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Abstract

In this thesis we study relativistic models of gravitating fluids with heat flow and electric

charge. Firstly, we derive the model of a charged shear-free spherically symmetric cosmo-

logical model with heat flow. The solution of the Einstein-Maxwell equations of the system

is governed by the pressure isotropy condition. This condition is a highly nonlinear partial

differential equation. We analyse this master equation using Lie’s group theoretic approach.

The Lie symmetry generators that leave the equation invariant are found. We provide exact

solutions to the gravitational potentials using the first symmetry admitted by the equation.

Our new exact solutions contain the earlier results of Msomi et al (2011) without charge.

Using the second symmetry we are able to reduce the order of the master equation to a first

order highly nonlinear differential equation.

Secondly, we study a shear-free spherically symmetric cosmological model with heat flow

in higher dimensions. We establish the Einstein field equations and find the governing

pressure isotropy condition. We use an algorithm due to Deng (1989) to provide several

new classes of solutions to the model. The four-dimensional case is contained in our general

result. Solutions due to Bergmann (1981), Maiti (1982), Modak (1984) and Sanyal and Ray

(1984) for the four-dimensional case are regained. We also establish a new class of solutions
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that contains the results of Deng (1989) from four dimensions.
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Chapter 1

Introduction

At the beginning of the 20th century, general relativity came to life to explain the astronom-

ical observations that Newtonian gravity had failed to account for. This theory, developed

by Einstein in 1916, also provided a new avenue to our understanding of gravity and the

important role it plays in shaping the universe. This model of gravity not only described

the interaction between objects but also defined the interaction that arises as gravitational

fields of the various massive bodies come into play. It is this model of gravity for the curva-

ture of spacetime on a four–dimensional manifold that enables us to study and understand

the gravitational nature and behaviour of various cosmological bodies. Understanding the

gravitational field behaviour of these bodies gives us an insight into their evolution and the

impact they have on the universe. In this respect, several particular models have been sug-

gested to interpret observational data obtained from galactic bodies and even predict their

evolution in time. There is vast literature available to understand basic general relativity

and its importance as far as studying astrophysical and cosmological structures like stars,
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galaxies and black holes. For more detailed information, the reader is referred to Narlikar

(1993), Stephani (1990), Wald (1984) and Wolfgang (2006).

A variety of models on relativistic bodies have been suggested with the aim of getting

a deeper insight into the behaviour of these stellar and galactic systems. The assumption

of spherical symmetry aids in developing such models. Most of the exact solutions to the

Einstein field equations obtained are mathematically feasible but only a few of them are

physically acceptable, making it difficult to fully describe the dynamics of the problem.

However, any exact solution found provides a clue to the behaviour of the gravitational field

thus enabling us to suggest physically viable parameters for more complex models. Therefore

exact solutions are essential in studying the physical features of the model and help to make

original predictions on the evolution of these bodies.

We intend to find several exact classes of solutions of the Einstein field equations and

Einstein-Maxwell equations for the models stipulated in our study. Several techniques of

obtaining exact solutions are available including the ad hoc Deng (1989) approach. Some

methods involve making viable assumptions to the matter distribution, gravitational po-

tentials and imposing a particular equation of state. We can also take advantage of the

symmetries of the manifold and apply the Lie analysis of differential equations, Noether

symmetries, Lie-Bäcklund transformations, among others. Several texts describe many of

these techniques. The reader is referred to Bluman and Anco (2002), Bluman and Kumei

(1989), Cantwell (2002), Olver (1986, 1995) and Stephani (1989) for more details. In this

thesis, we use Lie’s group theoretic approach to provide solutions to spherically symmet-

ric gravitating fluids with heat flux in the presence of an electromagnetic field. We also

use Deng’s algorithm (Deng 1989) to provide solutions to uncharged spherically symmetric

cosmological models with heat flow in higher dimensions.
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Schwarzschild (1916a) pioneered the quest to provide exact solutions to the Einstein field

equations for a gravitating body in the exterior. He also provided a model that describes

the gravitational field in the interior spacetime with constant density (Schwarzschild 1916b).

Investigations were also carried out by Nordström (1918) and Reissner (1916) to give the

Reissner-Nordström solution for a charged body. Since then many authors have provided

several physically viable solutions to describe the interior stellar matter distribution. Some

of the recent treatments include studies on compact stars by Thirukkanesh and Maharaj

(2006, 2009), the charged Tikekar superdense star solutions by Komathiraj and Maharaj

(2007b) and the analytical models for quark stars by Komathiraj and Maharaj (2007a).

Shear-free models have also been extensively studied and early solutions were provided by

Kustaanheimo and Qvist (1948) to the Einstein field equations. Shear-free models in which

heat flux is incorporated across the boundary of a radiating star have also been proposed.

Recently, Msomi et al (2011) provided solutions to such relativistic models. Conformally flat

radiating solutions provided by Banerjee et al (1989) have been applied to radiating stars by

Herrera et al (2004, 2006), Maharaj and Govender (2005) and Misthry et al (2008) among

others. More general models involving shearing, accelerating and expanding spacetimes,

though not extensively studied, have been proposed to describe cosmological processes in the

absence of heat flux. Here we only highlight the known solutions by Bradley and Marklund

(1999) and Maharaj et al (1993). A shearing model in the relativistic astrophysical context

was found by Naidu et al (2006) for an anisotropic star.

The desire to gain further insight in the behaviour of radiating and charged gravitating

bodies motivates our quest to provide more new classes of exact solutions. The rest of the

thesis is arranged as follows:

Chapter 2: We review the basic features in differential geometry and their use in formulat-
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ing and studying problems arising in general relativity. We highlight the main definitions and

formulæ used in our quest. We then derive the Einstein field equations and Einstein-Maxwell

field equations. The example of spherically symmetric spacetimes is used to illustrate the

key ideas.

Chapter 3: In this chapter, we review the ideas behind Lie’s group theoretic approach. We

briefly describe the ideas of infinitesimal transformations, symmetry generators and reduction

of order and indicate how they are used to study differential equations. We give a general

outline of how the infinitesimal transformations and extended symmetry generators appear

in studying a differential equation involving one independent variable and m dependent

variables.

Chapter 4: We study the model of a charged spherically symmetric relativistic fluid with

heat flow. The pressure isotropy condition is studied using Lie’s group theoretic approach.

Two symmetries of the problem are obtained that we subsequently use to provide solutions.

We believe that our treatment is the first systematic investigation of a charged radiating fluid

using the geometric Lie method. The first symmetry gives a new class of solutions. The

second symmetry is used to reduce the order of the initial equation to a first order highly

nonlinear differential equation.

Chapter 5: We construct the model of a shear-free spherically symmetric relativistic

model defined on a higher dimensional manifold. Using Deng’s algorithm (Deng 1989), we

first provide the solutions obtained for a four–dimensional manifold. We then derive the

Einstein field equations for the higher dimensional problem. The pressure isotropy condition

obtained from the system is transformed to another form that becomes our master equation.

We then apply Deng’s approach to our master equation from which we obtain three classes
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of solutions. We finally show how our third class of solutions in higher dimensions contains

the one obtained by Deng (1989) in four dimensions as a special case.

Chapter 6: We give a summary of our results and discuss them in more depth. Possible

avenues of future work are also discussed.
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Chapter 2

General relativity

2.1 Introduction

Differential geometry is a branch of mathematics that utilises the ideas of integral and dif-

ferential calculus coupled with multilinear algebra to study geometric problems. In general

relativity we apply the results of Riemannian geometry to study astrophysical, cosmological

and relativistic problems. In this chapter, we give a brief description of the main ideas from

differential geometry and the field equations relevant to this thesis. In §2.2, we introduce

the metric connection and quantities associated with the curvature, in particular the Ein-

stein tensor. The energy momentum tensor and the Einstein field equations are defined

in §2.3 for a neutral fluid. This is then extended to a charged gravitating fluid with the

corresponding Einstein-Maxwell equations. The connection coefficients, Ricci tensor compo-

nents, Ricci scalar and Einstein tensor components are explicitly determined for a shear-free
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spherically symmetric metric in §2.4. A particular form of the four-potential is chosen on

physical grounds which enables us to specify the electromagnetic field. Then the Einstein and

Einstein-Maxwell field equations are explicitly derived. The conditions of pressure isotropy,

for both neutral and charged matter, are transformed to simpler forms. We indicate some

of the areas of applications for neutral and charged gravitating relativistic models.

2.2 Differential geometry

In general relativity, we assume that spacetime M is a four–dimensional differentiable man-

ifold endowed with an invertible, symmetric metric tensor field g. The local neighbourhood

of the manifold possesses the same structure as that of an open neighbourhood of a point in

Rn. Even though the local structure of Rn may be similar to M, it should be noted that the

global structure of the manifold may be very different. Local coordinates represent points

on the manifold and are given by (xa) = (x0, x1, x2, x3) where x0 is timelike and x1, x2, x3 are

spacelike. The metric tensor field g represents the gravitational field since its components

contain the gravitational potential. We take the signature of M to be (−+ ++).

The invariant distance between neighbouring points on the manifold M is given by the

line element

ds2 = gabdx
adxb (2.1)

where gab are covariant components of g. The connection coefficients, defined in terms of

the components of the metric tensor and its derivatives, are given by

Γa
bc =

1

2
gad (gcd,b + gdb,c − gbc,d) (2.2)
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where commas indicate partial differentiation. By the fundamental theorem of Riemannian

geometry there exists a unique connection Γ that preserves inner products under parallel

transport (do Carmo 1976).

The Riemann tensor R is generated from the noncommutativity of the covariant deriva-

tive. The Riemann tensor is also called the Riemann-Christoffel or curvature tensor. In

terms of the metric connection and its derivatives we obtain

Rd
abc = Γd

ac,b − Γd
ab,c + Γe

acΓ
d
eb − Γe

abΓ
d
ec (2.3)

The Ricci tensor is obtained by contraction of the Riemann tensor. We obtain

Rab = Rc
acb

= Γc
ab,c − Γc

ac,b + Γe
abΓ

c
ec − Γe

acΓ
c
eb (2.4)

which is symmetric. On contracting the Ricci tensor we obtain the Ricci scalar R. This

quantity is given by

R = Ra
a

= gabRab (2.5)

We are now in a position to construct the Einstein tensor G in terms of the Ricci tensor,

Ricci scalar and metric tensor. This tensor is defined by

Gab = Rab −
1

2
Rgab (2.6)

By definition, the Einstein tensor is symmetric. It can be shown that the divergence of the

Einstein tensor vanishes so that

Gab
;b = 0 (2.7)

8



(Semicolons denote covariant derivatives.) This property is sometimes called the Bianchi

identity. It is a necessary condition for generating the conservation laws via the Einstein

field equations.

2.3 Matter and electromagnetic fields

In cosmological and astrophysical applications, the matter distribution is described as a

relativistic fluid. The energy momentum tensor of uncharged matter is represented by the

tensor T. This symmetric tensor is defined by

Tab = (ρ+ p)UaUb + pgab + qaUb + qbUa + πab (2.8)

where ρ is the energy density, p is the kinetic (or isotropic) pressure, q is the heat flux vector

(qaU
a = 0) and πab is the stress (or anisotropic pressure) tensor (with πabUa = 0 = πa

a).

The quantities given above are measured relative to a comoving four-velocity vector U that

is taken to be unit and timelike (UaUa = −1). For perfect fluids, there is no heat conduction

and the anisotropic pressure is absent. Thus the energy momentum tensor becomes

Tab = (ρ+ p)UaUb + pgab (2.9)

which is widely applied.

For many physical applications, we require that the matter distribution satisfies the

barotropic equation of state

p = p(ρ) (2.10)

In cosmology, we often assume the particular equation of state

p = (γ − 1)p (2.11)
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This is a linear equation of state with 1 ≤ γ ≤ 2. The parameter γ takes on different values

that describe different matter distributions: we regain dust (γ = 1), radiation (γ = 4
3
) and

stiff matter (γ = 2). In relativistic astrophysics, we apply the polytropic equation of state

p = kρ1+
1
n (2.12)

where k and n are constants. This is a highly nonlinear equation of state.

The Einstein field equations

Gab = T ab (2.13)

govern the interaction between the curvature of spacetime and matter distribution in the

absence of charge. We have set the coupling constant to be unity. Taking into account the

divergence of the Einstein tensor in (2.7) we obtain the result

T ab
;b = 0 (2.14)

Equation (2.14) defines the conservation of matter.

We define the electromagnetic field tensor or the Faraday tensor F as a function of a

four-potential A by

Fab = Ab;a − Aa;b (2.15)

The Faraday tensor is anti-symmetric and can be written as a matrix in terms of the electric

field E = (E1, E2, E3) and the magnetic field B = (B1, B2, B3) as shown below

Fab =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (2.16)
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The contribution of the electromagnetic field to the total energy momentum of matter is

given by

Eab = FacF
c
b −

1

4
gabFcdF

cd (2.17)

The need to study the effect of E on the gravitational field necessitates defining Maxwell’s

equations of electromagnetism in covariant form. The Maxwell equations in tensorial form

are

Fab;c + Fbc;a + Fca;b = 0 (2.18a)

F ab
;b = Ja (2.18b)

The quantity J is the four-current vector usually expressed in terms of the four-velocity

vector U as

Ja = σUa (2.19)

with σ being the proper charge density.

For a charged relativistic fluid in a gravitational field, the total momentum tensor is

the sum of E and T. Therefore, the Einstein-Maxwell field equations for such a charged

gravitating system are of the form

Gab = T ab + Eab (2.20a)

Fab;c + Fbc;a + Fca;b = 0 (2.20b)

F ab
;b = Ja (2.20c)

The field equations (2.20) describe the interactions between g, E and T. In the absence of

charge equations (2.20) reduce to (2.13). For a detailed review of general relativity and all

the ideas involved in formulating both the Einstein field equations and the Einstein-Maxwell

field equations, the reader is referred to Narlikar (1993), Stephani (1990), Wald (1984) and

Wolfgang (2006).
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2.4 Spherically symmetric spacetimes

In this section, we consider the spacetime geometry corresponding to a spherically symmetric

metric. We take (xa) = (t, r, θ, φ) because of spherical symmetry. These coordinates simplify

the equations considerably. Then the line element can be written in the form

ds2 = −D2dt2 +
1

V 2

[
dr2 + r2dθ2 + r2 sin2 θdφ2

]
(2.21)

The shear vanishes for the spacetime (2.21). However, the fluid is expanding and accelerating

in general. The functions D = D(t, r) and V = V (t, r) represent gravitational potentials.

The nonvanishing connection coefficients (2.2) for the line element (2.21) become

Γ0
00 =

Dt

D
Γ0

10 =
Dr

D

Γ0
11 = − Vt

D2V 3
Γ0

22 = − r2Vt
D2V 3

Γ0
33 = −r2 sin2 θ

Vt
D2V 3

Γ1
00 = V 2DDr

Γ1
01 = −Vt

V
Γ1

11 = −Vr
V

Γ1
22 = r

(
r
Vr
V
− 1

)
Γ1

33 = r sin2 θ

(
r
Vr
V
− 1

)

Γ2
02 = −Vt

V
Γ2

12 =
1

r
− Vr
V

12



Γ2
33 = − sin θ cos θ Γ3

03 = −Vt
V

Γ3
13 =

1

r
− Vr
V

Γ3
23 = cot θ

By substituting the connection coefficients given above into (2.4), we obtain the nonvanishing

Ricci tensor components given below

R00 = 3

(
Vtt
V
− DtVt

DV
− 2

V 2
t

V 2

)
+ V 2D2

(
Drr

D
+ 2

Dr

rD
− DrVr

DV

)
(2.22a)

R01 = 2

(
Vtr
V
− Vt
V

(
Vr
V

+
Dr

D

))
(2.22b)

R11 =
1

D2V 2

(
−Vtt
V

+
DtVt
DV

+ 4
V 2
t

V 2

)
+ 2

(
Vrr
V
− V 2

r

V 2
+
Vr
rV

)
−
(
Drr

D
+
DrVr
DV

)
(2.22c)

R22 =
r2

D2V 2

(
−Vtt
V

+
DtVt
DV

+ 4
V 2
t

V 2

)
+ r2

(
Vrr
V
− 2

V 2
r

V 2
+
DrVr
DV

)
+ r

(
3
Vr
V
− Dr

D

)
(2.22d)

R33 = sin2 θR22 (2.22e)

From (2.22) and the definition of the Ricci scalar, given by (2.5), we obtain

R =
6

D2

(
−Vtt
V

+
DtVt
DV

+ 3
V 2
t

V 2

)
− 2V 2

(
Drr

D
+ 2

Dr

rD
− DrVr

DV

)
+ 2V 2

(
2
Vrr
V
− 3

V 2
r

V 2
+ 4

Vr
rV

)
(2.23)
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The Ricci tensor components (2.22) and the Ricci scalar (2.23) enable us to generate the

nonvanishing Einstein tensor components from (2.6). These components are given by

G00 = 3
V 2
t

V 2
+ V 2D2

(
2
Vrr
V
− 3

V 2
r

V 2
+ 4

Vr
rV

)
(2.24a)

G01 = 2

(
Vtr
V
− Vt
V

(
Vr
V

+
Dr

D

))
(2.24b)

G11 =
1

D2V 2

(
2
Vtt
V
− 2

DtVt
DV

− 5
V 2
t

V 2

)
+
V 2
r

V 2
− 2

Vr
rV
− 2

DrVr
DV

+ 2
Dr

rD
(2.24c)

G22 =
r2

D2V 2

(
2Vtt
V
− 2

DtVt
DV

− 5
V 2
t

V 2

)
− r2

(
Vrr
V
− V 2

r

V 2
+
Vr
rV
− Dr

rD
− Drr

D

)
(2.24d)

G33 = sin2 θG22 (2.24e)

for a shear-free spacetime.

2.4.1 Uncharged matter distribution

We are now in a position to determine the energy momentum tensor. For the four-velocity

vector

ua =

(
1

D
, 0, 0, 0

)
and the heat flux vector

qa = (0, q, 0, 0)

14



the components of the perfect fluid energy momentum tensor (2.9) are

T00 = D2ρ (2.25a)

T01 = − D

V 2
q (2.25b)

T11 =
1

V 2
p (2.25c)

T22 =
r2

V 2
p (2.25d)

T33 = sin2 θT22 (2.25e)

By equating the Einstein tensor components (2.24) and the energy momentum tensor com-

ponents (2.25), we obtain the Einstein field equations (2.13) in the form

ρ = 3
Vt

D2V 2
+ V 2

(
2
Vrr
V
− 3

V 2
r

V 2
+ 4

Vr
rV

)
(2.26a)

p =
1

D2

(
2
Vtt
V
− 2

DtVt
DV

− 5
V 2
t

V 2

)
+ V 2

r

− 2
V Vr
r
− 2

V DrVr
D

+ 2
V 2Dr

rD
(2.26b)

p =
1

D2

(
2
Vtt
V
− 2

DtVt
DV

− 5
V 2
t

V 2

)
− V Vrr + V 2

r

− V Vr
r

+
V 2Dr

rD
+
V 2Drr

D
(2.26c)

15



q = −2
V 2

D

(
Vtr
V
− Vt
V

(
Vr
V

+
Dr

D

))
(2.26d)

for a neutral spherically symmetric shear-free fluid.

On equating (2.26b) and (2.26c), we obtain

−V Vr
r
− 2

V DrVr
D

+
V 2Dr

rD
+ V Vrr −

V 2Drr

D
= 0 (2.27)

By making the transformation

u = r2

equation (2.27) becomes

V Duu + 2VuDu −DVuu = 0 (2.28)

This gives the pressure isotropy condition for a relativistic model without charge. The form

(2.28) was first suggested by Bergmann (1981) and Glass (1981) independently.

2.4.2 Charged matter distribution

For a charged gravitating matter distribution, we need to incorporate the electromagnetic

field. Taking

Aa = (φ(t, r), 0, 0, 0)

because of spherical symmetry (where φ is the nonzero potential component of Aa) and using

(2.15), we obtain the nonvanishing Faraday tensor components

F10 (= −F01) = φr (2.29)
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Also, knowledge of F enables us to write Maxwell’s equations of electromagnetism explicitly.

The nonvanishing equations for a shear-free charged fluid are

V 2

D2

(
φrr +

(
2

r
− Vr
V
− Dr

D

)
φr

)
=

1

D
σ (2.30a)

−V
2

D2

(
φrt −

(
Vt
V

+
Dt

D

)
φr

)
= 0 (2.30b)

from equations (2.18).

We obtain the nonvanishing electromagnetic field components

E00 =
1

2
V 2φ2

r (2.31a)

E11 = − 1

2D2
φ2
r (2.31b)

E22 =
1

2

r2

D2
φ2
r (2.31c)

E33 = sin2 θE22 (2.31d)

from (2.17) and (2.29). Then the total contribution to the energy momentum tensor is

represented by

T00 + E00 = D2ρ+
1

2
V 2φ2

r (2.32a)

T01 + E01 = − D

V 2
q (2.32b)
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T11 + E11 =
1

V 2
p− 1

2D2
φ2
r (2.32c)

T22 + E22 =
r2

V 2
p+

1

2

r2

D2
φ2
r (2.32d)

T33 + E33 = sin2 θ (T22 + E22) (2.32e)

from (2.25) and (2.31). The Einstein-Maxwell equations for a charged gravitating relativistic

fluid are obtained as the system

ρ = 3
Vt

D2V 2
+ V 2

(
2
Vrr
V
− 3

V 2
r

V 2
+ 4

Vr
rV

)
− V 2

2D2
φ2
r (2.33a)

p =
1

D2

(
2
Vtt
V
− 2

DtVt
DV

− 5
V 2
t

V 2

)
+ V 2

r − 2
V Vr
r

− 2
V DrVr
D

+ 2
DrV

2

rD
+

1

2

V 2

D2
φ2
r (2.33b)

p =
1

D2

(
2
Vtt
V
− 2

DtVt
DV

− 5
V 2
t

V 2

)
− V Vrr + V 2

r

− V Vr
r

+
V 2Dr

rD
+
V 2Drr

D
− 1

2

V 2

D2
φ2
r (2.33c)

q = −2
V 2

D

(
Vtr
V
− VtVr

V 2
− DrVt

DV

)
(2.33d)

σ =
V 2

D

(
φrr +

(
2

r
− Vr
V
− Dr

D

)
φr

)
(2.33e)
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0 = −V
2

D2

(
φrt −

(
Vt
V

+
Dt

D

)
φr

)
(2.33f)

from (2.24) and (2.32).

We can integrate (2.33f) to obtain

φr = V Df(r) (2.34)

where f(r) is arbitrary. Looking back at the system (2.33), only one other condition has to

be satisfied to complete the model.

Equating equations (2.33b) and (2.33c), we obtain

−V Vr
r
− 2

V DrVr
D

+
DrV

2

rD
+ V Vrr −

V 2Drr

D
+
V 2

D2
φ2
r = 0 (2.35)

By letting

u = r2

and taking (2.34) into consideration, we can show that (2.35) simplifies to

V Duu + 2VuDu −DVuu −
V 2

4u
f(u) = 0 (2.36)

This is the pressure isotropy condition for a charged spherically symmetric model with heat

flux. When the charge vanishes (2.36) reduces to (2.28) for neutral fluids.

Several models have been put forward that are special cases of the equations derived

in this section describing several astrophysical and cosmological systems. The solutions of

(2.26) have been used in the study of relativistic stars that emit null radiation in the form of

radial heat flow. This was made possible by Santos et al (1985) who showed that the interior

spacetime must contain a nonzero heat flux to match at the boundary with the exterior
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Vaidya spacetime. Some of the early studies were carried out by Bergmann (1981), Maiti

(1982), Modak (1984) and Sanyal and Ray (1984) in their quest to provide exact solutions

to shear-free spherically symmetric radiating bodies with heat flow. Deng (1989), using his

special algorithm, regained earlier results and provided a new class of solutions. Recently,

Msomi et al (2011) studied the radiating model and used Lie’s group theoretic approach to

provide a five-parameter family of transformations that mapped known solutions into new

ones. Msomi et al (2011) also obtained new classes of solutions using Lie infinitesimal gener-

ators. Such models also enable us to understand the evolution of radiating stars undergoing

gravitational collapse, the formation of singularities, the cosmic censorship hypothesis, and

the formation of superdense matter. Herrera et al (2004), when studying radiative collapse,

proposed a model where they highlighted the utility of the Weyl tensor in simplifying the

form of the Einstein field equations. By introducing a transformation that linearizes the

boundary condition, Maharaj and Govender (2005) solved the field equations and the junc-

tion conditions exactly, expressing these solutions in terms of elementary functions. These

solutions contain the Friedmann dust solution as a special case. Later Herrera et al (2006)

provided other classes of solutions. Recently, studies made by Misthry et al (2008) involved

transforming the boundary condition to an Abel equation thence providing a variety of

explicit nonlinear solutions.

Models in which charge is incorporated, so that (2.33) is valid, have also been extensively

studied. Komathiraj and Maharaj (2007b) showed that by considering a linear equation

of state, exact analytical solutions to the Einstein-Maxwell equations can be obtained that

contain the Mak and Harko (2004) model. They obtained solutions that relate to quark

matter in the presence of an electromagnetic field. They also obtained a second class of

solutions that can be used to describe charged quark stars with physically acceptable interi-

ors, a feature absent in previous models. Some other recent charged stellar models include
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the results of Komathiraj and Maharaj (2007a), Lobo (2006), Maharaj and Thirukkanesh

(2009), Sharma and Maharaj (2007) and Thirukkanesh and Maharaj (2009).

These examples further cement the importance of spherically symmetric models, both

charged and neutral, in describing and widening our understanding of gravitating stellar

structures.
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Chapter 3

Review of Lie analysis methods

3.1 Introduction

The union between the algebraic concept of a group and the differential geometric notion of

a manifold may seem rather surreal but it is this marriage that Sophus Lie sought to create

in his theory of continuous symmetry transformations. By symmetry we mean transforma-

tions that keep the function invariant (Bluman and Kumei 1989). These transformations

are sometimes called invariants. Even though Lie’s initial drive was studying the integration

of partial differential equations, a mission he viewed as the extension of Galois theory to

differential equations, it is these ground breaking ideas that led to the birth of this new area

of mathematics that was consequently named after him (Olver 1986, 1995). The versatility

of this theory has made it possible to be applied to numerous applications in engineering,

quantum mechanics, theoretical mechanics, among others. In this chapter, we seek to explore
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some of the ideas of Lie analysis used in solving differential equations arising in astrophys-

ical and cosmological models. In §3.2.1, we describe point transformations and symmetry

generators on the x–y plane and define what is meant for a function to be invariant under

a point transformation. The way derivatives transform is reviewed and a general expression

derived by Mahomed et al (1990) is stated. The extended generator for a function involving

derivatives of the dependent variable is also described. Reduction of order as a technique

used in Lie analysis is explained in §3.2.2 and we highlight its importance as far as solving

higher order differential equations is concerned. In §3.2.3, we give both the Lie point trans-

formations and the extended symmetry generator for a system involving one independent

variable and m dependent variables.

3.2 Lie symmetries

3.2.1 Point transformations and generators

In order to understand what a symmetry of a function means, there is need for us to have a

good understanding of transformations and their generators.

Consider a pair of transformations in the x–y plane

x̃ = x̃(x, y; ε) ỹ = ỹ(x, y; ε) (3.1)

We call (3.1) a one parameter Lie group of transformations if the transformations are invert-

ible, the identity transformation holds and a successive application of the transformation

yields a transformation within the same class (Stephani 1989). The pair (3.1) represents a
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point transformation. Examples of point transformations include the rotation group in the

plane, the translational group and the stretching group.

A Taylor series expansion of (3.1) about ε = 0 gives the infinitesimal transformations as

x̃ = x+ εξ(x, y) +O(ε2) (3.2a)

ỹ = y + εη(x, y) +O(ε2) (3.2b)

where

ξ(x, y) =
∂x̃

∂ε

∣∣∣
ε=0

η(x, y) =
∂ỹ

∂ε

∣∣∣
ε=0

(3.3)

and the operator X is given by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(3.4)

Operator (3.4) defines what is called the symmetry generator of the infinitesimal transfor-

mation (3.2) with (3.3) as its tangent vectors. A simple example to illustrate this is that of

a rotation group with infinitesimal form given by

x̃ = x cos ε− y sin ε ỹ = x sin ε+ y cos ε (3.5)

Taking (3.3) into account, it easily follows that the symmetry generator is given by

X = −y ∂
∂x

+ x
∂

∂y
(3.6)

Suppose that a function f(x, y) is transformed via (3.1). By applying the Taylor series

expansion about ε = 0, it can easily be shown that

f(x̃, ỹ) = (1 + εX) f(x, y) (3.7)
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The requirement

Xf(x, y) = 0 (3.8)

means that the function f(x, y) is invariant under the transformation (3.1). Therefore X is

a symmetry of f .

To envision how differential equations transform under point transformations, we need to

first know how their derivatives are affected by the same transformations. Suppose that the

infinitesimal transformation (3.2) with symmetry generator (3.4) is applied to the differential

equation

E(x, y, y′, y′′, . . . , y(n)) = 0 (3.9)

where

y′ =
dy

dx
, y′′ =

d2y

dx2
, . . . , y(n) =

dny

dxn
(3.10)

Now, in terms of x̃ and ỹ, the first derivative becomes

dỹ

dx̃
=

d(y + εη)

d(x+ εξ)

=

dy

dx
+ ε

dη

dx

1 + ε
dξ

dx

= (y′ + εη′)
(
1− εξ′ + ε2ξ′′ − · · ·

)

≈ y′ + ε(η′ − y′ξ′)

where we have ignored terms of the order O(ε2). Note that primes stand for total derivatives
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with respect to x. The second derivative becomes

d2ỹ

dx̃2
=

d

dx̃

(
dỹ

dx̃

)

=
d [y′ + ε(η′ − y′ξ′)]

d [x+ εξ]

=

dy′

dx
+ ε

d

dx
(η′ − y′ξ′)

1 + εξ′

= y′′ + ε(η′′ − 2y′′ξ′ − y′ξ′′)

In the same way, we obtain the third and fourth derivatives as

d3ỹ

dx̃3
= y′′′ + ε(η′′′ − 3y′′′ξ′ − 3y′′ξ′′ − y′ξ′′′)

d4ỹ

dx̃4
= yiv + ε(ηiv − 4yivξ′ − 6y′′′ξ′′ − 4y′′ξ′′′ − y′ξiv)

Inductively, we generalise the derivatives to transform as (Mahomed et al 1990)

dnỹ

dx̃n
= y(n) + ε

[
η(n) −

n∑
i=0

(
n

i

)
y(i+1)ξ(n−i)

]

= y(n) + εηn (3.11)
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The symmetry generator applied to a function involving derivatives therefore extends as

X [1] = X + (η′ − y′ξ′) ∂
∂y′

(3.12)

X [2] = X [1] + (η′′ − 2y′′ξ′ − y′ξ′′) ∂

∂y′′
(3.13)

where (3.12) and (3.13) indicate the first and second extensions of X. The generator is

extended until all the derivatives appearing in the differential equation are contained in X.

Hence for an nth order differential equation, Mahomed and Leach (1990) showed that the

prolongation of X becomes

X [n] = X [n−1] + ηn
∂

∂y(n)

= X +
n∑

i=1

(
ηi −

i−1∑
j=1

(
i

j

)
y(i−j+1)ξ(j)

)
∂

∂y(i)
(3.14)

Since η and ξ are functions of x and y, and primes indicate total derivatives, we have

ξ′ =
∂ξ

∂x
+ y′

∂ξ

∂y
(3.15)

as the first derivative and

ξ′′ =
∂2ξ

∂x2
+ 2y′

∂2ξ

∂x∂y
+ y′2

∂2ξ

∂y2
y′′
∂ξ

∂y
(3.16)

is the expansion of the second derivative of ξ. The derivatives of η are obtained in the same

way.

Definition 3.2.1. A differential equation

E(x, y, y′, . . . , y(n)) = 0 (3.17)
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possesses a symmetry

X = ξ
∂

∂x
+ η

∂

∂y
(3.18)

if and only if

X [n]E|E=0 = 0 (3.19)

�

That is to say, the nth extension of X on E vanishes when the original equation is taken into

consideration.

Equation (3.19) yields a partial differential equation for ξ and η. We observe that this

equation contains derivatives of y, even though these derivatives do not appear in the argu-

ments of ξ and η. This enables us to obtain a system of linear partial differential equations in

ξ and η by equating the coefficients of the different functions of the corresponding derivatives

of y to zero. This system can then be solved to obtain ξ and η explicitly thence providing

the symmetries (3.18) of (3.17).

3.2.2 Reduction of order

It is well documented that one of the great uses of symmetries as a method of solving

differential equations lies in the reduction of the order of the differential equation (Olver

1986). Therefore, once the symmetries have been obtained, they can be used in this respect.

If an nth order differential equation

E(x, y, y′, . . . , y(n)) = y(n) − F (x, y, y′, . . . , y(n−1)) = 0 (3.20)
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possesses a symmetry

X = ξ
∂

∂x
+ η

∂

∂y
(3.21)

its order can be reduced to a differential equation of order (n − 1) by obtaining the group

invariant and first differential invariant associated with the first extension of X. This involves

solving the following Lagrange’s system

dx

ξ
=

dy

η
=

dy′

η′ − y′ξ′
(3.22)

When we consider the first and second term, the solution to this gives the group invariant or

zeroth invariant u = g(x, y) while the solution to the remaining pair gives the first differential

invariant v = h(x, y, y′). The names zeroth invariant arise from Xu = 0 and first differential

invariant from X [1]v = 0. Now, using u, v and the derivatives of v with respect to u, the

original equation (3.20) can be written as

G(u, v, v′, . . . , v(n−1)) = v(n) −H(u, v, v′, . . . , v(n−2)) = 0 (3.23)

where primes indicate total differentiation with respect to u. If the resulting equation (3.23)

possesses a symmetry, then its order can be reduced further and so on.

3.2.3 Extended transformations and their infinitesimal generator

The situation of one independent and m dependent variables arises in the study of our system

and as such there is need to stress the generalisation of both the Lie point transformation

and the extended symmetry generator.
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Consider a one parameter Lie group of transformations

x̃ = x̃ (x, yi; ε)

ỹi = ỹi (x, yi; ε)

for a system of one independent variable and m dependent variables such that each yi = yi(x).

Its infinitesimal transformation about ε = 0 is defined by

x̃ = x+ εξ(x, yi) +O(ε2) (3.24a)

ỹi = yi + εηi(x, yi) +O(ε2) (3.24b)

with symmetry generator

X = ξ(x, yi)
∂

∂x
+ ηi(x, yi)

∂

∂yi
(3.25)

where i = 1, 2, . . . ,m.

The kth extension of (3.24), given by

x̃ = x+ εξ(x, yi) +O(ε2)

ỹi = yi + εηi(x, yi) +O(ε2)

ỹ′i = yi
′ + εηi

1(x, yi, yi
′) +O(ε2)

...
...

ỹ
(k)
i = yi

(k) + εηi
k(x, yi, yi

′, . . . , yi
(k)) +O(ε2)
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has its symmetry generator in the form

X = ξ(x, yi)
∂

∂x
+ ηi(x, yi)

∂

∂yi
+ ηi

1(x, yi, yi
′)
∂

∂yi′
+ · · ·

+ ηi
k(x, yi, . . . , yi

(k))
∂

∂yi(k)
(3.27)

with k = 1, 2, . . . and

ηi
k(x, yi, . . . , yi

(k)) =
Dηi

k−1

Dx
− yi(k)

Dξ(x, yi)

Dx
(3.28)

It is important to note that in (3.28) D indicates total differentiation with respect to the

independent variable x.

Readers interested in expanding their knowledge on the ideas discussed are referred to

Bluman and Anco (2002), Bluman and Kumei (1989), Cantwell (2002), Olver (1986, 1995)

and Stephani (1989).
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Chapter 4

Charged spherically symmetric fluids

with heat flow

4.1 Introduction

Heat flux is of great importance in astrophysical problems involving singularity formation,

gravitational collapse and black hole physics, among others. This is manifested in many

models including the treatment of Wagh et al (2001) who chose a barotropic equation of

state and gave solutions to the Einstein field equations for a shear-free spherically symmetric

spacetime. Maharaj and Govender (2005), when studying radiating collapse with vanishing

Weyl stresses, provided exact solutions to both the Einstein field equations and the junction

conditions. Herrera et al (2006) showed that analytic solutions can be obtained from the

study of the field equations arising from radiating and collapsing spheres in the diffusion
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approximation. They showed that heat flow is a requirement in thermal evolution of the

collapsing sphere modelled in causal thermodynamics.

Govinder et al (1995), Kweyama et al (2011), Leach and Maharaj (1992) and Msomi

et al (2010) used Lie point symmetries to study the underlying nonlinear partial differential

equations that arise in the study of gravitating fluids. In so doing, they provided several

families of solutions while generalising already known solutions. Msomi et al (2011) studied

shear-free spherically symmetric models with heat flow and used Lie analysis to obtain a

five parameter family of transformations that can be used to map existing solutions to new

solutions. They also generated several classes of solutions using symmetry generators. In

our treatment, we incorporate charge into the model and obtain the underlying symmetries

in §4.2. This is a complex calculation and we provide all the details thereof. We then use

one of the symmetries obtained to provide new solutions for an arbitrary form of charge in

§4.3.1. The gravitational potentials can be found explicitly. In §4.3.2, we show how the

second symmetry is used to reduce the order of the governing equation. The nonlinearity of

the resultant equation makes it difficult to perform the integration.

4.2 Lie analysis of the problem

We rewrite the master equation (2.36) as

K ≡ 4uV Duu + 8uVuDu − 4uDVuu − V 2f(u) = 0 (4.1)

33



We seek Lie point transformations of the form

ũ = u+ εξ(u, V,D) +O(ε2)

D̃ = D + εη1(u, V,D) +O(ε2)

Ṽ = V + εη2(u, V,D) +O(ε2)

with symmetry generator given by

X = ξ
∂

∂u
+ η1

∂

∂D
+ η2

∂

∂V
(4.2)

It is important to note that both D and V are functions of u and t but t does not appear

explicitly in equation (4.1). As a result we treat (4.1) as a second order nonlinear ordinary

differential equation only in u. However, we will ultimately let the constants of integration

be functions of t.

Using definition 3.2.1, we now require

X [2]K|K=0 = 0 (4.3)

This expands to

X [2]K = ξ
∂

∂u
+ η1

∂

∂D
+ η2

∂

∂V
+ (η1

′ −D′ξ′) ∂

∂D′
+ (η2

′ − V ′ξ′) ∂

∂V ′

+ (η1
′′ − 2D′′ξ′ −D′ξ′′) ∂

∂D′′
+ (η2

′′ − 2V ′′ξ′ − V ′ξ′′) ∂

∂V ′′
(4.4)

and we need to take (4.1) into account. We then combine the coefficients of the correspond-

ing derivatives of V and D, after substituting for (4.1), to obtain the system of thirteen
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differential equations

−ξf ′(u)V 2 + ξ
f(u)

u
V 2 − 2V f(u)η2 +

V 2

D
f(u)η1 + V 2f(u)η2V

− 2ξuV
2f(u)− V 3

D
f(u)η1V + 4uV η1uu − 4uDη2uu = 0 (4.5a)

8uη1u − 8uDη2uV − 3V 2f(u)ξV + 4uDξuu + 8uV η1uV = 0 (4.5b)

8uη1V − 4uDη2V V + 8uDξuV + 4uV η1V V = 0 (4.5c)

4uDξV V = 0 (4.5d)

−4uV ξDD = 0 (4.5e)

8uη2D − 4uDη2DD − 8uDξuD + 4uV η1DD = 0 (4.5f)

8uη2u + 8uDη2uD + 8uV η1uD − 4uV ξ1uu − 2V 2f(u)ξD +
V 3

D
f(u)ξV = 0 (4.5g)

4uη2 − 4u
V

D
η1 − 4uV η2V − 4uDη2D + 8uV ξu

+ 4u
V 2

D
η1V + 4uV η1D − 8uV ξu = 0 (4.5h)

−8
u

D
η1 + 8uη2V − 8uξu + 8uη1D − 8uξu − 8uDη2V D − 8uη2V

+ 16uξu + 8uDξuD + 8uV η1V D + 8u
V

D
η1V − 8uV ξuV = 0 (4.5i)
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−8uξV − 8uξV + 16uξV + 8uDξV D + 8uξV − 4uDξV V = 0 (4.5j)

−8uξD − 8uξD + 16uξD + 4uDξDD − 8uV ξV D − 8u
V

D
ξV = 0 (4.5k)

8uV ξV + 4uV ξV + 4uDξD − 8uV ξV = 0 (4.5l)

8uV ξD − 8uV ξD + 4u
V 2

D
ξV − 4uV ξD = 0 (4.5m)

By using equations (4.5d)–(4.5e) and (4.5j)–(4.5m), we obtain the expression for ξ to be

ξ(u, V,D) = C0(u) (4.6)

Setting

G(u, V,D) = η2 − V

D
η1 (4.7)

for convenience, we find, via (4.5h) that

G(u, V,D) = V g

(
u,
V

D

)
(4.8)

where g is arbitrary.

By using (4.6)–(4.8) the system (4.5) reduces to

rD2

(
r

[
ξf ′ +

(
−1

u
ξ + g − rgr + 2ξu

)
f

]
+ 4uguu

)
= 0 (4.9a)

ξuu − 2gu − 2rgur = 0 (4.9b)
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rgrr + 2gr = 0 (4.9c)

r2 (rgrr + 4gr) + 4r

(
1

D
η1 − η1D

)
= 0 (4.9d)

2rgur + 2gu +
4

D
η1u − ξuu = 0 (4.9e)

2

D
η1r + 2gr + rgrr = 0 (4.9f)

where

ξ = C0(u) (4.10)

η2 = rη1 + V g (u, r) (4.11)

r =
V

D
(4.12)

We solve equation (4.9c) to obtain g(u, r) as

g(u, r) = −C
2(u)

r
+ C3(u) (4.13)

Using equations (4.9b), (4.9e)–(4.9f) and (4.13), it can easily be shown that

η1 = h(D) (4.14)

By substituting (4.13) and (4.14) into (4.9d) we obtain

2C2(u)
D

V
+ 4

(
h

D
− hD

)
= 0 (4.15)
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Since h is independent of V , we compare corresponding coefficients of V in (4.15) from which

two equations are obtained. Solving these equations gives

C2(u) = 0 (4.16)

h(D) = c1D (4.17)

We then solve equation (4.9b) to obtain

C3 =
1

2
C0

u + c2 (4.18)

Equation (4.9a) therefore becomes

2V DC0
uuu + V 2

[
f

(
−C

0

u
+

5

2
C0

u + c2

)
+ C0f ′

]
= 0 (4.19)

For arbitrary f , (4.19) can only be satisfied if

C0
uuu = 0 (4.20a)

−C
0

u
+

5

2
C0

u + c2 = 0 (4.20b)

C0 = 0 (4.20c)

By inspection, we can deduce from equations (4.20) that

C0(u) = 0 (4.21)

and

c2 = 0 (4.22)
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Using (4.6)–(4.7), (4.14) and (4.21)–(4.22) while making the necessary substitutions, we

obtain the coefficient functions for the symmetry generator, when f(u) is arbitrary, as

ξ(u) = 0 (4.23)

η1(D) = c1D (4.24)

η2(V ) = c1V (4.25)

From the above coefficient functions, we obtain the symmetry

X1 = D
∂

∂D
+ V

∂

∂V
(4.26)

We now take (4.19) to be a restriction on f . As C0 and f are functions of u, this implies

that both

C0
uuu = 0 (4.27)

and

f

(
−C

0

u
+

5

2
C0

u + c2

)
+ C0f ′ = 0 (4.28)

must hold. Solving equation (4.27) gives

C0(u) = c3u
2 + c4u+ c5 (4.29)

Using equations (4.28) and (4.29) we solve for f(u) to obtain

f(u) =
c6u

(c3u2 + c4u+ c5)5/2
exp

[
2c2√

−c4 + 4c3c5
arctan

(
c4 + 2c3u√
−c4 + 4c3c5

)]
(4.30)

where c6 is a constant of integration.
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In summary, (4.1) admits a Lie point symmetry with coefficient functions given by

ξ(u) = c3u
2 + c4u+ c5 (4.31)

η1(D) = c1D (4.32)

η2(u, V ) = V
(
c1 + c2 + c3u+

c4
2

)
(4.33)

provided

f(u) =
c6u

(c3u2 + c4u+ c5)5/2
exp

[
2c2√

−c24 + 4c3c5
arctan

(
c4 + 2c3u√
−c24 + 4c3c5

)]
(4.34)

For convenience, we rewrite the arbitrary constants as

c1 = c̄1 −
c̄3
2

+ c̄5

c2 = −c̄1

c3 = c̄4

c4 = c̄3

c5 = c̄2

and obtain

ξ(u) = c̄2 + c̄3u+ c̄4u
2 (4.35)

η1(D) =
(
c̄1 −

c̄3
2

+ c̄5

)
D (4.36)

η2(u, V ) = V (c̄4u+ c̄5) (4.37)
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with

f(u) =
c6u

(c̄2u2 + c̄3u+ c̄4)5/2
exp

[
2c̄1√

−c̄23 + 4c̄2c̄4
arctan

(
c̄3 + 2c̄4u√
−c̄23 + 4c̄2c̄4

)]
(4.38)

Henceforth, the bars on the constants are dropped for convenience.

As a final remark, we observe that, when f = 0, (4.19) reduces to

C0
uuu = 0 (4.39)

which yields

C0(u) = c3u
2 + c4u+ c5 (4.40)

As a result, we obtain the five symmetries

X1 =
∂

∂u
(4.41a)

X2 = u
∂

∂u
(4.41b)

X3 = D
∂

∂D
(4.41c)

X4 = V
∂

∂V
(4.41d)

X5 = u2
∂

∂u
+ uV

∂

∂V
(4.41e)

as obtained by Msomi et al (2011). They performed a full analysis of this case and we do

not repeat their results here.
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We are now in a position to list the symmetries of equation (4.1). In general, (4.1) admits

X1 = D
∂

∂D
+ V

∂

∂V
(4.42)

When f takes on the form (4.38), (4.1) also admits

X2 =
(
c2u

2 + c3u+ c4
) ∂

∂u
+
(
c1 −

c3
2

)
D

∂

∂D
+ c4uV

∂

∂V
(4.43)

Therefore, in addition to X1, we obtain another symmetry X2 whose nature is dictated by

the form of f(u). Equations (4.35)–(4.38) match the ones obtained using SYM (Dimas et al

2005) which serves as a usual check of our results. As far as we are aware the two symmetries

(4.42)–(4.43) are new and have not been found before for a charged gravitating fluid.

4.3 New solutions using symmetries

Usually, after obtaining the symmetries of a differential equation, we use the associated

differential invariants to determine the solution(s) of the equation. In our case we will use a

partial set of invariants in our quest to provide solutions.

4.3.1 Generator X1

We obtain the invariants of X1 by taking its first extension. The associated Lagrange’s

system becomes
du

0
=

dD

D
=

dV

V
=

dD′

D′
=

dV ′

V ′
(4.44)
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We obtain the invariants of the system as

p = u

q(p) =
V

D

r(p) =
D′

D

s(p) =
V ′

D

However, for our purposes, we only use p, q and r. Invoking these differential invariants,

(4.1) reduces to

q′′ = −1

4
q2
f(p)

p
+ 2qr2 (4.46)

which can be written as

r = ±

√
q′′

2q
+

1

8
q
f(p)

p
(4.47)

or

D′

D
= ±

√
q′′

2q
+

1

8
q
f(p)

p
(4.48)

On integrating both sides we have

D = exp

[
±k
∫ √

q′′

2q
+

1

8
q
f(u)

u
du

]
(4.49)

where k is a constant of integration.

From solution (4.49), we can see that whenever we are given any ratio of the gravitational

potentials V
D

and an arbitrary function f(u) representing charge, we can explicitly obtain
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the exact expression of the potentials. This is a new result that to the best of our knowledge

has not been obtained before. We observe that when we set f(u) = 0 in (4.49), we obtain

the uncharged solution of Msomi et al (2011).

4.3.2 Generator X2

We hope that by using the symmetry X2, we can obtain a solution to (4.1) for the speci-

fied function (4.38) without relying on a ratio of potentials as a requirement for obtaining

solutions. We now seek the invariants of X2 by taking its second extension. The resulting

Lagrange’s system then becomes

du

c2 + c3u+ c4u2
=

dD

D(c1 − 1
2
c3)

=
dV

c4V u

=
dD′

D′
(
c1 − 3

2
c3 − 2c4u

) =
dV ′

(V c4 − V ′(c3 + c4u))

=
dD′′

D′′
(
c1 − 5

2
c3 − 4c4u

)
− 2c4D′

=
dV ′′

−V ′′ (2c3 + 3c4u)
(4.50)

By coupling the first term of the Lagrange’s system with the successive terms, we evaluate

the resulting equations to obtain the invariants of the system as

p = (2c1 − c3)T (u)− lnD (4.51a)

q(p) = ln(c2 + c3u+ c4u
2)

1
2 − c3T (u)− lnV (4.51b)
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r(p) = (2c1 − c3)T (u)− ln(c2 + c3u+ c4u
2)− lnD′ (4.51c)

s(p) = V ′(c2 + c3u+ c4u
2)

1
2 exp [c3T (u)]− c4u exp [−q] (4.51d)

t(p) = V ′′(c2 + c3u+ c4u
2)

3
2 exp [c3T (u)] (4.51e)

with

T (u) =
1√

−c3 + 4c2c4
arctan

[
c3 + 2c4u√
−c3 + 4c2c4

]
Using Mathematica (Wolfram 2008), we reduce (4.1) to

rp(p) =
exp(r) [4c1 − 6c3 − c6 exp(r − q) + 8s exp(q)− 4t exp(−p+ q + r)]

exp(r) (4c1 − 2c3)− 4 exp(p)
(4.52)

Equation (4.52) is a highly nonlinear first order differential equation which cannot be reduced

any further. It is also difficult to integrate (4.52) and demonstrate an explicit solution.
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Chapter 5

Higher dimensional shear-free

relativistic models

5.1 Introduction

In this chapter, we consider shear-free spherically symmetric relativistic models in higher

dimensional manifolds. Shear-free spacetimes provide avenues for modelling of relativistic

stars that emit null radiation in the form of radial heat flow. Heat flow is a necessary

ingredient in the study of radiating bodies because it provides avenues for the complete

and proper description of these bodies. The analysis of Santos et al (1985) shows that

the interior spacetime should contain a nonzero heat flux to match at the boundary with

the exterior Vaidya spacetime. This junction condition is also applicable to relativistic

models in higher dimensions. Bhui et al (1995) derived the Einstein field equations in higher
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dimensions and used them to study the non-adiabatic gravitational collapse with junction

conditions. The existence of heat flux is a vital element in this study. Banerjee et al (2005)

provided conditions under which a spherical heat conducting fluid in higher dimensions

collapses without the appearance of the horizon. In our study, we aim to provide new

classes of solutions in higher dimensional radiating models with heat flow without making

assumptions on the pressure isotropy condition. In doing so, we can then investigate how the

dimensionality affects the physical features of the system. In §5.2, we outline the algorithm

first suggested by Deng (1989). We then illustrate this technique by generating the classes

of solutions obtained by Bergmann (1981), Deng (1989), Maiti (1982), Modak (1984) and

Sanyal and Ray (1984) on a four dimensional manifold in §5.3. In §5.4, the Einstein field

equations of the higher dimensional problem are derived, and the pressure isotropy condition

is transformed to a simpler form. We then use the algorithm due to Deng to provide new

solutions. We show that the Deng (1989) class of solutions to the model in four dimensions

is contained in our new higher dimensional solutions.

5.2 The Deng method

In this section, we seek heat conducting solutions to Einstein’s equations for the line element

ds2 = −D2dt2 +
1

V 2

[
dr2 + r2dθ2 + r2 sin2 θdφ2

]
(5.1)

and with the resulting pressure isotropy condition

V Duu + 2VuDu −DVuu = 0 (5.2)

already introduced in §2.4. Deng (1989) provided a general recipe for generating a series of

solutions of the isotropy condition (5.2). In solving this equation, Deng recognised that the
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isotropy condition is an ordinary differential equation in u (since no time derivatives appear)

that can be reduced to a simple differential equation in D if V is known and vice versa. In

this technique, simple forms of either V or D are chosen that are in turn substituted into

the equation to be solved so as to obtain the form of the remaining term. Below we give a

brief outline of the method.

• Take a simple form of V , say V = V1, and substitute it into the master equation to find

the most general solution of D, say D = D1. The pair V = V1 and D = D1 provides

the first class of solutions to the master equation.

• Take D = D1 and substitute it into the master equation. This gives an equation in V

with V = V1 already a solution. We are now in a position to obtain a second solution

V = V2 linearly independent of V1. The linear combination V3 = aV2 + bV1 gives the

general solution that satisfies the master equation. The pair V = V3 and D = D1 is

the second class of solutions to the master equation.

• Take V = V3 and substitute it into the master equation. We obtain an equation in D

with D = D1 already a solution. We are then in a position to obtain D = D2 in the

same way we obtained V2. The pair V = V3 and D = cD1 + dD2 is the third class of

solutions to the master equation.

• Repeat this process above to obtain an infinite sequence of solutions.

It is important to note that, in principle, this is a nonterminating process of obtaining

solutions, and as such an infinite number of solutions can be listed. The difficulty arises in

trying to obtain the subsequent solutions because the equations become more complicated.
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In other words, the problem now becomes that of integration using the available techniques.

However, this procedure proves to be a powerful mechanism for generating these solutions.

We illustrate this technique by considering the four–dimensional problem before using it

for the higher dimensional case.

5.3 The four–dimensional problem

In four dimensions the equation to be solved is

V Duu + 2VuDu −DVuu = 0 (5.3)

Following Deng’s algorithm, we set

D(t, u) = D1

= 1 (5.4)

Then (5.3) simplifies to

Vuu = 0 (5.5)

This equation can be directly solved to give

V (t, u) = V1

= a(t)u+ b(t) (5.6)

The pair of solutions D1 and V1 provides the first class of solutions. This model was first

obtained by Bergmann (1981) and Maiti (1982) independently.
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We then substitute V1 and its corresponding derivatives back into (5.3) to obtain

Duu +
2a

au+ b
Du = 0 (5.7)

Equation (5.7) can be easily solved to obtain

D = D2

=
cu+ d

au+ b
(5.8)

with a, b, c, d being functions of t. The pair of solutions V1 and D2 provides the second class

of solutions. This model is credited to Modak (1984) and Sanyal and Ray (1984).

We then go further to substitute D2 with its corresponding derivatives back into (5.3).

We obtain the second order equation in V

Vuu − 2

(
(bc− ad)/(au+ b)2

(cu+ d)/(au+ b)

)
Vu + 2

(
a(bc− ad)/(au+ b)3

(cu+ d)/(au+ b)

)
V = 0 (5.9)

Since V1 is already a solution to equation (5.9), we utilise the method of reduction of order

to obtain its second solution. Suppose

V2 = V1α (5.10)

where V2 is the second solution and α is an arbitrary function of u and t. Then α has to

satisfy the second order differential equation

αuu + 2

(
a

au+ b
− (bc− ad)

(cu+ d)(au+ b)

)
αu = 0 (5.11)

This can be integrated once to give

αu = e

(
cu+ d

(au+ b)2

)2

(5.12)
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where e is a constant of integration (taken to be an arbitrary function of t). We therefore

obtain α in the form

α =

∫ u

e
(cs+ d)2

(as+ b)4
ds (5.13)

The integral in (5.13) can be evaluated and we obtain

α = − e

3a(au+ b)

(
c2

a2
+
c

a

(
au+ b

cu+ d

)
+

(
cu+ d

au+ b

)2
)

+ f (5.14)

where f is a constant of integration (taken to be an arbitrary function of t). Therefore the

second solution to (5.9) is

V2 =− e

3a

[
c2

a2
+
c

a

(
au+ b

cu+ d

)
+

(
cu+ d

au+ b

)2
]

+ f [au+ b] (5.15)

The general solution to (5.9), say V3, is a linear combination of V1 and V2.

The third pair of solutions

D2 =
cu+ d

au+ b
(5.16a)

V3 =g(t) (au+ b)− h(t)
1

3a

(
c2

a2
+
c

a

au+ b

cu+ d
+

(
cu+ d

au+ b

)2
)

(5.16b)

is attributed to Deng (1989).

As already stated when outlining Deng’s algorithm, this method can be extended indef-

initely but difficulty arises in practice when evaluating the evolved integrals. After seeing

how Deng’s method can be used to provide several classes of solutions, we are now in a

position to utilise this approach in solving the higher dimensional problem.
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5.4 The higher dimensional problem

We consider the line element of a shear-free, spherically symmetric (n + 2)–dimensional

manifold in the form

ds2 = −D2dt2 +
1

V 2

(
dr2 + r2dX2

n

)
(5.17)

where n ≥ 2. The gravitational potential components D and V are functions of r and t with

X2
n = dθ21 + sin2 θ1dθ

2
2 + · · ·+ sin2 θ1 sin2 θ2 . . . sin

2 θn−1dθ
2
n (5.18)

For a shear-free heat conducting fluid, the energy momentum tensor is given by

Tab = (ρ+ p)UaUb + pgab + qaUb + qbUa (5.19)

where ρ is the energy density, p is the kinetic pressure and qa is the heat flux tensor. The

Einstein field equations are

Gab = Tab (5.20)

For our model we take

qa = (0, q, 0, . . . , 0) (5.21)

and U is the (n+ 2)–velocity vector such that

Ua =

(
1

D
, 0, 0, . . . , 0

)
(5.22)

which is timelike.

With reference to (5.19), we obtain the nonvanishing energy momentum tensor compo-

nents as

T00 = D2ρ (5.23a)
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T11 =
1

V 2
p (5.23b)

T22 =
r2

V 2
p (5.23c)

T33 = sin2 θ1T22 (5.23d)

T44 = sin2 θ2T33 (5.23e)

...
...

Tnn = sin2 θ(n−2)T(n−1)(n−1) (5.23f)

T01 = − D

V 2
q (5.23g)

Using (2.6), we find that the nontrivial Einstein tensor components with line element (5.17)

are

G00 =
n(n+ 1)V 2

t

2V 2
+ nD2V 2

(
Vrr
V
− (n+ 1)V 2

r

2V
+ n

Vr
rV

)
(5.24a)

G11 = −nDrVr
V D

+
nDr

rD
+
n(n− 1)V 2

r

2V 2
− n(n− 1)Vr

rV

+
nVtt
D2V 3

− n(n+ 3)V 2
t

2D2V 4
− nDtVt
D3V 3

(5.24b)
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G22 =
r2Drr

D
− (n− 1)r2Vrr

V
+
n(n− 1)r2V 2

r

2V 2
+

(n− 1)rDr

D
− (n− 1)2rVr

V

− (n− 2)r2DrVr
DV

+
nr2Vtt
D2V 3

− n(n+ 3)r2V 2
t

2D2V 4
− nr2DtVt

D3V 3
(5.24c)

G33 = sin2 θ1G22 (5.24d)

G44 = sin2 θ2G33 (5.24e)

...
...

Gnn = sin2 θ(n−2)G(n−1)(n−1) (5.24f)

G01 = n

(
Vtr
V
− Vt
V

(
Vr
V

+
Dr

D

))
(5.24g)

With the help of (5.20) we obtain the Einstein field equations. Equating the energy mo-

mentum tensor components (5.23) to the Einstein tensor components (5.24) we find that

ρ =
n(n+ 1)V 2

t

2D2V 2
− n(n+ 1)V V 2

r

2
+ nV Vrr +

n2V Vr
r

(5.25a)

p = −nDrV Vr
D

+
nDrV

2

rD
+
n(n− 1)V 2

r

2
− n(n− 1)V Vr

r

+
nVtt
D2V

− n(n+ 3)V 2
t

2D2V 2
− nDtVt

D3V
(5.25b)

p =
DrrV

2

D
− (n− 1)V Vrr +

n(n− 1)V 2
r

2
+

(n− 1)DrV
2

rD
− (n− 1)2V Vr

r

− (n− 2)DrV Vr
D

+
nVtt
D2V

− n(n+ 3)V 2
t

2D2V 2
− nDtVt

D3V
(5.25c)
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q = −nV Vtr
D

+
nVrVt
D

+
nDrV Vt
D2

(5.25d)

which is consistent with the derivation of Bhui et al (1995).

By equating equations (5.25b) and (5.25c), we obtain the pressure isotropy condition

−DrrV
2

D
+ (n− 1)V Vrr +

DrV
2

rD
− 2

DrV Vr
D

− (n− 1)V Vr
r

= 0 (5.26)

By using the transformation

u = r2

equation (5.26) simplifies to

V Duu + 2DuVu − (n− 1)DVuu = 0 (5.27)

Solving equation (5.27) is enough to determine the parameters stipulated in the system

(5.25). Thus it becomes our master equation for the gravitation fluid in (n+ 2)–dimensions.

It is worth noting that (5.27) reduces to the four–dimensional equation (5.3) with heat flow

when n = 2.

Following Deng’s approach, we begin with the simple case

D = D1

= 1 (5.28)

Substituting (5.28) into (5.27) gives

Vuu = 0 (5.29)

Equation (5.29) is solved to give

V (u, t) = V1

= au+ b (5.30)
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with a and b being arbitrary functions of t. Therefore the pair of equations (5.28) and (5.30)

solves (5.27). Thus D1 and V1 give the first class of solutions to our master equation (5.27).

It is important to highlight that our class of solutions are independent of the dimension

n. They take the same form as the solutions first obtained by Bergmann (1981) and Maiti

(1982) for n = 2.

By substituting (5.30) into (5.27), we obtain

(au+ b)Duu + 2aDu = 0 (5.31)

which is solved to give

D(u, t) = D2

=
cu+ d

au+ b
(5.32)

with c and d arbitrary functions of t. The second class of solutions is therefore given by

V1 = au+ b (5.33a)

D2 =
cu+ d

au+ b
(5.33b)

As for the first class, the second class of solutions is independent of the dimension n. This

class is a generalisation of the solutions obtained by Modak (1984) and Sanyal and Ray

(1984) when n = 2.

The next class of solutions is obtained by first substituting (5.32) with its corresponding

derivatives into (5.27). We obtain

Vuu −
2

n− 1

(
(bc− ad)/(au+ b)2

(cu+ d)/(au+ b)

)
Vu +

2

n− 1

(
a(bc− ad)/(au+ b)3

(cu+ d)/(au+ b)

)
V = 0 (5.34)
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Equation (5.34) is a second order differential equation in V that can be solved by the method

of reduction of order. We know that V1 is a solution of (5.27). Therefore we suppose that

V2 = αV1 (5.35)

is a second solution where α is an arbitrary function of t and u. Then α has to satisfy the

second order equation

αuu +

[
2
V ′1
V1
− 2

n− 1

(
(bc− ad)/(au+ b)2

(cu+ d)/(au+ b)

)]
αu = 0 (5.36)

By substituting for V1, (5.36) becomes

αuu =
2

n− 1

(
c

cu+ d
− n a

au+ b

)
αu (5.37)

Integrating (5.37) gives

αu = e

(
cu+ d

(au+ b)n

)2/(n−1)

(5.38)

with e being an arbitrary function of t. We can express α in the form

α =

∫ u

e

(
cs+ d

(as+ b)n

)2/(n−1)

ds (5.39)

To evaluate this integral we need to consider two cases: ad = bc and ad 6= bc.

5.4.1 Case I

Considering the special case when
c

d
=
a

b
(5.40)

(5.39) reduces to

α = k

∫ (
1 +

a

b
u
)−2

du (5.41)
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where we have set

k = e

(
d

bn

) 2
n−1

(5.42)

Evaluating the integral in (5.41) gives

α =
a2gu+ (abg − kb2)

a(au+ b)
(5.43)

where g is an arbitrary function of t. Therefore V2 becomes

V2 = αV1

= agu+
(
bg − lb2

)
(5.44)

with l = k
a
. A closer look at solution (5.44) shows that V2 takes the form of V1 and therefore

we do not have a second linearly independent solution. This is expected as condition (5.40)

is degenerate with respect to (5.39).

5.4.2 Case II

For this case ad 6= bc. In (5.39) we let

au+ b = s (5.45)

This simplifies the integral to

α =
e

a

∫
s−2
(
p+ms−1

) 2
n−1 ds (5.46)

where we let

p =
c

a
, m =

ad− bc
a

By defining

p+ms−1 = k (5.47)

58



we further simplify the integral (5.46) to

α = − e

am

∫
k2/(n−1)dk (5.48)

On evaluating (5.48), we obtain the expression for α as

α = − e

am

(
n− 1

n+ 1

)(
p+ms−1

)n+1
n−1 + g (5.49)

where g is an arbitrary function of t. Substituting for m, p and s in (5.49) gives

α =
e

ad− bc

(
1− n
n+ 1

)(
cu+ d

au+ b

)n+1
n−1

+ g (5.50)

We therefore obtain the second solution V2 using (5.35) as

V2 =

(
e

ad− bc

(
1− n
n+ 1

)(
cu+ d

au+ b

)n+1
n−1

+ g

)
(au+ b) (5.51)

The general solution to equation (5.34) is given by the linear combination of V1 and V2

V3 = h(t)V1 + j(t)V2

=

(
h(t) + j(t)

(
e

ad− bc

(
1− n
n+ 1

)(
cu+ d

au+ b

)n+1
n−1

+ g

))
(au+ b) (5.52)

The third class of solutions to equation (5.27) is therefore given by

D2(u, t) =
cu+ d

au+ b
(5.53a)

V3(u, t) =

(
h(t) + j(t)

(
e

ad− bc

(
1− n
n+ 1

)(
cu+ d

au+ b

)n+1
n−1

+ g

))
(au+ b) (5.53b)

The class of solutions (5.53) is a new pair of exact solutions to the Einstein field equations

in higher dimensions. Unlike the two earlier classes, this third class of solutions depends on
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the parameter n. Hence the dimension of the spacetime does directly affect the dynamics

of the gravitational field. The next class of solutions can be obtained by substituting V3

into equation (5.27) and then solve the resulting equation for D3. The integration is not

performed in this thesis because of the complexity of the process.

It appears that with n = 2 in (5.53b), we obtain a result different from the known

result of Deng (1989). This is not the case and we can show the equivalence between the

two solutions. However, this is not a straightforward exercise. It is important to note that

when we substitute n = 2 in (5.53), we obtain a solution that satisfies (5.27) for n = 2.

This solution however possesses a subtle difference to that provided by Deng (1989). This

observation is illustrated by obtaining the difference between F2 (in Deng’s notation) and V2

for the case when n = 2. We know that

F2 = − 1

3a

[
c2

a2
+
c

a

(
au+ b

cu+ d

)
+

(
cu+ d

au+ b

)2
]

(5.54)

from Deng (1989). For n = 2, we obtain V2 in the form

V2 =

(
− e

3(ad− bc)

(
cu+ d

au+ b

)3

+ g

)
(au+ b) (5.55)

from (5.53b). Now the difference between V2 and F2 gives

V2 − F2 = −
[
c3(ea3u3 + 3a2bu2 + 3ab2u+ b3) + a3d(e− 1) (3cu(cu+ d) + d2)

3a2(ad− bc)(au+ b)2

]
+ g [au+ b]

(5.56)

When e = 1, equation (5.56) simplifies to

V2 − F2 =

(
g − c3

3a3(ad− bc)

)
(au+ b) (5.57)

This therefore means that

V2 = F2 + κ (au+ b) (5.58)
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where we have set

κ =

(
g − c3

3a3(ad− bc)

)
(5.59)

It is actually amazing how a cubic expression (5.55) with the term [(cu+ d)/(au+ b)]3 differs

from a quadratic expression (5.54) with the term [(cu+ d)/(au+ b)]2 by the linear factor

au + b. The quantity (5.59) essentially plays no part in the general solutions to the master

equation (5.27) when n = 2. We show this by first obtaining the general solution to (5.34).

In this case V3 becomes

V3 = hV1 + jV2

= h(au+ b) + j (F2 + κ (au+ b))

= M(au+ b)− j

3a

(
c2

a2
+
c

a

(
au+ b

cu+ d

)
+

(
cu+ d

au+ b

)2
)

(5.60)

where M = h+ κ and h, j, κ and M are functions of t.

Then the pair of solutions to (5.27) is

D2 =
cu+ d

au+ b
(5.61a)

V3 = M (au+ b)− j

3a

(
c2

a2
+
c

a

au+ b

cu+ d
+

(
cu+ d

au+ b

)2
)

(5.61b)

for n = 2. We can therefore conclude that the final solution due to Deng shown by equations

(5.16) has the same form as our solution (5.61).

Finally, we note that when V is taken to be linear in u, n does not appear in equation

61



(5.27). Thus all solutions with linear V do not contain the dimension n. It is interesting

that such a result is possible in higher dimensions.
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Chapter 6

Conclusion

In this dissertation we aimed at providing a comprehensive study of shear-free spherically

symmetric spacetimes with charge and heat flux, applicable in various relativistic and cos-

mological studies of gravitating bodies.

In our first study we obtained new exact solutions to the Einstein-Maxwell system of

charged relativistic fluids in the presence of heat flux. Solutions to this highly nonlinear

system were obtained by essentially solving the pressure isotropy condition. A suitable

transformation reduced the master equation to a second order nonlinear differential equation.

We solved the resulting equation by using Lie’s group theoretic approach. The new class of

solutions contains the result obtained by Msomi et al (2011) as a special case.

In our second study, we obtained new generalised classes of exact solutions to the Ein-

stein field equations for a neutral relativistic fluid in the presence of heat flow in a higher
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dimensional manifold. We found solutions to the coupled Einstein system by solving the

higher dimensional pressure isotropy condition which is a second order nonlinear differential

equation. We solved the master equation by making use of Deng’s algorithm (Deng 1989)

and obtained three classes of solutions. These classes of solutions in higher dimensions gen-

eralise the results obtained previously by Bergmann (1981), Maiti (1982), Modak (1984) and

Sanyal and Ray (1984) in four dimensions. The solutions of Deng (1989) are contained in

this new class of solutions.

In chapter 2, we introduced the essential definitions and expressions underlying differen-

tial geometry that are relevant to our study. We generated the Einstein field equations and

the Einstein-Maxwell equations for both a neutral matter distribution and a charged matter

distribution with heat flow in spherically symmetric spacetimes. We provided reasons for

pursuing this project by listing relevant examples from previous investigations.

In chapter 3, we reviewed the relevant ideas underlying Lie’s group theoretic approach

as a technique used for solving differential equations. The aspect of order of reduction was

emphasized as a necessary method that we use in our research. We also highlighted how this

method can be used to solve a differential equation involving one independent variable and

m dependent variables by generalising this approach to suit our problem.

In chapter 4, we aimed at providing exact solutions to a charged shear-free spherically

symmetric model with heat flow. The pressure isotropy condition

V Duu + 2VuDu −DVuu −
V 2

4u
f(u) = 0 (6.1)

was derived. This equation was analysed using Lie’s group theoretic approach. For an
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arbitrary form of charge, we obtained

X1 = D
∂

∂D
+ V

∂

∂V

When f is of the form

f(u) =
c6u

(c2u2 + c3u+ c4)
5
2

exp

[
2c1√

−c23 + 4c2c4
arctan

(
c3 + 2c4u√
−c23 + 4c2c4

)]
we obtained the additional symmetry

X2 =
(
c2u

2 + c3u+ c4
) ∂

∂u
+
(
c1 −

c3
2

)
D

∂

∂D
+ c4V u

∂

∂V

The function f(u) dictated the form of the second symmetry X2. We then used the first

symmetry X1 to obtain new classes of solutions represented by

D = exp

[
±k
∫ (

q′′

2q
+

1

8
q
f(u)

u

)1/2

du

]

where k is a constant of integration and q is the ratio of the gravitational potentials V
D

. This

result means that we can explicitly obtain the exact expressions of the potentials whenever

we are given any ratio of the gravitational potentials for any arbitrary form of charge f(u).

We emphasize that this is a new result that to the best of our knowledge has not been

obtained before. We regain the results of Msomi et al (2011) when f(u) = 0. Using the

second symmetry X2, we reduced the pressure isotropy condition to

rp(p) =
exp(r) [4c1 − 6c3 − c6 exp(r − q) + 8s exp(q)− 4t exp(−p+ q + r)]

exp(r) (4c1 − 2c3)− 4 exp(p)

where, q, r, s and t are functions of p. The integration of this equation is difficult and we

have not established an explicit solution.

In chapter 5, we constructed the model of a shear-free spherically symmetric spacetime

with heat flow defined in a higher dimensional manifold. We derived the Einstein field
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equations from which we obtained the pressure isotropy condition

V Duu + 2DuVu − (n− 1)DVuu = 0 (6.2)

which is a highly nonlinear second order differential equation. We have solved this higher

dimensional equation to provide three classes of solutions. The first class of solution we

obtained was

D1 = 1 V1 = au+ b

This class of solution generalises the one obtained by Bergmann (1981) and Maiti (1982).

The second class of solution we obtained was

V1 = au+ b D2 =
cu+ d

au+ b

This class of solution generalises the results obtained by Modak (1984) and Sanyal and

Ray (1984). It is important to note that both classes of solutions are independent of the

dimension of the manifold. We obtained the third class of solutions as

D2 =
cu+ d

au+ b

V3 =

(
h(t) + j(t)

(
e

ad− bc

(
1− n
n+ 1

)(
cu+ d

au+ b

)n+1
n−1

+ g

))
(au+ b)

We believe that this result has not been found previously and is not contained in models

that appear in the literature. This new class of solution depends on the dimension n of the

spacetime. This class of solution also contains the one obtained by Deng (1989).

Given the success of Lie symmetry analysis in handling (6.1), we intend to apply the

method to the charged analogue of (6.2) in future work.
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