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Abstract

The purpose of this dissertation is to review the salient features of non-Hermitian quan-

tum mechanics. An introduction to Hermitian quantum mechanics is included to make

this review as accessible as possible. Attempts at formulating a consistent physical the-

ory are introduced, before examining non-Hermitian theories’ uses as convenient com-

putational frameworks. Particular emphasis is placed on recent developments in open

quantum systems that utilise non-Hermitian Hamiltonians. Chapter four introduces a

logic that maps a non-Hermitian Hamiltonian onto a non-Hamiltonian algebra that has

a Hermitian Hamiltonian. This was put forward by Sergi, who then goes on to show its

application to a two level system. The time evolution is then derived in terms of the

density matrix model. This system can then be used to analyse different types of decay

such as coherence and population difference. This serves to illustrate the usefulness of

the approach.
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Chapter 1

Introduction

The Hermitian condition has been the cornerstone of quantum mechanics. However, it

seems that while the non-Hermitian condition does not ensure real eigenvalues, attempts

are being made to find a more general condition that ensures real eigenvalues and allows

non-Hermitian Hamiltonians[1].

Why are non-Hermitian Hamiltonians of interest? It is hoped that previously unex-

plained or unsolvable systems may now be treated. Research into non-Hermitian Hamil-

tonians follows two paths. The first involves trying to find a physically reasonable alter-

native to Hermitian quantum mechanics. The second uses non-Hermitian Hamiltonians

to formulate new computational schemes in the hope of making problems more tractable.

Non-Hermitian Hamiltonians have been applied to a wide variety of fields and in some

cases are necessary to make the problem tractable. An example of an open quantum

system model that gives rise to non-Hermitian Liouville operator can be found in [2].

In particular in reference[2] some simple kinetic models of open quantum systems are

studied. The various systems are one-dimensional with particle reservoirs on each side,

allowing the systems to be driven far from equilibrium.

H = − ~2

2m

∂2

∂x2
+ ν(x), (1.1)

where ν(x) is the interaction potential. The time evolution of the system is given by the

Liouville-von Neumann equation[2]. By applying open boundary conditions, dissipative

effects on the properties of the various models can be investigated[2].

While this is not directly applicable to the work covered in this thesis it does highlight
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the diverse applications that non-Hermitian quantum mechanics can be applied to. It

is hoped that current work in non-Hermitian quantum mechanics is presented in an

accessible manner.

An example of a more unusual application is the use of a non-Hermitian Hamiltonian

applied to the problem of unzipping DNA[3]. Other fields include quantum optics and

open quantum systems[4].

The value of a non-Hermitian Hamiltonian comes from the fact that if it provides a

physically reasonable and consistent theory, then it will enrich the number of solvable

systems available to physicists.

The aim of this dissertation is to provide a review of the field of non-Hermitian quan-

tum mechanics that is accessible to researchers with little experience in the field. In

order to achieve this, various approaches are discussed with particular focus on the use

of non-Hermitian descriptions of open quantum systems. In addition, the more gen-

eral and popular non-Hermitian theories of PT -symmetric[1], [5] and pseudo-Hermitian

Hamiltonians[6], [7], [8] are introduced.

It is hoped that this review will allow readers to draw their own conclusions on

whether non-Hermitian quantum mechanics is likely to form a robust and considered

physical theory.

In an attempt to keep this review as accessible as possible, Chapter 2 is written to

provide an introduction to the use of Dirac notation in quantum mechanics. Important

concepts, particularly if they are of relevance to non-Hermitian theories, are also intro-

duced.

Chapter 3 is a review of the available literature on non-Hermitian quantum mechanics.

Non-Hermitian approaches used thus far can be broken into three groups:

1. A non-Hermitian Hamiltonian is used to represent open dynamics and attention is

given to the eigenvalue problem.

2. PT -symmetric Hamiltonains are frequently used and utilise a symmetry argument
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to ensure a real eigen-spectrum.

3. A more recent approach utilises pseudo-Hermitian Hamiltonians. While not as

popular as the PT -symmetric approach, it is a more general theory.

Approach 1 was used first and provides a look at early development in the field. Ap-

proaches 2 and 3 are discussed in detail and compared.

The fourth Chapter[9], [10] introduces some recent applications of non-Hermitian

theories to open quantum systems. By making use of non-Hermitian theories it is possible

to significantly reduce the computational load. This technique can be used to undertake

studies to investigate dissipation and coherence in a two-level system.
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Chapter 2

Hermitian quantum mechanics

By the end of the 19th century many physicists believed that in principle all major

problems in physics had been solved; that is to say, that the physical principles were

understood, and with enough information and computational power any problem could

in theory be solved. This belief was called into question in the early part of the 20th

century by physicists who were investigating the behaviour of black-body radiation.

A black body is one that absorbs all incident radiation and radiates at any tem-

perature greater than absolute zero. The emission of radiation occurs over a range of

frequencies, the power distribution of which exhibits a maximum dependent on the tem-

perature of the body. The theory of black-body radiation was initially attempted by

Wien in 1896[11]. Wien’s law agreed with experiment at high frequencies and as a result

enjoyed early success. However, it soon became apparent that it was unable to describe

the observed behaviour of black bodies at low frequencies. This failure of Wien’s law

prompted Planck to formulate an alternative theory of black-body radiation, which was

published in 1901[12]. It relates the power Rf radiated at a frequency f to the frequency

and absolute temperature T according to

Rf =
2πh

c2

f3

e
hf
kT − 1

. (2.1)

Here c is the vacuum speed of light, k the Boltzmann constant, and h a new universal

constant, named after Planck, and defined as
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h =
E

f
, (2.2)

where f is the radiation frequency and E the energy.

A startling aspect of Plank’s theory is an assumption he made: that a black body

modelled as a collection of oscillators absorbs and emits only discrete amounts of energy

described by E = hf [13]. At the time this was regarded as a mathematical device by

Planck and others, in that energy was considered to be continuous.

In 1905 physicists were faced with further evidence of quantization in nature in a land-

mark paper by Einstein. The quantization of electromagnetic radiation was central to his

explanation of the photoelectric effect, which suggested that electromagnetic radiation

was discrete, acting in this effect as if it possessed particle properties.

Further evidence for the particle-like nature of electromagnetic radiation was obtained

from the experiments of Compton in 1923. He noticed that when a graphite target is

bombarded with monochromatic X-rays, there is a decrease ∆f in the frequency of the

rays emerging from the target, implying that energy has been lost. Based on Einstein’s

assumption, the energy lost will be E = h∆f . Compton found that scattered X-rays

form two peaks of intensity; the first peak corresponds to the incident X-ray’s frequency,

while the second peak is shifted by a small amount. Accordingly, the incident X-ray

beam can be understood as a stream of particles, each termed a photon, that collide

with an electron in the target, losing energy in the process. Compton’s experiment also

confirmed that in certain effects electromagnetic radiation is discrete in nature[14].

In 1924 de Broglie postulated that wave-particle behaviour applies to matter as well

as to electromagnetic radiation. He derived an expression for the wavelength associated

with a moving particle. Known as the de Broglie wavelength, it is given by,

λ =
h

p
, (2.3)

where p is the particle’s momentum[14]. Due to a lack of experimental evidence support-

ing his postulate, it was regarded as not being physically relevant. This changed as a

result of an experiment in 1927 by Davisson and Germer which confirmed the de Broglie
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postulate.

These two physicists found that, by firing electrons at a nickel target, a diffraction

pattern was produced a clear example of wave behaviour. The diffraction pattern was

found to obey Bragg’s law for X-rays, namely

nλ = 2d sinφ, (2.4)

where d is the atom spacing in the lattice, λ the de Broglie wavelength, and φ the angle

between the incident beam and the scattering plane. Such a clear example of matter

exhibiting wavelike behaviour provided confirmation of the de Broglie hypothesis.

Several new insights into the behaviour of energy and matter have occurred as a result

of experiment. Planck’s explanation of black-body radiation lead to the idea of discrete

quantities of energy. Eistein’s work on the photoelectric effect confirmed that energy

was discrete. The particle like nature of electromagnetic radiation was first revealed

by the experiments of Compton. It was postulated by de Broglie that wave particle

behaviour applies to both matter and electromagnetic radiation, confirmation was pro-

vided by Davisson and Germer. Collectively the work performed in this period lead

to a fundamental shift in understanding of the behaviour of electromagnetic radiation

and matter. However, as yet, there was no approach that encompassed these profound

changes in physics. This void was fulled by two approaches to quantum mechanics that

were developed by Schrödinger and Heisenberg respectively.

The two separate approaches to quantum mechanics were formulated by Schrödinger

and Heisenberg early in the 20th century[15]. The central feature in Schrödinger’s formal-

ism is wavefunctions, which have a probabilistic interpretation. In contrast, Heisenberg’s

formalism makes use of matrices and is known as matrix mechanics. These formalisms

were the first successful attempts to explain quantum mechanics that were not empirical

in nature. Heisenberg’s and Schrödinger’s approaches were unified later by Dirac.
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2.1 Quantum mechanics: Dirac’s approach

The standard formulation of quantum theory is constructed from a number of postulates.

The first states that each quantum state of a physical system is described by a state vector

of a Hilbert space[16], which is an inner product linear vector space of orthonormal vec-

tors. In this dissertation, Dirac bra-ket notation will be used throughout. Accordingly,

state vectors will be known as kets and written as |φ〉. Kets provide a description for

all possible physical states, and collectively make up a ket space where all the properties

associated with linear algebra apply. Bras are dual vectors of the kets and have a one to

one correspondence with kets and are written as 〈φ|[16]. Of importance in our treatment

of kets is the principle of superposition.

Any ket of a vector space in quantum mechanics can be written as a superposition of

two or more other kets of the space. The fundamental difference between superposition

in quantum and classical mechanics, is the indeterminacy present in quantum systems.

The superposition of two quantum states forms a new state describing the system. This

state gives the probability of obtaining a particular result, making quantum mechanics

indeterminate in nature.

1

Consider a state |φ〉 that is in a superposition of two states |φ1〉 and |φ2〉, that produce

eigenvalues a and b.

|φ〉 = c1|φ1〉+ c2|φ2〉, (2.5)

where c1 and c2 are constants that in general are complex.

By making successive measurements of a system in a superposition of states, a series

of results will be obtained that will be either a or b. The probability of producing

a particular result is dependent on the weight that |φ1〉 and |φ2〉 are present in state

|φ〉[15]. A dependent state is made up of two or more other states for example, state

|φ〉. The alternative is an independent state. The set of kets |φi〉, where i = 1,2,...,n, is

linearly independent if
n∑
i=1

ai|φi〉 = 0 (2.6)

and all ai = 0.
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The ordered product of kets |φ1〉 and |φ2〉 can be written as (|φ1〉, |φ2〉), which Dirac

denoted as

〈φ1|φ2〉, (2.7)

termed the inner product. Inner products have the following properties[16]:

1. 〈ψ|φ〉 = 〈φ|ψ〉∗, where the complex conjugate is denoted by an asterisk.

2. 〈ψ|cφ〉 = c〈ψ|φ〉, where c is a number, possibly complex.

3. 〈ψ|φ+ ϕ〉 = 〈ψ|φ〉+ 〈ψ|ϕ〉

4. 〈φ|φ〉 ≥ 0, that is, the inner product is always greater than zero unless |φ〉 is the

null ket.

5. If 〈φ|φ〉 = 1, then |φ〉 is a normalised ket.

6. If neither |φ〉 or |ψ〉 is the null ket, then they are orthogonal if 〈φ|ψ〉 = 0.

7. An orthonormal basis is made up of normalised kets, where all kets in the basis

are orthogonal to one another. If |φi〉 and |ψj〉 are members of such a set, then

〈φi|ψj〉 = δij , where δij is the Kronecker delta defined by δij = 1 if i = j and δij = 0

if i 6= j.

An orthonormal set can be produced from a linearly independent set that spans the

space by making use of the Gram-Schmidt process.

2.2 Linear operators, observables, and the Hermitian con-

dition

An observable is a linear Hermitian operator whose eigenkets |φi〉 form a basis in state

space. A Hermitian operator A, is defined by

〈φi|A|φj〉 = 〈φj |A|φi〉∗, (2.8)

where |φi〉 and |φj〉 are arbitrary vectors. In the standard (Hermitian) form of quantum

mechanics the Hamiltonian is required to be Hermitian. This ensures that the eigen-

values are real. The reality of the eigenvalues is desirable as non-real eigenvalues are



17

non-sensical from a physical point of view. In addition, the Hermitian condition is nec-

essary to ensure a positive definite norm.

It is helpful to introduce the closure relation,

n∑
i=1

|φi〉〈φi| = 1, (2.9)

where 1 is the identity operator.

Using the closure relation an arbitrary ket can be written as

|φ〉 =

n∑
i=1

|φi〉〈φi|φ〉, (2.10)

where n is possibly infinite.

It is postulated that a measurable physical quantity of a physical system is represented

by a linear Hermitian operator, termed an observable, that acts on vectors of the Hilbert

space representing the physical system. A measurement that is made when the system is

in a pure state yields an eigenvalue of the observable operator. This can be expressed as

A|φi〉 = ai|φi〉, (2.11)

where A is an operator that operates on the eigenvector |ai〉 and ai is the associated

eigenvalue. The equation above is termed the eigenvalue equation of A.

The eigenvectors of an operator on the Hilbert space H span the space and can be

chosen to be an orthonormal basis of H [17]. The eigenvectors form an orthonormal ba-

sis onH if the eigenvectors are independent. This is a standard result from linear algebra.

It is now proved that the eigenvalues of a Hermitian operator are real.

Proof: Let A be a Hermitian linear operator.

A|φi〉 = ai|φi〉. (2.12)

Now introduce the ordered product,

〈φi|A|φi〉 = ai〈φi|φi〉 (2.13)

but 〈φi|A|φi〉 must be real and non-zero since

〈φi|A|ψi〉 = 〈ψi|A|φi〉∗. (2.14)
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Then ai must be real as 〈φi|φi〉 is the norm. Therefore if A is a Hermitian linear operator,

the associated eigenvalue will be real.

Now use the closure relation to write down a simplified expression for an observable[16],

A =
∑
i

ai|φi〉〈φi|. (2.15)

The expectation value of A is

〈φ|A|φ〉 = 〈A〉 (2.16)

which can be thought of as a quantum average. That is, multiple measurements of an

observable A, on an identical system, will yield the mean value 〈A〉.

Consider what happens when a measurement is taken. If we have a completely iso-

lated quantum system, and a measurement is taken, then we have brought a second

system into contact with the first, perturbing the system. Although measurements can

be taken while trying to minimise the effect of the measurement on the system, crucially,

some interference will occur allowing only a single measurement to be taken of an unper-

turbed system[15].

2.3 Quantum conditions

The peculiar nature of quantum mechanics is represented in large part by the non-

commutative multiplication between most operators.

One needs equations called quantum conditions. In order to determine these equa-

tions, in Dirac’s approach, the method of classical analogy is used. This method exploits

the fact that classical mechanics provides a valid description of dynamical systems, pro-

vided that the systems are large enough that any disturbance due to observation can be

neglected. Dirac concluded that classical mechanics must be a limiting case of quantum

mechanics. By making use of the common ground between quantum mechanics and clas-

sical mechanics, in the limiting case, the method of classical analogy hopes to determine

the laws of quantum mechanics by finding them as generalisation of classical laws[15].
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Now consider a system that is made up of a large number (N) of interacting particles.

When using canonical coordinates each particle will have position coordinates (q) and

momentum coordinates (p) associated with them. If two variables u and v are functions

of a set of canonical coordinates, then the classical Poisson Bracket {u, v} is

{u, v} =
∑
k

(
∂u

∂q

∂v

∂pk
− ∂u

∂p

∂v

∂q
), (2.17)

where q = (r1, r2, r3) = (x, y, z) and p = (p1, p2, p3) = (px, py, pz).

It follows from equation (17) that[15]:

1. {u, v} = −{v, u}.

2. {u, c} = 0 where c is a number.

3. {u1 + u2, v} = {u1, v}+ {u2, v}.

4. It follows from 3. and 1.

{u, v1 + v2} = {u, v1}+ {u, v2}.

5. {u1u2, v} = {u1, v}u2 + u1{u2, v}.

6. It follows from 5. and 1.

{u, v1v2} = {u, v1}v2 + v1{u, v2}.

In addition, a useful identity is stated here without proof,

{u, {v, w}}+ {v, {w, u}}+ {w, {u, v}} = 0. (2.18)

The quantum analogy of a Poisson Bracket is the commutator,

[u, v] = uv − vu. (2.19)

The commutator satisfies all the properties (1 to 6), as can be shown from (2.19). Of

special significance are the canonical commutation relations, also called the fundamental

quantum conditions[16],

[ri, rj ] = 0

[pi, pj ] = 0

[ri, pj ] = i~δij (2.20)
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where i, j = 1,2,3.

If multiple measurements of observables A and B are taken in quick succession and

always return the same results, an and bn, then A and B are termed compatible observ-

ables and will commute. Non-commuting observables are responsible for much of the

unintuitive behaviour present in quantum mechanics.

2.4 The Heisenberg uncertainty principle

Non-commuting observables result in the Heisenberg uncertainty principle which gives

the maximum accuracy that can be obtained when they are measured simultaneously[15].

The error ∆A in A, is defined as follows

∆A =
√
〈(A− 〈A〉)2〉 =

√
〈(δA)2〉, (2.21)

where δA = A− 〈A〉.

In order to derive the Heisenberg uncertainty principle let

(A+ iλB)|µ〉 = |µ〉 (2.22)

where A and B are non-commuting observables and λ is any real number.

Now take the inner-product

〈µ|(A− iλB)(A+ iλB)|µ〉 ≥ 0. (2.23)

Due to the non-negativity of the norm.

〈µ|A2 + λ2B2 − iλBA+ iλAB|µ〉 ≥ 0, (2.24)

〈µ|A2 + λ2B2 + iλ[A,B]|µ〉 ≥ 0. (2.25)

But if A and B are non-commuting observables then [A,B] = iC , where [A,B] =

AB −BA.

Therefore

〈A2〉 − λ〈C〉+ λ2〈B2〉 ≥ 0. (2.26)

Now the minimum value of the left-hand side can be determined by differentiating with

respect to λ,

−〈C〉+ 2λ〈B2〉 = 0 (2.27)

λ =
〈C〉

2〈B2〉
. (2.28)
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Substitute equation (2.28) into equation (2.26)

〈A2〉 − 〈C〉
2〈B2〉

〈C〉+ [
〈C〉

2〈B2〉
]2〈B2〉 ≥ 0 (2.29)

〈A2〉 − 〈C〉
2

2〈B2〉
+
〈C〉2

4〈B2〉
≥ 0 (2.30)

〈B2〉 is non-negative, this can be seen by using the definition of an adjoint

〈µ|B†|φ〉 = 〈φ|B|µ〉, (2.31)

then 〈B2〉 can be expressed as

〈µ|B2|µ〉 = 〈µ|B2|µ〉 (2.32)

= 〈µ|B†B|µ〉. (2.33)

The above equation is the norm of vector B|µ〉. Due to the non-negativity of the norm,

we can conclude 〈B2〉 is positive.

Therefore

〈A2〉〈B2〉 − 〈C〉
2

2
+
〈C2〉

4
≥ 0 (2.34)

〈A2〉〈B2〉 ≥ 〈C2〉
4

. (2.35)

A is Hermitian and 〈A〉 is real. Therefore δA is Hermitian and similarly δB is Her-

mitian. 〈A〉 and 〈B〉 will commute with any operator. Therefore δA and δB must have

the same commutator as A and B. Then [δA, δB] = C[16]. If this commutator is now

used instead of the commutator of A and B we obtain

〈(δA)2〉〈(δB)2〉 ≥ 〈C〉
2

4
. (2.36)

Now rewrite the above expression using (2.21)

(∆A)2(∆B)2 ≥ 〈C〉
2

4
, (2.37)

∆A∆B ≥ |〈C〉|
2

. (2.38)

This result is the Heisenberg uncertainty principle. Consider two non-commuting observ-

ables A and B. We find that they cannot be measured without a minimum uncertainty
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of |〈C〉|2 .

For example, if position is measured then measurements can be taken of the momen-

tum but there will be some uncertainty present in these measurements. For the particular

case where C is an operator a non-zero real number A and B can have no simultaneous

eigenkets. The uncertainty principle is peculiar to quantum mechanics[16].

2.5 The Schrödinger and Heisenberg pictures.

Thus far we have not considered quantum dynamics, only a single instant in time. The

expectation value for an observable A when t = 0 is

〈A(0)〉 = 〈φ(0)|A(0)|φ(0)〉, (2.39)

while the expectation value at time t is

〈A(t)〉 = 〈φ(t)|A(t)|φ(t)〉, (2.40)

where |φ(t)〉 is a normalised ket which completely describes the state of the system at

time t.

It is useful at this point to introduce the concept of a picture in quantum mechanics.

There are two extreme cases. The first is the Heisenberg picture where the operators are

dependent on time. The state vectors are time independent. The Heisenberg picture is

defined by

d|φ〉
dt

= 0,
dA

dt
6= 0. (2.41)

The second is the Schrödinger picture. In this picture the state vectors are time-

dependent, while the operators are time-independent. Unless an operator is explicitly

dependent on time. The Schrödinger picture is defined by

dA

dt
=
∂A

∂t
. (2.42)

The transformation between pictures must be unitary to maintain the invariance of ob-

servables. Furthermore, it is required that the normalisation be independent of time[16].
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When

|φ(t)〉 = U(t)|φ(0)〉, (2.43)

A(t) = U †(t)A(0)U(t), (2.44)

the above conditions are satisfied. U(t) is a unitary operator, defined by

UU † = U †U = I, (2.45)

where I is the identity matrix and the dagger denotes the adjoint. The adjoint operator

A† of the operator A is defined by

〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗. (2.46)

It is postulated that the time evolution operator U(t) satisfies the equation[16],

i~
dU(t)

dt
= HU(t). (2.47)

If H is assumed to be independent of time the solution to the above equation is

U(t) = e
−iHt

~ . (2.48)

A common occurrence when working in the Schrödinger picture is to find a complete

set of commuting operators for the system which includes H. Therefore the basis kets

|φi〉 are also eigenkets of H. As a result

H|φi〉 = Ei|φi〉, (2.49)

where |φi〉 is the set of energy eigenkets and Ei denotes an energy eigenvalue[16].

When t = 0 the system is in the state |φ(0)〉. Now use the closure relation

|φ(0)〉 =

n∑
i=1

|ψi〉〈ψi|φ(0)〉 (2.50)

and the time evolution operator U(t) = e−
iHt
~ . Combining them we can write down |φ(t)〉

|φ(t)〉 =
∑
n

|ψn〉〈ψn|φ(0)〉e−
iHt
~ . (2.51)

If an energy eigenket is an initial state of the system, then |ψ(t)〉 can be written as

|ψ(t)〉 = |ψn〉e−
iEnt

~ , (2.52)
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where |ψ(t)〉 is still in the same eigenstate as |ψn〉[16].

We can now write the expectation value of observable A as

〈ψ(t)|A(0)|ψ(t)〉 = 〈ψn|A(0)|ψn〉. (2.53)

The above equation is independent of time. For this reason the energy eigenkets are

known as stationary states.

Now operate equation (2.47) on |φ(0)〉

i~
dU(t)

dt
|φ(0)〉 = HU(t)|φ(0)〉. (2.54)

But |φ(t)〉 = e−
iEnt

~ |φ(0)〉. Therefore

i~
d

dt
|φ(t)〉 = H|φ(t)〉, (2.55)

giving us the Schrödinger equation for the time evolution.

If H is conservative (independent of time), then the solution to the above equation is

U(t) = e−iH
t
~ . (2.56)

Take the time derivative of equation (2.43) and use the above solution

d

dt
A(t) =

d

dt
[U †(t)A(0)U(t)] (2.57)

=
d

dt
[e
iHt
~ A(0)e−

iHt
~ ] (2.58)

=
i

~
(HA(t)− e

iHt
~ A(0)He−

iHt
~ ). (2.59)

Now use equation (2.43). Then

d

dt
A(t) =

∂A

∂t
+
i

~
[H,A(t)], (2.60)

which is the equation of motion for the Heisenberg picture[16].

2.6 The density matrix

When working with a mixture of several quantum states, it is useful to use the density

matrix, as it is then straightforward to describe mixed states[17].
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Consider a simple mixed state for a two-level system with pure states |ψ1〉 and |ψ2〉.

The probability of the system being in a particular state is given by γ1 and γ2. The

density matrix for the system is[17],

ρ =
n=2∑
i

γi|ψi〉〈ψi|. (2.61)

If there were n possible states this would be generalised as

ρ =

n∑
i

γi|ψi〉〈ψi|. (2.62)

The density matrix can also be written as an operator. The density operator is a

linear operator that has the form of a matrix. The density matrix contains information

about the quantum state of a system as well as the uncertainty present[17].

The density operator ρ is said to be in a pure state if

Tr(ρ2) = 1 (2.63)

where the trace (Tr) is the sum of the diagonal elements in the density matrix. The

density operator is normalised if Tr(ρ) = 1. In general, the density operator can be

normalised as follows

ρ′ =
ρ

Tr(ρ)
, (2.64)

where ρ′ is the normalised density matrix[17].

Expectation values can also be written in terms of the density matrix. Let O be a

linear operator. The expectation value of O can be written as

〈O〉 = Tr(ρO). (2.65)

The expectation value for a pure state is

〈O〉 = 〈ψ|O|ψ〉. (2.66)

The expectation value for a mixed state ρ can be written as

〈O〉 = Tr(ρ O) (2.67)

=
∑
j

wj〈ψj |O|ψj〉, (2.68)



26

where wj is the probability of the system being in state |ψj〉.

Then, the scalar product can be written in terms of the density matrix

|〈φ, ψ〉|2 = 〈φ|ψ〉〈ψ|φ〉 (2.69)

= 〈φ|ρ|φ〉. (2.70)

The scalar product, |〈φ, ψ〉|2 = Tr(ρPφ), where Pφ = |φ〉〈φ|. Pφ is called the projector

operator of the state |φ〉.

The time evolution of the density operator for a pure state is defined by

[H, ρ] = i~
∂ρ

∂t
. (2.71)

This equation is called the von Neuman equation. When the von Neuman equation is

satisfied, the pure states evolve under Schrödinger evolution, namely the Schrödinger

picture. The time evolution can also be represented in the Heisenberg picture,

ρ(t) = U †ρs(t)U. (2.72)

Now that time evolution and the scalar product have been defined, it is necessary to

consider pure and mixed states in greater detail. A density matrix can be written as a

linear combination of pure states. For example, a two-level system can be written as,

ρ = wρ1 + (1− w)ρ2, (2.73)

where ρ1 and ρ2 are pure states and w is the weight (probability) of the system being in

the first state. Therefore,

ρ1 + ρ2 = 1. (2.74)

If a state is pure the trace of the density matrix will be one. However, if a state is

mixed, the trace of the density matrix will be less than one. A measure of how mixed a

state is can be gained using[17]

M = Tr(ρ2). (2.75)
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By means of a density matrix, quantum states can be broken into pure or mixed states

and can then be treated appropriately. In particular, the density matrix is useful for a

compound system, one with many subsystems, that is difficult to treat without using the

density matrix.
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Chapter 3

Non-Hermitian quantum

mechanics

In quantum mechanics it is a requirement that the Hamiltonian must be Hermitian. This

is to ensure that the eigenvalues associated with the Hamiltonian are real. However, it

has been shown that a Hermitian Hamiltonian is not a necessary condition to guarantee

real eigenvalues for the Hamiltonian. There are two other approaches that can be taken.

The first has been developed primarily by Bender and associates and utilises space-time

reflection symmetry[1]. This is known as PT -symmetry. An alternative approach was

developed by Mostafazadeh who works with pseudo-Hermitian Hamiltonians[6]. Pseudo-

Hermitian Hamiltonians have real and positive eigenvalues[6], [11].

3.1 Historical development of non-Hermitian theories

One of the earliest uses of non-Hermitian Hamiltonians was by Wu in 1959. By making

use of a non-Hermitian Hamiltonian, Wu found that the ground state energy of Bose

spheres was no longer divergent. Wu made no attempt to justify his use of a non-

Hermitian Hamiltonian; he merely used it since it provided the correct results[18].

In 1967 Wong attempted to define a class of physically reasonable Hamiltonians[19].

He had noticed that the Hamiltonian of a closed system is Hermitian, but if the system

is perturbed the Hamiltonian is no longer Hermitian. Wong then proceeded by defining
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a perturbed Hamiltonian

H = H0 + gH, (3.1)

where g varies the influence of H. It is unclear with this class of Hamiltonian whether

complex eigenvalues are allowed, yet there is no justification for their admission on phys-

ical grounds.

A significant paper in the development of non-Hermitian quantum mechanics was the

publication by Haydock and Kelly in 1975[20]. They stated that while the Hermitian

condition was sufficient to ensure real eigenvalues, it was not necessary and sufficient.

This is very significant in the development of non-Hermitian quantum mechanics, as a

necessary and sufficient condition for real eigenvalues is obviously desirable.

While progress was made, for example a probability-conserving algorithm[21], the

next big step forward had to wait until 1997. This advance was a justification for the

use of complex eigenvalues. Here Hatano and Nelson[22] justified the use of complex

eigenvalues to “apply depinned field lines of a non-Hermitian external magnetic field to

a type II semiconductor.”

The following year Schrödinger operators with complex potentials but real eigenvalues

were found[23]. Such potentials with real eigenvalues are of interest, since any physically

acceptable non-Hermitian theory must have real eigenvalues or, if not, account for com-

plex eigenvalues in some way.

3.2 Applications

Non-Hermitian quantum mechanics has been applied to a wide variety of fields includ-

ing: field theory, statistical mechanics, quantum optics, and of particular interest to this

review, open quantum systems[24].

Quantum optics, in particular, is a very useful field when considered in conjunc-

tion with non-Hermitian quantum mechanics: in large part because theories from non-

Hermitian quantum mechanics can be implemented and studied in an environment that
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is more easily controlled. An example of this can be seen in[25], which investigates the

behaviour of parity-time symmetry.

The two most popular approaches to non-Hermitian quantum mechanics are Mostafazadeh’s

pseudo-Hermitian Hamiltonians and Bender’s PT -symmetric as well as his CPT -symmetric

approach. Both approaches have been applied to many fields and are now discussed in

more detail.

3.3 PT -symmetry and CPT -symmetry

PT -symmetric quantum mechanics was introduced by Bender and Boettcher. This dis-

cussion of PT -symmetry and CPT -symmetry is heavily based on the work of Bender

and collaborators.

Interest in PT -symmetric Hamiltonians began after Bessis made the conjecture that

the Hamiltonian[5],

H = p2 + x2 + ix3, (3.2)

has a real and positive spectrum and hence real and positive eigenvalues, where p is the

momentum operator and x is the position coordinate[5]. Bender and Boettcher claim

that the reality of the spectrum is due to PT -symmetry. There is no rigorous proof of

this claim.

These Hamiltonians are called PT -symmetric because they are invariant under a

parity and time reversal transformation,

[H,PT ] = 0. (3.3)

However, under a time or a parity transformation the Hamiltonian is not necessarily

invariant[1]. The parity operator has the following effect

P : x → −x (3.4)

p → −p. (3.5)

The effect of the time reversal operator is,

T : x → x, (3.6)
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p → −p, (3.7)

i → −i. (3.8)

The sign of the complex component changes when the time-reversal operator is ap-

plied; as a result, the canonical commutation relation holds[1],

[x, p] = i. (3.9)

This is relevant as the commutation relation is central to Hermitian quantum mechanics

and means that Heisenberg algebra still applies. Bender and associates modified equation

(3.2), arriving at a new class of Hamiltonian that is infinite in extent,

H = p2 + x2(ix)n, (3.10)

where n is real[1]. This class of Hamiltonian is PT -symmetric and hence invariant under

a PT -transformation.

Using numerical methods this class of Hamiltonian has been found to have real and

positive eigenvalues when n ≥ 0 [5]. A mixture of real eigenvalues and complex eigen-

values occur when n < 0. As n becomes more negative the number of pairs of complex

eigenvalues increases until there are only complex pairs of eigenvalues. This was verified

by Bender and associates numerically[1].

If the PT -symmetry of the Hamiltonian is unbroken, then the Hamiltonian H has

a real spectrum and the PT -operator will commute with H. Then assume that, the

PT -operator and the Hamiltonian have simultaneous eigenkets with φ (diagonalisable).

Using the above, it is possible to prove that the eigenvalues of the Hamiltonian are real[1].

If PT and H commute then,

PTH = HPT. (3.11)

Now operate from the right-hand side with TP . Then

PTHTP = H. (3.12)
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The above equation is PT invariant since (TP )† = PT and P and T are unitary.

Now we write down the time-independent Schrödinger equation,

H|φi〉 = Ei|φi〉. (3.13)

Apply the PT transformation to equation (3.13)

PTHTP |φi〉 = PTEiTP |φi〉, (3.14)

but TEiT = E∗i and P 2 = I. Therefore,

PTHTP |φi〉 = E∗i |φi〉. (3.15)

Now use equations (3.10) and (3.11) to yield

E|φi〉 = E∗i |φi〉. (3.16)

Therefore, E = E∗i hence the eigenvalues are real, Ei ε <.

From this analysis it seems clear that a non-Hermitian Hamiltonian that is PT -

symmetric will have real eigenvalues. However, it is not at all clear whether PT -

symmetric Hamiltonians define a physical theory. Bender and associates’ definition of a

physical theory requires two conditions to be satisfied. The first requires a Hilbert space

of state vectors. An inner-product with a positive definite norm is the second[1].

The first condition appears to be satisfied on numerical grounds. PT -symmetric

Hamiltonians are not positive definite and this is problematic as the inner-product is

traditionally viewed as a probability in Hermitian quantum mechanics.
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Bender and associates[1] identified an underlying symmetry that is common to all

PT -symmetric Hamiltonians with unbroken symmetry. By introducing a new operator

C it was found that a new dynamically determined inner-product could be defined. This

dynamically determined inner-product begins with the derivation of the new operator C.

Bender and his associates[1] began their derivation of C by examining the Sturm-

Liouville differential equation, where the Hamiltonian is

H = p2 + x2(ix)ν , (3.17)

where ν ≥ 0.

The Sturm-Liouville equation is

−φn(x) + x2(ix)νφn(x) = Enφn(x). (3.18)

In[1] the crucial features of of the Sturm-Liouville equation are summarised, namely

that, the eigenfunctions of the Hamiltonian φn(x), are simultaneous eigenstates of the

PT -operator

PTφn(x) = λnφn(x). (3.19)

Bender incorporates the pure phase λn into the eigenvalue φn, the new eigenvalue

can then be made unity using multiplicative rescaling results in,

PTφn(x) = φ∗n(−x) (3.20)

= φn(x). (3.21)

The standard completeness relation is not satisfied by a PT -symmetric non-Hermitian

Hamiltonian with real eigenvalues. Therefore, we require a new completeness relation,∑
n

(−1)nφn(x)φn(y) = δ(x− y), (3.22)

where x, y ε <. This result was verified by Bender and associates numerically[1]. How-

ever, no information on how it was verified was included.

The validity of the new completeless relation is unclear. It remains an open mathe-

matical question[26].
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(f, g) =

∫
dx[PTf(x)]g(x), (3.23)

has been proposed where f(x) and g(x) are functions associated with PT -symmetric

systems. The inner-product (f, f) seems desirable as it is conserved in time[1].

The inner-product of the Hamiltonian’s eigenfunctions, φm and φn, is

(φm, φn) = (−1)nδmn. (3.24)

This inner-product has norms that are ±1 and there are equal numbers of both, resulting

in serious problems as a negative probability has no physical meaning. A consistent phys-

ical theory requires a positive definite norm to ensure that the eigenvalues are bounded.

The problem of the negative norm was tackled by looking for an underlying symme-

try. Bender claimed that any Hamiltonian with an unbroken PT -symmetry will have an

underlying symmetry. The equal numbers of positive and negative norm states connected

to the Hamiltonian, form the underlying symmetry.

A new operator C was introduced by Bender and associates to describe this symmetry.

This new operator must be linear and can be represented in the position space by writing

it as a sum over the energy eigenstates of the Hamiltonian[1]

C(x, y) =
∑
n

φn(x)φn(y). (3.25)

The new operator has eigenvalues of ±1. In addition it commutes with the Hamiltonian

H and the PT -operator and C2 = I. Since C commutes with H the eigenstates of H

will have a definite value of C[1]. These properties are similar to the charge conjugation

operator, hence both are called C.

The parity operator can be constructed in terms of eigenstates and is[1]

PT (x, y) =
∑
n

(−1)nφn(x)φn(−y). (3.26)

The parity operator P is real while C is complex. In addition P and C do not

commute. This can be expressed in the position representation as[1]
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(CP )(x, y) =
∑
n

φn(x)φn(−y) (3.27)

and

(PC)(x, y) =
∑
n

φn(−x)φn(y). (3.28)

If we examine these equations we see that

CP = (PC)∗. (3.29)

Despite this C commutes with the PT operator.

Now that the new operator C has been defined to explain the underlying symmetry,

it is possible to define a new inner-product. The new inner-product is dynamically

determined and must be positive definite and is defined by[1]

〈f |g〉 =

∫
c
dx[PTf(x)]g(x). (3.30)

Dynamically determined inner-products differ from the standard Hermitian inner-

product as they depend on the Hamiltonian. The new inner-product is positive definite

as the operator C contributes -1 to states with a negative PT -norm[1]. In addition it

is phase independent and conserved in time. If the parameter n tends towards zero,

then the Hamiltonian equation (3.10) becomes Hermitian, the CPT operator becomes

T which has the effect of complex conjugation on the Hamiltonian. However, since the

Hamiltonian is now Hermitian there is no change. It is promising that the dynamically

determined inner-product reduces to the standard inner-product from Hermitian quan-

tum mechanics.

A new completeness relation is required, this is stated below,

∑
n

φn(x)[CPTφn(y)] = δ(x− y). (3.31)

3.4 Pseudo-Hermiticity

In 2002 Mostafazadeh introduced the idea of pseudo-Hermiticity and showed that all

Hamiltonains with a real spectrum are in fact pseudo-Hermitian. Before defining pseudo-

Hermicity it is necessary to make an assumption. We work in a complex inner-product
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space[6], where we will be introducing automorphisms in our discussion of pseudo-Hermiticity.

(An automorphism is an invertible operator that maps an inner-product space onto

itself)[6]. Let |φ〉 and |ψ〉 be arbitrary kets. Then we define a Hermitian linear au-

tomorphism η̂ which must obey[11]

〈φ|ηψ〉 = 〈φη|ψ〉, (3.32)

where η̂ is an invertible operator.

Let A be an operator with an adjoint A†. and a pseudo-Hermitian adjoint[6] A#,

where A# is defined by

A# = η−1A†η. (3.33)

If A is a pseudo-Hermitian operator it satisfies[6]

A = A#. (3.34)

Mostafazdeh introduces several propositions that serve to provide the mathematical

framework necessary to work with pseudo-Hermitian Hamiltonians[6]. He first introduces

the indefinite inner-product and proposes that it will be invariant under a time translation

generated by the Hamiltonian H, if and only if the Hamiltonian is η-pseudo-Hermitian.

〈〈φ|ψ〉〉η = 〈φ|η|ψ〉, A|φ〉, |ψ〉 ε H. (3.35)

In order to prove this result, it should be noted that η-pseudo-Hermiticity of H is

equivalent to

H† = ηHη−1. (3.36)

Now use the Schrödinger equation

i
d

dt
|ψ(t)〉 = H|ψ(t)〉 (3.37)

and its inverse

i
d

dt
〈φ(t)| = 〈φ(t)| −H†. (3.38)

Combining these equations

i
d

dt
〈〈φ(t)|ψ(t)〉〉η = 〈〈φ(t)|H −H†|ψ(t)〉〉η. (3.39)

Now let

i
d

dt
|ψ1(t)〉 = H|ψ(t)〉 (3.40)
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and

i
d

dt
〈φ1(t)| = 〈φ(t)| −H†. (3.41)

Then,

〈φ1(t)|η|ψ2(t)〉 = 〈φ(t)|ηH −H†η|ψ(t)〉. (3.42)

Therefore,

i
d

dt
〈〈φ(t)|ψ(t)〉〉η = 〈φ(t)|ηH −H†η|ψ(t)〉. (3.43)

For the indefinite inner-product to be invariant in time, equation (3.36) must hold. If

equation (3.36) holds, then 〈〈φ(t)|ψ(t)〉〉η is a constant. An additional observation made

by Mostafazadeh noted that if η̂ = 1̂, equation (3.36) reduces to H† = H, which is the

condition for Hermiticity of the Hamiltonian[6]. This observation is encouraging and

suggests that pseudo-Hermiticity may indeed be a generalisation of Hermitian quantum

mechanics.

Now the implications of equation (3.36) can be investigated. The Eigenvalue equation

of H and its adjoint are,

H|Ei〉 = Ei|Ei〉 (3.44)

〈Ei|H† = 〈Ei|E∗. (3.45)

Now the indefinite inner products can be formed by making use of the above equations

and equation (3.36),

〈〈Ei|H|Ej〉〉η = Ej〈〈Ei|Ej〉〉η (3.46)

〈〈Ei|H†|Ej〉〉η = E∗i 〈〈Ei|Ej〉〉η. (3.47)

Subtract and use η̂H = H†η̂ then,

0 = (E∗i − Ej)〈〈Ei|Ej〉〉η. (3.48)

Equation (3.48) implies that an η-pseudo-Hermitian Hamiltonian will have a vanishing

η-semi-norm if the eigenvectors have non-real eigenvalues Ei /∈ <[6]. Then

|||Ei〉||2η = 〈〈Ei|Ei〉〉η = 0. (3.49)

If any two eigenvalues are not complex conjugates, then the two eigenvectors will be

η-orthogonal[6]. If Ei 6= E∗j then
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〈〈Ei|Ej〉〉η = 0. (3.50)

Thus, eigenvectors with non-degenerate real eigenvalues will be η-orthogonal.

Mostafazadeh made a series of propositions, which are stated here without proof[6].

The first states that if V is an inner-product space with a linear automorphism η and

linear operators O1 and O2, then[6]

1. 1# = 1,

2. (O#
1 )# = O1,

3. (z1O1 + z2O2)# = z∗1O
#
1 + z∗2O

#
2 ,

where z1 and z2 are complex numbers.

Now if we have an inner-product space V(1,2,3) with linear automorphism and η(1,2,3)

with linear operators O1 : V1 → V2, O2 : V2 → V3 and η(1,2,3), then

(O2O1)# = O#
1 O

#
2 .

A Hermitian linear automorphism η is defined as,

η = U †ηU, (3.51)

where U is a unitary operator. If O is a linear operator, then it is η-pseudo-Hermitian if

and only if[6]

O = U †OU. (3.52)

As a result Mostafazadeh states[6] that pseudo-Hermiticity is unitary invariant.

Now if η1 and η2 are linear automorphisms, then

O# = η−1
1 O†η1 = η−1

2 O†η2 (3.53)

if and only if η1 and η2 commute with O.

The propositions introduced above provide the mathematical structure that defines

the behaviour of pseudo-Hermitian Hamiltonians. In the next section the necessary

condition for a real eigenspectrum is shown.
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3.5 The necessary condition for a real eigenspectrum

The linear automorphism is given by

η =
∑
n0

dn0∑
a=1

|φn0 , a〉〈φn0 , a|+
∑
n+

dn+∑
α=1

(|φn− , α〉〈φn+ , α|+ |φn+ , α〉〈φn− , α|). (3.54)

The inverse is

η−1 =
∑
n0

dn0∑
a=1

|ψn0 , a〉〈ψn0 , a|+
∑
n+

dn+∑
α=1

(|ψn− , α〉〈ψn+ , α|+ |ψn+ , α〉〈ψn− , α|). (3.55)

The derivation of the linear automorphism can be found in the appendix.

The linear automorphism and its inverse satisfy the condition for pseudo-Hermiticity,

H† = ηHη−1, where H is the Hamiltonian[6].

Mostafazadeh introduced an additional theorem[6] which states: “if H is a non-

Hermitian Hamiltonian with a discrete spectrum and has a complete biorthonormal

eigenbasis, then H is pseudo-Hermitian if and only if one of the following conditions

hold”:

1. “The spectrum of H is real.”

2. “The complex eigenvalues come in complex conjugate pairs and the multiplicity of

the eigenvalue pairs is the same.”

It has been shown that all pseudo-Hermitian Hamiltonians satisfy the points above.

If in addition, the Hamiltonian has a complete biorthonormal eigenbasis, that provides

the necessary and sufficient condition for pseudo-Hermiticity. To ensure a real spectrum,

pseudo-Hermiticity is required but is not a sufficient condition on its own. Mostafazadeh

introduced a necessary and sufficient condition to ensure a real spectrum for pseudo-

Hermitian Hamiltonians with a complete set of biorthonormal eigenvectors[7].

Mostafazadeh then introduced another theorem[7]. “Let H:H → H be a Hamiltonian

that acts on a Hilbert space H. The Hamiltonian must have a discrete spectrum while

allowing a complete set of biorthonormal eigenvectors {|ψn〉, |φn〉}”. The spectrum of H

will then be real if and only if there is an invertible linear operator O:H → H picked so
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that H is OO†-pseudo-Hermitian.

Proof:

H|ψn〉 = En|ψn〉, (3.56)

H†|φn〉 = E∗n|φn〉, (3.57)

〈φm|ψm〉 = δmn, (3.58)∑
n

|ψn〉〈φn| = 1. (3.59)

Then O:H → H and H0 : H → H can be defined by

O =
∑
n

|ψn〉〈n| (3.60)

and

H0 =
∑
n

En|n〉〈n|. (3.61)

By inspecting equation (3.60) we can see that the inverse will be

O−1 =
∑
n

|n〉〈φn| (3.62)

and

O−1HO = H0. (3.63)

To prove this result begin with

O−1HO =
∑
n

(|n〉〈φn|H|ψn〉〈n|) (3.64)

=
∑
n

(|n〉〈φn|En|ψn〉〈n|) (3.65)

= En|n〉1̂〈n| (3.66)

=
∑
n

En|n〉〈n| = H0 (3.67)

3.6 A comparison of CPT -symmetry and pseudo-Hermiticity

The most interesting question is whether CPT -symmetry is in fact a subclass of pseudo-

Hermiticity. Mostafazadeh claims that it is. He went on to prove that all diagonalisable

linear operators with a discrete spectrum will have an anti-linear symmetry, leading him

to the following two corollaries[8]:
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1. Any diagonalisable linear operator that possesses a discrete spectrum (real eigen-

values) is anti-pseudo-Hermitian.

2. Any diagonalisable pseudo-Hermitian linear operator that posseseses a discrete

spectrum will have anti-linear symmetry.

Since all PT -symmetry is an anti-linear symmetry, then PT -symmetric Hamiltonians

imply that η-pseudo-Hermiticity is present [27]

η = τPT, (3.68)

where τ̂ is an anti-linear operator that obeys the relationship

〈φ|τ |ψ〉 = 〈ψ|τ |φ〉. (3.69)

This goes a long way to backing up Mostafazadeh’s claim that pseudo-Hermiticity

is the more general of the two frameworks. Mostafazadeh made further motivations

asserting that pseudo-Hermiticity is the more general framework. The first involved

showing that the PT -symmetric physical quantities can be constructed using the pseudo-

Hermitian quantisation scheme.

He further claimed that it is more practical to use the pseudo-Hermitian framework,

rather than working in the PT -symmetric framework directly. The fact that a PT -

symmetric theory can be constructed in the pseudo-Hermitian framework adds weight to

Mostafazdeh’s claim that pseudo-Hermitian quantum mechanics is the more general of

the two.

3.7 A comparison of PT -symmetry and Hermiticity

Bender and collaborators claimed that PT -symmetry is a more general form of quantum

mechanics than Hermitian quantum mechanics[27]. More details on these claims can be

found in [1].

Bender asserted that:

1. the PT -symmetric and the CPT -symmetric together form a physically reasonable

alternative to Hermitian quantum mechanics.
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2. all Hermitian Hamiltonians are PT -symmetric: this was stated but not proved.

3. PT -symmetric Hamiltonians can be used to define real energy eigenvalues for a

quantum system. In addition, unitary time evolution can be defined if the CPT -

inner product is used to define a Hilbert space.

A critique of PT -symmetric quantum mechanics was published by Mostafazadeh in

2004[27]. He attempted to show that CPT -symmetric quantum mechanics is not an ex-

tension of Hermitian quantum mechanics nor an alternative to it.

Mostafazadeh[27] began by making the following point: For an energy eigenvalue to

represent the position of a particle it must be associated with a linear operator which in

turn must be the observable for position. This is as a direct result of the postulates of

quantum mechanics. This has not been adhered to in the formulation of PT -symmetric

quantum mechanics (PTSQM).

The problem becomes clear when we consider the Schrödinger equation[
− d2

d2x
+ x2(ix)ν

]
φn(x) = Enφn(x). (3.70)

Bender and collaborators showed that the Schrödinger equation satisfied the boundary

conditions and was orthogonal with respect to PT -symmetric and CPT -symmetric inner

products.

The positive definite inner product is defined by

〈ψ|φ〉+ =

∫
C
dx [CPTψ(x)]φ(x). (3.71)

The problem in the PT -symmetric formulation is that x is not necessarily position.

While in quantum mechanics x is associated with position, this stems from the postu-

lates. The question is then open as to what physical meaning does x have[27].

If x is to be the position operator in quantum mechanics, then PT -symmetric quan-

tum mechanics must be formulated as a physical theory. Mostafazadeh[27] asked the

following questions:

1. “what is the mathematical nature of state vectors?”
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2. “what are observables?”

3. “how are observables measured?”

4. how do PT -symmetric theories relate to known theories?

In need of clarification is the definition of Hermiticity. There is some ambiguity in

PT -symmetric quantum mechanics. The rigorous definition for Hermicity is

〈ψ|Aφ〉 = 〈Aψ|φ〉, (3.72)

where φ and ψ form an orthonormal basis. In Hermitian quantum mechanics

Aij = A∗ji (3.73)

is equivalent since the Hilbert space has a fixed inner product and orthonormal basis.

In contrast, in PT -symmetric quantum mechanics, the inner product is not fixed, nor

are the observables[27]. Equation (3.73) should therefore not be used as a condition for

Hermiticity since (3.73) is basis dependent.

If we go on to choose the same measurement theory as quantum mechanics, then ob-

servables have to be defined as Hermitian operators acting on the Hilbert space. These

differ from Bender and collaborators’ CPT -invariant operators [29].

If the above theory of observables is applied, then the operators x̂ and p̂ in the

Schrödinger equation are not physical observables. This is due to the fact that they are

not Hermitian when the inner product (3.71) is used.

Mostafazadeh asks the question what are the position and momentum operators in

PT -symmetric quantum mechanics?

Mostafazadeh uses a textbook result for a Hilbert space[27]: “up to some isomor-

phism there is a unique infinite-dimensional separable Hilbert space”, where L2(<) is the

Hilbertspace. The significance of this result is in the fact that for some unitary linear

transformation U [27],

U : H → L2(<), (3.74)
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that satisfies

〈ψ|φ〉 = 〈Uψ|Uφ〉, (3.75)

where φ and ψ are arbitrary ∈ H.

Use the unitary equation (3.75) to construct physical observables for PT -symmetric

quantum systems using the Hamiltonian

H = p2 + x2(ix)ν , (3.76)

where ν ∈ <+.

The form of the new operators is [27]

O = U−1OU, (3.77)

where the Hermitian operator O, acts in L2(<).

The above equation gives the structure for observables in PT -symmetric quantum

mechanics. Using this structure Mostafazadeh went on to show that PT -symmetric

quantum mechanics reduces to Hermitian quantum mechanics.

If L2(<) is the Hilbert space, then the PT -symmetric system can be described in

terms of Hermitian quantum systems. The Hamiltonian is

H = UHU−1 (3.78)

and the observable O is

O = UOU−1. (3.79)

Since PT -symmetric quantum mechanics reduces to Hermitian quantum mechanics, we

can conclude that PT -symmetric quantum mechanics does not serve for a fundamental

physical theory.

Mostafazadeh argued that CPTSQM (CPT-symmetric quantum mechanics) can be

reduced to ordinary quantum mechanics by using similarity transformations. He then

concluded that CPTSQM is equivalent to Hermitian quantum mechanics. While inter-

esting that CPTSQM reduces in this way, it is just as interesting to consider whether
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one can transform from non-Hermitian quantum mechanics to PTSQM.

Mostafazadeh attempted to address this problem in his 2004 paper [28]. In it he

attempts to show the unitary equivalence between PTSQM and Hermitian quantum me-

chanics. In addition, he demonstrates that Hermitian Hamiltonians can be recovered

from every PT -symmetric Hamiltonian.

Bender and collaborators followed Mostafazadeh’s paper with one of their own in 2006.

They acknowledged that PT -symmetric systems are equivalent to Hermitian systems.

They then went on to examine the efficiency of the two frameworks for calculation[29].

Mosatafazadeh has made compelling arguments against PTSQM being considered a

fundamental physical theory and it does seem unlikely that PTSQM will become one.

However, this does not mean that PTSQM cannot be used to perform calculations effi-

ciently, even if it does not constitute a new theory[29].

Bender and his collaborators have not provided any convincing counter arguments

that CPT -symmetric quantum mechanics should be seen as a fundamental physical the-

ory. Yet, it is of use as a scheme for efficient calculations in certain circumstances.
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Chapter 4

Application of non-Hermitian

theories to a two-level system

Open quantum systems interact with the environment. This interaction is typically mod-

eled by coupling a subsystem (system of interest) to a heat bath. In numerical models,

the heat bath is typically made up of a large number of harmonic oscillators, and thus,

has many degrees of freedom. In reality, all systems are open quantum systems, as all

systems are coupled to the environment to some degree.

We will make use of a non-Hermitian framework for ease of computation. First the

equations of motion will be discussed, before considering a two-level system.

A non-Hermitian Hamiltonian approach is adopted, together with a two-level system

that is coupled to a dissipative environment (open quantum system). The population

change and the coherence that are then present in the system can be calculated when us-

ing an appropriate model that utilises the non-Hermitian approach discussed in the next

section. If the phase angles between the components of a quantum system are ordered,

then the components are said to be coherent. Population difference is the difference

in population between states. For the two-level system, there are only two states: the

ground state and the excited.
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4.1 Non-Hermitian dynamics

Non-Hermitian quantum mechanics has interesting applications to open quantum sys-

tems. In particular, non-Hermitian theories can be used as tools to model the behaviour

of open quantum systems.

Previous approaches utilising non-Hermitian theories make use of quantum trajectory

jumps to represent the dynamics of the open quantum system[9]. Thus far in this review

of non-Hermitian theories, PT -symmetric and pseudo- Hermitian approaches have been

examined. An additional approach put forward by Sergi[9] introduces a general structure

for non-Hermitian equations of motion. This general structure allows the time evolution,

to be defined in terms of a non-Hermitian Hamiltonian. Utilising non-Hermitian evolu-

tion allows for a computational advantage: the number of degrees of freedom constituting

the bath can be reduced.

Let Ĥ be a non-Hermitian Hamiltonian, Ĥ 6= Ĥ†. The time evolution for an arbitrary

quantum observable χ̂ is given by

−i~ d
dt
ρ̂ = [ρ̂, Ĥ]. (4.1)

Equation (4.1) is a statement of Heisenberg’s law of evolution for observables. It can be

rewritten in matrix form as[9]

−i~ d
dt
ρ̂ =

(
ρ̂ Ĥ

) 0 1

−1 0

 ρ̂

Ĥ

 .

Let Ω, the sympletic matrix be defined as[9]

Ω =

 0 1

−1 0

 .

−i~ d
dt
ρ̂ = ρ̂T

Ĥ
.Ω.ρ̂Ĥ (4.2)

=
[
ρ̂(t), Ĥ

]
Ω
. (4.3)

The column vector is

ρĤ =

 ρ̂

Ĥ

 .
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The right-hand side of equation (4.2) highlights the underlying anti-symmetric nature

of the quantum evolution[9]. Sergi goes on to propose that more general algebras and

brackets can be defined by modifying the sympletic matrix Ω.

Now, split the Hamiltonian into its Hermitian and non-Hermitian portions

Ĥ = Ĥ+ + Ĥ−, (4.4)

where Ĥ+ = 1
2

(
Ĥ + Ĥ†

)
and Ĥ− = 1

2

(
Ĥ − Ĥ†

)
.

Then, the commutator can be split into two parts[9],[
ρ̂, Ĥ

]
=
[
ρ̂, Ĥ+

]
+
[
ρ̂, Ĥ−

]
. (4.5)

By exploiting the separation of the commutator, it can be shown that the commutator

of an operator with a non-Hermitian Hamiltonian is equivalent to a non-Hamiltonian

operator. One begins by defining the anti-symmetric matrix operator[9],

Ω−+ ≡

 0 1 + Ĥ−(Ĥ+)−1

−1− (Ĥ−1
+ Ĥ−) 0

 .

Then, [
ρ̂, Ĥ

]
Ω
≡ ρ̂T

Ĥ+
.Ω−+.ρ̂Ĥ+

(4.6)

=
[
ρ̂(t), Ĥ+

]
Ω−+

, (4.7)

where

ρĤ+
=

 ρ̂

Ĥ+

 .

Equation (4.7) contains a non-Hamiltonian commutator. Of particular interest are

equations (4.6) and (4.7) which show the mapping between the commutator with a non-

Hermitian Hamiltonian Ĥ and also the non-Hamiltonian commutator, which is defined

in terms of Ĥ+[9].

When working with non-Hermitian dynamics, the equivalence between the Heisen-

berg and Schrödinger picture is lost. From this point onwards, we will work in the
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Schrödinger picture. In Schrödinger’s picture, starting from the equations of motion for

state vectors[9],

| d
dt
ρ〉 = − i

~
Ĥ+|ρ〉+

Γ̂

~
|ρ〉, (4.8)

〈ρ d
dt
| = i

~
〈ρ|Ĥ+ + 〈ρ| Γ̂

~
, (4.9)

where Γ̂ is a Hermitian operator defined by Γ̂ = −iĤ−.

The equation of motion for the density matrix, that contains an anti-commutator

[..., ...]+ is
d

dt
ρ̂ = − i

~

[
Ĥ+, ρ̂(t)

]
− i

~

[
Γ̂, ρ̂(t)

]
+

(4.10)

but since Γ̂ = −iĤ−,

Ĥ− = iΓ̂. (4.11)

Make use of (4.11) and rewrite the equation of motion in matrix form

−i~ d
dt
ρ̂(t) = ρT

Ĥ+
.Λ.ρĤ+

(4.12)

=
[
ρ̂(t), Ĥ+

]
Λ
, (4.13)

where Λ is the general matrix operator defined by,

Λ =

 0 1 + iΓ̂(Ĥ+)−1

−1 + i(Ĥ+)−1Γ̂ 0

 .

If the inverse of H+ exists then the logic leading to non-Hamiltonian dynamics equa-

tion (4.6) can be reversed and we can get back to non-Hermitian dynamics[9]. It can

be shown that from an arbitrary Hermitian Hamiltonian, it is possible to define non-

Hermitian dynamics.

Let H be an arbitrary Hermitian Hamiltonian: since H is Hermitian it has a real

spectrum of eigenvalues. Let ζ̂ be a non-Hermitian operator. Then,

ζ̂ 6= ζ̂†. (4.14)
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Now let Ωζ be an anti-symmetric non-Hermitian matrix,

Ωζ =

 0 ζ̂

−ζ̂T 0

 .

A non-Hermitian evolution can be defined for any observable by using this anti-

symmetric matrix[9]. The non-Hermitian evolution is defined in terms of a non-Hermitian

commutator.

i~
d

dt
ρ̂(t) = ρT

Ĥ
.Ωζ .ρĤ (4.15)

=
[
ρ̂(t), Ĥ

]
Ωζ
, (4.16)

where

ρĤ =

 ρ̂

Ĥ

 (4.17)

is a two-dimensional column vector.

Equations (4.15) and (4.16) define a way to go from a general Hermitian Hamiltonian

to defining non-Hermitian dynamics in terms of the Hermitian Hamiltonian.

4.2 Conserved quantities and mixed states

Conserved quantities are quantities, within the system, that do not change in time. We

begin by finding the change-of time-law for the determinant of the density operator[10].

This is done using the evolution equation and the matrix identity lndetB̂ = trlnB̂.

Now applying the identity to the evolution equation produces

∂

∂t
detρ̂(t) =

2

i~
detρ̂(t)trĤ−. (4.18)

Then integrate,

detρ̂(t) = detρ̂(0)e( 2
~ t)trΓ̂. (4.19)

Here Γ̂ is a self-adjoint operator, called the decay-rate operator [10]. If trΓ̂ ≤ 0, then at

large times the determinant will in the end have zero determinant state. The behaviour

of the trace is particularly significant: if the trace vanishes then the evolution does not

lead to a sink dynamics[10].
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The rate of evolution of the purity operator is given by[10]

∂

∂t
P (ρ̂) =

4

~
<(ρ̂, Γ̂)

(trρ̂)3
, (4.20)

where

<(ρ̂, Γ̂) ≡ tr(ρ̂2Γ̂)trρ̂− tr(ρ̂Γ̂)tr(ρ̂2). (4.21)

Sergi and Zloshchastiev[10] noted that the purity is conserved under general non-

Hermitian evolution if <(ρ̂, Γ̂) = 0; this condition depends on the state of the system.

They go on to show that for a two-dimensional Hilbert space, purity is conserved for all

states that have an initial density matrix with a zero-determinant[10].

If a state is not pure then it is a mixed state. Mixed states are simply the mixture of

several states (statistical ensemble) which are described by density matrices

ρ̂(i) = |ψi〉〈ψi|. (4.22)

This mixture of states can then be expressed as a linear combination, where the

coefficients ρi must satisfy the normalisation condition

ρ̂ =
∑
i

piρ̂
(i). (4.23)

For time-dependent functions[10]

p
′
i(t) ≡ pi

tr(ρ̂i(t))

tr(ρ̂(t))
, 0 ≤ pi(t) ≤ 1. (4.24)

If at t = 0, pi and ρ
′
i(0) have equal traces, then pi = ρ

′
i(0). The normalization

condition is then, ∑
i

p
′
i(t) = 1. (4.25)

The expression for a mixed state can now be written as

ρ̂′(t) =
∑
i

pi(t)ρ
′

(i)(t). (4.26)

4.3 A two-level non-Hermitian system

A system with two possible states is termed a two-level system. Since there are only two

states, the system must be in either the ground state, or the excited state. While a simple

system, it is used often to explain physical phenomen. A famous example of a two-level

system is spin, spin half particles have only two energy levels and are an example of a
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natural two-level system.

The system to be considered is a non-Hermitian two-level system that is used by Sergi

and Zloschastiev[10]: where the ground state and the excited state are denoted as |g〉

and |e〉 respectively. The Pauli operators keep their standard form[10],

σ̂x = |e〉〈g|+ |g〉〈e| =

 0 1

1 0

 ,

σ̂y = i(|e〉〈g| − |g〉〈e|) =

 0 −i

i 0

 ,

σ̂z = |e〉〈e| − |g〉〈g| =

 1 0

0 −1

 .

In reference[10] emphasis was placed on studying observables; in particular, two ob-

servables: the population difference and coherence. In order to determine the exact

expression for these observables we make use of

〈χ̂〉 = tr

(
ρ̂(t)χ̂(t)

ˆρ(t)

)
, (4.27)

where 〈χ̂〉 is the observable of interest. For the σ̂z case we substitute the Pauli operator

σ̂z and the density matrix into the above equation. This yields the population difference

(〈σ̂z〉t) as

〈σ̂z〉t =
ρ̂11(t)− ρ̂22(t)

ρ̂11(t) + ρ̂22(t)
. (4.28)

Similarly, the coherence is given by

〈σ̂x〉t =
ρ̂12(t) + ρ̂21(t)

ρ̂11(t) + ρ̂22(t)
. (4.29)

Notice that the expression for coherence contains off-diagonal density matrix terms.

A convenient check when running simulations is to ensure that the identity

〈σ̂x〉2t + 〈σ̂y〉2t + 〈σ̂z〉2t = 1− 4
detρ̂

(trρ̂)2
= 1− 4detρ(0)

(trρ̂)2
e( 2

~ t)trΓ̂ ≤ 1, (4.30)

holds[10].
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All pure states lie on the Bloch sphere,

〈σ̂x〉2t + 〈σ̂y〉2t + 〈σ̂z〉2t = 1. (4.31)

A Bloch sphere can be thought of as a three-dimensional vector that defines a sphere

with a radius that cannot be larger than unity[13]. In ideal conditions where the system

is closed, there would be transitions between the two states and the Hamiltonian would

be in the standard Hermitian form for a two-level system,

Ĥ+ = −~Ωσ̂x. (4.32)

Sergi and Zloschastiev added open-system dynamics to the model by introducing an

anti-Hermitian Hamiltonian of the form[10],

Ĥ− = i~Ω(a0Î + a1σ̂x + a2σ̂y + a3σ̂z). (4.33)

The total Hamiltonian can be obtained by adding the two portions of the total Hamil-

tonian together, Ĥ+ and Ĥ−

Ĥ = Ĥ− + Ĥ+ (4.34)

= ~Ω
[
i(a0Î + a1σx + a2σy + a3σz)− σx

]
(4.35)

The non-Hermitian Hamiltonian can be written in terms of the decay-rate operator

Γ̂,

Γ̂ = ~Ω(γβσ̂x − a2σ̂y −Wσ̂z − γÎ). (4.36)

Then,

Ĥ = Ĥ+ + iΓ̂ (4.37)

= −~Ω
[
σ̂x + i(γÎ − γβσ̂x + a2σ̂y +Wσ̂z)

]
. (4.38)

Now choose

a0 = −γ, (4.39)

a1 = γβ, (4.40)

a3 = W =
√

(1 + γ2)(1− β2)− a2
2. (4.41)

We ensure that the density matrix is always finite[10] through our choice of γ.
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The coefficients ai(i = 0, ..., 3) are assumed to be real. Consider the expression for

W . It is clear that,

(1 + γ2)(1− β2) ≥ a2
2. (4.42)

We adopt the same initial condition used in [10]

ρ̂(0) =

 1 0

0 0

 ,

the simplicity of this condition is convinient.

Below is the equation of motion

d

dt
ρ̂(t) = − i

~
[Ĥ+, ρ̂(t)]− i

~
[Ĥ−, ρ̂(t)], (4.43)

the diagonal terms are

ρ̂11(t) =
1

2

e−Γt

β2 + γ2
[A1 cos(ωt)] +B1 sin(ωt) + C1 cosh(Γt) +D1 sinh(Γt)] (4.44)

and

ρ̂22(t) =
1

2

e−Γt

β2 + γ2
[A4 cos(ωt)] +B4 sin(ωt) + C4 cosh(Γt) +D4 sinh(Γt)]. (4.45)

Similarly, the off-diagonal terms are

ρ̂12(t) =
1

2

e−Γt

β2 + γ2
[A2 cos(ωt)] +B2 sin(ωt) + C2 cosh(Γt) +D2 sinh(Γt)] (4.46)

and

ρ̂21(t) =
1

2

e−Γt

β2 + γ2
[A3 cos(ωt)] +B3 sin(ωt) + C3 cosh(Γt) +D3 sinh(Γt)], (4.47)

where Γ = 2γΩ > 0 and ω = 2βΩ. The decay-rate coefficient is Γ and the tunneling fre-

quency is ω. The decay rate Γ specifies the rate that decay from the excited state to the

ground state happens. The tunneling frequency is the frequency with which tunneling

can occur either from the ground to the excited state or in the opposite direction.

The new coefficients are[10]

A1 = β2 + γ2 −W 2, B1 = 2βW, C1 = β2 + γ2 +W 2, D1 = 2γW, (4.48)
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A2 = −C2 = iW (1− a2 + iγβ), B2 = −(γ + iβ), D2 = iB2, (4.49)

A3 = −C3 = A∗2, B3 = B∗2 , D3 = D∗2, (4.50)

A4 = −C4 = −(1− a2)2 − γ2β2, B4 = D4 = 0. (4.51)

The density matrix remains Hermitian since ρ21 = ρ12. However, the trace is no longer

conserved. We expect the non-conservation of the trace when the Hermitian system is

coupled to the environment. This coupling is described by the anti-Hermitian portion of

the Hamiltonian, which allows probability to be gained or lost by the system[10].

Sergi and Zloschastiev[10] found that the exact evolution of the trace is given by

tr(ρ̂(t)) =
e−Γt

β2 + γ2
Γ̂(t), (4.52)

where T (t) = A5 cos(ωt) + 1
2B1 sin(ωt) + C5 cosh(Γt) + 1

2D1 sinh(Γt). Here two new

coefficients have been introduced, A5 = A2 − 1 + β2 and C5 = 1− a2 + γ2.

By using the definition for observables and the solution for the density operator, the

exact time-dependence of the average Pauli operators can be determined[10].

〈σ̂x〉t =
1

T (t)
[A6(cos(ωt)− cosh(Γt))− γA5 sin(ωt) + βC5 sinh(Γt)], (4.53)

〈σ̂y〉t =
1

T (t)
[W (a2 − 1)(cos(ωt)− cosh(Γt)) + βC5 sin(ωt)− γA5 sinh(Γt)], (4.54)

〈σ̂z〉t =
2

T
[A7 cos(ωt) +

1

2
B1 sin(ωt) + C7 cosh(Γt) +

1

2
D1 sinh(Γt)], (4.55)

where A6 = −γβW , A7 = C5 −W 2 and C7 = A5 +W 2.

4.4 Observables and their asymptotic limits

The asymptotic values were also determined in [10] and found to be,

lim
t→+∞

〈σ̂x〉t = −(~Ω)−1 lim
t→+∞

〈Ĥ+〉t = β, (4.56)

lim
t→+∞

〈σ̂y〉t =
(a2 − 1)(γ +W ) + γβ2

a2 − 1− γ(γ +W )
, (4.57)
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lim
t→+∞

〈σ̂z〉t =
a2 + γW

γ2 + 1
. (4.58)

Fig 4.1, Fig 4.2 and Fig 4.3 show analytical plots of the profiles 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω .
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Figure 4.1: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.7

and γ
β = 1.
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Figure 4.2: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.7

and γ
β = 0.5.
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Figure 4.3: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where, β = 0.7

and γ
β = 0.2.
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As t tends towards infinity in an open quantum system, it is expected that the

population difference will go to zero as the system reaches equilibrium:

lim
t→+∞

〈σ̂z〉t = 0. (4.59)

Sergi and Zloshchastiev[10] determined that this is equivalent to the following condi-

tions

a2 − γ
√

1− β2 = 0, W =
√

1− β2, (4.60)

which allows the anti-Hermitian Hamiltonian to be simplified to[12]

Γ̂µρ = ~γΩ[βσ̂x −
√

1− β2(σ̂y + γ−1σ̂z)− Î]. (4.61)

We now make use of these new constraints and determine the new analytical solutions,

ρ̂11(t) =
1

2

e−Γt

β2 + γ2

[
A8 cos(ωt) + γ̃2 cosh(Γt)− 2W ((β sin(ωt) + γ sinh(Γt))

]
, (4.62)

ρ̂12(t) =
1

2

e−Γt

β2 + γ2
[A9(cos(ωt)− cosh(Γt)) +B5(sinh(Γt)− i sin(ωt))] , (4.63)

ρ̂22(t) =
1

2

e−Γt

β2 + γ2

[
(2γW − γ̃2)(cos(ωt))− cosh(Γt)

]
, (4.64)

where γ̃ =
√

1 + γ2 , A8 = γ̃2 − 2W 2, A9 = W (γβ + i(γW − 1)) and B5 = β(γ̃2 −

γW ) + iγW (γ −W ).

Consider Fig 4.4, Fig 4.5 and Fig 4.6, these three figures show the profiles for three

averages. The constraints change for the different graphs. It can be seen from the graphs

that as t tends towards infinity the graphs are tending towards some limiting factor.

In reference [10] these limiting values have been calculated and are as follows;

lim
t→+∞

〈σ̂x〉t = −(~Ω)−1, lim
t→+∞

〈Ĥ+(t)〉 = β (4.65)

and

lim
t→+∞

〈σ̂y〉t = −
√

1− β2. (4.66)
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The critical frequency wc is defined by

wc = βcw+, (4.67)

where w+ = 2Ω and β2
c = 1−

(
a22

γ2+1

)
. The critical frequency is bounded by w ≤ wc ≤ w+.

These relations were summarized by Sergi and Zloshchastiev[10] by noting that a2

measures the difference between the system’s critical frequency and the tunneling fre-

quency for the system that has been introduced above.
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Figure 4.4: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.8

and γ
β = 1.0.

One of the properties that is well suited to investigation using a non-Hermitian Hamil-

tonian is dephasing. Dephasing is the process that takes an initial non-diagonal density

matrix and causes it to become a diagonal matrix at large times. It is of interest to see

what effect non-Hermitian dynamics has on dephasing (see [10] for details).

In order to investigate dephasing it is necessary to choose an initial density matrix

that has off-diagonal terms[10]

ρ̂(0) =
1

2

∑
k,m=g,e

|k〉〈m| =

 1
2

1
2

1
2

1
2 ,

 ,

and then choose the anti-Hermitian portion of the Hamiltonian to be[10]

Γ̂dph = ~Ω
[
σ̂y − γ(σz + Î)

]
. (4.68)
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Figure 4.5: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.9

and γ
β = 0.5.
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(~Ω)−1〈Γ̂〉t

Figure 4.6: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.9

and γ
β = 0.2.

This choice means that the evolution equation produces

ρ̂11(t) =
1

2
e−2Γt, (4.69)

ρ̂12(t) = ρ̂∗21(t) =
1

2γ
e−2Γt

[
(γ − i)eΓt + i

]
, (4.70)
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and

ρ̂22(t) =
1

2γ2

[
(e−Γt − 1)2 + γ2

]
. (4.71)

Now the averages are

〈σ̂x〉t =
γ2

γ̃2 cosh(Γt)− 1
, (4.72)

〈σ̂y〉t =
γ(1− e−Γt)

γ̃2 cosh(Γt)− 1
. (4.73)

The definition of average defined in Eq (2.27) is being used.

Now we consider Fig 4.7, Fig 4.8 and Fig 4.9. From the graphs we can see that as t

tends towards infinity

〈σ̂x〉t = 〈σ̂y〉t (4.74)

in the limit t approaching infinity.

Similarly we can see that 〈σ̂z〉t is approaching negative one. Where

〈σz〉t =
1− cosh(Γt)− γ2 sinh(Γt)

γ̂2 cosh(Γt)− 1
(4.75)
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Figure 4.7: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.8

and γ = 4.
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Figure 4.8: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.8

and γ = 1.
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Figure 4.9: Analytical plots showing the profiles of 〈σ̂z〉t, 〈Ĥ+〉t
~Ω and 〈Γ̂〉t~Ω , where β = 0.8

and γ = 0.2.
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Chapter 5

Conclusion

Non-Hermitian quantum mechanics can be used as a computational framework. At-

tempts are also being made to formulate a fundamental non-Hermitian physical theory.

Attempts at formulating a physically reasonable theory are put forward but neither of

the two mathematical frameworks, PT -symmetric and pseudo-Hermitian, appear to be

a fundamental theory at the moment.

The major complication with both frameworks is the exotic inner products that they

utilise, that vary with basis.

A comparison of the two frameworks is extremely interesting. The first point of

interest concerns the relationship between PT -symmetric and pseudo-Hermitian quan-

tum mechanics. The PT -symmetric framework is a special case of the pseudo-Hermitian

framework, implying that the latter is the more general of the two. The second concerns

the ability to transform between Hermitian and non-Hermitian Hamiltonians.

It is the opinion of the author at the time of writing that, it is extremely unlikely

that the PT -symmetric framework will form a fundamental theory. However, the fact

that it is possible to transform from Hermitian to non-Hermitian Hamiltonians provides

an opportunity to exploit these frameworks to ease the computational burden for certain

problems.

Both frameworks have been applied to a wide variety of different problems, in partic-
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ular, the PT -symmetric formalism has been widely used. Some examples of these fields

include: quantum optics, open quantum systems and nuclear physics amongst others.

Recent applications of non-Hermitian theories to open quantum systems have been

discussed. These applications are an example of non-Hermitian Hamiltonians’ uses in for-

mulating a convenient numerical scheme. By exploiting the ability to transform between

Hermitian and non-Hermitian Hamiltonians, a more efficient numerical scheme can be

formulated. Using a non-Hermitian Hamiltonian for the calculations allows a significant

reduction in the number of degrees of freedom, resulting in more efficient computations.

This has been covered in more detail in Chapter four.
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Chapter 6

Appendix

6.1 Derivation of Hermitian linear automorphism with de-

generacy

The derivation of the Hermitian linear automorphism makes use of Mostafazadeh’s ap-

proach. It is included due to the importance of the Hermitian linear automorphism in

the formulation of pseudo-Hermitian quantum mechanics.

If H is an η-pseudo-Hermitian Hamiltonian with a complete biorthonormal eigenbasis

{|ψn, a〉, |φn, a〉} and a discrete spectrum[6], then, by definition,

H|ψn, a〉 = En|ψn, a〉, (6.1)

H†|φn, a〉 = E∗n|φn, a〉, (6.2)

〈φm, b|ψn, a〉 = δmnδab, (6.3)

∑
n

dn∑
a=1

|φn, a〉〈ψn, a| =
∑
n

dn∑
a=1

|ψn, a〉〈φn, a| = 1, (6.4)

where dn is the degree of degeneracy (multiplicity) of the eigenvalue En, and a and b are

the degeneracy labels.

In order to derive an expression for the Hermitian linear automorphism, an extra

result is required, called proposition seven by Mostafazadeh. Proposition seven can be
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derived by making use of equations (6.1) and (6.2) and then using equation (3.36),

ηHη−1|φn, a〉 = E∗n|φn, a〉. (6.5)

We now operate from the left with η−1,

Hη−1|φn, a〉 = η−1E∗n|φn, a〉 (6.6)

= E∗n(η−1|φn, a〉). (6.7)

Now

E∗n|φn, a〉 = H†|φn, a〉. (6.8)

Operate from the left with η−1,

η−1E∗n|φn, a〉 = η−1H†|φn, a〉 (6.9)

= Hη−1|φn, a〉. (6.10)

Therefore,

η−1H†|φn, a〉 = Hη−1|φn, a〉. (6.11)

Then proposition seven can be written as,

H(η−1|φn), a〉 = E∗n(η−1|φn, a〉) = η−1H†|φn, a〉. (6.12)

Mostafazadeh’s notation is now adopted; the subscript ”0” denotes real eigenvalues

and the corresponding basis eigenvectors. The subscript ”±” denotes complex eigenval-

ues that have ”±” imaginary parts and their corresponding basis eigenvectors[6].

Now using the new notation and equation (6.4),

I =
∑
n0

dn0∑
a=1

|ψn0 , a〉〈φn0 , a|+
∑
n+

dn+∑
α=1

(|ψn+ , α〉〈φn+ , α|+ |ψn− , α〉〈φn− , α|), (6.13)

where a is an index for the real components and α applies to the complex components.

Now use equation (6.4) to write the Hamiltonian as

H =
∑
n0

dn0∑
a=1

H|ψn0 , a〉〈φn0 , a|+
∑
n+

dn+∑
α=1

H(|ψn+ , α〉〈φn+ , α|+ |ψn− , α〉〈φn− , α|). (6.14)
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Use equation (6.14) and proposition 7 to write the Hamiltonian as

H =
∑
n0

dn0∑
a=1

En0 |ψn0 , a〉〈φn0 , a|+
∑
n+

dn+∑
α=1

(En+ |ψn+ , α〉〈φn+ , α|+ E∗n+
|ψn− , α〉〈φn− , α|).

(6.15)

Any linear combination of degenerate eigenvectors belonging to the same eigenvalue

is also an eigenket of that eigenvalue, so

|ψn0〉 =

dn0∑
a=1

Ca|ψn0 , a〉. (6.16)

To find a given Ca, let ā be a particular a. Multiply (6.16) on the left-hand side with

〈φn0 , ā|,

〈φn0 , ā|ψn0〉 =

dn0∑
a=1

Ca〈φn0 , ā|ψn0 , a〉

=
∑

a=1dn0

Caδn0n0δāa

= Cā. (6.17)

Substitute equation (6.17) into (6.16),

|ψn0〉 =

dn0∑
a=1

〈φn0 , a|ψn0〉|ψn0 , a〉. (6.18)

Since an inner product is a number we can write

|ψn0〉 =

dn0∑
a=1

|ψn0 , a〉〈φn0 , a|ψn0〉. (6.19)

Therefore

I =

dn0∑
a=1

|ψn0 , a〉〈φn0 , a|, (6.20)

is the closure relation for the degenerate state. Now,

η−1|φn0 , a〉 = Iη−1|φn0 , a〉

=

dn0∑
b=1

|ψn0, b〉〈φn0 , b|η−1|φn0 , a〉

=

dn0∑
b=1

〈φn0 , b|η−1|φn0 , a〉|ψn0 , b〉. (6.21)

Similarly for the first complex case,

|ψn+〉 =

dn+∑
α=1

Cα|ψn+ , α〉. (6.22)
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Let ᾱ be a particular α. Now multiply equation (6.22) on the left-hand side with 〈φn+ , ᾱ|.

Then

〈φn+ , ᾱ|ψn+〉 =

dn+∑
α=1

Cα〈φn+ , ᾱ|ψn+ , α〉

=

dn+∑
α=1

Cαδn+n+δᾱα

= Cᾱ.

Therefore

Cα = 〈φn+ , α|ψn+〉. (6.23)

Substitute equation (6.23) into (6.22),

|ψn+〉 =

dn+∑
α=1

〈φn+ , α|ψn+〉|ψn+α〉

=

dn+∑
α=1

|ψn+ , α〉〈φn+ , α|ψn+〉.

(6.24)

Therefore,

I =

dn+∑
α=1

|ψn+ , α〉〈φn+ , α| (6.25)

is the closure relation for the degenerate state. Now,

η−1|φn− , α〉 = Iη−1|φn− , α〉

=

dn+∑
β=1

|ψn+ , β〉〈φn+ , β|η−1|φn− , α〉. (6.26)

Then

η−1|φn− , α〉 =

dn+∑
β=1

〈φn+ , β|η−1|φn− , α〉|ψn+ , β〉. (6.27)

Now for the other case,

|ψn−〉 =

dn+∑
α=1

Cα|ψn− , α〉. (6.28)
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To find a given Cα let ᾱ be a particular α. Multiply the above equation on the

left-hand side with 〈φn− , ᾱ|. Then

〈φn− , ᾱ|ψn−〉 =

dn+∑
α=1

Cα〈φn− , ᾱ|ψn− , α〉

=

dn+∑
α=1

Cαδn−n−δᾱα.

= Cᾱ

Therefore,

Cα = 〈φn− , α|ψn−〉. (6.29)

Substitute equation (6.29) into (6.23),

|ψn+〉 =

dn+∑
α=1

|ψn− , α〉〈φn− , α|ψn−〉. (6.30)

Therefore

I = |ψn− , α〉〈φn− , α|. (6.31)

But

η−1|φn+ , α〉 = Iη−1|φn+ , α〉

=

dn+∑
β=1

|ψn− , β〉〈φn− , β|φn+ , α〉

=

dn+∑
β=1

〈φn− , β|φn+ , α〉|ψn− , β〉. (6.32)

η−1|φn0 , a〉 =

dn0∑
b=1

C
(n0)
ba |ψn0 , b〉, (6.33)

where C
(n0)
ab = 〈φn0 , a|η−1|φn0 , b〉.

η−1|φn+ , α〉 =

dn+∑
β=1

C
(n+)
βα |ψn− , β〉, (6.34)

where C
(n+)
αβ = 〈φn− , α|η−1|φn+ , β〉.

η−1|φn− , α〉 =

dn+∑
β=1

C
(n−)
βα |ψn+ , β〉, (6.35)



71

where C
(n−)
αβ = 〈φn+ , α|η−1|φn− , β〉.

C
(n0)
ab and C

(n±)
ab are complex coefficients. These complex coefficients can be thought

of as matrices since η and η−1 are Hermitian operators. It is possible to make a unitary

transformation of the Hilbert space to map the biorthonormal system of eigenbasis vectors

of the Hamiltonian to a new system, in which these matrices are diagonal. If the basis

vectors are further rescaled, then C
(n0)
ab and C

(n±)
ab will become the identity matrix. It is

assumed that such a transformation has been performed without loss of generality.

Then

|φn0 , a〉 = η|ψn0 , a〉, (6.36)

and

|φn± , α〉 = η|ψn∓ , α〉. (6.37)

Now by making use of the above result and the definitions it is possible to obtain the

pseudo-Hermitian orthonormality relations

〈〈ψn0 , a|ψm0 , b〉〉η̂ = δn0m0δab, (6.38)

〈〈ψn± , α|ψm∓ , β〉〉η̂ = δn±m∓δαβ. (6.39)

From equation(6.33), (6.34) and (6.35)

|ψn0 , a〉 = η−1|φn0 , a〉, (6.40)

|ψn∓ , α〉 = η−1|φn± , α〉. (6.41)

Now substitute equation (6.40) and (6.41) into equation (6.13)

I =
∑
n0

dn0∑
a=1

η−1|φn0 , a〉〈φn0 , a|+
∑
n+

dn+∑
α=1

(η−1|φn− , α〉〈φn+ , α|+ η−1|φn+ , α〉〈φn− , α|).

(6.42)

Then operate η from the left-hand side

η =
∑
n0

dn0∑
a=1

|φn0 , a〉〈φn0 , a|+
∑
n+

dn+∑
α=1

(|φn− , α〉〈φn+ , α|+ |φn+ , α〉〈φn− , α|). (6.43)
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By substituting equation (6.40) and (6.41) into equation (6.13) we obtain,

η−1 =
∑
n0

dn0∑
a=1

|ψn0 , a〉〈ψn0 , a|+
∑
n+

dn+∑
α=1

(|ψn− , α〉〈ψn+ , α|+ |ψn+ , α〉〈ψn− , α|). (6.44)
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