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Preface 
 

 

 

The work carried out in this dissertation was performed at the University of Natal, 

Durban from March 2003 to September 2005 under the supervision of Dr. M. J. Alport 

and Prof. T. B. Doyle. 

 

These studies represent the original work and have not been submitted in any form to 

another university. The work presented is that of the author’s. Mathematical techniques 

are not original but the applications to the problems in this dissertation are unique. No 

study has been previously documented with regard to the cylindrical chamber. The author 

is not aware that the fluorescent tube-lamp has been previously analyzed using the 

techniques in this study. All equation deductions and analysis is original, as are the 

physical deductions and approximations leading up to the chamber measurement 

equation. 
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Abstract 
 

 

 

The objective of this project is to design a facility that will characterize the electrical and 

optical properties of both tubular and the more recent compact fluorescent tubes. The first 

stage of this project, which is the subject of this dissertation, was to design, build, test, 

and model a cylindrical light integrating chamber. 

 

An integrating chamber capable of measuring 2-metre long fluorescent tubes was built at 

the University of KwaZulu-Natal, South Africa. To approximate an infinitely long tube, 

precisely mounted planar mirrors were placed at opposite ends of the cylinder. The 

reflectance of diffusive reflective paint and mirrors enter into calculations and were 

investigated experimentally using a Jarrel-Ash optical spectrometer.  

 

The light flux was finally measured for various chamber lengths and compared with a 

mathematical model. Total light power output from the lamp was calculated and 

compared with the electrical power input, and the lamp efficiency deduced. 

 

Accurate calculations required that the light field surrounding a cylindrical diffuse source 

be modeled mathematically. The reflection coefficients of the mirrors were not unity and 

the equations had to be modified to include this effect.  

 

The mathematical model was solved using a combination of analytical and numerical 

techniques. 

 

The model results were compared with measurements. The final result includes a 

mathematical description of the integrating chamber, and a flux-density plot of the space 

surrounding the fluorescent tube. 
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1. Introduction 

 

 

The distribution of light intensity and the efficiency of light sources are of prime 

economical importance in the lighting industry. Most industrial activity takes place inside 

buildings, and adequate lighting is essential for productivity and the comfort of workers. 

Aspects such as glare and contrast can significantly affect the performance and cost-

effectiveness of lighting installations. It is therefore highly desirable that the distribution 

of light from one of the most common sources, namely the cylindrical fluorescent lamp, 

be well understood and quantified. 

 

Knowledge of the radiation pattern around a lamp enables engineers to design luminaires 

that efficiently distribute light, and allow for the reasonable determination of light levels 

in the working environment prior to installation. Combined with such calculations, the 

experimental measurement of the flux density at various points in space with the aid of an 

appropriate lux-meter also allows for an estimation of lamp power output and hence also 

for a determination of the deterioration of the lamp with time. 

 

The integrating chamber allows for an accurate measurement of the total light power 

output of an individual lamp. Spherical chambers are virtually exclusively used 

throughout the scientific and engineering community, due to ease of theoretical results. 

Such a chamber is, however, not practical from long lamps, such as the cylindrical 

fluorescent lamp. The cylindrical chamber described in this dissertation, presents a 

compact, affordable solution for cylindrical fluorescent lamps, in that the physics of light 

reflection within such a chamber, is fully described.  

 

The cylindrical chamber hosts a cylinder coated on the inside with a diffuse highly 

reflective white paint. The end-walls are presented with mirrors, which emulate the 

conditions of an infinitely long chamber and lamp, thereby improving light integration 

and simplifying calculations. One of the mirrors is movable to accommodate a variety of 

lamp-lengths. A light-meter sensor is positioned midway between the mirrors. The 
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reading translates into a measure of the total light power output of the lamp. See Figure 

4-2 in Section 4.2.2 where the apparatus is discussed in detail. 

 

It is a requirement in the lighting industry for small sections of the lamp to be measured 

individually. Holes are therefore cut into the centres of the mirrors to accommodate the 

translation of a fluorescent tube through the reduced chamber. 

 

The approach to analyzing the cylindrical chamber is similar to that commonly used for 

the spherical chamber .i.e. multiple reflections from the source are integrated over the 

surface of the chamber. However the method here is simplified by noting that the total 

absorbed light power is exactly the light power of the lamp. On the other hand, the 

analysis is complicated by the mirrors possessing a reflectance fm  < 1. Statistical ratios 

were incorporated to account for the adjustable distance between the mirrors. Finally it 

was noticed that light incident on a diffuse surface had to be treated uniquely. The 

incident ray cannot be regarded as comprising orthogonal components as in the case of 

specular reflection. A statistical weighting was introduced to rectify the final 

measurement equation. 

 

Light levels within the chamber were measured for sectional lengths of the same lamp. 

Hence a profile of light intensity versus chamber length was obtained. The primary aim 

of this dissertation is to obtain a theoretical formulation of the measured profile. To this 

end, it was necessary to measure the reflectance of the mirrors accurately, and to 

determine the diffusivity of the paint. In order to facilitate calculations with a pseudo-

infinitely long chamber (due to mirrors), the light intensity surrounding a diffusive 

emitting cylinder (a fluorescent tube in this case) was calculated using boundary 

projection onto a unit sphere. This method of integrating over a sphere, greatly simplifies 

calculation, and is based on the diffusive nature of the lamp, as well as uniformity of 

intensity over its surface. An experiment was performed to confirm the results, but is not 

described in detail in this dissertation, as it is regarded as detracting from focus on the 

chamber. Briefly, a lamp was suspended about two meters above the floor (on the roof of 

a building), that was covered by a non-reflective black sheet. The experiment was 



 3  

performed at night; hence there were no reflective or emissive surfaces in the vicinity. 

The light intensity was measured at several positions in space surrounding the lamp, and 

experimental results compared favorably. 

 

This dissertation begins with a literature survey, presenting other commonly used 

chambers and an instance of the modeling of a cylindrical chamber for measuring laser 

scattering.  Chapter 3 introduces the basic concepts of the physics of a fluorescent lamp, 

as well as some of the terminology used in subsequent chapters. Chapter 4 attempts to 

familiarize the reader with the practicalities of using an integrating chamber, including 

the basis for constructing the cylindrical chamber with diffusive paint, end-mirrors etc.  

Chapter 5 details the analysis of light surrounding a cylindrical fluorescent lamp, finally 

presenting the graphical result, but more importantly, the formula which is used in 

Chapter 6. Chapter 6 forms the core of the dissertation. The cylindrical chamber is 

analyzed in detail, and a mathematical model is developed. The final result is a 

measurement equation describing the dependence of calculated light power on chamber 

length. Finally, conclusions and suggestions are discussed in Chapter 7. The subsequent 

appendices present details of experiments performed, as well as mathematical derivations 

that are lengthy and would otherwise distract the reader from the core of the topic in 

discussion. 

 

The author is unaware of any research having been performed on such cylindrical, as 

opposed to the spherical integrating chambers. The mathematical derivations for the 

cylindrical chamber, presented herein are, therefore, original to the present author. 
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     2. Literature Survey 

 

 

An extensive literature search has not revealed any research having been done on a 

cylindrical integrating chamber using mirrors. A cylindrical shape with end-cones has 

been used by Simpson et al [1] to integrate light from a laser-scattering target. In this 

experiment, scattering from the target is non-uniform, hence the choice of a cylinder 

rather than a sphere. The cones are required to compliment the geometry of the external 

lens system, and due to their nature of directed scattering, the chamber is not applicable 

to the fluorescent tube. The experimental setup is reproduced in Figure 2-1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 

A cylindrical chamber used for integrating light from a laser-scattering target. 

Note the use of diffusive end-cones [1]. 

 

 

On the other hand, a spherical integrating chamber is utilized extensively in both industry 

and research, and for various applications. A typical sphere is shown below in Figure 2-2. 
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The large port in the foreground usually performs the function of a uniform diffuse light 

source [2]. 

 

The basic principle of operation of an integrating chamber is that there is multiple 

scattering of light from a light source placed within the chamber to the extent that the 

reflecting surface exhibits a perfectly uniform radiance (due to spatial light integration) 

that is accurately measurable. 

 

 

 

  

  

 

 

 

 

 

 

         

         Figure 2-2 

 A photograph of a typical integrating sphere. The port in the foreground  

 serves as a uniform light source [2]. 

 

 

The objective of measuring the luminance of a source is achieved by placing a sensor at a 

small port in the chamber wall. Alternatively, a larger port can be used as a source of 

precisely known uniform intensity as required, for example, in the field of spectroscopy 

[3].  
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A high degree of reflectance of the inner surface, combined with high diffusivity, ensures 

a high degree of scattering, which in turn ensures a high degree of uniformity of radiance 

from the sphere inner surface, as well as an enhanced radiance level. 

 

The simplest theoretical model of an integrating sphere assumes a highly reflective 

surface of uniform reflectance and uniform smoothness. Since the function of the 

chamber relies on multiple reflections, the result becomes highly sensitive to the surface 

reflectance. Uniform reflectance implies a reflectance that is constant over the visual 

spectrum, and does not vary from place to place along the chamber surface. Any 

deviation from uniform spectral reflectance is amplified by the nature of multiple 

reflections. It is vital therefore that the surface material exhibits a uniform flat spectral 

response so that all spectral components are equally represented for measurement. 

 

Paint, which is commonly used as the reflecting/diffusing material, is difficult to apply in 

a manner that results in a smooth surface. For example, the stroke of a brush may lead to 

elongated depressions in the painted surface. Furthermore, reflectance will have some 

dependence on the thickness of the paint since some degree of light penetration occurs in 

all paints. 

 

The type of paint used should therefore also have a consistency such that all samples 

possess identical properties. Barium Sulphate is a common component of such highly 

reflective/diffusive paints. House-paint usually contains titanium-oxide, which is slightly 

absorbent in the blue end of the visible spectrum [4]. 

 

The spectral selectivity of reflective paint, in the visible region, has been investigated by 

Walsh and Barnett [5]. They have demonstrated the effect of selectivity and have 

presented some solutions. One choice is to ascribe a colour temperature to the lamp, and 

to calculate a correction factor using laws of Black-body radiation, in particular, Wien’s 

Law. 
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Paint stability with respect to time, temperature and humidity, and paint washability are 

also important considerations. 

 

Another widely used material is Spectralon, a thermoplastic PTFE based resin developed 

by Labsphere [4]. Use has been made of Spectralon’s compressibility to minimize gaps 

between the components of a geodesic chamber frame, by Shitomi et al [6]. 

 

The company, Labsphere, based at 231 Shaker st., North Sutton, New Hampshire, 

U.S.A.; (website: www.labsphere.com), produces a range of coatings including 

Duraflect, Infragold and Spectraflect 

 

Aside from the surface, other important factors include the surface area of constructions 

within the chamber such as lamp supports and direct-beam baffles, and the size of the 

port in relation to the chamber. 

 

The ideal integrating sphere equation for the intensity I at the surface is given by 

 

2 14

s f
I

frπ
Φ

=
−

  W.m
-2

 

 

where sΦ  is the total flux from the source and f is the surface reflectance. The equation 

for the sphere is quite uncomplicated and simple to prove, as shown in Appendix G, and 

the sphere is therefore a favorable choice of shape for the integrating chamber in general. 

 

While the particular purpose of the cylindrical chamber is to measure intensities of 

elongated (i.e. high aspect ratio) lamps, the integrating sphere is suited to a wider range 

of applications. Some common uses are listed below: 

 

• Light collection from internal or external source (lamp measurement photometry)  

• Laser power measurements [7] 
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• LED spectral and SPD measurements  

• Reflectance of either specular or scattering samples  

• Total or diffuse only transmittance measurements  

• Cosine receptors  

• Uniform light sources 

 

The principle of the integrating sphere has also been applied in the investigation of 

absorption measurement, by Lerebourg et al [8]. In this experiment the chamber was filled 

with the liquid sample to be investigated.  When light is transmitted through a medium, 

some light is absorbed, while the remainder is scattered. The integrating sphere can 

collect and measure all light except the absorbed light, and in this way the absorbed light 

energy can be deduced. Bastin et al [9] have investigated solid samples. 

 

The Monte Carlo method has been applied by Hanssen and Prokhorov [10], to the 

integrating sphere in the radiation source arrangement, in order to obtain the radiance at 

the sphere surface, and the external irradiance due to a port. The radiance from the port, 

which can then be known accurately, is highly uniform over the port surface, to the extent 

that the sphere can be used as a calibration source. Details have been documented by 

Brown and Johnson [11]. 

 

Other uses for the integrating sphere include the measurement of emissivity, as described 

by Saunders et al [12], and in the field of microscopy where the sample is placed within a 

sphere to remove contrasts in the sample, as described by Kiguchi and Kato [13].  
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3. Basic Concepts 

 

 

3.1 Introduction 

 

The total light output of a lamp can be measured by means of a 4π integrating chamber; 

i.e. one which reflects light from all directions back into the chamber. The light intensity 

at the surface is measured, in order to deduce the total light output power.  Such a 

chamber is ideally suited for sources with small dimensions, e.g. incandescent globes. 

The total light output of a small lamp is ordinarily measured using a spherical integrating 

chamber. 

 

Conventional 2-meter long cylindrical fluorescent lamps suggest the use of a cylindrical 

integrating chamber, rather than a spherical chamber, which would need to be at least 5 

meters in diameter in order to obtain the desired light integration. Such a cumbersome 

chamber would favour permanent installation, since it is too large to be easily 

transported. Furthermore, such a chamber would be costly to produce. 

 

This dissertation shows that the total light output of a long cylindrical lamp can be 

accurately measured using a portable cylindrical light-integrating chamber, of length no 

longer than the lamp. The end result relies on a knowledge of the radiation pattern for a 

cylindrical diffuse transmissive surface. The light intensity surrounding a cylindrical 

lamp will, therefore, be analyzed as a prelude to finding the measurement-equation for 

the chamber. 

 

Note that the integrating cylinder designed for this investigation had the facility to allow 

for the measurement of power output of a short lamp section, as a function of distance 

along the length of lamp. This is an important consideration for lamp designers and end-

users. 
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3.2 Terminology 

 

For the purpose of the present analysis, the long axis of the lamp was assumed as aligned 

along the z-axis in the Cartesian system as shown in Figure 3-1. A list of term definitions 

is given in Appendix E. 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 

The orientation of the fluorescent tube and chamber with  

respect to Cartesian axes. 

 

 

3.3 The Fluorescent Tube Lamp 

 

The light from a fluorescent tube is generally emitted from a fluorescent powdered layer, 

coating the inside surface of a sealed glass tube. See Figure 3-2 below. The layer is 

significantly diffusive such that the emission closely approximates Lambertian character.  

 

Fluorescence results from the irradiation of the fluorescent layer by photons emitted from 

the plasma encapsulated in the sealed tube. The plasma is generated by an electrical 

discharge through a suitable gas along the length of the tube.  

 

x 

z 

y 

da  
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Electrodes at the ends of the tube take the form of filaments, which can be heated by a 

current to enable spontaneous liberation of electrons into the gas.  

 

Boundary layer behavior in the plasma in the vicinity of the filaments gives rise to a 

reduction in light output from the regions immediately surrounding the electrodes. This 

phenomenon is commonly known as ‘cathode fall’. The end result is a loss of overall 

efficiency of the lamp, and a tube therefore does not have an entirely uniform light 

intensity over the outer surface.  

 

The performance of the lamp is, furthermore, somewhat dependent on the physical state 

of the filaments. The high operating temperature of the filament contributes substantially 

to the deterioration of emissivity over the operational lifetime. The lifetime of the lamp 

is, in fact, mainly determined by the condition of the filaments.  

 

It has been established that several measurable parameters of the operating lamp provide 

a reasonable indication of the remaining lifetime of the cathodes. One of those parameters 

is the emission profile along the length of the lamp. It is of interest to a lamp designer, 

therefore, to be able to measure the light output from the lamp as function of position 

along its length. 

 

 

 

 

 

 

 

 

 

Figure 3-2 

The basic construction of a fluorescent tube lamp. 

Plasma 

Filament Filament 

Glass tube 

Fluorescent  
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4. Design criteria for the Integrating Chamber 

 

The integrating chamber should obviously be designed to ensure that the optical radiation 

in the chamber, which impinges on a detector (thereby providing a measurable signal), 

has a quantifiable dependence on total lumen output of a lamp (or a local segment of it), 

which, ideally, can be obtained with a relatively straightforward analytical or numerical 

algorithm in terms of the lamp and chamber parameters.  

 

The total lumen output of a lamp, as well as the light intensity distribution along its 

length (in the case of a cylindrical lamp), is useful in the manufacturing and consumer 

industries. Knowledge of the total lumen output enhances quality control of the 

manufacture process and provides a criterion for comparison between products. The 

intensity profile along the length of commercial tubes provides, inter alia, information on 

the quality and remaining lifetime of the lamp filaments, which are obviously important 

considerations.  

 

The spherical integrating chamber will first be discussed as an introduction to the use of 

integrating chambers in general. 

 

 

4.1 The Spherical Integrating Chamber 

 

The spherical integrating photometer comprises a sphere coated on the inside surface 

with a highly reflective diffusive material. The source is placed at the centre, behind a 

baffle, that blocks light traveling directly from the lamp toward the sensor. The baffle is 

an essential requirement if the transmitting surface, e.g. lamp filament, is small.  
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Figure 4-1 

 An exploded illustration of a spherical Integrating chamber. 

 

 

The effects of source anisotropy are largely reduced by the use of a highly reflective/ 

diffusive surface (reflectance f = 0.97 for the paint used in this model). Multiple 

reflections of light in the chamber enhance the integrating functionality of the sphere, 

which is directly related to the average number of reflections a photon undergoes before 

absorption. Excellent integration has the effect of causing the light intensity to be 

approximately constant everywhere on the inside surface. Thus, at any arbitrarily chosen 

position on the surface, a small area can be used to obtain a measure of the total lumen 

output from the lamp. 

 

A gain factor G, more commonly known as the sphere multiplier, can be ascribed to the 

chamber (see Labsphere [3], p5). G is the ratio of measured light intensity at a point on 

the chamber inner surface directly due to the lamp, to that with the chamber reflective 

surface included. Note that G ≥ 1, with G = 1 by definition, for a non-reflective wall. The 

gain factor is easily measured by placing a calibrated source at the centre of the chamber, 

 

Detector 

Source 

Baffle 
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and recording the light intensity at the chamber surface, by means of a suitable light-

sensor and light-meter.  

 

Effective light integration will necessitate the use of a chamber of more than 5 meters in 

diameter for a typical fluorescent lamp tube of 2 meters in length, as has been stated. The 

reason is as follows. Due to the cylindrical shape of the emitting surface of the lamp, the 

emissive characteristics in the vicinity of the lamp are far removed from that of a point 

source. Hence the chamber surface is required to be far away enough that the cylindrical 

lamp approximates a point source. The gain factor for such a large chamber will be quite 

low, due to the large area of the reflective surface in relation to the source intensity, with 

a corresponding reduction in integration efficiency. 

 

 

4.2 The Cylindrical Integrating Chamber 

 

Effective light integration necessitates the requirement that the cylindrical chamber 

diameter be sufficiently large in comparison with the lamp diameter, so that local bright 

zones on the lamp do not affect measured values.  

 

The compact design of a cylindrical chamber makes it an attractive alternative to the 

spherical model, for cylindrical fluorescent lamps. Further discussion will therefore 

concentrate on the cylindrical chamber only.      

 

 

4.2.1 Main Objectives 

 

The main objective of this project was to obtain a mathematical model for the cylindrical 

integrating chamber with end-mirrors (see Figure 4-2 below), i.e. a relationship is 

required between measured incident light intensity and total emitted light power. The 

mathematical model is complicated by the imperfect reflectance of the end-mirrors. 
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A secondary objective is to characterize the radiation field around a cylindrical 

fluorescent lamp. The ideal result would be an equation describing the constant-intensity 

trajectories (isolines) as a family of curves.  

 

The chamber equation should enable, indirectly, the measurement of total light output of 

a lamp, as well as the light output of a longitudinal section of the lamp. The chamber 

system should not be sensitive to small variations in length or position of the lamp, or 

light-sensor location.  

 

 

 

4.2.2 The Apparatus 

 

The chamber cylinder consists of a hollow cylindrical tube, in which the lamp is inserted 

axially. Perfectly reflective planar mirrors, supporting the lamp inside its ends, would 

effectively enable the lamp to possess the optical properties of an infinitely long tube (see 

Figure 4-2 below).   

 

The chamber cylinder radius is larger than that of the lamp by a factor of approximately 

20. This proportion was chosen as a compromise between the gain factor G of the 

chamber and the degree of integration of light within the chamber. Such a chamber would 

effectively have no ends or edges (where two surfaces meet at differing orientations), and 

would approximate to the ideal situation of an infinitely long cylinder. Analysis would 

then be simplified since the flux in the chamber would be uniform. 

 

However, as will be discussed later, practical mirrors have a reflectance f < 1. 

Consequently there must be some non-uniformity of the flux, but certain assumptions 

will be made to simplify the calculations. 
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     Figure 4-2  

A diagrammatical view of the chamber used in this project. Note that the chamber is designed 

for tubes of various lengths. Mirrors are ideally surface coated. 

 

 

Light intensity over a small area at a point P, on the chamber surface, was measured by 

means of a light-sensor, which consists of a diffuse transmissive dome, surrounding a 

photodiode. This is a so-called “cosine-corrected” device. The dome produces a response 

at the photodiode, such that the photodiode current is proportional to the cosine of a ray 

arriving on the dome, with respect to the photodiode surface norm. 

 

The associated light meter was capable of measuring up to 200,000 lux, with a resolution 

of ± 20 lux and an accuracy of 1%. The light sensor was placed on the chamber wall, 

halfway along the chamber, to ensure symmetry. This symmetry results in simplified 

calculations.  
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It may be a requirement in industry, for a measurement to be made at a specified section 

along the lamp. The method may be used to construct an intensity profile along the length 

of the lamp. The profile can yield information about the condition of the lamp electrodes.  

 

Power radiated from a small section along the lamp surface can be measured by placing 

the mirrors as close to one another as necessary. The lamp is then translated through 

holes in the mirror centers to obtain an overall intensity profile.  

 

The internal mirror, which is located to select the chamber length, is required to be 

circular in order to fit into the cylindrical chamber, and is therefore made of Perspex, 

which is less costly to machine. The external mirror was made of 4 mm thick glass, for 

the sake of rigidity, and a square cut sufficed, since it was mounted on the door. See 

Figure 4-3 below. 
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    Figure 4-3 

A photograph of the side view of the chamber. Here the chamber is set up with an  interval L = 20 cm by 

moving the internal Perspex mirror along the axis of the chamber 

 

 

The Perspex mirror was mounted onto a plywood backing to impose rigidity, and then 

onto a plywood base with adjustable sprung supports for fine adjustment of mirror 

orientation.  

 

In order to fix the internal mirror at some point in the chamber cylinder, rubber-buffered 

clamps were installed onto the base so that it could be secured into position by exerting a 

force on the chamber wall. The force was applied via clamps, by means of cams, as 

shown in Figure 4-4. 
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    Figure 4-4 

A rear view of the internal mirror mount, which was located inside the chamber. The mount was positioned 

a distance of 1 metre from the near end. Note how uniform the surrounding chamber brightness appears to 

the camera regardless of distance. 

 

 

The chamber was constructed according to the following specifications: 

 

Chamber Specifications 

Chamber length:   L  = 2.0 m 

Chamber diameter:             2R = 0.57 m 

Mirror reflectance, glass:  fmg = 0.86 (see Appendix A) 

Mirror reflectance, Perspex: fmP = 0.83 (see Appendix A) 

Paint reflectance:   fp  = 0.97 (as specified by Plascon) 

 



 

 

20  

Tolerances 

Lamp centralization: ±1 mm 

Mirror azimuth: negligible 

Mirror position: ±2 mm 

 

The mirror reflectance was determined empirically, as described in Appendix A. The 

value of paint reflectance that was used, is the value quoted by Plascon, the supplier of 

the paint. 

 

Note that mirror azimuthal error could be eliminated by observing the curvature of the 

infinitely long virtual chamber through a peep-hole in the end mirror. The peep-hole edge 

results in multiple concentric circles presented at the centre of the remote mirror. If the 

mirrors are not orthogonal to the cylinder axis, the circles will be progressively offset 

from the centre, with increasing reflection order. 

 

 

4.2.3 A First Discussion 

 

If the light intensity due to an isolated lamp is measured at some arbitrary point in space, 

an indication of the lamp intensity may be obtained. Nothing, however, can be inferred 

about the total flux output from the lamp. Nor can the intensity at a point on the surface 

of the lamp be quantified. 

 

Placing the lamp into a 4π reflective chamber enables the integration of light rays, and a 

measurement that includes contributions from all points on the lamp. For this purpose, a 

highly reflective and diffusive white surface (usually paint) must be applied to the inner 

surface of the chamber. The chamber forms a closed system, and if it can be 

characterized, it will produce information on the total light flux generated by the lamp.  
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To first order, the mathematical approach to model the cylindrical chamber, is to consider 

an infinitely long lamp with uniform surface intensity, located axially in an infinitely long 

chamber. In this case the light intensity at the chamber wall is easily calculated.  

 

To approximate this situation for a realistic lamp of finite length, in a chamber of finite 

length, it is necessary to provide suitable surfaces at the ends of the chamber cylinder. 

For this purpose, in an initial trial setup, the chamber was provided with end walls that 

were coated with the same diffusive paint that was used for the cylinder walls.  

 

Measurements on this system revealed that there were regions of extreme intensity near 

the edges of the cylinder. This complicates the analysis considerably, especially if the 

chamber end-walls are quite close together, as is the case when measuring lamp intensity 

profiles. 

 

The system was therefore modified by replacement of the painted end-walls with specular 

mirrors, which has the following advantages:  

 

1)  With perfectly reflective mirrors placed at each end of the lamp, the chamber and 

lamp may be regarded as being made up of a real section of one lamp length, and two 

virtual sections of infinite length. The virtual lengthening of the system enhances the 

degree of integration of light, in the sense that any variation in intensity near the end 

of the real chamber, will be “smoothed out” by the neighboring virtual lamp and 

chamber, reflected by the mirror. 

 

2)  Mirrors are not diffusive, and the extremities will not form intense local zones. 

 

3)  Certain approximations may be applied with regard to the pseudo-infinite nature of 

the virtual zone of the chamber. 

 

The use of mirrors resolved some problems, but introduced a new one: namely, the 

chamber was required to be exactly as long as the lamp, as otherwise the virtual lamp 
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would include undesirable repetitive gaps. In order to accommodate the various lamp-

lengths available on the market, the chamber was constructed with a movable internal 

mirror, to facilitate adjustment of its length.  

 

A real fluorescent lamp may not radiate perfectly uniformly along its entire length. The 

end-effect, due to proximity with the electrode (the so-called cathode fall), results in 

reduced intensity near the ends of the lamp. Variations in the thickness of the fluorescing 

medium throughout the lamp, result in corresponding variations in light output. However, 

the strong integrating potential of the chamber is expected to minimize the significance of 

these variations. 

 

The fluorescent tube-lamp surface is engineered to be Lambertian to a large degree. In 

this model, the lamp fluorescent material has been assumed to exhibit a perfectly 

Lambertian surface, i.e. one that does not digress from cosine behavior, as the 

observation angle varies from –π/2 to π/2 radians, with respect to the surface norm.  

 

However, a transmissive medium such as the fluorescent powder coating/ tube glass 

combination cannot be both transmissive and perfectly Lambertian, due to lamp internal 

reflection at large angles of ray incidence on the tube glass.  

 

Furthermore, since the fluorescent powder coating is quite thin, photons passing through 

it are scattered less as the angle with the lamp surface norm decreases. The nett result is 

that the emission profile may lie intermediately between a Lambertian  (cosθ) and a 

square cosine (cos
2θ) behavior. Deviation from Lambertian behavior will be more 

significant for larger angles of incidence, where cos
2θ is maximally different from cosθ. 

At large angles, however, the proportion of flux contributed relative to the total flux, is 

small. Thus the deviation will be assumed as negligible. 

 

An infinitely long virtual lamp will decrease in ‘surface’ intensity, with axial distance 

from its mid-point, since the reflectance of a mirror is always less than unity. The 

intensity within the chamber is therefore dependent on the length of the real lamp, and 
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hence also on the real chamber length. When the mirrors are very close together, a larger 

set of intervals must be summed to produce a meaningful result, so that the imperfect 

mirror reflectance becomes a more significant factor, and will therefore be included in 

calculations. 

 

By comparison with an incandescent lamp, the emitting surface of a fluorescent tube is 

quite uniform, and the surface area is known. If there is a local bright spot, it is not 

expected to be very much brighter than the neighboring surface emission, due to the large 

tube surface area and general continuity of the fluorescing medium. Therefore a baffle 

was not required in the chamber. 

 

The light arriving at a point on the chamber wall comes from the lamp, from the painted 

chamber wall, and end-mirrors. Due to multiple reflections, the calculation might be 

expected to involve a differential equation. However, the solution turns out to be a 

geometric series if it is assumed that the intensity does not vary along the real chamber 

wall. In reality, the mirrors cause a small monotonic variation in wall intensity from the 

centre to the end of the real chamber. A more detailed discussion will be given later. 

 

For large angles of incidence, rear-coated mirrors reflect some light off the glass front 

surface, thereby slightly decreasing the effective distance between mirrors. Multiple 

reflections also occur between the opposite surfaces of a rear-coated glass or Perspex 

mirror, resulting in further absorption and scattering. This effect may need to be included 

in the solution when the mirrors are close together. Front-coated mirrors are ideal, but 

increased cost is a consideration. 

 

The option of using non-reflecting surfaces for end-walls was considered for comparison 

with the situation involving mirrors. However, in this case, a large unknown proportion 

of light flux would be absorbed by the end-walls, and the degree of scattering would be 

greatly reduced, so that a measuring device will not produce an accurate indication of 

total flux. 
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5. Analysis of the Fluorescent Tube-lamp 

 

 

5.1 Introduction 

 

Various approaches to finding the light intensity around a tube-lamp were considered. 

The lamp shape, being cylindrical, suggests the use of cylindrical coordinates in the 

Cartesian system. However, the diffusivity and uniformity of the lamp surface suggest the 

use of spherical coordinates, as will be shown. Some methodologies will now be 

discussed. 

 

 

5.2 Methodology 

 

It might be supposed that the simplest approach to analyzing the light intensity around the 

tubular lamp is to integrate the radiance over the surface of the lamp. The resulting 

integral is, however, complicated by the angular dependence of the integrand. The 

angular limits of the integral vary with the distance from the lamp, and the integral results 

in compound fractions (an attempt to separate the integrand into partial fractions results 

in separate integration terms which tend toward infinity as the distance from the point of 

observation to the lamp is increased).  

 

An alternative scheme is to represent the compound fractions as a series, but then 

manipulation becomes extremely cumbersome. 

 

A far easier method, reliant on the Lambertian nature of the lamp surface, was utilized. It 

must first be observed that the flux from any elemental area on the lamp, projected into a 

given solid angle subtended at a point P, is a constant (for a given local intensity of the 

lamp). This applies irrespective of the shape of the emissive area, and is a direct 

consequence of the Laplacian 2Φ 0∇ = , which applies only to the radial component, since 

the situation for the radial component emulates that of a conservative vector field, in the 
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Lambertian case; i.e. the flux density varies as cos θ, as for a vector field [14]. Figure 5-1 

below shows the projection of the lamp onto a sphere surface. 

 

 

 

Figure 5-1 

The projection of an area on a cylindrical lamp onto a sphere of radius r. The sphere is centered at an 

observation point P. 

 

 

It will now be shown, using simple geometry, that the Lambertian surface intensity does 

indeed appear uniform to an observer at P, irrespective of the surface shape or its 

distance.  
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 Figure 5-2 

Light intensity as a function of position on the lamp surface, as observed from the direction  

of a point P in space. 

 

 

Referring to Figure 5-2 above, several point sources are displayed at even intervals along 

a quadrant of the surface of the lamp. From the direction of observation, it can be seen 

that the point source density increases with lateral distance from the lamp axis, i.e. with 

increasing θ.  In Figure 5-3, it can be seen that the lateral distance between two 

consecutive point sources, as observed from the direction of a point P in space, is 

proportional to cosθ. Now, the point source density is inversely proportional to the 

distance separating them, i.e. I ∝ 1/cosθ. 
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 Figure 5-3 

The lateral distance between two neighboring point sources. The distance d  

is the separation between point sources. The lateral distance is affected by θ,  

the angle between the surface norm and the direction of observation. 

 

 

Now since the intensity of the point sources decreases as cosθ, and the density of the 

point sources increases as 1/cosθ, with increasing θ, the proportionalities cancel each 

other out exactly, so that the light intensity does not vary with the shape of the lamp 

surface. 

 

It must be stipulated here that any variation in the distance from point P to each 

respective point source has not yet been considered. However, as a consequence of the 

Laplacian again, the distance does not affect the calculations. For, consider an elemental 

area δa on the surface of two spheres of differing radii R and r respectively. Since the 

elemental areas are defined to be identical in size, we have φ1R
2
 = φ2r

2
 where φ1 and φ2 

are the solid angles subtended at point P by the respective areas. Then φ2 = φ1R
2
/r

2
, i.e. 

the solid angle is inversely proportional to the square of the distance of P from the source. 

Refer to Figure 5-4 below. The projected area becomes φ2R
2 = φ1R

4/r2 = δa R2/r2 (by 

substitution). Thus it is shown that the area is proportional to 1/r
2
. The variation in 

elemental area therefore emulates the 1/ r
2
 behavior of light intensity with distance r from 

the source. 

 

d dcos θ 

θ 
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 Figure 5-4 

The variation of the size of the projection of an elemental area da  

onto a solid sphere of radius R, with changing distance r of the source. 

 

 

The easiest approach, therefore, is to integrate, using a fixed elemental solid angle, over 

the projection area of the lamp onto a spherical surface with centre focal point P, which 

will then yield the total flux from the lamp at P. Figure 5-5 below gives an indication of 

the shape of the projection to be expected from a cylindrical lamp. 

 

Since the lamp surface is regarded as uniform, it is sufficient to project only the 

boundaries of the source onto the sphere, and then to calculate the area (on the sphere) 

inside these boundaries, using integral calculus. In the case of a cylindrical tube, the 

boundary turns out to be fairly simple, as shown in Section 5.2.2. 

 

Although the lamp is cylindrical, it has been shown that the calculations are greatly 

simplified using projection onto a sphere. Therefore, considering that the boundary of the 

integral lies on a sphere, the calculations will use spherical coordinates, rather than 

cylindrical coordinates. 
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 Figure 5-5 

An example of the cylindrical projection of a finite-length lamp onto a sphere. The sphere is 

centered at an observation point P. Note the use of spherical coordinates θ and φ. Here θ1 and φm 

correspond with the projection boundaries. 

 

 

Once the equations describing light intensity at any point in space are obtained, a 

computer program can be utilized to generate the isolines. 

 

 

In summary: 

The light intensity profile surrounding the lamp will be obtained using spherical 

projection. The intensity of rays arriving at the chamber wall will be obtained by direct 

integration of light arriving at the wall at P, from the lamp, and then summing over 
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multiple reflections from the walls and mirrors in the chamber. This summing will take 

the distance between the mirrors into account, as well as their reflectance.  

 

 

 

5.3 The Finite-length Tube 

 

The radiation profile of a finite length cylindrical lamp located in infinite space, i.e. 

without any reflecting surfaces, will be considered first. Following this treatment, the 

reflecting properties of a surrounding chamber will be included. 

 

 

5.2.1 Requirements 

 

There are a number of asymptotic requirements that need to be satisfied by the lamp 

equations. 

 

• The maximum light intensity should be at the lamp surface. 

 

• Light intensity should vary approximately as 1/r
2
 at distances r >> L 

 

• Close to the lamp, and near the middle, light intensity is assumed to vary 

approximately as 1/r.  

 

• Immediately above the lamp surface, light intensity is assumed to vary with r 

along the entire lamp length, except at the very ends. 

 

 

• For a given distance r from the lamp, the flux density should be a maximum in the 

perpendicular plane that passes through the lamp axis centre. 
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• Due to the finite emissive boundary at either end of a realistic lamp, all isolines 

are expected to converge to each circular edge at either end of the emitting 

cylinder of the lamp, rather than meeting at the axis. 

 

 

5.2.2 The Projection Sphere 

 

It has been stated that Laplacian behavior applies to the radial component of a diffuse 

emitter. Thus it is only the boundary of the problem that needs to be known. It is 

necessary therefore to find the integral and its boundaries in terms of spherical 

coordinates, since the projection lies on a sphere, for simplicity. 

 

Consider an observation point P in the vicinity of the lamp, as shown in Figures 5-5 

above. The resulting surface on the projection sphere through which rays from the lamp 

pass, forms a wedge of constant arc φ in relation to the width of the lamp, and spans a 

range θ according the length of the lamp. In order to find the area of the bounded section, 

θ must be integrated from θ1 to θ2 while φ must be integrated from −φm to +φm.  The 

complementary angles α and β, as shown in Figure 5-6 below, will be useful in the 

derivations to follow. 

 

The lamp equation will be an approximation since the projection of an end of the lamp 

onto the projection sphere will not be straight, as presented in Figure 5-7 below, but will 

be a convex curve. Figure 5-7 shows the end-effect for a longer lamp with an exaggerated 

diameter, (about four times that of a standard lamp) in order to enhance the effect. 
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 Figure 5-6 

The geometry relating the position of the lamp to a point P in space. Length ℓ is the horizontal distance of P 

from the centre of the lamp. The horizontal distances from P to the left and right ends of the lamp are then 

L/2+ℓ and L/2-ℓ respectively. Upper-case R is used for the distance from the lamp axis to observation point 

P, since the variable will appear later as a parameter of the chamber.  

 

 

The curvature of the end of the lamp, projected onto the sphere, is more pronounced for 

longer lamps. For a longer lamp, however, the end of the lamp will be further away from 

the observation point and hence the projection will be smaller, so that the error is less 

significant.  

 

This end-effect will therefore be most pronounced where the distance R from the lamp 

axis is of similar order to L, the length of the lamp. As L increases from zero, the 

projected boundary due to each end of the lamp appears more curved. The distance 

between lateral boundaries on the projection sphere decreases, however, so that the error 

in the integral becomes zero as L tends toward infinity. Also, as L tends toward zero, the 

mentioned boundary tends toward a straight line, so that the error again tends toward 

zero. 
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The error due to the ends of the lamp also depends on the width of the lamp. The 

boundary due to each end of a very narrow lamp is projected as a relatively short curve 

on the projection sphere, while the total enclosed area is also small due to the narrower 

width of the lamp. It will be merely stated here that the error in area tends toward zero as 

the lamp width decreases. Wide fluorescent tubes are seldom encountered and will not be 

considered. 

        

  

 Figure 5-7 

Some examples of boundary approximations for several lamp lengths. The area projected onto the 

sphere has been flattened out. Lamp radius is taken to be about 10% of the distance to the 

observation point P. The entire area is integrated, whereas the actual area should exclude the 

darkened sections in the diagram. a) The lamp length is similar to the observation distance.  

b) The lamp length is 5 times greater than the observation distance. c) The lamp length is infinite. 

Here there is no error. 

 

 

 

a) 

b) 

c) 

 
Integral error 
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5.2.3 The Lamp Equation 

 

The error in projected area as seen in Figure 5-7 is small but noticeable. If necessary, an 

approximation for the error can be included in the model, but it has been concluded in the 

previous section that the errors will result in only very slight shifts of a small portion of 

the isolines. In the following analysis the end-effect will therefore be neglected. 

 

 

Integration boundaries 

 Referring to Figure 5-8 below, the integration limit φm can be written in terms of R and r0 

as  

 

1 0
m sin

r

R
φ −= .  

 

 

 

     Figure 5-8 

The geometry applicable to the lamp projection boundaryφm. 

R is the shortest distance from P to the lamp axis. 
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It is more convenient to express the limits of integration, θ1 and θ2, in terms of angles α 

and β, since they are included in the relevant triangles as shown in Figure 5-6 above.  

 

We have  

     

1

2

2

                                              
2

πθ α

πθ β

= −





= + 

 (5.1)  

     . 

 

The Integral 

Let the lamp surface intensity be I0  (in W.m
-2

). Then there is a flux Φ0 emitted from an 

area da. The Lambertian phenomenon distributes the flux Φ0 over a hemisphere centered 

over da such that the intensity of a ray decreases as cos θ with increasing angle θ of the 

ray, with respect to the surface norm. A ray in a direction perpendicular to the surface 

will have the maximum light intensity, which will be denoted as I⊥. A perpendicular ray 

with this intensity is related to the surface intensity by 0
1I I
π⊥ = (refer to Appendix C for 

a proof). The intensity of a ray at an angle ϕ with the surface norm will then be  

 

    ( ) 0
1cos cosI I Iϕ ϕ ϕ
π⊥= = . 

 

The rays from the projection sphere to point P, projected in the radial direction, must be 

integrated. The axial component is not detected by a cosine-corrected light-sensor and 

will therefore not affect calculations. 

 

The contribution from rays from an elemental area da on the projection sphere surface 

can be obtained in the radial direction by means of vector analysis. Let the vector from 

the center of the projection sphere to the bounded region be ρ
�

. Then the unit vector in 

Cartesian coordinates is 
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( )ˆ cos sin ,sin sin ,cosφ θ φ θ θ=ρ  

 

where θ and φ are the variables of the spherical coordinate system. Note that the origin of 

the coordinate system is at point P, and for the sake of simplicity, point P is located on 

the x-axis. Therefore the radial direction from the lamps perspective is exactly opposite to 

the direction of the x-axis from the perspective of point P. Since the projection is not 

concerned about the sign of the vector, the unit vector r̂  is in this case equivalent to the 

x-axis unit vector i.e. (1, 0, 0). Thus the projection in the radial direction is 

 

            ( ) ( )ˆ ˆ cos sin ,sin sin ,cos 1,0,0φ θ φ θ θ⋅ = ⋅ρ r  

 

cos sin .φ θ=  

 

Therefore the contribution ˆIδ
r
to point P is 

 

( )ˆ 0 2

sin cos1, ,I R I
R

θ φδ θ φ
π
=r  

 

Integration is performed over the projection area: 

 

( ) ( )
m 2

m 1

2

ˆ ˆ, , sinI R I R d d

φ θ

φ θ

δ θ φ θ θ φ
−

=∫ ∫r rℓ , 

 

Therefore, 

    ( )
m 2

1m

2

ˆ 0
1, cos sinI R I d d

φ θ

φ θ

φ φ θ θ
π

−

= ∫ ∫r ℓ  
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        ( )
2

1

0 m
1 12sin sin cos

2
I

θ

θ

φ θ θ θ
π
= ⋅ ⋅ −  

 

            ( )0 m 2 1 1 1 2 2
1 sin sin cos sin cosI φ θ θ θ θ θ θ
π
= ⋅ − + − . 

 

Substituting from equations (5.1) yields 

 

        ( ) ( ) ( ) ( ) ( )ˆ 0 m
1, sin sin cos sin cos

2 2 2 2
I R I π π π πφ α β α α β β

π
 = ⋅ + + − − − + +  r ℓ . 

 

      ( )0 m
1 sin cos sin cos sinI φ α β α α β β
π
= ⋅ + + +     (5.2) 

 

by trigonometric reduction. 

  

The variables α and β are more meaningfully expressed in terms of L, ℓ, R, and r0. From 

the relevant triangles in Figure 5-6, 

 

0

2tan ,

L

R r
α

+
=
−

ℓ

 

and            

0

2tan

L

R r
β

−
=
−

ℓ

. 

 

Hence 
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and     

1

0

1

0

2tan ,

2tan                                               

L

R r

L

R r

α

β

−

−

+
=

− 




− 
= − 

ℓ

ℓ

 (5.3) 

. 

The functions sin α, cos α, sin β, and cos β must also be expressed in terms of the 

variable mentioned above. 

 

Let ( )1sin tany x−= . See Figure 5-9 below. 

 

 

 

 

 

 

 

 

  

Figure 5-9 

   A sketch showing trigonometric ratios for y = sin(tan-1 x). 

 

 

Then     1

2
tan(tan )

1

y
x x

y

− = =
−

 

 

i.e.     ( )2 2 21x y y− =  

 

( )2 2 21y x x⇒ + =  

 

1 

21 y−  

1tan x−
 

y 
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2 1

xy
x

⇒ =
+

. 

 

Therefore,  

   1 0

2
0

0

2

2sin sin tan

2 1

L

L
R r

R r
L

R r

β −

−
− −

= =
−

 −
  +
 − 
 

ℓ

ℓ

ℓ

 

 

i.e.     

( ) ( )
2

2

0

2sin

2

L

L R r

β
−

=

− + −

ℓ

ℓ

.   (5.4) 

 

Dimensionless units are preferred in computation. Let
0

R
r

ρ = , 
0

s
r
= ℓ  and 2

0

L

s
r

′ = . 

 

Then   

   

( ) ( )2 2
sin

1

s s

s s
β

ρ

′ −=
′ − + −

.     (5.5) 

 

Similarly,  

 

( ) ( )2 2
sin .

1

s s

s s
α

ρ

′ +=
′ + + −

     (5.6) 

 

 

Now let ( )1cos tany x−= . Then 
2

1 1
tan(tan )

y
x x

y
− −
= =  in a similar manner, yielding 
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2

1

1
y

x
=

+
. 

 

 

Therefore,    

 

1

2
0

0

12cos cos tan

2 1

L

R r
L

R r

β −
−

= =
−

 −
  +
 − 
 

ℓ

ℓ

 

 

( ) ( )

0

2
2

02

R r

L R r

−
=
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or,   
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ρ
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     (5.7) 

 

and     

cosα
( ) ( )2 2

1

1s s

ρ

ρ

−
=

′ + + −
.     (5.8) 

 

Also,      

1 10
m

1sin sin
r

R
φ

ρ
− −= = .    (5.9) 

  

Substituting equations (5.3) up to (5.9) into equation (5.2) and simplifying, 
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In the defined dimensionless units,  

 

( ) ( ) ( )
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s s s ss s s sI s I
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r
(5.10) 

 

This is the solution, in the radial direction, to the integral representing the light intensity 

surrounding the fluorescent tube-lamp. 

 

 

5.2.4 Graphical Results 

 

A program was written in the IDL language specifically for the purpose of plotting the 

light intensity surrounding the lamp, using equation (5.10). See Figure 5-10 below. Each 

successive isoline is selected to be one half of the flux density of the preceding line. 

Since an empirical formula for the isoline has not been obtained, the computer program 

was required to compute the position of a set intensity level. This was achieved by 

sweeping over a two-dimensional grid surrounding the lamp. 



 

 

42  

 

 

 Figure 5-10 

A spatial contour-plot of lines of equal light intensity in the radial direction for the fluorescent 

tube-lamp. Each consecutive isoline represents half of the flux density of the previous line with 

recession from the lamp. The mathematical model used here has a lamp length that is ten times 

larger than the lamp diameter. Note that the shaded area represents the lamp, while the areas to the 

left and to the right of the lamp are the shadowed regions. 

 

  

An alternative plot was also generated using a colour-table in order to assist in 

visualization of the solution. The equation (5.10) was applied to calculate the light 

intensity over a rectangular grid using a program written by the author in the IDL 

language. The colour-scale was selected for enhanced visualization of the field. Figure 5-

11 shows the result. The colour of each pixel represents the magnitude of the light 

intensity at that point in space. 
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 Figure 5-11 

A spatial light intensity plot for the fluorescent tube-lamp. The colours are mapped to the values of the light 

intensity according to the colour-bar shown. 

 

 

 

5.2.5 Equation Analysis 

 

The location of observation point P can be varied over a plane that includes the lamp 

axis, and light intensity can then be determined as a function of position. The quantity ℓ 

(the z-component of the vector r
�

 of the observation point P) will be replaced by z from 

here on since it becomes a variable of the analysis, and is not a fixed value. 

 

The required dimensionless variables are listed here for the sake of clarity. 
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s:  the z-coordinate of P. 

s′:  the z-coordinate of the right end of the lamp. Thus the lamp length is 2s′. 

ρ:  the radius of the chamber. 

 

A point halfway between the ends of the lamp will be investigated, since a lamp is 

usually installed directly over the subject of illumination. With s = 0, equation (5.10) 

becomes 

 

( ) ( ) ( )
( ) ( )

( )( )
( ) ( )

1 1

ˆ 0,lamp 2 2 2 20

0

1 11 1 tan tan
1 1 1 1s

s

s s s ss s s sI I
s s s s

ρ ρ
ρ

π ρ ρ ρ ρ ρ
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−
 ′ −′= + 
 − ′ + − 

. 

 

 

It is of interest to analyze the profile close to the lamp surface. Set the observation point P 

close to the lamp but not too close to the ends, such that the distance to the lamp is much 

less than the lamp length i.e. R << L with R ∼ r0 (⇒ ρ  ∼ 1). In order to avoid the end 

effect, assume that the distance to the lamp surface is much less than the distance to the 

lamp end i.e. L/2 – |z| >>R - r0  ( 1and 1s s s sρ ρ′ ′⇒ − − + −≫ ≫ ). 
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0
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I

R
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Note that the light intensity varies with R as 1/R close to the surface of a long cylindrical 

lamp.  

 

On the other hand, if the observation point P is far from the lamp surface, such that R >> 

L (⇒ ρ  >> s′), the analysis must be separated into two regions for the radial component, 

as follows. Refer to Figure 5-12 below. 

 

1) Region 1 between the ends of the lamp with -L/2 < z < L/2 (⇒ – s′ < s < s′). 

2) Region 2 beyond the ends of the lamp with |z| > L/2 (⇒ |s| > s′) 
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 Figure 5-12 

   Regions in space defined for analysis of light intensity surrounding the tube-lamp 

 

 

Region 1:  –s′ < s < s′ 
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2

0
0 2

4 r
I s

Rπ
′=  

 

The result is at least valid for a point P between the ends of, but not close to, the lamp.  

 

 

Region 2:   |s| > s′ 

 

The previous result is actually also valid if P is not too far beyond the ends of the lamp. 

The condition 1
1

s s

ρ
′ +
−
≪  must be upheld. If s s′ +  is not small, the tan

-1
 function will 

come into play and complicate the analysis. In any case, the extreme lateral regions are of 

little concern with typical usage of a cylindrical fluorescent lamp. 

 

Boundary conditions should also be checked: On the surface of the lamp i.e. if R = r0, 

intensity is expected to be constant. However, beyond the length of the lamp there is 

obviously no lamp surface. There must then be a discontinuity at z = ± L/2. 

An examination of the solution reveals that the equation is undefined at the point R = r0 

and z = ± L/2. 

 

On the lamp surface, where R = r0 and
2
Lz ≠  i.e. with ρ = 1 and–s′ < s < s′  , the radial 

component is 
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Thus it is shown that the solution yields the correct boundary conditions. 

 

The lamp equation (equation (5.10) will now be reduced to that of a line-source in order 

to check validity in the limit, as the lamp radius tends to zero. 

 

 The line-source intensity has units of flux-per-unit-length rather than flux-per-unit-area; 

i.e. 0 0.I I r=
ℓ

. The surface area of the lamp is zero, so that the line lamp has an infinite 

“surface” intensity. But r0 simultaneously has a value of zero, so that I0.r0 is undefined. In 

the limit as is 0 0r → , I0.r0 becomes the line intensity Iℓ. As the lamp radius tends to zero, 

the radial component becomes 

 

        
0

ˆ ˆ,line
0

Lim
r

I I
→

=r r
 

  

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )0

0 0
1 10

0 2 2
0 2 20 0

0 0

2 21 2 2Lim tan tan

2 2

r

L LL L z R r z R rz zr
I

R R r R r L Lz R r z R r
π

− −

→

  − − + −− +  = + + +  − − − + − + + − 

 

 

i.e. 

( )
( )

( )
( )

1 1

ˆ ,line 2 2
2 2

2 21 1 2 2tan tan

2 2

L LL L z R z Rz z
I I

R R R L Lz R z R
π

− −

 − +− + 
= + + + 

 − + + +
 

r ℓ
 (5.11) 

 

 

The light intensity of an infinitely long line source is expected to decrease with R as 1/R 

since it is only a one-dimensional system. This should follow from equations (5.11) 

above: After setting z = 0, equation (5.11) becomes 
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As L→ ∞ for a line source,  
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in agreement with expectations. 

 

If the line lamp length is very small compared with the distance of the observation point 

P, i.e. L << R, then the lamp should behave as a point source. Due to the shape of the 

lamp, however, isotropic point source behavior cannot be expected. Thus the analysis 

will be carried out at z = 0. 
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The light intensity of a short line lamp varies with R as 1/R2, far from the source. The line 

source therefore increasingly approximates a point source, as the distance from the source 

increases. 
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It has been shown that the light intensity surrounding a cylindrical fluorescent lamp can 

be quantified using reasonable approximations. The result, equation (5.2), will be used in 

the next chapter to obtain the flux on the chamber wall due to a cylindrical lamp.
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     6. Analysis of the Cylindrical Integrating Chamber 

 

 

6.1 Introduction 

 

Projecting the chamber cylinder internal wall onto an internal sphere, as was done in 

Chapter 5 for a lamp, yields a complicated equation, due to the shape of the projection 

boundary. The infinitely long virtual chamber, brought about by the mirrors, comprises 

sections of different orders of f, the mirror reflectance, so that each interval must be 

integrated separately. Each circular interval edge projects an elliptical boundary onto the 

projection sphere, which varies in dimensions with progress through the intervals. 

Analysis of each boundary would therefore be tedious. 

 

Rather, the first method discussed in Section 5.1 was used; i.e. integration was employed 

over the surface of a chamber interval. The angular part of the integral in this case ranges 

over a full circle, with the result that double integration is greatly simplified. 

 

The end-mirrors were taken into account by multiplying each successive interval by a 

further mirror reflection coefficient f. If many intervals were necessary in the calculation 

i.e. if the interval was small, a computer program was used to calculate the final result, 

using repetition.  The results were then applied to an equation that determines the total 

lamp flux. 

 

 

The Monte Carlo method 

Another way to find a solution is to use the Monte Carlo method. In this method the 

chamber is divided into a grid of equal (small) areas (or cells) and a photon from a 

random point on the lamp is projected in a random direction with a Lambertian (angular) 

weight. When the photon strikes a surface it is reflected with a probability equal to the 

reflectance f. For the sake of simplifying the Monte Carlo model, the energy of the 
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photon can be ‘reduced’ by multiplying by the reflectance coefficient f, and be re-

projected in a random direction again with the Lambertian weighting. After many 

reflections, an event can be set at which the photon energy has ‘expired’. Each grid-cell 

accumulates the absorbed probability from photons striking it. After many photon 

emissions from the lamp, a plot of the grid-cell contents will reveal the light profile. The 

method is not machine-efficient, but accuracy is proportional to computation time. 

 

 

6.2 Physical Concepts 

 

The light intensity incident at a point on the chamber wall is the sum of contributions of 

light from all other points of the wall, as well as from the near side of the lamp. The 

contribution from the mirrors will be regarded as an extension of the chamber, as well as 

of the cylindrical lamp. 

 

The high paint reflectance (f p = 0.97) causes the majority of photons to “bounce back” 

into the chamber, thereby resulting in multiple reflections, which significantly boost the 

measured light intensity at the surface. This is a favorable effect for measurement since 

then the light level is well above the lower sensitivity threshold of the light-meter.  

 

Theoretically, a chamber with 100% reflective paint and mirrors will produce an ever 

increasing intensity on any surface within the chamber, with time, as the energy 

generated by the lamp, collects within the chamber. In reality this situation would not 

occur because of energy losses, due to heat dissipation. In fact, the heat dissipated by the 

chamber walls must be exactly equal to the power of the lamp. In Appendix B, the power 

density of the chamber wall is calculated for a standard lamp, in order to gain a 

knowledge of the heat requirements of the paint. 

 

The lamp and chamber may be considered as being made up of a real and a virtual part 

with the aid of mirrors. The virtual part consists of intervals to infinity, identical except 

for a progressively increasing attenuation coefficient, as reflection order increases. See 
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Image of 

image A 

Lamp Image A Image B 

Mirrors 

Image of 

image B 

Figure 6-1 and Figure 6-2. Each successive image is a result of a further reflection of the 

image in the previous interval, so that the attenuation coefficient must be multiplied by a 

further reflection coefficient f. 

 

 

 

 

 

 

 

 

 

 

          Figure 6-1 

 An example of the lamp image distribution of virtual sections of the chamber. 
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     Figure 6-2 

 The real region of the chamber and the first few virtual intervals. 

 

 

 

As an example, for a Perspex mirror, at the 50
th

 interval, light which has been reflected 

50 times will be attenuated by a factor of  (fm)
50

 = (0.83)
50

 = 9 × 10
-5

. 

 

An equation for light intensity at a point P on the real chamber surface, due to reflection 

from a section of the chamber, was first deduced mathematically, and the result applied to 

a pseudo-infinite chamber i.e. one with mirrors of reflectance f < 1 (various physical 

assumptions were necessary at this point). Multiple reflections were then taken into 

account. 
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6.2.1 Assumptions 

 

1) The intensity is uniform over the entire chamber surface. When multiple 

reflections due to end-mirrors are taken into account, there will be a slight 

degradation of intensity from the centre to the chamber end. At the centre of the 

chamber, light comes predominantly from the real chamber, while near an end-

mirror the proportion of the light arriving on the sensor from one side is reduced 

in intensity by a factor of the mirror reflectance compared with the other side. 

 

If the real chamber is very long it will approximate an infinitely long chamber and 

the influence of the mirrors on the light profile will be minimal. If the chamber is 

short the virtual intervals will be close together and the average angular position 

of the real chamber about an axis through the sensor does not vary significantly if 

the sensor is moved from the chamber centre toward an end-mirror.  

 

It is the mid-range lengths (of the order of the diameter of the chamber, ∼ 0.6 m 

for the chamber constructed for this project) that bring about the largest 

deviations. However, when multiple reflections are included, it would seem that 

after each reflection the deviation becomes worse. But the Lambertian nature of 

the real chamber has not been considered. A high degree of scattering in the real 

chamber drastically reduces the deviation. Therefore proportional representation 

of each side of the chamber may be taken as equal irrespective of sensor 

placement. 

 

2)  The reflective paint is applied uniformly. For this model paint was applied with 

a brush, with little guarantee of consistency of thickness or uniformity. However, 

it is expected that the large degree of scattering will reduce its significance. 

Measurements were interpreted with the assumption that the paint layer is 

perfectly uniform. 
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3)  The reflective paint is Lambertian. Wet paint can form elevated blobs, can 

attract dust while drying, and can be applied without having been mixed 

adequately. Consequently Lambertian characteristics may become localized or 

deficient. This mathematical model assumes that the paint layer is perfectly 

Lambertian over the entire surface. 

 

4)  The reflective paint has a flat/uniform spectral absorption curve.  Even high-

quality paints exhibit a curved spectral response, thereby creating a band-pass 

filter [15Error! Reference source not found.]. Multiple reflections result in 

increased selectivity, to the extent that most of the light energy within the 

chamber is centered about a specific wavelength. The sensor measurement can 

therefore be quite erroneous. 

 

5)  The spectral curve of the sensor is similar to the emission profile of the lamp. 

A fluorescent lamp radiates energy quite non-uniformly across the visible 

spectrum, and the sensor device is therefore required to represent each 

wavelength equally, in order for the light meter to produce an accurate power 

measurement. 

 

6)  Both end-mirrors have the same effective reflectance. See section 4.2.2 where 

the apparatus is discussed. The reflectance of a commonly available glass mirror 

will generally not be identical with that of an equivalent Perspex mirror. It would 

have been awkward to incorporate two reflection coefficients into the 

measurement equation. Therefore the average between the two is accepted.  

 

 

6.2.2 Reflectance of the chamber surfaces 

 

It is established that paint reflectance should be as high as possible. The paint used was 

white Plascon Road-marking Paint, a durable and stable product with reflectance 

specified at f = 0.97.  
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Equally important is the diffusivity of the paint, determined by measuring the Lambertian 

profile. A flat surface was painted and measured using a spectrometer. Details of the 

experiment are given in Appendix D. The paint was significantly Lambertian up to 

approximately 60° from the surface norm.  

 

Mirror reflectance was also measured. The experiment is documented in Appendix A. 

The values obtained were: 

 

Glass mirror: f = 0.86, 

Perspex mirror: f = 0.83. 

 

The average value of the two coefficients (f = 0.845) was used in calculations. 

 

 

6.3 The Chamber Cylinder Integral 

 

In this section, an integral for a section of the chamber cylinder will be obtained. 

 

 

6.3.1 Cylindrical Geometry 

 

The task of analyzing the geometry of a point P in relation to the chamber cylinder walls, 

is greatly simplified if P is first set outside the cylinder rather than on it. Thereafter, point 

P can be translated to the surface by setting the distance from the cylinder axis equal to 

the cylinder radius. Note that the situation is identical with that of a cylindrical lamp, 

prior to translation of point P to the cylinder surface. The integrand is therefore also 

identical, but in the case of the chamber, integration is taken over a full circle of 2π 

radians, thereby facilitating direct evaluation at the integral boundaries. 
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Cylindrical coordinates are an obvious choice. For convenience, the z-coordinate of point 

P will be located at z = 0. The parameters defined below are shown in Figure 6-3.  

 

R:  shortest distance of any point P from the cylinder axis, 

r0:  cylinder radius, 

L:  cylinder interval length. 

 

 

 

 Figure 6-3 

The parameters of the cylinder and observation point P. The cylinder has a radius r0.  

Point P is located at coordinates r = R,  z = 0. The relevant cylinder interval, of length 

  L, begins at z = z1 and ends at z = z2. 

 

 

The flux arriving at a point P in space from an elemental area da at a point Q on an 

isolated cylindrical emitting surface may be obtained as follows: 

 

Each infinitesimal surface element located at a point Q on the cylindrical surface is 

assumed to have dimension dz and ds in the longitudinal and azimuthal directions 

respectively, (as shown in Figure 6-4 below), and can be treated as a point-source, which 

varies in intensity according to the Lambertian character of a diffuse surface; i.e. as cosϕ 
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where ϕ is the angle of observation with the surface norm (I⊥, the intensity in a direction 

perpendicular to the surface of such a source, is merely a factor 1/π of the surface 

intensity I0 of the source. A proof is given in Appendix C). Refer to Figure 6-4 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6-4 

 An elemental area on the light-emitting cylinder surface, in relation to a point P in space.  

 

 

The contribution to intensity from the elemental area da at Q, to an elemental area at P is 
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The variable ρ here must not be confused with the dimensionless variable used in the 

previous chapter. Here ρ is the distance between point P and point Q. 
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The ray arriving at point P must be cosine-corrected by a factor of cosγ due to the 

increase of surface area with angle of incidence γ  (see Figure 6-5 below). Equation (6.1) 

becomes 

 

2

cos
cosdI I da

ϕ γ
ρ⊥=     (6.2) 

 

The light intensity at point P will be obtained by mathematical integration over the 

surface area of the cylinder. For the purposes of the calculation, it does not matter 

whether the intensity of a point on the cylinder is defined in W.sr-1, W.m-2 or lm.m-2. The 

solution will differ only by a constant factor. Dimensionally, the method used here, of 

integrating infinitesimal intensities, will result in the units being the same as the units 

used to describer the lamp surface. The cylinder surface intensity 0I  (and hence I⊥) is 

described in units of W.m
-2

. Thus equation (6.2) becomes 

 

P 2

cos cos

Surface

I I da
ϕ γ
ρ⊥= ∫     W.m

-2
. 

 

 Parameter I⊥ has been removed from the integrand since the cylinder surface is assumed 

to have uniform intensity. Note that the summation of Lambertian ray intensities 

distributed over a hemisphere centered at a point on the surface, yields the surface 

intensity 0I  at that point. 

 

If the point P in Figure 6-4 is fixed, the variables ( )ϕ ϕ= ρ
�

 and ρ = ρ
�

are functions of s 

and z, the orthogonal coordinates of point Q on the cylinder; i.e. ( , )s zϕ ϕ=  and 

( ),s zρ ρ= . Thus ( ) ( )ˆ ˆ, , ,Q QI I s zϕ =r r . The elemental area on a cylinder is 

simply 0da dsdz r d dzθ= = using cylindrical coordinates. Therefore the light intensity at 

point P is 
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ˆ 02

cos cos

Surface

I I r d dz
ϕ γ θ
ρ⊥= ∫r .   (6.3) 

 

 

The cosine probability distribution for an area da with intensity I0 requires a 

normalization constant 
1

A
π

=  such that
0

1
I I

π⊥ = .  

 

 

Equation (6.3) becomes  

 

ˆ 0 0 2

cos cos1

Surface

I I r d dz
ϕ γ θ

π ρ
= ∫r

   (6.4) 

 

 Surface intensity I0 as well as r0 are defined as constants and have been moved outside 

the integral.  

 

 The geometry of the problem will now be layed out so that the integral can be expressed 

in terms of cylindrical coordinates.  Refer to Figure 6-5. 

 

It is important to note that for the sake of simplicity, the origin has been moved along the 

z-axis to a point directly below point Q, rather than point P. This alternative approach 

suffices until the integrand is obtained in terms of cylindrical coordinate variables.  

 

Let the point P lie in a plane orthogonal to the cylinder axis. Call the plane M. Let M be 

the point of intersection of the cylinder axis with this plane. Now let ρ
�

 be the vector from  

any point Q on the cylinder to observation point P, with magnitude ρ. The shortest 

distance from Q to plane M is determined in the z-direction and will be labelled as z. Let 

Q lie in a plane & which is orthogonal to the cylinder axis, intersecting it at N. Clearly the 

distance between the planes is z. Call the vector from P to the point on the axis cut by 

plane N, v
�

. There is a point A in the circle of intersection of plane & with the cylinder 



 

 

62 

surface such that QA is parallel with the axis MN. Obviously QA = z since it is the 

distance between the planes M and &. Call the distance PA, d. Then triangle PAQ is 

right-angled, as is PMN. 

 

 

   

 

 Figure 6-5 

 The geometry relating an observation point P to a point Q on a cylinder surface. 

 

 

The required vectors are calculated below in terms of cylindrical coordinate variables z, 

and θ, and parameters r0, and R. 

 

( )0 0cos , sin ,0r rθ θ=u
�

 

 

0r=u
�

 

 

( ),0,R z=v
�

 

 

( ),0,0R=r
�
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      = −ρ v u
� � �

 

 

             ( )0 0cos , sin ,R r r zθ θ= − −  

 

            ( )2 2 2 2

0 0cos sinR r r zθ θ= − + +ρ
�

 

 

               2 2 2 2 2 2

0 0cos 2 cos sinR Rr r R zθ θ θ= − + + +                                    

     

                    2 2 2

0 02 cosR Rr r zθ= − + + . 

 

The projections cosϕ  and cosγ can now be calculated: 

 

            cosϕ
⋅

=
u ρ

u ρ

��

��  

 

                  
( ) ( )0 0 0 0

0

cos , sin ,0 cos , sin ,r r R r r z

r

θ θ θ θ
ρ

⋅ − −
=  

 

                  
( ) 2 2

0 0 0

0

cos cos sin 0.r R r r z

r

θ θ θ
ρ

− − +
=  

 

                 
( ) ( )2 2 2

0 0 0

0

cos cos sin cosRr R r r

r

θ θ θ θ

ρ

− − +
=  

  

                 0cosR rθ
ρ
−

= . 

 

            cosγ ⋅
=

⋅
r

r

� �

� �

ρρρρ
ρρρρ
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( ) ( )0 0,0,0 cos , sin ,R R r r z

R

θ θ
ρ

⋅ − −
=  

 

                  
2

0 cosR Rr

R

θ
ρ

−
=  

 

                  0 cosR r θ
ρ

−
= . 

            

The chamber intervals must each be integrated separately, between their respective 

boundaries z = z1 and z = z2. Note that from here on the origin of the coordinate system is 

moved along the z-axis below point P, as in Figure 6-3. Equation (6.4) becomes 

 

     
( )( )
( )

2

1

2

0 0

ˆ 0 0 2
2 2 2

0 0
0

cos cos1

2 cos

z

z

R r R r
I I r d dz

z R r Rr

π
θ θ

δ θ
π θ

− −
=

+ + −∫∫r
  

 

 Dimensionless units are preferred:  Let 
0

R

r
ρ =  and 

0

z

r
σ = . Then at a point P outside 

a diffuse emitting cylindrical Lambertian surface, the light intensity due to a chamber 

interval is 

 

( )( )
( )

2

1

2

0 2
2 2

0

cos cos 11

1 2 cos
I I d d

σ π

σ

ρ θ ρ θ
δ θ σ

π σ ρ ρ θ

− −
=

+ + −∫∫ .  (6.5) 
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6.3.2 Mathematical Solutions 

 

The integral equation (6.5) above will be solved using the method of contour integration, 

but note that z-substitution can also be used. 

 

In the case of the chamber wall R = r0 i.e. ρ  = 1 and since the inside of the chamber is 

integrated, there is a sign reversal: 

 

   
( )

( )

2

1

2 2

0 2
2

0

1 cos1

2 2cos
I I d d

σ π

σ

θ
δ θ σ

π σ θ

−
=

+ −∫∫  

       

It is necessary to first perform the angular part of the integration, since the integrand 

becomes independent of θ as σ → 0 whereas if the integration is performed first with 

respect to σ, intensity is defined to be zero at θ  = 0. The result depends on whether it is 

the denominator or the numerator that tends toward zero faster, as the elemental area to 

be integrated approaches P. It amounts to saying that the intensity from a point 

infinitesimally close to P is zero no matter how much closer the point moves. The 

Lambertian behavior must dominate the 1/R
2
 behavior for infinitesimal distances.  

 

The angular part of the integral must be evaluated between 0 and 2π, using contour 

integration. But the denominator must first be written in the form ( )2
1 cosp θ− , 1p < . 

Therefore a factor must be removed from the denominator: 

 

( )
( ) ( )

( )
2 2

1 1

2 22 2

0 02 2 2
2 2

0 0
2

1 cos 1 cos1 1 1

22 2cos 2
1 cos

2

I d d I d d

σ σπ π

σ σ

θ θ
θ σ θ σ

π πσ θ σ θ
σ

− −
=

 + − + − + 

∫∫ ∫ ∫ . 

 

Let      
2

2

2
p

σ
=

+
.      (6.6) 
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Then 

 

( )
( )

2

1

2 22

0 2

0

1 cos1

4 1 cos

p
I I d d

p

σ π

σ

θ
δ θ σ

π θ

−
=

−∫ ∫ .     

 

The angular part must now be integrated. Consider integration around a circle of unit 

radius. Let cos sinie z iθ θ θ= = + . Then idz ie d izdθ θ θ= = . Further,  

1d dz
iz

θ = , cos sinie iθ θ θ− = − and 12cos i ie e z
z

θ θθ −= + = +  
2 1cos
2

z
z

θ +⇒ = .  

 

Thus the integral with respect to θ becomes 

 

( )
( )

( )
( )

222 2
2

2 22

0 0

11
1 cos 21 1

1 cos 11
2

z
z

F d dz
i zp zp

z

π π

θ

θ
θ

θ

+−−
= =

− +−∫ ∫ .   (6.7) 

  

The contribution from an interval from 1σ  to 2σ  along the lamp is 

 

           ( )
2

1

F F d

σ

σ θ

σ

δ σ σ=∫  

 

 such that the contribution to flux density is 

 

0
1 .I I Fδ δ
π

= . 

 

After an extensive amount of deduction the following result was obtained for the incident 

flux at a point on the cylinder wall due to a cylindrical section of the chamber. See 

Appendix F for details. Equation (F9) is repeated below: 
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( ) ( )
3

n 0
2 2 2 2 2 2 2 2 2 2 2 2

n n n n n 1 n 1 n 1 n 1

1 12
4 2 4 4 2 4

I I R
z R z R z z R z R z R z z R

δ
+ + + +

 
 = − + + + + + + + + 
 

 

 

Here zn-1 and zn are the limits of the nth chamber interval of length 2d over which 

integration is applied. The first interval is that of the real chamber while each successive 

interval is multiplied by a further mirror reflectance f in order to sum the accumulation of 

flux at P due to the chamber and mirrors.  

 

         2 3P real 2 2 2 ...f f f
I I I I Iδ δ δ δ= + + + +  

 

2 3

real 1 2 32 2 2 ...I f I f I f Iδ δ δ δ= + + + +  

 

 n

P real n

n 1

2I I f Iδ δ
∞

=

= + ∑ ,     (6.8)  

 

where    

( )real 0
2 2 2

1 1 1 1

41
4 2 4

I Iδ
ρ ρ ρ ρ

 
 = − 

+ + + + 
 

 

 

and  

( ) ( )n 0
2 2 2 2 2 2

n n n n n 1 n 1 n 1 n 1

1 12
4 2 4 4 2 4

I Iδ
ρ ρ ρ ρ ρ ρ ρ ρ+ + + +

 
 = − 

+ + + + + + + + 
 

  

 

Substitute n 1 n 2dρ ρ+ = + ; 

 

( ) ( ) ( ) ( ) ( )( )n 0
2 2 22 2 2

n n n n n n n n

1 12
4 2 4 2 4 2 2 2 2 4

I I

d d d d

δ
ρ ρ ρ ρ ρ ρ ρ ρ

 
 

= − 
+ + + + + + + + + + + +

 
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Now since ( )n 2 1n dρ = + , 

 

( ) ( ) ( ) ( )( )n 0
2 2 22 2 2

12

2 1 4 2 1 2 2 1 2 1 4

I I

n d n d n d n d

δ




= 
 + + + + + + + +


  

( ) ( ) ( ) ( )( )2 2 22 2 2

1         

2 3 4 2 3 2 2 3 2 3 4n d n d n d n d




− 
+ + + + + + + +


,   

 

( )real 0
2 2 2

41
4 2 4

I I
d d d d

δ
 
 = − 

+ + + + 
 

     (6.9) 

 

These equations were used in conjunction with equation (6.8) to plot graphs of the total 

contribution of the chamber to point P versus chamber interval length for various values 

of mirror reflectance. The software package Microsoft Excel was used to sum the 

contributions up to a point where they were insignificant for subsequent n. 
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 Figure 6-6 

A plot of equation (6.8), showing the relative flux arriving at the middle of the chamber. The 

arriving flux is plotted for several selections of mirror reflectance f, relative to the level with f = 1, 

as a function of real-chamber length. 

 

 

The graph in Figure 6-6 offers some insight into the shape of the function that can be 

expected from the measurement equation, but equation (6.8) cannot quantify the intensity 

since it does not take multiple reflections from the cylinder walls into account. 

 

 

 

6.3.3 Equation Analysis 

 

The equation produced above will now be analyzed primarily to confirm authenticity near 

the extremes i.e. for a very long and a very short cylinder.  
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If the chamber is infinitely long, both sides must be included and since the integrand is an 

even function, 

 

( ) ( )
3

0
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 12.2
4 2 4 4 2 4

I I R
z R z R z z R z R z R z z R

 
 = − 

+ + + + + + + + 
 

 

 

With 1 20,z z= →∞ , 

 

         

( )
3

0
2 2 2

14 0
0 4 0 2 0 0 4

I I R
R R R

∞

 
 = − 

+ + + + 
 

 

 

( )
3

0 2

0

14
2 2

I R
R R

I

=

=

 

 

This result is identical with that of an infinitely large plane. The infinitely long diffuse 

cylinder is thus equivalent to an infinite plane when considering radiance arriving at any 

point on the inside surface of such a cylinder. 

 

Now, for a very short chamber i.e. from σ  = 0 to σ  = ε, where Rε <<  

 

  

( )
3

0 3
2 2 2 2 2 2

1 14
4 4 2 4

I I R
R R R Rε ε ε ε

 
 = − 

+ + + + 
 
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( )

3

0 3 2

1 14
4 2 2 2

I R
R R R Rε

 
 ≈ −
 + 

   

 

with only the first order in ε retained. 

 

   
( )

3

0 3 2

1 14
4 4

I I R
R R R ε

 
= − 

+ 
 

 

      

( )
3

0 3
3

1 14
4 4 1

I R
R R

R
ε

 
 = − 

+ 
 

 

 

         ( )2

0 1 1I
R R
ε ε  

= − − + − ⋅⋅⋅  
  

 

 

by cancellation, and expansion of ( )
1

1
R
ε −

+ . 

 

    ( )2

0I I
R R
ε ε 

= − + ⋅⋅⋅ 
 

 

 

          
0 .I

R
ε≈  

 

(This is an interesting result, which indicates that a ring of light illuminates itself with a 

flux density that is proportional to the inverse, 1/R, of its radius and not 1/R
2
, no matter 

how large the radius). 
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6.4 Multiple Reflections 

 

Up to this point it has been assumed that the intensity of the chamber wall is uniform 

throughout. However, due to the imperfect reflectance of the mirrors, flux will distribute 

non-uniformly. If the mirrors are far apart, the influence of high order multiple reflections 

will be minimal. However, when the mirrors are close together, multiple reflections will 

exacerbate non-uniformity.  Therefore each phase or ‘order’ of reflection will set up a 

different intensity profile along the chamber, each profile contributing differently to the 

flux at a point. Certain assumptions will have to be made to simplify the deductions. 

 

A light packet of intensity I0 is traced from the near side of the lamp. After each reflection 

the density is reduced by a reflection factor fp of the chamber wall paint.  The resulting 

incident intensity Ii on the wall is due to the sum of multiple reflections of the light 

packet. For a chamber that is infinitely long, the trajectory of such a packet will not have 

an angular probability distribution (due to symmetry there cannot be any energy flow 

along the direction of the chamber axis), and all packets may be considered as reflecting 

off the surface in a perpendicular direction with no attenuation other than that due to the 

reflectance fp of the surface; i.e. the statistics associated with the Lambertian profile do 

not enter into the calculation. 

 

          ( ) ( )( )2 2 2 2 2 2

i 0 p 0 p p 0 p p p 0I I f I f f I f f f I= + + + + ⋅⋅⋅  

 

         2 4 6

0 p 0 p 0 p 0I f I f I f I= + + + + ⋅⋅⋅  

 

        ( )2 4 6

0 p p p1I f f f= + + + + ⋅⋅⋅  

 

2

0

0

n

p

n

I f
∞

=

= ∑ . 

 

The sum is a G. S. with common ratio fp
2
. It can immediately be written that 
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    i 0 2

p

1

1
I I

f
=

−
      (6.10) 

 

There is another interesting way to prove this result. Furthermore it paves the way for a 

more realistic analysis, for example, if the lamp intensity is not uniform over its length. 

The method involves discrete mathematics. 

 

Consider the light arriving at the chamber wall at event t = t2. It is the contribution from 

the lamp and from the surrounding wall, i.e. 

     

    ( ) ( )2 2 Lwx t x t I= + . 

 

The contribution from the wall is  

 

    ( ) ( )2

2 1wx t f x t= ⋅  

 

where t1 is the previous event.  

 

Thus 

 

    ( ) ( )2

2 1 Lx t f x t I= ⋅ + . 

 

Subtract x(t1) from both sides; 

 

    ( ) ( ) ( ) ( )2

2 1 1 L1x t x t f x t I− = − ⋅ + . 

 

Substitute 2 1t t t= + ∆  and divide by ∆t; 

 



 

 

74 

   
( ) ( ) ( ) ( )1 1 12 01

x t t x t x t I
f

t t t

+ ∆ −
= − ⋅ +

∆ ∆ ∆
, t →∞  

 

Setting ∆t = 1 and letting t approach infinity is completely analogous to finding the limit 

as ∆t → 0 so long as a solution exists as t →∞ . If the result is stable as t →∞  then it is 

a solution. 

 

 
( ) ( ) ( ) ( )2 0

1
1

1 1 1

x t x t x t I
f

+ −
= − ⋅ +  

 

   
( ) ( )1

1t
t

x t x t dx
Lim

dt→∞
→∞

+ −
=  

 

 

 ( ) ( )2

0
1 ,

dx
f x t I t

dt
= − ⋅ + →∞  

 

A stable solution requires   0
t

dx

dt →∞

= .  

 

Therefore, 

 

  ( ) ( )2

01 0,f x t I t− ⋅ + = →∞  

 

       0

2
.

1
t

I
x

f
→∞⇒ =

−
 

 

 

Note that only the near side of the lamp has been taken into account so far. The final 

intensity at a point on the wall is due to both sides of the lamp. The flux absorbed by the 

near wall is the sum of contributions of the flux absorbed from the front side of the lamp 
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as well as from the rear side of the lamp. Using equation (6.10), the front side of the lamp 

makes a contribution to incident light intensity of 

 

     0
i, L 21

I
I

f
=

−
 

 

The contribution from the remote side of the lamp is merely the lamp intensity reflected 

off the cylinder far wall: 

 

     0
i,w 21

I
I f

f
= ⋅

−
. 

 

The resultant incident light intensity is 

 

                  i i, L i, wI I I= +  

 

     0 0

2 21 1

I I
f

f f
= + ⋅

− −
 

 

( )0

2
1

1

I
f

f
= +

−
 

 

         0
i

1

I
I

f
=

−
.     (6.11) 

 

Refer to Figure 6-7 below, where the light path is summarized. 
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 Figure 6-7 

A summary of reflections and absorption within the cylindrical chamber. 

     

 

The mirror surfaces are specular, while the chamber wall is diffuse. In the case of the 

mirrors, a ray will not scatter upon reflection. A perpendicular ray reflected many times 

over will remain within the confines of the mirrors. If the chamber wall was a perfectly 

reflective specular surface, then the end-mirror will appear to present an infinite plane,  

because of multiple images of the mirror in the chamber wall.  

 

The diffuse chamber wall must, however, be viewed from a different perspective. Refer to 

Figure 6-8. Over the surface of a hemisphere, the mirror “sees” the chamber image in the 

opposite mirror, plus the chamber wall filling up the rest of the hemisphere. The only 

distinction between the chamber surface, and what appears to be an infinite plane mirror, 

is the slightly elevated brightness of the real chamber wall over the virtual chamber wall, 

because of the less-than-perfect mirror reflectance. Therefore the mirror may be assumed 

as infinitely large and the rays as not scattered. Note that it applies whether the chamber 

wall is specular or diffusive.  

0
a L

r
I I

R
= ⋅  

LI  
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I I

f
=

−
 

( ) 0
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= − ⋅  
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 Figure 6- 8 

The equivalence of an end-mirror with reflectance fm = 1, to an infinite diffuse plane. (a) The dual 

end-mirror system. (b) Equivalent infinite chamber. The mirror on the right in (a) presents an 

infinitely long diffuse chamber to the mirror on the left. Such a mirror can therefore be replaced by 

an infinitely long chamber. (c) Equivalent spherical plane. Since brightness does not vary with 

distance or deviation from the norm of a diffuse surface, the infinite chamber can be replaced by a 

sphere, or an infinite plane, or any other closed shape or infinite surface. (d) Equivalent  

infinite plane. 
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For the moment it will be assumed that the mirror reflectance is perfect. Then the virtual 

chamber will not dissipate any energy from the real chamber, and the wall-to-wall and 

mirror-to-mirror reflections can be assumed independent of one another.  

 

The mirrors create a pseudo-infinite cylinder for which the resulting surface intensity of 

reflected light is essentially perpendicular to the cylinder wall everywhere. Although the 

surface is diffuse and hence the rays are scattered, any ray incumbent on the mirror at any 

angle, will be reflected back to the chamber (less a small proportion absorbed by the 

mirror).  

 

Essentially such a statement is not saying anything new. It is simply an alternative way to 

state that the chamber is infinitely long (due to the mirrors). Hence the diffuse chamber 

wall surface may be treated as a specular surface insofar as multiple reflections are 

concerned. Since the mirrors reflect light energy back into the real chamber, Lambertian 

light scattering will be assumed as negligible in the analysis of multiple reflections. 

 

For an infinitely long lamp, light intensity at a distance R from the lamp is 

 

     0
i,L 0

r
I I

R
= .     (6.12) 

 

 

In the case of the real chamber, it is convenient to work with flux rather than intensity. 

Total flux external to the source, is constant (indirectly due to the Law of Conservation of 

Energy) as long as the source is in a steady state of constant radiation power. 

 

In all practical situations the chamber will be in equilibrium. That is, in unit time, the 

total light energy absorbed by the chamber is equal to the light energy radiated from the 

lamp. This fact proves essential for the deduction of the solution without using statistical 

methods.  
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The chamber wall will absorb a proportion of the total flux while the mirrors absorb the 

rest (a small portion may be absorbed back into the lamp, but will be regarded as 

negligible). Let the total radiated flux of the lamp be ΦL. We have 

 

     c,w c,m LΦ +Φ = Φ  

 

where c,wΦ and c,mΦ  are the contributions absorbed by the cylinder wall and mirrors 

respectively. 

 

These fluxes can be considered to be the sum of multiple reflections, perpendicularly 

between opposite sides of the chamber, in the sense that the mirror system is considered 

separately from the cylinder. The absorbed flux is thus 

 

      ( )a i1 fΦ = − Φ  

 

where iΦ  is the flux incident on the surface. Let that portion of the lamp flux that is 

absorbed by the walls be Φa,w  and the remaining flux absorbed by the mirrors be Φa,m . 

The flux absorbed by the nth reflection of the ray is 

 

     ( )a ,w w i ,w1
n n

fΦ = − Φ , 

 

     ( )a ,m m i ,m1
n n

fΦ = − Φ  

 

by the wall and mirror respectively.  

 

As with the intensity, for an infinitely long chamber, 

 

          
1

2 4

i L L Lf fΦ =Φ + Φ + Φ + ⋅⋅⋅  
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L2

1

1 f
= Φ

−
 

 

due to the near side of the lamp. The word “near” here more specifically means only a ray 

that comes directly from the lamp to the point in consideration on the wall, at first 

incidence, rather than reflecting off the far wall first. It does not imply that the flux is 

incident on only half of the chamber. The equation applies to the entire chamber. 

 

 

6.5  The Chamber Measurement Equation 

 

An equation will now be derived which describes the flux distribution along the chamber 

walls due to a cylindrical fluorescent lamp.  

 

Multiple reflections alter the scenario substantially. Total wall flux and mirror flux will 

first be analyzed separately. If it is assumed that the flux arriving at the mirrors is equal in 

density to the flux arriving at the cylinder wall, a ratio of fluxes can be converted to a 

ratio of intensities, so that the intensity falls away from the equation. The mirror flux is 

thus obtained in terms of the wall flux. The equations are then combined by summing the 

total lamp flux distributed throughout the chamber. In this way the total absorbed wall 

flux is obtained in terms of the total lamp flux. The light intensity on the wall follows by 

dividing through by the chamber area and equating the absorbed flux in terms of the 

reflected flux. See the deductions leading up to equation (6.22) below. 

 

The flux on the wall due to the entire lamp is, from equation (6.11),  

 

     i L
1

1 f
Φ = Φ

−
 

 

where a = 1-f  is an absorption coefficient. The equation above is derived by multiplying 

equation (6.11) through by the chamber surface area. Unfortunately there are differing 
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surfaces within the chamber with respectively differing coefficients, namely the wall and 

the mirrors. 

 

For a finite chamber it will therefore be assumed (see the discussion at the beginning of 

this section) that the flux on the wall is from the rest of the wall only, and not from the 

mirrors. Similarly the flux on each end-mirror will be assumed as arriving from the 

alternate end-mirror only, and not from the cylinder wall. Here the subscript c denotes the 

contribution (proportion of total lamp light flux) reflected from the given surface, while i 

denotes the incident flux, and a denotes the absorbed flux, w denotes the wall surface, 

and m denotes the mirror surface. 

  

     

i,w c,w
w

i,m c,m
m

1
1

1                                     
1

f

f

Φ = Φ
− 





Φ = Φ − 

 (6.13) 

    

 

Equations (6.13) have taken multiple reflections into account. Incident flux is due to 

multiple reflection of that proportion of lamp light that reflects off the given surface, be it 

the walls or the mirrors. 

 

Total emitted lamp flux must equal total absorbed flux. Therefore the flux absorbed at the 

surface is just the relevant contribution.  

 

 

Thus 

 

( )

( )

a,w c,w w i,w

a,m c,m m i,m

1

1                                   

f

f

Φ =Φ = − Φ 


Φ = Φ = − Φ 

 (6.14)  
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for the wall and mirrors respectively. The total absorbed flux is just the lamp flux: 

 

  a,w a,m LΦ +Φ = Φ     (6.15) 

 

The incident flux is obtained from shuffling equations (6.14): 

 

     i,w a,w
w

1
1 f

Φ = Φ
−

 

 

     i,m a,m
m

1
1 f

Φ = Φ
−

  

  

 

Take the flux ratio: 

 

     
i,w a,wm

i,m w a,m

1

1

f

f

Φ Φ−
=

Φ − Φ
    (6.16) 

 

Replace the incident fluxes on the left by flux densities, which will later fall away from 

the equation. Then the relationship between absorbed fluxes by the wall and mirrors will 

be obtained. 

 

Flux Intensity Surface area: .I S= × Φ = . Thus 

 

     i,w i,w wI SΦ =  

 

     i,m i,m mI SΦ = . 

 

The cylinder wall area is 

 

w 2S RLπ=  
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while the total mirror area for both mirrors is 

 

           2

m 2S Rπ= . 

 

Take the ratio of fluxes: 

 

              
i,w i,w w

i,m i,m m

I S

I S

Φ
=

Φ
 

 

             
i,w

2
i,m

2

2

I RL
I R

π
π

=  

 

i.e.           
i,w i,w

i,m i,m

I L
I R

Φ
=

Φ
.     (6.17) 

 

It will be assumed that the light incident at the cylinder wall has the same flux density as 

the light incident at the mirror, due to the high degree of light scattering in the chamber; 

 

i.e.     
i,w

i,m

1
I

I
= . 

 

 

Also, let     L
R

Γ = .  

 

Then equation (6.17) becomes 

 

i,w

i,m

Φ
= Γ

Φ
     (6.18) 
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Now equate equations (6.16) and (6.18): 

 

    
i,w a,wm

i,m w a,m

1

1

f

f

Φ Φ−
= Γ =

Φ − Φ
. 

 

Rearrange for the flux absorbed by the mirrors 

 

    m
a,m a,w

w

11
1

f

f

−
Φ = Φ

Γ −
     (6.19) 

 

Substitute equation (6.16) into equation (6.15). Then the flux absorbed by the wall is 

obtained exclusively in terms of reflection coefficients (and other constants). 

 

    m
a,w a,w L

w

11
1

f

f

−
Φ + Φ = Φ

Γ −
 

 

Multiply by the denominator, ( )w1 fΓ − : 

 

    ( ) ( ) ( )w a,w m a,w w L1 1 1f f fΓ − Φ + − Φ = Γ − Φ  

 

Factorize the left side: 

 

    ( ) ( ) ( )w m a,w w L1 1 1f f fΓ − + − Φ = Γ − Φ   . 

 

Finally, 

 

 
( ) ( )

w
a,w L

w m

1

1 1

f

f f

−
Φ = Γ Φ

Γ − + −
.   (6.20) 
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However, it is the reflected flux that is required. Reflected flux and absorbed flux are 

related. The reflected flux is 
1

f

f−
 times the absorbed flux (see Appendix G for a proof). 

 

 i.e.                                    w
r,w a,w

w1

f

f
Φ = Φ

−
     (6.21) 

 

Substitute equation (6.20) into equation (6.21): 

 

    
( ) ( )

w w
r,w L

w w m

1

1 1 1

f f

f f f

−
Φ = Γ Φ

− Γ − + −
 

 

             
( ) ( )

w
L

w m1 1

f

f f
= Γ Φ

Γ − + −
 

 

Divide the flux on each side by the respective area to obtain the flux density 

 

   
( ) ( )

r,w w 0L

0w m
2 21 1

f r

RL r L Rf fπ π
Φ Φ

= Γ
Γ − + −

 

 

        
( ) ( )

w 0
r,w 0

w m1 1

f r
I I

Rf f
= Γ

Γ − + −
 

 

 
( ) ( )

w
r,w 0

w m1 1

f
I I

f fρ
Γ=
Γ − + −

.   (6.22) 

 

 

The measured incident flux density on the wall of an infinitely long chamber must be 

identical with the summation of reflected flux density from the entire cylinder wall, if the 

lamp is excluded from measurement, e.g. with a baffle. The validity of such a statement 

might be questioned on the grounds that the reflected flux must be less than the incident 
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flux by an amount of the absorbed flux. However, the absorbed flux is considered as due 

to the lamp only, so that when only the chamber wall light intensity is measured, the wall 

may be regarded as perfectly reflective i.e. f  = 1. 

 

Of course, the sensor will also measure the actual light coming from the lamp directly: 

 

     m r,w i,LI I I= +      (6.23) 

 

Substitution of equation (6.12) and equation (6.22) into equation (6.23) yields 

 

( ) ( )
w

m 0 0

w m

1
1 1

f
I I I

f fρ ρ
Γ= + ⋅
Γ − + −

  (6.24) 

 

It has been assumed up to now that the intensity on the ‘surface’ of the virtual part of the 

chamber is identical with intensity on the surface of the real part. Although the presence 

of the mirrors has indirectly influenced the calculation of the intensity of light reflected 

from the cylinder surface, the measured light is influenced directly by the mirrors since 

the detector will measure light from both the real part and the virtual part of the chamber. 

 

A non-ideal chamber will not exhibit the same uniform intensity for each and every 

interval due to the order n of reflection, so that the measurement equation must therefore 

be adjusted; i.e. the intensities from the virtual part of the chamber must be modified by 

an order n of the mirror reflectance f.  

 

Before such steps are taken, a plot is produced to show comparison of results so far, with 

measurement. See Figure 6-9 below. A log of the measured results is shown in Table 6.1. 

The light intensity at the middle of the chamber cylinder wall was measured for various 

chamber widths. The chamber width was adjusted by locating the circular internal mirror 

at various specified intervals along the cylinder. 
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The mirror reflectance used in the calculations is fm = 0.845, the average between the 

glass- and Perspex-mirror. See Appendix A where the details of the experiment to 

determine reflectance have been documented. 

      

  Figure 6-9 

 A plot of measurement equation (6.24), which excludes mirror absorption. 
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Table 6.1 

Measured luminous flux density at the centre of the chamber wall. 

Chamber 

Length (m) 
0.1 0.2 0.3 0.5 0.75 1.0 

Flux Density 

(lx) 
2900 4680 6020 8120 9950 11200 

  

 

 Lamp intensity 0I  used for the plot, was computed using the manufacturers specification 

of 2850 lumens for a standard 1.2 metre long 1-inch tube. The surface of the lamp is 

w 02S r Lπ= . Thus if it is assumed that radiation is uniform over the entire surface, with 

 

0 0.0127mr =  

1.2mL =  

2850lm,Φ=  

then 
0

2850lm
29763lux 30,000 lux.

2 0.0127 m 1.2m
I

S π
Φ= = = ≈

⋅ ⋅
 

 

The calculation possesses no more than two-digit accuracy since L is approximated to be 

1.2 m due to cathode fall at the ends of the tube. The effective length will be slightly less. 

 

The graph is not very encouraging at this point. The measurement-equation (6.24) does 

not take into account the fact that the mirror reflection coefficient influences the chamber 

wall intensity directly. Thus the intensity at a point on the wall is not due to flux arriving 

from a uniform infinitely long chamber, as was assumed. Rather, the intensity of the 

virtual chamber wall decreases with distance from the chamber centre.  

 

In reality, what is measured is a proportion F of the intensity of an infinitely long real 

chamber or lamp, due to the reduced intensity of the virtual part of the chamber. The 

proportion F will be approximated by integrating over the real- and virtual-chamber 
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surface to infinity, and then taking the ratio with the integral of an infinitely long real 

chamber. 

 

The mirrors will have the effect of reducing the intensity in the virtual, and hence the real 

chamber. A point at the centre of the chamber will be surrounded by the real chamber 

immediately on both sides while a point at the edge (near a mirror) will experience the 

real chamber on one side only. This point then is expected to have a slightly lower 

intensity. It has already been assumed in the calculations that flux is constant throughout 

the real chamber. Therefore any small variations in intensity along the wall of the real 

chamber will be ignored. 

 

Equation (6.24) must be adjusted by the factor F to take into account the reduction of 

overall measured intensity caused by mirrors with fm < 1. The chamber radius differs 

significantly from the lamp radius, so that a unique factor F is required for each, namely 

Fw and FL, for the chamber wall and lamp respectively. 

 

 These proportionality factors have been calculated for several interval sizes by 

integrating over each interval and summing the contributions of all intervals. Microsoft 

Excel was the software package used to perform the summation of intervals. Equations 

(6.25) below were programmed into a spreadsheet. 

 

 

( )

( ) ( )

[

ˆ 0,wall
2 2 2

m 0
2 2 2 2 2 2

2

m

41
4 2 4

1 12
9 4 9 2 3 9 4 25 4 25 2 5 25 4

I I
d d d d

f I
d d d d d d d d

f

 
 = − 

+ + + + 
 

 
 + − 

+ + + + + + + + 
 

+

r

⋯
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1

ˆ 0 0lamp 2 22 2

2

1 1 1

m 0 02 2 22 2 2

2 1 122 1 4 1tan tan
1 14 1 1

2 1 16 1 2 14 2 22 1 2 1tan tan tan
1 1 14 1 16 1 4 1

d dd dI I I
d d

d d dd d df I I
d d d

ρ ρ
π ρ ρ π ρ ρρ ρ

ρ ρ ρ
π ρ ρ ρ π ρ ρρ ρ ρ

− −

− − −

   − −
= + − +   

   − −+ − + −   

    − − −
 + − + + − +   

   − − −+ − + − + −     

r,

  

[2

mf+ ⋯           (6.25) 

 

Since the integrand is an even function, only one half of the chamber was evaluated and 

the result doubled. The factor 1/π is the normalization constant. 

 

The dependence on interval size was then graphed using equations (6.25) with a value for 

mirror reflectance fm = 0.845, which is the average between the reflectance of the Perspex 

mirror and the glass mirror. The relative flux density at the centre of the chamber can be 

read from the respective graph by selecting the appropriate interval size. See Figure 6-10 

and Figure 6-11 below (a separate graph was produced for the lamp, since the situation of 

the lamp is not identical with that of the chamber, the reason being the difference in ratio 

of radius to length).  

 

The chamber equation (6.24) becomes 

 

     m w r,w L 0
1I F I F I
ρ

= ⋅ + ⋅ ⋅  

 

i.e.  
( ) ( )

w
m w L 0

w m

1
1 1

f
I F F I

f fρ
 

= Γ + Γ − + − 
.   (6.26) 

  



 

 

91 

 

 Figure 6-10 

A plot of the chamber attenuation factor Fw. Note the logarithmic horizontal scale. 
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     Figure 6-11 

 A plot of the lamp attenuation factor FL. 

 

 

It is worth again comparing theory with measurement. See Figure 6-12 below. 
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 Figure 6-12 

A plot of measurement equation (6.26), which includes mirror absorption. Note the improved 

correlation for small chamber lengths of L < 0.1 m. 

 

 

It seems certain that the two curves above approach widely differing asymptotic values as 

the chamber length L increases, indicating some fundamental shortcoming in the analysis 

thus far.  

 

Clearly more light than expected is being absorbed somewhere within the chamber. Some 

possible reasons were investigated: If the mirrors were responsible, then their effect 

should reduce as L is increased. Mirror absorption cannot therefore account for the 

asymptotic discrepancy. 

 

The lamp may be responsible for some re-absorption of light. The curves in Figure 6-12 

above diverge as chamber length increases, suggesting that the theoretical value for 
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Equation (6.26)  

Measurement 
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infinite L is significantly larger than the expected measurement. The lamp would have 

absorbed some of its own light. Lamp re-absorption could not be excluded but it was 

concluded that such a phenomenon would have far less effect than what was observed. 

 

By elimination, it must be concluded that the diffuse paint is absorbing more light than is 

expected, for longer chamber lengths, indicating that the paint reflectance is not as close 

to unity as the value quoted by Plascon.  

 

It is expected that the effective paint reflectance will vary slightly with the chamber 

length, in the following way:  

 

Consider a mirror of high absorption coefficient with a beam of light incident on it at 

some angle θ. As the angle of the incident beam increases, the component normal to the 

mirror surface decreases. This component is the only portion of the incident beam that is 

attenuated by the mirror. As θ approaches 90°, more of the beam is reflected and less is 

absorbed until at 90°, the entire beam passes along the mirror surface parallel to it, and is 

then not reflected or absorbed in any way. The reflection is specular. Such behavior can 

easily be observed when a sheet of glass is held at an angle to the eye. Beyond a certain 

angle, an image of the surroundings may be observed as reflected off the surface.  

 

Now consider a black diffuse surface with f = 0, in the same way. Almost no light is 

reflected at a large angle. The surface still appears black. Even when the ray is almost 

parallel to the surface, virtually all of the ray energy is absorbed. There is no cosine 

dependence. This demonstrates the fact that a diffuse surface does not absorb a portion of 

the perpendicular component only, but of the entire incident ray. Furthermore, the entire 

ray is scattered upon reflection. 

 

In the calculations, the integration has treated the chamber surface as specular, using the 

cos θ function to satisfy the requirements of the measurement sensor. This is still 

acceptable insofar as the beam area on the surface increases with θ as 1/cos θ , and 

therefore the summing at a point is correct. But absorption does not take place on a 
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component only, as is the case with specular reflection, where the component parallel 

with the surface is excluded from absorption. It is the whole ray that is subjected to 

absorption. Therefore the factor cos θ must be excluded. 

 

Of course, the absorption coefficient of the paint is only 0.03, so that the effect might not 

be expected to be large. But the measurement equation is very sensitive to the paint 

reflectance (and hence the absorption coefficient), as shown in Figure 6-13 below.  

  Figure 6-13  

 A plot of equation (6.26) for several values of chamber wall paint reflectance. Note 

 how sensitive the function is to small changes in wall-paint reflectance. 

 

 

A convenient way to adjust the measurement equation, without introducing complicated 

statistics, is to vary the paint reflectance coefficient with the chamber length. Indeed, it is 

the absorbed flux which is greater due to increased relevant incident intensity after 

exclusion of the factor cos θ. For an infinitely long real chamber, it can be shown that the 

incident intensity in this case should be exactly twice the value relevant to a specular 

surface. See Appendix H. With the maximum value of fp set at 0.97 (and absorption 
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coefficient ap  = 0.03), fp can be adjusted down to fp = 0.91 (0.91 = 0.97 - 2 x 0.03). 

Figure 6-14 below shows a plot of the measurement equation with revised fp, while 

Figure 6-15 shows the manually adjusted effective paint reflectance fp used to obtain the 

improved agreement of theory with measurement. 
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  Figure 6-14 

      A plot of the improved measurement equation, with paint reflectance adjusted. 
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Figure 6-15 

A plot of the effective paint reflectance as a function of chamber length.  

 

 

There may be several reasons why the difference between the maximum of 0.97 and the 

minimum of 0.935 is not quite twice the value of the absorption coefficient. Fore-mostly, 

the paint absorption may actually be lower than expected at larger incident angles, due to 

irregularities in the painted surface, or microscopic properties of the paint. The paint is 

not perfectly diffuse, as shown in Figure D-2 of Appendix D. 

 

The Figure 6-15 above was produced by a manual adjustment of the paint reflectance fp. 

It turns out that there is a straightforward way to quantify the adjustment if one small 

approximation is made. 

 

The measurement equation is presented in terms of the reflected flux, since it is what is 

measured by the light-meter. A factor k will be introduced to reduce the reflected flux, 

and then k will be quantified.  

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0 0.2 0.4 0.6 0.8 1 1.2

Real Chamber Length (m)

E
ff

e
c

ti
v

e
 P

a
in

t 
re

fl
e

c
ta

n
c

e
 f

p

 

∆ f = 0.033 

 

 



 

 

98 

 

The reduced reflected flux must be linked with the increased effective incident flux on 

which absorption takes place, due to exclusion of the cosine function. This will be done 

via the absorbed flux. 

 

The larger incident flux involved in Lambertian absorption will be regarded as the new 

flux, while the original cosine-corrected incident flux will be regarded as the old incident 

flux. Clearly 

 

i,new

i,new i,old
i,old

Φ
Φ = Φ

Φ
.  

 

The ratio 
i,new

i,old

Φ
Φ

appears as a correction factor for calculating the new larger effective 

incident flux in terms of the original incident flux, thereby avoiding complicated 

backtracking in the calculations in an attempt to exclude the cosine function. In other 

words, the present cosine model is preserved but effective incident flux is increased, i.e. 

 

i,new i,oldak ′Φ = Φ      (6.27) 

 

There is no way to change the incident flux in the measurement equation directly, since 

there is no incident flux term present. 

 

The constant k′ will be connected with the measurement equation, through the absorbed 

flux since reflected flux can be written in terms of the absorbed flux. The new absorbed 

flux will be 

 

   a,new i,newaΦ = Φ  

 

( ) ( )i,old i,olda aa k ak′ ′= Φ = Φ  
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 Thus k′ can be viewed as a correction factor for the absorption coefficient, if the original 

incident flux is used.  

 

Consider the flux reflected from a surface, from equation (6.21): 

  

r a1

f

f
Φ = Φ

−
      

 

The reflectance can be written in terms of the absorption coefficient a: 

 

  r a
1 a

a
−Φ = Φ  

 

The correction factor will now be introduced through the absorption coefficient. The new 

reflected flux is 

 

r,new a
1 k a

k a
′−Φ = Φ
′

. 

 

 

It will be shown further on that k′ ranges between 1 and 2. Since a = 0.03, k = 0.06 << 1. 

Therefore the change in the numerator is much less than the change due to k in the 

denominator. The maximum change due to k′ in the numerator, is 3%, while the 

maximum change due to k′ in the denominator, is 100%. The change in the numerator 

will be considered as negligible, in order to make the calculation manageable. However, 

it must be considered that the final measurement equation will exhibit a possible 3% 

maximum error for a long chamber. But it will be further shown that this error can be 

“tuned out” by a very small adjustment of the paint reflectance.  
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Thus 

 

r,new a a
1 1a a k
ak a
− −Φ ≈ Φ = Φ
′

 

 

 

where     
1

k
k

=
′
      (6.28) 

 

Here k can be seen as a proportionality coefficient, operating on absorbed flux, to reduce 

reflected flux.  

 

r, new a r, old
1 ak k

a
−Φ ≈ Φ = Φ  

 

The light intensity of the chamber wall becomes 

 

r, new r, oldI kI≈  

 

and thus the measured intensity is 

 

L
m w r,w L

F
I kF I I

ρ
≈ ⋅ + ⋅ . 

 

The reflected flux must be adjusted by the correction factor k. From equation (6.27) it is 

shown to be the ratio between old and new effective incident flux. The old flux is the sum 

of contributions of chamber wall flux from all real- and virtual-chamber intervals, with 

cosine correction included, while the new flux is the sum of contributions with no cosine 

correction. Factor k can be calculated as a function of the chamber length. 
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( ) ( )
( )

wInterval

a

Interval

( ) cos

( )

f S dS
F L

k L
F Lf S dS

γ
= =
∑ ∫
∑ ∫

  

 

Here γ = 90° -θ  is used as the angle of incidence rather than θ, in order to prevent 

confusion with the notation for spherical coordinates. The variable S has been used here 

for area, in order to avoid confusion with the absorption coefficient a. 

 

The function f(S) = f((S(θ)) is calculated from the flux contribution of a ray from any 

point on the chamber wall, using spherical coordinates. However, the dependence on 

azimuthal angle φ cancels out in the ratio, so that it is not necessary to include it in f(S). 

 

It should be noted that since k is a ratio of the sums of integrals, the actual intensity of the 

wall cancels out, so that k depends only on the dimensions of the chamber, and reflection 

coefficients. 

 

The function ( )cosf S dSθ∫ in the numerator is simply equation and after summation over 

intervals, the numerator is just Fw. The function f(S) can easily be shown to be  

 

( ) ( )( )
( )

0

3
2 2 2 2

0 0

cos
,

2 cos

R r
f S f S z

z R r Rr

θ
θ

θ

−
= =

+ + −
 

 

The function f(S), turns out to have square-roots of polynomials in the denominator, and 

was therefore integrated numerically, using the Trapezoid Rule [16].  Figure 6-16 shows 

a portion of the denominator Fa of k. 
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  Figure 6-16  

A plot of the chamber absorption factor Fa. The theoretical asymptotic value is Fa = 2. The value 

of Fa = 1.7 at L = 2, is not asymptotic by any means. 

 

 

In the limit as L →∞ , the theoretical value of the factor k becomes k = 0.5 exactly. It is 

shown in appendix G that k′  has a maximum value of k′ = 2. Since k is just the inverse, 

from equation (6.28), k has a minimum value of k = 0.5. The   approximate value of k = 

0.58 beyond L = 2.5, is by no means asymptotic. The curve levels off to some degree, 

but, beyond the plotted portion for L up to 2.5 m in Figure 6-17, will gradually progress 

toward the asymptotic value of k = 0.5, as L →∞ . As the chamber becomes shorter, the 

factor k approaches unity, the correct theoretical value; i.e. 0L → as 1k → . A plot of the 

function follows. 
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   Figure 6-17 

A plot of the absorption correction factor k, up to L = 2.5m. Note that the dotted line indicating  

the value of k = 0.58, at L = 2.5 m, is not an asymptote. The asymptote lies at k = 0.5. 

 

 

The improved equation has the following form 

 

( ) ( ) ( ) ( )L

m w r,w 0

F L
I L k L F L I I

ρ
= ⋅ + ⋅     

 

( ) ( ) ( ) ( )( ) ( ) ( )w
w L 0

w m

1
1 1

f
k L F L L F L I

L f fρ
 

= Γ + Γ − + − 
  (6.29) 

 

and is plotted below in Figure 6-18. 
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   Figure 6-18 

A plot of the measurement equation (6.29), which includes absorption-correction. The solid line 

corresponds to the measurement equation and the dashed line represents the measured results. 

 

 

An improved fit between the theoretical result and the experimental data may be obtained 

as shown in Figure 6-19 by adjusting the reflectance coefficients of the wall and mirrors. 

See Table 6.2. The adjustment for the mirrors occurs within experimental error of the 

reflectance of the Perspex- and glass-mirror. The paint reflectance adjustment also occurs 

within specification accuracy. 
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Equation (6.29) 



 

 

105 

 

      Table 6.2  

   The reflectance adjustment for the cylinder wall and end-mirrors 

Parameter Measured/specified Adjusted 

fw 0.97 0.969 

fm 0.845 0.842 

 

 

 

 

 

Figure 6-19 

A plot of the improved measurement equation (6.29), with adjusted reflectance. The wall-paint 

reflectance and the mirror reflectance were each adjusted by approximately 0.1%. 
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Equation (6.29) is more useful when written in terms of lamp flux LΦ . From the intensity 

 

      
( ) ( )

( ) ( )
w w L w m

m L

w m

1 11
1 1

kF f F f f
I I

f fρ
Γ + Γ − + −  =

Γ − + −
 

 

   ⇒
( ) ( )

( ) ( )
w m

L m

w w L w m

1 1

1 1

f f
I I

kF f F f f
ρ

Γ − + −
=

Γ + Γ − + −  
, 

 

the lamp flux is 

 

       
( ) ( )

( ) ( )

w m

L L 0 m

w w L w m

1 1
2 2

1 1

L f f
RI r L RL I

L LkF f F f f
R R

π π
− + −

Φ = ⋅ =
 + − + −
 

 

 

   
( ) ( )

( ) ( )
w m

m

w w L w m

1 1
2

1 1

L f R f
RL I

kF Lf F L f R f
π

− + −
=

+ − + −  
. 

 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
w m

L m

w w L w L m

. 1 . 1
2

. . 1 . . 1

L f R f
RL I

L k L F L f F L f F L R f
π

− + −
Φ =

+ − + −  
. (6.30) 

 

Equation (6.30) is the so-called measurement equation (see the self-study manual by 

NIST, Part 1 Preface, page iii. [17]). 

 

 

6.6 Calculations 

 

As an example of using the chamber, a sample calculation follows. The chamber that was 

built for this analysis had a radius of 28.5 cm, and was coated with a white Plascon Road-



 

 

107 

paint with a photometric reflectance of fp = 0.97.  A lamp with a rated intensity of 2850 

lm was mounted inside the chamber. 

 

The chamber length was set up at 1.00 m. An intensity of 11200 lx was measured at the 

centre of the chamber, with the sensor mounted on the wall, facing the lamp. From the 

relevant charts of Figure 6-10 and Figure 6-11, corresponding to a chamber length of 1.00 

m, 

  

FL = 0.994 

Fw = 0.982 

 

Using the above values in equation (6.30) produces a lamp light power of 2386lm  

emitted from a lamp of length 1.0 meter. A 1.2 metre long lamp will emit 2863lm . 

 

The calculated value is slightly higher than the rated value of 2850 lumens, suggesting an 

effective length of L = 1.195m, about 0.5 cm less, due to cathode fall. 

 

The next calculation shows how the lamp efficacy may be obtained from a light intensity 

measurement. 

 

Suppose that a lamp of length 1.2 m, and a power rating of 36 W has a total flux output of 

2850 lumens. Then the lamp efficacy is 

 

    12850lm
79.2 lm.W

36 W
f −= =  

 

The lamp efficacy can be used to calculate electrical efficiency. For a spectrum identical 

with the human eye sensitivity curve 

     

     1 W= 683 lm 
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or     11 lm W
683

= . 

 

 The incandescent lamp has a spectrum shape not very different from the sensitivity curve 

shape of the human eye so that statistically, the incandescent lumen is approximately the 

same. 

 

     inc.
11 lm W

683
=  

 

The lux-meter adjusts the light level by a factor of 0.95 between incandescent and 

fluorescent settings. Thus 

 

   fl.
11 lm W 0.0015 W

0.95 683
= ≈

⋅
 

 

   79.2 lm 79.2 0.0015 W  0.12 W.= ⋅ ≈  

 

That is, only 12 % of the total electrical power is converted to light visible by the human 

eye. The electrical power consumption is rated at 36 W. The efficiency of the lamp is 

therefore about 12 %. This is to be compared with the efficiency of a 40 W incandescent 

light bulb which has a typical efficiency of 2 %. The fluorescent lamp is therefore about 6 

times more efficient than an incandescent light-bulb with a similar electrical power 

rating. 

 

 

6.7 Final Error Considerations 

 

The chamber length of L = 0.1m is a practical size for local measurement. Local accuracy 

improves as the interval width is reduced but the lux-meter sensor must be 

accommodated between the mirrors. Errors will therefore be referred to a chamber with a 

length of 0.1 m. 
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At L = 0.1m the measured value was 2900 ±10 lux. The error of ±10 lux is due to drift 

(with time, of the lamp or sensor). The calculated value is 2897 lux for the chosen value 

of fw = 0.969 and is not very dependent on fw for small L. The average error is 3 lux, less 

than 0.2%, and is well within the drift error quoted above. Any further error analysis 

would require the source of drift to be quantified, prevented or nulled, in combination 

with many more measurements. 
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7. Conclusions and Suggestions 

 

 

7.1 Conclusions 

 

It has been shown that the cylindrical chamber can be successfully quantified, using only 

a handful of physical and mathematical tools. By applying several acceptable 

assumptions and logical mathematical deductions, an absolute value for the light power 

was obtained without resorting to statistical methods. The dynamics of the light profile 

within the chamber have been revealed, and the combination of a diffuse wall along with 

specular end-mirrors provides a chamber that can be characterized for tubular lamps.  

 

Figure 6-19 reveals that the measurement equation (6.30) agrees favorably with 

experimental results. The variation of measured lamp flux with chamber length has been 

modeled successfully, by using realistic physical arguments, pertaining to the geometry 

of a cylindrical diffuse chamber, incorporating specular mirrors at the ends. 

 

This dissertation has successfully described the reflection dynamics within the cylindrical 

chamber, to the end that the chamber can be utilized to obtain the efficiency of a 

cylindrical fluorescent lamp. The Monte Carlo method (see Section 6.1) will almost 

certainly reveal a more accurate measurement factor after some computation. However, if 

the Monte Carlo method had been employed from the start it would not have revealed 

many of the chamber dynamics. 

 

Paint with high reflectance has successfully enhanced the level of measurable light within 

the chamber. The paint diffusivity has significantly scattered light throughout the 

chamber, to the extent that an acceptable degree of integration has taken place. It must be 

noted however, that the results of the experiment are quite sensitive to the paint 

reflectance coefficient, as shown in Figure 6-13. 
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In respect of the above statements, it can be concluded that the cylindrical chamber may 

be applied in the following areas: 

 

• Research and Development testing of new cylindrical lamp designs. 

• Pre-production testing of fluorescent lamps, to determine efficiency, and to 

determine cathode effects near the ends of the lamp. 

• Production testing with a view to quality control. 

• Market testing and comparison of lamp makes and models. 

• Aftermarket testing to develop ageing profiles for lamps, as well as to determine 

the remaining lifetime of an installed lamp. 

 

7.2 Suggestions 

 

Front-coated mirrors would increase accuracy of the mathematical model and hence the 

results. Employing mirrors with high reflectance can reduce the error for intermediate 

values of chamber length. Front-coated mirrors are capable of achieving values of  

f = 0.95.  

 

The Monte Carlo method is not restricted to tubular lamps. Combined with the 

mathematical tractability of the cylindrical chamber, the Monte Carlo method could be 

utilized to obtain a chamber measurement factor for various lamp forms. 

 

With regard to paint reflectance sensitivity, it is important that a paint of high quality be 

used. The paint should have uniform reflectance, high textural consistency, must be 

capable of being applied evenly, preferably spray-able, must be washable and have little 

sensitivity to moisture. 

 

Further investigation into the use of the cylindrical chamber should include tests on a 

variety of lamps, as well as a determination of the extent of dependence on spectral 

selectivity of the paint. 



  � 睹诲 낈睽 睿�睿Ƽ!Ƽ ″ 
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Appendix A 
 

 

 

The experiment undertaken to determine mirror reflectance. 

 

The basic requirement of this experiment is to compare light intensity from a fixed source 

with and without the mirror in the optical path. Mirror reflectance can then be calculated 

over the visible spectrum using these two quantities. Finally an average reflectance can 

be calculated over the effective spectral region. 

 

 Refer to Figure A-1 for the following discussion of the apparatus.  

 

The light source consists of an opalescent sheet in front an incandescent lamp, which is 

shielded within a blackened collimating tube. The combination of the opalescent sheet 

and the two apertures greatly reduces sensitivity of the system to path length. Only a 

small central portion of the opalescent sheet is “visible” to the spectrometer, and since 

brightness does not change with distance for a diffuse radiator, small offsets in path-

length will not affect measurements.  

 

 Two apertures of 5 mm diameter were utilized, with aperture-1 being placed as close as 

possible to the source. 

  

The collimating tube serves several purposes. The opalescent sheet is remote from the 

lamp, thereby preventing bright zones and enhancing uniformity of intensity. Since it is 

made from plastic, it is also prevented from distortion due to heat in the immediate 

vicinity of the incandescent lamp. The tube prevents stray light from the outside from 

striking the opalescent sheet. Furthermore, the tube blocks stray light. 
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 The internal surface of the tube is painted a matte black to reduce internal reflections, 

which can lead to rings of brightness at the opalescent sheet. 

 

Light intensity was measured with the aid of a sweeping spectrometer so that an average 

could be calculated over the visual spectrum. The focusing lens concentrates the light 

from the aperture onto the spectrometer grating via the spectrometer aperture, which was 

set at 200 µm. The spectrometer-lens separation is a crucial dimension in the experiment. 

It is vital that the lens remains precisely in one position throughout the test. 

 

 

 

     Figure A-1 

The experimental setup used for measuring mirror reflectance. Source/mirror separation is 20 cm; 

mirror/aperture-1 separation is 10cm; aperture-1/aperture-2 separation is 20 cm; aperture-2/focus 

lens separation is 5 cm; focus lens/spectrometer separation is 10 cm; total path-length is 65cm. 
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Figure A-2 

The experimental setup used for measuring the intensity of a diffuse source. Source/aperture-1 

separation is 30 cm; total path-length is 65 cm. All other relevant parameters are identical to those 

for the setup in Figure A-1. 

 

 

The spectrum was swept across the light-band (λ = 4000 Å - 6600 Å) firstly with the 

mirror in place, and then without the mirror, in which case the collimating tube was lined 

up along the optical axis, at the same optical distance. Direct and reflected intensities are 

compared in Figure A-3 below. 
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Figure A-3 

A comparison of light levels with and without a glass mirror along the optical path. The intensity 

was measured by means of a sweeping spectrometer. 

 

 

Both Perspex- and glass-mirrors were measured.  Reflected light values were divided by 

direct light values to obtain reflectance as a function of wavelength. See Figure A-4 

below. 
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    Figure A-4 

A comparison of the measured reflectance for the glass and Perspex mirrors. The shaded regions 

represent data at wavelengths for which the spectrometer sensitivity is reduced, or for which the lamp 

emission is unreliably low. 

 

 

The response of glass mirror is somewhat less uniform than for a Perspex mirror at the 

higher wavelengths (at the red end of the visual spectrum). Therefore, average values 

were calculated over the most linear part of the spectrum i.e. from 420 nm to 600 nm. A 

typical fluorescent lamp emits virtually almost all of its light power in this range. See 

Figure A5 below. 
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     Figure A-5 

The relative spectral emission profile of a typical fluorescent lamp. The curve is compared with   

the emission of an incandescent lamp. 

 

 

The reflectances were calculated to be:  

 

Perspex: m 0.83f =  

glass: m 0.86f = . 

 

One mirror in the chamber was made of glass while it was necessary to machine the 

second internal mirror. Perspex was chosen for the ease with which it can be machined. 

The average of the two reflectances is used in calculations: 

 

Chamber mirrors: m 0.845f =  
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Appendix B 

 

  

Power dissipation of the paint. 

 

The energy absorbed by the paint will be checked in terms of power dissipation density 

over the inner surface of the chamber, in order to quantify the power dissipation density 

of the paint. Any effects due to the mirrors will be ignored. 

 

The chamber surface is much larger than the lamp surface and therefore lamp power 

dissipation need not be of concern. The cylinder radius is approximately 20 times larger 

than the lamp radius. The resulting cylinder area is larger than that of the lamp by the 

same factor since the wall area is proportional to the cylinder circular perimeter and 

hence radius. 

 

It was shown in Section 6.6 that at typical lamp of length 1.2 m might radiate 4.3 W of 

light power. The area of the chamber is 2A RLπ= excluding mirrors. Using values of R = 

0.3 m, L = 1.2 m one obtains an area of A = 2.26 m2. Intensity is therefore  

 

2
4.3 W
2.26 m

P
A
= = 1.9 W. m-2. 
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Appendix C 

 

 

The Lambertian Probability �ormalization Constant.  

 

The constant 1/π will be obtained for a radiating point on a Lambertian surface. 

 

Let the normal component of a Lambertian point source on a surface be 0I AI⊥ = where A 

is the normalization constant and 0I  is the lamp surface intensity in W.m
-2. Integrating 

the probability over all possible directions in a hemisphere must yield a total probability 

of unity. The angle of the ray with the surface norm will be denoted as θ here rather than 

ϕ, to distinguish it from the rather similar-looking φ. For a Lambertian surface the 

probability density function is just  

 

2
cos( )rp

r

θθ =  

 

 for some given r. (Refer to F. Mandl [18] for the statistical meaning of the probability 

density function). Thus 

 

( )
2

2

2

0 0

. sin 1rA p r d d

ππ

θ θ θ φ =∫ ∫  

 

i.e.     

2
2

2

2

0 0

cos . sin 1A r d d
r

ππ

θ θ θ φ =∫ ∫  
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2
2

0 0

cos sin 1A d d

ππ

θ θ θ φ⇒ =∫ ∫  

 

           
2

0

sin 2 1A d

π

π θ θ⇒− =∫  

 

     
2

0

cos2 1
2

A

π

π θ⇒− =  

 

     1Aπ⇒ =   

  

1A
π

⇒ = . 

 

Hence 0
1I I
π⊥ = ; i.e. the light intensity of a ray emitted from a Lambertian surface, in a 

direction perpendicular to the surface, is less than the surface intensity by a factor of 1/π. 
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Appendix D 

 

 

Paint diffusive profile measurement. 

 

The method used here is one of comparison of light levels with and without a reflecting 

plane in the optical path. 

 

 

Figure D-1 

      The experimental setup used to measure angular dependence of paint reflectance. 

   

 

An incandescent lamp was used because of the broad spectral emission compared with 

other lamps. The spectrum was swept across the light-band from 400 Å to 650 Å for 

several reflector angles. The collimating tube was lined up so that the incident beam was 

orthogonal to the reflecting surface.  

 

The results are plotted in Figure D-2 below. Beyond an angle of about 60˚ with the norm 

the profile deviates from Lambertian. Nevertheless, the profile may comfortably be 
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regarded as Lambertian since the method of analysis leans strongly on the notion of 

orthogonal rays dominating the chamber characteristics. 

 

The reason for deviation can largely be attributed to inconsistency of the applied matte 

paint. It is also well known that the microscopic spheres responsible for diffuse reflection 

cause a small enhancement of reflection flux density within a 5˚ cone centered about the 

incident ray, as documented by Delta Developments [7]. 

 

 

 

Figure D-2 

A plot showing the diffusivity of white Plascon Road-marking paint. The data was obtained 

experimentally using the configuration of Figure D-1. 
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Appendix E 

 

Definitions. 

 

Many of the definitions were interpreted from the texts written by A. Stimson [19] and 

W. G. Driscoll [20]. 

 

Steradian: unit of solid angle. There are 4π steradians of solid angle in a sphere. 

Steradians cannot simply be marked off on a sphere surface, as radians can on a circle 

perimeter, since the surface area corresponding to one steradian can take on any shape. 

 

Projection: precisely the mathematical definition. In vector form ⋅u v
� �

 = uvcos θ is the 

projection of u
�
 on v
�
. Projected area is equivalently the area of the shadow of a given 

area A, produced by a distant light-source. Shadow size will vary with the angle of area 

A, as cosθ. 

 

Flux: energy transported across an area per-unit-time. From a theoretical perspective, 

flux is measured as energy per-unit-time, in units of joules per second (J/s). The SI unit is 

the watt (W). In the field of photometry, the lumen (lm) is adopted. The lumen, in 

comparison with the watt, is scaled up by a factor of at most 683 to account for the 

sensitivity of the human eye. Eye sensitivity changes with the frequency-distribution of 

light and is peaked or “centered” near 555 nm. If the measured light spectrum does not 

have the same form, a different factor must be calculated. 

 

Flux density: flux-per-unit-area, or energy flow-rate per unit area. Measured as power 

per-unit-area in units of watts per square meter (W.m-2), or in lumens per square meter 

(lm.m-2) in photometry. 
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Intensity: the light energy passing through a surface area in space per unit time. In the 

context of this thesis, it is required that intensity be regarded is a surface density, not to 

be confused with the radial density of a point source in watts per steradian (W.sr-1), 

referred to the source point only. The surface referred to formerly may be the finite 

emissive surface of a source. For a single point source, a surface flux density is 

meaningless, as is a radial flux density for a non-spherical source such as a cylinder wall 

surface. Intensity is measured in W.m-2 or W.sr-1.  

 

Luminous Intensity: the flux density of light, referred to the lumen. Measured as lumens 

per-square-meter (lm/m2). The SI unit is the lux. 

 

Illuminance: a measure of illumination level at a point and direction in space. By the 

Cosine Law of Illuminance, illuminance = intensity × cosθ, where θ is the angle of the 

surface considered, with the flux direction. Thus illuminance is the projection of 

luminous intensity on a defined surface. Obviously maximum illuminance = luminous 

intensity. A simple comparison is the case of a small ball placed in the vicinity of a point 

source. The luminous intensity of light approaching any point on the illuminated side of 

the ball is essentially constant, while illuminance is a maximum at the centre, going off to 

zero on approach toward the circular illumination edge. Illuminance is measured as 

power per-unit-area in units of lumens.m-2. The SI unit is the lux (lx) [21]. 

  

Lambertian: cosine emissive/reflective characteristic of a diffuse surface. Due to the 

diffuse nature of the surface, light is radiated in all directions, the statistical weights 

resulting in a factor cosθ in the intensity formulation [22]. 

 

Luminance: projected effective luminous intensity of an emissive/reflective surface. If 

an area da on an emissive/reflective surface is observed at an angle θ with the norm, the 

area is effectively reduced by a factor cosθ, with the interpretation that there is an 

increase in point-source density in an equal projected area da. Therefore, it is possible for 

luminance to be greater than luminous intensity. However, in the case of a diffuse 

material surface, the projected intensity also is reduced by a factor cosθ due to 



 

 

125 

Lambertian nature. The factors cancel, resulting in a projected surface with exactly the 

same intensity as for the perpendicular to the diffuse surface. 

 

The term luminance is associated with observed light from an emissive/reflective surface 

while illuminance refers to the light responsible for the luminance of a reflective surface. 

Thus illuminance is an entity whether there exists a reflecting surface or not, while 

luminance of a uniform surface is a characteristic of the surface only, and is not a 

function of distance from the surface. In contrast, illuminance of such a surface varies 

with distance from the source and azimuthal angle of the source. 

 

Brightness: Absolute brightness is the luminance of a diffuse material surface, while 

apparent brightness varies with the inverse square of distance. Note that brightness is a 

scalar quantity. It does not vary with angle of observation, due to the Lambertian nature 

of a diffuse surface. In contrast, the term ‘brightness’ cannot be ascribed to the surface of 

a mirror, since the projected intensity will certainly be directional. 

 

Isoline: used in this document to denote a contour line representing axially symmetric 

surfaces of equal (luminous) intensity. The measured quantity is called luminous intensity 

as defined previously. 

 

Reflection order: the number of reflections a ray of light undergoes before being 

measured. 

 

Reflectance: the degree to which an incident ray is reflected by an object. 

 

Reflectivity: the degree to which an incident ray is reflected by a substance. For 

example, the reflectivity of the glass in a thin glass mirror is much closer to unity than the 

reflectance, which occurs at the surfaces of the glass. 
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Appendix F 

 

 

Evaluation of the chamber integral. 

 

The integral for the light contribution of an interval of the cylindrical chamber to an 

observation point on the inner wall surface will be evaluated between the limits of 

integration in the complex domain. Much of the methodology is adopted from the books 

written by E. Butkov [23], and A. C. BajPai [24]. 

 

The integral Fδ over an interval between axial positions 1σ  and 2σ  is 

 

            ( )
2

1

F F d

σ

σ θ

σ

δ σ σ=∫  

 

where Fθ  is the angular integral obtained in Section 6.3.2. Equation (6.7) is repeated here: 

 

   
( )
( )

( )
( )

222 2
2

2 22

0 0

111 cos 21 1
1 cos 11

2

z
z

F d dz
i zp zp

z

π π

θ

θ
θ

θ

+−−
= =

− +−∫ ∫  

 

with z as a variable in the complex plane. The angular integral Fθ will now be evaluated. 

 

              
( )
( )

2 2
2

2
2

0

2 1
1

2 1

z z
F dz

i
z p z z

π

θ

 − + =
 − + 
∫  {multiply by 

2

2
z

z
} 
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( )
( )

2
22

22

0

2 11

2

z z
dz

i pz z p z

π

− +
=

− +∫  

 

        
( )

( )

2
4

22

0

11

2

z
dz

i pz z p z

π

−
=

− +∫ . 

 

 

Complete the square on the denominator: 

 

         2 2 22pz z p p z z p
p

 − + = − + 
 

 

 

2

1 1p z p
p p

 = − − + 
 

 

 

2

2
1 1 1p z
p p

   = − − −    
    

 

 

2 2
1 1 1 11 1p z z
p pp p

  
= − + − − − −  

  
 

 

2 21 1 1 11 1p z p z p
p p p p

  = − + − − − −  
  

 

 

 

( ) ( )2 21 1 1 1 1pz p pz p
p

= − + − − − − . 
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    Hence   

 

( ) ( )

( ) ( )
42

2 2
2 2

1

1 1 1 1C

zp
F z dz

i
pz p pz p z

θ

−
=

− + − − − −∫� . 

 

The closed integral is taken along a circle in the complex domain. [23, [24, 25, [26, [27, 

[28]. 

 

The poles are at z = 0, z = 21 1 1 p
p p
− − and z = 21 1 1 p

p p
+ − on the real axis. The 

constant of integration p ranges from 0 up to 1.  

 

Consider the third pole: 

 

    21 1 1 p
p p
+ −  > 1 1 .0

p p
+   

 

      1
p

= 1≥  

 

i.e.     21 1 1 p
p p
+ − > 1. 

 

The third pole therefore lies outside the contour. 

 

 

 

 

 

 

 



 

 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure F-1 

  The poles and the integration contour in the complex plane. 

 

 

Consider the second pole: 

 

 21 1 1 p
p p
− − = 21 1 1 1p

p p

 − − ⋅ 
 

 2 21 1 1 11 1p p
p p p p

  ≤ − − + −  
  

 

 

                           ( )22 2
1 1 1 p
p p

= − −  

 

1= . 

 

 

21 1 1z p
p p

= − −  21 1 1z p
p p

= + −  
0z =  

1z =  



 

 

130 

i.e.                       21 1 1 p
p p
− − 1≤  

 

and thus lies inside the contour. The residue must be hence be evaluated at the simple 

pole z1 = 0, and the pole z2 =
21 1 1 p

p p
− − , of second order. Let 

 

                     ( ) ( )

( ) ( )
4

2 2
2 2

1

1 1 1 1

z
f z

pz p pz p z

−
=

− + − − − −
. 

 

The residue at z = 0 is easily calculated: 

 

                         ( ) ( )

( )

4

2 2
2 2

0

1
Res  0

1 1 1 1 1
z

z
f

z p pz p
p p

=

−
=
 − + − − − − 
 

 

 

( )

( )

4

2 2
2 2

1

1 1 1 1 1p p
p p

−
=
 − + − − − − 
 

 

 

( ) ( )
2

2 2
2 21 1 1 1

p

p p

=
− − + −

 

 

( )

2

2
21 1

p

p
=
 − − 

 

 

2

4

p

p
=  
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2
1
p

= . 

 

The integral evaluated at the simple pole is then 

 

 

          ( )
2

1 12 Res 
p

F i f z
iθ θπ= ⋅  

 

2π= . 

 

 

Finding 21 1Res 1f p
p p

 − − 
 

 is not straightforward, as the pole is not of first order. 

The denominators must be converted into a Taylor series, but for simplicity the pole shall 

be transferred to the origin. Let 21 1w pz p= − + − . Then 21 1pz w p= + − −  and 

1dz dw
p

=  so that 

 

( )
( )

( ) ( )

4
2

2

2 2 2
2 2 2

1 1
1

4
2 1 1 1C

w p p
p

F p dw
p i

w w p w p
θ

+ − − −
=

− − + − −∫�  

 

( )1
4

C

g w dw
i

= ∫�   

 

where      ( )
( )

( ) ( )

4
2

2
2 2 2

1 1

2 1 1 1

w p p
g w

w w p w p

+ − − −
=

− − + − −
. 
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              ( )2
1 2 Res 0
4

F i g
iθ π= ⋅  

 

          ( )Res 0
2

gπ= .  

 

The residue of g(w) at w = 0 will now be evaluated. 

 

                   ( ) ( )2

0

Res g 0 . ( )
w

d w g w
dw

=

=  

 

    
( )

( ) ( )

4
2

2
2 2

0

1 1

2 1 1 1
w

w p p
d

dw
w p w p

=

 + − − − 
= ⋅ 

 − − + − −
 

  (F1) 

 

 

It is convenient to represent the constant expressions as symbols. Let 

 

     21 1a p p= − − − ,    (F2) 

 

    22 1b p= − ,     (F3) 

 

     21 1c p= − − .    (F4) 

 

The following interpretations will be required in the deductions.  

 

     1
2
ba p= − −        (F5) 

 

     ( )2 24 1b p= −      (F6) 
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     1
2
bc = − .     (F7) 

 

Then from equation (F1), 

 

         ( ) ( )
( ) ( )

4

2

0

Res g 0 , 0, 0

w

w ad b c
dw w b w c

=

 +
= ≠ ≠ 

 − − 
 

 

       
( )

( ) ( )
4

2 2

0

1

1 1
w

w ad
dwb c w w

b c =

 
 +−=  
 − −
 

 

 

Expand the fractions as Taylor series, using the fact that 21 1
1

t t
t
= + + + ⋅⋅⋅

−
for | t | < 1. 

 

        ( ) ( )( ) ( )2
4 3 2 2 3 4

2

0

1Res 0 4 6 4 1 ... 1 ...
w

d w wg w aw a w a w a
dw b cb c

=

 −= + + + + + + + +  
 

 

( ) ( ) ( )23 4

4 2
0

1 4 ... ...
w

d a w a b w c w
dwb c =

−  = + + + + +   

 

( )( )( )3 4 2

4 2
0

1 4 2
w

d a w a b bw c w
dwb c =

−  = + + +   

 

( ) ( )( )3 4 2

4 2
0

1 4 2
w

d a w a b c b c b w
dwb c =

−  = + + +   

 

 

 ( )3 2 4

4 2
1 4 2a b c a b c b

b c

−  = + +   
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( )
3

3 2
4 2a bc a c b

b c

−= + +   . 

 

 

Insert equation (F7): 

 

           ( ) ( ) ( )( )3

3 2
Res 0 4 1 2 1

2 2
a b bf b a b

b c

 −= − + − +  
 

 

( )
3

2

3 2
2 4 2 1a b b a b

b c

−  = − + −   

 

 

Insert equation (F5): 

 

                   ( )Res 0f ( )( )
3

2

3 2
2 4 2 1 1

2
a bb b p b

b c

−  = − + − − −  
 

 

3
2

3 2
2 2 2a b b pb p

b c

−  = − − − +  . 

 

Insert equation (F6): 

 

                   ( )Res 0f ( ) ( )
3

2

3 2
4 1 1 2 2 2a p p b p

b c

−  = − − + − +   

 

( )
3

2

3 2
2 2 4 1 2a p p p b

b c

−  = + − − +   

 

( )( ) ( )
3

3 2
2 1 2 1 1 2a p p p b

b c

−= + − − +    
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( ) ( )
3

3 2
2 1 2 1

2
a bp p

b c

−  = + − −  
 

 

 

     ( )
3

3 2
2 1 2a p a

b c

−= +  

 

( )
2 2

3 2
2 1 2 a ap

b c
= − + . 

 

Insert equation (F2): 

 

                 ( )Res 0f ( )
( ) ( )

2 2
2 2

3 2

1 1 1 1
2 1 2

p p p p
p

b c

   − − − − − −
   = − +  

 

( )
( ) ( )

2
2 2 2

3 2

1 2 1 1 1
2 1 2

p p p p
p

b c

 − − − − + −
 = − +  

 

( )
( )

2
2

3 2

2 2 2 1 1
2 1 2

p p p
p

b c

 − − − −
 = − +  

 

( )( )

2
2

2

3 2

1 1
8 1 2 1

p
p p

b c

 − −
 = − + −  

 

   ( )( )
22

3 2
8 1 2 1 cp p

b c
= − + −  

 

( )( )2 3
18 1 2 1p p
b

= − + − . 
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Insert equation (F3): 

 

                 ( )Res 0f ( )( )
( )

2

3
2 2

18 1 2 1
8 1

p p

p

= − + −
−

 

 

( )( )

( )

2

3
2 2

1 2 1

1

p p

p

+ −
= −

−
 

 

( )( )
( )

2

2 2

1 2 1

1 1

p p

p p

+ −
= −

− −
 

 

( )( )
( )2

1 2 1

1 1

p p

p p

+ −
= −

− +
 

 

( )( )
( )

1 2 1

1 1 1

p p

p p p

+ −
= −

− + +
 

 

( )
( )

3
2

1 2 1

1

p p

p

+ −
= −

+
. 

 

Therefore 

 

            ( ) ( )2 2Res
2

F p f zθ
π=  

 

( )
( )

3
2

1 2 1

2 1

p p

p

π + −
= −

+
. 
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The integrand due to both poles is 

 

( )( )
( )

1 2 3
2

1 2
1

2 2 1

p
f p F F F p

p
σ θ θ θ

π πσ +
= = + = − −

+
 

 

The contribution from an interval from 1σ  to 2σ  along the lamp is 

 

           

2

1

F f d

σ

σ σ

σ

δ σ=∫ . 

 

Rearranging equation (6.6), 

 

2 22
p

σ + =           

 

and therefore        
2
22 d dp
p

σ σ = −   

 

after differentiation. Also,   2 2
p

σ = −   

 

after making σ the subject of equation (6.6). Hence 

 

               
2

1
2 2

d dp

p
p

σ = −
−

 

 

3
2

1

2 1
dp

p p

= −
−

  

 

after appropriate division and substitution of σ, so that 
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( )

2

1

3 3
2 2

1 2 11
2 2 1 2 1

p

p

p
F p dp

p p p
σ

π πδ
 + − = − −
 + − ∫     

 

 

    
( )

2 2

1 1

3 33
2 22

1 2 1
2 2 2 21 1

p p

p p

p
dp dp

p p p p

π π+
= −

+ −∫ ∫ . 

 

 

In the first integral, let  

 

     2tanp ω= .      (F8) 

 

Then  

 

22 tan .sec .dp dω ω ω= . 

 

 In the second integral, let   2sinp µ= .  

 

Then 

 

2sin .cos .dp dµ µ µ= . 
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Now 

    

( )

2 2

1 1

2
2

3 3 22 32

1 2 tan 1tan sec sin cos
2 2 sin 1 sin1 tan tan

F d d

ω µ

ω µ

π ω πδ ω ω ω µ µ µ
µ µω ω

+= −
−+∫ ∫

 

 

       

2 2

1 1

2 2
2

3 3 2
sec tan 1tan sec
sec tan sin2 2

d d

ω µ

ω µ

π ω ω πω ω ω µ
ω ω µ
+= −∫ ∫  

 

using the identities 2 2sec 1 tanx x= +  and 2 2sin cos 1x x+ = . Perform the integration: 

   

  ( )
2 2

1 1

2csc cot cos csc
2 2

F d d

ω µ

ω µ

π πδ ω ω ω ω µ µ= + −∫ ∫  

 

         ( )
2

2

1

1

csc sin cot
2 2

µ
ω

ω
µ

π πω ω µ= − + + . 

 

 

From equation (F8), 

 

    1tan pω −= . 

 

Let 1csc csc tany pω −= = . Then from trigonometric ratios, 

 

                                        ( )1

2

1tan tan
1

p p
y

− = =
−
.   
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Square both sides: 

 

     
2
1
1

p
y

=
−
 

 

and solve for y. 

 

     
1 p

y
p

+
= . 

 

i.e.     
1

csc
p

p
ω +
=  

 

and     sin
1

p

p
ω =

+
. 

 

 

Similarly    
1

cot
p

p
µ −
= . 

 

Thus 

 

   

2

1

1 1
12

p

p

p p p
F

p p p
πδ

 + −
= − + + + 

 

 

As p approaches zero the expression as it stands becomes undefined, and must be placed 

in alternate form [26]: 

 

    
( ) 21 11 1

1 1

p p pp p p

p p p p p

− + + + −+ −
− + + =

+ +
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21 1

1

p

p p

− −
=

+
 

 

    
2 2

2

1 1 1 1
.

1 1 1

p p

p p p

− − − +
=

+ − +
 

 

    

( )
2

2

1 1

1 1 1

p

p p p

− −
=

+ − +
 

 

    

( )
3
2

21 1 1

p

p p

−
=

+ − +
 

 

It is now evident that as 0p → ,   

 

( )
3
2

2
0

1 1 1

p

p p

−
→

+ − +
 . 

 

The new result is 

     

( )

2

1

3
2

22 1 1 1

p

p

p
F

p p

πδ
 

− =  
+ + − 

 

. 

 

Now restore σ by substitution of the expression for p(σ) (equation (6.6)). The 

unevaluated integral is 
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( )
( )

( )

3
2

3
22

22

2 2

2
2

1 1 1 2 21 1 1
2 2

p

p p

σ

σ σ

+=
 + + −

+ + − 
 + + 

 

 

Multiply both numerator and denominator on the right hand side by ( )
3

2 22σ + : 

 

   

( )
( )

( )

33
22

22 2 2 2

2

1 1 1 2 2 2 2 4

p

p p σ σ σ
=

 + + − + + + + + − 
 

 

 

    

( )2 2 4 2

2 2

4 2 4σ σ σ σ
=

+ + + +
 

 

    

( )2 2 2

2 2

4 2 4σ σ σ σ
=

+ + + +
. 

 

Upon evaluation, 

 

        0
1 .I I Fδ δ
π

=  

 

  

( ) ( )0
2 2 2 2 2 2
1 1 1 1 2 2 2 2

1 12
4 2 4 4 2 4

I
σ σ σ σ σ σ σ σ

 
 = − 

+ + + + + + + + 
 

. 
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In terms of the original constants, 

 

( ) ( )
3

0
2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

1 12
4 2 4 4 2 4

I I R
z R z R z z R z R z R z z R

δ
 
 = − 

+ + + + + + + + 
 

(F9) 

 

This is the final result, for the flux contribution at an observation point on the chamber 

wall, of a cylindrical chamber interval between planes perpendicular to the axis at z1 and 

z2. 
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Appendix G 

 

The intensity of the surface within a spherical integrating chamber. 

 

The intensity of light reflected off the surface of a spherical integrating sphere, will be 

obtained by considering the path of a single ray. 

 

It will first be noted that the reflected flux can be written in terms of the absorbed flux. 

 

( )a i i1a fΦ = Φ = − Φ  

 

r ifΦ = Φ  

 

( )
r r

a r1 1

f f

f f

Φ Φ
= =

Φ − Φ −
 

 

Therefore, 

  r a
1

f

f
Φ = Φ

−
. 

 

Now suppose a source radiates a flux of Φs watts isotropically. There are 4π steradians in 

a sphere. Then the intensity of the source is s
s
4

I
π
Φ

= W.sr
-1 and is equivalently the 

intensity on a unit sphere. The intensity of light incident on the surface of a sphere of 

radius r is  

 

( ) i
i 24

I r
rπ

Φ
=  W.m

-2.  
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 Similarly the reflected intensity is  

 

( ) r
r 24

I r
rπ

Φ
= W.m-2. 

 

 Total reflected flux is 

 

r a
1

f

f
Φ = Φ

−
 .  

 

Therefore, 

 

( ) a
r 24 1

f
I r

r fπ
Φ

=
−

. 

 

 

Total absorbed flux is just the source flux, 

 

 i.e. a sΦ = Φ   

 

so that 

s
r 2 14

f
I

frπ
Φ

=
−

    (G-1) 

 

 Equation (G-1) is the intensity on the surface of a spherical integrating sphere. 
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Appendix H 

 

 

The ratio of actual flux to cosine-corrected flux, arriving at a point, from an infinite 

diffuse plane. 

 

For an infinite plane, integration takes place over an entire hemisphere. In the case of 

cosine-corrected flux, the relevant part (all other constants cancel out in the ratio) of the 

integral is 

 

2

i,c

0

sin cosF d

π

θ θ θ=∫  

 

                 1
2

=  

 

while if cosine-correction is excluded, the integral just yields the area of the hemisphere.  

 

2

i,c

0

sin 1F d

π

θ θ= =∫ . 

 

 The ratio becomes  

 

i
1

i, c 2

1
2

F

F
= = . 
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i.e. the flux at a point in space, due to an infinite Lambertian emissive plane, is exactly 

twice the value measured at that point by a cosine-corrected device.
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