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ABSTRACT

Heterogeneous mixed metal oxides as catalysts have received greater attention in many
valued organic transformations. Such systems were successfully employed for the improvement
of heterocyclic synthetic procedures and to design the green chemistry protocols. Heterogeneous
catalytic processes based on metal oxide catalysts are simpler, highly efficient and eco-friendly
with greater selectivity. Heterogeneous catalysts possess a humber of good characteristics, such
as thermal stability, shape selectivity, acidic or basic nature, non-toxic crystalline solid. In
addition, easy handling and reusability of materials facilitate the introduction of such systems in

the organic conversions.

The synthesis of heterocyclic products through multicomponent reactions (MCRS) has
gained significance the past decade. MCR is a viable synthetic methodology and relies on a
process, where many bonds are formed and broken in a single one-pot reaction. MCRs are
eloguent and eco-compatible and considered as a key aspects of green chemistry. Hence,
considering current legislations and industry needs, heterogeneous catalysis is an ideal option for
one-pot multicomponent synthetic reactions. Heterocyclic systems are ubiquitous in nature and
form an integral part of the chemical research. It has the propensity for applications in the design
of physiological and pharmacologically active substrates. The study of heterocyclic chemistry is
a large field of research within the organic chemistry, due to their proven significance in
biological, pharmaceutical, biochemical and material science. Many natural antibiotics, nucleic
acids, dyes, pesticides, pigments, vitamins, plastics, etc. have heterocyclic rings in their

structures.

New materials using different metals and oxide supports were developed to be used as
recyclable heterogensous catalysts. The scope of the new materials as catalysts was investigated
to design multicomponent synthetic protocols for organic sysntheis, based on green principles.
New protocols using the mixed oxide catalysts were explored to synthesise novel heterocyclic
moieties and reaction conditions were optimised. The details of the catalysts developed and

series of heterocyclic compounds synthesized are as described below:



1. An efficient and facile green method for synthesis of 3-methyl-4-(phenyl)
methyleneisoxazole-5(4H)-one (4a-m) via room temperature reaction of hydroxylamine,
ethylacetoacetate and substituted aromatic aldehydes is designed, using Ag/SiO, as

catalyst with water as solvent.

2. A simple and an efficient method has been established for the one-pot multicomponent
synthesis of pyrano[2,3-d]-pyrimidine derivatives from the condensation of
dimethylbarbituric acid, aromatic aldehyde and malononitrile in the presence of Mn/ZrO,
heterogeneous catalyst with ethanol/water mixture as solvent with short reaction time (1
h).

3. An efficient green protocol for the synthesis of the 2-amino-3-cyano-4H-pyran
derivatives employing a multicomponent one-pot condensation reaction of 5,5-
dimethylcyclohexane-1,3-dione, aromatic aldehyde and malononitrile was designed using
a Ce-V/SiO; heterogeneous catalyst in the of the eco-compatible solvent (ethanol).

4. An efficient, green and facile protocol for synthesis of pyranopyrazole derivatives
through the reaction of aromatic aldehydes, malononitrile, hydrazine hydrate and ethyl

acetoacetate is developed using Ru loaded hydroxyapatite (Ru-CaHAp) as catalyst.

5. An efficient, atom-economical, four-component one-pot reaction method was developed
for  pyrano[2,3-c]pyrazole-3-carboxylates  using  dimethylacetylenedicarboxylate,
hydrazine hydrate, malononitrile and aromatic aldehydes, using a RuCaHAp catalyst.

6. The ceria doped zirconia (CeO,/ZrO,) catalysed synthesis of pyrano[2,3-c]-pyrazoles via
the four-component reaction of malononitrile, hydrazine hydrate, ethyl acetoacetate and

substituted aldehydes is described.

While all the synthesized catalysts were fully characterized by PXRD, TEM, SEM and
BET surface area analysis, the chemical structures of the synthesized organic compounds were
identified and confirmed by *H NMR, *®N NMR, *C NMR, FT-IR and HR-MS spectral data.
The significant advantages offered by the newly developed methods are ecofriendly simple
procedures, mild conditions, short reaction times, recyclable catalyst and good to excellent yields

of products.
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CHAPTER -1

1. Introduction

Catalysis is a process by which rates of chemical reactions are enriched by small amounts
of an extraneous substance, called catalysts [1]. It is estimated that around 90% of all
commercially produced chemicals consume catalysts at some stage in the production
development [2]. Catalysts play a vital role, in a number of areas, including bulk chemicals, fine
chemicals, food processing and energy processing [3], making catalysis a very significant
technology in today’s world. Industrial catalysis is commonly divided into two types,
heterogeneous and homogeneous [4]. Heterogeneous catalysis is wherever the catalyst and the
reactant are in different physical phases, whereas homogeneous is where both are in the same
phase [3]. A large number of industrial processes are heterogeneously catalysed. In general, it is
useful to know the nature of the surface/interface in heterogeneous catalysis [5]. This is
important for assessing the efficiency of the process and even the smallest amount of additives
can poison or promote the reaction in which the catalyst is used. A suitable catalyst can enhance
the rate of a thermodynamically feasible reaction, but cannot change the position of the
thermodynamic equilibrium [6]. The catalytic reaction is a cyclic process. According to a
simplified model, the reactant or reactants form a complex with the catalyst, thereby opening a
pathway for their transformation into the product or products [7]. Afterwards the catalyst is
released and the next cycle can proceed. It is suggested that the phenomenon of catalysis was
first recognized by Berzelius in 1836 [8]. However, some catalytic reactions such as the
production of alcoholic beverages by fermentation or the manufacture of vinegar by ethanol
oxidation were practiced even before that [9]. Production of soap by fat hydrolysis and diethyl
ether by dehydration of ethanol belong to the catalytic reactions that were performed in the 16"
and 17" centuries [10]. Besides Berzelius, Mitscherlich was also involved at the same time in the
study of catalytic reactions accelerated by solids [11]. He introduced the term contact catalysis
which was a term used for heterogeneous catalysis that lasted for more than 100 years. Industrial
production of chemicals relies on catalysts, and catalysis is becoming more and more important

in energy production and pollution control [12].



It is well established that the catalysis field is a critical science for modern industry and
improvements in catalytic processes will increase efficiencies of chemical transformations while
reducing waste and environmental footprints [13]. However, although our understanding of
catalytic processes has expanded in the last few decades, the structure of industrial
heterogeneous catalysts is still relatively simple, mainly constructed of metallic nanoparticles
dispersed on oxide support [14-17]. The simple structure of heterogeneous catalysts thus limits
their scope and excludes the activation of complex reactions [16]. The construction of well-
designed catalysts with an active site in a specific environment will expand the focus of catalysis
research from the nanoscale into the mesoscale, opening up new reaction routes to novel
catalytic transformations.

1.1.1. Importance of heterogeneous catalysis

Heterogeneous catalysts are accountable for a large number of chemical transformations
of fossil fuels such as methane, coal and liquid petroleum into useful products [18,19] and the
impact of catalysis on the United States economy, was stated as “one-third of material gross
national product in the US involves a catalytic process somewhere in the production chain” [20].
The manufacturing of catalysts alone accounts for over $10 billion of sales revenue in four major
sectors, refining, chemicals, polymerization and emission. Globally, approximately 90% of the
chemical practices and 60% of the chemicals produced utilise either heterogeneous or
homogeneous catalysts [21]. The income generated due to catalyst sales is outweighed
enormously by the overall value of the generated products. Examples of such products include
pesticides, antibiotics, cosmetics, polymers, paints, plastics, cleaning products and chemical
intermediates. In 1998, the annual global impact in the area of catalysis on the whole was
estimated to be in excess of $10 trillion [22]. It is likely that currently this figure is even higher.

As heterogeneous catalysis evolved, it has become more apparent that it has a large part
to play in “green chemistry” and thus removing or substantially reducing the pollution and
undesirable by-products from both chemical and refining processes [23]. This means that these
by-products do not end up as either harmful emissions or waste materials that are dangerous and
detrimental to the ecosystems and the environment globally [24].

In heterogeneous catalysis, the phase of the reactants or products and that of the catalyst
is different, making the surface of the catalyst, which is the interface between catalyst and

reactants or products, of great importance [25,26]. The big advantage of heterogeneous catalysts



in contrast to homogeneous catalysts lies in the practical use, namely the simple separation of the
reaction products from the catalyst [27]. However, heterogeneous catalysts are systems that are
often not well-defined which makes it complicated to get a good understanding of the catalytic
mechanism [28]. Heterogeneous catalysts with higher stability and lower loss can improve the
efficiency of reactions, and be recycled and reused without further treatment. Due to these
advantages, the heterogeneous catalysts are used widely in various reactions. The efficiency of
the catalytic process depends to a great extent on the catalyst and its surface properties as well as
the acid/base condition of the surface active sites [29]. The most important factor for an efficient
heterogeneous system is the choice of catalysts; currently the catalysts that are most studied
include metal oxides, and metals or metal oxides on supports.
1.1.2. Structure and properties of supported metal catalysts

An important group of heterogeneous catalysts is the group of supported metal catalysts,
generally containing small metal particles dispersed over a porous support [30]. The metallic
component is the catalytically active component of the catalyst. The transition metals like Co,
Fe, Ni, Mn, Rh, Ru, Ag, Au, Cu, Zr and V are of great importance [30] as they catalyze
oxidation, dehydrogenation, hydrogenolysis, cyclization, aromatization and isomerization
reactions [31,32]. Metal dispersion can be expressed as the ratio of metal atoms on the surface to
the total number of metal atoms, which enhances surface area and hence the catalytic activity
[33]. The supports, such as silica, magnesia, zirconia, alumina, and phosphates have large
surface areas and provide anchoring sites for the metal particles [34]. In general, the noble metals
show better catalytic activity than transition metals. However, the transition metals are relatively
inexpensive, has higher thermal stability, and moderate mechanical strength, which is why it is
widely used in catalysts [35-37]. The support further provides the mechanical strength of the
catalyst. The supports can also contribute to the catalytic activity and selectivity of the catalyst
[38]. Indirectly, it works as a structural promoter of the active sites of the metallic component via
the so-called metal-support interaction [39]. Directly, it can supply active sites itself in a bi-
functional catalyst used in various reactions.
1.1.3. Bimetallic catalyst

The performance of a catalyst can often be improved if one is able to optimize the
electronic and geometric properties thereof [40]. The development of bimetallic catalysts is one

way to improve the catalyst activity, selective and/or stability [41]. Until the end of the 1960’s



the development of bimetallic catalysts was strongly stimulated by the rigid band theory that
describes the electronic properties of alloys [42]. In the rigid band theory a uniform valence band
structure was assumed for transition metals and it was believed that by mixing two metals a
different degree of occupation of the valence and charge bands was occupied to an intermediate
level [43]. This was found to be incorrect through measurents of metals and alloys. Moreover, in
the metal band approach the global structure of metals (the electronic band structures) is mainly
taken into account while it is expected that the local structure is of greatest important in
heterogeneous catalysis.

Nowadays the important of geometric properties of bimetallic catalysts is emphasized in
the undetstanding of the catalyst [44]. The surface composition of a bimetalic catalyst strongly
influences the size composition and number of specific particles [45]. In this way it influences
the type and number of active sites (ensemble effect). In alloys (e.g Cu-Ni, Au-Pd, Au-Pt) with
an active and “inactive” constituent, the active component is diluted by the inactive component
reducing that ensemble size of the active component [46]. This supresses for example
hydrogenolysis reactions that require a relatively large ensemble size, but does not influence
(de)hydrogenation reactions since only one metal surface atom is involved in the catalyst process
of these reactions [47]. The introduction of anthor metal in a supported metal catalyst may lead
to a change in the poisoning of the catalyst by carbon or sulfur deposists during hydrocarbon
reactions [48]. An increase in poisoning of the catalyst can be responsbile for an increase in
selectivty for reactions proceeding over small ensembles (self poisoning effect) [46-48]. A
decrease in poisoning can be responsble for a longer lifetime of the catalyst. For example, a Pd-
Pt catalyst used in hydrogenation reactions have a higher tolerance of poisoning compounds
containing sulfur and nitrogen than the monometallic catalysts. The second metal can also work
as a kind of “glue” or barrier, anchoring particle to the support and preventing them from
sintering.

1.1.4. Metal supported interaction

Metal-support interaction is a collective noun for interface phenomena which result in the
catalytic properties of the metal particles being modified by the support material [49,50].
Analogous to the early studies on bimetallic catalyst, (delocalized) electronic effects were
supposed to be dominant in metal-support interaction that influence catalytic properties, as put

forward by Schwab and Solymosi and their co-workers in the late 1950’s and 1960°s [51,52].



Nowadays, metal-support interaction is more believed to relate to processes such as wetting,
sintering encapsulation or other morpological changes of metal particles induced by the support,
diffusion of the metal into the support, spillover of adsorbates form metal particles, etc [53].

Tauster et al. introduced the term strong metal support interaction after observing a large
surpression of hydrogen and carbon monoxide chemisorption on transition metals dispersed over
titania and a number of other reducible oxides after reduction at 500 °C [54]. During this
treatment, the support is reduced by spilllover of hydrogen from the metal [55]. The
chemisorption capacity can be restored by oxidation treatments [54,55]. Several explanations
have been given such as morphological effects, alloy formation, or electron transfer between the
support and metal [56]. The bulk of the evidence that has been gathered indicate that the metal
particle are decorated by reduced titania species masking the metal particle for chemisoption
[57].

The behaviour of metal-supported interface is in a certain way comparable with that of
the metal-gas interface [58]. It can be said that the metal component not only acts as a catalyst in
the interaction with adsorbates, but also as a catalyst or reactant in the interaction with the
support [59]. In this way, the metal can be modified for interaction with adsorbates due to the
interaction with the support, which results in modified catalytic properties.

1.1.5. Synergetic effects in heterogeneous catalysis

The basic properties of the supported metal catalyst such as particle size and composition
strongly influence the catalytic performance. It is not trivial to establish the relation between
properties and performance of the catalyst because of the heterogeneity of the catalyst and
because the various properties often depend on each other. For example, there is a long term
debate whether Cu® or Cu” sites on the surface of the Cu/ZnO catalyst are the active sites for the
methanol synthesis from synthesis gas. A linear correlation between the Cu® metal area and the
catalytic activity was found [60], however it was mentioned by the author that the presence of
CO, also results in the presence of a constant fraction of oxidized Cu. Thus, the linear
correlation between Cu® and activity also represents a linear relationship between Cu® and
activity.

Model systems have been used to make a systematic study possible. For example, the
influence of atom size on hydrogen and deuterium chemisorption has been studied on naked gas-

phase transition-metal clusters of 1-25 atoms in a fast-flow reactor using photoionization mass



spectrometry. Whetten et al. found that the reactivity of the gas-phase metal clusters exists
between reactivity and cluster ionization [61]. Xu et al. prepared supported Ir, and Irg clusters
from organometallic precursors and found that the size dependency of the catalytic possessions
of the supported clusters is consistent with the observations of unique reactivites of size-selected
gas-phase metal collections [62].

When a change in catalytic performance of technical metal catalysts is observed for
catalyst with different metal particle sizes, it may point to a particle size effect [63]. However, it
cannot always be excluded that other effects are responsible for the change in catalytic
behaviour, because properties such as metal-supported interface may change simultaneouly when
changing the particle size.

The discussion above might give the impression that all catalytic reaction are very
sensitive to the structure of the catalyst. However, as pointed out by Boudart, also structure
insensitive reactions exist (e.g. hydrogenation of hydrocarbons, oxidation of carbon monoxide,
hydrogen-deuterium exchange) which are independent of particle size, structure etc [64].

1.1.6. Preparation of supported metal catalyst

In the past, useful catalysts were often prepared by “trial and error” and nowadays much
more attention is paid to the chemistry of preparing catalyst to the structure and properties of
supported metal catalysts that result in an optimum catalytic performance. One of the successful
preparation methods is to distribute the active (and often expensive) metallic phase over the
surface of the support in a highly dispersed form to maximize the activity per weight of active
compound (and minimize the costs). Although it is possible to deposit a metal directly from the
vapour phase onto the support (as has been used to prepare model catalysts), the common
industrially important preparation methods are multistep processes consisting of distribution,
calcination, and activation steps. The choice of the precursor and the conditions of distribution,
calcination, and activation steps determine the basic properties of the catalyst such as metal-
support interaction, particle size etc.

1.2. Heterogeneous catalysis in green chemistry

It is generally recognized that the ultimate goal in catalytic studies is to be able to
develop a detailed understanding of the catalyst systems to allow tuning of the design of
nanoscale materials to create new heterogeneous catalysts and thus green catalytic processes

[65]. One of the major issues in this area is catalyst performance, which is affected by shape,



size, composition and structure of the active ingredient as well as the support material used.

There are four major classes of organic reactions in which heterogeneous catalysts are used;

dehydrogenation, alkylation, hydrogenation and selective oxidations [66].

The first of this reaction type, dehydrogenation is a well-known approach for generation
of simple and stable aldehydes and ketones as these reactions are reversible [67]. Alkylation
reactions [68] are important for the production of gasoline that meets current stringent
environmental standards and so researchers are seeking to develop solid-catalyst processes for
alkylation technology [69,70]. Hydrogenation reactions [71-73] are commonly used in the food
industry to make spreads and margarines from liquid oils and so are vital to this industry. Finally,
selective oxidations [74,75] are extensively used in organic synthesis for the formation of many
important compounds and intermediates to branch in other areas. However, a great deal of these
selective catalytic oxidations relies on the use of high valence bimetallic catalytic systems
[76,77]. In recent times, the use of supported metal systems has been highlighted in the literature,
which includes some initial studies using carbon nanotubes as both catalysts in their own right
and as supports for heterogeneous catalysts [78,79].

1.2.0 The principles of green chemistry
It is vital to understand why the work that follows is designed to adhere to the principles
and so at this point, they are listed in a reworded shortened version for information
purposes [80].

1.2.1. Prevent waste: Design of processes to prevent waste, thus leaving no waste behind that
requires treatment.

1.2.2. Maximize atom economy: Design processes that leaves the final product incorporating
the maximum amount of raw material used to make it.

1.2.3. Design less hazardous chemical syntheses: Design processes that require the use of
little or wherever possible no toxic substances that could be detrimental to human health
or the environment.

1.2.4. Create safer chemicals: Design products that are fully effective and minimize or
eliminate toxicity.

1.2.5. Use safer solvents: Create processes that use environmentally friendly substances such

as water as solvents or separation agents.



1.2.6. Design for energy efficiency: Work at ambient temperature and pressure whenever
possible.

1.2.7. Use renewable feedstocks: Use renewable raw materials and feedstocks wherever
possible instead of depleting non-renewable materials.

1.2.8. Reduce derivatives: Avoid or minimize the use of protecting and blocking groups in
reactions as they often require additional reagents and generate waste.

1.2.9. Use catalysts instead of reagents: Use catalytic reactions that use small amounts of
material and thus minimize waste.

1.2.10. Design for degradation: Design chemical products that break down into harmless
materials that do not remain in the environment.

1.2.11. Prevent pollution in real time: Monitor and control the process to minimize or eliminate
the formation of hazardous by products.

1.2.12. Minimize the potential for accidents: Design chemicals and processes that minimize
the potential for accidents such as explosions, fires and toxic releases into the
environment.

The primary aim of this work is to follow as closely as possible to the twelve principles
of green chemistry across the entire process from manufacture of the catalysts right through to
the testing of them in reactions that are challenging to carry out in an environmentally benign
manner.

1.3. Multicomponent reactions
Recently, multi-component reactions (MCRs) earned prominence as a great synthetic tool

for the formation of structurally combined molecular frameworks with attractive biological

structures [81,82]. The entire procedure usually relies upon the formation and breaking of
numerous C—C and C-heteroatom bonds in one-pot [83]. MCRs proposes significant benefits
comprising easy handling, convergence, shorter reaction times, higher chemical vyields,
reduction in the quantity of extraction, minimization of the requisite reagents and purification
stages, thus minimizing the quantity of waste generation, rendering the chemical transformations
green and environment friendly [84-86]. These reactions are also valuable for the convenient
generation of chemical libraries of biologically active compounds with impressive diversity and
high levels of molecular complexity, thus contributing towards the optimization and

identification of prospective compounds in drug discovery and pharmaceutical programmes



[87,88]. Consequently, designing new MCRs toward the synthesis of novel heterocyclic
compounds from simple and readily accessible feedstock with green processes has huge
significance, particularly in the areas of organic synthesis and drug discovery [89]. Though there
are reviews describing the main MCR approaches applied to the synthesis of a great diversity of
heterocycles like isoxazole, pyrroles etc., the use of MCRs in the synthesis of five, six and fused
cyclic nitrogen-containing heterocycles has hardly been reported [90]. The current work is aimed
at presenting recent, MCR methodologies to access these heterocycles in one-pot.

The history of MCRs date back to at least 1850, when the Strecker three-component
reaction of amino cyanides from carbonyl compounds, ammonia and hydrogen cyanide has been
reported [91]. In 1882, the reaction proceeded to the Hantzsch synthesis of symmetrical 1,4-
dihydropyridines by the reaction of aldehydes, amines and p-ketoesters [92]. In 1917, Robinson
accomplished the total synthesis of the alkaloid tropinone by using a three-component strategy
based on Mannich-type reactions [93]. This reaction is the oldest application of MCRs in natural
product synthesis [94]. The Passerini reaction described in 1921 is considered as the first
isocyanide based MCR and over the years this reaction has become increasingly important and
has been highlighted [95]. Another classical MCR which leads to amino acids is the Bucherer-
Bergs reaction, which was first reported in 1929 [96]. This reaction is closely related to the
Strecker reaction, with CO; as the fourth component. The Biginelli dihydropyrimidine synthesis
(1891), Mannich reaction (1912) and Ugi four component reactions (U-4CR) (1959) are the other
three very important MCRs useful for multipurpose synthetic processes. In recent years, many
novel MCRs- including Michael addition-initiated three component domino sequences,
Knoevenagel/hetero-Diels—Alder-based MCRs [97], radical chain MCRs [98], transition metal-
catalysed Pauson—Khand MCRs [99], as well as Petasis MCRs [100], have been added to the
chemist’s synthesis toolbox and successfully applied to all fields of organic synthesis. Some
recent examples depicting elegant developments in the catalytic construction of various
heterocycles are discussed in the following sections.

1.3.1 Passerini reaction:

MCRs that involve isocyanides as starting materials, named after Mario Passerini are by

far the most versatile reactions in terms of available scaffolds and numbers of accessible

compounds [101]. The oldest among this category is the three-component Passerini MCR, which



involves the reaction between an aldehyde, an acid and an isocyanides to obtain o-

acyloxycarboxamides in one step (Scheme 1).
HO R3 R4
\

>=o + 0=<-|— R,—NC ——>» /N .

3
R, R, H

Scheme 1: General scheme for the Passerini reaction

Adib et al., have described interesting new variants of the Passerini-3CR [102]. The
reaction of aldehydes, carboxylic acids and isocyanides led to the final products, which cyclized
on treatment with NaHCO3 in a one-pot procedure at reflux condition. These authors obtained
the substituted a-acyloxyamides in medium to good yields (Scheme 2).

H OH 0
>=o + 0=<+ R;—NC > R, (¢ R;
N
(o R

Scheme 2: Synthesis of substituted a-acyloxyamides

1.3.2. The Biginelli reaction:

The Biginelli reaction was named by the Italian chemist Pietro in 1893, the reaction of an
aldehyde, ethylacetoacetate and urea gave 3,4-dihydropyrimidin-2(1H)-ones (Scheme 3) [103].
The synthetic potential of this particular condensation remained unexplored until the beginning
of the 1980s.

Zhou and co-authors recently reported multicomponent Biginelli reaction catalysed by
Bronsted acidic ionic liquid [C3SO3sHDoim]HSO,4. The condensation of cyclopentanone with
aromatic aldehydes and urea provided the corresponding pyrimidinones in good to excellent
yields (up to 96%) under solvent-free condition (Scheme 4)[104].
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Scheme 3: General scheme for the Biginelli reaction
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Scheme 4: Preparation of pyrimidinones
1.3.3. Strecker reaction

The oldest known multicomponent reaction was reported in 1850, for the preparation of
a-amino acids, which known as the Strecker reaction. The Strecker reaction involves the
condensation of an ammonia, aldehyde and cyanide group followed by the hydrolysis of the
resulting a-amino nitrile (Scheme 5) [105]. The resulting a-amino acids have found application
in pharmaceutical industries; they have significant widespread use in the field of chemistry and

biology, as they are predecessors for the preparation of proteins and chiral building blocks.
R NHR,

MCM-41-SOzH

O + R,m—/NH, + TMSCN S » R

R, R1

CN

Scheme 5: Strecker reaction of carbonyl molecules and amines with TMSCN (trimethylsilyl
cyanide) catalysed by MCM-41-SO3H

Ghafuri and Roshani (Scheme 6) developed a very efficient synthesis protocol for
derivatives of a-aminonitrile scaffold. A reaction of aldehyde, aniline and TMSCN in ethanol

solvent at RT with aqueous formic acid as a catalyst lead to formation of a-aminonitrile as solids
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in 1 h. Products precipitated from the reaction mixture, thus avoiding the need for

chromatography [106].
CHO NH,
|l
N S'/ Formic acid (aq)>
| /\/R + + N/// '\ EtOH, rt | N
X
R

Scheme 6: Synthesis of a-aminonitrile derivatives
1.3.4. Hantzsch reaction
1,4-Dihydropyridine derivatives (1,4-DHPs) are a significant class of biological active
molecules and are also working as biomimetic reducing agents. These classes of compounds are
generally accessible by use of Hantzsch reaction, which was reported in 1882 [107]. The
multicomponent reaction consists of aldehyde, ethylacetoacetate and ammonium acetate to form

dihydropyridine, which gets oxidised to form a pyridine derivative (Scheme 7).

R4 R4

Rq

o 0 0
NH, Catalyst
S O e
Rl H R2 R3 O/
R3 lil Rs
R>

Scheme 7: General scheme for the Hantzsch reaction
A reaction of methyl acetoacetate, ammonium acetate and aromatic aldehydes was used
for the one-pot multicomponent synthesis of functionalized 1,4-dihydropyridines (Scheme 8).
Mn and Ce oxides under solvent-free conditions catalysed the reaction. The yields were good
(69-87%) in the case of the benzaldehydes, both with electron withdrawing and electron donating

groups [108].
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Scheme 8: Synthesis of functionalized 1,4-dihydropyridines
1.3.5. Mannich reaction
The Mannich reaction [109-111] is a conventional process for the synthesis of f-amino
ketones and aldehydes and it involves the multi-component reaction between an amine,
enolizable CH-acidic carbonyl compound and aromatic aldehyde (Scheme 9). It is anticipated
that methylene iminium salts are formed in tiny amounts, by a series of equilibria. Carl Mannich

discovered the Mannich reaction in 1917.

R R»
R R N/
O 4 3 @) ~
/N\ + + \\
Ry R, -H,0

Scheme 9: General scheme for the Mannich reaction

Reddy et al., via Mannich reaction (Scheme 10), have reported synthesis of a series of
novel alkylaminophenol derivatives. The target compound was synthesized through Petasis
borono—Mannich reaction using secondary amines, o-hydroxy aldehydes and various boronic
acids in the presence of a biopolymer catalyst such as chitosan under 1,4-dioxane solvent under
reflux [110].

HO\ 5 /OH OH Cl
OH §
Chitosan
N
CHO (@)
Cl

(@]

Scheme 10: Synthesis of substituted quinazolinone derivatives
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1.3.6. Kabachanik reaction

The Kabachanik reaction is a multicomponent reaction between an amine, a carbonyl
compound and dialkyl phosphonate to form a-amino phosphonate (Scheme 11). Kabachnik and
Fields discovered the reaction in 1952 and used in the synthesis of anti-inflammatory drugs
[111].

O O\
N\ R \ [
/IL\ + )k + >P< 4 > N T OTR
Rl H R2 R3 H O/RS 'HZO R{ R Cl)H
2

Scheme 11: General scheme for the Kabachnik-Fields reaction
Recently, Ghafuri et al. reported a nanomagnetic sulfated zirconia catalysed Kabachnik
reaction of a-aminophosphonates using aromatic aldehydes, anilines and dimethyl phosphite
carried out in absence of solvent at 80 °C (Scheme 12). Like many other heterogeneous catalysts,
Nano-Fe;0,@Zr0,/SO,*, an acidic catalyst offers many benefits including easy workup, short
reaction times, high activity and yields, plus easy separation and reusability environmentally
benign reaction conditions [112].

H R ﬁ
N\ /= ~Me  Fe0,@Zr0,/S0% \
;L +)k+\P 3 N P—OMe
7N /" \__Me solvent-free, 80 °C / |
R,  R; OMe
Scheme 12: Synthesis of the substituted a-aminophosphonates

1.3.7.  Ugi reaction

The Ugi reaction denotes one of the highly powerful reactions in MCRs with broad
spectrum of applications [113]. First described in 1959, the Ugi-4CR describes the one-step
creation of peptide-like structures by combining a carbonyl compound, a carboxylic acid, an
amine and an isocyanide (Scheme 13). The Ugi reaction takes only a few minutes to complete
due to the exothermic nature of the reaction. Three-component and four-component reactions (3-

CR and 4-CR) are possible with Ugi arrangement.
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Scheme 13: General scheme for 4-component Ugi reaction
Yuan et al. [114] described a facile, multi-component reaction involving condensation of
methyl 2-formylbenzoate, amine, isocyante and carboxylic acid at room temperature in the
presence of NaOEt to obtain a series isoquinoline-1,3(2H,4H)-diones with good to excellent
yields (Scheme 14).

N
COOMe R, 0
NC NaOEt
+ Ry—NH, + FI{ + )—0 |
2 ~
CHO HO R,
0

Scheme 14: Synthesis of the isoquinoline-1,3-(2H,4H)-diones

1.3.8. Petasis reaction

Allylic amines are widely used as building blocks in synthesis of variety of organic
compounds with wide range of biological activities. Petasis et al., in 1993 have reported the
efficient method for synthesis of allylic compounds using a modified Mannich reaction, where
vinylboronic acids served as the nucleophilic component [115]. This new and mechanistically
distinct three component reaction that combines amines, aldehydes and vinylboronic or
arylboronic acids is referred to as the Petasis boronic acid-Mannich reaction or Petasis three-

component reaction (Petasis 3CR, Scheme 15) [116].

O OR R, Rs
N+ )k + - \N—éR
N
RZ/ Rl /B\ / 4
R4 R3 R5 OR R2 R3

Scheme 15: General scheme for the Petasis reaction
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1.3.9. Gewald reaction

In 1966, the German chemist Karl Gewald discovered the reaction that lead to the
formation of 2-aminothiophenes called the Gewald reaction [117]. The Gewald reaction involves
the condensation of an aldehyde or ketone, a-cyanoester in the presence of elemental sulfur and a
base to afford a poly-substituted 2-amino-thiophene. Following this reaction, multi-substituted 2-
aminothiophenes were successfully synthesized. These compounds are used to produce bioactive
drugs that are useful in pharmaceutical industry (Schem 16) [118]. The Gewald reaction was
used to synthesize anti-inflammatory drugs, such as acetone-1-(2-amino-5-isopropyl-thiophene-
3-carbinitrile derivatives, thieno-[2,3-d]-pyrimidine derivatives, 5-ethyl-2-amino-3-pyrazolyl-4-
methylthiophenecarboxylate and 2-thioxo-Ns-aminothieno-[2,3-d]-pyrimidines [119,120].

@)
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| :
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l/ﬁ( 4 on N ., / \
O
Ry S
O
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Scheme 16: Synthesis of multisubstituted 2-aminothiophenes
1.3.10. van Leusen reaction
The Dutch chemist, van Leusen discovered tosylmethylisocyanide and subsequently
investigated the reactivity and synthetic perspectives offered by this multifunctional reagent
[121]. The chemistry of tosylmethylisocyanide is diverse, because of its acidic character, the
reactivity of the isocyano function towards nucleophiles and electrophiles and the leaving group
ability of the sulfone is of interest (Scheme 17).

SN R,

\i/ + R,—CHO +|L base g / )
R, 3 R T

Scheme 17: General scheme for the van Leusen reaction
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1.3.11. The Asinger reaction

The reaction to form 3-thiazolines was named after Friedrich Asinger. Asinger, an
industrial organic chemist discovered the reaction for the synthesis of 3-thiazolines in 1956
[122]. The 3-thiazoline derivatives were formed from a monothiolation and subsequent a-amino
alkylation followed by ring closure with elimination of water (Scheme 18). Asinger and his team
also confirmed that the derivatives of 3-thiazolines are possible.

Ry
Rz R, O —N
HSH-F )J\ TNHTS " XRS
-2
R, OR{ 'R Rs > Ry

Scheme 18: General reaction of the Asinger reaction

1.3.12. Groebke-Blackburn-Bienaymre (GBB) reaction

Groebke (from Switzerland), Christopher Blackburn (Cambridge in USA), and Hugues
Bienayme (from France) all independently reported the (GBB) reaction for the first time in 1998.
GBB reaction involves an aldehyde reacting with aminoazine and an isonitrile in the presence of
a suitable catalyst (generally a Lewis acid or Bronsted acid), this produces a highly substituted
and fused imidazole derivative (Scheme 19). The GBB reaction is classified as a four-center,
three component reaction and has found application in the drug discovery research industries
[123,124].

CN
o) H
JA

N
CN N NH

O+ +> - —
HN s N HN

Scheme 19: Synthesis of imidazo[1,2-b]pyrazoles via GBB reaction.
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1.3.13. The Bucherer-Bergs reaction
In 1934, Bucherer and Bergs discovered a method for the synthesis of hydantoins, their
method involved a one-pot procedure, where the reacting compounds were hydrogen cyanide,
aldehydes or ketones, ammonia and carbon dioxide, the product formed could be easily
transformed following hydrolysis to form a-amino acids (Scheme 20) [125].
0O
0

)J\ + HCN+ (NH,),CO; »  HN NH
Rl R2

Scheme 20: The Bucherer-Bergs multicomponent synthesis of hydantoins

1.4. Synthesis of catalyst assisted hetero nucleic compounds

Nitrogen and oxygen containing heterocyclic compounds has attracted considerable
attention due to their wide range of physicochemical and pharmacological properties [126,127].
Heterocyclic molecules offer a high degree of structural variety and are proven to be useful as
therapeutic agents [128]. New and more efficient and sustainable synthetic routes continuously
replace the conventional preparation methods for heterocycles [129]. The development of
environmental, practical, and economical procedures for the preparation of heterocyclic
compounds continues to be a challenging area for organic chemists [130,131]. One-pot synthetic
pathways are remarkably advantageous to access diversely functionalized molecules which are
useful as fine chemicals, chiral catalysts, ligands, drug candidates and drug intermediates [130-
132]. One-pot reactions for the synthesis of heterocyclic compounds have been extensively
studied [132-134]. In comparison to multi-step synthetic procedures, these reactions are highly
economical to construct varying substituted molecules in just one reactor by avoiding the
separation and purification of intermediates. Transition metal catalysed one-pot reactions are
well-established approaches for the synthesis of heterocyclic compounds [135,136]. This will
certainly increase the interest of heterogeneous catalysed one-pot reactions in the near future.

Heterocyclic chemistry, which forms the major division of conventional organic
chemistry, is a challenging and interesting arena. [137]. Majority of pharmaceuticals [138],

biologically active agrochemicals [139], additives and modifiers used in industrial applications
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are heterocyclic in nature [140,141]. A large number of alkaloids derived from heterocyclic
molecules are used as drugs [141]. Thus, pharmaceutical and agrochemical industries have made
rapid and significant progress develop suitable heterocyclic compounds for the benefit of
humankind [142]. The attractive feature of heterocyclic chemistry is the scope and provision to
vary the core scaffold with innovative substitutions and variations. Among different
heterocycles, the chemistry of nitrogen and sulfur containing heterocycles has undergone
remarkable advances in the last couple of decades, ever since their initial use in agriculture
commenced [143-145]. The pesticidal, potential chemotherapeutic, fungicidal and antiviral
properties have been the reasons for the upswing in the interest and development of these
heterocyclic compounds in general and pyrazoles, pyrans and isoxazoles in particular.
1.4.1. Isoxazoles

Nitrogen containing five membered heterocyclic compounds with an oxygen atom in the
ring are considered vital class of compounds in pharmaceutical and medicinal chemistry because
of their varied biological uses [146]. The exploitation of a simple molecule with diverse
functionalities for the synthesis of heterocyclic is a worthwhile contribution in the organic
chemistry [147]. Isoxazole is a five membered heterocyclic compound containing oxygen and
nitrogen atoms in side-by-side positions. The core ring system, isoxazole is historically old and
an isolated compound, but not identified until 1888 [148]. Isoxazoles have an illustrious history
and named as “monazole”, their chemistry is associated with Ludwig Claisen, who first
recognized the cyclic structure of 3-methyl-5-phenylisoxazole in 1888. Isoxazoles are known to
possess aromatic resembling properties under basic conditions [149]. This is a vital class of
heterocycles, which are largely employed in the area of pharmaceuticals and therapeutics such as
insecticidal [150], antibacterial [151], anti-tumor [152], antifungal [153], anti-tuberculosis [154]
and ulcerogenic compounds [155]. Isoxazole derivatives are used in the market as COX-2
inhibitor and anti-inflammatory drugs [156,157. Isoxazole derivatives such as sulfamethoxazole,
sulfisoxazole, oxacillin, cycloserine and acivicin have been in commercial use for many years
[157]. Cycloserine is the best known antibiotic drug that possess anti-tubercular, antibacterial
activities and in treatment of leprosy. Due to their potential applications in several fields
including agriculture, and scope for synthesis of varied compounds with distinct properties,

isoxazoles have been comprehensively investigated.
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Iranpoor and co-authors described the use of a phosphine and copper-free palladium as a
heterogeneous catalyst for the synthesis of isoxazole derivatives (Scheme 21) [158] via
Sonogashira carbonylative coupling reaction. Under heating conditions, the reaction required one
equivalent of base to confirm high reaction rates. However, the reaction could be carried out
quantitatively at 70 °C in 5 h with excellent yields.

O—N

Cr(CO)
Ph—I + Ph——=—= + NH,OH.HCI — A)\
ph N Ph

Scheme 21: Synthesis of the isoxazole derivatives

Liu et al., have reported that sodium sulfide (Na,S) is an excellent catalyst for the
preparation of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones in ethanol solvent. When the
reactions were performed with hydroxylamine hydrochloride, various aldehydes and ethyl
acetoacetate at RT of ethanol, the corresponding target products were obtained in excellent yields
between 63-81% for 1-2.5 h (Scheme 22a) [159]. The same authors have improved a convenient
and efficacy synthesis of isoxazole derivatives by the condensation of hydroxylamine
hydrochloride, ethyl acetoacetate and aromatic aldehydes in aqueous solvent under sodium

silicate pentahydrate as an efficient catalyst conditions (Scheme 22b) [160].

H4G Na,S.9H,0
0 ORIt 20a) —N
+ NH,OH.HCI + ArCHO \
© Sodium silicate 7 | o
EtO water, rt (22b) Ar

Scheme 22: Synthesis of the 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones
The titanium-catalysed regioselective synthesis of 3,4-disubstituted isoxazole derivatives
have been reported by Dissanayake and Odom. (Scheme 23) [161]. A direct coupling reaction of
cyclohexylamine, aniline, tert-butylisonitrile and hydroxylamine was used for the synthesis of
isoxazoles, avoiding the use of organic catalysts. Microwave heating has shown enhancement in

reaction yields over conventional heating.
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Scheme 23: Synthesis of the 3,4-disubstituted isoxazole derivatives
Ablajan and Xiamuxi reported the one-pot, multicomponent reaction of hydroxylamine,
aromatic aldehydes and methyl 4-methyl-3-oxovalerate to produce 4-arylmethylidene-3-
isopropylisoxazol-5-ones under ultrasonication in the presence of pyridine catalyst, in good to
excellent yields [162] at RT condition. These approaches have some benefits towards green

methods and good target product yields (Scheme 24).
(H3C)-HC CHAr

” + |+ Pyridine » /
(H3C);HC—C—CH,—C—OR; NH,OH.HC ArCHO vater N\O 5

Scheme 24: Synthesis of the 4-Arylmethylidene-3-isopropylisoxazol-5-ones derivatives

Bharate et al., have developed a simple eco-friendly multicomponent one-pot synthetic
procedure for novel 3,5-disubstituted isoxazoles (Scheme 25) [163]. The products were prepared
in good yields from aromatic aldehyde, hydroxylamine hydrochloride and N-chlorosuccinamide
in the presence of montmorillonite clay supported Cu(ll)/NaN; catalytic system under green

solvent conditions with good yields.

@) R,
| | Clay-Cu(ll
N—cCI| + NH,OH.HCI+ R;CHO + yt o ) N/ \
r
R, o R2
(@)

Scheme 25: Synthesis of the novel 3,5-disubstituted isoxazole derivatives
Farjam and Arab-Salmanabadi have discovered the novel highly substituted isoxazole
derivatives by using this multicomponent reaction via an intramolecular Wittig reaction (Scheme
26). This was performed using dialkyl acethylenedicarboxylates, triphenylphosphine and 3,4-
dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine in the presence of DCM solvent at RT conditions
[164].
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Scheme 26: Synthesis of novel highly substituted isoxazole derivatives
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Saikh and co-workers have established a highly efficient synthetic protocol for synthesis
of 3-methyl-4-arylmethylene-isoxazole-5(4H)-ones using sodium acetate as a promoter and a
visible light induced one-pot reaction involving ethyl acetoacetate, hydroxylamine hydrochloride

and aromatic aldehydes in the presence of aqueous ethanol as solvent (Scheme 27) [165].

H3G
O O—N

CH;COONa/ag. ETOH \
+ NH,OH.HCI + ArCHO — >

° |
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Scheme 27: Synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-one derivatives
Soleimani and co-workers described a novel atom-economy protocol to give access to
spiro-3-bromo-4,5-dihydroisoxazoles in 59-84% yield. They studied the scope of the process by
employing various aldehydes, barbituric acid and dibromoformaldoxime. The reaction succeed
via [1,3] dipolar cycloaddition at RT under THF solvent conditions (Scheme 28)[166].

I i
X X
X\N)kN/X HO\ \N N/
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N
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Scheme 28: Synthesis of spiro-3-bromo-4,5-dihydroisoxazoles
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An efficient, atom-economic approach for the preparation of a new series of 3,5-
disubstituted-1,2-isoxazoles was designated by Bassaco and co-authors through a consecutive
one-pot, three-component condensation reaction of easily available symmetric or unsymmetric
1,3-diyne-indoles with hydroxylamine (Scheme 29). The reaction was accomplished in the
presence of PEG-400 with TEA at RT in DMF solvent to yield the products in moderate to good
yields [167].

O—N
PEG-400 \
R—=————=——R, + NH,OH.HCI ? O/K)\Rz

R4

Scheme 29: Synthesis of a new series of 3,5-disubstituted-1,2-isoxazoles
Mirzazadeh and Mahdavinia revealed that DABCO could be an efficient catalytic system
for this MCR and achieved the synthesis of novel 4-arylidene-3-phenylisoxazol-5-ones via a one-
pot reaction of aromatic aldehydes, ethyl benzoylacetate and hydroxylamine in ethanol solvent
under reflux condition (Scheme 30). This method presented the advantages of a simple, clean
atom-economic, under mild conditions, with short reaction times, and low environmental impact

and high yields [168].
Ph
@) —N
DABCO \
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Scheme 30: Synthesis of a new series of 4-arylidene-3-phenylisoxazol-5-one derivatives

Kiyani and Ghorbani proved that potassium hydrogen phthalate (10% KHP) as a catalyst
and water as a solvent system may act as a very suitable medium for the synthesis of 3,4-
disubstituted isoxazol-5(4H)-ones by using ethyl cyanoacetate, aromatic aldehyde and
hydroxylamine as a starting material (Scheme 31). The process is a facile, straightforward
method for synthesis of a variety of pyranannulated compounds, isoxazol-5(4H)-one-containing
heterocycles and Knoevenagel adducts. The reaction is safe, uses mild conditions, and is
environmentally benign. Other notable advantages are reuse of the catalyst, no use of hazardous

organic solvents, and ease of work-up [169].
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Scheme 31: Preparation of 3,4-disubstituted isoxazol-5(4H)-ones

1.4.2. Pyrazoles

A five membered cyclic diene consisting of three carbons and two nitrogens where the
two heteroatoms are in adjacent position are known as a pyrazole. Knorr synthesized the first
pyrazole derived compound, which steered path to the discovery of antipyrine and other
derivatives [170]. Antipyrine was the first pyrazolone derivative in 1884, employed to treat pain,
inflammation and fever [171]. The common structure of pyrazole is described in Figure 1.
Pyrazoline was first reported in 1894 by Curtius and Wirsing through the spontaneous reaction of
acrolein with hydrazine (Eqgn.1) [172]. Pyrazoles are one of the most significant heterocyclic
molecules. They are prepared as the main structure in a large diversity of molecules that display
an important role in medicinal and pharmaceutical research, with activities such as antibacterial,
antifungal, antitumor, antipyretic, anti-diabetic, anti-inflammatory, analgesic, anti-
hyperglycemic, antineoplastic, anti-oxidant, anti-tubercular and anti-depressive activities [173-
175]. Further, substituted pyrazole derivatives are used as interesting templates for combinatorial
chemistry [174]. Moreover, these derivatives are found in a broad range of agricultural and
industrial applications [176]. Several pyrazole derivatives have been successfully synthesized
and the following are a few among the numerous methods that reported on the one-pot synthesis
of pyrazoles.

Heravi and co-workers described, a facile and an efficient method for the synthesis of
1,4-dihydropyrano[2,3-c]-pyrazole derivatives via a multi-component, one-pot condensation of
aldehydes, malononitrile and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one in the presence of
catalytic amounts Preyssler type heteropoly acid with aqueous solvent at reflux conditions
(Scheme 32) [177].
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Scheme 32: One-pot MCR for the synthesis of 1,4-dihydropyrano[2,3-c] pyrazoles.**"]

Syntheses of multi-substituted pyrano[2,3-c]pyrazole derivatives were reported by
Ablajan and co-workers in 2013 [178]. The compounds were produced by the one-pot reaction
between aromatic aldehydes, malononitrile, hydrazinobenzoic acid and [-keto ester, using
cerium ammonium nitrate at RT under ultrasound irradiation with water as a solvent (Scheme
33a). Recently, Zolfigol and co-workers [179] have reported the synthesis of pyrazoles using a
one-pot, multicomponent reaction of aromatic aldehydes, malononitrile, phenylhydrazine, p-keto
ester and 1-methylimidazolium trinitromethanide and {{[HMIM]C(NO;)s} as a catalyst in the
absence of solvent at room temperature. Good to high yields were reported after several minutes

of reaction (Scheme 33b).
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Scheme 33: Synthesis of multi-substituted pyrano[2,3-c]pyrazole derivatives
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Zou and co-authors (2011) prepared 6-amino-5-cyano-4-aryl-1,4-dihydropyrano-[2,3-c]-
pyrazoles from a 3-CR of malononitrile, aromatic aldehydes and 3-methyl-1-phenyl-2-pyrazolin-
5-one using triethyl-benzyl ammonium chloride (TEBA) as catalyst in aqueous media (Scheme
34). The reaction offers many benefits such as good yield (82-94%), less pollution, ease of

separation and eco-friendly [180].

Scheme 34: Synthesis of 6-amino-5-cyano-4-aryl-1,4-dihydropyrano[2,3]pyrazoles™®

Copper oxide loaded zirconia (CuO/ZrO,) was used as a catalyst for the three-component
cyclo-condensation reaction of phenyl hydrazine, malononitrile and substituted aromatic
aldehydes to synthesize 12 novel pyrazole-4-carbonitriles (Scheme 35a). The target molecules
were afforded in good to excellent yields within 2 h. The heterogeneous catalyst used was cost-
effective, well recyclable and reusable for over 5 cycles, conserving its high activity [181].

Recently, Srivastava and co-workers have improved the preparation of highly
functionalized pyrazoles under grinding conditions with (Bim)OH, ionic liquid as a catalyst
(Scheme 35b) [182]. The three-component cyclocondensation reaction between phenyl
hydrazine, malanonitrile and aromatic aldehydes in the presence of the ionic liquid was carried
out in water as a solvent. A wide variety of functionalized pyrazoles was reported with high
yields (88-97%) within 15-30 min.

Recently, Nemati et al., have developed the one-pot, multicomponent synthesis of highly
substituted pyrazoles reacting assorted aldehydes with phenylhydrazine and malononitrile in the

presence of PEG-400 in water medium at room temperature under ultrasound irradiation
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(Scheme 35c). Excellent yields (92—99%) of the pyrazole derivative have been reported [183].
The benefits of this catalyst-free protocol were use of cheaper starting materials, reduced

environmental impact and short reaction times plus operational simplicity (< 1.5 h).

H,N CN
CuO/Zro, —
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Scheme 35: Synthesis of multi-substituted pyrazole derivatives

Ambethkar et al. (2014) described an efficient grinding protocol for the synthesis of
dihydropyrano[2,3-c]pyrazoles from the reaction of aryl halide, acetylene ester, hydrazine
hydrate and malononitrile under solvent-free conditions (Scheme 36). The pyrazole derivatives
were afforded in high yield (65-93%) [184].

Gein and co-workers (2014) developed a novel procedure for the synthesis for 6-amino-
4-aryl-5-cyano-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate derivatives via a 4-CR of
sodium salt of diethyloxaloacetate, an aromatic aldehyde, hydrazine hydrate and malononitrile

(Scheme 37). The products were achieved in moderate to high yields (71-92%).
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Scheme 36: Efficient grinding protocol for the synthesis of dihydropyrano[2,3-c]pyrazoles
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Scheme 37: Synthesis for 6-amino-4-aryl-5-cyano-2,4-dihydropyrano[2,3-c]pyrazole-3-
carboxylates.

Safaei-Ghomi et al. (2014) described the synthesis of 4,4-(arylmethylene)bis(3-methyl-
1H-prazol-5-ol) derivatives in the presence of ZnAlO, nanoparticles (Scheme 38). The product
was formed from a The reaction used hydrazine hydrate, ethyl acetoacetate and aldehydes in

water at 60 °C and provided excellent yields in short reaction times. The method is environment

friendly.
NO,
@) H
O (e}
ZMOEt 2 NH,NH, ZnAlO, nanoparticles N\ / \ /N
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Scheme 38: Synthesis of 4,4-(arylmethylene)bis(3-methyl-1H-prazol-5-ol) derivatives in the
presence of ZnAlO,4 nanoparticles [186].
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A facile, efficient spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] and spiro[acenaphthyl-3,4-
pyrano[2,3-c]pyrazoles] derivatives have synthesized by Wang et al.,. This was done through a
one-pot, four component reaction of hydrate hydrazine, dimethyl acetylenedicarboxylate,
malononitrile as well as ethylcyanoacetate. Triethylamine was used to catalyze the reaction.
which proceeded in ethanol solvent (Scheme 39a). The corresponding yields for the model
reaction were satisfactory (75-85%). The reaction proceeded for 5 h, at RT. For comparison,
acenaphthenequinone substrate was used to replace ethylcyanoacetate. The reaction proceeded at
room temperature for 24 h to obtain spiro[acenaphthyl-3,4'-pyrano[2,3-c]pyrazoles] with 85-92%
yields.

Liju and co-authors have improved an ideal reaction using an efficient, one-pot
ultrasound irradiation procedure for the synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole].
L-proline was used as catalyst for the reaction at room temperature (Scheme 39b) [187]. The
reaction involved four component system of malononitrile, diethyl acetylenedicarboxylate, isatin
and 4-hydrazinobenzoic acid in the presence of a mixture of aqueous ethanol (H,O/EtOH, 1:1
v/v). The L-proline catalyst gave 90% yield for this reaction and L-proline (10 mol%) was found
optimal. To avoid the reaction rate acceleration by the temperature variation due to
ultrasonication, the reaction was carried in a water bath to maintain the temperature at 25 °C.

Pore et al. explored a green approach to synthesize novel spiro pyranopyrazole
derivatives in the absence of catalyst [188]. The four-component/one-pot reaction between
hydrazine hydrate, malononitrile, dimethyl acetylenedicarboxylate and isatin (Scheme 39c)
proceeded well in polar solvent under reflux for 2 h, with moderate yield, but water:ethanol
(80:20, v/v) as solvent gave 86% of desired product. This green reaction is environmentally
friendly with no waste.

Ming-Xing and co-authors have established an innovative base catalysed synthetic route
for the preparation of pyrazolo[3,4-d]pyrimidinone derivatives via tandem heterocyclization by
the one-pot, multicomponent condensation of hydrazine, methylenemalononitrile and aldehyde
under reflux conditions [189,190]. The reaction progressed efficiently at a faster rate in toluene
using NaOH (0.2 mmol). The yields of the products were good to excellent (77-91%) depending

upon substituents (Scheme 40).
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Scheme 39: Synthesis of novel spiro pyranopyrazole derivatives

HO
EtQ CN
NaOH 74
—( + + PhNHNH, —————— N |
\ Pz
H CN N N

/
h

Scheme 40: Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives

An expedient, effective, eco-friendly and catalyst-free method had been established by
Teimouri leading to a series of 1H-pyrazolo-[1,2-b]-phthalazine-5,10-diones (Scheme 41) [191].
The procedure is an excellent means for synthesis of one-pot multicomponent reactions. Due to

their convergence and efficiency, this innovative synthetic approach could be fascinating from a

green chemistry point of view.
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Scheme 41: Synthesis of 1H-pyrazolo-[1,2-b]-phthalazine-5,10-dione derivatives

Bin-Bin and his group have produced fused polycyclic 4-aryl-3-methyl-1-phenyl-7,8-
dihydro-1H-pyrazolo[3,4-b][1,6]naphthyridin-5(4H) by using as precursors aromatic aldehyde,
3-methyl-1-phenyl-1H-pyrazol-5-amine and piperidine-2,4-dione in the presence of ionic liquids.
Initially the reaction was tested with different varieties of ionic liquids and finally [BMIm]Br

was optimized for this organic transformation (Scheme 42) [192].

ArCHO o 'e) Ar CH,
/ \ + [BMiM]Br - —
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Scheme 42: Synthesis of fused polycyclic 4-aryl-3-methyl-1-phenyl-7,8-dihydro-1H-
pyrazolo[3,4-b][1,6]naphthyridin-5(4H) derivatives

Hassan and co-workers [193] have established tetracyanoethylene as a mediator for
condensation—cyclization succession containing the reaction of thiocarbonohydrazides and
tetracyanoethylene at RT in the presence of THF solvent. The process carried out the preparation
of 5-substituted amino-1,3,4-thiadiazolyl-1H-pyrazoles with good yields (Scheme 43).

Synthesis of spiro-indoline-3,4'-pyrano[2,3-c]pyrazoles have been reported by an
efficient ultrasound-assisted four component Knoevenagel condensation a through Michael
addition reaction in liquid phase in the presence of ethanol at room temperature after 1 h. It was
carried out using piperidine as a catalyst. Various 1,3-diketones, phenyl hydrazine, isatin, and
malononitrile gave the corresponding spiropyrano[2,3-c]pyrazole derivatives in excellent yields
(77-93%) (Scheme 44a) [194].
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Scheme 43: Synthesis of 5-substituted amino-1,3,4-thiadiazolyl-1H-pyrazoles

Recently, Feng et al., have synthesized diverse indoline-3,4'-pyrano[2,3-c]pyrazoles
using a 4-dimethylaminopyridine (4-DMAP) as a catalyst (Scheme 44b). As a result, various
spiropyrazole derivatives were achieved with improved yields from the reaction of isatins,
malononitrile, phenylhydrazine and 1,3-dicarbonyl compounds at 60 °C in ethanol as the solvent
and 1 h reaction time [195].

More recently, Rai et al. have reported the cyclocondensation of ethylacetoacetate,
phenylhydrazine, malononitrile, isatin and chitosan/(Bmim)OH as a heterogeneous catalyst.
Reactions were completed smoothly in the absence of any solvent at room temperature to obtain
the corresponding spiropyrazole derivatives in excellent yields (Scheme 44c). In this reaction,
the catalyst was fully recyclable and recorded no appreciable change in activity for 4-6 cycles
[196].

Liu et al.,"™ revealed that phenylhydrazine efficiently react with alkyne and aromatic
aldehydes to deliver 1,3,5-substituted pyrazole derivatives in the presence of p-toluenesulfonic
acid (PTSA) as an active multifunctional catalyst at RT, but with long reaction time (8 h) leading
to low yields (Scheme 45a) [197]. This synthesis method proceeded through the Mannich type—
cyclization tandem process.

Recently, highly functionalized 1,3,5-trisubstituted pyrazoles were reported by
intramolecular cyclization of aromatic aldehydes, phenylacetylene and phenylhydrazine in the
presence of iodine as a catalyst in a aqgueous medium reaction (Scheme 45b) [198]. All the target

protocols were completed within 3 h at 60 °C with good to high yields (79-93%).

32



piperidine, EtOH

(e
H,N

------------------------------------------------

: o~ : HN
: N TRy M6 : 0
: o) o}
' : 4-DMAP Ry
: + >
: N O ©: H,N
§ g R;NHNH, EtO :
@]
R;
chitosan/(Bmim)OH
r.t

NHNH,

@@@

Scheme 45: Synthesis of highly functionalized 1,3,5-trisubstituted pyrazole derivatives
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1.4.3. Pyrans

Pyrans are six membered oxygen containing heterocycles and are one of the most desired
heterocycles. Their structural motif makes up numerous natural products, pharmaceuticals,
advanced materials, catalysis and ligands. They exhibit a wide-range spectrum of activities with
bio-, physio- and pharmacological properties [199]. They are beneficial compounds of
importance in bio-organic and medicinal chemistry. Those can be used as precursors to
synthesize chiral dihydro- and tetrahydropyrans. Pyrans generally are synthesized from cyclo-
condensation of aldehydes, -ketoester and malononitrile in alcohol [200]. The known natural
products that contain a pyran core include Uvafzlelin, Conrauinone A, Erysenegalensein C,
Cromakalim and Acronycine [201], these compounds display significant and diverse medicinal
properties such as antibacterial [202], as potential 5-HT1A receptor antagonists [203] and
anticancer agent [204]. Owing to the wide applications of pyran and their derivatives, designing
and developing new methodologies for their synthesis have attracted attention from both
synthetic and medicinal chemists [201]. The synthesis of pyrans that have been reported in the
literature are mostly through multicomponent reaction methods. Among them are the following
reactions (scheme 67-79) which successfully yielded different derivatives of pyrans.

Das and co-workers have described in good yield the synthesis of pyrano-pyrazole
compounds namely, ethyl 6-amino-4-aryl-5-cyano-2,4-dihydropyrano[2,3-c]pyrazole-3-
carboxylates by one-pot multi-component reaction employing aldehyde, B-napthol and indane-
1,3-dione in the presence of ZnFe,O, nanopowder as catalyst, for the transformation into the
desired product at RT under aqueous conditions (Scheme 46)[205].

Scheme 46: Synthesis ethyl 6-amino-4-aryl-5-cyano-2,4-dihydropyrano[2,3-c]pyrazole-3-

carboxylates
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Banerjee and Saha prepared tetrahydrobenzo[b]pyran compounds, by using nano free-
ZnO, as a heterogeneous reusable catalyst used with a combination of aldehyde, malonitrile and
dimedone in aqueous ethanol at RT. In this study, nano ZnO particles with its unique viscoelastic

properties facilitated the reaction (Scheme 47) [206].

CHO 0
CN
| \ + < + Zn0O
rt, EtOH:H,O
A CN i
R @]

Scheme 47: Synthesis tetrahydrobenzo[b]pyran derivatives

Maleki and Ashrafi have synthesized heterocycles with a pyrazole moiety using Nano a-
Al,O3 supported ammonium dihydrogen phosphate (NH4H,PO4/Al,O3) as excellent catalysts and
described the ease of recovery, reusability with the avoidance of environmentally inappropriate
solvents. They synthesized the pharmaceutically relevant and easily work-up synthesis of
tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives with aromatic aldehyde,
malononitrile and 1,3-dicarbonyl compounds in the presence of NH4;H,PO4/Al,O3 in ethanolic
medium under reflux conditions (Scheme 48)[207).

Safaei et al.,[208] have focused on the preparation of 4H-pyrans derivatives using
glycerol as a biodegradable and reusable promoting solvent at 80 °C under catalyst-free
conditions. The proposed mechanism suggested that the intermediates pyrazolone and 2-
benzylidenemalononitrile formed underwent Michael addition to form the desired product
through an environmentally benign procedure (Scheme 49).

Bora and coworkers showed a unique procedure for the preparation of medicinally viable
polyfunctionalized 4H-pyrans, with lipase as catalysts. lonic liquids are not congenial to many
organic syntheses, but here the desired product was obtained by using cheap and stable catalyst,

PPL as catalyst for the precursor’s aryl aldehydes, malononitrile, acetyl acetone (Scheme 50)
[209].
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Scheme 48: Synthesis tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives
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Scheme 49: Synthesis of the 4H-pyran derivatives
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Scheme 50: Synthesis of the polyfunctionalized 4H-pyran derivatives

Valizadeha and Azimi groups described the synthesis of 4H-pyrans using a nano

ZnO/MgO heterogeneous catalyst. In this study the mixture ethylacetoacetatee, benzaldehyde,

malononitrile, ZnO/MgO catalyst were reacted at RT under [bmim]BF, as a solvent. The

protocol proposed here is an environmentally friendly procedure, including stable, easily

storable, easy recovery and reusability of nanocatalyst (Scheme 51) [210].

EtQ CHO
O CN
X
+ < + | Zn0O/MgO > EtO
[bmim]BF,, rt
O N KAA ’
HsC R

Scheme 51: Synthesis of the 4H-pyran derivatives
Rajguru and coauthors have developed a convenient, efficient and environmentally
benign method for pyrano[4,3-b]pyran derivatives starting with aromatic aldehyde, malononitrile
and 4-hydroxy-6-methylpyran-2-one and using HsP2W1306,18H,0 as heterogeneous catalyst.
The catalyst offers non-toxicity, ready availability and strong oxidizing benefits. The study
revealed that 1 mol% of HeP,W1304,18H,0 is efficient to reach the desired outcome (Scheme
52) [211].
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Scheme 52: Synthesis of the pyrano[4,3-b]pyran derivatives

Fang et al., have fabricated hermol-regulated PEG1000-based ionic liquid/EM and its
catalytic behavior was identified with the preparation of 4H-pyrans containing organic
compounds. The authors synthesized pyran derivatives through a one-pot, multi-component
condensation of malonitrile, ethyl acetoacetate and aromatic aldehyde compounds in the
presence of the catalyst. The used acidic ionic liquid catalyst was separated with help of
temperature-dependent phase-separation catalytic field and re-used with no loss of catalytic
activity (Scheme 53) [212].

Ar 0O

R
CN e) NC
ArCHO + < + PEG,o-DAIL/EM - | | R
reflux
CN o HNT o

Scheme 53: Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives

Salvi et al., have investigated the preparation of tetrahydrobenzo[b]pyran derivatives
employing a novel functionalized basic ionic liquid, 4-amino-1-(2,3-dihydroxy propyl)
pyridinium hydroxide [ADPPY][OH]. The best condition for the preparation of
tetrahydrobenzo[b]pyrans with good yields was reported to be with equal ratio of aryl aldehyde,
malononitrile and dimedone in the presence of 10% catalyst at RT in the presence of water as a
solvent (Scheme 54) [213].
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Scheme 54: Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives

Khoobi et al., prepared 4H-benzo[b]pyran and dihydropyrano[c]chromene derivatives by
using basic non-volatile inorganic—organic hybrid magnetic nanocatalyst [y-Fe,Os@HAp-Si-
(CH2)3-AMP], as heterogeneous catalyst under ambient conditions using an equal proportion of
aromatic aldehyde, hydrazine hydrate, malononitrile and 4-hydroxycoumarin/ dimedone. The
study showed that 1.5 mol% catalyst was optimum for the reaction in order to achieve 88% yield

of the final product in 10 min reaction time (Scheme 55) [214].

CHO
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Scheme 55: Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives

Almansour and co-workers designed a facile method for the preparation of biologically
active 4(H)-pyran derivatives by using sodium ethoxide as a basic catalyst. The results suggested
that the catalyst works best for the reaction having the mixture of arylaldehyde, malononitrile
and (R)-1-(1-phenylethyl)tetrahydro-4(1H)-pyridinone within short period of time to get the
4(H)-pyrans in good yield under solvent-free conditions (Scheme 56)[215].
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Scheme 56: Synthesis of biologically active 4(H)-pyran derivatives

Dekamin et al., have prepared 2-amino-4H-pyran derivatives through one-pot, three-
component condensation of aromatic aldehydes, malononitrile and 1,3-dicarbonyl compounds in
ethanol solvent at 80 °C by using sodium alginate as biopolymeric green catalyst. In compliance
with the green chemistry principles, optimum reaction conditions were reported as 80 °C,
catalyst (10 mol%), green solvent, where the anticipated product was obtained in good to high
yield within a short reaction time (Scheme 57) [216].

EtQ, CHO
O CN
X Sodium alginate
+ + | »
EtOH, reflux
O cN KA
HaC R

Scheme 57: Synthesis of 2-amino-4H-pyran derivatives

Kalla and co-workers have demonstrated the catalytic activity of dibutylamine towards
the preparation of pyran derivatives from a one-pot, multi-component reaction of aromatic
aldehydes, malononitrile and ethyl benzoylacetate. The authors proposed metal free
organocatalysts for the organic transformations. This process offers more benefits, because it is
mild, environmentally friendly, gives good to high yields in short reaction times. Moreover, the
product did not necessitate separation via extraction and column chromatography (Scheme 58)
[217].
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Scheme 58: Synthesis of substituted pyran derivatives

Mosaddegh and his group have prepared pyrano[4,3-b]pyran derivatives by using novel

and highly effective heterogeneous catalyst as an eggshell (ES) supported Cu(OH), nanoribbons

containing 8 wt.% Cu?*, and meet the principles of green chemistry. A mixture of malononitrile

with aldehyde and 4-hydroxy-6-methyl-2H-pyran-2-one were subjected to reaction in 0.1 g of

catalyst in EtOH with final product having good yields. The study also stressed the good

compatibility of ES/Cu(OH), nanocomposite catalyst for the aldehydes precursor organic
transformations (Scheme 59) [218].

OH
CN
X Nano ES/Cu(OH),
ArCHO + + | »
120°C, solvent-free
CN 0 o

Scheme 59: Synthesis of novel pyrano[4,3-b]pyrans derivatives

Mansoor et al., have proposed thioureadioxide as an efficient, reusable organic catalyst
for the synthesis of a series of 6-amino-5-cyano-4-aryl-2-methyl-4H-pyrans from the mixture of
malononitrile, 4-hydroxycoumarin and aldehydes. Primarily thioureadioxide (10 mol%) catalyst
was prepared from chemical precipitation method and at ambient conditions. The study revealed
that the four component reaction in agueous medium with this catalyst offers flexibility, fast and

eco-friendly protocols (Scheme 60) [219].
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Scheme 60: Synthesis of series of 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran derivatives

A facile, efficient tetrahydrobenzo[b]-pyran derivative have been synthesized by Yang et

al., [220]. This was done through a one-pot, three component reaction of active methylene

compound and dimedone. [DABCO-PDO][CH3;COQ] was used to catalyze the reaction and

reaction proceeded in the water solvent at 60 °C for 1 h (Scheme 61). The corresponding yields

for the model reaction were satisfactory (83-95%).

CHO
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CN
X .
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Scheme 61: Synthesis of tetrahydrobenzo[b]-pyran derivatives

Zakeri and coworkers improved a reaction using an efficient, one-pot microwave
irradiation procedure for the synthesis of spiro-4H-pyran derivatives. 4-Dimethylaminopyridine
(DMAP) was used as organocatalyst for the reaction at reflux condition (Scheme 62) [221]. The
reaction involved three component systems of malononitrile, isatin and 4-hydroxycoumarine
(scheme 2) in the presence of aqueous solvent. The DMAP as catalyst gave 95% vyield for this
reaction and DMAP (5 mol%) was found optimal.
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Scheme 62: Synthesis of novel spiro-4H-pyran derivatives

Ziarani et al. explored a green approach to synthesize novel spiro[indoline-3,4'-
pyrano[2,3-c]pyrazole] derivatives in the absence of solvent-free condition. The reaction of one-
pot four-component between isatin, hydrazine hydrate, activated methylene compound and -
keto ester (Scheme 63) proceeded well in the presence of an amino-functionalized nano-porous
silica SBA-15 catalyst at RT for 30 min with moderate to good yield. This green protocol of the
reaction is environmentally friendly and no waste was produced [222].

All the above reported reactions are carried out using with harsh reaction conditions, thus
there is the need to develop such conditions in order to increase the reaction yields and efficiency
of the protocol, these can be accomplished using with the various reusable heterogeneous
catalysts at room temperature conditions.

1.5. Objectives of the study

Aim of the study is to develop new heterogeneous materials with good activity as
catalysts, to improve the efficiency of one-pot multicomponent protocols for synthesis of
selected multi-substituted heterocyclic moieties, and to design facile protocols with improved
efficacy using environmentally benign solvents under moderate conditions. The studies are
focused on the development of appropriate catalyst materials and their characterization, and
synthesis of six series of different heterocyclic compounds, namely

i) Synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives
i) Synthesis of pyrano[2,3-d]-pyrimidine derivatives

iii) Synthesis of 2-amino-3-cyano-4H-pyran derivatives

Iv) Synthesis of pyrano[2,3-c]pyrazoles derivatives

v) Synthesis of pyrano[2,3-c]pyrazole-3-carboxylate derivatives

vi) Synthesis of pyrano[2,3-c]pyrazoles
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Abstract:

An efficient and facile green method for synthesis of 3-methyl-4-(phenyl)methylene-
isoxazole-5(4H)-one (4a-m) via room temperature reaction of hydroxylamine, ethylacetoacetate
and substituted aromatic aldehydes is designed, using Ag/SiO, as catalyst with water as solvent.
This protocol offers several advantages such as it being a benign, energy conserving and eco-
friendly reaction with products obtained in excellent yields (88 to 93 %). The reaction requires
relatively short reaction times (< 1 h), a simple workup procedure with good atom efficiency and
easily recoverable catalyst. The heterogeneous catalyst, Ag/SiO, was fully characterized and is
reusable without loss of activity for up to seven cycles with marginal activity loss.

Keywords: Green synthesis; Heterogeneous catalyst; Isoxazoles; Ag/SiO,; One-Pot reaction.
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2.1. Introduction

In recent years, multicomponent reactions (MCR) have captivated researchers due to a
number of green principles including facile operation, environmental friendly and economic.
MCRs allow three or more compounds to react together, providing products in high yields
without having to isolate intermediates. This is an attractive option [1-3], thus making MCRs an
important tool in the synthesis of heterocyclic molecules with applications in combinatorial,
medicinal and agricultural chemistry [3-5]. The other advantages of these reactions include high
bond-forming efficiency, cost effectiveness, energy saving and simple workup procedures [6,7].

Interest has increased in use of heterogeneous catalysts in organic syntheses due to
improved selectivity, facile separation, reusability and low cost [8,9]. Metal oxides have emerged
as candidates for such a role due to their proven record as catalysts, supports, and as ion-
exchangers. Mixed metallic oxides with both acidic and basic sites can be generated by
calcination at about 700 K. The calcined composites have moderate surface areas and can
accelerate various condensation reactions. Relative to conventional linear syntheses, these eco-
friendly protocols also have benefits, such as long catalytic life, thermal stability, cost
effectiveness, atom economy and scope to modify the surface properties [10].

Silica (SiO,), which is an acidic functional material in pure form is one of the widely
used inorganic supports in the catalytic systems [11,12] used in the activation and stabilization of
several metals [13,14]. The crystalline structure of SiO, has been documented as one of the key
factors for justification of the structure-activity relationships of metal-based catalysts [15]. In
organic synthesis, silica as support for various metal oxide catalysts allows the design of varied
distribution of its Lewis and Brgnsted acidic and basic sites [16-19] on the surface facilitating its
use as catalyst for specific applications.

Isoxazoles are an important class of heterocyclic compounds, which are predominant in
nature and display fascinating biological and pharmaceutical properties [20,21]. Isoxazole is
considered a major scaffold compound in the discovery of combinatorial synthesis and protein
kinase inhibitors, playing crucial role in development of chemotherapeutic agents [22,23]. Many
isoxazole derivatives exhibit antibacterial [24], antifungal [25], antitumor [26], antioxidant [27],
antiprotozoal [28], antiviral [29], anti-tubercular [30], anti-inflammatory [31] and anti-HIV [32]
activities. Several procedures have been reported in the literature for the synthesis of isoxazole

derivatives and their analogues. Literature survey shows quite many catalysed methods were
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reported for synthesis of various isoxazole derivatives. To mention a few, such protocols
employed sodium saccharin [33], ultrasonic irradiation [34], sodium silicate [35], sodium
benzoate [36], pyridine [37,38], DABCO [39], CH3;COONa/UV [40], sodium ascorbate [41],
sodium tetraborate [42], sodium sulfide [43], pyridine/UV [44], and boric acid [45] as catalysts.
Many of these methods have some limitations and drawbacks, such as use of toxic reagents,
strong acidic or basic conditions, costly reagents and catalysts, strict reaction conditions, tedious
steps, low product yields and/or long reaction times, which restrict their scope in practical
applications. Therefore, a novel protocol with good and inexpensive catalyst demanding short
reaction times is sought after.

In continuation of our interest in the environmental friendly protocols for the various
synthesis of heterocyclic derivatives with better yields [46-49], we herein report the one-pot
reaction of ethylacetoacetate, hydroxyl amine and substituted aldehydes in the presence of a
catalyst Ag/SiO; for the synthesis of isoxazole derivatives in excellent yields.

2.2. Experimental section

2.2.1. Catalyst characterization

Micromeritics Tristar-11 porosity and surface area analyzer was used to determine the
values of surface area, pore size and pore volume of the catalyst material. The catalyst sample
was degassed overnight using N, flow at 200 °C. The BJH adsorption-desorption curves were
generated at -196 °C and were used to assess the catalyst’s particulate properties. Employing a
Bruker D8 Advance instrument (Cu K radiation source with a wave length of 1.5406 A), the X-
ray diffraction data related the structural phases of the catalyst were acquired. Using a Jeol JEM-
1010 electron microscope and JEOL JSM-6100 microscope, the TEM and SEM analysis data
was recorded. ITEM software was used analyze the TEM data and images. Employing the X-ray
analyzer (energy-dispersive), EDX-analysis on the SEM images was conducted. To confirm the
elemental composition catalyst materials Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES) (Optima 5300 DV) was used.
2.2.2. Preparation of catalyst

The wet impregnation method was used for the synthesis of catalyst material, Ag/SiO..
An appropriate amount of silver nitrate hydrate AgNO3.9H,0, Aldrich (99.9%)) was dissolved in
double distilled water (50.0 ml) which was added to silica (3.0 g) with continuous stirring with a

magnetic stirrer at room temperature for 12 h. Then the resulted slurry was dried in an oven at
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110-130 °C for 12 h and calcined in presence of air, at 450 °C for 3 h to acquire the 5% "/,
catalyst [50,51].
2.2.3. General procedure for the synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-
5(4H)-one derivatives

To equimolar ratios of hydroxylamine (1.1 mmol), ethylacetoacetate (1 mmol) and
aldehyde (1 mmol) dissolved in water (10 ml) at room temperature (RT) using Ag/SiO; (30 mg)
as catalyst. The reaction mixture was stirred continuously for 1 h at RT, (Scheme 1) using a
magnetic stirrer. The progress of the reaction was monitored by TLC. The reaction mixture was
then filtered, and the filtrate was subsequently extracted with ethyl acetate and evaporated under
reduced pressure to obtain the crude product. Further, the crude product was purified with a 4:6
ratio of EtOAc:Hexane mobile solvent to afford pure products (4a-m). The recovered catalyst

was subjected to washing with ethanol, dried, and could be reused for up to seven cycles.

CHO 7
o O .
Ag/SiO AN
/[j\/[j\ + NH,OH.HCI + | N 22, 5
HsC OEt P HOIRT.1n (P <,/
1 2 R 3a-m R 4a-m

Scheme 1. Synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives

3-Methyl-4-(4-hydroxyphenyl)methylene-isoxazole-5(4H)-one (4a): Yellow solid: *H NMR
(400 MHz, DMSO-dg) 6 = 2.24 (s, 3H, CH3), 6.94 (d, J = 8.80 Hz, 2H, ArH), 7.78 (s, 1H, =CH),
8.44 (d, J = 8.84 Hz, 2H, ArH), 10.85 (s, 1H, OH); **C NMR (100 MHz, CDCls): & 11.24,
113.83, 116.12, 124.53, 137.44, 151,51, 162.24, 163.82, 168.78; IR (KBr, cm™): 3232, 2363,
1734, 1559, 1358, 1297, 1179, 669; HRMS of [C1iHsNOs; — H]" (m/z): 202.0503; Calcd.:
202.0504.

3-Methyl-4-(4-methoxyphenyl)methylene-isoxazole-5(4H)-one (4b): Yellow solid: *H NMR
(400 MHz, DMSO-dg) 6 = 2.25 (s, 3H, CH3), 3.89 (s, 3H, OCHs), 7.14 (d, J = 8.96 Hz, 2H,
ArH), 7.85 (s, 1H, =CH), 8.51 (d, J = 8.96 Hz, 2H, ArH); *C NMR (100 MHz, CDCls): 5 11.24,
55.80, 114.63, 115.19, 125.76, 136.86, 151.19, 132.23, 164.21, 168.57; IR (KBr, cm™): 3446,
2362, 1734, 1594, 1269, 1176, 668; HRMS of [C1,H1iNOs; + Na]™ (m/z): 240.0641; Calcd.:
240.0637.
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3-Methyl-4-phenyl-methylene-isoxazole-5(4H)-one (4c): Light yellow solid: *H NMR (400
MHz, DMSO-ds) & = 2.29 (s, 3H, CHs), 7.56-7.67 (m, 3H, ArH), 7.96 (s, 1H, =CH), 8.40 (d, J =
7.40 Hz, 2H, ArH); *C NMR (100 MHz, CDCls): & 11.25, 118.32, 128.84, 132.40, 133.51,
133.86, 151.62, 162.18, 167.78; IR (KBr, cm™): 3446, 2362, 1739, 1561, 1341, 1284, 1140, 685;
HRMS of [C11H1o0NO, + Na]* (m/z): 211.0618; Calcd.: 211.0609.
3-Methyl-4-(4-dimethylaminophenyl)methylene-isoxazole-5(4H)-one (4d): Red solid: ‘H
NMR (400 MHz, DMSO-dg) 6 = 2.20 (s, 3H, CH3), 3.33 (s, 6H, N(CHj3),), 6.85 (d, J = 9.16 Hz,
2H, ArH), 7.60 (s, 1H, =CH), 8.45 (d, J = 8.80 Hz, 2H, ArH); **C NMR (100 MHz, CDCls): &
11.27, 108.98, 111.59, 120.95, 137.52, 150.44, 154.32, 162.08, 169.79; IR (KBr, Cm'l): 3432,
2362, 1709, 1582, 1380, 1202, 1161, 668; HRMS of [Ci1sH14N,O, + Na]® (m/z): 253.0953;
Calcd.: 253.0953.

Anal. calcd for C13H14N,0,: C 67.81, H 6.13, N 12.17; Found: C 67.83, H 6.10, N 12.14.
3-Methyl-4-(anthracen-9-yl)methylene-isoxazole-5(4H)-one (4e): Brown solid: *H NMR (400
MHz, DMSO-dg) & = 2.57 (s, 3H, CH3), 7.72-776 (m, 3H, ArH), 8.07-8.09 (m, 3H, ArH), 8.79
(d, J = 8.74 Hz, 3H, ArH), 8.86 (s, 1H, CH); **C NMR (100 MHz, CDCls): & 11.46, 123.44,
125.05, 125.39, 125.73, 125.81, 127.05, 127.43, 128.72, 148.35, 158.68, 161.09, 166.22, 168.25,
168.78; IR (KBr, cm™): 3431, 2360, 1752, 1352, 1292, 1182, 668; HRMS of [C1gH13sNO, + Na]"
(m/z): 310.0848; Calcd.: 310.0844.
3-Methyl-4-(2,5-dihydroxyphenyl)methylene-isoxazole-5(4H)-one (4f): Yellow solid: ‘H
NMR (400 MHz, DMSO-ds) 6 = 2.23 (s, 3H, CH3), 6.85 (d, J = 8.88 Hz, 1H, ArH), 6.97-7.00
(m, 1H, ArH), 8.02 (s, 1H, =CH), 8.23 (d, J = 8.78 Hz, 1H, ArH), 9.18 (s, 1H, OH), 10.38 (s, 1H,
OH); **C NMR (100 MHz, CDCly): & 11.16, 115.67, 116.45, 116.78, 119.69, 125.56, 144.98,
149.32, 153.36, 162.17, 168.23; IR (KBr, cm™): 3308, 2361, 1751, 1602, 1368, 1273, 1170, 668;
HRMS of [C11HgNO, — H]" (m/z): 218.0453; Calcd.: 218.0453.
3-Methyl-4-(3,4-dihydroxyphenyl)methylene-isoxazole-5(4H)-one (4g): Yellow solid: *H
NMR (400 MHz, DMSO-ds) & = 2.19 (s, 3H, CHj3), 6.42 (s, 2H, ArH), 7.96 (s, 1H, =CH), 8.97
(d, J = 8.81 Hz, 1H, ArH), 9.90 (s, 1H, OH), 11.06 (s, 1H, OH); **C NMR (100 MHz, CDCls): &
11.17, 101.69, 109.02, 110.57, 113.01, 135.14, 143.94, 162.22, 163.10, 166.63, 169.40; IR (KBr,
cm™): 3487, 2363, 1734, 1589, 1391, 1258, 1212, 761.
3-Methyl-4-(3-hydroxyphenyl)methylene-isoxazole-5(4H)-one (4h): Light yellow solid: ‘H
NMR (400 MHz, DMSO-de) 6 = 2.27 (s, 3H, CH3), 7.06 (d, J = 7.46 Hz, 1H, ArH), 7.37 (t, J =
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7.90 Hz, 1H, ArH), 7.78 (d, J = 7.88 Hz, 1H, ArH), 7.85 (s, 1H, =CH), 7.92 (s, 1H, ArH), 9.90
(s, 1H, OH); *C NMR (100 MHz, CDCls): & 11.25, 118.48, 119.38, 121.34, 125.25, 129.80,
133.57, 151.98, 157.35, 162.21, 167.71; IR (KBr, cm™): 3432, 2356, 1739, 1575, 1347, 1288,
1113, 668; HRMS of [C11HgNO3z — H]" (m/z): 202.0512; Calcd.: 202.0504.
3-Methyl-4-(2,3-dimethoxyphenyl)methylene-isoxazole-5(4H)-one (4i): Light yellow solid:
'H NMR (400 MHz, DMSO-dg) & = 2.29 (s, 3H, CHs), 3.86 (s, 6H, 20Me), 7.06 (d, J = 7.82 Hz,
1H, ArH), 7.36 (d, J = 7.64 Hz, 1H, ArH),7.99 (s, 1H, =CH), 8.22 (d, J = 9.08 Hz, 1H, ArH); **C
NMR (100 MHz, CDCl3): 6 11.13, 56.00, 61.67, 118.83, 119.26, 123.34, 123.70, 125.63, 145.12,
149.85, 152.15, 162.02, 167.47; IR (KBr, cm™): 3432, 2362, 1698, 1524, 1268, 1125, 668.
3-Methyl-4-(2,5-dimethoxyphenyl)methylene-isoxazole-5(4H)-one (4j): Orange solid: ‘H
NMR (400 MHz, DMSO-ds) 6 = 2.25 (s, 3H, CH3), 3.75 (s, 3H, OMe), 3.87 (s, 3H, OMe), 7.12-
7.27 (m, 2H, ArH), 8.01 (s, 1H, =CH), 8.41 (d, J = 8.04 Hz, 1H, ArH); *C NMR (100 MHz,
CDCls): 6 11.12, 55.50, 56.50, 112.84, 115.78, 117.79, 120.79, 123.23, 144.21, 152.26, 154.43,
162.02, 168.01; IR (KBr, cm™): 3430, 2362, 1730, 1596, 1237, 1045, 668; HRMS of [C13H13NO,
+ Na]* (m/z): 270.0742; Calcd.: 270.0742.
3-Methyl-4-(2,4,6-trimethoxyphenyl)methylene-isoxazole-5(4H)-one (4k): Yellow solid: *H
NMR (400 MHz, DMSO-ds) 6 = 2.22 (s, 3H, CHj3), 3.76 (s, 3H, OMe), 3.83 (s, 3H, OMe), 3.88
(s, 3H, OMe), 6.25 (s, 1H, ArH), 6.35 (s, 1H, ArH), 7.72 (s, 1H, =CH), 8.11 (s, 1H, ArH); *C
NMR (100 MHz, CDCl3): 6 11.16, 55.76, 55.99, 56.07, 90.68, 90.96, 104.25, 117.47, 141.08,
142.33, 159.16, 160.02, 160.98, 165.58; IR (KBr, cm™): 3431, 2364, 1751, 1602, 1330, 1207,
1157, 668.

3-Methyl-4-(2,4-dimethylphenyl)methylene-isoxazole-5(4H)-one (4l): Cream solid: *H NMR
(400 MHz, DMSO-dg) & = 2.29 (s, 3H, CHs), 2.34 (s, 3H, ArCHs), 2.45 (s, 3H, ArCHs), 7.14 (d,
J =8.04 Hz, 1H, ArH), 7.19 (s, 1H, ArH), 8.00 (s, 1H, =CH), 8.34 (d, J = 8.84 Hz, 1H, ArH); **C
NMR (100 MHz, CDCls): 6 11.16, 19.45, 21.28, 117.86, 126.46, 127.91, 131.32, 131.52, 141.04,
144.23, 149.26, 162.03, 167.76; IR (KBr, cm™): 3449, 2372, 1770, 1599, 1383, 1097, 658;
HRMS of [C13H14NO, + H]* (m/z): 216.1032; Calcd.: 216.1025.
3-Methyl-4-(4-ethylphenyl)methylene-isoxazole-5(4H)-one (4m): White solid: *H NMR (400
MHz, DMSO-ds) 6 = 1.20 (t, J = 8.12 Hz, 3H, CH,CHj5), 2.27 (s, 3H, CH3), 2.70 (g, J = 7.57 Hz,
2H, CH,CHs), 7.43 (d, J = 8.28, 2H, ArH), 7.91 (s, 1H, =CH), 8.36 (d, J = 8.20, 2H, ArH); *C
NMR (100 MHz, CDCl3): 6 11.23, 14.84, 28.44, 117.62, 126.38, 128.38, 130.25, 131.79, 133.99,
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151.09, 151.60, 162.20, 168.03; IR (KBr, cm™): 3446, 2368, 1740, 1594, 1344, 1257, 1103, 668;
HRMS of [C13H14NO, + H]* (m/z): 216.1035; Calcd.: 216.1025.
2.3. Results and discussion
2.3.1. BET surface area (BET) and elemental (ICP) analysis

The texture of the prepared catalysts was determined by physisorption analysis. The N,
adsorption-desorption isotherms showed a type-IV adsorption isotherm demonstrating the
mesoporous nature of the catalysts (Figure 1). The prepared catalyst showed a surface area of
189 m? g ! with a pore volume of 0.994 cc g *. The large surface area was obtained for the
catalyst sample with high pore volumes due to the narrow pore size distribution of catalyst. The

ICP analysis results showed the presence of a nominal amount of Ag in the catalyst (4.94 wt %).

600 4 | —o— Ag/SiO, - Adsorption
1 |—*— Ag/SiO, - Desorption
500 -

400 -
300 -

200 -

Quantity Adsorbed (cm3/g STP)

100 -

T T T T T T T T T

0.2 0.4 0.6 0.8 1.0
Relative Pressure (P/Po)

Figure 1. N, adsorption & desorption spectra of Ag/SiO, catalyst

2.3.2. TEM analysis

The TEM micrograph reveals more structural information of the catalyst. Figure 2 shows
a distinctive TEM image of Ag loaded on silica catalyst, from which it can be seen that the Ag
nanoparticles showed a sphere-shape with an average size of 13 nm and are highly dispersed and
homogeneously distributed on the silica support with strong interaction between the AgNPs and

silica supports.
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Figure 2. TEM micrograph of Ag/SiO; catalyst.

2.3.3. SEM analysis

Figure 3 shows an illustrative SEM morphologies micrograph of the sample Ag on silica.
A lot of large white with elliptical irregular shapes are perceived from the low magnification
SEM image of Ag/SiO,. This micrograph reveals that the aggregative state of the silica important
particles is with silver. While, a homogeneous distribution of Ag and silica on the catalyst is
specified by the EDS analysis, elemental analysis by ICP-OES confirmed the elemental
composition in the catalyst material (Figure 4). Furthermore, the morphology of the catalyst as
per the SEM images noticeably point to the crystallinity and homogeneity of the sample.

¢ i &
EHT = 5.00 kV g=117.70 KX

| Probe = 37 pA WD = 85mm

Signal A = InLens

Figure 3. SEM micrograph of Ag/SiO; catalyst.
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Figure 4. SEM-EDX spectra of Ag/SiO; catalyst

2.3.4. Powder X-ray diffractogram (XRD) analysis

XRD patterns of the calcined Ag/SiO, catalyst are shown in Figure 5. All of the PXRD
diffraction patterns can be indexed to fcc silver. The calcined 2% Ag on SiO, sample showed
diffraction peaks at 38.1°, 44.3°, 64.4° and 77.4° corresponding to the (11 1), (20 0), (22 0) and
(3 1 1) lattice planes of hexagonal Ag,O (JCPDS # 72-2108) and cubic Ag,O3 (JCPDS # 72-
0607) respectively. Important peaks in the silver XRD spectra agree with the JCPDS-PDF # 00-
004-0783 files, and the two broad peaks centered at 12.1° and 22.1° were due to the amorphous

silica support.

(200)
(111)

(220)

(311)

Intensity/a.u

v

—71 r'r1r 11T 7T7r 17T
10 20 30 40 50 60 70 80 90
Degrees/26

Figure 5. XRD spectrum of Ag/SiO, catalyst
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2.3.5. Optimization procedure

At the start of the investigations, the impact of availability of catalyst material and
solvents were examined. With ethyl acetoacetate, aromatic aldehyde, hydroxyl amine
hydrochloride and water as solvent and with no catalyst, there was no reaction at RT even after
24 h under reflux conditions, (Table 1, entries 1 & 2). The same reaction was tried in ethanol in
absence of any catalyst at RT for 12 h and failed to achieve any desired product (Table 1, entries
3 & 4). The scope of the various types of catalysts and use of NaOH and K,COj3 as a basic
catalyst in aqueous media provided no yield at RT (Table 1, entry 5 & 6). The reaction was
performed under reflux conditions in ethanol, using pyridine and Na,S as basic catalysts, which
gave improved yields (Table 1, entry 7 & 8). The use of ionic liquid (Bmim)BF, on the product
yield was investigated, but yields were very low under reflux conditions (Table 1, entry 9). Use
of pure heterogeneous acidic catalysts such as SiO,, Al,0s, Fe,O3, and CeO, at RT in aqueous
media showed no reaction progress or yield (Table 1, entries 10-13). The reaction performed
with AgNO3 as catalyst gave 18% yield (Table 1, entry 14). When Ag loaded on SiO, was used
as catalyst, a reaction occurred with an impressive 93 % vyield of isoxazole derivative at RT after
1 h reaction time (Table 1, entry 15). The efficacy of this catalytic system was further tested by
comparing it with two other silica supported catalysts under otherwise similar conditions. Use of
HCIO,4-SiO, and FeCls/SiO, gave lower product yields and took 4-6 h for completion of the
reaction (Table 1, entry 16 & 17). Furthermore, the reaction using Ag/SiO, as catalyst under
solvent free conditions gave a small yield even after prolonged reaction time (Table 1, entry 18).

Accepting Ag/SiO, as catalyst and water as solvent are ideal means for the reaction, the
effect of amount of catalyst on the yield and reaction time was further investigated. Performing
the reaction with >30 mg of catalyst had no significant improvement on the yield or reaction
time. However, the decrease in amount of the catalyst used to 20 and 10 mg, affected the product
yield by reducing to 70% and 63%, respectively (Table 1, entries 19-23). Therefore, 30 mg of
Ag/SiO; at RT with water as solvent is assumed optimal condition for the model reaction giving
conversion of 93% in 1 h.

A perusal of the experimental results and the effect of various polar and non-polar
solvents on the three component reaction clearly indicate water as solvent plays a vital role in
facilitating the reaction (Table 1). Noticeably, under otherwise similar conditions, the Ag/SiO;

catalyzed reaction in presence of comparatively less polar solvents like CH3CN, DMF, n-hexane
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and 1,4-dioxane gave insignificant yields (Table 1 entries 24-27). The efficiency of methanol and
ethanol relative to water was also investigated. Although comparable yields were observed
(Table 1, entries 28 & 29), water had a marginal advantage, thus proving to be best medium for
the reaction. A highly polar solvent which dissipates heat faster may provide optimum conditions
for formation of intermediates, and their conversion to final products on the catalyst surface.
Table 1:

Optimization condition for the synthesis of isoxazole by Ag/SiO, catalyst®

Entry Catalyst Solvent Condition Time (h) Yield (%)°
1 No catalyst H,O RT 24 -
2 No catalyst H,O Reflux 24 -
3 No catalyst EtOH RT 12 -
4 No catalyst EtOH Reflux 12 --
5 NaOH H,0 RT 12 -
6 K2CO3 H,0 RT 12 -
7 Na,S EtOH Reflux 2.5 61
8 Pyridine EtOH Reflux 5 42
9 (Bmim)BF,4 EtOH Reflux 3 23
10 SiO; H,0O RT 12 -
11 Al,04 H,0 RT 12 -
12 Fe203 H,O RT 12 --
13 CeO, H.0 RT 12 -
14 AgNO; H,0O RT 12 18
16 HCIO./SiO; H.0 RT 3 58
17 FEC|3/S|02 HQO RT 35 37
18 AQ/SiO, -- RT 12 43
19 Ag/SiO; (10 mg) H,0 RT 3 85
20 Ag/SiO; (20 mg) H.0 RT 2 89
21 Ag/SiO; (30 mg) H.0 RT 1 93
22 Ag/SiO; (40 mg) H.0 RT 1 93
23 Ag/SiO; (50 mg) H.0 RT 1.5 91
24 Ag/SiO; CH3;CN RT 3 29
25 Ag/SiO; DMF RT 2.5 32
26 Ag/SiO; n-hexane RT 8 13
27 Ag/SiO; 1,4-dioxane RT 6 24
28 Ag/SiO; EtOH RT 1.5 78
29 Ag/SiO; MeOH RT 2 72

2 All products were characterised by IR, "HNMR, °C NMR and HRMS spectral analysis.
® Isolated yields.
-- No reaction
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Table 2
Synthesis of isoxazole derivatives catalyzed by Ag/SiO, catalyst

Entry R Product  Yield (%) Mp °C Lit Mp °C
1 4-OH 4a 92 214-215  214-216 [32]
2 4-OMe 4b 90 173-174 174-175[32]
3 H 4c 93 141-142  141-143[35]
4 4-N(Me), 4d 92 227-228  226-228 [35]
5 anthracenyl 4e 90 219-221 -

6 2,5-(0OH), 4f 89 187-188 --
7 3,4-(0OH), 49 90 212-213 --
8 3-OH 4h 92 164-166 -
9 2,3-(OMe); 4i 90 210-211 -
10 2,5-(OMe); 4j 89 178-179 -
11 2,4,6-(OMe); 4k 88 232-233 --
12 2,4-(Me), 41 92 193-195 --
13 4-Et 4m 91 201-203 --

% Reaction conditions: hydroxylamine (1.1 mmol), ethylacetoacetate (1.0 mmol), aromatic
aldehyde (1.0 mmol) and water (10 mL), RT

PAll synthesized compounds are identified and their structures were conformed with IR, H
NMR, **C NMR and HRMS spectral data and melting points as compared with literature values.

-- New compounds/no literature available.

Employing the optimised reaction conditions, the strength of the protocol was evaluated
for the synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives from various
aromatic aldehydes. The Ag/SiO, heterogeneous catalyst proved to catalyze the facile one-pot
synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives with good to excellent
yields. All the reaction products with other details are depicted in Table 2. Interestingly, the
substrates used and reaction yields obtained shows that the reaction using several electron-
withdrawing and electron donating substrates in ortho, meta and para positions of the aromatic
ring have also contributed positively to obtain the desired isoxazole derivatives in good to
excellent yields (Table 2). A reaction scheme is proposed based on the chemistry of the reacting
substrates and observed selectivity towards the product (Reaction Mechanism). At first, the
nucleophilic attack of hydroxylamine hydrochloride at the carbonyl carbon of the compound 1 to

afford in intermediate compound oxime. When the intermediate lost one hydrogen atom, the
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methylene group would convert to be the active carbon anion. Then, the aldehyde carbonyl group
was attacked by carbon anion and subsequent Knoevenagel reaction occurred. After losing one
ethanol molecule, ring-closing brought to the corresponding products. All the resultant products
were characterized and structures were confirmed by FTIR, *H NMR, **C NMR and HRMS
spectral analysis (Electronic Supplementary Information).
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Proposed Reaction Mechanism:
2.3.6. Reusability of catalyst
Experiments were performed to investigate the recyclable phenomenon of the
heterogeneous catalyst. The catalyst was recovered after filtration, washed with EtOH and dried
under reduced pressure after the completion of reaction. The recovered catalyst was reused for
seven consecutive runs following similar recovery procedure and observed loss of activity was

minimal (Figure 6). No significant loss was observed in the first four cycles. The marginal loss
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in the catalytic activity noticed after 4™ run which can be attributed to the probable organic
contaminations, trivial alterations and loss of catalyst material in the recovery process under the

examined conditions.

Yield (%)

~ 3rd Run [93%)])

Catalytic Runs

Figure 6. Recyclability of Ag/SiO; catalyst.

2.4.  Conclusion

We have described a green, simple, efficient and environmentally benign one-pot
multicomponent protocol for the synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-
one derivatives with good to excellent yields. The new heterogeneous catalyst, Ag/SiO; is
simple, highly efficient and recyclable for MCR protocol at RT. Main advantages of this
approach are green solvent, cheap materials, easy work up, non-hazardous and environment
friendly reaction conditions, recyclable catalyst, excellent yields, and short reaction times.
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2.7. Supplementary materials data
2.7.1. General details

All chemicals and reagents required for the reaction were of analytical grade and were
used without any further purification. Bruker AMX 400 MHz NMR spectrometer was used to
record the *H NMR and *C NMR (400 MHz) spectral values. The CDCls/DMSO—ds solution
was utilized for this while TMS served as the internal standard. TMS was further used as an
internal standard for reporting the all chemical shifts in & (ppm). The FT-IR spectrum for the
samples was established using a Perkin Elmer Perkin Elmer Precisely 100 FT-IR spectrometer at
the 400-4000 cm™ area. High-resolution mass data were obtained using a Bruker micro TOF-Q I

ESI instrument operating at ambient temperature.
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FT-IR spectra of compound 4c
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3C NMR spectra of compound 4d

Cy
v D
O
s
— —
EEEN 'il
SO0 a0 2500 2400 2000 200 00 L4090 200 QO 00 E00
FT-IR spectra of compound 4d
Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min =-1.5, max=100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
25 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used:
C:10-15 H:5-15 N:0-5 0O:0-5 Na:1-1
59 10 (0.304) Cm (1:61)
TOF MS ES+
281e+005
10 253.0953
%
254.0985 2570316
2470054 2490031 2516835 2025790 255.1012 2090282 ae0oa4s 2630081 7540020
2460 | 2480 250.0 2500 | 2540 | 2560 | 2580 @ 260.0 262.0 2640
Mass “al lzss mDa DED DBE 1-FIT 1-FIT (Norm) Formula

HRMS spectra of compound 4d

90




I

[ppm]

98192
Z6le¢

T A LB EEIN ST I EE R TN F R BT ST

[9a1.121

ol

9

v

r4

o

T T

'H NMR spectra of compound 4e

eSS LL —

LZPP'e2L —
SPSO'STL —|

ZLEESTL —iz
—=

90E€L'STL

6LLB'SZL —
$950°LZ1L —
LSEV LZL —

882.L°821

2EeSE'BPL —

8189851 —
EPE60OTLSL —
LiZZ2°98L ——
£€2s2'89L —

[ppm]

I
0

[
100

[
150

I
200

—
[sa1.] oe

3C NMR spectra of compound 4e
91



FT-IR spectra of compound 4e
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Abstract

A simple and an efficient method has been developed for the one-pot multicomponent
synthesis of pyrano[2,3-d]-pyrimidine derivatives. This was achieved through the condensation
reaction between dimethylbarbituric acid, aromatic aldehyde and malononitrile in the presence of
a Mn/ZrO2 heterogeneous catalyst with ethanol/water mixture as solvent over only 1 hour.
Further advantages to this synthesis methodology include excellent yields, mild reaction
conditions, atom economy, environment friendly, reusable catalyst and no need for
chromatographic separations.
Keywords: Green chemistry; Heterogeneous catalyst; pyranes; pyrimidines; Mn/ZrO,; One-Pot

synthesis.
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3.1. Introduction

Multicomponent reactions (MCRs) have emerged as an exciting field of research where
three or more reactants are all added together in a single-step to afford pure products in high
yield. MCRs are mostly used in organic synthesis, biological discovery, combinatorial library
and agrochemical synthesis." The simple protocols, inexpensive reactants and green principles
involved make MCRs and attractive field of study.4 Well planned MCRs afford higher chemical
yields than multiple-step syntheses, resulting in conservation of energy and manpower and are
often complete in relatively short reaction times® making it an environmentally benign and
elegant process.*®’

The use of heterogeneous catalysts with recyclability and reusability potential add value
to the one-pot reactions involving MCRs.®2 The use of heterogeneous catalysts has gained
prominence in the field of heterocyclic synthesis because of simple work-up, cost effectiveness,
mild reaction conditions, atom economy, good activity, easy recyclability and scope to modify
the surface properties.>*® Heterogeneous materials are used as green reaction media due to their
distinct chemical and physical properties such as non-volatility, thermal stability, non-
inflammability, controlled miscibility’® and playing a vital role as catalysts in the MCRs. Metal
oxides are good contenders in this regard as they have a proven track record as catalysts and
supports. Thermal calcination of such materials at 773 K, lead to the formation of acidic/basic
mixed metallic oxides with moderate surface-area and can act as catalysts for various
condensation reactions.

Zirconia (ZrOy) is an interesting support material where a particular zirconia phase
(cubic, tetragonal etc.) can be stabilized down to room temperature by the amount of dopant
added and this can promote the activity of the supported metal catalysts. ZrO, has good redox
and chemical stability and is an acid—based bi-functional catalyst, which is stable in alkaline or
acidic solutions.'* ZrO, in combination with metals (cermets) have been used in organic
synthesis'® and manganese has previously been used as dopant in zirconia. The crystalline
structure of ZrO, is one of the key factors affecting the structure-activity relationships of Mn-
based catalysts.*® The Mn/ZrO, solid material possesses both Bronsted and Lewis acids centers.

Pyranes and pyrimidine derivatives are an important class of heterocyclic compounds that
feature in a number of pharmaceutical drugs and natural products of medicinal interest. This

class of compounds exhibit a range of sought after features including antimicrobial
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antioxidant,™® anti-tumor,'® antimalarial,"’ antimetabolite,"” antileishmanial,"® antiviral,*
antihypertensive,”? anti-convulsant,”® and anti-inflammatory activities.”” The computational
chemistry of many of pyrimidine derivatives has also been documented.?®

Literature search shows several described methods for synthesis of various pyrano[2,3-
d]pyrimidine  derivatives.  Such  protocols  employed  [Ch-OSOsH]3W15PO40,%
diammoniunhydrogenphosphate®® microwave irradiation,?®?’ DABCO,?® electrolysis,*®*° y-
Fe,03@HAP-Si(CH2)sS0sH,* L-proline,® NaHCO5*® and urea® etc. as catalysts. In general
terms, many of these approaches face few or more of the limitations such as using toxic reagents,
strong acidic or basic conditions, costly reagents and catalysts, strict reaction conditions, tedious
steps, and low product yields or long reaction times, which limit their use in practical
applications. Thus, researchers are compelled to find new and improved approaches for
environmental friendly synthesis of these heterocyclic molecules with impressive yields. The
best of our knowledge there are no reports on the multicomponent facile one-pot synthesis of
pyrano[2,3-d]pyrimidine derivatives and with EtOH/water mixture as solvent system. In this
manuscript we report the synthesis of pyrano[2,3-d]-pyrimidine derivatives by using Mn/ZrO, as
a catalyst in the presence of equal ratio of EtOH:water for the first time. We report a novel
protocol for the synthesis of those derivatives using an inexpensive and robust catalyst which
accomplishes the reactions in short reaction times.
3.2.  Results and discussions

Reactions were carried out during preliminary investigations to screen for various
catalysts and under catalyst-free conditions and varying solvents. Reactions with 1,3-
dimethylbarbituric acid (1 mmol), substituted aldehyde (1 mmol) and malononitrile (1.1 mmol)
and water or ethanol as solvent and no catalyst showed no reaction at RT even after 12 h under
reflux conditions, (Table 1, entries 1-4). To obtain the most efficient catalytic conditions, the title
reaction was investigated in the presence of different catalyst materials such as alumina, silica,
MnCl,, and ZnCl; and in the presence of EtOH and water (50:50 v/v). The obtained results are
summarized in (Table 1, entries 5-8) and indicate that the reaction did not occur in the presence
of alumina or silica, and the yield obtained was very low with MnCl, or ZnCl,. Further, we
tested the scope of reaction in the presence of ionic liquids such as L-proline, (Bmim)BF, and
(Bmim)OH, but yields were low (Table 1, entry 9-11).
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The reactions were also investigated using 30 mg of CuO, MnQ,, ZrO,, as catalysts under
room temperature conditions in 1:1 ethanol/water mixture. The CuO, MnO, and ZrO, gave
yields of 42%, 53% and 48%, respectively (Table 1 entry 12-14). The reaction was repeated
under similar conditions using Mn/ZrO, which gave an excellent yield of 90% in 1 h once
optimum dopant percentage had been established. The impact of Mn loading on zirconia in
tuning its catalytic efficiency was further investigated. To find the ideal loading of Mn on ZrO,
on catalyst activity, reactions with 1%, 2% and 5% Mn doped ZrO, were carried out under
otherwise comparable conditions. The percentage of Mn loading was found to have an influence
on the reaction yield as well as reaction time (Table 1, entries 15-17). Using 1% Mn/ZrO,
catalyst yielded 76% product in 3 h under EtOH/water mixture solvent conditions (Table 1, entry
15). A 2.5% Mn loading was found optimal with 90 % yield in 1 h (Table 1, entry 16). A further
increase of metal (5%) loading led to a slight decreased yield (88%) (Table 1, entry 17).

In an effort to find the optimal reaction conditions, the reaction was carried out using
various amounts of catalyst at RT. It was found that 30 mg catalyst gave a maximum yield of
90% in 1 h. Using more than 30 mg of catalyst for the reaction had no significant improvement
on the yield or the reaction time. However, the decrease in amount of the catalyst to 20 and 10
mg, decreased the product yield to 89%, 87%, 73% and 67%, respectively (Table 1, entries 18-
21).

An interrogation of the experimental results and the effect of various polar and non-polar
solvents on the three component reaction clearly indicate that the EtOH/water solvent system
plays a vital role in facilitating the reaction (Table 1), comparatively less polar solvents like
CH3CN, DMF afforded poor yields (Table 1, entries 22,23). The protic polar (ethanol, water)
solvents on their own failed to produce the anticipated high yield (Table 1, entry 24, 25) but
interestingly, the miscible mixture of EtOH:H,O (50:50 v/v) gave a high 90% vyield. This effect
can be explained by a simple acid-base bi-functional catalysis mechanism facilitated by the
strong hydrogen bond interaction at the organic—aqueous ethanol interface which stabilizes the
reaction intermediate. A highly-polar solvent which dissipates heat faster possibly provide
optimum conditions for the formation of intermediates, and their conversion to final products on
the catalyst surface.

Using the optimised reaction conditions, the applicability of the protocol was evaluated

for the synthesis of other pyrano[2,3-d]pyrimidine derivatives with various aromatic aldehydes.
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The Mn/ZrO, heterogeneous catalyst proved to be an ideal material to catalyse the facile one-pot

synthesis of pyrano[2,3-d]-pyrimidine derivatives with good to excellent yields. All the reaction

products with other details are depicted in Table 2. Interestingly, the substrates used and reaction

yields obtained suggest that irrespective of electron-withdrawing and electron donating groups in

ortho, meta and para positions of the aromatic ring, using Mn/ZrO;, as catalyst, all the substrates

gave good to excellent yields of desired pyrano[2,3-d]-pyrimidine derivatives (Table 2). The

plausible reaction pathway is shown in Mechanism 1. All the resultant products were

characterized and molecular structures were confirmed by FTIR, *H NMR, *C NMR and °N

NMR (GHSQC) spectral analysis (Electronic Supplementary Information).

Table 1: Optimization condition for the synthesis of pyrano[2,3-d]-pyrimidines by Mn/ZrO,

catalyst®
Entry Catalyst Solvent Condition Time (h) Yield (%)°
1 No catalyst H.0 R.T 24 --
2 No catalyst EtOH R.T 24 --
3 No catalyst H,O Reflux 12 Trace
4 No catalyst EtOH Reflux 12 Trace
5 A|203 EtOH:Hzo R.T 10 --
6 SiO; EtOH:H,0 R.T 10 --
7 MnClI, EtOH:H,0 R.T 5 28
8 ZnCl, EtOH:H,0 R.T 8 18
9 L-proline EtOH:H,0 Reflux 3 48
10 (Bmim)BF, EtOH:H,0 Reflux 4 44
11 Bmim)OH EtOH:H,0 Reflux 35 51
12 CuO (30 mg) EtOH:H,0 R.T 6 42
13 MnO (30 mg) EtOH:H,0 R.T 3.5 53
14 Zr0O, (30 mg) EtOH:H,0 RT 4 48
15 1% Mn/ZrO; (30 mg) EtOH:H,0 R.T 3 76
16 2.5% Mn/ZrO, (30 mg)  EtOH:H,0 RT 1 95
17 5% Mn/ZrO, (30 mg) EtOH:H,0 R.T 1 93
18 Mn/ZrO, (40 mg) EtOH:H,0 RT 1 94
19 Mn/ZrO; (50 mg) EtOH:H,0 R.T 1.5 92
20 Mn/ZrO; (20 mg) EtOH:H,0 R.T 2 73
21 Mn/ZrO; (10 mg) EtOH:H,0 R.T 2 67
22 Mn/ZrO; (40 mg) CH3;CN R.T 3.5 46
23 Mn/ZrO; (40 mg) DMF R.T 4 35
24 Mn/ZrO, (30 mg) EtOH RT 3 74
25 Mn/ZrO, (30 mg) H,O R.T 3.5 69

2All products were characterised by IR, *"HNMR, **C NMR and ®N NMR (GHSQC) spectral

analysis.

®Isolated yields; - No reaction
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Table 2: Synthesis of pyrano[2,3-d]-pyrimidines derivatives catalyzed by Mn/ZrO, catalyst

Entry R Product  Yield (%) Mp °C Lit Mp °C
1 4-MeO-Ph 43 91 225-226  225-227 [29]
2 2,3-(Me0),-Ph 4b 92 216-218 --

3 2,5-(Me0),-Ph 4c 90 231-233 -
4 2-Br-Ph 4d 92 202-203 --
5 4-Br-Ph 4e 90 210-211 --
6 2-CI-Ph Af 89 235-237  237-238 [29]
7 3-NO,-Ph 49 91 221-223 --
8 3-OH-Ph 4h 89 196-198 --
9 Ph 4i 90 219-220  219-222 [29]
10 2-F-Ph 4 91 237-238 --
11 3-F-Ph 4k 89 214-215 --

®Reaction conditions: dimethylbarbituric acid (1.0 mmol), aromatic aldehyde (1.0 mmol) and
malononitrile (1.0 mmol) and EtOH:water (1:1 v/v, 10 mL), RT.

bAIl synthesized compounds are identified and their structures were conformed with IR, 'HNMR,
3C NMR spectral data and melting points as compared with literature values.

-- New compounds/no literature available.
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Mechanism: Plausible reaction mechanism for the formation of pyrano[2,3-d]-pyrimidine

derivatives
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3.2.1. BET surface and ICP analysis

Figure 1 illustrates the N, adsorption—desorption isotherms and pore size distribution
curves for the Mn doped ZrO,. The catalyst displays the characteristic hysteresis loop of a Type
IV isotherm (IUPAC) lying in the p/p, range of 0.6-0.95 typical for mesoporous materials. The
pore size distribution and specific area was calculated from the Barrett-Joyner-Halenda (BJH
adsorption) and Brunauer-Emmett-Teller methods respectively. The BET surface area of
Mn/ZrO, was confirmed to be 188.47 m%g with an average pore size and volume of 11.9 nm and
0.567 cm®/g respectively. The metal wt % obtained from ICP is in correlation with the nominal

weight loading.

—=— Mn/ZrO, Adsorption

—— MnIZrO2 Desorption

Quantity Adsorbed (cm?/g STP)

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Relative Pressure (P/Po)

Figure 1: BET surface of Mn/ZrO, catalyst

3.2.2. Powder X-ray diffractogram (XRD) analysis

The XRD patterns of the calcined 2% Mn on ZrO, catalyst are demonstrated in Figure 2.
The high intensity of the peaks suggested that all the prepared catalysts are polycrystalline in
nature. The d-spacing’s at 2 theta angles of 25.3, 34.9, 38.9, and 55.3 for Mn,O3 respectively.
This is in good agreement with the ICDD PDF No. 65-7467. From the XRD diffractograms it is
evidenced that Mn,Oj3 is the major phase in all the catalysts. There is a formation of additional
phase i.e Mn3Oy is observed. The d-spacing’s at a 2 theta angles of 32.5, 54.6 and 63.1 for
Mn3O4 which is correspond to the ICDD PDF No. 39-1218 for Mn3O,4 phase. The ZrO, showed
the sharp peaks corresponding to tetragonal ZrO, (ICDD PDF No. 88-1007, 26 = 25.7, 38.2,
49.8, and 55.7.
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Figure. 2. Powder X-ray diffractogram spectra of Mn/ZrO, catalyst

3.2.3. Infrared-spectra (FT-IR)  Figure 3 displays FT-IR spectra of mesoporous Mn on
ZrO, catalyst exhibited characteristic absorption band at 3368.6 cm™, 1655.4 cm™ and 1368.3

Intensity (a.u)

0

cm™ corresponding to the vibration of hydroxyl group, which involve the O-H vibrating mode of
traces of adsorbed water. Absorption band at 749.8 cm™ and 492.3 cm™ was due to stretching
peaks of Mn-O-Mn and Mn-O vibrations, respectively in accord with literature values.*> A
strong absorption band was observed at 1136.3 cm™ for the asymmetric stretching of Zr-O
group, supporting the formation of ZrO; groups on their surfaces. No organic groups were found
to be surface adsorbed based on IR results.
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Figure 3. FT-IR image of Mn/ZrO; catalyst
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3.2.4. SEM & TEM analysis

The SEM image of the prepared catalyst is shown in Figure 4. The catalyst was
crystalline in nature but with a coarse surface morphology. The manganese oxide particles were
observed as hexagonal-shaped particles which were dispersed on the surface of the zirconia. The
manganese oxide particles are shown in a red colour circles in Figure 4. These observations are
also in agreement with literature.®® The TEM images showed that the zirconia particles are
irregular and oval-shaped. The red circles in Figure 5 shows the manganese oxide particles

which might be agglomerated on the surface of zirconia.

EHT = 10.00 kv - Mag = 5803 KX

ignal A = InL.
59 T | probes  82pA WD = 84 mm —

Figure 4. SEM image of Mn/ZrO; catalyst

Figure 5. TEM image of Mn/ZrO, catalyst
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3.2.5. Reusability of Mn/ZrO,

To test reusability, a recycling experiment was employed using a model reaction. Thus,
after completion of reaction, the catalyst was recovered by filtration, washed with ethanol and
dried under vacuum. The recovered catalyst was re-used for six times with a slight loss in
catalytic activity (Figure 6). The minor loss perceived in the catalytic activity after 6th run could

be due to poisoning by organic impurities.

100

80 -

20 -+

1 2 3 4 5 6
Catalytic Cycles

Figure 6. Recyclability of Mn/ZrO, catalyst

3.3. Experimental section
3.3.1. Catalyst preparation

Mn doped ZrO, of various wt.% was prepared by a wet impregnation technique as
described in our earlier reports.*”* 5.0 g of zirconium oxide powder (Alfa Aesar Chemical) was
suspended in 250 mL of double distilled water and mixed with the desired masses of MnCl,
(Manganese (11) chloride tetrahydrate, Aldrich) based on the weight percentages of interest. The
mixture was stirred for 4 h using a magnetic stirrer at room temperature (RT) and then heated to
90 °C for 4 h. The precipitate was dried in an air oven at 110-120 °C for 12 h, followed by
calcination at 450 °C for 5 h to afford the 1%, 2.5% & 5% w/w of the Mn/ZrO, catalysts.
3.3.2. General procedure for the synthesis of pyrano[2,3-d]-pyrimidines

A solution containing dimethylbarbituric acid (1 mmol), substituted aldehyde (1 mmol),
malononitrile (1.1 mmol) and Mn/ZrO, (30 mg) in mixture of EtOH:H,O (1:1 v/v, 10 mL) was

continuously stirred for 1.0 h at RT using a magnetic stirrer (Scheme 1). The progress and
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completion of the reaction was monitored by TLC. The reaction mixture was then filtered, and
the filtrate was subsequently evaporated under reduced pressure to obtain the crude product
which was recrystallized with ethanol to afford pure product (4a-k). The recovered catalyst was

subjected to washing with ethanol, dried and re-used for up to six cycles.

4 A

CHO o) O

Mzro, ) N\ CN

oY —— VT
Lt A A
|

1(a-k) 2 3 4(a-k)
§ y,

Scheme 1: Synthesis of pyrano[2,3-d]-pyrimidine derivatives
7-Amino-5-(4-methoxyphenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-
d]-pyrimidine-6-carbonitrile (4a): *H NMR (400 MHz, DMSO-dg) & = 3.07 (s, 3H, NCHs),
3.36 (s, 3H, NCH3), 3.72 (s, 3H, OCH3), 4.31 (s, 1H, CH), 6.83 (d, J = 8.2 Hz, 2H, ArH), 7.14
(d, J = 8.04 Hz, 2H, ArH), 7.29 (s, 2H, NH>); **C NMR (100 MHz, DMSO-dg): & 27.64, 29.74,
35.81, 55.02, 58.55, 89.09, 113.64, 119.17, 128.18, 136.81, 149.95, 150.87, 157.88, 158.38,
160.45; N NMR (40.55 MHz, DMSO-ds) & 7.29 (s, 2H, NH,); IR (KBr, cm™): 3368, 3307,
3181, 2965, 2188, 1682, 1680, 1605, 1508; HRMS of [Ci7H16N4O4 — H] (m/z): 339.2011;
Calcd.: 339.2021.
7-Amino-5-(2,3-dimethoxyphenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-
pyrano[2,3-d]-pyrimidine-6-carbonitrile (4b): *H NMR (400 MHz, DMSO-ds) & = 3.06 (s,
3H, NCH3), 3.36 (s, 3H, NCHj3), 3.75 (s, 3H, OCH3), 3.78 (s, 3H, OCHj3), 4.61 (s, 1H, CH), 6.71
(d, J=7.04 Hz, 1H, ArH), 6.87 (d, J = 8.00, 1H, ArH), 6.94 (t, J = 7.96, 1H, ArH), 7.22 (s, 2H,
NH,); *C NMR (100 MHz, DMSO-ds): & 27.59, 29.07, 31.06, 55.49, 58.15, 59.90, 83.77,
111.29, 119.07, 120.70, 123.60, 136.99, 146.32, 149.94, 151.28, 152.24, 157.85, 160.37; N
NMR (40.55 MHz, DMSO-dg) & 7.22 (s, 2H, NHy); IR (KBr, cm™): 3317, 2937, 2188, 1681,
1645, 1474; HRMS of [C15H1sN4Os + Na] (m/z): 393.1166; Calcd.: 393.1175..
7-Amino-5-(2,5-dimethoxyphenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-
pyrano[2,3-d]-pyrimidine-6-carbonitrile (4c): *H NMR (400 MHz, DMSO-dg) & = 3.07 (s, 3H,

120



NCHj3), 3.38 (s, 3H, NCHj3), 3.65 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 4.58 (s, 1H, CH), 6.64 (d, J
= 3.02 Hz, 1H, ArH), 6.74 (dd, J = 8.9, 3 Hz, 1H, ArH), 6.89 (d, J = 8.9 Hz, 1H, ArH), 7.15 (s,
2H, NH.); *C NMR (100 MHz, DMSO-dg): & 27.59, 29.00, 31.32, 55.22, 56.34, 57.63, 88.05,
111.51, 112.76, 115.37, 119.02, 130.99, 150.00, 150.23, 151.52, 153.15, 158.15, 160.34; N
NMR (40.55 MHz, DMSO-dg) & 7.15 (s, 2H, NHy); IR (KBr, cm™): 3302, 3175, 2934, 2194,
1715, 1683, 1634, 1599, 1487; HRMS of [C1gH1sN4Os — H] (m/z): 369.0389; Calcd.: 371.0395.
7-Amino-5-(2-bromophenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4d): *H NMR (400 MHz, DMSO-ds) & = 3.05 (s, 3H, NCH3), 3.36
(s, 3H, NCHs), 4.86 (s, 1H, CH), 7.11-7.15 (m, 1H, ArH), 7.28 (d, J = 4.2 Hz, 2H, ArH), 7.33 (s,
2H, NH,), 7.53 (d, J = 8.00 Hz, 1H, ArH); *C NMR (100 MHz, DMSO-dg): & 27.58, 29.12,
35.80, 57.36, 88.23, 118.42, 122.77, 128.07, 128.64, 130.25, 132.45, 149.97, 151.47, 157.64,
160.28; N NMR (40.55 MHz, DMSO-ds) & 7.33 (s, 2H, NHy); IR (KBr, cm™): 3310, 2930,
2913, 1684, 1637, 1470; HRMS of [C16H13BrN4,O3 — H] (m/z): 387.0103; Calcd.: 387.0093..
7-Amino-5-(4-bromophenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4e): *"H NMR (400 MHz, DMSO-ds) & = 3.07 (s, 3H, NCH3), 3.34
(s, 3H, NCH3), 4.32 (s, 1H, CH), 7.21 (d, J = 8.00 Hz, 2H, ArH), 7.35 (s, 2H, NH,), 7.47 (d, J =
8.00 Hz, 2H, ArH); *C NMR (100 MHz, DMSO-dg): & 27.62, 29.09, 36.04, 58.03, 88.22,
118.85, 119.80, 129.67, 131.07, 143.54, 149.95, 151.15, 157.57, 160.43; >N NMR (40.55 MHz,
DMSO-dg) & 7.35 (s, 2H, NHy); IR (KBr, cm™): 3426, 3299, 2930, 2189, 1683, 1633, 1487.
7-Amino-5-(2-chlorophenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4f): *H NMR (400 MHz, DMSO-ds) & = 3.06 (s, 3H, NCH3), 3.36
(s, 3H, NCHs), 4.86 (s, 1H, CH), 7.23-7.36 (m, 6H, ArH, NH,); *C NMR (100 MHz, DMSO-
ds): 0 27.59, 29.11, 33.52, 57.18, 87.97, 118.52, 127.46, 128.37, 129.24, 132.17, 141.08, 149.97,
151.50, 157.76, 160.28; *°N NMR (40.55 MHz, DMSO-dg) & 7.30 (s, 2H, NH,); IR (KBr, cm™):
3382, 3310, 3193, 2959, 2193, 1703, 1684, 1638, 1474; HRMS of [C16H13CIN,O3 — H] (m/z):
343.0992; Calcd.: 343.1008.
7-Amino-5-(3-nitrophenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4g): *H NMR (400 MHz, DMSO-dg) & = 3.01 (s, 3H, NCH3), 3.34
(s, 3H, NCH3), 5.12 (s, 1H, CH), 7.43 (d, J = 8.00 Hz, 1H, ArH), 7.48 (s, 2H, NH,), 7.51 (s, 1H,
ArH), 7.64 (t, J = 8.00, 1H, ArH), 7.83 (d, J = 8.00 Hz, 1H, ArH); **C NMR (100 MHz, DMSO-
ds): 0 27.57,29.11, 30.77, 56.62, 88.33, 118.40, 123.63, 128.02, 130.73, 133.42, 138.38, 149.05,
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149.87, 151.82, 158.31, 160.50; N NMR (40.55 MHz, DMSO-dg) & 7.48 (s, 2H, NH,); IR
(KBr, cm™): 3373, 3306, 3184, 2957, 2196, 1706, 1683, 1632, 1522, 1490; HRMS of
[C16H13N505 — H] (m/z): 354.0844; Calcd.: 354.0838.
7-Amino-5-(3-hydroxyphenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4h): *H NMR (400 MHz, DMSO-ds) & = 3.09 (s, 3H, NCH3), 3.35
(s, 3H, NCH3), 4.21 (s, 1H, CH), 6.58-6.66 (m, 3H, ArH), 7.06 (t, J = 8.00 Hz, 1H, ArH), 7.29
(s, 2H, NHy), 8.42 (s, 1H, OH); *C NMR (100 MHz, DMSO-dg): & 27.65, 29.05, 36.35, 58.62,
88.98, 113.76, 114.15, 117.92, 119.05, 129.19, 145.48, 149.94, 150.96, 157.22, 160.43, 165.86;
>N NMR (40.55 MHz, DMSO-dg) & 7.29 (s, 2H, NH,); IR (KBr, cm™): 3370, 3303, 3199, 2965,
2197, 1783, 1636, 1598, 1484; HRMS of [C16H14N4O4 — H] (m/z): 325.0894; Calcd.: 325.0900.
7-Amino-1,3-dimethyl-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-pyrimidine-
6-carbonitrile (4i): 'H NMR (400 MHz, DMSO-dg) & = 3.07 (s, 3H, NCHs), 3.35 (s, 3H,
NCHa), 4.31 (s, 1H, CH), 7.18-7.28 (m, 5H, ArH), 7.30 (s, 2H, NH,); *C NMR (100 MHz,
DMSO-dg): 6 27.63, 29.07, 36.47, 58.63, 88.78, 119.01, 126.73, 127.28, 129.49, 130.44, 144.08,
149.97, 151.09, 157.63, 160.45; °N NMR (40.55 MHz, DMSO-ds) & 7.30 (s, 2H, NHy); IR
(KBr, cm™): 3380, 3307, 3193, 2866, 2196, 1703, 1682, 1639, 1607, 1493; HRMS of
[C16H14N4O3 — H] (m/z): 309.0984; Calcd.: 309.0988.
7-Amino-5-(2-fluorophenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4j): *H NMR (400 MHz, DMSO-ds) & = 3.06 (s, 3H, NCH3), 3.35
(s, 3H, NCHg), 4.61 (s, 1H, CH), 7.11 (t, J = 7.68 Hz, 2H, ArH), 7.24-7.27 (m, 2H, ArH), 7.35
(s, 2H, NHy); *C NMR (100 MHz, DMSO-dg): & 27.60, 29.07, 30.42, 57.16, 87.59, 115.36,
118.74, 124.43, 128.70, 128.78, 129.69, 149.95, 151.43, 157.93, 158.78, 160.75; N NMR
(40.55 MHz, DMSO-ds) & 7.35 (s, 2H, NH>); IR (KBr, cm™): 3384, 3311, 3194, 2962, 2195,
1683, 1637, 1509, 1488; HRMS of [C16H13FN4O3 — H] (m/z): 327.0889; Calcd.: 327.0893.
7-Amino-5-(3-fluorophenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-
pyrimidine-6-carbonitrile (4k): '"H NMR (400 MHz, DMSO-ds) & = 3.07 (s, 3H, NCH3), 3.34
(s, 3H, NCHs3), 4.36 (s, 1H, CH), 7.02-7.10 (m, 3H, ArH), 7.32-7.34 (m, 3H, ArH, NH,); °C
NMR (100 MHz, DMSO-dg): & 27.62, 29.08, 36.20, 58.10, 88.11, 113.89, 114.50, 118.85,
123.45, 130.05, 147.01, 147.07, 149.99, 151.29, 157.62, 160.51; >N NMR (40.55 MHz, DMSO-
dg) & 7.32 (s, 2H, NHy); IR (KBr, cm™): 3382, 3305, 3192, 2194, 1711, 1683, 1635, 1613, 1490.
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3.4.

Conclusions

In conclusion, we report an environmentally benign and an efficient one-pot

multicomponent green synthesis of pyrano-[2,3-d]-pyrimidine derivatives using Mn/ZrO, as

catalyst in green solvent media and with good atom efficiency. This simple and recyclable

heterogeneous catalyst, Mn/ZrO, shows high catalytic activity for multicomponent reactions.

The current method deals several advantages such as short reaction time, cost-effectiveness,

purity of products, excellent yields, use of small amount of inexpensive catalyst and

environmentally benign green solvent.
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3.7. Supplementary materials data
3.7.1. Materials, methods and instruments

All chemicals and reagents required for the reaction were of analytical grade and were
used without any further purification. Bruker AMX NMR spectrometer was used to record the *H
NMR, C NMR and **N NMR spectral values. The DMSO—dg solution was utilized for this
while TMS served as the internal standard. TMS was further used as an internal standard for
reporting the all chemical shifts in 6 (ppm). The FT-IR spectrum for the samples was established
using a Perkin Elmer Perkin Elmer Precisely 100 FT-IR spectrometer at the 400-4000 cm™ area.
Purity of all the reaction products was confirmed by TLC using aluminum plates coated with
silica gel (Merck Kieselgel 60 F254).
3.7.2. Characterization of catalysts

Micromeritics Tristar-11 porosity and surface area analyzer was used estimation of pore
size, pore volume and surface area of the catalysts. BJH adsorption-desorption curves were
obtained at -196 °C, to assess the particulate properties of the catalyst. All the catalyst materials
were degassed by passing nitrogen overnight at 200 °C. Bruker D8 advance instrument with a Cu
K radiation source by A = 1.5406 was used for the X-ray diffraction data for the catalyst. Jeol
JEM-1010 electron microscope and JEOL JSM-6100 microscope were used for TEM and SEM
analysis respectively. In TEM analysis for particles distribution, size of 40-60 particles were
averaged and with standard deviation. An emission current (100 pA) by a Tungsten (W) filament
with 12 kV accelerator voltage was employed for EDX-analysis of the SEM images. Elemental
composition of the catalyst materials was established by using Inductively Coupled Plasma

Optical Emission Spectrometer (Optima 5300 DV).
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Abstract

An efficient green protocol for the synthesis of the 2-amino-3-cyano-4H-pyran
derivatives employing a multicomponent one-pot condensation reaction of 5,5-
dimethylcyclohexane-1,3-dione, aromatic aldehyde and malononitrile was designed using a Ce-
V/SiO; heterogeneous catalyst in the of the eco-compatible solvent (ethanol). The catalyst was
synthesised and fully characterized by PXRD, TEM, SEM and BET surface area analysis. The
reported procedure offers a number of advantages including reduced reaction times, mild
conditions, high yields, operational simplicity, and environmentally benign and simple work-up
procedures. Furthermore, the catalyst is economical, fully recyclable and reusable for over 5 runs
while preserving its high activity.

Keywords: Green protocol, 4H-pyrans, Multicomponent synthesis, Ce-V/SiO,, Recyclable
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4.1. Introduction

Multicomponent reactions (MCRs) are exciting new synthetic protocols geared toward
heterocyclic scaffolds as building blocks of biological and medicinal importance [1,2]. MCR
have many advantages over conventional linear-type syntheses by virtue of their convergence,
productivity, facile execution, and high yields [3]. Moreover, MCRs conform green principles
such as one-pot conversions and atom efficiency, in addition to other conditions opted for
synthesis of heterocyclics [4]. These single-step processes have distinctive suppleness in
generating molecular diversity combined with minimization of time, cost efficiency plus
moderate reaction conditions.

In the recent past, heterogeneous mixed metal oxide catalysts started to receive greater
attention. Such systems are successfully utilised in the augmentation of heterocyclic synthesis
and green reaction protocols [5]. Heterogeneous catalytic processes based on metal oxide
catalysts are simpler, highly efficient and eco-friendly with greater selectivity [6]. Heterogeneous
catalysts possess added advantages such as thermal stability, shape selectivity, acidic or basic
nature, non-toxic crystalline solid and easy handling [6]. Easy salvage and reusability are
additional benefits. Hence, considering current legislation and industry needs, heterogeneous
catalysts is a notable option for one-pot synthesis involving multicomponent reactions.

Silica (SiOy) is an efficient and cheap support material, which can readily promote the
activity of the supported metal catalysts. SiO, has good acid-base properties, has a non-toxic
nature and high chemical thermal stability [7]. It has high surface area and carries a vast
concentration of active sites. SiO, by itself or in combination with metals (composites) have
been used in organic synthesis [8]. This acid-based bi-functional catalyst has emerged as an
attractive option as support material for the activation and stabilization of ceria and vanadia. The
crystalline structure of SiO, has been reported as a key factor in explaining the structure-activity
relationships of mixed oxides of Ce and V catalysts as the Ce-V/SiO; solid material possesses
both Bronsted and Lewis acid centers [9].

Due to variety of therapeutic, pharmacological, biological and agricultural applications
for heterocyclics in the fields of organic, pharmaceutical, medicinal and combinatorial chemistry,
heterocyclic compounds as catalysts have gained importance [10,11]. The pyrans and
benzopyrans received significant attention in heterocyclic synthesis [12], as they possess an

oxygen heteroatom and exhibit diverse biological properties such as anti-bacterial and antifungal
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[13], anticancer [14], anti-inflammatory [15], antirheumatic [16], anti-HIV [17], and anti-
Alzheimer activities [18] and is also used for treatment of disorder in the central nervous system
[19]. Applications of pyran containing compounds as ligands in coordination chemistry,
herbicidal, and insecticidal in pesticide chemistry are also well-documented. Thus, the synthesis
of substituted pyran derivatives has been the topic of many research investigations and several
approaches have been pursued using various catalysts, including HMTAB [20],
HsP2W1,06,.H,0 [21], RE(PFO)3 [22], phenylboronic acid [23], PPA-SiO; [24], per-6-amino-f-
cyclodextrin [25], L-proline [26], DMAP [27], Bmim[BF,4] [28], MNP@P[imEt][Br] [29], TBAF
[30] amongst others. However, many of these procedures have one or more drawbacks such as
moderate yields, requirement of expensive reagents, toxic organic solvents, stoichiometric
catalysts, extreme reaction conditions, lengthy procedures or long reaction times,. Moreover, in
many cases, the catalysts used are not recyclable. Therefore, the development of an effective and
facile procedure with high generality for the synthesis of 4H-pyrans would be timely and of
considerable interest.

In continuing our research in developing new methodologies for synthesis of heterocycles
[31,32] we here communicate an efficient method for the synthesis of 2-amino-3-cyano-4H-
pyran derivatives (4a-k) in high yields in the presence of a Ce-V/SiO, heterogeneous and
reusable catalyst under green conditions.

4.2. Experimental procedure
4.2.1 Catalyst preparation

Ce-V loaded silica mixed oxide (Ce-V) with a Ce:V molar ratio of 1:1 was synthesised
by the wet impregnation method [33,34]. Cerium nitrate, Ce(NO3)3.6H.0, (Aldrich-99%) and
vanadyl sulfate, VOSQO4.xH,0, (Aldrich-97%) were dissolved in 50 mL distilled water and this
was followed by 2.0 g of silica (SiO,, Aldrich) added to the mixture. The reaction mixture was
continuously stirred for 4 h at room temperature (RT) and the mixture was further dried in an
oven at 110 °C overnight and then calcined in air flow at 500 °C for 4 h to obtain the various 1, 2
and 4 wt % of mixed oxides of Ce and V loaded silica catalysts.

4.2.2 General procedure for the synthesis of 2-amino-3-cyano-4H-pyran derivatives

A mixture of 5,5-dimethylcyclohexane-1,3-dione 1 (1 mmol), aromatic aldehyde 2 (1

mmol), malononitrile 3 (1.1 mmol) were dissolved in EtOH (10 mL) at RT. The 2% Ce-V/SiO,

catalyst (30 mg) was added to the reaction mixture and continuously stirred for 1 h. The
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completion of the reaction mixture was monitored by thin-layer chromatography (TLC) analysis
(Scheme 1). After completion of the reaction, the solid heterogeneous catalyst was filtered. The
attained catalyst was washed with acetone and dried under reduced pressure in 70-80 °C for 2 h
and kept aside for use in the next reaction. The filtrate was concentrated to obtain the crude

product and purified by recrystallization in ethanol to afford compounds.

CHO
\ N
| +
,\’ N
R

C
Ce-V/SiO,
—
RT., 1h
C
(2a-1) 3)

-

(@)
>ii+
O

(1)

Scheme. 1: Synthesis of 2-amino-3-cyano-4H-pyran derivatives

4.3. Results and discussion

To establish the optimum reaction conditions, to maximize the yield and reduce reaction
times, the reaction was investigated under varied conditions of catalysts and solvents. The initial
experiment was conducted with 5,5-dimethylcyclohexane-1,3-dione 1 (1 mmol), benzaldehyde
2a (1 mmol) and malononitrile 3 (1.2 mmol) in aqueous media, without any catalyst at RT, and
no reaction was observed. Even after 24 h under reflux conditions, the reaction showed no
product (Table 1, entries 1 and 2). The same reaction was repeated with ethanol as solvent, but
no product was obtained even after 12 h (Table 1, entry 3). Interestingly, a trace amount of the
predicted product was observed, when MgO, Mn/Al,O3 or V/AIl,O3 were used as catalysts in the
ethanol media (Table 1, entry 4-6), but no reaction was apparent in presence of strongly basic
catalysts, such as piperidine or K,CO3 and ethanol as solvent (Table 1, entries 7 & 8). The acidic
catalysts PTSA, SiO; and ZnCl, were attempted, but found to be less effective as reactions gave
only 21-34% vyield of the expected product (Table 1, entries 9-11). The scope of reaction in the
presence of the L-proline and also ionic liquids such as (Bmim)BF,; and (Bmim)OH was also
explored, but yields were low (Table 1, entries 12-14). With CeO,/SiO, and V,0s/SiO; as a
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catalyst in ethanol, yields of 55% and 58% were obtained (Table 1, entries 15, 16). This could be
due to the high surface area of V,0s on silica than Ce on silica which increases the availability of
vanadium active sites for the reaction. Further, we examined HCIO,/SiO, catalyst to afford less
yield 45%. Then, we investigated the range of Ce-V/SiO, which is a bi-functional acid/base
catalyst with ethanol as solvent. The reaction was repeated under similar conditions using Ce-
V/SiO; which gave an excellent yield of 95% in 1 h once optimum dopant percentage had been
established. The impact of cerium, vanadia loading on silica in tuning its catalytic efficiency was
further investigated. To find the ideal loading of Ce-V on SiO, on catalyst activity, reactions
with 1%, 2% and 4% Ce-V doped SiO, were carried out under otherwise comparable conditions.
The percentage of Ce-V loading was found to have an influence on the reaction yield as well as
reaction time (Table 1, entries 18-20). Using 1% Ce-V/SiO, catalyst yielded 79% product in 2.5
h under EtOH solvent conditions (Table 1, entry 18). A 2% Ce-V loading was found optimal
with 95 % vyield in 1 h (Table 1, entry 19). A further increase of metals (4%) loading led to a
slight decreased yield (89%) (Table 1, entry 20). We were pleasantly surprised to discover the
MCR was successful in only 1 h and at RT. The expected substituted pyrans (4a) were produced
selectively and in good yield (95%) (Table 1, entry 19). Although it took about 1 h for the
reaction for completion, the Ce-V/SiO, catalysed reaction was found to start almost immediately.
Reaction products were identified and confirmed by spectral and other analytical data. Excellent
selectivity and yield could be achieved due the nature of the chosen catalyst with high surface
area, which has presumably enhanced the accessibility of the substrate to the anchored acidic and
basic groups.

The surface properties of the SiO, can be modified by loading cations of various
properties. An optimal distribution of the acidic and basic sites due to loading of Ce-V on SiO;
possibly contributed to its enhanced catalytic efficiency, which is evident from the high vyield,
selectivity and speed of the reaction achieved in the title reaction. In the proposed MCR, we
speculate that the Ce-V/SiO; catalyst display greater efficiency compared to the other catalysts
investigated due to a synergetic effect between ceria and vanadia.

Taking advantage of proven performance of 2% Ce-V/SiO, as catalyst for the MCR, we
then focused on further improving the reaction efficiency. We screened for changes in the
variation of catalyst Ce-V loading on silica support. The results are summarised (Table 2, entries

1-3) which indicate that an increase in loading of Ce-V on SiO, from 10 mg to 30 mg, resulted in
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an increased yield from 71% to 95%. A further increase in loading of catalyst had only a
marginal effect on product yield (Table 2, entries 4 & 5).

Table 1: Optimization condition for the synthesis of 2-amino-3-cyano-4H-pyran derivatives by
Ce-V/SiO; catalyst®

Entry Catalyst Solvent Condition Time (h) Yield (%)°

1 No catalyst H.0 RT 24 --
2 No catalyst H.0 Reflux 24 --
3 No catalyst EtOH Reflux 12 --
4 MgO (50 mg) EtOH Reflux 10 Trace
5 Mn/Al,O3 (50 mg) EtOH Reflux 12 Trace
6 V/AIl,O3 (50 mg) EtOH Reflux 12 Trace
7 Piperidine EtOH Reflux 12 --
8 K2CO3 EtOH Reflux 12 --
9 PTSA EtOH Reflux 7 21
10 SiO; EtOH Reflux 8 27
11 ZnCl, EtOH Reflux 5 34
12 L-proline EtOH:H,0 Reflux 4.5 38
13 (Bmim)BF, EtOH:H,0 Reflux 4 32
14 (Bmim)OH EtOH:H,0 Reflux 4 29
15 Ce0,/SiO, EtOH RT 2 55
16 V,05/SiO; EtOH RT 2 58
17 HCIO./SiO; EtOH RT 2.5 45
18 1% Ce-V/SiO; (30 mg) EtOH RT 2.5 79
19 2% Ce-V/SiO, (30 mg) EtOH RT 1 95
20 4% Ce-V/SiO; (30 mg) EtOH RT 1 89
21 2% Ce-VI/SiO, (30 mg) MeOH RT 2 89
22 2% Ce-V/SiO, (30 mg) CH3COCN RT 2.5 78
23 2% Ce-V/SiO, (30 mg) DMF RT 2.5 86
24 2% Ce-V/SiO, (30 mg) THF RT 3 69
25 2% Ce-V/SiO, (30 mg) Toluene RT 4 65

3All products were characterised by IR, *H NMR, *C NMR, N NMR and HR-MS spectral

analysis.

®Isolated yields.

-- No reaction

Secondly, because solvents play an important role in design of MCRs, we also studied the
influence of solvent in the title reaction. Efficeincy of diverse solvents including methanol,
acetonitrile, DMF, tetrahydrofuran, and toluene were compared under otherwise identical

reaction conditions. We found that reaction proceeded smoothly in protonic solvents. Among all
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the screened solvents, EtOH was found to be superior solvent for this multicomponent reaction.
It is noteworthy to mention that from the results of optimization (Table 1, entries 21-25), the
reaction temperature and polarity of the solvent appear to be important for this multicomponent
reaction to achieve clean products in good to excellent yields. Polar protic solvents enhance the
rate of reaction, whereas for the non-polar solvents the rate of the reaction was sluggish.

Table 2:

Optimization of the amount of 2% Ce-V loading on SiO, as catalyst in the reaction

Entry Catalyst (mg) Time (h) Yield (%)
1 Ce-V/SiO; (10 mg) 2.5 86
2 Ce-VI/SiO; (20 mg) 2.0 89
3 Ce-VI/SiO; (30 mg) 1 95
4 Ce-VI/SiO; (40 mg) 1 95
5 Ce-VI/SiO; (50 mg) 15 94
Table 3:
Synthesis of 2-amino-3-cyano-4H-pyran derivatives catalyzed by Ce-V/SiO; catalyst
Entry R Product  Yield (%) Mp °C Lit Mp °C
1 3-OMe 4a 92 210-212 -
2 4-OMe 4b 93 201-202  201-202 [30]
3 2-Br 4c 89 197-198 --
4 4-Br 4d 92 204-206 --
5 3-Cl 4e 94 210-211 --
6 2,3-(OMe); 4f 90 215-217 -
7 2,4-(OMe), 49 92 220-221 -
8 3,4-(OMe), 4h 90 208-209 --
9 2,4,6-(OMe); 4i 91 232-234 --
10 H 4j 95 232-234  234-235[30]
11 2-Furyl 4k 93 224-226 -
12 2-NO; 41 87 231-232 -

®Reaction conditions: 5,5-dimethylcyclohexane-1,3-dione (1 mmol), aromatic aldehyde (1
mmol), malononitrile (1.1 mmol) and EtOH (10 mL), RT.

PAll synthesized compounds are identified and their structures were conformed with IR, *H
NMR, ®C NMR, N NMR and HR-MS spectral data and melting points as compared with
literature values.

-- New compounds/no literature available.

156



The wider scope of this MCR was further explored with other reagents. Chosing the
optimised conditions for the synthesis of 4a, i.e. 30 mg of Ce-V/SIiO, at RT and ethanol as
solvent (Scheme 1), we investigated the reactions with varied structurally different aldehydes
(2a-1) for the MCR. To our delight, most of the reactions afforded the desired 2-amino-3-cyano-
4H-pyran derivatives with excellent selectivity (4a-1) and yields (87-95%), and with no
byproducts. The results are summarised in Table 3. Interestingly, the MCRs with substrates
bearing both electron donating or electron-withdrawing groups on the aromatic ring performed
well and gave corresponding target molecules in excellent yields. Structures of all the products
(4a-1) were established and confirmd on the basis of their spectral data, ‘H NMR, *C NMR, ©*N
NMR (GHSQC), FTIR and HRMS. The details of the product characterization are presented in
the ESI.

4.3.1. X-Ray diffraction (XRD)

Figure 1 shows the XRD patterns of the Ce-V/SiO, powder catalyst calcined at 450 °C.
The CeO, diffraction peaks at 20 = 29.6°, 31.7°, 36.5°, 49.1° and 67.2° compare well with the
standard database file (JCPDS34-0394). The mixed oxide shows the Ce-VO, phase in accord
with the standard database file JCPDS12-757, with sharp diffraction peaks at 20 = 22.2°, 26.2°,
32.2°, 42°,54.6° and 71.8°. As can be seen from the figure, the vanadium oxide sample showed
sharp diffraction peaks at 20 = 17.3°, 29.1°, 38.1° and 49° (JCPDS41-1426). There are no other
peaks, except V,0s, CeO,, and CeVVO, in XRD patterns for the Ce-V/SiO, sample, implying bulk

purity.
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Figure 1. XRD spectra of Ce-V/SiO; catalyst
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4.3.2. SEM, TEM and ICP-OES analysis

The SEM micrograph (Figure 2a) displays agglomeration of metal oxide particles which
is caused by the calcination of the Ce-V/SiO, catalyst and these aggregates are in the size range
from 0.81-2.00 um. EDS semi-quantitative analysis of this catalyst showed that Ce and V are
homogenously distributed in the catalyst (Figure 2b), and the metal ratio (Ce:V:Si) is also in
agreement with the ICP elemental analysis. The catalyst morphologies as indicated by the SEM
image clearly point out the homogeneity in shapes for the sample and high crystallinity. ICP-
OES analysis showed that the cerium to vanadium metal ratio is equal. TEM micrograph (Figure
3) showed that calcined catalyst has a cubic-like structure, which is characteristic of typical
vanadate. These cubic planar structures are in the size of 21 + 3 nm. The selected area
diffractions showed that catalyst is polycrystalline in nature, which is further supported by the
XRD diffractogram.

-,m

- s S
10 pm EHT = 10.00 KV Signal A = InLens Date 14 Jan 2013
WD = 80mm Mag= 320KX Aperture Size = 20.00 pm

Figure 2a. SEM image of Ce-V/SiO; catalyst
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Figure 2b. SEM-EDX image of Ce-V/SiO; catalyst
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Figure 3. TEM spectra of Ce-V/SiO, catalyst
4.3.3. BET surface area

The nitrogen adsorption—desorption isotherms for the Ce-V/silica supported catalyst are

shown in Figure 4. All the prepared catalysts have a similar pattern in adsorption—desorption
isotherms and display the characteristic hysteresis loop of a type-1V isotherm (IUPAC) lying in
the p/p° range of 0.7-0.85, demonstrating mesoporous character and indicates a small pore size
and good homogeneity of the catalyst. A quite narrow and monomodal pore size distribution was
obtained for the Ce-V doped on silica. This further indicated that the average pore size has
increased with increasing the loading amount of silica. For the 2 wt% Ce-V loaded catalyst the
parameters are specific surface area (17.1 m?/g), pore size (0.0139 cm*/g) and total pore volume
(74 A%). The low surface area of the prepared catalysts with compared to the bare silica support

was probably due to the good dispersion of Ce-V on the surface of silica.
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Figure 4. N, adsorption & desorption spectra and pore size distribution of Ce-V/SiO, catalyst
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4.3.4. Reusability of the catalyst

The reusability of any heterogeneous catalyst is one of the important parameters for
potential commercial adaptation. The reusability of the catalyst was assessed in the synthesis of
2-amino-3-cyano-4H-pyran derivatives (Figure 5). Gratifyingly, the heterogeneous Ce-V/SiO,
could be recovered effectively from the reaction mixture by simple filtration and by washing the
catalyst twice with acetone and dried at 70-80 °C under reduced pressure for 2 h to make it ready
for a later run. There is no loss of Ce-V loading on silica was observed which is confimed by
ICP-OES analysis. The catalyst was tested for six runs. It was observed that recovered catalyst
can be recycled in subsequent runs with minimal loss of its activity only after five runs which

might be due to the agglomeration of Ce-V.
100 4

80

20 4

1 2 3 4 5 6
Catalytic Cycles

Figure 5. Recyclability of Ce-V/SiO, catalyst

4.4. Conclusion

In conclusion, we report an environmentally benign and an efficient one-pot
multicomponent green synthesis of 2-amino-3-cyano-4H-pyran derivatives using Ce-V/SiO, as
catalyst in green solvent media and with good atom efficiency. This simple and recyclable
heterogeneous catalyst, Ce-V/SiO, shows high catalytic activity for multicomponent reactions.
The current method deals several advantages such as short reaction time, excellent yields, purity
of products, cost-effectiveness, use of small amount of inexpensive catalyst and environmentally

benign green solvent.
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4.7. Supplementary materials data

4.7.1. Materials, methods and instruments

All chemicals and reagents required for the reaction were of analytical grade and were
used without any further purification. Bruker AMX 400 MHz NMR spectrometer was used to
record the *H NMR, *C NMR and N NMR spectral values. High-resolution mass data were
obtained using a Bruker micro TOF-Q Il ESI instrument operating at ambient temperature. The
DMSO—ds solution was utilized for this while TMS served as the internal standard. TMS was
further used as an internal standard for reporting the all chemical shifts in & (ppm). The FT-IR
spectrum for the samples was established using a Perkin Elmer Perkin Elmer Precisely 100 FT-
IR spectrometer at the 400-4000 cm™ area. Purity of all the reaction products was confirmed by
TLC using aluminum plates coated with silica gel (Merck Kieselgel 60 F254).
4.7.2. Characterization of catalysts

Bruker D8 advance instrument with a Cu K radiation source by A = 1.5406 was used for
the X-ray diffraction data for the catalyst. Jeol JEM-1010 electron microscope and JEOL JSM-
6100 microscope were used for TEM and SEM analysis respectively. In TEM analysis for
particles distribution, size of 40-60 particles were averaged and with standard deviation. An
emission current (100 pA) by a Tungsten (W) filament with 12 kV accelerator voltage was
employed for EDX-analysis of the SEM images. Elemental composition of the catalyst materials
was established by using Inductively Coupled Plasma Optical Emission Spectrometer (Optima
5300 DV). Micromeritics Tristar-11 porosity and surface area analyzer was used estimation of
pore size, pore volume and surface area of the catalysts. BJH adsorption-desorption curves were
obtained at -196 °C, to assess the particulate properties of the catalyst. All the catalyst materials

were degassed by passing nitrogen overnight at 200 °C.
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4.7.3. Physical data of compounds

2-Amino-4-(3-methoxyphenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4a): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.96 (s, 3H, CHz), 1.03 (s,
3H, CH3), 2.05 (d, J = 16.02 Hz, 1H, CH,), 2.24 (d, J = 16.02 Hz, 1H, CH,), 2.44 (d, J = 17.16
Hz, 1H, CH,), 2.54 (d, J = 17.16 Hz, 1H, CH,), 3.74 (s, 3H, OCH3), 4.47 (s, 1H, CH), 6.80 (s,
2H, NH,), 6.85 (d, J = 7.04 Hz, 1H, ArH), 6.93-6.99 (m, 2H, ArH), 7.15 (t, J = 7.64, 1H, ArH);
3C NMR (100 MHz, CDCI3): § 26.51, 28.57, 30.29, 31.73, 50.00, 55.76, 57.34, 111.44, 111.85,
119.80, 120.29, 127.77, 128.51, 132.11, 156.79, 158.95, 163.06, 195.55; IR (KBr, cm'l): 3469,
3323, 3183, 2933, 2198, 1682, 1367, 1244; HRMS of [CigH,0N,03 — H]" (m/z): 323.1397;
Calcd.: 323.1396.

2-Amino-4-(4-methoxyphenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4b): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.94 (s, 3H, CH3), 1.02 (s,
3H, CHs), 2.08 (d, J = 16.04 Hz, 1H, CH,), 2.28 (d, J = 17.52 Hz, 1H, CH,), 2.43 (d, J = 16.24
Hz, 1H, CHy), 2.54 (d, J = 17.52 Hz, 1H, CH,), 3.70 (s, 3H, OCH3), 4.11 (s, 1H, CH), 6.83 (d, J
= 8.24 Hz, 2H, ArH), 6.93 (s, 2H, NH,), 7.04 (d, J = 8.04, 1H, ArH); *C NMR (100 MHz,
CDCI3): 3 26.72, 28.36, 31.73, 34.71, 49.97, 54.95, 58.54, 112.95, 113.63, 119.76, 128.17,
133.34, 136.80, 157.87, 158.37, 160.44, 162.11, 195.65; IR (KBr, cm™): 3368, 3307, 3181, 2965,
2188, 1650, 1367, 1241; HRMS of [C1gH19N,03 — H]" (m/z): 323.1057; Calcd.: 323.1059.

2-Amino-4-(2-bromophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4c): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.98 (s, 3H, CHg), 1.04 (s,
3H, CHs), 2.07 (d, J = 16.00 Hz, 1H, CH,), 2.24 (d, J = 16.04 Hz, 1H, CH,), 2.46 (d, J = 16.24
Hz, 1H, CHy), 2.57 (d, J = 17.52 Hz, 1H, CH,), 4.70 (s, 1H, CH), 7.01 (s, 2H, NHy), 7.11-7.13
(m, 2H, ArH), 7.32 (t, J = 7.89 Hz, 1H, ArH), 7.52 (d, J = 7.16, 1H, ArH); *C NMR (100 MHz,
CDCI3): & 26.93, 28.31, 31.73, 34.94, 49.91, 57.04, 112.05, 119.09, 122.65, 128.04, 128.43,
132.59, 143.32, 158.55, 163.03, 195.52; IR (KBr, cm™): 3375, 3322, 3192, 2967, 2189, 1651,
1366, 1212; HRMS of [C1gH16N.0,Br — 2H]" (m/z): 371.0389; Calcd.: 371.0395.

2-Amino-4-(4-bromophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4d): White solid: *H NMR (400 MHz, DMSO-ds) & = 0.94 (s, 3H, CHs), 1.02 (s,

164



3H, CHa), 2.09 (d, J = 16.00 Hz, 1H, CHy), 2.24 (d, J = 16.00 Hz, 1H, CH,), 2.42 (d, J = 16.24
Hz, 1H, CH,), 2.53 (d, J = 17.02 Hz, 1H, CH,), 4.17 (s, 1H, CH), 7.04 (s, 2H, NH,), 7.10 (d, J =
7.64 Hz, 2H, ArH), 7.46 (d, J = 7.45, 2H, ArH); **C NMR (100 MHz, CDCI3): & 26.82, 28.26,
31.75, 35.15, 49.90, 57.67, 112.21, 119.51, 119.57, 129.47, 131.17, 144.13, 158.44, 162.62,
195.68; IR (KBr, cm™): 3376, 3320, 3187, 2963, 2133, 1652, 1367, 1251.

2-Amino-4-(3-chlorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4e): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.97 (s, 3H, CH3), 1.03 (s,
3H, CHs), 2.07 (d, J = 16.04 Hz, 1H, CH,), 2.24 (d, J = 16.04 Hz, 1H, CH,), 2.46 (d, J = 16.99
Hz, 1H, CH,), 2.52 (d, J = 17.36 Hz, 1H, CH,), 4.68 (s, 1H, CH), 7.01 (s, 2H, NH,), 7.15-7.19
(m, 2H, ArH), 7.21 (t, J = 7.78, 1H, ArH), 7.27 (d, J = 7.47, 1H, ArH); *C NMR (100 MHz,
CDCI3): ¢ 26.83, 28.36, 31.72, 32.81, 49.89, 56.78, 111.73, 119.21, 127.40, 128.18, 129.41,
129.91, 132.04, 141.51, 158.63, 163.13, 195.55; IR (KBr, cm™): 3375, 3322, 3189, 2961, 2190,
1652, 1366, 1250; HRMS of [C1gH16N,0,C1 — H]" (m/z): 327.0894; Calcd.: 327.0900.

2-Amino-4-(2,3-dimethoxyphenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4f): White solid: *"H NMR (400 MHz, DMSO-dg) & = 0.97 (s, 3H, CH3), 1.03 (s,
3H, CHs), 2.06 (d, J = 16.00 Hz, 1H, CH,), 2.22 (d, J = 16.04 Hz, 1H, CH,), 2.44 (d, J = 16.24
Hz, 1H, CH,), 2.54 (d, J = 17.52 Hz, 1H, CH,), 3.78 (s, 3H, OCH3), 3.81 (s, 3H, OCHs), 4.53 (s,
1H, CH), 6.57 (d, J = 7.64 Hz, 1H, ArH), 6.83 (s, 2H, NH.), 6.85 (d, J = 6.81 Hz, 1H, ArH), 6.94
(t, J = 7.92, 1H, ArH): **C NMR (100 MHz, CDCI3): & 26.81, 28.35, 29.35, 31.77, 50.01, 55.48,
57.93, 59.97, 110.97, 112.58, 119.79, 120.10, 123.63, 146.01, 152.16, 158.66, 162.77, 195.65;
IR (KBr, cm™): 3382, 3305, 3192, 2958, 2194, 1683, 1387, 1232.

2-Amino-4-(2,4-dimethoxyphenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile (4g): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.97 (s, 3H, CHjz), 1.03 (s,
3H, CHs), 2.06 (d, J = 16.08 Hz, 1H, CH,), 2.24 (d, J = 16.08 Hz, 1H, CH,), 2.46 (d, J = 17.70
Hz, 1H, CH,), 2.52 (d, J = 17.70 Hz, 1H, CHy), 3.64 (s, 3H, OCHj3), 3.69 (s, 3H, OCH3), 4.43 (s,
1H, CH), 6.50 (d, J = 7.01 Hz, 1H, ArH), 6.71 (d, J = 7.05 Hz, 1H, ArH), 6.81 (s, 2H, NH,), 6.87
(d, J = 8.92 Hz, 1H, ArH); *C NMR (100 MHz, CDCI3): & 26.42, 28.60, 30.26, 31.71, 49.97,
55.15, 56.23, 57.28, 111.53, 111.73, 112.62, 114.77, 119.73, 133.41, 151.01, 153.04, 158.92,
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163.16, 195.60; IR (KBr, cm™): 3384, 3311, 3194, 2962, 2195, 1683, 1389, 1234; HRMS of
[CaoH21N204— H]* (m/z): 353.0844; Calcd.: 353.0838.

2-Amino-4-(3,4-dimethoxyphenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (4h): White solid: *H NMR (400 MHz, DMSO-ds) & = 0.96 (s, 3H, CH3), 1.03 (s,
3H, CH3), 2.05 (d, J = 16.32 Hz, 1H, CH,), 2.25 (d, J = 18.25 Hz, 1H, CH,), 2.44 (d, J = 17.21
Hz, 1H, CH,), 2.54 (d, J = 17.21 Hz, 1H, CH,), 3.69 (s, 3H, OCHj), 3.74 (s, 3H, OCHs), 4.47 (s,
1H, CH), 6.62-6.67 (m, 2H, ArH), 6.85 (d, J = 8.20 Hz, 1H, ArH), 6.92 (s, 2H, NH,); *C NMR
(100 MHz, CDCI3): 6 26.58, 28.46, 31.70, 34.99, 49.96, 55.40, 55.45, 58.52, 110.97, 111.75,
112.77, 119.07, 119.76, 137.27, 147.50, 148.42, 158.34, 159.57, 162.31, 195.72; IR (KBr, cm'l):
3384, 3327, 3193, 2934, 2193, 1652, 1363, 1238; HRMS of [C20H2:N204— H]" (m/z): 353.1511;
Calcd.: 353.1501.

2-Amino-4-(2,4,6-trimethoxyphenyl)-7,7-dimethyl-5-ox0-5,6,7,8-tetrahydro-4H-chromene-
3-carbonitrile (4i): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.89 (s, 3H, CHs), 1.02 (s,
3H, CHs), 1.95 (d, J = 16.04 Hz, 1H, CH,), 2.21 (d, J = 16.02 Hz, 1H, CH,), 2.23 (d, J = 16.08
Hz, 1H, CH,), 2.29 (d, J = 16.32 Hz, 1H, CH,), 3.72 (s, 3H, OCHs), 3.88 (s, 6H, 20CHs3) 4.75 (s,
1H, CH), 6.60 (s, 2H, NHy), 7.97 (s, 2H, ArH); **C NMR (100 MHz, CDCI3): & 24.00, 25.86,
28.88, 31.58, 50.21, 55.00, 55.71, 56.12, 91.12, 91.25, 111.66, 111.99, 113.83, 116.36, 150.79,
159.48, 161.37, 162.82, 167.37, 195.42; IR (KBr, cm'l): 3477, 3323, 3173, 2939, 2212, 1651,
1584, 1366, 1226; HRMS of [C21H,3N20s— 2H]" (m/z): 383.0103; Calcd.: 383.0093.

2-Amino-4-phenyl-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4j):
White solid: *H NMR (400 MHz, DMSO-dg) & = 0.95 (s, 3H, CH3), 1.03 (s, 3H, CHs), 2.10 (d, J
=16.02 Hz, 1H, CH,), 2.25 (d, J = 16.02 Hz, 1H, CH,), 2.49 (d, J = 17.18 Hz, 1H, CHJ), 2.53 (d,
J =17.18 Hz, 1H, CH,), 4.18 (s, 1H, CH), 6.99 (s, 2H, NH,), 7.13-7.19 (m, 3H, ArH), 7.28 (t, J
= 7.64, 2H, ArH); B3C NMR (100 MHz, CDCI3): 6 26.77, 28.37, 31.76, 35.55, 49.95, 58.30,
112.72, 119.68, 126.53, 127.11, 128.29, 144.70, 158.46, 162.45, 195.60; IR (KBr, cm'l): 3393,
3322, 3291, 2961, 2199, 1657, 1369, 1248; HRMS of [CigH17N,0, — H]" (m/z): 293.1302;
Calcd.: 293.1290.
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2-Amino-4-(furan-2-yl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile
(4k): White solid: *H NMR (400 MHz, DMSO-ds) & = 0.98 (s, 3H, CHa), 1.04 (s, 3H, CHs), 2.16
(d, J = 16.04 Hz, 1H, CH,), 2.28 (d, J = 16.04 Hz, 1H, CH), 2.44 (d, J = 16.00 Hz, 1H, CH),
2.53 (d, J = 16.00 Hz, 1H, CHy,), 4.32 (s, 1H, CH), 6.04 (d, J = 6.82 Hz, 1H, ArH), 6.31 (t, J =
7.10 Hz, 1H, ArH), 7.06 (s, 2H, NH.), 7.47 (d, J = 7.32 Hz, 1H, ArH); *C NMR (100 MHz,
CDCI3): ¢ 26.52, 28.38, 28.95, 31.77, 49.86, 55.76, 105.02, 110.32, 110.40, 119.51, 141.71,
155.69, 159.27, 163.22, 195.38; IR (KBr, cm™): 3390, 3324, 3213, 2874, 2195, 1655, 1361,
1247; HRMS of [C16H15N203— H]" (m/z): 283.1079; Calcd.: 283.1083.

2-Amino-4-(2-nitrophenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (41): White solid: *H NMR (400 MHz, DMSO-dg) & = 0.87 (s, 3H, CHs), 1.00 (s,
3H, CHs), 2.01 (d, J = 16.02 Hz, 1H, CH,), 2.19 (d, J = 16.02 Hz, 1H, CH,), 2.45 (d, J = 16.32
Hz, 1H, CH,), 2.53 (d, J = 16.32 Hz, 1H, CH,), 4.91 (s, 1H, CH), 7.18 (s, 2H, NHy), 7.35 (d, J =
7.27 Hz, 1H, ArH), 7.42 (t, J = 7.25 Hz, 1H, ArH), 7.65 (t, J = 7.78, 1H, ArH), 7.80 (d, J = 7.05
Hz, 1H, ArH); B¥C NMR (100 MHz, CDCI3): 8 26.65, 28.25, 29.90, 31.80, 49.55, 56.32, 112.28,
119.03, 123.68, 127.82, 130.24, 133.32, 138.93, 148.93, 159.15, 162.68, 195.77; IR (KBr, cm™):
3393, 3327, 3214, 2964, 2195, 1659, 1364, 1251; HRMS of [C1gH1sN30,— H]" (m/z): 338.1141;
Calcd.: 338.1141.
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Element prediction: Off
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Monoisotopic Mass, Even Electron lons
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Abstract: An efficient, green and facile protocol for synthesis of pyranopyrazole
derivatives through the reaction of aromatic aldehydes, malononitrile, hydrazine hydrate
and ethyl acetoacetate is developed using Ru loaded hydroxyapatite (Ru-CaHAp) as
catalyst. The eco-friendly one-pot reactions in ethanol-water mixture are fast (=15 min)
and occur at room temperature. Catalyst was fully characterized by various techniques. The
chemical structures of the synthesized compounds were identified and confirmed by *H
NMR, N NMR, C NMR, FT-IR and HR-MS spectral data. The noteworthy advantages
offered by this method are environmentally-friendly simple procedure, mild conditions,
short reaction times, recyclable catalyst and good to excellent (89 to 98%) vyields of

products.

Keywords: Green Synthesis, Multicomponent Reaction, One-pot reaction, Ru-CaHAp

catalyst, Recyclable, Pyranopyrazole.
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5.1. Introduction

Multicomponent reactions (MCRs), with three or more reactants combined in a single-
step process to afford a single product in high yields have become increasingly popular in the
recent years [1,2]. MCRs have fascinated researchers due to the governing green principles [3],
and are ideally suited for combinatorial synthesis and for discovery of new drugs and
agrochemicals [4-6]. The MCRs have become extremely significant synthetic methods, as they
are efficient means for designing of organic compounds without isolation of intermediates or
modification the reaction conditions. The other advantages of these reactions include high bond-
forming efficiency, cost effectiveness, energy saving and simple workup procedures [6,7].
However, further improvement and discovery of new MCRs is still the need of the time.

In the recent past, the interest in exploring the scope of heterogeneous catalysts in organic
synthesis has enhanced remarkably [8-10]. Compared to conventional synthetic methods, the use
of heterogeneous catalysts has numerous advantages including reusability, benign and cost
effectiveness [11]. Relative to conventional linear syntheses, these eco-friendly protocols have
other benefits, such as varied surface characteristics, long catalytic life, thermal stability and
atom economy [9-11].

Furthermore, these catalysts can be conveniently be handled and making the experimental
procedure simple and more green.

Hydroxyapatites (HAps) are known for high chemical stability and good affinity for
organic compounds [12]. HAps materials have both acidic and basic sites in crystal lattice and
are anticipated to perform the both acidic and basic nature catalyst [13]. Normal HAps possess
calcium ions surrounded by phosphate anions parallel to the hexagonal axis. They have been
used as biomaterials, adsorbents, and ion exchangers [14]. Recently, scope of hydroxyapatites as
macro ligands for catalytically active centers has also been disclosed [15]. The catalytic
properties of HAps have been explored for the dehydration and dehydrogenation of alcohols
[16], fertilizer production [17], water purification [18], and medical treatment like in targeted and
controlled drug delivery systems [19]. In this communication, we report the preparation and
characterization of new hydroxyapatites like compounds and modified hydroxyapatites loaded
with transition metals and their performance as catalysts for the synthesis of heterocyclic

molecules and carbon—carbon bond-forming reactions.
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Pyranopyrazoles are an important class of heterocyclic compounds, which are essential
components of many biologically active compounds and are interesting templates for use in
medicinal chemistry. Many of these compounds exhibit antimicrobial, antitumour and anti-
inflammatory activity [20-22]. Pyranopyrazoles have also been used as ingredients in
pharmaceutical preparations and as biodegradable agrochemicals [23]. Literature survey
shows that many catalyzed methods have been reported for synthesis of various pyranopyrazole
derivatives. To mention a few, such protocols employed TEA [24], [ChCI][ZnCI2]2 [25], 12 [26],
[DBU][AC] [27], [(CH2)4SO3HMIM][HSO4] [28], Nano TiO2 [29], NaOH/microwave [30],
Amberlyst A21 [31], Cinchona alkaloid [32], silicotungstic acid [33], imidazole [34],
[Dsim]AICI4 [35], L-Proline [36], Per-6-ABCD [37], piperidine [38], TEABr [39] and
FeNi3/SiO2/HPGMNP [40]. With exception of few, many of the catalysts are relatively toxic
and non-recyclable. Bulk of the reactions give low product yields and need costly reagents,
strong acidic/basic and strict reaction conditions, plus tedious handling processes and long
reaction times. Thus, improved reaction protocols with short reaction times overcoming those
limitations are much sought after.

Earlier, we have reported few efficient protocols with excellent yields, for synthesis of
derivatives of pyridines using Mg-V/CO3, pyrazoles using CuO/ZrO2 and pyrimidines using
Mn/ZrO2 as recyclable catalysts [8,9,41]. In continuation of our quest for development of
efficacious and environmentally friendly procedures for important organic transformations, we
explored the catalytic efficiency of Ru-HAps towards the synthesis of pyranopyrazole
derivatives in one-pot reaction under green conditions.

5.2. Experimental section
5.2.1. Catalyst characterization

Micromeritics Tristar-11 porosity and surface area analyzer was used to determine the
surface area, pore size and pore volume of the catalyst material. The catalyst sample was
degassed overnight using N2 flow at 200 °C. The BJH adsorption-desorption curves were
generated at -196 °C and were used to assess the catalyst’s particulate properties. Employing a
Bruker D8 Advance instrument (Cu K radiation source with a wave length of 1.5406 A), the X-
ray diffraction data related the structural phases of the catalyst were acquired. Using a Jeol JEM-
1010 electron microscope and JEOL JSM-6100 microscope, the TEM and SEM analysis data

was recorded. iTEM software was used analyze the TEM data and images. Employing the X-ray
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analyzer (energy-dispersive), EDX-analysis on the SEM images was conducted. To confirm the
elemental composition catalyst materials Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES) (Optima 5300 DV) was used.

5.2.2. Preparation of catalyst

For the synthesis of Ca-hydroxyapatite (HAp) the co-precipitation approach was used [2-
4] and a solution of diammonium hydrogen orthophosphate, (NH4)2HPO4 (5.6 g), (1.00 mol)
(Merck, 98.5 %) was adjusted to pH 11.0 using a dilute ammonia solution and then diluted to
250 mL with double distilled water. Similarly, a calcium nitrate tetrahydrate, Ca(NO3)2.4H20
(23.7 g), (0.167 mol) (Merck, 99 %) solution was prepared and the pH adjusted to 11.0 and this
solution was then diluted to 250 mL using double distilled water. The (NH4)2HPO4 solution was
added drop-wise to the Ca(N0O3)2.4H20 solution with constant and vigorous stirring at room
temperature over a period of 1 h. The pH of the mixture was maintained at 11 throughout, using
diluted ammonia. The resultant precipitate was heated to and maintained at 85 °C for 1.5 h and
then allowed to cool to room temperature. Thereafter, the precipitate was filtered under vacuum
and washed repeatedly until the filtrate was neutral, thus having ensured the removal of excess
diluted ammonia. The HAp was then dried in an oven overnight at 120 °C and it was calcined at
500 °C for 6 hours. Supported catalysts were synthesized by adding the HAp to a solution of
ruthenium (111) chloride hydrate (RuCI3.XH20 (Aldrich99.98 %)) to afford the weight
percentage of 1.0 wt%, 2.5 wt% and 5.0 wt% of RuO2. The catalyst materials were dried
overnight at 120 °C. The powdered form of the catalyst material was calcined at 500 °C for 6 h.
The 2.5 wt% and 5.0 wt% Ru on CaHAps were prepared following similar procedure.

5.2.3. General procedure for the synthesis of pyranopyrazole derivatives:

The equimolar amounts of chosen aldehyde, taking the example of 2-methoxy
benzaldehyde (0.516 g, 3.789 mmol), malononitrile (0.250 g, 3.789 mmol) and ethyl acetoacetate
(0.493 g, 3.789 mmol) were mixed with hydrazine hydrate (0.284 g, 5.683 mmol) and dissolved
in ethanol and water solvent (1:1, 10 ml) at room temperature (RT). Ru-HAp (50 mg) was added
to the mixture as catalyst. The reaction mixture was stirred continuously for 15 minutes at RT,
(Scheme 1) using a magnetic stirrer. The progress of the reaction was monitored by TLC. The
reaction mixture was then filtered, and the filtrate was subsequently extracted with ethyl acetate
and evaporated under reduced pressure to obtain the crude product. The crude product was
further purified using EtOAc followed by hexane (4:6) to afford pure products. The recovered
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catalyst was washed with dichloromethane, dried, and reused where necessary. The quantities of
specific aldehydes and other reagents used and corresponding yields for each derivative are

described in the physical data below:

I \\ CH3
= NC, fe)
+ > + NaHaH,O + _RuCaHap _
NC EtOH:H,O
H o o R.T.,15 mins
2
la-k 2 3 4 OFEt

Compound 5a 5b 5c 5d 5e 5f 5¢g 5h 5i 5j 5k

R 23-(OMe), | 34-©OMe), | 2-0Me [ 2-Br | 2-cl | 2-F | 30H | 4Br [24-(OMe), [246-OMe); | 25-(OMe),

Scheme 1. Synthesis of pyrano[2,3-c]pyrazoles derivatives
6-Amino-4-(2,3-dimethoxyphenyl)-3-methyl-2,4-dihydro--pyrano[2,3-c]pyrazole-5-
carbonitrile (5a): 2,3-dimethoxybenzaldehyde (0.629 g, 3.785 mmol), malononitrile (0.250 g,
3.785 mmol); ethyl acetoacetate (0.492 g, 3.785 mmol); hydrazine hydrate (0.284 g, 5.677
mmol), and RuHAp (50 mg). Yield: 1.086 g (92%); *H NMR (400 MHz, DMSO-ds) & = 1.76 (s,
3H, CHs), 3.64 (s, 3H, OCHg), 3.79 (s, 3H, OCHj3), 4.82 (s, 1H, CH), 6.59 (dd, J = 7.5 Hz, 1.28
Hz, 1H, ArH), 6.80 (s, 2H, NHy), 6.89 (d, J = 6.8 Hz, 1H, ArH), 6.99 (t, J = 8.0 Hz, 1H, ArH),
11.99 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.42 (C10), 30.32 (C4), 55.48 (C8'), 56.66
(C5), 60.22 (C7", 97.75 (C11), 111.06 (C1", 120.72 (C5"), 120.97 (C4"), 123.98 (C6"), 135.09
(C9), 137.29 (C8), 146.19 (C3), 152.15 (C3'), 154.95 (C2'), 161.12 (C6); FT-IR (KBr, cm™):
1395, 1475, 1519, 1638, 2186, 3113, 3375; HRMS 2972, of [C1sH16N40s — H]* (m/z): 311.1139;
Calcd.: 311.1144.
6-Amino-4-(3,4-dimethoxyphenyl)-3-methyl-2,4-dihydro-pyrano[2,3-c]pyrazole-5-
carbonitrile (5b): 3,4-dimethoxybenzaldehyde (0.629 g, 3.785 mmol), malononitrile (0.250 g,
3.785 mmol), ethyl acetoacetate (0.492 g, 3.785 mmol), hydrazine hydrate (0.284 g, 5.677
mmol), and Ru-HAp (50 mg); Yield: 1.062 g (90%); *H NMR (400 MHz, DMSO-dg) § = 1.82 (s,
3H, CHg), 3.69 (s, 3H, OCHj3), 3.72 (s, 3H, OCH3), 4.54 (s, 1H, CH), 6.69 (dd, J = 7.5 Hz, 2.0
Hz, 1H, ArH), 6.75 (d, J = 2.0 Hz, 1H, ArH), 6.80 (s, 1H, NH,), 6.88 (d, J = 8.3 Hz, 1H, ArH),
12.1 (s, 1H, NH). *C NMR (100 MHz, CDCls): 9.79 (C10), 35.79 (C4), 55.41 (C5), 57.42, 97.67
(C11), 111.19 (C5", 111.72 (C2"), 119.46 (C1", 120.81 (C6"), 135.63 (C9), 136.86 (C8), 147.53
(C3), 148.51 (C4'), 154.68 (C3"), 160.72 (C6); FT-IR (KBr, cm™): 1217, 1325, 1451, 1490, 1589,
1660, 2184, 3132; HRMS of [C16H15N4Os — H]" (m/z): 311.0734; Calcd.: 311.0737.
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6-Amino-4-(2-methoxyphenyl)-3-methyl-2,4-dihydropyrano -[2,3-c]pyrazole-5-carbonitrile
(5¢): 2-methoxybenzaldehyde (0.516 g, 3.789 mmol), malononitrile (0.250 g, 3.789 mmol), ethyl
acetoacetate (0.493 g, 3.789 mmol), hydrazine hydrate (0.284 g, 5.683 mmol) and Ru-HAp (50
mg); Yield: 1.047 g (98%); *H NMR (400 MHz, DMSO-dg) & = 1.78 (s, 3H, CHs), 3.77 (s, 3H,
OCHs3), 4.96 (s, 1H, CH), 6.78 (s, 2H, NH>), 6.89 (t, J = 14.7 Hz, 1H, ArH), 6.98 (t, J = 7.6 Hz,
2H, ArH), 7.17-7.21 (m, 1H, ArH), 12.00 (s, 1H, NH). *C NMR (100 MHz, CDCls): 9.45
(C10), 29.11 (C4), 55.53 (C5), 56.34 (C7"), 97.87 (C11), 111.26 (C1"), 120.77 (C3", 120.85
(C5"), 127.88 (C4"), 128.57 (C6"), 132.06 (C9), 135.03 (C3), 155.02 (C8), 156.31 (C2"), 161.43
(C6); FT-IR (KBr, cm™): 1241, 1463, 1486, 1595, 1655, 2194, 2837, 3154, 3338, 3374; HRMS
of [C15sH14N4O, — H]" (m/z): 281.1040; Calcd.: 281.1039.
6-Amino-4-(2-bromophenyl)-3-methyl-2,4-dihydropyrano--[2,3-c]pyrazole-5-carbonitrile
(5d): 2-bromobenzaldehyde (0.700 g, 3.783 mmol), malononitrile (0.249 g, 3.783 mmol), ethyl
acetoacetate (0.492 g, 3.783 mmol), hydrazine hydrate (0.284 g, 5.674 mmol), and Ru-HAp (50
mg); Yield: 0.716 g (92%); *H NMR (400 MHz, DMSO-dg) & = 1.76 (s, 3H, CHs), 5.06 (s, 1H,
CH), 6.94 (s, 2H, NHy), 7.15-7.19 (m, 2H, ArH), 7.32-7.36 (m, 2H, ArH), 7.58 (dd, J = 8.06 Hz,
0.84 Hz, 1H, ArH), 12.12 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.62 (C10), 35.84 (C4),
55.96 (C5), 96.99 (C11), 120.25 (C8), 122.38 (C2'), 127.72 (C5'"), 128.36 (C4"),128.87 (C6"),
130.67 (C3'), 131.93 (C9), 135.38 (C3), 154.86 (C1), 161.26 (C6); FT-IR (KBr, cm™): 1162,
1407, 1488, 1609, 1653, 2190, 2640, 3153, 3390; HRMS of [Ci4H1:BrN4,O — 2H]" (m/2):
328.0434; Calcd.: 328.0441.
6-Amino-4-(2-chlorophenyl)-3-methyl-2,4-dihydropyrano--[2,3-c]pyrazole-5-carbonitrile
(5e): 2-chlorobenzaldehyde (0.532 g, 3.784 mmol), malononitrile (0.250 g, 3.784 mmol), and
ethyl acetoacetate (0.492 g, 3.784 mmol), hydrazine hydrate (0.284 g, 5.676 mmol) and RuHAp
(50 mg); Yield: 0.809 g (94%); *H NMR (400 MHz, DMSO-ds) & = 1.76 (s, 3H, CHz), 5.06 (s,
1H, CH), 6.93 (s, 2H, NHy), 7.18 (d, J = 8.0 Hz, 1H, ArH), 7.24-7.31 (m, 2H, ArH ), 7.41 (dd, J
= 7.8 Hz, 1.5 Hz, 1H, ArH), 12.12 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.49 (C10), 28.56
(C4), 55.72 (C5), 96.82 (C11), 120.36 (C8), 127.72 (C2"), 128.56 (C4'/C5"), 129.45 (C6"), 130.67
(C3), 131.93 (C9), 135.35 (C3), 154.90 (C1'), 161.26 (C6); FT-IR (KBr, cm™): 1047, 1408,
1609, 1653, 2189, 3390; HRMS of [C14H11N4OCI — H]* (m/z): 285.0540; Calcd.: 285.0543.
6-Amino-4-(2-fluorophenyl)-3-methyl-2,4-dihydropyrano--[2,3-c]pyrazole-5-carbonitrile
(5f): 2-fluorobenzaldehyde (0.470 g, 3.786 mmol), malononitrile (0.250 g, 3.786 mmol), ethyl
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acetoacetate (0.492 g, 3.786 mmol), hydrazine hydrate (0.284 g, 5.679 mmol) and RuHAp (50
mg); Yield: 0.766 g(89%); *H NMR (400 MHz, DMSO-ds) & = 1.80 (s, 3H, CHs), 4.86 (s, 1H,
CH), 6.91 (s, 2H, NH,), 7.14-7.18 (m, 3H, ArH), 7.25-7.29 (m, 1H, ArH), 12.10 (s, 1H, NH);
3C NMR (100 MHz, CDCl3): 9.36 (C10), 30.02 (C4), 55.52 (C5), 96.59 (C11), 115.49 (d, J =
23.11 Hz, C3), 120.55 (C8), 124.68 (C1"), 128.82 (d, J = 9.3 Hz, C4"), 129.78 (d, J = 4.65 Hz,
C5", 130.72 (d, J = 12.22 Hz, C6"), 135.32 (C9), 154.87 (C6), 159.98 (d, J = 258.4 Hz, C2"); FT-
IR (KBr, cm™): 1209, 1256, 1406, 1484, 1595, 1651, 2189, 3164, 3385; HRMS of [C14H1:N4OF
— H]" (m/z): 269.0835; Calcd.: 269.0839.
6-Amino-4-(3-hydroxyphenyl)-3-methyl-2,4-dihydropyrano-[2,3-c]pyrazole-5-carbonitrile
(59): 3-hydoxy benzaldehyde (0.462 g, 3.783 mmol), malononitrile (0.249 g, 3.783 mmol), ethyl
acetoacetate (0.492 g, 3.783 mmol), hydrazine hydrate (0.284 g, 5.674 mmol) and RuHAp (50
mg); Yield: 0.905 g (90%); *H NMR (400 MHz, DMSO-ds) & = 1.81 (s, 3H, CHs), 4.48 (s, 1H,
CH), 6.53 (s, 1H, ArH), 6.59-6.62 (m 2H, ArH), 6.83 (s, 2H, NH,), 7.09 (t, J = 7.8 Hz, 1H,
ArH), 9.29 (s, 1H, OH), 12.07 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.73 (C10), 36.14
(C4), 57.26 (C5), 97.66 (C11), 113.80 (C4"), 114.10 (C2", 118.15 (C6"), 120.77 (C5"), 129.23
(C1", 135.53 (C9), 145.93 (C3), 154.73 (C8), 157.39 (C3"), 160.80 (C6); FT-IR (KBr, cm™):
1283, 1348, 1485, 1591, 1647, 2177, 3163, 3360; HRMS of [C14H12N,0, — H]* (m/z): 267.0878;
Calcd.: 267.0882.
6-Amino-4-(4-bromophenyl)-3-methyl-2,4-dihydropyrano-[2,3-c]pyrazole-5-carbonitrile
(5h): 4-Bromobenzaldehyde (0.700 g, 3.783 mmol), malononitrile (0.249 g, 3.783 mmol), ethyl
acetoacetate (0.492 g, 3.783 mmol), hydrazine hydrate (0.284 g, 5.674 mmol), and Ru-HAp (50
mg); Yield: 1.147 g (93%); *H NMR (400 MHz, DMSO-dg) & = 1.79 (s, 3H, CH3), 4.61 (s, 1H,
CH), 6.91 (s, 2H, NH,), 7.13 (d, J = 8.4 Hz, 2H, ArH), 7.50 (d, J = 8.4 Hz, 2H, ArH), 12.12 (s,
1H, NH); *C NMR (100 MHz, CDCls): 9.70 (C10), 35.60 (C4), 56.68 (C5), 97.09 (C11), 119.72
(C9), 120.59 (C4"), 126.90 (C8), 129.70 (C2'/C6'"), 131.34 (C3'/C5"), 135.65 (C1"), 143.86 (C3),
160.88 (C6); FT-IR (KBr, cm™): 1162, 1221, 1484, 1596, 1646, 2180, 3141; HRMS of
[C14H1:BrN4O — 2H]" (m/z): 328.0929; Calcd.: 328.0937.
6-Amino-4-(2,4-dimethoxyphenyl)-3-methyl-2,4-dihydro--pyrano[2,3-c]pyrazole-5-
carbonitrile (5i): 2,4-dimethoxybenzaldehyde (0.629 g, 3.785 mmol), malononitrile (0.250 g,
3.785 mmol), ethyl acetoacetate (0.492 g, 3.785 mmol), hydrazine hydrate (0.284 g, 5.677
mmol), and Ru-HAp (50 mg); Yield: 1.062 g (90%); *H NMR (400 MHz, DMSO-dg) 5 = 1.78 (s,
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3H, CHg), 3.53 (s, 3H, OCHj3), 3.66 (s, 3H, OCHg), 5.01 (s, 1H, CH), 6.13-6.21 (m, 2H, ArH),
6.29 (s, 1H, ArH), 6.53 (s, 2H, NH,). 11.73 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.13
(C10), 24.56 (C4), 55.03 (C7'/C8"), 55.43 (C5), 91.09 (C3"), 97.88 (C11), 111.73 (C5"), 121.43
(C6'), 133.86 (C9), 155.76 (C4'), 159.54 (C2'), 161.94 (C6); FT-IR (KBr, cm™): 1407, 1489,
1589, 1653, 2184, 3172; HRMS of [C16H16N4Os — H]" (m/z): 311.0984; Calcd.: 311.0988.
6-Amino-4-(2,4,6-trimethoxyphenyl)-3-methyl-2,4-dihydro-pyrano[2,3-c]pyrazole-5-
carbonitrile (5j): 2,4,6-trimethoxybenzaldehyde (0.743 g, 3.786 mmol), malononitrile (0.250 g,
3.786 mmol), ethyl acetoacetate (0.492 g, 3.786 mmol), hydrazine hydrate (0.284 g, 5.679
mmol), and Ru-HAp (50 mg); Yield: 1.147 g (89%); *H NMR (400 MHz, DMSO-dg) 8 = 1.79 (s,
3H, CHg), 3.73 (s, 3H, OCHg), 3.81 (s, 3H, OCHj3), 3.83 (s, 3H, OCHj3), 5.12 (s, 1H, CH), 6.29
(s, 2H, ArH), 6.69 (s, 2H, NH,), 12.29 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.66 (C10),
25.39 (C4), 51.50 (C4"), 55.01 (C2"), 55.42 (C6'"), 55.63 (C5), 91.07 (C11), 112.27 (C3'/C5",
130.57 (C9), 154.34 (C6'), (159.53 (C2"), 160.50 (C4"), 161.22 (C6),; FT-IR (KBr, cm™): 1227,
1397, 1454, 1645, 2189, 2943, 3202, 3322; HRMS of [Ci7H1sN4Os — H]" (m/z): 341.0992;
Calcd.: 341.1008.
6-Amino-4-(2,5-dimethoxyphenyl)-3-methyl-2,4-dihydro--pyrano[2,3-c]pyrazole-5-
carbonitrile (5k): 2,5-dimethoxy-benzaldehyde (0.629 g, 3.785 mmol), malononitrile (0.250 g,
3.785 mmol), ethyl acetoacetate (0.492 g, 3.785 mmol), hydrazine hydrate (0.284 g, 5.677 mmol)
and RuHAp (50 mg); Yield: 1.039 g (88%); 'H NMR (400 MHz, DMSO-dg) & = 1.81 (s, 3H,
CHgs), 3.76 (s, 3H, OCH3), 3.83 (s, 3H, OCHg), 4.95 (s, 1H, CH), 6.89 (s, 2H, NH), 7.09 (d, J =
1.2 Hz, 2H, ArH), 7.49 (s, 1H, ArH ), 12.09 (s, 1H, NH); *C NMR (100 MHz, CDCls): 9.61
(C10), 51.62 (C4), 55.44 (C8"), 119.45 (C1"), 56.28 (C7"), 103.92 (C11), 109.77 (C5), 112.84
(C3"), 113.61 (C4"), 122.00 (C6"), 133.56 (C9), 151.04 (C3), 152.64 (C8), 153.11 (C2"), 156.47
(C5'), 160.74 (C6); FT-IR (KBr, cm™): 1221,1331, 1492, 1653, 2202, 2939, 3194, 3375; HRMS
of [C16H16N4O3 — H]" (m/z): 311.0848; Calcd.: 311.0844.

5.3.  Results and discussion

5.3.1. BET surface area (BET) and elemental (ICP) analysis

The texture of the prepared catalyst was determined by physisorption analysis. The N,
physisorption isotherms for the Ru supported on CaHAp catalyst showed a characteristic
hysteresis loop of type-1V adsorption isotherm demonstrating the mesoporous nature of the

catalyst (Figure 1). The pore size data for the samples, exhibited values in the mesoporous
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region (3 nm < pore size < 50 nm) and the p/po ratio of the isotherms was in the range 0.81-0.96.
The 1% catalyst showed a surface area of 46 m* g * with a pore volume of 0.217 cc g *. The ICP
analysis results showed the presence of anticipated amount of 1% Ru in the catalyst (0.98 mol
%).
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Figure 1. N, adsorption & desorption spectra of 1% Ru-CaHAp catalyst
5.3.2. TEM analysis

The TEM micrograph reveals more structural information of the catalyst. Figure 2
illustrates a distinctive TEM image of Ru supported on HAp, from which it can be seen that the
Ru nanoparticles revealed rod-like shapes and particle dimension ranged between 220 and 250
nm. No drastic change was noticed in the morphology of the used catalyst.

Figure 2. TEM micrograph of Ru-CaHAp catalyst
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5.3.3. SEM analysis

Figure 3 shows an illustrative SEM surface morphology micrograph of the sample Ru on
HAp. Significant large cubic sheet irregular shapes were perceived from the low magnification
SEM image of Ru-HAp. This micrograph reveals that the aggregative state of the HAp important
particles are with Ru. The SEM-EDX micrographs confirm the uniform distribution of
ruthenium on the hydroxyapatite surface. The SEM-EDX agreed with the data from ICP
elemental analysis. Furthermore, the morphology of the catalyst as per the SEM images
noticeably point to the crystallinity and homogeneity of the sample.

Figure 3. SEM micrograph of Ru-CaHAp catalyst

5.3.4. Powder X-ray diffractogram (XRD) analysis

The powdered XRD patterns of calcined Ru supported on CaHAp are shown in Figure. 4.
The diffraction peak values 20 of 25.86°, 31.91°, 32.83°, 32.94°, 46.62°, 49.34°, 52.98°, 62.82
and 64.05° were assigned to HAp. All these diffraction peaks agrees with the International
Centre for Diffraction Data (JCPDS file no. 09-0390). 1% Ru supported on HAp sample showed
diffraction peaks at a 20 angles of 28.74°, 35.11°, 54.35° and 69.71° corresponding to the RuO2
(JCPDS # 40-1290). The peaks identified in the diffractogram shows the polycrystalline nature
of the materials. The average crystallite size of this sample was obtained to be 5.9 nm using the

Scherrer equation based on the highest intensity diffraction peaks of Ru-HAp.
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Figure 4. XRD spectrum of Ru-CaHAp catalyst

5.3.5. Optimization procedure

The model reaction involving 2-methoxybenzaldehyde (1 mmol), malononitrile (1
mmol), hydrazine hydrate (1.5 mmol) and ethyl acetoacetate (1 mmol) as reactants in equimolar
ratio was investigated in detail under varied conditions, i.e. in the absence and presence of
various catalysts and using different solvents and temperature conditions to optimize reaction
conditions.

When the reaction was carried out without a catalyst or solvent, at RT and reflux
conditions, there was no reaction, even after 12 h (Table 1, entry 1 & 2). When the reaction was
attempted with the various types of basic catalysts such as NaOH, K,COg, triethylamine (TEA),
piperidine and Na,S in the presence of 1:1 ethanol and water as solvent, yield of product was
small, even after 3 h (Table 1, entry 3-7). Reaction was performed in the presence of ionic
liquids, L-proline with Al,O3 or (Bmim)BF, and the product yield was moderate at RT
conditions (Table 1, entry 8 & 9). The use of pure heterogeneous acidic catalysts such as Fe;0s,
Al,O3, SiO,, and CeO, at RT in 1:1 EtOH/water mixture showed better yields (Table 1, entries
10-13). To screen the reactivity’s of different hydroxyapatites, CaHAp, BaHAp SrHAp, reaction
was repeated and after 45 min reaction time yields were moderate (65-78%) (Table 1, entry 14-
16). When Ru supported on CaHAp was used as catalyst, a reaction occurred with an impressive
98% yield of pyranopyrazole derivative at RT within 15 min reaction time (Table 1, entry 17).

The efficiency of this catalytic system was compared with two other Ru supported HAps under
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otherwise similar conditions. The use of Ru-BaHAp and Ru-SrHAp gave relatively lower
product yields (Table 1, entry 18 & 19).

In heterogeneous catalysis, the surface area of the catalyst which determines the
availability of catalytic sites and direction of the reaction plays a pivotal role. To assess the
impact of amount of catalyst on the synthesis of pyrano[2,3-c]pyrazoles, the reaction of
benzaldehyde, malononitrile hydrazine hydrate and ethyl acetoacetate was carried out with
varying amounts of Ru-CaHAp, namely 10, 20, 30, 40, 50, 60, 75 and 100 mg. The 50 mg of
catalyst was observed to be ample to promote the reaction with optimum efficiency and further
amount of the catalyst did not improve either the yield or reaction time (Table 2). However, the
decrease in amount of the catalyst used to < 50 mg, affected the product yield by reducing it to
85% (Table 2). Thus, 50 mg of Ru-CaHAp at RT with ethanol and water as solvent proved

optimal for the model reaction giving 98% vyield.
Table 1: Optimization for the synthesis of pyrano[2,3-c]--pyrazoles using various catalyst

materials®
Entry Catalystb Solvent Condition Time Yield
(h) (%)

1 -- -- RT 12 --
2 -- -- Reflux 12 --
3 NaOH EtOH:H,O RT 3.0 25
4 K,CO3 EtOH:H,O RT 3.0 29
5 TEA EtOH:H,O RT 3.0 23
6 Piperidine  EtOH:H,O RT 3.0 30
7 Na,S EtOH:H,O RT 3.0 27
8 L-proline EtOH:H,O RT 35 42
9 (Bmim)BF, EtOH:H,O RT 35 39
10 Fe,Os EtOH:H,O RT 12 51
11 Al,O3 EtOH:H,O RT 12 55
12 SiO, EtOH:H,O RT 12 53
13 CeO; EtOH:H,O RT 12 59
14 CaHAp EtOH:H,O RT 0.75 78
15 BaHAp EtOH:H,O RT 075 71
16 SrHAp EtOH:H,O RT 0.83 65
17 Ru-CaHAp EtOH:H,O RT 0.25 98
18 Ru-BaHAp EtOH:H,O RT 0.25 93
19 Ru-SrHAp EtOH:H,O RT 033 91

3All products were characterised by IR, *H NMR, *C NMR, *®N NMR & HRMS spectral

analysis.

Catalyst used 50 mg, © Isolated yields.

-- No reaction
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Table 2: Optimization of the amount of 1% Ru-CaHAp as catalyst in the reaction

Entry Catalyst Time Yield
(mg) (min) (%)

1 10 mg 25 85

2 20 mg 20 88

3 30 mg 20 91

4 40 mg 20 93

5 50 mg 15 98

6 60 mg 15 97

7 75 mg 15 98

8 100 mg 15 96

A perusal of the experimental results and the effect of various polar and non-polar
solvents on the four component reaction clearly indicate that ethanol and water mixture as
solvent is vital for the reaction (Table 1). It was noteworthy that, under otherwise similar
conditions, the Ru-CaHAp catalyzed reaction in presence of relatively non-polar solvents like
1,4-dioxane, toluene and n-hexane gave insignificant yields even after prolonged reaction times
(Table 3 entries 1-3), and even with polar aprotic solvents such as DMF and CH3;CN, the reaction
yield was low (Table3, Entry 4 & 5). The polar protic solvents such as ethanol, methanol and
water on their own failed to facilitate high yields (Table 1, entry 6-8). Interestingly, the mixture
of EtOH:H,O (50:50 v/v) gave an impressive yield of 98%. A highly polar solvent which
dissipates heat faster seems to provide optimum conditions for formation of intermediates, and

their conversion to final products on the catalyst surface.

Table 3: Optimization of various solvent condition for the synthesis of pyrano[2,3-c]pyrazoles

derivatives by Ru-CaHAp catalyst

Entry  Solvent Yield

(%)
1 1,4- 09
Dioxane
2 Toluene 13
3 n-Hexane 10
4 DMF 34
5 CHsCN 37
6 Ethanol 78
7 Methanol 69
8 H,0O 71
6 EtOH:H,O 98
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The Ru-CaHAp as catalyst proved to catalyze the facile one-pot synthesis reactions of
pyranopyrazole derivatives with excellent yields. Under the chosen optimal reaction conditions,
the versatility of the protocol was tested by replacing methoxybenzaldehyde with a range of
aromatic aldehydes in the reaction. All the reactions using different electron-withdrawing or
electron releasing substituents in ortho, meta and para positions on aryl ring of aldehydes, gave
exciting results, producing derivatives of respective pyrano[2,3-c]pyrazoles with impressive
yields (Table 4). All of the reaction products were characterized and structures were confirmed
by FTIR, *H NMR, N NMR, **C NMR and HRMS spectral data (Electronic Supplementary

Information).

Table 4: Synthesis of pyrano[2,3-c]pyrazoles derivatives catalyzed by Ru-CaHAp catalyst
Entry Product Yield (%) Mp°C Lit Mp °C

1 54 92 214-215 -
2 5h 90 191-193  192-194 [36]
3 5c 98 253-254  252-253 [40]
4 5d 92 258-260  259-261 [35]
5 5e 94 145-147  145-146 [37]
6 5f 89 259-260 -
7 59 90 260-261 -
8 5h 93 178-180  178-179 [39]
9 5 90 210-211 -
10 5 89 227-229 -
11 5k 88 212-214 -

-- New compounds/no literature available.
5.3.6. Reusability of catalyst

The reusability of the synthesized heterogeneous catalysts is a significant parameter from
environmental and fiscal point of view. In heterogeneous catalysis, poisoning of the catalyst and
leaching of metal are the main limitations, which impact on activity for further reuse. In order to
examine the stability of the catalyst, recycling experiments were performed. After each run,
catalyst was separated by filtration. The recovered material was washed with deionized water
followed by ethanol, then dried and reused for the next run under the similar conditions. No
significant loss was observed in the first five cycles. The catalytic activity of the Ru/Ca-HAp

decreased when the recovered catalytic system was reused in the 6th and 7th cycles (Figure 5).
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Figure 5. Recyclability of Ru-CaHAp catalyst

5.4. Conclusion

In summary, we have described a simple, efficient and green multicomponent one-pot
procedure for the syntheses of pyrano[2,3-c]pyrazole derivatives in good to excellent yields
using Ru-CaHAp as catalyst at RT. Ru-CaHAp is effective and recyclable catalyst for the MCR
protocol. The advantages of the approach are excellent yields, cost-effectiveness, easy work up,
environment friendly reaction conditions, short reaction times and use of green solvents and
recyclable catalyst. Moreover, this procedure is appropriate for diversity oriented synthesis of
potentially bioactive heterocycles.
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5.8. Supplementary material data

5.8.1. Materials, methods and instruments

All chemicals and reagents required for the reaction were of analytical grade and were
used without any further purification. Bruker AMX 400 MHz NMR spectrometer was used to
record the 'H NMR, *C NMR and **N NMR spectral values. High-resolution mass data were
obtained using a Bruker micro TOF-Q Il ESI instrument operating at ambient temperature. The
DMSO—ds solution was utilized for this while TMS served as the internal standard. TMS was
further used as an internal standard for reporting the all chemical shifts in 6 (ppm). The FT-IR
spectrum for the samples was established using a Perkin Elmer Perkin Elmer Precisely 100 FT-
IR spectrometer at the 400-4000 cm™ area. Purity of all the reaction products was confirmed by

TLC using aluminum plates coated with silica gel (Merck Kieselgel 60 F254).
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Abstract

An efficient, atom-economical, four-component one-pot reaction method was developed
for pyrano[2,3-c]pyrazole-3-carboxylates using dimethylacetylenedicarboxylate, hydrazine
hydrate, malononitrile and aromatic aldehydes, using a RuCaHAp catalyst. Ten new substituted
pyrano[2,3-c]pyrazole-3-carboxylate derivatives (5a-k) were synthesized in good to excellent
yields (88 to 97%), at room temperature with short reaction times (= 30 min) using the green
solvent aqueous ethanol. RuCaHAp was prepared and characterized by various techniques
including SEM, TEM, P-XRD and BET spectroscopy. The proposed heterogeneous catalyst can
be easily synthesized, is inexpensive and stable with good reusability (at least 6 times) showing
marginal loss of activity. The suggested environmentally benign protocol offers high yields,
clean reaction profiles, operational simplicity and no need for chromatographic separations.

Keywords: Green protocol, Multicomponent reaction, Heterogeneous catalyst; Ru
hydroxyapatite, pyrano[2,3-c]pyrazoles; Recyclable.
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6.1. Introduction

The improvement of many efficient and eco-friendly methods used extensively in
synthetic and medicinal chemistry from readily available reagents is a major challenge for
chemists [1,2]. Multicomponent reactions (MCRs) have opened up new opportunities in the
synthesis of varied heterocyclic moieties minimizing the steps, solvents and separations involved
in the process [3-5]. Furthermore, MCRs also facilitate simple processes with higher yields and
provide prospects to negotiate for more environmentally benign procedures and solvents [4,5],
but further improvement and demand for discovery of new MCRs is ongoing.

Heterogeneous catalysts is very useful in heterocyclic synthetic methodology because of
several advantages including reusability, environmental compatibility, non-corrosiveness, and
ease of separation by making processes more cost effective [6,7]. To substitute conventional
methods which require toxic stoichiometric reagents, with atom-efficient green alternatives is the
way forward for sustainable chemistry [8]. Heterogeneous catalysis offer many benefits in this
regard such as thermal stability, long life, recyclability and high selectivity through specific
surface ensemble sites within a regular arrangement [7-9].

Hydroxyapatites (HAps) possess M?* sites surrounded by PO,>~ tetrahedra parallel to the
hexagonal axis. HAp materials have both acidic and basic sites in the crystal lattice and it is thus
anticipated to perform both acidic and basic catalytic reactions [10]. The high sorption capacity
for heavy metals, low water solubility, high chemical stability, good affinity, availability and low
cost makes HAps a perfect candidate for support material [11] and these characteristics also have
made HAps better contenders to be used as biomaterials, adsorbents and ion exchangers [12-14].
HAps have been used in removal of heavy and toxic metals from contaminated soils [15],
fertilizer production [16], water purification [17], organic synthesis [18] and medical treatment
as targeted and controlled drug delivery carriers [19]. In this communication, we report the
preparation and characterization of modified hydroxyapatites loaded with transition metals and
tested their performance as catalysts for the synthesis of heterocyclic molecules and carbon—
carbon bond-forming reactions.

Heterocyclic molecules have played a very important role in the development of
medicines and pesticides in recent years and have become a new trend [20]. Nitrogen-containing
pyranopyrazole heterocycles are essential components of many biologically active compounds

and interesting templates for use in medicinal and pharmaceutical chemistry [21,22]. Due to their
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potential as anti-cancer, anti-inflammatory, antimicrobial, anti-viral, antipyretic, anti-anxiety
agents, the pyranopyrazoles have drawn significant attention from various research spheres [23-
27]. Pyranopyrazoles have also been used as ingredients in biodegradable agrochemicals [28,29].
Although pyranopyrazole derivatives form an important class of heterocyclics, not many
processes have been reported for their synthesis [21]. Literature surveys show that only three
methods have been reported for synthesis of various pyrano[2,3-c]pyrazole-3-carboxylate
derivatives. Those protocols employed A/reflux [30], A/CH3COOH [31] and SnO, [32].
Thesemethods used acidic or basic conditions, costly reagents, tedious handling processes, strict
reaction conditions and obtained the product yield (<80%) after long reaction times (1.5 to 3.0
h). Thus, an improved greener protocol with an efficient and less expensive catalyst with shorter
reaction times would be welcomed.

Our studies focused on the design and improvement of practical and environmentally
friendly techniques for synthesis of biologically active molecules with either antimicrobial,
insecticidal, anti-inflammatory and/or antioxidant activities. Previously, we have reported
efficient protocols for synthesis of 1,2,4-triazoles, triazoles, 1,3,4-thiadiazoles, benzothiazoles
[20, 33-35], tetrazole linked triazole [36], fused 1,2,4-triazolo-[3,4-b][1,3,4]-thiadiazole [37],
thieno[2,3-d]pyrimidine, pyrimidinesulfamoyls [38,39], pyrazole-4-carbonitriles [5],
pyrano[2,3-d]-pyrimidines [6], isoxazole-5(4H)-ones [40], pyrazolo-pyranopyrimidines [41],
multifunctionalized benzenes [42] and pyranoquinolines [43], all derivatives using various
heterogeneous catalysts by multicomponent reactions. Here we report on the applicability of a
novel recyclable heterogeneous solid catalyst Ru supported hydroxyapatites (RuCaHAps) for
efficient, convenient and facile green synthesis of pyrano[2,3-c]pyrazole-3-carboxylate
derivatives through the one-pot reaction of dimethyl acetylenedicarboxylate, hydrazine hydrate,
malononitrile and aldehyde under aqueous ethanol solvent condition and at room temperature.
We are not aware of any reports on the use of any heterogeneous catalysts for this conversion.
6.2 Experimental section
6.2.1 Preparation of the catalyst

Ca-hydroxyapatite (HAp) was synthesised using a co-precipitation method [44]. A
solution of diammonium hydrogen orthophosphate, (NH4);HPO, (5.6 g), (1.00 mol) (Merck,
98.5 %) was adjusted to pH 11.0 using a dilute ammonia solution and then diluted to 250 mL
with double distilled water. Similarly, a calcium nitrate tetrahydrate, Ca(NO3),.4H,0 (23.7 g),
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(0.167 mol) (Merck, 99 %) solution was prepared and the pH adjusted to 11.0 and this solution
was then diluted to 250 mL using double distilled water. The (NH,),HPO, solution was added
drop-wise to the Ca(NOs3),.4H,O solution with constant and vigorous stirring at room
temperature over a period of 1 h. The pH of the mixture was maintained at 11 throughout, using
diluted ammonia. The resultant precipitate was heated to and maintained at 85 °C for 1.5 h and
then allowed to cool to room temperature. Thereafter, the precipitate was filtered under vacuum
and washed repeatedly until the pH of the filtrate was neutral, thus having ensured the removal
of excess diluted ammonia. The HAp was then dried overnight in an oven at 120 °C and
thereafter calcined at 500 °C for 6 hours. Supported catalysts were synthesised by adding the
HAp to a solution of ruthenium(l1l) chloride hydrate (RuCls.xH,O (Aldrich, 99.98 %)) to afford
the weight percentage of 1.0 wt% of RuO,. The catalyst materials were dried overnight at 120
°C. The powdered form of the catalyst material was calcined at 500 °C for 6 h.
6.2.2. General procedure for the synthesis of pyrano[2,3-c]pyrazole-3-carboxylates

To a mixture of dimethyl acetylenedicarboxylate (1.0 mmol), aldehydes (1.0 mmol),
malononitrile (1.1 mmol) and hydrazine hydrate (1 mmol) in 1:1 water/ethanol (10 mL), Ru-
CaHAp (30 mg) was added and the reaction was allowed to proceed for 30 min under stirred
conditions at room temperature (RT) (Scheme 1). The progress of the reaction was followed by
thin-layer chromatography (TLC) and the solid residue obtained at the end of the reaction was
dissolved in hot ethanol and the catalyst was recovered by filtration. The filtrate was

concentrated to afford the solid pure product (5a-k).
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Scheme 1. Synthesis of pyrano[2,3-c]pyrazoles-3-carboxylate derivatives
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6.3. Results and discussion

In our primary study to identify a suitable solvent system for the four-component one-pot
reaction for the synthesis of pyrano[2,3-c]pyrazole-3-carboxylate derivatives, dimethyl
acetylenedicarboxylate, hydrazine hydrate, malononitrile and 2-methoxybenzaldehyde were
chosen as starting materials and RuHAp as catalyst as model reaction. The model reaction was
investigated under varied solvent conditions (Table 1). The results showed that nonpolar
solvents, like acetonitrile (CH3CN), toluene and hexane, gave insignificant yields even after
prolonged reaction times (Tablel, entries 1-3). Reaction under solvent-free conditions was not
successful (Table 1, entry 4). However, the polar solvents EtOH or water at room temperature
gave good yields (Table 1, entries 5 & 6). Further, the reaction was studied in different aqueous
and ethanol mixtures. When the reaction was performed in EtOH-H,0 (1:3, 1:1 and 3:1 v/v) the
yields were 73, 97 and 85 %, respectively (Table 1, entries 7-9). Thus EtOH-H,O (1:1 v/v)
proved most suitable solvent for this condensation in terms of yield and reaction time (Table 1,
entry 8).

Table 1: Optimization of various solvent condition for the synthesis of pyrano[2,3-c]pyrazole-3-
carboxylate derivatives by Ru-CaHAp catalyst

Entry Catalyst Solvent Yield (%)
1 Ru-CaHAp CH3;CN 12
2 Ru-CaHAp Toluene 15
3 Ru-CaHAp n-Hexane 09
4 Ru-CaHAp No solvent 0
5 Ru-CaHAp Ethanol 51
6 Ru-CaHAp H.0 48
7 Ru-CaHAp EtOH-H,0 (2.5:7.0) 66
8 Ru-CaHAp EtOH-H,0 (7.5:2.5) 70
9 Ru-CaHAp EtOH-H,0 (1.0:1.0 97

The impact of various parameters on the yield of model reaction was further investigated.
In the absence of a catalyst under room temperature even after 8 h, the reaction proceeded with
trace yields (Table 2, entries 1). The same reaction was tried under reflux conditions to achieve a
lesser yield of product (Table 2, entries 2). The scope of the various types of catalysts was then
explored to improve the yield and reaction conditions. However, the starting materials were
restricted by acidic catalysts such as SiO2, CeO,, Fe,O3 and TiO; at RT in aqueous ethanolic
media and gave low vyields (Table 2, entries 3-6). The use of inorganic basic catalysts, NaOH

and K,COs in the same media exhibited slight catalytic activity, but gave only low yield of
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product (Table 2, entries 7&8). When the reaction was examined using several organic basic
catalysts such as TEA, pyridine and piperidine, the anticipated product improved with 45-54%
yields (Table 2, entry 9-11). Thereafter, the reaction was performed in the presence of ionic
liquids such as (Bmim)BF,, L-proline, but yields were moderate at RT conditions (Table 2, entry
12 & 13). Furthermore, screening the reactivities of various hydroxyapatites, CaHAp, BaHAp
SrHAp as catalysts, the reaction was repeated and after 50 min reaction time, yields were
moderate (62-76%) (Table 2, entry 14-16). To further improve the quality of the reaction, Ru
supported on CaHAp was used as catalyst, a reaction completed with an impressive 97% yield of
pyrano[2,3-c]pyrazole-3-carboxylate derivative at RT and within 30 min reaction time (Table 2,
entry 17). The efficiency of the catalyst system was compared with two other Ru supported
HAps under similar conditions. The use of Ru-BaHAp and Ru-SrHAp gave marginally less yield
(Table 2, entry 18 & 19).

Table 2: Optimization for the synthesis of pyrano[2,3-c]pyrazole-3-carboxylate by Ru-CaHAp
catalyst®

Entry Catalyst Solvent Condition Time (h) Yield (%6)°

1 -- EtOH:H,0O RT 10 11

-- EtOH:H,0 Reflux 8.0 17
3 SiO; EtOH:H,0 RT 4.0 22
4 CeO; EtOH:H,0 RT 3.5 39
5 Fe,03 EtOH:H,0 RT 4.5 33
6 TiO, EtOH:H,0 RT 6.0 23
7 NaOH EtOH:H,0 RT 3.0 29
8 K,COs EtOH:H,0 RT 3.5 32
9 TEA EtOH:H,0 RT 3.5 45
10 Pyridine EtOH:H,0 RT 4.0 51
11 Piperidine EtOH:H,0 RT 5.0 54
12 (Bmim)BF, EtOH:H,0 RT 35 50
13 L-proline EtOH:H,0 RT 3.0 47
14 CaHAp EtOH:H,0 RT 1.0 76
15 BaHAp EtOH:H,0 RT 15 71
16 SrHAp EtOH:H,0 RT 2.0 62
17 Ru-CaHAp EtOH:H,0 RT 0.30 97
18 Ru-BaHAp EtOH:H,0 RT 0.30 93
19 Ru-SrHAp EtOH:H,0 RT 0.30 91

2 All products were characterised by IR, THNMR, °C NMR, N NMR & HRMS spectral

analysis.

® Isolated yields; -- No reaction

262



We next examined the amount of Ru-CaHAp needed for optimum performance of the
model reaction under otherwise similar conditions. As illustrated in Table 3, the best results were
achieved by use of 30 mg Ru-CaHAp and further increase in the amount of the catalyst gave no
additional advantage. The yield decreased when the amount of catalyst was reduced to 10 mg
(Table 3, entry 1-5), and prolonged the reaction time with impact on yield. Therefore, 30 mg of
Ru CaHAp at RT with aqueous ethanol as solvent was identified as optimal condition for the
model reaction giving 97% vyield in 30 minutes.

Table 3:  Optimization of the amount of 1% Ru-CaHAp as catalyst in the reaction

Entry Catalyst (mg) Time (min) Yield (%)
1 Ru-CaHAp (10 mg) 90 85
2 Ru-CaHAp (20 mg) 55 88
3 Ru-CaHAp (30 mg) 30 97
4 Ru-CaHAp (40 mg) 30 95
5 Ru-CaHAp (50 mg) 30 95

Calcium hydroxyapatite exhibited better catalytic activity than strontium and barium
hydroxyapatites. This may be due to the higher surface area of the ruthenium supported on
calcium hydroxyapatite catalyst. This arrangement may depend on the nature of cations such as
their electronegativity, ionic radius etc. These factors influence the crystal structure of
hydroxyapatite and thus lead to difference in the surface properties of the material.

According to our results, the possible mechanism to account for the reaction was
proposed (Scheme 2). The reaction mechanism shows the tandem sequence of base-catalyzed
reactions proposed to explain formation of the pyrano[2,3-c]pyrazole-3-carboxylate. In the first
step, 2-arylidenemalononitrile (3) is formed by a fast Knoevenagel condensation of malononitrile
(1) with arylaldehyde (2) catalyzed by the RuCa-HAp. The second step involves formation of
1H-pyrazol-3-carboxylate (6) by reaction of hydrazine hydrate (5) with ethyl acetoacetate (4). In
the third step, a Michael addition of 3 to 7 in the presence of the mild basic catalyst produces the
intermediate. Intramolecular cyclization and subsequently tautomerization afford the desired

pyranopyrazolecarboxylate.
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Scheme 2. Proposed Reaction Mechanism

Employing the above optimised reaction conditions the versatility of the protocol was
evaluated for the synthesis of other pyrano[2,3-c]pyrazole-3-carboxylate derivatives using
various aromatic aldehydes. The RuHAp heterogeneous catalyst facilitated the facile one-pot
synthesis of pyrano[2,3-c]pyrazole-3-carboxylate derivatives with good to excellent yields. All the
reaction products with corresponding details are shown in Table 4. Interestingly, the substrates
used and reaction yields obtained shows that the reaction using several electron-withdrawing and
electron donating substrates in ortho-, meta- and para- positions of the aromatic ring have also
contributed positively to obtain the desired pyrano[2,3-c]pyrazole- -3-carboxylate derivatives
(Table 4). Structures of all the products (5a-k) were established and confirmed on the basis of
their spectral data, ‘H NMR, **C NMR, >N NMR (GHSQC), FTIR and HRMS. Some of the
details of the product characterization are presented in the Electronic Supporting Information
(ESI-I).
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Table 4: Synthesis of pyrano[2,3-c]pyrazole-3-carboxylate derivatives catalyzed by Ru-CaHAp
catalyst

Entry R Product  Yield (%) Mp °C Lit Mp °C
1 2-OMe 5a 97 249-251 --
2 4-OMe 5b 92 236-237 --
3 4-Br 5¢c 88 246-247 247-248
4 2-Cl 5d 93 258-260 --
5 2,3-(OMe); 5e 90 224-225 --
6 2,5-(OMe); 5f 88 255-256 --
7 3,4-(OMe); 59 95 241-243 --
8 2,4,6-(OMe) 5h 91 238-240 --
9 2-F 5i 90 251-252 --
10 3-OH 5j 89 217-218 --
11 4-Cl 5k 94 213-215 --

-- New compounds/no literature available.

6-Amino-5-cyano-4-(2-methoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate
(5a): '"H NMR (400 MHz, DMSO-dg): & 3.58 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 5.01 (s, 1H,
CH), 6.83 (d, J = 7.36 Hz, 1H, ArH), 6.86 (s, 2H, NH,), 6.92 - 6.95 (m, 2H, ArH), 7.17 (t, J =
7.32 Hz, 1H, ArH), 13.57 (s, 1H, NH); *C NMR (100 MHz, CDCls): 31.83, 51.56, 55.59, 56.63,
104.11, 111.50, 120.24, 120.34, 127.92, 129.00, 132.32, 156.67, 158.51, 160.69; N NMR
(40.55 MHz, DMSO0-d6) & 6.86 (s, 2H, NHy); FT-IR: 3386, 3321, 3202, 2196, 1715, 1652, 1467,
1247; HRMS of [C16H14N4O4 — H] (m/z): 325.0929; Calcd: 325.0937.
6-Amino-5-cyano-4-(4-methoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate
(5b): *H NMR (400 MHz, DMSO-dg): & 3.65 (s, 3H, OCHs), 3.70 (s, 3H, OCHs), 4.68 (s, 1H,
CH), 6.83 (d, J = 8.52 Hz, 2H, ArH), 6.99 (s, 2H, NH), 7.03 (t, J = 8.88 Hz, 2H, ArH), 13.69 (s,
1H, NH); **C NMR (100 MHz, CDCls): 36.19, 51.71, 54.92, 11.53, 128.34, 129.93, 137.03,
157.85, 160.02, 160.44; *N NMR (40.55 MHz, DMSO-d6): 6 6.99 (s, 2H, NH,); FT-IR: 3461,
3331, 3164, 2201, 1722, 1632, 1486, 1390, 1228.
6-Amino-5-cyano-4-(4-bromoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate
(5¢)*H NMR (400 MHz, DMSO-ds): & 3.64 (s, 3H, OCHs), 4.75 (s, 1H, CH), 7.08 (s, 2H, NHy),
7.47 (d, J = 8.28 Hz, 2H, ArH), 7.72 (d, J = 8.36 Hz, 1H, ArH), 7.82 (d, J = 8.48 Hz, 1H, ArH),
13.77 (s, 1H, NH). °C NMR (100 MHz, CDCls): 32.23, 51.62, 55.44, 56.28, 103.35, 109.77,
115.35, 119.45, 122.00, 133.56, 151.11, 156.47, 160.74; °N NMR (40.55 MHz, DMSO-dg): &
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7.08 (s, 2H, NHy); FT-IR: 3293, 3155, 2196, 1739, 1637, 1449, 1397, 1227; HRMS of
[C1sH11BrN4O3 — H] (m/z): 372.9942; Calcd: 372.9936.
6-Amino-5-cyano-4-(2-chloroxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate
(5d): *H NMR (400 MHz, DMSO-dg): 3.57 (s, 3H, OCHs), 5.26 (s, 1H, CH), 7.05 (s, 2H, NHy),
7.21 — 7.25 (m, 2H, ArH), 7.37 — 7.39 (m, 1H, ArH), 7.56 — 7.59 (m, 2H, ArH), 13.76 (s, 1H,
NH). *C NMR (100 MHz, CDCls): 32.71, 51.62, 55.48, 56.86, 104.21, 114.45, 120.53, 121.24,
123.23, 128.45, 137.25, 146.39, 152.25, 155.82, 158.46, 160.52; >N NMR (40.55 MHz, DMSO-
de): 8 7.05 (s, 2H, NHy); FT-IR: 3422, 3291, 3177, 2199 1722, 1602, 1489, 1316, 1186; HRMS
of [C1sH1:CIN4O3 — H] (m/z): 329.0434; Calcd: 329.0441.
6-Amino-5-cyano-4-(2,3-dimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-
carboxylate (5e): *H NMR (400 MHz, DMSO-dg): & 3.55 (s, 3H, OCHs), 3.61 (s, 3H, OCHs),
3.77 (s, 3H, OCHg), 4.91 (s, 1H, CH), 6.60 (d, J = 7.08 Hz, 1H, ArH), 6.68 (d, J = 7.08 Hz, 1H,
ArH ), 6.93 (s, 2H, NH,), 6.95 (d, J = 8 Hz, 1H, ArH), 13.58 (s, 1H, NH). **C NMR (100 MHz,
CDClg): 32.71, 51.59, 55.48, 56.86, 59.70, 104.21, 114.45, 120.53, 121.24, 123.23, 128.45,
137.25, 146.39, 152.25, 158.46; *°N NMR (40.55 MHz, DMSO-ds): 5 6.93 (s, 2H, NH,); FT-IR:
3426, 3289, 3154, 2186, 1732, 1606, 1479, 1396, 1266; HRMS of [C17H16N4sOs — H] (m/z):
355.1042; Calcd: 355.1042.
6-Amino-5-cyano-4-(2,5-dimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-
carboxylate (5f): *H NMR (400 MHz, DMSO-dg): & 3.64 (s, 3H, OCH3), 3.76 (s, 3H, OCH3),
3.83 (s, 3H, OCHg), 4.95 (s, 1H, CH), 6.89 (s, 2H, NH_), 7.09 (d, J = 1.2 Hz, 2H, ArH), 7.49 (s,
1H, ArH ), 13.54 (s, 1H, NH). **C NMR (100 MHz, CDCls): 51.62, 55.44, 56.28, 56.46, 109.7,
111.81, 115.35, 119.45, 120.38, 122.00, 133.56, 151.04, 153.33, 158.49, 160.74; °N NMR
(40.55 MHz, DMSO-ds): 6 6.89 (s, 2H, NH,); FT-IR: 3531, 3375, 3194, 2939, 2202, 1713, 1600,
1492, 1221.
6-Amino-5-cyano-4-(3,4-dimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-
carboxylate (5g): 'H NMR (400 MHz, DMSO-dg): & 3.62 (s, 3H, OCHs3), 3.69 (s, 3H, OCH3),
3.72 (s, 3H, OCHs), 4.54 (s, 1H, CH), 6.69 (d, J = 1.96 Hz, 1H, ArH), 6.75 (d, J = 1.96 Hz, 1H,
ArH ), 6.80 (s, 2H, NH,), 6.90 (d, J = 8.28 Hz, 1H, ArH), 13.58 (s, 1H, NH). *C NMR (100
MHz, CDClg): 35.79, 51.59, 55.41, 57.42, 59.70, 97.67, 111.19, 111.72, 119.46, 120.81, 135.63,
136.86, 147.53, 148.51, 154.68, 160.72; >N NMR (40.55 MHz, DMSO-ds): & 6.80 (s, 2H, NH,);
FT-IR: 3294, 3003, 2930, 2222, 1730, 1579, 1507, 1420, 1269.
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6-Amino-5-cyano-4-(2,4,6-trimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-
carboxylate (5h): *H NMR (400 MHz, DMSO-dg): & 3.59 (s, 3H, OCHs), 3.73 (s, 3H, OCHy),
3.81 (s, 3H, OCHg3), 3.83 (s, 3H, OCHj3), 5.27 (s, 1H, CH), 6.29 (s, 2H, ArH), 6.69 (s, 2H, NH,) ,
13.29 (s, 1H, NH). *C NMR (100 MHz, CDCls): 25.39, 51.50, 55.01, 55.42, 55.63, 91.07,
112.27, 154.35, 159.53, 160.57, 161.22; N NMR (40.55 MHz, DMSO-ds): & 6.69 (s, 2H, NH,);
FT-IR: 3430, 3322, 3202, 2189, 1713, 1596, 1397, 1227; HRMS of [C1gH1sN4,Os — H] (m/z):
385.1161; Calcd: 385.1148.
6-Amino-5-cyano-4-(2-fluorophenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5i):
'H NMR (400 MHz, DMSO-dg): & 3.61 (s, 3H, OCHg), 5.01 (s, 1H, CH), 7.06 (s, 2H, NH2), 7.10
—7.12 (m, 3H, ArH), 7.24 (t, J = 1.96 Hz, 1H, ArH), 13.76 (s, 1H, NH). *C NMR (100 MHz,
CDCls): 31.13, 51.58, 56.08, 102.95, 124.32, 128.75, 129.99, 158.28; *°N NMR (40.55 MHz,
DMSO-ds): 6 7.06 (s, 2H, NH,); FT-IR: 3321, 3379, 3201, 2202, 1720, 1655, 1442, 1224;
HRMS of [C15H11FN4O3 — H] (m/z): 313.0734; Calcd: 313.0737.
6-Amino-5-cyano-4-(3-hydroxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate
(5j): 'H NMR (400 MHz, DMSO-ds): 3.61 (s, 3H, OCHs), 4.63 (s, 1H, CH), 6.53 (s, 1H, ArH),
6.59 — 6.62 (m, 2H, ArH), 6.83 (s, 2H, NH,), 7.10 (t, J = 7.8 Hz, 1H, ArH), 9.31 (s,1H, OH),
13.24 (s, 1H, NH). *C NMR (100 MHz, CDCls): 36.14, 57.26, 97.66, 113.80, 114.10, 118.15,
120.77, 129.23, 135.53, 145.93, 154.39, 157.39, 160.80; N NMR (40.55 MHz, DMSO-ds): &
6.83 (s, 2H, NH,); FT-IR: 3422, 3178, 2188, 1712, 1633, 1490, 1397, 1207; HRMS of
[C1sH12N404 — H] (m/z): 311.0984; Calcd: 311.0988.
6-Amino-5-cyano-4-(4-chloroxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate
(5k): *H NMR (400 MHz, DMSO-dg): 3.66 (s, 3H, OCHs), 4.78 (s, 1H, CH), 7.06 (s, 2H, NHy),
7.15 (d, J = 5.68 Hz, 2H, ArH), 7.34 (d, J = 5.52 Hz, 2H, ArH), 13.78 (s, 1H, NH). *C NMR
(100 MHz, CDCls): 36.89, 52.23, 57.88, 104.11, 120.57, 128.69, 129.77, 144.32, 155.78, 158.78,
160.67; *°N NMR (40.55 MHz, DMSO-dg): & 7.06 (s, 2H, NH,): FT-IR: 3433, 3161, 2197, 1741,
1635, 1482, 1386, 1228.
6.3.1. Powder X-ray diffraction

Figure 1 displays powder X-ray diffraction patterns of calcined Ru loaded CaHAp. The
catalyst diffraction peak values 26 of 25.78°, 31.91°, 32.74°, 33.97°, 39.82°, 46.66°, 49.34° and
53.12°, were assigned to CaHAp. All these diffraction peaks agree with the international
standards files (JCPDS file no. 09-0432). Ru supported on CaHAp sample showed diffraction
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peaks at a 20 angles of 28.21°, 35.11°, 54.34° and 69.70° corresponding to the RuO, (JCPDS #
40-1290). The peaks identified in the diffractogram shows the polycrystalline nature of the
materials. The average crystallite size of this sample was obtained to be 6.8 nm using the

Scherrer equation based on the highest intensity diffraction peaks of Ru-CaHAp.
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Figure 1. XRD spectrum of Ru-CaHAp catalyst

6.3.2. SEM analysis

Figure 2 shows an illustrative SEM surface morphology micrograph of the sample Ru on
CaHAp catalyst. The morphologies of the synthesized Ru-CaHAp seem to be similar with
considerable agglomeration of Hap particles. The catalyst material exhibited irregular spherical
shapes and agglomeration with inter-granular micropores, as shown in image Figure 2. This
micrograph reveals the aggregation state of the HAp particles and its uniform distribution. The
micrographs of SEM-EDX confirmed the uniform distribution of ruthenium on the
hydroxyapatite surface. The SEM-EDX agrees with the data from ICP elemental analysis.
Furthermore, the morphology of the catalyst as per the SEM images noticeably point to the
crystallinity and homogeneity of the sample.
6.3.3. TEM analysis

The TEM micrograph confirms more structural information of the catalyst. Figure 3
shows a distinctive TEM image of Ru supported on HAp, from which it can be seen that the Ru
particles revealed square-like shapes and particle dimension ranging between 20 and 50 nm and

hydroxyapatite appearing as rod-like particles. No drastic change was noticed in the morphology
of the used catalyst.
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Figure 3. TEM micrograph of Ru-CaHAp catalyst

6.3.4. BET surface area (BET) and elemental (ICP) analysis

The N, adsorption—desorption isotherms of the prepared Ru loaded CaHAp material are
shown in Figure 4. The figure shows the nitrogen adsorption isotherms and pore size distribution
of RuCaHAp catalyst. As per the IUPAC classification, the sample displays type-V1 isotherms
and a typical H1-hysteresis loop, representing | the mesoporous nature of the materials. The BJH
pore size distribution designates a mesoporous (pore of 3-50 nm) texture for the sample, and the
isotherms p/p, range was 0.82-0.95. The Brunauer—-Emmett-Teller (BET) surface area was
determined at 46 m? g~' with a pore volume of 0.218 cc g '. As anticipated, the ICP analysis

results showed the presence of a nominal amount of Ru in the catalyst (0.98 mol %).
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Figure 4. N, adsorption & desorption spectra of Ru-CaHAp catalysts
6.3.5. Reusability of the catalyst

The reusability of any heterogeneous catalyst is a significant factor to consider for
potential commercial adaptation. After each reaction the catalyst was filtered and the recovered
catalyst was washed with hot ethanol (2 x 10 mL) and was dried at 100 °C under reduced
pressure for 2-3 h. The recycled catalyst was used for the subsequent runs repeating the same
procedure. The reusability of the catalyst was evaluated in the synthesis of pyrano[2,3-
c]pyrazole-3-carboxylate derivatives (Figure 5). The recovered catalyst was employed in five

consecutive runs, and the decrease in activity was marginal.
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Figure 5. Recyclability of Ru-CaHAp catalyst
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3.4.

Conclusion

We designed and utilized an extremely capable and green protocol using a recyclable Ru

on CaHAp catalyst for the synthesis of pyrano[2,3-c]pyrazole-3-carboxylate derivatives in an

unprecedented multicomponent reaction. The reaction proceeded at room temperature and

required short reaction times (< 30 min) in excellent yields. The catalyst material used for this

process is cost effective, and easy to prepare and handle and separate with marginal decrease in

activity during replicate runs.
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6.6. Supplementary material data

6.6.1. Catalyst characterization

Micromeritics Tristar-11 porosity and surface area analyzer was used to determine the
values of surface area, pore size and pore volume of the catalyst material. The catalyst sample
was degassed overnight using N2 flow at 200 °C. The BJH adsorption-desorption curves were
generated at -196 °C and were used to assess the catalyst’s particulate properties. Employing a
Bruker D8 Advance instrument (Cu K radiation source with a wave length of 1.5406 A), the X-
ray diffraction data related the structural phases of the catalyst were acquired. Using a Jeol JEM-
1010 electron microscope and JEOL JSM-6100 microscope, the TEM and SEM analysis data
was recorded. ITEM software was used analyze the TEM data and images. Employing the X-ray
analyzer (energy-dispersive), EDX-analysis on the SEM images was conducted. To confirm the
elemental composition catalyst materials Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES) (Optima 5300 DV) was used.
6.6.2. Materials, methods and instruments

All chemicals and reagents required for the reaction were of analytical grade and were
used without any further purification. Bruker AMX 400 MHz NMR spectrometer was used to
record the *H NMR, **C NMR and >N NMR spectral values. High-resolution mass data were
obtained using a Bruker micro TOF-Q Il ESI instrument operating at ambient temperature. The
DMSO—dg solution was utilized for this while TMS served as the internal standard. TMS was
further used as an internal standard for reporting the all chemical shifts in 6 (ppm). The FT-IR
spectrum for the samples was established using a Perkin Elmer Perkin Elmer Precisely 100 FT-
IR spectrometer at the 400-4000 cm™ area. Purity of all the reaction products was confirmed by

TLC using aluminum plates coated with silica gel (Merck Kieselgel 60 F254).
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Abstract

The ceria doped zirconia (CeO,/ZrO,) catalysed synthesis of pyrano[2,3-c]-pyrazoles via the
four-component reaction of malononitrile, hydrazine hydrate, ethyl acetoacetate and substituted
aldehydes is described. The catalytic material, CeO,/ZrO, was prepared and characterized by
different techniques including P-XRD, SEM, TEM and BET analysis. Twelve novel pyrano[2,3-
c]-pyrazole derivatives (5a-1) were synthesized giving good to excellent yields (89 to 98%) and
their structures were established and confirmed by different spectroscopic methods (*H NMR,
B3C NMR, N NMR and HRMS). The environmental benefits of the process includes excellent
yield, short reaction time, simple work-up, elimination of toxic solvents and avoidance of
chromatographic separations. The CeO,/ZrO, catalyst follows a facile synthesis procedure, is
inexpensive and has good reusability (at least 6 times).

Keywords: Multicomponent reaction; Green Synthesis; Pyrazoles; One-pot reaction; CeO,
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7.1. Introduction

Multicomponent Reactions (MCRs) are assimilation reactions, in which three or more
starting materials react with each other simultaneously to form wanted product [1]. This
approach is identified as a potent method in drug discovery due to the generation of essential
target compounds [1-3]. MCR approaches have numerous significant benefits over the classic
stepwise procedures, leading to the formation of several bonds in a single step without the need
for intermediate separations and purifications [4]. Thus, MCRs accomplish their goals in an
efficient, fast and environmentally benign manner with substantial savings in time and costs
[2,3].

The development of heterogeneous catalysts for heterocyclic compounds synthesis has
grown into a key issue for researchers [5]. Heterogeneous materials as catalyst in green organic
reactions contribute to both environmental and fiscal benefits. Many such materials are easy to
recover and recycle, which make their use appealing [6-8]. These recyclable catalysts have
numerous benefits such being amenable to separation from the reaction without any heavy
workups, but also offer long life, stability, recyclability and high selectivity. This circumvents
waste production, whilst giving high yield products in short reaction times through a green
procedures [9].

Zirconia (ZrO,) is an eco-friendly and widely available plus low-cost material [6]. It
stands out amongst other metal oxides due to its excellent stability and mechanical properties,
which can promote the activity of the supported metal catalysts [9,10]. It has been commonly
used for its substantial chemical and thermal stability, inertness, and high surface area [9-11].
The use of pure zirconia and its composites (with other metals) as catalysts for various organic
transformations has been reported in the literature [12,13]. Cerium salts are generally used as
dopants and advantages include ease of handling, low-cost, high stability and non-hazardous
properties [14]. Cerium salts as dopant material are thus an appropriate choice for green organic
conversions and has played a major role in green catalysis.

Heterocyclics play a vital role in drug discovery, pharmaceutical, agrochemical and
computational fields. Heterocyclic compounds are the main precursors in various clinical

applications and play a pivotal role in generating diverse biological activities [15,16].
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Pyranopyrazoles and their derivatives are important heterocyclic compounds exhibiting
remarkable biological properties acting as antibacterial, antifungal, antiviral, antitumor, anti-
HIV, anti-convulsant, anti-inflammatory and antioxidants [17-23]. Many pyranopyrazoles are
also used as herbicidal and insecticidal agents [24]. Literature reports on the synthesis protocols
using catalysts for substituted pyranopyrazole derivatives include [ChCI][ZnCl;], [25],
Amberlyst A,1 [26], Per-6-ABCD [27], [(CH2)4sSOsHMIM][HSO,] [28], [DBU][Ac] [29],
silicotungstic acid [30], NaOH/microwave [30], [Dsim]AICl, [31], L-Proline [32], TEABTr [33]
and FeNis/SIO,/HPGMNP [34], to mention a few. Many of these reports have some limitations
and weaknesses, such as use of severe reaction conditions, hazardous organic solvents, costly
reagents and catalysts, non-reusability, long reaction times and low product yields, which
confine their scope in practical applications. Hence, the development of green protocols for
heterocyclic synthesis involving facile and environment-friendly methods (using green solvents
in reaction and/or in workup method) would be worthy and well desired.

In our pursuit for developing efficient, environmentally benign and green approaches for
synthesis of different heterocyclic compounds [35-37], we have recently reported varied
synthetic methods for several biologically interesting products [38-42]. Here, we report a novel
approach using highly efficient CeO,/ZrO; as reusable catalyst for synthesis of a series of novel
pyranopyrazole derivatives by the reaction of aromatic aldehydes, malononitrile, hydrazine
hydrate and ethyl acetoacetate at room temperature with ethanol as solvent.

7.2. Experimental section
7.2.1. Catalyst preparation

A range of supported catalysts with weight percentages Ce/ZrO; (1, 5, & 10 wt%), were
synthesized using the wet-impregnation procedure [4,6]. The heterogeneous catalyst was
prepared from a mixture of zirconia (ZrO,, 3 g, catalyst support, Alfa Aesar) and an appropriate
amount (wt%) of cerium nitrate [Ce(NO3)s-6H,0 (Alfa Aesar)] in distilled water (50 mL). The
reaction mixture was stirred at room temperature (R.T) for 10 h. The resulting slurry was filtered
under vacuum and dried in an oven at 110-120 °C for 5 h and calcined in the presence of air, at
450 °C for 5 h to form (1, 5 & 10 wt%) of Ce/ZrO, catalysts.

7.2.2. General procedure for the synthesis of pyranopyrazole derivatives
In a typical reaction, to equimolar ratios of aldehydes (1 mmol), malononitrile (1 mmol),

hydrazine hydrate (1 mmol) and ethyl acetoacetate (1 mmol) were dissolved in ethanol (10 ml) at
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R.T followed by addition of CeO,/ZrO, (50 mg) as catalyst. The reaction mixture was stirred
continuously for 15 min at R.T, (Scheme 1) using a magnetic stirrer. The progress of the reaction
was monitored by TLC. The reaction mixture was then filtered, and the filtrate was subsequently
extracted with ethyl acetate and evaporated under reduced pressure to obtain the crude product.
The crude product was then purified with ethanol to afford pure products (5a-k). The reaction
products were identified and validated by various spectral techniques (*H-NMR, >N NMR, **C-
NMR and HRMS). All the spectral instrumentation details are incorporated in the supplementary
information (SI-11). Details of some of the compounds were included in the supplementary
information (SI-11).
6-Amino-4-(2,4,6-trimethoxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5a): *"H NMR (400 MHz, DMSO-dg) & = 1.79 (s, 3H, CHs), 3.73 (s, 3H, OCHs),
3.81 (s, 3H, OCHg), 3.83 (s, 3H, OCHj3), 5.12 (s, 1H, CH), 6.259 (s, 2H, ArH), 6.69 (s, 2H, NH,),
12.29 (s, 1H, NH); **C NMR (100 MHz, CDCI3): 9.66, 25.39, 51.50, 55.01, 55.42, 55.63, 91.07,
112.27, 154.35, 159.53, 160.57, 161.22; HRMS of [C17H1sN4O3 + H]" (m/z): 343.1141; Calcd.:
343.1141.
6-Amino-4-(2-chlorophenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
(5b): *H NMR (400 MHz, DMSO-ds) & = 1.76 (s, 3H, CHs), 5.06 (s, 1H, CH), 6.91 (s, 2H, NH,),
7.05 (t, J =8 Hz, 1H, ArH), 7.25 — 7.31 (m, 2H, ArH), 7.41 (dd, J = 7.8 Hz, 1.08 Hz, 1H, ArH)
12.11 (s, 1H, NH); *C NMR (400 MHz, DMSO-dg): 161.12, 154.95, 152.15, 146.19, 137.29,
135.09, 123.98, 120.97, 120.72, 111.06, 97.75, 60.22, 56.66, 55.48, 30.32, 9.42; HRMS of
[C14H1:CIN4O3 + H]™ (m/z): 287.1340; Calcd.: 287.1344.
6-Amino-4-(2-fluorophenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
(5¢): *H NMR (400 MHz, DMSO-dg) & = 1.79 (s, 3H, CHs), 4.86 (s, 1H, CH), 6.90 (s, 2H, NH,),
6.90 — 7.29 (m, 4H, ArH), 12.10 (s, 1H, NH); *C NMR (400 MHz, DMSO-d): 9.35, 30.02,
55.53, 96.59, 115.37, 120.53, 124.69, 128.87, 129.76, 130.76, 135.72, 154.87, 158.69, 161.28;
HRMS of [C14H1:FN,4O3 + H]™ (m/z): 271.0623; Calcd.: 271.0626.
6-Amino-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5d): *"H NMR (400 MHz, DMSO-dg) & = 1.81 (s, 3H, CHs), 3.70 (s, 3H, OCHs),
4.49 (s, 1H, CH), 6.55 (dd, J = 8.12 Hz, 1.84 Hz, 1H, ArH), , 6.71 (t, J = 108.8 Hz, 2H, ArH),
6.76 (s, 2H, NH,), 8.82 (s, 1H, OH), 12.03 (s, 1H, NH); **C NMR (400 MHz, DMSO-ds): 9.79,
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35.79, 55.41, 57.42, 97.67, 111.19, 111.72, 119.46, 120.81, 135.63, 136.86, 147.53, 148.51,
154.68, 160.72; HRMS of [C15H14N4O3 + H]™ (m/z): 299.0786; Calcd.: 299.0800.
6-Amino-4-(3-hydroxy-4-methoxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5e): *"H NMR (400 MHz, DMSO-dg) & = 1.80 (s, 3H, CHa), 3.72 (s, 3H, OCHy),
4.42 (s, 1H, CH), 6.52 (s, 1H, ArH), 6.58 — 6.60 (m, 1H ArH), 6.76 (s, 2H, NH,), 6.82 (d, J = 8.2
Hz, 1H, ArH), 8.88 (s, 1H, OH), 12.04 (s, 1H, NH); *C NMR (400 MHz, DMSO-dg): 9.70,
35.63, 57.70, 97.70, 111.80, 114.45, 118.05, 120.80, 135.54, 137.08, 146.45, 154.71, 160.60;
HRMS of [C15sH14N4O3 + H]" (m/z): 299.0732; Calcd.: 299.0732.
6-Amino-4-(4-ethylphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5f):
'H NMR (400 MHz, DMSO-dg) & = 1.16 (t, J = 7.6 Hz, 3H, CHs), 1.78 (s, 3H, CHs), 2.58 (dd, J
=15.24 Hz, 7.56 Hz, 2H, CH,), 4.54 (s, 1H, CH), 6.59 (dd, J = 7.52 Hz, 1.28 Hz, 1H, ArH), 6.80
(s, 2H, NH,), 6.89 (d, J = 6.8 Hz, 1H, ArH), 6.99 (t, J = 7.96 Hz, 1H, ArH), 11.99 (s, 1H, NH);
3C NMR (400 MHz, DMSO-dg): 9.73, 15.39, 27.68, 35.81, 57.33, 97.72, 120.82, 127.05,
127.31, 127.73, 128.31, 128.38, 135.50, 141.72, 141.96, 154.72, 160.78; HRMS of [C1sH16N4O
+ H]" (m/z): 281.1040; Calcd.: 281.1039.
6-Amino-4-(4-fluorophenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
(5g): *H NMR (400 MHz, DMSO-dg) § = 1.78 (s, 3H, CHs), 4.62 (s, 1H, CH), 6.86 (s, 2H, NH),
7.13 — 7.19 (m, 4H, ArH), 12.10 (s, 1H, NH); *C NMR (400 MHz, DMSO-ds): 9.67, 35.41,
57.10, 97.46, 115.01, 115.22, 129.25, 129.33, 135.59, 160.79; HRMS of [C1sH1;FN4O + H]*
(m/z): 271.0835; Calcd.: 271.08309.
6-Amino-4-(4-hydroxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
(5h): 'H NMR (400 MHz, DMSO-dgs) & = 1.78 (s, 3H, CHs), 4.46 (s, 1H, CH), 6.68 (d, J = 8.4
Hz, 2H, ArH), 6.74 (s, 2H, NH,), 6.94 (d, J = 8.4 Hz, 2H, ArH), 9.26 (s, 1H, OH), 12.02 (s, 1H,
NH); °C NMR (400 MHz, DMSO-dg): 9.70, 35.45, 57.81, 98.03, 115.07, 120.84, 128.38,
134.72, 135.49, 154.72, 155.97, 160.59; HRMS of [C14H12N4O, + H]" (m/z): 269.0835; Calcd.:
269.0839.
6-Amino-4-(4-(dimethylamino)phenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5i): *H NMR (400 MHz, DMSO-dg) & = 1.78 (s, 3H, CHa), 2.85 (s, 6H, N(CHs),),
4.45 (s, 1H, CH), 6.65 (d, J = 8.56 Hz, 2H, ArH), 6.73 (s, 2H, NH,), 6.96 (d, J = 8.56 Hz, 2H,
ArH), 12.02 (s, 1H, NH); *C NMR (400 MHz, DMSO-dg): 9.74, 35.34, 57.98, 98.15, 112.28,
120.92, 127.98, 129.45, 132.01, 135.44, 149.19, 154.76, 160.52.
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6-Amino-4-(2,3-dimethoxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5j): *H NMR (400 MHz, DMSO-dg) & = 1.76 (s, 3H, CHs), 3.64 (s, 3H, OCHa),
3.79 (s, 3H, OCHs3), 4.82 (s, 1H, CH), 6.59 (dd, J = 7.52 Hz, 1.28 Hz, 1H, ArH), 6.80 (s, 2H,
NH.), 6.89 (d, J = 6.8 Hz, 1H, ArH), 6.99 (t, J = 7.96 Hz, 1H, ArH), 11.99 (s, 1H, NH); **C
NMR (400 MHz, DMSO-ds): 9.42, 30.32, 55.48, 56.66, 60.22, 97.75, 111.06, 120.97, 123.98,
135.09, 137.29, 146.19, 152.15, 154.95, 161.12.
6-Amino-4-(3,4-dimethoxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5k): *H NMR (400 MHz, DMSO-dg) & = 1.82 (s, 3H, CHs), 3.69 (s, 3H, OCH3),
3.72 (s, 3H, OCHs), 4.54 (s, 1H, CH), 6.69 (dd, J = 7.52 Hz, 1.96 Hz, 1H, ArH), 6.75 (d, J = 1.96
Hz, 1H, ArH), 6.80 (s, 1H, NH,), 6.88 (d, J = 8.28 Hz, 1H, ArH ), 12.07 (s, 1H, NH). *C NMR
(400 MHz, DMSO-dg): 9.79, 35.79, 55.41, 57.42, 97.67, 111.19, 111.72, 119.46, 120.81, 135.86,
147.53, 148.51, 154.68, 160.72; HRMS of [CisH1eN4Oz + H]" (m/z): 313.0952; Calcd.:
313.0957.
6-Amino-3-methyl-4-phenyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (51): *H NMR
(400 MHz, DMSO-dg) 6 = 1.77 (s, 3H, CHg3), 4.58 (s, 1H, CH), 6.84 (s, 2H, NH,), 7.15 — 7.23
(m, 5H, ArH), 12.09 (s, 1H, NH); *C NMR (400 MHz, DMSO-ds): 9.69, 36.22, 57.22, 97.61,
126.69, 127.42, 127.65, 128.39, 135.57, 144.40, 154.73, 160.84; HRMS of [C1sH14N,O + H]*
(m/z): 253.0953; Calcd.: 299.0953.
7.3. Results and discussion
7.3.1. BET surface area (BET) and elemental (ICP) analysis

The porosity of the synthesized catalyst was determined by N, adsorption and desorption
analysis. The N, physisorption isotherms were determined for the 5% ceria supported on zirconia
catalyst. The N, adsorption-desorption isotherms showed a characteristic hysteresis loop of a
type-1V adsorption isotherm representing the mesoporous nature of the catalysts (Figure 1). The
mesoporous structure was confirmed by the pore size values, which exhibited values located in
the mesoporous region for the samples (3 nm < pore size < 50 nm) and the isotherms p/p° range
is 0.76-0.94. The prepared catalyst showed a surface area of 56 m? g * with a pore volume of
0.212 cc g . The ICP analysis results showed the presence of a anticipated amount of Ce in the
catalyst (4.96 mol %).

302



7.3.2. TEM analysis

The TEM micrograph provides more structural information of the catalyst. Figure 2
shows a distinctive TEM image of CeO; supported on ZrO,, from which it can be seen that the
ceria particles were revealed as black irregular cube like shapes and particle dimension ranged
between 20 and 28 nm and zirconia shown as white globular shape particles. No drastic change

was noticed in the morphology of the used catalyst.

‘—o—CeOZ/ZrO2 N, adsorption& desorption.

Quantity Adsorbed (cm?3/g STP)

) ' ) ' ) ' ) '
0.2 0.4 0.6 0.8 1.0
Relative Pressure (P/Po)

Figure 1: BET surface area of 5% Ce02/ZrO2 catalyst

Figure 2: TEM micrograph of 5% CeO2/ZrO2 catalyst
7.3.3. SEM analysis
Figure 3a exhibits a representative SEM surface morphology micrograph of the sample
Ce0, on ZrO,. A few large cubic sheet asymmetrical silhouettes were observed from the SEM

image of CeO,/ZrO,. It reveals that the aggregation state of the zirconia particles with ceria. The
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micrographs of SEM-EDX confirmed the uniform distribution of ceria on the zirconia surface
(Figure 3b). The SEM-EDX agreed well with the data from ICP elemental analysis.
Furthermore, the morphology of the catalyst as per the SEM images noticeably point to the
crystallinity and homogeneity of the sample.

EHT =10.00 kv

Mag = 4316 KX
9 WD = 7.3 mm

Signal A = SE2

Figure 3(a): SEM micrograph of 5% CeO,/ZrO; catalyst

@ W s%ce

25—

20—
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Figure 3(b): SEM-EDX micrograph of 5% CeO,/ZrO; catalyst

7.3.4. Powder X-ray diffractogram (XRD) analysis

The powdered XRD arrangements of calcined ceria doped zirconia are shown in Figure. 4.
The diffraction peak values 26 of 28.7°, 33.2°, 47.5°, 56.3°, 59.3°, 69.8°, 76.6° and 79.4° were
assigned to ceria. All these diffraction peaks agreed with the International Centre for Diffraction
Data (JCPDS file No. 43-1002). 5% CeO, loaded on ZrO, sample exhibited diffraction peaks at a
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20 angles of 24.7°, 28.8°, 31.8°, 34.6°, 41.4°, 50.9° and 60.5° corresponding to the ZrO, (JCPDS
file No. 01-089-9066). The peaks identified in the diffractogram confirm the polycrystalline
nature of the materials. The average crystallite size of the sample was about 6.9 nm, based on the

highest intensity diffraction peaks of CeO,/ZrO, by using the Scherrer equation.

1000 4 15 » 0 Ceoz
° ZrO2
800 -
)
8
> 600 -
®
c
g
£ 400 4
200 -
T T T T I r T
20 40 60 80

2 Theta (degrees)
Figure 4: Powder X-ray diffractogram of 5% CeO,/ZrO, catalyst

7.3.5. Optimization procedure

The model reaction containing benzaldehyde (1 mmol), malononitrile (1 mmol),
hydrazine hydrate (1.2 mmol) and ethyl acetoacetate (1 mmol) as reactants was investigated in
detail as function of varied conditions, i.e. in the absence and presence of different catalysts and
using varied solvents and temperature conditions. First, the reaction was studied without a
catalyst or solvent at both R.T and reflux conditions and there was no reaction, even after 10 h
(Table 1, entry 1 and 2). When the reaction was carried out with the various basic catalysts such
as TEA, Na,COs, pyridine and Na,S and with ethanol as solvent, yield of product was low, even
after 6 h (Table 1, entry 3-6). Next, the reaction was tried in the presence of ionic liquids, L-
proline or (Bmim)BF, and the product yield was moderate at R.T conditions (Table 1, entry 7
and 8). Further, when pure oxide catalysts, such as Al,Os, SiO; and ZrO, were employed using
the same solvent and RT., the reaction revealed moderate to good yields after 1.5-3.0 h reaction
time (Table 1, entries 9-11). After noticing encouraging result with ZrO,, to enhance the reaction
efficiency it was used as support to dope with different metal oxides. As such, Fe,O3/ZrO;,
V/ZrO,, and Ce/ZrO, composites were prepared and screened for activity. The mixed oxide

catalytic reactions afforded very good to excellent yields (84-98%) within 45 min in ethanol and
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at R.T (Table 1, entry 12-14). In particular, CeO, doped ZrO, as catalyst, recorded an excellent
yield (98%) of pyranopyrazoles in 15 min time. Assessing the impressive results, CeO, doped

ZrO, was chosen as ideal catalyst for the further studies.

Table 1: Optimal conditions for the synthesis of model reaction by 5% CeQ,/ZrO, catalyst®

Entry Catalyst Temperature Time (h) Yield (%6)°
1 - RT 10 --
2 -- Reflux 10 --
3 TEA RT 8.0 19
4 Na,COs RT 6.0 27
5 Pyridine RT 7.0 23
6 NaS RT 7.5 20
7 L-proline RT 4.5 39
8 (Bmim)BF,4 RT 5.0 48
9 Al,O3 RT 3.0 51
10 SiO, RT 2.5 59
11 ZrO; RT 1.5 70
16 5% Fe,03/Zr0, RT 0.75 84
17 5% V,05/ZrO, RT 0.50 89
18 5% CeO,/ZrO, RT 0.25 98

2 All products were characterised by 'HNMR, °C NMR, N NMR & HRMS spectral analysis.

® Isolated yields.
-- No reaction

Table 2:  Optimization of the amount of 5% CeO,/ZrO; as catalyst in the model reaction®

Entry Catalyst (mg) Time (min) Yield (%)
1 10 45 88
2 30 35 92
3 50 15 98
4 70 20 97
5 90 15 94

®Reaction conditions: ethyl acetoacetate (1 mmol), hydrazine hydrate (1 mmol), malononitrile
(2.1 mmol), benzaldehyde (1 mmol), catalyst and ethanol (10 mL) solvent were stirred at room
temperature.

Next, to evaluate the influence of quantity of catalyst on the synthesis of pyrano[2,3-

c]pyrazoles, the reaction of hydrazine hydrate, malononitrile, ethyl acetoacetate and
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benzaldehyde was studied using variable amounts of CeO,/ZrO, (10, 30, 50, 70, 90) mg. The 50
mg amount of catalyst proved opt to complete the reaction in terms of yield and reaction time.
Any further amount of the catalyst did not improve either the yield or reaction time (Table 2).
However, the decrease in quantity of the catalyst used to < 50 mg, affected the product yield by
reducing it to 88% (Table 2). Thus, 50 mg of CeO,/ZrO; at R.T with ethanol as solvent was

preferred as optimum reaction condition.

When the efficiency of different polar and non-polar solvents as solvent were investigated
ethanol as solvent was found crucial for the reaction (Table 3). Under otherwise comparable
conditions, the CeO,/ZrO, catalyzed reaction in presence of relatively non-polar solvents like n-
hexane, 1,4-dioxane and toluene gave trivial yields even after protracted reaction times (Table 3
entries 1-3). Even with polar aprotic solvents such as CH3CN and DMF, the reaction yield was
low (Table 3, Entry 4 and 5). Although, good results were obtained when polar solvents,
CH30H, C;HsOH and isopropanol were used as solvents (Table 3, entries 6-8), based on the
criteria such as reaction time, green nature, cost-effective and excellent yields, ethanol proved to
be superior and best solvent for the reaction.

Table 3: Optimization of various solvent condition for the synthesis of pyrano[2,3-c]pyrazoles
derivatives by 5% CeQO,/ZrO, catalyst

Entry Solvent Yield (%)
1 n-Hexane 09
2 Toluene 13
3 1,4-Dioxane 10
4 CHsCN 34
5 DMF 37
6 Ethanol 78
7 Methanol 69
8 isopropanol 71

®Reaction conditions: ethyl acetoacetate (1 mmol), hydrazine hydrate (1 mmol), malononitrile
(2.1 mmol), benzaldehyde (1 mmol), catalyst (50 mg) and solvent (10 mL) solvent were stirred at

room temperature.

The CeO,/ZrO, catalyst could catalyze the facile one-pot synthesis reactions of
pyrano[2,3-c]pyrazoles derivatives with excellent yields. Under the optimal reaction conditions,
the flexibility and applicability of the protocol was confirmed by using variety of other aromatic

aldehydes instead of benzaldehyde. Convincingly, irrespective of aldehydes possessing different
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electron-withdrawing or electron releasing substituents in ortho, meta and/or para positions on
the aryl ring, all the reactions gave impressive results, producing respective pyrano[2,3-
c]pyrazole derivatives in very good to excellent yields (Table 4). All of the reaction products
were characterized and structures were confirmed by *H NMR, *®N NMR, **C NMR and HRMS

spectral data (Electronic Supplementary Information).

Table 4: Synthesis of pyrano[2,3-c]pyrazoles catalyzed by 5% CeO,/ZrO, catalyst

Entry R Product Yield (%) Mp °C Lit Mp °C
1 2,4,6-(OMe); 5a 92 227-228 -
2 2-Cl 5e 90 145-147  145-146 [27]
3 2-F 5f 91 258-260 -
4 3-OMeg, 4-OH 5d 90 236-237 -
5 3-OH, 4-OMe 5e 93 209-211 -
6 4-Et 5f 95 241-243 --
7 4-F 5¢ 89 171-172 -
8 4-OH 5h 92 210-212  210-211 [27]
9 NN-(Me), 5i 89 162-165 --
10 2,3-(OMe); 5j 94 215-216 --
11 3,4-(OMe); 5k 92 192-193 --
12 H 51 98 167-168  167-169 [27]

-- New compounds/no literature available.

7.3.6. Reusability of catalyst

The reusability of the synthesized heterogeneous catalysts is an important requirement
from the environmental and economic point of view. In heterogeneous catalysis, poisoning of the
catalyst and leaching of metal are the main limitations, which impact on activity of catalyst for
further reuse. To examine the stability of the catalyst, recycling experiments were performed.
After each run, the catalyst was separated by filtration. The recovered catalyst was subjected to
washing with dichloromethane, dried, and then reused for up to six cycles. No significant loss
was observed in the first five cycles. The catalytic activity of the CeO,/ZrO, decreased by 4%,

when the recovered catalytic system was reused in the 6" cycle (Figure 5).
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Figure 5: Recyclability of CeO,/ZrO, catalyst

7.4. Conclusion

In summary, a simple, robust, efficient and green multicomponent one-pot method is
designed for the syntheses of pyrano[2,3-c]pyrazole derivatives in good to excellent yields using
Ce0,/Zr0O, as catalyst at RT. The catalyst proved effective and recyclable for the MCR protocol.
The advantages of the approach are excellent yields, cost-effectiveness, easy work up,
environment friendly reaction conditions, short reaction times, green solvent and reusable
catalyst. This procedure is promising for diversity oriented synthesis of potentially bioactive

heterocycles.
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7.7. Supplementary material data
7.7.1. Catalyst instrumentation details

Employing a Bruker D8 Advance instrument (Cu K radiation source with a wave length
of 1.5406 A), the X-ray diffraction data related the structural phases of the catalyst were
acquired. Using a Jeol JEM-1010 electron microscope and JEOL JSM-6100 microscope, the
TEM and SEM analysis data was recorded. iTEM software was used analyze the TEM data and
images. Employing the X-ray analyzer (energy-dispersive), EDX-analysis on the SEM images
was conducted.

7.7.2. Experimental section:

All chemicals and reagents required for the reaction were of analytical grade and were
used without any further purification. Bruker AMX 400 MHz NMR spectrometer was used to
record the *H NMR, **C NMR and >N NMR spectral values. High-resolution mass data were
obtained using a Bruker micro TOF-Q Il ESI instrument operating at ambient temperature. The
DMSO—ds solution was utilized for this while TMS served as the internal standard. TMS was
further used as an internal standard for reporting the all chemical shifts in & (ppm). Purity of all
the reaction products was confirmed by TLC using aluminum plates coated with silica gel
(Merck Kieselgel 60 F254).
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Single Mass Analysis
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Element prediction: Off

Monoisotopic Mass, Even Electron lons
Elements Used:

C:10-15 H:10-15 N:0-5 0:0-5
53 33 (1.079) Cm (1:61)

TOF MS ES+

100+

%_-

2910931 2330388795 1326 95,9960

Page 1
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Single Mass Analysis
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Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons
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CHAPTER-8

CONCLUSIONS

In this thesis, new heterogeneous mixed metal oxides and their modified analogues were
developed; and their potential applications as catalysts for synthesis of varied heterocyclic
molecules and their derivatives were evaluated. The major conclusions drawn based on the
studies are presented below:

In chapter 1, a review of various mixed oxide catalysts is presented, emphasizing the
significance of preparation, reusability and activity of heterogeneous catalysts and compiled the
recent developments, breakthroughs, trends and unsolved problems in this area. This overview
prepared ground to synthesize novel mixed oxide catalysts (typical supports used are CaHAp,
SiO; and ZrO; and while oxides of Ag, Ce, Mn, Ru and V) as active components, and evaluate
their catalytic performance in selected reactions. The mixed oxide materials are used as efficient
catalysts for synthesis of structurally diverse heterocyclic derivatives. The improvement in
surface area, morphology of metal oxides, mesoporosity, acidic and basicity etc., are the
important factors, which posivitely contribute to the catalytic activity of this material. Compared
to literature reported methods, the catalytic protocol developed in this work, were found to be
advantageous in terms of recyclability, exclusion of toxic solvents, high yields and purity of the
products. More importantly, considering the wider uses of mixed oxide catalysts in heterocyclic
synthesis, the results and findings presented in the study would open new applications in “green”
chemistry involving the recycling of such catalysts.

In the chapter 2, the challenging task was to prepare mesoporous silica with a highly
ordered hexagonal structure and to manage the preservation of this organized structure after
silver oxide incorporation. Thus, the study describes the successful synthesis of well-ordered
mesoporous silica and AgO-modified silica in a simple, versatile, and reproducible process
carried out by a bottom-up approach through a simple wet-impregnation method. The
spectroscopic investigations on the material growth and formation mechanism revealed that the
mixed oxide abilities of silver oxide with silica centers are the key factor, leading to successful
well-ordered assembly process. The synthesis allowed the formation of well-organized active

materials with large specific surface area and total pore volumes, as well as uniform and narrow
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average pore size distribution. Interestingly, the presence of uniform mesoporous network with
well-arranged circular pores with newly prepared materials, was illustrated by TEM
micrographs. AgO greatly enhanced Lewis acidity of the supports, and Si-O-Ag-O species were
mainly formed on the surface as illustrated with XRD and SEM-EDX analysis. The Ag doped
silica material was used as an efficient catalyst for synthesis of structurally diverse 3-methyl-4-
(phenyl)methylene-isoxazole-5(4H)-one  derivatives derivatives. The catalytic protocol
developed in this work will be advantageous in terms of preclusion of toxic solvent, cost-
effectiveness, high yield (88-93%) and purity of the products. The catalyst was easily separated
from the reaction medium and recycled for six cycles with only a slight decrease of activity and
small leaching of siliver, when aldehydes, hydroxylamine and ethylacetoacetate were chosen as

model substrates.

In chapter 3, the method for synthesis of novel class of manganese doped zirconia
(Mn/ZrO,) mixed oxide materials was developed. The constrained interlayer space (~ 5 nm) and
high surface area (~168.47 m?/g) of Mn was used effectively to trap the ZrO, moieties in the
adjacent space. The ZrO, moieties in the MnO, interlayer exhibit good thermal stability and
resistance to condensation. Structurally diverse pyrano[2,3-d]-pyrimidines were synthesized by
multicomponent one pot condensation of dimethylbarbituric acid, aromatic aldehyde and
malononitrile compounds using aqueous ethanol as solvent and Mn/ZrO, as heterogeneous
catalyst. The observed catalytic activity can be explained in terms of the presence of two types of
acidic sites with different acid strength distribution, from the metal oxides, manganese dioxide
and zirconia. The size of ionic Mn?* is small when compared to Zr?* ion. By introducing extrinsic
dopant Mn, the defect environment is changed, whether the Mn atom substitutes the zirconia
atom or it occupies the interstitial site. It clearly indicates that impregnated MnO, had a strong
influence on the acidic properties of the ZrO,, evident by increased activity, which due to the
high surface area and good dispersion of MnO; on the surface of the support. Further, avoiding
the use of toxic solvents, minimizing the amount of waste for each organic transformation,
reasonable reaction times, easy purification, aqueous conditions, efficiency, green, inexpensive,
mild, and economic availability of the heterogeneous catalyst are the other noticeable features of
this method.
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In chapter 4, a novel class of ceria and vanadia loaded silica mixed oxide (Ce-V/SiO,)
material containing surface acidic-basic bifunctional groups was synthesized employing cerium
nitrate, vanadyl sulfate as metal salts and silica as support. This could be attributed to the
property of Ce-V/SiO, where the high surface area presumably enhanced the accessibility of the
substrate to the anchored acidic and basic groups on the catalyst surface. The optimal distribution
of the acidic and basic sites on SiO; possibly contributed to its enhanced catalytic efficiency,
which is evident from the high yield, selectivity and speed of the reaction achieved in the title
reaction. The Ce-V/SiO; catalytic system efficiently catalyzes the synthesis of 2-amino-3-cyano-
4H-pyrans by one pot condensation of 5,5-dimethylcyclohexane-1,3-dione, aromatic aldehyde
and malononitrile. The synergistic effect between the acidic sites of the silica lattice and the
basic sites of the metal is responsible for synthesis of structurally diverse pyrans in good to

excellent yield under mild conditions.

For chapter 5, the study reports a new one-pot methodology for the preparation of the
ruthenia doped hydroxyapatite (Ru-HAp) and its efficacy as catalyst in highly efficient synthesis
of pyranopyrazoles with a single annealing step. This synthesis strategy was simple, fast and
cost-effective, and offers access to Ru-HAp with better features and higher synthesis yields (87-
95%) compared to other approaches. These enhanced properties including textural (larger surface
area) and highly dispersed active surface sites led to improved target molecule. They are also
accompanied by intrinsic Lewis basicity of HAp functions, which are capable of bonding with
carbonyl oxygen of the substrates assisting in generation of ionic intermediates through
activation of reactants. Therefore, these results are very promising towards opening up future
opportunities for robust heterogeneous catalysts design as well as towards large-scale
pyranopyrazole applications.

For the first time, Ru doped hydroxyapatite (Ru-HAp) was utilized in synthesis of
pyrano[2,3-c]pyrazole-3-carboxylate derivatives on at room temperatures in this study. Chapter 6
detailed these results. The mixed oxide Ru-HAp catalyst displayed excellent catalytic activity,
because of the larger surface areas associated with nano-sized particles provide more accessible
active sites. The synthesized catalysts possess a large BET surface area in the range of 146-200
m?/g and a mesoporous pore size in the range of 80-110 A. Ca series catalysts display stronger

basicity (H = 10.0 -15.0). All these excellent physico-chemical properties resulted in a very high
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catalytic activity of synthesized catalysts. Recycling experiments showed that the catalyst could
be used without a significant yield drop for 6 cycles.

In chapter 7, the high surface area and mesoporosity of zirconia was effectively utilized
for supporting ceria oxide particles and ceria loaded zirconia was developed as effective catalyst.
The ZrO, supported Ce metal particles exhibited efficient condensation activity for synthesis
pyrano[2,3-c]-pyrazoles under ethanol solvent and mild condition. Zirconia is more acidic than
ceria, and the insertion of ceria into the zirconia lattice leads to a decrease in the acid strength of
selective sites. The acidic centers of the zirconia provides adsorption sites for the compounds
whereas the ceria metal is responsible for the condensation activity. Furthermore, it is noticeable
that as the ceria content gets higher, the particles size increases and the surface area marginally

decreases.

Optimization

Optimising the novel reaction conditions revealed that green solvents such as water,
ethanol and aqueous ethanol are quite appropriate for the synthesis of various heterocyclic
compounds like pyranopyrazoles, pyrano[2,3-c]pyrazole-3-carboxylates, 2-amino-3-cyano-4H-
pyrans, pyrano[2,3-d]-pyrimidines and isoxazoles derivatives. A highly polar solvent, ethanol,
which dissipates heat faster may provide optimum conditions for formation of intermediates, and
their conversion to final products on the catalyst surface. Ethanol has proved ideal solvent for the
preparation of the various heterocyclic derivatives in this study. Polar solvents such as water and
ethanol gave excellent yields. This effect can be explained by a simple acid-base bi-functional
catalysis mechanism facilitated by the strong hydrogen bond interaction at the organic—aqueous
ethanol interface, which stabilizes the reaction intermediate.

Current studies showed that the scope of green principles for synthesis varied
heterocyclic moieties and their derivatives at moderate reaction conditions using selective
reusable heterogeneous catalysts with high efficiciency. All the reactions for the synthesis of
these compounds were optimized in terms of solvent, catalyst amount and reaction temperatures
in order to achieve the preferred product in good to excellent yields in very short reaction times.
This thesis described six protocols for successful synthesis of series of novel isoxazoles,

pyrano[2,3-d]-pyrimidines, 2-amino-3-cyano-4H-pyrans, pyranopyrazoles and pyrano[2,3-
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c]pyrazole-3-carboxylate derivatives tetrahydropyrazolopyridine and dihydropyranopyrazole
derivatives under green solvent conditions in the presence of suitable heterogeneous catalysts at

room temperature in short reaction times in good to excellent yields.

Future work

> Study the multicomponent reaction products for their further synthesis of fused
heterocyclic compounds.

> To investigate the biological activities (anticancer, anti-oxidant and anti-microbial) of the
synthesized products

> To examine the application of the new heterogeneous materials as catalysts in other
fields, such as catalysed and photocatalysed degradation of organic pollutants in water

systems.
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