNA coding in their structure, are surrounded 

by plasma membrane, and follow the same interactions to produce energy. Lower order animal 

and plant cells such as bacteria, amoebas and yeasts are unicellular and are still able to 

independently self replicate. Higher order organisms are multi-cellular, and are co-ordinated 

according to a particular manner to form specialised cells.  Each group of cells are able perform 

specific tasks at various locations within the organism. There are 200 different kinds of cells in 

the human body. Each has been developed to perform a specific function such as memory, 

sight, movement and digestion. Features and characteristics that are common between the 

various types of cells can be studied collectively studied to have an overall understanding of 

cellular biology. Knowledge gained from one cell is extrapolated and generalised so that other 

types of cells can be studied. Computational tools and scientific methods have an impact on 

progress made in the field of biology and medicine. Scientists are continuously being 

challenged to go beyond their boundaries (Cooper, 1996). Cell growth occurs via a cell cycle 

which is controlled by a variety of enzymes, kinases and cyclins. Genetic coding in the form of 

DNA determines whether cells will divide and form mature or immature cells. Leukaemia is a 

cancer of the blood and is confirmed when there are abnormal numbers of immature cells 

present in the bloodstream. On diagnosis of leukaemia, further tests are done to determine the 

specific sub-type of leukaemia: ALL, AML, CLL or CML which will aid clinicians in planning 

a treatment plan for a particular patient. Results of these tests, i.e. full blood count, differential, 

flow cytometry and cytogenetics are also used as indications for a patient‟s prognosis. Being 

able to predict a patient‟s mortality whether good or bad allows the patient to plan his life and 

allows clinicians to determine the course of treatment. In some institutions conventional 
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therapy is used for all patients, while other run clinical trials and established treatment 

programs for high risk patients.  

 

4.2 The Eukaryotic Cell Cycle 

 

There are two main classes of cells which are defined by the presence or absence of a nucleus. 

Prokaryotic cells (bacteria) have no nuclear envelopes. Eukaryotic cells contain a nucleus in 

which the genetic material and cytoplasm are separated. The cell is comprised of two major 

classes of macromolecules, viz., proteins and nucleic acids. Nucleic acids within the cells are 

able to self replicate without external factors. RNA (ribonucleic acid) is independently able 

copy itself via catalysis. Through evolution ordered reactions between RNA and proteins have 

produced the current genetic code which has taken the place of RNA as the genetic material. 

Self-reproduction is a fundamental characteristic of cells and for all living matter. A parent cell 

divides into two cells, to form daughter cells. The process of division is called a cell cycle. The 

daughter cells can in turn divide giving rise to a continuous replication of similar cells. A single 

parental cell can lead to a whole population, all duplicates of each other. Even though cells 

have the ability to grow and replicate, the actual mechanisms involved have only been 

discovered relatively recently. Cell division has to be carefully monitored and co-ordinated to 

ensure that method of cell growth and replication of the genetic code remains intact throughout 

this transformation. The understanding of the molecules behind these events is both relatively 

new and as yet incomplete.  

 

The three main components of the cell cycle are the activating enzymes, cell division cycle 

kinases (CDC) or CDKs, their activating cyclins, and CDC/CDK inhibitors, collectively called 

CKIs. In eukaryotic cells a series of protein kinases conserved during the evolution stages from 

yeast to mammal control steps in the cell cycle. There are three main proteins that regulate the 

cell cycle, viz., cyclin dependent kinases (CDKs), the cyclins, and the cyclin dependent kinase 

inhibitors (CKIs). The CDKs, once activated phosphorylate other proteins, allowing them to 

perform at a specific stage of the cell cycle. The CDKs are regulated by cyclins which activate 

the CDKs only when they reach a critical concentration. The CKIs interact with the complex 

formed between a cyclin and a CDC/CDK in such a way that they inhibit the kinase activity 

and prevent the cell from progressing through the cell cycle. In higher order eukaryotes, the cell 

cycle is controlled by growth factors which are responsible for cell proliferation. Single cell 

development progresses according to the requirements of the organism as a whole. The proteins 

involved in the cell cycle have a similar purpose to ensure that after appropriate stimulation, the 

cell accurately and completely replicates it DNA before cell division. Each protein has a unique 
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role during specific stages of the cell cycle, so that the events occur in the correct sequence 

(Gillet et al, 2001). 

 

Cells having defective checkpoints are advantageous when selection favours multiple genetic 

changes. Cancer cells are caused by defective cell cycle procedures. This has encouraged the 

simultaneous study of both the cell cycle and the disease. Cancer cells are often missing one or 

more checkpoints, which facilitates a greater rate of genomic evolution. Basic cell cycle 

regulation needs to be understood in order to understand the mechanisms that lead to 

haematological malignancies and the importance of tumour suppressor genes. Cell division 

consists of four co-ordinated processes: cell growth, DNA replication, distribution of the 

duplicated chromosomes to daughter cells, and cell division. A typical eukaryotic cell cycle is 

illustrated by human cells in culture which divide approximately every 24 hours. Some human 

cells may proliferate rapidly, such as the epithelial cells of the small intestine, but even the 

quickest of these will take 24 hours to complete a single cycle. The active cell cycle has been 

divided into four phases. Mitosis (M phase) was identified first because of its distinctive 

morphological stages. The other phases are collectively called the inter-phase. Cell mitosis is 

the final step of a cell cycle which is a defined program that can be divided into four phases: 

the G1-, S-, G2- and M- phases. Increased knowledge of the structure and function of DNA led 

to the term S (synthesis) phase. From the knowledge of the M and S phase it was apparent that 

these two phases could not just run from one to the other, and that there is a gap between the 

two. These breaks or gaps occur between rounds of mitosis and DNA synthesis. The cell cycle 

comprises of: Mitosis (nuclear division) and interphase. The process of mitosis begins with the 

division of the daughter chromosomes and ends with cell division (cytokinesis). Since mitosis 

and cytokinesis take approximately an hour, 95 % of the cell cycle time is actually the 

interphase, i.e. intermittent time between mitoses (Cooper, 1996).  

 

4.3 Haematology 

 
Haematology is the study of blood and its related disorders which are referred to as 

haematological malignancies. The average blood volume of an adult is 4 to 6L: women have 4 

to 5L and men 5 to 6L. Blood has a pH between 7.35 and 7.45 and represents about 8% of the 

total body weight. It is composed of 55% plasma (the fluid portion) and 45% formed elements 

or cells. Of the 45% formed elements, approximately 44% of the cells are red blood cells 

(RBCs), whereas only 1 % is white blood cells (WBCs) and platelets (PLTs). Blood plasma 

contains 91.5% water and 8.5% solutes. The solutes consist of three different kinds of proteins: 

albumins (55%), globulins (38%), and fibrinogen (7%); other solutes are electrolytes, 

hormones, non-protein nitrogen compounds, nutrients and respiratory gases. The reference 



80 
 

values for the cellular elements are as follows: RBCs (4.2 to 5.4 x 1012 L-1 for females and 4.7 

to 6.1 x 1012 L-1 for males), WBCs (4.8 to 10.8 x 109 L-1) and PLTs (150 to 350 x 109 L-1) in 

adults. The ranges will change with age, gender, geographic location, and health or disease 

(Harmening, 2002). 

 

Blood cells generate in the bone marrow, which forms the central core of any bone structure. 

Externally bone is quite hard, while the core is sponge-like and red or yellow. Blood is 

composed of fluid (plasma or serum) and cells. Blood cells originate from „stem cells‟, which 

divide to form three important subsets in the marrow are: red blood cells (RBC) platelets and 

white blood cells (WBC). Red blood cells are responsible for the transport of oxygen 

throughout the body. Oxygen is used for respiration in cells. This process releases energy into 

the body for all functions, from walking to blinking. Platelets react to form clots if there is any 

leakage from blood vessels. This natural instinct prevents excessive bleeding when there is 

damage to a blood vessel by injury. White blood are responsible for  protecting the body 

against foreign matter like bacteria, viruses and other foreign bodies such as a wood splint in 

your hand.  

 

The blood in mammalian species includes a number of differential cell types essential for 

survival. Erythrocytes transport oxygen; platelets mediate blood clotting and support tissue 

integrity. Neutrophils, eosinophils, basophil granulocytes, and monocytes are vital too as a 

defence mechanism against bacteria, fungi, parasites and viruses. T-lymphocytes, natural killer 

cells, and dendritic cells all function as antigen-presenting cells and in cell-negotiated 

immunity. B-Lymphocytes are the source of antibodies. Multiple humoral and cellular factors 

control the amount of these cell types that circulate in the bloodstream and can be rapidly 

adjusted to meet the immediate need. Infection by a variety of micro-organisms results in 

almost immediate release of mature neutrophils from the marrow storage pool thereafter an 

increase in granulocyte and monocyte production until the infection is cleared. When a 

haemorrhage or acute haemolysis occurs marrow reticulocytes are signalled to be released. This 

results in increased red cell divisions until the desired level for a particular patient is obtained.  

Decreasing platelet number, acute anaemia, and tissue destruction or inflammation stimulates 

the formation and release of platelets. The control of T- cell and B-cell production is quite 

complex and occurs in response to immune stimuli, e.g. foreign antigens, and this control of 

increasing production also occurs within the various subsets of these cells (Harmening, 2002). 

Immature cells of any type are abnormal. Cells should be examined for abnormalities in the 

nucleus or cytoplasm. 
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4.3.1 Erythrocytes (red blood cells) 

 
Red cells consist of plasma membrane surrounding a solution of proteins (haemoglobin) and 

electrolytes. A normal mature erythrocyte is a biconcave disc that is 7 to 8 µm in mean 

diameter and 1.5 to 2.5 µm thick: it has a mean volume of 90 fL (femtolitres). Red blood cells 

should be fairly uniform in size and relatively round in shape, with a small area of central pallor 

and no nucleus or inclusions (Harmening, 2002). The erythrocyte carries oxygen from the lungs 

to the tissues where it is exchanged for carbon dioxide. These cells are pliable or flexible and 

deformable, thus allowing them to change their shape in order to pass through the 

microcirculation to transport oxygen.  

 

4.3.2 Platelets (thrombocytes) 
  

Platelets are approximately 2 to 4 µm in diameter and vary in shape. Platelets contain particular 

molecules needed for haemostasis and are able to adhere, aggregate and supply a surface for 

coagulation reactions. 

 

4.3.3 Leukocytes (white blood cells) 
Myeloids and lymphoids form the basis of this group. Myeloid cells are referred to as 

polymorphs since their nuclei have variations in their shapes or granulocytes since they contain 

granules of chemicals used for combating bacterial invasion. The chemical composition 

dictates what they are called: neutrophils, eosinophils, basophils, lymphocytes and monocytes. 

Lymphoid cells are made up of lymphocytes, monocytes and plasma cells which can kill some 

viruses and cancer cells. These cells also produce antibodies to combat viruses and bacteria. 

Lymphoid cells are generated in the lymph nodes in specific parts of the body. Lymph nodes 

are distributed in the neck, armpit, and groin or inside the chest or stomach.  

 

4.3.3.1 Segmented neutrophil (filamented neutrophil, polymorphonuclear neutrophil) 

 

In older children and adults there are 50% to 70% of mature granulocytes, which are also, 

called segmented neutrophils. The nucleus of the segmented neutrophil is separated into two to 

three (usually three) lobes with a narrow segment or filament connecting the lobes. 

Approximately 6% of neutrophils have one lobe (band), 35% have two lobes, 41 % have three 

lobes, 17% have 4 lobes and 2% have five lobes. Segmentation of the nucleus enables these 

cells to pass through an opening in endothelial lining cells of capillaries and to “home in” on 

selected prey (such as micro-organisms causing infection). Neutrophil secondary granules are 
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lysosomes that contain alkaline phosphatase. Mature neutrophils are approximately twice the 

size of normal erthrocytes. 

 

4.3.3.2 Band neutrophil (non-segmented neutrophil non-filamented neutrophil) 

 

Peripheral blood of healthy individuals contains 2% to 6% of the band neutrophils. Band 

neutrophils have a nucleus with a horseshoe shape in which the opposite edges of the nucleus 

being mostly parallel. These cells do not have a nucleus separated into lobes connected by a 

filament like the segmented neutrophil. The chromatin of the nuclear are clumped forming a 

dark mass at each pole where the pole is destined to be. The secondary neutrophil granules are 

small and evenly distributed. There can sometimes be a doubt when trying to differentiate 

between segmented and banded neutrophils. One has to decide whether the link between the 

lobes is narrow enough to be called a filament or wide enough to be identified as a band. In 

attempting to differentiate between a segmented and a band neutrophil, identification should 

not be made on a single morphological characteristic but on combined features. If there is a 

doubt regarding a borderline cell, the questionable cell should be placed in the mature category. 

 

4.3.3.3 Eosinophil 

 
Large, round, secondary, refractile granules that have an affinity for the acid eosin stain 

recognize these cells. The granules are spherical, uniform in size and evenly distributed. 

Normal adult peripheral blood contains 0 to 4% eosinophils. Normal blood eosinophils are 

about the size or slightly larger than neutrophils and have a band or a two-lobed nucleus with 

condensed chromatin; rarely does an eosinophil have three lobes. There is a diurnal variation in 

the percentage of circulating eosinophils, with an increase at night and a decrease in the 

morning. 

4.3.3.4 Basophil 

 
Although basophils constitute only 0 to 2% of normal blood cells, the large, abundant, violet-

blue (or purple-black) granules aid in the immediate recognition of this cell. These granules 

vary in size from 0.2 to 1 µm and are visible above the nucleus as well as lateral to it thereby 

obscuring most of the nucleus. They are coarse and unevenly distributed, vary in number, 

shape, and colour, and are less numerous than esoinophil granules. Basophil granules are also 

water-soluble. In cells that are poorly fixed during staining, the centre of the granule may be 

washed away, leaving a small colourless cytoplasmic area. Basophils show a similar diurnal 

variation to that of eosinophils, increasing at night and decreasing in the morning. 
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4.3.3.5 Lymphocytes 

 

Lymphocytes are the second most numerous cells in the blood, comprising 20% to 40% of the 

adult blood cells. Most lymphocytes are small varying from 7 to 10 µm and usually round with 

smooth margins. There are some intermediate sizes and some large lymphocytes but it is not a 

reliable basis for determining the age of metabolic activity of lymphocytes because there size 

varies with the thickness of smear. They tend to become spherical and small in thick areas of 

the smear, in the thinnest end of the smear lymphocytes may spread out and appear large. The 

margins of large lymphocytes are frequently indented by neighbouring erythrocytes causing 

them to have a serrated shape. Most lymphocytes do not have granules but some large 

lymphocytes may have a few well-defined granules that vary in size, are unevenly distributed, 

and can be easily counted. The diameter of the nucleus of a small lymphocyte in peripheral 

blood is slightly larger than, or the same size as a normal erthrocyte in the same microscopic 

field. The lymphocyte‟s nucleus in relation to its cytoplasm is large (N:C ratio is 4:1) and the 

nuclei are round or slightly indented. Nucleoli are present in some lymphocytes thereby making 

them capable of growth and replication. 

 

The lymphoid progenitor cell is derived the haematopoietic stem cell. The common lymphoid 

progenitor cell can produce either T cells or B cells. The type produced depends on the location 

in the human body. T cells are produced in the thymus and B cells in adult bone marrow. Null 

cells, or third population cell also originate in the bone marrow, but the maturation sequence is 

unknown. T, B and null cells cannot be separately identified morphologically but can be 

distinguished functionally and by immunological markers that use target specific monoclonal 

antibodies. Lymphocytes proliferate and mature into fully functional immune cells in the 

primary lymphoid organs such as the thymus and bone marrow. Lymphocytes from the 

lymphoid organs contain lymph nodes, spleen, and mucosal tissues that communicate with 

antigen-presenting cells (APCs), phagocytes and macrophages with the immune response 

system. 

 

About 10 % of the lymphocytes are much larger cells with more abundant cytoplasm and a 

reduced nuclear: cytoplasmic ratio. Prolymphocytes as seen in prolymphocytic leukaemia are 

relatively large cells in which several nuclei are visible. Lymphocytes with relatively small 

amounts of cytoplasm, large nuclei, less dense nuclear pattern and well defined nucleoli 

probably do not occur in healthy persons, except possibly in small numbers in the body of 

infants. In acute lymphoblastic leukaemia (ALL) they may be the prominent cell type. 

Sometimes, the cells, although clearly blasts, are quite small (microblasts) and do not exceed 

mature lymphocytes in size (Lewis et al, 2001). 
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4.3.3.6 Monocytes 

 

In the thin areas of the peripheral blood smear, a monocyte measures about 15 to 18 µm and is 

larger than the mature neutrophil. Monocytes have abundant cytoplasm in relation to the 

nucleus (N:C is 2:1 or 1:1).There may be a varying number of prominent granules in addition 

to the small granules. Some may appear non-granular suggesting rapid turnover. Digestive 

vacuoles may be observed in the cytoplasm. In disease states, phagotised erthrocytes, nuclei, 

cell fragments, bacteria, fungi and pigment may be present. One of the distinctive features of 

the monocyte is the appearance of convolutions (like those in the brain) in the nucleus.  

Another characteristic is the lacy, often delicate chromatin network of intermingled fine strands 

with small chromatin clumps. Monocytes vary in shape with many cells being round while 

others reveal blunt pseudopods that are manifested of their slow mobility. These ameboid cells 

continue to move while the blood film is drying and become fixed before the cytoplasmic 

extensions are retracted. There are four helpful characteristic features of the monocyte: nuclear 

convolutions; lacy, often delicate chromatin; dull grey-blue cytoplasm; and blunt pseudopods. 

Kinetic studies have revealed that the half-life of monocytes in circulation ranges from 8 hours 

to 3 days before these cells enter tissues and are transformed into macrophages. Monocytes 

account for 2% to 9% of normal blood leukocytes. 

 

4.4. Cell development 

 
Blood cells are not born as mature cells. They develop in stages in the marrow from infancy, 

and childhood, to adolescence and adulthood. In acute leukaemias the maturity of their cells 

determines the disease subtype. The stem cell (parent of all blood cells) produces immature 

cells that are called blast cells, e.g. myeloblasts or lymphoblasts. Myeloblasts in turn will 

transform into promyelocytes, and eventually leading to myelocytes. Mature cells develop into 

granulocytes, such as neutrophil granulocytes (or neutrophils for short. Lymphoblasts evolve 

into lymphocytes and plasma cells (Cooper, 1994). 

 

4.5 Analysis of composition of blood 

 

Analysis of blood components is the most widely used form for diagnosis of various ailments 

and diseases. The primary step in assessing haematologic functions and the presence of disease 

is an examination of the cellular elements in the blood. Examination of the blood frequently 

gives important information that aids in the diagnosis of haematological disease and may 

suggest further tests to quantify the various components or specify the type of malignancy, e.g. 
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A low white cell count would indicate a leukaemia using the FBC (full blood count analysis) 

but flow cytometry analysis can specify the type of leukaemia, e.g. AML or CLL (Cooper, 

1994). Understanding the morphology of cells allows for specialized techniques or methods to 

be used for analyses. The shape, size and content of the blood cell is used in the identification 

process, when analysing, via a combination of staining, and microscopic observations. It also 

influences reactions with commercial probes and monoclonal antibodies which allows for 

identification via assays and fluorescence absorption (flow cytometry). 

 

4.6 Haematopoiesis 

 

Haematopoiesis is the growth and generation of various types of cells found in blood. The 

haematopoietic system is characterised by a constant turnover of cells that continuously 

maintain a large number of erthrocytes, leukocytes and platelets. This massive cell population 

is distributed throughout the body via a complex network of tissues, organs, stem cells and 

regulatory factors. This network is responsible for the maturation and division of 

haematopoietic stem cells into the lineage-committed stages that transport oxygen and excrete 

carbon dioxide (RBCs). Fight infection (granulocytes), perform immune functions 

(lymphocytes), and maintain homeostasis, a process in which blood clots and bleeding is 

halted. The haematopoietic stem cell has the ability to divide infinitely and generate a 

continuous supply of cells. In addition it has the ability to differentiate into progenitor cells of 

lymphoid and myeloid lineages. The haematopoietic system is made up of the bone marrow, 

liver, spleen, lymph nodes and thymus. The organs and tissues are involved in the division, 

grow and death of cells. Haematopoiesis is evolved from the stem cells that support 

haematopoiesis, the progenitor cells that are committed to particular cell lines, and the 

regulatory factors (growth factors) to which the haematopoietic system responds. These 

features allow the system to respond to stimuli such as infection, bleeding, or hypoxia by 

increasing haematopoiesis with emphasis on the specific cell type that is desirable. Most 

descendants of the stem cells are committed to differentiate. This occurs through a series of 

steps or stages, each of which leads to a further restriction of lineage choice, until finally the 

descendant cells are limited to a single lineage. After commitment to a specific lineage, the 

progenitor cells continue to differentiate and mature into the terminally differentiated cells 

found in peripheral blood. The amplification of cell numbers that accompany the differentiation 

process is very large. 

  

Haematopoiesis is sustained in a steady state as production of mature cells equals blood cell 

removal, e.g. when a person donates blood, mature cells would be produced to replace the 

blood drawn from person. Bone marrow haematopoietic activity consists of a stem cell pool 
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and a bone marrow pool with eventual release of mature cells into the peripheral blood. The 

macro-environment of the bone marrow consists of both morphologically unidentifiable multi-

potential stem cells (MSCs) and uni-potential committed stem cells. The bone marrow pool can 

further be separated into two distinct regions: cells that are proliferating and maturing, and cells 

that are stored for later release into peripheral blood (Harmening, 2002). 

 

4.7 Haematopoietic cell cycle kinetics 

 

Stimulation by haematopoietic growth factors results in haematopoietic cells undergoing a 

continuous generative (G) cycle in which cells divide, differentiate or remain dormant. The 

bone marrow contains cell populations in all phases of cell development. The generative cycle 

is divided into five phases: G0, G1, S, G2 and M phase (Harmening, 2002). The cells enter a 

resting or dormant phase (G0) after dividing. It then enters the G1 phase which is the post-

mitotic rest phase and which directly precedes the deoxyribonucleic acid (DNA) synthesis 

phase. The cell proceeds into the synthesis phase (S) of active DNA synthesis where the DNA 

is duplicated. Thereafter the cell enters the premitotic rest period (G2) as the cell readies itself 

for the mitotic period (M). During the final or M phase, there is cellular division of the 

chromosomes in the nucleus and the cytoplasm, resulting in two daughter cells. TG is the cycle 

of one complete mitotic division. After final differentiation, the cell leaves the cycle as a non-

dividing cell (GND).  

 

4.8 Haematological disorders or malignancies 

  

Cell mitosis is the final step in the cell cycle. A number of surveillance systems (or 

checkpoints) control the cell cycle and interrupt its progression when DNA damage occurs or 

when the cells fail to complete a necessary event. The cell cycle major checkpoints are: the 

DNA damage checkpoint, the spindle checkpoint, and the spindle pole body duplication 

checkpoint (Beutler et al, 2001). Cell death by apoptosis is the result of cell cycle checkpoint 

failure. However, small numbers of genetically altered cells may survive. When selection 

favours multiple genetic changes it is advantageous. Cancer or leukaemia is the result of one or 

more checkpoints that are missing. Mitosis is controlled by the M-phase and S-phase promoting 

factors (MPF and SPF). The key element of the SPF subunit is cdk (cyclin dependent kinase). 

The second component is cyclin B, which is synthesized in interphase and degraded in mitosis. 

Cdc2 interacts with cyclin B in mitosis, whereas the cdc2/cyclin A complex is formed before 

mitosis and is required for progression through the late G2 phase. Thus the cyclins A and B are 

also called the mitotic cyclins since they are up-regulated in late G2 and G2/M and undergo 

proteolysis in M phase. The exit from mitosis is characterised by the abrupt ubiquitination and 
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subsequent degradation of cyclin B. Cells with defective cyclin B degradation mechanism or 

without mitotic cyclin B easily become aneuploid. The cyclin B/cdk2 checkpoint is very often 

defective in malignant cells leading to uncontrolled M-phase entry and aneuploidy. All cyclins 

share an approximately 150 amino acid region, called a cyclin box, which reacts with the cdks. 

The G1 cyclins (C, D and E) and the mitotic cyclins (A and B) form distinct categories, 

although cyclin H and the type T cyclins fall outside these two major groups. In G1 phase the 

most important substrate of the cdk4-cyclin D and cdc6-cyclin D complexes is retinoblast (rb). 

Deletions, mutations, and translocations of rb are common in various malignancies; 

homozygous deletions of the p16INK4A are even more frequent. Ectopic expression of both cyclin 

A and cyclin E restores rb hyperphosphorylation and causes cell cycle arrest in cancer cell 

lines.  

 

The complex cell cycle network has its parallel in several oncogenes and tumour suppressor 

genes that influence carcinogenesis and tumour progression. The products of oncogenes, the 

oncoproteins, lead to or facilitate the transformation of a normal to a malignant cell. As a 

general rule if a mutation causes a functional loss of the gene product, and the recessive loss of 

function leads to uncontrolled cell division, the underlying gene is called a tumour suppressor 

gene. 

 

4.9 Blood cells in leukaemias   

 

The word leukaemia is defined from the Greek word leukos which means white and haima 

which means blood, resulting in the term white blood. The specific cancer type, leukaemia is a 

considered to be a malignant disease of the hemaetopoietic tissue. Abnormally grown cells 

replace healthy bone marrow components. Leukaemic cells are usually (but not always) present 

in peripheral blood and usually invade reticuloendothelial tissue, including the spleen, liver, 

and lymph nodes (Halbook, 2005). These cells may also overrun other tissues, infiltrating any 

organ of the body. Leukaemia ultimately causes death if left untreated. Abnormal and 

uncontrolled growth in leukaemia patients is similar to most cancers. In this case too many cells 

are detrimental to the patient. Leukaemic cells are underdeveloped white cells that are unable to 

perform their usual functions of combating infections. These cells circulate in the blood steam 

causing irregularities in various parts or organs (Harmening, 2002). 

 

4.10 Symptoms and signs of leukaemia 

 
Insufficient red blood cells for carrying oxygen for energy production will lead to weakness 

and fatigue. The patient becomes anaemic and pallid due to the lack of energy. There is easy 
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bruising and excessive loss of blood from the gums and nose. Other symptoms include skin 

rashes which tend to form spots. This develops because there are insufficient platelets for the 

clotting of small blood vessels. Frequent infections and fever will be due to fewer, normal 

mature white blood cells being available to fight infections. An accumulation of leukaemic 

cells in the bone marrow or around the brain can cause aches and pains in the bones or 

headaches. Glands or lymph nodes in the neck, groin or armpits can swell if leukaemic cells 

end up residing there. An enlarged liver or spleen from accumulation of leukaemic cells will 

result in a feeling of fullness in the stomach. This leads to a loss in appetite and unexplained 

weight loss. A person will not display all the symptoms, but maybe two or three of the above. 

Each of the above can be a symptom for other sicknesses and diseases. It is therefore essential 

that the physicians carry out the relevant tests for diagnostic purposes. 

 

4.11 Diagnosis of leukaemia 

 
The doctor will physically examine the patient and record the medical history to determine 

what the symptoms are. Lumps and tender spots in the areas of the lymph nodes and the spleen 

will be indicative of possible abnormal growth. Further testing has to be carried out to confirm 

the diagnosis. Blood samples are sent to haematologist full blood count analysis. A bone 

marrow sample may also be taken for analysis to confirm the type of leukaemia, if it exists. 

Imaging techniques like x-rays, CT scans (computerised tomography), MRIs (magnetic 

resonance screening), etc will show more of the internal physical detail, e.g. an enlarged spleen, 

liver or lymph node is seen best through a MRI scan. Spinal taps are done if there is 

confirmation of leukaemia. The spinal fluid that is sampled is circulated in the brain and along 

the spinal cord. Ideally it should not contain blood cells. If it does contain leukaemic cells then 

the treatment would have to be adjusted accordingly to cover the brain as well as the blood and 

marrow. 

 

4.12 Causes of leukaemia 

 
The prevalence of cancer is rising rapidly because of demographic changes brought about by 

globalisation. The disease impacts on patients and family, on health institutions and society at 

large (Albreht et al, 2008). Cancer develops as a result of genetic mutations that result in 

certain restrictions in the normal growth of the cell. These genetic alterations include point 

mutations, and chromosomal deletions, amplifications and translocations. The multitude of 

variations and combinations of these alterations complicates and challenges researchers, 

pathologists and oncologists who constantly seek to conquer this disease. Identifying molecular 

mechanisms that describe the genetics of a particular cancer proves to be a mammoth 
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undertaking. The genetics of cancer is not sufficient to classy the various types of cancer. 

Clinical data like patient history, tumour histology and tests for tumour markers are currently 

used for classification into the various types and subtypes of cancer. Treatment of cancer uses 

classification into the various types thus making it quite challenging to find the appropriate 

treatment for individual patients. Ideally oncologists should develop a treatment regime for 

each patient according to the clinical data and the symptoms displayed. This requires the 

knowledge of specific gene alterations so that clinicians can diagnose and give an individual 

prognosis for each patient (Ciro et al, 2003).  

 

 

4.13 Types of Leukemias 

 

Leukaemia cells do not cause death. It is the expansion of the neoplastic clone that leads to 

bone marrow failure, albeit at different rates in the various subtypes. Ongoing developments in 

haematology have led to greater accuracy following the discovery of cytochemical stains, and 

also an increase in the number and range of monoclonal antibodies. Specialist techniques for 

karyotyping have also helped clinicians to enhance their diagnostic acumen (Jacobs, 1997).  

 

 Leukaemia is generally considered to be cancer of the white blood cells.  There are two broad 

groups which are classified according to the time period taken for the disease and the level of 

maturity of the cells. There are another two main types which are classified on the origin of the 

white blood cells. Cell maturity is used to distinguish between acute and chronic forms 

(http://member.rivernet.com.au). When the malignant cells are immature the leukaemia is 

classified as acute. When the cells are mainly mature, then it is described as chronic. First are 

the two types of chronic leukaemias that come on slowly and progress slowly, and then the 

acute leukaemia that comes on rapidly and progresses rapidly. Acute means that it occurs 

suddenly, and chronic means gradually. Leukaemias are further defined according to cell 

lineage as myeloid or lymphoid. This will depend whether it comprises marrow or lymphoid 

cells. The term myeloid (from “myelo”, Greek for marrow, and “eidos” which means form) 

encompasses granulocytic, monocytic, megakaryocytic, and erthrocytic leukaemias. Based on 

the above nomenclature the following four types of leukaemias exist: “chronic lymphocytic 

leukaemia or lymphatic (CLL), chronic myeloid leukaemia (CML) or chronic granulocytic 

leukaemia (CGL), acute lymphocytic leukaemia or lymphocytic or lymphoblast (ALL), acute 

myeloid leukaemia or myelocytic or myeloblast (AML)” (Harmening, 2002). Leukaemia 

appears to be inherited, although some individuals have a predisposition for acquiring this 

disease. For example, a group of people may be exposed to a carcinogenic substance but only 

http://member.rivernet.com.au/


90 
 

those that are predisposed to it will eventually obtain the disease. There is also an increased 

incidence of leukaemia in family members of leukaemic patients. 

 

4.14 Acute leukaemia  

 

The majority of patients with acute leukaemia display clinically unexpected onset of signs and 

symptoms of only a few weeks duration. Patients often seek medical attention because of 

weakness, bleeding abnormalities, or flu-like symptoms.  These abnormalities reflect the failure 

of the bone marrow to generate sufficient numbers of normal cells and are caused by the 

production and accumulation of leukaemic cells in the marrow. Leukaemic replacement 

eventually results in marrow failure and the resultant life-threatening complications of anaemia, 

thrombocytopenia and other complications. The ratio of adult cases to children is 10:1 and 

males have a slightly increased incidence compared to females. ALL is more common in 

children and AML is more common in adults. 75% of childhood leukaemias are classified in 

ALL whereas nearly 80% of AML cases occur in adults. Cytogenetics analysis of leukaemic 

cells is a critically important addition to the standard classification of acute leukaemia. It is 

currently considered to be an essential component in the assessment of the newly diagnosed 

leukaemia patient, playing a major role in diagnosis, sub-classification, and selection of 

suitable therapy and monitoring the effect of therapy. Chromosomal abnormalities have been 

linked to the distinct forms of leukaemia (Harmening, 2002). Acute leukaemia, whether 

myeloblastic or lymphoblastic have been treated but with varying outcomes. Remission rates of 

cancer patients, especially children have progressively increased over the years with some 

groups achieving a rate of 100%.  With non-specific drug regimes patients‟ responses vary, 

with some not responding at all, while others go into remission and then relapse. Survival rates 

have grown over the past few years with some categories having a rate of less than 50 % 

beyond 5 years (Beutler et al, 2001). After diagnosis of acute leukaemia the differentiation 

between AML and ALL is critical.  

 

4.14.1 Acute lymphoblastic leukaemia 

 
ALL is the most prevalent malignancy of children. Children make up 25% of all known 

cancers. ALL has its highest incidence in children of 1 to 5 years, with a peak at 3 to 4years. 

This peak is not seen in blacks, and as a result, ALL is more common in whites. In adults, ALL 

accounts for 20% of acute leukaemias. All is found to be more common among males than 

females. ALL is a heterogeneous disease with biologically and clinically distinct subsets. ALL 

is divided into B-ALL and T-ALL lineages. In adults the t(9;22) gene is more prevalent in the 

B-precursor group. HLA-DR, CD19 and CD10 in the B-lineage phenotype show excellent 
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prognosis. CD7 surface expression without the presence of CD4 or CD8 is an indication of 

traditional chemotherapy and early demise (Lee et al, 1999). In all cases follow up with 

cytogenetics has to be done to ensure that the correct subtype is identified and the appropriate 

treatment regime adopted. Correct diagnosis of a subgroup can lead to a longer survival time 

for the patient, as in some rare cases the therapy is non conventional. There are three subtypes 

of ALL (L1, L2 and L3). It is common in adults, but is sometimes confused with AML. The 

cells vary in size, quantities of cytoplasm, and characteristics of nucleoli. The L3 subtype is 

rare but it has to be identified because the treatment regime is specific to this subtype. 

Chromosome abnormalities are usually found in 90% children and 70% of adult ALL patients. 

The major chromosomal abnormalities in ALL are t(9;22)(q34;q11), t(12;21)(p13;q22), 

t(14;11)(q21;q23), t(1;19)(q23;p13) and the translocation  involving chromosomal arm 8q24.  

The t(9; 22)(q34;q1) indicates a poor prognosis for both adults and children, while 

t(12;21)(p13;q22), indicates a good prognosis. “The most common B-lineage ALL are the B-

cell markers (CD19, CD22) CD34 and CD10” (Kebriaei, 2003). 

 

4.14.2. Acute myeloid leukaemia or myelocytic or myeloblast  

 
If the patient is not treated immediately on diagnosis, there is very little chance of survival 

beyond 9 weeks. The effects of the chemotherapy and other drugs usually lead to death in this 

group of patients. The majority of patients with AML ultimately die of the disease or 

complications of treatment. The diagnosis of AML is demonstrated by approximately 30 % 

blast cells. AML and ALL can be distinguished by morphology and cytochemical reactions. 

Karyotypic analysis is vital for prognosis. “The subtypes that must be recognized because of 

the need for specific treatment include acute promyelocytic leukaemia (APL) which is the M3 

subtype of AML and the L3 subtype or mature B-cell ALL” (Cripe et al, 1997). Most patients 

in this subgroup have disease relapse. A patient‟s age at diagnosis, leukaemia cell karyotype 

and the status of the leukaemia, de novo or secondary are major points to be considered when   

treatment plans are established. Favourable prognostic factors dictate conventional therapy. 

Unfavourable prognostic factors do not improve with traditional therapy, neither is there any 

relief with an intensified treatment plan (Cripe et al, 1997).  

 

4.15 Chronic leukaemia 

 
Chronic leukaemia is either granulocytic or lymphocytic by nature. Allografting has been 

responsible for lengthy periods of stable and disease free survival. If the T-cell count drops 

dramatically then the relapse rate is significant. In lymphocytic leukaemia, cure is rare. 
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Preliminary data has proven that sometimes lymphocytic leukaemia cannot be identified even 

with the latest molecular diagnostic methods.  

 

4.15.1 Diagnosis of chronic myelogenous leukaemia  

 
Chronic myelogenous leukaemia (CML) is related to the cells found in the blood stream. 1 out 

of 100000 people per year is affected or 15 % of all leukaemias in adults. The immune system 

influences the course of CML. There are three major types of CML stages: chronic, 

accelerated, and blast. The chronic stage takes up the most time during which the cell counts 

grow steadily. The median survival time is generally 3 to 4 years and fewer than 30% of 

patients survive 5 years. The accelerated and blast phases may be a few months each. During 

this period there is a rapid increase in cell counts, followed by death of the patient (Moore et al, 

2004). CML is primarily considered an adult leukaemia which occurs in adults between 30 and 

50 years, however the disease can affect any age group, including the elderly, infants and 

toddlers. Although rare, when infants and toddlers are diagnosed, the disease is called juvenile 

CML and displays distinct haematopoietic, cytogenetic, and clinical differences from the adult 

type. CML accounts for approximately 20 – 25 % of all leukaemia cases with men being 

predominantly affected. Detection in early stages is difficult because some patients do not 

display any symptoms. When symptoms do appear, the most common are anaemia, weakness, 

fatigue, dizziness, headache and fevers (Harmening, 2002). A lymphocytic count greater than 

5x109 L-1 of small mature lymphocyte in the peripheral blood for more than a month is an 

indication of CML. Approximately 90 to 95% of patients with typical characteristics of CML 

carry the Philadelphia chromosome (Ph) in their leukaemic cells, and as a result its presence is 

virtually diagnostic of the disease. The Ph chromosome results from the aberrant conjoining of 

the proto-oncogene c-ABL from chromosome 9 with the break-point cluster region (BCR) gene 

on chromosome 22. This new fusion gene BCR/ABL is considered essential in the pathogenesis 

of CML (Harmening, 2002). Kappa or lambda light chain restriction is co-used for diagnosis. 

Immunophenotype as detected by flow cytometry includes co-expression of CD19 and CD 5 

together with CD23. Patients display low expression of surface immunoglobulin (sIg) and 

accordingly, absence or low expression of CD79b. In the case of a lymphocytic count less than 

5x109 L-1, a bone marrow biopsy may be needed to confirm the diagnosis, but it is also 

necessary to confirm whether a patient is in remission, as part of complete remission requires 

the absence of leukaemic involvement of the bone marrow. The Philadelphia chromosome, or 

Ph chromosome is a translocation involving chromosomes 9 and 22 [t(9;22)(q34;q11.2)]. The 

t(9;22) occurs in a pluripotent stem cell that gives rise to both lymphoid and myeloid lineage 

cells. The standard t(9;22) is identified in about 92% of CML patients. 

 



93 
 

4.15.2 Diagnosis chronic lymphocytic leukaemia  

 

Chronic lymphocytic leukaemia (CLL) or small lymphocytic leukaemia is a hematopoietic 

neoplasm of B-lymphocytes  (CD5+) found in the peripheral blood, bone marrow, and 

secondary lymph organs (lymph node and spleen). The chronic lymphoid leukaemia is made up 

of various stages: an initial stage where tumour cells are mainly small, with a low growth rate 

and high survival rate of the cell; and a transformation stage, with the recurrent incidence of 

extramedullary proliferation and a large number of immature cells. CLL is the most prevalent 

leukaemia amongst adults. CLL occurs in older adults with 90% of them being in patient‟s over 

50 years. For patients below 40 years of age CLL is rare. (Inamdar et al, 2007). Unlike acute 

leukaemias, the signs and symptoms of CLL appear quite slowly. The time period for the 

asymptomatic phase of CLL is mostly inconsistent. The clinical course is relatively slow, but as 

the disease progresses, chronic fatigue, frequent or continual infections, and easy bruising are 

the consequences of anaemia, neutropenia, B-cell immunologic dysfunction, and 

thrombocytopenia (Harmening, 2002). Results from flow cytometry analysis reveal co-

expression of CD19 and CD5, CD23 and CD20. This type of cancer is affects people over 65 

years. Some cases younger patients have been discovered. Since DNA is a blueprint of human 

growth whether normal or abnormal, it is the most reliable method for analysing a patient‟s 

health status. Abnormalities of chromosomes 11 and 17 are indicates poor prognosis. The 

deletion of 13q arm is an indication of good prognosis. The clinical course of CLL is incessant 

in its growth regardless of the course of therapy. The diagnosis of CLL requires a continual 

absolute lymphocytosis of mature lymphocytes for diagnosis. This is possible only if other 

causes are absent. The diagnosis of CLL is established when the peripheral blood lymphocyte 

count is 10 x 109 or more cell/L (which is typically the case), lymphocyte infiltration of the 

bone marrow is more than 30% lymphocytes of all nucleated cells, and the circulating 

lymphocytes have a B-CLL immunophenotype. The co-expression of CD5, CD19, CD20 and 

CD23 is also necessary for the diagnosis of CLL (Harmening, 2002). The introduction of 

advanced therapeutic drugs and the introduction of monoclonal antibodies against CD20 or 

CD52 have improved rates of survival. (Glassman et al, 2005 and Ghia, 2007). “The overall 

median survival for CLL is currently 4 to 5 years; 50% of patients are living 5 years after 

diagnosis, while 30% have a 10 year survival” (Harmening, 2002). The disease in 20 % of 

patients proceeds quite fast on diagnosis leading to death within 1 to 2 years. The variance seen 

cannot be easily explained, but clinical and pathological data have been used to diagnose and 

find the patient‟s prognosis. It is also used to classify a range of stages and risk groups 

(Harmening, 2002). Various clinical phases and systems can be used to determine periods of 

survival. Data from genetics and cytogenetics are also used as prognostic elements. “These 

include immunoglobulin gene arrangements, the presence of trisomy 12, abnormalities of 
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13q14, deletions of 11q22, and abnormalities of 17q13. Cytogenetic study of CLL contributes 

important prognostic information” (Glassman et al, 2005). “Diploid karyotypes are said to be 

associated with the median survival of 15 years and the more complex karyotypes have a 

median survival of approximately 6 years. Trisomy 12 may be linked to an atypical 

morphology which is indicative of a more rapid progression and shorter survival time” (Neilson 

et al, 1997). The overall abnormality rate was 64 % in 100 patients with CLL. Detection of 

chromosome abnormalities from clinical data is vital in the diagnosis and prognosis for CLL 

patients and the clinicians who treat them. A high percentage of cells with chromosomal 

abnormalities, indicating high proliferative leukaemic cells, were associated with poor survival. 

All CLL patients must be considered for FISH studies, which should be done in conjunction 

with standard cytogenetic tests (Glassman et al, 2005). “Studies using FISH probes in CLL 

found the chromosomal abnormalities were more common than those detected using 

conventional cytogenetics and had a more different distribution” (Inamadar et al, 2007). This 

summative form of analysis will serve as a comprehensive diagnosis and prognosis indicator 

for clinicians. Some patients diagnosed with CLL may not be treated unless the signs and 

symptoms of the progressive disease appear. Therapeutic intervention takes place when major 

physical and clinical signs and symptoms identify advancing disease.  

  

4.16 Prognosis and survival in acute leukaemia 

 
The care of a patient with leukaemia displays many challenges. On diagnosis the relevant 

subtype should be identified, thereafter the treatment plan must be drawn up. Chemotherapy 

means chemical treatment and it is the mainstay of leukaemia treatment. Chemicals used are 

„cyto-toxic‟, meaning detrimental to the cells. All dividing cells are destroyed at a high rate. 

The particular chemicals used would be dependant on the type of leukaemia. If a patient does 

not react to a single dose of chemotherapy then it can be concluded that the prognosis will be 

poor. With therapy and the best available drugs most patients do not reach remission, although 

there are some exceptions (Cripe, 1997).  

 

Prognostic factors help clinicians on estimating the benefit of a particular treatment. Estimating 

the likelihood of an outcome is dependent on the identification of prognostic factors. Its 

usefulness is in optimising treatment strategy but there are limitations when formulating 

decisions for patient treatment. In general prognostic factors identify a broad group of patients 

and may not apply to specific patients. Measurement that is non-standardised cannot be 

incorporated into a clinical trial. Prognostic factors normally relate to a single outcome like 

survival and the interactions with other factors are not usually studied thus making them 

unpredictable. The lack of effective alternate treatments makes it impractical in deciding which 
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patients will qualify for standard treatments. If the prognosis is good then those patients can 

obtain conventional therapy. Patients have to be counselled into accepting less conventional 

treatment which has the potential of increased morbidity and no definite evidence that there 

would be an improvement in the outcome (Cripe, 1997).  

 

 
Overall survival offers a comprehensive estimate of the risk and benefits of therapy. The 

relevance of the end points is unclear from the patient‟s point of view. Overall survival may be 

important, since the onset of salvage therapy which has lead to successes in treatment of 

relapsed disease. If a treatment improves outcome, the patient needs to know if it is substantial 

enough to take on the potential increased risk. Patients need to participate in the decision 

making process since effects the combined treatments on individual patients is uncertain. 

Precise and truthful assessments of the benefits and risks need to be outlined to patients as part 

of the counselling process. The patient must be clear about all the risks involved in the process 

(Cripe, 1997). 

 

The outcome of a study carried out by Perea et al (2005) revealed CD36 expression in AML 

patients to have a lower leukaemia free survival (LFS) rate and a higher relapse rate, 

irrespective of karyotype. A two year LFS rate was 34% for CD36+ patients and 55% for 

CD36- patients. CD36 and CD2 positivity and adverse karyotype correlated with a lower 

overall survival (OS) rate (Chang et al, 2004a). Raspadori et al (1997) found that “CD56 

expressed most frequently detected in M2 and M5 AML patients is associated with lower CR 

rate and shorter overall survival”. Chang et al (2004) “correlated CD56 expression with a 

shorter overall survival in univariate analysis (P = 0.0262). However, neither the CR rate nor 

the duration of disease free survival was influenced by the expression of CD56”. Chang et al 

(2007b) investigated CD7 expression in patients with AML and normal karyotype. The AML 

chromosomal abnormalities that are presented on diagnosis are vital. Patients with a normal 

karyotype found with conventional testing make up the biggest subset of adult AML 

(approximately 50%). Since the clinical outcome of patients with a normal karyotype varies 

significantly, the outcome for overall survival is about 35-45% over a 5-year period. 

Supplementary CD markers are therefore essential to identify and categorise clinically the 

subgroups of AML patients with normal karyotype (Marucci et al, (2005) and Bienz et al, 

(2005)). Flow cytometric immunophenotyping is now used as a conventional method for the 

diagnosis and characterisation of AML. “Surface markers have been identified with prognostic 

significance including CD34, HLA-DR, CD7 and CD56 in AML patients in the context of 

cytogenetic abnormalities. The adverse impact of CD7 in AML has been controversial and in 

particular, little is known about the prognostic significance of CD7 expression in normal 
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karyotype AML” (Bene et al, 2005). Chang et al (2007b) assessed 185 adult AML patients 

with normal karyotype.  CD7 expression was found to be a significant marker to for disease 

free and post-remission survival. Some of the parameters used in the study were age, gender, 

white blood count (WBC), FAB morphology and immunophenotype. Standard statistical 

methods were adopted. A logistic regression analysis was performed on the clinical o 

investigate he effect of remission rate. The Cox proportional model was adopted for disease 

free survival (DFS), overall survival (OS) and post remission survival (PRS). “Patients with 

WBC > 50 had a significantly lower CR (65% versus 87%) and shorter OS (median 10 months 

versus 34 months). CD34, HLA-DR, CD56 and CD7 were expressed in 57%, 83%, 8% and 

37% of the cases, respectively. On univariate analysis, expression of CD34 and HLA-DR was 

associated with a lower CR (85% versus 60%, P = 0.0007 and 67% versus 89%, P = 0.019). 

CD7 expression on AML blasts ranged from 20% to 96%. Patients with CD7 expression were 

found to have a significantly poorer DFS and PRS than patients without CD7 expression (12 

months versus 42 months for DFS, P = 0.005; 15 months versus 33 months for PRS, P = 0.013, 

respectively). CD+ patients had a median of OS of 12.7 months versus 23.7 months for CD7- 

patients, but the difference did not reach statistical significance (P = 0.18). CD7+ and CD7- 

patients had similar CR rates of 72% and 71%, respectively. On multivariate analysis that 

included significant variables identified in the univariate analysis (age, WBC, CD34, HLA-DR 

and CD7), CD7 expression was a significant predictor for a poor DFS and PRS, whereas high 

WBC was an independent risk factor for CR, OS, DFS and PRS. CD56 was not associated with 

a clinical outcome” (Chang et al, 2007b). With conventional chemotherapies malignant cells 

still proliferate, and few that are left behind are responsible for persistence or recurrence of the 

disease. CD56 in AML is a well known indicator of poor survival rates. A possible biological 

explanation is that it causes the stem cells to adhere to the niches in the bone. This still allows 

the cells to proliferate in this environment. Certain leukaemias can proliferate cancer cells to 

display the characteristics of stem cells, thus enabling them to withstand the toxic drugs. Their 

hibernation spaces in the bones provide a solid barrier to the chemicals (Nimer, 2008). Nimer 

(2008) varied the intensity of chemotherapy treatment and found that their therapies to destroy 

the cancer cells. For poor prognosis the only alternative treatment is allogeneic stem cell 

transplantation. 25% of AML patients with normal karyotype do not display signs of genetic 

changes; therefore the alternative is to understand the cell at a molecular level for each subtype.   

An improved understanding may lead to novel ways of target therapy. Individualising treatment 

thus becomes vital, but can only be achieved if large clinical trials are carried out on real data 

and predictions or outcomes are made with a relevant multivariate analysis of as many 

parameters as possible. Joint involvement of clinicians and statisticians can only make these 

clinician trials more reliable and easy to implement into normal treatment regimes. Untreated 

leukaemia reduces survival to less than 3 months. The outcome of several large clinical trials 
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done on AML patients reveals a median duration of CR of 9 to 15 months and an overall 

survival of 12% to 16% at 7 to 8 years. Only a few AML patients achieve DFS, thus making 

acute leukaemia unsatisfactory. Advani et al (2008) reported a 65% complete remission rate, 

with only 15-30% remaining disease free for five years. The patient characteristics used in the 

study were gender, history of antecedent blood disorder, cytogenetics, white blood count and c-

kit MFI. c-kit is a tyrosine kinase receptor found by the mean fluorescent index (MFI)). They 

considered 22.6 months for surviving patients and found a median progression-free survival for 

all patients to be 10.7 months, i.e. 7.9 months for age less than 60 years and 12.6 months for 

age > 60 years. The median overall survival was 13.8 months, i.e. 8 months for age > 60 years 

and 18.5 months for age less than 60 years. Wahlin et al (1991) investigated newly diagnosed 

AML patients from a registry. He achieved a CR rate of 47% and a median survival time of 4 

months when the overall numbers registered was used. For the subgroup without previous 

blood disorders and age below 60, the CR rate was 81%. A median survival time of 13.4 

months was calculated for the subgroup  

 

Remission is now a reality because of newly developed drugs for target therapy and 

technological advances in blood and karyotype testing. A new form of combination therapy is 

also followed on an individual patient basis. This has resulted in a significant impact, mainly 

for childhood acute lymphoblastic leukaemia (ALL). 70-80% of children treated with poly-

agent chemotherapy have increased with a high success rate. Alternately, progress in adult 

acute myelogenous leukaemia AML is not so remarkable (Litzow, 2000). Yanada et al (2006) 

found that 70-90% of adult ALL patients attain complete remission with no effect on long term 

survivors. Despite all these improvements patients still relapse after remission. There is no 

simple answer to this phenomenon.  Reasons are difficult to explain, but the complexity of the 

human body is one reason. Cells also build up resistance to mechanisms over time and are able 

to guard against the effects of chemotherapy drugs that leukaemic cells acquire during 

mutagenesis (Litzow, 2000). Cripe (1997) has indicated “that patients with the translocations 

involving chromosome 8 and 21, t(8,21) and chromosomes 15 and 17, t(15;17) and INV(16) 

should receive conventional therapy. Translocations involving chromosome arm 11q23 occurs 

in patients with ALL” and AML indicate poor prognosis. In AML the translocations most 

commonly involved are t(6;11), t(9;11) and t(11;19) with a likelihood of less than 5% for 

survival. CR or survival of patients beyond 2 months with standard treatments is not normally 

possible. Patients with these abnormalities are unlikely to achieve CR or survive more than 2 

months with conventional therapy. Even though white blood numbers at diagnosis indicates 

poor prognosis, the second significant prognostic factor for both AML and ALL, is the time 

taken to remove blast cells. When this is achieved the patient is said to be in complete 

remission (Litzow, 2004b). It has been found that there is stricter compliance with paediatric 
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patients‟ protocols than with adult patients.  Sometimes the treatments are delayed, and a 

reduction in dosage was also noted. A lower dosage leads to lower toxicity and lesser cells 

being targeted. This can be taken as an explanation for the higher relapse rate in adults when 

using the same protocols as children. Adolescent patients found greater success with childhood 

protocols than adult protocols. In order to ensure higher survival rates both patients and 

clinicians need to ensure that the protocols are strictly followed (Plasschaert et al, 2004). 

Cytogenetic change as the patient proceeds with a course of treatment. Poor prognosis based on 

cytogenetic findings at diagnosis, will be a good predictor for unfavourable changes as the 

disease progresses (Litzow, 2004b). Generally it has been found that there are no significant 

types of recurrent chromosome aberrations differences between men and women. There is 

however evidence that it is related to the patient‟s sex. These cases are too few to make a 

general statement. These findings have to be validated on a large scale, multi-centred system 

for it to be considered valid (Mrozek et al, 2001a). The prognostic importance of chromosomal 

classification is becoming necessary for the management of patients who display varying 

cytogenetic characteristics. For example, “patients having a hyperdiploidy of 50-65, the 

presence of Ph and abnormalities involving the chromosome band 11q23 are no longer given 

standard treatment” (Harrison et al, 1998). In the new Medical Research Council (MRC) 

childhood ALL treatment trial (ALL 97), patients are treated on certain protocols as per their 

cytogenetic results. Similarly in the MRC AML treatment trial (AML12) patients are being 

reassigned based on cytogenetic data with the appropriate treatment regime. Patients are 

classified under risk groups whether their prognosis is good or bad and accordingly managed 

(Harrison et al, 1998). Prognostic factors are treatment dependent; therefore a cytogenetic or 

molecular abnormality presenting an unfavourable prognosis with one treatment may be more 

favourable when an alternate treatment is implemented. “There is a continuous need for large 

prospective studies that will correlate karyotype with the appropriate genetic markers, gene 

expression profiles, immunophenotype, other biological parameters and clinical outcome in 

patients treated with both existing therapies and those receiving novel therapeutic agents” 

(Mrozek, 2004b).  

 

Acute non-lymphocytic leukaemia (ANLL) is a rare disease among children and CML is rarer 

still. Of all new leukaemias that are diagnosed in patients less than 15 years of age, ANLL and 

CML accounts for 20-25%. The outcome for females was better than males. Monoclonal 

antibodies have now become available allowing, for immunological differentiation of 

haematopoietic cells and distinctive definitions for ANLL subtypes. Even though survival has 

significantly changed over the years; the prognosis remains bleak. Chemotherapy treatment 

regimes are responsible for only 30-40% of remission in children with ANLL. This 

conventional treatment has proven to be resistant in CML patients. It only works is 
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accompanied by allogeneic bone marrow transplantation (Gatta et al, 2001). Survival is also 

affected by the monumental task of trying to find a suitable bone marrow donor.  

 

A study of the prognostic factors of any disease or ailment guides the clinician in predicting 

survival rate, recurrence of disease and outcome of treatment. Xin et al (2006) carried out a 

survival study and analysis of prognostic factors on acute promyelocytic leukaemia patients at a 

single centre. The study was aimed at long-term survival of patients with APL (AML-M3) and 

the rationale for using all-trans retinoic acid (ATRA), chemotherapy and arsenic trioxide 

(As2O3) in the treatment of newly diagnosed APL patients. The introduction of ATRA for 

induction therapy of APL, resulted in the complete remission rate (CR) of this disease has been 

demonstrated by clinical trials to be greater than 90%. There have been some complications 

known as ATRA syndrome in approximately 5-20% of the people studied. In 20 years the 

prognosis for APL has improved from highly fatal to highly curable. In some studies it has 

been proven that 75-85% of patients go into remission beyond 5 years. A mortality rate of 10% 

exists even though a combination treatment regime was followed. Some reports have shown 

that long-term usage of As2O3 could make relapsed patients go back into remission. Clinicians 

still face the dilemma of treatment strategy. Likely prognostic factors related to long-term 

survival was also investigated in the above study. Patients were grouped according to their 

treatment regime. A log-rank and a Cox-regression analysis were carried to identify the 

prognostic factors. The above study showed that CR rate was 82.88%, with an estimated 5-year 

of relapse free survival (RFS) of 80.9% and an overall survival (OS) of 71%. Mrozek et al 

(2001a) reported that “patients with inv(16) or t(16,16) and t(9;22)(q34;q11) frequently have 

high leukocyte counts, whilst those with t(15;7) have low leukocyte counts at diagnosis. Low 

platelet counts are common in patients with t(15;17). Platelets counts higher than in other 

patients with AML are observed at presentation or later in the course of their disease in patients 

with t(1;3)(p36;q21), inv(3)(q21q26) or t(3;3)(q21;q26)”. Late achievement of remission 

(defined as 3-4 weeks from the start of treatment to remission or more than one course to 

achieve remission), an elevated white blood count over 30 x 106 L-1, and high age (above 35 

years) are together with BCR-ABL and t(4;11) recognised as adverse prognostic factors on 

diagnosis.  Late achievement of remission is recognised as a high risk factor.  A normocellular 

bone marrow with less than 5% blast cells is commonly used as a criterion for complete 

remission (Hallbook, 2005 and Mrozek, 2004b).  

 

It is reported that chemotherapy is still vital in the remission stage. Various studies have shown 

that patients who received chemotherapy only results in a poor survival rate, i.e. a 5-year RFS 

of 26% and a median RFS of 22 months (Xin et al, 2006).  
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Coebergh et al (2001) found higher survival rates in European countries with easy access to 

well established treatment facilities. These centres provided “aggressive” treatments according 

to a protocol. Since chemotherapy and radiotherapy have adverse short and long-term effects, it 

is necessary that treatment protocols and palliative care has to be optimised. There is still 

ongoing research with new protocols continuously being tested and implemented. This trend 

can be adapted to other countries since growing technology linkages that are now being sought, 

and the global trend towards working together to eradicate fatal diseases has become a 

continuous mission for all health workers. A 5–year cancer survival study was carried out in 

France among adolescents (Desandes et al, 2006). AML is generally resistant to chemotherapy, 

thus the poor prognosis. “Treatment outcome in young adult patients with newly diagnosed 

AML has substantially improved over the past decade. Complete remission (CR) rates now 

range from 60 to 80 % with long-term survival in about 50 % of cases. Advances can be 

attributed to several factors related to supportive care which has allowed the safer use of more 

intensive chemotherapy, but also to improved treatment strategies. However, therapeutic failure 

remains a major concern” (Desandes et al, 2006). Prognostic factors generally differ with 

treatment. It has been found that if the biological characteristics of the disease is considered in 

a model, then it expected that they would show similar correlations  to prognosis regardless of 

the type of induction therapy administered (Tavernier et al, 2003). Approximately 65-85% of 

AML and 80-90% of APL patients have been achieved with combination therapy. Once 

patients obtain initial remission, the optimal consolidation treatment still remains to be 

determined. A significant proportion AML patients relapse after chemotherapy and after 

autologous transplantation. Complete remission was prolonged in patients who received three 

different schedules of cytarubine consolidation therapy. It is important that this particular 

subgroup of AML be differentiated either cytogenetically or at the molecular level. This is vital 

to prevent toxic procedures. “The identification of genetically homogenous subgroups, with a 

favourable prognosis, may help to properly evaluate the impact on high-dose chemotherapy, 

ersus marrow ablative cyto-toxic treatments” (Biondi et al, 1996). Overall the findings of 

Biondi et al (1996) highlighted the need for large prospective studies in a centre where patients 

follow set treatment protocols. Standardisation, quantification, quality control and the proper 

assessment of sensitivity is vital for reliability. This will also allow for the results to be 

compared to other similar studies.  

 

4.17 Prognosis and survival in chronic leukaemia 

 

The clinical course of individual chronic lymphocytic leukaemia (CLL) patients is highly 

variable with survival rates ranging from months to decades. CLL may start out as a low grade 

form of the disease but eventually it will progress to an aggressive and fully blown disease. 
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Early diagnosis will lead to a prognosis that will dictate the course of treatment, thus catering 

for individual risk-adapted therapy. The disease in more than 50 % of patients usually proceeds 

quite rapidly in comparison to initial estimates. In the early stages of CLL it is a period of 

“watchful waiting” (Bockstaele et al, 2008). Early treatment will depend on the reliability of 

early prognostic markers, thus making it a crucial factor on diagnosis. Accurate prognostication 

is also essential for evaluation of novel therapies and treatment options like antibody-

chemotherapy or autollogous and allogeneic stem cell transplantation. The survival of patients 

with CLL ranges from less than 1 to 2 years to more than 15 years (Moreno et al, 2008). 

Clinical staging is unable to predict whether a subgroup with early stage CLL will eventually 

advance to an aggressive disease leading to early death. Clinicians cannot use consultations and 

blood analysis only for treating individual CLL patients. Standard patient data that can be 

linked to prognosis are gender, age and performance status. Women patients with CLL display 

a longer life span that heir male counterparts. The reason for this phenomenon is not exactly 

clear from various studies.  The influence of age is contradictory. Absolute overall survival is 

greater in young patients, but their relative survival is usually less than that of older patients. 

(Bockstaele et al, 2008). CD5+ monoclonal B cells displaying the distinctive phenotype of 

CLL can be detected by flow cytometry in 3.5% “healthy” individuals with normal blood 

counts. It was found to be prevalent in patients over 70 years. This was found in more than 7% 

of the individuals, and was found to be common in first-degree relatives of patients with CLL 

(Ghia, 2007). Studies have confirmed that CD38 independently affects prognosis of CLL 

patients. The actual value is still a controversial point. Some of the values initial estimates are 

30% to 20%, and sometimes 7% and even less. The stability of the marker is also not well 

understood as the disease progresses, especially after the first stage of therapy.  Most patients 

die with the disease but not from the symptoms of it. Complete remission is still not possible 

with CLL; if it does occur then it will be a rare event. Disease progression worsens with an 

increasing lymphocyte count, enlargement of lymph nodes and spleen, development of anaemia 

and thrombocytopenia, and auto-immune manifestations. 90% of cases of CLL occur in persons 

older than 50 years. The median survival time for this subgroup of patients is 10 years but is 

dependent date of diagnosis. CLL was previously managed in general practice, but not with the 

advent of new treatments patients are being referred to oncologists (Ghia, (2007). Inconclusive 

answers to these and many others related questions on leukaemias will not standard operating 

protocols. All current treatments have been based on clinical trials. The majority of prognostic 

markers are not included conventional treatment protocols. Since there has been reported 

studies showing the significance of cytogenetics analysis on diagnosis, and application of 

individually targeted treatments on higher survival  rates, several of these markers need to be 

considered in prospective clinical trials. Eventually it may contribute to improved clinical 

management of leukaemia patients (Aouali et al, 2005). 
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4.18 Diagnosis of haematological disorders 

 

Examination of the blood is central to the diagnosis and management of haematological 

diseases. In a few other disciplines the physician can make a specific diagnosis and monitor 

therapy with easily accessible tissue samples and readily available methodologies, many of 

which can be performed in a physician‟s office. Assessment can be done on the dominance of 

red blood cells, of the several types of leukocytes, and platelets (usually from automated 

particle counters) and blood can be examined for qualitative changes in appearance of red 

blood cells, leukocytes, and platelets. In addition the presence of marrow precursors, malignant 

cells and intracellular parasites can be used to diagnose specific diseases, gain insight into 

patho-physiology, and measure the response to treatment (Beutler et al, 2001). 

 

But the diagnosis of a blood disorder is dependent on both clinical and laboratory evidence. 

Neither is sufficient on its own to draw a conclusion on the diagnosis of the patient. Clinical 

evidence includes the history of the patient‟s present illness (illness can be work related) and 

past history, age, occupation family history (considers hereditary disorders), racial origin 

(considers genetic disorders) and the result of a physical examination. Clinical evidence can 

only be gained by trained physicians and together with the laboratory evidence a conclusion is 

made on the patient‟s diagnosis. Laboratory evidence is derived from both haematological and 

non-haematological tests, e.g. biochemical tests, radiological examinations, etc. The results of 

such non-haematological tests are, however, not frequently of critical significance in arriving at 

a diagnosis, as when, for instance, a patient is found to have a high white blood cell count. The 

blood is examined in order to answer two principal questions: is the marrow producing 

sufficient numbers of mature cells in the haematopoietic lineages? Is the development of each 

haematopoietic lineage qualitatively normal? Quantitative measures routinely available from 

automated cell counters are generally reliable and provide a rapid and cost-effective way to 

screen for major disturbances of haematopoiesis. Morphological observation of the blood film 

is also necessary to confirm certain quantitative results and to investigate qualitatively 

abnormal differentiation of the haematopoietic lineages. The physician uses this to make a 

more focused assessment of the marrow or systemic disorders, which are related to the 

hematopoietic system.  Results of a full blood test, i.e. screening for an abnormality is a starting 

block in the path to diagnosing a patient. The results can be used to make a tentative diagnosis, 

thereafter further specific test methods or procedures can be carried out to confirm an accurate 

diagnosis. Further investigation is necessary not to doubt the diagnosis but to elucidate the 

cause and mechanism of the patient‟s blood disorder or to classify it more precisely. The choice 
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of tests and procedures will depend on the preliminary results but facilities or resources, time 

and finance can be a limiting factor (Lewis et al, 2001). 

 

4.19 Quantitative measures of haematopoietic elements in the blood 

 

4.19.1 Full Blood Count 

 

Most automated blood cell counters measure the red cell count, MCV (mean corpuscular 

volume) and haemoglobin concentration directly. All other red cell parameters, including the 

haematocrit are derived from these primary values. A well-mixed sample of blood diluted in an 

electrolyte solution is passed through a small orifice through which electrical impedance is 

measured which is correlated to the red cell count. Each cell causes a jump in impedance as it 

passes through the opening since it cannot conduct electric signal through its lipid membrane. 

Red cells are distinguished from platelets by the magnitude of the impedance signal which is 

proportional to cell size. In electronic instruments the haematocrit (hmr) proportion of blood 

volume occupied by erythrocytes) is calculated from direct measurements of the erythrocyte 

count and the mean corpuscular volume: (hmr (μl/100μl) = [RBC in millions per μl x MCV in 

fl] ÷ 10). Erroneously elevated MCV and decreased red cell counts can be observed when red 

cell antibodies are present and retain binding capability at room temperature, particularly cold 

agglutinins and in some cases of autoimmune haemolytic anaemia. This results in the red blood 

cells clumping and by affecting the accuracy of both RBC count and MCV; it also affects the 

result of the derived haematocrit. Haemoglobin is intensely coloured and this feature is used to 

estimate its concentration in the blood. Erythrocytes contain a mixture of haemoglobin, oxy-

haemoglobin, carboxy-haemoglobin, meth-haemoglobin, and minor amounts of other forms of 

haemoglobia. To determine haemoglobin concentration in the peripheral blood, red cells are 

lysed and haemoglobin variants are converted to the stable compound cyanmethaemoglobin for 

quantisation by absorption at 540 nm. In automated blood cell counters, haemoglobin is 

accurately and directly measured. The haemoglobin level varies with age. After the first week 

or two of extra uterine life, the haemoglobin falls from levels of 17 g.dL-1 to levels of 12 g.dL-1 

by two months of age. Thereafter the levels remain relatively constant throughout the first year 

of life. Automated blood counters measure the MCV directly using the Coulter principle in 

which the cross-sectional area of a non-conducting particle (i.e. any cell) in an electrolyte 

solution is proportional to the increase in electrical impedance as the particle passes through a 

constricted orifice. The mean corpuscular haemoglobin or the amount of haemoglobin per red 

blood cell (MCH) is calculated by the formula MCH (pg.cell-1) = [haemoglobin in g.L-1 divided 

red cell count in millions.μL-1] x 10. The mean corpuscular haemoglobin concentration 
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(MCHC) or the concentration of haemoglobin in the red blood cell volume is calculated by the 

formula MCHC (g.dL-1) = [haemoglobin (g.dL-1) / haematocrit in  μL per 100 μL] x 100. 

Another index, the red cell distribution width (RDW) is specifically designed to reflect the 

variability of red cell size. It is based on the width of the red blood cell volume distribution 

curve, with larger values indicating larger variability. Leukocyte counts are performed by 

automated blood counters on blood samples appropriately diluted with a solution that lyses the 

erythrocytes (e.g., acid or a detergent) but deserves leukocyte integrity. The normal differential 

leukocyte count varies with age. In the first few days after birth polymorphonuclear neutrophils 

are predominant, but thereafter lymphocytes account for the majority of leukocytes. This 

persists up to about 4 to 5 years of age when the polymorphonuclear leukocyte again becomes 

the predominant cell and remains so throughout the rest of childhood and adult life. Platelets 

are usually counted electronically by enumerating particles in the unlysed sample within a 

specific volume window (e.g., 2-20 fL). As with any laboratory test, the clinical use of these all 

blood cell parameters depends on the prevalence of disease and the clinical setting (Beutler et 

al, 2001). 

 

4.19.2 Differential 

 

Following the white blood cell number, the white cells are analysed to find the percentages of 

each white blood cell type by doing a differential leukocyte count. Automated methods for 

obtaining a leukocyte (Lee et al, 1998) have developed that has reduced the time and cost of 

performing routine examinations.  However, this technology is incapable of identifying and 

classifying all types of abnormal or immature cells. Flow through automated systems collect 

and analyse data from large numbers of white blood cells to provide a differential count that 

has a high degree of precision. The total white blood count, as well as the neutrophil, 

lymphocyte, monocyte and eosinophil counts are enumerated in the myeloperoxidase channel. 

Atypical lymphocytes, blasts and plasma cells fall into the large unstained cells channel. To 

enumerate basophils a basophil-nuclear lobularity channel is used. Results are presented as 

percentages for each cell type. 

 

4.19.3 Platelet counts 

 
Platelets are counted in an automated haematology analyser once the red blood cells have been 

removed by sedimentation.  The mean platelet volume (MPV), which has been correlated with 

several diseased states, is determined. In general, MPV has an inverse relationship with platelet 

number (Lee et al, 1998). 
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4.19.4 Flow cytometry 

 

Optimisation and development of new bio-processing strategies require detailed information. 

This is achieved by using a range of analytical methods and tools to obtain data. The data 

provided is fundamental in that a single representative value for the whole population is 

obtained for each parameter, i.e. each cell is treated as an “average” microorganism. Segregated 

data, signifying different subpopulations of a single sample can offer more information and 

understanding than the average value that is generally given with most analytical methods. All 

cells in a sample may not be in the same metabolic or physiological state; therefore if all 

possible subpopulations could be detected and described with regards to metabolic activity then 

the data can be used to effectively optimize the bioprocess. Flow cytometry can be adapted to 

include analysis cell populations where segregated data is obtained for the subpopulations. 

Flow cytometry is a technology that provides rapid measurement (-metry) of physical 

characteristics of cells (cyto-) suspended in a moving fluid stream (flow). Single cells or 

particles are passed through a laser beam in a fixed fluid stream. The variables absorption, 

scattering and fluorescence are recorded as each cell passes through the laser beam. This 

technology has evolved to include both cellular characteristics such as size, membrane potential 

and intracellular pH, and the levels of cellular components such as DNA protein, surface 

receptors, and calcium. This information is easily related to the different cell characteristics and 

components. The result yields the variations of all data within the given cell population.  These 

values for the segmented groups are more accurate than using average values for the whole 

population. Florescent technology was initially used in the field of medicine for oncology (e.g. 

for diagnosis of cancer, chromosomal defect diagnosis) and haematology. Applications of flow 

cytometry in the clinical and medical fields have been widely reported in the literature. Lately it 

is being applied in the field of biology, pharmacology, toxicology, bacteriology, virology, 

environmental sciences and bioprocess monitoring. There are commercially available state of 

the art equipment together with data acquisition software for data capture and analysis. The 

new method also reduces the turnaround time from sampling to analyses. (Rieseberg, 2001). 

Flow cytometry is used to measure protein expression which is an indication of good or bad 

prognosis. It is also used to detect multi-drug resistance and measure cell proliferation. 

Classification and assessment of prognostic markers are used by clinicians to confirm diagnosis 

of the subtypes of leukaemia (Stetler-Stevenson, 2003). 

 

The development of monoclonal antibody technology has aided the classification of cell surface 

antigens on haematopoietic cells. The availability of virtually unlimited quantities of mono-

specific typing reagents permitted the identification and study of previously unrecognised 
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lymphoid and myeloid-specific surface proteins.  The rapid advances in the production of 

monoclonal antibodies and the development of multiple commercial sources under a variety of 

trade names and designations has led to the development of a standardized nomenclature for 

human leukocyte differentiation antigens termed the “cluster differentiation” (CD) 

nomenclature. In 1989, at a series of international workshops on human leukocyte 

differentiation antigens sponsored by the World Health Organization, monoclonal antibodies 

having similar reactive patterns with tissue, cells or molecules were assigned to a “cluster” and 

given a “cluster differentiation” (CD) number. CD numbers with a “w” indicate a provisional 

cluster that may or may not be promoted to full CD status at subsequent workshops. The 

current CD antigens for each cell lineage are quite extensive and are readily available in the 

literature. The use of monoclonal antibodies specific to cell surface markers (CDs) allows 

phenotypic characterization of cells in disease states. By using flow cytometry, cells labelled 

with monoclonal antibodies are sorted and enumerated to identify a specific population of cells.  

Cell markers have been identified on the surface of cells in the disease states such as acute 

leukaemia, autoimmune disease, and thromboembolytic disease. Cell markers have also been 

identified in the management of renal, cardiac and bone marrow transplantation. Diagnosis of 

disease states is dependent on clinical presentation, cytochemistry, and the study of the cells 

morphology, but flow-cytometry characterization of cells has added another dimension to 

disease classification. Monoclonal antibodies are used to characterize cells in acute leukaemias. 

The CD markers allow for differentiation of myeoblasts, lymphoblasts, monoblasts, 

megakaryoblasts, and erthroid ontogeny. Flow cytometric analysis of acute leukaemia is 

interpretive, combining the patterns of intensity of antigen expression to reach a definitive 

diagnosis (Rieseberg, (2001) and Harmening, (2002)).  

.  

 

4.19.5 Cytogenetics 

 

DNA technology can be used to help diagnose and classify various types of cancer. This is 

possible since all cancers harbor genetic defects that are responsible for malignant 

transformation. Laboratory detection of cancer-associated genetic defects not only contributes 

to improved diagnosis of patients but also helps in some instances to formulate the most 

appropriate treatment, and help monitor the value of that treatment.  Deoxyribonucleic acid 

(DNA) is the inherited component that encodes all the information required for the structure 

and function of cells. The transfer of information is via an intermediary substance called 

ribonucleic acid (RNA). DNA and RNA are collectively called nucleic acid. Nucleic acid 

analysis of patient samples is the basis for a new field of laboratory medicine called molecular 
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diagnostics. In no other discipline of laboratory medicine has this technology had a greater 

impact than in haematology, where it is used in the diagnosis of certain inherited, infectious 

and malignant forms of haematological diseases. The laboratory method to be implemented in 

this research is the polymerase chain reaction which is used to amplify particular segments of 

the DNA for ease of detection. To understand how this method is utilized, the structure of DNA 

and RNA has to be reviewed (Beutler et al, 2001).  

 
Human DNA is composed of 46 chromosomes, each of which is a remarkably large molecule 

formed by two very long strands of nucleotides. All 46 chromosomes aligned end to end would 

comprise 3 billion nucleotide pairs long that would stretch over 2 m in length. The DNA 

strands are wrapped around histone proteins to form chromatin in the nucleus. All information 

necessary for life for an individual is encoded within the long strands of nucleotides. 

Nucleotides are the basic building blocks of DNA, comprising four different types of 

nitrogenous bases – adenine, guanine, thymine and cytosine – attached to a deoxyribose sugar 

and phosphate moiety. Hydrogen bonds bind the two strands of nucleotides that combine to 

form DNA. These bonds form between the nucleotides on one strand and the opposite strand. 

The rules of nucleotide pairing are – adenine in one strand can only bond with a thymine in the 

other strand, a guanine can bond only with cytosine. These rules ensure that the strands of DNA 

are complementary to each other (Beutler et al, 2001). 

 

Encoded within the nucleotide sequences of DNA are functional units called genes that serves 

as templates for RNA transcription and protein transformation. All nucleated cells contain a full 

complement of DNA comprising that person‟s genome, but each cell expresses only a fraction 

of the approximately 100 000 different genes depending on the cell type and stage of 

differentiation. Current molecular diagnostic techniques are based on being able to identify a 

specific nucleotide sequence in DNA or RNA with the use of a “probe” that targets the specific 

sequence. A probe is a single-stranded segment of nucleic acid (either DNA or RNA) whose 

nucleotide sequence is complementary to the target sequence (either DNA or RNA). A probe 

binds to its target by hybridization which involves combining a probe and its target in a small 

tube (liquid phase) or a membrane or glass slide (solid phase). In both cases the probe is pre-

labelled for detection and used as a marker for the target sequence. (Beutler et al, 2001). 

 

Cytogenetic analysis provides pathologists and clinicians with a powerful tool for the diagnosis 

and classification of haemotologic malignant diseases. The detection of an acquired, somatic 

mutation confirms the diagnosis of a neoplastic disorder and excludes out a reactive 

hyperplasia or morphological changes due to toxic injury or vitamin deficiency. Specific 

cytogenetic abnormalities categorise homogenous subsets of various malignant diseases and 
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allows clinicians to predict their clinical course, and their probability of responding to 

particular treatments. In most cases, the prognostic information derived from cytogenetic 

analysis is independent of that provided by other clinical traits. Patients with favourable 

prognostic features benefit from standard treatment protocols with well known spectra of 

toxicities, whereas those with less favourable clinical or cytogenetic characteristics may be 

treated with more intensive or investigational therapies. The disappearance of a chromosomal 

abnormality present at diagnosis is used a significant indicator of complete remission of a 

patient following treatment. The reappearance of the aberration heralds relapse of the disease. 

Pre-treatment cytogenetic analysis can be useful in choosing among post-remission therapies 

that differ widely in cost, acute and chronic morbidity, and effectiveness.  

 

The malignant cells in patients who have leukaemia or lymphoma would have acquired clonal 

chromosomal abnormalities. A number of specific cytogenetic abnormalities have been 

documented that are very closely, and sometimes exclusively, associated with morphological 

and clinically distinct subsets of leukaemia or lymphoma. The detection of one of these 

recurring abnormalities can be helpful in establishing the correct diagnosis, influencing 

selection therapy, and providing important prognostic information for both the clinician and the 

patient (Beutler et al, 2001).  Even though all these indicators are considered vital for the 

clinicians and related health professionals, ultimately it is for the benefit of the patient‟s well 

being, to ensure the best, quickest and least painful course of therapy.  

 

Cytogenetic analysis of malignant diseases is based upon the study of tumour cells. In 

leukaemia, the specimen is usually obtained by marrow aspiration and is either processed 

immediately (direct preparation) or cultured for 24-72 hours. When a marrow aspirate cannot 

be obtained, a marrow biopsy (bone core specimen) or a blood sample, for patients who have 

circulating immature or lymphoid cells, can often be studied successfully. Chromosome 

abnormalities are described according to the International System for Human Cytogenetic 

Nomenclature. The chromosomal complement is described firstly by the total chromosome 

number, followed by the sex chromosomes, then by numerical and structural abnormalities in 

ascending order. The observation of at least two cells with the same structural arrangement e.g. 

a translocation, deletion, inversion, or gain of the same chromosome, or of three cells 

confirming loss of the same chromosome, is considered confirmation for the presence of an 

abnormal clone. However, one cell with a normal karyotype is considered evidence for the 

presence of a normal cell line. If the cells show no alteration or nonclonal (single cell) 

abnormalities then it is considered to be normal. A single cell displaying a recurring structural 

abnormality is an exception to this rule. According to these results the specific karyotype is an 

indication of the malignant cells in that particular patient.  
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4.20 Summary 

 

A mathematical model is dictated by the type of data and the conditions under which the data 

was measured and the system that it operates in.  If a system is well understood then its 

behaviour can be predicted for a single case or for multiple cases by changing the conditions of 

the system. The purpose of a comprehensive quantitative model is to gauge the researcher‟s 

comprehension of the system under consideration. It makes one question the unknowns of a 

system, and asks relevant questions, and also to precisely describe the workings of the model. 

The model building exercise therefore becomes a valuable enterprise. The relationship between 

the theory and experimental system will lead to mathematical models becoming one of the 

essential tools for the study of prognosis and prediction of survival of diseased patients 

(Goldstein, 2001).  

 

The collaboration of ANNs with clinical data has been proven to have significant advantages. 

Multidisciplinary collaboration can be effectively used to develop improved modelling 

strategies by allowing innovative techniques for the analysis of complex biomedical data. This 

supports the continuous effort for large prospective studies between genetic testing and disease 

prognosis. Hopefully cases with less common aberrations can also be identified to enable target 

specific treatment. The validity of the studies reported so far have be confirmed on a large 

scale, preferably as part of a clinical trial where real data can be analysed (Mrozek et al, 

2001a). The prognostic importance of chromosomal is gaining significance. This is necessary 

to manage patients according to cytogenetic results. Clinicopathologic, cytogenetic and 

molecular features combinations have resulted in the division AML and ALL into further 

subgroups. Delineation of these subgroups and characterisation has lead to an improvement in 

prognosis on diagnosis. Clinicians are able to determine if chemical treatment and 

individualised therapy can prolong survival or lead to remission (Cripe, (1997) and Mrozek, 

(2004b)). “The unravelling of the molecular mechanisms underlying the pathogenesis of 

leukaemia has begun to reap benefits in the development of specific molecular therapies 

targeted at the molecular abnormalities of these disorders. While relapse in acute leukaemia 

remains a life threatening illness, the promise of molecularly targeted therapies in combination 

with immunotherapeutic approaches bring the hope that increased numbers of cures of these 

dreadful disorders can be realised” (Litzow, 2004). New agents for treatment have been 

researched and developed with great advancements in technical superiority being adopted at the 

sub-cellular level. Larry Chin from the University of Maryland Medicine, Department of 

Neurosurgery states as follows: “it is a privilege to be a physician at a time when molecular 

pathogenesis of disease is being unravelled. From the discovery of the structure of DNA to the 

human genome project, molecular biology over the past 40 years has revolutionized medicine” 
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(Jacobs, 1997). This quest is a continuous undertaking with limitless possibilities. It will take 

time for clinicians and joint researchers to relieve or cure the numerous cases seen everyday in 

clinics, hospitals and theatres throughout the world.  
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CHAPTER 5 

NEURAL NETWORK MODELLING METHODOLOGY 

 

5.1 Introduction 

 

The methodology involves the use of four steps: collection of raw data, processing of raw data, 

the development of neural network models and the comparison of models.  The aim of this 

study is to determine the survival rate of leukaemia patients and the prognostic factors that 

affects this outcome. A retrospective study was carried out on leukaemia patients from the 

Haematology Department at Inkosi Albert Luthuli Hospital (Ialch), Durban. Permission was 

requested from the Haematology department and was subsequently granted for this research. 

Ethical clearance has been obtained from the Bioethics Committee, University of Kwa-Zulu 

Natal for the use of the patient data. Patient confidentiality was maintained by using coded 

values. Data was obtained for the period from 2002 to 2008, but some patients had records from 

previous years in their files. A major part of this research was based on obtaining the patient 

data, analysing the results and determining of the relevant variables necessary for this study. 

The data collection was also a monumental task as the medical recording system is not well 

established. The processing of the data had to be in the proper format to be used as an input for 

the neural network modelling. The confidentiality of the patients has been retained by the use of 

coded numbers to represent patient names. The raw data was processed in Microsoft Excel into 

an appropriate format for input into the relevant software. Data was processed using the neural 

network software, PREDICT version 3.12 (Neuralware, 2003) to develop the proposed neural 

network models.  

 

5.2 Data collection  

 

Leukaemia patients attend a day clinic at the Inkosi Albert Luthuli Hospital. Patients are 

referred to from various hospitals throughout Kwa-Zulu Natal. When it is necessary, patients are 

admitted to the oncology ward for observation and in-patient treatment. All personal and clinical 

data is manually recorded in patient files either as hardcopies, electronically or a combination of 

both. Analyses of blood and marrow samples are carried out in the Department of Haematology 

laboratories at Ialch. Flow cytometry analyses were done at Ialch from 2003 to 2007. From 

2007 to 2008 the flow cytometry analyses have been carried out by Johannesburg General 

Hospital, Johannesburg. Some results were from private hospitals and previous years and were 

recorded in the patient’s files. Data was analysed and used as per diagnosis and according to the 

relevant dates. Chromosome analyses are done at Johannesburg General Hospital. The 
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following patient information was recorded: age, gender, type of leukaemia, full blood count, 

differential, flow cytometry, chromosome analysis, dates of births, dates of laboratory tests, 

treatment dates and health status. The health status for each patient was recorded in terms of 

whether they were in remission, on treatment, dead, or relapsed with treatment. All possible 

methods that recorded information were accessed to order to get all information of patients. 

There were hardcopy files available in the clinic, electronic access via the MEDICOM computer 

system to laboratory data, files available in the flow cytometry laboratory and Excel 

spreadsheets available with a summary of cytogenetic data and bone marrow analysis. If a value 

was missing then it has not been recorded or an analysis was not done for that parameter. For 

each patient their medical records were analysed to obtain their information. Every possible 

method was used to ensure that all available data for all the leukaemia patients at Ialch was 

accessed and recorded. During the collection of data the medical records and notes of the 

patients had to be read and recorded in terms of the available information. There was no 

standard procedure of recording this status in a file or electronically. In most cases there was a 

question mark surrounding this status. The clinician would look at the patients laboratory 

results, make a suggestion that the patient has relapsed, and put a question mark next to it. This 

status had to be confirmed with cytogenetics, which in many cases came back as unsuccessful 

samples, or else the clinicians did not qualify this diagnosis of relapse either manually or 

electronically in the patient’s file. In order to maintain the integrity of this research these 

patients were incorporated into the treatment group. Since they were patients in the clinic they 

could be justified as part of the treatment group. An independent checker was used to verify the 

correctness of the data used in this research. The total number of patients that were accessible 

was 680. There may be some patients that are available electronically only but were not 

recorded for this research. There is no database available in the laboratory or the clinic that 

could have been used as a starting point for this research. The starting point was the files in the 

clinic and the files available in the flow cytometry laboratory. Of the 680 patients reviewed 70 

had missing data and were found to be ineligible for this study. The input variables which were 

recorded from the patient’s medical records were not explicitly recorded; hence it was safe to 

assume the missing values to be either negative or numerically having a value of zero. In 

clinical research missing data is accepted and patients are considered to be censored. Patients 

with missing data ideally should be excluded from the study. This method was not effective for 

this research data set as this would have drastically reduced the sample size. Since the use of 

censored data is acceptable in the medical domain, the patients were included. The variables 

age, race, gender, sex and type of leukaemia did not have any missing values. These variables 

had to be known in order for the patients to be considered for this study. These are the personal 

details that are recorded in the files and appear on each result sheet that is generated in the 

haematology laboratory. There are 38 input variables so in order to maintain the integrity of the 
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model, if more than 3 input variables were missing then that patient record was excluded from 

this study. This criterion was applied to all patients that were considered legible for this study. 

The average or mean was calculated for each parameter using the data from the 610 patients. 

The average value was used to replace the missing values for the appropriate parameters for 

each patient. Those patients whose current health status in October 2008 was known were 

included in the uncensored group. This group was used as a start-up group for the building of 

the neural networks since all available information was known. The remainder of the patients 

formed a second group of patients who were considered to be censored patients, i.e. their 

mortality is unknown. The patients in the censored group had a last test date, treatment or 

procedure recorded and thereafter no information existed in their medical records as to their 

status. These patients were included in some of the models as censored data. The censored 

patients had to be incorporated into the analysis to ensure sufficient numbers for this research.  

 

 

5.3 Data processing  

 

The following parameters were recorded for all patients included in this study: date of birth, 

age, gender, race, leukaemia type, date of diagnosis or tests,  full blood count (haemoglobin, 

haematocrit, red cell count, mean corpuscular haemoglobin, mean corpuscular volume, mean 

corpuscular haemoglobin concentration, red cell width, platelet count, mean platelet volume and 

white cell count), differential (% of reticulocytes, neutrophils, lymphocytes, atypical 

lymphocytes, monocytes, basophils, eosinophils, band cells, metamyelocytes, myelocytes, 

promyelocytes and blasts) flow cytometry (CD3, CD4, CD5, CD7, CD 8, CD10, CD13, CD14, 

CD19, CD20, CD22, CD23, CD33, CD34, CD56, CD64, CD65, CD117, LC Kappa, LC 

Lambda, HLA-DR, mpo (myeloperoxidase), chromosome analysis, and their survival status 

(months alive). Explanations for the parameters used in this study have been explained in 

Chapter 3. An audit was done on the procedures followed when new patients visit the oncology 

clinic at Ialch. Patients are requested to give all their personal details and their medical history 

which is then recorded in files both manually and electronically. Blood and/or bone marrow 

samples are taken from patients and sent for testing as per the clinician’s request. Tests include 

full blood counts, differential analysis, flow cytometry analysis and cytogenetic analysis. The 

various results were studied and this result base was the start of the patient list. In order for a 

variable to be considered for this study it had to be available for all the patients. The only 

cytogenetic result that was widely available for all patients was the chromosome analysis. The 

results for FISH, PCR and other abnormalities were not available for all patients because it was 

not requested for the sample was insufficient or results were inconclusive. After a review of all 

data for all patients in the clinic a list of possible variables were drawn up. A comprehensive list 
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was built where results for each patient was recorded. Thereafter an elimination procedure was 

adopted according to the number of patients that had all data for all the variables. In an ideal 

situation each patient would have had a value assigned for each variable where a result is 

sought, but this is not so for the initial list of patients. Initially there were 52 variables recorded 

for each patient. The raw data obtained from the medical files for all patients initially considered 

for this study is recorded in Table A-1 (Appendix A). Patient data was studied to determine 

which patients would qualify for this study. The following variables had to be eliminated from 

the study due to a multitude of missing values for the majority of the patients: reticulocytes, 

atypical lymphocytes, basophils, eosinophils, band cells, metamyelocytes, myelocytes, 

promyelocytes, CD64, CD65 and CD117. A final input of 38 variables was used in building the 

neural network. Some of the main variables used are given an expanded explanation below:  

 

 Age: the patient’s date of birth was used to determine their age. It was recorded in years 

at the time the laboratory analyses were carried out, and the diagnosis of the patient was 

confirmed. The patient’s age varied from a few months to < 90 years. The response to 

treatment varies according to age and especially between younger and older patients. 

All patients < 20 are considered as children in a clinical environment. 20-30 is 

considered to be young adults and > 30 as normal adults. Patients are termed “older” if 

they are > 60 years old. Patients ages ranged from 0 to >90. The patients were divided 

into 5 age groups, with each group being assigned to a value between 1 and 5 as shown 

in Table 5-2. 

 Gender: both male and female patient data was used, thus the two options of 0 for a 

female and 1 for a male as shown in Table 5-2. 

 Race: there are four broad race groups that are classified according to the South African 

population registry: blacks, indians (or asians), whites and coloureds. This status is 

recorded in the patient’s file. This system was used for classification into the race 

groups and denoted as codes 0-3 according to Table 5-2. 

 Type: the oncology department at Albert Luthuli Hospital treats leukaemia patients 

from all hospitals in the Kwa-Zulu Natal region. Patients are referred to the hospital to 

have their diagnosis confirmed by specialised laboratory tests like flow cytometry and 

cytogenetics.  The data was divided into four types of leukaemia: diagnosis of AML, 

ALL, CML and CLL. Even though there is a differentiation between the subsets of the 

leukaemias, for purposes of this study only the four variations will be used. The 

majority of the patient records only confirmed the main type. Since the specific type 

was not known for all patients, the above grouping was adopted. The final type chosen 

was as per the date of diagnosis and the laboratory tests confirming the type of 

leukaemia. The final coded system is given in Table 5-2. 
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 Full blood count: When a blood sample is obtained a standard analysis is carried out to 

determine the following variables: haemoglobin (13.5-15.5 g.dL-1), haematocrit (37-

52%), red cell count (4-5x1012 L-1), mean corpuscular haemoglobin (27-32 pg), mean 

corpuscular volume (78-99 fL), mean corpuscular haemoglobin concentration (30-35 

g.dl-1), red cell width (11.5-14.5%), platelet count (150-450 x 109 L-1), mean platelet 

volume (7.4-10.4 fL) and white cell count (4-11 x 109 L-1). The expected ranges when 

the laboratory analyses are carried out are within brackets near each variable. For each 

variable the maximum and minimum values were recorded and the frequency of values 

in various ranges was studied. The final adopted ranges and their codes for each 

variable are tabulated in Table 5-3. 

 Differential count: neutrophils, lymphocytes, monocytes, and blasts. These variables are 

represented as % therefore the range would be 0-100. For each variable, different 

groupings within the range were checked for the frequency of the patient results. The 

final ranges and their codes are shown in Table 5-5. 

 Flow cytometry: These parameters were recorded from the flow cytometry files and 

laboratory database. CD markers were used as a diagnosis for the type of leukaemia 

together with the cytogenetic analysis. Values were recorded as % as determined from 

the graphs obtained from the flow cytometer. Cells were labelled with monoclonal 

antibodies and sorted and enumerated to identify a specific population of cells.  

Depending on their light scatter characteristics, cells were chosen for analysis according 

to their FSC. The final codes are given in Table 5-4. 

 Cytogenetics: all data was analysed in Johannesburg General Hospital. Data was 

accessed from a cytogenetic database compiled by the haematology laboratory at Ialch. 

If the sample was insufficient or the analysis was not successful then an unknown result 

was returned. There were also results returned with a normal karyotype. Missing values 

were allocated 46, XX for females and 46, XY for males. The following notation was 

used to denote the cytogenetic data: normal male pattern, normal female pattern, 

addition, deletion, t(1,12), t(1,16), t(2,14), t(4,6), t(8,12), t(8,21), t8,22), t(9,17), t(9,22), 

t(10,11), t(11,17) and t(15,17). If cytogenetics were not done for patients then the 

normal karyotype for the male and female pattern was used. AML patients with a 

normal karyotype on standard cytogenetic examination constitute the largest subset of 

adult AML (approximately 50%) (Chang et al, 2007). AML patients comprise almost 

1/3 of the patients in this study.  Patients coded under the number 7 form a small 

number, therefore they were grouped in this way as shown in Table 5-6. 

 Survival time: the diagnosis date is taken as the time of the flow cytometry analysis, 

blood count analyses and the diagnosis of type of leukaemia. All patients were not part 

of the initial start date of the study, which was 01 January 2002. Patients were entered 
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into the study as they were diagnosed. The diagnosis date is the most critical date 

recorded as it is linked to the dates of the analyses of the appropriate laboratory tests, 

the patient’s age and it is the date of diagnosis of the type of leukaemia. The time taken 

for the health status of the patient, i.e. dead, alive with treatment, remission, relapse is 

also taken from the time of diagnosis to the event. All laboratory data was taken from 

the date of diagnosis. There is a two to three day difference between some tests as the 

requests were made when patients were seen by the clinician. The actual tests were 

done a day or two from the request date. The time recorded as survival time was used to 

determine whether the patient had survived over the period under study. For the dead 

patients approximately one month was subtracted from the number of months calculated 

according to the method described above. Since the study is based on survival, it can be 

considered that the patient was alive at least a month before their death.  Data had to be 

used from 2002 to 2008 or else there would not have been sufficient patient numbers in 

order to carry out this study. Some patients had recorded tests dating prior to 2002 and 

had to be incorporated into this study to ensure sufficient numbers for the mathematical 

modelling. Survival time was taken as the current status date minus the diagnosis date. 

The time was recorded in months and related to their status, i.e. dead, alive and in 

remission or alive and on treatment. Patients who had a last data recorded with no 

further entry prior to October 2008 in the hardcopy file or computer were considered to 

be censored (assumed alive or considered as an event that has not occurred). For 

example, if a patient had a last test or visit recorded in June 2007, then the patient was 

considered to be censored, as it is not known whether the patient is dead or alive. Death 

can also occur from other causes like car accidents. Patients in remission with a last test 

date have been censored, since it is uncertain whether they are alive or not. Once in 

remission some patients did not go back to the hospital for further consultations. 

Patients also move away from an area or country and may seek medical help elsewhere 

if they relapse or need any medical help, either related to the leukaemia or not. This data 

was not coded but used as calculated in months. 

 

5.4 Missing values 

 

The average for each variable was calculated using all patient data, both censored and 

uncensored. If a value was missing for a particular patient the average value replaced the 

missing value. Value for age, sex, gender and type was all recorded according to the files, i.e. no 

missing values. Those that had missing information were eliminated form the study. The values 

used for the replacement of other variables with missing information are tabulated in Table 5-1. 
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Variable 
Average 

Value 
Variable 

Average 

Value 

CD 3 16 rcc 3.15 

CD4 8 hmb 9.09 

CD5 27 hmr 27.2 

CD7 8.9 mcv 88.8 

CD8 8.8 mch 29.1 

CD10 13 mchc 32.9 

CD13 29 rcw 17.3 

CD14 4.7 pc 119 

CD19 34 mpv 9.74 

CD20 13 wcc 67.9 

CD22 2.8 np 20.3 

CD23 11 lc 34 

CD33 19 mnc 5.93 

CD34 21 blasts 46.7 

CD56 4.3 hladr 46.4 

kappa 21 mpo 7.87 

lambda 13     

 

Table 5-1 Average values of variables  

 

5.5 Coding data 

 

Data was categorised into ranges and coded for input into the software for the building of the 

neural networks. The coded system is tabulated in Tables 5-2 to 5-6. An analysis was done on 

the range of values that were recorded for each parameter and an appropriate division and 

allocation of a coded value was used. Some ranges were easily done, e.g. male and female 

allocated 1 and 0 respectively while others like chromosome analysis had to be coded according 

to the translocation and the types of leukaemias where it is used for diagnosis. A neural network 

consists of an input layer of variables, a hidden layer or layers which denote the actual values 

for each parameter being studied and an output layer which predicts or classifies as per the 

model chosen. The hidden layers will become congested if the actual value for each parameter is 

used. If a small model is designed with a few parameters having one or two values in the range 

then it is possible to use actual data. As the number of parameters and the values in the 

individual ranges increases the hidden layer becomes more complicated. It also increases 

computational time, as the software will take longer to process the data. As the patient numbers 
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increase with a multitude of variables, so does the number of units in the hidden layer of the 

neural network. There is also a limitation on the software as it will not be able to process this 

large number of variables, with each having numerous values in their range. In order to make 

the system less complicated each parameter is coded into ranges of values for the inputs as this 

allows for shorter and less complicated network architecture. An analysis was done on the 

ranges by initially determining the minimum and maximum values for each variable. The 

frequency of values in the various subsets of the range of values was studied for each variable. 

Each variable was then divided into the appropriate subsets and coded values allocated to them. 

The format of all variables was chosen as numerical. All variables were based on laboratory 

results and numeric results returned. Since the range of values was quite extensive and since 

there was a large number of patients the numeric format or categorical data was adopted.  

 

Variable Ranges Codes 

age (years) 0-20 

20-40 

40-60 

60-80 

>  80 

0 

1 

2 

3 

4 

gender female 

male 

0 

1 

race black 

indian 

coloured 

white 

0 

1 

2 

3 

type of 

leukaemia 

all 

aml 

cll 

cml 

0 

1 

2 

3 

 

Table 5-2 Patient specific information coded system 
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Variable Ranges Codes 

red cell count (rcc) 0-1.99 

2-2.99 

3-3.99 

4-4.99 

5-5.99 

1 

2 

3 

4 

5 

haemoglobin (hmb) 0-5 

5-10 

10-15 

0 

1 

2 

haematocrit (hmr) 1-10 

10-20 

20-30 

30-40 

40-50 

0 

1 

2 

3 

4 

mean cell haemoglobin (mch) 15-30 

30-45 

0 

1 

mean cell volume (mcv) < 70 

70-80 

80-90 

90-100 

0 

1 

2 

3 

red cell width (rcw) 10-15 

15-20 

20-25 

25-30 

0 

1 

2 

3 

platelet count (pc) 0-200 

200-400 

> 400 

0 

1 

2 

mean platelet volume (mpv) 5-7.5 

7.5-10 

10-12.5 

0 

1 

2 

white cell count (wcc) 0-50 

50-150 

150-300 

300-500 

> 500 

0 

1 

2 

3 

4 

mean cell haemoglobin concentration (mchc) 25-30 

30-35 

0 

1 

 

Table 5-3 Full blood count coded system 
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Variable Ranges Codes 

CD3 

CD13 

CD33 

CD34 

0-25 

25-50 

50-75 

75-100 

0 

1 

2 

3 

CD8 0-20 

20-40 

> 40 

0 

1 

2 

CD20 

CD22 

 CD23 

CD33 

CD3 

CD56 

myeloperoxidase (mpo) 

 

 

0 

 

> 0 

 

 

0 

 

1 

CD5 

 CD7 

 CD9 

 CD10 

 CD17 

 CD19 

 LC Lambda 

 LC Kappa  

HLA-DR 

 

0-50 

50-100 

 

0 

1 

CD4 0-10 

10-20 

20-30 

30-40 

> 40 

0 

1 

2 

3 

4 

 

 

Table 5-4 CD markers coded system 
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Variable Ranges Codes 

monocytes (mc) 0-10 

10-20 

20-30 

> 30 

0 

1 

2 

3 

neutrophils (np) 

lymphocytes (lc)  

blasts 

0-25 

25-50 

50-75 

75-100 

0 

1 

2 

3 

 

Table 5-5 Differential count coded system 

 

Variable Ranges Codes 

chromosome 46, XX 1 

46, XY 2 

addition 

 deletion 

[] 

3 

t(9;22) 

 t(9;17) 

 t(9;11) 

4 

t(8;21) 

t(8;12) 

t(8;22) 

5 

t(5;17) 6 

t(1;1) 

 t(1;16) 

 t(1;19) 

 t(2;14) 

 t(4;6) 

t(12;21) 

 t(10;11) 

 t(11;17) 

 t(4;17) 

 t(17;19) 

 t(11;17) 

t(4;11) 

other 

7 

 

Table 5-6 Chromosomes coded system 
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5.6 Development of neural network models 

 

The neural networks were developed using the software PREDICT version 3.12. The software 

package allows for variation in the parameters that are used to build neural networks. The 

various options like learning rate or coefficients, learning rule, weight decay, number of hidden 

layers and type of transfer functions was varied to obtain the most efficient neural network for 

that particular data set. The objective of varying the various parameters is to minimise the error 

function in the neural network.  

 

The following models are proposed based on an analysis of the patient data where the health 

status is known (uncensored) and that which is unknown (censored) for the parameters under 

study. 

 Case study 1: patients having all data available based on the parameters chosen for this 

study over a 24 month period, i.e. it is known that they survived at least 24 months. 

Some had died and some have survived beyond the 24 months. 

 Case study 2: patients having all data available based on the parameters chosen for this 

study over a 36 month period, i.e. it is known that they survived at least 36 months. 

Some had died and some have survived beyond the 36 months. 

 Censored case study: censored and uncensored patients whose survival status is known 

for sure (uncensored) and those known for a specific time period (censored) were used 

as input for this model. Some patients were dead, some were still on treatment and the 

rest were censored. The large number of censored patient data had to be incorporated 

into his study to ensure sufficient patient numbers for this research. 

 

5.6.1 Genetic algorithm 

 

The software PREDICT was used to develop the neural networks. This software uses a feed 

forward neural network with an architecture of 1 input layer, 1 hidden layer and 1 output layer. 

It uses the gradient descent back propagation learning algorithm for training the network. The 

mathematical procedure for the back propagation learning algorithm used by the software 

PREDICT is illustrated in Figure 2-15 and the methodology explained in equations 2.35 to 2.42.  

The input variable selection employs a genetic algorithm. In the case of input variable selection, 

the individuals are a set of input variables. Different initialisations will yield different variable 

sets. The algorithm starts off with small sets of variables, and successful groups of variables are 

retained within the system. This is then used by the algorithm to select larger sets of variables if 

necessary. Smaller variable sets are usually preferred over larger variable sets. Set refers to the 
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index of the individual in a current population. Patience is a mechanism which is responsible for 

the convergence of the genetic algorithm. The patience factor changes by 1 if the tolerance is 

not attained. When the patience factor surpasses certain number (4 by default), the algorithm is 

terminated. The outcomes of the analyses gave the parameters that were most significant. Each 

model built can be thought of as an expert who uses a different set of criteria (the selected 

variables) to make its decision. The “Flashcode” component converts the completed multi-layer 

perceptron model into C, FORTRAN or Visual Basic code.  (Neuralware, 2001).  

 

A frequency value is given as an output for each variable used as an input to the model, whether 

accepted or not. The value indicates the frequency of occurrence of the field or the transform in 

the final population of the variable selection genetic algorithm. For example, a frequency of 1 

for the variable “age” shows that it is chosen 100% of the time and is therefore considered very 

important to the model. The significant parameters or inputs that were used to build the initial 

model were then used further to build a second neural network. Since the variable was 

mathematically rejected from the model it implied that it was not significant for the particular 

data set used.  Its elimination can therefore be justified, resulting in a new neural network with 

only the accepted variables. This method was expected to improve the efficiency of the models. 

For the neural network model eliminating the non significant parameters reduces the complexity 

of the model and the efficiency at the same time. There is a trade off between the number of 

significant variables to be used in the model (complexity) and computing power. This technique 

needs to be optimised to meet the latter requirements.   

 

5.6.2 Network type and architecture 

 

The feed forward back propagation or better known gradient descent network type (equations 

2.35 to 2.42) was used for modelling the survival and prognosis for leukaemia patients. The 

difference between the network output and the target is treated as an error to be minimised.  The 

back propagation algorithm is “offline” in the sense that training and normal operations occur at 

different times. In PREDICT the weight adjustment is performed by back propagation. The 

weight adjustments are done independently for every architecture chosen. Pattern selection is 

arbitrarily selected and distributed to the network. In PREDICT the weight updates default for 

the hidden layer and for the output layer is 0.005. If varied it is recommended that the weight of 

the output layer be at least of the order 10 less than the hidden layer. 
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5.6.3 Network parameters 

 

The following training parameters were used to get the minimum possible error. Some options 

are a default setting in the software PREDICT and does not allow for any changes.  

 Batch: The synaptic weights are updated for every pass through the allocated training 

data. This method is used since it minimizes the total error. There is no alternative in 

PREDICT. 

 Learning rules: The learning rule gives an indication of how the connection weights are 

changed during the learning process. The gradient descent back propagation learning 

rule is adopted for this study.  

 Momentum: The initial momentum parameter is specified for the gradient descent 

algorithm. The user is allowed to change as necessary. A high learning rate may cause 

instabilities; therefore the momentum term is added to prevent this. This value can be 

changed by the user in the gradient descent mode and is illustrated in equation (2.42). 

 Learning Rate: The initial value of the learning rate for the gradient descent algorithm 

is set automatically. The learning rate affects the speed of the training. This value needs 

to be “watched” as it can cause instability if it is too large. The back propagation error 

modifies the weights of the nodes at a specific rate. This rate is referred to as the 

learning rate or learning coefficient defined in equation (2.42). In PREDICT the default 

learning rate is 100 but it can be changed by the user. 

 Hidden layers: The hidden layer is made up of network neurons or nodes (units). A 

single hidden unit is a function of the weighted sum of the inputs. The function used in 

the algorithm is the activation function. The weights are determined by the estimation 

algorithm. If there is a second hidden layer, then each hidden unit in the second layer is 

a function of the weighted sum of the units in the first hidden layer. The activation 

function is the same in both hidden layers. The number of units in each hidden layer 

can be entered into the software program or it can be left to the program to be 

determined automatically by the estimation algorithm (Haykin, 1995).  

 Activation function:  It is a non-linear function that transfers the sum estimated for 

each neuron into a possible output value. The activation function also serves to link the 

weighted sums of units in each layer to the values of units in the succeeding layer. 

“The hyperbolic tangent function has the form: γ(c)=tanh(c)=(ec−e−c)/(ec+e−c). The 

data is transformed to the range (–1, 1). When an automatic architecture selection is 

used, this is the activation function for all units in the hidden layers. The sigmoid 

function has the form: γ(c) = 1/(1+e−c). It takes real-valued arguments and transforms 

them to the range (0, 1)” (Haykin, 1995). The transfer functions used were sigmoid and 
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hyperbolic tangent (tanh) in PREDICT. The outputs are transformed and include the 

exponential, power, log and linear transfer functions. The general form of a continuous 

transformation is: 

      (5.1) 

Where  f:  is a continuous function 

si, oi: implement an inner scaling of the raw data to map it to an optimal sub-

domain of f 

s0, o0: implement an outer scaling so that y lies within a suitable range for the 

neural net (Haykin, 1994). 

Each transform function in the data analysis table is identified by its continuous function f 

which can be any one of the following shown in Table 5-7. 

 

Transformation Definition 

linear identity function 

log natural logarithm function 

exp exponential 

pwr2 square function 

rt2 square root function 

inv inverse function 

tanh hyperbolic tangent function 

logical logical function (0/1) 

rlogical reverse logical function (0/1) 

 

Table 5-7 Abbreviation for transfer functions 

 

 

  Output layer: The output layer is made up of the variables for prediction. 

 Partition: This function is used to split the data. The data id split according to the user’s 

choice. The input data is split into training, testing and validation as per the limitations 

set out. The relative number (ratio) of cases randomly assigned to each sample 

(training, testing, and validation) can be specified by the user in PREDICT. The % box 

is used to input the split that the user chooses. PREDICT has a default allocation of 

data which 70% training and 30 % testing. It also allows for further testing of new data 

in addition to the above 30%. This verification for the new data set can only be used 

after the initial model has been trained and tested as per the 70%-30% split. The data is 

randomly selected into the training and testing sets. The user can change this ratio, but 

a balance has to be created where there is sufficient data to train and test. The training, 

testing and validation sets can be manually selected by the user. The output results are 
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based on a built-in three-fold cross validation which PREDICT has as a default setting. 

The partitioning of data into training, testing and validation was done with the default 

settings in PREDICT and manually. Manual selection was done as per the selected 

partition, but each value in the data set was manually tagged as a train, test or 

validation data point. An example is shown in Table D-1. The Excel interface is use to 

do the manual selection before the models are built. 

 Seed value. For a particular set of data, the training and testing set allocations are fixed 

by this method to ensure repeatability of analysis, i.e.to reproduce the same randomised 

results in the subsequent analyses, the same initialisation value for the seed value is set 

as an input before each run of the neural network analysis procedure. A randomly 

selected 7 digit number of 9191972 was used for this research. 

 Cross validation: The aim was to compare the different model types on the basis of 

their predictions of survival. Since the amount of data was not large enough to split into 

a training batch and a testing batch, a five-fold cross-validation technique was adopted 

in this study to ensure that all patients could be used in the training and testing (Ripley, 

1998). This manual technique has been explained in Chapter 4. For each proposed data 

set and corresponding model a fifth was kept back in turn, the models fitted to the 

remaining four-fifths and predictions of the survival made for each patient in the fifth 

held back. This method would give a realistic picture when the true model is chosen. 

Each of the five groups was used as the test group at least once. This manual cross 

validation technique is different to the 3-fold cross validation method adopted by the 

software PREDICT. The software takes a set of variables and divides the data 

according the required partition, e.g. 70% training and 30% testing. This is done three 

times with the allocation of the partition and testing changing for each model built with 

this data set. The final result that is produced as an output is the model with the best 

statistical performance, e.g. R value and the accuracy. 

 

5.7 Summary  

 

A major part of this research was based on the collection of patient data, the determination of 

the relevant variables necessary for this study and analysis of the results. The data also had to be 

extensively processed into an appropriate format for use an input to the software used for the 

neural network modelling. Data was recorded from the patient files, average values used to 

replace missing values and data sorted to check which patients were eligible for this study. 

Patient information was transformed from the raw data available in the patients’ files to the 

numerical format that is required by the software program. A coded system was used and all 
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data was of the type categorical. During the building of the networks various combinations were 

used to train, test and validate the models obtained. The patient raw data is presented in 

Appendix A to C. The results of the final models are presented in Appendices D to F. The 

Visual Basic Code for all the final proposed models is in Appendix G. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

6.1 Introduction 

 

Currently there are no studies that have been carried out on predicting survival of leukaemia 

patients by any mathematical methods, either generally or per type of leukaemia. The prediction 

method adopted in this study aims to provide a robust and accurate method for predicting survival 

of leukaemia patients for both censored and uncensored patient data. The aim of this research was 

to find out how effective neural networks can be in modelling leukaemia prognosis and to 

determine the factors that have the most influence. The raw data was collected and processed as 

explained in the methodology in Chapter 5. The data was grouped into uncensored and censored 

patient groups and then used to build the neural networks. These groups were further subdivided 

into the subtypes of leukaemia, i.e. ALL, AML, CML and CLL, and new models built.  The final 

model for each data set is illustrated with the relevant confidence intervals. Tables are presented for 

the prognostic factors that have been used in the building of the neural network models and the 

level of importance is denoted as a frequency value. The following statistical analysis has been done 

on all patient groups used and is indicated in Table 6-1. The percentages were calculated on the 

number of patients that were eligible for each group. A 95% confidence interval has been used in all 

statistical analysis in this study. 

 

6.2 Fitting neural network models  

 

The models were fitted as described in the methodology in Chapter 5. The full data set was analysed 

and patients were grouped according to a survival period of two years, a three year survival period 

and a third group of all patients, i.e. censored and uncensored. In an initial analysis of all patient 

data there were 84 deaths in the 610 patient group (censored). There were 77 deaths in the first 24 

months, 6 deaths in the period 2-5 years and 1 in the 6th year. The general trend is that if a patient 

survives at least two years with treatment then the likelihood of remission and or a survival rate 

beyond 5 years is much greater. The availability of reliable data (uncensored) for the first three 

years has prompted the decision to do a two year survival, a three year survival and a full data set 

(censored) grouping for the building of the neural networks for prediction of survival.  Each of the 

above groups was then divided according to the type of leukaemia and the neural network model 
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was determined for each type.  The results of the fitting procedures are presented and the outputs 

compared for a particular group of patients. 

 

Variables Parameter 2-year Case study 3-year Case study Censored 

Case Study   

gender % males 

% females 

58 

42 

60 

40 

59 

41 

race % blacks 

% indians 

% coloureds 

% whites 

67 

23 

2 

8 

63 

27 

1 

9 

67 

23 

1 

9 

type % ALL 

% AML 

% CLL 

% CML 

43 

37 

17 

2 

47 

34 

17 

2 

42 

27 

29 

2 

age % 0-20 

% 20-40 

% 40-60 

% 60-80 

% > 80 

41 

28 

20 

10 

1 

44 

26 

20 

9 

1 

36 

25 

21 

17 

2 

 

Table 6-1 Statistics for patient data 

 

A default learning rule was adopted for moderately noisy data, moderate data transformation and 

comprehensive variable selection.  The adaptive gradient learning rule uses back-propagated 

gradient information to guide an iterative line search algorithm. This general learning rule or 

algorithm is explained in Chapter 2 with a detailed explanation of the methodology and illustrated 

by the final equations 2.35 to 2.42.  The statistical outputs and transformations of the model 

building process are produced in Excel format in Appendix D. The final programming codes in 

Visual Basic are presented for the final proposed models (Table 6-48) in Appendix G. For each set, 

„training‟ occurs on all records within the set and a composite test score is calculated across all 

validation sets. Thereafter an 80-20 and 90-10 partition was applied to all models. The favoured 

model was chosen to build the final model by excluding the outlying patients, i.e., outside the 

calculated confidence interval band. The justification for this removal is that there are always 

exceptions to a rule and especially with diseases where there is uncertainty in the recovery success 

rates of all types of patients. The neural network model was then applied to the final data set to 
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predict the survival for the particular group of patients. Each data set was also tested by retraining 

with different values of the learning rate and weight decay. Only the final models are presented. The 

accuracy (ACC) tolerance is set at 0.2 representing 20% of the range of the output, i.e. the percent 

of predicted output values lying within 20% of their corresponding target value outputs. The default 

weight decay is 0.005 and the default learning rate is 100.   

 

The option “keep last network” was used since it allows larger networks to be favoured over smaller 

ones. This is favoured if accuracy is more important than generalisation, as is in this study. The 

result of the network format in PREDICT yields an architecture label which indicates (left to right), 

i.e. units in input layer-units in hidden layer(s)-units in output layer (e.g. 28-8-1).  The number of 

units (or sometimes called nodes) in the input layer is equal to the number of transformations of 

input variables. Due to PREDICT‟S data analysis, transformation, variable selection and 

algorithms, the number of input units in general will not correspond to the number of input data 

fields in a training data record. The architecture built is based on the training of the data specific to 

the group, thus the mathematical output is based on the variables of the group that have the most 

contribution to forming this “pattern” or mathematical model. Variables that are prognostically 

insignificant are mathematically rejected during the training phase. Accepted variables are rated 

according to the frequency, a value between 0 and 1 (1 corresponding to 100%), indicating the 

importance of the variable in the neural network model building process. Final models are built 

based on a unique set of accepted variables that are then transformed to produce the required output. 

PREDICT produces an architecture for a unique set of data, thus the difference in the architecture 

when the partitions are changed from 70% for training to 90% for training for a given group. The R 

value is a measure of the linear correlation between the real world target and the real world model 

output. Perfectly correlated data have an R value of 1. Anti-correlated outputs have a value of -1 

and uncorrelated data have an R value of 0. The R value is dependent on the problem domain, e.g., 

in stock market data which is very noisy a value of 0.15 or 0.2 is considered good. The real test of 

the effectiveness of a model can only really be gauged by comparing it with other models on 

previously unseen data. The confidence interval (CI) corresponds to an error bar around the output. 

The confidence interval implies that 95% of the model predictions lie within the range around the 

target output values that bounded by the confidence intervals (dashed lines on all graphs). Accuracy 

(ACC) is the fraction of times the real world target is “close” to the real world prediction, where, for 

this test, “close” is defined to be 20% of the output range. CI, ACC and the R value were used to 

determine the best model for a particular data set. A Transform table gives an indication of the 

variables acceptance or rejection for the proposed model. A table for each model indicating the 
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accepted and rejected variables used in the building of the neural network model are produced. The 

table includes the equations used to transform each variable and the frequency of use in the building 

the model. There is one output for each model and that is “survival”. “I” at the beginning of a value 

in the Transform tables (Appendix D to F) indicates that the variable has been used as an input to 

the model and “A” means it was rejected during the data analysis. The output “V” implies that the 

variable was rejected during the variable selection process. This means that the field could 

potentially have been used in the model (and may be used in a different model) but was not part of 

the set of input variables chosen for that particular model. A frequency (f) value is given as an 

output for each variable used as an input to the model, whether accepted or not. The value indicates 

the frequency of occurrence of the field or the transform in the final population of the variable 

selection genetic algorithm. For example, a frequency of 1 for the variable age shows that it is 

chosen 100% of the time and is therefore considered very important to the model. For rejected 

variables the range of f was from 0 to 0.89. For the accepted variables f ranged from 0 to 1. There is 

no indication from the Transform tables (Appendix D to F) that a limiting value or range of f will 

indicate whether a value is accepted or rejected for a specific model. The graphs presented represent 

the final models obtained for each of the data sets. Actual survival data is compared to the survival 

predicted by the neural network models. The dashed lines represent the 95% confidence interval 

range obtained from the statistical analysis produced by PREDICT, i.e. 95% of the predicted data 

lies within the confidence interval represented by the dashed lines bordering the 450 line on the 

graphs. 

 

6.2.1 2- year case study 

 

A data set of 235 was used to predict survival for a 2-year period as this information was known for 

all the patients in this group (uncensored). The neural network models were run by varying the 

learning rate, the weight decay and the learning rule. The partitioning for training, testing and 

validation was varied between 70% and 90% for the training data with the remainder used for 

testing. The full data set, i.e. training and testing was used for validation initially. The data was also 

manually (M) partitioned into a training (T), testing (S) and validation (V) set. A summary of the 

results based on the output of the confidence intervals in the various models is given in Table 6-2. 

The learning rate (LR) was varied between 80 and 150, the weight decay (WD) was varied between 

0.005 and 0.001 and the learning rule chosen was the gradient descent learning rule. The confidence 

interval was used in selecting the best model. The CI value is an indication of the interval between 

the actual and predicted value that is within 95 % of the target value. The model chosen for this data 
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set has a 90-10 partition, an R value of 0.87 for the training and 0.65 for testing. A weight decay of 

0.0005, gradient descent learning rule and a learning rate of 100 were the default values. Prediction 

accuracy of 0.89 and 0.58 was obtained for the training and testing set, respectively. The projected 

architecture was 24-18-1, i.e. 24 inputs, 18 hidden units, and 1 output layer where the sigmoid 

transfer function was used for the output layer. There are 18 variables shown in Table 6-3 that have 

been used to build the model with 24 transformations of these inputs. The remainder of the 38 

variables were mathematically rejected by the model. In the initial analysis phase each data set or 

group of models were changed to see the effect of varying the allowable parameters, i.e. LR, WD 

and partitions. The best models were obtained with the 70-30, 80-20 and 90-10 partitions and in all 

cases PREDICT‟S default settings of LR=10 and WD=0.005 gave the narrowest confidence 

interval. The summary in Table 6-2 illustrates this effect. The two 90-10 (M1) and 90-10(M2) 

models are based on a manual allocation of the training, testing and validation data points. From 

row 6 to row 12 in Table 6-2, the WD and LR was varied to see if there was any change in the 

accuracy of the model. The model which gives the best prediction of survival for the 2-year case 

study has the network architecture of 24-18-1, with an R value of 0.87. For all subsequent data sets 

and groups only the best model in the 70-30, 80-20 and 90-10 partitions will be presented. The 

graphs in Figure 6-1 to 6-3 illustrate the predicted survival for the 70-30, 80-20 and 90-10 

partitions.  

 

Partition Network LR 
R 

WD 
ACC CI (months) 

T S T S T S 

70-30 21-11-1 100 0.78 0.45 0.0005 0.78 0.52 18 27 

80-20 16-2-1 100 0.55 0.53 0.0005 0.62 0.64 24 24 

90-10 24-18-1 100 0.87 0.65 0.0005 0.89 0.58 14 15 

90-10 (M1) 22-8-1 100 0.55 0.2 0.0005 0.61 0.62 23 22 

90-10 (M2) 20-7-1 100 0.63 0.4 0.0005 0.69 0.25 21 33 

90-10 24-2-1 120 0.72 0.46 0.0005 0.76 0.58 19 28 

90-10 24-2-1 80 0.71 0.48 0.0005 0.72 0.58 20 28 

90-10 24-7-1 150 0.74 0.44 0.0005 0.76 0.58 19 30 

90-10 24-2-1 150 0.69 0.45 0.0001 0.72 0.5 20 28 

90-10 24-9-1 120 0.88 0.52 0.0001 0.87 0.62 14 29 

90-10 24-23-1 80 0.86 0.59 0.0001 0.85 0.57 14 27 

90-10 24-8-1 100 0.85 0.51 0.0001 0.84 0.54 15 29 

 

Table 6-2 Summary of models for 2-year survival  



133 
 

 

 
 

Figure 6-1 Predicted 2-year survival (21-11-1, 70-30) 

 

 
 

Figure 6-2 Predicted 2-year survival (16-2-1, 80-20)  
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Figure 6-3 Initial predicted 2-year survival (24-18-1, 90-10)  

 

 
 

Figure 6-4 Final predicted 2-year survival (19-9-1, 90-10) 
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The patients whose survival is over-predicted in Figure 6-1 are in the 0-40 age group, of type acute 

leukaemia with normal karyotype or one addition or deletion. It is an expected result as the 

prognosis for survival of children and young adults with acute leukaemia and normal karyotype is 

quite high (Cripe, 1997), thus the model predicts this well. Those patients whose survival is under-

predicted are in the age group >40 with karyotype from normal to translocations on chromosome 9. 

Older patients with these abnormalities have a poor prognosis, thus justifying the predicted survival 

by this model. In Figure 6-2 and 6-3 the trend for the patients in the relevant age groups and 

karyotypes were similar with regards to the predictions. These results indicate that even though the 

partitions were changed, the trends for the predictions are the same and are consistent with the 

revised literature (Cripe, 1997). The proposed model is well representative of the actual patient data 

resulting in a well trained neural network that can reliably used for predictions of new patients who 

fall into this category.  

 

The statistical analysis table and the input variables Transforms table are shown in Table D-3, 

Appendix D. All variables with an “I” at the beginning have been used to determine the neural 

network model. The transfer function transforms for the input variables used in the model and their 

importance as indicated by the frequency are given below in Table 6-3. Some variables were 

rejected as inputs to the model building process. If these rejected variables are excluded when 

building a new neural network for the same data set then one would expect similar results for both 

the models since they were already found to be mathematically insignificant in the building of the 

initial neural network model. A new model was built that excluded the variables that were discarded 

in all three partitions. This was compared to the results in Table 6-2. The new model is a 

combination of accepted variables for all three partitions used therefore it can be expected that there 

will be a small variation in the results as can be seen from results in Table 6-4. The first two outputs 

in Table 6-4 are based on the accepted variables and the third is the favoured model from Table 6-2. 

The 70-30 model gives a better prediction than the 90-10 modelled with only the accepted variables. 

This may be due to the difference in the number of hidden units determined when the network was 

built. Overall the 90-10 (R value = 0.87 and network 24-18-1) partition from Table 6-2 gives the 

best prediction and is therefore the proposed model for the data set used for the 2-year survival 

analysis.  

 

There are outlying values, i.e. predicted values outside the range of the confidence interval as can 

be seen in Figure 6-3. There will always be patients whose health status cannot be rationally 

explained. Patients can display similar symptoms and have similar laboratory results but their health 
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status or survival cannot be predicted exactly. There are numerous cases were clinicians are unable 

to explain how a person can have a disease at one stage and be cured further down the line, i.e. they 

are unable to find a specific or scientific reason for this phenomenon. All patients have had similar 

symptoms and similar laboratory results, yet there is a difference in the accuracy of their predictions 

as can be seen in Figure 6-3. Since there are some points that lie outside the boundaries they will be 

left out of the new model. The latter reasoning can be used as justification for leaving out the 

outlying points. The revised model is illustrated in Figure 6-4. The recommended model for this 

data set is the 90-10 partition summarised in Table 6-4. This model has the poorest confidence 

interval of 15 months for the training set and 13 months for the testing set, i.e. 95% of the predicted 

survivals lie in the bounded area in Figure 6-4. An accuracy of 1 indicates that (all) 100%  predicted 

values are within 20% of the actual target values thus making this model the preferred one for this 

data set for predicting the survival of all leukaemia patients (uncensored) in 2 years. Since the 

model mathematically excluded some variables, those tabulated in Table 6-3 according to their 

frequency can be accepted as having the most significance for this data set. Since the data set is 

made up of the four types of leukaemia and the prognostic factors are normally used in diagnosis to 

specify the type of leukaemia, this table gives an overall summary of the factors that have a general 

impact on all types of leukaemia. This data set was further divided into the 4 types of leukaemia and 

separately analysed to predict a specific leukaemia and to investigate the prognostic factors for each 

type. The results for each type of leukaemia are presented in section 6.2.2.  

 

Cytogenetic analysis of leukaemic cells is a critically important addition to the standard diagnosis 

and classification of leukaemia. It is currently considered to be an essential component in the 

assessment of a newly diagnosed leukaemia patient, playing a major role in diagnosis, sub-

classification, selection of suitable therapy, and monitoring the effect of therapy (Harmening, 2002). 

The variable for chromosomes was excluded from all the models. A possible reason could be that in 

this study the various abnormalities were only grouped into 7 classes (of which 2 were of normal 

karyotype) for analysis compared to the multitude of chromosome abnormalities that exist and are 

used to diagnose the specific type of leukaemia. Further analysis is required with regards to specific 

cytogenetic testing and for the actual results to be incorporated into the proposed models. 
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Variable Transformation (s) Frequency 

age tanh 0.92 

race 
linear 

log 

0.79 

0.57 

type linear 0.56 

mcv 
linear 

pwr2 

0.44 

0.11 

mchc rlogical 0.92 

rcw linear 0.79 

pc inv 0.35 

mpv linear 0.37 

wcc linear 0.47 

np inv 0.97 

mnc linear 0.64 

CD4 
linear 

inv 

0.61 

0.56 

CD13 logical 0.89 

CD20 logical 0.85 

CD22 logical 0.52 

CD33 logical  0.49 

CD56 logical 0.89 

mpo logical 0.47 

survival rt2 output 

 

Table 6-3 Prognostic factors for 2-year survival  

 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 21-10-1 0.84 0.58 0.83 0.56 15 24 

90-10 18-2-1 0.70 0.58 0.67 0.50 20 26 

90-10 24-18-1 0.87 0.65 0.89 0.58 14 15 

Final 90-10 19-9-1 0.83 0.91 1 1 15 13 

 

Table 6-4 2-year survival models based on accepted variables 

 

For the 2-year survival group there were 77 deaths resulting in a survival rate of 67%. The average 

or mean survival calculated from the existing patient data is indicated in Table 6-5. The actual value 
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was calculated for the known survival period for all patients in the 2-year survival group and 

compared to the predicted mean survival for each of the proposed models. The average value is 

calculated from the predicted values of the model for each patient. The 90-10 partition predicted 

18.77 months which is closest to the actual mean survival value of 19.56 months. The comparison 

of survival rates for leukaemia in general is not available in the current literature since all studies 

are done specifically for a type of leukaemia. A model for prediction of survival for all types of 

leukaemia is still useful as it indicates the main prognostic factors that affect leukaemia patients in 

general. In this study a multitude of all possible parameters that were available were used to build 

the neural networks. This approach therefore gives quite a comprehensive mathematical analysis of 

the variables that have the most prognostic significance to predicting survival generally in 

leukaemia patients. This can be used by clinicians as an initial start to testing all patients for these 

prognostic factors when they display the relevant symptoms. This can be used as a baseline start to 

the diagnosis of the patient‟s specific type of leukaemia. This will then give the clinician an overall 

impression of the patient‟s prognosis regardless of the type of leukaemia. If these are standard 

testing procedures for all patients then resources can be allocated in advance for all patients and 

costs can be minimised as this type of routine work can be easily managed.  

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean 

Survival (months) 

Std 

Dev 

CI 

(months) 

70-30 19.56  14.5 0.06 17.93 10.05 0.04 

80-20 19.56  14.5 0.06 17.30 8.57 0.03 

90-10 19.56  14.5 0.06 18.77 12.75 0.05 

Final 90-10 18.28 14.1 0.06 19.57 13.11 0.06 

 

Table 6-5 Mean survival for 2-year model 

 

A five-fold cross validation technique (Ripley, 1998) was applied to the above data set. The cross 

validation procedure resulted in the selection of five „optimal‟ combinations of hidden units and 

weight decay for each model type. A five-fold-cross-validation was applied resulting in a grouping 

of 47 X 4 and a 48 subset. Each model was run by leaving out a subset. There were 5 models 

produced so that all the data was used in both the training and testing. A partition of 90-10 with the 

default learning rate of 100, weight decay of 0.0005 and gradient descent learning rule was applied 

to all the models.   The results are displayed in Table 6-6.  
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Network 

 

R 

 

ACC 

 

CI (months) 

 

T V T V T V 

 20-12-1 0.91 0.29 0.92 0.27 11 34 

21-15-1 0.91 0.21 0.91 0.49 12 33 

 16-4-1 0.91 0.25 0.95 0.27 11 38 

 20-3-1 0.92 0.004 0.96 0.25 9 43 

 16-21-1 0.89 0.33 0.92 0.54 11 34 

mean 0.91 0.22 0.93 0.36 10.80 36.40 

std dev 0.01 0.11 0.02 0.12 0.98 3.72 

CI (months) 0.00 0.00 0.00 0.00 0.03 0.10 

Table 6-6 Cross validation for 2-year survival 

 

The results in Table 6-6 indicate that the confidence interval of the validation data is quite large in 

comparison to the training data but is consistent in all five models. The data for analysis is limited 

in this study and this can be a possible reason for the wide confidence interval obtained in the 

validation models. If the model is applied to a clinical trial there must be a substantial number of 

data points and it should also incorporate multi-centred institutions to obtain a wide range of 

patients. 

 

6.2.2 Two year survival based on type of leukaemia 

 

The group of patients in 6.2.1 were divided into the specific types of leukaemia. Since the CLL 

group was too small to build a separate model (PREDICT requires a minimum of 20 data points to 

build a neural network model therefore it was grouped with the CML data set). In order to validate 

this model, new patient data must be added to this data set and the model retrained if this proposed 

method is to be used for future predictions. The other two groups comprised the ALL and AML 

patients. The 70-90 % partition with default LR, WD and gradient descent rule similar to 6.2.1 was 

applied in building the neural networks for each of the subdivided groups. The effect of varying the 

LR and WD did not have any effect in improving the models.  

 

6.2.2.1 ALL 

 

A summary of the network results are given in Table 6-7 and the proposed model based on the 

narrowest confidence interval is illustrated in Figure 6-5. There is a definite improvement in the 
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predictions for the individual sub-types of leukaemia, as can be seen from the improvement of the 

CI from 15 months to 9 months.  It also confirms that each sub-type of leukaemia has a separate set 

of prognostic factors which influences survival. Neural networks are trained with data to form a 

model (or pattern) that is representative of all the data in a given data set. For the general leukaemia 

models in 6.2.2 four model patterns were incorporated to produce a general trend, thus the large 

confidence interval in comparison to the ALL model. The patients who lie outside the 95% 

confidence interval all have a normal karyotype with a single addition or deletion with the majority 

in the 0-20 age group. ALL is the most frequent malignancy of children in the 0-20 age group. 

Survival rates of childhood leukaemias are much higher than in adults. Children are able to 

withstand the effects of chemotherapy and respond well to conventional therapy. Adults are more 

prone to the toxicity of the drugs administered during chemotherapy leading to a lower success rate 

in this type of treatment. Some assumptions were made for patients that had missing or uncertain 

values for their cytogenetic results, i.e. they were replaced with a normal karyotype. This could 

account for the prediction of the 0-20 age group patients to be lower than the actual rate. The 

predicted survival is 20.99 months compared to the actual mean survival of 20.79 months. A 70-90 

% remission rate for ALL has been reported by various research groups Yanada et al (2006), Xin et 

al (2006) and Hallbook (2005). The model has predicted age to be a major prognostic factor for 

ALL as is in the revised literature. As explained above, survival of ALL patients is dependent on 

their age, i.e. children and young adults respond well to treatment and have higher survival rates. 

Remission rates amongst children have steadily increased over the years with 100 % certainty in 

certain groupings.   

 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 21-2-1 0.76 0.29 0.75 0.42 22 35 

80-20 18-8-1 0.84 0.73 0.75 0.68 18 23 

90-10 17-20-1 0.92 0.87 0.92 0.86 12 16 

Final 90-10 17-20-1 0.95 0.95 0.95 0.95 9 9 

 

Table 6-7 Summary of models for 2 year survival of ALL  
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Figure 6-5 Initial predicted 2-year survival for ALL (17-20-1, 90-10) 

 

 
 

Figure 6-6 Final predicted 2-year survival for ALL (17-20-1, 90-10) 

 

Cytogenetics is a critical component that is essential in the assessment of newly diagnosed 

leukaemia patients and this is confirmed by a frequency of 0.98 in Table 6-8. Chromosome 

abnormalities in ALL are divided into those that have a poor or good prognosis but other blood 
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results and expression of specific markers also influences a patient‟s prognosis. A frequency of 0.98 

implies that it has a significant role in the building of the neural network. There are no reported 

studies in the literature which show that race has an effect on ALL survival, but this model does. If 

applied to a clinical trial it should be confirmed by adding more patient data and having the model 

retrained. This can be taken a step further where HLA-typing which is specific to a race type, can be 

used as an added variable to see if this phenomenon is as per the predicted outcome for this model. 

The most common B-line-age ALL are the B-cell markers CD10, CD19, CD22 and CD34. This 

model has rejected the markers CD10 and CD19, but has included markers CD3, CD13, CD20, 

CD22, CD34 and CD56. In ALL lymphocytes are the predominant cell types (Lewis et al, 2001) as 

prognosed in this model with a frequency of 0.93. The variables “neutrophil” (f = 1.00) and “CD13” 

(f = 0.9) should also be further confirmed in the training of an extended model as explained for the 

variable “race”. The wide confidence interval obtained for the validation models can be attributed to 

the reduced number of data points when the main group was subdivided.  

 

Variable Transformation (s) Frequency 

age inv 1.00 

race exp 0.97 

mchc rlogical 0.40 

mpv linear 0.67 

np 
linear 

inv 

0.39 

1.00 

lc 
linear 

tanh 

0.93 

0.77 

mnc logical 0.09 

CD3 log 0.44 

CD13 logical 0.90 

CD20 logical  0.44 

CD22 logical 0.09 

CD34 rlogical 0.32 

CD56 rlogical 1.00 

kappa logical 0.23 

chromo linear 0.98 

survival rt2 output 

 

Table 6-8 Prognostic factors for ALL 2-year survival 
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Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 21.48 18.71 0.11 18.82 13.87 0.08 

80-20 21.48 18.71 0.11 19.59 15.92 0.10 

90-10 21.48 18.71 0.11 20.69 17.56 0.11 

Final 90-10 20.79 18.61 0.01 20.99 17.73 0.01 

 

Table 6-9 2-year mean survival for ALL 

 

Network 
R ACC CI (months) 

T V T V T V 

24-18-1 0.95 0.01 0.96 0.23 9 56 

23-8-1 0.97 0.03 0.98 0.31 6 54 

19-22-1 0.93 0.15 0.91 0.4 12 47 

13-20-1 0.93 0.29 0.93 0.89 12 38 

17-13-1 0.96 0.18 0.96 0.45 9 41 

mean 0.95 0.13 0.95 0.46 9.60 47.20 

std dev 1.53 1.84 1.53 1.73 2.69 17.19 

CI 

(months) 
0.04 0.05 0.04 0.05 0.08 0.48 

 

Table 6-10 Cross validation for 2-year ALL 

 

6.2.2.2 AML 
 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 19-6-1 0.77 0.54 0.92 0.75 18 25 

80-20 21-7-1 0.85 0.73 0.92 0.86 13 18 

90-10 19-11-1 0.98 0.94 1.00 0.97 6 9 

Final 90-10 19-11-1 0.97 0.97 1 1 7 7 

 

Table 6-11 Summaries of models for 2-year survival for AML  
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The final recommended model has architecture of 19-11-1, accuracy of 1 and a confidence interval 

of 7 months. Once again this is a great improvement on the 15 months (training) CI for the general 

2-year model. The division into subtypes is once again proving to be a better option than using the 

whole data set as 6.2.1.  The factors age, % lymphocytes and the CD34 count have had the most 

influence on the building of the neural network model. According to the revised literature for AML, 

CD5, CD34, age, HLA-DR, white cell count and cytogenetics are used as indicators for diagnosis 

and prognosis (Chang et al, 2004a). Their study also categorised AML patients into three risk 

groups according to age, white cell count, cytogenetics and CD34/HLA-DR expression. This 

grouping may be used to develop strategies based on risk of individual patients. As can be seen 

from Appendix D, Table D-13 for the 2-year AML group, the white cell count has a frequency of 

0.60, which implies that even though it was rejected in this model in favour of the other variables, it 

may become significant if more data points are added and the model rebuilt. HLA-DR has a 

frequency of 0.52 and chromosome 0.74 thus confirming the significance according to conventional 

factors used for diagnosis and prognosis of AML patients. Diagnosis and prognosis based on 

cytogenetics depends on the type of abnormality, e.g., t(9,22) patients with AML have a poor 

prognosis while t(8,21) and t(15,17) patients display a favourable prognosis. Cytogenetics is 

considered one of the key factors affecting prognosis but other factors like blast count and flow 

cytometry are used concurrently to determine the specific type of leukaemia. A predicted mean 

survival of 16.34 months compared to the actual mean survival of 16.86 months was obtained. The 

predicted value compares very well as can be seen from the accuracy of “1” for the model. 

According to the literature (Wahlin et al, (1991) and Chang et al, (2007b)) AML patients with 

normal karyotype have a 35-45% survival rate and a median survival time of 13.4 months for 

patients 60 years and younger. An overall 60-70% survival rate has been reported by various 

authors. There were 77 deaths in the first two years, resulting in a survival rate of 69.6% thus 

comparing well with the literature.  
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Figure 6-7 Initial predicted 2-year survival for AML (19-11-1, 90-10) 

 

 
 

Figure 6-8 Final predicted 2-year survival for AML (19-11-1, 90-10) 
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Variable Transformation (s) Frequency 

age pwr2 0.98 

race log 0.79 

hmb linear 0.57 

hmr linear 0.72 

mcv pwr2 0.89 

mch logical 0.52 

mchc rlogical 0.87 

mpv power 0.63 

np 
linear 

inv 

0.76 

0.61 

lc linear 0.96 

CD4 linear 0.21 

CD7 logical 1.00 

CD14 logical  0.79 

CD33 rlogical 0.25 

CD34 rlogical 1.00 

kappa logical 0.09 

hlad logical 0.52 

chromo pwr2 0.74 

survival inv output 

 

Table 6-12 Prognostic factors for 2-year survival for AML  

 

Partition 
Actual Mean Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted 

Mean 

Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 16.85 14.27 0.09 14.85 10.95 0.07 

80-20 16.85 14.27 0.09 15.19 11.16 0.07 

90-10 16.85 14.27 0.09 16.32 13.58 0.09 

Final 90-10 16.86 14.45 0.1 16.34 13.64 0.09 

 

Table 6-13 2-year mean survival for AML 
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Network 

 

R ACC CI (months) 

T V T V T V 

17-4-1 0.96 0.38 0.98 0.35 8 52 

22-10-1 0.93 0.18 0.98 0.53 6 49 

19-2-1 0.83 0.15 0.87 0.41 14 43 

20-16-1 0.93 0.1 0.98 0.47 11 36 

22-14-1 0.97 0.3 0.98 0.41 7 48 

mean 0.92 0.22 0.96 0.43 9.20 45.60 

std dev 1.66 1.95 1.65 1.87 3.39 17.50 

CI 

(months) 
0.05 0.05 0.05 0.05 0.10 0.49 

 

Table 6-14 Cross validation for 2-year survival for AML 

 

6.2.2.3 CML-CLL 

 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 21-3-1 0.98 0.83 1 0.88 6 17 

80-20 21-3-1 0.93 0.77 0.98 0.88 12 19 

90-10 21-3-1 0.98 0.96 1.00 0.96 6 8 

Final 90-10 24-12-1 0.98 0.98 1.00 1.00 6 6 

 

Table 6-15 Summaries of models for 2 year survival for CML-CLL  
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Figure 6-9 Initial predicted 2-year survival for CML-CLL (21-3-1, 90-10) 

 

 
 

Figure 6-10 Final predicted 2-year survival for CML-CLL (24-12-1, 90-10) 
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The outlying patients in figure 6-9 that are over predicted are in the 20-40 age group and the 

patients under-predicted are from the age group > 80, all having a normal karyotype. This result is 

consistent with the trend that younger patients have a greater probability of survival than older 

patients. These patients could have had some abnormal karyotype that was not detected because of 

insufficient samples or inconclusive results, thus the difference in prediction from the other patients 

in this subgroup. The final model in figure 6-10 predicts the survival for CML and CLL patients 

with a confidence interval of 6 months and accuracy of 1. The mean survival rate is higher than 

both the AML and the ALL group. In chronic leukaemias the patients have the disease for long 

periods of time before symptoms are noticed. Even when diagnosed many live a normal life with 

minor symptoms. Those patients that have more severe symptoms usually lapse into an accelerated 

path to an acute leukaemia which eventually leads to death. This result is in keeping with a study 

done by Chase et al (2001) where a survival rate of 28 months was determined for various sub-

groups of chronic leukaemias. Moore et al (2004) reports a median survival time of approximately 3 

years.  

 

According to the literature CD5, CD19, CD 23 together with kappa and lambda light restriction are 

used for the diagnosis of CML and this is confirmed by the prognostic factors in Table 6-16 where 

all have a frequency > 0.5. CD 5, CD19, CD20 and CD23 are usually revealed in flow cytometry 

for CLL patients. Since this model is a combination of CML and CLL, prognostic factors are jointly 

predicted for both groups. The model has revealed that race (f = 92), platelet count (f = 0.99), CD3 

(f=1) and CD34 expression (f = 0.92) are the most important variables in the prognosis of both 

CML and CLL, with age and monocytes also having a significant effect on the model. 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 30.72 14.99 0.13 31.5 13.5 0.11 

80-20 30.72 14.99 0.13 31.2 12.7 0.11 

90-10 30.72 14.99 0.13 31.7 14.6 0.13 

Final 90-10 30.76 15.37 0.14 30.55 15.01 0.14 

 

Table 6-16 2-year mean survival for CML-CLL 
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This subgroup consisted of only 50 patients, therefore although the training accuracy was quite high 

(0.97-1) the validation shown in Table 6-18 was extremely low. The validation models training and 

testing was done on 40 patients and validated on 10 patients. This model would have to be updated 

with new uncensored CML-CLL patient data to confirm its reliability in predicting survival. 

 
Variable Transformation (s) Frequency 

age linear 0.73 

race 
linear 

inv 

0.85 

0.92 

type logical 0.52 

sex rlogical 0.14 

hmr exp 0.05 

mcv linear 0.25 

pc 
linear 

pwr2 

0.99 

0.82 

np tanh 0.4 

mnc logical 0.89 

blast log 0.43 

CD3 
linear 

log 

1.00 

0.99 

CD4 linear 0.95 

CD5 logical 0.70 

CD7 logical 0.19 

CD19 logical 0.50 

CD22 logical 0.72 

CD33 logical  0.33 

CD34 logical 0.92 

CD56 rlogical 0.05 

kappa logical 0.45 

lambda logical 0.91 

survival pwr2 output 

 

Table 6-17 Prognostic factors for 2-year CML-CLL 
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Network 
R ACC CI (months) 

T V T V T V 

21-12-1 0.98 0.15 1 0.12 4 69 

19-23-1 0.99 0.07 1 0.25 2 59 

18-2-1 0.94 0.033 0.97 0.4 10 58 

20-21-1 0.99 0.24 1 0.57 2 53 

19-4-1 0.99 0.52 1 0.75 2 40 

mean 0.98 0.20 0.99 0.42 4.00 55.80 

std dev 1.64 1.97 1.64 1.88 3.13 22.79 

CI 

(months) 
0.05 0.06 0.05 0.05 0.09 0.64 

 

Table 6-18 Cross validation for 2-year survival for CML-CLL 

 

6.2.3 3-year case study 

 

The 3-year survival group consisted of 223 patients where all the relevant information was pre-

processed as per the methodology in Chapter 5. The final recommended model had an R value of 

0.86 and accuracy of 0.79. The 2-year final model seems to give a better prediction based on its R 

value of 0.83, accuracy of 1 and confidence interval of 15 months. The variables age, race, mean 

corpuscular haemoglobin concentration, platelet count, mean platelet volume, white cell count, 

neutrophils, CD13, CD20 and CD33 were found to be common prognostic factors in both the final 

2-year and 3-year models. The confidence interval of 19 months is also worse than the 15 months 

for the 2-year final model. A difference in the results can also be due to the fewer number of 

patients in the 3-year group. The limitation once again is the availability of uncensored patient data, 

thus resulting in the low numbers used in the modelling process. The actual mean survival of 23.54 

months was greater than the 18.28 months for the 2-year model. This is expected as the time period 

is greater. The CI for the predicted mean survival was 0.08 months for the 2-year final model and 

0.07 months for the 3-year final model. Once again there are no results on survival of combined 

leukaemia groups in the literature but as explained above the prognostic factors can be used for 

initial testing and diagnosis of all leukaemia patients when they display the relevant symptoms.  
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Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 24-6-1 0.63 0.38 0.63 0.58 29 36 

80-20 22-5-1 0.63 0.40 0.61 0.64 29 36 

90-10 21-6-1 0.80 0.79 0.77 0.61 22 25 

Final 90-10 21-6-1 0.86 0.88 0.79 0.82 19 18 

 

Table 6-19 Summary of models for 3-year survival 

 

 
 

Figure 6-11 Initial predicted 3-year survival (21-6-1, 90-10) 
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Figure 6-12 Final predicted 3-year survival (21-6-1, 90-10) 
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Variable Transformation (s) Frequency 

age 
linear 

tanh 

0.58 

0.93 

race 
linear 

log 

0.25 

0.99 

rcc tanh 0.16 

mchc rlogical 0.82 

pc linear 0.84 

mpv linear 0.98 

wcc inv 0.4 

np 
linear 

tanh 

0.87 

0.59 

lc linear 1.00 

CD5 logical 0.94 

CD8 tanh 0.75 

CD10 logical 0.16 

CD13 logical 0.98 

CD14 logical  0.49 

CD20 logical 0.92 

CD33 logical 0.61 

CD34 logical 0.18 

lambda logical 0.18 

survival rt2 output 

 

Table 6-20 Prognostic factors for 3-year survival 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 23.97 18.86 0.08 20.60 11.3 0.05 

80-20 23.97 18.86 0.08 20.83 12.4 0.05 

90-10 23.97 18.86 0.08 22.49 15.7 0.07 

Final 90-10 23.54 18.74 0.08 22.26 15.73 0.07 

 

Table 6-21 3-year mean survival   
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Network 
R ACC CI (months) 

T V T V T V 

 17-21-1 0.92 0.04 0.94 0.42 13.00 64.00 

 22-9-1 0.88 0.11 0.87 0.44 17.00 48.00 

 15-10-1 0.92 0.07 0.88 0.37 14.00 52.00 

 18-8-1 0.96 0.18 0.96 0.30 10.00 55.00 

 19-4-1 0.90 0.06 0.89 0.58 17.00 36.00 

mean 0.92 0.09 0.91 0.42 14.20 51.00 

std dev 0.03 0.06 0.04 0.10 2.95 10.25 

CI 

(months) 0.00 0.00 0.00 0.00 0.08 0.29 

 

Table 6-22 Cross validation for 3-year survival  

 

6.2.3.1. 3-year ALL 

 

The grouping in the sub-types has again improved the modelling results. The results in this model 

are similar to the 2-year model for ALL, except for an R value of 0.97 in this model. The CI of 9 

months is the same but the 3-year model has more outlying patients as can be seen in Figure 6-14, 

thus making the 2-year ALL model more reliable. The common prognostic factors between the 2- 

and 3-year models are age, race, mean haemoglobin concentration, neutrophils, lymphocytes, 

CD22, CD56 and chromosomes.  

 

Partition Network 
R ACC CI (months) 

T S T S T S 

90-10 19-9-1 0.95 0.88 0.91 0.87 12 18 

Final 90-10 19-9-1 0.97 0.97 0.95 0.95 9 9 

 

Table 6-23 Summary of models for 3-year ALL 
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Variable Transformation (s) Frequency 

age linear 0.95 

race inv 0.72 

rcc linear 0.56 

mchc logical 0.98 

pc pwr2 0.49 

wcc linear 0.12 

np inv 0.79 

lc linear 0.68 

blast linear 0.97 

CD4 linear 0.19 

CD7 logical 0.8 

CD8 tanh 0.97 

CD22 logical 1.00 

CD56 rlogical  0.59 

hlad logical 0.56 

mpo logical 0.34 

chromo linear 0.39 

survival ln x/(1-x) output 

 

Table 6-24 Prognostic factors for 3-year ALL 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

90-10 23.63 19.25 0.12 23.16 18.09 0.11 

Final 90-10 23.21 19.17 0.12 22.64 18.50 0.11 

 

Table 6-25 Mean survival for 3-year ALL 
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Figure 6-13 Initial predicted 3-year survival for ALL (19-9-1, 901-0) 

 

 

 

Figure 6-14 Final predicted 3-year survival for ALL (19-9-1, 90-10) 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Pr
ed

ic
te

d 
 S

ur
vi

va
l

(m
on

th
s)

Survival
(months)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Pr
ed

ic
te

d 
 S

ur
vi

va
l

(m
on

th
s)

Survival
(months)



158 
 

Network 
R ACC CI (months) 

T V T V T V 

 17-5-1 0.99 0.20 1.00 0.43 6.00 50.00 

 14-11-1 0.93 0.30 0.93 0.62 14.00 50.00 

12-13-1 0.83 0.11 0.77 0.33 21.00 56.00 

 18-6-1 0.94 0.52 0.96 0.30 13.00 51.00 

 17-10-1 0.95 0.20 0.91 0.43 12.00 61.00 

mean 0.93 0.27 0.91 0.42 13.20 53.60 

std dev 0.06 0.16 0.09 0.13 5.36 4.83 

CI 

(months) 0.00 0.00 0.00 0.00 0.15 0.14 

 

Table 6-26 Cross validation for 3-year ALL 

 

6.2.3.2. 3-year AML 

 

Partition Network 
R ACC CI (months) 

T S T S T S 

90-10 20-12-1 0.99 0.95 1 0.97 4 10 

Final 90-10 20-12-1 0.99 0.99 1 1 4 4 

 

Table 6-27 Summary of 3-year models for AML 

 

A final model with 20-12-1 architecture is proposed. The R value of 0.99 corresponding to an 

accuracy of 1 implies that this model had sufficient data for training to give a true prediction of the 

actual survival. A CI of 4 months will give clinicians a clear indication whether to treat and how to 

treat the patient. If a patient is deemed to be terminally ill with no response to a treatment regime 

then the treatment is stopped and palliative care is prescribed. This means that the clinicians ask the 

patients‟ families or care givers to make their final days as comfortable as possible while all 

treatment is terminated. Patients treated for AML should show a favourable response by the 4th 

month of treatment with some patients going into remission. A CI of 4 months will now allow 

clinicians to make important decisions for a shorter period of time. The following prognostic factors 

were derived for both models: age, haemoglobin, mean corpuscular haemoglobin, mean corpuscular 

haemoglobin concentration, mean platelet volume, neutrophils, lymphocytes, CD7, CD34 and 

chromosomes. The variable age, neutrophils, lymphocytes and chromosomes have also been found 
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to be significant factors for predicting survival. This is in keeping with the explanation given in 

6.2.2.1 about the factors used for the diagnosis of AML. The mean predicted survival has a CI of 

0.12 compared to 0.09 in the 2-year model, but this would be the favoured model as the CI of 4 

months will be favoured by clinicians for the treatment and care of their patients. 

 

Variable Transformation (s) Frequency 

age 
linear 

pwr2 

0.73 

0.97 

hmb linear 0.67 

hmr linear 0.54 

mcv pwr2 0.43 

mch logical 0.48 

mchc rlogical 1.00 

rcw pwr2 0.68 

mpv pwr2 0.29 

np linear 0.95 

lc linear 0.88 

CD7 logical 0.97 

CD8 logical 0.51 

CD13 logical 0.65 

CD20 logical 0.37 

CD22 logical  0.02 

CD34 rlogical 0.85 

mpo logical 0.35 

chromo 
linear 

pwr2 

0.77 

0.43 

survival log output 

 

Table 6-28 Prognostic factors for 3-year AML 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

90-10 18.29 16.61 0.12 18.35 16.69 0.12 

Final 90-10 17.19 16.60 0.12 17.03 15.96 0.12 

 

Table 6-29 Mean survival for 3-year AML 



160 
 

 
 

Figure 6-15 Initial predicted survival for 3-year AML (20-12-1, 90-10) 

 

 
 

Figure 6-16 Final predicted survival for 3-year AML (20-12-1, 90-10) 
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Network 
R ACC CI (months) 

T V T V T V 

21-17-1 0.98 0.21 0.98 0.40 6.00 61.00 

 22-9-1 0.98 0.11 1.00 0.30 6.00 61.00 

25-22-1 0.96 0.09 0.96 0.47 9.00 42.00 

 18-4-1 0.98 0.25 0.98 0.27 6.00 60.00 

 21-8-1 0.96 0.70 0.96 0.67 9.00 39.00 

mean 0.97 0.27 0.98 0.42 7.20 52.60 

std dev 0.01 0.25 0.02 0.16 1.64 11.10 

CI 

(months) 0.00 0.01 0.00 0.00 0.05 0.31 

 

Table 6-30 Cross validation for 3-year survival for AML 

 

6.2.3.3. 3-year CML-CLL 

 

The model proposed has architecture 17-7-1, R value of 0.97 and accuracy of 1. When compared to 

the 2-year model the CI of 6 months is favoured when compared to the 8 months proposed by this 

model. This group was made up of 43 patients. The accuracy of 1 proves that the model has been 

trained on representative data and can predict quite well as illustrated in Figure 6-18, with only 2 

patients outside the confidence bands. Once again for validation of this model for use in future 

predictions, more data points from new uncensored patients need to be added and the model 

retrained. The common prognostic factors determined by both models are age, race, haematocrit, 

platelet count, CD3 and CD13. The 2-year model found a total of 9 CD markers to be significant for 

this leukaemia subtype while only three were deemed to be important in this model. The variable 

lambda normally used in diagnosis was used as an input in both models.  The favoured model for 

CML-CLL group would be the 2-year model. This is a combination of two leukaemia subtypes 

therefore this model would have to be extended with data from new uncensored patients to see if the 

prediction trend is the same, or else more uncensored data collected and the models trained 

separately. A study by Chase et al (2001) revealed a mean survival of 28 months. The predicted 

mean survival compares well with the actual value of 30.76 months. The predicted mean survival of 

30.55 months is quite high, but realistic since patients with chronic leukaemia live longer with the 

symptoms, sometimes without any adverse effects. Chronic means long term but there are cases that 

rapidly deteriorate and transform into acute leukaemias with a very poor prognosis for survival. 
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Partition Network 
R ACC CI (months) 

T S T S T S 

90-10 17-7-1 0.97 0.92 1 0.95 8 13 

Final 90-10 17-7-1 0.97 0.97 1 1 8 8 

 

Table 6-31 3-year survival models for CML-CLL 

 

Variable Transformation (s) Frequency 

age tanh 0.87 

race 
linear 

exp 

0.74 

0.99 

hmr 
linear 

pwr2 

0.18 

0.80 

mcv tanh 0.59 

mch logical 0.97 

mchc rlogical 0.96 

pc pwr2 0.98 

mpv linear 0.83 

np linear 1.00 

lc linear 0.57 

blast logical 0.97 

CD3 exp 0.91 

CD13 logical 1.00 

lambda logical 0.88 

chromo exp 0.92 

survival inv output 

 

Table 6-32 Prognostic factors 3-year CML-CLL 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

90-10 35.12 17.38 0.17 34.60 16.75 0.16 

Final 90-10 35.23 17.79 0.17 35.78 16.25 0.16 

 

Table 6-33 Mean survival for 3-year CML-CLL 
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Figure 6-17 Initial predicted survival for 3-year CML-CLL (17-7-1, 90-10) 

 

 
 

Figure 6-18 Final predicted survival for 3-year CML-CLL (17-7-1, 90-10) 
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Network 
R ACC CI (months) 

T V T V T V 

 11-6-1 0.99 0.01 0.99 0.27 0.80 54.00 

 11-8-1 0.98 0.44 1.00 0.28 0.50 38.00 

mean 0.99 0.23 1.00 0.28 0.65 46.00 

std dev 0.01 0.30 0.01 0.01 0.21 11.31 

CI 

(months) 0.00 0.01 0.00 0.00 0.01 0.50 

 

Table 6-34 Cross validation for 3-year survival for CML-CLL 

 

There were only 43 patients in the CML-CLL group and PREDICT has requires a minimum of 20 

data points for running a model. The data set was divided into two and compared, thus the large 

difference in the values. 

 

6.2.4. Censored case study 

 

All 610 patients who were eligible for this study was used to form a group which included censored 

patients. Censored patients have to be incorporated into medical statistical analysis since the trend 

for patients to leave a hospital or institution is a common occurrence all over the world. If these 

patients are left out then the proposed results become biased and in most cases censored patients 

make up about 70-80 % of most studies (Xiang et al, (2000) and Ripley, (1998)). As can be seen 

this is quite a large number, and if excluded then the results do not become a true indication of the 

actual analysis in any centre or institution. Similarly in this study, the censored patients made up 

61% of the initial group whose medical diagnosis and laboratory results were known. Their survival 

period was known up to a point where treatment or laboratory analysis was carried out. Thereafter 

patients may have moved to different areas or medical institutions, some defaulted on treatment, 

some passed on and then there were those for whom reasons are unknown. A neural network model 

including censored data was determined for the whole group and then subdivided into each sub-type 

of leukaemia for further analysis. 
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Partition Network 
R ACC CI (months) 

T S T S T S 

70-30  18-3-1 0.38 0.28 0.78 0.75 32 33 

80-20 17-3-1 0.29 0.40 0.76 0.75 33 32 

90-10 15-9-1 0.41 0.37 0.77 0.73 31 32 

Final 90-10 18-3-1 0.61 0.51 0.94 0.89 12 14 

 

Table 6-35 Censored models 

 

The final model has an R value of 0.61, but an accuracy of 0.94 making it reliable to use for 

predictions. A CI of 12 is much better than the 19 months for the 3-year survival and the 15 months 

for the 2-year model. Even though the data is censored the model has comparable results. Also the 

number of data points are almost double that of the 2-year and 3-year groups (uncensored). For 

more robust modelling a large number of data points will give a better representation of a data set, 

thus making the censored model as reliable as the two uncensored models. Uncensored models 

should be periodically updated with new patient data to ensure that the predictions are as reliable.  

 

As can be expected the illustrated results in Figure 6-19 and 6-20 show an overall effect of under 

prediction of survival. Mathematically this is true as the censored patients had a shorter than actual 

recorded survival value which contributes to the low survival rate for all leukaemia patients. This 

trend is learnt in the training of the neural network and is projected in the prediction results.  In the 

revised model the prediction is much better as the outlying patients were removed. There are still a 

number of outlying patients in the improved model in Figure 6-20 but any further reduction in 

outliers will reduce the number of data points, thus reducing the reliability of this censored model. 

Some of the outlying patients (censored) eliminated from Figure 6-19 have survived beyond 4 years 

and these patients are most likely to be in remission and do not need any more treatment or a few 

may have passed on. This is a combined group of censored and uncensored patients and the points 

have not been distinguished on the graph. The actual mean survival for the censored group is much 

higher then the predicted value. The actual mean survival is quite low at 6.86 months, but 

understandable because 61 % of the data is censored. Many patients have been in the treatment 

system for a few months as can be seen by the large clusters between 0 and 12 months in both 

Figures 6-19 and 6-20, thereafter some may be remission and others unknown. If the model is 

applied in a clinical trial more uncensored patient data are needed to improve on the initial model 

and only if reasonable results are obtained can it be used for prediction of survival for new patients. 

The limitation of uncensored patient data in this study is a major contributing factor to the poor 
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prediction results of some data sets. Unavailability of uncensored data is not a unique phenomenon 

to this study as this occurs in most hospitals and institutions worldwide. 

 

The variables age, race, platelet count, markers CD5, CD13 and lambda were found to be common 

prognostic factors for both the uncensored groups and this censored group. Cytogenetics play a key 

role in diagnosis of leukaemia and is confirmed in this model where chromosomes (f = 0.87) was 

found to be a significant factor. The difference is that there are a large number of data points that 

were used in the training of this model compared to the uncensored models, thus resulting in the 

significance of the variable “chromosomes”. Since this is a general model for all leukaemias the 

data will have to be subdivided to improve the prediction accuracy. 

 

 

 
 

Figure 6-19 Initial predicted survival for censored group (15-9-1, 90-10) 
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Figure 6-20 Final predicted survival for censored group (18-3-1, 90-10) 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 13.15 28.77 0.07 6.13 24.62 0.06 

80-20 13.15 28.77 0.07 6.17 24.69 0.06 

90-10 13.15 28.77 0.07 7.55 25.28 0.06 

Final 90-

10 
6.86 

23.07 0.06 
6.26 22.50 0.06 

 

Table 6-36 Censored mean survival for all leukaemias 
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Variable Transformation (s) Frequency 

age linear 1.00 

race 
linear 

log 

0.99 

0.73 

rcc linear 0.80 

hmb linear 0.61 

pc linear 0.26 

mnc inv 0.53 

CD5 logical 0.31 

CD13 logical 0.94 

CD19 logical 0.05 

CD23 logical 0.61 

CD56 rlogical 0.99 

lambda logical 0.75 

chromo linear 0.87 

survival log output 

 

Table 6-37 Prognostic factors for censored group 

 

Network 
R ACC CI (months) 

T V T V T V 

 18-8-1 0.44 0.20 0.83 0.43 23.00 54.00 

 23-2-1 0.47 0.36 0.74 0.87 31.00 19.00 

 19-3-1 0.38 0.09 0.74 0.84 33.00 22.00 

 23-4-1 0.34 0.33 0.73 0.80 33.00 23.00 

18-20-1 0.69 0.23 0.81 0.64 24.00 37.00 

mean 0.46 0.24 0.77 0.72 28.80 31.00 

std dev 0.14 0.11 0.05 0.18 4.92 14.61 

CI 

(months) 0.00 0.00 0.00 0.01 0.14 0.41 

 

Table 6-38 Cross validation for censored group 
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6.2.4.1. ALL 

 

There is an improvement in the R value of the general censored model from 0.61 to 0.76 but the CI 

is greater in this model at 16 months compared to 12 months in the above model and it is also 

greater than the 2-year and 3-year uncensored models. The common prognostic factors are age, 

race, mean corpuscular haemoglobin concentration, neutrophils, lymphocytes, chromosomes, and 

the CD markers CD7, CD8 and CD56. The high lymphocyte count and marker CD22 used for the 

diagnosis of ALL is common to all 3 ALL models. Age and race have proved to be significant 

prognostic factors in all three ALL models. The actual mean survival for this group is 11.01 months 

compared to 23.21 months for the 3-year ALL model and 20.79 months for the 2-year model. The 

predicted mean survival is 9.55 months compared to 20.99 for the 2-year model and 22.64 for the 3-

year model. This is a large difference compared to the other two models but the data is more 

reliable for the previous two ALL models, thus more acceptable than the censored prediction. This 

low actual mean survival and predicted survival is acceptable as the censored model has a large 

number of patients with a short survival period due to the uncertainty in their true survival time. 

This is illustrated in the graphs where there are many patients in the 0-15 month range in both 

Figures 6-21 and 6-22, and since some of it is censored it also contributes to the low mean survival 

for ALL patients in this group. The mean survival CI is 0.01 months for the 2-year model compared 

to 0.11 months for the 3-year model, thus making the 2-year ALL model the favoured model for 

this leukaemia sub-type. 

 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 22-16-1 0.68 0.30 0.82 0.70 24 33 

80-20 20-6-1 0.56 0.29 0.78 0.72 28 33 

90-10  19-21-1 0.72 0.38 0.79 0.65 23 33 

Final 90-10 19-21-1 0.76 0.83 0.83 0.88 16 15 

 

Table 6-39 Censored models for ALL 
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Variable Transformation (s) Frequency 

age tanh 0.96 

race 
linear 

log 

0.71 

1.00 

mcv 
linear 

tanh 

0.57 

0.71 

mchc rlogical 0.95 

rcw linear 0.85 

np 
linear 

exp 

0.61 

0.17 

lc linear 0.73 

mnc inv 0.87 

blast rt 0.19 

CD3 log 0.57 

CD7 logical 0.71 

CD8 exp 0.91 

CD20 logical 0.35 

CD23 rlogical 0.75 

CD56 rlogical 0.34 

chromo tanh 0.75 

survival log output 

 

Table 6-40 Prognostic factors for censored ALL 

 

 
 

Figure 6-21 Initial predicted survival for censored ALL model (19-21-1, 90-10) 
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Figure 6-22 Final predicted survival for censored ALL model (19-21-1, 90-10) 

 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean 

Survival (months) 
Std Dev 

CI 

(months) 

70-30 13.85 22.00 0.09 8.58 17.27 0.07 

80-20 13.85 22.00 0.09 9.40 17.93 0.07 

90-10 13.85 22.00 0.09 10.21 18.52 0.07 

Final 90-10 11.01 19.32 0.08 9.55 17.94 0.07 

 

Table 6-41 Mean survival for censored ALL  

 

6.2.4.2. AML 

 

The R value of 0.89 is lower than the 2-year model (R = 0.97) and the 3-year model (R = 0.99), 

with the CI of 4 months being the smallest in comparison to 7 months for the 2-year model and 10 

months for this censored AML model. The prognostic factors common to all three models are age, 

race, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, mean 

corpuscular haemoglobin concentration, and mean platelet volume, neutrophils, lymphocytes, 

markers CD7, CD34 and CD56, together with chromosomes. Age, white cell count, CD34 and 
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cytogenetics are used in the diagnosis of AML. The other diagnostic factors CD5 was considered by 

any of the models but HLA-DR (f = 0.52) was found to be significant for the 2-year model. Figure 

6-22 illustrates the low prediction cluster in the 0-15 month range. The actual mean survival is 10.9 

months while it is 16.86 for the 2-year model and 17.19 for the 3-year model. Once again the 

uncertainty resulting in short known survival times have contributed to this phenomenon. There are 

a few outlying patients who fall in the 18 month confidence interval but they have been retained for 

the model so that there is sufficient data for the building of the neural network. Since the data is 

censored these outlying patients can be expected. Overall the 3-year AML is the favoured model 

because of its low CI, accuracy and reliability of patient data. 

 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 21-4-1 0.57 0.48 0.79 0.79 24 24 

80-20 28-0-1 0.56 0.56 0.81 0.79 24 24 

90-10 23-15-1 0.91 0.81 0.94 0.91 11 16 

Final 90-10 23-15-1 0.89 0.89 0.94 0.94 10 10 

 

Table 6-42 Censored AML model  
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Variable Transformation (s) Frequency 

age 
linear 

pwr2 

0.81 

0.93 

race linear 0.89 

rcc pwr2 0.25 

hmb 
linear 

pwr2 

0.63 

1.00 

hmr linear 0.93 

mcv linear 0.75 

mch logical 0.03 

mchc rlogical 0.17 

pc linear 0.15 

mpv pwr2 0.65 

np log 0.54 

lc exp 0.38 

mnc linear 0.32 

blast linear 0.65 

CD5 logical 0.12 

CD7 logical 0.54 

CD13 rlogical 0.96 

CD14 logical 0.93 

CD20 logical 0.85 

CD34 rlogical 1.00 

chromo log 1.00 

survival log output 

 

Table 6-43 Prognostic factors for censored AML 

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 11.9 13.64 0.07 7.51 7.16 0.04 

80-20 11.9 13.64 0.07 7.66 7.57 0.04 

90-10 11.9 13.64 0.07 10.76 11.43 0.05 

Final 90-10 10.9 12.11 0.06 10.30 10.86 0.05 

 

Table 6-44 Mean survival for censored AML  
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Figure 6-23 Initial predicted survival for censored AML model (23-15-1, 90-10) 

 

 
 

Figure 6-24 Final predicted survival for censored AML model (23-15-1, 90-10) 
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6.2.4.3. CML-CLL  

 

The R value in this model is 0.96 (CI = 9 months, ACC = 0.98) compared to 0.98 (CI = 6 months, 

ACC = 1) for the 2-year model and 0.97(CI = 8 months, ACC = 1) for the 3-year model. The 

common prognostic factors are age, race, type, haematocrit, mean corpuscular volume, platelets, 

and the marker CD3. Age and race have proved to be significant prognostic factors in all three 

CML-CLL models. The actual mean survival for this group is 11.53 months compared to 35.23 

months for the 3-year CML-CLL model and 30.76 months for the 2-year model. The predicted 

mean survival is 10.66 months compared to 30.55 for the 2-year model and 35.78 for the 3-year 

model. This is a large difference compared to the other two models but the data is more reliable for 

the previous two CML-CLL models, thus more acceptable than the censored prediction. This low 

actual mean survival and predicted survival can be expected as there are many patients with a lower 

than actual survival period which is due to the uncertainty of their true survival time. This is 

illustrated in the graphs where there are many patients in the 0-15 month range in both Figures 6-25 

and 6-26. The mean survival CI is 0.14 for the 2-year model compared to 0.17 for the 3-year model 

and 0.09 for this model. The favoured model for the CML-CLL sub-type is the 2-year CML-CLL 

model because of its low CI and overall accuracy in its predictions. 

 

Partition Network 
R ACC CI (months) 

T S T S T S 

70-30 23-10-1 0.76 0.24 0.84 0.72 28 37 

80-20 22-5-1 0.46 0.43 0.78 0.68 36 36 

90-10 21-12-1 0.92 0.82 0.93 0.90 14 20 

Final 90-10 21-12-1 0.96 0.95 0.98 0.97 9 9 

 

Table 6-45 Censored CML-CLL models 
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Variable Transformation (s) Frequency 

age linear 0.93 

race log 0.72 

type logical 0.79 

rcc rt 0.89 

hmr linear 0.71 

mcv 
linear 

tanh 

0.04 

0.4 

mchc rlogical 0.1 

pc linear 0.83 

wcc linear 

inv 

0.5 

1.00 

np linear 0.25 

lc pwr2 0.33 

mnc inv 0.32 

blast pwr2 0.72 

CD3 log 0.88 

CD4 log 0.85 

CD8 linear 0.33 

CD10 logical 0.23 

CD13 logical 0.88 

CD33 logical 0.94 

survival log output 

 

Table 6-46 Prognostic factors for censored CML-CLL  

 

Partition 

Actual Mean 

Survival 

 (months) 

Std 

Dev 

CI 

(months) 

Predicted Mean Survival 

(months) 

Std 

Dev 

CI 

(months) 

70-30 13.62 22.01 0.11 7.18 15.24 0.07 

80-20 13.62 22.01 0.11 5.44 14.24 0.06 

90-10 13.62 22.01 0.11 11.47 19.58 0.09 

Final 90-10 11.53 20.15 0.09 10.66 18.84 0.09 

 

Table 6-47 Censored mean survival for CML 
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Figure 6-25 Initial predicted survival for censored CML-CLL (21-12-1, 90-10) 

 

 
 

Figure 6-26 Final predicted survival for censored CML-CLL (21-12-1, 90-10) 
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6.3 Limitations in this research 

 

The patient data recorded for this study was assumed to have all information correct, i.e. no 

incorrect diagnoses. All data was checked by an independent checker. Some patients‟ cytogenetic 

results were not confirmed as the sample was insufficient or the test was not successful, thus the 

normal male and female karyotype was used.  The replacement of missing values by the average 

value does not give a true reflection of the group under study.  Since records of patients are 

generally limited and there is also the censored group to consider, any additional patients can only 

give the study more credibility. It was necessary to include patients with missing values. This 

inclusion thus lent its measure of error into the model. Treatment protocols usually used are based 

on conventional therapy for all low risk patients and specific medication for high risk patients based 

on their blood and marrow analyses. There is a treatment protocol for each type of leukaemia. 

Similarly diagnosed patients are given the same drugs which are administered as per body mass 

index and can therefore not be used as a factor.  In this research the general protocols for treatment 

of leukaemia have been assumed. It is not a variable in this study, but it should be. Some patients do 

not stick to the schedule, they leave the treatment program or default and some do not take their 

medication according to the prescription which can affect their survival. The treatment has to be 

monitored and witnessed in order to confirm that the patient has taken the prescribed dosage. There 

is no certainty that the “take home” medication is adhered to or even whether, if taken, it is the 

correct dosage. Therefore even though a treatment plan is set out for the patient, in order for a study 

to be valid there has to be unconditional proof that it was received as per the schedule. The models 

presented show the variables that are used to build the neural network, it does give any indications 

whether the individual factors affecting the patient‟s prognosis is favourable or not.  

 

6.4. Summary 

 

The predicted survival in the final models was well within the 95 % confidence bounds in many of 

the proposed models which indicate that the prediction is a good fit. The summary results are based 

on the training (T) data were the proposed models were all based on the 90-10 partition, LR=100, 

WD = 0.005 and the adaptive gradient descent learning rule was used for the genetic algorithm in 

PREDICT. The main prognostic factors listed in Table 6-48 below are based on those having a 

frequency > 80%, where frequency denotes the importance of the variable to the final recommended 

models. 
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Data Group Network R ACC CI Prognostic Factors 

2-year case study 24-18-1 0.87 0.89 14 age, mchc, np, CD13, CD20, CD56 

2-year ALL 17-20-1 0.95 0.95 9 age, race, np, lc, CD13, CD56, chromo 

2-year AML 19-11-1 0.97 1.00 7 age, mcv, mchc, lc, CD7, CD14, CD34 

2-year CML-CLL 24-12-1 0.98 1.00 6 race, pc, mnc, CD3, CD4, CD34, lambda 

3-year case study 21-6-1 0.86 0.79 19 age, race, mchc, pc, mpv, np, lc, CD5, CD13,  

CD20 

3-year ALL 19-9-1 0.97 0.95 9 age, mchc, blast, CD8, CD22 

3-year AML 20-12-1 0.99 1.00 4 age, mchc, np, lc, CD7, CD34 

3-year CML-CLL 17-7-1 0.97 1.00 8 age, race, hmr, mch, mchc, pc, mpv, np, blast,  

CD3, CD13, lambda, chromo 

Censored case study 18-3-1 0.61 0.94 12 age, race, rcc, CD13, CD56, chromo 

censored ALL 19-12-1 0.76 0.83 16 age, race, mchc, rcw, mnc, CD8 

censored AML 23-15-1 0.89 0.94 10 age, race, hmb, hmr, CD13, CD14, CD20,  

CD34, chromo 

censored CML-CLL 21-12-1 0.96 0.98 9 age, rcc, pc, wcc, CD3, CD4, CD13, CD33 

 

Table 6-48 Final recommended neural network models for leukaemia 

 

For the combined groups the 2-year model has a higher accuracy and lower CI of 14 months thus 

making it the favoured model for this dataset. Since reliability of patient data is quite low after two 

years, this model can be periodically updated with new patient data, thereby maintaining a current 

working model for clinicians to use on an ongoing basis. The models performed better when 

predicting survival for the individual leukaemias. This is a logical outcome as each leukaemia is 

morphologically different, thus the analyses of blood and marrow samples will strongly affect the 

patient‟s survival. For ALL patient data the 3-year model has the best R value, making it the 

preferred choice for predicting survival. The 3-year AML is the favoured model because of its low 

CI, accuracy and reliability of patient data. The favoured model for the CML-CLL sub-type is the 2-

year ALL model because of its low CI and overall accuracy in its predictions.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

This thesis contains contributions to the development of neural network models for survival 

analysis of leukaemia patients. The prognostic factors that affect survival have also been 

determined by the neural networks. The comparisons of models were based on using combined 

groups of leukaemia patients and comparing them with individual groups of the sub-types of 

leukaemia, i.e. ALL, AML, CLL and CML. The performance of the 2-year model at predicting 

survival was consistently better than the other models on the basis of predicting as close as 

possible to the real data. Thus for prediction of survival over two years for the combined 

leukaemias and the sub-group CML-CLL, the best strategy would be to use the 2-year model. 

For the ALL and AML groups the 3-year models would be the favoured models. The chosen 

models also give an indication of the prognostic factors which contribute the most to the 

survival of the patient. These prognostic factors will aid clinicians in drawing up individual 

treatment strategies. The model should be fitted to the whole chosen dataset, with the number of 

hidden units (architecture) and the amount of weight decay chosen by cross validation. More 

patients will be treated at the hospital and more data will be received. The model should be 

retrained periodically on the updated information. The software code for the final proposed 

models are presented in Appendix G. This code can be used to predict survival of new patients 

if accepted into a clinical trial. 

 

The results for factors that affect prognosis can be used to divide patients according to their 

diagnosis into multiple risk groups. This grouping may be used to develop strategies based on 

risk of individual patients, e.g. CD 34 expression can be used as a target for treatment as 

pharmacological companies are producing drugs that target these markers. This individualised 

treatment can only lead to a prolonged lifespan for each patient treated in this manner. This type 

of treatment may be more expensive initially but eventually once it becomes routine then only 

can it benefit future patients diagnosed with leukaemia. Accuracy in prediction of survival is 

vital. Over prediction of a patient’s survival would put the high risk patients into the low risk 

group which usually receives conventional treatment that is not always successful for the high 

risk patients. Cytogenetics is normally used to determine the alternate therapy for the high risk 

groups. If their survival is correctly predicted they can be given the appropriate alternate therapy 

or become part of clinical trials for new treatment protocols. If there is an under prediction then 

the low risk patients may be categorised as high risk and put onto alternate therapies and clinical 

trials which normally are quite costly and time consuming as their has to be more manpower, a 
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higher degree of monitoring and sometimes specialised equipment and analysis may be 

required. Conventional therapy will apply to a low risk group and the cost would be minimised 

as it is a routine protocol. The right prediction of survival is therefore vital for all patients in 

terms of the individual knowing about their mortality and at the same time for the management 

and clinical staff who must have the proper patient management systems, allocate the relevant 

resources and ensure adequately trained clinicians are available to implement all appropriate 

protocols for the relevant risk groups.  

 

The differing treatment patterns among the patients on whom the model must be based has other 

implications: firstly, past treatments to the extent they have been successful would have reduced 

the apparent prognostic effect of the factors and, secondly, new treatment practices may 

invalidate the model. Any such new treatment would only slowly be incorporated as sufficient 

follow-up became available. Studies are ongoing in cancer therapy. Xin et al (2006) carried out 

a survival study and analysis of prognostic factors on acute leukaemia patients. They looked at 

induction with ATRA and As2O3 rather than other induction therapy and found that the interval 

of less than 60  days to complete remission were found to be favourable factors for both overall 

survival and relapse-free survival. Changes of this type imply that care must be exercised when 

applying the models to new real world data. While the proposed models would be best to use for 

this prediction problem, this comparison has its limitations: there is no information about the 

survival experience, and would need retraining if, for example, the probability of survival in the 

first year became of interest. The type of treatment and the variables for each treatment have not 

been incorporated into these models. The current models have been based on the patients 

receiving conventional therapy for leukaemia based on their diagnosis.  

 

Treatment plans based on selection of prognostic factors will depend on adequate requests for 

tests on diagnosis and for the analysis to be done promptly. Cytogenetics is one of the key 

factors that determine categorisation into the leukaemia sub groups. These tests should be 

standard tests on diagnosis for all patients so that they can be put into the appropriate risk group 

which will establish their course of treatment. 

 

The clinical records need to be explicitly updated and all patient results should be available both 

in hardcopy files and electronically. Since survival studies are generally done over a number of 

years and normally start after the prescribed period there needs to be adequate information on 

patients for the relevant period under study. Well documented clinical records are essential in 

any research study and especially so in clinical trials where retrospective studies are generally 

adopted.  
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In order to use the data as input to the relevant software the range of values had to be scaled 

down to a limited range. The frequency of values in each of the subsets in the range was used as 

a guideline in selecting the scaled down values for each variable. The choice of replacement 

values could have an effect on the outcome of the models. The number of subsets of ranges can 

be increased for each variable. This allows for more variance among the data points, thus the 

proposed model would have trained over a wider range for each variable. This would ensure that 

new data points are well represented when the model is tested on these unknown values. 

Alternate methods could be tried by varying the scaled down values into various subsets and 

testing which system gives the best for a group of patients. A method of using probabilities of 

data being in multiple ranges should also be researched. The accuracy can then be used to 

compare the models for final adoption.  

 

The prognostic factors predicted by the models in this study need to be validated with more 

uncensored patient data. The models should also be discussed with the clinicians to ensure that 

medically the mathematics has made the appropriate predictions which are of value to the 

patients. Thereafter these prognostic factors can be used as an initial screening for both 

diagnosis and survival prediction which will determine the course of treatment. Prognostic 

factors have been proposed based on the modelling results obtained in this study. Whether these 

factors contributed to a good or bad prognosis was not the aim of the study and neither could it 

be determined from the results obtained. These factors now need to be further researched to 

determine their effect on survival and whether it is favourable or not. 

 

New prognostic factors should be fully standardised and their prognostic value validated in 

large prospective clinical trials before being used in routine clinical practice. Implementation in 

clinical trials using all possible prognostic parameters would be impractical if not impossible. 

Only the most important prognostic parameters – namely those with independent prognostic 

value which identifies a significant proportion of patients and those therapeutically relevant 

should be retained in the future, with clinical stages being used as benchmarks. Treatment 

decisions based on biological parameters can only be justified within clinical trials. Patients not 

included in a clinical trial should continue to be treated with conventional therapy.   

 

This study should incorporate other centres and institutions in the country to get a larger dataset 

that will then provide sufficient numbers of uncensored patient data for a more reliable neural 

network that can then be used in a clinical trial together with the expertise of clinicians. 
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