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Abstract 

 

Eskom is facing challenging times where the national power grid is placed under extreme 

pressure, therefore, the long existing poorly damped low frequency inter area oscillations affects 

the stability constraints thus reducing the power transfer capacity. Consequently new power 

stations are being built in remote locations to reduce the short fall of generation capacity and the 

HVDC technology has become appealing to transport large amount of power over long distance. 

This research aims to prove that stability enhancement of parallel AC systems can be achieved 

with the use of HVDC schemes.  

The HVDC system has the rapid ability to control the transmitted power during transient 

disturbances and this power system control has a significant effect on the dynamic performance 

of the system after a disturbance therefore the dynamic performance is related to the small 

signal stability, where the rotor oscillations are minimised and the system is brought back to 

steady state after an event or disturbance.The fundamentals of small signal stability in terms of 

observability, controllability, residues, network sensitivities and mode shape are explained 

together with a dominant oscillation path definition for HVDC links location selection. The key 

importance in controlling the power of the HVDC link to affect stability requires that the 

oscillation is observable and controllable. Simulation results on a simple four-generator, two-

area test system are presented, with a view to benchmark the results and develop a fundamental 

understanding of how using HVDC links for power transfer can stabilise the grid.  

 The eigenvalue analysis of the system indicates the frequency of oscillations in the system and 

the generator’s participation factors, together with the controllability and observability of the 

inter area mode (mode of interest). There are a number of test simulations results from a LCC-

HVDC system (First Cigrê benchmark model) integrated into a test network where the influence 

on the small signal stability is analysed. Various literature has been reviewed which supports 

the basic principles, promoting the benefits of using HVDC systems to enhance stability of a 

parallel AC system (Hybrid) and then integrating supplementary control. 

 This research investigates the use of the HVDC system to enhance the small signal stability 

with supplementary control which is termed predictive control. Power Oscillation Damping 

(POD) control through LCC HVDC links is studied to ensure secure operation of power 

systems.  The Power oscillating damper is expressed as a transfer function whereas the MPC 

(Model Predictive Controller) is expressed as cost functions of a feedback signal which is a 

measured quantity. Two feedback signals are selected and their effectiveness with regard to 
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their contribution to the damping of the system is investigated. The controller feedback signals 

are real power and voltage difference across the AC tie lines. Bode plots, root locus plots and 

time domain simulation results show the comparison between the different selected controller 

inputs and supplementary controls. The voltage angle difference is most effective as it is more 

sensitive to changes in the system and assists the controller in bringing the system to steady 

state in a shorter period of time when compared to the controller input that uses real power 

across the AC tie line.  

The controllers with the HVDC integrated, do improve the damping of the system and it is 

related to shorter mode decay time, the MPC however has been investigated to reduce the 

change of loading levels of the AC tie lines following a change in system operating conditions. 

Simulation responses from the research show that this method is more promising and does not 

require prior knowledge of the possible contingencies due to its ability to handle complex multi 

variable systems with constraints, by using cost function algorithms to perform predictions of 

future plant behaviour and calculating the suitable corrective control actions needed to take the 

predicted output as close as possible to the target value which is the steady state. This research 

however demonstrates the fundamental principle which proves that the HVDC together with 

supplementary control can enhance stability of a parallel AC system. 
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1 INTRODUCTION 

Eskom is one of the largest power utilities in the world supplying power to Southern Africa, this 

power house with an installed generating capacity of approximately 45 000MW  is currently 

under extreme pressure to supply electricity, that is stable and sustainable due to a number of 

issues and therefore not operating at full capacity [1]. The transmission asset base is 

approaching its mid-life cycle and this challenge contributes significantly to the low short 

circuit ratio (SCR) which indicates that the South African grid is weak [1]. Stability is a term 

used to indicate that the grid is operating normally, but due to the constraints, any disturbance 

could cause the grid to go unstable [2]. The operating conditions that may cause this can be 

analysed through stability analysis, specifically small signal stability, which is the capability of 

the grid to remain stable after small disturbances [2]. 

South Africa currently has a single High Voltage Direct Current (HVDC) system which is the 

Cahora Bassa HVDC link that connects the hydroelectric scheme at the Cahora Bassa dam in 

Mozambique to the Apollo Station in South Africa. The scheme is rated to transmit 1920 MW 

at ±533 kV over a distance of 1420 km and is predominantly used as a bulk power transmission 

tool into the South African grid [3]. 

HVDC technology has become more appealing because of its ability to transfer large amounts 

of power over long distances. This would be used to transmit power directly into the load centre 

[3]. The HVDC system is characterised by the rapid ability to control the transmitted power 

during transient disturbances, the HVDC controls can ramp the DC power rapidly to reduce 

generation or unbalanced loads on both sides and the DC power can be ramped up rapidly to 

support system stability by using the short term overloading capability of the LCC HVDC 

system [2] [3]. 

There is some indication that due to the fast acting converters of the HVDC system, small signal 

stability enhancement is possible. Kundur has shown that a HVDC system in the path of the 

oscillation with a supplementary controller can be used to enhance stability [2]. This 

dissertation investigates the use of the HVDC system with or without supplementary control to 

enhance the small signal stability of a simple two area study system in order to gain a 

fundamental understanding which can be extended to large scale practical systems [2] [4]. 
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1.1 Problem Statement and Hypothesis 

 

The Southern African power systems have various modes of oscillations due to the many 

interactions of different components as the number of machines is represented as a number of 

masses connected by a network of springs. The masses of the generators' rotors swing relative to 

one another creating these rotor oscillations and hence these inter area mode of oscillations can 

cause the system to be excited and lead to black outs if the protections activate [5]. 

Eskom is currently only using the HVDC link for power transmission while forfeiting the 

benefits of the HVDC controls which can contribute positively to the Southern African power 

system stability. The large AC interconnected system can be unstable thus leading to overloads 

and stability problems. Eskom would prefer to use the HVDC link to stabilise the grid thus 

preventing a dangerous break down of system security. The unstable network can be overcome 

by placing HVDC schemes strategically, taking advantage of the fast controllability of the DC 

power, damping and timely overloading capabilities available.  Supplementary controllers 

would need to be developed on a simple network with steady and dynamic requirements to test 

for power system stability enhancement capabilities. The HVDC link has a high performance 

control technology tool that is well adapted for oscillation damping and this contingency should 

be explored to validate its worth to the power system with regard to stability enhancement.  

The hypothesis of the research stipulates that the integration of a parallel LCC HVDC link in an 

AC network does enhance small signal stability.  

1.2 Importance of Study and Contribution 

The following lists the contributions of the study to industry: 

• Investigating the small signal stability in relation with the application of a parallel LCC 

HVDC link onto a simple network for fundamental understanding. 

• The development of supplementary controllers in terms of predictive control for small 

signal stability enhancement. 
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1.3 Structure of Dissertation 

Chapter 2: The fundamentals of the HVDC system are presented which include the different 

types of HVDC technologies, HVDC topology layouts, HVDC control characteristics and 

components functionality. Graphical representation of topology configurations and HVDC 

control characteristics are outlined. 

Chapter 3: The fundamentals of small signal stability in terms of observability, controllability, 

residues, network sensitivities and dominant oscillation path are explained. 

Chapter 4: The chapter presents the eigenvalue analysis of the system which indicates the 

various frequency of oscillations in the system and the generator’s participation factors together 

with the controllability and observability of the inter area mode. This chapter includes a number 

of test simulations on the LCC HVDC system integrated into the network and the impact on the 

small signal stability. 

Chapter 5: The fundamentals of controller design specifications are presented in this chapter 

including a review of literature supporting the use of supplementary control to damp out power 

oscillations. A full representation of a network model in terms of its state space equivalent is 

used, in order to test the concept of supplementary control through HVDC links for stability 

enhancement in power systems. The Power Oscillation Dampers and Model Predictive 

Controllers are the supplementary controllers designed and are used in simulation studies where 

the responses are analysed for discussion. 

Chapter 6: This chapter concludes the dissertation and provides recommendations for further 

work applicable in the field. 

 

1.4 Scope and Limitation of the Research work 

 

The investigation of voltage and frequency stability is excluded and all time domain studies are 

performed on a small test network 
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2 HIGH VOLTAGE DIRECT CURRENT TRANSMISSION: LINE 

COMMUTATED CONVERTER (LCC)  

HVDC power transmission is used minimally by Eskom and the added benefits of the HVDC 

control technology does not contribute to the Southern African power system stability. This 

chapter will provide the basic principles of HVDC transmission including the operating 

principles, control and topologies so that an understanding of its advantages and applications 

can be holistically appreciated.  

2.1 Type of HVDC Transmission Technologies 

There are three different types of HVDC transmission technologies [3] [6] [7]. These are [3] [6] 

[7]: 

• Line commutated converter or LCC HVDC 

• Voltage source converters or VSC HVDC 

• Capacitor commutated converter or CCC HVDC 

Thyristors with a high current rating and thyristor banks with voltages up to 1000 kV are being 

developed. Due to the high voltage and high current rating, the LCC HVDC is the most suitable 

for bulk power transmission [8]. 

VSC HVDC appears to the AC network as a controllable load and generator without the need of 

an independent AC voltage source. This functionality promotes black start capabilities and 

delivers power into a passive AC network. VSC HVDC is more suitable as a power rating up to 

800 MW permits low power connections of wind farms and the connection to a weak grid as it 

does not need compensation for reactive power [8].  

The Capacitor commutated converter (CCC) is characterised by having capacitors inserted in 

series to the leakage impedance of the converter transformers and the main converter valves. 

The capacitor provides a force commutated facility and compensates for reactive power 

demand. However the CCC offers a more costly and complex operational alternative to the line 

commutated converter (LCC) [8]. 

Eskom has a need for bulk power transmission and as a result the dissertation focusses on using 

the LCC HVDC schemes for stability enhancements. This will therefore save Eskom time and 

money into the future. 
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This HVDC technology displays the following applications and advantages [2]: 

• Asynchronous link between two AC systems with system stability problems or a 

difference in nominal frequencies. 

• For underwater cables longer than 30 km because AC transmission is not practical, this is 

due to the high capacitance of the cable resulting in the need for direct compensation 

stations. 

• Transmission of bulk power over long distance in excess of 600 km. 

• Stabilisation of power flow in an integrated Power system [2] [3]. 

2.2 HVDC Network Topologies 

HVDC systems are divided into four main topologies namely Monopolar, Bipolar, Homopolar 

and Back to Back schemes [2] [6]. The most commonly used topology configurations will be 

shown below .i.e. Monopolar and Bipolar. 

2.2.1 Monopolar link 

Figure 1 shows a Monopolar link with only one pole of either polarity. The return path is 

usually an earthed, metallic return (conductor at low voltage) or water and it may be used for 

cable transmission. It is also considered the first stage of development of the bipolar system. 

Metallic return can be used in an area where the ground resistivity is too high or there is likely 

corrosion of underground or water metallic structures [2] [6]. The 350 kV, 300 MW Caprivi link 

between Namibia and Zambia is an example of a Monopolar system [9] [10]. 

Vdc Vdc

3phase Vac 3phase Vac

 

Figure 1: Monopolar with ground return [2] 
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2.2.2 Bipolar link 

The bipolar link is seen in Figure 2. It has two poles, one positive and one negative. Each 

terminal has two converters with the same rated voltage, which are coupled in series on the DC 

side. There are no earth currents because the junctions between the converters are earthed, 

resulting in both poles operating independently. This is ideal during outages and maintenance 

activities when one pole can be out of service and the power can be still transferred. One pole 

can operate on its own with the use of the earth return, transporting the rated load or more by 

using the converter’s overload capabilities and the DC line. The advantage of the bipolar link is 

that it will create less harmonic interference on the neighbouring facilities. Due to the high 

power levels associated with HVDC transmission, it is important to maintain reduced levels of 

AC current harmonics and DC voltage ripples of the converter. The actual level of harmonics 

produced by an AC/DC converter is a function of the period over which a phase brings 

unidirectional current to the load.  

 

Therefore, the higher the “pulse number” of the converter (twelve pulse bridge configuration of 

the bipolar topology), the more switching between phases of cycle exists. This generates lower 

harmonic distortion in the AC line current and the DC terminal voltage [10]. A third conductor 

can be used as a metallic neutral and is used as a return path if one pole is out of service or 

when there is an imbalance during bipolar operation. It usually needs low insulation and also 

serves as a shield wire for overhead lines [6] [2]. The Cahora Bassa HVDC is an example of a 

bipolar system with each pole running on a separate tower [3]. 

-Vdc

Vdc Vdc

3phase Vac 3phase Vac

3phase Vac 3phase Vac

-Vdc
 

Figure 2: Bipolar HVDC link [6] 
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2.2.3 Homopolar link 

The system configuration consists of two or more poles with the same polarities and an earth 

return. Negative is the more common choice due to the fact that corona under negative polarity 

causes less radio interference [2] [6].  

2.2.4 Back to back link 

The transmission distance between the rectifier and the inverter is very short and when 

connecting two asynchronous AC networks, the converters can be on the same site or building 

[6] [2].  

2.3 LCC HVDC System and Components 

HVDC schemes converts AC power into DC power at the rectifier terminal (sending end) and 

then it is converted back to AC power at the inverter terminal (receiving end) as seen in  

Figure 3.  AC power is sent to a converter functioning as a rectifier. The rectifier outputs DC 

active power therefore it is not affected by the AC supply frequency and phase. The power is 

transmitted through overhead lines, cables or short lengths of bus bars to the second converter. 

This second converter (inverter side) is run as a line-commutated inverter and permits the DC 

power to move into the receiving AC network. Conventional HVDC transmission uses line-

commutated thyristor technology [10].   

When a gate pulse is introduced, the thyristor will conduct current. Conduction continues 

without additional gate pulses with the current flowing in the forward direction. Thyristor “turn-

off” occurs only when the current reverses and a thyristor converter requires AC voltage to 

function as an inverter. As a result the thyristor-based converter topology used in HVDC 

systems is referred to as a line-commutated converter (LCC). The typical HVDC system and its 

components are illustrated in Figure 3. 
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Figure 3: Typical LCC HVDC System 

 

The thyristor based converter topology consists of thyristor valve bridges and converter 

transformers. The conversion from AC to DC is performed with the arrangement of high voltage 

valve bridges in a twelve or six pulse configuration according to the required output voltage. 

The converter transformer is used to provide a commutating voltage to the thyristor valves 

bridge at the appropriate level. The converter circuit of an HVDC converter is a three phase full 

wave bridge which is known as a Graetz bridge. The Graetz bridge configuration is commonly 

used for HVDC converters as it makes better use of the transformer and reduces the voltage 

drop across the valve when it is not conducting [2]. The components of the LCC HVDC system 

are briefly described below: 

2.3.1 Thyristor valve 

A thyristor is an electronically controlled switch also referred to as a valve. When a positive 

voltage is applied at the gate of the valve, the current is conducted in the forward direction. 

There is a small voltage drop across the valve when it is conducting. When the current attempts 

to reverse direction, making the cathode positive relative to the anode, the current is blocked by 

the valve as it will turn off and appear as high impedance. After conduction initiation, the 

current through the valve continues until it reaches zero and a reversed voltage appears across 

the valve. The valve can conduct current in one direction after the control pulse triggers it into 

conduction, subsequently the current is blocked until the next control pulse trigger [3].  
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2.3.2 Smoothing reactors 

These are big reactors coupled in series with each pole of individual converter stations with an 

inductance as high as 1.0 H [2]. The reactors prevent commutation failures on the inverters, 

inhibit current from being irregular at low loads, restricts the rectifier’s crest current for the 

duration of the DC line fault, and decreases harmonics on the DC line [3] [10]. 

2.3.3 DC filters 

These harmonic filters are used to decrease harmonics which have detrimental effects on 

infrastructure such as transformers, especially harmonics that may cause interference with 

telecommunication systems [2] [3] [10]. 

2.3.4 AC circuit breakers 

The AC circuit breaker clears faults in the transformer and forces the DC link out of operation. 

The converter control is used for clearing DC faults [2] [3] [10]. 

2.3.5 Earth electrodes 

Electrodes are conductors which are connected to earth and may be used as part of the earth 

return in a monopolar system or for short periods of time in a bipolar system [2]. 

2.3.6 Reactive power supply (AC Filters) 

The HVDC converters absorb reactive power therefore reactive power sources are connected 

closer to the converters. The reactive power used is approximately 60 % of the power 

transferred during nominal operating conditions and much higher under transient conditions. 

The AC filters are often designed to account for this [2] [3]. 

2.4 LCC HVDC Converter operation  

2.4.1 Thyristor controlled converter  

The mean direct voltage (Vd) is changed by controlling the instant at which the thyristors are 

switched on and the thyristor controlled converter (TCC) is responsible for this control action. 

The firing delay angle, α, (also referred to as the ignition delay angle) is referred to as the angle 

between the time when the thyristor is fired and the phase voltage crossing over the valve-

winding voltage as seen in Figure 4. This firing delay angle determines when the commutation 

process (the transfer of current from one valve to another) begins and therefore the magnitude of 
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mean direct voltage (Vd). Vd is proportional to the cosine of the firing delay angle therefore the 

larger the delay angle results in a smaller Vd [10]. The steady state operation of the converters 

are directed by the standard converter equation relating direct voltage (Vd), direct current (Id), 

converter transformer valve winding emf (EL_L ) and commutating reactance (Xc) with the 

firing delay angle to which the converter is controlled. The converter equation is seen below [8]: 

�d = �√�
� �L_L		 �
��	α − ����

� �      (1) 

Equation 1 shows that the given Vd will require a smaller �L_L if Xc is decreased hence the 

transformer cost will increase however similarly the �L_L	will reduce if the firing delay angle at 

the rectifier (or γ at the inverter) is decreased [8]. After analysing the emfs of phase A, ea, as the 

firing delay angle is increased, the phase displacement between alternating voltage and 

alternating current in a supply phase also changes [2]. The angle, α, shifts the current wave and 

its fundamental element by an angle ф = α, with α =0, the fundamental current element is in 

phase with the phase voltage, ea, the active power (Equation 2) is positive and the reactive 

power (Equation 3) is zero. As α increases 0 ͦ to 90 ͦ, the active power (Pa) decreases reactive 

power (Qa) increases. The setting of the firing angle of the thyristor valves defines the size and 

polarity of the direct output voltage after rectification. 

                       	�� = ����	
��ф                        (2)    

																												�� =	= ����	 !"ф                  (3) 

Due to the commutation reactance, the phase currents cannot change instantly therefore the time 

taken to transfer the current from one valve to the other is referred to as the overlap angle or 

commutation angle and is denoted by µ as per Figure 4. When operating in the rectifier mode, 

the following angles are described: firing delay angles, α, overlap angle, µ, and extinction delay 

angle, δ (µ + α). A graphical explanation is seen below in Figure 4 

 

Figure 4: Voltage at the rectifier 
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2.4.2 Inverter operation 

When relating Figure 5 and Equation 1 and 2, At 90 ͦ, Pa is zero hence zero voltage is reached 

and Qa is maximum, as α increases from 90 ͦ to 180 ͦ, Pa becomes negative hence the DC 

terminal voltage is negative and increases in size, Qa remains positive and decreases in 

magnitude. At 180 ͦ Pa is negative maximum and Qa is zero. 
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Figure 5: Voltage waveforms and valve conduction periods - Inverter (α >120 ͦ ) 

Beyond 90°, the firing delay angle (α) of the TCC is usually referred to as the “extinction angle” 

or “gamma” ( γ ) as seen in Figure 5. This extinction angle characterises the period between the 

end of the overlap period and the instant when the phase voltage related with the existing valve 

becomes more positive/negative than that of the succeeding valve in sequence as seen in Figure 

5, and it is expressed mathematically as seen in Equation 4: 

 

																												γ =	= 180	 − 	μ	 − α         (4) 

 Control of the output voltage of a six-pulse bridge is only accomplished by the firing delay 

angle (α). The extinction angle, γ, is the existing turn-off time for the thyristor valve following 

the time when the valve is fired. With the inverter operation, α and δ are defined in the same 

way as in the rectifier but with values of 90 ͦ and 180 .ͦ  It is common practice to use the ignition 

advance angle, β, and the extinction advance angle, γ, to describe the inverter’s performance. 

These angles are defined by their advance with respect to the instant when the commutating 

voltage is zero and decreasing as seen in Figure 5 [2] [7]. 

2.4.3 Reactive power in HVDC system 

The converter absorbs reactive power from the AC system whether it operates as an inverter or 

as a rectifier. They are seen as reactive power loads as they operate in situations where the 

current lags the voltage because of the firing delay angle. The converter transformer impedance 
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however brings a further lag in the current (referred to as the overlap angle) as described earlier 

through equation 1 and 2. [10] [2]. The AC harmonic filters are considered the main sources of 

capacitive reactive power in a HVDC station. They reduce the harmonics added into the AC 

system and generating reactive power. An AC filter is composed of capacitances, inductances 

and resistances but the HV-connected capacitor is the main supplier of the reactive power 

generated at fundamental frequency [9]. 

2.5 HVDC Control 

HVDC control is the most important part of the HVDC system as it has fast acting controls 

which are more advanced than controls on an AC system (such as the control of generators) [3]. 

It is very important that the HVDC control is designed correctly as this fast acting control 

system can assist the weak AC network to recover from faults in order to avoid AC system 

voltage instability or voltage collapse [2]. The control requirements for HVDC power 

transmission related to control functionality is determined from the HVDC system objectives 

and varies between different projects [3]. The control requirements include the following 

attributes [7] [2]: 

• Flexibility in the control of power. 

• Fast control response. 

• Stability under all operating conditions. 

• Good transient recovery. 

• Promote AC system performance. 

• Robustness in the ac system events. 

• Maintaining symmetrical valve firing in the steady state. 

• Prevention of repetitive commutation failure in inverters. 

• Reactive power control. 

2.5.1 Basic control principle 

HVDC bridges convert AC power into DC power at the rectifier terminal and the inverse at the 

inverter terminal to allow power flow to the AC network. The advanced controls keep the direct 

voltage at specific levels for the transfer of power from or into the AC network. The rectifier’s 

output voltage differs to the inverter’s input voltage due to a volt drop caused by the resistance 

of the transmission line [7] [3]. The basic HVDC control characteristics are graphically 

illustrated below as seen in Figure 6. [10] [2]  
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The rectifier has two segments, Line AB and Line FA as per Figure 6 Line FA, limits the DC 

voltage to an acceptable magnitude in an incident of a control failure at the inverter or a 

communication system failure. Line AB relates to the constant current characteristic with the 

rectifier controlling Id in normal steady state conditions. Line FA relates to the minimum 

ignition angle (firing delay angle) and represents the CIA (constant ignition angle) control mode 

as shown in Figure 6.  The constant current, CC, characteristics may not be truly vertical as seen 

in Figure 6, depending on the current regulator and its finite gain.  The rectifier complete 

characteristic at normal voltage is defined by FAB and with reduced voltage, it moves as 

indicated by F’A’B as seen in Figure 6. The inverter complete characteristic intersects the 

rectifier’s characteristic at point E (normal operating point) for normal voltage but not for 

reduced voltage at F’A’B.  

This sudden reduction in voltage could cause the current and power to reduce to zero and this is 

avoided by setting the set point of the inverter current controller to a lower setting than that of 

the rectifier. The complete inverter characteristic is related to AGH consisting of the constant 

extinction angle (CEA) and the constant current (CC) as seen in Figure 6. [2]. The current 

margin as indicated by Im in Figure 6 is defined as the difference between the inverter current 

order and rectifier current order and is set to 10 - 15 % of the rated current to avoid crossing 

each other due to errors in measurements [2] 
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Figure 6: Steady state V-I characteristics [2] 

At point E as seen in Figure 6,   normal operating conditions, the rectifier controls the direct 

current and the Inverter controls the direct voltage but at point E’, with reduced rectifier voltage 
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caused by a nearby fault, the inverter takes over direct current control and the rectifier controls 

the voltage i.e. reversed roles. The change from one mode to the other is called mode shift and 

happens frequently in this dynamic system [7] [2]. 

2.5.2 Advanced control characteristics 

In Industry, there are limits for the firing delay angle and the current as seen in Figure 7, these 

advance control characters assists in avoiding system events on HVDC system. Hence when the 

rectifier maintains constant current by varying α until αmin is reached (as seen in Figure 7). The 

rectifier firing delay angle α is prevented from going below a fixed value αmin by its control 

action. The value of αmin is 3 ͦ to 5 ͦ and ensures that there is sufficient positive voltage across 

the valve before it is fired. At this point a further voltage increase is not possible with control 

action as the direct voltage maximum is set and the rectifier will operate in constant ignition 

control. There is a constant operating line (CEA as per Figure 7) for the inverter (γ line) which 

prevents the inverter from operating below the minimum extinction angle with control action. 

The inverter operates with an extinction angle of 15 ͦ -19 ͦ under steady state conditions and at 

constant extinction angle during fault conditions within a receiving AC network. Hence, the 

smaller value of γ causes the inverter to be exposed to commutation failure. The current order Io 

on the other hand is determined by an outer power control loop and is subject to minimum and 

maximum limits. The minimum limits is to avoid problems at low DC currents and the 

maximum limits is determined by the overload capability (depends on the operating temperature 

of the thyristor valves). The steady state V-I characteristics with voltage dependant current 

order limiter, (VDCOL), minimum current limit are shown below in Figure 7.  
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Figure 7: Practical V-I characteristics 
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These advance control actions are used together with associated control loops. These control 

actions are explained as follows [2]: 

Minimum Current limit: The current is interrupted 12 times per cycle in a 12-pulse action 

therefore high voltages are induced in the transformer windings and the DC reactor, by the high 

rate of change of current at the time of current interruption. Low values of DC voltage, creates 

small overlap angles even though the current is continuous. This commutation period from start 

to finish being so close together causes stress on the valves due to voltage excursions. A 

minimum current limit is therefore needed as seen in Figure 7 [2] [3]. 

Voltage Dependent current order limit (VDCOL): When the AC bus voltage  drops at one of 

the HVDC converters resulting in a DC voltage drop, then a higher voltage at the remote 

converter is demanded to control the current [2] [7]. There is definitely a risk of commutation 

failure and voltage instability due to the drop in AC voltage caused by system faults.  The 

VDCOL has a disadvantage as it may clash with the AC overvoltage (Vacmax) control loop. If 

there is AC system over voltage, the converter reactive power consumption increases by 

decreasing the α at the inverter which reduces the Vd and the VDCOL control action operates 

by limiting Id thus preventing the effective reactive power consumption [3] [7]. 

The inverter characteristic duplicates the rectifier VDCOL to maintain the current margin. 

Implementation of the VDCOL includes a simple time lag transfer function. The measured 

direct voltage is sent through a first-order time lag, which is designed differently for increasing 

and decreasing voltage conditions. For falling voltages, fast VDCOL action is required; hence a 

short time constant is employed. The time lag is made larger when the DC voltage is recovering, 

to avoid control oscillations and possible system instability. The break points are between 30% 

and 80% of the DC voltage and higher break points can be used if the AC system requirements 

demands, it is evident that a higher breaking point can assist a receiving AC network which is 

sensitive to disturbances thus reducing the risk of large voltage oscillations [2] [3].  

2.5.3 Control hierarchy and operations of an HVDC system 

The HVDC control loops are layered in terms of hierarchy with different speeds of response and 

time precision.  A basic control scheme is shown in Figure 8 and the control hierarchy changes 

from one DC scheme to another but the basic concepts are the same. The HVDC control scheme 

is divided into four levels [4] [2] [3]: 

• bridge or converter unit control,  

• pole control,  
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• master control and  

• overall control 

The bridge unit control selects the firing times of the valves within the bridge and selects α min 

and γ min limits. The bridge unit control is the fastest response within the control hierarchy. The 

pole control coordinates the control of bridges in a pole. The conversion of the current order 

(current set point) to a firing angle order, tap change control and certain sequence protection is 

managed by the pole control [3] [2]. This includes coordination of starting up, balancing of the 

bridge control and de-blocking. The current order and coordinated current order signals are 

provided by the master control to all the poles.  There is an interface between the pole controls 

and the overall system control created so that the master control as seen in Figure 8 can interpret 

the broader demands of the HVDC system.  

The inner loop is the fundamental converter control unit which outputs accurately timed pulses 

synchronised with AC system phase voltage waveforms. The input to this unit is the error 

signals chosen by means of a loop selector. The error signals are generated from variances 

between set points and measured variables such as DC current and voltages and min α (α min) 

and γ (γ min). The net result is the phase advance or phase retardation of the firing angle, α, and 

hence the valve firing pulses depending on the size and sign of the particular signal selected [2]. 
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Figure 8: Basic control scheme [2] 

Converter firing controller, CFC, determines the firing instants for each valve in the converter 

and lies at the centre of the control system. There are many control loops in a controller which 

are similar in structure. In industry, multiple loop controllers are used in the same controller 

with loop selection decision logic determining which control loop is in control at any time. CFC 
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essential task is to generate sequences of valve firing pulses with a delay angle, α, timed relative 

to the AC voltage waveforms such that the error signal of the active control loop is driven 

towards zero.  CFC also matches all the timing information to the AC bus voltages to prevent 

out of sequence firing valves in relation to the zero crossings of the voltage waveforms. It also 

places limits on the rectification and inversion by means of control loops [2] [3] [10]. 

It is very important that at least one thyristor in the group has a firing pulse available to it and is 

ready to fire when a forward voltage appears across it. There are two methods to simultaneously 

generating and synchronising converter firing pulses within converter firing controller. These 

are Individual Phase Control (IPC) and Equidistant Firing Control (EFC). The IPC method 

determines the firing instants for each valve depending on the zero crossing of the AC 

waveforms so that a constant delay angle is maintained across all valves. The Equidistant firing 

control over comes some deficiencies of the IPC by using the phase lock oscillator technique. 

Equal time intervals are maintained between successive firing pulses under fault conditions and 

steady state. The phase locked and phase limited oscillator is indirectly synchronised to the AC 

system to provide stable operation even if the system goes out of steady state [2] [10]. 

2.6 Performance Enhancements: Control for AC Systems 

2.6.1 Power frequency control 

The frequency of both AC networks will change when the DC power order of a HVDC scheme 

changes, depending on the generating capacity. The frequency of only one AC system (rectifier 

or inverter side) can be controlled at a time. If the power order is increased to increase the 

receiving system frequency, then the sending frequency is reduced. The AC system frequency 

control by the HVDC schemes is implemented for the following purposes [2] [3]: 

• Frequency control of the sending end AC system for DC transmission from remote 

power sources 

• Frequency control of an AC system in an isolated island or a small AC system when it 

is interconnected to a large AC system through a DC link. 

• Frequency control, when interconnected by systems with different frequencies. 

AC system frequencies control is initiated when the system frequency of the controlled AC 

system exceeds certain limits. It can also be initiated when the AC system is islanded from the 

main AC network and the only means of power transfer is via the HVDC system [2] [3] [4]. 
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Limits are applied to power variations or rate of change of power necessary to maintain the AC 

system voltage fluctuations within specified bands. When two AC systems with different 

frequencies are interconnected, a suitable dead band is implemented to compensate the effect so 

that only large or fast frequency disturbances are compensated by the DC power control [2] [3] 

[4].  

2.6.2 Power oscillation damping  

Power Oscillation Damping (POD) is positive damping to electromechanical oscillations 

between generators or groups of generators in the frequency range up to 3 Hz through the 

modulation of the power order current order to the rectifier. The voltage angle difference, 

change of real power, AC system frequency or rate of change of AC power can be the input 

signal for this supplementary control [3]. The small signal oscillations and the dominant 

oscillation path of a system are of interest in this research and will be explored in Chapter 3; the 

development of a controller will be explored in Chapter 5. This schematic arrangement as seen 

in Figure 9 shows the derivation of the power oscillation damping (POD) signal [3].  

 

Figure 9: A structure for a Power oscillating Damper controller for HVDC [11]. 

2.6.3 Step changes in power 

The HVDC power should be changed in steps to improve the AC system's response during and 

after power system disturbances. This may also involve DC power reversal under certain 

circumstances. An AC trip line, loss of large power supply sources or a sudden decrease or 
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increase in power system loads are the power system disturbances or events considered when 

using power step changes with HVDC power. The HVDC step power changes initiation signal 

is usually a large change is loading, a large frequency deviation or the tipping signal of a 

transmission line which is detected at the HVDC substation. There should be set priorities if 

there are many initiating signals for power demands with specified contingencies [2] [3] [4]. 

2.6.4 HVDC system in parallel with an AC transmission line 

Transient angle stability difficulties exist in AC networks where a long AC transmission line 

linking two AC systems experiences unstable power oscillations. The HVDC system in parallel 

with an AC transmission line can assist in the enhancement of AC power system stability. 

However the DC current cannot be increased without considering the effect of transmission 

angle swings when the HVDC system has a parallel AC path. Figure 10 shows the simplified 

parallel AC/DC transmission system. The HVDC control modulates the active power 

transmitted to respond to changes in the phase angle between the two connected AC regions. 

Frequency or voltage angle difference, real power or current in the parallel AC line are possible 

input/feedback signals to the damping controller of the HVDC system [3]. 

Since the HVDC power is independent of angular difference between the AC terminals, 

maintaining the HVDC power flow or increasing it will strengthen the weak AC parallel 

transmission corridor. Careful consideration must be taken when designing the HVDC control 

in order to avoid inciting transient voltage instability when faults occur. The control strategy 

must be able to see situations when the parallel AC link is opened and the two AC networks 

lose synchronism. They can also provide timely and enough synchronising and damping torque 

to avoid voltage instability. The short term overloading capabilities of the HVDC converters 

should be considered as a control strategy to improve system stability [2] [3].  
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Figure 10: A simple parallel AC/DC transmission system [2] 

In a weak AC transmission, where the power flow capacity is less than the HVDC system, the 

HVDC controls can employ a strong influence on the total power flow. Throughout transient 

stability swings of the AC transmission power angle, the HVDC system can effectively increase 

the stability margin by increasing its current order. However, if the HVDC system trips causing 

the transfer of power from the HVDC system into the parallel AC lines (at Bus 7 and 9 in Figure 

10), the voltage collapses in the AC system. Pre-planned operational AC line-tripping schemes 

should be initiated on the detection of an HVDC system trip event thus preventing voltage 

collapse. When the AC line power flow capacity is greater than that of the HVDC system, 

increasing or even maintaining the DC power during transient variations of the AC transmission 

load angle will deny the system of the synchronising torque [3] [4]. 

With the increase in the DC current due to the overload capacity of the HVDC system, a drop in 

the power transfer capability is seen and hence synchronising torque with large values of swing 

angles. This is evident since AC systems operating with larger swing angles require higher 

synchronising torque to maintain transient stability otherwise they become unstable and 

cascaded blackouts occur. When both the AC and DC transmission capacity are comparable, 

maintaining constant DC power can become overpowering and this trend increases as the AC 

interconnection becomes stronger. These effects can be mitigated by using the exceptional 

control capability of an HVDC system and assisting in damping power oscillations. The control 

strategies for the HVDC system can be developed to assist the momentary synchronising torque 
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generated by the combined AC/DC transmission. The control signals are derived from the real 

power flow on the parallel AC lines. The control strategy should be validated with small signal 

stability studies on accurate system models which will be seen later in chapter 5 [3] [4]. 

2.7 Cigré Benchmark Model 

A benchmark system provides a base to test new concepts and to make comparisons between 

the simulation results and published literature results. This Cigré model is a simple model and it 

was created to inspire the comparison of performance of the different DC control equipment and 

strategies of different manufacturers by means of HVDC simulators [12]. 

The first Cigré LCC HVDC benchmark model is modelled in DIgSILENT PowerFactory as 

shown in Figure 11.  This model represents a Monopolar 500 kV, 1000 MW HVDC system 

with 12-pulse converters at both rectifier and inverter ends [12]. The damped filters and 

capacitive devices for reactive compensation exist on both sides of the converters. The DC line 

parameters could represent either a cable or a Monopolar equivalent of a bipolar overhead line 

[12]. The system parameters are shown in Figure 10 [13] [14]. The power circuit of the 

converter is divided into three sub circuits, i.e. AC side, HVDC side and the HVDC converter. 

The AC side of the HVDC system has an equivalent network, filters, and transformers which 

are located on both sides of the converter. The AC supply network is supplied with a Thevenin 

equivalent voltage source with source impedance. AC filters are added to absorb harmonics 

generated and provide reactive power to the converter [14] [13] [12] [15].  

The DC side consists of smoothing reactors and a T-network equivalent of the DC transmission 

line. The converter stations are characterised by 12-pulse configuration with two six-pulse 

valves in series. Under normal or steady state conditions using this model, the rectifier end 

operates in constant current control mode while the inverter controls the voltage/extinction 

angle. The current order is derived from the power order using the measured HVDC link 

voltage. The current order at the rectifier and inverter ends determines the 10-15 % current 

margin. The VDCOL is enabled to reduce the current order during a fault condition (voltage 

drops) in order to prevent a run-away situation. The firing delay angle at the rectifier end is 

limited between 5º and 150º to allow reliable valve operation and mode shift i.e. inversion 

mode, to clear faults in the HVDC link. At the inverter end, the firing delay angle is limited 

between 110º and 170º to reduce the possibility of commutation failures and avoid accidental 

mode shift into rectification [2]. 
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Figure 11: Cigré HVDC Benchmark Model [14] [12] [13] 

 

                   



 

24 

 

3 ROTOR ANGLE STABILITY OF A POWER SYSTEM WITH 

HVDC 

Stability of a power system refers to the ability of the system to operate in a state of equilibrium 

under normal operating conditions. In the event of a disturbance or event, the system should 

return to a state of equilibrium within a specified time [2]. Stability in power systems is related 

to a condition where all the generators remain in synchronism with each other. Power systems 

are continually subjected to perturbations or events such as switching of transmission lines or 

loads and faults at different points on the system. Power system control has a significant effect 

on the dynamic performance of the system after a disturbance therefore the dynamic 

performance of a system can be classified into [5]: 

• Voltage stability  

• Frequency stability 

• Rotor angle stability -  Small signal stability 

   -  Transient stability  

 

3.1 Transient Stability  

Transient stability (also called Large rotor angle stability or large disturbance) is the ability of a 

power system to remain in a state of synchronism when exposed to a large fault, on the 

transmission system. The loss of generation or a sudden loss of load is types of events that could 

cause system interruptions. Synchronism is the ability of the system to remain stable i.e. 

remaining within certain limits with regard to rotor angle separation between the machines in 

the system [2]. The stability is subjective to the non-linearity of the power system. Loss of 

synchronism due to the transient stability will be seen within 2-3 seconds of the initial 

disturbance.   

Factors that influence transient stability include [2]: 

• The loading of the generator.  

• The generator output during the fault depending on the type and location of the fault. 

• The fault clearing time. 

• The post-fault transmission system reactance. 

• The generator reactance as a lower reactance increases peak power and reduces the initial 

rotor angle. 

• The generator inertia. 
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• The generator internal voltage magnitude and the infinite bus voltage magnitude. 

 

3.2 Small signal stability 

Small signal instability can exist after a loss of an interconnection resulting in rotor oscillations. 

Inter-area oscillation may occur where there are two areas of great inertia with a weak 

interconnection as seen in Figure 12. In large power systems small signal stability problems 

may be either local or global in nature. The local problem is associated with oscillations 

between the rotors of a few generators close to each other (local mode) and the frequency of the 

mode of oscillation can be in the range from 0.5 to 2.0 Hz [2] as seen in Figure 12. The global 

small signal stability ( also called Small rotor angle stability or small disturbance) problem is 

associated with a group of rotors in one area operating against a group of generators in another 

area (inter-area mode) and the frequency of this mode of oscillation can be in the range from 0.1 

to 0.5 Hz [2].   

 

Figure 12: Modes of oscillation representation [5] 

Small signal stability analysis is based on the eigenvalue technique which shows the small 

signal behaviour of the power system. This technique is used to investigate the problems related 

to oscillations with regard to their mode shape and relationship with different modes [2].  

3.2.1 Linearised power system model 

Power systems can be represented by a set of algebraic and differential equations that can 

provide an accurate state space solution [2]. The linearised system model is given by the 

following equations i.e. Equation 5 and 6 [2] [16]: 
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ẋ) = *)+) + -.			        (5) 

/) = 
)+) + 0.)        (6) 

Where: 

12 is the system state matrix 

32 is the system input matrix 

42 is system output matrix 

52 is the feed forward matrix 

62 is the system state vector 

72		 is the system control vector and 

82 is the system output vector 

A state variable is one of the variables that can be used to describe the mathematical state of a 

dynamical system [17]. State variables within power systems may include generator machine 

states such as speeds and rotor angle, exciter states, power system stabiliser states and HVDC 

control states [2].  

3.2.2 Eigenvalue and stability 

The state of a system describes enough about the system to determine its future behaviour 

without any external forces affecting the system [17]. However the stability of a system can be 

represented using the eigenvalue (λ) technique. Various software packages (such as DigSILENT 

PowerFactory and MATLAB) have the ability to generate the eigenvalues from a linearised 

state space model through a model analysis tab. The eigenvalue is reduced to the following 

equation: 

9 = : ± <=	         (7) 

A power system has different modes because of its dynamic nature where generators or groups 

of generators interact in relation to each other. There are also other control modes of oscillation 

which are associated with the controls of the HVDC, FACTS, etc. and the frequency of 

oscillation is not fixed, hence it depends on controllers’ parameters [18]. In the frequency 

domain, a mode refers to real or a pair of complex conjugate eigenvalues. In the time domain, a 

mode has a single frequency and damping together with other sinusoid attributes (phase angles 

and amplitude) which is a component in a time response. A modal analysis of a linearised 

system model is a perfect tool to understand the behaviour and characteristic of different modes.  
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If a mode has poor damping, when it is excited by a perturbation or disturbance, it can then be 

observed on the post- disturbance time domain response. When a system is unstable, then the 

individual modes are unstable. A real eigenvalue corresponds to a non-oscillatory mode while a 

pair of conjugate eigenvalues corresponds to an oscillatory mode.  However, one can say that 

the time dependant characteristic of a mode relates to an eigenvalue as seen in Equation 7 [19]. 

Therefore, the stability of the system is identified by the eigenvalues. 

A negative real eigenvalue (−:) represents a decaying mode (i.e. damped oscillation) and a 

positive real (: ) part represents an oscillation of increasing amplitude. The larger the value, the 

faster the oscillation decay and positive real eigenvalue represents aperiodic instability [2]. 

The real component (−:  ) of the eigenvalues delivers the damping, and the imaginary 

component	(±<=) delivers the frequency of oscillation as seen in Equation 7 and Equation 8. 

The frequency of the mode is the given by: 

@	 = A
��          (8) 

The damping ratio is the rate of decay of the amplitude of oscillation and for an oscillatory 

mode of eigenvalues represented by a complex conjugate as seen in Equation 9 where the 

damping ratio is given by:  

B = CD
√(DEFAE)          (9) 

The mode decay time (τ) is the time constant of amplitude decay in which the amplitude of 

oscillations decays to 37% of its initial amplitude in τ seconds or   as seen in Equation 10.  

τ = H
I�JK         (10) 

The damping ratio is more fitting when expressing degree of damping rather than the time 

constant since oscillatory modes have a wide range of frequencies. Since the mode decay time is 

related to the damping ratio as seen in Equation 9 and 10, the mode decay time or settling time 

can also be used to express controller’s effectiveness in terms of the degree of damping after an 

event or disturbance. As a result the comparison of the two types of supplementary controllers 

used in this study will be using the mode decay time after a disturbance or event, to establish 

effectiveness in terms of damping. 

The damping ratio is an important index relating to the small signal stability of a system where 

the type of system response depends significantly on the damping ratio of the individual modes. 

The minimum acceptable limits of damping in which a power system can operate sufficiently 
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well is not really established but situations where local modes and inter area modes with a 

damping ratio of below 0.02 should be accepted with caution. In addition to the absolute value 

of the damping ratio, the sensitivity of the dynamic responses to operating conditions and 

system parameters is significantly important.  

According to reference [20] frequency and damping of inter-area modes are highly dependent 

on the system operating conditions and tests were conducted showing the strength of an AC-tie. 

The two weak operating conditions produced an unstable network and required further damping 

control actions to achieve stability of the network. 

3.2.3 Eigenvectors 

The eigenvalues of the state matrix given by A can be calculated from the scalar parameter λ, a 

solution exists that satisfies Equation 11. The right eigenvector (as seen in Equation 11) for each 

mode defines the relative distribution of the modes during the system dynamic state, which. is 

actually the mode shape of a particular mode of interest. When the simulation results are 

dominated by a single mode, the ratio of amplitude of any states (changes of the speed variable) 

to another in the simulation will correspond to the ratio of the magnitudes associated with 

eigenvector linked with that mode. The formulation of the power system model depends on the 

selection of states made. This makes them dimensional and indicates that there is no specific 

importance of a state to a mode. The left eigenvector (as seen in Equation 11) be taken as giving 

the distribution of the states within a mode. It has a direct effect on the amplitude of the mode 

excited on by a specific input.  The different components of the left eigenvector contribute to 

the controllability of the mode of interest with respect to the component of interest [2]. 

*ф = 9ф          (11) 

Where ф is an n×1 column vector ,  for any eigenvalue λj, the  n×1 column vector фj, which 

satisfies Equation 11 is called the right eigenvector of A, but associated with λj, in the form фij. 

	L ij is seen as the left eigenvector after mathematical manipulation and transformation to be 

used in Equation 11. 

3.2.4 Participation factors 

Eigenvectors are dependent on units and scaling factors linked with different state variables 

therefore the negative impact of using the left and right eigenvectors to determine stability and 

the relationship between the state variables and the oscillation modes of interest are evident. The 

participation factors are defined by the element, through element multiplication of the right and 
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left eigenvectors as seen in Equation 12. This is avoided by introducing the participation matrix 

P, which combines the left and the right eigenvectors as follows: 

Pij = фij	L ij                                                 (12) 

It is a measure of the sensitivity of the !MN eigenvalue to a change in the  <MN diagonal of A. The 

participation factors are non-dimensional and it provides an impartial indication of the effects of 

the state variables of the system to a mode.  

3.2.5 Observability and Controllability 

Observability and controllability factors are defined to provide a measure of how effective the 

choice of input signal is (controllability) and how effective the choice of feedback signal is 

(observability) [2] [21]. According to Mhaskar, modal controllability, observability, and transfer 

function zeros play a major role in the selection of location and feedback signals for flexible AC 

transmission systems (FACTS) based power swing damping controllers [22]. If the 

observability factor for a certain mode is zero, then the mode cannot be seen in the selected 

feedback signal. An input signal to a damping control should have high observability. If the 

controllability factor is zero, the mode is not controllable with the selected feedback signal.  

A large HVDC scheme controller mode may be observable in the active power and frequency of 

the system whereas the small SVC controller mode may be observable in bus voltage values in 

the adjacent transmission lines. Frequency is one parameter that is measurable at every point of 

the power system. Frequency measured at low voltage levels will provide oscillation mode 

measurements that are observable in the high voltage bus of that area [18]. According to 

Farsangi et al, different  output controllability analyses is useful for determining the correct 

feedback signals for damping of inter-area modes. They used two case study networks using 

various methods to determine the best location and the stabilising signal for FACTS devices 

[23]. 

3.2.6 Residues  

Residue is the sensitivity of the corresponding mode to feedback of the transfer function output 

to its input. Transfer functions, poles, zeros and residues give information for control design 

[24]. Since the residue is a normalised product of the corresponding observability and 

controllability, it will provide valuable information regarding the influence of the mode to 

feedback. A higher value of residue suggests a higher sensitivity of the corresponding 

eigenvalue to controller gain. [22] 

3.2.7 Identification of Power System Oscillations paths in Power System Networks 
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Mvuyana presented a summary of works related to the identification of power system oscillation 

paths in power system networks [25]. An understanding of the path that the oscillation energy 

travels within a power system indicates the correct location of the appropriate measurement and 

control action. The HVDC link may be installed in parallel to the path and the power transfer is 

controlled following a disturbance. Mvuyana identifies the dominant oscillation path for a 

known two area network power system together with other literature sources [2] [26] [27] [21] 

[25]. According to Hauer the interaction paths is the main path along which generators, 

controllers and loads interact with one another in the exchange of oscillation energy [28].  

In practical examples of interaction paths, the active power signal used at one important line 

relates to all the important lines in the network. This study showed that the interaction of the 

distantly located transmission lines assisted in  identifying the location of transmission corridors 

thus providing oscillatory content in the measured signals passing through them [28] [27]. It is 

then assumed that the propagation of most visible inter-area oscillations occurs along a certain 

path and the main path can be determined [29] [30]. This path is referred to as the dominant 

inter-area path and it is the pathway that contains the highest content of the inter-area oscillation 

[27]. The HVDC scheme with supplementary control can then be correctly placed according to 

the identified dominant inter-area oscillation path for effective control thus bringing enhanced 

stability to the power system after an event.   

3.2.8 Mitigation of Small Signal Instability 

Devices that may be used for economic design and improvement of system stability without 

compromising system performance include the Static VAR Compensator (SVC), Power System 

Stabiliser (PSS) and HVDC [2]. 

• Static VAR Compensator with supplementary control 

SVC has the ability to influence the voltage profile of a power system thus affecting the reactive 

and active power [4]. By accurately controlling the voltage and the reactive power, the SVC can 

enhance power system stability. The primary mode of operation is voltage regulation which 

improves transient and voltage stability. The SVC contribution to the damping of system 

oscillations is however small and a supplementary control (POD) is needed to achieve 

significant damping. The location of the SVC depends on the feedback signals used and the 

controller design [2]. The feedback signals used for the supplementary control must be 

responsive to the modes of oscillations to be damped. This can be determined by the residues 

and observabilities of various feedback signals for both pre-fault and post-fault conditions [2] 

[24]. 
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• Power System Stabilisers 

The PSS function is to increase the damping to the generator’s rotor oscillations. This is 

achieved by modulating the generator’s excitation thus developing a component of electrical 

torque in phase with the rotor speed deviations [2] [4]. Power system stabilisers are inexpensive 

and simple in design, it can be the most effective power system damping controllers if setup 

correctly. The PSS must have phase lead requirements which are easily defined. The PSS phase 

lead characteristics are chosen to eliminate the lag between PSS input into the exciter and the 

generator rotor electrical torque with the generator at constant speed [2] [4]. 

The performance of a PSS with regard to local modes is influenced slightly by the location of 

the PSS and the characteristics of the load. The PSS does however damp inter-area oscillations 

significantly by modulating the system loads. It is therefore evident that the mechanisms in 

which the PSS adds damping to local and inter-area modes are different [31].  

• HVDC links with supplementary control  

The HVDC links are commonly used to damp system electromechanical oscillations. The 

HVDC control is the heart of the HVDC scheme as it is fast acting with controlled dynamics 

[3]. The correct design of HVDC control allows the fast acting control system to assist the weak 

AC network to recover from faults and as such avoiding voltage instability or voltage collapse 

as well as optimising the power flows within the network. 

However modal damping plays no part in their performance specification therefore only certain 

modes can be damped using HVDC line controls. Low level oscillations are related to small 

signal stability and according to literature; the use of HVDC links together with supplementary 

control, to reduce modes of oscillations has been demonstrated successfully [32].  
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4 IMPLEMENTATION OF A TWO AREA AC SYSTEM WITH 

HVDC INTEGRATION 

4.1 Introduction 

In this chapter, modelling of a simple AC network with an integrated LCC-HVDC link using 

DigSILENT PowerFactory (DPF) is demonstrated. The first Cigrê LCC HVDC benchmark 

model is selected and the primary controls of certain components are adjusted to certain 

values,(e.g. filters) in order to adapt this HVDC link for this particular study system. Dynamic 

performance of the LCC-HVDC link will be simulated in DPF and validated against reported 

results for faults on the inverter buses. An AC system comprising of 4 generators and 11 buses 

spread over two geographical areas will be the study system considered and modelled [2]. 

 Kundur’s study system is well known and is used by many researchers in simulation based 

studies. The modal analysis and simulation results from DPF will be analysed to locate the 

modes of oscillations for interpretation and validation against those reported in literature [2]. An 

LCC-HVDC link will then be integrated into the AC network in parallel with an AC corridor 

connecting the two areas. Different scenarios related to the study system are simulated. The 

dynamic performance of the AC-DC system are observed, analysed and interpreted. The 

responses of the simulations provide answers to questions relating the ability of parallel HVDC 

links in stabilising AC systems, after an event. 

4.2 The two area system network: Base network   

4.2.1  Base network system analysis 

The network consists of two similar areas connected by weak parallel AC ties, as shown in 

Figure 13. Each area consists of a set of coupled generator units, each having a rating of 900 

MVA [2]. The generators, transformers and transmission system parameters are seen in Table 1 

below [2]. The generator parameters in per unit on the rated MVA and kV base are as follows: 
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Table 1: Generator parameters in per unit with the rated MVA  

 

Generator  parameters 

OP = Q. S	
 

OT		 = 1.7 

 

OU		=0.2 

 

OV P = Q. S	
 

OV T			 = 0.55 

 

OW P = X. YZ	
 

OW TX=0.25 

 

									[\  =0.0025 4V PX = S. X	
 

	]V TX 	=0.4 s 

 

 

]W PX  =0.03 

 

 

]W TX =0.05	
 

 

						1^\_ =0.015	
 

 

3^\_ =9.6 

 

 

`]Q  =0.9 

 

 

H = 6.5 ( G1 and G2) 

 

H = 6.175 (G3 and G4) 

 

a5 = 0 

 

 

Each step-up transformer has an impedance of 0+j0.15 per unit on 900 MVA and 20/230kV 

voltage base. The transmission system nominal voltage is 230 kV. The line lengths are 

identified in Figure 13. The parameters of the lines in per unit on the 100 MVA, 230kV base 

are: r= 0.0001 pu /km, x = 0.001 pu/km and = 0.00175 pu/km. The generating units are loaded 

as per Table 2 [2]. 

Table 2: Generator units loading [2] 

Generator Real Power Reactive Power Excitation Voltage 

G1 P = 700 MW Q =185 MVAr Et = 1.03∟20.2 ͦ

G2 P = 700 MW Q = 235 MVAr Et = 1.01∟10.5 ͦ

G3 P = 719 MW Q = 176 MVAr Et = 1.03∟-6.8 ͦ

G4 P = 700 MW Q = 202 MVAr Et = 1.01∟17.0 ͦ

The system operating within area 1 exports 400 MW to area 2 and is electrically loaded 

according to reference [2]. The generators have an integrated IEEE type DC1A DC excitation 

system model [2]. The modulated loads of areas 1 (L7) and 2 (L9) are 976 MW and 1767 MW 

respectively. 



 

34 

 

 

Figure 13: Two Area Network [2] [32]  

The load flow and eigenvalue analysis of the power system are performed where the inter-area 

and local modes are identified with information about the active inter-area mode in real-time. 

The information includes the following [19]: 

• The active oscillation modes detected. 

• The damped frequency and damping of each mode. 

• The amplitude of the mode of oscillations and in each measurement signal. 

The modal observability, i.e. how well the relative phase in which each oscillatory mode is 

visible in each measurement signal. Observability (mode shape) provides an indication of which 

generators are oscillating with each other. The state variable chosen is speed as it allows for the 

identification the generators that are participating in the oscillatory modes. Their mode shapes 

as seen in Figure 14, 15, 16 respectively, showing the eigenvector component corresponding to 

the rotor speeds of the four machines. The observability of the system exhibits three rotor angle 

modes of oscillations: 

• Figure 14, shows the inter area mode, with a frequency of 0.48 Hz, the generators 

G1and G2 swinging against generators G3 and G4.  

• In Figure 15 and 16, shows the two local modes, with frequencies of 0.97 Hz and 

0.99Hz respectively, with generators G1 swing against G2 and G3 swing against G4. 
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Figure 14: Mode shape of generator speeds - Inter-area mode G1G2/G3G4 

  

Figure 15: Mode shape of generator speeds - Local Mode G1/G2 

 

Figure 16: Mode shape of generator speeds - Local Mode G3/G4 
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Table 3: Damping ratios and frequencies for the inter-area mode 

Base Case Overloaded Case  

Damped 

Frequency (Hz) 

Damping Ratio 

Normal Load 

Damped 

Frequency 

(Hz) 

Damping Ratio 

Heavy Load 

Mode shape 

0.4837 0.0256 
0.3399 -0.0385 

 
 

G1G2/G3G4 

Inter Area 

mode 
0.4837 0.0256 

0.3399 
-0.0385 

 

 

Modes with a damping ratio of less than 3% can be accepted but with caution as it may lead to 

instability [31]. It is evident that the inter-area mode has poor damping of 2.5% as seen in Table 

3. The local modes have significant positive damping of 9% which make the local modes more 

stable compared to the inter-area mode. A damping ratio of 5% shows that in three oscillation 

periods, the amplitude reduces to 37% of its initial value. The smallest acceptable level of 

damping is not evidently known but a damping ratio which is negative causes the mode to 

become unstable [2] as seen in Table 3. However, it is a significant characteristic that negatively 

damped oscillations appear to occur when the equivalent transmission power angle between two 

interconnected systems are large. Large power angle occur when the loading of the AC tie lines 

are heavy [33]. Figure 18 shows an example of the load increasing to 600MW. Table 3 shows 

the negative damping of the inter area mode causing instability of the system. Time domain 

results are effective in confirming frequency domain results as it shows how the system 

nonlinearities affect the mode of oscillations [2]. 

Non-linear time domain simulations are performed to validate the dynamic response when a 

self-clearing fault is applied for a duration of 0.1 s on one of the tie lines connecting buses 8 and 

9 (inverter end) on the base case seen in Figure  17. A three phase short circuit fault is simulated 

on the AC tie line connecting buses 8 and 9 for the duration of 0.1 s.  It is monitored for 40 s to 

capture the damping of the power oscillation for the post-fault condition and pre-fault condition 

as shown in Figure 17. The response of the network to a fault is directed by how long the fault 

acts on the network and the location of the fault within the network. These factors have an 

influence on the phase characteristics of the network because they directly impact the fault 

impedance and network stability. 
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Figure 17: Time domain of Active Power: Normal loading between bus 7 and 9 

 

Figure 18: Time domain of Active Power: Heavy loading between bus 7 and 9 (600MW) 

The active power at L10km between bus 6 and 7 is monitored for the dynamic response of the 

fault on the system stability. It is also evident as seen in Figure 18 that the network (without the 

HVDC) becomes unstable under heavy loading conditions. The system stabilised after a period 

of approximately 33.7 s (mode decay time or recovery time) and this is indicative of the 

system’s natural damping. 
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4.3 Additional Tie Line 

The more lines that are connected in parallel reduce the Surge Impedance Loading (SIL) of the 

network. However, an AC line with specific power loading is connected onto the base case 

between bus 7 and bus 9 to analyse the system’s behaviour. The three mode shapes that were 

seen in Table 1 are present in all the case scenarios as seen in Table 4 but with different damped 

frequencies, however, this scenario shows a damping ratio (inter area mode) of 3.2% which is 

an improvement from the base case. It is then noted that the transmission power angle decreases 

as the load is distributed across the AC tie transmission lines thus improving the damping ratio 

faintly. 

Table 4: Damping ratios and frequencies for local and inter-area modes -additional tie line 

Base Case Additional AC Tie Line 

Mode shape 
Damped Frequency 

Damping 
Ratio 

Damped Frequency 
Damping 

Ratio 

Hz   Hz   Local mode 

0.9889 0.0935 0.9957 0.0915 G3/G4 

0.9889 0.0935 0.9957 0.0915   

0.9614 0.0939 0.9664 0.0923 Local mode 

0.9614 0.0939 0.9664 0.0923 G1/G2 

0.4837 0.0256 0.5776 0.0317 G1G2/G3G4 

0.4837 0.0256 0.5776 0.0317 Inter Area mode 

The nonlinear simulation shows that the AC line experienced oscillations and the active power 

recovered after 30.4 s (recovery time or mode decay time). It can be seen in Figure 19 that the 

additional AC line is also affected by the fault with a sudden reduction in active power but the 

generated oscillations stabilises with the system’s natural damping. 
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Figure 19: Time domain response after a fault with an additional AC line 

4.4  LCC HVDC integrated in the network 

The LCC HVDC link is integrated into the base case between bus 7 and bus 9 as shown in 

Figure 20. The modal analysis and simulation results are validated against certain parameters of 

components (e.g. for filters, capacitors, etc.). Some adjustments are made to adjust the power 

loading of the HVDC link rating to 0.45 A (to transmit 200MW). An LCC HVDC link is 

separately introduced into the AC network in parallel with the AC corridor, connecting the two 

areas in the power system.  
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Figure 20: Two area network integrated with the LCC HVDC link [32] 

Table 5: Damping ratios and frequencies for local and Inter-area mode with an HVDC link  

Base Case Integrated HVDC Line Mode shape 

Damped Frequency Damping Ratio Damped Frequency Damping Ratio 

Hz  Hz   

0.9888 0.0935 1.0492 0.0587  

Local mode 

G3/G4 
0.9888 0.0935 1.0492 0.0587 

0.9614 0.0939 1.0284 0.0595  

Local mode 

G1/G2 
0.9614 0.0939 1.0284 0.0595 

0.4837 0.0256 0.5594 0.0496  

G1G2/G3G4 

Inter Area mode 
0.4837 0.0256 0.5594 0.0496 

 

The modal analysis is performed and the three mode shapes are also identified but at different 

damped frequencies. The local modes now represent a reduced damping ratio of 6% and 5% 

respectively while the inter-area mode represent an improved damping of 5% as seen in Table 5. 

The mode shape is visible for all three oscillation modes as seen in Figures 21, 22 and 23. The 

integration of the HVDC link has increased the damping ratio of the inter-area mode as the AC 
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tie lines are left to carry only 200 MW (instead of 400 MW) while HVDC link carries the other 

200 MW. With a decrease in power over the AC tie line, the transmission power angle across 

the corridor decreases which results in an increase in synchronising torque and therefore the 

frequency of oscillation [2].  

 

 

Figure 21: Mode shapes of generator speeds with HVDC – Inter-area mode 

 

Figure 22: Mode shapes of generator speeds with HVDC – Local mode G1/G2 
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Figure 23: Mode shapes of generator speeds with HVDC – Local mode G3/G4 

If the network is heavily loaded, the inter-area mode will become unstable and the HVDC link 

will relieve the AC tie lines from carrying more power thus stabilising the inter area-mode. 

Changing the loading conditions has little impact on the local modes as they are faintly affected 

by line power flow [32]. The base case network with HVDC integrated layout is used with the 

same fault and in the same location and monitored at L10km (Line4), i.e. midway along the 

line. Figure 24 indicates the results of this study. 

 

Figure 24: The time domain response with HVDC after an injected self-clearing fault 

The active power did spike for the duration of the fault but the damping ratio is higher therefore 

the active power recovered quicker when compared with the study without the integrated LCC 

HVDC scheme. The mode decay time or recovery time for the post fault condition is shortened 

to 19.5 s which correlates with the increased damping ratio as seen in Table 5. The control 

action as seen in the responses is very fast and aims to maintain the accuracy of the controlled 
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variable i.e. constant dc current and constant extinction angle. The presence of poorly damped 

inter-area mode is evident from the angular separation between G1 and G3 (G1 is the slack bus) 

and the power flow in the line connecting buses 9 and 10 as seen Figure 25and 26 respectively. 

 

Figure 25: Time domain response of the Rotor angle displacement after a fault  

As seen in Figure 27, the LCC HVDC link voltage drops sharply during the fault due to the 

reduction in inverter end AC voltage. 
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Figure 26: Time domain response of Active Power between buses 9-10 

 

 

Figure 27: Time domain response of DC link Voltage  

When monitoring the inter-area oscillation during the fault condition, the rectifier switches 

between constant current and constant firing angle control which is performed by the advanced 

controls ( mentioned in chapter 2) as seen in Figure 29 and the power through the DC link drops 

during the fault as anticipated (as seen in Figure 28). The inverter moves to constant extinction 
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angle control which is the measure of gamma, this is basically the period when the thyristor 

valve voltage is negative 

 

Figure 28: Time domain response of DC Link Active Power 

 

Figure 29: Time domain response of firing angle 

As seen in Figure 30, the gamma control element increases sharply during a fault but the 

controller reduces the value of gamma and operates in minimum extinction angle control thus 

reducing reactive power consumption and assisting in improving stability [32].  
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Figure 30: Time domain response of Extinction angle 

Figure 31 shows a comparison of the active power swing responses, after a fault is applied, with 

and without the HVDC integrated. The behaviour of the active power and the rate of decay of 

the oscillations after the fault condition are visible.  Red indicates the power swing with no 

HVDC link integrated and the green indicates the power swing with an LCC HVDC link 

integrated. It can be clearly seen that the HVDC link enhanced the stability of the network with 

the introduction of damping to the inter area mode of oscillation. 

 

Figure 31: Time domain response of the scenarios: with and without HVDC integrated 
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4.5 Conclusion 

This chapter presented a power system modelling study of a two area AC network with an 

imbedded LCC HVDC scheme.  The work was done in order to study the validity of published 

literature with regard to power system stability enhancement through the use of parallel HVDC 

connections. The results obtained were consistent and in good agreement with literature. 

Although the two area AC network modified with an additional AC line became more stable 

with a slight increase in the damping ratio of the inter-area mode, the value was not big enough 

to contribute significantly to system stability. This slight increase in damping ratio is due to the 

additional AC tie line which creates a ‘stronger’ network and the transmission power angle 

across the corridor decreases. 

With the integration of parallel HVDC links, a reduction of power over the AC tie line is visible 

therefore the transmission power angle across the corridor decreases thus resulting in an 

increase in synchronising torque coefficient. According to the responses, the inter area mode of 

the system will become unstable if the system is heavily loaded resulting in the HVDC link  

relieving the AC tie lines from carrying more power as a result stabilising the inter area-mode. 

Hence, the integration of the parallel HVDC link has increased the damping ratio and decreased 

the mode decay time or recovery time of the inter-area oscillation mode. With regard to inter-

area oscillations during fault conditions, the rectifier switches between constant current and 

constant firing angle control.  As expected, the power through the DC link drops during the 

fault.  The simulation studies have also shown shorter recovery times of 19.5s from 3.7s after a 

fault or disturbance. The study system simulations set up the foundation for studying 

supplementary control through HVDC links which will be elaborated in the next chapter. 
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5 SUPPLEMENTARY CONTROLLER DESIGN 

5.1  Introduction  

HVDC schemes through the modulation of their power can be used to dampen fluctuations in 

voltage in an AC transmission network. Inter area oscillations are a typical phenomenon in large 

interconnected systems and HVDC schemes can serve as powerful tools to damp these 

oscillations [19] [34]. According to Witzmann, the damping of inter area oscillation between 

(Zimbabwe Electricity Supply Authority) ZESA and Eskom is demonstrated showing the 

improved damping with the introduction of a POD. This supplementary controller assists by 

taking advantage of the quick change in HVDC power flow modulation and overload capability 

which improves the damping of the inter area oscillations thus making better use of the installed 

capacity [35]. However the voltage maintenance ability from the AC tie line can assist the 

HVDC link to recover from short term commutation failures or single/bipolar blocking faults as 

mentioned in reference [36]. Rabbani et al show the effectiveness of the SVC and the HVDC 

control schemes in a simplified model; the results show that there is a reduction in reactive 

power during a fault with the addition of the LCC HVDC POD control system and that the 

decrease in overshoot and settling or mode decay time are similar to the SVC and PSS. The 

simplified model in the research shows the interaction of the various elements in the power 

system before implementation on Great Britain’s (GB) transmission network [11].  

According to Fuchs [34], HVDC links are not used in a systematic manner therefore his 

research aims to develop a framework for power system control using HVDC links with the 

results from conventional AC networks. The research presents operation approaches, network 

planning with dynamically controlled HVDC links. The identification of the HVDC location for 

power system control adds to the effectiveness of the HVDC link in the surrounding AC 

network and even a small HVDC link capacity in a power system can bring about a large 

benefit from the coordinated control of power injections. The primary concern for HVDC links 

location selection depends on the load flow congestion mitigation and economic gain but Fuchs 

provides a novel criterion to relate a HVDC link location to the dynamic power system control 

with a performance measure [34]. Reference [37]  proposed a Wide Area Measurement Robust 

Controller which uses a sliding mode control to handle the model inaccuracy of a standard 

HVDC model and the area centre of inertia signals are chosen as the feedback signals. The 

effectiveness of this control are verified with simulations on a two area-four machine AC/ DC 

power system and a real large scale AC/DC power system. 
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Cresap et al also illustrates the operating experience and benefits of using the Pacific HVDC 

intertie to damp out oscillations on the parallel Pacific intertie however he uses a more practical 

approach to the theory with studies performed on the Pacific HVDC intertie [33]. Shi et al 

demonstrates the effective damping of supplementary control on AC/DC power system but 

based on the Hamilton energy function theory which uses the oscillation energy of the 

interconnected system and the Lyapunov function to study the stability [36]. Tomiyama et al 

describe power swing damping control by HVDC power modulation where the characteristics 

of the power swing in an AC system are related to the eigenvectors of typical generators in 

inter-area power swing [38]. 

From the conclusions made by Hammad, the conventional HVDC scheme in parallel with an 

AC intertie can promote instability by reduced synchronising torque during a disturbance. 

Therefore by deviating from the conventional power controls and adopting advanced signal 

control strategies, the dynamic performance of the parallel AC/DC transmission can be greatly 

enhanced, providing more damping and synchronising torque to damp out oscillations after 

faults or events. These advanced controls can also increase the transient stability of the AC 

transmission without the need of reactive power support [39].The POD cannot be depended on 

entirely to maintain the stability of a power system after a large disturbance or changes in 

system operating conditions. These damping controllers are designed around a linearised state 

space model for a nominal operating condition. The inter area mode is the dominant mode and 

is perceived as the mode of interest to assess POD effectiveness.  

The Model predictive controller (MPC) is another type of supplementary controller that uses a 

model to perform predictions of future plant behaviour and the calculation of suitable corrective 

control actions needed to take the predicted output as close as possible to the desired target 

value [40]. According to reference [41], [42], [43], Model Predictive control (MPC), can 

manage control constraints and therefore has proven to be valuable for adapting the reference 

settings for FACTS and HVDC links to avoid transients. The MPC is usually represented as 

cost functions which penalises the deviations of the output over a time horizon. These strategies 

can maintain an acceptable system response without any prior knowledge of the disturbance 

[44]. The main advantage of a MPC is that it considers the constraints on the control effort 

while calculating the predicted control action [45].  

Azard et al further investigated the damping of inter-area oscillations using a MPC as the 

supplementary controller with the HVDC system [46]. They compared the performance of 

various controllers with the MPC on a 9 bus and 14 bus system. The study showed that the 
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MPC had a superior performance to the other controllers for damping poorly damped oscillatory 

modes of the test system [47].  

This chapter incorporates the application of power modulation control including the study of the 

POD and MPC performance. Although, DigSILENT PowerFactory was useful in understanding 

the problem of small signal stability and the integration of the LCC HVDC into the network, it 

is, however, limited due to the complexity of extracting the state space model. Power Systems 

Toolbox (PST)-MATLAB is considered the most appropriate tool in investigating and 

designing the controllers as the state space model is directly accessible. In additional to the 

MATLAB tools used to design the controller, a number of design analysis tools are provided 

within the Power System Toolbox itself [24] [48]. A two area network with an integrated 

HVDC system is investigated. The model is similar to the model used in the previous chapter 

and that used by Rogers in reference [24]; however, the model was purposely made unstable to 

allow a study of the effectiveness of the controllers. Further details of the study system are 

found in reference [24] and in Appendix B. 

5.2 Power Oscillation Damping Control 

The POD is a damping controller that is designed around a linearised state space model for a 

nominal operating condition with some non-linearities but at the same time, it is faster than 

conventional controllers and improves the reactive power of the system, it is represented as a 

transfer function.  The configuration of a POD controller comprises of the gain block, the 

washout filter block, and double stage lead-lag phase compensators. The output of the POD 

controller provides further damping by shifting oscillation modes to the left side of the plane 

thus improving stability [49]. 

Many corrective control strategies have been proposed to adapt the power order of HVDC links 

following a disturbance. The basic proportional-integral (PI) controllers is the simplest [50] 

together with more advanced control strategies, this will maintain acceptable system 

performances for a wider range of working conditions. The PI controller comprises of one pole 

and one zero. The single pole is seen as the integrator and eliminates steady-state error while the 

zero improves the stability margins.  

A PD controller comprises of one zero, and is used in systems with integration to offer better 

stability margins with the addition of phase lead and a faster step response thus improving 

damping [51].  A causal PID controller consists of two poles and two zeros between them. The 

one pole is an integrator and the other is at high frequency which prevents increasing noise and 

extremely large step signals. The PID is a simple controller up to second order where the 
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parameters are tuned for optimum results. This controller is frequently used in industry and it is 

closely related to the lead/lag compensator [51] [52].  

A lead/lag controller is represented with a lead and a lag compensator connected in series, 

consisting of two poles and two zeros, with the zeros between the poles. The lag compensator 

adds phase lag, slows down the response and improves disturbance rejection. The lead 

compensator has the zero before the pole and adds phase lead, improves damping, improves the 

phase margin and speeds up the response [52]. For that reason, the lead/lag controller was 

selected to be used in the POD transfer function as this study focuses on improving damping 

hence, enhancing stability. 

5.2.1 POD Design Criteria 

There are a number of criteria that must be accounted for in the designing a POD controller 

including: 

• Pole-placement: The closed-loop poles related to the inter-area modes should be placed 

in the left half of the complex s-plane in order to confirm their stability and shorter 

recovery time [4]. The root locus method with the sensitivity calculated using the 

residues is also effective, as it shows the sensitivity of the scalar feedback between 

output and input and provides the overall picture of the modes in the system so one can 

analyse the system holistically [24]. Chilali et al [53] and Ramos et al [54] describe 

regional pole placement criterion as a design objective which provides sufficient 

damping for all oscillation modes of interest. 

• Damping ratio: A minimum damping ratio must be sustained for critical modes but 

different utilities have different minimum values (Australian utilities with a damping 

ration of 0.05). But low frequencies inter-area modes (related to small signal stability) 

require higher damping ratios of greater than 0.1. [55]. 

• Settling or mode decay or recovery time: The oscillations must settle out in a chosen 

time specified by the operating guidelines of a certain utility. The settling time in some 

countries are specified as damping criteria in the time domain. [55] 

• Robustness: Robust control handles uncertain system parameters and disturbances 

outside the nominal operating point therefore making the controller more flexible [56].  

• Control effort: Minimisation of control effort is essential to effectively utilise the 

dynamic range available for the highly expensive power electronic HVDC actuators with 
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very limited short-term overload capacity. Since the performance of the HVDC 

modulation controllers depends on its parameters and different feedback signals to 

effectively minimise faults [43]. 

• Controller structure: If there are multiple HVDC links in a system with individual PODs, 

it is important that the PODs are designed in a coordinated way to achieve the overall 

design specifications effectively; since there is a risk that the controller would not work 

in unison requiring larger control effort. The HVDC controllers of different devices must 

not interact unfavourably. The multi variable approach to control design can solve this 

problem much better than sequential design [55]. 

The choice of technique is situation specific and one technique cannot address all the design 

specifications therefore a detail analysis needs to be performed. 

5.3 Model Predictive Control 

 

Model predictive control is based on the optimisation of a plant model by using a cost 

minimising technique. It predicts the operation of the plant for a finite time horizon and 

manipulates the necessary input variables to achieve the set points of the plant. 

It is suitable for power systems due to its complex nature as it makes use of multiple variables 

to optimise the output. This MPC considers the constraints on the control effort while 

calculating the predicted control action which will have a positive contribution to stability 

enhancement especially with a constraint network [45]. 

5.3.1 The MPC controller 

The basic MPC controller has set-points and a feedback signal from the plant as illustrated in 

Figure 32. The controller predicts the most optimised input to the plant so that the feedback 

signal can return to its set-point while predicting future events [57] . However the MPC has 

additional benefits which are outlined below: 

• It can be used to handle a multivariable system. 

• Permits constraints to be enforced on both the manipulated variable in order to operate 

closer to constraints. 

•  Permits time delays, inverse response, difficult dynamics, changing control objectives 

and sensor failure (predictive) [40]. 
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The number of each subclass of signals specifications such as manipulated variables and 

unmeasured disturbance is seen in Figure 32. 

 

Figure 32: MPC Structure  

5.3.2 Types of signal used  

The descriptions of the signals used in the model predictive controller are: 

5.3.2.1 Input signals 

The MPC supports three types of input signals [58] but this design only incorporated two types 

of input signals .i.e. the Manipulated Variables and Unmeasured Disturbances. The controller 

uses changes in the load on bus 9 (Figure 20) as the unmeasured disturbance and the rectifier 

current at the manipulated variables. The manipulated variable may have plant constraints; in 

this case, there is a limit on the amount power (20 MW) that the converter can produce. The 

MPC takes account of these constraints in its prediction calculations. 

5.3.2.2 Output signals 

The output signals include the measured outputs, which are used as the feedback signal, and the 

unmeasured outputs.  

• Measured outputs: The controller uses the real power measured on the AC tie line and the 

voltage angle difference between bus 7 and bus 9 (as per Figure 20). 

• Unmeasured outputs: The unmeasured outputs are the outputs of the system that are not 

used by the controller to main stability, but are useful in understanding the impact on the 

system. 
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5.3.3 Model and Horizon 

 

The control interval (or time-step), the control horizon and the prediction horizon are important 

for the controller, where the: 

• The control interval sets the duration between changes of the manipulated variable. 

• The prediction horizon is the number of control intervals for which the outputs must be 

optimised over a time duration. 

• The control horizon is the number of control intervals for which the manipulated 

variable must be optimised over a time duration [58]. 

The ability of the controller to ensure stability is based on the length of the predictive horizon 

and the constraints which drives the state to a certain value at the end of the prediction horizon.  

5.3.4 Cost Function  

The cost function penalises deviations of the predicted control output from a reference 

trajectory and it predicts the deviations of each output over a predicted horizon. This cost 

function as seen in Equation 13, calculates the weighted sum of squared deviations from its 

reference. The goal of the controller is to minimise b8(	c)	 in Equation 13. Bemporad et al 

defines the cost function used in the MPC prediction to be [58]: 

   �/(	d) = ∑ ∑fg
hiH

j
kiH 	{ j [ rj (k+i)  –  yj (k+i) ] }²      (13) 

Where  

k is the current sampling interval  

(k + i) is a future sampling interval (within the prediction horizon) 

P is the number of control intervals in the prediction horizon  

ny is the number of plant outputs 

j is the selected output 

The term [rj (k + i) – yj (k +i)] is a predicted deviation for output j at interval k + 1. On every 

discrete time instant k the MPC algorithm calculates a sequence of control actions that 

minimises a certain cost function over a time horizon P. 
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The cost function was implemented to adapt the current order of the rectifier of a LCC HVDC 

as the predictive control scheme. The objective is to reduce the loading of the AC tie line when 

exposed to various operating conditions. The current order of the LCC HVDC is the control 

input of the proposed controller. Two alternative cost functions are considered based on the 

input-output controllability analysis involving its residue and the location is based on the 

dominant oscillation path. The cost functions are: 

   �/(	d) = ∑j
kiH {	j [Power pf2 ( L110 km3 )] – [Power pf2 ( L110 km3 ) ss ] }²          (14) 

   �/(	d) = ∑ {	j
kiH j [Vangdifference B7-B9 (k+i)] – [Vangdifference B7-B9 ss] }²      (15) 

Equation 14 shows the cost function where the real power across the AC tie line (L110 km3 on 

the receiving side of the transmission line) is selected as the output. Equation 15 shows the 

voltage angle difference across the AC corridor (voltage angle difference between bus 7 and bus 

9).  

5.3.5 Tuning/Weighting of the MPC controller 

Most controllers need to be tuned correctly so that the system can return to its nominal or steady 

state. There are many adjustable parameters in predictive control such as weighting [59]. 

Weighting can be divided into three types, i.e. input weights, rate weights and outputs weights. 

The output weights determines the accuracy in which the selected output tracks its set point 

while the rate weights force the controller to make smaller more cautious adjustments of the 

manipulated variables, the input weight on the other hand minimises the weighted sum of the 

manipulated variables from its nominal value [58]. The output weights are set on the measured 

signal and the input weights are set such that the system can return to its nominal state. i.e. both 

were set to 1. 

5.4 Results  

The following methodology was adopted for the work: 

• The two area AC network is implemented and the performance specifications of this 

network is established by detailed modelling to represent an unstable network with the 

damping of the inter area mode being negative. The studies involved time domain fault 

analysis and eigenvalue analysis. 

•  A parallel HVDC link is connected across bus 7 and bus 9 and the changes in damping are 

studied. This study also involved time domain fault analysis. A disturbance is introduced 
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and cleared in order to move the system out of steady state operating condition causing the 

rotors in the two areas to exchange the excess energy generated by the fault. 

• A POD is introduced to the unstable base network as supplementary control and two 

different feedback input signals are tested for effectiveness, the results are graphical 

displayed and analysed.  

• Two different MPC cost functions are integrated into the unstable base case network and 

the same two feedback signal are tested for effectiveness in terms of stability 

enhancements. The MPC is tuned accordingly in order to get the desired stable system. 

The results are graphically displayed and analysed for interpretation. 

5.4.1 Analysis of the Base network with HVDC integrated 

 

This study system with the HVDC link integrated is referred to as the base case network with 

the details captured in Appendix A. The base case network is manipulated (by overloading the 

AC tie lines) to produce an unstable network and the inter area mode is the mode of interest for 

the study. Figure 33 illustrates the damping ratio and frequency of the associated eigenvalues 

from the study. The red line on Figure 33 shows the minimum damping ratio before the mode 

becomes unstable. The eigenvalue conjugate of this unstable inter area mode is 0.2296 -3.7926i 

and 0.2296+3.7926i respectively which correlates to a frequency of approximately 0.60 Hz. 

             

Figure 33: Eigenvalue analysis of the unstable network 
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Bode plots is a useful tool when designing a controller as it shows this unstable mode in the 

frequency domain with a peak magnitude as seen in Figure 34.  The gain and phase approach is 

a method used in designing PODs where the inter area mode of oscillation is minimised. The 

gain and phase compensation required from the controller is commonly used in a single input 

single output (SISO) system with one dominant mode. This technique is simple, yields low 

order controllers and leads to exact pole-placement [60]. 

 

Figure 34: Bode plot of the unstable network 

The root locus was, however, considered the most appropriate tool for designing a controller as 

this method allowed the assessment of all the oscillation modes at once. Each point on the locus 

represents an increase in the gain of 0.2, within the range from 0 to 10 [24]. The residues 

indicate the eigenvalue’s movement for a small gain and good separation between critical poles 

and zeros is important to obtain acceptable eigenvalue movement as the gain increases. Since 

the residue relates the input to the output of the model. It can be used to indicate the sensitivity 

of the controller’s output to its input/ manipulated variable. Table 6 shows different 

output/control signals that were tested in terms of its observability and controllability but if the 

residue is 0, it is either unobservable or uncontrollable or both with the input as the DC current 

to the rectifier. 
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Table 6:  Comparative analysis of the residue of the inter area mode 

Output Signal Eigenvalues Residue Residue Angle 

Speed Gen 1 0.2296 - 3.7926i 0.0005 + 0.0019i 75º 

 
0.2296 + 3.7926i 0.0005 - 0.0019i -75º 

Real Power Line 0.2296 - 3.7926i -0.7713 + 0.7102i 137º 

(Between bus 7 and 9) 0.2296 + 3.7926i -0.7713 - 0.7102i -137º 

Angle Difference 0.2296 - 3.7926i -0.1815 + 0.1579i 139º 

(Between bus 7 and 9) 0.2296 + 3.7926i -0.1815 - 0.1579i -139º 

As a result, it is evident that the real power and the voltage angle difference between bus 7 and 

bus 9 is more observable and controllable compared to the residue of the speed output on 

generator 1, which is approximately 0. The control signal selected is the power flow, however 

the compensator was designed for the voltage angle difference as well to illustrate the difference 

in effectiveness and confirm the selection of the feedback signal. 

According to Rogers [24], for negative feedback, the locus leaves the pole with an angle 

equivalent to the complement of the residue angle. For negative feedback, the compliment of 

the angle of residue for real power and voltage angle difference is 43 ͦ and 41 ͦ respectively. This 

indicates that negative feedback cannot be used to stabilise a mode as seen in Figure 35. 

 

Figure 35: Root locus with negative feedback 
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5.4.2 Analysis of the Base network with a POD integrated 

The supplementary controller was used to move the unstable mode by moving the poles to the 

left half of the plane. Decent separation can be attained by a suitable choice of feedback signals 

or by retuning existing controllers in the system [22]. The feedback control signals that were 

reviewed are real power on the AC intertie (L10km as per Figure 20) and voltage angle 

difference (between bus 7 and bus 9 as seen in Figure 20). The sensitivity of the system to 

dynamic feedback can be achieved through the POD where the system stability is taken back to 

steady state or nominal operating point.  

This transfer function consists of a washout filter and a lead/lag compensator. The washout 

filter eliminates the effect of the steady state voltage magnitude and the control moves at high 

frequencies. The lead/lag compensator has the effect dragging the poles into the left half plane. 

The poles and zeros must be designed correctly such that they bring damping to the inter area 

mode. The lead compensator adds up to 90 degrees and with positive feedback at the inter area 

frequency; it is then used to stabilise the mode. This is seen in the following POD transfer 

function : 

G(s) = K� mn
HFomn� �

HFom�
HFomH� �

HFom�
HFomH�                (16) 

The transfer function has the following parameters for the selected signals. 

Table 7: POD transfer function details 

Term Real Power Angle 

T1 0.04 0.05 

T2 0.02 0.02 

Tw 10 10 

K 0.6 2.4 

 

5.4.2.1 Real power control signal 

The root locus plot  seen  below in Figure 36 shows how the POD transfer function with the real 

power as the feedback signal, brings stability by moving the pole from the right to the left side 

of the plane. The sensitivity of the output to parameter changes is visible. As a result, any slight 

change of the gain will cause the system to respond drastically. The damping ratio has improved 

to 0.36 (as seen in Figure 37) which is a significant improvement and is visible in the impulse 

response (time domain simulation) which relates the mode decay time of an oscillation after an 

event. The mode decay time in Figure 38 is approximately 26s and it is a major improvement 
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when compared to the unstable base case in Figure 38. Figure 39 shows the comparison of 

impulse response of the base case system integrated with the POD and the unstable base case. 

With the integrated POD, the real power signal settles about 26s after the event and the base 

case remains unstable.  

 

Figure 36: Root locus with POD – Real Power signal 

 

Figure 37: Eigenvalue analysis of the network with POD - Power signal 
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Figure 38: Impulse response with POD - Power signal 

 

Figure 39: Impulse response with and without POD - Power signal 



 

62 

 

Hence, the effectiveness of the POD with the real power control signal does enhance the 

stability of the system. 

5.4.2.2 Voltage angle difference 

According to Figure 40, the root locus shows that the selected voltage angle difference feedback 

signal is less sensitive to parameter changes such as the gain. The root locus also shows the 

movement of the poles from the right side to left side of the plane thus bringing stability to the 

system.  The eigenvalue analysis shown in Figure 41 shows an increase in damping ratio of 0.42 

of the inter area mode which again correlates to a reduction in the mode decay time of 5s as the 

power of system settles in 21s after the event (fault or step change). This is seen in the time 

domain response plots in Figure 42. Figure 43 shows the comparison of responses of the base 

case system integrated with the POD and the unstable base case. With the integrated POD based 

on the voltage angle difference feedback signal, the real power settles about 21s after the event 

and the base case remains unstable.  

 

Figure 40: Root locus with POD - Voltage angle difference signal 
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Figure 41: Eigenvalue analysis with POD - Voltage angle difference signal 

 

Figure 42: Impulse response with POD - Voltage angle difference control signal 
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Figure 43: Impulse response with and without POD - Voltage angle difference signal 

 

5.4.3 Analysis of the Base network with a MPC integrated 

 

The MPC uses a code (as seen in Appendix B) with a cost function (Equation 14 and 15) to 

generate trends representing the responses of the modulated load (on Bus 7 in Figure 20) at 1 s 

for duration of 0.1s.  Equation 14 and Equation 15 show the cost functions with the real power 

and the voltage angle difference as a feedback signal respectively in order to control it. The two 

cost functions are simulated and the results of the two cost functions are discussed below while 

the MPC parameters are tuned according to the values seen in Table 8: 
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Table 8: The parameters of the MPC 

Parameters Quantity 

 
Min = 0;Max = 20; 

Constraints on the manipulated variable RateMin = -1; 

 
RateMax = 1 

Weighting on manipulated variable 1 

Rate Weight 0.1 

Prediction horizon 10 

Control horizon 3 

Nominal values Appendix A 

 

5.4.3.1  Cost function with Real Power and Voltage angle difference as the feedback signal 

The current order to the rectifier is the manipulated variable and the Figure 44 shows how the 

current order drops due to the impulse/event but quickly moves towards the steady state set 

point. This impulse on the modulated load (bus 7) is referred to as the unmeasured disturbance 

and it is used to take the system out of steady state. This unmeasured disturbance is seen in both 

(top and bottom) graphs in Figure 44.  Both MPC cost functions ( Equation 14 and 15) have 

similar responses but the MPC based on  the voltage angle difference shows increased 

performance as there is more control action observed to correct the deviation from its steady 

state value as seen in Figure 44 (bottom). 
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Figure 44: The MV and UD response Real power (top) and voltage angle difference (bottom) 
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The outputs which are described below in Table 9 show the description and the location of the 

observed real power.   

Table 9: The Output code descriptions as per Figure 20 

Location Buses code Output name 

Line10km B6 to B7 Pf 1_5 Line sending Real power 

Line110km B7 to B8 Pf1_6 Line sending Real power 

Line110km 2 B7 to B8 Pf1_7 Line sending Real power 

Line10km B6 to B7 Pf2_5 Line receiving Real power 

Line110km B7 to B8 Pf2_6 Line receiving Real power 

Line110km 2 B7 to B8 Pf2_7 Line receiving Real power 

Line110km 1 B8 to B9 Pf2_13 Line receiving Real power 

Line110km 3 B8 to B9 Pf2_14 Line receiving Real power 

Line10km 1 B9 toB10 Pf2_15 Line receiving Real power 

These responses that are seen in Figure 45 show the effectiveness of the MPC.  Both graphs 

shown in Figure 45 shows the quick real power (through the AC tie line) recovery to its steady 

state value. Similarly, the four generator speeds are observed to behave in the similar way. At 

every discrete time instant k, the MPC algorithm calculates a sequence of control actions 

that minimises the cost function (Equation 14 and 15) over a time horizon P. The real power 

(pf2 L110km3) and the voltage angle difference (Vangdiff B7-B9) deviation from its steady 

state is reduced where the first control action of this sequence is applied at instant k and at 

the next time step the process is repeated. These two MPC cost functions with different 

feedback signals have similar and comparable responses therefore showing the effectiveness of 

the MPC. 
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Figure 45: Plant outputs time domain response: Real power (top) and Voltage angle difference (bottom) 
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Figure 46, however shows the response of the DC voltage at the Rectifier (Vdcr) and the DC 

voltage at the Inverter (Vdci) after the event. The dynamic response of the system after the 

event increased the power transfer from area 1 to area 2.  The first cost function (Equation 14) 

using real power across the AC tie has poorer performance as it does not restore the DC voltage 

of the rectifier to almost its pre event value (504.466 kV) but on the other hand, the second cost 

function (Equation 15) restores the DC voltage of the Rectifier to its pre event value (504.267 

kV) in a shorter period of time (Figure 47 ) thus showing superior performance over the first 

MPC (Figure 46) based on the real power feedback signal.  However, the MPC is effective in 

automatically relieving the burden on the AC lines by adapting the HVDC current order to 

rectifier after the event or disturbance. Consequently to this, the amplitude of the rotor angle 

oscillations of the generators decreased with MPC based predictive control therefore enhancing 

small signal stability. 

 

Figure 46 : The HVDC voltage: Rectifier and Inverter of the Real power 



 

70 

 

 

Figure 47: The HVDC voltage: Rectifier and Inverter of the voltage angle difference 

Figure 48 shows the behaviour of the DC line current which is the current order to the rectifier 

after the event. It is clearly evident from Figure 48, that the voltage angle difference feedback 

signal has a lower overshoot value of 1.22 compared to the real power which is 1.35 but this 

control action is understood from the real power output response as seen in Figure 49 where the 

real power (Pf2-13) is observed and the comparison of the two feedback signals clearly show 

that the voltage angle difference is a more effective signal in enhancing stability as the mode 

decay time is approximately 18s (voltage angle difference across the AC corridor) compared to 

23s (Real power across the AC tie) however the feedback signals does not really return to the 

exact steady value but close enough to be accepted as seen in Figure 49.The lower overshoot of 

the voltage angle difference feedback signal is again seen in the Figure 49 and this will prevent 

the premature activation of over current protections on transmission lines.  
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Figure 48: A Comparison of the two feedback signals input response 

 

Figure 49: A Comparison of the two feedback signals real power output response 
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5.5 Conclusion 

This chapter focused on the use of supplementary control using power oscillation damping 

control and predictive control through a single Monopolor LCC HVDC link integrated into a 

simulated unstable system ( as seen with an eigenvalue conjugate of 0.2296 ∓ 3.7926i). The 

main design specifications were outlined together with POD controller design techniques and it 

was established that the choice of technique is situation specific and one technique cannot 

address all the design specifications. The POD design represented as a transfer function was 

outlined and explained with simulations studies; the two feedback control signals were 

demonstrated. Stability studies using root locus and time domain plots showed the effectiveness 

of the POD with two different feedback signals i.e. real power across the AC tie and voltage 

angle difference across the AC corridor. The voltage angle difference feedback signal proved to 

be more sensitive to changes in the system and contributed to improving system stability, hence 

increased damping and reduced settling/mode decay time after an event was evident. The mode 

decay time provides a good reflection of the controller’s effectiveness therefore a comparison of 

the two controllers is possible despite the fact that the controller’s operational characteristics 

differ. The mode decay times from the simulations in this chapter are outlined in the Table 10 

below. 

Table 10: Mode decay times of the feedback signals  

Generator POD MPC 

Feedback signals 
Real Power at L110 

km1) 

Voltage angle 
difference AC 

corridor 

Real Power at L110 
km1) 

Voltage angle 
difference AC 

corridor 

Mode decay time 26s 21s 23s 18s 

The reduced mode decay time confirmed that the inter area mode moved to the left half of the 

complex plane thus making the system stable. This chapter then shows the description of the 

MPC characteristics and parameters together with the two cost functions using the same 

feedback signal that was used for the POD simulations, so that comparison studies could be 

conducted. Both MPC cost functions showed that the MPC is effective in minimising the 

change of the loading level in the AC tie-lines by adapting the HVDC current order to the 

rectifier. Consequently to this, the amplitude of the rotor angle oscillations of the generators 

decreased with MPC based predictive control in place thus enhancing small signal stability. 

Similar trends for the POD, showed the inter area mode moving from the right plane to the 

left complex plane resulting in a more stable AC system  
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The MPC using the feedback signal of the voltage angle difference, like the POD, also 

proved to contribute significantly to system stability and its adaptive functionality to system 

constraints contributes to its performance. The MPC allows the system to operate so close 

to its power constraint. The two types of supplementary controllers operate differently but with 

the same goal, i.e. to improve the damping of the system.  This chapter shows that the MPC 

with the voltage angle difference (across the AC corridor) as the selected feedback signal is a 

more effective controller as the recovery time of 18s after an event reflect so. The conclusion 

from the simulations in this chapter does demonstrate that the MPC is capable due to its 

ability to handle complex multi variable systems with constraints, by using cost function 

algorithms to perform predictions of future plant behaviour and calculating the suitable 

corrective control actions needed to take the predicted output as close as possible to the target 

value which is the steady state value. Additional research is necessary to determine the 

effectiveness of the MPC following large events such as critical faults in larger networks. 
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6  CONCLUSION 

The aim of this research is to investigate the small signal and transient stability for the 

application of a parallel LCC HVDC link onto a simple grid and then develop supplementary 

controllers for small signal stability enhancement. As a result fundamental understanding is 

achieved for further investigation on the larger Southern African network. This research 

provided a comprehensive literature review of the High voltage direct current (HVDC) where 

the basic fundamental principles of HVDC, the three different types of technologies and the 

control characteristics were described. Stability in power systems is related to a condition where 

all the generators remain in synchronism with each other and therefore the basic principles 

relating to small signal stability were discussed to get a basic understanding of the problem in 

order to determine where and how to use LCC HVDC with supplementary control for an 

effective solution.  

 Small signal stability analysis is based on the eigenvalue technique which shows the behaviour 

of the power system and was used to investigate the small signal oscillations including their 

mode shape, controllability observability and participation.  Methods to determine the dominant 

oscillation path are reviewed in literature to establish the best location for the parallel LCC 

HVDC link to increase the effectiveness of the LCC HVDC link integration. With the 

integration of parallel HVDC links, a reduction of power over the AC tie line is shown and the 

transmission power angle across the corridor decreases thus resulting in an increase in 

synchronising torque. According to the responses of the study, the inter area mode of the system 

became unstable when the system was heavily loaded resulting in the HVDC link  relieving the 

AC tie lines from carrying more power thus stabilising the inter area-mode. The integration of 

the parallel HVDC link has increased the damping ratio and decreased the mode decay time of 

the inter-area oscillation mode. 

Supplementary controllers, including the POD and the MPC, were modelled and integrated into 

the same two area network in an unstable state. The POD was implemented through a transfer 

function where the system stability was taken back to steady state or nominal operating point. . 

Two controller feedback signals (i.e. real power across the AC tie and real power across the AC 

corridor) were tested for effectiveness in terms of its sensitivity, but the voltage angle difference 

proved to have superior performance. From Table 10, it can be seen that the POD with the 

voltage angle difference (across the AC corridor) as the selected feedback signal has a lower the 

setting time (mode decay time) of 21s after an event than the real power feedback signal, of 26s. 
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The first MPC cost function using real power across the AC tie has inferior performance to the 

MPC using the voltage angle difference as it does not restore the DC voltage of the rectifier to 

almost its pre event value (504,466 kV) but however the second MPC cost function restores the 

DC voltage of the Rectifier to its pre event value (504.267 kV) in a shorter period of time (18s) 

thus showing higher performance over the first MPC based on the real power (23s). These MPC 

Cost functions penalises deviations of the predicted control output from a reference trajectory 

and it predicts the deviations of each output over a predicted horizon.  

 Similar to the POD, increased damping ratio and a reduction in settling time after an event 

was demonstrated. From Table 10, it can be seen that the MPC with the voltage angle 

difference (across the AC corridor) as the selected feedback signal has the setting time (mode 

decay time) of 18s resulting in a more stable AC system.  The tuning of the MPC cost 

functions contributed positively to its effectiveness by setting the constraints and weighting 

of the manipulated variables in relation to its control and prediction horizon.  The MPC is 

therefore capable and does not require history of the possible contingencies  

The MPC is demonstrating corrective action in automatically relieving the burden on the 

AC lines by adapting the HVDC current order to the rectifier after changes in operating 

conditions, thus proving its effectiveness. The amplitude of the rotor angle oscillations of 

the generators decreased with an integrated HVDC link and MPC based corrective control 

in place thus enhancing stability of HVAC grids. Additional research is necessary to 

determine the effectiveness of the MPC method for corrective control particularly, 

following large events like critical faults on a more complex network.  

It is then evident that the hypothesis of this research has been proven correct and as Eskom is 

pursuing investing in HVDC lines at various locations, this research presented will be applied to 

those new cases so that all the advantages of HVDC links can be considered in the terms of the 

techno-economic feasibility. Eskom will then have the full advantage of transporting bulk 

power but at the same time mitigating the effects of small signal stability on the National grid 

and internationally (with the Southern African Power Pool (SAPP)). 
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8 Appendix A – State Space Model Details 

 

The HVDC system properties for this study are as follows:  

• Monopolar ,Twelve pulse converter at both the rectifier and Inverter 

• Transmitting Power ∓ 100 MW ,  

• Inverter properties: DC voltage of 504.3 kV,  with a gamma /extinction angle of 18 deg  

• Line current of 0.2 A  

• Rectifier properties: DC voltage of 504.466 kV, Alpha angle of 29.3212deg 

Table 11 includes the input and output values in the state space model and nominal values used 

for the controller design where the base is 100 MVA.  

Table 11: State Space Model Inputs and Outputs 

Details  Signal Name Description Nominal value pu 

Input 

 b_dcr DC Line current 0.2 

b_lmod Load modulation 0 

Output 

Location of 

signal 

Buses Signal Name Description Nominal value pu 

Bus 7 – Bus 9  Vang ( 3-9) Voltage angle diff  18.0416 

Line110km B7 to B8 Pf1_6 Line Real power Tx line(i) 1.4607 

Line110km2 B7 to B8 Pf1_7 Line Real power Tx line(i) 1.4607 

Line10km B6 to B7 Pf2_5 Line Real power Tx line(j) 14.9139 

Line110km1 B8 to B9 Pf2_13 Line Real power Tx line(j) 1.4345 

Line110km3 B8 to B9 Pf2_14 Line Real power Tx line(j) 1.4345 

Bus 7  V3 Voltage 1 

Bus 9 V13 Voltage 1.0518 

Bus 7 Vdci DC Voltage(Inverter) 504.267 kV 

Bus 9 Vdcr DC Voltage(Rectifier) 504.466 kV 
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9 Appendix B – Controller Design Code 

 

% PST Method 

 

% Create statespace model 

%a=a_mat; b = b_dcr; c=c_pf2(13,:); d=0; % Power in AC line between bus 7 and 9 

a=a_mat; b = b_dcr; c=c_ang(3,:)-c_ang(9,:); d=0; % Angle between bus 7 and 9 

%a=a_mat; b = b_dcr; c=c_spd(1,:); d=0; 

 

spssd = stsp(a,b,c,d); 

lz = zeros(spssd); 

 

f = linspace(.01,2,100); 

[f,mag,ang]=fr_stsp(spssd,f); 

 

% Define the transfer function 

% K(1+T1s)/(1+T2s) = ldlg_stsp(K,T2,T1) 

% Corner frequencies f1 = 1/T1 f2 = 1/T2 

% Kunder uses T1 = 0.55 and T2 = 0.2 

 

T1 = 0.05; 

T2 = 0.02; 

w1 = 1/T1 

w2=1/T2 

A = T1/T2; 

phase_max = asind((A-1)/(A+1)); 

omega_m = 1/T2/sqrt(A); 

gain_m = sqrt(A); 

G = 2.4; 

 

spss1=wo_stsp(10).*ldlg_stsp(G,T2,T1).*ldlg_stsp(1,T2,T1); 
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% Determine the Stability of the System with Feedback 

sfb=fb_aug(spssd,spss1); 

 

stab_plot(spssd); 

stab_plot(sfb); 

 

% Determine the root locus 

rlpss=rtlocus(spssd,spss1,0,0.2,10); 

 

% Plot root locus 

figure,plot(l,'k+') 

hold 

plot(lz,'ko') 

plot(rlpss,'k.') 

axis([-5 1 0 10]) 

grid 

plot(l,'k+') 

plot(rlpss,'k.') 

dr_plot(0,20,0.05,'k'); 

plot(rlpss(:,12),'r*') 

labxyarg 

title('Root Locus with Feedback Gain') 

 

% Step response 

r = cell2mat(residue(spssd)'); 

l2 = l; 

r(imag(l2)==0) =[]; 

l2(imag(l2)==0) =[]; 

 

[l2(11:12) r(11:12)]; 
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r_ang = angle(r(11:12))*180/pi; 

cr_ang = r_ang-180; 

 

sys = stsp2ss(spssd); 

sys_ss = stsp2ss(spss1); 

sys_fb = stsp2ss(sfb); 

 

% C = pid(10,0,2,1/3.1); 

% CL1 = feedback(sys,C,1); 

CL2 = feedback(sys,sys_ss,1); 

 

figure,step(sys,CL2,10); 

figure,step(CL2,20); 

figure,impulse(sys,CL2,10); 

figure,impulse(CL2,30); 

figure,bode(sys,sys_fb,sys_ss),xlim([10^-1 10^2]),grid 

%figure,bode(sys),xlim([10^-1 10^2]),grid 

% Plant Model 

a=a_mat; b = [b_dcr, b_lmod(:,2)]; c=[c_ang(3,:)-c_ang(9,:); 

c_pf1(6:7,:);c_pf2(5,:);c_pf2(13:15,:);c_spd(1:4,:);c_v(3,:);c_v(9,:);c_v(13,:);c_Vdci;c_Vdcr]; d=0; 

SIMO = ss(a,b,c,d); 

SIMO.InputName = {'dcr','lmod'}; 

%SIMO.OutputName = 

{'ang3_9','dcii','dcir','pf1_5','pf1_6','pf1_7','pf1_13','pf1_14','pf2_5','pf2_6','pf2_7','pf2_13','pf2_14','sp

d_1','spd_2','spd_3','spd_4','spd_5','spd_6','spd_7','spd_8','spd_9','v3','v9','v13','Vdci','Vdcr'}; 

SIMO.OutputName = 

{'ang3_9','pf1_6','pf1_7','pf2_5','pf2_13','pf2_14','pf2_15','spd_1','spd_2','spd_3','spd_4','v3','v9','v13','

Vdci','Vdcr'}; 

SIMO.InputGroup.MV = 1; 

SIMO.InputGroup.UD = 2; 

SIMO.OutputGroup.UO = [2:4,6:16]; 

SIMO.OutputGroup.MO = [5]; 
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% Controller 

MPC = mpc(SIMO,1,10,3); 

 

% Constraints 

MPC.MV.Min = 0; 

MPC.MV.Max = 20; 

MPC.MV.RateMin = -1; 

MPC.MV.RateMax = 1; 

 

% Weighting 

MPC.Weights.MV = {1}; 

MPC.Weights.ManipulatedVariablesRate = {0.1}; 

 

% Nominal 

MPC.Model.Nominal.Y = [18.0416 1.46 1.46 14.9 1.43 1.43 14.03 1 1 1 1 1 1 1.05 504.27 504.47] 

MPC.Model.Nominal.U = [1 0] 

 

display(MPC) 

 

% Setpoints 

refs = [18.0416 1.46 1.46 14.9 1.43 1.43 14.03 1 1 1 1 1 1 1.05 504.27 504.47]; 

 

% Disturbance 

fault = 0*ones(30,1); 

fault(1,1) = 1; 

 

options = mpcsimopt(MPC); 

%options.PlantInitialState; 

options.UnmeasuredDisturbance = fault;   

options.model = SIMO;    

 

% Simulation 



 

88 

 

sim(MPC,30,refs,options) 

[Y,T,U] = sim(MPC,30,refs,options); 

figure,impulse(SIMO) 

[y,t,u] = impulse(SIMO,10); 

 

 

 

 


