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ABSTRACT 

This thesis investigates the mathematical cognitive errors made in elementary calculus 

concepts by first-year University of Technology students. A sample of 34 first year 

students, the experimental group, from the Durban University of Technology Faculty of 

Engineering were invited to participate in project in elementary calculus using computer 

technology (CT). 

A second group, the control group, also consisted of 34 first year engineering students 

from the same University were given a conventional test in elementary calculus concepts. 

The experimental group was then given the same conventional test as the control group 

on completion of the project in elementary calculus using computer technology (CT). 

The purpose of the analysis was to study the effect of technology on the understanding of 

key concepts in elementary calculus. The major finding was that technology helps 

students to make connections, analyse ideas and develop conceptual frameworks for 

thinking and problem solving. 

The implications include: 

• Improvement of curriculum in mathematics at tertiary level; 

• New strategies for lecturers of elementary calculus; 

• An improved understanding by students taking the course in elementary calculus. 

• Redesign of software to improve understanding in elementary calculus 
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CHAPTER 1: INTRODUCTION AND STATEMENT OF PROBLEM 

This chapter gives an overview of aspects found by researchers that have a bearing on the 

understanding of basic concepts in differential calculus in a traditional learning 

environment and how computer technology can affect the cognitive process. 

1.1 THE PROBLEM 

The primary problem is that there is a high failure rate in mathematics at first year level 

at the Durban University of Technology, where this study is located. This difficulty can 

be attributed to a lack of understanding of differential calculus concepts. Having taught 

mathematics, in particular calculus, for over 15 years at secondary school level gave rise 

to probing questions about the state of mathematics learning in the country. In my 

experience most secondary school learners have difficulty in working differential 

calculus. In South Africa Calculus forms 40 % of the Algebra component of the grade 

twelve national examinations. This contributes to at least 20 % of the overall assessment 

in the grade 12 mathematics examinations. 

Many researchers have also been concerned with the failure rate in other countries 

(Burton, 1989; Fullilove & Treisman, 1990; Tall, 1997; Acherman-Chor, Aladro & 

Gupta, 2003) and students' conceptual understanding in elementary calculus (Heid, 1988; 

Tall, 1992; White & Mitchelmore, 1996) at university level. The study narrowed the 

problem to differential calculus as it is the most important concept for first year 

engineering students. 



Naidoo (1998), in his study found that at tertiary level the majority of the students study 

by rules. They do not enjoy mathematics and are de-motivated. Lecturers tend to teach 

mechanistically and do standard type solutions to standard type problems. Students' 

found rate of change, differentiation as limit and the use of symbolism difficult. He 

concluded that rate of change needed to be studied intensely. He draws attention to the 

fact that mathematics at the Technikon (now University of Technology) level is not a 

specialist subject. This contributes to the "poor" understanding of critical concepts that 

are essential for extended learning - a type of understanding that is needed to support an 

increasingly technological world. Consequently the time and attention given to study 

mathematics is limited. This contributes to failure in making a distinction between 

process and the concepts integral to the process. 

Bezuidenhout (2003) suggests that students' ability to interpret a mathematical symbol as 

representing both a process and an object is more likely to develop if it is the direct focus 

of teaching rather than if the development is left to chance. If mathematics educators 

comprehend student's understanding, they can develop specific mathematical tasks and 

teaching strategies to assist students in dealing with limitations in their understanding of 

mathematical symbols. 

A mathematics research group had been established at the Durban University of 

Technology for over a decade. The aim of the local calculus reform research group was 

to research alternate ways of teaching elementary calculus. Students had access to 

mathematics laboratory sessions where project work in a computer-learning environment 
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was encouraged. The learning environment was used by the students to investigate and 

explore concepts in calculus under the guidance of lecturers. These include function, limit 

and rate of change. In my opinion, this environment would help students to build their 

mental models to connect with aspects they meet during traditional lessons. These 

attempts hoped to develop interest in mathematics study and improve throughput rate 

within the University. 

Another calculus reform group was reported by Silverberg (2004) at a University where 

the traditional approach was supported by weekly computer laboratory sessions. The 

goals were to improve fundamental concepts in calculus for application in the natural 

sciences and engineering. These attempts hoped to reduce failure rate, withdrawals from 

the course and narrow the gap in performance between the better and weaker students. 

Here the computer was not used for practice or drill but for creating mathematical objects 

and processes. Much thought had been put into the material used in the project activity 

students do during the laboratory sessions. They used a collaborative environment where 

students worked in groups of 3 or 4. The groups worked together both in and out of the 

class. Positive results were achieved with students from the reform section. After some 

time their overall assessment scores in examinations were improved. There was also an 

increase in student confidence levels as well. Furthermore there were zero withdrawals 

from the course. 

Zandieh (2000) studied the understanding of the derivative by students in a typical USA 

university. She viewed the concept of the derivative as ratio, function and limit as 

process-object pairs. These layers can be viewed as dynamic processes and as static 
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objects. When a student lacks a structural conception of one of the layers the pseudo­

structural term is used to describe an object with no internal structure. The graphic 

interpretation of the derivative is seen in three layers namely, the slope of the secant line, 

limit of the sequence of slope values of secant lines and the instantaneous slope (limit). 

Due to the high frequency of errors made by first year students at the University of 

Technology and the failure of the traditional lecturing methods this study sought to 

investigate whether students will fare better in a computer teaching and learning 

environment. This leads to the secondary problem. This research intends finding out 

what impedes students understanding of calculus, what errors students' make and why 

they are making these errors. The results will feature as an important aspect for 

curriculum planning purposes. 

Some factors that must be considered about the learners at school level: All grade twelve 

learners doing mathematics must study calculus irrespective of their background 

knowledge, ability and motivation. This complicates the design of the curriculum and 

research evaluating its effectiveness. Some learners appear to make connections while 

others do not. Given the wide spectrum of approaches by such a diverse range of 

learners, the method appropriate to teach some learners may be inappropriate for others. 

Consequently a course designed found to be of positive help to some may be a failure for 

others. 
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To gain a better perspective on the teaching and learning of calculus concepts a review of 

pertinent literature was performed. It was hoped that the literature survey would give us 

a handle on the difficulty of the teaching and learning of elementary concepts in calculus. 

Davis (1984: 3) raises an important concern: "If a person wants to learn certain 

mathematics, we are less inclined to accept the verdict that he or she cannot do so. We 

want more specific information; we want to know exactly what obstacles impede this 

person' s progress, exactly what they cannot seem to do, exactly what errors they are 

making and why they make them." 

The need for alternate methods of instruction to enhance teaching and understanding of 

calculus is essential. Hughes-Hallet (1989) found that students can differentiate 

complicated functions analytically but could not interpret differentiation graphically. In 

order to achieve this, she suggested that students' need to learn through discovery, 

visualization and experimentation. 

Cipra (1988) and White & Michael (1996) in their studies show that students enrolled in 

the traditional university calculus class have a very superficial and incomplete 

understanding of many of the basic concepts in calculus. This was attributed to the rote 

and manipulative learning that takes place in an introductory course. 

Smith & Moore (1991: 85) explains: 

"Much of what our students have actually learned .... ... .. more precisely, what they have 

invented for themselves is a set of 'coping skills ' for getting past the next assignment, 
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the next quiz, the next exam. When their coping skills fail them, they invent new ones. 

The new ones don 't have to be consistent with the old ones; the challenge is to guess 

right among the available options and not get faked out by the teacher's tricky 

questions ... ... . We see some of the 'best' students in the country; what makes them 

'best ' is that their coping skills have worked better than most for getting them past the 

various testing barriers by which we sort students. We can assure you that does not 

necessarily mean our students have any real advantage in terms of understanding 

mathematics. " 

Tall (1992) identifies some difficulties that students encounter with calculus. These 

include: 

• Algebraic manipulation or lack of it; 

• Preference for procedural methods rather than conceptual understanding; 

• Difficulty in translating real-world problems into calculus formulation; 

• Restricted mental images of functions; 

• Difficulty in absorbing complex new ideas in limited time; 

• Difficulty with notation. 

These difficulties need to be addressed to improve understanding of elementary concepts 

in calculus. He advocated the use of the "zoom" function to teach the derivative. The 

zoom graph method is mainly a computer laboratory experience where the curve is 

approximated to a straight line. It is effective because the student is dealing only with 

gradients of a straight line. When the domain intervals are made very small the curve can 

be approximated as a straight line. Instead of using secants we zoom to get a straight 
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line. Here we establish the idea of the gradient of a curved graph. Using suitable 

software the graph can be drawn and a part of it can be selected and magnified. The 

magnified part looks "straight". This method frees the student from cognitive overload. 

The student does not have to deal with tangents, secants and complex geometry. 

1.2 THE TRADITIONAL MATHEMATICS CLASSROOM 

Currently much of the focus in mathematics at secondary school is based on wanting to 

make mathematics as simpler as possible. Boaler (1995: 280) in her research mentions 

that mathematics lessons at Amber Hill were algorithmic, focusing on standard methods, 

rules and procedures. A similar situation exists in mathematics learning environments in 

a majority of situations. Little or no attention is given to understanding. 

Understanding is twofold. It is based on: how we do? And why we do? Learners need to 

know not only why they do something but also how to do something. Skemp (1976) 

gives an account of relational understanding and instrumental understanding. Students 

enter the University of Technology with a goal to understand instrumentally while the 

lecturer wants them to understand relationally or vice versa. Attempts by the lecturer to 

explain in detail will have no bearing on a group that is only interested in learning by 

rules. It is essential that students understand why a method works. This is crucial since 

the understanding of a particular concept turns out to be fundamental to the study of a 

new concept. Thus relational understanding makes it possible to connect concepts in 
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areas of mathematics that are interrelated. In a sense attempts can be made to extend 

students existing knowledge schemas in a particular area of knowledge. For example to 

form differential equations, schemas such as functions, average rate of change and limits 

must be viewed relationally in order for the concept of the derivative to be understood. 

In coming to understand the derivative it is imperative that the student poses two 

questions to himself namely, how? And why? The how question alone cannot reconstruct 

the why question. This is supported by a response from a learner in Boaler's research 

(1995:281): "It's like, you have to work it out and you get the right answers but you 

don't know what you did, you don't know how you got them, you know?" 

In coming to understand the derivative it is necessary to review research performed on 

students' whilst they were at school. Focus (1990) has found that calculus courses at 

Grade 12 level are pretty much freewheeling - they emphasize the mechanical techniques 

to the extent that drill is necessary and they contain certain illustrations and applications 

that the educator is competent to explain and the learners ready to receive. Student 

preparation is a key factor to how understanding unfolds itself. This trend, from my 

experience at secondary school, is brought to tertiary level from students' previous 

learning experience. We also learnt from Naidoo' s (1998) study at the same institution 

that lecturers too tend to perpetuate teaching that promotes rote learning. 

Orton (1983) in his investigation on the understanding of differentiation by students at 

high school and training college students concluded that "both groups found the same 
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items difficult and the same items easy". He concluded that students had little intuitive 

understanding as well as fundamental misconceptions about the derivative. 

Clearly traditional methods do not focus on real world problems. This accounts for the 

shortcoming in students' ability to think in realistic situations and inhibits their ability to 

design their own solutions. The discovery approach starting with real world problems 

that can be modelled mathematically, and students learning at their own pace becomes 

necessary. The environment in which this can be performed is a computer laboratory. 

1.3 TECHNOLOGY IN THE CLASSROOM 

The requirement for students taking mathematics at the Durban University of Technology 

is a pass in mathematics at least on the standard grade at grade 12 level. The course 

requirement enables students with average mathematics ability to take mathematics as a 

subject in their engineering studies. The majority of the student population is second 

language and most students come from primarily traditional mathematics settings; chalk 

and talk with no technology. 

Having worked with tertiary students in their first course in Mathematics, both in a 

traditional setting and a computer learning environment to learn calculus, I deduced that 

there was a need for further research. Many researchers have indicated that changes are 

necessary in the way in which mathematics is taught. Traditional methods do not fully 
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relate to the real world situation and engineering subject concepts. Students need to be 

helped think and solve problems - even those related to the real world. The computer 

can offer support in carrying out tedious calculations quickly. Heid (1988) also found 

that using computer technology in the calculus class encourages students to reason deeply 

from and about the graphs. Traditional teachings methods do not cater adequately for 

this type of interaction since students spend a lot of time doing calculations. Students are 

unable to make the connection between algebraic and graphical representations. 

Traditional learning and teaching methods are preferred by educators (lecturers) that have 

little or no interest in using technology to enhance learning. Educators need to find out 

what is different about the new technology and what effect these would have on 

cognition, teaching and learning (Kaput, 1992). 

Kober (1992) found that computers are used more often in mathematics than any other 

subject, and the use of computing technology has fundamentally changed how 

mathematical research is conducted. Cohen (1995: 63) quotes Henry Pollak from Bell 

Laboratories as saying "With technology - some mathematics become more important, 

some mathematics become less important, and some mathematics possible". 

De Villiers (1993) shows how computing technology can be used in mathematical 

modelling to solve practical problems with great success. He challenges the emphasis of 

technical and manipulative skills in traditional teaching at the cost of model construction 
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and interpretation. Here the computer is seen as an essential tool in modem applied 

mathematics. 

Tall (1991) in his research on visualization in calculus found that in traditional lectures 

formal definitions (even if remembered) are long and complex and usually need to be 

written down to be able to grasp them as a whole. Visual ideas prove to be easier to 

discuss in everyday language. Visual ideas can be demonstrated and discovered using the 

computer laboratory. Heid (1988) found that traditional calculus courses offer little 

opportunity for students to develop deep conceptual understanding of the graph. This in 

turn hinders the connection between algebraic and graphical representation. 

De Ting Wu (2004) found that the limit concept was confusing to students. Task group 

meetings at "The 9th International Congress on Mathematical Education (ICME) in Japan 

in 2000" and "The 10th ICME in Denmark in 2004," revealed that while the teaching and 

learning of the limit concept continues to be a much-discussed topic, it is also a topic that 

is both important and difficult. 

Different thinking and study methods are needed for the advancement of elementary 

mathematics. Secondary school learners lack background to advanced mathematics and 

hence the understanding the limit concept. Students need new approaches and powerful 

tools to help them to overcome the difficulty in studying limit concepts and to realize a 

smoother transition from their secondary mathematics education to learning a more 

advanced level of post-secondary mathematics. De Ting Wu (2004) advocates that 

computer technology is a powerful tool and a helpful aid in teaching and learning 
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mathematics. The components: computation, visualization, and animation could be 

helpful in developing new approaches to the teaching of the limit concept and ultimately 

to help students to overcome their difficulty in understanding this important concept. 

Sierpinska (1992) describes how subtle changes to meanmg resulted in conceptual 

obstacles that needed to be overcome. An example of this is given: A learner whose 

experience of function in terms of formulae and computation will find it difficult to 

accept a definition which does not have these attributes. Sfard (1992) showed how the 

operational view of mathematics in terms of processes to be carried out preceded the 

structural view using objects and formal definitions, both in history and cognitive 

development. The set theoretic definition was less successful in practice and in courses 

where the formal definition had less emphasis it lost its application. The computer 

provides a new environment to explore the function concept. Cuoco (1994) found that an 

approach to functions through programming in Logo gave different insights from a 

traditional approach. They were able to think of a function as an object in its own right 

as well as seeing the relationship in terms of input and output. 

Similar observations were made in structured BASIC which includes procedural 

functions (Li & Tall, 1993) and in ISETL (Breidenbach et aI, 1992; Cuoco, 1994). 

Wilson (1995) indicates that there is a lack of consensus on why and how technology 

should be integrated into the educational environment, what students should be taught 

and how to train educators to use technology. Kaput (1992) indicates that educators need 
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to discern what is different about the new technology, and what those differences mean in 

terms of cognition, learning, teaching and education in general. 

1.4 PEDAGOGICAL SHIFT 

Krantz (1991) refers to the pedagogical shift on the part of mathematics educators from a 

point where "only the best students make it through a course" to a new attitude that 

mathematical knowledge should be available to all students. 

The characteristics of this pedagogy include: 

• Cooperative work; the emphasis on "getting help" rather than individualised 

student effort; 

• Exploratory study; the emphasis on exploration by the individual rather than 

chalk-board exploration; 

• Multiple representations of the subject; the graphical, algebraic and "numerical 

representations are emphasized; 

• Alternate assessments of students progress; includes reVIew of portfolios of 

student effort and project work. 

In a sense there is a shift from an "instructional" paradigm to a "learning" paradigm. In 

this "learning" paradigm, opportunity must be created for students to interact with 

concepts in a meaningful way. This to a certain extent would mean that this opportunity 

will give these students chance to learn with more insight than students from a traditional 
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class. The computer laboratory environment is an interactive one. It creates opportunity 

for cooperative work, exploration, multiple representations of the subject and alternate 

forms of assessments. 

Comparing how learning took place previously will give an indication of the potential to 

understand in this "learning" paradigm. Learning took place by reading, writing, 

listening and discussing. In this technological era, learning can be supported by 

technological development. 

It is quite evident that each educator prefers his or her own technique or style. This is 

similar when it comes to the use of technology. Cartwright (1993) hints that " . . .. in the 

hands of many educators it can be very useful." Hence technology is a flexible tool in 

the hands of the lecturer. 

The use of the computer as a tool in the learning environment can enhance learner 

participation since students naturally tend to become automatically engrossed in a 

learning situation as compared to a chalk and talk event. In a computer learning 

environment, students are required to make inputs on an ongoing basis. Learning can 

only take place if the learner becomes involved in the learning. This involvement would 

result in a search for some solution whether right or wrong. The students in the study 

done by Heid (1988) enjoyed the computer work since it freed them from doing the 

tedious manipulations. It can minimise the problems experienced in algebra which is 

found to be a stumbling block in differentiation. 
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Dreyfus and Halevi (1990/91) mention topics which lend themselves to computer 

implementation having visual aspects which can be well represented on a computer 

screen. They have transformational aspects which necessitate a dynamic implementation 

and technical aspects that are taken care of by the computer and connect two different 

representations of the same concept. These two representations can be dealt with by the 

computer program. 

Students' mathematics abilities fall below the needs of the technological advancement of 

society. This would suggest that something must be done in the teaching and learning of 

mathematics so as to "catch up" with technological advancement. 

1.5 MATHEMATICAL MICROWORLDS WITH MA THEMATICA 

At the Durban University of Technology mathematica is used by a few lecturers for 

research in mathematics and for teaching and learning of functions. The majority 

lecturers prefer the traditional method of teaching. One classroom has been converted to 

a computer laboratory using Mathematica software. Mathematica has both graphics and 

symbol manipulation capabilities. Mathematica is usually used for project work in 

calculus. In Mathematica, notebooks can be created in which selected mathematical 

concepts are grouped together and then closed with only a heading visible. It gives 

opportunity to introduce a topic, develop it more and then ask the students to do an 

example or think about some particular aspect or example on their own before opening 
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the next part of the lesson to see details. Students get a feeling for geometric properties of 

functions and plotting of graphs and many of the calculus concepts as well. 

Papert (1980) advocates the use computer-based tools to encourage students to make 

conjectures and explore them. Concerns were raised on how computers affect the way 

people think and learn. Using computational technology, like Mathematica and 

computational ideas can provide new possibilities for learning, thinking and growing 

emotionally as well as cognitively. The tools available enhance thinking and change the 

patterns of access to knowledge resulting in different experience from that experienced in 

a traditional learning environment. Papert (1980: 120) describes microworlds as 

"incubators for knowledge .... . . First, relate what is new and to be learned to something 

you already know. Second, take what is new and make it your own: Make something 

new with it, play with it, build with it." 

Kent et al (1996) have had success in creating mathematical microworlds usmg 

Mathematica in a chemistry undergraduate class at the Imperial College, University of 

London. The program aimed at encouraging students to explore mathematical 

relationships by experimentation in a mathematics laboratory setting. 

Mokros and Tinker (1987), in their study, on how middle school students learn graphing 

skills using micro-computer laboratories with Mathematica, found a significant 

improvement in students' ability to interpret and use graphs. 
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Mathematicians found software like Mathematica offered a wide range of possibilities in 

teaching and learning calculus. Some of the motivating factors included selfless desires 

to make calculus more understandable for a wider range of learners and a growing 

aspiration to research the learning process and to understand how individuals are able to 

conceptualize concepts in calculus. 

Engineers are increasingly using computers with Mathematica to solve mathematics 

problems. Teaching mathematics using computers with Mathematica therefore also 

trains the student engineer to use a tool to solve appropriate mathematics problems in 

industry. 

Modern calculus reform seeks to use these computer representations such as 

Mathematica to make calculus more practical and meaningful. The computer laboratory 

with Mathematica offers the student the opportunity to perform these procedures quickly. 

There is a spectrum of possible approaches to teaching and learning calculus in a 

computer laboratory with Mathematica. These include intuitions from real-world 

calculus, using numeric, symbolic and graphical representations and formal definition­

theorem-proof-illustration of analysis. The computer with Mathematica allows both a 

numeric quantitative approach to do calculations as well as graphical representations 

offering a possible conceptual approach based on visualization so that the student can be 

motivated to do more mathematics. 
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Research shows that the limit concept to have embedded cognitive difficulties. 

Mathematica overcomes the difficulty by appealing to Cornu's summary (1991: 154): 

"The enactive real-world approach deals with this at a practical approximation level. The 

graphical approach allows the limit the notion to be handled implicitly, like, by 

magnifying the graph using computer technology, to see it looking "locally straight" so 

that the required gradient is that of a straight line graph. This enables moving through 

elementary calculus with ease but requires further reconstruction to cope with formal 

concepts." 

Krutetskii (1976: 178) found that learners exhibit relative preferences for verbal-logical 

and visual thinking that he classified as "analytic", "geometric" and "harmonic". Such 

factors imply that research into calculus must take into account what is applicable to one 

group of learners in one context may turn out different for another group. This leads to 

the question of theoretical and philosophical issues which may lack in the development of 

learners long before they began their study in calculus. The discovery approach using the 

computer laboratory with Mathematica offers an additional learning strategy. 

Cotton, J (1995) describes active learning as learning by doing, student-centred, 

experiential learning. Students want to engage in their learning when learning is 

interesting, motivating and rewarding. Active participation builds confidence to attempt 

more difficult problems and applications. Using computers to teach and learn assist in 

taking the learner through his or her thought process. It stimulates learning in that certain 
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prompts from the computer is a means of communication with the learner. In this 

environment, the learner gets an immediate response to his /her actions whether right or 

wrong. This allows the learner to proceed to the next step of the problem immediately 

(provided that the computer jargon is understood). Students that are engaged have more 

opportunity to talk about their experiences even if they are not successful. It is through 

this interaction that the learner is able to practice techniques through "hands on" practical 

experience. Technology, like Mathematica, can be used to foster understanding which 

may be more difficult to realize when using the traditional approach to solve problems. 

Dubinski (1991) has developed a framework for research and curriculum development in 

mathematics that he calls the Action-Process-Object-Schema (APOS) theoretical 

perspective. Students seeing a concept for the first time are limited to an action 

conception of that concept. For example, beginning calculus students may understand 

differentiation as an action on polynomials, in which rules are applied in sequence. As the 

student reflects upon a particular action, he / she begins to view the concept as a process. 

In the case of differentiation, the student would understand that it is a more general 

process, not limited to a set of rules applied to individual functions. In the computer 

laboratory environment with Mathematica the student is offered the graphical approach 

to understanding the derivative. 

According to Naidoo (1998), in a computer learning environment with Mathematica a 

student begins to grasp a process as a cognitive object through reflection. The student 

builds a schema that links actions, processes, objects, and other schema into a coherent 
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framework. For a complex subject such as calculus, this is not easily described, and no 

two schema would be alike. Furthermore, the connections within any student's mind 

include both conscious and unconscious links. What we should expect is that the student 

would understand that an important class of functions, have associated with them derived 

functions and derivatives and integrals have an "inverse" relationship. Furthermore 

students must realize that calculus is a study of the properties and the behaviour of 

functions. 

1.6 RESEARCH OUTPUT 

Research based on aspects of this study, have been presented in 3 conferences; two local 

conferences and one international conference. The details are as follows: 

• Naidoo, K. and Naidoo, R. (2007). First year students understanding of 

elementary concepts in differential calculus in a computer laboratory teaching 

environment. Double peer reviewed. In Proceedings of the College Teaching 

and Learning Conference, Oahu, Hawaii USA, 2-5 January. ISSN: 1539-8757. 

• Naidoo, K. and Naidoo, R. (2007). First year students understanding of 

elementary concepts in differential calculus in a computer laboratory teaching 

environment. To be published in the Journal of College Teaching and Learning 

(TLC). 
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• Naidoo, K. and Naidoo, R. (2005). On Errors in Differential Calculus. In 

Proceedings of the 48th Annual Congress of the South African Mathematical 

Society, Rhodes University, 2- 4 October. 

• Naidoo, K. and Naidoo, R. (2004). Teaching Elementary Calculus usmg 

computer Technology: A Case Study at a Technikon. Proceedings of the 14th 

Annual KwaZulu-Natal Mathematics Conference, Durban Institute of 

Technology, 8 May. 
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CHAPTER 2: THEORY OF TEACHING AND LEARNING AND 
ELEMENTARY DIFFERENTIAL CALCULUS 

2.1 LANGUAGE AND LEARNING 

Language is fundamental to learning. Aiken (1972) mentioned that linguistic factors 

affect performance in mathematics and that mathematics is a specialized language with 

its own vocabulary and syntax. Wittengenstein (1976) showed that mathematics is a 

language and it follows language rules. Vygotsky (1962) argued that language is learnt 

in a social context. From the viewpoint of mathematics as a language, it follows that 

project work and group discussions should be given prominence in the learning of 

mathematics. 

In order to understand students' mathematical language concepts deep and surface 

structures are elicited. Chomsky (1957) described syntax in terms of its surface and deep 

structure. Here the surface structure in print refers to the visual information on the page 

or the actual words and word order represented in graphic symbols. The deep structure 

referred to the underlying structure of the language, where the component phrases of a 

complex sentence are identified and their relationships specified to result in meaning. 

2.2 DEEP AND SURFACE LEARNING 

Many studies have identified deep and surface approaches to learning in a wide range of 

contexts, (Biggs, 1979; Entwistle & Ramsden, 1983). They identified two qualitatively 
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different "levels of processing". Surface-level processing focused on the text itself and 

memorizing. Deep-level processing focused on the underlying meaning of the text. 

(Marton & Saljo: 1984) used the term "approach to learning" to describe strategy (what 

students do) and intention (why they do it). 

Deep and surface approaches are related to motivation. The deep approach to study is 

derived from intrinsic motivation and the surface approach from extrinsic motivation. 

The deep or surface approach can be adopted by an individual with either motivation. 

These approaches are not attributes of individuals. An individual may use both 

approaches at different times although they may have a preference for one or the other. 

In terms of Bloom' s Taxonomy (1956), the "deep" approach reqmres higher order 

thinking skills that includes analysis and synthesis. "Deep" learners incorporate new 

ideas that they learn with existing knowledge and personal experience. In my opinion, 

deep learning is encouraged by extending individual study time and time given for 

projects since it gives learners more opportunity to practice. 

Entwistle & Ramsden (1983) and Marton & Saljo (1984), note the importance of group 

work and problem-solving as a means of fostering the deep approach to learning. These 

are similar to the "active learning", "cooperative learning" and "problem-based 

instruction" . 
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Atherton (2003) makes the following remarks on deep and surface approaches: 

In the surface approach learning is viewed as: 

• a quantitative increase in knowledge (acquiring information or "knowing a lot"); 

• memorizing (storing information that can be reproduced); 

• acquiring facts, skills and methods that can be retained and used as necessary. 

In the deep approach learning is viewed as: 

• making sense or abstract meaning (learning involves relating parts of the subject 

matter to each other and to the real world); 

• interpreting and understanding reality in a different way (learning involves 

comprehending the world by re-interpreting knowledge). 

Depending on how the computer is used, it is a potential means of getting students to use 

deep approaches in their search for solutions. In the case of calculus solutions it also 

provides a visual aid to enhance comprehension. 

Case & Marshall (2004) refer to two intermediate approaches to learning, the procedural 

surface approach and the procedural deep approach. These approaches lie between the 

deep and surface approach. The table below shows how these approaches are applied: 

STRATEGY INTENTION 

Passing the test Understanding 

Memorization Surface 

Problem Solving Procedural surface Procedural deep 

Concepts Conceptual surface Conceptual deep 

Table: 1 Intermediate Approaches to Learning 
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Both these approaches focus on problem solving. The deep approach involves the 

intention to understand and the surface approach not. 

2.3 COGNITIVIST THEORY 

Davis (1984) proposed a cognitive theory as a language to describe mathematical 

behaviours. Here thought processes are regarded as fundamental. The theory relates 

observations to a postulated theory of 'metaphoric' processes with information of how 

the individual thinks about some mathematical problem. The theory borrows its basic 

concepts from the field of artificial intelligence. 

Cognitivists also focus on what the student is thinking. Focus is on the learning process 

that takes place in the students' mind. The cognitivist tries to identify ideal learning 

strategies for students whereby the student is active in the learning process. In this theory, 

errors are viewed as an unsuccessful attempt to understand, order and act upon their 

environment in ways that make sense to them. Such an error analysis is necessary for 

learning when using computers. The curriculum can be adjusted to accommodate 

students' development stages. 

2.4 CONSTRUCTIVIST THEORY 

Constructivism is a theory of learning based on constructing knowledge, not receiving it 

(Marlowe & Page, 1998: 2). It is about constructing knowledge to get more knowledge. 

Constructivism is concerned with the thinking and the thinking process. This would mean 
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uncovering and discovering knowledge for one's self rather than receiving the knowledge 

from· an instructor. Children learn best when they find out for themselves the specific 

knowledge they need (Papert: 1993). In his work with logo, Papert believed that 

programming was fundamental to problem solving in mathematics calling for both 

"convergent" and "divergent" thinking which he refers to as "logic" and "intuition". 

In terms of the constructivist learning is: 

• both the process and the result of questioning, interpreting and analyzing 

information; 

• using this information and thinking process to develop, build and alter our 

meaning and understanding of concepts and ideas; and 

• integrating current experiences with our past experiences and what we already 

know about a given subject. (Marlowe & Page: 1998) 

They concluded that: 

• Students learn more when they are actively engaged in their own learning; 

• By investigating and discovering for themselves, by creating and re-creating, and 

by interacting with the environment, students build their own knowledge 

structure; 

• 

• 

Learning actively leads to an ability to think critically and to solve problems; 

Through an active learning approach, students learn content and process at the 

same time (Marlowe & Page: 1998). 
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2.5 FRAMES 

A frame is an abstract formal structure that is stored in memory and somehow encodes 

and represents a sizeable amount of knowledge. This collection of knowledge 

representation structures or "frames" grows as more complex frames are built on the 

existing ones. 

We focus on the sequential processes which guide mathematical problem solving activity, 

the critique which is an information processing operator that is capable of detecting 

certain of frames, information in one's mind must be typically organized into quite large 

chunks (Davis & Mc Knight, 1979, Minsky, 1975). Minsky (1975) states "when one 

encounters a new situation ..... one selects from memory a substantial structure called a 

frame. This is a remembered framework to be adapted to fit reality by changing details 

as necessary". 

The four basic concepts of Davis's theory include: sequential process, critique, frames 

and deeper-level procedures. An expert possesses an abundance of critiques and this 

attribute distinguishes an expert from a novice. 

Davis (1984: 276/7) lists six possible frame selection procedures: 

• Bootstrapping - deals with what one sees in the given. It leads to certain 

associations, frames that involve such things; 

• Not knowing too much - deals with the limited knowledge on a topic or concept; 
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• Focus on some key cue - deals with the presence of a small number of cues that 

lead to the retrieval of some specific frame; 

• Using context - deals with how the context influences student's choice; 

• Using systematic search - deals with the student learning things in a systematic 

way and develops systematic procedures for searching hislher memory; 

• Parameter-adjusting or spreading activation - deals with how certain frames or 

assimilation patterns acquire high expectation values. 

The types of frames necessary for the concept derivative include pre-differentiation 

frames, e.g. to understand composition functions if 0 g), we need the pre-frames of 

functions f and g. If these pre-differentiation frames are brought to bear on a 

differentiation problem then solution to the problem can be possibly sought. The 

problem with most students is that these pre-differentiation frames are incomplete or 

inadequate. 

In order to be successful one needs to build on pre-differentiation frames and synthesize 

an adequate knowledge representation to what we recognize as mathematical thought. 

2.6 CATEGORISATION OF ERRORS 

Errors in calculus can be categorized as structural errors, executive errors and arbitrary 

errors as described in Donaldson (1963). Structural errors are those which arise from 

some failure to appreciate the relationships involved in a problem or group of principles 

essential to the solution ofthe problem. Failure to tackle relationships in a problem arises 
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from a false expectation of the problem. Structural errors may arise in connection with 

variable interaction. These errors occur in the deductive mode when the subject reasons 

deductively but fallaciously. One may expect that failure to perceive inconsistency or 

consistency would be a common source of structural error (Donaldson, 1963). An 

incorrect frame may be retrieved or the frame maybe not developed adequately. 

Structural errors are caused by incorrect frame retrieval, sketchy or incomplete frames, 

deep-level procedures and sub-procedures. 

The second type of error is the executive error. Executive errors occur when there is a 

failure to carry out manipulations, although the principles may have been understood. 

Some defect of concentration, attention or immediate memory lie at their origin. The 

most prevalent of this class of errors is loss of hold on reasoning (Donaldson: 1963). A 

correct frame maybe retrieved but a sub-frame responsible for calculations maybe 

underdeveloped. 

The third type of error is the arbitrary error. Arbitrary errors are those in which the 

subject behaves arbitrarily and fails to take account of the constraints laid down in what 

was given. These are errors which have as their outstanding common feature a lack of 

loyalty to the given. Sometimes the subject appears to be constrained by knowledge of 

what is ' true' by some considerations drawn from 'real- life' experience. Sometimes 

there is no constraint of any kind. The subject simply decided ' it is so' (Donaldson: 

1963). Incorrect inputs maybe assigned to the retrieved frame. "Arbitrary" errors are 

caused by mapping incorrect inputs to the retrieved frame (surface structures). 
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2.7 PROBLEM SOLVING STRATEGIES 

To gain a better handle on how some students produce correct or incorrect answers we 

appeal to Larkin (1980). She refers to the difference between the expert students and 

novice students. Experts know a great many things and a novice does not. Experts tend 

to use a knowledge-development (forward-working) approach. In this approach the 

student begins with the "givens" of the problem applying successive equations that could 

be solved with the givens (Larkin et aI. , 1980). A computer learning environment aims 

to do precisely this, i.e. increase the knowledge base of the student. The expert' s 

knowledge of the field is more hierarchically arranged, and this is stored in larger 

functional units, or chunks, for more coordinated access. (Larkin, Heller, & Greeno, 

1980). 

In contrast nOVIces tend to sequentially access principles in a more "piece-meal" 

approach. They use a means-end analysis or "working backward." In this approach, the 

"givens" of the problem are compared with the desired result. Differences between the 

two are recognized and the solver attempts to "transform one or the other to reduce, and 

finally eliminate, these differences" (Simon & Paige, 1979). 

An intermediate response is used to describe a response that is neither forward nor 

backward. It is believed that the mental frame is in the process of being developed. 
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2.8 CALCULUS AND COMPUTERS 

This brings us to the fact that there are many tools available to teach mathematics. To 

mention a few, the chalkboard, overhead projector, displays, videos and audio cassettes. 

The computer was chosen in this project because it is an interactive tool and encompasses 

all the above functions. It is an environment that allows the student to explore examples 

of mathematical processes and concepts. The characteristics of the examples can be 

abstract. Students are at liberty to give input without having to be scared of what the 

outcome would be. Student responses may be viewed privately and this would cause 

little or no embarrassment in the case of one having to respond to a question in a large 

lecture theatre or classroom. 

A typical computer learning environment is shown below: 

COMPUTER 

LECTURER MAHEMATICS 

Fig. 1 Computer Learning Environment 
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The element of teaching and discussion is to demonstrate examples and slow down the 

action of lecturing, to explain what is happening and pausing on occasions when an 

important point is reached that is worthy of discussion. 

The lecturer and student need to negotiate the meaning of a concept. Furthermore the 

lecturer must help students form their own concept images in a way that is in agreement 

with mathematicians. A dialogue must ensue between lecturer and student. The 

mathematics must be an external representation on the computer as a dynamic process 

under the control of the users. Tall (1986) states that concepts may be built by seeing 

examples in action and tested by predicting what will happen on artfully chosen examples 

before letting the computer carry them out. 

Naidoo (1998) also mentions that pre-knowledge frames for which concepts such as 

functions and algebra can be enhanced and corrected in the computer laboratory 

environment. Many types of graphs can be quickly drawn. Analyzing a graph is like 

analyzing a painting. Everything is there but the student must know what to look for. 

Students need to understand the mathematics of the graphs such as slope, concavity, 

asymptotes, zoom, scaling etc. 

Ramsden (1992) found that Mathematica gave opportunity to set up sophisticated models 

in a way that students understood them and they were able to set up their own projects. 
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Some advantages of lecturing using computers as cited by Cotton (1995: 112) are: 

• 

• 

• 

it encourages shy learners to build confidence; 

each learner would be allowed to work independently at their own pace; and 

arouses learners through active participation. 

Further advantages of lecturing using computers include: 

• as the learner is in involved in the activity at hand, attention span is improved; 

• long-term memory is enhanced by the fact that the learner takes a personal 

stake in getting through the steps that are required to succeed; 

• students that are engaged in activity are motivated; 

• focus is on individual attention: the student is able to ask tutor for assistance with 

any computer jargon (like syntax errors); 

• stimulation of cognitive drive; and 

• improves self enhancement and affiliation. 

Disadvantages of lecturing using computers include: 

• some knowledge of working in a computer environment is necessary; 

• knowledge of syntax in Mathematica (or other software) is an essential tool ; and 

• resources that are needed have financial implications. 

Colgan (2000) refers to the use of computers in the curriculum design and delivery in 

undergraduate courses in engineering. These studies are published by The International 

Commission on Mathematical Instruction (ICMI). The use of the computer has been an 
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area of concern regarding not only the teaching and learning but the enhancement of 

student learning. 

There are many sections of the elementary calculus that automatically lend themselves to 

computer demonstration. Colgan (2000) in his study using MATHLAB in first year 

engineering mathematics suggested that these should be illustrated in lectures as well in 

the form of a software guide that students could use. 

Coetzee & du Bruyn (2003) in their study of the students' perspective on the benefits of 

incorporating practical computer training in auditing software package found that 

students are willing to spend more time to include practical training classes because they 

are aware of the benefit on their understanding of the subject. 

2.9 THEORY OF THE ELEMENT ARY DERIVATIVE 

We review theoretical issues in the literature which explore some of the concepts and 

processes associated with differentiation. The derivative can be seen as a concept which 

is built from other concepts. Particularly the derivative can be seen as a function, a 

number if evaluated at a point, limit of the sequence of secant slopes or rate of change. 

Differentiation assumes the understanding of function or more generally a curve (not all 

curves can be formulated by a function). There do not seem to be clear-cut 

characteristics that set advanced mathematical concepts from those in elementary 

mathematics. Each advanced concept is based on elementary concepts and cannot be 

grasped without a solid and sometimes very specific understanding of these elementary 
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concepts. Thus the concepts of advanced mathematics carry an intrinsic complexity. For 

example students cannot grasp what is meant by a differential equation or interpret its 

solution unless they have understood the derivative concept and not just the techniques of 

differentiation. Mathematicians explain the derivative using pre-concepts such as 

elementary algebra, rates of change, limits and infinity and tangents. The network or 

sequence leads to interrelated ideas, each idea integrating some of the more elementary 

ones into an added structure. It is precisely the complexity of concepts that make 

differentiation difficult for students to grasp (Naidoo: 1998). 

There is a distinction between the mathematical concepts as formally defined and the 

cognitive processes by which they are conceived. The term concept image describes the 

total cognitive structure that is associated with the concept. Tall (1981) indicates that the 

concept image includes all mental pictures and associated properties and processes. In 

coming to understand mathematical concepts at school students evolve mental pictures at 

a concrete level. For example, to understand rate of change students evoke pictures of a 

moving car. The mental pictures which served the students well at school level may now 

become an impediment. Bruner (1986) suggested that iconic processing limited ideas 

and urged a movement onto the symbolic level. The student with an inadequate concept 

image may find such a development difficult to achieve. 

To build an adequate concept image of the derivatives lecturers write the derivative as 

' the gradient of the graph of a ' function or curve'. This interpretation, basic to the 

understanding of calculus, deals with the slope of the line tangent at a point on a curve. 
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Conventionally we consider two points P (Xl' Yl ) and Q (X2' Y2 ) in the figure 2 below. 

The slope of the line through these points is given by m = ~Y = Y2 - Yl which according 
~ x2 -XI 

to Skemp (1970) is the ratio of a pair of corresponding changes. This, however, 

represents the slope of the line through P and Q and no other line. If we now allow QI to 

be a point closer to P, the slope of PQ2 will more closely approximate the slope of a line 

drawn tangent to the curve at P in figure 2 below. In fact, the closer Q is to P, the better 

this approximation becomes. It is not possible to allow Q to coincide with P, for then it 

would not be possible to define the slope of PQ in terms of two points. The slope of the 

tangent line, often referred to as the slope of the curve, is the limiting value of the slope 

of PQ as Q approaches P. 

) 

Fig. 2 Gradient of the graph of a function or curve 
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The derivative is defined as the limit of the ratios ~y as I:!.x approaches ) 0 . Therefore the 
I:!.x 

derivative is the gradient of the line tangent to the curve. Since the slopes of the secants 

form a Cauchy sequence the derivative exists and it is unique. The average rate of change 

is given by ~y which is important in engineering applications such as material testing in 
I:!.x 

a laboratory. The derivative is then a measure of the rate of change of y with respect to x 

at a point P which is the measure of the instantaneous rate of change, which is applied in 

engineering concept formulations. The notation dy is used for a derivative. This is given 
dx 

as: 

dy 

dx 
I
. f(x + h) - f(x) 
lm =--c,------,,---,,--,---,--
h~O h 

I· ~y 
lm­
h~O I:!.x 

The concept image of the limit may evoke a mental frame of a chord ( secant) tending to a 

tangent which is a form of a metaphor as described by Oerthman (2003). The metaphor is 

an integral part of the qualitative theoretical frame work used in this study. The Cauchy 

concept of the limit is employed where the limit is interpreted as a sequence of elements 

which is a well known theorem in Real Analysis. Hence the limit & - 8 formalism was 

not required. A well known theorem by Cauchy states that convergence implies 

uniqueness of the existence of the limit. The non-convergence of the sequence suggests 

the non-existence of the limit which would imply that the derivative does not exist. Tall 

& Vinner (1981) conjectured that if a student displays a concept image that does not 
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allow S n = S in S n ~ S then a student may not absorb a concocted example when it is 

presented to him. 

A qualitative theoretical framework was constructed for the analysis of errors in 

differential calculus (Naidoo: 1998) who uses mainly the cognitive theory that regards 

mathematical thought processes as fundamental. The theory relates observations to a 

postulated theory of 'metaphoric' process with information of how the individual thinks 

about some mathematical problem. 

The three types of errors were linked to the sequential processes, critique, frames and the 

deeper level procedures of Davis (1984) by Naidoo (1998). The learning of 

differentiation does not require verbatim repeating of verbal statements but the 

appropriate mental frames to represent the concepts and procedures of differentiation. 

The qualitative theoretical framework refers to the ways students are thinking with 

respect to the mathematical tasks. This necessitates that one has to get information from 

students whilst they are engaged in specific mathematical tasks. The frame theory 

includes metaphors, collages or chunks embedded in the frames. Engineers typically use 

metaphors, collages or chunks of cognition to explain design or mechanisms. Oertmans's 

(2003) research on metaphors used in the understanding of the derivative exhibit a 

particular aspect of the theoretical frame structure designed by Donaldson 1963. 

Tall (1996) used the "local straightness" of the graph as his "good" cognitive root to 

build calculus. His Graphic Calculus software enabled the student to magnify a portion 
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of the graph to observe the straightness by tracing the gradient numerically along the 

graph. Additional software allowed the student to point the mouse at a given place in the 

plane and draw a line segment of the given gradient. An approximate solution could be 

constructed physically and visually by sticking segments from end to end. This is a 

means of encouraging deep approaches to learning. The student is motivated further by 

adding reality to hislher solution. In this way the student's meaning can be extended to 

real-world problems that society needs solutions to. 

The zoom graph approximates the curve to a straight line. When the domain intervals are 

made very small the curve can be approximated as a straight line. Instead of using 

secants we zoom to get a straight line. Here we establish the idea of the gradient of a 

curved graph. Using Mathematica a graph can be drawn and a part of the graph can be 

selected and magnified. The magnified part looks "straight". This method frees the 

student from cognitive overload. The student does not have to deal with tangents, secants 

and complex geometry. Tall (2002) agrees that calculus software should be programmed 

to assist the user to explore graphs with corners and wrinkled graphs. Fig. 3 (adapted 

from Visual Calculus software programmed by Teresinha Kawasaki) shows how 

computer software can be used to zoom over a small interval on a curve. The rate of 

change can be found from both directions. 
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Fig. 3 Zoom Graph 

It maybe easier for students to explore the derivative using Scaling or Zooming: Below is 

an exhibition of the concept. 

Consider a function f (x) = y. Let y = x2
• We may want more detail to see how the curve 

touches its tangent line or we may want a big picture to check on asymptotes. The axes 

can be scaled as follows: 

Stretch the horizontal axes by C: The new x is CX =x 

Stretch the vertical axes by D: The new y is DY=y 

Therefore f(x) = Y becomes y = D[f( ~)] . If we want to magnify the graph at a point ten 

times we take C=D=lO which gives a Zoom Transform. To determine the slope of the 
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Zoom Transform we may use the chain rule to get y' = ~ [f'( ~ )]. This means the 

derivative or slope is multiplied by D . If we let D=C the slope remains the same. The 
C 

following graphs exhibit the calculation of derivatives using Zoom or rescaling: The 

following plot commands can be used in Mathematica to generate different 

scaled/zoomed graphs. As an exemplar we chose a simple quadratic function y = x 2 to 

demonstrate the Zoom function. The slope was approximated at x = 1. The following is 

the mathematica command: 

The aspect ratio represents the Zoom transform and the PlotRange was used to approach 

the point (1,1) as close as possible. 
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Zoom Graphs with corresponding gradients 

Graphs 4 and 5 visually seem to be a straight line and therefore represent the tangent at 

the point. Table 1 indicates that as we zoom closer to the point where the derivative may 

be determined if the Cauchy sequence exists. It can be easily verified by taking the 

derivative: = 2xl x =1 = 2. Hence the Zoom function method in determining the 

derivative is simpler and faster to calculate the derivative than the "secant becoming the 

tangent" method. 
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CHAPTER: 3 METHODOLOGY 

3.1 DATA COLLECTION PLAN 

Data collection was performed in the Engineering Science and Built Environment Faculty 

at the Durban University of Technology. 

Four staff members from the institution assisted in the orientation of the experimental 

group to the Mathematica software. This was done over three weeks in two hourly 

sessions weekly. A two-tier design, combining qualitative methods (control group) in an 

exploratory phase and quantitative methods (task on computer) in a more focused 

learning environment, was used. We made complementary use of the qualitative and 

quantitative methods (Punch: 1998). The quantitative data would give an indication of 

student errors and the qualitative data would give more meaning to how students' think 

during their interaction. Qualitative methods are used in the study of human behaviour 

and behaviour changes (Stevens: 2003). This study wanted to find out the errors students 

were making and why they were making these errors. 

After determining that there was reasonable competency with syntax and other computer 

related aspects, the students were asked to complete the compulsory mathematics project 

from the Department of Mathematics at the University of Technology. This task was also 

part of their course fulfillment requirements. This also ensured that students would find 

the experience beneficial in that it also contributed td their course mark. 
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The mathematical laboratory type of intervention in which students could experiment and 

test mathematical knowledge was particularly suitable to link numeric, symbolic and 

graphical computations (Wolfram: 1991). The use of computers would ensure that the 

student would be able to work at hislher own pace (Cotton: 1995). 

3.2 PROJECT WORK 

According to Vithal (2004) projects or project work form a "progressive" approach to 

mathematics education and advocates more "open-ended", "problem-centered" activities 

in which learners are given greater independence in their learning, in contexts relevant to 

them. In terms of the outcomes based approach to learning, project work is extensively 

used as an assessment strategy in modem South African Schools. Not much research 

exists to test the effect and use of project work. In countries like Scandinavia and 

Denmark project work had been introduced for decades. 

In this study only the experimental group was given a project to do. Students had to 

perform the task in groups at the mathematics laboratory using Mathematica. The aim of 

the tasks was to assist students to understand the elementary concepts in calculus. The 

tasks also contributed to their assessment for the mathematics module MATHlOl. This 

would also ensure that the participants in the experimental group would carry out the 

project tasks meaningfully. 

The following are the project tasks and discussion. These tasks were used to determine 

errors, deep, intermediate and surface thinking. 
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3.3 PROJECT TASKS 

Use Mathematica to solve the following problems. Please show clear programming 

techniques and explain your answers fully. Show commands, numerical tables and 

graphs. 

TASK A 

Find the limit of the following numerically and graphically. Discuss your results. For 

the numeric values show explicitly whether the sequence is converging or diverging. 

1
. 2 --rx 
lm---
x~4 4-x 

DISCUSSION: 

This task tested the understanding of the limit as a converging sequence. Students were 

exposed to calculating the limit from the left and the limit from the right. The graphical 

solution using Mathematica would give them an indication that the sequence of values of 

x as it approaches 4 converged to a particular value. The numerical solution can be used 

to identify the converging value. 

TASKB 

Let f{x) = 3x - 2X 2 

2.1 Find the average rate of change off (x) from x = 0.5 to x = 0.9 
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2.2 Find the equation ofthe corresponding secant line. 

2.3 Plot the graphs off(x) and the secant line on the same axes. 

2.4 Repeat parts 2.1 to 2.3 for x = 0.5 and x = 0.51. Explain what you observe. 

2.5 Zoom in on the graph around the point (0.5 ;/(0.5)). Show your plot and explain 

what you observe about the two graphs in 2.4. 

2.6 Re-plot the graphf(x) over the interval [0; 1]. Now zoom in on the graph around 

the point (0.5;/(0.5)) until the graph looks like a straight line. Show your plot and 

explain how you can use this graph to estimate the slope of this line. (Hint: 

Move the mouse pointer to the line and click at two different points on it; then 

observe the first and second coordinates of the points you clicked on.) 

DISCUSSION: 

Students' had to use the frame 'average rate of change' and 'slopes' to solve this 

problem. The frame 'straight line' had to be used to obtain the equation of the secant 

line. A visual representation of the graphs would enable students to see, that as the 

interval between the corresponding x- values were made smaller, then the secant became 

a tangent. 

TASKC 

Let f{x) = 3x - 2X 2 

3.1 Find the instantaneous rate of change of f(x) at x =0.5 using the definition of the 

derivative. 

3.2 Find the equation of the corresponding tangent line. 
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3.3 Plot the graphs of f(x) and the tangent line on the same system of axes. Zoom in 

on the graph around the point (0.5 ; 1 (0.5)) until the two graphs are 

indistinguishable. How close did you have to get? 

3.4 1 
1(0.5 + h)- 1(0.5) Eva uate ~--~...::.-~~ 

h 

Explain how you can use this to estimate the derivative of I (x) at 0.5 from the 

graph. 

DISCUSSION: 

This task needed students to retrieve the frames ' tangent lines' and 'rates of 

change'. Students would have to apply the fact that the instantaneous rate of change is 

the limit of the average rate of change of f as the width of the interval x tends to zero. The 

frame ' lim 1(0.5 + h) - 1(0.5) , had to be retrieved. 
h~O h 

3.4 THE QUALITATIVE THEORETICAL FRAMEWORK 

These modified Orton Tasks are used extensively in the mathematics syllabus. The object 

of this study was to determine the errors engineering students make in coming to 

understand the derivative. Furthermore the derivative is highly contextualized within the 

engineering disciplines and therefore requires tasks such as elementary algebra, limits 

and infinity, average rates of change, rates of change at a point and a high emphasis on 

graphics or curves. We distinguish between average rates of change and rate of change at 

a point as they represent two separate concepts in engineering. Average rate of change is 
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applied extensively in the engineering laboratories. Zandieh (2000) constructed an object-

process qualitative framework, where the derivative can be taken as velocity or 

acceleration. There are literally hundreds of engineering -derivative -derived concepts 

. . df. dV dq 
such as velocIty, acceleratIOn, stress ( - ), flUId flow (-), current flow (-) etc 

~ ~ ~ 

which are derived from first principles. Using all these derived concepts in the qualitative 

frame is impracticable. Expert engineers derive these derivatives using algebra, limits 

and infinity, average rate of change and rates of change at a point. Furthermore expert 

engineers apply the abstract (definition of the derivative) first before concretization 

(velocity, acceleration, current, fluid flow etc). 

Using the clinical method (using verbal and written responses), responses to the tasks was 

elicited. The focus on this study was on identifying errors and the types of errors 

engineering students were making. If there were more than one type of error in a task 

both errors were reported. If the error could not be easily categorized responses from two 

experts were sought to give their opinion. The tasks on differentiation were listed and 

discussed as to relevance and type of the frame retrieved. The tasks were then itemized 

according to required skills and concepts. There were 8 items, listed in Table: 3. 

The testing instrument used consisted of a battery of tests (Orton, 1983). Naidoo (1998) 

used the same modified tasks for his data collection. The experimental group and control 

group were asked to do the battery of tests, based on basic concepts in differential 

calculus. The students' scores were then graded. 
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These tasks were grouped into eight items each accounting for a score according to a 

marking scheme designed by Orton (1983). 

Item No Description 

1 Infinite geometric sequence 

2 Limit of geometric sequence 

3 Rate of change from straight line graph 

4 Rate, average rate and instantaneous rate 

5 Average rate of change from curve 

6 Carrying out differentiation 

7 Differentiation as a limit 

8 Use of delta symbolism 

Table: 3 Item No and Description 

3.5 THE SUBJECTS 

The experimental group consisted of 34 students from the Faculty of Engineering and 

Built Environment. The control group also consisted of 34 students also from the Faculty 

of Engineering and Built Environment. Both groups were randomly chosen and 

represented students with mixed abilities. The first group was the control group and the 
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second group the experimental group. The sample size was determined by the number of 

students in that particular class group. It represented a convenience sample (Rose: 

1991). In each group the students needed to achieve an E symbol on higher grade or D 

symbol on standard grade to gain access into the Engineering programme. The average 

symbol for both groups was a D on the standard grade. Both groups were made up of 

heterogeneous students who accounted for learners from all race groups. Selection of the 

number of female and male students was purely determined by the class groupings as 

determined by the University structures. All students have studied calculus at secondary 

school as part of their Mathematics algebra component. Data collection was done during 

the end of the first semester at the University of Technology. 

The instruments used for the data collection included: the compulsory mathematics 

project and Orton's battery of tests. It was felt that multiple ways should be used to 

collect the data so that during data analysis the researcher would have adequate material 

to refer to when drawing inferences. 

The pilot study consisted of the questionnaire designed by the researcher. Responses 

were audio recorded so that the researcher could see if students really understood the 

compulsory project that they completed for their course requirement. The questions were 

modified and applied to the experimental group. 
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3.6 THE TASKS 

The tasks were selected and modified from Orton's instruments for the understanding of 

differentiation (Orton: 1983). Below are the actual tasks that were used for the study to 

determine the differences between the experimental and control group in terms of errors, 

deep structures, intermediate structures and surface structures and forward, intermediate 

and backward inferences. 

TASK! 

The diagram shows a circle and a fixed point P on the circle. Secant lines PQ are drawn 

from P to points Q on the circle and are extended in both directions. 

1.1 How many different secants could be drawn in addition to the ones already in the 

diagram? 

1.2 As Q gets closer and closer to P, what happens to the secant? 
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DISCUSSION 

The purpose of the task was to determine if students could perceive that as the moving 

point approached the fixed point, the secant approaches the tangent at the fixed point. 

Consequently the slope of the tangent at a fixed point can be considered as the limit of 

the sequence of slopes through the same fixed point. The frame to be retrieved involved 

'a secant cutting two points on a curve' and ' a sequence of secants through' and P with 

Q approaching P' . The student could synthesize the above frames welded into a single 

frame or construct each frame from assemblies. 
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TASK 2 

Water is flowing into a tank at a constant rate, such that for each unit increase in time the 

depth of the water increases by two units. The graph illustrates the situation. 

Time (x) 0 1 2 3 4 5 

Depth (y) 0 2 4 6 8 10 

1 st difference (depth) 2 2 2 2 2 

Y 

10 

8 

6 

4 

2 

-2 -1 1 2 3 4 5 
--.. 

X 

-

-: 

2.1 What is the rate of increase in the depth when x = 2 ~? 

2.2 What is the rate of increase in the depth when x = T? 
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DISCUSSION 

Questions on rate of change were based on the same graphical situation. The student 

must retrieve the frame 'a tank being filled with water', 'a straight line graph with 

gradient 2' , and 'rate of change equal to gradient'. This task was based on a real world 

problem. The 'tank being filled' can be taken as a pre-mathematical frame or collages for 

the synthesized frames. The procedure of the frame is to see that the constant rate relates 

to a straight line graph and every point on the X-axis gives the same rate of change. 

TASK 3 

The graph below represents y = 3x - I 

y = 3x-1 

4 

3 

2 

1 

-2 -1 2 3 4 
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3.1 What is the value of y when x a? [a is a real number] 

3.2 What is the value of y when x a + h? [h is any increment] 

3.3 What is the increase in y as x increases from a to a = h? 

3.4 What is the rate of increase ofy as x increases from a to a + h? 

3.5 What is the rate of increase ofyatx = 2 Y:!? 

and at x=X? 

DISCUSSION 

Both Task 3 and Task 2 included questions on the theme of rate. This task also required 

the student to retrieve similar frames as the previous task. The previous task is usually 

found in engineering courses. The frame required inputs for a functiony = f(x) , change of 

y, change of x, rate of change = f1y and this is constant throughout the X-axis. 
& 
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TASK 4 

The graph below represents y = 3x 2 + 1, from x = 0 to x = 4 

Y 

50 

40 

30 

20 

10 

y = 3x 2 + 1 

~---------------------------..x 

4.1 

4.2 

What is the value of y when x 

What is the value of y when x 

a? [a is any real number] 

a + h? [h is any increment on the x-axis] 

4.3 What is the change in y as x increases from a to a + h? 

4.4 What is the average rate of change in the x-interval a to a + h? 

4.5 Can you use the result in (4.4) to obtain the rate of change ofy at x = 2 ~? 

At x = 1? If so, how? 
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DISCUSSION 

This task complemented the previous one. A similar graph was presented but with a 

different function. A frame of a curved graph was sought indicating different tangent 

points. This task aimed at extracting information concerning students' capabilities and 

understanding relating to rate of change based on graphs. The required frames are similar 

to the previous task except that the input function is a quadratic and the average rate of 

change is now ~y . In the linear graph the rate of change is the same as the average rate 
Llx 

of change. Using a super-procedure within the frame, lim ~y = the rate of change, 
h-->O Llx 

the student will be able to determine the rate of change at x = 2 lh and at x = T. The sub-

procedures involve determining ~y, ~x and the limit. These sub-procedures can also be 

taken as assemblies. 

TASK 5 

5.1 What is the formula for the rate of change for the equation y = xn? 

5.2 

a) 

b) 

c) 

[n is an element of the natural numbers] 

What is the rate of change formula for each of the following equations? 

y = 3x3? 

y = 4? 

2 
Y = -? 2 • 

x 
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DISCUSSION 

These tasks required students to retrieve the rules for differentiation frame. Both tasks 

were typical problems found in mathematics at first year level at the Durban University 

of Technology. 

TASK 6 

The diagram below is used to introduce the definition of the derivative, viz. 

dy 1· [J(x + h) - f(x)] . .. h . h . ~ . = = 1m m engmeenng mat ematlcs, were y IS any lunctlon 
dx h40 h 

and h is an increment in x. 

6.1 At which point or points of the graph does the formula measure the rate of 

change? 

6.2 Explain why the formula defines this rate of change? 

7 Q 

... 

0 x x+h 
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DISCUSSION 

The frame to be retrieved could be the sequential secant tending towards a tangent to the 

curve at a point and the slope of the tangent is a representation of a rate of change at that 

point. Further the instantaneous rate of change represents the derivative at that instant. 

TASK 7 

The graph of y for a certain equation, for x = 0 to x = 6 is shown. 

y 

3 

2 

A 

1 

o 

-1 

-2 

B 
c 

1 

What is the average rate of change of y with respect to x? 

7.1 From A to B? 

7.2 From B to E? 

7.3 FromFtoH? 
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DISCUSSION 

The purpose of this task was to introduce the idea of rate of change in the sinusoidal 

curve, which is often encountered by students in engineering. The frame to be retrieved 

is that the average rate of change can be calculated from any two points irrespective of 

the curve. 

TASKS 

Explain the meaning of the following symbols:-

8.1 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

8x, 

8y 

8x 

dx 

dy 

dy 

dx 

What is the relationship between &/ & and dy/dx? 

DISCUSSION 

This task probed the understanding of the various symbols used in connection with 

differentiation. The frame retrieved gives meaning to each symbol and the relationship 
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between the symbols and related concepts such as differentiation or limits or average rate 

of change. 

3.7 THE ITEMS AND THE TASKS 

Tasks were regrouped to form items (Orton, 1983). Each item represented one aspect of 

elementary differential calculus. The item number, item description and related tasks are 

given in Table: 4 

Item No Item Description Related Tasks 

1 Infinite geometric sequences 1.1 

2 Limits of geometric sequence 1.2 

3 Rate of change from straight line graph 2· , 3.5 

4 Rate, average rate and instantaneous rate 3.4; 4.4 4.5 

5 Average rate of change from curve 7.1; 7.2; 7.3 

6 Carrying out differentiation 5.1 ; 5.2 

7 Differentiation as a limit 6.1; 6.2 

8 Use of cS - symbolism 8.1; 8.2; 8.3; 8.4; 8.5; 

8.6; 8.7 

Table: 4 Item Description and Related Tasks 
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3.8 THE ITEMS AND THE SCORING PROCEDURE 

Scrutiny of the students' protocols suggested a five-point scale be used to assess 

responses to the items given. A score of 4 was given for a response that was judged 

nearly correct as one would expect to achieve after a study of elementary calculus. 

A score of 0 was given for no response or for an incorrect attempt. Criteria were defined 

for the scores for each item by noting common levels of the responses of the 66 subjects. 

A provisional rating scale was prepared and scores were tabulated. 

The criteria for the scores were amended where deficiencies had been observed and the 

revised scales were used to obtain the table of scores. 

The grading procedure for the items also took into consideration the following: 

• equivalent answers or methods were accepted 

• correct answers were given full credit 

• understanding of a method was the main criterion used rather than penalizing for 

carelessness 

ITEM 1: INFINITE GEOMETRIC SEQUENCES 

Only one question constituted this item, based on the idea of "How many?" 

Task 1 (1.1), "How many different secants could be drawn, in addition to the ones 

already in the diagram? 

Answers: "An infinite number", or "No limit to the number", or "You could go on for 

ever", or equivalent were accepted without explanation. Vague answers like, 
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"innumerable", "Any number", "As many as you like", "Almost infinite", "You can't say 

because there are too many" were not accepted. 

Criteria for levels of response: 

4: Answer correct 

0: Answer incorrect 

ITEM 2: LIMIT OF A GEOMETRIC SEQUENCE 

Only one question, Task 1 (1.2), "As Q gets closer and closer to P, what happens to the 

secant? 

Answers: Only "The secant becomes a tangent", or "a tangent is formed" were accepted. 

Criteria for levels of response: 

4: Answer correct 

0: Answer incorrect 

ITEM 3: RATE OF CHANGE FROM STRAIGHT LINE GRAPH 

This item was based on Task 2 and Task 3 (3.5). There were four numerical answers and 

explanations were not required. 

Answers: Task 2: 

Task 3 (3.5) 

2 and 2 

3 and 3 
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Criteria for levels of response: 

4: All four answers correct 

3: Three answers correct 

2: Two answers correct 

1 : One answer correct 

0: No answer correct 

ITEM 4: RATE, AVERAGE RATE AND INSTANTANEOUS RATE 

The items for this task were Task 3 (3.4) and Task 4 (4.4) and (4.5). Item 3 was 

concerned only with straight lines; item 4 involved similar questions but led to rate of 

change at an instant and introduced the complication of a curve rather than a straight line. 

Answers: 3.4 3 

4.4 6a + h 

4.5 "yes, put a = 2 ~ and h = 0 in the answer to 4.4; no further 

explanation needed. 

Criteria for levels of response: 

4: All three parts fully correct and 

3: All three parts fully correct but without a = 2 ~ and h = 0 

2: Two parts ultimately correct 

1: One part ultimately correct 

0: No parts correct. 
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ITEM 5: A VERAGE RATE OF CHANGE FROM CURVE 

Task 7 was used for this item. Explanations were not required. Responses were assessed 

according to a simple marking scheme. 

Answers 

7.1 

7.2 

7.3 

1 

- 3 

o 

Criteria for levels of response: 

4: All four points obtained 

3: Three points obtained 

2: Two points obtained 

1 : One points obtained 

0: No points obtained 

Coding Scheme 

1 point 

1 point for -, 1 point for 3 

1 point 

ITEM 6: CARRYING OUT DIFFERENTIATION 

Task 5 constituted this item. Only answers were required. 

Answers: 

5.1 nxn- I 

5.2 9x2
, 0 , _4x-3 
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Criteria for levels of response: 

4: All four answers correct 

3: Three answers correct 

2: Two answers correct 

1 : One answer correct 

0: No answer correct 

ITEM 7: DIFFERENTIATION AS A LIMIT 

This item was based on task 6. Two responses were required, the second one being an 

explanation. The criteria for levels of response had to take into account the fact that 

some students could only answer part 6.1 correctly as a result ofthinking about part 6.2. 

Answers: 

6.1 At P. 

6.2 In essence, "klh measures the gradient of the line PQ, the limit as h -> 0 

implies Q -> P and in the limit Q coincides with P and the line has become a 

tangent at P, the formula therefore measures the gradient of the tangent at P." 

Criteria for levels of response: 

4: Answers correct with acceptable explanation including both klh and h -> 

o. Also acceptable was "Anywhere on the curve" or similar in 6.1 only if it was 

clear from 6.2 that the earlier response simply took account of the fact that P 

could have been chosen anywhere on the curve, though 6.2 must have bee correct 
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before the complete response to task 6 could be accepted. Note that "All points P 

to Q", or similar was not acceptable. 

3: Able to explain 6.2 correctly but 6.1 only corrected in the course of 

explaining 6.2. Also acceptable was "Anywhere on the curve" if 6.2 was correct 

but it was apparent that there was some confusion over 6.1. Also acceptable in 

this category was "very near P" in 6.1 if 6.2 was correctly explained. 

2: Part 6.1 correct, though perhaps not immediately; some progress in 6.2 but 

only partial explanation achieved. 

1 : Either part 6.1 correct but no acceptable progress in 6.2, 

or part 6.1 incorrect and part 6.2 partially answered as for level 2. 

0: Neither part answered correctly. 

ITEM 8: USE OF g - SYMBOLISM 

Task 8 was used for this item. Responses were assessed by using a marking scheme 

which put particular emphasis on the ability to explain &/ &- and dy/dx. 

Answers 

8.1 A small x-increment 

8.2 A small y-increment 

8.3 The y-incrementlx-increment, or 

answer given in terms of rate of 

change. 

Coding Scheme 

1 point if (i) or both (i) and (ii) correct 

1 point 
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8.4 Not usually meaningful but may be 

thought of as "with respect to x" . 

8.5 Not usually meaningful but may be 

thought of as "with respect to y". 1 point if either or both correct 

8.6 Derivative or rate of change of 

a function y with respect to x, 

or gradient at a point, (answer 

may have been given as 

lim&/& 
&-->0 

) 1 point 

8.7 dy / dx = lim & / & 
& -->0 

1 point for lim &/ &, 

1 point for & 7 O. 

(or more informal statements 

of the same e.g. dy/dx is &/ & as &70 

Criteria for levels of response: 

4: All six points obtained. 

3: Five points obtained. 

2: Three or four points obtained. 

1: One or two points obtained. 

0: No points obtained. 
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The above criteria acknowledge that from inspection of the protocols few students had 

one or exactly three points. Again, few students scored one point or three points, so it 

seemed appropriate to arrange criteria based on six, five, four, two and zero points. 

Scoring was done for the modified Orton' s task only. A graphical representation of scores 

for both groups is shown in Figure 6 and Figure 7 (Chapter 4). 
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4.1 

CHAPTER 4 

ANAL YSIS OF DATA 

Six sections of elementary calculus were considered: sequences, limits and infinity, rate 

of change, average rate of change, differentiation and J - symbolism to classify the errors 

made by students. 

Further analysis was done to find out the strategy used by the students with respect to the 

use of deep and surface structures to relate to the tasks presented to them. One item was 

also analyzed to find out the type of problem-solving strategy used by the students. 

Table 4 represents the classification for the errors in the various items used in the 

instrument. 

The first is the structural error which arIses from some failure to appreciate the 

relationships involved in a problem or group of principles essential to the solution of the 

problem. These errors occur with the deductive mode when the subject reasons 

deductively but fallaciously. It is caused by incorrect frame retrieval, sketchy or 

incomplete frames, deep-level procedures and sub-procedures. 

The second type of error is the executive error. These errors occur when there is a failure 

to carry out manipulations, although the principles may have been understood. Some 

defect of concentration, attention or immediate memory lie at their origin. A correct 
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frame may be retrieved but a sub-frame responsible for calculations may be 

underdeveloped. 

The third type of error is the arbitrary error. Arbitrary errors are those in which the 

subject behaves arbitrarily and fails to take account of the constraints laid down in what 

was given. These are errors which have as their outstanding common feature a lack of 

loyalty to the given. Sometimes the subject appears to be constrained by knowledge of 

what is 'true' by some considerations drawn from 'real- life' experience. Sometimes 

there is no constraint of any kind. 

Classification Structural errors Executive Errors Arbitrary Errors 
of items Experimental Control Experimental Control Experimental Control 
Sequence 26 32 2 1 0 0 

(79 %) (96 %) (6 %) (3 %) 
Limit 19 25 2 0 13 7 

(56 %) (74%) (6 %) (38 %) (21 %) 
Average rate 8 24 3 3 2 2 
of change (24 %) (71 %) (9 %) (9 %) (6 %) (6 %) 
Rate of 20 27 0 1 0 0 
change (60 %) (81 %) (3 %) 
straight line 
Rate of 22 28 2 3 0 0 
change (67 %) (84 %) (6 %) (9 %) 
straight curve 
Derivative 4 11 9 11 0 2 

(12 %) (32 %) (27 %) (32 %) (6%) 
Symbolism 14 16 0 0 0 0 

(42 %) (48 %) 

Table: 5 Classification of errors 
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4.2 ANALYSIS OF ERRORS 

Item: 1 and Item: 2 were based on the limit of an infinite geometric sequence. The idea 

of the rotating secant was intended to relate to the approach to differentiation. This item 

would give evidence concerning the level of understanding of the tangent as a limit. 79 % 

of the experimental group failed to make the relationship. Table 4 shows that these errors 

were primarily structural errors. 6 % of the students from the experimental group made 

executive errors; they displayed a loss of hold of reasoning. According to Donaldson 

(1963), this results from a defect in concentration or attention. 

A larger percentage of the control group, 96 %, displayed structural errors in this item. 

Table 5 shows the classification for this group. The frame ' sequences', 'tangent line' and 

'limit' could not be retrieved. Vague answers like "as many as you want", "as many as 

possible" and "many of them" were characteristic of the responses that were to vague to 

classify. There was no opportunity to gauge their understanding further. The required 

frames were sketchy and incomplete. Clearly students needed help in understanding the 

tangent as the limit of the set of secants. 

This task was a sub-problem of Task 6. Comparing the responses from both the groups 

in each of these tasks revealed that there was a correlation between the poor performance 

in both the experimental group and the control group. This confirmed that an incomplete 

frame in one sub-frame would reflect incomplete in another related frame. 
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EXEMPLARS FROM EXPERIMENTAL GROUP 

Item: 1 Task: 1 (1.1) 

Structural error sequences: 

"one." 

Executive error sequences: 

"Becomes less because its angle decreases" 

EXEMPLARS FROM CONTROL GROUP 

Item: 2 Task: 1 (1.2) 

Structural error sequences: 

"I say it is converging because it is getting 

smaller and smaller." 
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- structural error] 

[takes secant as angle in 

Semi-circle -executive error] 

[cannot relate secant to 

circle, considers length of 

secant - structural error] 



Executive error sequences: 

"No secant, only a tangent can be drawn." [Loss of hold of reasoning -

executive error] 

Item: 3, was based on the rate of change from the straight line graph. Task 2 and Task 3.5 

were grouped for this item. Students were informed that water was flowing into a tank at 

constant rate; the rate was given as 2 units of depth per unit of time. It was apparent that 

both groups did not grasp this meaning. 

For Question 2.1, at x = 2 12, a large number of the subjects gave a response of y = 5, and 

not with the rate. At the general point x = T in task 3.5, the responses were worse. Below 

are some exemplars. There was a significant misunderstanding between the rate of 

change and the y-value at that point. It is also possible that the students had no 

conception of rate of change at all. This is why they worked out the y-value, given the x­

value. It could also be that they didn 't read the question properly and just thought that 

was what was being asked - this often happens. Part of the problem may also be that 

students are procedural, and want to work with formulas, plugging values in, etc., and the 

only available formula for them is the "formula" suggested by the graph. How often are 

they expected to interpret & give meaning to what they are doing? It is also indictment, I 

think, of how we teach & often evaluate only rote procedures. 

A fairly large amount of structural errors were recorded. Below are exemplars of such 

errors. This represented 60 % from the experimental group and 81 % from the control 
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group. Clearly many students were unable to retrieve the frame ' a tank being filled with 

water', ' a straight line graph with gradient 2' and ' rate of change equal to gradient'. In 

particular the frame 'straight line graph' was incomplete. Within this frame the algebraic 

sub-frame was also not developed. This task represented a real world problem. Another 

explanation that could be afforded is that the students were not subject to real world 

problems during their lecture and tutorial sessions. These responses represent the 

experience of the students, a type of experience that is characterized by doing problems 

by "drill" or using the mechanistic approach. Tall (1992) mentioned that students have a 

preference for procedural methods. Students' relational and instrumental understanding, 

Skemp (1976) was tested here. A further consideration by De Villiers (1993) was that the 

traditional "theory first - applications late" approach had certainly not been successful. 

He agrees that the modelling approach is not easy and like anything in education provides 

no guarantee, but is certainly more educationally sound. 

EXEMPLARS FROM EXPERIMENTAL GROUP 

Item: 3 Task: 2 (2.1) 

Structural error rate of change: 

y=5 [Considers range when 

d .. 21 omam IS - - structural error] 
2 
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EXEMPLARS FROM CONTROL GROUP 

Item: 3 Task: 3 (3.5) 

Executive error rate of change: 

[Defect III concentration 

resulted III incorrect 
computation -

executive error] 

Item: 4 was based on the rate of change from a curve. Task 3 (3.4), Task 4(4.4) and Task 

4(4.5) were grouped for this item. Item 3 was concerned only with straight lines; item 4 

involved similar questions but led to rate of change at an instant and introduced the 

complication of a curve rather than a straight line. As compare to Item: 3, the students 

made more errors in this item. The experimental group made 67 % structural errors and 

the control group made 84 % structural errors. It would appear that the sub-procedures 

involve in determining !1y, !1x and the limit were lacking. 

An interesting observation is that students made similar errors in both item 3 and item 4. 

EXEMPLARS FROM CONTROL GROUP 

Item: 4 Task: 4 (4.4) 

Structural error and executive error rate of change from curve: 

Y 
= 3(a + h) 2 + 1 = 3a + 6ah + 3h

2 
+ 1- 3a

2 
- 1 6ah + 3h h(6a + 3) - --------- = = = 6a + 3 

h h h 
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[Equates function to gradient, omits 

the limit - structural error] 

[Writes 3h instead of 3h2 
- executive 

error] 

Item: 5 Task 7.1, 7.2 and 7.3 was used for this item. This item was based on the average 

rate of change from a curve. It demanded calculation of y-differencelx-difference to 

obtain average rates of change for a curve. 

24 % of the experimental group and 71 % of the control group made structural errors. A 

greater percentage of students from the experimental group were able to retrieve the 

frame required for the solution of this task 'the average rate of change can be calculated 

from any two points irrespective of the curve'. This seems to indicate that their 

interaction with the computer may have reinforced this frame. The students from the 

control group were baffled. An interesting observation was that this is a typical real world 

problem encountered in engineering. 

Figure 5 below shows the scores for both groups for this item. 
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Average Rate of Change from Curve 
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Fig. 5 Average Rate of Change from Curve 

EXEMPLARS FROM EXPERIMENTAL GROUP 

Task: 7 (7.1) 

Executive error average rate of change: 

~y 5-0 
Average rate = - = - - = 1 

ill: 6-1 
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EXEMPLARS FROM CONTROL GROUP 

Task: 7 (7.1) 

Structural error and executive average rate of change: 

!1y = H-A 

Task: 7 (7.2) 

Arbitrary error average rate of change: 

dy=6-5=1 
dx 1-0 

[Takes rate of change to be!1y 

- structural error] 

[and substitutes H and A instead of the 

y - values - executive error] 

[The!1yand !1x values have no relevance to 

the co-ordinates of B and E 

- arbitrary error] 

Item: 6 dealt with differentiation. 12 % of the experimental group recorded structural 

errors and 32 % of the control group recorded structural errors. 26 % of the experimental 

group made executive errors and 32 % of the control group made executive errors. 

Students have lost track of the algorithm that they were trying to use. Davis (1984) refers 

to this as a control error. The student has memorized a rule he/she has been following or 

they behave in a certain way because they know from experience that this is an effective 

or appropriate way to tackle the problem. 
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The majority of the students were able to employ the mechanistic methods that were 

needed to solve the task. It is clear from the data that students have mastered the "rules" 

required to undertake this task. This confirms that frame ' rules for differentiation' were 

easily accessible to these students. 

EXEMPLARS FROM EXPERIMENTAL GROUP 

Task: 5 (5.1) 

Structural error differentiation: 

[log frame is surface and differentiation frame is surface 

y = nlogx evidence of rote learning - structural error] 

Task: 5(5.2) 

Structural error differentiation 

y ' = 310gx [log frame is surface and differentiation frame is surface 

evidence of rote learning - structural error] 

Task: 5(5.2) 

Structural error and executive error differentiation 

2 - 2 - I y=-=2x =-4x 
x 2 [writes function equal to derivative 

- structural error] 

[computes (-2-1) incorrectly 

- executive error] 
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Task: 5.2 a 

Executive error differentiation: 

, 2 
Y =3x [Failure to apply nxn

-
I for differentiation 

- executive error] 

EXEMPLARS FROM CONTROL GROUP 

Task: 5.1 

Structural error differentiation: 

Task: 5.2 a 

Structural error differentiation: 

Task: 5.2 b 

Structural error differentiation: 

4 
Y = 4-1 

Task: 5.2 a 

[Fallacious reasoning 

- structural error] 

[Fallacious reasoning 

- structural error] 

[Fallacious reasoning 

- structural error] 

Structural and arbitrary error differentiation: 

[Writes function as the derivative 

- structural error] 
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[Writes 2 instead of 3 for n in nxn
-

I 

- arbitrary error] 

Task: 5.2 a 

Executive error differentiation: 

, 2 
Y =3x [Failure to carry out manipulation 

- structural error] 

Item: 7 was based on differentiation defined as a limit. 56 % of the experimental group 

made structural errors. A high percentage made arbitrary errors (38%). It is evident that 

these students did not understand the definition for the derivative. 74 % of the control 

group made structural errors and 21 % made arbitrary errors. The percentage of arbitrary 

errors is less than that of the experimental group. This can be attributed to the fact that a 

single answer response was needed for this task and it became a problem to classify a 

wrong answer, like Q, for instance. The majority of the students were unable to retrieve 

the frame ' instantaneous rate of change' . The 'congruent motive-strategy package' 

described by Biggs (1986) is prevalent here. A larger percentage of the experimental 

group gave a correct response. They were able to show sound reasoning based on 

understanding. 

EXEMPLARS FROM EXPERIMENTAL GROUP 

Task: 6 (6.1) 

Structural error differentiation as a limit: 

" x = h 
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It includes both height and the time taken to reach that height" 

Arbitrary error differentiation as a limit: 

"P and Q" 

[Fails to link to basic principle of problem 

- structural error] 

[student interpreted as P fixed or Q fixed 

- arbitrary error] 

EXEMPLARS FROM CONTROL GROUP 

Task: 6 (6.1) 

Structural error differentiation as a limit: 

" Point of inflection." 

"Because it is when the graph is stationery." 

Task: 6 (6.1) 

Arbitrary error differentiation as a limit: 

"At (x;y) and [(x+y);(y+k)]" 

"It is a curve graph." 

[Fails to grasp the basic 

principle of the problem -

structural error] 

[responds arbitrarily -

arbitrary error] 

Item: 7 was based on the use of symbolism. Task 8 was used for this item. The symbols 

that were given represented standard notation used in elementary calculus and those that 

must be understood by students. 42 % of the experimental group made structural errors 

and 48 % of the control group exhibited structural errors. It showed that a large 
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percentage of the students were unable to connect the various symbols meaningfully. 

Clearly these symbols were confusing to both groups. These may not have been 

explained adequately in the lectures or the frame ' symbolic images' is lacking in both 

groups. A number of students were able to say that & and & represented small 

increments in the x -direction and y-direction respectively. It would appear that students 

have met these symbols before. However students were not able to explain the quotient 

& / & correctly. The symbols dx and dy caused many problems. It seemed that students 

could not make sense of these symbols if they were not written as a quotient dy/dx. 

EXEMPLARS FROM EXPERIMENTAL GROUP 

Task: 8 (8.1) 

Structural error use of symbolism: 

"Specific change in x" 

Task: 8 (8.2) 

Structural error use of symbolism 

"Specific change in y" 

Task: 8 (8.3) 

Structural error use of symbolism 

"Specific derivative of y with respect to x" 
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EXEMPLARS FROM CONTROL GROUP 

Task: 8 (8.1) 

Structural error use of symbolism: 

"Function of x" 

Task: 8 (8.2) 

Structural error use of symbolism: 

"Function of y" 

Task: 8 (8.3) 

Structural error use of symbolism: 

"Change in y" 

Task: 8 (8.4) 

Structural error use of symbolism: 

"Change in x" 

4.3 GRAPHICAL REPRESENTATION OF CUMULATIVE SCORES FOR 
EACH ITEM FOR CONTROL GROUP AND EXPERIMENTAL GROUP 

Figure 6 and Figure 7 shows the overall scores in the conventional test for both groups. 
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Fig. 6 Overall Scores for Control Group 
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Fig. 7 Overall Scores Experimental Group 

The graph shows a clearly distinction in the improved learning of the experimental group 

as compared to the control group. It seems that the overall performance of the 

experimental group was enhanced by their use of the computer in their teaching and 

learning. It is apparent that students who used the computer to perform tasks for their 

compulsory project had an advantage of using constructive interactive methods and co-

operative learning strategies to aid their understanding of concepts. The null hypothesis 

was used to determine if there was a difference in understanding at a 95 % confidence 

level. Results indicate that there was a difference. The graph shows the scores of all the 

experimental group and control group. Particular students were not compared. 
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4.4 GRAPHICAL REPRESENTATION OF THE MANN-WHITNEY TEST 

Software packages used were Mathernatica Statistics and SigrnaStatistic 
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Fig. 8 Mann-Whitney Test for Control Group 
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Fig.9 Mann-Whitney Test for Experimental Group 
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Normality test fails at (p<0.050). Data do not follow a normal distribution. We then use 

the Mann Whitney test which can be performed on none normal data. The formula for the 

u _ n1 n2 
2 

Mann Whitney test is z = ---;=(=n=J=n=2=J=[=N==3=_=N=-=z:=r=J:=-

N(N -1) 12 

Group N Missing Median 

Control 34 0 8.0 

Experimental 34 0 11.5 

Table 6 Analysis of Mann-Whitney Test 

We use a = 0.01, UStatistic=884.5 and T=866.5 . 

25% 75% 

6.0 11.0 

9.0 15.0 

Decision: The difference in the median values between the two groups is greater than 

would be expected by chance. There is a statistically significant difference at p<O.OO1. 

However both groups struggled with the items presented to them. Five notable peaks in 

the graphical representation show that the experimental group had an advantage over the 

control group. Their experience in their project work using the computer assisted them in 

their responses to the paper and pencil task presented to all the students. It must be noted 

that the experimental group in some cases had their very first experience in working on a 

computer. Responses from the experimental group showed that this was a positive 

experience for their learning. 
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4.5 ANALYSIS OF DEEP, SURFACE AND INTERMEDIATE LEARNING 

The following principle was used in the classification of deep, surface and intermediate 

learning: 

Deep approach: correct principle used in solution to problem. 

Intermediate approach: partially correct principle used in solution to problem. 

Surface approach: no principle or incorrect principle used in solution to problem. 

CLASSIFICATION DEEP SURFACE INTERMEDIATE 
OF ITEMS APPROACH APPROACH APPROACH 

Experimental Control Experimental Control Experimental Control 
Sequence 82 % 6 % 4 % 88 % 6% 6% 

Limit 12% 6 % 76% 74% 12 % 20% 

Average rate of 47% 26 % 41 % 71 % 12 % 3% 

change 

Rate of change 38 % 6 % 44 % 88 % 6% 6% 

Derivative 79% 50% 12 % 41 % 9% 9% 

Symbolism 2 % 1 % 86 % 90 % 12 % 9% 

Table: 7 Analysis of Deep, Surface and Intermediate Learning 

* where there are less than 100 % in the total for the experimental group indicates no 

response from certain students. 
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In Item: 1, 82 % of the experimental group used the deep approach in finding solution to 

the problem This as compared to only 6 % of the control indicates that the experimental 

group had an advantage of the computer to aid their visual appreciation of the problem. 

It also shows that the concept of the secant converging to a tangent was reasonably well 

developed in the experimental group and only partially developed in the control group. 

The experimental group was better able to relate theoretical ideas to everyday experience 

(Ramsden, 1988). 

Of the control group, 88 % did the task using a surface approach. This according to 

Ramsden (1988) corresponds to facts and concepts are being associated unreflectively. 

It also shows that the frame "limit" was poorly developed in the control group. 

There was no significant difference in both groups with respect to the intermediate 

approach. 

In Item 4, 47 % of the experimental group used the deep approach and 41 % used the 

surface approach as compared to 26 % of the control group using the deep approach and 

71 % using the surface approach. A larger percentage of the experimental group used the 

deep approach. Again their experience with the tasks done on the computer gave them an 

improved understanding to solve the task at hand. 

Item: 5 was concerned with the differentiation. It is apparent that 79 % of the 

experimental group used the deep approach and 50 % of the control group did the same. 

12 % of the experimental group used surface structures as compared to 41 % of the 
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control group who did the task using surface structures only. Neither group showed 

preference for the intermediate approach. 

In item: 6, 12 % of the experimental group used the deep approach and 6 % of the 

control group used the deep approach. A larger percentage approached the task using the 

surface approach: 74 % in the experimental group and 76 % in the control group 

respectively. This did not show any significant difference in how both groups approached 

differentiation as a limit. The frame "instantaneous rate of change" in both the group was 

sketchy and incomplete. 

Item: 7 dealt with the use of symbolism. Here task 8 was used. Task 8.7 was analyzed 

for deep and surface structures. Both the experimental group and control group resorted 

to the surface approach in analyzing the task. An interesting note was that none of the 

students in the entire group used the deep approach. They were not able to see the 

relationship dy / dy = lim & / & . 
&~O 

An analysis of task 2 (the tank problem) where students had to use problem-solving 

strategies is shown below: 

Experimental Group Control Group 

Forward Backward Intermediate Forward Backward Intermediate 

74% 3% 23 % 68 % 3 % 29% 

Table: 8 Comparison of Forward, Backward and Intermediate problem 
solving strategies 
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The experimental group showed slightly more occaSIons of the forward-working 

approach to seek solution to the task presented to them. This can be attributed to the fact 

that they had opportunity to interact in a computer learning environment and enjoyed 

benefit of a more enriching experience. According to Larkin (1980) forward-working is 

related to the student having expert knowledge. It was also found that experts tend to 

use the forward working strategy. They worked from the givens to the unknowns. The 

task presented was similar to a problem a physics student would encounter. Larkin did 

her experiment with physics students. Here we wanted to see how students would 

approach a physics problem in mathematics. 

A large percentage of students wrote down an incorrect response. It would have been 

ideal to interview a sample of the students to determine what they were thinking when 

writing such responses. 

EXEMPLAR FROM EXPERIMENTAL GROUP 

(0;0) and (T:2T) 

_2T_-_O =2 
T-O 

EXEMPLAR FROM EXPERIMENTAL GROUP 

The gradient is constant for any value of x. 

m=2 
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Project Deep Intermediate Surface 

Task 

A 8 14 6 

B 9 13 5 

C 6 11 5 

Table: 9 ANALYSIS OF DEEP, INTERMEDIATE AND SURFACE 
LEARNING IN PROJECT WORK 

• 28 students responded to task A 

• 27 responded to task B 

• 22 responded to task C. 

Task A was based on the convergence of a sequence and the limit concept 

Deep: Responses must include "sequences", "converges to a point" and "limit" . 

Intermediate: Responses included "sequences", and "converges to a point" but neglects 

the "limit" 

Surface: Responses have "sequences" but does not mention convergence. 

(See appendix 2 Exemplar for student SI Task A) 

Task B was based on the average rate of change 

Deep: Responses includes "function", "change in function (f(x + ~)- f(x) ", "points 

(x, y) and (x + ~, y + ,1y) on the graph and represents a secant line" 
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Intermediate: Responses includes "function", "change in function (! (x + L1x)- I(x)" but 

does not mention a secant line. 

Surface: Does mention change m function, not able to indicate points (x, y) and 

(x + L1x, y + ~y ) on the graph and show that it represents a secant line" 

(See appendix 2 Exemplar for student SS Task B) 

Task C was based on instantaneous rate of change 

Deep: Able to show "sequence of secants converge to a point to become a tangent", and 

"slopes of secants converging to a slope of the tangent", and " dy = limllx~o ~y ", dy IS 
dx L1x dx 

the slope of the tangent and instantaneous rate of change, and ~y is the average rate of 
L1x 

change which is the slope of the secants. 

Intermediate: Able to show "sequence of secants converge to a point to a tangent", and 

"slopes of secants converging to a slope of the tangent" but not responses to and 

" dy 1· ~y " dy. h 1 f h - = Imllx~o ,- IS t e s ope 0 t e tangent and instantaneous rate of change and 
dx L1x dx ' 

: is the average rate of change which is the slope of the secants. 

Surface: No distinction made between slopes of secants and tangents. 

(See appendix 2 Exemplar for student S8 Task C) 
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4.6 FINDINGS PROJECT WORK 

Even though students were making structural errors less frequently than observed by 

Naidoo (1998) in a traditional lecturing environment, the majority of the students still 

made serious structural errors. This suggests that the interaction with the software did 

not reinforce certain frames adequately. 

Mathematica were: 

• to promote versatile thinking 

The assumptions made when using 

• to give students opportunity to work at their own pace 

• to allow students to diagnose their own errors 

The Mathematica project work gave students numerical, symbolic and visual 

representation of the tasks. Hughes HaBet (1991) supports the 'Rule of Three' in which 

topics must be taught graphically and numerically as well as analytically with the aim of 

allowing students to be able to see a major idea from several angles. Many students' 

accept the numerical data without connecting these to the graphical representation and 

vice versa. Mathematica also assumes that students can proceed from algebraic to 

numerical and graphical with ease. Only students with established pre-knowledge frames 

such as rate of change, graphs and algebra were able to switch from one frame to another 

without difficulty. Students also accepted the computer generated graph without analysis 

and interpretation. Students believe that the computer is right. Similar findings were 

recorded by Giraldo, Carvalho &, Tall (1987), in research done in Brazil. I agree with 

Tall and Sheath (1983) that see the gradient of the graph as an intermediate stage in 
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calculus. Visualization gives a metaphoric image of the derivative. It does not account 

for complete understanding of the processes. Analytical rigour is lost in the process. 

Students exhibiting surface structures experienced difficulty in usmg Mathematica 

commands. For instance, a command like, Plot [{F[x}, G[x}), (x, 0.49, 0.51), required 

understanding of function, variable and domain. The plot command assumes that the 

student possess deep understanding of the concepts of function, variable, domain and 

ranges i.e. it assumes that students' pre-knowledge frames are already in place to do 

programming of this type. The logic in the language of the commands in the 

programming is quite different from paper-pencil type applications. Due to the weak pre­

knowledge frames some rely on an algorithmic approach to solve problems. The 

computer software favours objects rather than processes. The computer does everything 

for the student. If the programming language is correct, all the student needs to do is 

"press one button" and the output is generated. For example when finding the derivative 

the concept function, rate of change and instantaneous rate of change (limit) are needed. 

Students' sub-frames must be well developed to link concepts needed to find the 

derivative. Hence the mathematical meaning IS lost at each stage of the task. 

Mathematica makes many assumptions about student frames establishment. Tall (1986) 

agrees that the computer has built in functions to represent the mathematics explicitly but 

must also show the processes of the mathematics with results. This is necessary to 

connect to students' pre-knowledge frames. 
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Hence there is little mathematical thinking for the student to do. It loses the students 

mathematical cognitive processes in the output stage of its program. Although the 

software provides an environment where students can discover for themselves certain 

mathematical phenomena such as maximum and minimum of functions, students cannot 

analytically prove why at these points the derivative is zero. As claimed by Wolfram 

(1999) the mathematical processes are done internally in the CPU which acts as a black 

box. This suggests students can carry out the procedure mechanistically and generate the 

required graphs without assigning meaning to the result. For example a study of a student 

interview protocol suggests (task C) surface thinking due to the software influence. 

Software commands generated results and some students could not draw conclusions 

from their output. However, students who exhibited deep structures tended to flourish in 

the microworld's environment. 

Other problems such as students had to multitask in that they had to concentrate on 

getting the programming right and simultaneously pay attention to conceptual aspects. In 

some instances students gave a correct output but were unable to make cognitive 

connections due to cognitive overload. Socratic activities could possibly be used to 

engage students in discussion at various stages of the computer interaction. 

Environmental considerations referred to by Piaget (1972), Dubinsky (1991) and Sfard 

(1991) was not catered for adequately in the Mathematica environment. A proportion of 

students had difficulties transforming from a traditional to a computer laboratory 

environment and many of these students exhibited surface structures. 
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Although students enter the mathematics class with a specified grade - at least 50 % at 

the grade 12 examinations in mathematics (higher grade), they have serious problems 

with manipulation in algebra, calculating the gradient of a straight line passing through 

two points, and sketching quadratic graphs, let alone cubic curves. The computer 

simplifies tedious calculations and the process by which the results are obtained is not 

clear. The student is not able to cope with the speed at which these are generated. It can 

also be described as an overload of information and students are not able to contextualize 

the results as a gestalt. 

When comparing the protocols from the project work to the conventional test it was 

apparent that students made similar errors in related tasks. The observation showed that 

students possessed weak sub-frames. 

For instance in Task 3, students found it extremely difficult to conclude 

dy . ~y 
that - = hm &--->0 

dx ~ 
The observation, according to table 9, students exhibited under 

developed frames in limits, rates of change and derivative, indicating that students 

possessed a series of connecting underdeveloped frames. This suggests that the software 

does not help understanding this concept and direct teaching would be more valuable. 

Bezuidenhout (1998) suggests that students' ability to interpret a mathematical symbol as 

representing both a process and an object is more likely to develop if it is the direct focus 

of teaching rather than if the development is left to chance. At this moment in time no 

mathematical software is designed to improve on the teaching and learning of 

underdeveloped frames. 
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In table 9, the analyses for deep, intermediate and surface structures reveal that the 

majority of the students used surface and intermediate structures in the construction of 

their answers in both written (conventional test) and verbal responses (interview 

questions). A small percentage of students drew on deep structures in reasoning and 

analyzing results. The software design must cater for deep, intermediate and surface 

structures to allow access to a group of mixed abilities. Lecturers ought to modify or 

refine their courses periodically. Certain key concept processes may be included in the 

software. Much can be achieved if the software allows students to find the limit of 

functions at different values and plot graphs to verify whether the limit exists or not. 

Descriptions and definitions of elementary concepts must be included as a process so that 

concept images of the students are meaningfully established during the interaction with 

the software. 

Tall (1985) advocated the zoom function of the software for students understanding of 

the derivative at a point. Although the computer depicted the graph as a series of straight 

lines the student could not see the meaning behind the magnification. It seem abstract for 

students although it was concretely visualized using the software. It mathematically 

brought to the teaching and learning, a micro world, a new concept scaling which requires 

transformation mathematics, thus exacerbating the cognitive processes involved in the 

derivative. This dynamic interpretation of the graph creates new patterns of thought that 

students find difficult to assimilate. It creates a web of confusion in the students mind. 

The software instead should be designed to include calculation of ratios, gradients and 

tangents of graph using explicit coordinate geometry. 
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CHAPTERS: CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

The frequency of errors made by the students indicates that their pre-knowledge frames 

were not well developed. With regards to elementary differential calculus, the poor 

understanding of pre-calculus concepts, contribute to a host of difficulties in the mind of 

the learner. Some of these difficulties were observed during the application of the 

modified battery of tests of Orton (1983). Many factors need to be considered when 

referring to students understanding of differentiation. 

The first factor relates to weak pre-knowledge frames. Students' had a poor mental 

image of rate of change, average rate of change and the limit concept. They were unable 

to find the rate of change from a straight line graph. Their problems were compounded 

when dealing with rate, average rate and instantaneous rate and average rate of change 

from a curve. The analyses for deep, intermediate and surface structures show a clear 

distinction between the learning strategies employed by each group. It clearly showed 

that a sub-frame that was poorly developed in one task, reflected poorly again in a related 

task. This gives an indication that concepts in elementary calculus are difficult to grasp. 

Despite generally performing better than the control group, the experimental group still 

made a significant amount of errors. This shows that the software by itself is not 
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sufficient to address the pre-knowledge deficiencies that were prevalent and also certain 

concepts. 

The second factor deals with reliance on algorithmic means to solve problems. This was 

evident in the derivative questions. Students develop coping strategies as described by 

Smith and Moore (1991) to overcome their difficulty. In this way meaning is "lost". It is 

important that concepts be seen from several points of view. They must relate to the 

student's 'own environment' and 'world view' . The student in turn must build a web of 

connections to tackle real world problems. 

The third factor deals with errors made by students. A classification of the errors revealed 

that there were more structural and executive errors as compared to arbitrary errors. The 

experimental group made fewer errors in both categories as compared with the findings 

ofNaidoo (1998). It is suggested that appropriately designed academic systems software 

be used to assist learning in aspects of calculus, in particular, elementary calculus. Such 

software must allow for flexibility and cater for students ' pre-knowledge frame 

deficiencies. 

The fourth factor deals with symbolism in elementary calculus. Students lacked ability to 

interpret symbols. Bezuidenhout (2003) study also found students focusing on superficial 

aspects of symbols and ignoring the meanings behind the symbols. The analysis for deep, 

intermediate and surface structures using the Orton instrument showed that both groups 

struggled to connect meaningfully with symbols. They had a very superficial 

understanding of the symbols in elementary differential calculus. This was consistent in 
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the project task done by the experimental group as well. Only 18% of the experimental 

group were able to identify with symbols using both process and object conceptions. 

It is clear from the graphical representation of the overall scores, for the experimental 

group and the control group, that the experimental group had a slight advantage of more 

developed frames in each of the tasks presented to them. However the Mann Whitely test 

suggests that there is a significant difference between the experimental and control 

groups. We believe that by modifying the Mathematica course greater improvements in 

learning of calculus concepts may be achieved. 

In the learning of elementary calculus it is essential that a mechanistic application of a set 

of rules is not sufficient, rather the synthesis of the appropriate mental frames is needed 

to represent concepts and the procedures necessary to seek solutions. 

The shortcomings of the study include: 

• Failure to tackle the larger issue of curriculum reform itself, where the content, 

the ordering of topics, the emphasis on certain aspects that have to be revised in 

the light of the availability of computing software - a costly issue and will take 

long to be introduced successfully; 

• Consideration on how lecturers themselves needed to integrate computing 

technology into their normal classes tests and examinations - changing the mind 

set of those that prefer traditional teaching approaches would be a daunting task 

too; 
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• Technology was presented as a "remedial" learning tool or "supplementary" 

learning tool not much thought had been given to fundamentally changing the 

focus of a technology rich curriculum, which ought to be on the things which a 

computer can't do well. 

• Lack of consideration for students that do not have access to graphic calculators 

and computer technology outside the ambit of the University of Technology and 

also the lack of use of such technology prior to study at the University of 

Technology. 

• There was a lack of matching of groups for ability, sex and prior knowledge. 

5.2 RECOMMENDATIONS 

It is recommended that: 

• the mathematics instructional programme ought to be redesigned to allow for the 

inclusion of academic systems software in all elementary calculus courses at a 

University of Technology; 

• attempts ought to be made to allow for further development in understanding of 

concepts in elementary calculus by using software that addresses deficiencies in 

students pre-knowledge frames; 

• analysis be done in students examination scripts to determine retention of reform 

efforts in subsequent study of calculus; 

• ongoing revision and evaluation be done to Improve teaching and learning 

strategies and the monitoring of success; 
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• ongomg research is done to reconstruct learning material to address pre­

knowledge deficiencies. 

Colgan (2000) refers to changes in The University of South Australia first year 

engineering mathematics course that had to demonstrate outcomes in terms of that 

specified by The Institute of Engineers, Australia. The syllabus and teaching 

methodology of the first year mathematics subjects had to include: 

• innovations based on information technology; 

• opportunities for problem-based group work; 

• opportunities for students to undertake self-learning of material deliberately not 

covered in lectures; 

• a mixture of supervised and unsupervised learning activities; 

• alternative pathways for students with less than a predetermined minimum prior 

knowledge. 

This would suggest that the University of Technology should use their Advisory Board 

forums to reorganize mathematics curriculum to suit the needs of industry as well. In 

doing so some of the countries needs in terms of training in mathematics and technology 

will be addressed. 

Finally an important consideration is that of the software design. Human-computer 

interaction must be supported by an improvement in the quality of software products. 

Digital information and communication technologies have become an important group of 

artifacts in today's information and knowledge societies (Kassgard, 2000). As suggested 
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by this study, software can and should be used to address cognitive shortcomings in the 

learning experience. It can effectively be used to create an environment for average and 

below average students to engage with the mathematics. In doing so students might 

become more interested in making their attempts meaningful. 

Instructional designers need to recognize their personal philosophies of learning and 

instruction, because these philosophies ultimately account for the instructional products 

they produce (Rieber: 1994). In this way the deficiencies in pre-knowledge frames can 

be considered to minimize errors in student learning. 

This in turn would suggest that: 

• design must be aimed at that which will work for individuals in a specific context 

making it possible for the production of quality results and a satisfying 

expenence; 

• there is a great cognitive distance between the mental model of the designers and 

that of the users; 

• social relationships evolve over time while computer infrastructure stays static 

until there is a big investment to make changes (Kaasgard: 2000). 

It is recommended that further research be done to investigate how the software can be 

modified to improve learning. Students were given an investigative task in the project 

work. In a sense the questions were designed to assist them in solving problems. In the 

tasks, student's problem solving ability was questionable. Since students had varying 
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abilities the software must be designed accordingly. Software design must cater 

adequately for student pre-knowledge frames. The novice student would be provided with 

an inbuilt facility proving the validity of certain key concepts. The software must also 

prompt the student when an incorrect programming statement is made so that students are 

able to revise statements with ease and concentrate on the mathematics. Another factor 

that comes to mind is the students' level of leT (information and communication 

technology) skills. These were not taken into consideration in the project work. 

We propose the following algorithm for the design of software to support computer 

interaction in mathematics: 

ALGORITHM FOR MATHEMATICS EDUCAnoN SOFlWARE 

CULTURE / LINGUISTIC 
SOCIO-ECONOMIC FACTORS 

OBJECT/PROCESS r-________ ~~--------------~ 
CONCEPTS 

GROUP LEARNING 
COLLABORATION 
PROBLEM SOLVING 

r----------:7----------------I STOP 

Fig.l0 Algorithm for Mathematics Education Software 

106 



REFERENCES 

Aiken, L.R. (1972). Language Factors in Mathematics, Review of Educational 
Research, 42(3), 359-385. 

Anderson, R.D. , & Loftsgaarden, D. (1987). 'A Special Calculus Survey: Preliminary 
Report', in L.A. Steen (ed.), Calculus f or a New Century: A Pump Not a Filter, 
MAA Notes, 8, Mathematical Association of America, Washington, DC, 215-216. 

Atherton, J.S. (2003). Learning and Teaching: Deep and Surface Learning [On-line] 
UK: Available: http://www.dmu.ac.uk/~jamesa/leaming/deepsurf.htm. 

Acherman- Chor, D., Aladro, G., & Gupta, S.D. (2003). Looking at Both Sides of the 
Equation: Do Student Background Variables Explain Math Performance? Journal 
of Hispanic Higher Education, 2 (2), 129-145. 

Baird, J.R., & White, R.T. (1996). Metacognitive stategies in the classroom, in D.T. 
Fraser (Eds). Improving Teaching and Learning in Science and Mathematics, 
New York, Teachers College. 

Barr, R.B., & Tagg, J. (1995). From teaching to learning: A new paradigm for 
undergraduate education. Change, Nov. IDee. (From Academic Abstracts) 

Bezuidenhout, J. (2003). How can students' ability to deal effectually with calculus 
symbolism be enhanced? Proceedings of the Coriference for the Psychology 
of Mathematics Education, Honolulu, Hawaii USA, 13-17 July, 205 - 211. 

Bezuidenhout, J. (2001). Limits and continuity: some misconceptions of first-year 
students, International Journal of Mathematical Education in Science and 
Technology, 32(3), 487 - 500. 

Bezuidenhout, J. (1998). First-year university students' understanding of rate of 
Change, International Journal of Mathematical Education in Science and 
Technology, 29(3), 389 - 399. 

Biggs, J. (1979) Individual differences in study processes and the quality oflearning 
outcomes, Higher Education, 8, 381 -394. 

Biggs, J. (1986). Enhancing learning skills: the role of metacognition, in: J, Bowden 
(Ed.), Student Learning: research into practice, Melbourne, Centre of Higher 
Education, University of Melbourne. 

Biggs, J.B., & Moore, P.J. (1993). The Process of Learning, 3rd Ed. New York: 
Prentice Hall. 

107 



Bloom, B.S. (1956). Taxonomy of Educational Objectives. The Classification of 
Educational Goals. Handbook I. Cognitive Domain. New York: McKay. 

Bruner,J. (1986). Actual minds, possible worlds. Cambridge: Harward University Press. 

Breidenbach, D.E. , Dubinsky, E. , Hawks, J. , & Nichols, D. (1992). 'Development of 
the process concept of function'. Educational Studies in Mathematics, 23, 
247-285. 

Boaler, J. (1997). Experiencing School Mathematics: Teaching styles, sex and 
setting. Buckingham: Open University. 

Burton, M. B. (1989). The Effect of Prior Calclus Experience on "Introductory" College 
Calculus, The American Mathematical Monthly, 96, 350-354. 

Campbell, E (1998). Teaching Strategies to Foster "Deep" Versus "Surface" 
Learning. Available at http:// www.uottawa.ca 

Cartwright, P. (1993). Teaching with dynamic technologies. Change. NovlDec. 

Case, J. , & Gunstone, R. (2002). Metacognitive Development as a Shift in Approach to 
Learning: an in-depth study. Studies in Higher Education, 27(4). 

Case, J., & Marshall, D. (2004). Between deep and surface: procedural approaches 
to learning in engineering education contexts. Studies in Higher Education, 
29(5),605-615. 

Chomsky, N. (1957). Syntatic structures. The Hague: Mouton. 

Cipra, B.A., (1988). Calculus: Crisis Looms in Mathematics' Future, Science, 239 
1491-1492. 

Cobb, P. , Yackel, E., & Wood, T. (1992). A constructivist alternative to the 
representational view of mind in mathematics education. Journal for Research in 
Mathematics Education, 23, 2-33 . 

Coetzee, G.P., & du Bruyn, R. (2003). The benefit of introducing audit software into 
curricula for computer auditing students: a student perspective from 
University of Pretoria. South African Journal of Higher Education, 17(2), 21-
30. 

Cohen, D. (Ed.) (1995). Crossroads in mathematics: Standards for introductory 
college mathematics before Calculus. American Mathematical Association of 
Two-Year colleges. 

108 



Colgan, L. (2000). MATHLAB in first-year engineering mathematics. International 
Journal of Mathematics Education in Science and Technology, 31(1), 15-25. 

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 
153-166). Dordrecht: Kluwer Academic Publishers. 

Cotton, 1. (1995). The Theory of Learning Strategies. Kogan Page. 

Cottrill, 1., & Dubinsky, E. (1996). Understanding the limit concept: Beginning with 
a coordinated process schema. The Journal of Mathematical Behavior 15: 
167-192. 

Cuoco, A.A. (1994). 'Multiple Representations for Functions'. In E. Dubinsky, A.H. 
Schoenfeld & 1. Kaput (eds.), Research Issues in Undergraduate Mathematics 
Learning, MAA Notes, 33, 121-140. Washington DC: MAA. 

Davis, R.B. (1984). Learning Mathematics: The Cognitive Science Approach to 
Learning Mathematics. Croom Helm Ltd. 

Davis, R.B., & Mc Knight, C. (1979). Modelling the process of mathematica 
thinking, Journal of Children 's Mathematical Behaviour, 2, 91-113. 

De Ting Wu. (2004) Teaching the Limit Concept in Calculus with Technology. A 
Proposal to the ASC Technology Centre Interactive. Available online at: 
http://www.colleges.org/techcentre/fellowships/grants/Fellows06/de ting Wu.pdf 
(Accessed 30 September 2004). 

De Villiers, M. (1994). The role of technology in mathematical modelling, Pythagoras, 
35, 34-42. 

De Villiers, M. (1993). Modelling as a teaching strategy, Pythagoras, 31 , 3-4. 

Donaldson, M. (1984). A study of children's thinking. London, Tavistock 
Publications. 

Dubinsky, E. (1991) Reflective Abstraction in Advanced Mathematical Thinking, in 
Advanced Mathematical Thinking (D. Tall, ed.), Kluwer, 95-126. 

Entwistle, N.l (1981). Styles of Learning and Teaching; an integrated outline of 
educational psychology for students, teachers and lecturers. Chichester: 10hn 
Wiley. 

Entwistle, N.l. & Ramsden, P. (1983) Understanding Student Learning (London, 
Croom Helm). 

Ernest, P. (1991). The Philosophy of mathematics Education. New York: Falmer 
Press. 

109 



Flavell, J.H. (1976) Metacognitive aspects of problem solving, in: L.B. Resnick (Ed.) 
The Nature of Intelligence (Hillsdale, NJ, Lawrence Erlbaum). 

Focus. (1990). Vo1.10, no.6, NovlDec ed. 

Fullilove, R.E., & Treisman, P.U. (1990). Mathematics Achievement Among African 
American Undergraduates at the University of California, Berkley: An 
Evaluation of the Mathematics Workshop Program, The Journal of Negro 
Education, 9, 463-478. 

Gunstone, R.F. (1994). The importance of specific science content in the 
enhancement of metacognition, in: P. Fensham, R.Gunstone & R. White (Eds). 
The Context of Science. London, Falmer Press. 

Gray, E. M., & Tall, D.O. (1994). 'Duality, Ambiguity and Flexibility: A Proceptual 
View of Simple Arithmetic' , Journal of Research in Mathematics Education, 
26, 115-141. 

Hughes-Hallet, D. (1989). 'Where is the mathematics' Another look at Calculus 
reform'. Proceedings of the Second Annual Conference on Technology in 
Collegiate Mathematics. Ohio: Addison-Wesley Publishing Company. 

Hughes-Hallet, D. (1991). 'Visualisation and Calculus Reform'. In W. Zimmerman 
& S. Cunningham (eds.), Visualisation in Teaching and Learning 
Mathematics, MAA Notes, 19, 121-126. 

Heid, K.M. (1988). Resequencing Skills and Concepts in Applied Calculus Using a 
Computer as a Tool, Journal for Research in Mathematics Education, 19 (1) 
3-25. New York, NY: Macmillan Publishing Company. 

Hsaio, F.S. (1984/5). A New CAI Approach to Teaching Calculus. Computers in 
Mathematics and Science Teaching, 4 (2) 29-36. 

Kaput, J. (1992). Technology and mathematics education. In D.A. Grouws (Ed.) 
Handbook of research on mathematics and teaching and learning. 
(pp. 515-556), 

Kaasgaard, K. (2000). Software Design & Usability. Copenhagen Business School 
Press: Handelshojskolens Forlag. 

Kent, P., Ramsden, P., & Wood, J. (1996). Experiments in Undergraduate 
Mathematics: A Matheatica-based approach. London: Imperial College 
Press. 

110 



Kober, N. (1992). EDTALK: What we know about mathematics teaching and 
learning. Council for Educational Development and Research. Washington, 
D.e. 

Krantz, S. (1991) Notices ofthe American Mathematical Society, 42 (10), 1116. 

Krishnamani, V., & Kimmins, D. (1990). Using Technology as a Tool in Abstract and 
Calculus Courses: The MTSU Experience. Electronic Proceedings of the 
Seventh Annual Conference on Technology in Collegiate Mathematics. 

Krutetskii, V.A. (1976). The psychology of mathematical abilities in school children. 
Chicago: University of Chicago. 

Larkin, J., McDermott, J. , Simon, D.P., & Simon, H.A. (1980). Expert and Novice 
performance in solving physics problems, Science. 208, 1335-1342. 

Larkin, J.H., HelIer, J.1. & Greeno, J.G. (1980). "Instructional Implications of Research 
on Problem Solving." In WJ. McKeachie (Ed.), Learning, Cognition and College 
Teaching. New Directions for Teaching and Learning, no.2. San Francisco, CA: 
Jossey-Bass, 51-65. 

Li, L. & Tall, D.O., (1993). 'Constructing different concept images of sequences and 
limits by programming', Proceedings of the Seventeenth International 
Conference for the Psychology of Mathematics Education, Tsukuba, Japan, 2, 
41-48. 

Mamona - Downs,J. (1990). 'Pupils interpretation of the limit concept; a 
comparison between Greeks and English', Proceedings of the Fourteenth 
International Conference for the Psychology of Mathematics Education, 
Mexico, 1, 69-75. 

Marlowe, B. A.,& Page, M.L. (1998). Creating and Sustaining the Constructivist 
Classroom. California: Corwin Press. 

Marton, F., & Saljo, R. (1976). On qualiative differences in learning: Outcome and 
Process. British Journal of Educational Psychology, Sweden, 46, 4-11. 

Marton, F., & Saljo, R. (1984). Approaches to Learning, in: F. Marton, D.Hounsell & 
N. Entwistle (Eds) The Experience of Learning, Edinburgh, Scottish Academic 
Press. 

Minsky, M. (1975). A framework for representing knowledge. In P.H. Winston 
(Ed.), The Psychology of computer vision. New York: Mc Graw-Hill. 

111 



Morgan, A.T. (1990). A study ofthe difficulties experienced with mathematics by 
engineering students in higher education. International Journal of 
Mathematics Education in Science and Technology, 21(6), 975-988. 

Morkos, J. R. , & Tinker, R.F. (1987). The impact of microcomputer-based labs on 
children' s ability to interpret graphs. Journal of Research in Science 
Teaching, 24, 369-383. 

Papert, S. (1993). The Children 's Machine: Rethinking School in the Age of the 
Computer. Harvester Wheatsheaf. 

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: 
Basic Books. 

Piaget J. (1972). The Principles of Genetic Epistemology (W. May, trans.) London: 
Routledge & Kegan Paul. 

Naidoo, K., and Naidoo, R. (2007). First year students understanding of elementary 
concepts in differential calculus in a computer laboratory teaching environment. 
In Proceedings of the College Teaching and Learning Conference, Oahu, Hawaii 
USA, 2-5 January, 3. 

Naidoo, R. (1998). Technikon students' understanding of differentiation. In Proceedings 
of the SAARMSE, University of Stellenbosh, 4, 288. 

Oehrtman, M. (2003). Strong and Weak Metaphors for Limits, Psychology of 
Mathematics Education. 

Orton, A. (1983). Students' Understanding of Differentiation, Educational Studies in 
Mathematics, 14235-250. 

Orton, A. , (1981). A cross-sectional study of elementary calculus in adolescence and 
young adults, PhD thesis, Leeds University. 

Punch, K.F. (1998). Introduction to Social Research: quantitative and qualitative 
approaches. London, Sage. 

Ramsden, P. , Eswick, D.G & Bowden, 1.A. (1986). Effects ofleaming on 1 st year 
university student' s learning, Human Learning, 5, 151-164. 

Ramsden, P. (1988). Improving Learning: New Perspectives. London: Kogan 
Page. 

Ramsden, P. (1992). Learning to Teach in Higher Education. London: Routledge 

11 2 



Rhem, 1. (1997). Deep/Surface Approaches to Learning, An Introduction. National 
Teaching and Learning Forum. 

Rieber, L.P. (1994). Computers, graphics, and learning. Madison, Winconsin: 
Brown & Benchmark. 

Rose, G. (1991). Deciphering Sociological Research. London: Macmillan Education 
Ltd. 

Saljo (1979). Learning about Learning. Higher Education, 8, 443-451. 

Sfard, A. (1992). ' Operational origins of mathematical objects and the quandary of 
Reification-the case of function '. In G. Harrel & E. Dubinsky (eds.), The 
Concept of Function: Aspects of Epistemology and Pedagogy, MAA Notes, 25, 
59-84. Washington DC: MAA. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on 
process and objects as different sides of the same coin. Educational Studies in 
Mathematics, 22, 1 - 36. 

Sierpinska, A. (1992). ' Theoretical perspectives for development of the function 
concept'. In G. Harrel & E. Dubinsky (eds.), The Concept of Function: Aspects 
of Epistemology and Pedagogy, MAA Notes, 25, 23-58. Washington DC: MAA. 

Sierpinska, A. (1994). Understanding in Mathematics. London: The Falmer Press. 

Silverberg, 1. (2004). Does Calculus Reform Work? 
Available online at: http://www.maa.org/saumimaanotes 49/245.html. 

Skemp, RR (1987). The Psychology of Learning Mathematics. Lawrence Erlbaum 
Associates, Publishers: Hillsdale. Skemp,R.R, (1970). Understanding of 
Mathematics, London:University Press. 

Simon, H.A., & Paige, 1.M. (1979). Cognitive processes in solving algebra word 
problems. In H.A. Simon (Ed.), Models of Thought, 201-229, New Haven: Yale 
University Press. 

Smith, D.A., & Moore, L.C. (1991). ' Project Calc: An Integrated Laboratory 
Course' . In C. Leinbach et al. (eds.), The Laboratory Approach to Teaching 
Calculus, MAA Notes, 81-92, Washington DC: MAA. 

Siegel,S. (1956). Nonparametric Statistics for the behavioral sciences. McGrawHill: 
London. 

113 



Steen, L.A. (1991). "An Overview of the Calculus Curriculwn Reform Effort: Issues 
for Learning, Teaching and Curriculwn Development." American Mathematical 
Monthly, 98(7), 627-635. 

Stevens, M. (2003). Selected Qualitative Methods. Available online at: 
http://symptomresearch.nih.gov/chapter_7/index.htm. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 
with particular reference to limits and continuity. Educational Studies in 
Mathematics, 12(2), 151-169. 

Tall, D. (1985a). Understanding the calculus. Mathematics Teaching, 110, 49 - 53. 

Tall, D (1985b). The gradient of a graph. Mathematics Teaching, 111, 48 - 52. 

Tall, D. O. (1991). "Intuition and rigour: the role of visualization in the calculus", 
Visualization in Mathematics (ed. Zimmermann & Cunningham), M.A.A., 
Notes, 19, 105-119. 

Tall, D.O. (1992). Students' Difficulties in Calculus, Plenary Address, Proceedings of 
Working Group 3 on Students' Difficulties in Calculus, ICME-7, Quebec, Canada, 
13- 28. 

Tall, D.O. (1997). Functions and Calculus. International Handbook of Mathematics 
Education Part 1, Kluwer Academic Publishers, The Netherlands. 

Tall, D. (2000b). Cognitive development in advanced mathematics using technology. 
Mathematics Education Research Journal 12(3): 210-230. 

Thorton, T. (1998). Wittgenstein on Language and Thought: The Philosophy of 
Content, Edinburgh University Press. 

Vithal, R. (2004). Mathematics, Devan, and project work. South African Journal of 
Education, 24, 225-232. 

Vygotsky, L. S. (1962). Thought and language Cambridge [Mass]: M.LT. Press. 

Vygotsky, L. (1986). Thought and Language. The Massachusetts Institute of 
Technology. 

White, P., and Michael, M, (1996). Conceptual Knowledge in Introductory Calculus, 
Journal for Research in Mathematics Education, 27 (1), 79-95. 

114 



Wilson, C. (1995). Issues in Instructional Design related to computer technology 
implementation in the classroom. The Delta Kappa Gamma Bulletin, 
61(3), 5-9. 

Wirtengenstein, L. (1976). Wirtengenstein's lectures on the Foundations of 
Mathematics. The Harvester Press Ltd: Hassocks, Sussex. 

Wolfram, S. (1991). Mathematica: a system for doing mathematics by computer. 
Addison-Wesley Publishing Company: California. 

Wolfram, S. (1999). The Mathematica Book, 4 th Ed. Cambridge University Press. 

Zandieh, M.l. (2000). A Theoretical Framework for Analyzing Student 
Understanding of the Concept of Derivative CBMS Issues in Mathematics 
Education, 8, 103 -122. 

115 



APPENDIX: 1 EXPERIMENTAL GROUP PROJECT 

Here we exhibit suitable exemplars from a student response in the project. 

Task A: Finding the limit graphically and verifying numerically: 

Mathematica command: Mathematica graphical solution: 

Plot [F[x], {x, 0, 3.99}] 

0.5 

0. 45 

0. 4 

0. 35 

4 

0.25 

{The student determines left hand limit graphically by deducing as x ~ 4- (from the left) 

Mathematica command: 

Table[N{ {x,/Ix]}],{x,1,3.99,O.1 }]/ffable Form 

Mathematica numerical solution: 

1 . 0 . 333 3 33 2 . 6 0 .2 768 2 
1 . 1 0 .3 27997 2 . 7 0. 2 7 4 4 86 
1. 2 0 . 323 0 5 5 2. 8 0.2 7 2 23 3 
1 . 3 0 . 3 1 8 4 54 2 . 9 0.2 7005 6 
1 . 4 0 . 3 1414 8 3 . 0. 2 6794 9 
1 . 5 0. 3 101 02 3. 1 0 . 2 6590 9 
1 . 6 0 . 3 0 6287 3 . 2 0 . 2 6 3 93 2 
1 . 7 0 .3026 7 8 3. 3 0 . 2 6 2 01 4 
1 . 8 0. 2 992 54 3 . 4 0.2 6 0 15 2 
1 .9 0 .2 9 5 9 98 3 . 5 0 . 2 58 3 4 3 
2. 0 . 292893 3. 6 0 . 2 56584 
2 .1 0 . 28 9 928 3. 7 0.2 5 4 87 2 
2. 2 0 . 28 7 089 3 . 8 0 .2 5 3206 
2. 3 0 . 2 84 3 6 8 3. 9 0 . 2 5158 2 
2 . 4 0 . 28 1 75 4 
2 . 5 0 . 2 7 92 41 
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{Student finds the left hand limit numerically by viewing the converging sequence and 

concludes that 

Mathematica command: 

Plot [F[x], {x, 4.0001, 5}] 

Mathematica graphical solution: 

0.25 

0-248 

0-246 

0-244 

0.242 

4-4 8 5 

0.238 

0.236 

{Student plots graph and finds limit from the right and deduces that. as x ~ 4+ (from the 

right) f(x) ~ f(4+) ~ 0.25} 

TablelN{ {x,F[x)} ],{x,4.001,5,O.1 }]//Table Form 

Mathematica numerical solution: 

4.001 0.249.;)84 

4.101 0.248441 
4.201 0.246936 
4.301 0.245466 
4.401 0.24403 
4.501 0.242627 
4.601 0.241255 
4.701 0.23£913 
4.801 0.2386 
4.901 0.237314 
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{Student finds the right t hand limit numerically by viewing the converging sequence and 

concludes that 

As x ~ 4+ (from the right) 

Task B: Finding average rate of change: 

F [x -.1: 3x-2x2 

frO. 5 J)IO. 4 {student finds gradient of the secant line from f (0. 9) to f (0. 5) with increment 

h=0.4 with slope =0.2} 

=0.2 

To view the function and the secant line on the same system of axes the following 

commands were performed: 

Equation of a secant line 

y=mx+c [straight line] 

{Since the gradient is calculated above the intercept IS calculated usmg the solve 

command} 

Solve [([0.9] = =0.2*0.9+c, c] 

{{ c=0.9}} {Student calculates the value of c) 

Graph of secant line y = 0.2x+0.9 {equation of secant line obtained} 
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To plot secant and initial function on same axes 

L [x-.J:=0.2x + 0.9 [secant line equation] 

f [x~: =3x-2x2 [original function] 

8x+0.51 {student finds of the secant line from f (0.5) tof(0.51) with increment h=O.Ol 

with slope =0.98} 

Plot [{j[x] , L[x], S[x]}, {x, 0.4,1.0}] 

L3 

L2 

0. 9 

Task C: Find instantaneous rate of change: 

F [x~: =3x-2x2 

Limit [(F[0.5+h]-F[0.5])/h, h 0] {the definition of the derivative IS 

d dy. f(x+h) - f(x)} use , - = hmh~O ----'----'----'--'-
dx h 

Solve [F [0.5] =0.5+c, c] {Calculates the y intercept for the equation of the secant at 

x = 0.5} 
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Mathematica solution: 

{{c=0.5} } 

G [x~:=x+0.5 

Plot [{F[x], G[x]}, {x, 0,1}] {Plots the graphs of the function and the secant on the same 

system of axes } 

Mathematica graphical solution: 

0.4 

0.2 

Q4 1 
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Mathematica command: 

Plot [{FIx] , G[x]} , {x, 0.49,0.51}] {Zooming into a small section of the graph indicating 

that tangent and curve coincides} 

Mathematica graphical solution: 

LOl 

1.005 

0 .49 0 . ,9)5 0. 5.1 

0.995 

0.99 

{Over a smaller domain, the secant within the region o/the domain becomes a tangent} 
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APPENDIX: 2 EXEMPLARS FROM STUDENT INTERVIEWS 

Exemplar for student SI Task 1. 

I: Explain your results (output) obtained for question 1. 

SI "I plot the graph and found the limit from the left and verified this by showing 

that the sequence converges at 0.25 by getting the numerical solution as well." 

I: What happens at 0.25? 

SI: The sequence converges. 

{Student response does not connect the limit concept to convergence} 

I: Explain in your own words what this means? 

SI: It means that the limit exists and the point to which the sequence converges is the 

limit of the sequence. 

{Deep structure response} 

Exemplar for student S5 Task 2 

I: Explain your output for Task 2. 

S5: We were asked to find the average rate of change. 

I: Tell me what you did to get the average rate of change? 

S5: 1 found the difference in the function over a small interval and plotted the graph. 

I: Why did you plot the graph? 

S5: 1 wanted to get a visual representation. 

{Intermediate structure response - no mention of secant line} 
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Exemplar for student S8 Task 3 

I: Explain your output for Task 3. 

S8: I wanted to calculate the instantaneous rate of change at x = 0.5 

I: Explain what you did? 

S8: I plotted the graph of the tangent and curve at observed what happened at 0.5 

{Surface response - repeated features of the question} 
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APPENDIX 3 CUMULATIVE SCORES CONTROL GROUP AND EXPERIMENTAL GROUP 

Student number Control Experimental 

1 9 15 
2 13 7 
3 7 18 
4 7 11 
5 7 12 
6 10 11 
7 11 15 
8 8 17 

9 9 16 
10 1 11 
11 11 17 
12 13 17 
13 6 14 
14 5 20 
15 12 20 
16 4 8 
17 11 11 
18 13 9 
19 6 9 
20 9 21 
21 9 8 
22 5 9 
23 12 13 
24 10 8 
25 6 9 
26 13 8 
27 7 14 
28 8 13 
29 6 15 
30 6 14 
31 5 8 
32 8 6 
33 9 5 
34 6 9 
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